Technical
- Reference

MICROPROGRAMMING
WITH THE

ECLIPSE COMPUTER
WCS FEATURE

014-000050-00

Ordering No. 014-000050

©Data General Corporation 1974

All Rights Reserved.

Printed in the United States of America
Rev. 00, November 1974

NOTICE

Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, Licensee's. and customers.
The information contained herein is the property of DGC
and shall not be reproduced in whole or in part without
DGC's prior written approval,

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including. but not limited to
typographical, arithmetic, or listing errors.

NOVA, SUPERNOVA and NOVADISC are registered trade-
marks of Data General Corporation, Southboro, Mass.

ECLIPSE is a trademark of Data General Corporation.
Southboro, Mass.

TABLE OF CONTENTS

SECTION 1
INTRODUCTION TO MICROPROGRAMMED CONTROL

Page
INTRODUCTIONo e e e e e e 1-1
SECTION 2

ARCHITECTURE AND OPERATION OF THE ECLIPSE CPU
TIMING LOGIC . . oot e e e e e e e e 2-1
MICROPROGRAMMED CONTROL LOGIC . . .t vttt ittt ettt e e et e e e e e e 2-1
10102115 0] B] o o - 2-1
Microinstruction Registerottt e e e 2-2
State Change Logic.v ottt e e e e e 2-2
Sources of Control Store AdAreSSttt e o 2-2
Special Control Store Addressesc.vuviiii et e, 2-3
Phantom MicroinStructionsoue ittt e 2-3
COMPUTATIONAL LOGIC . . ¢t ittt ettt ettt et e e et e e e e e e e e e i 2-3
RegiSter File . e 2-3
A BUS . e e e 2-3
A 2-4
ST . L e e 2-4
0) 2-4
AR RY L e e e e e e 2-4
ALUO SAVE and Q-BIT SAVE ...ttt e e e et e e i, 2-4
COUNT ReZIS T . o ottt ittt it ettt et et ettt e e ettt e e e i, 2-4
BIT decode LogiC ..ottt ettt e et e et et et e e e e e 2-4
Program Load ROMttt ittt e e e e e e e e 2-4
DATA TRANSFER LOGIC .. . ottt ittt ettt ittt et et et et e eee e e e et 2-5
= 1 2-5
MEM BUS .\ttt e e e e 2-5
L/ BUS ittt e 2-5
The I/0 ReGISTET ..ttt ettt et e e e e e e e e e e e e e e e 2-5
Programmed I/O LogiC . . .o vventt ettt ettt e e e e e e e e e e 2-5
Program Interrupt LOGiCottt i e e e e 2-5
Data Channel LOogic ...ttt it et e e e e e 2-6
CPU CYCLES ..ot e e e e e e e e e e e e e e e 2-6
M E M O R Y . i e e e e e e 2-6

TABLE OF CONTENTS (Continued)

SECTION 2 (Continued)
ARCHITECTURE AND OPERATION OF THE ECLIPSE CPU

CONSOLE .« v oottt tieee et iiia e st ae e
CONSOLE LGRS « . ottt vt ettt e et
Address Compare LOGIC ... vvvuureeeneeeaniie ottt iintananternnrennsrsnneesss

STOP FLP-TIOP .« « e v e v eve et e et neas et iaa et it sttt
REXAM FLP-El0D . « vt et tettnaeane et aaaa s et s aaa st aest st ananntens
MICROINST ENAB and STEP SYNC FLpP-flops . ..o ivuiiiiiienniinernnaenerarerneeenees
RESEL -« v et eteaaae et s a s

SECTION 3
MICROINSTRUCTION FORMAT AND MICRO-ORDER SET

EXAMPLES ..ttt veeeeeennnensesannsasesasnssasssasesssstnassssaesenestearsunnrereceres
N TN 2 000 55 o T R R R
MBUS FIELD « vttt oeeeuneeenotanaaesneeessesaassasasssssstaesstastrosstcsstaneernreses
12713 2y 2) 0 J A R L

RANDZ FIELD .+ ottt vttt e tetenesnaeneesansnaaesasssesetsssasanssessossststonseoeees

it

]
W WWOoo oo -1

3-20
3-21
3-26

3-30

TABLE OF CONTENTS (Continued)

SECTION 3 (Continued)
MICROINSTRUCTION FORMAT AND MICRO-ORDER SET

Page
STATECHANGE FIELD ..ottt e, G eoeannseenenesosossasonnsnenonsaases 3-33
Unconditional Branchesttt iiier e e i, 3-33
True/False Branchesoovveenruennnnnn.. e e e et e i et 3-33
ALU Result Testscovvernniinnennnnnnnnnn. P ee e ee ettt et eaaenn 3-34
ALU Carry-out TestS.....ovvineeirnnennnnnnnn.. S r et ettt e ieeaan 3-34
Special Bit Tests.........cvviiiiinienvennnnnn.. P r et ettt et e e 3-35
Tests That Modify a Register.................... T et ettt et 3-36
Console Testsoivniiiinineeenieeinnnn, et et ettt ettt e 3-36
I/OBUS TeSES . .vvvvnetviieeeee e, PP 3-37
Floating Point Processor TestS...........0...... ittt ettt eeenaneeeeenanesnnnnsons 3-38
Microsubroutining e oot eatoenaeaasnsoeaneenonnssnanens 3-38
Instruction Decodingcoiviniennnennnn.. .. ettt ettt 3-39
Microroutine Chainingo v ... tr e e e te ettt et e e ea. 3-40
Execution of a New Instruction................. £ 1 et s et tnernotaanacaeeenonstonenssonena 3-40
Transfer of Control to a Special MiCroroutine,veeerurerennreeonnnennnnnnnn, 3-41
Using LDIRand NILDIR. . .. c oot ivven e, et e s e oesosssennennnnnaansnsesnnsnnenns 3-42
PAGE FIELD . . oottt ittt ittt ettt e e et e e e e e e e e e e e, 3-45
TRUE ADDRESS FIELD ...ttt eettieenteetete e eee e e e e e, 3-45
FALSE ADDRESS FIELD ...ttt ittitteeiteeeete et ettt e te e e i, 3-45
SECTION 4
HOW TO USE WCS
INTRODUCTION . .\ttt ittt ettt et e e e et et e e e e e e e e e i, 4-1

iii

This page left blank intentionally

iv

PREFACE

The writable control store (WCS) feature of the
ECLIPSE computer is an extension of the micro-
programmed control logic of the computer's
central processing unit. WCS gives users access
to the microprogrammed control logic of the CPU
and thus allows them to implement specialized
instructions. WCS offers the user 256 56-bit
words of high-speed random-access semiconductor
memory (RAM) in the CPU's control store. In-
formation placed in this RAM defines the execution
of sixteen two-accumulator instructions (the XOP1
instructions).

This manual is intended to be a reference for the
user of WCS. It describes those parts of the
ECLIPSE computer's hardware that are important
to the microprogrammer. There is special em-

phasis on the architecture and operation of the
CPU, and the console and memory are also de-
scribed in some detail. Other ECLIPSE computer
features including memory allocation and protec-
tion (MAP), error checking and correction (ERCC),
the parallel floating point processor (FPP), and
I/O bus are not discussed in detail.

Before the microprogrammer continues with this
manual, he should read the programmer's ref-
erence manual for the ECLIPSE computer,

DGC #015-000024. It will give him an overview
of the computer's architecture and a description
of the standard instruction set that motivates the
microprogramming capability described in this
manual.

This page left blank intentionally

vi

SECTION 1

INTRODUCTION TO
MICROPROGRAMMED CONTROL

In order for a CPU to execute an instruction read
from its main memory, various combinations of
control signals must be asserted in sequence. A
computer's control logic determines which control
signals to assert and when to assert them. The
instruction register (IR), a special register ded-
icated to storing instructions read from main
memory, is a principal input to the control logic.
Other inputs to the control logic are data signals
from the processor's data paths.

The chief difference between a computer with
microprogrammed control and one without it is
the way in which control signals are generated.

In a conventional machine, a complex of multi-
plexors, decoders and gates is fed by the IR. They
assert some subset of all possible control signals
in the machine. A timing generator asserts var-
ious timing signals in sequence, and one or more
of these timing signals is gated with each control
signal, so that a control signal may affect the flow
of data in the machine only for certain instructions
in the IR and even then only at certain times. Other
control signals may be derived from data in the
CPU and therefore depend on the contents of the
IR only indirectly or not at all. These signals,
too, must be gated with timing signals so that

they affect CPU operations only at the right times.
It is characteristic of computers without micro-
programmed control that their control logic is
extremely complex, and their architecture de-
mands that a variety of timing signals be routed
throughout the processor.

To the microprogrammer, a CPU is a collection of
operational components, data paths, and control
signals. Operational components are circuits that
transform and store data (e.g., shifters and
registers). Data paths carry data from one com-
ponent to another. Control signals determine how
and when data will move from component to com-
ponent along the data paths: they must determine
which function an operational component will per-
form if it can perform more than one; they must
select the source of a data path that has more than
one; and they must enable flip-flops and registers
to be clocked at the right times.

In a computer with microprogrammed control, con-
trol signals are not derived directly from the IR.
Instead, every combination of control signals which
is necessary to the operation of the machine is
stored in read-only (ROM) or random-access
(RAM) semiconductor memory. The information
required to generate one combination of control
signals is called a microinstruction. The semi-
conductor memory where microinstructions are
stored is called the control store.

In this manual the term memory will be used in
contrast with the term control store to refer to
main memory unless it is further qualified. Sim-
ilarly, the term instruction will be used in con-
trast with the term microinstruction to refer to

a higher (i. e., assembly-language) level instruc-
tions stored in main memory.

Since a computer usually has hundreds of control
signals, the number of possible combinations of
these is astronomical. Fortunately, only a few
hundred combinations are actually necessary dur-
ing the operation of the computer, so that the con-
trol store need only hold a few hundred micro-
instructions.

Microinstructions read from the control store
are placed in the microinstruction register,
which is like a conventional processor's IR in
that it is dedicated to one function and control
signals are derived from it. However, the logic
that decodes the microinstruction register to
produce control signals is much simpler than
the logic that decodes the IR in a conventional
machine for two reasons.

First, very few timing signals are gated with the
control signals derived from a microinstruction.
Control signals asserted by a microinstruction
are asserted simultaneously and remain asserted
for as long as the microinstruction remains in
the microinstruction register. When a new com-
bination of control signals is required, a new
microinstruction must be read into the microin-
struction register.

1-10of 4

Second, the format of microinstructions is chosen
specifically for the purpose of generating control
signals, with the intent of keeping the microinstruc-
tion decoding logic as simple as possible. In an
extremely simple processor, each bit in a micro-
instruction might correspond to one control signal
so that there would be no need for decoding logic
at all. In most processors there are too many
control signals to make this practical. Instead, a
group of bits in a microinstruction, called a field,
is often used to select among several control sig-
nals or to determine the function to be performed
by one operational component in the processor.

A particular combination of bits in a field of a
microinstruction is called a micro-order. The
microinstruction decoding logic generates the
control signal or signals corresponding to the
micro-order in each field of a microinstruction.
The use of multiplexors and small read-only semi-
conductor memories makes the decoding of fields
in the microinstruction a fairly simple task.

Instructions fetched from memory are stored in
the IR while they are being executed. Since the
execution of an instruction in the IR requires var-,
ious combinations of control signals to be asserted
in sequence, many microinstructions may be read
from the control store to execute one instruction
in the IR. A sequence of microinstructions that
executes an instruction in the IR is called a micro-
routine. Microroutines stored in the control store
ROM are called firmware.

1-2

Not all microroutines execute an instruction in the
IR. A microroutine might perform some other
processor function. For example, when a pro-
gram interrupt occurs in a processor with micro-
programmed control, a microroutine might store
the contents of the program counter (PC) in a spe-
cial memory location and place the address of the
interrupt service routine in the PC. Or when the
computer is halted, a special microroutine that
might read the control switches from the console
(e.g., deposit, examine) and perform the ap-
propriate function when a switch is pressed.

In this manual, the combination of control signals
asserted in a CPU at any instant is called the state
of the machine. Because a microinstruction as-
serts one combination of control signals, each
microinstruction generates one machine state. A
microroutine in the control store is simply a rep-
resentation of a sequence of machine states that
result in the performing of a CPU operation.

The logic that determines the order in which micro-
instructions will be read from the control store is
called the state change logic. The inputs to the
state change logic are various signals that come
from the data paths, the IR and the current micro-
instruction. The outputs are the address in the
control store of the next microinstruction. To the
reader who is accustomed to thinking in terms of
machine states, this address represents the next
state of the processor.

This page left blank intentionally

1-3

TO AND FROM MAP, ERCC,
WCS, AND 1/0 DEVICES

TO AND FROM MEMORY, MAP,
ERCC, FPP, CONSOLE

OTHER SPECIAL
FROM PROGRAMMED CONDITIONS RS
1/0 LOGIC FROM CONSOLE
REXAM MEM BUS LA BUS
FROM CONSOLE @ i EXAMINE SWITCH % s
[+ 14
DECODE [IR <0-15> MEM <0-15>
Loeic
RA<O-1>
FROM %S0 R
GOEMORY, FROM DATA "
MAP, ERCC CHANNEL LOGIC STATE K—
CHANGE
Losic
oae Ra<2-9> Reas
R Ton INSTRUCTION
TERS A BUS [o[|lzla ‘15.6.1.8.‘)!‘0]".‘2“!:‘51“56‘5"5"
|
SYS ¢ RES
CLK (b, CLK
K T T __DEVICE SELECT LINES -
] 1 A %
I .
¥ T
1 1 Y
CONTROL AN PROGRAMMED 1/0 SIGNALS
PAGE2 RAM WRITABLE CONTROL STORE STORE 1
PAGE 3 CURRENTLY UNUSED — ‘—_—“—W
S T
i : B
PHANTOM ' PWR 1on INTR 0ATA DATA ¥
FF PEND FF CHANNEL | CHANNEL
CPU ROM ————d LoGic SIGNALS
Lk <0-55>
— J [
A Ml % |rano|rano| state | & FALSE 3 | .
\NauT | ARES | BREG | ALU | SHIFT M NDIRAND| - S aNeE rue aooress| ,hoeets |RBUF R
PROGRAM INTERRUPT TIMING A A
i 1 I 111 1 l — Logic LoGiC e
\ \
1 MICROINSTRUCTION DECODE LOGIC T y 10 .
®
(-3 JA] T0 STATE FOISTE
v ¢ ¥ §TirFv v i oae
DATA <0-15>
v 14
MEMORY MEMORY CONTROL SIGNALS ||
CoNTROL =3
LOGH
N\ ALy <i2-18>
BT
COUN
DECODE
v SR REGISTER e
SHIFT <0-18> a REGSTER a AREG <0-15> A<O-15> N A CRYO —
ALU <0-15> ACO RO BREG <11-15>
ACI GR1 —N ALy N
SHIFTER MEM <0-15> B AC2 GR2 B | BREG <0-15> B <0-15> 8
AC3 PC y t | aw <o-1s> ALU <0-15>)
—A\
° [carry- ALU<1-15>
) cARRY N oN
LoGIc
S\
N BREG <0-15>
MEM <0-15>
T LJ

06-00943

SECTION 2

ARCHITECTURE AND OPERATION
OF THE ECLIPSE CPU

The circuitry of the ECLIPSE computer central
processing unit is divided into four sections:
timing logic, microprogrammed control logic,
computational logic, and data transfer logic.

The timing logic generates timing signals used
throughout the ECLIPSE computer system; the
microprogrammed control generates control
signals in the sequence required to perform CPU
operations; the computational logic is where the
CPU actually performs operations on data; and the
data transfer logic is used to move data between
the CPU and external media (memory, I/© devices,
etc.). Although the memory and console are not,
strictly speaking, a part of the CPU, an under-
standing of their operation is essential to the
microprogrammer, so they will be discussed in
this section.

The following discussion of the four sections of
the CPU is complemented by a block diagram. In
this diagram the timing logic and microprogram-
med control logic appear in the upper left corner,
the computational logic appears at the bottom, and
the data transfer logic appears on the right.

The following conventions are used in the block
diagram:

(1) Operational components and logic networks
are represented by boxes; control and data
paths are represented by arrows.

(2) The width of control and data paths corresponds
roughly to the amount of information they carry
in parallel.

(3) Registers (that is, data storage components
that are clocked) are shown with heavy out-
lines.

TIMING LOGIC

The timing logic generates three timing signals
that concern the microprogrammer. SYS CLK,
CPU CLK, and REG CLK.

SYS CLK is the fundamental timing signal in the
ECLIPSE computer system. It has a period of 100ns
and is used to generate all other timing signals in
the CPU, memory, and FPP.

CPU CLK is derived from SYS CLK. It ordinarily
has a period of 200ns and is the principal clock
signal used in the CPU. Because CPU CLK is the
signal that clocks the microinstruction register, it
defines the basic CPU cycle. When the memory
or the data channel wants to suspend CPU opera-
tion, it does so by freezing CPU CLK.

REG CLK is a copy of CPU CLK except that it is
not frozen by the data channel. It is used to clock
registers that must be loaded during a data chan-
nel transfer.

MICROPROGRAMMED CONTROL LOGIC

The microprogrammed control logic has three
principal parts: the control store, the micro-
instruction register, and the state change logic.

Control Store

The control store may contain as many as 10241
56-bit microinstructions and is addressed by the
10-bit cutput of the state change logic. The two
high-order bits of this address select one of four
pages in the control store. The remaining eight
bits select one of 256 addresses within the page.
Pages 0 and 1 are read-only semiconductor mem-
ory (ROM) and contain microinstructions used to
implement the ECLIPSE computer's standard in-
struction set. Those ECLIPSE computers that
have the writable control store (WCS) feature
have random-access semiconductor memory (RAM)
for page 2. Page 3 is reserved for future use.

2-1 of 10

Microinstruction Register

The microinstruction register, called RBUF, is
a 56-bit register dedicated to storing a copy of the

current microinstruction; it is clocked by CPU CLK.

The microinstruction decode logic decodes the con-
tents of fields in RBUF to produce control signals
that determine CPU operation. The bits in RBUF

are numbered 0-55 from left to right. They are
divided into fields as follows:
Bits Field Name
0-3 A INPUT
4-7 AREG
8-11 BREG
12-15 ALU
16-19 SHIFT
20 LOAD
21-22 CARRY
23 MA
24-25 MBUS
26-28 RANDI1
29-31 RAND2
32-37 STATE CHANGE
38-39 PAGE
40-47 TRUE ADDRESS
48-55 FALSE ADDRESS

There is a 4-bit extension of RBUF in the mem-
ory allocation and protection (MAP) feature. The
contents of this extension are determined by a
ROM, which is, strictly speaking, an extension of
the control store. The 4-bit extension of RBUF is
not visible to the WCS feature and will not be dis-
cussed in this manual.

State Change Logic

The state change logic determines the next micro-
instruction to be loaded into RBUF. Ordinarily,
it determines the next microinstruction by select-
ing a control store address from one of four
sources and using that address to select a micro-
instruction in the control store. However, when
a new instruction is to be loaded into the IR, the
state change logic may take the next microinstruc-
tion from a special location in the control store,
or it may bypass the control store and generate

a microinstruction directly.

Sources of Control Store Address

The microprogrammed control logic does not in-
clude a microprogram counter. Consequently, a
microinstruction in RBUF must contain informa-
tion to select the next microinstruction to be read
from the control store. This information resides
in the STATE CHANGE, PAGE, TRUE ADDRESS,
and FALSE ADDRESS fields (bits 32-55) of a
microinstruction and is input to the state change
logic.

Other inputs to the state change logic are the in-
struction decode logic, the CURRENT PAGE
register, and the microsubroutine return register
file.

The instruction decode logic produces an 8-bit ad-
dress called a decode address according to certain
bits in the IR. The address it produces is selected
from a ROM if the IR contains one of the ECLIPSE
computer's standard instructions or the CPU does
not include WCS. However, if the IR contains an
XOP1 instruction and WCS is included in the CPU,
the decode address will come from the WCS decode
RAM. The instruction decode logic is used by

the state change logic to "'find" the microroutine
that will execute an instruction in the IR. When
the state change logic uses the instruction decode
logic to select the next microinstruction to be
loaded into RBUF, the instruction in the IR is said
to be ""decoded'’.

The 2-bit CURRENT PAGE register is used to
keep a record of the current page. This register
is fed by the two page bits generated by the state
change logic. It is clocked by CPU CLK, at the
same time RBUF is clocked. Therefore, the
CURRENT PAGE register always contains the page
bits that were used to address the microinstruc-
tion currently in RBUF.

The microsubroutine return register file contains
four 10-bit registers used to save return addresses
for microcode subroutines. When a return ad-
dress is saved, it is the address in the FALSE
ADDRESS field combined with the contents of the
CURRENT PAGE register.

The state change logic ordinarily chooses a 10-bit
control store address from one of the following
sources.

(1) the 2-bit contents of the PAGE field combined
with the 8-bit contents of the TRUE ADDRESS
field,

(2) the 2-bit contents of the PAGE field combined
with the 8-bit output of the instruction decode
logic,

(3) the 2-bit contents of the CURRENT PAGE
register combined with the 8-bit contents of
the FALSE ADDRESS field, and

(4) the four-register file used to store return
addresses for microsubroutines.

The STATE CHANGE field of the microinstruction
in RBUF determines how the state change logic
will select among the four sources.

When the PAGE field or CURRENT PAGE register
is used as a part of a source (in 1, 2, and 3 above),
the two bits it provides become the high-order
(page) bits of the resulting 10-bit control store
address.

Special Control Store Addresses

If conditions in the CPU demand that control be
transferred to a special microroutine, the state
change logic will select the next microinstruction
from one of three fixed control store locations
when a new instruction is to be loaded into the IR.
There are three microroutines to which control
may be transferred in this way: the halt/stop
microroutine, the program interrupt microroutine,
and the running examine microroutine. The con-
ditions that force a transfer of control to one of
these microroutines are, respectively: stops
enabled and a stop pending, interrupts enabled
and an interrupt waiting, and the REXAM f{lip-flop
in the console set (by the EXAMINE switch).

Phantom Microinstructions

If the state change logic does not transfer control

to a special microroutine when the IR is to be
loaded, it generates the next microinstruction to

be clocked into RBUF directly. This microinstruc-
tion is called a phantom microinstruction because

it is not read from the control store. The phantom
microinstruction is generated while the new in-
struction is still on the MEM bus and enters RBUF
at the same time the new instruction enters the IR.
It selects the instruction decode logic as the source
of the address of the succeeding microinstruction so
that control will be transferred to the proper micro-
routine to execute the new instruction.

Although the MEM bus is not shown as an input

to the state change logic in the block diagram

(for simplicity), the state change logic does use
the data on the MEM bus (i. e., the instruction

to be loaded into the IR) to determine the phantom
microinstruction. It can therefore generate a
phantom microinstruction that not only uses the
instruction decode logic to select the appropriate
microroutine but also performs other useful oper-
ations in anticipation of the microroutine to which
it will transfer control.

The ECLIPSE computer's instructions fall into
three categories, according to the types of phantom
microinstructions they generate: (1) The 16-bit
memory-reference instructions (JMP, JSR, ISZ,
DSZ, LDA, STA, and LEF) generate a phantom mi-
croinstruction that computes the effective address
specified by the instruction, starts memory on that
address, and decodes the instruction in the IR
(unless the instruction indicates indirect address-
ing, in which case the indirect address is re-
solved before the instruction is decoded). (2) I/0O
instructions, two-accumulator multiple-operation
instructions, and some other short arithmetic and
logical instructions generate a phantom microin-
struction that increments PC, starts memory to
fetch the next instruction, and decodes the instruc-
tion in the IR. (3) All of the other instructions,

2-3

including XOP1 instructions, generate a phantom
microinstruction that increments PC and decodes
the instruction in the IR.

When a phantom microinstruction causes the state
change logic to select the instruction decode logic
as the source of the address of the next micro-
instruction, the page bits of that address are
specially generated so that for the ECLIPSE com-
puter's standard instructions page 0 or 1 is se-
lected and for XOP1 instructions page 2 is se-

lected (provided that the CPU has WCS).

COMPUTATIONAL LOGIC

The computational logic in the ECLIPSE computer
is built around a register file, an arithmetic/log-
ical unit (ALU), and a shifter. The basic data flow
in this part of the processor is from the register
file into the ALU, from the ALU into the shifter,
and from the shifter back into the register file.

Register File

The register file contains eight 16-bit registers.
Four of these (registers 0-3) are used as the
programmer-visible accumulators (AC0-AC3).
Another one is the program counter (PC or GR3).
The remaining three registers are general registers
(GRO-GR?2) available to the microprogrammer as
temporary storage.

Every microinstruction selects an A register and
a B register from the register file. (It may select
the same register as both the A and B register.)

The contents of the selected registers (or register,
if the A and B registers are the same) appear as
the respective A and B outputs of the register file.
The A output, in one of four forms, may be selected
as the source of the A bus. The B output is the B
input to the ALU. The low-order five bits of the

B output also select a word in the program load
ROM.

A microinstruction may specify that its A register
be loaded with the output of the shifter and/or that
its B register be loaded with data from the MEM
bus.

A Bus

The A bus, which supplies the A input to the ALU,
has twelve sources, any one of which may be se-
lected by a microinstruction. These sources are
described in detail in chapter 3. They include the
contents of the A register in one of four forms,
zeroes, a microcoded constant taken from the
TRUE ADDRESS field of the microinstruction in
RBUF, three fields from the IR, a bit mask from
the bit-decode logic (see below), and a 16-bit word
from the program load ROM (see below).

ALU

The ALU has two 16-bit inputs, called the A and B
inputs, and one 16-bit output called ALU< 0-15>.
It also takes a carry-in and may produce a carry-
out. The A input to the ALU is the A bus, whose
source is selected by the current microinstruc-
tion. The B input to the ALU is the B output of
the register file. The ALU may generate any one
of nine arithmetic or seven logical functions of its
A and B inputs. The ALU function is selected by
the microinstruction in RBUF. The carry-in,
called CN, may come from the CARRY bit (see
below), from the IR when the ALC micro-order
appears in the current microinstruction (see chap-
ter 3), or from the control decoding logic when the
ALU function is one that always requires a carry-
in equal to one. The carry-out, called CRYO is
an input to the CRY ENAB logic, which is used to
implement two-accumulator multiple operation in-
structions.

Shifter

The shifter modifies the output of the ALU and
passes the modified result to the A input of the
register file. In addition to ALU<0-15>, its in-
puts include a variety of one-bit registers and
the CRY ENAB logic, which is used primarily by
two accumulator multiple operation instructions.
The shifter may shift left or right one bit or it
may swap 8-bit bytes. When data is shifted left
or right or passed straight through, bit 0 or bit
15 is filled with one of the one-bit inputs to the
shifter. With its ability to shift, swap, and
modify end bits of its 16-bit input, the shifter
can perform thirteen operations in all. The cur-
rent microinstruction specifies the operation to
be performed.

LINK

In addition to its 16-bit output, the shifter produces
a one-bit ""shift-out", which is the end bit (bit 0 or
15) that is lost when a data is shifted left or right.
The LINK is a one-bit register that stores the
shift-out when a left or right shift is performed.
the LINK is also an input to the shifter, so that its
contents may be shifted into a datum and a bit that
has been shifted out may be recovered.

CARRY

Another one-bit register that is an input to the
shifter is the CARRY. A microinstruction may

set or reset this bit directly, or it may load the
CARRY with the ocutput of the CRY ENAB logic

or the shift-out. When the microinstruction

does not determine the value of the CARRY directly
it is determined by certain bits in the IR. This
feature is used to implement two-accumulator

2-4

multiple operation instructions. The CARRY may
also be enabled as the source of the carry-in to

the ALU by a microinstruction. When it is en-
abled, the CARRY is inclusive-ORed with any
other sources of the carry-in by the carry-in logic.

ALUO SAVE and Q-BIT SAVE

Three other components of the computational logic
that are between the ALU and the shifter are the
ALUO SAVE register, the Q-BIT logic, and the
Q-BIT SAVE register. These components are
used to perform integer division by the ECLIPSE
computer's standard firmware. ALUO SAVE and
Q-BIT SAVE are both enabled for loading by the
same micro-order in a microinstruction. When
they are loaded, ALUO SAVE takes the value of
ALUO, the high-order bit of the ALU result, and
Q-BIT SAVE takes the output of the Q-BIT logic,
which is the exclusive-OR of the old value of
Q-BIT SAVE, the old value of ALUO SAVE, and the
carry-out from the ALU (CRYO).

COUNT Register

The COUNT register is a 4-bit register that is
loaded from ALU< 12-15> when it is enabled by the
current microinstruction. The register serves
two purposes: it may be decremented and tested
by the state change logic, and it provides an in-
teger input between 0 and 15 for the BIT decode
logic.

BIT decode Logic

The BIT decode logic produces a 16-bit output and
may be the source of the A bus. One and only one
of the bits in the output word will be set. The bit
that is set is determined by the contents of the
COUNT register. For purposes of bit decoding,
the bits in a word are numbered from high-order
to low-order (left to right) starting with zero, so
that a 3 in the COUNT register sets the fourth

bit from the left end of the BIT decode logic's
16-bit output.

Program Load ROM

The program load (PL) ROM is a 32-word 16-bit
read-only memory that contains a copy of a boot-
strap loader. It is addressed by the five least
significant bits of the B output of the register file.
The PL. ROM may be the source of the A bus.

DATA TRANSFER LOGIC

The data transfer logic moves data between the
CPU, memory, and I/O devices. It consists of the
LA bus, the MEM bus, the I/0 bus, the I/0 regis-
ter, the programmed I/O logic, the program in-
terrupt logic and the data channel logic.

LA Bus

The LA bus is a 15-bit bus that carries logical
addresses to memory, the MAP unit and the ad-
dress lights on the console. Its source is or-
dinarily ALU <1-15> (bit 0 of the ALU output is
not used), but for data channel transfers it takes
an address from the I/O register.

MEM Bus

The MEM bus is a 16-bit bus that carries data
between the CPU and memory. It also carries
data between the CPU and the console, between
the CPU and the I/0 register, and between the
CPU and the floating point processor. The source
and destination of data on the MEM bus is deter-
mined by the microinstruction in RBUF. During
data channel transfers, data may move on the
MEM bus directly between the I/O register and
memory.

1/0 Bus

The I/O bus can be divided into six groups of
signals: the device select (DS) lines, program-
med 1/O signals from devices, programmed I1/0
signals to devices, data channel signals from
devices, data channel signals to devices, and

the DATA lines. A complete description of the
1/0 bus may be found in the "Interface Manual'",
DGC 015-000031. The source of the device select
lines is IR<10-15>. Programmed I/O signals to
and from devices are generated and received by
the programmed I/0 logic. Similarly, data chan-
nel signals are generated and received by the data
channel logic. The DATA lines carry 16 bits of
information between device controllers and the
1/0 register.

The 1/O Register

The I/O register is a sixteen bit register used to
store data being transferred between 1/0 devices
and the CPU or memory. It is controlled by the

programmed I/0 logic and the data channel logic.
It may be loaded with data from the MEM bus or

the 1/0 bus and may place data on either bus.

2-5

Programmed 1/0 Logic

The programmed I/0 logic generates signals on
the I/O bus and in the CPU necessary for the ex-
ecution of I/0 instructions. This logic will only
generate signals when it is enabled by the micro-
instruction in RBUF. The signals it generates
depend on the IR; consequently, it should not be
enabled unless the IR contains an I/Q instruction.
The I/0 bus signals it generates are program-

med 1/0 transfer signals (e.g., DATIA, DATOA,

INTA) and I/O pulse signals (STRT, CLR, and
IOPLS). Although the device select lines reflect
the contents of IR<10-15> regardless of whether
there is an I/Q instruction in the IR, the device
that happens to be selected during a CPU cycle
does not perform an operation unless it receives
a signal from the programmed I/0 logic.

Within the CPU, the programmed I/0 logic may
set the ION and ION PEND f{lip-flops and the STOP
ENAB f{lip-flop, it may clear the ION flip-flop,
and it may select the console data switches as the
source of the MEM bus. These operations, like
the assertion of I/O transfer and pulse signals,
only occur when the programmed 1/0 logic is en-
abled by the microinstruction in RBUF.

Even when the programmed I/O logic is not en-
abled by the microinstruction in RBUF it gen-
erates one signal that is asserted when an I/Q
skip is indicated by IR<8-9> and the state of the
device selected by IR<10-15>. If the device code
in IR<10-15>is 77, the state of the ""device" is
determined by the ION flip-flop and the power fail
flag (PWR FF). The I/O skip signal is used in the
standard ECLIPSE computer firmware to imple-
ment I/0 SKIP instructions. However, it is a
function only of IR <8-15> and may be asserted
even if the IR does not contain an 1/0 skip instruc-
tion. The signal is an input to the state change
logic and may be tested under microprogram con-
trol.

Program Interrupt Logic

The program interrupt logic indicates that an in-
terrupt is waiting if ION is set, ION PEND is
clear, and INTR FF or PWR FF is set. The ION
flip-flop enables the ECLIPSE computer's inter-
rupt system. It is set by the programmed I/0O
logic. However, whenever ION is set, ION PEND
is also set to inhibit the effect of ION. ION PEND
is cleared when the next instruction is fetched
from memory and loaded into the IR. Therefore,
no program interrupt occurs between an I/Q in-
struction that sets ION and the succeeding instruc-
tion. The INTR flip-flop synchronizes device
interrupt requests. It is loaded from the INTR
line on the 1/0 bus when CPU CLK rises. PWR FF
is set when power is failing.

Data Channel Logic

The ECLIPSE computer's data channel logic is
implemented in hardware. It operates in parallel
with the processor, asserting the request enable
signal (RQENB) every 400ns until some device
makes a data channel request. Then the request
is acknowledged, and the address of the memory
location that the device wants to reference is
clocked from the DATA lines of the I/O bus (where
the device has placed it) into the I/0 register. At
this point, the data channel freezes the I/0 regis-
ter so the address will not be lost and waits until
the microprogrammed control logic allows data
channel operation to continue.

When a microinstruction that allows the data chan-
nel to finish is loaded into RBUF, CPU CLK is
frozen, and the data channel completes its cycle.
This suspension of CPU operation is called a
data channel break. During a data channel break,
the address in the I/O register is placed on the
LA bus, and control signals are generated to
start memory. At the same time, if the transfer
is into memory, the data from the device is
clocked into the I/O register. For transfers into
memory, the data in the I/O register is now
placed on the MEM bus and control signals are
generated to write it into memory. For trans-
fers out of memory, control signals are generated
to read data onto the MEM bus, and this data is
clocked from the MEM bus into the I/O register,
from which it is placed on the DATA lines and
carried to the device that made the data channel
request. Once a data channel break occurs, all
outstanding data channel transfers are com-
pleted before CPU CLK is allowed to resume
clocking microinstructions into RBUF.

Data channel memory references appear to the
memory to be exactly the same as microprogram-
med memory references because the data channel
logic and the microprogrammed control logic
generate the same memory control signals.
Furthermore, data channel operation alters the
data on the MEM bus, on the I/O bus, and in the
1/0 register. Therefore, data channel breaks
may not be enabled while memory is in use or
while an I/O instruction is being executed.

CPU CYCLES

To the microprogrammer, a CPU cycle is one
period of CPU CLXK, the signal that clocks all
registers in the processor. Although the micro-
programmer may usually think of the circuitry of
the ECLIPSE computer as responding instantly to
new signals from the microinstruction register,
that is not the way it actually works. Changes

in RBUF take significant time to percolate through

the microinstruction decode logic, the computation-

al and data transfer logic, the state change logic,
and the control store. Consequently, the loading

of RBUF is followed by a period of instability
among the control of data signals that may last
nearly 200ns. Not until the state of the processor
has stabilized can data be clocked into registers.
For this reason, CPU CLK has a period of 200ns.

Just prior to the rise of CPU CLK, the outputs of
all registers in the computational logic display the
old contents of those registers. The outputs enter
the various logical components (e.g., the ALU),
so that the components operate on the old contents
of the registers. The operations performed are
those specified by the current microinstruction in
RBUF, and the results of those operations appear
(almost) simultaneously on the output lines of each
component. The only components whose outputs
do not reflect their inputs are the registers; at
this time their inputs are the results of the opera-
tions performed by the current microinstruction
on the old contents of the registers.

When CPU CLK rises, the registers that are en-
abled by the current microinstruction in RBUF are
clocked. Simultaneously, a new microinstruction
is clocked into RBUF, which is really just another
register. As the new outputs of the various regis-
ters (the new control and data signals) reach the
other operational components of the processor,

a new processor state will begin to emerge. When
the new processor state stabilizes, new data will
be waiting to be clocked into the registers and a
new microinstruction will be waiting to enter RBUF.
On every CPU cycle, data ""flows" from the regis-
ters and is transformed by the other operational
components so that new results back up behind the
registers, waiting far CPU CLK.

MEMORY

The ECLIPSE computer's memory is divided into
modules of 8192 16-bit words. Each module gen-
erates its own timing signals and operates asyn-
chronously relative to other modules and to the
CPU. Therefore, the operation of several modules
may overlap, and the CPU may control memory
with a few simple commands.

Memory operation is divided into two steps called
half-cycles. When a memory module is started,
the first or access half-cycle is initiated. During
this half-cycle, data is read from memory into a
buffer in the module. When the module is re-
leased, the second, or restore half-cycle is in-
itiated. During this half-cycle, data may be writ-
ten from the buffer into memory. The time be-
tween half-cycles is called mid-cycle; a memory
module may remain at mid-cycle for an indefinitely
long time.

In order to start memory, the CPU places an
address on the LA bus and issues a start signal
(MC1) to memory. All modules see the start
signal, but only the module that contains the mem-

ory location whose address is on the LA bus ac-
tually responds to the start signal. If no module
recognizes the address on the LA bus, none is
started. If the selected module is busy with a
prior memory operation, it sends back a "wait"
signal (MSIN) to the CPU which "freezes' CPU
CLK. When the module finishes its prior opera-
tion, it releases the wait signal, which allows
CPU CLK to continue. The module takes the new
address, and the CPU resumes executing micro-
instructions. Once a module is started, it pro-
ceeds to the end of the access half-cycle. When
the half-cycle is complete, the buffer in the mem-
ory module contains the contents of the addressed
memory location.

In order to read a memory location without re-
leasing the module, the CPU asserts the memory
control signal MC4. All modules see this signal,
but only a module that has begun an access half-
cycle or has reached mid-cycle will respond to it.
If a module is still in the access half-cycle, it
will freeze the CPU CLK until it reaches mid-
cycle. When a module has reached mid-cycle,

it places the contents of its data buffer on the
MEM bus.

A module that is read but not released may later
be written and released without being restarted.

A 'read without release' is used to read the con-
tents of a memory location that will be modified.

In order to read a memory location and release
the memory module, the CPU asserts the memory
control signals MC3 and MC4 together. Data is
read from memory as described above and then
the module will begin the restore half-cycle. In
core memory, data in the memory location is de-
stroyed when it is read, so the data in a core mem-
ory module's buffer is written back into the module
during this half-cycle. In semiconductor memory,
data is not destroyed when it is read, so no opera-
tion is performed during the restore half-cycle.

in order to write into a memory location and re-
lease the module, the CPU asserts the memory
control signal MC3 alone. I a module has been
started, it loads its buffer with the data on the
MEM bus. If the module has not already com-
pleted the access half-cycle, it does so, and then
it begins the restore half-cycle immediately. The
data that is "restored" is really the new data
loaded into the module's buffer from the MEM bus.

Although different memory modules may not per-
form memory operations in exactly the same way,

the differences are not visible to the microprogram-

mer. Core memories, semiconductor memories,
memories with ERCC and those without it all ap-
pear the same to the CPU. If a memory module
is not ready to perform an operation when the CPU
requests it, CPU operation is suspended by the
freezing of CPU CLK until the memory catches up.
If a memory module reaches mid-cycle before the

CPU is ready for it, the module waits. Therefore,
the microprogrammer need not write his micro-
routines for one type of memory. A microroutine
that will reference one kind of memory will ref-
erence all kinds.

CONSOLE
The console controls and menitors the operation of
the CPU. The console lights display information

that reflects the state of the CPU; the sixteen con-
sole data switches are used to enter 15-bit addres-
ses and 16-bit data words to the CPU; the address

compare logic can suspend CPU operation if a se-

lected memory location is referenced; and the ten

console function switches may initiate twenty con-

sole functions.

There are five flip-flops in the console. Nine-
teen of the twenty console functions control CPU
operation by setting one or more of these flip-
flops. Only the RESET function does not set any
of them.

In the following discussion, it is assumed that the
reader is already familiar with the console and

has read the description of the console in the
"Programmer's Reference Manual for the ECLIPSE
Computer' DGC 015-000024. This discussion

will concentrate on those features of the console
that concern the microprogrammer.

Console Lights

The ION and CARRY lights on the console display
the states of the ION and CARRY bits in the CPU.

The ADDR COMPARE light is lit when the address
compare feature of the console has frozen CPU
CLK.

The ROM ADDRESS lights display the output of the
state change logic, which is the address of the
next microinstruction to be read from the con-
trol store.

The ADDRESS lights display the address on the
LA bus. Except during data channel memory
references, the LA bus carries the fifteen low-
order bits of the ALU output (ALU<1-15>) whether
or not the CPU is actually referencing memory.
During data channel memory references, the LA
bus carries an address to memory from the 1/0
register.

The DATA lights display the contents of the con-
sole data register. Except when the address
compare feature is in monitor mode, this register
is loaded from the MEM bus every time CPU CLK
rises. In monitor mode, the register is clocked
only when the address compare logic detects an
address match (see below). Since the console data

register must be clocked, data is not displayed in
the data lights until the CPU CLK period after it
is placed on the MEM bus. By the time it is dis-
played, a new microinstruction has entered RBUF
and new data may be on the MEM bus.

Data Switches

The data switches may be selected as the source
of the MEM bus by a microinstruction in RBUF.
When data from the switches is on the MEM bus,
it may be manipulated as if it is being read from
memory.

Address Compare Logic

The console's address compare logic is activated
by the ADDRESS COMPARE rotary switch on the
console. It may operate in one of three modes:
MONITOR mode, STOP/STORE mode, and STOP/
ADDR mode.

In MONITOR mode, the console data register is
loaded whenever the memory location whose ad-
dress is set in the console data switches is read
or written. Therefore, the console data lights
always display the contents of that memory loca-
tion after it has been referenced once by the CPU.
If the EXAMINE switch is pressed while the ad-
dress compare logic is in MONITOR mode and
CPU operation has not been suspended, the REXAM
flip-flop is set, and a special microroutine ref-
erences the memory location whose address is
set in the console data switches at the end of the
next instruction. This memory reference causes
the console data register to be loaded with the
contents of that memory location so that they will
be displayed in the console data lights.

In STOP/STORE mode, CPU operation is suspended
if the memory location whose address is set in the
data switches is written.
the microinstruction in RBUF is the one that has
placed data on the MEM bus and issued a write
command to memory.

In STOP/ADDR mode, CPU CLK and REG CLK are
frozen (so that CPU operation is suspended) if the
memory location whose address is set in the con-
sole data switches is referenced. When CPU CLK
is frozen, the microinstruction in RBUF is the one
that has placed the memory address on the LA bus
and started memory.

When CPU CLK is frozen,

NOTE Whenthe address compare logic is
in STOP/ADDR mode, itwill freeze
the CPU if the data channel logic ref-
erences the memory location whose
address is set in the console data
switches. Similarly, in the STOP/
STORE mode, it will freezethe CPU
if the data channel logic triesto
write into the memory location se-
lected by the switches. In either
case, there will be no indication at
the console that the data channel is
responsible for the memory ref-
erence.

Console Flip-flops

There are five flip-flops in the console that are
set by console switches: the CONRQ flip-flop,
the STOP flip-flop, the REXAM flip-flop, the
MICROINST ENAB flip-flop, and the STEP SYNC
flip-flop.

CONRQ Flip flop

When any console function switch besides the
RESET/STOP switch is pressed, the CONRQ flip-
flop in the console is set for the duration of the
next period of CPU CLK. This flip-flop may be
tested by the state change logic to see if there is
a console function to be performed. If there is,

a 4-bit console function code may be read from
the console via the MEM bus. If a console func-
tion switch is pressed when the CPU is halted,
the ECLIPSE computer's standard halt/stop firm-
ware sees that the CONRQ flip-flop is set and
transfers control to the appropriate microroutine.
The CONRQ flip-flop is cleared by the next CPU
CLK after it is set regardless of whether the
CPU has tested it.

STOP Flip-flop

The STOP flip-flop is set if the STOP, EXECUTE,
or INSTRUCTION STEP switch is being pressed
when an instruction is loaded into the IR. The next
time CPU CLK rises, it causes the STOP ENAB
flip-flop in the CPU to be set. The STOP ENAB
flip-flop causes the CPU to halt the next time an
instruction is to be loaded into the IR. Therefore,
if the STOP, EXECUTE, or INSTRUCTION STEP
switch is pressed, during one instruction, it will
cause a halt at the end of the next instruction. This
one-instruction delay is necessary so that the ex-
ecute and instruction step console functions will
allow one instruction to be executed.

REXAM Flip-flop

The REXAM flip-flop is set by the EXAMINE
switch when CPU CLK rises and the CONRQ flip-
flop is already set. Since the CONRQ flip-flop

is only set for one period of CPU CLK, itis
cleared at the same time that the REXAM flip-
flop is set. The REXAM flip-flop is cleared when
a console function code is read onto the MEM bus
by a2 microinstruction in RBUF.

The REXAM flip-flop causes control to be trans-
ferred to a special microroutine included in the
ECLIPSE computer's standard firmware the next
time an instruction is to be loaded into the IR. This
microroutine, called the running-examine micro-
routine, reads the memory location whose address
is set in the console data switches. It is intended
to be used in conjunction with the address com-
pare logic. If the address compare logic is in
MONITOR mode, the memory reference performed
by the running-examine microroutine causes the
contents of the referenced memory location to be
clocked into the console data register and dis-
played in the console data lights.

MICROINST ENAB and STEP SYNC Flip-flops

When the MICROINST ENAB flip-flop is set, CPU
CLK and REG CLK are frozen so that CPU opera-
tion is suspended. It is set by the MICROIN-
STRUCTION STEP switch when CPU CLK rises

and the CONRQ flip-flop is already set (i. e. , at

the same time that CONRQ flip-flop is cleared) or
when CPU CLK rises and the CPU is already frozen
by the MICROINST ENAB flip-flop or by the address
compare logic. It is cleared when CPU CLK rises
and the MICROINSTRUCTION STEP switch is not
being pressed.

The STEP SYNC flip-flop overrides the MICRO-
INST ENAB flip-flop to allow CPU CLK to rise
once. It is set by the MICROINSTRUCTION STEP,

2-9

INSTRUCTION STEP and CONTINUE switches.

It is cleared when CPU CLK actually rises. If
STEP SYNC is set by the INSTRUCTION STEP or
CONTINUE switch, the MICROINST ENAB flip-flop
will be cleared when CPU CLK rises and CPU CLK
will remain unfrozen. Every time the MICROIN-
STRUCTION STEP switch is pressed, STEP SYNC
is set, CPU CLK is allowed to rise once, and a
new microinstruction is clocked into RBUF. How-
ever, the MICROINST ENAB flip-flop is not cleared,
and CPU CLK will not rise again until the next time
the MICROINSTRUCTION STEP, INSTRUCTION
STEP, or CONTINUE switch is pressed.

Whenever CPU operation is not ‘already suspended
(whether or not the CPU is halted), CPU CLK and
REG CLK may be frozen by pressing the MICRO-
INSTRUCTION step switch. Once CPU operation
has been suspended either by the MICROINSTRUC -
TION STEP switch or by the address compare
logic, the MICROINSTRUCTION STEP switch may
be pressed to single-step, or the INSTRUCTION
STEP or CONTINUE switch may be pressed so
that CPU operation will resume. The INSTRUC -
TION STEP switch will also set the STOP flip-
flop (see above).

Reset

Reset is the only console function that does not set
any of the console's flip-flops.

Reset causes the signals SYS RST and IORST to be
asserted throughout the ECLIPSE computer system
until the RESET switch is released. While these .
signals are asserted, the microinstruction in loca-
tion 0 of page 0 of the control store is repeatedly
loaded into RBUF. When the RESET switch is
released, the CPU behaves as if it had just been
powered up. The RESET switch is important to
the microprogrammer because it is the only switch
which will extricate the microprogrammed control
logic from an infinite loop in a microroutine.

TO AND FROM MA® ERCC,
WCS, AND 1/0 DEVICES TO AND FROM MEMORY. MAP
o oA ERCC, FPP, CONSOLE
REXAM WEW 8US Ches
' o~ Ah
o Lom oM, STIR | W
DECODE 1R <0-15> MEM <0-18>
e [\
STATE
106K M Mot RANO!
TR Acegel,
crucn—, 4CE08D
-3l TSR] Py 3 4
- TERS- rolu z‘s nlscrosnu [lsuus]'.‘gc'm"}'gm
—id N —
™ LA
= (ﬁl,) <i-19>|
N 2
T T O K d 1R <10-15> DEVKE SELECT LINES
H ! r— L R<10,592
N { rorm 10P5 H
* * PAGE)
1 i [pesste Asus N
e ROM - — — — o — o~ — — STANDARD PAMWARE — — — — — — — — — — — —
CONTROL 14 "‘l
et 2 STORE
oot 3
T cPu CLK
1
1
1 4y DATA
- e Sones
LK’ l sex
A L3 Pokiss |RBUF o REG CLK o
weut ADORESS ss con —3
T N — PROGRAM INTERRUPT 10 TRYT
I L l_________. L ! Locic mﬁ [wem <o-15>
NTERRUPT 10 DATA
WAITIVG
0ATA
T ¢ ¢ T T FfEe v 0] 0 STATE - CHANNEL
. CHANGE LOGIC OATA <0-18> Veuony
T .: s v
MEMORY
Jevory MEMORY CONTROL SIGNALS -
<0-7> _ usy ar, 106IC
<8-13> L 7.4

SHIFT <0-15> JA FILE Al AREG <O-15> A <O-15> XA CRYO
%
GRO
A ACl GRI A wr
MEM <0-15> }8 AC2 GR2 B8] BREG <O-15> 8 <0-15> 8 ALy
v AC3 PC 4 1] ALY <0-15> ALU <0-15>
v
<Py CLK camy | AL 4PN, 4P, ANS. [
s N
0 R7 N
<1-18>
\ canmy ofcL LoeK el v
WRIT BMEM —\
BREG <0-15>
v
WMEM <O-18>

SECTION 3

MICROINSTRUCTION FORMAT

A

MICRO-ORDER SET

ND

REGISTER RESULT STATE
AND ALU MODIFICATION MEMORY SPECIAL CHANGE
CONTROL CONTROL CONTROL CONTROL CONTROL
L
CAR- STATE TRUE FALSE
A INPUT AREG BREG ALU SHIFT RAND1| |RAND2 CHANGE ADDRESS ADDRESS
0 34 78 nRr 1516 19 20 21 22 23 242526 28 29 31 32 37 38 39 40 47 48 55
N . AN . J\] J
CONTROLS CONTROLS CONTROLS
DG-01022 COMPUTATIONAL DATA TRANSFER STATE CHANGE
LOGIC LOGIC LOGIC

In the ECLIPSE computer, a 56-bit microinstruc-

tion is divided into fifteen fields.

These fields can

be grouped according to the purposes they serve

(as shown above).

as follows:

The purposes of the fields are

Register and ALU - These four fields together
control

A INPUT field

AREG field

BREG field

ALU field

determine the output of the
ALU by selecting a pair of
registers, the ALU input data,
and the ALU function to be
performed. The ALU output
so determined is used by the
micro-orders in the 'four other
groups of fields.

selects data to be placed on the
A bus and sent to the A input
of the ALU.

selects a register in the reg-
ister file for possible input to
the A bus and/or loading from
the shifter.

selects a register in the reg-
ister file for input to the ALU
through its B input and for
possible loading from or writ-
ing to the MEM bus.

selects one of 16 functions to
be performed on the A and B
inputs to the ALU.

Result Modifica- -

tion Control

SHIFT field

LOAD field

CARRY field

Memory Control

MA field
MBUS field

Special Control

RANDI field

RAND? field

3-1 of 46

These three fields control
what modification of registers
is performed in the computa-
tional logic.

controls the shifter and the
Link bit.

determines whether the ALU
result is loaded into the A
register.

controls the Carry bit and
the ALC logic.

These two fields control
memory.

starts a memory module.

controls the use of the MEM
bus.

These two fields perform
various unrelated functions
around the processor.

may specify one of several
special control functions or
select a microsubroutine
return register.

may specify one of several
special control functions
different from those of the
RANDI field.

State Change - These four fields control the

Control selection of the next micro-
instruction to be loaded into
RBUF and executed.

STATE specifies the state change to

CHANGE field be performed.

PAGE field may supply page bits for the
address of the next micro-
instruction or select a return
register.

TRUE AD- specifies either the address to

DRESS field which control is to be trans-
ferred when a state change
test condition is true, or a
constant for use by the micro-

instruction, or both.

FALSE AD-
DRESS field

specifies either the address to
which control is to be trans-
ferred when a state change
test condition is false, or a
return address to be loaded
into a return register for
microsubroutine calls.

Under the heading for each micro-order, its
description is preceded by a mnemonic and a
value in octal notation. The mnemonic is used
to represent the micro-order in the text and
microinstruction examples in this manual. The
octal value represents the combination of bits
that constitutes the micro-order when it is used
in the appropriate. field of a microinstruction.

A micro-order reference sheet and several block
diagrams accompany the text in this section and
serve to provide an overview and summary of the
information presented here. The reference sheet
shows the microinstruction format and lists all
micro-orders with brief functional descriptions
wherever appropriate. The block diagrams are
portions of the single block diagram given in
Section 2, with additional detail. Conventions
used in these diagrams include those listed in
Section 2 and also the following:

1. Data on a path ending with the upper half of an
arrowhead fills the high-order byte (most sig-
nificant 8 bits) of the bus it is entering. Data
on a path ending with the lower half of an

3-2

arrowhead occupies the low-order byte (least
significant 8 bits) of the bus.

The names of micro-orders are italicized. A
label in boldface italics represents collectively
the micro-orders that may be coded in the
microinstruction field of that name.

A label that appears within or adjacent to a
control or data path and is not italicized is
generally the name of the path as used in this
manual and on the engineering prints.

A label that appears above a data path is gen-
erally the micro-order, signal, or condition

which enables that path. Unlabeled paths are
always enabled.

Certain labels which appear to be signal names
have been fabricated in order to simplify the
description of the ECLIPSE computer in this
manual and do not actually appear on the en-
gineering prints. They are: AREG<0-15>,
BREG<0-15>, EXAMINE, INTERRUPT
WAITING, and MULS CRY.

The micro-order reference sheet and a complete,
fully detailed block diagram can also be found at
the back of this manual.

Examples of microinstructions have been included
where they clarify the explanation in text. In these
examples, there are three conventions:

1. Microinstruction labels appear on the left and
are separated from the labeled microinstruc-
tion by a colon; the value of a label is the ad-
dress of the location in the control store oc-
cupied by the microinstruction.

2. Micro-orders are represented by the mnemonics

given in this section.

All fifteen fields of a microinstruction are
shown; the contents of fields that are not of
interest (i. e., unused) are represented by
dashes.

3.

The remainder of this section discusses the various
fields in turn and explains the operation of all
micro-orders that may be coded in each field.

A INPUT FIELD

The A INPUT field controls the A bus, A<0-15>,
and thereby determines what data is connected to
the A input of the ALU. The data selected may be
the A register or some variant thereof, or it may
come from any of several other sources, including
the IR, the Program Load ROM, the Count regis-
ter, and the microinstruction itself.

The micro-orders that may be coded in the
A INPUT field are described below. The format
of the data placed on the A bus by a given micro-

order is pictured below the description of the
micro-order.

A Register
AR
0

The contents of the register selected by the AREG
field are placed on the A bus.

AREG [AREG [ARE{AREG AR AREG|AREG AR AREG | AREGJAREG| AREGIARI AREG Al

ol 1l2f3]als]e] s lofiwolnliel 14115
Ol23456789|0|l!2l3l4|5
Upper Byte

UBY

17

Bits 0-7 of the register selected by the AREG field
are placed on bits 0-7 of the A bus; 0's are placed
on bits 8-15 of the bus.

Imselmsskmlmzelmzslmmlmse!mml o o 0 0,00 0 0]

1] 12 I3 14 15

NOTE The UBY micro-order does not
move the selected byte to the low-
er half of the A bus.

Lower Byte

LBY

10

Bits 8-15 of the register selected by the AREG

field are placed on bits 8-15 of the A bus; 0's are
placed on bits 0-7 of the bus.

0 0 0 0.0 0 00 Imc|naes|m:clmeslana'1mslm
o'| z 3 4 5 6'7 8 9 10 Il 12" 13 14 15

The UBY and LBY micro-orders are used to isolate
the upper and lower bytes of a word in a register,
most commonly for byte-oriented operations.

3-3

Sign Extend

SEX
14

Bits 8-15 of the register selected by the AREG field
are placed on bits 8-15 of the A bus. A copy of IR
bit 8 is placed on bits 0-7 of the bus.

Imelmalmelma] IR8 lms]me]|R8|AREGIAREGFRE¢|AREG|A IA l |_I

Yo 1 12713 I4

The SEX micro-order is used in '"short" effective
address calculations to produce a 16-bit displace-
ment from an 8-bit displacement contained in both
the IR and a general register.

Zeroes

Z
12

All 0's are placed on the A bus.

[0, 0 0 0 000000 000000
[R R A T S S S T W T S NN T S|

T

T T

0O I 2 3 4 5 6 7 8 0 1 12" 13 14 15
Constant

CON

13

The contents of the TRUE ADDRESS field, bits
40-47 of the microinstruction itself, are placed on
bits 8-15 of the A bus; 0's are placed on bits 0-7
of the bus.

IRBUFIRBUF RBUFIRBUFIRBUI-:IRBUF IRBUFIWI
IOIOLOIOIOI0!00404| 42 44| 45| 46| 47

0O I 2 3 4 5 6'7 8 9 10 H 12713 14 I5

The CON micro-order enables the microprogram
to generate its own constants in the range 0 to
377g (0 to 25510).

Complement Constant

CCN
16

The contents of the TRUE ADDRESS field, bits
40-47 of the microinstruction itself, are placed on
bits 8-15 of the A bus; 1's are placed on bits 0-7
of the bus.

rlllllll:llll

0O I 2 3 4 5 6

| lnauvraurjRsurlnsurlaaurlaaur REUFFE

‘7 8 9 10 Il 12'13 14 15

The CCN micro-order enables the microprogram
to generate its own constants in the range
177400g to 177777g (signed -25610 to -1).

Single Bit
BIT
2

A single "1 bit is placed on the A bus in the bit
position designated by the current contents of the
Count register. 0's are placed in the 15 remaining
positions.

For the purpose of the BIT micro-order, the con-
tents of the Count register specify the number of

the bit position of the A bus which is to receive the
single '"1'" bit. Bit positions are labeled in ascend-
ing order from left to right, where bit 0 is the

most significant bit and bit 15 is the least significant
bit.

(15-COUNT)
1 2 1 1 1

L

1
12713 14 15

o 1 2 3‘415 6 7 8 9 |olu
As an unsigned number, the data placed on the A
bus is equal to 2(15-COUNT), where COUNT is the
current value contained in the Count register.
Hence, if the Count register contains 0, the BIT
micro-order will place 100000g on the bus. If the
Count register contains 1510, 1 will be placed on
the bus.

The BIT micro-order can be used to perform bit
operations. If the number of the bit position to be
operated on is loaded into the Count register (see
the LCNT micro-order in the RAND2 field), the
BIT micro-order will generate a mask for that bit.

Trap Number

TRP

3

IR bit 10 is placed on bit 10 of the A bus. IR bits

5-9 are placed on bits 11-15 of the bus. 0's are
placed on bits 0-9 of the bus.

F)l © 00000000 ‘mxoimslmslmqmamsj

™ 5 6'7 8 9 10 Il 12 13 14 15

o 1 2 3

NOTE If the value of the Count Regis-
ter is less than or equal to 7, the
TRP micro-order will not place
all 0's on the left byte of the A bus.
Rather, a single "1" bit will be
placed in the bit position speci-
fied by the value of the Count reg-
ister (as for the BIT micro-order,
above).

The TRP micro-order is used to access the opera-
tion number in an XOP instruction. (See the Pro-
grammer's Reference Manual for the ECLIPSE
computer for a description of the XOP instruction.)

3-4

Instruction Register Source
IRS
11

IR bits 1-2 are placed on bits 14-15 of the A bus;
0's are placed on bits 0-13 of the bus.

IR mz‘]
FlololonololololoIolololonol l
0' 1 2 374 5 67 8 9 10 I 1213 14 15

Instruction Register Destination
IRD
1

IR bits 3-4 are placed on bits 14-15 of the A bus;
0's are placed on bits 0-13 of the bus.

lR31R4|
Iolololololololololonololonol I
01 2 3 °'4 65 6'7 8 9'10 1l 12713 14 15

The IRS and IRD micro-orders are used to access
the contents of the ACS and ACD fields in the cur-
rent instruction.

NOTE Do not confuse these micro-
orders with the micro-orders
ACSand ACD (whichare coded
in the AREG and BREG
fields). IRS and IRD access
the contents of the ACS and
ACD fields of the IR, not the
contents of the accumulators
specified by those fields.

Program Load
PL

5

The word in the Program Load ROM addressed by
bits 11-15 of the register selected by the BREG
field is placed on bits 0-15 of the A bus.

[PL ROM word adressed by BREG(1l - 15)
1 1) ; [T S S T '

e T T

o I 2 3 4 5 6 7 8 9

e

I3 14 15

G
The PL micro-order is used to implement the auto-
matic program load feature of the ECLIPSE com-
puter. When the program load switch on the
console is pressed, the 32-word program stored

in the Program Load ROM is read into memory
locations 0-37g by addressing and reading succes-
sive words of the ROM using the PL micro-order.

AREG AND BREG FIELDS

The AREG and BREG fields select a pair of regis-
ters in the register file. The AREG field selects
one of the eight registers to be connected to the A
input and A output ports of the register file. The
BREG field selects one of the eight registers to be
connected to the B input and B output ports of the
register file. (In the hardware, the B input port is
also known as the C port.) The AREG and BREG
fields may select the same register or different
registers. Selection can be direct, in which case
one of four accumulators or one of four general
registers is specified, or it can be indirect, in
which case register selection is delegated to the
IR. The micro-orders for both fields are identical
and are listed only once below. However, the pur-
poses served by the two fields are somewhat dif-
ferent.

The AREG field serves two purposes: (1) it selects
a register for input, in some form, to the A bus
when the A INPUT field contains AR, UBY, LBY,
or SEX; and (2) it selects a register to be loaded
with the output of the shifter. Loading of the reg-
ister specified by the AREG field is governed
normally by the LOAD field but sometimes by the
CARRY or RAND?2 field. The full 16-bit output of
the shifter is loaded into the A register if the L
micro-order is coded in the LOAD field, unless
the CARRY field contains the ALC micro-order,
in which case loading is controlled instead by IR
bit 12 (see the description of the ALC micro-
order in the description of the CARRY field). Cod-
ing of the DECL micro-order in the RAND2 field
allows for loading only the low-order nibble

(bits 12-15) of the shifter output into the A register
when no loading would otherwise occur. Note that
all or part of the shifted result can be loaded into
the register specified by the AREG field whether
or not that register is used for input to the ALU
via the A bus.

The BREG field also serves two purposes, but they
differ from those of the AREG field. They are:

(1) to select the register which is to be connected
to the B input of the ALU; and (2) to select a reg-
ister to be connected to the memory bus when the
RAND?2 field contains the BMEM micro-order.
This second use of the BREG field is explained in
the descriptions of memory control and the BMEM
micro-order.

The selection of the A and B registers is governed
by the micro-orders described below.
Accumulator O

ACO

10

Select accumulator 0,

Accumulator 1
AC1
11

Select accumulator 1,

Accumulator 2
AC2
12

Select accumulator 2.

Accumulator 3
AC3
13

Select accumulator 3.

General Register O
GRO
14

Select general register 0.

General Register 1
GR1
15

Select general register 1.

General Register 2
GR2
16

Select general register 2.

Program Counter
PC
17

Select the program counter (general register 3).

Source Accumulator

ACS

0

?e;ect the accumulator whose number is in IR bits
Destination Accumulator

ACD

2

Select the accumulator whose number is in IR bits
3-4.

3-6

Destination Accumulator Plus 1
AD1
1

Select the accumulator whose number is one
greater than the number in IR bits 3-4. (If IR bits
3-4 are 11, then ACO is selected.) The IR is not
altered.

The AD1 micro-order can be used to implement
operations on 32-bit quantities contained in two
consecutive accumulators, the first of which is
addressed by the ACD field in the IR. See, for
example, the DOUBLE LOGICAL SHIFT instruc-
tion (DLSH).

Source General Register

GRS

4

Select the general register whose number in in
IR bits 1-2.

Destination General Register

GRD

6

Select the general register whose number is in
IR bits 3-4.

Destination General Register Plus 1

GD1

5

Select the general register whose number is one
greater than the number in IR bits 3-4. (If IR

bits 3-4 are 11, then GRO is selected.) The IR
is not altered.

ALU FIELD

The ALU field, RBUF <'12-15>, provides for the
seiection of one of sixteen different ALU functions.
Nine of these are arithmetic functions (micro-order
codes 0 through 10g), and seven are logical func-
tions (codes 11g through 17g). The inputs to the
ALU are the A bus, the B register, and a carry-in

11
L

Inputs

As described under the A INPUT field, the A bus
may or may not reflect the contents of the A reg-
ister. In either case, however, the data on the

A bus is connected to the A input of the ALU and
always takes part in the ALU function performed.
The B register, on the other hand, is always con-
nected to the B input of the ALU, but not all of the
ALU field micro-orders use the B register data
supplied in performing their designated functions.
The carry-in CN is a single bit which is generated
(that is, set to 1) in several different situations.
For arithmetic micro-orders only, CN is added to
the result obtained from performing the designated
function on the A and B input data.

A carry-in can be generated (CN can be set to 1) in
three different ways:

1. Certain arithmetic micro-orders require a
carry-in to perform their designated functions.
These are the micro-orders A1, APA1l, APBI1,
and AMB. For these micro-orders a carry-in
is generated automatically by the hardware.

Certain ALC instructions similarly require a
carry-in to perform their designated functions.
These are the instructions INC, SUB, and
NEG. For this reason the hardware auto-
matically generates a carry-in when the ALC
micro-order is coded into the CARRY field and
IR bit 7 is 1. (This generates a carry-in for
INC, SUB, NEG, and AND. In the case of
AND, however, the carry-in does not affect the
result because the function performed is a
logical one.)

In order to perform multiple-precision addi-
tional or subtraction, a carry or borrow from
the previous operation must be added to or
subtracted from the result of the operation.
The ECLIPSE computer provides this capa-
bility by allowing a Carry bit of 1 to generate
a carry-in when the DECL micro-order is
coded in the RAND?2 field. For multiple-

3-1

precision addition, DECL is specified, and a
carry-in is generated if the Carry bit is 1.
For multiple-precision subtraction, the Carry
bit serves as a complemented '"borrow' bit,
where a Carry bit of 0 signifies a borrow from
the previous subtraction, and a Carry bit of 1
signifies the '"'no-borrow' condition. In this
case, DECL is specified, the subtraction is
performed by adding the one's complement of

carry-in is added, there-
by adding 1 only if there were no borrow from
the last operation. The DECL micro-order is
used to signal a multiple-precision operation
because, in the standard ECLIPSE computer
instruction set, only decimal arithmetic —and
not 16-bit binary arithmetic —is performed on
a multiple-precision basis. However, multiple-
precision binary arithmetic can still be per-
formed by the user if desired, either in
microcode or at the assembly language level
(see Appendix D of the Programmer's Ref-
erence Manual to the ECLIPSE Computer).

s Frarr A A

and tha
the minuena, ana e

in summary, then, CN is either 0 or 1 for each
microinstruction and is computed as follows:

CN = (A10r APA1OR APB1OR AMB)
OR
(ALC AND IRT)
OR
(DECL AND CARRY)

Ovutputs

As mentioned before, the outputs from the ALU

38 Framaticn nacn T and o annwew_eib ao1lad
are a 16-bit function result and a Carry-out Caiiea

CRY0. For arithmetic micro-arders, the result

is the designated arithmetic function of the A and B
inputs, plus CN. (In other words, a carry-in
causes 1 to be added to the result of the operation
performed on the A and B inputs.) For logical
micro-orders, the result is merely the designated
logical function of the A and B inputs, performed on
a bit-by-bit basis; the carry-in CN has no effect at
all on the result.

The other ALU output, CRYO, is a single bit which
indicates when a carry-out of ALU bit 0 occurs.
CRYO may be tested by the CRYOB and SCRY
micro-orders, which are coded in the STATE
CHANGE field. Also, it is used in the production
of CRY ENAB, a new Carry bit value used in
shifting. (See the SHIFT field description for
details.)

CRYO is computed for all ALU functions, both
arithmetic and logical. For arithmetic functions
it is a normal carry-out determined from the data
input and the function performed. For logical
functions it is a normal carry-out determined
from the data input and the arithmetic function
corresponding to the logical function performed.
The correspondences between logical and arithme-
tic functions depend on the structure of the ALU
and are as follows:

Logical Corresponding
Micro-order Function Arithmetic

Code Micro-order Function

11 CA AM1

12 AOB AOB plus CN

13 AXB APB

14 ANB ANCB plus A plus CN

15 ANCB ANB plus A plus CN

16 CANB AOB plus A plus CN

17 ANBC ANB plus CN minus 1

Thus, it is conceivable, though unlikely, that CRYO
may be meaningfully tested with a CRYOB or SCRY
micro-order in a microinstruction which performs
a logical function. However, CRY ENAB is never
affected by CRY0 when a logical function is being
performed.

The individual micro-orders available in the
ALU field are described below. To simplify the
description of these micro-orders, the term Cin
is defined as follows:

Cin = (ALC anp IRT7) or (DECL anp CARRY)

Cjp, is like CN except that it does not include the
forced carry-in of 1 which is implicit in some
ALU micro-orders and over which the micro-
programmer has no control.

Arithmetic Micro-orders

A Input

A

0

The ALU output is equal to the A input plus Cj;,.
CRYO is 1 only if A = 216-1 and Cj, = 1.

A Plus 1

Al

2

The ALU output is equal to the A input plus 1.
CRYO is 1 only if A = 216-1,

A Plus A

APA

5

The ALU output is equal to Cj, plus twice the
A input. CRYO is 1 only if A > 215,

A Plus A Plus 1

APAl

6

The ALU output is equal to 1 plus twice the

A input. CRY0 is 1 only if A > 2

A Plus B

APB

1

The ALU output is equal to the A input plus the

B input plus Cjy.
CRYO is 1 only if A+B+Cjp > 216,

A Plus B Plus 1
APB1

7

The ALU output is equal to the A input plus the
B input plus 1. CRYO is 1 only if A+B > 2161,
A Minus 1

AM1

4

The ALU output is equal to the A input plus C

minus 1. CRYO is 1if A # 0 or if Cijp = 1.
(CRYO is 0 only when A = 0 and Cjp = 0.)

in

A Plus Complement of B

APCB

3

The ALU output is equal to the A input plus the

one's complement of the B input plus Cjp.
CRYO0 is 1 only if A+Cjp > B.

A Minus B
AMB

10

The ALU output is equal to the A input minus the

B input (that is, the A input plus the two's comple -

ment of the B input). CRYO is 1 oniy if A > B.

Logical Micro-orders

Complement of A

CA

11

The ALU output is equal to the one's complement of
the A input. CRYO is computed by the ALU as if the
function being performed were AM1.

AOrRB

AOB

12

The ALU output is equal to the logical inclusive
OR (or) of the A and B inputs. CRYO is computed
by the ALU as if the function being performed were
AOB plus Cyj,.

A xor B

AXB

13

The ALU output is equal to the logical

exclusive OR (xor) or the A and B inputs.

CRYO is computed by the ALU as if the function
being performed were APB.

A AND

ANB

14

The ALU output is equal to the logical AND (AND)
of the A and B inputs. CRYO is computed by the

ALU as if the function being performed were
ANCB plus A plus Cj,.

3-10

A AND Complement of B

ANCB

15

The ALU output is equal to the logical AND of the
A input and the one's complement of the B input.
CRYO0 is computed by the ALU as if the function
being performed were ANB plus A plus Cjj.
Compliment of A AnD B

CANB

16

The ALU output is equal to the logical AND of the
B input and the one's complement of the A input.

CRYO is computed by the ALU as if the function
being performed were AOB plus A plus Cjp.

A anp B Complemented

ANBC

17

The ALU output is equal to the one's complement
of the logical AND of the A and B inputs.

CRYO is computed by the ALU as if the function
being performed were ANB plus Cjy minus 1,

SHIFT FIELD

The SHIFT field, RBUF<(16-19>, provides for the
selection of one of 13 shifting operations to be per-
formed on the ALU function result before it is
passed to the A input port of the register file for
possible loading into the A register. The two more
significant bits of the SHIFT field, RBUF16 and
RBUF17, select one of four classes of shift opera-
tions: no shift (or "straight" shift), left shift one
bit, right shift one bit, and swap bytes. For each
of the first three classes the two less significant
bits, RBUF18 and RBUF19, select one of four
specific shift operations: for straight and right
shifting the microprogrammer can specify either
the value 0 or the value of one of three other
sources for the result bit 0, and for left shifting
either 0 or one of three other sources can be
chosen for the result bit 15. The various sources
which supply these special values are the Carry bit,
the Link bit, the ION flag, the Q bit, MULS CRY,
CRY ENAB, and ALUO itself.

One of these special sources, the Link bit, merits
additional explanation here. The primary purpose
of the Link is to save the bit that is shifted out and
would otherwise be lost in a left or right shift
operation. On a left shift, the Link is set to the
value of ALU output bit 0. On a right shift, the
Link is set to the vaiue of ALU output bit 15. Note
that the shifted result need not be loaded into the
A register for the Link to be modified; left and
right shifts always potentially alter the Link.

Once a bit has been shifted out into the Link, it may

be shifted back into the same or a different bit posi-

tion in a second shift operation. This allows

double -word shift operations to be accomplished

conveniently. The microprogram also has the
+++++++

for shifting, by coding the LINK micro-order in

the STATE CHANGE field. This gives the micro-

programmer a convenient means for saving a single

bit of information and branching according to that

bit in a later microinstruction.

When the ALC micro-order is coded in the CARRY
field, the two high-order SHIFT field bits, RBUF16
and RBUF17, are ignored and IR bits 8 and 9 in-
stead select the class of shift operation. However,
RBUF18 and RBUF19 still choose the special value
to be shifted into bit 0 or 15. Therefore, to insure
that two-accumulator multiple-operation instruc-
tions operate properly, the SHIFT field should be
coded as FA, LC, or RC for two-accumulator
multiple -operation instructions.

In two of the SHIFT field micro-orders, LC and
RC, the value CRY ENAB is involved. CRY ENAB
is a new Carry bit value generated for use in two
main cases: in two-accumulator multiple-opera-
tion instructions, and in the UNSIGNED MULTIPLY
instruction (MUL). Its value depends on the old
value of the Carry bit, IR bits 10 and 11 (which
are the Carry field in two-accumulator multiple-
operation instructions), and any arithmetic carry-
out of the ALU (that is, CRYO0, provided that the
ALU function selected is arithmetic).

For two-accumulator multiple-operation instruc-
tions CRY ENAB is computed as follows: IR bits
10 and 11 are examined and a base value for
CRY ENAB is calculated according to the table
below.

IR<10-11> base value for CRY ENAB
00 current Carry bit (no change)
01
10 1
11 complement of Carry bit

For the AND instruction, since the ALU function
is logical, the computed base value becomes

CRY ENAB directly. For the other two-
accumulator multiple -operation instructions, whose
operations are all performed by arithmetic func-
tions, the computed base value is exclusive-OR'ed
with CRYO before becoming CRY ENAB. In this
way, any carry-out of ALU bit 0 in these two-
accumulator multiple -operation instructions com-
plements the base value for CRY ENAB to produce
CRY ENAB. The resulting CRY ENAB is then
used in all two-accumulator multiple-operation
instructions to become the new value for the Carry
bit (for swap and no-shift operations),the new
value for result bit 0 (for right shift operations),
or the new value for result bit 15 (for left shift
operations).

For the MUL instruction, and, in fact, for all in-
structions with bit 0=1, bit 10=0, and bits
12-15=1000, CRY ENAB is equal to CRYO0, pro-
vided again that an arithmetic ALU function is
being performed. (If the ALU function is logical,
CRY ENAB always has the value 0 in these cases.)

For instructions with bit 0=1, bit 10=1, and bits
12-15=1000 (notably all XOP1 instructions),

CRY ENAB is computed according to the following
table:

current Carry bit value CRYO CRY ENAB
0 0 1
0 1 0
1 0 0
1 1 1

3-11

The micro-orders which may be coded in the
SHIFT field are described below. Although the
shifted result sent to the A input port of the reg-
ister file is actually called SHIFT<0-15>,
"SH<0-15>'" is used for brevity in the diagrams

accompanying the descriptions of the micro-orders.

Straight with O

FO

0

Shifter bit 0 is 0. ALU output bits 1-15 are fed

straight through the shifter to become shifter bits
1-15. The Link is not changed.

ALU ALU ALU ALU ALU ALU ALY ALU ALU ALU ALU ALU ALU ALU ALU ALU
4 5 € 7 8 9 10 112 13 5

S

!
L
| |
SH SH SH SH SH SH SH S SH
9

1 2 3 4 5 6 7
06-00952

10 n 12 13 14 15

The FO micro-order is used to force bit 0 of the
ALU result to 0 before loading the result into the
A register.

Straight with Carry
FC

1

The value of the Carry bit goes to shifter bit 0.
ALU output bits 1-15 are fed straight through the
shifter to become shifter bits 1-15. The Link is
not changed.

ALU ALY ALU ALU AU ALU AcY ALU ALU ALY ALY ALY Al ALY ALY ALY
5 7 9 0 1 12 13 4 15

TG

SH SH SH SH SH SH SH SH SH SH
¢ ! 2 3 Bl 5 € 7€ noaz 13 15
026 00952

[—

The FC micro-order is used in the standard firm-
ware to combine the Carry bit with PC when saving
the state of the machine on the stack.

3-12

Straight with ION
FI
2

The value of the ION flag goes to shifter bit 0.
ALU output bits 1-15 are fed straight through the
shifter to become shifter bits 1-15. The Link is
not changed.

ALU ALU ALU ALU ALY ALU ALY ALU ALU ALU ALU ALU ALU ALJ A‘U A'BU
10 12

T e

SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH
5 6 7 8 k) i n 2 13 14 15

SH
! 4
06 00952

Straight with ALUO

FA

3

All sixteen ALU output bits are fed straight

through the shifter to become shifter bits 0-15
The Link is not changed.

ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALY
o 1 2 3 4 5 6 7 8 9

LT

———3

Ll]lE

SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH
o] 1 2 3 4 5) 7 8 9 10 u 12 13 14 15
06-00952

Pa—

Left with O
L0
4

The ALU output is shifted left one bit position.

The value of the Q bit is brought in to become
shifter bit 15. The value of ALU bit 0 is stored

in the Link. The previous state of the Link is lost.

ALu ALJ ALJ ALU Au_b ALU l‘-LJ ALU ALU ALL; ALU ALJ ALU I\LU ALU ALU

=N

SH SH SH SH
no12 13 14 15
06 00952

Left with Link

LL

5

The ALU output is shifted left one bit position.

The value 0 is brought in to become shifter bit 15.
The value of ALU bit 0 is stored in the Link.

ALU I\ J ALU ALU ALU ALL A) ALU AL\J A\.U A;U ALU ALU ALU ALU ALU
12 3 14 15

///////f e

noi2 13 14 15
ucoo”z

Left with Q Bit

LQ
6

The ALU output is shifted left one bit position.
The value of the Q bit is brought in to become
shifter bit 15. The value of ALU bit 0 is stored
in the Link. The previous state of the Link is
lost.

ALU ALU ALU ALU ALU ALU AU ALU ALU ALU ALY ALY ALU ALU ALU ALY

=

SN SH SH SH SH
i 1213 14 15

<.AVE

05 oossz

Left with CRY ENAB
LC
7

The ALU output is shifted left one bit position.
value CRY ENAB is brought in to become shifter
bit 15. The value of ALU bit 0 is stored in the
Link. The previous state of the Link is lost.

ALU ALU ALU ALU ALU ALU ALJ ALU ALU ALl U ALU ALU ALJ ALU AL\J ALU

U

SH SH
1 0N J2 13 14 15
52

go!’-

009

The primary use of the LC micro-order is in two-
accumulator multiple-operation instructions which
specify a left shift.

The

3-13

Right with O
RO
10

The ALU output is shifted right one bit position.
The value CRY ENAB is brought in to become
shifter bit 0. The value of ALU bit 15 is stored
in the Link. The previous state of the Link is
lost.

ALU ALU ALU N.U ALL: ALU ALU ALU ALU ALU ALY ALU ALU ALU ALU ALU
10

TR E

vorodd

ID !I 12 |3 14 IS

§o§¢~

Right with Link
RL
11

The ALU output is shifted right one bit position.
The value of the Link is brought in to become
shifter bit 0. The value of the ALU bit 15 is
stored in the Link.

l ALU ALU ALY ALJ AL U ALU ALJ ALb ALU ALU ALU ALJ ALU /\LU AL\J ALU

AN \\\ S

H 12 |3 14 15

|

aa‘ ws.w

Right with with MULS CRY
RM
12

The ALU output is shifted right one bit position.
The value MULS CRY (defined below) is brought
in to become shifter bit 0. The value of ALU bit
15 is stored in the Link. The previous state of
the Link is lost.

ALU ALU ALU ALJ AL\J ALL ALJ ALU ALU AL U ALY ALY ALY ALY ALJ ALU
10 "noe 3 15

A

SH SH SH SH SH SH %H SH SH SH SH
n 2 13 14 5

D

06 oossz

Provided that RBUF36 = 0 and RBUF37 =1,
MULS CRY is defined as follows:

MULS CRY = AOxor BOXxorR CRY0 xor RBUF12

When RBUF< 36-37> # 01, MULS CRY is meaning-
less and cannot be used for the purpose intended.

The RM micro-order is used by the standard firm-
ware to implement the SIGNED MULTIPLY instruc-
tion (MULS).

3-14

Right with CRY ENAB
RC
13

The ALU output is shifted right one bit position.
The value CRY ENAB is brought in to become
shifter bit 0. The value of ALU bit 15 is stored

in the Link. The previous state of the Link is lost.

ALU ALY ALU AL U ALU AU ALJ ALU »\L ALU A;U AlJ A;U \LU AL\J ALb

r
CRY
ENAE \ \ \ \
f ' * v
SH

\ \ \ {
\ \ \ \ \\,. Ry
% } J
SH SH SH Sn SH S| SH SH <n o SH SN SH SH
2 3

|
i 4 5 6 7 8 9 16 " 1z i3 14 15

026 00952

This micro-order is used by the standard firm-
ware in two cases: two-accumulator multiple-
operation instructions which specify a right shift,
and the unsigned multiply instruction (MUL).

Swap Bytes
SwW
14

The upper and lower bytes of the ALU output are
swapped. The Link is not changed.

'ALU A..U ALU ALU ALY ALU A U ALU ALU ALU ALU ALU ALU ALU ALU ALY
2 4 5 7 9 12 5

LINK .
- =
v v \l ; \lj
SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH SH
o 1 2 3 € 7 8 9 10 N 12 13 148 15

06-00952

LOAD FIELD

The LOAD field, RBUF20, governs the loading of
the A register from shifter output bits 0-15 as
long as the CARRY field does not contain the ALC
micro-order. When the ALC micro-order is
present, the LOAD field is ignored and IR bit 12
instead governs the loading of the A register as
follows:

IR12
0 load
1 no load
The two possible micro-orders for the LOAD field

are described below, along with the effects they
have when the ALC micro-order is not present.

No Load

N

0

Bits 0-11 of the A register are not loaded with
shifter output bits 0-11 at the end of the current
instruction and consequently remain unchanged.
Bits 12-15 of the A register are not loaded with
shifter output bits 12-15 unless the RAND2 field
contains DECL. (See the description of the DECL
micro-order in the section dealing with the
RAND?2 field.)

Load

L

1

The entire A register is loaded with the shifter
output at the end of the current microinstruction.

3-15

CARRY FIELD
The CARRY field, RBUF<21-22>, serves two
main purposes: (1) to control the Carry bit, and
(2) to enable the special CPU logic which imple-

ments the two-accumulator multiple-operation in-
structions.

No Carry Change
N

0

The Carry bit is unchanged by the current micro-
instruction.

Set Carry
SET
1

The Carry bit is set to 1 at the end of the current
microinstruction.

Clear Carry
CLR
2

The Carry bit is set to 0 at the end of the current
microinstruction.

Enable Two-Accumulator Multiple-Operation
Instruction

ALC
3

The special hardware included in the CPU specific-
ally for implementing two-accumulator multiple -
operation instructions is enabled. For reference
purposes, a two-accumulator multiple -operation
instruction has the following general format:

I’, I ACS] ACD I OP CODE l SHIFT | CARRY INSFJ SKiP J
- ! S T LO/ L
01 2 3'a 5 6'7 8 9 10 I 12 1314 15

where bits 12-15 are not 1000. The effects of the
ALC micro-order on the various components of
the computational logic are described below. (See
also the description of the fields involved.)

Carry-in - A carry-in is generated (CN is set

logic to 1) if IR bit 7 is 1; that is, if the
two-accumulator multiple -operation
instruction is NEG, INC, SUB, or
AND.

Shifter - The class of shift operation to be

performed is selected by IR bits

8 and 9 (the SHIFT field in the
two-accumulator multiple-operation
instruction) instead of by RBUF
bits 16 and 17.

NOTE RBUF< 18-19> still select the
special value for shifting into bit
0 or 15. For a two-accumulator
multiple -operation instructionto
operate correctly, these bits
must both be 1. Therefore, the
SHIFT field of a microinstruction
that contains the ALC micro-
order must contain the FA, LC,
or RC micro-order.

Register - The loading of the A register with

file the output of the shifter is governed
by IR bit 12, the '"no-load" bit, in-
stead of by RBUF20, the LOAD
field. If IR12 is 0, loading is
allowed. If IR12 is 1, loading is
inhibited.

., The DECL micro-order, coded
Caution in the RAND? field, overrides
the two-accumulator multiple-opera-
tion no-load bit just as it overrides
the LOAD field N micro-order. That
is, if DECL and ALC are both coded
ina microinstruction, and if IR bit 12
is 1, then the low nibble of the A reg-
ister (bits 12-15) will be loaded with
shifter output bits 12-15. However,
if IR bit 12 is 0, the full 16 bits of
shifter output will be loaded into the
A register as usual.

- A new value for the Carry bit is
determined based on the current
value of the Carry bit, IR bits 10
and 11 (the two-accumulator
multiple -operation instruction
Carry field), and the carry-out of
the ALU. First a base value for
CRY ENAB is computed, according
to the table below.

Carry bit

3-16

IR bits 10-11

00 current state of Carry bit
01 0

10 1

11 complement of current

state of Carry bit

Then, for the AND instruction, the computed base
value becomes CRY ENAB directly. For the other
7 two-accumulator multiple -operation instructions,
the base value is complemented if there is a carry-
out of the ALU; that is, if CRYO=1. (Note that,

for the COM and MOV instructions, CRYO is al-
ways 0, so no complementing of the base value can
occur.) This result, complemented or not accord-
ing to CRYO0, becomes CRY ENAB.

CRY ENAB can be used in two ways in two-
accumulator multiple -operation instructions:

(1) it can be tested by the ALC skip hardware,
and/or (2) it can be loaded back into the Carry bit
(for swap and no shift operations), into A register
bit 15 (for left shifts), or into A register bit 0
(for right shifts).

The final effect of coding ALC in the Carry field
is that the ALC skip hardware is enabled, as
mentioned above. This is logic which determines
whether or not the next instruction should be
skipped, based on the output of the shifter, on
CRY ENAB (provided that RBUF bits 18 and 19
have both been properly set to 1), and on the
SKIP field of the two-accumulator multiple-
operation instruction, bits 13-15.

The ALC micro-order is not intended or recom-
mended for general use.

3-17

EXAMPLES

The following example microinstructions show
some of the ways in which the micro-orders that
are coded in the first seven fields can be used to
control the computational logic. The unused re-
maining fields are shown here by dashes for
simplicity.

Add ACO to AC1:

AR AC1 ACO APB FA L N i

Subtract AC2 from GRO.

AR GRO AC2 AMB FA L N 5

Decrement the source accumulator:

AR ACS — AMI FA L N -

Increment PC:

AR PC — Al FO L N - --'-— s

Note that FO is coded in the SHIFT field. Bit 0 of
the PC should, in general, always remain 0.

Move the contents of the destination accumulator
to GRO:

Z GRO ACD APB FA L N -

Note that both of the following microinstructions
are equivalent to the one above:

Z GROACD AOB FA L N -—_— — —

'Z GRO ACD AXB FA L N Soeag s

Add 1 to the contents of the destination accumulator
and place the result in GRO:

Z GROACD APBI FA L N -

Complement GR1:

AR GRI — CA FA L N -

Complement GR1 but place the result in GR2:

Clear the upper byte of GR1:

3-18

Select the upper byte of GR2 and leave it right-
justified in GR2:

Shift AC2 right one place:

Shift AC3 left two places and set the Carry bit:

Perform the logical AND of ACO and AC1, shift
the result right with the Link, place the result in
AC1, and clear the Carry bit:

AR AC1 ACO ANB RL L CLR

Set the Link to the logical exclusive OR of the
high-order bits of GR1 and GR2, but don't change
GR1, GR2, or the Carry bit:

Load the contents of the ACD field of the IR into
GR1:
RO GRI — A = FAL N = —

Add the contents of the ACS field of the IR to the
destination accumulator:

IRS ACDACD APE FA L N — —

Load 213g into GR2:

CONGR2— A FA L N — —
The constant (up to 8 bits) is coded in the TRUE
ADDRESS field.

Add T to AC1:

CON ACt ACl APB FA L N = "
Subtract 2 from the destination accumulator and
place the result in the next consecutive accumu-
lator.

CCN ADI ACD APB. FA L N — —

Note that -2 is represented as octal 1771776g, the
lower byte of which is 376.

3-19

MA FIELD

The MA field, RBUF23, allows the microprogram
to specify when memory should be started. The
two micro-orders which may be coded in the field
are described below. Data channel breaks are
discussed under the MBUS field, which follows.

No Effect
N

0

Memory is not started by the current microinstruc-
tion. A data channel break is not allowed during
the current microinstruction unless the RAND1
field contains DCH.

Start Memory
S
1

A data channel break is allowed during the current
microinstruction unless the RAND1 field contains
SCND or STIR. At the end of the current micro-
instruction, the memory module containing the
memory location selected by bits 1-15 of the ALU
output is started: the access half-cycle for the
selected module is initiated.

NOTE If the address placed on the LA
bus from the ALU output refer-
ences anonexistent memory loca-
tion, the S micro-order has no
effect except toallowadata chan-
nel break.

3-20

In order to access a memory location, the micro-
instruction must generate the desired address at
the output of the ALU and specify the S micro-
order. Bits 1-15 of the ALU output are always fed
to the LA bus except when the data channel needs
to specify a memory address. When a memory
module sees the start command and realizes that
it contains the memory location whose address is
on the LA bus, it takes the address and initiates
its access half-cycle, provided that it is not al-
ready busy. If the addressed module is busy finish-
ing a prior memory operation, it sends back a
"wait' signal which freezes CPU CLK, extending
the current microinstruction. Once the previous
operation is completed and the module is no longer
busy, it releases the wait signal and allows the
processor to proceed and finish the current micro-
instruction. At the end of the microinstruction,
the memory module takes the new address and
immediately initiates its access half-cycle.

Whether or not the memory module is or is not
already busy when an S micro-order is given,
once the module is free to take the new address,
the memory module initiates and proceeds with
its access half-cycle, while the current micro-
instruction finishes and the processor proceeds
with the next one. Some later microinstruction
(which may well be the very next one) issues a
second memory control command, coded in the
MBUS field, this time to tell the memory module
which operation to perform.

MBUS FIELD

The MBUS field, RBUF< 24-25>, serves two pur-
poses: (1) to specify how the MEM bus is to be
used during the current microinstruction; and

{2) to control a memory module if one has been
previously started but not yet released. The
micro-orders which can be coded in this field are
described below.

No Effect
N

0

The MEM bus is not used by the microprogram
during the current microinstruction.

Read and Release
READ

3

If any memory module has been started but not yet
released, the contents of the accessed memory
location in that module are placed on the MEM bus,
and the memory module is released. Whether or
not any memory module has been started, the con-
tents of the MEM bus are loaded into GRO at the
end of the current microinstruction unless the
RAND?2 field contains BMEM, in which case the
contents of the MEM bus are loaded into the

B register.

Write and Release
WRIT
2

The ALU output is placed on the MEM bus, unless
the RAND2 field contains BMEM, in which case
the contents of the B register are placed on the
MEM bus. If any memory module has been started
but not yet released, the data on the MEM bus is
taken in by that memory module to be written into
its accessed location and the memory module is
released.

Read, No Release
RMOD
1

If any memory module has been started but not yet
released, the contents of the accessed memory
location in that module are placed on the MEM bus.
However, unlike READ, the memory module is not
released but remains at mid-cycle. Whether or not

3-21

any memory module has been started, the contents
of the MEM bus are loaded into GRO at the end of
the current microinstruction unless the RAND2
field contains BMEM, in which case the contents
of the MEM bus are loaded into the B register.

Once the microprogram has started a memory
module (see the MA field description), a second
memory control command may be issued in any
later microinstruction. This command is coded
in the MBUS field and is one of the three micro-
orders READ, WRIT, and RMOD. The READ
micro-order reads data over the memory bus into
the CPU and commands the memory module to
initiate its restore half-cycle; the WRIT micro-
order sends new data over the MEM bus to be
written into the addressed location and commands
the module to initiate its restore half-cycle; and
the RMOD micro-order reads the data into the CPU
but does not release the module. For READ and
WRIT, the CPU interaction with the memory
module for the current word of data is over—the
memory module completes its restore half-cycle
on its own, and the CPU proceeds with the next
microinstruction. For RMOD, the interaction is
not complete; the module will remain at mid-cycle
until the CPU issues a READ or WRIT to release
it. If a READ is given after an RMOD, the same
data read for the RMOD is read again, and the
module is released. If a WRIT is given, new data
is supplied to the module for rewriting back into
the addressed location and the module is released.
This later case is, in fact, the primary use of
RMOD: to read a memory location's contents and
write back some new data based on the data just
read. For example, an S...RMOD...WRIT
sequence is used in implementing the ISZ and DSZ
instructions in the standard instruction set for the
ECLIPSE computer.

If the CPU issues an MBUS field command to a
memory module before the module is prepared to
accept the command, the memory module sends
back a "wait" signal to the CPU. This signal
freezes CPU CLK, thereby extending the current
microinstruction. Once the memory module is
ready to perform the designated operation, it re-
leases the wait signal, allowing the microinstruc-
tion to finish. As the next microinstruction is
loaded into RBUF, the designated operation is
performed.

If, on the other hand, a memory module which has
been started by the CPU completes its access half-
cycle before the CPU issues a second memory
command, the module pauses at mid-cycle until
the second command is issued. A memory module
is able to pause at mid-cycle for an indefinite
length of time before performing its restore half-
cycle. However, good microprogramming practice
dictates that a module not be held at mid-cycle for
more than a few microinstructions.

Because of the nature of memory,/CPU interaction
as explained above, microprogrammed control of
memory is generally free of timing restrictions.
A microprogram may start memory in a micro-
instruction and perform a READ, WRIT, or RMOD
operation in any following microinstruction (subject
only to the rules for overlapping memory opera-
tions as described later in this section). The
microprogrammer need not concern himself with
synchronizing his control of memory to a fixed
memory cycle.

Four common sequences of MA~field and MBUS-
field micro-orders are illustrated below:

1. Read operation

_——— = - - s

—_— — — —— — - - — READ

To perform a read from memory, memory is
started in one microinstruction (with the desired
address present on bits 1-15 of the ALU output)
and read in some later microinstruction (not
necessarily the next). If the microinstruction that
contains the READ micro-order also contains the
BMEM micro-order, data from memory will be
read into the register selected by the BREG field
of that microinstruction. Otherwise, data from
memory will be read into GRO.

2. Write operation

e s —— — = - s

————— - - - — WRIT

To perform a write operation, memory is started
in one microinstruction (with the desired address
present on bits 1-15 of the ALU output) and written
in some later microinstruction (not necessarily the
next). If the microinstruction that contains the
WRIT micro-order also contains the BMEM micro-
order, the contents of the register selected by the
BREG field of that microinstruction are written
into memory. Otherwise, the output of the ALU is
written into memory.

3-22

3. Read-modify-write operation

——— — — - - N RMOD
SmAeos i s = WRIT

This sequence is used to read a memory location
and write back new data into it which may be

based on the original data. The RMOD micro-
order operates exactly as the READ micro-order
does (for instance, BMEM may accompany the
RMOD in the same way), except that the memory
module is not released. This allows the micro-
program the capability to specify WRIT in a later
microinstruction without having to start the module
again on the same address.

4. S, RMOD, READ operation

This sequence is used in two cases: (1) when the
microprogram expects to perform a read-modify-
write operation but discovers that the data in the
memory location should not be changed; and (2)
when microcode which performs a read-modify-
write operation is being shared with microcode
which does not want to change the data in memory.
In both cases the RMOD reads the data but does
not release the module. The READ is required to
release the module; it also reads again the same
data data that was read by the RMOD.

3-23

As mentioned in section 2, the asynchronous con-
trol of memory allows memory operations to be
overlapped. The basic rule for overlapping mem-
ory operations is this: once a memory module has
been started, no other memory module may be
started prior to the microinstruction which re-
leases the first module. Thus, this sequence is

valid:
— e e — - - § READ —— ——— e = e e

but this one is not:

Similarly, this sequence is valid:

S T A on S R e S READ

e e e e W= SOWRIT

e — - - - gefD

but this one is not valid because RMOD does not
release a module;

ooy e i, iiiuionsase FOMRE R R

3-24

As explained in section 2, the data channel acces-
ses memory with the same commands as the
microprogram. This access is made during a
data channel break which occurs within a micro-
instruction and causes that microinstruction to be
extended. Once the data channel has acknowledged
a data channel request from a device on the I/0O
bus, it waits for the microprogram to allow a data
channel break. When a microinstruction which
allows a break (see below) enters RBUF, the data
channel generates the signal STOP CPU to freeze
CPU CLK. First, the data channel allows any
READ or WRIT specified by the frozen micro-
instruction to be completed, in order to free the
busy module for possible access by the data chan-
nel. Then the data channel eycle is completed,
including a complete write or read operation (for
data channel input and output, respectively). When
the data channel is done with all outstanding data
channel transfer requests, it releases the STOP
CPU signal and allows the frozen microinstruction
to finish its execution. At this time all of the
microinstruction's operations except READ or
WRIT are performed (including a memory start, if
the S micro-order is present). CPU CLK is then
allowed to rise and the next microinstruction is
loaded into RBUF.

The data channel must not be allowed to interfere
with the microprogram, and, therefore, data
channel breaks must not be allowed during certain
microinstructions. For example, the hardware
prohibits data channel breaks when the instruction
in the IR is an I/O instruction. 1/0 instructions
use the I/0O bus and 1/0 register, so data channel
cycles must not occur during I/0 instructions.
(Data channel cycles may occur between I/0 in-
structions.) In other situations the control of data
channel breaks is up to the microprogram. Coding
DCH in the RANDI field of a microinstruction al-
lows a data channel break during that microinstruc-

3-25

tion. Specifying a memory start (S micro-order)
also allows a data channel break unless the RANDI1
field contains STIR or SCND. (This obviates the
need to code DCH when S is coded. Microinstruc-

i 3 pos T sty nhosmeal
tions which start memory may allow data channel

breaks since the rules for overlapping memory
operations demand that any busy memory module
will be released by a READ or WRIT in that micro-
instruction anyway.) There are several situations
in which a microinstruction must not allow a data
channel break. These situations are listed and
explained in the description of the DCH micro-
order in the RANDI1 field.

The READ and WRIT micro-orders have a number
of other uses dealing with control of the MEM bus
but not of memory modules. READ is used with
several micro-orders to read into a register the
data placed on the MEM bus from a source other
than memory, such as the console (CNDA and
CNIN micro-orders), the I/0 register (IOTR), and
the Floating Point Processor (FPDA). Similarly,
WRIT is used to place data on the MEM bus for
transmission to a destination other than memory,
including the IR (STIR micro-order), the I/O
register (IOTR), and the Floating Point Processor
(FPDA). Finally, if READ is given while no data
is being placed on the MEM bus from any source,
0's are read into the specified register. This
technique can be used to clear a register in the
register file without having to feed zeroes through
the ALU.

NOTE By convention, whenever a
microinstruction places data
on the MEM bus, that micro-
instruction should specify
either READ, WRIT, or
RMOD in the MBUS field.

RANDI FIELD

The RANDI field, RBUF ~256-28>, serves two
purposes. Its primary purpose is to allow the
microinstruction to specify one of seven special
control functions. The micro-orders for these
control functions and their specific effects are
described below. The secondary purpose of the
RANDI field is to select a return register into
which the microsubroutine return address is to be
loaded when the STATE CHANGE field contains
JUMPSR or RTRNSR. When either of these two
state changes is present, no special control signal
is generated by the RANDL field, regardless of the
value of the bits in the field. Instead,

RBUF < 27-28> select one of four return registers,
and RBUF26 is ignored.

None
N
0

No special control function is performed.

Allow Data Channel Break
DCH

1

A data channel break is allowed during the current
microinstruction.

Data channel breaks should generally be allowed
as frequently as possible, to insure proper opera-
tion of data channel devices. They must not be
allowed, however, in the following cases:

1. When a memory module has been started but
not yet released.

2. When a LDIR or NILDIR state change is being
performed. The operation of these two state
changes depends on the presence of the next
instruction to be executed on the MEM bus
when the current microinstruction terminates.
A data channel break uses the MEM bus and
leaves it in an indeterminate state, so such
a break would keep the LDIR and NILDIR state
changes from functioning correctly.

3. When the same register is designated both as
the recipient of a READ operation and as an
input to the ALU. Assuming that no data
channel break happens, such a microinstruc-
tion does operate correctly: the current con-
tents of the designated register are fed to the
ALU for the duration of the microinstruction,
and the new value is loaded into the register
from the memory bus at the end of the micro-
instruction. If a data channel break is allowed
to occur, however, the effect of the microin-
struction then depends on whether or not a
break actually occurs. If no break occurs,
the microinstruction operates as usual. Ifa
break occurs, however, the READ operation
is allowed to finish before the break, while all
other operations happen after the break. Thus,
were a data channel break to occur, the data
fed to the ALU would be the new (and pre-
sumably inappropriate) value for the register,
instead of the value it contained before the
break happened.

4. When the CNIN micro-order is present in the
RAND? field. The presence of the CNIN
micro-order causes the console to place data
on the MEM bus for the duration of the micro-
instruction. Consequently, use of the MEM
bus by the data channel would result in indeter-
minate data being written into memory or sent
out to the data channel device.

5. When the DATA lines of the I/O bus are in use.
Since the data channel requires the use of the
DATA lines, a data channel break must not be
allowed to occur while these lines are being
used; that is, during input/output transfers.

Also, it should be noted that the DCH micro-order
is not necessary when the MA field contains’S,
since the presence of the S micro-order automatic -
ally allows a data channel break (unless either the
SCND or STIR micro-order is present). Although
it does no harm to code DCH along with S, it is
redundant and therefore better microprogramming
practice to avoid coding DCH in this case, thereby
leaving the RAND1 field free to specify any of the
other six special control functions or to select a
return register.

3-26

Console Data
CNDA
6

Data is placed on the MEM bus according to the
current setting of the 16 console data switches.
A switch in the raised position causes a 1 to be
placed on the corresponding line of the MEM bus;
a switch in the lowered position causes a 0 to be

placed on the corresponding line of the MEM bus.

NOTE A data channel break occurring
in a microinstruction which spec-
ifies CNDA operates correctly,
since the break keeps the console
fromplacing its dataon the MEM
bus while the data channel is us-
ing the bus. After the break is
over, the console is again allowed
to place its data on the bus and
the microinstruction terminates
properly.

By convention, a microinstruction containing the

CNDA micro-order should also contain a READ,
WRIT, or RMOD micro-order.

Store into Instruction Register

STIR

7

At the end of the current microinstruction, the
data on the MEM bus is loaded into the IR. Data
channel breaks are inhibited during the current

microinstruction.

The STIR micro-order can be used to load a new

instruction into the IR without transferring control

to a new microroutine and without producing the

various other side effects of the LDIR and NILDIR

state changes. However, data STIRed into the IR

is, in other respects, just as much a new instruc-

tion as is data loaded into it by either LDIR or

NILDIR. Instruction decoding based on the contents

of the IR can be performed as always.

6 .. If a microinstruction which

QUK specifies STIR also contains
the ACEQBI or ACEQBD micro-
order inits STATE CHANGE field
the STIR micro-order does not op-
erate as described above. IR bit
Oand IR bits 3-5 are loaded from
the MEM bus as usual, but IR bits
1-2are not. Instead, the contents
of this field are decremented.

gm STIRing a floating point in-
struction will activate the

Floating Point Processor. Float-

ing point instructions are instruc-

tions with bit 0 equal to 1 and bits

10-15 equal to 1010005.

STIRing an /O instruction

Caution will freeze the CPU if the
data channel logic is waiting for
a microinsiruction to enable da-
ta channel breaks, unless breaks
are enabled by the microinstruc-
tion that immediately precedes or
immediately follows the one that
STIRs the I/O instruction. The
CPU can be unfrozen only by the
RESET switch on the console.
An /0O instruction is one with
bits 0-2 equal to 011,.

Save Conditions
SCND
2

At the end of the current microinstruction, the

Q bit and ALUO SAVE are given new values. The
Q bit is set to the complement of the exclusive-OR
of three quantities: the current value of the Q bit,
the current value of ALUO SAVE and the value of
CRYO resulting from the current ALU function.
ALUO SAVE is set to the value of ALU result bit 0.
In algebraic terms,

Q bit - NoT (Q bit xor ALUO SAVE xor CRYO0)
ALUO SAVE - ALUO.

Data channel breaks are inhibited during the cur-
rent microinstruction.

NOTE The SCND micro-order is
overriddenby the LDIR and
NILDIRmicro-orders,
which initialize the Q bit to
1 and ALUO SAVE to 0.

ALUO SAVE and the Q bit are manipulated by the
SCND, LQ, LDIR, and NILDIR micro-orders and

are used primarily in the implementation of integer

division.

3-27

In the following descriptions of the IOTR and
IOPS micro-orders, it is assumed that the reader
is familiar with the structure and signals of the
I/O bus.

1/0 Transfer
IOTR
3

The IOTR micro-order is used to implement in
microcode the input/output transfer functions of
I/O instructions. The IOTR micro-order generally
has two effects: (1) it enables data contained in the
1/0 register to be placed on either the DATA lines
of the I/0 bus or on the MEM bus, depending on
the direction of the transfer; and (2) it generates a
data strobe signal which is sent out on the 1/0 bus.

The specific effects of the IOTR micro-order de-
pend on the direction of the data transfer specified
by the instruction contained in the IR and on whether
or not the instruction specifies device code T7g,
indicating a special CPU I/O instruction. If IR bit
7 is 1, an input transfer is indicated. The data
present on the DATA bus during the microinstruc-
tion which specifies IOTR is loaded into the 1/0
register at the end of the microinstruction and
appears on the MEM bus during the following
microinstruction. In addition, the IOTR micro-
order causes a data strobe signal to be generated
and sent out on the I/0 bus during the following
microinstruction. If IR bits 10-15 are not all 1,
the signal generated is determined as follows:

IR5 IR6 Signal
0 0 DATIA
0 1 DATIB
1 0 DATIC
1 1 none

If IR bits 10-15 are all 1, a CPU I/O instruction
is indicated, and the signal generated is deter-
mined as follows:

IR5 IR6 Signal
0 0 READS
0 1 INTA
1 0 IORST
1 1 none

NOTES The READS signal is not an I/O
bus signal. Instead, like the CNDA
micro-order described earlier in
this section, it causesthe current
setting of the console data switch-
es to be placed on the MEM bus.

The generation of the IORST sig-
nal prevents the READ and RMOD
micro-orders from causing any
register to be loaded from the
MEM bus.

3-28

If IR bit 7 is 0, an output transfer is indicated.
The data contained in the I/O register during the
microinstruction which specifies IOTR is placed
on the DATA lines of the I/O bus during that micro-
instruction. At the end of the microinstruction,
the data present on the MEM bus is loaded into the
1/0 register. In addition, the IOTR micro-order
causes a data strobe signal to be generated and
sent out on the I/0 bus during the following micro-
instruction if ALU bit 14 is 1 in the current micro-
instruction. If IR bits 10-15 are not all 1, the
signal generated is determined as follows:

IR5 IR6 Signal
0 0 none
0 1 DATOA
1 0 DATOB
1 1 DATCC

If IR bits 10-15 are all 1, a CPU 1/O instruction
is indicated, and the signal generated is deter-
mined as follows:

IR5 IR6 Signal
0 0 none
0 1 none
1 0 MSKO
1 1 HALT

NOTE The HALT signal is not an I/O
bus signal. Instead, it sets the
STOP ENAB flip-flop to indicate
a "' stop pending" condition which
may cause the processor to halt
the next time a LDIR or NILDIR
state change is performed.

1/0 Pulse
I0OPS
4

The IOPS micro-order is used to implement in
microcode the ""pulse” functions of 1/0 instruc-
tions. The IOPS micro-order generates one of a
number of signals, based on the instruction con-
tained in the IR and on whether or not the instruc-
tion specifies device code 77g, indicating a special
CPU I/O instruction. If IR bits 10-15 are not all
1, a "pulse' signal is generated and sent out on
the I/0 bus during the following microinstruction.
The specific signal generated is determined by

IR bits 8-9 as follows:

IR8 IR9 Signal
0 0 none
0 1 STRT
1 0 CLR
1 1 IOPLS

If IR bits 10-15 are all 1, a CPU I/0 instruction

is indicated, and a signal internal to the CPU is
generated during the following microinstruction.
The signals generated and their effects on the CPU
are as follows:

IR8 | IR9 Signal Effect

0 0 - none

0 1 SET ION Set ION to 1 at the end
of the current microin-
struction unless the
RAND?2 field contains
IOFF. Set ION PEND
to 1 at the end of the
current microinstruc-
tion unless the current
microinstruction per-
forms a successful
LDIR or NILDIR ‘state

change.

Set ION to 0 at the end
of the current micro-
instruction.

Enable special CPU
logic which causes the
VECTOR instruction
(VCT) to ""read' a de-
vice code of 0 when
power is failing

(PWR FF = 1).

CLR ION

(unnamed)

Floating Point Data
FPDA
5

A signal is sent to the Floating Point Processor
to indicate either that it should place data on the
MEM bus or take data from the bus.

The interaciion between standard firmware and
the Floating Point Processor is complicated and
is not explained in this manual, and the FPDA
micro-order is not intended or recommended for
general use.

3-29

RAND2 FIELD

The RAND2 field, RBUF<29-31 >, allows the
microinstruction to specify one of seven special
control functions, different from those of the
RANDI1 field. The micro-orders for these control
functions and their specific effects are described
below.

None
N

0

No special control function is performed.

Decimal Load
DECL
2

If the Carry bit is 1, a carry-in to the ALU is
generated (CN is set to 1). At the end of the
current microinstruction, shifter output bits 12-15
are loaded into bits 12-15 of the register selected
by the AREG field. (The DECL micro-order as-
sures that the low-order four bits of shifter output
are loaded into the A register. Bits 0-11 of the

A register may remain unchanged or may be loaded
from shifter bits 0-11, depending on the contents of
the LOAD and CARRY fields. Refer to these two
fields for specifics.)

The DECL micro-order can be used to perform
4-bit and 16-bit multiple-precision arithmetic.
When used with the DCRY and CRY12B micro-
orders, DECL allows decimal arithmetic to be
performed. When used with the L. micro-order,
full 16-bit multiple -precision arithmetic can be
performed. (See the description of the ALU field.)

If the DECL micro-order is used in conjunction
with any of the micro-orders Al, APAl, APBI,
or AMB, remember that a carry-in is forced
automatically by these micro-orders, so that the
state of the Carry bit has no affect on the ALU
result.

3-30

Load Count Register
LCNT
3

The 4-bit Count register is loaded with ALU out-
put bits 12-15 at the end of the current microin-
struction, unless a LDIR or NILDIR state change
is performed, in which case the Count register is
set to 17g.

If the CNTND micro-order is coded in the STATE
CHANGE field of a microinstruction which speci-
fies LCNT, the state change will be performed
properly, but the Count register will be loaded
from the ALU output instead of being decremented.
In summary then, with respect to determining the
new value for the Count register, LDIR and
NILDIR have priority over LCNT, which has
priority over CNTND.

The LCNT micro-order is generally used to load
the Count register either with an initial value to
be decremented and tested in a loop with the
CNTND micro-order (coded in the STATE
CHANGE field) or with the number of a selected
bit position, in preparation for use of the BIT
micro-order (coded in the A INPUT field).

B Register to/from Memory
BMEM
1

The register specified by the BREG field is se-
lected as the source or destination of the MEM
bus.

A microinstruction containing the BMEM micro-
order and the READ or RMOD micro-order causes
the data on the MEM bus to be loaded into the B
register rather than GRO (unless the B register is
GRO). The microinstruction may simultaneously
load the output of the shifter into the A register
(which may be GRO). If a microinstruction enables
the loading of a register with both the output of the
shifter and data from the MEM bus, the register

will receive the bit-wise logical-OR of the two data.

A microinstruction containing the BMEM micro-
order and the WRIT micro-order causes the con-
tents of the B register, rather than the output of
the ALU, to be placed on the MEM bus. This
leaves the ALU free to compute something be-
sides MEM bus data.

When the B register is used as the source or
destination of the MEM bus, it may also be used
as an operand by the ALU. A microinstruction
that uses the B register as an ALU operand and
also reads data into the B register from the
MEM bus must not enable data channel breaks.

Interrupts
IOFF

5

ION is set to 0 at the end of the current micro-
instruction, thereby disabling the interrupt sys-
tem.

The effect of the IOFF micro-order is the same as
that of the INTDS (NIOC CPU) instruction. How-
ever, the IOFF function is performed directly by
the microcode and is much quicker than executing
the INTDS instruction.

3-31

Console Instruction
CNIN
6

The 4-bit function code corresponding to the
highest-priority console function switch currently
being pressed is placed on bits 1-4 of the MEM
bus. TOP ENAB REXAM fi

The STOP ENAB and REXAM flip-fiops are
cleared.

The console functions, excluding Reset and Stop,
are assigned function codes as shown in the table
below. The priority runs from highest for ACO
Examine (code 0000) down to lowest for Instruc-
tion Step, Microinstruction Step, and Continue
(code 1111), all three of which share the same
instruction code and priority.

Console Function

MEM1 [MEM2 | MEM3 | MEM4

0 0 0 0 ACO Examine

0 0 0 1 AC1 Examine

0 0 1 0 AC2 Examine

0 0 1 1 AC3 Examine

0 1 0 0 ACO Deposit

0 1 0 1 AC1 Deposit

0 1 1 0 AC2 Deposit

0 1 1 1 AC3 Deposit

1 0 0 0 Deposit

1 0 0 1 Deposit Next

1 0 1 0 Examine

1 0 1 1 Examine Next

1 1 0 0 Start

1 1 0 1 Execute

1 1 1 0 Program Load

1 1 1 1 Instruction Step,
Microinstruction
Step, and
Continue

NOTES Do not allow a data channel break
in a microinstruction which contains
the CNIN micro-order. (See the de-
scription of the DCH micro-order in
the RANDI field.)

If no switchis being pressed when
the CNIN micro-order is given, 1's
are placed on bits 1-4 of the MEM
bus, as if the Instruction Step,
Microinstruction Step, or Continue
switch were being pressed.

Power Fail
PFL
4

If PWR FF=1, a system reset is performed. The
effect is the same as if the Reset console switch is
pressed when the power switch is in the "On"" posi-
tion. However, PFL results in a system reset
even when the power switch is in the " Lock"
position.

The PFL micro-order has a special use in the
standard firmware and is not for general use.

3-32

Load Processor State
LPST
7

At the end of the current microinstruction, eight
1-bit registers in the CPU are loaded from MEM
bus bits 0-7 as diagrammed below.

MEM O MEM ! MEM 2 MEM 3 MEM 4 MEMS MEM 6 MEMT

I D A B
|

| |
i
i

i
1 | , } ! f
i i { i
))) L)) | B B
LINK | o R 2 canvl :fv'; "S"‘:\J’é’l i P's::o | l JON

06-009%1

By convention, a microinstruction containing the
LPST micro-order will also contain the READ,
WRIT, or RMOD micro-order.

STATE CHANGE FIELD

The STATE CHANGE field, RBUF< 32-37>,
governs the selection of the next microinstruction
to be loaded into RBUF, Most STATE CHANGE
micro-orders specify a test condition which, when
true, delegates selection to the PAGE and TRUE
ADDRESS fields and, when false, delegates selec-
tion to the FALSE ADDRESS field. Other micro-
orders determine the address of the next
microinstruction from sources other than the
TRUE ADDRESS and FALSE ADDRESS fields, in-
cluding the instruction decode logic and the four
microsubroutine return registers. Regardless of
the source of such an address, it is used to ad-
dress a microinstruction in the control store.
Two special micro-orders, LDIR and NILDIR,
which are used to link the end of one microroutine
with the beginning of the next, either force one of
several fixed addresses, depending on specific
conditions within the CPU, or actually generate
the next microinstruction directly, instead of
causing a microinstruction to be read from the
control store. Whether the next microinstruction
is read from the control store or generated by the
hardware, it is clocked into RBUF<0-55> on the
next CPU CLK and subsequently assumes control
of the processor for the following clock period.

The micro-orders which may be coded in the
STATE CHANGE field are described below. They
are grouped primarily according to the manner in
which they choose the next microinstruction to be
executed. Within these larger groups, micro-
orders with similar effects are described together.

At present, only the first 36 of the 64 possible
STATE CHANGE micro-orders may be used. The
remaining micro-orders are reserved for future
use.

In the block diagram that accompanies the descrip-
tion of the STATE CHANGE micro-orders, the
labels "TRUE" and '""FALSE'" are used to denote
collectively all ""true' and all " false' instances
of those micro-orders which may branch to either
the true or false address. The paths labeled
"TRUE" are activated by any one of these micro-
orders when the true address is selected; the
"FALSE'" paths are activated when the false ad-
dress is selected.

Unconditional Branches

The first two state changes described below, NC
and JUMP, cause unconditional transfers of con-
trol. Control may be transferred either to the
false address in the current page or to the true
address in any page.

No Change
NC

N

7

Control is transferred to the address in the current
page specified by the FALSE ADDRESS field.

The NC micro-order is used when control is to be
transferred unconditionally to an address in the
current page.

Jump
JUMP
5

Control is transferred to the address specified by
the PAGE and TRUE ADDRESS fields.

The JUMP micro-order is most often used to
transfer control to an address in a page different
from the current one. It can, of course, be used
to transfer control within the current page. How-
ever, it is generally better microprogramming
practice to use the NC micro-order in this case
in order to leave the TRUE ADDRESS field free
whenever possible for use as a constant field with
the CON and CCN micro-orders, which are coded
in the A INPUT field.

True/False Branches

The next 25 state changes all perform a specific
test and branch to either the true or false address
according to the result of the test. Micro-orders
are availabie to test the ALU result, various ALU
carry-outs, special bits and registers in the pro-
cessor, and a number of special non-processor
conditions dealing with the console, the I/O bus,
and the Floating Point Processor.

NOTE The letter ""B'" is often used in
the mnemonics for the micro-
orders in this group to indicate
that the false address is selected
when the condition named by the
characters preceding the ""B" is
true, and vice versa. For ex-
ample, when the CRYOB state
change is performed, the false ad-
dress is selected if CRYO is 1
(""true'), and the true address is
selected if CRYO is 0 (''false').

ALU Result Tests

The following micro-orders perform various tests
on the ALU function result. The test is performed
on the unshifted result.

ALU Bit O
ALUO
13

If ALU result bit 0 is 1, control is transferred to
the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

ALU Bit 12
ALU12
12

If ALU result bit 12 is 1, control is transferred to
the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

ALU Bit 14
ALU14
11

If ALU result bit 14 is 1, control is transferred to
the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

ALU Bit 15
ALU15

10

If ALU result bit 15 is 1, control is transferred to
the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

ALU Output Zero
ALUZ
317

If the ALU function result is 0, control is trans-
ferred to the address specified by the PAGE and
TRUE ADDRESS fields. Otherwise, control is
transferred to the address in the current page
specified by the FALSE ADDRESS field.

Auto Index
AUTIX
20

If the value of ALU result bits 1-15 is between 20g
and 37g, inclusive, control is transferred to the
address specified by the PAGE and TRUE ADDRESS
fields. Otherwise, control is transferred to the
address in the current page specified by the FALSE
ADDRESS field.

The main purpose of the AUTIX micro-order is to
recognize an auto-incrementing or auto-
decrementing memory location when it is en-
countered in the calculation of a short effective ad-
dress.

ALU Carry-out Tests

The following four micro-orders provide for the
testing of various types of carries and borrows
which may be generated when the ALU function
selected in the microinstruction is applied to its
inputs. With these micro-orders the microprogram
can perform signed and unsigned integer compari-
sons and decimal arithmetic.

Complement of CRYO

CRYOB

17

If the carry-out of ALU bit 0 is 1, control is trans-
ferred to the address in the current page specified

by the FALSE ADDRESS field. Otherwise, control

is transferred to the address specified by the PAGE
and TRUE ADDRESS fields.

3-34

Signed Carry-out

SCRY

n

15
1

If CRYO xor A0 xor BO=1, control is transferred
to the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-

ferred to the address specified by the FALSE
ADDRESS field.

The SCRY micro-order is used for comparison of
signed integers. It is-an extension of the normal
unsigned integer comparison methods. To com-
pare two unsigned integers, one takes their dif-
ference (using either one's or two's complement
arithmetic) and checks the carry-out. If S is sub-
tracted from D, a carry-out will occur if S is less
than or equal to D. When the complement of S is
added to D, a carry-out will occur if S is strictly
less than D. To compare two signed integers,

the same operations are performed and the carry-
out is again tested. However, when the two num-
bers are of different sign, the meaning of the
carry-out is reversed. Therefore, the signs of
the two numbers are exclusive-ORed together and
then with the actual carry-out, CRYO, to produce a
signed carry-out which can be tested with the
SCRY micro-order.

Complement of CRY12
CRY12B
14

If the carry-out of bit 12 of the ALU is 1, control
is transferred to the address in the current page
specified by the FALSE ADDRESS field. Other-
wise, control is transferred to the address speci-
fied by the PAGE and TRUE ADDRESS fields.

The CRY12B micro-order is used to detect car-
ries when performing 4-bit arithmetic. In partic-
ular, it is used to detect a borrow generated by a
decimal subtraction. When no borrow is generated,
CRY12 is 1, and control is transferred via the
FALSE ADDRESS field. When a borrow occurs,
CRY12 is 0, and control is transferred via the
PAGE and TRUE ADDRESS fields.

Decimal Carry-out

DCRY

16

If CRY12 is 1 or if ALU output bits 12-15 represent

a number greater than 9, control is transferred to
the address specified by the PAGE and TRUE

ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

The DCRY micro-order is used to detect a carry
condition when performing decimal addition. Such
a condition is indicated when the two decimal num-
bers added sum to greater than 9.

Special Bit Tesis

The following four micro-orders test single-bit
quantities in the CPU,

Carry Bit

CARRY

35

If the Carry bit is 1, control is transferred to the
address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, controlis transferred
to the address in the current page specified by the
FALSE ADDRESS field.

Link Bit

LINK

26

If the Link bit is 1, control is transferred to the
address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-

ferred to the address in the current page specified
by the FALSE ADDRESS field.

Q Bit

QBIT

34

If the Q bit is 1, control is transferred to the ad-
dress specified by the PAGE and TRUE ADDRESS
fields. Otherwise, control is transferred to the
address in the current page specified by the
FALSE ADDRESS field.

A Input Bit O

A0

36

If bit 0 of the A bus is 1, control is transferred to
the address specified by the PAGE and TRUE

3-35

ADDRESS fields. Otherwise, control is trans-
ferred to the address in the current page specified
by the FALSE ADDRESS field.

Note the difference between the A0 and ALUO
micro-orders. The A0 micro-order tests bit 0
of the A input to the ALU. The ALUO micro-
order tests bit 0 of the output of the ALU.

Tests That Modify a Register

The following three state changes each test a reg-
ister in the processor to select either the true or
false address, then alter that register at the end
of the current microinstruction. It is important
to remember that the contents of the register are
tested before they are altered.

Count Register Nonzero, Decrement
CNTND
25

If the current value contained in the Count register
is nonzero, control is transferred to the address
specified by the PAGE and TRUE ADDRESS fields.
Otherwise, control is transferred to the address
in the current page specified by the FALSE
ADDRESS field. At the end of the current micro-
instruction (after the test is performed), the Count
register is decremented. (Decrementing 0 gives
17g.)

NOTE The LCNT micro-order coded in
the RAND?2 field, overrides the de-
crementing function of the CNTND
micro-order. That is, when the
LCNT and CNTND micro-orders
are both present ina microinstruc-
tion, the true or false address will
be selected properly based on the
current value of the Count register,
but at the end of the current micro-
instructionthe Count register will
be loaded from the ALU output (as
for LCNT) instead of being decre-
mented.

The CNTND micro-order allows for convenient
looping up to 16 times within microcode.
Accumulator Specifiers Not Equal, Increment
ACEQBI

23

If IR1 = IR3 and IR2 = IR4, control is transferred

to the address in the current page specified by the
FALSE ADDRESS field. Otherwise, control is

transferred to the address specified by the PAGE
and TRUE ADDRESS fields. At the end of the
current microinstruction (after the test is per-
formed), the contents of IR bits 1-2 are incre-
mented. (Incrementing 11 gives 00.)
6 . The presence of the STIR micro-
auléost order in the RANDI field of a
microinstruction which specifies an
ACEQBI state change will cause IR bits
1-2 tobe decremented instead of incre-

mented., The test will be performed
properly.

Accumulator Specifiers Not Equal, Decremgnt
ACEQBD
24

If IR1 = IR3 and IR2 = IR4, control is transferred
to the address in the current page specified by the
FALSE ADDRESS field. Otherwise, control is
transferred to the address specified by the PAGE
and TRUE ADDRESS fields. At the end of the
current microinstruction (after the test is per-
formed), the contents of IR bits 1-2 are decre-
mented. (Decrementing 00 gives 11.)

The ACEQBI and ACEQBD micro-orders can be .
used in a loop to perform the same operation on
consecutive accumulators or general registers.
The PUSH MULTIPLE ACCUMULATORS (PSH)
and POP MULTIPLE ACCUMULATORS (POP)
instructions use the ACEQBI and ACEQBD micro-
orders, respectively, in this way.

. Use of either the ACEQBI or
éWACEQBD micro-order with
STIR causes IR bits 1-2 to be de-
cremented instead of being loaded
with new values from the MEM bus.

Console Tests

The following two micro-orders allow a micro-
instruction to test two conditions which reflect the
state of the console.

Console Request
CONRQ
32

If any console function switch except Reset/Stop

is pressed, control is transferred to the address
specified by the PAGE and TRUE ADDRESS fields.
Otherwise, control is transferred to the address in
the current page specified by the FALSE ADDRESS
field.

When any console function switch except Reset/
Stop is pressed, a console request signal is gen-
erated for one period of CPU CLK. A micro-
instruction can test this signal with the CONRQ
micro-order. Since the request lasts for only one
period of CPU CLK, a microroutine must test for
it continually (that is, every microinstruction)
when it wants to recognize that a switch has been
pressed. One way to do this is with a one-
microinstruction loop which contains a CONRQ
state change and branches to itself when no request
is detected. This is what the standard firmware
does when the CPU is "halted" and waiting for a
console function switch to be pressed.

The CONRQ micro-order allows the following
switch functions to be implemented at least partially
in microcode: Deposit/Examine for all accumu-
lators, Examine/Examine Next, Instruction Step/
Microinstruction Step, Program Load/Execute,
Start/Continue, and Deposit/Deposit Next. The two
remaining console functions, Reset and Stop, are
implemented in hardware alone.

Power Switch Position Test

LOCKB
33

If the ECLIPSE computer's power switch is in the
""Lock" position, control is transferred to the ad-
dress in the current page specified by the FALSE
ADDRESS field. Otherwise, control is transferred
to the address specified by the PAGE and TRUE
ADDRESS fields.

The LOCKB micro-order is used by the standard
firmware to determine what to do at auto-restart
time. If the power switch is in the " Lock™ posi-
tion, instruction execution begins at memory loca-
tion 0. If not, the computer merely halts.

1/0 Bus Tests

The following two micro-orders allow a micro-
instruction to test two conditions dealing with the
state of peripherals on the I/0 bus.

Interrupt Waiting

INTR

30

If an interrupt is waiting, control is transferred
to the address specified by the PAGE and TRUE
ADDRESS fields. Otherwise, control is trans-

ferred to the address in the current page specified
by the FALSE ADDRESS field.

An interrupt is "waiting' if the following three
conditions are true:

1. IONis 1;
2. ION PEND is 0;
and
3. either: (a) PWR FF is 1;
or
INTR FF is 1 and the micro-
instruction does not contain the
CNDA micro-order.

—
=

(See the descriplion of LDIR and NILDIR later in
this section for additional explanation of the above.)

The INTR micro-order allows a lengthy micro-
routine to be interruptable. The microroutine can
check explicitly for a waiting interrupt at various
points during its execution, rather than having to
perform repeated LDIR state changes or to wait
for the end of the microroutine to allow an inter-
rupt to occur.

1/0O SKIP Test
IOSKPB
31

If the I/0 SKIP test condition specified by IR bits
8-9 is true for the peripheral specified by IR bits
10-15, then control is transferred to the address
in the current page specified by the FALSE AD-
DRESS field. Otherwise, control is transferred to
the address specified by the PAGE and TRUE AD-
DRESS fields.

The IOSKPB micro-order is used to implement the
I/0 SKIP instruction on the ECLIPSE computer.
The test condition checked by the IOSKPB micro-
order and hence by the 1/0 SKIP instruction is
determined by the instruction contained in the IR.
If IR bits 10-15 are not all 1, a test is made on the
Busy or Done flag in the peripheral selected by
IR <10-15> according to IR bits 8-9 as follows:

IR8 IR9 1/0O SKIP test condition
0 0 Busy = 1
0 1 Busy = 0
1 0 Done = 1
1 1 Done = 0

If IR bits 10-15 are all 1, a test is made on ION or
PWR FF according to IR bits 8-9 as follows:

IR8 IR9 I/0O SKIP test condition
0 0 ION =1
0 1 ION =0
1 0 PWR FF =1
1 1 PWR FF =0

3-37

Floating Point Processor Tests

The following four micro-orders allow the micro-
program to test various conditions in the Floating
Point Processor.

Floating Point Busy
FPB
41

If the Floating Point Processor is busy executing
a previously initiated floating point instruction,
control is transferred to the address specified by
the PAGE and TRUE ADDRESS fields. Otherwise,
control is transferred to the address in the cur-
rent page specified by the FALSE ADDRESS field.

Floating Point Trap |
FPT
42

If a floating point trap is waiting, that is, if traps
are enabled and a trap condition has occurred in
the Floating Point Processor as a result of the
previous floating point instruction, control is
transferred to the address specified by the PAGE
and TRUE ADDRESS fields. Otherwise, control
is transferred to the address in the current page
specified by the FALSE ADDRESS field.

Floating Point Trap or Busy

FPTB

40

If the Floating Point Processor is busy or if a
trap is waiting, control is transferred to the ad-
dress specified by the PAGE and TRUE ADDRESS
fields. Otherwise, control is transferred to the

address in the current page specified by the
FALSE ADDRESS field.

Floating Point Skip
FPSK
43

If the floating point skip test condition specified in
the Floating Point Instruction Register is true,

then control is transferred to the address specified

by the PAGE and TRUE ADDRESS fields. Other-
wise, control is transferred to the address in the
current page specified by the FALSE ADDRESS
field.

Microsubroutining

The following three micro-orders allow the micro-
programmer to implement subroutines and co-
routines in microcode.

The JUMPSR and RTRN micro-orders are used
together to implement ''microsubroutines’ .
JUMPSR '""calls" a microsubroutine and RTRN
returns from it. RTRNSR is used, along with
JUMPSR and RTRN, to implement '"micro-
coroutines'. Note that a microinstruction may
call a microsubroutine or microcoroutine in any
page and that the return from that microsubroutine
or microcoroutine will restore control to the
original page.

Jump and Save Return
JUMPSR
3

The current page and the address contained in the
FALSE ADDRESS field are loaded into the return
register selected by the RAND1 field.

(RBUF< 27-28 > select one of four return registers;
RBUF26 is ignored.) Control is then transferred
to the address specified by the PAGE and TRUE
ADDRESS fields.

Return
RTRN
4

Control is transferred to the 10-bit control store
address contained in the return register selected
by the PAGE field, RBUF<38-39>.

3-38

Return and Save Return
RTRNSR

6

The current page and the address contained in the
FALSE ADDRESS field are loaded into the return
register selected by the RAND1 field.
(RBUF< 27-28 > select one of four return registers;
RBUF26 is ignored.) Control is then transferred
to the 10-bit microinstruction address contained

in the return register selected by the PAGE field,
RBUF<38-39 >.

NOTE Do not allow the RAND1 and
PAGE fields to select the same
return register when the
RTRNSR micro-order is used.
RTRNSR does not work pro-
perly inthis situation because
the new return address is
loaded into the selected return
register before control is
transferred to the old return
address originally contained
in that register. '

Instruction Decoding

The instruction decode logic provides multi-way
branching based on the instruction currently con-
tained in the IR. This logic can be enabled by any
of the four micro-orders described below. The
first two micro-orders, DEC1 and DEC2, cause
an unconditional branch to one of two decode ad-
dresses corresponding to the instruction contained
in the IR. The other two, IR5BD1 and AOBDI1,
perform a test and choose between the false ad-
dress and a decode address. Whenever a decode
address is selected, the page bits are supplied by
the PAGE field. (See the description of the LDIR
micro-order later in this section for the one
qualification to this rule.)

Decode 1
DEC1
1

Control is transferred to the page selected by the
PAGE field and to the decode 1 address in that page
for the instruction currently contained in the IR.

When a new instruction has been fetched and read
into the IR, the DEC1 state change can be used to
transfer control to the proper microroutine for
that instruction.

NOTE When a phantom microinstruction
contains the DEC1 micro - order,
the instruction decode logic pro-

3-39

duces new page bits as well as an
8-bit address within the page. If
the CPU includes the WCS feature,
page 2 is selected for XOP1 instruc-
tions, and page 0 or 1 is selected
for all other instructions. Other-
wise, page 0 or 1 is always selec-

ted.
Decode 2
DEC2
2

Control is transferred v the page selected by the
PAGE field and to the decode 2 address in that
page for the instruction currently contained in the
IR.

The DEC2 micro-order extends the instruction de-
coding capability. Like DEC1, it effects a multi-
way branch from microcode common to several
instructions to different sections of microcode
specific to individual instructions. The DEC2
micro-order provides a very convenient method
for "microcode sharing'. Several instructions
which execute the same first steps can all branch
to the same microinstruction under control of
DEC1, execute the same sequence of microinstruc-
tions as long as this execution remains identical,
and then branch off to their own sections of micro-
code with a DEC2 state change in order to con-
tinue their individual executions.

Initial Defer Test

IR5BD1

21

If IR bit 5 is 1, control is transferred to the ad-
dress in the current page specified by the FALSE
ADDRESS field. Otherwise, a DEC1 state change
is performed.

Multi-level Defer Test

A0BD1

22

If bit 0 of the A input to the ALU is 1, control is
transferred to the address in the current page
specified by the FALSE ADDRESS field. Otherwise,
a DECI1 state change is performed.

The IR5BD1 and AOBD1 micro-orders are used to

check for indirect addresses in effective address
calculations.

Microroutine Chaining

The last two micro-orders described in this sec-
tion, LDIR and NILDIR, are used to chain micro-
routines together; that is, they perform the
functions required to transfer control from the

end of one microroutine to the beginning of the
next. Most frequently, control must be trans-
ferred to a new microroutine because a new in-
struction has been fetched from memory and must
be executed. Occasionally, however, some condi-
tion in the processor will demand that control be
transferred to a special microroutine. The special
microroutines are the halt/stop microroutine, the
program interrupt microroutine, and the running
examine microroutine.

Execution of a New Instruction .

Unless some condition in the CPU causes a trans-
fer of control to a special microroutine, the
LDIR and NILDIR micro-orders cause the loadmg
of a new instruction into the IR from the MEM
bus, the initialization of certain registers in the
CPU, and the generation of a phantom micro-
instruction.

Since the IR is loaded from the MEM bus, it is the
responsibility of each microroutine to fetch the
next instruction and insure that it is placed on the
MEM bus during a microinstruction that contains
LDIR or NILDIR. Most commonly the next instruc-
tion is located in memory. In this case, the micro-
routine need only start memory on the correct
address (which is most often contained in PC) in
one microinstruction, then perform a READ LDIR
combination in some later microinstruction
(usually the next).

AR PC — Al

3-40

The next instruction to be executed need not always
reside in memory. It may be contained in an ac-
cumulator, as in the case of the EXECUTE instruc-
tion (XCT), or in a general register, or it may
even be computed by a microinstruction and there-
fore exist only as the ALU result. In any of these
situations the instruction must be placed on the
MEM bus with a WRIT micro-order. (As ex-
plained later, the microprogrammer must insure
that the new instruction is not only placed on the
MEM bus but also loaded into GRO if it is not al-
ready contained in GR0.) Typical terminating
sequences for the various cases described in the
above two paragraphs are discussed in detail later.

In order for the standard firmware to work pro-
perly, certain registers in the CPU must be ini-
tialized by the hardware at the beginning of each
instruction. When a new instruction is loaded into
the IR,the LDIR and NILDIR state changes enable
this initialization: The Q bit is set to 1 and

ALUO SAVE is set to 0, primarily for the benefit
of divide instructions. Unless the new instruction
sets ION and ION PEND to 1, ION PEND is set to
zero so that interrupts may occur at the end of the
new instruction. The COUNT register is set to
17g (all 1's) so that microroutines can conveniently
loop 16 times without having to load the COUNT
register explicitly.

There are several types of phantom microinstruc-
tions; however, the one that concerns the user of
WCS is the one that is generated for XOP1 instruc-
tions. It increments PC and decodes the XOP1
instruction in the IR:

Transter of Control to a Special
Microroutine

When a microinstruction containing the LDIR or
NILDIR micro-order is clocked intc RBUF, there
are three conditions that may inhibit the execution
of the instruction to be loaded into the IR. In
order of decreasing priority, these conditions are
(1) a stop pending, (2) a program interrupt waiting
and, (3) the REXAM flip-flop set. When one of
these conditions is met, the next microinstruction
is taken from a special location in the control
store. (See the description of forced control store
addresses in section 2.)

A stop is pending when the STOP ENAB flip-flop is
set or is about to be set the next time CPU CLK
rises. The STOP ENAB flip-flop is set if (1) the
STOP flip-flop in the console is set or (2) the IR
contains a HALT instruction and the previous
microinstruction contained an IOTR micro-order.
Once STOP ENAB is set, it remains set until a
microinstruction containing a CNIN micro-order
is loaded into RBUF.

If a stop is pending when the microinstruction in
RBUF contains an LDIR or NILDIR micro-order
and RBUFS55 is 0, control is transferred to loca-
tion 6 in the page of the control store specified by
the PAGE field of the microinstruction. If the
PAGE field is 0, control is transferred to the
standard halt/stop microroutine, which STIRs
zeroes into the IR (so that a leftover I/O instruc-
tion will not inhibit data channel breaks while the
CPU is halted) and enters a one-microinstruction
loop. This microinstruction displays the contents
of the PC in the address lights and the contents of
the accumulator selected by bits 3-4 of the most
recently executed instruction in the data lights,
and waits for a console switch to be pressed.

~ If a microinstruction in RBUF contains a LDIR
or NILDIR micro-order and RBUF55 is 1 (that is,
there is an odd address in the FALSE ADDRESS
field), stops will be inhibited.

A program interrupt is waiting if the following
conditions are met:

1. ION is 1 (that is, the interrupt system is
enabled),

2. ION PEND is 0 (that is, the instruction which
has just been executed did not set ION), and

3. either (a) PWR FF is 1 (that is, power is
failing) or

(b) INTR FF is 1 and the microinstruc-
tion in RBUF does not contain a
CNDA micro-order (that is, an
interrupt request is on the I/0 bus
and the microinstruction is not plac -
ing data from the console switches
on the MEM bus).

A program interrupt will occur when
1. an interrupt is waiting; and
2. either (a) no stop is pending or

(b) stops are inhibited by a 1 in RBUF55;
and

3. the microinstruction in RBUF contains a
LDIR micro-order.

When a program interrupt occurs, control is trans-
ferred to location 4 in the page of the control store
specified by the PAGE field of the microinstruction.
If the PAGE field is 0, control is transferred to the
standard program interrupt microroutine which
disables the interrupt system (with the IOFF micro-
order), STIRs zeroes into the IR (as for stops),
stores the contents of PC in memory location 0,

and resumes instruction execution beginning with
the instruction addressed (possibly indirectly) by
memory location 1,

Program interrupts are inhibited when the NILDIR
micro-order is used instead of the LDIR micro-
order., In other respects, the two micro-orders
are identical. Unless there is a specific reason
why interrupts should be inhibited, the LDIR
micro-order should be used to initiate execution of
an instruction so that program interrupt latency is
kept to 2 minimum.

If the REXAM flip-flop is set when the micro-
instruction in RBUF contains a LDIR or NILDIR
micro-order, control is transferred to location 5
in the page of the control store specified by the
PAGE field of the microinstruction, unless control
is preempted by a stop or program interrupt. If
the PAGE field is 0, control will be transferred to
the standard running examine microroutine, which
reads the memory location whose address is set
in the console data switches and then loads the
next instruction into the IR and resumes instruc-
tion execution. This microroutine is intended for
use in conjunction with the address compare logic
in the console. (See section 2.)

The REXAM flip-flop is set by the console
EXAMINE switch and is cleared by the CNIN
micro-order. If it is set, there is no way for the
microprogrammer to inhibit special transfers of
control to the running examine microroutine caused
by the LDIR and NILDIR micro-orders.

Whenever control is transferred to one of the
special microroutines by LDIR or NILDIR, the
loading of the IR and the initialization of the Q bit,
ALUO SAVE, and ION PEND are inhibited; how-
ever, the COUNT register is still set to 17g. The
IR will be loaded and all four registers will be
initialized at the conclusion of the special micro-
routine, when the execution of a new instruction is
initiated by a LDIR or NILDIR micro-order.

3-41

Using LDIR and NILDIR

The usual manner in which a microroutine termi-
nates and transfers control to a new microroutine
is shown in the example below.

FIN: AR PC — A FO L - S

ISH! —— e e -_— - - N READ

The following points should be noted about such-
a terminating sequence:

1. It is not usually necessary to reload the PC, as
it is done above. However, it is imperative
that bit 0 of the PC be 0 at LDIR time, since
the program interrupt microroutine stores all
16 bits in memory location 0.

2. It is not necessary, of course, that the NC
micro-order be used to transfer control from
the first microinstruction to the second, or
even that the second microinstruction follow
the first immediately.

3. Memory must not be started by the microin-
struction which does the LDIR or NILDIR or
the standard firmware will not operate cor-
rectly. :

The READ which accompanies the LDIR or
NILDIR must read the memory data into GRO.
The phantom microinstructions expect this and
will not work properly otherwise.

[

5. No data channel break may be allowed in a
microinstruction which does LDIR or
NILDIR. If a break occurred, the data chan-
nel would use the MEM bus and leave it in an
indeterminate state at the end of the micro-
instruction, causing the phantom to be gen-
erated incorrectly.

6. The PAGE field must be set to 0 when a LDIR
or NILDIR is done or the phantom will not
operate correctly.

7. RBUF55 must be 0 if stops are to be allowed.

If stops are to be suppressed, RBUF55 is set to 1
in the microinstruction which does the LDIR or
NILDIR:

ISH: — —— — _—— - N READ

If program interrupts are to be suppressed, the
NILDIR micro-order is used in place of LDIR:

ISH, — — —— —— — - - N READ

3-42

[PRSRE———Y

NC -
LDIR o
LDIR 0
NILDIR . O

If both stops and program interrupts are to be
suppressed, the final microinstruction should be
coded as follows:

ISH! = e e i — - N - READ

If the new instruction is contained in a register,
say GRO, no memory fetch is required, and either
of the following single microinstructions will
suffice:

DONE: AR GRO — A —_— - - N WRIT
or .
DONE: — — GRO ——— — — = N WRIT

If the instruction is contained in any register other
than GRO, or if the instruction is generated by an
ALU function, a copy of the instruction must be
placed in GRO as well as on the MEM bus. This is
required because the standard firmware and the
phantom microinstructions expect GRO to contain

a copy of the instruction at the beginning of each
new microroutine. For example, if the instruction
is contained in ACD, the following microinstruction
could be used: :

DONE: Z GRO ACD AOB FA L - N WRIT

In all three of the above examples, as always, the -
LDIR micro-order may be replaced by NILDIR if
program interrupts are to be suppressed, and
RBUF55 may be changed to 1 if stops are to be
suppressed.

One final observation on the use of LDIR and
NILDIR: it is useless to code any of the micro-
orders SCND, STIR, and LCNT along with either
LDIR or NILDIR, since the effects of LDIR and
NILDIR override the effects of SCND, STIR, and
LCNT.

The effects of LDIR and NILDIR, along with the
restrictions of their use, are summarized below.

3-43

N

S~ NILDIR O

== LDIR
BMEM LDIR
= LDIR

0

0

0

Load Instruction Register
LDIR
0

The Count register is initialized to 17g at the end
of the current microinstruction. Then, if a stop
is pending and RBUF55 is 0, or if a program inter-
rupt is waiting, or if the REXAM flip-flop is set,
control is transferred to the fixed address corre-
sponding to the highest-priority condition present.
(Stops have priority over program interrupts,
which have priority over running examines.)
Otherwise, at the end of the current microinstruc -
tion, the Q bit is set to 1, ALUO SAVE is set to 0,
ION PEND is set to 0, the IR is loaded from the
MEM bus, and a phantom microinstruction, gen-
erated as a function of the instruction on the MEM
bus, is loaded into RBUF.

No Interrupt, Load Instruction Register

NILDIR

1

The Count register is initialized to 17g at the end
of the current microinstruction. Then, if a stop

is pending and RBUF55 is 0, or if the REXAM
flip-flop is set, control is transferred to the fixed

3-44

address corresponding to the condition present.
(If both are present, control is transferred to the
stop microroutine.) Otherwise, at the end of the
current microinstruction, the Q bit is set to 1,
ALUO SAVE is set to 0, ION PEND is set to 0, the
IR is loaded from the MEM bus, and a phantom
microinstruction, generated as a function of the
MEM bus, is loaded into RBUF and begins
executing.

There are five restrictions on the use of LDIR and
NILDIR:

1. A data channel break must not be allowed in a
microinstruction that does a LDIR or NILDIR.

2. Memory must not be started by a microinstruc-
tion which does an LDIR or NILDIR.

3. The PAGE field in a microinstruction which
does an LDIR or NILDIR must select page 0.

4. At the conclusion of a microinstruction con-
taining LDIR, bit 0 of the PC must be 0.

5. At the conclusion of a microinstruction con-
taining LDIR or NILDIR, GRO must contain a
copy of the IR.

PAGE FIELD

The PAGE field, RBUF< 38-39>, serves two
purposes:

i. To supply the page bits for a microinstruction
address when the state change logic selects
either the true address or a decode address;
and

2. to select one of four return registers when the
state change is RTRN or RTRNSR.

The two restrictions on the use of the PAGE field
are summarized below:

- 1. when coding the LDIR and NILDIR state
changes, make sure that the PAGE field is 0;

2. when coding the RTRNSR state change, avoid
having the PAGE and RAND1 fields select the
same return register,

TRUE ADDRESS FIELD

The TRUE ADDRESS field, RBUF< 40-47 > serves
two purposes:

1. to supply the low-order 8 bits of a control
store address when the state change logic
selects the true address; and

2. to supply an 8-bit constant which is placed on
bits 8-15 of the A bus when the CON or CCN
micro-order is coded in the A INPUT field.

A single microinstruction may use the contents of
the TRUE ADDRESS field both as an 8-bit constant
and as the low-order bits of a control store ad-
dress.

FALSE ADDRESS FIELD

The FALSE ADDRESS field, <RBUF 48-55>
serves three purposes:

1. to supply the low-order 8 bits of a control
store address when the state change logic
selects the false address;

2. to supply the low-order 8 bits of a control
store address which is to be saved in a return
register when the state change is JUMPSR or
RTRNSR; and

3. to allow stops to be suppressed when the state
change is LDIR or NILDIR. (To suppress
stops, RBUF55, the least significant bit of the
FALSE ADDRESS field is set to 1,)

Whenever the FALSE ADDRESS field supplies the
low-order 8 bits of a control store address--~in
cases (1) and (2) above--the contents of the
CURRENT PAGE register are prefixed as the page
bits. This means that transfers via the FALSE
ADDRESS field can only be made within the current
page, and that return from a microsubroutine is
made to the page from which it was called.

3-45

SUMMARY OF MICRO-ORDERS

L M
o { iCAR- B STATE TRUE FALSE
A INPUT AREG BREG ALU SHIFT g RAND1} |RAND2 CHANGE PAGE ADDRESS ADDRESS
0 34 78 ne 15 16 19 20 21 22 23 242526 28 29 3 3 37 3839 40 47 48 55
A INPLT AREG/BREG ALy (2 NOTES
0 AR AREG 0-15~ —A 0-15" 0 ACS 0 A A+ Cip 1) COUNT must be > 7
1 IRD Il(zlf)sé%)\Ul:l‘Ti)h 14-15" -, 0’'s —-A 0-13~ 1 AD1 1 APB A+ DB+ Cip 2} Cj, = (DECL ano CARRY)or (ALC anp IRT)
2 BIT 21°° —A "0-15> 2 ACD 2 Al A+l 3) LINK modified by left and right shifts
3 TRP IR10 —Al0, IR 5-9 - —A 11-15 3 - 'i APCB A+ B+ (i 4) Unless ALC with IR12=1
0's —A- 0-9 (1 4 GRS 4 AM1 A-14 Ciy 5) Allows data channel break unless STIR or SCND
4 - 5 GD1 5 APA A+ A+ Cyp 6) Do not allow data channel break
5 PL PL ROM word addressed by 6 GRD 6 APAl A+ A1 7) Disable data channel break
BREG 11-15°- —A 015~ 7 - 7 APBI A+ B+ 1 8) Do not code with ACEQBI or ACEQBD
6 - 10 ACO 10 AMB A-B 9) False address (F) is in current page, true ad-
7 - 11 AC1 11 CA A dress (T) may change current page
10 LBY AREG<8-15" —A ‘815>, 0's —A. 0-T° 12 AC2 12 AOB A®xB 10) Inhibited by HALT ‘STOP (if RBUF55=0),
11 IRS IR 1-2~ —A<14-15~ 0,; A 0-13~ 13 AC3 13 AXB A xor B INTERRUPT WAITING. or REXAM
12 2z 0's — A~ 0-15~)) 14 GRO 14 ANB A anp B 11) Current page saved in return register
13 CON RBUF 40-47~ — A~ 8-15~ L 0's —A. 0-T~ 15 GR1 15 ANCB A an0 B (RREG) with false address
14 SEX AREG 8-15> —A“8-15>, IR8's —A..0-7" 16 GR2 16 CANB A ano B 12) Do not code RBUF "27-28> = RBUF-{38-39~>
15 - 17 PC 17 ANBC A aNDB 13} Inhibited by HALT, STOP (if RBUF55=0) or
16 CCN RBUF 40-47" —A~8-15>, 1's ~A 0-7> REXAM .
17 UBY AREG 0-7 —A 0-7>., 0's — A" 8-15~ 14) Do not code with STIR
15) A bar (e.g.. A) represents logical comple-
ment
SHIFT (3 LOAD MA
0 FO Straight, 0 —SHIFTO -
e 0 N No effect 0 N No effect
1 FC Straight, CARRY —SHIFTO) . - N e N .
2 FI Straight, ION —SHIFTO 1L i‘}{zlgg 8:1155\ @ 1S ALUTT-15 (S)LA 1-15°
3 FA Straight, all 16 bits) start memory
4 LO Left, 0 —SHIFT15
5 LL Left, LINK -~ SHIFT15
6 LQ Left. QBIT —SHIFT15 CARRY MBUS
7 LC Left, CRY ENAB —SHIFT15
10 RO Right, 0 —SHIFTO 0 N No effect 0 N MEM bus unused
11 RL Right, LINK — SHIFTO 1 SET 1-CARRY |1 RMOD Read, no release(®
12 RM Right, MULS CRY —SHIFTO | 3 CLR 0 --CARRY |2 WRIT Write and release
13 RC Right, CRY ENAB —~SHIFTO | 3 ALC Enable ALC |3 READ Read and release
14 SW Swap bytes logic
15 -
16 -
17 -
RANDI RAND2
0 N No effect 9 N No effect
1 DCH Allow data channel break o 1 BMEM BREG 0-15"- «— MEM "0-15"
2 SCND QBIT xor ALUO SAVE xor CRY0 —QBIT. ALUO —ALUO SAVE 2 DECL CARRY -Cj,: SHIFT '12-15" —AREG ~ 12-15>
3 IOTR L0 transfg)r(s) 3 LCNT ALU "12-15> —COUNT«12-15"
4 IOPS 1,0 pulse! 4 PFL SYS RST if PWR FF = 1
5 FPDA Floating point data 5 IOFF 0 —ION
6 CNDA Console data switches —MEM "0-15™ 6 CNIN Console function code —MEM “1-4~{6)
7 STIR MEM 0-15~ ~IR<0-15(7),(8) 7 LPST Load processor state
STATE CHANGE!?)
0 LDIR Phantom; MEM —IR, 17 - COUNT, 1 —QBIT, 22 AOBD1 F if AG = 1, else decode 1
0 — ALUO SAVE, 0 — ION PEND(6).(10) 23 ACEQBI FifIR 1-2> = IR 3-4>, else T;
1 DECI1 Decode 1 increment IR "1-2~(14)
2 DEC2 Decode 2 L 24 ACEQBD FifIR 1-2™ = IR.13-4™, else T;
3 JUMPSR T: F —RREG selected by RBUF< 27-28 ~{11) decrement IR~ 1-2~{14)
4 RTRN RREG selected by RBUF- "38-39~ 25 CNTND T if COUNT # 0, else F: decrement COUNT
5 JUMP T 26 LINK Tif LINK = 1, else F
6 RTRNSR RREG selected by RBUF "38-39>; 27 NC F
F — RREG selected by RBUF-27-28 ~(11),(12) 30 INTR T if INTERRUPT WAITING, else F
7 NILDIR Phantom; MEM —IR, 17 - COUNT, 1 —-QBIT, 31 I0SKPB F if I O SKIP test true, else T
0 —ALUO SAVE, 0 —ION PEND(6).{13) 32 CONRQ T if console switch pressed, else F
10 ALU15 T if ALU15 =1, else F 33 LOCKB F if power switch in LOCK position, else T
11 ALU14 T if ALU14 = 1, else F 34 QBIT T if QBIT = 1, else F
12 ALU12 T if ALU12 = 1, else F 35 CARRY T if CARRY = 1, else F
13 ALUO T if ALUO = 1, else F 36 A0 T if A0 =1, else F
14 CRY12B Fif CRY12 =1, else T 37 ALUZ T if ALU<0-15> = 0, else F
15 SCRY T if A0 xor BO xor CRYO = 1, eise F 40 FPTB T if FPP trap or busy, else F
16 DCRY T if CRY12 = 1 or ALU<12-15> >9, else F 41 FPB T if FPP busy, else F
17 CRYOB Fif CRYO =1, else T 42 FPT T if FPP trap, else F
20 AUTIX T if 20g SALU<1-15> :373, else F 43 FPSK T if FPP skip, else F
21 IR5BD1 Fif IRS = 1, else decode 1

3-46

SECTION 4

HOW TO USE WCS

The principal parts of WCS are a 32-word 8-bit
decode RAM that stores decode addresses; a
256-word 56-bit control store RAM that stores
microinstructions; and a 10-bit RAM address
register used for loading the two RAM's.

The decode RAM provides the state change logic
with 8-bit addresses when the microinstruction in
RBUF has a DEC1 or DEC2 micro-order in the
STATE CHANGE field and the IR contains an XQOP1
instruction. The RAM can store 32 addresses,
one for each of two decode micro-orders for each
of sixteen entry numbers that may appear in bits
6-9 of an XOP1 instruction.

The control store RAM is page 2 of the ECLIPSE
computer's control store. Microinstructions
stored in this RAM control the operation of the
CPU when an XOP1 instruction is executed. The
format of the XOP1 instruction is as follows:

XOP1 acs,acd, entry number

IIIA(IISlACDlO[ENTRYNO. I 1 100 o]
o' 1 2 3‘L4 5 6’71819'I0‘II112{I3 |4'|5

When an XOP1 instruction is loaded into the IR by
a LDIR or NILDIR micro-order, the subsequent
phantom microinstruction has a DEC1 micro-order
in its STATE CHANGE field, and special hardware
forces the succeeding microinstruction to be read
from page 2 (the control store RAM). Since DEC1
may yield a unique address for each of the sixteen
potential entry numbers in an XOP1 instruction,
each entry number may select the beginning of a
different microroutine in the control store RAM.

Information is loaded into WCS by three I/0 in-
structions. (For discussion of I/0 instructions,

see the I/0 section of the "Programmer's Ref-
erence Manual for the ECLIPSE Computer' DGC
015-000024.) These I/0 instructions must be ex-
ecuted in pairs. The first specifies where informa-
tion is to be stored in WCS. The second sends the
information (a decode address or a part of a micro-
instruction) to WCS.

SPECIFY ADDRESS

DOA ac,W(CS

LOIIIACIOIOOOOOOOOI]
1 1 1 1 1 1 1 N | 1 1 l i
0 i 2 374 5 6'7 8 910 U 1213 14 15

The contents of the specified AC are transferred

to the WCS address register. The format of the
information in the specified AC is dependent upon
whether the user is transferring decode addresses
or microinstructions into WCS. If this SPECIFY
ADDRESS instruction is to be followed by a LOAD
MICROCODE instruction, the contents of the speci-
fied AC are interpreted as follows:

UNUSED] CONTROL STORE ADDRESS 1suev10m|
0') 2 3 4 5 6'7 B 9 101l 1213 14 15
Bit Number Contents

0-5 Unusecd

6-13 Eight-bit address specifying a

location in page 2 of the control
store to be loaded by the follow-
ing LOAD MICROCODE instruc-
tion.

14-15 Two-bit subword selector speci-
fying which of the 56 bits in the
specified location will be loaded
by the following LOAD MICRO-
CODE instruction. Subwords in
a microinstruction are numbered
as follows: subword 0 is bits
0-15; subword 1 is bits 16-31;
subword 2 is bits 32-47; subword

3 is bits 48-55.

4-1 of 2

If the SPECIFY ADDRESS instruction is to be fol-

lowed by a LOAD DECODE ADDRESS instruction,

the contents of the specified AC are interpreted as
follows:

[UNUSED [ENTRY NO. l°qu°]
1 1 1 1 1 1 1 1 1 1 | 1 1 d
0' 1 2 3 '4 5 6'7 8 9 10 fl 12 13 14 15
Bit Number Contents

0-10 Unused

11-14 Entry number - from bits 6-9 of

the corresponding XOP1 in-
struction.

Decode number - O if the fol-
lowing LOAD DECODE AD-
DRESS instruction specifies a
decode 1 address, 1 if the fol-
lowing LOAD DECODE AD-
DRESS instruction specifies a
decode 2 address.

15

A SPECIFY ADDRESS instruction stores the con-
tents of the specified AC in the WCS address reg-
ister until a subsequent LOAD MICROCODE or
LOAD DECODE ADDRESS is executed. The con-
tents of the AC remain unchanged.

4-2

LOAD MICROCODE

DOB g__c_,WCS

[011|Ac||000000000|
1 1 i 1 I | H 1 1 i 1 i 1
O 1| 2 3'a4 5 6'7 8 9 10 i 12213 14 15

The contents of the specified AC are placed in the
subword of the WCS control store RAM location se-
lected by the previous SPECIFY ADDRESS instruc-
tion. If the SPECIFY ADDRESS instruction has
selected subword 3 (bits 48-55) of the control store
location, only bits 0-7 of the AC are stored. The
contents of the AC remain unchanged.

LOAD DECODE ADDRESS

DOC g___(_:__,WCS
Iollll] AICIllllololonolololololl]
o 1 2 T 5 6'7 8 9 10 Il 12°13 14 IS

Bits 8-15 of the specified AC are placed in the
decode RAM in the word specified by the previous
SPECIFY ADDRESS instruction. The contents of
the AC remain unchanged.

It is important to remember that WCS sometimes
functions as an I/O device and sometimes functions
as a part of the CPU. For purposes of loading
decode addresses and microinstructions into WCS,
it is an I/O device (device code 01). When CPU
operation is determined by decode addresses and
microinstructions already stored in WCS, it is an
integral part of the CPU's control logic.

CUT ALONG DOTTED LINE

.-_-_-_--_--_----—-——-——---——-----———-------_-..._-..-___..__-----------_-----.._---..--....____..____-------__....___---_-----_-—-.-----

DOCUMENT TITLE:

Your comments, accompanied by answers to the Did you find the material:
Jollowing questions, help us improve the quality o Useful ... YES () NO ()
and usefulness of our publications. If your answer « Complete VESQ () NO /o

' rour plete.......YE S () NO ()
10 a question 1s "no” or requires qualification, e Accurate... YES () NO ()
please explain. ¢ Well organized... . YES () NO ()

o Well written ... YES {) NO ()
. . P
How did you use this publication? . Well ilustrated YES () NO ()
() As an introduction to the subject. ¢ Well indexed YES () NO ()
() As an aid for advanced knowledge. e Easy to read.. ... YES () NO ()
() For information about operating procedures. ¢« Easy to understand..... YES () NO ()
(} To instruct in a class.
() As a student in a class. We would appreciate any other comments; please
{) As a reference manual. label each comment as an addition, deletion, change,
() Other orerror and reference page numbers where applicable.
COMMENTS

PAGE| COL [PARA| LINE FROM TO
From
Y Y THLE. oo Data General Corporation
FIRM ..., DIV. i, ENGINEERING PUBLICATIONS
ADDRESS ... COMMENT FORM
CITY oo STATE............ ZIP.......... DG-00935
TELEPHONE............................. DATE..............ocooviiiei,

FOLD DOWN FIRST FOLD DOWN

FIRST CLASS
PERMIT NO. 26

SOUTHBORO
MASS. 01772

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL I
I
Postage will be paid by: I
]
DataGeneral —
Southboro, Massachusetts 01772 I
ATTENTION: Engineering Publications
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	4-01
	4-02
	replyA
	replyB

