
HOW TO USE THE
NOVA COMPUTERS

How to use the Nova
Computers

A System Reference Manual for the

Nova

Supernova

Nova 1200

Nova 800

Supernova SC

PRICE $10.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO

DATA GENERAL CORPORATION. SOUTHBORO, MASSACHUSETTS

DG NM-5

The right to change specifications is reserved

Written for Data General Corporation by William English

Printed in the United States of America

April 1971

Copyright © 1970, 1971 by

Data General Corporation

1.l

1.2

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3

3.1

3.2

3.3

Contents

INTRODUCTION ... I-I

Instructions

Instruction format 1-5

Memory .. .

CENTRAL PROCESSOR .. .

Memory Reference Instructions

Move data instructions 2-5

Modify memory instructions 2-6

Jump instructions 2-7

Arithmetic and Logical Instructions

Carry, shift and skip functions 2-12

Arithmetic and logical functions 2-14

Programming examples 2-17

Input-Output .. "

Special code-77 functions 2-26

Automatic program loading 2-30

Program Interrupt

Data Channel

Automatic loading 2-39

Processor Options .. .

Real time clock 2-40

Power monitor and autorestart 2-41

Multiply-divide 2-42

Nova multiply-divide 2-42
Supernova high speed data channel 2-44

Memory allocation and protection 2-44

Operation ... "

HARDCOPY EQUIPMENT

Teletypewriter

Teletype output 3-2

Teletype input 3-3

Programming examples 3-3

Operation 3-5

Paper Tape Reader

Loading Programs .. .

Automatic program load 3-9

Binary loader 3-10

1-4

1-6

2-1

2-2

2-10

2-21

2-30

2-38

2-40

2-50

3-1

3-1

3-6

3-7

3.4 Pape!" Tape Punch 3-11

3.5 Line Printer .. 3-12

3.6 Plotter .. 3-14

3.7 Card Reader ... 3-16

4 MAGNETIC TAPE .. 4-1

4.1 Tape Format ... 4-1

4.2 Instructions .. 4-3

4.3 Tape Commands 4-6

4.4 Ampex Tape Transports. 4-11

5

5.1

5.2

5.3

6

6.1

6.2

6.3

7

7.1

7.2

7.3

7.4

TMZ transport 4-11

TMX transport 4-13

TM-16 transport 4-14

DISK .. .

Disk Format .. .

Instructions

Programming Considerations .. .

ANALOG CONVERSION EQUIPMENT "

AjD Conversion Equipment

Basic Aj 0 converter 6-2

Multiplexed AjD converter 6-3

Multiplexer expander 6-4

Programming the basic interface 6-4

Programming the extended interface 6-6

Physical data 6-9

Aj 0 conversion scaling 6-12

OJ A Conversion Equipment

Standard OJ A conversion eq uipment 6-13

OJ A conversion equipment with sample and hol~ channels 6-14

Physical data 6-16

OJ A conversion scaling 6-19

Oscilloscope Control 4053 .. .

DATA COMMUNICATIONS

Communications Controller Type 4015

Receiver 7-1

Transmitter 7-3

Automatic answering 7-5

Data Communications Multiplexer Type 4026

Modem Control Features 4023 and 4029

Multiprocessor Communications Adapter 4038

Receiver 7-10

Transmitter 7-12

Installation 7-14

5-1

5-1

5-2

5-5

6-1

6-1

6-13

6-19

7-1

7-1

7-5

7-7

7-9

APPENDICES

A Interfacing Al

In-out Bus .. A I

B

C

D

E

II

III

IV

Bus signals A3

Bus connections A6

Bus circuits A 7

Interface Timing .. .

Programmed transfers A II

Program interrupt A II

Standard data channel transfers A 13

High speed data channel transfers A 16

Design of Interface Equipment .. .

Basic interface· networks AI9

Design examples A21

Construction of Interface Equipment

General purpose interface A28

Installation

Peripheral equipment B4

Floating Point Arithmetic

Instruction Mnemonics and Timing

Numeric listing D2

Alphabetic listing D5

Instruction execution times D 12

In-out Codes .. .

In-out devices E2

Teletype code E4

AlO

AI9

A25

BI

CI

DI

EI

(
,

j

;, ." ,~ '" ~ '" ,
"," '" > ~ ij \ ~'"" ~"' I; :t ,t:

Nova 1200 front panel, chass is with central processor subassembl y hoard , and power supply.

Chapter I
Introduction

The Nova computers arc general purpose computer systems with a 16-bit word length. All machines are

organized around four accumulators, two of which can be used as index registers. This accumulator/index

register organization provides great efficiency and ease in programming. The various machines differ from

one another in features and speed, the Supernova SC being the fastest and most versatile. Programming for

all machines is completely compatible except of course for programs that are time dependent.

Any Nova computer can have both alterable core memory and read-only memory, and the Supernova SC

also has extremely fast semiconductor memory (in other respects the Supernova and Supernova SC are almost

identical, and unless explicitly stated otherwise, any reference in this manual to the "Supernova" applies to

both machines). With the console removed, a system can be operated as a hard-wired controller, whose

functions can be altered simply by substituting different read-only memories.

Each computer requires only 5 Y<f inches mounted in a standard 19-inch rack. Processor options include

real time clock, power failure detector, multiply-divide, and for the Supernova, memory allocation and

protection. Available peripheral equipment includes teletypewriter, high speed paper tape reader and punch,

card reader, line printer, incremental plotter, display, magnetic tape, magnetic disk, A-D and D-A conversion

equipment, and data communications equipment.

The central processor is the control unit for the entire system: it governs all peripheral in-out equipment,

performs all arithmetic, logical, and data handling operations, and sequences the program. It is connected to the

memory by a memory bus and to the peripheral equipment by an in-out bus. The processor handles words of

sixteen bits, which are stored in a memory with a maximum capacity of 32,768 words. The bits of a word are

numbered 0 to 15, left to right, as are the bits in the registers that handle the words. Registers that hold

addresses are fifteen bits, numbered according to the poSition of the address in a word, ie 1 to 15. Words are

used either as computer instructions in a program, as addresses, or as operands, ie data for the program. The

program can interpret an operand as a logical word, an address, a pair of 8-bit bytes, or a 16-digit signed or .,
unsigned binary number. The arithmetic instructions operate on fixed point binary numbers, either unsigned or

the equivalent signed numbers using twos complement conventions.

The processor performs a program by executing instructions retrieved from consecutive memory locations

as counted by the IS-bit program counter Pc. At the end of each instruction PC is incremented by one so that

the next instruction is normally taken from the next consecutive location. Sequential program flow is altered by

changing the contents of PC, either by incrementing it an extra time in a test skip instruction or by replacing its

contents with the value specified by a jump instruction. The other internal registers of importance to the pro­

grammer are four 16-bit accumulators, ACO to AC3. Data can be moved in either direction between any mem­

ory location and any accumulator. Although a word in memory can be incremented or decremented, all other

arithmetic and logical operations are performed on operands in the accumulators, with the result appearing in

an accumulator. Associated with the accumulators is the Carry flag, which indicates when a carry occurs out of

bit 0 in an arithmetic instruction. The left and right halves of any accumulator can be swapped, the contents of

any accumulator can be tested for a skip, and the 17-bit word contained in any accumulator combined with

Carry can be rotated right or left. An instruction that references memory can address AC2 or AC3 as an index

register, and transfers to and from peripheral devices are also made through the accumulators.

On the processor console is a set of data switches through which the operator can supply words and

addresses to the program. The console also has a number of control switches that allow the operator to start

1-1

:~:::-t @ --@--@--@ t:::
Nova Operator Console

Supernova Operator Console

Nova XOU and Nova 12()() Operator ('oll~olc

and stop the program, to deposit the contents of the data switches in any memory location or accumulator,

and to display the contents of any location or accumulator in the data lights. Thc Supernov,1 also has switches

for automatic loading when there is no program in mcmory ; this feature is optional on the Nova 1200 and

ROO. The address lights display thc contents of pc, the instruction lights on the Nova and Supernova display

the left half of the instruction word currcntly being executed. The rcmaining lights disrby the Carry nag and

a number of intcrna~ control conditions that arc useful in program debugging.

Any instruction that references memory may address AC2 or AC3 as an index register. Instructions that

move data to and from memory or the peripherals address a single accumulator as a source or destination of data

while addressing a memory location or an in-out device. But the arithmetic and logical instructions do not have

to reference memory; they simply address two accumulators, either or both of which may supply operands, and

one of which may receive the result. Thus memory is used for storage of the program and permanent data , but

1-2

all calculations are carried out in the accumulators and intermediate results are held right in them. This

reduces considerably the amount of data movement as compared with a single accumulator system, and thus

saves instructions. For example, in as trivial an operation as exchanging the contents of two memory locations

A and B, the multi-accumulator organization reduces the time by one third.

Exchange with

one accumulator

A~AC

AC~TEMP

B~AC

AC~A

TEMP~AC

AC~B

Exchange with

two accumulators

A~ACI

B~AC2

ACI~B

AC2~A

Since an arithmetic or logical instruction does not contain a memory address, there are many bits that

can be used for functions other than specifying the basic operation and the operands: the same instruction that

adds or subtracts can also shift the result or swap its halves, test the result and/or carry for a skip, and specify

whether or not the result shall actually be retained. Hence the percentage of time saved increases with the com­

plexity of the program.

And there are advantages other than speed. The system is much more convenient to use, programming is

much easier because the data being processed is much handier. The accumulators and their associated logic are

essentially like the pad one uses at one's desk, whereas the memory fulfills the function of a set of reference

books and a notebook kept on one's side. The results of address calculati0ns are immediately available for index

purposes to the memory reference instructions. One accumulator can be used for in-out data transmission with­

out disturbing others being used continually for computations. Complex software routines such as multiplica­

tion, division and floating point 'can be performed without constantly referencing memory.

The input-output hardware allows the program to address up to sixty-two devices. A single instruction can

transfer a word between an accumulator and a device and at the same time control the device operation.

Included in the in-out system are facilities for program interrupts and high speed data transfers. The interrupt

system facilitates processor control of the peripheral equipment by allowing any device to interrupt the normal

program flow on a priority basis. The processor acknowledges an interrupt request by storing PC in location 0

and executing the instruction addressed by the contents of location I. A high speed device, such as magnetic

tape or disk, can gain direct access to memory through a data channel without requiring the execution of any

instructions; the program simply pauses while access is made. The data channel logic allows the transfer of

data to or from memory, incremcnting of a memory word, and (in some machines) adding external data

to a word already in memory. The latter two features allow such functions as pulse height analysis and
signal averaging.

An option available only on the Supernova allows a number oT programs to share processor time. With

this option there are two modes of processor operation, supervisor and user. An executive program, which

runs in supervisor mode, allocates areas of memory to the various users, write-protects (if necessary) part of

any user's allocated area, schedules user programs and handles all input-output needs. Each user program is

mapped into and restricted to its allocated area; and it is illegal for a user to write in a protected area, use

more than two levels of indirect addressing, or give an in-out instruction. An attempt by a user to violate any

of these restrictions results in a transfer of control back to the executive.

1-3

1.1 INSTRUCTIONS

The types of functions performed by instructions in most computers are the following.

1. Move data between memory and the operating registers.

2. Modify memory, usually in conjunction with a test to determine whether to alter the program sequence.

3. Alter the program sequence by jumping to a new location.

4. 1>erform an arithmetic or logical operation.

5. Test the value of a word or flag, or one word against another, to determine whether to alter the program sequence.

6. Transfer data to or from the peripheral equipment.

In many computers the first and fourth and the third and fifth groups overlap. In the NOV A groups 1 and

3 are unique. But groups 4 and 5 coincide: every arithmetic and logical instruction can test the result for a skip.
The following lists the registers that must be specificd and the functions performed by the various instruc­

tion classes in the Nova computers.

Move data

Modify memory

Jump

Arithmetic and logic

Input-output

One memory location, one accumulator. Either may be the source of the operand,

the other is the destination.

One memory location. Increment or decrement contents; skip if result is zero.

One memory location from which the next instruction is taken. A return address

can be saved in AC3.

Two accumulators. One or both may be source of operand(s). Perform arithmetic

or logical function, with a bit-O carry affecting the Carry flag as indicated. If desired,

swap halves of answer or rotate it with Carry one place right or left, load result into

either accumulator, and skip on condition specified for result and/or Carry.

One accumulator, one 10 device. Transfer word in either direction between any

accumulator and one of up to three registers in up to sixty-two devices. Also oper­

ate device as specified.

Note: A subclass of these instructions executes no transfer and specifies only a

device. The instruction either operates the device or skips on a selected condition

in it.

Addressing. Instructions in the first three classes must address a memory location. Each instruction word

contains information for determining the effective address. which is the actual address used to fetch or store the

operand or alter program flow. The instruction specifies an 8-bit displacement which can directly address any

location in four groups of 256 locations each. The displacement can be an absolute address, ie it may be used

simply to address a location in page zero. the first 256 locations in memory. But it can also be taken as a signed

number that is used to compute an absolute address by adding it to a I5-bit base address supplied by an index

register. The instruction can select AC2 or AC3 as the index register; either of these accumulators can thus

be used as an ordinary index register to vary the address computed from a constant displacement, or as a base

register for a set of different displacements. The program can also select PC as the index register, so any instruc­

tion can address 256 words in its own vicinity (relative addressing).

Now the computed absolute (l5-bit) address can be the effective address. However, the instruction can use

it as an indirect address. ie it can specify a location to be used to retrieve another address. Bits 1-15 of the word

read from an indirectly addressed location can be the effective address or they can be another indirect address.

Automatic Incrementing and Decrementing. The program can make use of an automatic indexing feature

by indirectly addressing any memory location from 00020 to 00037 (addresses are always octal numbers).

Whenever one of these locations is specified by an indirect address, the processor retrieves its contents, incre-

1-4

ments or decrements the word retrieved, writes the altered word back into memory, and uses the altered word

as the new address, direct or indirect. If the word is taken from locations 00020-00027, it is incremented by

one; if taken from locations 00030-00037, it is decremented by one.

Instruction Format

There are four basic formats for instruction words. In all but the arithmetic and logical instructions, bit 0

is O. If bits 1 and 2 are also 0, bits 3 and 4 specify the function (jump or modify memory) and the rest of the

word supplies information for calculating the effective address. Bits 8-15 are the displacement, bits 6 and 7 spec­

ify the index register if any, and bit 5 indicates the type of addressing, direct or indirect.

ADDRESS TYPE
\

o o o FUNCTION I \ INDEX DISPLACEMENT

o 23 456 78 15

JUMP AND MODIFY MEMORY FORMAT

If bits 1 and 2 differ they specify a move data function. Bits 3 and 4 address an accumulator, the rest of

the word is as above.

o

FUNCTION
01 OR 10

23

ADDRESS TYPE

AC
ADDRESS

456

INDEX DISPLACEMENT

78 15

MOVE DATA FORMAT

Bits 1 and 2 both being 1 indicate an in-out instruction. In this case the function is specified by bits 5-9,

of which bits 5-7 indicate the direction of transfer and select one of three registers in the device. The transfer

takes place between the accumulator addressed by bits 3 and 4 and the device selected by bits 10-15. Bits 8

o
o 23

AC
ADDRESS

45

FUNCTION
TRANSFER CONTROL DEVICE CODE

78 910 15

IN·OUT FORMAT

and 9 of the function part specify an action to be performed, such as starting the device. If bits 5-7 are all

o or all 1, there is no transfer and bits 8 and 9 specify a control or skip function respectively.

If bit 0 is 1, bits 5~ 7 specify an arithmetic or logical function. One operand is taken from the accumulator

addressed by bits 1 and 2; a second operand, if any, from that addressed by bits 3 and 4. The rest of the word

specifies the other functions that can be performed, including whether or not the result is to be loaded into the

destination accumulator.

o

AC
SOURCE

ADDRESS

AC
DESTINATION

ADDRESS

23 45

FUNCTION

78

SECONDARY FUNCTIONS
ROTATE, SWAP, CARRY, NO LOAD, SKIP

ARITHMETIC AND LOGIC FORMAT

15

1-5

The Nova assembly programs recognize a number of mnemonics and other initial symbols that facilitate
constructing complete instruction words and organizing them into a program [Appendix DJ. In particular there

arc three-letter mnemonics for the 2- and 3-bit functions; these mnemonics also represent whatever bits are con­
stant for the class the instruction is in. Eg the modify memory mnemonic

ISZ

assembles as 010000, the arithmetic mnemonic

SUB

assembles as 102400.

NOTE

Throughout this manual all numbers representing instruction words, register contents, codes and

addresses are always octal, and any numbers appearing in program examples are octal unless other­

wise specified. Computer words are represented by six octal digits wherein the left one is always 0 or 1

representing the value of bit O. The ordinary use of numbers in the text to specify quantities of

objects, such as words or locations, to count steps in an operation, or to specify word or byte

lengths, bit positions, etc. employs standard decimal notation.

Characters are suffixed to the basic mnemonic to specify the control part of an 10 function and most of the

secondary functions in the arithmetic and logical class. The displacement and addresses of accumulators and

index registers are separated from the mnemonic by a space and from each other by commas. Anything written

at the right of a semicolon in a program listing is commentary that explains the program but is not part of it.

1.2 MEMORY

From the addressing point of view, the entire memory is a set of contiguous locations whose addresses
range from zero to a maximum dependent upon the capacity of the particular installation. In a system with the
greatest possible capacity, the largest address is octal 77777, decimal 32,767. But the memory is actually made
up of a number of core or semiconductor memory modules, each having a capacity of 1024, 2048 or 4096

words, and can also contain read-only memory modules. The latter may be used for storage of pure (unalter­
able) programs and constants; they usually contain 1024 words but may be of any size. An address supplied
by the program is actually decoded in two parts, the more significant to select a memory module and the
less significant to select a location within that module, but this need not concern the programmer. From the
point of view of the programmer, memory module size is irrelevant, and the read-only memory differs from

the others only in that its contents cannot be altered electrically. Common arithmetic and in-out routines arc
available in standard read-only memory modules; others are available on a custom basis.

The basic processor cycle time of the Nova is 2.6 microseconds with a core memory, 2.4 microseconds
with a read-only memory. The Nova 1200 and 800 have cycle times of 1200 and 800 nanoseconds respectively.

The Supernova cycle time is 800 nanoseconds with core, but only 300 nanoseconds with semiconductor or

read-only memory.

Memory Restrictions. The use of certain locations is defined by the hardware.

0-1

20-27

30-37
1-6

Program interrupt locations

Autoincrementing locations

Autodecrementing locations

Chapter II
Central Processor

This chapter describes all computer instructions but does not discuss the special effects of the in-out
instructions when they address specific peripheral devices. The chapter treats the memory reference instructions
and the arithmetic and logical instructions in detail, presents a general discussion of input-output, and
describes the effects of the in-out instructions on processor elements, including the program interrupt, the real
time clock, multiply-divide, and the memory allocation and protection option. Effects of in-out instructions on
particular peripheral devices are discussed with the devices in the remaining chapters.

In the description of each instruction, the m\1emonic and name are at the top, the format is in a box below
them. The mnemonic assembles to the word in the box, where bits in those parts of the word represented by
letters assemble as as. The letters indicate portions that must be added to the mnemonic to produce a

complete instruction word.
Instruction execution times depend both on the processor and the type of memory; they are therefore given

in a table at the end of Appendix D.

Twos Complement Conventions. The signed numbers used as displacements in referencing memory and as

operands for the arithmetic instructions utilize the twos complement representation for negatives. In a word or

byte used as a signed number, the leftmost bit represents the sign, a for positive, 1 for negative. In a positive

number the remaining bits are the magnitude in ordinary binary notation. The negative of a number is obtained

by taking its twos complement, with the sign bit included in the operation as though it were a more significant

magnitude bit. If x is an n-digit binary number, its twos complement is 2"-x, and its ones complement is

(2"-1)-x, or equivalently (2n-x)-1. Subtracting a number from 2n-1 (ie, from allIs) is equivalent to perform­

ing the logical complement, ie changing all as to I s and all I s to as. Therefore, to form the twos complement

one takes the logical complement - usually referred to merely as the complement - of the entire word includ­

ing the sign, and adds 1 to the result. A displacement of 89 and its negative would look like this in bits 8-15 of

an instruction word where bit 8 is the sign.

+89 10 + 131 8 01 all 0011
8 IS

-89 10 = -131 8 10 100 1111
8 IS

The same numbers used as operands in the accumulators would look like this.

+89 10 + 131 8 I a 000 000 00 1 all 00 11
o IS

-89 10 = -131 8 = 11 111 111 110 100 1111
o IS

2-1

Bit 0 is now the sign and bits 1-8 are not significant. It is thus evident that expanding an integer into a full

word is accomplished simply by filling out the word to the left with the sign.

Zero is represented by a number containing all Os; complementing this number produces all Is, and add­

ing 1 to that produces all Os again. So there is only one zero representation and its sign is positive. Moreover

there is one more negative number than there are nonzero positive numbers. Hence there are 256 displace­

ments in an octal range - 200 to + 177. (The most negative number has a 1 in only the sign position.)

2.1 MEMORY REFERENCE INSTRUCTIONS

Bits 5-15 have the same format in every memory reference instruction whether the effective address is

used for storage or retrieval of an operand or to alter program flow. Bit 5 is the indirect bit, bits 6 and 7 are the

I
5 6

x
I 7 8 9

D
I

10 11 12 13 14 15

index bits, and bits 8-15 are the displacement. The effective address E of the instruction depends on the values

of I, X, and D. If X is 00, D addresses one of the first 256 memory locations, ie D is a memory adqress in the

range 00000-00377. This group of locations is referred to as page zero.

If X is nonzero, D is a displacement that is used to produce a memory address by adding it to the contents

of the register specified by X. The displacement is a signed binary integer in twos complement notation. Bit 8

is the sign (0 positive, 1 negative), and the integer is in the octal range - 200 to + 177 (decimal -128 to

+ 127). If X is 01, the instruction addresses a location relative to its own position, ie D is added to the address

in PC, which is the address of the instruction being executed. This is referred to as relative addressing. If X is

10 or 11 respectively, it selects AC2 or AC3 as a base register to which D is added.

X

00

01

10

11

Derivation of address

Page zero addressing. D is an address in

the range 00000-00377.

Relative addressing. D is a signed displace­

ment (- 200 to + 177) that is added to the

address in PC.

Base register addressing. D is a signed dis­

placement (- 200 to + 177) that is added

to the address in AC2.

Base register addressing. D is a signed dis­

placement (- 200 to + 177) that is added

to the address in AC3.

If I is 0, addressing is direct, and the address already determined from X and D is the effective address

used in the execution of the instruction. Thus a memory reference instruction can directly address 1024 Ioea·

tions: 256 in page zero, and three sets of 256 in the octal range 200 less than to 177 greater than the address in

PC, AC2 and AC3. If I is 1, addressing is indirect, and the processor retrieves another address from the location.

2-2

I A
15

specified by the address already determined. In this new word bit a is the indirect bit: bits 1-15 are the effec­

tiveaddress if bit a is 0; otherwise they specify a location for yet another level of address retrieval. This

process continues until some referenced location is found with a 0 in bit 0; bits 1-15 of this location are the

effective address E.
If at any level in the effective address calculation an address word is fetched from locations 00020-00037,

it is automatically incremented or decremented by one, and the new value is both written back in memory and

used either as the effective address or for the next step in the calculation depending on whether bit 0 is 0 or 1.
Addresses taken from locations 00020-00027 are incremented, those from locations 00030-00037 are

decremented.

Specific examples illustrating the various addressing methods are given on the next two pages.

The set of all addresses is cyclic with respect to the operations performed in an effec.tive address calcula­

tion;regardless of the true sum or difference in any step, only the low order fifteen bits are used as an address.

Hence the next address beyond 77777 is 00000, the next below 00000 is 77777.

CAUTION

Incrementing 77777 or decrementing 00000 changes the state of the indirect bit in

the address word stored back in memory.

Programming Conventions. All memory reference functions are represented by three-letter mnemonics; eg

ISZ

assembles as 010000. For addressing page zero the displacement is simply an address. Thus

ISZ 344

assembles as 010344. When this word is executed as an instruction it increments the word in location 00344 and

skips the next instruction if the incremented word is zero. For relative or base register addressing the displace­

ment is a twos complement integer.

ISZ -34,2

assembles as 011344 (0 001 001 011 100 100), in which bits 8-15 have the same configuration as in the pre­

vious example, but this time the instruction specifies a location whose address is 348 less than the address in

AC2.
The initial symbol @ preceding the displacement places a 1 in bit 5 to produce indirect addressing. The

examples given above use direct addressing, but

ISZ @-34,2

assembles as 013344 (0001 011 011 100 100), and produces indirect addressing.

Far memory reference with an accumulator, the ACaddressprecedes the memory address information and
is terminated bya comma. Eg

LOA 3,-34,2

2-3

assembles as 035344 (0 011 101 011 100 100).

The assembler also allows the following addressing conventions. A period represents the current address,

ie the address of the location containing the instruction being executed. Thus

LDA 3,.+6

is equivalent to

LDA 3,6,1

A colon following a symbol indicates that it is a symbolic location name. _

A: ADD 2,3

indicates that the location that contains ADD 2,3 may be addressed symbolically as A. The assembler assigns

a IS-bit value to the label A. When A is used in a statement such as

LDA 2,A+6-

the treatment depends on the value of the expression in which A appears. In this case if A + 6<00400 its low

order eight bits are simply placed in the displacement part of the instruction word and X is set to 00. If A + 6 is

within range of PC, the indicated location is represented as a displacement relative to PC. Otherwise the assem­

bler indicates an error as location A + 6 cannot be directly addressed by the instruction.
Addressing Examples. Suppose the following registers contain the numbers listed.

Register

6
12
15
17
23

AC3

Now if the program executes the instruction

LDA 1,6

Contents

100015
000035
000017
000023
000011
000015

which loads AC1 from location 6, ACl receives the number 100015. AC1 holds the same number after

LDA 1,-7,3

is executed (effective address = C(AC3) -7 = 15 -7 = 6). But

LDA 1,(q:6

which indirectly addresses location 6, which in turn indirectly addresses location 15, which directly addresses

location 17, loads 23 into the accumulator. ACI also contains 23 following execution of

LDA 1,@15

On the other hand, AC1 contains 17 after

LDA 1,15

2-4

or

LOA 1,0,3

is executed. Now

LOA 1,6,3

does not address location 6; it addresses 23 (C(AC3) + 6 = 15 + 6 = 23) and thus loads 11 into ACl. Note

that addressing an autoincrementing location directly does not alter its contents; AC 1 simply receives its con­

tents as an operand. AC 1 also receives 11 from

LDA 1,23

or

LDA I, (a 17

But giving

LOA \.«123

or

LOA I ,(a 6,3

replaces the contents of location 23 with the number 12 and loads 35 (the contents of location 12) into AC l.

Move Data Instructions

These two instructions move data between memory and the accumulators. In the descriptions of all

memory reference instructions, E represents the effective address.

LDA Load Accumulator

o o
o 2 3

A
I 4

J

5 6

x
I 7 8 9 10

D
I

11 12 13 14 15

Load the contents of location E into accumulator A. The contents of E are unaffected, the original contents

of A are lost.

STA Store Accumulator

o 1 o
o 2 3

A
I 4

J
5 6

x
I 7 8 9 10

D
11 12 13 14 15

Store the contents of accumulator A in location E. The contents of A are unaffected, the original contents

of E are lost.

2-5

Modify Memory Instructions

These two instructions alter A memory iocati6nand test the result for a 'skip. They are used to count

loop iterations or successively modify a wor<l tor a series of operations.

ISZ I,DcremeRt and Skip if Zero

I D o o o
Q 2 3 4 5 6

x
I 7 8 9 I 10 11

[)

12 13
I I

14 '1'5
I

Add 1 to the contents of location E and place the result back in E. Skip the next instruction in sequence if

the result is ZeTO.

DSZ Decrementand Skip if Zero

o o o I I
o 2 3 4 6

x
I 7 8 9

D
10 11 12 13 14 15

Subtract 1 from the contents of location E and place the result back in E. Skip the next instruction in sequeoce
if the result is zero.

Consider a block of thirty words in locations 2000-2035 that we wish .to move to locations 5150-5205

but in reverse ;order. We could autoincrement through one set, autodecrement through ,the other, and decre­

ment a control 'count to determine when the block transfer is complete.

IDA O;CNT ;Set up autoincrement location
STA 0,21

IDA O,CNT+l ;Set up autodecrement location
STA 0,35

L00P: LDA OJ@21 ;Getaword
STA 0,@35 ;Store it
DSZ CNT+2 ;Count down word count
JMP LOOP ;lump back fOf next word

;Skip to here when count is zero

2-6

eNT: 001777

005206

000036

; 1 before source block

; 1 after destination block

;Word count: 3010 = 368

Of course we could just as well put 177742 (- 36) in CNT + 2 and replace the DSZ with an ISZ.

Jump Instructions

These two instructions allow the programmer to alter the normal program sequence by jumping to an

arbitrary location. They are especially useful for calling and returning from subroutines.

JMP Jump

o o o o o I
o 2 3 4 5 6

x
I 7 8 9 10 11

D
I

12 I 13 14 15

Load E into Pc. Take the next instruction from location E and continue sequential operation from there.

JSR Jump to Subroutine

o o o o I
o 2 3 4 5 6

x
I 7 8 9 10 11

D
I

12 13 14 15

Load an address one greater than that in PC into AC3 (hence AC3 receives the address of the location fol­

lowing the JSR instruction). Load E into Pc. Take the next instruction from location E and continue sequen­

tial operation from there. The originai contents of AC3 are lost.

NOTE: The effective address calculation is completed before PC + 1 is loaded into AC3. Thus a JSR

that specifies AC3 as a base register does execute properly; ie the previous contents of AC3 are used in the

address calculation.

The usual procedure for calling a subroutine is to give a JSR whose effective address is the starting loca­

tion of the routine. Since PC + I is saved in AC3, a subsequent return can be made to the location following the

JSR simply by giving a JMP 0,3. Note also that PC + I is saved in an accumulator. Hence the subroutine can

be reentrant (pure), ie memory is not modified by the act of calling it. If we wish to use AC3 in the subrou­

tine, we can store the return address in a convenient place in page zero, say location B, with an STA 3,B
and then return with a JMP ~ B.

A convenient way to handle a number of subroutines that are called frequently is to store their starting

addresses in page zero. Suppose we have subroutines starting at locations U, Y, W, X, If we store these

15-bit addresses at locations UC, ye, Wc, XC, ... respectively in page zero, then we can call a given rou­

tine, say the one beginning at X, simply by giving a JSR ~Xc.
2-7

Consider a print subroutine that we wish to use to output fifty words beginning at TAB. The routine

begins at PR T, which address is stored in PR TC in page zero. Our main program would contain this.

JSR @PRTC

;Return here

We use AC2 as a base register for counting through the table and ACO to output the data. The starting

address of the table is in TAB 1, which is in the vicinity of PR T. The subroutine might look something like this.

PRT:

TABl:

CNT:

LDA

LDA

ISZ

DSZ

JMP

JMP

TAB

62

2,TABl

0,~,2

PRT+l

CNT

PRT+1

0,3

;Set up AC2 as base for table

;Load word for output into ACO

;10 part of routine here

;Increment displacement in load instruGtion

,;Done yet?

;No, get next word

;Yes, return by AC3

;628 =5010

This routine is incomplete as it destroys itself; to be used again the displacement in location PR T + 1 must

be changed back to zero. The routine would be faster if we replaced the ISZ with an arithmetic instruction

that increments AC2, thus using AC2 as an index register and leaving the LDA displacement alone (it would

also be complete as AC2 is set up each time the subroutine is called). It would be even faster if we deleted

the ISZ, stored the address TAB-l in an auto incrementing location, say 23, and loaded ACO with

LDA 0,@23

Argument Passing. Suppose we have an arithmetic subroutine that operates on arguments in ACO and

AC I, leaving the result in AC I. The subroutine call looks like this:

JSR VSl

and the subroutine looks like this:

VSl:

JMP 0,3

;Call with arguments in ACO, ACI

; Return here with result in AC 1

;Arithmetic operations

;Return to call + 1

In the above the program would have to load the accumulators before calling the routine. Now it is

often convenient for the program simply to supply the arguments (or the addresses of the locations that con­

tain them) along with the call and have the subroutine take care of the data transfers. With this version the

program gives the arguments in the two memory locations immediately following the JSR,

JSR VS2

2-8

;Argument 1

;Argument 2

;Return here with result in ACI

and the return is made to the location following the second argument with the result in AC 1.

VS2: LOA

LOA

JMP

0,0,3
1,1,3

2,3

;Pick up argument 1

;Pick up argument 2

;Return to call + 3

This version is called with the addresses of the arguments following the JSR; otherwise it is the same as

version 2.

VS3:

VS4:

JSR VS3

LOA

LOA

JMP

0,@O,3
1,@1,3

2,3

;Address of argument 1

;Address of argument 2

;Pick up argument 1

;Pick up argument 2

;Return to call + 3

The next version is the same as version 3 except that the result replaces the second argument in memory.

JSR VS4

LOA 0,@O,3
LOA 1,@1,3

STA

JMP

1,@1,3

2,3

;Address of argument 1

;Address of argument 2 and result

;Pick up arguments

;Store result

The final version is the same as the fourth but ACO and AC I are not disturbed by its execution. The

call is exactly the same as for VS4.

VS5: STA

STA

LOA

O,TMO

I,TMI

0,@Q,3
LOA 1,@1,3

;Save ACs

;Pick up arguments

2-9

STA 1,@1,3 ;Store result

LDA O,TMO ;Restore ACs

LDA I,TMl
JMP 2,3

TMO: 0 ;Temporary storage for ACs

TMl: 0

2.2 ARITHMETIC AND LOGICAL INSTRUCTIONS

To perform logical operations the hardware interprets operands as logical words. For arithmetic opera­
tions, operands are treated as 16-bit unsigned numbers, with a range of 0 to 216_1. The program however

can interpret them as signed numbers in twos complement notation as described at the beginning of this chap­

ter. It is a property of twos complement arithmetic that operations on signed numbers using twos comple­
ment conventions are identical to operations on unsigned numbers; in other words the hardware simply treats

the sign as a more significant magnitude bit. Suppose an accumulator contains this binary configuration:

\1 000 000 00 1 011 00 1\
o 15

As an unsigned number this would be equivalent to

100131 8 32857 10

whereas interpreted as a signed number using twos complement notation it would be

-77647 8 -32679 10

Insofar as processor operations are concerned, it makes no difference which way the programmer interprets

the contents of the accumulators provided only that he is consistent.

Numbers in twos complement notation are symmetrical in magnitude about a single zero representation

so all even numbers both positive and negative end in 0, all odd numbers in 1 (a number all 1 s represents -1).

If ones complements were used for negatives, one could read a negative number by attaching significance to

the Os instead of the 1 s. In twos complement notation each negative number is one greater than the comple­

ment of the positive number of the same magnitude, so one can read a negative number by attaching signi­

ficance to the rightmost 1 and attaching significance to the Os at the left of it (the negative number of largest

magnitude has a 1 in only the sign position). Assuming the binary point to be stationary, Is may be discarded

at the left in a negative integer, just as leading Os may be dropped in a positive integer; equivalently an

integer can be extended to the left by prefixing Is or Os respectively (ie by prefixing the sign). In a negative

(proper) fraction, Os may be discarded at the right; as long as only Os are discarded, the number remains in

twos complement form because it still has a 1 that possesses significance; but if a portion including the right­

most 1 is discarded, the remaining part of the fraction is now a ones complement. Truncation of a negative

number thus increases its absolute value.

The computer does not keep track of a binary point; the programmer must adopt a point convention

and shift the magnitude of the result to conform to the convention used. Two common conventions are to

regard a number as an integer (binary point at the right) or as a proper fraction (binary point at the left);
2-10

in these two cases the range of signed numbers represented by a single word is - 2 15 to 215 - 1 or -1 to
1-2-15 .

Since each bit position represents a binary order of magnitude, shifting a number is equivalent to mul­

tiplication by a power of 2, provided of course that the binary point is assumed stationary. Shifting one place

to the left multiplies the number by 2. A 0 should be entered at the right, and no information is lost if the

sign bit remains the same - a change in the sign indicates that a bit of significance has been shifted out.

Shifting one place to the right divides by 2. Truncation occurs at the right, and a bit equal to the sign must

be entered at the left.
Associated with the accumulators is the Carry flag, which is used to detect a carry out of bit 0 in an

arithmetic operation. The circumstances that generate a carry out of the most significant bit are obvious

when dealing with unsigned numbers. If addition or incrementing increases a number beyond 216 - 1, a carry

is produced. In subtraction the condition is the same if instead of subtracting we add the complement of

the subtrahend and add 1 to the result (subtraction is performed by adding the twos complement). In terms

of the original operands the subtraction A - B produces a carry if A;?B. Forming the twos complement of

zero generates a carry, for complementing zero produces a word containing all 1 s, and adding I to that pro­

duces all Os again plus a carry. The statement of the carry conditions in terms of signed numbers is more

complex, but they are always exactly equivalent to the conditions given above if the numbers are simply inter­

preted as unsigned. In any event the complete conditions that produce a carry for numbers signed or unsigned

are given in the instruction descriptions.

Arithmetic and Logical Processing. The logical organization of the arithmetic unit is illustrated below.

Each instruction specifies one or two accumulators to supply operands to the function generator, which per­

forms the function specified by the instruction. The function generator also produces a carry bit whose value

depends upon three quantities: a base value specified by the instruction, the function performed, and the

result obtained. The base value may be derived from the Carry flag, or the instruction may specify an inde­

pendent value.
17 BITS

I ,
FUNCTION SHIFTER

GENERATOR

I BIT 16 BITS 16 BITS 17 BITS

ICARRY I I ACCUMULATORS I SKIP SENSOR

I BIT 16 BITS

17 BITS

LOAD/NO LOAD

ORGANIZATION OF ARITHMETIC UNIT

The 17-bit output of the function generator, comprising the carry bit and the 16~bit function result, then

goes to the shifter. Here the 17-bit result can be rotated one place right or left, or the two 8-bit halves of

the 16-bit function result can be swapped without affecting the carry bit. The 17-bit shifter output can then

be tested for a skip; the skip sensor can test whether the carry bit or the rest of the 17-bit word is or is not

equal to zero. Finally the 17-bit shifted word can be loaded into Carry undone of the accumulators selected

by the instruction. Note however that loading is not necessary: an instruction can perform a complicated

arithmetic and shifting operation and test the result for a skip without affecting Carry or any accumulator.

2-11

Carry, Shift and Skip Fuuctious

An instruction that has a 1 in bit 0 performs one of eight arithmetic and logical functions as specified

by bits 5-7 of the instruction word. The function, which may be anything from a simple move to a subtrac­

tion, always uses the contents of the accumulator specified by bits 1 and 2; and if a second operand is required,

it comes from the accumulator addressed by bits 3 and 4.

AC AC
NO 1 SOURCE DESTINATION FUNCTION SHIFT CARRY SKIP

ADDRESS ADDRESS LOAD

o 2 3 I 4 5 6 I 7 8 9 10 11 12 13 14 15

The instruction also supplies a carry bit to the shifter with the result. Bits 10 and 11 specify a base

value to be used in determining the carry bit. The instruction supplies either this value or its complement

depending upon both the function being performed and the result it generates. The mnemonics and bit con­

figurations and the base values they select are as follows.

Mnemonic Bits 10-11 Base value for carry bit

00 Current state of Carry

Z 01 Zero

0 10 One

C \I Complement of current state of Carry

The three logical functions simply supply the listed values as the carry bit to the shifter. The five arithme­

tic functions supply the complement of the base value if the operation produces a carry out of bit 0; other­

wise they supply the value given. The carry bit can be used in conjunction with the sign of the result to

detect overflow in operations on signed numbers. But its primary use is as a carry out of the most signifi­

cant bit in operations on unsigned numbers, such as the lower order parts in muitiple precision arithmetic.

The 17-bit word consisting of the carry bit and the 16-bit result is operated on by the shifter as speci­
fied by bits 8 and 9.

Mnemonic

L

R

S

2-12

Bits 8-9

00

01

10

11

Shift operation

None

Left rotate one place. Bit 0 is rotated into the carry position, the

carry bit into bit 15.

~_' ______ O_-15 ______ ~~

Right rotate one place. Bit 15 is rotated into the carry position,

the carry bit into bit o.

~~ _____ O_-15 ______ ~~

Swap the halves of the 16-bit result. The carry bit is not affected.

c

c

The 17-bit output of the shifter is loaded into Carry and the accumulator addressed by instruction bits

3 and 4 provided bit 12 is O. A 1 programmed in bit 12 inhibits the loading and prevents the instruction

from affecting Carry or the accumulator. Note that it is the shifted result that is loaded: AC receives the

result of the function and Carry the carry bit only if bits 8 and 9 are O.

The shifter output is also tested for a skip according to the condition specified by bits 13-15. The proc­

essor skips the next instruction if the specified condition is satisfied.

Bit

13

14

15

Effect of a 1 in the bit

Selects the condition that the low order 16 bits of the

shifter output are all O.

Selects the condition that the bit in the carry position

of the shifter output is O.

Inverts the conditions selected by bits 13 and 14. In

other words a 1 in bit 15 causes 1 s in the other bits

to select nonzero conditions.

The combined effects of bits 13-15 taken together and the mnemonics for the various bit configurations are

as follows.

Mnemonic

SKP

SZC

SNC

SZR

SNR

SEZ

SBN

Bits 13-15

o

2

3

4

5

6

7

Never Skip

Always Skip

Skip function

Skip on Zero Carry

Skip on Nonzero Carry

Skip on Zero Result

Skip on Nonzero Result

Skip if Either Carry or Result is Zero

Skip if Both Carry and Result are Nonzero

Remember that the test is made on the shifter output. Thus if the result of an addition is shifted left, SZC

and SNC actually test the sign of the sum. Note also that the test is made whether or not the shifter output

is loaded. The program can therefore test the result of an arithmetic function without disturbing the orig­

inal operands or Carry.

Programming Conventions. The instruction

ADD 1,2 111 0111 0111 01001001010001
2-13

which assembles as 133000, adds the numbers in ACl and AC2, loads the unshifted result in AC2, and com­

plements Carry if there is a carry out of bit O. Other carry and shift operations are selected simply by append­

ing the appropriate letters to the function mnemonic, but the carry letter (if any) must appear first. Thus to
generate a carry bit of 1 .on a carry (0 otherwise) and load Carry and AC2 with the 17-bit result shifted

left we give

ADDZL 1,2 11101110\11 01011011010001
which assembles as 133120. This instruction places the sign of the sum in Carry, the rest of the sum in bits

0-14 of AC2, and a 1 or a 0 in bit 15 depending on whether or not there is a carry out of the sign bit. To use

the present state of Carry instead of 0 as the basis for adjusting bit 15, but otherwise produce the same effect, give

ADDL 1,2

which assembles as 133100. The instruction

ADDL 1,2,SZC 11101110111 01011001010101
assembles as 133102, and affects Carry and AC2 in the same manner as the preceding instruction, but also

causes the processor to skip the next instruction if the sign of the sum is positive.

The initial symbol # following the expanded function mnemonic places a 1 in bit 12 to prevent the loading

of the shifter output. Hence we can skip the next instruction on a positive sum without affecting AC2 or Carry by
giving

ADDL# 1,2,SZC 11\0111 0111 0101 \00111010 I
which assembles as 133-112.

Arithmetic and Logical Functions

The eight functions are selected by bits 5-7 of the instruction word. For convenience the source and des­

tination accumulators addressed by the Sand D parts of the instruction are referred to as ACS and ACD.

COM Comprement

1 S
J

o 2 3

D
I 4

o
5

o
6

o SH C N SK
J J

7 8 9 10 11 12 13 14 15

Place the (logical) complement of the word from ACS and place the carry bit specified by C in the shifter. Perform the
shift operation specified by SR. Load the shifter output in Carry and ACD unless N is 1. Skip the next instruction if the
shifter output satisfies the condition specified by SK.

EXAMPLE. Suppose we wish to test ACI for the unsigned integer 216 - 1 (177777, signed - 1). The
instruction

COM# 1,1,SZR
2-14

skips the next instruction if AC1 contains all Is. The result is not loaded so we could specify any accumulator

as the destination, eg

COM#

NEG Negate

1 S
o .2 3

1,3,SZR

D
I 4

o o
6

SH c N SK
7 8 9 10 11 12 13 14 15

Place the twos complement of the number from ACS into the shifter. If ACS contains zero, supply the complement of

the value specified by C as the carry bit; otherwise supply the specified value. Perform the shift operation specified by

SH. Load the shifter output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the

condition specified by SK.

MOV Move

1 S
I

o 2 3

D
I 4

o
5

o
6 7

SH C N SK
I I

8 9 10 11 12 13 14 15

Place the contents of ACS and the carry bit specified by C in the shifter. Perform the shift operation specified by

SR. Load the shifter output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output sat­

isfies the condition specified by SK.

EXAMPLES. The test for a zero word in AC1 is any of these:

MOV 1,1,SZR MOV 1,1,SNR MOV# 1,1,SZR

Suppose we wish to divide the number in AC2 by 2.

MOVL# 2,2,SZC

MOVOR 2,2,SKP

MOVZR 2,2

INC Increment

S
o 2 3

D
I

;Is it positive?

;No, put in a 1 and skip

;Yes, put in a 0

o SH
I

4 5 6 7 8 9

! ''';1

C
I

10 11

MOV# 1,1,SNR

N SK
12 13 14 15

Add 1 to the number from ACS and place the result in the shifter. If ACS contains 216 -1 (signed -I) sup­

ply the complement of the value specified by C as the carry bit; otherwise supply the specified value. Per­

form the shift operation specified by SR. Load the shifter output in Carry and ACD unless N is 1. Skip the

next instruction if the shifter output satisfies the condition specified by SK.
2-15

ADC Add Complement
I (

I'
I

S D 0 /0 SH C N SK
/1 r I I

0 2 3, 4 5 6 7 8 9 10 11 12 13 14 15

Add the (1ogic~1) complement of the m;~ber from ACS to the number from ACD, and place the result in the shifter.
If ACD > ACS (unsigned), supply the complement of the value specified by C as the carry bit; otherwise supply
the specified value. Perform the shift operation specified by SH. Load the shifter output in Carry and ACD unless
N is 1. Skip the next instruction if the shifter output satisfies the condition specified by SK.

NOTE: For signed numbers the carry condition is that the signs of the operands are the same and ACD is

the greater, or the signs differ and ACD is negative.
This instruction is often used to process high order words in multiple precision subtraction, wherein a neg­

ative is usually a ones complement instead of a twos complement. The overflow condition for signed numbers

using ones complement conventions is the same as that given for SUB below.

SUB Subtract

S D o 1 SH c N SK
o 2 3 I, 4

I
5 6 7 8 9 10 11 12 13 14 15

Subtract by adding the twos complement of the number from ACS to the number from ACD, and place
the result in the shifter. If ACD,?-ACS (unsigned), supply the complement of the value specified by C as the

carry bit; otherwise supply the specified value. Perform the shift operation specified by SH. Load the shifter

output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the condition

specified by SK.

NOTE: For signed numbers the carry condition is that the signs of the operands are the same and ACD,?­

ACS, or the signs differ and ACD is negative.

EXAMPLES. This instruction can be used to clear an accumulator by subtracting it from itself.

SUB 2,2

clears AC2 and complements Carry,

SUBO 2,2

clears both AC2 and Carry.

SUB is also useful for comparing quantities, eg

SUB# 2,3,SNR

skips if AC2 and AC3 are unequal but does not affect either accumulator.

2-16

ADD Add

S
o 2 3

D
I

o
4 5 (, 7

SH c N SK
8 9 10 II 12 13 14 15

Add the number from ACS to the number from ACD, and place the result in the shifter. If the unsigned

sum is ~216, supply the complement of the value specified by C as the carry bit; otherwise supply the specified

value. Perform the shift operation specified by SR. Load the shifter Ol'tput in Carry and ACD unless N is 1.

Skip the next instruction if the shifter output satisfies the condition specified by SK.

NOTE: For signed numbers the carry condition is that both summands are negative, or their signs differ and

their magnitudes are equal or the positive one is the greater in magnitude.

AND And

o

S
I

'2 3

D
I 4 5

1 -­
(, I 7

SH C N SK
I I

8 9 10 11 12 13 14 15

Place the logical AND function of the word from ACS and the word from ACD in the shifter. Supply the

value specified by C as the carry bit. Perform the shift operation specified by SR. Load the shifter output in

Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the condition specified
by SK.

This instruction operates bitwise on a pair of words, so it actually performs sixteen logical operations

simultaneously. A given bit of the result is 1 if the corresponding bits of both operands are 1; otherwise the
reSUlting bit is O.

ACSj ACDj Resulti

0 0 ° ° 1 ° 1 0 ° 1 1 1

Programming Examples

Together ADC and SUB allow the program to compare the magnitudes of unsigned numbers in every
way. Eg

SUBZ# 1,O,SZC

skips if ACO<ACl, whereas,

ADCZ# 1,O,SZC

skips if ACO~ACI.

It is well known that the nth perfect square is the sum of the first n odd numbers. We can therefore find

the largest integer contained in the square root of an integer held in ACO by successively subtracting odd num­

bers in order from ACO until overflow occurs, ie until ACO becomes negative. The desired answer is the number

of odd numbers successfully subtracted before a carry occurs. The routine is called by a JSR with effective
address SQRT.

2-17

SQRT: SUBO 1,1 ;Clear AC 1 and Carry

MOVOL 1,2 ;AC2 gets 1 + twice ACI (2n + 1)

SUBZ 2,0,SNC ;Subtract next odd number; still positive?

IMP 0,3 ;No, exit with 11 one less than number of odd numbers tried

INC 1,1 ;Yes, increment 11

JMP SQRT+l ;and try next odd number

The instruction set has only one logical function of two variables, but the inclusive and exclusive OR func­

tions can be performed by very simple routines. In an inclusive OR a bit of the result is 1 if either of the cor­

responding operand bits is 1, otherwise it is 0. The algorithm for full words is

AA ___ B+B=AvB

Taking the arguments as single bits, if B is 1, A A --- B is ° regardless of the state of A, and the expres­

sion on the right is L If B is 0, the expression is 1 or ° as A is 1 or 0. In no case .are A A --- Band B both 1,

so the full word addition generates no carries. This sequence places the inclusive OR of ACO and ACl in ACI

(ACO = B, ACI = A).

COM

AND

ADC

0,0

0,1

0,1

;,...,B
;---B A A in ACI
;------B + ___ BA A = B + ___ B A A in ACI

In an exclusive OR a bit of the result is 1 if the corresponding operand bits are different, otherwise it is 0.

This is equivalent to the sum if carries from one bit position to the next are ignored. Now a carry out of the ith

position is equ~l to twice the value of a 1 in the ith position, and a carry is generated only if the ith bits of both

summands are 1, provided we compensate for any carry into the ith position. The algorithm is therefore.

A B = A + B - 2(A A B)

This sequence places the exclusive OR of ACO and AC1 in AC1, destroying the contents of AC2 and Carry

in the process (ACO = B,ACI = A).

MOV 1,2 ;Move A to AC2

ANDZL 0,2 ;2(A A B) in AC2

ADD 0,1 ;A + B

SUB 2,1 ;A + B - 2(A A B)

Double Precision Aritlunetic. A double length number consists of two words concatenated into a 32-bit

string wherein bit ° is the sign and bits 1-31 are the magnitUde in twos complement notation. The high order

part of a negative number is therefore in ones complement form unless the low order part is null (at the right

+262,146 10 +2000002 8 10000000000001 00010000000 000 000 olDl
{) 15 16 31

-262,146 10 = -20000028 11111111111110111111111111111111101
o 15.16 31

2-18

only Os are null regardless of sign). Hence in processing double length numbers, twos complement operations.

are usually confined to the low order parts, whereas ones complement operations are generally required for the
high order parts.

Suppose we wish to negate the double length number whose high and low order words respectively are in
ACO and ACl. We negate the low order part, but we simply complement the high order part unless the low

order part is zero. Hence

NEG l,l,SNR
NEG
COM

O,O,SKP
0,0

; Low order zero
;Low order nonzero

Note that the magnitude parts of the sequence of negative numbers from the most negative toward zero are

the positive numbers from zero upward. In other words the negative representation -x is the sum of x and the
most negative number. Hence in multiple precision arithmetic, low order words can be treated simply as posi­

tive numbers. In unsigned addition a carry indicates that the low order result is just too large and the high

order part must be increased. We add the number in AC2 and AC3 to the number in ACO and ACl.

ADDZ

INC
ADD

3,1,SZC
2,2

2,0

In twos complement subtraction a carry should occur unless the subtrahend is too large. We could incre­

ment as in addition, but since incrementing in the high order part is precisely the difference between a ones

complement and a twos complement, we can always manage with only two instructions. We subtract the num­

ber in AC2 and AC3 from that in ACO and ACl.

SUBZ
SUB
ADC

3,1,SZC
2,0,SKP
2,0

Multiply and Divide Subroutines. In pencil and paper decimal multiplication, one multiplies the multipli­

cand by each multiplier digit separately to form a set of partial products. Successive partial products are shifted

one place to the left (they are multiplied by successive powers of 10) and summed. In the computer it is easier

to add each partial product as it is formed and shift the result one place to the right so the running sum is in

the correct position to receive the next one. Since the numbers are binary, each partial product is either the
multiplicand or zero. Hence at each step we either add the multiplicand and shift or simply shift depending

on whether the next bit of the multiplier is 1 or O.

The multiply subroutine operates on unsigned integers in ACI and AC2 to generate a double length product

whose high and low order parts are left in ACO and ACI respectively. If entry is made at .MPYA, the product is
added to the number originally in ACO (the result is ACO+ ACI X AC2). Carry is left unchanged .

. MPYU: SUBC 0,0 ;Clear ACO, don't disturb Carry

.MPYA: STA 3,.CB03 ;Save return
LDA 3,.CB20 ;Get step count

.CB99: MOVR l,l,SNC ;Check next multiplier bit
MOVR O,O,SKP ;0 - shift

2-19

ADDZR
INC
JMP

MOVCR
JMP

.CB03: 0

.CB20: -20

2,0
3,3,SZR

.CB99

1,1
@.CB03

; 1 - add multiplicand and shift
;Count step, complementing Carryon final count
;lterate loop

;Shift in last low bit (which was complemented by final count) and
;restore Carry

; 1610 steps

The divide subroutine also operates on unsigned integers, using a double length dividend and a single

length divisor to produce a single length quotient and remainder. The routine starts by comparing the divisor

with the high order half of the dividend: if the divisor is less thaQ or equal to the latter quantity, the division is
not performed as the result would be greater than 216_1, the largest integer than can be held in an accumula­

tor. (The result would be greater than or equal to 1 if the operands are interpreted as proper fractions.) It is

not a sensible procedure simply to compute the first sixteen bits of the quotient as it would be impossible to

determine the order of magnitude. So it is up to the programmer to shift the dividend to the correct position
beforehand. For operations limited to single length integers (referred to as "integer division") the one-word

dividend is treated as the low order half of a double length number whose high order part is null, and the

routine fails to perform the division only when the divisor is zero. The worst possible case is the division
of 216_1 by 1, whose integral result can be accommodated.

In division on paper, one subtracts out the divisor the number of times it goes into the dividend, then

shifts the dividend one place to the left (or the divisor to the right) and again subtracts out. In binary com­

putations the divisor goes mto the dividend either once or not at all. Each comparison thus generates a single

bit of the quotient. If the divisor does go in, it is subtracted and a 1 is entered into the quotient; if not, a 0 is

entered. The test condition is reversed if the dividend shift puts a 1 in Carry; this way Carry is used effectively

as an extra magnitude bit and no information is lost in the shift.

The high and low parts of the dividend are in ACO and ACl, the divisor is in AC2. At completion the
remainder is in ACO, the quotient is in ACl, AC2 is unchanged, and Carry is left clear. For integer division

entry is at .DIVI with the dividend in ACl. If the division is not performed, Carry is set and the three
accumulators are unchanged except that calling .DIVI clears ACO. Note that the result is such that if .MPY A

is called, ACO and ACI are restored, ie divisor times quotient plus remainder equals original dividend. For
further information see the subroutine writeup, 093-000016 .

. DIVI:

.DIVU:

.CC98:

2-20

SUB

STA
SUBZ#
JMP

LDA
MOVZL

MOVL

SUB#
SUB
MOVL
INC
JMP

0,0 ;Integer divide - clear high part
3,.CC03 ;Save return
2,Q,SZC ;Test for overflow
.CC99 ;Yes, exit (ACD ~ AC2)
3,.CC20 ;Get step count
1,1 ;Shift dividend low part

0,0 ;Shift dividend high part
2,0,SZC ;Does divisor go in?
2,0 ;Yes
1,1 ;Shift dividend low part
3,3,SZR ;Count step
.CC98 ;lterate loop

SUBO 3,3,SKP ;Done, clear Carry

.CC99: SUBZ 3,3 ;Set Carry

JMP @.CC03 ;Return

.CC03: 0

.CC20: -20 ; 1610 steps

Byte Manipulation. For processing 8-bit bytes it is convenient to use a byte pointer in which bits 0-14 are

the address of the memory location that contains or will receive the byte, and bit 15 specifies which half (1 left,

MEMORY ADDRESS

o 14 15

o right). Incrementing a pointer with this format changes bit 15 every count to specify the next byte, but changes

the address part only every other count.

The following subroutine picks up a byte, places it in the right half of ACO, and increments the byte

pointer in memory. The calling sequence is '

JSR PICK
;Addre,ss of pointer
;Return here if byte is zero
;N ormal return

The calling sequence supplies the address of the location containing the pointer. A separate return for a zero

byte allows the program to process a sequence of bytes whose length is unspecified, but which terminates with
a zero byte.

PICK: IDA 2,@lO,3 ;Get byte pointer

ISZ @lO,3 ;Increment pointer

MOVZR 2,2 ;Put address in right place (left/right bit to Carry)

LDA 0,0,2 ;Bring memory word to ACO

IDA 2,C377 ;Get 8-bit mask

MOV O,O,SZC ;Test Carry for which half
MOVS 0,0 ;Swap byte from left to right

AND 2,0,SNR ;Mask out unwanted byte and test for zero

JMP 1,3 ;Zero, return to call + 2
JMP 2,3 ;Nonzero, return to call +3

C377: 377 ; 8-bit mask (1 s in right half)

2.3 INPUT-OUTPUT

Instructions in the in-out class govern all transfers of data to and from the peripheral equipment, and also

perform various operations within the processor. An instruction in this class is designated by 011 in bits 0-2.
Bits 10-15 select the device that is to respond to the instruction. The format thus allows for 64 codes of which

62 can be used to address devices (octal 01-76). The code 00 is not used, and 77 is used for a number of spe­

cial functions including reading the console data switches and controlling the program interrupt. A table in
2-21

Appendix E lists all devices for which codes have been assigned, and gives their mnemonics and DGC option
numbers.

Every device has a 6-bit device selection network, an Interrupt Disable flag, and Busy and Done flags. The
selection network decodes bits 10-15 of the instruction so that oply the addressed device responds to. signals

sent by the processor over the in-out bus. The Busy and Done flags together denote the basic state of the device.

When both are clear the device is idle. To place the device in operation, the program sets Busy. If the device

will be used for output, the program must give a data-out instruction that sends the first unit of data - a word

or character depending on how the device handles information. (The word "output" used without qualification
always refers to the transfer of data from the processor to the peripheral equipment; "input" refers to the trans­

fer in the opposite direction.) When the device has processed a unit of data, it clears Busy and sets Done to in­

dicate that it is ready to receive new data for output, or that it has data ready for input. In the former case the

program would respond with a data-out instruction to send more data; in the latter with a data-in instruction

to bring in the data that is ready. If the Interrupt Disable flag is clear, the setting of Done signals the program

by requesting an interrupt; if the program has set Interrupt Disable, then it must keep testing Done or Busy to
determine when the device is ready.

In all in-out instructions bits 8 and 9 either control or sense Busy and Done. In those instructions in which

bits 8 and 9 specify a control function, the mnemonics and bit configurations and the functions they select are
as follows.

Mnemonic

S

C

P

Bits 8-9

00

01

10

11

Control function

None

Start the device by clearing Done and setting Busy

Clear both Busy and Done, idling the device

Pulse the special in-out bus control line - the effect, if

any, depends on the device

The overall sequence of Busy and Done states is determined by both the program and the internal operation
of the device.

Busy Done

(
0 0

'J START

0
CLEAR

DEVICE () START
COMPLETION AGAIN

0

The data-in or data-out instruction that the program gives in response to the setting of Done can also restart

the device. When all the data has been transferred the program generally clears Done so the device neither re­

quests further interrupts nor appears to be in use, but this is not necessary. Busy and Done both set is a mean­
ingless situation.

Bits 5-9 specify the complete function to be performed. If there is no transfer (bits 5-7 all alike), bits 3

and 4 are ignored and bits 8 and 9 may specify a control function or a skip condition.
2-22

NIO No 10 Transfer

o 1 1 o o o o o F
I

o 2 3 4 5 6 7 8 9

Perform the control function specified by F in device D.

SKPBN Skip if Busy is Nonzero

o 1 o o 1 1 o o
o 2 3 4 5 6 7 8 9

Skip the next instruction in sequence if the Busy flag in device D is 1.

SKPBZ Skip if Busy is Zero

o 1 o o 1 1 o 1
o 2 3 4 5 6 7 8 9

Skip the next instruction in sequence if the Busy flag in. device D is O.

SKPDN Skip if Done is Nonzero

o o o 1 o
o 2 3 4 5 6 7 8 9

Skip the next instruction in sequence if the Done flag in device D is 1.

SKPDZ Skip if Done is Zero

o 1 o o 1 1
o 2 3 4 5 6 7 8 9

Skip the next instruction in sequence if the Done flag in device D is O.

10 11

10 11

10 11

10 11

10 11

D
12 I 13

D
12 I 13

D
12 I 13

D
12 I 13

D
12 I 13

14 15

14 15

14 15

14 15

14 15

The letter for the control function is appended to the basic mnemonic; NIO alone with any device code

is a no-op. To place say the high speed tape reader in operation we could give

NIOS 12

which assembles as 060112 (0 I 10 000 00 I 00 I 010) and causes the reader to read one line from tape into

its buffer. There are mnemonics for the device codes so we could also give the equivalent

NIOS PTR

2-23

To determine when the character is in the buffer wi:thout using the program interrupt we can wait for either Busy
to clear or Done to set, eg by giving

SKPDN PTR

JMP .-1

If bits 5-7 are not all alike the instruction calls for an in-out transfer. Bits 3 and 4 specify the accumula­
tor that supplies or receives the data, bits 8 and 9 specify a control function (if any) as listed above.

DlA Data In A

o
o 2 3

AC
I 4

o
5

o
6

1 F
!

7 8 9 10 1:1 12

D
I 13 14 15

Move the contents of the A buffer in device D to accumulator AC, and perform the function specified by F in

device D.

The number of data bits moved depends on the size of the device buffer, its mode of. operation, etc. Bits
in AC that do not receive data are cleared.

DOA Data Out A

o
o 2 3

AC
I

o o
4 5 6 7

F
8 9 10 11 12

D
I 13 14 15

Send the contents of accumulator AC to the A buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera­

tion, etc. The original contents of AC are unaffected.

DlB Data in B

o AC 0 1 F D
o 2 3 I 4 5 6 7 8 9 10 It 12 I 13 14 15

Move the contents of the B buffer in device D to accumulator AC, and perform the function specified by F in
device D.

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits

in AC that do not receive data are. cleared.

2-24

DOB Data Out B

a 1 AC 1 a
o 2 3 "I 4 5 6

a F
I

7 8 9 10 11

D
12 I 13 14 15

Send the contents of accumulator AC to the B buffer in device D, and perform the function specified by F in

dcvice D.

The amount of data actually accepted by the device depends on the size its buffer, its mode of operation,

etc. The original contents of AC are unaffected.

DIC Data in C

a
o 2 3

AC
I 4 5

a
6

F

7 8 9 10 11

D
12 I 13 14 15

Move the contents of the C buffer in device D to accumulator AC, and perform the function specified by F in

device D.

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits

in AC that do not receive data are cleared.

DOC Data Out C

a 1
o 2 3

AC
I 4 5 6

a F
7 8 9 10 11

D
12 I 13 14 15

Send the contents of accumulator AC to the C buffer in device D, and perform the function specified by F in

device D.

The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera­

tion, etc. The original contents of AC are unaffected.

A device may require no 10 transfers, such as the real time clock, which uses only NIOS and NIOC to

turn it on and off. All of the simpler data handling devices have only an A buffer, eg to hold a single charac­

ter in the teletypewriter, tape reader and tape punch, or to receive incremental plotting data for a single point

in the plotter. Suppose the reader has read a line from tape into its buffer. We can bring the character into the

right half of AC2 by giving

DIA 2,PTR

If we want to read another line we can make the transfer with a

DIAS 2,PTR

which brings the character into AC2, clears Done and sets Busy causing the reader to read"the next line. If the

buffer contains the final character to be read from tape we might give

DIAC 2,PTR

which retrieves the character and clears Done. Data is moved in and out in characters of various sizes or in

2-25

full 16-bit words. Generally a device uses only DIA and/or DOA for data but it may use other 10 transfer in­
structions to handle status and control information. A high speed device, such as magnetic tape or disk, may

re~uire 10 transfer instructions only for status and control information with data moving directly between the
deVice and memory via the data channel.

Most peripheral devices involve motion of some sort, usually mechanical. In this respect there are two

types of devices, those that stay in motion and those that do not. Magnetic tape is an example of the former
type. Here the device executes a command (such as read, write, space forward) and Done sets when the entire

operation is finished. A separate flag requests a data channel transfer each time the device is ready for direct

data access to memory, but the tape keeps moving until an entire record or file has been processed. Paper tape,

on the other hand, stops after· each line is read, but if the program gives another DIAS within a critical time

the tape moves continuously.

Other devices operate in one or the other of these two ways but differ in various respects. The tape punch

and teletype output are like the reader. Teletype input is initiated by the operator striking a key rather than by

the program. Once started the card reader reads an entire card, with a DIA required for each column.

In the remainder of this manual the discussion of each device treats only the control functions and the
applicable 10 transfer instructions. The skips apply to all and are the same in all cases. Giving a data-in in­

struction that does not apply to a device (either because the device is output only or does not have the buffer

specified) clears the addressed accumulator but does do the specified control function. Similarly a data-out that

does not apply is a no-op except for control functions. When the device code is undefined or the addressed de­
vice is not in the system, any data-out, an SKPBN or an SKPDN is a no-op, an SKPBZ or SKPDZ is an ab­

solute skip, and any data-in simply clears the addressed AC.

All instructions discussed in the rest of this manual are in-out instructions with various device codes. For

the transfer instructions the mnemonics are given with a dash in the position occupied by an accumulator ad­

dress, as the assembler indicates an error if the programmer fails to specify an accumulator. The programmer

must substitute a valid address for the dash. In the format box for each instruction the accumulator address part

is represented by AC. In the instruction description, "AC" refers to the accumulator specified by the AC part

of the instruction word.

Special Code-77 Functions

In-out instructions with the code 77 in bits 10-15 perform a number of special functions rather than con­

trolling a specific device. In all but the skip instructions bits 8 and 9 are used to turn the interrupt on and off.

The mnemonics are the same as those for controlling Busy and Done in 10 devices, but with code 77 they se­

lect the following special functions.

MnelJlonic

S

C

P

Function

Set the Interrupt On flag to enable the processor

to respond to interrupt requests.

Clear the Interrupt On flag to prevent the processor

from responding to interrupt requests.

None

Most of these instructions perform functions associated with processor elements so the mnemonic for 77
is CPU. For the transfer type instructions that use no accumulator, the mnemonics are given with an accumu­

lator address included, as the assembler indicates an error if the programmer fails to specify an accumulator

2-26

even when none is used. A zero address is given, but any valid address would suffice. Instructions for the pro­

gram interrupt and power failure detection are treated in greater detail in later sections.

NIOS CPU Interrupt Enable

o o 0 o o o o
'------:-0,----+-----;----"--::------'- - j----+-----;4;--~--::-~'----:-I>-+--,7::------'-------,--H--'---<,I-+--I--:-O-'----1 -I ~-1-2---1--I3:---'---1--:-4--'--,1 5=--'

Set the Interrupt On flag to allow the processor to respond to interrupt requests.

NOTE: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.

Nloe CPU Interrupt Disable

o () o o o o o
o .1 h + 7 IS 10 II 12

Clear the Interrupt On flag to prevent the processor from responding to interrupt requests.

NOTE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC cpu.

DlA -,CPU

o
o 2

Read Switches

3

AC
I 4

o
5

o F
6 7 8 9 10 11 12

13

13

Read the contents of the console data switches into AC. and perform the function specified by F.

NOTE: The assembler recognizes the mnemonic READS as equivalent to DIA -,CPU.

DlB -,CPU

o 1 1
o 2

Interrupt Acknowledge

3

AC
I 4

o
5

1 F 1 1
I

6 7 8 9 10 11 12 13

14 15

1
14 15

14 15

Place in AC bits 10-15 the device code of the first device on the bus that IS requesting an interrupt ("first"

means the one that is physically closest to the processor on the bus). Perform the function specified by F.

NOTE: The assembler recognizes the mnemonic INT A as equivalent to DIB -,CPU.
2-27

DOB -,CPU

o
o 2

Mask Out

AC
I

o o
4 5 7

F 1
I

8 9 10 II 12 13 14 IS

Set up the Interrupt Disable flags in the devices according to the mask in AC. For this purpose each device is

connected to a given data line, and its flag is set or cleared as the corresponding bit in the mask is 1 or 0. Per­

form the function specified by F.

NOTE: The assembler recognizes the mnemonic MSKO as equivalent to DOB -,CPU.

DIC O,CPU Clear 10 Devices

o 1 o o 1 o 1 F 1 1 1 1 1
!

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clear the control flipflops, including Busy, Done and Interrupt Disable, in all devices connected to the bus. Per­
form the function specified by F.

NOTE: The assembler recognizes the mnemonic IORST as equivalent to DICC O,CPU - ie as the in­

struction defined here with F set to 10.

DOC O,CPU Halt

o 1 o o 1 o F 1 1 1
I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Perform the function specified by F and then halt the processor. When the processor stops, the instruction

and data lights display the halt instruction, the address lights point to the location following the halt instruc­
tion.

NOTE: The assembler recognizes the mnemonic HALT as equivalent to DOC O,CPU.

SKPBN CPU Skip if Interrupt On is Nonzero

o o o o o
o 2 4 5 6 7 8 9 10 II 12 J3 14 IS

Skip the next instruction in sequence if the Interrupt On flag is 1.

2-28

SKPBZ CPU Skip if Interrupt On is Zero

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if the Interrupt On flag is o.

SKPDN CPU Skip if Power Failure is Nonzero

I 0 o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if the Power Failure flag is I.

SKPDZ CPU Skip if Power Failure is Zero

I 0 o o
o 2 3 4 5 6 7 8 9 10 11 12 I3 14 15

Skip the next instruction in sequence if the Power Failure flag is o.

The assembler recognizes a number of convenient mnemonics for instructions with device code 77.

Mnemonic Meaning

READS Read Switches
IORST 10 Reset

HALT Halt

INTEN Interrupt Enable

INTDS Interrupt Disable

INTA Interrupt Acknowledge

MSKO Mask Out

Eg to read the switches into AC3 we could simply give

READS 3

instead of

DIA 3,CPU

Mnemonic
Equivalent

DIA -,CPU

DICC O,CPU

DOC O,CPU

NIOS CPU

NIOC CPU

DIB -,CPU

DaB -,CPU

Octal
Equivalent

060477
062677
063077
060177
060277
061477
062077

However, there is one important difference between these special mnemonics and the standard ones: mnemonics

for turning the interrupt on and off cannot be appended to them! Thus to set Interrupt On while reading the
switches we must give

DIAS 3,CPU

2-29

Note that IORST clears Interrupt On along with the devices on the bus. We can set it while clearing the de­

vices by giving

DICS O,CPU

Automatic Program Loading

To place information in the Nova memory without relying on a program already in memory, the operator

must load one word at a time manually; the information loaded in this manner is usually a bootstrap loader

of which examples for the teletype reader and the high speed reader are given in §3.3. The same procedure

must be used for the Nova 1200 or Nova 800 unless the computer is equipped with the optional program

load feature (option 8108 on the 1200, 8208 on the 800). For this option the processor has two LSI chips

that contain thirty-two words of read-only memory. Pressing the program load switch on the console starts

the processor in a special sequence that deposits the read-only words into locations 0-37 and then begins

normal program execution at location O. The bootstrap loader generally used with this feature is given in §3.3.

The Supernova has facilities for two types of automatic loading, one that simulates ordinary programmed

transfers, another that uses the data channel [tor the latter reter to §2.5]. The principal use of the program
load is to read in a short loader program that is then used for loading other information. Pressing the program

load switch on the console starts the processor in a special hardware sequence that simulates a series of

sixty-six DIAS instructions, all of which address the device whose code is selected by data switches 10-15.

The device must supply 8-bit data bytes, right justified. Each pair of bytes is stored as a single word in

memory wherein the first and second bytes read become the left and right halves of the word. To simplify

positioning of the tape in the reader, the processor ignores the tape leader, ie it does not begin counting the

instructions it issues until the first nonzero byte is read.

To load a program automatically, the operator must set up the device he is using, set its code into data
switches 10-15, press the 10 reset switch to clear the 10 system, and press the program load switch. The

processor places the device in operation and upon encountering the first nonzero byte reads thirty-three pairs

of bytes and stores the resulting words in memory beginning at location O. Upon storing the thirty-third word

in location 40, the processor executes the contents of that location; the last word in the block is thus normally

a jump instruction into the body of code just read (or a halt to stop the processor). If the block contains fewer

than thirty-three words the processor simply reads the trailing blank tape as zeros. In this case the word stored

in location 40 is also zero and is executed as JMP O. Typically the program is the same one used with the

1200 and 800 program load, and it can duplicate the Supernova data channel automatic loading.

2.4 PROGRAM INTERRUPT

Many in-out devices must be serviced infrequently relative to the processor speed and only a small amount

of processor time is required to service them, but they must be serviced within a short time after they request it.

Failure to service within the specified time (which varies among devices) can often result in loss of informa­

tion and certainly results in operating the device below its maximum speed. The program interrupt is designed

with these considerations in mind, ie the use of interruptions in the current program sequence facilitates con­

current operation of the main program and a number of peripheral devices. The hardware also allows condi­

tions internal to the processor to signal the program by requesting an interrupt.

Interrupt Requests. Interrupt requests by a device are governed by its Done and Interrupt Disable flags.

When a device completes an operation it sets Done, and this action requests a program interrupt if Interrupt

Disable is clear - if Interrupt Disable has been set by the program the device cannot request an interrupt. At

the beginning of every memory cycle the processor synchronizes any requests that are then being made. Once

2-30

a request has been synchronized the device that made it must waif for an interrupt to start. The request signal

is a level so once synchronized it remains on the bus until the program clears Done or sets Interrupt Disable.

If the program does set the Interrupt Disable flag in a device, that device not only cannot request an interrupt
when its Done flag sets, but any request it has already made and had synchronized is disabled, so it is no

longer waiting for an interrupt. However, if Done is left set, clearing Interrupt Disable restores the request.

Starting an Interrupt. The processor starts an interrupt if all four of the following conditions hold:

• The processor had just completed an instruction or a data channel transfer [see §2.S].
• At least one device is waiting for an interrupt to start (ie it was requesting an interrupt at the beginning of

the last memory cycle).

• Interrupts are enabled, ie Interrupt On is set.
• No device is waiting for a data channel transfer, ie there are no data channel requests that the processor
has synchronized but not yet fulfilled. The data channel has priority over program interrupts.

When the processor finishes an instruction it takes care of all data channel requests before it starts an in­
terrupt; this includes any additional data channel requests that are synchronized while data channel transfers

are being made. When no more devices are waiting for data channel transfers, the processor starts an interrupt

if Interrupt On is set and a device was requesting an interrupt at the beginning of the last data channel transfer.

The processor starts an interrupt by clearing Interrupt On so no further interrupts can be started, saving
PC (which points to the next instruction) in location 0, and simulating a JMP @ 1 to jump to the interrupt

service routine. Location 1 should contain the address of the routine or an indirect address that will get there.

Servicing an Interrupt. The interrupt service routine should determine which device requires service, save

the contents of any accumulators that will be used in the routine, save Carry if it will be used, and service the

device. The routine can identify the device by testing with 10 skips or by giving an interrupt acknowledge

instruction (lNTA). This instruction determines which is the first device on the bus that is waiting for service
by reading its device code into an accumulator. The program can simply leave the interrupt off while servicing

the device (by leaving Interrupt On clear), or it can enable interrupts and establish a priority structure that

allows higher priority devices to interrupt the current device service routine. This priority is determined by a

mask that controls the states of the Interrupt Disable flags in the various devices. If this final course is taken
the routine must save location 0, so the return address to the interrupted program will not be lost should an­
other interrupt occur.

Device Priority. There are several ways in which priorities are determined for or assigned to devices on
the bus. An elementary priority is established by the hardware for devices that are requesting interrupts si­

multaneously in that the interrupt acknowledge instruction reads the code of one and only one device: among

those that are waiting it reads the code of that one which is physically closest to the processor on the bus. This

however applies only to those devices that are waiting at the time the acknowledgement is given. Using 10

skips to determine which device to service establishes a priority by the order in which the devices are tested,
but again this applies only to those that are waiting at the time.

The most significant method is by specifying which devices can interrupt a service routine currently in

progress. This is done through the use of a mask that sets up the Interrupt Disable flags. Every device is wired
to a particular data line on the bus and hence to a particular bit of the mask. Although slower devices are as­

signed to the higher numbered bits in the mask, there is no established priority as the program can use any
mask configuration. All devices whose Interrupt Disable flags are set cannot cause an interrupt to start (setting

Interrupt Disable causes the withdrawal of any request that has already been made and prevents the setting of

Done from making a request) and are therefore regarded by the program as being of lower priority. Those

devices in which Interrupt Disable is left clear can interrupt the current routine and therefore are regarded by

the program as being of higher priority.

2-31

By means of the mask the program can establish any priority structure with one limitation: in some cases

two or more devices are assigned to the same bit in the mask and are thus all at the same priority level. When

an interrupt is in progress for a device, the rest of the devices assigned to the same mask bit must be regarded
as all of lower priority or all of higher priority depending upon whether they are disabled or not.

Dismissing an Interrupt. After servicing a device the routine should restore the pre-interrupt states of the

accumulators and Carry, turn on the interrupt, and jump to the interrupted program. The instruction that

enables the interrupt sets Interrupt On, but the flag has no effect until the next instruction beg~ns. Thus after
the instruction that turns the interrupt back on, the processor always executes one more instruction (assumed

to be the return to the interrupted program) before another interrupt can start.

If the service routine allows interrupts by higher priority devices, then before dismissing as indicated

above, the routine should turn off the interrupt to prevent further interrupts during dismissal. In dismissing,
the routine should reenable lower priority devices that were not allowed to interrupt the current routine but

will be allowed to interrupt the program to which the processor is returning.

Instructions. The instructions for the program interrupt use special device code 77. Bits 8 and 9 of the

skip instructions sense whether the interrupt is on or off; in the other instructions these bits turn the interrupt
on or off by setting or clearing the Interrupt On flag (these are respectively the start and clear 10 control

functions) .

NIOS CPU Interrupt Enable

o 1 1 o o o o o o 1 1 1 1

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Set Interrupt On to allow the processor to respond to interrupt requests. If Interrupt On actually changes state

(0 ~ 1) the processor will execute one more instruction before it can start an interrupt.

NOTE: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.

NIOC CPU Interrupt Disable

o 1 o o o o o 1 o 1
o 2 3 4 5 6 7 8 9 10 11 12

Clear Interrupt On to prevent the processor from responding to interrupt requests.

NOTE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC CPU.

SKPBN CPU Skip if Interrupt On is Nonzero

o 1 1 o o 1 1 1
o 2 3 4 5 6 7

Skip the next instruction in sequence if Interrupt On is 1.

2-32

o o
8 9 10 11 12

1 1
13 14 IS

1 1
13 14 15

SKPBZ CPU Skip if Interrupt On is Zero

o 1 o o 1

o 2 3 4 5 6 7

Skip the next instruction in sequence if Interrupt On is O.

DrB -,CPU

o 1
o

Interrupt Acknowledge

AC
I

o

o 1 1
8 9 10 11 12 13 14 15

F
I

10 11 12 13 14 15

Place in ACbits 10-15 the clevice code of the first device on the bus that is requesting au in~"rrupt. and per­

form the function specified by F.

NOTE: The assembler recognizes the mnemonic INTA as equivalent to DIB -,CPU.

DOB -,CPU

o
o 1 2

Mask Out

3

AC
I

1
4 5

o o F
I

6 7 8 9 10 11 12

1 1
13 14 15

Set up the Interrupt Disable flags in the devices according to the mask in AC (a 1 in a mask bit sets the flags
in all devices assigned to that bit; a 0 clears them). Perform the function specified by F.

The following lists the devices assigned to the bits in the mask, and for each bit gives the mask for dis­
abling all devices assigned to that and all higher numbered bits. [Gomplete information on all devices is given

in Appendix E.]

AC Bit

o
1

2

3

4

5

6

7

,8

9

10

11

12

13

14

15

Devices

Data communications multiplexer

A-D converter, high speed communications controller

Disk

Card reader, industry compatible magnetic tape

Paper tape reader

Plotter, line printer, multiprocessor communications adapter

Real time clock, paper tape punch, display, IBM 360 interface

Teletype in

Teletype out

Mask

177777

77777

37777

17777

7777

3777

1777

777

377

177

77

37

17

7

3

1

2-33

A zero mask clears all Interrupt Disable flags. In general the devices are in order by speed, with the fastest

ones (those requiring the quickest service) assigned to the lower numbered bits.

NOTE: The assembler recognizes the mnemonic MSKO as equivalent to DOB -,CPU.

The assembler recognizes special mnemonics for some of the above instructions.

INTEN

INTDS

INTA

MSKO

NIOS

NIOC

DlB
D(W

CPU

CPU

-,CPu
-,CPU

Interrupt Enable

Interrupt Disable

Tnterrl1:ot Acknowledge
Mask Out

060177
060277
001477

062077
To turn the llllt:rrupt on or off while acknowledging or masking, the programmer must use the DIB and DOB

forms - the Sand C mnemonics cannot be appended to INT A and MSKO.

Timing. The time a device must wait for an interrupt to start depends on how many devices are using

interrupts, how long the service routines are for devices of higher priority, and whether the data channel is

in use. A single device will shut out all others of lower priority if every time its service routine dismisses the

interrupt, it is already waiting with another request; and the data channel shuts out all interrupts when it op­

erates at the maximum rate. If the data channel is not in use and only one device is using interrupts, it need

never wait longer than the time required for the processor to finish the instruction that is being performed when

the request is synchronized. Without delays caused by indirect addressing, the maximum interrupt waiting time

is the latency given in the table at the end of Appendix D.

To start an interrupt the processor uses two cycles to store PC in location 0 and retrieve the address from

location 1. The time given in Appendix D assumes location 1 contains a direct address.

Sample Master Interrupt Routine. Suppose we are using only the teletype and the high speed reader and

punch. We shall allow higher priority devices to interrupt a lower priority service routine; but since the reader

is the highest priority device, we shall simply leave the interrupt off while servicing it. Because of the small

number of devices we can use flag testing to identify the one that is requesting service and we can treat the

teletype input and output as the same priority. For illustration let us assume that the reader and punch rou­

tines use all the accumulators but the teletype routines use only ACO.

.LOC

CMASK:

o

o
INTRP

o

;This pseudoinstruction causes the assembler to put the next statement in

; the location specified

;Clear location 0 - will be used for saving PC

;Put address of master interrupt processor routine in location 1

;Will save current mask here (initially zero)

;When the processor is interrupted the interrupt is disabled and there is an automatic jump to INTRP.

;First find source of interrupt.

INTRP:

2-34

SKPDZ

JMP

SKPDZ

JMP

PTR

PTRIN

PTP

PTPIN

;Try reader first

; Yes, service it

;No, try punch

;Jump to punch service

STA O,TTSAV ;Neither, must be teletype; save ACO

LDA 0,0 ;Save return address from location 0

STA O,TTSAV+l

LDA O,CMASK ;Save current mask

STA 0,TTSAV+2

LDA 0,CN3 ;Set mask bits 14, 15 (disable teletype interrupts)

STA O,CMASK ;Set new current mask

DOBS O,CPU ;MSKO and enable interrupts

SKPDZ TTO ;Test teletype output

JMP TTOIN ;Jump to output service

SKPDN TTl ;Test input

JMP ERROR ; Something wrong - nobody wants service
;Service teletype in

JMP TTDSM ;Must dismiss

TTOIN: ;Service teletype out

TTDSM: INTDS ;To dismiss, first disable interrupts

LDA 0,TTSAV+2 ;Restore previous mask

STA O,CMASK

MSKO 0

LDA O,TTSAV ;Restore ACO

INTEN ;Enable interrupts

JMP @fTSAV+1 ;Return to interrupted program

TTSAV: 0 ;Save ACO here

0 ;Save PC (from location 0) here

0 ;Save current mask here

CN3: 3

;Punch routine

PTPIN: STA O,PPSAV ;Save accumulators

STA I,PPSAV+l

STA 2,PPSAV+2

STA 3,PPSAV+3

MOVL 0,0 ;Save Carry

STA 0,PPSAV+4

LDA 0,0 ;Save location 0

STA 0,PPSAV+5

LDA O,CMASK ;Save current mask

STA 0,PPSAV+6

LDA 0,CN7 ;Set mask bits 13,14,15 (punch, teletype in and out)

STA O,CMASK ;Set new current mask

DOBS O,CPU ;MSKO and turn on interrupt

2-35

INTOS

LOA

STA

MSKO

LOA

MOVR

LOA

LOA

LOA

LOA

INTEN

JMP

PPSAV:

.LOC .+7

CN7: 7

;Reader routine

PTRIN: STA

STA

STA

STA

MOVL

STA

LOA

MOVR

LOA

LOA

LOA

LDA

INTEN

JMP

PRSAV:

.LOC .+5

0,PPSAV+6

O,CMASK

° 0,PPSAV+4

0,0

O,PPSAV

1,PPSAV+l

2,PPSAV+2

3,PPSAV+3

@PPSAV+5

O,PRSAV

1,PRSAV+l

2,PRSAV+2

3,PRSAV+3

0,0

0,PRSAV+4

0,PRSAV+4

0,0

O,PRSAV

1,PRSAV+l

2,PRSAV+2

3,PRSAV+3

@O

;Service punch

;Turn off interrupt

;Restore previous mask

;Restore Carry

;Restore ACs

;Turn on interrupt

;Restore PC

;Reserve 7 locations

;Save ACs and Carry, but don't bother with PC or mask, and leave inter­

;rupt off

;Service reader

;Restore Carry and ACs

;Turn on interrupt

;Restore PC

;Reserve 5 locations

When to Use the Interrupt. If the program has little computing to do and is using only one or two fast in­

out devices or several slow ones, it may not be necessary to use the interrupt at all. On the other hand, if there

are many calculations to perform and the program is using a fast device or is processing data using several

slower devices, then the interrupt is necessary. The critical factors in determining whether to use the interrupt,

and beyond that its priority structure, are what the program is doing besides in~out and the time required by

the service routines. Suppose the program is doing nothing but processing data using reader, punch and tele-

2-36

type, and further suppose that no service routine requires more than say half a millisecond. In these circum­

stances the program could dispense with the interrupt and test all the devices with the following loop:

TEST: SKPDZ PTR

JMP PTRSER
SKPDZ PTP

JMP PTPSER
SKPDZ TTO
JMP TTOSER
SKPDZ TIL

JMP TTISER

;Fast test that determines whether 10 is finished

lMP TEST ;Do this if more 10

;Skip to here and continue if 10 done

where the reader service routine returns to TEST + 2 and all others return to TEST. The fastest device, the

reader, will never be delayed too much. But suppose the program has a significant amount of computing to do.

Then we must use the interrupt, but what about the priority structure? If input-output service for the teletype

(as in the sample master routine above) requires 1 ms and punch service requires .8 ms, then reader service

will never be delayed more than I ms if we simply turn the interrupt off while servicing each device. But if

teletype service requires 30 ms per character, then neither reader nor punch will be able to run at full speed

unless we use the priority structure as illustrated in the sample routine.

Programming Suggestions. A convenient method for handling a large number of priority levels is to use

a pushdown list for saving the machine state. This obviates setting aside so many specific locations for saving

accumulators and the like, and makes it very easy for a routine at any level in a sequence of nested routines to

restore the state for the interrupted program. If many devices are in use it may frequently happen that when

one routine is dismissing an interrupt, a device of lower priority is already waiting. Thus much time might be

wasted in restoring the machine state only to have to save it again as soon as the interrupt is turned back on.

The devices of concern in this situation are those with priority less than or equal to the device presently being
serviced, but of priority greater than that of the device whose routine is about to be resumed (to which the

current dismissal will return). The usual dismissal procedure (as illustrated in the sample master routine given

above) begins by disabling the interrupt and restoring the previous mask. If the program then gives an

INTA AC

a device code will be read into AC if any device of priority higher than that of the interrupted routine has

requested service. Since this means that the device will interrupt before the interrupted program can restart,

the current program can save a great deal of time by servicing the higher priority device without bothering to

restore and res ave the machine state. If AC is clear after the INT A is given, no device of appropriate priority

has requested service, and the current routine can proceed with the usual dismissal.

Remember the following when programming an interrupt routine:

• An interrupt cannot be started until the current instruction is finished. Therefore do not use lengthy indirect

address chains if devices that require very fast service can request an interrupt.

• The routine must save the accumulators and the Carry flag if these will be used by it.

2-37

• If this interrupt routine can itself be interrupted, then it must save location 0 so PC can later be restored
properly.

• The principal function of an interrupt routine is to respond to the situation that caused the interrupt. Eg com­
putations that can be performed outside the routine should not be included within it.

• The routine should restore the accumulators and Carry when returning to the interrupted program.

2.5 DATA CHANNEL

Handling data transfers between external devices and memory under program control requires an inter­

rupt plus the execution of several instructions for each word transferred. To allow greater transfer rates the
processor contains a data channel through which a device, at its own request, can gain direct access to
memory using a minimum of processor time. At rates lower than the maximum the channel frees processor

time to allow execution of a program concurrently with data transfers for a device. The channel is multiplexed
- many devices may be active at the same time.

Besides the straightforward transfer of a word between memory and a device in either direction, the
data channel also allows a device to increment by one a word already in memory and in the Nova or Supernova

to add a word to the contents of a memory location. In these two cases involving an arithmetic operation,
the processor sends the result back to the device; and if the operation should increase the contents of the
memory location above 216 - 1, it also sends an overflow signal to the device. The data channel is used by

devices requiring very high data transfer rates, such as magnetic tape or disk, and by devices requiring the
specialized transfer functions. Eg the memory increment feature would be used for pulse height analysis,
the add-to-memory feature for signal averaging.

The program cannot affect the data channel directly because there are no instructions for it; instead the
program sets up the device to use it. When the device requires data service, it requests access to memory
via the channel. At the beginning of every memory cycle the processor synchronizes any requests that are

then being made. Except in the Nova 800, the processor completes the current instruction and then takes
care of all requests that have been synchronized or are synchronized while it is handling transfers. In the

Nova 800 the data channel is capable of operating at two different speeds (standard and high speed) and
does not require that a device wait until the completion of an instru~tion - the processor can pause to handle

transfers at certain points within an instruction. If several devices are waiting for service simultaneously,
the first to receive it is the one that is physically closest to the processor on the bus. When the Nova 800
processor pauses within an instruction, it handles all data channel requests of either speed (handling high
speed requests first) and then continues with the interrupted instruction. Following .completion of an instruc­

tion, any processor handles all data channel requests, and then starts a· program interrupt if a device is
waiting for one, ot otherwise resumes the execution of instructions.

Operating the Nova 800 data channel at standard speed allows data transfer rates of half a million

words per second, but at this rate all other processing activity is suspended. Use of the high speed capability
not only allows data transfer rates at essentially the full memory speed (in excess of a million words per

second), but at speeds in the standard range its use allows considerable processing activity unrelated to the
channel (each transfer takes less time). Hence choice of the standard or high speed depends on the degree
of interference with the program caused by channel operations and the maximum time within which the

device must make the transfer. When a rate of 100,000 or more words per second is required, both the device
and the program will benefit noticeably through use of the high speed capability. To use the high speed the
interface for a device must be mounted inside the main frame and must be designed so that it can both

2-38

respond to the shorter control signals presented to it and operate within the extremely limited time available

[timing specifications for all data channel operation:s are given in Appendix A, Part II]. Moreover all high

speed interfaces must be grouped at the beginning of the bus: all interfaces closer to the processor than the

last high speed one automatically operate at high speed, whereas all devices farther out on the bus operate

at standard speed. The processor examines the priority determining signal on the 10 bus to determine which

way to handle each transfer.
Timing. The time a device must wait for data channel access depends on when its request is made within

an instruction and how many devices of higher priority are also requesting access. Once the processor reaches

a point at which it can pause to handle transfers (within an instruction in the Nova 800, but only at the end
of an instruction in the otheI machine,,), a ~iven device must wait until all devic~s closer than it on the bus
have been serviced (hence all devices connected for the high speed are serviced first). The highest priority

device can preempt all processor time if it requests access at the maximum rate. At less than the maximum

rate the closest device on a Nova, Nova 1200 or Supernova need wait no longer than the time required for

the processor to finish the instruction that is being performed when the request is synchronized, but indirect

addressing can extend this beyond the normal instruction execution time. The latency given in the timing table

at the end of Appendix D is the maximum data channel waiting time for the highest priority device exclusive

of any delay caused by indirect addressing. On the Nova 800 the closest device, once synchronized, need

never wait beyond the next point at which the processor can pause within the instruction, but the maximum

that this can be depends on whether the program includes 10 instructions (ie the device may have to wait
longer when the program is also using the bus). Tn some cases the time taken for a single isolated transfer

is less than the minimum time between transfers.

CAUTION

Devices that use the data channel often require service very quickly. Since a device

(except on the Nova 800) must always wait for the current instruction to end, do

not use lengthy indirect addressing chains when the data channel is in use on the

Nova, Nova 1200 or Supernova.

Maximum rates in transfers per second are as follows.

Nova 800

Function Supernova Standard High Speed Nova 1200

Data in 434,700 500,000 1,250,000 833,333

Data out 357,100 500,000 1,000,000 555,555

Increment memory 357,100 454,545 833,333 416,666

Add to memory 357,100

Automatic Loading

Nova

285,500

227,500

227,500
187,500

Besides the program load feature discussed at the end of §2.3, the Supernova also has facility for initiating

data channel operations from the console. Pressing the channel start switch starts the processor in a special

hardware sequence that simulates a DIAS that addresses the device whose code is selected by data switches

10-15, and then marks time while the channel is reading data.
To start the channel, the operator must set up the device he is using, set its code into data switches

10-15, press the 10 reset switch to clear the 10 system, and press the channel start switch. The processor

2-39

places the device in 'Operation, then stores the instruction JMP 377 in location 377 and begins normal program
execution at that location. Hence the processor keeps repeating the 'instruction in 377 while the channel stores
data beginning at location O. Eventually location 377 receives a data word, which is then executed by the
processor as an instruction; this is typically a jump int0 the data just read or a halt.

NOTE

For proper channel operation, thedevioe selected .by the data switches
must be initiated for reading by the oombination ·('}f the 10 reset and the DIAS
issued by the processor. Moreover it is up to the device to stop the transfer after
256 words have been read. The 10 reset dears the location and 'Word counters in
the channel interface of the 'device so the transfer bcgiws a1 location 0, but since
the word counter is also zero the transfer willcolltinue and ·fill all{)f memory
unless the devicestO'ps it. The disk is ,designed to read exactly 256 words; the
magnetic tape stops at 'the end of the record .and it is therefore up to ,the

pr.ogramfner to write a rooord of the proper len,gth 'in the first place.

2.6 .PROCESSOR OPTIONS

Optional equipment for the processor includes a real time clock, ap0wer monitor with facility for
automatic restart .after power failure, multiply-divide, a high 'speed data channel, memory allocation· and
protection, and the program load discussed in §2.3 (not all options ai"e .available on all :machines,.

Real Time Clock

The clock generates a sequence of pulses that is independent of processor timing. It uses only one 10

transfer instruction to set the dock frequency. Busy and Done are controlled or sensed by bits 8 and 9 in

aU 10 instructions with device code 14, mnemonic RTC. Interrupt Disable is 'cbntrol<leclby irrterrupt priority

mask bit 13.

DOA -;RT-t Data Uut A, Real Time 'C1ock

'I -0 A;C t
-0 1 0 I F I a 0 1

1

0 2 3 4 5 6 7 '8 9 10 'Il 12 13

Perform the function specified by Fand select the clock frequency by AC bits 14 and 15 ,as follows.

AC bits 14-15 Frequency

00

01

10

11

Ac line frequency

10Hz

100Hz

1000 Hz

{) 0
14 15

Setting Busy allows the next pulse from the clock to set Obne, requesting an interrUpt if Interrupt Disable

is clear. A DOA to select the frequency neeclby given only once; following each interrupt an NIOS sets up

the clock for the next pulse.
2-40

When Busy is first set the first interrupt can come at any time up to the clock period. But once one

interrupt has occurred, further interrupts are at the clock frequency provided that the program always sets

Busy before the next period expires.

The clock is used primarily for low resolution timing (compared to processor speed) but it has high

long-term accuracy. Power tumon and the 10 reset function generated by the program or from the console

reset the clock to line frequency. Following power tumon the line frequency pulses are available immediately,

but 5 seconds must elapse before a steady pulse train is available from the crystal for other frequencies.

Power Monitor and Autorestart

When ac power is turned on, memory is unaltered, the initial states of PC, the accumulators and flags

are indeterminate, and the computer is stopped. If ac power should fail there is a delay of 1 to 2 millisec­

onds before the processor shuts down. In so doing, the processor always completes a memory cycle and

sequences power off so the contents of memory are unaffected. The optional power monitor warns the pro­

gram when power is failing by setting the Power Failure flag. This action automatically requests an interrupt

- there is no interrupt disable flag for the power monitor. Of course the interrupt must be on if a power

failure is to produce an interrupt.

The power monitor does not respond to the INT A instruction. Thus when an interrupt occurs in a

machine equipped with the power monitor, the program should test the Power Failure flag before giving

INT A or testing other devices. The flag corresponds to the Done flag and is tested by either of these instructions.

SKPBN CPU Skip if Power Failure is Nonzero

I 0 1 o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if Power Failure is 1.

SKPDZ CPU Skip if Power Failure is Zero

I 0 o o
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

Skip the next instruction in sequence if Power Failure is 0.

If the power does fail the program should save the accumulators and Carry in memory, save location ° (for restoring PC in the interrupted program), put a J M P to the desired restart location in location 0, and

then HALT.

The action taken by the processor when an adequate power level is restored depends on the power switch

on the operator console. If the switch is on, power CJmes back on with the machine stopped. If the switch

is in the lock position, then 200 ms after power comes back on the processor executes a JMP 0, which causes

it to' begin executing instructions in normal sequence at location 0.

2-41

Multiply-Divide

Multiplication and division can be performed by t.he subroutines given on pages 2-19 and 2-20, but in

all machines except the Nova, an option that is added right into the processor hardware is also available for

these operations. This option provides two pseudo-IO instructions that duplicate exactly the effects of the

subroutines (the writeups of the multiply and divide subroutines are 093-000015 and 093-000016 respectively).

MUL Multiply

a 1
o 2 3

a 1
4 5

a
6 I I 7

1
8

a a a a a
9 10 11 12 13 14 IS

Multiply the unsigned integers in ACI and AC2 to generate a double length product; add the product to

the unsigned integer in ACO, and place the high and low order parts of the result respectively in ACO and

ACI (in other words the result left in ACO and ACI is ACO + ACI X AC2). AC2 is unaffected, the original

contents of ACO and ACl are lost.

Note that the mnemonic MUL is equivalent to DOCP 2,1. The AC field must be 10. (The hardware

requires this, but it is done to be compatible with the Nova.)

DlV Divide

a a a a a a a a a
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the unsigned integer in ACO is greater than or equal to the unsigned integer in AC2, set Carry and go im­

mediately to the next instruction without affecting the original contents of the accumulators. Otherwise clear

Carry and divide the double length unsigned integer in ACO and ACl by the unsigned integer in AC2,

producing a single length quotient including leading zeros, and then clear Carry. Place the quotient in AC1

and the remainder in ACO. AC2 is unaffected, the original contents of ACO and AC1 are lost.

Note that the mnemonic DIY is equivalent to DOCS 2,1. TheAC field must be 10. (The hardware

requires this, but it is done to be compatible with the Nova.)

Nova Multiply-Divide

The hardware multiply-divide option for the Nova is actually a peripheral device connected to the in-out

bus, although it has no flags or interrupt capability. It contains A, Band C registers, which are loaded and

read by the standard 10 transfer instructions, and which correspond in use respectively to accumulators 0, 1

and 2 with respect to the multiply and divide software routines and the processor hardware option in the other

computers. Bits 8 and 9 in a transfer instruction or an NIO perform control functions as follows.

Mnemonic

S

C
2-42

Bits 8-9

00

01

10

Function

None

Divide the double length unsigned integer in A and B by the unsigned

integer in C, producing a single length quotient including leading zeros.

Place the quotient in B and the remainder in A. C is unaffected.

Clear the A register.

p 11 Multiply the unsigned integers in Band C to generate a double length

product; add the product to the unsigned integer in A and place the

high and low order parts of the result respectively in A and B (in other

words the result left in A and B is A + B X C). C is unaffected.

The multiply-divide device code is 01, mnemonic MDV. With this device code the instructions are those given

on pages 2-23 to 2-25, with the exception that the skips are meaningless since the device has no flags.

Following the 10 instruction that starts the multiply or divide, the program must wait until the result is

available in the A and B registers. Multiplication takes 6.4 MS, division takes either 6.8 or 7.2 MS depending on

the operands. Of course the program can do something useful with the time (such as loading an accumulator

for the next operation), but usually one simply gives a couple of no-ops to pass the time.

Generally it is best to set up the accumulators just as one would for the software or the processor option.

If they are set up for multiplication, we could give this sequence to multiply and place the result in the same

place the subroutine would.

DOA

DOB

MUL

NIO

IMP

DIA

DIB

O,MDV

I,MDV

0

.+1
O,MDV

I,MDV

;ACO to A (AC)

;AC 1 to B (MQ)

;= DOCP 2,MDV = AC2 to C, multiply

;Wait for result (6.8 f.J.s)

;Put double length product in ACO

;and AC1

With this procedure, programming for all the computers is compatible. If a program containing the above

sequence is run on a Supernova, the first two instructions are ignored, the MUL is executed, the two no-ops

result in a small amount of lost time, and the DIA and DIB are ignored as the hardware is gated so that

calling for input from device 01 cannot affect the accumulators.

Similarly, if the accumulators are set up for software division we would give this sequence to divide.

DOA O,MDV

DOB I,MDV

DIV ;= DOCS 2,MDV but no overflow check

MOV# 0,0 ;Wait for result (7.2 f.J.s)

IMP .+1

DIA O,MDV

DIB I,MDV

Here the AC configuration is the same but there is no check to determine whether division is possible-the

program must do that first and properly adjust the operands. (Carry has no connection with the operation of

the device and is unaffected.) For integer division the program need not clear ACO: instead the first two

instructions can be replaced by

DOBC 1,MDV

but compatibility with the other machines is then lost.

2-43

Supernova High Speed Data Channel

This option simply adds a high speed capability to the data channel in the Supernova. The information

given in §2.S about the Supernova data channel still applies for devices connected to operate at the standard

speed, but devices connected for the high speed operate in the manner (and must fulfill the requirements)

described for the high speed on the Nova SOO. Use of this capability in the Supernova not only increases the

maximum transfer rate and decreases the processor time per transfer, but also decreases the latency, as the

waiting time is then dependent only on program use of the bus rather than instruction time and indirect

addressing. The time taken from the program for an isolated transfer, the minimum time between transfers

for the device, and the maximum rate depend upon the type of access as follows.

Program time Time between Transfers
Function taken in [J.S transfers in [J.S per second

Data in .8 .S 1,250,000
Data out .8 1 1,000,000
Incremertt memory, add to memory 1 1.2 833,333

Memory Allocation and Protection

Without memory allocation and protection the system executes a single program that has no restrictions

except those inherent in the hardware: the programmer must stay within the memory capacity, and observe

the restrictions placed on the use of certain memory locations by the hardware [§1.2]. Optional hardware for

the Supernova only can restrict processor operation to permit time sharing by a number of programs. Each

user program is run with the processor in user mode, in which the program must operate within an assigned

area in memory and certain operations are illegal. A program that runs unrestricted-the executive-is

responsible for scheduling user programs, servicing interrupts, handling input-crutput needs, and taking action

when control is returned to it from a user program.

Every user has a memory area allocated to him and he cannot gain access to the rest of memory for either

storage or retrieval of information. Moreover part of his allocated area may be protected from him, ie the

executive may set aside part of his allocated area so that he can access it but cannot alter its contents, ie he

cannot write anything in it. The executive would do this when part of the allocated area contains a pure

procedure to be used reentrantly by several users. While the processor is in user mode, the program is further

restricted in that it is illegal to issue any 10 instruction (except. MUL and DIV) or to use more than two levels
of indirect addressing. The violation of any restriction by a user program causes the processor to terminate the

instruction immediately and return control to the executive (by requesting an interrupt, which returns the

processor to the supervisor mode).

For allocation purposes the entire memory is divided into blocks of 4096 words each, defined by the three

high order address bits. For each user the executive establishes a map of the logical blocks (those defined by

the addresses given in the user program) into the physical blocks of memory, and validates those logical blocks

that are available to the given user. The most convenient procedure is for the executive to allow all users to

write programs beginning at location O. Thus one user may be limited to a single block, and the executive

would validate logical block 0 and assign it to say physical block 4; for another user allowed two blocks, the

executive would validate blocks 0 and I and assign them to say physical blocks 5 and 6. The first user would

use addresses 0-7777 and these would be mapped into addresses 40000-47777; the second would use addresses

0-1777 and these would be mapped into 50000-67777. The programmed addresses are retained in the object

program but are mapped by the hardware into the physical area assigned to the user as each access is made

while the program is running.

2-44

For protection purposes memory is divided into pages of 256 words each. The executive establishes a
protection scheme for all of the physical memory, and although a given user can access any location in his

allocated blocks, he sImply cannot write in any page that is protected. To save swapping time, a Page Written
flag is associated with each page. When setting up a user program, the executive should clear all the flags. When­

ever the user writes in a given page, its associated Page Written flag is set. Then when that user goes on the

inactive list, the executive need rewrite on the swapping disk or drum only those pages that have actually changed.

Note that the restrictions apply only to the user program. Data channel transfers can occur while the
processor is in user mode, and access is made to the physical locations addressed. An interrupt always returns
the processor to supervisor mode-the executive handles all interrupts.

User Programming. The user must observe the following rules when programming on a time shared basis.

• Use addresses only within the allocated logical blocks for all purposes-retrieval of instructions, retrieval
of addresses, storage or retrieval of operands. The method of allocating blocks will depend of course on the

executive program used at a particular installation, but usually the executive will be set up so that the user be­
gins at location 0 and can write any size program, ie the executive will assign enough memory for his needs.
Basically the user must write a sensible program; if he uses absolute addresses scattered all over memory his
program cannot be run on a time shared basis with others.

• Do not attempt to store anything in pages that are protected.
• Do not execute a JMP or JSR outside of the logical blocks assigned in any allocation procedure.
• Use 10 instructions only for communication with the executive in the manner prescribed for the installation.
• Do not use more than two levels of indirect addressing.

Executive Programming. The executive program uses the following instructions to supervise time shared

operation.

DOB -,MAPO

o
o 2

Assign Lower Logical Memory Map

3

AC
I

4 5

o o
6 7

o
8

o o o o o o
9 10 11 12 13 14 15

Assign logical memory blocks 0-3 to the physical blocks selected 'by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.

LOGICAL BLOCK 3 LOGICAL BLOCK 2 LOGICAL BLOCK 1 LOGICAL BLOCK 0

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0
makes such addresses invalid); the right three bits specify the physical block to which user addresses in the

corresponding logical block will be mapped.

ooe -,MAPO

o
o 2

Assign Upper Logical Memory Map

3

AC
I

4 5

1 o
6 7

o
8

o o o o o 1 o
9 10 11 12 13 14 15

Assign logical memory blocks 4-7 to the physical blocks selected by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.

2-45

LOGICAL BLOCK 7 LOGICAL BLOCK 6 LOGICAL BLOCK 5 LOGICAL BLOCK 4

o 2 3 4 5 6 7 8 9 I 10 11 12 13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0

makes such addresses invalid); the right three bits specify the physical block to which user addresses in the
corresponding logical block will be mapped.

DOA -,MAPO

o
o 2

Write Protect

3

AC
I

4

o 1
5 6

o o o o o o
7 8 9 10 11 12

Set up the protection scheme for a half block according to the contents of AC as shown.

o o
13 14 15

PHYSICAL HALF BLOCK
7 6

PROTECT PAGES
5 4 3 2 o

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 12-15 specify the physical half block, ie bits 12-14 specify the physical block and a 0 or 1 in bit 15

selects the half containing the lower or upper addresses in that block. A I in any bit from 0-7 protects the

corresponding 256-word page from writing by the user (a 0 allows the user to write in the page if it is in one of
his allocated blocks). Page 0 contains the lowest addresses in the half block.

DOA 0, MAP 2 Clear Page Written Flags

o o o o o o o o o
o 2 3 4 5 6 7 8 9 10 II

Clear all Page Written flags and select physical block 0 for page-written checking.

DIA -,MAP1

o 1
o 2

Read Violation Status

3

AC
I

4

o
5

o F o
I

6 7 8 9 10

Read the status of the allocation and protection option into AC as shown.

o
11

o 1 o o I
12 13 14 15

o o
12 13 14 15

~---~ - -- - -.------;-------,-----,------~-------------I
USER INDIRECT PROTECTION PHYSICAL BLOCK ADDRESSED

L-___ ---L. __ __ -L----=E~R~R~O~R~..L ____ _L_~~~_L_~E::.:.R:.:R:.::O::.:R~___L _____________ ___J

o 9 10 11 12 13 14 15

Bit Meaning of a 1 in the Bit

o The processor was in user mode when the last interrupt occurred.

9 The last user instruction attempted more than two levels of indirect addressing.

2-46

10 The last user instruction was an 10 instruction (not MUL or DIY).

11 The last address mapped was invalid.

12 The last valid address mapped was for a reference that attempted to write in a protected page.

The setting of bit 9, 10, 11 or 12 requests an interrupt which has priority over all other devices connected to

the bus and which cannot be disabled (but these bits cannot cause an interrupt when the processor is in

supervisor mode). Bits 13-i 5 specify the physical block addressed by the last address mapped.

(Perform the function specified by F.)

DOA -,MAP1

o 1
o 2

Select Mode

3

AC
I

o
4 5

o F o
I

6 7 8 9 \0

Load AC bit 0 into bit 0 of the status register and clear the rest of the register.

o o o
II 12 13 14 15

If F is 01 (S), turn on the interrupt and place the processor in the mode specified by bit 0 of the status

register. If bit 0 is 1 the processor will execute one more instruction before entering user mode. If Interrupt On

actually changes state (0 -+ 1) the processor will execute one more instruction before an interrupt can start.

NIOS MAP1 Enter User Mode

o o o o o o o o o o o
o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Turn on the interrupt and place the processor in the mode specified by bit 0 of the status register. If bit 0 is 1

the processor will execute one more instruction before entering user mode. If Interrupt On actually changes

state (0 -+ 1) the processor will execute one more instruction before an interrupt can start.

DOB -,MAP1

o

Map an Address

AC
I

o o F o o o o
I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Map the address contained in AC bits 1-15, interpreting it as a user address for a write reference (in other

words, indicate any violations in the status register).

(Perform the function specified by F.)

DlB -,MAP1 Read Mapped Address

o AC o F o o o o
I I

o 2 3 4 5 6 7 8 9 \0 II 12 13 14

Read the mapped address derived from the address supplied by the last DaB -,MAPI into AC bits 1-15.
(Perform the function specified by F.)

15

2-47

DOB -,MAP2 Select Page Written C"heck

I 0 1 1 AC
t

o o o o o o o o o
o 2 3 4 5 6 7 9 10 11 12 13 14 15

Select, for page-written checking, the pair of contiguous physical half blocks consisting of the half block specified
by AC bits 12-15 and the next higher-numbered half block. (If AC bit 15 is 0, this instruction selects the

physical block specified by bits 12-14.)

DIA -,Map 2 Read Page Written Status

o 1 AC o o 1 F o o o o o
o 2 3 4 5 6 7 9 10 11 12 13 14 15

Read the Page Written flags associated with the currently selected pair of contiguous physical half blocks into
AC as shown (a 1 in an AC bit indicates the user wrote in the corresponding page).

PAGES WRITTEN IN NEXT HALF BLOCK PAGES WRITTEN IN SPECIFIED HALF BLOCK

7 6 5 4 3 2 o 7 6 5 4 3 2 o
o 2 3 4 5 6 7 8 10 11 12 13 14 15

If F is 11 (P), select the next pair of contiguous half blocks following this pair for page-written checking.

Note.: If the user allocation being checked is larger than one block, the executive should use this instruction
in the form DIAP so that a string of them can check all user blocks. A single block can of course be checked
by a DIA. But if the first in a series of blocks were checked by a DIA, and there were no intervening DOB

-,MAP2 or NIOP MAP2, a subsequent DIA would check the status of the higher half block already checked
and the next half block after that (ie the sixteen flags checked would overlap the previous set by eight).

SKPDN MAPO Skip if Any Violation

o o o o o o o
o 2 3 4 5 6 7 8 9 10 11 12

Skip the next instruction in sequence if any of bits 9-12 of the violation status register is 1.

SKPDZ MAPO Skip if No Violation

a a a o o o
o 2 3 4 5 6 7 8 9 10 11 12

Skip the next instruction in sequence if bits 9-12 of the violation status register are all O.

248

o 1 o
13 14 15

o 1 o
13 14 15

SKPBN MAPO Skip if 10 Violation

o o o o o o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bit 10 of the violation status register is 1.

SKPBZ MAPO Skip if No 10 Violation

o o o o 1 o o o o 1 o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bit 10 of the violation status register is O.

SKPON MAP1 Skip if Validity Violation

o 2 3 4 5 6 7 8 9
I 0 o o o o 1 o o o

10 11 12 13 14 IS

Skip the next instruction in sequence if bit II of the violation status register is 1.

SKPDZ MAPl Skip if No Validity Violation

o o o 1 1 1 o o
o 2 3 4 5 6 7 8 9 12 13 14 15

Skip the next instruction in sequence if bit II of the violation status register is O.

SKPBN MAPl Skip if Protection Violation

o 1 1 o o 1 o o o o o o 1 1
o 2 3 4 5 6 7 8 9 10 11 12. 13 14 15

Skip the next instruction in sequence if bit 12 of the violation status register is 1.

SKPBZ MAPl Skip if No Protection Violation

o o o o 1 o o o 1
o 2 3 4 7 8 9 10 II 12 13 14 15

Skip the next instruction in sequence if bit 12 of the violation status register is O.

2-49

At power turnon the processor is in supervisor mode and the mapping and protection data are indeter­
minate. The 10 reset switch places the processor in supervisor mode but does not affect the mapping and
protection data. To run a user program without write-protection, the executive must put Os in the protection

bits for the pages in the user blocks.
Note that the executive may not be able to trace a violation to its source. Eg, a JMP to an invalid address

is not detected until the next instruction is fetched, and by then the location of the JMP cannot be determined.

2.7 OPERATION

The operator console is illustrated on page 1-2. The lights in the upper right display control conditions,

the rows of lights in the upper center display the processor registers. Below the latter is a register of toggle

switches through which the operator can supply addresses and data to the processor (the up position of a switch

represents a 1). The register can be used in conjunction with some of the operating switches, and its contents
are read by the READS instruction.

In the row at the bottom of the panel are the operating switches. Each switch lever is actually two
momentary-contact logical switches with a common off position in the center. Lifting the lever up turn's on

the switch whose name is printed above it; pressing it down turns on the switch whose name is written below.

At the upper left is a 3-position key-operated rotary switch that controls power and locks the console.

Turning it to ON simply turns on power. Turning it to LOCK keeps power on and disables the operating

switches so no one can interfere with the operation of the processor (the operator can still use the data switches

to supply information to the program).

Indicators. When any indicator is lit the associated flipflop is in the 1 state or the associated function

IS true. A few indicators display useful information while the processor is running, but most change too

frequently and are therefore discussed in terms of the information they display when the processor has stopped.

The instruction lights (Nova and Supernova only) display the left eight bits of the instruction being
executed or just completed; these lights are all off if the processor stops following a program interrupt (in
the Nova they are also off following a data channel cycle). The address lights display the contents of PC.

The numbered data lights display the data written in the last memory reference, except following a Supernova
memory step when they display the address for the next reference.

RUN

ION

FETCH

DEFER

EXECUTE

DCH

2-50

The processor is in normal operation with one instruction following another. When

the light goes off; the computer stops.

The program interrupt is enabled (this is the Interrupt On flag).

The next processor cycle will be used to fetch an instruction from memory.

The next processor cycle will be used to fetch an address word in an indirectly
addressed memory reference instruction.

The next processor cycle will be used to reference memory for an operand in a move

data or modify memory instruction.

(Nova and Supernova only.) The next processor cycle will be used by the data

channel for direct access to memory by an in-out device.

PI

OVERLAP

PROTECT

(Nova and Supernova only.) The next processor cycle will be used to start an
interrupt by storing PC in location O.

(Supernova only.) Arithmetic and logical class instructions are being executed out
of read-only memory and the processor is overlapping the execution of one with
the fetching of the next. (This light is always off when the computer stops.)

(Supernova only.) The processor is in user mode.

FETCH, DEFER, EXECUTE, DCH and PI are the state indicators: they specify the state (the type of

cycle) the processor will enter if operations are continued by pressing the CO~TINUE or MEMORY STEP
switch (see below). On the Nova panel one and only one light must be lit; on the other machines at most

one light is lit; no light lit on the Supernova is equivalent to FETCH. Unless otherwise indicated, use of any
operating switch leaves the processor ready to enter the fetch state.

Operating Switches. All of the switches in the bottom row except STOP and RESET are interlocked

so that they have no effect if RUN is lit. The four pairs of switches at the left are for depositing data in the

accumulators and examining their contents. Lifting a switch lever up loads the contents of the data switches

into the specified accumulator; pressing it down displays the contents of the accumulator in the data lights.

At completion the instruction lights are off.

The switches at the right perform the following functions when turned on.

EXAMINE

DEPOSIT

EXAMINE NEXT

DEPOSIT NEXT

Load the address contained in the data switches into PC (which is displayed in the

address lights) and display the contents of the addressed location in the data lights.

Deposit the contents of the data switches in the memory location specified by

the address lights. At completion the data lights display the word deposited.

Add 1 to the PC address -displayed in the address lights and display the contents

of the location specified by the incremented address in the data lights.

Add 1 to the PC address displayed in the address lights and deposit the contents of

the data switches in the memory location specified by the incremented address. At

completion the data lights display the word deposited.

The above four switches can be used for a sequence of operations on consecutive memory l~cations.

The sequence must begin with EXAMINE to supply the initial address unless PC already points to the right

location. Suppose we set the data switches to octal 100 initially. Then the following sequence of switch settings
produces the effects listed.

EXAMINE

EXAMINE NEXT

EXAMINE NEXT

DEPOSIT

EXAMINE NEXT

DEPOSIT

DEPOSIT NEXT

EXAMINE NEXT

Display location 100.

Display location 101.

Display location 102.

Load data switches into 102.

Display location 103.

Load data switches into 103.

Load data switches into 104.

Display location 105.

2-51

START

STOP

CONTINUE

INST STEP

Load the address contained in the data switches into PC, light FETCH and RUN,

and begin normal operation by executing the instruction at the location specified

byPe.

Stop before fetching the next instruction. Thus the processor finishes the current
instruction, and then stops with the instruction lights displaying the instruction,
unless a device is waiting for data channel access or a program interrupt, in which
case it performs all such operations before stopping with the instruction lights off.
The address lights point to the next instruction.

CAUTION

If the current instruction contains an infinitely long indirect addressing chain or
there are continuous data channel requests, pressing STOP will not stop the com­

puter (see RESET, below).

Turn on RUN and begin normal operation in the state indicated by the lights.

Begin operation in the state indicated by the lights but then stop as though STOP

had been pressed at the same time. If the stop occurs at the end of an instruction,

the data displayed by the data lights depends on the instruction as follows.

LOA, STA

ISZ, OSZ

JMP

JSR

Arithmetic and logical

In-out

Operand

Operand

r-T0va 1200 and sao, direct: instruction

Otherwise: effective address

Nova 1200 and 800, direct: instruction

Nova 1200 and 800, indirect: effective address
Otherwise: address loaded into AC3 (old PC + 1)

Supernova: unshifted result

Otherwise: instruction

Supernova: zero; Nova: instruction
Nova 1200 and 800: data

Note that the AC switches can be used between instruction steps without

requiring any readjustment.

MEMORY STEP Perform a single pmcessor cycle in the state indicated by the lights .and then stop.

At completion the lights indicate the next state to be executed. The address lights
display PC; the data lights on the Nova display the data for the last memory step,
on the Supernova they display the address for the next memory step.

RESET

2-52

CAUTION

Using the AC switches between memory steps within an instruction usually destroys
information necessary for the execution of the rest of the instruction.

Stop at the end of the current processor cycle. Clear the flags in all 10 devices, clear

Interrupt On, place the processor in supervisor mode, and set the clock to line
frequency.

CAUTION

Information deposited in an accumulator from the console is displayed in the lights

but is not actually entered into the accumulator until the processor performs some
other operation. Hence pressing RESET after an AC deposit prevents the data from

actually reaching AC.

PROGRAM LOAD

CHANNEL START

Supernova: Read 33 words from the device selected by data switches 10-15 into
locations 0-40, then light RUN and begin normal operation at location 40.
Nova 800, Nova 1200: Deposit the contents of the bootstrap read-only memory
into locations 0-37, then light RUN and begin normal operation at location O.

(Supernova only.) Issue a DIAS to the device selected by data switches 10-15,
store JMP 377 in location 377, then light RUN and begin normal operation by
executing the instruction at location 377.

EXAMINE can be used to load PC for beginning any single step procedure. Instruction stepping can

also be begun by pressing START while holding STOP on.
, To use the various examine and deposit switches between instruction steps, simply remember what PC

is and restore it before continuing.

2-53

Chapter III
Hardcopy Equipment

This chapter discusses the simpler peripheral devices: teletypewriter, tape reader, tape punch, card reader,
card punch, plotter and line printer. These devices are used primarily for communication between computer

and operator using a paper medium: tape, cards, form paper or graph paper. All transfers for them are made

by the program through the accumulators.

The program can type out characters on the teletypewriter and can read characters that have been typed
in at the keyboard. This device has the slowest transfer rate of any, but it provides a convenient means of man­

machine interaction. The KSR teletypewriters comprise only a keyboard and printer; the ASR models also have

a slow tape reader and punch. This punch and the separate high speed punch supply output in the form of 8-

channel perforated paper tape. The information punched in the tape can be brought into the processor by the
high speed tape reader or the one mounted in the teletypewriter.

The card equipment processes standard 12-row 80-column cards. Many programmers find cards a con­

venient medium for source program input and for supplying data that varies from one program run to another.
Cards and paper tape are both convenient to prepare manually, but card input is much faster than tape, and

simple changes are easier to make: individual cards can be repunched, and cards can be added or removed

from the deck. A possible consideration in using cards is that many installations do not include an on line
card punch.

The line printer provides text output at a relatively high rate. The program must effectively typeset each

line; upon command the printer then prints the entire line. With the plotter, the program can produce ink

drawings by controIlin~ the incremental motion of pen on paper in a cartesian coordinate system. Curves and

figures of any shape can be generated by proper combinations of motion in x and y.

3.1 TELETYPEWRITER

Four teletypewriter models are regularly available for use with the Nova computers: the ASR33, KSR33

and KSR35, all of which are capable of speeds up to ten characters per second, and the KSR37, which can
handle up to fifteen characters per second. The program can type out characters and can read in the
characters produced when keys are struck at the keyboard. With an ASR the program can also punch
characters in a tape and read characters from a tape.

The teletype separates its input and output functions and is really two distinct devices. Each has its own

device code, its own Busy, Done and Interrupt Disable flags, and its own interrupt priority mask assignment.

Placing a code for a character in the output buffer and setting Output Busy causes the teletype to print the
character or perform the designated control function. Striking a key places the code for the associated char­

acter in the input buffer where it can be retrieved by the program, but it does nothing at the teletype unless the
program sends the code back as output.

3-1

Character codes received from the keyboard have eight bits wherein the most significant is an even parity
bit. The Model 33 and 35 printers ignore the parity bit in characters transmitted to them. The model 37
ignores the parity bit in a code for a printable character, but it performs no function when it receives a control
code with incorrect parity.

The Model 37 has the entire character set listed in'the table in Appendix E. Lower case characters are
not available on the Model 33 or 35, but transmitting a lower case code to the teletype causes it to print the
corresponding upper case character. (There are, of course, no restrictions on the codes that can be punched
in or read from tape.) To go to the beginning of a new line. the program must send both a carriage return,
which moves the type block or box to the left margin, and a line feed, which spaces the paper. The horizontal
and vertical tabs and form feed have no effect on the Model 33 printer.

Teletype Output

The teletype output uses only one 10 transfer instruction. Output Busy and Output Done are controlled
or sensed by bits 8 and 9 in all 10 instructions with device code 11, mnemonic TTO.Output Interrupt Disable
is controlled by interrupt priority mask bit 15.

DOA -,TTO

o 1 1
o 2

Data Out A, Teletype Output

3

AC
I 4

o 1
5 6

o
7 8

F o o 1 o o 1
I

9 10 11 12 13 14 15

Load the contents of AC bits 8-15 into the teletype output buffer, and perform the function specified by F.

Setting Output Busy turns on the transmitter, causing it to send the contents of the output buffer serially
to the teletype (the buffer is cleared during transmission). The printer prints the character or performs the
indicated control function. If the punch is on, the character is also punched in the tape, with AC bit 15 cor­
responding to channel 1 (a 1 in AC produces a hole in the tape). Completion of transmission clears Output

Busy and sets Output Done, requesting an interrupt if Output Interrupt Disable is clear.

NOTE

Although the buffer clears during transmission, giving an NIOS without loading
it again does not transmit a zero character. So do not give an NIOS without first
loading the buffer. To transmit any character including null, either give a DOAS or

give a DOA followed by an NIOS.

CAUTION

Clearing Output Busy while the transmitter is running (as with an NIOC)
terminates the transmission. But the printer still prints whatever character is repre­
sented by the indeterminate code it receives.

Timing. Models 33 and 35 can type or punch up to ten characters per second. After Owtput Done is set,
the program has 4.55 ms to give a DOAS to keep typing or punching at the maximum rate. The 37 can
handle fifteen characters per second, 66.7 ms. per chal'acter. After Output Done is set, the program has 3.33
ms to send a new character to maintain the maximum typing rate.

3-2

The sequence carriage return-line feed, when given in that order, allows sufficient time for the type block

to get to the beginning of a new line. After tabbing, the program must wait for completion of the mechanical
function by sending one or two rubouts. If the time is critical, the programmer should measure the time

required for his tabs. Tabs are normally set every eight spaces (columns 9, 17, ...) and require one rubollt.

Teletype Input

The teletype input uses only one 10 transfer instruction. Input Busy and Input Done are controlled or

sensed by bits 8 and 9 in all 10 instructions with device code 10, mnemonic TTL Input Interrupt Disable is con­

trolled by interrupt priority mask bit 14.

DIA -,TTl

o
o 2

Data In A, Teletype Input

3

AC
I 4

o
5

o
6 7 8

F o o o o o
!

9 10 11 12 13 14 15

Transfer the contents of the input buffer into AC bits 8-15, and perform the function specified by F. Clear AC
bits 0-7.

Reception from the keyboard requires no initiating action by the program; striking a key transmits the code

for the character serially to the input buffer. However, if the reader is under program control, giving the start

function (NIOS or DIAS) sets Busy and causes the reader to read all eight channels from the next line on tape
and transmit the line serially into the buffer (the presence of a hole produces a 1 in the buffer). In either case

completion of reception clears Input Busy and sets Input Done, requesting an interrupt if Input Interrupt Dis­

able is clear. When the character is brought into AC, tape channell corresponds to AC bit 15.

Timing. After Input Done is set by a Model 33 or 35, the character is available for retrieval by a DIA for
21.59 ms before another key strike can destroy it. If the reader is in use, the program has 3.41 ms to give a

DIAS (or DIA and NIOS) and keep the tape in continuous motion. With the 37, the character is available for
9.17 ms after Input Done is set.

Programming Examples

There are basically two procedures for using the skip instructions in a loop to process a series of characters.
Consider this loop for typing out (we assume the printer is not in use).

OUT: DOAS

SKPDN

AC,TTO

TTO

JMP .-1

lMP OUT

;Type out

;Wait till transmission done

;Get next character, compute, etc

;Go back

This procedure is very poor as most of the time is spent waiting during the transmission, and there is very little

time to do anything afterwards if we are to go back to type out the next character at full speed. But with
this arrangement:

3-3

OUT: SKPBZ TTO

lMP .-1
DOAS AC,TTO

JMP OUT

;Wait till printer free

;Type out character

;Compute, etc
;Get next character

;Go back

we have almost all of the time for worthwhile program and we can run at full speed provided only that we jump

back to OUT before the entire teletype cycle time is over. Also, the first time into the loop we wait until any

previous (perhaps unknown to us) teletype output operation is finished.

The same dichotomy exists for input operations. This is bad:

IN: NIOS

SKPDN

JMP
DlA

JMP

but this is good:

NIOS

IN: SKPDN
JMP

TTl

TTl

.-1

AC,TTI

IN

TTl

TTl

.-1
DlAS AC,TTI

JMP IN

;Read character

;Wait till reception done

;Bring in character

;Decide whether to read another character, etc

;Go back

; Read first character

;Wait till reception done

; Bring in character and read another

;Compute, etc

;Go back

Of course the last program does not allow us to inspect a character to determine whether to get another one.

So for the best of all possiple worlds we combine the procedures.

IN:

3-4

NJOS

SKPDN

JMP

DlA

lMP

TTl

TTl

.-1

AC,TTI

IN

;Read character

;Lots of time to compute

;Wait till reception done

;Bring in character

;Decide whether to get another

;Do this if want another

;Skip to here if not

I

Operation

A KSR is actually two indepeni:.lent devices, keyboard and printer, which can be operated simultaneously.

An ASR is really four devices, keyboard, printer, reader and punch, which can be operated in various combi­

nations. Power must be turned on by the operator. On the 33 and 35 the switch is beside the keyboard and

is labeled LINE/OFF/LOCAL or ON/OFF and has an unmarked third position opposite ON. A similar
switch is located beneath the stand on the 37. When this switch is set to LOCAL or the unmarked position,

power is on but the machine is off line and can be used like a typewriter. Moreover, in an ASR, turning on

the punch allows the operator to punch a tape from the keyboard, and running the reader allows a tape to
control the printer (if the punch is also on, it duplicates the tape).

Turning the switch to LINE or ON connects the unit to the computer and separates its input and out­

put functions. Thus any information transmitted to the computer from the keyboard affects the printer only in­

sofar as the computer sends it back. Turning on the reader places it under program coptrol, and turning on the
punch causes it to punch whatever is sent to the printer by the computer.

The only control on the reader is a 3-position switch. When the switch is in the FREE position, the tape
can be moved by hand freely through the reader mechanism. The STOP position engages the reader clutch so

the tape is stationary but the reader is still off. Turning the switch to START causes the reader to read the tape

if the unit is in local, but places it under program contr;>l if on line.

The operator controls the punch by means of four pushbuttons. The two on the right turn the punch on
and off. Pressing the REL. button releases the tape so it can be moved by hand through the punch mechanism.
Pressing B. SP. moves the tape backward one frame so the operator can delete a frame that is incorrect by

striking the rubout key. Pressing HERE IS with the keyboard in local punches twenty lines of blank tape (lines

with only a feed hole punched).

The keyboard resembles that of a standard typewriter. Codes for printable characters on the upper parts
of the key tops on the 33 and 35 are transmitted by using the shift key; most control codes require use of the

control key. Those familiar with the 33 or 35 who are using the 37 for the first time should take a close look

at the keyboard. On the 37 the shift is used for real upper case characters. The control key is used for some

control characters, but many have separate keys. Note also that both the keyboard arrangement and the labels

differ somewhat. On all models the line feed (labeled "new line" on the 37) spaces the paper vertically at six
lines to the inch, and must be combined with a return to start a new line. The local advance (feed) and return

keys affect the printer directly and do not transmit codes. Appendix E lists the complete teletype code, ASCII

characters, key combinations, and differ~nces among the several models.

On the 33 and 35 is a repeat button REPT. Pressing this button and striking any character key causes

transmission of the corresponding code so long as REPT is held down. Characters that require the shift key

may also be repeated in this manner, but there is no repetition of control characters.
Teletype manuals supplied with the equipment give complete, illustrated descriptions of the procedures

for loading paper and tape, changing the ribbon, and setting horizontal and vertical tabs. Setting tabs is usually

left for maintenance personnel; in any event, the best and easiest way to learn how to do any of these things

is to have someone who knows show you how. However, as a precautionary measure we describe here the
things you may have to do your·self.

Tltpe. The tape moves in the reader from back to front with the feed holes closer to the left edge. To load

tape, set the switch to FREE, release the cover guard by opening the latch at the right, place the tape so that

the sprocket wheel teeth engage the feed holes, close the cover guard, and set the switch to STOP.

To load tape in the punch, raise the cover, feed the tape manually from the top of the roll into the guide
at the back, move the tape through the punch by turning the friction wheel, then close the cover. Turn on the

punch with the unit in local and punch about two feet of leader by pressing HERE IS or the control, shift and

P keys to generate null codes.
3-5

Paper. The 33 printer has an 8th-inch roll of paper at the back. Printed sections can be torn off against

the edge of the glass window in front of the platen. To replenish the paper, snap open the cover, remove the old

roll and slip a new one in its place. Draw the paper from the roll around the platen as in an ordinary typewriter.

The 35 and 37 printers have a sprocket feed and use 8Yz X 11 fanfold form paper. The supply is held in

a tray at the back. To replenish it, first remove the upper cover by pressing the cover release button on the

right side. To free the remaining old paper for removal, lift the paper guides by pushing the handle .marked

PUSH at the right of the platen. To insert new paper from the tray, bring it up below the platen at the rear,
line up the holes at the edges of the paper with the sprockets, and press line feed (in local) to draw the paper

under the platen.

Ribbon. Replace the ribbon whenever it becomes worn or frayed or the printing becomes too light. Dis­

engage the old ribbon from the ribbon guides on either side of the type block, and remove the reels by lifting
the spring clips on the reel spindles and pulling the reels off. Remove the old ribbon from one of the reels and

replace the empty reel on one side of the machine; install a new reel on the other side. Push down both reel

spindle spring clips to secure the reels. Unwind the fresh ribbon from the inside of the supply reel, over the

guide'roller, through the two guides on either side of the type block, out around the other guide roller, and
back onto the inside of the takeup reel. Engage the hook on the end of the ribbon over the point of the arrow

in the hub. Wind a few turns of the ribbon to make sure that the reversing eyelet has been wound onto the

spool. Make sure the ribbon is seated properly and feeds correctly in operation.

3.2 PAPER TAPE READER

Two high speed readers, both of which process 8-channel perforated paper or mylar tape photoelectrically,
are regularly available for use with the Nova computers. The 4011A is a sprocket-feed type that operates at

speeds up to 150 lines per second; the 4011B is a brake-clutch type that can read up to 300 lines per second.
Except for timing considerations, the programming for both readers is identical: each uses only one 10

transfer instruction to retrieve data from an 8-bit buffer in the interface. Busy and Done are controlled or
sensed by bits 8 and 9 in all 10 instructions with device code 12, mnemonic PTR. Interrupt Disable is
controlled by interrupt priority mask bit 11.

DIA -,PTR

a
o 2

Data In A,Paper Tape Reader

3

AC
I 4

o o
5 6 7

F o a a a
I

8 9 10 11 12 13 14 15

Transfer the contents of the reader buffer into AC bits 8-15, and perform the function specified by F. Clear AC

bits 0-7.

Setting Busy causes the reader to read all eight channels from the next line on tape into the buffer

(the presence of a hole products a 1 in the buffer). When the operation is complete the reader clears Busy and sets
Done, requesting an interrupt if Interrupt Disable is clear. When the character is brought into AC, tape channel 1

corresponds to AC bit 15.

Clearing Busy stops the reader.
3-6

Timing. At 300 lines per second the faster reader takes 3.3 ms per character. After Done is set, the

program has 100 JLS to retrieve the character and set Busy to keep the tape in continuous motion. Waiting

longer forces the reader to stop and restart, and the program should not attempt to operate the reader in
this manner at rates above 150 lines per second. Faster start-stop rates produce reader chatter, which is not

only rather annoying but also conducive to less reliable reader operation.

The sprocket reader requires at least 6.7 ms per line. After Done is set, the program has 1 ms to

retrieve the character and set Busy to maintain the maximum transfer rate, but" the reader can operate at
any speed up to 150 lines per second.

Operation. Tapes can be oiled or unoiled but must be opaque. To load the sprocket reader, place

the fanfold stack vertically in the bin at the right, oriented so that the front end of the tape is nearer
the read head and the feed holes are away from you. Lift the gate, take three or four folds of tape from

the bin, and slip the tape into the reader from the front. Carefully line up the feed holes with the sprocket

teeth to avoid damaging the tape, and close the gate. Make sure that the part of the tape in the left bin is
placed to correspond to the folds, otherwise it will not stack properly. Turn on the power switch so the

reader can respond to the program.

At the left on the brake-clutch reader is an OFF I LOAD IRUN switch. The motor is on when the switch

is in either of the latter two positions, but in LOAD the brake is off. However, to slip the tape in or out

of the reader mechanism, you must lift the lever in the center; and this overrides the other switch, so tape
can be load~d in RUN. The loading procedure is the same as for the sprocket reader but there is nothing

to line up: simple press the tape against the back plate and pull the lever back down.

3.3 LOADING PROGRAMS

Before a program can be executed it must be brought into memory. This requires that a loading program

already reside in memory. If the memory is empty, one ean use the automatic loading switches on the
Supernova, Nova 800 or Nova 1200, but with the Nova or with a Nova 800 or 1200 without the program
load option, one must use the data switches to deposit a bootstrap loader, which is ordinarily used only to
bring in a more extensive binary loader. This lattcr program is then used to read the object tapes of all other

programs. The binary loader usually resides in high core where it is not disturbed by any of the standard
softwarc. But if an undebugged user routinc inadvertently destroys the binary loader, it can be restorcd by

first reloading the bootstrap manually.
Below are two versions of the standard bootstrap loader, one for the teletype reader, the other for the

high speed reader. This program loads data relatively to its own position in memory. Although the bootstrap
can be placed anywhere, the usual procedure is to place it in high core, beginning at the seventeenth (twenty­

first octal) location from the top, so that the binary loader also residcs in high corc. Thc program is shown here

for placement at the top of a 4K memory.

The bootstrap loader reads a tape in a special format in which each word is divided into four 4-bit
characters. Each character occupies channels 1-4 (the right half) of a line on the tape. The first character

of a word, containing bits 0-3, is indicated by a 1 in channel five. The tape can begin with any number

of blank lines. The first two words are ST AI,. + 1 and JMP . - 4, which are stored in the final two

loader locations as indicated in the listing. The third, fifth, . . . words are ST A instructions that address
ACl, the fourth, sixth, ... words are data. The bootstrap executes each odd-numbered word to store the
succeeding data word in the location specified by the ST A instruction. The final odd-numbered word is a

HAL T, which stops the processor.
3-7

In the following listings the first two columns at the left give each memory location and its contents

for a 4K memory. The remaining columns are a standard program listing. To load the program simply

use. the switches to place the octal numbers in the locations specified. For a memory of any other size,

load the bootstrap beginning at a location whose address is 208 less than the largest address.

;BOOTSTRAP LOADER, TELETYPE VERSION

07757 126440 GET: SUBO 1,1 ;Clear AC 1, Carry
07760 063610 SKPDN TTl

07761 000777 JMP .-1 ;Wait for Done
07762 060510 DIAS O,TiI ;Read into ACO and restart reader

07763 127100 ADDL 1,1 ;Shift Art left 4 places
07764 127100 ADDL 1,1

07765 107003 ADD O,I,SNC ;Add in new word

07766 000772 JMP GET+l ;Full word not assembled yet

07767 001400 JMP 0,3 ;Got full word, exit

07770 060110 BSTRP: NIOS TTl ;Enter here, start reader

07771 004766 JSR GET ;Get a word

07772 044402 STA 1,.+2 ;Store it to execute it

07773 004764 JSR GET ;Get another word

;This will contain an STA (first STA 1,.+1)

;This will contain JMP .-4

;BOOTSTRAP LOADER, HIGH SPEED READER VERSION

07757 126440 GET: SUBO 1,1 ;Clear ACl, Carry

07760 063612 SKPDN PTR

07761 000777 JMP .-1 ;Wait for Done

07762 060512 DIAS O,PTR ;Read into ACO and restart reader

07763 127100 ADDL 1,1 ;Shift ACI left 4 places

07764 127100 ADDL 1,1

07765 107003 ADD O,I,SNC ;Add in new word

07766 000772 JMP GET+l ; Full word not assembled yet

07767 001400 JMP 0,3 ;Got full word, exit

07770 060112 BSTRP: NIOS PTR ;Enter here, start reader

07771 004766 JSR GET ;Get a word

07772 044402 STA 1,.+2 ;Store it to execute it

07773 004764 JSR GET ;Get another word

;This will contain an STA (first STA 1,.+1)

;This will contain JMP .-4

To use the bootstrap to load the binary loader or any other program in the special format, follow

these steps:

1. Put the special format tape in the reader and turn it on.

2. Press RESET.

3. For a 4K system set the data switches to 007770 (7 less than the largest address).

4. Press START.
3-8

The bootstrap loader begins at location BSTRP. After the tape is loaded the processor stops with

07775 displayed in the address lights.

Automatic Program Load

Below is the standard version of the bootstrap associated with the program load switch on the Nova 800

and Nova 1200. This program includes both the program load and channel start features of the Supernova.

To load information, first set up the device that is to be used and set its code into data switches 10-15.

For a high speed device such as magnetic tape or disk (which use the data channel), tum on data switch 0

(up); for a low speed device such as teletype or paper tape reader, tum off switch O. Then press program
load. The processor will automatically deposit the contents of the read-only LS[chips into locations 0-37

and then begin normal operation at location O.

The bootstrap reads the data switches, sets up its own 10 instructions with the specified device code,

and then simulates the Supernova type operation as indicated by data switch O. If the switch is on, the boot­

strap acts like the channel start procedure discussed in §2.5: it starts the device for data channel storage

beginning at location 0, and then sits at location 377 executing a JMP 377 until a data word loaded into 377

causes it to do something else.

If switch 0 is off, the bootstrap reads low speed input in a manner similar to that described at the end

of §2.3. The device must supply 8-bit data bytes, and each pair of bytes is stored as a single word in memory

wherein the first and second bytes read become the left and right halves of the word. The program ignores

tape leader, ie it does not begin storing any words until it reads a nonzero synchronization byte. The first

word following the sync byte must be the negative of the total number of words to be read (including the

first word), for a maximum of 192 words. The program stores the words beginning at location 100; after

reading all the data, it jumps to the last word stored.

Some of the techniques used here result from the fundamental restriction that the program be no longer

than thirty-two words. Time, on the other hand, is not at all critical, as it is assumed that program load will
be used only when some catastrophe wipes out the binary loader at the top of memory.

00000 062677 BEG: 10RST ;Reset all 10
00001 060477 READS 0 ;Read switches into ACO
00002 024026 LOA I,C77 ;Get device mask (000077)
00003 107400 AND 0,1 ;Isolate device code
00004 124000 COM 1,1 ; - device code - 1

00005 010014 LOOP: ISZ OPI ;Count device code into all
00006 010030 ISZ OP2 ;10 instructions
00007 010032 ISZ OP3
00010 125404 INC 1,I,SZR ;Done?
00011 000005 JMP LOOP ;No, increment again

00012 030016 LOA 2,C377 ;Yes, put JMP 377 into location 377

00013 050377 STA 2,377

00014 060077 OPl: 060077 ;Start device; (NIOS 0) - 1

00015 101102 MOVL O,O,SZC ;Low speed device? (test switch 0)
00016 000377 C377: JMP 377 ;N 0, go to 377 and wait for channel

00017 004030 LOOP2: JSR GET+l ;Get a frame
00020 101065 MOVe O,O,SNR ;Is it nonzero?

3-9

00021 000017 JMP LOOP2 ;No, ignore and get another

00022 004027 LOOP4: JSR GET ;Yes, get full word
00023 046026 STA 1,@C77 ;Store starting at 100 (autoincremcnt)
00024 010100 ISZ 100 ;Count word - done?

00025 000022 JMP LOOP4 ;No, get another
00026 000077 C77: JMP 77 ;Yes - location counter and jump to last

;word
00027 126420 GET: SUBZ 1,1 ;Clear AC1, set Carry

OP2:
00030 063577 LOOP3: 063577 ;Done?: (SKPDN 0) - 1
00031 000030 JMP LOOP3 ;No, wait
00032 060477 OP3: 060477 ;Yes, read in ACO: (DIAS 0,0) - 1
00033 107363 ADDCS O,I,SNC ;Add 2 frames swapped - got second?
00034 000030 JMP LOOP3 ;No, go back after it
00035 125300 MOVS 1,1 ;Yes, swap them
00036 001400 JMP 0,3 ;Return with full word
00037 000000 0 ;Padding

The usual procedure is to use the above bootstrap to bring in a larger program that sizes memory and
then reads in the binary loader, storing it at the top. The same program can be used as the bootstrap for the

Supernova with the addition of a zero word (JMP 0) for location 40.

Binary Loader

A standard loader for I<.?ading program tapes in the type of object tape format generated by the assembler
[refer to the assembler manual] is available in several forms. Program tape number 091-000004 (writeup
093-000003) is the binary loader for use with the manually loaded bootstrap given at the beginning of this
section; 091-000036 (writeup 093-00005\) is the binary loader prefaced by the sizing and loading program
for use with the Nova 800 and 1200 program load; 081-00000] (writeup 093-000003) is the binary loader

prefaced by both the equivalent Supernova bootstrap and the sizing program. Following an automatic load,
the operator can read an object tape on the same device simply by pressing CONTINUE. To load an object
tape in any other circumstances, follow this procedure.

l. Put the object tape in the paper tape reader or teletype.
2. Set the data switches to x7777.

3. If you are using the paper tape reader, turn on data switch 0; otherwise turn it off.

4. Press START.

If a starting address is given on the object tape, control will be transferred to that location when loading is

complete. Otherwise, the loader will -halt with the address lights displaying x7740, and the user must start the

program from the console.
The binary loader computes a checksum over every data block and start block read. If a checksum

failure occurs over a block, the loader halts with x7726 displayed in the address lights. Reposition the tape

to the beginning of the last block read and press CONTINUE. If the checksum failure again occurs, the
object tape is probably in error. Generate a new tape before attempting to load the program again.

3-10

3;4 PAPER TAPE PUNCH
The punch perforates 8-channel paper tape at speeds up to 63.3 lines per second. It uses one 10

transfer instruction to load data into an 8-bit buffer in the interface. J;3usy and Done are controlled or
sensed by bits 8 and 9 in all 10 instructions with device code 13, mnemonic PTP. Interrupt Disable

is controlled by interrupt priority mask bit 13.

DOA -,PTP Data Out A, Paper Tape Punch

o AC 0 0 F 0 0 1 0
o 2 3 1 4 5 6 7 8 1 9 10 II 112 12 13 14 15

Load the contents of AC bits 8-15 into the punch buffer, and perform the function specified by F.

Setting Busy causes the punch to punch the contents of the buffer in the tape with AC bit 15 corre­
sponding to channell (a 1 in AC produces a hole in the tape). After punching is complete, the device clears Busy
sets Done, requesting an interrupt if Interrupt Disable is clear.

Timing. While the punch motor is on, punching is synchronized to a punch cycle of 15.8 ms. After
Done sets, the program has 11.3 ms to give a new DOAS to keep punching at the maximum rate; after 11.3
ms punching is delayed until the next cycle.

The standard punch must be left on all the time that it might be used as it otherwise will not respond
to the program. With the power option the punch can be left off. Then if Busy is set when the motor is off,
punching is automatically delayed 1 second while the motor gets up to speed. While the motor is on, timing
is as given above. It can be assumed that the motor will remain on throughout any normal punching run.
But if Busy remains clear for 5 seconds the motor turns off.

Operation. Fanfold tape is fed from a box behind the punch inside its enclosure. After it is punched, the
tape moves into a storage bin from which the operator may remove it through a slot in the front. Pushing the
feed button beside the slot clears the buffer and punches blank tape (tape with only feed holes punched) as long
as it is held in, provided either the power toggle switch is on or the punch has the power option. The power switch
overrides the logic and keeps the motor on continuously.

To load tape, first empty the chad box. Then tear off the top of a box of fanfold tape (the top has a
single flap; the bottom of the box has a small flap in the center as well as the flap that extends the full length
of the box). Set the box in the frame and thread the tape through the punch mechanism. The arrows on the
tape should be on top and should point in the direction of tape motion. If they are underneath, turn the box
around. If they point in the opposite direction, the box was opened at the wrong end; remove the box, seal up
the bottom, open the top, and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread the tape under the out-of-tape
plate, open the guide plate (over the sprocket wheel), push the tape beyond the sprocket wheel, and close
the guide plate. Press the feed button long enough to punch about a foot and a half of leader. Make sure
the tape is feeding and folding properly in the storage bin.

To remove a length of perforated tape from the bin, first press the feed button long enough to provide
an adequate trailer at the end of the tape (and also leader at the beginning of the next length of tape). Remove the
tape from the bin and tear it off at a fold within the area in which only feed holes are punched. Make sure that
the tape left in the bin is stacked to correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, turn the tape stack over so the beginning of the tape is on top, and label it with name,

date, and other appropriate information.

3-11

3.5 LINE PRINTER

Two line printers are regularly available for use with the Nova computers; these are Data Products Models
2310 and 2410, which output hardcopy composed of lines 80 and 132 characters long respectively. The print­

ing speed in lines per minute is a function of the number of columns printed from the left edge of the paper
as follows.

Model 2310 Model 2410
Columns Lines per minute Columns Lines per minute

20 1110 24 1110
40 650 48 650
60 460 72 460
80 356 96 356

120 290

132 245
There are sixty-four printing characters available to the program. The characters and codes are the figure and

upper case sets, codes 040-137, in the teletype code [Appendix E] with the exception that codes 134,136 and
137 respectively are an open diamond, the AND symbol (1\) and an open heart. Besides accepting printing
characters, the printer responds to three control characters, CR, LF and FF. All other codes are interpreted as
space characters.

Each line is printed from left to right in zones, and the printer has a buffer that holds the image of a
single zone. The 2310 has a 20-character buffer and printing is in four zones of twenty columns each; the 2410

has a 24-character buffer and printing is in six zones, where the first five are twenty-four columns each, the
sixth is twelve columns. To print a line, the program must first load the buffer one character at a time for zone

1 even if all the characters are spaces. Once the buffer is full, the characters are printed automatically, and
at the completion of the print cycle, the program can fill the buffer for zone 2. However, for each full line the
program need send out characters, including spaces, only as far as the rightmost nonspace character; giving a

control character at this point prints the current zone with only the filled portion of the buffer producing a
printout. When printing is caused by a control character or the filling of the buffer in the rightmost zone (in
zone 6 on the 2410 the buffer is "full" when twelve characters are loaded), the printer then returns to zone 1;

in other words, in the next print cycle the contents of the buffer will be printed at the left edge of the paper.
The standard .paper has II-inch pages. Spacing is six lines per inch and the image area is sixty-three lines

(there is automatically a half-inch space across the perforation between pages). Paper spacing is produced by
the control characters. An LF spaces the paper one line after the zone is printed; an FF spaces the paper to the
top line of the next page. If the program prints a whole line without spacing (either by giving a CR or filling

the buffer in the final zone), subsequent print cycles can overprint, ie print other characters in column posi­
tions already printed. With this technique the program can produce a character such as "o::j=" by overprinting a
slash on an equal sign (or vice versa). Programmers commonly use the combination CR plus LF to print and
space for compatibility with the teletype. Just as horizontal tabbing is accomplished by giving strings of spaces,

vertical tabbing is produced by strings of line feeds.
In a print cycle the characters are printed in the order that they pass the print hammers, and a given

character is printed simultaneously in all positions that require it. In other words the drum has a row of 80 or
132 Ms, a row of Ns, etc; all Ms are printed together, all Ns together, and so forth. The first character printed
depends only upon the position of the drum when the print cycle begins. The drum has sixty-four rows of
characters of which only sixty-three are used; the printer produces spaces in a zone by not printing anything
in the columns corresponding to the buffer positions that hold space characters.

Instructions. The printer uses two of the 10 transfer instructions, one to load a single character into a
7 -bit buffer in the interface, the other to re,ad a single status bit. Busy and Done are controlled or sensed by

3-12

bits 8 and 9 in all 10 instructions with device code 17, mnemonic LPT. Interrupt Disable is controlled by
interrupt priority mask bit 12.

DOA -,LPT Data Out A, Line Printer

o 1 AC o o F o o
I I

o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Load AC bits 9-15 into the character buffer and perform the function specified by F.

DlA -,LPT Data In A, Line Printer

o AC o o F o o 1
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the Ready status into AC bit 15, clear AC bits 0-14, and perform the function specified by F. A 1 read
into AC bit 15 indicates that the printer is available to the program (eg it is on line, with power on and paper
loaded) .

At the beginning of a print run the program should check Ready and send a form feed to get rid of

anything that may have been left in the zone buffer and start on a new page. The program can then set each

zone and print by giving DOASs that send the appropriate characters. Start sets Busy and sends the contents

of the character buffer to the printer. If the character sent neither fills the buffer nor is a valid control character,

the printer clears Busy after 6 ftS without setting Done; the program can then supply another character to the
printer (the contents of the character buffer remain until a new DOA is given). If the character sent fills the

zone buffer or is a valid control character, Busy remains set while the printer prints the contents of the buffer.

When the buffer again becomes available, Busy clears and Done sets, requesting an interrupt if Interrupt

Disable is clear, and subsequent characters will be loaded starting in the first buffer position. At the completion
of the print cycle, the printer either advances to the next zone or returns to zone 1 with or without spacing

the paper depending upon the condition that initiated the print cycle as explained above. If printing is caused

by a CR or a full buffer in the final zone, the next line will overprint unless the paper is advanced before any
nonspace characters are loaded into the zone buffer.

Timing. The program can load the buffer and print by giving DOASs separated by at least 6 1,s. The most

convenient way to produce this delay is simply to give the necessary number of no-ops to wait and then check

Busy to determine whether the printer can accept another character or has entered a print cycle. The program

must load the zone buffer within 2001's to keep the printer going at the maximum rate. The overall time
required for a print run is the total printing and spacing time for all lines. Buffer loading time is generally not

a factor in total printer operating time because the buffer becomes available in time for the program to load it

before the next print cycle can start or the paper stops.

Each print cycle takes 34 ms, spacing one line requires 20 ms. If before the paper stops, the program

gives another spacing character without first loading any printing characters in the buffer, the paper will move

at the slew rate of 13 ms per line (13 inches per second). The paper also moves at the slew rate when it is

spacing to a top of form.

3-13

Operation. On the top of the cabinet are three toggle switches and three indicators, including. a red power

light. The right toggle has a center null position and two momentary-contact positions. Pushing the switch

toward the back of the printer places it on line, lighting the ON LINE indicator, provided the READY light

is on. Thi'S last light indicates that power is, on, paper is loaded, the drum gate is closed, and the drive motor

is not overheated. The Ready status flag is set when both READY and ON LINE are lit. When the unit is off

line, the operator can use the other two toggles to step the paper a single line or run it to the top of the next

page. The main power circuit breaker is at the lower left behind the front panel, which can be opened by

pushing the button at the right.

The printer uses II-inch fanfold form paper with edge holes a half-inch apart. The minimum singlc copy

weight is 15 pound bond, but the printer can also handle multiple copies of up to six parts of 12 pound bond

with carbons. Paper width can be 4 to 9'Vs inches on the 2310, 4 to 14% inches on the 2410. To load paper,

open the front of the printer. At the left edge inside the printer is a lever with a black knob: push this lever to

the left and up, and swing the drum gate out to the right. Press TOP OF FORM to position the tractors and

form cam. Open the tractor guides, and place the paper on the tractor teeth with a perforation aligned with

the red arrow on the left just above the hammer bank. Close the tractor guides, and if necessary, adjust the

perforation to the arrow by means of the black vernier knob in the upper left (moving the knob left and right

moves the paper up and down). Close the drum gate, push the gate latch down and to the right, close the front

panel, and place the printer on line.

For information on ribbon changing, maintenance controls, test operation, and paper position and tension

adjustments, refer to the Data Products manual.

CAUTION

When changing the ribbon, make sure to put the fat

roll at the top.

3.6 PLOTTER

The plotter control interfaces the processor to various plotters that use cartesian coordinates. The models

most frel/uently used are manufactured by Calcomp or Houston Instrument, but others can be accommodated.

The following lists the type and paper size of the most commonly supplied models.

Model

Calcomp 502

Calcomp 563

Houston DP-l

Type

Bed

Drum

Bed

Paper size in inches

31 X 34

29Yz X 1440

11 X 1734

These are high accuracy, incremental digital plotters that produce fine quality ink plots of computer-generated

data. Bidirectional stepping motors provide individual increments of motion in either coordinate or both at

once. The program draws a continuous sequence of line segments by controlling the relative motion of pen and

paper with the pen lowered, and it can raise the pen for repositioning. The DP-l uses fanfold paper perforated

for 11 X 8Y2 or 17.

Motion in y is movement of the pen carriage along a rod or pair of rods. Motion in x is movement of the

entire carriage-and-rod mechanism on the Calcomp bed plotter, movement of the paper underneath the carriage
on the drum type or the Houston. On a bed plotter the coordinate directions are the standard ones when viewing
3-14

the device from the front: positive x to the right, positive y to the back. The coordinate system on a drum is in

the standard orientation when the viewer is standing at the right side, unrolling the paper from the drum with his
left hand. In other words positive y is movement of the pen from right to left across the drum, positive x is drum

rotation downward at the front (drawing a line toward the paper supply roll at the back).
The step sizes and plotting speeds available with the various models are the following.

Model

502

563

DP-l

Step size

.01 inch

.005 inch

.002 inch

.1 mm

.05mm

.01 inch

.005 inch

.lmm

.01 inch

.005 inch

.25mm

.1mm

Plotting speed in

steps per second

300

200
300
300

300

Time per

step in ms

3.3

5
3.3
3.3

3.3

The plotter uses only one 10 transfer instruction, and the program can draw any complete figure by giving

a string of them, with each supplying the information for one step. Busy and Done are controlled or sensed by
bits 8 and 9 in all 10 instructions with device code 15, mnemonic PL T. Interrupt Disable is controlled by
interrupt priority mask bit 12.

DOA -,PLT Data Out A, Plotter

o 1 AC o o F o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load plotting information from AC bits 10-15 into the plotter command register as shown, and perform the
function specified by F.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Setting Busy causes the plotter to execute the plotting command given by the last DOA. After sufficient
time has elapsed for the device to carry out the specified action, the control clears Busy and sets Done, requesting

an interrupt if Interrupt Disable is clear.

To avoid drawing line segments shorter than one step, do not raise or lower the pen in the same DOA that

calls for xy motion. Specifying contradictory movements results in no motion in the given dimension.

Timing. Raising or lowering the pen takes 100 ms. The time required to move one step in either or both

coordinates depends on the plotting speed as given in the above table.

3-15

Operation. On a drum plotter the supply roll is behind the drum. Bring the paper over the drum, down in
front, and above and behind the pickup roll underneath the drum (use a piece of masking tape to attach the
paper, or roll some onto the tube) .

To put the plotter on line simply turn on the power and the chart drive. The remaining controls are for
manual operation: raising and lowering the pen, moving the carriage and drum in either direction, rapidly or
single step. The Calcomp bed plotter has similar controls.

To load paper in the Houston plotter, lift open the cover by lifting the lid knob while pressing its center.
At the right rear is a support that can be snapped into place to hold the lid open. Pull the paper over the plotter
bed from a supply pile at the right, making sure that the sprocket teeth engage the holes in all four corners (the
round holes should be at the back), and snap the lid shut. Photographs and drawings of the plotter and infor­
mation on the types of pens and how to change them are given in the plotter instruction manual.

To put the plotter on line simply press the power button, turn the pen switch to REMOTE, and turn the
chart and pen axis switches to PLOT. The POWER and READY lights should be lit. For manual operation
the pen switch can be used to move the pen up and down, the other two switches can be used to enable the
motion pushbuttons at the left of each switch. Pressing a button produces motion of the pen or chart in the
direction of the arrow. Note that chart motion is diametrically opposed to motion in the x coordinate: moving
the chart to the right plots a line toward the left, ie in the -x direction. The movement produced by a button
depends on the position of the associated axis switch: with the switch set to JOG each button push produces a
motion of one step in the corresponding coordinate; the SLEW position produces motion at full plotting speed
as long as the button is held down.

3.7 CARD READER

The card reader handles standard 12-row 80-column cards at speeds up to 225 or 400 cards per minute.
Once started, an entire card is r~ad column by column. The reader supplies each column to the processor as
twelve bits, and the program can translate in any way it wishes; the standard DGC character representations
and the translation to ASCII made by the software are given in Appendix E. Of course the data can simply be
in binary (a 7 and 9 punch in the first column is the standard indication that the rest of the card contains
binary data) .

The card reader uses two 10 transfer instructions, one to retrieve each column from a 12-bit buffer in the
interface, the other to read status. Busy and Done are controlled or sensed by bits 8 and 9 in all 10 instructions
with device code 16, mnemonic CDR, but the 10 Pulse function (F = 11) is also used to clear Done without
affecting Busy. Interrupt Disable is controlled by interrupt priority mask bit 10.

DIA -,CDR

o 1
o 2

Data I n A, Card Reader

3

AC
I 4

o
5

o
6 7

F o o 1 1 o
I

8 9 10 11 12 13 14 15

Transfer the contents of the column buffer into AC bits 4-15 where the correspondence of card rows to bit
positions is as shown, and perform the function specified by F. Clear AC bits 0-3.

o 2 3

3-16

DIB -,CDR

o 1
o 2

Data In B, Card Reader

3

AC
I

o
4 6 7

F o o o
[

8 9 10 11 12 13 14 15

Read the status of the reader into AC bits 11-15 as shown, and perform the function specified by F. Clear AC
bits 0-10.

10

HOPPER EMPTY
STACKER FULL

11

PICK
FAILURE

12

TROUBLE READY

13 14

CARDIN
READER

15

12 The reader has received a read command but has failed to bring in a card from the hopper.

13 A card has failed to move properly through the reader (it has probably slipped) or an error has been
detected in the photoelectric circuitry. When Trouble sets the reader stops at the end of the current card,
and the program should be dubious of any data taken from it.

14 The reader is ready to accept a read command (all other status bits are 0).

15 The reader has brought a card in from the hopper and has not yet finished reading it.

Before trying to read a deck the program should check Ready. To start every card the program must give
Start, either in an NIOS or while checking status with a DIBS. Setting Busy causes the reader to pick a card;
movement of the card in from the hopper sets Card in Reader. As each column is loaded into the buffer (the
presence of a hole produces a 1 in the buffer), Done sets, requesting an interrupt if Interrupt Disable is clear.
The program must respond with a DIAP to bring in the column and clear Done.

After all eighty columns have been read, the card moves out to the stacker, and Card in Reader goes off,
clearing Busy and setting Done, again requesting an interrupt.

Note that Done does double duty as both a column ready flag and a card done flag, and thus sets eighty-one
times per card. In this case Busy and Done both set is legitimate: Busy remains set throughout the card even
though Done sets on each column and the program must respond to each column with 10 Pulse to clear Done
without affecting Busy.

Timing. The timing of the sequence of operations that process a card depends upon whether the reader
handles 225 or 400 cards per minute (figures for the latter are given in parentheses). After Busy sets, 65 (37)

ms elapse before Card in Reader goes on. The first column Done occurs 7.5 (4.2) ms later. Subsequent
columns are ready every 2.4 (1.35) ms - the program must give a DIAP within 2.175 (1.25) ms after each
Done or data will be missed. Total time from first to last column Done is 189.6 (107) ms. After Done sets for
the eightieth column, 7.2 (4.05) ms elapse before Card in Reader clears, clearing Busy and again setting Done.
The program then has 150 (84) [LS within which to give a new Start to keep the reader going at the maximum

rate. These times are determined by mechanical operations and may therefore vary by as much as 20 percent.
Operation. The reader has a hopper and stacker capacity of 500 cards. To load a deck, first fan and flex

the cards and jog them on top of the reader. Turn the deck over and put the first hundred cards (about an inch
of the deck) into the hopper (at the right) with the 9 edge against the back so column 1 is read first. Place the
rest of the deck on top of the first part and put the card weight on top of the deck. Cards can be added to the
hopper while the reader is running provided at least a half-inch of the deck is left, but always stop the reader
before removing cards from the stacker.

3-17

The reader is operated by the buttons in front of the hopper. The two at the left turn on power and the
reader motor. Pushing START places the reader on line so the program can read cards. Pushing STOP turns

off the reader, taking it off line. An emp,~y hopper, a full stacker, or .any error condition indicated by the lights
in front of the buttons also stops the reader, but it always finishes the current card before stopping.

The four error lights indicate a pick failure, a card motion error, and a photocell output that is too weak or

that exists when there should be nOlle (a photocell error may be caused by a hardware malfunction but can also
be caused by an obstruction in the read station or a damaged card). The last three error conditions set Trouble.
Do not attempt to reread a worn or damaged card that has caused an error - duplicate it first. After correcting
the trouble, press START to allow the program to continue reading the deck.

3-18

Chapter IV
Magnetic Tape

The magnetic tape equipment handles the large reels of half-inch tape that are standard throughout the
industry. A tape system consists of a control and up to eight tape transports. The control is connected to the data

channel, so the program need only set up the tap~ for a particular operation and all transfers to and from memory

are then handled automatically. To operate with the data channel the control has an address counter and a word
counter as well as data buffers. Data General supplies several types of transports that differ in tape speed and
tape handling characteristics. Each type is available in two versions, for recording information in nine tracks
and seven tracks. Thus data transfer rates and timing depend on the transport, but each transport supplies

information to the control such that transports of different speeds and recording formats can be operated by a

single control. Every transport accommodates two reels (one for supply, one for takeup) and can record infor­
mation in both low and high densities, 556 and 800 bytes per inch. A full 101h-inch reel has 2400 feet of half­
inch tape and at high density can store over 180 million bits of data in the 9-track format, over 135 million bits
in the 7-track format.

The program communicates with the tape control, which in turn governs all tape transports but operates
only one at a time. Reading and writing (recording) can occur only when tape is moving forward (from supply

reel to takeup reel), but the control can space the tape (ie move it to a new position) in either direction.
Although only one transport can be reading, writing or spacing at a time, rewinding the entire tape onto the

supply reel at high speed requires only initiation by the control, and the transport then proceeds automatically
while the control can operate another.

4.1 TAPE FORMAT

The control writes lateral characters, ie it writes transverse lines on tape with nine or seven bits of infor­
mation per line, one bit in each track. The density of the information written is determined by a switch at the

transport. Every character is in either a data record or a file mark. A data record contains both data characters
and error-checking characters; every data character consists of a data byte and a parity bit, which the control
generates so that the number of Is in the line is odd or even as specified by the program. The data bytes in a

record taken together correspond to a block of words sent from memory to the control. To separate adjacent
records the control automatically erases a segment of tape, a record gap, between them. The control always
stops tape in a gap.

Transfers between memory and control are of full words even though the tape chadlcters may contain 8-bit
or 6-bit data bytes. The minimum length of a record is two words (four data characters), the maximum length

is 4096 words. To write, the control divides the words into data bytes, and when reading, it reassembles them.
There are two ways in which this is done. For 9-track format the control writes each word as two characters,

each containing an 8-bit data byte. After the control writes the last data line for a record, it writes three blank

4-1

o 2

FIRST CHARACTER

3 I 4

DATA

FORWARD __ _

5 6

SECOND CHARACTER

7 8 9 10 11 12 I 13

3 BLANK L1NES\ LC:--EOR GAP (3 LINES)

LPCC ~

.6" DATA

RECORD GAP ONE RECORD

9-TRACK FORMAT

14 15

-

lines, a cyclic redundancy character (CRC), three more blank lines, and a longitudinal parity check character
(LPCC). The first three zero characters constitute the end-of-record gap (EOR)" so called because the control
uSes it to detect the end of record; this is so even in writing, as the tape encounters the write head first, and the

control detects everything shortly after writing it. The control generates the CRC as described in §6 of USAS

X3.22-1967, USA Standard, Recorded Magnetic Tape for Information Interchange. Taking the CRC bits as
numbered in that document, CRC bit 1 corresponds to the parity track, bits 2-9 correspond to the tracks that

receive the bits from left to right in each data byte. The LPCC (which may be zero) produces even longitudinal
parity in each of the tracks along the length of the record. The minimum record gap is .6 inch. For compatibility

with IBM format, a record must be written in high density and odd parity.
Whenever the control reads or writes a data record, it checks that the lateral parity of every data line agrees

with the parity specified by the program and checks that every track has even longitudinal parity.

For 7-track format the control writes bits 2-7 and bits 10-15 of each word in two characters, ignoring bits
0, 1, 8 and 9 altogether. After writing the last data line, the control writes an EOR gap and an LPCC. The

FIRST CHARACTER SECOND CHARACTER

o 2 3 I 4 5 6 7 8 9 10 II 12 I 13 14 IS

LPCC ~ EOR GAP (3 LINES)

-'-

DATA .75" DATA

FORWARD __ _ RECORD GAP ONE RECORD

7-TRACK FORMAT

minimum record gap is .75 inch. When reading 7-track tape, the control assembles pairs of bytes into words in

the positions shown above, with Os in the unused bits.
When writing in even parity, the program must take care not to supply a word containing a zero data byte

in the recording format selected, as this would result in a missing character (a blank line), and no words beyond

4-2

that point would reassemble correctly. The control does not check for missing characters when reading, but two

or more contiguous missing characters would be interpreted as an EaR gap, so the command would terminate

with the Bad Tape flag set.

To facilitate tape processing the program can group sets of data records into files. The end of a file is
indicated by a 3-inch gap followed by a file mark, which is a special record containing a single, special data

character and its (equivalent) LPCC. A space command automatically terminates when a file mark is encountered.

Every tape has two physical markers to indicate its extremities. These markers are reflective strips that are

sensed by photoelectric cells in the transport. At least ten feet in from the beginning of the reel is the loadpoint

marker, which is the logical beginning of tape (BOT). Reverse commands stop automatically at this marker. A

loadpoint gap of at least three inches precedes the first record on the tape. The end-of-tape marker (EaT) is at

least fourteen feet from the physical end of the tape; the final ten feet of tape should be left for trailer, ie the

program should not record more than a few feet beyond the EaT (this is more than enough for a record of

maximum length at low density). A status bit indicates when the tape is beyond the EaT, but this condition

stops the tape automatically only when it is spacing forward.

An annular groove is molded into the back of every reel. The control cannot write on the tape unless the

supply reel has a plastic (write enable) ring in this groove. By leaving the ring out, the operator can protect the

data on the tape from accidental destruction (overwriting or erasure) .

While the control is actually processing the data part of a record, the data transfer rate is fixed. But in a

lengthy tape run the effective (average) transfer rate depends on record length, which determines the percentage

of tape taken up by gaps (at the higher density each record gap could hold an additional 240 words). The

effective transfer rate is therefore a function of record length as well as tape speed and density.

4.2 INSTRUCTIONS

The tape control has two 16-bit buffer registers to provide double buffering of data between tape and data

channel; hence the channel has almost three character times in which to respond to requests by the tape control.

To run the tape, the program must select a transport and a command; most of the latter also require speci­

fication of parity, an initial address (to the IS-bit address counter) for data channel access, and the (twos

complement) negative of a word count. Space commands use the 12-bit word counter for counting records.

The tape system uses five of the 10 transfer instructions. Busy and Done are controlled or sensed by bits

8 and 9 in all 10 instructions with device code 22, mnemonic MT A. Interrupt Disable is controlled by interrupt

priority mask bit 10. A second tape system connected to the bus would have device code 62. The Clear functivn

(F = 10) clears Busy and Done and also clears the command register and the status flags in the control. Start

(F = 01) clears Done, sets Busy, clears many of the flags, and places the control and the selected transport in

operation.

DOA -,MTA Data Out A, Magnetic Tape

o AC o o F o o o o
o 2 3 4 5 6 7 8 9 10 11 12 \J 15

Load the contents of AC bits 9--15 into the tape command register as shown, and perform the function specified

byF.

4-3

o I

9

10-12

13-15

2 3 4 5 6 7

o selects odd parity, 1 selects even.

These bits select the command as follows.

0 Read

1 Rewind

2

3 Space Forward

4 Space Reverse

5 Write

6 Write End of File

7 Erase

Numbers 0-7 address transports 0-7.

DOB -,MTA Data Out B, Magnetic Tape

I 0 AC
I

1 o o
o 2 3 4 5 6 7

8

PAR-I COMMAND
ITY .

UNIT

9 10 11 12 13 14 15

F o o o o
I

8 9 10 11 12 13 14 15

Load the contents of AC bits 1-15 into the address counter (AC bit 0 should be 0), and perform the function
specified by F.

Note: If this instruction is given with a 1 in AC bit 0 and if the control then executes a Read command in
which the word counter does not overflow, the control reads the CRC at the end of the record and sends it to

the next memory location specified by the address counter. This is primarily for maintenance, for the program
to check whether the CRC is being generated properly.

DOC -,MTA Data Out C, Magnetic Tape

I 0 AC
I

1 1 o F
I

o 1
o 2 3 4 5 6 7 8 9 10 11

Load the contents of AC bits 4-15 into the word counter, and perform the function specified by F.

DtA -,MTA Data In A, Magnetic Tape

o 1 AC o o 1 F o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13

Read the status of the tape system into AC as shown, and perform the function specified by F.

4-4

o
14 15

o
14 15

DATA RE- ILLE- HIGH PAR- END END LOAD 9 BAD SENJ?K FIRST WRITE ODD UNIT
ERROB LATE WIND- GAL DEN- ITY OF OF POINT TRACK TAPE CLOC CHAR LOCK CHAR READY

ING SITY ERROR TAPE FILE

o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Bits 11, 12 are for maintenance only and are not discussed further here_ Start clears Error, Data Late,

Parity Error, End of File, and Bad Tape; Clear clears these plus Illegal; the remaining flags are supplied

by the addressed transport (which is automatically unit 0 after Clear is given).

OBit 1, 3, 5, 6, 7, 8, 10 or 14 is 1.

1 The data channel has failed to respond in time to a request for access (eg because of a long indirect

addressing chain or preemption of the channel by faster devices).

2 The addressed transport is now rewinding.

3 This bit sets if the program gives Start when any of the following conditions holds:

• The command is Write, Erase or Write End of File, and Write Lock (bit 13) is 1.

• The command is Space Reverse and Loadpoint (bit 8) is I_

• Busy is 0 but Unit Ready (bit 15) is also O.
The setting of Illegal prevents the tape control from going into operation and sets Done, requesting

an interrupt if Interrupt Disable is clear. The program must give Clear before proceeding (Start does
not clear Illegal).

4 The addressed transport is set to high density (0 indicates low density).

5 In Read or Write the control has encountered a data character whose lateral parity differs from that

specified with the command or has discovered a track with odd parity the length of a record. Incorrect
parity in a CRC or LPCC does not set this bit, but specifying the wrong parity when reading a file
mark does.

6 The addressed tape is beyond the EOT marker. (Reverse motion clears this bit.)

7 The control has written a file mark or has encountered one in reading or spacing. If there is an error in

a file mark it is not recognized as such, ie the control interprets it as a very short data record.

8 The addressed tape is at loadpoint.

9 The addressed transport handles 9-track tape (0 indicates 7-track).

10 The control has encountered either data in a record gap or a false end of record (two or more contiguous
blank characters). Spacing reverse over an unrecognized file mark also sets Bad Tape.

13 The write enable ring is not in the supply reel on the addressed transport.

14 An odd number of characters were detected while reading or writing.

15 The addressed transport is ready for operation by the program.

DlB -, MTA Data In B, Magnetic Tape

I 0 AC o F
!

o o o o
o 2 3 4 6 7 8 9 10 II 12 13 14 IS

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.
Clear AC bit O.

4-5

4.3 TAPE COMMANDS

To perform any operation the program must select the unit while giving a command, and all commands are
initiated by giving Start. The two rewind commands do not actually place the control in operation, but for all
other commands Start clears Done and sets Busy, and at the termination of the command the control clears Busy

and sets Done, requesting an interrupt if Interrupt Disable is clear. Following this section are flow charts that

show the actual procedures for programming the tape commands properly. The timing in all cases is dependent
upon the transport speed, tape handling characteristics and density, and is therefore treated in the discussion
of each transport.

Write. The program must specify parity, a (negative) word count, and an initial address. If Write Lock is

1, Start sets Illegal and Done, and the control does not go into operation. Otherwise the control makes an
immediate data request for the first word, and it writes the words it receives via the data channel from the
locations specified by the address counter until either the word counter overflows or Data Late sets, at which

time the control terminates the record and sets Done.

Write End of File. The program must specify even parity for a 7-track tape, odd parity for a 9-track tape,

or the control wiII not write a file mark properly. If Write Lock is 1, Start sets Illegal and Done, and the control
does not go into operation. Otherwise the control erases 21h inches of tape (ie it extends the present record

gap to three inches, writes a file mark and then sets Done.
Erase. If Write Lock is 1, Start sets Illegal and Done, and the control does not go into operation. Otherwise

the control erases 21/2 inches of tape and then sets Done.

This command is used primarily to skip sections of tape on which the program has found it impossible to
write data correctly, ie without parity errors or a bad tape indication.

Read. The program must specify parity, a (negative) word count, and an initial address. The control reads

a single record from tape, and sends the data via the data channel to the locations specified by the address
counter until it encounters the EOR gap or the word counter overflows, whichever occurs first. Giving a large

word count (eg giving zero) ensures that the entire record will be read even if its length is unknown. If the

record contains an odd number of data characters, the final one is sent to memory in a separate word right

justified. The setting of Data Late during the record indicates that information has been lost, but data transfers
continue until overflow or the record ends. After completing the record, the control sets Done.

If the record read is a file mark, its single "data" character is sent to memory via the data channel. The
length of a record of unknown size can be determined after it is read by giving a DIB to check the contents of

the address counter, which will be one greater than the address to which the last word in the record was
sent (provided of course the word count was large enough).

Space Forward. The program should give a (negative) word count equal to the number of records to be

spaced. The control spaces forward over the given number of records unless it encounters a file mark or the end

of tape, in which case it stops at the mark or at the end of the record in which the EOT marker is encountered.
To space a file, the program can simply give a zero word count.

Space Reverse. The program should give a (negative) word count equal to the number of records to be

spaced. If Loadpoint is 1, Start sets Illegal and Done, and the control does not go into operation. Otherwise
the control spaces reverse over the given number of records, but it stops the tape automatically upon encoun­
tering a file mark or the load point. To space a file, the program can simply give a zero word count.

Rewind. Start does not affect the control but simply initiates the rewind in the addressed transport and the

control is free for further use by the program. The addressed transport rewinds the tape at high speed onto
the supply reel and stops at load point.

4-6

CLEAR WRITE
RETRY

COUNTER

SELECT
UNIT

WRITE
LOCK

NO

SEND WRITE,
UNIT&
PARITY

SEND INITIAL
ADDRESS,

WORD COUNT
& START

YES

WRITE

NO

WRITE
RETRY

COUNTER
=0

NO

+1 WRITE
RETRY

COUNTER

+1 ERROR
COUNTER

FOR WRITE

4-7

4-8

SEND WRITE
EOF, EVEN

PARITY, UNIT
& START

YES

NO

WRITE END OF FILE

SELECT
UNIT

YES NO

NO

SEND WRITE
EOF, ODD

PARITY, UNIT
& START

YES

NO

NO

CLEAR
READ

RETRY
COUNTER

SELECT
UNIT

YES

SEND READ,
UNIT&
PARITY

SEND INITIAL
ADDRESS, WORD
COUNT & START

NO

READ

NO

YES

+1 ERROR
COUNTER
FOR READ

+1 READ
RETRY

COUNTER

SPACE
REVERSE

x = INITIAL
ADDRESS +

WORD COUNT

X=
DIB ADDRESS

READ

4-9

4-10

SPACE
FORWARD/REVERSE

YES

NO

SELECT
UNIT

SEND SPACE
COMMAND &

UNIT

SEND RECORD
COUNT &

START

SPACE FILE
FORWARD/REVERSE

YES

NO

SELECT
UNIT

UNIT
READY

YES

SEND SPACE
COMMAND

& UNIT

SEND '"
RECORD
COUNT

& START

REWIND
REWIND AND UNLOAD

YES

NO

SELECT
UNIT

SEND REWIND
COMMAND,

UNIT & START

Automatic Loading

Should the binary loader in core be destroyed by program debugging it can easily be restored from tape.

The loader can be no longer than 192 words and should be in 9-track format, odd parity, in the first record on

a reel mounted on transport O.

In a Supernova the loader is brought in from tape simply by pressing RESET and then CHANNEL

START at the computer console. In a Nova 1200 or 800 with the program load option, press RESET, turn

on data switch 0, then press PROGRAM LOAD. To bring the loader into memory without automatic loading,

the operator must use the following procedure:

1. Press RESET.

2. Set 376 into the data switches and press EXAMINE.

3. Set the instruction NIOS MTA (060122) into the data switches and press DEPOSIT.

4. Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

5. Set 376 into the data switches and press START.

4.4 AMPEX TAPE TRANSPORTS

Several types of Ampex transports are available for use with the Nova computers. Each discussion below

gives the speed and word processing time, but because of double buffering in the control, the data channel has

almost 50 percent more than the word time to respond to a request (ie three character times). Since all trans­

fers are made through the channel, transfer timing is not usually critical to the program; however, in order to

determine memory buffer size in real time applications, the programmer must know the total time between

records in reading and writing (in the latter, Start triggers an immediate request to load the buffers). In each

case all relevant times are given.

Operating information for each transport is given in Section III of the appropriate Ampex manual; said

section contains illustrations of the panels and controls, a photograph of a tape reel showing the write enable

ring, and a drawing showing the location of the tape markers. Every transport requires a Data General adapter,

which is mounted below a TMX or TMZ transport and inside the cabinet of a TM-16 transport. On the adapter

are a power button and a thumbwheel switch for selecting the unit address.

The most important consideration in tape operations is cleanliness. Nothing can ruin a tape run more

easily than ash, dust or a piece of dirt. The tape path should be cleaned at least once every eight hours.

Cleaning instructions are given in the Ampex manual.

TMZ Transport

This transport accommodates lOYz-inch reels and may have a tape processing speed of either 37.5 or 24

inches per second. At the faster speed, the time required to process each word at high density is 67 fJ.s, at low

density 96 fJ.s; equivalent times at the slower speed are 104 and 149 fJ.s respectively. Interrecord times for

9-track tape are as follows.

Start

Write interrecord times in ms

24 ips
19

Last character to stop 6.2

37.5 ips
12

4.2

Start

Stop

Read interrecord times in ms

24 ips
29

3.2

37.5 ips
18

2

4-11

Stop 6.4 4 Settle down ~ ~
Settle down 20 10 Total 52.2 30
Total 51.6 30.2

For 7-track add 10 6
For 7-track add 6.3 4.2

The rewind and fast forward speed is 150 inches per second; rewinding an entire reel takes about three minutes.

Controls for the transport are located on the adapter and at the upper left on the transport. The file-protect
light at the top indicates when the data on the supply reel is protected from action by the program (the write
enable ring is not in place). The remaining three controls at the top and bottom of the panel are alternate-action
buttons which illuminate when on: POWER allows the operator to control transport power independently of

the adapter; pressing REMOTE places the unit on line if the door is closed and tape is properly loaded; pressing
STOP-RESET stops the tape and takes the unit off line. With the transport ,off line, holding down one of the
four buttons in the center moves the tape at the speed and in the direction indicated; forward motion auto­
matically terminates at the EOT marker, reverse motion at loadpoint. At the lower left corner inside the door

are the density switch, an interlock, and a LOAD/UNLOAD button. When loading a tape, the operator must
set the first switch to the density at which the tape will be processed; the program has no control over the
density. Should the door be opened while the unit is running, the interlock stops the tape and takes it off line.
Pulling the switch out overrides the interlock, allowing operation with the door open. The LOAD/UNLOAD

button is alternate-action and moves the tension arms to the loading or operating position. Cleaning instructions

are given in §3.5.1 of the Ampex manual.
The illustrations below show the loading and operating tape configurations (supply reel at the top). Before

loading a reel make sure it has no write enable ring if the data on the tape is not to be changed by the program;

LOADING CONFIGURATION OPERATING CONFIGURATION

4-12

otherwise place a ring in the reel so the transport can respond to write commands. To load a reel, tum the

retainer knob on the reel hub to its counterclockwise limit, slip a reel onto the hub with the groove toward the
tape deck, and holding the reel firmly, tum the retainer knob to its clockwise limit. Unwind about a foot of
tape from the supply reel, thread it (as shown in the illustration) under the first edge guide, the tape cleaner
head and the read-write head, and over the second edge guide. Bring the tape down and around the capstan and

over the third edge guide. Pull the tape to unwind another foot, and wind about three turns around the takeup
reeL Press LOAD/UNLOAD to generate tape tension, shut the d,?or, and press FOR WARD to locate the

loadpoint; press REMOTE to put the unit on line. To unload the tape press STOP-RESET, rewind the tape
to loadpoint, open the door, press LOAD/UNLOAD to release the tension arms, and tum the supply reel by

hand counterclockwise to -unwind the rest of the tape. Tum the supply reel retainer knob counterclockwise and

remove the reel from the hub.

TMX Tape Transport

This transport accommodates 81h-inch reels containing 1600 feet of tape (7-inch reels can be used, but
they have only half the capacity). The tape processing speed is 12.5 inches per second; the time required to
process each work at high density is 200 P.s, at low density 288 p.s. Interrecord times for 9-track tape are as

follows.

Write interrecord times in ms Read interrecord times in ms

Start 37 Start 60

Last character to stop 12.5 Stop 5.7

Stop 12 Settle down 30

Settle down 30 Total 95.7

Total 91.5 For 7-track add 19

For 7-track add 12.5

The rewind speed is 75 inches per second; rewinding an entire reel takes about four minutes.
Controls for the transport are located on the adapter and on the left and right at the bottom of the trans­

port front panel. When loading a tape, the operator must set the left toggle switch to the density at which the
tape will be processed; the program has no control over the density. The tape can be threaded when the three­

position toggle on the right is hitched into the DISABLE position; pressing the toggle to LOAD generates tape
tension; it must be latched into RUN for normal transport operation. On the left panel are three lights that
indicate when power is on, when the transport is ready for operation, and when the data on the supply reel is

protected from action by the program (the write enable ring is not in place). The remaining controls are
momentary-contact buttons. Pressing REMOTE places the unit on line if READY is lit; pressing STOP stops
the tape and takes the unit off line (in either case the appropriate button is illuminated to indicate the transport

condition). With the transport off line, holding down one of the remaining three buttons (on the right) moves

the tape at the speed and in the direction indicated; forward motion automatically terminates at the EOT
marker, reverse motion at loadpoint. Cleaning instructions are given in §3.5.1 of the Ampex manual.

The illustrations below show the loading and operating tape configurations (supply reel at the left).
Before loading tape make sure there is no write enable ring in the reel if the data on it is not to be changed by

the program; otherwise install a write enable ring so the transport can respond to write commands. To load a
reel, set the right toggll< switch to DISABLE, tum the retainer knob on the reel hub counterclockwise several
turns, slip a reel onto the hub with the groove toward the tape deck, and holding the reel firmly, tum the re­
tainer knob to its clockwise limit. Push the tape tension arms as far as they will go toward the center of the

tape deck. Unwind about a foot of tape from the supply reel, thread it (as shown in the illustration) by the

4-13

first two tape guides (between them and the supply reel tension arm guide), around the left capstan, over the
third guide, between the tape cleaner and photosense heads, over the read-write head and the fourth guide,
around the right capstan and by guides 5 and 6 (between them and the takeup reel tension arm guide). Pull

the tape to unwind about another foot, and wind about three turns around the takeup reel, making sure the
tape is taut against the guides. Hold the right toggle switch to LOAD until tension arm motion ceases, and
then set the switch to RUN. Shut"the door and press FORWARD to locate the loadpoint; press REMOTE to
put the unit on line. To unload the tape press STOP, rewind the tape to loadpoint, and press REVERSE to
wind all the tape onto the supply reel. Open the door, turn the supply reel retainer knob counterclockwise

several turns, and remove the reel from the hub.

LOADING CONFIGURATION OPERATING CONFIGURATION

TM-16 Transport

This transport uses lOY2-inch reels and has a tape processing speed of 120 inches per second. The time

required to process each word at high density is 21 /-'s, at low density 30 /-,s. Interrecord times for 9-track tape

are as follows.

Write interrecord times in ms Read interrecord times in ms

Start 4 Start 6.5

Last character to stop 1.2 Stop .6

Stop 1.2 Settle down 5

Settle down 5 Total 12.1

Total 11.4 For 7-track add 2

For 7-track add 1.2

Rewinding an entire reel takes about 90 seconds.

The entire front of the cabinet is a door that covers the tape deck and vacuum columns, but the operator

can gain access to the deck by lowering the window in the door. Controls for the transport are located on the
adapter and on a panel at the top of the transport. The upper row on the panel contains three illuminated

buttons and the file-protect light, which indicates when the data on the supply reel is protected from action by
the program (the write enable ring is not in place). DENSITY is an alternate-action button containing two
lights that indicate the density selected by the operator; when loading a tape, the operator must specify the
density at which the tape will be processed, as the program has no control over it. The alternate-action POWER

button allows the operator to control transport power independently on the adapter. The remaining buttons are
all momentary-contact. Pressing REMOTE places the unit on line (lighting the button) if the window is closed

4-14

and tape is properly loaded. Pressing RESET stops the tape and takes the unit off line, enabling the remaining
buttons in the bottom row and allowing RESET to be used to raise (close) the window. After a tape has been
threaded and attached to the takeup reel, pressing LOAD/REWIND loads it into the vacuum columns and
moves it forward to loadpoint; if the tape is already loaded, this button rewinds it to loadpoint. Pressing

UNLOAD rewinds the tape, pulls it out of the vacuum columns, winds it entirely on the supply reel, and
lowers the window. Holding down either of the remaining buttons moves the tape at normal processing speed
in the direction indicated; forward motion automatically terminates at the EOT marker, reverse motion at

loadpoint. Cleaning instructions are given in §2.S.1 of the Ampex manual.
The illustration below shows the loading tape configuration (supply reel at the right). Before loading a

reel make sure it has no write enable ring if the data on the tape is not to be changed by the program; other­
wise place a ring in the reel so the transport can respond to write commands. To load a reel, press UNLOAD
to lower the window, press the narrow part of the hub operating lever to release the hub lock, press a reel onto
the hub with the groove toward the tape deck, and holding the reel firmly, press the wide part of the lever to
lock the hub. Unwind several feet of tape from the supply reel, thread it outside the tape guides as shown in

the illustration, and wind about three turns around the takeup reel. Press LOAD/REWIND to load the tape
and press RESET to raise the window. Once the tape is in the vacuum columns and positioned properly, press
REMOTE to put the unit on line. To unload a tape press RESET, press UNLOAD to lower the window and
rewind the tape entirely on the supply reel, press the narrow part of the hub operating lever to release the lock,

and remove the reel from the hub.

LOADING CONFIGURATION

4-15

Chapter V
Disk

A disk is generally the largest random-access storage device in a computer system (a single disk usually

holds more bits than all of core), and it also provides the fastest storage outside of core. This makes the disk

exceptionally desirable for backup storage for memory generally, and in particular, for swapping in time­

sharing systems: while the currently active user programs are in core, inactive programs are stored on the

disk. Unlike magnetic tape, a disk is constantly in motion and has a predetermined format with data blocks

of fixed length. Hence reading and writing are the only disk operations, individual data blocks are addressable,

and the average random access time is half a revolution. The Data General disk runs at 3600 rpm, giving an

average latency time of 8.4 ms. Each disk can store 262,144 16-bit words in blocks of 256 words each. While

a block is being processed, data transfers are at the rate of one word every 8 (J.s; the average transfer rate over

a number of blocks is 57,835 words per second.

A disk system consists of a control and up to eight disks; each disk is a separate unit, and the control

is contained on one standard circuit board that can be mounted in the computer chassis. The program com­

municates with the control, which in turn governs all disks over a disk bus but communicates with only one

at a time. The control is connected to the data channel, so the program need only set up the disk system for

reading or writing, and all transfers to and from memory are then handled automatically. To operate with the

data channel the control has an address counter as well as data buffers (since all transfers are of fixed-length

blocks, no word counting is necessary). The bus for a group of disks can also be connected to a second

control, which in turn is connected to the IO bus and data channel of another computer, thus allowing com­

munication between the two computers through disk storage.

5.1 DISK FORMAT

Each disk has 128 circular data tracks numbered from the outside in. Every track is divided into eight

sectors, each of which contains 256 words of data. Each track-sector also contains a cyclic check word, which

DISK CONfiGURATION

ONE
SECTOR

5-1

is generated and checked automatically by the control, as well as other information for the internal use of
the control. At 3600 rpm a given sector passes the read-write heads in 2.085 ms, of which 2.05 ms are used
for processing data.

The control cannot process physically adjacent sectors consecutively; in other words after processing a
given track-sector, the control can process another removed from it as soon as the other is encountered, but
can process the next adjacent sector only after waiting for a complete disk revolution. To simplify program­
ming and to minimize waiting time, the sectors are numbered alternately and the numbering scheme changes
from one track to the next as shown here. Hence the program can process consecutively numbered sectors in a
given track, and upon processing the last sector in a track, can switch to the first sector of the next track, all

TRACKXXO TRACK XXI TRACK XX2 TRACKXX3

TRACK XX4 TRACKXX5 TRACKXX6 TRACK XX7

TRACK-SECTOR CONFIGURA nON

with minimum waiting time. Time between sectors is thus 2.085 ms except when switching from sector 3 to
sector 4, for which the waiting time is 4.17 ms.

To provide protection for data on a disk, sets of tracks can be locked against writing by the program. For
this purpose the 128 tracks on a disk are divided into eight sets of sixteen each. Located on the front of the
disk cabinet is a three-position switch which allows the operator to lock out none of the tracks, all of the tracks,
or only those sets of tracks selected by jumpers located in the disk logic.

5.2 INSTRUCTIONS

The control has two 16-bit buffer registers to provide double buffering of data between the data channel
and the shift register that actually communicates with the disk; hence the channel has almost two word times
in which to respond to a request by the control. To use a disk the program must select the disk, track and
sector, specify whether data is to be read or written, and supply an initial address (to the 15-bit address
counter) for data channel access.

The disk system uses five of the 10 transfer instructions, one of which is strictly for maintenance and can
be used only when the disk control is in special diagnostic mode. Busy and Done are controlled or sensed by
5-2

bits 8 and 9 in all 10 instructions with device code 20, mnemonic DSK, but the 10 Pulse function (F = 11) is

also used. Interrupt Disable is controlled by interrupt priority mask bit 9. A second disk system connected
to the bus would have device code 60.

The Clear function clears Busy and Done, and thus terminates data transfers if a track-sector is currently

being processed. Start and Pulse both clear Done and set Busy, but these functions also specify the disk
operation: Start selects Read, Pulse selects Write. All three functions clear the status flags.

DOA -,DSK Data Out A, Disk

o AC o o F o o o o o
I I

o 2 3 4 6 7 8 9 10 11 12 13 14 IS

Select the disk, track and sector according to the contents of AC bits 3-15 as shown, and perform the

function specified by F.

TRACK SECTOR

o 2 3

DISK

I 4 5 6 7 8 9 I 10 II 12 13 14 IS

If F is 01 (S), select Read; if F is 11 (P), select Write. If F is nonzero, clear the status flags.

DOB -,DSK Data Out B, Disk

I 0 AC
I

o o F
I

o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of AC bits 1-15 into the address counter (AC bit 0 should be 0), and perform the function
specified by F. If F is 01 (S), select Read; if F is 11 (P), select Write. If F is nonzero, clear the status flags.

Note: Giving this instruction with a 1 in AC bit 0 places the control in diagnostic mode.

DIA -,DSK Data In A, Disk

I 0 AC
I

o o F
I

o 1 o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the status of the disk system into AC bits 7-15 as shown, and clear AC bits 0-6. (Perform the function

specified by F.)

SHIFT FIRST SEC-
REG!- BUF- OND WRITE WRITE DATA NO DATA
STER FER BUF·· DATA eRROR LATE SUCH ERROR

ERROR
FER DISK BIT (J FULL FULL

o 2 3 4 5 6 7 8 9 10 II 12 13 14 IS

Bits 7-10 are for maintenance only and are not discussed further here. Clear, Start and Pulse clear all

of these flags.
5-3

11 The program has specified Write and the selected track-sector is write-protected. The setting of this bit
clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear.

12 The data channel has failed to respond in time to a request for access (eg because of a long instruction or
preemption of the channel by faster devices).

13 The disk selected by the program is not connected to the bus. The setting of this bit clears Busy and sets
Done, requesting an interrupt if Interrupt Disable is clear.

14 In Read, the cyclic check word read from the disk differed from that computed by the control for the data
in the block.

15 Bit 11, 12, 13 or 14 is 1.

DlB -,DSK Data in 8, Disk

I 0 1 1 AC o F o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

, Read the present contents of the address counter into AC bits 1-15, and clear AC bit O. (Perform the function

specified by F.)

This instruction can be used to determine how many words have been transferred, but it is ordinarily used

only for diagnostic purposes.

DIC 0, DSK Data In C, Disk Maintenance

I 0 1 1 I 0 o 1 o 1 F
I

o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

If the disk control is in diagnostic mode, supply a single clock pulse to the control logic. Perform the function

specified by F.

Setting Busy places the disk control in operation to read or write depending upon whether the program
gave Start or Pulse; in Write, the control immediately makes three data channel requests to fill the two buffers
and the shift register before writing begins. If the disk selected by the DOA is not connected to the bus, or
the program specified Write and the selected track-sector is write-protected, the control sets the appropriate
status flag, clears Busy, and sets Done, requesting an interrupt if Interrupt Disable is clear.

If there is no error the control waits until the selected track-sector is encountered; it then processes the
block, making data channel requests whenever it has a word ready for memory in reading or one of the buffers
is free in writing. The setting of Data Late during a block indicates that information has been lost, but data
transfers continue until the control processes the entire block. At the completion of the data block in Write,
the control writes a computed check word at the end of the track-sector; in Read, the control compares the
check word read from the disk with one it has computed from the data read, and sets Data Error if they differ.

5-4

At completion the control clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear.
Timing. After Start or Pulse is given for the first operation with a given disk, the control may wait up

to 16.7 ms before the selected track-sector is encountered; moreover, no operation can be performed until .5 ms
after DOA is given. While processing the block, the control makes data requests every 8 [LS, but because of
double buffering in the control the processor may take up to 14 [LS to respond in an isolated case without being
late. Once an operation has been performed with a given disk, the program then knows the disk orientation
and thus knows exactly the waiting time required to reach any desired track-sector. The time required to traverse
any sector is 2.085 ms, which is also the time taken between consecutively numbered sectors except between
sectors 3 and 4, which are separated by 4.17 ms.

S.3 PROGRAMMING CONSIDERATIONS

After one Read, no further DOBs need be given if subsequent operations are also Read and are to access

consecutive pages in memory.

CAUTION

For Write, always give both a DOA and a DOB. The address counter does not
count properly from one block to the next in writing.

At the completion of each operation the program should check status, and if data was late or in error,
the operation should be repeated. Do not check status before starting an operation with a disk - the status

is not valid until an operation has been performed.
The word sent by a DOA is set up so that the program can process consecutive sectors and tracks (and

even disks) simply by incrementing. Suppose we wish to process tracks 10-13, all sectors, on disk 1. We
load 002100 into AC2 and give a DOA 2,DSK for the first track-sector. For subsequent track-sectors we
simply increment AC2 before giving the DOA.

Automatic Loading. Ordinarily sector 0, track 0 of disk 0 is reserved for a binary loader. Should the
loader in core be destroyed by program debugging it can easily be restored from the disk.

In a Supernova the loader is brought in from the disk simply by pressing RESET and then CHANNEL
START at the computer console. In a Nova 1200 or 800 with the program load option, press RESET, turn on
data switch 0, then press PROGRAM LOAD. To bring the loader into memory without automatic loading, the
operator must use the following procedure:

1. Press RESET.
2. Set 376 into the data switches and press EXAMINE.
3. Set the instruction NIOS DSK (060120) into the data switches and press DEPOSIT.

4. Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.
5. Set 376 into the data switches and press START.

Multiprocessor Operation. When two controls from different computers are connected to the same disk
bus, access is alternated between them whenever there is a conflict. When one control finishes a track-sector,
access is automatically given to the other control if it is making a request. If not, the first control can continue.

The restriction on processing adjacent sectors stiIl applies: if both processors are doing disk runs simul­
taneously, each can process at most one track-sector every half revolution (8.35 ms).

5-5

Chapter VI
Analog Conversion Equipment

Equipment is available with the Nova computers for both analog to digtal (A-D) and digital to analog
(D-A) signal conversion. Modular building blocks available from a standard option list allow the user to

select a conversion configuration tailored to meet the demands of the system. One device that requires a D-A
converter is the 4053 oscilloscope control [§6.3J.

6.1 AID CONVERSION EQUIPMENT

There are two types of AD converters available; the basic or unmuitiplexed converter, and the multi­

plexed ~onverter. Under each of these two option types are additional options which are selected to determine
the final converter configuration. The following discussion will briefly describe the utilities offered by each
individual option for either type of converter. A physical data section is included at the rear of this discussion
to provide a reference listing of equipment characteristics and specifications.

r------------1
I AID CONVERTER I BASIC AID

'-----1 : B BIT RESOLUTION

: BUFFER I I OPTION TYPE 4033A

I AMP I I 10 BIT RESOLUTION
OPTION I I OPTION TYPE 4033C

t-'-'=~"'-"-'==-I TYPE 1-1 ----.ti 12 BIT RESOLUTION

14033 W I I OPTION TYPE 4033E
I I
I I I 13 BIT RESOLUTION
I I I OPTION TYPE 4033G
L ______ ..J I

I 14 BIT RESOLUTION
I OPTION TYPE 40331
I L _____________ ...J

I INTERFACE

L FOR 4033 SERIES r---- PROGRAMMED
I CONVERTERS IO
I TYPE 4032

I i A~~ ;NTER~CE 1 I
I

I EXPANSION I

I
I PROVIDES I DATA
I ACCESS TO DATA ~ --..... CHANNEL I I CHANNEL CON- I

I i NECTIONS OPTION I
I L!.Y~~4~~3 __ ..J

BASIC AI D CONVERTER CONFIGURATION

6-1

Basic AID Converter

The basc AID converter is a single analog channel converter. The following options are available with
the basic converter as shown: a buffer amplifier, an AID converter with either 8, 10, 12, 13 or 14 bits of
resolution, and an AID interface expansion option. The buffer amplifier can be used to isolate analog sources

with large output impedances from the input of the converter section. The buffer amplifier combines high
input impedance (approximately 200 Megohms) with fast settling time (1.0 lJosec) and high slew rate
(25 v/lJ.sec) to provide isolation without degrading system response. If this option is not selected the analog

channel is connected directly into the converter selected (each converter provides an input impedance of
5000 ohms minimum to +5 volts). The basic converter is supplied with a standard ±5 volt input range.

o to + 1 0 and ± 10 volt ranges are available on special request. All of the basic converter options have an
accuracy of ±0.015% ±Vz bit at 23°C.

The basic AID interface, Type 4032, is required for all converters and hence is not an option. The

basic interface is used to transfer the digital output from the converter into memory via the 10 bus under
program control. The digital output data from the converter can be transferred into memory automatically
via the data channel by adding the AID interface expansion option, Type 4033. The conversion timing for

the basic converter configurations are listed at the end of this section.

6-2

X8
ANALOG
CHANNELS

BASIC MULTI­
PLEXER FACI­
LITY

TYPE NO 4033 R
8 ANALOG INPUT
CHANNELS W/TIM­
ING AND DECO­
DING FOR ADDI­
TIONAL CHANNELS.
EXPANDABLE FA­
CILITIES FOR IN­
CLUDING UP TO 3

ADDITIONAL
140335 I SWITCH
MOD.UlES UNDER
CONVERTER op­
TION TYPES
40338. D. F AND
H.

I MULTIPLEXER
I SWITCH

I 8 CHANNEL
I---""-'="-=~ OPTION -TYPE

I 40335

I I
I I
L--------i

: MULTIPLEXER I
~~AlOG I SW ITCH I
CHANNELS 8 CHANNEL

I OPTION -TYPE

I 40335 I

~*-------~
I MULTI PLEXER I

X8 I SWITCH I
ANALOG I
CHANNELS 8 CHANNEL

I OPTION -TYPE

I 4033 S

I

r- --------~----,

I AID CONVERTER

r --- --, I
I 8 BIT RESOLUTION

I OPTION TYPE 40338
I SAMPLE a I I
I HOLD I I 10 BIT RESOLUTION
I I I OPTION TYPE 40330

OPTION t-----I
TYPE I I

12 BIT RESOLUTION

: 4033V
OPTION TYPE 4033F

I I
I I I 13 BIT RESOLUTION
I I I OPTION TYPE 4033H
L _____ ..J

I

I
14 BIT RESOLUTION

OPTION TYPE 4033J
I L _____________ J

L ________ J "* NOT AVAILABLE WITH 14 BIT CONVERTER OPTION 14033JI

MULTIPLEXED AID CONVERTER CONFIGURATION

BASIC AID
INTERFACE

FOR 4033 SERI ES - PROGRAMMED
CONVERTERS IO
TYPE 4032

; ;/~ ~N~E~~~EI
I EXPANSION I

I PROVI DES I DATA
I ACCESS TO DATA ~ - .. CHANNEL
: CHANNEL CON- I

I ~~~~I~~;~PTIONI L _________ --1

Multiplexed AID Couverter

The multiplexed AID converter is designed to service multiple analog channels. Under this option the
basic multiplexer facility is a requirement, with the sample and hold circuit available as an additional option.

The basic multiplexer contains an8 channel multiplexer switch, a buffer amplifier, and other facilities for

adding three 8 channel multiplexed switch modules. Additional 8 channel multiplexer switch modules are
also available under this option. If the 14 bit converter is chosen, a maximum of two additional 8 channel
multiplexer switches can be added to the basic multiplexer facility. All timing and input channel selection

control is provided with the basic multiplexer facility. The five least significant bits of the channel selection
code from the Nova or Supernova interface are decoded by the multiplexer to select one of 32 channels (assum­

ing four 8 channel switch modules are present). The multiplexer converter presents an input impedance of
2000 megohms and is supplied with a standard ±5 volt input range. 0 to + 10 and ± 1 0 volt ranges are
available on special request. A channel-to-channel short circuit protection of 4000 ohms is also provided.
The sample and hold option is generally used in conjuction with any high speed converter being driven from

a multichannel input environment. The sample and hold circuit option, located between the output of the
multiplexer and the input of the converter is employed to hold the value sampled from a varying signal for a

time sufficient to complete the digitization process of the converter. Sample and hold decay or "droop" times
are specified as 20 IJ.V Imillsecond. The sample and hold option also reduces the aperture time (measurement

time uncertainty) of the 8, 10, 12, 13 and 14 bit converters to 50 n.anosec. (The aperture time for each
converter is specified under Physical Data at the end of this section.) The basic AID interface and interface

expansion option also pertains to all multiplexed converter configurations. The conversion timing for multi­
plexed converters are listed at the end of this section. The .overall accuracy of the multiplexer converter
is 0.02% of FS ±~ bit at 23°C.

X 128 MULTIPLEXER
ANALOG EXPANDER

-%- CHANNELS
OPTION TYPE -
4033 X

BASIC MULTIPL~XER FACILITY BASIC AID
TYPE 4033R

INTERFACE
TYPE 4032 PROGRAMMED

X 4 LINES f-- 10
B CHANNEL SAMPLE a AID

,..----------,
MULTIPLEXER f--<o HOLD r--- I A 10 I NTERFACE I

SWITCH
CONVERTER : EXPANSION I

OPTION TYPE I
X 4 LINES 4·033 v I OPTION TYPE I

: 4033
~ --.
I DATA

I I CHANNEL I L _________ --.1

x 128
MULTI PLEXER ANALOG

~
CHANNELS EXPANDER

I-
OPTION TYPE
40 33X

EXPANDED MULTI PLEXER CONFIGURATION

6-3

Multiplexer Expauder

The input capability of the basic multiplexer facility can be expanded to accommodate up to 128 separate

analog input channels by adding the multiplexer expander, option Type 4033X; or expanded up to the maximum

input configuration of 256 analog channels by adding two multiplexer expanders. The multiplexer expander

contains four 32 channel switches operating in parallel. The five least significant bits of the analog channel

selection code (provided by the Nova or Supernova interface) are decoded to select one of 32 input channels

simultaneously in each of the four channel switch modules. The first order selection results in data being

present on the four expander output lines simultaneously. The three most significant bits of the analog channel

selection code (provided by the Nova or Supernova interface) are decoded by the basic multiplexer (2nd level)

decoder to provide the second order selection of one of the four lines from the expander. Hence, the ex­

pander multiplexes 128 lines down to four lines, and the basic multiplexer multiplexes these four lines down to

one discrete sample input to the converter. If an additional expander, in the form of a second multiplexer

expander Type 4033X, is added to the input configuration, the lines from the five least significant bits of the

analog channel select code are also connected into the second expander decoder. The four output lines

from the second multiplexer expander are connected to the remaining four inputs to the basic multiplexer

(the basic multiplexer has provision for eight analog input lines). The two expanders operating in parallel

will multiplex 256 (128 each) lines down to 8 lines (4 from each expander), and the basic multiplexer facility

will then select one of the 8 lines as the actual analog input. The input signal range of the expander is ± 10

volts, with an input impedance of 2000 megohms. The conversion accuracy with the multiplexer expander

incorporated is ±0.03% of full scale. The switching time for the expander is 5 /-tsec (to within 0.01 % of final

value). The multiplexer expander requires a full track enclosure, i.e., specifically 3 Y2 "H X 17"W X lTD.

Programming The Basic Interface

The Basic Interface Type 4032 uses three standard 10 instructions to implement either converter con­

figuration. Two of the 10 instructions, DOA and DIA, are used to load or read (respectively) the interface

analog channel select register. The output code from this register is decoded by the multiplexer to select One

analog channel for sampling and digitizing. (It should be noted that analog channel selection considerations

are applicable to multiplexer converters only. Analog channel multiplexing does not apply or effe']t the opera­

tion of the basic converter.) The analog channel select register is automatically incremented when the con­

version is completed. At this time Busy will become reset and Done will become set. Therefore, to sample a

series of analog channels, load the accumulator (AC) with the analog channel selection code (for the starting

analog channel) and issue the Start (S) command. (The Start command function can be coded as a

mnemonic modifier for anyone of the three AID interface 10 instructions or with a NIO instruction as NIOS.)

The mnemonic modifiers S (Start) and C (Clear) operate as described in the Input-Output section of this

manual. The P modifier is primarily functional in the extended interface and should be reserved for the

appropriate coding. During execution of the basic interface 10 instruction, the start control function clears

Done and sets Busy. Setting the Busy flip-flop starts the converter.

An internal clock, provided as a feature in the basic interface, can be connected into the Start Converter

gating structure to synchronize the start of each conversion cycle with a fixed time base. Pulse ranges for the

internal clock may be selected from the overall time scale of 10 microseconds to 100 milliseconds maximum

(from 100 KHz to 10Hz respectively). The basic interface also contains provisions for connecting an internal

clock for synchronizing the start of conversion. The internal clock is connected by adding a jumper wire to the

interface. The external clock is implemented by connecting the external source to the external clock input

pin of the interface connector and adding a jumper wire to the interface board.

6-4

The Busy and Done functions are controlled or sensed by bits 8 and 9 in all 10 instructions with device
code 21, mnemOnIC ADCV. All of the program interrupt requirements (i.e., Interrupt Request, Service,

Priority, etc.) for the basic interface are the same as described previously under the Program Interrupt section
of this manual, and may be referenced for converter programmed operations. Interrupt Disable is controlled
by interrupt priority mask bit 8. When conversion has been completed in the Basic mode (i.e., the extended

interface is not used), the Busy flip-flop will be cleared and the Done flip-flop set. The output from Done
may either be sensed or enable an interrupt request depending on the control program structure. At this time
the digitized output from the converter can be transferred into the AC by the DIC instruction. The digitized
data is transferred into the computer as a 2's complement signed number. An example of the range of digitized
codes for various analog input voltages are listed in this section (under Physical Data) for reference purposes.

If contiguous analog channels are to be converted in a sequence, the Start control function may be issued on
a reiterative basis after each conversion and transfer has been completed. The format and function of each

basic interface instruction is listed below.

DDA -,ADCV Data Out A, AID ConVerter

o 1 AC o 1 o F o o o o 1
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of accumulator AC bits 8-15 (Channel Address) into the Analog Channel Select register

and perform the function specified by F.

DIA -,ADCV Data In A, AID ConVerter

I 0 AC
I

o o 1 F
I

o 1 o o o 1
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer the contents of the Analog Channel Select register into accumulator AC bits 8-15 and perform the

function specified by F.

DlC -,ADCV Data In C, AID ConVerter

o AC 1 o 1 F o 1 o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer the final value of the input analog sample as digitized by the converter from the interface into accumu­

lator AC and perform the function specified by F.

6-5

Programming Examples

The following sample program subroutine is entered after executing a JSR instruction in the main program.

CNVRT:

JSR

DOAS

SKPDN

CNVRT

AC, ADCV

ADCV

JMP .-1

DIC AC,ADCV

JMP 0,3

;Get Next Analog Value

;Return Here With Data In AC

;Continue Program

;Load Chan Select And Start

;Wait For End of Conversion

;Read Converted Data

Programming The Extended Interface

The Extended Interface Type 4033 is essentially an expansion of the basic interface (Type 4032)
facilities, and all of the operational features and considerations described under the basic interface are also
applicab-Ie when the extended interface is used. The extended interface allows conversions to be performed
automatically utilizing the data channel. The Data Channel mode of operation performs a high speed transfer

of blocks of information to the core memory addresses specified by the interface current address register. It is
emphasized here that both methods of conversion control, i.e., programmed and automatic may be used
alternately in the extended interface mode as required. To accomplish a single conversion the extended inter­

face is started by coding the S (Start) mnemonic modifier within any basic interface 10 instruction. Automatic
conversions, on the other hand, are started by coding the P (Pulse) mnemonic modifier within any extended

interface 10 instruction. The extended interface contains the current address register, a word count register,
a final channel register and comparison network, and the TO Data Channel control logic for the interface.

In the extended mode, the current address, word count, analog channel select and final analog channel codes
arc loaded into the corresponding interface registers under program control prior to the actual conversion

sequence. The current address register points to the core memory address to receive the next converter word.
The word count register is 12 bits long and specifies the number of words in a converter output data block.
Word count data is always loaded into the register in 2's complement form, and is generally some multiple
of the number of channels to be scanned (Scan Multiplex Channels 0 through x, n number of times). During

the conversion sequence the contents of the word count registers are incremented after each converter output
(digitized) word has been transferred into memory via the 10 Data Channels. This process continues until
the word count register becomes zero. The word count register in this state will cause the Busy flip-flop to

become reset terminating the sequence of conversion. The current address is also incremented (simultaneously

with the word count register) after each word is transferred into memory.

The final analog channel (PAC) register specifics the last analog channel (or limit analog channel) to be

sampled in a sequence. It should be noted that analog channels referenced herein are numbered oetally

(unless specified otherwise) in keeping with the convention of this manual. After each conversion the
6-6

contents of the analog channel select (ACS) register is incremented. When the contents of the ACS register
are equal to the contents of the FAC register, the ACS register is reset to zero; and proceeds to reiterate the

conversion sequence from analog channel 0 to the analog channel pointed to by the FAC register. It should
be noted that the contents of the F AC register should always be set so as to point to a higher analog channel
than the analog channel pointed to by the ACS register. Failure to observe this rule when coding programs
for the extended interface will result in undefined converter output data.

The C (Clear) mnemonic modifier may be coded with any of the extended interface instructions to set
the basic interface control functions, i.e., clears Busy and Done. The 10 control functions performed by the
C, P, and S functions in the extended interface are summarized as follows:

C(Clear)

P(Pulse)

S(Start)

BUSY

o
1

1

The format of each extended interface instruction is listed below

DOA -,ADCV Data Out A, AID ConVerter

I 0 1 AC
I

o 1 o F
I

o 2 3 4 5 6 7 8 9

DONE

o
o

o

o
10

o
11 12

AUTO MODE

N/A

1

o

o o 1
13 14 15

Load the contents of accumulator AC bits 0-7 into the Final Analog Channel register, and load the contents
of AC bits 8-15 into the Analog Channel Select register and perform the function specified by F.

iliA -,ADCV Data InA, AID ConVerter

I 0 1 AC
I

o o F
!

o 1 o o o 1
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer the contents of the Final Analog Channel register into accumulator AC bits 0-7, and transfer the
contents of the Analog Channel Select register into AC bits 8-15. Perform the function specified by F.

DOB -,ADCV Data Out B, AID ConVerter

I 0 1 AC
I

o o F
!

o o o o 1
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of accumulator AC bits 1-15 into the Current Address Register and perform the function

specified by F.
6-7

DIB -,ADCV Data In B, AID ConVerter

1 AC o 1 1 F o 1 o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer the contents of the Current Address Register into the accumulator AC bits 1-15 and perform the

function specified by F.

DOC -,ADCV Data Out C, AID ConVerter

I 0 1 AC
I

1 o F
I

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of accumulator AC bits 4-15 into the Word Count Register and perform the function

specified by F.

DlC -,ADCV Data In C, AID ConVerter

o 1 AC 1 o 1 F o o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transfer the final value of the input analog sample as digitized by the converter from the interface into

accumulator AC and perform the function specified by F.

Programming Examples

The ilexibility of the combined basic and extended interface sections permits a wide variety of program­
ming techniques to be used in implementing and controlling converter hardware. The programming example
provided in this section is intended to serve as guideline information only. The sample program is a basic

subroutine which is entered after executing a JSR instruction in the main program, and loads the required
control parameter data from memory storage locations into the interface buffers. The example assumes that
AC 3 will not be used to transfer data during the subroutine. However, if AC 3 is used care must be taken
to save the return link to the main program before AC 3 is used.

CNVRT: SKPBZ ADCV ;Test For Complete Conversion Sequence

JMP -1

;Get Next Current Address
6-8

LDA AC,CAHLD

DOB AC,ADCV

LDA AC, WCHLD

DOC AC, ADCV

LDA AC, MXADD

DOAP AC, ADCV

JMP 0, 3

;Get Next Word Count

;Get Next Channel Select Code

;CAHLD = Current Address Hold

;Load Current Address

;Word Count Hold

;Load Word Count

;MXADD = Multiplexer Address Data

;Load Mux Address And Start

;Return To Main Program

PHYSICAL DATA

The following listing summarizes all of the electrical and physical characteristics specified for the AID optional

equipment.

ELECTRICAL PARAMETERS

Basic Converter

Input Voltage Ranges
± 5 volts (Standard)

o to 10 volts (on special request)

± 10 volts (on special request)

Input Impedance
Direct - 5K minimum

to +5 volts.

Buffer Amplifier - 200 megohms

Resolution
8, 10, 12, 13 or 14 bits

Conversion Time

8 bits = 8 [Lsec

10 bits = I 0 !J.sec

12 bits = 24 [Lsec

13 bits = 26 [Lsec

14 bits = 100 [Lsec

Accuracy @ 23°C

± 0.015% ±lh bit

Multiplexed Converter

Input Voltage Ranges
± 5 volts (Standard)

o to 10 volts (on special request)

± 10 volts (on special request)

Input Impedance
2000 megohms

Multiplexer Input Leakage
0.002 [Lamps for 32 channels

Resolution
8,10,12,13 or 14 bits

Conversion Time

Without
Sample & Hold

With
Sample & Hold

13 tJ.sec

15 tJ.sec

30 tJ.sec

33 tJ.sec

8 bits = 12 [Lsec

10 bits = 14 tJ.sec

12 bits = 29 tJ.sec

13 bits = 31 tJ.sec

14 bits = 100 tJ.sec 111 lJ.sec

Overall Accuracy @ 23°C

± 0.02% of FS ±lj2 bit

6-9

6-10

Basic Converter (~ont;)

Power

117/234 V AC,47-420 Hz
20 watts maximum

Buffer Amplifier Response

1.0 IJ.sec Settling Time

25 v hsecSlew Rate

Multiplex Expander

Number of Anal(Jg Inputs

128 Channels

Input Signal Range

±1O volts

Input Impedance

2000 megohms

Expander Input Leakage

0.0051J.amps for 128 Channels

Input Protection

Channel-to-Channel Short
Circuit Protection of 4K
provided

Crosstalk
80 db rejection

on selected channel
under worst case

conditions (20 volts p-p)
on all unselected channels)

Switching and Settling Time

5 IJ.sec to within
0.01 % of final value

Power

117/234 VAC, 47-420 Hz
50 watts maximum

Accuracy

±0.01% ofFS

Multiplexed Converter (cont.)

Aperture Time

Without

Sample & Hold
Equal to

Conversion Time

Number of Analog Inputs

8 to 32 Channels
in 8 channel increments

Input Protection
Channel-to-Channel Short

Circuit Protection of 4 K
provided

Crosstalk
80 db rejection
on selected channel

With
Sample & Hold

All converters
50 nanosec

under worst case conditions

(20 volts p-p on allunselected
channels)

Switching alld Settling Time

5 [J.sec to within

0.01 % of final value

Power

117/234 VAC, 47-420 Hz
30 watts maximum

ENVIRONMENTAL SPECIFICATIONS

Basic Converter

Size
3Y2"H X 81h"W X 12"D
(HaH Rack size) supplied
optional with frame for rack

mounting

Multiplexed . Converter

Size
31/2"H X 8 1/2"W X 12"D
(Half Rack size) supplied

optional with frame for rack

mounting

Basic Converter (cont.)

Weight

7 1bs. maximum

Operating Temperature

o to +55°C

Storage Temperature

-25°C to +80T

Temperature Coefficient

Zero: ±O.0012% of FSrC

Range ±9 ppmj"C

Multiplex Expander

Size
31/2"H X 17"W X 17"D
(Full Rack size)

Weight

20 1bs. maximum

Operating Temperature

o to +55°C

Storage Temperature

-25°C to +80°C

Temperature Coefficient

±O.0002% of FSj"C

Warm-up

One minute to total accuracy

Cooling

None required

Multiplexed Converter (cont.)

Weight

10 lbs. maximum

Operating Temperature

o to +55°C

Storage Temperature

-25°C to +80°C

Temperature CoetJicient*

Zero: ±0.0013% of FSj"C

Range ±10 ppmj"C

Warm-up

One minute to total accuracy

Cooling

None required

* (B ased on 10 volts FS and
includes all system components)

6-11

*Analog
Input

Voltage

+ 5.0000-LSB

0.0000

5.0000

+ 1O.0000-LSB

0.0000

-10.0000

+ 10.0000-LSB

+ 5.0000

0.0000

14 Bit
Converter

017777

000000

160000

017777

000000

160000

037777

020000

000000

AID CONVERSION SCALING

12 Bit 10 Bit
Converter Converter

003777

000000

174000

003777

000000

174000

007777

004000

000000

000777

000000

177000

000777

000000

177000

001777

001000

000000

8 Bit
Converter

000177

000000

177600

000177

000000

177600

000377

000200

000000

*The full scale analog level is offset (minus) by the voltage value of the Least Significant Bit (LSB).

The voltage value for the LSB for each converter can be derived from the following equation:

LSB = (+FS)-(-FS)
2n-!

For example, for a 12 bit converter with a ±5 volt input range,

LSB = 10 volts = 2.4mv
4096-1

Hence, +F-S. = +5.0000-0024 or +4.9976 volts

* *CONNECTOR SPECIFIC A TIONS

6-12

Basic Converter

(2) Amphenol
17-10500

50 Pins each

Multiplexed Converter

(2) Amphenol 17-10500
50 Pins each

MUltiplex Expander

(4) Amphenol 17-10500
50 Pins each

* *Reference Appendix A for additional Interface connection information.

6.2 Dj A CONVERSION EQUIPMENT

There arc two types of D / A conversion equipment available with the Nova computers, standard D / A

converters and D/ A converters with Sample and Hold output channels. The standard D/ A converter con­
figuration may be selected to contain either a single converter or multiple converters up to a maximum of 24

converters. The standard D/ A converter (DAC) configurations contain an individual DAC for each output,
and thus provides a fixed continuous output level (on each analog channel) which remains until new digital
data is loaded into the DAC input.

The DAC with Sample and Hold output channels, on the other hand, contains a single DAC, the output of
which is sampled by a number of Sample and Hold circuits. The output from the Sample and Hold circuits

supply the appropriate output analog levels to each channel. The output analog level applied to the channels
by the Sample and Hold circuits cannot be maintained indefinitely, and consequently must be updated at periodic

intervals.

The D/A Converter Control, Type 4037, is the basic interface between the 10 bus and the input to
any D / A converter, and hence is required for all D / A equipment configurations. A brief description of the
options available with each configuration is provided in the following discussion.

D/A
CONVERTER

PROGRAMMED CONTROL
IO r----

TYPE
4037

1- - - - - - - - - - - - - - --,

DATA I DATA ~ I BUFFER
I

I r----------, I
I I PARALLEL

UP TO 24 D/A CONVERTERS I I A N A LOG
CONVERTER OPTIONS MAY BE I r - - - - -, OUTPUTS

I I
I FOLLOWING TYPES: I *HIGH SPEED 1"'\ .

CHANNEL I I
I

ANY COMBINATION OF THE I H-e'
8 BITS = TYPE 4037A ~ AMPLIFIERS I ~
10 BITS - TYPE 4037 B I I OPTION TYPE I I

- I 4037K
SELECT
CODE I I

CHANNEL ---.l

I DECODER I

12BITS = TYPE 4037C I L ____ -.J I
13 BITS = TYPE 40370 I

L I~ ~I:'S_= .!~:... 4~32 :... J :
EITHER ENCLOSURE OPTION TYPE 4037 F FOR 2 D/A CONVERTERS, I I OR ENCLOSURE OPTION TYPE 4037G FOR 6 D/A CONVERTERS,
OR ENCLOSURE OPTION TYPE 4037H FOR 24 D/A CONVERTERS. I L ___________________ ~

*OPTION INCLUDED
WITH 13 e. 14
BIT CONVERTERS

Standard Dj A Conversion Equipment

The configuration for the standard DAC is composed of the following sections: the D/ A Converter Control

Type 4037, and an enclosure (containing a data buffer, a channel decoder, a power supply, a D/ A converter or

converters, and an amplifier option). The D / A Converter Control supplies the channel decoder section with the
proper code to select one of the converted output channels. The D / A Converter Control also supplies a digital

6-13

word to the data buffer section. Any combination of the five following converter option types may be selected

for use in the converter slots available:

8 bit converter - Option Type 4037 A

10 bit converter - Option Type 4037B

12 bit converter - Option Type 4037C
13 bit converter - Option Type 4037D
14 bit converter - Option Type 4037E

Each DAC is available with a standard analog output voltage range of ±5 volts. Analog output ranges of 0 to

10 volts or ±1O volts are available on special request. A high speed analog output amplifier, option Type 4037K,

is also available under this configuration for all DAC outputs and is included with the 13 and 14 bit D/ A con­
verters. The standard analog output amplifier supplied with the 8, 10, and 12 bit converters has a settling time
(to 0.01 % of final value) of 15 iJ.sec. The high speed optional analog output amplifier, by comparison, has a

settling time (to 0.01 % of final value) of 2 iJ.sec. Either analog amplifier is capable of supplying an output
current of ±20 milliamperes. The amplifier used with the converter output functions primarily as a buffer
amplifier and as such does not directly effect the output analog voltage derived by the converter. The electrical

characteristics of the standard and high speed amplifiers are listed under Physical Data at the end of this section.

PROGRAMMED
l!0 ---

DIA
CONVERTER
CONTROL
TYPE
4037

DATA

1------

I
I
I
I

I

I

I OPTION TYPES I
I I 8 BIT = TYPE 4037A
I I 10 BIT = TYPE 4037B
I -I 12 BIT = TYPE 4037C
I I 13 BIT = TYPE 40370 I I 14 BIT = TYPE 4037E 1

L ________ ..J

-is;M;L~;H~LD:- --l
OPTION TYPE X 8

I PAND- 1 CHANNELS 4031L EX
·1 ABLE UP
I MAXIMUM
t!0DULES --1
r;;;-M~~

TOA
OF 8 1

I __ ...J

CHANNEL I
~~5~CT 1

I OPTION T W 4037L E
X32
CHANNELS

CHANNEL
I DECODER

I
I

I ABLE UP TO A
M OF I MAXIMU

32 MODU
L_-1

LES I I ___ J

I

I EITHER ENCLOSuRE OPTION 40371 FOR 8 CHANNEL DAC AND HOLD OR, II
ENCLOSURE OPTION 4037J FOR 32 rHANNEL DAC AND HOLD.

L ______________ .J

D/ A Conversion Equipment With Sample And Hold Channels

The D/ A converter with Sample and Hold output channels uses only one D/ A converter, and hence

provides an economical method of driving a number of analog channels. The D/ A Converter Control, Type

4037, is also a requirement for all DAC with Sample and Hold configurations, and anyone of the previously
described D/ A converters may be used with this equipment. This configuration differs from the standard con­
figuration in that the channel selection data supplied by the D / A Converter Control is decoded to enable one of
the Sample and Hold circuits (Option Type 4037L) to sample the analog output from the DAC. A delay period

of 15 microseconds is required for each sampling to allow the hold capacitor to charge. After the sample-delay

6-14

period the Sample and Hold circuit is switched to the hold state which holds the sampled analog level on its

respective output channel for some discrete interval. The droop rate on any output analog channel (after the
hold capacitor has been charged) is 20 [IN Ims. Each analog output channel is capable of supplying a current

of 20 milliamperes with an output settling to within 0.01 % of full scale in 15 !Lsec. Placing any Sample and
Hold circuit in the hold state also isolates the circuit input from the output of the DAC. (Reference the

Feedthrough specification listed under Physical Data at the end of this section.)

Programming The D / A Converter Control

The programming techniques required by the DI A Converter Control are very straightforward as the

Control does not contain any interrupt, Busy or Done facilities. Only two 10 instructions are used, one of which

loads channel select data into the Control, and the other loads digital data into the Control. The device code for

the DI A Converter Control is octal 23, and its mnemonic is DACV. During the execution of the IO instruction
DOB (coded relative to DACV), the output analog channel selection code data held in the 8 least significant

bits of the AC are loaded into the Channel Select Register. During the execution of the IO instruction DOA
(coded relative to DACV) , the signed 2's complement binary number held in the AC is loaded into the D/A

converter specified by the Channel Select Register. Conversion is performed automatically and immediately after
each data loading operation. The Start (S), Clear (C), and Pulse (P) control functions are not used by the
D I A Converter Control. Several considerations should be observed when programming the DAC with Sample

and Hold configurations to prevent invalid output analog data from being produced. The first consideration is

the delay of 15 !Lseconds required to charge the hold capacitor (of any analog output channel using a Sample
and Hold circuit). The second consideration is to provide some form of automatic updating (understanding

that the decay rate of the hold capacitor is 20 !LV Ims) for each output analog channel. The update repetition
rate depends on the particular application and integrity requirements for the output analog voltage, but in any

event updating cannot occur any faster than 15 !LSec X n (where n is the number of analog outputs with a
Sample and Hold circuit). The format and function of each D I A Converter Control is listed below.

DOA -,DACV Data Out A, DIA ConVerter

o AC o o F o o o
I I

o 2 3 4 6 7 8 9 10 11 12 13 14 15

Load the digital data word from accumulator AC into the D I A converter. Conversion starts automatically and

immediately after data has been loaded.

DOB -,DACV Data Out B, DIA ConVerter

o AC o o F o o o
I

o 2 3 4 6 7 8 9 10 11 12 13 14 15

Load the Channel Selection Code from accumulator AC bits 8-15 into the DAC Channel Select Register of the
D I A Converter Control.

6-15

Programming Example

The following programming example assumes a series of D / A conversions are to be performed by either
the standard DAC configuration, or the DAC with Sample and Hold configuration. Since the DAC with Sample
and Hold also requires periodic updating, the programming example as shown does not include the necessary
coding to service this constraint. On entering the sample subroutine, accumulator 0 contains a negative number
representing the 2's complement of the number of conversions to be performed. The channel selection code is
stored in a memory list pointed to by location 20. The digital words to be converted are also stored in a memory
list pointed to by location 21. After loading the D / A Converter Control, the subroutine increments and tests
accumulator 0, and if it is not zero loops back to retrieve the channel select code for the next conversion.

LDA 1, @ 20 ;Get Chan Select Code

LDA 2, @ 21 ;Get Data Word
DaB 1, DACV ;Set Up DAC Select Reg

DOA 2, DACV ;DACData

INC 0,0, SZR ;Increment Reg 0
JMP .-5 ;Loop For Next DAC

PHYSICAL DATA

The following listing summarizes all of the electrical and Physical characteristics specified for the D / A
optional equipment. Connector information for the D/ A converters is listed at the end of this section.

6-16

ELECTRICAL CHARACTERISTICS

Standard

Converter Data

Conversion Accuracy

±0.01 % F.S.

Resolution
From 8 to 14 binary bits

Output Analog Voltage
±5 volts (standard)
o to 10 volts (on special request)
±10 volts (on special request)

Output Analog Current

±20ma.

DAC and Hold

Converter Data

Conversion Accuracy

±0.02% F.S.

Resolution
From 8 to 14 binary bits

Output Analog Voltage
±5 volts (standard)
o to 10 volts (on special request)
±lO volts (on special request)

Output Analog Current
±20ma.

Standard

Converter (cont.)

Enclosure Power Requirements

All enclosures: 117/234 VAC

47--420 Hz

2 channel (4037F) = 30 watts
6 channel (4037G) = 30 watts

24 channel (4037H) = 60 watts

Recalibration Interval

Six months

Amplifier Dynamics Parameters

Standard Amplifier

Small Signal BW > 1.0 MHz
Full Output Response 75 KHz
Output Slewing Rate 5 v /[J.sec.

*F.S. Settling Time to 0.01 % of F.S.
in 15 [J.sec.

Amplifier Dynamic Parameters

High Speed Amplifier

Small Signal BW > 10.0 MHz
Full Output Response 500 KHz

Output Slewing Rate 50 v hsec.
*F.S. Settling Time to 0.01 % of F.S. in 2 [J.sec.

Output Loading

500 n in parallel

with 0.005 [J.f max.
for specified settling time

Accuracy Offset

0.001% FS;oC

Accuracy Range

0.001% FS;oC

*Measured from trailing edge of

strobe transition or data load.

DAC and Hold

Converter (cont.)

Enclosure Power Requirements

All enclosures: 117/234 VAC
47-420 Hz

8 channel (40371) = 30 watts
32 channel (4037J) = 60 watts

Recalibration Interval

Six months

Settling Time

to 0.01 % of F.S. in 15 [J.sec.

Offset

Adjustable to 0.5 mv

Hold Decay

20 [J.v/ms

**Feedthrough

80 db down: 0 to 1 KHz

* *EfIect on input on output
during Hold mode.

ENVIRONMENTAL SPECIFICATIONS

Standard

Converter Data

Enclosure Sizes

24 channel: 31h"H x 17"W x 17"D
2 & 6 channel: 31h"H X 8l/2"W x 12"D

DACandHoid

Converter Data

Enclosure Sizes

32 channel: 3l/2"H X 17"W X IT'D
8 channel: 3l/2"H X 8l/2"W X 12"D

6-17

Standard
Converter Data (eont.)

Weight

24 channel = 20 lbs. maximum
6 channel = 10 lbs. maximum

Operating Temperature
o to +SsoC

Storage Temperature

-25°C to +80"C

Warm-up Time

Essentially zero to
accuracy stated.

DACandHold
Converter Data (cont.)

Weight

32 channel = 20 lbs. maximum
8 channel = 10 lbs. maximum

Operating Temperature
Oto +SsoC

Storage Temperature
-2SoC to +80°C

Warm-up Time

Essentially zero to
accuracy stated.

*CONNECTOR SPECIFICATIONS

Standard
Converter
Enclosures
(2) Amphenol

17-10500
50 Pins each

DACand Hold
Converter
Enclosures

(2) Amphenol
17-10S00
SO Pins each

*Reference Appendix A for additional Interface connection information.

6-18

**DJ A CONVERSION SCALING

*Analog
Input 14 Bit 12 Bit 10 Bit 8 Bit

Voltage Converter Converter Converter Converter

+ 5.000-LSB 017777 003777 000777 000177

0.0000 000000 000000 000000 000000

- 5.0000 160000 174000 177000 177600

+ 1O.0000-LSB 017777 003777 000777 000177

0.0000 000000 000000 000000 000000

-10.0000 160000 174000 177000 177600

+ 10.0000-LSB 037777 007777 001777 000377

+ 5.0000 020000 004000 001000 000200

0.0000 000000 000000 000000 000000

*The full scale analog level is offset (minus) by the voltage value of the Least Significant Bit (LSB). The
voltage for the LSB for each converter can be derived from the following equation:

LSB = (+FS)-(-FS)
2n- 1

For example, for a 12 bit converter with a ±5 volt input range,
10 volts

LSB = = 2.4 mv
4096-1

Hence, +F.S. = +5.0000-0024 or +4.9976 volts

* *The scaling values listed are in the form of a full accumulator word, the effective value of which is interpreted
in terms of the number of converter input binary bits. For example, only AC bits 6 through 15 are used by
the 10 bit converter. Accumulator bits not used by the converter may be in any state and are not defined
relative to the converter scaling.

6.3 OSCILLOSCOPE CONTROL 4053

This interface allows the program to display information by plotting points on any typical storing or
nonstoring oscilloscope. The control not only requires a dual D-A converter but is mounted on the converter
board and shares its device code. To display each point, the computer must supply two words for the x and y

coordinates to the converter and give the signal to intensify the beam. The program can also erase all the
information that has been stored on the scope face, select nonstorage mode in a storage scope, and display
information that is not stored but does not affect information previously stored. Timing and signal characteristics
can be adjusted to satisfy the requirements of the scope.

6-19

The scope control uses two 10 transfer instructions, one to select the scope operating mode, the other
to read a single status bit. The control has no busy and done flags or interrupt capability, but Start in any 10
instruction with device code 23, mnemonic DACV, intensifies the scope beam. Hence the program need not
give a separate instruction to start the scope - the same instruction that supplies the second coordinate to
the converter can also intensify the beam. Programming the 10 Pulse function (F = 11) erases the scope
(erasing can also be done by means of a switch at the scope) .

DOC -,DACV Data Out C, Scope Control

I a AC
I

a F
I

a a a
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Select the scope mode according to AC bits 14 andl5, and perform the function specified by F. The meaning
of the mode bits is as follows.

Bits 14-15

00

01

10

11

DlA -,DACV

I a
o 2

Meaning

Standard operation - store or nonstore depending on scope

Nonstore mode

Write through - points may be displayed without storing but without
affecting previously stored information

This combination gives conflicting mode information

Data in A, Scope Control

AC a a F a a a
I

3 4 5 6 7 8 9 10 11 12 13 14

1
15

Read the erase status into AC bit 15 and clear AC bits 0-14. A 1 in AC bit 15 indicates the scope is presently

erasing (the status bit always reflects program-initiated erasure but is 1 during an erase period prod~ced by the
operator at the scope only if an appropriate jumper is installed). (Perform the function specified by F.)

Scope Parameters. To display each point the program must supply two coordinates and a Start pulse to
intensify the beam. Both the time from Start to the beginning of the intensification signal and the duration of
that signal can be adjusted to a value in the range 1.4 to 6 fLS by means of screwdriver pots located beside
packages U37 and U38 respectively on the converter board. The user can substitute other time ranges by
changing the resistance and/or capacitance associated with the pots. The polarity of the intensification signal
is controlled by placing an appropriate jumper at the outputs of U38: with a jumper in position W3 the output
of the intensification circuit is normally at a low level and becomes high during the time period defined by the
pot; installing a jumper at W 4 reverses this polarity. The circuit is set up for high and low levels of + 5 volts
and ground. The high level can be changed to + 15 volts by deleting diode CR2, and the low level can be
dropped to - 5 volts by cutting out CRt. The output is ac coupled, but dc coupling can be substituted by

installing a jumper to bypass the capacitors connected to pin B48.
Installing a jumper at W2 (connecting pin A89) ors the operator-initiated erase condition with that

produced by the program, so the status bit represents both. Erase time is typically in the range one-tenth to

one-half second.

6-20

Chapter VII
Data Communications

The devices in this category are for transferring data between the computer and a remote station or
another computer, as against production of hardcopy locally or storage of information at the periphery of the

computer for later retrieval.

7.1 SYNCHRONOUS COMMUNICATIONS CONTROLLER 4015
WITH CLOCK OPTION 4020 AND PARITY OPTION 4021

This controller provides complete bidirectional interfacing between a Data General computer and

a Bell 201, Bell 301 or equivalent synchronous data set. Although mounted on a single circuit board, the con­
troller is actually two independent interfaces, allowing simultaneous reception and transmission of data. Each

interface is connected separately to the data channel, so the program need only set up an interface for receiving
or sending and all transfers to and from memory are then handled automatically. To operate with the data
channel, each interface has an address counter and a word counter as well as a data shift register for handling
serial character transfers. The controller also contains equipment for automatic answering of incoming calls.

Device codes for the receiver and transmitter are 40 and 41 respectively. Additional controllers connected
use device code, pairs 42-43, 44-45, ... , 74-75, where in each case the receiver uses the even code, the

transmitter the odd code.

The controller is available in a number of configurations. Characters may contain six, seven or eight
data bits; parity option 4021 enables the transmitter to generate and send a parity bit with each character (thus

allowing transmission of characters as long as nine bits including parity) and enables the receiver to check
parity. The various characteristics are all selectable separately for the two interfaces by means of jumpers on
the board. Transmission and reception can be timed by a clock in the local data set or by an internal clock in
the controller (option 4020) for use with an externally clocked modem or a data link that is operated without

a modem.
All transfers between controller and memory are in full words containing two characters right-justified in

each half word; eg 6-bit characters would be in bits 2-7 and 10-15 of a memory word. The transmitter takes
two characters from the appropriate bits of each word from memory and transmits them, first the right and

then the left. The receiver assembles each pair of characters into the appropriate bits of a word, right to left,
for storage in memory. Characters are transmitted and received serially with the least significant bit first
(ie bit 15 and bit 7).

Receiver

To set up the receiver to handle incoming data, the program must specify a sync character, supply an

initial address to the IS-bit address counter, and either supply a specific (twos complement) negative word
count to the 12-bit word counter or specify a termination character and a word count large enough (eg zero)
to receive the entire message.

7-1

The receiver uses five 10 transfer instructions, one of which includes the status bits for the automatic
answering feature. Busy and Done are controlled or sensed by bits 8 and 9 in all 10 instructions with device
code 40. Interrupt Disable is controlled by interrupt priority mask bit 8. For convenience, the mnemonic
REC is used in representing the instructions, but it is not recognized by the assembler; the programmer must

define his own mnemonics.

DOA -,REC Data Out A, Receiver

o 1 AC o 1 o F o o o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Define the sync character as equal to the contents of AC bits 0-7 and the termination character as equal to

the contents of AC bits 8-15. Perform the function specified by F.

DOB -,REC Data Out B, Receiver

I 0 1 1 AC 1 o o F o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of AC bits 1-15 into the receiver address counter, and perform the function specified by F.

DOC -,REC Data Out C, Receiver

o 1 1 AC 1 1 o F 1 o o o o o
I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

Load the contents of AC bits 4-15 into the receiver word counter, and perform the function specified by F.

DlA -,REC Data In A, Receiver

I 0 1 AC
I

o o F
I

o o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the status of the receiver AC bits 11-15 as shown, and perform the function specified by F. Clear AC
bits 0--10.

CARRIER DATA SET RING RECEIVER RECEIVER

ON READY INDICATOR TUvtlNG ERROR PARITY ERROR

10 11 12 13 14 IS

Bits 11-13 are for the automatic answering feature described at the end of this section.
7-2

11 A carrier is being received from a remote station.

12 The local data set is connected and is capable of handling data.

13 A ringing signal is being received from a remote station.

14 The data channel has failed to respond in time to a request for access by the receiver and incoming data

has been lost.

15 The parity option is installed and a character with inGorrect parity has been received.

DlB -,REe Data In B, Receiver

I 0 AC o F
I

o o o o o
o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Read the present contents of the receiver address counter into AC bits 1-15, clear AC bit 0, and perform the

function specified by F.

Setting Busy causes the receiver to monitor the incoming bit stream continuously until it successively
receives two of the sync characters defined by the program. This synchronizes the receiver to the bit stream.

It then ignores additional sync characters until some other character is received, at which time it begins assem­
bling pairs of characters into words for transmission to the memory locations specified by the address counter.
Since reception is serial the data channel has one bit time in which to respond to a request before information

is lost; if the channel is late, Timing Error is set but reception continues. If the receiver is so configured,
Parity Error sets if a character with incorrect parity is received.

When the termination character defined by the program appears in the input, the receiver accepts one
more character, stores the final word (one or two characters) in memory, and terminates rec¢!ption. In a

message containing an odd number of characters, the final word has the last character on the right, garbage on
the left. If the termination character does not appear, reception ends automatically when the word counter

overflows. In either case, at termination the receiver clears Busy and sets Done, requesting an interrupt if
Interrupt Disable is clear.

Transmitter

To set up the transmitter to send data, the program must supply an initial address to the IS-bit address
counter and a (twos complement) negative word count to the 12-bit word counter.

The transmitter uses four TO transfer instructions, one of which reads a single status bit. Busy and Done
are controlled or sensed by bits 8 and 9 in all 10 instructions with device code 41. Interrupt Disable is con­
trolled by interrupt priority mask bit 8. For convenience, the mnemonic XMT is used in representing the

instructions, but it is not recognized by the assembler; the programmer must define his own mnemonics.

7-3

nOB -,XMT Data Out B, Transmitter

I 0 AC
I

o o F
I

o o o o
I·

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of AC bits 1-15 into the transmitter address counter, and perform the function specified

byF.

DOC -,XMT Data Out C, Transmitter

I 0 AC 1 o F o o o o
o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Load the contents of AC bits 4-15 into the transmitter word counter, and perform the function specified by F.

DIA -,XMT Data In A, Transmitter

I 0 AC
I

o o F
I

o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the Data Late status into AC bit 15, clear AC bits 0-14, and perform the function specified by F. A 1
read into AC bit 15 indicates that the data channel has failed to respond in time to a request for access, and
sync has been lost.

DIB -,XMT Data In B, Transmitter

I 0 AC o F o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the present contents of the transmitter address counter into AC bits 1-15, clear AC bit 0, and perform the
function specified by F.

Setting Busy causes the transmitter to request data channel access for the first word and raise the Request

to Send signal. When the local data set returns the Clear to Send signal, the transmitter begins sending the

pairs of characters taken from the memory locations specified by the address counter. Since transmission
is serial, the data channel has one bit time in which to respond to a request before sync is lost; if the channel
is late, Date Late sets, transmission ceases, Busy clears and Done sets, requesting an interrupt if Interrupt
Disable is clear.

7-4

If all is well, the word counter overflows as the last word is received from the channel; overflow clears

Busy and sets Done, requesting an interrupt if Interrupt Disable is clear, even though the transmitter has one
more word to send. This provides two character times for the program to supply a new initial address
and word count and restart the transmitter without losing sync. If the transmitter is not restarted within this

time, the Request to Send signal to the data set is dropped, and sync must be reestablished before further

data transmission can take place.

Automatic Answering

The controller includes equipment that allows the computer to answer incoming calls if the local data

set is so configured and operates with EIA standard levels. For this the program makes use of bits 11-13 of the

status word read by the DIA for the receiver. Bits 11 and 12 give the status of the communications circuit and
the local data set: bit 11 indicates that a carrier is being received from the remote station; bit 12 indicates that

the local data set is connected and is capable of handling data. The program detects a ringing signal from a
remote station by periodically examining bit 13, the Ring Indicator. The program answers a call by sending a
Data Terminal Ready signal to the local data set; the program must also dismiss the call when completed. The
program answers and dismisses a call with the following instruction, which uses the transmitter device code.

DOA -,XMT Data Out A, Transmitter

I 0 AC
I

o 1 o F
I

1 o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

If AC bit 15 is 1, send a Data Terminal Ready signal; if AC bit 15 is 0, terminate the Data Terminal Ready

signal. (Perform the function specified by F.)

7.2 ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXER 4026

By means of this device the program can control the transmission of asynchronous serial data on sixteen
output lines and can receive asynchronous serial data simultaneously over sixteen input lines. The program

handles output by periodically changing the contents of a 16-bit output register in which each bit is connected
to a separate output channel; thus successive changes in the register contents produce bit-by-bit serial transmis­
sion over the channels. The multiplexer supplies two types of output levels: 20 rna signals for a Teletype Model

33 or 35 (option 4028), and EIA standard levels for a Model 37 or a 103 modem (option 4027). Data is
received simply by sampling the sixteen input lines periodically to pick up the bit-by-bit serial input. In both
input and output, 1 is a mark, 0 a space. A second set of input lines allows the program to sample control sig­

nals for the communication channels, such as Ring Indicator, Clear to Send, or Data Set Ready.

The customer can select the number of communication channels in multiples of four, both input and
output, beginning at the most significant end (in the minimum configuration the four input lines and four output
lines are both connected to 10 bus data lines 0-3). The input lines for control signals are available only with

EIA standard levels (option 4027) and their number equals the number of input data lines.

7-5

A single multiplexer has device code 24, but the board actually contains jumpers for selecting any code

from 24 to 27. Other multiplexer boards can be used for handling more communication channels, or a second

board can be used (say with device code 25) for handling more control signals for the communication channels
already in use. A second board supplies two sets of inputs, so that altogether the program can sample all three
of the control signals listed above, and one set of outputs, either Request to Send or Data Terminal Ready.

If the input were sampled at the bit rate, a bit could easily be missed and a transient could easily be

mistaken for a start impulse. Thus the multiplexer contains a clock whose frequency is five times the baud
rate. By sampling the input five times per bit time, no bits are missed, and an initial space that lasts less
than three sample times is properly recognized as a transient.

The multiplexer uses three 10 transfer instructions, two for input and one for output. Busy and Done

are controlled or sensed by bits 8 and 9 in all 10 instructions with device code 24, mnemonic DCM. Interrupt
Disable is controlled by interrupt priority mask bit O. Other multiplexers for data or additional control signals
use the same instructions with the appropriate device codes.

DOA -,DCM Data Out A, Data Communications Multiplexer

I 0 1 AC o o F o o o o
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load the contents of AC into the data output register, and perform the function specified by F.

DlA -,DCM Data I n A, Data Communications MUltiplexer

o 1 1 AC o o F o o o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 12 14 15

Transfer the contents of the data input lines into AC, and perform the function specified by F.

DlB -,DCM Data In B, Data Communications Multiplexer

o 1 1 AC o 1 F o 1 o 1 o o
I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the signals on the control input lines into AC, and perform the function specified by F.

Setting Busy turns on the clock so that the next pulse clears Busy and sets Done, requesting an interrupt
if Interrupt Disable is clear. Before beginning any operations, the program should give Start and wait for the

first interrupt. Then at each interrupt, the program can update the output, sample the input, and restart the

clock. Between interrupts the program should process the input and set up the next output. Output lines that
are not in use should be left marking (ie unused bits in the output register should be loaded with 1 s) .

Timing. A Model 33 or 35 has a transmission rate of ten characters per second, 110 bits per second. For
these devices the clock runs at 550 Hz, so the program can sample the input five times per bit. Clocks are
available for devices that operate at other frequencies.

7-6

7.3 MODEM CONTROL FEATURES 4023 AND 4029

The 4023 is an option that can be added to the 4010 teletype interface to supply EIA standard levels and 150

baud operation for a Model 37 or a 103 Modem (Bell System Type 103 Data Set or equivalent); and in fact the

4023 is installed for use with the console teletype if that is a 37. The instructions and all of the information given

for the Model 37 in *3.1 apply to the 4023 whether used for the console or with a modem for remote communi­

cation. Of course in the latter case, device codes and mnemonics different from those for the console teletype

must be used; the code pairs generally assigned to receiver and transmitter respectively are 40-41 or 50-5\.

The 4029 operates with the 4010 interface and the 4023 option to implement use of the Bell System Data­

phone Data Set Type 202C or 202D for communication over telephone lines. The 202C, which is used for dial-up

operations, generally operates at 1200 bits per second and has a telephone hand set contained within the unit,

allowing alternate voice/data operation. The 202D is used for permanently connected private lines and generally

operates at 1800 bits per second; alternate voice operation requires addition of an optional auxiliary hand set

Type 804A. Reverse channel capability, which is optional on the 202, is not available in the 4029.

Although mounted on a single circuit board, the 4010-4023-4029 combination is actually two independent

interfaces, allowing simultaneously reception and transmission of data. Besides a pair of 10 instructions like

those of the teletype to handle character transfers, the interface has two 10 transfer instructions for checking

status and handling the automatic answering of incoming calls. The board has jumpers for the selection of device

code pair 40-41 or 50-51 for the receiver and transmitter respectively. Busy and Done flags for the receiver and

transmitter are controlled or sensed by bits 8 and 9 in all 10 instructions with the assigned code. Receiver

Interrupt Disable is controlled by interrupt priority mask bit 14, Transmitter Interrupt Disable by mask bit 15.

The special Pulse function P (F= II) when given with the receiver code clears the Break Indicator (status bit

15). For convenience the instructions are given with device codes 40 and 41, and the mnemonics REC and XMT

are used in representing the instructions, but they are not recognized by the assembler; the programmer must

define his own mnemonics.

DIA -,REe Data I n A, Receiver

I 0 o o o o o I 0
2 5 6 7 8 9 10 11 12 13 14 IS

Transfer the contents of the receiver buffer into AC bits :8-15, and perform the function specified by F. Clear

AC bits 0-7.

DOA -,XMT Data Out A, Transmitter

I 0 I AC I 0 0 ~ 1 0 0 0 0
o 2 3 I 4 5 6 7 8 9 10 11 12 13 14

1
IS

Load the contents of AC bits 8 - 15 into the transmitter buffer, and perform the function specified by F.

7-7

DIB -,REC Data In B, Receiver

1 o 1 1 F 1 o o o o o
!

2 5 6 7 8 9 10 11 12 13 14 15

Read the status of the receiver into AC bits 12-15 as shown, and perform the function specified by F. Clear

AC bits 0-11.

CARRIER DATA SET RING BREAK
ON READY INDICATOR INDICATOR

10 II 12 13 14 15

Bits 12 -14 are for the automatic answering feature described below. Bit 15 is cleared by P.

12 A carrier is being received from a remote station.

13 The local data set is connected and is capable of handling data.

14 A ringing signal is being received from a remote station.

15 The line has been opened or a break key struck.

DOB -,REC Data Out S, Receiver

o
o 2

! 0
6

I 0
5 7 8 9

! 0 ! 0
10 11 12

o
I 13

! 0
14

! 0
15

If AC bit 15 is I, send a Data Terminal Ready signal; if AC bit 15 is 0, terminate the Data Terminal Ready

signal. (Perform the function specified by F.) This instruction is used to answer incoming calls (see below).

Reception from the line requires no initiating action by the program; any character that appears on the line

is automatically loaded serially into the buffer (the Reader Busy flag of the 4023 is set by giving Start, but it

serves no function here). Completion of reception clears Reader Busy and sets Receiver Done, requesting an

interrupt if Receiver Interrupt Disable is clear. Programming the Pulse function (F= II) with device code 40

clears Break Indicator.

When the transmitter is off, setting Transmitter Busy turns it on and generates the Request To Send signal.

Once the local modem generates the Clear To Send signal, the contents of the transmitter buffer are sent out

serially over the line (the buffer is cleared during transmission). Completion of transmission clears Transmitter

Busy and sets Transmitter Done, requesting an interrupt if Transmitter Interrupt Disable is clear. Once the trans­

mitter is on, setting Transmitter Busy sends out the contents of the buffer-the transmitter remains on so long

as either Busy or Done is set. Giving Clear (F= 10) clears both B·usy and Done, terminating the Request To Send

signal and turning off the transmitter.

7-8

NOTE

Although the buffer clears during transmission, giving an NIOS without loading

it again does not transmit a zero character. So do not give an NIOS without first

loading the buffer. To transmit any character including nuB, either give a DOAS

or give a DOA followed by an NIOS.

The 4029 can handle either 10-unit or II-unit codes. In the transmitter the code type is selected by means

of a jumper; the receiver can handle either type arbitrarily with no change needed in the logic.

Timing. The 4029 is normally set to operate at 1200 bits per second, but other speeds are available. To fully

utilize the 1200 baud rate, the program must be prepared to handle a to-unit character every 8.3 ms, and 11-

unit character every 9.2 ms. Since the rate of incoming data cannot be known a priori, the maximum must be

assumed. Hence to avoid the possibility of data loss, the program must retrieve a to-unit character within 1.25

ms after Receiver Done sets, an II-unit character within 2.1 ms. After Transmitter Done sets, the program must

supply another character within .83 ms to keep the transmitter going at the maximum rate.

The corresponding times for 1800 baud operation are 10-unit characters every 5.55 ms, II-unit characters

every 6.1 ms. The program has .83 ms to retrieve a 10-unit character from the receiver, 1.4 ms to retrieve an

II-unit character. To maintain the maximum transmission rate, the program must respond to Receiver Done

within .55 ms.

Automatic Answering. If the local data set is so configured, the computer can answer incoming calls by

making use of bits 12-14 of the status word read by the D I B. Bits 12 and 13 give the status of the comm unica­

tions circuit and the local data set: bit 12 indicates that a carrier is being received from the remote station; bit 13

indicates that the local data set is connected and is capable of handling data. The program detects a ringing signal

from a remote station by periodically examining bit 14, the Ring Indicator. The program answers a call by

sending a Data Terminal Ready signal to the local data set; the program must also dismiss the call when com­

pleted. Answering and dismissing a call are effected by using the DOB to control Data Terminal Ready.

7.4 MULTIPROCESSOR COMMUNICATIONS ADAPTER 4038

This option makes it possible to connect up to fifteen Nova computers of any type into a multiprocessor

system by permitting the transfer of blocks of data from one computer to another through their data channels.

One adapter is attached to the 10 bus of each computer in the system, and the adapters are connected together

by a common communication bus. Although mounted on a single circuit board, an adapter (MeA) is actually

two independent interfaces, allowing simultaneous reception and transmission of data. Each interface is con­

nected separately to the data channel, so the program need only set up an interface for receiving or sending and

all transfers to and from memory are then handled automatically. To operate with the data channel, the receiver

and transmitter each have an address counter and a word counter as well as data and status registers.

By means of jumpers on the board, each adapter is assigned a code in the range 0-17 octal, which code is

shared by the transmitter and receiver and is used for creating communication links. A processor with an adapter

can establish a link between its transmitter and any receiver it designates provided that receiver has been set

up for reception. In other words the transmission of a data block between any pair of computers requires program

activity at both ends of the link. Once a processor sets up its receiver, that receiver locks onto any transmitter

that sends it a word and then accepts data from only that transmitter until the receiver is unlocked by the

program. A given block transfer is complete when one of the word counts, in either receiver or transmitter, goes

to zero, but the receiver does not unlock from the transmitter without specific action by the program. This way

the program can set up the receiver for another block from the same transmitter without worrying that some

other transmitter will interfere.

The characteristics of data transmission must be established by convention in the software for the multi­

processor system. At the simplest level all transmission can be in standardized blocks with every receiver

simply left enabled to lock onto any transmitter that calls it. A much more flexible system can be achieved by

7-9

the use of control blocks to specify the characteristics of subsequent data operations. Then whenever a receiver

is not engaged in a data transfer, it can simply be left free to receive a control block in some standard format.

Upon receipt of a control block, the processor can inspect its contents to determine how to respond: this may

involve setting up the receiver for a specific data operation, setting up the transmitter to send a block to another

computer, or both.

Each adapter has multiplexer circuitry built into it so that any number of communication links can be held

concurrently on the bus, with each receiving an equal share, if needed, of the available time. Links can be added

or dropped at any time without affecting the system except in terms of individual transfer rates; even turning

off power at one computer does not affect the other computers or the communication network.

Timing. The maximum overall transfer rate through the communication bus is half a million words per

second. The rate for a single link however is at most 250,000 words per second regardless of the speed capability

of the data channel when connected to a single device. A typical data rate for a single link ranges from 70,000 words

per second for a pair of Novas to 140,000 for Nova 800s or Supernovas with high speed data channels. The basic

cycle time of the network is 2 MS, and all transmitters currently executing a block transfer are allowed access to it in

round robin fashion. If a given transmitter is not ready when its turn comes,lt must wait until the next time around.

Whether or not a transmitter is always ready in time for its turn depends somewhat on the speed of the channel, but

primarily on any delay caused by the program or other devices before the transmitter can gain direct access to

memory for another word. If a receiver does not accept a word transmitted to it, the sending transmitter must simply

try again with the same word the next time around.

Receiver

To set up the receiver to accept a block of data, the program must supply an initial address to the 15-bit

address counter and supply either a specific (twos complement) negative word count to the 16-bit word counter

or a word count large enough (eg zero) to receive the entire block regardless of size.

The receiver uses five 10 transfer instructions, for loading and reading the address and word counters and

reading status. Busy and Done are controlled or sensed by bits 8 and 9 in all 10 instructions with device code 7,

mnemonic MCAR. Interrupt Disable is controlled by interrupt priority mask bit 12.

DOA -,MCAR Data Out A, MCA Receiver

I 0
o I 2

o o o o I 0
12 I 13 14 15 5 6 7 8 9 10 11

Load the contents of AC bits 1-15 into the address counter, and perform the function specified by F.

DOB -,MCAR Data Out B, MCA Receiver

~ I 2

o o o I 0 o
5 6 7 8 9 j 0 II 12 13 14 15

Load the contents of AC into the word counter, and perform the function specified by F.

7-10

DIC -,MCAR Data In C, MCA Receiver

~ I
1. 0 f o o o

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read the status of the receiver into AC as shown, and perform the function specified by F.

RECEIVER CODE TRANSMITTER LINK TIME LOCK XMTR RCVR

OUT ON COUNT COUNT

I I I I I I I L J DONE DONE

o I 1 2 3 4 5 6 I 7 8 9 I 10 11 12 13 14 15

Start clears Time Out, XMTR Count Done and RCYR Count Done; Clear clears these plus Lock On. The

setting of Time Out, XMTR Count Done or RCYR Count Done clears Busy, sets Done, and disables (but does

not unlock) the receiver.

0-3 The code of this receiver as determined by itsjumpers.

4-7 The code of the transmitter to which this receiver is or was connected.

12 A block transfer is in progress but no data has been received for 10 ms.

NOTE: This bit indicates suspicious behavior--it cannot be set by normal termination, ie transmitter

word count overflow.

13 The receiver is locked on the transmitter specified by bits 4-7.

14 The transmitter has completed the block transfer as determined by its word counter.

15 This receiver has completed its reception as determined by its word counter.

DlA -,MCAR Data In A, MCA Receiver

3 4 5 6

o o I 0 o I
o 2 7 8 9 10 11 12 13 14 15

Read the present contents of the address counter into AC bits 1--15, and perform the function specified by F.

Clear AC bit O.

DIB -,MCAR Data In B, MCA Receiver

o o o I 0
2 5 6 7 8 9 10 11 12 13 14 15

Read the present contents of the word counter into AC, and perform the function specified by F.

Besides clearing Done and setting Busy, Start (F=OI) clears Time Out, XMTR Count Done and RCYR

Count Done (status bits 12, 14 and 15). Setting Busy enables the receiver so that it can accept data. I f Lock On

7-11

is set, the receiver is already locked to the transmitter whose code appears in status bits 4-7 and will accept data

from only that transmitter. If Lock On is clear, then as soon as some transmitter sends a word to the receiver,
it locks on that transmitter (Lock On sets and the transmitter code appears in status bits 4-7) and will accept

data from only that transmitter until it is unlocked. ~s each word is received it is sent to the memory location
specified by the address counter, and both counters are incremented. The receiver does not accept another word
until the previous one is stored. Word count overflow at either end of the link or failure of the transmitter to

send data for 10 ms sets the appropriate status flag, clears Busy (disabling the receiver without unlocking it),
and sets Done, requesting an interrupt if Interrupt Disable is clear. Ordinarily the setting of Time Out indicates
program or operator intervention or equipment malfunction at the transmitting proceSsor.

Besides clearing Busy and Done, Clear (F= 10) clears status flags 12-15; hence it both disables and unlocks
the receiver. This terminates a transfer if one is in progress, and frees the receiver to accept data from any
transmitter once the program sets Busy again.

Transmitter

To set up the transmitter to send a block of data, the program must supply an initial address to the IS-bit

address counter and supply a specific (twos complement) negative word count to the 16-bit word counter. The
transmitter uses all six 10 transfer instructions, for loading and reading the address and word counters, for

reading status, and for specifying the receiver to which a communication link is desired. Busy and Done are
controlled or sensed by bits 8 and 9 in all 10 instructions with device code 6, mnemonic MCAT. Interrupt

Disable is controlled by interrupt priority mask bit 12.

DOA -,MeAT Data Out A, MeA Transmitter

I 0
o I

1 1

2 3

AC
I

o 1

4 5 6

o
7 8

F
I

o
9 10

o o 1

11 12 13 14

Load the contents of AC bits 1-15 into the address counter, and perform the function specified by F.

DOB -,MeAT Data Out B, MeA Transmitter

Load the contents of AC into the word counter, and perform the function specified by F.

Doe -,MeAT Data Out C, MeA Transmitter

I ~ I 1
1 1 o o I 0 I 0 1 1
2 5 6 7 8 9 10 11 12 13 14

o
15

o
15

Select the receiver specified by AC bits 0-3 for establishing a communication link, and perform the function
specified by F.

7-12

Die -,MeAT Data In e, MeA Transmitter

I 0
o I 2 3

AC
I 4

1 o o o o 1 o
5 6 7 8 9 10 11 12 13 14 15

Read the status of the transmitter into AC as shown, and perform the function specified by F.

TIME LOCK XMTR RCVR
RECElVER LINK TRANSMITTER CODE COUNT COUNT OUT OUT
I I I I I I I I I DONE DONE

o I 1 2 3 4 5 6 I 7 8 9 I 10 11 12 13 14 15

Clear and Start both clear Time Out and XMTR Count Done. The setting of Time Out, XMTR COJnt Done

or RCVR Count Done clears Busy, sets Done, and disables the transmitter. Lock O\1t and RCVR Count Done

are meaningless unless Done is set.

0-3 The code of the receiver specified for a link by the last DOC.

4-7 The code of this transmitter as determined by its jumpers.

12 The transmitter has attempted to begin a block transfer or one is in progress, but the receiver specified
by bits 0-3 has accepted no data for to ms.

NOTE: At the initiation of a block transfer this bit indicates the processor at the other end of the

attempted link has not set up its receiver, or the receiver is locked to some other transmitter for an

abnormally long time; if a transfer is already in progress, a I in bit 12 indicates suspicious behavior­

it cannot be set by normal termination, ie receiver word count overflow.

13 ThtHeceiver specified by bits .0,- 3 is locked to some other transmitter.

14 This transmitter has completed the block transfer as determined by its word counter.

15 The receiver has completed its reception as determined by its word counter.

DIA -,MeAT Data I n A, MeA Transmitter

2
3 Af 4

I 0 o o o o o o I
o 5 6 7 8 9 10 11 12 13 14 15

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.

Clear AC bit O.

DlB -,MeAT Data In B, MeA Transmitter

o 2 3

AC
I 4

I 0 o o o o o
5 6 7 8 9 10 11 12 13 14 15

Read the present contents of the word counter into AC, and perform the function specified by F.

7-13

Besides clearing Done and setting Busy, Start (F= lO) clears Time Out and XMTR Count Done (status bits

12 and 14). Setting Busy turns on the transmitter, which in turn retrieves a word from the memory location

specified by the address counter and attempts to send this word to the receiver specified by the last DOC. If the

receiver is locked to some other transmitter, Lock Out sets, but the transmitter keeps trying and sets Time Out

only if the receiver refuses to accept the word within 10 ms. If the receiver does accept the word, Lock Out clears

and the receiver locks on this transmitter, which then sends the block of words retrieved from the locations

specified by the address counter and increments both counters on each transfer. Word count overflow at either

end of the link or failure of the receiver to accept data for lO ms sets the appropriate status flag. The setting of

Time Out, XMTR Count Done or RCVR Count Done clears Busy, turning off the transmitter, and sets Done,

requesting an interrupt if Interrupt Disable is clear. Ordinarily the setting of Time Out once a block transfer

is in progress indicates program or operator intervention or equipment malfunction at the receiving processor.

Besides clearing Busy and Done, Clear (F= lO) clears Time Out and XMTR Count Done. Giving Clear, and

thus turning off the transmitter, during a block transfer can cause data loss.

Installation

The adapter is mounted on a single IS-inch square printed circuit board that plugs directly into one of the

slots in the computer. Each adapter is assigned a 4-bit code by means of jumpers on the board; the adapter is

shipped with the jumpers in place (code 17), but the user can change thi1> to any desired code by cutting out

jumpers for as.
The standard communication network has a bus 75 feet long, allowing a data transfer rate of 500 KHz.

Reducing this rate to 300 KHz allows lengthening the bus to a maximum of 150 feet.

The communication bus requires a terminator network at each end, but a network is included in every

adapter. In a system that combines more than two processors, the terminators must be removed from all adapters

except those at the ends of the bus. To do this, remove all of the 220 and 270 ohm terminating resistors from

the middle adapters.

7-14

Appendices

APPENDIX A

INTERF ACING

§ § 2.3, 2.4 and 2.5 contain a general description of the entire in-out system including the
program interrupt and the data channel. These sections explain in-out programming in general terms
and indicate the way in which in-out instructions control the various functions involved in moving
information between the accumulators and the devices. The reader should be very familiar with the
contents of these three sections before he attempts to interface any equipment of his own design.

There are two types of in-out data transfer: the movement of words or characters by the program
and the automatic transfer of data via the data channel. The program can handle in-out by sensing
Busy or Done or by allowing the device to interrupt when it requires service. If the device is
automatic, it can use data channel cycles for the transfer of data and require response by the program
only for control purposes (eg when a block transfer is complete or there is some special situation, such
as an error, which the program must handle).

To connect to the in-out bus, every device must have certain fundamental circuit networks. Each
device must have a selection net to guarantee that the device will respond when and only when its
device code is given by the program, a Busy-Done net to specify the device state and request
interrupts, a net to determine the interrupt priority in terms of the device position on the bus, and a
net to supply the device code when an interrupt is acknowledged (lNTA). If the device is connected to
the data channel it must also have a circuit to request access, one to determine priority (identical to
the program interrupt priority net), and one to specify the type of data channel cycle required. The
standard configurations for these circuits are described in Part III.

The physical layout of the computer allows many standard and customer-designed 10 interfaces
to be mounted inside the basic S~-inch unit. This unit has slots for seven 15 X IS-inch printed circuit
boards, one of which is used for the central processor in the Nova 1200, two in the Nova and Nova
800, three in the Supernova. The connectors for the others are wired to the memory and 10 buses and
may be used for memories or interfaces, except that slot 2 in the Nova 1200 can be used only for a
memory or a 1200 option board. A single memor'y module requires an entire board, but one slot may
be used for several interfaces (eg the interfaces for the teletypewriter, real time clock, and high speed
paper tape reader and punch are all on one board). The central processor with 4K of memory and a
teletype interface requires three slots in the Nova 1200, four in the Nova and Nova 800, five in the
Supernova. If more than the remainder are required for additional memories and interfaces, seven can
be made available in an expansion chassis rack-mounted above the basic unit. Moreover the Nova 800
and Nova 1200 are also available in a double-height chassis (1 Oy~ inches) that has a total of seventeen
slots. Lines connect to the devices via connectors at the back of the unit. If large scale equipment
requires too many external lines, the bus itself can go out through one of these connectors.

I IN-OUT BUS

The bus consists of sixteen bidirectional data lines, six device selection lines and nineteen control
lines from processor to devices, and six control lines from devices to processor. Signals on the control

lines from the processor synchronize all transfers on the data lines, start and stop device operations,
and control the program interrupt and data channel. Over the control lines to the processor a device
can indicate the states of its Busy and Done flags and request a program interrupt or data channel
access.

A signal on a control line from the processor not only specifies a particular function but also

Al

r
I
I
I
I
I

L

-
CORE READ-ONLY

MEMORY MEMORY
2048 OR 102416-BIT

4096 16BIT WORDS WORDS

i"

, MEMORY BUS

..
CENTRAL .. PROCESSOR -

IN-OUT BUS
A A~ 4~

,.
TELETYPE READER PUNCH
CONTROL CONTROL CONTROL

I A

- - ~ - - - - -
r ,

TELETYPE READER PUNCH

- -
SEMICONDUCTOR

MEMORY CORE
(SUPERNOVA SC MEMORY

ONLY)

~

, • -

BASIC
UNIT

I a

DISPLAY
SPECIAL

USER
CONTROL CONTROL

~ - - - - -
, r ,

--,
I
I
I
I
I
I
I
I

-.J
SPECIAL EXTERN AL

DISPLAY USER BUS
DEVICE

TYPICAL NOVA SYSTEM CONFIGURATION

supplies all timing information needed for the execution of that function. A device control unit
usually requires timing circuits for its own internal operations, but no timing functions need be
performed by the circuits that connect to the bus - all such timing is supplied by the processor in the
signals sent over the bus control lines. Moreover the control lines are set up so that a given device need
connect only to those that correspond to the functions the device requires.

Within the basic enclosure the bus is simply printed connections from one subassembly slot to
another. If the bus must run out of the basic enclosure, the external bus is in the form of a cable
composed of fifty twisted pairs in a single black covering. External bus wires must be terminated at
the far end to match the characteristic impedance of the cable: this allows the transmission of high
speed digital pulses without reflections or ringing. The cable has very low interpair crosstalk and high
surge impedance so individual twisted pairs do not require separate shields. With this system a number
of bus drivers can be connected to a single data line, and data may be transmitted and received directly

with ICs at distances up to 50 feet (including internal wiring) with good noise margins and low signal
delays.

A2

Bus Signals

The binary signals on the bus have two states, low and high, which correspond respectively to
nominal voltage levels of 0 and +2.7 volts. Any level between ground and .4 volt is interpreted as low
any level more positive than 2.2 volts is interpreted as high. The level listed for a signal in the
following table is the voltage level on the line when the signal represents a 1 or produces the indicated
function. A low signal is indicated in the prints by a bar over its name.

Signal

DSO
to

DSS

DATAO
to

DATAIS

DATOA

DATI A

Direction

To device

Bidirectional

To device

To device

Level

Low

Low

High

High

Device Selection. The processor places the device code (bits
10-IS of the instruction word) on these lines during the
execution of an in-out instruction. The lines select one of S9
devices (codes 04~ 76) that may be connected to the bus.
Only the selected device responds to control signals generated
during the instruction.

Data. All data and addresses are transferred between the
processor and the devices attached to the bus via these
sixteen lines.

For programmed output the processor places the AC
specified by the instruction on the data lines and then
generates DA TOA, DA TOB or DA TOC to load the data from
the lines into the corresponding buffer in the device selected
by DSO-S, or generates MSKO jo set up the Interrupt
Disable flags in all of the devices according to the mask on
the data lines. For data channel output the processor places
the memory buffer on the data lines and generates DCHO to
load the contents of the lines into the data buffer in the
device that is being serviced.

For programmed input the processor generates DA TIA,
DATIB or DA TIC to place information from the corres­
ponding buffer in the device selected by DSO-S on the data
lines, or generates INT A to place the code of the nearest
device that is requesting an interrupt on lines IO-IS. The
processor then loads the data from the lines into the AC
selected by the instruction. To get an address for data
channel access the processor generates DCHA to place a
memory address from the nearest device that is requesting
access on lines I-IS and then loads the address into the
memory address register. For data channel input the pro­
cessor generates DCHI to place the data buffer of the device
being serviced on the data lines and then loads the contents
of the lines into the memory buffer.

Data Out A. Generated by the processor after AC has been
placed on the data lines in a DOA to load the data into the A
buffer in the device selected by DSO-S.

Data In A. Generated by the processor during a DIA to place
the A buffer in the device selected by DSO-S on the data
lines.

A3

DATOB

DATIB

DATOC

DATIC

STRT

CLR

IOPLS

SELB

SELD

RQENB

INTR

INTP

INTA

A4

To device

To device

To device

To device

To device

To device

To device

To processor

To processor

To device

To processor

To device

To device

High

High

High

High

High

High

High

Low

Low

Low

Low

Low

High

Data Out B. Equivalent to DA TOA but loads the B buffer.

Data: In B. Equivalent to DA TIA but places the B buffer on
the data lines.

Data Out C. Equivalent to DATOA but loads the C buffer.

Data In C. Equivalent to DATIA but places the C buffer on
the data lines.

Start. Generated by the processor in any nonskip 10
instruction with an S control function (bits 8-9 = 01) to
clear Done, set Busy, and clear the INT REQ flipflop in the
device selected by DSO-S.

Clear. Generated by the processor in any nonskip 10
instruction with a C control function (bits 8-9 = 10) to clear
Busy, Done and the INT REQ flipflop in the device selected
by DSO-S.

10 Pulse. Generated by the processor in any nonskip 10
instruction with a P control function (bits 8-9 = 11) to
perform some special function in the device selected by
DSO-S (this signal is for custom applications).

Selected Busy. Generated by the device selected by DSO-S if
its Busy flag is set.

Selected Done. Generated by the device selected by DSO-S if
its Done flag is set.

Request Enable. Generated at the beginning of every memory
cycle to allow all devices on the bus to request program
interrupts or data channel access.

In any device RQENB sets the INT REQ flipflop if
Done is set and Interrupt Disable is clear. Otherwise it clears
INT REQ.

In any device connected to the data channel RQENB
sets the DCH REQ flipflop if the DCH SYNC flipflop is set.
Otherwise it clears DCH REQ.

Interrupt Request. Generated by any device when its INT
REQ flipflop is set. This informs the processor that the
device is waiting for an interrupt to start.

Interrupt Priority. Generated by the processor for trans­
mission serially to the devices on the bus. If the INT REQ
flipflop in a device is clear when the device receives INTP, the
signal is transmitted to the next device.

Interrupt Acknowledge. Generated by the processor during
the INTA instruction. If a device receives INTA while it is
also receiving INTP and its INT REQ flipflop is set, it places
its device code on data lines 1 0-IS.

MSKO

DCHR

DCHP

DCHA

DCHMO
DCHMI

DC HI

DCHO

OVFLO

IORST

To device Low

To processor Low

To device Low

To device Low

To processor Low

To device High

To device High

To device High

To device High

Mask Out. Generated by the processor during the MSKO
instruction after AC has been placed on the data lines to set
up the Interrupt Disable flags in all devices according to the
mask on the lines.

Data Channel Request. Generated by any device when its
DCH REQ flipflop is set. This informs the processor that the
device is waiting for data channel access.

Data Channel Priority. Generated by the processor and
transmitted serially to the devices on the bus. If the DCH
REQ flipflop in a device is clear when the device receives
DCHP, the signal is transmitted to the next device.

Data Channel Acknowledge. Generated by the processor at
the beginning of a data channel cycle. If a device receives
DCHA while it is also receiving DCHP and its DCH REQ
flipflop is set, it places the memory address to be used for
data channel access on data lines 1-15 and sets its DCH SEL
flipflop.

Data Channel Mode. Generated by a device when its DCH
SEL flipflop is set to inform the processor of the type of data
channel cycle desired as follows:

DCHMO DCHMI
o (H) 0 (H)

o (H) 1 (L)
I (L) 0 (H)

1 (L) 1 (L)

Data out
Increment memory
Data in
Add to memory

In addition to performing the necessary functions internally,
the processor generates DCHI and/or DCHO for the required
in-out transfers.

Data Channel In. Generated by the processor for data
channel input (DCHMO = 1) to place the data register of the
device selected by DCHA on the data lines.

Data Channel Out. Generated by the processor for data
channel output (DCHMO-l =1= 10) after the word from
memory or the arithmetic result has been placed on the data
lines to load the contents of the lines into the data register of
the device selected by DCHA.

Overflow. Generated by the processor during a data channel
cycle that increments memory or adds to memory (DCHM I =
1) when the result exceeds 216 - 1.

10 Reset. Generated by the processor in the IORST
instruction or when the console reset switch is pressed to
clear the control flipflops in all interfaces connected to the
bus. This signal is also generated during power turnon.

AS

Bus Connections

The back panel of the frame that holds the printed circuit boards has fourteen 100-pin
connectors, two for each slot. The bottom slots are wired for the central processor. The back panel
connectors of the upper five slots (four. in the Supernova) are identical and are wired to the memory

A
1 3 5 1 9 11 13 15 11 19 21 23 25 21 29 31 33 35 31 39 41 43 45 41 49 51 53 55 51 59 61 63 65 61 69 11 13 15 11 19 81 83 85 81 89 91 93 95 91 99

B
1 3 5 7 9 11 13 15 17 19 21 23 25 17 29 31 33 35 37 39 41 43 4547 49 51 53 55 57 59 61 63 656769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

:J
o 0
O z

"

o
z
"

BACK PAN EL CO NN ECTO R LAYO UT

... '. [

I .· (' ····i·· •••••• I I~ ~ ~
r:::- ' . • ... :< 1/» II}

··. I~ /· ~ ~

and in-out buses. The pins for the in-out bus signals are as snown here (viewed from the back the A
connector is on the left); shaded positions are used by the memory bus ; blank positions indicate pins
available for interface connections. The teletype interface is in slot 4 in the Supernova, slot 3 in the
other machines. In an expansion chassis added to the basic unit , all seven connector pairs are wired in
the same manner as the pair shown. In a double height chassis the wiring is the same up to slot 11 ; in
slots 12 and above pins 5-32 on the A connector are available for customer use, but any interface that
uses them is incompatible with the standard back panel configuration and cannot be plugged into one
of the slots in which those pins are not free . An unregulated -15 vdc is available at pins at the power
supply end of the back panel.

Cabling from the back panel to external equipment is made via connectors at the back of the
unit. The plate at the back on the Nova and Supernova has holes for mounting one 1 OO-pin socket or
50-pin 10 cable socket, two 52-pin or 25-pin sockets, and five 19-pin or 9-pin sockets. The second ,
third and fourth holes from the left at the bottom on the Nova 800 and 1200 are assigned respectively
to the teletype , paper tape punch and paper tape reader, whose interfaces must be installed in slot 3.
Holes for other sockets may be chosen by the user.

Typical Nova 800 and 1200 External Connector Layout

A6

..

Typical Nova and Supernova External Connector Layout

To connect a Nova or Supernova interface to a device, run the wires from a slot connector down
the back panel, underneath the chassis, and through the power supply to the socket at the back (wires
going through the power supply must be shielded). In the Nova 800 and 1200, cables for the reader,
punch and 10 bus can be connected from the sockets at the back of the unit to sockets that are
mounted at the bottom of the back panel and are connected directly to the pc wiring (there are three
sockets for the bus, one each for the devices). To connect any other interface. run the wires from a
slot connector across the back panel to the appropriate output connector.

Each socket at the back is held in by a pair of bolts whose heads have threaded holes to receive
the captive bolts on the mating plug. DGC order numbers for the various connectors are as follows .

DGC oraer number
Type Socket Plug

100 pm 1100 1101

52 pin 1102 1103

25 pin 1104 II as
19 pin 1106 1107

9 pin 1108 II 09

50 pin 10 1110 1111

All tools needed for insertion , extraction and cnmpmg are available in a tool kit, order number 1 112.
Connectors ordered by the numbers given above co me complete with mounting hardware. At the end
of this appendix is a table that lists the DGC and ITT Cannon Electric part numbers for all connector
parts individually : sockets, plugs, male and female screw lock assemblies, and junction shells.

On the next page is a complete signal summary. For each signal the table lists the level, direction ,
back panel pin and external bus connector pin .

Bus Circuits

Signal levels on the bus are nominally a and +2 .7 volts. EvelY line that a device must drive should
be driven toward ground by an NPN transistor collector that is capable of sinking 45 ma and
maintaining a maximum saturated output voltage of .5 volt. The following integrated circuits are
especially suited to these requirements.

A7

. .)

IN-OUT BUS SIGNAL CONNECTIONS

H High B Bidirectipnal P From device to processor
L Low D From processor to device

Panel External Panel External
Signal Level Direction Pin Bus Pin Signal Level Direction Pin Bus Pin

CLRt H D A50 2 DCHMO 'L P B17 27
DATAO L B B62 3 DCHM1 L P B2l 28
DATAl L B B65 4 DCHOt H D B33 29
DATA2 L B B82 5 DCHPIN L D* A94} 30
DATA3 L B B73 6 DCHPOUT L D* A93
DATA4 L B B61 7 DCHR L P B35 31
DATA5 L B B57 8 DSO L D A72 32
DATA6 L B B95 9 DSI L D A68 33
DATA7 L B B55 10 DS2 L D A66 34
DATA8 L B B60 11 DS3 L D A46 35
DATA9 L B B63 12 DS4 L D A62 36
DATA 10 L B B75 13 DS5 L D A64 37
DATAl 1 L B B58 14 INTAt H 0 A40 38
DATA12 L B B59 15 INTP IN L 0* A96} 39
DATA 13 L B B64 16 INTP OUT L 0* A95
DATA14 L B B56 17 INTR L P B29 40
DATA15 L B B66 18 IOPLSt H 0 A74 41
DATIAt H 0 A44 19 IORSTt H 0 A70 42

DATIBt H 0 A42 20 MSKO L 0 A38 43

DATICt H 0 A54 21 OVFLOt H 0 B39 44

DATOAt H 0 A58 22 RQENBt L 0 B41 45

DATOBt H 0 A56 23 SELB L P A82 46

DATOCt H 0 A48 24 SELD L P A80 47

DCHAt L 0 A60 25 STRTt H 0 A52 48
DCHIt H 0 B37 26 Power on +5 0 49

*For the two pairs of priority-determining signals, the in signal comes from the processor or the
preceding device, the out signal goes to the next device. If the computer is operated with an interface
board removed (or a slot is not used), jumper pin A93 to A94 and A95 to A96 to maintain bus
continuity.
tUse filters as described in text [page Al 0].

Pins I and 50 of the external bus are grounded, and the ground wires from all twisted pairs are
connected to them. The power-on line cannot be used to supply power to any external device; it is
available only for picking up relays for remote power turnon.

A8

Part Numbers

US7438, US7439
SG7401A
SN7438
100-000078, 100-000081

Vendor

Sprague
Sylvania
T.1.
DGC

The receiver for a bus signal in a device should be a TTL gate or an inverter. The following are
suitable.

Maximum low Guaranteed Propagation
Series Vendor input current low threshold delay in ns

7400 T. I., others 1.6 rna .8 I 9000 Fairchild 1.6 rna .85 lO standard
drive

8800 Signetics 1.6 rna .8

8400 Signetics .8 rna .7 40 low drive

74L T.1. .18 rna .7 60 mini drive

The number of receivers a line can drive is a function of signal source sink capability at a voltage
out that gives an adequate noise margin. A bidirectional line, driven by a DGC 100-000018 or
equivalent and received in commercial TTL gates, will drive ten standard, twenty low drive, or eighty
minidrive TTL gates at acceptable noise voltage margins. Use of receivers selected for higher thresholds
and drivers with lower output voltages at a given output current will raise noise voltage margins
considerably.

It is DGC practice to draw only one load from any signal on a single board regardless of the
number of interfaces or options on that board, ie all interfaces on a board share a common set of
receivers.

When an external bus is connected, signals that originate in the processor and drive devices must
be terminated in this manner.

+5V

200n

-= 240n

Bidirectional signals and signals from device to processor must be terminated this way.
A9

PRocJssbR
+5V

330n.

+5V

330n.

+.7V

390n.

The +5 volts supplied to the external terminators should be decoupled to pins I and 50 and should be
capable of supplying 900 mao Use of the power-on line (pin 49) for this purpose is prohibited.

Proper termination for all forty-seven bus signals is available in DGC 1013. This part has an 10
cable plug for plugging into the last device on the bus in place of the cable to another device.

The bus system is designed for a maximum length of 50 feet induding signal path length within
devices and inside the processor. A bus line within a device may be a single wire if it runs less than 9
inches from the 10 connector. For greater distances it is good practice to run twisted pairs from the
input connector to the receiver circuits and from H:ere to the output connector.

For interfaces mounted inside the main frame of any computer except the original Nova, noise
margins can be improved substantially by using this filter circuit at the input to the board on the
control signals indicated by a dagger (t) in the table on page A8.

CONTROL SIGNAL u: D- CONTROL SIGNAL --I -lo-oPF

I

The bus will drive ten of these circuits if the gate input current is 1.6 mao Such filters are used in DGC
4040 series 0ptions [see Part IV] .

II INTERFACE TIMING

Three classes of operations take place over the in-out bus: programmed transfers (or more
generally the execution of in-out instructions), events associated with requesting and acknowledging a
program interrupt, and data channel transfers. Detailed relationships among the various bus signals
involved in these operations are shown in a series of timing diagrams accompanying this section. In the
diagrams each signal or group of signals is represented by a horizontal line with a raised section. In the
case of a control signal that is generated at a specific time to control some particular function, the
raised section represents the time that the function is true. For signals that carry binary information,
such as the data and device selection signals, the raised section indicates the time during which that
information is held on the bus. The level of a line in the diagram has no connection with the voltage

AlO

level of the signal: the time that a control signal is true is represented by the raised part of the line no
matter whether the signal is true when high or low. All times are in nanoseconds.

Programmed Transfers

Throughout the duration of any in-out instruction, the processor holds the device code on the
device selection lines (DSO-5) for decoding by the device.

Data In. The processor generates DA TIA, DA TIB or DA TIC to place the corresponding buffer on
the data lines in the device selected by DSO-5. At the end of the DATI level the processor strobes the
data into the AC selected by the instruction. Following the transfer the processor generates the pulse
for an S, C or P control function if called for by the instruction. In an NIO the timing of the control
pulse is the same but there is no data transfer.

Tl1e acknowledgement of an interrupt is the same as data input except that INTA (which replaces
the DATI level) places on the data lines the device code of the nearest device that is requesting an
interrupt.

Data Out. While the processor places the AC selected by the instruction on the data lines, it
generates DATOA, DATOB or DATOC to load the data from the lines into the corresponding buffer
in the device selected by DSO-5. When the data is dropped, the processor generates the pulse for an S,
C or P control function if called for by the instruction.

When using a mask to set device priorities for the program interrupt, the processor executes the
same sequence as for d'lta output but generates MSKO (in place of a DA TO pulse) to set up the
Interrupt Disable flags in all devices according to the information on the data lines.

Skip. To allow the processor to sense the state of a device, every device places its Busy and Done
flags on the SELB and SELD lines whenever it recognizes its code on the device selection lines.

Program Interrupt

Of the events associated with a program interrupt, many are internal to the processor and hence
do not affect the bus; and others are simply straightforward applications of operations already
discussed, such as sensing Busy or Done or masking out lower priority devices. There are however
three sequences that must be discussed here: the interrupt request, interrupt acknowledgement (device
recognition), and flag clearing.

When a device completes an operation it sets Done. In every cycle the processor generates
RQENB, which places the interrupt request signal INTR on the bus from a given device (ie sets its INT
REQ flipflop) if its Done flag is set and its Interrupt Disable flag is clear. (In a complex device there
may be other flags besides Done that can request an interrupt.) The leading edge of RQENB must be
used to set INT REQ to ensure sufficient time for the serial INTP function to settle down before the
processor attempts to discover which device has priority. A given device receives INTP IN only if there
is no INT REQ flipflop set in a device closer to the processor on the bus; the INTP signal terminates at
the first device whose INT REQ flipflop is set.

After an interrupt has started, the program can determine who needs service by simply sensing
Busy or Done, or it may give an INT A to read the code of the nearest device that is requesting service.
For the latter procedure the processor generates INT A, which places the device code on data lines
10-15 in that device that is both receiving INTP IN and generating INTR. As discussed previously, the
processor strobes the data into the specified AC at the end of the INT A level.

All

INPUT

OUTPUT

t
I
I

DS0 - 5 L
OR DATIC l!20~0~M!..8A1.X __ .,'---'--------------
DATIA, DATIB, ffi 500 MIN

DATA0 -15 DATI GATES DATA
ONTO BUS

STROBE DATA n
INTO AC -ti5Q:;:::::;::==;---------I 150
STRT, CLR, ~MIN 350 MIN
OR 10PLS I ~IN I
(IF PRESENT)

TIMING FOR INTA
AND MSKO IS THE
SAME AS FOR
INPUT AND OUTPUT
RESPECTIVELY

050- 5 ~ L MAXIMUM TIME
1100 FROM LEADING EDGE

DATAQH5 ~ L...-_____________ OF STRT, CLR AND
DATOA, DATOB, I 150 ,-___ -,150 I 10PLS TO STATE
OR DATOC CWNJ 350 MIN r:wtr: CHANGE IN SELB,
ST C I SELD AND INTR IS
OR RIT6PL~R, _ 350 MIN 250 NS
(IF PRESENT)

{
DS0-5

SKIP
SELB, SELD

~150MAX
.-.SI DS0-5 GATE BUSY, DONE ONTO SELB, SELD LINES

RQENB

DEVICE DONE

DEVICE
INT DISABLE

INTR

INTP IN

INTP OUT

INTA

DATA0-15

DS0 - 5

CLR

Al2

PROGRAMMED TRANSFERS (IN-OUT INSTRUCTIONS)

I I

~
r 150 MIN .. :

'1--- ----- L't- ---------4.~;--­
I l...-------,

1=
,

---\. ,
---.,

tl

Xl

I
I
I
I

--------.,~------~I----------{
CODE OF THIS
DEVICE

---'-------!\l~-----_;\l~--------Ir_------' L...-____ _

DEVICE NOT DONE­
NO INTERRUPT
REQUESTED

I DEVICE SETS DONE
AND REQUESTS
INTERRUPT

I
PROGRAM GETS CODE I PROGRAM CLEARS
OF NEAREST DEVICE DONE AND INT REO
REQUESTING INTERRUPT

PROGRAM INTERRUPT

If the program is to use the same device again, it must clear Done so the device will not
immediately request an interrupt when the interrupt system is turned back on and interrupt Disable is
cleared. Clearing Done also clears INT REQ, disabling INTR.

Standard Data Channel Transfers

Timing diagrams for the four types of data channel transfer at standard speed are shown together
on pages A 14 and A 15. Before considering the individual signals involved in these cycles it is
in"structive to investigate their overall structure, noting their similarities and differences. Not all events
associated with a data channel transfer actually occur in the processor cycle devoted to it: there is
overlap so preliminary events occur in the preceding cycle, which may be the final cycle of an
instruction or another data channel cycle. In all cases a memory address is sent into the processor in
the preceding cycle. For both data in and add to memory the preceding cycle is extended while the
data is sent in. Transfer operations within the processor cycle officially designated as the data channel
cycle for the given access occur only if a word is sent out, but this happens in data out, increment
memory and add to memory.

The events associated with a data channel request are similar to those of an interrupt request. A
device must have a DCH SYNC flipflop, which corresponds to the Done flag. It must also have a DCH
REQ flipflop and a net for transmitting the serial priority signal to the next device, ie if the device
receives DCHP IN and its own DCH REQ flipflop is clear, it generates DCHP OUT. The DCHP signal
terminates at the first device whose DCH REQ flipflop is set. When a device requires access it sets DCH
SYNC. Once this flipflop is set the next RQENB from the processor places the data channel request
signal DCHR on the bus by setting DCH REQ. Synchronization must be on the leading edge of
RQENB to ensure sufficient time for the serial DCHP function to settle down.

If a device is waiting for access, then after RQENB terminates in the final cycle of an instruction,
the processor turns on DCHA, whose leading edge sets the DCH SEL flipflop in the nearest device that
is requesting service, ie in that device that is receiving DCHP IN and whose DCH REQ flipflop is set.
The same priority conditions place a memory address from this device on the bus for the duration of
DCHA. When DCHA terminates, the processor strobes the address into its memory address register. In
data in or data out the address would usually be supplied by an address counter in the device so that
access is made to consecutive locations.

The I state of DCH SEL places the appropriate configuration of DCHMO and DCHM I signals on
the bus to select the transfer mode. These signals remain on the bus as long as the flipflop remains set;
but there is no conflict with other cycles, for when DCHA sets DCH SEL in one device, it clears those
in all others.

The leading edge of DCHA also clears DCH SYNC. Then while the leading edge of the next
RQENB is setting request flipflops in other devices, it will clear DCH REQ in this device unless this
device has again set DCH SYNC and is therefore requesting access at the maximum rate.

The remaining functions associated with data channel access depend on the type of transfer being
made (we will first consider a single isolated request of each type).

Data In. As DCHA ends, the processor turns on DCHI and the final instruction cycle is extended
while DCHI holds the contents of the device data register on the bus. At the end of DCHI the
processor strobes the data into the memory buffer and begins the next processor cycle by generating
RQENB, which turns off DCHR. During the actual data channel cycle, the processor simply stores the
data in the addressed memory location.

Data Out. At the end of DCHA the processor begins the next cycle by generating RQENB, which
turns off DCHR. During this cycle the processor retrieves a word from the addressed memory location

Al3

RQENB

DCHR

DCHP IN

DCHP OUT

DCHA

DCH SEL

DCH I

DATAIH5

DATA STROBE
INTO CP

DCHMQl

DCHMI

RQENB

DCHR

DCHP IN

DCHP OUT

DCHA

DCH SEL

DATMH5

350 MIN

STANDARD DATA CHANNEL CYCLE: DATA IN

350 MIN

THE PROCESSOR NOW
STORES THE DATA

I
-----0 MIN-----t·~'

/~~--+~ ~I _____ ~

--------------~~ I
DATA STROBE r-t-150 MIN
INTO CP ---------------+-------11--------------..;.....---+-...:.....----
DCHO

DCHMID

DCHMI

A14

150 MIN

----------1.--------------------------

STANDARD DATA CHANNEL CYCLE: DATA OUT

RQENB

DCHR

DCHP IN

DCHP OUT

DCHA

DCH SEL

DATA0-15

350 MIN

250 MAX

'----- 0 MIN-+---------.l
/~---4-1 i-----,

--------~
DATA STROBE
INTO CP

DCHO

DCHM0

150 MIN

=====~~~-~===========4============~== DCHM1 I
OVFLO (IF --------- ;-1 __ ..,

RESULT ~216) 1350 MIN 1 ·..----150 MIN ---., .. 1

RQENB

OCH SYNC

DCHR

DCHP IN

OCHP OUT

OCHA

DCH SE L

DCH I

STANDARD DATA CHANNEL CYCLE: INCREMENl MEMORY

350 MIN ~--150 MIN-----I~ 350 MIN

250 MAX

DATA~H5 --------~~ii~~~~~~O::==~O~M~I~N-=-t_=-=--=--~:riif,~~=J-:-
DATA STROBE
INTO CP

DCHO

DCHM0

DCHM1

150 I

MIN 1

1 1
I 1

OVFLO (IF I I- I RESULT ~ 2;...16..:,.\ _____________________ ----' 350 MIN 150 MIN---,

STANDARD DATA CHANNEL CYCLE: ADD 10 MEMORY

A15

and brings it into the memory buffer. It completes the cycle by placing the contents of the memory
buffer on the data lines and generating DCHO to load the word into the device data register.

Increment Memory. The processor performs exactly the same operations as for data out with two
exceptions: after retrieving a word from the addressed memory location, instead of writing the same
word back into memory, the processor adds 1 to the word and writes the result back in memory; and

if that result is greater than or equal to 216 , the processor sends an overflow pulse to the device at the
trailing edge of RQENB.

Add to Memory. The processor completes the preceding cycle by performing exactly the same
operations as for data in. Then during the data channel cycle it performs exactly the same operations
as for data out with two exceptions: after retrieving a word from the addressed memory location,
instead of writing the same word back into memory, the processor adds the data word brought in from
the device to the word taken from memory and stores the result; and if that result is greater than or
equal to 216 , the processor sends an overflow pulse to the device at the trailing edge of RQENB.

Multiple Requests. If several devices are requesting access simultaneously or a single device is
requesting access at the maximum rate, the processor will execute a number of data channel cycles
consecutively before going on to an interrupt or the next instruction. When this occurs adjacent cycles
overlap in the same way that a single cycle overlaps the final cycle of the instruction preceding it. The
two timing diagrams on the next page show the sequence of events in a pair of consecutive data in
cycles and a pair of consecutive data out cycles. In both cases the events that occur within the final
instruction cycle for the first data channel cycle also occur within the first data channel cycle for the
second.

If the DCH SYNC flipflop in the device that is being serviced is clear at the leading edge of
RQENB in the data channel cycle, then RQENB clears DCH REQ in that device. But if DCH SYNC is
already set again, DCH REQ simply stays set, making a second request. In either case RQENB sets the
request flipflops in any other devices that require service.

If there is a second request from any source, the processor generates a second DCHA after
completing whatever operations are necessary for the first access. DCHA thus occurs at the end of
RQENB for data in, but following the output of data for any other mode. This second DCHA sets the
DCH SEL flipflop in the device that now has priority (clearing all others) and initiates whatever other
operations are necessary to prepare for the second transfer.

High Speed Data Channel Transfers

On page A 18 are timing diagrams of the high speed data channel cycles for data in and data out.
Note that the sequence of 10 bus operations is the same as for standard transfers, but signal durations
and required device response times are generally shorter. Many of the high speed times are given as
typical, and these are approximately the times the designer should assume and use. Times listed as
maximal are especially critical; eg once RQENB goes on, DCHR must be returned within 75 ns for a
transfer to be executed at the high speed. Timing differentials between standard and high speed for the
other types of data channel cycles are the same as for those shown except as noted in the diagrams.

All device interfaces that use the high speed capability must be mounted in the main frame or an
expansion chassis and must be grouped at the processor end of the bus. The DCHP OUT signal out of
the last high speed interface must be connected not only to the next device on the bus but also to pin
5AI2. This connection defines the two classes of interfaces: all interfaces on the bus before the return
point operate at high speed, all beyond it at standard speed.

A device having a data rate slightly lower than the maximum can be synchronized to the high
speed channel. Each time RQENB is generated, the device must respond by returning DCHR and

A16

RQENB

DCH SYNC S\
DCHR

r .. ---- FIRST REQUEST ------r .. I----- SECOND REQUEST --------.1 .. 1

SAME OR DIFFERENT DEVICE

~ ___ ---II
LS---- r ____ -1

L
DCHA I
DCH SEL = = = = = = -=--=_J.----------------r---------
DCHI I L

MEMORY I DATA IN L ADDRESS
MEMORY I DATA IN I
ADDRESS L... -------'

DATA0-15
-------~

n ~NAJg ~~ROB_E __________In nL.. ________ L

CONSECUTIVE DATA CHANNEL CYCLES: DATA IN

I---FIRST REQUEST ~I" SECOND REQUEST ~I
SAME OR 01 FFERENT DEVICE

RQENB I
DCH SYNC J\ LC=J
DCHR L
DCHA I L
DCH SEL

===--=--=====J
DATA0-15 I MEMORY I DATA OUT I MEMORY L ADDRESS ADDRESS

DATA STROBE ~ rL INTO CP

DCHO n
CONSECUTIVE DATA CHANNEL CYCLES: DATA OUT

AI7

RQENB

DCH SYNC

DCHR

DCHP IN

DCHPOUT

DCHA

DCH SEL

DCHI

DATA.9' -15

DATA STROBE
INTO CP

DCHM.9'

DCHMI

300 TYP

~~ 600 TYPICAL FOR ADD TO MEMORY

RQENB

DCH SYNC

DCHR

DCHP IN

DCHP OUT

DCHA

DCH SEl

DATA.9'-15

DATA STROBE
INTO CP

DCHO

DCHM.9'

DCHMI

HIGH SPEED DATA CHANNEL CYCLE: DATA IN

'I

~ NEXT OCHA foR cONSEcuTM i
I CYCLES

* 300 TYPICAL FOR INCREMENT AND ADD TO MEMORY

HIGH SPEED DATA CHANNEL CYCLE: DATA OUT

A18

simultaneously grounding the WAIT signal in the high speed logic (pin 5A63). Then the device actually
initiates the transfer by returning WAIT to the high state. Through this procedure the device
effectively takes complete control of the processor, timing and executing transfers by controlling
WAIT. Although such operation completely shuts out bot:1 the program and other channel service, it
eliminates the need for multiple buffering and is particularly useful for handling small bursts of words
at high speed.

III DESIGN OF INTERFACE EQUIPMENT

The logical and physical organization of the Nova computers with their in-out buses makes the
design and installation of interfaces for user equipment especially simple and convenient.

Basic Interface Networks

The networks discussed here are for use at a relatively basic leveL eg the data channel request net
works only for isolated transfers ... it cannot gain consecutive cycles.

Control flipflops used in device interfaces have a clock input, a synchronous data inpm,
asynchronous set and reset inputs, and complementary outputs. A positive transition at C sets the
flipflop if D is high, clears it if D is low. In the set state the flipflop 1 output is high, the 0 output is
low. In general the D input must reach a steady state some given time (typically
20 ns) before the positive transition at C. The outputs reflect the new state
typically 30 ns later. * A ground level at S or R sets or clears the flipflop
respectively, and these inputs take precedence over the clock input. A small
circle drawn at the D input means the flipflop is set when D is low, cleared
when D is high. Typical control flipflops suitable for device interfaces are
Signetics 8828 and Texas Instruments SN7474N.

Every device must decode the device selection lines to generate a select
level that ensures that only the single addressed device responds to the

c s

D R ~

program. Decoding is performed by a simple NAND gate, but since the device selection lines provide
only one polarity, the inputs to the gate must be inverted for all device code bits that are Is.

The network that specifies the state of the device and requests interrupts contains four flipflops,
BUSY, DONE, INT DISABLE and INT REQ. The 10 reset for all devices clears all of these flipflops
directly. With exception of the general reset, INT DISABLE is controlled exclusively by a particular
bit of the mask in an MSKO. Signals generated by the control function part of an 10 instruction affect
the flipflops only if the device has recognized its device code on the selection lines. The clear pulse
clears all but INT DISABLE; the start pulse clears DONE and INT REQ, but sets BUSY to place the
device in operation. Whenever this device is selected, the states of BUSY and DONE are placed on the
SELB and SELD lines.

When the device completes its operation it generates a completion signal that clears BUSY and
sets DONE. The signal need not act on both flip flops directly; it can just as well clear BUSY whose
state change sets DONE, or set DONE whose state change clears BUSY. Note that the completion
signal is guaranteed to set DONE only if its data input is independent of any logic signal, eg if D is held
at +3 volts. In the configuration shown here the input is BUSY(l), so the completion signal will not
set DONE if the program has cleared BUSY.

*Of course, any interface must be designed for the worst case of the components being used.
Al9

Once DONE has been set, and provided INT DISABLE is clear, the leading edge of the next
RQENB signal from the processor sets INT REQ, whose I state puts the INTR request signal on the
bus. RQENB is generated in every processor cycle, and as soon as either INT DISABLE is set or DONE
is cleared, the next RQENB clears INT REQ, dropping the request. In designing an interface do not
attempt to do without any of these flipfIops if the device is connected to the interrupt. There is no
redundancy between DONE and INT REQ. Because of the serial nature of the priority-determining
signal on the bus, it is essential that request signals be synchronized by the processor. Hence DONE
must not generate INTR directly. Moreover INT REQ must change state only on the leading edge of
RQENB in order to ensure sufficient time for request acknowledgement to work properly. Remember
that although INTA may occur several cycles later than the request signal that causes an interrupt,
nonetheless the timing is still critical because RQENB occurs in every cycle, and the device that has
priority when INTA is given may not be the same device that caused the interrupt initially.

If the INTP line into a device is low, the device generates a high INTP signal for its own internal
use; if its INT REQ flipflop is clear it also transmits a low INTP signal out to the next device. The
terminators shown here are necessary only where the signal goes in and out of the board. Usually
several interfaces are on a single board, and the single stage shown here is replaced by a chain with
terminators at each end. If the system contains a large number of interfaces, timing becomes critical
and the chain on a board should be replaced by two circuits, one of which establishes the priority
among the devices on the board, while the other
quickly passes the signal along the bus if no device +5V
on the board is requesting an interrupt. Note that
if a board is removed, the input and output pins INTP IN -~-d
must be jumpered to maintain the continuity of
the signal on the bus.

Associated with the priority circuit is a logic
net that places the device code on data lines 10-15

DEV INT
REQ(01

DEV
INTP

+5V

o----INTP OUT

when INT A is true, INT REQ is 1, and INTP IN is true at this device. Drivers need be used only to
place 1 s on the bus; a data line is automatically 0 (high) if no driver is attached.

For handling data channel requests a device must have a network containing three flipflops, DCH
SYNC, DCH REQ and DCH SEL. When the device requires access it sets DCH SYNC, whose 1 state
allows the leading edge of the next RQENB to set DCH REQ. As in the case of an interrupt request,

A20

every device connected to the data channel must contain both of these flip flops as no asynchronous
requests can be allowed; DCR REQ must change state only on the leading edge of RQENB. Associated
with these flipflops is a priority circuit which is identical to the interrupt priority circuit, but which

DEV READY ROENB C 1 C 1
DEV DEV DCHMl

DEV DCH SEL (1) DCH DCH
DEV DCH REO (l) REO SEL

DCHA D 0 D 0
DEV DCHP

DEV DCHP
IORST

passes DCRP if DCR REQ is O. When this device has priority (ie when DCRP terminates here) the I
state of DCR REQ allows the next DCRA to set DCR SEL. The I state of this flipflop generates the
mode signals to inform the processor of the type of
transfer desired. Note that since drivers are
required only for I s on the mode lines, two drivers
are necessary only for add to memory, and none
are required for data out (the circuit illustrated
above requests access to increment memory).

During the cycle in which this device is being
serviced, DCRA also clears DCR SYNC so it is

+5V

DCHPIN

DEVDCH
REO (0)

+5V

0-...... - DCHP OUT

available in case the device wishes to set it again to request another transfer. Note that clearing BUSY
also clears OCR SYNC so that no device can belatedly gain access after the program has turned it off.

Design Examples

Consider first a very simple device that is connected to neither the program interrupt nor the data
channel and thus .needs no flags at all. Such a device is the one illustrated here, which allows the
program to read three switches and to control three relays through a buffer. Of the basic circuits
discussed above, the only one this device has is the NAND gate to decode the device selection lines.
Giving a DIA with device code 37 loads the contents of the switches into the left three bits of the
selected AC (an open switch is read as a I). Note the use of open collector gates to drive the data lines,
and the use of a resistive voltage divider to generate standard logic levels from the switch contacts.
Giving a DOA with device code 37 loads the left three bits of the selected AC into the relay buffer to
control the three relays (a I from AC closes the relay contacts). Initially the contacts·are open as the
buffer is cleared by IORST. If the device contained only the switch register or the relay buffer, we
would need only a single input gate, as the data transfer signal from the processor could replace one of
the constant inputs to the device selection decoder.

Note that many of the inputs from the bus are not in the polarities listed for bus Signals.
Invariably any but the most complex interface would be mounted with a number of others on a single
board that draws only one load from any given bus line. In other words all the interfaces on the board
share the same set of receivers. All DGC-supplied boards are designed this way, and it is strongly
recommended that the user do likewise. Only an interface for a very complex device would require an
entire board.

A21

+5V

1 SW~
-

+5V

1 SWl

+5V

1 SW2
T '::"'

DSft)
DSl
DS2
DS3
DS4
DS5
+3V
+3V

DATOA

DATA0

IORST

DATAl

DATAl

DATA2

DATA2

o

C

Rl

SWITCH REGISTER, RELAY BUFFER

+V
•

--L
RD

+V ----L
RD

+V
•

--~

RD

R 0 = R E LA Y 0 R I V E R

Example: Punch. The interface for the high speed paper tape punch, which is illustrated on the
next page, shares a single board with the interfaces for the teletype, tape reader and real time clock.
The lower half of the drawing contains circuits for functions common to all the interfaces. At the left
are the receivers for the data lines and other signals. At the right are nets that generate a common
select signal by decoding DSO-2 and generate common device code digits for INTA. The codes are
10-14 so bits 10 and 11 are 0, bit 12 is 1, but bit 13 is 1 only for the clock. (Both nets can be
jumpered so the codes can be 50-54 instead.) Across the bottom is a chain that receives INTP IN,
generates an individual acknowledgment signal for each device, and passes the priority signal along the
bus only if no device on the board has an INT REQ flipflop set.

In the middle are the standard circuits specifically for the punch. At the left is the gate that
determines when the punch is called by decoding DS3-5 gated by the common select level. At the
right is the net that places bits 14 and 15 of the punch code on the bus when an interrupt is
acknowledged for it. The remainder of the center section is taken up by the state-interrupt network
which is as described above (in this specific case INT DISABLE is controlled by mask bit 13).

The upper part of the drawing contains the 8-bit punch buffer and logic to turn on the solenoid
drivers in the punch at the appropriate time. A DOA that selects the punch (eg DOA AC,PTP) loads
the buffer from bits 8-15 of an AC. If BUSY is set, the advent of the proper position in the punch
operating cycle triggers a one-shot that allows 1 s in the punch buffer to drive the lines to the punch
for 4.5 ms. Note that the leftmost driver always goes on - it punches the feed hole. The termination
of the delay generates a completion signal that clears BUSY and sets DONE.
A22

PUNCH
MOTOR

~OSITION
SENSOR

_____ J

PUN
BUSY((/;)

1
ONE

, SHOT J PUN0 PUNl PUN2 PUN3 J PUN4 PUN5 PUNG PUN7
DELAY
45MS PUN

o COMPLETE +5V
L __ --'

PUN
SELECT I

DATA OUT A

MR

DATA8 DATAl 0

MR

PE
K

DATAl 2 DATA14
COMMON

SELECTP-V-

DATA9 DATA 11 DATAl 3 DATAl 5

BDS3 PUN
DS4 SELECT

DS5

START

PUN
SELECT

PUN
BUSY(l)

C 1'--""'---'"

PUN
DONE

D (/;

C

SELD

PUN INT
DISABLE(0)

PUN DONE(l)

SELB

ROENB
INTR

INT ACK
PUN INT

REO(l)
MSKO C

PUN
INT

PUN
BUSY

DISABLE
DATAl 3 D

CLEAR-~ ___

PUN SELECT

DATA8 ~ DATA8 DATIA ~DATA IN A

DATA9 ~DATA9 DATOA ~ DATA OUT A

DATA10 ~ DATAl0 INTA ~INTACK

DATAl 1 ~ DATAll STRT cr---{>o--{>- START

DATA12 ~ DATA12 CLR cr---{>o--{>- CLEAR

DATA13 ~ DATA13 MSKO 0-{>--- MSKO

DATA14 ~ DATA14 ROENBo-{>--- ROENB INT ACK

DATA15 ~ DATA15 10RST ~ 10 RESET
INTP OUT

+5V
10 RESET

INTP IN

PUNCH INTERFACE

0

+3V~
DS0 I

~~~COMMON 
DS2~- -v SELECT 

DS3~BDS3 
v ~DS3 

DS4~BDS4 
v ~DS4 

DS5~BDS5 
v ~DS5 

RD ACK--~--" 
---e-() DATA10 

DATAl 3 

+5V 

INTP OUT 

A23 



MSKO <>---{>- M5KO DCHA 0----{>- DCHA 

+5V PHA oCHP +5V PHA DCH SEL(1)~HA DCH ADD 
PHA DCH REQ(1) 

DCHA PHA DCH ADD oCHP IN~ ~ -oCHP OUT 
PHA DCHP 

CONV DONE (l 1 C I 

PHA BU5Y{1l 
PHA oCH ADO 

IOR5T 

OVFLO 
PHA DCH SEL{l) 

STRT 

PHA 
SELECT 

CLR 

IORST 

DATOA 
PHA 
SELECT 

DATAl 

-, 

I 
ADR 
EXn 

DATA3 0 

CONV DONE{01 
PHA BUSY{l) 

A24 

0 

PHA 
DCH 
SYNC 

o 0 

DATIA 
PHA 
SELECT 

DCHA 
PHA oCHP 

PHA DCH 
REQ{I) 

lp:oC~ 
RQENB C I DCHA C I 

+5V PHA INTP +5V PHA 
DCH 
REQ 

'-----fo 0 

PHA 
DCH 
5EL 

o 0 IN" INtm IN" OUT 
- PHA INT REO{01 -= 

IORST ----.jO---------' 050 
DSl 
052 
OS3 
054 
DS5 
+3V 
+3V 

ADR EXT1{l1 

ADR EXT2{11 

ADR EXT3{l) 

ANALOG 
EQUIPMENT 

PHA SELECT 

{401 

PHA oCH 
SEL{11~oCHMl 

INTR 

C I PHA DONE{ll~c SELD 
PHA PHA SELECT 

DI~~JLE PHA BUSY{l) -
D 0 OC SELB 

MSKO 

DATAl 0 

INTA~PHA IN~REQ{l)~oATAl0 
PHA INTP~ (401 

DATAl 
ADC2 

DATA6 
AoC7 

ADC3 
DATA2 DATA7 

AoC8 

DATA3 
ADC4 

oATA8 
ADC9 

oATA4 
ADC5 

DATA9 
AoCl0 

oATA5 
AoC6 

DATAl0 
AoCll 

ADC OUTPUTS PHA BUSY{ll 
2 3 4 5 6 7 8 9 10 11 

AoC 
DONE 

PHA oCH ADD 

PULSE HEIGHT ANALYZER INTERFACE 

PHA BUSY{01 



At the left is an input from the punch feed switch. Holding this switch on keeps the buffer clear 
and allows every synchronizing signal from the punch to trigger the one-shot and thus produce a 
length of blank tape (ie tape with only feed holes punched.) 

Example: Pulse Height Analyzer. The interface shown on page A24 uses the data channel as well as 
programmed transfers. Its function is to increment the word in the memory location whose address is 
equal to the output of an analog-to-digital converter. The upper half of the drawing contains only 
standard circuits already described. At the right are the stages in the priority chains for the data 
channel and program interrupt, the device selection net, the single driver required for the data channel 
mode lines, and the net that supplies the device code for an interrupt acknowledgement. At the left 
are the state-interrupt network and the data channel request logic (lNT DISABLE is controlled by 
mask bit 10). The gate in the upper left corner determines when the address is being sent in on the 
data channel; it clears DCH SYNC and is also used by the interface logic to determine when the 
address transfer is complete. 

In the lower half of the arawing is the logic unique to this particular interface. At the bottom is 
the analog equipment and digital logic to control it (this logic may vary to match a specific analog 
unit). Above it are the drivers and associated gating to place the address on the data lines. At the left is 
a 3-bit address extension register that is loaded by the program. The converter supplies only the low 
order twelve bits of the address; the program supplies the high order three bits and thus specifies a 
block of 4096 words to be used as the data area. 

To place the device in operation the program gives a DOAS AC,40, which supplies the address 
extension and sets BUSY to enable the conversion equipment. When a pulse is detected, the converter 
translates it to a 12-bit number and at completion generates ADC DONE. This pulse sets CONY 
DONE, which disables the converter and sets DCH SYNC. The leading edge of the next RQENB sets 
DCH REQ to generate DCHR. When DCHA turns on and this device has priority, DCH SEl is set, 
generating DCHM I to specify an increment memory cycle, and the address from the extrlOlsion register 
and converter is placed on the data lines. The processor increments this location in memory and sends 
the result back over the bus, but it is not used in this particular interface. The termination of DCHA 
truns off the logic level DCH ADD, which in turn clears CONY DONE to reenable the converter. 

If a location is incremented to 216 , the overflow pulse sent by the processor clears BUSY and 
sets DONE, turning off the device and requesting an interrupt. (Clearing BUSY turns off the converter 
and clears both CONY DONE and DCH SYNC.) The program can give a DIA AC,40 to read the 
address and hence determine which location overflowed. The program can resume conversions simply 
by setting BUSY (as by a DIAS AC,40 which reads and restarts), and it can stop the process at any 
time by giving an NIOC to clear BUSY. 

IV CONSTRUCTION OF INTERFACE EQUIPMENT 

To facilitate the connection of customer designed and built interfaces to the 10 bus, DGC has 
available a special hardware subassembly frame with two 100-pin connectors on one edge. This frame 
occupies one slot, and eight 6Yz X 3~-inch boards can be mounted on it. Twelve integrated circuits of 
the dual inline type with 14 or 16 pins or eight with 24 pins can be mounted on each board. Next to 
each hole for an IC pin is a pin for wire wrap connected to it by printed circuit wiring. (Printed circuit 
boards are also available without the pins.) 

To construct and install an interface simply insert the ICs into the small boards, attach the boards 
to the frame (four screws per board), wire wrap the board pins to each other and to the connector pins 
as required, and insert the frame in a vacant slot. 

A25 



Subassembly item 

Frame 

Blank board 

Board with pins only 

Board with pins and 12 IC sockets 

DGC order number 

1001 

1002 

1003 

1004 

The boards with pins are for use only with 14- or 16-pin ICs. For 24-pin ICs blank boards must be 
used . The sockets for the board are Bornes 1041-001-112N. Wire wrap pins are avai lable from 

Am phenol on a reel, 86144-4, or a plastic strip, 86091-4 ; 30 AWG wire wrap wire is recommend ed. 

The fo llowing items are available from Gardener Denver. 

14XA2 
14BI 
14H-IC 
507063 
507100 

Electric tool , light plastic 
Electric tool , metal 
Hand tool 
30 AWG bit 

Sleeve 

The layout and dimensions of a 15 X 15 circuit board are shown in the illustration on the next page. 

/ 

Subassembly Accessories 

1\26 



~~~ 
C-t1Alt.M=ER EOGEe
.OO!J TYF'ICJIo4.. ON
COUTAc:r FIt.lG£Re. ~~ 'U:~l'

C l+- t
","ED

,,, ..
f"'-

. '''''
T

~G7 -,

I~

.-~~.
.... .115 F"~tOF t ~R~

I.
I 4, I
'0 "

\5.o'=lQ~·.::;~

7.4410 - ---I
G.-e>!i!5" --;:t t'" ,0'., •• rlNG.'E.R CO ·<t" c..,

.. ,r' .:~~ ~1~~5~
fi =~~CTOA

I I I L ;, L I I I .\ I ,0 " .. " " " "
G~<o8

"' ·fc

,

io
13:3''75

1- r
7.~7!!'

'.050

-- 2.050

.... ~!5<;;-

I I
[)

~=<";~ I ~-CH,.to.,UFtaR /' CORr..IER5
1/~21t4'!>·

T"I'PIC"''-I 1
I I I I

C

--i-l
L L 'c

~B C· C ~~. B
.~ .,... __+. C+·
'j

HOLE SIZE

A* .040 DIAMETER ± .003

B .098 DIAMETER ±.002

C .125 DIAMETER ±.005

.125 DIAMETER COUNTERSUNK
0 UNDERSIDE 100"X .23 DIAMETER

(FOR 4-40 FLATHEAD SCREW)

\4-.090 TVP",,"-

QUANTITY

2

4

3

L1
•,ie5 TYPlC","-

NOTES
• A HOLES (NOT SHOWN) ARE FOR COMPONENT MOUNTING; QUANTITY AND

LOCATION ARE AT USERS DISCRETION.

HARDWARE FOR B, C AND 0 HOLES SUPPLIED IN ASSEMBLY KIT (NO. 3033 IN PRICE LIST)
CONSISTING OF TWO EJECTORS AND RIVETS, ORRIN POSTS, HANDLE AND
INSULATING TAPE.

PURCHASE SPECIFICATION NUMBER 108-000001-01 SHALL APPLY TO THIS PART
WHERE APPLICABLE.

MATERIAL THICKNESS REFERENCE: .055 ± .003.

FINISH: SOLDER PLATE CONDUCTORS PER ABOVE SPECIFICATIONS AND GOLD PLATE
CONTACT FINGERS PER ABOVE SPECIFICATIONS.

MAXIMUM HEIGHT OF COMPONENTS ABOVE BOARD: .31 INCH.

MAXIMUM PROTRUSION BELOW BOARD: .05 INCH.

CIRCUIT BOARD SPECIFICATIONS

A27

General Purpose In terface

To further fac il itate the add iti on of specia l per iphera l equ ipment to the system. DGC has

avai lable a general purpose interface that includes a ll of the o rd ina ry c ircuitry need ed to co nnect a

device to the io bus. This inte rface is mounted o n a standard I S X I S-in ch board that has two 100-pin

connectors along one edge and is divided app rox imate ly ill half by severa l rows of wire wrap pin s

[page A28 l. These pins number some 200, of wh ic h forty-eight are wired to edge con nector pins

co rresponding to unused positions on th e compu ter back panel. One half of the board is rese rved for

Genera l Purpose Interface Board

custo me r logic, a nd is configured for mo unting six ty- fiv e 14- o r 16-pin ICs or fifty 14- o r 16-pin ICs

plus nine 24-pin ICs (sockets and ex tra wire wrap pin s a re a lso ava ilab le). The o ther half con tai ns th e

DGC log ic with various points co nnec ted to th e wire wrap pin s or edge co nn ec tor pins as appropriate.

Drawings o n pages A29 A33 show the logic in the inte rface (wire wra p pins are indicated by

squa res. co nnector pins by circles). The basic interfa ce, opt io n 4040 , in cludes th e board as described

above and those basic interface netwo rk s described in Par t II that are necessary for ha ndling a lmost

any dev ice. Two o ther op ti ons are a lso ava ilable . e ith er o r both of which can be mounted on th e same

boa rd . 4041 is a pair of data registe rs; 4042 is the logic necessa ry for connecting to th e data channel

(the co ntro l parts of this logic are a lso described in Part II). T abl es referred to in the text are grouped

at th e e nd of this sect io n.

Basic Interface 4040. Mounted o n every board is the logic illustra ted on pages A29 and A30. The

first drawing shows th e circuitry that connects the interface to th e data a nd co ntro l lines o n the bu s,
A28

+ V

+II C1 ':\

+::
+::
+::
+"

+::
+::
+::CB U II

~

II C9
.~ ~

II

::
::
::
1\

"
:.:
II

~(-
" ::
::
::
::
11<:2£

'-

'7

CI-C8
~8l(~
35V

C9-C22.
.~5rr

--~-----T~~~#7H/O

"75

TOns

DATI A

DIIT/C

EAI
0---

Sf
• I< ,-tJ .
-oE9~. .LGENt!

13 :

.~
--0

74
-0

45

41f1
0

18

4~fI p:.:=------ --~--__o

14A
1>'='--------0

13

~

~

ro p.,ZSE

0.(171'/#" 4

Dt'i.,"" Or./r,q

DII'TIJ JiJ B

DATA 114 Co

GENERAL PURPOSE INTERFACE: BUS SIGNALS AND DEVICE SELECTION (4040)

+5V

.e4
330

--------~I J'II

DSZ, ~rob ~cf' yEI ~:J'IZ. t...::="~~;-,, a

----------" '11
1Ib4 I '

J5S::5= o-----QEfS ~---1- --_,E.'S~l ~z..
I .. 13;':::::----

INrPIN

o WIRE WRAP PIN
o CONNECTOR PIN

.. 511
1<7
330

A95
P------t---o ~

;..-,
w
o

PINS flVA I/..IlBLE Fore INTt;:RJ:ACE.

A470-----0 10

M9~9

11570----0 BR
il590----08
11618-------0341'1

fi630---0 Z9

1165~7

1'1.70-----041
!l69 o-OM
1l71- j---------(] 48
fj 73 ,'l-----O 49
Al5 ')------{] 49R

il7~O--o I
fj77C~"
A78 J-,,----D Z

Rt:;rNB __ " c E2511--6_ ,--"i
r~r
~E9

~ '7

,0

5

1179 0---057
fl810---0 67
IlB30---0 6811
flB4 Of-------[] zA
R65)----O 68

18~Z
IO .e/;SE7" ~=-~---------------

/18h 0-----:1 "3
{l670---0 69
RflB ,'_---0 A
A69 (------C 7011

{l90 '- --------D 4A

1191 ------a 70
A92.C-----O 5

a~ 0------0 71
1311 J----O 7ZIl
1313 -~--D 71?
SIS 2-----[] 7iP
8/9 ",,----0 81>
f3i!3(J--0841l
~5 u------{] 89
Bz7')--------[] 93
831 Q--------{J 82
534 0------G 131
B3~O-----O 132/1
B3B 0-----0 13Z-

8400-------0 133
eAB 0-----0 13IlR

649 0-----0 98fi
aSI O-------i:: 104

85Z 0-----0 131/
es"~:/35

B54 0-------!:; 134>/1
6(070----'1 IZS
e&70----O 13{P

~ --t-~---------------~

l>OrtE (I)

6> s... 1.2.
B2~~~--------------_1

8""

I
~~

5~<, ,0 "8~
4> FO----~ SeLS

.DEVICE
SElEcT 2.

INTIlCI(

HolT R1'q(,

GENERAL PURPOSE INTERFACE: BUSY, DONE, .INl ERRUPT (4040)

nlTP 1_~IJ~-. __ -!!.rM'" JI3 875
- - - - ---0 PArA 10

<f17 6"" __ _
- - - -- ----0 DATA IS

o WIRE WRAP PIN
o CONNECTOR PIN

+N

"14
3"

30/1

~ ~ 1~/J:g:)9
r _-4-

33 3211

1118
31<

IZII
::C/MTO

''-'9
31<

, M<

'2- N, '. " I~

-IMT.\76)1 2- :r lDA7l/ru) Il>!T.\90) lDA77IIO(fJ IlJATAl/(1} ,
M"-

~#,~-r-
~c.~

-+ '" /2'::G,57';;;:,(..

I<- EI5' -,--- '---r,;- - ---JO---- .~------ ----!-7
,7

-j--- --- t---

I
--- -- -

-- ------ _-4 ___ --! ---- r-
020 cBR bZ8 27 i.2~A

~T' :fORT 7 'D)/ifT"IO :I:oAT\1

INPUT REGISTER

401/ 40 /9 22f1 23

L
4

\~

QD81J) Ol>IO iI) ,
MR SH,pr

(0 C?
.2e~f~7C::~

" ,.
3 K £31 --- ---

'i s- " 7

72.c:c::./ srE"K- I

£33 i E34 I

~---rT--~CJ~l -------~_+_____+_l"--=-~-~i~~~f~-~ __ ~-~+
! TI!

lMr~l l!IirA'- lWi43 L>4TA"'1- J)ATA5 £VITA. l>9TA 7 j)ArA 8 /YITA 9 J)ATA 10 j}/TA 1/

OUTPUT REGISTER

GENERAL PURPOSE INTERFACE; DATA REGISTERS (4041)

2 ,
,--L'-

~

--

I

I" I ,j ,,,- ,~

,-IOATAI26> ::~J=~T~/1!1i IlJA~/5!t)1 ~"-
cp
pc

"' E20 ; ----- 1-" 0-

I ~

:']310 0310fi 035

/JIiTAJ2 DArAB /)ATif/1

o WIRE WRAP PIN
o CONNECTOR PIN

-----;,-

340

24

}
1~
00/50

/)Alii IS

.. "
3K

46 JCZz6

9 ,SIFI

8

13

R29

==9ff.~ -.----- --r~ I

,!,>

DC/(4 2. r- I
DCHP//(--'-IE35\~------O "'00 EN"SLE.

~fZ'cl~-j 47.4

4

~-----------------------

ro ,fESe7" _____ _________ _

GENERAL PURPOSE INTERFACE: DATA CHANNEL CONTROL (4042)

TSV.

f>1 cP oa' t 1~~-'4_~~~ 13 Bt?
+Vv ~ .. ----------,0

1<29.J3K
M f 558-- 8 o.c /0

9 E3tb ~·----~o

B2/
'Dc tn W\ ,

Dt:..HO
R52

DC.H l .-_ .----~ . .t} '"D~ ,-\. S<ZI..... Dc \4-I.

6>519
--------jO

o WIRE WRAP PIN
o CONNECTOR PIN

>-
I

W
W

I
I /3 1, 10

,_,-"V-',?d.

{/RTR S"rKOI3E- E<'13

--r 3
----j--- --

I
/)1T1 -i' lJ/iT~5 iJ1T,1(,

//5 /OZP 1/4 /02-

? 9 9
!4 I i",

k\
1,12

::<
/!c' !:P :;r I~

-;
51

IZ 2- _ j 9-

!3_i~(if wcr;tJ) WC4 (I)
--;J/?Es.er

1- IJI/ 3/NH'~/

-"
1 E50

i lO _

~-

D1TA 7

WORD COUNTER

GENERAL PURPOSE INTERFACE. ADDRESS ANO WORD COUNTERS (40421

ru

DArl!7

99

10 : 4

£42 £42

8: 9 /1 12

CLl

[41

1- - -- -~-- ----

-- --- +
,D)TA 8' ~rA "} lJIirA /0 lJ/iT~I/

ADDRESS COUNTER

/oofJ 9-9 103 77
t;: \C

i I,"
I'"
£ .£

.55 ~t
I "

\1C1(I) WtlOu) 13 W":2..(I)

r,d~'E (
-- --·JK.£seT -4

iJ~T,jIO /)1TA /{

o WIRE WRAP PIN
o CONNECTOR PIN

-.JI ~J3 _04 J/O

1~4:'~ l~~~ I'~O ~
"J .. ~_-,-~ __ :rE~~' 9

----------092. ~95 --C

II? 12 I 9 %Ii S-

~r CAiRo - - 6!13W-- Wf(1) W5<tj; ~ I

I ~£jEr ~ 617- j?/NrJr1f (1.2. ~~

80;:; 81
[J

i
18

~
-sz' 9'[-\

I;
WCi1(t)

L- <C-<'/f/7C;:d_ i 8.

D"T~ =05£ [39 CI.l 11
; 4 I

I

DATA 13

31<. 3K _-
·5 "f~:r 'j .. 5,

CACLO<::.-K
<$/f' . (PI

80
cc

10

t--
WtJHI)-

I~

i)Ar" 15

,4

networks for passing the interrupt and data channel priority signals along the bus, and a device
selection net that allows a choice of any device code by putting in the appropriate jumpers. Note that
the output of this last net gates those control signals that should be received only by the selected
device, Connected to the data line drivers is an OR gate that is capable of driving all sixteen of them
for the transfer of a full word. The second drawing shows the Busy, Done and interrupt logic,
including a net that allows selection of any device code for reading by an INT A.

Table I lists all wire wrap pins assoicated with the basic interface logic and gives the fanout or
load factor for each.

Data Registers 4041. This option consists simply of the two 16-bit shift registers illustrated on
page A31. Each register can be cleared at MR and can receive serial data at J-K for right shifting under
control of clock input CP fed through an OR gate. The output register can receive parallel data,
enabled at PE through an OR gate, from the receivers for the 10 bus data lines; its outputs are
available to the customer logic. The input register receives parallel data from the customer logic, and
its outputs are connected internally to the data line drivers in the 4040 (where they are available at
wire wrap pins). Table II lists the pins and fanout/load data for the 404l.

Data Channel Logic 4042. The final two drawings [pages A32 and A33] show the logic supplied
for connecting a device to the data channel. The first shows the standard flipflops and nets that handle
the data channel control signals on the bus. The second shows two 16-bit counters for keeping track of
the number of words processed and the current location for direct memory access. Each counter has
an OR-gated count input at CLl, an OR-gated data strobe input for receipt of parallel data from the
bus, and a full register clear input. The outputs of both registers are available to the customer logic,
and the curent address is supplied to data line drivers enabled through an OR gate. Pins and
fanout/load data are given in Table III.

A34

TABLE 1 BASIC INTERFACE 4040

Signal Pin Fanout Load

DATAO-DATA15 See below 10*
IDATAO(1)-IDATA15(1) See below 1
OBI 106 4
OB2 l08A 4
RQENB 51 6
MSKO 85 8
DCHA 57A 7
INT ACK 65 9
10 RESET 42 5
START 67A 7
CLEAR 74 8
10 PULSE 45 10
DATA IN A 41A 10
DATA OUT A 18 10
DATA IN B 43A 10
DATA OUT B 14A 10
DATA IN C 13 10
DATAOUTC 44 10
DEVICE SELECT-2 50 8
INT REQ(l) 79 8
INT DIS, D terminal 86 1
DONE, set terminal 53A 2
DONE, clock terminal (C) 56 2
DONE(l) 82A 9
DONE, D terminal gated internally 43
BUSY(1) 66 9

DATAO-DATA15 pins IDATAO(1)-IDATA15(I) pins

0 126A 8 94A 0 97 8 90
1 123 9 92A 110A 9 105
2 124 10 94 2 129 10 130
3 122A 11 91 3 128 11 74A
4 121 12 88A 4 96 12 90A
5 1I2A 13 84 5 78 13 106A
6 118 14 87 6 BOA 14 78A
7 113 15 86A 7 73 15 III

*Wit'hout 4041 option [see Table In.

A35

TABLE II DATA REGISTERS 4041

Signal Pin Fanout Load

Input register
ICP1 30A 4
ICP2 31 4
IPE 32 12
IMR 15 4
IJ-K 14 2
IDATO-IDAT15 See below 1
IDATAO(1)-IDATA15(1) See below 5

Output register
OCP1 32A 4
OCP2 33 4
OPEl 16A 1
OPE2 17 1
OMR 16 4
OJ-K 30 2
ODO(I)-OD 15(1) See below 10
DATAO-DATA15 See below 9*

IDA TO-IDA Ti5 pins IDATAO(1)-IDATA15(J) pins

0 12A 8 28A 0 97 8 90
1 12 9 28 1 110A 9 105
2 11 10 27 2 129 10 130
3 lOA 11 26A 3 128 11 74A
4 22 12 36 4 96 12 90A
5 21 13 36A 5 78 13 106A
6 20A 14 35 6 130A 14 78A
7 20 15 34 7 73 15 111

ODOr 1)-OD15(1) pins DATAO-DATA15 pins

0 38 8 18A 0 126A 8 94A
1 37 9 19 1 123 9 92A
2 38A 10 22A 2 124 10 94
3 39 11 23 3 122A 11 91
4 75 12 26 4 121 12 88A
5 76A 13 25 5 112A 13 84
6 40A 14 24A 6 118 14 87
7 40 15 24 7 113 15 86A

*Reflects additional10ad on data line receivers due to register.

A36

T ABLE III DATA CHANNEL LOGIC 4042

DCH SYNC(1) 51A
DCH SYNC, set terminal 46
DCH SYNC, C terminal 47
DCH SYNC, D terminal gated internally 45A
ADD ENABLE 47A
DCH REQ(1) 52
DCH SEL(1) 64 --
DCHO 58
~ 59A
OVERFLOW 65A
CAE1 113
CAE2 108
CA RESET 104A
CA DATA 1 59
CA DATA 2 60
CACLOCK 1
CACLOCK 2
CAO(1)-CA 15 (1)
WC RESET
WC DATA 1
WC DATA 2
WC CLOCK 1
WCCLOCK 2

=-:-::-:-:-:-
W00(1)-WCI5(1)

61A
61

See below
110
63
64
62
63A

See below

Fanout

10

9
9
5

10
10
10

3

3

CAO(J)-CA15(J) pins Wca(1)-WC15(1) pins

0 128A 8 107 0 120A 8 99
1 122 9 100 1 116A 9 100A
2 127 10 101 2 120 10 98
3 124A 11 109 3 119 11 103
4 117 12 92 4 115 12 77
5 116 13 95 5 102A 13 80A
6 118A 14 88 6 114 14 81
7 114A 15 96A 7 102 15 80

Load

2
2

4
4
4

4

A37

Item

Connectors

9 pin

19 pin

25 pin

50 pin (10)

52 pin

100 pin

Junction shells

9/19 pin

25/52 pin

50/100 pin

Screw lock assembly, male

9/19 pin

25/52 pin

50/100 pin

Screw lock assembly,
female

10 cable

Terminator

A38

CONNECTOR PARTS AND CABLES

DGC Part Number

Plug Socket

111-000001 111-000002

111-000007 111-000008

111-000003 111-000004

111-000005 111-000006

111-000009 111-000010

111-000011 111-000012

111-000019

111-000020

111-000021

111-000023

111-000024

111-000025

111-000022

1005 to 1011

1013

Cannon Part Number

Plug Socket

DEC-9P DEC-9S

2DE19P 2DE19S

DBC-25P DBC-25S

DOC-SOP DOC-50S

20B52P 20B52S

2DD100P 200100S

DE24657

OB24659

0024661

020419-16

020419-21

020420-15

020418-2

APPENDIX B

INSTALLATION

Every DGC computer mounts in a standard 19-inch rack, has power supplies and cooling fans at
the rear, and contains seven slots for 15 X IS-inch printed circuit boards or DGC subassembly frames.
The slots are numbered from the bottom up, and boards are inserted and removed from the right side.
As shown in the installation drawings on the next two pages, the bottom slots are always used for the
processor; remaining slots are for memories and 10 interfaces except that slot 2 of the Nova 1200 can
be used only for a memory or a 1200 option board. The interface for the teletype, if used, must be in
slot 4 in the Supernova, slot 3 otherwise. An expansion chassis with space for seven more boards can
be mounted above the basic unit. The 800 and 1200 are also available in a double height chassis with
seventeen slots, in which all memories must be below slot 12.

The following illustrations also show the physical layout and dimensions of the various
computers. Only eight bolts are needed to mount the standard chassis with its draw slides as shown
(the unit is shipped with the movable parts of the slides attached). At least two inches should be left
open at the back of the rack for cabling. The console protrudes 1 % inches at the front of the rack, and
the entire unit slides out clear of the rack. An expansion chassis weighs 40 pounds and has the same
dimensions as the main chassis.

Height Width Depth Weight
{inches} {inches} (inches) (pounds)

Nova, Supernova 5Y4 19 20Y4 60
(22 with console)

Nova 800, Nova 1200 5Y4 19 21 Y4 50
(23 with console)

Double height chassis 101;2 19 21 Y4 100

Teletype ASR33 45 22 19 56

It is recommended that the ambient temperature at the installation be maintained between 20°
and 30°C, but the temperature can vary from 0° to 55° without adverse effect (the equipment can be
stored in temperatures as high as 70°). The relative humidity can be as high as 90% noncondensating.
(Although all exposed surfaces are treated to prevent corrosion, exposure to extreme humidity for
long periods of time should be avoided.)

The computer uses 47 to 63 Hz single phase line power, generally either 115 or 230 vac with a
tolerance of ± 10% in the Nova and Supernova, ±20% in the Nova 800 and 1200 (other frequencies and
voltages are available on special order). The power source should be capable of supplying 15 amperes;
the power cable has a standard 3-wire plug and should be plugged into a receptacle rated at 15
amperes. The minimum configuration of a computer is a processor, teletype interface, console and 4K
of memory; the maximum configuration is the same but with 32K of memory.

Nova
Minimum
M:lximum

Line current
(115 rae, amperes)

2.2
3.5

Dissipation
(watts)

250
400

+5 rdc
(amperes)

B1

IT-tM QTr

5 4

B2

8-'!o'l. ~ v. .. '-c, II·~O, .. " .. ~ :,,< l<.. ...
~-A ", ~ .3T ..

fAfCT NO.

0'=''1 _0=10'2_ 00

I~~TALLAT'ON pf...'<,)cE.DuRe::

PJ<:E. ... s:SEMB\.E I"""EMS '> 2, ANt> '3 0 C 'S15-'TFii! ... 1l.

~T::C:A~~~ .. ,; 1(~/~Al~E',;~~~~ ~~~SN~;:'~ I;:~:~RO).
E~Te.ND CENTEf't C",ASSIS-T~",I(~AILS. Al'IC INS-TALL
CI-IASSlS ON RAILS.

INSTALLATION: NOVA, SUPERNOVA

7'

~---
r----- - -----.-

1----------- \7~"Q.P.C.\<. D~IO:N'''_lG tRE.'F)-------1
I[

~o'-'C:. ... ,o ACc.o1-J\OO""T"E
CIl>.SL\.: C",,-MP-S.

I I
I I

"T'I'P NOE:IvIA.

\.-IOo!...€. \..c:.c.A.'\o"-1~

~'W'''"<OA/C OU'L~,
,'''"j':-",?,O VA.C
S MI=''5 ~O/bOI-\~

Oi",I(:>N. L ":I.e:::.
..--1' I C.C~N.~<:.."'tOR...."i.

~ I I

\"'f~~ QTY

"'LQ' ;, ""\RE~
40e. (')P'IO'\-.l.

NOV 1000 OR NOV \"2...00

DESCRIPTION

RG:.t-.AO"E:. SIOli:: PAo-.1.t:.L"=-) PR~A.'!>':.~~'e.\"'~
IT€. I ,0 OU"TE:.~ '5\..IDIC U5\h,\G ,"TCIv\'S 4€..S

AS INOIC ,iCl)W\OUt--lT OU''CR. ~\..\Oe:.. "J:.':.~MIO\,..,..
""'" ,"-'I:l,c. "TIi:..P.'\.JO'TO;;:·. r.,E:E OETA,I\.."C." l!,.
RI: R. VII::.W Nt> A.o;,-:''E:M~'-'\!:. A.. "So 'S,H.O'V,Jt-..I,.

CAU"TIO'-.l- ~R\CI\Ot..l '~"'_\CE

ri--II-------
, ,

~~t~ll- ---------

-a - .

1IiT"
!';'.nI ,.,

\
it 1\ \ - -

-'.j- ," \ \ '. \
'"

\.!. ..
,~

~ ~

----¥------.J-~-------'IJ
T

- - WOJ/C-C -1, I
I I

,

- ~I ~FO"

VI
~ I r - - - - -

~ I
I

, I

IH- _J'"
~O" CA.'e.IW'E:' <..REr,r----

- -

ZO,~'· VCR"lCAL RAIl.. DEPTH

3 " ----- .-.---------J '2.' e.

INSTALLATION: NOVA 800, NOVA 1200

'->0

PH N,OM \....\t-JE'!> RE:PRE:";>EN'
Irl<CC;>, IN $,\'0"'"

B3

Nova 1200
Minimum 1.5 175 4%
Maximum 2.4 275 9%

Nova 800
Minimum 2.2 250 6
Maximum 3.1 350 1114

Supernova
Minimum 2.2 250 7Y2
Maximum 3.1 350 123,4

Supernova SC
Minimum 2.6 300 7%
Maximum 5.2 600 14Y2

Teletype 2 92
Turnon surge 7

The +5 vdc output of the power supply can deliver 12 amperes. Each 4K memory requires about
% ampere. At the power supply end of the back panel are pins carrying an unregulated -15 vdc for
customer use; this source, which is separate from the slot connectors, supplies 2 amperes maximum
with a voltage tolerance of ±20% and a maximum ripple of 1 volt. A power supply is also mounted at
the back of an expansion chassis. The double height chassis has two power supplies, one standard and
one dual +5; there is thus 36 amperes of +5 available, and each of the three-outputs feeds a third of
the slats.

Complete assembly instructions for the teletype are given in Section 574-100-201 of Bulletin
273B, Volume 1, Technical Manual, 32 and 33 Teletypewriter Sets. In particular, Part 6 of that
section describes the installation of the power pack, which is mounted inside the stand as shown in the
illustratkm on page 14. Plug the power pack cable into the pack.

All connections to the processor are made at the back [refer to the illustration on page A6]. Simply
plug the teletype power and signal cables into the convenience outlet and 9-pin socket that appear in

the figure. The signal plug has a pair of captive bolts that should be screwed into the holes on either
side of the socket. Other sockets are in place at the back only if other equipment is included in the
system, and in this case, special installation information in provided. If the 10 bus is external, it uses
the largest socket.

Peripheral Equipment

In: general the environmental requirements (temperature, humidity) of the peripheral equipment
are the same as those for the processor; for any special considerations refer to the option bulletin or
the manufacturers manual. The physical dimensions and power requirements (at 115 vac) of the
peripheral equipment are as; follows.

Height Width Depth Weight Power
(inches) (inches) (inches) (pounds) (watts)

Teletype ASR33 45 22 19 56 92
Paper tape reader 7 19 8 28 150
Paper tape punch 7 19 20 60 65

B4

Reader and punch
Line printer 2310
Line printer 2410
Plotters

4017 A (Calcomp 565)
4017B (Calcomp 565)A
4017C (Calcomp 563)
4017D (Calcomp 502)
Houston DP-1

Card reader
TMZ tape transport
TMX tape transport
TM-16 tape transport
Magnetic tape adapterE
Disk
A-D converter

Basic
Expander
Multiplexer

Standard D-A converter
2 or 6 channels
24 channels

Sample and hold D-A converter
8 channels
32 channels

A Rack model
B Trays fully extended
c Depth in rack 14V2

14
23
46

10
12Y2
10
41

8Y2
12
24
12Y4
68

5%
12Y4

3V2
3V2
3V2

3Y2
3V2

3Y2
3V2

D 17 amperes average, 24 amperes maximum at 115 vac

19 20
24 22
48V2 24V2

18 15Y4
19 12
39Y2 15Y4
46 45Y2
17Y4 140r 37V2B
23 12Y2
19 17c

19 18c

28 29
19 8Y2
19 18V2

8V2 12
17 17

8V2 12

8V2 12
17 17

8V2 12
17 17

E Mounts below transport with TMZ or TMX, inside cabinet with TM-16.

88 215
185 330
575 500

33 175
35 175
53 175

250 290
40 200
75 400

100 475
65 175

500 D

15 15
70 200

7 20
10 30
20 50

10 30
20 60

10 30
20 60

B5

APPENDIX C

FLOATING POINT ARITHMETIC

Software is available for processing floating point numbers. For a given word length, floating point format sac­

rifices some precision for a much greater range in order of magnitu~e. The software interprets the two-word

floating point representation of a number as containing a sign (bit 0), a 7-bit characteristic, and a 24-bit proper
fraction. The characteristic is the coded exponent of the power of 16 that the fraction must be multiplied by to

give the number being represented.

For a positive number the sign is O. The contents of bh 8-31 are interpreted as a binary fraction (it may

often be convenient to view this as six 4-bit hexadecimal digits), and the contents of bits 1-7 are interpreted as
an integral exponent in excess 64 (1008) code. Exponents from - 64 to + 63 are therefore represented by the

binary equivalents of 0-127 (0-177). The negativ.e of a number is obtained simply by changing the sign bit to

1 - the rest of the number remains in positive form. Zero is represented by all Os in sign, characteristic and

fraction. The routines always represent a zero result in this form (referred to as "true" zero), but they interpret
any operand with a zero fractional part as being zero.

+ 173 10 = +255 8

+.5328 X 162 101100 001 0110 101 101 0000 000 000 000 000 I
o 1 78 31

1011 000 01011010 1101 0000 0000 0000 00001
o 1 78 31

Most routines assume that all nonzero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the fraction is greater than or equal to 1/16 and less than

1; in other words it has a 1 in the first four bits (bits 8-1 I of the high order word). These numbers thus have a
fractional range of 1/16 to 1_2-24 (l-16--<» and an exponent range of -64 to +63. This corresponds to a
decimal range of approximately 2.4 X 10-78 to 7.2 X 1075•

CI

APPENDIX D

INSTRUCTION MNEMONICS AND TIMING

The table beginning on the next page lists the instruction mnemonics in numerical order.
Following that is a listing in alphabetical order that gives the octal value, a short description of the
instruction, and the number of the page on which the full description appears in Chapter 2,
Instruction execution times in microseconds are listed on pages 0 12 and D 13,

The derivation of the instruction mnemonics is as follows,

~~~~e} Accumulator 

Increment} d Sk' 'f Z 
D an lp 1 ero 

ecrement 

juMP 

Jump to SubRoutine 

COMplement 
NEGate 
MOVe 
INCrement for carry bit 
ADd Complement base value use 
SUBtract 
ADD 
AND 

SKiP Ion Zero } {Carry 
Sk' om Nonzero Result 

lp if Either is Zero 
if Both are Nonzero 

No 10 transfer 

D.,. {~UI} m bUffJ- .nd 

SKiP if {BUSY} is {N onzero 
Done Zero 

READ Switches 

10 ReSeT 

HALT 

INTerrupt Acknowledge 

MaSK Out 

INTerrupt ENable 

INT errupt DiSable 

MULtiply 

DIVide 

curren t carry 
Zero 
One 
Complement of current carry 

I
~ 

Start 
Clear 
special Pulse 

shift Left ~ I ~ I 
shift Right {# 
Swap bytes 

Dl 



INSTRUCTION MNEMONICS 

NUMERIC LISTING 

000000 JMP 062677 IORST 100350 COMOS# 
000001 SKP 062700 DICP 100360 COMCS 
000002 SZC 063000 DOC 100370 COMCS# 
000003 SNC 063077 HALT 100400 NEG 
000004 SZR 063100 DOCS 100410 NEG# 
000005 SNR 063200 DOCC 100420 NEGZ 
000006 SEZ 063300 DOCP 100430 NEGZ# 
000007 SBN 063400 SKPBN 100440 NEGO 
000010 # 063500 SKPBZ 100450 NEGO# 
002000 @ 063600 SKPDN 100460 NEGC 
004000 JSR 063700 SKPDZ 100470 NEGC# 
010000 ISZ 073101 DIV 100500 NEGL 
014000 DSZ 073301 MUL 100510 NEGL# 
020000 LOA 100000 @ 100520 NEGZL 
040000 STA 100000 COM 100530 NEGZL# 
060000 NIO 100010 COM# 100540 NEGOL 
060100 NIOS 100020 COMZ 100550 NEGOL# 
060177 INTEN 100030 COMZ# 100560 NEGCL 
060200 NIOC 100040 COMO 100570 NEGCL# 
060277 INTDS 100050 COMO# 100600 NEGR 
060300 NIOP 100060 COMC 100610 NEGR# 
060400 DIA 100070 COMC# 100620 NEGZR 
060477 READS 100100 COML 100630 NEGZR# 
060500 DIAS 100110 COML# 100640 NEGOR 
060600 DIAC 100120 COMZL 100650 NEGOR# 
060700 DIAP 100130 COMZL# 100660 NEGCR 
061000 DOA 100140 COMOL 100670 NEGCR# 
061100 DOAS 100150 COMOL# 100700 NEGS 
061200 DOAC 100160 COMCL 100710 NEGS# 
061300 DOAP 100170 COMCL# 100720 NEGZS 
061400 DIB 100200 COMR 100730 NEGZS# 
061477 INTA 100210 COMR# 100740 NEGOS 
061500 DIBS 100220 COMZR 100750 NEGOS# 
061600 DIBC 100230 COMZR# 100760 NEGCS 
061700· DIBP 100240 COMOR 100770 NEGCS# 
062000 DOB 100250 COMOR# 101000 MOV 
062077 MSKO 100260 COMCR 101010 MOV# 
062100 DOBS 100270 COMCR# 101020 MOVZ 
062200 DOBC 100300 COMS 101030 MOVZ# 
062300 DOBP 100310 COMS# 101040 MOVO 
062400 DIC 100320 COMZS 101050 MOVO# 
062500 DICS 100330 COMZS# 101060 MOVC 
062600 DICC 100340 COMOS 101070 MOVC# 

02 



101100 MOYL 101660 INCCR 102440 SUBO 
101110 MOYL# 101670 INCCR# 102450 SUBO# 
101120 MOYZL 101700 INCS 102460 SUBC 
101130 MOYZL# 101710 INCS# 102470 SUBC# 
101140 MOYOL 101720 INCZS 102500 SUBL 
101150 MOYOL# 101730 INCZS# 102510 SUBL# 
101160 MOYCL 101740 INCOS 102520 SUBZL 
101170 MOYCL# 101750 INCOS# 102530 SUBZL# 
101200 MOYR 101760 INCCS 102540 SUBOL 
101210 MOYR# 101770 INCCS# 102550 SUBOL# 
101220 MOYZR 102000 ADC 102560 SUBCL 
101230 MOYZR# 102010 ADC# 102570 SUBCL# 
101240 MOYOR 102020 ADCZ 102600 SUBR 
101250 MOYOR# 102030 ADCZ# 102610 SUBR# 
101260 MOYCR 102040 ADCO 102620 SUBZR 
101270 MOYCR# 102050 ADCO# 102630 SUBZR# 
101300 MOYS 102060 ADCC 102640 SUBOR 
101310 MOYS# 102070 ADCC# 102650 SUBOR# 
101320 MOYZS 102100 ADCL 102660 SUBCR 
101330 MOYZS# 102110 ADCL# 102670 SUBCR# 
101340 MOYOS 102120 ADCZL 102700 SUBS 
101350 MOYOS# 102130 ADCZL# 102710 SUBS# 
101360 MOYCS 102140 ADCOL 102720 SUBZS 
101370 MOYCS# 102150 ADCOL# 102730 SUBZS# 
101400 INC 102160 ADCCL 102740 SUBOS 
101410 INC# 102170 ADCCL# 102750 SUBOS# 
101420 INCZ 102200 ADCR 102760 SUBCS 
101430 INCZ# 102210 ADCR# 102770 SUBCS# 
101440 INCO 102220 ADCZR 103000 ADD 
101450 INCO# 102230 ADCZR# 103010 ADD# 
101460 INCC 102240 ADCOR 103020 ADDZ 
101470 INCC# 102250 ADCOR# 103030 ADDZ# 

"- 101500 INCL 102260 ADCCR 103040 AD DO 
101510 INCL# 102270 ADCCR# 103050 ADDO# 
101520 INCZL 102300 ADCS 103060 AD DC 
101530 INCZL# 102310 ADCS# 103070 ADDC# 
101540 INCOL 102320 ADCZS 103100 ADDL 
101550 INCOL# 102330 ADCZS# 103110 ADDL# 
101560 INCCL 102340 ADCOS 103120 ADDZL 
101570 INCCL# 102350 ADCOS# 103130 ADDZL# 
101600 INCR 102360 ADCCS 103140 ADDOL 
101610 INCR# 102370 ADCCS# 103150 ADDOL# 
101620 INCZR 102400 SUB 103160 ADDCL 
101630 INCZR# 102410 SUB# 103170 ADDCL# 
101640 INCOR 102420 SUBZ 103200 ADDR 
101650 INCOR# 102430 SUBZ# 103210 ADDR# 

D3 



103220 ADDZR 103420 ANDZ 103620 ANDZR 
103230 ADDZR# 103430 ANDZ# 103630 ANDZR# 

103240 ADDOR 103440 ANDO 103640 ANDOR 

103250 ADDOR# 103450 ANDO# 103650 ANDOR# 

103260 ADDCR 103460 ANDC 103660 ANDCR 

103270 ADDCR# 103470 ANDC# 103670 ANDCR# 

103300 ADDS 103500 ANDL 103700 ANDS 

103310 ADDS# 103510 ANDL# 103710 ANDS# 

103320 ADDZS 103520 ANDZL 103720 ANDZS 

103330 ADDZS# 103530 ANDZL# 103730 ANDZS# 

103340 ADDOS 103540 ANDOL 103740 ANDOS 

103350 ADDOS# 103550 ANDOL# 103750 ANDOS# 

103360 ADDCS 103560 ANDCL 103760 ANDCS 

103370 ADDCS# 103570 ANDCL# 103770 ANDCS# 

103400 AND 103600 ANDR 
103410 AND# 103610 ANDR# 

D4 



INSTRUCTION MNEMONICS 

ALPHABETIC LISTING 

Page 

ADC 102000 Add the complement of ACS to ACD; use Carry as base for carry bit. 2-16 

ADCC 102060 Add the complement of ACS to ACD; use complement of Carry as 2-16 
base for carry bit. 

ADCCL 102160 Add the complement of ACS to ACD; use complement of Carry as 2-16 
base for carry bit; rotate left. 

ADCCR 102260 Add the complement of ACS to ACD; use complement of Carry as 2-16 
base for carry bit; rotate right. 

ADCCS 102360 Add the complement of ACS to ACD; use complement of Carry as 2-16 
base for carry bit; swap halves of result. 

ADCL 102100 Add the complement of ACS to ACD; use Carry as base for carry bit; 2-16 
rotate left. 

ADCO 102040 Add the complement of ACS to ACD; use 1 as base for carry bit. 2-16 

ADCOL 102140 Add the complement of ACS to ACD; use 1 as base for carry bit; 2-16 
rotate left. 

ADCOR 102240 Add the complement of ACS to ACD; use 1 as base for carry bit; 2-16 
rotate right. 

ADCOS 102340 Add the complement of ACS to ACD; use 1 as base for carry bit; 2-16 
swap halves of result. 

ADCR 102200 Add the complement of ACS to ACD; use Carry as base for carry bit; 2-16 
rotate right. 

ADCS 102300 Add the complement of ACS to ACD; use Carry as base for carry 2-16 
bit; swap halves of result. 

ADCZ 102020 Add the complement of ACS to ACD; use 0 as base for carry bit. 2-16 

ADCZL 102120 Add the complement of ACS to ACD; use 0 as base for carry bit; 2-16 
rotate left. 

ADCZR 102220 Add the complement of ACS to ACD; use 0 as base for carry bit; 2-16 
rotate right. 

ADCZS 102320 Add the complement of ACS to ACD; use 0 as base for carry bit; 2-16 
swap halves of result. 

ADD 103000 Add ACS to ACD; use Carry as base for carry bit. 2-15 

ADDC 103060 Add ACS to ACD; use complement of Carry as base for carry bit. 2-15 

ADDCL 103160 Add ACS to ACD; use complement of Carry as base for carry bit; 2-15 
rotate left. 

ADDCR 103260 Add ACS to ACD; use complement of Carry as base for carry bit; 2-15 
rotate right. 

ADDCS 103360 Add ACS to ACD; use complement of Carry as base for carry bit; 2-15 
swap halves of result. 

ADDL 103100 Add ACS to ACD; use Carry as base for carry bit; rotate left. 2-15 

ADDO 103040 Add ACS to ACD; use 1 as base for carry bit. 2-15 

ADDOL 103140 Add ACS to ACD; use 1 as base for carry bit; rotate left. 2-15 

D5 



Page 

ADDOR 103240 Add ACS to ACD; use 1 as base for carry bit; rotate right. 2-15 

ADDOS 103340 Add ACS to ACD; use 1 as base for carry bit; swap halves of result. 2-15 

ADDR 103200 Add ACS to ACD; use Carry as base for carry bit; rotate right. 2-15 

ADDS 103300 Add ACS to ACD; use Carry as base for carry bit; swap halves of 2-15 
result. 

ADDZ 103020 Add ACS to ACD; use 0 as base for carry bit. 2-15 

ADDZL 103120 Add ACS to ACD; use 0 as base for carry bit; rotate left. 2-15 

ADDZR 103220 Add ACS to ACD; use 0 as base for carry bit; rotate right. 2-15 

ADDZS 103320 Add ACS to ACD; use 0 as base for carry bit; swap halves of result. 2-15 

AND 103400 And ACS with ACD; use Carry as carry bit. 2-16 

ANDC 103460 And ACS with ACD; use complement of Carry as carry bit. 2-16 

ANDCL 103560 And ACS with ACD; use complement of Carry as carry bit; rotate 2-16 
left. 

ANDCR 103660 And ACS with ACD; use complement of Carry as carry bit; rotate 2-16 
right. 

ANDCS 103760 And ACS with ACD; use complement of Carry as carry bit; swap 2-16 
halves of result. 

ANDL 103500 And ACS with ACD; use Carry as carry bit; rotate left. 2-16 

ANDO 103440 And ACS with ACD; use 1 as carry bit. 2-16 

ANDOL 103540 And ACS with ACD; use 1 as carry bit; rotate left. 2-16 

ANDOR 103640 And ACS with ACD; use 1 as carry bit; rotate right. 2-16 

ANDOS 103740 And ACS with ACD; use 1 as carry bit; swap halves of result. 2-16 

ANDR 103600 And ACS with ACD; use Carry as carry bit; rotate right. 2-16 

ANDS 103700 And ACS with ACD; use Carry as carry bit; swap halves of result. 2-16 

ANDZ 103420 And ACS witn ACD; use 0 as carry bit. 2-16 

ANDZL 103520 And ACS with ACD; use 0 as carry bit; rotate left. 2-16 

ANDZR 103620 And ACS with ACD; use 0 as carry bit; rotate right. 2-16 

ANDZS 103720 And ACS with ACD; use 0 as cany bit; swap halves of result. 2-16 

COM 100000 Place the complement of ACS in ACD; use Carry as carry bit. 2-14 

COMC 100060 Place the complement of ACS in ACD; use complement of Carry as 2-14 
carry bit. 

COMCL 100160 Place the complement of ACS in ACD; use complement of Carry as 2-14 
carry bit; rotate left. 

COMCR 100260 Place the complement of ACS in ACD; use complement of Carry as 2-14 
carry bit; rotate right. 

COMCS 100360 Place the complement of ACS in ACD; use complement of Carry as 2-14 
carry bit; swap halves of result. 

COML 100100 Place the complement of ACS in ACD; use Carry as carry bit; rotate 2-14 
left. 

COMO 100040 Place the complement of ACS in ACD; use 1 as carry bit. 2-14 

COMOL 100140 Place the complement of ACS in ACD; use 1 as carry bit; rotate left. 2-14 

D6 



Page 

COMOR 100240 Place the complement of ACS in ACD; use 1 as carry bit; rotate 2-14 
right. 

COMOS 100340 Place the complement of ACS in ACD; use 1 as carry bit; swap 2-14 
halves of result. 

COMR 100200 Place the complement of ACS in ACD; use Carry as carry bit; rotate 2-14 
right. 

COMS 100300 Place the complement of ACS in ACD; use Carry as carry bit; swap 2-14 
halves of result. 

COMZ 100020 Place the complement of ACS in ACD; use 0 as carry bit. 2-14 

COMZL 100120 Place the complement of ACS in ACD; use 0 as carry bit; rotate left. 2-14 

COMZR 100220 Place the complement of ACS in ACD; use 0 as carry bit; rotate 2-14 
right. 

COMZS 100320 Place the complement of ACS in ACD; use 0 as carry bit; swap 2-14 
halves of result. 

DIA 060400 Data in, A buffer to AC. 2-24 

DIAC 060600 Data in, A buffer to AC; clear device. 2-24 

DIAP 060700 Data in, A buffer to AC; send special pulse to device. 2-24 

DIAS 060500 Data in, A buffer to AC; start device. 2-24 

DIB 061400 Data in, B buffer to AC. 2-24 

DIBC 061600 Data in, B buffer to AC; clear device. 2-24 

DIBP 061700 Data in, B buffer to AC; send special pulse to device. 2-24 

DIBS 061500 Data in, B buffer to AC; start device. 2-24 

DIC 062400 Data in, C buffer to AC. 2-25 

DICC 062600 Data in, C buffer to AC; clear device. 2-25 

DICP 062700 Data in, C buffer to AC; send special pulse to device. 2-25 

DICS 062500 Data in, C buffer to AC; start device. 2-25 

DIV 073101 If overflow, set Carry. Otherwise divide ACO-AC 1 by AC2. Put 2-41 
quotient in AC I, remainder in ACO. 

DOA 061000 Data out, AC to A buffer. 2-24 

DOAC 061200 Data out, AC to A buffer; clear device. 2-24 

DOAP 061300 Data out, AC to A buffer; send special pulse to device. 2-24 

DOAS 061100 Data out, AC to A buffer; start device. 2-24 

DOB 062000 Data out, AC to B buffer. 2-25 

DOBC 062200 Data out, AC to B buffer; clear device. 2-25 

DOBP 062300 Data out, AC to B buffer; send special pulse to device. 2-25 

DOBS 062100 Data out, AC to B buffer; start device. 2-25 

DOC 063000 Data out, AC to C buffer. 2-25 

DOCC 063200 Data out, AC to C buffer; clear device. 2-25 

DOCP 063300 Data out, AC to C buffer; send special pulse to device. 2-25 

DOCS 063100 Data out, AC to C buffer; start device. 2-25 

DSZ 014000 Decrement location E by 1 and skip if result is zero. 2-6 

D7 



Page 

HALT 063077 Halt the processor (= DOC O,CPU). 2-28 

INC 101400 Place ACS + 1 in ACD; use Carry as base for carry bit. 2-15 

INCC 101460 Place ACS + 1 in ACD; use complement of Carry as base for carry 2-15 
bit. 

INCCL 101560 Place ACS + 1 in ACD; use complement of Carry as base for carry 2-15 
bit; rotate left. 

INCCR 101660 Place ACS + 1 in ACD; use complement of Carry as base for carry 2-15 
bit; rotate right. 

INCCS 101760 Place ACS + 1 in ACD; use complement of Carry as base for carry 2-15 
bit; swap halves of result. 

INCL 101500 Place ACS + 1 in ACD; use Carry as base for carry bit; rotate left. 2-15 

INCa 101440 Place ACS + 1 in ACD; use 1 as base for carry bit. 2-15 

INCOL 101540 Place ACS + 1 in ACD; use 1 as base for carry bit; rotate left. 2-15 

INCOR 101640 Place ACS + 1 in ACD; use I as base for carry bit; rotate right. 2-15 

INCaS 101740 Place ACS + 1 in ACD; use 1 as base for carry bit; swap halves of 2-15 
result. 

INCR 101600 Place ACS + 1 in ACD; use Carry as base for carry bit; rotate right. 2-15 

INCS 101700 Place ACS + 1 in ACD; use Carry as base for carry bit; swap halves 2-15 
of result. 

INCZ 101420 Place ACS + 1 in ACD; use 0 as base for carry bit. 2-15 

INCZL 101520 Place ACS + 1 in ACD; use 0 as base for carry bit; rotate left. 2-15 

INCZR 101620 Place ACS + 1 in ACD; use 0 as base for carry bit; rotate right. 2-15 

INCZS 101720 Place ACS + 1 in ACD; use 0 as base for carry bit; swap halves of 2-15 
result. 

INTA 061477 Acknowledge interrupt by loading code of nearest device that is 2-33 
requesting an interrupt into AC bits 10-15 (= DIB -,CPU). 

INTDS 060277 Disable interrupt by clearing Interrupt On (= NIOC CPU). 2-32 

INTEN 060177 Enable interrupt by setting Interrupt On (= NIOS CPU). 2-32 

10RST 062677 Clear all 10 devices, clear Interrupt On, reset clock to line frequency 2-28 
(= DICC O,CPU). 

ISZ 010000 Increment location E by 1 and skip if result is zero. 2-6 

JMP 000000 Jump to location E (put E in PC). 2-7 

JSR 004000 Load PC '+ 1 in AC3 and jump to subroutine at location E (put E 2-7 
in PC). 

LDA 020000 Load contents of location E into AC. 2-5 

MOV 101000 Move ACS to ACD; use Carry as carry bit. 2-15 

MOVC 101060 Move ACS to ACD; use complement of Carry as carry bit. 2-15 

MOVCL 101160 Move ACS to ACD; use complement of Carry as carry bit; rotate left. 2-15 

MOVCR 101260 Move ACS to ACD; use complement of Carry as carry bit; rotate 2-15 
right. 

MOVCS 101360 Move ACS to ACD; use complement of Carry as carry bit; swap 2-15 
halves of result. 

MOVL' 101100 Move ACS to ACD; use Carry as carry bit; rotate left. 2-15 

D8 



MOVO 

MOVOL 

MOVOR 

MOVOS 

MOVR 

MOVS 

MOVZ 

MOVZL 

MOVZR 

MOVZS 

MSKO 

MUL 

NEG 

NEGC 

NEGCL 

NEGCR 

NEGCS 

NEGL 

NEGO 

NEGOL 

NEGOR 

NEGOS 

NEGR 

NEGS 

NEGZ 

NEGZL 

NEGZR 

NEGZS 

NIO 

NIOC 

NIOP 

101040 

101140 

101240 

101340 

101200 

101300 

101020 

101120 

101220 

101320 

062077 

073301 

100400 

100460 

100560 

100660 

100760 

100500 

100440 

100540 

100640 

100740 

100600 

100700 

100420 

100520 

100620 

100720 

060000 

060200 

060300 

Move ACS to ACD; use 1 as carry bit. 

Move ACS to ACD; use 1 as carry bit; rotate left. 

Move ACS to ACD; use 1 as carry bit; rotate right. 

Move ACS to ACD; use 1 as carry bit; swap halves of result. 

Move ACS to ACD; use Carry as carry bit; rotate right. 

Move ACS to ACD; use Carry as carry bit; swap halves of result. 

Move ACS to ACD; use 0 as carry bit. 

Move ACS to ACD; use 0 as carry bit; rotate left. 

Move ACS to ACD; use 0 as carry bit; rotate right. 

Move ACS to ACD; use 0 as carry bit; swap halves of result. 

Set up Interrupt Disable flags according to mask in AC 
(= DOB -,CPU). 

Multiply AC1 by AC2, add product to ACO, put result in ACO-ACl. 

Place negative of ACS in ACD; use Carry as base for carry bit. 

Place negative of ACS in ACD; use complement of Carry as base for 
carry bit. 

Place negative of ACS in ACD; use complement of Carry as base for 
carry bit; rotate left. 

Place negative of ACS in ACD; use complement of Carry as base for 
carry bit; rotate right. 

Place negative of ACS in ACD; use complement of Carry as base for 
carry bit; swap halves of result. 

Place negative of ACS in ACD; use Carry as base for carry bit; rotate 
left. 

Place negative of ACS in ACD; use 1 as base for carry bit. 

Place negative of ACS in ACD; use 1 as base for carry bit; rotate left. 

Place negative of ACS in ACD; use 1 as base for carry bit; rotate 
right. 

Place negative of ACS in ACD; use 1 as base for carry bit; swap 
halves of result. 

Place negative of ACS in ACD; use Carry as carry bit; rotate right. 

Place negative of ACS in ACD; use Carry as carry bit; swap halves of 
result. 

Place negative of ACS in ACD; use 0 as base for carry bit. 

Place negative of ACS in ACD; use 0 as base for carry bit; rotate left. 

Place negative of ACS in ACD; use 0 as base for carry bit; rotate 
right. 

Place negative of ACS in ACD; use 0 as base for carry bit; swap 
halves of result. 

No operation. 

Clear device. 

Send special pulse to device. 

Page 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-33 

2-41 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-15 

2-23 

2-23 

2-23 

D9 



Page 

NIOS 060100 Start device. 2-23 

READS 060477 Read console data switches into AC (= DIA -,CPU). 2-27 

SBN 000007 Skip if both carry and result are nonzero (skip function in an arith- 2-13 
metic or logical instruction). 

SEZ 000006 Skip if either carry or result is zero (skip function in an arithmetic 2-13 
or logical instruction). 

SKP 000001 Skip (skip function in an arithmetic or logical instruction). 2-13 

SKPBN 063400 Skip if Busy is 1. 2-23 

SKPBZ 063500 Skip if Busy is O. 2-23 

SKPDN 063600 Skip if Done is 1. 2-23 

SKPDZ 063700 Skip if Done is O. 2-23 

SNC 000003 Skip if carry bit is 1 (skip function in an arithmetic or logical 2-13 
instruction). 

SNR 000005 Skip if result is nonzero (skip function in an arithmetic or logical 2-13 
instruction ). 

STA 040000 Store AC in location E. 2-5 

SUB 102400 Subtract ACS from ACD; use Carry as base for carry bit. 2-16 

SUBC 102460 Subtract ACS from ACD; use complement of Carry as base for carry 2-16 
bit. 

SUBCL 102560 Subtract ACS from ACD; use complement of Carry as base for carry 2-16 
bit; rotate left. 

SUBCR 102660 Subtract ACS from ADC; use complement of Carry as base for carry 2-16 
bit; rotate right. 

SUBCS 102760 Subtract ACS from ACD; use complement of Carry as base for carry 2-16 
bit; swap halves of result. 

SUBL 102500 Subtract ACS from ACD; use Carry as base for carry bit; rotate left. 2-16 

SUBO 102440 Subtract ACS from ACD; use 1 as base for carry bit. 2-16 

SUBOL 102540 Subtract ACS from ACD; use 1 as base for carry bit; rotate left. 2-16 

SUBOR 102640 Subtract ACS from ACD; use 1 as base for carry bit; rotate right. 2-16 

SUBOS 102740 Subtract ACS from ACD; use 1 as base for carry bit; swap halves of 2-16 
result. 

SUBR 102600 Subtract ACS from ACD; use Carry as base for carry bit; rotate right. 2-16 

SUBS 102700 Subtract ACS from ACD; use Carry as base for carry bit; swap halves 2-16 
of result. 

SUBZ 102420 Subtract ACS from ACS; use 0 as base for carry bit. 2-16 

SUBZL 102520 Subtract ACS from ACD; use 0 as base for carry bit; rotate left. 2-16 

SUBZR 102620 Subtract ACS from ACD; use 0 as base for carry bit; rotate right. 2-16 

SUBZS 102720 Subtract ACS from ACD; use 0 as base for carry bit; swap halves of 2-16 
result. 

SZC 000002 Skip if carry is 0 (skip function in an arithmetic or logical instruc- 2-13 
tion). 

SZR 000004 Skip if result is zero (skip function in an arithmetic or logical in- 2-13 
struction). 

D10 



@ 002000 

@ 100000 

# 000010 

When this character appears in an instruction, the assembler places 
a 1 in bit 5 to produce indirect addressing. 

When this character appears with a 15-bit address, the assembler 
places a 1 in bit 0, making the address indirect. 

Appending this character to the mnemonic for an arithmetic or 
logical instruction places a 1 in bit 12 to prevent the processor from 

loading the 17-bit result in Carry and ACD. Thus the result of an 
instruction can be tested for a skip without affecting Carry or the 
accumulators. 

Page 

2-3 

2-3 

2-13 

Dll 



INSTRUCTION EXECUTION TIMES 

Supernova read-only time equals semiconductor time, except add .2 for LDA, ST A, ISZ, DSZ if reference is to core. 
Nova times are for core; for read-only subtract .2 except subtract.4 for LDA, STA, ISZ, DSZ if reference is to read-only 
memory. 

When two numbers are given, the one at the left of the slash is the time for an isolated transfer, the one at the right is 
the minimum time between consecutive transfers. 

Supernova 
SC Core Nova 800 Nova 1200 Nova 

LDA 1.2 1.6 1.6 2.55 5.2 
STA 1.2 1.6 1.6 L?,.5----, 5'."5 

" 

1.8 ( 1:8-'\ 7. «( ISZ, DSZ 1.4 (3.15* /t-I t 5.2 
JMP .6 .8 \,-,,~ .... ,/ W5/ ,I 2.6 
JSR 1.2 lA .8 1.35 3.5 
Indirect addressing add .6 .8 .8 1.2 2.6 
Base register addressing add 0 0 0 0 .3 
Autoindexing add .2 .2 .2 .6 0 
COM, NEG, MOV, INC .3* .8* .8* 1.35* 5.6 
ADC, SUB, ADD, AND .3* .8* .8* 1.35* 5.9 
*If skip occurs add :j: .8 .2 1.35 
10 input (except INTA) 2.8 2.9 2.2t 2.55 4.4 
NIO 3.2 3.3 2.2t 3.15 4.4 
10 output 3.2 3.3 2.2t 3.15 4.7 
ts, Cor P add .6 
IO skips 2.8 2.9 1.4* 2.55 4.4 
INTA 3.6 3.7 2.2 2.55 4.4 
MUL 8.8 3.75 11.1 

Average 3.7 3.8 
Maximum 5.3 5.4 

DIV 6.8 6.9 8.8 4.05 11.9 
Unsuccessful 1.5 1.6 1.6 2.55 

Interrupt 1.8 2.2 1.6 3.0 5.2 
Latency 7 12 

With multiply-divide 9 9 10.6 
Without multiply-divide 5 5 4.6 

Data Channel 
Input 2.3 2.3 2.0 l.2 3.5 
Output 2.8 2.8 2.0 l.2/1.8 4.4 
Increment 2.8 2.8 2.2 1.8/2.4 4.4 
Add 2.8 2.8 5.3. 
Latency 3.6 7 12 

With multiply-divide 9 9 
Without multiply-divide 5 5 

High speed channel 
Input .8 .8 .8 
Output .8/l.0 .8/!.0 .8/1.0 
Increment 1.0/l.2 1.0/1.2 1.0/1.2 
Add 1.0/l.2 1.0/1.2 
Latency 

With 10 4.5 4.5 3.6 
Without 10 2.5 2.5 2.0 

f Add .3 if arithmetic or logical instruction is skipped, otherwise add .6. 

D12 



APPENDIX E 

IN-OUT CODES 

The table on the next two pages lists the in-out devices, their octal codes, mnemonics and DGC 
option numbers. 8000 series options are the Supernova only, 8100 for the Nova 1200, 8200 for the 
Nova 800, and 4000 series options are for all machines or the Nova only. Codes 40 and above are used 
in pairs (40-41, 42-43, ... ) for receiver-transmitter sets in the high speed communications controller. 
The table beginning on page E4 lists the complete teletype code. The lower case character set (codes 
140-176) is not available on the Model 33 or 35, but giving one of these codes causes the 
teletypewriter to print the corresponding upper case character. Other differences between the 33-35 
and the 37 are mentioned in the table. The definitions of the control codes are those given by ASCII. 
Most control codes, however, have no effect on the computer teletypewriter, and the definitions bear 
no necessary relation to the use of the codes in conjunction with the software. 

EI 



IN-OUT DEVICES 

OctaJ Priority Option 

Code Mnemonic Mask Bit Device Page Number 

01 MDV Multiply-divide 241 A 

02 ~} 03 MAP 1 Memory allocation and protection 243 8008 
04 MAP2 
05 
06 MCAT 12 Multiprocessor adapter transmitter} 
07 MCAR 12 Multiprocessor adapter receiver 7-9 4038 

10 TTl 14 Teletype input } 3-1 4010 
11 ITO .15 Teletype output 
12 PTR 11 Paper tape reader 3-6 4011 
13 PTP 13 Paper tape punch 3-11 4012 
14 RTC 13 Real time clock 2-38 4008 
15 PLT 12 Incremental plotter 3-14 4017 
16 CDR 10 Card reader 3-16 4016 
17 LPT 12 Line printer 3-12 4018 
20 DSK 9 Disk 5-1 4019 
21 ADCV 8 A-D converter 6-1 4032 4033 
22 MTA 10 Industry compatible magnetic tape 4-1 4033 
23 DACV D-A converter, scope control 6-13, 19 4037 4053 
24 DCM 0 Data communications multiplexer 7-5 4026 

2S} Other multiplexers and/or 
26 

control signal options 
27 
30 
31* IBMI} 
32 IBM2 13 IBM 360 interface 4025 

33 
34 
35 
36 
37 
40 8 Receiver } 7-1 4015 ' 
41 8 Transmitter 
42 
43 
44 
45 
46 
47 
50 Second thietype input } 
51 Second teletype output 4010 

52 Second paper tape reader 4011 

E2 



Octal Priority 

Code Mnemonic Mask Bit Device 

53 Second paper tape punch 

54 

55 
56 

57 
60 Second disk 

61 
62 Second magnetic tape 

63 
64 
65 
66 
67 
70 

71*} Second IBM 360 interface 
72 
73 
74 
75 
76 

77 CPU { Cenhal processor 
Power monitor and auto restart 

*Codereturned by INTA 

A Supernova, 8007; Nova 1200, 8107; Nova 800,8207; Nova, 4031 
B Supernova, 8001; Nova 1200,8101; Nova 800,8201; Nova, 4001 
c Supernova, 8006; Nova 1200, 8106; Nova 800,8206; Nova, 4006 

Option 

Page Number 

4012 

4019 

4030 

4025 

2-26 B 

2-40 c 

E3 



Even 

Parity 

Bit 

o 

1 

o 

o 

o 

1 

o 
o 

1 

o 
1 

1 

o 
1 

o 
o 

1 

o 
1 

1 

o 
o 
1 

1 

o 

1 

o 
o 
1 

1 

o 
o 
E4 

7·Bit 
Octal 

Code 

000 
001 

002 

003 

004 

005 

006 
007 

010 

011 

012 

013 

014 

015 

016 

017 

020 

021 

022 

023 

024 

025 

026 

027 

030 

031 

032 

033 

034 
035 

036 

037 

040 

041 

042 

Character 

NUL 
SOH 

STX 

ETX 

EaT 

ENQ 

ACK 

BEL 

BS 

HT 

LF 

VT 

FF 

CR 

SO 

SI 

DLE 

DCl 

DC2 

DC3 

DC4 

NAK 

SYN 

ETB 

CAN 
EM 

SUB 

ESC 

FS 

GS 

RS 

US 

SP 

" 

TELETYPE CODE 

Remarks 

Null, tape feed. Repeats on Model 37. Control shift P on Model 33 and 35. 

Start of heading; also SaM, start of message. Control A. 

Start of text; also EOA, end of address. Control B. 

End of text; also EOM, end of message. Control C. 

End of transmission (END); shuts off TWX machines. Control D. 

Enquiry (ENQRY); also WRU, "Who are you?" Triggers identification 

("Here is ... ") at remote station if so equipped. Control E. 

Acknowledge; also RU, "Are you ... ?" Control F. 

Rings the bell. Control G. 

Backspace; also FEO, format effector. Backspaces some machines. 
Repeats on Model 37. Control H on Model 33 and 35. 

Horizontal tab. Control I on Model 33 and 35. 

Line feed or line space (NEW LINE); advances paper to next line. Repeats 

on Model 37. Duplicated by control Jon Model 33 and 35. 

Vertical tab (VTAB). Control K on Model 33 and 35. 

Form feed to top of next page (PAGE). Control L. 

Carriage return to beginning of line. Control M on Model 33 and 35. 

Shift out; changes ribbon color to red. Control N. 

Shift in; changes ribbon color to black. Control O. 

Data link escape. Control P (DCO). 

Device control I, turns transmitter (reader) on. Control Q (X ON). 

Device control 2, turns punch or auxmary on. Control R (TAPE, AUX 

ON). 

Device control 3, turns transmitter (reader) off. Control S (X OFF). 

Device control 4, turns punch or auxiliary off. Control T (AUX OFF). 

Negative acknowledge; also ERR, error. Control U. 

Synchronous idle (SYNC). Control V. 

End of transmission block; also LEM, logical end of medium. Control W. 

Cancel (CANCL). Control X. 
End of medium. Control Y. 

Substitute. Control Z. 

Escape, prefix. This code is also generated by control shift K on Model 33 

and 35. 

File separator, Control shift Lon Model 33 and 35. 
Group separator. Control shift M on Model 33 and 35. 

Record separator. Control shift Non Model 33 and 35. 

Unit separator. Control shift a on Model 33 and 35. 

Space. 



Even '-Bit 
Parity Octal 

Bit Code Character Remarks 

1 043 # 
0 044 $ 

1 045 % 

046 & 

0 047 Accent acute or apostrophe. 

0 050 ( 

051 ) 

1 052 * Repeats on Model 37. 

0 053 + 
1 054 

0 055 Repeats on Model 37. 

0 056 Rept!'ats on Model 37. 

1 057 / 
0 060 0 
1 061 1 

1 062 2 

0 063 3 

064 4 

0 065 5 

0 066 6 

1 067 7 

1 070 8 

0 071 9 

0 072 

1 073 

0 074 < 
1 075 Repeats on Model 37. 

1 076 > 
0 077 ? 

1 100 @ 

0 101 A 

0 102 B 

1 103 C 

0 104 D 

1 105 E 

1 106 F 

0 107 G 

0 110 H 

1 111 I 

1 112 J 

0 113 K 

1 114 L 

0 115 M 
E5 



Even '-Bit 
Parity Octal 

Bit Code Character Remarks 
0 116 N 
1 117 0 
0 120 P 
1 121 Q 
1 122 R 
0 123 S 
1 124 T 
0 125 U 
0 126 V 

1 127 W 
1 130 X Repeats on Model 37. 
0 131 y 

0 132 Z 
1 133 [ Shift K on Model 33 and 35. 
0 134 \ Shift L on Model.33 and 35. 
1 135 J Shift M on Model 33 and 35. 
1 136 t 
0 137 ~ Repeats on Model 37. 
0 140 Accent grave. 
1 141 a 
1 142 b 
0 143 c 
1 144 d 
0 145 e 
0 146 f 
1 147 g 

1 150 h 
0 151 
0 152 j 

1 153 k 
0 154 I 
1 155 m 

1 156 n 
0 157 0 

1 160 P 
0 161 q 
0 162 r 

1 163 s 
0 164 t 

1 165 u 

1 166 v 

0 167 w 

0 170 x Repeats on Model 37. 

E6 



Even '·Bit 
Parity Octal 

Bit Code 

1 171 

1 172 

0 173 

1 174 

0 175 

0 176 

1 177 

REPT 

PAPER ADVANCE 

LOCAL RETURN 

LOCLF 

Character 

y 
z 

~{ 

I 
} 

DEL 

LOCCR 

INTERRUPT, BREAK 

PROCEED, BRK RLS 

HERE IS 

Remarks 

{on early versions of the Model 33 and 35, either of these codes may 
be generated by either the ALT MODE or ESC key. 

Delete, rub out. Repeats on Model 37. 

Keys That Generate No Codes 

Model 33 and 35 only: causes any other key that is struck to repeat continu­

ously until REPT is released. 

Model 37 local line feed. 

Model 37 local carriage return. 
Model 33 and 35 local line feed. 

Model 33 and 35 local carriage return. 

Opens the line (machine sends a continuous string of null characters). 

Break release (not applicable). 

Transmits predetermined 20-character message. 

E7 



Notes 



Printed in U.S.A. 7500-7"'AUGUST.1972 

• DATA GENERAL 
• • CORPORATION 

Southboro, Massachusetts 01772 


	000
	001
	002
	003
	004
	005
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	xBack

