
+55+

$$$$
$ $ $
$ $ $
$ $ $
$ $ $
$ $ $
$$$$

$ $
$$ $$
$ $ $
:6 $ $
$ $
$ $
$ $

$$$$$
$
$
$
$
$
$

$
$ $

$ $
$ $
$$$$$
$ $
$ $

USER=MTA QUEUE=LPT DEVICE=iLPA
SEQ=135 QPRI=200 LPP=63 CPL=80 COPIES=l LIMIT=150

CREATED: 22-MAR-78 11:03:50
ENQUEUED: 22-MAR-78 14:06:46
PRINTING: 22-MAR-78 14:23:18

PATH=:UDD:MTA:DOCUMENT.LS

$$$ $$$ $ $ $ $ $$$$$ $ $ $$$$$ $
$ $ $ $ $ $$ $$ $ $$ $ $ $
$ $ $ $ $ $ $ $ $ $:£ $ $
$ $ $ $ $ $ $ $$$$ $ $$ $ $
$ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $$ $

$$$ $$$ $$$ $!h $$$$$ $ $ $ $$ $$$$$

$$$
:Ii $
$

$$$
$

$ $
$$$

+55+

AOS XLPT REV 01.00

CHAPTER 1 - Data Types and Formats

1.1 Basic Allowable Types
1.1.1 Floating Point
1.1.2 Fixed .. •
1.1.3 Soolean. •
1.1.4 String • •
1.1.5 Commercial.
1.1.0 Bit Numerics

1.2 Rounding. • •

CHAPTER 2 - Addressing

•
• ..
•
•
•

•

• •
• • •
.. • •

• •
.. • •
• • •
• • •
• • •

• • •

• ..

• • •
to
•
• • ..
• • •
.. • •
• • ..
• • •

• • •

2.1 Address Structure. .. • • • • •
2.2 Architecturally Defined Registers •
2.3 Data Address Formation .. • • • •

2.3.1 Based Data References • • .. •
2.3.2 Absolute Data References • • •
2.3.3 Register Data References • • •
2.3.4 Local Variable Data References ..
2.3.5 Argument Data References •
2.3.0 Literal Data References • • •

2.4 Operand References • • .. • • ..
2.4.1 Fixed-point Operand References •
2.4.2 Floating-point Operand References
2.4.3 doolean Operand ~eferences • •
2.4.4 Bit-numeric Operand References •
2.4.5 String Operand References.. • •
2.4.0 Decimal Operand References • •

2.5 ~rocedure Addressing. .. • • • •
2.5.1 Procedure Indirection
2.5.2 Gate Array.. .. • .. • .. • •

2.b Stack Structure .. •• •••

CHAPTER 3 - Instruction Set • • .. •

3.1 Introduction • • • • ..
3.2 Opcode Format • • • • .. • •
3.3 Arithmetic and Related Operations
3.4 Strings • • • .. •
3.5 Bit • •

..
•

3.5.1 Boolean. • • •
3.5.2 Multi-bit • • • •
3.5.3 Bit Numeric • • •

3.0 Stack Manipulation • • • •
3.7 Transfer of Control .. • • •

3.7.1 Entry and Exit • .. • ..
3.7.2 Vanilla Jump
3.7.3 Dispatches.. .. • • ••

3.8 Conversion • • • • • • •
3.9 Loop Control • .. • • • ..
3.10 Semaphores. • .. •
3.11 Reserved Instructions •
3.12 System control .. • • • •
3.13 Input/Output • .. • .. • ..
3.14 Miscellaneous

CHAPTER 4 ... Interrupts and Traps • •

..
•
..
•
..
..
..
..
•
• ..
..
..
..
..

..

•

•
•
•
•
•
•
•
•
•
..
..
• ..
•
..
•
• ..
• ..

..

..

..

..

.. • ..
•
• • ..
• .. •
.. .. •
• • ..

• • •

.. • •

.. .. •
•
• • ..
.. • ..
..
• .. •
.. • ..
• • •
..
•
• .. •
.. .. •
• .. •
• • ..
.. • ..
..
• • ..
..
• • ..

..

• • •
• • • .. • •
• • •
..
..
• • •
• .. •
.. • •
• • ..
.. • ..
• .. •
• • •
.. • ..
• • •
• • •
• • ..
• • ..
• • ..

• .. •

..

..

..
•
•
..
•
..
..

•

..
•
• ..
..
..
..
•
•
• ..
..
..
• ..
•
..
..
• ..

..

..

..

..
•
•
•
..
•
•
•
•
•
•
•
..
..
..
•
•
•

..

..

..
•
• ..
•
• ..
..

1-1
1-1
1-1
1-2
1-2
1-2
1-4
1-4

• 2-1

.. 2-1

.. 2-1
• 2-3
.. 2-4
.. 2-7
• 2-7
.. 2-8
.. 2-8
• 2-8
.. 2-9
• 2-9
• 2-9
• 2-10
.. 2-10
.. 2-10
• 2-11
• 2-11
.. 2-15
.. 2-10
• 2-17

• 3-1
• 3-1
.. 3-1
• 3-6
.. 3-8
• 3-8
.. 3-9
• 3-9
• 3-10
.. 3-11
• 3-12
• 3-13
.. 3-15
.. 3-10
• 3-17
• 3-18
• 3-18
• 3-18
• 3-19
• 3-20

5

o

7

4.1 General • • • • ..
Procedure Traps. • • •

5.1 Floating/Fixed Point •
5.2 Commercial String. •
5.3 Trace. • • • • •
5.4 User Traps .. • • •
Process Traps • • • •

0.1 Faults • • • • ..
0.2 Unimplement Opcode ..
6.3 Data General Reserved
Interrupts • •

• .. •
• • •
• • •
• • •
• .. •
• .. •
.. • •
..
• • •
• • • .. • •

• .. • • • .. • • .. •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • • .. • • .. •
.. • • • ..
• • • • •
• • •

CHAPTER 5 .. Protection .. • • • • • • • • ..
5.1
5.2
5.3
5.4
5.5
5.6

General • • • • .. • .. • .. • • • ..
Ring Maximization. .. • • • .. • • • •
Determination of the Current Ring of Execution
Stacks • • • .. • • .. • .. • .. • •
BASE REGISTER MODIFICATIONS • • .. •
PROGRAM COUNTER RELATlVE • • • .. •

CHAPTER 6 .. Memory Mana~ement • .. • • • • • ..

CHAPTER 7 - I/O System .. • • • • • .. • • •

CHAPTER 8 - Availability/Reliability/Maintainability

8.1
8.2

Overview.. • • • .. • • • • .. • •
MTA Oiagnostic Control Processor Objectives

CHAPTER 9 .. Measurement end Debug A~ds • • • •

..
•

•

..
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•

•

•

•

•
•

..

.. 4-1
• 4-3
• 4-3
.. 4-4
.. 4-4
• 4-5
• 4-5
• 4-5
• 4-7
.. 4-7
• 4-7

• 5-1

• 5-1
• 5-1
• 5-2
• 5-2
• 5-2
• 5-2

• 6-1

• 8-1

.. 8-1
• 8-1

.. 9-1

CHAPTER 1 - Data Types and Formats

1.1 Basic Allowable Types

In this architecture, a word nas 4 bytes' a half woro has 2; a
cnaracter, one. Double precision refers to 2-word quantities;
single precision refers to 1-word quantities. This chapter enu
merates the data types supported by the architecture, and describes
the formats they take while residing in system memory.

Real numbers are represented in standard Data General (and
IBM) format.

Figure 1-1, "Floating Point Format"

Both single precision and double preciSion will be suported.

1.1.2 F;xed

Fixed point numbers are supported in 2's complement integer
representation. Direct support is provided for 8-, 10-, 32-, and
64-bit container sizes.

Figure 1-2, "Fixed Point Format"

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

1.1.3 Boolean

1.1.3 Boolean

Boolean values OCCUpy a one bit container and have the value
zero or one.

Byte strings of lengths from 1 to 2**15 bytes are supported in
the architecture. A string descriptor is associated with eacn byte
string.

Figure 1-3, "String Format"

1.1.5 Commercial

The architecture provides direct support for tne data types
listed below:

* Unpacked decimal, low·order sign/overpunch

* Unpacked decimal, high"order sign/overpunch

* Unpacked decimal, trail ing sign

* Unpacked decimal, leading sign

* Unpacked decimal, unsigned

* Packed decimal (ll:3t¥l format)

* Binary integer, signed

* Binary integer, unsigned

Eighteen digits of precision are supported.
follows:

The formats are as

Data General Corporation
Company Confidential

10:11:18
22/Marl18
Rev. 2

1.1.5 Commercial

Figure 1-Q, "Unpacked decimal, low-order sign/overpunch"

Figure 1-5, "Unpacked decimal, high-order sign/overpunch"

Figure 1-6, "Unpacked decimal, trailing sign"

Figure 1-7, "Unpacked decimal, leading sign"

Figure 1-8, "Unpacked dec~mal, unsigned"

Figure 1-9, "Packed decimal"

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

1.1.5 Commercial

Figure 1-10, "~inary integer, signed"

Figure 1-11, "Binary integer, unsigned"

A commercial descriptor is always accociated with a commercial
word.

1.1.6 Bit Numerics

The architecture supports the
consecutive bits for 1 to 32 bits.
calls for a numeric value, the bit
two's complement form.

1.2 Rounding

manipulation of a
When the operation

string ;s considered

string of
specified

to be in

Two guard digits are provided for floating point operations,
with the following rounding modes provided:

* Truncation

* Round toward zero.

* Round away from zero.

* Round toward plus infinity.

* Round toward minus infinity.

* Unbiased round.

Truncation is the only legal form of rounding in ;mplimenta
tions with only a single guard digit. A trap will occur if another

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

1.2

form of rounding ;s specified.

--End of Chapter--

Data General Corporation
Company Confidential

Rounding

10:11:18
22/Mar/78
Rev. 2

CHAPTER 2 - Address;ng

2.1 Address Structure

The MTA architecture supports an address space of 512 Mbytes
(Mbyte = 2**20 byt~div;ded into 128 segments, each containing UP
to 4 Mbytes. A segment can contain either procedure or data.

The basic addressing granularity is to the byte, although bit,
byte, word (32 bits), half-word (1b bits) and double word (b4 bit)
operations are defined. The address mechanism of the memory system
is always presented with a virtual address comprised of segment and
byte offset within the segment. This logical address ;s 29 bits in
length. (See Memory Management Chapter for a detailed descriPtion
of memory management and the translation of the logical address to
a physical address).

2.2 Architecturally Defined Registers

The processor contains the following registers for use with
the standard instruction set:

* Base Registers (BR) - The 8 base registers are 32 bits
wide. Their contents are interpreted as follows:

--------------------------------, RING , SEGMENT 1 BYTE OFFSET 1

------------------------------.. o 2 3 9 10 31
1<-· BYTE POINTER -->1

In the above format, the three bit ring field provides
protection information, while the segment and byte offset
fields comprise a 29 bit byte pointer.

Four base registers are allocated to the following
architectural pointers:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.2

*

*

'/(

Architecturally Defined Registers 2-2

BRO - Program Counter (PC)
SRi - Frame Pointer (FP)
BR2 - Argument Pointer (AP)
BR3 - Global Pointer (GP)

The PC can only be modified as a result of a branch type
instruction. BRi through BR7 can only be modified by
pointer-specific instructions. Violation of these restric
tions is signalled by a specification error.

General Registers (GR) - Eight 32-bit registers are defined
for use in indexing and temporary storage. 64-bit entities
may only be moved to an even-odd pair of GR's; this provi-
des four b4-bit registers (DPO, DPl, DP2, DP3). Stringl
operands and commercial operands may not be referenced in a i(~
GR. Bit numeric types may only be moved to or from a GR::::rJ:
using the bit numeric move instructions with a length field !~~
less than ~ 32 bits.

Interrupt s~ta~j~4eg;ster (ISR) - This 17 bit register
contains an interrupt disable bit (interrupts are inhibited
when this bit is set) , and 16 bits specifying which
interrupts will be honored if interrupts are enabled.

User Status Resister (USR) The User Status Register
contains user relevant status in the following format:

1 COND 1
I<BITS->I
----...---_ ... _------_ ------------
101112131 IRNDI ITEICEIAEI

------------~---.--------------o 1 2 3 4 5 7 8 12 13 14 15

In this register, bits 0 - 3 are condition bits CBO, CS1,
CB2, and CB3, respectively. They are altered at the
conclusion of each instruction in a predefined
fashion. Bits 5 7 specify the rounding mode of the
arithmetic unit. Chapter 2 details the rounding
modes. Bits 13 15 enable (or disable) the trace,

Data General Corporation
Company Con1idential

10:11:18
22/Mar/78
Rev. 2

2.2 Architecturally Defined Registers

commercial, and arithmetic traps respectively. All bits not
specified are reserved by the architecture, and must be
cleared to zero.

* Stack Pointer (~P) - This register contains an address
which points to the last filled location on the top of the
current stack. The format of the SP is identical to that
of a BR. A complete definition of the stack mechanism is
provided later.

2.3 Data Address Formation

An ;n-line data reference is self-describing and falls into
one of six categories:

a) based,

b) absolute,

c) register,

dl 1 oca 1 variable,

e) argument, and

f) literal.

When indirection ;s specified (i.e. the bit labeled "@" is set),
the in-line reference points to a 32-bit intermediate adoress which
points to the desired operand; multiple-level indirection is not
provided. An intermediate address has the following format:

._ .. _------------------------_.-
1 RING I SEG~ENT , BYTE OFFSET 1

-------------_.-----------------o 2 3 9 10 31
1<-- BYTE POINTER -->1

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.3 Data Address Format;on

2.3.1 Based Data References

The following formats are used for based address generation:

Format BO

Format 61

Format 62

Format 83

Format 64

Format B5

Format Bo

~~----~-~-~------11 01iiJ111BR*11 01
-----------------o 1 234 ~ 0 7

----~~------~-~--------------I 1 1 I @ I BR I OISP(10)

---------------------------------o 123 5 0 15

... -------------------------------l1li---
10 11@1 OISP(S) I GR I BR IOROI
----------------------------_.---o 12:5 7 8 10 11 13 14 1~

......----------.... -----~--........... --------.... 1101@1 BR 11 11 OISP(1o)
----------------------.-._-------------o 123 5 0 7 8 23

--..----...... -... ~------~-....-----~------11 01@10 0 0 1 01 GR' 8R' ORO IDISP(1o)I
------.-------------------------------.-----o 1 2 3 7 8 10 11 13 14 15 10 31

~--------------.-. .. --....-------..,---------11 Ol~IO 1 0 1 01 0001 BR I 000 1 OOIOISP(22)1 _______ ww ____________________ • ________________ _

o 123 7 8 10 11 13 14 15 10 18 39

-_ _---------_--._-----.. ---------------.-
1101011010101 GR I BR 1 ORO 1 10IDISP(22)I
------._----------_.---------------------------
o 123 7 8 10 11 13 14 15 10 18 39

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.3.1 Based Data References 2-5

Every format s~ecifies a BR (format 80 can only s~ecify BR4,
BRS, BR6, or 8R7) while some formats also s~ecify a GR ana/or a
twos-complement byte displacement. When PC relative addressing ;s
s~ecified (the s~ecified BR is BRO), the value of the PC used in
the address resolution is the address the the instruction's first
opcode byte.

Each based data reference is resolved into an effective byte
address consisting of two fields: a 7-b1t effective segment, and a
22-bit effective byte offset. The effective segment is simply the
segment number (bits 3-9) of the byte pointer contained ln the
s~ecified ~R. The effective byte offset ;s com~uted usung the
following terminology:

[BR(X,Y)]

lGR(X,Y))

DISP(X)

ORD

+,*,**

represents bits X through Y of the
contents of the specified BR

represents bits X through Y of the
contents of the s~ecif;ed GR

represents the X bits of the I ~ n r, 2..-"f.s
spec if; ed d; sp 1 acement ~ ')"5" e~~" L -

represents the contents of the
specified ordinal multiplier

represent twos·complement addition,
multiplication, and exponentiation,
respectively.

The formulas for determining the effective byte offset are:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.3.1 Based Data References

Format Effective Byte Offset

80 £BR*ClO,31)]

81 [BRClO,31)] + OISP(10)
•

B2 [8R(10,31ll + DISP(S) + [G R (1 0 , 31) J * (2 * *0 R 0)

83 [BRClO,31)] + DISP(1b)

84 [BRClO,31») 't DISP(lb) + (GR(10,31)]*(2**ORO)

6S [BR(10,31l] t OISP(22)

Bb [BR(10,31l] + OISP(22) + £GR(10,31)1*(2**ORD)

Formats B2, 84, and Bb provide indexed addressing by incorpor
ating the contents of a GR in the effective byte offset
computation. The two-bit ORD field permits ordinal addressing of
elements in an array by specifying that the contents of the index
ing GR be multiplied by a constant to account for element length.
The original GR contents are not modified.

When indirection and indexing are both specified,
post-indexing occurs. The intermediate address is located by:

Effective segment = tBR(3,9)J

Effective byte offset = [BR(10,31)] + OISP

When the intermediate address has been fetched, the operand address
;s computed as:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.3.1 Sasea Data References

Effective segment = INT(3,9)

Effective byte offset = INT(10,31) + [GR(10,31)l*(2**ORO)

where INT(0,31) ;s the intermediate address

2.3.2 Absolute Data References

The follow;ng format ;s used for absolute address generation:

----_-.-------,.,----------------_ ... _--110101101 1 101 RING I SEG I OFFSET I

--------------------------------_.-----o 123 7 8 10 11 17 18 39

2.3.3 Register Data References

The SRs and GRs are addressed using the following formats:

---_-.... ... - .. _----
11 0 01 t;R 10 11
--------------_.-o 2 3 5 b 7

11 0 11 GR 10 11
-----------------o 2 3 5 b 7

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

Local Variable Data References 2-8

2.3.4 Local Variable Data References

Local variables in the stack frame can be addressed using the
following format:

-------~-------10 0 11 LV# --------._-... _--
o 1 234 567

The LV# field is interpreted as a word offset relative to BR1,
the frame pointer. Thus, the effective byte offset is computed by
multiplying the LV# field by 4 (forming a byte displacement) and
adding it to the byte offset contained in FP.

2.3.5 Argument Data References

Arguments passed to a subroutine are addressed using the
following format:

11 OI~1 ARG#IO 01
---------------_. o 1 234 ~ C 7

The ARG# field is interpreted
8R2, the argument pointer. Thus,
computed by multiplying the ARG#
displacement) and adding it to the

as a word offset relative to
the effective byte offset is
field by 4 (form;ng a byte

byte offset contained in AP.

2.3.0 Literal Data References

Data General Corporation
Company Confidential

10:11:18
221tv1ar/78
Rev. 2

2.3.b Literal Data References

In-line literals are generated by operand references of the
following formats:

--_ _-----... -----
For,."at L1 10 0 01 LITeS) I

-----------------o 2 3 7

-_-.. __ -...-...._ .. _----------
Format L2 11 0 0 0 0 1 1 01 LIT (X) I

----------.------_.-.------
o 7 S 15

The length of the literal contained in format L2 is defined
length of the data type as~~;at~ith the instruction's
Possible lengths are 1, 2'~ or~ytes.

as the
opcode.

2.4 Operand References t ~
An operand is specified by one, two, or three data references,

depending on its data type.

2.4.1 Fixed-point Operand References

A fixed-point operand ;s specified by a single data reference.

2.4.2 Floating-point Operand References

A floeting-point operand is specified by a single date
reference.

Data General Corporation
Company Confidential

10:11:18
22/Mar/7S
Rev. 2

Boolean Operand References 2-10

2.4.3 Boolean Operand References

A boolean operand is specified by two data
first reference ;s a byte pointer to the oase of a
second oata reference prov;oes a 32-bit b;t offset
The two references are referred to as a bit-ref.

references. The
bit table; the
from the base.

2.4.4 Bit-numeric Operand References

A bit-numeric operand is specified by three data references.
The first two are a byte pointer and bit offset, as for a boolean
operand. The third data reference provides the 5-oit operand
bit-length (in an 8-bit container). The three references are
referred to as a bit-numeric-ref.

2.4.5 String Operand References

A string operand is specified by a single data
which points to a two-word strin~ descriPtor hav;ng the
format:

o 2 3 q 10 31

----------------------------------~ I RING I SEGMENT I BVTE OFFSET
-----------._----------------------
I MAXIMUM-LENGTH I CURRENT-LENGTH I

-------.-------------~------.. -----o 15 10 31

reference,
following

The descriptor's first word is the absolute address of the
first byte of the string. Twos-complement maximum-length and
current-length fields are contained in the descriptor's second
word. Reference to and modification of these fields ;s specified
by the instruction being executed.

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

Decimal Operand References 2-11

2.4.6 Decimal Operand References

A decimal operand is specified by two data references. The
first is a pointer to the first byte of the operand; the second
provides a 3-bit type and a 5-bit length in the following format:

I TYPE I L~NGTH I
-----------------o 2 3 7

The type field is encoded as:

Type

o
1
2
3
4
5
{)

7

DescriPtion

Packed decimal (IBM format)
Unpacked decimal, low-order s;gn/overpunch
Unpacked decimal, high-order sign/overpunch
Unpacked decimal, trailing sign
Unpackea decimal, leading Sign
Unpacked decimal, unsigned
Binary integer, signed
Binary integer, unsigned

The two data references comprising a decimal operand reference are
referred to as a decimal-ref.

2.5 Procedure Addressing

The following formats are used to generate a procedure
address:

Format PO ---------~-...,..---101 DISP(7)

~----------------

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

2.5

Format Pl

Format P2

Format P3

Format P4

Format P5

Format P6

Procedure Addressing

o 1 7

~----... - .. ------11 VI@I ARG~IO 01
------._.-.------
o 123 6 7

- --.... ~-.. ----...~-
11 Olollll*t;Rll 01
.---.---------.--
o 1 234 567

i1 11@1 BR I DISP(10) i

-------------------------o 123 5 6 15

..... --"-... ------------... -.... -... ---~~-.. ---
110lQlI BR 11 11 DISP(16)
----------------.. -----------------o 1 234 5 678 23

---... -----... ---.....,----.... -----... --~~~-
1100001 101 SEG(7)1 GATE(9) I

-----------------------------------o 7 e 23

~ --.... ---~-... ---.... --------.......... ----~-~ .. --
11 01@10 0 0101 GR i BR IORDiDISP(16)1
----._------------------------------------o 1 2 3 7 8 10 11 13 14 16

Data General Corporation
Company Confidential

31

10:11:18
22/Mar/76
Rev. 2

2.5 Procedure Addressing 2-13

--------------------------------------Format P7 11 OI@iO 1 0 1 01 000 I BR I OOIOOlUISP(22)1
----------------_._--------------------------o 1 2 3 7 8 10 11 13 14 10 18 39

- .. -.. -----.----------~----------~----Format P8 11 OI@IO 1 0 1 01 bR I BR IORDll0IDlSP(22)1
---o 1 2 3 4 5 0 7 B 10 11 14 1b 18 39

....... ---.. --.. -----.. .. -~ -----... ...-----------Format P9 11 OI@IO 1 1 1 01 000 0000000 IOFF(22) I

--------------------------~------------------o 7 8 10 11 18 39

------------------------~------... ---------Format P10 11 OleviO 1 1 101 001 0000000 IDISP(22)I

-------.------.--------.-----------~----.----o 7 8 10 11 18 39

---------------_ .. _-------------------Format P11 11 OIGlIO 1 1101 010 SEG(7) IOFF(22) I
-_._---o 7 8 10 11 18 39

-------------.. _-------.. _---...... ---_ _---------
Format P12 11 01@10 1 1 101 011 SEG(7) IGATE(22)f

----------_._--------------------------------o 7 8 10 11 18 39

Each procedure address is resolved into an effective byte
address consisting of two fields: a 7-bit effective segment, and a
22-bit effective byte offset. This resolution occurs d~fferently

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.5

for each format:

Format Effective
Segment

PO [PC(3,9)]

P1 (AP(3,9»)

P2 [BR(3,9ll

P3 [BRe3,9)]

P4 [BR (3,9) 1

P5 SEG(7)

P6 [BR(3,9»

P7 [BR(3,9)]

P8 [BR(3,9)]

P9 [PC(3,9)]

P10 [PC(3,9)1

P11 SEG C7)

P12 SEG(7)

Procedure Addressing 2-14

Effective
Byte Offset

[BROClO,31>] + DISP(7)

[BR1(10,31)] + (AkG# * 4)

[liR*ClO,31)]

[BR(lQ,31)] + DISP(10)

[BHelO,!1» + DISP(16)

[GATE(9»

[BR(10,31)] + DISPCl6) +

[BR(10,31l] + DISP(22)

[BR(10,31l) + DISP(22) +

OFF(22)

(PC(10,31l + DISP(22)

OFF(22)

(GATE(22)]

Data General Corporation
Company Confidential

CGR(10,31)J*(2**ORD)

CGR(10,31)l*(2**ORD)

10:11:18
22/Marl78
fol~v. 2

2.5

r

[AP(X,Y)]

[GR(X,Y)]

OISP(X)

SEG(7)

[GATEeX)]

Procedure Addressing

------------------.,.,
represents bits X through
contents of the specified

represents bits X through of the

2-15

contents of the ounter CBRO)

represents bits X th ugh Y of the
ntents of the ment pointer eBR2)

through Y of the
specified GR

re resents the of
e speC; fied gate

specified segment

the

the

represents the contents f the
specified ordinal multipl

represents the X bits of the
specified offset

twos-complement

in

t;on and

2.5.1 Procedure Indirection

When indirection is specifiea by a procedure reference, an
intermediate procedure adoress is fetched. An effective byte
address is computed as if indirection were not specified, e~cept
that any specified indexing (formats P6 and pe) is does not occur.
This effective byte address is used to fetch the intermediate
procedure address, which has the following format:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.5.1 Procedure Indirection 2-16

----. ... -.... ~-... ------------~-~ --.... -....-...... ---...... 1f-10DE I SEG I FIELD ___ . __ . _______________________ ._M ______ _
023 9 10 .H

The ultimate effective address is obtained from the intermedi·
ate address in one of four ways, selected by the MODE field:

MODE

o

1

2

3

Effective
Segment

[PC(3,9)J

(PC(3,9)]

SEG

SEG

Effective
8yte Offset

FIELD(22) + £GR{10,31)l*(2**ORD)

[PC{10,31)] t FIELD(22) + lGR(10,31)J*(2**ORDl

FIELD(22) + lGRC10,31)1*(2**ORD)

[GATE) + [GRClO,31)1*(2**ORD)

where (GATE] represents the contents of the gate entry
specified by FIELD for segment SEG

GR contents are only included in the ultimate effective byte offset
computation if the procedure reference specified indexing (formats
P6 and P8l; this mechanism implements post-indexing for indirect
procedure references.

2.5.2 Gates~

It is necessary to restrict access to procedure segments that
are more privileged than a calling procedure. This is done by
allowing control to enter these segments only at specific routine
entry points called gates. In this case, the caller, instead of
specifying a byte address, specifies a gate number (procedure
pointer mode 011). This number is used as an index into a gate
array which contains the byte address of the routine to be
executed. Gates are numbered starting with O. The gate array ;s

Data General Corporation
Company Confidential

10:11:18
22/Ma rl'7 8
Rev. 2

2.5.2 Gate Array 2-17

located starting at word 0 of the target procedure segment, and has
the following format:

-..... ---~-----------------~ --~~ --Word 0 I Max Gate Number
-----------.--------------------.-o 9 10 31

-~---.. ------..... -------...-.,.--... ~ word 1 Procedure Byte Pointer GATE ". 0
------------------.---------------

•
•
•

~-------... ~----... ----.,. ~------------Word N Procedure Byte Pointer GATE # N
.---.. ----------------------------

Before the gate ~y ;s fetched, the gate number;s compared
to the max gate number/c~tained ;n word 0 of the segment. If the
gate number is less than the maximum, the referenced offset is used
as the target of the instruction. If it ;s not within bound, an
error condition is signalled. Tl:le tip-st b hOPGe ,,1 each proced",..
ieo~ent ire reserved f"r ;~tepp~pt and troo yect~

Since the contents of a gate ~ep~
Procedure Pointer, a reference to a GATE
transfer to another segment.

2.6 Stack Structure

are
entry

interoreted
may result

as
in

a
a

Efficient handling of subroutine call and return, trap proces
sing and space for temporary variables is achieved by support of a
stack mechanism. The stack is divided into units called frames.
When a subroutine ;s called or a trap processed, a new frame is
created. The structure of the stack at a typical point ;n time is:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

/1\
1
1
I
I

INCREASING
ADDRESSES

Stacl< Structure

-------...... _---------_ _--------- <--- STACK POINTER 2
LOCAL VARIABLES

#2
1---------------------------------1 <--- FRAME POINTER 2

FRAME POINTER 1

I--__ --__ ------~--~~-------~---,
IMPLEMENTATION SAVE AREA

for #2
..
..
..

1---------------------------------, <ARG#N>
..
..
II

<ARG#l>
I·------------------~-------------t <--. ARGUM~NT PTR 2 ARGUMENT COUNT
1--------------------------------- <--- STACK POINTER 1

LOCAL VARIABLES
#1

1----------------_·---------------
FRAME POINTER 0 -----_ _ _--------_ .. _ ...

IMPLEMENTATION SAVE AREA
for #1

--------------------------_._ .. _.
<ARG#N>

•
•
•

<ARG#1>

<--- FRAME POINTER 1

.-------.----._.--------------- <--- ARGUMENT PTR 1
ARGUMENT COUNT

._.------------------------------
The functioning of the stack ;s as follows: When a call

instruction is issued, an argument packet can be built on the
stack. (Alternatively, the argument list can be built in a segment
other than the stack segment). Enough information must be saved in
the frame's implementation save area to allow a complete restora-

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

2.0 Stack Structure 2-19

tion of the caller~s environment, including all registers. An
calling routine uses its implementation save area to save its
registers (and other state) on cal ling another routine. The format
in which this information is saved is not specified, with the
exception that the caller must save its frame pointer (SR1) in the
last location of its implementation save area. In the above
figure, routine #1 saves its registers in implementation save area
#1 before calling routine #2. If routine #2 calls another routine,
it will first save its registers in implementation save area #2.
FP and SP are updated to the next available (empty) stack location,
and the PC ;s updated with the starting address of the first
instruction to be executed in the called subroutine. Typically, a
called subroutine then allocates stack area for local variables
with the save instruction.

A return instruction restores a caller~s registers (and state)
by obtaining them from the caller~s implementation save area. In
the above figure, when routine ~2 executes a return, the original
contents of the registers of routine #1 will be restored from
implementation save area #1.

~hen a routine is called, no registers (8~s or
propagated from caller to cal lee except GP, (the global
and USR.

xRs) are
pointer)

Each stack occupies 8 segment by itself. Thus overflow and
underflow are detected by segment boundary faults which (in the
case of overflow) can be resolved by the operating system inviSibly
to the executing procedure.

--~nd of Chapter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

CHAPTER 3 - Instruction Set

3.1 Introduction

This chapter presents the deta;ls of the instruction set for
the MTA architecture. The general form of an instruction ~s:

<op code> {<operand>}*
where operand
previously.

is a data 01" procedure reference as described

3.2 Opcode Format

There are two opcode formats - 8 and 16 bits.
are:

------~-------

3.3 Arithmetic and Related Operations

The table below summarizes the instruction set
the basic oata types. Legal operations for a given
indicated by an X.

Oata General Corporation
Company Conf'idential

The encodings

for
data

seven of
type are

10:11:18
22/Mar/78
Rev. 2

3.3 Arithmetic and Related Operations

A descript;on of the format and action
follows the table. The operation code for each
structed by appending the type ID found at the
for each data type to the general operation
<ADO-1o> adds two 1b bit fixed point numbers,
two packed decimal numbers.

Data General Corporation
Company Confidential

of each operation
data type ;s con
top of the column

name. For example,
where <ADD-P> adds

10:11:18
22/Marl78
Rev. 2

3.3 Ar;thmetic and Related Operations

Operation

type 10

Fixed
Point I
(signed)1
(8,10,321
04 bits)1

Floatingl
point I

(32 and I
04 bH s) I

I

I -8, -101 -5, -I)

1 -32, -041

Packed
Decimal

-P

----------.... -------------' ... -~-----.. ----,....
ADD X X X
SUBTRACT X X X
MULTIPLY X X X
DIVIDE X X
REMAINDER X
DIV-R X
NEGATE X X
SHIFT-A X X X
INCREMENT X
DECREMENT X

---------------..-.-~-~-..... ---~..-......-...
AND X
lOR X
XOR X
COMPLEMENT X
MASK-MERGE X
SHIFT-L X

-----------_ ... ----------_ ------...._-----
MOVE
COMPARE
TEST
CLM
CLEAR

x
X
X
X
X

x
X
x

x

x
X
X

X

I
I
I
I
I
I ---.. -..... ..----.... --------~--~----.-.... -

1
NORMALIZE I
INTEGERIZf. 1
HALVE 1

x
X
X

.. -----------..... ---------------------
ROUND
EDIT

X
X

---.. _---------"""-_ _---------....... -

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

3.3 Arithmetic and Related Operations

Following are the operands and descriptions of each operation.
Except for packed decimal operations, each operand is a standard
data reference as described in the addressing chapter. Packed
decimal operands contain two data references, one specifying the
length, and one pointing to the first byte of the decimal
string. For more detail, refer to th~ chaPter on addressing forms.

, Certain operations are prov~ded with both implicit and expli
cit destinations. When the operation has an implicit destination,
the result is always placed in the container from which the last
operand was extracted. An explicit destination ;s provided by an
additional reference. In operations where this is permitted, the
last reference has been placed in parentheses, to indicate that its
absence will result in an implicit reference. In opcode
terminology, where an operation demands an explicit destination, a
"-E" will appear in its suffix.

* <ADD><REF1><REF2>«REF~»

* <SUBTRACT><REF1><REF2>«REF3»

* <MULTIPLY><REF1><REF2>«REF3»

For all types, multiply returns a result of the same
type and size as the inputs.

* <DIVIDE><REF1><REF2>«REF3»

The value specified by <REF2> is divided by the value
specified by <REF1> and the result ;s placed in
<REF2>«REF3».

* <REMAINDER><REF1><REF2>«REF3»

* <DIV-R><REF1><REF2><REF3> - divide with remainder

The value specif;ed by <REF2> is divided by the value
specified by <REF1>. The quotient ;s placed in <REF2> and
the remainder ;s placed in <REF3>.

* <NEGATE><REF1>«R~F2»

* <SHIFT-A><REF1><REF2>«REF3» - arithmetic shift

The operand specified by <REF1> is
count. Positive implies a left shift,

Data General Corporation
Company Confidential

an 8 bit
negative a

shift
right

10:11:18
22/Mar/78
Rev. 2

3.3 Arithmetic and Related Operations 3-5

* <INCREMENT><REF1>«REF2»

* <DECREMENT><REF1>«REF2»

* <AND><REF1><REF2>«REF3»

* <IOR><REF1><REF2>«REF3»

* <XOR><REF1><REF2>«REF3»

* <COMPLEMENT><REF1>«REF2»

* <MASK-MERGE><REF1><REF2><REF3>«REF4»

<REF3> «REf4» becomes «REF1> AND <REF2» OR (NOT
<REF1> AND <REF3»

* <SHIFT-L><REF1><RE~2>«REF3» - logical shift

A logical shift
performed. The shift
by <REF1> (positive
shift).

* <MOVE><REF1><REF2>

* <COMPARE><REF1><REF2>

of the operand specified by <REF2> ;s
count is an b bit quantity specified

-> left shift, negative -> right

The only result of this instruction is to set the
condition register based on the result of the comparison
between the operands specified by the references.

* <TEST><REF1>

The condition register is set based on the result of a
comparison between the operand specified by <REFl> and
zero.

* <CLM><REF1><REF2>

<REF1> specifies an operand twice the length of the
data type specified. The first half is a lower bound and
the second half of this operand is an upper bound. The
condition register is set based on a comparison between the
operand specified by <REF2> and these two Signed values.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Kev. 2

3.3 Arithmetic and Related Operations

* <CLEAR><REF1>

The operand specified by <REF1> is set to zero.

* <NOR~ALIZE><REF1>

* <INTEGERIZE><REF1>

* <HALVE><REF1>

The value specified by <REF1> is divided by 2.0 and
returned to the place specified by <REF1>

* <ROUND><REF1><REF2><REF3><REF4><REFS><REF6>

The packed decimal string specified by reference 3,
with length specified by reference 2 is shifted(scaled by a
factor of 10) as specified by reference 1. The result is
moved to the decimal string specified by reference b, with
length specified by reference 5.

A positive count results in a left shift (multiply by
10). A negative count results in a right shift and addition
of the rounding factor to the shifted string before the
final shift right occurs. That is, after count-l right
shifts, the rounding factor is added to shifted string
before the last shift. The last shift results in the
rounded shifted string and its carry out being shifted
right one additonal time. A count 0 results in a move of
reference 2 to reference b.

The rounding factor is interpreted as a signed byte.

* <EDIT><REF1> ••• <R~FN>

3.4 Strings

The string instructions provided are generally oriented to
multi-byte character strings. The compare instructions will set
conditions bits in the condition register (CR). Up is defined as
an increasing byte a,ddress and down as a decreasing byte address. A
string length of zero will cause no operation to occur.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

Strings 3-7

Within this section a <STR-REF> is a pointer to a string
descriptor as described in the Addressing chapter. <STR-REF>.PTR
is the string's byte pointer as specified in the descriptor.
<STR-REF>.MAX is the string's maximum length as specified in the
descriptor. <STR-REF>.CUR is the string's current length as
specified in the descriptor. The string descriptor always points
to the first byte of the string. In scans there are condition
codes for failure due to current length being zero or negative,
character not found and successful scan. If the scan ;s
unsuccessful, the returned index will be set to zero.

The following instructions have been defined:

<MOVE-STRING><STR-R£Fl><STR-REF2>

Move bytes from the string referenced
the string referenced in <STR-REF2> for a
MIN «STR-REF1>.CUR,<STR-REF2>.MAX). Th;s
updates the value of <STR-REF2>.CUR to the
moved. <STR-REF2>.MAX is unchanged.

* <MOVE-~ITH-FILL><STR-REF1><STR-REF2><REF3>

in <STR-REF1> to
count equal to
instruction also
number of bytes

Similar to <MOVE-STRING> except that if <STR-kEF1>.CUR
is less than <STR-REF2>.MAX, the rema;noer of string two ;s
padded out with the eight bit character specified by
<REF3>.

<COMPARE-STRINGS><STR-REF1><STR-REF2>

Compare strings referenced by <STR-REF1> and
<STR-REF2> setting the condition register (CR).

* <SUBSTRING><STR-REF1><STR-REF2><REF3><REF4>

Set <STR-REF1> to be a new string descriptor to a
substring of the string specified by <STR-REF2> with <REF3>
being a 1o-bit offset into the string for the start of the
substring and <REF4> a 1o-bit offset into the string for
the end of the substring.

* <SCAN-SUBSTRING-UP><STR-REF1><STR-REF2><REF3>

* <SCAN-SUBSTRING-DOWN><STR-REF1><STR-REF2><REF3>

Scan a string referenced in <STR-R~F2> up or down for
the substring referenced in <STR-REF1>.Set <REF3> to be the

Data General Corporation
Company Confident;al

10:11:18
22/Marl78
Rev. 2

3-8

index to the leftmost character of the found substring.
<REF3> is a signed 1o-b;t integer.

* <TRANSLATE-STRING><REF1><STR-REF2><STR-REF3>

Move translated bytes using a 250-byte translation
table referenced by <REF1> frOm the string referenced by
<STR-REF2> to the string referenced by <STR-REr3> for a
count e~ual to MIN«STR-REF2>.CUR,<STR-REF3>.MAX). Set
<STR-REF3>.CUR accordingly.

* <CHARACTER-SCAN-UNTIL-TRUE><REF1><STR-REF2><REF3>

3.5 ~it

Scan a string referenced in <STR-REF2> using each byte
as an index into a 2Sb-b;t table referenced by <REF1> until
the indexed bit is on. Set <REF3> to be the 1o-bit index
to the found byte.

The bit instructions fall into three classes of operations;
boolean instructions, multi-bit string instructions and bit
numerics. Throughout this section, <BIT-REF> is used to represent
a bit reference. This reference ;s described in the chapter on
addressing formats, and consists of a pair of data references
specifying the base of a bit table, and the offset in that table.

3.5.1 Boolean

The following instruction is
read/modify/write occurs as one
locking out any other asynchronous
;s complete.

* <TEST-AND-SET-BIT><BIT-REF>

indivisible, which means the
completely contained operation
request until the modification

Test the bit referenced by <BIT-REF> and set the
appropriate condition bits. Set the referenced bit.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

3.5.1 Boolean

The following instructions are not indivisible.

* <TEST-BIT><BIT-REF>

Test the bit referenced by <BIT-REF> and set the
appropriate condition bits.

* <SET-BIT><BIT·REF>

Set the bit referenced by <SIT-REF>.

* <CLEAR-BIT><BIT-REF>

Clear the bit referenced by <BIT-REF>.

<FINO-LEADING-BIT><REF1><REF2><REF3>

Scan for first 1 in • 32 bit word specified by <REF1>.
Set <REF2> to be the bit offset to this bit.

For the bit numeric move operations, an
(-U) involves clearing the high order bits of
signed operation (-5) involves sign extending
bit of the bit field to fill the destination.
to a 32 bit destination.

* <EXTRACT-U><BIT-REF1><REF2><REF3>

* <EXTRACT-S><SIT-REF1><REF2><REF3>

Data General Corporation
Company Confidential

unsigned operation
the destination; a

the most significant
Movement ;s always

10:11:18
22/Marl78
Rev. 2

3.5.3 Bit Numeric

Move a bit numeric specified by <BIT-REF1> with count
contained ;n the five least significant bits of the byte
specified by <REF2> to a 32 bit destination referenced by
<REF3>.

* <INSERT-U><REF1><BIT-REF2><REF3>

* <INSERT-S><REF1><BIT-REF2><REF3>

Move a 32 bit source specified by <REF1> to a bit
numeric specified by <BIT-REF2> with count in <REF3>.

The following instructions modify the stack:

* <MODIFY-STACK-POINTER><REF>

Set the value of the stack pointer (SP) to
current value of SP added to the 1o-bit signed
referenced by <REF>.

be the
integer

* <PUSH-8><REF>

* <PUSH-lo><REF>

* <PUSH-32><REF>

* <PUSH-04><REF>

Move one, two, four or eight bytes of data
by <REF> To the end of the stack starting at SP.
to point to the new end of the stack by adding
four or eight to its current value.

* <POP-8><REF>

* <POP-lb><REF>

* <POP-32><REF>

Data General Corporation
Company Confidential

referenced
Adjust SP

one, two,

10:11:18
22/Marl78
Rev. 2

Stack Manipulation 3-11

Remove the last one, two, four or eight
end of the stack starting at SP-1 and place
reference <REF>. Readjust SP to the new end
subtracting one, two, four or eight from its

* <PUSH-MULTIPLE><REF>

bytes from the
them at the
of stack by

current value.

Push multiple registers. <REF> specifies a lb-bit mask
used to determine which registers to push. Mask bit 0
represents GR7, bit 1 represents GRo, bit 8 represents BR7,
bit 9 represents BR6, etc. If the bit representing a
register is set, that register ;s pushed.

* <POP-MULTIPLE><REF>

Pop multiple registers. <RtF> spcifies a lb-bit mask
used to determine which registers to poP. The mask is
interpreted as in <PUSH-MULTIPLE>.

* <MOVE-TO-SP><REF>

Move the current value of the stack pointer CSP) to
the 32 bit operand specified by <REF>.

Move the 32 bit operand specified in <REf> to the
stack pointer.

* <RESTORE><REF>

Recover the state from an implementation save area in
the current stack. <REF> resolves to a pointer to the frame
containing the context to be restored. The stack and frame
pointers are set so that the frame specified by <REF>
becomes the current frame.

3.7 Transfer of Control

Data General Corporation
Company Confioential

10:11:18
22/Mar/78
Rev. 2

3.7.1 Entry and Exit 3-12

In the following instructions, <PREF> refers to a procedure
reference as defined in the Addressing chapter.

* <PUSH-PC><PREF>

Place the PC for the next instruction at the end of
the stack starting at SP and branch to <PREF>. This
facilitates a quick call to a subroutine which will use the
current stack and register environment as its own. SP
becomes SP+4.

* <POP-PC>

Remove the last four bytes from the end of the stack
and set the PC to be their value. SP becomes SP-4. This
facilitates a quick return from a <PUSH-PC> type call. The
next instruction executed (whose address was at the end of
stack) will be that following the corresponding <PUSH-PC>
instruction.

* <CALL-PACKET><PREf><REFO><REF1> ••• <REFN>

* <CALL><PREF><REF>

These call operators branch to a subroutine which uses
a new stack environment. <PREF> is the specifier of the
address of the subroutine. <REFO> is an 8-bit unsigned
integer representing the number of argument references
whicn are to follow. <REF1> ••• <REFN> are the references to
a single argument or a list of n arguments. (N being the
value of <REFO>.) The call will build a packet of arguments
which can be referenced by the cal lee using AP. This
packet has the following format (PTR is a 32 bit absolute
address):

Data General Corporation
Company Confidential

10:11:18
22/~ar/78
Rev. 2

3.7.1

AP------>
<#ARG>
<PTR1>

•
•

<PTR1>
<PTRN>

Entry and Exit 3-13

Note: <REFO> is placed one byte before the base
register address.

Callers building their own parameter packets use the
<CALL> operation. In this case, <REF>;s the address of
the packet. This address ;s placed in the cellee's AP.

* <RETURN>

Return from procedure or trap handler. The current
stack frame is popped and the return information ;s ob
tained from the implementation save area.

* <RETURN-A8N><PREF><REF2>

Functions like <RETURN> except the address to return
to ;s specified by <PREF>. <REF2> specifies a pointer to
the stack frame containing the procedure environment to
restore. (This allows a return to a location and a context
greater than one procedure level above the current routine.

3.7.2 Vanilla Jumps

* <JUMP-ON-CONDITION><REF1><PREF>

<REF1> specifies an 8-bit field with the followinQ
format:

'mask 'test
-----------------o 123 ~ 567

The mask ;s logically ended with the condition bits in the

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Kev. 2

3.7.2 Vanilla Jumps 3-14

USR and the result is compared with the test field. If the
two are equal a branch is taken to the address specified by
<PREF>. Otherwise, execution continues with the instruction
after the JUMP.

The following instructions perform conditional bran
ches based on the settings of the condition code follow1ng
a <COMPARE>, <TEST>, or <SUBTRACf> instruction. As defined
previously, for arithmetic operations CBl is called the C
bit, CB2 ;s called the N bit, and CB3 is called the Z bit.

* <JUMP-NE><PREF>

Branch to the address specified by <PREF> if the Z bit
is one.

<JUMP-EQ><PREF>

Branch to the address specified by <PREF> if the Z oit
is zero.

Arithmetic signed comparisons:

<JUMP-GT><PREF>

BranCh to the address specified by <PREF> if the land
N bits are zero.

* <JUMP-LT><PREF>

Branch to the address specified by <PREF> if the N bit
is one.

* <JUMP-GE><PREF>

Branch to the address specified by <PREF> if the N bit
;s zero.

* <JUMP-LE><PREF>

Branch to the address specified by <PREF> if the Z bit
is one or the N bit ;s one.

Unsigned comparisons:

<JUMP-UGT><PREF>

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

Vanilla Jumps 3-15

Branch to the address specified by <PREF> if the C and
Z bits are zero.

* <JUMP-ULT><PREF>

Branch to the address specified by <PREF> if the C bit
is zero.

* <JUMP-UGE><PREF>

Branch to the address specified by <PREF> if the C bit
is one.

* <JUMP-ULE><PREF>

Branch to the address specified by <PREF> if the C bit
;s one or the Z bit is one.

Unconditional branch:

* <JUMP><PREF>

Equivalent to a <JUMP-ON-CONDITION><O><PREF>

3.7.3 Oispatches

All dispatch instructions use a table of the following format:

<REF>------>
<Lower Bound><Upper Bound>
<Procedure Pointer>

•
•
•

<Procedure Pointer>

The lower bound and upper bound are both signed 1b-b1t
integers. All dispatches validate the index as lower bound <=index
<=upper bound. If the in~ex is not within the bound range, the PC

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

3.7.3 Dispatches

will be, set to the next instruction following t~e dispatch.
Otherwise a branch will be taken through the indexed procedure
pointer. In the operation descriptions, <REFO> describes a sixteen
bit index, and <REF1> 1S a pointer to a dispatch table as described
above. All dispatch operators will set the condition register to
indicate one of three conditions, dispatch index out of range,
dispatch index in range but there was no label, or successful
dispatch. The dispatch table can have "holes" by setting the value
of that position in the table as a 32-bit zero (illegal label
within table).

* <DISPATCH><REFO><REF1>

* <DISPATCH-PUSHPC><REFO><REF1>

* <DISPATCH-CALL><REFO><REF1><REF2>

<REF2> is the argument pointer as spec;f;ed under the
descriPtion of the <CALL> operation.

3.8 Conversion

* <CONVERT-INTEGER-TO-SP><REF1><REF2>

* <CONVERT-INTEGER-TO-DP><REF1><REF2>

Convert the integer specified by <REF1> to floating
point referenced by <REF2>. Conversion of l6-bit integers
is to single precis~on, of 32-b~t ~ntegers to double
precision floating point.

* <CONVERT-SP-TO-INTEGER><REF1><REF2>

* <CONVERT-DP-TO-INTEGER><REF1><REF2>

Convert the floating point number specified by <REF1>
to an integer. Conversion is from single preCision to
1b-bit integer, double precision to 32-bit integer.

* <CONVERT-SP-TO-DP><REF1><REF2>

Convert the single preciSion number speCified by

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

3.8 Conversion 3-17

<REF1> to a double precision number specified by <REF2>.

* <CONVERT-CHARACTER-TO-DP><STR-REF><REF>

Convert t~e character strin~ to a double precision
floating point number.

* <CONVERT-OP-TO-CHARACTER><REF><STR-REF>

Convert a double precision floating point number to a
character string.

<PACK><DEC-REF1><DEC-REF2>

Converts the operand specified by <DEC-~EF1> to packed
decimal format and places the result in the operand speci
fied by <OEC-REF2>.

* <UNPACK><DEC-REF1><DEC-REF2>

Convert the packed decimal operand specified by
<OEC-REF1> to the format and location specified by
<DEC-REF2>.

3.9 Loop Control

* <LOOP-8><REF1><REF2><REF3><PREF>

* <LOOP-1b><REF1><R~F2><REF3><PREF>

* <LOOP-32><REF1><REF2><REF3><PREF>

* <LOOP-64><REF1><REF2><REF3><PREF>

These ~nstructions are used to control iterative loops
such as FORTRAN 00 statements. <REF1>, <REF2> and <REF3>
are fixed point numbers with a container size specified by
the instruction suffix. The act;on of the instruction is:

REF1 <- REF1 + REF2
IF (REF2 >= 0 AND REFl =< REF3) OR
(REF2 < 0 AND REF1 >= REF3)
THEN PC <- PREF
ELSE PC <- PC t 1

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

3.9 Loop Control 3-18

3.10 Semaphores

The following instructions are used for synChron1zation of
corout;nes, etc:

* <LOCK><REF1>

IF REF1 = 0 THEN eBO <- 1 ELSE CBO <- 0; IF REFl # 0 THEN
REF1 <- REF1 + 1;

* <UNLOCK><REF1>

IF REFl = 0 THEN CBl <- 1 ELSE DO CSI <- 0; REFI <- REF1
1; IF REF1 = 0 THEN CSO <- 1 ELSE cao <- 0; END;

3.11 Reserved Instructions

There ;s a set of 25b op codes reserved for definition on a
per system basis. Execution of any of these instructions causes a
process trap (see Interrupts and Traps Chapter) to a software or
microcode routine which then executes the instruction.

The format of the specific instructions is determined by the
programmer or microcoder who writes the emulator routine. These
instructions will typ~cally be used by system programmers for
operating system or compiler specific accelerators, and for entry
to user written microcode routines.

3.12 System control

* <CONVERT-TO-PHYSrCAL><REF1><REF2>

Generate the logical address defined by
<REF1>. Convert this to the correspondin~ physical address
and return this address in the 32 bit operand specified by

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

3.12 System control

<REF2>. If there is no corresponding physical address
(i.e. the specified page ;s not resident) return zero.

* <GET-MACHINE-ID><REF1>

Return machine specific information in the b4 bit area
specified by <REF1>. The exact format of this information
is to be defined.

* <MOVE-TO-ISR><REF1>

Load the Interrupt Status Register (ISR) from the 32
b~t operand specified by <REF1>.

* <MOVE-FROM-ISR><REF1>

Place the current contents of the ISR into the 32 bit
operand specified by <REF1>. Unused bits are set to zero.

* <WAIT>

Places the processor ;n a wait state,
can still handle interrupts. (Similar to a
that it does not tie UP the memory bus.)

<HALT>

from which it
JUMP • except

Halts the processor by activating a solenoid which
yanks the AC cord out of the rear of the cabinet.

3.13 Input/Output

I/O devices are controlled and monitored by means of 8-bit I/O
directives (10Ds) having the following format:

----------------------------_.--
101 F I 0 o I Op Code
------.-------------------------o 1 2 3 4 5 7

The OP code field spec~f;es the spec~f~c I/O operation to be
performed, and the F field specifies control information. A more

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

3.13 Input/Output 3-20

detailed treatment of 100s can be found in the I/O System chapter.

An 100 is constructed and
instruction:

* <GIOO><REF1><REF2><REF3>

emitted by the following

Tne operand specified by <REF1> is the eight bit I/O
directive. <REF2> specifies an e;~ht bit field which
contains the device code of the controller to which tne 100
is addressed. The operand specified by <REF3> is a 16-bit
field used either to supply data, rece~ve data, or rece~ve
status, as specified by the 100.

3.14 Miscellaneous

* <LOAO-EFFECTIVE-ADO~ESS><REF1><REF2>

Move the effective address of <REF1> to the 32 bit
operand specified by <REF2>.

* <COPV><REF1><REF2><REF3>

Mo~e bytes from the area speci~~ed by <REF1> to the
area specified by <REF2>. The number of bytes to move is
contained in the lb bit fixed point operand specified by
<REF3>. If the move count ;S positive, bytes will be moved
left to right. If ;t is negative, bytes will be moved right
to left.

* <FILL><REF1><REF2><REF3>

COpy the byte specified by <REF1> starting at the byte
specified by <~EF2>. The number of copies to make is
contained in tne 16 bit operand specified by <R~F3>.

* <MOVE-TO-USR><REF1>

The User Status Reg;ster (USR) is set from the 16 bit
operand specified by <REF1>.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

3.14 M~scel1aneous 3-21

* <MOVE-FROM-USR><REF1>

The current contents of the
sixteen bit operand specified by
set to zero.

USR are stored in
<REF1>. Unused bits

the
are

* <GET-OPERAND><REF1><REF2>

Used to obtain the operands of an instruction that is
to be emulated by the software. The exact format and
operation ;s to be defined.

* <EXCHANGE><REF1><REF2><REF3>

<REF1> specifies an eight bit operand contain;nq the
number of bytes to exchange between the areas specified by
<REF2> and <REF3>. The bytes are exchanged left to right,
one byte at a time.

* <EXECUTE><REF1>

Execute the instruction at the address specified by
<REF1>. Unless the executed instruction causes a transfer
of control, instruction execution continues with the
instruction following the EXECUTE.

* <NO-OP>

* <USER-TRAP-x>

"x" is a number between 1 and 256, which provides 256
instructions which are available for user definition. These
instructions cause a procedure trap to be taken through a
unique gate w~th an argument conta~ning the value of "x".

--End of Chapter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

CHAPTER 4 • Interrupts end Traps

4.1 General

All events in an MTA machine whiCh require a change in the
normal flow of control are handled using a trap mechanism. Traps
are divided into three categories - procedure, process, and
interrupt. Procedure traps are events which can be handled by a
user procedure. These include all instruction exceptional condi
tions such as fixed and floating point overflow, etc. Process traps
are procedure caused events which need system intervention in order
to be resolved. These include page faults, page table faults,
protection faults, etc. Interrupts are asynchronous events which
must be resolved by the operating system, including 1/0 interrupts,
power failure, etc.

All traps appear to the trap handlers like procedure calls.
This is done by generatinq a parameter packet containing arguments
and then pushing a state block on a stack. Each trap within a group
is assigned a unique value which ;s passed as the argument to the
trap handler. Thus the trap handler can detect the type of trap by
accessing the argument and, optionally, dispatch to a unique type
handler based on the ar~ument. In addition, all traps are dismissed
merely by executing e return instruction, whlch will continue
execution at the point where the trap was taken. This value passing
forces only one trap to be generated on each machine cycle, even in
a pipelined implementation.

Since traps can be taken at different points in the execut~on
of an instrUction, d1fferinp amounts of information must be saved
in order to continue execution after dismissing the trap. Thus,
the state block must be self describing to the extent that the
return instruction can determine how to restore from it.

In order to respond to the process and interrupt categories of
traps, architectureal1y defined procedure segements exist. Segment
#2 is always assigned to respond to process traps. Segement #3 is
always assigned to handle interrupts.

Every procedure segment has 1, 2, or 3 groups of trap
pointers. These groups are for the procedure traps, process traps,

Data General Corporation
Company Confident;el

10:11:18
22/Mar/78
Rev. 1

General

and interruPts. Procedure segments that can onlY handle procedure
traps have only the proceoure trap pointers. The procedure segment
that can handle process traps has the procedure and trap
pointers. The procedure segment that handles interrupts has all
three pointer groups. Thus, a procedure trap in the procedure
segment for the interrupt handler uses the same relative gate entry
in its gate array to vector to the procedure trap handler.

The structure of the trap pointers;n the procedure segment
root is as follows:

CATEGORY GATE

INTERRUPT 7
--------------------1

PROCESS 0
---------------_ ... _,

PROCESS 5
--------------------1

PROCESS 4
-------------_·-----1

3
·_------------------1

2
._------------------,

1
--------------------, o
--------------------1

GATE
EXTENT

-.....------------_ _,

SEG 3 ONLY

SEG 2 ONLY

SEG 2 ONLY

SEG 2 ONLY

EVERY PROCEDURE SEG

" " "
" " "
" " "

The contents of each gate entry contains a procedure pointer
(Ref. Addrress;ng Chapter). Thus, a trap may vector to a handler
in the present procedure segment, or specify an entry point ;n some
other procedure segment. The final target address becomes the new
value of the PC. Transfer of control to a procedure segment must
be cognizant of the predefined gate entries. Thus, user defined
gates must be adjusted to reflect the segment called and the fixed
number of gate entries.

In essence, a trap results in the implicit execution of a CALL
instruction. The target address is a gate ~n the present segment,
the arguments passed are a function of the ultimate ring of
execution. As with an explicit CALL, sufficient state information
;s saveo on the state to _________ to the point following the

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 1

4.1 General

procedure invocation, including the number of arguments pass.
Thus, executing a RETURN instruction is used to exit from a trap
handler. The point of execution return for the arguments passed to
the trap handler are delineated for every trap type.

5 Procedure Traps

Procedure traps are broken down into 4 categories:

Floating Point Arithmetics
Fixed Point Arithmetics
Commercial Arithmetic
Trace
User

GATE NUMBER
o
o
1
2
3

When a trap is detected, it is claSSified as one into one of
these areas. The target address is the gate number listed in the
present procedure segment. The arguments pushed into the stack
are:

Further delineation of the trap type (e.g. float
exponent overflow, as differentiated from underflow
The value of the PC that points to the instruction
causin9 the trap.

The state bloek pushed into the stack has a return address
pointing to the instruction following the one causing the trap.

5.1 Floating/Fixed Point

The following floating point error conditions are detected:

Exponent overflow
Exponent underflow
Divide by zero

For these classes of traps, the bit field of 32 bits ;s passed
as an argument. Exponent overflow is indicated by 00 ••• 1. Expon-

Data General Corporation
Company Confidential

10: 11: 1 8
22/Mar/78
Rev. 1

5.1 Floating/Fixed Point

ent underflow by 00 ••• 10. Divide byu zero by 00 ••• 100.

When exponent overflow occurs, the value
specified destination is ________ • When exponent
the value return to the specified destination
divide by zero occurs, the specified destination

returned to the
underflow occurs, ; s _____ • When
remains unchanged.

The following fixed point conditions are detected:

Integer overflow on ADD/SUB
Divide by zero
Integer overflow on MPY
Float to fixed conversion

The classes of traps the bit field passed as an argumment is:

Integer overflow on ADD SUB
Divide by zero
Integer overflow on MPY
Conversion

00 ••• 1000.
00 ••• 10000.
00 ••• 100000.
00 ••• 1000000.

5.2 Commercial String

The fol10w;ng commercial and string traps are detected:

Size on for numberic ADO, SUB, MULTIPLY, DIVIDE
Divide by zero
String overflow

For these classes of traps, the bit field produced is:

5.3 Trace

Size error
Divide by zero
String overflow

0001
0010
0100

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 1

5.3 Trace

TBDL

5.4 User Traps

When bits 0-7 of the opcode are 1111 1111 (all l's),
define opcode ;s trap enabled. Gate #3 is transferred
The argument passed to the trap handler is the second byte
opcode (Bit 8-15).

b Process Traps

4-5

a user
through.
of the

Process traps are classified into three areas and thus three
gate locations (4, 5, b). A fault is a condition which ;s a result
of specif~ed resource not be~ng ~n the proper state. The fault
handler can optionally supply this resource and successfully
restart the instruction. The three types of process traps are:

FAULTS
UNIMPLEMENTED OPCODE
DATA GENERAL RESERVED

The processing of a process trap is handled slightly different
than procedure traps. The Rate array access is not in the present
procedure segment but in segment #2. Segment #2 can only be
executed in RingO. Thus, all arguments are pushed on the Ring 0

.stack with a subsequent change of the ring of execution to ring O.

b.l Faults

The following faults are defined:

Page
Access violation
Specification exception
Segment bounds check on stack operation
Se~ment bounds check on non-stack operation
Gate bound check

For page faults, the arguments pushed are:

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 1

is:

Faults

Address of the PTE
The logical address causing the fault
A field indicating a page fault 00 ••• 011
The state of the machine at the time of the fault

For access violations, the arguments pushed are:

A bit field indicating
00 10
00 100
00 1000
00 10000

the type
READ
WRITE
EXECUTE
CALL

of access violation:

The value of the PC referencing the instruction causing the
f au 1t •
The logical address of the target reference that caused the
fault.
Machine state at the time of the machine.

For specification exception, the bit field pushed on the stack

List possible specification exception
e.Q. Write into literal

Wr~te into SR using non-pointer instruction

For segment bounds check on stack operation, the argument are:

A bit field of xxxxx.
The value of the PC referencing the instruction cau
the fault.
The logical address of the target.

For segment boundS check on non-stack operation, the arquments
pushed are:

A bit field of xxxxx.
The value of the PC referencing the instruction cau
the fault.
The logical address of the target.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 1

6.1 Faults

For gate bounds check, the arguments pushed are:

A bit field of xxxx.
The value of the PC referencing the instruction cau
the fault.
The value of the procedure oointer referencing the
array.

6.2 Unimplement Opcode

An unimplemented opcode 1S def;neo to exist when the control
sequences necessary to map the algorithm specified by the opcode on
the hardware are absent. To maintain deject code compatibility,
these control sequences are implemented in software. When such an
opcode ;s detected, the argument passed to the trap handler is the
value of the program counter referencing the instruction. The
return address set up by the trap handler references the instruc·
tion following the unimplemented opcode.

6.3 Data General Reserved

When bits 0-7 of the opcode are 1111 1110, a reserved
General trap is enabled. The arguments passed ;s the second
of the opcode (bit 8-15).

Data
byte

7 Interrupts

The processing of an interrupt is handled in the following
manner. Gate #7 located in segment #3 ;s used to vector to the
interrupt handler. The state of the current process is pUShed on
its ring 0 stack. The new stack used in segment #4. The new ring
of execut~on is ring O. The interrupt stack defined is not process
specific. It an interrupt occurs while the interrUPt stack ;s
being used, the current stack is pushed on the interrupt stack.
The state of the process includes ISR.

When an interrupt is processed, the following actions occur:

Data General Corporation
Company Confidential

10;11:18
22/Mar/78
Rev. 1

7 Interrupts

The present stack is pushed as described above.

The code of the device causing the interrupt ;s obtained.
Th~S code is used to dispatch to a b4 bit entry. The base
these tables is a physical address maintained in the interr
vector table.
This entry contains a new ISR and a procedure pointer.

The contents 01 the new ISR are used as follows:

The interrup~ mask contained in the ISR ;s inclusive "ORed"
the present interrupt mask. Interrupts are enabled or disa
by bit ___ of the mask. If the enable bit is 0, interrupts
enabled. Is the enable bit is 1, interrupts are disabled.
The procedure pointer is evalued and becomes the new value
the Program Counter. The interrupt handler ;s entered at t
new value.

--End of Chapter--

Data General Corporation
Company Confidential

10: 1 1 : 1 8
22/Mar/78
Rev. 1

CHAPTER 5 - Protection

5.1 General

Segments are the basic unit of protection. Segments are
always referenced within a hierarchical domain structure organized
into units called rings. There are 8 rings of protection. Ring 0
contains the system security kernel and is the least
restricted. Ring 7 is a user domain and is the most restricted. At
all times, there is a current ring of execution (eRE), which
determines the access al lowed to the current procedure.

There are four types of access which can be allowed to a
segment. Two are related to data access. Read access allows data
within the segment to be fetched. Write access allows mooification
of data within the segment. The other two apply to procedure
transfer. Direct access allows control to be passed to any loca
tion within the segment. Gate access allows transfer to the
segment only through use of a gate (described in the Introduction).

Whenever access;s attempted to a segment, the processor
generates an effective ring number (see Ring Maximization), and
uses that and the target segment number as indices into a two
dimensional access array. This array is associated with the current
translation table (see Memory Management) and each entry in it
contains a bit for each of the four types of access. If the bit is
set, that type of access is allowed from the effective ring' to the
target segment.

5.2 Ring Maximization

In any hierarchical system, there exists a problem of a higher
ring passing as a parameter to a lower ring a pointer to a segment
that the higher ring has no access to. To avoid this problem, the
architecture provides a technique called ring maximization, which
is applied to all data accesses. Every base register and byte data
pointer involved in an effective address calculation has a ring

Data General Corporation
Company Confidential

10: 1 1 : 1 8
22/Mar/78
Rev. 2

5.2 Rin~ Maximization 5-2

number contained in it. The effective ring used for access checkinq
;s the maximum of all these rings and the current ring of
execution. In this way, a more privileged ring can make data
accesses with the same access limitations as the higher ring on
whose behalf it is executing, but a higher ring can not masquerade
as a lower (more privileged) ring.

5.3 Determination of the Current Ring of Execution

Every procedure segment has associated with it the mimimum
(MINRE) and the maximum (MAXRE) ring in which the procedure is
allowed to execute. These are kept in the segment descriptor.
Whenever the procedure segment is changed as a result of a call,
jump, or return instruction, a new current ring of execution ;s
determined according to the following formula:

CRE <- MAX { MIN(MAXRE,CRE) , MINRE }

5.4 Stacks

Every ring has its own stack segment with a format as descri
bed in the Introduction. When a ring crossing is detected during
execution of a call instruction, the stack segment number for the
new ring is fetched from the Task Control Block. Arguments and the
procedure state block are pushed onto the new stack segment.

5.5 BASE REGISTER MODIFICATIONS

Base Registers can only be the destination of instructions
which produce pointers as part of the result. Thus the Program
Counter can only be altered by instructions which are allowed to
change the sequence of execution (e.g., JUMP, RETURN, DISPATCH
). BR-s 1-7 can only be altered by instructions whose result is a
pointer (e.g., Load Effective Address. and Move Stack Pointer).

5.6 PROGRAM COUNTER RELATIVE

A Read or Write access to the present procedure segment is

Data General Corporation
Company Confidential

10:11:18
22/Marl78
Rev. 2

5.& PROGRAM COUNTER RELATIVE 5-3

treated as a reference to 8 data segment. Thus, the normal rules
governing access apply. The only exception to this rule is that an
operand reference that is specified as a literal is read from the
instruction stream ignoring the read access ot the present pro·
cedure segment.

--End of Chapter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

CHAPTER 6 - Memory Management

Since the state of the art in memory manaqement policies for
virtual systems continues to advance, it would seem reasonable to
encapsulate MTA's memo~y management algorithms in a module whose
internals are not architecturally specified. Thus, the following
description of memory management for MTA implementation 1 does not
in principal belong in this document' it is provided solely for
completeness.

For purposes of memory management, the loq;cal address descri
bed in 1.2.2 ;s further subdivided such that each segment consists
of 2K pages, each page containing 2K bytes:

o 2 3 9 10 20 21 31
--------------------_.--------_._._----
I<Ring>I<Seg #>I<Page #>I<Page offset>!
----.-------------------.-.-----.------

Conversion from logical address to physical address;s implemented
by constructing a page table for each seqment. This table contains
one entry for every page in the segment (entries exist for pages
beyond the current length of the segment, but are marked inval~d).
An entry in this table (PTE - for Page Table Entry) has one of the
following two formats, depending on the associated page's status:

o 1 31

111 reserved
----------------------------._-.-

Invalid (unallocated) page
o 1 2 3 18 19 31

----------------------------_.-..
IOIRIMI spare I<physical page #>1

Resident page

In the PTE for a resident page, the R-bit indicates whether the
page has been referenced by a process since the last time the R-bit
was reset, and the M-bit indicates whether the page has been
modified by a process since the last time the M-bit was reset.

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

These two bits are requ;r~d ~y most useful memory
algorithms. The 16 spare bits 1n the resident page PTE
ble to the memory manager - a typical use might be
required by the page fault frequency algorithm to
belonging to the active process' working set.

management
are availa

the W-bit
mark pages

The page table associated with each segment is itself 4 pages
in length:

2K pages/segment * 1 PTE/page * 4 bytes/PTE * 1 page/2K bytes = 4

Since we anticipate that most segments will be less than one fourth
their maximum length, it ;s desirable to require only those page
table pages containing PTE's for allocated pages of an active
segment to be resident in primary memory. This ;s achieved by
associating 4 page table pointers (PTPs) with each of the 128
segments of a process' logical address space. A PTP has one of the
following two formats, depending on the status of the associated
page table page:

o 178 31

-----------------.----~----------101 I<physical page table ptr>1

PTP for a resident page table page
o 1 31 _____________ w _______ • _______ ._._

III reserved

PTP for a non-resident page table page

The physical address contained ;n a PTP
a byte pointer to the page table page itself
of this pointer are always 0, since page
aligned on physical page boundaries).

for a resident page is
(the low order 11 bits
table pages must be

The 512 PTPs associated with a process' 128 segments are
grouped in sequence to form the process' translation table - this
table defines its process' logical address space. The translation
table for the currently active process is pointed at by the current
translation table pointer (CTTP), itself a physical address.
Naturally, the translation table for the currently active process
is resident in primary memory.

Each logical address emitted by the processor is translated to

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

b-3

a physical addre.s by adding bits 3 throuRh 11 of the logical
address to CTTP to select a PTP from the current translation table.
If bit 0 of this PTP is reset, a boundary fault ;s initiated;
otherwise, bits 12 through 20 of the logical address are added to
the pointer ;n the PTP to select a PTE from the page table. If
this PTE ;s invalid, a boundary fault ;s initiated. If it is
resident, the PTE is updated as required by the memory management
algorithm (for example, the R-bit may be set), and the desired
physical address is constructed by concatenatinR bits 19 through 31
of the PTE with bits 21 through 31 of the logical address.

Although this mechanism provides the desired functionality, it
;s painfully slow, since two memory references are required (one to
get the PTP, one to get the PTE). Therefore, MTA implementation 1
will be provided with an associative address translation unit (ATU)
which, when provided w~th bits 3 through 20 of a logical address,
either produces the associated PTE (R, M, and physical page
number), or initiates an ATU fault. This fault is serviced (in
microcode) by obtaining the PTE as described above, loading its
contents into the ATU (perhaps overwrlting some other PTE in the
ATU), and retrying the translation. The ATU also faults if a page
whose M-bit is reset is modified. This fault is handled by setting
the M-bit of the page's PTE and ATU entry.

Because logical addresses ~re process specific, the ATU must
be purged before a new process is activated. Thus each page a
process references in its time slice is guaranteed to generate at
least one ATU fault.

In order to support memory management as defined above, the
memory management module must be provided with ~he following:

1. The ability to move operands in primary memory using
physical addresses.
2. The a~ility to load a PTE into the ATU.
3. The ability to purge the ATU.

--End of Chapter--

Data General Corporat;o"
Company Conf;dential

10:11:18
22/Marl78
Rev. 2

CHAPTER 7 - 1/0 System

An MTA processor controls and monitors its 1/0 devices via 1/0
directives ClODs), which are identical in functionality to the
programmed 1/0 instructions of the NovalEclipse architecture. Upon
execution of a GIOD instruction, the processor constructs an 100
and transmits it over the programmed-I/O bus to the specified 1/0
device'S controller. Depending on the 100 contents, this device
controller may accept two bytes of data from the processor, trans
mit two bytes of data to the processor, accept control information
from the processor, or transmit its status to the processor.

An MTA processor's programmed-I/O bus is both functionally and
physically identical to the Nova/Eclipse 1/0 bus, as specified in
Data General publication 015-000031 (Interface Des;gner's Reference
for the Nova and Eclipse Computers) chapter 3, chaPter 4, and
appendix D. Any 1/0 device controller adhering to these specifica
tions can be attached to the 1/0 bus of any MTA processor. An
exception is those controllers wh~ch util~ze the Increment or
Add-to-memory data channel functions; these may not be available on
some or all MTA implementations. Extensions to the 1/0 bus may
also be supported by particular implementations, as long as compa
tibility is not Jeopardized. Data parity, control parity, and
8-bit device codes are examples of potential extensions.

In addition to carrying laDs and data, the 1/0 bus permits
device controllers to asynchronously request processor interrupts
and data channel service. The bus contains signals for interrupt
priority arbitration (INTA) and priority mask maintenance (MSKO).
Unlike the NovalEclipse architecture, however, these signals are
not explicitly activated by programmed 1/0 instructions. Instead
the processor automatically uses INTA to determine the highest
priority device when an interrUPt is synchronized and vectors to
that device's interrUPt handler. The interrupt vector routine
installs a new interrUPt mask in the ISR, using MSKO to transfer
this mask to the 1/0 controllers (see the chapter ent~tled "Traps
and Interrupts" for a more detailed descriPtion of 1/0 interrupts
and the vector routine). In ~eneral, any alteration of the inter
rupt mask field in the ISR will implicitly activate MSKO.

The MTA architecture defines a programmed-I/O instruction with

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

7-2

the following format:

GlaD <REF1><REF2><REF3>

where the operand specified by <REF3> ;s the source
destination, the operand specified by <REF2> provides a device
code, and the operand specified by <REF1> provides the 110 direc
tive (IDOl. The device code operand has the following format:

I 00 I DEV

----------------------o 1 7

The 6-bit DEV field identifies the device controller to which the
100 is addressed. The 100 has the following format:

I 0 I F I 00 I OPCODE I

o 123 457

Dev1ce code 000000 is reserved for the processor power
monitor, and device code 111111 is reserved for processor use.

An 100 specifies two transactions: a data transaction, fol
lowed by a control transaction. The OPCODE field controls the data
transaction with the follow~ng encoding:

Data General Corporation
Company Confidential

10:11:18
22/r.tiar178
Rev. 2

7-3

OPCODE Data Transaction

000 none
001 A-register -> <REF3>
010 <REF3> -> A-register
011 B-register -> <REF3>
100 <REF3> -> B-register
101 C-register -> <REF3>
110 <REF3> -> C-register
111 status -> <REF3>

Data transactions 001 through 110 1nvolve three 16-bit virtual
device registers associated with the addressed device controllerJ
data is transferred between the 16-bit operand specified by <REF3>
and the selected virtual device register over the 16 DATA lines of
the programmed-I/O bus. Data transaction 111;s a device status
transaction, with status bits BUSY and DONE transferred into the
least significant two bits of the 16-bit operand specified by
<REF3>J the most significant 14 bits of this operand are undefined.
BUSY and DONE are also set into condition code bits CCO and CC1.
BUSY and DONE are transmitted on dedicated lines (SELB and SELD) of
the programmed-I/O bus.

The F field controls the control transaction with the follow
ing encoding:

F

00
01
10
1 1

Control Transaction

none
START
CLEAR
PULSE

A controller's reaction to a control transaction is device specific
unless the data transaction OPCODE was 111 (status transfer), in
which case the control transaction is ignored.

--End of Chapter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

CHAPTER 8 - Availability/Reliability/Maintainability

8.1 Overview

Th;s chaPter at present contains theoretical directions which
we expect Data General and MTA to be takinQ. This material is
indicative of the techniques we will employ, but is preliminary as
an architectural definition.

8.2 MTA Diagnostic Control Processor Objectives

Data General Corporation, and its customers, are becom;n~
increasingly aware that the characteristics of maintainability and
availability are vital to future systems sales. To meet the
availability and maintainability ~oals, a sott console will provide
all required MTA console fUnctions executed through a teletype
interface. In addition, it will improve system maintainability by
proviiding a software diagnostic capability external to the MTA
processor system and independent of its correct operation. Availa
bility can be enhanced by providing downline system control and the
capacity to monitor timing on critical system data paths. Other
capabilities that can enhance marketability can be provided nearly
free given the above.

The first two objectives effectively define the basic form
that the console will take. To interrupt console commands received
through the teletype, interface intelliQence is required. A
software diagnostic capability independent of a working processor
system also requires intelligence, plus memory capacity • both RAM
and bulk storage. To provide the intelligence needed, a microNOVA
will be present on the console board, with a teletype interface and
an interface to the MTA System. Basic control software for the
console is present ;n ROM stora~e, and RAM is present for data and
additional console program stora~e. Bulk d;a~nostic software is
provided by a diskette unit connected to the m;croNOVA I/O bus via
an external cable. The interface to the MTA System allows the
m;croNOVA to force the processor to any microstate, as well as
forcing data onto buses, and examining the data on those buses. No
part of the actual processor need be working, except the power
supplies- for the console microNOVA, to perform complete

Data General Corporation
Company Confidential

10:11:18
22/~ar/78
Rev. 2

8.2 MTA Diagnostic Control Processor Objectives 8-2

diagnostics. The m;croNOVA will also be provided with its own set
of self-diagnostic programs, further improving maintainability.

Enhancements to availability are accomplished by:

* Providing a capability for downline control. Tnis is done
merely by connecting the teletype interface mentioned to a
modem instead of a terminal. Console commands normally
rece~ved directly from a term~nal are then received v~a a
phone line. This allows remote a1agnosis of the system
before a field engineer arrives at the site.

Providing the capability to monitor timing on crit~cal
system data paths. This does not reduce failure probabil
ity but allows imminent failures to be located before they
occur by spotting symptoms indicating failure, such as late
bits.

* Providing the ability to continuously monitor the power
supply. This feature will enable early warning of power
Supply irregularities, and avoid catastrophic failures or
critical data loss.

* Providing the ability to run diagnostic programs from the
console at specified hardware breakpoints. This eases
software debugging and allows the checking of specified
hardware registers or paths in the middle of certain
routines.

The diagnosis of intermittent hardware failures is generally
difficult. Classically, the simplest way to locate such an inter
mittent failure ;s to very the system characteristics until the
failure becomes herd. The diagnostic control processor can facili
tate this debugging of intermittent failures by permitting us to
vary three key parameters:

* voltege

* temperature

* clock frequency

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

MTA Diagnostic Control Processor Objectives

Within certain rigid limits, these parameters may be varied,
under the control of the m;croNOVA, as an aid to off-line failure
analysis.

--End of ChaPter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

..

CHAPTER q - Measurement and Debug Aids

--End of Chapter--

Data General Corporation
Company Confidential

10:11:18
22/Mar/78
Rev. 2

APPENDIX I - INDEX

ADD 3-4
AND 3-5

CALL 3-12
CALL-PACKET 3-12
CHARACTER-SCAN-UNTIL-TRUE 3-8
CLEAR 3-6
CLEAR-BIT 3-q
CLM 3-5
COMPARE 3-5
COMPARE-STRINGS 3-7
COMPLEMENT 3-5
CONVERT-CHARACTER-TO-DP 3-17
CONVERT-DP-TO-CHARACTER 3-17
CONVERT-DP-TO-INTEGER 3-16
CONVERT-INTEGER-TO-DP 3-16
CONVERT-INTEGER-TO-SP 3-16
CONVERT-SP-TO-DP 3-16
CONVERT-SP-TO-INTEGER 3-16
CONVERT-TO-PHYSICAL 3-18
COpy 3-20

DECREMENT
DISPATCH
DISPATCH-CALL
DISPATCH-PUSHPC
DIV-R 3-4
DIVIDE 3-4

EDIT 3-6
EXCHANGE
EXECUTE
EXTRACT-S
EXTRACT-U

3-5
3-16
3-16

3-21
3-21
3-q
3-q

3-16

Data General Corporation
Company Conf;dential

10: 57 :(8
221M,
Rev

-- - wt"Wnttttttf WI r

1-2

FIL.L. 3-20
FIND-LEADING-BIT 3-9-

GET-MACHINE-ID 3-19
GET-OPERAND 3-21
GIOD 3-20

HALT 3-19
HALVE 3-b

INCREMENT 3-5
INSERT-S 3-10
INSERT-U 3-10
INTEGERIZE 3-b
lOR 3-5

JUMP 3-15
JUMP-EQ 3-14
JUMP-GE 3-14
JUMP-GT 3-14
JUMP-LE 3-14
JUMP-LT 3-14
JUMP-NE 3-14
JUMP-ON-CONDITION 3-13
JUMP"'UGE 3-15
JUMP-UGT 3-14
JUMP-ULE 3-15
JUMP"'UL.T 3-15

LOAD-EFFECTIVE-ADDRESS 3-20
LOCK 3-18
LOOP-H) 3-17
LOOP-32 3-17
LOOP-b4 3-17
LOOP-8 3-17

MASK-MERGE 3-5
MODIFY-STACK-POINTER 3-10
MOVE 3-5
MOVE-FROM-ISR 3-19
MOVE-FROM-SP 3-11
MOVE-FROM-USR 3-21

10:57:50
22/Mal"/78
Rev_ 1

Data General Corporat;on
Company Confident;al

•

MOVE-STRING 3-7
MOVE-TO-ISR 3-19
~OVE-TO-SP 3-11
MOVE-TO-USR 3-20
MOVE-wITH-FILL 3-7
MULTIPLY 3-a

NEGATE 3-4
NO-OP 3-21
NORMALIZE 3-b

POP-tb 3-10
POP-32 3-10
POP-b4 3-11
POP-8 3-10
POP-MULTIPLE 3-t1
POP-PC 3-12
PUSH-1b 3-10
PUSH-32 3-10
PUSH-b4 3-10
PUSH-8 3-10
PUSH-MULTIPLE 3-11
PUSH-PC 3-12

REMAINDER 3-4
RESTORE 3-11
RETURN 3-13
RETURN-ABN 3-13
ROUND 3-b

SCAN-SU~STRING-DOWN
SCAN-SUBSTRING-UP
SET-BIT 3-9
SHIFT-A 3-a
SHIFT-L :5-5
SUBSTRING 3-7
SUBTRACT 3-4

TEST 3-5
TEST-AND-SET-BIT
TEST-SIT 3-9
TRANSLATE STRING

3-7
3-7

3-8

3-8

Data General Corporation
Company Confidential

1-3

10:57:50
22/Mar/78
Rev. 1

UNLOCK 3-18
UNPACK 3-17
USER-TRAP-x 3-21

WAIT 3-19

XOR 3 .. 5

Data General Corporat~on
Company Confidential

10:57:50
22/Mar/78
Rev .. 1

