[]
United States Patent [11 Patent Number: 4,670,839
. *
Pilat et al. (451 Date of Patent: Jun. 2, 1987
[54] ENCACHEMENT APPARATUS USING TWO 4,042,913 8/1977 Birney et al. ...ccovevrnreennnn 364/200
CACHES EACH RESPONSIVE TO A KEY 4,426,682 1/1984 Riffe et al.o 364/200
CES: 4,458,310 7/1984 Chang 364/200
ggll\!/[SBIII\I:JIIUNL('}r %ﬁ?ﬂl%gkégnoﬁnqc AND 4,467,414 8/1984 Akagi et al ... 364/200
4,471,430 9/1984 Bowden et al ... 364/200
[75] Inventors: John F. Pilat, Raleigh; Thomas M. 4,471,431 9/1984 Vogtne 364/200
Joom Copl il Same T Nedn, LT 7t s
Cary, all of N.C.; Gary Davidian, 473, Hlatetal. ...l
Mouptain View, Calif.; Paul Bowden, Primary Examiner—Eddie P. Chan
Raleigh, N.C. Assistant Examiner—Daniel K. Dorsey
[73] Assignee: Data General Corporation, Westboro, A%orney, Agent, or Firm—Robert F. O Connell
Mass. [57] ABSTRACT
[*] Notice: The portion of the term of this patent Encachement apparatus consisting of first and second
subsequent to Oct. 23, 2001 has been caches responsive to first and second keys, respectively,
disclaimed. for outputting first and second data therefrom. In one
[21] Appl No.: 425,022 embodiment, the second cache which includes a stack
. having a plurality of frames, outputs data contained in a
[22) Filed: Sep. 27, 1982) s current frame thereof in response to a second key which
[51] Int. Cht oo GO6F 9/10 is obtained from the first cache. The data outputted
[52] US. Cl oocircccisvenisemescseiies 364/200 from each cache is received substantially simulta-
[58] Field of Searchc.cccoveerevnirnnns 364/200, 900 neously at a combiner which combines such data to
[56) References Cited produce the desired third data from the dual cache
system.
U.S. PATENT DOCUMENTS i
4,042,912 8/1977 Bachman et al.cooernee.. 364/200 4 Claims, 12 Drawing Figures

Mamory Outpul Bus 323 NTF-
in; s T RTE AT T
: e
Reader 325 @ 5 ° Name Table 309) Top Frame
Name |[Bus 32 y, HH PEP T Jrpat®il]
- [3 - —_-——
¢0p:odes Nomes “g Literals| £/ Pracedure 3it
Descriptor Dala
Processor Processor Py
Signals 329 337 Procedure 31} s --T" T3
from Devices
m NTR 332
L Executoble _WWJ
Contred 2| Code 307
327 2 [FBE] Dato | e
§ Wehiabie SDA T
320 | a
T T Regisiers SDP— — — — —— —f \ _f_'e_"_f_m__
H 331 = |R¢% Areq 318
gT"'“’" a Y ors Linkage Arg. Pir.
D:v':::’ to 1 Memor Painter Area 3i5 (Area 316
Memory | inpul Bus 341 -
Signal Static Data Stocx 317
ALY V" Ares 313 Frame 319
Signal Bus 339
Processor 303 Memory 305

'¢s 301

4,670,839

Sheet 1 of 11

U.S. Patent Jjun. 2, 1987

€0l Kiowap ulD|

swajsAg Jaindwo)y Iy Jolig U} jUswayIodUT | 9|4

€i! oipQ
2]qpayopoug

(@) sii .3

f—— — —— e]

(9) ¢il

<— M d

(1St ;13

1t dl1
mO a|qp)
_,AUV i3l (P)OIt
AL
..A: Hi 34
601 3iqp)
(p) 111 31 (0) 011
AL
(DRET
D) ENS

20l NdD
(q) G 193 (P) Hnsay
A A
s9ssa.ppy »%_ ayan) GOl 3y20)
09 D
_ o)L J1-I¢] NSy
p{DQ
(qQ) 801 () 90|
o>_ 33| A 34
Al _ t Ol
SUOJ}INISU|) A
pup o—oo\ (9) 21ixg (P) Ol ML

4,670,839

Sheet2 of 11

U.S. Patent Jun. 2, 1987

Gle
co_tonn_’,foé &N

lie'q

(q) 4uod

UolypjsupJd)] SS3IPPY O} pupiadQ 440 — J0jid Y2 nbiy

GZ<Z Sdd9
(u) $uod
pinQg
Nu) gz2y
<201
$9sSSappY NdJ
(9) €22y
(Q) 4uod
SUOI§INA§SU)
pup poQ (@) €22y
(@) o> Zic 1 404 612 0Qa9g
2 q

dsid 8 Sd
|

spubiadQ juawadp|dsiq — asbg Jy Jod 2 ainbi4
202 Ppuoisadp

judwadpidsiqg — asog |DIdAQ
a[60¢ |
gie dsid 1] SY
e’

102 uoroniysu) (oa1dhy

c0o¢e soe €0Z 3po)
puoiadp | pupiadQ | uoijpiadp

4,670,839

Sheet 3 of 11

U.S. Patent Jun. 2, 1987

Goge Kiowap

61¢ swpid
LIE WI0iS

91¢ b3y

I paiy ied |
vlg vaay
o{pQg P20y ¢

awp.4y do)

‘g bay W
\
/

IIIII < dd

€1g Dpaly
DIDQ 914D4S

GIE DaJy 13jujod
9bpyui

oce
vas 23|qapilim

<-dQs

20g ?@¥po)
a|qondax3

€ @4npadoid

1€ a1npadoiy

6OE °81qDL QWD

«<=d 1N

log s2i ¢ 614
€0O¢ 40ss8l01d
6g£¢ sng loubis
Krowapy Gee
J0}DJ3URY
ioubis
IbE sng induj | Liowap sasjneq
Aisowapy o4 s|oublg
SJ134U|0d _ _ o j02ju0)
ICE o A
si3jsibay =, |
o
aspg m
| 44 S °
pipQ d9d % lc¢
04jU0
| |, R0
o
CEE dIN w %
JIN rwu_?.wo wouy
Jce 62¢ sjoubig
10853204d 105$3%01d 92¢ J9p0daQ
pipQ 104diaasaq apoadQ
o
G>.% _m_c‘_m:._ oy SOWDN m.o_uounoa
mm o w 2¢ sng| swoN |
3 i G2¢ Jappay
3 uoj§onysu|
SUONINIFSUT K

gzg sng inding Klowap

4,670,839

Sheet4 of 11

U.S. Patent Jun. 2, 1987

Aipu3 a|qpy awop

i1042@ QlEg

1I0€ SJI ul sawpN ¢ aunby

10b SowDN

60t OQWDN ajpipaww

cib dsia P

/

144

13630

12y

idsid

6lv |49

Liv 113

.
He a1 —
SOb ALN

€0t BOBWDN 3Iqp)

0% ANI —IN

cob AIN-

I0G Sayap) ssaippy poroadwy G614

4,670,839

Sheet S of 11

U.S. Patent Jun. 2, 1987

¢cece sng
104d113saG
% juawadp|dsiq + asog \ W)
10 o
“tusawaap|dsig ‘aspg T
Py
ip(¢IG J9ppy M
INWY $SIPPY 7y
4]
I \
I r
juawaop|dsig _ aspg a
|L2E o
G2S XMWl _ __ _losuogol 1S @
juswadpidsiq < — | » [— —>1xny asog
7 " | | A £0S 248V
111 | 606 ¥dad
L2€ SIS 210G _udds
oS, 113 GOS ud4
AA A
asia| 41§ — _ a _
. INNY, |
vl] wH | |
| [ONWY | L WM 28y, v0g
. 206 sJa}sibay v
Sav] o8 98
||||||||| dsia [~ — Z” T £0% 3%Y
4 [x* . _61S 3ONWY ‘gl 13
D1} dWDYN ‘ 2160
_ ALN Buisssippy D8Y -
82¢ — | A K} AN
sng 8wWDN AN hza dsia
L2CS

sng Buippo 8ydp)

4,670,839

Sheet 6 of 11

U.S. Patent jun. 2, 1987

208 28v jo aunpnig joaboy 9 bHig

Llg %oois €19 Ssiudjuw) 20¢ 28V
2 (8) 6l
a owpa | (¥) 6i1E
uj 6,%
| G119 10ieQ
- 109 oubi4 58V 4 (€)ele
.l o € (¢)ele
V
- ———— 0\ MW
s, 308V H\§ | ((1) 61g 2woiy o} "1i0d)
peshun - €09 awbpJ4 2@V
— Hgsmmn (o} (12¢€ 2wol4 doj o} "M02)
(1) 61¢ @wouy (2) 109 209 8wDi4 Jgy tuasiin)
A woJ) SSaJppYy
M 105 9 (plipAuy)
e e P e e e e ™ e "™
HA woJ} SS3JIPPY J AMWmm_MEE.._ o8V _VeN
r)\\l\ll\l(llx’.\/ll\lJ
ola () 109
woJ} SSaIppy
3o8v /__w>moo $s9.ppY —
; . ~— A~ 4] (6)6IE
(1ele unid cog 308V .
(2) 109 ¢l (8) 6IE
_wros] S
(@) 109 4d juawnbay I12¢
llllll] awD1 4 -
8lg D3y uJInjay dol Sl ((9) 61€ awpi4 0} "M102)
|||||||||| - 4 €09 ?*uwbpi4 28V
bie 0
, N
Daly DioQg §bJ07 awpJ4

4,670,839

Sheet 7 of 11

U.S. Patent Jun. 2, 1987

"N

@

129
430NWY

judwadpdsiq

61G JINNWY

JO0 unpona g |pd1b6o y9 bi4

109 494ujod juawnbiy up wouy

JUDJSUO) D D DIDQ 40§ €59 (@) 229 Y¥IDINWYH edwox3

dd4 wousy "nd 11d by UOI{UaAIB U]
‘bay 30 ‘dsiQ _ 0.0 woy ‘dsiq 1100 8poOJIIN ON 0!
[1 [J J
M “ | _
[| _
m i | | v v
: _ _ _ 229 129
m o ! A 428V
6€9 dSIAV _\.%w 1S€9 | 629 Eoswoo_%_ov Gz90a | €29 al
| | S8)
N Vg /I‘l\\\\\./\/\l\
Eo__..wwgm 029 sPisl4 [04{u0)

U.S. Patent Jun. 2, 1987

Sheet 8 of 11

4,670,839

=
2NFA 757
L~ o
iFRA 765
2] RA
Ny CFA 759 767
N 4--7
= CcO
el 751
-
T -
’ 4 745 0
+ 743 [1 CFL747 ~
[3 @_ SB i — -
SF|{x
— 735 737 739 |jw
5 Y72 =
S 7300
© P
[+,]
[\2]
©0
& g* E :
o [+]
< (o g4 by
- . ~
a7 237 [e--3] la-7
mn i -
w (@ 2 DI E
@ - 9aBc —
o 725 Trap
E ‘O 770 DO
z 724 |4“7|
% | RRMREG FL 705 , To Descr.
S 28 07 Proc.
g COPRET 709 SFL 723 329
s (NABC 7il
& — <[LCOR 713
aTo1R N 718 @m
=M~ RABC 717 771

Fig.7 Preferred Embodiment

701 of ABC Addr. Logic 533

U.S. Pétent‘ Jun. 2, 1987 Sheet9 of 11 4,670,839

A

—

' ADDR
FRA 765 (0--6) 793
- * l c»—-—‘q"“{jﬁml&i?gg
/ 35|
. - 3 @
ERA 767 \ I
....... » 6 m
) —poi £
T T =| s we] Agioo
ADDR~ 3 ~ m
774 “RAMs |§ ABC
773 o Sl oo (736 H/M 7105
~ N o
r~ ﬁé":‘ [/} ~© ™~ 3 4 &
~ SamdOR 8-‘3 4o
| g5 WE SE .
=l 88 o5 wel | | L-2DoR (7
= S To Base 777
Q Mux 5l |
< Lﬂ
V?'rs 787)
—
[789)
ABDR(7)
780
CFL 747 '
INABC 711
LABC 77I

Fig. 7A Preferred Embodiment 772 of ABC Registers 504

To CTL 515

Sheet 10 of 11 4,670,839

U.S. Patent Jun. 2, 1987

108 luawipoqu3l JNWY P442j31d g Bl

GIS "id o1
P N,
A AAA
1
| ccc sng 1rg xon suew L2 1043u0) 0}
20S 08V ©op loydirdsag -adpidsig oy A
A ae. A
_ - _
N
SR e
o P 103pipdwo)
[
¢ A » A 208
ﬁ-\lul\._.\Lf\Lzl\l\]\lnl)\(j. | 21048
T I AT IR I >7 T T TTITTT] 25 jroers oav
V NI A L L S AE) | _ o8l =&
A R) | __s.__ o cog Boy
LA A 208 Bayl suoig ovyy | AR A 408V
6€9 /) S€9.////// /6897 }(9)L29 608 OVi-317, 77l B 808 sng
\.mm\”\ _ _fn_m Bay aJois 040Q “mmm _mmw 22 129 o&uom,__
i 908 I I
| €18 24045 0ipQ 210ig BpL | e e, e
A A A A A &
wZ)| 71§ aN1. 618 we
3| Sl8 oV sTe -3
®t7I128 LN 4
D .26 sng a___vuo._ TELR] 3
“ 018 A ©

2I8 “Jppy DIy Wy

Sheet 11 of 11 4,670,839

U.S. Patent Jun. 2, 1987

fuswa|3 Aony uo Joj gIG IINWNY 6 B4

iy 72777777, VOO
NN e

sSaJppy
xa3pui o L1t] 100 7/} 100 ol

£e8 Y (\\\\\\\/\\\\'fl\ 2297 29
6¢9 R4°]

4,670,839

1

ENCACHEMENT APPARATUS USING TWO
CACHES EACH RESPONSIVE TO A KEY FOR
SIMULTANEOUSLY ACCESSING AND
COMBINING DATA THEREFROM

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present patent application is related to U.S. pa-
tent application No. 266,539, filed May 22, 1981 , now
abandoned, and U.S. patent application No. 301,999,
filed September 11, 1981, now U.S. Pat. No. 4,450,522,
and other patent applications U.S. patent application
Ser. Nos. 425,027; 425,028; 425,030, all filed on Sept. 27,
1982 and currently pending; and the following applica-
tions also filed on Sept. 27, 1982; 425,029, now U.S. Pat.
No. 4,473,881; Ser. No. 425,028, now U.S. Pat. No.
4,471,030; Ser. No. 425,024, now U.S. Pat. No.
4,472,774, and Ser. No. 425,033, now U.S. Pat. No.
4,471,431, each of the aforesaid applications entitled
“ENCACHEMENT APPARATUS”.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to digital
computer systems employing caches in their CPUs, and
more specifically to digital computer systems employ-
ing dual caches the outputs of which can be combined
to form desired data.

2. Description of Prior Art—FIGS. 1 and 2

2.1 Introduction to Caches

Many prior art computer systems employ caches in
their CPUs. A cache is fast memory within the CPU
which is used to store data items frequently used by the
CPU in executing programs. Access to data items
stored in a cache is more rapid than access to data items
contained in the computer system’s main memory, and
consequently, encachement of frequently-used data
items can speed execution of programs by the computer
system.

Access to a cache is by means of a key. Data items
which may be encached are associated with keys, and
the key is input to the cache. If the cache contains the
data item associated with the key, the cache outputs the
data item; otherwise, the cache produces a cache miss
signal. The CPU responds to the cache miss signal by
loading the data item corresponding to the key into the
cache.

In general, caches are used for two kinds of data
items: those which are copies of data items contained in
main memory and those which are the results of opera-
tions performed by the CPU. FIG. 1 is a block diagram
illustrating both uses of caches in prior art computer
system. Computer System 101 has two main compo-
nents: CPU 102 and Main Memory 103. Main Memory
103 contains data items and instructions, and CPU 102
performs operations on the data items in Main Memory
103 in response to instructions. CPU 102 includes two
caches, Result Cache 105 and Data Copy Cache 107.
Main Memory 103 contains Table 109, containing Table
Entries (TEs) 111(1) through 111(»), Table 109', con-
taining TEs 111(1)’ through 111(k)’, Table Computation
Data (TCD) 117, and Encacheable Data 113, containing
Encacheable Data Items (EDI) 115(/) through 115(n).
TEs 111 are identified by Table Keys (TKs) 110 and
EDIs 115 are identified by Data Keys (DKs) 112.

Result Cache 105 contains Result Entries (REs) 106.
Each RE 106 contains a VR Field 104 indicating

25

30

35

45

50

55

65

2
whether RE 106 is valid. A valid RE 106 corresponds to
a single TE 111(@) and contains results obtained from
computations using TE 111{(e) and TCD 117. Valid RE
106 (a) corresponding to TE 111(a) is accessible by
means of TK 110 (a) corresponding to TE 111(a).

Data Copy Cache 107 contains Copy Entries (CE)
108. Each CE 108 contains a VC Field 114 indicating
whether CE 108 is valid. If it is, CE 106 contains a copy
of the data in a single EDI 115(4) and is accessible by
means of DK 112(5) corresponding to EDI 115(6).

In both Data Copy Cache 107 and Result Cache 105,
a cache miss occurs when a key is presented to the
cache and the cache either lacks an entry corresponding
to the key or the entry corresponding to the key is
invalid. CPU 102 responds to the cache miss by loading
the cache entry corresponding to the key. In the case of
Data Copy Cache 107, nothing more is involved than
fetching the data in the proper EDI 115 from memory
and loading it into Data Copy Cache 107 in a CE 108
accessed by the corresponding DK 112. In the case of
Result Cache 105, data must be fetched from the proper
TE 111 and TCD 117, calculations performed, and the
result loaded into the proper RE 106 in Result Cache
105.

2.2 Limitations of Prior-art Caches

The use of caches in any digital computer system is
limited by the fact that the encached data items may
become invalid. In the caches of FIG. 1, an encached
data item may become invalid in one of three ways:

If a data item is a copy of a data item in Main Memory
103, the encached data item becomes invalid when
the data item in Main Memory 103 changes its
value.

If a key changes its meaning, the encached data item
accessed by the key becomes invalid.

If an encached result is calculated using another data
item and that data item changes its value, the en-
cached result becomes invalid.

FIG. 1 illustrates all of these possibilities. If EDI 115 (&)
changes its value, then CE 108 (b) is no longer a copy of
EDI 115 (4) and CE 108 () must be invalidated. TK 110
may serve as a key to either Table 109 or Table 109'; if
CPU 102 ceases using Table 109 and begins using Table
109', REs 106 do not correspond to TEs 111, and all
REs 106 in Result Cache 105 must be invalidated; if a
data item in TCD 117 changes its value, all REs 106 in
Result Cache 105 depending on that data item must be
invalidated. In the last case, it is generally impossible to
determine which RE 106 depends on a given data item
in TCD 117, so any change generally requires invalida-
tion of all REs 106.

Sometimes, it is possible to reload the invalidated
cache entry when it is invalidated. Generally, however,
the invalidated cache entry is loaded when a cache miss
occurs, Thus, after a change in TCD 117 has invalidated
Result Cache 106, Result Cache 106 is gradually re-
loaded with results calculated from the new value of
TCD 117 as misses occur on TKs 110. If TCD 117 does
not change value often, the efficiency gained from use
of Result Cache 105 outweighs the time required to load
it; however, if the changes are frequent, REs 106 are
generally invalid and the use of Result Cache 106 in
CPU 102 results in no gain or even a loss.of efficiency.

2.3 Encachement of Memory Addresses Correspond-
ing to Operands —FIGS. 2 and 2A

The problems of caches just described, together with
certain characteristics of standard computer architec-

4,670,839

3

tures, have made the use of caches difficult in one key
area: the translation of an operand which specifies data
in an instruction into the memory address of the data.
As illustrated in FIG. 2, a typical Instruction 201 for
CPU 102 contains an Operation Code 203 and one or
more Operands 205. Operation Code 203 specifies an
operation to be performed by CPU 102 on data speci-
fied by Operand 205. Generally, Operand 205 is a Base-
Displacement Operand 207. In such operands, there are
at least two fields: RS Field 209, specifying a general-
purpose register in CPU 102, and DISP Field 213, con-
taining a binary integer. The integer specifies a displace-
ment, and the specified register in CPU 102 contains a
base address. The address of the data represented by
Base-Displacement Operand 207 is obtained by adding
the displacement specified by DISP Field 213 to the
base address contained in the general-purpose register
specified by RS Field 207. In addition, Base-Displace-
ment Operand 207 may contain other fields. Here, Base-
Displacement Operand 207 further contains an indirec-
tion bit, IB 211, specifying that the address in Main
Memory 103 obtained by adding the value of DISP
Field 213 to the value contained in the register specified
by RS Field 207 is not the address of the data repre-
sented by the operand, but rather the address of a
pointer to the data. A pointer is a data item whose value
is the address of data.

FIG. 2A provides an example of how an address is
calculated from operands specifying a register contain-
ing a base address and a displacement. CPU 102 in-
cludes general-purpose register set GPRS 225, contain-
ing general-purpose registers R 223(0) through R
223(n). For the purposes of this discussion, a general-
purpose register is any register which an instruction
executed by CPU 102 may set to an arbitrary value. The
contents of a register R 223 is specified in FIG. 2A by
cont(x), where x is the number of R 223. Memory 103
contains Memory Portion 215, which in turn contains
Data Item 217. Data Item 217 is represented in an in-
struction by BDO 219, a Base Displacement Operand
205 of the type just described. In BDO 219, b represents
the value of RS Field 209 and c the value of DISP 213.
R(b) specified by RS Field 209 contains the address in
Memor Portion 215 specified by cont(b). Arrow 221
identifies the location specified by cont(b) in Memory
Portion 215. CPU 102 obtains the address of Data Item
217 by performing the calculation cont(b) +c.

Base-displacement Operands 207 referring to Data
Item 217 may occur over and over in a computer pro-
gram executing on CPU 102 and Data Item 217’s ad-
dress does not change. Nevertheless, it is impractical to
encache Data Item 217’s address in a cache employing
Base-Displacement Operands 207 as keys. This is the
case because such a cache is effectively a result cache
like Result Cache 105 of FIG. 1. The contents of each
entry in the cache are calculated using the value of R
223 specified in the operand. However, instructions
executed by CPU 102 may change the value of that R
223 at any time and in an arbitrary fashion, so the speci-
fied R 223 bears the same relationship to the encached
address as a data item in TCD 117 bears to a RE 106
calculated from it. Just as the RE 106 must be invali-
dated each time the data item in TCD 117 it is derived
from changes its value, so must the encached address be
invalidated each time R 223 specified in the operand
corresponding to the address changes its value.

The present invention provides an improved com-
puter system wherein addresses translated from oper-

—

5

20

25

35

40

50

63

4

ands may Be encached and encachement apparatus
wherein certain changes in values used to compute the
encached data do not render the encached data invalid.
The present invention thereby overcomes the above-
mentioned disadvantages of prior art computer systems
and encachement apparatus.

SUMMARY OF THE INVENTION

The present invention relates to encachement appara-
tus in a digital computer system for encaching values
consisting of component values which change in re-
sponse to different operations of the digital computer
system. One kind of component values is kept in one
cache, together with keys specifying the other kind of
component value. In response to a first key, the first
cache outputs a component value of the first kind and a
second key; the second key is then used to obtain the
second kind of component value from the second cache.
The second cache includes a stack having a plurality of
frames and outputs the second kind of component value
from a current frame of such frames in response to the
second key. The two component values are then simul-
taneously output from the first cache and the second
cache to combining apparatus, such as an adder, and the
combining apparatus combines the values to form the
desired third value. The frames include registers, the
second key containing an index specifying one of such
registers of the current frame from which the second
component value is obtained.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a diagram showing encachement in prior-art
computer systems;

FIG. 2 is a diagram showing prior-art base-displace-
ment operands;

FIG. 2A is a diagram showing prior-art operand to
address translation; R

FIG. 3 is a conceptual block diagram of an improved
computer system using base-displacement and indirect
base-displacement addressing and name tables;

FIG. 4 is a diagram of names in the improved com-
puter system of FIG. 3;

FIG. 5 is a block diagram of the improved address
caches used in the improved computer system of FIG.
3

FIG. 6 is a conceptual diagram of the logical struc-
ture of the argument base cache of FIG. §;

FIG. 6A is a conceptual diagram of the logical struc-
ture of the raw materials name cache of FIG. §;

FIG. 7 and FIG. 7A are logic diagrams showing a
preferred embodiment of the argument base cache of
FIG. 5;

FIG. 8 is a block diagram showing a preferred em-
bodiment of the raw materials name cache of FIG. §;
and

FIG. 9 is a diagram of an example raw materials name
cache entry.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The Description of the Preferred Embodiments be-
gins with an overview of an Improved Digital Com-
puter System (ICS) which allows encachement of data
addresses and information needed to derive them, then
presents an overview of encachement apparatus which
may be used particularly advantageously in the ICS,
and finally presents a detailed description of a preferred
embodiment of the encachement apparatus.

4,670,839

5

1. An Improved Digital Computer System Permitting
Encachement of Data Addresses

The ICS has been described in detail in the aforesaid
U.S. patent application Ser. No. 266,539, filed May 22,
1981, and U.S. patent application Ser. No. 301,999, filed
Sept. 11, 1981, and other patent applications related to
these patent applications, and is described herein only to
the extent necessary to understand the present inven-
tion.

1.1. Overview of ICS 301—FIG. 3

FIG. 3 presents a conceptual block diagram of ICS
301. ICS 301 has two main components: Memory 3085,
for storing data and instructions, and Processor 303, for
performing operations on data received from Memory
305 in response to instructions received from Memory
305. Processor 301 is connected to Memory 305 by
Memory Output Bus 323, which provides data and
instructions stored in Memory 305 to Processor 303,
Memory Input Bus 341, which provides data from Pro-
cessor 303 to Memory 305, and Memory Signal Bus 339
which carries memory signals from Processor 303 to
Memory 305. The memory signals specify at least a
location in Memory 305 and whether the contents of the
location are to be fetched from Memory 305 to Proces-
sor 303 or data from Processor 303 is to be stored at that
location.

1.1.1. Contents of Memory 305

When ICS 301 is executing instructions for a user,
Memory 305 contains at least Executable Code 307 and
Stack 317, and may also contain Static Data 313. Exe-
cutable Code contains at least one Procedure 311 and at
least one Name Table 309. Procedure 311 contains a
sequence of instructions executable by Processor 303,
and Name Table 309 contains Name Table Entries
(NTEs) 310 corresponding to certain operands con-
tained in instructions in Procedure 311. NTE 310 corre-
sponding to an operand contains information from
which a descriptor for the data item represented by the
the operand may be derived. In ICS 301, a descriptor
specifies the address of the data item, its length, and
other information. The following discussion is con-
cerned only with that portion of the descriptor specify-
ing the address.

The instructions executable by Processor 303 include
a call instruction and a return instruction. When Proces-
sor 303 executes a call instruction in a Procedure 311, it
suspends further execution of instructions in Procedure
311 and begins execution of instructions in a Procedure
311’ specified in the call instruction. When Processor
303 executes a return instruction in Procedure 311, it
terminates execution of instructions in Procedure 311
and resumes execution of instructions in Procedure 311.

A single execution of a Procedure 311’ begins with
the execution of a call instruction in a Procedure 311
which specifies Procedure 311’ and ends with the exe-
cution of a return instruction in Procedure 311'. If Pro-
cedure 311’ itself contains a call instruction specifying a
Procedure 311", the execution of Procedure 311 is
suspended during the execution of Procedure 311" and
of any other Procedures 311 called as a result of that
execution. Thus, there is at any one time only one Pro-
cedure 311 whose execution is not suspended, ie.,
whose instructions are currently being executed.

Besides specifying Procedure 311’ to be executed, a
call instruction may also specify arguments, i.e., data
available to the execution of Procedure 311 executing
the call instruction which that execution provides to the
execution of Procedure 311’ commenced by the call

10

15

20

25

30

35

45

50

55

65

6
instruction. Procedure 311’ may be contained in the
same section of Executable Code 307 as Procedure 311,
or in a different section of Executable Code 307, and
may use the same Name Table 309 as Procedure 311 or
a different Name Table 309.

Stack 317 contains a sequence of Frames 319. Each
Frame 319 contains data used in a single execution of a
Procedure 311. Top Frame 321 is a Frame 319 which
contains data being used in the execution of Procedure
311 for which Processor 303 is currently executing
instructions. The remaining Frames 319 contain data
used in suspended executions of Procedures 311. When
a call instruction in Procedure 311 is executed, a new
Frame 319’ is created for the execution of Procedure
311’ specified in the call instruction and Frame 319’
becomes Top Frame 321; on execution of a return in-
struction in Procedure 311’, the execution of Procedure
311’ corresponding to Top Frame 321 terminates, the
suspended execution of Procedure 311 resumes, and
Frame 319 below Top Frame 321 again becomes Top
Frame 321. The previous Top Frame 321 ceases to exist,
and the area occupied by it in Memory 305 may be used
for new Frames 319 or other data.

Each Frame 319 may contain areas for three different
kinds of data. Local Storage Area 314 contains data
items whose values may change during the execution of
Procedure 311 which corresponds to Frame 319. Re-
turn Area 316 contains data items used by the return
instruction which terminated the execution of Proce-
dure 311’ corresponding to Frame 319 to resume the
execution of Procedure 311. Argument Pointer Area
316 contains argument pointers, that is, pointers con-
taining the addresses of data items used as arguments in
the call instruction which began the execution of Proce-
dure 311 which corresponds to Frame 319. In ICS 301,
only the call instruction whose execution results in the
creation of a Frame 319 may set the values of data items
in Return Area 315 and the values of argument pointers
in Argument Pointer Area 316; other instructions may
not assign values to these areas. Consequently, the val-
ues of the pointers and data items in these areas do not
change during the life of Frame 319.

A Stack 317 may have associated with it one or more
Static Data Areas 313. Each Static Data Area 313 con-
tains data available to one or more of the executions of
Procedures 311 which have Frames 319 on Stack 317.
Static Data Area 313 contains areas for two different
kinds of data. Writable Static Data Area 320 contains
data whose values may change during the life of Static
Data Area 313. Linkage Pointer Area 315 contains
linkage pointers, i.e., pointers to Procedures 311 and
pointers to data items which are used in an execution of
a Procedure 311 which has a Frame 319 on Stack 317
but are contained in neither Automatic Data 314 be-
longing to that Frame 319 nor Writable Static Data 320
in Static Data Area 313 corresponding to the execution.
ICS 301 automatically places linkage pointers in Link-
age Pointer Area 313 when Static Data Area 313 is
created. No instructions for ICS 301 allow values to be
assigned to Linkage Pointer Area 313, and thus, point-
ers in Linkage Pointer Area 313 do not change their
values during the life of Static Data Area 313.

1.1.2. Components of Processor 303

Turning now to Processor 303, the components of
Processor 303 operate under control of Control 327. In
a present embodiment of ICS 301, Control 327 executes
microinstruction sequences. Microcommands in the
microinstructions specify operations to be performed by

4,670,839

7

the hardware devices making up Processor 303 and
decoders decode the microcommands to provide signals
which enable or disable hardware devices as required.
Control 327 executes microinstruction sequences in
response to instructions from Procedures 311 and to
signals produced by the hardware devices making up
Processor 303.

For purposes of the present discussion, Processor 303
has the following functional divisions in addition to
Control 327: Instruction Reader 325, Opcode Decoder
326, Descriptor Processor 329, Memory Signal Genera-
tor 335, and Data Processor 337. The divisions are dis-
cussed in the above order.

Instruction Reader 325

Instruction Reader 325 breaks instructions into opera-
tion codes and operands and places the operation codes
and operands onto Name Bus 328. Instruction Reader
325 also provides a descriptor for the next instruction,
which it places on Descriptor Bus 333.

Opcode Decoder 326

Opcode Decoder 326 receives each operation code
from Instruction Reader 325 and decodes it into the
location of the sequence of microinstructions which
executes the instruction. It provides this location to
Control 327, which then executes the microinstruction
sequence.

Descriptor Processor 329

Descriptor Processor 329 receives operands repre-
senting data items in Memory 305 from Instruction
Reader 325 via Name Bus 328 and addressing data from
Memory Qutput Bus 323. The addressing data includes
pointers and other values used to calculate addresses.
With operands corresponding to NTEs 310, the ad-
dressing data includes NTE 310 corresponding to the
name. Descriptor Processor 329 translates the operands
and the pointers into descriptors and translates descrip-
tors into pointers. Descriptors from Descriptor Proces-
sor 329 are placed on Descriptor Bus 333, while point-
ers from Descriptor Processor 329 are placed on Mem-
ory Input Bus 341.

Memory Signal Generator 305

Memory Signal Generator 305 receives descriptors
from Descriptor Processor 329 and Instruction Reader
325. Memory Signal Generator 305 responds to the
descriptors and to signals from Control 327 by generat-
ing memory signals on Memory Signal Bus 339.

Data Processor 337

Data Processor 337, finally, receives data items from
Memory Output Bus 323, processes them under control
of Control 327, and places the results on Memory Input
Bus 341.

1.2. Calculation of Addresses in ICS 301

ICS 301 employs base-displacement addressing.
However, the base addresses are not contained in gener-
al-purpose registers which allow them to be altered at
arbitrary times and in arbitrary manners. In ICS 301,
addresses are calculated using architectural base ad-
dresses. The architectural base addresses of ICS 301
change only when ICS 301 executes a call instruction or
a return instruction, and the manner in which they
change is not under control of the programmer. Instead,
the microcode executed by Control 327 in response to a
call or return instruction resets the architectural base
addresses as required for the execution of a Procedure
311 commenced by the call instruction or resumed by
the return instruction.

1.2.1. Architectural Base Addresses

20

35

40

45

50

55

65

8

There are three architectural base addresses em-
ployed by ICS 301, FP, SDP, and PBP. In FIG. 3,
arrows in Memory 305 labelled with the names of the
architectural base addresses indicate the locations speci-
fied by them. FP specifies the bottom of Automatic
Data 314 in Top Frame 321; SDP specifies the bottom
of Writable SDA 320 in Static Data Area 313 used by
the execution of Procedure 311 represented by Top
Frame 321; PBP represents a location in Executable
Code 307 associated with one or more Procedures 311.
Displacements from FP may not specify addresses out-
side of Top Frame 321; displacements from SDP may
not specify addresses outside of the current Static Data
Area 313; displacements from PBP, finally, may not
specify addresses outside of Procedures 311 associated
with that PBP. A further address of importance is NTP,
which represents the location of Name Table 309 used
by Procedure 311. Displacements from NTP may spec-
ify only locations in Name Table 309.

The values of FP, SDP, PBP, and NTP change only
when a call instruction or a return instruction is exe-
cuted by ICS 301. Since every execution of a Procedure
311 has its own Frame 319, FP changes every time a call
instruction or a return instruction is executed. SDP
changes whenever a call instruction initiates an execu-
tion of a Procedure 311° which uses a different Static
Data Area 313 from that of Procedure 311 containing
the call instruction or a return instruction terminates an
execution of a Procedure 311’ which uses a Static Data
Area 313 different from that of Procedure 311. PBP
changes whenever a call instruction specifies a Proce-
dure 311’ which does not have the same PBP as Proce-
dure 311 or a return instruction terminates an execution
of a Procedure 311’ which does not have the same PBP
as that of Procedure 311. NTP, finally, changes when-
ever a call instruction specifies a Procedure 311° which
uses 2 Name Table 309 different from that used by Pro-
cedure 311 or a return instruction terminates an execu-
tion of a Procedure 311’ which has a Name Table 309
different from that used by Procedure 311. For the most
part, calls and returns in ICS 311 change only FP.

When Processor 303 is executing instructions in the
execution of Procedure 311 represented by Top Frame
329, Base Registers 331 in Descriptor Processor 329
contain FP, SDP, and PBP. Another register, Name
Table Register 332, contains NTP. The values in these
registers change only as a consequence of the execution
of a call instruction or a return instruction. On execu-
tion of a call instruction, Processor 303 places the values
of those addresses in these registers whose values
change as a consequence of the call instruction in Re-
turn Area 316 of Top Frame 321 created by execution
of the call instruction, calculates new values for the
architectural base addressess as required for called Pro-
cedure 311', and sets the registers to these new values.
On execution of a return instruction, Processor 303 sets
Base Registers 331 and Name Table Register 332 to the
values saved in Return Area 316 of Top Frame 321.

1.2.2. Base Displacement Addressing using Architec-
tural Base Addresses

ICS 301 employs two different methods of calculat-
ing addresses using architectural base registers. In di-
rect base-displacement addressing, the architectural
base address is the base address and a displacement is
calculated and added to it in order to obtain the address
of the data.

In indirect base-displacement addressing, the base
address is not an architectural base address, but instead

4,670,839

9

a pointer located at a displacement from one of the
architectural base addresses. Descriptor Processor 329
first calculates the address of the pointer which is the
base address as described above for direct base-displace-
ment addressing and then calculates the address of the
data by adding a displacement to the address specified
by the pointer.

1.3. Operands. in ICS 301—FIG. 4 .

Operands in ICS 301 are termed Names. A Name
may itself specify a base address and a displacement, or
it may specify a NTE 310 which specifies the base ad-
dress and the displacement. FIG. 4 presents an over-
view of those features of Names 401 and Name Table
Entry 310 required for understanding the present inven-
tion; a detailed discussion of Names and Name Table
Entries in ICS 301 may be found in U.S. Patent Applica-
tion No. 301,999.

1.3.1. Names 401 in ICS 301

There are two kinds of Names 401 in ICS 301, Table
Names 403, which specify a NTE 310, and Immediate
Names 409, which directly specify an architectural base
address and a displacement. Both kinds of Name 401
contain NTY Field 405, which contains codes specify-
ing whether Name 401 is a Table Name 403 or an Imme-
diate Name 409, and if it is the latter, which architec-
tural base address is to be used in calculating the ad-
dress. Table Names 403 have one other field, NT_IND
407, which is the index of NTE 310 corresponding to
Table Name 403 in Name Table 309. The address of
NTE 310 corresponding to Table Name 403 is calcu-
lated by adding the value of NT_IND Field 407 to the
value of NTP. Immediate Names 409 have two other
fields: DISP Field 413 and IB Field 411. DISP Field 413
specifies a displacement from the architectural base
address indicated by NTY 405. IB Field 411 indicates
whether the data item at the address obtained by adding
the specified displacement to the specified architectural
base address is a pointer to the data item represented by
Immediate Name 409 or the data item itself.

In a present embodiment of ICS 301, Names 401
contain 16 bits. NTY Field 405 contains a two-bit code
with the following meanings:

Code Meaning
00 Immediate Name; Base = FP
ol Immediate Name; Base = SDP
10 Immediate Name; Base = PBP

Table Name

In Table Names 403, the remaining 14 bits make up
NTi3 IND Field 407. In Immediate Names 409, the
remaining 14 bits contain IB Field 411, a reserved bit,
and a twelve-bit DISP Field 413. In a present embodi-
ment of ICS 301, DISP Field 413 contains a signed
integer represented in twos complement notation.
When multiplied by 32 (i.e., shifted left five places), the
value in DISP Field 413 yields the displacement. Other
information required to form a descriptor from an Im-
mediate Name 409 is derived from the context in which
Immediate Name 409 appears. In other embodiments of
ICS 301, Names 401 may have different lengths and
employ other means of specifying a base address and a
displacement.

1.3.2. NTEs 310 in ICS 301

Name Table Entry 310 as represented in FIG. 4 is a
schematic representation of the four kinds of informa-

25

30

5

45

50

55

60

65

10
tion which may be contained in a NTE 310 of the pres-
ent embodiment:

Entry Interpretation Information (EII) 417 specifies
how a descriptor is to be derived from the informa-
tion contained in NTE 310.

Base Information (BI) 419 is information from which
the base address used to calculate the descriptor’s
address may be derived.

Displacement Information (DISPI) 421 is informa-
tion from which the displacement used to calculate
the descriptor’s address may be derived.

Descriptor Information (DESCI) 423 is information
from which other information required for the
descriptor may be calculated or obtained.

BI 419, DISPI 421, and DESCI 423 may contain con-
stants or Names 401 or combinations thereof. For exam-
ple, in a NTE 310 for an element of an array, Bl 419
specifies the address of the array. It may do so by speci-
fying an architectural base address and a displacement
which yield the address, by specifying an architectural
base address and a displacement which yield a the ad-
dress of a pointer to the array, by means of an Immedi-
ate Name 409 which yields the base address, or by
means of a Table Name 403 referring to a NTE 310 in
the same Name Table 309. That NTE 310 contains
information which yields the address of the array.
DISPI 421 in an NTE 310 for an array element may
contain a constant value specifying the size of the array
element and a Name 401 which yields a descriptor for
data whose value is the array element’s index. DESCI
421 may contain a constant specifying the length, or it
may contain a Name 401 which yields a descriptor for
data whose value is the length.

1.4. Name Resolution in ICS 301

Name resolution is the operation performed by De-
scriptor Processor 329 when it derives a descriptor for
a data item represented by a Name 401 from the Name
401 using the architectural base addresses contained in
Base Registers 331, pointers, and in the case of a Table
Name 403, the NTE 310 for Table Name 403 and NTEs
310 for any Table Names 403 contained in that NTE
310.

In the case of an Immediate Name 409 which directly
specifies a base and a displacement, Descriptor Proces-
sor 329 resolves Immediate Name 409 by adding the
displacement specified in DISP Field 413 to contents of
the register in Base Registers 331 which contains the
architectural base address specified by NTY Field 405.

In the case of an Immediate Name 409" whose IB
Field 411 indicates that the base is being specified indi-
rectly, Descriptor Processor 329 obtains the address of
the data specified by Immediate Name 409’ by adding
the displacement specified in DISP Field to the archi-
tectural base address as specified above to obtain an
address and then fetching the pointer at that address
from Memory 305. The pointer is then used to construct
the descriptor.

In the case of Table Names 403, Descriptor Processor
329 adds the value of NT_IND Field 407 to the value
in Name Table Register 332 to obtain the address of
NTE 310 corresponding to Table Name 403, fetches
NTE 310 from Memory 305, and then derives the ad-
dress of the data item represented by Table Name 403
from the information contained in NTE 310 in the man-
ner prescribed by EII Field 417 and the contents of
NTE 310. If NTE 310 contains Immediate Names 409
or Table Names 403, they are resolved as just described.

2. Encachement of Addresses in ICS 301

4,670,839

11

In the following, the properties of addresses in ICS
301 which make them encacheable are described and an
overview is presented of improved cache apparatus
used for encaching addresses in a present embodiment
of ICS 301.

2.1. Encacheable Addresses

In prior art computer systems in which the base ad-
dresses were obtained from general purpose registers,
addresses obtained by adding a constant displacement
to a base address could not be encached in caches re-
sponsive to operands because the values of the base
registers could change at arbitrary times and in an arbi-
trary manner. In ICS 301, such addresses may be may
be encached in caches responsive to Names 401 because
the architectural base addresses and NTP change their
values only on execution of a call instruction or a return
instruction. The addresses in the cache therefore remain
valid for at least the period between execution of a call
instruction or a return instruction and the execution of
another call instruction or return instruction. Addresses
which remain valid for that period are termed herein
encacheable addresses.

Encacheable addresses are produced in the course of
each name resolution operation. In some cases, the ad-
dress of the data represented by Name 401 is encachea-
ble; in others, that address is not encacheable, but inter-
mediate addresses used to determine that address are.

There are two cases in which the address of the data
represented by Name 401 is encacheable:

When Immediate Name 409 or NTE 310 for a Table
Name 403 specifies an architectural base address
and a constant displacement.

When Immediate Name 419 or NTE 310 specifies a
constant displacement and a base address which is
a pointer at a negative displacement from FP or
SDP.

In the latter case, addresses calculated by adding con-
stant displacements to the pointers are encacheable
because the pointers do not change their values for the
life of Static Data Area 313 or Frame 319 containing
them and FP and SDP change only on execution of a
call or return instruction.

In all other cases, only intermediate addresses are
encacheable. For example, if an Immediate Name 409
specifies a pointer as a base address and the pointer is at
a positive displacement from FP or SDP, the pointer’s
value may change. Consequently, addresses derived
from the pointer are not encacheable. However, the
pointer is at a constant displacement from an architec-
tural base address, and consequently, the pointer’s ad-
dress is encacheable. Once the pointer’s address is en-
cached, Descriptor Processor 329 can resolve Immedi-
ate Name 409 by fetching the pointer at the location
specified by the encached address from Memory 305
and adding the displacement to it to produce the ad-
dress specified by Immediate Name 409,

2.2. Cache Apparatus for Encacheable Addresses

In order to take full advantage of encacheable ad-
dresses, a present embodiment of ICS 301 employs spe-
cial cache apparatus. The following discussion first
describes the limitations of prior-art cache apparatus
when it is used for encacheable addresses and then de-
scribes cache apparatus particularly adapted to use with
encacheable addresses or in other situations in which
encached values are dependent on other values which
are not subject to arbitrary change.

2.2.1. Prior Art Cache Apparatus in ICS 301

20

25

30

45

50

35

60

65

12

The utility of prior-art cache apparatus in embodi-

ments of ICS 301 is limited by two facts:

Encacheable addresses depend either directly or indi-
rectly on values of FP, PBP, SDP, and NTP, and
these values are subject to change on execution of
any call or return instruction.

In modern programming practice, large programs are
constructed from a great many short procedures
and call and return instructions occur frequently.

In prior art cache apparatus, a cache entry accessed by
a key is either invalid or contains completely-calculated
addresses; consequently, when a value used to calculate
the address changes, the entry accessed by the key must
be invalidated. Thus, when prior art cache apparatus
contains encacheable addresses, all cache entries con-
taining encacheable addresses derived from FP must be
invalidated each time a call or return instruction is exe-
cuted and cache entries containing encacheable ad-
dresses derived from PBP or SDP must be invalidated
whenever a call instruction or a return instruction
changes those values. However, it is impossible to tell
from an encached address which of Base Registers 331
was employed in producing it, and further, it is impossi-
ble to tell from a Table Name 403 what Base Registers
331 are specified by its NTE 310. Consequently, when
encacheable addresses are encached in prior-art cache
apparatus, it is necessary to invalidate all cache entries
whenever a call instruction or a return instruction is
executed. Since these instructions occur with high fre-
quency in programs executed by ICS 301, the cache
entries in prior art cache apparatus are generally invalid
and most of the benefits of encachement are lost.

2.2.2. Improved Address Caches in ICS 301—FIG. 5

FIG. 5 provides a conceptual representation of Im-

proved Address Caches 501 employed in a present em-
bodiment of ICS 301. In FIG. 5, solid arrows represent
inputs to or outputs from Improved Address Caches
501 and dotted arrows represent control signals. Im-
proved Address Caches 501 take advantage of three
properties of base-displacement addressing in ICS 301:

In encacheable addresses, the displacement is con-
stant and only the base address is affected by the
execution of call instructions and return instruc-
tions. The relationship between a Name 401 and a
constant displacement remains unchanged as long
as Name Table 309 continues to be used. When a
new Name Table 309 replaces the former Name
Table 309, NTP changes its value. Thus, encached
displacements need not be invalidated unless the
execution of a call instruction or a return instruc-
tion changes the value of NTP.

Addresses derived from argument pointers and link-
age pointers are encacheable during the life of
Frame 319 or Static Data Area 313 which contains
them.

Argument pointers in a given Frame 319 serve as base
addresses only when FP specifies that Frame 319,
and linkage pointers in given Static Data Area 313
are used in ICS 301 only when SDP specifies that
Static Data Area 313.

The improved address caches of the present embodi-
ment of ICS 301 take advantage of the first property by
encaching encacheable base addresses separately from
the constant displacement values and then adding the
encached displacement to the encached base address to
produce the base-displacement address. The displace-
ments are contained in Raw Materials Name Cache
(RMNC) 517, which employs Table Names 403 as keys.

4,670,839

13
RMNC 517 is so termed because it contains raw materi-
als from which addresses may be formed.

The base addresses are contained in two base address
caches. One, Architectural Base Register Cache
(ABRC) 504, contains the current values of FP, SDP,
and PBP. The other, Argument Base Cache (ABC) 502,
contains base addresses derived from argument pointers
contained in Frames 319. ABC 502 employs Immediate
Names 409 representing argument pointers as keys. As
previously explained, these Immediate Names 409 spec-
ify only argument pointers in Top Frame 321. In re-
sponse to these Immediate Names 409, ABC 501 pro-
duces addresses derived from the argument pointers
specified by these Immediate Names 409. Codes associ-
ated with the displacements in RMNC 517 specify
which of the base address caches contains the base ad-
dress to be combined with the displacement. When the
code specifies an argument pointer as a base address, the
displacement is further associated with a key to which
ABC 501 responds in the same fashion in which it re-
sponds to an Immediate Name 409.

The improved address caches take advantage of the
second and third properties as follows: First, since SDP
changes much less frequently than FP and linkage
pointers never change their values, complete addresses
derived from linkage pointers are encached along with
the displacements in RMNC 17. RMNC 517 is conse-
quently completely invalidated each time SDP, PBP, or
NTP changes. Second, since argument pointers never
change their values, ABC 502 contains not only argu-
ment pointers from Top Frame 321, but also argument
pointers from Frames 319 below Top Frame 321. It thus
need not be invalidated on execution of every return
instruction.

2.3. Overview of Improved Address Caches 501 in
ICS 301

Turning now to a more detailed consideration of
FIG. §, there is first described the relationship of Im-
proved Address Caches 501 to ICS 301, and then the
structure and operation of Improved Adress Caches 501
are described.

2.3.1. Relationship of Improved Address Caches 501
to ICS 301

Improved Address Caches 501 are contained in De-
scriptor Processor 329 of ICS 301. Improved Address
Caches 501 receive Names 401 via Name Bus 328.
Names of Fields in Names 401 appear as labels on inputs
to components of Improved Address Caches 501 in
FIG. § to indicate which portions of a Name 401 is
received by that component. Improved Address Caches
501 provides addresses and other data to Descriptor
Processor 329 via Descriptor Bus 333. Cache Loading
Bus 527 internal to Descriptor Processor 329 allows
caches in Improved Address Caches 501 to be loaded
with data items from Memory 305 and with values
produced by Descriptor Processor 29. Improved Ad-
dress Caches 501 operate under control of Control 327
and of signals produced by CTL 515 in response to
Names 401, hit signals from ABC 502 and RMNC 517,
and codes contained in RMNCE: s 519. Microinstruction
sequences are executed in turn by Control 327 in re-
sponse to signals from CTL 515 and code contained in
RMNCE:s 519.

2.3.2. Components of Improved Address Caches 501

The main components of Improved Address Caches
501 are the following:

ABC 502, which has two main components: ABC

Addressing Logic 533 and ABC Registers 504.

10

20

25

30

35

40

45

50

55

65

14
ABC Registers 504 contain ABC Entries (ABCEs)
503 in which are stored base addresses derived
from argument pointers contained in Stack 317.
ABC Addressing Logic 533 derives addresses in
ABC Registers 504 from keys received from either
Name Bus 328 or RMNC 517. ABC 502 responds
to the keys by outputting base addresses to Base
Mux 511 and ABC Hit/Miss Signals to CTL 515.
ABC Addressing Logic 533 may also output the
address of ABC Entry 503 which was last ad-
dressed to Descriptor Bus 333.
ABRC 504, which contains three registers: FPR 505,
containing the current value of FP, SDPR 507,
containing the current value of SDP, and PBPR
509 containing the current value of PBP.
RMNC 517, which contains RMNC Entries
(RMNCE:s) 519 and responds to keys from Name
Bus 328. RMNCE:s 519 may contain constant val-
ues used to calculate displacements or complete
addresses derived from linkage pointers. RMNC
517 outputs a RMNC Hit/Miss Signal to CTL 515,
and on a hit, data from a RMNCE 519 correspond-
ing to a key may be output directly to Descriptor
Bus 333, or parts of a RMNCE 519 may be output
to Displacement Mux 525, CTL 515, ABC 502, and
Control 327.
Name Trap 531, which contains the value of the last
Name 401 input to Improved Address Caches 501;
Address Adder 513, which adds base addresses re-
ceived from Base Mux 511 and displacements re-
ceived from Displacement Mux 525 or passes ei-
ther a base or a displacement through unchanged.
Base Mux 511, which selects the a base address out-
put by ABC 502 or one of Registers 505 through
509 from ABRC 504.
Displacement Mux 525, which selects a displacement
value from the Displacement Field of an RMNC
519 or from Name Bus 328.
CTL 515, which receives inputs from Name Bus 328,
the RMNCE 519 specified by a key, RMNC 517,
and ABC 512 and responds to those inputs by pro-
ducing control signals for Base Mux 511, Displace-
ment Mux 525, Address Adder 513, and Control
327.
2.3.3. Operation of Improved Address Caches 501
In general terms, Improved Address Caches 501 op-
erate as follows: when a Name 401 appears on Name
Bus 328, CTL 515 receives NTY Field 405, IB Field
411, and certain bits of DISP Field 413. CTL 515 CTL
515 determines from the valués of these fields which of
the following classes a Name 401 belongs to:
Immediate Names 409 specifying an architectural
base register as a base.
Immediate Names 409 specifying an argument
pointer as a base.
Immediate Names 409 specifying a writable pointer
as a base.
Table Names 403.
The discussion deals first with the operation of Im-
proved Address Caches 501 in response to Immediate
Names 409 and then with its operation in response to
Table Names 403.
2.3.3.1. Operation of Improved Address Caches 501
in Response to Immediate Names 409

In the case of an Immediate Name 409 specifying an
architectural base register as a base, CTL 515 responds
to NTY Field 405 of Immediate Name 409 by causing
Base Mux 511 to select the register in ABRC 504 con-

4,670,839

15

taining the current value of the architectural base ad-
dress specified in the Immediate Name and Displace-
ment Mux 525 to select DISP Field 413 of Immediate
Name 409. Address Adder 513 then adds the value from
the specified register in ABRC 504 to the value from
DISP Field 413 to produce the address specified by
Immediate Name 409. In the present embodiment of
ICS 301, Disp Mux 525 also converts DISP Field 413 to
a 32-bit value. It does so by shifting DISP Field 413 §
places to the left and sign extending the resulting value
to 32 bits.

In the case of an Immediate Name 409 specifying an
argument pointer, if the address specified by the argu-
ment pointer is encached in ABC 502, CTL 515 re-
ceives a hit signal from ABC 502 and responds to the hit
signal and the NTY, IB, and DISP Fields of Immediate
Name 409 by causing Base Mux 511 to select ABC 502
and Address Adder 513 to pass the value received from
Base Mux 511 through unchanged to Descriptor Bus
333.

In the case of an Immediate Name 409 specifying a
writable pointer as a base, i.e., a pointer at a positive
displacement from SDP or FP, the writable pointer
cannot be encached. CTL 515 detects the positive value
of DISP Field 413 and produces a signal to Control 327.
The microcode sequence executed by Control 327 in
response to the signal retrieves Immediate Name 409
from Name Trap 531, uses the architectural base ad-
dress specified by NTY Field 405 and the value of DISP
Field 413 to form the address of the pointer, and then
fetches the pointer from Memory 305 and converts it to
a descriptor for the data represented by Immediate
Name 409.

2.3.3.2. Operation of Improved Address Caches 501
in Response to Table Names 403

In the case of Table Names 403, the behavior of Im-
proved Address Caches 501 depends on codes con-
tained in RMNCE 519 accessed by Table Name 403.
When there is an RMNCE 519 corresponding to a
Table Name 403 and Table Name 403 is presented to
RMNC 517, the code in RMNCE 519 corresponding to
Table Name 403 is output to CTL 515. The code then
determines the manner in which Improved Address
Caches 501 responds to Table Name 403. The code
contained in an RMNCE 519 is set by the microinstruc-
tion sequence which loads the RMNCE 519.

The simplest case is a RMNCE 519 for a Table Name
403 representing a linkage pointer. Addresses derived
from linkage pointers are completely encached in
RMNCE 519, so CTL 515 responds to the code specify-
ing such an RMNCE 519 by causing DISP Mux 525 to
select RMNC 517 and causing Address Adder 513 to
pass the input from DISP Mux 525 through unchanged
to Descriptor Bus 333.

If RMNCE 519 contains a constant displacement
which is added to one of the architectural base ad-
dresses to produce the desired address, the code further
specifies which base address is to be used to produce the
address. CTL 515 responds to the code specifying this
type of entry by causing Base Mux 511 to select the
register of ABRC 504 containing the specified base
address and Disp Mux 525 to select the RMNC. Ad-
dress Adder 513 then adds the base address and the
displacement to produce the address represented by the
name.

When RMNCE 519 contains a constant displacement
which is added to a base specified by an argument
pointer to produce the address, RMNCE 519 also con-

—

0

20

30

33

40

45

55

60

65

16

tains a value equivalent to the DISP Field of an Imme-
diate Name 413. This value is output to ABC 502. When
a Table Name 403 appears on Name Bus 28, ABC 50
selects RMNCE 519 as its input and outputs the value of
ABCE 503 corresponding to the value received from
RMNCE 519. As with other types of RMNCE 519, the
code specifying the type of RMNCE §19 is output to
CTL 515, which responds by causing Base Mux 511 to
select ABC 502 and Displacement Mux 525 to select
RMNC 517. As a result, Address Adder 513 adds the
constant displacement value encached in the RMNCE
519 to the address produced by ABC 502 in response to
the value it received from that RMNCE 519.

In more complex cases, RMNCE 517 contains infor-
mation from which addresses of microinstruction se-
quences may be derived. This information is output to
Control 327, which responds by executing the microin-
struction sequence specified by RMNCE $§17. The spec-
ified microinstruction sequence uses the contents of
RMNC 517 corresponding to Table Name 403 to con-
struct the address represented by Table Name 403. For
example, if the displacement of the address represented
by Table Name 403 is calculated using data contained in
Memory 305, RMNC Entry 519 corresponding to
Table Name 403 may itself contain a Table Name 403’
representing the data, and the microinstruction se-
quence selected by CTL 327 may calculate the displace-
ment by providing Table Name 403’ to RMNC 517 to
obtain the address of the data, fetching the data from
Memory 305, and using the data to calculate the dis-
placement.

As described above, if there is no valid ABCE 503
corresponding to a key received from Name Bus 328 or
RMNC 517, CTL 515 receives a miss signal from ABC
502. CTL 515 responds to the miss signal by providing
a signal to Control 327 to which Control 327 responds
by executing an ABC miss microinstruction sequence.
Under control of this microinstruction sequence, De-
scriptor Processor 329 obtains the address of the invalid
ABCE 503 from ABC Addressing Logic 533 via De-
scriptor Bus 333, uses the address to form Immediate
Name 409 which caused the miss, uses Immediate Name
409 to locate the argument pointer represented by Im-
mediate Name 409 in Top Frame 321, and then uses the
address to load the argument pointer into the proper
location in ABC 502. Thereupon, the operation which
caused the miss is repeated.

Similarly, if there is no valid RMNCE 519 corre-
sponding to a Table Name 403, CTL 515 receives a miss
signal from RMNC 517 and produces a signal to which
Control 327 responds by executing an RMNC miss
microinstruction sequence. Under control of this micro-
instruction sequence, Descriptor Processor 329 re-
trieves Table Name 403 which caused the miss from
Name Trap 531, fetches NTE 310 corresponding to
Table Name 403 from Memory 103, uses Table Name
403 to locate the corresponding RMNC Entry 519 and
makes a RMNCE 519 using the data contained in NTE
310. Once RMNC Entry 519 corresponding to Table
Name 403 is loaded, the operation which caused the
miss is repeated.

2.4. Invalidation in Improved Address Caches 501

In Improved Address Caches 501, FPR 505 must be
updated on every execution of a call or return instruc-
tion, and SDPR 507 and PBPR 509 must be updated
whenever the execution of a call or return instruction
requires that they be changed.

4,670,839

17

In ABC 502, complete invalidation is not required as
long as ICS 301 uses the same Stack 317. On execution
of a call instruction, addresses corresponding to the
argument pointers placed in Top Frame 321 must be
loaded into ABC 502, but argument pointers in previous
Frames 319 do not change their values, and there is
therefore no need to invalidate the ABCEs 503 which
contain them. Since argument pointers from previous
Frames 319 are retained in ABC 503, the return instruc-
tion need only invalidate ABCEs 503 containing argu-
ment pointers from the previous Top Frame 321.

In RMNC 517, complete invalidation is required only
when execution of a call or return instruction changes
the value of SDP, PBP, or NTP, or when ICS 301
requires a new Stack 317. Complete addresses in
RMNCEs 519 are never derived from FP, and therefore
do not become invalid when FP changes. RMNCEs 519
containing only displacements become invalid only
when a call or return instruction invokes or returns to a
Procedure 311 having a different Name Table 309 from
that of Procedure 311 containing the call or return
instruction or when ICS 301 executes a program which
uses a different Stack 317. Calls and returns which
change only FP are far more frequent than other calls
and returns, and calls or returns which change more
than FP frequently change more than one of PBP, SDP,
or NTP. Consequently, in a present embodiment of ICS
301, RMNC 517 is invalidated whenever ICS 301 exe-
cutes a program which uses a different Stack 317 or a
call or return involves more than a change in the value
of FP. In other embodiments, RMNC 517 may not
contain complete addresses, and in such embodiments,
RMNC 517 need only be invalidated when a call or
return instruction requires a different Name Table 309
or when ICS 301 executes a program which uses a
different Stack 317.

Other embodiments of Improved Address Caches 501
may include separate caches for encacheable pointers
other than argument pointers. Such caches might be
connected to Base Mux 511 along with ABC 502 and
ABRC 504 and might receive keys from Name Bus 328
or RMNC 517 in the same fashion as ABC 502. Codes in
RMNCEs 510 might also select such additional caches
as the sources of base addresses.

2.5. Detailed Logical Structure of ABC 502 and
RMNC 517 FIGS. 6 and 6A

The discussion now turns to the detailed logical
structure of ABC 502, represented by FIG. 6, and that
of RMNC 517, represented by FIG. 6A.

2.5.1. Detailed Logical Structure of ABC—FIG. 6

FIG. 6 presents the detailed logical structure of ABC
502 and illustrates the relationship between ABC 502
and Stack 317. FIG. 6 includes a representation of the
contents of ABC 502, ABC Contents 613, a detailed
representation of Current ABC Frame 607 in Current
ABC Frame Detail 615, and a representation of Stack
317.

Turning first to ABC Contents 613, ABC 502 is made
up of ABC Frames 603. Each ABC Frame contains a
number of ABCEs 503. In a present embodiment of
ABC 502, there are 16 ABC Frames 603, and each ABC
Frame 603 contains 16 ABCEs 503. The number of
ABC Frames 603 in ABC 502 and number of ABCEs
503 in a register may be different in other embodiments,
and in some embodiments, the number of ABC Frames
603 and the number of ABCEs 503 in an ABC Frame
603 may not be fixed. Each ABCE 503 contains two
separately-loadable fields: Address Field 609, which

15

20

25

30

35

45

50

55

60

65

18
may contain an address derived from an argument
pointer when ABCE 503 is valid, and Validity (V) Field
611, which specifies whether ABCE 503 is valid. When
all ABCEs 503 making up an ABC Frame 603 are in-
valid, that ABC Frame 603 is invalid.

Each valid ABC Frame 603 corresponds to a Frame
319 in Stack 317. Current ABC Frame 607 corresponds
to Top Frame 321 and ABC Frames 603 below Current
ABC Frame 607 correspond to Frames 319 below Top
Frame 321. Thus, in FIG. 6, ABC Frame 603 (4) corre-
sponds to Frame 319(1), ABC Frame 603 (3) to Frame
319 (2), and so forth. Within an ABC Frame 603, ad-
dresses specified by argument pointers in Frame 319
corresponding to ABC Frame 603 are arranged in an
order corresponding to that of Argument Pointers 601
in Frame 319. In Current ABC Frame Detail 615, Argu-
ment Pointers 601 in Top Frame 321 are in the order
601 (0), 601 (1, and 601 (2), and in Current ABC Frame
607, ABCE:s 503 containing addresses from these Argu-
ment Pointers 601 are in the same order. However, any
corresponding order, for example, one which is the
reverse of the order in Frame 319, is possible.

ABCE:s 503 not containing addresses are invalid, and
if a Frame 319 contains more than 16 Argument Point-
ers 601, only addresses from the first 16 are encached in
ABC Frame 603. CTL 515 detects Immediate Names
409 specifying Argument Pointers 601 which cannot be
encached in ABC 502 from the value of DISP Field 413
and responds to such Immediate Names 409 by causing
Control 327 to execute microcode similar to that de-
scribed in the discussion of Immediate Names 409 speci-
fying writable pointers as base addresses. Next ABC
Frame 605, above Current ABC Frame 607, is always
invalid. Thus, in the present embodiment, ABC 502 may
contain addresses from argument pointers in only the
top 15 Frames 319 of Stack 321. The stack in ABC 502
wraps around; that is, if ABC Frame 603 (0) corre-
sponds to Frame 319 (a), then ABC Frame 603 (15)
corresponds to Frame 319 (a +1).

When Processor 303 executes a call instruction, ad-
dresses corresponding to Argument Pointers 601 for the
arguments used in the call instruction are loaded into
Next ABC Frame 605. Then, Next ABC Frame 605
becomes the new Current ABC Frame 607 and ABC
Frame 603 above new Current ABC Frame 607 is inval-
idated, making it the new Next ABC Frame 605. On
execution of a return instruction, ABC Frame 603
below Current ABC Frame 607 becomes the new Cur-
rent ABC Frame 607, and the former Current ABC
Frame 607 is invalidated, makin9 it the new Next ABC
Frame 605. Thus, Current ABC Frame 607 always
corresponds to Top Frame 321.

As previously mentioned, DISP Field 413 of Immedi-
ate Names 409 specifying Argument Pointers 601 as
bases are used as keys for ABC 502. All Argument
Pointers 601 which may be specified by DISP Field 413
are contained in Top Frame 321 corresponding to Cur-
rent ABC Frame 607, and consequently, only Current
ABC Frame 607 responds to the keys. Since the value
of DISP Field 413 depends on the location of Argument
Pointer 601 in Top Frame 312 and the order of ad-
dresses in an ABC Frame 603 corresponds to that of
Argument Pointers 601 in Frame 319 corresponding to
ABC Frame 603, DISP Field 413 may be used to di-
rectly address ABCEs 503 within Current ABC Frame
607. If ABCE 503 addressed by DISP Field 413 is valid,
it contains the address from Argument Pointer 601
specified by Immediate Name 409.

4,670,839

19

In a present embodiment of ICS 301, only bits 8-11 of
DISP Field 413 are used as keys to ABC 502. The less-
significant bits of DISP Field 413 are not required be-
cause Argument Pointers 601 in ICS 301 are stored at
negative displacements from FP which are evenly divis-
ible by 128. In the two’s complement notation employed
in DISP Field 413, displacements of Argument Pointers
701 have Os in their seven least-significant digits. Bit 12
of DISP Field 413 is not required, since an ABC Frame
603 in Preferred Embodiment 701 can hold no more
than 16 Argument Pointers 601.

If ABCE 503 specified by DISP Field 413 is valid,
ABC 502 signals a hit to CTL 515; if it is not, ABC 502
signals a miss and CTL 515 produces a signal to which
Control 327 responds by executing an ABC miss micro-
code sequence code which uses the value of DISP Field
413 to reconstruct Immediate Name 409 which caused
the miss, uses that Inmediate Name 409 to locate Argu-
ment Pointer 601 represented by Immediate Name 409,
and loads the address derived from Argument Pointer
601 into the proper ABCE 503 in Current ABC Frame
607. Since addresses are loaded into Current ABC
Frame 607 on execution of a call instruction, such
misses occur only when, as a result of a return instruc-
tion, an invalid ABC Frame 603 has become Current
ABC Frame 607 or when some operation of Processor
303 has required invalidation of all ABC Frames 603.

2.5.2. Logical Structure of RMNC 519—FIG. 6A

RMNC 519 contains a plurality of RMNCEs 519.
The logical form of RMNCE 519 in a preferred embodi-
ment of the present invention is presented in FIG. 6A.
Each RMNCE 519 consists of four RMNCE Registers
627, specified herein by RMNCER 627 (0..3) In addi-
tion, a set of Control Fields 620 is associated with
RMNCER 627 (0) of each RMNCE 519. A wvalid
RMNCE 519 corresponds to a single NTE 310 in Name
Table 309 being used by Procedure 311 being executed
by Processor 303. The valid RMNCE 519 is accessed in
RMNC 519 by Table Name 403 specifying NTE 310 to
which valid RMNCE 519 corresponds. An address may
be produced from the data contained in a valid
RMNCE 519 in two ways: directly from the data in
RMNCER 627 (0), and by means of microcode inter-
vention from data stored in any RMNCER 627.

2.5.2.1. Direct Production of Addresses from
RMNCER 627 (0)

When an address is obtained directly from RMNCER
627 (0), different fields of RMNCER 627 (0) and Con-
trol Fields 620 go to different parts of Improved Ad-
dress Caches 501. The fields and their destinations are
the following:

Displacement Field 629, which is output directly to

Displacement Mux 525.

Base Field 641, which is output to CTL 515. Base
Field 641 includes two sub-fields:

(a) BS Field 635, which contains a value specifying
the ABR, if any, to be used in forming the ad-
dress.

(b) @ Field 635, which specifies that the base is a
pointer.

ADISP Field 639, which contains bits 8-11 of DISP
Field belonging to an Immediate Name 409 repre-
senting an Argument Pointer 601 in NTE 310 cor-
responding to RMNCE 519. ADISP Field 639 is
output to ABC 502, and if Base Field 641 so speci-
fies, the address contained in ABCE 503 corre-
sponding to ADISP Field 639 is used as the base
address.

—_

0

25

40

45

55

65

20

Control Fields 620 control the manner in which Im-
proved Address Caches 501 process the information in
RMNCE 519 under control of CTL 515 or microin-
structions executed by Control 327. The subfields are
the following:
ABCEF Field 621 indicates whether Name 401 corre-
sponding to RMNCE 519 is resolved using ABC
502 as well as RMNC 517. ABCF Field 621 is
output to CTL 515.

V Field 622 indicates whether RMNCE 519 is valid
and is output to CTL 515.

ID Field 623 contains data from which Control 327
locates a microinstruction sequence for processing
the contents of RMNCE 519 to which ID Field 623
belongs. ID Field 623 is output to Control 327.

BC Field 625 contains a copy of Base Field 641 in
RMNCER 627 (0) and is output to CTL 515. CTL
515 responds to BC Field 625 by choosing destina-
tions for the output from RMNCER 627(0) as re-
quired by RMNCER 627(0)’s contents.

FIG. 6A includes Example RMNCER 627 (0) and its
associated Control Fields 620. Example RMNCER 627
(0) corresponds to a NTE 310 specifying an address at a
constant displacement from an Argument Pointer 601.
Displacement Field 629 contains the value of the con-
stant displacement, BS Field 635 contains the code 00,
specifying FP, @ Field 637 contains the value 1, speci-
fying an indirect reference, and ADISP Field 639 con-
tains a negative value specifying the displacement of
Argument Pointer 601 from FP. In Control Fields 620,
ABCF 621 specifies that ABC 502 will provide the base
address, V Field 622 that the entry is valid, and ID
Field 623 that no microcode intervention is required.
BC Field 625 contains a copy of Base Field 641.

When a Table Name 403 corresponding to
RMNCER 627 is input to RMNC 517, the following
happens: ABCF Field 621 and BC Field 625 are output
to CTL 515, ADISP Field 639 is output to ABC 502,
and Displacement Field 629 is output to Displacement
Mux 525. ABC 502 outputs an address in response to
ADISP Field 639, CTL responds to BC Field 525 by
causing Base Mux 511 to select ABC 502 as its input,
and Address Adder 513 adds the value of Displacement
Field 629 to the base address output by ABC §02. In
response to other codes in BC Field 625, CTL 515 may
select one of Registers 505 through 509 in ABRC 504 as
the input to Base Mux 511 and Displacement Field 629
as the input to Displacement Mux 525 or may cause
Address Adder 513 to pass a value from either mux
through unchanged.

2.5.2.2. Production of Addresses from RMNCE $§19
with Microcode Intervention

Microinstruction sequences executed by Control 327
in response to codes in ID 623 may use the contents of
any RMNCER 627 in a RMNCE 517 corresponding to
Table Name 403 currently on Name Bus 328 in two
ways: by inputting it to the devices of Improved Ad-
dress Caches 501 and by outputting it directly to De-
scriptor Bus 333. In the first case, RMNCER 627 con-
tains Displacement Field 629, Base Field 641, and
ADISP Field 639. The code in Base Field 641 is output
to CTL 515 and determines how the devices of Im-
proved Address Caches 501 process the contents of
RMNCER 627. For example, 2 RMNCER 627 with
fields set in the same fashion as in Example RMNCER
627 (0) 643 would be processed in the same manner. In
the second case, RMNCER 627 is treated as a single
field which is output directly to Descriptor Bus 333.

21

3. Detailed Description of a Preferred Embodiment
of Improved Address Caches 501

In the following, there are presented detailed descrip-
tions of preferred embodiments of all components of
Improved Address Caches 501.

3.1. Description of a Preferred Embodiment of CTL
515

CTL 515 consists of standard logic gates. The manner
in which CTL 515 responds to inputs from Name Bus
328, RMNC 517, and ABC 502 has already been de-
scribed. The technique of combining standard logic
gates to obtain the described functions is well-known to
those skilled in the art, and CTL 515 is therefore not
further described herein.

3.2. Description of a Preferred Embodiment of
ABRC 504

In a preferred embodiment of ABRC 504, FPR 505,
SDPR 507, and PBPR 509 may each consist of four
eight-bit tristate D flip flops of type 74S374. Inputs to
each of Registers 505 through 509 are from Cache
Loading Bus 527 and outputs are to Base Mux 511,
Registers 505 through 509 are always read enabled.
They are write enabled under microcode control. FPR
505 is set to FP for new Top Frame 321 by microcode
sequences executed in response to all call and return
instructions; when PBP or SDP changes as a conse-
quence of a call instruction or a return instruction, mi-
crocode sequences executed in response to those call
and return instructions reset SDPR 507 and PBPR 509.
In other embodiments, ABRC 504 may be implemented
by means of a RAM containing Registers 505 through
509 and a single connection between Base Mux 511 and
ABRC 504. The use of separate flip flops for Registers
505 through 509 and separate connections between the
flip flops and Base Mux 511 makes it possible to perma-
nently enable all Registers 505 through 509 for reading
and thereby eliminate the delay caused by the need to
address a single register of a RAM,

3.3. Detailed Description of Base Mux 511 and Dis-
placement Mux 525

A preferred embodiment of Base Mux 511 may con-
sist of 16 dual 4 to 1 line multiplexers of type 745153.
Each multiplexer receives two-bit inputs from ABC
502, FPR 505, SDPR 507, and PBPR 509 and provides
a two-bit output to Address Adder 513.

A preferred embodiment of Displacement Mux 525
may consist of 8 quad 2-to-1 line multiplexers of type
74S258. Each multiplexer receives 4 bits of input from
RMNCERSs 627 and four bits of input consisting of bits
from Name Bus 328 and bits which are always set to 0.
Each multiplexer outputs four bits of whatever input is
selected, or if neither input is selected, it outputs 0.

In the present embodiment, Displacement Mux 525
receives an input from Name Bus 328 only when an
Immediate Name 409 is on Name Bus 328. In that case,
the input is DISP Field 413, and Displacement Mux 525
produces a 32-bit displacement by effectively shifting
DISP Field 413 5 bits to the left and sign extending it 15
bits to the left. The shift operation is a consequence of
the manner in which inputs from Name Bus 328 are
provided to Displacement Mux 525. The sixteen most
significant bits received by Displacement Mux 525 from
Name Bus 328 are from bit 4 of Name Bus 328, which
carries the most significant bit of DISP Field 413. The
next 11 most significant bits are from bits § through 15
of Name Bus 328, which carry the remainder of DISP
Field 413. The remaining 5 bits are received from
grounded inputs, and thus always have the value 0.

5

15

20

45

50

60

65

4,670,839

22

3.4. Detailed Discussion of a Preferred Embodiment
of Address Adder 513

Address Adder §13 is a 32-bit carry look ahead adder.
The adder may consist of eight 4-bit ALUs of type
745181 and three look ahead carry generators of type
74S182. In the present embodiment, the adder is always
enabled to perform one of two functions: to pass the
value received from Displacement Mux 525 unchanged
onto Descriptor Bus 333 or to add the value received
from Displacement Mux 525 to the value received from
Base Mux 511. Since Displacement Mux 525 produces
the value 0 if neither input is selected, Address Adder
513 can effectively pass the value received from either
Base Mux 511 or Displacement Mux 525 through unal-
tered to Descriptor Bus 533.

3.5. Detailed Discussion of a Preferred Embodiment
of ABC 502—FIGS. 7 and 7A

A Preferred Embodiment of ABC 502 is presented in
FIGS. 7 and 7A. FIG. 7 contains Preferred Embodi-
ment 701 of Addressing Logic 533, and FIG. 7A con-
tains Preferred Embodiment 772 of ABC Registers 504.
Turning to these figures, an overview of the compo-
nents and operation of the Preferred Embodiment of
ABC 502 is first provided, followed by a detailed dis-
cussion of its components and operations.

3.5.1. Inputs to Preferred Embodiment 701 of Ad-
dressing Logic 533

The behavior of the Preferred Embodiment of ABC
502 is controlled by inputs from two sources: microin-
structions and Name Bus 328. As may be seen in FIG. 7,
microcommands involving ABC 502 are received in
Preferred Addressing Embodiment 701 by RRMREG
Line 724 and by two decoders: MDA 702 and MDB
703. MDA 702 and MDB 703 have three bits of the
microcommand as input and Lines 705 through 717 as
output. Only one of Lines 705 through 715 is inactive.at
any given time; remaining Lines 705 through 715 are
active. Which of Lines 705 through 715 is inactive is
determined by the three bits of microcommand input to
MDA 702 and MDB 703. In Preferred Addressing Em-
bodiment 701, MDA 702 and MDB 703 are 8 to 1 de-
coders.

Control inputs from Name Bus 328 are derived from
NTY Field 405 of Names 401. As previously described,
codes in NTY Field 405 indicated whether a Name 401
is a Table Name 403 or an Immediate Name 409, and if
it is an Immediate Name 409, whether its base is FP,
SDP, or PBP.

3.5.2. Address Generation Components

Continuing with FIG. 7, the components belonging
to Addressing Logic 533 include Next Frame Counter
(NFC) 753, Current Frame Counter (CFC) 749, State
Registers A (SA) 743 and B (SB) 735, Flush Counter
(FLC) 729, I-Name Mux 718, Microinstruction Decod-
ers A (MDA 702) and B (MDB 703), FA Mux 761,
Flush Buffer (FB) 730, ABC Trap 770, and associated
logic.

As previously described, ABC Cache 502 is divided
into 16 ABC Frames 603, each containing 16 ABCEs
503. An address for a given ABCE 503 specifies both a
frame and a register within a frame. In the Preferred
Embodiment of ABC 502, addresses for ABCEs 503 are
eight-bit values; of these eight bits, the four least-signifi-
cant are the register address and the four most-signifi-
cant are the frame address. The addresses are carried by
address lines ADDR (0..7); frame address FRA 765 is
carried by lines 0.3 of ADDR (0..7) and register ad-
dress RA 767 is carried by lines 4..7 of ADDR 0..7).

4,670,839

23

FRA 765 and RA 767 are connected to data inputs DI
of ABC Trap 770. ABC Trap 770 may be implemented
by means of two 745194 Shift Registers. ABC Trap 770
is write enabled whenever ABC 502 is resolving an
Immediate Name 409, and as a consequence, the current
value of ADDR (0..7) is latched into ABC Trap 770 on
every resolve operation. ABC Trap 770 may be write
enabled at other times by RABC Line 717. ABC Trap
770 is always read enabled and outputs ADDR (4..7) to
Descriptor Processor 329. On a miss in ABC 502, the
ABC miss microinstruction sequence uses the contents
of ABC Trap 770 to form Immediate Name 409 which
caused the miss.

3.5.2.1. Sources of RA 767

There are two sources of RA 767: when an entire
ABC Frame 603 is being invalidated, the source of RA
767 is FLC 729; for all other operations, the source of
RA 767 is I-name Mux 718.

Turning first to I-Name Mux 718, in Preferred Em-
bodiment 701 of Addressing Logic 533, I-Name Mux
718 is a quad 2-to-1 line multiplexer such as the 748258.
I-Name Mux 718 is enabled when its E input is inactive.
As will be explained in detail below, the E input is
inactive except when an ABC Frame 603 is being invali-
dated or the entire ABC 501 and RMNC 517 are being
invalidated. When I-Name Mux 718 is enabled, it selects
inputs from Name Bus 328 according to the state of the
S input. When the S input is active, I-Name Mux 718
selects inputs from ADISP 639; when it is inactive,
I-Name Mux 718 selects inputs from Name Bus 328.
Whether the S input is active is determined by the out-
put of OR Gate 726. OR Gate 726 receives inputs from
RRMREG Line 724 and AND Gate 725, and conse-
quently, the S input is active when RRMREG Line 724
is active or when both inputs to AND Gate 725 are
active. RRMREG Line 724 is activated in response to
microinstructions; the inputs of AND Gate 725 are bits
0 and 1 of Name Bus 328, which carry NTY Field 405
of Names 401. When NTy Field 405 has the value 11,
i.e. when Name 401 is a Table Name 403, I-Name Mux
718 selects its input from ADISP 639; otherwise, it
selects the input from Name Bus 328.

The inputs from Name Bus 328 may be either bits
8-11 of DISP Field 413 from an Immediate Name 409
received from an instruction or they may be values
provided by microcode. ADISP Field 639 is input from
one of RMNCERs 627 (0..3) in RMNCE 519 specified
by the value currently on Name Bus 328. Values in
ADISP Field 639 consist of bits 8-11 of DISP Field 413
of Immediate Names 409 contained in NTEs 309.

“The second source of RA 727 is FLC 729. FLC 729
may be a four-bit counter of the type 74S163. FLC 729
increments the value it contains when its P and T inputs
are active and it receives a clock pulse on its CLK input.
FLC 729's current value is output on lines 0..3. When
FLC 729's L input is inactive, FLC 729 is reset to the
value at its data inputs. As employed in Preferred Ad-
dressing Embodiment 701, FLC 729 has its inputs per-
manently set to 0. FLC 729 outputs its current value to
FB 730, which may be a tri-state line driver-receiver of
the type 74S244. FB 730 is enabled when its E input is
inactive. As will be explained in more detail in the de-
scription of the flush operation, when an ABC Frame
603 is being invalidated, 1-Name Mux 718 is disabled
and FB 730 is enabled. FLC 729 counts, and FB 730
drives the values produced by FLC 729 onto RA 727.
When FLC 729 is not counting, it outputs the binary
value 8, i.e., data output line 3 is active and the other

15

20

25

30

45

50

55

60

65

data output lines are inactive. FLC 729’s operation is
controlled by SA Register 743 and SB Register 735;
both registers contain the value 0 except during a flush-
ing operation.

3.5.2.2. Sources for FRA 765

As previously described, ABCEs 503 in only two
ABC Frames 603 are addressable at any given time. The
two addressable ABC Frames 603 are Current ABC
Frame 607 corresponding to Top Frame 321 in Stack
317 and Next ABC Frame 609 above Current ABC
Frame 607. In Preferred Embodiment 701, the ad-
dresses of Current ABC Frame 607 and Next ABC
Frame 609 are provided to FRA 767 by NFC 753, CFC
749, and FA Mux 761. NFC 753 provides the address of
Next ABC Frame 609, CFC 749 provides the address of
Current ABC Frame 607, and FA Mux 761 selects one
of the addresses provided by CFC 749 and NFC 753 for
output to FRA 765.

Both NEC 753 and CFC 749 may be 745169 4-bit
up/down wrap-around counters. When their P and T
inputs are inactive, NFC 753 and CFC 749 count up or
down in response to a pulse at the CLK input. The
direction of the count is determined by the U/D input:
if it is active, the counter counts up. When the counter
turns over from 15 to 0 or from 0 to 15, the OV output
generates a puise by becoming inactive for a short inter-
val. When the L input is active, the counters are reset to
values on their input lines. In the present embodiment,
CFC 749’s input lines are permanently set to input the
value 0, and NFC 753's input lines are permanently set
to input the value 1. As will be explained in more detail
in the discussion of the flush operation, the L input
becomes active only when all ABC Frames 607 are
invalidated.

Each time Processor 303 executes a call instruction,
one of the microinstructions executed in response to the
call instruction increments CFC 749 and NFC753by 1,
and each time Processor 303 executes a return instruc-
tion, one of the microinstructions executed in response
to the return instruction decrements CFC 749 and NFC
753 by 1. Thus, CFC 749 is incremented each time a
new Frame 319 is added to Stack 317 and decremented
each time a Frame 319 is removed from Stack 317, and
consequently, Current ABC Frame 607 always corre-
sponds to Top Frame 321. Further, since NFC 753 is
always incremented or decremented at the same time as
CFC 749, Next ABC Frame 605 is always ABC Frame
603 above Current ABC Frame 607.

Which of CFC 749 and NFC 753 provides a frame
address to FRA 765 is determined by FA Mux 761. FA
Mux 761 is a quad 2 to one line multiplexer, for example,
one of type 745158. When the S input of FA Mux 7611is
active, FA Mux 761 selects NFC 753; otherwise, it
selects CFC 749. The S input is active when either input
of OR Gate 763 is high. Since these inputs are comple-
mented, the S input is active whenever CFL 747 or
INEXT 715 is inactive. As will be explained in more
detail in the discussion of the operation of Preferred
Embodiment 701, CFL 747 is inactive when Next ABC
Frame 605 is being invalidated. LNEXT 715 is inactive
when a microinstruction which loads an ABCE 503 in
Next ABC Frame 605 is being executed.

3.5.3. Data Rams 773

Data RAMs 773 consist of 12 256 by 4 RAMs which
all have ADDR 777 (0..7) as their address inputs and
LABC 771 as their write enable input. All Data RAMs
773 are permanently enabled for read operations, and
are enabled for write operations when the WE input is

4,670,839

25
inactive, i.e.,, when when LABC 771 is inactive. Data
RAMS 773 may be of the type 93422DC, manufactured
by Fairchild Camera and Instrument Corporation.

Since all Data RAMs 773 are connected to ADDR
777 (0..7) a given value on address lines ADDR (0..7)
addresses a 48-bit logical register formed from a single
register in each of the RAMs in Data Rams 773. This
logical register contains Address Field 609 of ABCE
503, and if ABCE 503 is valid, the logical register con-
tains an address specified by an Argument Pointer 601.
Data Outputs (DO) 790 output data to Base Mux 511,
and when LABC 771 is inactive, Date Inputs (DI) 776
receive data from Cache Loading Bus 527. As will be
explained in greater detail below, LABC 771 is inacti-
vated by microinstructions specifying load operations
on ABC 502.

3.5.4. Components for storing Validity Information

As previously described, each ABCE 503 includes a
Validity Field 611 specifying whether the contents of
Address Field 609 are valid. In Preferred Embodiment
501, Validity Field 611 is stored in two validity RAMs,
VRE 797 and VRO 795. VRE 797 and VRO 795 are
each 128 by 1 RAMs, for example, of type 94325A. In
both VRE 797 and VRO 795, the DI input receives a
single bit of data and the DO output outputs a single bit
of data. In order for data to be read from or written to
VRE 797 or VRO 795, the CS input must be inactive,
and in order for data to be written to VRE 797 or VRO
795, the WE input must be inactive.

Each register in VRE 797 and VRO 795 corresponds
to a single logical register in Data RAMs 773; the 128
registers in VRE 797 correspond to the 128 even-num-
bered logical registers in Data RAMs 773, and the 128
registers in VRO 795 correspond to the 128 odd-num-
bered registers in Data RAMs 773. The value of the
single bit in each register of VRE 797 and VRO 795
indicates whether the logical register in Data RAMs
773 corresponding to that register contains a valid ad-
dress. In Preferred Embodiment 772, if the bit has the
value 0, the corresponding register is valid; otherwise, it
is invalid.

The correspondence between logical registers in
Data Rams 773 and registers in VRE 797 and VRO 795
is accomplished by connecting ADDR (0..6) 793, con-
sisting of lines 0..6 of ADDR (0..7) 774, to VRE 797 and
VRO 795 and ADDR (7) 777, consisting of line 7 of
ADDR (0..7) to logic which selects VRO 795 when an
odd-numbered logical register is addressed in Data
RAMs 773 and VRE 795 when an even-numbered logi-
cal register is addressed. The manner in which VRE 797
and VRO are selected depends on whether ABC 502 is
responding to Names 401, is being loaded or flushed,
and will be described in more detail in the discussion of
these operations.

3.6. Operation of the Preferred Embodiment of ABC
502 The Preferred Embodiment of ABC 502 performs
the following operations in response to inputs from
Name Bus 328, ADISP 639, and microinstructions:

When the Preferred Embodiment of ABC 502 re-
solves an Immediate Name 409 received from ei-
ther Name Bus 328 or ADISP 639, the Preferred
Embodiment produces a data output at DO 790 and

_a hit/miss signal output at ABC H/M 7105;

In response to a read RMNC register microcom-
mand, the Preferred Embodiment of ABC 502
responds to ADISP 639 from a specified
RMNCER 627 as just described for the resolve
operation.

—

5

20

25

30

35

40

45

50

53

60

65

‘ 26

In response to a call microcommand, the Preferred
Embodiment increments CFC 749 and NFC 753
and invalidates new Next ABC Frame 605;

In response to a return microcommand, the Preferred
Embodiment decrements CFC 749 and NFC 753
and invalidates new Next ABC Frame 606;

In response to an invalidate ABCE microcommand,
the Preferred Embodiment invalidates a specified
ABCE 503 in Current Frame 607.

In response to a load current microcommand, the
Preferred Embodiment loads a specified ABCE
503 in Current Frame 607 and validates that ABCE
503.

In response to a load next microcommand, the Pre-
ferred Embodiment loads a specified ABCE 503 in
Next Frame 605 and validates that ABCE 503.

In response to a flush microcommand, the Preferred
Embodiment invalidates the entire ABC 502. The
operations are discussed in the above order.

3.6.1. Name Resolution

When the Preferred Embodiment of ABC 502 is re-

solving an Immediate Name 409, none of Lines 705
through 711 and Line 724 specifies an operation and all
are active: Consequently, the following conditions hold:

SFL Line 723 is active;

FLC 729 outputs the value 1 on its third output line;

SA Register 743 and SB Register 735 contain the
value 0;

Because these conditions hold, CFL Line 747 is active.
In response thereto, I-Name Mux 718 is enabled and FB

-driver 730 is disabled, so that RA 767 is provided by

I-Name Mux 718. Further, LNEXT Line 715 is also
active, so the output of OR Gate 763 is inactive and FA
Mux 761 selects CFC 759 as the source of FRA 765.

Which input is selected by I-Name Mux 718 as the
source of RA 767 depends on the value of NTY Field
405 of Name 401 currently on Name Bus 328. This field
is input to AND Gate 725. If Name 401 is a Table Name
403, i.e., has a NTY Field 405 with the value 11, AND
Gate 725's output is active, OR Gate 726’s output is
active, and I-Name Mux 718 selects ADISP 639; other-
wise, it selects Name Bus 328, Data RAMs 773 are read
enabled, and output the contents of Address Field 609
of ABCE 503 specified by ADDR 774 at DO 790.

ADDR (0..6) 793 further address one register in each
of VRE 797 and VRO 795. ADDR (7) 777 is ANDed
with DO 796 at AND Gate 7101 and is inverted by
Inverter 7100 and ANDed with DO 798 of VRE 795 at
AND Gate 799. The outputs of AND Gates 799 and
7101 are then ORed by OR Gate 7103 to produce ABC
H/M 7105. If ADDR (0..7) 774 addresses an even-num-
bered logical register in Data RAMs 773, ADDR (7)
777 1s inactive. Consequently, AND Gate 7101’s output
is inactive and the output of Inverter 7100 is active. If
DO 798 is outputting a 1, signifying that ABCE 503
specified by ADDR (0..7) 774 is invalid, the output of
AND Gate 799 and OR Gate 7103 are both active,
producing an ABC miss signal on Line 7105. If ADDR
(0..7) 774 addresses an odd-numbered logical register in
Data RAMs 773, ADDR (7) 777 is active, which pro-
duces an inactive output from Inverter 7100 and active
outputs from AND Gate 7101 and OR Gate 7103 if DO
796 is active. Thus, an ABC miss signal is produced on
Line 7105 only if ABCE 503 addressed by ADDR (0..7)
774 is invalid.

3.6.2. The Read RMNC Register Operation

This operation occurs when RRMREG Line 724 is
active. In that case, I-Name Mux 718 selects ADISP 639

4,670,839

27
as the source of RA 727, and Preferred Embodiment
701 responds as just described for the name resolution
operation.

3.6.3. The Call Operation

In the Call Operation, NFC 753 and CFC 749 are
incremented and Next ABC Frame 60§ is invalidated.
When a microinstruction specifies a call operation,
CALL 707 is inactive for one clock period and the re-
mainder of Lines 705 through 717 remain active. While
CALL 707 is inactive, SFL 723, the output of NOR Gate
721, is inactive. Inactive SFL inactivates the P inputs of
NFC 753 and CFC 749 via NOR Gate 755. The U/D
inputs of NFC 753 and CFC 749 are connected to RET
709, which is active. Consequently, NFC 753 and CFC
749 are incremented by 1.

The call microcomand also commences the invalida-
tion of the new Next ABC Frame 605. During invalida-
tion, FRA 765 is provided by NFC 753 and RA 767 is
provided by FLC 729. Bit 4 of RA 767 is provided by
bit 0 from FLC 729, bit 5 by bit 1, and so on. Conse-
quently, the most significant bit provided by FLC 729 is
the least significant bit of RA 767. As will be explained
in more detail later, FLC 729 only counts from 0
through 7; bit 3 accordingly always has the value 0
when FLC 729 is counting and the values provided to
RA 767 are addresses for even-numbered registers in
Data Rams 773.

As explained above, the inactivation of CALL 707 for
one clock pulse also results in the inactivation of SFL
723 for the same period of time. SFL 723 is connected to
the L input of FLC 729 and is complemented and con-
nected to an input of OR Gate 741. Consequently, when
SFL 723 becomes inactive, FLC 729 is reset to 0 and SA
Register 743 is set to 1. When FLC 729 is reset to 0,
output line 3 of FLC 729 becomes inactive. That output
line is inverted by Inverter 736 and used as inputs to
NAND Gate 745 and NAND Gate 737.

Beginning with NAND Gate 745, the other input of
NAND Gate 745 is the output of SA 743, which is now
1. Consequently, the output of NAND Gate 745, CFL
747, becomes inactive. CFL 747 is connected to the E
input of FB 730, OR Gate 763 and NOR Gate 785; it is
complemented by Inverter 728 and connected to the E
input of I-Name Mux 718 and the T input of FL.C 729.
Therefore, FB 730 and FLC 729 are enabled and I-
Name Mux 718 is disabled, so that FLC 729 is the
source of RA 767. Moreover, FA Mux 761 selects NFC
753 as the source of FRA 763. Further, the output of
NOR Gate 785 is inactive and both VRO 795 and VRE
797 are write enabled.

Continuing with NAND Gate 737, at the beginning
_of an invalidation operation, SB 735 contains the value
0; when FLC 729 is loaded with 0, line 3 becomes inac-
tive, its complement becomes active, NAND Gate 737
has an active and an inactive input, and SF Line 739 is
active. FL Line 705 is also active, and accordingly, the
output of OR Gate 733 is inactive and SB Register 735
is maintained at 0. As long as SB Register 735 has the
value 0, the output of NAND Gate 731 is active, and the
P input of FLC 729 is active. Since the T input was also
activated when FLC 729 was set to 0, FLC 729 incre-
ments itself each clock period until it reaches the value
8 (binary 1000). At that point, output line 3 from FLC
729 changes its value from O to 1, CFL Line 739 be-
comes active, SA Register 735 is set to 0, and the T
input of FLC 729 becomes inactive, stopping the count-
ing operation. Further, FB Driver 730 is disabled and

0

40

50

65

28
I-Name Mux 718 is enabled, so that FLC 729 is no
longer the source of RA 767.

For each value produced by FLC 729 while it is
counting from 0 through 7, ADDR (0..6) 793 simulta-
neously addresses a register in each of VRE 797 and
VRO 795. As already pointed out, both VRE 797 and
VRO 795 are write enabled; moreover, INABC Line
711 and LABC Line 771 are both active. As a result, the
output of OR Gate 783 is inactive, the outputs of AND
Gates 787 and 789 are both inactive, and the CS inputs
of both VRE 797 and VRO 795 are inactive. LABC
Line 771 is further connected to the DI inputs of both
VRE 797 and VRO 795, and 1 is therefore written
simultaneously to the registers in VRE 797 and VRO
895 addressed by ADDR (0..6) 793. Thus, during the
eight clock periods required for FLC 729 to count from
0 through 7, all 16 registers of VRE 797 and VRO 795
belonging new Next ABC Frame 605 specified by NFC
753 are invalidated.

3.6.4. The Return Operation

In the return operation, NFC 753 and CFC 749 are
decremented instead of incremented, and new Next
ABC Frame 605 specified by decremented NFC 783 is
invalidated. The only difference between the return
operation and the call operation is that RET Line 709
becomes inactive for one clock period instead of CALL
Line 707. As previously mentioned, RET Line 709 is
connected to the U/D inputs of NFC 753 and CFC 749;
when it is inactive, NFC 753 and CFC 749 count down.
Here, it is inactive for one clock period, and conse-
quently, NFC 753 and CFC 749 are decremented by
one.

3.6.5. The Invalidate ABCE Operation

The invalidate ABCE operation invalidates a speci-
fied ABCE 503 in Current Frame 607. RA 727 specify-
ing ABCE 603 is received from I-Name Mux 718.

During the operation, INABC 711 is inactive and all
other Lines 705 through 717 are active. Since SFL 723
is active and FLC 729 is outputting the value 1 on out-
put line 3, SA 743 is set to 1 and CFL is active, as previ-
ously described. Consequently, FB Driver 730 is dis-
abled and I-name Mux 718 is enabled to provide RA
727. As previously described, the values on RRMREG
Line 724 or bits 0.1 of Name Bus 328 determine
whether I-Name Mux 718 provides RA 727 from Name
Bus 328 or ADISP 739. Further, both CFL 747 and
LNEXT 715 are active, causing FA Mux 761 to select
CFC 749 as the source of FRA 765. ADDR (0..6) 793 of
ADDR (0..7) 774 thus provides addresses to one regis-
ter in each of VRE 797 and VRO 795. As will be ex-
plained presently, ADDR (7) 777 selects which of VRE
797 and VRO 795 will be written to.

When INABC 711 is inactive, the output of OR Gate
783 is active. The output of OR Gate 783 serves as an
input to NOR Gate 785, AND Gate 789, and AND
Gate 787. An active input from OR Gate 783 to these
gates has the following consequences:

* The output of NOR Gate 785 is connected to the WE
inputs of both VRE 797 and VRO 795; when the
output of OR Gate 783 is active, these inputs are
inactive and VRE 797 and VRO 795 are write
enabled.

* When the output of OR Gate 783 is active, the value
of KﬁBR—(Tf)P 780, whose value is the complement
of that of ADDR(7) 777, determines whether the
outputs of AND Gates 787 and 789 are inactive.
AND Gate 787's output is connected to the CS input of
VRE 797 and AND Gate 789's output is connected to

4,670,839

29

the CS input of VRO 796. Therefore, When ADDR(7)
is active, the output of AND Gate 789 is inactive and
VRO 795 is selected; when ADDR(?) is inactive, the
output of AND Gate 787 is inactive and VRE 797 is
selected. Since LCUR 713 and LNEXT 715 are active,
LABC 771 is active, and the DI inputs of VRE 797 and
VRO 795 are active. Therefore, if ADDR (7) 777 se-
lects VRO 795, the register in VRO 795 specified by
ADDR (0..6) 793 is set to 1; if ADDR (7) 777 selects
VRE 797, the corresponding register in VRE 797 is set
to 1. As a result, ABCE 503 specified by ADDR (0..7)
774 is invalidated.

3.6.6. The Load Current Operation

The load current operation loads an address derived
from an Argument Pointer 601 into an ABCE 503 in
Current ABC Frame 603. The address is input via
Cache Loading Bus 527 and the source of RA 767 is
I-Name Mux 718. The operation provides ADDR (0..7)
774 to Data Rams 773 and ADDR (0..6) 793 to VRO
795 and VRE 797 and selects one of VRO 795 and VRE
797 according to the value of ADDR (7) 777 in the
same fashion as described for the invalidate ABCE
operation. However, in the load current operation,
LCUR 713 is inactive. Consequently, the output of
NOR Gate 769, LABC 771 is inactive. LABC 711 is
connected to the DI inputs of VRO 795 and VRE 797
and to the WE input of Data Rams 773 and its comple-
ment serves as an input to NOR Gate 785. NOR Gate
785’s output is connected to the WE inputs of VRO 795
and VRE 797. Accordingly, Data Rams 773, VRO 795,
and VRE 797 are all write enabled, the value at the DI
inputs of VRO 795 and VRE 797 is 0, and at the end of
the operation, the address on Cache Loading Bus 527 is
written to Address Field 609 in ABCE 503 specified by
CFC 749 and the value provided by I-Name Mux 718,
and Validity Field 611 belonging to ABCE 503 is set to
0, signifying that ABCE 503 is valid.

3.6.7. The Load Next Operation

The load next operation is identical to the load cur-
rent operatian except that ABCE 503 being loaded is in
Next ABC Frame 607. During the operation, LNEXT is
inactive. As a result, the output of OR Gate 763 is active
and FA Mux 761 selects NFC 753 as the source of FRA
765.

3.6.8. The Flush Operation

The flush operation invalidates all ABCEs 503 in
ABC 502. Addresses are generated by FLC 729 and
CFC 749. FLC 729 is held at O while CFC 749 counts
from O through 15; then FLC 729 is incremented, and
CFC 749 again counts from O through 15. As described
in the discussion of the invalidate ABC operation, both
VRE 797 and VRO 795 have inactive CS and WE
inputs and active DI inputs; consequently, each time an
address is generated by CFC 749 and FLC 729, the
registers specified by ADDR (0..6) in both VRE 797
and VRO 795 are invalidated; when FLC 729 reaches
the value 8, all registers in VRE 797 and VRO 795 have
been invalidated and the flush operation ceases.

The flush operation begins when FL Line 705 is inac-
tivated for one clock period. In consequence, SFL Line
723 is inactivated as well. Inactive SFL Line 723 resets
FLC 729 to 0O, resets SA Register 735 to 1, and by way
of NOR Gate 755, inactivates the P inputs of CFC 749
and NFC 753. Inactive FL Line 705 sets SB Register
735 to 1, resets CFC 749 to 0 and NFC 753 to 1. Aslong
as SB Register 735 has the value 1 and output line 3 of
FLC 729 has the value 0, SF 739 is inactive. SF serves as
an input to NOR Gate 755, and thus both counters

20

25

30

35

40

45

65

30
increment each clock period until one of the above
conditions changes.

Since line 3 of FLC 729 has the value 0 and SA 743
the value 1, CFL 747 is inactive as well as SF 739. Inac-
tive CFL 747 provides an active input via OR Gate 763
to FA Mux 761, and thereby causes FA Mux 761 to
select NFC 754 as the source of FRA 765. Inactive CFL
747 also disables I-Name Mux 718 and enables FB 730,
and thereby selects FLC 729 as the source of RA 767.
Finally, inactive CFL activates the T input of FLC 729.

While CFC 749 is counting from 0 through 15 and
NFC 753 from ! through 15 to 0, the OV output of CFC
749 and CO Line 751 connected thereto are active. CO
Line 751 serves as one input to NAND Gate 731 and SB
735 provides the other input. Since SB 735 has the value
1, the output of NAND Gate 731 is inactive as long as
CO Line 751 is active and FLC 729 does not count.
However, when the value in CEC 749 changes from 15
to 0, CFC 759’s OV output becomes inactive and pro-
duces a short pulse. Since SB 735 retains the value 1, the
output of Nand Gate 731 becomes active and FLC 729
is incremented by 1. The process just described contin-
ues until FLC 729 reaches the value 8. At that point,
line 3 of FLC 729 changes its value from O to 1 and CFL
Line 747 and SF Line 739 both become active. Active
CFL Line 745 sets SA Register 743 to O, disables FB
730, and enables I-Name Mux 718. Active SF Line 739
sets SB Register 735 to 0 and causes the P inputs of
NFC 753 and CFC 749 and the T input of FLC 729 to
become active, thereby halting NFC 753, CFC 749, and
FLC 729. When halted, NFC 753 contains the value 1,
CFC 749 the value 0, and FLC 729 the value 8.

3.7. The Preferred Embodiment of ABC 502 in Oper-
ations of Processor 301

The operations of the Preferred Embodiment of ABC
502 which have just been described are combined in
certain operations of Processor 301. When Processor
301 executes a call instruction, the microcode executed
by Control 327 in response to the call instruction first
loads Argument Pointers 601 for arguments used in the
call instruction into new Top Frame 321 created by the
call instruction. Each time it loads an Argument Pointer
601 into new Top Frame 321, it employs the load next
operation to load an address corresponding to the argu-
ment pointer into the location in Next ABC Frame 605
which corresponds to the location of Argument Pointer
601 in new Top Frame 321. Then the microcode which
executes the call instruction carries out the call opera-
tion. As described, the call operation increments CFC
749 and NFC 753, thereby making Next ABC Frame
605 into Current ABC Frame 607, and then invalidates
new Next ABC Frame 605.

When Processor 301 executes a return instruction, the
microcode executed by Control 327 in response to the
return instruction carries out the return operation,
which decrements CFC 749 and NFC 753, thereby
making Current ABC Frame 607 into new Next ABC
Frame 605, and then invalidates new Next ABC Frame
605.

When Processor 301 resolves a Name 401 and an
ABC miss occurs, microcode executed by Control 327
in response to the ABC miss retrieves the current value
of RA 767 from ABC Trap 770, constructs Immediate
Name 409 from which RA 767 was obtained from that
value, fetches Argument Pointer 601 corresponding to
Immediate Name 409 from Top Frame 321, and uses the
load current operation to load the address correspond-
ing to Argument Pointer 601 into Address Field 609 of

4,670,839

31
ABCE 503 in Current ABC Frame 607 specified by
Immediate Name 409 constructed from ABC Trap 770.

3.8. Description of a Preferred Embodiment of
RMNC 517—FIG. 8

The discussion now turns to a preferred embodiment
of RMNC 517. FIG. 8 presents Preferred Embodiment
801 of RMNC 517. During the discussion, reference
will also be made to FIG. 6A, presenting the logical
structure of a RMNCE 519. The shaded portions of
FIG. 8 represent fields in a single RMNCE 519 and
show their relationship to Preferred RMNC Embodi-
ment 801.

Preferred RMNC Embodiment 801 is a direct-map-
ping 256-entry cache which is addressed by Table
Names 403 received on Name Bus 328. Each valid entry
in Preferred RMNC Embodiment 801 corresponds to a
Table Name 403 having an NTE 310 in Name Table 309
being used by Procedure 311 currently being executed
by ICS 301. However, a Name Table 309 in ICS 301
may have up to 2**14 NTEs 310, while Preferred
RMNC Embodiment 801 has only 2**8 RMNCE:s 519.
The 2**8 RMNCEs 519 are addressed by the 8 least-sig-
nificant bits of NT_IND Field 407 in Table Names 403
appearing on Name Bus 328. These bits make up bits
8-15 of Name Bus 328 and are labelled as"IND (8..15)
817 in FIG. 8.

Of course, Table Names 403 corresponding to up to
2**g different NTEs 310 may have identical bits 8-15.
Whether a RMNCE 519 does in fact correspond to a
given Table Name 403 is determined by an entry tag
associated with each valid RMNCE 519 in Preferred
RMNC Embodiment 801. The entry tag for a valid
RMNCE 519 consists of the 6 most-significant bits of
NT—IND Field 407 from Table Name 403 corre-
sponding to RMNCE 519. When a Table Name 403 is
presented to Preferred RMNC Embodiment 801, the 6
most-significant bits of NT—IND Field 407 are carried
on bits 2-7 of Name Bus 328. These bits are labelled as
TAG (2..7) 819 in FIG. 8. The value carried by TAG
819 is compared with the entry tag associated with
RMNCE 519 addressed by IND 817. If TAG 819 and
the entry tag are identical and RMNCE 519 is valid,
then RMNCE 519 corresponds to Table Name 403. If
TAG 813 and the entry tag are not identical, or if

RMNCE 519 is invalid, a RMNC miss results.
3.8.1. Components of Preferred RMNC Embodiment

801

Turning first to the buses which provide keys and
data to Preferred RMNC Embodiment 801 and receive
outputs from Preferred RMNC Embodiment 801, Pre-
ferred RMNC Embodiment 801 receives keys from
Name Bus 328. Name Bus 328 is subdivided in FIG. 8
into components whose values have different functions
in Preferred RMNC Embodiment 801:

Bits 0..1 of Name Bus 328, labelled here as NT (0..1)
821, carry NTY Field 405 of Names 401.

Bits 2..7 of Name Bus 328, labelled here as TAG (2..7)
819, carry the six most significant bits of NT_IND
Field 407 of Table Names 403.

Bits 8..15 of Name Bus 328, labelled here as IND
(8..15) 817, carry the eight least significant bits of
NT_IND Field 407.

Preferred RMNC Embodiment 801 receives data from
Cache Loading Bus 527, VL Bus 810, and ID Loading
Bus 808. The function of Cache Loading Bus 527 has
already been described; VL Bus 810 provides validity
information for V Field 622 of RMNCEs 519 and ID
Loading Bus 808 provides location codes for ID Field
623. Preferred RMNC Embodiment 801 outputs data to

—

0

25

40

45

60

65

32
Displacement Mux 525, to Descriptor Bus 333, to Con-
trol 327, to CTL 515, and to ABC 502, as described in
the discussion of RMNCEs 519.
Preferred RMNC Embodiment 801 consists of the
following devices:

Data Store 813, containing 1024 Data Store Registers
815. Each RMNCE 519 includes four Data Store
Registers 815, which are used to store RMNCER
627 (0) through (3).

Tag Store 806, containing 256 Tag Store Registers
807. Each Tag Store Register 807 805 is associated
with one RMNCE 519. Tag Store Register 807 for
a given RMNCE 519 includes the entry tag associ-
ated with RMNCE 519 and parts of Control Fields
620.

Validity Store 804, containing 256 V Registers 805.
Each V Register 805 is associated with one
RMNCE 519 and contains V Field 622 for that
RMNCE 519.

ABC Flag Store 802, containing 256 ABC Flag Reg-
isters 803. Each ABC Flag Register 803 is associ-
ated with one RMNCE 519 and contains ABCF
Field 621 for that RMNCE 519.

Comparator 811. Comparator 811 compares the entry
tag for RMNCE 519 addressed by IND 817 with
the value of TAG 819 and if they match, checks
whether that RMNCE 519 is valid. If the entry tag
and TAG 819 do match and that RMNCE 519 is
valid, Comparator 811 provides a RMNC hit signal
to CTL 515; otherwise, it provides a RMNC miss
signal.

Each of these components will be described in more
detail below, and then the operation of RMNC Pre-
ferred Embodiment 801 will be described.

3.8.1.1. Data Store 813

In Preferred RMNC Embodiment 801, Data Store
813 may consist of 15 1024 by 4 static MOS RAMs of
type 2149 having an access time for reading data of 45
ns. The 8 most significant bits of the addresses for the
RAMs are provided by IND 817 from Name Bus 328.
The remaining two bits are provided by RM Register
Address 812. RM Register Address 812 has a default
setting of 0. Consequently, the bits provided by IND
817 specify RMNCER (0) 627 for a given RMNCE 519.
Microcode executed by Control 327 can set RM Regis-
ter Address 812 to other values and thereby can address
any RMNCER 627 in a RMNCE 519 specified by IND
817.

Data inputs to Data Store 813 are provided by Cache
Loading Bus 527; the contents of a given RMNCER
627 may be output in their entirety to Descriptor Bus
333, or fields of a given RMNCER 627 may be output
as follows: Displacement Field 629 to Displacement
Mux 525; Base Field 641 to CTL 515; and ADISP Field
639 to ABC 502.

3.8.1.2. Tag Store 806

Tag Store 806 may consist of 13 1024 by 1 RAM:s of
type 2125 H3 having an access time on a read operation
of 30 ns. The 8 most significant bits of addresses for the
RAMs in Tag Store 806 are provided from IND 817,
the two least significant bits are held to 0, and conse-
quently, only Tag Store Registers 807 corresponding to
RMNCERs 617 (0) are addressable. Each addressable
Tag Store Register 807 contains ID Field 623 and BC
Field 625, a copy of Base Field 641, of RMNCE 619;
they further contain E_TAG Field 809, whose value is
the entry tag for RMNCE 519 currently stored at that
address in RMNC 517. E_TAG Field 806 is loaded

4,670,839

33
from TAG 819, BC Field 625 is loaded from Cache
Loading Bus 527 at the same time that RMNCER (0)
627 in Data Store 813 is loaded, and ID Field 623 is
loaded via ID Loading Bus 808.

In Preferred RMNC Embodiment 801, ID Field 623
contains a four-bit value from which Control 327 de-
rives the location of the first microinstruction in the
microinstruction sequence which processes RMNCE
519 to which ID Field 623 belongs. The contents of ID
Field 623 are provided in Preferred RMNC Embodi-
ment 801 by a PROM. In other embodiments, micro-
code may set ID Field 623 as required and may read ID
Field 623 to determine how to process RMNCE 519 to
which ID Field 613 belongs. Data output from ID Field
623 goes to Control 327. Data output from BC Field 625
goes to CTL 515; data output from E_TAG Field 809
goes to Comparator 811.

3.8.1.3. Validity Store 804

Validity Store 804 consists of two 1024 by 1 RAMs of
type 2125 H3, having an access time of 30 ns on a read
operation. Validity Store 804 is implemented in the
same fashion as described in the discussion of Preferred
Embodiment 772 of ABC Registers 504. One of the two
RAMs contains V Fields 622 for even-number
RMNCESs 519 and the other contains V Fields 622 for
odd-numbered RMNCEs 519. The 7 most significant
bits of TND 817 are used to form the most significant
bits of addresses for both RAMs, and the remaining bits
of the addresses are set to 0. In consequence, only every
eighth register in each RAM is addressable.

When RMNC 517 outputs data, logic responsive to
the least significant bit of IND 817 selects either output
from the RAM containing V Fields for even-numbered
RMNCE:s 519 or output from the RAM containing V
Fields for odd-numbered RMNCEs 519 in the same
fashion as described for ABC validity RAMS VRE 797
and VRO 795. Similarly, when data is written to V
Field 622, logic responsive to the least significant bit
selects one RAM or the other, depending on the value
of the least significant bit. When all RMNCE:s 519 are to
be invalidated, both RAMs are selected, and registers in
both RAMs are invalidated in parallel. Addresses for
the invalidation operation are generated by Addressing
Logic 733 as described in the discussion of ABC 502.

Validity Store 804 is loaded by means of VL Line
810, which provides a value of 0 when RMNCER 627
(0) of RMNCE 519 to which Validity Store Register
805 belongs is loaded and a value of 1 when that
RMNCE 519 is invalidated. Output from Validity Store
804 goes to Comparator 811.

3.8.1.4. ABC Flag Store 802

ABC Flag Store 802 in Preferred RMNC Embodi-
ment 801 consists of a single 2125 H1 1024 by 1 RAM,
having an access time of 20 ns on the read operation.
ABC Flag Store 802 is addressed in the same fashion as
Tag Store 802. Each addressable register in ABC Flag
Store 802 contains ABCF Field 621 for RMNCE 519
specified by IND 817. Data is input to ABC Flag Store
802 from Cache Loading Bus 527, and output to CTL
515.

3.8.1.5. Comparator 811

Comparator 811 consists of logic which determines
the following:

Whether the value in E_TAG Field 809 associated
with RMNCE 517 specified by IND 817 is the
same as the value on TAG 819.

Whether Validity Field 622 of RMNCE 517 indicates
that RMNCE 517 is valid.

20

30

35

40

45

50

65

34
If the value on TAG 819 is the same as that stored in
E_TAG 809 and if Validity Field 622 specifies a valid
RMNCE, Comparator 811 provides a RMNC hit signal
signifying that Table Name 403 has an entry in RMNC
517 to CTL 515. Otherwise, Comparator 811 provides a
RMNC miss signal.

Comparator 811 is implemented in Preferred RMNC
Embodiment 801 by means of AND gates receiving
corresponding bits of the data to be compared and a
NOR gate whose inputs are the outputs of the AND
gates.

3.9. Operation of Preferred RMNC Embodiment 801

The discussion of the operation of Preferred RMNC
Embodiment 801 will deal first with its operation during
the name resolution operation and then with its opera-
tion under microcode control.

3.9.1. Name Resolution with Preferred RMNC Em-
bodiment 801

The discussion of name resolution with Preferred
RMNC Embodiment 801 first deals with those cases in
which Preferred RMNC Embodiment 801 does not
contain an RMNCE 5§19 corresponding to a Name 401
and then with those in which it does.

The first case in which Preferred RMNC Embodi-
ment 80 does not contain an RMNCE 519 correspond-
ing to 2 Name 401 is when Name 401 is an Immediate
Name 409. In that case, NTY Field 405 has a value
other than binary 11. CTL 515 responds to values other
than 11 by enabling a source other than RMNC 517 for
Displacement Mux 525, and as previously explained,
ABC 502 responds to such values by selecting Name
Bus 328 as the source for RA 727. Thus, as required by
values of NTY Field 405 other than binary 11, the ad-
dress output by Improved Address Caches 501 is
formed without involvement of RMNC 517.

In the second and third cases, NTY Field 405 has a
value of binary 11 and RMNC 517 may contain an
RMNCE 519 corresponding to Table Name 403. Lack
of such an RMNCE 519 may be detected in two ways:
RMNCE 519 may have V field 622 set to indicate an
invalid RMNCE 519, or RMNCE 519 may have associ-
ated with it an E_TAG Field 802 containing a value
different from that on TAG 819.

In both cases, Tag Store 806 and Validity Store 622
output V Field 622 and E_TAG 809 for RMNCE 519
to Comparator 811. Comparator 811 detects the fact
that RMNCE 519 is invalid and provides a miss signal
to CTL 515. In response to the miss signal, CTL 515
generates a signal to Control 327 which causes Control
327 to begin executing a RMNC cache miss microin-
struction sequence. As mentioned in the descriptions of
Validity Store 804 and Tag Store 806, the RAMs mak-
ing up these components have a faster speed of opera-
tion than those making up Data Store 813. Conse-
quently, execution of the cache miss microcode se-
quence begins at the same time that the invalid data is
provided to Address Adder 513, and the invalid data is
ignored.

The cache miss microinstruction sequence retrieves
Table Name 403 which caused the miss from Name
Trap 431 and then uses the current value in Name Table
Register 332 and NT_IND Field 407 to locate NTE
310 corresponding to Table Name 403. The microin-
struction sequence then encaches information derived
from NTE 310 in RMNCE 519 specified by IND 819
from Table Name 403 which caused the miss. The man-
ner in which RMNCE 519 is loaded is under microin-
struction control and corresponds to the kind of NTE

4,670,839

35

310 containing the information being loaded. When
loading is complete, the microcode sequence processes
the encached information as it would in the case of a hit
on RMNC 517 and provides the desired descriptor to
Descriptor Bus 333.

When RMNC 517 does contain an RMNCE 519 for a
Table Name 403, the operation of RMNC 517 depends
on the contents of ID Field 623 and BC Field 625 in
RMNCE 519. Broadly speaking, ID Field 623 specifies
whether microcode intervention is necessary to process
the contents of RMNCE 519 and if so, what microcode
sequence is to be executed by Processor 303. BC Field
625 specifies the manne in which CTL 515 is to select
inputs for Base Mux 511 and Displacement Mux 525. In
Preferred Embodiment 801, BC Field 625 has the fol-
Jowing codes:

Code Meaning

000 Direct Address; Base = FP
010 Direct Address; Base = SDP
100 Direct Address; Base = PBP
001 Indirect Address; Base in ABC

111 Complete Address

Beginning with the cases in which microcode inter-
vention is unecessary, if RMNCE 519 contains a com-
plete address, BC Field 625 has the code 111 and the
address is stored in Displacement Field 629 of
RMNCER 627 0. ID Field 623 specifies no microcode
intervention and CTL 515 responds to BC Field 625 by
selecting RMNC 517 as the input for Displacement
Mux 525 and causing Address Adder 513 to pass the
value from Displacement Mux 525 through unchanged
to Descriptor Bus 333. As mentioned above, the address
produced by RMNC 517 from IND 817 is that of
RMNCER 627 0, and the contents of Displacement
Field 629 from RMNCER 627 (0) are thus output via
Address Adder 513 to Descriptor Bus 333.

If RMNCE 519 contains a displacement from FP,
SDP, or PBP, BC Field 625 has the codes 000, 010, or
100, ID Field 623 specifies no microcode intervention,
and Displacement Field 629 of RMNCER 627 (0) con-
tains the displacement. CTL 515 responds to the codes
in BC Field 625 by selecting the register of ABRC 504
containing the base address specified by BC Field 625 as
the source for Base Mux 511 and RMNC 517 as the
input for Displacement Mux 525. Consequently, Ad-
dress Adder 513 adds the base address in the specified
register of ABRC 504 to the displacement in RMNCER
627(0) to produce the desired address.

If RMNCE 519 contains a displacement from an
Argument Pointer 601, ABCF Field 621 is set, BC Field
625 has the code 001, Displacement Field 629 of
RMNCER 627 (0) contains the displacement, and
ADISP Field 639 of that RMNCER contains the offset
of Argument Pointer 601 from FP. As mentioned
above, ABC Flag Store 802 is a 20 ns RAM. Conse-
quently, the value of ABCF Field 621 reaches CTL 515
before the values of BC Field 625, Displacement Field
629, or ADISP Field 639. In Preferred Embodiment
801, CTL 515 responds to ABCF Field 621 by produc-
ing a signal which causes Control 327 to extend the
current machine cycle of Processor 301 until the value
of ADISP Field 639 can be employed as an input to
ABC 502.

CTL 515 responds to the code in BC Field 625 by
causing Base Mux 511 to select its input from ABC 502
and Displacement Mux 525 to select Displacement

20

25

30

35

45

50

55

60

65

36

Field 629. As explained in the discussion of ABC 502,
the code 11 on NTY 821 causes ABC 502 to select
ADISP Field 639 provided by RMNC 5§17 as its input.
When no microcode intervention has taken place,
ADISP Field 639 comes from RMNCER 627 (0). If
there is a valid ABCE 502 corresponding to the value of
ADISP Field 639, ABC 502 outputs its contents to Base
Mux 511. Address Adder 513 then combines the base
address from ABC 502 with the value of Displacement
Field 629 in RMNCER 627 (0) to produce the address
represented by Table Name 403. If ABC 502 does not
contain the address derived from the argument pointer
specified by ADISP Field 639, an ABC cache miss
results and is serviced as previously described. After the
proper ABCE 503 has been loaded, the operation de-
scribed is repeated.

3.9.2. Operations Performed by Preferred RMNC

Embodiment 801 under Microcode Control

Under microcode control, Preferred RMNC Em-

bodiment 801 performs the following operations:

Load RMNCER: RMNCER 627 0, 1, 2, or 3 of
RMNCE 519 specified by IND 815 is loaded from
Cache Loading Bus 527. The microcommand spec-
ifies the desired RMNCER 627.

Invalidate RMNCE: RMNCE 519 specified by IND
817 is invalidated by setting V Field 622 to indicate
that RMNCE 519 is invalid

Flush: RMNC 517 and ABC 502 are invalidated.
Addresses for the invalidation are generated as
described in the discussion of ABC 502.

Resolve RMNCER: CTL 515 responds to
RMNCER 627 0, 1, 2, or 3 of RMNCE 519 speci-
fied by IND 817 in the same manner as it responds
to RMNCER 627 0 in the resolve operation.

Read RMNCER: The contents of RMNCER 627 0,
1, 2, or 3 of RMNCE 519 specified by IND 817 are
placed directly onto Descriptor Bus 333. The mi-
crocommand specifies the desired RMNCER 627.

The operations are discussed in the above order.
3.9.2.1. The Load RMNCER Operation
The load RMNCER operation is employed by the
RMNC miss microinstruction sequence. RMNCE 5§19
being loaded is selected by the value on Name Bus 328
during the load operation, RMNCER 627 within
RMNCE 519 is specified by the microcommand for the
load instruction. Unless RMNCER 627 (0) is specified
for the load operation, a RMNC miss results if the value
in E_TAG 809 does not match the value on TAG 819
or if V Field 622 in RMNCE 519 specifies an invalid
RMNCE 519. When a load operation is performed on
RMNCER 627 0, RMNC 517 automatically sets BC
Field 625 to the same value as Base Field 641, E TAG
809 to the value of TAG 819, and V Field 622 to specify
a valid RMNCE 519. If Base Field 641 specifies an
address encached in ABC 502 as a base, RMNC 517 also
automatically sets ABCF 621 to so specify. In Preferred
RMNC Embodiment 801, ID Field 623 is set automati-
cally if RMNCER 627 (0) or RMNCER 627 (1) is the
last register loaded; if RMNCER 627 (2) or RMNCER
627 (3) is the last register loaded, the microinstruction
sequence may specify the value of ID Field 623.

3.9.2.2. The Invalidate RMNCE and Flush Opera-
tions

The invalidate RMNCE operation is employed when

invalidation of a single RMNCE 519 is required, for
example, to mark a RMNCE 519 as invalid until all
RMNCERs 627 have been loaded. The RMNCE 519

4,670,839 .

37
being invalidated is specified by the value of IND 817;
the operation simply sets V Field 622 of the specifed
RMNCE 519 to specify an invalid RMNCE 519.

The flush operation is employed when all entries in
Improved Address Caches 501 must be invalidated.
NFC 753 and FLC 729 provide addresses of RMNCEs
610 as described in the discussion of ABC 602, and as
each RMNCE 610 is addressed, its V Field 622 is set to
0 as explained in the discussion of Validity Store 804. As
previously explained, such general invalidation is re-
quired only when the execution of a call or return in-
struction results in a change in the value of SDP, PBP,
or NTP, or when ICS 301 executes a program employ-
ing a different Stack 317.

3.9.2.3. The Read RMNCER and Resolve RMNCER
Operations

The read RMNCER operation outputs the contents
of RMNCER 627 specified by the microcommand in
RMNCE 519 specified by the value on Name Bus 328 to
Descriptor Bus 333. If the value in E_TAG Field 809
does not match the value of TAG 819, or if the specified
RMNCE 519 is invalid, a RMNC miss signal results and
the RMNC miss microinstruction sequence is executed.

In the resolve RMNCER operation, the microcom-
mand specifies a RMNCER 627 in RMNCE 519 ad-
dressed by the value on Name Bus 328. In the operation,
CTL 515 responds to the contents of Base Field 641 in
the specified RMNCER 627 in the same fashion as it
responds to the contents of BC Field 625 in the resolve
operation. Thus, CTL 515 causes Displacement Mux
525 to select Displacement Field 629 and Base Mux 511
to select a register in ABRC 504 or the output of ABC
502. If there is no RMNCE 519 corresponding to the
value on Name Bus 328, a RMNC miss signal results.

3.9.3. Example of Operation of RMNC 517 under
Microcode Control—FIG. 9

The manner in which RMNC 517 operates under
microcode control may be illustrated by describing how
a Table Name 403 specifying an element of an array is
resolved. NTE 310 in ICS 301 for an element of an
array specifies three things:

The displacement of the array from a base address.

The index of the array element.

The size of the array element.

10

15

20

25

30

35

In NTEs 310 in ICS 301, the base address, the value of 45

the index, and the size may each be represented by a
Name 401. For the present example, it is assumed that
the base address for the array is SDP, that the displace-
ment is 64, that the array index is the first argument used
to invoke Procedure 311 containing Table Name 403,
and that the size of the array element is 80. Since the
array index is an argument, it may be represented in
NTE 310 by an Immediate Name 409 specifying an
Argument Pointer 601. When Table Name 403 is first
presented to RMNC 517, a RMNC miss occurs and
microcode loads RMNCE 519 corresponding to Table
Name 403 with information from NTE 310.

FIG. 9 illustrates the resulting RMNCE 519. For the
purposes of the example, it is assumed that RMNCER

50

55

627 (0) contains information from which the address of 60

the index may be resolved, RMNCER 627 (1) contains
the element size, and RMNCER 627 (2) contains infor-
mation from which the address of the array may be
resolved. RMNCER 627 (3) is unused. Other arrange-
ments are of course possible. In general, however, the
information for the index is placed in RMNCER 627 (0)
because the index value is required to calculate the
array element’s address, and therefore must be fetched

65

38

from Memory 305 while the address of the array itself is
being obtained from the information in RMNCER 627
).
RMNCER 627 (8)’s ABCF Field 621 is set to indicate
that ABC 502 provides the base; ID Field 623 contains
a value from which Control 327 can derive the location
of the microinstruction sequence used to process
RMNCEs 617 for arrays; BC Field 625 and Base Field
641 both contain the code 001, specifying a base en-
cached in ABC 501; Displacement Field 629 contains
the value 0, and ADISP Field 639 specifies Argument
Pointer 601 at displacement — 128 from FP. RMNCER
627 (1) contains only the element size, 80, in Displace-
ment Field 629. Base Field 641 and ADISP Field 639
are unused. In RMNCER 627 (2), Displacement Field
629 contains 64, the displacement of the array from
SDP and Base Field 641 contains the code 010, specify-
ing a direct address based on SDP. ADISP Field 639 is
unused.

When Table Name 403 corresponding to the example
RMNCE 519 appears on Name Bus 328, a RMNC hit
occurs. In response to BC Field 625 of RMNCER 627
(0), CTL 515 causes Displacement Mux 525 to select
Displacement Field 629 as its input and Base Mux 511 to
select ABC 502 as its input. ABC 502 uses the value of
ADISP 639 to locate ABCE 503 in Current ABC
Frame 607 containing the address represented by the
first Argument Pointer 601 in Top Frame 321 and out-
puts the address. Address Adder 513 adds the 0 con-
tained in Displacement Field 629 to the address from
ABC 502, and thus the address corresponding to Argu-
ment Pointer 601 for the first argument is output to
Descriptor Bus 333.

At the same time, the value of ID Field 623 is output
to Control 327 and Control 327 begins executing the
microinstruction sequence for processing array
RMNCEs 519. The microinstruction sequence begins
by using the address obtained from the resolution of
RMNCER 627 (0) to perform a memory read operation.
The read operation will return the value of the array
index to Descriptor Processor 329. While waiting for
the index value to return, the microinstruction sequence
uses the resolve RMNCER operation for RMNCER
627 (2) to obtain the array address. In that operation,
Base Field 641 is output to CTL 515, which responds by
causing Base Mux 511 to select SDP Register 507 as its
input and Displacement Mux 525 to select Displace-
ment Field 629 from RMNCER 627 (2). Address Adder
513 then adds the 64 contained in Displacement Field
629 to the current value of SDP Register 507 and out-
puts the result to Descriptor Bus 333. The microinstruc-
tion sequence stores the array address thus produced in
a register in Descriptor Processor 329 and uses the read
RMNCER operation to obtain the element size from
Displacement Field 629 of RMNCER 627 (1). The read
RMNCER operation simply outputs the contents of
RMNCER 627 (1) to Descriptor Bus 333, and the mi-
crocode sequence manipulates them to obtain the value
of Displacement Field 629. By this time, the index value
has returned from Memory 305, and the microinstruc-
tion sequence employs components of Descriptor Pro-
cessor 329 to calculate the address of the array element
by multiplying the index value by the element size and
adding the result to the array address.

The invention may be embodied in yet other specific
forms without departing from the spirit or essential
characteristics thereof. Thus, the present embodiments
are to be considered in all respects as illustrative and not

4,670,839

39

restrictive, the scope of the invention being indicated by
the appended claims rather than the foregoing descrip-
tion, and all changes which come within the meaning
and range of equivalency of the claims are therefore
intended to be embraced therein.

What is claimed is:

1. In a digital computer system responsive to oper-
ands including first operands including a key, second
operands including a first base value specifier and a first
displacement value, and third operands including a
second base value specifier and said first displacement
value, encachement apparatus comprising:

(1) means for receiving said operands from said digi-

tal computer system;

(2) a first cache connected to said operand receiving
means for outputting values including a third base
value specifier, said first displacement value, and a
second displacement value in response to said key;

(3) a second cache connected to said operand receiv-
ing means and to said first cache and including a
stack having a plurality of frames for responding to
said first operands by outputting a first base value
from a current frame of said frames in response to
said first displacement value output by said first
cache in response to said key and responding to
said third operands by outputting said first base
value from said current frame in response to said
first displacement value in said third operand;

(4) storage means for storing a plurality of second
base values and outputting said second base values;

(5) Combining means connected to said operand re-
ceiving means, said first cache, said second cache,
and said storage means for simultaneously receiv-
ing input values including said first displacement
value from said second operands, said second dis-
placement value from said first cache, said first
base value from said second cache, and said second
base values from said storage means, performing
one of a plurality of operations on said input values,
and outputting a result; and

(6) control means connected to said operand receiv-
ing means, said first cache, and said combining
means for causing said combining means to per-
form said one operation in response to said first
base value specifier when said operand receiving
means receives one of said second operands, in
response to said second base value specifier when
said operand receiving means receives one of said
third operands, and in response to said third base
value specifier when said operand receiving means
receives one of said first operands.

2. In the encachement apparatus of claim 1, and

wherein:

said digital computer system performs a call operation
and a return operation;

said frames in said second cache are arranged in a se-
quence of said frames; and

said encachement apparatus further includes
(1) first cache invalidation means responsive to cer-

—

0

20

25

30

35

45

S0

55

tain ones of said call operations and certain ones of 60

said return operations for invalidating said first
cache,

(2) cache push operation execution means responsive
to each one of said call operations for establishing
a next frame in said sequence of frames as said
current frame,

(3) cache pop operation execution means responsive
to each one of said return operations for establish-

65

40
ing a preceding frame in said sequence of frames as
said current frame, and

(4) next frame invalidation means responsive to each
one of said call operations and each one of said
return instructions for invalidating a next frame in
said sequence following said current frame estab-
lished by said call operation or said return opera-
tion.

3. In a digital computer system including

(1) processing means for processing data in response
to instructions containing operands representing
said data,

(2) memory means for storing data items of said data
and said instructions and for receiving said data
items from said processing means and providing
said data items and said instructions to said process-
ing means in response to signals from said process-
ing means, and

(3) communication means for transferring said in-
structions, said certain signals, and said data items
between said processing means and said memory
means,

and wherein
said data items include pointers specifying addressses in
said memory means,
said processor means employs internal addresses to
address said memory means, said internal addresses
including
(a) a base address component specifying a base
address in said memory means and
(b) a displacement component specifying a dis-
placement from said base address component,
and
said memory means further contains
(a) procedures including at least said instructions,
(b) a stack for storing said data items employed in
executions of said procedures by said processing
means, said stack including a frame associated
with each unterminated said execution, said
frames including a top frame associated with said
execution of said procedure for which said pro-
cessor means is currently executing said instruc-
tions and certain said frames containing certain
said pointers whose values remain unchanged
during the life of said execution associated with
said frame, and
(c) a name table associated with each one of said
procedures, said name table including a plurality
of name table entries, said name table entries
including
(i) direct name table entries containing a base
specifier specifying one of said base addresses
and a first displacement specifier from which
said displacement of said data from said base
address specified by said base specifier may be
derived and
(ii) indirect name table entries containing a frame
pointer base specifier specifying a frame
pointer base address from which locations in
said top frame may be derived, a second dis-
placement specifier specifying a displacement
of one said certain pointer in said top frame
from said frame pointer base address, and a
third displacement specifier specifying a dis-
placement of said data from said address speci-
fied by said one certain pointer;
said operands include

4,670,839

41 42

(a) first operands specifying said name table entries output from a current cache frame containing said
in said name table associated with said procedure pointer base addresses derived from said certain
and pointers in said top frame;

(b) second operands including a displacement spec- (4) storage means for storing a plurality of base ad-
ifying one of said certain pointers in said top 5 dresses and outputting said base addresses;
frame; (5) Combining means connected to said first cache,

said instructions include at least said second cache, and said storage means for si-

(a) a call instruction specifying a called said proce- multaneously receiving input values including said
dure for suspending said execution of said proce- second displacement value from said first cache,
dure containing said call instruction, construct- 10 said pointer base address from said second cache,
ing said stack frame for said execution, and com- and said base addresses from said storage means,
mencing said execution of said called procedure, performing one of a plurality of operations on said
and)) L . values, and outputting a result; and

(b) a return instruction for terminating said execu- (6) control means connected to said operand receiv-
tion of said called procedure containing said 15 ing means, said first cache, and said combining
return instruction and resuming said execution of means for causing said combining means to per-
said procedure suspended by execution of said form said one operation in response to said second
ca}l instruction commencing said execution of base specifier when said operand receiving means
said called procedure, receives one of said first operands.

encachement apparatus for encaching said base ad- 20
dresses and said displacements and outputting said ad-
dresses formed from said base addresses and said dis-
placements in response to said operands, said encache-
ment apparatus comprising:
(1) means for receiving said operands from said pro- 25
Cessor means;
(2) a first cache connected to said operand receiving
means and responsive to said first operands for
outputting data derived from said name table
entries associated with said first operands, said 30
derived data including
(a) a second base specifier derived from said first
base specifier and further specifying that said
name table entry containing said first base speci-
fier is alternatively said direct or said indirect 35
name table entry,

(b) a second displacement derived from said first
displacement specifier, and

4. In the encachement apparatus of claim 3, and
wherein: said frames in said second cache are arranged
in a sequence of said frames; and
said encachement apparatus further includes

(1) storage loading means responsive to each one of
said call instructions and each one of said return
instructions for loading at least one of said base
addresses into said storage means,

(2) first cache invalidation means responsive to cer-
tain ones of said call instructions and certain ones
of said return instructions for invalidating said first
cache,

(3) cache push operation execution means responsive
to each one of said call instructions for establishing
a next frame in said sequence of frames as said
current frame and loading said pointer base ad-
dresses derived from said certain pointers in said
stack frame created by said call instruction into said

(c) in said derived data derived from said indirect current frame established by said cache push opera-
name table entry, a third displacement derived 40 tion;) .)
from said second displacement specifier; (4) cache pop operation execution means responsive

(3) a second cache connected to said first cache and to each one of said return instructions for establish-

to said operand receiving means for receiving said ing a preceding frame in said sequence of frames as
first displacement in response to said second oper- said current frame, and
ands and said third displacement iri response to said 45 (5) next frame invalidation means responsive to each
first operands and outputting a pointer base address one of said call instructions and each one of said
specified by said certain pointer at said displace- return instructions for invalidating a next frame in
ment from said frame pointer base address specified said sequence following said current frame estab-
by said first displacement or said third displace- lished by said call instruction or said return instruc-
ment, said second cache including a plurality of 50 tion.

cache frames and said pointer base address being * & x x

55
60

65

