+55+

LI)
$
$

& P R Y B P&

$
3
b
¥
$
$
§

USER=MTA QU
SEQ=135 QPRI=200 LPP=

CREATED:
ENQUEUED:
PRINTING:

559889

[IR o -

EUE=LPT

DEVICE=adLPA

635 CPL=80 COPIES=1 LIMIT=150

22=MAR=78
22=MAR=78
22=-MAR=78

11:03:50
14:06:46
14:23:18

PATH=:UDD:MTA:DOCUMENT,.LS

$5% $58% $83

$
$
¥
)
$
3

@B BB
& BB & B
& & P B
[I
L - o -
PG ERR

¥
$58% $%% $5% 583

R BT PP P
& &
&F R PP

35553
3

3
3599
$

3
35888

% I 58583 & 338
% % $ $ 3 3
$ 8% $ b 3

$ 33 $ ¥ $%%
$ $ $ k> $
k) ¥ $ $3 ¥ b $
¥ 3 b % 5888 583

+55+

A0S XLPT REV 01,00

CHAPTER 1 = Data Types and Formats . . .

1.1 Basic Allowable Types e o e s e
1.1.1 Floating Point . . . - - .
1.1.2 Fixed
1.1.3 Boolean .,
1.1.4 String . . . »
1.1.5 Commercial « & « & & o o o
1.1.6 Bit Numerics

le2 RoOUNdINgG & o « & o o o s o o

CHAPTER 2 = Addressing . . . « . . .

Address Structure ° .

2.1 L]
2.2 Architecturally Defined Registers .
2.3 Data Address Formation . « o ¢ o
2.3.1 Based Data References « « =«
2.3.2 Absolute Data Keferences . .
2.3.3 Register Data References , .
2.3.4 Local Variable Data References .
2.3.5 Argument Data References . .«
2.3.,6 Literal Data References v s e
2.4 Operand References e s e s e
2.4.1 Fixed=point Operand References .
2.4.,2 Floating=point Operand References
2.4.3 Boolean Uperand References « .
2.4.,4 Bit=numeric Operand References .
2.4,5 String Operand References » =«
2.4.,6 Decimal UOperand References e e
2.5 Procedure Addressing « « e« ¢ o
25,1 Procedure Indirection .« +« «
2.5.2 Gate ArraY . . . -
2.6 Stack Structure e o 2 s o e @

CHAPTER 3 = Instruction Set o s @ . e

341 IntFOdUCtion ™ - . . . » . .
3.2 Opcode Format =« + o & o o s &
3,3 Arithmetic and Related Uperations .
3.4 Strings
3‘5 Bit L] L * . L] L] L] L J L . L]

3.5.1 Boolean ., -

3.5.2 Mu,ti-bit - . . . 'y . . .

3.5.3 Bit Numeric e e s s e e «
3.6 Stack Manjpulation s = e » = @
3,7 Transfer of Control « « o « o &

3,7.1 Entry and Exit e = e o s e

3.7.2 Vanilla Jumps

3,7.3 Dispatches « 2 o =+ @« o o =
3,8 Conversion « « @« o s ®* s s &
3.9 Loop Control e o o & s s e =
3.10 SemaphOPeS
3.11 Reserved Instructions . « &« o
3.12 System control e e e s s s »
3,13 Input/0utput o« « o o o o o
3,14 Miscellaneous « o o » o o o o

CHAPTER 4 = Interrupts and TrarsS « « « o

L] L] L] » » L] L] - L] » » * L] . - - L] L] [] L]

L] L] L] L] . L] t] f] L] L] * L] [] » L RN 1 - L] E] .

* » » »] * E] L]] L] L] L] » E] £ E] L] » * .

L] £] L * - L] L] - L I | L] L] » L] L] L] L] L] L] L]

- L] » L] L] E] - L] L] L] L] L] L] L] L] L] L] L] L] E]

L] L] L] L] » L] L] - [] L] » - L] . L] . . * L] J

[] [] L] L] L L] L] L] L] L] * L] L] L] . L] 2 L] L] »

» » L] * - . L] L] L] > * o L] * * » L]] * L]

—
1
-

O A ol o i o
[I I I D D D B |
EEENMNUN - -

1
—

| I I N RS R R I]
- 00 0O IDNN LW

AV \VE VI \ VI \VIE \VIL \VIR VIR \CJE \ VIR \VIE \ VI \) v

1 1 3 1 1
—

L

lelblbiblbtglbiblblbl W
1

e OO0 D O e

Feey

W N

1 1 1
[S
Vi

3=16

W
1

-

~i

3=-18
3=18
3-18
3=-19
3=20

4=1

4,1 General e o e »

5 Procedure Traps « =« o
S.1 Floating/Fixed Point
5.2 Commercial String .
503 Trace
5.4 User Traps o+ «

6 Process Traps s e e
1 Faults s s« e

2 Unimplement Opcode

3 Data General Reserved

nterrupts e s e s

6
6
6

L * L L] » L] »] 2 L] L]
- » L] - * » - » L] L] »
- » E] - » » L] £] .- » .
2 & B ° 8 » s 9 2 3 3
- 2 L] L] L] » L] L] L] » L]
L] L L] L] 2 L] L] » * L] .
L] .] * L] L] » L] L] * L]
L] * - L] . L] - 2 ® £] L]

71

CHAPTER S - ProtQCtion »

S.l Genera] - L L] * L] L] L] . L] L L] L] .
5.2 Ring Maximization « « o« & o o« & o o
5.3 Determination of the Current Ring of Execution
S.q StQCKs L] - L] [] * L] » » - L L] L] L
5.5 BASE REGISTER MODIFICATIONS t e s e« = =
5.6 PROGRAM COUNTER RELATIVE e & e s e e =

‘ CHAPTER 6 = Memory Mamagement . o + o o« o = »

CHAPTER 7 = [/0 System »

CHAPTER 8 = Availability/Reliability/Maintainability

801 Overview -
8,2 MTA Diagnostic Control Processor Objectives .

CHAPTER 9 = Measurement and Debug AidsS « « « o @

L] * - L] L * L] * L] » -

s © B2 ° 9 o

s & 5 @ = » 55 B 4 2 »

t:blht:kl:t:hi?f:b
1 1
NSNNNTUVTNTE B e

1
o,

]
NN -

(R R RV RV RY U
L]

o :3Eo 2} w
s

CHAPTER 1| = Data Types and Formats

l.1 Basic Allowable Types

In this architecture, a word has 4 bytesi a half wora has 27 a
character, one. Double precision refers to Z2=word gquantities;
single precision refers to l=word quantities, This chapter enu=
merates the data types supported by the architecture, and describes
the formats they take while residing in system memory.

1.1.1 Floating Point

Real numbers are represented in standard Data General (and
IBM) format.,.

Figure 1=1, "Floating Point Format"
Both single precision and double precision will be suported.,

lele2 Fixed

Fixed point numbers are supported in 2°s complement integer
representation. Direct support is provided for 8=, lé~-, 32=, and
64=bit container sizes.,

Figure 1~2, "Fixed Point Format"

10:11:18
22/Mar/78
) Rth e
Daeta General Corporation
Company Confidential

1.1.3 Boolean 1=2

1.1.3 Boolean

Boolean values occupy a one bit container and have the value
Zero or one.
1.1.4 String

Byte strings of lengths from 1 to 2*%x15 bytes are supported in

the architecture., A string descriptor is associated with each byte
string.

Figure 1=3, "String Format"

1.1.5 Commercial

The architecture provides direct support for the data types
listed beliow:?

* Unpacked decimal, low=order sign/overpunch
* Unpacked decimal, high=order sign/overpunch
* Unpacked decimal, trailing sign

* Unpacked decimal, leading sign

* Unpacked decimal, unsigned

* Packed decimal (IBM format)

* Binary integer, signed

* Bimary integer, unsigned

Eighteen digits of precision are supported, The formats are as
follows:

10:11:18
22/Mar/78
Rev. 2
Data General Corporation
Company Confidential

1.1.5 Commercial 1=3

Figure 1=4, "Unpacked decimal, low=order sign/overpunch"

Figure 1=5, "Unpacked decimal, high=order sign/overpunch"

Figure 1=6, "Unpacked decimal, trailing sign"

Figure 1=7, "Unpacked decimal, leading sign"

Figure 1=8, "Unpacked decimal, unsigned"

Figure 1~9, "Packed decimal"

10311218
ee/Mar/78
Rev. 2
Data General Corporation
Company Confidential

1.1.5 Commercial 1=4

Figure 1=-10, "Binary integer, signed"

Figure 1=11, "Bimary integer, unsigned"

A commercial descriptor is always accociated with a commercial
Word-

1.1.6 Bit Numerics
The architecture supports the manipulation of a string of
consecutive bits for 1 to 32 bits. When the operation specified

calls for a numeric value, the bit string is considered to be 1in
two’s complement form,

1.2 Rounding

Two guard digits are provided for floating point operations,
with the following rounding modes provided:

* Truncation

* Round toward zero.

* Round away from zero,

* Round toward plus infinity.
* Roung toward minus infinity.
* Unbiased round,

Truncation is the only legal form of rounding in implimenta=
tions with only a single guard digit. A trap will occur if another

10211218
ee/Mar/78
N Rev. 2
Data General Corporation
Company Confidential

1.2 Rounding 1-5

form of rounding is specified.

==FEnd of Chapter==

10211218
22/Mar/78
) Rev, 2
Data General Corporation
Company Confidential

CHAPTER 2 =~ Addressing

2.1 Address Structure

The MTA architecture supports an address space of 512 Mbytes
(Mbyte = 2%%20 byté%,divided into 128 segments, each containing up
to 4 Mbytes. A segment can contain either procedure or data,

The basic addressing granularity is to the byte, although bit,
byte, word (32 bits), half=word (16 bits) and double word (64 bit)
operations are defined, The address mechanism of the memory system
is always presented with @ virtual address comprised of segment and
byte offset within the segment, This logical address is 29 bits in
length, (See Memory Management Chapter for a detailed description
of memory management and the translation of the logical address to
2 physical address).

2.2 Architecturally Defined Registers

The processor contains the following registers for use with
the standard instruction set?

* Base Registers (BR) - The 8 base registers are 32 bits
wide, Their contents are interpreted as follows:

I RING | SEGMENT | BYTE OFFSET |
0 23 9 10 31
| Ko BYTE POINTER ==>|

In the above format, the three bit ring field provides
protection information, while the segment and byte offset
fields comprise a 29 bit byte pointer.

Four base registers are allocated to the following
architectural pointers:

10211218
2e/Mar/78
Rev. @2
Date General Corporation
Company Confidential

2.2

Architecturally Defined Registers =2

BRO = Program Counter (PC)

BR1 = Frame Pointer (FP)
BR2 = Argument Pointer (AP)
BR3 = Global Pointer (GP)

The PC can only be modified as a result of @a branch type
instruction, BR! through BR7 can only be modified by
pointer=specific instructions, Violation of these restric=
tions is signalled by a specification error.

General Registers (GR) = Eight 32-bit registers are defined
for use in indexing and temporary storage. 64~bit entities
may only be moved to an even=odd pair of GR’s; this provi=
des four b64=bit registers (DPG, ODPl, DP2, DP3). String
operands and commercial operancs may not be referenced in a
GR., Bit numeric types may only be moved to or from a GR

using the bit numeric move instructions with a2 length field|

less than Eﬁ?ﬁ 32 bits.

Interrupt S%%%ngd%egister (ISR) = This 17 bit register
contains an interrupt disable bit (interrupts are inhibited
when this bit is set) , anad 16 bits specifying which
interrupts will be honorea if interrupts are enabled.

User Status Resister (USR) = The User Status Register
contains user relevant status in the following format:

I COND |
I<BITS=>|

1011i2i31 IRNDI ITEICEIAE!

01234578 12 13 14 15

In this register, bits 0 = 3 are condition bits C(CBO, C(CB1,
CB2, and CB3, respectively. They are altered at the

conclusion of each instruction in a predefined
fashion, Bits 5 = 7 specify the rounding mode of the
arithmetic unit. Chapter 2 details the rounding

modes. Bits 13 = 15 enable (or disable) the trace,

10:211:18
2é/Mar/78
Rev. 2
Data General Corporation
Company Confidential

<

o

2.2 Architecturally Defined Registers e=3

commercial, and arithmetic traps respectively. All bits not
specified are reserved by the architecture, and must be
cleared to zero.

* Stack Pointer (SP) -~ This register contains an address
which points to the last filled location on the top of the
current stack. The format of the 8P is identical to that
of a BR. A complete definition of the stack mechanism s
provided later,

2,3 Data Address Formation

An in=line data reference is self=describing and falls into
one of six categories:

a) based,

b) absolute,

c) register,

d) local variable,
e) argument, and

f) literal.

When indirection is specified (i.e. the bit labeled "a" is set),
the in=line reference points to a 32=bit intermediate addaress which
points to the desired operand; multiple~level indirection 1is not
provided. An intermediate address has the following format:

I RING | SEGMENT | BYTE OFFSET |
0 e 3 9 10 31
| == BYTE POINTER ==>|

10211:18
2¢/Mar/78
Rev,., 2
Data General Corporation
Company Confidential

2.3

bata Address Formation e~4

2.3.1 Based Data References

The following formats are used for based address generation:?

Format

Format

Format

Format

Format

Format

Format

BO

B1

Be

B3

B4

BS

Bé

Il OlalliBR*I1 01

012345617

i1 112l BR | DISPC(10) i

0123 5 6 15

10 1@l DISP(S) | GR | BR | ORDI

0123 78 10 11 13 14 15
1 0lal BRrR i1 11 DISP(16) i
0123 S67 8 25

i1 0ia10 0 0 1 0t GR | ®BR | ORD | DISP(leT

0123 7810 11 13 14 15 16 31

i1 OlaiO 1 0 1 OF 0001 BR | 000 | 00IDISP(22)I

0123 78 10 11 13 14 15 16 18 39

i1t 0lal0 1 01 01 GR I BR | ORD | 10IDISP(22)I

0123 76 10 11 13 14 15 16 18 39

10:11:18
22/Mar/78
‘ Rev. l
Data General Corporation
Company Confidential

2.3.1 Based Data References 2=5

Every format specifies a BR (format B0 can only specify BR4,
BRS, BRé6é, or BR7) while some formats also specify a GR ana/or a
twos=complement byte displacement. When PC relative addressing 1is
specified (the specified BR is BR0O), the value of the PC used 1in
the address resolution is the address the the instruction’s first
opcode byte.

Each based data reference is resolved into an effective byte
address consisting of two fields: a 7=bit effective segment, and a
22=bit effective byte offset. The effective segment is simply the
segment number (bits 3=-9) of the byte pointer contained in the
specified BR., The effective byte offset 1s computed usung the
following terminology?

(BR(X,Y)] represents bits X through Y of the
contents of the specified BR

[GR(X,Y)] represents bits X through Y of the
contents of the specified GR

DISP(X) represents the X bits of the w " LLGJLS
»

specified displacement, €ﬁ)f ex

ORD represents the contents of the
specified ordinal multiplier

ok k% represent twos~complement addition,
multiplication, and exponentiation,
respectively,

The formulas for determining the effective byte offset are:?

10311:18
22/Mar/78
| Rev. 2
Data General Corporation
Company Confidential

2.3.1 Based Data References 2=b

Format Effective Byte Offset
B0 [BR*(10,31)]
B1 (BR(10,31)1 + DISP({Q)
Be (BR(10,31)] + ;ISP(S) + [GR(10,31)]1*x(2x*0RD)
B3 (BR(10,31)] + DISP(16)
B4 [(BR(10,31)) '+ DISP(16) + [GR(10,31)]1*(2%x%x0RD)
B85 [BR(10,31)) + DISP(22)
B6 (BR(10,31)] + DISP(22) + I[GR(10,31))*(2*x0RD)

Formats Be, B4, and Bé provide indexed addressing by incorpor=
ating the contents of a GR 1in the effective byte offset
computation. The two=bit ORD field permits ordinal addressing of
elements in an array by specifying that the contents of the index=
ing GR be multiplied by a constant to account for element Jength,
The original GR contents are not modified,

When indirection and indexing are both specified,
post=indexing occurs. The intermediate address is located by:

Effective segment = [BR(3,9)]

Effective byte offset = [BR(10,31)]1 + DISP

When the intermediate address has been fetched, the operand address
is computed as:

10:11:18
2e/Mar/78
Rev. 2
Data General Corporation
Company Confidential

2e3.1 Basea Data References 2=~7

Effective segment = INT(3,9)
Effective byte offset = INT(10,31) + [GR(10,31)]x(2%x%x0RD)

where INT(0,31) is the intermediate address

2.3.2 Absolute Data References

The following format is used for absolute address generation:

i1 0lawl0 1 1 1 O RING | SEG i UFFSET |

0123 78 10 11 17 18 39

2.,3.3 Register Data References

The BRs and GRs are addressed using the following formats:

11 0 0F BR 10 11

0 23 567

It 0 1i GR 10 11

0 2 3 567

10211218
2e/Mar/78
_ Rev. ¢
Data General Corporation
Company Confidential

Ce3.4 Local Variable Data References =8

2.3.4 Local Variable Data References

Local variables in the stack frame can be addressed using the
following format:

16 0 11 Lv# I

012345617

The LV# field is interpreted as a word offset relative to BR1,
the frame pointer., Thus, the effective byte offset is computed by
multiplying the LV# field by 4 (forming a byte displacement) and
adding it to the byte offset contained in FP,

2.3.5 Argument Data References

Arguments passed to a subroutine are addressed wusing the
following format:

Il Olal ARG#I0 01

LI E LY LR X3]

0123456867

The ARG# field is interpreted as a word offset relative to
BRZ, the argument pointer., Thus, the effective byte offset 1is
computed by multiplying the ARG# field by 4 (forming a byte
displacement) and adding it to the byte offset contained in AP.

2e3.6 LLiteral Data References

10211218
22/Mar/78
Rev. ¢
Data General Corporation
Company Confidentijal

2e3.6 Literal Data References =9

In=line literals are generated by operand references of the
following formats:

Format L1 16 0 01 LITC(3) |
0 e 3 7

Format L2 1100001 1 0F LIT(X) i
0 78 15

The length of the literal contained in format L2 is defined as the

length of the data type assqciate ith the instruction’s opcode.
Possible lengths are 1, Zp(gf)orCf:ﬁytes.

@

(o]

2.4 Operand References

An operand is specified by one, two, or three data references,
depending on its data type.,

2.4.1 Fixed=point Operand References

A fixed=point operand is specified by a single data reference.

2elia2 Floating=point Operand References

A floating=point operand is specified by a single data
reference.

10511218
ée/Mar/78
Rev, ¢
Data General Corporation
Company Confidential

Celiad Boolean Operand References 2=10

2.4.3 Boolean Operand References

A boolean operand is specified by two data references. The
first reference is a byte pointer to the pese of a bit table; the
second data reference provices a 32-bit bit offset from the base,
The two references are referred to as a bit=ref.

Cellaldd Bit=numeric Uperand References

A bit=numeric operand is specified by three data references.
The first two are a byte pointer and bit offset, as for a boolean
operand. The third data reference provides the 5=bit operand
bit=length (in an 8=bit container). The three references are
referred to as a bit=numeric=ref.

2.4.5 String Operand References

A string operand is specified by 2 single data reference,
which points to a two=word string descriptor having the following
format:

0 2 3 9 10 31

I RING | SEGMENT | BYTE OFFSET i

I MAXIMUM=LENGTH | CURRENT=LENGTH |

0 15 16 31

The descriptor’s first word is the absolute address of the
first byte of the stringe. Twos=complement maximum~length and
current=length fields are contained in the descriptor’s second
word, Reference to and modification of these fields 1is specified
by the instruction being executed,

10311218
22/Mar/78
Rev. 2
Data General Corporation
Company Confidential

2.4,6 Decimal Operand References e=11

2e4.6 Decimal Operand References

A decimal operand is specified by two data references, The
first is a pointer to the first byte of the operand; the second
provides a 3=bit type and a S=bit length in the following format:

I TYPE | LENGTH |

0 23 7

The type field is encoded as:

Description

-
~
T
[]

Packed decimal (IBM format)

Unpacked decimal, low=order sign/overpunch
Unpacked decimal, high=order sign/overpunch
Unpacked decimal, trailing sign

Unpackeo decimal, leading sign

Unpacked decimal, unsigned

Binary integer, signed

Binary integer, unsigned

NOVTEWN - O

The two data references comprising a decimal operand reference are
referred to as a decimal=ref.

2.5 Procedure Addressing

The following formats are used to generate a procedure
address?

Format PO 101 DISP(7) |

10:11:18
22/Mar/78
Rev. @2
Data General Corporation
Company Confidential

Format

Format

Format

Format

Format

Format

P1

P2

P3

P4

PS

Pé6

Procedure Addressing =12

i1 Ulal ARG#I10 01

0123 6 7

11 Olalli*BRI1 O]

01234567

it tiel BR | DISP(10) i

0123 5 6 15

i1 Olal BR 11 11 DISP(16) |

012345678 23

1100001 1 0l SEGC7)I GATE(9) |

LA A X XXX N XL E N L F L X LA K KX E X XX L EJ X X ¥ J

0 78 23

11 01810 0 0 1 01 GR | BR IORDIDISP(16)1

0123 78 10 11 13 14 1le 31

10s11:18
ée/Mar/78
Rev. 2
Data General Corporation
Company Confidential

2.5

Format

Format

Format

Format

Format

Format

P7

P8

P9

P10

P11

Ple

Procedure Addressing =13

1 0tai0 1 01 01 000 + BR | 001001LISP(22)I

0123 78 10 11 13 14 16 18 39

11 0lal0 1 0 1 01 GR | BR IORDIL1OIDISP(22)I

012345061728 10 11 14 16 18 39

T1 01a@l0 1 1 1 0i 000 | 0000000 |IOFF(22) |
0 7 8 10 11t 18 39
11 0lal0 1 1 1 01 001 | 0000000 IDISP(22)I
0 7 8 10 11 18 39
11 01210 1 1 1 01 010 | SEG(7) IUFF(22) |
'ﬂ-----'ﬂ--ﬂ-'-.--ﬂﬂ-n--"ﬂ"—---ﬂﬂ-"-ﬂ----‘
0 7 8 10 11 18 39
11 01@10 1 1 1 01 011 | SEG(7) IGATEC(22) 1
0 7 8 10 11 18 39

Each procedure address is resolved into an effective byte

address consisting of two fields: a 7=bit effective segment, ang a
2é=bit effective byte offset, This resolution occurs differently

10311218
2e/Mar/78
Rev, &
Data General Corporation
Company Confidential

2.5

for each format:

Format

PO
P1
Pe
P3
P4
PS5
P6
P7
P8
P9
P10
P11
P12

Effective
Segment

(PC(3,9)]
[AP(3,9)]
(BR(3,9)]
[(BR(3,9)]
(BR(3,9)]
SEG(7)

(BR(3,9)]
(BR(3,9)]
(BR(3,9)]
[(PC(3,9)]
(PC(3,9)]
SEG(7)

SEG(7)

Procedure Addressing

Effective
Byte Offset

(BRO(C10,31)) + DISP(7)
(BR1(10,31)) + (AKG® * 4)
(bRx(10,31)])

(BR(10,31)] + DISP(10)
(BR(10,31)) + DISP(16)
[GATE(9)]
(BR(10,31)]

+

(BR(10,31)]1 + DISP(22)
(BR(10,31))

-+

OFF (22)

(PCC(10,31) + DISP(22)
OFF(22)

[GATE(22)])

Data General Corporation
Company Confidential

e=14

DISF(16) + [GR(10,31))%x(2%x*0RD)

DISP(22) + (GR(10,31))*(2%xURD)

10:11:218
22/Mar/78
Rev, &

2.5 Procedure Addressing 2~15

' Y)] represents bits X through Y of
contents of the specified BR

[PC(X, represents bits X through

contents of the program ¢

of the
ounter (BRO)

[AP(X,Y)]

[GR(X,Y)] " through Y of the
conte specified GR

DISP(X) represent he X bits of the
specified Nisplacement

SEG(7) repress D 7 bits of the
specifi t field

[GATE(X)] et contained in

e specified gate
specified segment

try in the /

ORD represents the contents Qf the

specified ordinal multipl

represents the X bits of the
specified offset

twos-complement adgftion andg

2.5.1 Procedure Indirection

When indirection is specified by a procedure reference, an
intermediate procedure address 1is fetched. An effective byte
address is computed as if indirection were not specified, except
that any specified indexing (formats P6 and P8) is does not occur,
This effective byte address 1is used to fetch the intermediate
procedure address, which has the following format:

10:11:18
ee/Mar/78

Rev. 2
Data General Corporation

Company Confidential

2e5.1 Procedure Indirection 2=16

IMODEI SEG | FIELD |

0 23 9 10 31

The ultimate effective address is obtained from the intermedi=
ate address in ore of four ways, selected by the MODE field:

MODE Effective Effective
Segment Byte Offset
0 [(PC(3,9)] FIELD(22) + (GR(10,31)])%(2%*QRD)
1 (PC(3,9)] (PC(10,31)]1 + FIELD(22) + (GR(10,31))*(2%x*0RD)
2 SEG FIELD(22) + (GR(10,31)1x(2%x*0RD)
3 SEG [GATE] + (GR(10,31)1%(2%*0RD)

where [GATE] represents the contents of the gate entry
specified by FIELD for segment SEG

GR contents are only included in the ultimate effective byte offset
computation if the procedure reference specified indexing (formats
Pé and P8); this mechanism implements post=indexing for indirect
procedure references.

2.5.2 Gateskpgn/~

It is necessary to restrict access to procedure segments that
are more privileged than a calling procedure. This s done by
allowing control to enter these segments only at specific routine
entry points called gates. In this case, the caller, 1instead of
specifying @ byte address, specifies a gate number (procedure
pointer mode 011). This number is used as an index into a gate
array which contains the byte address of the routine to be
executed. Gates are numbered starting with 0. The gate array is

10:11:18
22/Mar/78
) Rev, 2
DPata General Corporation
Company Confidential

2.5.2 Gate Array =17

located starting at word 0 of the target procedure segment, and has
the following format:

Word 0 | | Max Gate Number |

0 9 10 31
Wword 1 i Procedure Byte Pointer | GATE # 0
Worda N I Procedure Byte Pointer | GATE # N

Before the gate nyi; is fetched, the gate number is compared
to the max gate number’ cohtained in word 0 of the segment, If the
gate number is less than the maximum, the referenced offset is used
as the target of the instruction. If it is not within bound, an
error condition is signalled, The fipst—t—words—of each procedure
s

Since the contents of a gate uugkﬁ; are 1interpreted as a
Procedure Fointer, a reference to a GATE entry may result 1in a
transfer to another segment.

2.6 Stack Stpructure

Efticient handling of subroutine call and return, trap proces~
sing and space for temporary variagbles is achieved by support of a
stack mechanism. The stack is divided into units called frames,
When a subroutine 1s called or a trap processed, a new frame is
created. The structure of the stack at a typical point in time is?

10211218
2e/Mar/78
Rev. 2
Data General Corporation
Company Confidential

) Stack Structure 2-18

<=== STACK POINTER 2

LOCAL VARIABLES |
#2 a

memeeeesmeeseccsesccecssemsecesaaa| <=== FRAME POINTER 2
FRAME POINTER 1 |

IMPLEMENTATION SAVE AREA
for #2

<ARG#N>

|

l

[

l

|

|

[

|

u

[

[

|

|

|

l

i .

[<ARGH1>
|===ee==mmccmcscecmmcmeccceemaconnen| <=== ARGUMENT PTR 2
| ARGUMENT COUNT | ‘
|mee=s=sessmccsmceereccesenmaanane=| <=== STACK POINTER 1
[LOCAL VARIABLES [

[#1 |

[

[

[

[

[

|

|

|

|

|

[

[

[

[

|

|

|

/'\ --w-----u-n-'m--—n-----nu---w---u' < - FRAME PUINTER 1
| FRAME POINTER 0 |
| — |
| IMPLEMENTATION SAVE AREA |
i for #1 |

INCREASING |
ADDRESSES |
i

LA L R L L T L L L

<ARGHN> |

. |

. |

. |

<ARG#1> |

ARGUMENT COUNT |

LA R L A A B K X B B R A A R X K 2 K N K A L A A KB 2 X L X R X J ‘

The functioning of the stack 1is as follows: When a «call
instruction is issued, an argument packet can be built on the
stack., (Alternatively, the argument list can be built in 2 segment
other than the stack segment). Enough information must be saved in
the frame’s implementation save area to allow a complete restora-

10211218
22/Mar/78
Rev., 2
Data General Corporation
Company Confidential

2.6 Stack Structure 2~=19

tion of the caller’s environment, including all registers. An
calling routine uses its implementation save area to save its
registers (and other state) on calling another routine, The format
in which this information is saved 1is not specified, with the
exception that the caller must save its frame pointer (BR1) in the
last location of 1its implementation save area, In the above
figure, routine #1 saves its registers in implementation save area
#1 before calling routine #2. If routine #2 calls another routine,
it will first save its registers in implementation save area #Z2.
FP and SP are updated to the next available (empty) stack location,
and the PC is updated with the starting address of the first
instruction to be executed in the called subroutine. Typically, a
called subroutine then allocates stack area for local variables
with the save instruction.

A return instruction restores a caller’s registers (and state)
by obtaining them from the caller’s implementation save area., In
the above figure, when routine #2 executes a return, the opriginal
contents of the registers of routine # will be restored from
implementation save area #1,.

ANhen a routine is called, no registers (BRs or XRs) eare
propagated from caller to callee except GP, (the global pointer)
and USR,

Each stack occupies a segment by iJtself. Thus overflow and
underflow are detected by segment boundary faults which (in the
case of overflow) can be resolved by the operating system invisibly
to the executing procedure,

~=tnd of Chapter==-

10211218
22/Manr/78
' Rev. 2
Date General Corporation
Company Confidential

CHAPTER 3 = Instruction Set

3.1 Introduction

This chapter presents the details of the instruction set for
the MTA architecture. The general form of an instruction is:

<op code> {<operand>}x
where operand 18 a data or procedure reference as described
previously.

3.2 Upcode Format

There are two opcode formats ~ 8 and 16 bits. The encodings
are:

| fieldiopcode |

(V)

Where "field" is 0 through 14, allowing 240 instructions.

111 11 opcode | ‘zVS(Lf
012 34 15

Allowing 4096 instructions for this format,
or a total of 4336 instructions.

3.3 Arithmetic and Related Uperations

The table below summarizes the instruction set for seven of
the basic data types. Legal operations for a given data type are
indicated by an X.

10311318
2e/Mar/78
Rev, ¢
UVate General Corporation
Company Confidential

3,3 Arithmetic and Related Operations 3-2

A description of the format and action of each operation
follows the table. The operation code for each data type 1is con=
structed by appending the type ID found at the top of the column
for each data type to the general operation name. For example,
<ADD=16> adds two 16 bit fixed point numbers, where <ADD~P> adds
two packed decimal numbers,

10211:18
ee/Mar/78
Rev. 2
Data General Corporation
Company Confidential

Operation

Arithmetic and Related Operations

Fixed |
Point |
(signed)l
(8,16,321
64 bits)|

Floatingl
point |
(32 and |
64 bits)l|

|

Packed
Decimal

type ID

-8, =16l
“32; ‘64'

‘Sr 'D '

ADD
SUBTRACT
MULTIPLY
DIVIDE
REMAINDER
DIV=R
NEGATE
SHIFT=A
INCREMENT
DECREMENT

XX X D X

> X D >

> X X X

> X

B T ——

AND

I0R

XOR
COMPLEMENT
MASK=MERGE
SHIFT=L

D} XX XX X

— ——— a— — v ——

—— — o — —— — ——

MOVE
COMPARE
TEST
CLM
CLEAR

X XX X X XX

> > X

< X >

NORMALIZE
INTEGERIZE
HALVE

>x >x X

- ===

ROUND
EDIT

> X

Data General

Corporation

Company Confidential

3=3

10z211:18
22/Mar/78
Rev, ¢

3,3 Arithmetic and RKelated Operations I=4

Following are the operands and descriptions of each operation.,
Except for packed decimal operations, each operand 1is a standard
data reference as described 1in the addressing chapter, Packed
decimal operands contain two data references, one specifying the
length, and one pointing to the first byte of the decimal
string. For more detail, refer to the chapter on aodressing forms.

. Certain operations are provided with both implicit and expli=
cit destinations. When the operation has an implicit destination,
the result is always placed in the container from which the last
operand was extracted. An explicit destination is provided by an
additional reference. In operations where this is permitted, the
last reference has been placed in parentheses, to indicate that its
absence will result in an implicit reference. In opcode
terminology, where an operation demands an explicit destination, a
"=E" will appear in its suffix,

* <ADD><REF1><REF2>(<REF3>)
* <SUBTRACT><REF1><REF2>(<REF3>)

* <MULTIPLY><REF1><REF2>(<REF3>)

For all types, multiply returns a2 result of the same
type and size as the inputs.

* <DIVIDE><REF1><REF2>(<REF3>)

The value specified by <REF2> is divided by the value
specified by <REF1> ana the result is placed in
<REF2>(<REF3>),

* <REMAINDER><REF1><REF2>(<REF3>)
* <DIV=R><REF1><REFZ><REF3> = divide with remainder
The value specified by <REF2> is divided by the value
specified by <REF1>, The quotient is placed in <REFZ> and
the remainder is placed in <REF3>,.
* <NEGATE><REF1»(<REF2>)
* <SHIFT=A><REF1><REF2>(<REF3>) =~ arithmetic shift

The operand specified by <REF1> is an & bit shift
count. Positive implies a left shift, negative &a right

1011318
2e/Mar/78
Rev. 2
Cata General Corporation
Company Confidential

3.3

Arithmetic and Related Operations 3=5

shift.

<INCREMENT><REF 1> (<REF2>)
<DECREMENT><REF 1> (<REF2>)
<AND><REF1><REF2>(<REF3>)
<IOR><REF1><REF2> (<REF3>)
<XOR><REF1><REF2> (<REF3>)
<COMPLEMENT><REF1>(<REF2>)
<MASK=MERGE><REF 1 ><REF2><REF3> (<REF4>)

<REF3> (<REF4>) becomes (<REF1> AND <REF2>) OR (NOT
<REF1> AND <REF3>)

<SHIFT=L><REF1><REF2>(<REF3>) = logical shift

A logical shift of the operand specified by <REFZ> is
performed. The shift count is an 8 bit quantity specified
by <REF1> (positive => left shift, negative => right
Shift)n

<MOVE><REF1><REF2>
<COMPARE><REF1><REF2>

The only result of this 1instruction s to set the
condition register pased on the result of the comparison
cetween the operands specified by the references.

<TEST><REF1>

The condition register is set based on the result of a
comparison between the operand specified by <REF1> and
zZzero.

<CLM><REF1><REFZ>

<REF1> specifies an operand twice the Jlength of the
data type specified. The first half is a Jower bound and
the second half of this operand 1is an upper bound. The
condition register is set based on a comparison between the
operand specified by <REF2> and these two signed values.

10211:18
22/Mar/78
‘ Rev. @
Data General Corporation
Company Confidential

3.3 Arithmetic and Related Operations 3I=6

* <CLEAR><REF1>
The operand specified by <REF1> is set to zero.
* <NORMALIZE><REF1>
* <INTEGERIZE><REF1>
* <HALVE><REF1>

The value specified by <KEF1> is divided by 2.0 and
returned to the place specified by <REF1>

* <ROUND><REF1><REFZ2><REF3><REF4><REFS5><REF6>

The packed decimal string specified by reference 3,
with length specified by reference 2 is shifted(scaled by a
factor of 10) as specified by reference 1. The result 1is
moved to the decimal string specified by reference b6, with
length specified by reference 5,

A positive count results in a left shift (multiply by
10). A negative count results in a right shift and addition
of the rounding factor to the shifteg string before the
final shift right occurs., That 1is, after count=1 right
shifts, the rounding factor 1is added to shifted string
pefore the 1last shift, The 1last shift results 1in the
rounded shiftea string and 1its carry out being shifted
right one additonel time. A count 0 results in 2a move of
reference 2 to reference 6.

The rounding factor is interpreted as a signed byte.

x <EDIT><REF1>...<REFN>

3.4 Strings

The string instructions provided are generally oriented to
multi=byte character strings. The compare fJinstructions will set
conditions bits in the condition register (CR)., Up is defined as
an increasing byte address and down as a decreasing byte address. A
string length of zero will cause no operation to occur,

10:11:18
22/Mar/78
Rev. 2
Data General Corporation
Company Confidential

3.4 Strings 3=7

Within this section a <3TR=-REF> s a pointer to a string
descriptor as described in the Addressing chapter, <STR=REF>.PTR
is the string’s byte pointer as specified 1in the <descriptor,
<STR=REF>,MAX is the string’s maximum length as specified in the
descriptor. <STR~REF>,CUR 1is the string”’s current length as
specified in the descriptor. The string descriptor always points

to the first byte of the string., In scans there are condition
codes for failure due to current length being zero or negative,
character not found and successful scan. 1f the scan is

unsuccessful, the returned index will be set to zero.

The following instructions have been defined:

* <MOVE=STRING><STR=REF1><STR=REF2>

Move bytes from the string referenced in <STR=REFI1> to
the string referenced in <STR~REF2> for a count equal to
MIN (<STR=REF1>,CUKR,<STR=REF2>.MAX), This instruction also
updates the value of <STR=REF2>.CUR to the number of bytes
moved., <STR=REFeZ>.MAX is unchanged,

* <MOVE=NITH=FILL><STR=REF1><STR=~REFZ2><REF3>

Similar to <MOVE=STRING> except that if <STR=kEF1>,CUR
is less than <STR=REF2>.MAX, the remaincer of string two is
padded out with the eight bit character specified by
<REF3>,

* <COMPARE=STRINGS><STR=REF1><STR=REF2>

Compare strings referenced by <STR=REF1> and
<3TR=REF2> setting the condition register (CR).

* <SUBSTRING><STR=REF1><STR=REFZ><REF3><REF4>

Set <8TR=REF1> to be a new string descriptor to a
substring of the string specified by <STR=REFZ> with <REF3>
being a lé=bit offset into the string for the start of the
substring and <REF4> a 16-bit offset into the string for
the end of the substring.

* <SCAN~SUBSTRING=~UP><STR=REF1><8TR=REF2><REF3>
* <SCAN=SUBSTRING=DOWN><STR=REF1><STR=REF2><REF3>

Scan a string referenced in <STR=REFZ2> up or down for
the substring referenced in <STR=~REF1>,8et <REF3> to be the

10211318
22/Mar/78
Rev, ¢
Data General Corporation
Company Confidential

3.4 Strings 3-8

index to the leftmost character of the found substring.
<REF3> is a signed 16=bit integer,

* <TRANSLATE=STRING><REF1><STR=REF2><STR=REF3>

Move translated bytes wusing a 256~byte transliation
table referenced by <REF1> from the string referenced by
<STR=REF2> to the string referenced by <STR=REF3> for a
count equal to MIN(<STR=REF2>.CUR,<3TR=REF3>.,MAX), Set
<STR=REF3>,CUR accordingiy.

* <CHARACTER=SCAN=UNTIL=TRUE><REF1><STR=REF2><REF3>

Scan a string referenced in <STR=REFZ> using each byte
as an index into a 256=bit table referenced by <REF1> unti)
the indexed bit is on., Set <REF3> to be the lo~bit index
to the found byte.

3.5 Bit

The bit instructions fall into three <classes of operations;
boolean instructions, multi=bit string instructions and bit
numerics. Throughout this section, <BIT=REF> is used to represent
a bit reference, This reference is described 1in the <chapter on
addressing formats, and consists of a pair of data references
specifying the base of a bit table, and the offset in that table.

3.5.1 Boolean

The following instruction 1is indivisible, which means the
read/modify/write occurs as one completely contained operation
locking out any other asynchronous request until the modification
is complete.

* <TEST=AND=SET=BIT><BIT=-REF>

Test the bit referenced by <BIT=REF> and set the
appropriate condition bits. Set the referenced bit,

10:11:18
22/ Mar/78
Rev. Z
Data General Corporation
Company Confidential

3.5.1 Boolean 3=9

The following instructions are not indivisible.

* <TEST=BIT><BIT=REF>

Test the bit referenced by <BIT=REF> and set the
appropriate condition bits,

* <SET=BIT><BIT=REF>
Set the bit referenced by <BIT=REF>,
* <CLEAR=BIT><BIT=REF>»

Clear the bit referenced by <BIT=REF>,

3.5,2 Multi=bit

* <FIND~LEADING=BIT><REF1><REF2><REF3>

Scan for first 1 in a 32 bit word specified by <REF1>,
Set <REFZ2> to be the bit offset to this bit.

%.5.3 B8it Numeric

For the bit numeric move operations, an unsigned operation
(=U) involves clearing the high order bits of the destination; a
signed operation (=S) involves sign extending the most significant
bit of the bit field to fill the destination. Movement s always

to @ 32 bit destination.,

* <EXTRACT=~U><BIT=REF1><REF2><REF3>
* <EXTRACT=S><BIT=REF1><REF2><REF3>

10211218
e2/Mar/78
Rev. 2

Data General Corporation
Company Confidential

3.5.3 Bit Numeric 3=10

Move a bit numeric specified by <8IT~REF1> with count
contained in the five least significant bits of the byte
specified by <REF2> to a 32 bit destination referenced by
<REF3>,

* <INSERT=U><REF1><BIT=REF2><REF3>
* <INSERT=S><REF1><BIT=REF2><REF3>

Move a 32 bit source specified by <REF1> to a bit
numeric specified by <BIT=REFZ2> with count in <REF3>,

3.6 Stack Manipulation

The following instructions modify the stack:?

* <MODIFY=STACK=POINTER><REF>
Set the value of the stack pointer (SP) to be the
current value of SP added to the 1lé=-bit signed integer
referenced by <REF>,
* <PUSH=B><REF>
* <PUSH=~16><REF>
* <PUSH=32><REF>
* <PUSH=64><REF>
Move one, two, four or eight bytes of data referenced
by <REF> To the end of the stack starting at SP, Adjust SP
to point to the new end of the stack by adding one, two,
four or ejght to its current value.,
* <POP=8><REF>
* <POP=16><REF>

* <POP=32><REF>

10211318
22/Mar/78
Rev. ¢
Date General Corporation
Company Confidential

Stack Manipulation 3=11

<POP=64><REF>

Remove the last one, two, four or eight bytes from the
end of the stack starting at SP=1 and place them at the
reference <REF>, Readjust SP to the new end of stack by
subtracting one, two, four or eight from its current value,

<PUSH=MULTIPLE><REF>

Push multiple registers, <REF> specifies a lb=bit mask
used to determine which registers to push, Mask bit 0
represents GR7, bit 1 represents GR6, bit 8 represents BR7,
bit 9 represents BRé6, etc. If the bDit representing a
register is set, that register is pushed.

<POP=MULTIPLE><REF>

Pop multiple registers. <REF> spcifies a 1loe=bit mask
used to determine which registers to pop. The mask s
interpreted as in <PUSH=MULTIPLE>.

<MOVE=TO=SP><REF>

Move the current value of the stack pointer (SP) to
the 32 bit operand specified by <REF>,

<MOVE=FROM=SP><REF>

Move the 32 bit operand specified in <REF> to the
stack pointer,

<RESTORE><REF>

Recover the state from an implementation save area 1in
the current stack. <REF> resolves to a pointer to the frame
containing the context to be restored. The stack and frame
pointers are set so that the frame specified by <REF>
pecomes the current frame.

3,7 Transfer of Control

1011218
2e/Mar/78
Rev. 2
Datea General Corporation
Company Confidential

3.7.1

Entry and Exit 3-12

3.7.1 Entry and Exit

In the following instructions, <PREF> refers to a procedure

reference as defined in the Addressing chapter.

<PUSH=PC><PREF>

Place the PC for the next instruction at the end of
the stack starting at SP and branch to <PREF>, This
facilitates a quick call to a subroutine which will use the
current stack and register environment as 1ts own, 8P
becomes SP+4.

<POP=PC>

Remove the last four bytes from the end of the stack
and set the FPC to be their value. SP becomes SP=4, This
facilitates & quick return from a <PUSH=PC> type call. The
next instruction executed (whose address was at the end of
stack) will be that following the corresponding <PUSH=PC>
instruction.

<CALL=PACKET><PREF><REF0><REF1>,..<REFN>
<CALL><PREF><REF>

These call operators branch to a subroutine which uses
a new stack environment. <PREF> §is the specifier of the
address of the subroutine. <REFO0> s an 8=bit unsigned
integer representing the number of argument references
which are to follow. <REFl1>.,,.<REFN> are the references to
a single argument or a list of n arguments. (N being the
value of <REF0>.) The call will build a packet of arguments
which can be referenced by the callee wusing AP, This
packet has the following format (PTR is a 32 bit absolute
address)

10311218
2e/Mar/78
Rev. 2
Data General Corporation
Company Confidential

3.7.1

Entry and Exit I=13

<#ARG>
APmevem=> <PTR1>

<PTR1>
<PTRN>

Note: <REFO0> is placed one byte before the base
register address.

Callers building their own parameter packets use the
<CALL> operation. In this case, <REF> is the address of
the packet. This address is placed in the callee’s AP,

<RETURN>

Return from procedure or trap handler, The current
stack frame 1s popped and the return information 1is ob=
tained from the implementation save area.

<RETURN=ABN><PREF><REF2>

Functions like <RETURN> except the address to return
to is specified by <PREF>., <REF2> specifies a pointer to
the stack frame containing the procedure environment to
restore. (This allows a return to a location and a context
greater than one procedure level above the current routine,

3.7.2 Vanilla Jumps

*

<JUMP=-0ON=CONDITION><REF1><PREF>

<REF1> specifies an 8=bit field with the following
format:

| mask | test |

01234567

The mask is logically anded with the condition bits in the

10:11:18
22/Mar/78
Heve &
Data General Corporation
Company Confidential

3.7.2

vanilla Jumps I=14

USR and the result is compared with the test field. If the
two are equal a branch is taken to the address specified by
<PREF>, Otherwise, execution continues with the instpruction
after the JUMP,

The following instructions perform conditional bran=
ches based on the settings of the condition code following
a <COMPARE>, <TEST>, or <SUBTRACT> instruction. As defined
previously, for arithmetic operations CBl is called the C
bit, CB2 is called the N bit, and CB3 is called the Z bit.

<JUMP=NE><PREF>

Branch to the address specified by <PREF> if the Z bit
is one,

<JUMP=EQ><PREF>

Branch to the address specified by <PREF> if the Z oit
is zero.

Arithmetic signed comparisons:
<JUMP=GT><PREF>

Branch to the address specified by <PREF> if the / and
N bits are zero,

<JUMP=LT><PREF>

Branch to the address specified by <PREF> if the N bit
is one.

<JUMP=GE><PREF>

Branch to the address specified by <PREF> if the N bit
is zero,

<JUMP=LE><PREF>

Branch to the address specified by <PREF> if the Z bit
is one or the N bit is one.

Unsigned comparisons:

<JUMP=UGT><PREF>

10211318
22/Mar/78
Rev. 2
Data General Corporation
Company Confidential

3.7.2 Vanilla Jumps i=15

Branch to the address specified by <PREF> if the C and
Z bits are zero,

* <JUMP=ULT><PREF>

Branch teo the address specified by <PREF> if the C bit
is zero.

* <JUMP=UGE><PREF>

Branch to the address specified by <PREF> if the C bit
is one,

* <JUMP=ULE><PREF>

Branch to the address specified by <PREF> if the C bit
is one or the Z bit is one.

Unconditional branch:
* <JUMP><PREF>

Equivalent to a <JUMP=QN=CONDITION><0><PREF>

3,7.3 Dispatches

A1l dispatch instructions use a table of the following format:

<L.ower Bound><Upper Bound>
SREF>wwwma=> <Procedure Pointer>

<Procedure Pointer>

The lower bound and upper bound are both signed 16=bit
integers. Al]l dispatches validate the index as lower bound <=zindex
<=upper bound. If the index is not within the bound range, the PC

10211218
ee/Mar/78
Rev. 2
Dates General Corpeoration
Company Confidential

3,73 Dispatches =16

will be set to the next instruction following the dispatch,
Otherwise a branch will be taken through the indexed procedure
pointer. In the operation descriptions, <REF0> describes a sixteen
bit index, and <REF1> is 8 pointer to a dispatch table as described
above. Al1 dispatch operators will set the condition register to
indicate one of three conditions; dispatch index out of range,
dispatch index in range but there was no labelr or successful
dispatch. The dispatch table can have "holes" by setting the value
of that position in the table as a 32=bit 2zero (illegal 1label
within table).

* <DISPATCH><REFO0><REF1>
* <DISPATCH=PUSHPC><REFO><REF1>

* <DISPATCH=CALL><REFO0><REF1><REF2>

<REF2> is the argument pointer as specified under the
description of the <CALL> operation,

3.8 Conversion

* <CONVERT=INTEGER=TO=SP><REF1><REF2>
* <CONVERT-INTEGER=TO=DP><REF1><REF2>

Convert the integer specified by <REF1> to floating
point referenced by <REF2>., Conversion of lé-bit integers
is to single precision, of 32~bit integers to double
precision floating point,

* <CONVERT=SP=TO=INTEGER><REF1><REF2>
* <CONVERT=DP=TO=INTEGER><REF1><REF2>

Convert the floating point number specified by <REF1>
to an integer. Conversion 1is from single precision to
lé=bit integer, double precision to 32=bit integer.

* <CONVERT=SP=TO=DP><REF1><REF2>

Convert the single precision number specified by

10:11:18
ce/Mar/78
, Rev., 2
Datea General Corporation
Company Confidential

3.8

Conversion i=17

<REF1> to a double precision number specified by <REF2>.
<CONVERT=CHARACTER=TO=DP><STR=REF><REF>

Convert the character string to a double precision
floating point number.

<CONVERT=DP=TO=CHARACTER><REF><STR=REF>

Convert a double precision floating point number to a
character string.

<PACK><DEC=REF1><DEC=REF2>

Converts the operand specified by <DEC=REF1>» to packed
decimal format and places the result in the operand speci=
fied by <DEC=REF2>,

<UNPACK><DEC=REF1><DEC=REF2>
Convert the packed decimal operand specified by

<DEC=REF1> to the format and location specified by
<DEC=REFZ2>.

3.9 Loop Control

<LOOP=8><REF1><REF2><REF3><PREF>
<LOOP=16><REF1><REF2><REF3><PREF>
<L00P=32><REF1><REF2><REF3><PREF>
<LOOP=64><REF1><REF2><REF3><PREF>

These instructions are used to control iterative loops
such as FORTRAN DO statements. <REF1>, <REF2> and <REF3>
are fixed point numbers with a container size specified by
the instruction suffix. The action of the instruction is:

REF1 <= REF1 + REFZ2

IF (REF2 >= 0 AND REF1 =< REF3) OR
(REF2 < 0 AND REF1 >= REF3)

THEN PC <= PREF

ELSE PC <= PC + 1

10:11:18
2e/Mar/78
‘ Rev., 2
Data General Corporation
Company Confidential

3.9 Loop Control 3=-18

35,10 Semaphores

The following instructions are used for synchronization of
coroutines, etc:

* <LOCK><REF1>

IF REF1 = 0 THEN CBO <= 1 ELSE CBO <= 0; IF REF1 # 0 THEN
REF1 <= REF1 + 17

* <UNLOCK><REF1>

IF REF1 = 0 THEN CB1 <= 1 ELSE DO CB1 <= 0; REF] <= REF1 =
1; IF REF1 = 0 THEN CBO <= 1 ELSE CBO <= 0; END;

3,11 Reserved Instructions

There is a set of 256 op codes reserved for definition on a
per system basis. Execution of any of these instructions causes a
process trap (see Interrupts and Traps Chapter) to a software or
microcode routine which then executes the instruction.

The format of the specific instructions is determined by the
proarammer or microcoder who writes the emulator routine. These
instructions will typically be used by system programmers for
operating system or compiler specific accelerators, and for entry
to user written microcode routines.

3,12 System control

* <CONVERT=TO=PHYSICAL><REF1><REFe>

Generate the logical address defined by
<REF1>, Convert this to the corresponding physical address
and return this address in the 32 bit operand specified by

10311218
2e/Mar/78
’ Rev. 2
Data General Corporation
Company Confidential

System control 3I=19

<REF2>. 1f there 1is no corresponding physical address
(i.e., the specified page is not resident) return zero.

<GET=-MACHINE=ID><REF1>

Return machine specific information in the 64 bit area
specified by <REF1>, The exact format of this information
is to be defined.

<MOVE=TO=ISR><REF1>

” Load the Interrupt Status Register (ISR) from the 32
bit operand specified by <REFl>,

<MOVE=FROM~ISR><REF1>

Place the current contents of the ISR into the 32 bit
operand specified by <REF1>., Unused bits are set to zero.

<WAIT>

Places the processor in a wait state, from which it
can still handle interrupts., (Similar to a JUMP , except
that 1t does not tie up the memory bus.)

<HALT>

Halts the processor by activating a solenoid which
yanks the AC cord out of the rear of the cabinet.

3,13 Input/0utput

1/0 devices are controlled and monitored by means of 8=bit I/0

directives (10Ds) having the following format:

LA B B A B N X N R B R 2 X N R N X B K _ N B X X R B X X B X X_ X J

0| F I 0 0 | Op Code |

bl B R A K A R A R R K L R N R N B A L & A E R K K X X X R X J

0 1 4 3 4 5 6 7

The op code field specifies the specific 1/0 operation to be

performed, and the F field specifies control information. A more

10211218
ee/Mar/78
‘ Rev, 2 ‘
Data General Corporation
Company Confidential

3.13 Imnput/0utput 3=20
detailed treatment of I0Ds can be found in the I/0 System <chapter.

An I0OD is constructed and emitted by the following
instruction:?

* <GIOD><REF1><REF2><REF3>

The operand specified by <REF1> is the eight bit 1/0
directive. <REF2> specifies an eight bit field which
contains the device code of the controller to which the 10D
is addressed. The operand specified by <REF3> is a lé=bit
field used either to supply data, receive data, or recejve
status, as specified by the 10D,

3.14 Miscellaneous

* <LOAD~EFFECTIVE=ADDRESS><REF1><REF2>

Move the effective address of <REF1> to the 32 bit
operand specified by <REF2>.

* <COPY><REF1><REF2><REF3>

Move bytes from the area specified by <REF1> to the
area specified by <REF2>, The number of bytes to move s
contained in the 16 bit fixed point operand specified by
<REF3>, 1If the move count is positive, bytes will be moved
left to right, If it is negative, bytes will be moved right
to left.

* <FILL><REF1><REF2><REF3>

Copy the byte specified by <REF1> starting at the byte
specified by <REFZ2>, The number of <copies to make is
contained in the 16 bit operand specified by <REF3>,

* <MOVE=TO=USR><REF >

The User Status Register (USR) is set from the 16 bit
operand specified by <REF1>,

10811218
22/Mar/78
) Rev. 2
Data General Corporation
Company Confidential

3.14

Miscellaneous 3=21

<MOVE=FROM=USR><REF1>

The current contents of the USR are stored in the
sixteen bit operand specified by <REF1>, Unused bits are
set to zero.

<GET=0OPERAND><REF1><REF2>

Used to obtain the operands of an jnstruction that is
to be emulated by the software. The exact format and
operation is to be defined,

<EXCHANGE><REF1><REF2><REF3>

<REF1> specifies an eight bit operand containing the
number of bytes to exchange between the areas specified by
<REF2> and <REF3>. The bytes are exchanged left to right,
one byte at a time,

<EXECUTE><REF1>

Execute the instruction at the address specified by
<REF1>, Unless the executed instruction causes a transfer
of <control, instruction execution continues with the
instruction following the EXECUTE.,

<NO=0OP>
<USER=TRAP=~x>

"x" is a number between 1 and 256, which provides 256
instructions which are available for user definition, These
instructions cause a procedure trap to be taken through a
unigue gate with an argument containing the value of "x".

==End of Chapter==-

10211218
2e/Mar/78
, Rev. 2
Data General Corporation
Company Confidential

CHAPTER 4 = Interrupts and Traps

4.1 General

A1l events in an MTA machine which require a change in the
normal flow of control are handled using a trap mechanism, Traps
are divided into three categories = procedure, process, and
interrupt. Procedure traps are events which can be handled by a
user procedure. These include all instruction exceptional condi=
tions such as fixed and floating point overflow, etc. Process traps
are procedure caused events which need system intervention in order
to be resolved. These include page faults, page table faults,
protection faults, etc. Interrupts are asynchronous events which
must be resolved by the operating system, including I/0 interrupts,
power failure, etc.

A1l traps appear to the trap handlers 1like procedure calls,
This is done by generating a parameter packet containing arguments
and then pushing a state block on a stack. Each trap within a group
is assigned a unique value which is passed as the argument to the
trap handler., Thus the trap handler can detect the type of trap by
accessing the argument and, optionally, dispatch to a unigue type
handler based on the araument, In addition, all traps are dismissed
merely by executing e return instruction, which will <continue
execution at the point where the trap was taken, This value passing
forces only one trap to be generated on each machine cycle, even in
a pipelined implementation,

Since traps can be taken at different points in the execution
of an instruction, differina amounts of information must be saved
in order to continue execution after dismissing the trap. Thus,
the state block must be self describing to the extent that the
return instruction can determine how to restore from it.

In order to respond to the process and interrupt categories of
traps, architectureally defined procedure segements exist. Seament
#2 is always assigned to respond to process traps, Segement #3 is
always assigned to handle interrupts.

Every procedure segment has 1, 2, or 3 groups of trap
pointers. These groups are for the procedure traps, process traps,

10:11318
22/Mapr/78
) Rev, 1
Date General Corporation
Company Confidential

4,1 General =2

and interrupts. Procedure segments that can only handle procedure
traps have only the procedure trap pointers, The procedure segment
that can handle process traps has the procedure and trap
pointers, The procedure segment that handles interrupts has all
three pointer groups. Thus, a procedure trap 1in the procedure
segment for the interrupt handler uses the same relative gate entry
in its gate array to vector to the procedure trap handler,

The structure of the trap pointers in the procedure segment
root is as follows:

CATEGORY GATE

I INTERRUPT 7 I SEG 3 ONLY
"----------‘---‘--ﬂ-‘

I PROCESS 6 I SEG 2 ONLY
'--"------'"n--.‘-”-’

)} PROCESS 5 I SEG 2 ONnLY
l--u-—---—-———'nnnn--i

| PROCESS 4 | SEG 2 ONLY
'n-wna—------—nw—-uw-‘

| 3 | EVERY PROCEDURE SEG
l-'--”.------"----—"

I 2 \ " " "
'”‘--'---”---'--'-—.-'

l 1 I " " "
|—m-"-----n'---'-'”-'

' 0 ‘ " " L]
IELEEL PP L L LY oy

| | GATE |

| | EXTENT

The contents of each gate entry contains a procedure pointer
(Ref. Addrressing Chapter), Thus, a trap may vector to a handler
in the present procedure segment, or specify an entry point in some
other procedure seagment, The final target address becomes the new
value of the PC. Transfer of control to a procedure segment must
be cognizant of the predefined gate entries, Thus, user defined
gates must be adjusted to reflect the segment called and the fixed
number of gate entries.

In essence, & trap results in the implicit execution of a CALL
instruction. The target address is a gate in the present segment,
the arguments passed are a function of the wultimate ring of
execution, As with an explicit CALL, sufficient state information
i$ saved on the state (0 o eeoeewnt0o the point following the

10:11:18
22/Mar/78
) Rev. 1
Data General Corporation
Company Confidential

4.1 General =3

procedure invocation, including the number of arguments pass.
Thus, executing a RETURN instruction is used to exit from a trap
handler. The point of execution return for the arguments passed to
the trap handler are delineated for every trap type.

5 Procedure Traps

Procedure traps are broken down into 4 categories:

GATE NUMBER

Floating Point Arithmetics 0
Fixed Point Aprithmetics 0
Commercial Arithmetic 1
Trace 2
User 3

When a trap is detecteds it is classified as one into one of
these areas. The target address is the gate number listed 1in the
present procedure segment. The arguments pushed 1into the stack
are:

Further delineation of the trap type (e.g. float
exponent overflow, as differentiated from underflow
The value of the PC that points to the instruction
causing the trap.

The state block pushed into the stack has a return address
pointing to the instruction following the one causing the trap.

5.1 Floating/Fixed Point

The following fleoating point error conditions are detected:

Exponent overflow
Exponent underflow
Divide by zero

For these classes of traps, the bit field of 32 bits is passed
as an argument. Exponent overflow is indicated by 00..e1% Expon=

10:11:18
22/Mar/78
‘ Rev. 1
Data General Corporation
Company Confidential

5.1 Floating/Fixed Point Y=y

ent underflow by 00.es.10. Divide byu zero by 00,..100.

When exponent overflow occurs, the value returned to the
specified destination iSemmmeea—s When exponent underflow occurs,
the value return to the specified destination 1Smmmemmm——s When
divide by zero occurs, the specified destination remains unchanged.

The following fixed point conditions are detected:
Integer overflow on ADD/SUB
Divide by zero

Integer overflow on MPY
Float to fixed conversion

The classes of traps the bit field passed as an argumment is?

Integer overflow on ADD SUB 00 oo 1000.
Divide by zero : 00 ... 10000,
Integer overflow on MPY 00 ... 100000,
Conversion 00 +..1000000,

5.2 Commercial String

The following commercial and string traps are detected:
Size on for numberic ADD, SUB, MULTIPLY, DIVIDE

Divide by zero
String overflow

For these classes of traps, the bit field produced is:

Size error 0001
Divide by zero 0010
String overflow 0100

5-3 Trace

10:11:18
22/Mar/78
Rev. 1
Data General Corporation
Company Confidential

5.3 Trace 4=5
T8DL

5.4 User Traps

When bits 0=7 of the opcode are 1111 1111 (all 1°s), a wuser
define opcode is trap enabled. Gate #3 is transferred through.
The argument passed to the trap handler is the second byte of the
opcode (Bit 8-~15),

6 Process Traps'

Process traps are classified into three areas and thus three
gate locations (4, S5, 6). A fault is 2 condition which is a result
of specified resource not being in the proper state. The fault
handler can optionally supply this resource and successfully
restart the instruction. The three types of process traps are:

FAULTS
UNIMPLEMENTED OPCUDE
DATA GENERAL RESERVED

The processing of a process trap is handled slightly different
than procedure traps. The gate array access is not in the present
procedure segment but in segment #2. Segment #2 <can only be
executed in Ring0. Thus, all arguments are pushed on the Ring 0
.stack with a subsequent change of the ring of execution teo ring 0,

6.1 Faults

The following faults are defined:?

Page
Access violation
Specification exception
Segment bounds check on stack operation
Segment bounds check on non=stack operation
Gate bound check

For page faults, the arguments pushed are:

10s11:18
22/Mar/78
_ Rev, 1
Data General Corporation
Company Confidential

6.1 Faults 4=6

Address of the PTE ,

The logical address causing the fault

A field indicating a page fault 00...011

The state of the machine at the time of the fault

For access violations, the arguments pushed are:

A bit field indicating the type of access violation:

00 10 READ

00 100 WRITE

00 1000 EXECUTE

00 10000 CALL))
The value of the PC referencing the instruction causing the
fault,
The logical address of the taraget reference that caused the
fault,

Machine state at the time of the machine.

For specification exception, the bit field pushed on the stack
is?

List possible specification exception
eeqe Arite into literal ‘
Nrite into BR using non=pointer instruction

For segment bounds check on stack operation, the argument are:

A bit field of xxxxx,. ‘ ‘

The value of the PC referencing the instruction cau
the fault,

The logical address of the target.

For segment bounds check on non=stack operation, the arguments
pushed are:

A bit field of xxxXX.)

The value of the PC referencing the instruction cau
the fau‘tq

The logical address of the target.

10211218
22/Mar/78
] Rev, 1
Data General Corporation
Company Confidential

6.1 Faults 4=

For gate bounds check, the arguments pushed are:

A bit field of xxxx., .

The value of the PC referencing the instruction cau
the fault.

The value of the procedure pointer referencing the
array.

6.2 Unimplement Opcode

An unimplemented opcode i1s defined to exist when the control
sequences necessary to map the algorithm specified by the opcode on
the hardware are absent. To maintain deject code compatibility,
these control sequences are implemented in software. When such an
opcode is detected, the argument passed to the trap handler is the
value of the program counter referencing the instruction, The
return address set up by the trap handler references the instruc=
tion following the unimplemented opcode,

6,3 Data General Reserved

When bits 0=7 of the opcode are 1111 1110, a reserved Data
General trap is enabled. The arguments passed is the second byte
of the opcode (bit 8=15).

7 Interrupts

The processing of an interrupt is handled in the following
manner., Gate #7 located in segment #3 is used to vector to the
interrupt handler. The state of the current process is pushed on
its ring 0 stack. The new stack used in segment ¥4, The new ring
of execution is ring 0, The interrupt stack defined is not process
specifice If an interrupt occurs while the interrupt stack is
being used, the current stack is pushed on the interrupt stack.
The state of the process includes ISR,

When an interrupt is processed, the following actions occur:

10:11:18
22/Mar/78
_ Rev. 1
Data General Corporation
Company Confidential

Interrupts 4=8
The present stack is pushed as described above.

The code of the device causing the interrupt is obtained.
This code is used to dispatch to a 64 bit entry. The base
these tables is a physical address maintained in the interr
vector table.,

This entry contains a new ISR and a procedure pointer.

The contents of the new ISR are used as follows:

The interrupt mask contained in the ISR is inclusive "ORed"
the present interrupt mask. Interrupts are enabled or disa
by bit_. of the mask. If the enable bit is 0, interrupts

enabled., Is the enable bit is |, interrupts are disabled.

The procedure pointer is evalued and becomes the new value

the Program Counter, The interrupt handler is entered at t
new value,

-=tnd of Chapter==-

10:11:18
2e/Mar/78
. Rev. 1
Data General Corporation
Company Confidential

CHAPTER 5 = Protection

5.1 General

Segments are the basic wunit of protection. Segments are
always referenced within a hierarchical domain structure organized
into units called rings. There are 8 rings of protection. Ring 0
contains the system security kernel and is the least
restricted. Ring 7 is a2 user domain and is the most restricted. At
2ll times, there is a2 current ring of execution (CRE), which
determines the access ellowed to the current procedure,

There are four types of access which can be allowed to a
segment. Two are related to data access. Read access allows data
within the segment to be fetched. Write access allows moaification
of data within the segment., The other two apply to procedure
transfer. Direct access allows control to be passed to any loca=
tion within the segment, Gate access allows transfer to the
segment only through use of a gate (described in the Introduction).

Whenever access is attempted to a segment, the processor
generates an effective ring number (see Ring Maximization), and
uses that and the target segment number as indices 1into a two
dimensional access array. This array is associated with the current
translation table (see Memory Management) and each entry in it
contains a bit for each of the four types of access. If the bit 1is
set, that type of access is allowed from the effective ring to the
target segment.

5.2 Ring Maximization

‘ In any hierarchical system, there exists a problem of a higher
ring passing as a parameter to a lower ring a2 pointer to @ segment
that the higher ring has no access to. To avoid this problem, the
architecture provides a technique called ring maximization, which
is applied to all data accesses. Every base register and byte data
pointer involved in an effective address calculation has a ring

10:11:18
22/Var/78
] Rev. ¢
Data General Corporation
Company Confidential

5.2 ‘ Ring Maximization Sm2

number contained in it, The effective ring used for access checking
is the maximum of all these rings and the current ring of
execution., In this way, a more privileged ring can make data
accesses with the same access limitations as the higher ring on
whose behalf it is executing, but & higher ring can not masquerade
as a lower (more privileged) ring.

5.3 Determination of the Current Ring of Execution

Every procedure segment has associated with it the mimimum
(MINRE) and the maximum (MAXRE) ring 1in which the procedure is
allowed to execute, These are kept in the segment descriptor.
Whenever the procedure segment is changed as a result of a call,
Jump, or return instruction, a new current ring of execution is
determined according to the following formulas

CRE <= MAX { MIN(MAXRE,CRE) , MINRE }

5.4 Stacks

Every ring has its own stack segment with a format as descri=
bed in the Introduction. When a ring crossing is detected during
execution of a ca2ll instruction, the stack segment number for the
new ring is fetched from the Task Control Block. Arguments and the
procedure state block are pushed onto the new sStack segment.

5.5 BASE REGISTER MODIFICATIONS

Base Registers can only be the destination of instructions
which produce pointers as part of the result, Thus the Program
Counter can only be altered by instructions which are allowed to
change the sequence of execution (e.g., JUMP, RETURN, DISPATCH
Jo BRs 1=7 can only be altered by instructions whose result 1is a
pointer (e.g., Load Effective Address. and Move Stack Pointer).

5.6 PROGRAM COUNTER RELATIVE

A Read or Write access to the present procedure segment is

10:11:18
ea/Mar/78
Rev. 2
Date General Corporation
Company Confidential

5.6 PROGRAM COUNTER RELATIVE 5=3

treated as a reference to a data segment, Thus, the normal rules
governing access apply., The only exception to this rule is that an
operand reference that is specified as a literal is read from the

instruction stream ignoring the read access of the present pro=
cedure segment.

==fnd of Chapter==

10:11:18
ee/Mar/78
Rev. @
Data General Corporation
Company Confidential

CHAPTER 6 = Memory Management

Since the state of the art in memory management policies for
virtual systems continues to advance, it would seem reasonable to
encapsulate MTA’s memory management algorithms in a module whose
internals are not architecturally specified. Thus, the following
description of memory management for MTA implementation 1 does not
in principal belong in this document; it is provided solely for
completeness.,

For purposes of memory management, the logical address descri=
bed in 1.,2.2 is further subdivided such that each segment consists
of 2K pages, each page containing 2K bytes:

0 23 9 10 20 21 31

|<Ring>1<Seg &#>|<Page #>|<Page offset>|

Conversion from logical address to physical address is implemented
by constructing a page table for each seament, This table contains
one entry for every page in the segment (entries exist for pages
beyond the current length of the segment, but are marked invalid),
An entry in this table (PTE = for Page Table Entry)} has one of the
following two formats, depending on the associated page’s status:

01 31

i reserved |
Invalid (unallocated) page
0123 18 19 31

LE K R K R R R R B B K K B B B B B R R N B B N N N B N K 2 L X L. J

I0IRIMI spare l<physical page #>|

LA X K X X R N R B B K B E A X R X K B K X X N R N R N R 2 X % N J

Resident page

In the PTE for a resident page, the R=-bit indicates whether the
page has been referenced by a process since the last time the R=bit
was reset, and the M=bit indicates whether the page has been
modified by a process since the last time the M=bit was reset,

10211218
2e/Mar/78
] Rev. ¢
Data General Corporation
Company Confidential

6=2

These two bits are required by most wuseful memory management
algorithms., The 16 spare bits in the resident page PTE are availa=-
ble to the memory manager = a typical use might be the W=bit
required by the page fault frequency algorithm to mark pages
belonging to the active process’ working set,

The page table associated with each segment is itself 4 pages
in length:

2K pages/segment * | PTE/page * 4 bytes/PTE * 1 page/2K bytes = 4

Since we anticipate that most segments will be less than one fourth
their maximum Jength, it is desirable to require only those page
table pages containing PTE’s for allocated pages of an active
segment to be resident in primary memory, This 1is achieved by
associating 4 page table pointers (PTPs) with each of the 128
segments of a process’ logical address space. A PTP has one of the
following two formats, depending on the status of the associated
page table page:

0178 31

101 l<physical page table ptr>|
PTP for a resident page table page
01 31

LEX E L XX E L EX B XX XL KX KXX X X E X KL A & K L. X X3

111 reserved |

LA XL L XL X AKX XA LA X XXX EX XL X 3 3 X J

PTP for a non~resident page table page

The physical address contained in a PTP for a resident page is
a8 byte pointer to the page table page itself (the low order 11 bits
of this pointer are always 0, since page table pages must be
aligned on physical page boundaries).

The 512 PTPs associated with a process’ 128 segments are
grouped in sequence to form the process’ translation table = this
table defines its process’ logical address space., The translation
table for the currently active process is pointed at by the current
transjation table pointer (CTTP), itself a physical address,
Naturally, the transliation table for the currently active process
is resident in primary memory,

Each logical address emitted by the processor is translated to

10:11:18
22/Mar/78
i Rev. 2
Data General Corporation
Company Confidential

6=3

a8 physical address by adding bits 3 through 11 of the logiceal
address to CTTP to select a PTP from the current translation table.
If bit 0 of this PTP is reset, a boundary fault 1is initiated;
otherwise, bits 12 through 20 of the logical address are added to
the pointer in the PTP to select a PTE from the page table, 1f
this PTE is invalid, a boundary fault 1is 1initiated, If it s
resident, the PTE is updated as required by the memory management
algorithm (for example, the R=bit may be set), and the desired
physical address is constructed by concatenating bits 19 through 31
of the PTE with bits 21 through 31 of the logical address.

Although this mechanism provides the desired functionrality, it
is painfully slows, since two memory references are required (one to
get the PTP, one to get the PTE). Therefore, MTA implementation 1
will be provided with an associative address translation unit (ATU)
which, when provided with bits 3 through 20 of a logical address,
either produces the associated PTE (R, M, and physical page
number), or initiates an ATU fault. This fault 1is serviced (in
microcode) by obtaining the PTE es described above, loading its
contents into the ATU (perhaps overwriting some other PTE in the
ATU), and retrying the translation. The ATU also faults if a page
whose M=bit is reset is modified., This fault is handled by setting
the M=bit of the page’s PTE and ATU entry.

Because logical addresses are process specific, the ATU must
be purged before a new process is activated, Thus each page a
process references in its time slice is guaranteed to generate at
least one ATU fault,

In order to support memory management as defined above, the
memory management module must be provided with the following:
1. The ability to move operands 1in primary memory using
physical addresses,
2. The ability to load a PTE into the ATU.
3., The ability to purge the ATU,

==End of Chapter==-

10:11:18
22/Mar/78
Rev, &
Data General Corporation
Company Confidential

CHAPTER 7 = I/0 System

An MTA processor controls and monitors {ts I/0 devices via I/0
"directives (I0ODs), which are identical in functionality to the
programmed I1/0 instructions of the Nova/Eclipse architecture. Upon
execution of a GIOD instruction, the processor constructs an JOD
and transmits it over the programmed~]1/0 bus to the specified 1I/0
device’s controller. Depending on the IOD contents, this device
controller may accept two bytes of data from the processor, trans=
mit two bytes of data to the processor, accept control information
from the processor, or transmit its status to the processor.

An MTA processor’s programmed=I/0 bus is both functionally and
physically identical to the Nova/tclipse I/0 bus, as specified in
Data General publication 015-000031 (Interface Designer’s Reference
for the Nova and Eclipse Computers) chapter 3, chapter 4, and
appendix D. Any I/0 device controller adhering to these specifica=-
tions can be attached to the I/0 bus of any MTA processor., An
exception is those controllers which wutilize the Increment or
Add=to=memory data channel functions; these may not be available on
some or all MTA implementations. Extensions to the I/0 bus may
also be supported by particular implementations, as long as compa-
tibility is not jeopardized. Data parjty, control parity, and
B=bit device codes are examples of potential extensions.

In addition to carrying I0Ds and datar, the I/0 bus permits
device controllers to asynchronously reaquest processor interrupts
and data channel service. The bus conteins signals for interrupt
priority arbitration (INTA) and priority mask maintenance (MSKO),
Unlike the Nova/Eclipse architecture, however, these signals are
not explicitly activated by programmed 1/0 instructions. Instead
the processor automatically uses INTA to determine the highest
priority device when an interrupt is synchronized and vectors to
that device’s interrupt handler, The interrupt vector routine
installs a new interrupt mask in the ISR, using MSKO to transfer
this mask to the I/0 controllers (see the chapter entitled "Traps
and Interrupts" for a more detailed description of I/0 interrupts
and the vector routine). In general, any alteration of the inter=
rupt mask field in the ISR will implicitly activate MSKO.

The MTA architecture defines a programmed=I/0 instruction with

10s11:18
22/Mar/78
) Rev, 2
Data General Corporation
Company Confidential

the following format:

GIOD <REF1><REF2><REF3>

where the operand specified by <REF3> s the source
destination, the operand specified by <REF2> provides a device
code, and the operand specified by <REF1> provides the 1I/0 direc=
tive (IOD), The device code coperand has the following format:

i 00 | DEV |

0 1 7

The 6-bit DEV field identifies the device controller to which the
I0OD is addressed. The I0OD has the following format:

I 0V F I 00 | OPCODE I

LA E R R X L X K E R B E X 0 X X X X ¥_3 J

0 123 45 7

Device code 000000 is reserved for the processor power
monitor, and device code 111111 is reserved for processor use.

An I0D specifies two transactions: a data transaction, fol=
lowed by a2 control transaction. The UPCODE field controls the data
transaction with the following encoding:

10:11:18
22/Mar/78
Rev. 2
Data General Corporation
Company Confidential

OPCODE Data Transaction

000 none

001 A=register => <REF3>

010 <REF3> => A-register
011 B=register => <REF3>

100 <REF3> => B=register
101 C~register => <REF3>

110 <REF3> -> C=register
111 status => <REF3>

Data transactions 001 through 110 1involve three 16=bit virtual
device registers associated with the addressed device controller;
data is transferred between the l6=bit operand specified by <REF3>
and the selected virtual device register over the 16 DATA lines of
the programmed=I1/0 bus. Data transaction 111 is a device status
transaction, with status bits BUSY and DONE transferred into the
least significant two bits of the 1é=bit operand specified by
<REF3>; the most significant 14 bits of this operand are undefined,
BUSY and DONE are also set into condition code bits CCO ana CCl,
BUSY and DUNE are transmitted on dedicated lines (SELB and SELD) of
the programmed=I1/0 bus.

The F field controls the contrel transaction with the follow=
ing encoding!

F Control Transaction
00 none
01 START
10 CLEAR
i1 PULSE

A controller’s reaction to a control transaction is device specific
unless the data transaction OPCODE was 111 (status transfer), in
which case the control transaction is ignored.

==tnd of Chapter~=~

10:11:18
2e/Mar/78
Rev, 2
Data General Corporation
Company Confidential

CHAPTER 8 = Availability/Reliability/Maintainability

8.1 Overview

This chapter at present contains theoretical directions which
we expect Data General and MTA to be taking. This material s
indicative of the techniques we will employ, but is preliminary as
an architectural definition,

8.2 MTA Diagnostic Control Processor Ubjectives

Data Generel Corporation, and its customers, are becoming
increasingly aware that the characteristics of maintainability and
availability are vital to future systems sales, To meet the
availability and maintainability goals, a soft console will provide
all required MTA console functions executed through a teletype
interface, In addition, it will improve system maintainability by
proviiding a software diagnostic capability external to the MTA
processor system and independent of its correct operation. Availa=-
bility can be enhanced by providing downline system control and the
capacity to monitor timing on critical system data paths. Other
capabilities that can enhance marketability can be provided nearly
free given the above.

The first two objectives effectively define the basic form
that the console will take. To interrupt console commands received
through the teletype, interface intelligence 1is required. A
software diagnostic capability independent of a working processor
system also requires intelligence, plus memory capacity = both RAM
and bulk storage. To provide the intelligence needed, a microNOVA
will be present on the console board, with a teletype interface and
an interface to the MTA System., Basic control software for the
console is present in ROM storapge, and RAM is present for data and
additional console program storage. Bulk diagnostic software s
provided by a diskette unit connected to the microNOVA I/0 bus via
an external cable. The interface to the MTA System allows the
microNOVA to force the processor to any microstate, as well as
forcing data onto buses, and examining the data on those buses. No
part of the actual processor need be working, except the power
supplies for the console microNOVA, to perform complete

10:11:218
2e/Mar/78
] Rev. 2
DPata General Corporation
Company Confidential

8.2 MTA Diagnostic Control Processor Objectives 8=2

diagnostics. The microNUVA will also be provided with its own set
of self=diagnostic programs, further improving maintainability.

Enhancements to availability are accompliished by:

* Providing a capability for downline control. This is done
merely by connecting the teletype interface mentioned to a
modem instead of a terminal. Console commands normally
received directly from a terminal are then receivead via a
phone line. This allows remote daiagnosis of the system
before a field engineer arrives at the site.

* Providing the capability to monitor timing on critical
system data paths. This does not reduce failure probabil=
ity but allows imminent failures to be located before they
occur by spotting symptoms indicating failure, such as late
bits.

* Providing the ability to continuously monitor the power
supply. This feature will enable early warning of power
supply irregularities, and avoid catastrophic failures or
critical data loss.

* Providing the ability to run diagnostic programs from the
console at specified hardware breakpoints. This eases
software debugging and allows the checking of specified
hardware registers or paths in the middle of certain
routines.

The diagnosis of intermittent hardware fajlures 1is generally
difficult., Classically, the simplest way to locate such an inter=
mittent failure is to vary the system characteristics until the
failure becomes hard., The diagnostic control processor can facili=
tate this debugging of intermittent failures by permitting us to
vary three key parameters:

* voltage

* temperature
* clock freauency

10311218
c2/Mar/78
Rev. 2
Data General Corporation
Company Confidential

8.2 MTA Dieagnostic Control Processor Objectives 8=3

Within certain rigid limits, these parameters may be varied,
under the control of the microNOVA, as an aid to off=line fajlure
analysis.

==End of Chapter==-

10211218
22/Mar/78
. Rev. 2
Data General Corporation
Company Confidential

CHAPTER 9 = Measurement and Debug Aids

==fnd of Chapter==

10:11:18
22/Mar/78
, Rev. 2
Data General Corporation
Company Confidential

P

APPENDIX I = INDEX

ADD
AND

CALL 3=12

CALL=PACKET 3=12
CHARACTER=SCAN=UNTIL=TRUE
CLEAR 3=6

CLEAR=BIT 3=9

CLM 3=5

COMPARE 3=5
COMPARE=STRINGS 3=7
COMPLEMENT 3=5

CONVERT=CHARACTER=TO=DP
CONVERT=DP=TO=CHARACTER

CONVERT=DP=TO=INTEGER 3=16
CONVERT=INTEGER=TO=DP 3=16
CONVERT=INTEGER=TO=SP 3=16

CONVERT=SP=TO=DP 3=16
CONVERT=SP=TO=INTEGER 3=16
CONVERT=TO=-PHYSICAL 3-18

COPY 3=-20

DECREMENT 3=5
DISPATCH 3=16
DISPATCH=CALL 3=-16
DISPATCH=PUSHPC 3=16
DIV=R 3=4

DIVIDE 3=4

EDIT 3=6

EXCHANGE 3=21
EXECUTE 3=21
EXTRACT=S 3-9
EXTRACT=U 3=9

Data Gemeral Corporation
Company Confidential

10:573/5
2e/Mrs
Rev

’M“”’"”

FILL 3=20
FIND=LEADING=BIT

GET=MACHINE-ID 3=-19
GET=OPERAND 3=-21
GIOD 3=20

HALT 3=19

HALVE 3=6
INCREMENT 3=5
INSERT=S 3=-10
INSERT=U 3=10
INTEGERIZE 3=6
I0R 3=5

JUMP 3=15

JUMP=EQ 3=14
JUMP=GE 3=14
JUMP=GT 3=-14
JUMP=LE 3=-14
JUMP=LT 3-14
JUMP=NE 3=14
JUMP=0ON=CONDITION

JUMP=UGE 3=15
JUMP=UGT 3=14
JUMP=ULE 3=15
JUMP=ULT 3=15

LOAD=-EFFECTIVE=ADDRESS

LOCK 3-18

LOOP=16 3=17
LOOP=32 3=-17
LOOP=64 3=17

LOOP=8 3=17

MASK=MERGE 3=5
MODIFY=STACK=POINTER
MOVE 3=5

MOVE=~FROM=ISR 3-19
MOVE=FROM=SP 3-11
MOVE=FROM=USR 3=21

3=9

3=20

3=10

10:57:50
22/Mar/78
Rev. 1
Data General Corporation
Company Confidential

MOVE=STRING 3=-7
MOVE=TO=ISR 3=-19
MOVE=TO=SP 3=11
MOVE=TO=USR 3=20
MOVE=WITH=FILL 3=7
MULTIPLY 3=-4
NEGATE 3=-4

NO=OP 3=21
NORMALIZE 3=6

POP=16 3-10
POP=32 3=-10
POP=64 3=-11
POP=-8 3=-10
POP=MULTIPLE 3=-11
POP=PC 3=-12

PUSH=16 3=-10
PUSH=32 3=-10
PUSH=64 3=10

PUSH=8 3=10
PUSH=MULTIPLE 3=-11

PUSH=PC 3-12
REMAINDER 3=4
RESTORE 3=-11
RETURN 3=13
RETURN=ABN 3-13
ROUND 3=6
SCAN=SUBSTRING=DOWN
SCAN=~SUBSTRING=UP
SET=BIT 3=9
SHIFT=A 3=-4
SHIFT=L 3=5
SUBSTRING 3=7
SUBTRACT 3=4
TEST 3=5
TEST=AND=SET=BIT
TEST=BIT 3~9

TRANSLATE STRING

3=8

3-8

Data General Corporation

Company Conffdential

10:57:50
2e2/Mar/78

Reve

1

UNLOCK 3=-18
UNPACK 3=17
USER=TRAP=x 3=21

WAIT 3=-19

XOR 3=5

10:57:50
2e/Mar/78
) Rev., 1
Data General Corporation
Company Confidential

