¢y DataGeneral

Programmer’s Reference Series

ECLIPSE® S/140

Programmer’s Reference Series

ECLIPSE®S/140

¢»DataGeneral

NOTICE

Data General Corporation (DGC) has prepared this
document for use by DGC personnel, customers, and
prospective customers. The information contained herein
shall not be reproduced in whole or in part without DGC'’s
prior written approval.

DGC reserves the right to make changes in specifications
and other information contained in this document without
prior notice, and the reader should in all cases consult
DGC to determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING THE
SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY
OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS.
NO REPRESENTATION OR OTHER AFFIRMATION
OF FACT CONTAINED IN THIS DOCUMENT
INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY, RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN
SHALL BE DEEMED TO BE A WARRANTY BY DGC
FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT
OR THE INFORMATION CONTAINED IN IT, EVEN IF
DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE
KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, and AZ-TEXT, DASHER, DG/L,
ECLIPSE MV/8000, microNOVA, PROXI, REV-UP, SWAT,
XODIAC, GENAP, METEOR, MAILCRAFT, ENTERPRISE,
TRENDVIEW, MANAP, WORDCRAFT, and ECLIPSE MV/6000
are trademarks of Data General Corporation.

Ordering No. 014-000642

© Data General Corporation, 1979, 1980, 1981
All Rights Reserved

Printed in the United States of America
Rev. 02, April 1981

- CONTENTS

Highlights of the ECLIPSE S/140

Main Storage
1/0 Management
Main Processor
Physical Design and Packaging
Software Support

Standard Features

Addressing Conventions
Word Addressing Definitions
Addressing Modes
Auto-incrementing and Auto-decrementing
- Bit Manipulation
Bit Addressing
- Bit Instructions
- Byte Manipulation
‘ Byte Addressing Format
Byte Instructions
Number Manipulation
Integer Format
Fixed Point Arithmetic Instructions
Decimal Format
Decimal Arithmetic Instructions
Logical Manipulation
Logical Format
Logical Operations Instructions
ALC Manipulation
ALC Format
ALC Instructions
- ALC Instruction Execution
- The Stack
- Stack Control Words
Stack Protection
Stack Protection Faults
Initializing the Stack Control Words
Examples
Stack Instructions
- Reserved Storage Locations
- Program Execution
=18 Sequential Operation
18 Program Flow Alteration

Introduction to the ECLIPSE S/140

Rev. 02

19 Program Flow Interruption
19 Program Flow Alteration Instructions
21 Extended Operation Feature
Extended Operation Instructions
Input/Output
Busy and Done Flags
Programmed 1/O
Data Channel 1/O
1/0 Interrupts
Interrupt System Definitions
Priority Interrupt System
Special Mnemonics
1/0 Instructions
Flag Commands
Basic 1/0O Devices
Real Time Clock
Asynchronous Line Controller
Power Fail/Auto-restart
Power Fail Instructions
Error Checking and Correction
ERCC Instructions
Virtual Console
Cells
Cell Commands
Function Commands
Virtual Console Errors
Memory Management and Protection Unit
MMPU Functions
MMPU Protection Capabilities
Load Effective Address Mode
Initial Conditions
MMPU Instructions

Optional Features

Floating Point Instructions

Floating Point Arithmetic

Character Manipulation Instructions
Burst Multiplexor Channel

BMC Address Modes
BMC Map

BMC Instructions
standard Machine Instructions

Coding Aids
Setting the Index Field

Rev. 02

1/0 Instructions

General 1/0 Instructions

Central Processor

Vectored I/0 Instruction

Burst Multiplexor Channel

ERCC Error Correction

Memory Management and Protection Unit
Real Time Clock

Primary Asynchronous Line Input

Primary Asynchronous Line Qutput

The Addressing Process

Standard 1/0 Device Codes

The ASCII Character Codes
ECLIPSE/NOVA Line Compatibility

Rev. 02

Introduction to the ECLIPSE S/140

The Data General Eclipse S/140 is a scientific computer
combining advanced architecture and high reliability.

In this chapter we discuss the features of the basic
ECLIPSE S/140 and the available options.

Highlights of the ECLIPSE S/140

Four main components make up the ECLIPSE S/140.
Together, they provide processing power and throughput
capability. The components are:

* Main Storage system

* I/0 Management system
* Main Processor

* Packaging

In this section we cover the highlights of these systems.

Main Storage

Maximum memory capacity of the ECLIPSE S/140 is 1
Mbyte (up to eight boards) in the form of semiconductor
RAM.

Each memory board contains four modules that support
cycle times as low as 100 nanoseconds for a read operation
and 200 nanoseconds for a write operation.

The ECLIPSE S/140 Memory Management and Protection
Unit (MMPU) provides and protects individual user space
within memory on a 2 Kbyte page basis. Protection modes
include address validity, indirect, write, and I/0
protections.

The Error Checking and Correction (ERCC) facility detects
and corrects all single bit errors that occur on a memory
board. The ERCC detects and reports errors by maintaining
address and fault codes and requesting processor interrupts
when errors occur. Memory cycle times are left unchanged
if no error is detected. If an error is found, cycle time is
increased by 200 nanoseconds.

1-3

I/0 Management

The Data General ECLIPSE S/140 is a powerful and highly
reliable scientific computer. The advanced architectural
features of this system provide configurational flexibility
to match various computing needs. ECLIPSE S/140
supports an optional Burst Multiplexor Channel for
high-speed data transfers.

In this chapter we discuss the features of the basic
ECLIPSE S/140 and the options you can include in your
system.

The standard NOVA/ECLIPSE data channel provides I/0
communication for both medium-speed and high speed
devices such as cartridge discs, magnetic tape, data channel
line printers, and synchronous communications. Maximum
data channel transfer rates are 2.0 Mbytes per second fast
input, 1.4 Mbytes per second fast output.

Programmed 1/0, with priority interrupt handling and
vectoring capability for automatic dispatch to the correct
interrupt handler, provides I/O communication for
low-speed devices such as CRT terminals, paper tape
punches, and card readers.

Main Processor

The ECLIPSE S/140 main processor executes the standard
ECLIPSE instruction set. Integer multiply/divide
functions are implemented in firmware.

The main processor also executes the optional ECLIPSE
floating point instruction set, using either Floating Point
microcode, or the high speed hardware Floating Point
Processor.

The Character Instruction Set (CIS) simplifies handling of
strings of characters or bytes. It is especially useful in
communications applications where long strings of bytes
must be moved, compared, or checked against a reference.

On power up, the processor executes a self-test, and if this
is successfully completed, the CPU enters virtual console
mode.

The virtual console replaces all but three switches on the
front panel of the ECLIPSE S/140. Only Power On/Off,
Lock and Reset/Program Load function switches remain.

1/0 Management

D Aer NO

Physical Design and Packaging

The ECLIPSE $/140 is packaged in an easily accessed
chassis which holds up to sixteen 15”X 15" printed circuit
boards. The power supply consists of a 100amp VNR unit
and a slide-in power supply board. Battery back-up is
standard.

Software Support

Two different operating systems, and many advanced
utilities and high level languages are available for the
ECLIPSE S/140.

The Real-Time Disc Operating System (RDOS) supports
real-time and batch operations, plus independent
foreground/background processing. RDOS can manage up
to 512 Kbytes of main memory.

The Advanced Operating System (AOS) uses adaptive
resource management for efficient operation in multiuser
environments. It can manage up to 1 Mbyte of main
memory in the ECLIPSE §/140 and supports concurrent
batch, timesharing, and real-time operations.

Many higher-level languages are also available, including
Fortran IV, Fortran 5, Extended Basic, PL/1, DG/L (an
ALGOL-derivative structured programming language),
and Macroassembler.

1/0 Management

1- 4

Data General Corporation

Introduction to the ECLIPSE $/140

Chapter 2
Standard Features

The ECLIPSE S/140 contains a variety of standard
ECLIPSE facilities, including:

¢ The ECLIPSE standard instruction set

¢ The stack

¢ The data channel

* Error Checking and Correction

* Decimal arithmetic instructions

¢ Memory Management and Protection Unit

In this chapter we discuss the standard features of the
ECLIPSE S/140, and the assembly language instructions
controlling these facilities. In the following chapter we
describe optional facilities and their instructions. Chapters
4 and 5 contain complete instruction descriptions for
standard and I/0 instructions, respectively.

Addressing Conventions

In this section we describe the various ways the ECLIPSE
S/140 addresses locations in memory. We also define terms

i h A4 ing
and concepts useful for understanding the addressing

process in the ECLIPSE S/140.

o
g

Each addressed location in main memory consists of a
16-bit word. The first word in memory has the address 0,
the next has the address 1, the next 2, and so forth.

The maximum amount of logical address space available
to the programmer is 32,768 words. The physical address
space, the amount of memory in the system, may be much
larger. In the logical address space, the next sequential
memory location after 77777g is location 0.

The MMPU controls the relationship between a logical
address space and the physical address space. When the
MMPU is enabled, it intercepts each memory reference
and translates the 15-bit logical address into a 19-bit
physical address. Unless the MMPU itself is being
programmed, the translation process is invisible to the
programmer.

There are three modes of addressing: Absolute, P.C.
Relative, and Accumulator Relative. You may use direct
or indirect addressing in any of these modes. The following
definitions are useful in understanding ECLIPSE S/140
addressing conventions.

Word Addressing Definitions

Direct and Indirect Addressing — Direct addressing uses
the intermediate address (the first address found) without
modification. The intermediate address thus becomes the
effective address.

Indirect addressing uses the intermediate address as a
pointer to the next address. If bit 0 of that next address is 1,
the address is used as a pointer which points to another
address. A series of indirect addresses is called an
indirection chain. The chain continues until an address is
found with bit 0 equal to 0.

Indirect protection is available to limit indirection levels
to fifteen.

Indirect Bit — A bit in the instruction or address that is
checked after each address calculation. If the indirect bit
is 0, the effective address has been located. If it is 1, the
word contains another indirect address.

Index Bits — The bits in the instruction that control which
of the three addressing modes the instruction uses.

Index Bits |(Mode

00 Absolute

01 PC relative
10 AC2 relative
11 AC3 relative

Addressing modes

Displacement Bits — Bits in the instruction that specify an
address in memory. That address added to an address
specified by the mode results in the effective address.

When the index bits are 00, the displacement is considered
an unsigned integer. When the index bits are 01, 10, or 11,
the displacement is considered a signed integer. Table 2.1
shows the range of the displacement field various
conditions.

Addressing Conventions

Index Bits Range of Displacement Field
Short Class Extended Class
00 0to 377, 010 777774
or or
0 to 255, 010 32,767,
01 -200gt0 1774 -400004 to 377774
10 or or
1 -128 to +127,, -16,384 to
+16,383,,
Table 2.1 2

Effective Address Calculation — The process of converting
the index, indirect, and displacement bits into an address
to be used by the instruction.

Intermediate Address — The address obtained by the
effective address calculation before the indirect bit is
checked.

Page Zero — The locations 0-377g in memory.

Addressing Modes

As we mentioned before, three modes of addressing can be
done in the ECLIPSE S/140. They are:

¢ Absolute addressing
e P.C. (program counter) relative addressing
* Accumulator relative addressing

Figure 2.1 illustrates the three addressing modes.

Addressing Conventions

2-6

Data General Corporation

SHORT CLASS EXTENDED CLASS
MAIN MEMORY
o)
ABSOLUTE PAGE ZERO
ADDRESSING
3774
PC-2004
PC-RELATIVE pC
ADDRESSING
PC+1774
ABSOLUTE,
PC-RELATIVE,
AC-RELATIVE
ADDRESSING

AC2+177,

AC3-200

AC-RELATIVE
ADDRESSING

AC3 ——

AC2-2004
AC-RELATIVE
ADDRESSING | ACZ —

AC3+1774

DG-04458

Figure 2.1

You can use direct or indirect addressing with each of
these modes. With the right combination, any address in
your logical address space is accessible.

Absolute Addressing Mode — In this mode, the intermediate
address is set equal to the unmodified displacement. As a
result, short class instructions specify locations in the range
0-377g in the absolute mode, because short class instructions
are restricted to 8 bits in the displacement. Extended class
instructions can reference any logical memory address
using the absolute addressing mode.

Page zero thus is very important because any
memory-reference instruction can address this area. You
can use it as a common storage area for items that you
frequently reference throughout a program. Note,
however, that we reserve some of these locations for special
purposes.

P.C. Relative Addressing Mode — The intermediate address
is found by adding the displacement to the contents of the
program counter.

Accumulator Relative Addressing Mode — The
intermediate address is found by adding the displacement
to the contents of bits 1-15 of the accumulator indicated by
the index bits (you may use either AC2 or AC3).

Standard Features

Auto-incrementing
and Auto-decrementing

During indirect addressing, certain reserved locations
within the area of 0-3773 (page zero) automatically
increment or decrement their contents. The process is also
called auto-indexing.

Auto-incrementing takes place if the intermediate address
of a short class instruction falls into the range 20-27g, and
the indirect bit is 1. The contents of the addressed location
are incremented by 1, and the addressing chain continues,
using the incremented value of the addressed location.

Auto-decrementing takes place if the intermediate address
of a short class instruction falls into the range 30-37g, and
the indirect bit is 1. The contents of the addressed location
are decremented by 1, and the addressing chain continues,
using the decremented value of the addressed location.

NOTE: The state of bit 0 before the increment or
decrement determines whether the indirection chain
is continued.

For example: Assume an auto-increment location
contains 177777 (all bits = 1, including bit 0), and
the location is referenced as part of an indirection
chain. After incrementing, the location contains all
zeros. Because bit 0 was 1 before the increment, 000000
is treated as an intermediate address and the
indirection chain continues.

You will find a flow diagram of the addressing process in
Appendix A.

Bit Manipulation
Bit Addressing

We use a 32-bit (2-word) bit pointer to address individual
bits in memory. Bit 0 of the bit pointer is the indirect bit. If
this bit is 1, the indirection chain (using bits 1-15 for the
address each time) will be followed until a word is found
with bit 0 set to 0. Bits 1-15 of this word become bits 1-15 of
the bit pointer, and bits 0-15 of the next word become bits
16-31 of the bit pointer.

We form the address of the desired bit as follows:

The address formed by the unsigned number contained in
bits 1-15 of the bit pointer (the base address) is added to
the number formed by the 12-bit unsigned number
contained in bits 16-27 (the offset). The resulting address
points to the word containing the desired bit. Bits 28-31 of
the bit pointer contain a 4-bit unsigned number which is
the number of the desired bit in the addressed word.

Below is a diagram of the bit-addressing process.

100 101 102 103 104 105 106 107 110 111 112 113

l WORD

& A — e ded i 1
6 7 8 9101112131415
BIT NUMBER

A —r A N—A—
o o 1 o0 18/]0 0 o0 3slo 5
BIT
POINTER 0 O()JO}O[OIOIOIOIIIOIO|0]0.O.1 O‘OIOIOIOFIO.OIOiOI1I1 o 1‘011
01 1518 272 31

DG-00931

Figure 2.2

Bit Instructions

The ECLIPSE S/140 instructions which manipulate bits:

» Locate a bit in memory and set it to 0 or 1.

o Test a bit, skipping the next word if the specified
condition is true.

¢ Add a number to the contents of one accumulator, based

on the number of ones or high-order zeros found in the
other accumulator.

Some of the bit instructions use a bit pointer to locate a bit
in memory. The others only affect bits within specified
accumulators. Table 2.2 lists the bit instructions.

Bit Manipulation

Mnem | Instructions Action

BTO Set Bit To One Sets the bit addressed by the bit pointer
to 1.

BTZ Set Bit To Zero Sets the bit addressed by the bit pointer
to O.

coB Count Bits Counts the number of ones in one
accumulator and adds that number to the
second accumulator.

LOB Locate Lead Bit Counts the number of high-order zeros in
one accumulator and adds that number to
the second accumulator.

LRB Locate And Reset | Performs a Locate Lead Bit instruction

Lead Bit and sets the lead bit to O.
SN8 Skip On Non-Zero | Skips the next sequential word if the bit
Bit addressed by the bit pointer is 1.

SZB Skip On Zero Bit | Skips the next sequential word if the bit
addressed by the bit pointer is O.

SZBO | Skip On Zero Bit | Sets the bit addressed by the bit pointer

And Set To One |to 1 and skips the next sequential word if
the bit was originally O.
Table 2.2

In addition, a character instruction, (CMT), uses a bit

pointer, bit addressing and a bit table.

Byte Manipulation

Byte Addressing Format

A byte in memory is selected by a sixteen bit byte pointer.
Bits 0-14 of the byte pointer contain the memory address
of a two byte word. Bit 15, the byte indicator, indicates
which byte of the addressed location will be used. If bit 15
is 0, the high-order byte (bits 0-7) will be used. If bit 15is 1,
the low-order byte (bits 8-15) will be used. Figure 2.3
shows the format of a byte pointer.

Number Manipulation

Data General Corporation

100 101 102 103 104 105 106 107 110 111
Bvonolwoao|wono|wonojwonu WORD wonoTwono [wanLwono]

BITS 0-14
ADDRESS WORD

BIT 15

SELECTS BYTE ADDRESSED BYTE

BYTE INDICATOR

0o | o 1 0 5¢
0,0,0(0,00[0,0,1(0,0,0[10 1]
0123456 789 1011121314'15

BYTE
POINTER

DG-00930

Figure 2.3

Byte Instructions

The byte instructions are shown in Table 2.3. Note that
when an instruction moves a byte to an accumulator it also
clears the high-order half of the destination accumulator.
When an instruction moves a byte from an accumulator to
memory, it leaves unchanged the other byte contained in
that word of memory.

The two extended instructions, (ELDB and ESTB,) reference
bytes with a byte pointer contained in the instruction
coding. The two short class instructions (LDB and STB) use
an accumulator to hold the byte pointer.

Mnem | Instructions Action
LDB Load Byte Places a byte of information ihto an
ELDB accumulator.
STB Store Byte Stores the low order byte of an
ESTB accumulator into a byte of memory.
Table 2.3

The character instructions also use byte addressing.

Number Manipulation
Integer Fo;mat

We represent a signed integer by a two’s-complement
number in one or more 16-bit words. The sign of the
number is positive if bit 0 of the first word is 0 and negative
if that bit is 1.

Standard Features

We represent an unsigned integer by using all the bits of
one or more 16-bit words to represent the magnitude.
Figure 2.4 illustrates integer format.

SIGNED INTEGERS

SINGLE PRECISION:
I —
BIT ™ °_ '
2's COMPLEMENT
MAGNITUDE
MULTIPLE PRECISION: g
sion 4] 3L ! —

- —_—

2's COMPLEMENT MAGNITUDE

UNSIGNED INTEGERS

SINGLE PRECISION:
I
0 15
UNSIGNED
MAGNITUDE
MULTIPLE PRECISION:
- il i -
) 15 0 15 7] 15
~ —v—
UNSIGNED MAGNITUDE
DG-04848
Figure 2.4

Single precision integers are one word (16 bits) long, and
multiple precision integers are two or more words long. As
an example, Table 2.4 shows the range of single and double
precision numbers represented by this format:

Single Double
Precision Precision
Unsigned 0 to 65,5635 0t04,294,967,295
Signed -32,768 to -2,147,483,648 to
+32,767 +2,147,483,647
Table 2.4

In addition, there is a value called carry. A change in the
value of carry indicates an overflow during fixed point
arithmetic operations.

Fixed Point Arithmetic Instructions

There are twenty-six ECLIPSE S/140 instructions which
perform fixed point arithmetic. These instructions:

2-9

* Perform binary arithmetic on operands in accumulators.
* Load data from memory to an accumulator.

* Store data from an accumulator into memory.

All of the fixed point arithmetic instructions are shown in
Table 2.5. Some of the instructions appear in both a short
form and a long or extended form. (The prefix (“E”)
indicates an extended instruction form.)

Short form instructions (sixteen bits) directly specify either
amemory address from 0 to 377, or a small area in memory
surrounding the present value of the program counter or
an accumulator. Long form instructions, thirty-two bits
long, directly specify any address from 0 to 77777;.

ADI and ADDI are short and long forms of the same
instruction. The short form adds a 2-bit immediate in the
range of 1-4, while the long form adds a 16-bit immediate
in the range of -32,768 to +32,767.

Number Manipulation

Mnem | Instructions Action

ADC Add Complement | Adds the one’s complement of the
contents of one accumulator to the
contents of another accumulator.

ADD Add Adds contents of two accumulators.

ADDI Extended Add Adds a signed integer in the range -32,768

Immediate to +32,767 to the contents of an
accumuilator.

ADI Add Immediate Adds an unsigned integer in the range 1-4
to the contents of an accumulator.

DIV Unsigned Divide |Divides the unsigned 32-bit integer in two
accumulators by the unsigned contents of
a third accumulator.

DIVS Signed Divide Divides the signed 32-bit integer in two
accumulators by the signed contents of a
third accumulator.

DIVX Sign Extend And | Extends the sign of one accumulator into a

Divide second accumulator and performs a
Signed Divide on the result.

DSz Decrement And Decrements the addressed word, then

EDSZ Skip If Zero skips if the decremented value is zero.

HLV Halve Divides the unsigned contents of an
accumulator by 2.

INC Increment Increments the contents of an
accumuiator.
1SZ Increment And increments the addressed word, then skips

EISZ Skip If Zero if the incremented value is zero.

LDA Load Loads data from memory to an

ELDA Accumulator accumulator.

LEF Load Effective Places an effective address in an

ELEF Address accumulator.

MOV Move Moves the contents of an accumulator
through the Arithmetic Logic Unit (ALU).

MUL Unsigned Muitiplies the unsigned contents of two

Multiply accumulators and adds the results to the
unsigned contents of a third accumulator.

MULS | Signed Muitiply Multiplies the signed contents of two
accumulators and adds the results to the
signed contents of a third accumulator.

NEG Negate Forms the two's complement of the
contents of an accumulator.

SBI Subtract Subtracts an unsigned integer in the range
Immediate 1-4 from the contents of an accumulator.

STA, Store Stores data in memory from an

ESTA | Accumulator accumulator.

SUB Subtract Subtracts contents of one accumulator
from another.

XCH Exchange Exchanges the contents of two

Accumulators accumulators.

Table 2.5 Fixed point arithmetic instructions

Decimal Format

Unsigned decimal numbers are handled one decimal digit
at a time. Each decimal digit is represented by bits 12-15 of
a 16-bit word. Only the values 0-9,¢ are used; carry is used
for a decimal carry or borrow.

Logical Manipulation

Data General Corporation
Decimal Arithmetic Instructions

Two instructions in the ECLIPSE S/140 operate on decimal
data. They are shown below, in Table 2.6.

Mnem | Instructions Action

DAD Decimal Add Adds together the decimal digits found in
bits 12-15 of two accumulators.

DSB Decimal Subtract |Subtracts the decimal digit in bits 12-15
of one accumulator from the decimal digit
in bits 12-15 of another accumulator.

Table 2.6

Logical Manipulation
Logical Format

We represent logical entities as individual bits in a 16-bit
word. Each bit is treated as a separate binary value. When
an instruction operates on two words, only corresponding
bits of each word interact. The following are examples of
logical operations:

e Forming the logical AND of two words.
» Forming the logical complement of a word.
» Shifting the contents of a word left or right.

Logical Operations Instructions

All of the logical operations instructions are shown in
Table 2.7.

The Load Effective Address and Extended Load Effective
Address instructions are short and long forms of the same
instruction. The sixteen bit short form directly specifies
either a memory address from 0 to 255 or a small area in
memory surrounding the present value of the program
counter or an accumulator. The thirty-two bit long form
directly specifies any address from 0 to 77777g.

Standard Features

Mnem | Instructions Action
ANC AND With Forms the logical AND of the contents of
Complemented one accumulator and the logical
Source complement of the contents of another
accumulator.

AND AND Forms the logical AND of the contents of
two accumulators.

ANDI |AND Immediate |Forms the logical AND of a 16-bit number
contained in the instruction and the
contents of an accumulator.

COM Complement Forms the logical complement of the
contents of an accumulator.

DHXL |Double Hex Shift !|Shifts the 32-bit contents of two

Left accumulators left 1 to 4 hex digits
depending on the value of a 2-bit number
contained in the instruction.

DHXR | Double Hex Shift | Shifts the 32-bit contents of two

Right accumulators right 1 to 4 hex digits
depending on the value of a 2-bit number
contained in the instruction.

DLSH Double Logical Shifts the 32-bit contents of two

Shift accumulators left or right depending on
the contents of a third accumulator.

HXL Hex Shift Left Shifts the contents of an accumulator left
1 to 4 hex digits depending on the value
of a 2-bit number contained in the
instruction.

HXR Hex Shift Right Shifts the contents of an accumulator right
1 to 4 hex digits depending on the value
of a 2-bit number contained in the
instruction.

IOR Inclusive OR Forms the logical inclusive OR of the
contents of two accumulators.

I0RI Inclusive OR Forms the logical inclusive OR of a 16-bit

Immediate number contained in the instruction and
the contents of an accumulator.

LEF Load Effective Places an effective address in an

ELEF Address accumulator.

LSH Logical Shift Shifts the contents of an accumulator left
or right depending on the contents of
another accumulator.

XOR Exclusive OR Forms the logical exclusive OR of the
contents of two accumulators.

XORI Exclusive OR Forms the logical exclusive OR of a 16-bit

Immediate number contained in the instruction and
the contents of an accumulator.
Table 2.7
(3 L3
ALC Manipulation
ALC Format
Each of the eight Arithmetic/Logic Class (ALC)

instructions performs a specific function upon the contents
of one or two accumulators and carry. The eight functions
are Add, Subtract, Negate, Add Complement, Move, AND,
Complement, and Increment. The instructions are
identified by the mnemonics of the eight functions, which
are ADD, SUB, NEG, ADC, MOV, AND, COM, and INC.

In addition to the specific functions performed by an
individual instruction, there is a group of general functions
all ALC instructions can perform. These general functions

include shift operations, which rotate the data left or right,
or swap the bytes. Also included are various tests that can
be performed on the data. With each test the instructions
can check the data for some condition and skip or not skip
the next sequential word, depending on the outcome of the
test. Finally, the instructions can load or not load the
results of the specific and general functions into the
destination accumulator and carry. The diagram below
shows the format of the ALC instructions.

opP

ALC Instructions

The ALC instructions are listed in Table 2.8.

Mnem | Instructions Action

ADC Add Complement | Adds an unsigned integer to the logical
complement of another unsigned number.

ADD Add Adds contents of one accumulator to the
contents of another.

AND AND Forms the logical AND of the contents of
two accumulators.

COM Complement Forms the logical complement of the
contents of an accumulator.

INC Increment Increments the contents of an
accumulator.

Mov Move Moves the contents of an accumulator
through the ALU.

NEG Negate Forms the two’'s complement of the
contents of an accumulator.

SuUB Subtract Subtracts contents of one accumulator
from the contents of another.

Table 2.8

ALC Instruction Execution
The ALC instructions use an Arithmetic Logic Unit (ALU)

to process data. The logical organization of the ALU is
illustrated in Figure 2.5.

ALC Manipulation

r 17 BITS ‘
FUNCTION
GENERATOR SHIFTER
17 |ACS _ JACD 17BITS
16 BITS |16 BITS
CARRY [accumuiators] [sk sensor |
INITIALIZER

18IT 16 BITS

17 BITS

—0
LOAD/NO LOAD

DG-00927

Figure 2.5

When an ALC instruction begins execution, it loads the
contents of carry and the contents of the accumulator(s) to
be processed into the ALU.

There are five distinct stages of ALU operation. We will
discuss these stages separately.

Carry

The ALU begins its manipulation of the data by
determining a new value for carry. This new value is
based upon three things: the old value of carry, bits 10-11
of the ALC instruction, and the ALC instruction being
executed. The ALU first determines the effect of the
instruction bits 10-11 on the old value of carry. Table 2.9
shows each of the mnemonics that can be appended to the
instruction mnemonic, the value of bits 10-11 for each
choice, and the action each one takes.

Symbols Value |Operation

[c] omitted 00 Leave carry
unchanged.

[c]=1 01 Initialize carry to O.

[c]=0 10 Initialize carry to 1.

[c]=C 11 Complement carry.

Table 2.9
Function

The ALU next evaluates the effect of the specific function
(bits 5-7) upon the data. For the instructions Move, AND,
and Complement the ALU performs the function on the
data word(s) and saves the result. The value of carry is as
it was calculated above. For the instructions Add, Add
Complement, Subtract, Negate, and Increment the result
of the function’s action upon the data word(s) may be
larger than 216 _ 1. An overflow results. In this situation,
the ALU saves the low-order 16 bits of the function result,
but it complements the value of carry calculated above.

ALC Manipulation

Data General Corporation

NOTE: At this stage of operation, the ALU does not
load either the saved value of the function result into
the destination accumulator, or the calculated value
of carry into carry.

Shift Operations

Next the ALU performs any specified shift operation on
the 17 bits output from the function generator (16 bits of
data plus the calculated value of the carry bit). Depending
on which shift operation is specified in the instruction, the
function generator output can be rotated left or right one
bit, or have its bytes swapped. Table 2.10 shows the
different shift operations that can be performed, the value
of bits 8-9 for each choice, and the action each choice
takes. Figure 2.6 shows how each shift operation works.

Symbols Value |Operation

[sh] omitted 00 Do not shift the result of the
ALC operation.

[sh]=L 01 Rotate left the 17-bit
combination of carry bit and ALC
operation result.

[sh]=R 10 Rotate right the 17-bit
combination of carry bit and ALC
operation result.

[sh]=S$§ 1 Swap the two 8-bit halves of
the ALC operation result without|
affecting carry bit.

Table 2.10
Coded
Character Shifter Operation
L Left rotate one place. Bit O is rotated into the carry

position, the carry bit into bit 15.

]

R Right rotate one place. Bit 15 is rotated into the

carry position, the carry bit into bit 0.
e

S Swap the halves of the 16-bit result. The carry is
not affected.

Figure 2.6

Standard Features

Skip Tests

The ALU can test the result of the shift operation for one
of a varicty of conditions, and skip or not skip the next
instruction depending upon the result of the test. Table
2.11 shows the tests that can be performed, the value of
bits 13-15 for each choice, and the action each choice takes.

Symbol Value |Operation

[skip] omitted 000 No skip.

[skip]=SKP 001 Skip unconditionally.

[skip]=S8ZC 010 Skip if carry bit is zero.

[skip]=SNC 011 Skip if carry bit is nonzero.

[skip]=SZR 100 Skip if ALC result is zero.

[skip]=SNR 101 Skip if ALC result is nonzero.

[skip] =SEZ 110 Skip if either ALC result or carry)|
bit is zero.

[skip]=SBN 111 Skip if both ALC result and carry,
bit are nonzero.

Table 2.11

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the result of
the shift operation into the destination accumulator, and
loads the new value of carry into carry. If the no-load bit
is 1, then the ALU does not load the result of the shift
operation into the destination accumulator, and does not
load the new value of carry into carry, but all other
operations, such as skip tests, take place. This no-load
option is particularly convenient to use when you want to
test for some condition without destroying the contents of
the destination accumulator. Table 2.12 shows how to code
the load/no-load operation.

Symbol Value |Operation

omitted 0 Load the result of the shift operation
into ACD.

1 Do not load the ALC operation result
into ACD; restore carry bit to value it
had before shifting.

Table 2.12 Codes for the load/no load option

NOTE: These instructions must not have both the
No-Load and the Never-Skip options specified at the
same time. This bit combination is used to specify
other non-ALC instructions.

The Stack

The stack is a series of consecutive locations in memory. In
their simplest form, stack instructions add items in
sequential order to the top of the stack and retrieve them
in the reverse order. Several stack areas may be defined
by the program, but only one stack may be in use at any
time. The ECLIPSE S/140 uses the push-down stack

concept to provide easily accessible temporary storage of
data, variables, return addresses, and the like.

The simplest use of the stack is for temporary storage of
the contents of up to four accumulators, which can be
stored or retrieved with one instruction. More commonly,
the stack is used to store a return block which greatly
simplifies the process of entering and returning from
subroutines.

The return block can take several forms, but it usually
consists of five words: the contents of the four accumulators
in the first four words, and the program counter and carry
in the last word pushed.

Three parameters define a stack: (1) the lower limit, or
starting location; (2) the upper limit, or stack limit; and (3)
the present top of the stack, or stack pointer. The lower
and upper limits define the area in memory which is
reserved for the stack, and the stack pointer defines the
location of the last word placed onto the stack (or the next
word available from the stack). A diagram of a stack area
is shown in Figure 2.7.

MAIN MEMORY

LOWER LIMIT

STACK T

POINTER
INCREASING
ADDRESSES

UPPER LIMIT

“STACK LIMIT”
DG-04426

Figure 2.7 The stack area

To use the stack, define the upper and lower limits, then
use the stack instructions to put items on (push onto) or
remove items from (pop off) the top of the stack. It is not
necessary to keep track of the location of the top of the
stack. This is done automatically by one of the stack control
words (stack pointer).

Stack Control Words

The stack control words are:

Stack pointer
Frame pointer
Stack limit

Stack fault address

The Stack

The locations and uses of the stack control words are
discussed in detail below.

Stack Pointer

The stack pointer contains the address of the current top
of the stack. As you do push or pop operations, the value of
the stack pointer changes so that it always points to the top
word of the stack. A push operation increments the stack
pointer contents by one, then stores the word you want to
push in the new location specified by the stack pointer. A
pop operation takes the contents of the word addressed by
the stack pointer and loads them into a register, then
decrements the stack pointer value by 1.

When you set up the stack, you usually set the value of the
stack pointer to be one less than the address of the first
stack word.

Location 403 contains the current value of the stack pointer.

Frame Pointer

Unlike the stack pointer, the frame pointer does not change
its value when push and pop operations occur. If you set
the frame pointer to contain the original value of the stack
pointer, you have a useful reference to the first stack
location.

The Save and Return instructions use the frame pointer to
save the value of the stack pointer when entering or exiting
subroutines. Since the frame pointer remains unchanged,
it allows you to call a subroutine, perform some operation,
then return to the calling program without destroying the
value of the stack pointer. This means you can restore the
original state of the calling program when you return
from the subroutine call.

Location 413 contains the value of the frame pointer.

Stack Limit

The stack limit contains the upper limit of the stack area.
Each push operation compares the stack pointer with the
stack limit to check if there is space enough to allow the
push. If the stack pointer is greater than the stack limit,
then you have exceeded the size of the stack (overflow
condition). For more information, see the next section on
“Stack Protection.”

Location 42 contains the value of the stack limit.

Stack Fault Address

If you cause an overflow or underflow, control transfers to
the stack fault routine. For more information, see the next
section on “Stack Protection.”

Location 43 contains the (possibly indirect) address of the
stack fault routine.

The Stack

Data General Corporation
Stack Protection

You can enable protection for two stack error conditions:
overflow and underflow.

Stack Overflow

Stack overflow occurs when a program pushes data into
the area beyond that allocated for the stack, i.e., beyond
the stack limit. If this occurs, data may be pushed into
areas which are reserved for other purposes, possibly
overwriting other data or instructions.

Overflow protection is provided by the stack limit. If a
stack instruction pushes data onto the stack beyond the
stack limit, a return block is pushed onto the stack, and
control is transferred to the stack fault handler. To disable
overflow protection, the stack limit should be set to 177777g.

To be meaningful, the stack limit must be 10 to 23 addresses
lower than the last word you reserve for the stack, because
stack overflow is detected only at the end of a push
operation (except in the case of the Save and the Modify
Stack Pointer instructions - see details in Chapter 4). Thus,
it is possible to push a 5- to 18-word return block starting
at the stack limit. Stack overflow will not be sensed until
the last word of the return block is pushed. After the last
word is pushed, stack overflow will be detected, and
another 5-word return block will be pushed by the stack
overflow mechanism before control is transferred to the
stack fault routine. Depending on the size of the initial
return block (from the normal 5 words up to the 18 words
used by the floating point instruction set), the potential
overflow can be 10 to 23 words long.

Stack Underflow

Stack underflow occurs when a program pops data from
the area below that allocated for the stack (i.e., pops more
words off than were pushed on). If this occurs, the program
will be operating with incorrect and unpredictable
information. Furthermore, it is possible that the program
will push data into the underflow area, overwriting data
or instructions.

For underflow protection to be enabled, the area allocated
to the stack must begin at location 401g and the stack
pointer must be initialized to 400g. If the stack pointer is
less than 4004 after a pop operation, an underflow condition
exists and a stack fault occurs.

Underflow protection can be disabled in two ways:

« Start the stack at a location greater than 4015. A stack
fault will not occur then unless the program underflows
the stack and then continues to pop words off the stack
until the stack pointer is less than 400g. Note that this
does not completely disable underflow protection - it is
always possible to pop enough words off the stack to
underflow it.

¢ Set bit 0 of both the stack pointer and the stack limit to
1. If this is done, all or a portion of the stack may reside
in page zero (locations 0-377g), or the stack may

Standard Features

underflow into page zero, without interference from
the stack underflow mechanism.

Stack Protection Faults
Stack Overflow Protection

The Save and the Modify Stack Pointer instructions check
for overflow before executing. For every other instruction
that pushes data onto the stack, a check is made for
overflow after the execution of the instruction. In both
cases, the stack pointer and stack limit are treated as
unsigned 16-bit integers and compared. If overflow has
occurred, the processor:

Sets bit 0 of the stack pointer to 0.
Sets bit 0 of the stack limit to 1.
Pushes a return block onto the stack.

Executes a jump indirect to the stack fault address.

Bit 0 of the stack pointer and stack limit are set as indicated
so that the stack limit will (temporarily) be larger than the
stack pointer. In this way, the return block pushed by the
overflow mechanism itself will not be interpreted as yet
another overflow fault, causing a loop condition. The
program counter in the return block points to the
instruction immediately following the stack instruction
that caused the fault.

Stack Underflow Protection

After every operation that pops data off the stack, a check
is made for underflow. If the stack pointer is less than
400g, and bit 0 of the stack limit is 0, a stack underflow
condition exists. In that case, the processor:

* Sets the stack pointer equal to the stack limit,
Sets bit 0 of the stack pointer to 0.
Sets bit 0 of the stack limit to 1.

Pushes a return block onto the stack.

* Executes a jump indirect to the stack fault address.

Bit 0 of the stack pointer and stack limit are set as indicated
so that the stack limit will (temporarily) be larger than the
stack pointer. In this way, the return block being pushed
onto the stack by the underflow mechanism (starting at
the stack limit) will not cause an overflow fault. The
program counter in the return block points to the
instruction immediately following the stack instruction
that caused the fault.

Stack Fault Handler

The stack fault handler (created by the programmer)
determines the nature of the fault. It also resets the
appropriate values, and takes any other appropriate action,
such as allocating more stack space or terminating the
program. Note that the stack fault handler must reset bit 0
of the stack pointer and stack limit to their original values.

2-15

Initializing the Stack Control Words

stack control words before performing the
first operation on the stack. The initialization rules are:

i#ialina ¢ha
Initialize the

Stack Pointer

Initialize the stack pointer to the beginning address of the
stack minus one. If you wish stack underflow protection,
initialize the stack pointer to 400z and start the stack at
401g. Otherwise, start the stack at a location greater than
4014. To place all or a portion of the stack in page zero, or
to disable underflow protection, set bit 0 of the stack pointer
and the stack limit to 1.

Stack Limit

Initialize the stack limit to a value greater than the stack
pointer. If you wish stack overflow protection, initialize
the stack limit to the last allocated stack address minus at
least 10;4. Otherwise, initialize the stack limit to T77717g. To
place all or a portion of the stack in page zero, set bit 0 of
the stack pointer and the stack limit to 1.

Stack Fault Address

Initialize the stack fault address to an address (determined
by the programmer) that contains the routine to handle
stack overflow or underflow. Bit 0 may be set to 1 to
indicate an indirect address.

Frame Pointer

The frame pointer will have no meaning until the first use
of the Save instruction.

Examples

Figure 2.8 shows a stack area of 503 words with underflow
protection.

STACK
POINTER 377
4004 I ,
4
00 FIRST WORD
401 OF STACK
402
STACK
LMIT — 436
4365 437
440
446
447
450
e
DG-00932a

Figure 2.8 Underflow protected stack area

The Stack

Figure 2.9 shows a stack area of 503 words in page zero

with overflow protection.

STACK
POINTER —# 77 FIRST WORD
1000775 100 OF STACK
NOTE: BIT O
SETTO1
STACK
LIMIT — 135
1001355
147
150
DG-00932b b s
DG-00932b

Figure 2.9 Overflow protected page zero stack area

The Stack

Data General Corporation

Standard Features

Figure 2.10 shows a stack area of 1003 words with no
protection.

STACK (T
POINTER __ 737
FIRST WORD
100437 -~
s 440 OF STACK
NOTE: BIT 0 —— #
SETTO1 e
\ STACK 537
LmIT 540
177777, _1 SR
DG-00932¢

Figure 2.10 Unprotected stack area

Stack Instructions

The instructions that control use of the stack are listed in
Table 2.13.

Mnem | Instructions Action

FPOP [Pop Floating Pops an 18-word floating point return
Point State block off the stack.

FPSH Push Floating Pushes an 18-word floating point return
Point State block onto the stack.

MSP Modify Stack Changes the value of the stack pointer and
Pointer checks for overflow.

POP Pop Muiltiple Pops 1 to 4 words off the stack and places
Accumulators them in the indicated accumulators.

POPB |Pop Block Returns control from a System Call
routine or an /O interrupt handler that
does not use the stack change facility of
the Vector instruction.

POPJ |Pop PC And Jump |Pops the top word off the stack and places
it in the program counter.

PSH Push Multiple Pushes the contents of 1 to 4 accumulators

Accumulators on the stack.

PSHJ [Push Jump Pushes the address of the next sequential
instruction on the stack and places an
effective address into the program counter.

PSHR | Push Return Pushes the address of the PC, plus 2,

Address onto the stack.

RSTR |Restore Returns control from certain types of 1/0
interrupts.

RTN Return Returns control from subroutines that issue
a Save instruction at their entry points.

SAVE |Save Saves the information required by the
Return instruction.

SYc System Call Pushes a return block and indirectly places
the address of the System Call handler
in the program counter.

vCT Vector on Performs various interrupt functions. See

Interrupting the 1/O section in this chapter.
Device Code

Table 2.13 Stack instructions

Reserved Storage Locations

The following are reserved storage locations in the
ECLIPSE S/140. The CPU uses them for specific functions;
you should not use them during normal operations.

The addresses, names, and functions of these locations are
given below. The notation indirectable means that bit 0
may be set to indicate that this is an indirect address.

The locations shown in Table 2.14 are in unmapped logical
address space.

Reserved Storage Locations

Loc Name Function
0 I/O RETURN Return address from 1/0
ADDRESS interrupt; first instruction of
Auto-restart routine.
1 1/O HANDLER Address of the |/0 interrupt
ADDRESS handler (indirectable).
2 SC HANDLER Address of the System Call
ADDRESS instruction handler
{indirectable).
3 PF HANDLER Address of the protection fault
ADDRESS handler (indirectable).

Table 2.14 Reserved locations in unmapped logical address

space

The locations shown in Table 2.15 may be in unmapped
logical address space or in Map A or Map B logical address

space. They are used by the VCT instruction.

Loc Name Function

4 VECTOR STACK |Address of the start of the vector
POINTER stack (not indirectable).

5 CURRENT Current interrupt priority mask.
MASK

6 VECTOR STACK |[Address of the last normally
LIMIT usable location in the vector

stack (not indirectable).

7 VECTOR STACK | Address of the vector stack fault
FAULT handler (indirectable).
ADDRESS

Table 2.15 Reserved locations used by the Vector instruction

The locations shown in Table 2.16 are in the same address

space as the instructions using them.

Program Execution

Data General Corporation

Loc Name Function

20-27 AUTO-INCO Auto-incrementing locations.
through
AUTO-INC7

30-37 AUTO-DECO Auto-decrementing locations.
through
AUTO-DEC7

40 STACK Address of the top of the stack
POINTER (not indirectable).

41 FRAME Address of the frame reference
POINTER within the stack (not

indirectable).
42 STACK LIMIT Address of the last normally
usable location in the stack (not
indirectable).
43 STACK FAULT |Address of the stack fault
ADDRESS handler {indirectable).

44 XOP ORIGIN Address of the start of XOP (not
ADDRESS indirectable).

45 FLOATING Address of the floating point
POINT FAULT fault handler (indirectable).
ADDRESS

46- 47 — Reserved for future use.

Table 2.16 Reserved locations in the same address space as
the instructions using them

Program Execution
Sequential Operation

A 15-bit register called the program counter always
contains the address of the instruction currently being
executed. The program counter is incremented by one
after each instruction. It can normally address the complete
logical address space, i.e., 0 through 77777g, inclusive, a
total of 32,768 word locations. The address after 777773 is 0,
and no indication is given when the counter rolls from
777775 to 0 in the course of sequential processing.

Program Flow Alteration

You can alter the program flow from sequential operation
in two ways. Jump instructions alter the program flow by
inserting a new value into the program counter.
Conditional skip instructions alter the program flow by
incrementing the program counter an extra time if a
specified test condition is true. In either case, sequential
operation continues with the instruction addressed by the
updated value of the program counter. Figure 2.12
illustrates the effects of these instructions.

NOTE: Do not use a conditional skip immediately
before a 2-word instruction. The conditional
instruction causes a l-word skip, which results in an
attempt to execute the second word of the instruction
as a 1-word instruction.

Standard Features

SEQUENTIAL
. PROGRAM
T r 4 FLOW /0
1 | SEQUENTIAL INCREASING o INTERRUPT
[PROGRAM ADDRESSES : OCCURS
INCREASING | FLOW | £y
ADDRESSES N ! s —
S JUMP s 2
T PROGRAM ’ y
) R FLOW o :
U) J
C] c]
T 0y
T | | <;/
0 SKIP N -~ CONTINUED
N PROGRAM A PROGRAM
S 7l J rLOW l FLOW
- .
DG-00543 DG-00544

Figure 2.11 Program flow alteration

Program Flow Interruption

The normal flow of a program may be interrupted by
external or exceptional internal conditions, such as 1/0
interrupts or MMPU faults. When this occurs, the contents
of the program counter are saved, so that after the interrupt
Is serviced, control will return to the right place. The
address of the starting instruction for the proper fault or
interrupt handler is then placed in the program counter
and sequential operation continues within that program,
When the fault or interrupt handler has serviced the
interrupt, control is returned to the interrupted program
at the saved address. Figure 2.13 is a diagram of the effect
of an interrupt on normal program flow.

Figure 2.12 Program fiow interruption

Program Flow Alteration Instructions

Program flow alteration and conditional instructions are
shown in the following tables.

In Table 2.17, several instructions have both short and
long forms. The sixteen bit short form directly specifies
either a memory address from 0 to 255 or a small area in
memory surrounding the present value of the program
counter or an accumulator. The thirty-two bit long form

1 ifi naq frues N 4o PPRPA
directly specifies any address from 0 to 7777 7g.

Program Execution

Mnem | Instructions Action
CLM Compare To Compares a signed integer with two other
Limits numbers and skips if first integer is
between the other two.

DSPA |Dispatch Compares a signed integer with two other
numbers and continues sequential
execution if the integer is not between the
others; otherwise, uses the integer as an
index into a table and places indexed value
in the program counter.

DSz Decrement And | Decrements the addressed word, then

EDSZ | Skip If Zero skips if the decremented value is zero.

1SZ Increment And Increments the addressed word, then skips

EISZ Skip If Zero if the incremented value is zero.

JMP Jump Places an effective address in the program

EJMP counter.

JSR Jump To Increments program counter and stores
EJSR Subroutine incremented value in AC3; then places a
new address in the program counter.
POPB Pop Block Pops a return block off of the stack.
POPJ Pop PC And Jump |Pops the top word off the stack and places
it in the program counter.
PSHJ Push Pushes the address of the next sequential
instruction onto the stack and places a
new address in the program counter.
RSTR Restore Returns control from |/O interrupt handlers
that use the stack change facility of the
VCT instruction.
RTN Return Returns control from a subroutine entered
via Save instruction.
SGE Skip If ACS Compares two signed integers in two
Greater Than Or | accumulators and skips if the first is greater
Equal To ACD than or equal to the second.

SGT Skip If ACS Compares two signed integers in
Greater Than accumulators; skips if first is greater than
ACD the second.

SKP[t] |1/0O Skip Skips if the 1/0 condition t is true.

SNB Skip On Nonzero |References a single bit in memory via bit

Bit pointer; skips if bitis 1.
SYC System Call Turns the MAP off if on. Pushes a return
SCL block onto the stack places address of
svC System Call handler in program counter.

SZB Skip On Zero Bit | References a single bit in memory via bit
pointer; skips if bit is O.

SZBO | Skip On Zero Bit, |References a single bit in memory via bit

Set To 1 pointer; skips if bit is O and also sets the
bit to 1.
VvCT Vector On Identifies highest priority interrupt; passes
Interrupting control through a table to a handler routine
Device Code for device.

XOP Extended Pushes a return block onto the stack,

XOP 1 Operation indexes into the XOP table and transfers
control to another procedure.

XCT Execute Executes contents of an accumulator as
an instruction.

Table 2.17 Program flow alteration and conditional instructions

Table 2.18 summarizes the skip instructions that test

condition codes in the floating point status register.

Table 2.19 summarizes the condition tests available for the
SKP[t] instruction. (This instruction tests the condition
codes of a peripheral device, the power-fail monitor or the

interrupt system.)

Program Execution

Data General Corporation

Table 2.20 summarizes the skip options of the ALC

instructions.
Mnem | Instructions Action
FNS No Skip The next sequential word is executed.
FSA Skip Always The next sequential instruction is skipped.
FSEQ |Skip On Zero Skips the next sequential word if the Z flag
in the FPSR is 1.
FSGE |Skip On Greater |Skips the next sequential word if the N

FSGT

FSLE

FSLT

FSND

FSNE

FSNER

FSNM

FSNO

FSNOD

FSNU

FSNUD

FSNUO

Than Or Equal To
Zero

Skip On Greater
Than Or Equal To
Zero

Skip On Less
Than Or Equal To
Zero

Skip On Less
Than Zero

Skip On No Zero
Divide
Skip On Non-Zero

Skip On No Error

Skip On No
Mantissa
Overflow

Skip On No
Overflow

Skip On No
Overflow And No
Zero Divide

Skip On No
Underfiow
Skip On No
Underflow And
No Zero Divide
Skip On No
Underflow And
No Overflow

flag of the FPSR is 0.

Skips the next sequential word if both the
Z and N flags of the FPSR are O.

Skips the next sequential word if either
the Z flag or the N flag of the FPSR is 1.

Skips the next sequential word if the N
flag of the FPSR is 1.

Skips the next sequential word if the divide
by zero (DVZ) flag of the FPSR is 0.

Skips the next sequential word if the Z flag
of the FPSR is O.

Skips the next sequential word if bits 1-4
of the FPSR are all 0.

Skips the next sequential word if the
mantissa overflow {(MOF) flag of the FPSR
is 0.

Skips the next sequential word if the
overflow (OVF) flag of the FPSR is 0.

Skips the next sequential word if both the
overflow (OVF) flag and the divide by zero
(DV2) flag of the FPSR are O.

Skips the next sequential word if the
underflow (UNF) flag of the FPSR is 0.

Skips the next sequential word if both the
underflow (UNF) flag and the divide by
zero (DV2) flag of the FPSR are O.

Skips the next sequential word if both the
underflow (UNF) flag and the overflow
(OVF) flag of the FPSR are O.

Table 2.18 Floating point skip instructions

Symbol Value |Test

[t]=BN 00 Tests Busy flag for nonzero.
[t]=BZ o1 Tests Busy flag for zero.
[t]=DN 10 Tests Done fiag for nonzero.
[t]=DZ 1 Tests Done flag for zero.

Table 2.19 SKP/[t] condition tests

Standard Features

Symbol Value |Operation

|skip/ omitted 000 No skip.

[skip]=SKP 001 Skip unconditionally.

[skip]=SZC 010 Skip if Carry bit is
zero.

[skip] =SNC o1 Skip if Carry bit is
nonzero.

[skip] =SZR 100 Skip if ALC resuit is
zero.

[skip]=SNR 101 Skip if ALC result is
nonzero.

[skip]=SEZ 110 Skip if either ALC
result or Carry bit is
zero.

[skip]=S$BN 11 Skip if both ALC
result and Carry bit
are nonzero.

Table 2.20 ALC skip options

Extended Operation Feature

The extended operation feature (XOP) provides an
efficient method of transferring control to and from
procedures. It enables the user to transfer control to any
one of 48 procedure entry points.

Extended Operation Instructions

There are two extended operation instructions in the
ECLIPSE S/140 instruction set. They are shown in Table
2.21.

Mnem | Instructions Action

xXopP Extended
Operation

Pushes a return block on the stack; places
the address of the specified accumulators
into AC2 and AC3; and transfers control
to one of thirty-two other procedures via
the XOP table.

Same as XOP except that 32 is added to
the entry number before entering the XOP
table, and only 16 table entries can be
specified.

XOP1 Extended
Operation

Table 2.21 Extended operation instructions

Input/Output

This section contains descriptions of the Input/Output
capabilities in the ECLIPSE S/140. We discuss the general
operation of the I/O system, interrupts, and vectoring.

The ECLIPSE S/140 has a 6-bit device selection network,
corresponding to bits 10-15 in the I/0 instruction format.
The devices are connected to this network in such a way
that each device will only respond to commands sent with
its own device code. With a 6-bit device code, 64 separate
devices can be individually controlled. Certain specific

codes are reserved for the CPU and certain processor
options; the remainder reference I/O devices. The
assembler recognizes mnemonics for those devices assigned
nondahuy Nata MHlanaral A ansnnmdadbn 1ict ~Fthnnn o memvridad
aLvuuc U] dsara nacuicial. 4x LUIII!}LCLC 41D0L UL L11TDT 1D PIUVIUCU

in Appendix B of this manual.

See the Programmer’s Reference Manual - Peripherals
(DGC No. 014-000632 for details about programming
specific devices in the I/0 system.

Busy and Done Flags

Most I/0 devices are controlled through the manipulation
of Busy and Done flags. Flag values are changed through
the use of optional flag command mnemonics. The effects
of the flag commands are device dependent.

Programmed 1/0O

Programmed I/0 transfers data one word at a time under
direct program control. For slow devices, such as teletypes,
which transfer one character at a time and require an
immediate echo, programmed I/0 is the fastest method of
1/0 operation.

For faster devices, programmed I/O has several
disadvantages. Several instructions are required for the
transfer of each word, and other CPU operations must
wait for the transfer to be completed. Because data must
be transferred to or from an accumulator, an additional
step is required if the data must be stored in or retrieved
from memory. :

Data Channel 1/0

Data channel I/0 permits data transfer in blocks of words,
with program control necessary only at the start of the
operation. The CPU stops during each word transfer; but
the transfer is made directly to or from memory, so no
additional steps are required. Data channel I/O very
efficiently transfers large blocks of data between memory

and a fast I/0 device.

Dual data channel transfer rates are 1.4 Mbytes per second
normal input, 1.1 Mbytes per second normal output; and
2.0 Mbytes per second fast input, 1.4 Mbytes per second
fast output.

At the fast rates, the CPU is effectively stopped. At normal
rates, however, processing continues data between
transfers.

Data channel devices are controlled in three phases. Phase
I specifies the starting location in memory for the first
word to be transferred. Phase II loads the two’s
complement of the number of words to be transferred into
the machine. These two phases are performed with
programmed I/O instructions. Phase III issues a flag
command. Once a flag command is issued, data transfer
takes place when both the data channel device and the
processor are ready. No further program control is
required.

Input/Output

When a data channel device is ready to send or receive
data, it issues a data channel request to the processor. The
processor synchronizes any requests that are coming in. At
certain specified points, the CPU pauses to honor all
previously synchronized requests. When a request is
honored, a word is transferred directly via the data channel
between the device and memory without specific action by
the program.

All requests are honored according to the relative position
of the requesting device on the I/0 bus. Data channel
service begins with the device that is physically closest on
the bus. The next closest device is serviced next, and so on,
until all requests have been honored. New requests are
synchronized concurrently with the servicing of older
requests. If a device continually requests data channel
service, it prevents all devices further out on the bus from
gaining access to the channel.

For more information on the data channel, see the
Programmer’s Reference Manual - Peripherals (DGC No.
014-000632) and the User’s Manual - Interface Designer’s
Reference (DGC No. 014-000629).

1/0 Interrupts

The I/0 interrupt system in the ECLIPSE S/140 manages
programmed I/0 by permitting the program to ignore I/0
devices until one requires service. After handling all data
channel requests, the processor completes execution of any
incomplete instruction, services any further data channel
requests that were synchronized while the instruction was
executing, then services outstanding I/0O interrupt
requests. When all requests have been serviced, program
execution continues.

Interrupt System Definitions

Interrupt request line — The common connection between
all I/0 devices and the computer. In general, an I/0 device
places a request on the interrupt request line while it sets
Busy to 0 and Done to 1. That is, it signals that it is ready to
send or receive data. The program must use a separate
means to determine which device is requesting an
interrupt.

Interrupt On flag — The CPU flag which controls the
status of the interrupt system. When the flag is set to 1, the
CPU will respond to and process interrupts. If the flag is
set to 0, the CPU will not examine the interrupt request
line.

Priority mask — The set of bits that controls the priority
interrupt system. Every I/0 device is connected to at least
one of the sixteen bits in the priority mask. When a mask
bit is set to 1, the devices connected to it cannot place a
request on the interrupt request line. The devices can set
their Busy flags to 0 and their Done flags to 1. Since the
program controls the mask, devices are at times inhibited
in order to conform to a priority system.

Input/Output

Data General Corporation

Base level — A program state in which no I/0 devices are
inhibited (all mask bits are 0) and no interrupts are
processed. User program execution takes place here.

Non-base level — A program state in which some I/0
devices are masked or interrupts are processed. Interrupt
handlers operate in this state.

In the next section we will discuss interrupts. We will first
consider interrupts without a priority system; and then,
interrupts within a priority system.

Processing an Interrupt Without a Priority System

When a device completes an operation and is ready to send
or receive more data, it sets the Busy flag to 0 and the
Done flag to 1. The device bit in the priority mask is 0, so
the device places a request on the interrupt request line.
At the next opportunity, the interrupt is serviced.

To service an interrupt, the CPU first sets the Interrupt
On flag to 0 to prevent interruption of the first part of the
interrupt service routine. Second, it disables the user map.
Then the CPU places the contents of the updated program
counter into physical memory location 0 and jumps indirect
via location 1, where it expects to find the address (direct
or indirect) of the interrupt service routine.

The interrupt service routine (supplied by the user) must
save any accumulators and the carry bit if they are used,
and determine which device requested the interrupt. Then
the service routine tends to the device.

The service routine can use the I/O Skip or Interrupt
Acknowledge instructions to identify the device requesting
the interrupt. Or it can use the Vector on Interrupting
Device Code instruction to save the return information and
identify the interrupting device.

The Interrupt Acknowledge instruction returns the 6-bit
device code of the device requesting the interrupt. The
Vector instruction, in addition to saving return information
on the stack, performs an Interrupt Acknowledge
instruction and uses the code returned as an index into a
table of addresses. These addresses point to the beginnings
of the various device service routines.

After servicing the device, the interrupt routine should
restore the saved values of the accumulators and the carry
bit, set the Interrupt On flag to 1, and return to the
interrupted program. The Interrupt Enable instruction sets
the Interrupt On flag to 1, and allows the processor to
execute one more instruction before allowing the next
interrupt.

This next instruction should return control to the
interrupted program. Since the updated value of the
program counter was placed in location 0 by the CPU at
the start of the interrupt service routine, a jump indirect,
via location 0, returns control to the proper location in the
interrupted program.

Standard Features

Priority Interrupt System

The need for a priority interrupt system is shown below.

If the Interrupt On flag remains 0 throughout the interrupt
service routine, the CPU cannot be interrupted while an
I/0 device is being serviced. All other devices, therefore,
must wait until the first device is finished. If the Interrupt
On flag is returned to 1 after the initial portion of the
service routine, any I/0 device can interrupt the servicing
of any other I/0 device. This might be reasonable for
some devices, but it is not for others. Therefore, a system
of interrupt priorities is needed to permit some devices to
interrupt certain others without disrupting the orderly
processing of data.

A rudimentary priority system will result from keeping
the Interrupt On flag 0 throughout the service routine.
The priority of the I/0 devices is then determined either
by the order in which the I/0O Skip instructions poll the
1/0 devices, or (using the Interrupt Acknowledge or Vector
instructions) by the physical location on the I/0 bus of
devices requesting an interrupt. Both methods, however,
are very inflexible.

The ECLIPSE S/140 has the hardware and instructions
for a flexible and efficient priority system, with up to
sixteen levels of priority interrupts. The interrupt service
routine controls the priority system, and changes the
priorities of various devices as necessary.

The Mask Out Instruction

Toset up asystem of priorities, place a Mask Out instruction
in the interrupt service routine for each device. This
instruction changes the priority mask and prevents certain
devices from requesting interrupts. If particular bits in the
priority mask are changed to 1, the devices are masked
out. Devices controlled by those bits are disabled from
requesting interrupts. Priority mask bits that correspond
to devices not masked out, are set to 0.

If the priority interrupt system is called in each interrupt
service routine, devices that do not merit an interrupt will
be masked out. The process changes each time a different
device is serviced, resulting in a system of priorities. The
device with the highest priority will be able to interrupt
all other devices; and the lowest priority device will be
interruptible by other devices.

Devices which operate at roughly the same speed are
controlled by the same bit in the mask. Appendix B lists
the mask bit assignments along with the device code
assignments. Although the bit assignments are fixed, the
priorities are set by the programmer to fit the situation
and are dynamically adjustable.

Interrupt Handlers and Service Routines

The initial portions of a multiple priority level interrupt
handler may be damaged if the routine is interrupted. To
prevent this from occurring, the processor has
automatically set the Interrupt On flag set to 0. After

receiving control, the interrupt handler must save return
information and store it in a unique place to prevent its
being overwritten by data from another interrupt.

Next, choose a service routine that will save the current
priority mask and establish a new one.

Then, use the Interrupt Enable instruction to set the
Interrupt On flag to 1. This permits those devices not
restricted by the priority mask to interrupt if necessary.

After servicing the interrupt, the interrupt service routine
should:

* Disable the interrupt system.

* Reset the priority mask to the condition it was in when
the routine was entered.

¢ Restore the accumulators and the carry bit.
* Enable the interrupt system.
* Return control to the interrupted program.

Stack Changes

The interrupt handler uses a stack. Instead of working
with the user stack, you can define a new stack which is
reserved for the interrupt handler. This overcomes the
following two problems:

e There may not always be a defined user stack.

¢ The user stack pointer may rest just below the stack
limit. The interrupt handler would then overflow the
user stack.

The stack environment should be changed whenever a
transition is made from base level to non-base level or
vice versa.

If an interrupt is being processed when another interrupt
occurs, the stack environment should not be changed, since
this has already been done for the first interrupt. If desired,
return information to permit an easy return to processing
the first interrupt can be pushed onto the new stack before
the second interrupt is processed.

The Vector instruction handles stack changes by changing
modes to accommodate different situations. We discuss the
uses for this instruction in the next section.

Using the Vector Instruction

The Vector on Interrupting Device Code instruction
simplifies the design of an interrupt handler by
streamlining numerous steps into one instruction.

The Vector instruction contains five modes, each suited to
a different circumstance.

The simplest mode, similar to the Interrupt Acknowledge

instruction, executes rapidly and does not save information
about the processor state at the time of the interrupt.

Input/Output

The most complex mode saves information on the state of
the machine upon interruption, stores the user stack
parameters, creates a new stack and resets the priority
mask. This mode executes more slowly than the simpler
mode described above.

To choose the correct mode, you must weigh the importance
of such capabilities as saving the machine state, creating a
separate vector stack, and changing the priority mask,
against the time added on to an interrupt. You are not
committed to one mode throughout the interrupt handler.

Mode A is used for devices that require immediate interrupt
service; i.e., unbuffered devices with very short latency
times, or real time processes that require immediate access.
This mode executes rapidly and does not save data on the
machine state at interrupt.

Modes B through E Each mode creates a priority structure
that permits a device needing immediate service to
interrupt the servicing of certain other devices. These
modes execute more slowly than Mode A.

Modes D and E Use these modes only when operating at
base level (not while interrupts are being processed). They
create a new vector stack. The interrupt handler stores the
(old) user stack parameters in it. Once the vector stack has
been created, do not attempt to recreate it if a new interrupt
occurs before the one in progress finishes.

Mode E pushes a return block onto the vector stack to
make the return to the first interrupt handler easier.

Modes B and C May be used during non-base level
operations (while interrupts are processed). These modes
do not create a new stack.

Mode C also pushes a new return block onto the stack.

Chapter 5 gives more details on the Vector instruction.

Special Mnemonics

Some of the ECLIPSE S/140 I/0 instructions have special
mnemonics which can be used in place of the standard
mnemonics. Note that the mnemonics for controlling the
states of flags cannot be appended to these special
instruction mnemonics.

If you want to alter the state of the Interrupt On flag
while performing a Mask Out instruction, you must use
the full mnemonic:

DOBf ac,CPU
instead of the special mnemonic:

MSKO ac

In this example, the special mnemonic sets bits 8 and 9 to
00.

Input/Output

I/0 Instructions

Data General Corporation

Table 2.22 lists the I/O instructions for the ECLIPSE S/140.

Mnem | Instructions Action
DIA Data In A Transfers data from the A buffer of an 1/0
device to an accumulator.
DIB Datain B Transfers data from the B buffer of an 1/0
device to an accumulator.
DIC Datain C Transfers data from the C buffer of an I/O
device to an accumulator.
DOA Data Out A Transfers data from an accumulator to the
A buffer of an 1/0 device.
DOB Data Out B Transfers data from an accumulator to the
B buffer of an 1/0 device.
DOC Data Out C Transfers data from an accumulator to the
C buffer of an /O device.
DOC Halt Stops the processor.
CPU
DIB CPU |Interrupt Returns the device code of an interrupting
Acknowledge device.
INTDS |interrupt Disable |Sets Interrupt On flag to O.
(NIOC
CPU)
INTEN |Interrupt Enable | Sets interrupt On flag to 1.
(NIOS
CPU)
DIC CPU |Reset Sets all Busy and Done flags and the
priority mask to O.
DOB Mask Out Changes the priority mask.
CPU
NIO No 1/0 Transfer Changes a flag without causing any other
effect.
DIA CPU |Read Switches Places the contents of the console data
switches into an accumulator.
SKP 1/0O Skip Tests a flag and skips the next sequential
word if the test condition is true.
SKP CPU |CPU Skip Tests the Interrupt On or Power Fail flag
and skips the next sequential word if the
test condition is true.

Table 2.22 1/0 instructions

Flag Commands

Table 2.23 summarizes the flag commands issued where
the optional mnemonics are used in I/0 instructions.

Mnem | Instructions Action
[f] 00 No operation.
omitted
[f]=$§ 01 Issues a Start command to the device.
[f]=C 10 Issues a Clear command to the device.
[f]=P 1 Issues a Pulse command to the device
Table 2.23

Table 2.24 describes the tests performed on the device
Busy and Done flags when the optional mnemonics are
used in I/O instructions.

Standard Features

Symbol Value |Test

[t]=BN 00 Tests Busy flag for nonzero.
[t]=BZ 01 Tests Busy flag for zero.
[t]=DN 10 Tests Done flag for nonzero.
[t]=DZ 1 Tests Done flag for zero.

Table 2.24 SKP/t] condition tests

Table 2.25 applies to I/0 instructions using the device code
mnemonic CPU (device code 77g). These instructions
operate on the Interrupt On and Power Fail flags, rather
than testing the Busy and Done flags.

Mnem | Instructions Action
[f] 00 Does not alter the Interrupt On flag.

omitted

[f]=S |01 Sets Interrupt On flag to 1.

[f]=C [10 Clears Interrupt On flag to O.
[fl=P |11 Leaves Interrupt On flag unchanged

{used only with VCT).
[t]=BN |00 Tests Interrupt On flag for nonzero.
[t]=BZ |01 Tests Interrupt On flag for zero.
[t]=DN |10 Tests Power Fail flag for nonzero.
[t]=DZ {11 Tests Power Fail flag for zero.
Table 2.25

Basic 1/0 Devices

The ECLIPSE S/140 includes two basic I/0 devices. They
are, the real time clock (RTC) and an asynchronous line
controller (ALC)

[¥p ¢ WLUY N

Real Time Clock

The real time clock generates low frequency I/0
interrupts. Use these interrupts in programs that must
perform time calculations independently of CPU timing.
A program can select one of four clock frequencies: 10Hz,
100Hz, 1000Hz, or AC line frequency.

When the real time clock starts, the first program interrupt
request can come at any time. After the first interrupt,
succeeding interrupts come at the clock frequency,
provided that the program always sets Busy to 1 before the
clock period expires. After power up or IORST, the clock is
set to AC line frequency. Line frequency pulses are
available immediately, but five seconds must elapse before
a steady pulse train is available from the clock for other
frequencies.

A single instruction programs the real time clock. Table
2.26 illustrates that instruction.

Mnem | Instructions Action
DOA Select RTC Selects the RTC interrupt frequency.
Frequency

Table 2.26 Read time clock instruction

Asynchronous Line Controller

0C asynCnronous Une conirolier 1s ne communications

interface between the ECLIPSE S/140 and its primary
terminal. The controllers support communication at
selected baud rates from 50 to 19200, in seven-bit codes
with program generated parity, or in eight-bit codes with
no parity. One or two stop bits may be used with either
format. ALC input and ALC output each have unique
device codes and are controlled by their own Busy and
Done flags.

The asynchronous line controller is set up to transmit and
receive 8-bit characters without parity checking. You can
send and receive 7-bit characters with even, odd, or mark
parity under program control by using the high order bit
in the 8-bit character (bit 8 in the AC) as a parity bit. On
transmission, the program which drives the asynchronous
line controller may calculate and insert the correct parity
bit. On reception, the program may calculate and check
parity on the received character.

You must also be aware of timing constraints on the
receiver portion of the controller. As a character is
received, the controller places it into an input character
buffer, sets the Done flag to 1, and the Busy flag to 0. If the
program controlling the receiver does not transfer the
character before the next character is received, the new
character overwrites contents of the input character buffer,
and the previous character is lost. At 50 baud, the minimum
time before the previous character is overwritten is 220
milliseconds; at 19200 baud the minimum time is
approximately 521 microseconds.

One instruction programs the asynchronous line input
(ALI). The instruction is shown in Table 2.27.

Mnem | Instructions Action

DIA Read Input Buffer | Reads a character from the input buffer.

Table 2.27 Asynchronous line input instructions

A single instruction programs the asynchronous line output
(ALO). See Table 2.28.

Basic I/0O Devices

Mnem | Instructions Action

DOA Load Output

Buffer

Places a character in the output buffer.

Table 2.28 Asynchronous line output instruction

Power Fail/Auto-restart

When power is turned off, the contents of semiconductor
memory are lost. The state of the accumulators, the
program counter, and the various flags in the CPU and SC
memory then are indeterminate. If you have battery
backup the power fail facility provides a fail-soft capability
in the event of unexpected power loss.

In the event of power failure, there is a delay of one to two
milliseconds before the processor shuts down. The power
fail facility senses the loss of power, sets the Power Fail
flag to 1 and requests an interrupt. The interrupt service
routine can then use this delay to store the contents of the
accumulators, the carry bit, and the current priority mask.
The interrupt service routine should also save location 0
(to enable return to the interrupted program), put a Jump
to the desired restart location in location 0, and then execute
a HALT. One to two milliseconds is enough time to execute
1000 to 1500 instructions, so there is more than enough
time to perform the power fail routine.

As long as the batteries have not been exhausted, (up to
one hour for minimum memory configuration) when
power is restored, the action taken by the automatic restart
portion of the power fail facility depends upon the position
of the lock switch on the front panel. If the switch is not in
the lock position, the CPU remains stopped after power is
restored. If the switch is in the lock position, then after
power is restored, the CPU executes the instruction
contained in physical location 0, thereby transferring
control to the restart procedure.

Power Fail Instructions

The power fail instructions test the state of the power fail
flag. They use the device code 77g. The assembler
recognizes the mnemonic CPU for this device code.

The power fail facility has no priority mask bit in the
priority mask. It responds to the Interrupt acknowledge
and Vector instructions with device code 0.

Power fail has the lowest priority of all devices for the
Interrupt Acknowledge instruction, but highest priority

for the Vector instruction.

The power fail instructions are shown in Table 2.29.

Error Checking and Correction
Rev. 02

Data General Corporation

Mnem | Instructions Action

SKPDN, |Skip If Power Fail |If the Power Fail flag is 1 {i.e., power is

CPU Flag Is One failing), the next sequential word is
skipped.
SKPDZ, |Skip If Power Fail |If the Power Fail flag is O {i.e., power is
CPU Fiag Is Zero not failing), the next sequential word is

skipped.

Table 2.29 Power fail instructions

Error Checking and Correction

The Error Checking and Correction (ERCC) facility is
designed for applications requiring either a high degree of
reliability for the main memory of a system, or a graceful
“fail-soft” capability in the event of memory errors. The
ERCC facility will detect and correct all single-bit memory
errors. If no error occurs, memory cycle time is identical
to non-ERCC cycle time.

Every ERCC memory word is twenty-one bits long. These

twenty-one bits consist of sixteen data bits followed by

five ERCC check bits. Each time the CPU writes data into

a location, a hardware encoder constructs a 5-bit check

field from the sixteen data bits. Each time the CPU reads

data from a memory location, the hardware encoder

constructs another five bit check field based on the sixteen

bits read from memory and the five ERCC bits written
into memory. If that code is all zeroes, no error occurred
and the ERCC facility passes the sixteen data bits on to the
CPU. Otherwise, an error occurred. The memory pauses
while the ERCC facility corrects the single bit, requests an
interrupt and passes the corrected data on to the CPU.

ERCC logic can detect and correct all single-bit errors. In
the rare event that a multi-bit error occurs, ERCC either
detects it and reports it with no correction, or incorrectly
interprets it as a single-bit error and complements the bit.

ERCC Instructions

One I/0 instruction sets the mode of operation of the
ERCC facility. ERCC contains a Done flag which is set to 1
after an error has been detected and the ERCC initiates an
interrupt request. Two instructions interrogate ERCC after
the detection and correction of an error.

The ERCC facility has no Busy flag and no mask bit in the
priority mask. The device code for the ERCC facility is 2.
The assembler recognizes the mnemonic ERCC for this
device code.

ERCC instructions use a specified accumulator to receive
data or contain the control information.

Table 2.30 shows the ERCC instructions.

Standard Features

Mnem | Instructions Action

DOA Enable ERCC Enables the ERCC facility according to the
setting of bits 13-15 of the specified

accumulator.

DIA Read Memory Returns the low-order bits of the memory

Fault Address location which has produced an error.
DIB Read Memory Returns a 5-bit error code that tells which
Fault Code bit was in error. Also returns the high-order

bits of the memory fault address.

Table 2.30 ERCC instructions

Virtual Console

The virtual console (VC) allows you to interact with the
computer through the system terminal connected to the
CPU’s on-board asynchronous communications interface.
Simple commands which you enter on the terminal
keyboard allow you to examine and/or modify processor
registers or memory locations; start, stop, and continue
program execution; and, initiate a program load from a
selected device.

On power up, the computer performs a self-test. After a
successful completion of the self-test, the following
message appears on the terminal:

OK

1000000
!

OK followed by 000000 indicates that the self-test ran
successfully. The digits following the ! are the contents of
the program counter; on power-up, they are all zeroes. The
next ! is the VC prompt; it tells you that the virtual console
is ready and at your service.

In addition to power-up, the VC is entered when one of
the following occurs:

e A HALT instruction is executed.

* The RESET switch on the front console is pressed and
the front console is unlocked.

* The BREAK key on the system terminal is pressed, the
front console is unlocked, and the CPU is not in a
microcode loop.

Under these conditions, the incremented contents of the
program counter are typed when the VC is entered. These
are followed by the ! VC prompt. For example, if the
program counter was at location 2077 when the VC is
entered, the following would be typed:

002077
!

2-27

Cells

VC operates on 'cells’. A cell is either a memory location
(memory cell) or an internal register (internal cell) such as
an accumulator. Each internal register that the VC can
access has an internal cell number. These cell numbers are
listed in Table 2.31.

Internal
Cell

Internal Register

0-3 The contents of accumulators ACO through AC3,
respectively.

4 Return address (the contents of the program counter
when the VC was entered).

5 Reserved for future use.
Reserved for future use.

7 Interrupt enable flag status bit:
0 = Interrupts off
1 = interrupts on

10 MMPU status bits (when set to 1) before the VC was
entered:

MAP on before console mode entered
Program MAP enabled

1/0 protection fault

Write protection fault

Indirect protection fault

Single cycle was enabled

6-8 Map select:

000 User A

001 Data channel A

010 UserB

011 Data channel B

100 Console

101 Data channei C

110 Floating point

111 Data channel D

9 Load Effective Address (LEF) mode enabled
10 1/O protection enabled

1 Write protection enabled

12 Indirect protection enabled

13 User map enable (0=A, 1=B)

14 Data channel map enable

15 Last interrupt occurred in user mode

AP WNaO

12 Data switch register: Replaces the conventional console
data switches. When the system is in RUN mode (i.e.,
not in VC mode), and a READS instruction is executed,
the 16-bit contents of this register are read by the CPU.

Value of the carry bit.

Table 2.31 Virtual console internal cells

Cell Commands

In order to examine or modify any cell, you must ‘open’ it.
Opening a cell causes its contents to be printed, in octal, on
the terminal. To open a cell, use one of the commands
listed in Table 2.32. The VC will respond only to octal
numbers and upper case letters.

NOTE: In the table, the term ’current cell’ means the
last cell that you opened.

Virtual Console

N___ Nna

Command Function
nA Open the internal cell whose internal cell number is equal
to “n” (See Table 2.31).
n/ Open the memory location whose physical address is

equal to the octal number “n”.

(carriage Close the current cell, and open the next consecutive cell.
return)
(line feed or | Close the current cell, but do not open another.
new line)
/ Close the current cell and open the memory cell whose

address is equal to the contents of the current memory
or internal cell.

Table 2.32 Virtual console cell commands.

When you open a memory cell, the VC interprets the
address as a 19-bit physical address. You do not have to
type leading zeroes. All you have to type is the physical
address in octal representation. For example, if you want
to open location 5, type 5/. If you want to examine the top
location of a system which contains 1Mbyte of memory
type 1777777/.

Once you have opened a cell, you may change its contents
by simply typing (in octal) the number whose value is to
be placed in the cell. Terminate the expression with a
Carriage Return, Line Feed or New Line. Note that if you
type Carriage Return the next cell will also be opened.
This is convenient when you need to enter data into several
consecutive locations.

Function Commands

Table 2.33 lists the VC function commands. All commands
must be typed in octal numbers and upper case letters.

Command Function

P Starts program execution at the memory location
specified by the contents of internal cell number 4
(see Table 2.31).

nR Issues an 1/0 Reset, clears the MMPU, and starts program
execution at the memory location specified by the octal
number “n"”.

| Issues an I/O Reset, and clears the MMPU.

nL Performs a program load from the device whose device

code is equal to “n”. Bit 0 of "n” is a O for a low-speed
device, and is a 1 for a high-speed device.

F Performs a DG field service cassette bootstrap load.
(For DGC use only.)

K Cancels the entire line just typed, and prints a question
mark (?).

Table 2.33 Virtual console function commands

The VC uses two commands to start program execution.
Typing P starts program execution at the location specified
by internal cell number 4 (the return address). See Table
2.31, Virtual console internal cells. You can also start

Memory Management and Protection Unit
Rev. 02

Data General Corporation

program execution by typing nR. In this case, the CPU
issues an I/0 Reset command, clears the MMPU, and starts
program execution at the location specified by the octal
number n.

Typing 1 causes the CPU to issue an 1/0 Reset command
and clear the MMPU.

Type nlL to program load from an I/0 device, where 7 is
the device code, in octal, of the I/O device to be used. Bit 0
of n should be a 1 if the I/0 device is high-speed, and a 0 if
the I/0 device is low-speed. For example, if the program
load device is a high-speed 6060 disc drive whose device
code is 27, you would type the following:

1000270

You can perform a Data General field service cassette
bootstrap load by typing F.

Virtual Console Errors

If you type a character that the VC does not recognize, it
will print a ? followed by a New Line. If you wise to cancel
an entire line you just entered, type a K. In this case the
VC will respond with a ? followed by a New Line.

If you attempt to open a non-existent memory cell, the
16-bit contents of the cell printed in octal on the terminal
will be all I’s. You can verify that this location does not
exist by entering a new value containing 0’s in the cell and
then re-opening it. If it still contains all 1’s, the location is
non-existent.

If you attempt to open a non-existent internal cell, the
terminal will print random and meaningless data.

Memory Management and
Protection Unit

MMPU Functions

The ECLIPSE S/140 MMPU provides the hardware
necessary to control and use more than 64 Kbytes of
physical memory. In addition, the MMPU provides
protection functions which help protect the integrity of a
large system.

AN MMPU unit gives several users access to the resources
of the computer by dividing the memory space available
into blocks assigned to each user. Each time a user accesses
memory, the MMPU translates the address the user sees,
the logical address, to an address the memory sees, the
physical address. This is all transparent to the user. With
software to control the priorities of the MMPU and the
CPU, several users can access the computer without being
aware of the presence of the others.

Standard Features

For the purposes of this discussion, we define certain words
and phrases:

Logical uddress—The address used by the user in all
programming. The logical address space is 32,768 words
long and is addressed by a 15-bit address.

Physical address—The address used by the MMPU to
address the physical memory. The maximum size of the
physical address space is 1,048,576 bytes (IM) and it is
addressed by a 19-bit address.

Address translation—The process of translating logical
addresses into physical addresses.

Memory space—The addresses (physical or logical)
assigned to a particular user.

Page—1024 (20004) words in memory.

User map—The set of memory address translation
functions defined for a particular user.

Data channel map—The set of address translation functions
defined for the memory references of a data channel used
by a particular device.

Supervisor—The section of the operating system (software)
which controls system functions such as the operation of
the MMPU.

Address Translation

The primary function of the MMPU is address translation.
The map divides each user’s logical address space into
1024-word pages and correlates each logical page with a
corresponding physical page. The address space the user
sees is unchanged, but the map now translates each logical
address into a physical address before memory is actually
accessed.

Note that there is no requirement that the physical pages
assigned to a user be in any particular order in physical
memory. The supervisor can therefore use physical
memory very flexibly, selecting unused pages for a new
user without concern for maintaining any particular
arrangement. Very complete use of the physical memory
is also possible, since no contiguous blocks of memory
larger than 1024 words are required.

Sharing of Physical Memory

The MMPU in the ECLIPSE $/140 is also capable of
declaring a section of physical memory accessible to several
users at once. This is useful if several users need a routine
to perform some common function (e.g., trigonometric
tables). Without this capability, each user would require a
separate copy of the routine, thus creating many duplicate
copies and wasting considerable space.

Types of Maps

Two types of maps are provided in the ECLIPSE S/140.
User muaps translate logical addresses to physical addresses
when memory reference instructions are encountered in
the user’s program. Data channel maps translate logical
addresses to physical addresses when data channel devices
address the memory.

Each user requires a separate user map. The MMPU can
hold two user maps, but only one can be enabled at any
one time. Thus, if there are two users, the supervisor
specifies a user map for each and loads it into the MMPU.
The supervisor can then enable one or the other as needed.
If there are more than two users, new user maps must be
loaded as needed. In some operating systems, the operating
system itself uses one of the user maps, so that a new user
map must be loaded each time another user is serviced.
This is not as much of an overhead burden as it sounds,
because the Load Map instruction loads a complete map
with one instruction, using relatively little time.

Separate data channel maps are needed because data
channel devices can access memory without direct control
from the user’s program. There is thus no assurance that
the proper user map would still be enabled at the time of
the data channel request. The MMPU can hold four data
channel maps. Enabling data channel mapping enables all
four data channel maps at the same time. The choice of
which map is used for data channel transfer is made by
the I/0 controller making the request. Those controllers
not equipped to make this distinction use data channel
map A by default. See the Programmer’s Reference Manual
- Peripherals (DGC No. 014-000632).

Unmapped Mode

So far we have assumed operation in the mapped mode.
The MMPU can also operate in the unmapped mode. This
mode is used for diagnostic purposes and for certain MMPU
control functions. In unmapped mode, addresses in the
range 0-75777g (which form logical pages 0-30) are not
translated. In unmapped mode, addresses in the range
76000-777775 are translated by the special map for logical
page 31. This allows you to access selected portions of user
space while in unmapped mode.

MMPU Protection Capabilities

In addition to its address translation functions, the MMPU
also provides protection functions. These generally protect
the integrity of the system by preventing unauthorized
access to certain parts of memory or to I/0 devices. For
example, if a set of trigonometric functions is stored in a
section of memory accessible to all users, this section can
be write protected so that users can read the functions, but
cannot change them.

The various types of protection available in the ECLIPSE
S/140 are discussed separately below.

2-29

Memory Management and Protection Unit

Validity Protection

Validity protection protects a user's memory space from
inadvertent access by another user, thereby preserving the
integrity and privacy of the user’s memory space. When a
user’s map is specified, the blocks of logical addresses
required by the user’s program are linked to blocks of
physical addresses. The remaining (unused) logical blocks
are declared invalid to that user, and an attempt to access
them will cause a validity protection fault.

Validity protection is always enabled, so the supervisor’s
responsibility is limited to declaring the appropriate blocks
of logical addresses invalid.

Write Protection

Write protection permits users to read the protected
memory addresses, but not to write into them. In this way,
the integrity of common areas of memory can be protected.
An attempt to write into a write protected area of memory
will cause a protection fault.

When the user map is loaded, its address space is
automatically write protected. Write protection can be
enabled or disabled by the supervisor.

Indirect Protection

An indirection loop occurs when the effective address
calculation follows a chain of indirect addresses and never
finds a word with bit 0 set to 0. Without indirect protection,
the CPU would be unable to execute any further
instructions, thus effectively halting the system until the
console RESET switch is pressed.

With indirect protection enabled, a chain of 15 indirect
references will cause a protection fault. Indirect protection
can be enabled or disabled by the supervisor.

I/0O Protection

1/0 protection protects the I/0 devices in the system from
unauthorized access. In many systems, all I/Q operations
are performed through operating system calls. Clearly, it
is undesirable to permit individual users to execute I/O
instructions, since this will interfere with the operating
system. If a user with I/O protection enabled attempts to
execute an 1/0 instruction, a protection fault will occur.
1/0 protection can be enabled or disabled by the supervisor.

MMPU Protection Faults

When a user attempts to violate one of the enabled types
of protection, a protection fault occurs, as follows:

¢ The current user map is disabled.
+ A 5-word return block is pushed onto the stack.

o Control is transferred to the protection fault handler,
through an indirect jump via location 3.

Memory Management and Protection Unit
Rev. 02

2-30

Data General Corporation

The system programmer must supply the protection fault
handler. It determines the type of fault that occurred (using
the Read Map Status instruction), and then takes the
appropriate action.

A protection fault can occur at any point during the
execution of an instruction. Therefore, the return address
in the fifth word of the return block is not always correct.
For 1/0 protection faults, however, the fifth word will
always be the logical address of the instruction following
the instruction that caused the fault.

Load Effective Address Mode

The Load Effective Address (LEF) instruction has the same
format as some of the I/O instructions. The MMPU
therefore has a Lef mode bit which determines whether an
1/0 format instruction will be interpreted as an I/0 or a

LEF instruction. When the Lef mode bit is 1 (Lef mode
enabled), all 1/0 format instructions are interpreted as
Load Effective Address instructions. When the Lef mode
bit is 0, all I/O format instructions are interpreted as I/0
instructions.

The Load Effective Address instruction is very useful for
quickly loading a constant into an accumulator. In addition,
the Lef mode can be used for I/O protection. A user
operating in the Lef mode is effectively denied access to
any I/0 devices, because all I/0 and Lef instructions are
interpreted as Lef instructions in this mode. Note, however,
that no indication is given if an I/O instruction is
interpreted as a Lef instruction.

When the MMPU is not operating in the Lef mode, all Lef
and I/0 instructions are interpreted as I/O instructions.
With I/0 protection enabled, these instructions will cause
a protection fault in the normal manner. With I/0
protection disabled, the Lef instruction will be executed
as an I/0 instruction, if possible.

Initial Conditions

At power up, the user maps and the data channel maps are
undefined, the MMPU is in unmapped mode, and
unmapped logical page 31 is mapped to physical page 31.

After an I/O Reset, the MMPU is in unmapped mode, the
data channel maps are disabled, and unmapped logical
page 31 is mapped to physical page 31.

Standard Features

MMPU Instructions

The MMPU instructions control the actions of the MMP1I,
They are used by the supervisor program to change the
mapping functions or check status of the various maps.

NOTE: MMPU instructions can be executed in mapped
mode if I/0 protection and Lef mode are disabled for
that user. When executed in mapped mode, the Read
Map Status, Initiate Page Check, and Page Check
instructions will return the desired information
without changing the map. The Map Single Cycle
instruction will disable the user map after the next
memory reference. The remainder of the instructions
will change the map while the map is enabled, with
undesirable results for this user, another user, or the
system as a whole.

Enabling Let mode only will convert all I/O
instructions (including MMPU instructions) to Lef
instructions. The Load Map instruction, however, does
not use the I/O format and therefore can still be
executed. Enabling both Lef mode and I/0 protection
will prevent execution of the Load Map instruction.

The MMPU instructions are shown in Table 2.34. All except
Load Map are in 1/0 format using the device mnemonic
MAP,

2-31

Mnem | Instructions Action

DIA Read Map Status |Reads the status of the current map.

DIC Page Check Provides the identity and some
characteristics of the physical page
corresponding to the logical page identified
by the immediately preceding Initiate
Page Check instruction.

DOA Load Map Status |Defines the parameters of a new map.

DOB Map Supervisor Specifies the physical page corresponding

Page 31 to logical page 31 of unmapped address
space.

DOC Initiate Page Identifies a logical page; selects map

Check without changing status.

LMP Load Map Loads successive words from memory into
the MAP where they are used to define a
user or data channel map.

NIOP Map Single Cycle |Maps one memory reference using the last
user map.

Table 2.34 MMPU instructions

Memory Management and Protection Unit

Data General Corporation

2- 32

Memory Management and Protection Unit

Standard Features

Chapter 3
Optional Features

In this chapter we describe the optional facilities for the
ECLIPSE S/140 and briefly discuss the instructions that

program them. These options are:

* Floating Point Unit
Character Instructions

Burst Multiplexor Channel

Chapter 4 contains the descriptions, in dictionary form, of
all the ECLIPSE S/140 instructions, except those that
control I/0. Chapter 5 is the I/0 instruction dictionary.

Floating Point Instructions

The floating point instruction set performs rapid arithmetic
operations on numbers with a much larger range than the
fixed point instruction set can handle. Single precision
floating point operations are capable of about 7 significant
decimal digits, while double precision operations are
capable of about 16 significant decimal digits.

3-33

If the floating point instruction set is not instaiied, fioating

pomt instructions are executed as NO OPS.

We represent a floating point value using a 4-byte-wide
(for single precision) or an 8-byte-wide (for double
precision) number. The 4- or 8-byte aggregate contains
three fields:

A sign

An exponent, which is adjusted to maintain the correct
value of the number

A fractional part called the mantissa, which, at the end
of all floating point mathematical operations, is always
adjusted to be greater than or equal to 1/16 and less
than 1 (i.e., normalized)

Figure 3.1 shows these fields

Floating Point Instructions
Ay N9

Data General Corporation

SINGLE PRECISION (4 BYTES)

[evrer |
8 5

| evre2 |

| evres |

16

N

|] evreo |
01 7
[N

23

24 31

v

I EXPONENT
SIGN

DOUBLE PRECISION (8 BYTES)

MANTISSA (6 HEX DIGITS)

WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS

[Tovieo] [eveer] [leviez | [Bvres |

01 7 8 516 23 24 31
exPONENT Levres] [evres] [evies | [evte7 |
32 3® 40 a7 a8 53 54 63

[N

SIGN

DG-04849

MANTISSA (14 HEX DIGITS}

WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS

Figure 3.1 Floating point format

The magnitude of a floating point number is defined to be:

Mantissa X 16(True value of the exponent)

We represent zero in floating point format by a number
with all bits zero, known as true zero. When a calculation
results in a zero mantissa, the number is automatically
converted to a true zero.

Sign

Bit 0 of the first byte is the sign bit. If the sign bit is 0, the
number is positive. If the sign bit is 1, the number is
negative.

Exponent

The low order seven bits of the first byte contain the
exponent. We use excess 64 representation. For both
positive and negative exponents, the value is sixty-four
greater than the true value of the exponent. Table 3.1
illustrates this:

Exponent |True Value of
Field Exponent
0 -64
64 0
127 +63
Table 3.1

Floating Point Instructions

3-34

Mantissa

Bytes 1-3 (single precision) or bytes 1-7 (double precision)
contain the mantissa. By definition, the hexadecimal point
lies between byte 0 and byte 1 of a floating point number.

To keep the mantissa in the range of 1/16 to 1, the results
of each floating point calculation are normalized. A
mantissa is normalized by shifting it left one hex digit
(four bits) at a time, until the high-order four bits (the
left-most four bits of byte 1) represent a nonzero quantity.
For every hex digit shifted, the exponent is decreased by
one.

Floating Point Arithmetic

Floating point arithmetic instructions require that the
number be word aligned, so that bit 0 of the first byte of
the number is bit 0 of the first word of a 2-word or 4-word
area in memory.

NOTE: The ECLIPSE S/140 floating point instructions
assume normalized input numbers. Results are
undefined if the input is not normalized.

Floating Point Registers

There are five registers available to the programmer in
the floating point processor. These are the four floating
point accumulators (FPAC’s) and the Floating Point Status
Register (FPSR). The FPAC's are numbered 0-3 and are
called FPACO, FPACI1, FPAC2, and FPAC3. The FPSR is
a 32-bit register that contains information about the present

Optional Features

status of the floating point processor. Table 3.2 shows the
FPSR.

Guard Digit

In order to increase accuracy, we use a 4-bit (one hex digit)
guard digit during floating point arithmetic operations.
The guard digit accepts and holds up to four bits shifted
out (to the right) of the mantissa, and is used in all single
precision and double precision operations. The processor
truncates the guard digit before storing data at the end of
the instruction.

Floating Point Fault Conditions

After every floating point operation, the floating point
status register is checked for possible fault conditions. Four
types of floating point fault conditions can be detected:

¢ Overflow

¢ Underflow

¢ Divide by zero

* Mantissa overflow

3-35

IﬁNY'OVFlUNFIDVZIMOF’TEI z I Nl
0172 "3 " 4°'5 6 7"

Floating Point Program Counter

jp —

16 177

T

Bits

Name

Contents or
Function

ANY

OVF

UNF

bvz

MOF

TE

Indicates that any of bits
1-4 are set.

Overflow Indicator-while
processing a floating point
number, an exponent
overflow occurred; the
result is correct except the

exponent is 128 too small.

Underflow Indicator-while
processing a floating point
number, an exponent
underflow occurred; the
result is correct except that
the exponent is 128 too
large.

Divide by Zero-while
processing a floating point
number, a zero divisor was
detected; division was
aborted and the operands
remain unchanged.

Mantissa Overflow-during
a FSCAL instruction, a
significant bit was shifted
out of the high order end
of the mantissa; this bit is
also set during a Fix
instruction if the result
does not fit into the
destination location.

Trap Enable-If this bit is 1,
setting any of bits 1-4 will
result in a floating point
fault.

Zero bit-The result of the
last floating point
operation was zero.

Table 3.2

Floating Point Instructions

Bits Contents or

Function

Name

Negative bit-The result of
the last floating point
operation was less than
zero.

8-11*
12-15

Reserved for future use.

FPMOD Indicates computer series

supporting the floating

point instruction set.

0000 S$/200, C/300,

$/230, C/330
S/130,

S$/250 standard FP

0010 M/600, C/350,
S$/250 optional FP

S/140 hardware

0001

0011
FP

0100 Reserved for
future use.

0101 8660 SP, 8661

SP

0110 C/150, S/250
standard EAU

0111 Reserved
1111 S/140 firmware FP

16 Reserved for future use.

17-31 FPPC Floating Point Program
Counter - This is the logical
address of the last floating
point instruction executed.
In the event of a floating
point fault, this is the
address of the floating
point instruction that

caused the fault.

Table 3.2

*These bits are used as internal flags by the floating point unit; preserve
them when saving the state of the FPSR.

Floating Point Trap

If the program has set bits 0 and 5 of the floating point
status register to 1, any floating point fault condition
initiates a floating point trap. When the fault occurs, the
floating point unit saves the fault state until it detects the
next floating point instruction that is not a Push Floating
Point State (FPSH) or a Pop Floating Point State (FPOP).
Then it pushes a return block onto the stack. Table 3.3
shows the format of the return block.

Floating Point Instructions

3- 36

Data General Corporation

Word Description

ACO
AC1
AC2
AC3

Bit O: Carry; Bit
1-15: return
address

bW N = O

Table 3.3

NOTE: When a floating point fault occurs and the
trap enable bit is 1, the trap enable bit is set to 0
before control is transferred to the floating point
error handler. The trap enable bit should be set to 1
before normal processing resumes.

Next, the program jumps indirect via location 45g. That
location should contain the address of a software routine
to handle the floating point fault. The fault handler
remedies the fault condition and returns program control
(via the return address in the return block) to the floating
point instruction whose detection initiated the trap. That
instruction is carried out.

Table 3.4 lists all of the floating point instructions. Several
instructions have two forms: One ends in S, indicating
single-precision and the other ends in D, indicating
double-precision formats. Both instruction forms function
identically.

Optional Features

Mnem | Instructions Action

FAB Absolute Value Sets the sign bit of an FPAC to 0.

FAMS |Add (memory to |Adds the floating point number in memory

FAMD |FPAC) to the floating point number in an FPAC.

FAS, Add (FPAC to Adds the floating point number in one

FAD FPAC) FPAC to the floating point number in
another FPAC.

FCLE Clear Errors Sets bits 0-4 of the FPSR TO 0.

FCMP | Compare Floating | Compares two floating point numbers and

Point sets the Z and N flags accordingly.

FDMS | Divide (FPAC by |Divides the floating point number in an

FDMD | memory) FPAC by a floating point number in
memory.

FDS Divide (FPAC by |Divides the floating point number in one

FDD FPAC) FPAC by the floating point number in
another FPAC.

FEXP Load Exponent Places bits 1-7 of ACO in bits 1-7 of the
specified FPAC.

FFAS Fix To AC Converts the integer portion of a floating
point number to a signed two's
complement integer and places the result
in an accumulator.

FFMD | Fix To Memory Converts the integer portion of a floating
point number to double precision integer
format and stores the result in two memory
locations.

FHLV [Halve Divides the floating point number in FPAC
by 2.

FINT Integerize Sets the fractional portion of the floating
point number in the specified FPAC to
zero and normalizes the result.

FLAS [Float From AC Converts a signed two’s complement
number in an accumulator to a single
precision floating point number.

FLDS (Load Floating Copies a floating point number from

FLDD Point memory to a specified FPAC.

3- 37

Mnem | Instructions Action
FLMD (Float From Converts the contents of two memory
Memory locations in integer format to floating point
format and places the result in a specified
FPAC.
FLST Load Floating Copies the contents of two specified
Point Status memory locations to the FPSR.
FMMS, | Multiply (FPAC by | Muitiplies the floating point number in
FMMD | memory) FPAC by the floating point number in a
memory.
FMOV | Move Floating Moves the contents of one FPAC to
Point another FPAC.
FMS, Multiply (FPAC by | Multiplies the floating point number in one
FMD FPAC) FPAC by the floating point number in
another FPAC.
FNEG |Negate Inverts the sign bit of the FPAC.
FNOM | Normalize Normalizes the floating point number in
FPAC.
FNS No Skip No operation.
FPOP Pop Floating Pops an 18-word floating point block off
Point State the user stack and alters the state of the
floating point unit.
FPSH Push Floating Pushes an 18-word floating point block
Point State onto the user stack.
FRH Read High Word |Places the high-order 16 bits of an FPAC
in ACO.
FSA Skip Always Skips the next sequential word.
FSCAL [Scale Shifts the mantissa of the floating point
number in FPAC either right or left,
depending upon the contents of bits 1-7
of ACO.
FSEQ | Skip On Zero Skips the next sequential word if the Z flag
of the FPSR is 1.
FSGE |Skip On Greater [Skips the next sequential word if the N
Than Or Equal To (flag of the FPSR is O.
Zero
FSGT | Skip On Greater

Thor Poce
inan £ero

Skips the next sequential word if both the
f

F oot NI s of th

o
@
7

Floating Point Instructions

Mnem

Instructions

Action

FSLE

FSLT

FSMS,
FSMD

FSND

FSNE

FSNER

FSNM

FSNO

FSNOD

FSNU

FSNUD

FSNUO

FSS, FSD

FSST

FSTS,
FSTD

FTD
FTE

Skip On Less
Than Or Equal To
Zero

Skip On Less
Than Zero
Subtract
{memory from
FPAC)

Skip On No Zero
Divide

Skip On Non-Zero

Skip On No Error

Skip On No
Mantissa
Overflow

Skip On No
Overflow

Skip On No
Overflow And No
Zero Divide
Skip On No
Underflow

Skip On No
Underfiow And
No Zero Divide
Skip On No
Underflow And
No Overflow
Subtract (FPAC
from FPAC)

Store Floating
Point Status

Store Floating
Point

Trap Disable
Trap Enable

Skips the next sequential word if either
the Z flag or the N flag of the FPSR is 1.

Skips the next sequential word if the N
flag of the FPSR is 1.

Subtracts the floating point number in
memory from the floating point number in
an FPAC.

Skips the next sequential word if the divide
by zero (DVZ) flag of the FPSR is 0.

Skips the next sequential word if the Z flag
of the FPSR is O.

Skips the next sequential word if bits 1-4
of the FPSR are all 0.

Skips the next sequential word if the
mantissa overflow (MOF) flag of the FPSR
is 0.

Skips the next sequential word if the
overflow (OVF} flag of the FPSR is O.
Skips the next sequential word if both the
overflow (OVF) flag and the divide by zero
(DVZ) flag of the FPSR are O.

Skips the next sequential word if the
underflow (UNF) flag of the FPSR is O.
Skips the next sequential word if both the
underflow (UNF) flag and the divide by
zero (DVZ) flag of the FPSR are O.

Skips the next sequential word if both the
underflow (UNF) flag and the overflow
(OVF) flag of the FPSR are O.

Subtracts the floating point number in one

FPAC from the floating point number in
another FPAC.

Copies the contents of the FPSR to two
memory locations.

Copies the contents of a specified FPAC
into memory.

Sets the trap enable flag of the FPSR to 0.
Sets the trap enable flag of the FPSR to 1.

Table 3.4

Character Manipulation Instructions

Four

character

instructions
characters. That is, the instructions move and compare
characters and words of arbitrary lengths. Each unique
character in a string occupies one byte. These instructions:

manipulate strings

¢ Compare one byte string to another.

¢ Move a byte string from one area of memory to another.
‘e Translate a character string from one data type to

another.

Table 3.6 describes the four character instructions.

Character Manipulation Instructions

Rev. 02

of

3-38

Data General Corporation

Mnem | Instructions Action
CMP Character Compare one string of characters in
Compare memory to another string.
CMT Character Move Move a string of bytes from one area of
Until True memory to another until it finds a delimiter
in a user-specified table or until the source
string is exhausted.

CMV Character Move | Move a string of bytes from one area of
memory to another under control of the
four accumulator values.

CTR Character Translate a string of bytes from one data

Translate type to another; either move it to another
area of memory or compare it to a second
string of bytes.

Table 3.6 Character instructions

Burst Multiplexor Channel

The Burst Multiplexor Channel (BMC) is a high speed
communications pathway which transfers data directly
between main memory and high speed peripherals. It is
controlled by the device controller performing the data
transfer. No program control or CPU interaction is required
except to set up the BMC’s map tables. As a result, BMC
data transfers are limited only by the memory speed. If
the BMC and the CPU attempt to access memory at the
same time, the CPU has priority, unless the BMC is in
overdrive mode.

The BMC enters the overdrive mode when the number of
concurrent service requests by the device controllers equals
or exceeds the number selected by hardware switches on
the BMC-ERCC board. This mode gives priority to the
BMC. When the number of concurrent requests from
device controllers drops below the figure selected for
overdrive condition, the CPU regains priority.

The maximum data rate for the BMC is:

» Input: 200 nsec per word, or 5 Megawords/second
» Output: 100 nsec per word, or 10 Megawords/second

BMC Address Modes

The BMC has two address modes. In the unmapped
(physical) mode, the BMC receives 19-bit addresses from
the device controllers and passes them directly to memory.
As each data word is transferred to or from memory, the
BMC increments the destination address, causing
successive words to move to or from consecutive locations
in memory.

The other BMC address mode is mapped. When a controller
initiates a data transfer, it can specify the mapped (logical)
mode. The high order 9 bits of the logical address form a
logical page number, which the BMC MAP translates into
a 9-bit physical page number. This page number, combined
with the 10 low order bits from the logical address, forms a
19-bit physical address which is passed to memory.

BMC MAP

The BMC contains its own MAP which consists of 16 map
tables, each containing 32 map registers. It uses these map
registers to transiate logical page numbers into physical
page numbers.

Each map register holds a 9-bit physical page number
and a validity protection bit (the controlling program loads
this information into the tables before I/O transfers begin).
The BMC uses the logical page number as an index into
the map table, and the contents of the selected map register
become the 9 high-order bits of the physical address. If the
device controller asks the BMC to access a map register
that has its validity protection bit set, then the BMC will
flag a validity protect error and terminate the transfer.

Note that when the BMC performs a mapped transfer, it
increments the destination address after it moves each
data word. If the increment causes an overflow out of the
10 low order bits, this selects a new map register for
subsequent address translation. Depending on the contents
of the map tables, this could mean that successive words
are not transferred to or from consecutive pages in memory.

BMC Instructions

Map loads and dumps are initiated by an I/O Start
command to the BMC. The BMC’s Busy flag is set to 1
when a map load or dump is in progress. There is no Done
flag and the BMC never causes program interrupts.

3-38.1

Device code 5 is assigned to the BMC. The assembler
recognizes the mnemonic BMC for this device code.

The operation of the BMC is essentially transparent to a
program executing in the host processor. The program
must set up the map tables, i.e., load the map registers, but
the operation of the BMC and its MAP are controlled by
the device controller performing the data transfer. The
table below summarizes the BMC instructions.

Name Function

DIC Read Status Places the BMC status in an accumulator.

DOA Specify Low
Order Address

Selects a map transfer operation and
specifies the low order part of the memory
address for loading or dumping the first
map register.

DOB* |Specify High
Order Address

Specifies the high order part of a memory
address for loading or dumping the first
map register.

Specifies the first map register of a group
to be loaded or dumped.

DOB* | Specify Initial
Map Register
DOC* [Specify Map
Register Count
DOC* |Load Status

Specifies the number of map registers to
be loaded or dumped.

Used for diagnostic purposes only.

Table 3.7 Burst multiplexor channel instructions

*These instructions are dependent on accumulator contents.

Rev. 02

Data General Corporation

3-38.2

Optional Features

Chapter 4
Standard Machine Instructions

This chapter lists all the standard instructions for the
ECLIPSE S/140. They appear in alphabetical order
according to the mnemonics recognized by the assembler.
Chapter 5 contains all the I/0 instructions.

For each instruction we include:

The mnemonic recognized by the assembler.

The bit format required.

The format for any arguments involved.

* A functional description of each instruction.

Coding Aids

We use certain conventions and abbreviations throughout
this chapter to help you properly code each instruction for
Data General’s assembler. Briefly, they are these:

Symbol

_—
o=

Q
bl
~

symbol (e.g., [,skip]) is an optional
operand or mnemonic. Code it only if you
want to specify the option.

brackets indicate that the enclosed

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example,
code the mnemonic for the Move
instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol
that provides the assembler value you need
for that item (e.g., the proper accumulator
number, an address, etc.

We use the following abbreviations throughout this
chapter:

4- 39

Abbr Meaning

i Signed two’s complement integer in the
range -32,768 to 32,767; or unsigned in
the range O to 65,535.
Integer in the range 0-3.
Integer in the range 1-4.

AC Accumulator.

ACS Source accumulator.

ACD Destination accumulator.

FPAC Floating point accumulator.

FACS Floating point source accumulator

FACD Floating point destination accumulator.

Setting the Index Field

To set the index field, code a comma followed by an integer
between 0-3. This will set the index field to the value you
specified. You can also use the symbol dot (.) to set the
index field to 01 (PC relative). Dot can be read as the
address of the current instruction. When you use dot, you
usually follow it with a plus or minus sign and the
displacement value, such as .+3 or .-12.

If you are coding extended class instructions, note that
using a dot (e.g., EJMP .+5) does not produce the same
effect as coding a comma followed by a 1 (EJMP 5,1). When
using a dot, the displacement is added to the address of the
instruction (the first word of a two-word instruction). When
using a comma, the displacement is added to the address of
the word containing the displacement (the second word of
a two-word instruction). Therefore, EJMP . +5 is equivalent
to EJMP 4,1.

Coding Aids

Add Complement
ADC/c][sh][#] acs,acd[,skip]

r1] ACSJACDI1IOIO[SH
Y0 172 3747576 7 89

[[#] = |
' T12 137 15

Adds the logical complement of an unsigned integer to
another unsigned integer.

Initializes carry to the specified value, adds the logical
complement of the unsigned, 16-bit number in ACS to the
unsigned, 16-bit number in ACD, and places the result in
the shifter. If the addition produces a carry of 1 out of the
high-order bit, carry is complemented. The instruction
then performs the specified shift operation, and loads the
result of the shift into ACD if the no-load bit is 0. If the
skip condition is true, the next sequential word is skipped.

NOTE: If the number in ACS is less than the number
in ACD, the instruction complements carry.

Add
ADDJ/c/[sh][#] acs,acd[, skip]

[T [ro []o] & [¢ 7] = |

11127 13 15

Performs unsigned integer addition, and complements
carry if appropriate.

Initializes carry to the specified value, adds the unsigned,
16-bit number in ACS to the unsigned, 16-bit number in
ACD, and places the result in the shifter. If the addition
produces a carry of 1 out of the high-order bit, carry is
complemented. The instruction then performs the specified
shift operation and places the result of the shift in ACD if
the no-load bit is 0. If the skip condition is true, the next
sequential word is skipped.

NOTE: If the sum of the two numbers being added is

greater than 65,535, the instruction complements
carry.

ADI

4- 40

Data General Corporation

Extended Add Immediate

ADDl1 iac

JF S—

IOnOonon

o[o]o]
§ 6 7 8 9 10 11 12 13714 15"

I IMMEDIATE FIELD I

Adds a signed integer in the range -32,768 to +32,767 to
the contents of an accumulator.

Treats the contents of the immediate field as a signed,
16-bit, two's complement number and adds it to the signed,
16-bit, two's complement number contained in the specified
accumulator, placing the result in the same accumulator.
Carry remains unchanged.

Add Immediate
ADI

L

o1

n,ac

N ‘AC|0|0|0!0l0l0|0|1|0|010|
T2 '3 ' 4 5 6 7 8 9 10 11 12 137147 15"

Adds an unsigned integer in the range 1-4 to the contents
of an accumulator.

Adds the contents of the immediate field N, plus 1, to the
unsigned, 16-bit number contained in the specified
accumulator, placing the result in the same accumulator.
Carry remains unchanged.

NOTE: The assembler takes the coded value of n and
subtracts one from it before placing it in the
immediate field. Therefore, you should code the exact
value that you wish to add.

Example - Assume that AC2 contains 177775g. After the
instruction ADI 4,2 is executed, AC2 contains 0000013 and
carry is unchanged.

Standard Machine Instructions

AND With Complemented Source

ANC acs,acd

|1| ACSIACD[OlOlll1|0l0l0|1l0|0|0!
0172737475 6 7 8 9 10 11 712 713 " 14 " 15"

Forms the logical AND of the logical complement of the
contents of ACS and the contents of ACD; and places the
result in ACD. The instruction sets a bit position in the
resuit to 1 if the corresponding bit position in ACS contains
0. The contents of ACS remain unchanged.

AND

AND/c][sh][#] acs,acd/[,skip]
|1lACS|ACD|1|1I1|SH|C|#I SKIP |
01 T2"374 "5 6 7 879 1011 12" 13" 157

Forms the logical AND of the contents of two accumulators.

Initializes the carry bit to the specified value and places
the logical AND of ACS and ACD in the shifter. Each bit
placed in the shifter is 1 only if the corresponding bit in
both ACS and ACD is 1; otherwise the resulting bit is 0.
The instruction then performs the specified shift operation
and places the result in ACD if the no-load bit is 0. If the
skip condition is true, the next sequential word is skipped.

AND Immediate

ANDI iac

[T = L o]
"0 1 T2 737475 76 "7 89 10 11 12 13 ' 14 ' 15 '

| IMMEDIATE FIELD |

Places the logical AND of the contents of the immediate
field and the contents of the specified accumulator in the
specified accumulator.

4- 41

Block Add and Move
BAM

L fofofefol o [efer]rfofoftfofo]o]
01T 2737475 7677879 10 1112 13 14 15

Moves memory words from one location to another, adding
a constant to each one.

Moves words sequentially from one memory location to
another, treating them as unsigned, 16-bit integers. After
fetching a word from the source location, the instruction
adds the unsigned, 16-bit integer in ACO to it. If the addition
produces a carry of 1 out of the high-order bit, no indication
is given.

Bits 1-15 of AC2 contain the address of the source location.
Bits 1-15 of AC3 contain the address of the destination
location. The address in bits 1-15 of AC2 or AC3 is an
indirect address if bit 0 of that accumulator is 1. In that
case, the instruction follows the indirection chain before
placing the resultant effective address in the accumulator.

The unsigned, 16-bit number in AC1 is equal to the number
of words moved. This number must be greater than 0 and
less than or equal to 32,768. If the number in AC1 is outside
these bounds, no data is moved and the contents of the
accumulators remain unchanged.

AC Contents
(o] Addend
1 Number of words to
be moved
2 Source address
3 Destination address

For each word moved, the count in AC1 is decremented by
one and the source and destination addresses in AC2 and
AC3 are incremented by one. Upon completion of the
instruction, AC1 contains zeroes, and AC2 and AC3 point
to the word following the last word in their respective
fields. The contents of ACO remain unchanged.

Words are moved in consecutive, ascending order
according to their addresses. The next address after 77777g
is 0 for both fields. The fields may overlap in any way.

NOTE: This instruction may require a long execution
time. Another process can therefore interrupt it. If a
Block Add and Move instruction is interrupted, the
program counter is decremented by one before it is
placed in location 0, so that it points to the interrupted
instruction. Because the addresses and the word count

BAM

are updated after every word stored, any interrupt
service routine that returns control to the interrupted
program via the address stored in memory location 0
will correctly restart the BAM instruction.

When updating the source and destination addresses,
the Block Add And Move instruction forces bit 0 of the
result to 0. This ensures that upon return from an
interrupt, the instruction will not try to resolve an
indirect address in either AC2 or AC3.

Block Move

BLM
Llofofofolefifefr]r]ofo]r]o]o]o]
0 1 2 3 4 5 6 7 8 9 10 1% 12 " 13 " 14 " 15

Moves memory words from one location to another.

The Block Move instruction is the same as the Block Add
And Move instruction in all respects except that no addition
is performed and ACO is not used.

NOTE: The Block Move instruction is interruptible in
the same manner as the Block Add And Move
instruction.

Set Bit To One

BTO acs,acd

l1|ACSIACD|1|010|0|0l0l0|1|0|0|0|
O T 1T 2737475 "6 7 87 9 101112 13 14 15"

Sets the specified bit to 1.

Forms a 32-bit bit pointer from the contents of ACS and
ACD. ACS contains the high-order 16 bits and ACD
contains the low-order 16 bits of the bit pointer. If ACS
and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the
low-order 16-bits of the bit pointer and assumes the
high-order 16 bits are 0.

The instruction then sets the addressed bit in memory to 1,
leaving the contents of ACS and ACD unchanged.

CLlM

4- 42

Data General Corporation

Set Bit To Zero
BTZ acs,acd
L1lACSIACDI1IOI010II—[0|0|1[010[0]
Y0 172 37475 6 7 8 9 10 1112 13 147 158"

Sets the addressed bit to 0.

Forms a 32-bit bit pointer from the contents of ACS and
ACD. ACS contains the high-order 16 bits and ACD
contains the low-order 16 bits of the bit pointer. If ACS
and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the
low-order 16 bits of the bit pointer and assumes the
high-order 16 bits are 0.

The instruction then sets the addressed bit in memory to 0,
leaving the contents of ACS and ACD unchanged.

Compare To Limits

CLM acs,acd

[Tos [0 oo [[[[o]]°]
"0 ' 172 "374 "5 6 7 8 9 10 11712 13 14" 15"

Compares a signed integer with two other integers and
skips if the first integer is between the other two. The
accumulators determine the location of the three integers.

Compares the signed, two’s complement integer in ACS to
two signed, two’s complement limit values, L and H. If the-
number in ACS is greater than or equal to L and less than
or equal to H, the next sequential word is skipped. If the
number in ACS is less than L or greater than H, the next
sequential word is executed.

If ACS and ACD are specified as different accumulators,
the address of the limit value L is contained in bits 1-15 of
ACD. The limit value H is contained in the word following
L. Bit 0 of ACD is ignored.

If ACS and ACD are specified as the same accumulator,
then the integer to be compared must be in that AC, and
the limit values L and H must be in the two words following
the instruction. L is the first word and H is the second
word. The next sequential word is the third word following
the instruction.

Standard Machine Instructions
Character Compare
CMpP

nOONNEOINnnn

["4 5 "6 ' 7 8

oo o]

12713 " 14 715 "

Under control of the four accumulators, compares two
strings of bytes and returns a code in AC1 reflecting the
results of the comparison.

The instruction compares the strings one byte at a time.
Each byte is treated as an unsigned 8-bit binary quantity
in the range 0-255,. If two bytes are not equal, the string
whose byte has the smaller numerical value is, by
definition, the lower valued string. Both strings remain
unchanged.

The four accumulators contain parameters passed to the
instruction. Two accumulators specify the starting address,
the number of bytes, and the direction of processing
(ascending or descending addresses) for each string. Carry
is used as an indicator.

ACO specifies the length and direction of comparison for
string 2. If the string is to be compared from its lowest
memory location to the highest, ACO contains the unsigned
value of the number of bytes in string 2. If the string is to
be compared from its highest memory location to the
lowest, ACO contains the two's complement of the number
of bytes in string 2.

AC1 specifies the length and direction of comparison for
string 1. If the string is to be compared from its lowest
memory location to the highest, AC0 contains the unsigned
value of the number of bytes in string 1. If the string is to
be compared from its highest memory location to the

’, Feyates)
ns the two’s compier

[N ey

lowest, AC1 contai ient of the number

of bytes in string 1.

AC2 contains a byte pointer to the first byte compared in
string 2. When the string is compared in ascending order,
AC2 points to the lowest byte. When the string is compared
in descending order, AC2 points to the highest byte.

AC3 contains a byte pointer to the first byte compared in
string 1. When the string is compared in ascending order,
AC3 points to the lowest byte. When the string is compared
in descending order, AC3 points to the highest byte.

The instruction uses carry as an indicator.

Code Comparison
Resuit
-1 string 1 < string 2
] string 1 = string 2
+ 1 string 1 > string 2

The strings may overlap in any way. Overlap will not
effect the results of the comparison.

Upon completion, ACO contains the number of bytes left
to compare in string 2. AC1 contains the return code as
shown in the table above. AC2 contains a byte pointer
either to the failing byte in string 2 (if an inequality is

found), or to the byte following string 2 string 2 is

exhausted). AC3 contains a byte pointer either to the failing
byte in string 1 (if an inequality is found), or to the byte
following string 1 (if string 1 is exhausted). Carry contains
an indeterminate value.

(£
[§91

If the lengths of both strings 1 and 2 are zero, the instruction
returns 0 in AC1. If the two strings are of unequal length,
the instruction pads the shorter string with space characters
<040g>> and continues the comparison.

Character Move Until True
CMT

HEEIDE

)

[T

(o}
"6 6 7 9

HE
Y10 11T

Lo fo]e]
27137147157

Under control of the four accumulators, moves a string of
bytes from one area of memory to another until either a
table-specified delimiter character is moved or the source
string is exhausted.

instruction copies the string one byte at a time. Before
it moves a byte, the instruction uses that byte’s value to
determine if it is a delimiter. It treats the byte as an
unsigned 8-bit binary integer (in the range 0-255,5) and
uses it as a bit index into a 256-bit delimiter table. If the
indexed bit in the delimiter table is 0, the byte pending is
not a delimiter, and the instruction copies it from the
source string to the destination string. If the indexed bit in
the delimiter table is 1, the byte pending is a delimiter; the
instruction does not copy it, and the instruction terminates.

The instruction processes both strings in the same direction,
either from lowest memory locations to highest (ascending
order), or from highest memory locations to lowest
(descending order). Processing continues until there is a
delimiter or the source string is exhausted. The four
accumulators contain parameters passed to the instruction.

ACO contains the address (word address), possibly indirect,
of the start of the 256-bit (16-word) delimiter table.

cMmT

AC1 specifies the length of the strings and the direction of
processing. If the source string is to be moved to the
destination string in ascending order, AC1 contains the
unsigned value of the number of bytes in the source string.
If the source string is to be moved to the destination string
in descending order, AC1 contains the two’s complement
of the number of bytes in the source string.

AC2 contains byte pointer to the first byte to be written in
the destination field. When the process is performed in
ascending order, AC2 points to the lowest byte in the
destination string. When the process is performed in
descending order, AC2 points to the highest byte in the
destination string.

AC3 contains a byte pointer to the first byte to be processed
in the source string. When the process is performed in
ascending order, AC3 points to the lowest byte in the
source string. When the process is performed in descending
order, AC3 points to the highest byte in the source string.

If the strings overlap in any way, a trap occurs. When the
source and destination addresses are the same (e,
AC2=AC3), no data is moved. Any other type of overlap
may produce unusual side effects.

Upon completion, AC0 contains the resolved address of
the translation table and AC1 contains the number of bytes
that were not moved. AC2 contains a byte pointer to the
byte following the last byte written in the destination
string. AC3 contains a byte pointer either to the delimiter
or to the first byte following the source string.

Character Move
CMV

nnpnDEnnnonononn

l 1
5 e

Under control of the four accumulators, moves a string of
bytes from one area of memory to another and returns a
value in the Carry bit reflecting the relative lengths of
source and destination strings.

The instruction copies the source string to the destination
field, one byte at a time. The four accumulators contain
parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied,
and the direction of processing (ascending or descending
addresses) for each field.

ACO specifies the length and direction of processing for
the destination field. If the field is to be processed from its
lowest memory location to the highest, ACO contains the
unsigned value of the number of bytes in the destination
field. If the field is to be processed from its highest memory
location to the lowest, ACO contains the two’s complement
of the number of bytes in the destination field.

4- 44

CcoB
Rev. 02

Data General Corporation

AC]I specifies the length and direction of processing for
the source string. If the string is to be processed from its
lowest memory location to the highest, AC1 contains the
unsigned value of the number of bytes in the source string.
If the field is to be processed from its highest memory
location to the lowest, AC1 contains the two’s complement

of the number of bytes in the source string.

AC?2 contains a byte pointer to the first byte to be written
in the destination field. When the field is written in
ascending order, AC2 points to the lowest byte. When the
field is written in descending order, AC2 points to the
highest byte.

ACS3 contains a byte pointer to the first byte copied in the
source string. When the field is copied in ascending order,
AC3 points to the lowest byte. When the field is copied in
descending order, AC3 points to the highest byte.

The fields may overlap in any way. However, the
instruction moves bytes one at a time, so certain types of
overlap may produce unusual side effects.

Upon completion, ACO contains 0 and AC1 contains the
number of bytes left to fetch from the source field. AC2
contains a byte pointer to the byte following the destination
field; and AC3 contains a byte pointer to the byte following
the last byte fetched from the source field.

NOTE: If ACO contains the number 0 at the beginning
of this instruction, no bytes are fetched and none are
stored. If AC1 is 0 at the beginning of this instruction,
the destination field is filled with space characters.

If the source field is longer than the destination field, the
instruction terminates when the destination field is filled
and sets carry to 1. In any other case, the instruction sets
carry to 0.

If the source field is shorter than the destination field, the
instruction pads the destination field with space characters
<040g>.

Count Bits

COB acs,acd
F'ACSlACDl1|0|1|1|0‘0|0|110|0104|
ﬁ0'‘l'2'3'4'5'6'7'8'9"|0'1‘I'|2"I3'|4'!5'

Adds a number equal to the number of ones in ACS to the
signed, 16-bit, two’s complement number in ACD. The
instruction leaves the contents of ACS and the state of
carry unchanged.

NOTE: If ACS and ACD are the same accumulator,
the instruction functions as described above, except
the contents of ACS will be changed.

Standard Machine Instructions
Complement
COM/c|[sh][#] acs,acd[,skip]

1|ACS[ACD‘0|O|O| SH I
0 1T 7273 "4 5 6 7 89"

c I#l SKIP l
KRV v

10 3 15 "

Forms the logical complement of the contents of an
accumulator.

Initializes carry to the specified value, forms the logical
complement of the number in ACS, and performs the
specified shift operation. The instruction then places the
result in ACD if the no-load bit is 0. If the skip condition is
true, the next sequential word is skipped.

Character Translate

CTR
nulnonEnnonnnoon

Under control of the four accumulators, translates a string
of bytes from one data type to another and either moves it
to another area of memory or compares it to a second
translated string.

The instruction operates in two modes: translate and move,
and translate and compare.

When operating in translate and move mode, the
instruction translates each byte in string 1, and places it in
a corresponding position in string 2. Translation is
performed by using each byte as an 8-bit index into a
256-byte translation table. The byte addressed by the index

then becomes the translated value.

When operating in translate and compare mode, the
instruction translates each byte in string 1 and string 2 as
described above, and compares the translated values. Each
translated byte is treated as an unsigned 8-bit binary
quantity in the 0-255;,. If two translated bytes are not
equal, the string whose byte has the smaller numerical
value is, by definition the lower valued string. Both strings
remain unchanged.

ACO specifies the address, either direct or indirect, of a
word which contains a byte pointer to the first byte in the
256-byte translation table.

AC1 specities the length of the two strings and the mode of
processing. If string 1 is to be processed in translate and
move mode, AC1 contains the two’s complement of the
number of bytes in the strings. If the strings are to be

processed in translate and compare mode, AC1 contains
the unsigned value of the number of bytes in the strings.
Both strings are processed from lowest memory address to

highest.
AC2 contains a byte pointer to the first byte in string 2.
AC3 contains a byte pointer to the first byte in string 1.

Upon completion of a translate and move operation, AC0O
contains the address of the word which contains the byte
pointer to the translation table and ACI contains 0. AC2
contains a byte pointer to the byte following string 2 and
ACS3 contains a byte pointer to the byte following string 1.

Upon completion of a translate and compare operation,
ACO contains the address of the word which contains the
byte pointer to the translation table. AC1 contains a return
code as calculated in the table below. AC2 contains a byte
pointer to either the failing byte in string 2 (if an inequality
was found) or the byte following string 2 if the strings
were identical. AC3 contains a byte pointer to either the
failing byte in string 1 (if an inequality was found) or the
byte following string 1 if the strings were identical.

Code Result

-1 Translated value of string 1 is less than the
translated value of string 2.
0] Translated value of string 1 is equal to the
translated value of string 2.

+1 Translated value of string 1 is greater than
the translated value of string 2.

If the lengths of string
compare option returns

O,

The fields may overlap in any way. However, processing
is done one character at a time, so unusual side effects may
be produced by certain types of overlap.

Decimal Add
DAD acs,acd
MACSlACDl0,0IOI‘IlOI0,0I!IOlO—lO—I
'0'1'2'3'4'5'6'7'3'9'10'11'12'13'14'?‘

Performs decimal addition on 4-bit binary coded decimal
(BCD) numbers and uses the carry bit for a decimal carry.

Adds the unsigned decimal digit contained in ACS bits
12-15 to the unsigned decimal digit contained in ACD bits
12-15. The carry bit is added to this result. The instruction
places the decimal unit result in ACD bits 12-15, and the
decimal carry in the carry bit. The contents of ACS and
bits 0-11 of ACD remain unchanged.

DAD

NOTE: No validation of the input digits is performed.
Therefore, if bits 12-15 of either ACS or ACD contain
a number greater than 9, the results will be
unpredictable.

Example — Assume that bits 12-15 of AC2 contain 9; bits
12-15 of AC3 contain 7; and the carry bit is 0. After the
instruction DAD 2,3 is executed, AC2 remains the same;
bits 12-15 of AC3 contain 6; and the carry bitis 1, indicating
a decimal carry from this Decimal Add.

Double Hex Shift Left
DHXL n,ac

NESEIDNNNDDonnnn
4] 1'2'3'4'5r6'7'8'9'10'11'12'13'14'15'

Shifts the 32-bit number contained in AC and AC+1 left a
number of hex digits depending upon the immediate field
N. The number of digits shifted is equal to N+1. Bits
shifted out are lost and the vacated bit positions are filled
with zeroes.

NOTE: If AC is specified as AC3, then AC+1 is ACO.

The assembler takes the coded value of n and subtracts
one from it before placing it in the immediate field.
Therefore, the programmer should code the exact
number of hex digits that he wishes to shift.

If n is equal to 3, the contents of AC+1 are placed in
AC and AC+1 is filled with zeroes.

Double Hex Shift Right

DHXR n,ac

r1[N l AC Iol1l1|1l1|0|0|1‘0l0|0]
oY T3 t3 4 5 6 7 8 9 10 11 12 13 14 15"

Shifts the 32-bit number contained in AC and AC+1 right
a number of hex digits depending upon the immediate
field N. The number of digits shifted is equal to N+ 1. Bits
shifted out are lost and the vacated bit positions are filled
with zeroes.

NOTE: If AC is specified as AC3, then AC+1 is ACO.
The assembler takes the coded value of n and subtracts
one from it before placing it in the immediate field.
Therefore, the programmer should code the exact
number of hex digits that he wishes to shift.

If N is equal to 3, the contents of AC are placed in
ACH1 and AC is filled with zeroes.

DIVS
Rev. 02

4- 46

Data General Corporation

Unsigned Divide
DIV
CELRELLELL LR

Divides the unsigned 32-bit integer in two accumulators
by the unsigned contents of a third accumulator. The
quotient and remainder each occupy one accumulator.

Divides the unsigned 32-bit number contained in ACO and
AC1 by the unsigned, 16-bit number in AC2. The quotient
and remainder are unsigned, 16-bit numbers and are placed
in AC1and ACO, respectively. Carry is set to 0. The contents
of AC2 remain unchanged.

NOTE: Before the divide operation takes place, the
number in ACO is compared to the number in AC2. If
the contents of ACO are greater than or equal to the
contents of AC2, an overflow condition is indicated.
Carry is set to 1, and the operation is terminated. All
operands remain unchanged.

Signed Divide
DIVS

HEK

Divides the signed 32-bit integer in two accumulators by
the signed contents of a third accumulator. The quotient
and remainder each occupy one accumulator.

DL fefe]

T o]
T34 5 6 7 8 9 10 11 12 ' 13 14 15"

The signed, 32-bit two’s complement number contained in
ACO and AC! is divided by the signed, 16-bit two’s
complement number in AC2. The quotient and remainder
are signed, 16-bit numbers and occupy ACl and ACO,
respectively. The sign of the quotient is determined by the
rules of algebra. The sign of the remainder is always the
same as the sign of the dividend, except that a zero quotient
or a zero remainder is always positive. Carry is set to 0.
The contents of AC2 remain unchanged.

NOTE: If the magnitude of the quotient is such that it
will not fit into ACl, an overflow condition is
indicated. Carry is set to 1, and the operation is
terminated. The contents of ACO and ACI are
unpredictable.

Sign Extend and Divide
DIVX

To e oe]e] s folole]
ko773 ¥ 5767 '8 '9 10 1771 N

Z 13 1377157

Extends the sign of one accumulator into a second
accumulator and performs a Signed Divide on the result.

Standard Machine Instructions

Extends the sign of the number in AC1 into AC0 by placing
a copy of bit 0 of ACI in each bit of AC0. After extending
the sign, the instruction performs a Signed Divide
operation.

Double Logical Shift
DLSH acs,acd

L1|ACSIACDIOI1IOI1|1’OIO|1|O|O0
01T 27374 5 6 5 12713 714 ' 15 "

8 "9 "0 11"

Shifts the 32-bit number contained in ACD and ACD+1
either left or right depending on the number contained in
bits 8-15 of ACS. The signed, 8-bit two’s complement
number contained in bits 8-15 of ACS determines the
direction of the shift and the number of bits to be shifted.
If the number in bits 8-15 of ACS is positive, shifting is to
the left; if the number in bits 8-15 of ACS is negative,
shifting is to the right. If the number in bits 8-15 of ACS is
zero, no shifting is performed. Bits 0-7 of ACS are ignored.

AC3+1 is ACO. The number of bits shifted is equal to the
magnitude of the number in bits 8-15 of ACS. Bits shifted
out are lost, and the vacated bit positions are filled with
zeroes. Carry and the contents of ACS remain unchanged.

NOTE: If the magnitude of the number in bits 815 of
ACS is greater than 31y, all bits of ACD are set to 0.
Carry and the contents of ACS remain unchanged.

Decimal Subtract
DSB acs,acd

I'IIACS]ACDIOIO|0I1|1I0,0I1IOIOIO
0'|‘2'3'4'5'6'7'8'9'10'11'12'13'14 15

Performs decimal subtraction on 4-bit binary coded
decimal (BCD) numbers and uses carry as a decimal
borrow.

Subtracts the unsigned decimal digit contained in ACS bits
12-15 from the unsigned decimal digit contained in ACD
bits 12-15. Subtracts the complement of carry from this
result. Places the decimal unit position of the final result
in ACD bits 12-15 and the complement of the decimal
borrow in carry. In other words, if the final result is
negative, the instruction indicates a borrow and sets carry
to 0. If the final result is positive, the instruction indicates
no borrow and sets carry to 1. The contents of ACS and
bits 0-11 of ACD remain unchanged. In addition, the result
is in ten’s complement form (i.e., it is ten greater than the
actual binary result.)

Example — Assume that bits 12-15 of AC2 contain 9; bits
12-15 of AC3 contain 7; and carry contains 0. After the
instruction DSB 3,2 is executed, AC3 remains the same;
bits 12-15 of AC2 contain 1; and carry is set to 1, indicating
no borrow from this Decimal Subtract.

4- 47

Dispatch

DSPA ac,/@]displacement/ index]
u1|o, AC IlllNDEXIOl1|1|1|1]OlOIO—l
0T T 273 a5 678 8 0T TS 14 715 "

DISPLACEMENT

o]

T

M

Conditionally transfers control to an address selected from
a table.

Computes the effective address E . This is the address of a
dispatch table. The dispatch table consists of a table of
addresses. Immediately before the table are two signed,
two’s complement limit words, L and H. The last word of
the table is in location E+ H-L.

E———8

E+H - g

DG-01127

Figure 4.1

Compares the signed, two’s complement number contained
in the accumulator to the limit words. If the number in the
accumulator is less than L or greater than H, sequential
operation continues with the instruction immediately after
the Dispatch instruction.

If the number in AC is greater than or equal to L and less
than or equal to H, the instruction fetches the word at
location E-L+number. If the fetched word is equal to
1777774, sequential operation continues with the instruction
immediately after the Dispatch instruction. If the fetched
word is not equal to 177777, the instruction treats this

DSPA

word as the intermediate address in the effective address
calculation. After the indirection chain, if any, has been
followed, the instruction places the effective address in
the program counter and sequential operation continues
with the word addressed by the updated value of the
program counter.

Decrement And Skip If Zero
DSZ [@]displacement],index]

|0]0‘0l1l1|@‘INDEXl DISPLACEMENT]
'7'1'2'3'4'5'6'7'8 ¥ d 15

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and writes
the result back into that location. If the updated value of
the location is zero, the instruction skips the next sequential
word.

Extended Decrement and Skip if Zero
EDSZ [@]displacement],index]

Moo [[moe o [o [[[[o o]
0'1'2'3'4'5'6'7'8'9'10'11'12'13'14'15'

| @ I DISPLACEMENT |
L e T T Y v T T v v v T T T TR

Decrements the addressed word, then skips if the
decremented value is zero.

Computes the effective address, E. Decrements by one the
contents of the location addressed by E and writes the
result back into that location. If the updated value of the
word is zero, the instruction skips the next sequential word.

Extended Increment And Skip If Zero
EISZ [@]displacement[,index]

GTelo [[e] [woo [o[o [[[[eJe]°]
T2 '3 4 5 6 7 8 9 10 11 12 ' 13 14 15

[})

| @ | DISPLACEMENT J

Loy 1 T T T T T T 5

EJSR

Data General Corporation

Increments the addressed word, then skips if the
incremented value is zero.

Computes the effective address, E . Increments by one the
contents of the location specified by E, and writes the new
value back into memory at the same address. If the updated
value of the location is zero, the instruction skips the next
sequential word.

Extended Jump
EJMP [@]displacement/,index]

[ToTe oo [woex [o o [+ [[e o]
1'2’3'4'5’6'7‘8'9'10'11'12'13'14’15'

Lo

| @ ‘ DISPLACEMENT

Computes the effective address, E, and places it in the
program counter. Sequential operation continues with the
word addressed by the updated value of the program
counter.

Extended Jump To Subroutine
EJSR [@]displacement],index]

1OIOlO|1l1llNDEX‘0‘0|1l1|1lOlOIO
T 12 ' 3 4 6 7 8 ' 9 10 12 ' 13 ' 14 ' 15

o g1 LTI t

r@ I DISPLACEMENT J

T T T AT

Increments and stores the value of the program counter in
AC3, then places a new address in the program counter.

Computes the effective address, E. The instruction then
places the address of the next sequential instruction (the
instruction following the EJSR instruction) in AC3. Places
E in the program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

NOTE: The instruction computes E before it places
the incremented program counter in AC3.

Standard Machine Instructions

Extended Load Accumulator
ELDA ac,/@/displacement/,index]

[lo i [e TofwoeTolo [[T o o]o]

012 "3"7a4 "5 "6 8

I @ l DISPLACEMENT
L T T T T T T r T T T v T 5

Moves a copy of the contents of a memory word into the
specified accumulator.

Calculates the effective address, E. Places the contents of
the location addressed by E in the specified accumulator.

The contents of the location addressed by E remain
unchanged.

Extended Load Byte

ELDB ac,displacement/,index]

L1lo,o| AC l1|mosxlo| l l I Iololo—l
0T 1T T2 "3 " & 5

|

DISPLACEMENT
o 1T ' ' N v

NE

Copies a byte from memory into an accumulator.

the displacementi in the
following way: shifts the 16 b1t number contained in the
displacement field to the right one bit, producing a 15-bit
address and a 1-bit byte indicator. Uses the value of the
index bits to determine an offset value. Adds the offset
value to the 15-bit address produced from the displacement
to give a memory address. The byte indicator designates
which byte of the addressed word will be loaded into bits
8-15 of the specified accumulator. The instruction sets bits
0-7 of the specified accumulator to 0.

The instruction destroys the previous contents of the
specified accumulator, but it does not alter either the index
value or the displacement.

The argument index selects the source of the index value.
It may have values in the range of 0-3. The meaning of
each value is shown below:

4- 49

Index Index Value
Bits
00 0
01 Address of the displacement field (Word 2
of this instruction)
10 Contents of AC2
11 Contents of AC3

Extended Load Effective Address
ELEF ac,[@]displacement/,index]

L;!:l;l;cj;l;nosxlglo‘ | ’ Iololo1

[e]

DISPLACEMENT l
R v v v r r v

15

Places an effective address in an accumulator.

Computes the effective address, E, and places it in bits 1-15
of the specified accumulator. Sets bit 0 of the accumulator
to 0. The previous contents of the accumulator are lost.

The example below shows some different uses of the ELEF
instruction.

ELEF 0,TABLE :The logical address of TABLE
;is placed in ACO.
ELEF 1,-565,3 ;Subtracts 000055 (octal) from
;the unsigned integer in AC3 and
;places the result in AC1.
ELEF 0,.+0 ;Places the logical address of this
:Load effective address
;instruction in ACO.
DG-06562
Figure 4.2

ELEF

Extended Store Accumulator
ESTA ac,/@]displacement/,index]

r1l1lo] AC ‘1]INDEXlO]0|1llIIIOlOIOI
o T 2 "3 'a 5 6 7 8 9 10 11 MET R

11 12 713

I @ I DISPLACEMENT
L T T T v T v T T

|

MED

Stores the contents of an accumulator into a memory
location.

The contents of the specified accumulator are placed in
the word addressed by the effective address, E. The
previous contents of the location addressed by E are lost.
The contents of the specified accumulator remain
unchanged.

Extended Store Byte

ESTB ac,displacement/ index]

Flol\l AC ‘1]INDEX‘O‘1|1l‘ll1l0|0|0|
'0'1'2'3'4'5'6'7'8'9'10'11'12'13'14'15'

Data General Corporation

Index Index Value
Bits
00 0
01 Address of the displacement field (Word 2
of this instruction)
10 Contents of AC2
11 Contents of AC3
Absolute Value
FAB fpac

[1]1‘0'FPACl1|1IO|010[‘IIOlllOIOlOl
Yo "1 72 ' 3'4 &5 6 7 8 9 10 11 12 13 1415

Sets the sign bit of FPAC to 0. Also sets the exponent to
zero if the mantissa is zero; otherwise leaves bits 1-63 of
FPAC unchanged. Updates the Z and N flags in the
floating point status register to reflect the new contents of
FPAC.

Add Double (FPAC to FPAC)
FAD facs,facd

FIFACS'FACD|0|0‘010|1|1|0!110!0|0|
3] 1'2'3'4'5'6'7'8'9'10'11'11'13'14'15'

DISPLACEMENT l
T T T T T T T —5

Copies into memory the byte contained in the right half of
an accumulator.

Forms a byte pointer from the displacement as follows:
shifts the 16-bit number contained in the displacement
‘field to the right one bit, producing a 15-bit address and a
1-bit byte indicator. Uses the value of the index bits to
determine an offset value. Adds the offset value to the
15-bit address produced from the displacement field to
give a memory address. The byte indicator determines
which byte of the addressed location will receive bits 8-15
of the specified accumulator.

The argument index selects the source of the index value.

It may have values in the range of 0-3; the meaning of
each value is shown below:

FAD

4- 50

Adds the floating point number in FACS to the floating
point number in FACD and places the normalized result
in FACD. Destroys the previous contents of FACD, leaves
the contents of FACS unchanged and updates the Z and N
flags in the floating point status register to reflect the new
contents of FACD.

Floating point addition consists of an exponent comparison
and a mantissa addition. The exponents of the two numbers
are compared, and the mantissa of the number with the
smaller exponent is shifted right. This mantissa alignment
is accomplished by taking the absolute value of the
difference between the two exponents and shifting the
mantissa right that number of hex digits. One guard digit
is provided so that all but four bits shifted out of the right
end of the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift of at
least 15 hex digits.

After alignment, the mantissas are added together. The
result of this addition is termed the intermediate result.
One guard digit is provided for the intermediate result,
which is used if normalization is required. The sign of the
intermediate result is determined from the signs of the
two operands by the rules of algebra. If the mantissa
addition produces a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right one hex

Standard Machine Instructions

digit and the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in the
floating point status register, and the number in FACD is
correct, except that the exponent is 128 too smail.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros. If
the mantissa is found to be all zeros, a true zero is placed in
the FACD and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FACD. If the
normalization results in an exponent underflow, the UNF
bit is set in the floating point status register and the
instruction is terminated. The number in the FACD is
correct except that the exponent is 128 too large.

Add Double (Memory to FPAC)
FAMD fpac,/@]displacement[, index]

|1||NDEX|FPAC|0|1lolol1[1|0|1|0|0L(L|
Y0 "1 2 '3'4 5 6 7 8" 9 10 11 12 13 14 15

r@ ‘ DISPLACEMENT J

Adds the floating point number in the source location to
the floating point number in FPAC and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address E which addresses a 4-word
(double precision) operand.

Floating point addition consists of an exponent comparison
and a mantissa addition. The exponents of the two numbers
are compared, and the mantissa of the number with the
smaller exponent is shifted right. This mantissa alignment
is accomplished by taking the absolute value of the
difference between the two exponents and shifting the
mantissa right that number of hex digits. One guard digit
is provided so that all but four bits shifted out of the right
end of the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift of at
least 15 hex digits.

After alignment, the mantissas are added together. The
result of this addition is termed the intermediate result.
One guard digit is provided for the intermediate result,
which is used if normalization is required. The sign of the
intermediate result is determined from the signs of the
two operands by the rules of algebra. If the mantissa
addition produces a carry out of the high-order bit, the

mantissa in the intermediate result is shifted right one hex
digit and the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in the
floating point status register, and the number in FPAC is

correct except that the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros. If
the mantissa is found to be all zeros, a true zero is placed in
the FPAC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FPAC. If the
normalization results in an exponent underflow, the UNF
bit is set in the floating point status register and the
instruction is terminated. The number in the FPAC is
correct except that the exponent is 128 too large.

Add Single (Memory to FPAC)
FAMS fpac,/@]displacement[index]

\1IlNDEXIFPAC|0|1|0|0[0|1IO|1|0|0|0
[¢] T '2 3'4 65 '6 7 8 9 10 11 12713714715

l @ l DISPLACEMENT |
= T y T T T r T T T T T T T

Adds the floating point number in the source location to
the floating point number in FPAC and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address, E, which addresses a
2-word (single precision) operand.

Floating point addition consists of an exponent comparison
and a mantissa addition. The exponents of the two numbers
are compared, and the mantissa of the number with the
smaller exponent is shifted right. This mantissa alignment
is accomplished by taking the absolute value of the
difference between the two exponents and shifting the
mantissa right that number of hex digits. One guard digit
is provided so that all but four bits shifted out of the right
end of the mantissa are lost, and do not take part in the
addition.

If all significant digits are shifted out of the mantissa, the
operation is equivalent to adding the number with the
larger exponent to zero. This requires a shift of 7 hex
digits.

After alignment, the mantissas are added together. The
result of this addition is termed the intermediate result.
One guard digit is provided for the intermediate result,
which is used if normalization is required. The sign of the

FAMS

intermediate result is determined from the signs of the
two operands by the rules of algebra. If the mantissa
addition produces a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right one hex
digit and the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in the
floating point status register, and the number in FPAC is
correct, except that the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros. If
the mantissa is found to be all zeros, a true zero is placed in
the FPAC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FPAC. If the
normalization results in an exponent underflow, the UNF
bit is set in the floating point status register and the
instruction is terminated. The number in the FPAC is
correct except that the exponent is 128 too large.

Add Single (FPAC to FPAC)
FAS facs,facd

II]FACSIFACD|0|0]O|0|O]1|O|1|0[0|0\|
"0 1T T2 374 56 7 8 9 10 11 12 1314 15"

Adds the floating point number in FACS to the floating
point number in FACD and places the normalized result
in FACD. Destroys the previous contents of FACD, leaves
the contents of FACS unchanged and updates the Z and N
flags in the floating point status register to reflect the new
contents of FACD.

Floating point addition consists of an exponent comparison
and a mantissa addition. The exponents of the two numbers
are compared, and the mantissa of the number with the
smaller exponent is shifted right. This mantissa alignment
is accomplished by taking the absolute value of the
difference between the two exponents and shifting the
mantissa right that number of hex digits. One guard digit
1s provided so that all but four bits shifted out of the right
end of the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift of 7
hex digits.

After alignment, the mantissas are added together. The
result of this addition is termed the intermediate result.
One guard digit is provided for the intermediate result,
which is used if normalization is required. The sign of the
intermediate result is determined from the signs of the
two operands by the rules of algebra. If the mantissa
addition produces a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right one hex
digit and the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in the
floating point status register, and the number in FACD is

FCMP

Data General Corporation

correct, except that the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros. If
the mantissa is found to be all zeros, a true zero is placed in
the FACD and the instruction is terminated.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FACD. If the
normalization results in an exponent underflow, the UNF
bit is set in the floating point status register and the
instruction is terminated. The number in the FACD is
correct, except that the exponent is 128 too large.

Clear Errors
FCLE

ool fof o [ol efifo] o e o]
"0 1 7273 4 65" "6 7' 8" 1 2 13714 715"

T o]
9 107111

Sets bits 0-4 of the floating point status register to 0.

NOTE: The I/0 RESET instruction will also set these
bits to 0.

Compare Floating Point
FCMP facs,facd

|1|FACSIFACD|1[1|1|0]0[1|0|1|0l0]0|
0T 1T T273 74 75 "6 7 89 101112 13 14 15 '

Compares two floating point numbers and sets the Z and N
flags in the floating point status register accordingly.

Algebraically compares the floating point numbers in
FACS and FACD to each other and updates the Z and N
flags in the floating point status register to reflect the
result. Leaves the contents of FACS and FACD unchanged.
The results of the compare and the corresponding flag
settings are shown in the table below.

Result

1 0 FACS=FACD
FACS>FACD
FACS<FACD

o
-

Standard Machine Instructions

NOTE:
results.

Unnormalized operands give unspecified

Divide Double (FPAC by FPAC)
FDD facs,facd

|1lFACS|FACDIO|0I1{1|1I1]0I110|0|0\
Y1 '2 34 5 6 7 8 9 10 11712 13714 15"

o

Divides the floating point number in FACD by
point number in FACS and places the normalized result in
FACD. Destroys the previous contents of FACD, leaves
the contents of FACS unchanged, and updates the Z and N
flags in the floating point status register to reflect the new
contents of FACD.

F3 PRI

P Ry o
L€ 1104dulig

The source operand is checked for a zero mantissa. If the
mantissa is zero, the DVZ bit is set in the floating point
status register and the instruction is terminated. The
number in FACD remains unchanged. If the mantissa is
nonzero, the previous contents of FACD are lost. The two
mantissas are compared and if the mantissa of the number
in FACD is greater than or equal to the mantissa of the
source operand, the mantissa of the number in FACD is
shifted right one hex digit and the exponent of the number
in FACD is increased by one.

The mantissa in FACD is then divided by the mantissa of
the source operand and the quotient is the mantissa of the
intermediate result. The exponent of the source operand is
subtracted from the exponent in FACD and 64 is added to
this result. This addition of 64 maintains the excess 64
notation. The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign of the
intermediate result is determined from the signs of the
two operands by the rules of algebra. The result is placed
in FACD. (Because the operands are assumed to be
normalized, and division with such operands produces a
normalized result, no normalization of the result takes
place.)

If the exponent processing produces either overflow or
underflow, the corresponding bit in the floating point status
register is set. The number in FACD is correct except that,
for exponent overflow, the exponent is 128 too small, and
for exponent underflow, the exponent is 128 too large.

4- 53

Divide Double (FPAC by Memory)
FDMD fpac,/@]displacement[,index]

[Twoex [rne [o [[1 [[o] [o]o 0]
Y0 172 '3 '4 5 6 7 8 9 10 11 12 13 14 15"
I @ l DISPLACEMENT J

Divides the floating point number in FPAC by the floating
point number in the source location and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address, E, which addresses a
4-word (double precision) operand.

The source operand is checked for a zero mantissa. If the
mantissa is zero, the DVZ bit is set in the floating point
status register and the instruction is terminated. The
number in FPAC remains unchanged. If the mantissa is
nonzero, the previous contents of FPAC are lost. The two
mantissas are compared and if the mantissa of the number
in FPAC is greater than or equal to the mantissa of the
source operand, the mantissa of the number in FPAC is
shifted right one hex digit and the exponent of the number
in FPAC is increased by one.

The mantissa in FPAC is then divided by the mantissa of
the source operand and the quotient is the mantissa of the
intermediate result. The exponent of the source operand is
subtracted from the exponent in FPAC and 64 is added to
this result. This addition of 64 maintains the excess 64
notation. The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the two
operands by the rules of algebra. The result is placed in
FPAC. (Because the operands are assumed to be
normalized, and division with such operands produces a
normalized result, no normalization of the result takes
place.)

If the exponent processing produces either overflow or
underflow, the corresponding bit in the floating point status
register is set. The number in FPAC is correct except that,
for exponent overflow, the exponent is 128 too small, and
for exponent underflow, the exponent is 128 too large.

FDMD

Divide Single (FPAC by Memory)
FDMS fpac,/@]displacement[,index]

L11INDEX|FPACIOI1II]1|O|1|O|1IOIOIO]
071 T2 374 "5 "6 7 B8 9 10 11 12 13 14 15

DISPLACEMENT I
T v v v v v v v —5

L]

Divides the floating point number in FPAC by the floating
point number in the source location and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address E which addresses a 2-word
(single precision) operand.

The source operand is checked for a zero mantissa. If the
mantissa is zero, the DVZ bit is set in the floating point
status register and the instruction is terminated. The
number in FPAC remains unchanged. If the mantissa is
nonzero, the previous contents of FPAC are lost. The two
mantissas are compared and if the mantissa of the number
in FPAC is greater than or equal to the mantissa of the
source operand, the mantissa of the number in FPAC is
shifted right one hex digit and the exponent of the number
in FPAC is increased by one.

The mantissa in FPAC is then divided by the mantissa of
the source operand and the quotient is the mantissa of the
intermediate result. The exponent of the source operand is
subtracted from the exponent in FPAC and 64 is added to
this result. This addition of 64 maintains the excess 64
notation. The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the two
operands by the rules of algebra. The result is placed in
FPAC. (Because the operands are assumed to be
normalized, and division with such operands produces a
normalized result, no normalization of the result takes
place.)

If the exponent processing produces either overflow or
underflow, the corresponding bit in the floating point status
register is set. The number in FPAC is correct except that,
for exponent overflow, the exponent is 128 too small, and
for exponent underflow, the exponent is 128 too large.

FEXP

4- 54

Data General Corporation

Divide Single (FPAC by FPAC)
FDS facs,facd

[IIFACSIFACD|0!0l1|1|0|1lolll0|0|0|
01 T2 7374 5 67 89 10 11 12 13 1815 '

Divides the floating point number in FACD by the floating
point number in FACS and places the normalized result in
FACD. Destroys the previous contents of FACD, leaves
the contents of FACS unchanged, and updates the Z and N
flags in the floating point status register to reflect the new
contents of FACD.

The source operand is checked for a zero mantissa. If the
mantissa is zero, the DVZ bit is set in the floating point
status register and the instruction is terminated. The
number in FACD remains unchanged. If the mantissa is
nonzero, the previous contents of FACD are lost. The two
mantissas are compared, and if the mantissa of the number
in FACD is greater than or equal to the mantissa of the
source operand, the mantissa of the number in FACD is
shifted right one hex digit and the exponent of the number
in FACD is increased by one.

The mantissa in FACD is then divided by the mantissa of
the source operand and the quotient is the mantissa of the
intermediate result. The exponent of the source operand is
subtracted from the exponent in FACD and 64 is added to
this result. This addition of 64 maintains the excess 64
notation. The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the two
operands by the rules of algebra. The result is placed in
FACD. (Because the operands are assumed to be
normalized, and division with such operands produces a
normalized result, no normalization of the result takes
place.)

If the exponent processing produces either overflow or
underflow, the corresponding bit in the floating point status
register is set. The number in FACD is correct except that,
for exponent overflow, the exponent is 128 too small, and
for exponent underflow, the exponent is 128 too large.

Load Exponent
FEXP fpac

°|

© |o]
13714 15 "

+

Places bits 1-7 of ACO in bits 1-7 of the specified FPAC.
Ignores bits 0 and 8-15 of ACO0. Leaves unchanged bits 0
and 8-63 of FPAC and the entire contents of AC0. Also sets

Standard Machine Instructions

bits 0-7 (the sign and exponent) to zero if bits 8-63 (the
mantissa) of FPAC are zero. Leaves bits 1-7 of FPAC
unchanged if FPAC contains true zero.

NOTE: The exponent contained in bits 1-7 of ACO is
assumed to be in Excess 64 representation.

Fix To AC

FFAS ac,fpac

tl AC |FPAc|1|o|1|1|o|1|o|1|o|olo|
Y0 1'2 3'4 5 '6 7 8 9 10 11 12 13 14 15

Converts the integer portion of the floating point number
contained in the specified FPAC to a signed two’s
complement integer and places the result in an
accumulator.

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 15 least
significant bits from this value and, if the number in FPAC
is negative, forms the two’s complement of the integer.
Then places the result in the specified accumulator, sets
the Z and N flags in the floating point status register to 0,
and leaves the contents of FPAC unchanged.

If the number in FPAC is less than -32,768 or greater than
+32,767, this instruction sets the MOF flag in the floating
point status register to 1.

NOTE: If the lower 15 bits of the integer formed from
the number in FPAC are all 0, the sign bit of the
result will be zero, regardless of the sign of the

original number, unless FPAC is equal to -32,768.

Fix To Memory
FFMD fpac,/@]displacement/,index]

1LNDEX|FPACIil0|1|1|1]1|0|1[0|ﬂ0|
Y0 12 374 656 7 89 10 11 12 1314715
| @ I DISPLACEMENT |
| e T — T T —5

Converts the integer portion of a floating point number to
double-precision integer format and stores the result in
two memory locations.

4- 55

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 31 least
significant bits from this value and, if the number in FPAC
is negative, forms the two’s complement of the inieger.
Then places the result into the locations addressed by E,
sets the Z and N flags in the floating point status register
to 0, and leaves the contents of FPAC unchanged.

It the number in FPAC is less than -2,147,483,648 or greater
than +2,147,483,647, this instruction sets the MOF flag in
the floating point status register to 1.

NOTE: If the lower 31 bits of the integer formed from
the number in FPAC are all 0, the sign bit of the
result will be zero, unless FPAC is equal to
-2,147,483,648.

Halve
FHLV fpac

FT e [oo [o[[o[° 7]
"0 ' 172 '3"'4 6" '6 ' 7 8 9 10 1112 13 14715

Divides the floating point number in FPAC by 2.

Shifts the mantissa contained in FPAC right one bit
position, fills the vacated bit position with a zero and places
the bit shifted out in the guard digit. Then normalizes the
number and places the result in FPAC. Sets the UNF flag
in the floating point status register to 1 if the normalization
process causes an exponent underflow. The number in
FPAC is then correct, except that the exponent is 128 too
large. Updates the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

Integerize
FINT fpac

1[1l0|FPACl1|1
o 27374757686

1

Lo []efr]ofo]o]
7 8 9 10 11 12 137 14 15

T

Zeros the fractional portion (if any) of the number
contained in the specified FPAC, and then normalizes the
number. The instruction updates the Z and N flags in the
floating point status register to reflect the new contents of
the specified FPAC.

NOTE: If the absolute value of the number contained

in the specified FPAC is less than 1, the specified
FPAC is set to true zero.

FINT

Float From AC

FLAS ac,fpac
[1]ACIFPAC|1l0[1|0l0|1l0]1|0|0|0|
"0 1 2 374 5 6 7 8 9 10 11 12 13714 15

Converts a two's complement number to floating point
format.

Converts the signed two's compiement number contained
in the specified accumulator to a single precision floating
point number, places the result in the specified FPAC, and
sets the low-order 32 bits of the FPAC to 0. Leaves the
contents of the specified accumulator unchanged and
destroys the previous contents of the FPAC. Updates the Z
and N flags in the floating point status register to reflect
the new contents of FPAC.

The range of numbers that can be converted is -32,768 to
+32,767.

Load Floating Point Double
FLDD fpac,/@]displacement/,index]

l1|INDEX|FPACi lOlOIOl I |0| IOIOIOI
‘ @ | DISPLACEMENT |
e T T T T T T 5

Moves four words out of memory into a specified FPAC.

Computes the effective address, E, and places the double
precision floating point number at that address in FPAC.
Also sets the sign and exponent to zero if the mantissa is
zero. Destroys the previous contents of FPAC and updates
the Z and N flags in the FPSR to reflect the new contents
of FPAC.

Load Floating Point Single
FLDS fpac,/@]/displacement],index]

[1]INDEX1FPACI1I0\IOIOIOI‘\IOI1IO[OlOI
o1 T2 737475 76 7 8 9 10 11 12713 14 15

FLST

4- 56

Data General Corporation

|

T

DISPLACEMENT
T T + T T T T T T

L]

Moves two words out of memory into a specified FPAC.

Computes the effective address E and places the single
precision floating point number at that address in FPAC.
Also sets the sign and exponent to zero if the mantissa is
zero. Destroys the previous contents of FPAC and updates
the Z and N flags in the floating point status register to
reflect the new contents of FPAC. The low-order 32 bits of
FPAC are set to 0.

Float From Memory
FLMD fpac,/@]displacement],index]

(oo [[[e [o[[[e [e o]

| @ | DISPLACEMENT I

T T T T —T

Converts the contents of two memory locations to floating
point format and places the result in a specified FPAC.

Computes the effective address E, converts the 32-bit,
signed, two’s complement number addressed by E to a
double precision floating point number, and places the
result in the specified FPAC. Destroys the previous
contents of FPAC, and updates the Z and N flags in the
floating point status register to reflect the new contents of
the FPAC.

The range of numbers that can be converted is
-2,147,483,648 to +2,147,483,647.

Load Floating Point Status
FLST [@]displacement[,index]

1]0[1|INDEX|1|1|0[1I1]1|0|1|0|0]0]
) ' ' "5 ' 6 ' 7 ' 8 8 10 11 12 13" 14716

0 1 27374

il

o] -
1] 15

DISPLACEMENT

Moves the contents of two specified memory locations to
the floating point status register.

Standard Machine Instructions

Computes the effective address, E, places the 32-bit operand
addressed by E in the floating point status register, and
sets the condition codes to the values of the loaded bits.

Multiply Double (FPAC by FPAC)
FMD facs,facd

[T eacs [a0 [o o[o[[o] [o]o]]
0172737475 "6 7 8 9 10 11712 13 14 715"

Multiplies the floating point number in FACD by the
floating point number in FACS and places the normalized
result in FACD. Destroys the previous contents of FACD,
leaves the contents of FACS unchanged, and updates the Z
and N flags in the floating point status register to reflect
the new contents of FACD.

The mantissas of the two numbers are multiplied together
to give the mantissa of the intermediate result. One guard
digit is provided for the intermediate result, which is used
if normalization is required. The exponents of the two
numbers are added together and 64 is subtracted. This
subtraction of 64 maintains the excess 64 notation. The
result of the exponent manipulation becomes the exponent
of the intermediate result. The sign of the intermediate
result is determined from the signs of the two operands by
the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization, as that
procedure may correct the condition. If normalization does
not correct the condition, the corresponding flag in the
floating point status register is set to 1. The number is
correct except that, for exponent overflow, the exponent is
128 too small, and for exponent underflow, the exponent is
128 too large.

Multiply Double (FPAC by Memory)
FMMD fpac,/[@]displacement/,index]

tllNDEXlFPACIO|1l1|O| ‘ IOI1[O|0IO|
= T + T + t + + + TR I T A VR T

1 1
1 2 3 4 5 6 7 8 9 10 v

I @ | DISPLACEMENT I
L T T T T T v T T r T T T T

Multiplies the floating point number in FPAC by the
floating point number in the source location and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address, E, which addresses a
4-word (double precision) operand.

The manitissas of the iwo numbers are muliiplied iogeiher
to give the mantissa of the intermediate result. One guard
digit is provided for the intermediate result, which is used
if normalization is required. The exponents of the two
numbers are added together and 64 is subtracted. This
subtraction of 64 maintains the excess 64 notation. The
result of the exponent manipulation becomes the exponent
of the intermediate result. The sign of the intermediate
result is determined from the signs of the two operands by
the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization, as that
procedure may correct the condition. If normalization does
not correct the condition, the corresponding flag in the
floating point status register is set to 1. The number is
correct except that, for exponent overflow, the exponent is
128 too small, and for exponent underflow, the exponent is
128 too large.

Multiply Single (FPAC by Memory)
FMMS fpac,[@]displacement],index]

|1IINDEX|FPACIO|1I1|0|0l1|O|1|0|0|0,
071 T2 737475 76 7 879 10 11712 13 14 15"

| @ | DISPLACEMENT |
Loy T T T T T T T — v v T 5

Multiplies the floating point number in FPAC by the
floating point number in the source location and places the
normalized result in FPAC. Destroys the previous contents
of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

Computes the effective address E which addresses a 2-word
(single precision) operand.

The mantissas of the two numbers are multiplied together
to give the mantissa of the intermediate result. One guard
digit is provided for the intermediate result, which is used
if normalization is required. The exponents of the two
numbers are added together and 64 is subtracted. This
subtraction of 64 maintains the excess 64 notation. The
result of the exponent manipulation becomes the exponent
of the intermediate result. The sign of the intermediate
result is determined from the signs of the two operands by
the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization, as that
procedure may correct the condition. If normalization does
not correct the condition, the corresponding flag in the

FMMS

floating point status register is set to 1. The number is
correct except that, for exponent overflow, the exponent is
128 too small, and for exponent underflow, the exponent is
128 too large.

Move Floating Point
FMOV

HEEINREDINOnooo

1 2 3 4 5 6 7 9 101

Moves the contents of one FPAC to another FPAC.

Places the contents of FACS in FACD, destroys the
previous contents of FACD, and leaves the contents of
FACS unchanged. If the mantissa in FACS is zero, the sign
and exponent in FACD are also set to zero. The Z and N
flags in the floating point status register are set to reflect
the new contents of FACD.

Multiply Single (FPAC by FPAC)
FMS

|1|FACSIFACDIO|0l1iO|0|1‘Ol1|0{0|0|
o1 T2 737475 6 7 879 10 11 12713714 15"

Multiplies the floating point number in FACD by the
floating point number in FACS and places the normalized
result in FACD. Destroys the previous contents of FACD,
leaves the contents of FACS unchanged, and updates the Z
and N flags in the floating point status register to reflect
the new contents of FACD.

The mantissas of the two numbers are multiplied together
to give the mantissa of the intermediate result. One guard
digit is provided for the intermediate result, which is used
if normalization is required. The exponents of the two
numbers are added together and 64 is subtracted. This
subtraction of 64 maintains the excess 64 notation. The
result of the exponent manipulation becomes the exponent
of the intermediate result. The sign of the intermediate
result is determined from the signs of the two operands by
the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization, as that
procedure may correct the condition. If normalization does
not correct the condition, the corresponding flag in the
floating point status register is set to 1. The number is
correct except that, for exponent overflow, the exponent is
128 too small, and for exponent underflow, the exponent is
128 too large.

FPOP
Rev. 02

Data General Corporation

Negate

FNEG fpac
[1]1[1]FpAc|111[o[oloL1Lo|1|o|o|o|
"o Tt 727374785 76 7 8 9 10 1112 137 14 15"

Inverts the sign bit of FPAC. Bits 1-63 of FPAC remain
unchanged. Also sets the sign and exponent to zero if the
mantissa in FPAC is zero. Updates the Z and N flags in
the floating point status register to reflect the new contents
of FPAC. If FPAC contains true zero, the sign bit remains
unchanged.

Normalize
FNOM fpac

|1IOIOIFPAC|1l1l0|0|0|1|0l1l°|0l0|
01T 727374785 7677879 1011712713714 715"

Normalizes the floating point numbers in FPAC. Sets a
true zero in FPAC if all the bits of the mantissa are zero.
Sets the UNF flag in the FPSR if an exponent underflow
occurs. The number in FPAC is then correct, except that
the exponent is 128 too large.

The Z and N flags in the floating point status register are
set to reflect the new contents of FPAC.

No Skip
FNS

The next sequential word is executed.

Pop Floating Point State
FPOP

Dl lefolofofefofr[o]rfofrfofo]o]
"0 172 "3 476 6 7 8 9 10 11 12 13 14 715"

Pops an 18-word floating point return block off the user
stack and alters the state of the floating point unit. The
words popped and their destinations are as follows:

Standard Machine Instructions

STACK POINTER A
AFTERFPOP ~o
FPSR BITS 0-15
FPSR BITS 16-31
e e ———— — —’J
FACO~ p———— e}
___________ L]
] P
FAC1— [=—=—=—————1 d
——————————— "
— g
" FAC 2 — i — .4/
___________ LT
’_ L o e e e] L1
FAC3— [————————— <
——————————— "
STACK POINTER

BEFORE FPOP - g

S i T Y

DG-00604
Figure 4.3

NOTE: Because of the potentially long time required
to perform some floating point instructions in
relation to I/0 interrupt requests, these instructions
are interruptible. Because the FACD, stack pointer,
and program counter are -wot updated. until the
completion of these instructions, any interrupt
service routines that return control to the interrupted
program via the program counter stored in location
0 will correctly restart these instructions.

Push Floating Point State
FPSH

Llelelofofefefol ool JoT Tofo]o]
0T Y T2 7374 576 7 8789 10 11 121314 185

Pushes an 18-word floating point return block onto the
user stack, leaving the contents of the floating point
accumulators -and the floating point status register
unehanged. The format of the 18 words pushed is as follows:

STACK POINTER Sttt |
BEFORE FPSH
FPSR BIS 0-15
FPSR BITS 16-31

-

___________ L -

facod bFeemm e | 4

_________ 11

————————— —+

FACT— e] | 4

b — — — —— L, 1

N i

fac2- e 11

e e e] "
|

B - 1.

fac3o b |-

-

STACK POINTER b~ e e e
AFTERFPSH — % |_
DG-00603
Figure 4.4

Read High Word
FRH fpac

1]O0|1}FPAC {11 |O|OfOf1]|O[1]|O]|O]O

Moves the high-order bits of a floating point word to an
accumulator.

Places the 16 high-order bits of FPAC into ACO0, losing the
previous contents of ACO, and leaving unchanged the
contents of FPAC and the floating point status register.

Skip Always
FSA

nonpnnnonononann

The next sequential word is skipped.

FSCAL
Rev. 02

Scale

FSCAL fpac

Moo e [[[o o' [[o] [° []°]
ko7 "2 "3 4 5 '6 7 8 ' 9 10 11 12 13 14 15"

Shifts the mantissa of the floating point number in FPAC
either right or left, depending upon the contents of bits
1-7 of ACO. Leaves the contents of AC0 unchanged.

Treats bits 1-7 of ACO as an exponent in Excess 64
representation. Computes the difference between this
exponent and the exponent in FPAC by subtracting the
exponent in FPAC from the number contained in ACO bits
1-7. If the difference is zero, the instruction stops. If the
difference is positive, the instruction shifts the mantissa
contained in FPAC right that number of hex digits. If the
difference is negative, the instruction shifts the mantissa
contained in FPAC left that number of hex digits and sets
the MOF flag in the floating point status register. After the
shift, the contents of bits 1-7 of ACO replace the exponent
contained in FPAC. Bits shifted out of either end of the
mantissa are lost. If the entire mantissa is shifted out of
FPAC, the instruction sets FPAC to true zero. The
instruction sets the Z and N flags in the floating point
status register to reflect the new contents of FPAC.

Data General Corporation

Skip On Greater Than Or Equal To Zero
FSGE

Dononnnnnononoon

Skips the next sequential word if the N flag of the floating
point status register is 0.

Skip On Greater Than Zero
FSGT
nonnnnnonononoan

Skips the next sequential word if both the Z and N flags of
the floating point status register are 0.

Skip On Less Than Or Equal To Zero
FSLE

{1 0|1‘1|0|1\1|0|1IOI1‘0I1lOlO0
Y1 2 3 4 5 6 7 9 12 ' 13 ' 14 ' 15

Larey T 5 o +

Skips the next sequential instruction if either the Z flag or
the N flag of the floating point status register is 1.

Subtract Double (FPAC from FPAC) Skip On Less Than Zero
FSD FSLT
[IIFACSIFACDiOlOIOl1l‘Il1lOl1lOIOlOJ r1IO[1‘0[0|1‘1|0|1IOI1‘Ol‘l|OIO|0_I

Subtracts the floating point number in FACS from the
floating point number in FACD and places the normalized
result in the FACD. Destroys the previous contents of
FACD, leaves the contents of FACS unchanged, and
updates the Z and N flags in the floating point status
register to reflect the new contents of FACD.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating point addition. (See
FAD.)

Skip On Zero
FSEQ

nonnonnonnnonooo

6 ' 7 8 9 10 11 1 '

Skips the next sequential word if the Z flag of the floating
point status register is 1.

FSMD
Rev. 02

Skips the next sequential word if the N flag of the floating
point status register is 1.

Subtract Double (Memory from FPAC)
FSMD fpac,/@]displacement[,index]

I1|INDEX‘FPACl0|1IOl1|1l1I0|1IOIOlO
Yo 12 3 '4 6 6 7 8" o 11 12 314 15

9 "1 1

| @ I DISPLACEMENT
5t T T

T T T T T T T3

Subtracts the floating point number in the source location
from the floating point number in FPAC and places the
normalized result in the FPAC. Destroys the previous
contents of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

4- 60

Standard Machine Instructions

The instruction computes the effective address, E, which
addresses a 4-word (double precision) operand.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating point addition. (See
FAMD.)

Subtract Single (Memory from FPAC)

FSMS fpac,/@]displacement[,index]

| I T T T T T T T T T T T ™
IIINDEXIFPAC|0|1|OI1IOI1IO|1OIOIOJ
'0'1'2'3'4'5'6'7'8'9'10'11'12 13 714 " 15
l@l DISPLACEMENT X I
B T v T v M 15 "

Subtracts the floating point number in the source location
from the floating point number in FPAC and places the
normalized result in the FPAC. Destroys the previous
contents of FPAC, leaves the contents of the source location
unchanged, and updates the Z and N flags in the floating
point status register to reflect the new contents of FPAC.

The instruction computes the effective address, E, which
addresses a 2-word (single precision) operand.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating point addition. (See
FAMS.)

Skip On No Zero Divide

Cl el e [l el o]0]
071 7273 45 "6 7 8 9 1011 12 13" 14" 15"

Skips the next sequential word if the divide by zero (DVZ)
flag of the floating point status register is 0.

Skip On No Error
FSNER

HERE
012" 3

Ll fee]r]

Y25 s

of1Jo]1]o]o]o]
9 1712 713714 7 15

1
1071

Skips the next sequential word if bits 1-4 of the floating
point status register are all 0.

Skip On No Mantissa Overflow
FSNM

HEDnone

(o]
7

Lo]o

[To o [o
1WTIT 717

TR

Skips the next sequential word if the mantissa overflow
(MOF) flag of the floating point status register is 0.

Skip On No Overflow
FSNO

[fefefefrfofrfofifo]1 oo o
0172 "3"a4'5 "6 7 8 9 2 13 " 14 715"

MECEEE]

Skips the next sequential word if the overflow (OVF) flag
of the floating point status register is 0.

Skip On No Overflow and No Zero Divide
FSNOD

ol fef el Jo] Jo] i Te o o]
0 172737475 "6 "7 8 9 1011 12 13 14 15"

Skips the next sequential word if both the overflow (OVF)
flag and the divide by zero (DVZ) flag of the floating point
status register are 0.

Skip On Non-Zero Skip On No Underflow
FSNE FSNU
LR L ELEL L] CELLELLE L LT L]

Skips the next sequential word if the Z flag of the floating
point status register is 0.

4- 61

Skips the next sequential word if the underflow (UNF) flag
of the floating point status register is 0.

FSNU
Rev. 02

Skip On No Underflow And No Zero Divide
FSNUD

HE

L

lll1|111‘0|1|0‘110|1‘0‘0|0|
i v Y0 11 12 13 ' 14 ' 15 '

T3 7475 6 7 8 9

Skips the next sequential word if both the underflow (UNF)
flag and the divide by zero (DVZ) flag of the floating point
status register are 0.

FSST

Data General Corporation

Skip On No Underflow And No Overflow
FSNUO

Onnnonnnn

Yo' 1'2 '3 4'5 86 1 8

o1 0|
g 10 1

1|OIOIO
12 ' 13 14 116

Skips the next sequential word if both the underflow (UNF)
flag and overflow (OVF) flag of the floating point status
register are 0.

Subtract Single (FPAC from FPAC)
FSS facs,facd

‘1!FACSlFACDlOlOIOI1lO|1l0|1‘0|Ol
o172 3 4 5 ' 6 7 8 8 10 11 12 13 14

0
5

Subtracts the floating point number in FACS from the
floating point number in FACD and places the normalized
result in the FACD. Destroys the previous contents of
FACD, leaves the contents of FACS unchanged, and
updates the Z and N flags in the floating point status
register to reflect the new contents of FACD.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating point addition.

Store Floating Point Status

FSST [@]displacement[,index]

ll 0|0‘INDEX|1I1|0|1l1|1I0|1|0|0|(Ll
0'1'2'3'4'5'6'7'8'9'10'11'12'13'14'15'

DISPLACEMENT J

5

el

Moves the contents of the FPSR to two specified memory
locations.

Computes the effective address, E, and places the 32-bit
contents of the FPSR in the two consecutive memory
locations addressed by E and E + 1.

Standard Machine Instructions
Store Floating Point Double
FSTD fpac,/@]displacement[,index]

l1JINDEX‘FPACI‘I[O|0I1|1|110|1|010|0—l
0T 17273746 6 7 78 9 1011 12713 135"

1 @ l DISPLACEMENT]
T T T r r T T T T T T T T 5

Stores the contents of a specified FPAC into a memory
location.

Computes the effective address, E, and places the floating
point number contained in FPAC in memory beginning at
the location addressed by E. Destroys the previous contents
of the addressed memory location and leaves unchanged
the contents of FPAC and the condition codes in the FPSR.

Store Floating Point Single
FSTS fpac,[@]displacement/,index]

1 INDEX]FPAC[1!0|0|1|0|1|0|1|0|0|ﬂ
"o 1'2'3'4'5'6'7'8'9'10'”'12'13'14'15'

t

l @ | DISPLACEMENT
T T T T T T T T T

Stores the contents of a specified FPAC into a memory
location.

Computes the effective address E and places the floating
point number contained in FPAC in memory beginning at
the location addressed by E. Destroys the previous contents
of the addressed memory location and leaves unchanged
the contents of FPAC and the condition codes in the FPSR.
For single precision, only the high-order 32 bits of FPAC
are stored.

Trap Disable

FTD
mEnnnnnonnnonooo
0 1 2 3 4 5 6 7 8 9 10 11 12 713 " 14 T 15 '

Sets the trap enable bit of the FPSR to 0.

NOTE: The I/O RESET instruction will set this bit to
0.

Trap Enable

FTE

| Llelelel i ffol i o[oo To o o]
0 1 2 3 4 5 6 7 8 910»11 12713 " 14 " 15

Sets the trap enable bit of the FPSR to 1.

NOTE: When a floating point fault occurs and the
trap enable bit is 1, the trap enable bit is set to 0
before control is transferred to the floating point
error handler. The trap enable bit should be set to 1
before normal processing is resumed.

Halve

HLV ac

Lfrfol s [ofafof i [o]e] [o]o]e]
0T 17273745 6 7 '8°'89 10 11 12 13 14 15"

Divides the contents of an accumulator by 2 and rounds
the result toward zero.

The signed, 16-bit two’s complement number contained in
the specified AC is divided by 2 and rounded toward 0.
The result is placed in the specified AC.

If the number is positive, division is accomplished by
shifting the number right one bit. If the number is negative,
division is accomplished by negating the number, shifting
it right one bit, and negating it again.

Hex Shift Left
HXL n,ac

L] v [re Jofr[r]efofofo]t]ofo]o]
0" 172 3747576 7 8 8§ 10 11 12 13 14 15

Shifts the contents of AC left a number of hex digits
depending upon the immediate field N. The number of
digits shifted is equal to N+ 1. Bits shifted out are lost, and
the vacated bit positions are filled with zeroes. If N is equal
to 3, then all 16 bits of AC are shifted out and all bits of AC
are set to 0.

HXL

NOTE: The assembler takes the coded value of N and
subtracts one from it before placing it in the
immediate field. Therefore, you should code the exact
number of hex digits that you wish to shift.

Hex Shift Right
HXR

l 1

) 1

n,ac

N l AC lo|1|1lol1lolo‘1|0|010J
T2 T4 5 6 T8 "8 10 11 12 13 14 15"

T3 7

Shifts the contents of AC right a number of hex digits
depending upon the immediate field, N. The number of
digits shifted is equal to N+1. Bits shifted out are lost, and
the vacated bit positions are filled with zeroes. If N is equal
to 3, then all 16 bits of AC are shifted out and all bits of AC
are set to 0.

NOTE: The assembler takes the coded value of N and
subtracts one from it before placing it in the
immediate field. Therefore, you should code the exact
number of hex digits that you wish to shift.

Increment
INC/c][sh][#] acs,acd[,skip]

(1IACS|ACD |o|1|1| SH | c ‘#
Yo "7 T2'"3'"4 65 6 7 8 9 10 11 12 13

SKiIP J

15

Increments the contents of an accumulator.

Initializes carry to the specified value. Increments the
unsigned, 16-bit number in ACS by one and places the
result in the shifter. If the incrementation produces a carry
of 1 out of the high order bit, the instruction complements
carry. Performs the specified shift operation, and loads the
result of the shift into ACD if the no-load bit is 0. If the
skip condition is true, the next sequential word is skipped.

NOTE: If the number in ACS is 1777774 the instruction
complements carry.

1SZ

4- 64

Data General Corporation

Inclusive OR

IOR acs,acd

FIACS‘ACDIO
0 1 '2 3 45

¥

o]

o[ofofo[r]o]o]o]
8 ' 9 ' 10 11 ' 12 ' 13 ' 14 15

Forms the logical inclusive OR of the contents of ACS and
the contents of ACD and places the result in ACD. Sets a
bit position in the result to 1 if the corresponding bit position
in one or both operands contains a 1; otherwise, the
instruction sets the result bit to 0. The contents of ACS
remain unchanged.

Inclusive OR Immediate
I0ORI i,ac

r1‘0|0[AC |1|1‘1|1|1|1|1|1|0‘0|01
1'2'3'4'5'6'7'8'9'10'11'12'13'14'\5'

0

-

==

IMMEDIATE FIELD I

Forms the logical inclusive OR of the contents of the
immediate field and the contents of the specified AC and
places the result in the specified AC.

Increment And Skip If Zero
1Sz [@]displacement/[,index]

[ofofo o]

@

DISPLACEMENT
5 T T v r

Il

5

INDEXl
T

Increments the addressed word, then skips if the
incremented value is zero.

Increments the word addressed by E and writes the result
back into memory at that location. If the updated value of
the location is zero, the instruction skips the next sequential
word.

Standard Machine Instructions

Jump
jMP

lOlOlO'OlOI@IINDEXI
01T T2 73 "4 § 6 7 8

DISPLACEMENT

Computes the effective address, E, and places it in the
program counter. Sequential operation continues with the
word addressed by the updated value of the program
counter.

Jump To Subroutine
JSR [@]displacement/,index]

Ii)lOIOIOl1|@lINDEX! DISPLACEMENT I
0T 1T T2 "3 4 6 6 778" v v N v v M

Increments and stores the value of the program counter in
AC3, and then places a new address in the program counter.

Computes the effective address, E; then places the address
of the next sequential instruction in AC3. Places E in the
program counter. Sequential operation continues with the
word addressed by the updated value of the program
counter.

NOTE: The instruction computes E before it places
the incremented program counter in AC3.

Load Accumulator
LDA

o]

o

ac,/@]displacement[,index]

DISPLACEMENT

O|1l AC I@IONDEXI
1727374 "5 "6 7 8"

y

Copies a word from memory to an accumulator.

Places the word addressed by the effective address, E, in
the specified accumulator. The previous contents of the
location addressed by E remain unchanged.

4- 65

Load Byte

LDB acs,acd
l1|ACSIACDl1lO|1l1’1|0,0l1|0,0|0]
'0'1'2'3'4'5'6'7'8'9'10'11'12'13'14T

Moves a byte from memory (as addressed by a byte pointer
in one accumulator) to the second accumulator.

Places the 8-bit byte addressed by the byte pointer
contained in ACS in bits 8-15 of ACD. Sets bits 0-7 of ACD
to 0. The contents of ACS remain unchanged unless ACS
and ACD are the same accumulator.

Load Effective Address
LEF ac,[@]displacement/[,index]

el

[IME]

DISPLACEMENT

AC l@lmoexl —I
—— —

CE

Computes the effective address, E, and places it in bits 1-15
of the specified accumulator. Sets bit 0 of the accumulator
to 0. The previous contents of the AC are lost.

If you reference an auto-incrementing or
auto-decrementing location during the effective address
calculation, the instruction increments or decrements as
appropriate the contents of the auto-incrementing or
-decrementing location.

Figure 4.5 shows some different uses of the LEF instruction.

LEF 0,TABLE ;The logical address of
;TABLE is placed in ACO.
LEF 1,-55,3 ;Subtracts 000055 (octal)
;from the unsigned integer
;in AC3 and the result is
;placed in AC1.
LEF o,.+o0 ;Places the address of this
;Load effective address
;instruction in ACO.
DG-06563
Figure 4.5

LEF

NOTE: The LEF instruction can only be used in a
mapped system, while in the user mode. With the Lef
mode bit set to 1, all I/O and LEF instructions will be
interpreted as LEF instructions.

Be sure that I/O protection is enabled or the Lef mode
bit is set to 1 before using the LEF instruction. If you
issue a LEF instruction in the I/O mode, with
protection disabled, the instruction will be interpreted
and executed as an I/O instruction, with possibly
undesirable results.

Locate Lead Bit
LOB

‘1! ACS|ACD\IIOI1|OIO‘OIOI1|O|OlOI
'0"'2'3'4'5'6'7'8'9'10'11'12'13'14'15'

acs,acd

Adds a number equal to the number of high-order zeroes
in the contents of ACS to the signed, 16-bit, two’s
complement number contained in ACD. The contents of
ACS and the state of carry remain unchanged.

NOTE: If ACS and ACD are specified as the same
accumulator, the instruction functions as described
above, except that since ACS and ACD are the same
accumulator, the contents of ACS will be changed.

Locate and Reset Lead Bit
LRB acs,acd

l1l ACS|ACDl1l0|1|0|1|0|0|1l0|0|01
'T'1'2'3'4'5'6'7'8'9'10'11'12'13'14'15'

Performs a Locate Lead Bit instruction, and sets the lead
bit to 0.

Adds a number equal to the number of high-order zeroes
in the contents of ACS to the signed, 16-bit, two’s
complement number contained in ACD. Sets the leading 1
in ACS to 0. The state of carry remains unchanged.

NOTE: If ACS and ACD are specified to be the same
accumulator, then the instruction sets the leading 1
in that accumulator to 0, and no count is taken.

MsSP
Rev. 02

Data General Corporation

Logical Shift

LSH acs,acd
i1| ACSIACD IO|1[OI1|O 0'0|1|0|0|0

Shifts the contents of ACD either left or right depending
on the number contained in bits 8-15 of ACS. The signed,
8-bit two’s complement number contained in bits 8-15 of
ACS determines the direction of the shift and the number
of bits to be shifted. If the number in bits 8-15 of ACS is
positive, shifting is to the left; if the number in bits 8-15 of
ACS is negative, shifting is to the right. If the number in
bits 8-15 of ACS is zero, no shifting is performed. Bits 0-7
of ACS are ignored.

The number of bits shifted is equal to the magnitude of the
number in bits 8-15 of ACS. Bits shifted out are lost, and
the vacated bit positions are filled with zeroes. The carry
bit and the contents of ACS remain unchanged.

NOTE: If the magnitude of the number in bits 8-15 of
ACS is greater than 15, all bits ACD are set to 0. The
carry bit and the contents of ACS remain unchanged.

Move
MOV/c][sh][#] acs,acd],skip]

|1‘ACS|ACD|0|1lO|SHIC
'0'1'2'3'4'5'6'7'8'9'10'

l#l SKIPJ
1 13 - T 15

1 12

Moves the contents of an accumulator through the
Arithmetic Logic Unit (ALU).

Initializes carry to the specified value. Places the contents
of ACS in the shifter. Performs the specified shift operation
and loads the result of the shift into ACD if the no-load bit
is 0. If the skip condition is true, the instruction skips the
next sequential word.

Modify Stack Pointer

MsP ac
IoDEaENnoInnnnon
Yo 172 3 4 5 ' 6 7 8 9 10 11 12 13 14 ' 15

Changes the value of the stack pointer and tests for
potential overflow.

Adds the signed two’s-complement number in the specified
accumulator to the value of the stack pointer and places
the result in location 40. The instruction then checks for
overflow by comparing the result in location 40 with the

4- 66

Standard Machine Instructions

value of the stack limit. If the result in location 40 is less
than the stack limit, then the instruction ends.

If the result is greater than the stack limit, the instruction
changes the value of location 40 back to its original contents
before the add. The instruction pushes a return block of
the format shown below:

4- 67

Word
Pushed

Contents

ACO
AC1
AC2
AC3

Bit O equals carry.
Bits 1-15 equal PC; contain address of
Modify Stack Pointer instruction.

A A WN -

The program counter in the return block contains the
address of the Modify Stack Pointer instruction.

After pushing the return block, the program counter
contains the address of the stack fault routine. The stack
pointer is updated with the value used to push the return
block, and control transfers to the stack fault routine.

Unsigned Multiply
MUL

Ll fofofolofefr]r]sfofoftfofo]o]
0172737475 6 7 8 9 10 11712713 14715

Multiplies the unsigned contents of two accumulators and
adds the result to the unsigned contents of a third
accumulator. The result is an unsigned 32-bit integer in
two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by the
unsigned, 16-bit number in AC2 to yield an unsigned,
32-bit intermediate result. The unsigned, 16-bit number in
ACO is added to the intermediate result to produce the
final result. The final result is an unsigned, 32-bit number
and occupies ACO and AC1. Bit 0 of ACO is the high-order
bit of the result and bit 15 of AC1 is the low-order bit. The
contents of AC2 remain unchanged. Because the result is a
double-length number, overflow cannot occur.

Signed Multiply

MULS

L] fofol o] fofefofrofofs]ofolo]
"0 1 2 "3 475 6 7 89 10 11 12 13 14 15"

Multiplies the signed contents of two accumulators and
adds the result to the signed contents of a third accumulator.
The result is a signed 32-bit integer in two accumulators.

MULS

The signed. 16-bit two's complement number in AC1 is
multiplied by the signed, 16-bit two’s complement number
in AC2Z to yield a signed, 32-bit two’s complement
intermediate result. The signed, 16-bit two’s complement
number in ACO is added to the intermediate result to
produce the final result. The final result is a signed, 32-bit
two’s complement number which occupies ACO and AC1.
Bit 0 of ACQO is the sign bit of the result and bit 15 of AC1 is
the low-order bit. The contents of AC2 remain unchanged.
Because the result is a double-length number, overflow
cannot occur.

Negate

NEG/c][sh][#] acs,acd],skip]
|1|ACSIACD]0|O[1ISH| C]#l SKIP |
' N j "3 47576 7 819 10 11 12 13" T15 7

Forms the two’s complement of the contents of an
accumulator.

Initializes carry to the specified value. Places the two’s
complement of the unsigned, 16-bit number in ACS in the
shifter. If the negate operation produces a carry of 1 out of
the high-order bit, the instruction complements carry.
Performs the specified shift operation and places the result
in ACD if the no-load bit is 0. If the skip condition is true,
the instruction skips the next sequential word.

NOTE: If ACS contains 0, the instruction complements
carry.

Pop Multiple Accumulators
POP acs,acd

[T DL el [o o]

1

Pops 1 to 4 words off the stack and places them in the
indicated accumulators.

The set of accumulators from ACS through ACD is filled
with words popped from the stack. The accumulators are
filled in descending order, starting with the AC specified
by ACS and continuing down through the AC specified by
ACD, wrapping around if necessary, with AC3 following
ACO. If ACS is equal to ACD, only one word is popped and
it is placed in ACS.

The stack pointer is decremented by the number of
accumulators popped and the frame pointer is unchanged.
A check for underflow is made only after the entire pop
operation is done.

POP)

Data General Corporation

Pop Block
POPB
munounEnnnooaRoo

Returns control from a System Call routine or an 1/0
interrupt handler that does not use the stack change facility
of the Vector instruction.

Five words are popped off the stack and placed in
predetermined locations. The words popped and their
destinations are as follows:

STACK POINTER T
AFT%RngE ' o 5th WORD
ACO POPPED
AC1
AC2
STACK POINTER £C3 = 15t WORD
BEFORE POP —»{CARRY| 0 or/ <6 —— POPPED
BLOCK
DG-00607
Figure 4.6

Sequential operation is continued with the word addressed
by the updated value of the program counter.

NOTE: If the I/O handler uses the stack change facility
of the Vector on Interrupting Device Code instruction, do
not use the Pop Block instruction. Use the Restore
instruction instead.

Pop PC And Jump
POPJ
noonnnnnononnonn

Pops the top word off the stack and places it in the program
counter. Sequential operation continues with the word
addressed by the updated value of the program counter.

Standard Machine Instructions

The stack pointer is decremented by one and the frame
pointer is unchanged. A check for underflow occurs after
the pop operation.

Push Multiple Accumulators
PSH acs,acd

I'I| ACS|ACD|1I1I0|0|1|0‘0I1|0|0|0|
Y0 ' 12 374 5 "6 7 879 10 11 12713 14715

Pushes the contents of 1 to 4 accumulators onto the stack.

The set of accumulators from ACS through ACD is pushed
onto the stack. The accumulators are pushed in ascending
order, starting with the AC specified by ACS and
continuing up through the AC specified by ACD, wrapping
around if necessary, with ACO following AC3. The contents
of the accumulators remain unchanged. If ACS equals
ACD, only ACS is pushed.

The stack pointer is incremented by the number of
accumulators pushed and the frame pointer is unchanged.

A check for overflow is made only after the entire push
operation finishes.

Push Jump
PSH) [@]displacement/, index]

|1|0|010|0|11INDEX|1]0|1|1|1|0|0]0J
01 273 4765 6 7 8 9 10 1112 13714

l @ | DISPLACEMENT |
. v v v v —r —— T T T 5

Pushes the address of the next sequential instruction onto
the stack, computes the effective address, E, and places it
in the program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Push Return Address

PSHR
Lfefofofol o i e[ofofrfo]e]o]
0 1 2 3 4 5 6 7 8 9 10 11 12 " 13 14 " 15

Pushes the address of this instruction plus 2 onto the
stack.

Restore
RSTR

HIEIEID
T3

0T 1 T2

Popefofaoefofofrfofofo]
T4 7576 7 879 710 1112 13 147 15"

Returns control from certain types of I/0 interrupts.

Pops nine words off the stack and places them in
predetermined locations. The words popped and their
destinations are as follows:

STACK POINTER
AFTER RESTORE A
STACK
POINTER
FRAME
POINTER
STACK
LIMIT
STACK
FAULT

ACO

AC1

AC2

AC3

Y JPROGRAM
BIT __ ICOUNTER

STACK POINTER

T
BEFORE RESTORE P

DG-00606

Figure 4.7

Sequential operation continues with the word addressed
by the updated value of the program counter.

NOTE: Use the Restore instruction to return control
to the program only if the I/0 interrupt handler uses
the stack change facility of the Vector on Interrupting
Device Code instruction.

The Restore instruction does not check for stack
underflow.

RSTR

Return

RTN
Lfolofolefefefefefefofofr]ofofo]
Y0172 73747576 7 8 9 10 11 12 13 14 ' 15 '

Returns control from subroutines that issue a Save

instruction at their entry points.

The Save instruction loads the current value of the stack
pointer into the frame pointer. The Return instructions
uses this value of the frame pointer to pop a standard
return block off of the stack. The format of the return
block is:

SAVE

4-70

Data General Corporation

Word
Popped

Destination

-

Bit O is loaded into carry. Bits 1-15 are
loaded into the PC.

AC3
AC2
AC1
ACO

N b~ W N

After popping the return block, the Return instruction
loads the decremented value of the frame pointer into the
stack pointer and the popped value of AC3 into the frame
pointer.

Save
SAVE

DONDOnnoE

o1 T2 4 "5 6 7 8

i

Liefe]rfo]o]e]

9 10 11 12 13 ' 14 " 15 '

l IMMEDIATE FIELD I

Saves the information required by the Return instruction.

Saves the current value of the stack pointer in a temporary
location. Adds five plus the unsigned, 16-bit integer
contained in the immediate field to the current value of
the stack pointer and loads the result into location 40.
Compares this new value of the stack pointer to the stack
limit to check for overflow. If no overflow condition exists,
then the instruction places the current value of the frame
pointer in AC3. Fetches the contents of the temporary
location and loads them into the frame pointer. The
instruction uses the value in the frame pointer to push a
five-word return block. The formats and contents of the
five-word return block is as follows:

Word Contents
Pushed
1 ACO
2 AC1
3 AC2
4 Frame pointer before the save.
5 Bit O = carry bit.
Bits 1-15 = bits 1-15 of AC3.

Standard Machine Instructions

After pushing the return block, the instruction places the
value of the frame pointer (which now contains the old
value of the stack pointer plus five) in AC3.

If an overflow condition exists, the Save instruction
transfers control to the stack fault routine. The program
counter in the fault return block contains the address of
the Save instruction.

The Save instruction allocates a portion of the stack for
use by the procedure which executed the Save. The value
of the frame size, contained in the immediate field,
determines the number of words in this stack area. This
portion of the stack will not normally be accessed by push
and pop operations, but will be used by the procedure for
temporary storage of variables, counters, etc. The frame
pointer acts as the reference point for this storage area.

Use the Save instruction with the Jump to Subroutine
instruction. The Jump to Subroutine instruction places the
return value of the program counter in AC3. Save then
pushes the return value (contents of AC3) into bits 1-15 of
the fifth word pushed.

Subtract Immediate
SBI n,ac

[~ e [o]oo]o]1[o]o][o]0]0]
T0OT1TT27374 6 "6 7 8'9 1011 121314 15"

Subtracts an unsigned integer in the range 1-4 from the
contents of an accumulator.

The contents of the immediate field N, plus 1 are subtracted
from the unsigned 16-bit number contained in the specified
AC and the result is placed in ACD. Carry remains
unchanged.

NOTE: The assembler takes the coded value of n and
subtracts one from it before placing it in the
immediate field. Therefore code the exact value you
wish to subtract.

— Assume that AC2 contains 0000034. After the instruction
SB14,2 is executed, AC2 contains 1777775 and carry remains
unchanged.

Skip If ACS Greater Than Or Equal to ACD
SGE acs,acd

[T [[o[[o[o][o]o] o]s]0]
"o0T1 727374 5 6 7 8 '9 10 11 12 13" 14 15"

Compares two signed integers in two accumulators and

skips if the first is greater than or equal to the second.

The signed two’s complement numbers in ACS and ACD
are algebraically compared. If the number in ACS is
greater than or equal to the number in ACD, the next
sequential word is skipped. The contents of ACS and ACD
remain unchanged.

NOTE: The Skip if ACS Greater Than ACD and Skip If ACS
Greater Than Or Equal To ACD instructions treat the
contents of the specified accumulators as signed,
two’s complement integers. To compare unsigned
integers, use the Subtract and Add Complement
instructions.

Skip If ACS Greater Than ACD
SGT acs,acd

[1' ACS | ACD IO|1|O|0|0’010I1|0|OIO—I
"0 1 T2 "374 65 6 7 '8 9 10 11 12 13 14 15"

Compares two signed integers in two accumulators and
skips if the first is greater than the second.

The signed, two’s complement numbers in ACS and ACD
are algebraically compared. If the number in ACS is
greater than the number in ACD, the next sequential word
is skipped. The contents of ACS and ACD remain
unchanged.

Skip On Non-Zero Bit
SNB acs,acd

[T [[T o o0]
0T 1727374 5 6 7 8 9 10 11112 13 14 15

The two accumulators form a bit pointer. If the addressed
bit is 1, the next sequential word is skipped.

Forms a 32-bit bit pointer from the contents of ACS and
ACD. ACS contains the high-order 16 bits and ACD
contains the low-order 16 bits of the bit pointer. If ACS
and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the
low-order 16 bits of the bit pointer and assumes the
high-order 16 bits are 0.

If the addressed bit in memory is 1, the next sequential

word is skipped. The contents of ACS and ACD remain
unchanged.

SNB

Store Accumulator
STA ac,[@]displacement[,index]

Lo fo] s Jo]mon|

DISPLACEMENT l

Stores the contents of an accumulator into a memory
location.

Places the contents of the specified accumulator in the
word addressed by the effective address, E. The previous
contents of the location addressed by E are lost. The
contents of the specified accumulator remain unchanged.

Store Byte
STB acs,acd

L;lfcs]f«col |1lo| lo|o|o| {o|o|o|

Moves the right byte of ACD to a byte in memory. ACS
contains the byte pointer.

Places bits 8-15 of ACD in the byte addressed by the byte
pointer contained in ACS. The contents of ACS and ACD
remain unchanged.

SYC
Rev. 02

4- 172

Data General Corporation

Subtract
SUB/c][sh][#] acs,acd[skip]

NEIEEIN0E JEN

| #] 'SKIP J

12 713 15

10 1

Performs unsigned integer subtraction and complements
carry if appropriate.

Initializes carry to its specified value. The instruction
subtracts the unsigned, 16-bit number in ACS from the
unsigned, 16-bit number in ACD by taking the two’s
complement of the number in ACS and adding it to the
number in ACD. The instruction places the result of the
addition in the shifter. If the operation produces a carry of
1 out of the high-order bit, the instruction complements
carry. The instruction performs the specified shift
operation and places the result of the shift in ACD if the
no-load bit is 0. If the skip condition is true, the instruction
skips the next sequential word.

NOTE: If the number in ACS is less than or equal to
the number in ACD, the instruction complements
carry.

System Call
SYC acs,acd

IIACS‘ACD l1l1|1|0|1l°|0|1[0|0l0|
'70'1'Z'3'4'5'6'7'8'9'10'11'12'13'14'15'

Pushes a return block and transfers control to the system
call handler.

If a user map is enabled, the instruction disables it and
pushes a return block onto the stack. The program counter
in the return block points to the instruction immediately
following the System call instruction. After pushing the
return block, the instruction executes a jump indirect to
location 2, which contains the address of the system call
handler.

If this instruction disables a user map, then I/O interrupts
cannot occur between the time the System call instruction
is executed and the time the first instruction of the system
call handler is executed.

NOTE: If both accumulators are specified as ACO, the
instruction does not push a return block onto the
stack. The contents of ACO remain unchanged.

Standard Machine Instructions

The assembler recognizes the mnemonic SCL as
equivalent to SYC 1,1.

The assembler recognizes th

equivalent to SYC 0,0.

TRAETROTLL

Skip On Zero Bit

SZB acs,acd

|1| ACS | ACD |1l0|0|1|0]0|0|1|0|0|0|
"o 172737475 86 7' 8 9 10 11 iz i3 14 i5 '

The two accumulators form a bit pointer. If the addressed
bit is zero, the next sequential word is skipped.

Forms a 32-bit bit pointer from the contents of ACS and
ACD. ACS contains the high-order 16 bits and ACD
contains the low-order 16 bits of the bit pointer. If ACS
and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the
low-order 16 bits of the bit pointer and assumes the
high-order 16 bits are 0.

If the addressed bit in memory is 0, the next sequential
word is skipped. The contents of ACS and ACD remain
unchanged. memory references.)

Skip On Zero Bit And Set To One
SZBO

acs,acd

ACD |0I0‘1|1|0|0|1L0|0|0|0|
"4 76 76 7 8 9 10 11 12 13 14 ' 15"

|1|ACS|

o012

The two accumulators form a bit pointer. The instruction
sets the addressed bit to 1. If the addressed bit was 0 before
being set to 1, the instruction skips the next sequential
word. The contents of ACS and ACD remain unchanged.

Forms a 32-bit bit pointer from the contents of ACS and
ACD. ACS contains the high-order 16 bits and ACD
contains the low-order 16 bits of the bit pointer. If ACS
and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the
low-order 16 bits of the bit pointer and assumes the
high-order 16 bits are 0.

NOTE: This instruction facilitates the use of bit maps
for such purposes as allocation of facilities (memory
blocks, I/0 devices, etc.) to several processes, or tasks,
that may interrupt one another, or in a
multiprocessor environment. The bit is tested and set
to I in one memory cycle.

Exchange Accumulators

XCH acs,acd

[T [(oo [[[olo] [o]o]°]
0T 1T T2 737475 67 8 910 11 1213 14 15

Exchanges the contents of two accumulators.

Places the original contents of ACSin ACD and the original
contents of ACD in ACS.

Execute

XCT ac
nonEInnonnnononn
'0'1'2'3'4'5'6"77'8'9'10ﬁ11'12'13'14'15'

Executes the instruction contained in AC as if it were in
main memory in the location occupied by the Execute
instruction. If the instruction in AC is an Execute
instruction which executes the instruction in AC, the
processor is placed in a one-instruction loop. The Reset
switch will stop the processor.

Because of the possibility of AC containing an Execute
instruction, this instruction is interruptible. An I1/0
interrupt can occur immediately prior to each time the
instruction in AC is executed. If an I/0 interrupt does
occur, the program counter in the return block pushed on
the system stack points to the Execute instruction in main
memory. This capability to execute an Execute instruction
gives you a wait for I/0 interrupt instruction.

NOTE: If the specified accumulator contains the first
word of a two-word instruction, the word following
the XCT instruction is used as the second word.
Normal sequential operation then continues from the
second word after the XCT instruction.

Do not use the XCT instruction to execute an
instruction that requires all four accumulators, such
as CMV, CMT, CMP, CTR, or BAM,

The results of XCT are undefined if the specified

accumulator contains an instruction that modifies
that same accumulator. For example:

XCT

LDA 0,TOT
XCT (o} ;UNDEFINED
JMP ON
TOT: ADD 1.0

DG-06564

Figure 4.8

Extended Operation

XOP acs,acd,operation #

|1|ACS|ACD| OPERATION # |0|‘I|1|0|0|0|

o 1 T2 T4 T v v v 9 10 11 712 713 T 14 T 15 7

Pushes a return block onto the stack. Places ACS'’s stack
address in AC2; places ACD’s stack address in AC3.
Memory location 44g must contain the XOP origin address,
the starting address of a 32;y word table of addresses. These
addresses are the starting location of the various XOP
operations.

Adds the operation number in the XOP instruction to the
XOP origin address to produce the address of a word in
the XOP table. The instruction fetches that word and treats
it as the intermediate address in the effective address
calculation. After the indirection chain, if any, has been

- followed, the instruction places the effective address in
the program counter. The contents of ACO, AC1, and the
XOP origin address remain unchanged.

The format of the return block pushed by the XOP
instruction is as follows:

Data General Corporation

This return block is configured so that the XOP procedure
can return control to the calling program via the Pop
Block instruction.

Alternate Extended Operation

XOP1 acs,acd,operation #

{1} ACSIACD IO]OPERATION# |1l1|1] TOIOI
o1 72737 4

This instruction operates exactly like the Extended
Operation instruction except that it adds 32,3 to the entry
number before it adds the entry number to the XOP origin
address. In addition, it can specify only 16 entry locations.

Exclusive OR
XOR acs,acd
[T [[[o[e[[e[o [[[o 5]

Forms the logical exclusive OR of the contents of ACS and
the contents of ACD and places the result in ACD. Sets a
bit position in the result to 1 if the corresponding bit
positions in the two operands are unlike; otherwise, the
instruction sets result bit to 0. The contents of ACS remain
unchanged.

Exclusive OR Immediate
XORIl iac

STACK POINTER

BEFORE XOP I

STACK POINTER
AFTER XOP

L EANEANEAN

DG-00567
Figure 4.9

XORi

4- 74

noNEAnnDnnnnnoon

2 9 " 10 1171213 15

‘ IMMEDIATE]

Forms the logical exclusive OR of the contents of the
immediate field and the contents of the specified AC and
places the result in the specified AC.

Standard Machine Instructions

Chapter 5
1/0 Instructions

This chapter lists the ECLIPSE S/140 I/0O instructions and

MADIT ¢

the special CPU instructions. It also contains instructions
intended for specific devices, such as the BMC, ERCC, the
MMPU, and the real-time clock. We have arranged the
instructions alphabetically within specific I/0 device
categories. As usual, instructions are alphabetized by the
mnenomic recognized by the assembler.

For each instruction we include:

* The mnemonic recognized by the assembler.

* The bit format required.

¢ The format for any arguments involved.

* The functional description of each instruction.

In general, 170 instructions can be executed only when
both Lef mode and 1/0O protection are disabled. (See the
Memory Management and Protection Unit section in
Chapter III for a discussion of Lef mode and I/0O
protection.)

General 1/0 Instructions

You can use the following general I/0 instructions with
any I/0 device, using the appropriate device code.

Device Flag Commands
f=$ Issues a Start pulse to the specified device.
f=C Issues a Clear pulse to the specified device.
f=P Issues an I/0 pulse to the specified device.
IORST No effect.

Dataln A

DIA/f] ac,device

L0l1|1l AC IOIOJII F l DEVICE CODE
0T T T2 374 '8 B 7789 0T RS

Transfers data from the A buffer of an I/O device to an
accumulator.

5-75

The contents of the A input buffer in the specified device
are placed in the specified AC. After the data transfer, the
Busy and Done flags are set according to the function
specified by F.

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device. Bits in
the AC that do not receive data are set to 0.

Datain B

DIB/f] ac,device

l 0 , 1 I 1 l AC l 0 , 1 , 1 | F I DEVICE CODE j
o0 T 1T T2 3 4 "5 6 7 '8 9 10" v T d T

Transfers data from the B buffer of an I/0 device to an
accumulator.

Places the contents of the B input buffer in the specified
device in the specified AC. After the data transfer, sets the
Busy and Done flags according to the function specified by
F.

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device. Bits in
the AC that do not receive data are set to 0.

DataIn C

DIC/f] ac,device

[0|1,1| AC]1|Ol1| F] DEVICE CODE
'0'1'2'3'4'5'6'7'8'9'10' ! i i 16

Transfers data from the C buffer of an I/0 device to an
accumulator.

Places the contents of the C input buffer in the specified
device in the specified AC. After the data transfer, sets the
Busy and Done flags according to the specified F.

DIC/f]
Rev. 02

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device. Bits in
the AC that do not receive data are set to 0.

Data Out A
DOA[f] ac.device

[0|1!1IA'C10I1|01 F l DEVICE'CODE J

o' 1 2 3 '4a4 ' 5 6 7 8 9 10 15

Transfers data from an accumulator to the A buffer of an
1/0 device.

Places the contents of the specified AC in the A output
buffer of the specified device. After the data transfer, sets
the Busy and Done flags according to the function specified
by F. The contents of the specified AC remain unchanged.

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device.

Data Out B
DOB/f] ac,device

r0|1|1l AC l1|0\0| F I DEVICE CODE l
) T2 '3 4 65 6 7 8 9 10 ' . Y 15 "

Transfers data from an accumulator to the B buffer of an
1/0 device.

Places the contents of the specified AC in the B output
buffer of the specified device. After the data transfer, sets
the Busy and Done flags according to the function specified
by F. The contents of the specified AC remain unchanged.

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device.

Data Out C
DOC/f] ac,device

|0|1|1|AC.1“I|OI F I DEVICE CODE I

0'1'2 '3 4 5 6 7 8 9 10° 15

Transfers data from an accumulator to the C buffer of an
1/0 device.

Central Processor

Data General Corporation

Places the contents of the specified AC in the C output
buffer of the specified device. After the data transfer, sets
the Busy and Done flags according to the function specified
by F. The contents of the specified AC remain unchanged.

The number of data bits moved depends upon the size of
the buffer and the mode of operation of the device.

No 1/0 Transfer
NIO [f] ac,device

elififelelelele]« |

o

DEVICE CODE J

107 N 15

Used when a Busy or Done flag must be changed with no
other operation taking place.

Sets the Busy and Done flags in the specified device
according to the function specified by F.

1/0 Skip
SKP[t] device

Fl1|1|ol‘ol1|1| IT ‘ DEVICE CODE J
s s e 3 . T

1
78 ECN T EC

If the test condition specified by T is true, the instruction
skips the next sequential word.

Central Processor
Device Code - 77 (Primary)

Priority Mask Bit - None

Device Flag Commands

Device flag commands to the CPU determine whether the
current program can be interrupted by a program interrupt
request. When the interrupt on flag is set to 1, the program
can be interrupted (once the instruction following the
enable has begun). When the interrupt on flag is set to 0,
the program cannot be interrupted. The CPU interrupt on
flag is controlled by the device flag commands as follows:

f=S Sets the interrupt on flag to 1.

f=C Sets the interrupt on flag to 0.

f=pP If not an INTA instruction, no effect. If the
instruction is an INTA instruction, interprets the
INTA instruction as the first word of a Vector
instruction.

IORST Sets the interrupt on flag to 0.

1/0 Instructions

CPU Skip
SKP[t] CPU

OnnonnnnERnnonnn

1 1 1
'6'7'8'9'10'11'12'13'

If the test condition specified by T is true, the next
sequential word is skipped.

The following table lists the possible test conditions.

Symbol Value Test

[t]=BN 00 Tests Interrupt On flag for 1
[t]=BZ 01 Tests Interrupt On flag for O
[t]=DN 10 Tests Power Fail flag for 1
[t]=Dz 11 Tests Power Fail flag for O

See Programmer’s Reference-Peripherals (DGC No.
014-000632) for a complete set of examples on using the
interrupt system.

CPU Skip If Power Fail Flag Is One
SKPDN CPU

1 I] I T T 1
!u|1!1!o!o!1l1l
0" 1727374 "5 "6 "

1
77879 "10 11 12 13 14 5

If the Power Fail flag is 1 (i.e., power is failing), the
instruction skips the next sequential word.

CPU Skip If Power Fail Flag Is Zero
SKPDZ CPU

DREDONOnDnnD

1
o172 475 76 7 8 1

EIEREREN

1
12713 ' 14 " 15

If the Power Fail flag is 0 (i.e., power is not failing), the
instruction skips the next sequential word.

Halt
DOC/f] ac,CPU

el e DLl « BT

F 11111
879 "10 11 12131

Stops the processor.

Sets the Interrupt On flag according to the function
specified by F, then stops the processor. The data lights
display the contents of the specified accumulator.

NOTE: The assembler recognizes the special

mnemonic HALT as equivalent to the instruction DOC
0,CPU.

Interrupt Acknowledge

INTA

DIB/f] ac,CPU

Lol [t e Toln []«] 7]
'0'1'2'3'4'5'6'7'8'9'10'11'12'13'14'151

Returns device code of an interrupting device.

Places the six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on the
1/0 bus in bits 10-15 of the specified accumulator; sets bits
0-9 to 0. After the transfer, sets the Interrupt On flag
according to the function specified by F.

Power fail has the lowest priority for this instruction.

Interrupt Disable

INTDS

NIOC CPU

Ll leleofele o[o]

Sets Interrupt On flag to 0.

INTDS

Interrupt Enable

INTEN 1

NIOS CPU
LTl lele oL LD L el

Sets Interrupt On flag to 1.

If the instruction changes the state of the Interrupt On
flag, the CPU allows one more instruction to execute before
the first I/O interrupt can occur. However, if the
instruction is interruptible, then interrupts can occur as
soon as the instruction begins to execute.

Reset

IORST
DIC/f] ac,CPU

ol 1]
0 T+ 273 "4 "5 "6 7 8 9 10 11 12 13 14 15"

Sets all Busy and Done flags and the priority mask to 0.

Sets the Busy and Done flags in all I/0 devices to 0. Sets
the 16-bit priority mask to 0. Sets the Interrupt On flag
according to the function specified by F. Disables the
MMPU and clears Map Status Register. All other functions
are device dependent.

NOTE: The assembler recognizes the mnemonic IORST
as equivalent to the instruction DICC 0,CPU.

If the mnemonic DIC is used to perform this function,
you must code an accumulator to avoid assembly
errors. During execution, the accumulator field is
ignored and the contents of the accumulator remain
unchanged.

Mask Out
MSKO
DOB/f] ac,CPU

el ool e Tl fe]]
'7)'1'2'3'4'5'5'7'8'9'10'11'12'13'14'15'

Sets the priority mask.

Places the contents of the specified accumulator in the
priority mask. After the transfer, sets the Interrupt On
flag according to the function specified by F. The contents
of the specified AC remain unchanged.

NOTE: A 1 in any bit disables interrupt requests for
those devices which use that bit as a mask.

NOTE: Do not use this instruction when interrupts
are enabled.

VCT
Rev. 02

Data General Corporation
Read Switches

READS ac
DIA/f] ac,CPU

DOoNESDONEEDnOnnGD

0 1 2737 4 Y8 "9 10 11 12 ' 13 14 15

Places the contents of the virtual console switch register
into the specified accumulator. After the transfer, sets the
Interrupt On flag according to the function specified by F.

Places the setting of the virtual console switch register

into the specified accumulator. After the transfer, sets the
Interrupt On flag according to the function specified by F.

Vectored 1/0 Instruction

Vector On Interrupting Device Code
VCT [@]displacement[,index]

Dnnooonnnnannnnn

1 1 1
G g g 10 11 12 ' 13 14 ' 15"

[S l DISPLACEMENT

T T T T T T 5

Returns the device code of the interrupting device and
uses that code as an index into a table. The value found in
the table is used in one of two ways: it can be a pointer to
the appropriate interrupt handler (Mode A), or as a pointer
to another table (Modes B through E). This second table
points to the interrupt handler and contains a new priority
mask. These operations are shown in Figure 5.1. Depending
on the mode used, the instruction can also save the state of
the machine by pushing certain information onto the stack,
create a new vector stack, set up a priority structure, and
enable interrupts. Obviously, the complexity of an
operation affects the instruction execution time.

The flow chart in Figure 5.2 is a complete diagram of the
operation of the Vector instruction. Note that all modes use
the vector table to find the next address used. Mode A uses
the vector table entry as the address of the interrupt

1/0 Instructions

handler and passes control to it immediately. Modes B
through E all use the vector table address as a pointer into
a device control table (DCT), where the address of the
interrupt handler is found, along with a new priority mask.

Three control bits determine the mode of the Vector
instruction. The names and locations of these bits are:

Stack Change Bit (S) — Bit 0 of the second word of the
Vector instruction.

Direct Bit (D) — Bit 0 of the selected vector table entry.

Push Bit (P) — Bit 0 of the first word of the selected device

______ 141
Conwrol taple,

The values of these bits collectively determine the mode
of the Vector instruction. The table below illustrates mode
determination.

All modes perform the initial steps of the Vector
instruction. These steps begin when the instruction returns
the interrupting device code. The instruction adds the
device code to the address of the start of the vector table
(bits 1-15 of the second instruction word). The result is the
address of an entry within the vector table. The instruction
fetches the contents of this vector table entry and examines
bit 0 of the entry (the direct bit). If the direct bit is 0, Mode
A is selected; otherwise one of the other modes (B through
E) is selected.

In mode A, the instruction uses bits 1-15 of the fetched
vector table entry as the address of the interrupt handler
for the interrupting device. Control transfers immediately
to the interrupt handler with all interrupts disabled.

Direct Stack Push Mode
0 — A
1 0 0 B
1 [¢] 1 [
1 1 0 D
1 1 1 E
DEVICE CONTROL INTERRUPT
TABLE HANDLER
W\/\/‘ MODES B T DoRESS OF START OF
f INTERRUPT HANDLER > _INTERRUPT HANDLER
OTHER INFORMATION USED
INSTRUCTIONS VECTOR TO LOAD NEW MASK
FIRST WORD TABLE
orvermstauetio [0 [1]ofo[o[([T [\ [1]
SECOND WORD OF | 5 | DISPLACEMENT
VCT INSTRUCTION /'
OTHER
INSTRUCTIONS DISPLACEMENT +
DEVICE CODE
0 [SOME TABLE ENTRY —J MODE A
NOTE:
S = STACK CHANGE BIT
D = DIRECT BIT
/'\/\//\/J P = PUSHBIT
DG-05741

Figure 5.1 Overview of the Vector instruction

5-79

\{a}

Modes B Through E - Part |

Modes B through E perform different functions initially,
but use a common second part. The following section
discusses the common second part after discussing each

Part I separately.

VvCY
Rev. 02

5- 80

Data General Corporation

1/0 Instructions

START OF
VCT INSTRUCTION

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION BIT
015 THE STACK
CHANGE 8IT BITS
1-15 CONTAIN THE

FETCH THE FIRST WORD
OF THE OCT BITO IS

THE "PUSH BIT" BITS
1-15 CONTAIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE

ADDRESS OF THE O PUSH BIT
BEGINNING OF THE =
VECTOR TABLE _ MODES B, D o
T YES mopES C, €
RETURN
DEVICE CODE] PUSH STANDARD
‘ RETURN BLOCK
BITS 1-15 OF
LAST WORD PUSHED
:??UL?‘EESC;%EVE CONTAIN BITS 1-15 OF
TO THE ADDRESS OF THE PHYSICAL LOCATION O
VECTOR TABLE (DISPLACEMENT r
FIELD) AND FETCH THE |
WORD AT THAT
LOCATIONBIT OIS PLACE THE
THE "DIRECT BIT" ADDRESS OF THE
DCT IN AC2

‘ MODES B, C, D, E

DIRECT PUSH THE CURRENT

MODE A INTERRUPT MASK
(LOCATION 5) ONTO
MODES B, C. D, E THE STACK
BITS 1-15 OF BITS 1-15 OF THE ;
THE FETCHED FETCHED VECTOR PLACE THE LOGICAL
VECTOR TABLE TABLE ENTRY CON- OR OF THE CURRENT
ENTRY CONTAINS TAIN THE ADDRESS INTERRUPT MASK AND
THE ADDRESS OF OF THE DEVICE THE SECOND WORD
THE DCT INTERRUPT ROUTINE OF THE DCT IN ACO
NO STACK TRANSFER CONTROL PLACE THE CONTENTS
CHANGE BIT TO THE DEVICE OF ACO IN THE CURRENT
MODES B, C =1 INTERRUPT ROUTINE INTERRUPT MASK
BY PLACING BITS (LOCATION 5)
1-15 OF THE FETCHED
VECTOR TABLE ENTRY
SAVE LOCATIONS IN THE PROGRAM COUNTER ‘
40-434 DO A MASK OUT
FROM ACO AND
MODES D, E ENABLE INTERRUPTS
‘ (DOBS 0.CPU)
PLACE CONTENTS OF
LOCATION 4 IN .
STACK POINTER PLACE CONTENTS OF AC2
PLACE CONTENTS OF (ADDRESS OF DEVICE
;?ié;lO:lﬂilN INTERRUPT ROUTINE) IN
LiMI
PROGRAM COUNTER
PLACE CONTENTS OF 2 <2
LOCATION 7 IN
STACK FAULT
NOTE: FRAME STACK YES
POINTER IS DESTROYED OVERFLOW?
AND THE CONTENTS
ARE UNPREDICTABLE NO
s |
‘ CONTINUE SEQUENTIAL TRANSFER
ALL OPERATION WITH THE CONTROL TO
PUSH OLD CONTENTS MODES WORD ADDRESSED STACK FAULT
OF LOCATIONS BY THE PROGRAM ROUTINE
40-434 COUNTER
"]
A END OF
VCT INSTRUCTION
DG-0570

Figure 5.2 Operation of the Vector instruction
5- 81
VCT

In Mode B both the stack change and the push bits are 0.
The instruction uses the vector table entry as the address
of the device control table (DCT) for the interrupting
device. Bit 1-15 of the first word of the DCT contain the
address of the desired interrupt handler (bit 0 is the push
bit). The second word of the DCT contains information
used to construct the new interrupt priority mask.
Succeeding words (if any) contain information to be used
by the device interrupt handler.

In Mode C the stack change bit is 0 and the push bit is 1.
This mode performs the functions of mode B and pushes a
standard five-word return block onto the standard stack.
The return block contains the contents of the four
accumulators, the value of carry, and the contents of
physical location 0 (the program counter return value).

In Mode D, the stack change bit is 1 and the push bit is 0.
This mode performs the functions of mode B, sets up a new
stack for the interrupt handler (using the contents of
locations 4, 6, and 7), and pushes the previous contents of
physical locations 40-43g (the user stack control words)
onto the new stack.

In mode E, the stack change bit and the push bit are 1. This
mode combines the functions of modes C and D. That is, it
performs the functions of mode B, sets up a new stack, and
pushes a five-word return block and the previous stack
control words onto the new stack.

Modes B through E - Part Il

Modes B through E use the same procedure for the
remainder of the Vector instruction. The instruction pushes
the current priority mask (location 5) onto the stack,
updates location 5, and performs a Mask Out instruction
(using the logical OR of the current mask and the second
word of the DCT). The instruction then sets the Interrupt
On flag to 1 and passes control to the selected device
interrupt handler. Note that the CPU permits one more
instruction to execute (in this case, the first instruction of
the interrupt handler) before the next I/O interrupt can
occur.

Burst Multiplexor Channel
Device Code - 5 (Primary)
Priority Mask Bit - None

Device Flag Commands

f=S Sets the Busy flag to 1 and initiates a BMC map

load or dump operation.

Sets the status register (except bits 1 and 15) to 0.
No effect.

Sets the status register (except bits 1 and 15) to 0.

DIB/f]
Rev 02

5- 82

Data General Corporation

Read BMC Status
DIC[f] ac,BMC

el e Tofolel v fele

o[1]o]]
T2 13 4716 "

Reads the BMC status.

Places the contents of the BMC status register into the
specified accumulator. The previous contents of the
accumulator are lost. After the data transfer, performs the
function specified by f. The format of the specified
accumulator is as follows:

IERRIDMPi DMI VE l IAE l DE l |8Mj
T 73+ "8 7 "8 9" X
Bits Name Contents or Function
o] Error If 1, the BMC detected a validity protect
error, an address parity error, or a data
parity error.
1 Dump If 1, the next map transfer operation will
be a map dump.
If O, the next map transfer operation will
be a map load.
2 Diagnostic If 1, the BMC is in two-step diagnostic
Mode mode.
3 Validity Error [If 1, the BMC detected a validity protect
error.
4-6 —_ Reserved for future use.
7 Address Error |If 1, the BMC detected an address parity
error.
8 Data Error if 1, the BMC detected a data parity
error.
9-14 —_ Reserved for future use.
15 BMC If 1, the BMC is present in the system.

Specify Low-Order Address
DOA/f] ac,BMC

|0|1I1|AC|0|1|0| F ‘0I0|0|1|01
Fy+—T+7r"3 =% %5 "6 7 8 9 1011 12 "3

Specifies the 10 low-order address bits of the first memory
location to be loaded or dumped during the next map
transfer operation.

Places bits 6-15 of the specified accumulator into the map
transfer address register. The contents of the accumulator
remain unchanged. After the data transfer, performs the
function specified by f. The format of the specified
accumulator is as follows:

CleTele oo

Y S LI SELEN CRNLEN :

LOW-ORDER ADDRESS

Bits Name Contents or Function

0-5 — Must be 0.

6-15 Low-order The 10 low-order bits of the 19-bit
Address physical address of the first memory

location to supply or receive a word
to/from the specified map register
during the next map transfer operation.

Specify Operation and High-Order
Address

DOB/[f] ac,BMC

of1|t| AC (1]JO}jOf F [O]JOfO]1]O[1

Specifies the next map transfer operation (load or dump)
and the 9 high-order address bits of the first memory
location to supply or receive a word during the operation.

Places bits 1 and 7-15 of the specified accumulator into the
map transfer address register. The contents of the
accumulator remain unchanged. After the data transfer,
performs the function specified by f. The contents of the
accumulator are as follows:

[eBe e[o]

5 06" 77

HIGH-ORDER ADDRESS I
e —T15

Bits Name Contents or Function

Must be O.

If 1, specifies a dump map as the next
map transfer operation.

If 0, specifies a load map as the next
map transfer operation.

Must be 0.

The 9 high-order bits of the 19-bit
physical address of the first memory
location to supply or receive a word
to/from the specified map register
during the next map transfer operation.

1 Dump

2-6 —
7-15 High-order

Specify Initial Map Register
DOB/f] ac,BMC

of1|1v]|] AC |1T}jO0|O0Of F jOJO|O]|1|O]1

Specifies the first map register to receive or supply a word
during the next map transfer (load or dump) operation.

Places bits 1 and 7-15 of the specified accumulator into the
map register selector. The contents of the accumulator
remain unchanged. After the data transfer, performs the
function specified by f. The contents of the accumulator
are as follows:

[1m0 Jo]ofo]o]
o

o
5T

MAP REGISTER —l
r T T T 15

Bits Name Contents or Function
0 — iviust be 1.
1 Mapped If 1, enables mapping in two-step
Diagnostic diagnostic mode only.
Mode
2-6 — Must be O.
7-15 Map Register | The 9-bit number specifying the first

map register to either receive or supply
a word to/from memory during the next
map transfer operation. The 4 low-order
bits {(bits 7-10) specify the map table
containing the register and the 5
high-order bits (bits 11-15) specify the
logical page number that indexes the
desired map register in the map table.

Specify Map Register Count
DOC/f] ac,BMC

oj1}1;y AC |J1]1]0f F (O[O fO|[1]0]1

Specifies the number of map registers to be loaded or
dumped during the next map transfer operation.

Places bits 9-15 of the specified accumulator into the map
register counter. The contents of the accumulator remain
unchanged. After the data transfer, performs the function
specified by f. The contents of the accumulator are as
follows:

|0|0|0|0|0|0|0|0|0| COUNT MINUS 1
T3 & 5 "8 7 B 9" — 15

Bits Name Contents or Function
0-8 — Must be O.
9-15 Map Count | Specifies a number that is one less than

the number of map registers to be loaded
or dumped during the next map transfer
operation.

5-82.1

Rev. 02

Map Transfer Operations

In all BMC map transfers, the map register selector
specifies the map register involved and the map transfer
address register specifies the memory location. During a
load map operation, the BMC places the 16-bit contents of
the memory location into the map register. During a dump
map operation, the BMC places the 16-bit contents of the
map register into the memory location.

After the data transfer in each operation, the map register
selector and the map transfer address register are
incremented by one to select the next consecutive map
register and memory location, respectively, and the map
register counter is decremented by one. The BMC continues
to transfer data between consecutive map registers and
memory locations until the contents of the map counter
equals 0. After the last map register in the selected map
table is accessed, the next consecutive map table is selected.
Thus, a total of four consecutive map tables can be
transferred during one map transfer operation.

The format of the data in the addressed memory location
or map register is as follows:

[PRT[1] | (0] I o} } [0} I 1] I 0 l PHYSICAL PAGE NUMBER |
Tttty L
Bits Name Contents or Function
o] Protect If 1, the BMC cannot transfer data to or
from memory locations in the specified
physical page.
1-5 — Must be O.
7-15 Physical Page | The 9-bit physical page number.

Load BMC Status
DOC/f] ac,BMC

Defines the diagnostic functions of the BMC.

Places the contents of the specified accumulator into the
BMC status register. The contents of the accumulator
remain unchanged. After the data transfer, performs the
function specified by f. The contents of the accumulator
are as follows:

1|/ 0|DM|{VE|O | O | O |AE(DE|O (O |O|O|O|O |O

Bits Name Contents or Function
o] — Must be 1.
1 — Must be O.
2 DM If 1, the BMC enters two-step diagnostic
mode.
3 VE If 1, the BMC forces a validity protect
error.
4-6 e Must be O.
7 AE If 1, the BMC forces an address parity
error.
8 DE If 1, the BMC forces a data parity error.
9-156 — Must be O.

ERCC Error Correction

Device Code - 24

Priority Mask Bit - None
Device Flag Commands

f=S$ Sets the interrupt request flag and the Done flag to

0.
f=C No effect.
f=P No effect.

IORST Sets ERCC to 010 state; clears Done flag.

Read Memory Fault Address
DIA/f] ac,ERCC

[of[r[s [ofofr] « Jofofofo]:]o]
"0 '1°2 3 4 65 6 7 89 10 11 12 1314 715"

Places the sixteen low-order bits of the physical address of
the fault location into the specified accumulator. (The
previous contents of that accumulator are lost) The
instruction sets the Done flag as specified by the flag
command.

5-82.2

Rev. 02

1/0 Instructions

The following shows the format of the contents of the
specified accumulator.

| a— 1

LOW-ORDER ADDRESS BITS
Lo r T v T T ™ v T T T T v 75

Contents or
Function

Bits Name

Sixteen low-order bits of
the physical address of the
memory fault location.

0-15 Low-order Address

NOTE: The physical address is meaningless unless it
is read after the ERCC facility requests an interrupt
and before a Start or IORST flag command sets the
Done flag to 0.

Read Memory Fault Code

DIB/f] ac,ERCC

[ofr[1]a Jo[t]e] ¢ [ofofofo]t]o]
Y0 ' 172 3" 4 65 6 7 879 10 11 12 13714 15"

Places a 5-bit error identification code in bits 0-4 of the
specified accumulator. The instruction first sets bits 5-11 of
the accumulator to 0 and places the four high-order bits of
the physical address of the fault location in bits 12-15.
Next, the instruction sets the Done flag as specified by the

The following table shows the format of the contents of
the specified accumulator.

FAULT HIGH-ORDER ADDR

Bits

Name

Contents or
Function

5-12
13-15

Fault Code

High Order Address

5-bit code, identifies the
bit in error.

00000
00001
00010
00011

No error.

Check bit 4.
Check bit 3.
Data bit O.
00100 Check bit 2.
00101 Data bit 1.
00110 Muiltiple bit error.
00111 Data bit 3.
01000 Check bit 1.
01001 Data bit 4.

01010 All 21 bits in
memory are 1.

01011 Data bit 6.
01100 Data bit 7.
01101 Data bit 8.
01110 Databit 9.
01111 Multiple bit error.
10000 Check bit O.
10001 Data bit 11.
10010 Data bit 12.
10011 Data bit 13.
10100 Data bit 14.

10101 Al 21 bits in
memory are 0.

10110 Data bit 2.
10111 Multiple bit error.
11000 Data bit 10.
11001 Muiltiple bit error.
11010 Data bit 5.
11011 Multiple bit error.
11100 Data bit 15.
11101 Multiple bit error.
11110 Multiple bit error.
11111 Multiple bit error.
Reserved for future use.

Three high-order bits of
the physical address of the
fault location.

NOTE: The address is meaningless unless read after
the ERCC facility requests an interrupt and before a
Start or IORST flag command sets the Done flag to 0.

5- 83

DOA/f]

Enable ERCC
DOA(f] ac,ERCC

Lof 1] e Jofrfofofolo]
01 2 374785 6 " "8 9 10"

[o e [o]

0
11712713 714718

Sets the ERCC facility to function according to bits 13-15
of the specified accumulator. Next, the instruction sets the
Done flag and then the Interrupt Request flag, as specified
by the flag command. The instruction disregards bits 0-12.

The following shows the format of the contents of the
specified accumulator. Modes designated with an asterisk
(*) were not implemented in previous ERCC instruction
sets.

l MODE i
T12 3T 157

Bits Name Contents or
Function

0-12 — Reserved for future use.

13-15 MODE Control the ERCC feature
as follows:
000 or 001*

Write checkword; disable
checking and correction
disable interrupts.

010

Write checkword; check
data and checkword; send
correct data to processor;
disable interrupts.

o1

Write checkword; check
data and checkword; send
correct data to processor;
disable interrupts.

100* or 101*

Duplicate five low-order
data bits in checkword;
disable checking and
correcting; disable
interrupts.

110*

Duplicate five low-order
data bits in checkword;
compare five low-order
bits to checkword; send
data with checkword to
processor; disable
interrupts.

111*

Write five low-order data
bits as checkword;
compare five low-order
bits to checkword; send
data with checkword to
processor; interrupt on
error.

LMP

5- 84

Data General Corporation

Memory Management and
Protection Unit

Device Code - 33 (Primary)

Priority Mask Bit - None

Device Flag Commands

f=S$ No effect.

f=C No effect.

f=P Enables Map Single Cycle.

IORST Disables MMPU; clears Map Status Register.
Load Map

LMP
|1|o|o|1|oL1I1l1lo|o o|ol1 |olo|ol
0172737475 767 879 710 1112713 14 15 '

Under control of AC1 and AC2, loads successive words
from memory into the MMPU where they are used to
define a user or data channel map.

ACI1 must contain an unsigned integer, which is the number
of words to be loaded into the MMPU. Bits 1-15 of AC2
must contain the address of the first word to be loaded. If
bit 0 of AC2 is 1, the instruction follows the indirection
chain and places the resultant effective address in AC2.
ACO and AC3 are ignored and their contents remain
unchanged.

For each word loaded, the instruction decrements the count
in AC1 by one and increments the source address in AC2
by 1. Upon completion of the instruction, AC1 contains 0,
and AC2 contains the address of the word following the
last word loaded.

This instruction is interruptible in the same manner as the
Block Add and Move instruction.

The words loaded into the MMPU define the address
translation functions for the various user and data channel
maps. The contents of the MAP field (bits 6-8) of the MMPU
status register determine which map is affected by the
Load Map instruction. You can alter this field using either
the Load Map Status or the Initiate Page Check instruction.

1/0 Instructions

The format of the words loaded into the MMPU is as
follows:

Bits Name Contents or Function

0 WRITE PROTECT |Must be O for data channel
maps; 1 for for user maps.

1-5 LOGICAL Logical page number.

6-15 PHYSICAL Physical page number.

NOTE: Declare a logical page invalid by setting the
write protect bit to 1 and all of bits 6-15 to 1.

If I/0O protection is enabled, execution of the Load Map
instruction will cause a trap.

Read Map Status
DIA/f] ac,MAP

[l] e Jofof ofofelofofo]r]
o T Y3 "4 6576 7 8 ' 9 10 11 12 13 14 15"

2

Reads the status of the current map.

Places the contents of the MMPU status register in the
specified AC. The previous contents of the specified AC
are lost. The format of the information placed in the
specified AC is as follows:

5-85

DIA[f]

1

L |l0 IWPIINDISCI MAP [LEFI 10 |WPI|ND1AB IDCH Uq
o T 273 74 "5 & " T8 9 10 1112 13" T

14

Bits

Name

Contents or
Function

12

15

1/0

wpP

IND

Single Cycle

Map

LEF

1/0

WP

IND

A/B

DCH Enable

User Mode

Reserved for future use.

If 1, the last protection
fault was an 1/0 protection
fault.

If 1, the last protection
fault was a write or validity
protection fault.

If 1, the last protection
fault was an indirect
protection fault,

If 1, the last map fault
occurred during a single
cycle memory reference.

Indicates which map will
be loaded by the next
Load map instruction:
000 User A

001 Reserved for future
use.

010 UserB

011 Reserved for future
use.

100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

If 1, the Load Effective
Address instruction was
enabled by the last Load
Map Status instruction.

If 1, 1/0O protection was
enabled by the last Load
Map Status instruction.

If 1, write protection was
enabled by the last Load
Map Status instruction.

If 1, indirect protection
was enabled by the last
Load Map Status
instruction.

If 0, the last Load Map
Status instruction
enabled user map A. If 1,
the last Load Map
Status instruction
enabled user map B.

If 1, the mapping of the
data channel addresses is
enabled.

If 1, the last I/O interrupt
occurred while in user
mode.

DIC

5- 86

Data General Corporation

Page Check
DIC ac, MAP

DunEannRooERNON

172 5§ 6 7 8 9 10 11 12 ' 13 14 ' 15

Identifies and provides some characteristics of the physical
page corresponding to a logical page. The logical page was
identified by an Initiate Page Check instruction.

Places the number of the physical page in bits 6-15 of the
specified AC, places other information about the page in
bits 0-3, and destroys the previous contents of the AC. The
format of the information placed in the specified AC is as
follows:

lﬁpl MAP | [PHYSICAL —]
T e
Bits Name Contents or
Function
0 wpP The write protect bit for

the logical page which
corresponds to the
physical page specified by
bits 6-15.

1-3 Map The map used to perform
the translation between
logical page number and
physical page number:
000 User A
001 Reserved.

010 UserB

011 Reserved.

100 Data channel A

101 Data channel C

110 Data channel B

111 Data channel D
4-5 — Reserved for future use.
6-15 Physical The number of the physical

page which corresponds to
the logical page given in
the preceding Initiate
Page Check instruction.
If all these bits are 1, and
WP (bit 0) is 1, then the
logical page is validity
protected.

1/0 Instructions

Load Map Status
DOA ac,MAP

Lof][s Jof[ofoJofo o o o] r]
"0 1T 27374785 "6 7 B 9 10 1112713 14 15"

Defines the parameters of a new map.

Places the contents of the specified AC in the MMPU
status register. The contents of the specified AC remain
unchanged. The format of the specified AC is as follows:

5- 87

| MAP |LEF||O_|WP|IND| AB IDCHI UE]
v T T8 CH 13714 " 157

117127

Bits

Name

Contents or
Function

0-5
6-8

10

14

15

Map Select

Lef

1/0

WP

IND

A/B

DCH Enable

User Enable

Reserved for future use.

Specify which map will be
loaded by the next Load
Map instruction:

000 User A

001 Reserved for future
use.

010 User B
011 Reserved for future
use.

100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

If 1, the Load Effective
Address instruction will be
enabled for the next user.

If 1, 1/O protection will be
enabled for the next user.

If 1, write protection will
be enabled for the next
user.

If 1, indirect protection will
be enabled for the next
user.

If O, user map A will be
enabled next. If 1, user
map B will be enabled
next.

If 1, the mapping of data
channel addresses will be
enabled immediately after
this instruction.

If 1, mapping of CPU
addresses will commence
with the first memory
reference after the next
indirect reference or
return type instruction
(POPB, POPJ, RTN,
RSTR).

NOTE: If the Load Map Status instruction sets the User
Enable bit to 1, this inhibits the interrupt system and
the MMPU waits for either an indirect reference
(except DSPA, BLM, BAM LMP floating point, bit or
character instruction) or return type instruction.
Either event releases the interrupt system and allows
the MMPU to begin translating addresses (using the
user map specified by bit 13 of the MMPU status
register). Address translation resumes (1) after the
first level of the next indirect reference; or (2) after
the first Pop Block, Pop Jump, Return, or Restore
instruction that does not cause a stack fault.

DOA

Map Page 31
DOB ac,MAP

] = [
SARE RN

2 3

o]

76

oo oo [o[o [7]

77879 710 1112 137 14 15

4

Specifies that mapping take place for a single page of an
unmapped address space. Mapping is always done for
locations 760005 through 77777, (logical page 31). This is
the only page which can be mapped when in unmapped
address space. You can use this instruction to access a page
of a user’s memory space when in unmapped mode.

Bits 6-15 of the specified AC are transferred to the MMPU.
These bits specify a physical page number to which logical
page 31 will be mapped when in the unmapped mode.

The contents of the specified AC remain unchanged. The
format of the specified AC is as follows:

PHYSICAL

Bits Name Contents or
Function
0-5 — Reserved for future use.
6-15 Physical The number of the physical
page to which logical page
31 should be mapped
when in unmapped mode.
LIPS
Initiate Page Check
DOC ac,MAP

Lofr] e Jrfr]ofofofefofoofr]s]
o172 "374 "5 "6 7 8 9° 11712 713 714)

1
10 7 15

Identifies a logical page. The Page Check instruction will
find the corresponding physical page.

Transfers the contents of the specified AC to the MMPU
for later use by the Page Check or Load Map instruction.
Leaves the contents of the specified AC unchanged. The
format of the specified AC is as follows:

NIOP

5- 88

Data General Corporation

F

LOGICAL I
RN T T v T

Bits Contents or

Function

Reserved for future use.

Logical Page Number of the logical
block for which the check
is requested.

6-8 Map Specify which map should
be used for the check as
follows:

000 User A.

001 Reserved.

010 User B.

011 Reserved.

100 Data channel A.
101 Data channel C.
110 Data channel B.

111 Data channel D.

Reserved for future use.

Map Single Cycle
Disable User Mode

NIOP ac,MAP

Lol i [ofofofofofofr]r]ofo]o o] ||
01 273 475 6 7 8 9 10 11 12 13 14 15"

Issued from unmapped mode, the instruction maps one
memory reference using the last user map; issued from
User mode with Lef mode and I/0O protection disabled, the
instruction simply turns off the map, returning it to
unmapped mode. It is used by the supervisor to access a
user’s memory space when only one or two references are
required. It is also used by a privileged user to turn off
memory mapping.

From unmapped mode — Enables the user map for one
memory reference. Maps the first memory reference of
the next LDA or STA instruction. After the memory cycle is
mapped, the instruction again disables the user map.

The interrupt system is disabled from the beginning of the
Map Single Cycle instruction until after the next LDA or
STA instruction.

From user mode — If LEF mode and I/O protection are
disabled, this instruction turns off the MMPU. All
subsequent memory references are unmapped until a map
is reactivated with a Load Map Status instruction.

1/0 Instructions

This instruction, when issued to logical page 31, gives
undefined results. Single cycle memory references to
validity protected pages also give undefined results. No

validity trap is generated.

Real Time Clock

Device Code - 143 (Primary)

Priority Mask Bit - 13

Device Flag Commands

f=S Sets the Busy flag to 1, and the Done flag and
interrupt request flag to 0; enables RTC interrupts.

f=C Sets the Busy and Done flags and the interrupt
request flag to 0; disables RTC interrupts.

=P No effect.

IORST Sets the Busy and Done flags, the interrupt request
flag, the interrupt mask bit (bit 13), and the clock
frequency select bits to 0; disables RTC interrupts.

Select RTC Frequency

DOA/f] ac,RTC

Lol e[se To[io] ¢ ToJo[] To]e]
0T T 27374 '8 "6 78 9 " 10711 12 13 " 14 15 "

The clock frequency is set according to bits 14-15 of the
specified AC. The contents of the specified AC remain
unchanged. Bits 0-13 of the specified AC are ignored. The
format of the specified AC is as follows:

L _ IRTC]

c' T T T T T T T T3 14 15
Bits Name Contents or
Function
0-13 — Reserved for future use.
(Set to 0)
14-15 RTC Selects the clock

frequency as follows:
00 AC line frequency

01 10Hz
10 100Hz
11 1000Hz

Primary Asynchronous Line Input

Device Code - 104 (Primary)

Priority Mask Bit - 14

Device Flag Commands
f=$ Sets the Busy flag to 1 and the Done flag to 0.
f=C Sets the Busy and Done flags to 0.
f=P No effect.
IORST Sets the Busy and Done flags to 0.

Read Character Buffer
DIA[f] acTTI

DONEADDOE
"0 1T "2 "7"3'4'"5 "6 "7 "8

lofot]e]e]e]
9 10 11712713 14 ' 15 '

Places the contents of the controller’s input buffer in bits
8-15 of the specified accumulator. After the data transfer,
sets the controller’s Busy and Done flags according to the
function specified by F. The format of the specified
accumulator is as follows:

i J CHARACTER
o T T N T T 7 8 " N T T R
Bits Name Contents or
Function
0-7 — Reserved for future use.
8-15 Character The character read from

the input buffer,
right-justified.

Primary Asynchronous Line Output
Device Code - 11 (Primary)

Priority Mask Bit - 15

Device Flag Commands

f=$ Sets the Busy flag to 1 and the Done flag to 0;
begins transmission of the character contained in
the output buffer.

f=C Sets the Busy and Done flags and the interrupt
request flag to 0.

f=P No effect.

IORST Sets the Busy and Done flags, the interrupt request
flag, and the interrupt mask bit (bit 15) to 0.

Primary Asynchronous Line Qutput

Load Character Buffer
DOA/f] ac,TTO

Tl Tl T e Toloofofelt]

T3 Y6 7 8 ' 9 10 11 12 13 14 15

Loads bits 8-15 of the specified accumulator into the
controller’s output buffer. After the data transfer, sets the
controller’s Busy and Done flags according to the function
specified by F. The contents of the specified accumulator
remain unchanged. The format of the specified
accumulator is as follows:

CHARACTER

Bits Name Contents or
Function

0-7 — Reserved for future use.
8-15 Character The character,
right-justified, to be placed
in the output buffer.

DOA/f]

Data General Corporation

Appendix A
The Addressing Process

INDEX

YES

GV T UINTERMEDIATE

DISPLACEMENT BITS I
GOTOIINTERA A~ 2~

ADDRESS AS
UNSIGNED NUMBER
DISPLACEMENT BITS
AS SIGNED NUMBER
ARE ADDED TO —
DISPLACEMENT
ADDRESS
DISPLACEMENT BlTa | o LOWORDER 1S
INDEX AS SIGNED NUMBER BITS GO TO f
BITS=10? égi??ﬁfg cT»? INTERMEDIATE
ACCUMULATOR 2 ADDRESS
DISPLACEMENT BITS
INDE AS SIGNED NUMBER
BITS< 1x1 5 ARE ADDED TO =
=t CONTENTS OF
ACCUMULATOR 3
INDIRECT YES .
BIT=0?
FETCH WORD
—* AT INTERMEDIATE
ADDRESS
ADD 1 TO FETCHED
WORD AND REPLACH___
USE NEW VALUE
TO CONTINUE
v
SUBTRACT 1 FROM
FETCHED WORD
AND REPLACE
USE NEW VALUE
TO CONTINUE
NO
BITS 1-15 GO TO
INTERMEDIATE
ADDRESS
INTERMEDIATE
NO 8IT YES ADDRESS IS .m
0=0? EFFECTIVE
ADDRESS
DG-00933
Figure A.3

A- 91

Data General Corporation

A- 92

Appendix B
Standard 1/0 Device Codes

OCTAL OCTAL
DEVICE PRIORITY DEVICE PRIORITY
CODES |MNEMONIC |MASK BIT DEVICE NAME CODES [MNEMONIC|MASK BIT DEVICE NAME
00 - - Unused 40 SCR 8 Synch. communication receiver
o1 ---- -- Unused 41 SCT 8 Synch. communication transmitter
02 ERCC -- Error checking and correction 42 DIO 7 Digital I/0
03 MAP -- Memory allocation and protection unit|| 43 DIOT 6 Digital I/0 timer
05 BMC Burst muitiplexor channel PIT 6 Programmabie Interval Timer
06 MCAT 12 Multiprocessor adapter transmitter 44 MXM 12 Modem control for MX1/MX2
o7 MCAR 12 Multiprocessor adapter receiver 45
10 ™ 14 TTY input 46 MCAT1 12 Second multiprocessor transmitter
1 TTO 15 TTY output 47 MCAR1 12 Second multiprocessor receiver
50 T 14 Second TTY input
12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch 51 TTO1 15 Second TTY output
14 RTC 13 Real-time clock 52 PTR1 11 Second paper tape reader
15 PLT 12 Incremental plotter 53 PTP1 13 Second paper tape punch
16 CDR 10 Card reader 54 RTC1 13 Second real-time clock
55 PLT1 12 Second incremental plotter
17 LPT 12 Line printer
20 DSK 9 Fixed head disc 56 CDR1 10 Second card reader
21 ADCV 8 A/D converter 57 LPT1 12 Second line printer
22 MTA 10 Magnetic tape 60 DSK1 9 Second fixed head disc
23 DACV -- D/A converter 61 ADCV1 8 Second A/D converter
62 MTA1 10 Second magnetic tape
24 DCM 0 Data communications multiplexor
25 63 DACV1 - Second D/A converter
28 DKB 9 Fixed head DG/Disc 64
27 DPF 7 DG/Disc storage subsystem 65 IOP ! 55 Host To IOP Interface
30 QTY 14 Asynch. hardware multiplexor 66 DKB1 9 Second Fixed Head DG/Disc
67 DPF1 7 Second DG/Disc storage subsystem|
30 SLA 14 Synchronous line adapter
31! IBM1 13 IBM 360/370 interface 70 QTY1 14 Second asynch. hardware mux
32 IBM2 13 IBM 360/370 interface 70 SLA1 14 Second synchronous line adapter
33 DKP 7 Moving head disc 7! 13 Second IBM 360/370 interface
34! CAS' 10 Cassette tape 72 13 Second IBM 360/370 interface
DCuU 4 4 Data Control Unit 73 DKP1 7 Second moving head disc
34 MX1 1 Multiline asynchronous controller
35 MX2 11 Muitiline asynchronous controller 74 CAS1 10 Second cassette tape
36 IPB 6 Interprocessor bus--half duplex 74" 11 Second muiltiline asynch. controller
37 VT 6 IPB watchdog timer 75 1" Second muitiline asynch. controller
402 | DpPI 8 IPB full duplex input 76 DPU 4 DCU To Hos “nterface
41° DPO 8 IP8 full duplex output 77 CPU -- CPU and console functions
DG-06878

ICode returned by INTA and used by VCT

2Can be set up with any unused even device code equal to 40 or above

3Can be set up with any unused odd device code equal to 41 or above

4Can be set to any unused device code between 1 and 76

SMicro interrupts are not maskable

B-93

Rev. 02

B-94

Appendix C
The ASCII Character Codes

HEX SYME MNEMON) DECIMAL OCT, HEX S

DECIMAL OCTA|

f:ﬁ"fooo[eo“@[wﬂ [321040]20] sssss |

DECIMAL OCTAL HEX g%am
[0 41] A

[o7 [141[61|j

L [om[m]fA]soa] (33]osr]21] 1]

[66]102] 42] B |

[98 [142] 62 b]

[34"]042 [' 22 {Q ol

[67[103] 43] C]

[99 [143] 63] c |

Le‘s[1o4[4’4] D |

l:;71,l107!‘!7] Gl

[”72]110[: 48] H |

Eto&lm f,@&l i]

[74~~~]112[AAP]) |

[108]152] 6a j |

[75]113] 48] «]

[1071153]‘6@] k |

143‘ J ossl zs l j

L7e[nafac] L]

[34Josa] 2¢] 7]

[Fi]ms] % M]

LIO,SJ“SI?'I m|

[45Joss[20] -]

[78]me[2 [N |

[sl e 7]

[46 Tos6] 2€ |2

L7e[n7[4] o]

[1”1’1“ [157] 6F] o |

(o[2] 7]

[8o]120] 50] P]

{48 Joe0[30T 0]

I,mi"ﬂl 73! q]

Lo foer]31] 7]

Ls1| 121 [51] Q|

[50 Joe2] 32 2

[1a]162] 72]

Lsa{oszf 33 3 |

]Oﬁﬁf ‘:361 6 J

[551 067 37] 7 |

Lsshso 53] X |

[s6 [or0] 38 8 |

[89[131] 59 v |

[21]a71] 119:1 Y |

[57 [o71] 39] 9 |

[90]132]5a] 7|

[122[172[7A] = |

l59 [o73]38];]

[o1]133] 8 (]

[1za[173] 78] [|

[lon[%] <]

[[92[134] 5c] \]

[124]17a] 7] 1]

|29[o35[10‘“] l : ‘:1

[ei ol -]

[93]135]s50] 1]

[125]175] 0 [7]

[30]ose[1eJtt[ms | [z Jore]3e] <]

| 94 [136] 56 [t]

[126]176] 7t—:”| %|

[31]037] 1F 4T us]

{63 077]3F] 2 |

(e[]

DG-05495

{64 [100[20] @]

[96 [140] 60 J o]

Figure C.4

C-95

C-96

Appendix D
ECLIPSE/NOVA Line Compatibility

The ECLIPSE S/140 is compatible with Data General’s
NOVA line computers. You may execute any NOV A-based
program on an ECLIPSE series computer, if several criteria
are met. First, the program must not be dependent on
instruction execution times or I/0O transfer times, because
ECLIPSE times may be faster. Second, the ECLIPSE
system must contain at least as much memory and an
equal number of I/O devices as your NOV A system. Third,
it is important that your NOVA-based program does not
use any of the following:

e ACL instructions specifying both the no load and the
never skip options.

* The NOVA Memory Management and Protection Unit.

¢ Thedatachannel increment or add-to-memory features.

 The instructions PUSHA, POPA, SAV, MTSP, MTFP, MFSP,
MEFP, LDB, STB, RET.

NOVA and ECLIPSE multiply/divide operations function
the same way. However, each uses a different operation
code.

NOVA and ECLIPSE floating point instructions are

similar, but do not function the same way. Remember to

check the instructions formats. Floating point data formats
are the same for both machines.

D- 97

CUT ALONG DOTTED LINE

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Engineering
Publications

Comment Form

Title:

Document No. ____014-000642-02

Yes No O You {can, cannot) find things easily. O Other:
S O Language (is, is not) appropriate.
O Technical terms (are, are not) defined
as needed.
O Learning to use the equipment O To instruct a class.
O As a reference O Other:
O As an introduction to the
product
O Visuals (are,are not) well designed.
oo O Labels and captions (are,are not) clear.
O Other:
O 0O
o a
Name: Title:
Company: Division:
Address: City:
State: Zip: Telephone: Date:
DG-06895

¢vDataGeneral

Data General Corporation, Westboro, Massachusetts 01580

TAPE TAPE

FOLD FoLD

FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

ATTN: Engineering Publications (C-138)
4400 Computer Drive
Westboro, MA 01580

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

	000
	001
	002
	003
	004
	005
	1-03
	1-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38.0
	3-38.1
	3-38.2
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82.0
	5-82.1
	5-82.2
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	5-89
	5-90
	A-91
	A-92
	B-93
	B-94
	C-95
	C-96
	C-97
	replyA
	replyB

