User’s Manual
Interface Designer’s
Reference

NOVA°AND
ECLIPSE®LINE
COMPUTERS

' 015-000031-05

NOTICE

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC’s prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including con-
sequential) caused by reliance on the materials
presented, including, but not limited to typographical,
arithmetic, or listing errors.

NOVA, SUPERNOVA, and ECLIPSE are registered
trademarks of Data General Corporation, Westboro,
Massachusetts. DASHER, INFOS and microNOVA are
trademarks of Data General Corporation, Westboro,
Massachusetts.

DATA GENERAL
USER’S MANUAL

INTERFACE
DESIGNER'S
REFERENCE

NOVA AND ECLIPSE
LINE
COMPUTERS

Ordering No. 01%5-000031

~ Data General Corporation, 1975, 1976, 1977, 1978
All Rights Reserved

Printed in the United States of America

Rev. 05, May 1978

INTRODUCTION

INPUT/OUTPUT PROGRAMMING || Gl

1/O BUS Il G

/O BUS SPECIFICATIONS

CONNECTIONS, CONNECTORS
AND TERMINATORS vV ;i

INTERFACE BOARDS

TABLE OF CONTENTS

SECTION |
INTRODUCTION

DEFINITION OF TERMScvvvvuvnen. B Cetetesesesesarena teeeenseeananns
Types of Information . .o eeieeiiiiiireineeereroneennennenseonsnnnnnns creseaersacsanns
Types of Information Transfer seeseteatensaennnas ttsectetsttesneans teessecactans

Direct Program Control..... T e e e et e et a et e ettt resaens
Data Channel Control He ettt ettt ettt etstertetacannnn
Program Interrupt Facility et teerteeanne teteseesscenannnan ceeaas

SECTION 1l
INPUT/OUTPUT PROGRAMMING

I/OINSTRUCTION SET ttviverennrnrensneneenenns Ceresiteseenenanas
The Typical Controlleriieieeieeeereeeenneneesessnsonssenns et eceeerenanann
Instruction Format et e e e esseesten st eterterensnns Cree s eseceenns

Device Code FIeld .uuvuueeeeseteeneesesenonenensnsosesesenesnnssnnennns
Flag Control Field T cecetsanasrsanan
Operation Code Field
Accumulator Field vivuveeeneninnnnseesonneneossaeoneosnnsnnens ceeseestceceacenas
Instructions v ecevevne S e et et ee st e cn e et a0 et st o a0 es e onn s s oa0annnese cheserseeseans
DATAINA et eresesnanen Ceesesrseressustacee s nenanne Seerseeacecnnnnn
DATAINB e e e et s e aesas e et e b et ces s enoe s bt teneennnas crecsacecennnas
DAT A OUT A it ittt tieneeaeneaesososonstsassoennsosossesennnnans
DATAOQOUTB Gt e et et e e e n s s et e b a e et e b teasasaencnenenenn
DATAOQUTC .evveennnnn. Geeessstscstrtanesasostnonanas
NOI/O TRANSFER t.vtvetenennensossoonsonneneesnsesnnennnns ceseccsesennn
I/OSKIP .iivvinnnneecnnnnnnns Ceeereeraeieaa e ereeiaseiieaaaes Cehe e ieaeea, ..

PROGRAM INTERRUPT FACILITY tttttttuuuneeetotannnseesosoneoaeesnnnnnnsneeesnnnnnnn,
Operation v.veeveereeeeceenenns ceresescanns et resseesesrecanes ceeesersarenen ceseanan
COmtrol Flags v veeetuneniieeerononsoseoannnoneessononoeesesnnsnneseeneness
Interrupt Requests B T T T T S PP s ceteacnatnas
Servicing An Interrupt St ereieseer ettt ettt en o0t 0 oo nr s

=
11

HEHEEREE RS
Sobbdbbbdbbiblblbdih

E!lﬂ!:i»‘;‘-”:t HEBH

i
[=BES BRI P |

TABLE OF CONTENTS (Continued)

Instructions ...ooeveeeeocses
INTERRUPT ENABLE .

INTERRUPT DISABLE ...

CPUSKIP ...ocvcocenns
MASKOUT ceens

INTERRUPT ACKNOWLEDGE ...
I/O RESET «evvevnesnnes

Priority Interrupts
Interrupt Priority Mask .

SECTION II (Continued)

INPUT/OUTPUT PROGRAMMING

se e s e

s ee e 0 e

Priority Interrupt Handler

The Vector Instruction ..

VECTOR ON INTERRUPTING DEVICE CODE

Use of the Vector Instruction

DATA CHANNEL FACILITY

Controller Structureccecevececonns cevanns

Word Counterceeee

Memory Address Counter..

Transfer Sequenceeceeee

Processor Pausess0.
Priorities .ecceeesesceccne

Programming ceeennn

TIMING .vveeveneeonnn
Direct Program Control
Data Channel Control........

se s s s

se 0 e e o s

cee s e o

...... e s eeses s s s e et s s s s e s s st s s e s se e es s e
cesensecenne eesecesennse tessessceseess st se s e
R sesssesessssee ceenconnes cscesesserasee
cesecsscsnccns P P) eesesesenne s
cosesace P E R R R I N I essses s e e
ceeees esecnesesnso “essessessceeees e teseesseacne
..... sessseensecee R R A A I A A A
sassecsecrsesse cesseessessceneses s et s R
essessecnnse P R E R I A A A N A
R secsscss sesecsessasers R veecen
.............. . R R R R R A I R A
........ eeesesssessesseesssers s s
esssesssssscsne . R EEEREE .o essesesense cee
R . cesessennsevee sesesseen . .o .
..... e 8 0'0 e 80 0 0 0 00 0000 s e 9 ® 8 8 0 9 00 s 0
recesess e s s s s s esssssss s s et as e seesessiss e
eves e O R R R R R R I R .
cosee . ceocssesns e essceennsssense secesenene
R ceessecne cessseseceesssssns e

emer s s s es et st

N I N R R

ss e e s

sesecs e ase

es e s e s s 00 ces s

s o es et s v

SECTION Il

I/O

INTRODUCTION .ocvvveresanens Cesseesaneneannaas

LOGIC CONVENTIONS

Drawings .eceeeeses creseanses

Signal Levels ceeen
Signal Names ...ceoeveeenes

SUMMARY OF 1/0 BUS SIGNALS .
Data ceseneneas .
Programmed I/Ooutn
Program Interrupt
Data Channel ceeeeen
System Controlo

BUS

sesevos e s s e

eseeeee 0t

R EEEE R I A I IR SR B A IR]

e s ecs 02000000 c0 s e

es s e renrsecsss s

..... R R R R I A A S
eerseess e R cescceessess s es e
sevesns DR . sseccoesscosssr s .o coe
sevs e . eseseesscssssecr oo sesesssscecs R
TR R RN sesse s sseseesensss e cee
ceevecsnss e e esesesevsneses .o DRI ces e
sees v . seees e) sssses s seovsesess o
....... secs o . seeceresescs s ssosesss e
even e . e s eesevecses sesscsss s cessusssenes

....... P R R A A I A R A R N R R R N AR
.. cesscesse sseeses s s s etesesss s esccce

ii

Page

-9

m-9

I1-9

Im-10
In-10
I1-10
Im-10
Im-11
Im-11
Io-11
m-13
I1-13
m-15

m-16
Im-16
II-16
o-17
m-17
Im-17
II-17
II-18

m-18
I-18
II-19

TABLE OF CONTENTS (Continued)

SECTION Il (Continued)

1/O BUS

PROGRAMMED I/O PROTOCOL0un e eer et ae s et eeerseaseansans

Device Selectionccvveenn. teecreesnaas St er e secevessenene

Assigning Device Codes teseesssar e er s s euesne Ceesesaseaas
Data Transfer Signalsccciiieiinnrennennn Cre e essasan Ceveerasesasans
DataImputcovvvvviiiiiinenan, S

Data Outputcciiviiiieninnnnnns e et et resesattraseenenarsanas

T/O SKID ovenvnnenoneneneneeenennn. e, e
Start, Clear, I/O PUlSE ..tveierennrneronaneenns ettt eneaes Certeerraseseenas
Busy/Done NetWorK .vuieeeeeeeerencneronnns Ce e ersere e araas

PROGRAM INTERRUPT SYSTEM ..vvverenerenrnnnons Ceererensennn
Interrupt Request G et ee e iseeeteee st aes e ettt atan0tononn .
Interrupt Disable ettt Cheeet et eeracasaaasenes
Interrupt Priority Ce bl ee e ettt ettt teseanet e tanebans

....... .
.
secs e
........
........
e
........
DR
........
e e
....... .
cos e
ces e

Interrupt Acknowledge ettt P

DATA CHANNEL et e aaaa. Cereeiaas
Data Channel Request Creres ettt n e Cee et esessesensaanerennens

Data Channel Priorityccevvuus Ceressieseas Geasrsesssserasans ciseaens

Data Channel Speedscvcvvuunn S it ettt senenetsssnenenans
Acknowledge-.viveeianannn eesereananeees cieesesesaessecanesraseenena cenaaen
Data Channel Map Selection Cetseeeeeetienenans
Data Channel Transfer Modesccoveeevenennss BN eecessaean

EXAMPLES O Peerecsesannasan et
Switch Register/Relay Bufferccoevevennne Ceteereneaan Ceteerceann
Paper Tape Punchciiiiiiieiinnennns bttt teecsceaaetenscnssstaannnas
Pulse Height Analyzercovveveveoncas Cieobresireteionon

SECTION IV
/O BUS SPECIFICATIONS

DRIVERS e i, e, e,

RECEIVERS ...vvievivnnvennns Ceecerrerensenassens Chesereeconcenaranesaanrans

iii

s e e s 0
LAY .
........

LRI S
........
. LR IS
------ o
ooooo o

. X
oooooooo
es s 00

Page

nI-4
nI-4
aI-5
Im-5
nr-5
nI-5
In-6
II1-6
I1-6

nI-8
II1-8
III-8
ni-8
nI1-9

II1-9

II1-9

oI-10
nI-10
nI-11
ImI-12
nI-12
oI-12
III-13
oI-13
oI-13

oI-13
oI1-13

r-14
i-16

-1
Iv-4
-4

v-4

TABLE OF CONTENTS (Continued)

SECTION V
CONNECTIONS, CONNECTORS AND TERMINATORS

Page

INT RODU C T TION . vt it e ettt eaetsmvasacasoseonssasesnsossasasanssesenssasssasssessnassnass V-1

CONNECTIONS &ttt ittt intteneeancosneeanesanssnasanennnenns ettt e V-1

Back Panel Connections ittt iiiiiientinenssansnonnnenennnssessssesnononans V-1

I/O Bus Connectionsovvvvvenernnns t et e e e e e e e e V-1

I/O Bus Connections Within a Chassis P V-2

I/O Bus Connections Outside @ ChaSSiS «.vvvvr v renrernernnrenneanesosonasonenansnass V-2

Cabling to an Adapter or Device.cv ittt it ittt it rnenorerseannoesannsans V-2
CONNECTORS ..t iiiinnnranennneeneesanenasens e e ettt e e e V-10
5 v-10
B 0 = T e e et et e V-10
005-001858ciiviine s rnernanennsas et ettt e e e e V-10
0T . P V-10
101 K Ch ettt e e V-10
SOCKEt CONNECEOTS & 1t vt it it e it et tteseunssansosossesonsseonossoesosasssensasnessanns V-1

T E RMIN AT O RS ottt ettt reeeeunontoeesssonssestssesssnsastassosesessssssossssnssasnesoss V-1l

SECTION VI
INTERFACE BOARDS

INTRODUCTION .« t ittt vetevonsenonnsosasssancssas et et ae et e e e Vi-1
PRINTED CIRCUIT BOARD SPECIFICATIONS..... e ettt e et e e VI-1
DIimensionscoeiiiii e tnirirariosness ettt ta et ee ettt Vi-1
Vertical Clearancesccoveeeuinnnsnnaes ettt ettt e e VI-1

DC Power ReqUITEmMENtS ..ot v it irteeroreneenaeseetsnneennesanoossosesssarssassonsssns VI-1
Heat Dissipation of the Interface boardsottt ittt iriienenreieneneannns VI-2
PREFABRICATED INTERFACE BOARDS ..ttt ittteuinertonrenaesnostoianossssssesssannsenes VI-5
1000 Series General Purpose Wiring Boards ove e it iiniiiereenianerennnnesasoenas VI-5
1020 Series General Purpose Wiring Boards.cviiiriiiienitienrinnecnoasenesananns VI-6
4040 Series General Purpose Interfaces . .o vt ier it ieneitiniraereessnaseensanasenas Vi-6
4040 Series General Purpose Interface Board .. VI-6

4041 Data Register Option F N et e aeerea e VI-T7

4042 Data Channel Connection Option et et et s et e e VI-T

4043 and 4044 Options.cvvvvvnaens e e e et e e VI-T

REV. 05 iv

TABLE OF CONTENTS (Continued)

APPENDICES
Page
APPENDIX A
I1/0 DEVICE CODES AND DATA GENERAL MNEMONICS.c.autts PN Cerreeeees A-1
APPENDIX B
MAXIMUM LATENCY TIMES ...ttt trnsrenerensconns Ceteteeer e ceeeracrnasenans B-1
MAXIMUM DATA CHANNEL TRANSFER RATES e et B-2
APPENDIX C
EXTERNAL I/O BUS CONNECTOR WIRE LIST ... itivenrnnnrnenenrenseensnnninssassnesens C-1
APPENDIX D
CRITICAL I/O BUS TIMING........ et et e an e s e s e e e et aeeatec e b eten ettt o nannnnn D-1
TIMING CONSTRAINTS ON DATA CHANNEL TRANSFER MODE SIGNALS eeeeeean ceees D-2
APPENDIX E
BACK PANEL CONNECTOR LAYOU T . ittt ittt tttntnstetesroassesassatossssssssscsosasones E-1
Rev. 05

This page intentionally left blank

vi

SECTION |
INTRODUCTION

INTERFACING

One of the most valuable aspects of the modern dig-
ital computer is the variety of custom peripherals
to which it can be connected, or interfaced. In
Data General's computers, interfaces stand be-
tween the devices they control and the central pro-
cessor, communicating with the peripherals
individually and with the central processor over an
"I/O bus', or a set of wires carrying signals in
parallel to all interfaces. The timing and functions
of the I/O buses of Data General's NOVA® and
ECLIPSE™ lines of computers are similar and
boards are physically interchangeable, so that it

is possible to build an interface to operate with
both computer lines.

It is particularly easy to interface to Data General's
computers because of a number of features. The
interfaces can be built on large 15-inch square
printed circuit boards, which allow even large in-
terfaces to be reliably constructed, with a mini-
mum of off-board connections. Each of the control
lines on the I/O bus is a dedicated line used for a
single function, with no additional timing signals
needed. Thus, virtually no decoding of these con-
trol signals by the interface is necessary. Because
all the control lines are dedicated, the bus is mod-
ular, and only the control lines corresponding to
the implemented functions need be used. The bus
is completely TTL-compatible and signals may be
both transmitted and received using standard inte-
grated circuit components. Data General also
makes available general-purpose interface boards
that simplify the job of designing and building an
interface.

SCOPE OF THIS MANUAL

The purpose of this manual is to describe the
structure of the 1/0 bus and provide information for
designing and building a custom interface assembly
which can be used on NOVA and ECLIPSE lines,

While only a minimum of knowledge of the input/
output architecture of the computer is needed to use
a peripheral sold by Data General Corporation, the
design and use of custom-built I/O equipment re-
quires a much greater understanding of this archi-
tecture. " Thus, this manual discusses the I/0O bus
structure, explains specific functions, and provides
information for designing and building an interface
assembly. The reader should have a working
knowledge of digital circuits and some experience
with digital computers.

The manual is divided into sections as follows:

Section I introduces this manual, defines terms
and cites related documentation.
Section II covers the entire input/output facility

from a programming perspective. It
serves as an introduction to the facil-
ities available and is primarily in-
tended for a reader who is unfamiliar
with the Data General input/output
facilities.
Section III looks at the input/output facilities
from the viewpoint of the I/O bus. It
is a discussion of the various I/0O
functions and the bus signals that are
used for each.
Section IV is a discussion of the important elec-
trical characteristics of the I/0 bus.
Section V discusses the problems involved in
packaging an interface and connecting
it with the remainder of the computer
system.

Section VI provides information on the interfac-
’ ing boards available from Data General.

Appendices provide a number of reference tables
for information about device codes,

timing problems and character codes.

1-1 of 4

Although this manual could be understood by some -
one having little or no previous contact with Data
General computers, the reader will find it helpful
to consult some of the other publications listed
below. These manuals will provide the designer
with a discussion of the instruction sets, more
extensive input/output programming procedures,
machine operation, and other helpful information.

1. Programmer's Reference Manual -
Peripherals - DG 015-000021.

2. Programmer's Reference Manual -
NOVA line computers - DG 015-000023.

3. Programmer's Reference Manual -
ECLIPSE line computers - DG 015-000024.

4. Installer's Reference Manual -
ECLIPSE and NOVA line computers-DG 015-
000041.

OVERVIEW OF THE COMPUTER LINES

Data General manufactures two lines of computers:
the NOVA line and the ECLIPSE line. These two
lines differ primarily in their instruction sets, with
the ECLIPSE computers featuring an expanded ver-
sion of the set used by NOVA computers. The
NOVA computers have a fixed instruction set to
perform memory reference, arithmetic/logic and
input /output functions. The ECLIPSE computers
have an expanded instruction set which varies
among the computer models. ECLIPSE instruction
sets can contain instructions suited to business and
communications environments and, with the write -
able control store feature, can include custom in-
structions. A full description of the instruction
sets can be found in the references above.

The original computers manufactured by Data Gen-
eral are the NOVA and SUPERNOVA® computers.
The NOVA computer has a central processor that
is built on two printed circuit boards whereas the
SUPERNOVA computer has a 3-board central proc-
essor.

The subsequent NOVA computers come in four
series which differ from each other in the number
of printed circuit boards on which the processor is
built and on the cycle time of the memory with
which they operate. The NOVA 1200 series has
central processors built on one printed circuit
board and designed to operate with memories hav-
ing a cycle time of 1200 nanoseconds. The NOVA
800 series has central processors built on two
printed circuit boards and is designed to operate
with memories having a cycle time of 800 nano-
seconds (except for the NOVA 830 which operates
with memories having a cycle time of 1000 nano-
seconds). The NOVA 2 computers use either

1000 -nanosecond or 1200-nanosecond memories.
The NOVA 3 computers use 700ns, 800ns

or 1000ns memories.

Rev. 05

I-2

The ECLIPSE computers have a central processor
built on two boards. They include an asynchronous
memory interface which allows them to use a
variety of memories.

DEFINITION OF TERMS

A peripheral generally consists of several units, a
device, a controller and, sometimes, an adapter.
The device, called a drive, a transport or a ter-
minal, is the unit with which information is read,
written, stored, or processed. For example, a
terminal's keyboard ''reads' information; a plotter
"writes' information; a magnetic tape transport
"stores' information; and an A/D converter
''processes' information.

The controller is the interface between the com-
puter and the device, interpreting commands from
the computer to the device and passing information
between them. For example, a moving-arm disc
controller can translate the track address received
from the computer into positional commands for
the disc drives access mechanism. Once the ac-
cess mechanism positions the read/write heads,
the controller translates the data words it receives
from the computer into the sequence of bits re-
quired by the disc drive.

The adapter is an additional unit required by some
peripherals to complete the communications link
between the device and the controller.

The communications channel through which all in-
formation passes between the computer and the
controllers is called the Input/Output (I/0) bus.
Since this bus is shared by all the controllers as
well as by the CPU, it is, by necessity, a half-
duplex bus; i.e., only one operation can occur at
any time. The direction of all information trans-
fers on the I/0 bus is defined relative to the com-
puter. "Output' always refers to moving
information from the computer to a controller;
"input' always refers to moving information from
a controller to the computer.

Types of Information

The information transferred between a computer
and a controller can be classified into three types:
status, control, and data. Status information tells
the computer about the state of the peripheral: is
it busy?, is it ready?, is it operating properly?
Control information is transferred by the computer
to the controller to tell the peripheral what to do.
Data is the information which originates from, or
is sent to, the device during reading, writing,
storing, or processing.

Types of Information Transfer

Information can be transferred between the com-
puter and a peripheral in one of two ways: under
direct program control or under data channel con-
trol. An information transfer occurring under
direct program control moves a word or part of a
word between an accumulator in the CPU and a
register in the controller. This type of transfer
occurs when an appropriate 1/0 instruction is
executed in the program. An information transfer
under data channel control generally moves a block
of data, one word at a time, between the computer's
memory and the device, through a register in the
controller, The block of data is transferred auto-
matically via the data channel once the program,
using I/O instructions, sets up the transfer for a
particular peripheral.

Direct Program Control

Direct program control of information transfers,
also called '"programmed I/0", is a way of trans-
ferring single words or parts of words to or from
peripherals. Among the peripherals which trans-
fer data in this way are terminals, paper tape
readers and punches, card readers, line printers
and plotters. Since the data moves through an
accumulator, it is readily available to the program
for manipulation or decision making. In the case
of input, for example, the program can decide
whether to read another word or character based
on the value of the word or character just read.

However, because at least one instruction--and
most likely several since the information must be
stored in memory--must be executed for each
character or word transferred, programmed I/0
is slower and generally used only for peripherals
which do not have to transfer large quantities of
information quickly.

Data Channel Control

Some peripherals, such as disc and magnetic tape
subsystems, are used to store large blocks of data.
In order to reduce the amount of program overhead
required, these blocks are transferred under data
channel control, The commands used to set up the
data channel transfer are assembled in an accumu-
lator and are transferred to the controller under
direct program control. The block of data is then
automatically transferred directly between memory
and the controller via the data channel.

Once the data channel transfer for a block of data
has been set up and initiated by the program, no
further action by the program is required to com-
plete the transfer. The program can proceed with
other tasks while the block transfer is taking place.
Each time the controller is ready to transfer a

I-3

word from the block it requests direct access to
memory. When access is granted, the word is
transferred. Because several instructions do not
have to be executed for each word transferred,
block transfers can occur at high rates, in some
cases at more than a million words per second.

Since the actual transfer of a word via the data
channel could conflict with the program instruc-
tions being executed, the program pauses during
the transfer of each word. This pause is trans-
parent to the programmer with the exception that
the time required for program execution is length-
ened.

Program Interrupt Facility

When transferring information under either direct
program control or data channel control, the pro-
gram must be able to determine when the transfer
is complete, so that it can start a new transfer or
proceed with a task that was dependent on the
transfer just completed. Peripherals have status
flags which can provide the program with this
needed information. The I/O instruction set allows
the program to check the status of these flags and
perform decisions based on the results of the
checks. However, these status checks are time-
consuming, so, to avoid the necessity of contin-
ually performing such tests, all DGC computers
incorporate a program interrupt facility.

The program interrupt facility provides a periph-
eral with a convenient means of notifying the proc-
essor that it requires service by the program.

This is accomplished by allowing the peripherals

to interrupt normal program flow on a priority
basis. WHhen a peripheral completes an operation
or encounters a situation requiring processor inter-
vention, it can request a program interrupt of the
processor. The processor honors such a request
by interrupting the program in process, saving the
address where the interruption occurred, and
transferring control to the interrupt handling rou-
tine. The interrupt handling routine can identify
which peripheral requires service and transfer
control to the service routine for that peripheral.
After servicing that peripheral, the routine can re-
store the system to the state it was in when the in-
terrupt occurred.

For computer systems which require large amounts
of I/O to many devices, a multi-level priority
structure up to 16 levels deep can be established.
This structure can be set up to provide rapid ser-
vice to those devices which are crucial to the
efficient operation of the computer system; the

less critical devices are serviced in as efficient

a manner as possible. The priority interrupt
structure, like the rest of the program interrupt
facility, is under direct control of the program.

This page intentionally left blank

I-4

SECTION I
INPUT /OUTPUT PROGRAMMING

/O INSTRUCTION SET

Information transfers between the computer and the
various peripherals are governed by the program
with eight instructions which constitute the I/0O in-
struction set. These instructions allow the pro-
gram to communicate with the peripheral's
controllers and to control the program interrupt
facility. This section covers only those 1/O in-
structions used for these purposes; additional 1/0
instructions used for special processor functions
and options are fully described in the Programmer's
Reference Manuals for the ECLIPSE and NOVA line
Computers. The section is meant as an introduc-
tion to the instruction set for those who have no
experience with Data General's I/O system.

The effects of specific I/O instructions necessarily
depend on the peripherals to which they are ad-
dressed. However, the general functions provided
by the I/O instructions (loading and reading regis-
ters, issuing control signals, and testing flags) are
the same for all peripherals; different peripherals
merely use the available functions in different ways.
In order to understand the general functions per-
formed by the I/O instructions and how these func -
tions are typically used by peripheral controllers,
some knowledge of the architecture of a peripheral
controller is required.

The Typical Controller

From the point of view of the program, a periph-
eral controller operates as a collection of data
registers, control registers and status flags, with
which communications are established. With these
registers and flags, the program can route data
between the computer and the device and monitor
the operation of the device.

The distinction made here between registers and
flags is generally one of information content. A
flag contains a single bit of information, while a
register is made up of a number of bits. Groups
of contiguous bits in a register which convey a
single '"piece" of information are referred to as
""fields'". For example, in one of the magnetic
tape controller's registers, bits 13-15 act together
as a control field to select one of the eight possible
tape transports in the subsystem.

The paragraphs below describe only the basic com-
ponents of a typical controller. The additional
structure required for a peripheral using the pro-
gram interrupt facility or the data channel is dis-
cussed in the sections describing those facilities.
What follows is meant only to typify the workings
of a controller; controllers are tailored to the
specific devices they control, so that not all fit

the model given here.

The registers in a controller may be divided into
three types according to the kind of information
that is stored in them: there are data registers,
control registers, and status registers.

Data registers (or data buffers) store data in the
controller as it passes between the device and the
computer. These buffers are needed because the
computer and the device usually operate at different
speeds. Since the operation of nearly all periph-
erals involves the transfer of a word or part of a
word of data between the computer and the device,
nearly all peripherals controllers contain a data
buffer. In the case of peripherals which transfer
data under direct program control, the data buffer
is directly accessible to the program. Data is
transferred between the register in the controller
and an accumulator in the central processor by an
I/O instruction. In the case of a peripheral which
transfers data under data channel control, the data
is transferred directly between the register in the
controller and memory. Data buffers in the con-
trollers which use the data channel need not be--
and usually are not-- accessible to the CPU
through programmed 1/0.

IoI-1 of 20

Control registers allow the program to supply the
controller with information necessary for the oper-
ation of the device, such as drive or transport
numbers, data block sizes, and command specifi-
cation. A unit of control information is called a
"'control parameter'. Control parameters typi-
cally allow the program to select one of a number
of peripheral units in a subsystem, the operation
to be performed, and the initial values for flags
and counters in the controller. The program
specifies control parameters to the controller with
an I/O instruction wherein the desired parameters
are coded into the appropriate fields of the accu-
mulator used in the transfer.

Status registers are used to indicate to the program
the state of the peripheral. They consist primarily
of status flags, but can also contain control para-
meters. The control parameters contained in
status registers are commonly those which change
during the operation of the peripheral, and are
therefore of importance to the program which must
check on the progress of the peripheral's operation.
For example, a program transferring consecutive
sectors of information on a disc in a single opera-
tion can read the current sector address and sector
count during the operation in order to determine
how far the operation is from completion. Status
flags are set by the controller to indicate error
conditions or to notify the computer of the basic
state of the peripheral.

The classification of controller registers into the
three types described above is only a general one.
A register may contain more than one type of in-
formation. The most common case of this occur-
rence is a register that serves as a control
register when loaded by the program and as a
status register when read by the program. The
disc address/sector counter register mentioned in
the preceding paragraph is an example of such a
combined control and status register.

_The Busy and Done flags are the two fundamental
flags in a controller and they serve a dual purpose.

Together they denote the basic state of the periph-
eral and can be tested by the program to determine
that state. In addition, the program can manipulate
these flags in order to control the operation of the
peripheral. To place the peripheral in operation,
the program sets the Busy flag to 1. The Busy flag
remains in this state for the duration of the opera-
tion, indicating that the peripheral is in use and
should not be disturbed by the program. When the
peripheral completes its operation, the controller
sets the Busy flag to 0 and the Done flag to 1 to in-
dicate this fact. The setting of the Done flag to 1
can be used to trigger a program interrupt.
Whether a program interrupt occurs depends on the
state of the interrupt facility. However, no matter
what state the interrupt facility is in, no interrupt
can occur for that peripheral until its Done flag is
set to 1. Therefore, the setting to 1 of the Done
flag is defined to "initiate a program interrupt

request''. At this point, the program can either
start the next operation by setting the Done flag to
0 and the Busy flag to 1, or it can idle (clear) the
peripheral by setting both flags to 0.

For a relatively simple peripheral, the Busy and
Done flags alone may furnish enough status infor-
mation to allow the program to service the periph-
eral adequately. However, a more complex
peripheral will generally require additional status
flags to specify its internal operating conditions
more completely to the program. The difference
between these additional status flags and the Busy
and Done flags is that the Busy and Done flags may
be tested directly with a single I/0 instruction
while any other status flag requires that its value
first be read into an accumulator from the status
register. Each status flag is assigned by the con-
troller to one of the 16 available bit positions in a
status register. The program may then perform
any test it requires on the status word after it is
read.

Status flags which indicate errors or malfunctions
in the operation of a peripheral are termed ""error
flags'. Two types of error flags can be charac-
terized, according to their effect on the operation
of the peripheral when they are set. The first, or
passive, type is merely set by the controller in the
course of the operation when the associated error
occurs. No immediate indication of this type of
error is given to the program, and the operation
is allowed to continue to completion. The second,
or active, type of error flag is set by the control-
ler when the program attempts to start an opera-
tion which is not allowed. In this case, the
operation never begins and the Done flag is set to
1 immediately to notify the program. This type of
error flag is used to prevent a severe and probably
irrecoverable error from occurring. In either
case, the program must respond, error or not,
when it notices that a peripheral is ""done'. It
need only check the appropriate error flag or flags
before assuming that the operation it initiated was
satisfactorily completed.

For example, among its many status flags, the con-
troller for magnetic tape transports contains error
flags to indicate parity errors and illegal opera-
tions. During a read operation, when a character
is read with incorrect parity, the Parity Error flag
is set to 1. No immediate notification of the error
is given to the program and the read operation is
allowed to finish. The parity error can be detected
at the completion of the operation, when the pro-
gram should check for errors. At this time appro-
priate action can be taken, such as trying to read
the misread section of tape again or printing an
error message on the console terminal. The Ille-
gal flag, on the other hand, which is set when an
illegal operation is attempted, prevents the opera-
tion from starting. The controller immediately
sets both the Done and Illegal flags to 1 to notify
the program. Illegal operations for a magnetic
tape transport include writing on a tape that is

write-protected and spacing backwards when the
tape is at the beginning of tape marker.
Instruction Format

The general format of the I/0 instructions is shown
below.

| DEVICE CODE I
1
i3 14 15

Ac [OP CODE ICONTROL
"4 5 6 7 8 9

3 [[¢]

Bits 0-2 are 011 and identify this as an I/O instruc-
tion, bits 3-4 specify an accumulator, bits 5-7
contain the operation code, bits 8-9 specify a flag

control function or test condition, and bits 10-15
specify the code of the device.

Device Code Field

Bits 10-15 in an I/O instruction select the periph-
eral that is to respond to the instruction. The
instruction format thus allows for 64 device codes,
numbered 0-778. In all computers, device code 0
is not assigned to any peripheral, and device code
778 is used to iraplement a number of specific pro-
cessor functions, such as reading the console
switches and controlling the program interrupt
facility. Depending on the computer, a number of
other specific device codes are reserved for pro-
cessor options or features. The remaining device
codes are available for referencing peripherals.
Many of these codes have been assigned by Data
General Corporation to standard peripherals, and
the assembler recognizes convenient mnemonics
for these codes. The list of the standard device
code assignments and their associated mnemonics
is given in Appendix A.

Flag Control Field

The Busy and Done flags are either manipulated or
tested by the control functions or test conditions
specified in bits 8 and 9 of the 1/0 instructions.

In those instructions which allow flag manipulation,
bits 8 and 9 are referred to as the F field. The
flag control commands available, along with the
associated mmemonics and bit configurations and
the functions typically performed, are as follows:

F field Control Function
00

01

Mnemonic
(omitted)
S

Command

(none) None

Start Start the periph-
eral by setting the
Busy flag to 1 and

the Done flag to 0.

Clear (idle) the
peripheral by set-
ting both the Busy
and Done flags to
0.

Pulse the control-
ler to achieve a
special effect.
The effect, if any,
depends on the
peripheral.

10 Clear

11 Pulse

In the I/O instruction which allows flag testing,
bits 8 and 9 are referred to as the T field. The
bit configurations, mnemonics, and test conditions
they select are as follows:

T field | Mnemonic | Next instruction is skipped if:
00 BN Busy flag is 1 (Non-zero)
01 BZ Busy flag is 0 (Zero)

10 DN Done flag is 1 (Non-zero)
11 DZ Done flag is 0 (Zero)

Two important features of the I/0 instruction set
result from the nature of the flag control field.
First, because the flag control field is separate
from the operation code field, a single I1/O instruc-
tion can both transfer information between the con-
troller and the computer and simultaneously control
the operation of the peripheral. Secondly, the use
of the flag control field as a T field allows the

direct testing of a controller's Busy or Done flag
in a single instruction, so that quick decisions

based on the basic state of the peripheral can be
made by the program.

Operation Code Field

The 3-bit operation code field selects one of the
eight I/O instructions. In two of these instructions,
no information transfer is specified; instead, bits
8 and 9 may specify either a control function or a
flag test condition as described above. The re-
maining six instructions involve an information
transfer between the computer and the designated
peripheral controller and may also specify a con-
trol function to be performed after the information
transfer has been completed. The program can,
therefore, access up to six registers in any one
controller. Up to three of these six registers are
output registers which can be loaded by the pro-
gram with either data or control information. The
other three are input registers, from which the
program can read either data or status informa-
tion. Frequently, two different I/O instructions,
one input and one output, reference the same reg-
ister in a controller. However, this is not in any
way required by the nature of the I/O instruction
set.

In order to give names and mnemonics to the 1/0
instructions in their general form, the registers in
a peripheral controller which are accessible to the
program are referred to with letter designations.
The three input registers are called the ""A input
buffer', the "B input buffer'", and the "C input
buffer. Similarly, the three output registers are
called the "A output buffer", the '"B output buffer',
and the "C output buffer'. Thus, for example, to
read data from a peripheral controller's A input
buffer, a DATA IN A instruction, with mnemonic
DIA, is issued to that peripheral.

The eight operation codes, their associated
mnemonics, and the instructions specified are as
follows:

-4

Operation Code

Field Mnemonic Instruction

000 NIO No Input or Output
but perform the flag
control function

specified.

Read Data Into the
computer from the
A input buffer.

Write Data Out from
the computer to the A
output buffer. -

Read Data Into the
computer from the B
input buffer.

Write Data Out from
the computer to the
B output buffer.

Read Data Into the
computer from the
C input buffer.

Write Data Out from
the computer to the
C output buffer.

SKiP the next in-
struction if the test
selected for the
Busy or Done flag
is true.

001 DIA

010 DOA
011 DIB
100 DOB
101 DIC
110 DOC

111 SKP

Accumulator Field

Bits 3 and 4 in an I/O instruction select one of the
central processor's four accumulators: ACO, ACI,
AC2, or AC3. In those instructions which involve
an information transfer between the processor and
a peripheral controller, the specified accumulator
either furnishes the information for an output
transfer or receives the information in an input
transfer. In the two I/O instructions which do not
involve an information transfer, the accumulator
field is ignored. The assembler sets bits 3 and

4 in these instructions to 0; however, any bit
combination will do, and no accumulator will ever
be affected by these two instructions.

Instructions

A number of abbreviations and symbols are used
in this manual to aid in defining how an instruction
may be coded in assembly language. Abbrevia-
tions used are as follows:

AC or ac accumulator

Forf flag control command
Tort flag test command
device device code or mnemonic

The following symbols are not coded, rather they
perform these functions:

<> Indicates an optional operand. The
operand enclosed in the brackets (e.g.,
<£>) may be coded or not, depending on
whether the associated option is desired.

Indicates a specific substitution is re-
quired. Substitute the desired number,
letter or letters, or symbol from the
class, as defined by the abbreviation for
which the substitution is being made.
For example, "ac' indicates that an
accumulator specifier is required. To
select AC2, code either a '"2" or a
symbol whose value is 2,

When describing the format of a word involved in
an information transfer between the computer and
a controller, the various fields and bits in the word
are labeled with names descriptive of their func-
tions. Bits in the word which are not used by the
controller are shaded. Shaded bits are ignored

on output and set to 0 on input.

DATA IN A

DIA<f> ac, device

.]|| A;: |olo

o] | 2 3 4 5 6 7.8 9

IDE\{ICE COPE |
]
10 I 127 13 14

T

T

15

The contents of the A input buffer in the specified
controller are placed in the specified AC. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of bits transferred depends on the
controller. Most controllers set unused bits to 0.

DATA IN B

DIB<f> ac,device
o 1, 3 AC [o v 1] F [pevcecooe]
o'l 2 3'4 5 6 7 8 9 10 Il 213 14 15

The contents of the B input buffer in the specified
controller are placed in the specified AC. After
‘the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of bits transferred depends on the

controller. Most controllers set unused bits to 0.
DATA IN C
DIC<{> ac,device

oI B u[A;: I'.O} || F | JDE\{ICE%COJDEL]
o + 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the C input buffer in the specified
controller are placed in the specified AC. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of bits transferred depends on the
controller. Most controllers set unused bits to 0.

DATA OUT A

DOA<f> ac,device

AC]o | o[F
: 1 4 1
o] | 2 3 4 5 6 7 8 9

1]

14 15

DEVICE CODE
1 1 1 1
0 (1 1213

The contents of the specified AC are placed into
the A output buffer in the specified controller.
After the data transfer, the controller's Busy and
Done flags are set according to the function speci-
fied by F. The number of bits loaded into the
buffer depends on the controller. The contents of
the specified AC remain unchanged.

DATA OUT B

DOB<{> ac,device

NO 1/0 TRANSFER

1 1] ac [1 0o o] F DEVICE CODE |

NIO<{> device
T A¢ [0,0 0] £ | pevie cone,

loll |
0 1 2 3'a4 5 6'7 8 9

0 1 12 13 14 15

The contents of the specified AC are placed into
the B output buffer in the specified controller.
After the data transfer, the controller's Busy and
Done flags are set according to the function speci-
fied by F. The number of bits loaded into the
buffer depends on the controller. The contents of
the specified AC remain unchanged.

DATA OUT C
DOC<f> ac,device
o 1 1 | AC | 1o o| F | DEVICE CODE]
% | ! 1 % | 1 1 1 % 1 L
o] | 2 3 4 5 6 7 8 9 10t 12 13 14 15

The contents of the specified AC are placed into
the C output buffer in the specified controller.
After the data transfer, the controller's Busy and
Done flags are set according to the function speci-
fied by F. The number of bits loaded into the
buffer depends on the controller. The contents of
the specified AC remain unchanged.

I1-6

li) 1 , |

0O'1 2 3'4 5 6 7 8 910 Il 1213 14 15
The Busy and Done flags in the controller of the
specified device are set according to the function
specified by F. When the assembler encounters
the mnemonic NIO, it sets the AC field bits to 0.
However, these bits are ignored and may have any

value. The contents of all the accumulators are
unchanged.

1/0 SKIP

SKP ‘g device

Lol|l|[AC ||||ja T [DEVICE CODE |
o'l 2 3'4 5 6'7 8 910 Il 1213 14 I5

Skip the next sequential instruction if the test con-
dition specified by T is true for the specified con-
troller. When the assembler encounters the
mnemonic SKP t, it sets the AC field bits to 0.
However, these bits are ignored and may have any
value. The contents of all the accumulators and
the Busy and Done flags for the specified device
remain unchanged.

PROGRAM INTERRUPT FACILITY

When a peripheral completes an operation, the
controller sets its Done flag to 1 to indicate that
program service is required. The program can
test the state of the Done flag repeatedly with
I/O SKIP instructions to determine when this
occurs. However, continual interrogation of the
Done flag by the program is generally wasteful of
computing time, especially when flag checks need
to be done frequently in order to ensure that ser-
vice is not delayed so long that the peripheral
loses data. The program interrupt facility pro-
vides a peripheral with a convenient means of
notifying the processor that service is required.

All peripherals which use the program interrupt
facility have access to a single direct line to the
processor, called the Interrupt Request Line,
along which their requests for service are com-
municated. An interrupt request can be generated
by a peripheral when the peripheral's Done flag is
-set to 1. The processor can respond to, or
"honor', an interrupt request by interrupting the
normal flow of program execution and transferring
control to an interrupt handling routine. The pro-
grammer can control which peripherals may re-
quest interrupts and when the processor may start
an interrupt, by manipulating a number of flags
which are distributed among the processor and the
peripherals.

The operation of the program interrupt facility, as
controlled by these flags, is described below.
Following portions of this section detail the instruc-
tions used to control the program interrupt facility,
describe the implementation of a priority interrupt
scheme, offer further suggestions for programming
an interrupt handler, and explain the operation of
the vector instruction, which allows the ECLIPSE
computer to automatically perform much of its
interrupt processing.

Operation

Control Flags

The operation of the program interrupt facility is
governed by the Interrupt On flag (ION) in the
central processor and by the Done and Interrupt
Disable flags in each peripheral which uses the
facility. By manipulating these flags, the program
can choose to disregard interrupt requests alto-
gether, or it can selectively ignore certain periph-
erals.

The major control flag for the program interrupt
facility is the Interrupt On flag in the central pro-
cessor. To enable the interrupt facility the pro-

-1

gram sets ION to 1, allowing the processor to
respond to interrupt requests transmitted to it
along the Interrupt Request Line. Setting ION to

0 disables the entire interrupt facility, causing the
processor to ignore all interrupt requests.

ION is manipulated by the program exactly like a
Busy flag for the central processor. A Start com-
mand in any I/O instruction directed to the CPU
(device code T7g) sets ION to 1, a Clear command
in such an instruction sets ION to 0. (ION is also
set to 0 at power-up and when the RESET console
switch is pressed.)

The controller for each peripheral which uses the
program interrupt facility contains an Interrupt
Disable flag which allows the program to disable
interrupts from that peripheral. When a periph-
eral's Interrupt Disable flag is set to 1, the
peripheral is prevented from making an interrupt
request.

The Interrupt Disable flags of all peripherals are
manipulated at once with a single I/0 instruction.
This instruction, MASK OUT (MSKO), sets up the
Interrupt Disable flags of all peripherals connected
to the program interrupt facility according to a
mask contained in the accumulator specified by the
instruction. Each peripheral is assigned by its
hardware to a bit position in the mask. (Mask bit
assignments for standard peripherals are given in
Appendix A.) When a MASK OUT instruction is
given, each peripheral's Interrupt Disable flag is
set to the value of the assigned bit of the mask.
Also, at power-up and when the RESET console
switch is pressed, all Interrupt Disable flags are
set to 0.

Interrupt Requests

Interrupt requests by a peripheral are governed by
its Done and Interrupt Disable flags. When a
peripheral completes an operation, it sets its Done
flag to 1, and this action initiates a program inter-
rupt request. If its Interrupt Disable flag is 0, the
request is communicated to the CPU. If the ION
flag is 1, the processor has to honor the interrupt
request as soon as it is able. If the Interrupt Dis-
able flag is 1, the request is not communicated to
the CPU; it is blocked until the Interrupt Disable
flag is set back to 0.

The processor is able to interrupt the sequential
flow of program instructions if all of the following
conditions hold:

1. The processor has just completed an instruc-
tion or a data channel transfer occurring be-
tween two instructions.

2. At least one peripheral is requesting an inter-
rupt.

Interrupts are enabled: that is, ION is 1.

4. No peripheral is waiting for a data channel
transfer; that is, there are no outstanding data
channel requests.
over program interrupts.

When the processor finishes an instruction it takes
care of all data channel requests before it starts
an interrupt; this includes any additional data
channel requests that are initiated while data
channel transfers are being made. When no more
peripherals are waiting for data channel transfers,
the processor starts an interrupt if ION is 1 and
at least one peripheral is requesting an interrupt.

The processor starts an interrupt by automatically
executing the following sequence:

1. It sets ION to 0 so that no further interrupts
may be started.

2. It stores the contents of the program counter
(which point to the next instruction in the
interrupted program) in location 0, so that a
return to the interrupted program can be made
after the interrupt service routine has finished.

3. It simulates a JMP@1 instruction to transfer
control to the interrupt service routine. Loca-
tion 1 should contain the address of the routine
or the first part of an indirect address chain
that points to the routine.

Servicing An Interrupt

The interrupt service routine (or handler) should
save the state of the processor, identify which
peripheral requires service, and service the
peripheral.

Saving the state of the processor involves saving
the contents of any accumulators that will be used
in the interrupt service routine and saving the
carry bit if it will be used. The state of the pro-
cessor must be saved so that it may be restored
before the interrupted program is allowed to
resume.

There are three ways in which the interrupt handler
can identify which peripheral requires service.

1. On the NOVA and ECLIPSE lines, the interrupt
handler can execute a polling routine. This
routine is merely a sequence of I/O SKIP in-

structions which test the states of the Done flags

of all peripherals in use. With this method
peripheral priorities are determined by the
order in which the tests are performed. Note

The data channel has priority

that the polling technique disregards the state
of the Interrupt Disable flags. Peripherals
which are masked out will be recognized if their
Done flags are 1, even though these peripherals
could not have caused the interrupt.

On the NOVA and ECLIPSE lines, the interrupt
handler can issue an INTERRUPT ACKNOWL-
EDGE instruction (INTA). This instruction
reads the device code of the first peripheral on
the I/O bus that is requesting an interrupt, into
a specified accumulator. Note that with this
method the Interrupt Disable flags are signifi-
cant. Peripherals which are masked out cannot
request an interrupt and, therefore, cannot
respond to the INTERRUPT ACKNOWLEDGE
instruction.

3. On the ECLIPSE computer, the interrupt han-
dler can issue a VECTOR instruction (VCT).
This instruction determines which peripheral
requires service in exactly the same way as
the INTERRUPT ACKNOWLEDGE instruction.
However, the device code obtained is not
placed in an accumulator but is used as an in-
dex into a table of addresses. Besides vector-
ing automatically to the correct peripheral
service routine, the VECTOR instruction can
perform other operations necessary to the
handling of priority interrupts. Because the
VECTOR instruction is available only on the
ECLIPSE computer, and because its operation
is relatively complex, it is described later in
a section of its own.

After determining which peripheral requires ser-
vice, the interrupt handler generally transfers
control to a peripheral service rc "tine. This
routine performs the information transfer to or
from that peripheral (if required) and either starts
the peripheral on a new operation or idles the
peripheral if no more operations are to be per-
formed at this time.

When all service for the peripheral has been com-
pleted, either the peripheral service routine or
the main interrupt handler should perform the
following sequence to dismiss the interrupt.

1. Set the peripheral's Done flag to 0 to dismiss
the interrupt request which was just honored.
If this is not done, the undismissed interrupt
request will cause another interrupt--this time
incorrectly --as soon as the interrupt handler
finizhes and attempts to return control to the
interrupted program.

2. Restore the pre-interrupt states of the accu-
mulators and the carry bit. ‘

3. Set ION to 1 to enable interrupts again.

4. Jump back to the interrupted program.
(Usually a JMP@O instruction is given.)

The instruction that enables interrupts (usually
INTEN) sets the Interrupt On flag to 1, but the
processor does not allow the state of the ION flag
to change to 1 until the next instruction begins.
Thus, after the instruction that turns interrupts
back on, the processor always executes one more
instruction (assumed to be the return to the inter-
rupted program) before another interrupt can
start. The program must give this final return
instruction immediately after enabling interrupts
in order to ensure that no waiting interrupt can
overwrite the contents of location 0 before they
are used to return control to the interrupted pro-
gram.

The following diagram shows how normal program
flow is altered during a program interrupt. The
interrupt handler is shaded to indicate that this .
block of instructions is not interruptable since the
processor sets the ION flag to 0 to disable further
interrupts when the interrupt occurs. Interrupts
are not enabled again until the interrupt handler
executes its INTERRUPT ENABLE instruction just
prior to returning control to the interrupted pro-
gram.

MAIN
PROGRAM

Paaars

INTERRUPT
HANDLER

INTERRUPT
URS

IDENTIFY
RIP

[SERVICE
'PERIPHERA

RETURN
_/ FROM
INTERRUPT

e
-00647

QW @— ZO——COMXM TH>VOOIDT

Instructions

The instructions which control the program inter-
rupt facility use special device code 7745 (mnemonic
CPU). When this device code is used, bits 8 and 9
of the skip instructions test the state of ION and
PWR FF; in the other instructions these bits turn
interrupts on or off by setting ION to 1 (Start com-
mand) or 0 (Clear command).

INTERRUPT ENABLE

INTEN

NIOS CPU

o 1 1] acJo o ofo tfui 1t 1 1 1 1]
o'l 2 3'4a 5 6'7 8 910 Il 12"13 14 15

Set the Interrupt On flag to 1 to allow the processor
to respond to interrupt requests. If the Interrupt
On flag actually changes state (from 0 to 1), the
processor will execute one more instruction before
it can start an interrupt. On the ECLIPSE com-
puter, the processor will execute one more in-
struction before starting an interrupt even if the
Interrupt On flag was already 1. However, if that
instruction is one of those that is interruptable,
then an interrupt can occur as soon as the instruc-
tion begins to execute. The assembler recognizes
the mnemonic INTEN as equivalent to NIOS CPU.

INTERRUPT DISABLE

INTDS

NIOC CPU

0IIII—I Alc lolololllollllllllllla
0O I 2 3'4 5 6'7 8 9 10 Il 1213 14 15

Set the Interrupt On flag to 0 to prevent the pro-
cessor from responding to interrupt requests. The
assembler recognizes the mnemonic INTDS as
equivalent to NIOC CPU.

CPU SKIP
SKP<t> CPU

(O |

Il lI [° |o I' J'
0

IR

4 5 6 7 8 9 '10 Il 1213 14 15

—

L2 3

If the test condition specified by T is true, the
next sequential word is skipped.

CLASS CODED | RESULT|
ABBREVIATION| CHARACTER| BITS | OPERATION |
t BN 00 Tests for Interrupt
On = 1.
BZ 01 Tests for Interrupt
On = 0.
DN 10 Tests for Power
Fail = 1.
DZ 11 Tests for Power
Fail = 0.

D6-0/1444

The CPU SKIP instruction enables the programmer
to make decisions based upon the value of the
Interrupt On flag or the Power Fail flag. Which
test is performed is based upon the value of bits

8-9 in the instruction.

Bits 8-9 can be set by

appending an optional mnemonic to the CPU SKIP

mnemonic.

results are given below.

The optional mnemonics and their

MASK OUT
MSKO ac
DOB<.{ > ai_?,CPU

o,

1, 1] ac[r o] F
0'1 2 3 4 5 6'7 8 9

Lo |]
1 1 1 1 L
10 H 12 13 14

Set the Interrupt Disable flags in all peripherals
according to the mask contained in the specified
AC. (A 1in a mask bit sets the flags in all periph-
erals assigned to that bit to 1, a 0 sets them to 0.)
After the Interrupt Disable flags are set, the
Interrupt On flag is set according to the function
specified by F. The contents of the specified AC
remain unchanged. Mask bit assignments for
standard peripherals are given in Appendix A.

The assembler recognizes the instruction

If the mnemonic DIC is used to perform this func-
tion, an accumulator must be coded to avoid as-
sembly errors. Regardless of how the instruction
is coded, during execution the AC field is ignored
and the contents of the specified AC remain un-
changed. At power-up and when the RESET con-
sole switch is pressed, the processor performs the
equivalent of an IORST instruction.

The assembler recognizes a number of convenient
mnemonics for instructions that control the pro-
gram interrupt.

Mnemonic Octal
Mnemonic Instruction Equivalent Equivalent
INTEN INTERRUPT ENABLE NIOS CPU 060177
INTDS INTERRUPT DISABLE NIOC CPU 060277
MSKO ac¢| MASK OUT DOB ac.CPU| 062077
INTA ac | INTERRUPT ACKNOWLEDGE | DIB ac.CPU 0614717
IORST =~ |1,0 RESET DICC "0,CPU| 062677

MSKO ac as equivalent to DOB g_g,CPU.

INTERRUPT ACKNOWLEDGE

INTA ac

DIB< > ac.CPU

0o 1 I [AC lo ol F T o
i) Il l 1 1 1 1 l } 1 |

0' 1 2 3'a 5 67 8 9'10 Il 12 13 14 15

The device code of that peripheral requesting an
interrupt which is closest to the processor along
the I/0 bus is placed in bits 10-15 of the specified
AC. Bits 0-9 are set to 0. After the data trans-
fer, the Interrupt On flag is set according to the
function specified by F. If no peripheral is re-
questing an interrupt, the specified AC is set to
0. The assembler recognizes the instruction
INTA ac as equivalent to DIB ac,CPU.

1/O RESET
IORST

DIC-. £~ ac,CPU

Wl'lllAlC||lOll IF

||||||J
| I SR S |

i
0'1 2 3'a4 5 6'7 8 9'10 I 1213 14

Reset all peripherals connected to the I°O bus: set

their Busy, Done, and Interrupt Disable flags to 0
and, depending on the peripheral, perform any
other required initialization.
flags are altered, the Interrupt On flag is set
according to the function specified by F. The
assembler recognizes the mnemonic IORST as
equivalent to DICC 0,CPU--that is, as the in-
struction defined here with F set to 10..

After the peripherals’

II-10

To set up the Interrupt Disable flags according to
the mask contained in AC2, give

MSKO 2
or
DOB 2,CPU

However, there is one important difference be-
tween these special mnemonics and the standard
ones: mnemonics for enabling and disabling inter-
rupts cannot be appended to them. Thus, to set
the Interrupt On flag to 0 while performing a
MASK OUT instruction using AC2 give

DOBC 2,CPU

Note that use of the mnemonic IORST sets the
Interrupt On flag to 0. To set the flag to 1 while
resetting the peripherals give

DICS 0.CPU

Priority Interrupts

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the routine cannot be
interrupted, and there is only one level of periph-
eral priority. All peripherals that have not been
disabled by the program are, for the most part,
equally able to request interrupts and receive
interrupt service. Only when two or more periph-
erals are requesting an interrupt at exactly the
same time is a priority distinction made. When
this happens, priority is determined either by the
order in which I/O SKIP instructions are given or,
if the INTERRUPT ACKNOWLEDGE or VECTOR
instruction is used, by the order of peripherals
along the I/O bus. In a system with peripherals
of widely differing speeds and/or service require-
ments, a more extensive priority structure may
be required. The program interrupt facility hard-
ware and instructions allow the program to imple~
ment up to 16 interrupt priority levels.

For example, suppose that a card reader and a
Teletype are being operated at the same time.
While a card is being read, an interrupt is re-
quested as each new column of data is available,
and the program must read this data within 430
microseconds, typically, before it is overwritten in
the Data Buffer by the data from the next column.
If the Teletype service routine takes 300 micro-
seconds, card reader service will never be delayed
longer than this, and a single-level program inter-
rupt scheme will suffice. However, this interrupt
scheme will not work if the Teletype service rou-
tine takes 600 microseconds, since a card reader
interrupt request initiated soon after Teletype ser-
vice is begun will not be honored in time, and a
column of data will be lost. In order to avoid los-
ing data, the program interrupt scheme used must
allow the card reader to interrupt the lengthy
Teletype service routine. This involves creating
a two-level priority structure and assigning the
card reader to the higher priority level.

In general, a multiple-level priority interrupt
scheme is used to allow higher-priority peripherals
to interrupt the service routines of lower-priority
peripherals. A hierarchy of priority levels can be
established through program manipulation of the
Interrupt Disable flags of all peripherals in the
system. When the interrupt request from a periph-
eral of a certain priority is honored, the interrupt
handler sets up the new priority level by establish-
ing new values for all peripherals' Interrupt Disable
flags according to an appropriate "Interrupt Prior-
ity Mask' used with the MASK OUT instruction.
Peripherals whose Interrupt Disable flags are set

to 1 by the corresponding bit of this priority mask
are '""masked out", or disabled, and are thereby
regarded as being of lower priority than the periph-
eral being serviced. Peripherals which are not
masked out assume a higher priority than the
peripheral being serviced. Before proceeding with
the peripheral service routine, the Interrupt On
flag is set to 1 so that the higher-priority periph-
erals may interrupt the current service routine.

Interrupt Priority Mask

The bit of the priority mask that governs the Inter-
rupt Disable flag for a given peripheral is assigned
to that peripheral by the hardware and cannot be
changed by the program. Although lower-speed
devices are generally assigned to higher-numbered
mask bits, no implicit priority ordering is in-
tended. The manner in which these priority levels
are ordered is completely up to the programmer.
By means of the priority mask the program can
establish any desired priority structure, with one
limitation: in the cases in which two or more
peripherals are assigned to the same bit of the
priority mask, these peripherals are constrained
to be at the same priority level. When a periph-
eral causes an interrupt, a decision must be made
whether to place all other peripherals which share
the same mask bit with the interrupting peripheral
at a higher or lower priority level. If a decision
is made to mask out all peripherals which share
that priority mask bit, the interrupting peripheral
is also masked out.

Priority Interrupt Handler

A priority interrupt handler differs from a single-
level interrupt handler in several ways. The
handler must be '"re-entrant'. This means that if
a peripheral service routine is interrupted by an-
other, higher priority peripheral, no information
required by the handler to restore the state of the
machine, is lost. The two items of information
which should be saved, in addition to those saved
by a single-level interrupt handler, are the return
address (the contents of location 0) and the current
priority mask. This information must be stored
in different locations each time the interrupt
handler is entered at a higher level. Doing this
ensures that the necessary return information
belonging to an earlier interrupt is not overwritten
by a higher level interrupt. A common method of
storing return information for a re-entrant inter-
rupt handler is through the use of a push-down
stack.

Teletype® is a registered trademark of Teletype Corporation, Skokie, Illinois. All references to teletypes

in this manual shall apply to this mark.

II-11

The interrupt handler (including the peripheral

service routines) for a multi-level priority scheme

should perform the following tasks:

1.

10.

Save the state of the processor, that is, the
contents of the accumulators, the carry bit,
location 0, and the current priority mask.

Identify the peripheral that requested the
interrupt.

Transfer control to the service routine for
that peripheral.

Establish the new priority mask with a MASK
OUT instruction for that peripheral's service
routine and store it in memory at the location
reserved for the current priority mask for
that level of interrupt.

Enable interrupts. Now, any peripheral not

masked out can interrupt this service routine.

Service the peripheral that requested the
interrupt.

Disable interrupts in preparation for dismis-
sal of this interrupt level, so that no inter-
rupts will occur during the transition to the
next lower level.

Restore the state of the processor, including
the former contents of the accumulators and
the carry bit and reinstitute the pre-interrupt
priority mask with a MASK OUT instruction.

Enable interrupts.

Transfer control to the return address which
was saved from location 0.

The diagram below is a simplified representation
of program flow in a priority interrupt environ-
ment. Shaded areas indicate non-interruptable
sections of instructions. Additional higher-
priority interrupts could increase the depth of”
interrupts still further,

MAIN

PROGRAM
FIRST INTERRUPT HANDLER
INTERRUPT
OCCURS
HER
PRIORITY
INTERRUPT
URS

P
R

8

B NEW

A

M LEVEL

)s(I

£ L SERVICE

€ FIRST

¥ PERIPHERAL i

5 L] | SERVICE |

Q | SECOND |4
l I PERIPHERALL 4

DG-00648

Im-12

The Vector Instruction

The ECLIPSE line of computers incorporates an
instruction which greatly reduces the burden of
programming a priority interrupt system. Since
this instruction is available only on the ECLIPSE
line of computers, it is described separately be -
low. In effect, the VECTOR instruction (VCT) can
be used to perform the first five tasks listed above
for the multilevel priority interrupt handler.

VECTOR ON INTERRUPTING DEVICE CODE

VCT <@>displacement

o v 1t o0 o0 1 1 1 (1 1 1 11]
1 I 1 } 1 1 I 1 I : 1 | I 1 1
0’1 2 34 5 6'7 8 910 1 12" 13 14 15
B DISPLACEMENT C]

1 1
O I 2 34 5 6'7 8 9'10 1l 1213 14 15

This instruction provides a fast and efficient
method for transferring control from the main
I/O interrupt handler to the correct interrupt ser-
vice routine for the interrupting device. Bit 0 of
the second word of the instruction is the ''stack
change bit" and bits 1-15 contain the address of a
64-word vector table. Vector table entries are
one word in length and consist of a ""direct' bit

in bit 0 followed by an address in bits 1-15.

An INTERRUPT ACKNOWLEDGE instruction is
performed. The device code returned is added to
the address of the vector table and the vector table
entry at that address is fetched. If the direct bit

in the fetched vector table entry is 0, the address
in bits 1-15 is taken to be the address of the device
handler routine for the interrupting device and
control is immediately transferred there by placing
the address in the program counter.

If the direct bit is 1, the address in bits 1-15 of
the vector table entry is taken to be the address of
the device control table (DCT) for the interrupting

II-13

device. At this point, the stack change bit is
examined. If the stack change bit is 0, no stack
change is performed. If the stack change bit is 1,
a new stack is created by placing the contents of
memory location 6 in the stack limit, and the con-
tents of memory location 7 in the stack fault. The
previous contents of memory locations 40g-43g
are then pushed onto this new stack.

Device control tables must consist of at least two
words. The first word of a DCT consists of a
"push bit" in bit 0 followed by the address of the
device handler routine for the interrupting device
in bits 1-15. The second word of a DCT contains

a mask that will be used to construct the new inter-
rupt priority mask. Succeeding words in a DCT
may contain information that is to be used by the
device interrupt handler.

After the stack change procedure is performed, the
first word of the DCT is fetched and inspected. If
the push bit is 1, a standard return block is pushed
onto the stack with bits 1-15 of physical location 0
placed in bits 1-15 of the last word pushed. If the
push bit is 0, no return block is pushed.

Following this procedure, the address of the DCT
is placed in bits 1-15 of AC2 and bit 0 of AC2 is
set to 0.

Next, the current interrupt priority mask is
pushed on the stack. The contents of the second
word of DCT are logically OR'd with the current
interrupt priority mask and the result is placed in
both ACO and memory location 5. This constructs
the new interrupt priority mask and places it in
ACO and the save location for the mask. A

DOBS 0,CPU instruction is now performed. This
is a MASK OUT instruction that also enables the
interrupt system.

After a new interrupt priority mask is established
and the interrupt system enabled, control is trans-
ferred to the device handler by placing bits 1-15 of
the first word of the DCT in the program counter.

START OF
VCT INSTRUCTION

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION. BIT
0 IS THE STACK
CHANGE BIT. BITS
1-15 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

'

PERFORM
INTA

!

ADD THE CODE
RETURNED FROM

INTA TO THE AD-
DRESS OF THE VECTOR
TABLE AND FETCH THE
WORD AT THAT LOCA-
TION. BIT 0 IS THE
"DIRECT BIT"

DIRECT YES

BIT = 0°?

BITS 1-15 OF
THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE DCT

BITS 1-15 OF THE
FETCHED VECTOR
TABLE ENTRY CON-
TAIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE.

!

VECTOR INSTRUCTION

FETCH THE FIRST WORD
OF THE DCT. BIT OIS
THE " PUSH BIT". BITS
1-15 CONTAIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE.

PUSH BIT

1?

PUSH STANDARD
RETURN BLOCK.

BITS 1-15 OF

LAST WORD PUSHED
CONTAIN BITS 1-15

OF PHYSICAL LOCATION
0.

|

SAVE LOCATIONS

40-43g

!

TRANSFER CONTROL

TO THE DEVICE
INTERRUPT ROUTINE

BY PLACING BITS

1-15 OF THE FETCHED
VECTOR TABLE ENTRY

IN THE PROGRAM COUNTER

PLACE CONTENTS OF
LOCATION 4 IN

STACK POINTER.
PLACE CONTENTS OF
LOCATION 6 IN

STACK LIMIT.

PLACE CONTENTS OF
LOCATION 7 IN

STACK FAULT.
NOTE: FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UNPREDICTABLE

e |

PLACE THE
ADDRESS OF THE
DCT IN AC2.

!

PUSH THE CURRENT
INTERRUPT MASK
(LOCATION 5) ONTO
THE STACK.

!

PLACE THE LOGICAL
OR OF THE CURRENT
INTERRUPT MASK AND
THE SECOND WORD
OF THE DCT IN ACO.

!

PLACE THE
CONTENTS OF ACO
IN THE CURRENT
INTERRUPT MASK
(LOCATION 5).

!

DO A MASK OUT
FROM ACO AND .
ENABLE INTERRUPTS
(DOBS 0,CPU).

!

PLACE ADDRESS

OF DEVICE INTERRUPT
ROUTINE IN

PROGRAM COUNTER.

!

PUSH OLD CONTENTS
OF LOCATIONS
(40g-43g)

A
b 06-01133

CONTINUE SEQUENTIAL
OPERATION WITH THE
WORD ADDRESSED

BY THE PROGRAM
COUNTER

TRANSFER
CONTROL TO
STACK FAULT
ROUTINE

|

|

L]

END OF
VCT INSTRUCTION

I-14

Use of the Vector Instruction

The VECTOR ON INTERRUPTING DEVICE CODE
instruction is an extremely powerful instruction.
Because of the impact of interrupt latency on over-
all system performance, and the impact of the
VECTOR instruction on interrupt latency, this in-
struction should be well understood before it is
used.

The VECTOR instruction can operate in any one of
five modes. These modes are called mode A,
mode B, mode C, mode D, and mode E. In gen-
eral, as one goes through the modes, from A to E,
the instruction performs more work, giving the
user more power, but also takes more time to
execute.

For all modes, the VECTOR instruction uses bits
1-15 of the second word to address the vector
table. An INTERRUPT ACKNOWLEDGE instruc-
tion is performed and the device code received is
added to the address of the vector table and the
word at that location is fetched. At this point, the
mode selection process begins.

Which mode is used for execution is a function of
the direct bit in the vector table entry, the stack
change bit in the second word of the VECTOR in-
struction and the push bit in the first word of the
DCT. The table below gives the relationship.

DIRECT STACK CHANGE PUSH MODE
0 X X A
1 0 0 B
1 0 1 C
1 1 0 D
1 1 1 E

Note: X =Don't care

For mode A, the state of the stack change bit
doesn't matter because it is never checked.

The uses of the five modes are described below.

Mode A is used when no time can be wasted in get-
ting to the interrupt handler for a device. A device
requiring mode A service would typically be a non-
buffered device with a very small latency time,
Alternatively, a real time process that must re-
ceive control immediately after an event could be |
serviced using mode A. The programmer pays for
the speed realized through mode A by giving up the
state saving and priority masking features of the
other modes.

Modes B, C, D, and E are used to implement a
priority interrupt structure. They all build a new
priority mask and save the old priority mask be-
fore issuing a MASK OUT instruction that enables

I1-15

the interrupt system. These modes differ in the
amount of time and work that they devote to saving
the state of the machine.

In a priority system, there are typically two types
of processes: those that operate at '"base" level,
and those that do not. Base level is defined as
operating with all levels of interrupt enabled and
no interrupt processing in progress. Non-base
level is defined as operating with some interrupt
processing in progress. In general, those pro-
cesses that operate at base level are user pro-
grams. Those processes that operate at non-base
level are the various interrupt handlers in the
system.

One of the first things that the supervisor program
should do when it receives an interrupt while a pro-
cess is operating at base level is to change the
stack environment. Two reasons lead to this con-
clusion, The supervisor has no control over
whether or not the user has defined a stack by
placing meaningful information in the stack control
words. Additionally, even if the user has initialized
a stack, the supervisor has no control over the size
of the stack. If the user has defined a stack, but

is very close to his stack limit, it would not be
acceptable for a supervisor interrupt routine to fill
the user's stack to overflowing. By using either
mode D or E, the VECTOR instruction will change
the stack environment and initialize a stack over
which the supervisor has full control. At the same
time, the VECTOR instruction will save the stack
environment of the user so that it may be restored
before control is returned to the user.

If an interrupt handler is already processing when
another interrupt is received, then the stack en-
vironment has already been changed by the inter-
rupt that occurred at base level and should not be
changed again. For interrupts that occur at non-
base level, modes B and C of the VECTOR instruc-
tion can be used.

The difference between modes D and E is the same
as the difference between modes B and C: modes
B and D do not push a return block onto the stack.

While this saves a little bit of time over modes C
and E, it makes returning control to the interrupted
brogram somewhat more complicated.

All modes of the VECTOR instruction can be com-
bined in one vector table. Devices that require
mode A service will have bit 0 set to 0 in their
vector table entry. The other devices will have
bit 0 set in 1 in their vector table entries, and
control their modes of service by the setting of the
push bit in their DCT's.

DATA CHANNEL FACILITY

Peripherals which need to transfer large blocks of
data quickly generally accomplish their data trans-
fers via the data channel facility. The actual data
channel transfers do not disturb the state of the
processor since the data is transferred directly
between registers in the controller and memory.
This means that the amount of program overhead
in the form of executing I/0 instructions and load-
ing or storing data is greatly reduced. The time
required for program execution is lengthened how-
ever, since the processor pauses, as soon as it is
able, each time a word is to be transferred; the
transfer then occurs and the processor continues.
The program need only set up the peripheral for
the transfer and can then perform other, unrelated
tasks.

The data channel facilities in the original NOVA,
NOVA 1200 series, and the ECLIPSE line of com -
puters all provide a single speed for data channel
operation. The SUPERNOVA series, NOVA 800
series, and NOVA 2 series computers all can
operate the data channel at two different speeds:
standard and high speed. In addition to merely
transferring data, certain arithmetic operations
can be performed by the data channel in some
computers. All the NOVA line computers can have
the contents of any memory location incremented

by 1 each time a controller requests that operation.

The NOVA and SUPERNOVA computers also allow
a controller to add a word to the previous contents
of any memory location.

In both types of arithmetic operation, the com-
puter sends the results back to the controller and,
if the operation increased the contents of the mem-
ory location to more than 216-1, it sends an over-
flow signal.

The data channel allows many peripherals to be
active at the same time, providing access to mem-
ory to individual controllers on demand. Periph-
erals which use the data channel operate under a
priority structure imposed on them by the channel.
In cases where more than one controller requests
access to the data channel at the same time,
priority is given to that controller which is closest
to the processor on the I/0 bus.

A table in Appendix B includes the maximum
transfer rates for all combinations of channel
speed and type of transfer.

1I-16

Controller Structure

Understanding the operation of the data channel re-
quires a knowledge of the structure of the control-
lers which use it. The controllers usually contain
the normal Busy and Done flags, status, control,
and data registers, and the program interrupt com-
ponents. Additional components are added to
handle the functions necessary to operate the data
channel. Some of these components, generally
available to the program, are in the form of addi-
tional control and status registers.

Two registers usually added are a Word Counter
and a Memory Address Counter. The Word
Counter is used by the program to specify the size
of the block of data to be transferred (number of
words). The Memory Address Counter is used to
specify the address in memory which is used in
the data transfer.

Word Counter

The Word Counter is loaded by the program with
the two's complement of the number of words in the
block. Each time a word is transferred, the con-
troller automatically increments the counter by 1.
When the counter overflows, the controller termi-
nates data channel transfers.

The size of the Word Counter varies from periph-
eral to peripheral, depending on the block size
associated with the peripheral. Typical sizes of
the Word Counter are 12 and 16 bits, allowing for
up to 4096 -word blocks and 65, 536-word blocks,
respectively. Although the Word Counter specifies
the negative of the desired block size, the most
significant bit of the register need not be a 1--it

is not a sign bit for the number. No sign bit is
necessary because the word count is treated as
negative by the controller, by virtue of being in-
cremented instead of decremented. Thus, a word
count of 0 is valid; in fact, it specifies the largest
possible block size. The table below further illus-
trates the correspondence between the desired
word count and the value which must be loaded into
a 12-bit or 16-bit Word Counter.

(negative) word count | 16-bit value | 12-bit value

(decimal) (octal) (octal)
-1 17777 7
-2 177776 7776
-8 177770 7770
-100 177634 7634
-2047 174001 4001
-2048 174000 4000
-2049 173777 3717
-4095 170001 0001
-4096 170000 0000
-409% 1677717
-8192 160000
-32768 100000
-65535 000001
-65536 000000

Memory Address Counter

The Memory Address Counter always contains the
address in memory which is to be used by the con-
troller for the next data transfer. It is loaded, by
the program, with the address of the first word in
the block to be transferred. During each transfer,
the controller increments the Memory Address
Counter by 1. Therefore, successive transfers
are to or from consecutive memory locations.

Transfer Sequence

The actual data channel transfer sequence is a
two-way communication between processor and
controller and proceeds as follows. When a
peripheral has a word of data ready to be trans-
ferred to memory or wants to receive a word from
memory, it issues a data channel request to the
processor. The processor pauses as soon as it is
able, and begins the data channel cycle by acknowl-
edging the peripheral's data channel request. The
acknowledgment signal dismisses the peripheral's
data channel request and causes the peripheral to
send back to the processor the address of the mem-
ory location involved in the transfer. Following
the receipt of the address, the data itself is trans-
ferred in the appropriate direction.

At the completion of each data transfer the pro-
cessor/controller interaction is over. The con-
troller carries out any tasks necessary to complete
the data transfer, such as transferring the data to
the device itself for an output operation. The pro-

cescor starts another data channel transfer if any
data channel requests are pending, starts a pro-
gram interrupt if one is being requested and there
are no data channel requests, or resumes program
execution.

The controller increments both the Memory Ad-
dress Counter and the Word Counter during the
transfer. If the word count becomes 0, the con-
troller terminates further transfers, sets the

Busy flag to 0, the Done flag to 1, and initiates a
program interrupt request. If the Word Counter
has not yet overflowed, the peripheral continues its
operation, issuing another data channel request
when it.is ready for the next transfer.

Processor Pauses

The processor can pause for a data channel trans-
fer only at certain, well-defined times, depending
on the model of processor and, in the SUPERNOVA
computer, on the channel speed used by the periph-
eral requesting the transfer. For the NOVA,
NOVA 1200 series, and the standard channel on
SUPERNOVA computers, data channel transfers,
like program interrupts, can only occur between
instructions. High-speed data channel requests on
the SUPERNOVA computer, and all requests on the
NOVA 800 series, NOVA 2 series, and ECLIPSE
line computers pause for data channel operation
between instructions and at certain other points in
most instructions (I/O instructions are among those
during which data channel transfers cannot occur.)

P_riorities

In terms of priorities, program execution has
priority over the data channel except at certain
points in the processor's operation, at which times
the data channel has absolute priority (over not
only normal program execution but also over any
pending program interrupt requests). At these
certain points, the processor will handle all exist-
ing data channel requests, including those which
are generated while data channel transfers are in
progress, before starting a program interrupt or
resuming normal instruction execution. Thus, if
data channel requests are being generated by a
number of peripherals as fast as or faster than the
processor can handle them, all processing time
will be spent handling data channel transfers, and
program execution will stop until all the data
channel transfers are made. However, when the
data channel is being used at less than its maxi-
mum rate, processing time is shared between the
data channel, which receives as much as it needs,
and the program, which uses the rest.

Im-17

When the processor pauses to honor a data chan-
nel request and more than one controller is re-
questing a data channel transfer, priority is given
to the controller which is closest to the processor
on the I/O bus. Since all peripherals operating
with the high-speed data channel must be grouped
together at the beginning of the bus, all requests
from high-speed controllers will be honored be -
fore any from those which operate at standard
speed. To use the high-speed data channel, the
controller for a peripheral must be mounted inside
the mainframe of the computer and must be de-
signed to operate within the high-speed data channel
time constraints. A computer that has the two-
speed capability is shipped with the high speed
enabled for all controllers mounted inside the
mainframe. (Controllers in an expansion chassis
are constrained to operate at standard speed.)

Programming

Programming a peripheral for a data channel block
transfer typically involves the following steps:

1. The peripheral's status is checked, usually
by testing the Busy flag and/or reading a
status word and checking one or more €rror
or ready bits. If an error has occurred, the
program should take appropriate action. If
no error has occurred but the peripheral is
not yet ready, the program should wait for the
peripheral to complete its operation. When
the peripheral is ready, the program may
proceed.

9. The data block in the device is located. This
usually involves giving a peripheral "address"
by specifying a unit number, channel number,
sector number, or the like.

3. The data block in memory is located by loading
the Memory Address Counter with the address
of the first word of the block.

4. The size of the data blocks is specified by
loading the proper value into the Word Counter.

5. The type of transfer is specified and the
operation is initiated. If the peripheral is
capable of several different operations, speci-
fying the type of transfer usually involves
loading a control register in the controller.
The operation itself is usually initiated by one
of the 1/O control functions Start or Pulse.

Setting up and initiating the data channel operation
is the major part of programming a data channel
block transfer. However, if any errors could
have occurred during the operation, the program
should check for these errors when the operation
is complete and take appropriate action if one or
more have occurred.

TIMING

On large systems which depend heavily on input/
output, both the direct program control and data
channel facilities can be badly overloaded. This
overloading means that certain peripherals are
seriously compromised because they lose data or
perform poorly, since the system cannot respond
to them in time.

This section explains how a system can be over-
loaded and what steps can be taken to minimize the
detrimental effects.

Direct Program Control

Nearly all peripherals operating under direct pro-
gram control request program service by setting
their Done flags to 1. Whether the CPU deter-
mines that the Done flag is set to 1 by repeatedly
checking it or by responding to interrupt requests,
there may be a significant delay between the time
when the peripheral requests program service and
the time when the CPU carries out that service.
This delay is called "programmed I/O latency'.

When the program interrupt facility is not used,
programmed I/O latency has two components which
can be calculated from the tables in Appendix B.

1. The interval between the time the Done flag is
set to 1 by the peripheral and the time the flag
is checked by the CPU.

2. The time required by the peripheral service
routine to transfer data to/from the peripheral
and set the Done flag to 0 (by idling the periph-
eral or instructing it to begin a new operation).

The first component can be diminished by perform-
ing frequent checks on the Done flag; the second
can be diminished by writing an efficient periph-
eral service routine.

When the program interrupt facility is used, the
programmed I/O latency has at least four com-
ponents:

1. The time from the setting of the Done flag to
1, to the end of the instruction being executed
by the CPU.

2. The time the interrupt facility needs to store
the program counter in location 0 and simulate
a JMP @1 instruction.

3, The time required by the interript handler to
identify the peripheral and transfer control to
the service routine.

4. The time required by the service routine to
transfer data to/from the peripheral and set
the Done flag to 0.

I1-18

The programmed I/0 latency may be extended by
three other components:

5. The time when CPU operation is suspended
because data channel transfers are in progress
(see following section).

6. The time during which the CPU does not re-
spond to the peripheral's interrupt request
because the interrupt system is disabled.

(For example, during the servicing of an inter-
rupt from another peripheral.)

7. The time the peripheral's Interrupt Disable
flag is set to 1 during the servicing of an
interrupt of a higher priority peripheral.

The first component is determined by the longest
non-interruptable instruction that the CPU can
execute. On the NOVA line computers, this is
usually a few microseconds (unless long indirect
address chains are used in several processors);

on the ECLIPSE S series of computers it can be
considerably longer due to the presence of the WCS
feature which allows the programmer to code long
instructions which do not allow program interrupts
to occur during their execution.

The second component is also machine dependent;

in general it is approximately two or three times

as long as a memory reference. The third, fourth,
sixth and seventh components are determined by
software and account for the bulk of the programmed
I/O latency. The fifth component is determined by
the nature and the number of the data channel de-
vices operating in the system.

Programmed I/O latency is important because a
peripheral that must wait too long for program ser-
vice from the CPU may suffer from degraded per-
formance. The longest allowable delay between the
time when a peripheral sets its Done flag to 1 and
the time when the CPU transfers data to/from that
peripheral and sets the Done flag to 0 is called the
"maximum programmed I/O latency' of the periph-
eral. When the actual programmed I/0 latency for
a peripheral exceeds the maximum programmed
I/0 latency, the specific effects depend on the de-
vice in question. In the worst case, data may be
incorrectly read or written. The maximum allow-
able programmed I/O latencies for each peripheral
can be found in the ''Peripherals Manual",

DG 015-000021.

A peripheral service routine must usually perform
certain computations (updating pointers to buffers,
byte counters, etc.), but rarely are these compu-
tations so complex that they cannot be accomplished
within the constraints of the maximum allowable
programmed 1/0O latency. However, if several
peripherals are competing for service at the same
time, it may be necessary to jeopardize the per-

formance of some of them by deferring their re-
quests for program service until the CPU has
serviced the higher priority requests. For this
reason, all DGC computers incorporate the prior-
ity interrupt facility described earlier.

The object of the priority interrupt facility is to
minimize the loss of important data. In order for
the programmer to achieve this end, the assign-
ment of the software priority levels should be made
in the light of the following considerations:

1. the maximum allowable programmed I1/0 la-
tency for each peripheral.

2. the result of exceeding the maximum allowable
programmed I/O latency for each peripheral
(slowdown or data loss), and

3. the cost of losing data.

Data Channel Control

Problems with time constraints may also be en-
countered when transferring data via the data
channel. When a peripheral needs data channel
service, it makes a data channel request. How-
ever, the CPU can only allow data channel periph-
erals to access memory at certain times. (At such
times, it is said that data channel breaks are en-
abled,) In addition, there may be more than one
peripheral waiting to access memory at any one
time. Consequently, there may be a significant
delay between the time when a peripheral requests
access to memory and the time when the transfer
actually occurs. This delay is called data channel
latency and has the following components:

1. the time between the peripheral's request for
memory access and the next data channel
break, and

2. the time required to complete data channel
transfers to/from higher priority (closer)
peripherals that are also requesting memory
access.

The length of the first component depends on the
design of the CPU. In the NOVA, NOVA 1200
series, and SUPERNOVA (standard-speed) com-
puters, data channel breaks are enabled only be-
tween instructions so that long instructions

(MUL, DIV) and long indirect address chains can
have a significant effect on data channel latency.

In the NOVA 800 series, NOVA 2 series, ECLIPSE
line and SUPERNOVA (high-speed) computers, data
channel breaks may be enabled during most in-
structions (but not during I/O instructions), so
that data channel latency is reduced.

The length of the second component depends on the
number of data channel peripherals operating in

II-19

the system at a higher priority and the frequency
of their use.

Most peripherals using the data channel control
operate under fixed time constraints. Disc drives
and magnetic tape transports are typical data chan-
nel peripherals. In each of these devices, a mag-
netic medium moves past a read or write head at
constant velocity. If data is not read or written

at the correct instant, the data will be transferred
to or from the wrong place on the magnetic medi-
um. Consequently, on input, such devices must
be allowed to write a word into memory before the
next word is assembled by the controller, and on
output, the controller must be able to read a word
from memory before the surface is positioned
under the write head. In either case, if the data
channel latency is too long, data cannot be proper-
ly transferred. Most peripherals operating under
data channel control set an error flag when this
happens, so the service routine can take appro-
priate action to recover from the error, if
possible.

The maximum allowable data channel latency of a
peripheral is the maximum time the peripheral
can wait for a data channel transfer. The range
of times is from a few microseconds to several
hundred microseconds. At the time the system is
configured, data channel priorities should be
assigned to peripherals on the basis of the follow-
ing considerations:

Im-20

1. The maximum allowable data channel latency
of the peripheral. A peripheral with a short
allowable latency usually should receive a
higher priority than one with a long allowable
latency.

2. The recovery time of a peripheral (i.e., how
long before it can repeat a transfer that failed
beecause of excessive data channel latency) if
the peripheral can recover.

3. The cost of losing data from the peripheral if
the peripheral cannot recover.

If data channel latency seems to be a problem in a
system, latency might be improved by changing
programs; less frequent use of long instructions
and lengthy indirect chains in the NOVA and 1200
series computers, and less frequent use of I/0 in-
structions in the SUPERNOVA, 800 series, and
ECLIPSE line of computers. In addition, there is
an upper limit on the number of data channel trans-
fers/second that a computer can support. In cases
where this limit is exceeded, the only solution is to
reduce the number of peripherals using the data
channel at the same time.

A final consideration is that high data channel use
reduces the speed of program execution since the
processor pauses for each transfer., This may
adversely affect the CPU's capacity to respond to
interrupts and service those peripherals operating
under direct program control.

SECTION lil
1/0 BUS

INTRODUCTION

Despite minor differences among the I1/O facilities
of the various computers, the structure of the 1/0
bus itself is the same for all Data General ma-
chines. This structure embodies a single 48-line
bus connecting the central processor to all inter-
faces. Data is transferred on the bus along 16
parallel, bidirectional, data lines. Control signals
are carried along dedicated, unidirectional, con-
trol lines. In addition to specifying a unique func-
tion, each control signal generated by the central
processor provides all timing necessary to per-
form that function. Data transfers are synchro-
nous; no '*hand-shaking' occurs between the
interface and the central processor. The data
channel and program interrupt facilities each use
their own single request and priority lines. The
two request lines are run in parallel to all inter-
faces, so that an interface requiring either data
channel or program interrupt service need only
assert the appropriate line and wait for the proces-
sor to respond. The serial priority lines are in-
dependent and are chained from interface to
interface, so that priority for service is granted to
the interface closest on the chain to the central pro-
cessor.

=== _1/0 BUS STRUCTURE

INTERFACE

PRIORITY
LINES

INTERFACE

CENTRAL PROCESSOR

bDe-00830

LOGIC CONVENTIONS

Drawings

Data General logic prints are drawn in close
accordance with Mil-Std-806C. With this conven-
tion, logical functions are drawn as physically im-
plemented. That is, where discrete gates are used
to implement a function, these gates are shown.

On the other hand, where a more complex inte-
grated circuit is used, for instance a multiplexor,
that function is shown as a rectangular box instead
of the gates comprising the function.

Signal Levels

Throughout this manual, a distinction is frequently
made between electrical levels and logical values.
To minimize confusion, electrical levels are always
indicated by an "H" or "L", and logical values by

a "1 or "0". As an electrical level, an "H" in-
dicates that the signal is high (greater than +2.0
volts) and an "L" indicates that it is low (less than
+0.7 volts). An asserted, or true, signal is in-
dicated by a logical ''1'' and a false signal by a "'0".

Signal Names

The voltage level at which a signal is said to be
rnasserted" ('true') is a matter of definition. To
distinguish between signals that are asserted high
(0=L, 1=H) and those that are asserted low (0=H,
1=L), a naming convention has been adopted in
Data General's documentation which defines the
relationship between the logical value and electrical
level of a signal. If the signal name includes a
horizontal bar over the name, as "WRITE'", then
that signal is asserted when it is at a low electrical
level; conversely, a signal without the bar,
"WRITE", is asserted when high.

To be expressed, logical functions may often re-
quire more than one binary signal. For instance,
three lines are required to express an octal digit.
Generally, these closely related signals are indi-
vidually identified by effectively subscripting a
common label. For instance, suppose that BUSO
through BUS5 are all required to completely spec-
ify a function. All or part of such a group of sig-
nals is identified by placing brackets around the
range of subscripts included, as BUS<0-5>. In
this case, the suffix carries the information that
there are six BUS lines under discussion, from
BUSO through BUS5, inclusive.

-1 of 18

SUMMARY OF 1/0O BUS SIGNALS

The forty-eight signals which comprise the I/0 bus
can be divided functionally into five groups. The
following list shows this grouping, along with a
brief description of the function of each signal.
Timing information for these signals is shown in
Section IV. Note that, with the exception of the
two priority lines, all I/O bus lines are run in

parallel to all interfaces.

Data

DATA<O0-15>

Programmed 1/0
DS<0-5>

DATIA

DATIB

DATIC

Data. All data and addresses,
for both data channel and pro-
grammed I/O, are transferred
between the processor and inter-
faces attached to the I/0 bus via
these 16 bidirectional lines. The
interrupt disable mask and inter-
rupt acknowledge information are
also carried on these lines.

Device Select. These lines
carry the low-order six bits of
the instruction currently being
executed; that is, the device
code when the instruction is an
I/O instruction. Only the inter-
face whose device code corre-
sponds to that carried on these
lines should respond to control
signals generated on the I1/0 bus.

STRT

Data In A. Asserted by the pro-
cessor during the execution of a
DIA instruction. Should cause
the interface selected by
DS<0-5> to place the contents
of its A input buffer on the
DATA<O0-15>,

Data In B. Asserted by the pro-
cessor during the execution of a
DIB instruction. Should cause
the interface selected by
DS<0-5> to place the contents
of its B input buffer on
DATA<O0-15>.

Data In C. Asserted by the pro-
cessor during the execution of a
DIC instruction. Should cause
the interface selected by
DS<0-5> to place the contents
of its C input buffer on
DATA<0-15>.

CLR

11-2

DATOA

DATOB

DATOC

Data Out A. Asserted by the
processor during the execution of
a DOA instruction, after the pro-
cessor has placed the contents of
the specified accumulator on
DATA<O0-15>, Should cause the
interface selected by DS<0-5>
to load its A output buffer with
the data on DATA<0-15>,

Data Out B, Asserted by the
processor during the execution of
a DOB instruction, after the pro-
cessor has placed the contents of
the specified accumulator on
DATA<0-15>. Should cause the
interface selected by DS<0-5>
to load its B output buffer with
the data on DATA<0-15>.

Data Out C. Asserted by the
processor during the execution of
a DOC instruction, after the pro-
cessor has placed the contents of
the specified accumulator on
DATA<O0-15>. Should cause the
interface selected by DS<0-5>
to load its C output buffer with
the data on DATA<0-15>.

Start. Asserted by the processor
during the execution of any I/0
instruction (except an I/0 SKIP
instruction) in which bits 8 and
9=01 (i.e., any I/O instruction
in which the Start (S) control
function is specified). Not
asserted during DIA, DIB, DIC,
DOA, DOB and DOC instructions
until after the data transfer has
occurred. Usually used to ini-
tiate peripheral operation by set-
ting the Busy flag to 1 and the
Done flag to 0.

Clear. Asserted by the processor
during the execution of any 1/0
instruction (except an I/0 SKIP
instruction) in which bits 8 and
9=10 (i.e., any I/O instruction
in which the Clear (C) control
function is specified). Not
asserted during DIA, DIB, DIC,
DOA, DOB and DOC instructions
until after data transfer has
occurred. Usually used to ter-
minate peripheral operation by
setting the Busy and Done flags
to 0.

IOPLS I/O Pulse. Asserted by the Data Channel
processor during the execution of
any I/O instruction (except an DCHR
I/O SKIP instruction) in which
bits 8 and 9=11 (i.e., any I/O
instruction in which the Pulse DCHP
(1) control function is specified).
Not asserted in DIA, DIB, DIC,
DOA, DOB and DOC instructions
until after the data transfer has
occurred. Usually used to ini-
tiate special peripheral opera-
tions.

SELB Selected Busy. Asserted by the
interface selected by the device
select lines if its Busy flag is
set to one.

SELD Selected Done. Asserted by the
interface selected by the device
select lines if its Done flag is
set to one.

DCHA

Program Interrupt

INTR Interrupt Request. Asserted by
an interface to request program
interrupt service.

MSKO Mask Out. Asserted by the pro- DCHMO
cessor during the execution of the = DCHMI**
MSKO instruction, after the con-
tents of the designated accumula-
tor have been placed on the DATA
lines of the I/0O bus. Used to
load the contents of the DATA
lines into the interrupt disable
flip-flops of all interfaces using
the interrupt system.

INTP Interrupt Priority. Seen asserted
by the first interface on the I1/0
bus using the program interrupt
facility, and transmitted in series
through each successive interface.
An interface should not issue an
asserted INTP OUT unless it is
receiving an asserted INTP IN
and is not requesting interrupt
service.

INTA Interrupt Acknowledge. Agserted
by the processor during the exe- DCHO
cution of the INTA instruction.
If an interface receives INTA
while it is also receiving INTP IN
asserted and while it is requesting
interrupt service, it should place
its device code on the low-order
DATA lines.

|

g
Q
H

**Not ayvailable on Eclipse
line computers.

ImI-3

Data Channel Request. Asserted
by a device when it requires data
channel service,

Data Channel Priority. Seen
asserted by the first data channel
interface on the 1/0 bus, and
transmitted in series through
each interface. An interface
should not issue an asserted
DCHP OUT unless it is receiving
an asserted DCHP IN and it is not
requesting data channel service.
Also used by some processors to
determine data channel speed.

Data Channel Acknowledge.
Asserted by the processor at the
beginning of each data channel
cycle. Should cause the interface
that is receiving an asserted
DCHP IN signal and whose DCH -
REQ flip-flop is set, to set its
DCH SEL flip-flop and place the
memory address to be used for
this transfer on the data lines

and the mode on the data channel
mode lines of the I/0O bus.

Data Channel Mode. Asserted by
the interface whose DCH SEL
flip-flop is set to inform the pro-
cessor of the type of data chan-
nel cycle to be performed, as

follows:
DCHMO [DCHMI** Function
0 0 Output
0 1 Increment
Memory*
1 0 Input
1 1 Add to Memory

*not available on all processors.

Data Channel Input. Asserted by
the processor for data channel
input (DCHMO=1), Should cause
the interface whose DCH SEL
flip-flop is set to place the con-
tents of its input register on the
data lines of the I/0 bus.

Data Channel Output. Asserted
by the processor for data chan-
nel output (DCHM<0,1> = 10),
after the data word has been
placed on the DATA lines of the
I/O bus. Should cause the
priority-selected interface to
load the data from the DATA
lines.

Rev. 05

OVFLO Overflow. Asserted by the pro-
cessor during a data channel
cycle that increments or adds to
memory (DCHM1=1), when the
result exceeds 216-1.
(Not available on

Eclipse line computers)

System Control

IORST I/O Reset. Asserted by the pro-
cessor during the IORST instruc-
tion or when the console RESET
switch is activated. IORST is
also issued prior to processor
operation at power turn-on and
when power is removed. This
signal should be used to initialize
the machine state of all interfaces
in the system.

PWR ON Power On. This is a +5 volt sig-
nal that is asserted whenever the
power supply of the computer is
powered-up. It is to be used to
drive relays in peripheral equip-
ment for power turn-on.

RQENB Request Enable. Asserted by the
processor to synchronize pro-
gram interrupt and data channel
requests from all interfaces. In
any interface, INTR and DCHR
should be clocked only on the
leading edge of RQENB.

PROGRAMMED /O PROTOCOL

Device Selection

Every programmed input/output instruction includes
a six-bit device code which uniquely references the
interface which is to be involved in the transfer.
During the execution of ag;__i_nput/output instruction,
the device select lines, DSO through DS5, carry

the contents of the low-order six bits of the instruc-
tion, the device code. At other times the device
select lines will carry meaningless data. This
random data, however, will look at times like some
interface's device code. Because of this false in-
dication, the interface should not assert the DATA
lines of the bus or initiate any other function as a
result solely of the device select lines. Rather,

the selected interface should respond only to the
assertion of control signals on the 1/0 bus.

Rev. 04

An interface can decode the device select lines in a
number of ways. The device select lines corre-
sponding to the bit positions containing a one in the
interface's device code could be inverted, and an
AND function performed on the resultant six lines,
as shown below for device code 13g. Similarly, the
lines corresponding to zeros could be inverted and
the six lines applied to a NOR gate. There are
other possibilities; the two important details are
that the lines are asserted low and that DS0 is the
high-order bit of the device code. Note that is is
possible to have the interface respond to more
than one device code by decoding fewer than six
lines. The remaining lines might be clocked into
a register to select a particular interface mode,
for example.

DEVICE SELECT NETWORK

FOR SINGLE DEVICE CODE
1/0 BUS | INTERFACE
050 H !
— i
S| H)|
]
bs2 L!
) DEV
SEL
DEVICE
CODE =13
8
001
DG-01446
DEVICE SELECT NETWORK
FOR MULTIPLE DEVICE CODES
1/0 BUS | INTERFACE
|
DS0 H '
- I D
DSI H |
1
|
ps2 L DEV
] SEL
D53 H!
D34 L :
|
——
DSS H Oi 5 Q_M%DE
| DEL
| SEL _
|START
001 01 — !
DEVICE SELECT NETWORK THAT RESPONDS
TO DEVICE CODES 12g AND 13g. 12g SELECTS
MODE A.
D6-0083/

11-4

Assigning Device Codes

There are a number of factors to be considered
when assigning a device code to an interface. A
six-bit device code allows sixty-four possible
codes, 0 to 77g. In all machines, device code T7g
is assigned to the central processor, to implement
such special functions as MSKO and INTA, and
hence can not be assigned to an interface. Similar-
ly, a number of programming considerations re -
strict the use of device code 0. The remaining
sixty-two codes can be assigned to interfaces.
Appendix A lists the device codes as assigned by
Data General and used in all Data General software.
When assigning a device code to a custom interface,
it is important to consider what other devices are
currently in the system or may be installed at a
future date.

Data Transfer Signals

tion and drop the transfer control signal. Because
all interfaces are wired to the I/O bus in parallel,
it is extremely important that only the interface
referenced by the device select code assert any of
the DATA lines, and then only in response to the
transfer control signal.

PROGRAMMED DATA INPUT

START OF ACCUMULATOR
|NSTRUC'I;|ON LOADEIID '
DS <0-5) _//////11IIIIITILIT T
DATIA,DATIB, ' — i
OR’ DATIC — .) ;
DATAQ-15) .. i
AR i I
m— e N m—
DATA LINES . CONTROL
ASSERTED BY PULSE
INTERFACE
D6-a0832

Data Input

The three programmed data input instructions -
DIA, DIB, and DIC (Data In A, B, and C) - allow
data to be transferred from up to three distinct
sources per device code in the interface and loaded
into any one of the four accumulators of the pro-
cessor. Additionally, if specified in the instruc-
tion, the STRT, CLR, or IOPLS signal will be
issued by the processor to control the status flags
or other interface functions.

The execution of a data input instruction consists of
two parts. The first is the data transfer, followed
by the (optional) control pulse. There are three
signals used for the data input transfer, one for
each of the three possible data sources in the inter-
face. Through the use of three separate signals,
the need for a decoding network in the interface is
avoided.

During the first half of the execution of the data in-
put instruction, one of the three transfer control
signals - DATIA, DATIB, or DATIC - is asserted,
as shown in the sequence diagram below. This sig-
nal should be used by the selected interface to cause
data from the proper sources to be asserted on the
DATA lines of the bus. After a time delay, the
processor will load the information on the DATA
lines into the accumulator specified in the instruc-

III-5

The second portion of the instruction execution
consists of the assertion of the appropriate control
pulse - STRT, CLR, or IOPLS - as specified in
the instruction. The response of the interface to
each of these signals will be discussed later.

Data Output

The three programmed data output instructions -
DOA, DOB, and DOC {Data Out A, B, and C) -
allow data to be transferred from any one of the
four accumulators of the processor to one of up to
three destinations per device code in the interface.
Additionally, . if specified in the instruction, the
STRT, CLR, or IOPLS signal will be issued by the
processor to control the status flags or other inter-
face functions.

The execution of a data output instruction consists
of two parts, the data transfer followed by the
(optional) control pulse. There are three signals
used for the data output transfer, one for each of
the three possible data destinations in the interface.
Through the use of three separate signals, the need
for a decoding network in the interface is avoided.
Note that the three destinations used for data output
need have no relation to the three data sources used
for data input.

As shown in the sequence diagram below, the pro-
cessor asserts the DATA lines with the contents of
the specified accumulator. After allowing time for
the data to propagate down the I/O bus and for the
lines to settle, the processor asserts one of the
three transfer control signals - DATOA, DATOB,
or DATOC. This signal should be used by the
selected interface to gate the contents of the DATA
lines to the proper destination and to load a reg-
ister. After dropping the transfer control signal,
the processor will drop the data from the DATA
lines. Because all interfaces are wired to the I/O
bus in parallel, it is extremely important that no
device, including that referenced by the device
select code, be allowed to assert any of the DATA
lines during the data output instruction.

PROGRAMMED DATA OUTPUT

LOAD DATA BUFFER

START OF
GINSTRUCTION OF SELECTED INTERFACE

os<o-5» JZZZTTTT T T 7
TS POCITNSN 1///1////11///1// i
DATZ'i;?,Tﬁig% RN /1111 ///) S g
ORI1DPLS R /1111111
N—_ sn”’ e !
DATA LINES ASSERTED CONTROL
BY PROCESSOR PULSE

DG-00833

The second portion of the instruction execution
consists of the assertion of the appropriate control
pulse - STRT, CLR, or IOPLS - as specified in
the instruction. The response of the interface to
each of these signals will be discussed later.

1/0 Skip

The operation of most peripherals is not synchro-
nous to the operation of the processor. Because of
its faster processing rate, the computer will gen-
erally have to wait for the completion of a periph-
eral's operation. It is usually important that the
processor not issue any new instructions to the
peripheral until it has completed its previous
operation. This asynchronous operation of the
processor and peripheral requires that the CPU be
able to test the status of the peripheral.

The I/O Skip instruction allows the program to test
the state of two I/0 bus lines, SELB and SELD.
Whenever an interface recognizes its device code
on the device select lines, as discussed above, it
should assert the SELB and/or SELD lines depend-
ing on the internal state of the interface. (Ordi-
narily, SELB will be asserted if the Busy flag is
set and SELD will be asserted if the Done flag is
set.) During the execution of the I/O Skip instruc -
tion, the processor checks the state of the appro-

II1-6

priate line and skips the next sequential instruction
if the line matches the condition specified in the
instruction.

The test condition is specified in the T field of the
instruction as follows:

T field | Mnemonic | Next instruction skipped if:
00 BN SELB = L
01 BZ SELB = H
10 DN SELD = L
11 DZ SELD = H

Start, Clear, 1/0 Pulse

During the second portion of the execution of any
1/0 instruction except I/O Skip, the processor can
issue one of three control signals -~ STRT, CLR,
or IOPLS - as coded in the instruction. Though a
convention is followed in the use of these signals
in Data General interfaces, as explained below,
the designer should realize that they may be used
for virtually any purpose.

Busy/Done Network

In Data General interfaces, two flags, the Busy
flag and the Done flag, carry elementary status
information needed by the program. Whenever the
interface detects its device code on the device
select lines it asserts the SELB line if its Busy
flag is set and SELD if its Done flag is set. These
lines are tested by the processor during the I/O
Skip instruction.

Although the significance of the flags may vary
somewhat depending on the particular interface in
question, they do carry a similar meaning in many
cases. The Busy flag generally indicates that the
device is currently processing data or waiting for
some response from an external system. When
this flag is set, any interference from the program,
such as an attempt to transfer data to this device,
may produce unpredictable results. The Done flag
indicates that the device has completed an opera-
tion and is awaiting a response by the program.

In many devices, it is important that this response
come within a maximum time period, to prevent a
degradation of system performance.

_TYPICAL BUSY/DONE OPERATION SEQUENCE.,

CLEAR
FUNCTION
ST (CLR)
ART
FUNCTION DEVICE
(STRT) e

susY __ 22727 7)
YT/ 77,

- OPERATION CLSTART
DEVICE COMPLETED ™ FUNCTION
(STRT)

D6-00834

In addition to conveying status information to the
program, these flags can be used as switches by
the program to control the interface. Generally,
the STRT pulse causes the Busy flag to be set and
the Done flag to be cleared, initiating interface
operation. At the completion of the operation, a
signal originating in the interface sets DONE and
clears BUSY. If at any time the CLR pulse is
issued by the processor, both flags should be
cleared.

The following illustration shows one implementation
of the Busy/Done network. The IORST signal
clears both the Busy and Done flags directly. Sig-
nals generated by the control function part of an
I/O instruction affect the flags only if the device
has recognized its device code on the device select
lines. When the device completes its operation it
generates a cormpletion signal, DEV COMPLETE,
that clears the Busy flag and sets the Done flag.
The signal need not act on both flags directly; it
can just as well clear the Busy flag, whose state
change sets the Done flag. Note that in the con-
figuration shown here, the data input to the Done
flag is the output of the Busy flag. Therefore, the
completion signal will not set the Done flag if the
program has previously cleared the Busy flag.

START
DEV SEL

CLEAR

IORST

06-00835

BUSY/DONE NETWORK

e

DONE]

=

DEV
COMPLETE

ocC SELB

DEV SEL

PROGRAM INTERRUPT SYSTEM

Interrupt Request

An interface issues a program interrupt request by
asserting the INTR line of the I/O bus. The central
processor checks this line at the end of every in-
struction, and if it is asserted (and ION is 1),
executes the program interrupt function. The
interrupt in no way affects the interface itself; any
action to actually service the device must be the
result of the software interrupt handler.

The central processor generates a signal on the I/0
bus, RQENB, which toggles up and down as the
processor is running. The timing pulses that this
signal provides are important to the proper opera-
tion of the interrupt system. The interrupt request
should be issued only on the leading edge of RQENB,
for reasons explained in Appendix D. The usual
convention is to use RQENB to clock the state of the
DONE flag into an INT REQ flip-flop, which in turn
drives the INTR line, as shown below.

BUSY/DONE/PROGRAM INTERRUPT NETWORK
DEV SEL @’_SELD
) —
loc INTR
DONE {og—
—{D qQ
i INTA {oc)o—oATaTZ
START) @o—oATAM
DEV c Q MSKO—C Q
COMPLETE INT
SEL BUSY pIS: {ocy—omams
—L__ D Q DATA 14—{ 6 PE DEVICE CODE=I3g
= T MASK BIT —@"'_SE'-B
CLEAR IS BIT 14 s
v
DEV INTP
IORST [
06-00836 INTPIN % 3 oc INTP
REG ouT

Interrupt Disable

In addition to the three data output transfer control
signals, there is a signal, MSKO, which functions
in much the same way. This signal allows a 16-
level priority system to be established for the pro-
gram interrupt. MSKO is issued during the data
transfer portion of a Data Out B instruction, when
a device code of 77g is specified (CPU).

Conventionally, each interface using the interrupt
system is assigned a hardware priority level
corresponding to one of the sixteen bits of a data
word. When the MSKO signal is received by the
interface (regardless of device code), an interrupt
disable flag (INT DISABLE) should be loaded from
the DATA line corresponding to the priority assign-
ment of that interface, as shown above. Whenever
this INT DISABLE flag is set, the interface should
be inhibited from issuing an interrupt request.
Additionally, if the interface was issuing an inter-
rupt request and the INT DISABLE flag is then set,
the request should be dropped on the next RQENB
pulse.

II1-8

Interrupt Priority

There is a program interrupt priority signal on the
I/0 bus which should be passed through a priority
network in every interface that uses the program
interrupt. This signal, which must be passed un-
disturbed by other interfaces (and memories), is
called INTP IN as it enters each interface and

INTP OUT as it leaves. INTP IN starts on the com-
puter back panel, immediately above the central
processor boards, as a low (asserted) signal, but
is pulled high to succeeding interfaces by any inter-
face that requests interrupt service. Any interface
that receives a high INTP IN signal should pass a
high INTP OUT to the following interfaces and on
down the bus.

The circuit below shows the suggested implementa-
tion of this priority network. In many cases, more
than one interface using the program interrupt will
be built on a single board. In such cases, each
interface will require its own priority network. As
many elements as needed, each similar to that
shown below, would be chained together, with the
INTP OUT signal of one feeding INTP IN of the next.

Note that the terminating resistors shown are to be
used only on the signals that enter or leave the
board. Similarly, the open-collector NAND gate
is used only for the last element on that board,
while standard-output type NAND gates are used
for the earlier stages.

PRIORITY NETWORK

+5v

0D6-00837

Timing on this interrupt priority chain can be crit-
ical and becomes especially so for large systems
with many interfaces. As explained in Appendix D,
the time required for a change in the INTP level to
propagate from the first to the last interface on the
1/0 bus must not exceed 300 nanoseconds. This
includes both propagation time on the I/0 bus cable
(if used) and the delays encountered in the logic
components. Often it is possible to build several
interfaces on a single board or in a single external
chassis. In these cases the propagation time can
be significantly reduced by replacing the priority
chain on such a board with two separate chains.
One, consisting of a single network element, deter-
mines the priority of the entire board and quickly
passes the INTP signal on to the next board. A
separate chain determines the priority of the
various interfaces on the board.

Interrupt Acknowledge

Once the processor has received an interrupt re-
quest and transferred control to the interrupt ser-
vice routine, the software must service the
interface that caused the interrupt. Before the
program can even attempt to service the interface,
it must determine which interface did, in fact,
cause the interrupt. The simplest way that this can
be achieved is by the use of the Interrupt Acknowl-
edge (INTA) instruction. This instruction is equiv-
alent to a Data Input B with a device code of 77g
(CPU). This instruction executes as a data input
transfer instruction, but the processor asserts the
INTA signal during the data transfer porition of the
instruction.

When the INTA signal is received by an interface
(regardless of device code), the condition of the
INTP IN line to that interface should be checked.

If this line is asserted and the interface is currently
issuing an interrupt request, it should assert its
device code on DATA<10-15 > of the I/O bus, for

-9

duration of INTA. At the end of the INTA period,
the processor loads the selected accumulator with
the contents of the DATA lines.

DATA CHANNEL

Unlike the programmed input/output transfers,
which are each controlled by one unique signal on
the bus, the data channel transfers are somewhat
more complex. The interplay between the central
processor and the interface is much more involved,
due to the number of functions performed for each
transfer. Unlike the design of a programmed I/0
interface, where certain liberties can be taken in
the designed response to a bus signal, the design of
a data channel interface is relatively restricted, and
it is recommended that such a design correspond to
the following description.

Data Channel Request

An interface issues a data channel request by
asserting the DCHR line of the I/O bus. The cen-
tral processor checks this line at certain points in
its operation and, if it is asserted, executes a data
channel function. Unlike interrupts, the processor
services a data channel request completely without
software intervention. Normal program execution
is suspended for the duration of the data channel
transfer. This delay is virtually transparent to
the program, however, as each transfer takes
from 1 to 2 microseconds.

The signal RQENB, generated by the processor, is
used to time the data channel requests in the same
manner as the interrupt requests. The usual con-
vention is to use RQENB to clock the state of an
interface -controlled flip -flop (DCH SYNC in the
figure below) into a data channel request (DCH REQ)
flip-flop, which in turn drives the DCHR line, as
shown below. It is very important that DC. DCHR be
clocked only on the leading edge of RQENB. (See
Appendix D.)

When the processor sees DCHR asserted, it pauses
at the next convenient point in its operation and
transfers data to or from the highest priority con-
troller on the I/O bus. Just before the end of

every data channel transfer, the processor asserts
the RIQENB signal again and if the DCHR signal is
still asserted at the end of the current transfer,
the processor performs data channel transfer to the
highest priority controller that is still requesting
data channel service. The processor continues to
perform data channel transfers in this way until

no controller on the I/0 bus is requesting data
channel service. The processor then resumes
program execution. (When more than one data
channel transfer occurs during a single processor
pause, or data channel break, the transfers are
said to be back-to-back transfers)

DATA CHANNEL REQUEST NETWORK=—

TYPICAL DATA CHANNEL REQUEST NETWORK. DEV READY
IS GENERATED BY DEVICE OR OTHER INTERFACE
CIRCUITRY. DCH SEL IS ASSERTED WHEN INTERFACE
IS CURRENTLY BEING SERVICED.

D6-00840

——DATA CHANNEL REQUEST SEQUENCE ———m

DCH SYNC DCH REQ

CLEARED REMAIN ASSERTED TO
BY RQENB IF 0BTAIN BACK-TO-BACK
DCH SYNC IS SET { TRANSFERS

RQENB V//(71 2/ R Y/l
VI |

W7

SEY &Y Device B DUHA OF PROCESSOR

UPON COMPLETION DATA CHANNEL RESPONSE
OF QOPERATION

DCH SYNC

DCH REQ

pPE-00838

Data Channel Priority

There is an elementary hardware priority system
on the I/O bus which serves to arbitrate between
two or more interfaces requesting data channel
service at the same time. In the event of simulta-
neous data channel requests, this priority system
causes service to be granted to the interface that is
requesting service and is closest to the processor
on the I/O bus. The priority system also serves to
inform the processor whether the interface re-
questing service should be serviced using fast or
standard data channel timing.

The data channel priority signal should be passed
through a priority network in every interface that
uses the data channel. This signal, which must be
passed undisturbed by other interfaces (and mem-
ories), is called DCHP IN as it enters each inter-
face and DCHP OUT as it leaves. DCHP IN starts
on the computer back panel, immediately above the
central processor boards, as a low (asserted) sig-
nal, but is pulled high to succeeding interfaces by
any interface that requests data channel service.
Any interface that receives a high DCHP IN signal
should pass a high DCHP OUT to the following
interface and on down the I/0 bus. The only inter-
face that should respond to the processor's data
channel signals is that which is requesting data
channel service and is receiving a low level DCHP
IN; that is, the interface closest to the processor
that is requesting data channel service.

The circuit below shows the suggested implementa-
tion of this priority network. In many cases, more
than one interface using the data channel facility
will be built on a single board. In such cases, each
interface will require its own priority network. As
many elements as needed, each similar to that
shown below, would be chained together, with the
DCHP OUT signal of one feeding DCHP IN of the
next. Note that the terminating resistors shown
are to be used only on the signals that enter or
leave the board. Similarly, the open-collector
NAND gate is used only for the last element on that
board, while standard-cutput type NAND gates are
used for the earlier stages.

PRIORITY NETWORK

o DCHP QUT

DG—-0084/

Timing on this data channel priority chain can be
critical and becomes especially so for large sys-
tems with many interfaces as explained in Appendix
D. The time required for a change in the DCHP
level to propagate from the first to the last inter-
face on the I/O bus must not exceed 300 nano-
seconds. This includes both propagation time on
the I/0 bus cable (if used) and the delays en-
countered in the logic components. Often it is
possible to build several interfaces on a single
board or in a single external chassis. In these
cases the propagation time can be significantly re-
duced by replacing the priority chain on such a
board with two separate chains. One, consisting
of a single network element, determines the prior-
ity of the entire board and quickly passes the DCHP
signal on to the next board. A separate chain
determines the priority of the various interfaces

on the board.

Data Channel Speeds

The NOVA 2, 800, and SUPERNOVA computers
have data channels capable of operating at a stan-
dard speed and a high speed. Except for differences
in timing, the operation at both speeds is similar
and the central processor services an interface at
either speed based on the priority system. Due to
the short pulse times of the high speed channel,
however, only interfaces installed within the pro-
cessor chassis are permitted to use this facility.

I-10

The processor is made aware of what type of ser-
vice is being requested by testing the DCHP OUT
signal of the top slot of its chassis. Whenever this
signal goes high, the processor will respond by
servicing the data channel request at the high speed.
This signal goes high whenever an interface in-
stalled in the chassis requests service, hence, such
interfaces will be serviced at the high speed. On
the other hand, if an interface external to the chas-
sis requests service, the condition of the priority
line at the test point does not change and thus the
interface is serviced at the standard speed.

DATA CHANNELS

channel request from the interface being serviced
must be cleared, to prevent an immediate second
transfer. Therefore, a storage unit must be pro-
vided to maintain an interface's selected state even
after a change in DCH REQ or DCHP IN.

The illustration below shows the use of a flip-flop,
called DCH SEL, which serves this purpose. On
the leading edge of DCHA, this flip-flop will be set
if DCH REQ is set and the interface is receiving an
asserted DCHP IN. Otherwise, it will be cleared
on this signal. Thus DCH SEL of the proper inter-
face will remain set from the beginning of one data
channel cycle until the beginning of the next. An

interface should not respond to data channel control

signals unless its DCH SEL flag is set.

DCHP OUT INTP OUT

[
STANDARD DATA PRgGRAM
CHANNEL INTERRUPT

USE OF DATA
CHANNEL PRIORITY
SYSTEM TO DETERMINE
CYCLE SPEED

DCH SEL FLIP-FLOP

DCHA—C i

DeH

S [S— o
DCHP

DG —00843

FAST DATA PROGRAM
CHANNEL INTERRUPT
PROGRAM
I INTERRUPT om.wrlﬁ
FAST DATA PROGRAM
CHANNEL INTERRUPT
DCHP IN INTP IN
I FAST cPU lj

DG-0/1445

Acknowledge

As the first step in any data channel transfer the
central processor will issue the data channel

— DATA CHANNEL ACKNOWLEDGE SEQUENCE—
INTERFACE ASSERTS
TRANSFER MADE ON
DCHMO, DCHMI WHEN
DCH SEL IS SET

rQene _V/77] W Vi

DCH SYNC 7
DCH REQ

DCH SEL

—
DeH SEL MEMORY ADDRESS

BEH REQ TO PROCESSOR
AND DCHPIN

ARE ASSERTED,

OTHERWISE DCH SEL

IS CLEARED

D6-00839

acknowledge signal, DCHA, to all interfaces on the

I/O bus. The processor expects two types of in-
formation from the interface in response to this
signal, the memory address and the mode of this
transfer. Beyond this however, the DCHA signal
alerts the interface to the beginning of a transfer,
allowing it to perform some additional functions.

All of the data channel signals are issued on the I/0
bus without an accompanying code on the device

select lines. The priority network is used to deter-
mine which interface is to respond to these signals.
Before one data channel cycle is complete, the data

I-11

While it is receiving DCHA, the interface whose
DCH SEL flag is set should place the memory ad-
dress for this transfer on the DATA lines of the
I/O bus. Finally, unless back-to-back transfers
are desired, the DCHA signal should be used to
clear the DCH SYNC flag, so that DCH REQ will be
cleared on the next RQENB. The data channel con-
trol circuitry discussed here is shown in its en-
tirety below.

DATA CHANNEL CONTROL NETWORK

o) oo
RERE¥ l RQENB—l_
DCRH SEL C 1 C I DCHA =—qC 1 SeRMO
DCH REQ DCH DCH DCH ocC DCHMO
DCHA SYNC REQ SEL
DCHP 0 D O ~—{)—— o CONO
IORST I j— DCHMI
BUSY CONI
DCHP +3V
IORST %
ISo .
T Dt e
DCHP IN i oot
06-00844 =

Data Channel Map Selection

Data channel MAP selection is performed only by
certain peripheral controllers in Data General
computer systems that contain more than one data
channel MAP, i.e., the NOVA 3 and ECLIPSE
series of computers, data channel map selection

occurs at DCHA time. If the data channel facility
is enabled at DCHA time, DATAO selects on of
two data channel maps. If DATAO is asserted at
DCHA time, DCHA MAP B is selected. If DATAO
is not asserted at DCHA time, DCH MAP A is
selected.

Data Channel Transfer Modes

As part of the interface's response to DCHA it
should return to the central processor the mode of
the transfer. Depending on the processor there are
up to four possible modes. The mode is designated
by a two-bit code, which sould be asserted on
DCHMO, and DCHMI1 whenever DCH SEL (or its
equivalent) is set. The modes and their codes are
listed below, followed by a description of the trans-
fers in each mode.

DCHMO DCHM1 Function
0 0 Output
0 1 Increment
1 0 Input
1 1 Add to Memory

The input and output are the basic transfer modes,
since the increment and add to memory modes use
the same transfer signals as input and output. The
only difference is in the action of the processor as
it acts on the data.

Rev. 05

Input

Following the end of DCHA, the processor will
assert DCHI. The interface whose priority condi-
tions are satisfied; that is, whose DCH SEL flag is
set, should respond to this by asserting the DATA
lines with the data word to be transferred. At the
end of the DCHI period, the processor will load the
contents of the DATA lines and write it into the pre-
viously addressed memory location.

DATA CHANNEL INPUT SEQUENCE

//////////7//////?'

DCHI

DATACO-15) __

DCH SEL
(OR EQUIVALENT)
MUST BE SET

FOR RESPONSE
TO DCHI TO OCCUR
06-00845

INTERFACE ASSERTS
DATA LINES

1I-12

Output

Following the end of DCHA, the central processor
will agsert the DATA lines of the bus with the data
word read from the referenced memory location.
After allowing time for the lines to settle, DCHO

will be asserted by the processor to signal the inter-

face to load the data from the DATA lines. After
the end of DCHO, the data will be dropped from the
DATA lines.

————DATA CHANNEL OUTPUT SEQUENCE

DATA LINES ASSERTED BY PROCESSOR

DATACO-15) CV////// A

DCHO A
\ INTERFACE WHOSE DCH SEL
(OR EQUIVALENT) FLAG IS
SET LOADS DATA
DG- 00846
Increment

The increment function (not available on the
ECLIPSE line computers) looks to the interface
much like the output function; however, the proces-
sor handles the data differently. Like the output
function the referenced memory location is read.
However, before the data is placed on the bus, it
is incremented by one. This new value is placed
on the bus and written into the memory location.
The DCHO signal signals the interface to load the
data, as usual. Also, if the increment caused the
sum to exceed 216-1; that is, if the 16-bit sum is
all zeros, the OVFLO signal on the bus will be
pulsed.

——DATA CHANNEL INCREMENT SEQUENCE——

INCREMENTED MEMORY
CONTENTS ASSERTED ON
DATA LINES BY PROCESSOR

DATA<O-15> ___ ST
DCHO WU
OVFLO W

OVFLO SIGNAL ASSERTED BY
PROCESSOR IF_INCREMENTED
VALUE IS > 218}

INTERFACE WHOSE DCH SEL
(OR EQUIVALENT) FLAG IS SET
LOADS DATA

DG—-00847

Add to Memory

The Add to Memory function, available only on the
NOVA and SUPERNOVA computers, involves both
an input and output transfer. The DCHI signal
transfers a data word from the interface to the pro-
cessor, where this word is added to that obtained
from the referenced memory location. The sum of
these two words is written back into the memory
location and transferred to the interface with a
DCHO. In addition, if this sum is greater than
216-1, the OVFLO signal on the bus will be pulsed.

-DATA CHANNEL ADD TO MEMORY SEQUENCEW
SUm
R

LINES BY
PROCESSOR

oCHI _BZ777777R |
DATA <0-15>)

|

OVFLO_} i (‘V/////////A
S —
INTERFACE g\égl.o INTERFACE

DCHO __ H

WHOSE DCH SEL ERTED WHOSE
GREa e pygptsson \ B,
OR EQUIVALENT
ASSERTS DATA 1Sz 2'® e T
LINES WITH LOADS DATA
ADDEND
DG-00648

The three examples which follow illustrate some of
the interface functions discussed earlier. The
first, a switch register and relay buffer, illustrates
the basic idea of input/output. The second inter-
face, that of a paper tape punch, shows the use of

the Busy/Done/Interrupt Network. The Pulse

Height Analyzer includes the data charnel control
network and uses the increment memory function
of the data channel.

Switch Register/Relay Buffer

The switch register and relay buffer to be consid-
ered first is a very simple interface that uses
neither the program interrupt nor data channel
facilities. This device/interface shown below,
allows the program to read three switches and to
control three relays through a buffer. Of the basic
control circuits discussed earlier, the only one
this device has is the NAND gate to decode the

I-13

device select lines. When a Data Input A with de-
vice code 37g (DIA ac,37) is executed, the con-
tents of the switches are loaded into the high-order
three bits of the selected accumulator (an open
switch is read as a ""0'""). Note the use of open
collector gates to drive the data lines, and the use
of a resistive voltage divider to generate standard
logic levels from the switch contacts. When a
Data Output A with device code 37g (DOA ac,37)
is executed, the contents of the high-order three
bits of the selected accumulator are loaded into
the relay buffer to control the three relays (a "1"
from the accumulator causes the relay contact to
close). Initially the contacts are open as the buf-
fer is cleared by IORST. Note that if the device
comprised only the switch register or relay buffer,
only a single control gate would be needed, as the
transfer signal from the processor could replace
one of the constant (+3V) inputs to the device
selection decoder.

Note that in the figure many of the inputs from the
bus are not in the polarities listed for bus signals.
Invariably, any but the most complex interface
would be mounted with a number of others on a
single board. In this case, all of the interfaces on
the board should share the same set of receivers,
so that the board draws only one load from any
given bus line. All DGC-supplied boards are de-
signed this way, and it is strongly recommended
that the user do likewise. Only an interface for a

very complex device would require an entire board.

SWITCH REGISTER RELAY BUFFER

+%V vV
-—
SWO DATAD D g —
RO
= DATAO ny
[—
-
* % BATAI s —-Dg
SWI :@o— A1 RD
+8V 1 DATAI D

o [z}
P
o9 .

o

+V

Dj"\’:‘_
RD!

RD=RELAY
DRIVER

1
537 L
o™ _

v

DEVICE CODE 37

D6-00849

Paper Tape Punch

The interface for the high speed paper tape punch,
which is illustrated below, shares a single board
with the interfaces for the Teletype, tape reader
and real time clock. The lower half of the drawing
contains circuits for functions common to all of the
interfaces. At the left are the receivers for the
data lines and other signals. At the right are net-
works that generate a COMMON SELECT signal by
decoding DS<0-2 > and generate common device
code digits for INTA. The codes are 10 through

14 so bits 10 and 11 are 0, bit 12 is 1, but bit 13

is 1 only for the clock. (Both nets can be jumpered
80 the codes can be 50 through 54 instead.) Across
the bottom is a chain that receives INTP IN, gen-
erates an individual acknowledgment signal for
each device, and passes the priority signal along
the bus only if no device on the board has an

INT REQ flip-flop set.

In the middle are the standard circuits specifically
for the punch. At the left is the gate that deter-
mines when the punch is called by decoding
DS<3-5>"and the COMMON SELECT signal. At
the right is the network that places the low order
two bits of the punch code on the bus when an inter-
rupt is acknowledged for it. The remainder of the
center section is taken up by the state/interrupt
network which is as described earlier (in this
specific case INT DISABLE is controlled by mask
bit 13).

The upper part of the drawing contains the 8-bit
punch buffer and logic to turn on the solenoid
drivers in the punch at the appropriate time. A
Data Output A that selects the punch (DOA ac,PTP)
toads the buffer from bits 8-15 of an accumulator.
If BUSY is set, the advent of the proper position in
the punch operating cycle triggers a one-shot that
allows 1's in the punch buffer to drive the lines to
the punch for 4.5 milliseconds. Note that the left-
most driver always goes on - it punches the feed
hold. The termination of the delay generates a
completion signal that clears BUSY and sets DONE.

At the left is an input from the punch feed switch.
Holding this switch on keeps the buffer clear and
allows every synchronizing signal from the punch
to trigger the one-shot and thus produce a length
of blank tape (i.e., tape with only feed holes
punched).

ni-14

HIGH

SPEED PAPER TAPE PUNCH INTERFACE

PUNCH (s ? 9 7 9 ? ? ?)
MOTOR SFEEDHOLE [8 5 5] 5 3)}
POSITION ! . J J ! ! !]
SENSOR
)) () () (o)) (o) o) () ()
N | | I N B 11—
alfs%) SHOT) PUNG PUNI PUNZ PUN3 U PUN4 PUN5 PUNG PUNT
DELAY MR MR
5y 4a5Ms | PUN cp P
1 |- COMPLETE oF ol
K K
PUNCH FEED SWITCH _PUN - N
SELECT
DATA OUT A
DATA8 ATAI DATAY DATAI4
common oatag A2 paran 2 patai3 DATAIS
5553 PUN
808 SELECT 1 ___ RQENB—[C
0S4 [oun 0¢ p—SETD
0S5 PUN DONE PUN INT
BUSYN—H0 @ D'SABLE(0>D_40
7 PUN DONE()
START DATAT
PUN
o COMPLETE—C 1 . MSKO DATRTS
SELECT PUN ' SEL8
BUSY
0 o DATAT3
CLEAR —
PUN SELECT

10 RESE T—] o~

DATA8 o——d >— pATAB

DATA o——o >— DATAQ

DATAIP o——>— DATAIB
DATATT o——o>— pATAIN
DATAIZ o—>— pATAI2
DATATS o——<>— pATAI3
DATAIA o—d >— DATAI4
DATATS o——c[>— DATATS

+5v

INTP IN ©

06-00850

COMMON
SELECT
DATIA o—{>o—d>>— pATA IN A

0s3 W- BDS3
DATOA o——{>o—>— DATA OUT A - D$3

954 o—d >—ﬁ z- B0S4
INTA o——">0—d>—INT AcK 0s4
STRT o——{ So—q>— START S5 W 8055

- 0S5
CLR o—{So—d>—cLEAR RD ACK ” __
- | Jo—e---o—0 DATATR
MSKO o—o >—— Msko
RGENBo—d>—— RQENB INT ACK ¢ p—obataiz
INTP 0UT

10 RESET
10 RESET

TTLINT
PUN ACK REQ(D)

I-15

Pulse Height Analyzer

The interface shown below uses the data channel as
well as programmed transfers. Its function is to
increment the word in the memory location whose
address is determined by the output of an analog-
to-digital converter. The upper half of the drawing
contains only standard circuits already described.
At the right are the stages in the priority chains

for the data channel and program interrupt, the
device selection network, the single driver re-
quired for the data channel mode lines, and the net-
work that supplies the device code for an interrupt
acknowledgment. At the left are the state/interrupt
network and the data channel request logic (INT
DISABLE is controlled by mask bit 10). The gate
in the upper left corner determines when the ad-
dress is being sent in on the data channel; it clears
DCH SYNC and is also used by the interface logic

to determine when the address transfer is complete.

In the lower half of the drawing is the logic unique
to this particular interface. At the bottom is the
analog equipment and digital logic to control it

(this logic may vary to match a specific analog unit).
Above it are the drivers and associated gating to
place the address on the data lines. At the left is a
3-bit address extension register that is loaded by
the program. The converter supplies only the low
order twelve bits of the address; the program sup-
plied the high order three bits and thus specifies a
block of 4096 words to be used as the data area.

To place the device in operation the program issues
a Data Output A with a Start function (DOAS ac, 40),
which supplies the address extension and sets BUSY
to enable the conversion equipment. When a pulse
is detected, the converter translates it to a 12-bit
number and at completion generates ADC DONE.
This pulse sets CONV DONE, which disables the
converter and sets DCH SYNC. The next leadin,
edge of RQENB sets DCH REQ to generate DCHR.
When DCHA turns on and this device has priority,
DCH SEL is set, generating DCHM1 to specify an
increment memory cycle, and the address from the
extension register and converter is placed on the
DATA lines. The processor increments this loca-
tion in memory and sends the result back over the
bus, but it is not used in this particular interface.
The termination of DCHA turns off the logic level
DCH ADD, which in turn clears CONV DONE to
reenable the converter.

If a location is incremented to 216, the overflow
pulse (OVFLO) sent by the processor clears BUSY
and sets DONE, turning off the device and request-
ing an interrupt. (Clearing BUSY turns off the con-
verter and clears both CONV DONE and DCH SYNC.)
The program can give a DIA ac, 40 to read the ad-
dress and hence determine which location over-
flowed. The program can resume conversions
simply by setting BUSY (as by DIAS ac, 40 which
reads and restarts), and it can stop the process at
any time by giving an NIOC to clear BUSY.

II1-16

PULSE HEIGHT ANALYZER INTERFACE
558 o— >—D0s@ RGENBo— >—— RQENB WSKO o——d >— MSKO DCAA o—<>— DCHA

PHA DCH SEL{1) PHA DCH ADD 5oR +5V PHA DCHP +5v
i ocr REQ(H% b—l—4 >—PHA DCH A = " DCHP IN P
PHA gg:ﬁ 0 0c DCHP QUT

“ PHA DCH REQID) &

CONV DONE(N)— PHA - ROENS— CPHA 1 OCHA—C PHA ! +5V PHA INTP +5v
S R | ww _
0 8 D g o> g MPW o TP OuT

PHA BUSY(1) | PHA DCHP I ~ PHA INT REQ(®)
PHA DCH_ADD fORST S

(g

08
iORST %
FLO 0S3 PHA SELECT
OVFL - 0S4
PHA DCH SEL(1)O:D°_°,> ot ROENB—C py ! 0S5 — DEVICE CODE = 4gg
INT +3V
PHA DONE REQ +3v PHA DCH
BUSYN—HD__ @ D9 SEL(HD_CHM]
b i
STRT [@Mm
' &
Le wsko—fc_ 1] | PHA DONE)
PHA PHA PHA PHA SELECT
SELECT INT PHA YQ
BUSY —__ |oisABLE BusY(n)
o 0 DATATG —d D
CLR 1 I NTA PHAINT REQUI N wrres
: PHA mrpj)’ {> 140)

IORST o= >0
L_ioRsT

y - 1 —— ADC2 N —
B:Loa\o:f[ADR EXTI()Dm] DC DATAG ADC70ATA”
SELECT

ADR

@_om ADC3—W ADCB-—W
ﬁm——-ong”w ADREXTB(I)—@OW Aoc4—m ADCY ~ . o TS
-
-

g ADR EXT2(1) —

—C 1 — _ — R — —_—
ADCO) oms ADCIG omm
BATAS Aoce_oarmw ADC”"D‘A'ms

EXT2 DATIA

DATAZ —4dD PHA
DAt ¢ SELECT ADCT

DCHA
ADR | PHA DCHP
- ExT3 | PHA DCH
DATA3—dD g REQ()

A
0123456789191
LT 5 T O T O T O T I c
DETECTOR ——{ 12-8IT ANALOG TO DIGITAL CONVERTER gg:g
ANALOG AdC

D @
CONV DONE(0) EQUIPMENT DONE L
PHA BUSY(l)j >° : PHA DCH ADD e PHA BUSY(@)

D6-00852

II-17

This page intentionally left blank

11-18

SECTION IV

1/0 BUS SPECIFICATIONS

TIMING

The following figures show the timing characteris-
ties of the various I/0 bus functions. There are
some minor timing variations among the different
processor types, but these can be neglected if an
interface is properly designed. In order to facili-
tate the implementation of such a compatible inter-
face, these timing diagrams show the limiting
timing characteristics of all Data General central
processors. Timing data for a specific machine
can be found in its respective Technical Manual.

PROGRAMMED 1/0

The timing diagrams show two types of timing in-
formation. The times shown for the processor
originated functions (e. g., DCHI pulse) are the
minimum times for which the interface must be de-
signed. The times between processor bus functions
and the interface responses on the bus to those
functions are shown as the maximum allowable
times. An interface designed to operate with these
minimum function times and maximum response
times will operate with any Data General processor.

All times are in nanoseconds.

INPUT
DS €O-5> memd >0
mgﬁ*t'aéna [1
or F:—— 2500 ————»f
<200» -
DATA<O-153 I L
fe— 2150 —=
STRT, CLR \ 1
or 10PLS N e 2350 ——ay
(if present) Interface Response to
DATA IN Signat
oUTPUT
DS CO-5> m—mad —
-2 100—

. — —1_ TIMING FOR THE INTA
DATA<O-15> —— > 1504 3150 AND MSKO SIGNALS IS
patos, =2 2 '] THE SAME AS FOR THE

or DATIB AND DATOB SIG-

-) |
sﬁ:gccm 2350 f—> 0——» NALS, RESPECTIVELY.
) |

or TOPLS e 5 N STATE CHANGE OF BUSY

(if present) 350 OR DONE MUST OCCUR
WITHIN 250 ns OF THE
LEADING EDGE OF STRT,
CLR,OR IOPLS.

SKIP

DS <0-5> ——if | S

le— <150 —»
SELB or [
SELD \
) Interface Response to
D6-00853 Device Select Signals

IV-1of 4

HIGH SPEED DATA CHANNEL

R J—WM
QENB fe—<75-» Ja— <75 —oi
OCHRE e L
1
DCHA JI 300 MIN 1 .
h ;
1 ' !
boHL - L owm L—
j— <75 jo— < 75 —oeja— < TS5 —n je—<75—+|
DATA<O-15 . J 1 | I
le—< 75—
DCHMO O R
j— <75 —o
DCHM1 --———-——————-—-——1
0DG-00882 HIGH SPEED DATA CHANNEL —INPUT
Ens T SOWN WZA__'OMN O
le— <75 —n4 le— <75 —
DCHR® e : L
|]
DCHA MIN i
je—<75 -4 je— <75 —»
A I
DATA<O-15>
! ! ke-100 MIN - be-100 MIN-»|
DCHO i J __Toomin 1
fe— <75
DEHMO LTI T T4
<755
DCHM1 ———--——-—-—-‘-———1
D6-00880 HIGH SPEED DATA CHANNEL — OUTPUT

RQENB — oo N ZA___ISOMN P
fo—<75 le— < 75—
T S — 7 1

DCHA 1 00 MIN | '
e <754 le—<75—
]
DATA<0-15>
' | }+100 MIN-»{ ja-100MiN®|
DCHO d ! [FoomiN 1
i i
1]
OVFLO . - - 1
o <75
DCHMO === ———— COR
___________I::_(?f)—ﬁ
-7
DCHM] === —————m == - HIGH SPEED DATA CHANNEL —INCREMENT
DG-00856
RQENB W
le—<75—+ fe— <75+
T O — v |I
1 1
DCHA f —300MIN 1 .
| ! :
DCHI . ! J Z00MIN 1
jo—<75—>] Ja— <75 —w}e— <75—{ fo— <75 —
DATA<0-15 ! — —71r
! \ le100MIN-= je-100MN-»|
DCHO . : 100 MIN
¥
t 1
OVFLO : L T
e SN gyl
DCHMO === ———— —————— R
j— <75 %
DCHM] —— == —m e —— e p—— HIGH SPEED DATA CHANNEL — ADD TO MEMORY
DG-00854

* DCHR response at interface

V-2

STANDARD DATA CHANNEL

RQENS _ 150 MIN
le- <200 -9 je— <200+
DCHR* o | ! | S —————————————
1 |
DCHA I 500 MIN L ;
1] [
1 1]
DCHI ! ! I S00MN 1
!¢—<2oo-—| bo— <200 -~ <200-»| je—<200-+|
DATA<O-15 - ——
j+— <200
DCHM ———————— s oL IO
° e~ <200 -»
DCHM1 ———————— IO
06-00885 STANDARD DATA CHANNEL — INPUT

RQENB m— 300 MIN ISOMIN

b <200 - - <200~
(010171 B S—— | ! -
1l]
DCHA I 500 MIN 1 !
fo—<200-»| je— <200~
DATA<O-I5> : , L —
i | 150MIN ke-150MIN
DCHO ! ! 7250 MiN L -
le—<200— :
—— e o
S ———
DCHM1 ————————— o213
0G-00881 STANDARD DATA CHANNEL — OUTPUT
RQENB ——1 300MIN BZA__l50MN pr—
<200 -»{ je—<200-#{
DCHR¥ meme | =
! i
DCHA I 500 MIN L !
Je—<200-+ le—<200-»
DATA <0-15> '
! ' fe-150 MN-»{ fe-150Min-o{
DCHO II ; i 250 MIN
| 1
OVFLO L ' J 1
fe—<200 >
————— e S e,
DCHMO ————————— ———————a
j+—<200-»
2232,’5, s -t STANDARD DATA CHANNEL — INCREMENT
ROENB —=J 30OMIN EZA___1SOMIN P
k- <200-+1 be- <200-»
OCHR® ———mme ! L
i]
DCHA |I 500 MIN | - '
| |
DCHI ! ! J ~500 MIN 1
!o— <200-# l#- <200 -~ <200 -] fa- <200 »|
DATA<O-15; .] g S— | I—
! ' {150 MIN-»| Je- 150 MiN-»|
DCHO : : [2somin L
[} t
OVFLO ! ! N S —
= <200—
DCHMO e m e e e
le- <200-w
DCHMl = e e 4
STANDARD DATA CHANNEL — ADD TO MEMORY

06-00855
* DCHR response at interface

Iv-3

SIGNAL LEVELS

All of the signals on the 1/O bus are digital signals
and thus have two electrical states. Any voltage
between 0 and +0. 7 volts is considered low while
any voltage higher than +2. 0 volts is considered
high. The nominal voltages for high and low levels
are 0 and +2.7 volts, respectively. The relation
between the electrical level of a signal and its logi-
cal value depends on the particular signal in ques-
tion. Signals that are asserted when low are
identified by a bar over the signal name, as eX-
plained in Section I.

BUS SIGNAL LEVELS

3.0v

aus wien {77777 TTTTTTTTTITTTTZETTTI LI L

INDETERMINATE

wus vow | 77T oy

D6-00858

DRIVERS

The DATA lines and lines from interface to proces-
sor normally float high and are driven by pulling
them towards the 0 volt level.
ing enough current to flow through the line's termi-
nating resistor from the 45 volt source so that the
full five volts is drepped across this resistor. This
is usually accomplished by using the collector of an
NPN transistor, as shown below. Generally, a
discrete transistor is not used for this purpose;
rather the output of an open-collector TTL gate
would be used.
to sink at least 7T0mA with a saturated collector-
emitter voltage not greater than 0. 5 volts. The
Data General #100000117 or #10000078 drivers are
recommended for this application.

NPN TRANSISTOR

BUS SIGNAL

|
NPN DRIVER TRANSISTOR |
MUST SINK AT LEAST |
70mA, WITH A COLLECTOR- |
EMITTER VOLTAGE |
LESS THAN 0.5 VOLTS.

CONTROL.
SIGNALS

———————

D6-00859

Iv-4

This is done by caus-

RECEIVERS

Receivers for the I/0 bus signals may be either
standard TTL devices or special purpose interface
receivers. The net load that can be attached to the
bus depends on the drivers used. The load due to
all of the receivers plus the load caused by the
terminations can not exceed the sink capability of
any driver on the bus. Using drivers capable of
sinking at least TOmA, as specified, the net load,
exclusive of termination, should not exceed 16maA.

To keep the noise on the bus signals low, as few
receivers as possible should be used for each sig-
nal. Thus, if a signal is used at more than one
point on a single board or interface assembly, that
board should nevertheless cause only one load on
the bus for that signal. The usual procedure is to
use an inverter to buffer the 1/0 bus signal before
it is used by any other logic.

The ac noise margin of any interface can be im-
proved substantially by using the filter shown below
for the receivers of the signals listed below:

DATIA DATOA DCHA INTA OVFLO
DATIB DATOB DCHI IOPLS RQENB

DATIC DATOC DCHO IORST STRT
FILTER
BUS
CONTROL
SIGNAL L@_ SIGNAL
100pF
06-00860 jr:

In any case, the device must be able

SECTION V

CONNECTIONS, CONNECTORS
AND TERMINATORS

INTRODUCTION

This section explains how to connect controllers
in a NOVA and ECLIPSE line computer chassis
to adapters and devices outside the chassis, how
to install external I/O bus cables, and how to
terminate the I/O bus.

CONNECTIONS

A controller must be connected to the I/O bus and
to the device it controls.

When the controller is mounted in a NOVA or
ECLIPSE line chassis, these connections are
made through the back panel. Connections to

the I/O bus are made via back panel etch. Con-
nections to the device are made in two parts:

By etch or wires (called an internal cable) from
the back panel to a connector mounted on the chas-
sis and by a cable between that connector and the
device.

When the controller is not mounted in a NOVA or
ECLIPSE line chassis, it must be connected to the
I/O bus in such a chassis by an external I/O bus
cable. The connector on one end of the cable is
plugged into the external I/O bus connector on the
chassis, and the other end of the cable is connected
to the controller. The interface determines how
the controller is connected to the device.

Back Panel Connections

Connections are made to a printed circuit board in
a NOVA or ECLIPSE line chassis via pins on the
back panel. These pins are extensions of the con-
tacts in the two 100-pin female edge connectors in-
to which the board is inserted. The pins in each
connector are arranged in two rows of fifty pins,
the upper row making contact with fingers on the
upper side of the board and the lower row making
contact with fingers on the lower side of the board.

V-1of 14

The back panel pins within a slot are designated by
a letter indicating one of the two female edge con-
nectors and a two-digit, decimal number indicating
the position of the pin within the connector. The
female edge connector toward the rear of the chas-
sis is designated connector '"A''; the other female
edge connector is designated connector "B'". 1In
each connector, pins are numbered from 1 to 100
starting with the pin closest to the rear of the chas-
sis. The upper pins have odd numbers, and the
lower pins have even numbers.

BACK PANEL (CONNECTOR SIDE)

EXTERNAL 170 BUS
CONNECTOR

100 PIN FEMALE EDGE
CONNECTORS

DG-01542

BACK PANEL (PIN SIDE)

DG-01543

Rev. 05

I/O Bus Connections

The I/O bus carries signals which contain very
high frequency components in their rising and fall-
ing edges. Any cable carrying these signals must
be treated as a high-frequency transmission line.
Within the computer chassis itself, the I/0 bus is
carried in etch on the back panel; line lengths are
short enough so that the propagation times are low
compared to the rise time of the signals. Once the
I/O bus is brought out of the chassis via cable,
line lengths are extended so that reflections, set-
tling times, and crosstalk become significant
problems.

Whenever possible, a controller should be mounted
inside a main or expansion chassis. The next sec-
tion describes prefabricated boards available

from Data General Corporation for this purpose.
However, when the controller must be mounted
outside these chassis, it should be connected to
the 1/O bus via the 95 ohm, twisted pair I/O bus
cable sold by Data General Corporation. The

total length of the I/O bus must never exceed 50
feet, including etch and wires within chassis.

I/0 Bus Connections Within a Chassis

Minimal I/0O bus cabling is required when a con-
troller is installed in a NOVA or ECLIPSE line
chassis because most I/O bus signals are carried
to every slot available for I/O controllers via etch
on the back panel.. However, some connections
may be required in order to maintain the integrity
of the priority signals INTP and DCHP.

Because the signals INTP and DCHP are chained
from one controller to the next, jumpers must
carry these signals across any unused slot or
user-manufactured board that does not properly
pass them along the bus. (See Section 8) INTP
is jumpered across a slot by connecting pins
A95 and A96 of the slot. Similarly, DCHP is
jumpered across a slot by connecting pins A93
and A94 of the slot.

Rev. 03

1/0 Bus Connections Outside a Chassis

Controllers that are not mounted in a NOVA or
ECLIPSE line chassis must be connected to the
1/0 bus by an external I/O bus cable. One end

of the I/0 bus cable is connected to the controller,
and the other end is connected to an edge or socket
connector on the computer chassis, called the ex-
ternal I/O bus connector. The I/0O bus is con-
nected to the external I/O bus connector by wires
or etch on the back panel. Appendix C shows the
assignments of I/O bus signals to pins on the back
panel and to pins in the external 1/0 bus connector.

Cabling to an Adapter or Device

An interface in a NOVA or ECLIPSE line chassis
is connected to an adapter or device outside the
chassis by an internal cable and an external cable.
The internal cable, composed of etch or wires,
connects pins in one slot on the back panel with
pins in an edge or socket connector mounted on the
back or side of the chassis. One end of the ex-
ternal cable is then plugged into that edge or socket
connector and the other end is plugged into the
adapter or device. Appendix E shows which back
panel pins are used to connect to the I/0O bus, and
which pins are available to connect to external de-
vices or adapters.

When an internal cable must be installed for a
user-designed interface, it is recommended that
DGC type 4192 be used because it is a general
purpose internal cable compatible with many stand-
ard Data General interfaces. This cable is supplied
with the proper connector for the machine speci-
fied. The cable comprises fifty wires, each of
which is tagged with a back panel pin number.

When each wire is connected to the pin designated
by the attached tag, this slot/connector combina-
tion will be compatible with the slot/connector pin
correspondence of slot 9 of the NOVA 820, 1200
and 2/10 back panels. The correspondence between
back panel pins and connector pins for this cable is
shown below in the table for the General Purpose
Internal Cable.

General Purpese Internal Cable

4192

Paddleboard Connector

Socket Connector

Back Panel
Side Pin Number

A thru AF

Shell
2, 4
31
30
19
18

GND
GND
A92
A91
A8
AT
A'T6
A5
AT3
ATl
A69
A6
A65
A63
A61
A59
ADT
A47
A49
AT9
A81
A84
A83
A86
A85
A88
A8T
A89
A90
B6
B11
B13
B15
B19
B23
B25
B27
B31
B34
B36
B38
B40
B48
B49
B51
B52
B53
B54
B67
B69
+5V

06-00887

The following diagrams illustrate the different in-
ternal cables used in the earlier Data General
computers. Paddleboard and pin connectors are
used on the NOVA 820, 1210, 1220, 2/4, and 2/10.
Socket connectors are used on the NOVA and
SUPERNOVA computers, NOVA 800, 830, 840,
1200 Jumbo and 800 Jumbo computers. On all
paddleboard connector machines, the first
Teletype cable is plugged directly onto the back
panel through a pin connector similar to DGC model
1051G. On all socket connector machines, the sig-

_nals for the Teletype are carried through back
panel etch to a socket connector. All other device
cables plug onto connectors mounted at the rear of
the back panel. These connectors, in turn, are
wired to the appropriate back panel pins, either
through internal cables or back panel etch.

Internal cables of the later Data General compu-
ters are described in the Installer's Reference
Manual DG 015-000041.

The drawing below shows the internal cable con-
figuration for the NOVA computer; cabling for
SUPERNOVA computers is quite similar. The in-
ternal cables are wire-wrapped to pins on the back
panel. These cables are brought under the chassis
to the rear, where the connectors are attached to
a mounting area on the power supply. The NOVA
and SUPERNOVA computers use cannon connectors
for their device cables.

EXTERNAL CONNECTOR CONFIGURATION FOR

CONNECTOR
MOUNTING
AREA

CIRCUIT
BREAKER

RECEPTACLE

UNDERSIDE
OF CHASSIS

THE NOVA AND SUPERNOVA COMPUTERS

TELETYPE
INTERNAL
CABLE

CONSOLE

Rev. 05 V-4

EXTERNAL CONNECTOR CONFIGURATION

FOR NOVA 800, 1200, 1200 JUMBO, 830, 840 COMPUTERS
AND THEIR EXPANSION CHASSIS

STRAIN -
RELIEF A P4 - PTP

06-01302 /

connector bracket, P2, P3, and P4 are assigned
respectively to the terminal, paper tape punch, positions would be connected to the appropriate
and paper tape reader. Socket P2 is connected by
etch on the back panel to slot three. Internal
cables for the paper tape reader and punch may be
connected by attaching pin connectors from the the appropriate back panel pins.
external socket to P6 and P8 mounted at the bottom

Socket connectors are used exclusively on these of the back panel. P6 and P8 are also connected
machines. Of the four holes at the bottom of the by etch on the back panel to slot three. Similarly,
an I/O bus socket installed in one of the horizontal

NOTE These machines use the 4050 or
4051 junction box instead of the
4083 connector panel used on pad-
dleboard machines.

locations on the back panel, with an internal cable.
To connect other device cables, an internal cable
should be run from an external cable connector to

EXTERNAL CONNECTOR CONFIGURATION

INTERNAL
CABLE

AIR N o~
INLET \//‘9 ~ 42
. / M Z)
STRAIN I X %l
RELIEF 0 I
BRACKET > 2.
CABLE e
TIE >) -
- = XY
/ X }\; Zl
: /“\&j % il
,/?// \\\\ o W
/' A)
VRN 3
7

DG-01414

FOR NOVA 1210 COMPUTER

P2

TELETYPE
CABLE

The TTY cable is plugged onto the back panel at
P2, on slot 3. Paddleboard connector P3 is the
external I/0O bus connector. The 1/0 bus signals
are permanently etched to the fingers on this fifty-
pair connector. Device cables other than that of
the TTY are plugged onto connectors mounted, as
needed, at the rear of the back panel and wire-
wrapped (via internal cables) to the proper back
panel pins. P4 and P5, each a ten-pair paddle-

board connector, and P6, a thirteen-pin connector,
make up a single unit which is installed only when
the paper tape reader, the paper tape punch, or

a second teletype is installed. PT7, a fifty-pair
paddleboard connector, is mounted on standoffs
beside P4-6 and wire-wrapped to back panel pins
when it is needed. The necessary connectors are
furnished when DGC standard interfaces are pur-
chased.

STRAIN RELIEF
BRACKET

CABLE TIE

EXTERNAL
CABLE

SUGGESTED STRAIN RELIEF
OF EXTERNAL CABLE, AS
REQUIRED

1220 COMPUTERS AND EXPANSION CHASSIS

EXTERNAL CONNECTOR CONFIGURATION FOR NOVA 820,

CABLE TIE MOUNT,
USED WITH EXTERNAL
1/0 CABLE INTERFACE

~

]
Sy

P2
TTY INTERFACE
CONNECTOR
(CABLE 1019B,5,0,G)
P5

P

RTR. OPTION

CASSETTE OPTION
~—

Pg .

s

w-mm:<

1

P7
RTP OPTION

The TTY cable is plugged onto the back panel at
P2, on slot 3. Paddleboard connector P3 is the
external 1/0 bus connector. The I/O bus signals
are permanently etched to the fingers of this con-
nector. P4 is a fifty-pair paddleboard connector
whose fingers are permanently connected to back
panel pins of slot 9. Similarly, P5, P6, and P7,
ten-pair connectors, are permanently connected
for use when the paper tape reader or punch, cas-
sette, or EIA interfaces are installed in slot 3.

ADDITIONAL PADDLEBOARDS

Other device cables are plugged onto connectors
mounted as needed, at the rear of the back panel,
and wire-wrapped (via internal cables) to the pro-

per back panel pins. P8 through P12 may be either

connector shown to the left below. If required,
socket-type connectors can be installed in the
spaces provided in the I/O bracket, shown to the
right below. The necessary connectors are fur-
nished when DGC standard interfaces are pur-
chased.

CASSETTE
OR PTR 2 74
OPTION [¢

PTP. & /"
oPTION |17
porooare DUAL 20-PIN CONNECTOR
4192 /CPU
BOARD WITH INTERNAL
CABLE

1046B-
CONNECTOR AL.ONE

1/0 BRACKET

. |
L 62

-+
é
|

|
o
(S

)

0G-00813

4
|

12 £Q. SP
@ .600= 7.200

— %

+
!
i
!

4-40 UNC- 28 —/

(26 PLACES)

STUD FOR
CABLE CLAMP
(TTY OPTION)

EXTERNAL CONNECTOR CONFIGURATION

DG-00596

FOR NOVA 2/4 COMPUTERS

CABLE
10198,¢C, D, 6

INTERNAL
CABLE

>
e
8

The TTY cable is plugged onto the back panel at
P2, on slot 3. Paddleboard connector P3 is the
external I/O bus connector. The I/0 bus signals
are permanently etched to the fingers of this fifty-
pair connector. Device cables other than that of
the TTY are plugged onto connectors mounted, as
needed, at the rear of the back panel and wire-

wrapped (via internal cables) to the proper back
panel pins. P4 and P5 optional connectors may be
either connector shown to the left below. Addi-
tionally, the 4083 connector panel may be mounted
as shown to the right below. The necessary con-
nectors are furnished when DGC standard inter-
faces are purchased.

ADDITIONAL PADDLEBOARDS

i TTY
,({1«
-
%l N 4

OPTION

T

PT.P.
OPTION

0600597 DUAL 20-PiN CONNECTOR
4192/CPU -
BOARD WITH INTERNAL
CABLE
10708~
CONNECTOR ALONE

44083 CONNECTOR PANEL

L P

105IG
13-PIN
CONNECTOR

=i D
=i

06-00600

CABLE TIE Lty

STRAIN RELIEF /
BRACKET g

SUGGESTED STRIAN RELIEF
OF EXTERNAL CABLE AS
REQUIRED

EXTERNAL CONNECTOR CONFIGURATION
FOR NOVA 2/10 COMPUTER AND EXPANSION CHASSIS

CABLE TIE MOUNT,
USED WITH EXTERNAL
170 CABLE INTERFACE

KNYLON SPACERS ’

123 000271

PTR OPTION
CASSETTE OPTION

The TTY cable is plugged onto the back panel at
P2, on slot 3. Paddleboard connector P3 is the
external I/0Q bus connector. The I/O bus signals
are permanently etched to the fingers of this con-
nector. P4 is a fifty-pair paddleboard connector
whose fingers are permanently connected to back
panel pins of slot 9. Similarly, P5 and P6, ten-
pair connectors, are permanently connected for
use when the DGC Paper Tape Reader or Punch or
DGC cassette interfaces are installed in slot 3.

ADDITIONAL PADDLEBOARDS

‘Other device cables are plugged onto connectors

mounted as needed, at the rear of the back panel,
and wire-wrapped (via internal cables) to the pro-
per back panel pins. P7 through P11 may be either
connector shown to the left below, while P12 and
P13 must be the 4192 (fifty-pair) type. The 4083
connector panel may be mounted as shown to the
right below. The necessary connectors are fur-
nished when DGC standard interfaces are pur-
chased.

CASSETTE
OR PTR J-
OPTION [=%

- 0G-00597

DUAL 20-PIN CONNECTOR

4192/CPU -

BOA - NOTE : EARLIER MACHINES |
CZ’B'EE'W'TH INTERNAL MAY HAVE SLIGHTLY

CasLe DIFFERENT PADDLE BOARDS

CONNECTOR ALONE

4083 CONNECTOR PANEL

MOUNTING CONFIGURATION
WITH EIA 16-PIN JUNCTION
PANEL. A MAXIMUM OF TWO
PANELS CAN BE MOUNTED
FOR A TOTAL OF 32 LINES.

CONNECTORS

When standard devices are purchased from Data
General, the internal cables and connectors neces-
sary for installation are included with the machine.
When a custom interface/device installation is
being planned, however, the necessary connectors
should be included in the plans. The following isa
list of some of the general purpose connectors
available from DGC.

4192

This is a general purpose external device connector

and includes both the internal cabling and the pro-
per chassis-mounted cable connector. If the NOVA
1210, NOV A 820, NOVA 1220, NOVA 2/4, NOVA
2/10, or ECLIPSE line is specified, the connector
is supplied with a 50-pair paddlebm rd connector.
When any other machine is specified, the 4192 in-
cludes a 50-pin female cannon connector. The re-
lationship between back panel pins and assigned
connector pins is listed at the end of this section.

iH

10708

This is the 50-pair paddleboard connector used on
the 4192,

299

bG-0/296

Rev. 05

005-001858

This is a 50-pair female paddleboard cable con-
nector, to mate with the 4192, and 1070B.

4083

This is a connector panel which includes sixteen
13-pin male pin type connectors. This panel
mounts on the chassis of the NOVA 2/4 or
NOVA 2/10.

1051G

This is the 13-pin female pin-type connector, to
mate with the male connectors as used on the 4083,

0

A MP '86402-1

/3-13

06-01452

Socket Connectors

The various socket connectors and connector con-
figurations available from Data General as standard
items are listed at the end of this section. Note
that for chassis mounting, the female connector is
mounted on the chassis while the male connector is
attached to the cable.

06-01300

TERMINATORS

Because the I/0 bus cable is being used as a high-
frequency transmission line, it is very important
that the cable be terminated at or near its char-
acteristic impedance. Any mismatch between the
terminator and the cable will cause electrical re-
flections within the cable, which manifest them-
selves as a damped oscillation, or "'ringing". This
ringing appears not only at the end of the line, but
atall points on the line. Such ringing creates sev-
eral problems, chief of which is an increase in the
time delay before a signal has settled down suffi-
ciently so that it can be considered reliable. This
problem will become especially evident when using
the high-speed data channel, despite the fact that
the interface is mounted within the chassis.

The diagrams below show schematics of the rec-
ommended termination of I/0 bus signals origi-
nated by the central processor and by the interface.
This is the scheme used in the terminators shown
in the picutres below.

V-1

RECOMMENDED TERMINATION

TERMINATOR

INTERFACE

+3V

«- 2000
PROCESSOR

]

]

I

]
I-
1

1

;

1

] 2400
H

1

]

i
!
i
|
)
!
|
i

06-00876 =

RECOMMENDED TERMINATION FOR PROCESSOR ORIGINATED 1/0 BUS
SIGNALS! CLR, DATIA, DATIB, DATIC, DATOA, DATOB, DATOC,
gg:@, DCHI, DCHO, DS <0~5),INTA, IORST, |0PL3,M§RZ'S, OVFLO,RQENB,

06-00877

TERMINATOR
INTERFACE - T8y
29] i ! 3

PROCESSOR"---] n n lr___]:r <3300
- I +0.7v

O TIUUT T

B - ! ! 33900

-

RECOMMENDED TERMINATION FOR BI-DIRECTIONAL LINES AND
SIGNALS FROM INTERFACE TQ PROCESSOR:

DATA <O-15%, DCHM <0,15, DCHR, 5ELB, SELD

0601301

SOCKET TERMINATOR

D6 - 01315

PADDLEBOARD-TYPE TERMINATOR

Rev. 05

A terminator should always be used when the I/0O
bus extends beyond the computer chassis. The

same terminator should also be used in a

NOVA 2/10 or the ECLIPSE S/200, C/300 lines
even if the I/0 bus does not extend beyond the

computer chassis.

Rev. 05

Terminators can be mounted on either paddleboard
or socket connectors. The table below lists ter-
minator part numbers and shows the type of con-
nector used. These terminators are plugged
directly onto the mating connector which would
otherwise be used to extend the I/0 bus.

Extended I/0 Bus Terminators

Type of Terminator
Computer Model Connector Part Number
NOVA Computer socket 005-000116
SUPERNOVA Computer socket 005-000116
1200, Jumbo 1200 socket 005-000116
1220 paddleboard 005-001219
800, Jumbo 800, 830, 840 socket 005-000116
820 paddleboard 005-001219
*NOVA 2 paddleboard 005-001734
% %k
DG-01292

*Terminators are used on the computer chassis of the NOVA 2/10

**For later Data General computers
see the Installer's Reference Manual
DG 015-000041.

Socket Connectors

Type Number Connector
005-002244 100-pin female connector; consists of 111-12 and 111-22
2245 100-pin male connector; consists of 111-11, 111-21, and 111-25
2246 52-pin female connector; consists of 111-10 and 111-22
2247 52-pin male connector; consists of 111-9, 111-20, and 111-24
2248 25-pin female connector; consists of 111-4 and 111-22
2249 25-pin male connector; consists of 111-3, 111-20, and 111-24
2250 19-pin female connector; consists of 111-8 and 111-22
2251 19-pin male connector; consists of 111-7, 111-19, and 111-23
2252 9-pin female connector; consists of 111-2 and 111-22
2253 9-pin male connector; consists of 111-1, 111-19, and 111-23
2254 50-pin 1/0 female connector; consists of 111-6 and 111-22
2255 50-pin I/O male connector; consists of 111-5, 111-21, and111-25
111-000001 9-pin male connector
0002 9-pin female connector
0003 25-pin male connector
0004 25-pin female connector
0005 50-pin male connector
0006 50-pin female connector
0007 19-pin male connector
0008 19-pin female connector
0009 52-pin male connector
0010 52-pin female connector
0011 100 -pin male connector
0012 100 -pin female connector
0019 9/19 pin junction shell
0020 25/52 pin junction shell
0021 50/100 pin junction shell
0022 Screw lock assembly, female
0023 9/19 pin screw lock assembly, male
0024 25/52 pin screw lock assembly, male
0025 50/100 pin screw lock assembly, male
DG-00858

V-13 Rev. 05

This page intentionally left blank.

Rev. 05 V-14

SECTION VI

INTERFACE BOARDS

INTRODUCTION

This section gives the specifications that printed
circuit interface boards must meet in order to be
installed in NOVA and ECLIPSE line chassis and
describes prefabricated interface boards avail-
able from Data General.

PRINTED. CIRCUIT BOARD
SPECIFICATIONS

NOVA and ECLIPSE line chassis impose certain
restrictions on the dimensions, vertical clearances,
power consumption and heat dissipation of the
printed circuit boards which can be installed in
them.

Dimensions

The illustrations on the following pages show the
dimensions of printed circuit boards to be instal-
led into NOVA and ECLIPSE line chassis.

Vertical Clearances

The clearance between boards in a computer chas-
8is or between a board and the top of the chassis is
3/8-inch. To maintain installation compatibility
with other boards in the chassis, components
should be mounted only on the top surface of the
board. Components must not project more than

0. 312 inches above the board, and no protrusion
below the board may be greater than 0, 062 inches.
In general, a board should be constructed with as
low a profile as possible, so that air flow is re-
stricted as little as possible.

DC Power Requirements

Interfaces installed in a computer chassis or ex-
pansion chassis receive power (+5Vde and ground)
through the back panel from the chassis power sup-
ply. This immediately presents two considerations

VI-1 of 14

for the designer. The first is the capacity of the
power supply and the second is the quality of the
voltages supplied. This section provides a table of
power supply and back panel print numbers for each
chassis.

It is important that an interface added to a com-
puter or expansion chassis not overload the power
supply of that chassis. Thus, the designer should
know what the capacity of his machine is and de-
sign accordingly. Note that the capacity here is
the total capacity of the power supply minus the
load from the boards already installed in the chas-
sis.

All chassis produce +5Vde, +15Vde and -5Vdc.
Many computer chassis also produce -15Vde for
customer use. The +5Vdc is used for the logic
components; the +15Vdc is used for core memory;
the -5Vdc is used for the Teletype interface. The
price list contains the +5Vdc capacities of the com-
puters as well as the current draw on this supply
by various circuit boards. The designer should
use this information to calculate the actual capac-
ity of his computer system. In general, no more
than 2A should be drawn off the +15Vde and -5Vdc
supplies by the customer.

If it is found that there is insufficient capacity to
drive the planned interface, there are a number of
possible courses of action. The designer may
wish to configure his system somewhat differently,
perhaps using an expansion chassis for this or
other interfaces. Another possibility, especially
if the planned interface is fairly large, is to build
most (or all) of the interface in its own chassis,
with its own power supply.

In addition to power supply capacity, the interface
designer may have to concern himself with the
quality of the voltage available. A characteristic
of TTL logic is the tendency to superimpose
switching transients and other noise on the power
supply line. This noise may be particularly trou-
blesome to analog circuitry, especially where, for
instance, high-gain amplifiers are being used to
deal with low-level signals. If power supply noise

Rev. 04

is a problem, it may be desirable to isolate the
interface circuitry from the supply either by in-
corporating additional regulation on the interface
assembly, or by using a DC/DC converter (e.g.,
DGC #116-000003).

Heat Dissipation of Interface Boards

The problem of heat dissipation really has two
facets. The first, a local effect, is the considera-
tion of how the heat produced by hot components may
affect nearby components; the second is the degree
to which the heat produced by an interface assembly
will raise the ambient temperature of the adjacent
boards in the chassis. Both of these questions in-
volve analyses that will be discussed only in the
most basic terms here; but they are mentioned
here in the hope that the designer will remain
aware of the possible restrictions.

The principle problem involved with localized heat-
ing is caused by high dissipation devices concen-
trated together creating hot spots. Ever computer

and expansion chassis includes fans for forced air
movement over the boards. Sufficient air moves
over the heat-producing components to keep the
air temperature rise within reason, thereby
limiting part temperature. Spreading the heat
source over a wider area will improve the heat
transfer across the board. Whenever possible,
heat sensitive circuits and components should be
mounted as far as possible from high-temperature
components.

Effects on internal temperature rise can be min-
imized principally by limiting the total heat dis-
sipation of the interface board. If excessive heat
is dissipated on the board, the result will be a
rise in the ambient temperature for nearby boards,
particularly that directly above the interface in
question. Care should be taken that the profile of
the board is low enough so as not to interfere
with the air flow over the board. In general, if
the total dissipation of an interface board is less
than fifteen watts, there will be no problem of
overheating other boards,

_Power Supply and Back Panel Engineering Drawings

COMPUTER CHASSIS

Engineering Drawings

Power Supply Back Panel
NOVA Computer 001-000063 001-000024
SUPERNOVA Computer 001-000063 001-000046
1200 Series:
1200 001-000551 001-000090
1200 Jumbo 001-000551, 553 001-000169
1210 001-000660 001-000207
1220 001-000173 001-000208
800 Series:
800 001-000551 001-000094
800 Jumbo 001-000551, 553 001-000169
820 001-000172 001-000209
830 001-000551, 553 001-000729
840 001-000551, 553 001-000538
2 Series:
2/4 001-000530 001-000560, 645
2/10 001-000473 001-000566
3 Series
3/4 001-000839 001-000839
3D and 3/12 001-000959 001-000853
$/230 and C330 001-000669 001-000679
S/130 001-001073 001-001062
ECLIPSE Computer Series:
$/100 001-000617 001-000670
$/200 and C/300 001-000669 001-000679

EXPANSION CHASSIS

Engineering Drawings

Series 1/0 Only

Size Series Power Supply Back Panel
NOVA Computer 001-000145 -
SUPERNOVA Computer 001-000145 -

SC Memory 001-000205 -
7-slot 1200, 800 and 830 001-000149 -
10-slot 1220, 820 001-000215 001-000230
17-slot 840 only 001-000553 001-000554
10-slot 2/10 001-000719 001-000718
12-slot 3/12 3D S/130 001-001150 001-001058
16-slot $/230 or C/330 001-000680 001-000710
Memory Only
16-slot $/200,5/230, C300 001-000680 001-000901

DG-01289

Rev. 05

VI-2

005-.015
ER

CHAM

x45°
(TYP)
TYPICAL SLOT

PRINTED CIRCUIT BOARD DIMENSIONS

CONFIGURATION HOLE SIZE QTY
RADIUS AT BOTTOM OF A 040 DA AR
KEY SLOT OPTIONAL B | 0980IA 2
¢ | 130+882 pia 7
.002
E | .070%30%% Dia 2
14.383 8028 6.937
“B" SIDE "A" SIDE 582
50 FINGERS EQUAL 6.125
WITH TOTAL ACCUMULATIVE 100
TOLERANCE TO BE ON 99 :
ARTWORK *.002 (TYP) 53 29 19 9 93 58 49 39 e
BETWEEN FINGERS | AND 99 5 |?, ITT JY I? Igl,I |57 |T7 |?7) 0
400 y 4 | }
) B L ol
| 1 —ft—t AT
+.000
06 RADIUS 1150 ——CF SEE DETAIL C > [+ 1501508
4 CORNERS
SEE SHEET 2 FOR
ADDITIONAL ARTWORK
AND OUTLINE
DIMENSIONS
.400 REF —
TO BE FREE OF
25 COMPONENTS
r—--'—— .47
62 f :
20°
2
PLACES
DETAIL C
|
X +e— 7150
—»] L— 125 - 110 TO BE FREE OF
COMPONENTS AND/OR ETCH
TYP (COMP AND SOLDER SIDE)
SIDES AND BOTTOM
SEE CORNER DETAIL
]
I
t
AREA DENOTED BY PHANTOM
SECTION LINES TO BE FREE OF
COMPONENTS ONLY 2 PLACES
SEE NOTE 7 TOP AND BOTTOM BOTH SIDES
r— 25
2.100, -
o (REF)
14,320 — . NE “+-14,150 _ . *_~L~
_ (L T RN N XN N SN RN NI N r 14.338
14,650 —2:500£.0¢2 t 2 o> s s G g L] ¥ 2 PLACES
///f 7.300
9.350
L.14.700+.002
4.850
t—14.754 +.003
12.350 2.350
(REF)
054 £.003
+.000
14.850+:090
2.100 ——»
NOTES: CORNER DETAIL [e— 400
). ALL DIMENSIONS ARE IN INCHES 5. gggggEsrligﬁsgﬁssezgw‘{vnénore:ON P BT TOM 250 : AREA TO BE FREE
2. MATERIAL THICKNESS:.085 THICK OVERED s, A e EaS ARE LEFT AND RIGHT) | - :{ OF COMPONENT
3. FINISH: SOLDER PLATE CONDUCTORS Tt AND/OR ETCH
AND GOLD PLATE CONTACT FINGERS © B, C AND E HOLES TO BE NON- » COMPONENT C
‘054 - 088 THICK PLATED-THRU HOLES FREE OF ETCH r SOLDER SIDE
4. DIAGONAL DIMENSION ON COMPONENT pnior O COMPONENTS 250 f f
AND SOLDER SIDE BETWEEN E HOLE -
TARGETS IS TO BE 20.648 +.001 ON 7. ARTWORK LOCATIONS TOLERANCE 600
ARTWORK MASTER TO BE +.001
% DENOTES NON PLATED THROUGH
HOLES
D6-0/1447
Rev. 05

VI-3

PRINTED CIRCUIT BOARD DIMENSIONS
SEE DETAIL A
.260
“qg
060 sQ
CROSS HAIR
F——-"0" LINES
03] X 45°
4 PLACES i & 347
— LINES TO B
so7 B2z — 3 — M 010 THK
947
1.072 — 7
1197
1.322— 1l
1447 13
1.572— 15
1.697 4
Loa7 1.822 — 19 2
T 072 — 23 TYPICAL ARTWORK
2.197 >335 — o7 25 REGIFSTRA'I"I,ON TARGET
2447 2 25 OR "E" HOLES
2.572— 3|
2.697 33
2.822—35
24T e 39 [——LOCATE ONLY FINGERS WITH SIGNALS
3197 —) ALL FINGERS OTHER THAN GROUND AND
3.322—43 +5VDC ARE TO BE OMITTED THAT ARE
3447 ————— a8 oy NOT USED e
3697 — 49 — " NOTE:-WHEN NOTCH IS USED NEXT TO
3.822 — 5l + SIDE "A" FINGER ETCH FROM FINGER MUST RUN
3.947 072 53 | PERPENDICULAR FOR .200 MIN BEFORE
4197407255 — ! ETCH LINE CAN RUN OUT TO INTERFACE
4322 — 59 SEE DG-01447 FOR NOTCH LOCATIONS
4.447 6l
4572 — 63
4697 4.822 — 67 &5
4.947 — 69 NOTE:
5072—Ti
5.197 — 73 Each board slot has teflon keys in-
5322 —75 ? : : f
5.447 77 serted in assigned positions in the
5.572—79 back panel connectors. All general
5.697 8l 13.571 .
5822 —83 purpose interfaces should have
5947 s a7 — 25 slots cut between etch strips in the
6.197 S35 o 89 edge connector to correspond to key
6.447 — 93 positions for 1/0 interface con-
6.572 — 95 SEE DETAIL B nectors. These slots should be
8697 — o7 — \/ between the fingers on the edge con-
6.822 —99 1 3
\1\) nector according to the following
156 table.
(8USs 8AR) [
h
2004.00 SLOTS BETWEEN PINS
020-.022 (TYP) _] | A SIDE
8143 | A37 AND A39
) 8268 — 3 A47 AND A49
8393 085 TYP ARTWORK AS7 AND AS9
8643 :*7'::_ z 5 CONTACT FINGER p—
- — S
8.893 P T— 13 87 AND 89
9.143 5266 — 15 17 BI27 AND guze
268 — B27 AND B29
9.393 21
558 —23 B5| AND B53
9.643 25
9.768 — 27
9693 10.018 — 3I 29
O — 054 - 058
10.143 Y vr—— 33 ' FINGER THK
10.393 o sle—35 37 SIDE "B v 000
10.643 — 41 l - I‘*-°3°-io|5
10768 — 43
10.893 45 . 7
10.018 — 47 ‘
a3 268 s 49 T
1393 4 s 2 2002855
1643 — 57 . 300 GOLD PLATE
3 11.768 — 59 | L
1189 12018 — 63 6 DETAIL A
12143 65
12.268 — 67
12.393 12518— 71 bt 125 - 062 R
12.643 — 73 SEE N
12.893 12.768 — 75 - SEE NOTE
¥ 3018 — 79 . 160
':-3'4;,3_263__53 8; S - { DATUM OREF
339 13.518 — 87 8 .060 DIA PAD
13.643 89
13.893 0708 — 9 ——5 NOTE: AS RADIUS DEPARTS FROM .062
893 T ole — o5 CARE SHALL BE USED SO TOOL DOES
14143 — 97 NOT CUT ETCH. MINIMUM RADIUS (S
14.268 — 99 »—r + SHOWN IN PHANTOM.
|
DETAIL B
06-01448 < 4 PLACES

Rev. 05 VI-4

PREFABRICATED INTERFACE BOARDS

To aid the designer in the construction of custom
interface assemblies, Data General makes avail-
able three series of interface circuit boards.

These are particularly useful for building limited
quantities of a special interface; that is, where it
would be economically unsuitable to lay out and
etch a printed circuit board. The 1000 and 1020
series general purpose wiring boards are blank
component boards that allow the designer a high
level of flexibility in the configuration of his design.
To simplify the job somewhat, the 4040 series
general purpose interface boards include most of
the fundamental interface logic discussed earlier

in this manual. However, ample room is still
available for custom circuitry, making these boards
particularly useful for breadboard and prototype
applications.

1000 Series General Purpose Wiring Boards

The 1000 wiring board is a system consisting of

6 1/2 x 3 1/4 inch module boards mounted on a
15-inch square frame (type 1001). This frame has
two 100-pin edge connectors with solder pads,
which are compatible with the female back panel
edge connectors. There is space on the frame for
up to eight wiring modules.

0601293

1003 WIRING BOARD

The modules themselves are available in three
varieties. The 1002 is a basic board with hole pat-
terns for twelve 14- or 16-pin integrated circuits.
Discrete components can also be mounted in these
holes. Solder pads are provided for the larger

24- and 36-pin chips, but the holes are not pre-
drilled through the board and the solder pads.
Interconnections on the 1002 are made by soldering
interconnecting wires of #30 AWG teflon-coated
solid wire to solder pads provided for each inte-
grated circuit terminal. The 1003 board provides
wire-wrap pins for these connections, as shown in
the illustration. For added convenience in mount-
ing the chips, the 1004 board provides, in addition
to the wire-wrap pins, twelve 16-pin low-profile
sockets for dual in-line chips.

DG -00862

Close-up view of hole pattern

Finally, there is a protective cover type 1014
which fits over the 1001 wiring frame.

1020 Series General Purpose Wiring Boards

The 1021 wiring board is a 15-inch square printed
circuit board with a hole pattern for 14-, 16-, 24-,
and 36-pin integrated circuit chips, as well as
discrete components. The board has two 100-pin
edge connectors for the processor back panel, and
includes power supply and ground buses throughout
the board, including decoupling capacitors. The
board can hold 155 14- or 16-pin integrated cir-
cuit packages. A pair of 24-pin packages replaces
three 14- or 16-pin packages, while each 36-pin
package replaces two 14- or 16-pin packages.

Interconnections on the 1021 board are made by
soldering interconnecting wires of #30 AWG teflon-
coated solid wire to solder pads provided for each
integrated circuit terminal. The 1022 board pro-
vides wire-wrap pins for these interconnections.
For added convenience in mounting the smaller in-
tegrated circuit packages, the 1023 board provides,
in addition to the wire-wrap pins, 155 16-pin low-
profile sockets for dual in-line integrated circuit
packages. The protective cover used with this
series is the 1024.-

DG-01294

4040 Series General Purpose Interfaces

Since the I/0 bus is the same on all Data General
computers, there must be a certain amount of cir-
cuitry common to all of the interfaces. This, as
described earlier, consists of the logic that actu-
ally functions with the I/O bus signals. The general
purpose interface boards (4040 series) include this
basie circuitry as well as space for extensive cus-
tom logic. Thus these boards eliminate a good

deal of the design and construction effort necessary
to implement a custom interface.

4040 General Purpose Interface Board

The 4040 general purpose interface board is a
standard 15-inch square printed circuit board with
two 100-pin edge connectors along one side, making
the board compatible with the NOVA line back panel.
The board includes the basic interface control logic
necessary for programmed I/0O operation. This
includes the device selection network, busy/done
logic, bus receivers and drivers, and the interrupt
logic.

For custom logic, low-profile sockets are provided
for up to sixty-five 14- or 16-pin integrated cir-
cuits. Printed circuit etch connects each socket
terminal to a wire-wrap post for interconnecting
the integrated circuit chips. A row of 201 wire-
wrap pins physically divides the custom logic from
the standard interface logic. The pins are con-
nected by etch to various signals in the interface
logic and to uncommitted back panel edge connec-
tions. Connections between the integrated circuit
chips and between these chips and the standard
interface logic are made by wire-wrapping, using
#30 AWG teflon-coated solid wire, to the appro-
priate posts.

The drawings on the following two pages show the
logic included on this board. Back panel connec-
tions are shown by circles and wire-wrap pins by
squares. The accompanying table lists the signals
available to the custom logic and the characteris-
tics of these signals.

D6-01314

4041 Data Register Option

The 4041 Data Register Option is additional logic
which can be included on the 4040. It consists, as
shown in the appropriate drawings, of two 16 -bit
registers used as data buffers between the interface
and the I/O bus. The input (to the processor) reg-
ister receives parallel or serial data from the cus-
tom logic and transfers data in parallel on the I/0
bus. The output register receives parallel data
from the I/O bus and transfers data to the custom
logic either in parallel or serially. These registers
can be used for either programmed I/0 or data
channel transfers, The signals available to the
custom logic from these registers are listed in the
table following the drawings of this circuitry.

GENERAL PURPOSE INTERFACE - 4040 BUSY/DONE NETWORK INTERRUPT CONTROL

PINS AVAILABLE FOR INTERFACE

A47O—————110 ATBO—— o2
A490—m— 9 A9 O0—— 157
AS70———————08A A8l O— 67
AS90——— 8 A83O—— __6BA
ABIO——— (134 AB4O— - _2A
A630——— 29 ABSO— (]88
~ESO——— 07 AB6O— 13
T O—— (341 AB7TO—— 1 69
h69O—————— _[16A ABBO—————— 14
ATl O—— 148 A890— [70A
AT30———— 149 AS00——————[]4A
ATSO————— (1492 A9l O——— 170
AT 0—— 1 AR20——— (5
AT 00— 06

4042 Data Channel Connection Option

When included on the 4040, the data channel con-
nection logic provides the basic control for all data
transfers via the data channel. This logic includes
the control logic discussed earlier as well as two

16 -bit counters. One counter maintains the word
count, or the number of words still to be processed,
and the other counter maintains the current address,
which is the memory location for the next word
transferred. This logic is shown on the appropriate
drawings, while the accompanying table lists the
signals available to the custom logic.

86 o———— 7l
Bl O————————) 72A

B38 O—————1 132
B4OO—-————_ 01133
B4BO— 0 I134A
B49 0——————————0 98A
B5] 0—————0104
BS20— N34

B53 0—————————n 135
854 O———————— 0 136A
867 O——u-——-[125
B69 O——-—+— 136

B29
O INTR

i
10 RESET-%&

+5V
RI2
3K
430

3 12

[

IIl

INTP IN

i
BYs____
2 S - B e

]
oC \/0O w4 BS38
’_E@}—-———g BATA TI

066

5

BUSY (1) —5 PoNE (0)—3g) Y2
13 " N (1]
q 3 0
S 2
START
DONE ()—3]
2

s
o [0C\I0 wis _ B59
s B o A8 a| O% P2 -8 _ B5° 5rms
o SELB 3
BUSY 0 _@:'»— s _ B mmTs
o ols Eluar

oc \3 _Wig _ BS6 e
2| 9% —B56 bata e

Juad

D6-008%98

CLEAR—

NOTE | O DESIGNATES WIRE WRAP PIN
O DESIGNATES EDGE CONNECTOR

5
4w B66
0C w7 DATA 1B
6] oor DATA T

INT ACK 'o 8 |°
INT REQ (1) 2 n

4043 and 4044 Options

The 4043 adds wire-wrap pins to each logic inter-
connection pad in the customer logic section of the

4040, and the 4044 adds 65-16 pin low profile
sockets for dual in-line IC's, to the 4043.

VI-T

8-IA

+ 4+ |+ |+ |+

L

+ |+

c9
105
it

c-c8
€.8uF
3sv

c9-c22
.05uF

pF=
DEVICE SELECT |

INT ACK
42

; Ug 2 170 RESET

1/0 RESET

L1 ppe——
DATA INA

.
DATA OUT A

34—
DATA INB

A
DATA OUTB

. J—
DATAINC

4
DATA OUT C

DCHP IN

INTPINO

INT REQ (0}

GENERAL PURPOSE INTERFACE - 4040 1/0 BUFFER DEVICE SELECT

INTPIN

wi
12 w2

45V

o DO
O DCHP OUT

3

UG,

U§,

6 DEVICE
SELECT!

50

4] DEVICE
SELECT?2

6-I1A

“GENERAL PURPOSE INTERFACE - 4041 INPUT/OUTPUT DATA REGISTERS

38 37

39 75 T6A 40A

18A 19 22A 23 26 25 24A 24

ﬁ%§$ AAAAL

Ri9
3K 12
2 008 009 ! ODiZ 0D 0014 ODIS
I [0) 1 1Y w o [} m) (D) mm
L MR
ﬁlo’_J cp SHIFT REGISTER cp SHIFT REGISTER cp SHIFT REGISTER
2PE us3 ——q U4 —dPE uss L olPE us2
3« gk F—OK —olk
4 5 6 7 a 5 6 7 4 5 6 7 4 s 6 7
+5v 8 DATAO DATAI DATA2 DATA3 DATA4 DATAS DATAG DATAT DATAS DATAS DATAIO DATAII DATAI2 DATAI3 DATA 14 DATA IS
o :
R20 rR2I [u47
3K 3K
31Zhg 9
R22 $R23
3K 23K
3 @A
+5v
$RI3
33K 15 14 13 12 15 e 13 12 15 14 13 12 s 14 13 12
14 00— 21, 1DATAO IDATAI IDATAZ IDATA3 L 20y \DATA4 IDATAS IDATAS IGATAT . 21" IDATAS IDATAS 1DATAIO 1DATAI 21, 7IDATAIZ WDATAIS TDATAM IDATAS
idur n m [0)] dur) [0} () n D W T 1]] ilyr (D) W w
ey 10lep SHIFT REGISTER Olep SHIFT REGISTER Olep SHIFT REGISTER Olep SHIFT REGISTER
—2dPE ur? 9dre ue e ute e u20
Rl K K K K
3K) 5 3 7 2 5 6 7 0 s 3 7 3 5 O 7
15
+5v
RIS
3K 28 Oi2 Il QoA 122 (2t 204 Q20 8A (328 7 Oz Ee (a3 U3
Q iDATO iDATI IDAT2 IDAT3 IDAT4 IDATS IDAT6 IDAT 7 IDAT B IDATO IDAT 10 1DAT I1 IDAT 12 IDAT I3 IDATI4 IDAT IS
B
U‘A 32
o +5v
1
5V 16 0n.
RI6 $RIT +—F
3K 33k * NOTE I O DESIGNATES WIRE WRAP PIN
] Cf‘bg, © DESIGNATES EDGE CARD CONNECTOR
n~| 55
30A 31 o7
|

D6-o089r

GENERAL PURPOSE INTERFACE

4042 DATA CHANNEL OPTION ADDRESS REGISTER AND

WORD COUNTER

DATAO DATA| DATA 2 DATA 3 DATA 4 DATAS DATA6 DATA7 DATA 8 DATA9 DATA |0 DATA N DATA1Z DATA13 DATA |4 DATA IS
10 4 13 1 13 U 10 4 1 13 4 10
&
oc oc oC 0oC oc oc oc oc oC oc oc
u30 u3o u3o 29 u29 ua29 uz9 u4ao u40 u40 u40
8 SS 5" I23 2 " (2 2! 58 5 3 3 2Il |26 55 9
1284 122 27 124A H7 ne (IBA 92 95 88
O—¢ O—¢ O— Sl -0 [— -0 O o4
H4A 96A|
12 2 9 5 12 2 9 L] 12 2 9 5
caoll cal(l ca2(l) cA3(l) - [caaty castn cas() car(n CAB(I) CA9() CAIO(1) CAIN() | }l) CcAI3(1) GAl4(1} CAIS(D)
RESET T
4 BIT BINARY cL2 RESET 4 BT BINARY CLZ 4 BIT BINARY CL2 4 BIT BINARY CL2
COUNTER COUNTER COUNTER COUNTER
DATA STROBE cu —CDATA STROBE cut ~CIDATA STROBE el DATA STROBE cLt
uas ua3 u3e
11 3 10 4 n 3 10 4 1 3 10 4 1 3 10
1044
DATAO DATA| DATA2 DATA 3 DATA 4 DATAS DATA 6 DATA7 DATA 8 DATAO DATAIO DATA I DATA 12 DATA I3 DATA 14 DATAIS
10
+5v 45V
CA DATA
R35
R37
2 3 3K
soll 0s0 A cLock s1a0 Dsi
120A 16a 120 s 18 1024 14 102 99 1004 98 1Q3 77 80A 8! 80
w0 2 8 12 4 12 6 2 8 8 s 2 |8 i0
1 [9 i3 3 13 3 1 5 9 5 13 9 t
i2] 2 9 5| 12} 2 9 2] 9 5] 12] 2 3 5|
v 13 weo(l) wcl(i} wez(1) wes(l} WCa{1) WC5(1) WCe(t) werll) WeB(1) wealt) welo(1) wen(ny WCI2(1) WCI3{1) wei4(1) weIs (i)
RESET RESET [RESET RESET
4 BIT BINARY CL2 4 BIT BINARY CL2 3 4 BIT BINARY CL2 4 BIT BINARY CL2
\ COUNTER COUNTER cu . COUNTER COUNTER
ng: —Cl DATA STROBE il DATA STROBE —CJDATA STROBE oLt DATA STROBE cLl
n 3 10 4 i 3 10 4 un 3 10 4 1" 3 10 4
. l £
8 +5V +5V
2
no
-} DATA O DATA| DATA2 DATA 3 DATA 4 DATAS DATAG DATA7 DATA B DATA O DATA (0 DATA I} DATA 12 DATA |13 DATA 14 DATA IS us! ';:(' g:z
1
1 9 0
+5V 45V NOTE | O DESIGNATES WIRE WRAP PIN
Ust) e 740 o DESIGNATES EDGE CARD CONN. WC CLOGK
3K 3K
2] i3 DG-00446 62 634
WC DATA

64 83

VI-10

170 RESET

DCH REQ(1}——2
DCH SEL (1)

47A

QO ADD ENABLE

RQENB

DCH SYNC—2
m

DCH REQ(1)

OCHP IN

06 -00896

NOTE |

D DESIGNATES WIRE WRAP PIN
O DESIGNATES EDGE CARD CONNECTOR

—GENERAL PURPOSE INTERFACE - 4042 DATA CHANNEL CONTROL

+8V
R28
85 3K
MO
+5V
R29
858 $3K
M
833 5
cal T
100pF I
837 9
DCHI O—?R Ca 8 59
K_T——u
Cc42
IOOpF:l_;
ovaFLo o2 8 654
R55] .
K o] V37 3
caq
IOOpF;E
»sv DCH SEL(1)
€26 | ca7 | c28 | C29 | €30
T 3 T = =
0% 05| 05 05| .05
=

DCH SEL - DCHO

OCH SEL - DCHI

—— e
DCH SEL - OVERFLOW

Vi-11

SIGNAL NAME - PIN ASSIGNMENTS
ON THE 4040, 4041 AND 4042
GENERAL PURPOSE 1/0 INTERFACES

BASIC INTERFACE 4040

DATA REGISTERS 4041

VI-12

Signal Pin Fanout| Load Signal Pin Fanout Load
DATAO0-DATA15 See below| 10* Input register
IDATAO(1) -IDATA15(1) See below 1 ICP1 30A 4
0OB1 106 4
ICP2 31 4
OB2 108A 4
: IPE 32 12
RQENB 51 6
IMR 15 4
MSKO 85 8
DCHA 57A 7 1J-K 14 2
INT ACK 65 9 IDATO0-IDAT15 See below 1
10 RESET 42 5 IDATAO(1)-IDATA15(1) See below 5
START 67A 7 .
CLEAR 74 8 Qutput register
10 PULSE 45 10 OoCcP1 32A 4
DATAIN A 41A 10 OCP2 33 4
DATA OUT A 18 10 OPE1 16A 1
DATAIN B 43A 10 OPE2 17 1
DATA OUT B 14A 10 OMR 16 4
DATAINC 13 10 0OJ-K 30 2
DATA OUT C 44 10 OD0(1)-0OD15(1) See below 10
DEVICE SELECT-2 50 8 DATAO-DATA15 See below 9*
INT REQ(1) 79 8
INT DIS, D terminal 86 1 . .
DONE,set terminal 53A 9 IDATO0-IDAT15 Pins IDATAO(1) -IDATA15(1) Pins
DONE, clock terminal (C) 56 2) . X .
'DONE(1) 82A 9 IDAT-| Pin | IDAT-| Pin IDATA-| Pin | IDATA-| Pin
gIOJIS\IS}{E(’ll)) terminal gated internally gg o 1 0 12A 8 28A 0 97 8 90
1 12 9 |28 1 110A 9 105
2 11 10 27 2 129 10 130
DATAO0-DATA15 Pins IDATAO(1)-IDATA15(1) Pins 3 10A 11 26A 3 128 11 T4A
4 22 12 36 4 96 12 90A
DATA-| Pin |DATA-| Pin | |IDATA-| Pin | IDATA-] Pin | 5 21 13 36A 5 8 13 106A
6 20A 14 35 6 130A 14 T8A
0 126A 8 94A 0 97 8 90 7 20 15 34 7 73 15 111
1 123 9 92A 1 110A 9 105
2 124 10 94 2 129 10 130 . .
3 192A 1 91 3 128 1 74A 0ODO0(1) -OD15(1) Pins DATAO-DATA15 Pins
4 121 12 88A 4 96 12 90A ; . X "
5 1124 13 84 5 78 13 106A OD- | Pin | OD- | Pin DATA-} Pin | DATA-| Pin
6 118 14 817 6 130A 14 T8A
7 {113 | 15 |s6a 7 || 15 |m 0 |3 S | ioa 0 |126a 5 | Jaa
*Without 4041 option (see Data Registers 4041). 2 38A 10 22A 2 124 10 94
DG-00877 3 39 11 23 3 122A 11 91
4 5 12 26 4 121 12 88A
5 T6A 13 25 5 112A 13 84
6 40A 14 | 24A 6 118 14 817
7 40 15 |24 7 113 15 86A
*Reflects additional load on data line receivers due to
register.
DG-00878

SIGNAL NAME - PIN ASSIGNMENTS
ON THE 4040, 4041 AND 4042
GENERAL PURPOSE I/0 INTERFACES

DATA CHANNEL LOGIC 4042

Signal Pin Fanout| Load|
DCH SYNC(1) 51A 10
DCH SYNC, set terminal 46 2
DCH SYNC, C terminal 47 2
DCH SYNC, D terminal gated internally 45A 1
ADD ENABLE 47A 9
DCH REQ(1) 52 9
DCH SEL(1) 64 5
DCHO 58 10
DCHI 59A 10
OVERFLOW 65A 10
CAE1 113 4
CAE2 108 4
CA RESET 104A 4
CADATA 1 59 1
CA DATA 2 60 1
CA CLOCK 1 61A 1
CA CLOCK 2 61 1
CAO0(1)-CA15(1) See below 3
WC RESET 110 4
WC DATA 1 63 1
WC DATA 2 64 1
WC CLOCK 1 62 1
WC CLOCK 2 63A 1
WCO0(1)-WC15(1) See below 3
CAO(1) -CA15(1) Pins WCO0(1) -WC15(1) Pins
CA- Pin CA- Pin WC - Pin WC- | Pin |
0 128A 8 107 0 120A 8 99
1 122 9 100 1 116A 9 100A
2 127 10 101 2 120 10 98
3 124A 11 109 3 119 11 103
4 117 12 92 4 115 12 ™
5 116 13 95 5 102A 13 80A
6 118A 14 88 6 114 14 81
7 114A 15 96A 7 102 15 80

06-00879

VI-13

001-000051
001-000052
001-000053

016-000170
016-000171
016-000172
016-000173

REFERENCE PRINTS

Logic Diagrams

IPL's

Vi-14

APPENDIX A

1/0 DEVICE CODES AND
DATA GENERAL MNEMONICS

Device Priority
Code Mask

(Octal) Mnemonic Bit Device
00 - -- Power fail
010 WCS - Writeable control store
02° ERCC - Error checking and correction
03°® MAP -- Memory Allocation and Protection
01° MDV -- Multiply /Divide
02° MMPU -- Memory Management and Protection Unit
02*0 MAPO --
03° MAP1 } -- Memory Allocation and Protection
04° MAP2 --
05
06 MCAT 12 Multiprocessor adapter transmitter
07 MCAR 12 Multiprocessor adapter receiver
10 TTI 14 Teletype input
11 TTO 15 Teletype output
12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch
14 RTC 13 Real time clock option
15 PLT 12 Incremental plotter
16 CDR 10 Card reader
17 LPT 12 Line printer
20 DSK 9 Fixed head disc
21 ADCYV 8 A/D converter
22 MTA 10 Magnetic tape
23 DACV -- D/A converter
24 DCM 0 Data communications multiplexor
25
26
27
30 QTY 14 Asynchronous hardware multiplexor
o o+ 13 IBM 360/370 interface
33 DKP 1 Moving head disc
34 CAS 10 Cassette tape

*

gg ﬁ; } 11 Multiline asynchronous controller
36 IPB 6 Interprocessor bus--half-duplex
317 T 6 IPB watchdog timer
40 DPI 8 IPB full-duplex input
41 DPO 8 IPB full-duplex output
40+ SCR 8 Synchronous communication receiver
41- SCT 8 Synchronous communication transmitter

DG-01450

0 ECLIPSE computer only
ONOVA line computers only
* code returned by INTA and used by VCT for ECLIPSE computer
*+*may be set up with any unused even device code 40 or greater

* may be set up with any unused odd device code 41 or greater

A-1of 2

APPENDIX A (Continued)

1/0 DEVICE CODES AND
DATA GENERAL MNEMONICS

Device Priority
Code Mask
(Octal) Mnemonic Bit Device
42 DIO 7 Digital I/O
43 DIOT 6 Digital I/O timer
44 MXM 12 Modem control for multiline asynchronous
45 controller
46 MCAT1 12 Second multiprocessor transmitter
47 MCARI1 12 Second multiprocessor receiver
50 TTI1 14 Second teletype input
51 TTO1 15 Second teletype output
52 PTR1 11 Second paper tape reader
53 PTP1 13 Second paper tape punch
54 RTC1 13 Second real time clock option
55 PLT1 12 Second incremental plotter
56 CDR1 10 Second card reader
57 LPT1 12 Second line printer
60 DSK1 9 Second fixed head disc
61 ADCV1 8 A/D converter
62 MTA1l 10 Second magnetic tape
63 DACV1 -- D/A converter
64*0 FPU1
6590 FPU2 5 Alternate location for floating point
66° FPU4
67
70 QTY1 14 Second asynchronous hardware multiplexor
70 SLA1 14 Second synchronous line adapter
;;* } ' 13 Second IBM 360/370 interface
3 DKP1 7 Second moving head disc
T4 CAS1 10 Second cassette tape
";‘51* } 11 Second multiline asynchronous controller
74*0 FPU1 }
750 FPU2 5 Floating point
760 FPU
1 CPU -- Central processor and console functions
DG-0/450 '

*code returned by INTA and used by VCT for ECLIPSE computer
ONOVA line computers only

APPENDIX B

MAXIMUM LATENCY TIMES *

Standard High-Speed
Data Channel Data Channel Interrupt
With Without With Without With Without
Computer Model .MUL/DIV | MUL/DIV | MUL/DIV | MUL/DIV | MUL/DIV | MUL/DIV
NOVA Computer 17.3 17.3 N/A N/A 12.0 12.0
SUPERNOVA Computer 11.8 7.8 5.7 3.7 9.0 5.0
SUPERNOVA SC 11.8 7.8 5.7 3.7 9.0 5.0
NOVA 1200 Series 9.4 9.4 N/A N/A 7.0 7.0
NOVA 800, 820, 840 5.8 5.8 4.8 3.2 10.6 4.6
NOVA 830 6.4 6.4 5.4 3.6 12.0 6.0
NOVA 2, 8K 5.2 5.2 4.3 4.3 5.8 1.9
NOVA 2, 16K 5.3 5.3 4.4 4.4 5.9 2.3
ECLIPSE Computer 4.3 4.3 N/A N/A 36.2 36.2

All times are in microseconds.

06-01304

*For highest priority peripheral.

B-1 of 2

APPENDIX B (Continued)
MAXIMUM DATA CHANNEL

TRANSFER RATES

All rates are in words/second.

Standard High Speed Increment Memory Add to Memory
Computer Model In Out In Out Standard | High Speed | Standard | High Speed
NOVA Computer 285,500 | 227,500 - - 227,500 - 187,500 -
SUPERNOVA Computer 434,700 | 357,100 | 1,250,000 | 1,000,000 | 357,100 833,333 357,100 833,333
SUPERNOVA SC 434,700 | 357,100 | 1,250,000 | 1,000,000 | 357,100 833,333 357,100 833,333
NOVA 1200 Series 833,333 | 555,555 - - 416,666 - - -
NOVA 800, 820, 840 500,000 | 500,000 | 1,250,000 | 1,000,000 | 454,545 833,333 - -
NOVA 830 454,545 | 454,545 | 1,000,000 833,333 (416,666 833,333 - -
NOVA 2, 8K 500,000 | 475,000 | 1,250,000 833,333 | 454,545 770,000 - -
NOVA 2, 16K 475,000 | 454,545 | 1,110,000 770,000 | 435,000 715,000 - -
ECLIPSE Computer 1,250,000 | 714,000 - - - - - -

DG-01309

APPENDIX C
EXTERNAL 1/0 BUS CONNECTOR WIRE LIST

External
Panel Connector
Signal Source Pin Pin Function

=

@1 @2
DATAO B B62 w 3 These sixteen lines carry sixteen bits of data bet -
DATA1 B B65 Z 4 ween the processor and interface for all data
DATA2 B B82 AD 5 transfers.
DATAS B B73 AB 6
DATA4 B B61 v 7
DATAD B B57 r 8
DATASB B B95 AE 9
DATAT B B55 n 10
DATAS B B60 u 11
DATAD B B63 X 12
DATATO B B75 AC 13
DATAT1 B B58 s 14
DATA12 B B59 t 15
DATATS B B64 y 16
DATAT14 B B56 p 17
DATAIS B B66 AA 18
]_)“__§_5 P AT2 X 32 These six lines carry the six-bit device code dur-
Ds1 P A68 \% 33 ing I/0 instruction execution.
DS2 P A66 U 34
12_§_3 P A46 H 35
DS4 P A62 S 36
DSbH P A64 T 37
DATIA px* Ad4 F 19 Each signals the interface that is should place data
DATIB Px* Ad2 E 20 on the DATA lines.
DATIC P** Ab4 M 21
DATOA p* A58 P 22 Each signals the interface that data is on the
DATOB P Ab6 N 23 DATA lines.
DATOC Pk A48 J 24
SELB D A82 a 46 Carry the states of the Busy and Done flags of
SELD D A80 Z 47 selected interface.
CLR pr* A50 K 2 Interface status control signals.
IOPLS px* AT4 Y 41
STRT Po* Ab2 L 48
RQENB Ppr* B41 m 45 Synchronizes INTR, DCHR
MSKO P A38 C 43 Signals interface to load Interrupt Disable Flag
INTR D B29 f 40 Interrupt Request
INTP IN * A96 Interrupt Priority Chain
INTP OUT * A95 c 39
INTA P A40 D 38 Interrupt Acknowledge
DCHR D B35 j 31 Data Channel Request
DG-00890

@2 Socket connector.

Continued on following page

*For the two pairs of priority-determining signals, the IN signal comes from the processor or the pre-
ceding device, the OUT signal goes to the next device. If the computer is operated with an interface
board removed (or a slot is not used), jumper pin A93 to A94 and A95 to A96 to maintain bus continuity.

**Use filters described in text.
@1 Paddleboard connector.

C-1of 2

Rev. 05

APPENDIX C (Continued)
EXTERNAL 170 BUS CONNECTOR WIRE LIST

External
Panel Connector
Signal Source Pin Pin Function
@1 @2
DCHP IN * A94 Data Channel Priority Chain
DCHP OUT * A93 b 30
DCHA px* A60 R 25 Data Channel Acknowledge
DCHMO D B17 d 27 Data Channel Transfer Mode
DCHM1 D B21 e 28
DCHI p** B37 k 26 Signals interface that data is on DATA lines.
DCHO p** B33 h 29 | Signals interface to place data on DATA lines.
OVFLO p** B39 2 44 Increment or Add to Memory result < 916
IORST P AT0 w 42 System reset
PWR ON P B 49 +5V for remote turn-on
DG-00890

*For the two pairs of priority-determining signals, the IN signal comes from the processor or the pre-
ceding device, the OUT signal goes to the next device. If the computer is operated with an interface
board removed (or a slot is not used), jumper pin A93 to A94 and A95 to A96 to maintain bus continuity.

**{Jge filters described in text.
@1 Paddleboard connector.

@2 Socket connector.

Rev. 05

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation, operation, and mai of DGC 1
and software. The drawings and specifications contained herein are the property of DGC and
implied to grant any license to make, use, or sell equipment manufactured in accordance he

shall neither be reproduced in whole or in part without DGC's prior written approval nor be
rewith.

APPENDIX D

CRITICAL 1I/0 BUS TIMING

TIMING CONSTRAINTS ON PRIORITY CHAINS

The architecture of the program interrupt and data
channel priority systems in the NOVA and ECLIPSE
line computer systems imposes two constraints on
the design of I/0 interfaces that operate in these
systems. First, interrupt and data channel re-
quests may be issued only on the leading edge of
the request enable signal (RQENB), and second,

the propagation delay through either priority chain
may not exceed 300 nanoseconds.

These constraints eliminate the possibility of a race
condition between the interrupt acknowledge signal
(INTA) and the interrupt priority chain signals
(INTP IN and INTP OUT in each controller.) The
race condition may arise if there is not a sufficient
delay between the time when a controller makes an
interrupt request and the time when the processor
asserts INTA. I the delay is not long enough,

a controller making a lower priority request may
spuriously place its device code on the DATA lines
in response to INTA before news of the higher pri-
ority request arrives via the interrupt priority
chain. Whenever any interface makes an interrupt
request, there must be time for all interfaces with
lower interrupt priorities to determine that a
higher priority request has been made before the
processor asserts INTA. Therefore, the delay
between an interrupt request and the assertion of
INTA must always be longer than the maximum
time required for an interface to determine that

a higher priority interrupt request has been made,
that is, longer than the maximum time for the
news of the higher priority interrupt request to
ripple out the interrupt priority chain.

The NOVA and ECLIPSE line processors never
assert INTA less than 300 nanoseconds after they
assert RQENB. Therefore, if interfaces only

make interrupt requests on the leading edge of

RQENB and the maximum propagation delay in the
interrupt priority chain is less than 300 nano-
seconds, there will always be enough time for
news of an interrupt request to ripple out the
interrupt priority chain to the last controller in
the chain.

These constraints also eliminate the possibility of
a race condition between the data channel acknowl-
edge signal (DCHA) and the data channel priority
chain signals (DCHP IN and DCHP OUT. in each
controller). The race condition may arise if there
is not a sufficient delay between the time when a
controller makes a data channel request and the
time when the processor asserts DCHA. If the de-
lay is not long enough, a controller making a lower
priority data channel request may place a memory
address on the DATA lines in response to DCHA
before news of the higher priority request arrives
via the data channel priority chain.

In the NOVA and ECLIPSE line processors, there
is a minimum delay of 300 nanoseconds between

the leading edge of RQENB and the leading edge of
DCHA. If interfaces only make data channel re-
quests on the leading edge of RQENB and the
maximum propagation delay in the data channel
priority chain is less than 300 nanoseconds, there
will always be enough time for news of a data chan-
nel request to ripple out the interrupt priority chain
to the last controller in the chain.

D-1 of 2

Data General Corporation (DGC) has prepared this manuat for use by DGC personnel and custoniers as a guide to the proper installation, operation, and
and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or in part without DGC's prior written approval nor be
implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

of DGC

TIMING CONSTRAINTS ON DATA
CHANNEL TRANSFER MODE SIGNALS

The architecture of the data channel transfer mode
circuitry in the NOVA and ECLIPSE line computer
systems imposes two constraints on interfaces that
operate in these systems. First, an interface may
only cease to assert the data channel transfer mode
signals (DCHM< 0-1.>) on the leading edge of the
data channel acknowledge signal (DCHA), and
second, when the interface ceases to assert
DCHM< 0-1>, the trailing edge of those signals
must arrive at the processor before the subse-
quent trailing edge of DCHA leaves the processor.

The first constraint insures that the data channel
transfer mode can be sensed by the processor on
DCHM<0-1> at any time during a transfer.

The second constraint eliminates the possibility of
one interface asserting DCHM< 0-1> while another
interface is receiving data channel service.

These two constraints together imply that NOVA
line computer systems must not include both
interfaces that request data channel service on an
extended I/0O bus and interfaces in the main chassis
that request high-speed data channel service. The

. reason is that the amount of time available for an

interface to retract DCHM< 0-1> depends on the
length of the I/O bus between the interface and the
processor. It also depends on the duration of
DCHA, which is determined by the interface that
is receiving data channel service, not by the inter-
face that has already been serviced and must now
retract DCHM< 0-1>. When an interface receives
high-speed data channel service, DCHA may be
asserted by the processor for as little as 300 nano-
seconds. If the last interface to be serviced was
on the extended 1/0 bus and asserted DCHM< 0-1>,
it might not be able to retract those signals soon
enough to avoid interfering with the interface cur-
rently being serviced.

APPENDIX E

BACK PANEL
CONNECTOR LAYOUT

A B

13 57 9 111315171921 23 26 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 1 3 5 79 1113151719 2123 25 27 29 3133 3537 39 41 43 45 47 4951 53 5657 59 61 63 65 67 69 71 7375 77 79 81 83 85 87 89 91 93 95 97 99

.
5
8 S || 8 olel |3 |t
°i1glz A EHEREE i HEE EE EE B
o+ Z] +| O ol + a o +|O
o
F4 o wold] - Z\ > 4 =1 ilioll=
w o ololo = 7] = w <ql<]i<]|<
2 lal> Ll lE B IR ke bk~ | 210l 2 i al>lal 2lal> o clcll= sla
o |z]le A%5IEl<|< olalw lg“l“- |5 olzl »|Z2la z < 3
Gl+ odc'?:oc:ag'nooo olig|s Z| 2|6] b 5 SISIS|S 4 b

This illustration shows the location of the various I/O
bus signals and the power and ground lines on the
back panel. These signals are available on all slots not
reserved for central processor boards. The unshaded
. . locations with no signal designation are available to
* Memory piqs on original t:lOVA computer, but ground on all subsequent the interface for signa.ls to external devices, via an
.- E?;"upn‘gzs 3&3;’;%\;‘:‘“2::& internal cable. The shaded locations are used for
+++ DCHM1 is not available on the ECLIPSE line. memory signals in those slots designed for memory
*+es OVFLO s not available on the ECLIPSE line. modules. In the slots designed for I/O interfaces only,
those locations are also available to the interface. Any
interface using these shaded locations, however, is
incompatible with the standard back panel
configuration and cannot be plugged into one of the
slots in which those locations are not free. The
engineering drawing of the back panel for a particular
channel should always be consulted to verify pin

assignments.

DG-00869

Rev. 05 E-1/E-2

DOCUMENT TITLE:

Your comments, accompanied by answers to the
Sfollowing questions, help us improve the quality R
and usefulness of our publications. If your answer .
te a question is “no’ or requires qualification, .
please explain. o
L]
How did you use this publication? .
As an introduction to the subject. ®
As an aid for advanced knowledge. N
For information about operating procedures. .

()
()
()
()
()
()
()

To instruct in a class.
As a student in a class.
As a reference manual.
Other.............................

READERS COMMENT FORM

Useful....................... YES ()
Complete..................... YES ()
Accurate.............. ... YES ()
Well organized............ YES ()
Well written................ YES ()
Well illustrated.......... . YES ()
Well indexed............ . YES ()
Easy to read................ YES ()
Easy to understand..... YES ()

Did you find the material:

NO
NO
NO
NO
NO
NO
NO
NO
NO

P U
B e e e

We would appreciate any other comments; please

label each comment as an addition, deletion, change,

or error and reference page numbers where applicable.

COMMENTS
PAGE| COL |PARA| LINE FROM 10
From
NAME........oooveoeesreoseeoeeeses TITLE oo, Data General Corporation
FIRM ..ot ese e (512 2O ENGINEERING PUBLICATIONS
ADDRESS ...ttt eetee e e be e st este et e s st seeenes COMMENT FORM
[} & ST STATE ..o, ZIP.......... DG-00935
TELEPHONEovovovreerrr, (07N {0

FOLD DOWN FIRST FOLD DOWN

---------—--

FIRST CLASS
PERMIT NO. 26

SOUTHBORO
MASS. 01772

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL I
I
Postage will be paid by:]
I
DataGeneral —
Southboro, Massachusetts 01772 I
ATTENTION: Engineering Publications
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	E-01
	replyA
	replyB

