10N

Operat

les of

incip

S

b

- Programmer

Reference

Principles of Operation
32-Bit ECLIPSE® Systems

014-000704-02

Ordering No. 014-000704

©Data General Corporation, 1981, 1982, 1983
All Rights Reserved

Printed in the United States of America
Revision 02, February 1983

NOTICE

Data General Corporation (DGC) has prepared this document for use by DGC personnel,
customers, and prospective customers. The information contained herein shall not be reproduced
in whole or in part without DGC’s prior written approval.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine
whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE
PRODUCTS AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF
THOSE SET FORTH IN THE WRITTEN CONTRACTS BETWEEN DGC AND ITS
CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CON-
TAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS
REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED
TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT
LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT
OR THE INFORMATION CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED,
KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
PRESENT, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, and MANAP are U.S. registered
trademarks of Data General Corporation, and AZ-TEXT, DG/L, ECLIPSE MV/4000, ECLIPSE
MV/10000, REV-UP, SWAT, XODIAC, GENAP, DEFINE, CEO, SLATE, microECLIPSE, BusiPEN,
BusiGEN and BusiTEXT are U.S. trademarks of Data General Corporation.

Principles of Operation
32-Bit ECLIPSE® Systems
014-000704

Revision History:

Original Release - December 1981
First Revision - March 1982
Second Revision - February 1983

A vertical bar or an asterisk in the margin of a page indicates substantive change or
deletion, respectively from the previous revision.

Preface

The Principles of Operation 32-Bit ECLIPSE® Systems manual explains the processor
independent concepts, functions, and instruction set to an assembler programmer. The
processor dependent information can be found in a companion manual — a processor
specific functional characteristics manual.

The companion manual, which contains information such as physical memory size and

instruction execution times, is organized with a structure similar to that of the Principles
of Operation 32-Bit ECLIPSE® Systems manual. The similar structures make it easier
to locate the cross-referenced information.

Organization

The 32-bit Principles of Operation manual contains 10 chapters.

Chapter 1 presents the system overview.

Chapters 2-9 present (in a functional framework) the processor independent concepts,
functions, and instruction set. The chapters explain:

Fixed-point computation

Floating-point computation

Stack management

Program flow management

Queue management

Device management

System and memory management
ECLIPSE C/350 compatible instructions

Chapter 10 presents the instruction dictionary (alphabetical order).

Appendices A-F present the instruction summary, anomalies, ASCH codes, powers of 2
table, fault codes, and the glossary.

iv Preface

Standard Symbols

The manual uses certain conventions and abbreviations.

(]

UPPERCASE
and/or
Boldface
lowercase

and/or
Italic

ac

acs

acd

fac

facs

facd

The square brackets indicate an optional argument. Omit the square
brackets when you include an optional argument with an Assembler
statement.

Uppercase or boldface characters indicate a literal argument in an
Assembler statement. When you include a literal argument with an
Assembler statement, use the exact form.

Lowercase or italic characters indicate a variable argument in an
Assembler statement. When you include the argument with an
Assembler statement, substitute a literal value for the variable
argument.

An asterisk indicates multiplication. For instance, 2*3 means 2
multiplied by 3.

The ac abbreviation indicates a fixed-point accumulator

The acs abbreviation indicates a fixed-point accumulator called a
source accumulator.

The acd abbreviation indicates a fixed-point accumulator called a
destination accumulator.

The fac abbreviation indicates a floating-point accumulator

The facs abbreviation indicates a floating-point accumulator called
a source accumulator.

The facd abbreviation indicates a floating-point accumulator called
a destination accumulator.

Table of Contents

Functional Capabilities 1-1
Fixed-Point Computation 1-2
Floating-Point Computation 1-3
Stack Management 1-4
Program Flow Management 1-5
Queue Management 1-5
Device Management 1-5
System Management 1-6
Memory Management 1-6
ECLIPSE C/350 Compatible Instructions 1-8

Accessing Memory 1-8
Current Segment 1-8
Other Segments 1-9
Memory Reference Instructions 1-9
Address Modes 1-10
Indirect and Effective Addresses 1-11
Operand Access 1-12

Protection Capabilities 1-16

Summary 1-17

2 Fixed-Point Computing

Overview 2-1

Binary Operation 2-1
Data Formats 2-1
Move Instructions 2-3
Arithmetic Instructions 2-3
Carry Operations 2-5
Shift Instructions 2-6
Skip Instructions 2-7
Overflow Fault 2-8
Processor Status Register 2-9

Logical Operation 2-12
Data Formats 2-12
Logic Instructions 2-12

Shift Instructions 2-14

vi__Table of Contents

Skip Instructions 2-14
Decimal and Byte Operations 2-15
Data Formats 2-16
Move Instructions 2-20
Arithmetic Instructions 2-22
Shift Instructions 2-22
Skip Instructions 2-22
Data Type Faults 2-23
Decimal Arithmetic Example 2-23
3 Floating-Point Computing
Overview 3-1
Data Formats 31
Move Instructions 3-3
Floating-Point Arithmetic Operations 34
Appending Guard Digits 3-4
Aligning the Mantissas 3-5
Calculating and Normalizing the Result 3-5
Truncating or Rounding the Result 3-5
Storing the Result 3-6
Arithmetic Instructions 3-6
Addition 3-6
Subtraction 3-7
Multiplication 3-7
Division 3-8
Skip Instructions 3-8
Faults and Status 3-9
4 Stack Management
Overview 4-1
Wide Stack Operations 4-1
Wide Stack Registers 4-2
Wide Stack Base 4-2
Wide Stack Limit 4-3
Wide Stack Pointer 4-3
Wide Frame Pointer 4-3
Wide Stack Register Instructions 4-4
Wide Stack Data Instructions 4-4
Initializing A Wide Stack 4-6
Wide Stack Faults 4-7
5 Program Flow Management
Overview 5-1
Program Flow 5.1
Related Instruction Groups 5-2
Execute Accumulator 5-2
Jump 5-2
Skip 5-2
Subroutine 5-4
Transfer Program Control to Another Segment 5-9

Subroutine Call

5.9

Table of Contents vii

Subroutine Return 5-13
Fault Handling 5-13
Fixed-Point Overflow Fault 5-14
Floating-Point Overflow and Underflow Faults 5-15
Decimal and ASCII Data Faults 5-16
Stack Faults 5-20
6 Queue Management
Queues 6-1
Building a Queue 6-1
Queue Descriptor 6-2
Setting Up and Modifying a Queue 6-2
Examples 6-3
Queue Instructions 6-5
7 Device Management
Overview 7-1
Device Access 7-1
General /0 Instructions 7-3
Interrupts 71-5
Interrupt On Flag 7-6
Instruction Interruption 7-6
Interrupt Mask 7-6
Interrupt Servicing 7-6
Vectored Interrupt Processing 7-10
Base-Level Interrupt Processing 7-10
Intermediate-Level Interrupt Processing 7-11
Final Interrupt Processing 7-11
8 Memory and System Management
Overview 8-1
Segment Access and Address Translation 8-2
Segment Base Registers 8-2
Page Tables 8-4
Address Translation 8-6
Page Access 8-7
Central Processor Identification 8-11
Protection Violations 8-12
9 C/350 Programming
Overview 9-1
C/350 Registers 9-1
C/350 Stack 9-2
C/350 Faults and Interrupts 9-3
Expanding an ECLIPSE C/350 Program 9-3
Expanding an ECLIPSE C/350 Subroutine 9-4

viii__Table of Contents

C/350 Instructions 9-4
C/350 Memory Reference Instructions 9-4
Fixed-Point Instructions 9-7
Floating-Point Instructions 9-9
Program Flow Instructions 9-10
Stack Instructions 9-11
10 Instruction Dictionary
A Instruction Summary
B Anomalies
Wide Instruction Opcodes B-1
Program Counter Wraparound B-1
Float/Fixed Conversions B-1
Address Wraparound B-1
C/350 Signed Divide Instructions B-2
NIO CPU Instructions B-2
Floating-Point Trap B-2
Floating-Point Numerical Algorithms B-2
C/350 Commercial Faults B-2
C __ASCII Codes
D Powers of 2 Table
E__Fault Codes
Protection Faults E-1
Stack Faults E-2
Decimal/ASCII Faults E-2
F__ Glossary
The Addressing Scheme F-1
Logical Addresses F-1
Segmentation F-1
Mapping and Demand Paging F-1
Page F-1
Page Table F-1
Protection F-2
The Instruction Set F-2
Wide Instructions F-2
C/350 Compatibility F-2
True and Impure Zero F-2
Normalized Format F-3
Magnitude F-3

Table of Contents ix

[llustrations

Figure Caption

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

Functional components

Fixed-point accumulator

Floating-point accumulator

Wide stack management register format

Program counter format

Virtual address space

Memory reference instruction word addressing formats
Memory reference instruction byte addressing formats
Byte pointer format

Byte addressing

Bit pointer format

Bit addressing

Fixed-point two’s complement data formats
ECLIPSE C/350 compatible shift operations
Processor status register format

Fixed-point logical data formats

Explicit data type indicator

Packed and unpacked decimal data

Decimal arithmetic example

Floating-point data formats
Floating-point status register format

A typical wide stack
Sample code for initializing a wide stack
Example of wide stack operations

Illegal and legal skip instruction sequences

DO-loop instruction sequence

Subroutine code for an XJSR call

Wide stack operations from XJSR and WSSVS instructions
Wide stack operations from WRTN instructions

Gate array format

XCALL or LCALL effective address

Format of queue descriptor

Queue descriptor for an empty queue

Data element enqueued into an empty queue
Data element enqueued at head of queue
Data element enqueued at tail of queue
Data element dequeued

General 1/0 instruction format

Interrupt sequence

Sequence of actions to conclude interrupt service
Vector table

Device control table (DCT)

5-10
5-10

6-2
6-3
6-3
6-4
6-4
6-5

7-4
7-8

7-11
7-11
7-12

x__Table of Contents

Figure

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5
9.6
9.7

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
C.1

D.1

Caption

Segment base register format

Page table entry format

Indirect and effective logical address formats
One-level page table translation

Two-level page table translation

C/350 program counter format

C/350 word addressing format

C/350 effective addressing

C/350 byte addressing format

C/350 byte addressing

C/350 bit addressing format

BTO, BTZ, SNB, SZB, and SZBO bit addressing

ADI example

DAD example

DSB example

DSPA dispatch table structure
Narrow stack, 18-word block

Narrow stack, 18-word floating-point return block
LDSP dispatch table structure

SBI example

WFPOP 10 double-word

WFPSH 10 double-word block pushed
WXOP return block pushed

XOPO return block

ASCII Character Codes

Powers of 2 Table

Page

8-2
8-4
8-6
8-8
8-9

9-2
9-5
9-5
9-5
9-6
9-6
9-7

10-6
10-20
10-32
10-32
10-52
10-53
10-70
10-107
10-132
10-133
10-158
10-170
C-1
D-1

Table of Contents xi

Table

1.1
1.2

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
222

3.1
3.2
33
34
35
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

Tables

Caption

Effective addressing
Faults

Range of 16- and 32-bit two’s complement numbers
Fixed-point precision conversion

Fixed-point data movement instructions

Fixed-point addition instructions

Fixed-point subtraction instructions

Fixed-point multiplication instructions

Fixed-point division instructions

Initializing carry instructions

Fixed-point skip on condition instructions
Fixed-point increment or decrement word and skip instructions
PSR manipulation instructions

Logical instructions

Logical shift instructions

Fixed-point logical skip instructions

Explicit data types

Sign and number combination for unpacked decimal
Nonsign-positioned numbers for unpacked decimal
Fixed-point byte movement instruction

Fixed-point to floating-point conversion and store instructions
Load effective word and byte address instructions
Edit subprogram instructions

Hex shift instructions

Floating-point binary conversion instructions
Floating-point decimal conversion instructions
Floating-point data movement instructions
Floating-point addition instructions
Floating-point subtraction instructions
Floating-point multiplication instructions
Floating-point division instructions
Floating-point skip on condition instructions
Floating-point status instructions

Wide stack register instructions

Wide stack double-word access instructions
Wide stack return block instructions
Standard wide return block

Multiword stack instructions

Jump instructions

Skip instructions

Subroutine instructions

Sequence of subroutine instructions
Standard wide return block

Page

1-12
1-16

2-2
2-2
2-3
24
24
2-5
2-5
2-6
2-8
229
2-9
2-13
2-14
2-14
2-17
2-19
2-19
2-20
2-20
2-21
2-21
2-22

3-3
3-3
3-4
3-6
3-7
3-7
3-8
39
3-10

4-4
4-5
4-5
4-6
4-8

5-2
5-3
5-5
55
5-7

xii Table of Contents

Table

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

6.1
6.2
6.3

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5

E.l
E.2
E3

Caption

Segment transfer instructions

Faults

Fixed-point fault return block

Wide floating-point fault return block

Narrow floating point fault return block

Decimal and ASCII fault codes

Wide return block for decimal data (type 1) fault
Wide return block for ASCII data (type 2) fault
Wide return block for ASCII data (type 3) fault
Narrow return block for decimal data (type 1) fault
Narrow return block for ASCII data (type 2) fault
Narrow return block for ASCII data (type 3) fault
Wide stack fault return block

Wide stack fault codes

Narrow stack fault return block

Data element with user data following links
Data element with user data preceding links
Queue instructions

I/0O instructions for data/BMC maps
General I/0O instructions

Device flags for general devices
Device flags for skip instruction

Instructions that manipulate referenced and modified flags
System identification instructions

Priority of protection violation faults

Fault return block

Protection fault codes

Alternations to C/350 subroutines

C/350 Fixed-point computing instructions
C/350 Floating-point computing instructions
C/350 program flow management instructions
C/350 stack management instructions

Protection Violation Fault Codes
Wide Stack Fault Codes
Decimal and ASCII Fault Codes

Page

5-13
5-15
5-16
5-16
5-17
5-18
5-18
5-18
5-19
5-19
5-19
5-21
5-21
5-23

6-2
6-2
6-5

7-3
7-3
7-4
7-5

8-11
8-11
8-12
8-13
8-14

9-4
9-8
9-9
9-10
9-11

E-1
E-2
E-2

Functional Capabilities

System

Chapter 1

Overview

The ECLIPSE® 32-bit central processor -- hereafter called the processor -- provides
facilities to manage data, to access memory, and to control program flow (see Figure

1.1).

The processor can perform fixed-point or floating-point computation, as well as stack,
program, queue, device, system, and memory management. In addition, the processor
contains the ECLIPSE C/350 compatible instructions for 16-bit program development

and upward program compatibility.

This System Overview chapter provides a brief description of the processor functional
capabilities, memory address space, and system protection capabilities.

Peripherals

/

Memory

S\

Magnetic tape
Line printer Sga;:ks and protection mechanism
ueues Reserved memory
Terminals Narrow stack parameters
. Virtual memory translation
L Disk | Device maps
Fixed Floating Wide
point point stgck
registers
ACO FPACO WSL
AC1 FPAC1 WSP
AC2 FPAC2 WFP
AC3 FPAC3 WSB pc |

Status

PSR

/ Status
FPSR ‘

Arithmetic Logic

SD-03500

Control logic

and microcode

Figure 1.1 Functional components

1-2 System Overview

Fixed-Point Computation

Fixed-point computation consists of fixed-point binary arithmetic with signed and
unsigned 16-bit and 32-bit numbers. The processor also performs decimal arithmetic,
logical operations, and manipulates 8-bit bytes.

The processor contains four 32-bit fixed-point accumulators (AC0-AC3) and a processor
status register (PSR). The following two sections summarize the fixed-point registers.
Refer to the Fixed-Point Computing chapter for additional information.

NOTE: The lower numbered bit of a register (such as bit 0} is the most significant bit. The higher
numbered bit (such as bit 31} is the least significant bit.

Fixed-Point Accumulators

You access a fixed-point accumulator with instructions that manipulate a bit, byte,
word, or double word (see Figure 1.2).

Byte 0 Byte 1 Byte 2 Byte 3
L L o A s s S S S B 72 T3 B S S Sy S BT 7 B B B Y]

Word 0 Word 1
O S e e A e e e e - T s S s s S S S S S T

SD-03501

Figure 1.2 Fixed-point accumulator

A word or double word operand must begin on a word boundary (bit 0 or 16); a byte
must begin on a byte boundary.

In addition to using an accumulator for fixed-point computation

* You can read a fault code in AC1, which the processor stores in the accumulator.
* You can load or build an instruction in an accumulator, and then execute it.
e You can use AC2 or AC3 in relative addressing (in place of the program counter).

Processor Status Register

The processor status register contains status flags such as an overflow fault service mask,
a fixed-point overflow fault flag, and an interrupt resume flag. The overflow fault service
mask enables or disables the processor from servicing the fault. The processor sets the
overflow fault flag when the results of a fixed-point computation exceed the processor
storage capacity. The interrupt resume flag reports an instruction status to the processor.

You can access the processor status register bits with instructions that set a bit or that
test and skip on condition of a bit. Refer to the Fixed-Point Computing chapter for
additional information.

System Overview 1-3

Floating-Point Computation

Floating-point computation consists of floating-point binary arithmetic with signed,
single precision (32-bits) and double precision (64-bits), numbers.

The processor contains four 64-bit floating-point accumulators (FPACO- FPAC3) and a
floating-point status register (FPSR). The following two sections summarize the
floating-point registers. Refer to the Floating-Point Computing chapter for additional
information.

Floating-Point Accumulators

You access a floating-point accumulator with instructions that manipulate single and
double precision floating-point numbers (see Figure 1.3).

l Double Word
L T s A S S S S B s s e TR

I Undefined

63

Double Word 0

bET]

uEm

Double Word 1

SD-03502

Figure 1.3 Floating-point accumulator

A single precision number requires a double word (two consecutive words), while a
double precision number requires two double words (four consecutive words).

Floating-Point Status Register

The floating-point status register contains overflow and underflow fault flags, fault
service mask, mantissa status flags, rounding flag, and processor status flags.

The processor sets an overflow or underflow fault flag when the result of a floating-point
computation exceeds the processor storage capacity. The fault service mask enables or
disables the processor from servicing a fault. The remaining flags provide processor
status.

You can access the contents of the register with instructions to initialize it or to test and
skip on a condition.

1-4 System Overview

Stack Management

The processor contains facilities for narrow and wide stack management. A stack is a
series of consecutive locations in memory. Typically, a program uses a stack to pass
arguments between subroutine calls and to save the program state when servicing a
fault. After executing a subroutine or fault handler, the processor restores the program
and continues program execution.

The narrow stack consists of a contiguous set of words for supporting ECLIPSE C/350
program development and upward program compatibility. Narrow stack management
includes three 16-bit narrow stack management parameters. Refer to the C/350
Programming chapter for additional information on the narrow stack.

The wide stack consists of a contiguous set of double words for supporting the 32-bit
processor programs. Wide stack management includes four 32-bit wide stack manage-
ment parameters, for each memory segment. (A memory segment is a logically
addressable subset of memory. Refer to the Memory Management section for additional
information on memory and segments.)

Wide stack management for the current segment also includes four 32-bit wide stack
management registers. (The segment field of the program counter defines the current
segment.) The Stack Management section summarizes the wide stack concepts. Refer to
the Stack Management chapter for additional information on the wide stack.

The following list summarizes the wide stack management registers.

» The wide stack base (WSB) defines the lower limit of the wide stack.

o The wide stack limit (WSL) defines the upper limit of the wide stack.

e The wide stack pointer (WSP) addresses the current location on the wide stack.
o The wide frame pointer (WFP) defines a reference point.

You access a stack management register with instructions that load or store a register
value.

The processor accesses the stack management registers to save or restore them when
changing program flow between segments. Figure 1.4 shows the format of the registers.

rx Segment Logical Address l
L i T e e s S S S S M S S s s T

SD-03503

Figure 1.4 Wide stack management register format

where

X Bit 0 is reserved for future use.

Segment Bits 1-3 specify the segment location of the stack.

Logical Bits 4-31 specify a logical address within the segment. Address

Address wraparound can occur within the current segment.

System Overview 1-5

Program Flow Management

Program flow management consists of controlling the program execution (such as
calling a subroutine) and handling faults. The Program Flow Management section
summarizes program control. Refer to the Program Flow Management chapter for
additional information.

The processor controls program flow with a 31-bit program counter (PC). Figure 1.5
shows the format of the program counter.

Segment Logical Address

T '3’ *~ T T T T T T T T r———T—7—T— 77— ETH

SD-03504

Figure 1.5 Program counter format

where

Segment Bits 1-3 specify the current segment.
The processor provides specific procedures when modifying the current
segment field.

Logical Bits 4-31 specify a logical address within the segment.

Address

During normal program flow, the processor increments bits 4-31 of the
program counter. Thus, address wraparound occurs within the current
segment.

Queue Management

Queue management consists of inserting, deleting, and searching for elements in a
queue. A queue is a variable-length list of linked entries. Typically, an operating system
uses queues to keep track of processes that it must run, such as printing files on a line
printer.

Refer to the Queue Management chapter for further information on the queue facilities
and management.

Device Management

Device management entails transferring data between memory and a device. The
processor can transfer data (bytes, words, or blocks of words) with the programmed 1/0,
the data channel I/O (DCH), or the high speed burst multiplexor channel (BMC). The
Device Management section summarizes the three transfer facilities.

Common to the three transfer facilities are the I/O instructions, mapped or unmapped
memory addressing, and the interrupt system. Refer to the Device Management chapter
for additional information on using the I/O instructions and the interrupt system.

Programmed 1/0

With the programmed I/O facility, you transfer bytes or words between an accumulator
and a device. You can use the programmed 1/0O facility to transfer data with a slow
speed device, or to initialize a data channel or a burst multiplexor channel.

1-6 System Overview

Data Channel [/O

With the data channel /O, you initiate a transfer of words between memory and a
device. The data channel accesses memory directly (with or without a device map).
Thus, the data transfer bypasses the accumulators.

High Speed Burst Multiplexor Channel

With the burst multiplexor channel, you initiate a transfer of blocks of words between
memory and a device. The burst multiplexor channel accesses memory directly (with or
without a device map). Thus, the data transfer bypasses the accumulators.

System Management

System management provides facilities that determine processor dependent
configurations, such as the processor identification and the size of the main memory.

Refer to the Memory and System Management chapter for additional information.

Memory Management

The processor uses a virtual memory of 4 Gbytes. Virtual memory consists of eight
segments and rings, which facilitate memory management. A segment is an addressable
unit of memory that contains programs and data. A ring is a collection of protection
mechanisms, which safeguards the contents of a segment.

Since rings and segments are similar and inter-related, the manual uses the term
segment to indicate either term or both terms. For instance, the manual refers to
crossing segments; although gaining access to another segment also requires a ring
crossing.

The processor addresses a segment through a 0-7 numbering system. Each segment
contains 512 Mbytes. Figure 1.6 illustrates the concept of the segments, the contents of
which are:

. Segment 0

The processor executes privileged and nonprivileged instructions as the kernel
operating system.

* Segments 1-7

The processor executes nonprivileged instructions in segments 1-7. Refer to the
appropriate operating system programmer’s manual for the implementation-
dependent usage of the segments.

Memory management entails allocating the virtual memory to various software functions,
and then defining the memory access restrictions. The processor imposes a few restrictions
when allocating the virtual memory, such as executing the kernel of an operating system
in segment 0, and executing the system calls in or below the segment where you call
them. Refer to the Accessing Memory section for more information on the memory
access restrictions.

System Overview 1-11

With a few exceptions (LDA, LDB, LDI, LDIX, LEF, LSN, and XOP0), an assembler
mnemonic of a memory reference instruction indicates the size and the range of the
displacement. For instance, a memory reference instruction

* Without the X or L prefix, uses a standard displacement of 8 bits.

» With the X prefix, uses an extended displacement of 15 bits.

» With the L prefix, uses a long displacement of 31 bits.

NOTE: When using an 8- or 15-bit displacement, the processor zero extends the displacement to 28
bits.

Thus, the displacement becomes an indirect or an effective absolute address.

Relative Addressing

For relative addressing, the index field defines a register (see Table 1.1) the contents of
which becomes a base address. The processor adds the base address to the displacement
(8-, 15-, or 31-bit, two’s complement integer). When using an 8- or 15-bit displacement,
the processor sign extends the displacement to 31 bits.

In addition, if executing an instruction with an extended (15-bit) or long (31-bit)
displacement, the processor adds a constant to the sum for program relative addressing.
The additional increment adjusts the sum to address the first word of the displacement,
which begins following the word that contains the instruction opcode. An instruction
with an 8-bit displacement contains the displacement in the same word as the opcode.

Thus, the address becomes an indirect or effective relative address.

Indirect and Effective Addresses

When the indirect field equals zero, the absolute or relative address becomes the
effective address. The processor translates an effective address to a physical address, and
accesses the physical address.

When the indirect field equals one, the absolute or relative address becomes an indirect
address (or pointer). The processor translates the indirect address to a physical address
and uses the contents of that physical address as another indirect or direct address.

NOTE: For a C/350 compatible instruction, the processor accesses a single word in memory as an
indirect pointer; otherwise, the processor accesses a double word.

The processor tests bit 0 of the pointer contents, which defines additional (if any)
indirect addressing.

* When bit 0 equals zero, the contents become the effective address.

The processor translates the effective address to a physical address and accesses it.
* When bit 0 equals one, the contents become another pointer.

The processor continues to resolve pointers until bit 0 equals zero.

The processor can resolve up to 15, pointers. However, for an instruction that can
specify two indirect-addressing chains (such as WBLM), the total number of pointers
for the two chains must be equal to or less than 15.

NOTE: If the processor attempts to resolve more than 15 indirect addresses, a protection violation
occurs.

1-12 System Overview

Displacement Range
Address Index |Intermediate|Prefix** Octal Words (decimal)
Mode Logical
Address*
Absolute 00 D 0to 377
(0 to 255)
D X 0to 177777
(0 to 65,535)
D L 010 37777777777
(0 t0 2,147,483,647)
PC Relative 01 PCxD -200to + 177
(- 128 to + 127)
PC+nzxD X - 100000 to + 77777
(- 32,768 to + 32,767)
PC+n+D L - 20000000000 to + 17777777777
(- 1,073,741,824 to + 1,073,741,823)
AC2 Relative 10 AC2xD - 200to + 177
(- 128 to + 127}
AC2+D X - 100000 to + 77777
(- 32,768 to + 32,767)
AC2+D L - 20000000000 to + 17777777777
(- 1,073,741,824 to + 1,073,741,823)
AC3 Relative 11 AC3+D - 200to + 177
(- 128 to + 127)
AC3+D X -~ 100000 to + 77777
(- 32,768 to + 32,767)
AC3+D L - 20000000000 to + 17777777777
(- 1,073,741,824 to + 1,073,741,823)

Table 1.1 Effective addressing

*The processor ignores bit 0 of PC, AC2, and AC3 when calculating the intermediate logical address.

The n variable in the PC relative addressing mode equals the number of words that precede the first word of the displacement, for the

current instruction.

**The X or L corresponds to the prefix of an instruction mnemonic, which identifies the instruction as containing an extended (X) or
long (L) displacement field.

Operand Access

Before accessing a memory operand (for fixed- or floating-point computation), the

processor first resolves an effective address.

The processor accesses an operand as a bit, byte, several bytes, word, double word, or
several double words. The following sections explain the word, byte, and bit accesses.
(For the processor to access several bytes, it must first access a byte; to access several

words or double words, it must first access a word.)

System QOverview 1-13

Word

The processor accesses a word operand for fixed-point computation. A fixed-point
instruction mnemonic with a prefix of N (such as NADD) indicates a narrow or one
word operand.

An instruction that requests a word (such as NLDA) supplies the effective address
parameters to the processor. The processor then resolves the effective address.

Double Word

The processor accesses a double word operand for fixed-point or floating-point computa-
tion. A fixed-point instruction mnemonic with a prefix of W (such as WADD) indicates
a wide or two word operand. A single precision floating-point instruction requires one
double word, while a double precision instruction requires two double words.

An instruction that requests a double word (such as WLDA) supplies the effective
address parameters to the processor. The processor then resolves the effective address,
which points to the first word of the double word operand.

Byte

An instruction which requests a byte forms a byte pointer from the contents of an
accumulator or from the contents of the index field and the 16- or 32-bit displacement.
A byte pointer consists of an effective address and a byte indicator. The least significant
bit of the byte pointer contains the byte indicator.

NOTE: Byte addressing excludes indirect addressing.
The processor identifies a byte as follows
. 16-Bit displacement

For an instruction with a 16-bit displacement (such as XLDB), the processor
extends the displacement to 29 bits (absolute addressing) or 32 bits (relative
addressing), calculates the effective address, and then identifies the byte.

» 32-Bit displacement

For an instruction with a 32-bit displacement (such as LLDB), the processor
calculates the effective address, and then identifies the byte.

o Accumulator

For an instruction that requires a byte pointer in an accumulator, you must first use
a load effective byte address instruction (such as LLEFB). The load effective byte
address instruction calculates an effective byte address, and then loads it into an
accumulator.

1-14 System Overview

Although identification of the bit numbers depend on the byte pointer location, the
format of a byte pointer remains identical, regardless of the location. Figure 1.9 shows
the formats for a byte pointer.

16-bit Displacement

Word Address Bl

187

32-bit Displacement

Segment Word Address Bl

T T T T T T T T T T
T T T T T T T T T T T T T T T 26 47

18° 1819

AC Contents

Segment Word Address Bl
IR L L e S e e S e e e e A s s s o T

SD-03508

Figure 1.9 Byte pointer format

where
Segment The segment field identifies the current or an outward memory segment.
Word The word address field identifies a 16-bit word in the memory segment.
Address
BI The BI field identifies the byte.

When BI field equals zero, the processor accesses the most significant
byte (bits 0-7).

When BI field equals one, the processor accesses the least significant
byte (bits 8-15).

The processor accesses the word and then locates the byte (see Figure 1.10).

Segment O
0 5 Byte indicator specifies
32-bit byte address low order or high order
A 602354 byte.
/ \ 602355

{000 o] ooo|ooo]ooo] 110|ooo[oro|o11[11o|oo1ﬂ 602356 /A |

602357 1
0 2383 30,3 0 78 16
N Y “ﬂ 602360 /v v v /

Specifies > 602361 Word 602361
segment Word address specifies a word in memory.
) 602362
in memory 502363 /./
S
0 15
Words in memory
SD-03509

Figure 1.10 Byte addressing

System Overview 1-15

Bit

An instruction that accesses a bit in memory (such as WBTO, WBTZ, WSNB, WSZB,
and WSZBO) forms a word pointer and a bit pointer from the contents of two
accumulators. The word pointer consists of an effective address (in the ACS accumulator)
and a word offset (in the ACD accumulator). The bit pointer is located in the least
significant bits of the ACD accumulator.

Figure 1.11 shows the accumulator formats for the WBTO, WBTZ, WSNB, WSZB,
and WSZBO instructions.

ACS Contents

SD-03510

@ | Segment Word Address
Tr T3 — e ———— — 55
ACD Contents
Word Offset Bit Pointer
0 ror ot 277287 T '3

Figure 1.11 Bit pointer format

where

@

Segment
Word
Address

Word
Offset

Bit

Pointer

When the (@ field equals one, it identifies an indirect address.

When the (@ field equals zero, it identifies a direct address.

The segment field identifies the current or an outward memory segment.
The word address field identifies a 32-bit word in the memory segment.

The processor adds the word offset bits, an unsigned integer,
to the effective address and arrives at a final word address (see Figure
1.12).

The bit pointer field specifies the bit position (0-15) in the final word.

1-16 System Overview
Segment 7
0 —_/_‘ 15 ;
ACs [of 111 [000 {100 [000 [000 [101 T 110 [10 [110000] 40056654
01 34 31 40056655
(T R—T J 40056656 /
P (40056657 16-bit
Indirect Specifies — - » | 40056660 words
bit segment Word address specifies a word in meM 20056661 in
7 e
40056662 memor
4-bit % Y
. bit 40056663
28-bit word offset pointer 40056664
) 40056665
| all 1 40056666
ACD o] 000 | 000 [000 [000 | 000 | 000 | 600 | 000 [010 [1101] 20056667
5 2728 1 40056670 /
Bit pointer
specifies a bit
in addressed word
? 13 15
Vv
Word 40056662
SD-03511

Figure 1.12 Bit addressing

The processor uses the ACS accumulator contents to calculate an effective address. If a
bit instruction specifies the two accumulators as the same accumulator, then the effective
address is zero in the current segment.

Protection Capabilities

While executing an instruction, the processor checks for the validity of a memory
reference or an I/O operation (protection violation), a page reference (nonresident
page), a stack operation, a computation, and a data format. Table 1.2 lists the validity

checks (or faults).

Stack operation

Fixed-point computation
Floating-point computation

Invalid decimal or ASCIl data format

Fault Type
Protection violation Privileged
Nonresident page Privileged

Nonprivileged
Nonprivileged
Nonprivileged

Nonprivileged

Table 1.2 Faults

System Overview 1-17

Summary

If the processor detects an error, a nonprivileged or privileged fault occurs before
executing the next instruction. A nonprivileged fault occurs when the processor detects a
computation error. Refer to the Program Flow Management chapter for further details
on servicing a nonprivileged fault.

A privileged fault occurs when the processor detects a protection violation or page fault,
such as an unauthorized I/O operation or a nonresident memory page reference. The
processor limits the I/O and memory access using a hierarchical protection mechanism.
For instance

o Before executing an I/O instruction, the processor checks the I/O validity flag in the
current segment.

« Before executing a memory reference instruction, the processor checks the validity of
the reference.

The processor executes an /O or memory reference instruction when validity checks
permit the access. Otherwise, the processor initiates a protection violation. Thus, an
operating system can restrict access to the devices to specific segment(s).

Accessing and changing a protection mechanism requires a privilege instruction or data
access, typically controlled by the operating system. Refer to the Memory and System
Management chapter for further details on accessing the protection mechanisms and
servicing a privileged fault.

The remainder of the Principles of Operation 32-Bit ECLIPSE® Systems manual
explains the computation and management facilities. Chapters 2-9 present the facilities
in a functional framework. Chapter 10 presents the instructions in alphabetical order,
and the appendixes present a summary of the instructions, C/350 anomalies, and fault
codes.

Overview

Chapter 2
Fixed-Point Computing

With fixed-point computations, the processor can add, subtract, multiply, and divide 16-
and 32-bit signed (two’s complement) and unsigned binary data. The processor also
performs logical operations on 16- and 32-bit data.

In addition to the binary arithmetical and logical operations, the processor can manipulate
8-bit bytes (as alphanumeric ASCII data) and can perform binary coded decimal
(BCD) arithmetic. The processor performs the byte manipulation with the fixed-point
operations. The processor performs the BCD arithmetic with the fixed- and floating-point
operations.

Following a computation, the processor can shift (arithmetically or logically) the contents
of an accumulator, and can skip on a condition (the result of the computation and/or
shift). Finally, the processor can store the result in an accumulator or memory.

The Fixed-Point Computing chapter explains the various computations (binary, logical,
and decimal and byte) and the processor status register.

Binary Operation

The processor performs fixed-point binary arithmetic in the arithmetic logic unit. You
control the processor and arithmetic logic unit operations with the move, arithmetic,
shift, and skip instructions.

Data Formats

The fixed-point arithmetic instructions require two’s complement binary numbers. For
instance, the ADD instruction adds two 16-bit two’s complement binary numbers. The
16- and 32-bit numbers must begin on word boundaries. Figure 2.1 shows the fixed-point
accumulator formats for the 16- and 32-bit two’s complement numbers.

2-2

Fixed-Point Computing

16-bit Fixed-Point Two’s Complement Format

Zero or Sign Extend ; S I Two's Complement Number
A A o T T T e S s S S s S s s S

-

32-bit Fixed-Point Two’s Complement Format

LS] Two's Complement Number
T TT—T—/—T—— 77—}
SD-03512

Figure 2.1 Fixed-point two's complement data formats

where

Zero or The zero or sign extend bits contain 16 zeros or 16 ones.

Sign Extend For moving and computing narrow data, the processor zero extends
narrow data when loading it into an accumulator. The processor sign
extends narrow data before or after narrow data operations, when
converting it to wide data.

S The S bit equals the sign bit.

Bit 16 contains the sign bit for narrow data; bit O contains the sign bit
for wide data. The sign bit equals zero for a positive number, and
equals one for a negative number.

Two’s The processor requires two’s complement binary numbers for fixed-

Complement point arithmetic computation. Table 2.1 shows the precision of 16-

Number and 32-bit two’s complement binary numbers.

Form of Data 16-bit Precision 32-bit Precision
Unsigned 0 to 65,535 0 to 4,294,967,295
Signed -32,768 to -2,147,483,648 to
+32,767 +2,147,483,647

Table 2.1 Range of 16- and 32-bit two’s complement numbers

Table 2.2 lists the instructions that explicitly convert 16-bit data to or from 32-bit data.
Other sections list the instructions that convert the precision before or after another
function. For instance, when loading narrow data (16-bit) from memory into an
accumulator, the processor sign extends or zero extends the number before loading it.
When executing a narrow fixed-point instruction (NADD), the arithmetic logic unit
sign extends the result.

Instruction Operation
CVWN Convert from 32-bit to 16-bit
SEX Sign extend 16-bits to 32-bits
ZEX Zero extend 16-bits to 32-bits

Table 2.2 Fixed-point precision conversion

Fixed-Point Computing 2-3

Move Instructions

Table 2.3 lists the load and store accumulator instructions.

The wide block move instruction (WBLM) requires an effective address in an
accumulator. Use a load effective address instruction (LLEF or XLEF) to calculate and
to load the effective address into an accumulator.

Instruction

Operation

LDATS
LNLDA
LNSTA
LWLDA
LWSTA
MOV *
NLDAI
STATS
WBLM
WLDAI
WMOV
WPOP
WPSH
WXCH
XCH *
XNLDA
XNSTA
XWLDA

XWSTA

Load accumulator with double word addressed by WSP
Narrow load accumulator

Narrow store accumulator

Wide load accumulator

Wide store accumulator

Move and skip

Narrow load immediate

Store accumulator into double word addressed by WSP
Wide block move

Wide load with wide immediate

Wide move

Wide pop accumulators

Wide push accumulators

Wide exchange accumulators

Exchange accumulators

Narrow load accumulator

Narrow store accumulator

Wide load accumulator

Wide store accumulator

Table 2.3 Fixed-point data movement instructions

*ECLIPSE C/350 compatible instruction

Arithmetic Instructions

Tables 2.4 through 2.7 list the arithmetic instructions.

The ECLIPSE C/350 compatible instructions (such as, ADC, ADD, MUL, and DIVS)
ignore bits 0-15 of the source accumulator and of the destination accumulator.

2-4

Fixed-Point Computing

Instruction Operation

ADC * | Add complement and skip

ADD * | Add and skip

ADDI * | Extended add immediate

ADI * Add immediate

INC * Increment and skip
LNADD | Narrow add memory word to accumulator
LNADI | Narrow add immediate
LWADD |Wide add memory word to accumulator
LWADI [Wide add immediate

NADD Narrow add

NADDI | Narrow extended add immediate

NADI Narrow add immediate

WADC | Wide add complement

WADD | Wide add

WADDI | Wide add with wide immediate

WADI | Wide add immediate

WINC | Wide increment (no skip)

WNADI | Wide add with narrow immediate
XNADD | Narrow add accumulator to memory word
XNADI | Narrow add immediate
XWADD | Wide add memory word to accumulator
XWADI | Wide add immediate

Table 2.4 Fixed-point addition instructions

*ECLIPSE C/350 compatible instruction

Instruction Operation
LNSBI | Narrow subtract immediate
LNSUB | Narrow subtract memory word
LWSBI | Wide subtract immediate
LWSUB | Wide subtract memory word
NSBI Narrow subtract immediate
NSUB Narrow subtract
SBI * Subtract immediate
SUB * Subtract and skip
WSBI Wide subtract immediate
WSUB | Wide subtract
XNSBI | Narrow subtract immediate
XNSUB | Narrow subtract memory word
XWSBI | Wide subtract immediate
XWSUB | Wide subtract memory word

Table 2.5 Fixed-point subtraction instructions

*ECLIPSE C/350 compatible instruction

Fixed-Point Computing

2-5

Instruction

Operation

LNMUL
LWMUL
MUL *
MULS *
NMUL
WMUL
WMULS
XNMUL
XWMUL

Wide multiply memory word
Wide multiply memory word
Unsigned multiply

Signed muitiply

Narrow sign extend multiply
Wide multiply

Wide signed multiply

Narrow multiply memory word
Wide multiply memory word

Table 2.6 Fixed-point multiplication instructions

*ECLIPSE C/350 compatible instruction

Instruction

Operation

DIV *

DIVS *
DIVX *
HLV *

LNDIV
LWDIV
NDIV

WDIV

WDIVS
WHLYV
XNDIV
XWDIV

Unsigned divide

Signed divide

Sign extend and divide
Halve (AC/2)

Narrow divide memory word
Wide divide memory word
Narrow sign extend divide
Wide divide

Wide signed divide

Wide halve

Narrow divide memory word

Wide divide memory word

Table 2.7 Fixed-point division instructions

*ECLIPSE C/350 compatible instruction

Carry Operations

For fixed-point arithmetic operations, the processor maintains a carry flag (CARRY).
The CARRY flag contains a value of zero or one. For instance, for an instruction that
adds 16-bit data, the carry occurs from bit 16. For an instruction that adds 32-bit data,
the carry occurs from bit 0.

You can initialize the value of the CARRY flag before a binary operation by executing
an explicit carry instruction. Table 2.8 lists the instructions that initialize the CARRY
flag. The processor retains the value of the CARRY flag for use with another instruction.

2-6 Fixed-Point Computing

The processor changes the value of the CARRY flag as a result of executing an
ECLIPSE MV/Family arithmetic instruction or an ECLIPSE C/350-compatible
fixed-point instruction. For an ECLIPSE MV /Family arithmetic instruction, the
processor loads the result of carry into the CARRY flag; it is not relative to its former
value (as it is with an ECLIPSE C/350-compatible instruction). For an ECLIPSE
C/350-compatible instruction, the processor complements the CARRY flag during

« addition when the two most significant bits (0 for unsigned and 1 for signed) and the
CARRY flag produce a carry;
e subtraction when borrowing from the most significant bit.

With a C/350 compatible instruction, the processor initializes the CARRY flag, performs

the binary operation on the data, and then modifies the CARRY flag (depending on the
magnitude of the result).

Instruction Operation

ADC * Add complement with optional CARRY initialization
ADD * | Add with optional CARRY initialization

AND * | AND with optional CARRY initialization

COM * | One’s complement with optional CARRY initialization
CRYTC |Complement CARRY
CRYTO |Set CARRY to one
CRYTZ | Set CARRY to zero

INC * Increment with optional CARRY initialization

MOV * | Move with optional CARRY initialization

NEG * Negate with optional CARRY initialization

SUB * Subtract with optional CARRY initialization

Table 2.8 Initializing carry instructions

*ECLIPSE C/350 compatible instruction

Shift Instructions

The wide arithmetic shift instructions (WASH and WASHI) move 32 bits of an
accumulator left or right (0 to 31 bit positions), depending on an 8-bit two’s complement
number. The 8 bits in the source accumulator for the WASH instruction or the 8 bits in
the immediate displacement of the WASHI instruction contain the 8-bit number.

« With an 8-bit positive number, the processor shifts from 0 to 31 bit positions to the
left, and zero extends the vacated bit positions. A fixed point overflow occurs if the
sign bit changes.

NOTE: Shifting a negative number more than 31 bit positions to the left guarantees a fixed-point
overflow.

e With an 8-bit number equal to zero, no shifting occurs.

e With an 8-bit negative number, the processor shifts from 0 to 31 bits to the right,
and sign extends the vacated bit positions. The processor drops the bits shifted from
the least significant bit position.

For instance, when the processor shifts +3 to the right one bit position, the result
yields + 1; shifting +1 to the right one bit position yields 0.

Fixed-Point Computing 2-7

The ECLIPSE C/350 compatible arithmetic instructions (ADC, ADD, INC, MOV,
and SUB) can shift an intermediate result one bit position or swap the two bytes (see
Figure 2.2). The shift can be

. One bit to the left.

The CARRY flag assumes the state of the most significant bit, and the least
significant bit assumes the state of the CARRY flag.

e One bit to the right.

The CARRY flag assumes the state of the least significant bit, and the most
significant bit assumes the state of the CARRY flag.

* A swap of the most significant byte with the least significant byte.

The processor preserves the state of the CARRY flag.

Direction Shifter Operation

Left Left rotate one place. Bit 16 is rotated into the
carry position, the carry bit into bit 31.

16-31]J

Right Right rotate one place. Bit 31 is rotated into the
carry position, the carry bit into bit 16.

L»L 16-31 }j

Swap Swap the halves of the 16-bit result. The carry is
not affected.

S§D-03513

Figure 2.2 ECLIPSE C/350 compatible shift operations

Skip Instructions

With a skip instruction, the processor tests the result of an operation for a specific
condition and directs the processor to skip the word or to execute the word after the skip
instruction.

For an instruction that includes a skip option (such as ADD), the processor tests the
result during its temporary storage. The processor can then save the result of the
computation or ignore it. For an instruction that excludes a skip option (such as
NADD), the processor stores the result in memory or an accumulator. You can then test
the result with an explicit test and skip on condition instruction (such as skip on OVR
reset -- SNOVR).

Tables 2.9 and 2.10 list the fixed-point skip on condition instructions. When a skip
occurs, the processor increments the program counter by one and executes the second
word after the skip instruction.

NOTE: Be sure that a skip does not transfer control 1o the middle of a 32-bit or longer instruction.

2-8 Fixed-Point Computing

Instruction

Operation

ADC *
ADD *
INC *
MOV *
NSALA
NSALM
NSANA
NSANM
SGE *
SGT *
SNOVR
SUB *
WCLM
WSALA
WSALM
WSANA
WSANM
WSEQ
WSEQI
WSGE
WSGT
WSGTI
WSKBO
WSXBZ
WSLE
WSLEI
WSLT
WSNB
WSNE
WSNEI
WSZB
WSZBO
WUGTI
WULEI
WUSGE
WUSGT

Add complement with optional skip

Add with optional skip

Increment with optional skip

Move with optional skip

Narrow skip on all bits set in accumulator

Narrow skip on all bits set in memory location

Narrow skip on any bit set in accumulator

Narrow skip on any bit set in memory location

Skip if ACS greater than or equal to ACD

Skip if ACS greater than ACD

Skip on OVR reset

Subtract with optional skip

Wide compare to limits and skip

Wide skip on all bits set in accumulator

Wide skip on all bits set in double word memory location
Wide skip on any bit set in accumulator

Wide skip on any bit set in double word memory location
Wide skip if ACS equal to ACD

Wide skip if equal to immediate

Wide signed skip if ACS greater than or equal to ACD
Wide signed skip if ACS greater than ACD

Wide skip if AC greater than immediate

Wide skip on AC bit set to one

Wide skip on AC bit set to zero

Wide signed skip if ACS less than or equal to ACD
Wide skip if AC less than or equal to immediate

Wide signed skip if ACS less than ACD

Wide skip on nonzero bit

Wide skip if ACS not equal to ACD

Wide skip if AC not equal to immediate

Wide skip on zero bit

Wide skip on zero bit and set bit to one

Wide unsigned skip if AC greater than immediate

Wide unsigned skip if AC less than or equal to immediate
Wide unsigned skip if ACS greater than or equal to ACD
Wide unsigned skip if ACS greater than ACD

Table 2.9 Fixed-point skip on condition instructions

*ECLIPSE C/350 compatible instruction

Overflow Fault

The processor checks for a fixed-point overflow when attempting division by zero or
when calculating a two’s complement number. An overflow occurs if the result is too
large to store in memory or in a fixed-point accumulator. At the end of the current
instruction cycle, the processor sets the overflow flag (OVR) to one. The processor status
register contains the OVR flag. Refer to the Program Flow Management chapter for

information on fault handling.

Fixed-Point Computing 2-9

Instruction

Operation

DSZTS

INC *
ISZTS
LNDSZ
LNISZ
LWDSZ
LWISZ
XNDSZ
XNISZ
XWDSZ
XWISZ

Decrement the double word addressed by WSP (skip if
zero)

Increment and skip

Increment the double word addressed by WSP (skip if zero)
Narrow decrement and skip if zero

Narrow increment and skip if zero

Wide decrement and skip if zero

Wide increment and skip if zero

Narrow decrement and skip if zero

Narrow increment and skip if zero

Wide decrement and skip if zero

Wide increment and skip if zero

Table 2.10 Fixed-point increment or decrement word and skip instructions

*ECLIPSE C/350 compatible instruction

Processor Status Register

The processor contains a 16-bit processor status register (PSR), which retains information
about the status of fixed-point computations. You access the register with instructions
that test and set the register contents. Refer to the Skip section for a list of the
instructions that test the register contents. Table 2.11 lists the instructions that set the
register contents.

Instruction

Operation

BKPT
FXTD
FXTE
LCALL
LPSR
PBX
SPSR
WPOPB
WRSTR
WDPOP
WRTN
WSAVR
WSAVS
WSSVR
WSSVS
XCALL
XVCT

Breakpoint

Disable fixed-point trap (resets OVK and disables trap)
Enable fixed-point trap (sets OVK and enables trap)
Call subroutine

Load PSR into ACO

Pop block and execute

Store PSR from ACO

Wide pop block

Wide restore

Wide pop context block

Wide return

Wide save and set OVK to zero

Wide save and set OVK to one

Wide special save and set OVK to zero

Wide special save and set OVK to one

Call subroutine

1/0 vector interrupt

Table 2.11 PSR manipulation instructions

*ECLIPSE C/350 compatible instruction

2-10 Fixed-Point Computing

Figure 2.3 shows the format of the processor status register.

DG-15405

OvK

OVR | IRES | IXCT Reserved

Figure 2.3 Processor status register format

NOTES: The IRES and IXCT bits are for hardware use. Do not modify the state of either bit;
otherwise, results are unpredictable.

Although all MV/Family machines implement Bits 0 and I, some MV/Family machines may not
implement the remaining PSR bits. Refer to the appropriate functional characteristics manual for
more specific information.

where

OVK

OVR

The OVK bit is an overflow mask.

The processor (or you) enable fixed-point overflow detection and
servicing by setting the OVK mask to one. You can set the OVK mask
to one with the FXTE, LPSR, WSAVS, and WSSVS instructions. (See
Table 2.11).

The processor saves or restores the status of the OVK mask when going
to or returning from a subroutine or fault handler. For the processor to
detect and service an overflow fault, the OVK mask must be set to one
before the processor sets the OVR flag to one.

The OVR bit is an overflow flag.

The processor sets the OVR flag to one when it detects a fixed-point
overflow condition.

The processor detects a fixed-point overflow condition when the result
exceeds the 16-bit precision (for narrow data instruction) or 32-bit
precision (for wide data instruction).

The overflow condition (overflow) exists for the duration of the
fixed-point instruction that causes the overflow. The processor stores
the transient overflow condition by performing a logical inclusive OR
of overflow and the OVR flag before completing the instruction.

The OVR flag remains set to one until any of the following events occur
e I/O interrupt request
Refer to the Device Management chapter for additional details.
. Fault detection and servicing
Refer to the Program Flow chapter for additional details.
. Power up, 1/0O reset, or system reset

Refer to the specific functional characteristics manual for addition-
al details.

) Processor executes an instruction listed in Table 2.11

Fixed-Point Computing 2-11

IRES

IXCT

Reserved

The IRES bit is an interrupt resume flag.

The processor sets the IRES flag when it interrupts a resumable
instruction that requires the processor to save its state on the user stack.
For example, when the processor interrupts a wide edit (WEDIT)
instruction, the processor sets the IRES flag and saves the microstate
on the user stack.

When a resumable instruction begins execution, it first tests the IRES
flag. If the flag is O, the instruction begins an initial execution. If the
flag is 1, the instruction restores the state, resets the IRES flag to 0,
and resumes execution.

NOTE: Although the processor can interrupt some instructions, most
instructions cannot be interrupted. Refer to the specific func-
tional characteristics manual for additional information.

The IXCT bit is an interrupt-executed opcode flag.

When the processor executes the BKPT instruction, it pushes a wide
return block onto the current stack. ACO in the return block contains
the one-word instruction (or the first word of a multi-word instruction).
Then when returning program control, the PBX instruction (located at
the end of the breakpoint handler) pops the wide return block and
continues the normal program flow with the saved instruction in ACQ.

If an interrupt occurs while executing the saved instruction (PC points
to the BKPT instruction), the processor sets the IXCT flag in the PSR
and pushes the opcode of the saved instruction onto the wide stack.
Upon returning from the interrupt handler, the BKPT instruction tests
the IXCT flag. If the flag is set, the BKPT instruction resets the flag to
0, pops the saved opcode of the interrupted instruction off the wide
stack, and executes it.

The processor sets the reserved bits to zero when storing them in
memory. The processor ignores the reserved bits when loading the
PSR.

NOTE: Do not set the PSR bits 4 through 13 to store transient data
while they are in memory (such as in a return block); these
reserved bits must remain unused.

When stored in memory, bits 14 and 15 are reserved for Data General
software.

2-12

Fixed-Point Computing

Logical Operation

The processor performs fixed-point logical arithmetic in the arithmetic logic unit. You
control the processor and arithmetic logic unit operations with the move, logic, shift, and
skip instructions.

With the AND, IOR, and XOR instructions, the processor performs the logical functions.
The processor can then store the result into memory or it can test the result with a skip
instruction, which either continues normal program flow or changes it.

Data Formats

The fixed-point logical instructions require the binary data to begin on word boundaries.
For instance, an inclusive OR instruction (IOR) logically OR’s two 16-bit binary values;
a wide inclusive OR instruction (WIOR) logically OR’s two 32-bit binary values. Figure
2.4 shows the 16- and 32-bit formats.

16-Bit Fixed-Point Logical Format

Undefined Logical Data

32-bit Fixed-Point Logical Format

Logical Data

o L e e e e A A S S S T
DG-15406

Figure 2.4 Fixed-point logical data formats

Logic Instructions

Table 2.12 lists the logical instructions. A wide set bit instruction (WBTO and WBTZ)
requires an effective address in an accumulator. Use a load effective address instruction
(LLEF or XLEF) to calculate and to load the effective address into an accumulator.

Fixed-Point Computing

2-13

Instruction Operation
ANC * | AND with complemented source
AND * AND
ANDI * | AND immediate
COM * | Complement
IOR * Inclusive OR
IORI * | Inclusive OR immediate
LOB * |Locate lead bit
LRB * | Locate and reset lead bit
NEG * Negate
NNEG | Narrow negate
WANC | Wide AND with complemented source
WAND Wide AND
WANDI | Wide AND immediate
WBTO | Wide set bit to one

WBTZ | Wide set bit to zero

WCOB | Wide count bits

WCOM | Wide complement {one’s complement)
WIOR | Wide inclusive OR

WIORI | Wide inclusive OR immediate
WLOB | Wide locate lead bit

WLRB | Wide locate and reset lead bit
WLSN | Wide load sign

WNEG | Wide negate

WXOR | Wide exclusive OR

WXORI | Wide exclusive OR immediate
XOR * | Exclusive OR

XORI * | Exclusive OR immediate

Table 2.12 Logical Instructions

*ECLIPSE C/350 compatible instruction

2-14 Fixed-Point Computing

Shift Instructions

Table 2.13 lists the logical shift instructions. With the ECLIPSE C/350 compatible
shift instructions (AND, COM, and NEG), the processor can shift an intermediate
result as explained for the ADC, ADD, and INC instructions. (See the Binary Operation
section for further information).

Instruction Operation

AND * | Logical AND with optional shift

COM * | Logical one’s complement with optional shift
DLSH * | Double logical shift

LSH * |Logical shift

NEG * Logical negate with optional shift

WLSH | Wide logical shift
WLSHI | Wide logical shift immediate

WLSI Wide logical shift left immediate

Table 2.13 Logical shift instructions

*ECLIPSE C/350 compatible instruction

Skip Instructions

Table 2.14 lists the logical skip on condition instructions. When a skip occurs, the
processor increments the program counter by one, and executes the second word after
the skip instruction.

NOTE: Be sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Instruction Operation

AND * | AND with optional skip

COM * | One's complement with optional skip
NEG * | Negate with optional skip

WSNB | Wide skip on nonzero bit

WSZB | Wide skip on zero bit
WSZBO | Wide skip on zero bit and set bit to one

Table 2.14 Fixed-point logical skip instructions
*ECLIPSE C/350 compatible instruction

A wide skip on bit instruction (WSNB, WSZB, and WSZBO) requires an effective
address in an accumulator. Use a load effective address instruction (LLEF or XLEF) to
calculate and to load the effective address into an accumulator.

Fixed-Point Computing 2-15

Decimal and Byte Operations

The processor performs decimal arithmetic (packed and unpacked) and 8-bit byte (or
ASCII) manipulation. You control the various operations with the move, arithmetic,
skip, and shift instructions. The move instructions include the instructions that convert,
compare, and insert data.

The decimal arithmetic operations consist of

Converting and moving decimal numbers between a floating-point accumulator
and memory

The move instructions that convert one data type to another require an explicit data
type description.

Performing floating-point computations on the converted decimal numbers

Refer to the Floating-Point Computing chapter for information on the floating-point
arithmetic instructions.

The byte operations consist of

Moving bytes from one memory location to another.
Inserting or deleting bytes.

You insert one or more bytes into a string first by moving the beginning part of the
string to another location. Then, you move the bytes to be inserted to the other
location, and finally you move the remainder of the string to the other location.

You delete one or more bytes from a string first by moving the beginning part of
the string to another location. Then, you skip the bytes to be deleted, and finally
you move the remainder of the string to the other location.

Converting from one data type to another data type.

The move instructions that convert one data type to another require an explicit data
type description.

Comparing one data type to another data type or searching the string for a specific
character.

The skip instructions include the byte compare instructions even though they do not
perform the skip function. A byte compare instruction stores the result of the
comparison in an accumulator Use a skip on condition instruction to test the
comparison.

2-16

Fixed-Point Computing

Data Formats

The processor must know the format of the data before accessing it. Most instructions

(such as fixed-point and floating-point instructions) imply a data format. However, for
packed decimal (BCD) and unpacked decimal (ASCII) arithmetic with the move and

convert instructions (such as WEDIT and WLDI), the processor requires (in AC1) an
explicit data type indicator, as shown in Figure 2.5.

Unused f Reserved] Type I Size j

e T T T T T T T T T T T T T TiET 6" T T T T T T3 347 TR T T 377

SD-03516

Figure 2.5 Explicit data type indicator

where

Reserved The reserved field indicates that DGC reserves bits 16-23 for future
use.

Type The type field identifies the type of data, as shown in Table 2.15.

Size The size field indicates, as an unsigned integer, the length of the data.
The following list explains the data type and corresponding size
specification.

Data Type Size Field
0 Two less than the number of decimal digits and sign
1 Two less than the number of decimal digits and sign
2 One less than the number of decimal digits and sign
3 One less than the number of decimal digits and sign
4 One less than the number of decimal digits
5 One less than the number of decimal digits and sign

With a data type 5, the processor expects an odd
number for a size specification. If you specify an
even size, the processor adds one to it (to make the
size odd) and appends a zero digit to the most
significant digit.

6 The number of bytes in the two’s complement
number

You must specify a minimum of 2 bytes
7 The number of bytes in the floating point number

You must specify a minimum of 4 bytes

Fixed-Point Computing

2-17

An unpacked decimal string contains one ASCII character in each byte (see Figure 2.6).
Depending upon the data type and character location, the ASCII character represents a
decimal digit, sign, or a digit and sign.

o Data types 0 and 1 combine the sign with a character.

Refer to Table 2.16 for a list of the sign-positioned ASCII characters. Table 2.17
lists the nonsign-positioned ASCII characters.

. Data types 2 and 3 require the sign as a separate byte.

The separate sign byte can be either the ASCII plus sign (+) -- 053¢ -- or the
ASCII minus sign (-) -- 055g. Table 2.17 lists the nonsign-positioned ASCII

characters.

A packed decimal string contains two BCD digits per byte (see Figure 2.6). The most
significant digit contains a zero if the decimal string contains an odd number of digits.
The last byte must contain the least significant digit and the sign. The 15g (or D)
represents the minus sign (-). The 14g or 17g (Cy¢ or F;¢) represent the plus sign (+).

Data Meaning Decimal | Characters in Each Byte Expressed in | Data Type
Type Example (Octal) or [Hex] Indicator
Unpacked decimal - last -397 3(063) 9 (071) P (120)
0 byte combines the sign and {000002)
the last +397 3 (063) 9 (071) G (107)
digit
Unpacked decimal - first -397 L (114) 9 (071) 7 (067)
1 byte combines the sign and (000042)
the first digit +397 C (103) 9 (071) 7 (067)
Unpacked decimal - last -397 3(063) 9 (071) 7 (067) - (055)
2 byte contains the sign (000103)
+397 3{063) 9 (071) 7 (067) + (070)
Unpacked decimal - first -397 -(055) 3 (063) 9 (071) 7 (067)
3 byte contains the sign (000143)
+397 + (070) 3 (063) 9 (071) 7 (067)
4 Unpacked decimal - and 397 3 (063) 9 (071) 7 (067) (000202)
unsigned
-397 39(071)7 -(175)
Packed decimal - two BCD 39[39] 7 -[7D]
5 digits (or sign) per byte . (000243)
+397 39(071) 7+ (177)
39([39] 7+ [7F]
-397 (-615) = (176) (163) = (177163)
6 Two'’s complement - (000302)
byte-aligned +397 (+615) = (001) (215) = {000615)
-397 (06771630000)
[37][7] [30] [00]
7 Floating point - (000344)
byte-aligned +397 {06706 150000)
[37]1[18] [DO] [00]

Table 2.15 Explicit data types

2-18 Fixed-Point Computing

Unpacked Decimal

B N N T B

\ /

ASCH T

representation ASCII representation of decimal digits

of sign
{ L
Trailing sign: | l I l s L i [| —I
— T /
\/ ASCII T
ASCIl representation of representation
decimal digits of sign
J
High order sign: I [I [g{ l I |]
A \ 1 /
ASCII representation Vv
of character: defined as ASCII representation
a combination of of remaining decimal
first decimal digit and sign digits
|
Low order sign: l l | 4(1 I I l l
71 7 I
v ASCII representation of
ASCIl representation of all character: defined as
but last decimal digit a combination of last

decimal digit and sign
s L
T T

Unsigned: L l I
\
—V

ASCI| representation of
decimal digits (assumed positive)

Packed Decimal

LIIIIIIJZHIIIJTI

BCD representation of decimal digits, Sign: + = 144
extended by a leading O, if necessary, - 15g
to an odd number of digits.

Each digit occupies 1/2 byte (4 bits).

DG-13407

Figure 2.6 Packed and unpacked decimal data

Fixed-Point Computing

2-19

Digit ASCII Digit ASCIl Digit ASCll
and Character and Character and Character
Sign | (octal code) | Sign |(octal code) | Sign | (octal code)
0+ |space |(040)| 5+ (065) 1- J (112)
o+ + (063)| 5+ |E (105)
o+ |1 (173) 2- |k (113)
o+ (o (060)| 6+ 6 (066)
6+ F (106) 3- L (114)
1+ 1 (061)
1+ A (101) 7+ 7 (067) 4- M (115)
7+ |G (107)
2+ |2 (062) 5- N (116)
2+ B (102)| 8+ 8 (070)
8+ H (110) 6- 0 (117)
3+ 3 (063)
3+ |cC (103)| 9+ 9 (071) 7- P (120)
9+ | (111)
4+ |4 (064) 8- Q (121)
4+ |D (104) 0- - (055)
o |1 (178)| 9 |R (122)

Digit

ASCIl Character
(octal code)

space

o

© 0 N O O b~ W N =

(040)
(060)
(061)
(062)
(063)
(064)
(065)
(066)
(067)
(070)
(071)

©W 0N WN = O

Table 2.17 Nonsign-positioned
numbers for unpacked decimal

Table 2.16 Sign and number combination for unpacked decimal

2-20

Fixed-Point Computing

Move Instructions

The move instructions transfer formatted data between memory and a fixed-point
accumulator or floating-point accumulator (FPAC) or between two memory locations.
In addition to moving data, several instructions also convert, compare, or insert data.

Table 2.18 lists the instructions that move bytes of data. For an instruction that loads a
byte into the least significant bits of a fixed-point accumulator, the processor zero
extends the remaining bits. For an instruction that loads a byte into memory, the
processor changes the addressed byte, while the other byte in the memory word remains
mntact.

Instruction Operation

LLDB Load byte

LSTB Store byte

WCMT | Wide character move until true
WCMYV | Wide character move

WCTR | Wide character translate and compare
WEDIT | Convert and insert string of decimal or ASCIl characters
WLDB | Wide load byte

WSTB | Wide store byte

XLDB Load byte

XSTB Store byte

Table 2.18 Fixed-point byte movement instructions

The decimal move and convert instructions

« Convert packed decimal data to floating-point format when storing a decimal number
in a floating-point accumulator.

« Convert floating-point data to packed decimal format when storing a decimal number
in memory.

Table 2.19 lists the move and convert decimal/floating-point instructions.

Instruction Operation

WLDI | Convert a decimal and load into FPAC
WLDIX | Convert a decimal, extend, and load it into four FPACs
WSTI Convert FPAC data and load into memory

WSTIX | Convert the four FPACs and load intoc memory

Table 2.19 Fixed-point to floating-point conversion and store instructions

The move instructions require an effective word address and/or an effective byte address.
Table 2.20 lists the instructions that calculate the address and store it in a fixed-point
accumulator.

Fixed-Point Computing 2-21

Instruction Operation

LLEF Load effective address

LLEFB |Load effective byte address

LPEF Push address

LPEFB | Push byte address

WMOVR | Wide move right (convert byte pointer to word pointer)

XLEF |Load effective address
XLEFB | Load effective byte address

XPEF Push effective address
XPEFB | Push effective byte address

Table 2.20 Load effective word and byte address instructions

The edit (WEDIT) instruction (with an edit subprogram) converts a decimal integer to
a string of bytes, moves a string of bytes, or inserts additional bytes. Table 2.21 lists the
edit subprogram instructions.

Instruction Operation

DADI Add signed integer to destination indicator

DAPS Add signed integer to opcode pointer if sign flag is zero
DAPT | Add signed integer to opcode pointer if trigger is one
DAPU Add signed integer to opcode pointer

DASI Add signed integer to source indicator

DDTK | Decrement a word in the stack by one and jump if word is

nonzero
DEND | End edit subprogram
DICI Insert characters immediate

DIMC Insert character j times

DINC Insert character once
DINS Insert character-a or character-b depending on sign flag
DINT Insert character-a or character-b depending on trigger

DMVA | Move j alphabetical characters
DMVC | Move j characters

DMVF | Move j float

DMVN | Move j numerics

DMVO | Move digit with overpunch
DMVS | Move numeric with zero suppression
DNDF | End float

DSSO Set sign flag to one

DSSZ Set sign flag to zero

DSTK | Store in stack

DSTO Set trigger to one

DSTZ | Set trigger to zero

Table 2.2 1 Edit subprogram instructions

2-22 Fixed-Point Computing

Arithmetic Instructions

With the ECLIPSE C/350 compatible fixed-point add (DAD) and subtract (DSB)
instructions, the processor computes the sum or difference of two unsigned BCD numbers
in bits 28-31 of two accumulators. A carry, if any, is a decimal carry.

Shift Instructions

With the ECLIPSE C/350 compatible hex shift instructions, the processor can move
decimal results (in bits 16-31 of a fixed-point accumulator) either to the left or to the
right. Table 2.22 list the hex shift instructions.

Instruction Operation

DHXL * | Double hex shift left
DHXR * | Double hex shift right
HXL * | Hex shift left

HXR * | Hex shift right

Table 2.22 Hex shift instructions

*ECLIPSE C/350 compatible instruction

Skip Instructions

A load effective address instruction calculates a byte or word address that can point to a
location outside the valid address space. When the processor executes a character
manipulation instruction (such as WCMYV) with an illegal address, a protection fault
occurs. To avoid the protection fault, use

1. The load effective address instruction to calculate and load the byte or word
address into an accumulator.

2. A skip on valid byte or word address instruction (VBP or VWP) to test the address.
3. The character manipulation instruction.

When a skip occurs, the processor increments the program counter by one and executes
the second word after the skip instruction.

NOTE: Be sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Fixed-Point Computing 2-23

A skip instruction normally tests for a condition, and then modifies the program counter.
However, the wide character compare (WCMP), the wide character translate and
compare (WCTR), and the wide load sign (WLSN) instructions test for a condition, and
then load bit 0 of AC1 with the results. You can then use the wide skip on accumulator
bit instructions (WSKBO and WSKBZ) to test the condition.

The wide character scan until true instruction (WCST) searches a string of bytes for one
or more specified characters. When the instruction locates a byte, it stores the byte
address in an accumulator.

Data Type Faults

The processor checks for a valid decimal or ASCII data type and for valid data when
executing an instruction that requires an explicit data type description (such as WEDIT,
WCTR, WSTI, or WCST). If either the data type or the data is invalid, the processor
does not perform the instruction, but will service the fault before executing another
instruction. Refer to the Program Flow Management chapter for more information on
fault handling.

Decimal Arithmetic Example

Figure 2.7 illustrates an example of code written for execution under AOS/VS. The
program

1. Accepts the decimal number from a terminal (in ASCII format).
2. Converts it to single precision floating-point format.

3. Performs the floating-point addition.

4. Converts the sum to ASCII format.
5

Displays it on the terminal.

2-24

Fixed-Point Computing

JTITL DECIMAL
LENT START
NREL
:CONSTANTS
-ENABLE SWORD
CON: IxT “ACONSOLE"
FCON: 202
IBUF: BLK 5

:PARAMETER PACKETS

CONSOLE: .BLK 22
.LOC CONSOLE+?1STI
2RTDSHOFIO0
.LOC CONSOLE+?ISTO
0
.LOC CONSOLE+?IMRS
-1
.LOC CONSOLE+?IBAD

[LOC CONSOLE+?IRCL
-1

180.

.LOC CONSOLEt?IRNN
0

.ENABLE DWORD

.LOC CONSOLE+?IDEL
-1
.LOC CONSOLE+?ETSP
0
.LOC CONSOLEF2ETFT
0
.LOC CONSOLE+2ETLT
0
:END OF CONSOLE PACKET
START: 70PEN CONSOLE
?READ CONSOLE
XNLDA 1.FCON
XNLDA 3.CONSOLET?1BAD
Wb o0
FAS 0.0
XNLDA 1.FCON
XNLDA 3.CONSOLE+?IBAD
AGAIN: w11 0
INC 1.1.82C
WBR AGAIN

MRITE CONSOLE
2CLOSE CONSOLE
2RETURN

.END START

SD-03518

:GENERIC CONSOLE NAME
TYPE 4 AND 3 DECIMAL DIGITS
:RESERVE S WORDS FOR NUMBER BUFFER

:READ CONSOLE PACKET TO OPEN. READ. & WRITE

-DATA SENSITIVE 1/0

.?1BAD CONTAINS BYTE POINTER TO DATA PACKET

:OPEN CONSOLE TO READ AND WRITE

:ACCEPT A NUMBER FROM THE KEYBOARD

<INIT FOR DATA TYPE 4
:GET BYTEPTR FROM CONSOLE PKT

:SINGLE PRECISION FLOATING-POINT ADD

:INC BYTE COUNT AND SKIP IF WSTI TRUNCATES
:REPEAT WSTI

:DISPLAY THE SUM ON THE CONSOLE

:CLOSE THE CONSOLE

:RETURN TO CLI

Figure 2.7 Decimal arithmetic example

Overview

Chapter 3
Floating-Point Computing

With floating-point computations, the processor can add, subtract, multiply, and divide
32-bit (single precision) and 64-bit (double precision) sign magnitude data.

Following a computation, the processor can convert a double precision value to a single
precision value, or it can convert a single precision value to a fixed-point or decimal
value. Then, the processor can test and skip on a condition that results from the
computation or conversion. Finally, the processor can store the result in an accumulator
or memory.

The Floating-Point Computing chapter explains the various computations (move,
arithmetic, and skip) and the floating-point status register (FPSR).

Data Formats

The floating-point arithmetic instructions require normalized, sign magnitude numbers.
You can use the floating-point normalize (FNOM) instruction to normalize raw
floating-point data, which may or may not be normalized.

In addition, if a mantissa equals zero, the processor expects it to be a true zero. A true
zero exists when the sign bit, exponent, and mantissa equal zero (all bits equal zero).

The single and double precision numbers must begin on word boundaries and must be
within the value range of 5.4(10°78) to 7.2(1075. Figure 3.1 shows the floating-point
formats.

3-2

Floating-Point Computing

Single Precision Format

S Exponent Mantissa
e o e e L A e S S S S S S S S S S 1]

Single Precision Format

Undefined

327 63

Double Precision Format (First Half)

Exponent Mantissa (Most Significant Bytes)
O L S S e m - A A S A S S S S S S S S S S A T

Double Precision Format (Second Half)

Mantissa (Least Significant Bytes)
7 ML S S S S S S S S S S S S S S S S SR S T T

SD-03519

Figure 3.1 Floating-point data formats

where

S The S bit equals the sign bit of the mantissa. The sign bit equals a zero
for a positive number, and equals a one for a negative number.

Exponent The exponent, expressed as an unsigned integer, equals 64, greater
than the true value of the exponent (excess 64 representation). The
following exponents illustrate excess 64 representation numbers.

True Value of
Exponent Exponent

0 -64;,
6410 0
1270 +63;0

Mantissa The mantissa, expressed as a fraction, implies that the location of the
binary point is between bits 7 and 8.

The range of the mantissa for single precision is
1/16 to 1-2-24
and for double precision is

1/16 to 1-2-56

Floating-Point Computing 3-3

Table 3.1 lists the instructions that convert and move data between fixed-point and
floating-point accumulators, convert a mixed number to a fraction, and scale a

floating-point number.

Instruction Operation

FEXP * |Load exponent (ACO 17-23 to FPAC 1-7)
FAB * Compute absolute value (set sign of FPAC to zero)
FFAS * |Fix to AC (FPAC to AC)
FINT * |Integerize (FPAC)
FLAS * | Float from AC (AC to FPAC)
FNEG * | Negate
FNOM * | Normalize (FPAC)
FRDS | Floating-point round double to single
FRH * |Read high word (FPAC 0-15 to ACO 16-31)
FSCAL * | Scale floating point
WFFAD | Wide fix from FPAC
WFLAD | Wide float from AC

Table 3.1 Floating-point binary conversion instructions

*ECLIPSE C/350 compatible instruction

Table 3.2 lists the instructions that convert and move a fixed-point decimal between
memory and a floating-point accumulator. Refer to the Fixed-Point Computing chapter
for further information on the load and store integer instructions.

Instruction Operation

WLDI | Convert a decimal and load into FPAC
WLDIX | Convert a decimal, extend, and load it into four FPAC's
WSTI Convert FPAC data and load into memory

WSTIX | Convert the four FPAC’s and load into memory

Table 3.2 Floating-point decimal conversion instructions

Move Instructions

All single-precision operations that specify an accumulator fetch the most significant 32
bits of the floating-point accumulator and ignore the least significant 32 bits. Upon
completion of the specified operation, the processor returns the result to the most
significant portion of the floating-point accumulator. The processor loads the least
significant 32 bits of the floating-point accumulator with zeros. Table 3.3 lists the load
and store floating-point accumulator instructions.

3-4 Floating-Point Computing

Instruction Operation

FMOYV * | Move floating point (FPAC to FPAC)
LFLDD |Load floating-point double
LFLDS |Load floating-point single
LFSTD | Store floating-point double
LFSTS | Store floating-point single
WFPOP | Wide floating-point pop
WFPSH | Wide floating-point push
XFLDD |Load floating-point double
XFLDS |Load floating-point single
XFSTD | Store floating-point double
XFSTS | Store floating-point single

Table 3.3 Floating-point data movement instructions

*ECLIPSE C/350 compatible instruction

Floating-Point Arithmetic Operations

To perform a floating-point arithmetic operation, the processor executes a floating-point
arithmetic instruction. In executing the instruction, the processor

1. Appends one or two guard digits.

2. Aligns the mantissas (for addition and subtraction).

3. Calculates the result and normalizes it.

4. Adjusts the result by truncating or rounding it.

5. Stores the result in a floating-point accumulator or memory.

To increase the accuracy of the result, the processor appends one or two guard digits to
the operands of both mantissas, before performing the arithmetic calculations. A guard
digit is one hex digit (four bits) that initially contains a zero. The processor modifies the
guard digits during the arithmetic calculations, which increases the accuracy of the
result.

Appending Guard Digits

The processor appends the one or two guard digits to the least significant hex digit of
both mantissas, depending on the RND flag (bit 8) in the floating-point status register.
Use the load floating-point status register instruction (LFLST) to change the RND flag.

NOTE: The floating-point conversion and single precision store instructions (FINT, FSCAL, LFSTS,
WFFAD, WFLAD, and XFSTS) ignore the RND flag. Refer to the individual instruction description
in the Instruction Dictionary chapter for further information.

When the RND flag equals zero, the processor appends one guard digit in preparation
for truncating the mantissa of the intermediate result. When the RND flag equals one,
the processor appends two guard digits in preparation for rounding the mantissa of the
intermediate result. An intermediate result includes the exponent and the mantissa.

Floating-Point Computing 3-5

Aligning the Mantissas

For floating-point addition and subtraction, the processor first aligns the smaller mantissa
to the larger mantissa. To align the mantissas, the processor takes the absolute value of
the difference between the two exponents. If the difference equals nonzero, the processor
shifts the mantissa with the smaller exponent to the right until the difference equals zero
or until the processor shifts out the significant digits of the mantissa. The mantissas are
aligned when the difference equals zero.

If the processor shifts out the significant digits, the operation is equivalent to adding zero
to the number with the larger exponent. To shift out the significant digits, the processor
must shift at least 7 or 8 hex digits for single precision (for truncating or rounding,
respectively) or shift at least 15 or 16 hex digits for double precision.

Calculating and Normalizing the Result

The processor performs the floating-point arithmetic operation, determines by the rules
of algebra the signs of the intermediate result, and then normalizes it. The processor
normalizes an intermediate mantissa by shifting it left one hex digit at a time until the
most significant hex digit represents a nonzero quantity. For each hex digit shifted left,
the processor decrements the intermediate exponent by one. The processor zero fills the
guard digit of the intermediate mantissa.

Truncating or Rounding the Result

As determined by the RND flag, the processor truncates or rounds the intermediate

mantissa. When the RND flag equals zero, the processor truncates the intermediate

mantissa by removing the guard digit. When the RND flag equals one, the processor
rounds the intermediate mantissa by removing and analyzing the two guard digits.

When the two guard digits are

e Within the range of 0 to 7F ;¢ inclusive, the intermediate result becomes the final
result (without change).

. Equal to 80 , the processor adds the least significant bit of the intermediate
mantissa to the intermediate mantissa.

The processor forces an even mantissa to be rounded down to the nearest integer
and an odd mantissa to be rounded up to the nearest integer. If the processor
rounded down or rounded up without an intermediate mantissa overflow, the
operation produces the final result.

* Within therangeof 81,4 to FF ¢ inclusive, the processor adds 14 to the intermediate
mantissa.

If the processor rounded up the intermediate mantissa without an overflow, the
operation produces the final result.

3-6 Floating-Point Computing

If rounding up causes a mantissa overflow, the processor performs the following actions:
1. Shifts the intermediate mantissa right one hex digit.

2. Places 1 into the most significant hex digit.

3. Adds one to the intermediate exponent.

4. Truncates the rightmost hex digit so that the intermediate mantissa is 24 or 56 bits,
which becomes the final result.

Storing the Result

The processor stores the final result into the specified memory location or floating-point
accumulator. The processor then checks for a possible exponent underflow or overflow.
If no underflow or overflow exists, the instruction execution ends. If an underflow or
overflow exists, the processor sets the appropriate error flag in the floating-point status
register. The value of the exponent is undefined.

Arithmetic Instructions

Addition

Floating-point arithmetic instructions perform single and double precision addition,
subtraction, multiplication, and division.

The processor adds the two mantissas together, producing an intermediate result. The
processor determines the sign of the intermediate result from the signs of the two
operands by the rules of algebra.

If the mantissa addition produces a carry out of the most significant bit, the processor

shifts the intermediate mantissa to the right one hex digit and increments the exponent
by one. If incrementing the exponent produces no exponent overflow and the intermediate
mantissa equals a nonzero, the processor normalizes the intermediate mantissa, rounds
or truncates it, and stores the final result in memory or in a floating-point accumulator.

If incrementing the exponent produces an exponent overflow, the processor sets the OVF
error flag to one and terminates the instruction. If there is no mantissa overflow, but the
intermediate mantissa contains all zeros, the processor places a true zero in memory or
in a floating-point accumulator. Table 3.4 lists the floating-point add instructions.

Instruction Operation

FAD * Add double (FPAC to FPAC)

FAS * Add single (FPAC to FPAC)
LFAMD | Add double {memory to FPAC)
LFAMS | Add single {(memory to FPAC)
XFAMD | Add double {(memory to FPAC)
XFAMS | Add single {(memory to FPAC)

Table 3.4 Floating-point addition instructions

*ECLIPSE C/350 compatible instruction

Floating-Point Computing 3-7

Subtraction

For floating-point subtraction, the processor temporarily complements the sign of the
source mantissa and performs a floating-point addition. Upon completion, the difference
is stored in the destination floating-point accumulator. Also the source mantissa returns
to its original value when the source accumulator is different from the destination
accumulator (facs # facd). Table 3.5 lists the floating-point subtract instructions.

Instruction Operation

FSD * | Subtract double (FPAC from FPAC)
FSS * Subtract single (FPAC from FPAC)
LFSMD | Subtract double (memory from FPAC)
LFSMS | Subtract single (memory from FPAC)
XFSMD | Subtract double (memory from FPAC)
XFSMS | Subtract single (memory from FPAC)

Table 3.5 Floating-point subtraction instructions

*ECLIPSE C/350 compatible instruction

Multiplication

For floating-point multiplication, the processor multiplies one floating-point mantissa by
the other floating-point mantissa, which produces an intermediate floating-point
mantissa. The processor adds the two exponents, subtracts 64, to maintain excess 64
notation, and produces an intermediate floating-point exponent. The processor then
normalizes the intermediate mantissa, rounds or truncates it, and stores the final result.
Table 3.6 lists the floating-point divide instructions.

Instruction Operation

FMD * Multiply double (FPAC by FPAC)

FMS * | Multiply single (FPAC by FPAC)
LFMMD | Multiply double (FPAC by memory)
LFMMS | Multiply single (FPAC by memory)
XFMMD | Multiply double (FPAC by memory)
XFMMS | Multiply single (FPAC by memory)

Table 3.6 Floating-point multiplication instructions

*ECLIPSE C/350 compatible instruction

3-8 Floating-Point Computing

Division
For floating-point division, the processor tests the divisor for zero. (The source location
contains the divisor and the destination location contains the dividend.) If the divisor is
zero, the processor sets the DVZ error flag to one, and ends the instruction. If the divisor
is nonzero, the processor compares the two mantissas. If the dividend mantissa is greater

than or equal to the divisor mantissa, the processor aligns the two mantissas with the
following actions:

1. Shifts the dividend mantissa to the right one hex digit.
2. Places 0,4 into the most significant digit of the dividend mantissa.
3. Adds one to the dividend exponent.

When the dividend mantissa is less than the divisor mantissa, the processor performs the
following actions:

1. Divides the mantissas, which produces an intermediate floating-point mantissa.

2. Subtracts the divisor exponent from the dividend exponent, and adds 64, to the
difference (maintaining the excess 64 notation), which produces an intermediate
floating-point exponent.

3. Normalizes and rounds or truncates the intermediate mantissa, which produces the
final result (exponent and mantissa).

4. Stores the final result in memory or a floating-point accumulator.

Table 3.7 lists the floating-point divide instructions.

Instruction Operation

FDD * Divide double (FPAC by FPAC)
FDS * Divide single (FPAC by FPAC)
FHLV * |Halve (FPAC/2)
LFDMD | Divide double (FPAC by memory)
LFDMS | Divide single (FPAC by memory)
XFDMD | Divide double (FPAC by memory)
XFDMS | Divide single (FPAC by memory)

Table 3.7 Floating-point division instructions

*ECLIPSE C/350 compatible instruction

Skip Instructions

A skip instruction tests the result of an operation for a specific condition and (except for
FCMP) directs the processor to skip the word or to execute the word after the skip
instruction. The FCMP instruction compares two floating-point numbers and sets the Z
and N status flags reflecting the relationship. You can then use the FSGT, FSEQ, and
FSLT skip instructions to test the status flags.

Floating-Point Computing 3-9

Table 3.8 lists the floating-point skip on condition instructions. When a skip occurs, the
processor increments the program counter by one and executes the second word after the
skip instruction.

NOTE: Be sure that a skip does not transfer control to the middle of a 32-bit or larger instruction.

Instruction Operation

FCMP * | Compare two floating-point numbers (set N and Z)
FSEQ * | Skip on zero (Z = 1)
FSGE * | Skip on greater than or equal to zero (N = 0)
FSGT * | Skip on greater than zero (N and Z = 0)
FSLE * | Skip on less than or equal to zero (N and Z = 1)
FSLT * | Skip on less than zero (N = 1)
FSND * | Skip on no zero divide (DVZ = 0)
FSNE * | Skip on nonzero (Z = 0)
FSNER * | Skip on no error (ANY = 0)
FSNM * | Skip on no mantissa overflow (MOF = 0)
FSNO * | Skip on no overflow (OVF = 0)
FSNOD * | Skip on no overflow and no zero divide (OVF and DVZ = 0)
FSNU * | Skip on no underflow (UNF = 0)

FSNUD * | Skip on no underflow and no zero divide (UNF and
DVZ = 0)

FSNUO * | Skip on no underflow and no overflow (UNF and OVF = 0)

Table 3.8 Floating-point skip on condition instructions

*ECLIPSE C/350 compatible instruction

Faults and Status

The processor checks for a floating-point fault and for the mantissa status after executing
a floating-point instruction. The processor stores the result in a 64-bit floating-point
status register. When the processor detects a floating-point fault (overflow or underflow),
the processor sets the appropriate floating-point status register bits.

For the processor to service the fault, it must first determine the state of the trap enable
(TE) mask (bit 5 of the floating-point status register). If the TE mask equals zero, the
processor continues normal program execution with the next sequential instruction.
Program flow remains unchanged. If the TE mask equals one, the processor disrupts
normal program execution by performing an indirect jump to the floating-point fault
handler to service the fault. Refer to the Program Flow Management chapter for further
information on fault handling.

3-10 Floating-Point Computing

You access the floating-point status register with instructions that initialize the register
or that test the register bits. The Skip section lists the instructions that test the bits.
Table 3.9 lists the instructions that initialize the register and that store or load the
register contents.

Instruction Operation

FCLE * |Clear errors (FPSR}
FTD * Floating-point trap disable (resets TE)
FTE * Floating-point trap enable (sets TE)
LFLST |Load FPSR
LFSST | Store FPSR
WFPSH | Push floating-point state
WFPOP | Pop floating-point state

Table 3.9 Floating-point status instructions
*ECLIPSE C/350 compatible instruction

The floating-point status register contains fault flags (ANY, OVF, UNF, DVZ, MOF,
and TE), mantissa status (Z and N), rounding (RND), a floating-point identification
(ID), and a floating-point program counter (FPPC). Figure 3.2 shows the format of the
floating-point status register.

ANY [OVF | UNF | DVZ | MOF | TE ¥4 N | RND Reserved ID
0 1 2 3 4 5 6 7 8 9 T T 127 T T 15
Reserve
16 7 T3t
0 Floating-Point Program Counter (MSB)
35 33 T T T T T T T T T T T T %7
Floating-Point Program Counter (LSB)

8 T T T T T T T T T T T ™63

SD03520

Figure 3.2 Floating-point status register format

where

ANY The ANY bit is an error status flag.
The processor sets the ANY flag to one when it sets either the OVF, UNF,
DVZ, or MOF flag to one.

OVF The OVF bit is the exponent overflow flag.
The processor sets the OVF flag while executing a floating-point instruc-
tion, and an exponent overflow occurs.

UNF The UNF bit is the exponent underflow flag.

The processor sets the UNF flag while executing a floating-point instruc-
tion, and an exponent underflow occurs.

Floating-Point Computing 3-11

DVZ

MOF

TE

RND

Reserve

ID

Reserve

Floating-
Point
Program
Counter

The DVZ bit is the mantissa divide by zero flag.

The processor sets the DVZ flag while attempting to execute a floating-
point divide instruction with a divisor equal to zero. The processor then
aborts the division and the operands remain unchanged.

The MOF bit is the mantissa overflow flag.

The processor sets the MOF flag while executing a floating-point instruc-
tion when it detects a mantissa overflow. If it occurs during a FSCAL
instruction, the processor shifts out the most significant bit. If it occurs
during a FFAS, FFMD, or WFFAD instruction, the result is too large and
the processor truncates the result before storing it.

The TE bit is the trap enable mask.

The processor or you enable floating-point fault detection and servicing by
setting the TE mask to one. You can set the TE mask to one with the FTE
instruction.

Unlike the OVK mask, the processor does not save or restore the status of
the TE mask when going to or returning from a subroutine or fault
handler.

For the processor to detect and to service a fault, the TE mask must be set
to one before the processor sets the ANY flag to one.

The Z bit is the true zero flag.

The processor sets the Z flag if the result of executing a floating-point
instruction produces a true zero.

The N bit is the negative flag.

The processor sets the N flag if the result of executing a floating-point
instruction produces a value less than zero.

The RND bit is the round flag.

You set the RND flag (with the LFLST and WFPOP instructions), which
directs the processor to round (RND = 1) or to truncate (RND = 0) the
intermediate result of executing a floating-point instruction.

The reserve bits 9-11 are processor specific.

The ID code is a floating-point identification code that reflects the
floating-point revision.

The reserve bits 16-32 are processor specific.

The floating-point program counter contains the address of the
floating-point instruction and identifies the instruction, which
causes a floating-point error.

Overview

Chapter 4
Stack Management

A stack is a series of consecutive locations in memory. In the simplest form, stack
instructions add items in sequential order to the top of the stack and retrieve them in the
reverse order. A program can access several stack areas, but can use only one stack area
at any time. The processor, using the push-down stack concept, pushes (stores) data onto
the stack and pops (retrieves) data from it in the reverse order.

For instance, the processor can push or pop the contents of up to four accumulators with
the WPSH or WPOP instruction. In addition, the processor can push a return block for
a subroutine call, an I/O interrupt request, or a fault. Then a return block would be
popped upon returning from the call, interrupt, or fault handler.

The 32-bit processor provides facilities for wide and narrow stack operations. The wide
stack is a series of double words, and supports 32-bit programs. The system includes four
32-bit stack management registers to manage the wide stack operations. The narrow
stack is a series of single words, and supports 16-bit programs (for ECLIPSE C/350
program development and upward program compatibility). The system uses three words
in reserved memory to manage the narrow stack operations.

The remainder of the chapter presents the wide stack operations and instructions. Refer
to the ECLIPSE C/350 Compatibility chapter for further information on the narrow
stack. The Program Flow Management chapter presents wide and narrow stack fault
handling.

Wide Stack Operations

Each segment contains a set of wide stack parameters. The processor manages the stack
parameters in the current segment with four 32-bit stack registers. You can modify the
contents of the stack registers with instructions that move data between an accumulator
and a stack register.

4-2

Stack Management

Wide Stack Registers

When transferring program control to another segment, the processor stores the contents
of the stack registers in page zero of the current segment and initializes the contents of
the stack registers from page zero of the destination segment. You can modify the stack
parameters with memory reference instructions to the appropriate page zero locations.

NOTE: A program must not refer to the stack parameters in page zero of the current segment.

Figure 4.1 shows the four stack parameters. Items (1) and (2) identify the lower and
upper stack limits, which define the locations that the stack occupies. Items (3) and (4)
identify the wide stack pointer and the wide frame pointer, which address the data in the

stack.

SD-03521

Rest of memory

Yo asAv,

(1) Referenced by WSB

PSR/argument count

PSR/argument count

ACO

AC1

AC2

AC3

(4) Referenced by WFP—

Carry and PC

(3) Referenced by WSP->

Data word

(2) Referenced by WSL—

Rest of memory

e WU o Vo UV e

Increasing
addresses
(double words)

Figure 4.1 A typical wide stack

You should initialize the contents of the wide stack registers to address locations that are
aligned on double word boundaries (even addresses). Stack operations for some stack

instructions can be slower if the registers contain odd addresses.

Wide Stack Base

The wide stack base (WSB) defines the lower limit of the wide stack. When you
initialize a wide stack, the wide stack base must be one double word below the actual

address of the first double word in the wide stack.

Stack Management 4-3

The processor uses the wide stack base contents when it pops data from the wide stack.
For instance when returning from a subroutine, the processor pops a wide return block
and then checks for a wide stack underflow. If the wide stack pointer value is less than
the wide stack base value, an underflow condition exists. Refer to the Wide Stack Faults
section for further information on handling an underflow fault.

Wide Stack Limit

The wide stack limit (WSL) defines the upper limit of the wide stack. When you
initialize a wide stack, the wide stack limit must be 48 double words below the actual
address of the last double word in the wide stack.

The processor pushes one or more double words onto the wide stack (such as a wide
return block when calling a subroutine), and then for most operations checks for a stack
overflow fault. (However, the processor checks for overflow before pushing data onto the
stack when using the wide save instructions (WSAVR, WSAVS, WSSVR, or WSSVS)
and when crossing to a subroutine in a lower-numbered segment.)

To check for a wide stack overflow fault, the processor compares the wide stack pointer
contents to the wide stack limit contents. If the wide stack pointer contents are greater
than the wide stack limit contents, an overflow condition exists. Refer to-the Wide Stack
Faults section for further information on handling an overflow fault.

Wide Stack Pointer

The wide stack pointer (WSP) addresses the top location of the wide stack; either the
location of the last word placed onto the stack or the next word available from the stack.
When you initialize a wide stack, set the wide stack pointer to two less than the address
in the wide stack base register.

To push a double word, the processor increments the wide stack pointer by two and
stores a double word onto the stack. A pop operation retrieves one or more double words
from the wide stack and decrements the wide stack pointer by two for each double word
it pops.
NOTE: The area between the wide stack pointer and the wide stack limit can be modified by the
processor. For example, the WEDIT instruction may store temporary WEDIT data.

Wide Frame Pointer

The wide frame pointer (WFP) -- unchanged by push and pop operations -- defines a
reference point in the wide stack. When you set up a wide stack, initialize the wide frame
pointer with the same value as the wide stack pointer to preserve the original value of the
wide stack pointer.

The processor stores and resets the value of the wide frame pointer when entering or
leaving subroutines. Thus, the wide frame pointer identifies the boundary between words
placed on the wide stack before a subroutine call, and between words placed on the wide
stack during a subroutine execution. Using the wide frame pointer as a reference, the
processor can move back into the wide stack and retrieve arguments stored there by a
preceding routine.

4-4 Stack Management

Wide Stack Register Instructions

The instructions listed in Table 4.1 load (or initialize) a wide stack register with data
from an accumulator, or store data into an accumulator from a wide stack register. In
addition, when the LCALL, WRTN, or XCALL instruction transfers program control
to another segment, the processor initializes all four wide stack registers.

Instruction Operation

LDAFP |Load accumulator with the WFP register contents
LDASB |Load accumulator with the WSB register contents
LDASL |Load accumulator with the WSL register contents
LDASP |Load accumulator with the WSP register contents
STAFP | Store accumulator in the WFP register

STASB | Store accumulator in the WSB register

STASL | Store accumulator in the WSL register

STASP | Store accumulator in the WSP retister

WMSP | Wide modify WSP register

Table 4.1 Wide stack register instructions

Wide Stack Data Instructions

The wide stack data instructions access a double word or a block of double words. All the
wide stack data instructions increment or decrement the wide stack pointer. Instructions
that access a double word, modify the wide stack pointer by two. Instructions that access
a block of double words modify the wide stack pointer by four or more (depending upon
the size of the data block or return block). The instructions in Table 4.2 access a double
word or a block of double words.

Stack Management

4-5

Instruction Operation
DSZTS | Decrement the double word addressed by WSP (skip if
zero)
ISZTS | Increment the double word addressed by WSP (skip if zero)
LDATS |Load accumulator with double word addressed by WSP
LPEF | Push address
LPEFB | Push byte address
LPSHJ | Push jump to subroutine (pop with WPOPJ)
STATS | Store accumulator into double word addressed by WSP
WFPOP | Wide floating-point pop
WFPSH | Wide floating-point push
WPOP | Wide pop accumulators (push with WPSH)
WPOPJ | Wide pop PC and jump (push with LPSHJ or XPSHJ)
WPSH | Wide push accumulators (pop with WPOP)
XPEF |Push address
XPEFB | Push byte address
XPSHJ | Push jump to subroutine (pop with WPOPJ)

Table 4.2 Wide stack double-word access instructions

The instructions in Table 4.3 push or pop a return block. Although the return block can
take several forms, it usually consists of six double words (see Table 4.4).

Instruction Operation
BKPT Breakpoint handler (return from breakpoint handler with PBX)
LCALL | Call subroutine {return from call with WRTN)
PBX Pop block and execute (return from breakpoint handler)
WPOPB | Wide pop block
WRSTR | Wide restore from an interrupt
WRTN | Wide return via wide save (WSAVR, WSAVS, WSSVR, and
WSSVS)
WSAVR | Wide save/reset overflow mask (used with LCALL and
XCALL)
WSAVS | Wide save/set overflow mask (used with LCALL and XCALL)
WSSVR | Wide special save/reset overflow mask (used with LJSR &
XJSR)
WSSVS | Wide special save/set overflow mask (used with LJSR &
XJSR)
WXOP | Extended operation (return with WPOPB; used to expand
instruction set)
XCALL | Call subroutine (return from call with WRTN)

Table 4.3 Wide stack return block instructions

4-6

Stack Management

Word Number | Word Number Contents
in Block in Block
Pushed Popped
1 12 PSR
2 11 All zeros or an argument count from LCALL or XCALL
3-4 9-10 ACO
5-6 7-8 AC1
7-8 5-6 AC2
9-10 3-4 AC3 = Old WFP
11-12 1-2 Bit 0 = CARRY;

Bits 1-31 = PC return address

Table 4.4 Standard wide return block

The Instruction Dictionary chapter presents the subroutine return block with a subroutine
instruction description. The Program Flow Management chapter identifies the return

blocks for the nonprivileged faults, while the Device Management chapter presents the
return block for an I/0 interrupt. Then, the Memory and System Management chapter

identifies the return blocks for privileged operations.

Initializing A Wide Stack

Figure 4.2 illustrates assembler code for initializing a wide stack. The stack resides in
locations 256 through 355,(. The processor detects a stack overflow 17 double words

before the actual end of the stack.

SD-03522

.NREL
BASE: .BLK
ENDZ: .BLK

XLEF
STASB
XLEF
STASL
XLEF
STASP
STAFP

XPEFB

66. : Reserve 66 words for the wide stack

34. : Reserve 34 words for wide stack end zone

0,BASE

0 : Initialize WSB

0,ENDZ ; Initialize WSL for a stack

0 . overflow when WSP = BASE+66

0,BASE-2

0 ; Initialize WSP

0 ; Initialize WFP

BYTZ*2 . Calculate and store the byte address
for BYTZ

Figure 4.2 Sample code for initializing a wide stack

Stack Management 4-7

Figure 4.3 illustrates the result of executing the assembler code in Figure 4.2. The
XPEFB instruction calculates and pushes a byte address onto the stack.

354.
A - ~ s
’/____
~ A
256. WSP —3 Byte address
WSP & WFP WFP
0 31 0 31
Wide stack after Wide stack after
initialization XPEFB instruction
(STAFP instruction)
SD-03523

Figure 4.3 Example of wide stack operations

Wide Stack Faults

Stack overflow and underflow are stack faults. Stack overflow occurs when a program
pushes data into the area beyond that allocated for the stack. Stack underflow occurs
when a program pops data from the area beyond that allocated for the stack. Once
detected, the processor always processes a stack fault.

After pushing data onto the stack, the processor checks for a stack overflow by comparing
the value of the wide stack pointer to the value of the wide stack limit. If the value of the
wide stack pointer is greater, then a stack overflow exists. Loading the value 377777777774
into the wide stack limit register disables wide stack overflow fault detection.

After popping data from the stack, the processor checks for a stack underflow by
comparing the value of the wide stack pointer to the value of the wide stack base. If the
value of the wide stack pointer is less, then a stack underflow exists. Loading the value
20000000000g into the wide stack base register disables wide stack underflow fault
detection.

4-8 Stack Management

Table 4.5 lists the instructions that push or pop one or more double words onto the wide
stack. Table 4.5 also lists for the instructions the number of words required beyond the
wide stack limit for a stack fault return block. Refer to the Program Flow Management
chapter for a description of stack fault servicing.

Double Words

Instruction Description Pushed or |Required Beyond

(Popped) | WSL for Stack

Fault

ADD, etc. | Arithmetic with OVK enabled 0 11
FAD, etc. | Arithmetic with TE enabled 0 11
BKPT Breakpoint handler 6 11
LCALL | Subroutine call 1 6
LPEF Push address 1 6
LPEFB | Push byte address 1 6
LPSHJ | Push jump 1 6
PBX Pop block and execute (6) 5
WEDIT | Wide edit 16 27
WFPOP | Wide floating-point pop (10) 5
WFPSH | Wide floating-point push 10 15
WPOP | Wide pop accumulators (1-4) 5
WPOPB | Wide pop block (6) 5
WPOPJ | Wide pop PC and jump (1) 5
WPSH | Wide push accumulators 1-4 9
WRSTR | Wide restore (10) 5
WRTN | Wide return (6) 5
WSAVR | Wide save/reset OVK 5 10
WSAVS | Wide save/set OVK 5 10
WSSVR | Wide special save/reset OVK 6 11
WSSVS | Wide special save/set OVK 6 11
WXOP | Extended operation 6 11
XCALL | Subroutine call 1 6
XPEF Push address 1 5
XPEFB | Push byte address 1 5
XPSHJ | Push jump to subroutine 1 5
XVCT | Vector on I/0 interrupt 6 11

Table 4.5 Multiword wide stack instructions

Chapter 5

Program Flow Management

Overview

The Program Flow Management chapter explains program flow, related instruction
groups, transferring program control to another segment, and handling faults.

Program Flow

The program counter specifies the logical address of the instruction to execute. Thus, it
controls the sequence of executing the instructions. Address wraparound occurs within
the current segment since only bits 4 through 31 take part in incrementing the program
counter.

To address the next instruction (for normal program flow), the processor increments the
program counter

¢ By one, when executing a one word instruction (such as NADI).

¢ By two, when executing a two word instruction (such as NADDI).

* By three, when executing a three word instruction (such as LNADI).
¢ By four, when executing a four word instruction (such as LCALL).

Any of the following events alter the normal program flow sequence.

* Executing the XCT instruction.

« Executing a jump instruction.

» Executing a skip instruction.

» Executing a subroutine call or return instruction.
e Detecting a fault.

* Detecting an I/O interrupt request.

The next section explains the XCT, jump, skip, and subroutine call or return instruction.
Refer to the Device Management chapter for I/O interrupt processing.

5-2

Program Fiow Management

Related Instruction Groups

Execute Accumulator

Jump

Skip

The execute accumulator instruction (XCT) executes bits 16-31 of an accumulator as an
instruction. After executing the accumulator contents, program flow continues with one
of the following locations.

e The first location after the XCT instruction.

¢ The second location after the XCT instruction, if the accumulator is the first of a two
word instruction.

e The effective address, if the accumulator contains a jump or skip instruction.

A jump instruction loads the effective address into the program counter. Program flow
continues at the effective address. A jump instruction does not save a return address.
The jump instructions are listed in Table 5.1.

Instruction Operation

LDSP Dispatch

LIMP Jump (with long displacement)
WBR Branch (PC relative jump)

XJMP | Jump (with extended displacement)

Table 5.1 Jump instructions

A skip instruction jumps the first word after the skip instruction, and executes the
second word as an instruction. To perform the skip, the processor adds one to the
program counter. For most skip instructions, the processor first tests a machine condition
or status, and based on the test results, it executes the first or second word as an
instruction.

When you use a skip instruction, be sure that the skip does not transfer control to the
middle of a two (or more) word instruction. For instance, the first two lines of code in
Figure 5.1 perform an illegal skip because the program counter contains the address of
the first word of the LFDMD two-word displacement. The last three lines of code in
Figure 5.1 perform the skip properly.

Program Flow Management 5-3

FSEQ .skip on zero
LFDMD 0.@OPAND .floating-point divide with a two-word displacement

FSNE .skip on nonzero asnd execute the LFDMD instruction

WBR NEXT .zero -- skip the LFDMD instruction

LFDOMD 0.@OPAND . floating-point divide with a two-word displacement
NEXT:

SD-03524

Figure 5.1 lllegal and legal skip instruction sequences

Certain skip instructions modify the program counter by one or more words. For
instance, the FNS instruction never skips the next instruction, and the FSA instruction
always skips the next instruction. Table 5.2 lists the instructions.

Instruction Operation

FNS * No skip

FSA * Skip always

LNDO | Narrow do until greater than
LWDO | Wide do until greater than
XNDO | Narrow do until greater than
XWDO | Wide do until greater than
NBStc Narrow search queue backward
NFStc Narrow search queue forward
WBStc | Wide search queue backward
WFStc | Wide search queue forward

Table 5.2 Skip instructions

*ECLIPSE C/350 compatible instruction

A DO-loop instruction (LNDO, LWDO, XNDO, and XWDO) increments a loop
variable by one and then compares it to a value in a specified accumulator. The
processor executes the

» First instruction of the DO-loop sequence when the incremented variable equals (or
remains less than) the value.

. Instruction following the DO-loop sequence when the incremented variable becomes
greater than the value.

The processor skips the DO-loop sequence of instructions

1. By adding one (for skipping the WBR instruction) and the termination offset
(for skipping the DO-loop sequence) to the program counter value (for a PC
relative skip).

2. By loading the sum into the program counter.

5-4 Program Flow Management

Subroutine

For example, the lines of code in Figure 5.2 perform a valid DO-loop sequence.

WsuB 2.2 ; Zero AC2

XWSTA 2, TNP ; Initialize loop variable to 0
LOOP: WLDAI 1.2 ; Initialize (AC2) to 11

XWDO 2, TERM, TMP ;. Increment TMP and compare to AC2

; Begin here to perform the DO-loop

WBR LoopP ; Continue the DO-loop
TERM: - ; End of the DO-loop when TMP > AC2

SD-03525

Figure 5.2 DO-loop instruction sequence

A search queue instruction (NBStc, NFStc, WBStc, and WFStc) skips one, two, or
three locations when an explicit queue element exists. Refer to the Queue Management
chapter for more information on the search queue instructions.

In addition to the program flow and search queue instructions, additional skip instructions
are available for fixed-point, floating-point, and 1/O operations. For more information,
refer to the following chapters.

¢ Fixed-Point Computing chapter for the fixed-point skip instructions.
¢ Floating-Point Computing chapter for the floating-point skip instructions.
e Device Management chapter for the I/O skip instructions.

A subroutine call sequence (except WEDIT) pushes a wide return block onto the wide
stack and loads the effective address into the program counter. Program flow continues
with the effective address in the program counter. (The WEDIT instruction transfers
control to an edit subprogram without changing the program counter.)

NOTE: To pass arguments to the subroutine, push the arguments onto the stack before jumping
(LISR or XJSR) or calling (LCALL or XCALL) the subroutine.

A subroutine return instruction (except WEDIT) pops the wide return block from the
wide stack. Thus, restoring the carry, the program counter, and the accumulators.
Program flow continues with the instruction following the subroutine call. (A WEDIT
subprogram instruction returns program control to the instruction following the WEDIT
instruction.) Table 5.3 lists the subroutine, save, and return instructions. Table 5.4
illustrates the relationships between the various subroutine instructions.

Program Flow Management

5-5

Instruction

Operation

BKPT
LCALL
LJSR
LPSHJ
PBX
WEDIT
WPOPB
WPOPJ
WRTN
WSAVR
WSAYVS
WSSVR
WSSVS
WXOP
XCALL
XJSR
XPSHJ

Breakpoint handler

Call subroutine

Jump to subroutine

Push jump

Pop biock and execute
Wide edit of alphanumeric
Wide pop block

Wide pop PC and jump
Wide return

Wide save/reset overflow mask

Wide save/set overflow mask

Wide special save/reset overflow mask
Wide special save/set overflow mask

Wide extended operation
Call subroutine

Jump to subroutine
Push jump

Table 5.3 Subroutine instructions

Call Instruction Segment Associated Save Return
or Sequence Crossing Instruction Instruction
Permitted

BKPT no PBX/WPOPB*
LCALL yes WSAVR WRTN
yes WSAVS WRTN
LJSR no WSSVR WRTN
no WSSVS WRTN
LPSHJ no WPOPJ
WEDIT no DEND
wXorp no WPOPB
XCALL yes WSAVR WRTN
yes WSAVS WRTN
XJSR no WSSVR WRTN
no WSSVS WRTN
XPSHJ no WPOPJ

Table 5.4 Sequence of subroutine instructions

*Use the BKPT/WPOPB instruction sequence when removing the BKPT instruction before returning from the breakpoint handler.

The Breakpoint (BKPT) instruction pushes a wide return block and transfers program
control to the breakpoint handler. The Pop Block and Execute (PBX) instruction returns
program control from the breakpoint handler.

5-6

Program Flow Management

Before executing the BKPT instruction, you must first store in memory the one-word
opcode from the location that the BKPT instruction will occupy. Then, store the BKPT
instruction in that one-word location.

When the processor executes the BKPT instruction, it pushes a wide return block onto
the current stack and jumps to the breakpoint handler. When returning program control,
the breakpoint handler must load the one-word opcode from memory into ACO. Then it
executes the PBX instruction, which

1. Temporarily disables the interrupt system for one instruction execution;
2. Temporarily saves the one-word opcode in ACO bits 16-31 and performs a WPOPB;

3. Temporarily replaces the BKPT instruction with the temporarily saved one-word
opcode and then continues normal program flow.

If an interrupt occurs while the processor is executing the saved instruction (PC points to
the BKPT instruction), the processor sets the IXCT flag in the PSR and pushes the
opcode of the saved instruction on the wide stack. Upon returning from the interrupt
handler, the BKPT instruction tests the IXCT flag. If the flag is set, the BKPT
instruction resets the flag to 0, pops the saved opcode of the interrupted instruction off
the wide stack, and executes it.

A jump to a subroutine (LJSR or XJSR) instruction transfers program control to a
subroutine in the current segment. The LISR or XJSR instruction stores the return
address and transfers program control to the effective address. As the first instruction of
the subroutine, a wide special save (WSSVR or WSSVS) instruction pushes a standard
wide return block onto the wide stack. As the last instruction of the subroutine, the wide
return (WRTN) instruction returns program control from the subroutine.

A push and jump to a subroutine (LPSHJ or XPSHJ) instruction pushes a return
address onto the wide stack and transfers program control to the effective address in the
current segment. As the last instruction of the subroutine, the WPOPJ instruction
returns program control from the subroutine.

A call to a subroutine (LCALL or XCALL) instruction transfers program control to a
subroutine in the current segment or in another segment. As the first instruction of the
subroutine, a wide save (WSAVR or WSAVS) instruction pushes a standard wide
return block onto the wide stack in the destination segment. As the last instruction of the
subroutine, the wide return (WRTN) instruction returns program control from the
subroutine. (Refer to the next section for a complete description of transferring program
control to another segment.)

Return Block

Although a wide return block can take several forms, it usually consists of six double
words, as shown in Table 5.5. The fifth double word contains the contents of AC3 (for a
BKPT or WXOP) or the previous wide frame pointer (for XCALL or LCALL and
WSAVS or WSAVR). Bit 0 of the sixth double word contains the CARRY flag; bits
1-31 always contain the contents of the program counter.

Program Flow Management

5-7

Word Number in
Block Pushed

Word Number in
Block Popped

Contents

12 PSR
2 11 All zeros or an argument count from
LCALL or XCALL
3-4 9-10 ACO
5-6 7-8 AC1
7-8 5-6 AC2
9-10 3-4 AC3 or old wide frame pointer
11-12 1-2 Bit 0 = CARRY flag

Bits 1-31 = return address

Table 5.5 Standard wide return block

Example with wide stack operations

The following explanation illustrates the effects of a jump to subroutine (XJSR)
instruction on a wide stack. The jump occurs within the current segment. The routine
passes arguments to the subroutine by pushing the arguments onto the stack before
executing the XJSR instruction.

Figure 5.3 illustrates the two lines of processor-related assembler code for beginning and
ending a subroutine. The first instruction of the subroutine is a wide special save
instruction (WSSVS) and the last instruction of the subroutine is a wide return instruction
(WRTN).

The second instruction of the subroutine (XPEF) is provided to further illustrate the
wide stack operations.

WSSVS 0

SUB: ;. Save a wide return block
HERE: XPEF HERE ; Calculate and push this address into the
. wide stack
NRTN . Return from subroutine call

DG03526

Figure 5.3 Subroutine code for an XJSR call

Figures 5.4 and 5.5 illustrate the result of executing the assembler code in Figure 5.3.
For the XJSR instruction, the processor stores the return address into AC3 and jumps to
the subroutine. With WSSVS as the first instruction of the subroutine, the processor
stores PSR, AC0-AC2, old WFP, and carry (C) and AC3 (return address) onto the wide
stack.

Although Figures 5.4 and 5.5 illustrate that the wide stack resides between 256, and
3550, the wide stack can be of any size and can reside anywhere within the segment.

5-8

Program Flow Management

Return
block

354,
/M’____,/ /—w/ - "
1 é /f\,/ /m_,/
WSP WSP —»{ Address pushed
and
WFP—»4 C PC return WFP —»~ C | PC return
> Old WFP Old WFP
AC2 AC2
Return
ACH block AC1
WFP ACO ACO
A PSR 000000 PSR 000000
WSP 3 Pushed words Pushed words Pushed words
P e e 4) S—— P m——
' —
P i ——— P]
WFP 5 Pushed words }— Pushed words Pushed words
/Mf /_//_______,
M_—_—/’ e -
256 Pushed words Pushed words Pushed words
0 31 0 31 o] 31
Wide stack before Wide stack after Wide stack after
XJSR instruction XJSR and WSSVS XPEF instruction
instructions
SD-03527

Figure 5.4 Wide stack operations from XJSR and WSSVS instructions

354

L1

S et
/1

SD-03528

256. | Pushed words

0 31

Wide stack events while executing

the WRTN instruction

W

WSP—»{ Address pushed Registers reloaded Address pushed
WFP —»{ C | PC return > 0—C; 1-31 —PC C PC Return
Old WFP > Old WFP — AC3) Oid WFP
AC2 » AC2 AC2
AC1 > ACH AC1
ACO > ACO ACO
PSR [000000 > Bits 0-15 to PSR PSR 000000
Pushed words WSp— Pushed words
- R —
Pushed words L WFP — Pushed words

-~

S

Pushed words

0 31

ide stack after executing

WRTN instruction

P ——

Figure 5.5 Wide stack operations from WRTN instruction

Program Flow Management 5-9

Transfer Program Control to Another Segment

The instructions listed in Table 5.6 transfer program control to or from another segment.

Instruction Operation

LCALL Call subroutine
WPOPB Wide pop block

WRTN Wide return
XCALL Call subroutine
WRSTR Wide restore from an 1/O interrupt

Table 5.6 Segment transfer instructions

The LCALL and XCALL instructions initiate the transfer to another segment. The
WRTN instruction returns program control from the LCALL and XCALL instructions.
The WRSTR instruction returns program control from a base level 1/O interrupt. The
WPOPB instruction returns program control from an intermediate-level 1/0 interrupt.
Refer to the Device Management chapter for a description of 1/O interrupts.

The processor checks the direction of a transfer. A subroutine call must be inward
(towards segment 0) and a return (from a subroutine call or I/O interrupt) must be
outward (towards segment 7).

NOTE: No segment crossing occurs with an interrupt request when the current segment equals zero
and the interrupt-servicing code resides in segment 0.

If the processor detects an invalid segment crossing, it does not execute the instruction;
instead, it initiates a protection fault in the source segment. The processor sets AC1 to 7
for an illegal outward subroutine call, or sets AC1 to 8 for an illegal inward return.

NOTE: The processor performs, without software assistance, all the functions necessary for a
segment crossing.

Subroutine Call

To transfer program control to another segment with the XCALL or LCALL instruction,
the processor

1. Verifies that the instruction can access the destination segment.

2. Validates the entry point through a gate array in the destination segment.
3. Redefines the wide stack and transfers the call arguments to it.
4

Transfers program control.

5-10 Program Flow Management

Gate Array

A gate array is a series

of locations that specify entry points (or gates) to the segment.

The processor accesses a gate array through an indirect pointer in page zero of the
destination segment. Figure 5.6 shows the format of a gate array.

lo 15 16|17 a1l
Undefined I 0 l Max. Number of Gates
X | Bracket Program Counter Offset Gate O
X 011 Program Counter Offset Gate 1
X | Bracket Program Counter Offset Gate 2
. : Increasing
. : Addresses
X I Bracket Program Counter Offset Gate n-1 (n = Max. No.)
lol1 34 31l
DG-15408

Figure 5.6 Gate array format

where
Undefined

Maximum
Number of Gates

X

Bracket

Program
Counter Offset

Transfer

The undefined bits mean that the processor does not care.

The maximum number of gates specifies the total number of
gates.

If the maximum number is zero, the destination segment cannot
be the target of an inward segment crossing.

The x bit means that the processor does not care.
The bracket is the gate bracket.

The gate bracket can be an unsigned integer in the range of zero
to seven. The bracket identifies the highest source segment that
can use the gate. For instance, if the Gate 1 gate bracket

contains 011,, only segments O through 3 can access the segment.

The program counter offset is the address of the first instruction
of the subroutine in the destination segment (target address).

The processor interprets the effective address of the XCALL or LCALL instruction as

shown in Figure 5.7.

x | Segment

Unused [o] Gate Number

01 T3 14" T T T

DG-15409

T T T T T T T RET-REF A T T T T T T T T T T T T 37

Figure 5.7 XCALL or LCALL effective address

Program Flow Management 5-11

where

X The x bit (bit 0) is ignored by the processor.

Segment The segment bits (bits 1-3) specify the segment number of the
destination segment.

Unused The unused bits (bits 4-15) are ignored by the processor.

Gate Number The gate number (bits 17-31) specifies a gate in the destination

segment. The processor uses the gate number as an index to an
element (a gate) in the vectored array.

To perform a valid inward segment crossing, the processor

1.

Tests for a valid segment by checking the validity bit in the segment base register.

With an accessible segment, the processor continues with the next step. With an
unaccessible segment, the processor aborts the call, sets AC1 to 3, and services the
protection fault.

Checks for a valid gate by
a. Comparing the gate number to the maximum number of gates.

If the gate number is less than the maximum number of gates, the segment
crossing continues.

b. Comparing the segment number to the gate bracket number of the indexed
gate.

If the segment number is equal to or less than the value in the gate bracket,
the processor copies the segment number from the effective address to bits 1-3
of the program counter. Next, the processor copies the program counter offset
(bits 4-31 from the indexed gate) to the program counter bits 4-31, and
continues with the next step.

If a gate number or a gate bracket comparison fails, the processor aborts the
call, sets ACI to 6, and services the protection fault. The protection fault
occurs in the source segment.

Stores the wide frame pointer and wide stack pointer registers into page zero
locations of the source segment.

The values of the wide stack limit and wide stack base registers should be identical
to the values in reserved memory.

Redefines the wide stack for the destination segment by loading the wide stack
pointer, wide stack limit, and wide stack base registers from page zero locations of
the destination segment.

The WSAVS or WSAVR instruction will subsequently initialize the wide frame
pointer.

5-12

Program Flow Management

5. Checks for a potential destination stack overflow.

A parameter of the LCALL or XCALL instruction specifies the number of
arguments to copy. The processor uses the parameter to determine if the number of
arguments to copy exceeds the size of the wide stack.

If the processor detects a potential overflow, it does not copy the arguments. It sets
ACI1 to 2, and processes a stack fault in the destination segment. The program
counter word in the return block contains the address of the first instruction to
execute in the destination segment.

6. Copies the arguments from the source stack to the destination stack, if no potential
overflow exists.

The order of the arguments in the destination stack matches the order of the
arguments in the source stack.

7. Pushes a double word that contains the processor status register and the number of
arguments pushed.

8. Executes the first instruction of the subroutine.

A wide save instruction (WSAVR or WSAVS) must be the first instruction of the
subroutine. Either instruction would push a return block onto the destination wide
stack and load the wide frame pointer with the updated value of the wide stack
pointer.

Trojan Horse Pointers

When executing a subroutine in another segment, the processor uses the access privileges
of the destination segment to determine the validity of the reference. A trojan horse
pointer exists if one of the arguments passed from the source segment points to a location
in the destination segment. (A privileged access fault would occur if a program refers to
a location in a lower numbered segment.)

For example, a trojan horse pointer can exist when a program in segment 6 calls a
subroutine in segment 2, and one of the arguments passed is a pointer to information in
segment 2.

You can protect against a trojan horse pointer by using the validate word pointer (VWP)
or validate byte pointer (VBP) instruction to ensure that the source segment and
destination segment are identical.

The processor protects against a trojan horse pointer when it executes a character move
instruction that moves data in descending order (such as WCMT and WCMYV). The
processor checks each data transfer and ensures that the source segment and destination
segment remain the same.

Program Flow Management 5-13

Subroutine Return

As the last instruction of the subroutine, use the wide return instruction (WRTN) to
return program control from the LCALL or XCALL. The processor places the contents
of the wide frame pointer into the wide stack pointer. Then, the processor

1.

Pops the six double word return block.

The processor pushed the first five double words of the return block when it
executed the WSAVR or WSAVS instruction. The processor pushed the sixth
double word (processor status register and the number of arguments) when it
executed the LCALL or XCALL instruction.

Stores the wide frame pointer and wide stack pointer registers into page zero
locations of the source segment.

The values of the wide stack limit and wide stack base registers should be identical
to the values in reserved memory.

Redefines the wide stack for the destination segment by loading the wide stack
limit, wide stack base, and wide frame pointer registers from page zero locations of
the destination segment.

Calculates the address of the double word that precedes the arguments of the
calling sequence and loads the wide stack pointer with the double word.

Executes the instruction after the LCALL or XCALL instruction.

As a result of step 1, the processor loads the program counter with the return
address in the destination segment.

Fault Handling

While executing an instruction, the processor performs certain checks on the operation
and the data. If the processor detects an error, a privileged or nonprivileged fault occurs
before executing the next instruction. Table 5.7 lists the faults.

Fault Type
Protection violation Privileged
Nonresident page Privileged
Stack operation Nonprivileged
Fixed-point computation Nonprivileged
Floating-point computation Nonprivileged
Invalid decimal or ASCII data format Nonprivileged

Table 5.7 Faults

When the processor detects a fault, it pushes a return block onto the stack and jumps to
the fault handler through the indirect pointer in reserved memory. The initial and
indirect pointers to a fault handler (except to a page fault handler) are 16 bits. Levels of
indirection, if any, occur within the segment initially containing the pointer. A
nonprivileged fault pointer is located in page zero of the current segment. A privileged
fault pointer is located in page zero of segment 0.

5-14

Program Flow Management

If a privileged fault occurs while handling a nonprivileged fault, the processor aborts the
nonprivileged fault and processes the privileged fault. Refer to the Memory and System
Management chapter for privileged fault handling.

If an I/O interrupt occurs after detecting the nonprivileged fault, the processor pushes

the fault return block, updates the program counter to the first instruction of the fault

handler, and then services the I/O interrupt. Upon returning from the I/O interrupt, the
processor services the nonprivileged fault.

To service a nonprivileged fault, the processor

1. Sets ACI to a value that identifies the fault when a stack fault or a decimal/ASCII
fault occurs.

Appendix E lists the fault codes.
2. Pushes a fault return block onto the stack.

The fault return block contains the address of the instruction that the processor was
executing at the time of the fault.

3. Checks for stack overflow.

If a stack overflow occurs, the processor pushes a stack fault return block onto the
stack and processes the stack fault. The stack fault return block contains the return
address to the original fault.

If no stack overflow occurs, the processor continues to service the original fault.
4. Jumps to the fault handler.

The last instruction of a wide fault handler should be a WPOPB instruction for the
processor to continue executing the interrupted program.

Fixed-Point Overflow Fault

The processor detects a fixed-point overflow when attempting division by zero or when
calculating a two’s complement number that is too large to store in memory or in a
fixed-point accumulator. The processor sets the overflow flag (OVR) to one.

For the processor to service the fixed-point fault (or trap), you must set the overflow
fault mask (OVK) to one before the processor sets the overflow flag. Use the FXTE
instruction to set OVK to one, and the FXTD instruction to set OVK to zero.

If the OVK mask equals zero when the processor sets the OVR flag to one, the processor
ignores the overflow. However, OVR remains set to one until explicitly changed. The
processor continues normal program execution with the next sequential instruction.

If the OVK fault mask equals one, the processor initiates a fixed-point overflow fault at
the end of the current fixed-point instruction. The processor sets AC1, pushes a wide
return block, and jumps to the fault handler through the 16-bit indirect pointer in
reserved memory. Table 5.8 shows the fixed-point fault return block.

Program Flow Management 5-15

Word Number in Contents
Block Pushed

1 PSR bits 0-15 of the processor status register
2 bits 0-15 equal 16 O's
3-4 ACO bits 0-31
5-6 AC1 bits 0-31
7-8 AC2 bits 0-31
9-10 AC3 bits 0-31
11-12 PC bit O equals the CARRY flag

bits 1-31 of the instruction address causing the fault

Table 5.8 Fixed-point fault return block

NOTE: Although some instructions initialize OVK and OVR at the same time, no overflow fault
OCCUrs.

The PSR word in the return block contains OVR set to zero; OVK set to one; and IRES
unchanged. The return address is the address of the instruction the processor executes
after servicing the fault.

After the push, ACO contains the address of the instruction that caused the fault. The
processor sets the processor status register to zero and jumps to the fault handler
through the 16-bit indirect pointer in reserved memory.

Floating-Point Overflow and Underflow Faults

The processor detects a floating-point overflow or underflow, when attempting division
by zero, or when calculating a number that is too large to store in memory or in a
floating-point accumulator. The processor sets both the appropriate fault flag (OVF,
UNF, DVZ, and MOF) and the ANY flag to one.

For the processor to service a floating-point fault (or trap), you must set the floating-point
fault mask (TE) to one before the processor sets a floating-point fault flag. Use the FTE
instruction to set TE to one and the FTD instruction to set TE to zero.

If the TE fault mask equals zero when the processor sets a floating-point fault flag to
one, the processor ignores the overflow. The processor continues normal program
execution with the next sequential instruction.

If the TE fault mask equals one, when the processor sets a floating-point fault flag to
one, the processor initiates a floating-point overflow fault at the end of the current
floating-point instruction. The processor jumps to the fault handler through the 16-bit
indirect pointer in reserved memory.

The processor services narrow and wide floating-point faults using the same pointer. If
the first word (instruction) of the fault handler contains bit O set to one and bits 12
through 15 set to 10015, the processor pushes a wide return block onto the wide stack.
Otherwise, the processor pushes a narrow return block onto the narrow stack. Table 5.9
shows the wide return block and Table 5.10 shows the narrow return block.

5-16

Program Flow Management

Word Number in Contents
Block Pushed

1 PSR bits 0-156 of the processor status register
2 bits 0-15 equal 16 O's
3-4 ACO bits 0-31
5-6 AC1 bits 0-31
7-8 AC2 bits 0-31
9-10 AC3 bits 0-31
11-12 PC bit O equals the CARRY flag

bits 1-31 of the instruction address causing the fault

Table 5.9 Wide floating-point fault return block

Word Number in Contents*
Block Pushed

1 ACO bits 16-31
2 AC1 bits 16-31
3 AC2 bits 16-31
4 AC3 bits 16-31
5 PC bits 17-31 of the instruction address causing the fault

Table 5.10 Narrow floating-point fault return block

*Bits 1-15 of a word correspond to bits 17-31 of a register.

The return address in the return block is the address of the next instruction that the
processor executes after servicing the fault. Use the store floating-point status instruction
(LFSST or FSST) to determine the address of the floating-point instruction that caused
the fault.

After the pushing the return block, the processor
1. Sets the processor status register to zero (for a wide floating point fault).
2. Sets the TE fault mask to zero.

3. Transfers program control to the floating-point fault handler.

Decimal and ASCII Data Faults

The processor checks for a valid decimal or ASCII data type and for valid data when
executing an edit or a load/store integer instruction. If either the data type or the data is
invalid, the fault occurs at the end of the current instruction.

The processor pushes a wide return block onto the wide stack if executing a 32-bit
instruction (such as WEDIT or WSTIX). The processor pushes a narrow return block
onto the narrow stack if executing a 16-bit instruction (such as ECLIPSE C/350 EDIT
or STIX).

The length and width of the return block depends on the fault that occurs and the
instruction that causes it. For example, the WEDIT instruction uses the wide stack for
temporary storage. When a fault occurs, the processor pushes the return block in
addition to the temporary words that the WEDIT instruction requires.

Program Flow Management 5-17

After pushing the return block, the processor sets the processor status register to zero
and places the fault code in AC1 bits 16-31. ACO contains the value of the program
counter for the instruction that caused the fault.

Program control jumps to the fault handler through the 16-bit indirect pointer in
reserved memory. Both the wide and narrow faults use the same fault pointer and
handler.

Table 5.11 lists the decimal and ASCII fault codes. The first and second columns list the
code that appears in AC1. The third column lists the type of return block pushed. The
fourth column lists the instruction that caused the fault. The last column describes the
conditions that can cause the fault.

Code Returned in AC1

Narrow Wide Return Faulting Meaning
Block Type Instruction
000000 100000 2 EDIT, WEDIT | Aninvalid digit or alpha-

betic character encoun-
tered during execution
of one of the following

subopcodes:
DMVA, DMVF, DMVN,
DMVO, DMVS
000001 100001 1 LDIX, STIX |Invalid data type (6 or
3 EDIT, WEDIT |7)
WLDIX, WSTIX
000002 100002 2 EDIT, WEDIT |DMVA or DMVC

subopcode with source
data type 5; AC2 con-
tains the data size and
precision

000003 100003 2 EDIT, WEDIT | An invalid opcode; AC2

contains the data size
and precision

000004 100004 1 STI, LDI, Number too large to
WSTI, WLDI | convert to specified
data type .

number > (1016) - 1

STIX, LDIX, | Number too large to
WSTIX, convert to specified
WLDIX data type.

Number > {1032) - 1

000006 100006 1 WLSN, WLDI, | Sign code is invalid for
LSN, LDI this data type
LDIX, WLDIX

3 EDIT, WEDIT
000007 100007 1 WLSN, WLDI, |Invalid digit
WLDIX, LSN
LDI, LDIX

Table 5.11 Decimal and ASCII fault codes

5-18 Program Flow Management

Wide Fault Return Blocks

Tables 5.12 through 5.13 list the contents and types of wide return blocks. After the
processor pushes a wide return block, the accumulators retain their original contents,
except that AC1 contains the fault code.

Word Number in Contents
Block Pushed

1 PSR bits 0-15 of the processor status register
2 bits 0-15 equal 16 O’'s
3-4 ACO bits 0-31 unchanged
5-6 AC1 bits 0-31 original descriptor
7-8 AC2 bits 0-31 original source indicator (destination indicator
for WSTI or STIX instruction)
9-10 AC3 bits 0-31 undefined
11-12 PC bit O equals the CARRY flag
bits 1-31 of the decimal instruction address causing
the fault

Table 5.12 Wide return block for decimal data (type 1) fault

Word Number in Contents
Block Pushed

1 PSR bits 0-15 of the processor status register
2 bits 0-15 equal 16 O’'s
3-4 ACO bits 0-31 current value of P (byte pointer to subopcode
that caused the fault)
5-6 AC1 bits 0-31 original descriptor
7-8 AC2 bits 0-31 undefined
9-10 AC3 bits 0-31 undefined
11-12 PC bit O equals the CARRY flag
bits 1-31 of the WEDIT instruction address causing
fault

Table 5.13 Wide return block for ASCII data (type 2) fault

Word Number in Contents
Block Pushed

1 PSR bits 0-15 of the processor status register
2 bits 0-15 equal 16 O’'s
3-4 ACO bits 0-31
5-6 AC1 bits 0-31 original descriptor
7-8 AC2 bits 0-31
9-10 AC3 bits 0-31
11-12 PC bit O equals the CARRY flag

bits 1-31 of the instruction address causing the fault

Table 5.14 Wide return block for ASCIl data (type 3) fault

Program Flow Management 5-19

Narrow Fault Return Blocks

Tables 5.15 through 5.17 list the contents and types of narrow return blocks. After the
processor pushes a narrow return block, the accumulators retain their original contents,
except that AC1 contains the fault code.

Word Number in Contents
Block Pushed

1 ACO bits 16-31 unchanged
2 AC1 bits 16-31 contain original descriptor

AC2 bits 16-31 contain original source indicator (destina-
tion indicator for WSTI or STIX)

AC3 bits 16-31 undefined

5 PC bits 17-31 of the decimal instruction address causing
the fault

Table 5.15 Narrow return block for decimal data (type 1) fault

Word Number in Contents
Block Pushed

1-4 reserved (for ECLIPSE compatibility)

5 ACO bits 16-31 contain current value of P (byte pointer to
subopcode that causes the fault)

AC1 bits 16-31 original descriptor
AC2 bits 16-31 undefined
AC3 bits 16-31 undefined

PC bits 17-31 of the decimal instruction address causing
the fault

0 0N O®

Table 5.16 Narrow return block for ASCII data (type 2) fault

Word Number in Contents
Block Pushed

ACO bits 16-31 unchanged
AC1 bits 16-31 original descriptor
AC2 bits 16-31 undefined
AC3 bits 16-31 undefined

PC bits 17-31 of the decimal instruction address causing
the fault

A A WN =

Table 5.17 Narrow return block for ASCII data (type 3) fault

5-20 Program Flow Management

Stack Faults

The processor checks for a narrow stack fault after a narrow stack operation, and checks
for a wide stack fault after a wide stack operation. When a stack overflow occurs, the
program overwrites the data in the area beyond the stack. When a stack underflow
occurs, the program accesses incorrect information. Once detected, the processor always
services the narrow or wide stack fault.

The narrow stack is a series of single words managed by three reserved memory words.
The narrow stack supports program development and upward program compatibility for
16-bit programs (such as the ECLIPSE C/350).

Refer to the ECLIPSE C/350 Programming chapter and the ECLIPSE C/350 Principles
of Operation manual for additional information on narrow stack operations.

Wide Stack Fault Operations

After a wide push operation, the processor compares the contents of the wide stack
pointer to the contents of the wide stack limit. If the wide stack pointer value is greater
than the wide stack limit value, the processor detects a wide stack overflow fault.

After a wide pop operation, the processor compares the contents of the wide stack
pointer to the contents of the wide stack base. If the wide stack pointer value is less than
the wide stack base value, the processor detects a wide stack underflow fault.

You can disable wide stack overflow fault detection by loading the value 37777777777
into the wide stack limit register. You can disable wide stack underflow fault detection
by loading the value 200000000004 into the wide stack base register.

When a wide stack fault occurs, the processor

1. For a wide stack underflow, sets the wide stack pointer equal to the wide stack
limit.

2. Pushes a wide return block onto the wide stack (see Table 5.18).

The return address word in the wide return block points to the next instruction that
the processor executes after servicing the fault.

Sets the OVK, OVR, and IRES flags (PSR flags) to zero.
Sets bit 0 of the wide stack pointer to zero.

Sets bit 0 of the wide stack limit to one.

o vos W

Updates the wide stack pointer and reserved memory locations in the current
segment.

~

Loads ACO with the address of the instruction that caused the fault.
8. Loads ACI with the code that describes the fault (see Table 5.19).

9. Jumps to the wide stack fault handler through the 16-bit indirect pointer in page
zero of the current segment.

If an I/0O interrupt occurs before the processor executes the first instruction of the
fault handler, the program counter word in the return block points to the first
instruction of the fault handler. Thus, an I/O interrupt waits until the processor
pushes the return block and updates the program counter.

Program Flow Management

5-21

Word Number in
Block Pushed

Contents

3-4
5-6

9-10
11-12

PSR bits 0-15 of the processor status register
bits 0-15 equal 16 O's

ACO bits 0-31

AC1 bits 0-31

AC2 bits 0-31

AC3 bits 0-31

PC bit O equals the CARRY flag

executing instruction.

bits 1-31 of the instruction address causing the fault if
a type 1 fault; else, the instruction address of the next

Table 5.18 Wide stack fault return block

AC1 Meaning
Code
000000 | Overflow on every stack operation other than SAVE, WMSP,
or segment crossing
000001 | Underflow or overflow would occur if the instruction were
executed -- WMSP, WSSVR, WSSVS, WSAVR, WSAVS
(PC in return block refers to the instruction that caused the
stack fault.)
000002 | Too many arguments on a cross segment call
000003 | Stack underflow
000004 | Overflow due to a return block pushed as a result of a

microinterrupt or fault

Table 5.19 Wide stack fault codes

If you determine that you must write a wide stack fault handler, the handler must

1. Determine the nature of the fault (underflow or overflow).

2. Reset bit 0 of the wide stack pointer and the wide stack limit to the original values.

3. Take any other appropriate action, such as allocating more stack space or
terminating the program.

4. Use a WPOPB instruction as the last instruction of the fault handler.

Narrow Stack Fault Operations

After a narrow push operation, the processor compares the contents of the narrow stack
pointer to the contents of the narrow stack limit. If the stack pointer value is greater
than the stack limit value, the processor detects a narrow stack overflow fault.

After a narrow pop operation, the processor compares the contents of the narrow stack
pointer to 401g. If the stack pointer value is less than 400g and bit O of the narrow stack
limit is zero, the processor detects a narrow stack underflow fault.

5-22

Program Flow Management

You can disable narrow stack overflow fault detection by setting bit O of the narrow
stack pointer to zero, and bit 0 of the stack limit to one. You can disable narrow stack
underflow fault detection by

Starting the narrow stack at a location greater than 401;.

If the narrow stack starts at location greater than 401g, underflow still occurs when
the value of the stack pointer becomes less than 400g. The processor can detect
underflow if a program pops enough words from the narrow stack to cause the
narrow stack pointer to wraparound.

Setting bit O of either the narrow stack pointer or the narrow stack limit to one.

If bit O of the narrow stack pointer or narrow stack limit is set to one, either all or
part of the stack may reside in page zero, or the stack may underflow onto page
zero without interference from the narrow stack fault handler.

When a narrow stack fault occurs, the processor

1.

Sets the narrow stack pointer equal to the narrow stack limit if the narrow stack
underflow occurs.

Sets bit 0 of the narrow stack pointer to zero and bit 0 of the narrow stack limit to
one.

Thus, the narrow stack limit is (temporarily) larger than the narrow stack pointer,
which disables overflow fault detection.

Pushes a narrow return block onto the narrow stack (see Table 5.20).

The return address word in the narrow return block points to the next instruction
the processor executes after servicing the fault.

Program Flow Management 5-23

4. Jumps to the narrow stack fault handler through the 16-bit indirect pointer in page
zero of the current segment.

If an I/O interrupt occurs before the processor executes the first instruction of the
fault handler, the program counter word in the return block points to the first
instruction of the fault handler. Thus, an I/O interrupt waits until the processor
pushes the return block and updates the program counter.

Word Number in Contents
Block Pushed

ACO bits 16-31
AC1 bits 16-31
AC2 bits 16-31
AC3 bits 16-31

PC bit 16 equals the CARRY flag
bits 17-31 of the instruction address causing the fault

O A WN

Table 5.20 Narrow stack fault return block

If you determine that you must write a narrow stack fault handler, the handler must
1. Determine the nature of the fault (underflow or overflow).

2. Reset bit 0 of the narrow stack pointer and the narrow stack limit to the original
values.

3. Take any other appropriate action, such as allocating more stack space or
terminating the program.

4. Use a POPB instruction as the last instruction of the fault handler.

Chapter 6

Queue Management

Queues

A queue is a variable-length list of linked entries that has a beginning and an end. The
operating system uses queues to keep track of processes that it must run (ready queue),
files that must be printed on the line printer, pages that are resident in physical memory,
and so on.

An entry in a queue is called a data element. Adding a data element to a queue is called
enqueuing. Removing a data element is called dequeuing. The ends of a queue are called
the head and the tail. A typical first in, first out (FIFO) queue has data elements
enqueued at the tail and dequeued at the head.

One of the advantages of using a queue rather than a single threaded list is that queue
data elements refer to the data elements that precede and follow them. In other words,
the processor queues use a priority-based structure. This means that data elements can
be enqueued anywhere in the queue, not just at the head. Conversely, data elements can
be dequeued anywhere in the queue, not just at the tail.

New entries are added to the queue when service (such as the name of a new file to be
printed) is required, and they are removed from the queue after they are of no further
use. A queue may be empty, it may have only one entry, or it may have many entries.

Building a Queue

For the data elements to be linked together, each data element must contain two
addresses, called /inks. One of the links contains the effective word address of the
following data element in the queue: the forward link. The other link contains the
effective word address of the preceding data element in the queue: the backward link.

The forward and backward links do more than refer to the adjacent queue data elements.
They also indicate the elements that are currently at the head and tail of the queue. If a
data element’s forward link contains -1, then that data element is at the tail of the queue.
If a data element’s backward link contains -1, then that data element is at the head of
the queue. Note that a data element containing -1 in both its forward and backward
links is the only data element currently in the queue.

6-2

Queue Management

A data element contains user information as well as the forward and backward links.
This user information can either precede or follow the forward and backward links (see
Tables 6.1 and 6.2). The user determines the structure and the meaning of the
information.

Position in Data Element Contents
First double word Forward link
Second double word Backward link

Next # double words User information

Table 6.1 Data element with user data following links

Position in Data Element Contents
First n double words User information
(n + 1)th double word Forward link
(n + 2)th double word Backward link

Table 6.2 Data element with user data preceding links

Also, note that the length of the user information in the data elements can vary, since the
links of each data element always refer to other links and not to user information. The
search queue instructions, however, do refer to the user information, so make sure that
any programs using these instructions take the length of the user information into
account.

Queue Descriptor

Each queue uses a queue descriptor that indicates the current head and tail of the queue.
A queue descriptor is two 32-bit words. The first double word contains the address of the
data element that is currently at the head of the queue: the second contains the address
of the data element that is currently at the tail of the queue (see Figure 6.1).

0 31
Address of Data Element at Head of Queue

Address of Data Element at Tail of Queue

0 31
SD-03531

Figure 6.1 Format of queue descriptor

Setting Up and Modifying a Queue

To define an empty queue, create a queue descriptor that contains -1 in both of its
pointers. To enqueue a data element into the empty queue, load the address of the data
element into both double words of the queue descriptor (indicating a one-element queue)
and load -1 into the data element’s forward and backward links. To enqueue or dequeue
a data element anywhere in the queue, specify the queue descriptor and the address of
some data element in the queue. The descriptor and address specified act as reference
points that the processor uses to enqueue the data element at the right point or to
dequeue the appropriate data element.

Queue Management 6-3

Examples

Note that you can create a new one-element queue in one step. To produce a one-element
queue, create a queue descriptor that contains the address of a data element in both
ouble words. Then, load both of the links of the particular data element with -1.

The examples below demonstrate how you can form queues, how enqueuing and
dequeuing works, and how the processor updates the various links and descriptors.

Queue Descriptor of an Empty Queue

Figure 6.2 shows the queue descriptor for an empty queue.

0 31

SD-03532 0 31

Figure 6.2 Queue descriptor for an empty queue

Enqueuing a Data Element into an Empty Queue

Figure 6.3 illustrates how the processor enqueues a data element (located at location A)
into an empty queue. After the enqueue, the processor updates the queue descriptor. The
descriptor shows that the queue has only one element, A. At location A, the first word of
the data element contains the forward link -1. The last word contains the backward link
of -1.

Queue
0 31 o] 31
-1 -~ A
-1 - A
0 31
User
information Queue descriptor after
enqueuing a data element
0 31 at location A

Data element at
location A

SD-03533

Figure 6.3 Data element enqueued into an empty queue

Enqueuing a Data Element at the Head of a Queue

Figure 6.4 illustrates how the processor enqueues a data element (located at location B)
at the head of the queue before data element A. After the enqueue, the processor
updates the queue descriptor to refer to the new head and tail. It also changes the
backward link of data element A to refer to the preceding data element (B). The links of
data element B show that it is the head of the queue and that element A follows it.

6-4

Queue Management

SD-03534

Data element
at location B

Data element
at location A

Queue

31

A

-1

User
information

User
information

31

\
/0 - 3

Queue descriptor after
enqueuing a data element at
location B

Figure 6.4 Data element enqueued at head of queue

Enqueuing a Data Element at the Tail of a Queue

Figure 6.5 illustrates how the processor enqueues a data element (located at location C)
at the tail of the queue, after data element A. The -1 in data element B’s backward link
shows that B is the head of the queue. The -1 in data element C’s forward link shows

that C is the tail of the queue. The queue descriptor also indicates the new head and tail

of the queue.

SD-03535

Data element
at location B

Data element
at location A

Data element
at location C

Queue

31

A

-1

User
information

User
information

-1

A

User
information

31

C

Queue descriptor after
enqueuing a data element
at location C

Figure 6.5 Data element enqueued at tail of queue

Queue Management 6-5

Dequeueing a Data Element

Figure 6.6 illustrates how the processor dequeues data element B. After the dequeue, the
processor updates the queue descriptor to show the new head (A). A’s backward link
shows that it is the new head. C’s links remain unchanged, since C is still the tail of the
queue, and A is still the following data entry.

[
Data element 1
at location A
User
information
C
-1 Queue descriptor after
A dequeuing data element
Data element at location B
at location C User
information
SD-03536

Figure 6.6 Data element dequeued

Queue Instructions

Table 6.3 lists the instructions for manipulating queues. Two of the instructions enqueue
data elements onto queues, and one instruction dequeues data elements. The remaining
4 instructions perform queue searches.

Instruction Operation

ENQH | Engueue towards the head; add a data element to queue
ENQT |Enqueue towards the tail; add a data element to queue
DEQUE |Dequeue a queue data element; delete a data element
NBStc | Narrow search queue backward; 16-bit test condition
NFStc Narrow search queue forward; 16-bit test condition
WBStc | Wide search queue backward; 32-bit test condition
WFStc | Wide search queue forward; 32-bit test condition

Table 6.3 Queue instructions

Chapter 7

Device Management

Overview

The processor supports devices that transfer data using a slow, medium, or high speed
transfer rate. With a programmed I/O facility, the processor transfers 1 or 2 bytes of
data between a device and an accumulator. With a data channel I/O facility, the
processor transfers blocks of words between a medium speed device and memory. With
a burst multiplexor channel 1/0O facility, the processor transfers blocks of words between
a high speed device and memory.

For instance, an asynchronous line controller transfers data with the programmed /0O
facility. Medium speed devices, such as line printers and magnetic tapes, transfer data
with the data channel 1/0 facility. Finally, the high speed disks transfer data with the
burst multiplexor channel I/0 facility.

Depending upon the operating system, you usually access a device through a system call
to an operating system. The remainder of the Device Management chapter presents the
basic information to assist you in reading and writing an interrupt handler or a device
driver, which you invoke with a system call.

Device Access

The processor accesses a device through a programmed I/0 facility, a data channel 1/0
facility, or a burst multiplexor channel I/O facility with the address translation disabled
or enabled. For the processor to access a device with the address translation disabled, the
processor ignores bits 2 and 3 of the segment base register. For the processor to access a
device with the address translation enabled, bits 2 and 3 must first be set to enable the
I/O instruction execution.

 Bit 2 is the LEF or I/O mode.

Bit 2 specifies how the processor interprets the LEF and I/O instruction opcodes. For
instance, in a segment where the processor executes LEF instructions, bit 2 must be
set to one -- selecting the LEF mode. Thus, the processor interprets and executes the
I/O and LEF instructions as LEF instructions.

Conversely, in a segment where the processor executes I/O instructions, bit 2 must be
set to zero -- selecting the I/O mode. Thus, the processor interprets I/O instructions
and LEF instructions as I/O instructions. (Executing an I/O instruction requires an
additional interpretation of bit 3.)

NOTE: Bit 2 affects the LEF instruction but not the ELEF, XLEF, and LLEF instructions.

7-2

Device Management

» Bit 3 is the [/O validity flag.

Bit 3 enables or disables executing an I1/0O instruction. For instance, in a segment
where the processor executes I/0 instructions, bit 3 must be set to one. If bit 3 equals
zero, the processor detects a protection violation when attempting to execute an 1/O
instruction.) Refer to the Memory and System Management chapter for servicing a
protection fault.

You set up a data channel or burst multiplexor channel transfer with a program that
specifies to a device driver (and to the device).

* The I/O channel to use for the transfer.

In a multi-channel environment, the system uses the default I/O channel with 16-bit
I/0O instructions. The PRTSEL (NIO 3, CPU) instruction can be used to change the
default I/O channel. In a single-channel environment, the PRTSEL instruction is a
no-op.

NOTE: On power-up or after a system reset, channel 0 is the default channel. An 1/0O reset does not
change the default.

¢ The direction of the transfer (read or write).
e The address of the first word to transfer.

The device transmits a word address to a device map. A device map is a set of map
registers that control the addressing of memory for the data transfer.

¢ The total number of words to transfer.

The data channel or burst multiplexor channel facility uses a device map in either an
unmapped or a mapped mode. In the unmapped mode, the processor passes the word
address directly to memory, as a physical address. You can use the load physical address
(LPHY) instruction to translate a logical address to a physical address and store it in an
accumulator. (The logical address must be pointing to a higher number segment.) You
can then send the physical address to the device, using an I/O instruction.

In the mapped mode, the processor uses the device map and the word address to
translate the most significant bits of the logical address to a physical page number. The
processor then concatenates the physical page number to the 10 least significant bits of
the logical address to form the physical address.

NOTE: Refer to the specific functional characteristics manual for a description of the map register
assignments and formats.

Once you initialize the device, the transfer takes place in two phases.

1. First, the device driver initializes a device map with the starting word address of the
block or subblock to transfer, with the number of words to transfer, and with the
direction of the transfer.

2. Second, the data channel or burst multiplexor channel facility transfers the data
between the device and memory.

Device Management 7-3

For large transfers, you repeat the two phases until the processor transfers total number
of words.

Table 7.1 lists the 1/O instructions that affect a device map (a data channel map or
burst multiplexor channel map).

Instruction Operation
CiO Issues a read or write command to a register of a device
map
CIOol Issues a read or write command to a register of a device
map

IORST * | Sets the status register bits O, 2-15 to O and turns off data
channel and BMC mapping

WLMP |Loads a series of double words into a device map

LPHY |Translates a logical address and loads the physical address
in an accumulator, for use in the unmapped mode

Table 7.1 I/O instructions for data channel/BMC maps

The * identifies an ECLIPSE C/350 compatible instruction

General 1/0 Instructions

You control the devices with I/O instructions. A general set of I/O instructions provide
device independent operations. A special set of I/O instructions communicate with the
1/0 controller, load a device map, or service a vector interrupt.

The general 1/0 instructions receive data, send data, and initialize or test a device flag.
Table 7.2 lists the general I/O instructions.

Instruction Operation

DIA/f] * |Datain A (from A buffer of device)
DIB/f] * |Data in B (from B buffer of device)
DIC/f] * |Data in C (from C buffer of device)
DOA/f] * | Data out A (to A buffer of device)
DO3/f] * |Data out B (to B buffer of device)
DOC/f] * | Data out C {to C buffer of device)

IORST * !1/O reset

NIO/f] * |No /O transfer (initialize a BUSY/DONE flag)

PIO Issue a programmed 1/0 command to a device
SKP: * | 1/0 skip (test a BUSY/DONE flag and skip on condition)

Table 7.2 General I/O instructions

The /f] and ¢ defines the optional device flag handling.
The * identifies ECLIPSE C/350 compatible instructions.

7-4 Device Management

Figure 7.1 illustrates the format for a general /O instruction.

T
0[1 l 1] ac ‘ Opcode [fortl Device Address
L A e S BAEY S I TERER: BREE- BASE o \ 75

SD-03537

Figure 7.1 General 1/0 instruction format

where
011 The 011 binary code indicates an 1/0O instruction.
ac The ac field indicates a fixed-point accumulator (0-3).
The accumulator contains the data to send or to receive from a
device.
Opcode The opcode field identifies the 1/O instruction operation.
Table 7.2 lists the I/O instructions.
fort The f bit identifies a device flag to change.
The t bit identifies a device flag to test.
Depending on the I/O instruction and the device, the instruction
initializes or tests the device flag of the device. (See Tables 7.3
and 7.4.) For an external and an internal device (except for the
CPU), the flags are BUSY and DONE. For the internal CPU
device, the flags are interrupt on (JON) and power fail.
Device Address The device address field identifies a unique device controller to
send or to receive the data.
With a 6-bit device address, the processor can communicate
with up to 64, device controllers. The Assembler translates a
standard three, four, or five letter device mnemonic to a device
address.
Refer to the specific functional characteristics manual for a
complete list of standard device mnemonics and for the corre-
sponding device address.
Assembler Bits 1/0 CPU
Code for f 8 9 Busy Done ION
{option omit-
ted) oo No effect No effect No effect
S 01 Settoa 1 Settoa O Settoa 1
Cc 10 Settoa O Settoa O Settoa 0O
P 11 Pulses a special 1/0 bus control line No effect

Table 7.3 Device flags for general devices

Device Management 7-5

Assembler Bits 1/0 CPU
Code for t 8 9

BN 0 O |Test for BUSY = 1 Test for ION = 1
BZ 0 1 |Testfor BUSY = 0 Test for ION = 0
DN 1 0 |[Testfor DONE = 1 Test for power fail = 1
DZ 1 1 |Test for DONE = 0O Test for power fail = 0

Table 7.4 Device flags for skip instruction

The BUSY and DONE flags provide an indication of the device state to a device driver.
When both flags equal zero, the device is idle. To start a device, you issue an I/O
instruction with the proper device flag that sets the BUSY flag to one and the DONE
flag to zero. When the device finishes the operation and becomes ready to start another
operation, the device sets the BUSY flag to zero and the DONE flag to one.

The ION flag controls the device interrupt system. When the ION flag equals zero, the
processor ignores interrupt requests. When the ION flag equals one, the processor
services interrupt requests.

The power fail flag provides an indication of the processor state to the CPU device
driver. When the power fail flag equals zero, the processor detects the proper power
voltage ranges. When the power fail flag equals one, the processor detects a power fail.

Interrupts

The processor and an operating system maintain the I1/O facilities through a hierarchical
interrupt system. Any program can initiate an I/O operation by requesting a data
transfer to or from a device. The program transmits the request through I/O system
calls, which initialize the device and transfer the data by invoking the interrupt system.

The operating system maintains control of the interrupt system by manipulating an
interrupt on flag, interrupt mask, and device flags. The interrupt on flag and interrupt
mask reside in the processor. The interrupt on flag enables or disables all interrupt
recognition, while the interrupt mask enables or disables selective device interrupt
recognition.

The device flags reside in the device controller, and provide the interrupt communication
link between the processor and the device. By manipulating the flags and the interrupt
mask, the interrupt system can ignore all interrupt requests, or selectively service certain
interrupt requests.

If the interrupt on flag and interrupt mask enable processor recognition of the interrupt
request, the processor services the interrupt. To service an interrupt, the processor first
determines the action to take on the currently executing instruction, then redefines the
interrupt mask, and finally services the interrupt request. The Interrupt Servicing
section explains the processor actions to transfer program control to the interrupt
handier, and then to the interrupt service routine.

7-6

Device Management

Interrupt On Flag

With the interrupt on (ION) flag equal to one, the processor responds to an interrupt
request. When the ION flag equals zero, the processor cannot respond to an interrupt
request.

You control the state of the ION flag with the INTDS and INTEN CPU device
instructions. Refer to the specific functional characteristics manual for further informa-
tion on the CPU device instructions.

Instruction Interruption

Most instructions are noninterruptible because they require only a minimum of CPU
execution time. For instructions that require more time, such as the wide block move
(WBLM) instruction, the processor (if required) interrupts the executing instruction,
sets the processor status register bit 2 to one, and continues servicing the interrupt.

After servicing the interrupt, the processor either restarts or resumes the interrupted
instruction. Refer to the specific instruction description and to the specific functional
characteristics manual for further information on interruptible, restartable, and
resumable instructions.

Interrupt Mask

A device is associated with one of the 16 bits in the interrupt mask. When the bit equals
one, the mask blocks an interrupt request to the processor. When the bit equals zero, the
processor services an interrupt request from the device. Since the processor can address
greater than 16 device controllers, it can use a bit in the interrupt mask for two or more
devices.

To change the state of a bit in the interrupt mask, use the mask out instruction
(MSKO), which is a CPU device instruction.

Interrupt Servicing

To service an interrupt request (see Figure 7.2), the processor
1. Sets the ION flag to zero.
2. Determines if the address translation facilities are enabled.

Refer to the System and Memory Management chapter for enabling and disabling
the address translation facilities.

3. Fetch the pointer to the interrupt handler.

Device Management 7-7

Changes the current segment of execution to segment 0, if the current segment
equals segment 1 through 7 and if the address translation facilities are enabled.

Resolves the effective address of the interrupt handler.

Examines the first word of the interrupt handler, which is either

A 32-bit processor instruction (type 1).

A 32-bit processor instruction contains bit O equal to one and bits 12-15 equal
to 1001,.

A 16-bit processor instruction (type 2).

The processor identifies a 16-bit processor instruction as any instruction other
than an XVCT or a type | instruction.

A vector interrupt (XVCT) instruction (type 3).

Stores the return address

Into logical locations two and three of segment O for the type 1 instruction.
Into location 0 of segment O for the type 2 instruction.

Into the vector stack (as part of the return block) for the XVCT instruction,
during the vector interrupt processing.

Jumps indirectly

To the immediate interrupt handler and executes the type 1 instruction as the
first instruction of the handler.

The last instruction of the immediate interrupt handler must be a jump
(XJMP or LIMP) instruction to jump indirectly through the return address.
Refer to the specific functional characteristics manual for further information
on reserved memory.

To the ECLIPSE C/350 interrupt handler and executes the type 2 instruction
as the first instruction of the ECLIPSE C/350 interrupt handler.

To the vectored interrupt handler and executes the XVCT instruction.

The last instruction of the vectored interrupt handler must be a wide restore
from vector interrupt instruction (WRSTR), which pops the wide return block
from the vector stack.

7-8 Device Management

interrupt
occurs

Set ION to O

Address
translation
enabled?

Yes

Current
segment

segment
0?

Store current stack

register values in Yes \

current page :
zero locations Fetch pointer to
interrupt handler
+ from physical
location 1
Cross to
segment O

Y

Load segment O
stack location
values into stack
registers

Fetch pointer to
interrupt

handler from
location 1, page zero,

segment 0
l -
-
y
Resolve indirect
chain (if necessary):
examine first word of
interrupt handler
+ Type 2 instructions Y Type 1 instruction }XVCT (Type 3)
Store PC in Store PC in Fetch level
location O, locations 2-3 of count from
segment O segment 0 location 0, page zero,
+ * segment O
Jump @ 1 Jump @ 1

DG-15414

Figure 7.2 Interrupt sequence (continues)

Device Management 7-9

y IR’
Load result
of OR into
Level count No = ACO
= 0? ;
Base-level Intermediate- Store contents of
interrupt level interrupt ACO into current
mask word of
Increment-level Increment-leyel vector table
count count, store in
location 0 of +
y segment 0 Do MSKO with
Save location 144 bits from ACO
and four stack - Enable interrupts
registers internally Push wide +
return block onto
+ segment O stack Load zero-extended
device code into
Load 14g and stack ACT.
registers with contents
of vector's stack +
locations Load PC with
+ first two words
Push saved data of DCT.
onto new vector +
stack Load PSR
+ with word 4
Push wide of DET.
return block onto
new vector stack
« Stack
Y overflow?
Perform interrupt 1
;’)dsgt device Load bits 1-31
of DCT entry
* into AC2 Transfer control to Fetch and execute
., stack fault handler instruction
:’,‘rzlr(;uza't;laie + via location 144 pointed to by PC
ment of +
XVCT instruction Use current Fetch and execute
+ g\ask a;d\iCT table first instruction
Use "E'" as base _;f‘: firm i’\sassk of stack fault
address of vector word hander
table
Use device code + Additional
as an index Push double- interrupts can
into vector table word from previous now occur
+ step onto stack
Bits 1-31 of &
referenced table OR double-word
entry point to with contents of
aDCT location 2-3 of
] DCT

7-10 Device Management

Vectored Interrupt Processing

The processor tests the contents of the interrupt-level word in reserved memory. If the
contents equal zero, then the processor begins base-level interrupt processing. If the
contents equal nonzero, then the processor begins intermediate-level interrupt processing.
The processor, in either case, increments the contents by one.

NOTE: Software, as part of the interrupt return, must decrement the interrupt-level word by one.

Base-Level Interrupt Processing

The processor begins base-level interrupt processing at step 1 when the current segment
equals segment 1 through 7. The processor begins base-level interrupt processing at step
5 when the current segment equals segment 0.

To service a base-level vector interrupt, the processor

l.

Saves the wide stack pointer and the wide frame pointer in the reserved memory
locations of the current segment. (The wide stack base and wide stack limit
contents are the same as the reserved memory contents.)

Crosses to segment 0.

Saves the wide stack parameters from the reserved memory locations of segment O
in an internal processor state.

Continues execution with step 6.

Saves the pointer to the wide stack fault handler and the four wide stack registers in
an internal processor state.

Uses the three vector stack parameters in reserved memory to initialize the four
wide stack registers and wide stack fault pointer.

. Vector stack pointer parameter

The processor, interpreting the parameter as a 16-bit word, zero extends the
vector stack pointer before loading it into the wide stack base, wide stack
pointer, and wide frame pointer registers.

. Vector stack limit parameter

The processor, interpreting the parameter as a 16-bit word, zero extends the
vector stack limit before loading it into the wide stack limit register.

NOTE: The 16-bit vector stack base and limit parameters initially restrict the vector stack to the
lower 128 Kbytes of segment 0.

. Vector stack fault address parameter

Loading the vector stack information enables vector stack underflow and
overflow detection.

Pushes the previously saved wide stack parameters from the internal processor state
onto the vector stack.

Pushes a wide return block onto the vector stack.

Continues execution as the Final Interrupt Processing section explains.

Device Management 7-11

Intermediate-Level Interrupt Processing

The processor begins intermediate-level interrupt processing with the current segment
equal to segment 0. To service an intermediate-level vector interrupt, the processor

1. Pushes a wide return block onto the vector stack.

2. Continues execution as the Final Interrupt Processing section explains.

Final Interrupt Processing
To complete the vector interrupt servicing (see Figure 7.3), the processor

1. Calculates the effective address from the displacement of the XVCT instruction.
The indirection chain, if any, is narrow.

The effective address identifies word zero of the vector table. The table contains 64
double word entries for each 1/O channel, one entry for each device on an 1/0
channel. Figure 7.4 illustrates the vector table.

DCT of
Vector table interrupting device
0 31 0 31 [¢] 31
Cnl:g:i?t >|Interrupt routine address
DCT address - device O Interrupt mask
Vector PSR l
table
base
address
plus
device DCT address - device n |—
XVCT disp - 0%

DG-15415

Figure 7.3 Sequence of actions to conclude interrupt service

24125

-2,-1 Current Device Mask Reserved Current Channel
0.1 I x DCT Address for Device O
2,3 | X DCT Address for Device 1
45 | X DCT Address for Device 2

1 * :

1

| |

| |

DCT Address for Device 63
1516 31

DG-15410

Figure 7.4 Vector table

7-12

Device Management

(o]

Uses the interrupting device number as a double-word offset from the base of the
vector table to address an entry.

Bits 1-31 of the vectored entry contain the base address of a device control table
(DCT). To satisfy the processor accesses to the device control table, you must
construct the first five words as shown in Figure 7.5. In addition, you can build the
device control table with more words to store device-dependent variables and
constants for use by the device interrupt routine.

DG-15411

0.1} X PC 4-31 (Device Interrupt Routine)

1/0
Channel Mask

2.3 Reserved Res Device Mask

4,5 PSR Interrupt Routine Dependent

6,7 Interrupt Routine Dependent Interrupt Routine Dependent

e

|o]1 718 15| 16 31

Figure 7.5 Device control table (DCT)

3.
4,

Loads AC2 with the base address of the device control table.
Constructs a double word and pushes it onto the vector stack.

Bits 0-7 of the double word contain all zeros. Bits 8-31 contain the contents of the
current mask from the vector table. The I/O channel masks are organized one bit
per channel; for example, bit 14 equals I/O channel 7.

Loads ACO with the inclusive or of the pushed double word and the second double
word (words two and three) of the device control table.

Stores ACO into the current mask.

Performs the function of a mask out (MSKO) instruction with ACO and enables
interrupts.

When a mask bit equals one, the processor disables interrupt recognition of devices
that use the mask bit.

Device Management 7-13

10.
11.

12.

Loads the least significant bits of AC1 with the interrupting 1/O channel and
device number, zero extended to 32 bits.

Loads the program counter with the address of the device interrupt routine (words
zero and one of the device control table).

Initializes the PSR from the contents of the PSR word in the device control table.
Checks for a vector stack overflow.
If the processor does not detect a vector stack overflow, it continues with step 12.

If the processor detects a vector stack overflow, it transfers program control to the
vector stack fault handler. The processor executes the first instruction of the vector
stack fault handler before honoring further interrupts.

Executes the instruction addressed by the program counter.

The processor executes the first instruction of the interrupt or vector stack fault
handler before honoring further interrupts.

The processor requires that the pointer chain -- from the interrupt handler, to the vector
table, to the device control table, and finally to the interrupt routine -- remain in
Segment 0.

Chapter 8

Memory and System Management

Overview

The processor supports memory management and system management facilities for an
operating system. The Memory and System Management chapter presents the basic
information to assist the reading and writing operating system software.

The memory management facilities transform a logical address into a physical address
and monitor the contents of the physical memory. The system management facilities
return or modify implementation-dependent information about the system and the
service faults.

The processor supports a virtual memory size of 4 Gbytes, which the processor distributes
through eight segments. Each segment can support up to 512 Mbytes of logical address
space. Since the logical address space is larger than the physical address space, the
processor uses a demand-paging scheme.

The processor maintains pages of logical memory on disk until it needs them in the
physical memory. (A page equals 2 Kbytes.) When referring to an instruction or to data
that currently resides on disk, the processor moves the page to physical memory.
However, when physical memory is full, the processor may first copy a page from
memory to disk before moving the referenced page into memory. To facilitate the
operation, the processor maintains tables in memory that determine

¢ Where a page resides (memory or disk resident).

Bits 13-31 of a segment base register specify a physical address of a page table in
memory. Each segment contains a page table, which occupies at least 2 Kbytes and
begins on an integral 2 Kbyte boundary. A page table contains entries that indicate
where the pages reside in memory.

* When to overwrite a page in memory with a page from disk.
The processor maintains a table of referenced and modified bits.

The Memory and System Management chapter presents the memory management
functions (segment access and address translation), and the system functions (processor
identification and fault handling of privileged violations).

8-2

Memory and System Management

Segment Access and Address Translation

To access a memory word or words, the processor accesses a segment, translates a logical
address (indirect or effective address) to a physical address, and accesses the physical
page, which contains the word or words.

The following paragraphs describe the segment base registers, page tables, and the
logical address to physical address translation.

Segment Base Registers

For the processor to access a segment, it first checks the segment base register specified
in the logical address. Bit 0 of the segment base register controls access to the segment
by specifying if the processor can refer to the segment for the instruction execution. If

the processor cannot refer to the segment, the processor aborts executing the instruction
and services a segment validity protection fault. Refer to the Protection Fault section for
further information on protection fault handling.

The processor maintains eight segment base registers (SBRO to SBR7) -- one for each of
the eight segments. A segment base register contains information which

Validates the segment access.

Validates an I/O access.

Specifies a one- or two-level page table.

Specifies for the segment the address of the first entry in the page table.

You can modify the segment base registers with the LSBRA and LSBRS privileged
instructions, which load a block of double words from memory into the segment base
registers.

NOTE: The processor must execute a privileged instruction in segment 0; otherwise, a protection
violation occurs.

Figure 8.1 shows the format of a segment base register.

V| L [LEF|I/O Reserved Physical Page Table Address
TR T A i B e e e e e B . [B S s S B S S S B S]

SD-03542

Figure 8.1 Segment base register format

where

\% The V bit is the segment validity flag.

The processor accesses the segment either to execute an instruction or
to access data for an instruction that reads or writes data. However,
the segment must be a valid reference.

The flag equals zero for an invalid segment.

The processor aborts executing a memory reference instruction and
services a protection violation when the logical address refers to an
invalid segment.

Memory and System Management 8-3

LEF

1/0

Reserved

Physical
Page
Table
Address

The flag equals one for a valid segment.

Following a valid segment check, the processor checks for a valid
addressing range (translation level) in the logical address.

The L bit is a translation level flag.

The processor can access the segment with either a one-level or
two-level page table.

The flag equals zero for a one-level page table.

The processor can use a one-level page table with a program that
requires 1 Mbyte or less of logical address space in the segment. A
one-level page table entry contains the page table offset for the physical
address translation.

The flag equals one for a two-level page table.

The processor must use a two-level page table with a program that
requires from 1 Mbyte to 512 Mbytes of logical address space in the
segment. A two-level page table entry contains the address of the
second page table, which contains the page table offset for the
physical address translation.

Refer to the Page Table section for additional information on' the page
table. Refer to the Address Translation section for an example of
using a segment base register and one or two page tables

The LEF bit is a LEF mode flag.

The processor checks the LEF flag when executing a load effective
address instruction (LEF) and an I/O instruction.

The flag equals zero for a LEF instruction interpretation.

The processor executes the instruction as a LEF instruction.

The flag equals one for an I/O instruction interpretation.

Before executing the instruction as an 1/0O instruction, the processor
checks the I/O validity flag.

The I/0 bit is an I/O validity flag.

The processor checks the I1/O validity flag when executing an 1/0
instruction.

The flag equals zero for an illegal 1/O operation.

The processor aborts executing the I/O instruction and services the
protection violation.

The flag equals one for a legal I/O operation.

The processor executes the /O instruction.

DGC reserves bits (4-12) for internal DGC use. Refer to the specific
functional characteristics manual for additional information.

The physical page table address (bits 13-31) specifies the 19 most
significant bits of the physical address for the first page table entry.
(The table begins on a 2 Kbyte address boundary.) The remaining bits
of the address come from either bits 4-12 or 13-21 of the logical
address.

8-4 Memory and System Management

Page Tables

In each segment, the processor accesses a page table that specifies the status of the pages
for the segment in memory. The page table contains an entry (PTE) for each page,

which

» Indicates if a page is a valid access and the type of access.
» Indicates if a page is currently in physical memory.
» Contains information needed to translate a logical address to a physical address.

Figure 8.2 shows the format of a page table entry.

VIM|R

Reserved Physical Page Address

o' 1

SD-03543

T T T T3y

Figure 8.2 Page table entry format

where

\%

The V bit is the valid access flag.

The processor accesses the page to read or write data, or to execute an
instruction. However, the page must be a valid reference.

The flag equals zero for an invalid page.

The processor aborts executing the memory reference instruction and
services the protection violation when the logical address refers to an
invalid page.

The flag equals one for a valid page.

Following the valid page check, the processor checks for a valid page
access (read, write, or execute).

The M bit is the memory resident flag.

For the processor to access a page for reading or writing data, or for
executing an instruction, the page must reside in memory.

The flag equals zero for a disk-resident page.

The processor suspends executing the memory reference instruction
and services the page fault when the logical address refers to a
disk-resident page. Following the page fault, the processor resumes
executing the memory reference instruction.

Memory and System Management 8-5

The flag equals one for a memory-resident page.

The processor completes executing the memory reference instruction
when the logical address refers to a memory-resident page.

The R bit is the read access flag.
The processor accesses the page to read data from memory.

The flag equals zero for a page that the processor cannot gain read
access.

The processor aborts executing the memory reference instruction and
services the protection violation when the instruction requests a read
operation, such as loading an accumulator or skipping on the condition
of a memory word.

The flag equals one for a page that the processor can gain read access.

Following the valid read access, the processor checks for a disk- or
memory-resident page status.

NOTE: A page with write or execute access also requires read access;
otherwise, results are indeterminate.

w The W bit is the write access flag.
The processor accesses the page to write data into memory.

The flag equals zero for a page that the processor cannot gain write
access.

The processor aborts executing the memory reference instruction and
services the protection violation when the instruction requests a write
operation, such as storing an accumulator or modifying a bit of a
memory word.

The flag equals one for a page that the processor can gain write access.

Following the valid write access, the processor checks for a disk- or
memory-resident page status.

The E bit is the execute access flag.
The processor accesses the page to execute an instruction.

The flag equals zero for a page that the processor cannot gain execute
access.

The processor aborts executing the memory reference instruction and
services the protection violation when the processor cannot execute the
instruction.

The flag equals one for a page that the processor can gain execute
access.

Following the valid execute access, the processor checks for a disk- or
memory-resident page status.

NOTE: The processor ignores the page access bits (bits 2-4) for a page table entry that addresses
another page table page, which occurs during a two-level page table translation.

8-6

Memory and System Management

Reserved DGC reserves bits 5-12 for internal DGC use. Refer to the specific
functional characteristics manual for additional information.

Physical Page The physical page address (bits 13-31) identifies a page in memory.

Address The physical page address refers to a page containing an instruction
and/or data, or refers to a page containing the base of another page
table, as determined by a one- or two-level page table translation.

Address Translation

Following a valid segment reference, the processor checks the range of the logical
address space within the segment, and compares it to the address range of the logical
address. Bit one of the segment base register defines a one- or two-level page table,
which specifies the addressing range. (Refer to the Segment Base Register section for
further details.)

The processor compares bit 1 of the segment base register with bits 4-12 of the logical
address. When bit 1 equals a zero, the logical address bits 4-12 must be all zeros. The
processor aborts executing the instruction and services the protection fault (page table
depth fault) when any of the logical address bits 4-12 contain a one.

NOTE: A page table depth fault can occur when a program that was allocated 1 Mbyte of memory
attempts to access a location beyond the 1 Mbyte boundary.

Figure 8.3 illustrates an indirect or an effective logical address for a one- and two-level
page table. Refer to the System Overview chapter for an explanation of calculating an
indirect or effective logical address.

One-Level Page Table Logical Word Address
x | Segment [0 Page Level 1 Page Offset
ot T T3 s T T T T T Tt T T T Ty T T T T 7
x | Segment Page Level 2 Page Level 1 Page Offset
B R B S e e S e e e L L e e B P B T-R i ae a e KT
SD-03544

Figure 8.3 Indirect and effective logical address formats

where

X The x bit (bit 0) is ignored by the processor when using direct
addressing. The processor tests the x bit when using indirect
addressing, and continues testing the bit in subsequent indirect
address until the bit equals zero.

Segment The segment (bits 1-3) specifies one of eight segment base registers.

Memory and System Management 8-7

Page Level 2 The page level 2 (bits 4-12) specifies an entry in the first of two
page tables for a two-level page table translation. The page table
entry contains the address of the second page table.

For a one-level page table translation, the page level 2 field (bits
4-12) must be all zeros. If the bits are not zero, the processor
aborts the instruction and services a page table validity protection
fault. Refer to the Protection Fault section for further information
on protection fault handling.

Page Level 1 The page level 1 (bits 13-21) specifies an entry in a page table

For a one- or two-level page table translation, the page table entry
contains the address of the final page (to be accessed for data or
an instruction).

Page offset The page offset (bits 22-31) specifies the final entry in the final
page.

The page offset completes the address translation.

The Address Translation section presents examples of a one- and a two-level page table
translation. The circled numbers labeling the accompanying paragraphs correspond to
the circled numbers shown in Figures 8.4 and 8.5. Figure 8.4 illustrates a one-level page
table translation. Figure 8.5 illustrates a two-level page table translation.

Page Access

When an instruction refers to a page, the processor determines the validity of the access
by checking the access request with the appropriate validation and access validation bits
in the page table entry.

When an instruction refers to a valid page that is not currently in physical memory, a
page fault occurs. The fault handler saves the current state of the processor in reserved
memory (context block), moves a memory page to disk (if required), and then transfers
the referenced page from disk to memory.

Access Validation

When a referenced page is valid, the processor determines whether the page is restricted
to a particular access. Bits 2-4 of the referenced page table entry contain the access bits
that specify any restriction.

When the reference to memory is for reading, the processor checks bit 2. A one in bit 2
indicates a valid read, while a zero indicates an invalid read. When the reference is
invalid, a protection fault occurs and AC1 contains the error code 0.

NOTE: In general, read access must always be available to any page with execute access.

When the reference to memory is for writing, the processor checks bit 3. A one in bit 3
indicates a valid write, while a zero indicates an invalid write. When the reference is
invalid, a protection fault occurs and ACI1 contains the error code 1.

When the reference to memory is for executing, the processor checks bit 4. A one in bit
4 indicates a valid execute, while a zero indicates an invalid execute. When the reference
is invalid, a protection fault occurs and AC1 contains the error code 2.

8-8

Memory and System Management

SD-03545

Logical word address

12 13 21 22

31

All zeros One-level page table

1 34
=R

Page oftset

L]

of a page table

Specifies an SBR \ /N am
with the format @
12 13 31
| Physical address
3 I@ 21 22 y 30 31
rPhysical address | One-level page table I OJ
\ \
Specifies starting word address
Specifies a PTE
offset from
PTEO @ PT's start
PTE1
Page . PTEn format
table . 0 1 2 12 13 31
- 1 Valid resident
PTEn physical address
PTES11 3 2122 31

® © 006

ljhysical address | Page offset

Final physical
word address

The logical word address to be translated has the format shown in the diagram. Bits 1-3 of
the word address specify one of the eight segment base registers (SBRs). The processor
uses the contents of this valid SBR to form the physical address of a PTE.

To form this physical page address, the processor begins with the physical address
specified in bits 13-31 of the SBR. This address becomes bits 3-21 of the PTE address.
Bits 13-21 of the logical word address become bits 22-30 of the PTE address. The
processor appends a zero to the right of the PTE address, making a 29-bit word address.

Bits 3-21 of the PTE address (unchanged in 2 above) specify the starting address of a
page table. Bits 22-31 of the PTE address specify an offset from the start of the table to
some PTE (labeled PTEn in the figure). This PTE specifies the starting address of a page
of memory.

PTEn bits 13-31, the page address, become bits 3-21 of the physical address. The page
offset field specified in bits 22-31 of the logical word address become bits 22-31 of the
physical address. This is the physical word address translated from the original word
address.

Figure 8.4 One-level page table translation

Memory and System Management

8-9

Logical word address

4 12 13 2122 31

1 3
L SBR ‘ Two-level page table I One-level page table Page offset

Specifies an SBR /J
with the format @

2 12 13 ¢ 31

T T 1

L\ ll L I Physical address |

@ 21 22 30 31
°]

w

Physical address [Two-level page table

Specities (T
a page table Specifies a

particular PTE
Starting > PTEO @ in the specified

word address page table
PTE1
PTE2
. PTEn format
. 0 1 12 13 31

ra o]

Valid resident
physical address

®

PTES11 3 21 22 Y 30 31
[¢] 31 [Physical address l One-tevel page table [0]
Page table T
PTEO -l
Specifies starting word address
PTE1 of a page table
Page table

@ Specifies starting word address
of a page table

Specifies the offset to the

PT starting address to choose
a particular PTE.

0] 12 12 13 31
111

Format of PTEm

\

PTEm

I Physical addressJ

PTES11

®

3 21 22 31

Page offset Fina! physical

[Physical address
word address

Logical word address to be translated has the format shown in the diagram. Bits 1-3 of the
word address specify one of the eight segment base registers (SBRs). The processor uses the
contents of this valid SBR to form the address of a PTE.

To form this address, the processor begins with the physical address specified in bits 13-31 of
the SBR. This address becomes bits 3-21 of the PTE address. Bits 4-12 of the logical word
address become bits 22-30 of the PTE address. The processor appends a zero to the right of
the PTE address, making a 29-bit word address.

Bits 3-21 of the PTE address specify the starting address of a page table. Bits 22-31 of the
PTE address specify an offset from the start of the table to some PTE (labeled PTE# in the
figure). The PTE specifies the starting address of a page table.

The processor now constructs the address of a second PTE. The physical address specified in
bits 13-31 of the first (PTEn) become bits13-21 of the address of the second PTEm. Bits 13-21
of the logical word address become bits 22-30 of the second PTE’s address. The processor
appends a zero to the right of the second PTE address to make a 29-bit word address.

Bits 3-21 of the second PTE address specify the starting address of a second page table. Bits
22-31 of the second PTE address specify an offset from the start of the second table to some
PTE (labeled PTEm in the figure). The second PTE specifies the starting address of a page.
The page table containing PTEm can be paged itself. PTEn can indicate a nonresident page
table.

® 6 o © 6

@ The second PTEm’s bits 13-31, the page address, become bits 3-21 of the physical address.
The page offset specified in bits 22-31 of the logical word address becomes bits 22-31 of the
physical address. This last value is the physical word address.

SD-03546

Figure 8.5 Two-level page table translation

8-10

Memory and System Management

Demand Paging

Since the logical address space is larger than the physical memory space, all pages
cannot reside in physical memory at the same time. A paging facility (under control of
the page fault handler) moves referenced pages in and out of memory whenever necessary
-- demand paging.

When an instruction refers to a valid page not currently in physical memory or refers to
a location that requires a two-level page table when only a one-level page table is
allocated, then a page fault occurs. A status field in the context block indicates the cause
of the page fault. Refer to the specific functional characteristics manual for more
information on the context block.

To service the page fault, the processor

1.

5.

Saves the current state of the processor in reserved memory of segment 0 (context
block).

Crosses to segment 0 if the current segment is 1-7.

a.

Stores the wide stack pointer and wide frame pointer contents into the page
zero locations of the current segment.

The values of the stack limit and stack base registers should be identical to the
values in reserved memory.

Redefines the wide stack for segment 0.

The processor initializes the wide stack pointer, wide stack limit, and wide
stack base registers from reserved memory of segment 0.

Executes a jump indirect through the pointer in reserved memory of segment 0 to
the page fault handler.

Executes the page fault handler, which

a.

Initiates restoring a page from memory to disk (if necessary).

Refer to the Referenced and Modified Flags section for more information on
determining when a page needs to be restored to disk.

The page fault handler invokes the interrupt system to transfer the page to
disk.

Initiates loading the referenced page from disk to memory after the page fault
handler restores the referenced page to disk.

The page fault handler invokes the interrupt system to transfer the page from
disk.

Restores the state of the processor after the page fault handler loads the
referenced page into memory.

The page fault handler executes the WDPOP instruction, which restores the
state of the processor and restarts the interrupted program. The WDPOP
instruction accesses the information in the context block to restore the processor
state.

Completes the memory reference and continues executing the instruction.

NOTE: 4 page fault must not occur during steps 1, 2, and 3; otherwise, the processor halts.

Memory and System Management 8-11

Referenced and Modified Flags

A referenced flag and a modified flag are associated with a physical page in memory.
When the processor reads a word from memory, it sets the referenced flag associated
with the physical page to one. When the processor writes a word to memory, the
processor sets the referenced and modified flags associated with the physical page to one.
A read or write operation occurs when the processor accesses memory without a protection
fault occurring on a memory resident page.

NOTE: An I/O memory reference does not affect the state of the flags.

The referenced flag helps to determine which page in physical memory the page fault
handler should replace with a new page from disk. The referenced flag allows an
operating system and the page fault handler to determine the frequency of references to
individual pages.

The modified flag indicates if the processor wrote to a memory page. When a modified
flag equals one, the processor modified the contents of the page. The page fault handler
must first copy the page to disk before moving a new page from disk to memory. If a
modified flag equals zero, the processor did not modify the contents of the page, and the
page fault handler can immediately move a new page from disk to memory.

Table 8.1 lists the privileged instructions that manipulate the referenced and modified
flags (or bits). Refer to the Fixed-Point Computing chapter for a list of additional
instructions that manipulate bit strings.

Instruction Operation
LMRF Load modified and referenced bits
ORFB OR referenced bits
PATU Purge address translator
RRFB Reset referenced bits
SMRF Store modified and referenced bits

Table 8.1 Instructions that manipulate referenced and modified flags

Central Processor Identification

The processor stores information about the processor parameters (such as the memory
size and the microcode revision level) in one or more fixed-point accumulators. Table 8.2
lists the central processor identification instructions. Refer to the specific functional
characteristics manual for further information on the accumulators.

Instruction Operation
ECLID Load CPU identification (ACO, bits 0-31)
LCPID Load CPU identification (ACO, bits 0-31)
NCLID Narrow load CPU identification (ACO-AC2, bits 16-31)

Table 8.2 System identification instructions

8-12

Memory and System Management

Protection Violations

As the Program Flow Management chapter explains, the processor performs certain
checks on the operation and on the data while executing an instruction. If the processor
detects an error, a privileged or nonprivileged fault occurs before executing the next
instruction. Refer to the Program Flow Management chapter for information on
nonprivileged faults.

Since an operation could produce multiple protection violations, the processor imposes
priorities on the faults. The processor services the highest priority fault and ignores
lower priority faults, when two or more occur. Table 8.3 lists the protection violation
faults in the order of priority. For instance, the processor services a level 2 priority and
ignores a level 4 priority, when both occur simultaneously.

Level of Priority Fault Description

Privileged or 1/O instruction violation
Indirect addressing violation

Inward reference violation

Segment validity violation

Page table validity violation

Read, write, or execute access violation

o O h WN - O

Segment crossing violation

Table 8.3 Priority of protection violation faults

When the processor detects a fault, it performs a segment crossing to segment 0 (if the
fault occurs in segment 1 to 7) and jumps to the protection violation fault handler
through the indirect pointer in reserved memory. The initial and indirect pointers to the
protection violation fault handler are 16 bits. Levels of indirection, if any, occur within
segment 0.

If a protection violation fault occurs while handling a nonprivileged fault, the processor
aborts the nonprivileged fault and processes the protection violation fault. The return
block pushed onto the stack for the protection violation fault is undefined, as are the
contents of ACO and ACI.

If an I/O interrupt request occurs, the processor executes the first instruction of the
protection violation fault handler before servicing the interrupt request.

To service a protection violation fault, the processor

1. Crosses to segment 0 if the current segment is 1 to 7.

a. Stores the contents of the wide stack pointer and the wide frame pointer into
the page zero locations of the current segment.

The values of the stack limit and stack base registers should be identical to the
values in reserved memory.

b. Redefines the wide stack for segment O.

The processor initializes the wide stack pointer, wide stack limit, and wide
stack base registers from segment 0, page zero locations.

Memory and System Management 8-13

2. Pushes a fault return block onto the stack in segment 0.
Table 8.4 shows the fault return block.

The PSR is then set to zero.

Word Number in Contents
Block Pushed

1 PSR bits 0-15 of the processor status register
2 bits 0-15 equal 16 O's
3-4 ACO bits 0-31
5-6 AC1 bits 0-31
7-8 AC2 bits 0-31
9-10 AC3 bits 0-31
11-12 Bit O equals the CARRY flag

Bits 1-31 equal the PC of execution if fault type is privileged
or 1/0; else it is undefined.

Table 8.4 Fault return block

3. Initializes ACO and ACI.

a. Sets ACO equal to the address of the instruction (offending PC) causing the
fault.

b. Sets ACI equal to a value identifying the fault.
Table 8.5 lists the protection fault codes.

c. Sets AC2 equal to the specific address (offending address) that caused the
reference problem, if applicable (bit 0 is undefined). See Table 8.5.

4. Checks for stack overflow.

If a stack overflow occurs, the processor pushes a stack fault return block onto the
stack and processes the stack fault. The stack fault return block contains the return
address to the original fault.

If no stack overflow occurs, the processor continues to service the original fault.
5. Jumps to the fault handler and executes the first instruction.

To transfer program control, the processor refers to a pointer in reserved memory,
that contains the starting address of the fault handler. Each segment maintains a
set of reserved memory locations. Refer to the specific functional characteristics
manual for further information on reserved memory.

8-14

Memory and System Management

Code AC 2 Meaning Explanation
{octal) Address
0 Y Read violation Bit 2 of the specified PTE contains a
zero
1 Y Write violation Bit 3 of the specified PTE contains a
zero
2 Y Execute violation Bit 4 of the specified PTE contains a
zero
3 Y Validity violation (SBR | Bit O of the specified SBR or PTE
or PTE) contains a zero
4 Y Inward address refer- | Attempted data access to a location in
ence an inner segment
5 Y Defer (indirect) violation | More than 15 levels of indirection
specified
6 N lllegal gate Gate number specified in an inward call
is greater than or equal to the maximum
number of gates; or a gate bracket
access violation
7 Y Outward call Attempted transfer of control from the
current segment to another segment
with an outward subroutine calt
10 Y Inward return Attempted transfer of control from the
current segment to another segment
with an inward return from a subroutine
1 N Privileged instruction vi- | Attempted use of a privileged instruc-
olation tion in a segment other than segment
o]
12 N 1/0O protection violation | Attempted use of an I/O instruction
when bit 3 of the current segment’s
SBR is set to zero

Table 8.5 Protection fault codes

Overview

Chapter 9
C/350 Programming

The 32-bit processor executes 16-bit processor instructions to provide upward program
compatibility and to develop 16-bit programs (for instance, for the ECLIPSE C/350
processor). The C/350 Programming chapter presents both issues.

Programs that include C/350 memory-referenced and C/350 stack-referenced instruc-
tions must meet certain requirements or restrictions explained in this chapter. The
specific functional characteristics manual presents any additional machine restrictions.
Refer to the ECLIPSE C/350 Principles of Operation manual for an explanation of
C/350 instructions, terms, and conventions.

C/350 Registers

The C/350 fixed-point accumulator bits 0-15 correspond to the wide fixed-point
accumulator bits 16-31. When a C/350 instruction loads data into an accumulator, it
alters bits 16-31, and ignores bits 0-15. When a C/350 instruction reads data from an
accumulator (bits 16-31), it does not alter the contents (such as a CLM instruction).

The C/350 fixed-point accumulator bits 1-15 correspond to the wide accumulator bits
17-31 for accumulator relative addressing.

The C/350 instructions do not affect the processor status register.

The C/350 floating-point accumulators are identical to the 32-bit processor floating-point
accumulators.

9-2

C/350 Programming

The C/350 program counter bits 1-15 correspond to the wide program counter bits
17-31. A C/350 program flow instruction modifies bits 17-31, while the most significant
bits are the current segment and zeroes (see Figure 9.1).

Segment ¢ B 0 C /350 Effective Address
L T e e i e e L A A B P ¥

SD-03547

Figure 9.1 C/350 program counter format

where

Segment The segment number specifies the current segment.

C/350 Effective The C/350 effective address remains within the first 64 Kbytes
Address of the segment.

C/350 Stack

The C/350 stack (or narrow stack) supports C/350 program development and upward
program compatibility. Unlike the wide stack, the narrow stack uses three parameters
(in reserved memory) to define and to control the narrow stack.

1. The narrow stack limit -- defines the upper limit of the narrow stack.
Although specifying one word, the narrow stack limit functions like the wide stack
limit.

2. The narrow stack pointer -- initially, defines the lower limit of the narrow stack.

If you wish to enable narrow stack underflow, initialize the narrow stack pointer to
400g and start the narrow stack area at location 401g.

After accessing the narrow stack, the narrow stack pointer defines the current
location of the last word written onto or read from the narrow stack. (Although
specifying one word, the narrow stack pointer functions like the wide stack pointer.)

3. The narrow frame pointer -- defines a reference point in the narrow stack.

Although specifying one word, the narrow stack frame pointer functions like the
wide stack frame pointer.

The C/350 (or narrow) return block normally consists of five words: the contents of the
least significant 16 bits of the four accumulators, the least significant 15 bits of the
program counter or the frame pointer, and the carry in bit 0 of the last word pushed. The
Program Flow Management chapter presents the narrow stack fault-handling. Refer to
the ECLIPSE C/350 Principles of Operation manual for additional information.

C/350 Programming 9-3

C/350 Faults and Interrupts

The 32-bit processor services (with the same pointers and fault handlers) the 16- and
32-bit floating-point and decimal/ASCII faults. For floating-point faults, the processor
pushes a return block onto either the narrow or the wide stack, depending on the first
instruction of the floating-point fault handler (a 16- or 32-bit instruction). For

decimal /ASCII faults, the processor pushes a return block onto either the narrow or the
wide stack, depending on bit 0 of the fault code in AC1 (bit 0 equals one for C/350
faults). Thus, you can upgrade a program, written for the 16-bit processor to incorporate
32-bit processor enhancements. Refer to the Program Flow Management chapter for
more information on the fault handlers.

The 32-bit processor services (with the same pointer and interrupt handler) the 16- and
32-bit I/O interrupts. The processor pushes a return block onto either the narrow or the
wide stack, depending on the first instruction of the I/O interrupt handler (a 16- or
32-bit instruction). Thus, you can upgrade a program written for the 16-bit processor to
incorporate 32-bit processor enhancements. Refer to the Device Management chapter
for more information on the interrupt handler.

The 32-bit processor and the 16-bit processor use different methods to flag an interrupted
and resumable EDIT instruction. While the 16-bit processor sets ACO to minus one
(177777g), The 32-bit processor sets a resume flag (IRES) in the PSR and checks the
flag after completing the interrupt. For compatibility purposes, the 32-bit processor also
sets ACO to minus one.

Expanding an ECLIPSE C/350 Program

You can expand a 16-bit program by using a specific set of 32-bit instructions to

* Expand the program beyond 64 Kbytes.
» Use expanded data areas, such as large arrays.
¢ Utilize the 32-bit fixed arithmetic.

There are several methods available to expand a 16-bit program beyond 64 Kbytes. The
most reliable approach is to rewrite one of the subroutines to contain 32-bit instructions,
and place it in the segment anywhere above the lower 64 Kbytes. The program must call
the expanded subroutine with the XJSR or LJSR instruction. The subroutine must
begin with a wide special save (WSSVR or WSSVS) instruction and end with a wide
return (WRTN) instruction. Also, the subroutine must use the 32-bit memory-referenced
instructions.

To expand data areas for large arrays or buffers, the processor must perform address
calculations with the 32-bit fixed integer arithmetic, and it must reference data with the
32-bit memory-referenced instructions. You must then change the program to refer to
the expanded data area.

9-4 C/350 Programming

You can also create additional subroutines to maintain the large arrays and to reference
the data through these routines. If you write an additional subroutine, ensure that you
refer to the subroutine with the wide special save and wide return instructions. (The use
of SAVE and RTN result in the loss of bits 0 to 15 of the accumulators and the
processor status register.)

To use the 32-bit fixed point arithmetic, all operations on the data (loading, calculations,
and storing) must be performed with the 32-bit instructions. This can be accomplished
with spot changes or through new subroutines, but again, care must be taken when
mixing these operations with 16-bit operations.

Expanding an ECLIPSE C/350 Subroutine

You can call a C/350 subroutine from a 32-bit routine with the changes listed in Table
9.1.

Changes to C/350
Subroutine

Reason for Change

Replace SAVE and RTN with
WSSVS or WSSVR and
WRTN

Check external references for
32-bit memory reference in-
structions

Check short negative refer-

ences on the stack that may
require 32-bit displacements

Change a subroutine (to save
the 31-bit PC) that a routine
refers to with a JSR through
page zero

A routine can call the subroutine from an address, which exceeds 16
bits. Also, the accumulators can contain 32-bit entities.

A routine could pass 32-bit fixed-point data.
Also, a called lower level subroutine can be located in an address space,
which exceeds 16 bits.

Using WSSVS or WSSVR in this subroutine changes the size of the
pushed stack block, requiring the Assembler to recalculate the negative
reference.

A long address requires 31 bits, and can cause the program to run out
of page zero locations.

Use LJSR or XJSR to save the 31-bit PC.

Table 9.1 Alternations to C/350 subroutines

C/350 Instructions

The C/350 Instructions section presents the instructions that refer to memory or to the
narrow stack. The remaining C/350 instructions (such as ADD) are presented with the
other 32-bit processor instructions. (Appendix A identifies the C/350 instructions
supported on the 32-bit processor.) Refer to the specific functional characteristics
manual for any additional instructions.

C/350 Memory Reference Instructions

The processor considers the C/350 memory reference instructions to be within the first
32 Kwords (64 Kbytes) of the current segment. If the processor executes a C/350
memory reference instruction above the 32 Kword limit, the effective address reverts to
within the C/350 address space (lower 32 Kwords).

C/350 Programming 9-5

To refer to a word with a C/350 memory reference instruction, the processor forms an
effective address (see Figure 9.2).

@ | Segment [0 C/350 Effective Address
TR S e e e e L T T A A A AT
SD-03548

Figure 9.2 C/350 word addressing format

where

@ The indirect (@) bit in bit O forces indirect addressing (when set to
one), through a single word pointer.

Segment The segment number specifies the current segment.

Figure 9.3 illustrates the C/350 effective addressing.

Segment 3
0 15

Narrow word address 7734

A
4) 7735

[l= [[[[[[[[]

01 3 4 3 7737
7740

N N~
Indirect ~ Specifies C - 7741

Y o

bit zegment Word address specifies a word in memory. 7742

0 15

Words in memory

SD-03549

Figure 9.3 C/350 effective addressing

To refer to a byte, with a C/350 memory reference instruction, the processor forms a
byte address (see Figure 9.4).

Segment [0 R 0 C/350 effective Address b
5 gty T Tty T T T T T T ' T ' T 303l
SD-03550

Figure 9.4 C/350 byte addressing format

where
Segment The segment number in bits 0-2 specifies the current segment.
b The byte (b) indicator in bit 31 specifies the byte; b set to one specifies

least significant byte (bits 8-15 of a word).

9-6 C/350 Programming

Figure 9.5 illustrates C/350 byte addressing.

Segment 0 “—7 Byte indicator specifies
o] £ 15

| d high orde
Narrow byte address 2030 ;J;/:eor er or ugh order
A

(Y 4031

[Lo [on [ow [e [w0 [[[| o ﬂt L]

8
0o 2 3 1516 30 31 /
N y 4034 >
—— 2035 [o
Specifies - Word 4036
> 4036
segment O Word address specifies a word in memory 2037
In memory
4040
¢} 15
Words in memory
SD-03551

Figure 9.5 C/350 byte addressing

To refer to a bit with a C/350 memory reference instruction (BTO, BTZ, SNB, SZB,
and SZBO), the processor forms a word pointer and bit pointer from the contents of two
accumulators. The word pointer consists of an effective address (in the ACS accumulator)
and a word offset (in the ACD accumulator). The bit pointer is located in the least
significant bits of the ACD accumulator.

Figure 9.6 shows the accumulator formats for the BTO, BTZ, SNB, SZB,~and SZBO
instructions.

ACS Contents

{@l Segmentl O--mommemenemiees 0 [C/350 Effective Address
ot T T3 T T T Tty — T

ACD Contnets

[o 0 l Word Offset lBit Pointer l
T e e S T T e e B e e T AT 37

SD-03552

Figure 9.6 C/350 bit addressing format

where

@ The indirect (@) bit in bit 0 of the ACS accumulator forces indirect
addressing (when set to one), through a single word pointer.

Segment The segment number specifies the current segment.

The processor uses the ACS accumulator contents to calculate the effective address. For
the BTO and BTZ instructions, the processor limits effective addressing to the first 64
Kbytes of the current segment. If a bit instruction specifies the two accumulators as the
same accumulator, then the effective address is zero in the current segment.

C/350 Programming 9-7

In Figure 9.7, notice that the processor adds the word offset, an unsigned integer, to the
effective address and arrives at a final word address. The processor then locates the bit
using the bit pointer, which specifies the bit position (0-15) in the final word.

Must be O
Segment 6
ﬁ[ﬂOlOIOOOIOOO|OOO|OOO|000|OOO|OOO|111|111| o T3
0O 1 3 4 16 17 31 73
—~——— y
Indirect Specifies 74
bit segment 75
6
76
77
Word address specifies a word in memory P
1
101
Word offset specifies a word relative to the 102
word specified by thelword address. 103 Ve
104 P ‘¢
L~ ——
I 0]000|000|OOO|000|000 OOOIOOOIOOOIOHI 0011 0 15
Words in memory
0 15116 Bit pointer

specifies a bit in addressed word.

L[]

0 3 15

Must be 0

Word 102

SD-03553

Figure 9.7 BTO, BTZ, SNB, SZB, and SZBO bit addressing

Fixed-Point Instructions

Table 9.2 lists the C/350 fixed-point instructions that refer to memory. The table also
shows an equivalent 32-bit processor instruction that you can substitute to expand
(within the segment) the memory address range.

Unless otherwise stated, the C/350 instruction and the 32-bit processor equivalent
instruction use identical

» Single or double word instruction length

e Argument string

« Data access for writing and for reading (register or memory)
e Data precision of 16 bits

However, an equivalent 32-bit processor instruction uses a double word indirect pointer,
while the C/350 instruction uses a single word indirect pointer.

9-8

C/350 Programming

C/350 Operation Equivalent
Instruction Instruction
BAM Block add and move -
BLM Block move WBLM
BTO Set bit to one WBTO
BTZ Set bit to zero WBTZ
CLM Compare to limits and skip WCLM
CMP Character compare WCMP
CMT Character move until true WCMT
CMYV Character move WCMYV
COB Count bits WCOB
CTR Character translate and compare WCTR
DSZ Decrement and skip if zero XNDSZ *
EDIT Edit decimal and alphanumeric 16-bit data WEDIT
EDSZ Extended decrement and skip if zero XNDSZ
EISZ Extended increment and skip if zero XNISZ
ELDA Extended load accumulator XNLDA
ELDB Extended load byte (from memory to AC) XLDB
ESTA Extended store accumulator XNSTA
ESTB Extended store byte (right byte of AC to byte in memory) XSTB
ISZ Increment and skip if zero XNISZ *
LDA Load accumulator XNLDA *
LDB Load byte (from memory to AC) WLDB
LSN Load sign WLSN
POP Pop multiple accumulators WPOP
PSH Push multiple accumulators WPSH
SNB Skip on nonzero bit WSNB
SZB Skip on zero bit WSZB
SZBO Skip on zero bit and set to one WSZBO
STA Store accumulator XNSTA *
STB Store byte (right byte of AC to byte in memory) WSTB

Table 9.2 C/350 Fixed-point computing instructions

*The 32-bit processor equivalent instruction requires two words.

C/350 Programming

9-9

Floating-Point Instructions

Table 9.3 lists the C/350 floating-point instructions that refer to memory. The table also

shows an equivalent 32-bit processor instruction that you can substitute to expand

(within the segment) the memory address range.

Unless otherwise stated, the C/350 instruction and the 32-bit processor equivalent

instruction use identical

o Single or double word instruction length

¢ Argument string

« Data access for writing and for reading (register or memory)

o Data precision of 16, 32, or 64 bits

However, an equivalent 32-bit processor instruction uses a double word indirect pointer,

while the C/350 instruction uses a single word indirect pointer.

C/350 Operation Equivalent
Instruction Instruction
FAMD Add double (memory to FPAC) XFAMD
FAMS Add single (memory to FPAC) XFAMS
FDMD Divide double (FPAC by memory) XFDMD
FDMS Divide single (FPAC by memory) XFDMS
FFMD Fix to memory (FPAC to memory) WFFAD *
FLDD Load floating-point double XFLDD
FLDS Load floating-point single XFLDS
FLMD Float from memory WFLAD *
FLST Load floating-point status register LFLST **
FMMD Multiply double (FPAC by memory) XFMMD
FMMS Multiply single (FPAC by memory) XFMMS
FPOP Pop floating-point state WFPOP
FPSH Push floating-point state WFPSH
FSMD Subtract double (memory from FPAC) XFSMD
FSMS Subtract single (memory from FPAC) XFSMS
FSST Store floating-point status register LFSST **
FSTD Store floating-point double XFSTD
FSTS Store floating-point single XFSTS
LDI Load integer {memory to FPAC) WLDI
LDIX Load integer extended (memory to FPAC) WLDIX
STI Store integer (FPAC to memory) WSTI
STIX Store integer extended (FPAC to memory) WSTIX

Table 9.3 C/350 Floating-point computing instructions

*The WFFAD and WFLAD instruction use a 32-bit accumulator, while the equivalent C/350 instruction uses two memory words.

**The LFLST or LFSST instruction is a triple word instruction, while the C/350 instruction is a double word instruction.

9-10 C/350 Programming

Program Flow Instructions

Table 9.4 lists the C/350 program flow instructions that refer to memory. The table also
lists an equivalent 32-bit processor instruction that you can substitute to expand (within

the segment) the memory address range and to use the wide stack.

Unless otherwise stated, the C/350 instruction and the 32-bit processor equivalent

instruction use identical

 Single or double word instruction length
e Argument string

» Data access for writing and for reading (register or memory)

The data precision changes from 16 to 32 bits.

However, an equivalent 32-bit processor instruction uses a double word indirect pointer,
while the C/350 instruction uses a single word indirect pointer.

C/350 Operation Equivalent
Instruction Instruction
DSPA Dispatch LDSP
EJMP Extended jump XJMP
EJSR Extended jump to subroutine XJSR
ELEF Extended load effective address XLEF
JMP Jump -
JMP ,1 Jump, relative to the program counter WBR
JSR Jump to subroutine -
LEF Load effective address -
POPB Pop block and execute (return from XOPO) WPOPB
POPJ Pop PC and jump (return with PSHJ) WPOPJ
PSHJ Push jump (return with POPJ) XPSHJ
PSHR Push return address (pop with POPJ) -
RSTR Restore (return from VCT -- mode E) WRSTR **
RTN Return WRTN *
SAVE Save (used with JSR) WSSVR*
WSSVS *
SAVZ Save without arguments (used with JSR) WSSVR*
WSSVS *
XOPQ *** Extended operation (return with POPB) WXOP ***

Table 9.4 C/350 program flow management instructions

*The WRTN, WSSVS, and WSSVR instructions modify the OVK fixed-point overflow mask and use a return block of six double

words.

**The XVCT and WRSTR instructions use the wide stack, and are equivalent to RSTR and mode E of the VCT instruction.

L)

The XOPO and WXOP instructions are double word instructions.

C/350 Programming 9-11

Stack Instructions

Table 9.5 lists the C/350 stack instructions that refer to memory. The table also lists an
equivalent 32-bit processor instruction that you can substitute to expand (within the
segment) the memory address range.

Unless otherwise stated, the C/350 instruction and the 32-bit processor equivalent
instruction use identical

« Single or double word instruction length
¢ Argument string
o Data access for writing and for reading (register or memory)

The data precision changes from 16 to 32 bits.

However, an equivalent 32-bit processor instruction uses a double word indirect pointer,
while the C/350 instruction uses a single word indirect pointer.

C/350 Operation Equivalent
Instruction Instruction
MSP Modify stack pointer WMSP
POP Pop muiltiple accumulators WPOP
POPB Pop block and execute (return from XOPO) WPOPB
POPJ Pop PC and jump WPOPJ
PSH Push multiple accumulators WPSH
PSHJ Push jump XPSHJ

PSHR Push return address -
RSTR Restore (return from VCT -- mode E) WRSTR **
RTN Return WRTN *
SAVE Save (used with JSR) WSSVR*
WSSVS *
SAVZ Save without arguments {used with JSR) WSSVR*
WSSVS *
XOP(*** Extended operation (return with POPB) WXOP ***

Table 9.5 C/350 stack management instructions

*The WRTN, WSSVS, or WSSVR instructions modify the OVK fixed-point overflow mask and use a return block of six double words.
**The XVCT and WRSTR instructions use the wide stack, and are equivalent to RSTR and mode E of the VCT instruction.

***The XOPO and WXOP instructions are double word instructions.

Chapter 10

Instruction Dictionary

The Instruction Dictionary presents the global 16- and 32-bit instructions. The

instructions appear in alphabetical order of the Assembler instruction mnemonic. Each

instruction description includes

e Assembler instruction mnemonic and statement format.
» Bit format for the Assembler statement.

» Functional description of each instruction.

The Instruction Dictionary uses the following conventions and abbreviations.

UPPERCASE Uppercase or boldface characters indicate a literal argument in

and/or boldface an Assembler statement. When you include a literal argument
with an Assembler statement, use the exact form.

lowercase Lowercase or italic characters indicate a variable argument in

and/or italic an Assembler statement. When you include the argument with

an Assembler statement, substitute a literal value for the
variable argument.

[] The square brackets indicate an optional argument. Omit the
square brackets when you include an optional argument with
an Assembler statement.

ac Accumulator
acs Source accumulator
acd Destination accumulator

10-2 Instruction Dictionary

Add Complement
ADC/c][sh][#] acs,acd[skip]

[T [a0 [[o]o] o | <

T t t T
¢ 1 2 3 4 5 10 11

l SKIP I
12 13 15

t

Adds the logical complement of an unsigned integer to another unsigned integer.

Initializes carry to the specified value; adds the logical complement of the unsigned,
16-bit number in bits 16-31 of ACS to the unsigned, 16-bit number in bits 16-31 of
ACD; and places the result in the shifter. The instruction then performs the specified
shift operation and loads the result of the shift into bits 1631 of ACD if the no-load bit
is 0. If the skip condition is true, the next sequential word is skipped. For this instruction,
overflow is 0.

If the load option is specified, bits 0—15 of ACD are undefined.

NOTE: If the sum of the two numbers being added is greater than 65,535, the instruction complements
carry.

[e]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of ¢, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted 0 0 Leave CARRY unchanged
Z 0 1 |Initialize CARRY to O
(0] 1 O |Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol /sh/ Bits Shift Operation
8-9
omitted 0 0 Do not shift the result
L 01 Shift left
R 1 O Shift right

S 1 1 Swap the two 8-bit bytes

Instruction Dictionary 10-3

[#

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol [#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001 ,, other instructions
use the bit combinations.

[skip]

The processor can skip the next instruction if the condition test is true. The following
lists gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip] Bits Operation
13-15
omitted 0 O O Never skip
SKP 0 0 1 Always skip
SZC O 1 O Skipif CARRY is O
SNC O 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 0 Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Add

ADD/c/[sh][#] acs,acd[skip]
[11ACS|ACD|1|1I0|SH|C]#| SKIP I
"0 172 3 4 5 6 7 8 9 10 11 12 13 15

Performs unsigned integer addition and complements carry if appropriate.

Initializes carry to the specified value; adds the unsigned, 16-bit number in bits 16-31 of
ACS to the unsigned, 16-bit number in bits 16-31 of ACD; and places the result in the
shifter. The instruction then performs the specified shift operation and places the result
of the shift in bits 16-31 of ACD if the no-load bit is 0. If the skip condition is true, the
next sequential word is skipped. For this instruction, overflow is 0.

If the load option is specified, bits 0—15 of ACD are undefined.

NOTE: If the sum of the two numbers being added is greater than 65,535, the instruction complements
carry.

10-4 Instruction Dictionary

[c]
The processor determines the effect of the CARRY flag (c) on the old value of CARRY

before performing the operation (opcode). The following list gives the values of c, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted 0 O Leave CARRY unchanged
7 0 1 |Initialize CARRY to O
(0] 1 0 Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol [sh] Bits Shift Operation
8-9
omitted 0 0 Do not shift the result
L 01 Shift left
R 1 0 Shift right
S 1 1 Swap the two 8-bit bytes
[#

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol [#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001 ,, other instructions
use the bit combinations.

Instruction Dictionary 10-5

[skip]

The processor can skip the next instruction if the condition text is true. The following
lists gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip/ Bits Operation
13-186
omitted 0 0 O Never skip
SKP 0 0 1 Always skip
Sz7.C 0O 1 O Skipif CARRY is O
SNC 0 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 O Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Extended Add Immediate

ADDI iac

[1]1]1IACl1l1[1l1l1[1[1]1]0T0]:)| ' .'M,ME?IA.TE.FIEI:D. |

012346 6 7 8 9 1011121314156 16 e

Adds a signed integer in the range of —32,768 to +32,767 to the contents of an
accumulator.

Treats the contents of the immediate field as a signed, 16-bit, two’s complement number
and adds it to the signed, 16-bit, two’s complement number contained in bits 16-31 of
the specified accumulator, placing the result in bits 16-31 of the same accumulator.
Carry remains unchanged and overflow is 0.

Bits 015 of the modified accumulator are undefined after completion of this instruction.

Add Immediate

ADI n,ac

|1] v [a [o]ofofofofofofi1]ofofo]
SRR

o 1 2 3 4 5 6 7 8 9 10 11 12
Adds an unsigned integer in the range 1-4 to the contents of an accumulator.

Adds the contents of the immediate field NV, plus 1, to the unsigned, 16-bit number
contained in bits 16-31 of the specified accumulator, placing the result in bits 16-31 of
the same accumulator. Carry remains unchanged and overfiow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in the
immediate field. Therefore, the programmer should code the exact value that is to be added.

10-6 Instruction Dictionary

Example

Assume that AC2 contains 177775g. After the instruction ADI 4,2 is executed, AC2
contains 000001g and carry is unchanged. (See Figure 10.1.)

Before After

[iTs1[ri 111111 i01] [o]ooo]ooo[ooo]0oo]oo1]

Carry either O or 1 Carry unchanged
SD-03554

Figure 10.1 ADI example

AND with Complemented Source
ANC acs,acd

III ACS | ACD |0[0|1|1l0|010|110|0|0|
"0 12 3 '4 5 6 7 8 9 10 11 12 13 14 15

AND:s the contents of an accumulator with the logical complement of another
accumulator.

Forms the logical AND of the logical complement of the contents of bits 16-31 of ACS
and the contents of bits 16-31 of ACD and places the result in bits 16-31 of ACD. The
instruction sets a bit position in the result to 1 if the corresponding bits in ACS contain
0 and ACD contain 1. The contents of carry and ACS remain unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

AND

AND/c/[sh][#] acs,acd[skip]
Mo [[[o [© [¢] s |
"0'1'2 3 4 5 6 7 8 9 10 11 12 13 15

Forms the logical AND of the contents of two accumulators.

Initializes carry to the specified value. Places the logical AND of bits 16-31 of ACS and
bits 16-31 of ACD in the shifter. Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one; otherwise the resulting bit is 0. The
instruction then performs the specified shift operation and places the result in bits 16-31
of ACD if the no-load bit is 0. If the skip condition is true, the next sequential word is
skipped. Overflow is 0.

If the load option is specified, bits 0—15 of ACD are undefined.

Instruction Dictionary 10-7

[¢]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of c, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted 0 O Leave CARRY unchanged
Z O 1 Initialize CARRY to O
0 1 0 Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol [sh] Bits Shift Operation
8-9
omitted 0 O Do not shift the result
L 0 1 Shift left
R 1 0 Shift right
S 1 1 Swap the two 8-bit bytes
[#

Unless you use the no-load option (#), the processor laods the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values fo the no-load option, bit 12, and the operation.

Symbol [#/ Bit 12 Operation

omitted 0 Load the resuit into ACD

1 Do not load the result and restore the CARRY
flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001 2, Other instructions
use the bit combinations.

10-8

Instruction Dictionary

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip] Bits Operation
13-156
omitted 0 0 O Never skip
SKP 0 0 1 Always skip
SZC 0O 1 0 Skipif CARRY is O
SNC 0 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 0 Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

AND Immediate

ANDI iac
[Tl LTl]e] e D |
0 1 2 3 45 6 7 8 9101112131415 16 T T T Ty

ANDs the contents of an accumulator with the contents of a 16-bit number contained in
the instruction.

Places the logical AND of the contents of the immediate field and the contents of bits
16-31 of the specified accumulator in bits 16-31 of the specified accumulator. Carry is
unchanged and overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

Block Add and Move

BAM

[felel o[o[l] i [efofo]]ofo o]

9 10 11 12 13 14 15

Moves memory words from one location to another, adding a constant to each one.

Moves words sequentially from one memory location to another, treating them as
unsigned, 16-bit integers. After fetching a word from the source location, the instruction
adds the unsigned, 16-bit integer in bits 16-31 of ACO to it. If the addition produces a
result that is greater than 32,768, no indication is given.

Bits 17-31 of AC2 contain the address of the source location. Bits 17-31 of AC3 contain
the address of the destination location. The address in bits 17-31 of AC2 or AC3 is an
indirect address if bit 16 of that accumulator is 1. In that case, the instruction follows
the indirection chain before placing the resultant effective address in the accumulator.

The unsigned, 16-bit number in bits 16-31 of AC1 is equal to the number of words
moved. This number must be greater than 0 and less than or equal to 32,768. If the
number in AC1 is outside these bounds, no data is moved and the contents of the
accumulators remain unchanged.

Instruction Dictionary 10-9

Breakpoint
BKPT

AC Contents

(o} Addend

1 Number of words to be moved
2 Source address

3 Destination address

For each word moved, the count in AC1 is decremented by one and the source and
destination addresses in AC2 and AC3 are incremented by one. Upon completion of the
instruction, AC1 contains zeroes, and AC2 and AC3 point to the word following the last
word in their respective fields. The contents of carry and ACO remain unchanged.
Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Words are moved in consecutive, ascending order according to their addresses. The next
address after 77777g is O for both fields. The fields may overlap in any way.

NOTE: Because of the potentially long time that may be required to perform this instruction, it is
interruptible. If a Block Add and Move instruction is interrupted, the program counter is decremented
by one before it is placed in location 0 so that it points to the interrupted instruction. Because the
addresses and the word count are updated after every word stored, any interrupt service routine that
returns control to the interrupted program via the address stored in memory location 0 will correctly
restart the Block Add and Move instruction.

When updating the source and destination addresses, the Block Add and Move
instruction forces bit O of the result to 0. This ensures that upon return from an
interrupt, the Block Add and Move instruction will not try to resolve an indirect address
in either AC2 or AC3.

Llodefofof o[]]fofofo]ifofo]]
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The Breakpoint BKPT instruction pushes a wide return block onto the stack and

transfers program control to the breakpoint handler.

Before executing the BKPT instruction, you must first store, in memory, the one-word
opcode from the location that the BKPT instruction will occupy. Then, store the BKPT
instruction in that one-word location.

When the processor executes the BKPT instruction, it pushes a wide return block onto
the current stack and jumps to the breakpoint handler. (The value of the PC in the
return block is the address of the BKPT instruction.)

After pushing the return block, the BKPT instruction sets the PSR to zero. It also stores,
in the PC, the effective address of the wide jump indirect through the breakpoint handler
(located in the current segment). Finally, it checks for a stack overflow. If no overflow
occurs, control transfers to the breakpoint handler. If stack overflow occurs, the processor
services the stack fault (ACI contains the code 0).

Carry and overflow are indeterminate as a result of executing the BKPT instruction.

10-10 _Instruction Dictionary

Block Move
BLM

l;lf[;!;lg!;b%l*l*!°l°l'1010l°l

) 6 7 8 9 10 11 12 13 14 15
Moves memory words from one location to another.

The Block Move instruction is the same as the Block Add and Move instruction in all
respects except that no addition is performed and ACO is not used. Carry remains
unchanged and overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: The Block Move instruction is interruptible in the same manner as the Block Add and Move
instruction.

Set Bit to One
BTO acs,acd

|1|ACSIACDl1l0[0]0!0]0[0|1|0|0|0]
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets the specified bit to 1.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contain the high-order 16 bits and bits 16-31 of ACD contain the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16-bits of
the bit pointer and assumes the high-order 16 bits are 0. Carry remains unchanged and
overflow is 0.

The instruction then sets the addressed bit in memory to 1, leaving the contents of ACS
and ACD unchanged.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Set Bit to Zero
BTZ acs,acd

|1| ACS I ACD |1|0l0|0[1|0[0|1|0l0‘0]
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets the addressed bit to 0.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contains the high-order 16 bits and bits 16-31 of ACD contains the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0. Carry remains unchanged and
overflow is 0.

The instruction then sets the addressed bit in memory to 0, leaving the contents of ACS
and ACD unchanged.

Instruction Dictionary 10-11

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Command I/0
CIO acs,acd

FlACSIACDl1|0|1|1l1]1|0]1|0[0l1|
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Issues a read or write data command using the I/O channel bus. Carry is unchanged and
overflow is 0.

The command must have the form:

R/W' 1/0 CHANNELl REGISTER [
rramee i 20 T T T T T T r r T .

Bits 16-31 of ACS contain the command. Bit 16 of ACS indicates whether a read or a
write operation is to take place.

Bits 17-19 specify the I/O channel to use. I/O channel numbers range from 0-7.

The instruction issues the command contained in ACS directly via the 1/O channel bus.
Bit 16 of ACS determines the operation to perform. If bit 16 of ACS is 0, the instruction

performs a read data operation. The instruction receives the data via the I/O channel
bus and loads it into bits 16-31 of ACD. Bits 0—15 of ACD are undefined.

If bit 16 of ACS is 1, the instruction performs a write data operation and sends the data
in bits 16-31 of ACD via the I/O channel bus.

Command I/0 Immediate
CIOl i acs,acd

|||||||||||||||||||||| - T T T T T T

Issues a command via the I/O channel bus. Carry is unchanged and overflow is 0.

The command must have the form:

|R/WJ| 1/0 CHANNEL[REGISTER]

T T

F T T T t T T T T 1
16 17 15 20 31

If ACS and ACD are the same, then the immediate field contains the command to be
issued on the I/O channel bus (bits 17-19).

If ACS and ACD are different, then the logical OR of the immediate field and bits
16-31 of ACS is the command to be issued on the I/O channel bus.

If bit 16 of the command is a 0, then a read data operation issued via the 1/O channel
bus loads the received data into bits 16-31 of ACD. Bits 0—15 of ACD remain undefined.

If bit 16 of this state is 1, then a write data operation issued via the I/O channel bus
sends the contents of ACD bits 16-31 to the device.

10-12 Instruction

Dictionary

Compare to Limits

CLM acs,acd

|1|ACSIACDl1|0|0|1l1|1|1| Ioloiol
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compares a signed integer with two other integers and skips if the first integer is
between the other two. The accumulators determine the location of the three integers.

Compares the 16-bit, signed, two’s complement integer in bits 16-31 of ACS to two
16-bit, signed, two’s complement limit values, L and H. If the number in bits 16-31 of
ACS is greater than or equal to L and less than or equal to H, the next sequential word
is skipped. If the number in bits 16-31 of ACS is less than L or greater than H, the next
sequential word is executed.

If ACS and ACD are specified as different accumulators, the address of the limit value
L is contained in bits 16-31 of ACD. The limit value H is contained in the word
following L. Bits 0-15 of ACD are ignored.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

If ACS and ACD are specified as the same accumulator, then the integer to be
compared must be in that accumulator and the limit values L and H must be in the two
words following the instruction. L is the first word and H is the second word. The next
sequential word is the third word following the instruction.

When L and H are in line, this instruction can be placed anywhere in the 32-bit address
space. The instruction leaves carry unchanged; overflow is 0.

Character Compare

CMP

DNDENOnnonnononn

4 5 6 1011 12 13 14 15

Under control of the four accumulators, compares two strings of bytes and returns a
code in ACI reflecting the results of the comparison.

The instruction compares the strings one byte at a time. Each byte is treated as an
unsigned 8-bit binary quantity in the range 0-255;,. If two bytes are not equal, the
string whose byte has the smaller numerical value is, by definition, the lower valued
string. Both strings remain unchanged. The four accumulators contain parameters
passed to the instruction. Two accumulators specify the starting address, the number of
bytes, and the direction of processing (ascending or descending addressed) for each
string.

Bits 16-31 of ACO specify the length and direction of comparison for string 2. If the
string is to be compared from its lowest memory location to the highest, bits 16-31 of
ACO contain the unsigned value of the number of bytes in string 2. If the string is to be
compared from its highest memory location to the lowest, bits 16-31 of ACO contain the
two’s complement of the number of bytes in string 2.

Instruction Dictionary 10-13

Bits 16-31 of AC1 specify the length and direction of comparison for string 1. If the
string is to be compared from its lowest memory location to the highest, bits 16-31 of
ACO contain the unsigned value of the number of bytes in string 1. If the string is to be
compared from its highest memory location to the lowest, bits 16-31 of AC1 contain the
two’s complement of the number of bytes in string 1.

Bits 1631 of AC2 contain a byte pointer to the first byte compared in string 2. When
the string is compared in ascending order, AC2 points to the lowest byte. When the
string is compared in descending order, AC2 points to the highest byte.

Bits 16-31 of AC3 contain a byte pointer to the first byte compared in string 1. When
the string is compared in ascending order, AC3 points to the lowest byte. When the
string is compared in descending order, AC3 points to the highest byte.

Code Comparison Result
—1 string 1 << string 2
(] string 1 = string 2
+1 string 1 > string 2

The strings may overlap in any way. Overlap will not effect the results of the comparison.

Upon completion, bits 16-31 of ACO contain the number of bytes left to compare in
string 2. ACI contains the return code as shown in the list above. Bits 16-31 of AC2
contain a byte pointer either to the failing byte in string 2 (if an inequality were found)
or to the byte following string 2 (if string 2 were exhausted). Bits 16-31 of AC3 contains
a byte pointer either to the failing byte in string 1 (if an inequality were found) or to the
byte following string 1 (if string 1 were exhausted). Carry remains unchanged. Overflow
is 0.

If ACO and AC1 both contain 0 (both string 1 and string 2 have length zero), the
instruction compares no bytes and returns 0 in AC1. If the two strings are of unequal
length, the instruction pads the shorter string with space characters <040g> and
continues the comparison.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: The original contents of AC2 and AC3 must be valid byte pointers to an area in the user’s
address space. If the pointers are invalid, a protection fault occurs, even if no bytes are to be
compared. ACI contains the code 2.

Character Move Until True

CMT

LD Teo o] o] Joft]ofo]o]

— T t T T 1
o 7 8 10 11 12 13 14 15

Under control of the four accumulators, moves a string of bytes from one area of
memory to another until either a table-specified delimiter character is encountered or
the source string is exhausted.

10-14

Instruction Dictionary

The instruction copies the string one byte at a time. Before it moves a byte, the
instruction uses that byte’s value to determine if it is a delimiter. It treats the byte as an
unsigned 8-bit binary integer (in the range 0-255,,) and uses it as a bit index into a
256-bit delimiter table. If the indexed bit in the delimiter table is zero, the byte pending
is not a delimiter and the instruction copies it from the source string to the destination
string. If the indexed bit in the delimiter table is 1, the byte pending is a delimiter; the
instruction does not copy it and the instruction terminates.

The instruction processes both strings in the same direction, either from lowest memory
locations to highest (ascending order), or from highest memory locations to lowest
(descending order). Processing continues until there is a delimiter or the source string is
exhausted. The four accumulators contain parameters passed to the instruction.

Bits 16-31 of ACO contain the address (word address), possibly indirect, of the start of
the 256-bit (16-word) delimiter table.

Bits 16-31 of AC1 specify the length of the strings and the direction of processing. If the
source string is to be moved to the destination field in ascending order, bits 16~31 of
ACI contain the unsigned value of the number of bytes in the source string. If the source
string is to be moved to the destination field in descending order, bits 16-31 of AC1
contain the two’s complement of the number of bytes in the source string.

Bits 16-31 of AC2 contain a byte pointer to the first byte to be written in the destination
field. When the process is performed in ascending order, bits 16-31 of AC2 point to the
lowest byte in the destination field. When the process is performed in descending order,
bits 16-31 of AC2 point to the highest byte in the destination field.

Bits 16-31 of AC3 contain a byte pointer to the first byte to be processed in the source
string. When the process is performed in ascending order, bits 16-31 of AC3 point to the
lowest byte in the source string. When the process is performed in descending order, bits
16-31 of AC3 point to the highest byte in the source string.

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, bits 16-31 of ACO contain the resolved address of the translation table
and AC1 contain the number of bytes that were not moved. Bits 16-31 of AC2 contain
a byte pointer to the byte following the last byte written in the destination field. Bits
16-31 of AC3 contain a byte pointer either to the delimiter or to the first byte following
the source string. Carry remains unchanged. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: If ACI contains the number 0 at the beginning of this instruction, no bytes are fetched and
none are stored. The instruction becomes a No-Op.

If AC2=AC3, then no characters are written, the string is scanned for the delimiter.

The original contents of ACO, AC2, and AC3 must be valid pointers to some area in the user’s
address space. If they are invalid, a protection fault occurs, even if no bytes are to be moved. ACI
contains the code 2.

Instruction Dictionary 10-15

Character Move

i Jo o[[1 [t]eo]1]o]1]o]o]o]
t t 1 1 t 1 t T t t
Tt 2 3 4 5 12 13

| T t T T 1
0o 14 15

6 7 8 9 10 11

Under control of the four accumulators, moves a string of bytes from one area of
memory to another and returns a value in carry reflecting the relative lengths of source
and destination strings.

The instruction copies the source string to the destination field, one byte at a time. The
four accumulators contain parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied, and the direction of processing
(ascending or descending addresses) for each field.

Bits 16-31 of ACO specify the length and direction of processing for the destination
field. If the field is to be processed from its lowest memory location to the highest, bits
16-31 of ACO contain the unsigned value of the number of bytes in the destination field.
If the field is to be processed from its highest memory location to the lowest, bits 16-31
of ACO contain the two’s complement of the number of bytes in the destination field.

Bits 16-31 of AC1 specify the length and direction of processing for the source string. If
the string is to be processed from its lowest memory location to the highest, bits 16-31 of
AC]1 contain the unsigned value of the number of bytes in the source string. If the field
is to be processed from its highest memory location to the lowest, bits 16-31 of ACI
contain the two’s complement of the number of bytes in the source string.

Bits 16-31 of AC2 contain a byte pointer to the first byte to be written in the destination
field. When the field is written in ascending order, bits 16-31 of AC2 point to the lowest
byte. When the field is written in descending order, bits 16-31 of AC2 point to the
highest byte.

Bits 16-31 of AC3 contain a byte pointer to the first byte copied in the source string.
When the field is copied in ascending order, bits 16—31 of AC3 point to the lowest byte.
When the field is copied in descending order, bits 16-31 of AC3 point to the highest
byte.

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains 0 and bits 16-31 of AC1 contain the number of bytes
left to fetch from the source field. Bits 16-31 of AC2 contain a byte pointer to the byte
following the destination field; bits 16-31 of AC3 contain a byte pointer to the byte
following the last byte fetched from the source field. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: If ACO contains the number 0 at the beginning of this instruction, no bytes are fetched and
none are stored. If ACI is 0 at the beginning of this instruction, the destination field is filled with
space characters.

The original contents of AC2 and AC3 must be valid pointers to some area in the user’s address
space. If they are invalid, a protection fault occurs, even if no bytes are to be moved. ACI contains
the code 2.

10-16 _Instruction Dictionary

If the source field is longer than the destination field, the instruction terminates when
the destination field is filled and sets carry to 1. In any other case, the instruction sets
carry to 0.

If the source field is shorter than the destination field, the instruction pads the destination
field with space characters <<040g3>.

Count Bits
COB acs,acd

|1| ACSIACDI1l0]1|1l0|0]0|1|0|0|0]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15"

Counts and adds the number of ones in an accumulator to another accumulator.

Adds a number equal to the number of ones in bits 16-31 of ACS to the signed, 16-bit,
two’s complement number in bits 16-31 of ACD. The instruction leaves the contents of
ACS and the state of carry unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are specified to be the same accumulator, the instruction functions as
described above, except the contents of ACS will be changed.

Complement
COM(/c/[sh][#] acs,acd[skip]

l‘lIACSIACDIOlO’OI SH! o} |# SKIP I
"o 172 3 4 5 6 7 8 9 10 11 12 13 15

Forms the logical complement of the contents of an accumulator.

Initializes carry to the specified value, forms the logical complement of the number in
bits 16-31 of ACS, and performs the specified shift operation. The instruction then
places the result in bits 1631 of ACD if the no-load bit is 0. If the skip condition is true,
the next sequential word is skipped.

If the load option is specified, bits 0—15 of ACD are undefined.
For this instruction, overflow is 0.
[e]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of c, bits 10
and 11, and the operation.

Symbol [c/ Bits Operation
10-11
omitted 0 0 Leave CARRY unchanged
Z 0 1 Initialize CARRY to O
(0] 1 0 Initialize CARRY to 1

C 1 1 Complement CARRY

Instruction Dictionary 10-17

[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol [sh] Bits Shift Operation
8-9
omitted 0 O Do not shift the resuit
L 01 Shift left
R 1 0 Shift right
S 1 1 Swap the two 8-bit bytes
[#

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol /#/ Bit 12 Operation

omitted 0 Load the result into ADC

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always option. Thus, the instruction may not end in 1000, or 1001 ,, other instructions use
the bit combinations.

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip] Bits Operation

13-156
omitted 0 0 0O Never skip
SKP 0 0 1 Always skip
SZC 0 1 0 Skipif CARRY is O
SNC 0 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 0 Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not 0

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

10-18

Instruction Dictionary

Complement Carry

CRYTC

ol fole D[Jol o fofof]

13 14 15

Complements the value of carry. Overflow is 0.

Set Carry to One

CRYTO

DE o[\[- [[] Jofol1]olol]

T T T

1
2 5 10 11 12 13 14 15

Unconditionally sets the value of carry to 1. Overflow is 0.

Set Carry to Zero

CRYTZ

r1|°|1|°|°I1l1|1|1|‘|°| []eo]]
"0 12 3 4 5 6 7 2 13 14 15

10 11 12

Unconditionally sets the value of carry to 0. Overflow is 0.

Character Translate

CTR

(Tl oo [o] i]o]r]e]t]o]o]o
T s e s e 7 8 9 10 t {

T T T
11 12 13 14 15

Under control of the four accumulators, translates a string of bytes from one data
representation to another and either moves it to another area of memory or compares it
to a second translated string.

The instruction operates in two modes: translate and move, and translate and compare.

When operating in translate and move mode, the instruction translates each byte in
string 1 and places it in a corresponding position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte translation table. The byte addressed
by the index then becomes the translated value.

When operating in translate and compare mode, the instruction translates each byte in
string 1 and string 2 as described above and compares the translated values. Each
translated byte is treated as an unsigned 8-bit binary quantity in the range 0-255,¢. If
two translated bytes are not equal, the string whose byte has the smaller numerical value
is, by definition, the lower valued string. Both strings remain unchanged.

Bits 16-31 of ACO specify the address, either direct or indirect, of a word which contains
a byte pointer to the first byte in the 256-byte translation table.

Instruction Dictionary 10-19

Bits 16-31 of ACI specify the length of the two strings and the mode of processing. If
string 1 is to be processed in translate and move mode, bits 16-31 of AC1 contain the
two’s complement of the number of bytes in the strings. If the strings are to be processed
in translate and compare mode, bits 16-31 of AC1 contain the unsigned value of the
number of bytes in the strings. Both strings are processed from lowest memory address
to highest.

Bits 16-31 of AC2 contain a byte pointer to the first byte in string 2.
Bits 16-31 of AC3 contain a byte pointer to the first byte in string 1.

Upon completion of a translate and move operation, bits 16-31 of ACO contain the
address of the word which contains the byte pointer to the translation table and AC1
contains 0. Bits 16-31 of AC2 contain a byte pointer to the byte following string 2 and
bits 16-31 of AC3 contain a byte pointer to the byte following string 1. Carry remains
unchanged. Overflow is 0.

Upon completion of a translate and compare operation, bits 16-31 of ACO contain the
address of the word which contains the byte pointer to the translation table. AC1
contains a return code as calculated in the list below. Bits 16-31 of AC2 contain a byte
pointer to either the failing byte in string 2 (if an inequality was found) or the byte
following string 2 (if the strings were identical). Bits 16-31 of AC3 contain a byte
pointer to either the failing byte in string 1 (if an inequality was found) or the byte
following string 1 if the strings were identical. Carry contains an indeterminate value.
Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Code Result

—1 Translated value of string 1 <<
translated value of string 2

o] Translated value of string 1 =
translated value of string 2

+1 Translated value of string 1 >
translated value of string 2

If the length of both string 1 and string 2 is 0, the compare option returns a 0 in AC1.

The fields may overlap in any way. However, processing is done one character at a time,
so unusual side effects may be produced by certain types of overlap.

Convert to 16-Bit Integer
CVWN ac

AnNESNNDENRON

T T

0 1 2 3 4 s 9 10 11 12 13 14 15

Converts a 32-bit integer to a 16-bit integer.

The instruction converts the 32-bit contents of the specified accumulator to a 16-bit
integer by extending bit 16 into bits 0—15. If the 17 most significant bits do not contain
the same value (i.e., all 1’s or all 0’s) before conversion takes place, then this instruction
sets overflow to 1 before performing the conversion. Carry is unchanged.

10-20 Instruction Dictionary

Decimal Add
DAD acs,acd

pEarInonnooonnon

o 1 2 3 4 5 6 7 8 9 10'” 12 13 14 15

Performs decimal addition on 4-bit binary coded decimal (BCD) numbers and uses
carry for a decimal carry.

Adds the unsigned decimal digit contained in bits 28-31 of ACS to the unsigned decimal
digit contained in bits 28-31 of ACD. Carry is added to this result. The instruction then
places the decimal units’ position of the final result in bits 28-31 of ACD and the
decimal carry in carry. The contents of ACS and bits 0-27 of ACD remain unchanged.
Overflow is 0.

NOTE: No validation of the input digits is performed. Therefore, if bits 28-31 of either ACS or
ACD contain a number greater than 9, the results will be unpredictable.

Example

Assume that bits 28—31 of AC2 contain 9, bits 28-31 of AC3 contain 7, and carry is 0.
After the instruction DAD 2,3 is executed, AC2 remains the same; bits 28-31 of AC3

contain 6; and carry is 1, indicating a decimal carry from this Decimal Add. (See Figure
10.2.)

Before After

ac2 [oJooo]ooo]ooofoo1]oo1] [o]ooo]ooo]o0o o001 foor

acs [o]oooJoooJoooooo] 1] [o]ooo[ooo]oo0[a00]110]
Carry = 0 Carry = 1

SD-03555

Figure 10.2 DAD example

Add to DI (edit subopcode)

DADI p0

DOOODEEDEESSSS.

15

Adds the 8-bit two’s complement integer specified by p0 to the Destination Indicator
(D).

Add to P Depending on S (edit subopcode)

DAPS p0

pRonnnnn = |

T T
0 15

If S is 0, the instruction adds the 8-bit two’s complement integer specified by p0 to the
opcode Pointer (P). Before the add is performed, P is pointing to the byte containing the
DAPS opcode.

Instruction Dictionary 10-21

Add to P Depending on T (edit subopcode)
DAPT p0

[o‘olo{ol1|o}1|1l p0
"o 12 '3 4 85 6 7 8 ' '

]

If T is one, the instruction adds the 8-bit two’s complement integer specified by p0 to
the opcode Pointer (P). Before the add is performed, P is pointing to the byte containing
the DAPT opcode.

Add to P (edit subopcode)

DAPU p0
l°1°l°|1l°|‘l1|‘| po
T e

15

Adds the 8-bit two’s complement integer specified by p0 to the opcode Pointer (P).
Before the add is performed, P is pointing to the byte containing the DAPU opcode.

Add to SI (edit subopcode)
DASI po

[ofofof1]ofol]1] 0 |
e

Adds the 8-bit two’s complement integer specified by p0 to the Source Indicator (SD.

Decrement and Jump if Nonzero (edit subopcode)
DDTK ,p0

lofofofofofol s ~~ x T e] |

Decrements a word in the stack by one. If the decremented value of the word is nonzero
the instruction adds the 8-bit two’s complement integer specified by p0 to the opcode
Pointer (P). Before the add is performed, P is pointing to the byte containing the DDTK
opcode.

9

For EDIT if the 8-bit two’s complement integer specified by k is negative, the word
decremented is at the address, narrow stack pointer+1+k. If k is positive, the word
decremented is at the address, narrow frame pointer+1+k.

For WEDIT if the 8-bit two’s complement integer specified by k is negative, the word
decrement is at address WSP + 2 + (2*)k. If k is positive, the word decremented is at
address WFP + 2 + (2*)k.

10-22

instruction Dictionary

End Edit (edit subopcode)

DEND

[ofolelelefofole] |

o 15

Terminates the Edit subprogram.

Dequeue a Queue Data Element

DEQUE

L.

!;!;l;lg!jl;!;l;!;l;!°l°l‘I°|°l‘l

0 11 12 13 14 15

Dequeues a data element.
ACO contains the effective address of a queue descriptor.

AC1 specifies the element to be dequeued. The instruction dequeues an element by
writing -1 in the forward and backward links. If the contents of AC1 # -1, then the
accumulator contains the effective address of the data element to be deleted. If the
contents of AC1 = -1, then the accumulator deletes the head element of the queue (as
obtained from the queue descriptor pointed to by the effective address in ACO).

The instruction first reads all of the links required to complete the dequeuing operation.
If a page fault occurs, the instruction restarts at the beginning of the link.

The DEQUE instruction requires -- in addition to page zero of the ring of execution for
this instruction -- eight pages to be resident, in the worst case, before the instruction will
complete. Therefore, nine pages may be required to be resident by this instruction. The
worst case occurs when inserting an element between two other elements and when all of
the elements and the queue header have one of their affected links on a page boundary.

When all of the required pages are resident, the instruction then attempts to dequeue the
data element.

o If dequeuing from an empty queue, then AC1 remains unchanged. If dequeuing the
last data element, then the instruction updates AC1 with the address of the data
element that was just dequeued. In either case, the next sequential word is executed.

o If dequeuing a data element from a queue containing two or more data elements, then

the instruction updates AC1 with the address of the dequeued data element. The next
sequential word is skipped..

If the data element was the head or tail of the queue, the instruction updates the queue
descriptor appropriately.

The instruction checks all reads and writes of links in data elements and queue descriptors
against the current ring. Ring numbers of the link addresses must be greater than or
equal to the current ring.

The dequeue operation is not interruptible. The entire operation finishes before any
interrupts can be enabled. The contents of ACO, ACl1, AC2, and AC3 remain unchanged.
Carry is unchanged and overflow is 0.

Instruction Dictionary 10-23

Detected Error

DERR nn

n n n n

Llelefe [[Jofooa] 1 Jo o]]

o 1 2 3 9 10 11 12 13 14 15

The DERR instruction pushes onto the wide stack the PC of the DERR instruction and
a 5-bit code. The instruction then jumps to a user-supplied error (or trap) handler. The
processor zero extends the 5-bit error code to 32 bits before pushing it on the stack.

The one word pointer in page zero of the current segment is nonindirectable. When Bit
0 of the pointer is one, the DERR instruction checks for a stack overflow; when Bit 0 is
zero, the instruction ignores a stack overflow. Refer to the appropriate functional
characteristics manual for additional pointer information.

Carry is unchanged and overflow is 0.

Double Hex Shift Left

DHXL n,ac

DEREIDNNNE oTeTe [[o]o]o]

o 1 2 3 a4 7 8 10 11 13 14 15

Shifts the 32-bit contents of two accumulators left 1 to 4 hex digits, depending on the
value of a 2-bit number in the instruction.

Shifts the 32-bit number contained in bits 16-31 of AC and bits 16-31 of AC+1 left a
number of hex digits depending upon the immediate field N. The number of digits
shifted is equal to N+ 1. Bits shifted out are lost and the vacated bit positions are filled
with zeroes. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.
NOTES: If AC is specified as AC3, then AC+1 is ACO.

The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits to be
shifted.

If n is equal to 4, the contents of AC+1 are placed in AC and AC+1 is filled with zeroes.

Double Hex Shift Right

DHXR n,ac

DEREIDNnNnonnonn

0 11 14 15

Shifts the 32-bit contents of two accumulators right 1 to 4 hex digits, depending on the
value of a 2-bit number in the instruction.

Shifts the 32-bit number contained in bits 16-31 of AC and bits 16-31 of AC+1 right
a number of hex digits depending upon the immediate field N. The number of digits
shifted is equal to N+ 1. Bits shifted out are lost and the vacated bit positions are filled
with zeroes. Carry remains unchanged and overflow is 0.

10-24 Instruction Dictionary

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.
NOTES: If AC is specified as AC3, then AC+1 is ACO.

The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits to be
shifted.

If n is equal to 4, the contents of AC are placed in AC+1 and AC is filled with zeroes.

Data In A '
DIA/f] ac,devicef

: \ N -
T

lO 111|AC|OIO|1I F l DEVICE

—t— t T t + + t T t T T T T

6 1 2 3 4 5 6 7 8 8 10 "5

Transfers data from the A buffer of an I/O device to bits 16-31 of an accumulator.

The contents of the A input buffer in the specified device are placed in bits 16-31 of the
specified accumulator. After the data transfer, the Busy and Done flags are set according
to the function specified by F.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.

Data In B
DIB/f] ac,device
T e o] r [owe]
Yo 172 3 4 85 6 7 8 9 10 | T
Transfers data from the B buffer of an I/O device to bits 16-31 of an accumulator.
Places the contents of the B input buffer in the specified device in bits 16-31 of the
specified accumulator. After the data transfer, sets the Busy and Done flags according
to the function specified by F.
The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.
Data In C

DIC/f] ac,device

|0 1}1|AC|1|011| F I DEVICE

o 1 2 3 4 5 6 7 8 9 10 ETR

Transfers data from the C buffer of an 1/O device to bits 16-31 of an accumulator.

Places the contents of the C input buffer in the specified device in bits 16-31 of the
specified accumulator. After the data transfer, sets the Busy and Done flags according
to the specified F.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device. Bits in the accumulator that do not receive data are set to 0.

NOTE: The Assembler and processor reserve the DICC 0,CPU (IORST) instruction for resetting
1)0.

Instruction Dictionary 10-25

Insert Characters Immediate (edit subopcode)
DICI n,p0/,pl,...p(n-1)]

I?lo'lo]1|oioiol1i n | pO i p1 ... pin-1) [

Inserts n characters from the opcode stream into the destination field beginning at the
position specified by DI. Increases P by n+2 and increases DI by ».

Insert Character J Times (edit subopcode)
DIMC j,p0

ool o[o] ,- I -
o1 2 j

"ttt
3 4 5 6 7 8 15 16

l
—
Inserts the character specified by p0 into the destination field a number of times equal

to j beginning at the position specified by DI. Increases DI by j.

Insert Character Once (edit subopcode)
DINC p0

Tefe [oo le]o] - |

Inserts the character specified by p0 in the destination field at the position specified by
DI. Increments DI by one.

Insert Sign (edit subopcode)
DINS p0,pl

CLlele el w T o]

If the Sign flag (S) is 0, the instruction inserts the character specified by p0 in the
destination field at the position specified by DI. If S is 1, the instruction inserts the
character specified by p/ in the destination field at the position specified by DI.
Increments DI by one.

Insert Character Suppress (edit subopcode)
DINT p0,pI

[53 E1 1 X K S AR

If the significance Trigger (T) is 0, the instruction inserts the character specified by p0
in the destination field at the position specified by DI. If T is 1, the instruction inserts
the character specified by p/ in the destination field at the position specified by DI.
Increments DI by one.

10-26

Instruction Dictionary

Unsigned Divide

DIV

ERONDDNNNnnnnnong

T + T T
1

o 1 2 3 4 5 6 7 8 9 10

Divides the unsigned 32-bit integer in bits 16-31 of two accumulators by the unsigned
contents of a third accumulator. The quotient and remainder each occupy one
accumulator.

Divides the unsigned, 32-bit number contained in bits 16-31 of ACO and bits 16-31 of
AC1 by the unsigned, 16-bit number in bits 16-31 of AC2. The quotient and remainder
are unsigned, 16-bit numbers and are placed in bits 16-31 of AC1 and ACO, respectively.
Carry is set to 0. The contents of AC2 remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: Before the divide operation takes place, the number in bits 16-31 of ACO is compared to the
number in bits 16-31 of AC2. If the contents of bits 16-31 of ACO are greater than or equal to the
contents of bits 16-31 of AC2, an overflow condition is indicated. Carry is set to | and the operation
is terminated. All operands remain unchanged.

Signed Divide

DIVS

LDl fefos[ofo]o]

L frfo]

"o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the signed 32-bit integer in bits 16-31 of two accumulators by the signed
contents of a third accumulator. The quotient and remainder each occupy one
accumulator.

Divides signed, 32-bit two’s complement number contained in bits 16-31 of ACO and
bits 16-31 of AC1 by the signed, 16-bit two’s complement number in bits 16-31 of AC2.
The quotient and remainder are signed, 16-bit numbers and occupy bits 16-31 of ACI
and ACO, respectively. The sign of the quotient is determined by the rules of algebra.
The sign of the remainder is always the same as the sign of the dividend, except that a
zero quotient or a zero remainder is always positive. Carry is set to 0. The contents of
AC2 remain unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the quotient is such that it will not fit into bits 16-31 of ACI, an
overflow condition is indicated. Carry is set to | and the operation is terminated. The contents of
ACO and ACI are unpredictable.

Instruction Dictionary 10-27

Sign Extend and Divide

DIVX

o a i [efee] oo o]
e A R M RaTaar L

— t t
0 10 11 12 13 14 15

Extends the sign of one accumulator into a second accumulator and performs a Signed
Divide on the resuit.

Extends the sign of the 16-bit number in bits 16-31 of AC1 into bits 16-31 of ACO by
placing a copy of bit 16 of AC1 in bits 16-31 of ACO. After extending the sign, the
instruction performs a Signed Divide operation. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Double Logical Shift
DLSH acs,acd

DErInnonnoonnon

o 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the 32-bit contents of two 16-bit accumulators left or right, depending on the
contents of a third accumulator.

Shifts the 32-bit number contained in bits 1631 of ACD and bits 16-31 of ACD+1
either left or right depending on the number contained in bits 24-31 of ACS. The signed,
8-bit two’s complement number contained in bits 24-31 of ACS determines the direction
of the shift and the number of bits to be shifted. If the number in bits 24-31 of ACS is
positive, shifting is to the left; if the number in bits 24-31 of ACS is negative, shifting is
to the right. If the number in bits 24-31 of ACS is zero, no shifting is performed. Bits
0-23 of ACS are ignored.

AC3+1 is ACO. The number of bits shifted is equal to the magnitude of the number in
bits 24—31 of ACS. Bits shifted out are lost and the vacated bit positions are filled with
zeroes. Carry and the contents of ACS remain unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the number in bits 24-31 of ACS is greater than 31 o, bits 16-31 of ACD
are set 1o 0. Carry and the contents of ACS remain unchanged.

Move Alphabetics (edit subopcode)

DMVA

[oolofol] 1]o]1] !]

15

Moves j characters from the source field (beginning at the position specified by SI) to
the destination field (beginning at the position specified by DI). Increases both SI and
DI by j. Sets T to 1.

Initiates a commercial fault if the attribute specifier word indicates that the source field
is data type 5 (packed). Initiates a commercial fault if any of the characters moved is not
an alphabetic (A-Z, a-z, or space).

10-28 Instruction Dictionary

Move Characters (edit subopcode)

DMVC

lofolofoln[ofolo] o«]

0o 1 2 3 4 5 6 7 8 15

For EDIT, the DMVC instruction increments SI if the source data type is 3 and j>0.
The instruction then moves j characters from the source field beginning at the position
specified by SI to the destination field beginning at the position specified by DI.
Increases SI and DI by j. Sets T to 1.

For WEDIT, the DMVC instruction increments SI if the source data type is 3,j>0, and
SI points to the sign of the source number. The instruction then moves j characters from
the source field beginning at the position specified by SI to the destination field beginning
at the position specified by DI. Increases both SI and DI by j. Sets T to 1.

Initiates a commercial fault if the attribute specifier word indicates that the source is
data type S (packed). Performs no validation of the characters.

Move Float (edit subopcode)
DMVF j,pOpl,p2

203 13 T S S N]

vvv

If the source data type is 3, j>0, and SI points to the sign of the source number, the
instruction increments SI. Then for j characters, the instruction either (depending on T)
places a digit substitute in the destination field (beginning at the position specified by
DI) or moves a digit from the source field (beginning at the position specified by SI) to
the destination field.

When T changes from 0 to 1, the DMVF instruction places in the destination field the
digit substitute and the digit. DI increases by j+ 1. SI increases by the smaller value of
either j or the remaining number of digits to move.

If T'is 1 or 0, DI increases by j. When T is 1, the instruction moves each digit processed
from the source field to the destination field. When T is 0 and the digit is a zero or space,
the instruction places p0 in the destination field. When T is 0 and the digit is a nonzero,
the instruction sets 7 to 1 and the characters placed in the destination field depend on S.
If S'is 0, the instruction places p/ in the destination field followed by the digit. If S is 1,
the instruction places p2 in the destination field followed by the digit.

If the source data type is 2, the state of SI is undefined after the least significant digit
has been processed.

The instruction initiates a commercial fault if any of the digits processed is not valid for
the specified data type.

Instruction Dictionary 10-29

Move Numerics (edit subopcode)

DMVN

[ojofofof1]ofo]o] 1 |
"o 12 3 4 5 6 7 8 7 Tas
The DMVN instruction increments SI by the smaller value of either j or the remaining
number of characters to move if the source data type is 3, if J>0, and if SI points to the
sign of the source number.

The DMVN instruction moves j characters from the source field (beginning at the
position specified by SI) to the destination field (beginning at the position specified by
DI.) DI increases by j and T sets to 1. The DMVN instruction moves j characters from
the source field beginning at the position specified by SI to the destination field beginning
at the position specified by DI.

The DMVN instruction increases DI by j and sets T to 1. DMVN compares j to the
remaining number of source characters to move and increases SI by the smaller of the
two values if the source data type is 3, if >0, and if SI points to the sign of the source
number.

Initiates a commercial fault if any of the characters moved is not valid for the specified
data type.

For data type 2, the state of SI is undefined after the least significant digit has been
processed.

Move Digit with Overpunch (edit subopcode)
DMVO p0,pl,p2,p3

0 05 E 0 S R T R |

0 1 2 3 456 7 8 15 16 23 24 31 32 39 40 47

Increments SI if the source data type is 3 and SI points to the sign of the source number.
The instruction then either places a digit substitute in the destination field (at the
position specified by DI) or moves a digit plus overpunch from the source field (at the
position specified by SI) to the destination field (at the position specified by DI). DI and
SI always increase by one.

If the source data type is 2, the state of SI is undefined after the least significant digit
has been processed.

If the digit is a zero or space and S is 0, then the instruction places p0 in the destination
field. If the digit is a zero or space and S is 1, then the instruction places p!I in the
destination field. If the digit is a nonzero and S is 0, the instruction adds p2 to the digit
and places the result in the destination field. If the digit is a nonzero and S is 1, the
instruction adds p3 to the digit and places the result in the destination field. If the digit
is a nonzero, the instruction sets 7 to 1. The instruction assumes that p2 and p3 are
ASCII characters.

The instruction initiates a commercial fault if the character is not valid for the specified
data type.

10-30 _Instruction Dictionary

| Move Numeric with Zero Suppression (edit subopcode)
DMVS j,p0

.‘_.
o
4+

| o] |

Tt Tt 777
R 345678 15 16 23 24 31

Increments SI if the source data type is 3, j>0, and SI points to the sign of the source
number. The instruction then moves j characters from the source field (beginning at the
position specified by SI) to the destination field (beginning at the position specified by
DI). Moves the digit from the source to the destination if T is 1. Replaces all zeros and
spaces with p0 as long as T is 0. Sets T to | when the first nonzero digit is encountered.

* DI always increases by j. SI increases by the smaller value of either j or the remaining
number of characters to move.

If the source data type is 2, the state of the SI is undefined after the least significant
digit has been processed.

This opcode destroys the data type specifier.

Initiates a commercial fault if any of the characters moved is not a numeric (0-9 or
space).

| End Float (edit subopcode)
DNDF pO,pl

lofojofofofofols] e | e | |

.................................

0 1t 2 3 45 6 7 8 15 16 23 24 31

If T'is 1, the instruction places nothing in the destination field and leaves DI unchanged.
If Tis 0 and S is 0, the instruction places p0 in the destination field at the position
specified by DI. If T'is 0 and S is 1, the instruction places p/ in the destination field at
the position specified by DI. It increases DI by 1 and sets 7 to 1.

Data Out A
DOA/f] ac,device

lzl:!;lAClOl IOI I 'DE\{ICEI . l

15

Transfers data from bits 16-31 of an accumulator to the A buffer of an I1/O device.

Places the contents of bits 16-31 of the specified accumulator in the A output buffer of
the specified device. After the data transfer, sets the BUSY and DONE flags according
to the function specified by F. The contents of the specified accumulator remain
unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

Instruction Dictionary 10-31

Data Out B
DOB/f] ac,device

r0|1[1‘ AC]1
= t T

1 2 3 4 5

DEVICE J

lofo] & |
"6 7 8 9 15

T

Transfers data from bits 16-31 of an accumulator to the B buffer of an I/O device.

Places the contents of bits 16-31 of the specified accumulator in the B output buffer of
the specified device. After the data transfer, sets the BUSY and DONE flags according
to the function specified by F. The contents of the specified accumulator remain
unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

Data Out C
DOC/f] ac,device

F[l|1|ACl1II|O‘F! DEVICE
i e o T T T T

T T T T

"2 '3 4 5 & 10 15
Transfers data from bits 16-31 of an accumulator to the C buffer of an I/O device.

Places the contents of bits 16-31 of the specified accumulator in the C output buffer of
the specified device. After the data transfer, sets the BUSY and DONE flags according
to the function specified by F. The contents of the specified accumulator remain
unchanged.

The number of data bits moved depends upon the size of the buffer and the mode of
operation of the device.

NOTE: The Assembler and processor reserve the DOC 0,CPU (HALT) instruction for stopping the
processor.

Decimal Subtract

DSB acs,acd
l'll ACS ’ ACD |0|O|0|1I1‘0’0l1|010|0]
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Performs decimal subtraction on 4-bit binary coded decimal (BCD) numbers and uses
carry as a decimal borrow.

Subtracts the unsigned decimal digit contained in ACS bits 28-31 from the unsigned
decimal digit contained in ACD bits 28-31. Subtracts the complement of carry from this
result. Places the decimal units’ position of the final result in ACD bits 28-31 and the
complement of the decimal borrow in carry. In other words, if the final result is negative,
the instruction indicates a borrow and sets carry to 0. If the final result is positive, the
instruction indicates no borrow and sets carry to 1. The contents of ACS and bits 0-27 of
ACD remain unchanged. Overflow is 0.

10-32 Instruction Dictionary

Example

Assume that bits 28-31 of AC2 contain 9, bits 28-31 of AC3 contain 7, and carry
contains 0. After the instruction DSB 3,2 is executed, AC3 remains the same: bits
28-31 of AC2 contain 1; and carry is set to 1, indicating no borrow from this Decimal
Subtract (see Figure 10.3.)

Before After

AC2 Iglooolooolooolomlom] |o|ooo|ooo|ooo[ooo|oo1|

ac3 |0{o0o{000]ooo [ooo] 111] [0]000]000] 000 000] 1]
Carry = 0 Carry = 1

SD-03556

Figure 10.3 DSB exampie

Dispatch

DSPA ac,/@]displacement][,index]
I1|1|0J C{1’3NDEXJO[1I1|1|1|0I0|Ol@| DISPLACEMENT j
0’1234 56 78 91011121314151617 T

Conditionally transfers control to an address selected from a table.

Computes the effective address, E . This is the address of a dispatch table. As shown in
Figure 10.4, the dispatch table consists of a table of addresses. Immediately before the
table are two 16-bit, signed, two’s complement limit words, L and H. The last word of
the table is in location E+H— L.

L
H
Start of table —]
Last word
in table
E+ H-L /

DG-15412

Figure 10.4 DSPA dispatch table structure

Compares the signed, two’s complement number contained in bits 16-31 of the specified
accumulator to the limit words. If the number in the accumulator is less than L or
greater than H, sequential operation continues with the instruction immediately after
the Dispatch instruction.

If the number in bits 16-31 of the specified accumulator is greater than or equal to L
and less than or equal to H, the instruction fetches the word at location E— L+ number.

Instruction Dictionary 10-33

If the fetched word is equal to 177777, sequential operation continues with the instruction
immediately after the Dispatch instruction. If the fetched word is not equal to 1777775,
the instruction treats this word as the effective address. The instruction places the
effective address in the program counter and sequential operation continues with the
word addressed by the updated value of the program counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry is unchanged and overflow is 0.

Set S to One (edit subopcode)

DSSO

polofofofolifofn]]

o 1 2 3 4 5 6 7 8 T T

Sets the Sign flag (S) to 1.

Set S to Zero (edit subopcode)

DSSZ

[ofofofofo]]ofo]

Sets the Sign flag (S) to 0.

Store In Stack (edit subopcode)

DSTK k,p0

[o]o]ofo[o]o]1]o] ‘ | o] |

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0 1 2 3 45 6 7 8 15 16 23 24 31

For EDIT, DSTK stores the byte specified by p0 in bits 8—15 of a word in the narrow
stack. Sets bits 0-7 of the word that receives p0 to 0. If the 8-bit two’s complement
integer specified by k is negative, the instruction addresses the word receiving p0 by
narrow stack pointer+1+k. If k is positive, then the instruction stores p0 at the
address, narrow frame pointer+1+k.

For WEDIT, DSTK stores the byte specified by p0 in bits 24-31 of a word in the wide
stack. Sets bit 0-23 of the word that receives p0 to 0. If the 8-bit two’s complement
integer specified by k is negative, the instruction addresses the word receiving p0 by
WSP + 2 + (2*)k. If k is positive, then the instruction stores p0 at the address WFP +
2 + (2%)k.

10-34 _Instruction Dictionary

Set T to One (edit subopcode)
DSTO

[ofofofo]ofo]]
e —

Sets the significance Trigger (7) to 1.

Set T to Zero (edit subopcode)
DSTZ

Donooonnom

Sets the significance Trigger (7) to 0.

Decrement and Skip if Zero
DSZ [@/displacement],index]

|0]0|0I1l1|@[INDEX| DISPLACEMENT I
Y e B e e T T T T T TR

Decrements the addressed word, then skips if the decremented value is zero.

Computes the effective address, E. Decrements by one the word addressed by £ and
writes the result back into that location. If the updated value of the location is zero, the
instruction skips the next sequential word.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Overflow is 0 and carry remains unchanged.

Decrement the Word Addressed by WSP and Skip if Zero
DSZTS

nnnDBNnnnnDnnnnn

F t t t T t t 1
0 6 7 8 9 10 11 12 13 14 15

Decrements the double word addressed by the wide stack pointer and skips the next
16-bit word if the decremented value is zero.

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Decrements the contents of the word addressed by WSP. If the decremented value is
equal to zero, the instruction skips the next word. Carry is unchanged and overflow is 0.

NOTE: The operation performed by this instruction is not indivisible.

Instruction Dictionary 10-35

Load CPU Identification

ECLID

Edit
EDIT

Ll o [ofof e[[aofo] 1 ofo]o]

—

o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15
Loads the CPU identification into ACO.

Refer to the specific functional characteristics manual for the accumulator format.
Carry is unchanged and overflow is 0.

Lo L e o[T o]e]

T t +—t—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Converts a decimal number from either packed or unpacked form to a string of bytes
under the control of an edit subprogram. This subprogram can perform many different
operations on the number and its destination field, including leading zero suppression,
leading or trailing signs, floating fill characters, punctuation control, and insertion of
text into the destination field. The instruction also performs operations on alphanumeric
data if data type 4 is specified.

The instruction maintains two flags and three indicators or pointers.

The flags are the significance Trigger (7)) and the Sign flag (S). T is set to 1 when the
first nonzero digit is processed, unless otherwise specified by an edit opcode. At the
beginning of an Edit instruction, T is set to 0. S is set to reflect the sign of the number
being processed. If the number is positive, S is set to 0. If the number is negative, S is set
to 1.

The three indicators are the Source Indicator (SI), the Destination Indicator (DI), and
the opcode Pointer (P). Each is 16 bits wide and contains a byte pointer to the current
byte in each respective area. At the beginning of an Edit instruction, SI is set to the
value contained in bits 16-31 of AC3. DI is set to the value contained in bits 16-31 of
AC2 and P is set to the value contained in bits 16-31 of ACO. Also at this time, the sign
of the source number is checked for validity.

The subprogram is made up of 8-bit opcodes followed by one or more 8-bit operands. P,
a byte pointer, acts as the program counter for the Edit subprogram. The subprogram
proceeds sequentially until a branching operation occurs—much the same way programs
are processed. Unless instructed to do otherwise, the Edit instruction updates P after
each operation to point to the next sequential opcode. The instruction continues to
process 8-bit opcodes until directed to stop by the DEND opcode.

The subprogram can test and modify S and 7 as well as modify SI, DI and P.

Upon entry to EDIT, bits 16-31 of ACO contain a byte pointer to the first opcode of the
Edit subprogram.

Bits 16-31 of ACI contain the data-type indicator describing the number to be processed.
Bits 16-31 of AC2 contain a byte pointer to the the first byte of the destination field.

Bits 16-31 of AC3 contain a byte pointer to the first byte of the source field.

10-36 Instruction Dictionary

The fields may overlap in any way. However, the instruction processes characters one at
a time, so unusual side effects may be produced by certain types of overlap.

Upon successful termination, carry contains the significance Trigger; bits 16-31 of ACO
contain a byte pointer (P) to the next opcode to be processed; AC1 is undefined; bits
16-31 of AC2 contain a byte pointer (DI) to the next destination byte; and bits 16-31 of
AC3 contain a byte pointer (SI) to the next source byte. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: If SI is moved outside the area occupied by the source number, zeros will be supplied for
numeric moves, even if SI is later moved back inside the source area.

Some opcodes perform movement of characters from one string to another. For those opcodes which
move numeric data, special actions may be performed. For those which move non-numeric data,
characters are copied exactly to the destination.

The Edit instruction places information on the wide stack. Therefore, the wide stack must be set up
and have at least nine words available for use.

If the Edit instruction is interrupted, it places restart information on the wide stack, sets IRES, sets
RES, and places 177777 in ACO.

In the description of some of the Edit opcodes, we use the symbol j to denote how many
characters a certain operation should process. When the high order bit of j is 1, j has a
different meaning; it is a pointer into the stack to a word that denotes the number of
characters the instruction should process. So, in those cases where the high order bit of j
is 1, the instructions interpret j as an 8-bit, two’s complement number pointing into the
stack. The number on the stack is at the address

stack pointer + 1 + j.
The operation uses the number at this address as a character count instead of j.

An Edit operation that processes numeric data (e.g., DMVN) skips a leading or trailing
sign code it encounters; similarly, such an operation converts a high-order or low-order
sign to its correct numeric equivalent.

Extended Decrement and Skip if Zero
EDSZ [@]displacement][,index]

|1|010|111}1]INDEX10I0]1‘1]1[0|0|0|@| DISPLACEMENT l

0 1 2345 6 7 8 910111213 141516 17 RN

Decrements the addressed word, then skips if the decremented value is zero.

Computes the effective address, E. Decrements by one the contents of the location
addressed by £ and writes the result back into that location. If the updated value of the
word is zero, the instruction skips the next sequential word.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Instruction Dictionary 10-37

Extended Increment and Skip if Zero
EISZ [@]displacement/,index]

[+]oJo]]o]jwoedofo] 1]+]+]o[o]o]e] _DrsrLacEMeNT |

0123 456 7 8 91011121314 151617 | ERERET

Increments the addressed word, then skips if the incremented value is zero.

Computes the effective address, £. Increments by one the contents of the location
specified by E and writes the new value back into memory at the same address. If the
updated value of the location is zero, the instruction skips the next sequential word.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Extended Jump
EIMP [@)]displacement[,index]

l ’ l I]0| |INDEXI |0‘1| J l l | I@I DISPLACEMENT
0123 4567 8 9101112131418 1617 " T " a5

Loads an effective address into the program counter.

Computes the effective address, E, and places it in the program counter. Scquential
operation continues with the word addressed by the updated value of the program
counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry is unchanged and overflow is 0.

Extended Jump to Subroutine
EJSR /@]displacement[,index]

[| l 10’ l IINDEXI I ‘ l] I I IOI@I DISPLACEMENT ’
0123456 7 8 9101112131815 1617 T " '3

Increments and stores the value of the program counter in AC3, then places a new
address in the program counter.

Computes the effective address, E. The instruction then places the address of the next

sequential instruction (the instruction following the EJSR instruction) in AC3. Places E
in the program counter. Sequential operation continues with the word addressed by the
updated value of the program counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Overflow is 0 and carry is unchanged.

NOTE: The instruction computes E before it places the incremented program counter in AC3.

10-38 Instruction Dictionary

Extended Load Accumulator
ELDA ac,/@]displacement].index]

Wo[[Ac erDExl l 1 | l |0|0[@{ . ,D|S’PL»'ACE'ME'NT'

01234567891011121314151517 EERETY

Copies a word from memory to an accumulator.

Calculates the effective address, E. Places the contents of the location addressed by E in
bits 16-31 of the specified accumulator. The contents of the location addressed by E
remain unchanged.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Extended Load Byte
ELDB acdisplacement/,index]

[1Jo[of ac [1woedo[s[+]1[t]ofo]o] _~ ~ ~ oracemenr

"0 123 46 6 7 8 91011121314 16 16 T

Copies a byte from memory into an accumulator.

Forms a byte pointer from the displacement in the following way: shifts the 16-bit
number contained in the displacement field to the right one bit, producing a 15-bit
address and a 1-bit byte indicator. Uses the value of the index bits to determine an offset
value. Adds the offset value to the 15-bit address produced from the displacement to give
a memory address. The byte indicator designates which byte of the addressed word will
be loaded into bits 24-31 of the specified accumulator. The instruction sets bits 16-23 of
the specified accumulator to 0. Carry is unchanged and overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The instruction destroys the previous contents of bits 16-31 of the specified accumulator,
but it does not alter either the index value or the displacement.

The argument index selects the source of the index value. It may have values in the
range of 0-3. The following list gives the meaning of each value.

Index Bits Index Value
00 0
01 Address of the displacement field (word 2 of this
instruction)
10 Contents of bits 16-31 of AC2
11 Contents of bits 16-31 of AC3

This instruction sets overflow to 0 and carry is unchanged.

Instruction Dictionary 10-39

Extended Load Effective Address
ELEF ac,/@/displacement/[,index]

Iill]1lACl‘IlINDEXIOIOI‘Il1l1|0l0]0|@, DISPLACEMENT 7

—t T
0 1 2 3 4 56 6 7 8 9 101112 13 14 15 16 17 31

Places an effective address in an accumulator.

Places a 31-bit effective address constrained to be within the first 64 Kbytes of the
current segment in an accumulator. Sets bit 0 of the accumulator to 0. Overflow is 0 and
carry is unchanged.

Enqueue Towards the Head

ENQH

Enqueues a data element.
ACO contains the effective address of a queue descriptor.

ACI specifies the element (in the queue) in front of which the new element is added. If
the contents of AC1 # -1, then the accumulator contains the effective address of the
data element in front of which the new element is added. If the contents of AC1 = -1,
then the processor adds the new element to the head of the queue (as obtained from the
queue descriptor pointed to by the effective address in ACO0).

AC2 contains the effective address of the data element to be added to the queue.

The instruction checks the page or pages that contain the current element for valid read
and write access privileges. If the privileges are invalid, the appropriate protection fault
occurs and the queue remains unchanged.

If the privileges are valid, the instruction checks the queue descriptor addressed by ACO.
If the queue descriptor indicates an empty queue, the instruction ignores the contents of
ACI, places the data element addressed by AC2 in the queue, and updates the queue
descriptor. The next sequential word is executed.

If the descriptor indicates a queue that contains data elements, the instruction first reads
all of the links required to complete the enqueue operation. If a page fault occurs, the
instruction restarts at the beginning of the link.

The ENQH instruction requires -- in addition to page zero of the ring of execution for
this instruction -- eight pages to be resident, in the worst case, before the instruction will
complete. Therefore, nine pages may be required to be resident by this instruction. The
worst case occurs when inserting an element between two other elements and all of the
elements and the queue header have one of their affected links on a page boundary.

When all of the required pages are resident, the instruction then enqueues the data
element addressed by AC2 before the data element addressed by AC1. If the new data
element becomes the head of the queue, the instruction updates the queue descriptor
appropriately. The next sequential word is skipped.

The instruction checks all reads and writes of links in data elements and queue descriptors
against the current ring. Ring numbers of the link addresses must be greater than or
equal to the current ring.

10-40

Instruction Dictionary

The enqueue operation is not interruptible. The entire operation completes before any
interrupts are enabled.

The instruction leaves the contents of AC0O, AC1, AC2, and AC3 unchanged. Carry is
unchanged and overflow is 0.

Enqueue Towards the Tail

ENQT

1
7 8 9 10 11 12 13 14 15

pEDNONNNNNnDnonn

Enqueues a data element.
ACO contains the effective address of a queue descriptor.

ACI specifies the element (in the queue) in back of which the new element is added. If
the contents of AC1 # -1, then the accumulator contains the effective address of the
data element in back of which the new element is added. If the contents of AC1 = -1,
then the accumulator adds the new element to the tail of the queue (as obtained from the
queue descriptor pointed to by the effective address in ACO).

AC2 contains the effective address of the data element to be added to the queue.

The instruction checks the page or pages that contain the current element for valid read
and write access privileges. If the privileges are invalid, the appropriate protection fault
occurs and the queue remains unchanged.

If the privileges are valid, the instruction checks the queue descriptor addressed by ACO.
If the queue descriptor indicates an empty queue, the instruction ignores the contents of
AC1 and enqueues the data element addressed by AC2. The instruction updates the
queue descriptor if necessary, then the next sequential word is executed. “e. /i{, <

If the descriptor indicates a queue that contains data elements, the instruction first reads
all of the links required to complete the enqueuing operation. If a page fault occurs, the
instruction restarts at the beginning of the link.

The ENQT instruction requires -- in addition to page zero of the ring of execution for

this instruction -- eight pages to be resident, in the worst case, before the instruction will
complete. Therefore, nine pages may be required to be resident by this instruction. The
worst case occurs when inserting an element between two other elements and when all of
the elements and the queue header have one of their affected links on a page boundary.

When all of the required pages are resident, the instruction then enqueues the data
element addressed by AC2 after the-data element addressed by AC1. If the new data
element becomes the tail of the queue, the instruction updates the queue descriptor
appropriately. The next sequential word is skipped.

The instruction checks all reads and writes of links in data elements and queue descriptors
against the current ring. Ring numbers of the link addresses must be greater than or
equal to the current ring.

The enqueue operation is not interruptible. The entire operation completes before any
interrupts are enabled.

The instruction leaves the contents of AC0O, AC1, AC2, and AC3 unchanged. Carry is
unchanged and overflow is 0.

Instruction Dictionary 10-41

Extended Store Accumulator
ESTA ac,/@]displacement][,index]

r [0] ACI lINDEX|0|0]1|1l lo|o|ol@| DISPLACEMENT }
"0 1 2 3 456 78 910111213 14151817 T T T 7T Mgy

Stores the contents of bits 16—-31 of an accumulator into a memory location.

Places contents of bits 16-31 of the specified accumulator in the word addressed by the
effective address, E. The previous contents of the location addressed by E are lost. The
contents of the specified accumulator and carry remain unchanged.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Overflow is 0.

Extended Store Byte
ESTB ac.displacement|/,index]

(1‘0! IACI lINDEXI I I ‘ I IOI I I DISPLACEMENT |
"0 123 45 67 8 9101121314116 T T T T Tgy

Copies into memory the byte contained in bits 24-31 of an accumulator.

Forms a byte pointer from the displacement as follows: shifts the 16-bit number contained
in the displacement field to the right one bit, producing a 15-bit address and a 1-bit byte
indicator. Uses the value of the index bits to determine an offset value. Adds the offset
value to the 15-bit address produced from the displacement field to give a memory
address. The byte indicator determines which byte of the addressed location will receive
bits 24-31 of the specified accumulator.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The argument index selects the source of the index value. It may have values in the
range of 0-3. the following list gives the meaning of each value.

Index Bits Index Value
00 0
01 Address of the displacement field (word 2 of this
instruction)
10 Contents of bits 16-31 of AC2
11 Contents of bits 16-31 of AC3

This instruction leaves carry unchanged; overflow is 0.

10-42 Instruction Dictionary

Absolute Value
FAB fpac

!1!1!01FPACl1|1!0!0!0!1}011]0!0!01

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sets the sign bit of FPAC 10 0.

Updates the Z and N flags in the floating-point status register to reflect the new contents
of FPAC.

Add Double (FPAC to FPAC)
FAD facs,facd

[Tow [ww e[[e o[[o]]|
"o 12 3 4 5 6 7 8 9 10 11 12 13 14 15"

Adds the 64-bit floating-point number in FACS to the 64-bit floating-point number in
FACD.

Adds the 64-bit floating-point number in FACS to the 64-bit floating-point number in
FACD. Places the normalized result in FACD. Leaves the contents of FACS unchanged

and updates the Z and N flags in the floating-point status register to reflect the new
contents of FACD.

Add Double (Memory to FPAC)
FAMD fpac,/@/displacement/,index]

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Adds the 64-bit floating-point number in the source location to the 64-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Adds this 64-bit floating-point number to the 64-bit floating-point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Add Single (Memory to FPAC)
FAMS fpac,[(@]displacement/,index]

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Adds the 32-bit floating-point number in the source location to the 32-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Adds this 32-bit floating-point number to the floating-point number in bits

Instruction Dictionary 10-43

0-31 of the specified FPAC. Places the normalized result in the specified FPAC. Leaves
the contents of the source location unchanged and updates the Z and [V flags in the
floating-point status register to reflect the new contents of FPAC. Sets bits 32-63 of
FACD to 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Add Single (FPAC to FPAC)
FAS facs,.facd

{1iFAFS!FAFDF,O!O[O!O!1‘0!1|0]O!041

0o 12 3 a4's 6 7 8 9 10 11 12 13 14 15

Adds the 32-bit floating-point number in bits 0-31 of FACS to the 32-bit floating-point
number in bits 0-31 of FACD.

Adds the 32-bit floating-point number in bits 0-31 of ACS to the 32-bit floating-point
number in bits 0-31 of FACD. Places the normalized result in FACD. Leaves the
contents of FACS unchanged. Sets bits 32-63 of FACD to 0 and updates the Z and N
flags in the floating-point status register to reflect the new contents of FACD.

Clear Errors
FCLE

Lol el oo [o [Jo]rfolofo]

o 1 10 11 12 13 14 15

Sets bits 0—4 of the floating-point status register to 0.
NOTES: Since this instruction sets the ANY bit of the FPSR 10 0, the FPPC field is undefined.

The TORST instruction and the system reset function will also set these bits 1o 0.

Compare Floating Point
FCMP facs,facd

NESEInnne pnpnpnn

6 10 11 12 13 14 15

Compares two 64-bit floating-point numbers and sets the Z and N flags in the
floating-point status register accordingly.

Algebraically compares the floating-point numbers in FACS and FACD to each other.
Updates the Z and N flags in the floating-point status register to reflect the result. The
contents of FACS and FACD remain unchanged. The following list gives the results of
the compare and the corresponding flag settings.

4 N Result

1 0 FACS=FACD
0 1 FACS>FACD
0 0 FACS<FACD

10-44 Instruction Dictionary

Divide Double (FPAC by FPAC)
FDD facs facd

lllFAcslFACDlo[ol1l1l1|1]o|1[o[olol
"0 12 34 5 6 7 8 9 10 11 12 13 14 15

Divides the floating-point number in FACD by the floating-point number in FACS and
places the normalized result in FACD.

Divides the 64-bit floating-point number in FACD by the 64-bit floating-point number
in FACS. Places the normalized results in FACD. Destroys the previous contents of
FACD. Leaves the contents of FACS unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FACD.

Divide Double (FPAC by Memory)
FDMD fpac,[@]displacement/,index]

lTlINDEXlFPACIOI1|1|1’1|1|0J1|0|0]0I@I DISPLACEMENT ’

Divides the 64-bit floating-point number in FPAC by the 64-bit floating-point number
in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Divides the 64-bit floating-point number in the specified FPAC by this 64-bit
floating-point number. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Divide Single (FPAC by Memory)
FDMS fpac,/[displacement[,index]

|1|INDEXIFPACIOI1I1|1|Ol1l0]1[0|0]0l@| DISPLACEMENT ‘

Divides the 32-bit floating-point number in bits 0-31 of FPAC by the 32-bit floating-point
number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Divides the floating-point number in bits 0-31 of the specified FPAC by this
32-bit floating-point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating-point status register to reflect the new contents of FPAC.

Sets bits 32-63 of FACD to 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Instruction Dictionary 10-45

Divide Single (FPAC by FPAC)
FDS facs facd

|r1_lFAcs|FAcololo|1j1|o|1[o!1[olo|o}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the 32-bit floating-point number in FACD by the 32-bit floating-point number
in FACS and places the normalized result in FPAC.

Divides the floating-point number in bits 0-31 of FACD by the floating-point number in
bits 0-31 of FACS. Places the normalized result in FACD. Destroys the previous
contents of FACD. Leaves the contents of FACS unchanged and updates the Z and N
flags in the floating-point status register to reflect the new contents of FACD.

Sets bits 32—63 of FACD to 0.

Load Exponent

FEXP fpac

Fix to AC

[folTeone [Jofo[o[e]ol: t]ojofo]

a4 9 10 11 12 13 14 15

Loads an exponent into bits 1-7 of an FPAC.

Places bits 17-23 of ACO in bits 1-7 of the specified FPAC. Ignores bits 0—16 and 24-31
of ACO. Changes the Z and N flags in the floating-point status register to reflect the
contents of FPAC. ACO and bits 0 and 8-63 of FPAC remain unchanged. If FPAC
contains true zero, the instruction does not load bits 1-7 of FPAC.

FFAS ac fpac

[o Lo [o[o o]+ [o 1 [o]o]o]

0 1 2 3 a 5 6 7 8 9 10 11 12 13 14 15

Converts the integer portion of the floating-point number contained in the specified
FPAC to a signed two’s complement integer. Places the result in the specified
accumulator.

If the integer portion of the number contained in FPAC is less than —32,768 or greater
than 432,767, the instruction sets MOF in the FPSR to 1. Takes the absolute value of
the integer portion of the number contained in the FPAC. Takes the 15 least significant
bits of the absolute value and appends a 0 onto the leftmost bit to give a 16-bit number.
If the sign of the number is negative, forms the two’s complement of the 16-bit result.
Places the 16-bit integer in bits 16-31 of the specified accumulator.

If the integer portion is within the range of —32,768 to +32,767 inclusive, the instruction
places the 16-bit, two’s complement representation of the integer portion of the number
contained in the FPAC in bits 16-31 of the specified accumulator.

The instruction leaves the FPAC and the Z and N flags of the FPSR unchanged.

10-46 _Instruction Dictionary

Fix to Memory
FFMD fpac,/@]displacement[,index]

Halve
FHLV fpac

Integerize
FINT fpac

Converts the integer portion of the floating-point number contained in the specified
FPAC to a signed two’s complement integer. Places the result in a memory location.

Calculates the effective address, E. If the integer portion of the number contained in
FPAC is less than —2,147,483,648 or greater than +2,147,483,647, the instruction sets
MOF in the FPSR to 1. Takes the absolute value of the integer portion of the number
contained in the FPAC. Takes the 31 least significant bits of the absolute value and
appends a 0 onto the leftmost bit to give a 32-bit number. If the sign of the number is
negative, forms the two’s complement of the 32-bit result. Places the 32-bit integer in the
memory locations specified by E.

If the integer portion is within the range of —2,147,483,648 to +2,147,483,647 inclusive,
the instruction places the 32-bit, two’s complement representation of the integer portion
of the number contained in the FPAC in the memory locations specified by E.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The instruction leaves the FPAC and the Z and N flags of the FPSR unchanged.

Lo a]eac i1]oo[[1 To]1]o]o]0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Divides the 64-bit floating-point number in FPAC by 2.

Shifts the mantissa contained in FPAC right one bit position. Fills the vacated bit
position with a zero and places the bit shifted out in the guard digit. Normalizes the
number and places the result in FPAC. Updates the Z and N flags in the floating-point
status register to reflect the new contents of FPAC.

If underflow occurs, sets the UNF flag in the floating-point status register to 1. In this
case, the mantissa and sign in FPAC are correct, but the exponent is 128 too large.

[1'1}o|FPAc|1|1|o|o]1|1]o|1’o|o|o|
"0 12 3 4 5 6 7 8 8 10 11 12 13 1a 15

Sets the fractional part of a floating-point number in the specified 64-bit FPAC to zero
and normalizes the result.

Zeros the fractional portion (if any) of the number contained in the specified FPAC.
Normalizes the result. Updates the Z and N flags in the floating-point status register to
reflect the new contents of the specified FPAC.

Instruction Dictionary 10-47

NOTE: If the absolute value of the number contained in the specified FPAC is less than I, the
specified FPAC is set to true zero.

This instruction truncates towards zero and does not do rounding.

Float from AC
FLAS ac fpac

l1[Ac LFPACI (o] |o|o|1] | | lolo’

o 1 2 3 4 5 6 7 8 9 10 11 12

Converts a two’s complement number in the range of —32,768 to + 32,767 inclusive to
floating-point format.

Converts the signed two’s complement number contained in bits 16-31 of the specified
accumulator to a single-precision floating-point number. Places the result in the
high-order 32 bits of the specified FPAC. Sets the low-order 32 bits of the FPAC to 0.
Updates the Z and N flags in the floating-point status register to reflect the new contents
of FPAC. The contents of the specified accumulator remain unchanged.

Load Floating-Point Double
FLDD fpac,/(@]displacement[,index]
’ 1 |INDEX‘ FPAC] ‘ | IO I I l [I ‘ [0] I 0 I@l DISPLACEMENT —|

T

0 12 3 456 7 8 9101112131415 16 17 T 31

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double-precision floating-point number
at the address specified by £ and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Load Floating-Point Single
FLDS fpac,[@]displacement][,index]

(s [oToJe [[o[Je [oJe] __ommcmmmr

0123 456 7 8 9101112131415 1617 EERETY

Moves two words out of memory into a specified FPAC.

Computes the effective address, E. Fetches the single-precision floating-point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating-point status
register to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

10-48 instruction Dictionary

Float from Memory
FLMD fpac,[@]displacement[,index]

ITIINDEX[FPAcl 1{0[1'0[1|110L1l0‘0|0|@[DISPL{\CE,ME‘NT }

vvvvvvvvvvvvvvvvvvvvvvvvvvv

Converts the contents of two 16-bit memory locations to floating-point format and places
the result in a specified FPAC.

Computes the effective address, E. Converts the 32-bit, signed, two’s complement
number addressed by E to a double-precision floating-point number. Places the result in
the specified FPAC. Updates the Z and [V flags in the floating-point status register to
reflect the new contents of the FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The range of numbers that you can convert is —2,147,483,648 to +2,147,483,647
inclusive.

Load Floating-Point Status
FLST [@]displacement],index]

[1'0]1]INDEX|1|1[0\1|1l1|0|110[0]0|@l DISPLACEMENT I
e N TR T T T T T A A A A L R PV

Moves two words out of memory into the floating-point status register.

Computes the effective address, E. Places the 32-bit operand addressed by E in the
floating-point status register as follows:

 Places bits 0~15 of the operand in bits 0-15 of the FPSR. Sets bits 16—32 of the FPSR
to 0.

e If ANY is 0, bits 33—63 of the FPSR (the FPPC) are undefined.

o If ANY is 1, the instruction places the value of the current segment in bits 33-35 of
the FPSR, zeroes in bits 36-48, and bits 17-31 of the operand in bits 49-63 of the
FPSR.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as
1, ANY is set to I, otherwise, ANY js 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating-point identification
code and cannot be changed.

This instruction initiates a floating-point trap if ANY and TE are both | after the FPPC is loaded.

Instruction Dictionary 10-49

Multiply Double (FPAC by FPAC)
FMD facs,facd

l1,FACSIFACDIOIOI1|0‘1I1’0'1,0!0}0!
1 T t ——t— t T t t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiplies the floating-point number in FACD by the floating-point number in FACS
and places the normalized result in FACD.

Multiplies the 64-bit floating-point number in FACD by the 64-bit floating-point number
in FACS. Places the normalized result in FACD. Leaves the contents of FACS unchanged
and updates the Z and N flags in the floating-point status register to reflect the new
contents of FACD.

Multiply Double (FPAC by Memory)
FMMD fpac,/@]displacement/,index]

Multiplies the 64-bit floating-point number in the source location by the 64-bit
floating-point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Multiplies this 64-bit floating-point number by the 64-bit floating-point number
in the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Multiply Single (FPAC by Memory)
FMMS fpac,[@]displacement/,index]

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Multiplies the 32-bit floating-point number in the source location by the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Multiplies this 32-bit floating-point number by the floating-point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 031 of the
specified FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source
location unchanged and updates the Z and N flags in the floating-point status register to
reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

10-560 Instruction Dictionary

Move Floating Point
FMOV facs,facd

IEannnnnnpnonn

|

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Moves the contents of one 64-bit FPAC to another 64-bit FPAC.

Places the contents of FACS in FACD. Updates the Z and N flags in the floating-point
status register to reflect the new contents of FACD. The contents of FACS remain
unchanged.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Multiply Single (FPAC by FPAC)
FMS facs facd

Negate
FNEG fpac

Normalize
FNOM fpac

rlFACSIFACD\OIOI IOlO! IOI‘I‘O{OI |

O 1 2 3 4 5 6 7 8 g 100 11 12 13 14 15

Multiplies the 32-bit floating-point number in bits 0-31 of FACS by the 32-bit
floating-point number in bits 0-31 of FACD.

Multiplies the 32-bit floating-point number in bits 0-31 of FACS by the 32-bit
floating-point number in bits 0~31 of FACD. Places the normalized result in FACD.
Leaves the contents of FACS unchanged. Sets bits 32-63 of FACD to 0 and updates the
Z and N flags in the floating-point status register to reflect the new contents of FACD.

T eac [a]oJofofof 1o]ofo]o]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inverts the sign bit of the FPAC.

Leaves bits 1-63 of FPAC unchanged. Updates the Z and N flags in the floating-point
status register to reflect the new contents of FPAC.

If FPAC contains true zero, leaves the sign bit unchanged.

[1[OIOIFPAC| 11]0[0]0] |o|1|o|o|o|

o 1 2 3 4 10 11 12 13 14 15

Normalizes the floating-point number in the 64-bit FPAC.

Sets a true zero in FPAC if all the bits of the mantissa are zero. Updates the Z and N
flags in the floating-point status register to reflect the new contents of FPAC.

If an exponent underflow occurs, sets the UNF flag in the floating-point status register.
In this case, the mantissa and the sign of the number in FPAC are correct, but the
exponent is 128 too large.

Instruction Dictionary 10-51

No Skip

FNS

(LTl T e Te o o]t

9 10 11 12 15

Executes the next sequential word.

Pop Floating-Point State

EIEE l°|1I'I1I°I] fofifefofe]

FPOP

1011 12 13 14 15

Pops the state of the floating-point unit off the narrow stack.

Pops an 18-word block off the narrow stack and loads the contents into the FPSR and
the four FPACs. The format of the 18-word block is shown in Figure 10.5.

The instruction pops the first 32-bit operand on the stack and places it in the FPSR as
follows:

Places bits 0-15 of the operand in bits 0—15 of the FPSR. Sets bits 16—32 of the FPSR
to 0.

If ANY is 0, bits 33-63 of the FPSR (the FPPC) are undefined.

If ANY is 1, the instruction places the value of the current segment in bits 33-35 of
the FPSR, zeroes in bits 36-48, and bits 17-31 of the operand in bits 49-63 of the
FPSR.

The rest of the stack words are popped in the usual way.

NOTES: This instruction moves unnormalized data without change.

This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as |, ANY
is set to I, otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating-point identification
code and cannot be changed. Refer to the specific functional characteristics manual for the code to
use.

This instruction does not initiate a floating-point trap under any conditions of the FPSR.

10-52

Instruction Dictionary

Push Floating-Point State

FPSH

SD-03558

Narrow stack pointer

after FPOP

Narrow stack pointer
before FPOP

FPACO —

FPAC1 =

FPAC2

FPACS

—_—

sl —

FPSR BITS 0-15
FPSR BITS 16-31

Figure 10.5 Narrow stack, 18-word block

Bk

Pushes an 18-word floating-point return block onto the narrow stack, leaving the contents
of the floating-point accumulators and the floating-point status register unchanged. The

oo [Jolt]r]]o]
o 1 2 3 4 5 6 7 8 9 10 11

9

1lo|0 o]
12 14 15

y
13

format of the 18 words pushed is illustrated in Figure 10.6.

The instruction pushes the contents of the FPSR as follows:

o Stores bits 0—15 of the FPSR in the first memory word.

« If ANY is 0, the contents of the second memory word are undefined.

e If ANY is 1, the instruction stores bits 48—63 of the FPSR into the second memory
word.

The rest of the block is pushed after the FPSR has been pushed.

NOTES: This instruction moves unnormalized data without change.

This instruction does not initiate a floating-point trap under any conditions of the FPSR.

Instruction Dictionary 10-53

Narrow stack pointer 'c:z
—
before FPSH
FPSR BITS 0-15 | |
FPSR BITS 16-31
______ 1
FPACOH |— —— — — —F 1
—
r
FPAC1 4 |————— —— r]
—
FPAC2 4 |- ——— — — H
FPAC3 4 | —— — — — -1
P B I 4 4
Narrow stack pointer >)
after FPSH —
WJ

SD-03559

Figure 10.6 Narrow stack, 18-word floating-point return biock

Floating-Point Round Double to Single
FRDS facs,facd

LIFACSIFACD|1]0‘0’ I |ol I lo[o|o|

0 1 2 3 4 5 6 10 11 12 13 14 15

When FPSR(8) is set to a 1, this instruction rounds a 64-bit floating-point number in
FACS to a 32-bit floating-point number and places the result in bits 031 of FACD.
When FPSR(8) is set to a 0, the instruction moves FACS to FACD and zeroes bits
32-63 of FACD.

Rounds bits 0-31 of FACS using bits 32-63 of FACS. Call FACS<8-31> the
“unrounded mantissa” and call FACS<32-63> the “rounding digits.” The rounding
digits can fall into three ranges:

* 0to 7FFFFFFF ¢ inclusive. The result mantissa is equal to the unrounded mantissa
without change.

* 80000000;¢. The result mantissa is formed by adding the least significant bit of the
unrounded mantissa to the unrounded mantissa.

* 80000001, to FFFFFFFF g inclusive. The result mantissa is equal to the unrounded
mantissa plus 1.

Algorithm is similar to unbiased rounding except that it uses eight rounding digits
instead of two guard digits.

Forms the 32-bit result by normalizing the result mantissa and appending the FACS
sign and exponent (bits 0-7). Places the 32-bit result in bits 0—31 of FACD. Sets bits

10-564 Instruction Dictionary

32-63 of FACD to 0 and updates the Z and N flags in the floating-point status register
to reflect the new contents of FACD.

Read High Word

FRH fpac
[Tl T[] iJofofo]o]+]o]o]o]
o] 1 2 3 10 11 12 13 14 15
Places the high-order 16 bits of FPAC in bits 16-31 of AC0. FPAC and the Z and N
flags in the floating-point status register remain unchanged.
NOTE: This instruction moves unnormalized data without change.
Skip Always
FSA
|1|°|°|°|1|1|1|°\1l°l'|°|1i°|°u
10 11 12 13 14 15
Skips the next sequential word.
Scale
FSCAL fpac
[Telo e [[o o[[[o] o o o]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the mantissa of the 64-bit floating-point number in FPAC either right or left,
depending upon the contents of bits 17-23 of ACO. Leaves the contents of ACO
unchanged.

Bits 17-23 of ACO contain an exponent.

The instruction subtracts the exponent of the number contained in FPAC from the
exponent in ACO. The difference between the exponents specifies D, a number of hex
digits.

If D is zero or if FPAC is true zero, the instruction updates the Z and N flags and stops.

If D is positive, the instruction shifts the mantissa of the number contained in FPAC to
the right by D digits.

If D is negative, the instruction shifts the mantissa of the number contained in FPAC to
the left by D digits. Sets the MOF flag in the floating-point status register.

After the right or left shift, the instruction loads the contents of bits 17-23 of ACO into
the exponent field of FPAC. Bits shifted out of either end of the mantissa are lost.
Updates the Z and N flags in the floating-point status register to reflect the new
contents of FPAC.

NOTE: This instruction does not do rounding.

Instruction Dictionary 10-55

Subtract Double (FPAC from FPAC)
FSD facs,facd
!11FA'CSlFA'CD"0!OIOl1I | IO]1|0IOIO|

Subtracts the floating-point number in one FPAC from the floating-point number in
another FPAC.

Subtracts the 64-bit floating-point number in FACS from the 64-bit floating-point
number in FACD. Places the normalized result in FACD. Updates the Z and N flags in
the floating-point status register to reflect the new contents of FACD. The contents of
FACS remain unchanged.

Skip on Zero

FSEQ
el e e e e [o e o]

0 11 12 13 14 15

Skips the next sequential word if the Z flag of the floating-point status register is 1.

Skip on Greater than or Equal to Zero

FSGE
(Tl L T e e e o]

10 11 12 13 14 15

Skips the next sequential word if the V flag of the floating-point status register is 0.

Skip on Greater than Zero

FSGT
[l e e e [e o]

100 11 12 13 14 15

Skips the next sequential word if both the Z and N flags of the floating-point status
register are 0.

Skip on Less than or Equal to Zero
FSLE

Llelsfefeli]ifof fo]tfo]]ofo]o]

1011 12 13 14 18

Skips the next sequential word if either the Z flag or the NV flag of the floating-point
status register is 1.

10-56 _Instruction Dictionary

Skip on Less than Zero
FSLT

Lijofifofof]rfofrjofr]o]r1]o]o]o]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the N flag of the floating-point status register is 1.

Subtract Double (Memory from FPAC)
FSMD fpac,/@]displacement][,index]

[1[INDEX~FPAC|0|1|0|1|1|1‘O[1|0|0[0|@| DISPLACEMENT J

0O 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 31

Subtracts the 64-bit floating-point number in the source location from the 64-bit
floating-point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Subtracts this 64-bit floating-point number from the 64-bit floating-point
number in the specified FPAC. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating-point status register to reflect the new contents of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Subtract Single (Memory from FPAC)
FSMS fpac,[@]displacement[,index]

|1|INDEXIFPAC|0|1|0|1|0[1|0l1|0!0|0|@| DISPLACEMENT [

0 1 2 3 4 5 6 7 8 9 10111213 141516 17 31

Subtracts the 32-bit floating-point number in the source location from the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double word)
operand. Subtracts this 32-bit floating-point number from the floating-point number in
bits 031 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and
updates the Z and /V flags in the floating-point status register to reflect the new contents
of FPAC.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Instruction Dictionary 10-57

Skip on No Zero Divide
FSND

o Telo ol 1o 1o fofofe]

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the DVZ (divide by zero) flag of the floating-point
status register is 0.

Skip on Nonzero
FSNE

el Lo e o e [oTe]
o 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the Z flag of the floating-point status register is 0.

Skip on No Error

FSNER
HNRNDOnnnnE |o{1|011[o|olo]

t t t t t
[o] 1 2 3 4 5 10 11 12 13 14 15

Skips the next sequential word if bits 1-4 of the floating-point status register are all 0.

Skip on No Mantissa Overflow

FSNM
o lelelo i o o e[[o o o]

o 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the MOF (mantissa overflow) flag of the floating-point
status register is 0.

Skip on No Overflow

FSNO
(e[elels[rfofs[o[Jo]r]ofo]o]

0 9 10 11 12 13 14 15

Skips the next sequential word if the OVF (overflow) flag of the floating-point status
register is 0.

10-58 Instruction Dictionary

Skip on No Overflow and No Zero Divide
FSNOD

(T e e e[

9 10 11 12 13 14 15

Skips the next sequential word if both the OVF flag and the DVZ flag of the floating-point
status register are 0.

Skip on No Underflow
FSNU

L lfol ol [efelsfo[o] o o]o]

0011 12 13 14 15

Skips the next sequential word if the UNF (underflow) flag of the floating-point status
register is 0.

Skip on No Underflow and No Zero Divide
FSNUD

ENONNNDnonnDnnng

4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if both the UNF flag and the DVZ flag of the floating-point
status register are 0.

Skip on No Underflow and No Overflow
FSNUO

Ll fefels[rfo] i Jof o] ofo]o]

10 11 12 13 14 15

Skips the next sequential word if both the UNF flag and the OVF flag of the floating-point
status register are 0.

Subtract Single (FPAC from FPAC)
FSS facs.facd

[T oo [o[oTo [[o < o] o o]o]

00 11 12 13 14 15

Subtracts the floating-point number in one FPAC from the floating-point number in
another FPAC.

Subtracts the 32-bit floating-point number in bits 0-31 of FACS from the 32-bit
floating-point number in bits 0-31 of FACD. Places the normalized result in bits 031
of FACD. Sets bits 32-63 of FACD to 0. Updates the Z and N flags in the floating-point
status register to reflect the new contents of FACD. The contents of FACS remain
unchanged.

Instruction Dictionary 10-59

Store Floating-Point Status
FSST /[@/displacement],index]

ofeouf (o[[[o[-[o[s[ofe] __mwemm

"0 12 3 45 6 7 8 910111213 14151617) ' 31

Moves the contents of the narrow FPSR into memory.

Computes the effective address, E, of two sequential, 16-bit locations in memory. Stores

the contents of the narrow FPSR in these locations as follows.

¢ Stores bits 0—15 of the FPSR in the first memory word.

e If ANY is 0, the contents of the second memory word are undefined.

e If ANY is 1, the instruction stores bits 48—63 of the FPSR into the second memory
word.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: This instruction does not initiate a floating-point trap under any conditions of the FPSR.

Store Floating-Point Double
FSTD fpac,/@]displacement[,index]

(IINDEXIFPACI | , [‘1| | [| | [I@I ___ DPLACEMENT I

01234567891011121314151617 31

Stores the contents of a specified 64-bit FPAC into a memory location.

Computes the effective address, E. Places the floating-point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: This instruction will move unnormalized data without change.

Store Floating-Point Single
FSTS fpac,/@]displacement[,ina’ex/

vvvvvvvvvvvvvvvvvvvvvv

Stores the contents of a specified FPAC into a memory location.

Computes the effective address E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain
unchanged.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: This instruction will move unnormalized data without change.

10-60 _Instruction Dictionary

Trap Disable

FTD
nnEENNNERNNONE

—
10 11 12 13 14 5

Sets the Trap Enable (TE) bit of the FPSR to 0.
NOTE: The 1/O RESET instruction will also set this bit to 0.

Trap Enable
FTE

Llefofofofefefolefefefof ofo]o]

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18

Sets the Trap Enable (TE) bit of the FPSR to 1.

If ANY is 1 before execution of this instruction, signals a floating-point trap. If ANY is
0 before execution of this instruction, execution continues normally at the end of this
instruction.

NOTES: When this instruction is used to cause a floating-point trap, the FPPC portion of the FPSR
will contain the address of the first instruction to cause a fault. Even if another instruction causes a
second fault that occurs before the FTE instruction executes, the FPPC will still contain the address
of the first instruction that caused a fault.

When a floating-point fault occurs and TE is I, the processor sets TE to 0 before transferring control
to the floating-point error handler. TE should be set to | before resuming normal processing.

Fixed-Point Trap Disable

FXTD
L fel i fofol o efof e[o] o[v ofo]r]
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

10 1

Unconditionally sets the OVK flag to zero. This disables fixed-point overflow traps.
Carry is unchanged.

Fixed-Point Trap Enable
FXTE

Ll felefof s [r[efo Jofo] 1 [ofo]]

0 1 2 3 4 10 11

Unconditionally sets OVK to 1 and OVR to 0. This enables fixed-point overflow traps.
Carry is unchanged.

Instruction Dictionary 10-61

Halve
HLV ac

ol ae e fef o[i e]e]ofo]fo]
I Al N B A SR RHEE

0o 1 2 3 4 5 6 7 8 9 1 13

Divides the contents of an accumulator by two and rounds the result toward zero.

The signed, 16-bit two’s complement number contained in bits 16-31 of the specified
accumulator is divided by two and rounded toward zero. The result is placed in bits
16-31 of the specified accumulator.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

This instruction leaves carry unchanged; overflow is 0.

Hex Shift Left

HXL n,ac

[~ [ac Jols]iJofooo]]e]o]o]
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the 16-bit contents of an accumulator left 1 to 4 hex digits, depending on the value
of a 2-bit number in the instruction.

Shifts the contents of bits 16-31 of the specified accumulator left a number of hex digits
depending upon the immediate field N. The number of digits shifted is equal to N+1.
Bits shifted out are lost, and the vacated bit positions are filled with zeroes. If V is equal
to 3, then bits 16-31 of the specified accumulator are shifted out and are set to 0. Leaves
carry unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits that he
wishes to shift.

Hex Shift Right

HXR n,ac

1] v [ac |o|1]1|ol1|0|o|1|olo|o]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the 16-bit contents of an accumulator right 1 to 4 hex digits, depending on the
value of a 2-bit number in the instruction.

Shifts the contents of bits 16-31 of the specified accumulator right a number of hex
digits depending upon the immediate field, V. The number of digits shifted is equal to
N+ 1. Bits shifted out are lost and the vacated bit positions are filled with zeroes. If NV is
equal to 3, then bits 16-31 of the specified accumulator are shifted out and are set to 0.
Leaves carry unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact number of hex digits that he
wishes to shift.

10-62 Instruction Dictionary

Increment

INC/c/[sh][#] acs.acd[skip]
[1IAC5[ACDIO!1I1ISH[C lﬂ] SKIP !
"0 12 3 4 5 6 7 8 9 10 11 12 13 15"

Increments the contents of bits 1631 of an accumulator.

Initializes carry to the specified value. Increments the unsigned, 16-bit number in bits
16-31 of ACS by one and places the result in the shifter. If the incrementation produces
a result that is greater than 32,768, the instruction complements carry. Performs the
specified shift operation, and loads the result of the shift into bits 16-31 of ACD if the
no-load bit is 0. If the skip condition is true, the next sequential word is skipped.

If the load option is specified, bits 0-15 of ACD are undefined.
NOTE: If the number in ACS is 177777, the instruction complements carry.

For this instruction, overflow is 0.

[c]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of ¢, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted O O Leave CARRY unchanged
Z 0 1 Initialize CARRY to O
0 1 O |Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol /[sh] Bits Shift Operation
8-9
omitted 00 Do not shift the result
L 01 Shift left
R 10 Shift right
S 11 Swap the two 8-bit bytes
[#]

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Instruction Dictionary 10-63

Inclusive OR

IOR acs,acd

Symbol [#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001;, other instructions
use the bit combinations.

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip/ Bits Operation
13-15
omitted 0 0 0 Never skip
SKP 0 0 1 Always skip
SZC 0 1 O Skipif CARRY is O
SNC 0 1 1 Skipif CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 O Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

[T [[oTo [e e e[LT[

) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inclusively ORs the contents of two accumulators.

Forms the logical inclusive OR of the contents of bits 16-31 of ACS and the contents of
bits 16-31 of ACD, and places the result in bits 16-31 of ACD. Sets a bit position in the
result to 1 if the corresponding bit position in one or both operands contains a 1;
otherwise, the instruction sets the result bit to 0. The contents of ACS remain unchanged.
Carry remains unchanged. Overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

10-64

Instruction Dictionary

Inclusive OR Immediate

IORI

iac

Tttt T T r—r—rr

Inclusively ORs the contents of an accumulator with the contents of a 16-bit number in
the instructions.

Forms the logical inclusive OR of the contents of the immediate field and the contents of
bits 16-31 of the specified accumulator, and places the result in bits 16-31 of the
specified accumulator. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Increment and Skip if Zero
ISZ [@]displacement],index]

| 0o l 0 ’ [o] ' 1 l 0 |@| INDEX l DISPLACEMENT l

0 1 2 3 4 5 6 7 8 i 15
Increments the addressed word, then skips if the incremented value is zero.

Computes the effective address, E. Increments by one the word addressed by £ and
writes the result back into memory at that location. If the updated value of the location
is zero, the instruction skips the next sequential word.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

(N3

Increment tl}f‘,@v ord Addressed by WSP and Skip if Zero

ISZTS

Llfeofol i [afo]oofol v o o]
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Increments the double word addressed by the wide stack pointer and skips the next
16-bit word if the incremented value is zero.

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Increments the contents of the word addressed by WSP. If the incremented value is
equal to zero, then the next sequential word is skipped. Carry is unchanged and overflow
is 0.

NOTE: The operation performed by this instruction is not indivisible.

Instruction Dictionary 10-65

Jump
JMP [@]displacement],index]
LO l (o] [0 ‘ (o] l (o] l@l INDEX l DISPLACEMENT
"o 12 3 4 5 6 7 8 T T T 15

Loads an effective address into the program counter,

Computes the effective address, E, and places it in the program counter. Sequential
operation continues with the word addressed by the updated value of the program
counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Jump to Subroutine
JSR /@]/displacement/[,index]

IOIOIOIO|1I@IINDEX’ DISPLACEMENT
o T s e s s T e T T T T T T

Increments and stores the value of the program counter in AC3, and then places a new
address in the program counter.

Computes the effective address, E; then places the address of the next sequential
instruction in bits 16-31 of AC3. Places E in the program counter. Sequential operation
continues with the word addressed by the updated value of the program counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

NOTE: The instruction computes E before it places the incremented program counter in AC3.

Call Subroutine (Long Displacement)
LCALL [@]/displacement/,index[,argument count]]

uOI IINDEﬂ , I l l l I l | I ’@I DISPLACEMENT

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0123456 7 8 9101112131415 1617 T Tar
I ARGUMENT COUNT l
e T T T

Evaluates the address of a subroutine call.

If the target address specifies an outward ring crossing, a protection fault (code=7 in
ACI1) occurs. Note that the contents of the PC in the return block are undefined.

If the target address specifies an inward ring call, then the instruction assumes the target
address has the following format:

l X INEW RINGI UNUSED] (o} l GATE]

o 1 3 4 15 16 17 31

10-66 Instruction Dictionary

The instruction checks the gate field of the above format for a legal gate. If the specified
gate is illegal, a protection fault (code=6 in ACI) occurs and no subroutine call is
made. Note that the value of the PC in the return block is undefined.

If the specified gate is legal, or if the target address specifies an intra-ring crossing, the
instruction loads the contents of the PC, plus four, into AC3. The contents of AC3
always reference the current ring.

If bit 0 of the argument count is 0, the instruction creates a word with the following
format:

PSR l 0 ‘ ARGUMENT COUNT I

0' T T T T T T T '15'16I17' T T l":% — T T v31|
/gw;,
o L

The instruction pushes this word onto théj@ide stack. If a stack overflow occurs after this

push, a stack fault occurs and no subroutine call is made. Note that the value of the PC
in the return block is undefined.

If bit 0 of the argument count is 1, then the instruction assumes the top word of the wide
stack has the following format:

DON'T CARE l 0 | ARGUMENT COUNT J

T Tt T T —
0 15 16 17 31

The instruction modifies this word to include the correct settings of the PSR.

Regardless of the setting of bit 0 of the argument count, the instruction next
unconditionally sets OVR to 0 and loads the PC with the target address. Control then
transfers to the word referenced by the PC.

Load CPU Identification

LCPID

D ofofo o[+ [n]sfosJo] e fofo]]

o' 1 2 3 4 5 6 7 9 10 1t 12 13 14 15

Loads a double word into ACO. Carry is unchanged and overflow is 0.

The double word contains the microcode revision level and the main memory size. Refer
to the specific functional characteristics manual for the accumulator format.

Load Accumulator
LDA ac,/@]displacement[,index]

FIOI1| AC l@\INDEX‘ DISPLACEMENT]
e T T T T T T ™

Copies a word from memory to an accumulator.

Calculates the effective address, E. Places the word addressed by E in bits 16-31 of the
specified accumulator. The contents of the location addressed by E remain unchanged.

Bits 0—15 are undefined.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Instruction Dictionary 10-67

Load Accumulator with WFP
LDAFP ac

Lol e [] fofo] ifo Jofoli]

0 1 2 10 11 12 13 14 15

Loads the specified accumulator with the contents of WFP.

Loads the 32-bit contents of WFP (the wide frame pointer) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSB
LDASB ac

L fofof we [i[i]efof+Jefof]ofo] 1]

9 10 11 12 13 14 15

Loads the specified accumulator with the contents of WSB.

Loads the 32-bit contents of WSB (the wide stack base) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSL
LDASL ac

CTol e [olo [o[T o]

T T t t T T t y t t 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Loads the specified accumulator with the contents of WSL.

Loads the 32-bit contents of WSL (the wide stack limit) into the specified 32-bit
accumulator. Carry is unchanged and overflow is 0.

Load Accumulator with WSP
LDASP ac

Lol se 1] fofofofof]ofo[/]

10 1t 12 13 14 15
Loads the specified accumulator with the contents of WSP.

Loads the contents of WSP (the wide stack pointer) into the specified accumulator.
Carry is unchanged and overflow is 0.

Load Accumulator with Double Word
LDATS ac

[fofo] we [1]sfofof]ofof]ofo[/]

0o 1 2 100 11 12 13 14 15

Loads the contents of the word addressed by WSP into an accumulator.

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Loads the contents of the addressed double word into the specified accumulator. Carry is
unchanged and overflow is 0.

10-68 Instruction Dictionary

Load Byte
LDB acs,acd

Load Integer

LDI fpac

[[aes [ooo [iJo[n [] fofo]s]ofo]o]

O 1 2 10 11 12 13 14 15

Moves a copy of the contents of a memory byte (as addressed by a byte pointer in one
accumulator) into the second accumulator.

Places the 8-bit byte addressed by the byte pointer contained in bits 15-31 of ACS into
bits 24-31 of ACD. Sets bits 16-23 of ACD to 0. The contents of ACS remain
unchanged unless ACS and ACD are the same accumulator. Carry remains unchanged
and overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

[1‘0'0]FPAC|111]1|1I0|1| [|o|o{o|

0 ' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Translates up to a 16-digit decimal integer from memory to (normalized) floating-point
format and places the result in a floating-point accumulator.

Under the control of accumulators AC1 and AC3, converts a decimal integer to
floating-point form, normalizes it, and places it in the specified FPAC. The instruction
updates the Z and N bits in the FPSR to describe the new contents of the specified
FPAC. Leaves the decimal number unchanged in memory, and destroys the previous
contents of the specified FPAC.

Bits 16-31 of AC1 must contain the data-type indicator describing the number.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number in memory.

Numbers of data type 7 are not normalized after loading. By convention, the first byte of
a number stored according to data type 7 must contain the sign and exponent of the
floating-point number. The exponent must be in “excess 64" representation. The
instruction copies each byte (following the lead byte) directly to mantissa of the specified
FPAC. It then sets to zero each low-order byte in the FPAC that does not receive data
from memory.

Upon successful completion, the instruction leaves accumulators ACO and AC1
unchanged. AC2 contains the original contents of AC3. AC3 points to the first byte
following the integer field. Carry remains unchanged and overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: An attempt to load a minus 0 sets the specified FPAC to true zero.

Instruction Dictionary 10-69

Load Integer Extended

LDIX

Ll fefefel] o]]ifo] o]t e]oo]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Distributes a decimal integer of data type 0, 1, 2, 3, 4, or 5 into the four FPACs.

Extends the integer with high-order zeros until it is 32 digits long. Divides the integer
into four units of 8 digits each and converts each unit to a floating-point number. Places
the number obtained from the 8 high-order digits into FACO, the number obtained from
the next 8 digits into FACI, the number obtained from the next 8 digits into FAC2, and
the number obtained from the low-order 8 bits into FAC3. The instruction places the
sign of the integer in each FPAC unless that FPAC has received 8 digits of zeros, in
which case the instruction sets FPAC to true zero. The Z and N flags in the
floating-point status register are unpredictable.

Bits 16-31 of AC1 must contain the data-type indicator describing the integer.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the integer.

Upon successful termination, the contents of AC0O and AC1 remain unchanged; and
AC2 contains the original contents of AC3. AC3 points to the first byte following the
integer field. Carry remains unchanged and overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Dispatch (Long Displacement)
LDSP ac,/@]displacement/,index]

I1IINDEX| AC,1|0|1,0|0‘0|1|1I0|0’1J@‘ DISPLACEMENT —I

vvv

Dispatches through a table of 28-bit address offsets indexed by the 31-bit PC.

Computes the effective address E . This is the address of a dispatch table. The dispatch
table consists of a table of 28-bit self-relative addresses (bits 0-3 are ignored).
Immediately before the table are two signed, two’s complement limit words, L and H.
The last double word of the table is in location E + 2(H — L). The instruction adds the
28-bit self-relative offset in the table entry to the address of the table entry. The segment
field of the fetched table entry is ignored.

Compares the signed, two’s complement number contained in the accumulator to the
signed limit double word. If the number in the accumulator is less than L or greater
than H, sequential operation continues with the instruction immediately after the Wide
Dispatch instruction.

If the number in AC is greater than or equal to L and less than or equal to H, the
instruction fetches the double word at location E + 2(number — L). If the fetched
double word is equal to 377777777774 (all 1’s), sequential operation continues with the
instruction immediately after the Wide Dispatch instruction. If the fetched double word
is not equal to 377777777774, the instruction adds the double word to its address and

10-70

Instruction Dictionary

places the new address in the program counter. Sequential operation continues with the
word addressed by the updated value of the program counter. Carry is unchanged and
overflow is 0.

Wraparound occurs within the 28-bit offset. A segment crossing cannot occur. The
effective address, £, references a table of self-relative offsets in the current segment.
Thus, bits 1-3 of E are always interpreted as the current segment.

The structure of the dispatch table is shown in Figure 10.7.

PO

Start of table —

W§

Last word
intable]
E+2(H-L)
W
DG-15413
Figure 10.7 LDSP dispatch table structure
Load Effective Address
LEF ac,/@/displacement],index]
ITI 1 | 1] AC [@I INDEX l DISPLACEMENT ‘
Yo 1 2 3 a4 s 6 7 8 T T

Places an effective address in an accumulator.

Computes the effective address, E, within the current segment and places it in the
specified accumulator. Sets bit 0 of the accumulator to 0. The previous contents of the
AC are lost.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTE: The LEF instruction can only be executed when the address translator is enabled and when
the LEF mode is enabled in the segment base register. Otherwise, the processor checks the 1/O
validity flag when the address translator is enabled. If I/O is enabled or the address translator is
disabled, the processor executes the instruction as an I/O instruction. Otherwise, a protection
violation occurs.

Carry is unchanged and overflow is 0.

Instruction Dictionary 10-71

Add Double (Memory to FPAC) (Long Displacement)
LFAMD fpac,/@]displacement[,index]

’1iINDEX’FPACIOIOiO|1i1l011]1l0]0l1i@[DISPLACEMENT j
vvvvvvvvvv

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 47

Adds the 64-bit floating-point number in the source location to the 64-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Adds this 64-bit floating-point number to the 64-bit floating-point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

Add Single (Memory to FPAC) (Long Displacement)
LFAMS fpac,[@]displacement],index]

[1]INDEXIFPAC‘O|O]O’1’1|0’0|110l0(1|@l DISPLACEMENT j

...................................
0O 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 47

Adds the 32-bit floating-point number in the source location to the 32-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Adds this 32-bit floating-point number to the floating-point number in bits
0-31 of the specified FPAC. Places the normalized result in the specified FPAC. Leaves
the contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

Sets bits 32-63 of FACD to 0.

Divide Double (FPAC by Memory) (Long Displacement)
LFDMD fpac,/@]displacement],index]

[1J1NDEX]FPACIOIO|1]1’1]1’1]1‘0]0,1@[DISPLACEMENT j

vvv

Divides the 64-bit floating-point number in FPAC by the 64-bit floating-point number
in the source location and places the normalized result in FPAC.

Comoputes the effective address, E. Uses E to address a double-precision (four-word)
operand. Divides the 64-bit floating-point number in the specified FPAC by this 64-bit
floating-point number. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

10-72 Instruction Dictionary

Divide Single (FPAC by Memory) (Long Displacement)
LFDMS fpac,/@]displacement[,index]

|'1—[|NDEX1FPAC!0|011]1]1J1l0!1!0|0!1|@l DISPLACEMENT J

vvv

Divides the 32-bit floating-point number in bits 0-31 of FPAC by the 32-bit floating-point
number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Divides the floating-point number in bits 0-31 of the specified FPAC by this
32-bit floating-point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and [V flags in
the floating-point status register to reflect the new contents of FPAC.

Sets bits 32—-63 of FACD to 0.

Load Floating-Point Double (Long Displacement)
LFLDD fpac,/@]displacement[,index]

IT]INDEXIFPAC‘OI1|0I1‘1|0[1|1‘0|0|1|@| DISPLACEMENT I

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double-precision floating-point number
at the address specified by E and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Load Floating-Point Single (Long Displacement)
LFLDS fpac,/@]displacement],index]

[TFNDEXIFPAC[OI1l0|1i1|0!0|1‘0|0‘1|@l DISPLACEMENT l
—_t—ttttt 7777 7T T T T T T
47

0 1 2 3 45 6 7 8 9 1011 1213 14 15 16 17

Moves two words out of memory into a specified FPAC.

Computes the effective address E. Fetches the single-precision floating-point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating-point status
register to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Instruction Dictionary 10-73

Load Floating-Point Status (Long Displacement)
LFLST [@]/displacemment],index]

|1[1|0|INDEX|1|1|0|1I1|0|1|1’0|0|1|@l DISPLACEMENT

vv

vvvvvvvvv

Moves the contents of four specified memory locations to the floating-point status
register.

Computes the effective address, E. Places the 64-bit operand addressed by E in the
floating-point status register as follows:

e Places bits 0—15 of the operand in bits 0-15 of the FPSR. Sets bits 16-32 of the FPSR
to 0.
« If ANY is 0, bits 33-63 of the FPSR are undefined.

e If ANY is 1, the instruction places bits 33-63 of (FPPC) the operand in bits 3363 of
the FPSR.

NOTES: This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as
I, ANY is set to I, otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating-point identification
code and cannot be changed. Refer to the specific functional characteristics manual for the code to
use.

This instruction initiates a floating-point trap if ANY and TE are both I after the FPPC is loaded.

Multiply Double (FPAC by Memory) (Long Displacement)
LFMMD fpac,/@]displacement],index]

IT[INDEXFPAC|O|0|1[1|1|0|‘Il1|0|0\1|@| DISPLACEMENT J

s

..
01 2 3 4 5 6 7 8 8 10111213 14 15 16 17 47

Multiplies the 64-bit floating-point number in the source location by the 64-bit
floating-point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Multiplies this 64-bit floating-point number by the 64-bit floating-point number
in the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

Multiply Single (FPAC by Memory) (Long Displacement)
LFMMS fpac,[@]displacement/,index]

‘1[INDEXlFPAC|OIO]1I1]1|0[0|1‘0|011l@| DISPLACEMENT J

|||

Multiplies the 32-bit floating-point number in the source location by the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Multiplies this 32-bit floating-point number by the floating-point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 0-31 of the

10-74__Instruction Dictionary

specified FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source
location unchanged and updates the Z and N flags in the floating-point status register to
reflect the new contents of FPAC.

Subtract Double (Memory from FPAC) (Long Displacement)
LFSMD fpac,[(@]displacement/,index]

l‘llINDEXIFPAClOl0]0|1|1|1l1‘1|0|0[1|@l DISPLACEMENT

vvv

Subtracts the 64-bit floating point number in the source location from the 64-bit floating
point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Subtracts this 64-bit floating-point number from the 64-bit floating-point
number in the specified FPAC. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating-point status register to reflect the new contents of FPAC.

Subtract Single (Memory from FPAC) (Long Displacement)
LFSMS fpac,[(@]displacement/,index]

I1[INDEXIFPAC’O|OIO|1[1|1|O|1[0|0[1|@l DISPLACEMENT ’

vvv

Subtracts the 32-bit floating-point number in the source location from the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double word)
operand. Subtracts this 32-bit floating-point number from the floating-point number in
bits 0-31 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and
updates the Z and [V flags in the floating-point status register to reflect the new contents
of FPAC.

Store Floating-Point Status (Long Displacement)
LFSST /@]displacement/[,index]

[T Topoed s [o[- [\ To[o[]e] = |

vvv

Moves the contents of the FPSR to four specified memory locations.

Computes the effective address, E, of two sequential, 32-bit locations in memory. Stores
the contents of the FPSR in these locations as follows:

* Stores bits 0—15 of the FPSR in the first memory word.

* Sets bits 16-31 of the first memory double word and bit 0 of the second memory
double word to 0.

Instruction Dictionary 10-75

o If ANY is 0, the contents of bits 1-31 of the second memory double word are
undefined.

« If ANY is 1, the instruction stores bits 33—63 of the FPSR into bits 1-31 of the second
memory double word.

NOTE: This instruction does not initiate a floating-point trap under any conditions of the FPSR.

Store Floating-Point Double (Long Displacement)
LFSTD fpac,/@]displacement][,index]

l_[INDEXIFPACIOI |0| | | l I IOIO| I@I DISPLACEMENT |

"0 12 3 45 6 7 8 91011121314 1516 17 Ta7

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the floating-point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

NOTE: This instruction will move unnormalized data without change.

Store Floating-Point Single (Long Displacement)
LFSTS fpac,/@]displacement],index]

rllNDEXIFPAC|0|1]0|1I1}1'0' 0]0'1‘@| DISPLACEMENT
i
"o 123 4567 8 91011121314 151617 T T) A P

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain
unchanged.

NOTE: This instruction will move unnormalized data without change.

Jump (Long Displacement)
LIMP /@/displacement],index]

[l ool [Jo]:[tJo[[1]ofols]e] ~~~_~ osracewent]

012345678910111213|4151617 "47

Loads an effective address into the program counter.

Calculates the effective address, E. Loads E into the PC. Carry is unchanged and
overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

10-76 _Instruction Dictionary

Jump to Subroutine (Long Displacement)
LISR /@]displacement/[,index]

L1]o] 1 jwoex{1[+[o] 1] 1] 1]o[]o]o]]e] DISPLACEMENT]
o12:445671591011121314151317''"""""""""'-'-vvv-ﬁﬁ47

Saves a return address and transfers control to a subroutine.

Calculates the effective address, E. Loads AC3 with the current 31-bit value of the
program counter plus three. Loads E into the PC. Carry is unchanged and overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Load Byte (Long Displacement)
LLDB acdisplacement[,index]

[l e [oo T e o[oo [

Calculates a byte pointer and loads the byte into the specified accumulator.

Calculates the effective byte address. Uses the byte address to reference a byte in
memory. Loads the addressed byte into bits 24-31 of the specified accumulator, then
zero extends the value to 32 bits. Carry is unchanged and overflow is 0.

Load Effective Address (Long Displacement)
LLEF ac,/@/displacement[,index]

’1|INDEX| AC] I | ’ | l | 1 I I [l@l DISPLACEMENT —|
.v..-'..x...|.y'y.'..,.v.v..rF

0123 4 56 7891011121314151617

Loads an effective address into an accumulator.

Calculates the effective address, E. Loads E into the specified accumulator. Carry is
unchanged and overflow is 0.

Load Effective Byte Address (Long Displacement)
LLEFB ac,displacement/,index]

|1IINDEXI ACI |0|0| 11!1] I ‘0|OJI| DISPLACEMENT ,
L —r T T

L T T T T T T T T T 1
012345678910111213141516 47

Loads an effective byte address into an accumulator.

Calculates the effective byte address. Loads the byte address into the specified
accumulator. Carry is unchanged and overflow is 0.

Instruction Dictionary 10-77

Load Modified and Referenced Bits
LMRF

pEDDEnnnnannnnon

i 3 9 10 11 12 13 14 15

Loads the modified and referenced bits of a pageframe into ACO.
ACI contains a pageframe number in bits 13-31.

The bits are loaded into ACO, right-justified, and zero-filled. The modified bit is located
in bit 30; the reference bit, in bit 31 of the pageframe. The instruction then resets the
referenced bit just accessed to 0. Carry is unchanged and overflow is 0.

if the address translator is not enabled, undefined results will occur.

Specification of a nonexistent pageframe results in indeterminate data.

NOTE: This is a privileged instruction.

Narrow Add Memory Word to Accumulator (Long Displacement)
LNADD ac,/@]displacement[,index]

]IlNDExI ACIO[l I |] | 1 loloi l@l DISPLACEMENT
0 1 2 34 56 78 9102184150607 T T T T T T T ey

Adds an integer contained in a memory location to an integer contained in an accumulator.

Calculates the effective address, E. Adds the 16-bit integer contained in the location
specified by E to the integer contained in bits 16-31 of the specified accumulator. Sign
extends the 16-bit result to 32 bits and loads it into the specified accumulator. Sets carry
to the value of ALU carry and overflow to 1, if there is an ALU overflow. The contents
of the referenced memory location remain unchanged.

Narrow Add Immediate (Long Displacement)
LNADI n,/@/displacement],index]

1] N |INDEXI | |0| B)l I |1]0|0|0|@] DISPLACEMENT

012 3 456 7 8 9101112131415 16 17 T T T T T T T T T T Ty

Adds an integer in the range of 1 to 4 to an integer contained in a 16-bit memory
location.

Adds the value n+1 to the 16-bit contents of the specified memory location, where n is
an integer in the range of 0 to 3. Sets carry to the value of ALU carry (16-bit operation).
Sets overflow to 1, if there is an ALU overflow (16-bit operation).

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be added.

10-78 _Instruction Dictionary

Narrow Divide Memory Word (Long Displacement)
LNDIV ac,/@]displacement][,index]

!]lNDEXI ACI l !0} l l l l IOIO! ’@I DISPLACEMENT

0 12 3 4 5 6 7 8 9 1011121314 16 16 17 T) T

Divides an integer contained in an accumulator by an integer in memory.

Calculates the effective address, E. Sign extends the integer contained in bits 16-31 of
the specified accumulator to 32 bits and divides it by the 16-bit integer contained in the
location specified by E. If the quotient is within the range —32,768 to + 32,767
inclusive, sign extends the result to 32 bits and loads it into the specified accumulator. If
the quotient is outside of this range, or the memory word is zero, the instruction sets
overflow to 1 and leaves the specified accumulator unchanged. Otherwise, overflow is 0.
The contents of the referenced memory location and carry remain unchanged.

Narrow Do Until Greater Than (Long Displacement)
LNDO ac,termination offset, [@]displacement][,index]

{1|AC IINDEXI l |] l J l l IOIOI l@l DISPLACEMENT
P12 3 a5 e T e s o e T T T T T T T T

[TERMINATION OFFSET l

t T T T T T T T T T T T T T T T 1
48 63

Increments a memory location, compares it to the AC, and takes a normal exit if the
location is still less than or equal to the AC.

Increments a 16-bit memory location, sign extends it to 32 bits, and compares it to the
AC. If the memory location is greater than the AC, then a PC relative branch is made
by adding the termination offset to PC+ 1. If the memory location is less than or equal
to the AC, then the next instruction is executed.

In either case, the instruction loads the incremental memory location into the AC.

If a fixed-point overflow trap occurs while incrementing the DO-loop variable, the
contents of the specified memory location and the PC value in the return block are
undefined.

Sets carry to the value of ALU carry. Sets overflow to 1, if there is an ALU overflow
caused by the increment.

Narrow Decrement and Skip if Zero (Long Displacement)
LNDSZ [@]displacement][,index]

][Hmosx|1| [o[1]1]o]1]1]o]o]1]e] DISPLACEMENT]
0’12 3456 78 9111121314151 12 ' T T

Decrements the contents of a location and skips the next word if the decremented value
is zero.

Calculates the effective address, E. Decrements by one the contents of the 16-bit
memory location addressed by E. If the result is equal to zero, then the instruction skips
the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Instruction Dictionary 10-79

Narrow Increment and SKip if Zero (Long Displacement)
LNISZ [@j/displacement][,index]

’1'010|INDEX‘1|1’O[1I1|0|011]0l0|1|@[DISPLACEMENT

vvvvv

Tt T LIS S St S e e S B S S R
0O 1 2 3 4 5 6 7 8 9 10111213 1415 16 17 47

Increments the contents of a location and skips the next word if the incremented value is
zero.

Calculates the effective address, E. Increments by one the contents of the 16-bit memory
location addressed by E. If the result is equal to zero, then the instruction skips the next
sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Narrow Load Accumulator (Long Displacement)
LNLDA ac,/(@]displacement/[,index]

WNDEXI AC’ ‘1| ! | IOI l l | ‘ |@1 DISPLACEMENT

0 12 3 45 6 7 8 9 101112131415 16 17)

Sign extends and loads the contents of a memory location into an accumulator.

Calculates the effective address, E. Fetches the 16-bit fixed-point integer contained in
the location specified by E. Sign extends this integer to 32 bits and loads it into the
specified accumulator. Carry is unchanged and overflow is 0.

Narrow Multiply Memory Word (Long Displacement)
LNMUL ac,/@]displacement/,index]

(oo se oL [l [o[o[[o[olofe] ——— osmemwew]

012 3 45 6 7 8 9101112131415 16 17 47

Multiplies an integer in memory by an integer in an accumulator.

Calculates the effective address, E. Multiplies the 16-bit, signed integer contained in the
location referenced by E by the signed integer contained in bits 16-31 of the specified
accumulator. If the result is outside the range of —32,768 to +32,767 inclusive, sets
overflow to 1; otherwise, overflow is 0. Sign extends the result to 32 bits and places the
result in the specified accumulator. The contents of the referenced memory location and
carry remain unchanged.

Narrow Subtract Immediate (Long Displacement)
LNSBI n,/@/displacement][,index]

[1[w Jwoexi]ifofofv]o1[1]ofofole] ~ ~~ ~ osmscewew

0 12 3 456 7 8 91011121314 15 16 17 TA

Subtracts an integer in the range of 1 to 4 from an integer contained in a 16-bit memory
location.

Subtracts the value n+1 from the 16-bit value contained in the specified memory
location, where n is an integer in the range of 0 to 3. Sets carry to the value of ALU
carry (16-bit operation). Sets overflow to 1, if there is an ALU overflow (16-bit
operation).

10-80 Instruction Dictionary

NOTE: The assembler rakes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore. the programmer should code the exact value to be subtracted.

Narrow Store Accumulator (Long Displacement)
LNSTA ac,/@]displacement],index]

[o] e o[[+ [[e [[e[o []o |
012 3 4656 7 8 9 101112131415 16 17 T

Stores the contents of an accumulator in a memory location.

Calculates the effective address, E. Stores a copy of the low-order 16 bits of the specified
accumulator in the memory location specified by E. Carry is unchanged; overflow is 0.

Narrow Subtract Memory Word (Long Displacement)
LNSUB ac,/@]displacement],index]

IIIINDEXI AC|0‘1|0]0|1|O|1[1|0l0|0|@l DISPLACEMENT]

| D U SRS B S S U BN SN B E SR SUUN RS SN SO SN ESUS B R T — T T T T T
0O 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 47

Subtracts an integer in memory from an integer in an accumulator.

Calculates the effective address, E. Subtracts the 16-bit integer contained in the location
referenced by E from the integer contained in bits 1631 of the specified accumulator.

Sign extends the result to 32 bits and stores it in the specified accumulator. Sets carry to
the value of ALU carry and overflow to 1, if there is an ALU overflow. The contents of
the specified memory location remain unchanged.

Locate Lead Bit
LOB acs,acd

[T T [o[oo oo [o]o]o]
o 1 2 3 4 5 6 7 8 9 10

Counts and adds the number of high-order zeroes in an accumulator to another
accumulator.

Adds a number equal to the number of high-order zeroes in the contents of bits 16-31 of
ACS to the signed, 16-bit, two’s complement number contained in bits 16-31 of ACD.
The contents of ACS and the state of carry remain unchanged. Overflow is 0.

Bits 015 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are specified to be the same accumulator, the instruction functions as
described above, except that the contents of ACS will be changed.

Instruction Dictionary 10-81

Push Address (Long Displacement)
LPEF [@/displacement/,index]

l1l0|1IINDEXI1|1IO’1I1]1ITI1]0]0]1'@, DISPLACEMENT —’

vvvvvvvvvvvvvvvvvv

Pushes an address onto the wide stack.

Calculates the effective address, £. Pushes E onto the wide stack, then checks for stack
overflow. Carry is unchanged and overflow is 0.

Push Byte Address (Long Displacement)
LPEFB displacement/,index]

ITFIIOIINDEXI1‘1];'1!1]1]1[1'010]1' DISPLACEMENT j

r Tt Tttt Tttt

Pushes a byte address onto the wide stack.

Calculates a 32-bit byte address. Pushes this byte address onto the wide stack, then
checks for stack overflow. Carry is unchanged and overflow is 0.

Load Physical And Conditional Skip

LPHY
be!jl:!f!;l;l;lfl'h|°J1|°J°m

L t t t T y T T T T
o 8 9 10 11 12 13 14 15

Translates the logical address contained in ACI to a physical address.
ACI contains a logical word address.

If the address translator is disabled, this instruction does nothing. The next word is
executed.

If the address translator is enabled, then the actions described below occur.

The instruction compares the ring field of AC1 to the current ring. If AC1’s ring field is
less than the current ring field, then a protection fault (AC1 = 4) occurs.

If ACYT’s ring field is greater than or equal to the current ring, then the instruction
references the SBR specified by AC1. If the SBR contents are invalid, then the instruction
ends and the next instruction is executed. The contents of ACO will be unchanged.

If the contents of the SBR are valid, the instruction loads ACO with the last resident
PTE. If the PTE indicates no page or validity faults, the instruction loads AC2 with the
32-bit physical word address of the logical address contained in AC1. The next sequential
word is skipped.

If the PTE signals a page or validity fault, the contents of AC2 remain unchanged. The
next sequential word is executed.

The instruction leaves carry unchanged; overflow is 0.

10-82 Instruction Dictionary

Push Jump (Long Displacement)
LPSHJ [@]displacement],index]

[bef T o[T[T ool e

p —

T2 3 e s e 7 e e o2 3e s e T T T T4y

Saves a return address on the wide stack and jumps to a specified location.

Calculates the effective address, E. Pushes the current 31-bit value of the program
counter plus three onto the wide stack. Loads the PC with E. Sequential operation
continues with the word addressed by the updated value of the program counter. Carry
is unchanged and overflow is 0.

NOTE: The value pushed onto the wide stack will always point to a location in the current ring.

Load Processor Status Register into AC0

LPSR

el e L]

6 10 11 12 13 14 15

Loads the contents of the PSR into ACO.

Loads the contents of OVK, OVR, and IRES into bits 0, 1, and 2 of ACO, respectively.
Fills the rest of ACO with zeroes. The contents of the PSR remain unchanged. Carry is
unchanged and overflow is 0.

Locate and Reset Lead Bit

LRB acs,acd

IEEInnnnnnononn

5 6 7 8 9 10 11 12 13 14 15
Performs a Locate Lead Bit instruction and sets the lead bit to 0.

Adds a number equal to the number of high-order zeroes in the contents of bits 16-31 of
ACS to the signed, 16-bit, two’s complement number contained in bits 16-31 of ACD.
Sets the leading 1 in bits 16-31 of ACS to 0. Carry remains unchanged; overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If ACS and ACD are specified to be the same accumulator, then the instruction sets the
leading 1 in that accumulator to 0 and no count is taken.

Load All Segment Base Registers

LSBRA

[lelefolol fefefefoffofrfofol]

o 1 2 3 4 5 6 9 10 11 12 13 14 15
Loads the eight SBRs with new values.
ACO contains the starting address of an 8-double-word block.

The instruction loads a copy of the contents of these words into the SBRs as shown in the
following list.

Instruction Dictionary 10-83

Double Word in Block Destination Order
Moved
1 SBRO First
2 SBR1 Second
3 SBR2 Third
4 SBR3 Fourth
5 SBR4 Fifth
6 SBR5 Sixth
7 SBR6 Seventh
8 SBR7 Eighth

After loading the SBRs, the instruction purges the address translator. If the address
translator was disabled at the beginning of this instruction cycle, the processor enables it
now.

If an invalid address is loaded into SBRO, the processor disables the address translator
and a protection fault occurs (code = 3 in AC1). This means that logical addresses are
identical to physical addresses and the fault is processed in physical address space.

The instruction leaves ACO and carry unchanged; overflow is 0.

NOTE: This is a privileged instruction.

Load Segment Base Registers 1-7

LSBRS

o[fefofof oo]
5 6 7 8 9 10 11 12 13 14 15

Loads SBR1 through SBR7 with new values.

ACO contains the starting address of a block of seven double words. The list gives how
the instruction loads a copy of the contents of these words into the SBRs.

Double Word in Block Destination Order
Moved
1 SBR1 First
2 SBR2 Second
3 SBR3 Third
4 SBR4 Fourth
5 SBR5 Fifth
6 SBR6 Sixth
7 SBR7 Seventh

After loading the SBRs, the instruction purges the address translator. If the address
translator was disabled at the beginning of this instruction cycle, the processor enables it
now.

If SBRO contains invalid information, then the processor disables the address translator
and a protection fault occurs (code = 3 in AC1). This means that logical addresses are
identical to physical addresses and the fault is processed in physical address space.

The instruction leaves ACO and carry unchanged; overflow is 0.

NOTE: This is a privileged instruction.

10-84 Instruction

Dictionary

Logical Shift
LSH acs,acd

Load Sign
LSN

[T [o[[Tl [eT]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the contents of a 16-bit accumulator left or right, depending on the contents of
another accumulator.

Shifts the contents of bits 16-31 of ACD either left or right depending on the number
contained in bits 24-31 of ACS. The signed, 8-bit two’s complement number contained
in bits 24-31 of ACS determines the direction of the shift and the number of bits to be
shifted. If the number in bits 24-31 of ACS is positive, shifting is to the left; if the
number in bits 24-31 of ACS is negative, shifting is to the right. If the number in bits
24-31 of ACS is zero, no shifting is performed. Bits 16-23 of ACS are ignored.

The number of bits shifted is equal to the magnitude of the number in bits 24-31 of
ACS. Bits shifted out are lost and the vacated bit positions are filled with zeroes. Carry
and the contents of ACS remain unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: If the magnitude of the number in bits 24-31 of ACS is greater than 15, all bits of ACD are
set 1o 0. Carry and the contents of ACS remain unchanged.

L[] fe] fofo]e]

T T

1
F T u + y + t T u T t
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Under the control of accumulators AC1 and AC3, evaluates a decimal number in
memory and returns in AC1 a code that classifies the number as zero or nonzero and
identifies its sign.

The meaning of the returned code is as follows:

Value of Number Code
Positive nonzero +1
Negative nonzero —1
Positive zero 6]
Negative zero -2

Bits 16-31 of AC1 must contain the data type indicator describing the number.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number.

Upon successful termination, the contents of ACO remain unchanged; AC1 contains the
value code; AC2 contains the original contents of AC3; and the contents of AC3 are
unpredictable. Carry remains unchanged. The contents of the addressed memory
locations remain unchanged. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Instruction Dictionary 10-85

Store Byte (Long Displacement)
LSTB ac,displacement/,index]

o e ool el Lol ower

vvvvv

012 3 4 5 6 7 8 9 10111213 14 15 16 T T T T T T T T T Ty

Stores the low-order byte of the specified accumulator in memory.

Calculates the effective byte address. Moves a copy of the contents of bits 24-31 of the
specified accumulator into memory at the location specified by the byte address. Carry
is unchanged and overflow is 0.

Wide Add Memory Word to Accumulator (Long Displacement)
LWADD ac,/@]displacement[,index]

[1|INDEXI ACIOI1}1‘0|0|0|1|1‘0|0|0I@' DISPLACEMENT
"ttt T T T T T T T T T T T T T T
0 1 2 3 45 6 7 8 9 1011 1213 14 15 16 17 47

Adds an integer contained in memory to an integer contained in an accumulator.

Calculates the effective address, E. Adds the 32-bit integer contained in the location
specified by E to the 32-bit integer contained in the specified accumulator. Loads the
result into the specified accumulator. Sets carry to the value of ALU carry and overflow
to 1, if there is an ALU overflow. The contents of the referenced memory location
remain unchanged.

Wide Add Immediate (Long Displacement)
LWADI n,/@]displacement/[,index]

DI s ool [iofololo] s []olofole] " osmacewewr]

0123 466 7 8 9101112131415 16 17" a7’

Adds an integer in the range of 1 to 4 to an integer contained in a 32-bit memory
location. ’

Adds the value n+1 to the 32-bit fixed-point integer contained in a memory location,
where 7 is an integer in the range of 0 to 3. Sets carry to the value of ALU carry. Sets
overflow to 1, if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be added.

Wide Divide Memory Word (Long Displacement)
LWDIV ac,/[@]displacement[,index]

[[NDEXIACIIJII['IIII‘@I v.,.......rD'SPLACEMENT

T

0123456 7 8 9101112131415 16 17 T T T T T Ty

Divides an integer in an accumulator by an integer in memory.

Calculates the effective address, E. Sign extends the 32-bit integer contained in the
specified accumulator to 64 bits and divides it by the 32-bit integer contained in the
location specified by E

10-86

Instruction Dictionary

If the quotient is within the range of —2,147.483,648 to +2,147,483,647 inclusive, or if
the memory word is zero, the instruction loads the quotient into the specified accumulator.
Overflow is 0.

If the quotient is outside this range, or if the word in memory is zero, the instruction sets
overflow to 1 and leaves the specified accumulator unchanged.

The contents of the referenced memory location and carry remain unchanged.

Wide Do Until Greater Than (Long Displacement)
LWDO ac,termination offset[@]displacement [index]

[T el [[Je[e [[oe]e[e]

T 23 a5 6 78 90z a8 T T T T T T T T Ty
I TERMINATION OFFSET J
P i e e S T

Increments a memory location, compares it to the AC, and takes a normal exit if the
location is still less than or equal to the AC.

Increments a 32-bit memory location and compares it to the AC. If the memory location
is greater than the AC, then a PC relative branch is made by adding the termination
offset to PC+ 1. If the memory location is less than or equal to the AC, then the next
instruction is executed. In either case, the instruction loads the incremented memory
word into the AC.

If a fixed-point overflow trap occurs while incrementing the DO-loop variable, the
contents of the specified memory location and the PC value in the return block are
undefined.

Sets carry to the value of ALU carry. Sets overflow to 1, if there is an ALU overflow
caused by the increment.

Wide Decrement and Skip if Zero (Long Displacement)
LWDSZ [@]displacement/[,index]

||||moex[] }][[[[]o[o[|@] o oseucemen |

012 3 4 56 7 8 910111213 14 1516 17 T T T T T T T T Ty

Decrements the contents of a location and skips the next word if the decremented value
is zero.

Calculates the effective address, E. Decrements by one the contents of the 32-bit
memory location addressed by E. If the result is equal to zero, then the instruction skips
the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word to be decremented is
located on a double-word boundary.

Instruction Dictionary 10-87

Wide Increment and Skip if Zero (Long Displacement)
LWISZ [@]displacement/,index]

I IOIOIINDEXI | l I l I IO|1|OIOI 1@' DISPLACEMENT l
BT 23 a8 6 78 a0 eser T T T T T T T T T T T e

Increments the contents of a location and skips the next word if the incremented value is
ZEro.

Calculates the effective address, E. Increments by one the contents of the 32-bit memory
location addressed by E. If the result is equal to zero, then the instruction skips the next
sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word to be incremented is
located on a double-word boundary.

Wide Load Accumulator (Long Displacement)
LWLDA ac,/[@]displacement],index]

r1|INDEX| AC IOI1[1[1[1]1|111l010[1[@l DISPLACEMENT —'

0O 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 47

Loads the contents of a memory location into an accumulator.

Calculates the effective address, E. Fetches the 32-bit fixed-point integer contained in
the location specified by E. Loads a copy of this mteger into the specified accumulator.
Carry is unchanged and overflow is 0.

Wide Multiply Memory Word (Long Displacement)
LWMUL ac,/@/displacement],index/

(el Jo[T Jele[[elelelele] o |

T T T T T T 7T

L T LA BN B S S B S B SR S S N
7234567891011121314151617 47

Multiplies an integer in an accumulator by an integer in memory.

Calculates the effective address, E. Multiplies the 32-bit, signed integer contained in the
location referenced by E by the 32-bit, signed integer contained in the specified
accumulator. Loads the 32 least significant bits of the result into the specified
accumulator.

If the result is outside the range of —2,147,483,648 to +2,147,483,647 inclusive, the
instruction sets overflow to 1; otherwise, overflow is 0. The contents of the referenced
memory location and carry remain unchanged.

10-88 Instruction Dictionary

Wide Subtract Immediate (Long Displacement)
LWSBI n,/@]displacement],index]

[T ool [o[o[ololofel —— owcemen]

rrrrrrrr

0 12 3 456 7 8 910111213 14151617 o T a7

Subtracts an integer in the range of 1 to 4 to an integer contained in a 32-bit memory
location.

Subtracts the value n+1 from the value contained in the specified 32-bit memory
location, where n is an integer in the range of 0 to 3. Sets carry to the value of ALU
carry. Sets overflow to 1, if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be subtracted.

Wide Store Accumulator (Long Displacement)
LWSTA ac,/@]displacement],index]

|]'NDEX| ACI | , |] |]1l1|0[0| l@l DISPLACEMENT]

T T T T T T T T T T T

T T T T T T T 1
O‘I234567891011121314151617 47

Stores the contents of an accumulator in a memory location.

Calculates the effective address, E. Stores a copy of the 32-bit contents of the specified
accumulator in the memory location specified by E. Carry is unchanged; overflow is 0.

Wide Subtract Memory Word (Long Displacement)
LWSUB ac,/@]displacement[,index]

[el e [o[[o[Jo[[e[e[ele] owrscemen

T T T T T T T T T T T T
O1234567891011121314151617 47

Subtracts an integer in memory from an integer in an accumulator.

Calculates the effective address, E. Subtracts the 32-bit integer contained in the memory
location referenced by E from the 32-bit integer contained in the specified accumulator.
Loads the result into the specified accumulator. Sets carry to the value of ALU carry
and overflow to 1, if there is an ALU overflow. The contents of the specified memory
location remain unchanged.

Move

MOV/c/[sh][#] acs,acd[skip]
l1|ACSlACD|o]1|oISHI c |#[SKIP I
"0 12 3 a4 5 6 7 8 9 10 11 12 13 15

Moves the contents of bits 16—31 of an accumulator into another accumulator.

Initializes carry to the specified value. Places the contents of bits 16—-31 of ACS in the
shifter. Performs the specified shift operation and loads the result of the shift into bits
16-31 of ACD if the no-load bit is 0. If the skip condition is true, the instruction skips
the next sequential word. Overflow is 0.

If the load option is specified, bits 0—15 of ACD are undefined.

Instruction Dictionary 10-89

[c]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of c, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted 0 O Leave CARRY unchanged
Z 0 1 Initialize CARRY to O
(¢} 1 O Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol [sh/ Bits Shift Operation
8-9
omitted 00 Do not shift the result
L 01 Shift left
R 10 Shift right
S 11 Swap the two 8-bit bytes
[#]

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol [#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001 ,, other instructions
use the bit combinations.

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

10-90 Instruction Dictionary

Symbol /skip] Bits Operation

13-15
omitted 0 O O Never skip
SKP 0 0 1t Always skip
Sz7C 0O 1 0 Skipif CARRY is O
SNC O 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 0 Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Modify Stack Pointer

MSP ac

[fofo] s [o]efoft[i]s]+]i]ofo]o]
N R R ELA Y R ERYRS RE SR LY

]
5 6 9 10 11 12 13 14 15

Changes the value of the stack pointer and tests for potential overflow.

Adds the signed two’s-complement number in bits 16-31 of the specified accumulator to
the value of the stack pointer and places the result in location 40. The instruction then
checks for overflow by comparing the result in location 40 with the value of the stack
limit. If the result in location 40 is less than the stack limit, then the instruction ends.

If the result is greater than the stack limit, the instruction changes the value of location
40 back to its original contents before the add. The instruction pushes a standard return
block. The program counter in the return block contains the address of the Modify
Stack Pointer instruction.

After pushing the return block, the program counter contains the address of the stack
fault routine. The stack pointer is updated with the value used to push the return block,
and control transfers to the stack fault routine. Carry remains unchanged and overflow
is 0.

Unsigned Multiply

MUL

Lo lofofofof oo efofo Jolo]o]

1
] 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15

Multiplies the unsigned contents of two accumulators and adds the result to the unsigned
contents of a third accumulator. The result is an unsigned 32-bit integer in two
accumulators.

Multiplies the unsigned, 16-bit number in bits 16-31 of AC1 by the unsigned, 16-bit
number in bits 16-31 of AC2 to yield an unsigned, 32-bit intermediate result. The
unsigned, 16-bit number in bits 16-31 of ACO is added to the intermediate result to
produce the final result. The final result is an unsigned, 32-bit number and occupies bits
16-31 of both ACO and ACI. Bit 16 of ACO is the high-order bit of the result and bit 31
of AC1 is the low-order bit. The contents of AC2 remain unchanged.

Instruction Dictionary 10-91

Because the result is a double-length number, overflow cannot occur. Carry remains
unchanged and overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

Signed Multiply

MULS

Narrow Add

NADD

bbb L L L bl e

10 11 12 13 14 15

Multiplies the signed contents of two accumulators and adds the result to the signed
contents of a third accumulator. The result is a signed 32-bit integer in two accumulators.

Multiplies the signed, 16-bit two’s complement number in bits 16-31 of AC1 by the
signed, 16-bit two’s complement number in bits 16-31 of AC2 to yield a signed, 32-bit
two’s complement intermediate result. The signed, 16-bit two’s complement number in
bits 16-31 of ACO is added to the intermediate result to produce the final result. The
final result is a signed, 32-bit two’s complement number which occupies bits 16-31 of
both ACO and ACI1. Bit 16 of ACO is the sign bit of the result and bit 31 of AC1 is the
low-order bit. The contents of AC2 remain unchanged.

Because the result is a double-length number, overflow cannot occur. Carry remains
unchanged and overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

acs,acd

|1IACS[ACD |0|0l0|0l1|0|0|1[0|0|1|
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Adds two integers contained in accumulators.

The instruction adds the 16-bit integer contained in bits 16-31 of ACS to the 16-bit
integer contained in bits 16-31 of ACD. Stores the result in bits 16-31 of ACD. Sign
extends ACD to 32 bits. Sets carry to the value of ALU carry (16-bit operation). If there
is an ALU overflow (16-bit operation), NADD sets overflow to 1.

Narrow Extended Add Immediate

NADDI

i,ac

|1l1|0|AC!1|1|0|0[011l1]1l0|0|1J IMMEDIATE FIELD |

0 1 2 3 4 5 6 7 8 9 101112131415 16 31

Adds an integer contained in an immediate field to an integer in an accumulator.

Adds the 16-bit value contained in the immediate field to bits 1631 of the specified
accumulator. Stores the result in the lower 16 bits of ACD. Sign extends ACD to 32 bits.
Sets carry to the value of ALU carry (16-bit operation). If there is an ALU overflow
(16-bit operation), NADDI sets overflow to 1.

10-92 Instruction Dictionary

Narrow Add Immediate

NADI n,ac

Ll s [Difo[i fofo i]ifofo]]

o
0o 12 3 5 "8 10 1
Adds an integer in the range of 1 to 4 to an integer contained in an accumulator.

The instruction adds the value n+1 to the 16-bit contents of the specified accumulator,
where n is an integer in the range of 0 to 3. Stores the result in the lower 16 bits of the
specified accumulator. Sign extends the specified accumulator to 32 bits. Sets carry to
the value of ALU carry (16-bit operation). Sets overflow to 1 if there is an ALU
overflow (16-bit operation).

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be added.

Narrow Backward Search Queue and Skip

NBStc

l1|1]o|olo]1l1!1]0]0]0]1'1[0'0'1! RESERVED ‘OI tc |1|
01 2 3 45 6 7 8 9101112131418 16 | 262728 3031

The NBStc instruction searches backward through a 16-bit data field. If the search is
successful, it skips the next two instructions.

AC1 and AC3 identify a location in a data field as a beginning data element in the
queue search. AC1 contains an effective address. AC3 contains a 16-bit word offset (a
signed integer in bits 16-31 of AC3). The processor locates the beginning data element
by calculating the effective address and adding the word offset.

Bits 16-31 of the top word on the wide stack contain the mask word. The bits in the mask
word identify the test location bits to sample.

Bits 28-30 of the NBStc instruction specify the search condition.

tc Value Bits 28-30 Meaning
Encoding *
SS 000 Some of the sampled test location bits are 1
SC 001 Some of the sampled test location bits are O
AS 010 All of the sampled test location bits are 1
AC 011 All of the sampled test location bits are O
E 100 The mask and test location are equal
GE 101 The mask is greater than or equal to the test locaiton
LE 110 The mask is less than or equal to the test location
NE 111 The mask and test location are not equal

“The instruction treats the values contained in the mask and in the test location as unsigned integers for the E, GE, LE, and NE test
conditions.

The search begins with the addressed data element, and compares it with the 16-bit
mask word. The search continues until the processor reaches either the head of the queue
or the data element that meets the test condition.

If the search is successful, AC1 contains the effective address of the data element, and
the processor then skips the next two single-word instructions. The processor will not

Instruction Dictionary 10-93

honor interrupts between the time that it completes a successful search and executes the
PC+4 instructions.

If the search fails, AC1 contains the effective address of the last data element searched,
and the processor then executes the next instruction. The processor will honor interrupts
between the time that it completes an unsuccessful search and executes the PC+2

If the processor interrupts the search, AC1 contains the effective address of the next
data element to examine, and the processor then skips the next instruction. The processor
will honor interrupts between the time that the interrupt occurs and the processor
executes the PC+3 instruction.

For all returns, the contents of CARRY, OVR, WSP, AC0, AC2, and AC3 remain
unchanged.

Narrow Load CPU Identification
NCLID

[l sTiTel Joe o oo 2]]

]
o 1 2 3 4 5 6 7 8 9 10 11 12 1

1

JRIEN
3 14 15
Loads CPU identification into the accumulators. Refer to the specific functional

characteristic manual for the accumulator format. Carry is unchanged and overflow is 0.

NOTE: This instruction can be executed only with Lef mode and 1/0 protection disabled.

Narrow Divide
NDIV acs,acd

1lACS|ACDIO'O]OIO[1I1|1|1|OIO|1J
—t— T T + T t t t T t t t t T 1
12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11

Divides an integer in an accumulator by an integer in another accumulator.

Sign extends bits 16-31 of ACD to 32 bits. Divides this signed integer by the 16-bit
signed integer contained in bits 16-31 of ACS. If the quotient is within the range of
—32,768 to +32,767 inclusive, sign extends the lower 16 bits of the result to 32 bits and
places these 16 bits in ACD. If the quotient is outside of this range, or if ACS is zero, the
instruction sets overflow to 1 and leaves ACD unchanged. Otherwise, overflow is 0. The
contents of ACS and carry always remain unchanged.

Negate
NEG/c/[sh][#] acs,acd].skip]

r‘lACS|ACD|OIOI1| SH| c [ﬁl SKIP J
Yo 12 3 4 5 6 7 8 9 10 11 12 13 15

Forms the two’s complement of the contents of bits 16—31 of an accumulator.

Initializes carry to the specified value. Places the two’s complement of the unsigned,
16-bit number in bits 16-31 of ACS in the shifter. If the negate operation produces a

10-94 Instruction Dictionary

carry of 1 out of the high-order bit, the instruction complements carry. Performs the
specified shift operation and places the result in bits 16-31 of ACD if the no-load bit is
0. If the skip condition is true, the instruction skips the next sequential word. Overflow is
0.

If the load option is specified, bits 0-15 of ACD are undefined.

NOTE: If ACS contains 0, the instruction complements carry.

[c]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of ¢, bits 10
and 11, and the operation.

Symbol [c¢/ Bits Operation
10-11
omitted O O Leave CARRY unchanged
Z 0 1 Initialize CARRY to O
(0] 1 O Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the
instruction operation. The processor can shift the bits left or right one bit position, or it
can swap the two bytes. The following list gives the values of sh, bits 8 and 9, and the
shift operation.

Symbol [sh] Bits Shift Operation
8-9
omitted 0 O Do not shift the result
L 01 Shift left
R 10 Shift right
S 1 1 Swap the two 8-bit bytes
[#]

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol /#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an insruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 10015, other instructions
use the bit combinations.

Instruction Dictionary 10-95

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

Symbol [skip] Bits Operation
13-15
omitted 0 0 O Never skip
SKP 0 0 1 Always skip
SZC 0O 1 0 Skip if CARRY is O
SNC 0 1 1 Skipif CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 O Skip if either CARRY or the result is O
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middie of a 32-bit or longer instruction.

Narrow Forward Search Queue and Skip

NFStc

rlii‘lr‘ll0|olo‘1l1|1'0|0!011]1|0‘0l1| _ tRES'ER\'/ED' " |0] tc ng

—t— Tttt Tttt T — Tt —t—T— T+ 1
01 2 3 4 5 6 7 8 9 10111213 141516 26 27 28 30 31

The NFStc instruction searches forward through a 16-bit data field. If the search is
successful, it skips the next two instructions.

AC1 and AC3 identify a location in a data field as a beginning data element in the
queue search. AC1 contains an effective address. AC3 contains a 16-bit word offset (a
signed integer in bits 16-31 of AC3). The processor locates the beginning data element
by calculating the effective address and adding the word offset.

Bits 16-31 of the top word on the wide stack contain the mask word. The bits in the mask
word identify the test location bits to sample.

Bits 28-30 of the NFStc instruction specify the search condition.

tc Value Bits 28-30 Meaning
Encoding *
SS 000 Some of the sampled test location bits are 1
SC 001 Some of the sampled test location bits are O
AS 010 All of the sampled test location bits are 1
AC 011 All of the sampled test location bits are O
E 100 ~ The mask and test location are equal
GE 101 The mask is greater than or equal to the test location
LE 110 The mask is less than or equal to the test location
NE 111 The mask and test location are not equal

*The instruction treats the values contained in the mask and in the test location as unsigned integers for the E, GE, LE, and NE test
conditions.

10-96 Instruction Dictionary

The search begins with the addressed data element, and compares it with the 16-bit
mask word. The search continues until the processor reaches either the tail of the queue
or the data element that meets the test condition.

If the search is successful, AC1 contains the effective address of the data element, and
the processor then skips the next two single-word instructions. The processor will not
honor interrupts between the time that it completes a successful search and executes the
PC+4 instructions.

If the search fails, AC1 contains the effective address of the last data element searched,
and the processor then executes the next instruction. The processor will honor interrupts
between the time that it completes an unsuccessful search and executes the PC+2
instruction.

If the processor interrupts the search, AC1 contains the effective address of the next
data element to examine, and the processor then skips the next instruction. The processor
will honor interrupts between the time that the interrupt occurs and the processor
executes the PC+ 3 instruction.

For all returns, the contents of CARRY, OVR, WSP, AC0, AC2, and AC3 remain
unchanged.

No I/0 Transfer
NIO /f] device

IO|11 IOIO‘O|0I | [IDE'VICE'COD'E —I

—
9 10 15

Used when a BUSY or DONE flag must be changed with no other operation taking
place.

Sets the BUSY and DONE flags in the specified device according to the function
specified by F.

NOTE: The NIO[f] CPU instructions are reserved or assigned a function. For instance, the NIOS
CPU (INTEN) is the interrupt enable instruction.

Narrow Load Immediate

NLDAI

i,ac

[T e[[[e[o e[o ool] |
012345678 91011121314151 T T3

Loads an accumulator with the sign extended contents of an immediate value.

Sign extends the 16-bit, two’s complement literal value contained in the immediate field
to 32 bits. Loads the result of the sign extension into the specified accumulator. Carry is
unchanged and overflow is 0.

Instruction Dictionary 10-97

Narrow Multiply
NMUL acs,acd

[(1), A(I:SIA(':D 10!010!01111’011,0!”11

12 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiplies an integer in an accumulator by an integer in another accumulator.

Multiplies the signed integer contained in bits 16-31 of ACD by the signed integer
contained in bits 16-31 of ACS. If the result is outside the range of —32,768 to
+32,767 inclusive, sets overflow to 1; otherwise, overflow is 0. Sign extends the lower 16
bits of the result to 32 bits and places these 32 bits in ACD. The contents of ACS and
carry remain unchanged.

Narrow Negate
NNEG acs,acd

[o [0 [+ o1 [o]o]o o [o]o]"]

0 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Negates an integer contained in an accumulator.

Negates the 16 least significant bits of ACS by performing a two’s complement subtract
from zero. Sign extends these 16 bits to 32 bits and loads the result in ACD. Sets carry
to the value of ALU carry.

NOTE: Negating the largest negative 16-bit integer (100000g) sets overflow to 1.

Narrow Skip on All Bits Set in Accumulator
NSALA Jjac

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Logically ANDs the value in the immediate field with the complement of the contents of
a memory word and skips depending on the result of the AND.

Performs a logical AND on the contents of the immediate field and the complement of
the least significant 16 bits contained in the specified accumulator. If the result of the
AND is zero, then the next sequential word is skipped. If the result of the AND is
nonzero, the next sequential word is executed. The contents of the specified accumulator
remain unchanged. Carry is unchanged and overflow is 0.

Narrow Skip on All Bits Set in Memory Location
NSALM iac

Logically ANDs the contents of an immediate field with the complement of the contents
of a memory word and skips depending on the result.

Performs a logical AND on the contents of the immediate field and the complement of
the word addressed by the specified accumulator. If the result of the AND is zero, then

10-98 Instruction Dictionary

the next sequential word is skipped. If the result of the AND is nonzero, then the next
sequential word is executed. The contents of the specified accumulator and memory
location remain unchanged. Carry is unchanged and overflow is 0.

Narrow Skip on Any Bit Set in Accumulator

NSANA jac

[T Difafofofo] o[tfofo]] ~~ ~ mmeowrermo |

" 123 4 5 6 7 8 9101112131415 16 RERERET

Logically ANDS the contents of an immediate field with the contents of an accumulator
and skips depending on the result.

Performs a logical AND on the contents of the immediate field and the least significant
16 bits contained in the specified accumulator. If the result of the AND is nonzero, the
next sequential word is skipped. If the result of the AND is zero, the next sequential
word is executed. The contents of the specified accumulator remain unchanged. Carry is
unchanged and overflow is 0.

Narrow Skip on Any Bit Set in Memory Location

NSANM i.ac

r]1|1{AC| |1| I l l1l1[1|0‘0|1| IMMEDIATE FIELD]
LI T T T T T T T T T T

T

0 12 3 4 56 7 8 91011121314 15186 ERETE

Logically ANDs the contents of an immediate field with the contents of a memory word
and skips depending on the result.

Performs a logical AND on the contents of the immediate field and the contents of the
word addressed by the specified accumulator. If the result of the AND is nonzero, then
the next sequential word is skipped. If the result of the AND is zero, the next sequential
word is executed. The contents of the specified accumulator and memory location
remain unchanged. Carry is unchanged and overflow is 0.

Narrow Subtract Immediate

NSBI ~#n,ac

o] w | |‘|°l | |°\1|°\1I°l°l*|
"o 1 2 "1 12 13 14 15

9 10
Subtracts a value in the range of 1 to 4 from the value contained in an accumulator.

The instruction subtracts the value n+ 1 from the 16-bit value contained in the specified
accumulator, where n is an integer in the range of 0 to 3. Stores the result in bits 16-31
of the specified accumulator. Sign extends the specified accumulator to 32 bits. Sets
carry to the value of ALU carry. Sets overflow to 1 if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts | from it before placing it in the
immediate field. Therefore, the programmer should code the exact value 1o be subtracted.

Instruction Dictionary 10-99

Narrow Subtract
NSUB acs,acd

[1rAcslAc0|o|o[o| | Io‘1|1|olo| |

0 1 2 3 4 5 6 10 11 12 13 14 15

Subtracts an integer in an accumulator from an integer in another accumulator.

Subtracts the 16-bit integer contained in bits 16-31 of ACS from the 16-bit integer
contained in bits 16-31 of ACD. Stores the result in bits 16-31 of ACD. Sign extends
ACD to 32 bits. Sets carry to the value of ALU carry and overflow to 1, if there is an
ALU overflow.

OR Referenced Bits

ORFB
Ll fofefol el fofi]ifr]ofof]

8 9 10 11 12 13 14 15

Performs an inclusive OR on the referenced bits and the contents of a word string.

ACI contains a pageframe number in bits 13-31. Bits 28-31 of AC1 are set to 0 so that
the initial page frame number is a multiple of 16.

ACO contains an origin 0 pageframe count that specifies the number of groups of 16
referenced bits to reset. A count of 0 (or any negative count except 8000 0000,4) means
that the instruction resets 16 pageframes.

AC2 contains the starting address of a word string. The instruction will inclusively OR
the contents of this word string with the referenced bits.

The instruction fetches the referenced bits of 16 consecutive pageframes, beginning with
the pageframe specified by ACI1. Exclusively ORs these 16 bits with the 16-bit word
specified by AC2. Stores the result of the OR in the location specified by AC2. Resets
the 16 referenced bits to 0, decrements ACO by 1, increments AC1 by 16, and increments
AC2 by 1.

If the contents of ACO are 0, the instruction performs one final iteration through the
loop and then terminates execution. If ACO contains a positive value, the instruction
continues the ORing process with the next 16 referenced bits specified by AC1 and the
word specified by AC2. Carry is unchanged and overflow is 0.

NOTE: If ACI contains a nonexistent pageframe number or if the address translator is not enabled
when this instruction executes, the result of the instruction is undefined.

This is a privileged instruction.

10-100 Instruction Dictionary

Purge the Address Translator

PATU
ANNDONNENnOnnonn

t t t T T t 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Purges the entire address translator of all entries. Carry is unchanged and overflow is 0.

NOTE: This is a privileged instruction.

Pop Block and Execute

PBX
[Telee e T el el TeTe

t T T T y
o] 1 2 3 4 5 10 11 12 13 14 15

The Pop Block and Execute (PBX) instruction, used in conjunction with the BKPT
instruction, returns program control from the breakpoint handler.

The PBX instruction
1. Disables the interrupt system for one instruction execution;

2. Temporarily saves the one-word opcode in ACO bits 16-31 and performs a modified
wide pop block function WPOPB;

3. Temporarily replaces the BKPT instruction with the temporarily saved one-word
opcode and continues normal program flow.

When the bits in ACO 16-31 contain the first word of a multi-word instruction, the
processor locates the remainder of the multi-word instruction beginning at PC +1. (The
PC references the BKPT instruction, effectively substituting the 16-bit instruction in
ACO for the BKPT instruction referenced by the PC after the pop.)

If the value popped off the stack and loaded into the PC does not reference the BKPT
instruction, undefined results occur.

If an interrupt occurs while executing the saved instruction (PC points to the BKPT
instruction), the processor sets the IXCT flag in the PSR and pushes the opcode of the
saved instruction on the wide stack. Upon returning from the interrupt handler, the
BKPT instruction tests the IXCT flag. If the flag is set, the BKPT instruction resets the
flag to 0. Then it pops the saved opcode of the interrupted instruction off the wide stack
and executes it.

Carry and overflow are indeterminate as a result of executing the PBX instruction.
Executing the instruction in ACO determines the value of the processor flags.

Instruction Dictionary 10-101

Program I/0

PIO acs,acd

(e oo Lo o[[e o [1]

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Issues a programmed I/O command to an I1/O device via the specified 1/O channel.

Bits 16-31 of ACS contain the command.

The command to the I/O device must have the form:

0 1/0 CHANNEL R OoP torf DEVICE

16 17 LT 20 21 Yy 24 " 25 26 " T T T Y

The instruction issues the command contained in ACS to the specified device. Bits
17-19 specify the I/O channel. Bits 21-23 (OP) contain the I/O operation code (bits 5-7
of an I/O instruction). Bits 8 and 9 (PULSE) contain the device flag command (bits 8
and 9 of an I/0O instruction).

The instruction performs the specified operation, using bits 16-31 of ACD as the source
or destination of the specified transfer. If ACD is to be the destination of data from the
specified device, the transfer stores the data in bits 16-31 of ACD. Bits 0—15 of ACS are
undefined. Carry is unchanged and overflow is 0.

NOTE: Execution of N10O or Skip instructions when ACD is other than ACO produces results
defined on an implementation basis only.

Pop Multiple Accumulators

POP acs,acd

[o Lo [Jol i To oo [e o]

o 1 2 3 4 s 10 11 12 13 14 15

Pops one to four words off the stack and places them in the indicated accumulators.

The set of accumulators from ACS through ACD, bits 16-31, is filled with words
popped from the stack. Bits 16-31 of the accumulators are filled in descending order,
starting with bits 16-31 of the accumulator specified by ACS and continuing down
through bits 16-31 of the accumulator specified by ACD, wrapping around if necessary,
with AC3 following ACO. If ACS is equal to ACD, only one word is popped and it is
placed in ACS.

The stack pointer is decremented by the number of accumulators popped and the frame
pointer is unchanged. A check for underflow is made only after the entire pop operation
is done.

Bits 015 of the modified accumulator are undefined after completion of this instruction.

This instruction leaves carry unchanged; overflow is 0.

10-102 Instruction Dictionary

Pop Block
POPB

nononnnnnnoonong

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Returns control from an XOPO Extended operation or an 1/O interrupt handler that
does not use the stack change facility of the Vector instruction (VCT).

Five words are popped off the stack and placed in predetermined locations. The words
popped and their destinations are as follows:

Word Popped Destination

1 Bit O is loaded into carry

Bits 1-15 are loaded into the PC
AC3

AC2

AC1

ACO

O b wWN

Sequential operation is continued with the word addressed by the updated value of the
program counter. Carry remains unchanged and overflow is 0.

Bits 015 of the modified accumulator are undefined after completion of this instruction.

Pop PC and Jump

POPJ

nnnEnNBnnnOonoog

0 1 2 3 4 5 6 9 10 11 12 13 14 15

Pops the top word off the stack and places it in the program counter. Sequential
operation continues with the word addressed by the updated value of the program
counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The stack pointer is decremented by one and the frame pointer is unchanged. A check
for underflow occurs after the pop operation. Carry remains unchanged; overflow is 0.

Push Multiple Accumulators

PSH acs,acd

Mo oo [o s [e[[][]
"0 12 3 a4 5 6 7 8 9 10 11 12 13 14 15

Pushes the contents of one to four accumulators onto the narrow stack.

Bits 16-31 of the set of accumulators from ACS through ACD are pushed onto the
stack. The contents of bits 16-31 of the accumulators are pushed in ascending order,
starting with bits 16-31 of the AC specified by ACS and continuing up through bits

Instruction Dictionary 10-103

16-31 of the AC specified by ACD, wrapping around if necessary, with ACO following
AC3. The contents of the accumulators remain unchanged. If ACS equals ACD, only
ACS is pushed. Carry remains unchanged and overflow is 0.

The stack pointer is incremented by the number of accumulators pushed and the frame
pointer is unchanged. A check for overflow is made only after the entire push operation

finishes.

Push Jump

PSHJ /[@]displacement/,index]
[_l l ‘ , | IINDE—F lo l l , [l lo l@l DISPLACEMENT j
MR ' 2 3 4'5'6'ﬁ'9'10'11'12'13'14'15'15'17 """"""" 31

Pushes the address of the next sequential instruction onto the narrow stack and loads the
program counter with an effective address.

Pushes the address of the next sequential instruction onto the stack, computes the
effective address, E, and places it in the program counter. Sequential operation continues
with the word addressed by the updated value of the program counter.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Carry remains unchanged and overflow is 0.

Push Return Address
PSHR

Lfelofolo[[[[ofolol Jolo]o]

10 11 12 13 14 15

Pushes the address of this instruction plus two onto the narrow stack.

Carry remains unchanged and overflow is 0.

Reset Referenced Bits
RRFB

1;111:121‘2!;' M |°l Lol]efe]]

10 11 12 13 14 15

Resets the specified referenced bits.

AC1 contains a pageframe number in bits 13-31. Bits 28—31 are cleared to 0 so that the
initial pageframe number is a multiple of 16.

ACO contains an origin 0 pageframe count that specifies the number of groups of 16
referenced bits to reset. A count of 0 (or any negative count except 8000 0000,4) means
that the instruction resets 16 pageframes.

The instruction sets to 0 the referenced bits of 16 contiguous pageframes, starting with
the pageframe specified by the contents of ACI. Decrements the contents of ACO by 1
and increments the contents of AC1 by 16.

10-104 Instruction Dictionary

Restore
RSTR

If ACO contains a non-negative number after the decrement, the instruction repeats the
operation with the next 16 pageframes. If ACO contains a negative number, the instruction
ends. Carry is unchanged and overflow is 0.

NOTE: If ACO specifies a nonexistent pageframe or if the address translator is not enabled when
this instruction executes, the result of the instruction is undefined.

This is a privileged instruction.

t + t t + u

5 6 7 8 9 10 11 12

nEEDnINnnnOonooD

Returns control from certain types of /O interrupts.

Pops nine words off the stack and places them in predetermined locations. The words
popped and their destinations are as follows:

Word Popped Destination

1 Bit O is loaded into carry

Bits 1-15 are loaded into the PC
AC3

AC2

AC1

ACO

Stack fault address

Stack limit

Frame pointer

© 0 N A WwN

Stack pointer

Sequential operation continues with the word addressed by the updated value of the
program counter.

Bits 015 of the modified accumulators are undefined after completion of this instruction.

Carry remains unchanged and overflow is 0.

NOTES: Use the Restore instruction to return control to the program only if the I/O interrupt

handler uses the stack change facility (Mode E) of the Vector on Interrupting Device Code instruction
(VCT).

The Restore instruction does not check for stack underflow.

Instruction Dictionary 10-105

Return
RTN

Save
SAVE

i

nonEnnnnnnEEnnn

1
"5 6 7 8 9 10 11 12 13 14 15
Returns control from subroutines that issue a Save instruction at their entry points.

The Save instruction loads the current value of the stack pointer into the frame pointer.
The Return instructions uses this value of the frame pointer to pop a standard return
block off of the stack. The format of the return block is:

Word Popped Destination
1 Bit O is loaded into carry
Bits 1-15 are loaded into the PC
AC3
AC2
AC1
ACO

O~ OWN

After popping the return block, the Return instruction loads the decremented value of
the frame pointer into the stack pointer and the popped value of AC3 into the frame
pointer.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Carry remains unchanged and overflow is 0.

[1]1]1]0'0]1'1I1I1I1,0’0]1|0,0|0} i TfIM'ME'DIA;I'E'FIEIZ . I

| S B S B B B B S B S B B RN R B R S S —r 1
0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 31

Saves information in the narrow stack that is required by the Return instruction.

Saves the current value of the stack pointer in a temporary location. Adds five plus the
unsigned, 16-bit integer contained in the immediate field to the current value of the
stack pointer and loads the result into the narrow stack pointer. Compares this new value
of the stack pointer to the stack limit to check for overflow. If no overflow condition
exists, then the instruction places the current value of the frame pointer in bits 16-31 of
AC3. Fetches the contents of the temporary location and loads them into the frame
pointer. The instruction uses the value in the frame pointer to push a five-word return
block. The formats and contents of the five-word return block are as follows.

Word Pushed Contents

Bits 16-31 of ACO

Bits 16-31 of AC1

Bits 16-31 of AC2

Frame pointer before the Save

g~ WN =

Bit 0 = carry
Bits 1-15 = bits 16-31 of AC3

10-106 Instruction Dictionary

After pushing the return block on the narrow stack, the instruction places the value of
the frame pointer (which now contains the old value of the stack pointer plus five) in bits
16-31 of AC3. Carry remains unchanged and overflow is 0.

If an overflow condition exists, the Save instruction transfers control to the stack fault
routine. The program counter in the fault return block contains the address of the Save
instruction.

The Save instruction allocates a portion of the stack for use by the procedure which
executed the Save. The value of the frame size, contained in the immediate field,
determines the number of words in this stack area. This portion of the stack will not
normally be accessed by push and pop operations, but will be used by the procedure for
temporary storage of variables, counters, etc. The frame pointer acts as the reference
point for this storage area.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Use the Save instruction with the Jump to Subroutine instruction. The Jump to
Subroutine instruction places the return value of the program counter in bits 16-31 of
AC3. Save then pushes the return value (contents of bits 16-31 of AC3) into bits 1-15
of the fifth word pushed.

Save Without Arguments
SAVZ

Lijofifofof]i]r]r]rfo]o]r]o]o]o]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Saves the information required by the Return instruction.

Saves the current value of the stack pointer in a temporary location. Adds 5 to the
current value of the stack pointer and loads the result into narrow stack pointer.
Compares this new value of the stack pointer to the stack limit to check for overflow. If
no overflow condition exists, then the instruciton places the current value of the frame
pointer in bits 16—31 of AC3. Fetches the contents of the temporary location and loads
them into the frame pointer. The instruction uses the value in the frame pointer to push
a 5-word return block. The formats and contents of the 5-word return block are as
follows:

Word Pushed Contents

Bits 16-31 of ACO

Bits 16-31 of AC1

Bits 16-31 of AC2

Frame pointer before the Save Without Arguments

A WN =

Bit O = carry
Bits 1-15 = bits 16-31 of AC3

After pushing the return block on the narrow stack, the instruction places the value of
the frame pointer (which now contains the old value of the stack pointer plus five) in bits
16-31 of AC3. Carry remains unchanged and overflow is 0.

Instruction Dictionary 10-107

If an overflow condition exists, the Save Without Arguments instruction transfers
control to the stack fault routine. The program counter in the fault return block contains
the address of the Save Without Arguments instruction.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Use the Save Without Arguments instruction with the Jump to Subroutine instruction.
The Jump to Subroutine instruction places the return value of the program counter in
bits 16-31 of AC3. Save Without Arguments then pushes the return value (contents of
bits 16-31 of AC3) into bits 1-15 of the fifth word pushed.

Subtract Immediate

SBI n,ac

T w T~ Jolo]e]o][o[o [[o[°]7]

4 5 6 7 8 8 10 11 12 13 14 15

Subtracts an unsigned integer in the range 1 to 4 from the contents of an accumulator.

The instruction subtracts the value N+1 from the unsigned 16-bit number contained in
bits 16-31 of the specified accumulator and the result is placed in bits 16-31 of AC.
Carry remains unchanged. Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

NOTE: The assembler takes the coded value of n and subtracts 1 from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be subtracted.

Example

Assume that bits 16-31 of AC2 contain 000003g. After the instruction SBI 4,2 is
executed, bits 16-31 of AC2 contain 177777g and carry remains unchanged (see Figure
10.8.)

Before After

[o looo[ooolooolooolon] [] lm]m]mlm]

Carry either Q or 1 Carry unchanged

S$D-03561

Figure 10.8 SBI example

10-108 Instruction Dictionary

Sign Extend
SEX acs,acd

Too [o[[e oo o]]
"0 172 3 a4 5 6 7 8 9 10 11 12 13 14 15

Sign extends the 16-bit integer in an accumulator to 32 bits.

Sign extends the 16-bit integer contained in ACS to 32 bits and loads the result into
ACD. The contents of ACS remain unchanged, unless ACS and ACD are specified to be
the same accumulator. Carry is unchanged and overflow is 0.

Skip if ACS Greater than or Equal to ACD
SGE acs,acd

[T [o[oo [[o o] To]o 7]
"0 1 2 3 4 5 6 7 8B 9 10 11 12 13 14 15

Compares two signed integers in two accumulators and skips if the first is greater than
or equal to the second.

Algebraically compares the signed two’s complement numbers in bits 16-31 of ACS and
ACD. If the number in bits 16-31 of ACS is greater than or equal to the number in bits
16-31 of ACD, the next sequential word is skipped. The contents of ACS, ACD, and
carry remain unchanged. Overflow is 0.

NOTE: The Skip if ACS Greater than ACD and Skip if ACS Greater than or Equal to ACD
instructions treat the contents of the specified accumulators as signed, two's complement integers.
To compare unsigned integers, use the Subtract and Add Complement instruction.

Skip if ACS Greater than ACD
SGT acs,acd

[Toe [[o[oo o [e o[- [oT+]7]
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Compares two signed integers in two accumulators and skips if the first is greater than
the second.

Algebraically compares the signed, two’s complement numbers in bits 16-31 of ACS
and ACD. If the number in bits 16-31 of ACS is greater than the number in bits 1631
of ACD, the next sequential word is skipped. The contents of ACS, ACD, and carry
remain unchanged. Overflow is 0.

NOTE: The Skip if ACS Greater than ACD and Skip if ACS Greater than or Equal to ACD
instructions treat the contents of the specified accumulators as signed, two's complement integers.
To compare unsigned integers, use the Subtract and Add Complement instruction.

Instruction Dictionary 10-109

1/0 Skip
SKP: device

|70|1|1‘0|0’1|1|1‘ T I DEVICE CODE l
- L R t T T T T 1

— T T T T

o 6 7 8 9 10 "5

The SKP instruction tests the BUSY and DONE status flags of devices. If the test
condition specified by ¢ is true, the instruction skips the next sequential word.

The following list gives the test ¢ conditions.

Symbol ¢ Value Test

BN 00 Skipon BUSY = 1
BZ 01 Skip on BUSY = 0
DN 10 Skip on DONE = 1
DZ 11 Skip on DONE = O

Store Modified and Referenced Bits

SMRF
(el oo L e[[[e]o]

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores new values into the modified and referenced bits of a pageframe.
ACI contains a pageframe number in bits 13-31.

The instruction fetches the contents of the two least significant bits of ACO. Stores these
values in the modified (bit 30) and referenced (bit 31) bits of the pageframe specified by
ACI. Carry is unchanged and overflow is 0.

If the address translator is not enabled, undefined results will occur. If a nonexistent
pageframe is specified, the results are indeterminate.

NOTE: This is a privileged instruction.

Skip on Nonzero Bit
SNB acs,acd

@1A?SZ!3A?D4ITL!:1;]1]1|1|1|11010[0[

T T

T t 1 t t T 1
8 9 10 11 12 13 14 15

The two accumulators form a bit pointer. If the addressed bit is 1, the next sequential
word is skipped.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contain the high-order 16 bits and bits 16-31 of ACD contain the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0.

If the addressed bit in memory is 1, the next sequential word is skipped. The contents of
ACS, ACD, and carry remain unchanged. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

10-110 Instruction Dictionary

Skip on OVR Reset

SNOVR

!;lf[:lg;lf[j |1l'l°!1l [1]ofo]]

10 11 12 13 14 15

Tests the value of OVR. If the flag has the value 0, the next sequential word is skipped.
If the flag has the value 1, the next sequential word is executed. Carry is unchanged and
overflow is 0.

Store Processor Status Register From AC0O

SPSR

o} 1 2 3 4 5

10 1 12 13 14 15
Stores the most significant bits of ACO in the most significant bits of PSR.

The contents of ACO remain unchanged. Carry is unchanged and overflow is 0.

Store Accumulator
STA ac,/@]displacement[,index]

|OI 1]01 AC I@IINDEXI DISPLACEMENT I
Ty T s e s e T T T T T T 5

Stores the contents of bits 16—-31 of an accumulator into a memory location.

Places the contents of bits 16-31 of the specified accumulator in the word addressed by
the effective address, E. The previous contents of the location addressed by E are lost.

The contents of carry and the specified accumulator remain unchanged. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Store Accumulator in WFP

STAFP ac

[Tl Dol e e]

o 1 2 3 10 11 12 13 14 15
Stores the contents of an accumulator in WFP.

Stores a copy of the contents of the specified accumulator into WFP (the wide frame
pointer). Carry is unchanged and overflow is 0.

Instruction Dictionary 10-111

Store Accumulator in WSB

STASB ac

1] tfof ac [1]tfofoft]oft]1]ofo]]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores the contents of an accumulator in WSB and updates the stack parameter in page
zero of memory.

Stores a copy of the contents of the specified accumulator into WSB (the wide stack
base). Carry is unchanged and overflow is 0.

Store Accumulator in WSL

STASL ac

Lfofi] ae [i]rfofofef1]r]1]ofofr]

1
10 11 12 13 14 15

Stores the contents of an accumulator in WSL and updates the stack parameter in page
zero of memory.

Stores a copy of the contents of the specified accumulator into WSL (the wide stack
limit). Carry is unchanged and overflow is 0.

Store Accumulator in WSP

STASP ac

1fofi] ac [ofifofofr]ofr1]1]ofo]]
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores the contents of an accumulator in WSP.

Stores a copy of the contents of the specified accumulator into WSP (the wide stack
pointer). Carry is unchanged and overflow is 0.

Store Accumulator into Stack Pointer Contents

STATS ac

|1|0‘0|ACl1|1|0[0i1|0|1|1|0|0|1|
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stores the contents of an accumulator in the location addressed by WSP.

Uses the contents of WSP (the wide stack pointer) as the address of a double word.
Stores a copy of the contents of the specified accumulator at the address contained in
WSP. Carry is unchanged and overflow is 0.

10-112 Instruction Dictionary

Store Byte
STB acs,acd

T o [[e[o e[o] o]]7]
"0 172 3 4 s 6 7 8 9 10 11 12 13 14 15

Moves the rightmost byte of ACD to a byte in memory. ACS contains the byte pointer.

Places bits 24-31 of ACD in the byte addressed by the byte pointer contained in bits
16-31 of ACS.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

The contents of ACS, ACD, and carry remain unchanged. Overflow is 0.

Store Integer

STI fpac

l1lol1lFPf\cl1l1!1l1[ol1|o[

t t

0 1 2 3 4 5 6 7 8 9 0 11

[o]o]o]
2 13 14 15

Converts the contents of a floating-point accumulator to a specified format and stores it
in memory.

Under the control of accumulators AC1 and AC3, translates the contents of the specified
FPAC to an integer of the specified type and stores it, right-justified, in memory,
beginning at the specified location. The instruction leaves the floating-point number
unchanged in the FPAC and destroys the previous contents of memory at the specified
location(s). It also sets CARRY to 0.

Bits 16-31 of AC1 must contain the data-type indicator describing the integer.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the number in memory.

Upon successful completion, the instruction leaves accumulators ACO and AC1
unchanged. AC2 contains the original contents of AC3 and AC3 contains a byte pointer
which is the address of the next byte after the destination field. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: If the number in the specified FPAC has any fractional part, the result of the instruction is
undefined. Use the Integerize instruction to clear any fractional part.

For data types O through 6, if the destination field cannot contain the entire number being stored,
high-order digits are discarded until the number will fit into the destination. The remaining
low-order digits are stored and carry is set to 1. For data type 7, the low-order digits are discarded.

For data types 0, 1, 2, 3, 4, and 5, if the number being stored will not fill the destination field, the
high-order bytes to the right of the sign are set to 0.

For data type 6, if the number being stored will not fill the destination field, the sign bit is extended
to the left to fill the field.

For data type 7, if the number being stored will not fill the destination field, the low-order bytes are
set to 0.

Instruction Dictionary 10-113

Store Integer Extended
STIX

Ll fefel o] o] T[Tl ToTo o]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15"

Converts the contents of the four FPACs to an integer of data type 0,1,2,3,4, or 5 and
uses the low-order eight digits of each to form a 32-digit integer.

The instruction stores this integer, right-justified, in memory beginning at the specified
location. The sign of the integer is the logical OR of the signs of all four FPACs. The
previous contents of the addressed memory locations are lost. Sets carry to 0. The
contents of the FPACs remain unchanged. The condition codes in the FPSR are
unpredictable.

Bits 16-31 of AC1 must contain the data-type indicator describing the form of the
integer in memory.

Bits 16-31 of AC3 must contain a byte pointer which is the address of the high-order
byte of the destination field in memory.

Upon successful termination, the contents of ACO and AC1 remain unchanged; AC2
contains the original contents of AC3; and AC3 contains a byte pointer which is the
address of the next byte after the destination field. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

NOTES: If the number in the specified FPAC has any fractional part, the result of the instruction is
undefined. Use the Intergerize instruction to clear any fractional part.

If the destination field is not large enough to contain the number being stored, the instruction
disregards high-order digits until the number will fit in the destination. The instruction stores
low-order digits remaining and sets carry to 1.

If the number being stored will not fill the destination field, the instruction sets the high-order bytes
to 0.

Subtract
SUB/c/[sh][#] acs,acd[skip]

ll|ACS|ACD]1|011ISH| C I#l SKIP
t T T T T t t + t T T T T T

o 1 2 3 4 5 6 7 8 9 10 11 12 15

Performs unsigned integer subtraction and complements carry if appropriate.

Initializes carry to its specified value. The instruction subtracts the unsigned, 16-bit
number in bits 16-31 of ACS from the unsigned, 16-bit number in bits 16-31 of ACD
by taking the two’s complement of the number in ACS and adding it to the number in
ACD. The instruction places the result of the addition in the shifter. If the operation
produces a result that is greater than 32,768, the instruction complements carry. The
instruction performs the specified shift operation and places the result of the shift in bits
16-31 of ACD if the no-load bit is 0. If the skip condition is true, the instruction skips
the next sequential word.

If the load option is specified, bits 0~15 of ACD are undefined.

10-114 Instruction Dictionary

Overflow is 0 for this instruction.

NOTE: If the number in ACS is less than or equal to the number in ACD, the instruction
complements carry.

[e]

The processor determines the effect of the CARRY flag (c) on the old value of CARRY
before performing the operation (opcode). The following list gives the values of ¢, bits 10
and 11, and the operation.

Symbol /c/ Bits Operation
10-11
omitted 0 O Leave CARRY unchanged
Z 0 1 Initialize CARRY to O
(4] 1 O Initialize CARRY to 1
C 1 1 Complement CARRY
[sh]

The processor shifts the CARRY flag and the 16 data bits after performing the instruction
operation. The processor can shift the bits left or right one bit position, or it can swap the
two bytes. The following list gives the values of sh, bits 8 and 9, and the shift operation.

Symbol [sh/ Bits Shift Operation
8-9
omitted 00 Do not shift the result
L 01 Shift left
R 10 Shift right
S 11 Swap the two 8-bit bytes
[#]

Unless you use the no-load option (#), the processor loads the result of the shift operation
into the destination accumulator. The no-load option is useful to test the result of the
instruction operation without destroying the destination accumulator contents. The
following list gives the values of the no-load option, bit 12, and the operation.

Symbol [#/ Bit 12 Operation

omitted 0 Load the result into ACD

1 Do not load the result and restore the
CARRY flag

NOTE: Do not specify an instruction with the no-load option (#) in combination with either the never
skip or always skip option. Thus, the instruction may not end in 1000, or 1001 ,, other instructions
use the bit combinations.

[skip]

The processor can skip the next instruction if the condition test is true. The following list
gives the test conditions, bits 13 to 15, and the operation.

Instruction Dictionary 10-115

Symbol [skip] Bits Operation

13-15
omitted 0 0 O Never skip
SKP 0 0 1 Always skip
SZC O 1 0 Skipif CARRY is O
SNC O 1 1 Skip if CARRY is not O
SZR 1 0 O Skip if the result is O
SNR 1 0 1 Skip if the result is not O
SEZ 1 1 0 Skip if either CARRY or the result is 0
SBN 1 1 1 Skip if both CARRY and the result are not O

When the instruction performs a skip, it skips the next sequential 16-bit word. Make
sure that a skip does not transfer control to the middle of a 32-bit or longer instruction.

Skip on Zero Bit
SZB acs,acd

[[[0 [1Jo]o JoJoJo 1 Jofo o]

o 1 2 3 10 11 12 13 14 15

The two accumulators form a bit pointer. If the addressed bit is 0, the next sequential
word is skipped.

Forms a 32-bit bit pointer from the contents of bits 16-31 of both ACS and ACD. Bits
16-31 of ACS contain the high-order 16 bits and bits 16-31 of ACD contain the
low-order 16 bits of the bit pointer. If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator contents as the low-order 16 bits of
the bit pointer and assumes the high-order 16 bits are 0.

If the addressed bit in memory is 0, the next sequential word is skipped. The contents of
ACS, ACD, and carry remain unchanged. Overflow is 0.

The 31-bit effective address generated by this instruction is constrained to be within the
first 64 Kbytes of the current segment.

Skip on Zero Bit and Set to One
SZBO acs,acd

[l oee [a0 [1JoJo] [1JoJo 1 ololo]

0 1 2 3 4 5 6 1112 13 14 15

The two accumulators form a bit pointer. The instruction sets the addressed bit to 1. If
the addressed bit was 0 before being set to 1, the instruction skips the next sequential
word.

Forms a 32-bit bit pointer from the contents of bits 16-31 of ACS and ACD. Bits 1631
of ACS contain the high-order 16 bits and bits 16-31 of ACD contain the low-order 16
bits of the bit pointer. If ACS and ACD are specified as the same accumulator, the
instruction treats the accumulator contents as the low-order 16 bits of the bit pointer and
assumes the high-order 16 bits are 0.

The contents of ACS, ACD, and carry remain unchanged. Overflow is 0. The 31-bit
effective address generated by this instruction is constrained to be within the first 64
Kbytes of the current segment.

10-116 Instruction Dictionary

NOTE: This instruction facilitates the use of bit maps for such purpuses as allocation of facilities
(memory blocks, 1/O devices, elc.) 1o several processes, or 1asks, that may interrupt one another, or
in a multiprocessor environment. The bit is tested and set to | in one memory cycle.

Skip on Valid Byte Pointer

VBP

T ololol e[[]e]ofol [r]ofo]]
"o 1 2 3 4 5 6 7 8 9 10 11 12 13 18 15

Checks a byte pointer for a valid ring-structured reference and if valid it skips the next
word.

NOTE: The processor, not the VBP instruction. checks for a valid access code (read, write, or
execute.)

ACO contains a 32-bit byte pointer. AC1 contains a segment number in bits 1-3; all
other bits contain zeroes.

The instruction, executing in a lower segment, compares the segment number in ACO to
the segment number in AC1 and to the current segment. The byte pointer is valid and
the next sequential instruction is skipped if the segment number in ACO is equal to or
greater than the segment number in AC1 and is equal to the current segment.

Otherwise, the byte pointer is invalid and the next sequential word is executed.

Carry is unchanged and overflow is 0.

Skip on Valid Word Pointer

VWP

nNnoOnNnnOnDHnon
"o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Checks a word pointer for a valid ring-structured reference and if valid it skips the next
word.

NOTE: The processor, not the VWP instruction, checks for a valid access (read. write, or execute|
and checks for more than 15 indirect addresses.

ACO contains a 31-bit, indirectable word pointer. ACI contains a segment number in
bits 1-3; all other bits contain zeroes.

The instruction, executing in a lower segment, compares the segment number in ACO to
the segment number in AC1 and then to the current segment. The word pointer is valid
and the next sequential instruction is skipped if all of the following conditions are true:

1. The segment number in ACO is equal to or greater than the segment number in
ACI.

2. The segment number in an indirect address is equal to or greater than the segment
number in AC1 and the currently referenced segment.

3. If an indirection to a higher numbered segment is followed by another indirection,
the subsequent indirection(s) must be to the same (or higher) segment.

4. The segment number in the effective address (specified by ACO) is equal to or
greater than the segment number in AC1 and the current segment.

Instruction Dictionary 10-117

Otherwise, the word pointer is invalid and the next sequential word is executed.

Carry is unchanged and overflow is 0.

Wide Add Complement
WADC acs,acd

!1]ACSIACD'OI [o!ol lolol [olol—l

0o 1 2 3 4 5 6 9 0 11 12 13 14 15

Adds the logical complement of the 32-bit integer specified by ACS to the 32-bit integer
specified by ACD.

Forms the logical complement of the 32-bit integer contained in ACS and adds it to the
32-bit integer contained in ACD. Stores the result in ACD. Sets carry to the value of
ALU carry. Sets overflow to 1 if there is an ALU overflow.

Wide Add
WADD acs,acd

(T Lo ol L L T
"0 172 3 4 5 6 7 8 8 10 11 12 13 14 15

Adds the 32-bit integers specified by two accumulators.

Adds the 32-bit fixed-point integer contained in ACS to the 32-bit fixed- -point integer
contained in ACD. Stores the result in ACD. Sets carry to ALU carry. Sets overflow to
1, if there is an ALU overflow.

Wide Add With Wide Immediate

WADDI i ac ;
[Jolo[e o[- o o e[e o]] MMEDIATE |
N e e T LT v e e — o

Adds the 32-bit integer in the immediate field to the 32-bit integer in the specified
accumulator.

Adds the 32-bit fixed-point integer contained in the immediate field to the 32-bit
fixed-point integer contained in the specified accumulator. Stores the result in the
specified accumulator. Sets overflow to 1 if there is an ALU overflow. Sets carry to the
value of the ALU carry.

Wide Add Immediate
WADI n,ac

[l w | e [ool iJo[[Ti]ofo])]

o 1 2 1011 12 13 14 15

Adds the value specified by n+1 to the 32-bit integer in the specified accumulator.

Adds the value n+1 to the 32-bit fixed-point integer contained in the specified
accumulator. Stores the result in the specified accumulator. Sets carry to the value of
ALU carry. Sets overflow to 1, if there is an ALU overflow.

10-118 Instruction Dictionary

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore. the programmer should code the exact value 1o be added.

Wide AND with Complemented Source
WANC acs,acd
[1‘ACSlACD|1{O|1\011|0l0[1|0|0111

+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

Logically ANDs the one’s complement of the 32 bits specified by ACS with the 32 bits
specified by ACD.

Forms the one’s complement of the 32 bits contained in ACS and logically ANDs it with
the 32 bits contained in ACD. Stores the result in ACD. Carry is unchanged and
overflow is 0.

Wide AND
WAND acs,acd

e [oe oo o e o]]
Yo 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Logically ANDs the contents of ACS and ACD.

Forms the logical AND between corresponding bits of ACS and ACD. Loads the 32-bit
result into ACD. The contents of ACS remain unchanged. Carry is unchanged and
overflow is 0.

Wide AND Immediate
WANDI i ac

FIOIO]ACl1|1‘0|1|0|0|1|1|0[0‘1| IMMEDIATE l

.............

....................................
01 2 3 4 5 6 7 8 9 10111213 1415 16 47

Logically ANDs the contents of the specified accumulator with the contents of the
immediate field.

Forms the logical AND between corresponding bits of the specified accumulator and the
value contained in the literal field. The instruction places the 32-bit result of the logical
AND in the specified accumulator. Carry is unchanged and overflow is 0.

Wide Arithmetic Shift
WASH acs,acd

[e [Jo o oo [[o o o]]

o 12 '3 'a 5 6 7 8 9 10 1 12 13 14 15

Shifts the contents of ACD left or right.
Bits 24-31 of ACS specify the number of bits to shift and the direction of shifting.

If ACS contains a positive number, the instruction shifts the contents of ACD left;
zeroes fill the vacated bit positions. If ACS contains a negative number, the instruction
shifts the contents of ACD right; the sign bit fills the vacated bit positions. If ACS
contains zero, no shifting occurs. The instruction ignores bits 0-23 of ACS.

Instruction Dictionary 10-119

If the instruction is to shift the contents of ACD to the right, it truncates the contents
one bit position for each shift.

In shifting negative numbers to the right, rounding towards zero is performed. For
instance, — 3 shifted one position to the right results in —1.

The value of ACS and carry remain unchanged. If, while performing a left shift, you
shift out a bit whose value is the complement of ACD’s sign bit, overflow is set to 1.
Otherwise, overflow is 0.

Wide Arithmetic Shift With Narrow Immediate

WASHI

iac

1ol ae [o[Jof [of+[o] s ofo[[~ " " wweowre]

vvvvv

0123 456 7 8 9101112131415 16 31

Shifts the contents of an accumulator left or right.

Bits 24-31 of the immediate field specify the number of bits to shift and the direction of
shifting. If the immediate contains a positive number (1 to 32;,), the instruction shifts
the contents of AC left; zeroes fill the vacated bit positions. If the immediate field
contains a negative number (-1 to -32,(), the instruction shifts the contents of AC right;
the sign bit fills the vacated bit positions. If the immediate field contains zero, then no
shifting occurs. Bits 16 to 23 of the immediate field must be identical to bit 24;
otherwise, results are indeterminate. The processor sign extends the narrow immediate
to 32 bits.

If the instruction is to shift the contents of AC to the right, it truncates the contents one
bit position for each shift.

In shifting negative numbers to the right, rounding towards zero is performed. For
instance, — 3 shifted one position to the right results in —1.

The value of carry remains unchanged. If, while performing a left shift, you shift out a
bit whose value is the complement of AC’s sign bit, overflow is set to 1; otherwise,
overflow is 0.

Wide Block Move

WBLM

[’|‘1‘1°?°l‘.’ |1[o; |o|o|1|olo| |

o 1 2 3 4 s 9 10 1 13 14 15

Moves words sequentially from one memory location to another, treating them as
unsigned, 16-bit integers.

ACI1 contains the two’s complement of the number of words to be moved. If the contents
of AC1 are positive, then data movement progresses from the lowest memory location to
the highest (ascending). If the contents of AC1 are negative, then data movement
progresses from the highest memory location to the lowest (descending).

Bits 1-31 of AC2 contain the address of the source location. Bits 1-31 of AC3 contain
the address of the destination location. The address in bits 1-31 of AC2 or AC3 is an
indirect address if bit 0 of that accumulator is 1. In that case, the instruction follows the
indirection chain before placing the resultant effective address in the accumulator.

10-120 Instruction Dictionary

AC Contents

0 Unused

1 Number of words to be moved
2 Source address

3 Destination address

For each word moved, the instruction decrements the count in AC1 by 1. If data
movement is ascending, the instruction increments the source and destination addresses
by 1 for each word moved. If data movement is descending, the instruction decrements
the source and destination addresses by 1 for each word moved.

Upon completion of the instruction, AC1 contains zeroes, and AC2 and AC3 point to the
word following (ascending) or preceding (descending) the last word in their respective
fields. ACO is unused. Carry is unchanged and overflow is 0.

NOTES: Since this instruction may require a long time to execute, it is interruptible. When this
instruction is interrupted, the processor saves the address of the WBLM instruction. This instruction
updates addresses and word count after storing each word, so any interrupt service routine returning
control via the saved address will correctly restart the WBLM instruction.

If data movement is descending and a ring crossing would occur, a protection trap occurs and this
instruction does not execute. ACI will contain the value 4.

When updating the source and destination addresscs, the Wide Block Move instruction
forces bit 0 of the result to 0. This ensures that upon return from an interrupt, the Wide
Block Move instruction will not try to resolve an indirect address in either AC2 or AC3.

Wide Branch
WBR displacement

[1[DISP 0-3 IOI DISP 4-7 |1|1|1|0i0‘0J
T T T +—t T T o 10 1 + t t 1

| t
o 1 4 5 6 12 13 14 15

Adds a specified value to the program counter.

Adds the 31-bit value contained in the PC to the value of the displacement and places
the result in the PC. Carry is unchanged and overflow is 0.

NOTE: The processor always forces the value loaded into the PC to reference a location in the
current segment of execution.

Wide Backward Search Queue and Skip

WBStc

LT oo [T [elo e [[l] T~ [

—t—t— —t Tttt T — T
0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 26 27 28 30 31

The WBStc instruction searches backward through a 32-bit data field. If the search is
successful, it skips the next two instructions.

AC1 and AC3 identify a location in a data field as a beginning data element in the
queue search. AC1 contains an effective address. AC3 contains a double word offset (a
signed integer). The processor locates the beginning data element by calculating the
effective address and adding the word offset.

Instruction Dictionary 10-121

The double word at the top of the wide stack contains the mask word. The bits in the
mask word idenfity the test location bits to sample.

Bits 28-30 of the WBStc instruction specify the search condition.

tc Value Bits 28-30 Meaning
Encoding *
SS 000 Some of the sampled test location bits are 1
SC 001 Some of the sampled test location bits are O
AS 010 All of the sampled test location bits are 1
AC 011 All of the sampled test location bits are O
E 100 The mask and test location are equal
GE 101 The mask is greater than or equal to the test iocation
LE 110 The mask is less than or equal to the test location
NE 111 The mask and test location are not equal

*The instruction treats the values contained in the mask and in the test location as unsigned integers for the E, GE, LE, and NE test
conditions.

The search begins with the addressed data element, and compares it with the 32-bit
mask word. The search continues until the processor reaches either the head of the queue
or the data element that meets the test condition.

If the search is successful, AC1 contains the effective address of the data element, and
the processor then skips the next two single-word instructions. The processor will not
honor interrupts between the time that it completes a successful search and executes the
PC+4 instruction.

If the search fails, AC1 contains the effective address of the last data element searched,
and the processor then executes the next instruction. The process will honor interrupts
between the time that it completes an unsuccessful search and executes the PC+2
instruction.

If the processor interrupts the search, AC1 contains the effective address of the next
data element to examine, and the processor then skips the next instruction. The processor
will honor interrupts between the time that the interrupt occurs and the processor
executes the PC+ 3 instruction.

For all returns, the contents of CARRY, OVR, WSP, AC0O, AC2, and AC3 remain
unchanged.

Wide Set Bit to One
WBTO acs,acd

" Toes [0 o[o[TeTo i "o o]
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets the specified bit to one.
ACS contains a 31-bit word address.
ACD contains a word offset and a bit pointer.

The contents of ACS and ACD remain unchanged. Carry is unchanged and overflow is
0.

10-122 Instruction Dictionary

If ACS and ACD are specified to be the same accumulator, then the processor assumes
the word address is zero within the current segment. In this case, the specified accumulator
contains a word offset and a bit pointer.

Wide Set Bit to Zero
WBTZ acs,acd

[T Toeo To[oo el [o] Je o]]

o 1 2 3 4 5 6 7 9 10 11 12 13 14 15

Sets the specified bit to zero.
ACS contains a 31-bit word address.
ACD contains a word offset and a bit pointer.

The contents of ACS and ACD remain unchanged. Carry is unchanged and overflow is
0.

If ACS and ACD are specified to be the same accumulator, then the processor assumes
the word address is zero within the current segment. In this case, the specified accumulator
contains a word offset and a bit pointer.

Wide Compare to Limits
WCLM acs,acd

l1lACSlACDlI[O|1|O'1l | | |o]]]

0 1 2 3 4 5 6 7 8 9 10 11 12

Compares a signed integer with two limit values and skips if the integer is between the
limit values. The accumulators determine the location of the limit values.

Compares the signed, two’s complement integer in ACS to two signed, two’s complement
integer limit values, L and H. If the number in ACS is greater than or equal to L and less
than or equal to H, execution skips the next sequential word before continuing. If the
number in ACS is less than L or greater than H, execution continues with the next
sequential word. Carry is unchanged and overflow is 0.

If ACS and ACD are specified as different accumulators, bits 1-31 of ACD contain the
address of the double word that contains the limit value L. The double word following L
contains the limit value H. Bit 0 of ACD is ignored.

If ACS and ACD are specified as the same accumulator, the integer to be compared
must be in that accumulator and the limit values L and H must be in the two words
following the instruction. The first double word contains L and the second double word
contains H. The fifth word contains the next instruction of the program.

Instruction Dictionary 10-123

Wide Character Compare
WCMP

Lol 1]ofo]]

y T T T T Y 1
10 11 12 13 14 15

I [o]1]ofo]1]
I I°I°
3 4

©| =

Under control of the four accumulators, compares two strings of bytes and returns a
code in AC1 reflecting the results of the comparison.

The instruction compares the strings one byte at a time. Each byte is treated as an
unsigned 8-bit binary quantity in the range 0-255;(. If two bytes are not equal, the
string whose byte has the smaller numerical value is, by definition, the lower valued
string. Both strings remain unchanged. The four accumulators contain parameters
passed to the instruction. Two accumulators specify the starting address, the number of
bytes, and the direction of processing (ascending or descending addresses) for each
string.

ACO specifies the length and direction of comparison for string 2. If the string is to be
compared from its lowest memory location to the highest, ACO contains the unsigned
value of the number of bytes in string 2. If the string is to be compared from its highest
memory location to the lowest, ACO contains the two’s complement of the number of
bytes in string 2.

ACI specifies the length and direction of comparison for string 1. If the string is to be
compared from its lowest memory location to the highest, ACO contains the unsigned
value of the number of bytes in string 1. If the string is to be compared from its highest
memory location to the lowest, AC1 contains the two’s complement of the number of
bytes in string 1.

AC?2 contains a byte pointer to the first byte compared in string 2. When the string is
compared in ascending order, AC2 points to the lowest byte. When the string is compared
in descending order, AC2 points to the highest byte.

AC3 contains a byte pointer to the first byte compared in string 1. When the string is
compared in ascending order, AC3 points to the lowest byte. When the string is compared
in descending order, AC3 points to the highest byte.

Code Comparison Result
-1 String 1 << String 2
(0} String 1 = String 2
+1 String 1 > String 2

The strings may overlap in any way. Overlap will not affect the results of the comparison.

Upon completion, ACO contains the number of bytes left to compare in string 2. ACI1
contains the return code as shown in the list above. AC2 contains a byte pointer either to
the failing byte in string 2 (if an inequality was found) or to the byte following string 2
(if string 2 was exhausted). AC3 contains a byte pointer either to the failing byte in
string 1 (if an inequality was found) or to the byte following string 1 (if string 1 was
exhausted). Carry is unchanged and overflow is 0.

If ACO and AC1 both contain zero (both string 1 and string 2 have length zero), the
instruction returns 0 in ACI.

10-124 Instruction Dictionary

If the two strings are of unequal length, the instruction fakes space characters <<040g>
in place of bytes from the exhausted string and continues the comparison.

NOTE: The original contents of AC2 and AC3 must be valid byte pointers 1o an area in the user's
address space. If they are invalid, a protection fault occurs, even if no bytes are to be compared. ACI
contains the code 4.

Wide Character Move Until True
WCMT

Lol fofol [] o fofoi]ofo]]
1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15
Under control of the four accumulators, moves a string of bytes from one area of

memory to another until either a table-specified delimiter character is encountered or
the source string is exhausted.

The instruction copies the string one byte at a time. Before it moves a byte, the
instruction uses that byte’s value to determine if it is a delimiter. It treats the byte as an
unsigned 8-bit binary integer (in the range 0-255,() and uses it as a bit index into a
256-bit delimiter table. If the indexed bit in the delimiter table is zero, the byte pending
is not a delimiter and the instruction copies it from the source string to the destination
string. If the indexed bit in the delimiter table is 1, the byte pending is a delimiter; the
instruction does not copy it and the instruction terminates.

The instruction processes both strings in the same direction, either from lowest memory
locations to highest (ascending order) or from highest memory locations to lowest
(descending order). Processing continues until there is a delimiter or the source string is
exhausted. The four accumulators contain parameters passed to the instruction.

ACO contains the address (word address), possibly indirect, of the start of the 256-bit
(16-word) delimiter table.

ACI1 specifies the length of the strings and the direction of processing. If the source
string is to be moved to the destination field in ascending order, AC1 contains the
unsigned value of the number of bytes in the source string. If the source string is to be
moved to the destination field in descending order, AC1 contains the two’s complement
of the number of bytes in the source string.

AC2 contains a byte pointer to the first byte to be written in the destination field. When
the process is performed in ascending order, AC2 points to the lowest byte in the
destination field. When the process is performed in descending order, AC2 points to the
highest byte in the destination field.

AC3 contains a byte pointer to the first byte to be processed in the source string. When
the process is performed in ascending order, AC3 points to the lowest byte in the source
string. When the process is performed in descending order, AC3 points to the highest
byte in the source string.

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains the resolved address of the translation table and AC1
contains the number of bytes that were not moved. AC2 contains a byte pointer to the
byte following the last byte written in the destination field. AC3 contains a byte pointer

Instruction Dictionary 10-125

either to the delimiter or to the first byte following the source string. The value of carry
is indeterminate and overflow is 0.

NOTES: The original contents of ACO, AC2, and AC3 must be valid byte pointers to an area in the
user's address space. If they are invalid, a protection fault occurs, even if no bytes are to be stored.
ACI contains the code 4.

If AC2=AC3, no bytes are written. The string is scanned for a delimiter.

Wide Character Move

WCMV

[=]

noo

1
|
—tt ——+—+—+—1
4 5 6 7 8 9 10 11 12 13 14 15

lolol,l
IFRE 3

~

Under control of the four 32-bit accumulators, moves a string of bytes from one area of
memory to another and returns a value in carry reflecting the relative lengths of source
and destination strings.

The instruction copies the source string to the destination field, one byte at a time. The
four accumulators contain parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied, and the direction of processing
(ascending or descending addresses) for each field.

ACO specifies the length and direction of processing for the destination field. If the field
is to be processed from its lowest memory location to the highest, ACO contains the
unsigned value of the number of bytes in the destination field. If the field is to be
processed from its highest memory location to the lowest, ACO contains the two’s
complement of the number of bytes in the destination field.

ACT1 specifies the length and direction of processing for the source string. If the string is
to be processed from its lowest memory location to the highest, ACI contains the
unsigned value of the number of bytes in the source string. If the field is to be processed
from its highest memory location to the lowest, AC1 contains the two’s complement of
the number of bytes in the source string.

AC2 contains a byte pointer to the first byte to be written in the destination field. When
the field is written in ascending order, AC2 points to the lowest byte. When the field is
written in descending order, AC2 points to the highest byte.

AC3 contains a byte pointer to the first byte copied in the source string. When the field
is copied in ascending order, AC3 points to the lowest byte. When the field is copied in
descending order, AC3 points to the highest byte.

The fields may overlap in any way. However, the instruction moves bytes one at a time,
so certain types of overlap may produce unusual side effects.

Upon completion, ACO contains 0 and AC1 contains the number of bytes left to fetch

from the source field. AC2 contains a byte pointer to the byte following the destination
field; and AC3 contains a byte pointer to the byte following the last byte fetched from
the source field. The value of carry is indeterminate and overflow is 0.

If the source field is shorter than the destination field, the instruction pads the destination
field with space characters <<040g>>. If the source field is longer than the destination
field, the instruction terminates when the destination field is filled and returns the value
1 in carry; otherwise, the instruction returns the value O in carry.

10-126 Instruction Dictionary

NOTES: If ACO contains the number 0 at the beginning of this instruction, no bytes are fetched and
none are stored. If ACI is (0 at the beginning of this instruction, the destination field is filled with
space characters; note that AC3 must still contain a valid byte pointer.

The original values of AC2 and AC3 must be valid byte pointers to an area in the user's address
space. If they are invalid, a protection fault occurs, even if no bytes are to be moved. ACI contains
the code 4.

No segment crossing can occur for backward moves. The processor checks for this action before
execution begins and executes a protection fault if it occurs.

Wide Count Bits
WCOB acs,acd

| |
|1|ACS|ACDIIIOIO|1]O|OI0 110101
k 1 T T T t t T t t t T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

5
Counts and adds the number of ones in an accumulator to another accumulator.

Counts the number of bits in ACS whose value is 1. Adds the count of nonzero bits to the
32-bit, signed contents of ACD. The contents of ACS remain unchanged, unless ACS
and ACD are the same accumulator. Carry is unchanged and overflow is 0.

Wide Complement
WCOM acs,acd

|1lACSIACDI1IO|OIOI1IOI1I1IO|OIII
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Forms the one’s complement of an integer in an accumulator.

Forms the one’s complement of the 32-bit fixed-point integer contained in ACS and
loads the result into ACD. The contents of ACS remain unchanged, unless ACS equals
ACD. Carry is unchanged and overflow is 0.

Wide Character Scan Until True

WCST

I1|1|1|OIOI1II|1I0|OIOIOI1IO|OI1|
L 1 T T T T t y T T T T t T T
2 3 4 5 7 8 9 10 11 12 3 14 15

1
0 1 6

Under control of the four accumulators, scans a string of bytes until either a
table-specified delimiter character is found or the string is exhausted.

The instruction scans the string one byte at a time. It uses each byte’s value to determine
{f it is a delimiter. It treats the byte as an unsigned 8-bit binary integer (in the range

~25510) and uses it as a bit index into a 256-bit delimiter table. If the indexed bit in the
delimiter table is zero, the byte is not a delimiter and the instruction processes the next
byte. If the indexed bit in the delimiter table is 1, the byte is a delimiter; the instruction
terminates.

The instruction processes the string either from lowest memory locations to highest
(ascending order) or from highest memory locations to lowest (descending order).
Processing continues until there is a delimiter or the scan string is exhausted. Three
accumulators contain parameters passed to the instruction.

Instruction Dictionary 10-127

ACO contains the address (word address), possibly indirect, of the start of the 256-bit
(16-word) delimiter table.

ACI1 specifies the length of the string and the direction of processing. If the string is
scanned in ascending order, AC1 contains the unsigned value of the number of bytes in
the string. If the string is scanned in descending order, AC1 contains the two’s complement
of the number of bytes in the string.

AC3 contains a byte pointer to the first byte to be processed in the string. When the
process is performed in ascending order, AC3 points to the lowest byte in the string.
When the process is performed in descending order, AC3 points to the highest byte in
the string.

Upon completion, ACO contains the resolved address of the translation table and ACl
contains the number of bytes that were not scanned. AC3 contains a byte pointer either
to the delimiter or to the first byte following the string. The value of carry is indeterminate
and overflow is 0.

NOTE: The original contents of ACO and AC3 must be valid byte pointers to an area in the user’s
address space. If they are invalid, a protection fault occurs, even if no bytes are to be scanned. ACI
contains the code 4.

Wide Character Translate

WCTR

[felefofo] fsfofn]ifof ool 1]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Under control of the four accumulators, translates a string of bytes from one data

representation to another and either moves it to another area of memory or compares it
to a second translated string.

The instruction operates in two modes: translate and move, and translate and compare.

When operating in translate and move mode, the instruction translates each byte in
string 1 and places it in a corresponding position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte translation table. The byte addressed
by the index then becomes the translated value.

‘When operating in translate and compare mode, the instruction translates each byte in

string 1 and string 2 as described above and compares the translated values. Each
translated byte is treated as an unsigned 8-bit binary quantity in the range 0-255;. If
two translated bytes are not equal, the string whose byte has the smaller numerical value
is, by definition, the lower valued string. Both strings remain unchanged.

ACO specifies the address, either direct or indirect, of a word which contains a byte
pointer to the first byte in the 256-byte translation table.

ACI1 specifies the length of the two strings and the mode of processing. If string 1 is to be
processed in translate and move mode, ACI1 contains the two’s complement of the
number of bytes in the strings. If the strings are to be processed in translate and compare
mode, AC1 contains the unsigned value of the number of bytes in the strings. Both
strings are processed from lowest memory address to highest.

AC?2 contains a 32-bit byte pointer to the first byte in string 2.

AC3 contains a 32-bit byte pointer to the first byte in string 1.

10-128 Instruction Dictionary

Upon completion of a translate and move operation, ACO contains the address of the
word which contains the byte pointer to the translation table and AC1 contains 0. AC2
contains a byte pointer to the byte following string 2 and AC3 contains a byte pointer to
the byte following string 1. The value of carry is unchanged and overflow is 0.

Upon completion of a translate and compare operation, ACO contains the address of the
word which contains the byte pointer to the translation table. AC1 contains a return
code as calculated in the list below. AC2 contains a byte pointer to either the failing byte
in string 2 (if an inequality was found) or the byte following string 2 if the strings were
identical. AC3 contains a byte pointer to either the failing byte in string 1 (if an
inequality was found) or the byte following string 1 if the strings were identical. The
value of carry is unchanged and overflow is 0.

Code Result
-1 Translated value of string 1 <
translated value of string 2
0 Translated value of string 1 =
translated value of string 2
+1 Translated value of string 1 >

translated value of string 2

If the length of both string 1 and string 2 is zero, the compare option returns a 0 in ACI.

The fields may overlap in any way. However, processing is done one character at a time,
so unusual side effects may be produced by certain types of overlap.

NOTE: The original contents of ACO, AC2, and AC3 must be valid byte pointers to an area in the
user’s address space. If they are invalid, a protection fault occurs, even if no bytes are to be moved
or compared. ACI contains the code 4.

Wide Divide
WDIV acs,acd

l1|AcsIACDI0|0|1|0|1|1I1l1lo|o|1|
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides an integer contained in an accumulator by an integer contained in another
accumulator.

The instruction sign extends the signed, 32-bit integer contained in ACD to 64 bits.
Divides this integer by the signed, 32-bit integer contained in ACS. If the quotient is
within the range —2,147,483,648 to +2,147,483,647 inclusive, loads the quotient in
ACD. If the result is not within this range or if ACS is zero, sets overflow to 1 and does
not load the quotient into ACD; otherwise, overflow is 0. The contents of ACS and carry
remain unchanged.

Instruction Dictionary 10-129

Wide Signed Divide

WDIVS

l1|:M:lj!;!;!;!:!;l’lﬂ1l°|°m

t T t —t 1 T T T al
0 2 10 11 12 13 14 15

Divides an integer contained in ACO and ACI by an integer contained in AC2.
ACO and ACI contain a 64-bit, signed integer. ACO contains the high-order bits.

The instruction divides the 64-bit, signed integer contained in AC0O and AC]1 by the
32-bit, signed integer contained in AC2. If the quotient is within the range
—2,147,483,648 to +2,147,483,647 inclusive, then places the 32-bit quotient in AC1
and the remainder in ACO. If the quotient is not within this range or if AC2 is zero, ACO
and AC1 remain unchanged and overflow is 1; otherwise, overflow is 0. AC2 and carry
will always remain unchanged.

NOTE: Zero remainders are always positive. All other remainders have the same sign as the
dividend.

Pop Context Block

WDPOP

Wide Edit
WEDIT

1
’ TR "0 11 12 13 14 15

[Tl L L]

Restores the state of the machine to what it was at the time of the last page fault.

The instruction uses the information pointed to by the context block pointer in page zero
of Segment 0 to restore the state of the CPU to that of the time of the last page fault.
Execution of the interrupted program resumes before, during, or after the instruction
that caused the fault, depending on the instruction type and how far it had proceeded
before the fault. Carry is unchanged and overflow is 0.

NOTE: This is a privileged instruction.

Cle oo [[o[- [[o]ToTo]"]

"6 7 8 9 10 11 12 13 14 15

Converts a decimal source number from either packed or unpacked form to a string of
bytes under the control of an edit subprogram. This subprogram can perform many
different operations on the number and its destination field including leading zero
suppression, leading or trailing signs, floating fill characters, punctuation control, and
insertion of text into the destination field. The instruction also performs operations on
alphanumeric data if you specify data type 4.

Upon entry to the Wedit instruction, the accumulators contain the following data:

» ACO contains a 32-bit byte pointer to the first opcode of the Wedit subprogram in the
current segment,

* ACI contains a data-type indicator describing the number to be processed,
* AC2 contains a 32-bit byte pointer to the first byte of the destination field,
* ACS3 contains a 32-bit byte pointer to the first byte of the source field.

10-130 Instruction Dictionary

The ficlds may overlap in any way. However, the instruction processes characters one at
a time, so unusual side effects may be produced by certain types of overlap.

The instruction maintains two flags and three indicators or pointers. The flags are the
Significance Trigger (7) and the Sign flag (S). The three indicators are the Source
Indicator (SI), the Destination Indicator (DI), and the opcode Pointer (P).

At the start of execution, the Wedit instruction sets T to 0. When the instruction
manipulates the first nonzero digit, it sets 7 to 1 (unless an edit opcode specifies
otherwise).

The instruction sets S to reflect the sign of the number currently being processed. If the
number is positive, the instruction sets S to 0. If the number is negative, the instruction
sets S to 1.

Each of the three indicators is 32 bits wide and contains a byte pointer to the current
byte in each respective area. At the start of execution, the Wedit instruction sets SI to
the value contained in AC3 (the starting address of the source string). It also sets DI to
the value contained in AC2 (the starting address of the destination string) and P to the
value contained in ACO (a pointer to the first Wedit opcode).

During execution, the subprogram can test and modify S and T, as well as modify SI, DI
and P.

When execution begins with a signed source number, the instruction checks the sign of
the source number for validity. If the sign is invalid, the instruction ends. If the sign is
valid, execution continues with the Wedit subprogram.

The subprogram is made up of 8-bit opcodes followed by one or more 8-bit operands.
The byte pointer contained in P acts as the program counter for the subprogram. The
subprogram proceeds sequentially until a branching operation occurs — much the same
way programs are processed. Unless instructed to do otherwise, the Wedit instruction
updates P after each operation to point to the next sequential opcode. The instruction
continues to process 8-bit opcodes until directed to stop by the DEND opcode.

NOTE: The WEDIT instruction considers the subprogram as data.

Upon successful termination, carry contains T; ACO contains P, which points to the next
opcode to be processed; AC1 is undefined; AC2 contains DI, which points to the next
destination byte; and AC3 contains SI, which points to the next source byte. Overflow is
0.

NOTES: If SI references bytes not contained in the source number, then the instruction supplies
zeroes for future manipulations. The instruction will use these zeroes for all subsequent operations,
even if SI later references bytes contained by the source number.

Opcodes that move numeric data may perform special actions. Opcodes that move non-numeric data
copy characters exactly into the destination string.

The Wedit instruction places information on the wide stack. Therefore, the stack must be set up and
have at least 16 words available for use.

If an interrupt occurs during the Wedit instruction, the instruction places restart information on the
stack and in the accumulators, and sets bit 2 of the PSR to I.

If bit 2 of the PSR contains a I, then the Wedit instruction assumes it is restarting from an
interrupt. Make sure you do not set this bit under any other circumstances.

Many of the Wedit opcodes use the symbol j. This symbol represents a number; when j
is greater than or equal to zero, it specifies the number of characters the instruction

Instruction Dictionary 10-131

should process. When j is less than zero, it represents a pointer into the wide stack. The
pointer references a stack word that denotes the number of characters the instruction
should process. The number on the stack is at address WSP + 2 + 2+*j.

A Wedit operation that processes numeric data (e.g., DMVN) skips a leading or trailing
sign code it encounters; similarly, such an operation converts a high-order or low-order
sign to its correct numeric equivalent.

Wide Fix from Floating-Point Accumulator
WFFAD ac,fpac

!'Il AC FPACI1l0|0)1|0’0|1|1’0‘0|‘,

9 10 11 12 13 14 15

Converts the integer portion of the floating-point number contained in the specified
FPAC to a 32-bit, signed, two’s complement integer. Places the result in an accumulator.

If the integer portion of the number contained in FPAC is less than —2,147,483,648 or
greater than +2,147,483,647, the instruction sets MOF in the FPSR to 1. Takes the
absolute value of the integer portion of the number contained in the FPAC. Takes the 31
least significant bits of the absolute value and appends a 0 onto the leftmost bit to give a
32-bit number. If the sign of the number is negative, forms the two’s complement of the
32-bit result. Places the 32-bit integer in the specified accumulator.

The FPAC and the Z and N flags of the FPSR remain unchanged.

Wide Float from Fixed-Point Accumulator
WFLAD ac,fpac

'[1‘ AC [FpAc[1|o|o| {o‘ |o|1[o|o| |

0o 1 2 3 4 5 6 9 10 11 12 13 14 15

Converts the contents of a 32-bit accumulator to floating-point format and places the
result in a specified FPAC.

Converts the 32-bit, signed, two’s complement number contained in the specified
accumulator to a double-precision floating-point number. Places the result in the specified
FPAC. Updates the Z and N flags in the floating-point status register to reflect the new
contents of the FPAC.

The range of numbers that can be converted is —2,147,483,648 to +2,147,483,647
inclusive.

Wide Floating-Point Pop

WFPOP

Lol fololn[o]i]efofefof [ofo]]

8 9 10 11 12 13 14 15

Pops the state of the floating-point unit off the wide stack.

Pops a 20-word block off the wide stack and loads the contents into the FPSR and the
four FPACs. The format of the 20-word block is shown in Figure 10.9.

10-132 Instruction Dictionary

Wide stack
pointer after

WFPOP

BITS 0-31

BITS 32-63

Wide stack pointer
before WFPOP

SD-03562

Figure 10.9 WFPOP 10 double-word ‘

This instruction loads the FPSR as follows:

o Places bits 0—15 of the operand in bits 0—15 of the FPSR. Sets bits 16-32 of the FPSR
to 0.

e If ANY is 0, bits 33-63 of the FPSR are undefined.

e If ANY is 1, the instruction places bits 33—63 of the operand in bits 33-63 of the
FPSR.

NOTE: This instruction moves unnormalized data without change.

This instruction does not set the ANY flag from memory. If any of bits 1-4 are loaded as I, ANY
is set to 1; otherwise, ANY is 0.

Bits 12-15 of the FPSR are not set from memory. These bits are the floating-point identification
code and cannot be changed. Refer to the specific functional characteristics manual for the code to
use.

This instruction does not initiate a floating-point trap under any conditions of the FPSR.

Wide Floating-Point Push

WFPSH

Clefelele D fol sl fofo]]

12 13 14 15

Pushes the state of the floating-point unit onto the wide stack.

Pushes a 20-word block onto the wide stack. The block contains the contents of the
FPSR and the contents of the four FPACs, as shown in Figure 10.10.

Instruction Dictionary 10-133

Wide stack
pointer before

WFPSH

Bits 0-31
FPSR

|
?
FPACO %
%
I
|

Bits 32-63

FPACH1

FPAC2

FPAC3 %/

Wide stack pomter
after WFPSH

SD-03563

Figure 10.10 WFPSH 10 doubie-word biock pushed

The instruction pushes the FPSR onto the stack as follows:

* Stores bits 0-15 of the FPSR in the first memory word.

* Sets bits 16-31 of the first memory double word and bit 0 of the second memory
double word to 0.

» If ANY is 0, the contents of bits 1-31 of the second memory double word are
undefined.

e If ANY is 1, the instruction stores bits 33—63 of the FPSR into bits 1-31 of the second
memory double word.

The rest of the block is pushed onto the stack after the FPSR has been pushed.
NOTES: This instruction moves unnormalized data without change.

This instruction does not initiate a floating-point trap under any conditions of the FPSR.

Wide Forward Search Queue and Skip

WFStc

L[fofefo[[+ ofofo[[s[e[o[:] —~ “wesemveo i w o]

012345678910111213141516 "26 27 28 30 31

The WFStc instruction searches forward through a 32-bit data field. If the search is
successful, it skips the next two instructions.

ACI and AC3 identify a location in a data field as a beginning data element in the
queue search. AC1 contains an effective address. AC3 contains a double word offset (a

10-134 instruction Dictionary

Wide Halve
WHLV ac

signed integer). The processor locates the beginning data element by calculating the
effective address and adding the word offset.

The double word at the top of the wide stack contains the mask word. The bits in the
mask word identify the test location bits to sample.

Bits 28-30 of the WFStc instruction specify the search condition.

tc Value Bits 28-30 Meaning
Encoding *
SS 000 Some of the sampled test location bits are 1
SC 001 Some of the sampled test location bits are O
AS 010 All of the sampled test location bits are 1
AC 011 All of the sampled test location bits are O
E 100 The mask and test location are equal
GE 101 The mask is greater than or equal to the test locaiton
LE 110 The mask is less than or equal to the test location
NE 111 The mask and test location are not equal

*The instruction treats the values contained in the mask and in the test location as unsigned integers for the E, GE, LE, and NE test
conditions.

The search begins with the addressed data element, and compares it with the 32-bit
mask word. The search continues until the processor reaches either the tail of the queue
or the data element that meets the test condition.

If the search is successful, AC1 contains the effective address of the data element, and
the processor then skips the next two single-word insructions. The processor will not
honor interrupts between the time that it completes a successful search and executes the
PC+4 instruction. '

If the search fails, AC1 contains the effective address of the last data element searched,
and the processor then executes the next instruction. The processor will honor interrupts
between the time that it completes an unsuccessful search and executes the PC+2
instruction.

If the processor interrupts the search, AC1 contains the effective address of the next
data element to examine, and the processor then skips the next instruction. The processor
will honor interrupts between the time that the interrupt occurs and the processor
executes the PC+ 3 instruction.

For all returns, the contents of CARRY, OVR, WSP, AC0, AC2, and AC3 remain
unchanged.

(T = T

1 T T T T 1

[fofi]ifofo]t]

T S T T T T T 1

1 1 1
2 3 4 5 7 9 10 11 12 13 14 15

Divides the 32-bit contents of the specified accumulator by two and rounds the result
toward zero.

Instruction Dictionary 10-135

The signed, 32-bit two’s complement number contained in the specified accumulators
divided by two and rounded toward zero. The result is placed in the specified accumulator.

This instruction leaves carry unchanged; overflow is 0.

Wide Increment
WINC acs,acd

[T Lo T e[e[e[[[e[o]]

0o 12 3 4 5 &6 9 10 11 12

Increments an integer contained in an accumulator.

The instruction increments the 32-bit contents of ACS by 1 and loads the result into
ACD. Sets carry to the value of ALU carry. Sets overflow to 1, if there is an ALU
overflow. The contents of ACS remain unchanged, unless ACS equals ACD.

Wide Inclusive OR
WIOR acs,acd

[[oo [2[ofofof [i]o] 1 ofo]]

0 1 2 3 4 5 6 15

Performs an inclusive OR between two accumulators.

Forms the logical inclusive OR between corresponding bits of ACS and ACD. Loads the
32-bit result into ACD. The contents of ACS remain unchanged. Carry is unchanged
and overflow is 0.

Wide Inclusive OR Immediate
WIORI i,ac

Lofol se [ufifolfof fofsfoo]s| T wweowe |

012 3 45 6 7 8 9 1011121314 15 16 T T T T T T Ty

Performs an inclusive OR between the contents of the immediate field and an
accumulator.

The instruction forms the logical inclusive OR between corresponding bits of the specified
accumulator and the value contained in the literal field. The instruction places the result
of the inclusive OR in the specified accumulator. Carry is unchanged and overflow is 0.

Wide Load with Wide Immediate

WLDAI iac
[frfof s i efofs[ofofofsfoo] s T wwewe e
0 1 2 3 4 5 6 7 8 9 1011121314 15 16 47

Loads an accumulator with the contents of an immediate value.

Loads the 32-bit value contained in the immediate field into the specified accumulator.
Carry is unchanged and overflow is 0.

10-136 Instruction Dictionary

Wide Load Byte
WLDB acs,acd

[T [[o[[o[- [o o]]

10 11 12 13 14 15
Loads a byte in memory into an accumulator.

Uses the 32-bit byte address contained in ACS to load a byte into ACD. Sets bits 0-23
of ACD to zero. Bits 24-31 of ACD contain a copy of the contents of the addressed byte.
The contents of ACS remain unchanged, unless ACS and ACD are the same accumulator.
Carry is unchanged and overflow is 0.

Wide Load Integer

WLDI fpac

Ll e[efolof o [o[] fofo] 1]

o 1 2 3 4 5 10 11 12 13 14 15

Translates up to a 16-digit decimal integer from memory to floating-point format and
places the result in a floating-point accumulator.

ACI1 must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer pointing to the high-order byte of the integer in
memory.

Uses AC1 and AC3 to convert a decimal integer to floating-point form. Normalizes the
result and places it in the specified FPAC. Updates the Z and N flags in the FPSR to
describe the new contents of the specified FPAC. Leaves the decimal number unchanged
in memory.

By convention, the first byte of a number stored according to data type 7 contains the
sign and exponent of the floating-point number. The instruction copies each byte
(following the lead byte) directly to the mantissa of the specified FPAC. It then sets to
zero each low-order byte in the FPAC that does not receive data from memory.

Upon successful completion, ACO and ACI remain unchanged. AC2 contains the
original contents of AC3. AC3 points to the first byte following the integer field. Carry
is unchanged and overflow is 0.

Wide Load Integer Extended

WLDIX

([Tefolof [] ifof o [1]olo]]

o 1 2 3 a 9 10 11 12 13 14 15

Distributes a decimal integer of data type 0, 1, 2, 3, 4, or S into the four FPACs.
AC]1 must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer which is the address of the high-order byte of the
integer.

Instruction Dictionary 10-137

The instruction uses the contents of AC3 to reference the integer. Extends the integer
with high-order zeros until it is 32 digits long. Divides the integer into four units of 8
digits each and converts each unit to a floating-point number. Places the number
obtained from the 8 high-order digits into FACO. Places the number obtained from the
next 8 digits into FAC1. Places the number obtained from the next 8 digits into FAC2.
Places the number obtained from the low-order 8 bits into FAC3. Sets the sign of each
FPAC by checking the number just loaded into the FPAC. If the FPAC contains a
nonzero number, then sets the sign of the FPAC to be the sign of the integer. If the
FPAC contains an 8-digit zero, sets the FPAC to true zero. The Z and N flags in the
floating-point status register are unpredictable.

Upon successful termination, the contents of ACO and AC1 remain unchanged. AC2
contains the original contents of AC3. AC3 points to the first byte following the integer
field. Carry is unchanged and overflow is 0.

Wide Load Map

WLMP
Lol folol e[[oo o] folo]]

T t T T t
0 1 2 3 4 5 10 11 12 13 14 15

Loads a series of double words into successive map registers.

This command loads the contents of the double word specified by AC2 into the map slot
specified by ACO. It decrements the count in AC1 by one, increments the map slot
number in ACO by one, and increments the address in AC2 by two; this continues until
ACI1 contains zeros in bits 16—-31. Upon completion, ACO references the map slot
following the last slot loaded; AC1 contains a zero in bits 16-31; AC2 contains the
address of the word following the last double word loaded; AC3 and carry remain
unchanged; overflow is 0.

If bits 16-31 of ACI all initially contain zeros, the instruction performs no operation.
NOTE: This is a privileged instruction.

Refer to the appropriate functional characteristics manual for more information.

Wide Locate Lead Bit
WLOB acs,acd

L[res Jaoo Jo] s [r][ofo]+]of 1 [o]o]]

0o 1 2 3 4 s 10 11 12 13 14 15

Counts the number of high-order zeroes in ACS.

The instruction counts the high-order zeroes in ACS. Adds the count of high-order
zeroes to the 32-bit, signed contents of ACD. Stores the result of the add in ACD. The
contents of ACS remain unchanged, unless ACS and ACD are the same accumulator.
Carry is unchanged and overflow is 0.

10-138 Instruction Dictionary

Wide Locate and Reset Lead Bit
WLRB acs,acd

[T [o[o [[[o[o]

"o 172 3 4 5 6 7 8 9 10 11 12 13 14 15
Counts the number of high-order zeroes in ACS.

The instruction counts the high-order zeroes in ACS. Adds the count of high-order
zeroes to the 32-bit, signed contents of ACD. Stores the result in ACD. Sets the leading
bit of ACS to 0. Carry is unchanged and overflow is 0.

If ACS equals ACD, then sets the leading bit to 0 and adds nothing to the contents of
the specified accumulator.

Wide Logical Shift
WLSH acs,acd

I1[ACS]ACDI1|0|1J0|1lolll1[0{0|1|
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Shifts the 32-bit contents of ACD either left or right.

Bits 24-31 of ACS specify the number of bits to shift ACD. If this number is positive,
then the instruction shifts the contents of ACD the appropriate number of bits to the
left. If this number is negative, then the instruction shifts the contents of ACD the
appropriate number of bits to the right. If ACS contains zero, then no shifting occurs.
The instruction ignores bits 0-23 of ACS.

Bits shifted out during this instruction are lost. Zeroes fill the vacated bit positions. The
contents of ACS remain unchanged, unless ACD equals ACS. Carry is unchanged and
overflow is 0.

Wide Logical Shift With Narrow Immediate

WLSHI

i,ac

|1\1I1lAC]1I1IOI1IIIOI1I1|O|0|1| IMMEDIATE I

0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 31

Shifts the 32-bit contents of an accumulator either left or right.

Bits 24-31 specify the number of bits to shift AC. If this number is positive (1 to 32,¢),
then the instruction shifts the contents of AC the appropriate number of bits to the left.
If this number is negative (—1 to —32;(), then the instruction shifts the contents of AC
the appropriate number of bits to the right. If the immediate contains zero, then no
shifting occurs. Bits 16-23 of the immediate field must be identical to bit 24; otherwise,
results are indeterminate. The processor sign extended the narrow immediate field to 32
bits.

Bits shifted out during this instruction are lost. Zeroes fill the vacated bit positions.

Carry is unchanged and overflow is 0.

Instruction Dictionary 10-139

Wide Logical Shift Immediate

WLSI n,ac

CTw T el e[l
[o] 1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15

Shifts the contents of an accumulator left, as indicated by an immediate value.

Shifts the contents of the specified accumulator to the left n+1 positions, where 7 is in
the range of 0 to 3. Carry is unchanged and overflow is 0.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be shifted.

Wide Load Sign

WLSN

Wide Mask,

WMESS

[T o] [Tele]

1
L t t T t t
0 1 2 3 5 6 7 10 1 12

Evaluates a decimal number as zero or nonzero and the sign as positive or negative.
ACI1 must contain the data type indicator describing the number.

AC3 must contain a byte pointer which is the address of the high-order byte of the
number.

The instruction evaluates a decimal number in memory and returns in AC1 a code that
classifies the number as zero or nonzero and identifies its sign. The meaning of the
returned code is as follows:

Value of Number Code
Postive nonzero +1
Negative nonzero -1
Positive zero 0
Negative zero -2

Upon successful termination, the contents of ACO remain unchanged; AC1 contains the
value code; AC2 contains the original contents of AC3; and the contents of AC3 are
unpredictable. The contents of the addressed memory locations remain unchanged.
Carry is unchanged and overflow is 0.

Skip and Store if Equal

unsuccessful exit

successful exit

12 13 14 15

F T

o' 1 2 3 4 5 6 7 8 9 10 n

The WMESS instruction tests and sets multiple bits of a double word in memory. The
instruction reads the double word addressed by AC2 and then performs an exclusive OR
with the contents of ACO.

10-140 Instruction Dictionary

NOTE: The operation is guaranteed indivisible if the double word addressed by AC2 is double-word
aligned.

If all of the resultant bits that equal 1 from the XOR also correspond to the bits that
equal 0 in AC3, then the comparison is successful. The processor exchanges the values in
AC1 with the double word in memory. Then it skips the next instruction.

If any bit resulting from XOR equals 1, and if it also corresponds to a bit that equals 1
in AC3, then the comparison is unsuccessful. The processor loads the value from the
double word in memory into AC1 and executes the next instruction.

Carry is unchanged and overflow is 0.

ACO contains 32 bits that the processor compares (exclusive OR) with the 32 bits in
memory. Upon completion, ACO remains unchanged.

AC1 contains 32 bits that the processor exchanges with the 32 bits in memory when the
result of the comparison is true. Upon completion, AC1 always contains the initial 32
bits of the double word addressed by AC2. (The processor pushes a fault return block
and updates AC1 with an error code if a protection fault occurs -- an invalid read or
write memory reference.)

AC2 contains the address of the data element to test. The instruction does not permit
indirect addressing. Upon completion, AC2 remains unchanged.

AC3 contains 32 bits that the processor compares (logical AND) with the results of the
exclusive OR operation. Upon completion, AC3 remains unchanged.

Wide Move
WMOV acs,acd

|1|Acs|ACD|0|1J1IOI1[1|1I1’0|0|1|
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Moves a copy of the 32-bit contents of ACS into ACD.

The contents of ACS remain unchanged. Carry is unchanged and overflow is 0.

Wide Move Right
WMOVR ac

Ll fo] se [o]efofi]ofofr[i[ofo]t]
e B Y LAAn MRS RSRE

"3 4 5 & 10 11 13 14 15

Converts a byte pointer to a word pointer.

Moves the contents of an AC right one bit, shifting in a zero to bit 0. Carry is unchanged
and overflow is 0.

Instruction Dictionary 10-141

Wide Modify Stack Pointer
WMSP ac

INEannoOnoEnRon

10 t1 12 13 14 15

Changes the value of the stack pointer and tests for potential overflow /underflow.

The contents of AC specify the number of double words to add to the WSP. The
instruction shifts the contents of the specified accumulator left one bit and temporarily
saves the result. Adds the shifted value to the contents of the WSP and temporarily saves
the result. Checks for fixed-point overflow resulting from the shift and addition. If
overflow occurs, the processor does not alter WSP and treats the overflow as a stack
fault. AC1 contains the code 1.

If no overflow occurs, the instruction checks the value of the accumulator. If the value is
positive, the processor checks the temporary WSP against the stack limit for stack

overflow; if negative, against the stack base for stack underflow. If underflow or overflow
does not occur, the instruction places the temporary WSP into the contents of the WSP.

If either overflow or underflow occurs, the instruction does not alter WSP and a stack
fault occurs. When a stack underflow occurs, the WMSP instruction uses the stack
pointer (not the stack limit) to push the fault block. In the fault block, ACI contains the
code 1. The PC in the return block points to this instruction.

This instruction does not change carry; overflow is 0.

Wide Multiply
WMUL acs,acd

[Jes Taeo Jo[oiJofs[1][o]]ofo]:]

o 1 2 3 4 5 6 7 9 10 11 12 13 14 15

Multiplies two integers contained in accumulators.

The instruction multiplies the 32-bit, signed integer contained in ACD by the 32-bit,
signed integer contained in ACS. Places the 32 least significant bits of the result in
ACD. The contents of ACS and carry remain unchanged.

If the result is outside the range of —2,147,483,648 to +2,147,483,647 inclusive, sets
overflow to 1; otherwise, overflow is 0. ACD will contain the 32 least significant bits of
the result.

Wide Signed Multiply
WMULS

[lefelel s i fof o[[]ofo]]

) 10 11 12 13 14 15

Multiplies two integers contained in accumulators.

The instruction multiplies the 32-bit, signed integer contained in AC1 by the 32-bit,
signed integer contained in AC2. Adds the 32-bit signed integer contained in ACO to the
64-bit result. Loads the 64-bit result into ACO and AC1. ACO contains the 32 high-order
bits. AC2 and carry remain unchanged. Overflow is 0.

10-142 Instruction Dictionary

Wide Add with Narrow Immediate

WNADI

i,ac

'1,1!1]AC]1’1'0]1'1]1}1!110‘0[11 IMMEDIATE I

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Adds an immediate value to an integer contained in an accumulator.

The instruction sign extends the two’s complement literal value contained in the
immediate field to 32 bits. Adds the sign extended value to the 32-bit integer contained
in the specified accumulator. Loads the result into the specified accumulator. Sets carry
to the value of ALU carry. Sets overflow to 1, if there is an ALU overflow.

Wide Negate

WNEG

acs,acd

[1] ACS[ACD|O|1‘0|0|1I1IOIIIOIOI1|
"0 12 37 4'5 ' 67 8 9 10 11 12 13 14 15

Negates the contents of an accumulator.

The instruction forms the two’s complement of the 32-bit contents of ACS. Loads the
result into ACD. Sets carry to the value of ALU carry. Sets overflow to 1, if there is an
ALU overflow. The contents of ACS remain unchanged, unless ACS equals ACD.

Wide Pop Accumulators
WPOP acs,acd

[xs [aeo To oo Je o]0+ [o o]]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18

Pops up to four double words off the top of the wide stack and places them in the
specified 32-bit accumulators.

Pops the top double word off the wide stack and places it in ACS. Pops the next double
word off the wide stack and places it in ACS-1, and so on, until all specified accumulators
have been loaded. If necessary, the accumulators wrap around, with AC3 following
ACO, until all specified accumulators have been loaded. If ACS equals ACD, then the
instruction pops only one double word off of the wide stack and places it in the specified
accumulator.

The instruction decrements the contents of WSP by twice the number of double words
popped, then checks for stack underflow. Carry is unchanged and overflow is 0.

Instruction Dictionary 10-143

Wide Pop Block

WPOPB

K HEHBnE l’|1l°|1|'l'l1|°1°|1|

8 B 10 11 12 13 14 15

Returns control from an intermediate-level interrupt, from an extended operation
(WXOP), or from a breakpoint (BKPT) instruction.

Pops six double words off the wide stack and places them in the appropriate locations.
The popped words and their destinations are as follows:

Double Word Destination

Popped
1 Bit O to carry; bits 1-31 to PC
2 AC3
3 AC2
4 AC1
5 ACO
6 Bits 0-15 are the PSR; bit 16 is O; bits 17-31 are the frame size (double words).

If the instruction specifies an inward ring crossing, then a protection fault occurs and the
current wide stack remains unchanged. Note that the return block pushed as a result of
the protection fault will contain undefined information. After the fault return block is
pushed, ACO contains the contents of the PC (which point to the instruction that caused
the fault) and AC1 contains the code 8.

saved frame area, then checks for stack underflow.{If underflow has occurred, a stack
underflow fault results. Note that the return block pushed as a result of the stack
underflow will contain undefined information. After the fault return block is pushed,
ACO contains the contents of the PC (which point to the instruction that caused the
fault) and AC1 contains the code 3 ‘I there is no underflow, execution continues with
the location addressed by the program counter.

If the instruction specifies an intra-ring address, it %)s the six-double-word block and
If

If the instruction specifies an outward ring crossing, it pops the six-double-word return
block and saved frame area and checks for stack underflow. [If underflow has occurred,
a stack underflow fault results. Note that the return block pushed as a result of the stack
underflow will contain undefined information. After the fault return block is pushed,
ACO contains the contents of the PC (which point to the instruction that caused the
fault) and ACI contains the code 3 If there is no underflow, the instruction stores WSP
and WFP in the appropriate page zero locations of the current segment. It then performs
the outward ring crossing and loads the wide stack registers with the contents of the
appropriate page zero locations of the new ring. Loads WSP with the value:

(current contents of WSP) — (2 x (frame size))

If argument count is greater than 0, then the processor checks for stack underflow. If
underflow has occurred, a stack underflow fault results. Note that the return block
pushed as a result of the stack underflow will contain undefined information. After the
fault return block is pushed, ACO contains the contents of the PC (which point to the
instruction that caused the fault) and ACI contains the code %jlf there is no underflow,
execution continues with the location addressed by the program counter.

10-144 Instruction Dictionary

Wide Pop PC and Jump
WPOPJ

Llofofool [] i Jofolof Jolo]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pops the top 28-bit value off the wide stack, loads it into the PC, then checks for stack
underflow. Carry is unchanged and overflow is 0.

Wide Push Accumulators
WPSH acs,acd

[l oo [Jol i [a]i[ifofo 1]

O 1 2 3 4 5 6 7 8 9 10 11 1

Pushes the contents of the specified 32-bit accumulators onto the top of the wide stack.

Pushes the contents of ACS onto the top of the wide stack, then pushes the contents of
next sequential accumulators up to and including ACD. If necessary, the accumulators
wrap around, with ACO following AC3, until the contents of all specified accumulators
have been pushed. If ACS equals ACD, then the instruction pushes the contents of only
one accumulator onto the wide stack.

The instruction increments the contents of WSP by two times the number of accumulators
pushed (32-bit accumulators) then checks for stack overflow. Carry is unchanged and
overflow is 0.

Wide Restore
WRSTR

L ele]]

HODDDENENnGE
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 18

il
Returns control from a base-level interrupt.

When this instruction is used, the wide stack should contain the following information,
in the given order:

Doubleword Contents Size of Word Notes

10 WFP 32 bits
9 WSP 32 bits
8 WSL 32 bits
7 WSB 32 bits
6 0,SFA,PSR 32 bits <C Stack fault address (bits 1-15)
5 ACO 32 bits
4 AC1 32 bits
3 AC2 32 bits
2 AC3 32 bits
1 Carry, PC 32 bits This is the top of the wide stack.

The instruction checks to see if the ring crossing specified is inward. If the crossing is
inward, a protection fault occurs (code=8 in AC1).

Instruction Dictionary 10-145

If the crossing is not inward, the instruction pops the return block on top of the wide
stack and places the block contents in the appropriate registers. Next, the instruction
pops the stack registers and the stack fault address, temporarily saves them, and checks
for stack underflow. If no underflow occurs, further actions depend upon the type of ring
call.

If the restore is to be to the same ring, the instruction places the temporarily saved stack
management information in the four stack registers. Stores the stack fault address in the
stack fault pointer of the current segment. Checks for stack underflow. If underflow has
occurred, a stack underflow fault results (code=3 in AC1). If underflow has not
occurred, execution continues with the location specified by the PC.

If the ring crossing is outward, the instruction stores the stack management information
held internally into the appropriate page zero locations of the current segment. Performs
the outward ring crossing. Loads the stack registers with the contents of the appropriate
page zero locations of the new segment. If the argument count (from call) is greater than
zero, the instruction checks for stack underflow. If underflow has occurred, a stack
underflow fault results (code=3 in AC1). If underflow has not occurred, execution
continues with the location specified by the PC.

Wide Return

WRTN
[TeTeTee [[e[]o]- ol]

9 10 11 12 13 1a

Returns control from a subroutine.

Returns control from subroutines that issue a WSAVS, WSAVR, WSSVS, or a WSSVR
instruction at their entry point. Places the contents of WFP in WSP and executes a
WPOPB instruction. Places the popped value of AC3 in WFP.

Wide Skip on All Bits Set in Accumulator

WSALA iac
L lofs[se [o[folol:[oofol:[7T T e]
012345678910111213141516 47

Logically ANDs an immediate value with the contents of an accumulator and skips
depending on the result of the AND.

Performs a logical AND on the contents of the immediate field and the complement of
the contents of the specified accumulator. If the result of the AND is zero, then
execution skips the next sequential word before continuing. If the result of the AND is
nonzero, then execution continues with the next sequential word. The contents of the
specified accumulator remain unchanged. Carry is unchanged and overflow is 0.

10-146 Instruction Dictionary

Wide Skip on All Bits Set in Double-Word Memory Location

WSALM jac
{1[0{1lAcI1[1‘o]1|0[1]1]1l0’0l1t IMMEDIATE J
A e, =

Logically ANDs an immediate value with the complement of a memory word and skips
depending on the result of the AND.

Performs a logical AND on the contents of the immediate field and the complement of
the double word addressed by the specified accumulator. If the result of the AND is
zero, then execution skips the next sequential word before continuing. If the result of the
AND is nonzero, then execution continues with the next sequential word. The contents
of the specified accumulator and memory location remain unchanged. Carry is unchanged
and overflow is 0.

Wide Skip on Any Bit Set in Accumulator

WSANA iac
el ae [o[[elolo [oo 1]
0O 1 2 3 4 5 6 7 8 9 10111213 14 15 16 47

Logically ANDs an immediate value with the contents of an accumulator and skips
depending on the result of the AND.

Performs a logical AND on the contents of the immediate field and the contents of the
specified accumulator. If the result of the AND is nonzero, then execution skips the next
sequential word before continuing. If the result of the AND is zero, then execution
continues with the next sequential word. The contents of the specified accumulator
remain unchanged. Carry is unchanged and overflow is 0.

Wide Skip on Any Bit Set in Double-Word Memeory Location

WSANM Jac
1 OIlIAC|1I1|0’1|0l1|0[1|0‘0|1[IMMEDIATE
A —

Logically ANDs an immediate value with the contents of a memory word and skips
depending on the result of the AND.

Performs a logical AND on the contents of the immediate field and the contents of the
double word addressed by the specified accumulator. If the result of the AND is
nonzero, then execution skips the next sequential word before continuing. If the result of
the AND is zero, then execution continues with the next sequential word. The contents
of the specified accumulator and memory location remain unchanged. Carry is unchanged
and overflow is 0.

Instruction Dictionary 10-147

Wide Save/Reset Overflow Mask
WSAVR frame size
l11011[010|1|1]1I0|OI1IOI1[OIOI1’ FRAMI‘ESIZE(DOUBLEWORDS)]

T T T T T

| i S SRS SR SR B B SN SN S S R S RS SR SR S S S S S S T T 1
0 t 2 3 4 5 6 7 8 9 101112131415 16 31

Pushes a return block onto the wide stack, resets OVK, and increments the wide stack
pointer by frame size.

The instruction checks for stack overflow. If an overflow would occur, then control
transfers to the wide stack fault routine. If no overflow would occur, then the instruction
pushes five double words of a wide six-double-word return block onto the wide stack.
The words pushed have the following contents:

Double Word Contents

Pushed
1 ACO
2 AC1
3 AC2
4 Previous WFP
5 Bit O equals CARRY

Bits 1-31 equal AC3 bits 1-31 (or return PC value for XCALL and LCALL)

Note that the five words described above do not make up the entire return block. Either
the LCALL or the XCALL instruction pushes the first double word of the return block
onto the wide stack. This word has the following format:

I PSR | 0 | ARGUMENT COUNT ’

e — T T T T T
o 15 16 17 31

After pushing the return block, the instruction places the value of the stack pointer in
WFP and AC3. Multiplies the 16-bit, unsigned integer contained in the frame size by 2.
Adds the result to WSP, which reserves the space for local variables. Sets OVK to 0,
disabling integer overflow.

Wide Save/Set Overflow Mask
WSAYVS frame size

,1|Ol1l0l0|1l1l1|0‘0l111‘1l0|0’1! FRAME SIZE (DOUBLE WORDS) ,
T s a5 6 7 8 s oz L T T T T T

Pushes a return block onto the wide stack, resets WSP and WFP, sets OVK to 1, and
increments the wide stack pointer by frame size.

The instruction checks for stack overflow. If an overflow would occur, then control
transfers to the wide stack fault routine. If no overflow would occur, then the instruction
pushes five double words of a wide six-double-word return block onto the stack. The
words pushed have the following contents.

10-148 Instruction Dictionary

Double Word Contents

Pushed
1 ACO
2 AC1
3 AC2
4 Previous WFP
5 Bits O equals CARRY

Bits 1-31 equal AC3 bits 1-31 (or return PC value for XCALL and LCALL).

Note that the five double words described above do not make up the entire return block.
Either the LCALL or the XCALL instruction pushes the first double word of the return
block onto the wide stack. This word has the following format:

r PSR l 0 | ARGUMENT COUNT [

L e e e M S S S S S S SSRGS S SR S —r—r—
0 15 16 17 31

After pushing the return block, the instruction places the value of WSP in WFP and
AC3. Multiplies the 16-bit, unsigned integer contained in the frame size by 2. Adds the
result to WSP, which reserves the space for local variables. Sets OVK to 1, enabling
integer overflow.

Wide Subtract Immediate
WSBI n,ac

L t T T T T T T t t T T T T t t 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtracts an integer in the range 1 to 4 from an integer contained in an accumulator.

The instruction subtracts the value n+1 from the value contained in the specified
accumulator. Stores the result in the specified accumulator. Sets carry to the value of
ALU carry. Sets overflow to 1, if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts | from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be subtracted.

Wide Skip if Equal to
WSEQ acs,acd

e o [ole o[Jo [[[]o]7]
"0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

Compares one integer to another and skips if the two integers are equal.

The instruction compares the 32-bit integer contained in ACS to the 32-bit integer in
ACD. If the integer contained in ACS is equal to the integer contained in ACD, the next
16-bit word is skipped; otherwise, the next word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer equals 0. Carry is
unchanged and overflow is 0.

Instruction Dictionary 10-149

Wide Skip if AC Equal to Immediate
WSEQI iac

!1!1!115‘2[111!0!1!1[0!0]1[0]0!1‘ IMMEDIATE J

vvvvvvvvvvvvvvvvvvvv

0123 45 6 7 8 9 10111213 14 15 16 T

Compares one integer to another and skips if the first is equal to the second.

Sign extends the 16-bit immediate field. Compares this 32-bit number to the contents of
the AC. If the contents of the AC are equal to the contents of the immediate, then the
next sequential word is skipped; otherwise, the next word is executed.

Contents of AC and carry remain unchanged. Overflow is 0.

Wide Signed Skip if Greater than or Equal to
WSGE acs,acd

[l [0 Jofof o fifofol sl folo]t]

14 15

Compares one integer to another and skips if the first is greater than or equal to the
second.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is greater than or equal to the
integer contained in ACD, then the next word is skipped; otherwise, the next instruction
is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer is greater than or
equal to 0. Carry is unchanged and overflow is 0.

Wide Signed Skip if Greater than
WSGT acs,acd

(|ACSIACD|010] l1]o|1[1]1|o|o[—|

9 10 11 12 13 14 15

Compares one integer to another and skips if the first is greater than the second.

The instruction compares the signed, 32-bit integer contained in ACS to the signed
32-bit integer in ACD. If the integer contained in ACS is greater than the integer
contained in ACD, the next word is skipped; otherwise, the next word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer is greater than 0.
Carry is unchanged and overflow is 0.

10-150 instruction Dictionary

Wide Skip if AC Greater than Immediate
WSGTI iac

|1J1l1lAC11111011J0!0|0!1|0]OI1] IMMEDIATE E

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 3

Compares one integer to another and skips if the first is greater than the second.

Sign extends the 16-bit immediate field. Compares this 32-bit number to the contents of
the AC. If the contents of the AC are greater than the contents of the immediate, then
the next sequential word is skipped; otherwise, the next word is executed.

Contents of AC and carry remain unchanged. Overflow is 0.

Wide Skip on Bit Set to One
WSKBO bit number

|1| BITS I1
AP L

|1[1[1|o]1]3wsf1]o]o|1|
"6 7 8 9 10 11 12 13 14 15

Tests a specified bit in ACO and skips if the bit is 1.

The instruction uses the bits specified in bits 1-3 and 10-11 to specify a bit position in
the range 0-31. This number specifies one bit in ACO; the value 0 specifies the
highest-order bit and the value 31 specifies the lowest-order bit. If the specified bit has
the value 1, then the next sequential word is skipped. If the bit has the value 0, then the

next sequential word is executed. The contents of ACO remain unchanged. Carry is
unchanged and overflow is 0.

Wide Skip on Bit Set to Zero
WSKBZ bit number

|1| BITS |111J1]1|1]O|BITS‘1|0|0’1|

0o 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Tests a specified bit in ACO and skips if the bit is 0.

The instruction uses the bits specified in bits 1-3 and 10-11 to specify a bit position in
the range 0-31. This number specifies one bit in ACO; the value 0 specifies the
highest-order bit and the value 31 specifies the lowest-order bit. If the specified bit has
the value 0, then the next sequential word is skipped. If the bit has the value 1, then the
next sequential word is executed. The contents of ACO remain unchanged. Carry is
unchanged and overflow is 0.

Instruction Dictionary 10-151

Wide Signed Skip if Less than or Equal to
WSLE acs,acd

[1!ACSIACD10]0|1I1IOI1IO|1|0|0|1!

T T T T 1 T T T T T

o t 2 3 4 5 6 7 8 98 10 11 12 13 14 15
Compares one integer to another and skips if the first is less than or equal to the second.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is less than or equal to the
integer contained in ACD, the next word is skipped; otherwise, the next sequential word
is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer is less than or equal
to 0. Carry is unchanged and overflow is 0.

Wide SKkip if AC Less than or Equal to Immediate

WSLEI

i,ac

m1]1IACl1|1|0|1]0|1[0]1|0|0‘1[IMMEDIATE —I

01 2 3 45 6 7 8 9 10111213 14 15 16 31
Compares one integer to another and skips if the first is less than or equal to the second.

Sign extends the 16-bit immediate field. Compares this 32-bit number to the contents of
the AC. If the contents of the AC are less than or equal to the contents of the immediate,
then the next sequential word is skipped; otherwise, the next word is executed.

Contents of AC and carry remain unchanged. Overflow is 0.

Wide Signed Skip if Less than
WSLT acs,acd

’1| ACS | ACD]0[1|0I1Io|0|0]1|0l011]
"0 172 3 4 ' 5 6 7 8 9 10 11 12 13 14 15

Compares one integer to another and skips if the first is less than the second.

The instruction compares the signed, 32-bit integer contained in ACS to the signed,
32-bit integer in ACD. If the integer contained in ACS is less than the integer contained
in ACD, the next word is skipped; otherwise, the next sequential word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer is less than 0. Carry
is unchanged and overflow is 0.

10-152 Instruction Dictionary

Wide Skip on Nonzero Bit
WSNB acs,acd

N EDnRnnonnnnn

0 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15

Tests the value of an addressed bit and skips if the bit is one.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator
supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero in the current segment.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 1, the next sequential word is skipped. If the bit has the value 0, the next sequential
instruction is executed. Carry is unchanged and overflow is 0.

Wide Skip if Not Equal to

WSNE

acs,acd

|| nes [a0 [oof1[r]ofofo]]ofo]1]

0 1 2 3 4 9 10 11 12 13 14 15

Compares one integer to another and skips if the two are not equal.

The instruction compares the 32-bit integer contained in ACS to the 32-bit integer in
ACD. If the integer contained in ACS is not equal to the integer contained in ACD, then

execution skips the next word; otherwise, execution proceeds with the next sequential
word.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer does not equal 0.
Carry is unchanged and overflow is 0.

Wide Skip if AC Not Equal to Immediate

WSNEI

i,ac

Ll fe s ool e asfo[1ofo[s] ~~~ wwmeomre |

vvvvvvv

012345678910111213141516 YR

Compares one integer to another and skips if the first is not equal to the second.

Sign extends the 16-bit immediate field. Compares this 32-bit number to the contents of
the AC. If the contents of the AC are not equal to the contents of the immediate, then
the next sequential word is skipped; otherwise, the next word is executed.

Contents of AC and carry remain unchanged. Overflow is 0.

Instruction Dictionary 10-153

Wide Special Save/Reset Overflow Mask
WSSVR frame size

|1|010I0]0]1]1[1]0|0]1]0]1|010I1‘ FRAME SIZE (DOUBLE WORDS) |

F

0123 465 6 7 8 9 111121314 15 16 T

Pushes a wide return block onto the wide stack, sets OVK to 0, and increments the stack
pointer by frame size.

The instruction checks for stack overflow. If executing the instruction would cause an
overflow, the instruction transfers control to the wide stack fault handler. The PC in the
fault return block will contain the address of the WSSVR instruction.

Pushes a wide return block onto the wide stack. After pushing the sixth double word,
places the value of WSP in WFP and AC3. Increments WSP by twice the frame size to
reserve the space for local variables. Sets OVK to 0, which disables integer overflow. Sets
OVR to 0.

The structure of the wide return block pushed is as follows:

Double Word Contents
in Block
PSR, and zeroes in the unused bits
ACO
AC1
AC2
Previous WFP
Carry and AC3 1-31 (or return PC)

O WN =

NOTE: This instruction saves the information required by the WRTN instruction.

This instruction is typically executed after an XJSR or LISR instruction. Note that
neither of these jump instructions can perform a cross ring call. However, they may be
used with WSSVS to perform an intra-ring transfer to a subroutine that requires no
parameters and that uses. WRTN to return control back to the calling sequence.

Wide Special Save/Set Overflow Mask
WSSVS frame size

l1]0|0[0|0|1|1]1|OIO|1I1|1I0|0|1] FRAME SIZE (DOUBLE-WORDS) ‘

Tttt T T
0 1 2 3 4 5 6 7 8 9 1011121314 1516 31

Pushes a wide return block onto the wide stack, sets OVK to 1, and increments the wide
stack pointer by frame size.

The instruction checks for stack overflow. If executing the instruction would cause an
overflow, the instruction transfers control to the wide stack fault handler. The PC in the
fault return block will contain the address of the WSSVS instruction.

If no overflow would occur, the instruction pushes a wide return block onto the wide
stack. After pushing the sixth double word, places the value of WSP in WFP and AC3.
Increments WSP by twice the frame size (a 16-bit, unsigned integer) to reserve the
space for local variables. Sets OVK to 1, which enables integer overflow. Sets OVR to 0.

The structure of the wide return block pushed is as follows:

10-154 Instruction Dictionary

Double Word Contents
in Block
PSR, and zeroes in the unused bits
ACO
AC1
AC2
Previous WFP
Carry and AC3 1-31 (or return PC)

DA WN

NOTE: This instruction saves the information required by the WRTN instruction.

This instruction is typically executed after an XJSR or LJSR instruction. Note that
neither of these jump instructions can perform a cross ring call. However, they may be
used with WSSVR to perform an intra-ring transfer to a subroutine that requires no
parameters and that uses WRTN to return control back to the calling sequence.

Wide Store Byte
WSTB acs,acd

|1 pes J a0 [o] fofofi]s][ofol]

0 1 2 12 13 14 15

Stores a copy of the rightmost byte of ACD into memory at the address specified by
ACS.

ACS contains a 32-bit byte address of some location of memory.

The instruction stores a copy of ACD’s bits 24-31 at the locations specified by ACS.
The contents of ACS and ACD remain unchanged. Carry is unchanged; overflow is 0.

Wide Store Integer

WSTI fpac

nnnEInnDnnnnnnon

o] 1 2 3 4 5 10 1 12
Converts a floating-point number to an integer and stores it into memory.
ACI1 contains the data-type indicator that describes the integer.

AC3 contains a 32-bit byte pointer to a byte in memory. The instruction will store the
high-order byte of the number in this location, with the low-order bytes following in
subsequent locations.

Under the control of accumulators AC1 and AC3, the instruction translates the contents
of the specified FPAC to an integer of the specified type and stores it, right-justified, in
memory beginning at the specified location. The instruction leaves the floating-point
number unchanged in the FPAC and destroys the previous contents of memory at the
specified location(s).

Upon successful completion, the instruction leaves accumulators AC0O and ACI
unchanged. AC2 contains the original contents of AC3. AC3 contains a byte pointer to
the first byte following the destination field. Carry is set to 0 and overflow is 0.

Instruction Dictionary 10-155

NOTES: If the number in the specified FPAC has any fractional part, the result of the instruction is
undefined. Use the Integerize instruction (FINT) to clear any fractional part.

If the number to be stored is too large to fit in the destination field, this instruction discards
high-order digits until the number fits. This instruction stores the remaining low-order digits and
sets carry to .

If the number to be stored does not completely fill the destination field, the data type of the number
determines the instruction’s actions. If the number is data type 0, 1, 2, 3, 4, or 5, the instruction sets
the high-order bytes to 0. If the number is data type 6, the instruction sign extends it to fill the gap.
If the number is data type 7, the instruction sets the low-order bytes to 0.

Wide Store Integer Extended
WSTIX

NODnDNnnnNnnnnon

0 i i) 7 8 9 10 11 12 13 14 15

Converts a floating-point number to an integer and stores it in memory.
ACI1 must contain the data-type indicator describing the integer.

AC3 must contain a 32-bit byte pointer pointing to the high-order byte of the destination
field in memory.

Using the information in ACI, the instruction converts the contents of each of the
FPAC:s to integer form. Forms a 32-bit integer from the low-order eight digits of each
FPAC. Right justifies the integer and stores it in memory beginning at the location
specified by AC3. The sign of the integer is the logical OR of the signs of all four
FPACs. The previous contents of the addressed memory locations are lost. Sets carry to
0. The contents of the FPACs remain unchanged. The condition codes in the FPSR are
unpredictable.

Upon successful termination, the contents of ACO and AC1 remain unchanged; AC2
contains the original contents of AC3; and AC3 contains a byte pointer pointing to the
first byte following the destination field. Carry is set to O and overflow is 0.

NOTES: If the integer is too large to fit in the destination field, the instruction discards high-order
digits until the integer fits. The instruction stores remaining low-order digits and sets carry to 1.

If the integer does not completely fill the destination field, the data type of the integer determines
the instruction’s actions. If the data type is 0, 1, 2, 3, 4, or 5, the instruction sets the high-order bytes
to 0. Data types 6 and 7 are illegal and will cause a commercial fault.

Wide Subtract
WSUB acs,acd

|1]Acs‘ACD|0I0|1|0|1‘0|1|1|0lo]1l
"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtracts two integers contained in accumulators.

Subtracts the 32-bit integer contained in ACS from the 32-bit integer contained in
ACD. Stores the result in ACD. Sets carry to the value of ALU carry. Sets overflow to
1 if there is an ALU overflow. Unless ACS=ACD, the contents of ACS remain
unchanged.

10-156 Instruction Dictionary

Wide Skip on Zero Bit
WSZB acs,acd

[1] ees [a0 foffoffofi]o]ifofo]]

Lo T + t t + 1
1

4] 1 2 3 4 12 13

Tests a bit and skips if the bit is 0.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator
supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero in the current ring.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 0, the next sequential word is skipped. If the bit has the value 1, the next sequential
word is executed. Carry is unchanged and overflow is 0.

Wide Skip on Zero Bit and Set Bit to One
WSZBO acs,acd

L] e [ao Jolo]i]nfefof]]ofol]

T t

T + T
o 1 2 3 4 5 6 7 8 9 10 11 12

Tests a bit. Sets the tested bit to 1 and skips if the tested value was 0.

The instruction forms a bit pointer from the contents of ACS and ACD. ACS contains
the high-order bits of the bit pointer; ACD contains the low-order bits. ACS and ACD
can be specified to be the same accumulator; in this case, the specified accumulator

supplies the low-order bits of the bit pointer. The high-order bits are treated as if they
were zero.

The instruction checks the value of the bit referenced by the bit pointer. If the bit has the
value 0, then the instruction sets the bit to one and skips the next sequential word. If the
bit has the value 1, then no skip occurs. Carry is unchanged and overflow is 0.

NOTE: This instruction facilitates the use of bit maps for such purposes as allocation of facilities

(memory blocks, I/O devices, etc.) to several processes, or tasks, that may interrupt one another, or
in a multiprocessor environment. The bit is tested and set to I in one memory cycle.

Wide Unsigned Skip if AC Greater than Immediate

WUGTI i ac
[1[1]0]ACl1|1JOJ110]0[1!1[0[0J1I IMMEDIATE
A A S it]

47

Compares one unsigned integer to another and skips if the first is greater than the
second.

Compares the contents of the AC to the 32-bit immediate. If the contents of the AC are
greater than the contents of the immediate, then the next sequential word is skipped;
otherwise, the next word is executed.

Carry is unchanged and overflow is 0.

Instruction Dictionary 10-157

Wide Unsigned Skip if AC Less than or Equal to Immediate

WULEI iac
l1‘0'AC|1|1l0l1|0]1|1|1|0l0|1| IMMEDIATE |
01 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 47

Compares one unsigned integer to another and skips if the first is less than or equal to
the second.

Compares the contents of the AC to the 32-bit immediate. If the contents of the AC are
less than or equal to the contents of the immediate, then the next sequential word is
skipped; otherwise, the next word is executed.

Carry is unchanged and overflow is Q.

Wide Unsigned Skip if Greater than or Equal to
WUSGE acs,acd

|1|ACSlACD|0’O|Ol1|0!0|1|1‘0|0|1]
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Compares one unsigned integer to another and skips if the first is greater than or equal
to the second.

The instruction compares the unsigned, 32-bit integer contained in ACS to the unsigned
32-bit integer in ACD. If the integer contained in ACS is greater than or equal to the
integer contained in ACD, the next sequential word is skipped; otherwise, the next
sequential word is executed.

If ACS and ACD are the same accumulator, then the instruction will always skip. Carry
is unchanged and overflow is 0.

Wide Unsigned Skip if Greater than
WUSGT acs,acd

[T oes [o [ololo 1 [o] o] [o]e] "]

t + t t T
10 11 12 13 14 15

Compares one unsigned integer to another and skips if the first is greater than the
second.

The instruction compares the unsigned, 32-bit integer contained in ACS to the unsigned
32-bit integer in ACD. If the integer contained in ACS is greater than the integer
contained in ACD, the next sequential word is skipped; otherwise, the next sequential
word is executed.

If ACS and ACD are the same accumulator, then the instruction compares the integer
contained in the accumulator to 0. The skip will occur if the integer is greater than 0.
Carry is unchanged and overflow is 0.

10-158 Instruction Dictionary

Wide Exchange
WXCH acs,acd
l‘l]ACSIACDlOI‘II

|
- +

1
F T t t t 1 + + t t t 1
[o] 1 2 3 a4 5 6 7 8 9 10 11 12 13 14 15

Exchanges the 32-bit contents of ACS and ACD.

Carry is unchanged and overflow is 0.

Wide Extended Operation
WXOP acs,acd,operation #

|1 0|1|0l0|1l1|1IOIO|O|0]1l°l0l1|ACS|ACD|0}0]0|O! OPERATION # [;I
"01'2'3 45 6 7 8 910111213 141516 17 18 1920 21 22 23 24 | 3031

The extended operation feature (WXOP) provides an efficient method of transferring
control to and from procedures. It allows control to transfer to any 1 of 200 (octal)
procedure entry points. WXOP pushes a return block onto the wide stack and transfers
control to an extended operation procedure.

The instruction pushes a return block onto the wide stack. Places the address in the wide
stack of ACS into AC2; places the address in the wide stack of ACD into AC3. The
WXOP table pointer in reserved memory must contain the WXOP origin address, the
starting address of a 2003 word table of addresses. These addresses are the starting
location of the various WXOP operations.

The instruction adds the operation number in the WXOP instruction to the WXOP
origin address to produce the address of a double word in the WXOP table. Fetches that
word and treats it as the intermediate address in the effective address calculation. After
the indirection chain, if any, has been followed, the instruction places the effective
address in the program counter. The contents of ACO, ACI1, and the WXOP origin
address remain unchanged. All addresses must be in the current segment. Carry is
unchanged and overflow is 0.

Figure 10.11 shows the format of the return block pushed by the instruction.

T

PSR
ACO
AC1
AC2
AC3

Address of
Car
Wide stack pointer amy | wxop + 2

after WXOP /
Pl P P SN

Wide stack pointer
before WXOP

SD-03564

Figure 10.11 WXOP return block pushed

This return block is designed so that the WXOP procedure can return control to the
calling program via the WPOPB instruction.

Instruction Dictionary 10-159

Wide Exclusive OR
WXOR acs,acd

[T [[Jolo o[[[[Je]e]1]

o 1 2 "6 7 8 9 10 11 12 13 14 15

Exclusively ORs the contents of two accumulators.

Forms the logical exclusive OR between corresponding bits of ACS and ACD. Loads the
32-bit result into ACD. The contents of ACS remain unchanged, unless ACS equals
ACD. Carry is unchanged and overflow is 0.

Wide Exclusive OR Immediate

WXORI iac

molo AC]1[1|o|1|o]111|1lo|0}1| IMMEDIATE —l
—_—tt a4 - --—
0 1 2 3 4 5 6 7 8 9 101112 13 14 156 16 47

Forms a logical exclusive OR between two values.

The instruction forms the logical exclusive OR between corresponding bits of the
specified accumulator and the value contained in the literal field. The instruction places
the result of the exclusive OR in the specified accumulator. Carry is unchanged and
overflow is 0.

Call Subroutine (Extended Displacement)
XCALL [@j/displacement/,index[,argument count]]

|1IO|O|INDEX|1I1l0]0|0|0[0l1|0’0|1|@| DISPLACEMENT] ARGUMENT COUNT

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 31 32 47

Evaluates the address of a subroutine call.

If the target address specifies an outward ring crossing, a protection fault (code=7 in
ACI1) occurs. Note that the contents of the PC in the return block are undefined.

If the target address specifies an inward ring call, then the instruction assumes the
target address has the following format:

IX I n T UNUSED l 0 I GATE [

—r
0o 1 3 4 15 16 17 31

The instruction checks the gate field of the above format for a legal gate. If the specified
gate is illegal, a protection fault (code = 6 in AC1) occurs and no subroutine call is
made. Note that the contents of the PC in the return block are undefined.

If the specified gate is legal, or if the target address specifies an intra-ring crossing, then
the instruction loads the contents of the PC, plus three, into AC3. The contents of AC3
always reference the current segment.

10-160 Instruction Dictionary

If bit 0 of the argument count is 0, then the instruction creates a word with the following
format:

L PSR l o] l ARGUMENT COUNT I

0' T e T '31.

The instruction pushes this word onto the wide stack. If a stack overflow occurs after this
push, a stack fault occurs and no subroutine call is made. Note that the value of the PC
in the return block is undefined.

If bit 0 of the argument count is 1, then the instruction assumes the top word of the wide
stack has the following format:

! PSR | 0 I ARGUMENT COUNT I
L Ty s e S S L A S Py

Regardless of the setting of bit 0 of the argument count, the instruction next
unconditionally sets OVR to 0 and loads the PC with the target address. Control then
transfers to the word referenced by the PC.

Exchange Accumulators

XCH acs,acd

Execute
XCT ac

|1[ACS—|7ACD l0|0|1|1‘1l0|0‘1|0’0|0|
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Exchanges the contents of two accumulators.

Places the original contents of bits 16-31 of ACS into bits 16-31 of ACD and the
original contents of bits 16-31 of ACD in bits 16-31 of ACS. Carry remains unchanged
and overflow is 0.

Bits 0—15 of both accumulators are undefined after completion of this instruction.

CTol] = [o]]

L]]e]o]o]
9 10 11 12 13 14 15

Executes the contents of an accumulator as an instruction.

Executes the instruction contained in bits 1631 of the specified accumulator as if it
were in main memory in the location occupied by the Execute instruction. If the
instruction in bits 16-31 of the specified accumulator is an Execute instruction that
specifies the same accumulator, the processor is placed in a 1-instruction loop.

This instruction leaves carry unchanged; overflow is 0.

Because of the possibility of bits 16-31 of the specified accumulator containing an
Execute instruction, this instruction is interruptible. An I/O interrupt can occur
immediately prior to each time the instruction in accumulator is executed. If an 1/0
interrupt does occur, the program counter in the return block pushed on the system stack
points to the Execute instruction in main memory. This capability to execute an Execute
instruction gives you a wait for I/O interrupt instruction.

Instruction Dictionary 10-161

NOTES: If bits 16-31 of the specified accumulator contains the first word of a 2-word instruction,
the word following the XCT instruction is used as the second word. Normal sequential operation
then continues from the second word after the XCT instruction.

Do not use the XCT instruction to execute an instruction that requires all four accumulators, such
as CMV, CMT, CMP, CTR, or BAM.

The results of XCT are undefined if bits 16-31 of the specified accumulator contains an
instruction that modifies that same accumulator.

Add Double (Memory to FPAC) (Extended Displacement)
XFAMD fpac,[@]displacement[,index]

Il'lhlgEXjFPvAclolOlO[O]'OIOl1!1]0];F]@! L IDIS'PL,:XCE‘MEINT' _ ,

0123 465 6 7 8 9101112131415 16 17 "31°

Adds the 64-bit floating-point number in the source location to the 64-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Adds this 64-bit floating-point number to the floating-point number in the
specified FPAC. Places the normalized result in the specified FPAC. Leaves the contents
of the source location unchanged and updates the Z and N flags in the floating-point
status register to reflect the new contents of FPAC.

Add Single (Memory to FPAC) (Extended Displacement)
XFAMS fpac,[@]displacement],index]

|1lINDEXlFPAC]O—[O|0I0|0|0|0|1l0|0]1l@l DISPLACEMENT ‘

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 31

Adds the 32-bit floating-point number in the source location to the 32-bit floating-point
number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Adds this 32-bit floating-point number to the floating-point number in bits
0-31 of the specified FPAC. Places the normalized result in the specified FPAC. Leaves
the contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

Sets bits 32-63 of FACD to 0.

Divide Double (FPAC by Memory) (Extended Displacement)
XFDMD fpac,[(@]displacement[,index]

1 INDEXlFPACIOIO%‘OIO] 1 ’ 1I1J0[0l1|@l DISPLACEMENT

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Divides the 64-bit floating-point number in FPAC by the 64-bit floating-point number
in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Divides the floating-point number in the specified FPAC by this 64-bit
floating-point number. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

10-162 Instruction Dictionary

Divide Single (FPAC by Memory) (Extended Displacement)
XFDMS fpac,/(@/displacement[.index]

[1IINDEX’FPAC‘OIOII|0l0|1’0|1]0\0|1l@\ DISPLACEMENT }

01 2 3 45 6 7 8 8 10111213 14 15 16 17 Y

Divides the 32-bit floating-point number in bits 0-31 of FPAC by the 32-bit floating-point
number in the source location and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Divides the floating-point number in bits 0-31 of the specified FPAC by this
32-bit floating-point number. Places the normalized result in the specified FPAC.
Leaves the contents of the source location unchanged and updates the Z and N flags in
the floating-point status register to reflect the new contents of FPAC.

Sets bits 32-63 of FACD to 0.

Load Floating-Point Double (Extended Displacement)
XFLDD fpac,/[(@]displacement],index]

|1[INDEX|FPACIO|1[0]0[0[0|1I1|0]0’1|@‘ DISPLACEMENT]
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0O 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 31

Moves four words out of memory and into a specified FPAC.

Computes the effective address, E. Fetches the double-precision floating-point number
at the address specified by £ and places it in FPAC. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Load Floating-Point Single (Extended Displacement)
XFLDS fpac,[@]displacement],index]

[1 IINDEX[FPAC—[OI 1]7)[010]0]0] 1]0’0] 1 ’@l DISPLACEMENT

—t

+ +—t T
0O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 31

Moves two words out of memory into a specified FPAC.

Computes the effective address, E. Fetches the single-precision floating-point number at
the address specified by E. Places the number in the high-order bits of FPAC. Sets the
low-order 32 bits of FPAC to 0. Updates the Z and N flags in the floating-point status
register to reflect the new contents of FPAC.

NOTE: This instruction will move unnormalized data without change, but the Z and N flags will be
undefined.

Instruction Dictionary 10-163

Multiply Double (FPAC by Memory) (Extended Displacement)
XFMMD fpac,[@]displacement][,index]

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 31

Multiplies the 64-bit floating-point number in the source location by the 64-bit
floating-point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Multiplies this 64-bit floating-point number by the floating-point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

Multiply Single (FPAC by Memory) (Extended Displacement)
XFMMS fpac,[@]displacement],index]

1 INDEXIFPACIOIOIOIO]OIIIOI1|0|O"l’@| DISPLACEMENT 1

0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 31

Multiplies the 32-bit floating-point number in the source location by the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Multiplies this 32-bit floating-point number by the floating-point number in
bits 0-31 of the specified FPAC. Places the normalized result in bits 0-31 of the
specified FPAC. Sets bits 32-63 of FPAC to 0. Leaves the contents of the source
location unchanged and updates the Z and N flags in the floating-point status register to
reflect the new contents of FPAC.

Subtract Double (Memory from FPAC) (Extended Displacement)
XFSMD fpac,[(@]displacement[,index]

MINDEX]FPACIOEIJI 0‘0 | Ol 1 I 1 IOIO} 1 |@, DISPLACEMENT ’

.................................

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 31

Subtracts the 64-bit floating-point number in the source location from the 64-bit
floating-point number in FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a double-precision (four-word)
operand. Subtracts this 64-bit floating-point number from the floating-point number in
the specified FPAC. Places the normalized result in the specified FPAC. Leaves the
contents of the source location unchanged and updates the Z and N flags in the
floating-point status register to reflect the new contents of FPAC.

10-164 Instruction Dictionary

Subtract Single (Memory from FPAC) (Extended Displacement)
XFSMS fpac,[@]displacement[,index]

WNDEXIFPAC]O[O|1]0[0'0'0[1'0]011|@| DISPLACEMENT l

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 3

Subtracts the 32-bit floating-point number in the source location from the 32-bit
floating-point number in bits 0-31 of FPAC and places the normalized result in FPAC.

Computes the effective address, E. Uses E to address a single-precision (double-word)
operand. Subtracts this 32-bit floating-point number from the floating-point number in
bits 0-31 of the specified FPAC. Places the normalized result in the specified FPAC.
Sets bits 32-63 of FPAC to 0. Leaves the contents of the source location unchanged and

updates the Z and N flags in the floating-point status register to reflect the new contents
of FPAC.

Store Floating-Point Double (Extended Displacement)
XFSTD fpac,/@]displacement/,index]

1INDEXIFPACIOI1|Ol0l0|1|1|1|010|1]@[DISPLACEMENT I

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the floating-point number contained in FPAC
in memory beginning at the location addressed by E. Destroys the previous contents of
the addressed memory location. The contents of FPAC and the condition codes in the
FPSR remain unchanged.

NOTE: This instruction will move unnormalized data without change.

Store Floating-Point Single (Extended Displacement)
XFSTS fpac,/@]displacement],index]

|‘||INDEX|FPACIO|1|0[0|0]1i0|1[O|0|1|@| DISPLACEMENT J

01 2 3 45 6 7 8 9 101112 13 14 15 16 17 31

Stores the contents of a specified FPAC into a memory location.

Computes the effective address, E. Places the 32 high-order bits of FPAC in memory
beginning at the location addressed by E. Destroys the previous contents of the addressed
memory location. The contents of FPAC and the condition codes in the FPSR remain
unchanged.

NOTE: This instruction will move unnormalized or data without change.

Instruction Dictionary 10-165

Jump (Extended Displacement)
XIMP /@]displacement],index]

Ill1]OIINDEXl1]1|O|OlO|O|OI1!0'0]1I@| DISPLACEMENT ‘

T LAUELENR SE S S

LS B A SRS S BN S S S S S I SO SR S RS S R
0O 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 31

Loads an effective address into the program counter.

Calculates the effective address, E. Loads £ into the PC. Carry is unchanged and
overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Jump to Subroutine (Extended Displacement)
XJISR [@]displacement],index]

[oo [oJe[o[e[o[:[[o]e] [e] meyp——]
012 3 456 7 8 91011121314151617 T T T T T Tz

Saves a return address and transfers control to a subroutine.

Calculates the effective address, E. Loads the current value of the PC, plus two, into
AC3. Loads E into the PC. Carry is unchanged and overflow is 0.

NOTE: The calculation of E is forced to remain within the current segment of execution.

Load Byte (Extended Displacement)
XLDB acdisplacement/,index]

(oo e [oo oo [[ofe ([o |

0123 456 7 8 8101112131415 16 T

Calculates a byte pointer and loads the byte into the specified accumulator.

Calculates the effective byte address. Uses the byte address to reference a byte in
memory. Loads the addressed byte into bits 24-31 of the specified accumulator, then
zero extends the value to 32 bits. Carry is unchanged and overflow is 0.

Load Effective Address (Extended Displacement)
XLEF ac,/@]displacement/,index]

[oo 2 [Jo[o oo [o o[[o[e[Je] mp— |
"0'12 34567 8 9101112131156 17 7 ETE

Loads an effective address into an accumulator.

Calculates the effective address, E. Loads E into the specified accumulator. Carry is *
unchanged and overflow is 0.

10-166 Instruction Dictionary

Load Effective Byte Address (Extended Displacement)
XLEFB ac.displacement],index]

T R
ilIINDEX[AC I1|010i0|011|1! J !OIH DISPLACEMENT
01 2 3 456 7 8 91011121314 1516 A T

Loads an effective byte address into an accumulator.

Calculates the effective byte address. Loads the byte address into the specified
accumulator. Carry is unchanged and overflow is 0.

NOTE: Index bits of 00 force the first address in the effective address calculation to be in the current
segment of execution.

Narrow Add Memory Word to Accumulator (Extended Displacement)
XNADD ac,/(@]displacement],index]

oo se JoJo[o[e[e[e[-[-[o]o]o]e] |

T LU B S SN U S S B R SN S SR S |

01234567891011121314151617 31

Adds an integer contained in a memory location to an integer contained n an accumulator.

Calculates the effective address, E. Adds the 16-bit integer contained in the location
specified by E to the integer contained in bits 16-31 of the specified accumulator. Sign
extends the 16-bit result to 32 bits and loads it into the specified accumulator. Sets carry
to the value of ALU carry and overflow to 1, if there is an ALU overflow. The contents
of the referenced memory location remain unchanged.

Narrow Add Immediate (Extended Displacement)
XNADI n,/@]displacement[,index]

[oo [o oo o[[oo e[e] |
0123 46 6 7 8 9101112131415 17 T T T T T T gy

Adds an integer in the range of 1 to 4 to an integer contained in a 16-bit memory
location.

Adds the value n+1 to the 16-bit contents of the specified memory location, where # is
an integer in the range of 0 to 3. Sets carry to the value of ALU carry (16-bit operation).
Sets overflow to 1, if there is an ALU overflow (16-bit operation).

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be added.

The operation performed by this instruction is not indivisible.

Instruction Dictionary 10-167

Narrow Divide Memory Word (Extended Displacement)
XNDIV ac,/@]displacement[,index]

' "NDEXI AC IO'OIO] I ! l ' J] IOI@l DISPLACEMENT]
0123 456 7 8 91011121314151617 T '3

Divides an integer contained in an accumulator by an integer in memory.

Calculates the effective address, E. Sign extends the integer contained in bits 16-31 of
the specified accumulator to 32 bits and divides it by the 16-bit integer contained in the
location specified by E. If the quotient is within the range —32,768 to +32,767
inclusive, sign extends the result to 32 bits and loads it into the specified accumulator. If
the quotient is outside of this range, or the memory word is zero, the instruction sets
overflow to 1 and leaves the specified accumulator unchanged. Otherwise, overflow is 0.
The contents of the referenced memory location and carry remain unchanged.

Narrow Do Until Greater than (Extended Displacement)
XNDO ac,termination offset,[(@]displacement[,index]

m AC ,|NDEX|1|0TO, ‘ ! 1 I I |0|0’@| DISPLACEMENT ‘ TERMINATION OFFSET 1
0123 456 78 9101112131415 1617 | T T T 313 T T a7’

Increments a memory location, compares it to the AC, and takes a normal exit if the
location is still less than or equal to the AC.

Increments a 16-bit memory location, sign extends it to 32 bits, and compares it to the
AC.

If the memory location is greater than the AC, then a PC relative branch is made by
adding the termination offset to PC+1.

If the memory location is less than or equal to the AC, then the next instruction is
executed.

In either case, the instruction loads the incremented memory location into the AC.

If a fixed-point overflow trap occurs while incrementing the DO-loop variable, the
contents of the specified memory location and the PC value in the return block are
undefined.

Sets carry to the value of ALU carry. Sets overflow to 1, if there is an ALU overflow
caused by the increment.

Narrow Decrement and Skip if Zero (Extended Displacement)
XNDSZ [@]displacement[,index]

11' []INDEX, I ’ IO’O’]OJ [I l l@l DISPLACEMENT
0123 456 7 8 91011121314151617 T T 3q

Decrements the contents of a location and skips the next word if the decremented value
is zero.

Calculates the effective address, £E. Decrements by one the contents of the 16-bit
memory location addressed by E. If the result is equal to zero, then the instruction skips
the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

10-168 Instruction Dictionary

Narrow Increment and Skip if Zero (Extended Displacement)
XNISZ [@)]displacement],index]

1] I I'N?Exg‘l‘iolo 01 ‘ l]011{@1 _ DISPLACEMENT !

01234567891011121314\51617" R

Increments the contents of a location and skips the next word if the incremented value is
zero.

Calculates the effective address, E. Increments by one the contents of the 16-bit memory
location addressed by E. If the result is equal to zero, then the instruction skips the next
sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction is indivisible.

Narrow Load Accumulator (Extended Displacement)
XNLDA ac,/@]displacement[,index]

| IINDEX‘ AC}O' | I I | I l l | | l | DISPLACEMENT |
01 23456 7 8 91011121314 151617 T T T T T T3

Sign extends and loads the contents of a memory location into an accumulator.

Calculates the effective address, E. Fetches the 16-bit fixed-point integer contained in
the location specified by E. Sign extends this integer to 32 bits and loads it into the
specified accumulator. Carry is unchanged and overflow is 0.

Narrow Multiply Memory Word (Extended Displacement)
XNMUL ac,[/(@]displacement[,index]

I IlNDEXl ACIO‘O’ I1’0|0|1| IOIOI]@I DISPLACEMENT |
0123456 7 8 91011121314151617 T T T T3¢

Multiplies an integer in memory by an integer in an accumulator.

Calculates the effective address, E. Multiplies the 16-bit, signed integer contained in the
location referenced by E by the signed integer contained in bits 16-31 of the specified
accumulator. If the result is outside the range of —32,768 to +32,767 inclusive, sets
overflow to 1; otherwise, overflow is 0. Sign extends the result to 32 bits and places the
result in the specified accumulator. The contents of the referenced memory location and
carry remain unchanged.

Narrow Subtract Immediate (Extended Displacement)
XNSBI n,/@]displacement[,index]

[oo [o[ol[o[[Te[e[o]e] mpp— |
0 1 2'345'6 78 9 1011121314 151617 T T T T T T T gy

Subtracts an integer in the range of 1 to 4 from an integer contained in a 16-bit memory
location.

Subtracts the value n+1 from the 16-bit value contained in the specified memory
location, where n is an integer in the range of 0 to 3. Sets carry to the value of ALU
carry (16-bit operation). Sets overflow to 1, if there is an ALU overflow (16-bit
operation).

instruction Dictionary 10-169

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be subtracted.

Narrow Store Accumulator (Extended Displacement)

XNSTA ac,/@]displacement],index]
![TI[INDEXi AC i011ll1i0i0i1i1i1i0i0i1i@i DISPLACEMENT
0123456 7 8 9101112131415 1617 T T T T gy

Stores the contents of an accumulator in a memory location.

Calculates the effective address, E. Stores a copy of the 16-bit contents of the specified
accumulator in the memory location specified by E. Carry is unchanged; overflow is 0.

Narrow Subtract Memory Word (Extended Displacement)
XNSUB ac,/@]displacement],index]

| IINDEXI ch | |]] |o| [| |o| |@| _ osruacewent —|

0123 456 7 8 9101112131415 16 17 T

Subtracts an integer in memory from an integer in an accumulator.

Calculates the effective address, E. Subtracts the 16-bit integer contained in the location
referenced by E from the integer contained in bits 1631 of the specified accumulator.
Sign extends the result to 32 bits and stores it in the specified accumulator. Sets carry to
the value of ALU carry and overflow to 1, if there is an ALU overflow. The contents of
the specified memory location remain unchanged.

Extended Operation
XOPO acs,acd,operation #

[T [Tl oo [T e oo oo

012 3 465 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 31

Pushes a return block onto the narrow stack and transfers control to an extended
operation procedure.

Pushes a return block onto the narrow stack. Places the address in the narrow stack of
ACS into AC2; places the address in the narrow stack of ACD into AC3. The XOP
table pointer in reserved memory must contain the XOPO0 origin address, the starting
address of a 40g word table of addresses. These addresses are the starting location of the
various XOPO operations.

Adds the operation number in the XOPO instruction to the XOPO0 origin address to
produce the address of a word in the XOPO table. Fetches that word and treats it as the
intermediate address in the effective address calculation. After the indirection chain, if
any, has been followed, the instruction places the effective address in the program
counter. The contents of carry, ACO, AC1, and the XOPO0 origin address remain
unchanged. Overflow is 0.

Figure 10.12 shows the format of the return block pushed by the instruction.

10-170 Instruction Dictionary

T

Stack pointer
before XOPO _
ACO
ACH
AC2
AC3
Carry Address of
Stack pointer XOPO + 1
After XOPO /
W

SD-03565

Figure 10.12 XOPO return block

This return block is designed so that the XOPO procedure can return control to the
calling program via the Pop Block instruction.

Exclusive OR

XOR acs,acd

|1| Acs|ACD 10[0l1‘0|1|01011[0‘0|0}
"0 172 3 4 5 6 7 8 9 10 11 12 13 14 15

Exclusively ORs the contents of two accumulators.

Forms the logical exclusive OR of the contents of bits 16-31 of ACS and the contents of
bits 16-31 of ACD and places the result in bits 16—-31 of ACD. Sets a bit position in the
result to 1 if the corresponding bit positions in the two operands are unlike; otherwise,
the instruction sets result bit to 0. The contents of ACS and carry remain unchanged.
Overflow is 0.

Bits 0—15 of the modified accumulator are undefined after completion of this instruction.

Exclusive OR Immediate

XORI

i,ac

‘1|0|1|AC[1|1|1l1|1!1|1|1]0|0]0‘ IMMEDIATE ’
N1 23 e 56 T s s oz T T T T T T T T 5T

Exclusively ORs the contents of an accumulator with the contents of a 16-bit number in
the instruction.

Forms the logical exclusive OR of the contents of the immediate field and the contents of
bits 16-31 of the specified accumulator and piaces the result in bits 16-31 of the
specified accumulator. Carry remains unchanged and overflow is 0.

Bits 0-15 of the modified accumulator are undefined after completion of this instruction.

Instruction Dictionary 10-171

Push Address (Extended Displacement)
XPEF [@]/displacement[,index]

‘1IOIO{INDEX]1|1!0{0[0[1]0l1l0i0l1|@i DISPLACEMENT I
.................................

0 1 2 3 4 5 6 7 8 9 101112131415 16 17 31

Pushes an address onto the wide stack.

Calculates the effective address, E. Pushes E onto the wide stack, then checks for stack
overflow. Carry is unchanged and overflow is 0.

Push Byte Address (Extended Displacement)
XPEFB displacement/[,index]
}1[0! 1 llNDEX|1Il }0|O|0} 1 |0|1]0|O| 1‘ DISPLACEMENT

----- +—t Tttt T T T T Tt T T/

0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 31

Pushes an effective byte address onto the wide stack.

Calculates a 32-bit byte address. Pushes this byte address onto the wide stack, then
checks for stack overflow. Carry is unchanged and overflow is 0.

Push Jump (Extended Displacement)
XPSHIJ /@]/displacement],index]

‘1|0|0|INDEXI1|1‘0’0'0[0’1!110|0|1{@| DISPLACEMENT t
0 1 2 3 4 5 6 7 8 9 101112131415 16 17 31

Pushes the program counter onto the wide stack and jumps to a subroutine.

Calculates the effective address, E. Pushes the current 31-bit value of the PC plus two
onto the wide stack. Loads the PC with E. Checks for stack overflow. Carry is unchanged
and overflow is 0.

NOTE: The address pushed onto the wide stack will always reference the current segment.

Store Byte (Extended Displacement)
XSTB ac,displacement/,index]

I}]INDEX[AC ‘ 1 [0 I 0J£|0] 1 |0| 1 JOiOI 1 I DISPLACEMENT ‘

|||||||||||||||||||||||||||||||||

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 31

Stores the low-order byte of the specified accumulator in memory.

Calculates the effective byte address. Moves a copy of the contents of bits 24-31 of the
specified accumulator into memory at the location specified by the byte address. Carry is
unchanged and overflow is 0.

10-172 Instruction Dictionary

Vector on Interrupting Device (Extended Displacement)
XVCT displacement

| [t]efofo:]+[+]o[o]o[o]t]o[o 1]e] _ osmaceenr |

vvvvvvv

01 2 3 456 7 8 9 10111213 141516 17 T Ty

The XVCT instruction must execute in segment zero. A protection violation occurs if
XVCT executes in another segment.

When a device requests an interrupt, the processor fetches the first instruction that the
interrupt handler address references. For a type 3 interrupt handler, the XVCT
instruction must be the first instruction the processor fetches. The processor executes it
before honoring further interrupts.

The effective address, produced by the evaluation of the absolute displacement, refers to
entry zero of the vector table in segment zero. (The indirection chain, if any, is narrow.)
The interrupting device number becomes a double-word offset that points to the
appropriate entry. Bits 1-31 of the vector table entry contain the address of entry zero of
the device control table for the interrupting device.

The processor saves the wide stack register contents and the wide stack fault handler
address, and initializes the wide stack registers and fault handler for the vector stack and
the vector stack fault handler.

The processor initializes AC0O, AC1, AC2, PSR, and PC.

ACO contains the revised priority mask.

AC1 contains the I/O channel and the device code in bits 23-31; zero extended.
AC2 contains the entry zero address of the device control table.

PSR contains the PSR word from word four of the device control table.

PC contains the address of the device interrupt routine from bits 4-31 of the first double
word (words zero and one) of the device control table. The processor transfers control to
the word addressed by the program counter.

Wide Add Memory Word to Accumulator (Extended Displacement)
XWADD ac,/@]displacement[,index]

[noex ac [ofo[+]o]o[o]+]1[ofo[o]e] _ osracement l

01234 56 7 8 91011121314 151617 ED

Adds an integer contained in memory to an integer contained in an accumulator.

Calculates the effective address, E. Adds the 32-bit integer contained in the location
specified by E to the 32-bit integer contained in the specified accumulator. Loads the
result into the specified accumulator. Sets carry to the value of ALU carry and overflow
to 1, if there is an ALU overflow. The contents of the referenced memory location
remain unchanged.

Instruction Dictionary 10-173

Wide Add Immediate (Extended Displacement)
XWADI n,/@]displacement[,index]

[—[[NDEXI lol | I [o[I Io|o|ol@| _ DISPLACEMENT]

"0'1'2 3 4656 7 8 9101112131415 16 17 31

Adds an integer in the range of 1 to 4 to an integer contained in a 32-bit memory
location.

Adds the value n+1 to the 32-bit fixed-point integer contained in a memory location,
where n is an integer in the range of 0 to 3. Sets carry to the value of ALU carry. Sets
overflow to 1, if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be added.

Wide Divide Memory Word (Extended Displacement)
XWDIV ac,/@]displacement][,index]

’1IINDEX| AC[] l l ,]0‘ I l l I [I . DISPLACEMENT I

T T rrr T 1

O1234567891011121314!51617 31

Divides an integer in an accumulator by an integer in memory.

Calculates the effective address, E. Sign extends the 32-bit integer contained in the
specified accumulator to 64 bits and divides it by the 32-bit integer contained in the
location specified by E.

If the quotient is within the range of —2,147,483,648 to +2,147,483,647 inclusive, the
instruction loads the quotient into the specified accumulator. Overflow is 0.

If the quotient is outside this range, or if the word in memory is zero, the instruction sets
overflow to 1 and leaves the specified accumulator unchanged.

The contents of the referenced memory location and carry remain unchanged.

Wide Do Until Greater than (Extended Displacement)
XWDO ac,termination offset,[(@]displacement/[,index]

[IAC IINDEX| IOI] 1 I l | I 1 IO[@I DISPLACEMENT ‘ TERMINATION OFFSET I

012 3 45 6 7 8 9101112131415 1617 T Tavs A

Increments a memory location, compares it to the AC, and takes a normal exit if the
location is still less than or equal to the AC.

Increments a 32-bit memory location and compares it to the AC.

If the memory location is greater than the AC, then a PC relative branch is made by
adding the termination offset to PC+1.

If the memory location is less than or equal to the AC, then the next instruction is
executed.

In either case, the instruction loads the incremented memory location into the AC.

If a fixed-point overflow trap occurs while incrementing the DO-loop variable, the
contents of the specified memory location and the PC value in the return block are
undefined.

10-174 Instruction Dictionary

Sets carry to the value of ALU carry. Sets overflow to 1, if therc is an ALU overflow
caused by the increment.

Wide Decrement and Skip if Zero (Extended Displacement)
XWDSZ [@)]displacement/,index]

[+ o] tjwoex+|1ofofo1[1]r]o[o[t]e] _ osracement |

T

0123456 7 8 91011121314 151617 REREREYY

Decrements the contents of a location and skips the next word if the decremented value
is zero.

Calculates the effective address, E. Decrements by one the contents of the 32-bit
memory location addressed by E. If the result is equal to zero, then the instruction skips
the next sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word to be decremented is
located on a double-word boundary.

Wide Increment and Skip if Zero (Extended Displacement)
XWISZ [@)]displacement],index]

[]o]tjwoe 1 [+ oo[ofo[1]1]o[o]a] DISPLACEMENT |

0 12 3 45 6 7 8 9101112131415 1617 T T T T g

Increments the contents of a location and skips the next word if the incremented value is
zero.

Calculates the effective address, E. Increments by one the contents of the 32-bit memory
location addressed by E. If the result is equal to zero, then the instruction skips the next
sequential word. Carry is unchanged and overflow is 0.

NOTE: This instruction executes in one indivisible memory cycle if the word 1o be incremented is
located on a double-word boundary.

Wide Load Accumulator (Extended Displacement)
XWLDA ac,/@/displacement[,index]

[e [o[o e[elele[{[ofe e omwommmer

01 2 3 45 6 7 8 9 10111213 1415 16 17 e

Loads the contents of a memory location into an accumulator.

Calculates the effective address, E. Fetches the 32-bit fixed-point integer contained in
the location specified by E. Loads a copy of this integer into the specified accumulator.
Carry is unchanged and overflow is 0.

Instruction Dictionary 10-175

Wide Multiply Memory Word (Extended Displacement)
XWMUL ac,/@]displacement/[,index]

HINDEX‘ AC‘O}O' I 'Ol |1]1|0‘0|ol@| DISPLACEMENT
0123 45 6 7 8 9101112131415 71617 T T 3

Multiplies an integer in an accumulator by an integer in memory.

Calculates the effective address, E. Multiplies the 32-bit, signed integer contained in the
location referenced by E by the 32-bit, signed integer contained in the specified
accumulator. Loads the 32 least significant bits of the result into the specified
accumulator.

If the result is outside the range of —2,147-483,648 to +2,147,483.647 inclusive, the
instruction sets overflow to 1; otherwise, overflow is 0. The contents of the referenced
memory location and carry remain unchanged.

Wide Subtract Immediate (Extended Displacement)
XWSBI n/@]displacement/,index]

’1! N IINDEXI Iol I l |0l1‘ { |0'0I@‘ DISPLACEMENT |
0123 4567 8 8 1011121314151 17 " 3

Subtracts an integer in the range of 1 to 4 from an integer contained in a 32-bit memory
location.

Subtracts the value n+1 from the value contained in the specified 32-bit memory
location, where n is an integer in the range of 0 to 3. Sets carry to the value of ALU
carry. Sets overflow to 1, if there is an ALU overflow.

NOTE: The assembler takes the coded value of n and subtracts one from it before placing it in the
immediate field. Therefore, the programmer should code the exact value to be subtracted.

Wide Store Accumulator (Extended Displacement)
XWSTA ac,/@/displacement][,index]

lllNDEX‘ AC|0!1|1|01 [I I IOI l | I DISPLACEMENT
0123456 78 9101121314166 17 T a1

Stores the contents of an accumulator in a memory location.

Calculates the effective address, E. Stores a copy of the 32-bit contents of the specified
accumulator in the memory location specified by E. Carry is unchanged; overflow is 0.

Wide Subtract Memory Word (Extended Displacement)
XWSUB ac,/@]displacement/,index]

l ||NDEx’ Acl |0| ’ l l l [] lolol@] DISPLACEMENT
0123456 7 8 9101112131851 17 T a1

Subtracts an integer contained in memory from an integer contained in an accumulator.

Calculates the effective address, E. Subtracts the 32-bit integer contained in the location
referenced by E from the 32-bit integer contained in the specified accumulator. Loads

10-176 Instruction Dictionary

the result into the specified accumulator. Sets carry to the value of ALU carry and
overflow to 1, if there is an ALU overflow. The contents of the specified memory
location remain unchanged.

Zero Extend
ZEX acs,acd

|1|ACS]ACD|O[1I‘I
o2 3 i s s 7

oo][]oo]]
"8 9 10 11 12 13 14 15

Zero extends a 16-bit integer in an accumulator to 32 bits.

Zero extends the 16-bit integer contained in ACS to 32 bits and loads the result into
ACD. The contents of ACS remain unchanged, unless ACS equals ACD. Carry is
unchanged and overflow is 0.

System Overview 1-7

Access from segment 7 to segment
6 through a gate defined in
segment 6.

Full access
from inner segments
to outer segments

Segment 7

SD-03505

Figure 1.6 Virtual address space

Since the logical address space is larger than physical memory,
» The processor translates a logical address to a physical address.

A logical address specifies a segment number and a logical location within the
segment. You write programs using these logical addresses. The processor converts
them to physical addresses, and then accesses the contents.

* The operating system stores portions of the virtual memory (pages of 2 Kbytes) on
a disk.

The hardware facilities for address translation include eight memory management
registers (SBRO- SBR7), which define eight memory segments and the access protocols.
The processor performs an address translation as explained in the Accessing Memory
section.

With a privileged instruction, you can access a memory management register to load or
to store the contents of a register. Refer to the Memory and System Management
chapter for additional information.

1-8 System Overview

ECLIPSE C/350 Compatible Instructions

The processor contains an ECLIPSE C/350 compatible instruction set (and stack
facilities) for 16-bit program development and upward program compatibility. Refer to
the C/350 Programming chapter for additional information.

Accessing Memory

The processor addresses and accesses memory for an instruction or for an operand. To
address memory, the processor uses a word as the standard unit of address. For instance,
when loading a byte into an accumulator, the processor first resolves a word address, and
then selects one of the two bytes.

The instruction that the processor accesses can be a word or a multiple of words. The
operand can be a bit, byte, word, double word, or multiple of double words. You specify
the address of the instruction or of the data with a memory reference instruction.

A memory reference instruction refers to a class of instructions that accesses memory for
data or for another instruction. The memory reference instruction contains the
information for

o Determining the effective address of an operand.
The processor reads or writes an operand.
e Determining the effective address of the next nonsequential instruction.

The processor modifies the program counter with the effective address, and then
executes the instruction that the program counter identifies.

A memory reference instruction attempts to access memory in the current segment or in
another segment. The validity of the access depends on a comparison of the access
protocols permitted for the memory page and the type of access that the instruction
attempts to perform. The access protocols are explained in the Current Segment and the
Other Segments sections.

Current Segment

When a memory reference instruction addresses the current segment, the processor
compares the page protocols with the type of access that the instruction requests,
determining the validity of the reference. The page protocols are identified as a valid
page, read access, write access, and execute access.

For instance, when loading a byte into an accumulator from the current segment, the
processor reads the byte from memory if it resides where the page protocols permit a
read access.

The processor also compares the segment field of every indirect address reference with
the current segment. For accessing data (read or write access), indirect addressing can
occur within the current segment or towards a higher numbered segment. For transferring
program control (execute access), indirect addressing must occur in the current segment.

The processor aborts the access and services the protection violation fault for an invalid
reference. Refer to the Memory and System Management chapter for further details on
page accesses and protection violation faults.

System Overview 1-9

Other Segments
When executing a memory reference instruction that addresses another segment,

» The processor compares the current segment with the destination segment to
determine the direction validity of the reference. The destination segment is the
segment containing the operand or nonsequential instruction.

A read or write access must be to the current or to a higher numbered segment. An
execute access must be to the current or to a lower numbered segment.

» The processor compares the segment and page protocols with the type of access that
the instruction requests to determine the access validity of the reference. The
processor first checks the segment protocols, and then checks the page protocols.

For a read or write access to a higher numbered segment, the segment protocol is a
check for a valid segment. For an execute access to a lower numbered segment, the
segment protocols are a check for a valid segment and gate. Refer to the Program
Flow Management chapter for an explanation of a gate.

For instance, when loading a byte into an accumulator from a higher numbered segment,
the processor reads the byte if it resides in a valid segment and page protocols permit a
read access.

The processor aborts the access and services the protection violation fault for an invalid
reference. Refer to the Memory and System Management chapter for further details on
page accesses and protection violation faults.

Memory Reference Instructions

Figure 1.7 shows the typical memory reference instruction formats for word addressing.
Figure 1.8 shows the typical memory reference instruction formats for byte addressing.
The instruction formats for word addressing contain an indirect (@) field. The instruction
formats for word and byte addressing contain index and displacement fields, and also an
optional accumulator (ac) field. The optional accumulator field specifies a source or
destination accumulator in the range of zero to three.

For instance, with the ac field equal to zero (ac = 0) for a load accumulator instruction,
the processor loads an operand from memory into the destination accumulator (ACO or
FPACO).

NOTE: With the ac field, a fixed-point instruction specifies a fixed-point accumulator; a
Sfloating-point instruction specifies a floating-point accumulator.

The combination of the index, displacement, and indirect (@) fields specify the effective
address that contains the instruction or operand. To resolve the effective address, the
processor first identifies the addressing mode, then any indirect address(es), and finally
the effective address.

1-10 System Overview

A typical instruction format with an 8-bit displacement

op [ac l @ I Index 8-Bit Displacement

A typical instruction format with a 15-bit displacement

1 |Index | ac l op |l|0|o|1‘@l 15-Bit Displacement
I e o I e o kT v T T L L S S A e S S B 371

A typical instruction format with a 31-bit displacement

SD-03506

!711|ndex{ ac ’ op |1|0 of1 @l 31-Bit Displacement
bt retgratsT 1,,12.‘4—1—1—”‘5,"7

1

Figure 1.7 Memory reference instruction word addressing formats

A typical instruction format with a 16-bit displacement

1 |index | ac

r] op | 1 I o] ‘ 01 1 | 16-Bit Displacement
gty T s T T T ——T— T

TH1T127137 147157 16

A typical instruction format with a 32-bit displacement

| 1 IIndex] ac [op I 1|0 l 0| 1 i 32-Bit Displacement

or1'2'374's7 T T T 11712713714715716

SD-03507

Figure 1.8 Memory reference instruction byte addressing formats

Address Modes

Using the index field (see Table 1.1), the processor determines if the instruction specifies
an absolute or relative addressing mode. The Assembler (in conjunction with the
appropriate pseudo-op) produces object code with absolute or relative addressing.

Absolute Addressing

For absolute addressing, the displacement field contains an indirect or an effective

address. The address, expressed as an unsigned integer (8, 15, or 31 bits wide), specifies

an addressing range as shown in Table 1.1.

Appendix A

Instruction Summary

The Instruction Summary lists the 32-bit processor instructions alphabetically by

assembler-recogni

zable mnemonic, giving the format, data type used, action performed,

and location contents before and after instruction execution.

The C/350 compatible instructions are identified with an asterisk (*) located at the
beginning of the instruction mnemonic.

The following abbreviations are used throughout this summary:

Abbreviation

Data Indicators

#
2#
str
bed
high
low
H
L

Operators

—

XXX

+

e~ !

Meaning

Integer

2’s complement integer

Byte string

Binary coded decimal

High order of number

Low order of number

High number for comparison
Low number for comparison

Returned to

Complement of xxx

Addition

Subtraction or negation

Division

Multiplication

Equality

Nonequality

Less than

Greater than

Comparison

If condition is true, skip the next sequential word
Logical OR

Logical AND

Logical Exclusive OR

Hex shift (n*4=bits shifted)

Unpredictable result

Ties together two (or more) items to be operated upon as one

Instruction Summary

Fixed-Point

ac

acs

acd

PSR

CRY
OVR
IRES
ALU CRY
overflow

Floating-Point

fp#
FPSR()
fpac

facs

facd

abs

int

norm
new exp.

Decimal/Byte

bp

asc.,

desc.

char
del.table addr
trans.table bp

Stack

wsp

wfp

wsl

wsb
wsa

sp

fp

sl

sa
d.words

Miscellaneous

E
S(E)
D(E)
(#) page zero
X
unch
displ.
PC
ION
R/W
I’s
0’s
Q
dec#
mod
ref
PTE
SBR

Fixed-point accumulator

Source ac

Destination ac

Processor status register

CRY bit (PSR)

OVR bit (PSR)

IRES bit (PSR)

Arithmetic and logic unit CRY bit
Arithmetic overflow

Floating-point number (fp#s=single precision, fp#d =double precision)

Floating-point status register (flags updated)
Floating-point accumulator

Source fpac

Destination fpac

Absolute value

Integer

Normalized number

New exponent

Byte pointer

Ascending order

Descending order

Character (ASCII or decimal digit)
Delimiter table address

Translation table byte pointer

Wide stack pointer

Wide frame pointer

Wide stack limit

Wide stack base

Wide stack fault address
Narrow stack pointer
Narrow frame pointer
Narrow stack limit
Narrow stack fault address
Double words

Calculated effective address
Source E

Destination E

Address in page zero
Unknown and soon to be lost
Unchanged

Displacement

Program counter

Interrupt on flag
Read/write command

Bits set to |

Bits set to 0

Queue

Decimal number

Modified page bit
Referenced page bit

Page table entry

Segment base register

Instruction Summary

A-3

NOTE: For all operations, unless specifically mentioned:

Before Instruction Execution:

Upon Instruction Completion:

OVR=x unchanged
CRY=x unchanged
overflow=x unchanged
FPSR bits=x updated
BUSY, DONE flags=x unchanged
Instruction Format Action Before After
(Location =) (Location =}
*ADC/c/[sh][#] acs.acd[skip] acs +acd—acd acs=+# unchanged
NOTE: [f result >65,535 then CRY-—~CRY acd=# result
*ADD/c/[sh][#] acs,acd].skip] acs +acd—acd acs=# unchanged
NOTE: [f result >65,535 then CRY—CRY acd=# result
*ADDI iac acti—ac ac=24# result
=28 unchanged
*ADI n,ac act+n—ac ac=# result
n=4# (1-4) unchanged
*ANC acs,acd acs AND acd—acd acs=# unchanged
acd=# result
*AND/c/[sh][#] acs.acd]skip] acs AND acd—acd acs=# unchanged
acd=# result
*ANDI iac ac AND i—ac ac=4# result
i=# unchanged
*BAM S(E) +ACO—DI(E) ACO=#(addend) unchanged
AC1=#(no. words) (o]
AC2=source E last E+ 1
AC3=dest. E last E+1
BKPT wide return block —stack stack =x +6 double words
PSR=x o]
PC=(BKPT) (10-11) page zero
*BLM S(E)—DIE) AC1=#(no. words) o]
AC2=source E last E+1
AC3=dest. E last E+1
*BTO acs,acd 1—(E)bit acs =word pointer unchanged
NOTE: If acs=acd, word pointer=0 acd=word offset
& bit pointer unchanged
(E)bit=x 1
*BTZ acs,acd 0—(E)bit acs=word pointer unchanged
NOTE: If acs=acd, word pointer=10 acd=word offset
& bit pointer unchanged
(E)bit=x 0
CIO acs,acd R/W—I/0 system bus acs = #(command) unchanged
write
acd=# unchanged
read
acd=x result
CIOI iacs,acd R/W-—1/0 system bus acs = #(command) unchanged
If acs=acd, i=command i=#(command) unchanged
If acs #acd, write
i OR acs =command acd=# unchanged
read
acd=x result
*CLM acs,acd acs> =L & acs<<=H = skip acs=2# unchanged
acd=(L) 2# unchanged
(L+1)=H2# unchanged
If acs is acd acs=2# unchanged
(CLM+1)=L unchanged
(CLM+2)=H unchanged

A-4 Instruction Summary

Instruction Format

Action

Before
{Location =)

After
{Location =)

*CMP

*CMT

*CMV

NOTE If S<D, Remainder of D is filled with

spaces

*COB acs,acd

NOTE: If acs is acd, acs=unchanged
*COM/c][sh][#] acs.acd[skip]

CRYTC
CRYTO
CRYTZ
*CTR

CVYWN ac

NOTE: If ac(bits 0-16)#all 1's or all 0’s before

conversion, Overflow=1
*DAD acs,acd

DEQUE
*DHXL n,ac
*DHXR n,ac

*DIA/f] ac,device

*DIB/f] ac.device

*DIC/f] ac.device

string 1 ? string 2
Result Returned
-1—AC1 {1<2)
0—AC1 (1=2)}
+1—ACT1 (1<2)

S(E)—D{(E)

If byte = delimiter
hait instruction and
byte not moved

S(E)—D(E)
CRY =relative length
1—-8>D
0-S=<D

acs(1's)+acd—acd

acs—acd

CRY—CRY
1—CRY
0—CRY

S(E)—DI(E)
translates

OR

string1 ? string2
translates
-1-ACT1 (1<2)
0—AC1 (1=2)
+1-AC1 (1>2)
ac(32 bits)—ac(16 bits)
(bit 16 extended)

acs t+acd+CRY—acd

Queue-element—Queue

ac&ac+ 1(shift left(n*4))

—ac&ac+1

ac&ac+ 1(shift right(n*4))
—ac&ac+1
device(A buffer) —ac

device(B buffer)—ac

device(C buffer) —ac

ACO=str2 #bytes
(#=asc, 2# =desc)

AC1=str1 #bytes
(# =asc, 2# =desc)

AC2=str2 bp
AC3=str1 bp
ACO=del.table addr.
AC1=# bytes

(# =asc, 2# =desc)
AC2 = destination bp
AC3=source bp
ACO=dest. #bytes

(# =asc, 2# =desc)
AC1=source #bytes

(# =asc, 2# =desc)
AC2 =destination bp
AC3 =source bp
CRY=x
acs=*#
acd=2#
acs=4#
acd=x
CRY=CRY
CRY=CRY
CRY=CRY
ACO=trans.table bp
AC1=# bytes (2#)
AC2 = destination bp
AC3=source bp

ACO=trans.table bp
AC1=4# bytes (#)
AC2=string2 bp
AC3=string1 bp

ac=#(32-bit)

acs=bcd

acd=bcd

CRY =x

ACO=E(Q descriptor)
AC1=E(data element)
Q descriptor
ac=high

act+ 1=low

n=# (0-8)

ac=high

act+ 1=low

n=# (0-8)

A buffer=#

ac=x

BUSY,DONE flags =x
B buffer=4#

ac=x

BUSY,DONE flags=x
C buffer=4#

ac=x

BUSY,DONE flags =x

O or # bytes left
result code

last bp+ 1 or failing byte
last bp+ 1 or failing byte

E(del.table)
0 or unmoved bytes

last bp+ 1
last bp+ 1

o}
0 or unmoved bytes

last bp+ 1
last bp+ 1
relative length
unchanged
result
unchanged
result

RY

o = O

unchanged
0

last bp+ 1
last bp+ 1

unchanged
result code
last bp+ 1 or failing byte
last bp+ 1 or failing byte

#(16-bit)

unchanged
result
Decimal carry

unchanged
unchanged
updated

result
result
unchanged

result
result
unchanged

unchanged
result

i
unchanged
result

i
unchanged
result

i

Instruction Summary A-5

Instruction Format Action Before After
(Location =) (Location =)
*DIV ACO&AC1/AC2— ACO=#(high dividend) #{remainder)

NOTE: If AC0>=AC2 then | -CRY,

ACO0& ACI =unchanged, instruction terminates

*DIVS
NOTE: If quotient overflows, | -CRY,
ACO0& ACI =72, instruction terminates

*DIVX
NOTE: If quotient overflows, | -CRY,
ACO& ACI =2, instruction terminates

*DLSH acs,acd

*DOA/f] ac.device

*DOB/f] ac.device

*DOC/[f] ac,device

*DSB acs,acd
NOTE: If CRY=0, result is -;
if CRY=1, result is +

*DSPA ac,/@/displacement|,index]

*DSZ [@]displacement|,index]
DSZTS

ECLID
*EDIT

NOTE: For subopcodes —
If j(high-order bit)=1, word is at (sp+ 1+)
If j(high-order bit)=0, word is at j

DADI p0

DAPS p0O

AC 1{quotient)
ACO(remainder)

ACO&AC1/AC2—
AC 1{quotient)
ACO(remainder)

ACO&AC1/AC2—
AC 1{quotient)
ACO(remainder)

acd&acd+ 1 (shift left/right)
—acd&acd+ 1

ac—device(A buffer)

ac—device(B buffer)

ac—device(C buffer)

acd-acs-CRY—acd

if ac<L or ac=>H
then (DSPA)+ 1—PC

If ac> =L and ac<<=H
then E-L+#—PC
FE-L+#)=1777774

{DSPA)+ 1—PC

(E)-1—(E)
If (E)=0 = skip

(wsp)-1—(wsp)
If (wsp)=0 = skip

CPU id—ACO

DI+p0—DlI
If $=0, P+p0—P

AC1=*#{(low dividend)
AC2=#(divisor)
CRY=x
ACO=2#{(high dividend)
AC1=2#(low dividend)
AC2 = 2#(divisor)
CRY=x
ACO=sign of AC1
AC1=2#(dividend)
AC2=2#(divisor)
CRY=x
acs = 2# for shift

(+ =left/-=right)
acd=high
acd+ 1=low
ac=#
A buffer=x
BUSY,DONE flags =x
ac=#
B8 buffer =x
BUSY,DONE flags =x
ac=4#
C buffer=x
BUSY,DONE flags =x

acs=bcd

acd=bcd

CRY=x

E =(dispatch table)

E-2=L(2#)

E-1=H(2#)

ac=2#

Last table word=
E+2*(H-L)

CRY=x

(E)=4#
(wsp)=#

ACO=x
ACO=bp

(1st subopcode)
AC1=(data-type)
AC2=bp (dest.)
AC3=bp (source)
OVR=x
CRY=x
T=0
S=x
SI=AC3
Di=AC2
P=ACO
pO=24#
pO=2#
P=(DAPS)
S=x

#(quotient)
unchanged
0

2#(remainder)
2#(quotient)
unchanged

0

2#(remainder)
2#t(quotient)
unchanged

o]

unchanged

result
result

unchanged
result

i

unchanged
result

m

unchanged
result

"

unchanged
result

Decimal borrow
unchanged
unchanged
unchanged
unchanged

unchanged

Sign (0=+, 1=-)
last bp+ 1

last bp+ 1

last bp+ 1
unchanged
unchanged

?

unchanged

A-6 Instruction Summary

Instruction Format

Action

Before
{Location =)

After
{Location =)

DAPT p0

DAPU po

DASI p0
DDTK k.p0

NOTE: If (k)=-, stack word=sp+1+k;

If (k}=+, stack word=fp+1+k
DEND
DICI np0/pl...p(n-1)]

DIMC j,p0

DINC po0

DINS p0.pl

DINT pO.pl

DMVA |

DMVC |

DMVF j,pOpl.p2

DMVN

If T=1, P+p0O—P

P+p0—P

SI+p0—SI

(k)-1—1(k)
If (k}#0, P+p0O—P

Stop Edit(ing)

pO—{DI)
p1—(DI+ 1)

p(n-1})—(DI+n)
pO—(DI)

pO—(DI+j)
pO—(DI)

If S=0, p0—I(DI}
If S=1, p1—(DI)

If T=0, pO—(DI)
f T=1, p1—(DI)

(sh—(D1)
(St+1)—(DI+ 1)

(SI+j)—(DI+))
If source data type=3
and >0
(SI)—(D1)
(SI+ 1)—(DI+ 1)

(SI+j}—(DI+))
If source data type=3
and j>0
and (Sl)=source # sign
SI+ 18I
fT=1
(Sh—(D1)
(St+ 1)—(DI+ 1)

(SI+j)—(Dt+})
fT=0
If (S1})=0(or space)
pO—(DI)
If (S1)#0
1-T
fS=0
p1—(DI)
If S=1
p2—(Dl)
If source data type=3
and j>0
(S1)—(D1)
(SI+1)—(DI1+1)

(814)—(DI+])

pO=2#
P=(DAPT)
T=x
pO=24#
P=(DAPU)
p0=2#
(k)=4#
pO=2#
P=(DDTK)

n=4# or 2#
pO[p1,..]=character
p=p

DI=DlI
j=#or2#
pO=character
DI=Di
pO=character
DI=DI

pO=character
p1=character
DI=Dl

S=x
pO=-character
p1=character
DI=Dt

T=x

j=4# or 2#
SI=SI

DI=DlI

T=x
j=#or2#
Si=SI

DI=D!

T=x

j=H#Hor2#
pO=character
p1=character
p2=character
T=x

S=x

St=SI
Di=Di
DI=DI

j=H#or 2#
Si=S8I|
Di=Dl
T=x

unchanged
?

unchanged

unchanged
(DAPU)+2#
unchanged
#-1

unchanged
?

unchanged
unchanged
P+n+2
Di+n

unchanged
unchanged
DI+j

unchanged
Di+1

unchanged
unchanged
DI+1

unchanged

unchanged
unchanged
DI+1

unchanged

unchanged
Si+j
DI+j

1

unchanged
SI+j
DI+j

1

unchanged
unchanged
unchanged
unchanged
?

unchanged

Si+j
DI+j

DI+j+1

unchanged
Sl+j
Di+j

1

Instruction Summary

A-7

Instruction Format

Action

Before
(Location =)

After
(Location =)

DMVO p0,pl,p2,p3

DMVS j.p0

DNDF poO,pi

DSSO
DSSZ
DSTK k,p0

NOTE: If (k}=+, (k)=sp+1+k;

If (k)= (k)=fp+1+k
DSTO
DSTZ

*EDSZ

[@]displacement[,index]

*EISZ /@)]displacement[,index)

*EJMP
*EJSR

*ELDA

*ELDB

*ELEF
ENQH

ENQT

*ESTA

*ESTB

[@]displacement/,index]
[@]displacement[index]

ac,[@]displacement/,index]

ac,displacement/,index]

ac,[@]displacement,index]

ac,[@]displacement/,index]

ac,displacement/,index]

*FAB fpac

If source data type=3
and (Sl) =source # sign
S+ 158l
If (SI)=0lor space)
If S=0, p0—(Di)
If $=1, p1—(DI)

If (S)#0
If $=0, p2+(Sl)—(Dl)
if S=1, p3+(SlI)—(DI)

If source data type=3
and >0
and (Si} =source # sign
SI+ 18I
(S1)—(DI)
(SI+1)—(Di+ 1)

(SI+j)—(DI+})
IfT=0
p0—0s & spaces
If T=1, DI—DI

fT=0
If $=0, p0—(DI)
fS$=1, p1—(DI)

18
0-S
pO—(k)

1—T
0—T

(E)-1—(E)
If (E)=0 = skip

(E)+1—(E)

If (E)=0 = skip
E—PC
E—PC
(E)—ac
(E)—ac(right)

E—ac
data element—Q Head

data element—Q Tail

ac—I(E)
ac{right)—(E)

absolute(fpac)-—fpac

p0,p1,p2,p3=
character

SI=SlI

DI=Di

S=x

T=x

T=x

j=H#or2#
pO=character
Si=Si

DI=DI

T=x

pO=character
p1=character
DI=DI

Il

b3
b3
=Dt

X

w v oo

X

pO=character
k)=2#

Il

T=x
T=x

(Ey=4#
(E)=4#

PC=(EJMP)
PC=(EJSR)

AC3=x

ac=x

(E)=#

ac=x

(E)=4#

CRY=x

ac=x

ACO=E(Q descriptor)
AC1=E(Q element)
AC2=E(element to add)
ACO=E(Q descriptor)
AC1=E(Q element)
AC2=E(element to add)
(E)=x

ac=#

(E)=x

ac=#

fpac=fp#

FPSR(N,2)

unchanged
Si+1
DI+1
unchanged
unchanged

1

unchanged
unchanged
Sl+j
DI+j

?

unchanged
unchanged
unchanged

1
unchanged
DI+1

1

0

unchanged
unchanged

PC+2

H
unchanged
#
unchanged
0

E

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
ac
unchanged
ac(right)
unchanged
abs{fp#)
N=0
Z=updated

A-8 Instruction Summary

Instruction Format Action Before After
{Location =) {Location =)
*FAD facs.facd facs + facd—facd facs =fp#d unchanged
facd=fp#d foHtd
*FAMD fpac./[@/displacement/,index] (E) +fpac—fpac (E)=fp#td unchanged
fpac=fp#d fo#d
*FAMS fpac,/@]displacement/,index] (E)+fpac—fpac (E)=fp#s unchanged
fpac=fp#s fp#ts
*FAS facs facd facs + facd—facd facs=fp#s unchanged
facd=fp#s fp#s
*FCLE 0—FPSR(0-4) FPSR(0-4) =x 0
*FCMP facs.facd facs ? facd facs=fp# unchanged
facd=fp# unchanged
FPSR(N,Z)=x (N 2)
0 1 facs=facd
1 0 facs>facd
0 O facs<(facd
*FDD facs,facd facd/facs—facd facs=fp#d unchanged
facd=fp#d fp#d
*FDMD fpac,[@]displacement/,index] fpac/(E)—fpac (E)=fp#d unchanged
fpac=fp#d fp#d
*FDMS fpac,/@]displacement/,index] fpac/(E}—fpac (E)=fp#s unchanged
fpac=fp#s fp#s
*FDS facs.facd facd/facs—facd facs=fp#s unchanged
facd="fp#s fp#s
*FEXP fpac ACO—explfpac) ACO=# unchanged
NOTE: If fpac=true 0, fpac=unchanged fpac="fp# fp#(new exponent)
FPSR(N.Z)=x updated
*FFAS ac,fpac integer(fpac)—ac fpac=fp# unchanged
ac=x 2#
FPSR(N,Z}=x unch
(MOF)=x updated
*FFMD fpac,[@]displacement],index] integer(fpac)—(E) fpac=fp# unchanged
(E)=x int(2#)(32-bit)
FPSR(N,Z)=x unchanged
{(MOF)=x updated
*FHLYV fpac fpac/2—fpac fpac=fp# result
FPSR(N,Z,UNF)=x updated
*FINT fpac integer(fpac) —fpac fpac=fp# result
NOTE: FINT truncates towards 0 with no
rounding
*FLAS acfpac ac—fpac ac=2# unchanged
fpac=x fp#s
FPSR(N,Z)=x updated
*FLDD fpac,/@]displacement].index] (E)—fpac (E)=fp#d unchanged
fpac=x fp#d
*FLDS fpac,[@]displacement/,index] (E)—fpac (E)=fp#s unchanged
fpac=x fp#s
*FLMD fpac,[@]displacement[,index] (E)—fpac (E)=2# (32-bit) unchanged
fpac=x fp#d
FPSR(N,Z)=x updated
*FLST [@]displacement],index] (E)—FPSR (E)=fp#s unchanged
FPSR(all) = x (E)
*FMD facs facd facd*facs—facd facs=fp#d unchanged
facd=fp#d fp#d
FMMD fpac,/@/displacement][.index] fpac(E)—fpac (E)=fp#d unchanged
fpac=fp#d fp#d
FMMS fpac,[@]displacement/.index] fpac(E)—fpac (E)="fp#ts unchanged
fpac=fp#ts fp#s
*FMOV facs,facd facs—facd facs=fp#t unchanged
facd=x facs

Instruction Summary

Instruction Format Action Before After
{Location =) {Location =)
*FMS facs.facd facd*facs—facd facs=fp#s unchanged
facd=fp#s fofts
*FNEG fpac -fpac—fpac fpac="fp# -fp#t
NOTE: True 0 is unchanged.
*FNOM jpac normifpac)—fpac fpac=fp# norm fp#
FPSR(N,Z,UNF)=x updated
*FNS PC+ 1—PC PC=PC PC+1
*FPOP -18 words—stack stack =stack -18 words
FPAC3=x 1st 4
FPAC2=x 2nd 4
FPAC1=x 3rd 4
FPACO=x 4th 4
FPSR=x last 2
*FPSH + 18 words—stack stack =stack + 18 words
1st 2=x FPSR
2nd 4=x FPACO
3rd 4=x FPAC1
4th 4=x FPAC2
5th 4=x FPAC3
FRDS facs.facd facs(fp#d)—facd(fpts) facs=fp#d fp#d
NOTE: FPSR(8) is ignored for rounding facd=x fpits
*FRH fpac fpac(high 16)—ACO fpac="fp# unchanged
ACO=x high 16(fp#)
FPSR(N,Z)=x unchanged
*FSA PC+2—PC PC=PC PC+2
*FSCAL fpac ACO-fpactexp) = ACO=# unchanged
fpac(mantissa shift) fpac="fp# result
ACO—fpaclexp) FPSR(N,2Z)=x updated
*FSD facs.facd facd-facs—facd facs =fp#d unchanged
facd=fp#d fp#d
*FSEQ If FPSR(Z)=1 =skip FPSR(Z) =x unchanged
*FSGE If FPSR(N)=0 =skip FPSR(N)=x unchanged
*FSGT If FPSR(Z&N)=0 =skip FPSR(N,Z)=x unchanged
*FSLE If FPSR(ZorN)=1 =skip FPSR(N,Z)=x unchanged
*FSLT If FPSR(N)=1 =skip FPSR{N}=x unchanged
*FSMD fpac,[@]displacement/,index] fpac-(E)—fpac (E)=fp#d unchanged
fpac=fp#d fo#td
*FSMS fpac,[@]displacement/,index] fpac-(E)—fpac (E)=fp#s unchanged
fpac=fp#s fo#ts
*FSND If FPSR(DVZ)=0 =skip FPSR(DVZ) =x unchanged
*FSNE If FPSR(2)=0 =skip FPSR(Z)=x unchanged
*FSNER If FPSR(1-4)=0 =skip FPSR(1-4)=x unchanged
*FSNM If FPSR(MOF)=0 =skip FPSR(MOF)=x unchanged
*FSNO If FPSR(OVF)=0 =skip FPSR(OVF)=x unchanged
*FSNOD If FPSR(OVF&DVZ)=0 =skip FPSR(OVF,DVZ)=x unchanged
*FSNU)f FPSR(UNF)=0 =skip FPSR(UNF)=x unchanged
*FSNUD If FPSR(UNF&DVZ)=0 =skip FPSR(UNF,DVZ)=x unchanged
*FSNUO If FPSR(UNF&OVF)=0 =skip FPSR{UNF,OVF)=x unchanged
*FSS facs.facd facd-facs—facd facs=fp#s unchanged
facd=fp#s fp#ts
*FSST /@)]displacement],index] FPSR—(E) (E)=x FPSR
FPSR(all) =x unchanged
*FSTD fpac,[@/displacement/,index] fpac—(E) fpac=fp#d unchanged
(E)=x fpitd
*FSTS fpac,/[@]displacement(.index] fpac—(E) fpac="fp#ts unchanged
(E)=x fpHs

A-10 Instruction Summary

Instruction Format Action Before After
{Location =) {Location =)
*FTD O—FPSR(TE) FPSR(TE}=x 0
*FTE 1—FPSR(TE) FPSRI(TE)=x 1
FXTD 0—0VK OVK =x 0
FXTE 1—O0VK OVK=x 1
0—0VR OVR =x 0
*HALT Stops the processor ION flag=x unchanged
NOTE: HALT=DOC 0,CPU
*HLV ac ac/2—ac ac=2# result
NOTE: HLV rounds toward 0
*HXL n.ac aclleft shift{n*4))—ac n=4#(1-4) unchanged
ac=4# result
*HXR n,ac aclright shift(n*4)—ac n=4#(1-4) unchanged
ac=# result
*INC/c/[sh][#] acs,acd]skip] acs+ 1—acd acs=# unchanged
NOTE: If acs>177777g, CRY—CRY acd=x result
*INTA ac device code—ac ac=x device code
NOTE: INTA ac=DIB ac,CPU ION flag=x unchanged
*INTDS 0—ION fiag ION flag=x 0
NOTE: INTDS=NIOC CPU
*INTEN 1—ION flag ION flag=x 1
NOTE: INTEN=NIOS CPU
IOR acs,acd acs OR acd—acd acs=# unchanged
acd=# result
*IORI i,ac i OR ac—ac i=# unchanged
ac=4# result
*[ORST - Clear all 1/0 devices ION flag=x 0
NOTE: IORST=DICC 0,CPU O—priority mask BUSY,DONE flags =x 0
*ISZ [@/displacement(,index] (E)+1—(E) E)=4# #+1
If (E}=0 =skip
ISZTS (wsp)+ 1—(wsp) (wsp)=32# +1
If (wsp)=0=skip
*IMP /@]displacement/,index] E—PC PC=PC E
*JSR [/@]displacement/,index] E—PC PC=PC E
AC3=x PC+1
LCALL [@/disp/.index][arg count]] If E=valid, E—~PC PC=PC E
AC3=x PC+4
OVR=x o]
LCPID CPU id—ACO ACO=x CPU id
*LDA ac,/@]displacement/,index] (E)—ac ac=x (E)
LDAFP wfp—ac ac=x wfp
wip=4# unchanged
LDASB wsb—ac ac=x wsb
wsb=# unchanged
LDASL wsl—ac ac=x wsl
wsl=4# unchanged
LDASP wsp—ac ac=x wsp
wsp=4# unchanged
LDATS (wsp)—ac ac=x (wsp)
(wsp)=# unchanged
*LDB acs,acd (E)—acd acs=bp unchanged
acd=x byte
(E)=byte unchanged
*LDI fpac dec# (E)—fp# (fpac) (E) =decimal # unchanged
NOTE: A -0 sets fpac to true 0 fpac=x norm fp#
AC1=data indicator unchanged
AC2=x AC3

AC3=bp
FPSR(N,Z)

?
updated

Instruction Summary

A-11

Instruction Format

Action

Before
(Location =)

After
(Location =)

*LDIX

LDSP ac,/@]displacement/.index]

*LEF ac,/@]displacement/[,index]
LFAMD fpac,/(@/displacement],index]

LFAMS fpac.[@]displacement],index]
LFDMD fpac,/@]displacement/,index]
LFDMS fpac,/@]displacement].index]
LFLDD fpac,/@]displacement[,index]
LFLDS fpac,[@/displacement[,index]
LFLST /@]displacement/,index]
LFMMD fpac,[@]displacement[,index]
LFMMS fpac,[@]displacement[,index]
LFMSD fpac,[@]displacement],index]
LFSMS fpac,/@]displacement/,index]
LFSST [@)]displacement/[,index]
LFSTD fpac,/@]displacement/[,index]
LFSTS fpac,/[@]displacement/,index]

LIMP [@)]displacement/,index]
LISR [@/displacement/,index]

LLDB ac.displacement/,index]

LLEF ac,/@]displacement/,index]
LLEFB acdisplacement/,index]
LMRF

dec#(E)—fp#(FPACO,1,2,3)

if ac<<L or ac>H
then (LDSP)+2—PC

If ac> =L and ac<<=H
then E-2*(L-#)—PC
if E-2%(L-#)=
37777777777,
then (LDSP)+2—PC

E—ac
(E) + fpac—fpac

(E) + fpac—fpac
fpac/(E)—fpac
fpac/(E)—fpac
(E)—fpac
{E)—fpac
(E)—FPSR
fpac*(E)—fpac
fpac*(E)—fpac
fpac-(E)—fpac
fpac-(E)—fpac
FPSR—(E)
fpac—l(E)
fpac—(E)

E—PC
E—PC

(E)—ac

E—ac
E—ac
page{mod&ref bits)—ACO

FPACO=x
FPAC1=x
FPAC2=x
FPAC3=x
FPSR(N,Z)
AC1=data indicator
AC2=x
AC3=bp
E=dispatch table
E-4=L(2#)
E-2=H(2#)
AC=2#

ac=x
(E)=fp#d
fpac=fpH#d
(E)=fp#s
fpac=fpis
(E)=fp#d

fpac =fp#d
(E)y=fpHs

fpac =fp#Hs
(E)=fpH#d
fpac=1fp#d
(E)=fpHs

fpac =fp#s
(E)=fp#d
FPSR(all)=x
(E)=fp#d
fpac=fp#d
(E)=fpHs
fpac=1fp#ts
(E)=fp#d
fpac=fp#d
(E)=fpHs
fpac="fp#H#s
(E)=x
FPSR(all) =x
fpac=fp#d
(E)=x
fpac=fp#Hs
(E}=x

PC=PC
PC=PC
AC3=x

ac=x
(E)=byte
ac=x

ac=x

ACO=x
AC1=pageframe #
modified bit=x
referenced bit=x

1st unit
2nd unit
3rd unit
4th unit

7
unchanged
AC3

?
unchanged
unchanged
unchanged
unchanged

E
unchanged
fpHd
unchanged
fp#ts
unchanged
fp#d
unchanged
fp#s
unchanged
fp#d
unchanged
fplts
unchanged
(E)
unchanged
fp#d
unchanged
fp#s
unchanged
foftd
unchanged
fp#s

FPSR
unchanged
unchanged
fp#d
unchanged
fpHs

E

E

PC+3

byte
unchanged

E

E(byte)
mod&ref bits
unchanged

unchanged
(o]

A-12 Instruction Summary

Instruction Format Action Before After
(Location =} (Location =)
LNADD ac./@/displacement/[.index] (E)+ac—ac (E)=4# unchanged
NOTE: If ALU overflows, Overflow= 1| ac=# result
CRY=x ALU CRY
LNADI n,/@)]displacement/.index] n+(E)—I(E) (E)=4# result
NOTE: If ALU overflows, Overflow=1 n=*# (1-4) unchanged
CRY=x ALU CRY
LNDIV ac,/@]displacement],index] ac/(E)—ac (E)=4# unchanged
NOTE: If (E)=0, or result >32,767 or ac=# result
<<-32,768, Overflow=1
LNDO ac.term offset,[@]disp[.index] (E)+1—(E) (E)=%# unchanged
NOTE: If ALU overflows, Overflow=] If (E)>ac then PC+ 1+ ac=4# (E)
termination offset—PC CRY=x ALU CRY
(E)—ac
LNDSZ [@)]displacement/,index] (E}-1—(E)=0 (E)=4# (E)-1
If (E)=0 =skip
LNISZ [@/displacement[,index] (E)+ 1—(E) (E)=4# (E)+1
If (E)=0 =skip
LNLDA ac,/@]displacement[,index] (E)—ac (E)=4# unchanged
ac=x (E)
LNMUL ac,/@/displacement/,index] (E)*ac—ac (E)=4# unchanged
NOTE: If result >32,767 or <-32,768, Over- ac=4# result
flow=1
LNSBI n,/@]displacement],index] (E)-n—(E) (E)=4# result
NOTE: If ALU overflows, Overflow=1 n=4# (1-4) unchanged
CRY=x ALU CRY
LNSTA ac,/@]displacement/[,index] ac—(E) ac=4# unchanged
(E)=x #
LNSUB ac,/@/displacement[,index] ac-(E)—ac ac=*# result
NOTE: If ALU overflows, Overflow=] (E)=# unchanged
*LOB acs,acd acs{# of O0s)+acd—acd acs=# unchanged
acd=2# result
LPEF /@]displacement/,index] E—wide stack stack =stack +E
LPEFB displacement/,index] E—wide stack stack =stack +E(byte)
LPHY logical—physical ACO=x PTE
NOTE: If PTE # page or validity fault, next AC1=logical address unchanged
word skipped AC2=x physical address
LPSH) /@/displacement/,index] PC+ 3—wide stack PC=PC E
E—PC stack = stack +(PC+3)
LPSR PSR—ACO PSR=x unchanged
ACO=x PSR
OVR=x unchanged
CRY=x unchanged
*LRB acs,acd acs(# of Os) +acd—acd acs=# new #
NOTE: If ACS=ACD, then no count taken but 0—high 1(acs) acd=2# result
O—leading |
LSBRA new values—SBR(all) SBR(0-7)=x new
ACO=E unchanged
LSBRS new values—SBR(1-7) SBR(1-7)=x new
SBR(0)=x unchanged
ACO=E unchanged
*LSH acs,acd acd(shifted) —acd acs=2# unchanged
(acs determines shift) (+ =left,-=right)
acd=4¥# result

Instruction Summary

A-13

Instruction Format

Action

Before
(Location =)

After
(Location =)

*LSN

LSTB ac.displacement/,index]

LWADD ac,/@]displacement].index]
NOTE: If ALU overflows, Overflow= |

LWADI n,/@]displacement/,index]
NOTE: If ALU overflows, Overflow= I

LWDIV ac,/@]displacement/,index]
NOTE: If quotient <-2,147,483,648 or
>+2,147,483,647, or (E)=0;
Overflow=1, and ac=unchanged

LWDO ac,term offset,[(@]disp[.index]
NOTE: If ALU overflows, Overflow=1

LWDSZ [@)]displacement/,index]
LWISZ [@/displacement/,index]
LWLDA ac,/@]displacement/.index]

LWMUL ac,/@/displacement/,index]
NOTE: If result >-2,147,483,648 or
<+2,147,483,647, Overflow=1

LWSBI n,/@]displacement/.index]
NOTE: If ALU overflows, Overflow=1
LWSTA ac,/@]displacement/,index]

LWSUB ac,/@]displacement],index]
NOTE: If ALU overflows, Overflow=1

*MOV/c/[sh][#] acs,acd[skip]

*MSKO ac
NOTE: MSKO ac=DOB ac,CPU

*MSP ac

*MUL

*MULS

NADD acs,acd
NOTE: If ALU overflows, Overflow=1

(E)=(non-0 or O, + or -)
+ 1—AC1=(+non-0)
-1—AC1={(-non-0)

0—AC1=(+0)
-2AC1=(-0)
ac—»(E)
ac+(E)—ac
(E)+n—(E)

ac/(E)—ac(quotient)

(E)+ 1—(E)
If (E)>>ac then PC+ 1+
termination offset—PC
If (E}<<=ac then
PC+1—-PC
(E}—ac
(E)-1=(E)
if (E)=0 =skip
(E)+1=(E)
If (E}=0 =skip

(E)—ac

(E)*ac—ac

(E}-n—(E)

ac—I(E)

ac-(E)—ac

acs—acd

ac—priority mask

sp+ac—sp

AC1*AC2+ACO—ACO&AC1

AC1*AC2+ACO—ACO&AC1

acs+acd—acd

AC1=data type
AC2=x
AC3=bp
(E)=decimal #

(E)=x
ac=byte
(E)=4#
ac=4#
CRY=x
(E)=#
n=4# (1-4)
CRY=x
(E)=4#
ac=4#
CRY=x

(E)=4#
ac=4#
CRY=x

(E)=%#

(E)y=#

(E)=4#
ac=x

(E)=4#
ac=#

(E)=4#
n=4# (1-4)
CRY=x
ac=*#
(E)=x
ac=*#
(E)=#
CRY=x
acs=#
acd=#
CRY=x
ac=4#

ION flag=x
mask = x
ac=2#
sp=*#
ACO=#
AC1=4#
AC2=#
ACO=2#

AC1=2%#
AC2=24#
acs=4#
acd=#
CRY =x

value code
AC3

?
unchanged

byte
unchanged
unchanged

result
ALU CRY

result
unchanged
ALU CRY

unchanged
quotient
ALU CRY

#+1
(E)+1
ALU CRY

#-1

#+1

unchanged
(E)
unchanged
result

#-n
unchanged
ALU CRY

unchanged
ac

result
unchanged
ALU CRY

unchanged
acs
ALU CRY

unchanged

unchanged
ac

unchanged
result

result{high)
result{low)
unchanged
result(high)

(sign—bit 16)

result(low)
unchanged
unchanged

result
ALU CRY

A-14 Instruction Summary

Instruction Format Action Before After
(Location =) (Location =)

NADDI iac ac+i—ac ac=4# result

NOTE: If ALU overflows, Overflow=] =4 unchanged
CRY=x ALU CRY

NADI nac ac+n—ac ac=4# result

NOTE: If ALU overflows, Overflow=| n=4# (1-4) unchanged
CRY=x ALU CRY

NBSAC

NBSAS

NBSE

NBSGE

NBSLE

NBSNE

NBSSC

NBSSS

NCLID

NDIV acs,acd

NOTE: If result <-32,768 or >32,767, or
acs=0; Overflow=1, acd=unchanged

*NEG/c/[sh][#] acs,acd] skip]
NOTE: If acs=0, CRY—CRY

NFSAC

Search from (AC1) to Q tail
for (AC1+AC3)=all Os
(16-bit test)

Search from (AC1) to Q tail
for (AC1+AC3)=all 1s
(16-bit test)

Search from (AC1) to Q tail
for {AC1+AC3)=(wsp)
(16-bit test)

Search from {AC1) to Q tail
for (AC1+AC3)<<=(wsp)
(16-bit test)

Search from (AC1) to Q tail
for (AC1+ AC3)> = (wsp)
(16-bit test)

Search from (AC1) to Q tail
for (AC1+AC3) # (wsp)
(16-bit test)

Search from (AC1) to Q tail
for (AC1+AC3)=some Os
(16-bit test)

Search from (AC1) to Q tail
for (AC1+AC3)=some 1s
(16-bit test)

CPU id—ACO&AC1&AC2

acd/acs—acd

-acs—acd

Search from (AC1) to Q head
for (AC1+AC3)=all Os
(16-bit test)

AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp) =mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp) =mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp) =mask word

ACO=x
AC1=x
AC2=x
acs=2#
acd=2#
acs=4#
acd=x

AC1=E(1st Q data
element)

AC3=2#{(word offset)

(wsp) =mask word

E(last Q data element
searched)

unchanged

unchanged

E{last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

model number
microcode revision
memory size

unchanged
quotient

unchanged
2#(acs)

E(last Q data element
searched)

unchanged

unchanged

Instruction Summary

Instruction Format

Action

Before
(Location =)

After
(Location =)

NFSAS

NFSE

NFSGE

NFSLE

NFSNE

NFSSC

NFSSS

NLDAIl iac

NMUL acs,acd

NOTE: If result <-32,768 or >32,767, Over-

flow=1

NNEG acs,acd

NOTE: If acs=100000g, Overflow= |
NSALA iac

NSALM iac

NSANA iac

NSANM iac

NSBI n,ac
NOTE: If ALU overflows, Overflow=1

NSUB acs,acd
NOTE: If ALU overflows, Overflow= |

Search from (AC1) to Q head
for (AC1+AC3)=all 1s
(16-bit test)

Search from (AC1) to Q head
for (AC1+AC3)=(wsp)
(16-bit test)

Search from {(AC1) to Q head
for (AC1+AC3)<={(wsp)
(16-bit test)

Search from (AC1) to Q head
for (AC1+AC3)> = (wsp)
(16-bit test)

Search from (AC1) to Q head
for (AC1+AC3)# (wsp)
(16-bit test)

Search from (AC1) to Q head
for (AC1+AC3)=some Os
(16-bit test)

Search from (AC1) to Q head
for (AC1+AC3)=some 1s
(16-bit test)

i—ac

acd*acs—acd

-acs—acd

If i AND ac = O =skip
If i AND {ac} = 0 =skip
Ifi AND ac # 0 =skip
If i AND (ac) # O =skip

ac-n—ac

acd-acs—acd

AC1=E(1st Q data
element)
AC3=2#(word offset)
{wsp) =mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
{wsp}=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
{wsp) =mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
AC1=E(1st Q data
element)
AC3=2#(word offset)
(wsp)=mask word
i=2#
ac=x
acs=2#
acd=2#

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

E(last Q data element
searched)

unchanged

unchanged

unchanged
2#

unchanged
result

unchanged
result
ALU CRY

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged

result
unchanged
ALU CRY
unchanged

result
ALU CRY

A-16 __Instruction Summary

Instruction Format

Action

Before
(Location =)

After
{Location =)

*NIO/f] device
ORFB

PATU

PBX
NOTE: Popped PC must reference a BKPT
instruction

PIO acs,acd

*POP acs.acd
NOTE: If acs is acd, 1 word is popped

*POPB

*POPJ

*PSH acs,acd
NOTE: If acs is acd, 1 accumulator is pushed

*PSHJ) /@]displacement/,index]
*PSHR

*READS ac
NOTE: READS ac=DIA ac,CPU

RRFB

*RSTR

*RTN

[f]—BUSY, DONE fltags

reference bits

(AC1) (AC1)+1.(AC1) + 16

OR {(AC2)—(AC2)

Purges address translator

-12 words—wide stack
execute(ACO)

commandl{acs)—device

stack—acs to acd

stack—registers

stack—PC

acs to acd—stack

PC+ 1—stack
E—PC

PC +2—.stack

console switches—ac

O—referenced bits
(AC1,AC1+1,..AC1+16)

stack—locations

stack—locations

BUSY, DONE flags =x

ACO = pageframe count
AC1=pageframe &
AC2=E(word string)
referenced bits = x
OVR=x
CRY =x
stack = stack

popped PC=x
ACO = 16-bit instr.
OVR=x
CRY=x
acs=command
acd =source

stack = stack
acs=x
acd=x
sp=x

fp=x

stack = stack
CRY=x
PC=(POPB)
AC3=x
AC2=x
ACt1=x
ACO=x
stack = stack
PC=x
sp=x

fp=x

stack =stack
Sp=x

fp=x
acs=x
acd=x
PC=PC
stack = stack
stack = stack

ac=x
ION flag=1x
ACO=pageframe count
AC1=pageframe #
referenced bits =x

stack = stack

CRY=x
PC=(RSTR)
AC3=x
AC2=x
AC1=x
ACO=x

stack fault addr.=x
sl=x

fp=x

sp=x

stack = stack
CRY=x
PC=(RTN)
AC3=x
AC2=x
AC1=x
ACO=x
Sp=x

fp=x

1
count-1
#+16
E+1

(]

unchanged
unchanged

-6 double words
PC+1

unchanged

?

?

unchanged
destination

-n words{n=1-4)
1st stack word
last stack word
sp-n
unchanged
-5 words

1st word{O)

(1-15)

2nd word

3rd word

4th word

5th word

-1 word

stack word

-1

unchanged

+n words(n=1-4)
+n

unchanged
unchanged
unchanged

E
+(PC+1)

+(PC+2)

result
unchanged

count-1
#+16
0

-9 words
1st word(0)
{1-15)
2nd word
3rd word
4th word
5th word
6th word
7th word
8th word
9th word

-5 words
1st word(0)
(1-15)
2nd word
3rd word
4th word
5th word
fp-5
AC3{(popped)

Instruction Summary

A-17

Instruction Format Action Before After
{Location =) {Location =)
*SAVE | 5+i—stack i=# unchanged
stack =stack +5+i
1st word ACO
2nd word AC1
3rd word AC2
4th word fp(before SAVE)
5th word(0) CRY
(1-15) AC3
sp=x +5+i
AC3=x fp
fp=x +5
SAVZ 5 words—stack stack =stack +5
1st word ACO
2nd word AC1
3rd word AC2
4th word fp(before SAVE)
5th word(0) CRY
(1-15) AC3
sp=x +5
AC3=x fp
fp=x sp{before push)
*SBI n,ac ac-n—ac ac=# result
n=4#{(1-4) unchanged
SEX acs,acd acs(16 bits)—acd(32 bits) acs=# unchanged
(sign extended) acd=x result
*SGE acs,acd If acs> =acd =skip acs=2# unchanged
acd=2# unchanged
*SGT acs,acd If acs>acd = skip acs=2# unchanged
acd=2# unchanged
*SKP: device if t=true =skip BUSY,DONE flags=x unchanged
SMRF New values—mod&ref bits ACO=new values unchanged
AC1=pageframe # unchanged
modified bit=x updated
referenced bit=x updated
*SNB acs,acd If (E)bit=1 =skip acs=word pointer unchanged
NOTE: If acs is acd, word pointer=0 acd=word offset & unchanged
bit pointer
(E)=x unchanged
SNOVR If OVR=0 =skip OVR=x unchanged
SPSR ACO—PSR ACO=x unchanged
OVR=x updated
CRY=x unchanged
*STA ac,/@]displacement/,index] ac—(E) ac=4# unchanged
(E)=x #
STAFP ac ac—wfp ac=4# unchanged
wfp=x #
STASB ac ac—wsb ac=# unchanged
wsb =x #
STASL ac ac—wsl ac=# unchanged
wsl=x #
STASP ac ac—wsp ac=4# unchanged
wsp=x #
STATS ac ac—{wsp) ac=*# unchanged
(wsp)=x #
*STB acs.acd ac{right)—(E) acs=bp unchanged
acd=byte unchanged
(E)=x byte

A-18 Instruction Summary

instruction Format Action Before After
(Location =) {Location =}
*STI fpac fpac—(E)# fpac="fp# unchanged
AC1=data indicator unchanged
AC2=x AC3
AC3=bp last bp+ 1
*STIX fpac(1-4)—(E)# fpac(1-4)=fp# unchanged
NOTE: If E is not large enough, | —CRY AC1=data indicator unchanged
AC2=x AC3
AC3=bp last bp+ 1
CRY=x o]
*SUBY/c/[sh][#] acs.acd] skip] acd-acs—acd acs=4# unchanged
NOTE: If result >32,768, CRY—CRY acd=¥# result
CRY=x ALU CRY
*SZB acs.acd If (E)bit=0 =skip acs=word pointer unchanged
NOTE: If acs is acd, word pointer=0 acd=word offset & unchanged
bit pointer
(E)=x unchanged
*SZBO acs,acd If (E)bit=0 =skip acs = word pointer unchanged
NOTE: If acs is acd, word pointer=0 1—{E) bit acd=word offset & unchanged
bit pointer
(E)=x updated
VBP bp ? valid reference ACO=bp unchanged
If ACO segment #> = AC1=segment # unchanged
AC1 segment # =skip
VWP word pointer ? valid reference ACO=word pointer unchanged
if ACO segment #> = AC1=segment # unchanged
AC1 segment # = skip
WADC acs,acd acs +acd—acd acs=*# unchanged
NOTE: If ALU overflows, Overflow=1 acd=# result
CRY=x ALU CRY
WADD acs,acd acs +acd—acd acs=4# unchanged
NOTE: If ALU overflows, Overflow=1 acd=# result
CRY=x ALU CRY
WADDI iac i+ac—ac i=# unchanged
NOTE: If ALU overflows, Overflow=1 ac=# result
CRY=x ALU CRY
WADI n,ac n+ac—ac n=# (1-4) unchanged
NOTE: If ALU overflows, Overflow=1 ac=# result
CRY=x ALU CRY
WANC acs,acd acs AND acd—acd acs=# unchanged
acd=# result
WAND acs,acd acs AND acd—acd acs=# unchanged
acd=# result
WANDI iac i AND ac—ac i=# unchanged
ac=# result
WASH acs,acd acd(shift}—acd acd=# result
acs=# for shift unchanged
(+ =left, -=right)
WASHI iac ac{shift)}—ac ac=*# result
i=# for shift unchanged
(+ =left, -=right)
WBLM S(E)—DIE) AC1=no. words (2#) 0
(+ =asc., -=desc.)
AC2=source E last Ex 1
AC3=destination E last Ex 1
WBR displacement PC + displacement—PC PC=PC PC +displ.

WBSAC
WBSAS

(32-bit test) see NBSAC
(32-bit test) see NBSAS

Instruction Summary

A-19

Instruction Format

Action

Before
{Location =)

After
(Location =}

WBSE

WBSGE
WBSLE
WBSNE
WBSSC

WBSSS

WBTO acs,acd

WBTZ acs,acd

WCLM acs,acd

WCMP

WCMT

WCMV

WCOB acs,acd
WCOM acs,acd

WCST

WCTR

(32-bit test) see NBSE
(32-bit test) see NBSGE
(32-bit test) see NBSLE
(32-bit test) see NBSNE
(32-bit test) see NBSSC
(32-bit test) see NBSSS
1—(E)bit

O0—(E)bit

acs> =L & acs<< =H=skip

If acs is acd

string 1 ? string 2
-1 —SACt (1<2)
0 —AC1 (1=2)
+1 —AC1(1>2)

S(E)—DI(E)

If byte = delimiter =
halt instruction
S(E)—DI(E)
CRY =relative iength
1—-S>D
0—-S=<D

acs(1's) +acd—acd

acs—acd

If (AC3)=delimiter
= halt instruction

S(E)—D(E)
translates
OR
string1 ? string2
translates
-1—-AC1 (1<2)

+1-ACT (1>2)

acs =word pointer

acd=word offset &
bit pointer

(E)bit=x

acs =word pointer

acd=word offset &
bit pointer

(E)bit=x

acs=2#

acd=(L) 2#

(L+1)=H2#

acs=2#

(CLM)+1=L

(CLM)+2=H

ACO=str2 #bytes
(#=asc, 2# =desc)
AC1=str1 H#bytes
(#=asc, 2# =desc)
AC2=str2 bp
AC3=strl bp

ACO = del.table addr.
AC1=# bytes

(# =asc, 2# =desc)
AC2 = destination bp
AC3=source bp

ACO=dest. #bytes
(# =asc, 2# =desc)

AC1=source #bytes
(# =asc, 2# =desc)

AC2=destination bp

AC3=source bp

CRY=x

acs=4#

acd=2#

acs=#

acd=x

ACO=del.table addr.

AC1=H#bytes
(#=asc, 2# =desc)

AC3=bp

CRY=x

ACO=trans.table bp

AC1=4# bytes (2#)

AC2 = destination bp

AC3=source bp

ACO=trans.table bp
AC1=*# bytes (#)
AC2 =destination bp
AC3=source bp

unchanged

unchanged
1

unchanged

unchanged
(o]

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

0 or unmoved bytes

result code

last bp+ 1 or failing byte
last bp+ 1 or failing byte

unchanged
0 or unmoved bytes

last bp+ 1
last bp+1

0
0 or unmoved bytes

last bp+ 1

last bp+ 1

rel. length
unchanged

result

unchanged

result

unchanged

0 or unmoved bytes

last bp+ 1 or delimiter

?

unchanged
0

last bp+ 1
last bp+ 1

unchanged
result code
last bp+1
last bp+ 1

A-20 Instruction Summary

Instruction Format Action Before After
(Location =) (Location =)
WDIV acs,acd acd/acs—acd acd=2# result(quotient)
NOTE: If result <-2,147,483,648 or acs=24# unchanged
>2,147,483,647, or acs=0,
then Overflow=1 and acs=unchanged
WDIVS ACO&AC1/AC2— ACO=2#(high-order) remainder
NOTE: If result <-2,147,483,648 or AC1{quotient)& AC1=2#{(low-order) quotient
>2,147,483,647, or AC2=0, ACO(remainder) AC2=2# (divisor) unchanged
then Overflow=1 and ACO& ACI1=unchanged
WDPOP Restores CPU state (32-33)page zero unchanged
=context block
WEDIT See EDIT instruction
The only changes for the WEDIT
instruction subopcodes are:
The value for j:
If j=-; word is at
(wspt+2+2+))
The value of k in the DDTK and
DSTK subopcodes:
If (k)=-, stack
word=wsp+2+2*k
If (k)=+, stack
word=wfp+2-+2*k
WFFAD ac,fpac absolute(fpac)—ac fpac=fp# unchanged
NOTE: If fpac <-2,147,483,648 or ac=x #or 28
>2,147,483,647, FPSR(N,2) unchanged
then | —MOF and if fpac=+, ac=#; if fpac=-
ac=2#
WFLAD ac,fpac ac—fpac ac=2# unchanged
fpac=x fpHd
FPSR(N,2) updated
WFPOP stack—registers stack =stack -20 words
NOTE: FPSR(12-15) are not set by WFPOP FPAC3=x 1st 4
FPAC2=x 2nd 4
FPAC1=x 3rd 4
FPACO=x 4th 4
FPSR=x 5th 4
WFPSH registers—stack stack =stack +20 words
1st 4=x FPSR
2nd 4=x FPACO
3rd 4=x FPAC1
4th 4=x FPAC2
5th 4=x FPAC3
WFSAC (32-bit test) see NFSAC
WFSAS (32-bit test) see NFSAS
WFSE (32-bit test) see NFSE
WFSGE (32-bit test) see NFSGE
WFSLE (32-bit test) see NFSLE
WFSNE (32-bit test) see NFSNE
WFSSC (32-bit test) see NFSSC
WFSSS (32-bit test) see NFSSS
WHLV ac ac/2—ac ac=2# result
NOTE: WHLYV rounds toward 0
WINC acs,acd acs+ 1—acd acs=4# unchanged
NOTE: If ALU overflows, Overflow=1 acd=x #+1
CRY=x ALU CRY
WIOR acs,acd acs OR acd—acd acs=# unchanged
acd=4# result

Instruction Summary _ A-21

Instruction Format Action Before After
{Location =) (Location =)
WIORI iac ac OR i—ac ac=*# result
i=# unchanged
WLDAI iac i—ac i=4# unchanged
ac=x #
WLDB acs,acd (acs)—acd acs=bp unchanged
acd=x byte
WLDI fpac dec#(E)—fp#(fpac) {E)=decimal # unchanged
fpac=x norm fp#
AC1=data indicator unchanged
AC2=x AC3
AC3=bp last bp+ 1
FPSR(N,Z) updated
WLDIX dec#(E)—fp#(fpac0,1,2,3) FPACO=x 1st unit
FPAC1=x 2nd unit
FPAC2=x 3rd unit
FPAC3=x 4th unit
FPSR(N,2) ?
AC1=data indicator unchanged
AC2=x AC3
AC3=bp last bp+ 1
WLMP (E)—map slots ACO=*#(1st slot #) last slot #
AC1=#(# slots) 0
AC2=E lastE +2
WLOB acs,acd acs(# of Os)+acd—acd acs=# unchanged
acd=2# result
WLRB acs,acd acs(# of Os)+acd—acd acs=# new #
NOTE: If gcs is acd, then no count taken but 0lead 1lacs) acd=2# result
0—leading 1
WLSH acs,acd acd(shifted)—acd acs=2# unchanged
(acs determines shift) (+ =left, -=right)
acd=4# result
WLSHI iac ac(shifted)—ac i=2# unchanged
{i determines shift) (+ =left, -=right)
ac=4# result
WLSI nac ac(shift left(n))—ac n=#(1-4) unchanged
ac=*# result
WLSN (E)=(non-0 or O, + or -) AC1=data type value code
+ 1—AC1={(+non-0) AC2=x AC3
-1—AC1={(non-0) AC3=bp ?
0—AC1=(+0) (E) =decimal # unchanged
-2AC1=(-0)
WMESS If ({{E) XOR (ACO)) and {AC3))=0 (E)=S# unch OR D#
Then ((AC1)—I(E) and (E)—(AC1)) ACO=H&L unch
PC+2—-PC AC1=D# S#
Else (E)}—(AC1) AC2=E unch
PC+1—-PC. AC3=mask unch
WMOV acs,acd acs—acd acs=4# unchanged
acd=# acs
WMOVR ac ac(shift right 1)—ac ac=word pointer byte pointer
WMSP ac sp+ac—sp ac=24# unchanged
sp=4*# result
WMUL acs.acd acd*acs—acd acs=2# unchanged
NOTE: If result <-2,147,483,648 or acd=2# result
>2,147,483,647, Overflow=1
WMULS AC1*AC2+ACO— ACO=2# result(high)
ACO&AC1 AC1=2# result(low)
AC2=2# unchanged
WNADI iac act+i—ac ac=4# result
NOTE: If ALU overflows, Overflow=1 n=2%# unchanged
CRY=x ALU CRY

P

A-22 Instruction Summary

Instruction Format Action Before After
{Location =) (Location =)

WNEG acs,acd -acs—acd acs=# unchanged

NOTE: If acs=0, CRY—CRY, acd=x acs

If ALU overflows, Overflow=1 CRY=x ALU CRY

WPOP acs,acd stack—acs to acd stack =stack -n(1-4) double words

NOTE: If acs is acd, 1 double word is popped acs=x 1st stack double word
acd=x last stack double word
WSp=x -2*n

WPOPB stack—registers stack =stack -6 double words
CRY=x 1st double word{0)
PC=(WPOPB) 1st double word(1-31)
AC3=x 2nd double word
AC2=x 3rd double word
AC1=x 4th double word
ACO=x 5th double word
OVK=x 6th double word(0)
OVR=x (1)
IRES=x (2)
wsp=x -{{17-31)*2+12)

WPOPJ stack—PC stack = stack -1 double word
PC=x top stack word
Sp=x -2
fp=x unchanged

WPSH acs,acd acs to acd—stack stack =stack +2*n(1-4)

NOTE: If acs is acd, 1 accumulator is pushed sp=x +2*n
fp=x unchanged
acs=x unchanged
acd=x unchanged

WRSTR stack—locations stack =stack -10 double words
CRY=x 1st double word(0)
PC=(WRSTR) (1-31)
AC3=x 2nd double word
AC2=x 3rd double word
AC1=x 4th double word
ACO=x 5th double word
OVK=x 6th double word(0)
OVR=x (1)
stack fault addr.=x (16-31)
wsb=x 7th double word
wsl=x 8th double word
wSp=x 9th double word
wfp=x 10th double word

WRTN wfp—wsp stack =stack -6 double words

stack—locations CRY=x 1st double word(0)

PC=(WRTN) (1-31)
AC3=x 2nd double word
AC2=x 3rd double word
AC1=x 4th double word
ACO=x 5th double word
OVK=x 6th double word(0)
OVR=x (1)
IRES=x (2)
wsp=x -((17-31)*2+12)
wip=x AC3(popped)

WSALA iac See NSALA

WSALM iac See NSALM

WSANA iac See NSANA

WSANM jac See NSANM

k]

Instruction Summary

Instruction Format

Action

Before
(Location =)

After
(Location =)

WSAVR |
WSAVS |
WSBI n,ac

NOTE: If ALU overflows, Overflow=1

WSEQ acs,acd
NOTE: If acd is acs, acs is compared with 0

WSEQI iac
WSGE acs,acd

WSGT acs,acd
NOTE: If acd is acs, acs is compared with 0

WSGTI iac

WSKBO bit number
WSKBZ bit number

WSLE acs,acd
NOTE: If acd is acs, acs is compared with 0

WSLEI iac

WSLT acs,acd
NOTE: If acd is acs, acs is compared with 0

WSNB acs,acd-

WSNE acs,acd
NOTE: If acd is acs, acs is compared with 0

WSNEI i,ac

5 double words—stack

5 double words—stack

ac-n—ac

If acs=acd =skip

If i=ac =skip

If acs> =acd =skip
If acs>acd =skip

If ac>i =skip

If bit #(ACO)=1 =skip
If bit #(ACO)=0 =skip
If acs<<=acd =skip

If ac<<=i =skip
If acs<<acd =skip

If bit(acs&acd)=1 =skip

If acs #acd =skip

If ac#i =skip

stack = stack
1st double word=x
2nd double word=x
3rd double word=x
4th double word=x
5th double word(0) =x

(1-31)=x

AC3=x

wfp=x

WSp=x

OVK=x

OVR=x

stack =stack
1st double word=x
2nd double word=x
3rd double word=x
4th double word=x
5th double word(0)=x

(1-31)=x

AC3=x

wfp=x

wsp=x

OVK=x

OVR=x

ac=4#

n=#(1-4)

CRY=x

acs=#

acd=#

ac=4#

i=#

acs=2#

acd=2#

acs=2#

acd=2#

i=#

ac=#

ACO=#

ACO=4#

acs=2#

acd=2#

ac=#

i=#

acs=2#

acd=2#

acs =word pointer

acd=word offset & bit
pointer

acs=24#

acd=2#

ac=4#

i=4#

=+ 5 double words
ACO
AC1
AC2
AC3
CRY
PC
wsp(before push)
wsp(before push)
+(2*i)
0
unchanged

+5 double words
ACO
AC1
AC2
AC3
CRY
PC
wsp(before push)
wsp(before push)
+(2%i)
1
unchanged

result
unchanged
ALU CRY

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged

unchanged
unchanged
unchanged
unchanged

A-24 _instruction Summary

Instruction Format

Action

Before
(Location =)

After
(Location =)

WSSVR |

WSSVS

WSTB acs,acd

WSTI fpac

WSTIX
NOTE: If E is not large enough, | ~CRY

WSUB acs.acd
NOTE: If ALU overflows, Overflow=1

WSZB acs,acd

WSZBO acs,acd

WUGTI iac
WULEI i,ac

WUSGE acs,acd
NOTE: If acd is acs, acs is compared with 0

WUSGT acs,acd
NOTE: If acd is acs, acs is compared with 0

WXCH acs,acd

WXOP acs,acd,operation #

6 double words—stack
0—0VK

Same as WSSVR except
1—-0VK

aclright)—(E)

fpac—(E)#

fpac(1-4)—(E)#

acd-acs—acd

If (E) bit=0 =skip

If (E) bit=0 =skip

If ac>i =skip
If ac<=i =skip

If acs™> =acd =skip

If acs>>acd = skip

acs<<-->>acd

wide return block—stack
E—PC

stack = stack
1st double word=x
2nd double word=x
3rd double word=x
4th double word=x
5th double word=x
6th double word=x

wfp=x
AC3=x
WSp=wsp
OVK=x
OVR=x
OVK=x

acs=bp

acd=byte

(E)=x

fpac=fp#

AC 1 =data indicator

AC2=x

AC3=bp

CRY=x

fpac(1-4)=fp#

AC1=data indicator

AC2=x

AC3=bp

CRY=x

acs=4#

acd=#

acs =word pointer

acd=word offset & bit
pointer

(E}=x

acs =word pointer

acd=word offset & bit
pointer

(E)=x

ac=4#

i=#

ac=#

i=#

acs=4#

acd=4#

acs=#

acd=4#

acs=4#

acd=#

stack = stack
1st double word=x
2nd double word=x
3rd double word=x
4th double word=x
5th double word==x
6th double word=x

AC2=x
AC3=x
(12-13)page zero
=(table)
E=op#+(12-13)
page zero

+6 double words
PSR
ACO
AC1
AC2
WFP (previous)
(0) CRY
(1-31) AC3
wsp
wsp
+(2+i)
0
0

1

unchanged
unchanged
byte
unchanged
unchanged
AC3

last bp+1
?
unchanged
unchanged
AC3

last bp+1
?
unchanged
result

unchanged
unchanged

unchanged

unchanged
unchanged

updated

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged

acd
acs

+ 6 double words
PSR
ACO
AC1
AC2
AC3
(0) CRY
(1-31) (WXOP +2)
{acs in stack)
{acd in stack)

unchanged

unchanged

Instruction Summary

A-25

Instruction Format

Action

Before
(Location =)

After
(Location =)

WXOR acs.acd
WXORI jac

XCALL [@]disp/[.index[arg count]]

*XCH acs,acd

*XCT ac

NOTE: If ac=Ist word of 2-word instruction,

(XCT)+ 1 =2nd word
XFAMD fpac,[@]displacement/,index]

XFAMS fpac,[@]displacement/,index]
XFDMD fpac,[@]displacement/,index]
XFDMS fpac,/{@]displacement[,index]
XFLDD fpac,/@]displacement/,index]
XFLDS fpac,[@]displacement[.index]
XFMMD fpac,[@]displacement/,index]
XFMMS fpac,[@]displacement[,index]
XFMSD fpac,/@]displacement],index]
XFSMS fpac.[@]displacement/,index]
XFSTD fpac.[@]displacement[,index]
XFSTS fpac,/@]displacement/,index]

XIMP [@]displacement/,index]
XJSR [@]displacement/,index]

XLDB acdisplacement(,index]

XLEF ac,/@]displacement].index)
XLEFB ac.displacement/(,index]

XNADD ac,/[@]displacement/,index]
NOTE: If ALU overflows, Overflow=1

XNADI n,/@)]displacement],index]
NOTE: If ALU overflows, Overflow=1

XNDIV ac,[@)]displacement[,index]
NOTE: If (E)=0 or result >32,767 or
<-32,768, Overflow=1

XNDO ac,term offset,[@]disp[.index]
NOTE: If ALU overflows, Overflow=1

acs XOR acd—acd
ac XOR i—ac

If E=valid, E—PC

acs<<-—->>acd

execute(ac)

(E) +fpac—fpac
(E) + fpac—fpac
fpac/(E)—fpac
fpac/(E)—fpac
(E)—fpac
(E)—fpac
fpac*(E)—fpac
fpac*{E)—fpac
fpac-(E)—fpac
fpac-(E)—fpac
fpac—(E)
fpac—(E)

E—PC
E—PC

(E)—ac

E—ac
E—ac
(E)+ac—ac

n+(E)}—(E)

ac/(E)—ac

(E)+ 1—I(E)
if (E}>ac then PC+ 1+
termination offset—PC
(E)—ac

acs=4#
acd=#
ac=*#
i=#
PC=PC
AC3=x
OVR=x
acs=4¥#
acd=4¥#

ac=instruction

(E)=fp#d
fpac=fpHd
(Ey="fpHs
fpac=fp#s
(E)=fp#d
fpac=fp#d
(E)=fp#s
fpac=fp#s
(E)="fp#Hd
fpac="fp#d
(E)=fp#s
fpac=fp#s
(E)y=fpH#d
fpac="fp#d
(E)=fpHs
fpac="fpits
(E)=fp#d
fpac=fpH#d
(E)=fpHs
fpac=fp#s
fpac=fp#d
(E)=x
fpac=fp#Hs
(E)=x
PC=PC
PC=PC
AC3=x
ac=bp
(E)=byte
ac=x
ac=x
(E)=#
ac=#
CRY=x
(E)=#
n=# (1-4)
CRY =x

unchanged
result
result
unchanged
E

PC+3

(o]

acd

acs

unchanged

unchanged
fp#d
unchanged
fp#s
unchanged
fpH#d
unchanged
fp#s
unchanged
fp#d
unchanged
fot#ts
unchanged
fo#d
unchanged
fp#s
unchanged
fp#d
unchanged
fp#s
unchanged
fo#d
unchanged
fp#s

E

E
PC+2

byte
unchanged
E

E(byte)

unchanged

result

ALU CRY

result {‘{ " "*4"\,
unchanged

ALU CRY

unchanged
result

unchanged
(E)
ALU CRY

A-26 Instruction Summary

Instruction Format Action Before After
(Location =) (Location =)
XNDSZ [@]displacement/,index] (E)-1—(E) (E)=# (E)-1
If (E)=0 =skip
XNISZ /@/displacement/,index] (E)+ 1—I(E) (E)=4# (€)+1
If (E)=0 =skip
XNLDA ac,/@/displacement/,index] (E)—ac (E)l=# unchanged
ac=x (E)
XNMUL ac./@]displacement/[,index] (E)*ac—ac (E)=# unchanged
NOTE: If result >32,767 or <-32,768, Over- ac=# result
Slow=1
XNSBI n,/@]displacement(,index] (E)-n—(E) (E)=4# #-n
NOTE: If ALU overflows, Overflow=1 n=# (1-4) unchanged
CRY=x ALU CRY
XNSTA ac,/@]displacement/,index] ac—(E) ac=# unchanged
(E)=x ac
XNSUB ac,/@/displacement[,index] ac-(E)—ac ac=# result
NOTE: If ALU overflows, Overflow=1 (E)=# unchanged
XOPO acs,acd,operation # narrow return block—stack stack =stack +5 words
E—PC 1st word=x ACO
2nd word=x AC1
3rd word=x AC2
4th word=x AC3
5th word=x (0) CRY
(1-15) (XOPO+ 1)
AC2=x (acs in stack)
AC3=x (acd in stack}
(44)page zero
= (table) unchanged
E=op# +(44) unchanged
XOR acs,acd acs XOR acd—acd acs=4# unchanged
acd=# result |
XORI iac ac XOR i—ac ac=# result
i=f unchanged
XPEF [@]displacement/,index] E—wide stack stack = stack +E
XPEFB displacement/,index] E—wide stack stack =stack +E(byte)
XPSHJ [@]displacement/,index] PC+3—wide stack PC=PC E
E—PC stack =stack +(PC+3)
XSTB ac,displacement/,index] ac—(E) (E)=x byte
ac=byte unchanged
XVCT [@]displacement See instruction dictionary
XWADD ac,/@]displacement(,index] ac+ (E)—ac (E)=4# unchanged
NOTE: If ALU overflows, Overflow=1 ac=# result
CRY=x ALU CRY
XWADI n,[@]displacement/,index] (E)+n—i(E) E)=4# result
NOTE: If ALU overflows, Overflow=1 n=4# (1-4) unchanged
CRY=x ALU CRY
XWDIV ac,/@]displacement/[,index] ac/(E}l—ac(quotient) (E)=# unchanged
NOTE: If quotient <-2,147,483,648 or ac=# quotient
>+2,147,483,647, or (E)=0; CRY=x ALU CRY
Overflow=1, and ac=unchanged
XWDO ac,term offset,[@]disp[.index] (E)+ 1(E) (E)=4# #-1
NOTE: If ALU overflows, Overflow=1 If (E)>ac then PC+ 1+ ac=# (E)+1
termination offset—PC CRY=x ALU CRY
If (E)<<=ac then PC+ 1—PC
(E)—ac
XWDSZ [@/displacement/,index] (E)-1=(E) (E)=# #-1
If (E)=0 =skip
XWISZ [@/displacement],index] (E)+1=(E) (E)=4# #+1
If (E)=0 =skip
XWLDA ac,/@/displacement/[,index] (E)—ac (E)=4# unchanged

Instruction Summary

A-27

Instruction Format Action Before After
(Location =) (Location =)
XWMUL ac,/@]displacement/,index] (E)*ac—ac (E)=4# unchanged
NOTE: If result >-2,147,483,648 or ac=# result
<+2,147,483,647, Overflow=1
XWSBI n,/@)]displacement/,index] (E)-n—(E) E)=4# #-n
NOTE: If ALU overflows, Overflow=1 n=4# {1-4) unchanged
CRY=x ALU CRY
XWSTA ac,/[@]displacement],index] ac—(E) ac=# unchanged
(E)=x ac
XWSUB ac./@]displacement/,index] ac-(E)—ac ac=# result
NOTE: If ALU overflows, Overflow=1 E)=%# unchanged
CRY=x ALU CRY
ZEX acs,acd acs—acd (zero extended) acs=#{16-bit} unchanged

acd=x

acs#(32-bit)

Appendix B

Anomalies

Wide Instruction Opcodes

The processor recognizes the wide instructions supported by this machine by the
instruction opcodes. The instructions are an outgrowth of the C/350 ALC no load-always
skip opcode and the C/350 XOP and XOP1 opcodes. This means that on this machine
you cannot use any C/350 program that contains these instructions. The processor will
interpret these instructions as wide instructions, not as C/350 instructions.

Program Counter Wraparound

The program counter is 31 bits wide. Bits 1-3 specify the current segment of execution.
Bits 4-31 specify an address. When the program counter is incremented, only bits 4-31

take part in the increment. This means that the program counter will always contain an
address in the current segment. Program counter wraparound will not occur at 77777

as it does in the C/350.

Float/Fixed Conversions

When the processor converts a floating-point number to a fixed-point integer, it converts
the largest negative number correctly without MOF overflow. For single precision, the
processor converts the integer portion of floating-point numbers to an integer in the
range -32,768 to +32,767 inclusive. For double precision, the processor converts the
integer portion to an integer in the range of -2,147,483,648 to +2,147,483,647 inclusive.

Address Wraparound

When using the C/350 BAM, BLM, CMP, CMT, CMV, CTR, and EDIT instructions,
address wraparound may not occur at 77777g. This means that a C/350 program
counter possibly generate logical addresses larger than 64 kbytes. In this situation,
results are undefined.

If any of the instructions listed in the previous paragraph move data backwards (i.e., in
descending addresses) and cross a segment boundary, a protection fault occurs. AC1 will
contain the protection code 4.

B-2 Anomalies

C/350 Signed Divide Instructions

When the C/350 DIVS or DIVX instructions produce a result of -32,768, the 32-bit
processor sets carry to zero (meaning no overflow). When this instruction is used on the
C/350, the processor sets CARRY to one (meaning overflow). Wide divide instruction
set overflow to zero when -32,768 results.

NIO CPU Instructions

The NIO/f] CPU instructions are reserved or assigned a function. For instance, the
NIOS CPU is the interrupt enable instruction (INTEN).

Floating-Point Trap

The 32-bit processor responds to floating-point traps upon completion of the floating-point
instruction that caused the fault. In the C/350, the response to a floating-point trap
occurs when the next floating-point instruction is encountered. In either case, the value
of the floating-point PC is the same; that is, it contains the address of the floating-point
instruction that caused the fault.

Floating-Point Numerical Algorithms

The C/350 floating-point loads (FLDS, FLDD) do not correct impure zero input. All
ioads simply move the memory operand to the specified FPAC. No normalization and
correction to true zero is performed. The Z and N bits of the FPSR are set to reflect the
loaded operand only if the operand is normalized. The Z and N flags are undefined if the
operand is unnormalized.

For all instructions, true zero is guaranteed to be generated for valid inputs only. If an
impure zero is generated with invalid inputs, the result is not necessarily converted to a
true zero.

The C/350 FFAS and FFMD instructions leave the Z and N bits of the FPSR unchanged.

Otherwise, when bit 8 of the FPSR is a zero, the results of the floating-point computation
performed on the 32-bit processor are identical to those obtained on the C/350.

C/350 Commercial Faults

A C/350 commercial fault loads different information in AC0, AC2, and AC3 after the
fault is taken. The size of the return block, the fault code is AC1, and the meaning of the
PC in the return block are identical to the results obtained on the C/350.

Appendix C
ASCII Codes

KEY
OCTA HEX SYMBOL

MEIE

DECIMAL OCTAL

E 11|

[1o7]153] e8] & |

{roef1ss|

[110] 156] 6€

[]

SD-05495

Figure C.1 ASCII Character codes

Appendix D
Powers of 2 Table

2" n 1/2n
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

Figure D.1 Powers of 2 Table

Appendix E
Fault Codes

The following tables contain an explanation of the fault codes returned in AC1 for
protection, stack, and decimal/ASCII faults.

Protection Faults

Table E.1 lists the protection violation fault codes and the interpretations.

AC1 Code Meaning
{octal)
0 Read violation
1 Write violation
2 Execute violation
3 Validity bit protection (SBR or PTE)
4 Inward address reference
5 Defer (indirect) violation
6 Illegal gate — out of bounds or bracket compare
7 Outward call
10 Inward return
11 Privileged instruction violation
12 1/O protection violation
14 Invalid microinterrupt return block

Table E.1 Protection Violation Fault Codes

E-2 Fault Codes

Stack Faults

Table E.2 lists the wide stack fault codes and their meanings. The processor does not
return a fault code for a narrow stack fault.

AC1 Code

Meaning

000000

000001

000002

000003
000004

Overflow on every stack operation other than SAVE, WMSP, or segment
crossing.

Underflow or overflow would occur if the instruction were executed — WMSP,
WSSVR, WSSVS, WSAVR, WSAVS. (PC in return block references the
instruction that caused the stack fauit.)

Too many arguments on a cross segment call.
Stack underflow.
Overflow due to a return block pushed as a result of a microinterrupt or fault.

Table E.2 Wide Stack Fault Codes

Decimal /ASCII Faults

Table E.3 lists the decimal and ASCII fault codes. The first and second columns list the
code that appears in AC1. The third column lists the instruction that caused the fault.
The last column describes the conditions that can cause the fault.

Code Returned in AC1
Narrow Wide Faulting Instruction Meaning
000000 100000 EDIT, WEDIT An invalid digit or alphabetic character encountered
during execution of one of the following subopcodes:
DMVA, DMVF, DMVN, DMVO, DMVS
000001 100001 LDIX, STIX Invalid data type (6 or 7)
EDIT, WEDIT WLDIX,
WSTIX
000002 100002 EDIT, WEDIT DMVA or DMVC subopcode with source data type
5; AC2 contains the data size and precision
000003 100003 EDIT, WEDIT An invalid opcode; AC2 contains the data size and
precision
000004 100004 STI, LDI, Number too large to convert to specified data type .
WSTI, WLDI
number > (1016) - 1
STIX, LDIX, Number too large to convert to specified data type.
WSTIX, WLDIX
Number > (1032) - 1
000006 100006 WLSN, WLDI, LSN, LDI | Sign code is invalid for this data type
LDIX, WLDIX
EDIT, WEDIT
000007 100007 WLSN, WLDI, WLDIX, | Invalid digit
LSN
LDI, LDIX

Table E.3 Decimal and ASCII fault codes

Appendix F
Glossary

Some readers may be unfamiliar with the terms used to describe the features of the
32-bit processor, so the following section provides a brief definition of terms.

The Addressing Scheme
Logical Addresses

The computer uses 31-bit word addresses and 32-bit byte addresses, which can refer to
all 4 Gbytes of the logical address space.

Segmentation

The large logical address space is divided, or segmented, into eight smaller logical
address spaces. Each of these eight segments is a complete address space of 512 Mbytes.

Mapping and Demand Paging

The size of the logical address space means that not all logical locations can be represented
in physical memory at the same time. The demand paging system moves pages between
physical memory and a storage device upon demand and also keeps track of pages
currently in memory. The address translator translates the specified logical address to
its physical equivalent.

Page
A page is a 2-Kbyte block of contiguous logical addresses. The demand paging system
uses the page as the smallest unit of logical memory that can be moved between physical
memory and storage devices.

Page Table

A page table is made up of page table entries (PTEs). Each PTE contains information
about one page. The processor uses this information when translating a logical address to
a physical one. A page table contains up to 512 PTEs.

F-2 Glossary

Protection

The system uses a hardware-implemented hierarchical protection system that allows
programs different levels of privilege. Each segment has a different level, or ring, of
protection associated with it. This means that each ring governs the associated segment
with a different degree of privilege. Ring 0 has the highest degree of protection; thus, the
kernel of the operating system resides in segment O.

The Instruction Set

The instruction set is a superset of the previous (16-bit) ECLIPSE instruction set. In this
manual, the new 32-bit instructions are referred to as wide instructions. The 16-bit
instructions supported by the 32-bit processor, but which are also supported by previous
(16-bit) ECLIPSE computers (such as the ECLIPSE C/350 computer), are referred to
as C/350 instructions.

Wide Instructions

)
~
™
G
<
0

These instructions manipulate data with lengths of 8, 16, or 32 bits. The mnemonics of
the instructions indicate the size of the data fields referred to. The mnemonic preceded
by the letter N manipulates 16-bit (narrow) data; W, 32-bit (wide) data. There is no
special mnemonic prefix for those instructions that manipulate 8-bit data.

There are also mnemonic prefixes that indicate the addressing range of the instruction.
X indicates that the instruction has a 512-Mbyte (extended) offset addressing range: L,
a 4-Gbyte (long) addressing range.

ompatibiiity

The 32-bit processor supports the instruction mnemonics and binary opcodes of most
instructions implemented on the ECLIPSE C/350 computer. This means that most
programs that execute on the C/350 will also execute on the 32-bit processor without
recompiling or reassembling.

Note that the C/350 instructions maintain their limitations of the lower 64-Kbyte
addressing range.

True and Impure Zero

Floating-point zero is represented by a number with all bits zero, known as true zero. If
a number has a zero mantissa but not a zero sign or exponent, it is called impure zero.
When representing zero as a floating-point number, use true zero; impure zero produces
undefined results in calculations.

Glossary F-3

Normalized Format

A nonzero mantissa represents a fraction from 1/16 to 1-2-36. A floating-point number
represented in this way is said to be normalized. Note that impure zero is not in
normalized form. Most floating-point instructions require normalized operands if they
are to produce correct results. Floating-point numbers that are not normalized or are not
true zero produce undefined results except as noted.

Magnitude

The magnitude of a floating-point number is defined as follows:
Mantissa X 16>

where y is the true value of the exponent.

Index

Within the index, the letter “f” following a page entry
indicates “and the following page”; the letters “ff”
following a page entry indicate “and the following pages”.

15-bit displacement 1-11
16-bit
data, edit decimal and alphanumeric 9-8, 10-35f
fixed-point
logical format 2-12
two’s complement 2-2
instructions, executing 9-1
integer, convert to 10-19
programs, supporting 4-1
28-bit displacement 1-11
31 bits, displacement sign-extending to 1-11
32-bit
fixed-point arithmetic, expanding to 9-3f
fixed-point logical format 2-12
fixed-point two’s complement 2-2
processor instruction, equivalent 9-7
programs, supporting 4-1
subroutine, calling C/350 subroutine from a 9-4
32-bits to 16-bits, convert from 2-2
32-bits, sign or zero extend 16-bits to 2-2
6-bit device address 7-4
64 Kbytes of segment, first 9-2
64 Kbytes, expanding beyond 9-3
8-bit displacement 1-11
@ field 1-15
@ flag 9-5f

A

Aborting
floating-point division 3-11
instruction execution 2-23, 8-2
memory reference instruction 8-2
nonprivileged fault 5-14, 8-13f
subroutine call 5-11f

Absolute
address 1-10, 1-12f
value 3-3, 10-42

AC (see accumulator)

ACO with address of
fault instruction, setting 8-13
fault, loading 5-20

ACO,
load PSR in 2-9f, 10-82
store PSR from 2-9, 10-110

ACI1 with
fault code, loading 5-19f, 9-3
value identifying fault, setting 8-13
AC1, fault code in 5-17ff, 9-3, E-2
AC2
relative address mode 1-12
with base address of DCT, loading 7-12
ACS3 relative address mode 1-12
Access
fault, privileged 5-12
flag,
execute 8-5
read 8-5
valid page 8-4
write 8-5
instructions, double-word stack 4-5
privileges destination segment 5-12
request 8-7
restrictions, memory 1-6
validation 8-7
violation, (read, write, and execute) 8-13f
Access,
device 7-1
execute 1-9
ignoring page protocol 8-6f
operand 1-12
page 8-4, 8-7
read 1-9
segment §-2
type of page 8-4
type of segment 8-2
valid
page 8-4
read 8-5
segment 8-2
validate I/O 8-2
write 1-9
Accessing
destination segment 5-9f
device control table 7-12
double word in a stack 4-4
memory 1-8, 8-2
page
table 8-4
to read, write, or execute §8-4
physical page 8-2
protection mechanism 1-17

Index-1

Accumulator (also see ACO, ACI, etc.) store 9-8, 10-110
bit storing byte address in 2-23
instructions, wide skip on 2-23 transfers between device and 7-1
set to one, wide skip on 2-8, 2-23, 10-150 wide
set to zero, wide skip on 2-8, 2-23, 10-150 add memory word to 2-4, 10-85, 10-172
contents, executing 5-2 fix from floating-point 3-3f, 3-11, 9-9, 10-131
equal to immediate, wide skip if 10-149 float from 3-3f
greater than immediate, float from fixed-point 3-3f, 9-9, 10-131
wide skip if 2-8, 10-150 load 2-3, 10-87, 10-174
wide unsigned skip if 2-8, 10-156 skip on all bits set in 2-8, 10-145

in skip on any bit set in 2-8, 10-146
double word addressed by WSP, store 2-3, 4-5 store 2-3, 10-88, 10-175

stack pointer contents, stor¢ 10-111 Accumulators,
WFEFP, store 4-4, 8-13f, 10-110 exchange 2-3, 10-160
WSB, store 4-4, 10-111 pop

WSL, store 4-4, 10-111 floating-point status and 10-51f

WSP, store 4-4, 10-111 multiple 9-8, 9-11, 10-101, 10-142
less than or equal to immediate, popping 4-1

wide skip if 2-8, 10-151 push
wide unsigned skip if 2-8, 10-157

J 1 ¢ 1o floating-point status and 10-52f
not equal to immediate, wide skip if 2-8, 10-152

multiple 9-8, 9-11, 10-102f

relative addressing, C/350 9-1 pushing 4-1

to memory word, narrow add 2-4 restoring 5-4

with storing 5-7
double word addressed by WSP, load 4-5 wide

double word, load 10-67
WFP, load 4-4, 10-67
WSB, load 4-4, 10-67

pop multiple 2-3, 4-1, 4-5, 4-8 9-8 9-11, 10-142
push 2-3, 4-5, 4-8, 9-8, 10-144

Accuracy of result, increasing 3-4

WSL, load 4-4, 10-67 ADC 2-4, 2-6, 2-8, 10-2f

WSP, load 4-4, 10-67 ADD 2-4, 2-6, 2-8, 10-3ff
Accumulator, Add

C/350
fixed-point 9-1
floating-point 9-1
double word addressed by WSP load 2-3
extended load 9-8, 10-38
extended store 9-8, 10-41
fix to 10-45
fixed-point 1-2
float from 10-47
load 9-8, 10-66
loading
byte in 2-20
physical address into 7-3
narrow
add memory word to 2-4, 10-77, 10-166
load 2-3, 9-8, 10-79, 10-168
skip on all bits set in 2-8, 10-97
skip on any bit set in 2-8, 10-98
store 2-3, 9-8, 10-80, 10-169

Index-2

accumulator to memory word, narrow 2-4
and move, block 9-8, 10-8f
complement,
wide 2-4, 10-117
with optional skip 2-4, 2-6, 2-8, 10-2f
double (FPAC to FPAC) 3-6, 10-42
double (memory to FPAC) 3-6, 9-9, 10-42, 10-71,
10-161
immediate 2-4, 10-5f
immediate,
extended 2-4, 10-5
narrow 2-4, 10-77, 10-92, 10-166
narrow extended 2-4, 10-91
wide 2-4, 10-85, 10-117f, 10-173

instructions, fixed-point 2-22
memory word to accumulator,
narrow 2-4, 10-77, 10-166
wide 2-4, 10-85, 10-172
single (FPAC to FPAC) 3-6, 10-43

single (memory to FPAC) 3-6, 9-9, 10-42f, 10-71,

10-161

to DI 10-20
Add to

P 10-20f

SI 10-21
Add with

narrow immediate, wide 2-4, 10-142

optional skip 2-4, 2-6, 2-8, 10-3ff

wide immediate, wide 2-4, 10-117
Add,

decimal 10-20

narrow 2-4, 10-91

wide 2-4, 10-117

with optional skip 2-6
ADDI 2-4, 10-5
Adding one to the intermediate mantissa 3-6
Addition instructions,

fixed-point 2-4

floating-point 3-6
Addition, floating-point 3-5f
Additional bytes, inserting 2-21
Address

boundary, two Kbyte 8-3

causing fault, decimal instruction 5-18

field,
device 7-4
word 1-14f

in accumulator, storing byte 2-23
into accumulator, loading physical 7-3
mnemonic, device 7-4
mode AC and PC relative 1-12
Address of
block to transfer, starting 7-2
DCT, loading AC2 with base 7-12
decimal fault instruction 5-19
fault instruction,
at time of fault 5-14ff
determining 5-16ff
setting ACO with 8-13
fault, loading ACO with 5-20
first entry in page table 8-2ff
first word for 1/O transfer 7-2
floating-point instruction 3-11
sub-block to transfer, starting 7-2
WEDIT fault instruction 5-18
Address parameter, vector stack fault 7-9
Address ranges 1-10, 1-12, 8-6, 9-10
Address reference fault code, inward E-1

Address space,

C/350 9-4ff

logical 8-1, 8-10

memory 1-1

valid 2-22
Address to device, sending physical 7-2
Address to original fault, return 8-13
Address translation,

device 7-1, 7-6

memory 8-2f, 8-6
Address translator, purging 8-11, 10-100
Address wraparound 1-4f, 5-1, B-1
Address,

6-bit device 7-4

absolute 1-12

base 1-11, 7-12

C/350 effective 9-2, 9-5

calculating an effective 2-21f

checking range of the logical 8-6

direct 1-15

effective 1-10f, 1-16, 2-20f, 5-2, 5-4f, 5-10, 7-6, 7-11,

8-2

logical 8-6

relative 1-11
extended load effective 9-10, 10-39
forming byte 9-5f
forming physical 7-2
indirect 1-10, 1-15

logical 8-6

relative 1-11
intermediate logical 1-11
load

effective 2-12ff, 2-21, 8-3,9-10, 10-70, 10-76, 10-165

effective byte 1-13, 2-21, 10-76, 10-166
physical 7-2
logical 5-1, 8-2ff, F-1
logical address to physical 8-1
most significant bits translating logical 7-2
narrow return 5-22
one Mbyte or less logical 8-3
one Mbyte to 512 Mbytes logical 8-3
one-level page table logical word 8-6
PC return 4-6
physical 1-7, 1-11, 7-2, 8-1ff
page 8-6
page table 8-3

Index-3

push 2-21, 4-5, 4-8, 10-81, 10-171
byte 2-21
effective 2-21
effective byte 2-20f, 4-5f, 4-8, 10-81, 10-171
return 5-6, 9-10f, 10-103
return 5-2, 5-7, 5-13, 5-15f, 5-20
skip on valid byte or word 2-22
store return 5-7, 7-7
translating logical 1-7, 7-2f, 8-2, 8-4
two-level page table logical word 8-6
Addressing
another
page table page 8-6
segment 1-9
chains, indirect 1-11
memory for 1/O data transfer 7-2
next instruction 5-1
protection violation, indirect 1-11
range 1-10, 8-3, 8-6
scheme F-1
violation, indirect 8-13f
Addressing,
absolute 1-10, 1-13
byte and word formats for 1-9
C/350 9-1ff
device control table 7-12
direct 8-6
effective 1-13
entry in the vector table 7-12
indirect 1-8, 1-11, 8-6, 9-5f
mapped memory 1-5
memory -5, 1-8
n variable in PC relative 1-11
relative 1-10f, 1-13
unmapped memory 1-5
ADI 2-4, 10-5f
Algorithms, floating-point numerical B-2
Aligning mantissa 3-4f
All bits set in
accumulator,
narrow skip on 10-97
wide skip on 10-145
memory location,
narrow skip on 10-97f
wide skip on 10-146
Alphabetical characters, move j 2-21
Alphabetics, move 10-27

Index-4

Alphanumeric 16-bit data, edit decimal and 9-8, 10-35f

Alphanumeric, wide edit of 5-5
Altering normal program flow 5-1
Always, skip 10-54
ANC 2-13, 10-6
AND 2-6, 2-12ff, 10-6ff
immediate 2-13, 10-8
immediate, wide 2-13, 10-118
with complemented source 2-13, 10-6, 10-118
with optional skip 2-6, 2-12ff, 10-6ff
AND, wide 2-13, 10-118
ANDI 2-13, 10-8
Anomalies B-1
Another segment 1-9, 4-2, 4-4, 5-6
ANY flag 3-10f, 5-15
Appending guard digit 3-4
Argument count 5-7
Arguments,
save without 9-10f, 10-106f
transferring call 5-10ff
Arithmetic
example, decimal 2-23
instructions,
decimal 2-22
fixed-point 2-4
floating-point 3-6
shift
instructions, wide 2-6
with narrow immediate, wide 10-119
shift, wide 10-118f
Arithmetic,

binary coded decimal 2-1

expanding to 32-hit fived-point 9-3f
Array,

expanding data areas for large 9-3

gate 5-10f
ASCII

characters 2-15f

codes C-1

data

fault E-1
fault code E-2

data,

fault 5-16

invalid format 5-13

type 2 or 3 fault return block for 5-18f

valid type 2-23

fault code 5-17

or decimal fault code 5-14, 5-16f, E-2
Assignments and format, map register 7-2
Attempting division by zero 2-8, 5-14f

Backward
link 6-2
search queue and skip,
narrow 5-3, 6-5, 10-92f
wide 5-3, 6-5, 10-120f
BAM 9-8, 10-8f
Base
address 1-11, 7-12
level interrupt processing 5-8, 7-9ff, 10-144f
of vector table 7-12
register,
segment 5-11, 8-1f, 8-6
wide stack 8-13f
Base,
initializing wide stack 4-2, 8-10, 8-13f
loading wide stack 5-11, 5-13
wide stack 4-2f, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
BCD 2-1, 2-15ff, 2-22
BI field 1-14
Binary
coded decimal arithmetic 2-1
conversion instructions, floating-point 3-3
operations 2-1
point location 3-2
Bit
addressing,
format C/350 9-5ff
format wide 1-15
and set bit to one,
skip on zero 9-5f, 9-8, 10-115f
wide skip on zero 9-8, 10-156
operand 1-15
pointer 1-15, 9-5ff
set
in accumulator,
narrow skip on any 10-98
wide skip on any 10-146
in memory location,
narrow skip on any 10-98
wide skip on any 10-146
to one, wide skip on accumulator 2-23, 10-150
to zero, wide skip on accumulator 2-23, 10-150
three of SBR, setting 7-2
Bit
to one,
set 9-5ff, 10-10
skip on zero bit and set 9-5f, 9-8, 10-115f
wide set 9-8, 10-121f
wide skip on zero bit and set 9-8, 10-156
to zero,
set 9-5ff, 10-10f
wide set 9-8, 10-122
two of SBR, setting 7-1ff
zero of
fault code in AC1 9-3
narrow stack limit 5-22f
narrow stack pointer 5-22f
segment base register 8-2

wide stack limit 5-20f
wide stack pointer 5-20f
Bit,
checking validity 5-11
indirect 9-5f
locate lead 10-80
mask 7-12
sign 3-2
skip on
nonzero 9-5ff, 10-109
zero 9-8
wide
locate and reset lead 10-138
locate lead 10-137
skip on zero 9-8, 10-156
Bits set in
accumulator,
narrow skip on all 10-97
wide skip on all 10-145
memory location,
narrow skip on all 10-97f
wide skip on all 10-146
Bits,
count 9-8, 10-16
displacement (sign-extending to 31) 1-11
ignoring page access protocol 8-6
load modified and referenced 8-11, 10-77
OR referenced 8-11, 10-99
reset referenced 8-11, 10-103f
store modified and referenced 8-11, 10-109
table of referenced and modified 8-1
wide count 9-8, 10-126
BKPT 2-9, 4-5, 4-8, 5-5f, 10-9
BLM 9-8, 10-10
Block
add and move 9-8, 10-8f
and execute,
pop 2-9, 4-5, 4-8, 5-5f, 5-23, 9-10f, 10-100, 10-102
wide pop 2-9, 4-5, 4-8, 5-8, 5-14, 5-21, 9-10f, 10-143
in a stack, accessing double word 4-4
instructions, wide stack return 4-5
move 9-8, 10-10
move, wide 2-3, 9-8, 10-119f
to transfer, starting address of 7-2
Block,
C/350 return 9-2
data 4-4
fault return 8-13
floating-point fault return 5-16
narrow return 9-2
pop 5-23, 9-10f, 10-102
popping
return 4-1, 4-5
wide return 4-3
protection violation return 8-13f
pushing
fault return 8-13
return 4-1, 4-5, 9-3
return 4-4, 9-10f, E-2
stack fault return 4-8, 5-21, 5-23, 8-13

Index-5

standard wide return 4-6
wide
pop 2-9, 4-5, 4-8, 5-5f, 5-8, 5-14, 5-21, 9-10f, 10-143
pop context 2-9, 8-7, 8-10f, 10-129
return 4-3
Blocking an interrupt request 7-5f
Blocks of words, between memory and device transferring
1-6
BMC
device 1-5
maps 7-3
Boundary,
byte 1-2
two Kbyte address 8-3
word 1-2, 3-2
Bracket 5-10ff
Branch (PC relative jump) 5-2
Branch, wide 9-10, 10-120
Breakpoint 10-9
Breakpoint handler 2-9, 4-5, 4-8, 5-5f
BTO 9-5ff, 10-10
BTZ 9-5ff, 10-10f
Building
a queue 6-1
device control table 7-12
Burst muitiplexor channel 1-5f, 7-1f
BUSY flag 7-3, 7-5
Byte
address,
load effective 1-13, 2-21, 10-76, 10-166
push 2-21
push cffective 2-20f, 4
addressing format 1-9f, 9-5f
manipulation 2-1
pointer 1-13f, 5-12, 9-5f
to fault subopcode 5-19
to subopcode causing fault 5-18
to word pointer, converting 2-21
pointer, skip on valid 10-116
Byte,
BCD digits per 2-17
boundary 1-2
compare instructions 2-15
extended
load 9-8, 10-38
store 9-8, 10-41
indicator 1-13, 9-5f
load 2-20, 9-8, 10-68, 10-76, 10-165
move instructions 2-20
operand 1-13
operations 2-15
packed 2-15
skip on valid 2-22
store 2-20, 2-23, 9-8, 10-85, 10-112, 10-171
unpacked 2-15
wide
load 2-20, 9-8, 10-136
store 2-20, 9-8, 10-154
Bytes in memory, moving 2-15

_&F A Q 1N Q1
Jiy TV s]

s EUTUL,

1mn 171
iV 11

Index-6

Bytes,

deleting 2-15
inserting 2-15, 2-21f
moving 2-20
swapping two 2-6

C

C/350

accumulator relative addressing 9-1
address space 9-4ff
bit addressing, format 9-5ff
byte addressing 9-5f
commercial faults B-2
compatibility F-2
decimal and ASCII fault handler 9-3
effective address 9-2, 9-5
equivalent instruction 9-8, 9-11
faults and interrupts 9-3
fixed-point

accumulator 9-1

instructions 9-7f
floating-point

accumulator 9-1

fault handler 9-3

instructions 9-9
instructions 9-4
memory reference instruction 9-1, 9-4ff
pointers 9-3
program

counter 9-2

development 9-2ff

fiow instructions 9-2, 9-10
registers 9-1
return block 9-2
signed divided instructions B-2
stack 9-2
stack instructions 9-11
stack-referenced instructions 9-1
word addressing, format 9-5

Calculating

a two’s complement number 2-8, 5-14

a two’s complement number, out of range 5-15
an effective address 2-21f

the result 3-5

Call

arguments, transferring 5-10ff

fault code, outward E-1

subroutine 2-9, 3-11, 4-1, 4-3, 4-5, 4-8, 5-5f, 5-8, 5-13,
10-65f, 10-159f

Call,

aborting subroutine 5-11f

executing subroutine 5-1

illegal outward subroutine 5-9

inward 5-8

returning from 4-1, 4-5

subroutine 5-4

too many arguments segment 5-21, E-2

Calling
C/350 subroutine from a 32-bit subroutine 9-4
sequence 5-13
Calls, I/O system 7-5
Capabilities, functional and system protection 1-1
Capacity, exceeding processor storage 1-2
CARRY flag 2-5f, 4-6, 5-6f, 5-15, 5-18, 5-21, 8-13, 9-2
Carry to one or zero, set 10-18
Carry,
complement 10-18
decimal 2-22, 10-31f
floating-point 3-6
restoring 5-4
skip on (see ADC, ADD, AND, COM, INC, MOV,
NEG, or SUB instruction)
storing 5-7
Cause of page fault 8-10
Causing fault,
byte pointer to subopcode 5-18
decimal instruction address 5-18
instruction 5-17
Central processor identification instructions 8-11
Chain,
indirect addressing 1-11
pointer 7-13
Change, sign bit 2-6
Changing
a device flag 7-4
C/350 subroutine 9-4
current segment of execution 7-6
interrupt mask 7-6
protection mechanism 1-17
RND flag 3-4
Channel
I/0, burst multiplexor and data 1-5f, 7-1ff
mask, 1/0 7-12
Character
compare 9-8, 10-12f
compare, wide 2-23, 9-8, 10-123f
depending on
sign flag, insert 2-21
trigger, insert 2-21
j times, insert 2-21, 10-25
move 5-12, 9-8, 10-15f
until true 9-8, 10-13f
until true, wide 2-20, 9-8, 10-124f
move, wide 2-20, 9-8, 10-125f
once, insert 2-21, 10-25
scan until true, wide 2-23, 10-126f
suppress, insert 10-25
translate and
compare 9-8, 10-18f
compare, wide 2-20, 2-23, 9-8, 10-127f
Character, ASCII 2-16
Characters immediate, insert 2-21, 10-25
Characters,
inserting or converting string of 2-20
move 10-28
move j 2-21
Check, valid segment 8-3

Checking data transfers 5-12
Checking for
stack
overflow 5-14, 8-13
overflow fault 4-3
valid data and type 5-13, 5-16
valid operations 5-13
vector stack overflow 7-13
wide stack overflow fault 4-3
Checking range of the logical address 8-6
Checking validity bit 5-11
CIO 7-3, 10-11
CIOI 7-3, 10-11
Clearing FPSR errors 3-10, 10-43
CLM 9-8, 10-12
CMP 9-8, 10-12f
CMT 9-8, 10-13f
CMV 9-8, 10-15f
COB 9-8, 10-16
Code in ACI, fault 5-17ff, 9-3, E-2
Code,
ASCII fault 5-17
ASCII/decimal fault 5-17
decimal fault 5-17
floating-point identification 3-11
ID 3-11
loading AC1 with fault 5-19f, 9-3
protection
fault 8-15
fault error 8-7
violation fault E-1
wide stack fault 5-21, E-1f
Codes,
ASCII C-1
decimal or ASCII fault E-2
fault E-1f
violation fault E-1
COM 2-6, 2-13f, 10-16f
Command
I1/0 7-3, 10-11
I/0O immediate 7-3, 10-11
Command, issuing programmed 1/0 7-3
Commercial faults, C/350 B-2
Communicating with I/O controller 7-3
Communication, interrupt 7-5
Compare
instructions, byte 2-15
to limits and
skip 9-8, 10-12
skip, wide 2-8, 9-8, 10-122
Compare two floating-point numbers (set N and Z) 3-8f,
10-43
Compare,
character 9-8, 10-12f
character translate and 9-8, 10-18f
wide character 2-23, 9-8, 10-123f
wide character translate and 2-20, 2-23, 9-8, 10-127f
Comparing
data types 2-15
divisor and dividend 3-8

Index-7

DO-loop variable to constant 5-3
the gate number 5-11
wide stack pointer 4-3
Compatibility,
C/350 F-2
upward program 4-1, 9-1
Complement 2-13, 10-16f
CARRY flag 2-6, 10-18
number, out of range 5-14f
Complement,
add 2-4, 2-6, 10-2f
wide 10-126
wide add 10-117
Complemented source, AND with 10-6, 10-118
Complementing the mantissa sign 3-7
Computation,
fixed-point 1-2, 1-16, 2-1
floating-point 1-3, 1-16, 2-15, 3-1
Computing
instructions, C/350 9-8f
narrow data 2-2
Concluding vector interrupt service 7-11
Condition,
stack overflow or underflow 4-3
testing
BUSY or DONE flag and skip on 7-3
machine 5-2
Conditional skip, load physical and 10-81
Constant, comparing DO-loop variable to 5-3
Constants, storing device dependent 7-12
Constructing double word for vector stack 7-12
Contents of WFP or WSP, storing 8-12f
Contents,
executing accumulator 5-2
modifying stack register 4-2
reserved memory 7-11
Context block, wide pop 2-9, 8-7, 8-10f, 10-129
Control, transferring program 1-8, 4-2, 4-4, 7-13, 8-13
Controller, device 7-3ff
Controlling ION flag 7-6
Conversion instructions, floating-point 3-3
Conversion,
fixed-point
precision 2-2
to floating-point 2-20
floating-point to fixed-point 2-20, 3-3f, B-1
Convert
decimal/floating-point instructions 2-20
FPAC data and load in memory 2-20
from 32-bits to 16-bits 2-2
instructions, decimal move and 2-20
the four FPAC’s and load in memory 2-20
to 16-bit integer 10-19
Convert, number too large to E-2
Converting
a decimal
and loading in FPAC 2-20
integer 2-21
byte pointer to word pointer 2-21
data types 2-15

Index-8

decimal
numbers 2-15
to floating-point 3-3
mixed number to fraction 3-3
packed decimal data 2-20
string of characters 2-20
to double or single precision 3-1
to wide data 2-2
Copying arguments from the source stack 5-12
Count
bits 9-8, 10-16
bits, wide 2-13, 9-8, 10-126
Count,
argument 5-7
LCALL or XCALL 4-6
Counter wraparound, program B-1
Counter,
incrementing program 3-9
program 2-7, 2-22, 7-13
CPU
device 7-4ff
identification,
C/350 load 8-11, 10-35
long load 8-11, 10-66
narrow load 8-11, 10-93
Crossing
to segment zero 7-9, 7-11, 8-10, 8-13f
violation, segment 8-13f
Crossing, segment 5-6, 5-8, 5-21, 8-13f, E-2
CRYTC 2-6, 10-18
CRYTO 2-6, 10-18
CRYTZ 2-6,10-18
CTR 9-8, 10-18f
Current
interrupt mask 7-12f
segment 1-8, 4-1, 5-1, 5-6f, 5-13, 5-20, 5-23, 7-9, 7-11,
8-10, 8-13f, 9-2, 9-4ff
field, modifying 1-5
of execution, changing 7-6
segment, defined 1-4
state of processor, saving 8-7, 8-10
value of P 5-18f
CVWN 2-2,10-19

D

DAD 2-22, 10-20

DADI 2-21, 10-20

DAPS 2-21, 10-20

DAPT 2-21, 10-21

DAPU 2-21, 10-21

DASI 2-21, 10-21

Data
and type, checking for valid 5-13, 5-16
areas, expanding 9-3
block 4-4
channel /O 1-5f, 7-1ff
element 6-1

element,
dequeuing 6-1, 6-5, 10-22
enqueuing 6-1, 6-4, 10-39ff
format 2-15
format,
fixed-point logical 2-12
invalid ASCII or decimal 5-13
from the wide stack, retrieving 4-3
in
A (to A buffer of device) 7-3, 10-24
an area beyond the stack, overwriting 5-20
B (to B buffer of device) 7-3, 10-24
C (to C buffer of device) 7-3, 10-24
the stack, storing 4-2
instructions, wide stack 4-4
move instructions, floating-point 3-4
out
A (from A buffer of device) 7-3, 10-30
B (from B buffer of device) 7-3, 10-31
C (from C buffer of device) 7-3, 10-31
structure, implicit 2-15
transfer,
checking 5-12
formatted 2-20
1/0 1-5, 7-1ff
requesting 1/O 7-5
type
6 or 7, invalid 5-17, E-2
description, explicit 2-15
faults 2-23
indicator, explicit 2-16
type,
explicit 2-23
invalid sign code for 5-17
valid ASCII or decimal 2-23
types 2-15ff
Data,
accessing page to read or write 8-4
computing narrow 2-2
converting
floating-point 2-20
packed decimal 2-20
to wide 2-2
edit decimal and alphanumeric 16-bit 9-8, 10-35f
invalid decimal 1-16
loading floating-point 3-4
moving
bytes of 2-20
floating-point 3-4
normalizing floating-point 3-1
sign magnitude 3-1
storing floating-point 3-4
transferring 1/0 7-2
type
1 fault return block for decimal 5-18f
2 or 3 fault return block for ASCII 5-18f
of 2-16
DCH 1-5
DCT 7-12
DDTK 2-21, 10-21

Decimal
add 10-20
and
alphanumeric 16-bit data, edit 9-8, 10-35f
ASCII fault handler, C/350 9-3
byte operations 2-15
loading in FPAC, converting a 2-20
arithmetic
example 2-23
instructions 2-22
operations 2-15
arithmetic, binary coded 2-1
carry 2-22, 10-31f
conversion instructions, floating-point 3-3
data
fault 5-16
fault code E-1f
format, invalid 5-13
type, valid 2-23
data,
converting packed 2-20
invalid 1-16
type 1 fault return block for 5-18f
digit and sign, representing 2-16
fault
code 5-17
instruction, address of 5-19
fixed-point subtract instructions 2-22
instruction address causing fault 5-18
integer, converting a 2-21
move and convert instructions 2-20
numbers 2-15, 2-20
or ASCII fault code 5-14, 5-16f, E-1f
results, shifting 2-22
shift instructions 2-22
string, packed and unpacked 2-16f
subtract 10-31f
to floating-point, converting 3-3
Decimal,
fixed-point 3-3
packed 2-15
unpacked 2-15

Decimal/floating-point instructions, convert and move

2-20
Decrement and
jump if nonzero 10-21
skip if zero,
C/350 9-8, 10-34
extended 9-8, 10-36
narrow 2-9, 9-8, 10-78, 10-167
wide 2-9, 10-86, 10-174
double word addressed by WSP 2-9, 4-5, 10-34
Decrement word and skip, fixed-point 2-9
Decrementing
an intermediate exponent 3-5
interrupt level word 7-9
wide stack pointer 4-3f
word in stack 2-21
Defer (indirect) violation fault code E-1

Index-9

Defining
limits of narrow stack 9-2
stack location 4-2
Deleting bytes 2-15
Demand paging,
defined 8-10
mapping and F-1
DEND 2-21, 5-6, 10-22
Dependent information, interrupt routine 7-12
Depending on
S, add to P 10-20
sign flag, insert character 2-21
T, add to P 10-21
trigger, insert character 2-21
Depth fault, page table 8-6
DEQUE 6-5, 10-22
Dequeue
a queue data element 10-22
data element 6-5
Dequeuing data element 6-1
DERR 10-23
Descriptor,
original 5-18f
queue 6-2
Destination
indicator for
STIX 5-18f
WSTI 5-18f
indicator, add integer to 2-21
segment 5-6f, 5-10ff
segment,
access privileges 5-12
accessing 5-9f
defined 1-9
stack overflow 5-12
Detected error 10-23
Detecting
a fault 2-10, 3-11, 5-1, 8-13f
an error 5-13, 8-12
an I/O interrupt request 5-1
an overflow fault 2-10
nonprivileged fault 5-13
power failure 7-5
privileged fault 5-13
proper power voltage ranges 7-5
protection violation 7-2
wide stack fault 5-20
Detection,
enabling floating-point fault 3-11
enabling vector stack underflow or overflow 7-9
Determining address of fault instruction 5-16ff
Development, supporting C/350 program 9-2
Device
address field 7-4
address translation 7-1, 7-6
and accumulator, transfers between 7-1
and memory, transfers between 7-1
control table 7-12f
controller 7-4f
dependent constants or variables, storing 7-12

Index-10

driver 7-2ff
flags 7-3ff
independent operations 7-3
instruction, CPU 7-6
interrupt
routine 7-12f
system 7-5
management 1-5, 7-1
map 7-2f, 10-137
number, interrupting 7-12f
state 7-5
Device,
access 7-1
BMC 1-5
identifying unique 7-4
idle 7-5
internal 7-4
sending physical address to 7-2
starting a 7-5
vector on interrupting 10-172
Devices,
controlling 7-3
device flags for general 7-5
supporting 7-1
DHXL double hex shift left 2-22, 10-23

DHXR double hex shift right 2-22, 10-23f

DI, add to 10-20
DIA 7-3, 10-24
DIB 7-3, 10-24
DIC 7-3, 10-24
DICI 2-21, 10-25
Dictionary, instruction 10-1
Digit
and sign, representing decimal 2-16
with overpunch, move 2-21, 10-29
Digit,
invalid 5-17, E-2
significant 2-17
Digits, BCD 2-16f
DIMC 2-21, 10-25
DINC 2-21, 10-25
DINS 2-21, 10-25
DINT 2-21, 10-25
Direct address 1-15, 8-6
Direction of I/O transfer 5-8, 7-2
Disable,
fixed-point trap 2-9, 10-60
floating-point trap 3-10, 10-60
Disabling
data channel and BMC maps 7-3
I/0O interrupt recognition 7-5, 7-12
stack fault 4-7, 5-20, 5-22
Disk resident page 8-1, 8-4
Disk,
loading referenced page from 8-10
transferring page to 8-10
Dispatch 5-2, 9-10, 10-32f, 10-69f
Displacement 1-11
Displacement, XVCT 7-11
DIV 2-5, 10-26

Divide
by zero flag, mantissa 3-11
double (FPAC by FPAC) 3-8, 10-44
double (FPAC by memory) 3-8, 9-9, 10-44, 10-71,
10-161
instruction, floating-point 3-11
memory word,
narrow 2-5, 10-78, 10-167
wide 2-5, 10-85f, 10-173
single (FPAC by FPAC) 3-8, 10-45
single (FPAC by memory) 3-8, 9-9, 10-44, 10-72,
10-162
Divide,
narrow 10-93
narrow sign extend 2-5
sign extend and 2-5, 10-27
signed 2-5, 10-26

skip on no
overflow and no zero (OVF and DVZ = 0) 3-9,
10-58
underflow and no zero (UNF and DVZ = 0) 3-9,
10-58

no zero (DVZ = 0) 3-9, 10-57
unsigned 2-5, 10-26
wide 2-5, 10-128
wide signed 2-5, 10-129
Divided instructions, C/350 signed B-2
Dividend 3-8
Division
by zero, attempting 2-8, 5-14f
instructions,
fixed-point 2-5
floating-point 3-8
Division,
aborting floating-point 3-11
floating-point 3-8
Divisor
and dividend, comparing 3-8
equals zero 3-11
exponent 3-8
for zero, testing the 3-8
Divisor, defined 3-8
DIVS 2-5, 10-26
DIVX 2-5, 10-27
DLSH 2-14, 10-27
DMVA 2-21, 5-17, 10-27, E-2
DMVC 2-21, 5-17, 10-28
DMVF 2-21, 5-17, 10-28, E-2
DMVN 2-21, 5-17, 10-29, E-2
DMVO 2-21, 5-17, 10-29, E-2
DMYVS 2-21, 5-17, 10-30, E-2
DNDF 2-21, 10-30
DO until greater
than instructions 5-3
than,
narrow 10-78, 10-167
wide 10-86, 10-173f
DOA 7-3, 10-30
DOB 7-3, 10-31
DOC 7-3, 10-31

DONE flag 7-3, 7-5
Double
hex shift
left, DHXL 2-22, 10-23
right, DHXR 2-22, 10-23f
logical shift 2-14, 10-27
precision 3-1f, 3-6f
to single, floating-point rounding 3-3, 10-53f
word addressed by WSP,
decrement 2-9, 4-5, 10-34
increment 2-9, 4-5, 10-64
load accumulator with 4-5
store accumulator in 2-3, 4-5
word
block in a stack, accessing 4-4
for vector stack, constructing 7-12
in a stack, accessing 4-4
onto vector stack, pushing 7-12
operand 1-2, 1-13
word,
load accumulator with 10-67
pushing a 4-3
Double,
add (FPAC to FPAC) 3-6, 10-42
add (memory to FPAC) 3-6, 9-9, 10-42, 10-71, 10-161
divide (FPAC by FPAC) 3-8, 10-44
divide (FPAC by memory) 3-8, 9-9, 10-44, 10-71,
10-161
load floating-point 9-9, 10-47, 10-72, 10-162
multiply (FPAC by FPAC) 3-7, 10-49f
multiply (FPAC by memory) 9-9, 10-49, 10-73f, 10-77,
10-163
store floating-point 9-9, 10-59, 10-75, 10-164
subtract (FPAC from FPAC) 3-7, 10-55, 10-58
subtract (memory from FPAC) 3-7, 9-9, 10-56f, 10-74,
10-163
Double-word stack access instructions 4-5
Driver, device 7-2, 7-5
DSB 2-22, 10-31f
DSPA 9-10, 10-32f
DSSO 2-21, 10-33
DSSZ 2-21, 10-33
DSTK 2-21, 10-33
DSTO 2-21, 10-34
DSTZ 2-21, 10-34
DSZ 9-8, 10-34
DSZTS 2-9, 4-5, 10-34
DVZ flag 3-8f, 3-11, 5-15

E

ECLID 8-11, 10-35
ECLIPSE C/350 code 9-3f
EDIT 5-16f, 9-8, 10-35f, E-2
Edit decimal and alphanumeric 16-bit data 9-8, 10-35f
EDIT instruction 2-21, 9-3
Edit subprogram 2-21, 5-4
Edit,
end 10-22
wide 4-8, 5-5, 9-8, 10-129ff

Index-11

EDSZ 9-8, 10-36
Effective
address 1-10f, 1-16, 2-20f, 5-2, 5-4f, 5-10, 7-6, 7-11,
8-2
address,
C/3509-2, 9-5
calculating an 2-21f
extended load 9-10, 10-39
load 2-12ff, 2-21f, 8-3, 9-10, 10-70, 10-76, 10-165
push 2-21
addressing 1-13
addressing, C/350 9-5f
byte address,
load 1-13, 2-21, 10-76, 10-166
push 2-20f, 4-5f, 4-8, 10-81, 10-171
logical address 8-6
relative address 1-11
Eight segment base registers, specifying 8-6
EISZ 9-8, 10-37
EJMP 9-10, 10-37
EJSR 9-10, 10-37
ELDA 9-8, 10-38
ELDB 9-8, 10-38
ELEF 9-10, 10-39
Element,
data 6-1
dequeue data 10-22
dequeuing or enqueuing a data 6-4f
index to a gate 5-11
queue 5-4
Empty queue 6-3
Enabie mask, trap 3-9ff, 3-13
Enable,
fixed-point trap 2-9, 10-60
floating-point trap 3-10, 10-60
Enabling
fixed-point fault recognition 2-10, 5-14
floating-point fault
detection 3-11
recognition 3-9ff, 5-15
I/0
instruction execution 7-1ff
interrupt recognition 7-5, 7-12
narrow stack underflow 9-2
OVK mask 4-8
stack fault recognition 5-20
TE flag 4-8
vector stack underflow or overflow detection 7-9
Encountering an invalid digit 5-17
End
edit 2-21, 10-22
float 2-21, 10-30
ENQH 6-5, 10-39f
ENQT 6-5, 10-40
Enqueue towards the head or tail 10-39f
Enqueuing data element 6-1, 6-4
Entry point to a segment 5-9f

Index-12

Entry,
addressing an 7-12
page table 8-1ff
vector table 7-12
Equivalent instruction 9-7ff
Error
code, protection fault 8-7
flag, setting an 3-6
Error,
detecting an 5-13, 8-12, 10-23
identifying floating-point 3-10f
Errors, clearing FPSR 3-10, 10-43
ESTA 9-8, 10-41
ESTB 9-8, 10-41
Example of one- or two-level page table translation 8-8f
Example,
decimal arithmetic 2-23
wide stack operation 5-7f
Exceeding processor storage capacity 1-2
Excess 64
notation, maintaining 3-7f
representation 3-2
Exchange accumulators 2-3, 10-160
Exchange, wide 2-3, 10-158
Exclusive
OR 2-12f, 10-170
immediate 2-13, 10-170
immediate, wide 2-13, 10-159
OR, wide 2-13, 10-159
Execute 10-160f
access 1-9
flag 8-5
violation 8-13f
accumulator instruction 5-2
instruction, accessing page to 8-4
violation fault code E-1
Execute,
pop block and 2-9, 4-5, 4-8, 5-5f, 5-23, 9-10f, 10-100,
10-102
wide pop block and 2-9, 4-5, 4-8, 5-8, 5-14, 5-21,
9-10f, 10-143
Executing
16-bit instructions 9-1
accumulator contents 5-2
C/350 memory reference instruction 9-4ff
floating-point instructions 3-4
interrupted program 5-14
I/O instruction 7-1ff
jump instruction 5-1
LEF instruction 7-1ff
return instruction 5-1
skip instruction 5-1
subroutine 5-1, 5-12
XCT instruction 5-1
Execution,
aborting instruction 2-23, 8-2
changing current segment of 7-6
enabling I/O instruction 7-1ff
normal program 5-14f
Exiting subroutine 4-3

Expanding
beyond 64 Kbytes 9-3
data areas 9-3
ECLIPSE C/350 code 9-3f
the instruction set 4-5
to 32-bit fixed-point arithmetic 9-3f
Explanation of fault code E-1
Explicit data types 2-15ff, 2-23
Exponent 3-2
into FPAC, loading 3-3
overflow 3-6, 3-10
underflow 3-6, 3-10
Exponent,
decrementing an intermediate 3-5
dividend 3-8
divisor 3-8
intermediate floating-point 3-7
load 10-45
producing an intermediate 3-8
Exponents 3-7
Extend
16-bits to 32-bits,
sign 2-2, 10-108
zero 2-2, 10-176
and divide, sign 2-5, 10-27
divide, narrow sign 2-5
multiply, narrow sign 2-5
Extended
add
immediate 2-4, 10-5
immediate, narrow 2-4, 10-91
decrement and skip if zero 9-8, 10-36
displacement 1-11
increment and skip if zero 9-8, 10-37
jump 9-10, 10-37
jump to subroutine 9-10, 10-37
load
accumulator 9-8, 10-38
byte 9-8, 10-38
effective address 9-10, 10-39
operation 4-5, 4-8, 9-10f, 10-169f
operation, wide 5-5, 9-10f, 10-102, 10-158
store accumulator 9-8, 10-41
store byte 9-8, 10-41
Extended,
load integer 9-9, 10-69
store integer 9-9, 10-113
wide load integer 9-9, 10-136f
wide store integer 9-9, 10-155
External device 7-4

F

FAB 3-3, 10-42

Facilities, maintaining I/O 7-5
FAD 3-6, 10-42

Failure, detecting power 7-5
FAMD 9-9, 10-42

FAMS 9-9, 10-42f

FAS 3-6, 10-43

Fault
address parameter, vector stack 7-9
code,
access violation E-1
ASCII or decimal 5-14, 5-16f, E-2
decimal or ASCII 5-14, 5-16f, E-1f
explanation of E-1
invalid microinterrupt return block E-1
inward return E-1
loading AC1 with 5-19f, 9-3
nonprivileged 5-14, E-1f
outward call E-1
privileged E-1
privileged instruction violation E-1
protection 8-7, 8-15
read violation E-1
returned in AC1 5-17ff, 9-3, E-2
validity bit protection E-1
wide stack 5-21, E-If
write violation E-1
detection, enabling floating-point 3-11
flags,
fixed-point 2-10
floating-point 3-10, 5-15
handler,
C/350 decimal and ASCII 9-3
C/350 floating-point 9-3
decimal and ASCII 5-17
first instruction of 5-14f, 5-20, 5-23
first instruction of interrupt 7-13
first instruction of vector stack 7-13
fixed-point 2-10
floating-point 3-9, 5-16
Jjumping to 5-13ff, 8-13
jumping to narrow stack 5-23
last instruction of 5-14, 5-21, 5-23
narrow stack 5-22f
page 5-13, 8-10f
protection violation 8-13f
returning from 3-11, 4-1
saving pointer to wide stack 7-9
vector stack 7-13
wide stack 5-20f, 5-23
handling, first instruction after 5-15f
instruction,
address of 5-14ff, 5-20f, 5-23
address of decimal 5-19
address of WEDIT 5-18
determining address of 5-16ff
setting ACO with address of 8-13
mask,
setting fixed-point overflow 5-14
setting floating-point 5-15
TE 5-15
operations, stack 5-20f
pointer,
initializing wide stack 7-9
privileged and nonprivileged 5-13

Index-13

recognition, setting AC1 with value identifying 8-13

enabling fixed-point 2-10, 5-14 stack 4-1, 5-12, 5-14
enabling floating-point 3-9ff, 5-15 types of 1-16
enabling stack 5-20 wide
return block, floating-point 5-15f
fixed-point 5-15 stack 5-20
floating-point 5-16 words required beyond WSL for stack 4-8
pushing 5-14, 5-19, 8-13 and interrupts, C/350 9-3
stack 4-8, 5-21, 5-23, 8-13 Faults,
return blocks, C/350 commercial B-2
types of narrow 5-19 data type 2-23
types of wide 5-18 floating-point 3-9, 5-15
service mask 1-2f handling 5-13
subopcode, byte pointer to 5-19 priorities on 8-12f
Fault, priority of handling 5-13
aborting nonprivileged 5-14, 8-13f protection violation 8-12ff
ASCII data 5-14, 5-16 type of stack 5-20
byte pointer to subopcode causing 5-18 wide stack 4-7
cause of page 8-10 FCLE 3-10, 10-43
checking for stack overflow 4-3 FCMP 3-8f, 10-43
decimal FDD 3-8, 10-44
data 5-16f FDMD 9-9, 10-44
instruction address causing 5-18 FDMS 9-9, 10-44
or ASCII E-2 FDS 3-8, 10-45
detecting FEXP 3-3, 10-45
a 2-10, 3-11, 5-1, 8-13f FFAS 3-3, 3-11, 10-45
an overflow 2-10 FFMD 3-11, 9-9, 10-46
floating-point 5-15 FHLYV 3-8, 10-46
nonprivileged or privileged 5-13 Field in context block, status 8-10
wide stack 5-20 Field,
disabling stack 4-7, 5-20, 5-22 data type and size 2-16
fixed-point overflow 1-2, 2-8, 5-13ff device address 7-4
floating-point 3-9, 5-13f immediate §-7
ignoring floating-point overflow 5-15 Final
initiating intermediate mantissa 3-7
a protection 5-8 interrupt processing 7-11
fixed-point overflow 5-14 Finishing an 1/O operation 7-5
floating-point 5-15 FINT 3-3f, 10-46f
instruction causing 5-17 First
microinterrupt or 5-21 64 Kbytes of segment 9-2
narrow stack 5-20f entry in page table, address of 8-2ff
nonprivileged 1-16f, 5-13 instruction after fault handling 5-15f
nonresident page 5-13 instruction of
page 8-4, 8-7, 8-10 fault handler 5-14f, 5-20, 5-23
table depth 8-6 interrupt fault handler 7-13
table validity protection 8-7 interrupt handler 7-7, 9-3
privileged 1-16f subroutine, address 5-10, 5-12
privileged access 5-12 vector stack fault handler 7-13
protection 1-8f, 2-22, 5-11, 5-13, 8-6f word for 1/0O transfer, address of 7-2
return address to original 8-13 word of interrupt handler 7-7
segment validity protection 8-2 Fix
servicing 1-2, 2-10 from floating-point accumulator, wide 3-3f, 3-11, 9-9,
a floating-point 3-9 10-131
floating-point 3-9, 3-11, 5-15 to accumulator 10-45
nonprivileged 5-14 to memory 9-9, 10-46
original 8-13 Fixed-point
overflow 2-10 accumulator 1-2
page 8-4, 8-10 accumulator,
protection violation 8-13f C/350 9-1
stack 5-20, 5-22 wide float from 3-3f, 9-9, 10-131

Index-14

addition instructions 2-4, 2-22
arithmetic instructions 2-4
arithmetic, expanding to 32-bit 9-3f
byte movement instructions 2-20
computation 1-2, 1-16, 2-1
computation fault 5-13
conversion, floating-point to 2-20, B-1
data

format 2-1

movement instructions 2-3

precision 2-2
decimal 3-3
decrement word and skip 2-9
division instructions 2-5
fault

recognition, enabling 2-10, 5-14

return block 5-15
increment word and skip 2-9
instructions, C/350 9-7f
logical

data format 2-12

instructions 2-12

operations 2-12

skip instructions 2-14
move instructions 2-3
multiplication instructions 2-5
overflow 2-6

condition 2-10

fault 1-2, 2-8, 5-14f

flag, setting 5-14

mask, OVK 2-10, 9-10f
precision conversion 2-2
registers 1-2
skip on condition 2-7f
subtraction

instructions 2-4

instructions, decimal 2-22
to floating-point conversion 3-3
trap

disable 2-9, 10-60

enable 2-9, 10-60
two’s complement 2-2

Flag
handling, optional device 7-3
is zero, opcode pointer if sign 2-21
reset, skip on OVR 2-8, 10-110
to one or zero, set sign 2-21, 10-33
Flag,

@ 9-5f
ANY 3-10f, 5-15
BUSY 7-3, 7-5

CARRY 2-5f, 4-6, 5-6f, 5-15, 5-18, 5-21, 8-13, 9-2

changing

a device 7-4

RND 3-4
controlling ION 7-6
device 7-3ff
DONE 7-3, 7-5
DVZ 3-8f, 3-11, 5-15
enabling TE 4-8

error status 3-10
execute access 8-5
exponent overflow or underflow 3-10
indirect 1-15
initializing
BUSY 7-3
DONE 7-3
OVR 5-15, 7-13
insert character depending on sign 2-21

instructions to manipulate modified or referenced 8-11

interrupt on 7-4ff

I/0 validity 1-17, 7-2, 8-3

ION 7-4ff

IRES 2-10f, 5-15, 5-20, 7-6, 7-13, 8-13, 9-3

IXCT 2-10f

LEF mode 8-3
manipulating
a device 7-5
an interrupt on 7-5
modified 8-11
mantissa
divide by zero 3-11
overflow 3-11
memory resident 8-4
modified 8-11
MOF 3-11, 5-15
N (negative flag) 3-8, 3-11
overflow 2-8, 2-10, 5-20, 7-13
OVF 3-6, 3-10, 5-15
OVR 2-8, 2-10, 5-14, 5-20, 7-13, 8-13
power fail 7-4f
read access 8-5
referenced 8-11
RND or round 3-4f, 3-11
segment validity 8-2
setting
an error 3-6
BUSY 7-5
DONE 7-5
DVZ 3-8
fixed-point overflow 5-14
ION 7-6
modified 8-11
N 3-8
overflow 2-8
OVR 8-13
referenced 8-11
RND 3-11
Z (true zero flag) 3-8, 3-11
TE 4-8
testing
a device 7-3f
BUSY 7-3
DONE 7-3
DVZ 3-9
translation level 8-3
UNF 3-10, 5-15
valid page access 8-4
write access 8-5
Z (true zero flag) 3-11

Index-15

Flags, instructions,

device 7-3ff C/3509-9
floating-point fault 3-10, 5-15 executing 3-4
for general I/O devices 7-5 move instructions 3-3
for skip instruction 7-5 multiplication 3-7
setting floating-point fault 5-15 multiply double or single precision 3-7
testing status 3-8 normalize 3-3
FLAS 3-3, 10-47 number, scaling 3-3, 10-54
FLDD 9-9, 10-47 numbers, compare two (set N and Z) 3-9
FLDS 9-9, 10-47 numerical algorithms B-2
FLMD 9-9, 10-48 overflow faults 5-15
Float from pop, wide 3-4, 4-5, 4-8, 10-131f
accumulator 10-47 program counter 3-11
accumulator, wide 3-3f, 9-9, 10-131 push, wide 3-4, 4-5, 4-8, 10-132f
memory 9-9, 10-48 result, storing the 3-6
Float, revision 3-11
end 2-21, 10-30 rounding double to single 3-3, 10-53f
move 10-28 single,
move j 2-21 : load 9-9, 10-47, 10-72, 10-162
Floating-point store 9-9, 10-59, 10-75, 10-164
accumulator, skip on condition instructions 3-9
C/3509-1 : state,
wide fix from 3-3f, 3-11, 9-9, 10-131 pop 3-10, 9-9, 10-51f
addition instructions 3-6 push 3-10, 9-9, 10-52f
carry 3-6 status 3-9
computation 1-3, 1-16, 2-15, 3-1 status and accumulators,
computation fault 5-13 pop 10-51f
conversion 3-4 push 10-52f
conversion, fixed-point to 2-20, 3-3f status
data, instructions 3-10
converting 2-20 register 1-3, 3-4, 3-6, 3-9f, 9-9, 10-59, 10-74
loading 3-4 status,
moving 3-4 load 10-73
normalizing 3-1 store 5-16
storing 3-4 subtraction 3-7
decimal conversion instructions 3-3 to decimal, converting 3-3
divide instruction 3-11 to fixed-point conversion 2-20, B-1
division 3-8 to fixed-point, conversion 3-3
division, aborting 3-11 trap 3-10, 10-60, B-2
double, underflow faults 5-15
load 9-9, 10-47, 10-72, 10-162 word, reading high 3-3
store 9-9, 10-59, 10-75, 10-164 Floating-point,
error, identifying 3-10f conversion fixed-point to 3-3
exponent, intermediate 3-7 integerize 3-3, 10-46f
fault 3-9, 5-16 move 10-50
detection, enabling 3-11 scale 3-3
flags 3-10 FLST 9-9, 10-48
flags, setting 5-15 FMD 3-7, 10-49f
handler 3-9, 5-16 FMMD 9-9, 10-49
handler, C/350 9-3 FMMS 9-9, 10-49
mask, setting 5-15 FMOV 3-4, 10-50
recognition, enabling 3-9ff, 5-15 FMS 3-7, 10-50
return block 5-15f FNEG 3-3, 10-50
fault, FNOM 3-1, 3-3, 10-50
initiating 5-15 FNS 5-3, 10-51
servicing 3-9, 3-11, 5-15 Format,
format 3-2 ASCII and decimal data 2-15ff
halve (FPAC/2) 3-8, 10-46 byte pointer 1-14
identification code 3-11 data 2-15
instruction, address of 3-11 double precision 3-2

Index-16

fixed-point
data 2-1
logical 2-12
floating-point 3-2
map register assignments and 7-2
normalized F-3
processor status register 2-10
program counter 1-5
single precision 3-2
Formatted data, transferring 2-20
Forming
bit pointer 9-5f
byte address 9-5f
physical address 7-2
word pointer 9-5f
Forward
link 6-2
search queue and skip,
narrow 5-3, 6-5, 10-95f
wide 5-3f, 6-5, 10-133f
Four

FPAC’s and load in memory, convert the 2-20
wide stack registers, initializing 7-9, 7-11
FPAC data and load in memory, convert 2-20

FPAC,

converting a decimal and loading in 2-20

loading exponent into 3-3
FPOP 9-9, 10-51f
FPSH 9-9, 10-52f
FPSR 3-9f
FPSR errors, clearing 3-10, 10-43
Frame pointer,
initializing wide 4-3, 5-11
loading wide 5-12f
narrow 9-2
saving wide 7-9
storing wide 5-7, 5-11, 5-13, 8-10
wide 4-2f, 5-6ff, 7-9
FRDS 3-3, 10-53f
Frequency of references to pages 8-11
FRH 3-3, 10-54
FSA 5-3, 10-54
FSCAL 3-3f, 3-11, 10-54
FSD 3-7, 10-55, 10-58
FSEQ 3-8f, 10-55
FSGE 3-9, 10-55
FSGT 3-8f, 10-55
FSLE 3-9, 10-55
FSLT 3-8f, 10-56
FSMD 9-9, 10-56
FSMS 9-9, 10-56
FSND 3-9, 10-57
FSNE 3-9, 10-57
FSNER 3-9, 10-57
FSNM 3-9, 10-57
FSNO 3-9, 10-57
FSNOD 3-9, 10-58
FSNU 3-9, 10-58
FSNUD 3-9, 10-58
FSNUO 3-9, 10-58

FSS 3-7, 10-58

FSST 5-16, 9-9, 10-59
FSTD 9-9, 10-59

FSTS 9-9, 10-59

FTD 3-10, 5-15, 10-60
FTE 3-10, 5-15, 10-60
FTE mask 3-11
Functional capabilities 1-1
FXTD 2-9, 5-14, 10-60
FXTE 2-9f, 5-14, 10-60

G

Gate
array 5-10f
element, index to a 5-11
fault code, illegal E-1
number 5-10f
Gate,
indexed 5-11
valid 5-11
General 1/0
devices, device flags for 7-5
instructions 7-3f
Glossary F-1
Guard digit 3-4f

H

Halve,
floating-point (FPAC/2) 3-8, 10-46
narrow (AC/2) 2-5, 10-61
wide (AC/2) 2-5,10-134
Handler,
breakpoint 2-9, 4-5, 4-8, 5-5f
C/350
decimal and ASCII fault 9-3
floating-point fault 9-3
fault 2-10, 5-17, 8-7
first
instruction of fault 5-14f, 5-20, 5-23
instruction of interrupt 7-7, 9-3
instruction of interrupt fault 7-13
instruction of vector stack fault 7-13
word of interrupt 7-7
floating-point fault 3-9, 5-16
immediate interrupt 7-7
interrupt 7-5f, 10-172
jumping to
fault 5-13ff, 8-13
narrow stack fault 5-23
last instruction of
fault 5-14, 5-21, 5-23
vectored interrupt 7-7
narrow stack fault 5-22f
page fault 5-13, 8-10f
protection violation fault 8-13f
returning from
breakpoint 4-5
fault 3-11, 4-1
saving pointer to wide stack fault 7-9

Index-17

subroutine 2-10
vector stack fault 7-13
vectored interrupt 7-7, 10-172
wide stack fault 5-20f
Handling
faults, priority of 5-13
1/0 interrupts, priority of 5-14
Handling, first instruction after fault 5-16
Head, enqueue towards the 10-39f
Hex
digit 3-4
shift left,
DHXL double 2-22, 10-23
HXL single 2-22, 10-61
shift right,
DHXR double 2-22, 10-23f
HXR single 2-22, 10-61
Hierarchical
interrupt system 7-5
protection mechanism 1-17
High
floating-point word, reading 3-3
speed device and memory, transfers between 7-1
word, read 10-54
HLV 2-5, 10-61
Honoring interrupts 7-13
HXL single hex shift left 2-22, 10-61
HXR single hex shift right 2-22, 10-61

|
ID code 3-11

Identical scgme
Identification
code, floating-point 3-11
instructions 8-11
Identification,
C/350 load CPU 8-11, 10-35
long load CPU 8-11, 10-66
narrow load CPU 8-11, 10-93
Identifying
fault, setting AC1 with value 8-13
floating-point error 3-10f
unique device 7-4
Idle device 7-5
Ignoring
an interrupt request 7-5
overflow faults 5-14f
page protocol access 8-6f
Illegal
gate fault code E-1
inward return 5-9
I/O operation 8-3
outward subroutine call 5-9
Immediate
field 8-7
interrupt handler 7-7

Index-18

Immediate,
add 2-4, 10-5f
AND 2-13, 10-8
command I/0 7-3, 10-11
exclusive OR 2-13, 10-170
extended add 2-4, 10-5
inclusive OR 2-13, 10-64
insert characters 2-21, 10-25
narrow
add 2-4, 10-77, 10-92, 10-166
extended add 2-4, 10-91
load 2-3, 10-96
subtract 10-79, 10-98, 10-168
subtract 2-4, 10-107
wide
add 2-4, 10-85, 10-117f, 10-173
add with narrow 10-142
add with wide 10-117
AND 2-13, 10-118
arithmetic shift with narrow 10-119
exclusive OR 2-13, 10-159
inclusive OR 2-12f, 10-135
load with wide 10-135
logical shift 2-14, 10-139
logical shift left 2-14
logical shift with narrow 10-138
skip if accumulator greater than 2-8, 10-150
skip if accumulator less than or equal to 2-8, 10-151
skip if accumulator not equal to 2-8, 10-152
skip if equal to 2-8
subtract 10-88, 10-148, 10-175
unsigned skip if accumulator greater than 2-8,
10-156
unsigned skip if accumulator less than or equal to
2-8, 10-157
Implicit data structure 2-15
Impure zero F-2
INC 2-4, 2-6, 2-8f, 10-62f
Inclusive OR 10-63
immediate 2-13, 10-64
immediate, wide 2-12f, 10-135
Inclusive OR, wide 2-13, 10-135
Increasing accuracy of result 3-4
Increment
and skip 10-62f
and skip if zero,
C/350 9-8, 10-64
extended 9-8, 10-37
narrow 2-9, 9-8, 10-79, 10-168
wide 2-9, 10-87, 10-174
double word addressed by WSP 2-9, 4-5, 10-64
with optional skip 2-4, 2-6, 2-8f
word and skip, fixed-point 2-9
Increment, wide (no skip) 2-4, 10-135
Incrementing
a DO-loop variable 5-3
interrupt level word 7-9
program counter 3-9, 5-1
wide stack pointer 4-3f
Independent operations, device 7-3

Index
field 1-10
to a gate element 5-11
Indexed gate 5-11
Indicator for
STIX, destination 5-18f
WSTI, destination 5-18f
Indicator,
byte 1-13, 9-5f
destination 2-21
explicit data type 2-16
original source 5-18f
source 2-21
Indirect 8-2
addressing 1-8, 1-10f, 1-15, 8-6, 9-5f
addressing violation 8-13f
bit 9-5f
field 1-11
flag 1-15
logical address 8-6
pointer 1-11, 5-10, 5-13ff, 5-17, 5-20, 5-23, 8-13f, 9-7,
9-9ff
relative address 1-11
Indirect, jumping 3-9, 7-7, 8-10
Indirection, levels of 5-13, 8-13f
Information, interrupt routine dependent 7-12
Initializing
burst multiplexor channel transfer 7-2
BUSY flag 7-3
carry flag instructions 2-6
data channel transfer 7-2
device map 7-2
DONE flag 7-3
four wide stack registers 7-9, 7-11
IRES flag 7-13
narrow stack 5-22
OVK mask 5-15, 7-13
OVR flag 5-15, 7-13
wide frame pointer 4-3, 5-11
wide stack 4-3
base 4-2, 8-10, 8-13f
fault pointer 7-9
limit 8-10, 8-13f
pointer 4-3, 8-10, 8-13f
registers 4-2, 4-4, 4-6
Initiating
a protection fault 5-8
a transfer to another segment 5-8
fixed-point overflow fault 5-14
floating-point fault 5-15
I/O operation 7-5
Insert
character
depending on sign flag 2-21
depending on trigger 2-21
j times 2-21, 10-25
once 2-21, 10-25
suppress 10-25
characters immediate 2-21, 10-25
sign 10-25

Inserting
additional bytes 2-21
bytes 2-15
string of characters 2-20
Instruction
address causing fault, decimal 5-18
after fault handling, first 5-15f
causing fault 5-17
dictionary 10-1
execution,
aborting 2-23, 8-2
enabling I/O 7-1ff
of fault handler,
first 5-14f, 5-20, 5-23
last 5-14, 5-21, 5-23
of interrupt
fault handler, first 7-13
handler, first 7-7, 9-3
handler, last 7-7
of subroutine,
address first 5-10, 5-12
last 5-13
of vector stack fault handler, first 7-13
of vectored interrupt handler, last 7-7
opcodes,
I/0 7-4
wide B-1
operation, I/O 7-4
prefix, X or L 1-11
set F-2
set, expanding the 4-5
summary A-1ff
violation fault code, privileged E-1
violation, I/O 8-13f
Instruction,
aborting memory reference 8-2
accessing page to execute 8-4
accumulator
jump 5-2
skip 5-2
address of
decimal fault 5-19
fault 5-15, 5-17, 5-21, 5-23
floating-point 3-11
WEDIT fault 5-18
addressing next 5-1
C/350
equivalent 9-8, 9-11
memory reference 9-5f
character move 5-12
CPU device 7-6
determining address of fault 5-16ff
device flags for skip 7-5
DO-loop 5-3
EDIT 9-3
equivalent 9-7, 9-9f
equivalent 32-bit processor 9-7
execute accumulator 5-2

Index-19

executing
C/350 memory reference 9-4ff
I/0 7-1ff
jump 5-1
LEF 7-1ff
return 5-1
skip 5-1
XCT 5-1
floating-point divide 3-11
format general 1/O 7-4
INTDS CPU device 7-6
INTEN CPU device 7-6
interrupting an 7-6
1/0 7-2ff, 8-3
issuing an 1/O 7-5
load
effective address 8-3
physical address 7-2
mask out 7-6, 7-12
memory reference 1-8
port select 7-2
restarting interrupted 7-6
resume memory reference 8-4
resuming interrupted 7-6
setting ACO with address of fault 8-13
size 1-8
time of fault address of fault 5-14ff
vector interrupt 7-7
wide
return 5-6f, 5-13, 9-3f
save 4-3, 5-12
special save 5-5ff, 9-3f

insiruciions

for BMC maps, I/0 7-3

for data channel maps, /O 7-3

to manipulate modified flag 8-11
to manipulate referenced flag 8-11

Instructions,

byte compare 2-15
byte move 2-20f
C/350 9-4
fixed-point 9-7f
floating-point 9-9
memory reference 9-1, 9-4ff
program flow 9-2
signed divided B-2
stack 9-11
stack management 9-11
stack-referenced 9-1
central processor identification 8-11
convert decimal/floating-point 2-20
decimal
arithmetic 2-22
fixed-point subtract 2-22
move 2-20f
move and convert 2-20
shift 2-22
DO until greater than 5-3
double-word stack access 4-5
EDIT subprogram 2-21

Index-20

executing
16-bit 9-1
floating-point 3-4
fixed-point
add 2-22
addition 2-4
arithmetic 2-4
byte movement 2-20
data movement 2-3
division 2-5
logical 2-12
logical skip 2-14
move 2-3
multiplication 2-5
subtraction 2-4
floating-point
addition 3-6
arithmetic 3-6
binary conversion 3-3
data move 3-4
decimal conversion 3-3
division 3-8
move 3-3
skip on condition 3-9
status 3-10
general 1/O 7-3
hex shift 2-22
initializing carry flag 2-6
interrupting specific 2-11
jump 5-1f
load
effective byte address 2-21
effective word address 2-21
logical 2-13
shift 2-14
skip on condition 2-14
move decimal/floating-point 2-20
multi-word wide stack 4-8
NIO B-2
noninterruptible 7-6
privileged 8-2, 8-11
PSR manipulation 2-9
queue 6-5
search queue 5-4
segment transfer 5-8
sequence of subroutine 5-6
shift 2-6
skip 2-7, 2-14, 2-22f, 3-8, 5-2f
subroutine 5-5
system identification 8-11
wide F-2
arithmetic shift 2-6
skip on accumulator bit 2-23
stack 4-4f
stack return block 4-5
INTDS CPU device instruction 7-6
Integer extended,
load 9-9, 10-69
store 9-9, 10-113

wide
load 9-9, 10-136f
store 9-9, 10-155
Integer,
convert to 16-bit 10-19
converting a decimal 2-21
load 9-9, 10-68
store 9-9, 10-112
wide
load 9-9, 10-136
store 10-154f
Integerize floating-point 3-3, 10-46f
INTEN CPU device instruction 7-6
Intermediate
exponent,
decrementing an 3-5
producing an 3-8
floating-point exponent 3-7
level interrupt processing 5-8, 7-9ff, 10-143
logical address 1-11
mantissa 3-5ff
result,
rounding the 3-11
shifting an 2-6
signs of the 3-5
truncating 3-11
Internal
device 7-4
processor state 7-9
Interpreting LEF and 1/0O opcodes 7-1ff
Interrupt
communication 7-5
fault handler, first instruction of 7-13
handler 7-5f, 9-3, 10-172
level word 7-9
mask 7-5f, 7-12f
on flag 7-4ff
processing 5-6, 5-8, 7-7, 7-9, 7-11
recognition 7-5, 7-12
request,
blocking an 7-5f
detecting an 1/0O 5-1
1/0 2-10, 4-1
servicing an 7-5, 8-13f
resume flag (see IRES flag)
routine 7-12f
routine dependent information 7-12
sequence 7-8
service routine 7-5
service, concluding vector 7-11
system 1-5, 7-5, 8-10
Interrupt,
intermediate level 5-8
I/0O 5-6, 5-8, 5-14, 5-20, 5-23
I/O vector 2-9
returning from I/0 4-1, 5-6, 5-8

servicing
an 7-6
base level vector 7-9, 10-144
intermediate level vector 7-11ff, 10-143
vector 7-3
vector on 1/0O 4-8
wide restore from an 1/0O 4-5, 5-8, 7-7
Interrupt-executed opcode flag 2-10f
Interrupted
instruction 7-6
program,
executing 5-14
restarting 8-10
an instruction 7-6
device number 7-12f
device, vector on 10-172
Interrupting specific instructions 2-11
Interrupts 7-5
Interrupts,
C/350 faults and 9-3
honoring 7-13
I/09-3
priority of handling 1/O 5-14
Invalid
ASCII data format 5-13
data type 6 or 7 5-17, E-2
decimal data 1-16
decimal data format 5-13
digit 5-17, E-2
microinterrupt return block fault code E-1
opcode 5-17, E-2
page 8-4
segment 8-2
sign code 5-17, E-2
Invoking interrupt system 7-5, 8-10
Inward
address reference fault code E-1
call 5-8
reference violation 8-13f
return fault code E-1
return, illegal 5-9
1/0
access, validate 8-2
channel mask 7-12
command, issuing programmed 7-3
controller, communicating with 7-3
data transfer 7-1ff
immediate, command 7-3, 10-11
instruction 7-2ff, 8-3
instruction execution, enabling 7-1ff
instruction violation 8-13f
instructions, general 7-3
interrupt 5-6, 5-8, 5-14, 5-20, 5-23, 9-3
interrupt recognition 7-12
interrupt request 2-10, 4-1
interrupt request,
detecting an 5-1
servicing 8-13f

Index-21

interrupt,
returning from 5-6, 5-8
vector on 4-8
wide restore from an 5-8
interrupts, priority of handling 5-14
memory reference 8-11
mode defined 7-1ff
opcodes, interpreting LEF and 7-1ff
operation,
initiating and finishing an 7-5
legal 8-3
port (see 1/O channel)
protection violation fault code E-1
reset 2-10, 7-3
skip 7-3, 10-109
system calls 7-5
transfer 7-2f, 10-96
validity flag 1-17, 7-2, 8-3
vector interrupt 2-9
1/0,
burst multiplexor channel 1-5f, 7-1f
command 7-3, 10-11
data channel 1-5f, 7-1ff
programmed 1-5, 7-1, 10-101
ION flag 7-4ff
IOR 2-12f, 10-63
IORI 2-13, 10-64
IORST 7-3
IRES flag,
defined 2-10f
initializing 7-13
saving state of 5-15
setting 5-20, 7-6, 8-13, 9-3
Issuing
an I/0O instruction 7-5
programmed I/O command 7-3
read or write command to device map 7-3
ISZ 9-8, 10-64
ISZTS 2-9, 4-5, 10-64
IXCT flag, defined 2-10f

alphabetical characters, move 2-21
characters, move 2-21
float, move 2-21
numerics, move 2-21
times, insert character 2-21, 10-25
JMP 9-10, 10-65
JSR 9-4, 9-10f, 10-65
Jump 9-4, 9-10, 10-65, 10-75, 10-165
(with extended or long displacement) 5-2
if nonzero, decrement and 10-21
indirect 3-9, 7-7, 8-10
instructions 5-1f
relative to program counter 9-10
to fault handler 5-13ff, 8-13
to stack fault handler 5-23
to subroutine 5-4ff, 9-3f, 9-10, 10-65, 10-76, 10-165

Index-22

to subroutine,
extended 9-10, 10-37
push and 4-5, 4-8, 5-6
Jump,
extended 9-10, 10-37
pop PC and 9-10f, 10-102
push 4-8, 5-5, 9-10f, 10-82, 10-103, 10-171
wide pop PC and 4-5, 4-8, 5-5, 9-10f, 10-144

K

Kbyte address boundary, two 8-3
Kernel operating system 1-6

L

L instruction prefix 1-11
Large array, expanding data areas for 9-3
Last instruction of
fault handler 5-14, 5-21, 5-23
interrupt handler 7-7
subroutine 5-13
LCALL 2-9, 4-4ff, 4-8, 5-4ff, 10-65f
LCALL count 4-6
LCPID 8-11, 10-66
LDA 9-8, 10-66
LDAFP 4-4, 10-67
LDASB 4-4, 10-67
LDASL 4-4, 10-67
LDASP 4-4, 10-67
LDATS 2-3, 4-5, 10-67
LDB 9-8, 10-68
LDI 9-9, 10-68
LDIX 5-17, 9-9, 10-69, E-2
LDSP 5-2, 9-10, 10-69f
Lead bit,
locate 2-13, 10-80
locate and reset 2-13, 10-82
wide
locate 2-13, 10-137
locate and reset 2-13, 10-138
Least significant
bit 1-2, 2-6f
digit 2-17
LEF 8-3, 9-10, 10-70
and I/O opcodes, interpreting 7-1ff
instruction, executing 7-1ff
mode flag 8-3
mode,
defined 7-1ff, 8-3
selecting 7-1ff
Left immediate, wide logical shift 2-14
Left,
DHXL double hex shift 2-22, 10-23
HXL single hex shift 2-22, 10-61
shifting one bit to the 2-6
Legal I/0 operation 8-3
Level
one, page 8-7
two, page 8-7
Level,

microcode revision 8-11
translation 8-3
Levels of indirection 5-13, 8-13f
LFAMD 3-6, 10-71
LFAMS 3-6, 10-71
LFDMD 3-8, 10-71
LFDMS 3-8, 10-72
LFLDD 3-4, 10-72
LFLDS 3-4, 10-72
LFLST 3-4, 3-10f, 9-9, 10-73
LFMMD 3-7, 10-73
LFMMS 3-7, 10-74f
LFSMD 3-7, 10-74
LFSMS 3-7, 10-74
LFSST 3-10, 5-16, 9-9, 10-74
LFSTD 3-4, 10-75
LFSTS 3-4, 10-75
Limit,
bit zero of
narrow stack 5-22
wide stack 5-21
initializing wide stack 8-10, 8-13f
loading wide stack 5-11, 5-13
lower stack 4-2
narrow stack 5-21ff, 9-2
setting bit zero of narrow stack 5-22f
upper stack 4-2
wide stack 4-3, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
zero-extending vector stack 7-9
Limits
and skip,
compare to 9-8, 10-12
wide compare to 2-8, 9-8, 10-122
of narrow stack 9-2
of wide stack 4-2f
Link 6-2
LIJMP 5-2, 7-7, 10-75
LJSR 5-4ff, 9-3f, 10-76
LLDB 2-20, 10-76
LLEF 2-12ff, 2-21, 10-76
LLEFB 2-21, 10-76
LMREF 8-11, 10-77
LNADD 2-4, 10-77
LNADI 2-4, 10-77
LNDIV 2-5, 10-78
LNDO 5-3, 10-78
LNDSZ 2-9, 10-78
LNISZ 2-9, 10-79
LNLDA 2-3, 10-79
LNMUL 2-5, 10-79
LNSBI 2-4, 10-79
LNSTA 2-3, 10-80
LNSUB 2-4, 10-80
Load
accumulator 9-8, 10-66
accumulator with
double word 10-67
double word addressed by WSP 4-5
WFP 4-4, 10-67
WSB 4-4, 10-67

WSL 4-4, 10-67
WSP 4-4, 10-67
Load
accumulator,
double word addressed by WSP 2-3
extended 9-8, 10-38
narrow 2-3, 9-8, 10-79, 10-168
wide 2-3, 10-87, 10-174
all segment base registers 10-82f
byte 2-20, 9-8, 10-68, 10-76, 10-165
byte,
extended 9-8, 10-38
wide 2-20, 9-8, 10-136
CPU identification,
C/350 8-11, 10-35
long 8-11, 10-66
narrow 8-11, 10-93
effective address 2-12ff, 2-21f, 8-3, 9-10, 10-70, 10-76,
10-165
effective
address, extended 9-10, 10-39
byte address 1-13, 2-21, 10-76, 10-166
byte address instructions 2-21
word address instructions 2-21
exponent 10-45
floating-point
double 9-9, 10-47, 10-72, 10-162
single 9-9, 10-47, 10-72, 10-162
status 9-9, 10-48, 10-73
immediate, narrow 2-3, 10-96
in memory 2-20
integer 9-9, 10-68
extended 9-9, 10-69
extended, wide 9-9, 10-136f
integer, wide 9-9, 10-136
map, wide 10-137
modified and referenced bits 8-11, 10-77
physical
address instruction 7-2
and conditional skip 10-81
processor status register in AC0O 10-82
PSR in ACO 2-9f
sign 9-8, 10-84
sign, wide 2-13, 2-23, 9-8, 10-139
with wide immediate, wide 10-135
Loading
ACO with address of fault 5-20
ACI1 with fault code 5-17ff, 9-3
AC?2 with base address of DCT 7-12
byte in accumulator 2-20
byte in memory 2-20
device map 7-3
exponent into FPAC 3-3
fault code in AC1 5-17ff, 9-3
floating-point data 3-4
FPSR 3-10
in FPAC, converting a decimal and 2-20
physical address into accumulator 7-3
program counter 5-13
referenced page from disk 8-10

Index-23

segment base register 8-2
the vector stack 7-9
wide frame pointer 5-12f
wide stack
base 5-11, 5-13
limit 5-11, 5-13
pointer 5-11, 5-13
LOB 2-13, 10-80
Locate
and reset lead bit 2-13, 10-82
and reset lead bit, wide 2-13, 10-138
lead bit 2-13, 10-80
lead bit, wide 2-13, 10-137
Location of
narrow stack 5-22
wide stack, top 4-3
Location,
binary point 3-2
defining stack 4-2
updating WSP reserved memory 5-20
Logic instructions 2-12f
Logical
address 5-1, 8-2ff, 8-6, F-1
address space 8-1, 8-10
address,
intermediate 1-11
most significant bits translating 7-2
translating 1-7, 7-2f, 8-2, 8-4
data formats 2-12
instructions 2-12f
memory §-1
negate, optional shift 2-14
one’s complement, optional shift 2-14
operations 2-1, 2-12
shift 2-14, 10-84
immediate, wide 2-14, 10-139
instructions 2-14
left immediate, wide 2-14
with narrow immediate, wide 10-138
shift,
double 2-14, 10-27
wide 2-14, 10-138
skip
instructions, fixed-point 2-14
on condition instructions 2-14
word address 8-6
Long
displacement 1-11
load CPU identification 8-11, 10-66
Lower
128 Kbyte, restricting vector stack to 7-9
stack limit 4-2
Lower-numbered segment 4-3
LPEF 2-21, 4-5, 4-8, 10-81
LPEFB 2-21, 4-5, 4-8, 10-81
LPHY 7-2f, 10-81
LPSHJ 4-5, 4-8, 5-5f, 10-82
LPSHJ, pushing with 4-5
LPSR 2-9f, 10-82
LRB 2-13, 10-82

Index-24

LSBRA 8-2, 10-82f
LSBRS 8-2, 10-83
LSH 2-14, 10-84
LSN 9-8, 10-84
LSTB 2-20, 10-85
LWADD 2-4, 10-85
LWADI 2-4, 10-85
LWDIV 2-5, 10-85f
LWDO 5-3, 10-86
LWDSZ 2-9, 10-86
LWISZ 2-9, 10-87
LWLDA 2-3, 10-87
LWMUL 2-5, 10-87
LWSBI 2-4, 10-88
LWSTA 2-3,10-88
LWSUB 2-4, 10-88

M

Machine status, testing 5-2
Magnitude F-3
Maintaining
excess 64 notation 3-7f
I/0 facilities 7-5
Management instructions, C/350
program flow 9-10
stack 9-11
Management,
device 1-5, 7-1
memory 1-6, 8-1
program flow 1-5, 5-1
queue 1-5, 6-1
stack 1-4
system 1-6, 8-1
Managing stack operations 4-1
Manipulating
a device flag 7-5
an interrupt mask 7-5
an interrupt on flag 7-5
modified flag 8-11
referenced flag 8-11
string of bytes 2-21
instructions, PSR 2-9
Manipulation, byte 2-1
Mantissa 3-2, 3-8
divide by zero flag 3-11
equals zero 3-1
overflow 3-5f
overflow flag 3-11
sign, complementing the 3-7
status 3-9
Mantissa,
adding one to the intermediate 3-6
aligning 3-4f
final intermediate 3-7
intermediate 3-5ff
normalizing intermediate 3-5ff

range
of 3-2
of the intermediate 3-5
rounding
an intermediate 3-5ff
down an even 3-5
the 3-4
up an odd 3-5
shifting intermediate 3-5f
truncating 3-4
truncating intermediate 3-6ff
Map register assignments and format 7-2
Map, device 7-2f, 10-137
Mapped
memory addressing 1-5
mode 7-2
and demand paging F-1
Maps,
disabling data channel and BMC 7-3
I/O instructions for
BMC 7-3
data channel 7-3

Mask

bit 7-12
out instruction 7-6, 7-12
skip and store if equal, wide 10-139f

Mask,

changing interrupt 7-6
current interrupt 7-12f
enabling OVK 4-8

fault service 1-3

fixed-point overflow 2-10
FTE 3-11

initializing OVK 5-15, 7-13
interrupt 7-5f, 7-12f

I/O channel 7-12

loading current interrupt 7-12
manipulating an interrupt 7-5
overflow fault service 1-2

OVK 2-10, 3-11, 4-8, 5-14, 5-20, 7-13, 8-13, 9-10f

resetting
OVK 2-9
TE 3-10
setting
fixed-point overflow fault 5-14
floating-point fault 5-15
OVK 2-9, 8-13
TE 3-9ff, 5-15f
trap enable 3-9ff, 5-15
wide
save and reset overflow 4-5, 5-5, 10-147
save and set overflow 4-5, 5-5, 10-147f

special save and reset overflow 4-5, 5-5, 9-3, 9-10f,

10-153

special save and set overflow 4-5, 5-5, 9-3, 9-10f,

10-153f
Maximum number of gates 5-10f

Memory
access restrictions 1-6
address space 1-1
address translation 8-2f, 8-6
addressing 1-5, 1-8, 9-10
and device, transfers between 7-1ff
location,
narrow skip on all bits set in 10-97f
narrow skip on any bit set in 10-98
updating WSP reserved 5-20
wide skip on all bits set in 10-146
wide skip on any bit set in 10-146
management 1-6, 8-1
operand 1-12
page, disk resident 8-1
pages, swapping 8-7
read operation 8-5
reference
instruction 1-8
instruction,
aborting 8-2
C/350 9-1, 9-4ff
resume 8-4
reference instructions, C/350 9-4ff
reference, 1/0 8-11
resident
flag 8-4
page 8-4f, 8-11
segment, defined 1-4
size 8-11
space, physical 8-10
word to accumulator,
narrow add 2-4, 10-77, 10-166
wide add 2-4, 10-85, 10-172
word,
narrow add accumulator to 2-4
narrow divide 2-5, 10-78, 10-167
narrow multiply 2-5, 10-79, 10-168
narrow subtract 10-80, 10-169
subtract 2-4
wide divide 2-5, 10-85f, 10-173
wide multiply 2-5, 10-87, 10-175
wide subtract 10-88, 10-175f
words, reserved 5-20
write operation 8-5
Memory,
accessing 1-8, 8-2
convert
FPAC data and load in 2-20
the four FPAC’s and load in 2-20
defined virtual 1-6
fix to 9-9, 10-46
float from 9-9, 10-48
loading byte in 2-20
logical 8-1
moving bytes in 2-15
narrow
skip on all bits set in 2-8
skip on any bit set in 2-8
page table in 8-1

Index-25

physical 8-1, 8-7
reserved 4-1, 5-11, 5-13ff, 5-17, 7-9, 7-11, 8-7, 8-10,
8-13f, 9-2
restoring page from 8-10
virtual 8-1
wide skip on
all bits set in 2-8
any bit set in 2-8
writing to 8-7
Microcode revision level 8-11
Microinterrupt E-2
or fault 5-21
return block fault code, invalid E-1
Mixed number to fraction, converting 3-3
Mnemonic, device address 7-4
Mode,
defined
I/O 7-1ff
LEF 7-1ff, 8-3
mapped or unmapped 7-2
Modified
and referenced bits,
load 8-11, 10-77
store 8-11, 10-109
bits, table of referenced and 8-1
flag 8-11
Modify stack
pointer 9-11, 10-90
pointer, wide 4-4, 5-21, 9-11, 10-141
Modifying
current segment field 1-5
guard digit 3-4
segment base register 8-2
stack register contents 4-2
WSP register 4-4
MOF flag 3-11, 5-15
Most significant
bit 2-7
bit, defined 1-2
digit 2-17
MOV 2-3, 2-6, 2-8, 10-88ff
Move
alphabetics 10-27
and convert instructions, decimal 2-20
and skip 2-3
characters 10-28
decimal/floating-point instructions 2-20
digit with overpunch 2-21, 10-29
float 10-28
floating-point 10-50
instruction, character 5-12
instructions,
byte 2-20f
decimal 2-20f
fixed-point 2-3
floating-point 3-3f

Index-26

alphabetical characters 2-21
characters 2-21
float 2-21
numerics 2-21
numeric with zero suppression 2-21, 10-30
numerics 10-29
right, wide 2-21, 10-140
until true,
character 9-8, 10-13f
wide character 2-20, 9-8, 10-124f
with optional skip 2-6, 2-8, 10-88ff
Move,
block 9-8, 10-10
block add and 9-8, 10-8f
character 9-8, 10-15f
wide 2-3, 10-140
block 2-3, 9-8, 10-119f
character 2-20, 9-8, 10-125f
Movement instructions, fixed-point
byte 2-20
data 2-3
Moving
bytes 2-15, 2-20f
decimal numbers 2-15
floating-point data 3-4
MSKO 7-6, 7-12
MSP 9-11, 10-90
MUL 2-5, 10-90f
MULS 2-5, 10-91
Multi-word wide stack instructions 4-8
Multiple accumulators,
pop 9-8, 9-11, 10-101, 10-142
push 9-8, 9-11, 10-102f
wide pop 2-3, 4-1, 4-5, 4-8, 9-8, 9-11, 10-142
Multiple protection violations 8-12
Multiplexor channel 1/O, burst 1-5f, 7-1f
Multiplication instructions, fixed-point 2-5
Multiplication, floating-point 3-7
Multiply
double (FPAC by FPAC) 3-7, 10-49f
double (FPAC by memory) 9-9, 10-49, 10-73f, 10-77,
10-163
memory word,
narrow 2-5, 10-79, 10-168
wide 2-5, 10-87, 10-175
single (FPAC by FPAC) 3-7, 10-50
single (FPAC by memory) 9-9, 10-49, 10-74f, 10-163
Multiply,
narrow 10-97
narrow sign extend 2-5
signed 2-5, 10-91
unsigned 2-5, 10-90f
wide 2-5, 10-141
wide signed 2-5, 10-141

N

N
flag (negative flag) 3-8, 3-11
variable in PC relative addressing 1-11
NADD 2-4, 10-91
NADDI 2-4, 10-91
NADI 2-4, 10-92
Narrow
add 2-4, 10-91
accumulator to memory word 2-4
immediate 2-4, 10-77, 10-92, 10-166
memory word to accumulator 2-4, 10-77, 10-166
backward search queue and skip 5-3, 6-5, 10-92f
data, computing 2-2
decrement and skip if zero 2-9, 9-8, 10-78, 10-167
divide 10-93
divide memory word 2-5, 10-78, 10-167
DO until greater than 10-78, 10-167
extended add immediate 2-4, 10-91
fault return block 5-19
floating-point
fault return block 5-16
fault, servicing 5-15
forward search queue and skip 5-3, 6-5, 10-95f
frame pointer 9-2
halve (AC/2) 2-5, 10-61
immediate,
wide add with 10-142
wide arithmetic shift with 10-119
wide logical shift with 10-138
increment and skip if zero 2-9, 9-8, 10-79, 10-168
load
accumulator 2-3, 9-8, 10-79, 10-168
CPU identification 8-11, 10-93
immediate 2-3, 10-96
multiply 10-97
multiply memory word 2-5, 10-79, 10-168
negate 2-13, 10-97
queue, searching 6-5
return
address 5-22
block 9-2
block for decimal data, type 1 fault 5-19
block, pushing 5-15f, 5-22
sign extend divide or multiply 2-5
skip on
all bits set in accumulator 2-8, 10-97
all bits set in memory 2-8, 10-97f
any bit set in accumulator 2-8, 10-98
any bit set in memory 2-8, 10-98
stack 1-4, 4-1, 5-15, 9-2, 9-4
fault 5-20
fault handler 5-22f
fault operations 5-21
fault return block 5-23
fault, servicing 5-20, 5-22
limit 5-21ff, 9-2
management 1-4
operations, managing 4-1

overflow fault 5-21f
parameters 9-2
pointer 5-21ff, 9-2
underflow 5-22
underflow fault 5-21, 9-2
stack,
defined 5-20
defining limits of 9-2
initializing 5-22
location of 5-22
pushing and popping 5-21
store accumulator 2-3, 9-8, 10-80, 10-169
subtract 2-4, 10-99
subtract
immediate 10-79, 10-98, 10-168
memory word 10-80, 10-169
NBStc 5-3f, 6-5, 10-92f
NCLID 8-11, 10-93
NDIV 2-5, 10-93
NEG 2-6, 2-13f, 10-93ff
Negate 2-13, 3-3, 10-50, 10-93ff
Negate,
narrow 2-13, 10-97
optional shift logical 2-14
wide 2-13, 10-142
with optional skip 2-6, 2-13f
Negative number, shifting a 2-6
Never, skip 5-3
Next instruction, addressing 5-1
NFStc 5-3f, 6-5, 10-95f
NIO 7-3, 10-96, B-2
NLDALI 2-3, 10-96
NMUL 2-5, 10-97
NNEG 2-13, 10-97
No
error, skip on (ANY = 0) 3-9, 10-57
I/0 transfer 7-3, 10-96
mantissa overflow, skip on (MOF = 0) 3-9, 10-57
overflow and no zero divide, skip on (OVF and
DVZ = 0) 3-9, 10-58
overflow,
skip on (OVF = 0) 3-9, 10-57
skip on no underflow and (UNF and OVF = 0) 3-9,
10-58
skip 5-3, 10-51
underflow and no overflow, skip on (UNF and
OVF = 0) 3-9, 10-58
underflow and no zero divide, skip on (UNF and
DVZ = 0) 3-9, 10-58
underflow, skip on (UNF = 0) 3-9, 10-58
zero divide,
skip on (DVZ = 0) 3-9, 10-57
skip on no overflow and (OVF and DVZ = 0) 3-9,
10-58
skip on no underflow and (UNF and DVZ = 0) 3-9,
10-58
Noninterruptible instructions 7-6
Nonprivileged fault 1-16f, 5-13, 8-13f
pointer 5-13
servicing 5-14

Index-27

Nonresident
page 1-16
page fault 5-13
Nonsign-positioned numbers, for unpacked decimal 2-19f
Nonzero bit,
skip on 9-5ff
wide skip on 2-8, 2-14
Nonzero,
decrement and jump if 10-21
skip on (Z = 0) 3-9, 10-57
Normal
program execution 5-14f
program flow 5-1
Normalize 10-50
Normalize, floating-point 3-3
Normalized format F-3
Normalizing 3-4
floating-point data 3-1
intermediate mantissa 3-5ff
the result 3-5
Notation, maintaining excess 64 3-7f
NSALA 2-8, 10-97
NSALM 2-8, 10-97f
NSANA 2-8, 10-98
NSANM 2-8, 10-98
NSBI 2-4, 10-98
NSUB 2-4, 10-99
Number
combination, for unpacked decimal sign and 2-19f
of arguments 5-12f
of words required beyond WSL 4-8
too large to convert E-2
Number,
interrupting device 7-12f
physical page 7-2
Numbers, compare two floating-point (set N and Z) 3-9
Numeric with zero suppression, move 2-21, 10-30
Numerical algorithms, floating-point B-2
Numerics,
move 10-29
move j 2-21

o

Offset,
page 8-7
page table 8-3
program counter 5-10ff
termination 5-3
word 1-15, 9-5f
Once, insert character 2-21, 10-25
One to the intermediate mantissa, adding 3-6
One,
set
bit to 9-5ff, 10-10
carry to 10-18
T to 10-34
skip on zero bit and set bit to 9-5f, 9-8, 10-115f

Index-28

wide
set bit to 9-8, 10-121f
skip on accumulator bit set to 2-23, 10-150
skip on zero bit and set bit to 9-8, 10-156
One’s
complement with optional skip 2-6, 2-14
complement, optional shift logical 2-14
One-element queue 6-3
One-level page table 8-2f, 8-6ff
Opcode pointer if
sign flag is zero 2-21
trigger is one 2-21
Opcode,
invalid 5-17, E-2
1/0 instruction 7-4
Opcodes,
interpreting LEF and 1/0 7-1ff
wide instruction B-1
Operand 1-12
Operand,
bit 1-15
byte 1-13
double word 1-2, 1-13
memory 1-12
size 1-8
word 1-2, 1-13
Operands, signs of the two 3-6
Operating system, kernel 1-6
Operation,
extended 4-5, 4-8, 9-10f, 10-169f
finishing an 1/0O 7-5
illegal 1/0 8-3
initiating [/O 7-5
I/0 instruction 7-4
legal 1/0O 8-3
memory
read 8-5
write 8-5
overflow stack 5-21, E-2
read 8-11
stack 1-16
stack fault 5-13
testing the results of an 2-7
underflow stack 5-21
wide
extended 5-5, 9-10f, 10-102, 10-158
pop 5-20
stack example 5-7f
write 8-11
Operations,
binary 2-1
byte 2-15
checking for valid 5-13
decimal
and byte 2-15
arithmetic 2-15
device independent 7-3
fixed-point logical 2-12
floating-point arithmetic 3-4
logical 2-1

managing
narrow stack 4-1
wide stack 4-1
narrow stack fault 5-21
shift 2-7
stack 4-1
wide
stack 4-1
stack fault 5-20
Option, skip 2-7
Optional device flag handling 7-3
OR immediate,
exclusive 2-13, 10-170
inclusive 2-13, 10-64
wide
exclusive 2-13, 10-159
inclusive 2-12f, 10-135
OR referenced bits 8-11, 10-99
OR,
exclusive 2-12f, 10-170
inclusive 2-12f, 10-63
wide
exclusive 2-13, 10-159
inclusive 2-13, 10-135
Order of arguments 5-12
ORFB 8-11, 10-99
Original
descriptor 5-18f
fault 8-13
source indicator 5-18f
Outward
call fault code E-1
return 5-8)
subroutine call, illegal 5-9
Overflow
condition,
fixed-point 2-10
stack 4-3, 5-12
detection, enabling vector stack 7-9
fault 2-8
mask, setting fixed-point 5-14
service mask 1-2
fault,
checking for stack 4-3
detecting an 2-10
detecting floating-point 5-15
detecting wide stack 5-20
disabling narrow stack 5-22
disabling wide stack 4-7, 5-20
fixed-point 1-2, 2-8, 5-14f
ignoring floating-point 5-15
initiating fixed-point 5-14
narrow stack 5-21f
servicing an 2-10
faults, floating-point 5-15
flag 2-8, 2-10, 5-20, 7-13

flag,
exponent 3-10
mantissa 3-11
setting 2-8
setting fixed-point 5-14
mask,
fixed-point 2-10, 9-10f
wide save and reset 4-5, 5-5, 10-147
wide save and set 4-5, 5-5, 10-147f
wide special save and reset 4-5, 5-5, 9-3, 9-10f,
10-153
wide special save and set 4-5, 5-5, 9-3, 9-10f, 10-153f
stack operation 5-21, E-2
Overflow,
checking for
stack 5-14, 8-13
vector stack 7-13
exponent 3-6
fixed-point 2-6
ignoring fixed-point 5-14
mantissa 3-5f
stack 4-6f, 8-13
Overpunch, move digit with 2-21, 10-29
Overwrite a page 8-1
Overwriting data in area beyond the stack 5-20
OVF flag 3-6, 3-10, 5-15
OVK
fixed-point overflow mask 9-10f
mask 2-10, 3-11, 4-8, 5-14, 5-20, 7-13, 8-13
mask,
initializing 5-15, 7-13
resetting 2-9
setting 2-9, 5-20, 8-13
wide save/reset 4-8
wide save/set 4-8
wide special save/reset 4-8
wide special save/set 4-8
to one,
wide save and set 2-9f
wide special save and set 2-9
to zero,
wide save and set 2-9
wide special save and set 2-9
flag 2-8, 2-10, 5-14, 5-20, 7-13, 8-13
flag,
initializing 5-15, 7-13
setting 5-20, 8-13
skip on reset 2-8, 10-110

P

P depending on

S, add to 10-20
T, add to 10-21

P

"add to 10-21
current value of 5-18f

Index-29

Packed
byte 2-15
decimal 2-15
data, converting 2-20
string 2-17
Page 8-7, F-1
access 8-4, 8-7
access flag, valid 8-4
access,
type of 8-4
valid 8-4
address, physical 8-6
fault 8-4, 8-7, 8-10
fault handler 5-13, 8-10f
fault,
cause of 8-10
nonresident 5-13
servicing 8-4, 8-10
from disk, loading referenced 8-10
from memory, restoring 8-10
level
one 8-7
two 8-7
number, physical 7-2
offset 8-7
protocol access, ignoring 8-6f
protocols 1-8f
table F-1
address, physical 8-3
depth fault 8-6
entries 8-1
entry 8-6f
entry, format 8-4
in memory 8-1

logical word address, one-level or two-level 8-6

offset 8-3
page, addressing another 8-6
translation, example of one-level 8-8
translation, example of two-level 8-9
translation, one-level 8-7
translation, two-level 8-6f
validity protection fault 8-7
validity violation 8-13f

table,
accessing 8-4
address of first entry in 8-2ff
one-level 8-2f, 8-6ff
two-level 8-2f

tables 8-1, 8-4

zero 4-2, 5-10f, 5-13, 5-20, 5-22f, 8-10, 8-13f

Page,
accessing physical 8-2
addressing another page table 8-6
defined 8-1

Index-30

disk
resident 8-4
resident memory 8-1
invalid 8-4
location 8-1
memory resident 8-4f, 8-11
nonresident 1-16
overwrite a §-1
physical 8-11
referenced §8-1
restricted 8-7
valid 8-4, 8-7
valid referenced 8-7
Pages,
defined 1-7
frequency of references to 8-11
status of 8-4
swapping memory 8-7
Paging,
defined demand 8-10
mapping and demand F-1
Parameter, vector stack
fault address 7-9
limit 7-9
pointer 7-9
Parameters of /O data transfer 7-2
Parameters,
managing stack 4-1
narrow stack 9-2
pushing previously saved stack 7-9
saving wide stack 7-9
storing processor 8-11
vector stack 7-9
wide stack 4-1
Passing
arguments 5-12
arguments to a subroutine 5-7
PATU 8-11, 10-100
PBX 2-9, 4-5, 4-8, 5-5f, 10-100
PC 5-15f, 5-18f, 5-21, 5-23, 8-13, 9-4, E-2
and jump,
pop 9-10f, 10-102
wide pop 4-5, 4-8, 5-5, 9-10f, 10-144
relative
address mode 1-12
addressing, n variable in 1-11
skip 5-3
return address 4-6
Performing floating-point computations 2-15
Physical
address 1-7, 1-11, 7-2, 8-1ff
instruction, load 7-2
into accumulator, loading 7-3
to device, sending 7-2
translation 8-3

address,
forming 7-2
logical address to 8-1
and conditional skip, load 10-81
memory 8-1, 8-7
page 8-11
address 8-6
number 7-2
table address 8-3
page, accessing 8-2

PIO 7-3, 10-101
Point

location, binary 3-2
to a segment, entry 5-9f

Pointer 5-15, 7-6, 8-10, 8-13

chain 7-13

contents, store accumulator in stack 10-111
field, bit 1-15

format, byte 1-14

if sign flag is zero, opcode 2-21

if trigger is one, opcode 2-21
parameter, vector stack 7-9

register, initializing wide stack 8-13f
to fault subopcode, byte 5-19

to subopcode causing fault, byte 5-18
to wide stack fault handler, saving 7-9
to word pointer, converting byte 2-21
wraparound, narrow stack 5-22

Pointer,

bit 1-15, 9-5ff
zero of narrow stack 5-22
zero of wide stack 5-21
byte 1-13f, 5-12, 9-5f
comparing wide stack 4-3
converting byte pointer to word 2-21
decrementing wide stack 4-3f
defined 1-11
forming
bit 9-5f
word 9-5f
frame 9-2
incrementing wide stack 4-3f
indirect 1-11, 5-10, 5-13ff, 5-17, 5-20, 5-23, 8-13f, 9-7,
9-9ff
initializing wide
frame 4-3, 5-11
stack 4-3, 8-10, 8-13f
stack fault 7-9
loading wide
frame 5-12f
stack 5-11, 5-13
location bit 9-5f
modify stack 9-11, 10-90
narrow
frame 9-2
stack 5-21ff, 9-2
nonprivileged fault 5-13
privileged fault 5-13
protecting against trojan horse 5-12

saving wide
frame 7-9
stack 7-9, 7-11
setting
bit zero of narrow stack 5-22f
narrow stack 5-22
wide stack 4-3
single
word 9-5f
word indirect 9-7
skip on valid
byte 10-116
word 10-116f
storing wide
frame 5-7, 5-11, 5-13, 8-10
stack 5-11, 5-13, 8-10
updating wide stack 5-2
using the wide frame 4-3
wide
frame 4-2f, 5-6ff, 7-9
modify stack 4-4, 5-21, 9-11, 10-141
stack 4-2f, 4-7, 5-12, 5-20, 7-9
word 1-15, 5-12
zero-extending vector stack 7-9
Pointers,
C/3509-3
trojan horse 5-12
POP 9-8, 9-11, 10-101
Pop
block and
execute 2-9, 4-5, 4-8, 5-5f, 5-23, 9-10f, 10-100,
10-102
execute, wide 2-9, 4-5, 4-8, 5-8, 5-14, 5-21, 9-10f,
10-143
block, wide 2-9, 4-5, 4-8, 5-5f, 5-8, 5-14, 5-21, 9-10f,
10-143
context block, wide 2-9, 8-7, 8-10f, 10-129
floating-point
state 3-10, 9-9, 10-51f
status and accumulators 10-51f
multiple
accumulators 9-8, 9-11, 10-101, 10-142
accumulators, wide 2-3, 4-1, 4-5, 4-8, 9-8, 9-11,
10-142
operation, wide 5-20
PC and
jump 9-10f, 10-102
jump, wide 4-5, 4-8, 5-5, 9-10f, 10-144
Pop, wide floating-point 3-4, 4-5, 4-8, 10-131f
POPB 5-23, 9-10f, 10-102
POPJ 9-10f, 10-102
Popping
accumulators 4-1
narrow stack 5-21
return block 4-1, 4-5, 5-13
wide return block 4-3, 5-4, 7-7
with WPOP 4-5
with WPOPJ 4-5
Port select instruction 7-2
Port, I/O (see 1/O channel)

Index-31

Power
fail flag 7-4f
failure, detecting 7-5
up 2-10
voltage ranges, detecting proper 7-5
Powers of 2 table D-1
Precision conversion, fixed-point 2-2
Precision,
double 3-1f, 3-6f
fixed-point data 2-2
single 3-1f, 3-4, 3-6f
Previously saved stack parameters, pushing 7-9
Priorities on faults 8-12f
Priority of
handling faults 5-13
handling 1/O interrupts 5-14
protection violation faults 8-13f
Privileged
access fault 5-12
fault 1-16f
fault pointer 5-13
fault, detecting 5-13
instruction violation fault code E-1
instructions 8-2, 8-11
violation 8-13f
Privileges destination segment, access 5-12
Processing, interrupt 5-6, 5-8, 7-7, 7-9, 7-11
Processor
identification instructions, central 8-11
instruction, equivalent 32-bit 9-7
parameters, storing 8-11
state, internal 7-9
staius
register 1-2, 2-9, 5-12f, 5-15, 5-18, 5-21, 7-6, 8-13,
9-1,9-4
register format 2-10
register from ACO, store 10-110
register in ACO, load 10-82
register, setting 5-15ff, 7-3
storage capacity, exceeding 1-2
Processor,
defined 1-1
restoring state of 8-10
saving current state of 8-7, 8-10
state of the 8-10
Producing an intermediate
exponent 3-8
mantissa 3-8
Program
compatibility, upward 4-1, 9-1
control to another segment, transferring 5-8ff
control,
returning 5-5f, 5-13
to another segment transferring 5-8f
transferring 1-8, 4-2, 4-4, 5-6, 5-10, 5-16, 7-13, 8-13
counter 1-5, 2-7, 2-22, 5-1ff, 5-11f, 5-17, 5-23, 7-13,
9-2
offset 5-10ff
wraparound B-1

Index-32

counter,
floating-point 3-11
format 1-5, 9-2
incrementing 3-9, 5-1
jump relative to 9-10
loading 5-13
restoring 5-4
updating 5-14, 5-20, 5-23
development, supporting C/350 9-2
execution, normal 5-14f
flow 5-2, 5-4
instructions, C/350 9-2, 9-10
management 1-5, 5-1
management instructions, C/350 9-10
flow,
altering normal 5-1
normal 5-1
relative addressing 1-11
Program,
executing interrupted 5-14
expanding ECLIPSE C/350 9-3
restarting interrupted 8-10
Programmed
I/0 1-5, 7-1, 10-101
I/O command, issuing 7-3
Programming, C/350 9-1
Programs, supporting 16-bit and 32-bit 4-1
Protecting against trojan horse pointer 5-12
Protection F-2
capabilities, system 1-1
fault 2-22, 5-11, 8-6f
code 8-7, 8-15
code, validity bit E-1
fault,
initiating a 5-8
page table validity 8-7
segment validity 8-2
mechanism,
accessing 1-17
changing 1-17
hierarchical 1-17
violation 1-16, 8-2ff, 8-12ff
fault codes E-1
fault handler 8-13f
fault, servicing 8-13f
faults 1-8f, 5-13, 8-12ff
return block 8-13f
violation,
detecting 7-2
indirect addressing 1-11
Protocols, page and segment 1-8f
PRTSEL 7-2
PSH 9-8, 9-11, 10-102f
PSHJ 9-10f, 10-103
PSHR 9-10f, 10-103

PSR 4-6, 5-6f, 5-15, 5-18, 5-21, 7-12, 8-13, 9-3
from ACO, store 2-9
in ACO, load 2-9f
manipulation instructions 2-9
word 8-13
word in device control table 7-13
PSR, storing 5-7
PTE 8-4
Purging address translator 8-11, 10-100
Push
accumulators, wide 2-3, 4-5, 4-8, 9-8, 10-144
address 2-21, 4-8, 10-81, 10-171
and jump 4-8
and jump to subroutine 4-5, 4-8, 5-6
byte address 2-21
effective
address 2-21
byte address 2-20f, 4-5f, 4-8, 10-81, 10-171
floating-point state 3-10, 9-9, 10-52f
floating-point status and accumulators 10-52f
jump 5-5, 9-10f, 10-82, 10-103, 10-171
multiple accumulators 9-8, 9-11, 10-102f
return address 5-6, 9-10f, 10-103
Push, wide floating-point 3-4, 4-5, 4-8, 10-132f
Pushed, number of arguments 5-12
Pushing
a byte address 4-5
a double word 4-3
a word address 4-5
accumulators 4-1
arguments onto a wide stack 5-7
byte address 4-5
double word onto vector stack 7-12
fault return block 5-14, 8-13
narrow
fault return block 5-19
return block 5-15f, 5-22
stack 5-21
previously saved stack parameters 7-9
return block 4-1, 4-5, 5-13, 5-16, 9-3
wide return block 5-4, 5-6, 5-12, 5-14ff, 5-18, 5-20
wide return block onto vector stack 7-9, 7-11
with LPSHJ 4-5
with WPSH 4-5
with XPSHJ 4-5
word address 4-5

Q

Queue

and skip,
narrow backward search 5-3, 6-5, 10-92f
narrow forward search 5-3, 6-5, 10-95f
wide backward search 5-3, 6-5, 10-120f
wide forward search 5-3f, 6-5, 10-133f

data element, dequeue a 10-22

descriptor 6-2

element 5-4

instructions 6-5

instructions, search 5-4

link 6-2

management 1-5, 6-1
Queue,

building a 6-1

defined 1-5, 6-1

empty 6-3

one-element 6-3

ready 6-1

searching 6-5

Range of
displacement 1-11
mantissa 3-2
the intermediate mantissa 3-5
the logical address, checking 8-6
Range,
addressing 1-10, 8-6, 9-10
valid addressing 8-3
Ranges,
address 1-10, 1-12, 8-6, 9-10
detecting proper power voltage 7-5
Rates, data transfer 7-1
Read
access 1-9
flag 8-5
violation 8-13f
access, valid 8-5
command to device map, issuing 7-3
data, accessing page to 8-4
high word 10-54
operation 8-11
operation, memory 8-5
violation fault code E-1
Read, valid 8-7
Reading high floating-point word 3-3
Ready queue 6-1
Recognition,
disabling I/O interrupt 7-5, 7-12
enabling
fixed-point fault 2-10, 5-14
floating-point fault 3-9ff, 5-15
I/O interrupt 7-5, 7-12
stack fault 5-20
Redefining wide stack 5-10f, 5-13
Redefining wide stack for segment zero 8-10, 8-13f
Reference,
I/O memory 8-11
valid segment 8-6
Referenced
and modified bits, table of 8-1
bits,
load modified and 8-11, 10-77
OR 8-11, 10-99
reset 8-11, 10-103f
store modified and 8-11, 10-109
flag 8-11
page 8-1
page from disk, loading 8-10

Index-33

page, valid 8-7
Register
assignments and format, map 7-2
contents, modifying stack 4-2
format, processor status 2-10
instructions, wide stack 4-4
Register,
bit zero of segment base 8-2
floating-point status 1-3, 3-4, 3-6, 3-9f
initializing wide stack 4-2, 4-4
limit 8-13f
pointer 8-13f
load floating-point status 9-9, 10-48
loading segment base 8-2
modifying segment base 8-2

processor status 1-2, 2-9, 5-12f, 5-15, 5-18, 5-21, 7-6,

8-13,9-1,9-4
segment base 5-11, 7-1, 8-1f, 8-6
setting processor status 5-15ff, 7-3

store floating-point status 9-9, 10-59, 10-74

testing the floating-point status 3-10
wide stack
base 8-13f
limit 8-13f
Registers,
C/350 9-1
defined wide stack management 1-4
fixed-point 1-2
initializing wide stack 7-9, 7-11
load all segment base 10-82f
map 7-2
saving wide stack 7-9
specifying eight segment base 8-6
stack 4-1
Relative
address mode, AC and PC 1-12
address, effective or indirect 1-11
addressing 1-10f, 1-13
addressing,
C/350 accumulator 9-1
n variable in PC 1-11
program 1-11
skip, PC 5-3
to program counter, jump 9-10
Removing guard digit 3-5
Replacing SAVE/RTN with
WSSVR/WRTN 9-4
WSSVS/WRTN 9-4
Representation, excess 64 3-2
Representing decimal digit and sign 2-16
Request,
access 8-7
blocking an interrupt 7-5f
detecting an 1/O interrupt 5-1
ignoring an interrupt 7-5
interrupt 7-6
I/0 interrupt 2-10, 4-1
responding to interrupt 7-6
servicing 1/O interrupt 7-5, 8-13f
Requesting I/O data transfer 7-5

Index-34

Required
beyond
WSL for stack fault, words 4-8
WSL, number of words 4-8
memory 4-1, 5-11, 5-13ff, 5-17, 7-9, 7-11, 8-7, 8-10,
8-13f, 9-2
location, updating WSP 5-20
words 5-20
Reset
lead bit,
locate and 2-13, 10-82
wide locate and 2-13, 10-138
overflow mask,
wide save and 4-5, 5-5, 10-147
wide special save and 4-5, 5-5, 9-3, 9-10f, 10-153
referenced bits 8-11, 10-103f
Reset,
I/0 2-10, 7-3
skip on OVR flag 2-8, 10-110
system 2-10
Resetting
OVK mask 2-9
TE mask 3-10
Resident
flag, memory 8-4
memory page, disk 8-1
page,
disk 8-4
memory 8-4f, 8-11
Responding to interrupt request 7-6
Restarting interrupted
instruction 7-6
program 3-10
Restore 9-10f, 10-104
Restore from an [/O interrupt, wide 4-5, 5-8, 7-7
Restore, wide 2-9, 4-8, 9-10f, 10-144f
Restoring
accumulators 5-4
carry 5-4
page from memory 8-10
program counter 5-4
state of processor 8-10
Restricted page 8-7
Restricting vector stack to lower 128 Kbyte 7-9
Restrictions, memory access 1-6
Result for a condition, testing 3-8
Result,
calculating the 3-5
intermediate 3-6
normalizing the 3-5
rounding
the 3-5
the intermediate 3-11
shifting an intermediate 2-6
signs of the intermediate 3-5
storing the floating-point 3-6

truncating
intermediate 3-11
the 3-5
Results of an operation, testing the 2-7
Results, shifting decimal 2-22
Resume
flag, interrupt (see IRES flag)
memory reference instruction 8-4
Resuming interrupted instruction 7-6
Retrieving data from the wide stack 4-3
Return 9-4, 9-10f, 10-105
address 5-2, 5-7, 5-13, 5-15f, 5-20
address to original fault 8-13
address,
narrow 5-22
PC 4-6
push 5-6, 9-10f, 10-103
storing 5-7, 7-7
block 4-4, 5-12, 5-15f, 5-20f, 5-23, 9-10f, E-2
block
fault code, invalid microinterrupt E-1
for ASCII data, type 2 or 3 fault 5-18f
for decimal data, type 1 fault narrow 5-19
for decimal data, type 1 fault wide 5-18
instructions, wide stack 4-5
onto vector stack, pushing wide 7-9, 7-11
type 5-17
block,
C/3509-2
defined wide 5-6f
fault 8-13
fixed-point fault 5-15
floating-point fault 5-16
narrow 9-2
floating-point fault 5-16
stack fault 5-23
popping 4-1, 4-5, 5-13
popping wide 4-3, 5-4, 7-7
protection violation 8-13f
pushing 4-1, 4-5, 5-13, 5-16, 9-3
fault 5-14, 8-13
narrow 5-15f, 5-22
narrow fault 5-19
wide 5-4, 5-6, 5-12, 5-14ff, 5-18, 5-20
size 5-16
stack fault 4-8, 5-21, 5-23, 8-13
standard wide 4-6
wide 4-3, 5-7, 5-20
floating-point fault 5-15
stack fault 5-21
blocks,
types of narrow fault 5-19
types of wide fault 5-18
instruction,
executing 5-1
wide 5-6f, 5-13, 9-3f
via wide save, wide 4-5

Return, .
illegal inward 5-9
outward 5-8
subroutine 5-4, 5-13
wide 2-9, 4-8, 5-5, 5-8, 9-3f, 9-10f, 10-145
Returning
from
breakpoint handler 4-5
fault handler 3-11, 4-1
I/0 interrupt 4-1, 5-6, 5-8
LCALL 5-8
subroutine call 3-11, 4-1, 4-3, 4-5
XCALL 5-8
program control 5-5f, 5-13
with WPOPB 4-5
Revision level, microcode 8-11
Revision, floating-point 3-11
Right,
DHXR double hex shift 2-22, 10-23f
HXR single hex shift 2-22, 10-61
shifting one bit to the 2-7
wide move 2-21, 10-140
Ring, defined 1-6
RND 3-11
RND flag 3-4f, 3-11
Round flag 3-4f, 3-11
Rounding 3-4
an intermediate mantissa 3-5ff
double to single, floating-point 3-3, 10-53f
down an even mantissa 3-5
the intermediate result 3-11
the mantissa 3-4
the result 3-5
up an odd mantissa 3-5
Routine dependent information, interrupt 7-12
Routine,
device interrupt 7-12f
interrupt service 7-5
transferring to device interrupt 7-13
RRFB 8-11, 10-103f
RSTR 9-10f, 10-104
RTN 9-4, 9-10f, 10-105

S

S, add to P depending on 10-20
SAVE 5-21, 9-4, 9-10f, 10-105f, E-2
Save 9-4, 9-10f, 10-105f
and reset overflow mask,
wide 4-5, 5-5, 10-147
wide special 4-5, 5-5, 9-3, 9-10f, 10-153
and set overflow mask,
wide 4-5, 5-5, 10-147f
wide special 4-5, 5-5, 9-3, 9-10f, 10-153f
and set OVK to one,
wide 2-9f
wide special 2-9
and set OVK to zero,
wide 2-9
wide special 2-9

Index-35

instruction,
wide 4-3, 5-12
wide special 5-5ff, 9-3f
without arguments 9-10f, 10-106f
Save, wide return via wide 4-5
Save/reset OVK mask,
wide 4-8
wide special 4-8
SAVE/RTN with
WSSVR/WRTN, replacing 9-4
WSSVS/WRTN, replacing 9-4
Save/set OVK mask,
wide 4-8
wide special 4-8
Saved stack parameters, pushing previously 7-9
Saving
current state of processor 8-7, 8-10
pointer to wide stack fault handler 7-9
wide
frame pointer 7-9
stack parameters 7-9
stack pointer 7-9, 7-11
stack registers 7-9
SAVZ 9-10f, 10-106f
SBI 2-4, 10-107
SBR, setting bit two or three of 7-1ff
Scaling floating-point number 3-3, 10-54
Scan until
true instruction, wide character 2-23
true, wide character 10-126f
Scheme, addressing F-1
Search
queue and skip, narrow
backward 5-3, 6-5, 10-92f
forward 5-3, 6-5, 10-95f
queue and skip, wide
backward 5-3, 6-5, 10-120f
forward 5-3f, 6-5, 10-133f
queue instructions 5-4
Searches a string of bytes 2-23
Searching queue 6-5
Segment 4-1, 5-10, 8-4, 8-13, 9-2, 9-4ff, 9-10f
access 8-2
access,
type of 8-2
valid 8-2
base
register 5-11, 7-1, 8-1f, 8-6
registers, load all 10-82f
call, too many arguments 5-21, E-2
check, valid 8-3
crossing 5-6, 5-8, 5-21, 8-13f, E-2
crossing violation 8-13f
field 1-8, 1-14f
field, modifying current 1-5
number 5-11
of execution, changing current 7-6
protocols 1-8f
reference, valid 8-6
transfer instructions 5-8

Index-36

validity
flag 8-2
protection fault 8-2
violation 8-13f
zero 5-8, 5-13, 7-6f, 7-9, 7-11, 8-2, 8-10, 8-13f
zero,
crossing to 7-9, 7-11, 8-13f
redefining wide stack for 8-10, 8-13f
Segment,
access privileges destination 5-12
accessing a 8-2
accessing destination 5-9f
another 4-2, 4-4, 5-6

current 1-8, 4-1, 5-1, 5-6f, 5-13, 5-20, 5-23, 7-9, 7-11,

8-10, 8-13f, 9-2, 9-4ff
defined 1-6
current 1-4
destination 1-9
memory 1-4
destination 5-6f, 5-10ff
entry point to a 5-9f
first 64 Kbytes of 9-2
initiating a transfer to another 5-8
invalid 8-2
lower-numbered 4-3
source 5-9ff
transferring program control to another 5-8ff
valid 8-3
Segmentation F-1
Segments, testing for identical 5-12
Select instruction, port 7-2
Selecting LEF mode 7-1ff
Sending physicai address to device 7-2
Sequence of subroutine instructions 5-6
Sequence,
calling 5-13
DO-loop 5-3
interrupt 7-8
Service
mask,
fault 1-3
overflow fault 1-2
routine, interrupt 7-5
Service, concluding vector interrupt 7-11
Servicing
a fault 1-2, 2-10, 3-11
a floating-point fault 3-9
an interrupt 7-6
an interrupt request 7-5
an overflow fault 2-10
base level vector interrupt 7-9, 10-144
fault 5-20
floating-point fault 3-11, 5-15
intermediate level vector interrupt 7-11ff, 10-143
I/O interrupt request 8-13f
narrow
floating-point fault 5-15
stack fault 5-20, 5-22
nonprivileged fault 5-14
original fault 8-13

- page fault 8-4, 8-10
protection violation fault 8-13f
vector interrupt 7-3
wide
floating-point fault 5-15
stack fault 5-20
Set
bit to one 9-5ff, 10-10
bit to one,
skip on zero bit and 9-5f, 9-8, 10-115f
wide 9-8, 10-121f
wide skip on zero bit and 9-8, 10-156
bit to zero 9-5ff, 10-10f
bit to zero, wide 9-8, 10-122
CARRY flag to one 2-6
CARRY flag to zero 2-6
carry to one 10-18
carry to zero 10-18
in accumulator,
narrow skip on all bits 10-97
narrow skip on any bit 10-98
wide skip on all bits 10-145
wide skip on any bit 10-146
in memory location,
narrow skip on all bits 10-97f
narrow skip on any bit 10-98
wide skip on all bits 10-146
wide skip on any bit 10-146
overflow mask,
wide save and 4-5, 5-5, 10-147f
wide special save and 4-5, 5-5, 9-3, 9-10f, 10-153f
sign flag to one or zero 2-21, 10-33
T to
one 10-34
zero 10-34
to one,
bit 9-5ff
wide skip on accumulator bit 2-23, 10-150
to zero,
bit 9-5ff
wide skip on accumulator bit 2-23, 10-150
trigger to
one 2-21
zero 2-21
Setting
ACO with address of fault instruction 8-13
ACI1 with value identifying fault 8-13
an error flag 3-6
bit two or three of SBR 7-1ff
bit zero of
narrow stack limit 5-22f
narrow stack pointer 5-22f
the WSL 5-20
the WSP 5-20
BUSY and DONE flag 7-5
DVZ flag 3-8
fixed-point overflow
fault mask 5-14
flag 5-14

floating-point fault
flags 5-15
mask 5-15
ION flag 7-6
IRES flag 5-20, 7-6, 8-13
modified flag 8-11
N flag 3-8, 3-11
narrow stack
limit 5-22
pointer 5-22
overflow flag 2-8
OVK mask 2-9, 5-20, 8-13
OVR flag 5-20, 8-13
processor status register 5-15ff, 7-3
referenced flag 8-11
RND flag 3-11
TE mask 3-9ff, 5-15f
wide stack pointer 4-3
WSP equal to WSL 5-20
Z flag (true zero flag) 3-8, 3-11
SEX 2-2, 10-108
SGE 2-8, 10-108
SGT 2-8, 10-108
Shift
immediate, wide logical 10-139
instructions 2-6
instructions,
decimal 2-22
hex 2-22
logical 2-14
wide arithmetic 2-6
left immediate, wide logical 2-14
left,
DHXL double hex 2-22, 10-23
HXL single hex 2-22, 10-61
operations 2-7
right,
DHXR double hex 2-22, 10-23f
HXR single hex 2-22, 10-61
with narrow immediate,
wide arithmetic 10-119
wide logical 10-138
Shift,
double logical 2-14, 10-27
logical 2-14, 10-84
wide
arithmetic 10-118f
logical 2-14, 10-138
Shifting
0 to 31 bits 2-6
a negative number 2-6
an intermediate mantissa 3-5
an intermediate result 2-6
decimal results 2-22
one bit to the left 2-6
one bit to the right 2-7
the intermediate mantissa 3-6
SI, add to 10-21

Index-37

Sign
and number combination, for unpacked decimal 2-19f
bit 3-2
bit change 2-6
bit, defined 2-2
code, invalid 5-17, E-2
extend
16-bits to 32-bits 2-2, 10-108
and divide 2-5, 10-27
divide, narrow 2-5
multiply, narrow 2-5
flag
is zero, opcode pointer if 2-21
to one or zero, set 2-21, 10-33
flag, insert character depending on 2-21
magnitude data 3-1
Sign,
complementing the mantissa 3-7
insert 10-25
load 9-8, 10-84
representing decimal digit and 2-16
wide load 2-13, 2-23, 9-8, 10-139
Sign-extending to 31 bits, displacement 1-11
Signed
divide 2-5, 10-26
divide, wide 2-5, 10-129
divided instructions, C/350 B-2
multiply 2-5, 10-91
multiply, wide 2-5, 10-141
skip if ACS
greater than ACD, wide 2-8, 10-149
greater than or equal to ACD, wide 2-8. 10-149
less than ACD, wide 2-8
less than or equal to ACD, wide 2-8, 10-151
less than, wide 10-151
Significant
bit,
least 2-6f
most 2-7
digit,
least 2-17
most 2-17
Signs of the
intermediate result 3-5
two operands 3-6
Single
hex shift
left, HXL 2-22, 10-61
right, HXR 2-22, 10-61
precision 3-1f, 3-4, 3-6f
word
indirect pointer 9-7
pointer 9-5f
Single,
add (FPAC to FPAC) 3-6, 10-43
add (memory to FPAC) 3-6, 9-9, 10-42f, 10-71, 10-161
divide (FPAC by FPAC) 3-8, 10-45
divide (FPAC by memory) 3-8, 9-9, 10-44, 10-72,
10-162
floating-point rounding double to 10-53f

Index-38

load floating-point 9-9, 10-47, 10-72, 10-162
multiply (FPAC by FPAC) 3-7, 10-50
multiply (FPAC by memory) 9-9, 10-49, 10-74f,
10-163
store floating-point 9-9, 10-59, 10-75, 10-164
subtract (FPAC from FPAC) 3-7, 10-58
subtract (memory from FPAC) 3-7, 9-9, 10-56, 10-74,
10-164
Size field 2-16
Size, memory 8-11
Skip
always 10-54
and store if equal, wide mask 10-139f
Skip
if accumulator
equal to immediate, wide 10-149
greater than immediate, wide 2-8, 10-150
greater than immediate, wide unsigned 2-8, 10-156
less than or equal to immediate, wide 2-8, 10-151
less than or equal to immediate, wide unsigned 2-8,
10-157
not equal to immediate, wide 2-8, 10-152
if ACS
equal to ACD, wide 2-8, 10-148
greater than ACD 2-8, 10-108
greater than ACD, wide signed 2-8,
10-149
greater than ACD, wide unsigned 2-8,
10-157
greater than or equal to ACD 2-8, 10-108
greater than or equal to ACD, wide signed 2-8,
10-149
greater than or equal to ACD, wide unsigned 2-8,
10-157
less than ACD, wide signed 2-8
less than or equal to ACD, wide signed 2-8, 10-151
not equal to ACD, wide 2-8, 10-152
if equal to immediate, wide 2-8
if less than, wide signed 10-151
if zero 4-5
if zero,
decrement and 9-8, 10-34
extended decrement and 9-8, 10-36
extended increment and 9-8, 10-37
increment and 9-8, 10-64
narrow decrement and 2-9, 9-8, 10-78, 10-167
narrow increment and 2-9, 9-8, 10-79, 10-168
wide decrement and 2-9, 10-86, 10-174
wide increment and 2-9, 10-87, 10-174
instruction,
accumulator 5-2
device flags for 7-5
executing 5-1
instructions 2-7, 2-14, 2-22f, 3-8, 5-2f
instructions, fixed-point logical 2-14
on accumulator bit
instructions, wide 2-23
set to one, wide 2-8, 2-23, 10-150
set to zero, wide 2-8, 2-23, 10-150

on all bits set in accumulator,
narrow 2-8, 10-97
wide 2-8, 10-145
on all bits set in memory,
narrow 2-8
wide 2-8
on any bit set in accumulator,
narrow 2-8, 10-98
wide 2-8, 10-146
on any bit set in memory,
narrow 2-8
wide 2-8
on bit instruction, wide 2-14
on CARRY (see ADC, ADD, AND, COM, INC,
MOV, NEG, or SUB instruction)
on condition instructions,
floating-point 3-9
logical 2-14
on condition,
fixed-point 2-7f
floating-point 3-9
testing BUSY or DONE flag and 7-3
on greater than or equal to zero (N = 0) 3-9, 10-55
on greater than zero (N and Z = 0) 3-9, 10-55
on less than or equal to zero (N and Z = 1) 3-9, 10-55
on less than zero (N = 1) 3-9, 10-56
on no
error (ANY = 0) 3-9, 10-57
mantissa overflow (MOF = 0) 3-9, 10-57
overflow (OVF = 0) 3-9, 10-57
overflow and no zero divide (OVF and DVZ = 0)
3-9, 10-58
underflow (UNF = 0) 3-9, 10-58
underflow and no overflow (UNF and OVF = 0)
3-9, 10-58
underflow and no zero divide (UNF and DVZ = 0)
3-9, 10-58
zero divide (DVZ = 0) 3-9, 10-57
on nonzero (Z = 0) 3-9, 10-57
bit 9-5ff, 10-109
bit, wide 2-8, 2-14, 9-8, 10-152
on OVR flag reset 2-8, 10-110
on valid
byte 2-22
pointer 10-116
word address 2-22
word pointer 10-116f
on zero (Z = 1) 3-9, 9-5ff, 10-55, 10-115
on zero bit 9-8
on zero bit and set bit to
one 9-5f, 9-8, 10-115f
one, wide 2-8, 2-14, 9-8, 10-156
on zero bit and set to one, bit 9-8
on zero bit, wide 2-8, 2-14, 9-8, 10-156
option 2-7
Skip,
add
complement with optional 2-4, 2-6, 2-8, 10-2f
with optional 2-4, 2-6, 2-8, 10-3ff
always 5-3

AND with optional 2-6, 2-12ff, 10-6ff
compare to limits and 9-8, 10-12
fixed-point
decrement word and 2-9
increment word and 2-9
increment with optional 2-4, 2-6, 2-8f
1/0 7-3, 10-109
load physical and conditional 10-81
move
and 2-3
with optional 2-6, 2-8, 10-88ff
narrow
backward search queue and 5-3, 6-5, 10-92f
forward search queue and 5-3, 6-5, 10-95f
negate with optional 2-6, 2-13f
never 5-3
no 5-3, 10-51
one’s complement with optional 2-6, 2-14
PC relative 5-3
subtract with optional 2-4, 2-6, 2-8, 10-113ff
wide .
backward search queue and 5-3, 6-5, 10-120f
compare to limits and 2-8, 9-8, 10-122
forward search queue and 5-3f, 6-5, 10-133f
Skipping
a word 2-7
an instruction 3-8
Skipping, word 2-7
SKP 7-3, 10-109
SMREF 8-11, 10-109
SNB 9-5ff, 10-109
SNOVR 2-8, 10-110
Source
indicator 2-21
indicator, original 5-18f
segment 5-9ff
stack, copying arguments from the 5-12
Source, AND with complemented 10-6
Space,
C/350 address 9-4ff
logical address 8-1, 8-10
memory address 1-1
physical memory 8-10
valid address 2-22
Special
save and

reset overflow mask, wide 4-5, 5-5,9-3, 9-10f, 10-153
set overflow mask, wide 4-5, 5-5, 9-3, 9-10f, 10-153f

set OVK to one, wide 2-9
set OVK to zero, wide 2-9
save instruction, wide 5-5ff, 9-3f
save/reset overflow mask, wide 4-8
save/set overflow mask, wide 4-8
Specific instructions, interrupting 2-11
Specifying eight segment base registers 8-6
SPSR 2-9, 10-110
STA 9-8, 10-110

Index-39

Stack 4-1
access instructions, double-word 4-5
base,
initializing wide 4-2, 8-10, 8-13f
loading wide 5-11, 5-13
wide 4-2f, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
data instructions, wide 4-4
example operation, wide 5-7f
fault 4-1, 5-12, 5-14
address parameter, vector 7-9
code, wide 5-21, E-1f
handler,
first instruction of vector 7-13
jumping to narrow 5-23
narrow 5-22f
saving pointer to wide 7-9
vector 7-13
wide 5-20
writing narrow 5-23
writing wide 5-21
operation 5-13
operations,
narrow 5-21
wide 5-20
pointer, initializing wide 7-9
recognition, enabling 5-20
return block 4-8, 5-21, 5-23, 8-13
return block,
narrow 5-23
wide 5-21

fault,
dicabling 4.7, 5-20, 5-22
narrow 5-20
servicing narrow 5-20, 5-22
servicing wide 5-20
wide 5-20
words required beyond WSL for 4-8
faults,
type of 5-20
wide 4-7
for segment zero, redefining wide 8-10, 8-13f
for temporary storage, wide 5-16
instructions,
C/350 9-11
multi-word wide 4-8
limit parameter, vector 7-9
limit,
bit zero of narrow 5-22
bit zero of wide 5-21
initializing wide 8-10, 8-13f
loading wide 5-11, 5-13
lower 4-2
narrow 5-21ff, 9-2
setting bit zero of narrow 5-22f
setting narrow 5-22
upper 4-2
wide 4-3, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
zero-extending vector 7-9
location, defining 4-2

Index-40

management
instructions, C/350 9-11
registers, defined wide 1-4
management,
narrow 1-4
wide 1-4
operation 1-16
operation example, wide 5-7
operation,
overflow 5-21, E-2
underflow 5-21
operations 4-1
operations,
managing narrow 4-1
managing wide 4-1
wide 4-1
overflow 4-6f, 8-13
condition 4-3, 5-12
detection, enabling vector 7-9
fault,
checking for 4-3
checking for wide 4-3
detecting wide 5-20
disabling narrow 5-22
disabling wide 4-7, 5-20
narrow 5-21f
overflow,
checking for 5-14, 8-13
checking for vector 7-13
destination 5-12
parameters,
managing 4-1
narrow 9-2
pushing previously saved 7-9
saving wide 7-9
vector 7-9
wide 4-1
pointer

contents, store accumulator in 10-111

parameter, vector 7-9
register, initializing wide 8-13f
wraparound, narrow 5-22
pointer,

bit zero of

narrow 5-22

wide 5-21
comparing wide 4-3
decrementing wide 4-3f
incrementing wide 4-3f

initializing wide 4-3, 8-10, 8-13f

loading wide 5-11, 5-13
modify 9-11, 10-90
narrow 5-21ff, 9-2
saving wide 7-9, 7-11
setting
bit zero of narrow 5-22f
narrow 5-22
wide 4-3
storing wide 5-11, 5-13, 8-10
updating wide 5-20

wide 4-2f, 4-7, 5-12, 5-20, 7-9 Starting

wide modify 4-4, 5-21, 9-11, 10-141 a device 7-5
zero-extending vector 7-9 address of block to transfer 7-2
register address of sub-block to transfer 7-2
contents, modifying 4-2 STASB 4-4, 10-111
instructions, wide 4-4 STASL 4-4, 10-111
register, initializing wide 4-2, 4-4 STASP 4-4, 10-111
registers 4-1f State of processor,
registers, restoring 8-10
initializing four wide 7-9, 7-11 saving current 8-7, 8-10
saving wide 7-9 State,
wide 4-2 device 7-5
return block instructions, wide 4-5 internal processor 7-9
to lower 128 Kbyte, restricting vector 7-9 pop floating-point 3-10, 9-9, 10-51f
underflow 4-7, 5-20, E-2 push floating-point 3-10, 9-9, 10-52f
condition 4-3 : STATS 2-3, 4-5, 10-111
detection, enabling vector 7-9 Status
fault, and accumulators,
detecting wide 5-20 pop floating-point 10-51f
disabling narrow 5-22 push floating-point 10-52f
disabling wide 4-7, 5-20 field in context block 8-10
narrow 5-21 flag, error 3-10
underflow, flags, testing 3-8
enabling narrow 9-2 instructions, floating-point 3-10
narrow 5-22 of pages 8-4
wide 4-3 register
Stack, format, processor 2-10
accessing double word in a 4-4 from ACO, store processor 10-110
C/3509-2 in ACO, load processor 10-82
constructing double word for vector 7-12 register,
copying arguments from the source 5-12 floating-point 1-3, 3-4, 3-6, 3-9f
decrementing word in 2-21 load floating-point 9-9, 10-48
defined 1-4 processor 1-2, 2-9, 5-13, 5-15, 5-18, 5-21, 7-6, 8-13,
defined narrow 5-20 9-1, 9-4
defining limits of narrow 9-2 setting processor 5-15ff, 7-3
initializing store floating-point 9-9, 10-59, 10-74
narrow 5-22 testing the floating-point 3-10 :
wide 4-3, 4-6 Status,
loading the vector 7-9 floating-point 3-9
location of narrow 5-22 load floating-point 10-73
lower limit of the wide 4-2 mantissa 3-9
narrow 1-4, 4-1, 5-15, 9-2, 9-4 storing floating-point 5-16
overwriting data in area beyond the 5-20 testing machine 5-2
popping narrow 5-21 STB 9-8, 10-112
pushing STI 9-9, 10-112
arguments onto a wide 5-7 STIX 5-16f, 9-9, 10-113, E-2
word onto vector 7-12 STIX, destination indicator for 5-18f
narrow 5-21 Storage capacity, exceeding processor 1-2
wide return block onto vector 7-9, 7-11 Storage, wide stack for temporary 5-16
redefining wide 5-10f, 5-13 Store
retrieving data from the wide 4-3 accumulator 9-8, 10-110
store in 2-21, 10-33 accumulator in
storing data in the 4-2 double word addressed by WSP 2-3, 4-5
top location of wide 4-3 stack pointer contents 10-111
upper limit of the wide 4-3 WFP 4-4, 8-13f, 10-110
vector 7-7, 7-9, 7-12 WSB 4-4, 10-111
wide 1-4, 4-1, 5-4, 5-6f, 5-12f, 5-15 WSL 4-4, 10-111
Stack-referenced instructions, C/3509-1 WSP 4-4, 10-111

STAFP 4-4, 10-110
Standard wide return block 4-6

Index-41

accumulator, Subprogram,

extended 9-8, 10-41 edit 5-4
narrow 2-3, 9-8, 10-80, 10-169 end edit 2-21
wide 2-3, 10-88, 10-175 WEDIT 5-4
byte 2-20, 9-8, 10-85, 10-112, 10-171 Subroutine 9-4
byte, call 2-9, 3-11, 4-1, 4-3, 4-5, 4-8, 5-4ff, 5-8, 5-13
extended 9-8, 10-41 call,
wide 2-20, 9-8, 10-154 aborting 5-11f
floating-point executing 5-1
double 9-9, 10-59, 10-75, 10-164 illegal outward 5-9
single 9-9, 10-59, 10-75, 10-164 returning from 3-11, 4-1, 4-3, 4-5
status register 9-9, 10-59, 10-74 from a 32-bit subroutine, calling C/350 9-4
if equal, wide mask skip and 10-139f handler 2-10
in stack 2-21, 10-33 instructions, sequence of 5-6
integer 9-9, 10-112 return 5-4, 5-13
extended 9-9, 10-113 Subroutine,
extended, wide 9-9, 10-155 address first instruction of 5-10, 5-12
integer, wide 10-154f call 10-65f, 10-159f
modified and referenced bits 8-11, 10-109 calling C/350 subroutine from a 32-bit 9-4
processor status register from ACO 10-110 changing C/350 9-4
PSR from ACO 2-9 executing 5-12
Storing exiting 4-3
accumulators 5-7 expanding an ECLIPSE C/350 9-4
byte address in accumulator 2-23 extended jump to 9-10, 10-37
carry 5-7 jump to 5-4ff, 9-3f, 9-10, 10-65, 10-76, 10-165
contents of WFP or WSP 8-13f jumping to 5-7
data in the stack 4-2 last instruction of 5-13
decimal number 2-20 passing arguments to a 5-7
device dependent constants or variables 7-12 push and jump to 4-5, 4-8, 5-6
floating-point data 3-4 returning from 3-11, 4-1, 4-3
floating-point status 5-16 Subtract
FPSR 3-10 double
processor parameters 8-11 (FPAC from FPAC) 3-7, 10-55, 10-58
PSR 5-7 (memory from FPAC) 3-7, 9-9, 10-56f, 10-74,
return address 5-7, 7-7 10-163
single precision 3-4 immediate 2-4, 10-107
the floating-point result 3-6 immediate,
transient overflow condition 2-10 narrow 10-79, 10-98, 10-168
wide frame pointer 5-7, 5-11, 5-13, 8-10 wide 10-88, 10-148, 10-175
wide stack pointer 5-11, 5-13, 8-10 instructions, decimal fixed-point 2-22
String memory
of bytes, word 2-4
manipulating 2-21 word, narrow 10-80, 10-169
moving 2-21 word, wide 10-88, 10-175f
searches a 2-23 single
of characters, (FPAC from FPAC) 3-7, 10-58
converting 2-20 (memory from FPAC) 3-7,9-9, 10-56, 10-74, 10-164
inserting 2-20 with optional skip 2-4, 2-6, 2-8, 10-113ff
String, Subtract,
packed decimal 2-17 decimal 10-31f
unpacked decimal 2-16 narrow 2-4, 10-99
Structure, implicit data 2-15 wide 2-4, 10-155
SUB 2-4, 2-6, 2-8, 10-113ff Subtraction instructions, fixed-point 2-4
Sub-block to transfer, starting address of 7-2 Subtraction, floating-point 3-5, 3-7
Subopcode causing fault, byte pointer to 5-18 Summary, instruction A-1ff
Subopcode, byte pointer to fault 5-19 Supporting
Subprogram instructions, EDIT 2-21 16-bit programs 4-1

32-bit programs 4-1
C/350 program development 9-2
devices 7-1

Index-42

Suppress, insert character 10-25

Suppression, move numeric with zero 2-21, 10-30

Swapping
memory pages 8-7
two bytes 2-6

System
calls, 1/O 7-5
identification instructions 8-11
management 1-6, 8-1
protection capabilities 1-1
reset 2-10

System,
device interrupt 7-5
interrupt 1-5, 7-5, 8-10
invoking interrupt 7-5, 8-10
kernel operating 1-6

SZB 9-5ff, 10-115

SZBO 9-5ff, 10-115f

T

T to
one, set 10-34
zero, set 10-34
T, add to P depending on 10-21
Table
address, physical page 8-3
depth fault, page 8-6
entries, page 8-1
entry,
page 8-6f
vector 7-12
in memory, page 8-1
logical word address,
one-level page 8-6
two-level page 8-6
of referenced and modified bits 8-1
offset, page 8-3
page, addressing another page 8-6
translation,
example of one-level page 8-8
example of two-level page 8-9
one-level page 8-7
two-level page 8-6f
validity
protection fault, page 8-7
violation, page 8-13f
Table,
accessing page 8-4
address of first entry in page 8-2ff
base of vector 7-12
device control 7-12f
one-level page 8-2f, 8-6ff
page F-1
powers of 2 D-1
two-level page 8-2f
vector 7-11f
word zero of vector 7-11
Tables, page 8-1, 8-4
Tail, enqueue towards the 10-40

TE
fault mask 5-15
flag 4-8
mask,
resetting 3-10
setting 3-9ff, 5-15f
Temporary storage, wide stack for 5-16
Termination offset 5-3
Testing
a device flag 7-3f
BUSY flag and skip on condition 7-3
DONE flag and skip on condition 7-3
for a condition 2-23
for identical segments 5-12
interrupt level word 7-9
machine status 5-2
result for a condition 3-8
status flags 3-8
the divisor for zero 3-8
the DVZ flag 3-9
the floating-point status register 3-10
the results of an operation 2-7
Three of SBR, setting bit 7-2
Times, insert character j 10-25
Top location of wide stack 4-3
Towards the
head, enqueue 10-39f
tail, enqueue 10-40
Transfer
instructions, segment 5-8
rates, data 7-1
to another segment, initiating a 5-8
Transfer,
address of first word for 1/0O 7-2
addressing memory for I/O data 7-2
direction
of 5-8, 7-2
of I/O data 7-2
initializing
burst multiplexor channel 7-2
data channel 7-2
no I/O 7-3, 10-96
parameters of I/O data 7-2
requesting 1/0 data 7-5
starting address of block to 7-2
Transferring

blocks of words, between memory and device 1-6

bytes, between ac and device 1-5
call arguments 5-10ff

data 1-5

formatted data 2-20

I/0 data 7-2

page to disk 8-10

program control 1-8, 4-2, 4-4, 5-6, 5-10, 5-16, 7-13,

8-13

program control to another segment 5-8ff

to device interrupt routine 7-13
words, between

ac and device 1-5

memory and device 1-6

Index-43

Transfers between
device and accumulator 7-1
device and memory 7-1
high speed device and memory 7-1
medium speed device and memory 7-1
memory and device 7-1ff
Transfers, checking data 5-12
Transient overflow condition, storing 2-10
Translate and compare,
character 9-8, 10-18f
wide character 2-20, 2-23, 9-8, 10-127f
Translating logical
address 1-7, 7-2f, 8-2, 8-4
address, most significant bits 7-2
Translation level flag 8-3
Translation,
device address 7-1, 7-6
example of
one-level page table 8-8
two-level page table 8-9
memory address 8-2f, 8-6
one-level page table 8-7
two-level page table 8-6f
Translator, purging address 8-11, 10-100
Trap
disable,
fixed-point 2-9, 10-60
floating-point 3-10, 10-60
enable mask 3-9ff, 5-15
enable,
fixed-point 2-9, 10-60
floating-point 3-10, 10-60
Trap,
defined 5-14f
floating-point B-2
Trigger
is one, opcode pointer if 2-21
to one or zero, set 2-21
Trigger, insert character depending on 2-21
Trojan horse
pointer, protecting against 5-12
pointers 5-12
True
value of exponent 3-2
zero 3-1, 3-6, 3-11, F-2
True, character move until 9-8, 10-13f
Truncating 3-4
intermediate
mantissa 3-6ff
result 3-11
the mantissa 3-4
the result 3-5
Two
bytes, swapping 2-6
floating-point numbers, compare (set N and Z) 3-8f,
10-43
Kbyte address boundary 8-3
of SBR, setting bit 7-1ff
operands, signs of the 3-6

Index-44

Two’s complement 2-2
number,
calculating a 2-8, 5-14
out of range calculating a 5-15
Two-level page table 8-2f
logical word address 8-6
translation 8-6f
translation, example of 8-9
Type
6 or 7, invalid data 5-17, E-2
field 2-16
of data 2-16
of page access 8-4
of segment access 8-2
of stack faults 5-20
Type,
checking for valid data and 5-13, 5-16
invalid sign code for data 5-17
return block 5-17
Types of
narrow fault return blocks 5-19
wide fault return blocks 5-18

U

Underflow
condition, stack 4-3
detection, enabling vector stack 7-9
fault,
detecting floating-point 5-15
detecting wide stack 5-20
disabling narrow stack 5-22
disabling wide stack 4-7, 5-20
narrow stack 5-21
Underflow
faults, floating-point 5-15
flag, exponent 3-10
stack operation 5-21
Underflow,
enabling narrow stack 9-2
exponent 3-6
stack 4-7, 5-20, 5-22, E-2
wide stack 4-3
UNEF flag 3-10, 5-15
Unique device, identifying 7-4
Unmapped
memory addressing 1-5
mode 7-3
Unpacked
byte 2-15
decimal 2-15
decimal string 2-16

Unsigned
divide 2-5, 10-26
multiply 2-5, 10-90f
skip if

accumulator greater than immediate, wide 2-8,

10-156

accumulator less than or equal to immediate, wide

2-8, 10-157
ACS greater than ACD, wide 2-8, 10-157

ACS greater than or equal to ACD, wide 2-8, 10-157

Updating

program counter 5-14, 5-20, 5-23

wide stack pointer 5-20

WSP reserved memory location 5-20
Upper

limit of the wide stack 4-3

stack limit 4-2
Upward program compatibility 4-1, 9-1
Using

an accumulator 1-2

device map 7-2

the wide frame pointer 4-3

\4

Valid
address space 2-22
addressing range 8-3
ASCII data type 2-23
byte pointer, skip on 10-116
byte, skip on 2-22
data and type, checking for 5-13, 5-16
decimal data type 2-23
gate 5-11
operations, checking for 5-13
page 8-4, 8-7
page access 8-4
read 8-7
read access 8-5
referenced page 8-7
segment §-3
access 8-2
check 8-3
reference 8-6
word pointer, skip on 2-22, 10-116f
write 8-7
Validate I/O access 8-2
Validation, access 8-7
Validity
bit protection fault code E-1
bit, checking 5-11
flag,
1/0 1-17, 7-2, 8-3
segment 8-2
protection fault,
page table 8-7
segment 8-2
violation, page table or segment 8-13f

Value
identifying fault, setting AC1 with 8-13
of exponent, true 3-2
of P, current 5-18f
Value, absolute 10-42
Variable to constant, comparing DO-loop 5-3
Variable, incrementing a DO-loop 5-3
Variables, storing device dependent 7-12
VBP 2-22, 5-12, 10-116
Vector
interrupt
instruction 7-7
processing 7-7, 7-9
service, concluding 7-11
interrupt,
I/0 2-9
servicing 7-3
servicing base level 7-9, 10-144
servicing intermediate level 7-11ff, 10-143
on interrupting device 10-172
on I/O interrupt 4-8
stack 7-7, 7-9, 7-12
stack fault
address parameter 7-9
fault handler 7-13
limit parameter 7-9
limit, zero-extending 7-9
overflow detection, enabling 7-9
overflow, checking for 7-13
parameters 7-9
pointer, zero-extending 7-9
to lower 128 Kbyte, restricting 7-9
underflow detection, enabling 7-9
stack,
constructing double word for 7-12
loading the 7-9
pushing double word onto 7-12
pushing wide return block onto 7-9, 7-11
table 7-11f
Vectored
gate array 5-11
interrupt handler 7-7, 10-172
Violation
fault
codes E-1
codes, protection E-1
handler, protection 8-13f
fault,
protection 1-8f, 5-13, 8-12ff
servicing protection 8-13f
return block, protection 8-13f
Violation,
access (read, write, and execute) 8-13f
detecting protection 7-2
indirect addressing 1-11, 8-13f
inward reference 8-13f
I/O instruction 8-13f
page table validity 8-13f
privileged 8-13f
protection 1-16, 8-2ff, 8-12ff

Index-45

read access 8-13f
segment
crossing 8-13f
validity 8-13f
write access 8-13f
Violations, multiple protection 8-12
Virtual
memory 8-1
memory, defined 1-6
Voltage ranges, detecting proper power 7-5
VWP 2-22, 5-12, 10-116f

w

WADC 2-4, 10-117
WADD 2-4, 10-117
WADDI 2-4, 10-117
WADI 2-4, 10-117f
WANC 2-13,10-118
WAND 2-13, 10-118
WANDI 2-13, 10-118
WASH 2-6, 10-118f
WASHI 2-6, 10-119
WBLM 2-3, 9-8, 10-119f
WBR 5-2f, 9-10, 10-120
WBStc 5-3f, 6-5, 10-120f
WBTO 2-12f, 9-8, 10-121f
WBTZ 2-12f, 9-8, 10-122
WCLM 2-8, 9-8, 10-122
WCMP 2-23, 9-8, 10-123f
WCMT 2-20, 5-12, 9-8, 10-124f
WCMYV 2-20, 5-12, 9-8, 10-125f
WCOB 2-13, 9-8, 10-126
WCOM 2-13, 10-126
WCST 2-23, 10-126f
WCTR 2-20, 2-23f, 9-8, 10-127f
WDIV 2-5,10-128
WDIVS 2-5, 10-129
WDPOP 2-9, 8-10, 10-129
WEDIT 2-20ff, 4-8, 5-4f, 5-16f, 9-8, 10-129ff, E-2
fault instruction, address of 5-18
subprogram 5-4
WFFAD 3-3f, 3-11, 9-9, 10-131
WFLAD 3-3f, 9-9, 10-131
WFP 4-3, 4-6
WFP,
load accumulator with 4-4, 10-67
store accumulator in 4-4, 8-13f, 10-110
WFPOP 3-4, 3-10f, 4-5, 4-8, 9-9, 10-131f
WFPSH 3-4, 3-10, 4-5, 4-8, 9-9, 10-132f
WFStc 5-3f, 6-5, 10-133f
WHLYV 2-5, 10-134
Wide
add 2-4, 10-117
complement 2-4, 10-117
immediate 2-4, 10-85, 10-117f, 10-173
memory word to accumulator 2-4, 10-85, 10-172
with narrow immediate 2-4, 10-142
with wide immediate 2-4, 10-117
AND 2-13, 10-118

Index-46

AND immediate 2-13, 10-118
AND, with complemented source 2-13
arithmetic shift 10-118f
instructions 2-6
with narrow immediate 10-119
backward search queue and skip 5-3, 6-5, 10-120f
bit addressing format 1-15
block move 2-3, 9-8, 10-119f
branch 9-10, 10-120
character
compare 2-23, 9-8, 10-123f
move 2-20, 9-8, 10-125f
move until true 2-20, 9-8, 10-124f
scan until true 2-23, 10-126f
translate and compare 2-20, 2-23, 9-8, 10-127f
compare to limits and skip 2-8, 9-8, 10-122
complement 10-126
complement (one’s complement) 2-13
count bits 2-13, 9-8, 10-126
data, converting to 2-2
decrement and skip if zero 2-9, 10-86, 10-174
divide 2-5, 10-128
divide memory word 2-5, 10-85f, 10-173
DO until greater than 10-86, 10-173f
edit 4-8, 9-8, 10-129ff
edit of alphanumeric 5-5
exchange 2-3, 10-158
exclusive
OR 2-13, 10-159
OR immediate 2-13, 10-159
extended operation 5-5, 9-10f, 10-102, 10-158
fault return blocks, types of 5-18
fix from floating-point accumulator 3-3f, 3-11, 9-9,
10-131
float from fixed-point accumulator 3-3f, 9-9, 10-131
floating-point
fault 5-15f
pop 3-4, 4-5, 4-8, 10-131f
push 3-4, 4-5, 4-8, 10-132f
forward search queue and skip 5-3f, 6-5, 10-133f
frame pointer 4-2f, 5-6ff, 7-9
frame pointer,
initializing 4-3, 5-11
loading 5-12f
saving 7-9
storing 5-7, 5-11, 5-13, 8-10
using the 4-3
halve (AC/2) 2-5, 10-134
immediate, wide
add with 10-117
load with 10-135
inclusive
OR 2-13, 10-135
OR immediate 2-12f, 10-135
increment
(no skip) 2-4, 10-135
and skip if zero 2-9, 10-87, 10-174
instruction opcodes B-1
instructions F-2

load
accumulator 2-3, 10-87, 10-174
byte 2-20, 9-8, 10-136
integer 9-9, 10-136
integer extended 9-9, 10-136f
map 10-137
sign 2-13, 2-23,9-8, 10-139
with wide immediate 2-3, 10-135
locate
and reset lead bit 2-13, 10-138
lead bit 2-13, 10-137
logical shift 2-14, 10-138
immediate 2-14, 10-139
left immediate 2-14
with narrow immediate 10-138
mask skip and store if equal 10-139f
modify stack pointer 4-4, 5-21, 9-11, 10-141
move 2-3, 10-140
move right 2-21, 10-140
multiply 2-5, 10-141
multiply memory word 2-5, 10-87, 10-175
negate 2-13, 10-142
pop
block 2-9, 4-5, 4-8, 5-5f, 5-8, 5-14, 5-21, 9-10f,
10-143
block and execute 2-9, 4-5, 4-8, 5-8, 5-14, 5-21,
9-10f, 10-143
context block 2-9, 8-7, 8-10f, 10-129
multiple accumulators 2-3, 4-1, 4-5, 4-8, 9-8, 9-11,
10-142
operation 5-20
PC and jump 4-5, 4-8, 5-5, 9-10f, 10-144
push accumulators 2-3, 4-5, 4-8, 9-8, 10-144
restore 2-9, 4-8, 9-10f, 10-144f
restore from an I/O interrupt 4-5, 5-8, 7-7
return 2-9, 4-8, 5-5, 5-8, 9-3f, 9-10f, 10-145
block 4-3, 5-7, 5-20
block for decimal data, type 1 fault 5-18
block onto vector stack, pushing 7-9, 7-11
block, popping 4-3, 5-4, 7-7
block, pushing 5-4, 5-6, 5-12, 5-14ff, 5-18, 5-20
block, standard 4-6
instruction 5-6f, 5-13, 9-3f
via wide save 4-5
save and reset overflow mask 4-5, 5-5, 10-147
save and set
overflow mask 4-5, 5-5, 10-147f
OVK to one 2-9f
OVK to zero 2-9
save instruction 4-3, 5-12
save, wide return via 4-5
save/reset OVK mask 4-8
save/set OVK mask 4-8
set bit to
one 2-13, 9-8, 10-121f
zero 2-13, 9-8, 10-122
signed
divide 2-5, 10-129
multiply 2-5, 10-141

signed skip if ACS
greater than ACD 2-8, 10-149
greater than or equal to ACD 2-8, 10-149
less than ACD 2-8
less than or equal to ACD 2-8, 10-151
skip
if accumulator
equal to immediate 10-149
greater than immediate 2-8, 10-150
less than or equal to immediate 2-8, 10-151
not equal to immediate 2-8, 10-152
if ACS
equal to ACD 2-8, 10-148
not equal to ACD 2-8, 10-152
if equal to immediate 2-8
on accumulator bit
instructions 2-23
set to one 2-8, 2-23, 10-150
set to zero 2-8, 2-23, 10-150
on all bits set in
accumulator 2-8, 10-145
memory 2-8, 10-146
on any bit set in
accumulator 2-8, 10-146
memory 2-8, 10-146
on bit instruction 2-14
on nonzero bit 2-8, 2-14, 9-8, 10-152
on zero bit 2-8, 2-14, 9-8, 10-156
on zero bit and set bit to one 2-8, 2-14, 9-8, 10-156
special save and
reset overflow mask 4-5, 5-5, 9-3, 9-10f, 10-153
set overflow mask 4-5, 5-5, 9-3, 9-10f, 10-153f
set OVK to one 2-9
set OVK to zero 2-9
special save instruction 5-5ff, 9-3f
special save/reset OVK mask 4-8
special save/set OVK mask 4-8
stack 1-4, 4-1, 5-4, 5-6f, 5-12f, 5-15
base 4-2f, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
base, initializing 4-2, 8-10, 8-13f
base, loading 5-11, 5-13
data instructions 4-4
example operation 5-7f
fault 5-20
fault code 5-21, E-1f
fault handler 5-20
fault handler, saving pointer to 7-9
fault handler, writing 5-21
fault operations 5-20
fault pointer, initializing 7-9
fault return block 5-21
fault, servicing 5-20
faults 4-7
for segment zero, redefining 8-10, 8-13f
for temporary storage 5-16
instructions, multi-word 4-8
limit 4-3, 4-7, 5-11, 5-13, 5-20, 7-9, 7-11, 8-10
limit, (also see WSL)
limit register, initializing 8-13f

Index-47

limit,
bit zero of 5-21
initializing 8-10, 8-13f
loading 5-11, 5-13
management 1-4
operation example 5-7
operations 4-1
overflow fault,
checking for 4-3
detecting 5-20
disabling 4-7, 5-20
parameters 4-1
parameters, saving 7-9
pointer 4-2f, 4-7, 5-12, 5-20, 7-9
pointer, (also see WSP)
pointer register, initializing 8-13f
pointer,
bit zero of 5-21
comparing 4-3
decrementing 4-3f
incrementing 4-3f
initializing 4-3, 8-10, 8-13f
loading 5-11, 5-13
saving 7-9, 7-11
setting 4-3
storing 5-11, 5-13, 8-10
updating 5-20
register instructions 4-4
register, initializing 4-2, 4-4
registers 4-2
registers,
initializing 4-4, 7-9, 7-11
saving 7-9
return block instructions 4-5
underflow 4-3
underflow fault,
detecting 5-20
disabling 4-7, 5-20
stack,
initializing 4-3, 4-6
lower limit of the 4-2
pushing arguments onto a 5-7
redefining 5-10f, 5-13
retrieving data from the 4-3
top location of 4-3
upper limit of the 4-3
store
accumulator 2-3, 10-88, 10-175
byte 2-20, 9-8, 10-154
integer 10-154f
integer extended 9-9, 10-155
subtract 2-4, 10-155
immediate 10-88, 10-148, 10-175
memory word 10-88, 10-175f
unsigned skip if
accumulator greater than immediate 2-8, 10-156
accumulator less than or equal to immediate 2-8,
10-157
ACS greater than ACD 2-8, 10-157
ACS greater than or equal to ACD 2-8, 10-157

Index-48

WINC 2-4, 10-135
WIOR 2-12f, 10-135
WIORI 2-12f, 10-135
WLDAI 2-3, 10-135
WLDB 2-20, 9-8, 10-136
WLDI 2-20, 3-3, 5-17, 9-9, 10-136, E-2
WLDIX 2-20, 3-3, 5-17, 9-9, 10-136f, E-2
WLMP 7-3, 10-137
WLOB 2-13, 10-137
WLRB 2-13, 10-138
WLSH 2-14, 10-138
WLSHI 2-14, 10-138
WLSI 2-14, 10-139
WLSN 2-13, 2-23, 5-17, 9-8, 10-139, E-2
WMESS 10-139f
WMOV 2-3, 10:140
WMOVR 2-21, 10-140
WMSP 4-4, 5-21, 9-11, 10-141, E-2
WMUL 2-5, 10-141
WMULS 2-5, 10-141
WNADI 2-4, 10-142
WNEG 2-13, 10-142
Word
address field 1-14f
address,
one-level page table logical 8-6
pushing 4-5
skip on valid 2-22
two-level page table logical 8-6

addressed by WSP, store accumulator in double 4-5

addressing,
format C/350 9-5
formats 1-9
and skip, fixed-point
decrement 2-9
increment 2-9
block in a stack, accessing double 4-4
boundary 1-2, 3-2
for I/O transfer, address of first 7-2
for vector stack, constructing double 7-12
in a stack, accessing double 4-4
in device control table, PSR 7-13
in stack, decrementing 2-21
indirect pointer, single 9-7
of interrupt handler, first 7-7
offset 1-15, 9-5f
onto vector stack, pushing double 7-12
operand 1-2, 1-13
operand, double 1-2, 1-13
pointer 1-15, 5-12
pointer,
converting byte pointer to 2-21
forming 9-5f
single 9-5f
skip on valid 10-116f
to accumulator,
narrow add memory 10-77, 10-166
wide add memory 10-85, 10-172
zero of vector table 7-11

Word,
decrementing interrupt level 7-9
incrementing interrupt level 7-9
load accumulator with double 10-67
loading current interrupt mask 7-12
narrow
divide memory 10-78, 10-167
multiply memory 10-79, 10-168
subtract memory 10-80, 10-169
PSR 8-13
pushing a double 4-3
read high 10-54
reading high floating-point 3-3
testing interrupt level 7-9
wide
divide memory 10-85f, 10-173
multiply memory 10-87, 10-175
subtract memory 10-88, 10-175f
Words required beyond
WSL for stack fault 4-8
WSL, number of 4-8
Words, reserved memory 5-20
WPOP 2-3, 4-1, 4-5, 4-8, 9-8, 9-11, 10-142
WPOP, popping with 4-5
WPOPB 2-9, 4-5, 4-8, 5-5f, 5-8, 5-14, 5-21,9-10f, 10-143
WPOPB, returning with 4-5, 5-6
WPOP]J 4-5, 4-8, 5-5f, 9-10f, 10-144
WPOPJ, popping with 4-5
WPSH 2-3, 4-1, 4-5, 4-8, 9-8, 9-11, 10-144
WPSH, pushing with 4-5
Wraparound,
address 1-4f, 5-1, B-1
narrow stack pointer 5-22
program counter B-1
Write
access 1-9
flag 8-5
violation 8-13f
command to device map, issuing 7-3
data, accessing page to 8-4
operation 8-11
operation, memory 8-5
violation fault code E-1
Write, valid 8-7
Writing
narrow stack fault handler 5-23
to memory 8-7
wide stack fault handler 5-21
WRSTR 2-9, 4-5, 4-8, 5-8, 7-7, 9-10f, 10-144f
WRTN 2-9, 4-4f, 4-8, 5-5ff, 5-13, 9-3f, 9-10f, 10-145
WSALA 2-8, 10-145
WSALM 2-8, 10-146
WSANA 2-8, 10-146
WSANM 2-8, 10-146
WSAVR 2-9, 4-5, 4-8, 5-5ff, 10-147, E-2
WSAVR, executing 5-13
WSAYVS 2-9f, 4-5, 4-8, 5-5ff, 10-147f, E-2
WSAVS, executing 5-13
WSB 4-2

WSB,
load accumulator with 4-4, 10-67
store accumulator in 4-4, 10-111
WSBI 2-4, 10-148
WSEQ 2-8, 10-148
WSEQI 2-8, 10-149
WSGE 2-8, 10-149
WSGT 2-8, 10-149
WSGTI 2-8, 10-150
WSKBO 2-8, 2-23, 10-150
WSKBZ 2-8, 2-23, 10-150
WSL 4-3
WSL for stack fault, words required beyond 4-8
WSL,
load accumulator with 4-4, 10-67
number of words required beyond 4-8
setting
bit zero of the 5-20
WSP equal to 5-20
store accumulator in 4-4, 10-111
WSLE 2-8, 10-151
WSLEI 2-8, 10-151
WSLT 2-8, 10-151
WSNB 2-8, 2-14, 9-8, 10-152
WSNE 2-8, 10-152
WSNEI 2-8, 10-152
WSP 4-3
equal to WSL, setting 5-20
reserved memory location, updating 5-20
WSP,
decrement double word addressed by 2-9, 4-5, 10-34
increment double word addressed by 2-9, 4-5, 10-64
load accumulator
with 4-4, 10-67
with double word addressed by 4-5
modifying 4-4
setting bit zero of the 5-20
store accumulator
in 4-4, 10-111
in double word addressed by 2-3, 4-5
storing contents of 8-13f
WSSVR 2-9, 4-3, 4-5, 4-8, 5-5f, 5-21, 9-3f, 9-10f, 10-153,
E-2
WSSVR/WRTN, replacing SAVE/RTN with 9-4
WSSVS 2-9f, 4-3, 4-5, 4-8, 5-5ff, 5-21, 9-3f, 9-10f,
10-153f, E-2
WSSVS/WRTN, replacing SAVE/RTN with 9-4
WSTB 2-20, 9-8, 10-154
WSTI 2-20, 2-23, 3-3, 5-17, 9-9, 10-154f, E-2
WSTI, destination indicator for 5-18f
WSTIX 2-20, 3-3, 5-16f, 9-9, 10-155, E-2
WSUB 2-4, 10-155
WSZB 2-8, 2-14, 9-8, 10-156
WSZBO 2-8, 2-14, 9-8, 10-156
WUGTI 2-8, 10-156
WULEI 2-8, 10-157
WUSGE 2-8, 10-157
WUSGT 2-8, 10-157
WXCH 2-3, 10-158
WXOP 4-5, 4-8, 5-5f, 9-10f, 10-102, 10-158

Index-49

WXOR 2-13, 10-159
WXORI 2-13, 10-159

X

X instruction prefix 1-11
XCALL 2-9, 4-4ff, 4-8, S-4ff, 10-159f
XCALL count 4-6

XCH 2-3, 10-160

XCT 5-1f, 10-160f

XFAMD 3-6, 9-9, 10-161
XFAMS 3-6, 9-9, 10-161
XFDMD 3-8, 9-9, 10-161
XFDMS 3-8, 9-9, 10-162
XFLDD 3-4, 9-9, 10-162
XFLDS 3-4, 9-9, 10-162
XFMMD 3-7, 9-9, 10-163
XFMMS 3-7, 9-9, 10-163
XFSMD 3-7, 9-9, 10-163
XFSMS 3-7, 9-9, 10-164
XFSTD 3-4, 9-9, 10-164
XFSTS 3-4, 9-9, 10-164
XJMP 5-2, 7-7, 9-10, 10-165
XJSR 5-4ff, 9-3f, 9-10, 10-165
XLDB 2-20, 9-8, 10-165
XLEF 2-12ff, 2-21, 9-10, 10-165
XLEFB 2-21, 10-166
XNADD 2-4, 10-166

XNADI 2-4, 10-166

XNDIV 2-5, 10-167

XNDO 5-3, 10-167

XNDSZ 2-9, 9-8, 10-167

VAIICZ 2" 0O 0_0 1Nn_1£0
NALINIO L L=74 770, 1U-1U0

XNLDA 2-3,9-8, 10-168
XNMUL 2-5, 10-168

XNSBI 2-4, 10-168

XNSTA 2-3, 9-8, 10-169
XNSUB 2-4, 10-169

XOPO0 9-10f, 10-169f

XOR 2-12f, 10-170

XORI 2-13, 10-170

XPEF 2-21, 4-5, 4-8, 5-7, 10-171
XPEFB 2-21, 4-5f, 4-8, 10-171
XPSHJ 4-5, 4-8, 5-5f, 9-10f, 10-171
XPSHJ, pushing with 4-5

XSTB 2-20, 9-8, 10-171

XVCT 2-9, 4-8, 7-7, 9-10, 10-172
XVCT displacement 7-11
XWADD 2-4,10-172

XWADI 2-4, 10-173

XWDIV 2-5, 10-173

XWDO 5-3, 10-173f

XWDSZ 2-9, 10-174

XWISZ 2-9, 10-174

XWLDA 2-3,10-174

XWMUL 2-5, 10-175

XWSBI 2-4, 10-175

XWSTA 2-3, 10-175

XWSUB 2-4, 10-175f

Index-50

z

Z flag, setting (true zero flag) 3-8, 3-11
Zero
bit and set
bit to one, skip on 9-5f, 9-8, 10-115f
bit to one, wide skip on 9-8, 10-156
to one, skip on 9-8
bit,
skip on 9-8
wide skip on 9-8, 10-156
extend 16-bits to 32-bits 2-2, 10-176
flag, mantissa divide by 3-11
suppression, move numeric with 10-30
Zero,
crossing to segment 7-9, 7-11, 8-13f
decrement and skip if 9-8, 10-34
divisor equals 3-11
extended decrement and skip if 10-36
impure F-2
increment and skip if 10-64
narrow decrement and skip if 9-8, 10-78, 10-167
narrow increment and skip if 9-8, 10-79, 10-168
page 4-2, 5-10f, 5-13, 5-20, 5-22f, 8-10, 8-13f
redefining wide stack for segment 8-10, 8-13f
segment 3-8, 5-13, 7-6f, 7-9, 7-11, 8-2, 8-10, 8-13f
set
bit to 9-5ff, 10-10f
carry to 10-18

T to 10-34
skip

if 4-5

on (Z = 1) 3-9, 9-5ff, 10-55, 10-115
true 3-6, F-2
wide

decrement and skip if 10-86, 10-174

increment and skip if 10-87, 10-174

set bit to 9-8, 10-122

skip on accumulator bit set to 2-23, 10-150
Zero-extending vector stack limit and pointer 7-9
Zero-extends 1-11
ZEX 2-2,10-176

¢vDataGeneral

grcup Installation Membership Form

O System House

Name Position Date
Company, Organization or School
Address City Zip
Telephone: Area Code No.
0O OEM O Batch (Central)
0O End User O Batch (Via RJE)

0O On-Line Interactive

CUT ALONG DOTTED LINE

0O Government

Qty. Installed | Qty. On Order O RSTCP O CAM
0O HASP 0O 4025
O RJE8O 0O Other
0O SAM
Specify
e]

a A0S 0O RDOS
a pos O RTOS From whom was your machine(s)
purchased ?
0O SOS O Other
_ O Data General Corp.
Specify O Other
Specify
0O Algol O Assembler
0O DG/L O Interactive Are you interested in joining a
O Cobol O Fortran special interest or regional

O ECLIPSE Cobol O RPG Il Data General Users Group ?

O Business BASIC O PL/1
0O BASIC O Other

O

Specify

¢»DataGeneral

Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911

FOLD FOLD
TAPE TAPE
FOLD FoLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢y DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

‘«wz ALONG DOTTED LINE

¢vDataGeneral

TP

TIPS ORDER FORM
Technical Information & Publications Service
BILL TO: SHIP TO: (if different)
COMPANY NAME COMPANY NAME
ADDRESS ADDRESS
CITY CITY
STATE ZIP STATE ZIP
ATTN: ATTN:
QTY | MODEL # DESCRIPTION PrIcE | DR ey
(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL
TaxExempt #____ Sales Tax
or Sales Tax (if applicable) -
Shipping
TOTAL

METHOD OF PAYMENT

O Check or money order enclosed
For orders less than $100.00

O Chargemy [1Visa [MasterCard
Acc’tNo.__ Expiration Date

0 Purchase Order Number:

O
O

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

SHIP VIA
DGC will select best way (U.P.S or Postal)

Other:
O U.P.S. Blue Label
O Air Freight

O Other

Person to contact about this order Phone Extension
Mail Orders to: Buyer’s Authorized Signature Date
Data General Corporation (agrees to terms & conditions on reverse side)
Attn: Educational Services/TIPS F019
4400 Computer Drive _
Westboro, MA 01580 Title
Tel. (617) 366-8911 ext. 4032
DGC Sales Representative (If Known) Badge #

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

ecuggliees’

012-1780

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE
TERMS AND CONDITIONS

Data General Corporation {(“DGC”) provides its Technical Information and Publications Service (TIPS) solely in accordance with the following
terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order Form shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Form shown on the reverse hereof Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Terms are net cash on or prior to delivery except where satisfactory open account credit is established, in which case terms are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC normally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Form. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until terminated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the terms and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the terms and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TU, WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC-
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN-
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC'’s acceptance of the referenced Educational Services Order
Form. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These terms and con-
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi-
tional terms and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES
DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.

¢»DataGeneral

G14-000704-02

Data General Corporation, Westboro, MA 01580

Copyright ¢ Data General Corporation. 1983

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	06-01
	06-02
	06-03
	06-04
	06-05
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-001
	10-002
	10-003
	10-004
	10-005
	10-006
	10-007
	10-008
	10-009
	10-010
	10-011
	10-012
	10-013
	10-014
	10-015
	10-016
	10-017
	10-018
	10-019
	10-020
	10-021
	10-022
	10-023
	10-024
	10-025
	10-026
	10-027
	10-028
	10-029
	10-030
	10-031
	10-032
	10-033
	10-034
	10-035
	10-036
	10-037
	10-038
	10-039
	10-040
	10-041
	10-042
	10-043
	10-044
	10-045
	10-046
	10-047
	10-048
	10-049
	10-050
	10-051
	10-052
	10-053
	10-054
	10-055
	10-056
	10-057
	10-058
	10-059
	10-060
	10-061
	10-062
	10-063
	10-064
	10-065
	10-066
	10-067
	10-068
	10-069
	10-070
	10-071
	10-072
	10-073
	10-074
	10-075
	10-076
	10-077
	10-078
	10-079
	10-080
	10-081
	10-082
	10-083
	10-084
	10-085
	10-086
	10-087
	10-088
	10-089
	10-090
	10-091
	10-092
	10-093
	10-094
	10-095
	10-096
	10-097
	10-098
	10-099
	10-100
	10-101
	10-102
	10-103
	10-104
	10-105
	10-106
	10-107
	10-108
	10-109
	10-110
	10-111
	10-112
	10-113
	10-114
	10-115
	10-116
	10-117
	10-118
	10-119
	10-120
	10-121
	10-122
	10-123
	10-124
	10-125
	10-126
	10-127
	10-128
	10-129
	10-130
	10-131
	10-132
	10-133
	10-134
	10-135
	10-136
	10-137
	10-138
	10-139
	10-140
	10-141
	10-142
	10-143
	10-144
	10-145
	10-146
	10-147
	10-148
	10-149
	10-150
	10-151
	10-152
	10-153
	10-154
	10-155
	10-156
	10-157
	10-158
	10-159
	10-160
	10-161
	10-162
	10-163
	10-164
	10-165
	10-166
	10-167
	10-168
	10-169
	10-170
	10-171
	10-172
	10-173
	10-174
	10-175
	10-176
	1-07
	1-08
	1-09
	1-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	B-01
	B-02
	C-01
	D-01
	E-01
	E-02
	F-01
	F-02
	F-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Index-31
	Index-32
	Index-33
	Index-34
	Index-35
	Index-36
	Index-37
	Index-38
	Index-39
	Index-40
	Index-41
	Index-42
	Index-43
	Index-44
	Index-45
	Index-46
	Index-47
	Index-48
	Index-49
	Index-50
	replyA
	replyB
	replyC
	replyD
	xBack

