DATA GENERAL
CORPORATION
Southboro,
Massachusetts 01772
(617) 485-9100

PROGRAM

DISK OPERATING SYSTEM
USER'S MANUAL

ABSTRACT

Data General's Disk Operating System can be used with
any Nova-line computer of 12K or larger memory, hav-
ing any combination of fixed or moving head disks. DOS
provides comprehensive file system capabilities, allow-
ing the user to edit, compile, assemble, execute, debug,
save, protect, and delete files.

Copyright (C) Data General Corporation, 1971
Printed in U. S. A,

093-000048-05

INTRODUCTION

Data General's DOS is a versatile, sophisticated operating system of a design
comparable to those used with the largest current computer configurations. It
can be used with any NOVA-line computer of 12K or larger memory configura-
tion having any combination of fixed or moving head disks.

DOS provides comprehensive file system capabilities, allowing the user to edit,
compile, assemble, execute, debug, save and delete files. Complete file
protection is provided using a number of system defined attributes. File direct-
ories are maintained on a fixed head disk and disk pack basis, where each disk
pack can be removed from the system. All peripheral devices are named and
treated as files, providing complete device independence by symbolic name.

All I/0 including file 1/0 is buffered, interrupt driven.

‘Two modes of program communication are provided. The first is interactive
teletype communication made possible by an executable system program, the
Command Line Interpreter (CLI). The second mode enables the user to commun-
icate directly with the system using a series of command words recognized by
the assembler and forming an integral part of his executable program. These
command words are interpreted by DOS at run time.

A complete line of system software is available for use undei DOS. This includes

a relocatable assembler, relocatable loader, text editor, octal editor, Extended
ALGOL 60, a superset of FORTRAN 1V, a library file editor, and a symbolic
debugger. In addition, the use of interpretive system calls enables the user to
write his own special-purpose software while utilizing all the file capabilities
and peripheral device support of DOS.

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1 - FILES AND DIRECTORIES

Definition of a File, . ,
File Names,,
File Name Extensions, ., e sanua .
Special File Names. et e e e
Device Prefixes o o v v vttt ittt e i
File Directories, ,...... e e e
Contents of the Directory. C e et e e e et e e
DIreCtory Devices . v v ittt it ettt e e
Default Directory Device . ,........
Master Storage Device . v .0 vv v v .. v e es s
Bootstrap Device. e e e . e e e e .
Removable Media v0 it n s in s e ie e,
Command Summary.......... et et et .
System Installation
Further System Information0.0v....

CHAPTER 2 - TELETYPE BREAKS

CHAPTER 3 - COMMAND LINE INTERPRETER (CLI)

W N = =

OO ONON Ut UL U

[0S
]
ot

CLI Definition
Ready Message. . . .
CLI Activation , , . ,
CLI Response to Command Lines

oooooooo

. LY . * o .
oooooo o e o LY . LI Y
oooooooo e
oooooooooo ¢ o @ o * o o e s 0 0 o

Symbols and Conventions Used in Command Line Syntax

CLI Commands Available to Users.

Command Lines C e e .
Basic Command Tine........... o .o .
Stacking Commands on a Command Line .,
Long Command Lines ,........... et et
Suppression of Ready Messages, ..o oo v v .. ce et e

Switches e ... e e e e .
Numeric Switches,, Ce e s .

Letter Switches , .

Effect of Switches on Command Lines. . .
Asterisk Convention (*)
Indirect Convention (@)
Parenthesized File Name List Convention
File Name Searches
Messages Concerning [/0
Error Messages

ooooooo

ooooooo . . .

® o ¢ 0 0 6 o 0 0 o .

ooooooooo . o o . o
o LI LR
ooooooooo .

. . o o LY

. @ o & o 0o s 0 s s

® o o 0 s 0 o LI o o o LY

[T '
N = = = =

W W W wwwwwow
L1

w
[

W W Wwwwwww
[

1
== = O N0 00 N N O ON U U W W
UL N

W w
[|
[

ut

CHAPTER 3

- COMMAND LINE INTERPRETER (CLI) (Continued)

ALGOL
APPEND
ASM
BLDR
BPUNCH
CHATR
CLG
CONT
CREATE
DEB
DELETE
DIR
DISK
DUMP
EDIT
FORT
INIT
INSTALL
LFE
LIST
LOAD
MKABS
MK SAVE
OEDIT
PRINT
PUNCH
RELEASE
RENAME
RLDR
SAVE
TYPE
XFER

CHAPTER 4 - PROGRAM MODE OF SYSTEM COMMUNICATION

System Command Words .
Command Word Format
Status on Return from System
List of Command Words
Directory Device Monitor Commands

® ¢ 0 0 s o 0 00 00002 000 008 e e 000000000 .

R R R N R R N R R A R A I X T . . LRI
@0 66 000 2000000000000 e 00 00000000 .
R EEE R I I Er A B R R B A A I R
@ 0 s e s 008 0000000000000 @ e e v v 00 000000 .
---------------------------------- .
® @ 4 8 06 0 0 6 8 0 s e e e e s e e e e s s e s 0 e e s s .
© 6 6 6 00 ¢ 060 06 0 020 00 50 s 6 008 00004080000 .
oooooooooooooooooooooooooooooooooooo
ooooooooooooooooooo . e 0000000000
ooooooooooooooooooo ® o s s 008 00000000
@ 0 6 ¢ 6 0 06 60 85 069 000006000000 0000 .
@ 0 ¢ 0 6 ¢ 8 00 6 s 8 s e e s 08 e s st N e
ooooooooooooooooooooooooooooooooo oo
oooooo ® 6 0 6 0 0 6 a8 0 0@ T8 0 Ge s 00 s s 00 s
---------------------- o0 00000000
oooooooooooooooooooooooooooooooooooo
------------- 0 e 00 0 s 000000000 e
----------------------------------- .

@ 0 ¢ 4 4 ¢ ¢ 4 00 00 0 0008 0000 00000000 00 .
ooooooooooooooooooooooooooooooooo o
@6 ¢ ¢ 4 0 0 0 20 00 ¢ 0000040000000 000 . o0
@0 00 40 0 00 0 0 0 0000 84 2000 e . o .
@8 60 069 69 00 ¢ 6 4 8 s 0 B8 00 e G0 Gt
@ ¢ ¢ 0 0 08 0 s T 08 00080 0000 00 e et . .
. ¢ o0 00 o e 0 v 0000000000 s e 0 000000
oooooooooooooooooooooooooooooooooo L)
® © 06 6 0 8 0 8 0 s 6 400 0000 T 0 2000 s 00
@0 s 0000 000000 . e o e 0o v s s 000000
. 6 6 % 0 0 0 08 06 ¢ 00006040082 000ss00e0000
o ® 00 00600 008000000 0 000 0000 0 . .
s 00 0000000000000 . ® 68800000 oo
.................................
@ 6 6 08 0 4 8 9 0 4 8 e 8 s 0 0 s s e e 0000000000
ooooooooooooooooooooooooooooo .
---------------------- @ 000 0000

ooooo @ s 0 00 0600 00000000

----- 00 o s 0 0 0 00

Initialize a Directory Device (. INIT)

Changing a Default Directory Reference (.DIR)
Release a Device to Prevent Further File Access (.RLSE)

Install a Bootstrap System (. INST)

iv

o0 0

3-17
3-19
3-20

3-24

3-25

3-26

3-27
3-29

3-30
3-31
3-122
3-33
3-34
3-35
3-36
3-37
3-39
3-40
3-41
3-45
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-57
3-58
3-59

B R
[L L
Ul B W W NN = e

]

[N N
]

CHAPTER 4 - PROGRAM MODE OF SYSTEM COMMUNICATION

IFile Maintenance Commands

Create a File ((CREAT) e e e e . o j-g
Delete a File ((DELET) + v v v v v v v we e snnnn.. 4-7
Rename a File CRENAM) « v v v v v v ne e eeee s, 4-7
File Attribute Commands , ., ... e eee e et ee e 4-8
Change File Attributes (., CHATR) et e e e ae e 4-8
GetFxleAttrlbutes(GTATR)HHe et et e .. 4-9

In f/()nh‘mf Commands,

1 = aliiianaGs

Open a File (. OPEN)

Open a File for Appending (. APPEND)
Close a File (,CLOSE) . ,
Close all Files (,RESET)

DA~ NDTT \
1\Cau a J_uuc: \. Ny, o,

Read Sequential (. RDS)

ooooo ® o s o 0 0 s 0 o @ e+ 2 s o o o

Hollerith- ASCII Translatlon Table
Read Random (. RDR) ,
Write a Line (. WRL)
Write Sequential (. WRS) ., , .
Write Random (. WRR), ., ,
Teletypewriter Commands
Get a Character (. GCHAR)
Put a Character (., PCHAR)
Memory Commands .,.,............. e eeseeenns
Determine Available Memory (. MEM)
Change NMAX (.MEMI)., e
Program Overlay Commands
Program Overlays
Read in a Save File Overlay (. EXEC),
Return from Overlay (. RTN) ,
Return from Overlay with Exceptlonal Status (. ERTN)
Saving Current State of Memory (. BREAK) . , . .
Error Messages.

CHAPTER 5 - MULTIPLE FILE DEVICES

Devices Providing Multiple File Access ,........ e e e
Determining System Device Configuration, ., -

Directory Devices , e e oo

Magnetic Tape . oo v vt v vt ot veneeennenens et e e

7-Track UnitS,. v v v v e e v vu..

ooooo . ® ® ¢ o 0 s 0 0 0 0 0 0 0 9 0 0 e 0

o 0 0 0 2 0 s o ® 6 0 0 0 s o o 0 0 @ o o o o o o

® 9 0 o @ s 0 ¢ e 0 ¢ 0 v s 0 0 s 0 s 0 s s 0

® 5 8 2 8 0 6 s 6 s 0 0 0 e o ® o o s 0 o 0o 0 0 0 0 0 o

® e 6 ¢ 0 2 e ¢ 0 s ¢ 0 s 0 0 0

‘-‘"cncncnc_n
| I N I |
N o o= = -

Number of Tape Drives in System
Initializinga Tape Drive . . . v v v s v v vt v v i e e e e nn
Releasing a Tape Drive, et e ces
Referencing a File on Magnetic Tape.o oeen ..
Writing Files to Magnetic Tape e e

v

n
B W w w

(¥}

CHAPTER 6 - USER SERVICED INTERRUPTS
CHAPTER 7 - PANICS
APPENDIX A - DOS SYSTEM PROGRAMS

TexXt EAitOT + ¢ e e e e s e esssoocecesossssosscocsssocccsas
Relocatable AssembleT o v oo eoeeccesoscoosnsssssccococnss
Relocatable Loade€r ..o e vooso oo cocsecsccsosssssosasassse
Debug ITI 4 i s s e s v eeosoesssesossnsasacsoccssosocsoe
Extended ALGOL . vttt eeooesssscccocsssssscccssssace
FORTRANIV . et eeeeeoeososcssssosssososssssscsosscsacs
Library File Editor (LFE) v eeetcccecnnscccsscccccnns
Analyze (A) Function «eeecoeeececcccocccssccccccnns
Delete (D) FunCtion .. .eoeoeeeeocosooscccssassscsscs
Insert (I) FUNCLion + ¢ eeocoeooosososscecoccssssccce
Merge (M) Function +sssseoeeeceoccccocscscscccecens
New (N) FUNCion .+« e oo osooseseescoscccsocsocssccss
Replace (R) Function secesoeoeccoovsssnncccssocon
Titles (T) FUNCtion « . e e v oo e oo oo s essoossocccooscss
Extract (X) Functioneeeoeeseosecccsconoccsonscoe
Octal EAitOr @ v et e e oo oo ccosscsososososscsocosonscscces
Octal and ASCIIMOdES .+ s e eceoeocossseossscscccesces
Opening and Examining a Location .. .cocceeoeocoscoecs
Modifying a Location + . ceeooeeovccoccoccacscccecne
LOCAtiONS ¢ e o e e o e oo o oo oossonsssossoscecsscocseoes
Typing EXTOTS « e e o oveessoosssocssosonsssscnccos
Returnto CLILevel . ivesveccecoosssoosscccccocsns
Sample OEDIT CommandS «+scecoecooossossessscsoos
Binary Loader « . .ceeooveoocsosssococsssssscscccsens

APPENDIX B - GENERATING AND RESTORING THE DOS SYSTEM

Tapes and Hardware for System Generationeeceeeoecececes

Preparing for System Generaticii« « s e s oo ocecoceaaoscocrons
Generating the SyStem s eceoeoeessesssossoccoocccanocee
Creating a Preliminary Save File of the System . v oo v ee oo
Transferring the System File to Tape and Loading the System
Transferring to Tape and Loading (Paper Tape) ... veoeeen
Preparation for Bootstrapping from Fixed Head Disk or Disk Pack
Transferring to Magnetic Tape in Preparation for Tape Bootstrapping
BOOtStTapping « e e e s oo s oo o ossccsessassoocsoccsecsoccs
Bootstrapping from the Default Directory Device (DSK or DKP). .
Magnetic Tape Bootstrapping « «.ceceeeoeeeccs v

vi

6-1

7-1

>
N N U S

UL
NN
O 0 B dJ N Utk OO 0N ONUTN O T U

D>D>D>D>!>B;>D>D>!>D>.’>>D>D>
G o o o Co G o 0o 0 o 0o RO

o ®®
[I D IR B SR |
O\ b WO =

wwwrpmwww
= O O o0 1 N1~

1
—

APPENDIX C - SYSTEM AND USER PARAMETER TAPES

USerParameterTape 0'.0.....'00....0.....0.00.'.00.
System Parameter TaPe . v v v o v vuevvennesesoenoennnnenns

ON@!
N

APPENDIX D - CLI INTERPRETATION OF USER COMMANDS D-1

APPENDIX E - ADDING DEVICES TO THE SYSTEM

Creating a Device Entry in SITAB . it v it i et e nnnsevennnss
Declaring the DCT AddTesS v v v v v v v e v e onosencnonnoenenes
Defining and Supplying DCT INfOrMAation .« s v s o v o o o o o o0 o o v v
SUbToutine LinKage s v u oo v v oneensenseesenoessennnsns
Generalized Ring I/O ROUtINES & v v o i oo oot i s e v s e e e oe e sn..
Generalized Open ROULINE & 4 v v v vnnonnonseoooeoesns
Generalized Close ROULINE 4 4 v e v e v o nensonnnseseenns
Generalized Read Sequential . . vvuv v enenonencnsoennss
Generalized Write Sequential .+ v v v v v v e oo e v v eveenennnss
Generalized Read LiNe 4 v v v v o v v v et eeoosnennoenonnss
Generalized Write LiNE 4. v e v v e veveevnnonnnnennnenes
Input to Ring Buffer .. i it iieeneeeeonoensoonoenens
Output from Ring Buffer vii v tennneoeesenns.
Updating the System Library .. v v eeeueeoeeeooeooseneesss
System Generation v ... e s eeeoeeeeooeoessnanseceessss E-13

[}
[l 2 * I BN BN BEN BEVORE JCRN &)

1
o)

o

[}
P
—

esiicslieslies e lies e el ol s Mies o s M es [l oo
]

1
s
N =

APPENDIX F - SYSTEM TAPES F-1

INDEX

vii

CHAPTER 1

FILES AND DIRECTORIES

DEFINITION OF A FILE

The term f77e¢ applies to any collection of information. Typical examples are:

Source program file
Relocatable binary file
Listing file

Core image file (save file)

With the exception of the core image file, these files should be familiar to NOVA
users and most programmers, The source program is input to the assembler,
which produces as output a rclocatable binary file. The relocatabie binary file
is input to the relocatable loader, which loads and relocates the program at
absolute locations, producing a core image file, also called a save file. It is
called a core image file because it is stored on disk word for word as it will be
loaded in memory. In addition to loading, there are other means by which a user
can produce a core image file, and these will be described in later chapters.

FILE NAMES

All files and devices are accessible by filename , The basic file name is

a string of alphanumeric characters and the character $. A file name can con-
tain any number of characters, but the system considers only the first 10
significant,

File Name Extensions

An extension can be appended to a file name. An extension is a string of alpha-
numeric characters and the character $. The extension can be any number of
characters but the system considers only the first two significant, A period (.)
separates the extension from the file name. An example of a file name with an
extension is:

FOO. PS

The Command Line Interpreter, described in Chapter 3, often appends extensions
to the name of a file, indicating the type of information it contains and disting-
uishing it from other types of files resulting from the same source file. For
example, if a source file is named A. SR, the names of the different types of files
produced from the source file might be:

1-1

File Name Extensions (Continued)

A.RB relocatable binary file
A.SV core image (save file)
A.LS listing file

The user must, in some instances, give the extension for his file name in a command.
Usually, however, the particular command uses a search algorithm that will locate
the file with the correct extension, (See Chapter 3, File Name Searches)

There are instances when the user may want to append his own extension to a file
name. This is permissible, but the user should avoid conflicts with system
extensions. For example, a user should not name a source file A.SV because

of the confusion it might cause with save files having the SV extension.

Special File Names

Conditional access devices are given special file names, which begin with $ for
uniqueness. File names of these devices are:

$TTI - teletype keyboard input*
$TTR - teletype reader input
$TTO - teletype printer output™**
$TTP - teletype punch output **
$PTR - paper tape reader input ‘
$PTP - paper tape punch output
$CDR - card reader input

$LPT - line printer output

$PLT - incremental plotter output

* Input devices other than the teletypewriter keyboard automatically provide end-of-
file when input ceases for a device-specified time. On TTI input, however, the
user indicates an end-of-file by pressing the CTRL and Z keys.

** ¢TTP has the characteristic: "requires leader/trailer"; $TTO does not. Other-
wise, there is no difference between the devices.

1-2

Special File Names{(Continued)

The user can, if he wishes, assign names beginning with $ to files other than
devices,

A few examples will indicate how input/ output operations are facilitated by the
convention of equating a file and a device, The command:
XD‘D

n
L7 IN

is used to transfer the contents of a file from one file to another file, There are
two arguments:

XFER sourcefile destinationfile
If the user types
XFER $PTR A 4

the contents of the paper tape mounted in the paper tape reader are transferred to
a file named A. (The symbol J represents a carriage return.) If the user types

XFER P $PTP)
the contents of the file named P are punched out on paper tape.

Device Prefixes

File names may be prefixed by a device specifier. The device specifier is a two-
letter mnemonic, followed by a unit number, followed by a colon that separates
the specifier from the file name. For example:

DK@:FOO. SV
specifies save file FOO on fixed head disk unit #, and:

DP2:TEST. SR
specifies assembler source program TEST. SR on moving head disk pack unit 2,
A device prefix is used to reference a file that is not in the default directory but
is in the directory of a device that is part of the system configuration. File
directories and the devices that maintain directories of files are explained in the

section immediately following, "File Directories”.

1-3

FILE DIRECTORIES

Contents of the Directory

Information required about files on a given device is kept in the file directory
of the device., The information includes the file name, the length in bytes of
the file, and the file attributes.

Since all file names.on a given storage device are contained in a single directory,
each file name must be unique. An attempt to add a file name to the directory
when the same file name already exists causes an error indication,

A file may have a byte length from O up to a maximum of 33,423, 360 bytes.

File attributes are characteristicsof files that can be set and changed by the user.
These are:

P - Permanent file, which cannot be deleted or renamed.
S - Save file (core image)+

W - Write - protected file, which cannot be written,

R - Read - protected file, which cannot be read.

A - Attribute - protected file. The attributes of such a file
cannot be changed, *

The LIST command, described in Chapter 3, allows the user to obtain information
from the file directory about one or more files on the device.

The Disk Operating System contains a number of permanent and attribute-pro-
tected system files, for example, the $TTI. The user should be careful not to
place overly restrictive attributes on his own files unless necessary. Note,
for example, that a file with the attributes AP cannot be deleted by the user in
any way.

* The A attribute can be set by a user only in program mode of system com-
munication, Other attributes can be set either in program or CLI mode.

1-4

Directory Devices

It is possible to configure DOS with up to four similar moving head disk units

and up to eight fixed head disk units, All fixed headdisk units are logically combined
into a single unit for user reference purposes. The device specifier for the

fixed head disk:

DK@ (fixed head disk, control @)

in ry and storage area with up to two million 16-bit words.

[}
40}
E
-

aQ
—
(0]
g
o
[¢)]
O
ot
@)
[

<

Q tn
reiers to

Moving head units are organized with a separate file directory per unit, DOS
may be configured with up to four such units with device specifiers:

DpP@, DP1, DP2, and DP3
Each disk pack unit has a distinct file directory and free storage map. Any file
on such a device is completely contained on that device, Precise configuration

is determined via the SYSGEN program (see Appendix B).

Default Directory Device

The default directory device is the current device within the system to which
all file name references are directed in the absence of a device specifier, either
DK@ or DPn, prefixed to the file name.

Master Storage Device

The master storage device can be designated at SYSGEN time to be any legitimate
device specifier within the system. The master storage device is used for two
purposes:

L. It becomes the default directory device at system initial-
ization and after a bootstrap.

2, It is used for temporary storage area for pushing the current
address space when the . EXEC monitor command is
executed either by the CLI or by a user program. Since
the master device is used during this swapping operation,
it should be selected during SYSGEN to be the fastest
access device available,

1-5

Bootstrap Device

It is possible to generate (via SYSGEN) a DOS system which is bootstrappable from
either the fixed head disk (DK@) or from the moving head disk unit zero (DP@).
Thus, once a system is generated it is bootstrappable from only one type of device.
If a user desires a configuration with both types of storage media, it is possible

to generate two systems identical in all respects but for bootstrap device type.

Removable Media

Since individual removable disk units contain only complete files and file directory
information, they may be removed from the system without affecting the file
contents. New packs are introduced to the system with the INIT/F CLI command.
This causes rudimentarydirectory information to be written to the disk in
anticipation of file creation. The same command, without the /F switch is used
to reintroduce a pack with valuable file contents to the system.

Command Summary

The following is a list of the pertinent CLI commands used to manage multiple
directory devices.

Command _ Description
INIT [/F] device specifier Prepare device for system use.
RELEASE device_specifier Remove device from system.

DIR device specifier Change default directory device.

System Installation

The system saved file (SYS. SV)produced during system generation (see Appendix B) must
be installed via the INSTALL command before bootstrapping can take place. When
this command is invoked, DOS copies the bootstrap program from the system saved
file to logical address zero of the default directory device. When the bootstrap
program begins execution, it locates the remainder of the system file and loads the
entire system into core. If a system has never been INSTALLed, bootstrapping

is not possible.

Further System Information

This chapter attempts to summarize some of the features of directory devices under DOS
and to define some of the terms applicable to directories and files that are used throughout
the manual. The user should read the entire manual carefully before attempting to

generate, install, bootstrap, and use DOS.

1-6

CHAPTER 2

TELETYPE BREAKS

There are two possible program breaks that can be generated at the teletype-
writer,

Pressing CTRL and A on the teletypewriter causes an immediate interrupt re-
gardless of present program status. This is a trouble break used, for example,
when necessary to interrupt a long $TTO output. The word INT is typed by the
Command Line Interpreter upon recognition of a CTRL A break,

Pressing CTRL and C on the teletypewriter causes an eventual interrupt of a
prograrm and a file to be created and written as an image of core at the time of
interrupt. The word BREAK is typed by the Command Line Interpreter upon
recognition of this interrupt, and the name of the save file will be BREAK.SV.
The termination of execution depends upon the state of the user program. If
the program is not within the system (i.e., not executing one of the monitor
calls described in Chapter 4) the interrupt will occur immediately. If the program
is executing within the system, the interrupt will not occur until the monitor
has satisfied the user request, Under no circumstances is the CTRL C ever
transmitted to a user program reading from the $TTL. The implications of this
are as follows:

If the user program is in the process of reading from the $TTR,
a break should not be attempted until the reader has stopped.
Depressing CTRL C while the reader is active causes garbled
character transmission,

If the user program is in the process of reading from the $TTI,
the read request must be satisfied before the break will occur.
Specifically, if a character has been requested (see . GCHAR,
Chapter 4) another character in addition to CTRL C must be

input since the CTRL C is transparent to the input request. If

a read line has been requested (see . RDL, Chapter 4) a carriage
return or a form feed must be sent, If a read sequential has been
requested (see . RDS, Chapter 4) the sequential character count
must be satisfied before the break will occur.

If the user program to be interrupted is not issuing reads from
the $TTR or $TTI, the break will occur upon system completion
of the call.

See Appendix A, Relocatable Loader Section, for a discussion of how the
user can service CTRL A and CTRL C teletype breaks,

2-1

CHAPTER 3

COMMAND LINE INTERPRETER (CLI)

CLI DEFINITION

P P, T | ST T

The Command Line Interpreter (CLI) is a system program that accepts command
lines from the teletypewriter and translates the input as commands to the operating
system. The CLI is basically a string handler that acts as an interface between
the user at the teletypewriter and the system. In addition, the CLI performs
certain file housekeeping chores for the user.

The system restores the CLI to core whenever the system is idle - after initialization,
after a bootstrap, after a teletype break, after execution of a program, etc,

READY MESSAGE

The CLI indicates to the user that the system is idle and the CLI is ready to
accept commandsby typinga ready message on the teletypewriter, The message
consists of R followed by a carriage return.

CLI ACTIVATION

The user activates CLI responses to a command by typing a line and pressing the
RETURN key or the CTRL L (form feed) keys. The CLI will not respond until
RETURN or CTRL L is pressed, (RETURN and CTRL L are interchangeable;
use of RETURN in the remainder of the text means either line terminator.)

CLI RESPONSE TO COMMAND LINES

The CLI itself executes certain system commands such as CREATE and RENAME,
More complex commands cause the CLI to build a file containing an edited version
of the command line and load the program named in the command line for execution
When execution is finished, control is returned to the CLI,

3-1

SYMBOLS AND CONVENTIONS USED IN COMMAND LINE SYNTAX

Symbol

)

(space)

Usage

Represents pressing RETURN key, causing
termination of the command line input and
activation of the CLI.

Represents pressing CTRL L keys (form feed).

which acts in the same way as the RETURN
key.

Represents pressing SHIFT L keys, which
causes deletion of the entire line. \ &
are echoed on the teletypewriter.

Represents pressing RUBOUT key, which
causes erasure of the previous character.
< is echoed on the teletypewriter.

Arguments are separated by commas or
spaces. Extra commas and spaces have
the same effect as a single symbol.

Right slash indicates that the character
immediately following is to be interpreted
as a switch,

Command delimiter in a command line.
Two or more commands may appear on a
line separated by semicolons, none are
executed until RETURN is pressed.

The next RETURN is ignored as a command
terminator. 4& must appear as the character
before the carriage return,

Can match any character in a file name or
its extension or any set of characters in
constituting a file name or its extension,
according to rules described later,

Complements the ready message switch. All
ready messages are suppressed until the next
occurrence of a . & command.

3-2

Examgle

CREATE A B i

CREATE Al

CCRREAGE \

CC<REAG=TE

DELETE A B
DELETE A, B)
DELETE A B?
DELETE A, ,B i

LIST/A

CREATE A;LIST £

RENAME A ALPHA *i
BBETA

DELETE FOO. *
LIST T*
CHATR FOO *W

SN
CREATE A
DELETE B £

SYMBOLS AND CONVENTIONS USED IN COMMAND LINE SYNTAX (Continued)

Symbol Usage Example
@ Change of CLI input command stream. ASM @FO0@
NOTE: Use of these symbols and conventions is described in greater

detail in sections following.

ax T A X7 A

S AVAILABLE TO USERS

The library of CLI commands available to users provides for complete file

maintenance and an interface to standard system software, CLI commands are
listed below,

ALGOL - Compile an ALGOL source file,

APPEND - Append one, two or more files to produce a single file,

ASM - Assemble a program.

BLDR - Load absolute binary tape with binary block loader (stand-alone operation).

BPUNCH - Punch a file or files in binary on the high speed punch.

CHATR - Change the attributes of an existing file.

CLG - Compile, load, and execute FORTRAN programs.

CONT - Resume execution of a save file interrupted by a CTRL C break.

CREATE - Create a file or series of files.

DEB - Read in a program and transfer to the symbolic debugger instead of
resuming execution,

DELETE - Delete a file or series of files.

DIR - Change the current default directory device specification.

DISK - Obtain a list of the number of blocks used and the number of blocks
still available on the default device.

DUMP - Dump files. The dump includes directory information for each file,
which enables later reloading.

EDIT - Bring in the Text Editor to build or edit source files.

FORT - Compile and assemble a FORTRAN source file,

3-3

CLI COMMANDS AVAILABLE TO -USERS (Continued)

INIT

INSTALL

LFE

LIST

LOAD

MKABS

MKSAVE

OEDIT

PRINT

PUNCH

RELEASE

RENAME

RLDR

SAVE

TYPE

XFER

COMMAND LINES

Initialize a directory device or magnetic tape.

Specify system saved file for use in bootstrapping DOS,

Update DOS library files.

List names of files in the default file directory with their length
in bytes and attributes.

Reload dumped files.

Make an absolute binary file from a core image file,

Make a core image file from an absolute binary file.

Bring in octal editor to examine and modify locations in octal.
Print a file or files on the line printer.

Copy a file or files in ASCII mode to the high speed punch.
Prevent further I/Oaccesstoadirectory device or rewind magnetic tape.
Change the name of a file.

Load a core image from a series of relocatable files.

Save a core image as a file,

Copy a file or files in ASCII mode to the teletypewriter.

Transfer contents of a file to another file,

A command line can consist of one or more commands followed by RETURN. A
basic command line has one command.

3-4

COMMAND LINES (Continued)

Basic Command Line

The basic command line is simply a list of one or more file names. Except for a number
of simple commands that the CLI executes directly, the first file name in the command line
is the name of the program to be loaded into core by the CLI for execution. Thus, some of
the commands listed on the previous page are names of save files, If, for example, the
user types the command line

ASM $PTR)

the CLI builds a file, called COM. CM, containing the edited command line, and loads the
save file that has the file name ASM. SV for execution,

tn€ program name are used as arguments. In the

Any additional file names besides
name of the paper tape reader from which a file is to be

example, $PTR is the file
assembled.

User action and CLI response are the same when a user wants to execute one of his own
programs. For example, if a user has a save file named A. SV and he types

A)

the CLI builds a file containing the command line and calls the operating system to load
the save file named A. SV for execution.

Stacking Commands on a Command Line

A command line is executed by the CLI when the user presses the RETURN key or the
CTRL L keys on the teletypewriter.

A number of commands may be stacked on a given line for execution. They are
separated by semicolons, For example:

CREATE A; LIST A;DISK;DELETE B

The four commands are executed when the user presses RETURN, The CLI indicates
execution of each command with the appropriate information, if any, At the completion
of the entire command line, the CLI will prompt the user again with a ready message.
For example, the previous command line might cause the response:

A, 0 <+ response to LIST A
LEFT: 56, USED: 200 + response to DISK
R “ command line completed

3-5

COMMAND LINES (Continued)

Long Command Lines

There is no limit (other than memory capacity) to any command line, The user can type
a command line that is longer than the ASR33 line length by typing the symbol 4 in the
command line immediately before pressing the RETURN key. The up arrow causes the
carriage return to be ignored., For example:

CREATE A B C; LIST; DISK; APPEND NEW.SR 4
GAMMA. SR DELTA.SR ,)

is executed as if the following had been typed:

CREATE A B C; LIST; DISK; APPEND NEW, SR GAMMA, SR DELTA. SR 2
In the previous example, the second line starts a new argument, Note that when a RETURN
is ignored, there is no delimiter between the last character on one line and the first
character on the next line, Therefore, in the example the blank argument delimiter has

been inserted before the up arrow.

The user can, of course, break an argument or command word into two lines:

CREATE A B C; LIST; DISK; APPEND NEW., SR, GAM 42
MA. SR,DELTA, SR)

is equivalent to:
CREATE A B C; LIST; DISK; APPEND NEW, SR,GAMMA. SR, DELTA. SR J

Suppression of Ready Messages

The user can suppress typing of ready messages by using the symbol period (.) as a
command. For example:

- + suppress prompt
CREATE A; LIST A; DISK; DELETE B2

A, 0 « response to LIST A
LEFT: 56, USED: 200 « response to DISK

< no ready message at completion
of command line

To restore typing of ready messages, the user issues a second command:

)

3-6

COMMAND LINES (Continued)

For example:

€ turn prompt off
CREATE A; LIST A; DISK 3
A, 0

LEFT: 56, USED: 200

. & turn prompt on
DELETE C J
R " ¢« response to DELETE C

SWITCHES
Commands and their arguments may be modified by a series of switches pertaining to
the command or argument, A switch is indicated by a right slash (/) followed

immediately by either a letter or a decimal digit.

Numeric Switches

Numeric switches specify the number of times the previous argument is to be repeated
in the command line. For example:

RLDR $PTR/6 J
indicates that six relocatable binary tapes are to be loaded from the paper tape reader.
Numeric switches are cumulative. The folloving commands are equivalent:

RLDR $PTR/1/0/3/2 L

RLDR $PTR/6

The digit 1 in a numeric switch is the same as no switch. The following commands are
equivalent:

RLDR $PTR ¥
RLDR $PTR/1 &

The digit 0 has no effect upon the number of times a file name is repeated if it appears
in a list of numeric options. For example, the following commands are equivalent:

RLDR $PTR/6
RLDR $PTR/1/0/2/3 %
RLDR $PTR/1/2/3/0/0 ¥

3-7

SWITCHES (Continued)

Numeric Switches (Continued)

However, when used alone, the 0 switch has the same effect as 1. For example, the
following are equivalent commands:

RLDR $PTR/1)
RLDR $PTR/0 2
RLDR $PTR)

The user should note the effect of applying a numeric switch to a CLI command. For
example, the following are equivalent:

DELETE/2)
DELETE DELETE)

The command could be used if the user has a file named DELETE that he wishes to
delete,

Letter Switches

Letter switches have distinct meanings that depend upon the command or argument with
which they are associated. The detailed descriptions of each CLI command indicate the
meanings of each letter switch that can be used in the command.

A letter switch that follows a command word is a global switch and applies to all arguments
of the command line. A switch that follows an argument is a local switch and applies

only to the particular argument. For example, the assembly command ASM has both a
local and global switch, L (listing file). The command:

ASMAB)

causes files A and B to be assembled but, by default, no listing is produced. The
command:

ASM/L A B &

causes files A and B to be assembled, and a listing file named A. LS to be produced. The
command:

ASM A B $LPT/L)

causes files A and B to be assembled and a listing of the assembly to be output to the
line printer.

3-8

SWITCHES (Continued)

Effect of Switches on Command Lines

A switch affects a command line as if the switch were a comma or a space. For example,
the following commands are equivalent:

ASM/LAB)
ASM /LAB)
ASM/LA B 2
Thus, the switch delimits the command word ASM from the argument A,

If a character other than a number or letter follows the right slash, the slash acts merely
as a delimiter. For exampie,

ASM/ L A B J
The slash is ignored because it is followed by a space. The command will cause the

assembly of files L, A, and B, If there is no source file named L, an error message
will result,

ASTERISK (*) CONVENTION

When referencing the default directory, an asterisk can be used to represent any given
character in a file name. For example, the command:

DELETE A**M 4

will cause all four-letter file names without extensions that begin with A and end with M
to be deleted. For example, files that have names like the following would be deleted:

ATOM
ADAM
A22M

A$RM

The command:
LIST B* .

would cause a list to be typed, giving all two-character files beginning with the letter B
and having no extension.

3-9

Asterisk (*) Convention (Continued)

A single asterisk can be used to represent the entire file name or extension and
thus represent a number of characters. For example, the command:

DELETE *.LS)

would cause deletion of every file on the default directory with the extension LS.
The files might be:

A.LS
OMEGA. LS
TESTPROG. LS
ATOM., LS

The command:

LIST *J

would cause a list of every file in the directory that does not have an extension,
and the command:

LIST *.*)

would cause a list of every file, whether or not it has an extension.

It is possible to delete all files that are not protected with the single command:
DELETE *. %/

Note, however, that it is not possible to delete all single-letter files, only,
since the command:

DELETE *)
is interpreted to mean 'delete all files without extensions. '

A device specifier cannot be used with the * convention, An attempt to give a
command such as:

LIST DPL: *, %)

causes the default directory to be searched for the name DP1: *. * which is
never found.

The last part of this chapter contains writeups on each of the CLI commands.
Each writeup indicates whether or not the asterisk convention can be used in

file names.

3-10

INDIRECT (@) CONVENTION

Paired @ signs around a file name are understood to represent the contents of the file
rather than the file name itself,

Suppose a user regularly concludes each teletypewriter session by deleting listing
files, checking the list of non-permanent files, and determining how much space he
has left on disk., The command line for this would be:

DELETE *,LS; LIST; DISK).

These commands could be written into a file called END in the following way:

"XFER /A $TTI END) Transfer commands in ASCII
DELETE *,LS; LIST; DISK y from TTI to file END. (User
R terminates input with CTRL Z;

CLI types out R.)

Then the command:

@END@)
is equivalent to typing the three commands.

As another example, suppose the user has five source programs called PART1, PART2,
PART3, PART4 and PART5. He can then use the XFER command as shown above to
build a file called TEST, containing the ASCII line:

PARTI1 PART2 PART3 PART4 PARTS
If he issues the command:

ASM @TEST@)
the five files are assembled,

The contents of a file on disk may, in turn, point to another file. As a simple example,
suppose:

file A contains L@B@
file B contains I1@C@
file C contains ST

then the command:

@AQ)

is equivalent to the command:
LIST)

Only four files (including the teletypewriter) may be open at any one time, In the
eéxample above, the maximum number of files (A, B, C and teletypewriter) are open,
Suppose the contents of the three files were:

file A contains L
file B contains I
file C contains ST

3-11

INDIRECT (@) CONVENTION (Centinued)

Then the command:

@A@@BEACE)

is equivalent to:
LIST)

and only one file plus the teletypewriter is opén at a given time.

PARENTHESIZED FILE NAME CONVENTION

CLI commands can be Tepeated with each of several file names or strings of file names
by first separating the file names or strings of file names by commas and then enclos-
ing all the file names within parentheses. Since the CLI command words are them-
selves file names, a series of commands can be made to use a common argument or
string of arguments by placing the commands within parentheses. For example:

(INIT, DIR) DPO)
is equivalent to:

INIT DPO)
DIR DFPO)

and
ASM (A, B, C) $LPT/L)
is equivalent to:

ASM A $LPT/L)
ASM B $LPT/L)
ASM C $LPT/L)

Each repetition of the ASM command generates a relocatable binary file (A.RB, B.RB,
and C.RB respectively)., This differs from the command:

ASM ABC $LPT/L2

which generates a single relocatable binary file named A.RB from the single assembly
of source files A, B, and C.

A string of file names that are not separated by commas is treated as an entity, i.e.,
ASM (A B, C, DE F)$LPT/L})
is equivalent to:

ASM A B $LPT/L)
ASM C $LPT/L)
ASM D E F $LPT/L)

where the three relocatable binary files generated by the command are A.RB, C.RB,
and D.RB.

'PARENTHESIZED FILE NAME CONVENTION

Use of commas with no file names within parentheses is permitted, For example:
LIST(, , ,))

is equivalent to:

LIST)

Only one set of parenthesized file names may appear within a given command line, Use
of the indirect (@) convention is illegal when using the parenthesized file name conven-
tion. Command terminators (carriage return, end-of-file) cannot be used within parentheses,

In using the parentheses convention, care must be taken not to overwrite disk files
created by repetitive commands., For example:

FORT ($CDR, $CDR) $LPT/L)

When the command is executed, two separate compilations would be listed on the line
printer, but only the second program input via the card reader would exist as a relocatable
binary file on disk. The previously created disk file, $CDR.RB would be overwritten by
the second file having the same name,

FILE NAME SEARCHES

The file directory may contain a number of entries having the same file name but different
extensions, such as:

A.SR
A.RB
A.SV
A,.32
A XX

File name arguments to most commands must specify both the file name and extension.
Certain commands, however, accept a file name without extension and search on both
the file name with appropriate extension appended and on the file name without an exten-

sion, Similarly, some commands append an appropriate extension to a specified output
file name, For example:

ASM A)

causes a search for a file named A.SR. If A.SR is found, it is the source file for assem-
bly. Otherwise a search is made for A. If A is found, it is the source file for assembly.

The output file when the ASM A p command is executed is a relocatable binary file named

A.RB, '

3-13

FILE NAME SEARCHES (Continued)

If the user types:
RLDR A)

A search is first made for A.RB and if not found, for A. The CLI creates an output file
for the relocatable loader called A.SV, the extension used to signify a save file.

The commands SAVE and MKSAVE also have a save file as output. In both cases, the
CLI adds the extension SV to the name of the output file, If the user attempts to substitute
his own extension, it will be ignored. For example:

SAVE A.XX)

causes a core image to be stored as a save file on disk. The name of the file will be
A.SV. The extension XX is ignored.

The command MKABS has as input a save file., For example, if the user types:
MKABS A $PTP)
a search is made for A.SV and, if not found, for A.
To execute the file A, SV, the user types
A)
The CLI calls the operating system to load into memory the file called A, SV and transfer

control to its starting address. In this special case of loading a save file, the only search
made is for the file name with the SV extension. ’

Most other commands require appropriate file name extensions to be given explicitly.
If the user types:

DELETE A)
only the file named A will be deleted. Files such as:

A.SR
A,.SV
A.RB
A.33

would not be deleted.
If the user types the command:
RLDR A FOO/S)

the /S switch indicates that the user wants the save file output of the loader to be
named FOO. SV.

If a user gives his own extensions to file names, such as A.33, such files must be
referenced with their file name and extension.

3-14

MESSAGES CONCERNING I/0

Some commands require manual operation of an I/O device, If the user issues such a
command, he will receive a message prompting him on the proper action. For example,
if the user issues the command:

XFER/A $PTR A.SR)

which requests that a source file be transfered from the paper tape reader to a disk
file named A. SR, the system replies:

LOAD $PTR, STRIKE ANY KEY,

The user can then load the paper tape reader and strike any key on the teletypewriter,
The key struck to start the device is not echoed on the teletypewriter.

When a series of files are to be transferred, assembled, or loaded from a device
requiring manual intervention for each file, the message will be issued the appropriate
number of times. For example, if the user issues the command:

APPEND NEWFILE $PTR/2)

which requests that a file called NEWFILE be created from two files input from the paper
tape reader, the following responses will occur:

LOAD $PTR, STRIKE ANY KEY.
LOAD $PTR, STRIKE ANY KEY.

The second message is typed out after the first file has been transferred.

ERROR MESSAGES

When the user issues a command that contains an €rror, an appropriate error message
will be typed out,

When a user gives a command that is legal for some arguments and illegal for others,
an eérror message is issued for each of the illegal arguments. The correct portions
of the command are executed. For example,

R
CREATEABCD) create four empty files

R

XFER $PTR A) transfer file from PTR to A
R

CREATE AE) illegal argument A; legal argument E
ERROR: FILE ALREADY EXISTS, NAME: A

R

LISTE)

E. @ E was created

R

When the CLI cannot respond to a user command, an error message does not necessarily
result, For example, if the user requests list information on a non -existant file, the
CLI responds to the LIST command with a ready message only.

3-15

(<4 \
0 (LONTHIuEay

The error messages appropriate to each command are listed in the detailed descriptions
of each command. In general, error messages are quite explicit, giving the user the
sufficient information to correct his error easily. A few samples are shown:

CREATE A #A *A)

ERROR: ILLEGAL FILE NAME, NAME: #A
ERROR: ILLEGAL FILE NAME, NAME: *A
R

XFER FOO $PTR)
ERROR: FILE WRITE PROTECTED, FILE: $PTR
R

CREATE TEST:CHATR TEST W)

R

XFER SYS.DR TEST)

ERROR: FILE WRITE PROTECTED, FILE: TEST
R

CHATR $LPT ¢)
ERROR: UNABLE TO CHANGE MODE, FILE: $LPT
R

MKSAVE $PTR CLIL SV),

LOAD $PTR, STRIKE ANY KEY.

I0 ERROR: DISK SPACE EXHAUSTED
R

XFER NONFILE NEWFILE y
ERROR: FILE DOES NOT EXIST, NAME: NONFILE
R

CLI COMMANDS

Following are definitions and descriptions of each of the CLI commands. The commands
are listed in alphabetical order,

3-16

Name: ALGOL
Format: ALGOL inputfilename loutput filename]

Purpose: To compile an ALGOL source file, Output may be a relocatable
binary file, an intermediate source file, a listing file, or com-
binations of all three. The command name, ALGOL, must be
used in compiling ALGOL source programs; the name, ALGOL,
cannot be changed.

Switches: By default, execution of the command produces an intermediate
source file, ¢nput fi lename. SR (compiler output), and a
relocatable binary file ¢nput filename .RB (assembler output),
However, once assembly has been successfully completed, the
intermediate source file is deleted, No listing is produced
by the default command.

Global: /A - Assembly is suppressed.
/B - Brief listing (compiler source program input only),
/E - Error messages from compiler are suppressed at the $TTO.
(Assembler error messages are not suppressed),
/L - Listing produced to inputfilename, LS.
/N - No relocatable binary file is produced.
/S - Save the intermediate source output file,

Local: /B - Relocatable binary output directed to given file name,
/L - Listing output directed to given file name,
/S - Intermediate source output directed to given file name,

Asterisk: Not permitted,
Errors: See NOVA ALGOL Reference Manual, 093-000052.
Extensions: On input search for tnput f7 lename, AL. In not found, search
for inputfilename. On output, produce <nputfilename,RB

by default and other files with . LS or .SR extensions as determined
by switches,

Exampies: ALGOL MAIN 3
Produce relocatable binary file, MAIN.RB. No listing is produced.
ALGOL /E/B SUBR $LPT/L 2

Produce relocatable binary file, SUBR, RB with a brief (ALGOL
source) listing to the line printer, Suppress compiler error messages.

3-17

Name: ALGOL (Continued)
Examples: ALGOL/A $PTP/S))

Do not invoke an assembly phase. Punch intermediate source
output on high speed punch.

3-18

Name: APPEND

Format: APPEND newfilename oldfilename oldfz Zenamen

70

Purpose: To create a new file, consisting of a concatenation of one or more old
files in the order in which their names are listed as arguments, The old
files are not changed by the command,

Switches: Noae,

Asterisk: Not permitted.

Errors; FILE ALREADY EXISTS. (newfilename)
FILE DOES NOT EXIST. (oldfilename)

NOT ENOUGH ARGUMENTS.
DISK SPACE EXHAUSTED.
FILE WRITE PROTECTED. (newfilename)

Examples: APPEND COM, SR COM1 COM2 COM3 COM4 U

causes creation of the file COM, SR containing the contents of
files COM1, COM2, COM3, and COM4 in that order.

APPEND DPL:ALL.LB A.LB B.LB DPg:C. LB)
causes creation of the file ALL. LB on disk pack unit 1

containing the contents of files A, LB and B. LB from the default
directory and C. LB from disk pack unit @.

3-19

Name:

Format:

Purpose:

Switches:

Global:

Local;

Asterisk:

Errors:

ASM

ASM filename; ... fiZenamen

To assemble one or more source files. Output may be a relocatable
binary file, a listing file, or both. The command name, ASM, must
be used in assembling programs; the name, ASM, cannot be changed.

By default, output of an assembly is a relocatable binary file (no
listing file).,

/ L - listing file is produced.

/N - no relocatable binary file is produced.

/U - user symbols are appended to the relocatable binary output.

/E - error printouts on the TTO are suppressed unless there is no listing
file for the current pass.

/S - skip pass 2. A BREAK is signaled after pass 1 permitting the
user to save a version of the assembler that contains his own
permanent symbols.

/T - symbol table list is not produced as part of the listing.
(Used when a listing is requested, which produces a symbol table
by default,)

/X - produces cross referencing of symbol table. Symbol table output
will contain page number - line number pairs for the symbol
definition as well as every reference to the symbol within the assembly.

/B - relocatable binary output directed to the given file name,

/L - listing output directed to the given file name.

/S - skip this file on pass 2 of assembly. (This switch should be used
only if the file does not assemble any storage words.)

/N - no listing of this file. (Used, when a listing is requested, to list
a selected number of files to be assembled.)

Not permitted.

NO SOURCE FILE SPECIFIED.
ILLEGAL FILE NAME.

FILE DOES NOT EXIST. (input file)
FILE ALREADY EXISTS. (output file)
FILE WRITE PROTECTED. (output file)
FILE READ PROTECTED. (input file)

SWITCH ERROR. (listing and binary files cannot be same)

3-20

Name: ASM (Continued)

Extensions: On input, search for filename.SR. If not found, and the filename
did not have an extension, search for filename.

On output, produce f< lename.RB for relocatable binary and
filename, LS for listing (global L switch), where f<lename will
be the name portion of the first source file specified without a /S,
/L, or /B local switch given,

Examples: ASM Z J

causes assembly of source file Z, producing a relocatable binary
file called Z. RB,

ASM/N/L A)

causes assembly of file A, producing as output a listing file called
A. LS,

ASM A B $PTP/B C D $PTR $TTR DK@:E $LPT/L)

causes assembly of files A, B, C, and D from the default directory,
a tape mounted in the paper tape reader, a tape mounted in the
teletypewriter tape reader, and E from fixed head disk unit g, A
binary relocatable file is punched to the paper tape punch, A list-
ing file is printed on the line printer,

ASM /S/N ICODES J < mno output. Automatic BREAK after pass 1.
BREAK

R

SAVE ASM 42 < User can save the assembler with the

user's permanent symbols,

3-21

Name;:

Examples:

71
A3
r4
a5
PR
727
h
PR
1_1
11
12
13
14
13
15
17
13
13
gn
21
22
23
24
25
25
27
24
29
3
3
32
33
31
35
33
37
3N
39
a7
a1
4?2
43
a4
4=

ASM (Continued)

(Continued)

ASM /X EXAMP $LPT/L{/

E‘ A”p

427

ST B IR RAW S IV |

R
A AN
12%014

reAa 4
ttaty’
17417
Srsaty

TorARg2
1oL
PR RS I
IR
"DR3TY7
SRR)
ELE YA
41 a0
ARG

AR

Anddoaa

ST g A

Py

R RTI :1

177777

et ey A

127777
17777~

«TITLF

WFATH
 NREL

< assemble EXAMP with cross
referenced symbol table output
listing to line printer.

+ Program listing
FXAMPLE

SBROU

I SAMPLF CRNI3S8S=RFFEREMCF PROGRAM

START S

LNApPg

AT

« SRR

MEEE]
Ay =
ADs
Eain

LA
STA
LDA
314

INC#

JuP
137
187
JHp

JSR

IV

JAP
L4
Lna
JSw
STA
5Ta
ISR

JSYSTM

LT
Jp

TR
ALK

3
1243

SRR

»
-1
“?

1, C3
z.".,CNT
Ay MAGTIC
G BITS
1p1,957R
Lnap
onT
41ITS
nuT

2,SlIRR
My A, 87R
T

Ag AN, 2
1,41,2
®, SRR
?,AZ'?
A,Abz,?

4, 818K

3-22

Name: ASM (Continued)

Examples: (Continued)

ARAD Eyane Cross-reference table,

AN A A AN A 1723 1797 1741 Cross-referencing is

At 177777 1724 1742 accomplished by out-
a2 1727775 1726 1/43 putting symbol table
BITS Praaat 1713 i717 1734 and symbol referenc-
Cs3 *ranaz! 1747 1/36 ing information to temp-
E::’;P ~ ;’12": 1/11 1716 1733 orary disk files during
MAfTC) - ‘*11 , 1/15 1/20 assembly, A separate
mabl 1Al 1712 1737 .)
04T Araa2q 1718 1/92 1728 save file, XREF, SV, is
SRR Az a3y 1739) called by the assembler
STASY A e a 1712 to output the cross ref-
» SRR G 1/72nm 1/25% 1/28 1733 erence list, Note that

all pages and lines of
the assembler's listing
are numbered for this

purpose.

3-23

Name: BLDR

Format: BLDR devicename

Purpose: To load an absolute binary tape with the binary block loader, using either
the high speed paper tape reader or the teletype reader. This command
implies a transition from DOS mode to stand-alone mode. The loading
will overwrite part of core containing DOS, so that after completion of
the stand-alone job, DOS must be bootstrapped.

Switches: None.
Asterisk: Not permitted.
Errors: ILLEGAL DEVICE NAME.

Examples: BLDR $PTR)
BLDR $TTR)

The examples give the only acceptable command lines.

3-24

Name:
Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

BPUNCH
BPUNCH f‘iZenameZ [;filenamez. .. f‘iZenamen]

To punch a given file or files in binary on the high speed punch,
The command is the equivalent of a series of XFER commands:

XFER filename, $PTP;...;XFER filename, $PTP J
The files may come from any device,

Not permitted.

ILLEGAL FILE NAME, (source)
FILE DOESN'T EXIST. (source)
FILE READ PROTECTED. (source)

BPUNCH FOO,RB ALPHA.RB BETA.RB J
BPUNCH $PTR ¢

BPUNCH DP2: MYFILE.SR 2

3-25

Name:
Format:

Purpose:

Switches:

Asterisk:

Attributes:

Errors:

Examples:

CHATR
CHATR filenamel attributes; ... filename, attributes,

To change, add, or delete file attributes of a given file, All current
attributes of the file are replaced by those given in the attributes
argument.

None.
Permitted in attributes argument only.

P - Permanent file, Cannot be deleted or renamed.

S - Save file.

W - Write - protected file. Cannot be altered.

R - Read-protected file, Cannot be accessed for reading.
@ - No attributes,

* - Represents current file attributes.

When several attributes are specified for a given file name, they must be
given as a singleargument. Attributes may be listed in any order in the
argument.

FILE DOES NOT EXIST.

ILLEGAL FILE NAME,

NOT ENOUGH ARGUMENTS.

UNABLE TO CHANGE MODL. (attribute-protected.)
ILLEGAL ATTRIBUTE. (for example, G)

CHATR A WP 2

causes file A to be write-protected and permanent.
CHATR A@BR ¥

deletes all attributes of A and causes B to be read-protected.
CHATR A.SV SW J

causes A. SV to be write-protected save file. If A.SV had had other
previous attributes, these would be deleted.

CHATR A.SV *W J

causes A. SV to be write-protected save file. Any previous
attributes would also be retained (*).

3- 20

Name:
Format:

Purpose:

Switches:

Global:

" Local:

Asterisk:

Errors:

Extensions:

CLG
CLG filenamel [filenamey ... filenamen]

To compile, load, and execute one or more FORTRAN source files. Output
includes one or more intermediate source files, one or more relocatable bi-
nary files, and an executable save file. The save file is created by the relo-
catable loader using the relocatable binary files and the FORTRAN libraries,
which must have been merged into a single 'library file named FORT. LB,

CLG differs from the FORT command (page 3-36), which can produce a
relocatable binary file, but cannot produce a save file and execute it.

In addition, CLG can treat source input files individually, where some re-
quire loading, others assembly and loading, and still others compilation as well

If a listing device is specified by a local switch but no global listing switches
are given, listings of each FORTRAN compilation, each assembly, and the
loader map are output to the specified listing file.

/B - Brief listing (compiler source program input only).

/M - Loader map is suppressed. All compiler and assembler source pro-
grams are listed.

/E - Error messages from the compiler are suppressed at the $TTO.
Assembler messages are not suppressed.

/L - Listing output directed to the given file name.
/A - Assemble this file only; do not compile.
/N - Load this file only, do not compile or assemble.

Not permitted.

See the FORTRAN IV Reference Manual (093-000053), and the ASM and
RLDR commands (pages 3-20 and 3-56 of this manual).

On input, search for filename ,FR; if not found, search for filename.
If /A is specified, search for f¢lename.SR. If not found, search for
filename. If /N is specified, search for 7 Zename.RB; if not found,
search for filename.

On output, produce temporary assembler source files, £ Zenamej. SR

(i=1...n). Produce relocatable loader input files, f<lenamej.RB
(i=1... n). Produce save file fiZlenameSV.

3-27

AT _
INALIIC

Examples:

CLG/B MAIN $LPT/L P

Compile MAIN. FR (or MAIN), producing MAIN.SR, with the listing to
the $LPT. Assemble MAIN.SR, producing MAIN. RB and delete

MAIN. SR. Load MAIN.RB and FORT.LB, producing MAIN.SV. Execute
MAIN, SV.

CLG/M/E PROGI PROG2 PROG3/A PROG4/N MT@:1/L)

Compile PROGL.FR (or PROG1), producing PROG1.SR. Assemble
PROGI1.SR, producing PROG1.RB and delete PROG1.SR. Compile
PROG2.FR (or PROG2), producing PROG2.SR. Assemble PROG2.SR,
producing PROG2.RB and delete PROG2.SR. Assemble PROG3.SR

(or PROG3), producing PROG3.RB. Listings from each compilation
and assembly are appended to file 1 on magnetic tape unit #. Load
PROGI1.RB, PROG2. RB, PROG3. RB, PROG4. RB (or PROG4), and
FORT,LB, producing PROGIL.SV with no loader map. Execute PROG1.5V.

CLG A B C)

Compile A.FR (or A), producing A.SR. Assemble A.SR, producing
A.RB and delete A.SR. Compile B.FR (or B) producing B.SR. Assem-
ble B.SR, producing B.RB and delete B.SR. Compile C.FR (or C),
producing C.SR. Assemble C.SR, producing C.RB and delete C.SR.
Load A.RB, B.RB, C.RB and FORT.LB, producing A.SV. Execute
A.SV.

3-28

Name:
Format:

Purpose:

Switches:

Extensions:

Examples:

CONT

CONT filename

To resume the execution of a save file which was interrupted by a CTRL C
break,

None,
v ~A
Not permitted,

FILE DOES NOT EXIST. (filename.SV)

NOT ENOUGH ARGUMENTS. (no filename)

NO CONTINUATION ADDRESS. (filename.SV was never interrupted
and saved)

If the argument f7Zlename was not SAVEd and no further CTRL C commands
have been issued, the filename is BREAK,SV by default. Only the most
recent core image saved by CTRL C is named BREAK. SV, If the

filename was SAVEd, the filename extension . SV will be unconditionally
appended to the filename, e.g.,

CONT EXAMP) or CONT EXAMP,SV)

would cause the save file execution to be resumed at the point where
it was interrupted.

)
SAVE EXAMP J == Name core image EXAMP, SV and
. resume EXAMP's execution,

CONT EXAMP)

3-29

Name:
Format:

Purpose:

Switches:
Asterisk:

Errors:

Examples:

CREATE

CREATE filename [filename filenamen]

2

To add an entry to the default file directory, The entry specifies
a file of zero length and no attributes.

None
Not permitted.

ILLEGAL FILE NAME.
FILE ALREADY EXISTS,

CREATE ALPHA &
Creates a file name, ALPHA, in the default directory.
CREATE TEST TEST1 DPg: TEST2 #

Creates three file names, TEST, and TEST1 in the default

directory and TEST2 in the directory of the pack on disk pack
unit @.

3-30

Name:
Format:

Purpose:

Switches:
Asterisk:

Errors:

Examples:

DEB
DEB filename

To debug a program about to be executed. The symbolic debugger,
Debug 11, must have been loaded as part of the program save
file, as described under the RLDR command,

program run, etc. After making any necessary changes in the
program, the user can save the current core image of the program
by issuing a break (CTRL C) and saving the core image under some
file name, as described under the SAVE command, The program
can then be resumed in the debugger at a later timec,

None,
Not permitted,

ILLEGAL FILE NAME,

ILLEGAL START ADDRESS. (Debugger not loaded with the program),
NOT A SAVED FILE,

FILE DOES NOT EXIST.

DEB A & < Debug A, SV,

1004/ ADDO2 ADD12J) < Change program.

BREAK + CTRL C issued,

SAVE A 2 < Changed version (current core
image) saved.

AW * New attempt to execute,

BREAK < CTRL C issued.

SAVE CORES$A) « Current core image saved,

ASM FOO J < Assembly command and other
commands,

DEB CORE$A J « Restore CORES$A in the debugger,

3-31

Name: DELETE
Format: DELETE filename 7 [filenamey ... fi lename,]
Purpose: To delete the files having the names given in the argument list

from the default directory. No filename may be preceded by a
device specifier.

Switches:
Global: /V - verify deletion with a list of names of deleted files.
Local: None.
Asterisk: Permitted.
Errors: FILE DOES NOT EXIST,
ILLEGAL FILE NAME.
NO FILES MATCH SPECIFIER. (When using asterisk convention).

Examples: DELETE ALPHA BETA GAMMA 3
deletes the files named ALPHA, BETA, and GAMMA,
DELETE *.LS 3}
deletes all files having the extension LS.
DELETE LIMIT. * }

deletes all files having the name LIMIT and any extension
(including null).

DELETE /V *.LS ¢
DELETED A. LS
DELETED COM. LS
DELETED MAP, LS
R

DELETE *.QQ

NO FILES MATCH SPECIFIER: *.QQ
R

3-32

Name:
Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

DIR
DIR device_specifier
To change the current default directory device, At system

initialization (See Appendix B), a default directory device is
established. The DIR command permits another device to be

substituted as the default directory device,
None.

Not permitted,

DEVICE NOT IN SYSTEM.,

DIR DPgy/

Change all default file name references to the moving head
disk unit number @,

3-33

Name: DISK
Format: DISK

Purpose: To obtain a count of the number of blocks used and the number of blocks
still available on the default directory device,

Switches: None.

Asterisk: Not permitted.

Errors: None,

Examples: DISK l)
LEFT: 90, USED: 166
R

The message indicates that 90 out of 256 blocks on the disk are
still available for use,

(9%}
1
(V8]
1SS

Name:
Format:

Purpose:

Switches:

Global:

Local:

Asterisk:

Errors:

Examples:

DUMP

DUMP outputfilename [fi lLename; ... filename,]

To dump a given file or files to a given file or device, The directory
information for each file -- name, length, and attributes -- s written
as a header to each dumped file, If no file names are given, all non-
permanent files are dumped. If file names are given, no name can be
preceded by a device specifier,

/A - all files, permanent as well as non-permanent, are to be dumped.
/V - verify dump with a list of names of dumped files,

None,

Permitted.

FILE ALREADY EXISTS. (output file)
FILE WRITE PROTECTED, (output file)
ILLEGAL FILE NAME. (input file)
FILE READ PROTECTED. (input file)
FILE DOES NOT EXIST. (input file)
DISK DATA ERROR, (input file)

DISK SPACE EXHAUSTED.
DUMP {PTP FOO.SV

causes file FOO, SV to be punched out with a header for later reloading.
DUMP/A $PTP *,SV)

causes all permanent and non-permanent files with the extension
SV to be punched out,

DUMP/V DUMPFI *.SV J
EDIT. SV

ASM. SV

RLDR, SV

causes all non-permanent files with the extension SV to be written
to the file DUMPFI and a list of files dumped to be given.

3-35

Name:
Format:

Purpcse:

Switches:

Asterisk:

Errors:

Example:

EDIT

EDIT

To invoke the text editor to build a new source file or edit existing

source files, The NOVA Editor is described in DGC Document 093-000018.
Appendix A summarizes the program.

None.,

Not permitted.

FILE DOES NOT EXIST. (EDIT. SV)

EDIT /

* < Response of Editor indicating the program
. is ready to accept commands.

] “ User issues editing commands.

H$$) < User terminates editing by pressing

R the H key followed by two ESC

keys. Return is made to the CLI.

3-36

Name: FORT

————

Format: FORT <inputfilename [outputfilename]

Purpose: To compile a FORTRAN source file. Output may be a relocatable
binary file, an intermediate source file, a listing file, or combin-
ations of all three, The command name, FORT, must be used in
compiling FORTRAN source programs; the name, FORT, cannot
be changed,

By default, execution of the command produces an intermediate
source file, input filename.SR (output of compilation) and a re-
locatable binary file, input fi lename . RB (output of assembly).
However, once assembly has been successfully completed, the inter-
mediate source file is deleted. No listing is produced by the

default command,
Switches:

Global: /A - Assembly is suppressed.

/B - Brief listing (compiler source program input only).

/E - Error messages from compiler are suppressed at the $TTO.
(Assembler error messages are not suppressed.)

/F - FORTRAN variable names and statement numbers are
equivalenced to symbols acceptable to the assembler.

/L - Listing produced to tnput filename. LS.

/N - No relocatable binary file is produced.

/S - Save the intermediate source output file,

/X - Compile statements with X in column 1,

Local: /B - Relocatable binary output directed to given file name.
/L. - Listing output directed to given file name,
/S - Intermediate source output directed to given file name.
Asterisk: Not permitted.
Errors: See FORTRAN IV Reference Manual, 093-000053.
Extensions: On input, search for filename.FR, If not found, search for filename.
On output, produce filename.RB by default and other output

files with , LS or . SR extensions as described under switches and
examples,

3-37

Name:

Examples:

FORT (Continued)

FORT/L MAIN,/

produce relocatable binary file MAIN. RB with both a compiler and
an assembler listing to file, MAIN. LS.

FORT /N DP1: TABLE $LPT/L INTAB/SJ

compile the file TABLE from disk pack unit 1 and produce compiler
source and assembly listing onthe LPT and intermediate source output
file, INTAB, to the default directory. Do not produce a relocatable
binary file from the assembly.

FORT/A/L/S TABLEY
produce and save intermediate source file TABLE, SR and listing

file TABLE. LS containing compiler source input listing. Assembly
is suppressed. (Note that /A implies /B).

3-38

Name:
Format:

Purpose:

Switches:

Global:

Local:
Asterisk:

Errors:

‘Example

INIT
INIT device specifier
To initialize a directory device or magnetic tape unit, Until the device

is released (RELEASE command) all files on the initialized device
are now available to the system software,

By default, when a directory device is initialized, the current directory
of the device is found and read into system core, allowing access to
all files on the device.

/F - 4ull initialization. Clears all previous files and information

from the specified device and writes a new file directory and
free storage map on the device.

None.
Not permitted.

ILLEGAL COMMAND FOR DEVICE (attempt to INIT the only disk
device in the system)

DEVICE NOT IN SYSTEM
INIT DP3
Initialize the disk pack on unit number 3.
INIT /F MTIL)
Magnetic tape initialization means rewind the tape. Full (/F

switch) initialization of MT1 causes the tape on drive MT1
to be rewound and two EOF's written on the tape.

3-39

Name:
Format:

Purpose:

Switches:

Asterisk:

Extensions:

Errors:

Example:

INSTALL
INSTALL filename

To specify a new system save file for use when bootstrapping
DOS from the current default directory device. filename
becomes the DOS core image that will be bootstrapped from the
default directory device. The system to be installed must have
specified the current default device as its bootstrap device.

None.
Not permitted.

Any filename and extension may be used, but common practice
is to give a recognizable system name with the SV extension.

ILLEGAL COMMAND FOR DEVICE (the bootstrap program of
filename does not corres-
pond to the default directory
device.)

INSTALL SYS.SV &

3-40

Name: LFE
Format: LFE A <{nputmaster argy [... arg,]
LFE A/M inputmasterl [... inputmaster,]
LFED inputmaster outputmaster/O argq [...argn]

LFE1 <znputmaster outputmaster/O arg; [...arg,]

o oan
er/

LFE M

Y14 +
iLputmast

O inputmastery [.. .inputmastery]
LFEN outputmaster/0 arg; [.. -arg,]
LFE R tnputmaster outputmaster/o argl argz [... arg, _q al’gn]

LFE T inputmastelﬂl [listing-device/L] [inputmaster?...]

LFE X <inputmastenr arg; [... arg,]

Purpose: To update and interpret library files, which are sets of relo-
catable binary files having special starting and ending blocks
and which are usually designated by the extension . LB.

In the format, A, D, I, M, N, R, and X andkeys designating LFE func-
tions; inputmaster and outputmaster represent library

files; and grgs represent logical records on the library files

or relocatable binary files.

Appendix A contains more detailed information on library files,
the LFE, and on the use of and output from each of the functions
than is given here.

Action taken by the LFE depends upon the function given in
the command:

A - analyze - Analyze global declarations of
inputmastey or of a series of
inputmasters, or of logical re-
cords specified from one Znputmaster.
Output is a listing with symbols,
symbol type, and flags; no new
output library file is created.

D - delete Delete logical records, specified

by ergs from Znputmaster,
producing outputmaster.

3-41

Name:

Purpose:

Switches:

Global:

Local:

LFE (Continued)

(Continued)

/M

/A

]

insert Insert relocatable binary files, merging
with logical records of <{nputmaster

in the manner described under Switches.

merge - Merge library files (<nputmaster) into
a single library file named outputmaster.

new - Create new library file, outputmaster
from one or more relocatable binary files
given by args.

replace Replace logical records in Znputmaster
by relocatable binary files, producing
outputmaster. Args are paired with
the first being the logical record and the
second the relocatable binary file that

replaces the logical record.

titles

Output to the listing device (or to the
teletype by default) the titles of logical
records on inputmaster and on any op-
tional additional library tiles given by
inputmaster2 AN

extract Extract from library file, ¢nputmaster
one or more relocatable binary files
given by args. Output is one or more

relocatable binary files named args.

multipie input library files. The switch modifies
the A function (not the filename LFE) and causes
all library file names following, except the listing
file,to be analyzed as one library.

Insert after. The switch modifies a logical record

in an I function command line. Arguments following
the switch are inserted after the logical record whose
name precedes the switch. When neither a /A or

/B switch is given, inserts are made at the beginning
of the new library file.

3-42

Name: LFEE (Continued)
Switches:

Local: /B - Insert before. The switch modifies a logical record
in an I function command line, Arguments following
the switch are inserted before the logical record
whose name precedes the switch. When neither a
/A or /B switch is given, inserts are made at the
beginning of the new library file,

/L - listing file, The switch modifies the name of a file
to be used as listing output in the A function command
line, (The TTO is used by default.)

/O - output library file. The switch always modifies

Outputmasterin D, I, M, N, and R functions.
Asterisk: Not permitted,

Errors: Fatal Errors

NOT ENOUGH ARGUMENTS

UNEXPECTED ARGUMENT AT OR FOLLOWING: string
INVALID SWITCH FOR: string

NOT A LFE COMMAND: key

TOO MANY ARGUMENTS

ILLEGAL HEADER IN INPUT LIBRARY

CHECKSUM ERROR IN UPDATE FILE: filename
CHECKSUM ERROR IN LOGICAL RECORD: pecordngme
ILLEGAL BLOCK IN UPDATE FILE: filename

ILLEGAL BLOCK IN LOGICAL RECORD: recordname
FILE DOES NOT EXIST, FILE: library filename

Non-Fatal Errors

UPDATE FILE MATCHES INPUTMASTER: filename
FILE DOES NOT EXIST, FILE: updatefilename
LOGICAL RECORD NOT FOUND - pegcordname
DEFAULT OUTPUT IN FILE - filename

FILE ALREADY EXISTS - filename

(See the LFE section of Appendix A for additional information on
meanings of error messages.)

Extensions: If the , LB extension for inputmaster orthe. RB extension
for an update file are not given in the command, LFE searches
for inputmasterorarg respectively, If not found, LFE
searches for tnputmaster LB or arg .RB respectively,

3-43

Name: LEE (Continued)
Examples:
LFE N $PTP/O A.RB C.RB}

Create a library file, output to the punch from two disk
disk files, A,RB and C.RB,

LFE R MATH. LB $PTP/O ATAN $PTR TAN/2)

Output a new library file to the PTP, replacing ATAN on input
file MATH, LB by a file on the PTR and replacing TAN on the
input file by disk file TAN or, if not found, TAN.RB.

LFE A/M MATHI. LB $PTR $LPT/L MATHZ, LB}

Analyze library file MATHL. LB, $PTR, and MATH2. LB as
one library and list results on the linc printer.

LFE D $TTR UTIL/O MOVE LDBYT STBYT MULT/

Delete logical records MOVE, LDBYT, STBYT, and MULT
from $TTR and produce library file UTIL.,

3-44

Name: LIST

Format: LIST [filename; ... filename,]

Purpose: To list directory information from the default directory about
one or more files, consisting of file name, byte count, and
attributes, If LIST has no arguments, all non-permanent
files are listed, If filenames are given, no filename can be
preceded by a device specifier.

Switches:
Global: /A - all files, permanent as well as non-permanent, are listed.
/B - brief list, giving file name but not bvte count and attributes,
/L - listing printed to line printer ($LPT).
Local: None.
Asterisk: Permitted.
Errors: None,
Examples:
xampies LIST K)' < lists all non-permanent files.
ACT, SV 1002 S
COM., SV 2345 S
COM. 40
B. 0
R
LIST/A 2 « lists all files
SYS.DR 512 APW
$TTI. 0 APW
$TTO. 0 RAP
$TTR. 0 APW
$PTR. 0 APW
$PTP, 0 RAP
$LPT. 0 RAP
CLIL SV 7354 Sp
ACT .SV 1002 S
COM, SV 2345 S
COM., 40
B. 0
R

3-45

Name: LIST continued
Examples:

LIST/A *.SV « lists all , SV files
CLL SV 7354 SP

ACT. SV 1002 S

COM. SV 2345 S

R

LIST/B « lists all non-permanent files without
ACT, SV giving their attributes or byte counts.
COM. SV

COM.

B.

R

3-46

Name: LOAD

——

Format: LOAD <inputfilename [filenamez oo fi Zenamen]

Purpose: To reload onto disk from a given file or device a previously
dumped file or files. If no filenames are given, all non-
permanent files on the input file are reloaded. LOAD can be

used only to load previously dumped files (DUMP command). These
files must be nonexistent prior to the LOAD command. If filenames
are given, no name can be preceded by a device specifier.

Switches
Global: /1 - ignore checksum errors.
/V - verify the load with a list of names of loaded files.
/A - all including permanent files,
Local: None.
Asterisk: Permitted.
Errors: FILE DOES NOT EXIST. (input file)
FILE READ PROTECTED. (input file)
FILE ALREADY EXISTS. (output file)
ILLEGAL FILE NAME. (input file)
DISK SPACE EXHAUSTED.
Examples: LOAD $PTR &

causes whatever previously dumped non-permanent files are
in the paper tape reader to be reconstructed on disk under
the same names. File name, length, and attributes are
entered in the file directory.

LOAD /V $PTR *.SV i

LOAD $PTR, STRIKE ANY KEY.
EDIT. SV

ASM. SV

causes loading of all files with the extension .SV
and a list of the files loaded.

3-47

Name: MKABS

Format: MKABS save filename abso lute binary_filename
Purpose: To make an absolute binary file from core image (save) file.
MKABS gives users the facility of converting files that are exec-

utable under the operating system into absolute binary files
that are executable, for example, on another machine without

DOS.
Switches:
Global: /Z - save file starts at location zero. (See RLDR switches.)
Local: /S - starting address switch. An octal argument followed
by /S will output an absolute binary start block with
the address specified by the argument.
Asterisk: Not permitted.
Errors: NOT ENOUGH ARGUMENTS.
FILE DOES NOT EXIST. (save file)
FILE ALREADY EXISTS. (absolute binary file)
ILLEGAL FILE NAME.
TOO MANY ARGUMENTS.
DISK SPACE EXHAUSTED.
Extensions: Search for save filename. SV. If not found, search for
save filename.
Examples: MKABS FOO $PTP4

punches an absolute binary file to the paper tape punch from
file FOO. SV or, if not found, from FOO.

MKABS FOO $PTP 1000/S)

punches an absolute binary file with a start block specifying
1000 as the starting address.

3-48

Name: MKSAVE

Format: MKSAVE absolute_binary filename s ave _filename
Purpose: To create a core image (save) file from an absolute binary file.
Switches:

Global: /Z - create save file beginning at location ¢ rather than 168.

Local: None.
Asterisk: Not permitted.
Errors: PHASE ERROR, (addresses not all in ascending

order within the binary file)

NOT ENOUGH ARGUMENTS,

ILLEGAL FILE NAME,

FILE DOES NOT EXIST. (absolute binary file)
FILE ALREADY EXISTS. (save file)

DISK SPACE EXHAUSTED.

Extensions: On output, produces save filename.SV, regardless of the extension
specified by the save file argument,

Example: MKSAVE $PTR DK¢:A &
Causes creation of a core image file on fixed head

disk unit @ called A, SV, with the S attribute, from the
absolute binary file loaded in the paper tape reader,

3-49

Name:
Format:

Purpose:

Switches:
Asterisk:

Errors:

Extensions:

Example:

OEDIT

OEDIT filename

To invoke the octal editor in order to examine and modify in octal
any location in any type file, See Appendix A for a detailed description

of the octal editor.
None.
Not permitted.

NO FILENAME SPECIFIED.

INPUT FILE DOES NOT EXIST.

The octal editor searches for whatever file name and extension are

given,

OEDIT F0O0.SV/

14/ 016762

HOME

3-50

<+

If OEDIT finds FOO. SV, the
editor gives a carriage return/
line feed.

User proceeds with editing as
described in Appendix A.

To return to the CLI, user
types H. OEDIT echoes OME,
and user is at command level.

Name: PRINT

Format: PRINT filename [filename b Zenamen]

1 9 -

Purpose: To print a given file or files on the line printer. The command
is the equivalent of a series of XFER commands:

XFER/A f‘ilenamel $LPT; ... ; XFER/A fiZenamen $LPT 4

The source files may come from any device,

Switches: None,

Asterisk: Not permitted.

Errors: ILLEGAL FILE NAME.,
FILE DOES NOT EXIST. (source)
FILE READ PROTECTED. (source)
LINE LIMIT EXCEEDED. (source)
PARITY ERROR, (source)

Example: PRINT FOO.SR DP2:COM. SR EXT.SR $PTR 2

3-51

Name: PUNCH

Format: PUNCH f‘ilenamez [fiZenameZ e filenamen]

Purpose: To copy a given file or files to the high speed punch. The command
is the equivalent of a series of XFER commands.:

XFER/A filename; $PTP; ...; XFER/A ¢ Zenamen $PTP U

The source files may come from any device,

Switches: None.

Asterisk.: Not permitted,

Errors: ILIEGAL FILE NAME.
FILE DOES NOT EXIST. (source)
FILE READ PROTECTED, (source)
LINE LIMIT EXCEEDED. (source)
PARITY ERROR. (source)

Example: PUNCH DK@:ALPHA. SR BETA.SR $TTR »

Name:
Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

RELEASE

RELEASE device specifier

To prevent further I/0 access to a directory device or to
rewind a magnetic tape unit. The command must be issued
before a disk pack can be physically removed from a removable
disk unit. No further access to the disk device is pe rmitted
unless an INIT command is executed.

None.

Not permitted.

ILLEGAL COMMAND FOR DEVICE,
DEVICE NOT IN SYSTEM.

RELEASE DP1/

The command permits the disk pack to be removed from
moving head disk unit 1,

RELEASE MTg/

MT@ will be rewound.

3-53

Name:
Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

RENAME

RENAME oldname ; newname

To change the current name of a file or files,
None.
Not permitted.

PERMANENT FILE (old file)
ILLEGAL FILE NAME.

FILE ALREADY EXISTS (new file)

FILE DOES NOT EXIST.

FILES EXIST ON DIFFERENT DIRECTORIES.

DELETE Q.SV£

R

RENAME QTEST. SV Q.SV/
R

The commands above replace the old version of Q,SV with a

new version, one previously named QTEST. SV,

RENAME DK@:Al DK(:A Bl B/

Rename file Al to A on fixed head uisk unit . Rename file

Bl to B on the default directory.

3-54

[... oldname, newname

7

Name:
Format:

Purpose:

Switches:

Global:

Local:

RLDR

RLDR fiZenameZ [filename, ... filename,]

To create a save file from the loading of relocatable binary files and
library files, which are collections of relocatable binary files, The
command name, RLDR, must be used in loading relocatable binary
files; the name RLDR cannot be changed.

The default conditions are:

1.
2.

3.

No listing of the core map is produced.

The symbol table is built in memory but is not transferred to
the save file after the relocatable binary files have been loaded,

The debugger is not loaded with the user files.

The switches that change the default conditions are:

/A

/D

/L
/S

/Z

produce am alphabetical and numerical core map. (The local
/L switch must also be given to produce a core map.)

load symbolic debugger from SYS.LB. This causes the symbol
table to be transferred to the save file after loading and also
forces a system library search as in the /L global switch.

search SYS.LB aftcr loading all user specified files.

leave symbol table at high end of memory if it is to be transferred
to the save file. Normally, the symbol table would be transferred
to locations just above all loaded programs in the save file.

start save file at location zero. (A save file produced using the /.
switch cannot be executed properly under DOS. Its primary pur -
pose is to enable loading of routines that use page zero locations
0-15. The save file can then be output using MKABS/Z to producc
an absolute binary that can be read in stand-alone using the binary
loader.)

The default conditions are:

1.

2.
3.

4.

The first file name in the argument list becomes the name of the
save file,

No user symbois are loaded.

Loading of NREL code proceeds into ascending contiguous locations
beginning at 10008.

A listing of the core map is not produced;

3-55

Name: RLDR (Continued)

Switches: (Continued)
Local: The switches that change the default conditions arc:

/L listing of the core map is produced to the file or device whose
name precedes the switch, The listing is numeric unless the
¢lobal /A switch is also set.

/N. NMAX, the starting address for loading a file, is forced to an
absolute address given by the octal number preceding the switch.
This becomes the starting address of the file whose name follows
the switch. The absolute address must be higher than the current
value of NMAX.

/S the save file is given the name that precedes the switch.
/U user symbols are loaded for the file whose name precedes the
switch.

Asterisk: Not permitted,

Errors: ILLEGAL FILE NAME.
FILE ALREADY EXISTS.
FILE DOES NOT EXIST. ‘(input file)
NO SOURCE FILE SPECIFIED.

Extensions: A scarch is made for cach input file with the name f7lename,RB,
If not found, then a search is made for filename. Names of library
files must have the . LB extension.

The output save file will be f7Zenamey. SV by default or will be the name
preceding the /S switch with the .SV cxtension appended.

Examples: RLDR A B C DP2:D)
causes files A, B, and C from the default directory and D from disk pack
unit 2 to be loaded to produce save file A, SV on the default directory.
RLDR A/S $PTR)
causes the filc in the paper tape reader to be loaded and produce a save
file A.SV.
RLDR/D - MAIN SUB FORTL.LB FORT2.LB FORT3.LB FORT4.LB)
causes the assembled FORTRAN main program and subroutine, the
FORTRAN libraries, and the debugger to be loaded as save file MAIN.SV.
RLDR $LPT/L D/S A 4400/N By

causes A and B to be loaded as save file D.SV. Loading of B starts at
4400,, A numeric core map is printed on the linc printer.

8
3-56

Name: SAVE
Format: SAVE filename

Purpose: To create a save file from the file named BREAK. SV on the
default directory device. The SAVE is commonly used to
save the core image of a program interrupted by a CTRL C
break. The SAVE command causes the most recent core image
saved under the name BREAK. SV to be given a new name by
deleting fi lename. SV (if it exists) and renaming the BREAK, SV
to filename .SV. filename cannot be preceded by a device
specifier,

Switches: None,

Asterisk: Not permitted,

Errors: ILLEGAL FILE NAME.,
DISK SPACE EXHAUSTED.
FILE DOES NOT EXIST. (BREAK. SV)

Extensions: Output always has the SV extension. If the filename argument
already has an extension, the extension will be ignored, e.g.
either

SAVE GAMMA,/ or SAVE GAMMA, YYJ

would produce the save file GAMMA. SV.

Examples: s .
DEB ALPHA # + enter debugger to correct location PP
PP/LDA 2,@JLDA 2, @@, 3
BREAK « exit from debugger
SAVE ALPHA ¥ <+ save core image as ALPHA,SV

3-57

Name:
Format:

Purpose:

Switches:

Asterisk:

Errors:

Example:

TYPE

TYPE fiZenamel [filename2 ... filename |
n
To copy a given file or files to the teletypewriter,
The command is the egivalent of a series of XFER
commands.
XFER/A filename, $TTO; ... ; XFER/A filename, $TTO %
The source files may come from any device.
None.

Not permitted.

ILLEGAL FILE NAME,

FILE DOESN'T EXIST. (source)
FILE READ PROTECTED. (source)
LINE LIMIT EXCEEDED. (source)
PARITY ERROR, (source)

TYPE A.SR B.SR $PTR DPI:XX.SR ¥

3-58

Name:
Format:

Purpose:

Switches

Global:

Local:

Asterisk:

Errors:

Examples:

XFER

XFER sourcefile destinationfile

To transfer a file to another file,

By default, files are transferred sequentially without alteration., There
is one switch:

/A - ASCII transfer., Transfer the file line by line taking appropriate
read/write action, such as inserting line feeds after each carriage
return when transfer is from disk to line printer.

Nomne

Not permitted.

ILLEGAL FILE NAME,

FILE DOESN'T EXIST, (source)

FILE READ PROTECTED. (source)

LINE LIMIT EXCEEDED, (ASCII source)
PARITY ERROR, (ASCII source)
UNABLE TO WRITE FILE. (destination)
FILE WRITE PROTECTED. (destination)

NOT ENOUGH ARGUMENTS.
DISK SPACE EXHAUSTED.

XFER $PTR Q J

causes the file in the paper tape reader to be transferred
to a disk file named Q.

XFER/A ALPHA, SR $LPT{
causes ALPHA, SR to be printed on the line printer.
XFER $PTR $PTP Y

causes another tape to be punched, identical to the one read from
the paper tape reader.

XFER DP@:MYFILE DP1:MYFILE Vi

transfers MYFILE from disk pack unit @ to disk pack unit 1,

3-59

CHAPTER 4

PROGRAM MODE OF SYSTEM COMMUNICATION

SYSTEM COMMAND WORDS

The user communicates with the disk operating system (DOS) using system command
words assembled into his program. System command words and the mnemonic . SYSTM
that must precede the command word are recognized as legal mnemonics by the DOS
assembler. Appearance of the mnemonic

. SYSTM
in a program results in the assembling of JSR @2 instruction which allows system commun-
ication through the main system entry address stored in page zero. The system command
word must be assembled as the word following the . SYSTM.
Once system action is complete, normal return is made to the second instruction after
the system command word. If an exceptional condition is detected, return is made to the

first instruction following the system command word.

The general form of a system call in a program is

.SYSTM

command

exceptional return ;STATUS IN AC2

normal return ;AC'S preserved orinformation returned as

specified for the particular command,

COMMAND WORD FORMAT

There are two basic command word formats:

command n and command
where: n is a digit (0-7)*representing an I/O channel number, The
channel number indicates a logical link to an "opened"
file.

Any system command requiring a channel number 5 need not specify this number
in the command itself, By specifying octal 77 as the channel number in the
instruction, the system will use instead the numbe - passed in AC2. For example,
the following instructions specify a write to channel 3:

LDA 2,C3

.SYSTM

. WRS CPU

J'SR EOF
C3: 3

COMMAND WORD FORMAT (Continued)

When no I/0 channel is needed in command execution, the command word appears
alone in the instruction. If the command requires arguments, these are passed
in the accumulators,

STATUS ON RETURN FROM SYSTEM

Status of the accumulators upon return from the system is as follows:

If the system returns no information as a result of the call, the carry and all
accumulators except AC3 will be preserved.

AC2 is used when an exceptional return is made to return a numeric error code.
Error codes are listed by number at the end of this chapter and the applicable
codes are listed for each command.

AC3 is destroyed by . SYSTM (as it is a JSR). On return from the system,
however, AC3 is loaded from the contents of memory location 00016. This location
is defined as a permanent symbol by the DOS assembler and has the name USP
(User Stack Pointer). A convenient method of saving AC3 is to store it in location
00016 before issuing the .SYSTM.

LIST OF COMMAND WORDS

The command word mnemonics are:

.CREAT - Create a file

DELET * Delete a file.

.RENAM Rename a file.

.CHATR * Change file attributes,
.GTATR Get file and device attributes.

.OPEN ' Open a file.
. APPEND Open a file for appending.

.CLOSE - Close a file,
.RESET - Close all open files.
) .RDS Read sequential characters.
.RDL Read sequential line.
.RDR Read random,
. WRS Write sequential characters.
.WRL Write sequential line,
. WRR Write random,

4-2

LIST OF COMMAND WORDS (Continued)

.GCHAR * Read a character from TTI.

.PCHAR Write a character to the TTO.
.MEM Determine available memory space.
- .MEMI - Allocate an increment of memory.
=3 ,BREAK ° Save the current state of memory in save file format.
LEXEC - Execute a save file overlay,
.RTN - Return to the previously overlayed program at the
normal return point.
.ERTN - Return to the previously ovcrlayed program at the

exceptional return point,

. INIT - Initialize a directory device,

.DIR ° Changc the current default directory device.

.RLSE Release a directory device, preventing further file
access,

JINST ' Install a new DOS system from the default directory
device.

DIRECTORY DEVICE MONITOR COMMANDS

DOS incorporates the ability to manage multiple directory devices simultaneously.
The precise system configuration is specified via the SYSGEN program.

Directory devices are specified within the system by a three-character code, the
first two characters of which specify device types and the third the unit number,
For example,

DKg@
indicates fixed head disk (DK), unit @, while:

DP3

indicates moving head disk pack (DP), unit 3.

Initialize a Directory Device (. INIT)

A directory device is initialized via the following monitor command:

.SYSTM

LINIT

error return
normal return

4-3

Initialize a Directory Device (. INIT) (Continued)

On entry to the system, AC@ contains a byte pointer* to a directory device
specifier character string terminated by a null byte. If AC1 contains 177777,
a full initialization of the device results: a virgin file directory and free
storage map are constructed and written on the device. All previous files and
other information are lost.

If ACI does not contain 177777 when . INIT is invoked, a partial initialization

of the device results. The current device file directory is located on the device
and read into the system core area thus allowing subsequent file access to the
device. All files on the device are now availablc to the system software.

The following error conditions might arise during the execution of the ., INIT
monitor command. When such a condition is encountered, the error return to
the user program is taken with an error code in AC2,

AC2 Mnemonic Meaning
2 ERICM Illegal command for device,
36 ERDNM Device not in system,

Changing a Default Directory Reference (DIR)

All file name arguments to monitor commands may contain an optional device specifier.
Those that do not are taken to be files on the current default directory device,

At system initialization time, and after a bootstrap, the default device is set to

be the master device (see SYSGEN, Appendix B). The current default device

can be changed via the following monitor command:

.SYSTM

. DIR
error return
normal return

On entry to the system AC{ contains the byte pointer to a directory device specifier
character string terminated by a null byte. If a normal return to the user program

is taken, the default directory device has been changed as specified. If the error return
is taken, AC2 contains an error code indicating an abnormal condition; the default
directory device has not been altered. The following error codes are possible:

* A byte pointer contains the word address in bits 0-14, which contain or will
receive the byte, Bit 15 specifies which half (0 left, 1 right); note that this is
the reverse of the byte pointer as specified in "How To Use the NOVA Computers., "
To use the subroutine shown on Page 2-21 of the NOVA manual, change the
MOV @, 8, SZC instruction to a MOV @, @, SNC,

4-4

Changing Default Directory References (Continued)

AC2 Mnemonic Meaning
36 ERDNM Device not in system,

Release a Device to Prevent Further File Access (.RLSE)

In order to prevent further 1/O activity on a directory device, the following monitor
command is provided,

.SYSTM

.RLSE
error return
normal return

On entry to the system, AC@ contains a byte pointer to a directory device specifier,

If the normal return to the user program istaken, it is guaranteed that 1) all 1/0O activity
to and from the device has subsided and 2) no further access will be permitted without the
execution of the . INIT monitor command. In the case of a removable media directory
device, . RLSE must be issued before the pack can be physically removed from the

unit. (This is normally accomplished using the RELEASE CLI console command).

If the error return to the user program istaken, AC2 will contain an error code
designating an abnormal condition,

The possible error codes are:

AC2 Mnemonic Meaning
2 ERICM Illegal command for device.
36 ERDNM Device not in system,

Install a Bootstrap System (. INST)

DOS allows a user program to install a new DOS system under program control. When
the installation is complete, the new system designated can be bootstrapped into operation
in place of the current running system.

A file, previously opened on channel », becomes the DOS core image that will be boot -
strapped from the default directory device., The command to install the system is given
on the following page.

4-5

Install a Bootstrap System (Continued)

.SYSTM
.INST n

error return
normal return

There is one possible error return to AC2 resulting from the command:

AC2 Mnemonic Meaning
3 ERICD Illegal bootstrap program for device.

FILE MAINTENANCE COMMANDS

Fileé maintenance commands are used to enter file names into the file directory and perform
file maintenance. All file maintenance commands require the file names to be specified

by means of a byte pointer to the file name. The file name is stored as a character string.
The string must consist of characters packed left to right (. TXTM 1) with the high order
bit of each byte equal to 0. The string must have a terminating byte containing one of the
following characters: null (000), form feed (014), carriage return (015), or space (040).

The extension of a file name (if any) is separated by the character ".". For example, the
word at label "BPTR" contains a byte pointer to a properly specified file name, "MYFILE.SR".

BPTR: 2*NAME

LTXTM 1
NAME: .TXT *MYFILE.SR*

Create a File (. CREAT)

This command causes an entry for the file name to be made in the system file directory.
AC@ must contain a byte pointer to the file name, The format of the , CREAT command is:

. SYSTM
. CREAT
error return
normal return

Create a File (Continued)

Possible errors resulting from a . CREAT command are:

AC2 Mnemonic Meaning
1 ERFNM Illegal file name,
11 ERCRE Attempt to create an existent file,

Delete a File (. DELET)

This command causes a file and its entry in the system file directory to be deleted.
ACP must contain a byte pointer to the file name. The format of the . DELET command is:

. SYSTM
.DELET

error return
normal return

Possible errors resulting from a . DELET command are:

AC2 Mnemonics Meaning

1 ERFNM Illegal file name,

12 ERDLE Attempt to delete a non-existent file,
13 ERDE1 Attempt to delete a permanent file.

Rename a File (RENAM)

This command causes the name of a file to be changed. AC@ must contain a byte pointer
to the current name of the file, AC1 must contain a byte pointer to the new name. The
format of the ., RENAM command is:

. SYSTM
.RENAM

error return
normal return

Upon a normal return, the old name no longer appears in the file directory.

Possible errors resulting from a . RENAM command are:

4-7

- L oa TV \
14111€ 4 11T (Lullunucuy

AC2 Mnemonic Meaning

1 ERFNM Illegal file name,

11 ERCRE Attempt to create an existent name., (ACl),

12 ERDLE Attempt to rename a non-existent file. (ACH).
13 ERDE1 Attempt to rename a permanent file. (AC@).
35 ERDIR Files specified on different directories.

FILE ATTRIBUTE COMMANDS

File attribute commands allow the user to determine the current attributes of a file
or device and to change the file attributes if desired. The bit settings of ACf) and ACL
determine the file attributes and device attributes respectively.

Change File Attributes (.CHATR)

This command causes the attributes of a file to be changed in accordance with the con-
tents of AC@. To change the attributes of a file, a file must be opened (see . OPEN).
The number of the channel is given in the system command. The format of the CHATR
command is:

.SYSTM

.CHATR n
erroy return
normal return

When the . CHATR command is given, AC@ must contain an attribute word having the
appropriate bit set for every attribute desired. The bit/attribute correspondence used in
setting the contents of AC{ is given below in the table:

Bit Mnemonic Meaning

1B¢ ATRP Read-protected file, Cannot be read.

1B1 ATCHA Attribute-protected file, Attributes cannot be changed.
1B2 ATSAV Save file (core image file).

1B14 ATPER Permanent file, Cannot be deleted or renamed.

1B15 ATWP Write-protected file, Cannot be written.

Possible errors resulting from a . CHATR command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

14 ERCHA Illegal attempt to change file attributes.

15 ERFOP Attempt to change attributes of an unopened file.

4-8

Get File Attributes (. GTATR)

This command obtains the attributes of a file or device characteristics, To
obtain attributes, the file must be opened (see . OPEN), The number of the
channel is given in the system command, The format of the «GTATR command
is:

.SYSTM

.GTATR =n

error return

normal returs
Upon return, AC@ contains the file attributes. The bit positions used to specify
the file attributes were given with the . CHATR command, ACI1 contains the
device attributes of the file (e, g., $PTR). The bit/attribute corre spondence
used in interpreting the bit configuration returned in ACI is shown below:

Bit Mnemonic Meaning

1BO DCDIR Directory device,

1B1 DCC8¢ Card input (80-column) device.

1B2 DCLTU Device changing lower case ASCII to upper case.

1B3 DCFFO Device requiring form feeds on opening,

1B4 DCFWD Full word device (reads or writes more than a byte).

1B6 DCLAC Output device requiring line feeds after carriage returns,

1B7 DCPCK Input device requiring a parity check; output device
requiring parity to be computed.

1B8 DCRAT Output device requiring a rubout after every tab,

1B9 DCNAF Output device requiring nulls after every form feed,

1B10 DCKEY A keyboard input device,

1B11 DCTO A keyboard output device,

1B12 DCCNF Output device without form feed hardware.

1B13 DCIDI Device requiring ope rator intervention.

1B14 DCCGN Output device without tabbing hardware,

1B15 DCCPO Output device requiring leader/trailer.

Possible errors resulting from a . GTATR command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number
15 ERFOP Attempt to get attributes of an unopened file,

4-9

INPUT/OUTPUT COMMANDS

All 1/0 is handled by system I/C commands. These commands require a channel number
(0-7) to be given in the second field of the command word. A channel is initially linked
to a particular file or device by means of the . OPEN (or. APPEND) command, Thereafter,
all commands pertaining to that file merely require a channel number, The system pro-
vides three basic modes for reading and writing files.

The first mode is line mode where data read or written is assumed to consist of
ASCII character strings terminated by either carriage returns or form feeds. In

this mode, the system handles all device dependent cditing at the device driver

level. For example, line feeds are ignored on paper tape input devices and supplied
after carriage returns to all paper tape output devices. Further, reading and writing
never require byte counts, since reading continues until a carriage return is read and
writing proceeds until a carriage return is written. The line mode commands are . RDL
and . WRL,

The second mode is unedited sequential mode, In this mode, data is transmitted
exactly as read from the file or device. No assumption is made by the system as to the
nature of this information. Thus, this mode would always be used for processing binary
files. This mode requires the user program to specify specific byte counts necessary

to satisfy a particular read or write request., The sequential mode commands are . RDS
and . WRS.

The third mode is available for processing files stored on devices capable of random
access, e.g. any disk file. This mode provides for random access to files by means
of record number. The random access mode commands are . RDR and . WRR.

The association of a file and a channel number can be broken by using the . CLOSE
command. All currently open files can be closed using the . RESET command.

Open a File (. OPEN)

Before other I/O commands can be used, a file must be linked to a channel number. A
byte pointer must be passed in AC@}, pointing to the file name,

A "characteristic inhibit" mask must be passed in AC1. Foreverybitset in thisword, the
corresponding device characteristic (as defined on the previous page) is inhibited,

The characteristics will be inhibited for the duration of the . OPEN. For example, if the
user has an ASCII tape without parity to be read from the paper tape reader, he may
inhibit parity checking by the following:

4-10

Open a File (Continued)

LDA 0, READR
LDA 1, MASK
«SYSTM
. OPEN 3
READR: . +1¥2
. TXT *$PTR *
MASK: DCPCK ;PARITY CHARACTERISTIC

In general, the user will wish to leave all characteristics as defined by the
system,

SUB 1,1
before the .SYSTEM
.OPEN n

The format of the , OPEN command is:

. SYSTEM

. OPEN # ;OPEN CHANNEL n
error return
normal return

If the file opened requires leader, it will be output on the , OPEN, If the file
opened requires intervention, the message:

LOAD filename »STRIKE ANY KEY.

will be typed. Possible errors resulting from a , OPEN command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
12 ERDLE File ' does not exist,
21 ERUFT Attempt to use a channel already in use,
31 ERSEL Unit not properly selected.

Open a File for Appending (. APPEND)

An alternate system call for opening a file is implemented that is identical to
. OPEN in every respect except that it enables the writing of a file that already
exists, Specifically, it opens the file for appending. The format of the call is:

4-11

Open a File for Appending (Continued)

.SYSTM
.APPEND n
error return
normal return

As with ,OPEN, AC{ must contain a byte pointer to the file name, and ACl must

contain the characteristic disable mask. For peripheral devices, such as the line printer,
the call is in every respect identical to . OPEN, For a directory device, such as the disk
pack, the file is opened and any writes to that file are appended to it and its length extended.
For a device such as magnetic tape, a file is opened and read until end of file is encount-
ered, and writing takes place from that point,

This command provides a convenient feature for subsystems running under DOS to append
to the same output file.

Possible errors resulting from a . APPEND command are:

AC2 Mnemonic Meaning
@ ERFNO Illegal channel number.
21 ERUFT Attempt to use channel already in use.

Close a File (. CLOSE)

After use, files must be closed to insure the updating of directory information. The
channel number is then available for other I/O. The format of the . CLOSE command is:

.SYSTM
.CLOSE n ;CLOSE CHANNEL 4

error return
normal return

If the file closed requires trailer, it will be output on the . CLOSE,

Possible errors resulting from a . CLOSE command are:

AC2 Mnemonic Meaning
@ ERFNO [llegal channel number,
15 ERFOP Attempt to reference a channel not in use,

4-12

This command causes all currently open files to be closed. The format of the ., RESET
command is;

.SYSTM
.RESET

error return
normal return

The error return from this command is never taken.

Read a Line (RDL)

This command causes an ASCII line, written with even parity, to be read. AC@
must contain a byte pointer to the starting byte address within the user area into which the
line will be read.

Reading will terminate normally after transmitting either a carriage return or a form feed
to the user. Reading will terminate abnormally after transmission of 132 (decimal)
characters without detecting a carriage return or a form feed, upon detection of a

parity error, or upon end of file, In all cases, the byte count read will be returned

in AC1. If the read is terminated because of a parity error, the character having incorrect
parity will be stored (high order bit zero) as the last character read. The byte pointer

to the character can always be computed as:

C(ACP)*+C(AC1) -1
The format of the . RDL command is:
.SYSTM
.RDL «x ;READ FROM CHANNEL n

error return
normal return

Possible errors resulting from a ., RDL command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number,
3 ERICD lllegal command for device,
6 EREOF End of file.
7 ERRPR Attempt to read a read protected file.
15 ERFOP Attempt to reference a file not opened.
22 ERLLI Line limit (132 characters) exceeded.
24 ERPAR Parity error,
26 ERMEM Attempt to allocate more memory than is available.
30 ERFIL File read error.

* C(a) means "contents of (¢)"

4-13

Read Sequential (RDS)

Sequential mode transmits data exactly as read from the file. AC@ must contain a byte
pointer to the starting byte address within the user area into which the data will be
read and AC1 must contain the number of bytes to be read. The format of the . RDS
command is:

.SYSTM :
RDS 7 :READ FROM CHANNEL

error return
normal return

Possible errors resulting from a ., RDS command are:

é@-\ Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file.

7 ERRPR Attempt to read a read protected file,

15 ERFOP Attempt to reference a file not opened.

26 ERMEM Attempt to allocate more memory than is available.
30 ERFIL File read error.

Upon an end of file, the partial count read will be returned in ACL

Use of the Card Reader ($CDR) in . RDL and . RDS Commands

When using $CDR (card reader) as an input device, the end of file condition on a . RDL
will occur only if a special end of file code is detected in column 1 of a card. This code
is at 12,11,0,1 multipunch. It can be punched on a 029 keypunch by multipunching "A",
"g”, and 'Y-'l’

Note also that a Hollerith to ASCII translation only occurs if a . RDL has been requested.
The translation assumes 029 keypunch codes. A table of Hollerith - ASCII t ranslation
is given on page 4-16,

If .RDS is given, the card is read in image binary. In this case, an even

byte count must be specified, since two bytes are required to store each card column,
If an odd number of bytes is requested, status ERICD, Illegal Command for Device,
is returned in AC2. Each two bytes will be used to store a single column, The
packing is shown on the following page.

4-14

Use of Card Reader ($CDR) in . RDL and . RDS Commands (Continued)

Byte

Column Number

Bit

e 1 e, —S—

11 454
2 1

01 2 3 45 6 7

2 3 4

8§ 9 1
0

5 6 7 8 9

[u—

p 9P P dddd

ld d4 d

d d d d d

The "d's" will be 1 for every column punched.

4-15

ASCII

Hollerith

ASCII

Hollerith

Char-

Char-

Octal

acter

1-9

11 0

12

Octal

acter

8,1 form feed 014

0

040

space

072
043

#

oo
N &

o0 0

061
062
063
064
065
066
067

100
047
075
042

@

8,4

8,5

011
135

tab

8,1

070
071

054
045
137

060
057

076
077

8,7

123
124

041

8,2

125

044
052
051

8,3

126
127

8,4

8,5

130
131

073

134

132

133
056
074
050
053

[

055
112
113

]

8,5

114
115

8,6

136

8,7

116
117

120

121
122

046
101
102

103

s

104
105

106
107

110
111

Hollerith- ASCII Translation Table

4-16

Read Random (. RDR)

Random access files are assumed to consist of fixed length, 64-word records, These
records are numbered sequentially from . No EOF is ever given on a read or write
random. A read random of a record number never written will result in a 64-word
record of zeroes. The length of a random access file is computed by the system as:

(highest record number written + 1) * 12 80 bytes
The read random command allows random reading of records from j file on disk. ACg
must contain a destination core address within the user area, and AC1 must contain the
record number, The format of the . RDR command is:

.SYSTM
.RDR n ;READ FROM CHANNEL #

error return
normal veturn

Possible errors resulting from the . RDR command are:

AC2 Mnemonic Meaning

0 ERFNO lllegal channel number,

3 ERICD Illegal command for device,

7 ERRPR Attempt to read a read protected file.

15 ERFOP Attempt to reference a file not opened,

26 ERMEM Attempt to allocate more memory than is available.
30 ERFIL File read error.

Write a Line (, WRL)

This command presumes an ASCII file. AC@ must contain a byte pointer to the starting
byte address within the user area from which characters will be read.

Writing will terminate normally upon writing of a null, a carriage return or a form
feed, and abnormally after transmission of 132 (decimal) characters without detection
of a carriage return, a null, or a form feed. In either case, ACI will contain, upon
termination, the number of bytes read from the user area to complete the request, The
termination of a write line on a null allows for formatting output without forcing a
carriage return,

4-17

Write a Line (Continued)
The format of the , WRL command is:
.SYSTM
.WRL 5 ;WRITE TO CHANNEL

error return
normal return

Possible errors resulting from the , WRL command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number,

3 ERICD Illegal command for device.

) ERWRO Attempt to write an existent file,
(Detected upon the first attempted write.)

10 ERWPR Attempt to write a write protected file.

15 ERFOP Attempt to reference a file not opened.

22 ERLLI Line limit (132 characters) exceeded.

27 ERSPC Out of disk space.

Write Sequential (. WRS)

This command transmits data exactly as read from the user area. AC{ must contain
a byte pointer to the starting byte address of the data within the user area and ACl must
contain the number of bytes to be written. The format of the . WRS command is:

.SYSTM

.WRS » ;WRITE TO CHANNEL 7
error return
normal return

Possible errors resulting from a . WRS command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

5 ERWRO Attempt to write an existent file,
(Detected upon the first attempted write).

10 ERWPR Attempt to write a write-protected file,

15 ERFOP Attempt to reference a file not opened.

27 ERSPC Out of disk space,

4-18

Write Random (, WRR) (Continued)

AC@ must contain the source record core address and AC1 must contain the number
of the record to be written, Sixty-four words will be written, starting from the
address specified in AC@. The format of the ., WRR command is:

.SYSTM
.WRR #n ;sWRITE TO CHANNEL n

error return
normal rveturn

Possible errors resulting from a . WRR command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.,

3 ERICD lllegal command for device.

10 ERWPR Attempt to write a write protected file,
15 ERFOP Attempt to reference a file not opened.
27 ERSPC Out of disk space,

TELETYPEWRITER COMMANDS

Buffered transfer of single characters between the teletypewriter and AC@ is handled
by the commands, .GCHAR and . PCHAR. No channel number is required for these
commands, and the teletype is always available to them without requiring the . OPEN
command.

Get a Character (. GCHAR)

This command returns a character typed from the teletypewriter in AC#, The
character is right-adjusted in AC@ with bits 0-8 cleared. No channel is required;

the TTI is always used as input for this command. The format of the . GCHAR command
is:

.SYSTM
.GCHAR

egrror return
normal return

No error return is possible from this command; if no character is currently in the
TTI input buffer, the system waits.

Put a ‘(‘;‘haracter (. PCHAR)

This command transmits a character in AC@, bits 9-15, to the teletypewriter. No
channel is required; the TTO is always used as output for this command. The format
of the , PCHAR command is:

4-19

Put a Character Continued)

. SYSTM
. PCHAR

error return
normal return

No error return is possible from this command.

MEMORY COMMANDS

Appendix A shows in detail how memory is allocated using the Disk Operating System,
The following is a simplified diagram.

The Disk Operating System resides in upper memory. User programs are loaded in
lower memory. Memory then looks, essentially, as follows:

A

Top of Memory.

Disk Operating
System

< - HMA (highest memory address available)

Available Memory

NMAX (first location available above
the loaded program).

r

User Program

{ location.

The highest memory address available (HMA) is usually the first word below the Disk
Operating System. If a user symbol table has been loaded at the high end of user memory,
the high memory address will be the first word below the user symbol table. The latter
will occur when the user specifically requests that the relocatable loader leave the table

in upper memory. (The loader, by default, moves the symbol table down so that the bottom
of the table coincides with the first location not loaded into by the program).

The . MEM command returns both the current value of NMAX and HMA, The . MEMI
command allows the user to adjust the value of NMAX.,

4-20

Determine Available Memory (. MEM)

This command returns the current value of NMAX in AC1 and the value of HMA in ACH,
HMA may represent either the bottom of DOS or the end of the user symbol table. A
SUB 1, O instruction determines the limit of memory available to the user program,
The format of the . MEM command is:

.SYSTM
. MEM
error return

nermal return

There are no error returns from this command,

Change NMAX(, MEMI)

This command allows the user to increase or decrease the value of NMAX, ‘The increment
or decrement (in two's complement) is passed in ACfl. The command causes the value

of NMAX to be updated in the User Status Table*and the new NMAX to be returned in

ACl. The format of the . MEMI command is:

.SYSTM
. MEMI

error return
normal return

NMAX will not be changed if the new value of NMAX would be higher than the lowest address
of the Disk Operating System. No check is made as to whether or not the user decreases
NMAX below its original value (as determined at relocatable load time) nor, if his symbol
table resides in upper memory, whether he increases NMAX above the bottom of his
symbol table,

Whenever a user program requires memory space above the loaded program, a . MEMI
should be executed first to allocate the number of words needed. The value of NMAX is
used by the operating system to determine the extent of memory to be saved should a
program be suspended. If temporary storage is being used without having updated NMAX,
the program may be suspended with insufficient information for continuation. This is
explained further in the discussion of Program Overlays,

There is one error resulting from a . MEMI command:

AC2 Mnemonic Meaning
26 ERMEM Attempt to allocate more memory than available,

(Attempted overlap with DOS).

* See Appendix A, Relocatable Loader Section,

4-21

PROGRAM OVERLAY COMMANDS

Program Overlays

Any program executing under the operating system can suspend its own execution and

invoke another program. Everyprogram requestedfor execution mustexist as a save
file on disk,

The program that is suspended is stored temporarily on disk; its User Status Table
is used to save its AC's, Carry, and the PC (Program Counter) at the time of its sus-
pension., This information enables the program to be resumed upon termination of the
program overlay being requested.

The "calling" program will be referred to as executing at a "higher level” in the system.
The "called" program, or program overlay, will be referred to as running at a "lower
level". These terms are relative, since the called program may in turn invoke another
program overlay for execution, and therefore, become the calling program.

Upon program suspension, the current core image will be saved up to the higher of
NMAX or SST (start of the user symbol table). It is very important for a program
using temporary storage above its original value of NMAX at load time to have the
system allocate memory increments (see . MEMI) before this space is used. If this

is not done and the program invokes another program, the calling program's suspended
memory state will not all be saved in its entirety, Even if the program executing does
not call another program, a teletype BREAK may force suspension. In order to insure
the ability to restart a suspended routine, NMAX must correctly reflect the core in
use at the time,

The Command Line Interpreter is merely one program executable under the operating
system. Its only special property is that it executes at the "highest” level in the
system, This will be called "level zero".

The operating system provides for up to five levels of program overlays. This
implies a program invoked by the CLI (causing the CLI to be overlayed) can in turn
invoke a third program (causing the second program to be overlayed) ; the third
program can invoke a fourth, and the fourth can invoke a final program. The sys-
tem will reject all further overlay attempts, Normally, the system programs
supported by the CLI (e. g., Text Editor, Assembler, Relocatable Loader) execute
at level one.

4-22

Read in a Save File Overiay (. EXEC)

This command requests the system to bring in a program overlay. The format of the . EXEC
command is:

.SYSTM
.EXEC

error return
normal return

AC@ must contain a byte pointer to the program save file name. ACI must contain an ap-
propriate starting address code. Three possible starting addresses are allowed: the
program starting address (USTSA), the Debug III starting address (USTDA), or the pre-
viously saved program counter (USTPC). * If bit # of AC1 is 1, the current level will not
be saved, and the operating level will remain unchanged. (Note that this feature provides
unlimited program chaining.)

The codes permissible in AC1 are:

Code Meaning

0 Starting address

1 Debugger address
2 Program counter

If the code is not one of these three or the address required is not given in the User Status
Table, ERADR status is returned. This can occur if:

A. No starting address was specified for the save file and code @ is given.
B. The debugger was not loaded as part of the save file and code 1 is given.

C. The save file was not the result of a BREAK (CLI) or . BREAK and code 2
is given.

Error returns possible before the overlay has been read into memory are:

AC2 Mnemonic Meaning

1 ERFNM Illegal file name.

4 ERSV1 File requires "S"ave attribute.

12 ERDLE File does not exist.

25 ERCM3 Trying to push too many levels,

26 ERMEM Attempt to allocate more memory than is
available,

32 ERADR [llegal starting address.

* See Appendix A, Relocatable Loader section, for descriptions of USTSA, USTDA, and
USTPC.

4-23

Return from Overlay {, RTN)

Upon successful completion of a program invoked by a . EXEC, this command causes
return to the "calling" program at its normal return point, The format of the . RTN
command is:

.SYSTM
.RTN

error return
Note that the usual "normal return" is impossible, since, if execution of the return is

successful, the calling program is restored to memory. The one possible error
return is:

AC2 Mnemonic Meaning
23 ERRTN Attempt to restore a non-existent image,

This error return is only possible if the program at execution level zero issues a
.RTN. Since the CLI executes at level zero, system and user programs should
never obtain this error indicator.

Return to the calling program preserves, as normal, AC#, ACl, AC2, and Carry.
AC3 will contain the contents of the calling program's User Stack Pointer, C(USP).

Return from Overlay with Exceptional Status (. ERTN)

A called program can return exceptional status information to the calling program
with this command. The format of the . ERTN command is:

.SYSTM
.ERTN

error return

This call is identical to . RTN in every respect except that return is made to the

error return of the calling program and AC2, upon return, contains the called program's AC2
instead of the calling program's AC2, A single word of status can, therefore, be returned.

If the program issuing a . ERTN had been executing at level one (and is returning,

therefore, to the CLI), the CLI will output an appropriate message concerning the status

code in AC2. If the code is recognized as a monitor exceptional status code, a text

message is printed. The code ERDLE (12g) for example, would cause the message:

FILE DOES NOT EXIST

to be typed out. If the code is greater than any system codes, the message:

Return from Overlay with Exceptional Status (Continued)

UNKNOWN ERROR CODE #
will be typed out, where # is the numeric code in octal, This feature is useful for returning
status unrelated to the operating system but directly related to the user program that

was running,

Saving Current State of Memory (, BREAK)

DOS provides a system call for conveniently saving the state of memory in save file format,
The format of call is '

.SYSTM

.BREAK

error return
normal return

This call causes the operating system to save the current state of memory from location
SCSTR (the start of save files) to the higher of NMAX or the start of the symbol table, SST.
The file name used is BREAK, SV ; any previous file BREAK, SV is deleted by the
command. The device used is the current default directory device. File BREAK, SV

is in every respect an executable save file. Note that when using the CLI command

SAVE, the CLI merely renames BREAK., SV to be the file name specified by the command.

One error message is possible:

AC2 Mnemonic Meaning
27 ERSPC Out of disk space,

4-25

ERROR MESSAGES

CODE

MNEMONIC

MEANING

0

10

11

12

13

14

15

ERFNO

ERFNM

ERICM

ERICD

ERSV1

ERWRO

EREOF

ERRPR

ERWPR

ERCRE

ERDLE

ERDE1

ERCHA

ERFOP

ILLEGAL CHANNEL NUMBER

ILLEGAL FILE NAME

ILLEGAL SYSTEM COMMAND
ILLEGAL COMMAND FOR
DEVICE

FILE REQUIRES THE "SAVE"

ATTRIBUTE

ATTEMPT TO WRITE AN
EXISTENT FILE

END OF FILE

ATTEMPT TO READ A READ
PROTECTED FILE

ATTEMPT TO WRITE A WRITE
PROTECTED FILE

ATTEMPT TO CREATE AN
EXISTENT FILE

ATTEMPT TO REFERENCE A
NON-EXISTENT FILE

ATTEMPT TO ALTER A
PERMANENT FILE

ILLEGAL ATTEMPT TO
CHANGE FILE ATTRIBUTES

APPLICABLE COMMANDS

.CHATR
.GTATR

. APPEND

.CREAT
.DELET

.INST

.RDR
. WRR

.EXEC

. WRS

.RDS

. RDS

. WRS

.CREAT

.DELET

.OPEN

.DELET

.CHATR

ATTEMPT TO REFERENCE A FILE . CHATR

NOT OPENED.

4-26

.GTATR
.CLOSE

. OPEN .RDS .WRS
.CLOSE .RDL .WRL
.RDR .WRR

.RENAM ., EXEC
.OPEN

.RLSE . INIT

. RDS . WRS
.RDL .WRL

.WRL

.RDL

.RDL .RDR

.WRL .WRR

.RENAM .OPEN

.RENAM .EXEC

.RENAM

.RDS .WRL
.RDL .WRS
.RDR .WRR

ERROR MESSAGES (Continued)

CODE MNEMONIC
21 ERUFT
22 ERLLI
23 ERRTN
24 ERPAR
25 ERCM3
26 ERMEM
27 ERSPC
30 ERFIL
31 ERSEL
32 ERADR
35 ERDIR
36 ERDNM

MEANING

ATTEMPT TO USE A CHANNEL
ALREADY IN USE

LINE LIMIT EX
READ OR WRIT

CEEDED ON
E LINE

ATTEMPT TO RESTORE A
NON-EXISTENT IMAGE
PARITY ERROR ON READ LINE

TRYING TO PUSH TOO MANY
LEVELS

ATTEMPT TO ALLOCATE MORE
MEMORY THAN AVAILABLE

OUT OF DISK SPACE

FILE READ ERROR

UNIT NOT PROPERLY
SELECTED

ILLEGAL STARTING ADDRESS

FILES SPECIFIED ON
DIFFERENT DEVICES.

ILLEGAL DEVICE NAME

APPLICABLE COMMANDS

.OPEN | APPEND

.RDL . WRL
.RTN .ERTN
.RDL

.EXEC

. RDL . RDS
.MEMI .RDR

. WRS

.BREAK

. RDS .RDL
. OPEN

.EXEC

.RENAM
INIT .RLSE

.WRL
. WRR

.RDR

CHAPTER 5

MULTIPLE FILE DEVICES

DEVICES PROVIDING MULTIPLE FILE ACCESS

At present there are three possible types of devices on which system and user files
can be stored that the Disk Operating System can readily access for multiple reading
and writing, These are:

1.

Fixed head disk - Usually one per system configuration, having
the mnemonic:

DK@

If there were more than one fixed head disk controller, the second

~11 ..

controiier would be designated DKI1.

Disk pack of the movable head disk - There can be up to four
disk packs per disk controller and they are designated:

Dp@, DP1, DP2, DP3

Magnetic tape units - Up to eight magnetic tape drives are per-
mitted per system, and they are designated:

MT@, MT1, . . . MT7

DETERMINING SYSTEM DEVICE CONFIGURATION

As described in Appendix B, once a bootstrap system has been loaded during system
generation, the program SYSGEN queries the user as to the system configuration.
Responses to SYSGEN (in addition to determining storage, I/O devices, etc.) will

determine:

Which device will be the master storage device (fixed head
disk or a given disk pack unit,)

How many disk pack units, if any, and how many magnetic tape
drives, if any, are in the system:.

DIRECTORY DEVICES

Directory devices are those devices that have their own file directory, containing
the names, attributes, and byte counts of all files stored on the device. Only disk

5-1

DIRECTORY DEVICES (Continued)

packs and the fixed head disk can maintain such a file directory. See Chapter 1
for a discussion of disk file directories.

Files are stored on magnetic tape by file number, the number indicating the
order in which they were written onto the tape. DOS accesses files on magnetic

tape by their file number, not by referencing a file name in a directory.

MAGNETIC TAPE

DOS has access to files on magnetic tape and the DOS system will support
up to eight magnetic tape drives in any combination of 7 and 9 track units.
Reading and writing is at high density (800 bpi). If the unit specified is selected
to low density or is not on-line, the message:
UNIT IMPROPERLY SELECTED

will be given,
If the control detects a parity error during reading, the message:

PARITY ERROR: FILE MTn:dd Ppsn<7; P<dd <99
will be given and two results are possible:

1. If a dump file was being LOADed, execution will terminate,

2, If a file was being XFERed, execution will continue; however,
the first 128 words of the erroneous record will be lost,

7-Track Units

Data recorded on 7-track units is necessarily encoded. This is accomplished in the
following manner;

Original
Data Word | 0] 1] 2]3]4]5] 6] 7] 8[9i0]ii]1213]14]15]
Encoded Tx[x[x|xJo1]2[3] xIx[x]xl 415] 6] 7]

Data Words [x[x| x|x] glofiofir] x| x| x| x[1213]14]15|

Every data word is written on a 7-track unit as two encoded data words.

Number of Tape Drives in System

During system generation (Appendix B), the SYSGEN program will query the user as to
how many magnetic tape drives are in the system configuration. That number of drives

5-2

Number of Tape Drives in System (Continued)

may then be referenced by device mnemonic. DOS can directly access files on mag-
netic tape by file number,

Initializing a Tape Drive

Initializing a tape drive causes the tape on that drive to be rewound. Full initialization
(/F switch) will cause the tape to be rewound, and a dummy record and two EOF's will
then be written.

Releasing a Tape Drive

To rewind a tape drive, the RELEASE command can be given.

Division of Magnetic Tape into Files and Records

Logically, magnetic tape is divided into files, which are placed on tape in numeric order,
beginning with file 0. Up to 100 files may be written to a given tape, i.e., files 0-99,

Physically, magnetic tape is divided into magnetic tape records. These records contain

377 words, terminated by a word containing the number of the file and a word contain -
ing the number of the record.

Referencing a File on Magnetic Tape

A given file is referenced in a command by a tape drive specifier followed by file number.
Either a one-digit or two-digit number may be used to reference the first ten file numbers,

eo go F)
MT1:04 and MT1:4 are equivalent,

Both the tape drive specifier and the file number must be given, The file number must
be in the range 0-99, and the tape drive number must be in the range 0-7. Otherwise;
the error message:

ILLEGAL FILE NAME

will be output. If the user referenced a file on tape by name rather than number, e.g.,
MTQ:XX

the system gives the error message:
ILLEGAL FILE NAME

Some examples of references to files on tape are:

DUMP MTO0:0 4 Dump all non-permanent files onto tape, providing a
magnetic tape backup system.

DELETE *.*) Delete all non-permanent files from disk.

LOAD MTO0:04 Reload the files onto disk from tape.

5-3

Referencing a File on Magnetic Tape (Continued)

ASM A B MT@:1/BY

Assemble files A and B and write the relocatable binary to
tape drive @, file L.

RLDR A.SV/S MT1:2 MT1:3 MT1:4 4

Load relocatable binary files 2, 3, and 4 from drive 1,
producing save file A.SV.

XFER MT@:2 FOO.
XFER MT@:2 MT1:5/

Transfer a file from tape to disk or from tape to tape.
XFER FORTEST, FR MT@:8/

Place FORTRAN source file on tape.
FORT MT@:0,

Compile from tape, producing a relocatable binary file
called @. RB

Note that when a file on tape is assembled or compiled onto disk or disk pack as in the

example above, the name of the relocatable binary file on disk will become the file
number with the extension RB.

Writing Files to Magnetic Tape

Files must be placed on magnetic tape in numeric order. For example, suppose the
user transfers a file to tape that has just been initialized:

XFER FILE@ MT@:0/

FILE@ will be the first file on the tape. The tape on drive # will now contain the
following:

....... First file, containing contents of FILE@.

Once a file is written, the file number of

the next file is assigned. File 1 is a null
file.

Writing Files to Magnetic Tape (Continued)

An attempt to place a new file on the tape above with one of the following commands:

XFER FILEX MT@:2¢ where only file # has been written to tape.
XFER FILEY MT@:4 &

will result in an error message:
ILLEGAL FILE NAME

It is possible to overwrite a magnetic tape file. For example, assume a tape on drive
) contains four files:

o
1 —————
2 ————— —
3
4 .
. Null file.

The command:
XFER MYFILE MT@:1)

will cause the contents of MYFILE to overwrite the tape beginning at the file 1 position,
When a tape file is written in this manner, all subsequent files oi tape are lust,

In the example, the tape will contain:

<— Null file

5-5

CHAPTER 6
USER SERVICED INTERRUPTS

A facility has been provided for the user to service his own interrupts using DOS,
The procedure and restrictions are outlined below.

Two parameters are defined mnemonically by the Disk Operating System param-
eter tape 090-000176. The first, USTIS, defines a displacement into the User
Status Table where the user must store the address of his own interrupt service
routine. The second, UMSK, contains the address of a DOS subroutine that
properly maintains the interrupt mask word and enables interrupts for the user.

If the user does not change the word at location USTIS, a PANIC with code 210
is given when an interrupt is detected that is not recognized by DOS, However,
if the user initializes the word at USTIS to contain an address within his own
program, control is transferred to that address via JSR when an interrupt not
recognized by DOS is detected.

When the user receives control, interrupts are OFF and ACO contains the device
code of the interrupting device, The user may examine this code or, alternatively,
skip on the appropriate DONE flip flops of the devices from which he expects
interrupts. It is the user's responsibility to save AC3 and to return to this address
after completion of his service routine, but all other accumulators and carry are
saved for him by the system.,

If the user can complete his servicing of his device with interrupts disabled and

thus is not concerned about interrupts from other devices during servicing, he does
not need to make use of the subroutine provided for maintaining the current mask word.
In general, however, the user should use this subroutine to mask out his device

and all lower priority devices and to turn on interrupts again. To use this routine,

the user must supply in ACO a bit corresponding to the interrupt disable mask bit

for every device, including his own, that he considers of lower priority, Note that as

a minimum the user must set a bit in ACO corresponding to his own device interrupt
disable flip flop, The calling sequence for this routine is simply

JSR @UMSK

The system will maintain the mask word properly, turn on interrupts, and return
control to the user with ACO containing the new mask word.

CHAPTER 7

PANICS

There are a number of hardware malfunctions that may cause the system to "PANIC".
Should a PANIC occur, the contents of the accumulators will be printed on the TTY,
followed by a PANIC code. The output will appear as follows:

00015 177777 000011 037500 000210
ACp ACl1 AC2 AC3 PANIC CODE

T'l_ DARNTT/AY

he PANIC codes are:

210 - Unknown interrupt. Offending device code in AC@.

220 - System stack overflow.

230 - Repeated critical disk write errors.

240 - Repeated critical read errors.

250 - Repeated critical disk read or write errors.

260 - Runaway tape reader. (An NIOC to an input device did not

stop its forward motion).

270 - Fatal magnetic tape hardware status. AC{ contains the
magnetic tape controller status.

7-1

APPENDIX A

DOS SYSTEM PROGRAMS

Programs supported under DOS are:
Text Editor Document #093-000018

Relocatable Assembler Documents #093-000002, #093-000040, and
"How to Use the NOVA Computers"

Relocatable Loader Document #093-000039
Debug III Document #093-000044
Octal Editor Document #093-000048 (this manual)
FORTRAN IV Document #093-000053
Extended ALGOL Document #093-000052
Library File Editor Document #093-000048 (this manual)
CLI Document #093-000048 (this manual)
CLG Document #093 -000048 (this manual)
BLDR (Binary Loader) Document #093-000048 (this manyal)

Certain minor changes were made to the Text Editor, Assembler, Relocatable
Loader and Debug III for use under DOS. These changes are outlined in this
Appendix, The Library File Editor and the Octal Editor are described in detail

here. In addition, information on loading the FORTRAN IV and Extended ALGOL
compilers uader DOS is included.

TEXT EDITOR

The Text Editor is supplied as one file of a dumped tape, 088-000001, and is named EDIT.SV.
To use the Text Editor, the user must create a save file from the tape by mounting the tape
in an appropriate input device, such as the $PTR, and giving the LOAD command:

LOAD $PTR)
The CLI responds with a ready message (R) when the disk file has been created.
Once a disk file of EDIT, SV exists, the command

EDIT)

brings the Text Editor into core, The Text Editor gives the prompt:

*

The user should reply to the prompt with DOS Text Editor commands that specify input
and output file names:

GRinput filename $$ +get for reading (input) the file of the name given.
inputfilename must be the name of an existing file.

GWoutputfilename $$ «get for writing (output) the file of the name given.
output filename cannot yet exist,

Upon completion of editing an input file to produce a new output file, the command:
GCH$

can be used to close the output file. A new output file can then be edited by specifying
the GW command. If the user attempts to open an additional file for writing without
closing the current file, the following error message is given:

OUTPUT FILE ALREADY ACTIVE
The GC command does not force writing of the last output page. The user must be care-
ful to issue a P (or E) command for the last edited page before issuing the GC command.

To return to CLI level, the user issues an H command. Thus, to force writing of the
last output page, close out the file, and return to command level the sequence of com-
mands would be:

EGCH$$

TEXT EDITOR (Continued)

The meaning of the Y and P commands is basically unchanged by the change in 1/0:

Y$$

P$$

- read a page from the input file. (As before,
a page is a stream of characters terminated
by a Form Feed.)

- write a page to the output file.

A CTRL C break will cause a return to the CLI and should not normally be used while

editing.

A CTRL A break can be issued to terminate Editor input/output. The Editor

will remain in core and issue an asterisk (*). If there is file I/0 in progress at the
time of issuing a CTRL A, both input and output files will be closed.

The DOS Text Editor commands are eiven in the following list. The format shows indi-
vidual commands terminated by striking two ESC keys ($$), which causes the editor

AT T

to execute the command. Usually, the programmer will issue a string of editing
commands before initiating execution by striking $$; for example:

BSGETC:$-1L2T$$

Note that of the special CTRL commands, Only CTRL A should normally be used.

Command and Format

MmO Q @ >

GR

GW

M

A$$

B$$

Cstring1 $string2$$
nD$$

E$$

F$$
nF$$

GC$$

GRinputfilename$$

GWoutputfilename $$
H$$

Istring$$
ni$$

(tab) Istring$$

Meaning
Append a page to the edit buffer,
Move character pointer to beginning of buffer,
Search buffer for string1 and change to stringz.
Delete n characters starting at character pointer.
Output buffer and remainder of input file,

Punch a form feed,
Punch n inches of leader.

Close the output file.

Get for reading (input) file of name given and close
any previous input file,

Get for writing (output) the file of name given.
Return to CLI

Insert string at character pointer position.
Mask n to 7 bits and insert character at character
pointer,

Tabulate and insert string

TEXT EDITOR (Continued)

Command and Format

X

XD

XM XMcommandstring$$

Y

Z

nJ$$
nkK $$
nL$$

nM$$

Nstring$$

P$$
nP$$

PW$$
nPW$$

Qstring$

R$$
nR$$

Sstring$

TS
nT$$

nX$$

XD$$

Y$$
Z%%

Meanin
Jump character pointer n lines from beginning of buffer,
Delete (kill) n lines starting from current position.
Reset character pointer n lines from current position,

Move character pointer n characters from current
position.

Search for string, If not found, output, read, and con-
tinue search through input. '

Write a page to the output file,

Write n lines to the output file starting at character
pointer,

Punch entire edit buffer without a form feed.

Punch n lines starting at character pointer without a
form feed,

Search for string. If not found, read and continue
search through input.

Output entire edit buffer and read in next page.
Perform R n times,

Search edit buffer for string.

Type out entire edit buffer.
Type out n lines from character pointer.

Execute a macro n times,
Delete a macro definition.
Define a macro command,
Read (yank) a page into the edit buffer,

Reset character pointer to end of edit buffer.

A-4

TEXT EDITOR (Continued)

Command and Format Meanin,

= =$% Type the number of characters in the edit buffer.
%% Type the number of lines in the edit buffer.
. $% Type the number of the line containing the

character to which the character pointer points,
A CTRL A%$ Terminate input/output.

AC CTRL C$$% Erase command string or halt execution of
command string. *

T CTRL T$$ Reset input buffer and stop input device, *

RUBOUT is used to erase the last character typed in a command string. Each erased
character is echoed on the teletypewriter, e, g.:

BSLAB: LDA 1,0LL0,1 ADL :BQ: LDA 1,0$L$$

(. J —~ J ~ J
original line as characters retyped command
typed erased by

RUBOUTSs

The line would then read:

BSLAQ: LDA 1,035L$$

* Not .used in DOS.

RELOCATABLE ASSEMBLER

The relocatable assembler for DOS is supplied to the user as one file of dumped tape,
088-000001, and is named ASM. SV, To use the Relocatable Assembler, the user must
create a save file from the tape by mounting the tape in an appropriate input device,
such as the $PTR, and giving the LOAD command:

LOAD $PTR «
The CLI responds with a ready message (R) when the disk file has been created.
Once the disk file of ASM., SV exists, the command ASM with appropriate arguments

brings the Relocatable Assembler into core to assemble source files given in the
command line. The ASM command line is described in Chapter 3.

The ASM command line is used to build a command file (COM. CM as described in
Appendix D). When a command line begins with the file name ASM, the CLI sorts
the command line, and creates COM.CM in the format shown below:

ASM

global |binary :local listing local source local source :local
switches |filename | switches | filename switches| filenamey switches |.. . filename,, | switches

(output) : (output) : (input) | (input) :

|
| 1 i L

A-6

RELOCATABLE LOADER

The DOS Relocatable Loader is supplied to the user as one file of dumped tape,
088-000002, and is named RLDR.SV. To use the Relocatable Loader, the user must
create a save file from the tape by mounting the tape in an appropriate input device
and giving a LOAD command, for example:

LOAD SPTR

The CLI responds with a ready message (R) when the disk file has been created,

Once a disk file of RLDR. SV exists, the command line RLDR, followed by appropriate
arguments and a carriage return, brings the Relocatable Loader into core to load
the relocatable binary files given in the arguments of the command line.

The RLDR command line is used to build 2 command file {COM. CM as described in
Appendix D). When a command line begins with the file name RLDR, the CLI sorts
the command line and creates COM, CM in the format given below:

RLDR
| I | |
]
global |map 'ocal save :local reloca-]ocal reloca- local
switches filename'switches filename switches|table switches table ,switches
(output) | (output) ! binary | binary
| ! filenamel! filename,
! : (input) | (input)
[! I
L | | J

If loading is successful, the output of the Relocatable Loader is a save file, and return
is made to the CLI, If loading is not successful, the loader produces an explicit error
message and return is made to the CLI. For example, a load overwrite will result in the
message:
LOAD OVERWRITE
**FATAL LOAD ERROR **

001700

The loader begins loading page zero relocatable data at location 50* and normal relocatable
data at location 1000. The loader will not load into locations 0-15 nor 400-777. Locations
400-777 (Page 1) are reserved by the loader for necessary DOS status information described
later.

* Locations 16-47 can be used by using the . LOC pseudo-op at assembly time,

A-7

RELOCATABLE LOADER (Continued)

Actual loading of programs is to the save file. The symbol table however is built
in core. The following diagram shows the loading process in progress as if the
loaded programs were core-resident,

Loading
Direction
Disk < top of memory The Disk Operating System
Operating 'res1des‘ in upper mt?mory and
System in the first 16 locations, 0-15.
< Start of Symbol SST is tf.le first a.iddress below
Symbol Table (SST) DOS during loading. The sym-
Table bol table is built down in core.
< End of Symbol EST is the first address avail -
Table (EST) able below the symbol table
during loading.

-------------- < NMAX NMAX is the first available ad-
User dress for further loading.
Program
(NREL)

< 1000 The areas indicated for user
program loading (NREL and
Reserved ZREL) are actually loaded onto
for User the save file on disk. These
Tables locations are used by the relo-
<400 catable loader in core.
User By default loading of NREL code
Program begins at location 1000 and load-
(ZREL) “— 50 ing of ZREL code begins at loca-
-------------- tion 50.
« 16
Reserved for
DOS .0

Dotted lines indicate adjustable locations. While 50g is the default starting address for
loading of ZREL code, at assembly time the user can change this starting location using
the . LOC pseudo-op; by this means locations 16-47 may be used. The first 16 locations

cannot be overwritten,

NMAX is adjusted upward as programs are loaded. The user can force NMAX to a given
absolute location for the start of loading of a given binary program using the local /N
switch, as described in the section following.

A-8

RELOCATABLE LOADER (Continued)

User Adjustment of NMAX

When loading a number of programs, the user can adjust the value of NMAX. The loader
will accept any value of NMAX that is not less than its current value, The value can be

adjusted by a local option as shown below:

where:

RLDR A 2000/N By

2000/N is a local option giving an adjusted NMAX (20008) at which
to begin loading the next program, B.

DOS
B
2000
1775
A

Page One - User Status Table

HMA

NMAX after loading B

NMAX before loading B

NMAX after loading A

location @

Page one is reserved for tables needed by the operating system to load and run programs.
The first of these tables is the User Status Table (UST). The User Status Table starts at
location 400 and is used for both loader-generated information and run-time

information. A template of the UST is shown on the following page.

A-9

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

;USER STATUS TABLE (UST) TEMPLATE

UST= 400 ;START OF USER STATUS AREA
USTPC= 0 ;PROGRAM COUNTER (LEAVE AT DISPLACEMENT 0)
USTZM= 1 ;ZMAX
USTSS = 2 ;START OF SYMBOL TABLE
USTES =3 ;END OF SYMBOL TABLE
USTNM= 4 ——;NMAX
USTSA = 5 ;STARTING ADDRESS
USTDA= 6 ;DEBUGGER ADDRESS
USTHU= 7 sHIGHEST ADDRESS USED BY LOAD MODULE
USTCS=10 ;FORTRAN COMMON AREA SIZE
USTIT= 11 ;INTERRUPT ADDRESS
USTBR= 12 ;BREAK ADDRESS
USTIN= 13 5INITIAL START OF NREL CODE
: ;SPARE WORDS
USTAf = 23 ;SAVE STORAGE FOR AC@
USTA 1= 24 ;AC1
USTA2 = 25 ;AC2
USTA3 = 26 ;AC3
USTCY =27 ;CARRY

Location 400, USTPC, is the program counter. The loader initializes this word to -1,
indicating that the program has never rumn.

Location 401, USTZM, points to the first available location in page zero for page zero
relocatable code.

Location 402 and 403, USTSS and USTES, point to the start and end of the symbol table,
respectively. Under default conditions, the loader moves the symbol table down at the
termination of loading so that the last location in the symbol table coincides with the value

of NMAX after all programs are loaded. USTSS, USTES, and NMAX are updated, If the user
requests that the symbol table remain in upper core (/S switchon a RLDR command) locations 402,
403 and NMAX remain true and are not updated at the end of loading. If the debugger

has not been loaded, locations 402 and 403 are set to zero.

Location 404, USTNM, contains NMAX, the pointer to the first free location for further

loading. At load time, the user can set the value of NMAX for a given program by a /N
local switch. At the termination of the load, NMAX reflects the first free address for
allocation of temporary storage at run time,

A-10

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

Location 405 USTSA, points to the starting address of the save file, The operating
system must have this value in order to start a program. The user provides this value
by terminating one of his programs at assembly time with:

.END adr

If no starting address has been specified, the loader stores a -1 in location 405 and
issues a warning message, as follows:

NO STARTING ADDRESS SPECIFIED FOR LOAD MODULE.

Location 406, USTDA, points to the starting address of the debugger. If the debugger

is not loaded, the loader stores -1 in USTDA. The debugger is loaded if the RLDR command
has a /D global switch which requests loading of the debugger from the library file

SYS. LB.

The debugger is normally loaded after all other relocatable binary programs in the RLDR
command line are loaded. The user can control when the debugger is loaded by placing
the file name SYS.LB in the command line at the point where the debugger is to be

loaded, e.g.,

RLDR/D A SYS.LB B p

The debugger is loaded immediately after relocatable binary file A in the example.

A symbol table for a user program is appended as part of the save file only if the debugger
has been loaded.

Location 407, USTHU, is initialized by the loader to the value of NMAX at the termination
of loading. This word is never changed by the operating system during program execution.
It is used to reset USTNM whenever a program is started by the system.

Location 410, USTCS, contains the size of the FORTRAN unlabeled COMMON area, used
when the binary relocatable programs being loaded were generated by the FORTRAN
compiler,

Location 411, USTIT, is the interrupt address (CTRL A). At the termination of loading,
this address is set to -1. If unchanged at run time an unconditional return to the CLI
occurs when a CTRL A interrupt occurs. The user core image is not saved. The user
program can set USTIT at execution time to an address to which control will be tranferred
if a CTRL A interrupt occurs. The AC's will be undefined.

A-11

RELOCATABLE LOADER (Continued)

Page One - User Status Table (Continued)

Location 412, USTBR, is the break address (CTRL C). At the termination of loading,
the address is set to -1, If unchanged at run time, whenever a CTRL C break occurs
the core image will be written to the file BREAK.SV on the default directory device
and return made to the CLI. Alternatively, the user program can set USTBR to an

address to which control will be transferred if a CTRL C break occurs, The AC's
will be undefined.

Location 413, USTIN, contains the address of the start of normally relocatable code
(NREL), which is 1000g for the Disk Operating System. (NREL starts at 440g in the
Stand-alone Operating System.)

Locations 423-427 are the status storage area for the accumulators and carry, used by
the operating system at run time.

Above the UST are the User File Pointer Table and the User File Tables. There are

eight User File Tables, used to maintain file information for each of the eight I/O channels
in the system. The channel number is used by the system to index the User File Pointer
Table and, in turn, locate the User File Table being used for that channel.

Symbol Table Adjustment

A symbol table is appended as part of the loader's save file output only if the debugger
is one of the programs loaded. The debugger is loaded if the RLDR command has a
/D switch which requests loading of the debugger from the library file SYS. LB.

When loading is complete, the symbol table is, by default, appended so that the last location
in the symbol table coincides with the old value of NMAX. NMAX is then adjusted to be
the first location above the symbol table.

The user can request that the symbol table be left in upper core by a /S global switch
after the RLDR command. In this case NMAX remains as the first word available above
the loaded programs.

On the following page are three representations of core at completion of loading. The
first shows programs loaded without a symbol table. The second shows programs loaded
with default symbol table adjustment; the third shows programs loaded with the symbol
table remaining in upper core. In each case, HMA represents the highest available

user memory address.

A-12

RELOCATABLE LOADER (Continued)

Symbol Table Adjustment (Continued)

!
DOS ! DOs DOS
G« HMA + HMA
z ; Symbol
5 Table
< NMAX EST ~ < HMA
e NMAX SST = Symbol |
Loaded Table <« NMAX
Programs , ! '
EST> Loaded ’ - Loaded :
Programs ~ Programs |
RLDR ABC/ RLDR/DABCY RLDR/S/D AB C/

(Debugger loaded
Symbol Table not
moved.)

(Debugger loaded.
Symbol Table moved
to default locations.)

(No Debugger.
No Symbol Table)

Size of the Save File

Since relocatable binaries are loaded directly to a save file on disk, it is possible to
create a save file that is too large to execute within the core limitations of the machine
that performed the loading. While there is no direct method by which the user can
avoid this possibility, there is a method by which he can determine whether his save
file will run in available core once it is loaded.

Refer to the diagrams at the top of the page. If the user appends the D and S switches
to RLDR, the symbol table will be fixed at the absolute locations it occupies in high
core at the termination of loading. The symbol table will be appended to the save

file at these locations. If the symbol table is successfully appended to the save file
without a resulting fatal error, the user is assured that the loaded programs will fit
into his current core configuration.

Should the current NMAX of the save file be higher than the last location in the symbol
table when an attempt is made to append the symbol table, the fatal error message:

SYMBOL TABLE TOO LARGE FOR CORE STORAGE

will be given. Note that the occurrence of the error does not necessarily mean that
the loaded programs cannot fit in current core, since the debugger was loaded and the
symbol table requires space. However, absence of the error message insures that
the save file will fit into current core.

A-13

DEBUG 111

The symbolic debugger, Debug I11, is supported under the operating system. Debug
111 is supplied as a file within a library, SYS.LB. The library is, in turn, supplied

as one file of dumped tape 088-000002. Debug I11 is loaded when the global switch

/D is given in the RLDR command. Debug III is described in document 093-000044; the
modifications made for running under DOS are:

10

2.

The starting address of Debug I11 is stored in the User Status
Table (location 406).

The punch commands:

$F
n$F

$E
adr3E

adr) <adry$P
are not implemented.

The interrupt and TTI register commands:

$1
$T

are not implemented.

The meaning of $R (with no address argument) is changed to be:

Run from the starting address in the User Status Table (USTSA).

The debugger recognizes all system commands (. CREAT, . GCHAR,
.RDL, .WRS, etc.) Since all I/O is handled by the system, the
debugger does not recognize I/0 instruction mnemonics (NIOS, DOAS,

etc.)

The eight breakpoint locations are declared as zero-relocatable
locations.

A-14

EXTENDED ALGOL

The Extended ALGOL compiler is supplied to the user as two dumped tapes, 088-000006
and 088-000007. Tape 088-000006 contains files ALl.SV, ALGOL.SV, and LIBRARY.
Tape 088-000007 contains AL2,SV, To use the compiler the user must create save
files from the tapes, using the LOAD command.

The ALGOL library is supplied as four library tapes., They must be loaded onto disk

Y TOTD

using the XFER command. The tapes are:

ALGOLL.LB - 099-000012
ALGOL2.1B - 099-000013
ALGOL3.LB - 099-000014
099-000008 Software multiply/divide option.
ALGOL4,1B - 099-000011 Hardware multiply/divide option for NOVA.
099-000009 Hardware multiply/divide option for NOVA

1200, NOVA 800, or SUPERNOVA.

(The fourth library tape is selected from the above according to the
system configuration as indicated.,)

The ALGOL command line is used to build a command file (COM. CM as described
in Appendix D.) When a command line begins with the file name ALGOL, the CLI
sorts the command line and creates COM. CM in the format given below:

ALGOL

T] |
global |listing file V local assembly 'local compiler 'local
switches| (output) switches | source file switches |source file'switches

(output)

(input)

When the main program and any subprograms have been compiled, they are loaded
using the relocatable loader command RLDR. The libraries must be loaded with the
programs. A sequence of commands for compilation, loading and executing a main
program with two subroutines might be:

ALGOL MAIN «

ALGOL SUB1 ¢/

ALGOL SUB2

RLDR MAIN SUB1 SUB2 @LIBRARY@ &
MAIN ¢/

A-15

EXTENDED ALGOL (Continued)

Either the symbolic debugger or the special Extended ALGOL debugging program TRACE
can be used to debug ALGOL programs. To use the symbolic debugger, load it with the
relocatable binary programs using the global switch /D:

RLDR /D MAIN SUB1 SUB2 GLIBRARY@ D)
TRACE is supplied as dumped tape 088-000009, It must be loaded using the LOAD command,
A call to TRACE can be programmed in the ALGOL source program as described in Appen-

dix D of the NOVA A LGOL Reference Manual, 093-000052, or if a run-time error occurs
and return is made to the operating system, the file can be brought in by the command:

TRACEy)

The NOVA ALGOL Reference Manual presents step-by-step debugging procedures for
Extanded ALCOL using both Debug 111 and TRACE.

A-156

FORTRAN IV

The FORTRAN IV compiler is supplied to the user as two dumped tapes: 088 -000005 and
088-000014. Before invoking the compiler, the user must create save files from the tapes
using the LOAD command. After the compiler is loaded, the FORTRAN library tapes
must be transferred to disk using the XFER command. The library tapes are:

FORTI1.LB - 099-000005
FORT2.LB - 099-000006
FORT3.LB - 099 -000007

099-000008 Software multiply /divide option.
099-000011 Hardware multiply /divide option for Nova.
[099-000009 Hardware multiply/divide option for
Nova 1200/Nova 800/Supernova.

FORT4.LB

Once the compiler and library are loaded onto disk, the FORTRAN IV compiler can be
invoked with a FORT command followed by appropriate arguments, as described for the
command in Chapter 3. The FORT command line is used to build a command file
(COM.CM as described in Appendix D). When a command line begins with the file name
FORT, the CLI sorts the command line and creates COM,CM in the format given below:

FORT

! assembly ! compiler !
global listing ‘local source ! local source ' local
switches |file name |switches| file name | switches| filename :switches
(output) | (output) (input) |

Each FORTRAN main program, external subroutine, or external function is separately
compiled, When the main program and its external subroutines and functions have been
successfully compiled (and assembled), the programs are loaded using the RLDR com -
mand. The FORTRAN libraries must be loaded with the programs. A series of commands
for compiling, loading, and running a FORTRAN program in this manner is shown below:

FORT MAIN)

FORT XSUBI)
FORT XFUN

RLDR/D MAIN XSUB1 XFUN FORTIL.LB FORT2.LB FORT3.LB FORT4.LB }
MAIN)

Merging FORTRAN Libraries

The M(erge) function of the LFE can be used to combine library files into a single
library file. The name of the single library file should be F ORT.LB, which is the

A-17

FORTRAN IV (Continued)

Merging FORTRAN Libraries (Continued)

name required by the relocatable loader when using the CLG command (see next
section). The command to merge the FORTRAN libraries is:

LFE M FORT.LB/O FORT!.LB FORT2.LB FORT3.LB FORT4.LB)
It is then possible to load a FORTRAN program, as shown in the following example:

RLDR MAIN1 FORT.LB)

Use of the CLG Command

The FORT command compiles and assembles a source program Or programs, which must
then be loaded (RLDR command). The saved file produced can then be executed by invok-
ing the saved file by name. -

The CLG command (compile, load, and go) permits the user to invoke whatever system
programs are needed to compile, assemble, load, and then execute the saved file pro-
duced. The files that are arguments to the command may be FORTRAN source files (.FR),
assembly source (.SR), or relocatable binary files (.RB). The command will bring in what-
ever systems programs are required to create a save file from the input files and will then
execute the saved file created.

The following constraints apply to use of CLG:

1. CLG is supplied as a file on FORTRAN system dumped tape, 088-000014,
which is loaded as part of the FORTRAN compiler.

2. All other systems programs needed must have been loaded onto disk. These in-
clude, besides the FORTRAN compiler, the Assembler (for any needed compila-
tions or assemblies), and the Relocatable Loader.

3. The FORTRAN libraries must have been previously merged into the
FORT:.LB file as described in the last section,

Symbolic Debugging

The symbolic debugger can be used for run-time debugging of FORTRAN programs, The
symbolic debugger can be loaded with the program using the global switch /D with the
RLDR command.

LIBRARY FILE EDITOR (LFE)

The LFE is supplied as a dumped tape, 088-000008, and has the name LFE.SV. To
use the LFE, the user must create a save file from the tape using the LOAD command,
€e.g.,

LOAD $PTR ¥

The LFE command line is used to build a command file (COM. CM as described in
Appendix D.) When a command line begins with the file name LFE, the CLI sorts the
command line and creates COM. CM in the format given below,

LFE
| I | I
global outputmaster ; local listing I local key Iocal arguments ! local
switches | (output) | switches file name switches (input), switches | (input) !switches
| (output) | |
L | | |

The Library File Editor provides a means of updating and interpreting library files,
A library file is comprised of a set of relocatable binary files (produced by the
Extended Assembler) that is denoted by special beginning and ending blocks, For
example, DOS Dump Tape #088-000012 contains the CLI library:

LIBRARY START BLOCK
cliprogy.RB

clipro n - RB
LIBRARY END BLOCK

w.here each clip_rogi . RB represents one of a set of relocatable
binary programs,

Library tapes are supplied with the DOS system and with subsystems such as ALGOL
and FORTRAN.

The LFE allows the user to analyze the contents of a library file, to list titles in a 1i-
brary file, to merge libraries, to update libraries, and to create his own library files,
selected from the contents of system library files or written by the user. The LFE is
of special importance in ordering and reordering of relocatable programs in a library
file, since the order in which the programs appear determines which programs will be

A-19

LIBRARY FILE EDITOR (LFE) (Continued)

loaded. This is because of the mechanism employed by the relocatable loader when it
operates on library files.

Selection of any program for loading is triggered by the occurrence of a global entry
within the program that resolves an external declaration within a previously loaded
program, This means that if program A on library file 1 has been loaded and contains
a call to program B on library file 1, then B must be located physically after A

on the file in order to be loaded. If there are no unresolved external symbols defined
as entries in the relocatable binary program, and thus no calls to the program, the
program is not loaded. See the Relocatable Loader Manual, #093-000039, "Special
Load Modes" section for an additional description of selective loading of library
routines,

In some cases it may be necessary to provide two or more copies of a given program
on a library file to insure proper referencing. For example:

Program A calls = Bcalls - Ccalls = A

(Assume that C follows A in the library file.) If a previously loaded program has
called A, then A, B and C are loaded via the standard mechanism. However, if a
previously loaded program has called B, then only programs B and C would be loaded.
For this case, a second copy of program A should be placed after program C,

The LFE allows the user to list global declarations of the library file (analyze

function) to determine whether the programs on the file are the proper selection and

in the correct order for his purposes. Other functions of the LFE provide for insertion,
deletion, replacement and extraction of programs, merging files or creating a new
library file.

The LFE is implemented as a DOS save file and is called by a CLI command under DOS.
The command name, LFE is followed by a letter key determining the function to

be performed, that is:

Key Function

A Analyze
D Delete

I Insert
M Merge
N New

R Replace
T Titles

X Extract

A-20

LIBRARY FILE EDITOR (LFE) (Continued)

The key is followed by a series of arguments and local switches, In general, the
LFE operates on an input master library file (inputmaster) and relocatable binary
update files to produce an output master library file (outputmaster).

In the function descriptions following, those relocatable binary programs that are

within a library file are referred to as logical records. This distinguishes them from
relocatable binary update files, which are referenced by file name in the LFE command
line, A logical record is identified by its five-character title, which occurs within
every relocatable binary as a title block,

Function Rules

The foliowing general ruies apply to LFE command lines and to the functions involved:

1. Only one function may be performed per command line.

2. An inputmaster library file and an update file cannot reside
on the same device, for example, the $PTR,

3. An inputmaster is searched for in the DOS file directory as
inputmaster.LB; if not found, a search is made for inputmaster,

4, An update file is searched for in the DOS file directory as
filename.RB (or . LB when using A, M, or T function keys); if
not found, a search is made for filename.

S. All references to logical records are satisfied by the first
matching five-character title of a logical record in the library
file. Therefore, it is strongly recommended that each logical
record on a file have a unique title,

6. Extracted (X function key) logical records are named title.RB,
where title is the five-character record title,

A-21

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function

Format: LFE A/M inputmaster; [inputmastery ... inputmaster,]
LFE A inputmaster; [argy ... argl

Purpose: The A function itemizes the global declarations of a library file or of speci-
fic logical records within a library file. The output is a list of global
declarations, giving the symbol, symbol type, flags, and titles where ap-
propriate,

The symbol types are:

T - Title

EN - Entry Normal

ED - Entry Displacement

N - External Normal

D - External Displacement

Each entry (EN or ED) is followed by titles of records where referenced.
Each external (N or D) is followed by the title of the record in which is it
defined.

The symbol flags are:

M - Multiply defined entries.

U - Undefined (external normal or external displacement for which no
entry has been defined).
P - Phase error (external normal or external displacement for which

an entry has been defined before the external declaration).

Optional arguments (argj ... argy) following inputmaster are the specific
logical records of the file to be analyzed. If no arguments are given, all
records are analyzed. Two or more inputmasters may appear in a command
line if the M global switch is used. They will be analyzed as a single file,

Switches:

Global: /M - Multiple input library files. The switch modifies the function key A and
causes all file names following, with the exception of any listing file,
to be analyzed as one library.

Local: /L - Listing file, By default, output of analyze is listed on the teletype. The

switch causes the file preceding to be used for listing output.
Examples: LFE A $PTR $LPT/Ly

The inputmaster file is $PTR. The library file in the $PTR is
analyzed, and the results are printed on the line printer,

A-22

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function (Continued)

Examples:

LFE A/M MATHI. LB MATH2, LB $LPT/L{

The library files MATHI. LB

are nnahmnd as one library

AVANES |
GRSy &L s VLT aiuiaay au

printed to the $LPT,

LFE A MATH. LBy

+M b e £3
ue

master file is MATH. LB. Aili of the logical records
in this library file are analyzed and the results are printed
at the $TTO (default listing device,)

LFE A MATH.LB SIN COS TAN $LPT/L ¥

The input master file is MATH. LB. The logical records SIN,
COS, and TAN are analyzed and the results are printed to
the line printer, $LPT.

LIBRARY FILE EDITOR (LFE) (Continued)

Analyze (A) Function (Continued)

Output:

-

(o
Z2200CmMm 4

VoA Lt

WRCH
« WRCH
«LDBT

«COUT

FRET
FSAV

Sample output of analyze is:

CouT
FLINKL
FLINK

PAGE ZERO RELOCATABLE DATA = 000001
NORMAL RELOCATABLE DATA = 000015

T
ED
ED
N
N

CouT
« CUUT
«CIN

FQRET

FSAV

WRCH

FLINK
FLINK

PAGE ZERU RELOCATABLE DATA = 000002
NORMAL RELOCATABLE DATA = 000023

T
EN
EN
EN
EN
EN
EN
ED
ED
ED
u D
U D
U N

FLINK
«OFLO
FCALL
FRCAL
FSAV
FRET
FQRET
«FCAL
« FRET
«FSAV
AFSE
+RTED
o1

WRCH
WRCH
CouT

couT

PAGE £ZERO RELOCATABLE DATA = 000005
NORMAL RELOCATABLE DATA = @00137

TOTAL zREL COUNT: Q00010

TOTAL NREL CUUNT

R

P YWV TT

A-24

LIBRARY FILE EDITOR (LFE) (Continued)

Delete (D) Function

Format:

Purpose:

Switches:

Example:

LFE D inputmaster _outputmaster/O arg; ... arg,

The D function produces an output master, deleting specified logical
records (argy ... arg,) from the input master.

/0 Output master library file, The switch must always modify
el n mnan A tlen Asrbaaat Tilaaen aenr £3114 IO e U,
L€ name o1 tn€ Output i1ioTary 1i1€, willCh can appear any-

where within the command line.

LFE D $TTR UTIL. LB/O MOVE LDBYT STBYT DIVI ¢/
MULT COMPJ

The input master file is $TTR.
The output master file is UTIL, LB,
The logical records deleted from the input master are:

MOVE
LDBYT
STBYT
DIVI
MULT
COMP

A-25

LIBRARY FILE EDITOR (LFE) (Continued)

Insert (I) Function

Format:

Purpose:

Switches:

Examples:

LFE I inputmaster outputmaster/O argj ... arg,

The I function permits a merger of update files and logical records on
an input master library file to produce an output master library file.

By default, update files in the order listed in the command will be in-
serted before the first logical record in the input master. To insert
an update file or files before or after a given logical record, use the
/A or /B switches as described below. A given logical record may
appear only once in a command ,

No local symbols present in the update files are transferred to the
output master,

/A Insert after. The switch appears after a logical record name
in the argument list of the command line. Arguments following
the switch are inserted after the logical record whose name
precedes the switch,

/B Insert before. The switch appears after a logical record
name in the argument list of the command line. Arguments
following the switch are inserted before the logical record
whose name precedes the switch,

/0 Output master library file. The switch must always modify
the name of the output library file.

LFE I $PTR MATH. LB/O A.RB B, RB SINE/A C.RB D.R¥/
B COS/A X.RB Y.RB Z.RBJ

inputmaster is $PTR. outputmaster is MATH. LB. Files A.RB

and B. RB are inserted at the beginning of the output master, Files
C.RB and D.RB are inserted after the program SINE in the output
master. Files X.RB, Y.RB, and Z.RB are inserted after the program
COS in the output master. (Note that SINE need not precede COS on
the input master,)

A-26

LIBRARY FILE EDITORY (LFE) (Continued)

Merge (M) Function

Format: LFE M outputmaster/O inputmaster; [inputmastery ...inputmaster;]

Purpose: The M function produces an output master that contains as a single
library file one, two or more library files (inputmasters).

Switches: /0 Output master library file, The switch always modifies
the outputmaster file name,

Examples:
LFE M FORT. LB/O FORTL. LB FORT2. LB FORT3. LB FORT4. LB/

The four FORTRAN library files are merged into a single FORTRAN
library file called FORT. LB,

A-27

LIBRARY FILE EDITOR (LFE) (Coatinued)

New (N) Function

Format:

Purpose:

Switches:

Example:

LFE N outputmaster/O arg) [arg) ... argn]

The N function creates a new library file named outputmaster
from one or more relocatable binary files,

/0 Output master library file. The switch always modifies

the outputmaster file name,

LFE N $PTP/O $PTR/9/9/1 A.RB C.RByY

The outputmaster is a file punched to the $PTP. The update relocatable
binary files that comprise the outputmaster are 19 files taken from the
$PTR followed by files A.RB and C.RB from the default directory
device,

LIBRARY FILE EDITOR (LFE) (Continued)

Replace (R) Function

Format: LFE R inputmaster outputmaster/O arg) argy [-..arg | argy]
Purpose: The R function pi ...co an output master, replacing logical records

in the input master with relocatable binary update files.

F RS | £

All arguments are paired as follows:

argj-1 (1,3,5...n-1) = Logical record (program title)
argj (2,4,6...n) = Update file name
No local symbols present in the update files are transferred to the output
master.
Switches: /0 Output master library file. The switch always modifies the
outputmaster file name,
Example: LFE R MATH. LB $PTP/O ATAN $PTR TAN TAN. RB HSINE 14

$PTR ACOS X.RB}J

The input master file is MATH. LB.

The output master file is $PTP.

Logical record ATAN is replaced by a file mounted in the
paper tape reader, $PTR.

Logical record TAN is replaced by file TAN. RB.

Logical record HSINE is replaced by the file mounted

in the paper tape reader, $PTR,

Logical record ACOS is replaced by file X. RB.

Note that all these replacements will be made regardless of
the order of the specified logical records on the input master,

A-29

LIBRARY FILE EDITOR (LFE) (Continued)

Titles (T) Function

Format: LFE T inputmaster [listing-device/L] [arg; ... arg,]
Purpose: The T function outputs to the listing device (teletype by default) the

titles of logical records on inputmaster and on any optional additional
library files given by the arguments, argy ... argy.

Switches: /L indicates the listing device. The listing device argument may
appear anywhere in the command line after the function key T,

Example: LFE T S$LPT/L $PTR FI1.LB $TTR)

The inputmaster library file is $PTR., Additional library files
are F1, LB and $TTR. Titles are listed on the line printer.

A-30

LIBRARY FILE EDITOR (LFE) (Continued)

Extract (X) Function

Format: LFE X inputmaster arg; [gg2 «+. argnp]
Purpose: The X function permits one or more logical records on library file

inputmaster to be extracted as separate relocatable binary files,
The relocatable binary files will have the filenames of the logical
records to be extracted.
~ Switches: None.
Example: LFE X MATH. LB SINE COSINE TAN,

inputmaster MATH. LB is searched and the logical records SINE,

COSINE and TAN are extracted, creating relocatable binary files
SINE, RB, COSIN,RB, and TAN, RB.

A-31

LFE Error Messages

The following messages result from encountering fatal errors in the LFE command
line. A return to the CLI without processing any files will result,

NOT ENOUGH ARGUMENTS
For example, unpaired arguments to the replace (R) function.
UNEXPECTED ARGUMENT AT OR FOLLOWING: string

For example, filename /A followed by filename /A for an insert(I)
function,

When there is no siring following the colon in the error message, the
message indicates the error occurred at the end of the command line.

INVALID SWITCH FOR: string

For example, a switch other than /M in the analyze (A) function will cause the
following message: ILLEGAL SWITCH FOR: A

NOT A LFE COMMAND: key

A function key that is not recognized by the LFE; currently, any letter
key other than A, D, I, M, N, R, T, or X causes this error.

TOO MANY ARGUMENTS

The argument string is too long for the allocated storage (currently, 500
characters.)

ILLEGAL HEADER IN INPUT LIBRARY.

No header or an incorrect header block in the library file.
The following messages result from fatal errors encountered while processing
files. When these errors occur, the output file will be terminated with a library
end block before returning to the CLIL.

CHECKSUM ERROR IN UPDATE FILE: filename

Typically, the message indicates a bad record within filename.

A-32

LFE Error Messages (Continued)

CHECKSUM ERROR IN LOGICAL RECORD: recordname

Very likely the message indicates a bad record. If the checksum occurs within
a title block itself, recordname will be the name of the previous logical
record. If no previous record exists, recordname will be the name of the
library itself.

ILLEGAL BLOCK UPDATE FILE: filename

For example, if a source file is specified as input instead of a binary file,
illegal blocks will be encountered.

ILLEGAL BLOCK IN LOGICAL RECORD: pecordname
A bad block within a logical record will produce this message. If the expected
title is missing, the record name will be the name of the previous logical record

within the library,

The following message indicates a fatal error detected by the 'system' rather than
LFE:

FILE DOES NOT EXIST, FILE: filename

filename indicates a library file. The error occurs when no inputmaster
is found for the command. The error can occur on command lines having
functions other than new (N),

Other fatal errors from the 'system' will refer to the LFE, SV file,

The following messages result from non-fatal errors. Processing will continue
as indicated for each error,

FILE DOES NOT EXIST, FILE: filename

An update file cannot be found. Search is made for filename and filename,RB
When not found, the file is omitted in processing,.

LOGICAL RECORD NOT FOUND - pecordname

The input master does not contain recordname. The record (and any
corresponding argument) are passed in processing,

DEFAULT OUTPUT IN FILE - filename

The output master was expected and not found. filename is used
instead as the output file.

A-33

LFE Error Messages (Continued)

FILE ALREADY EXISTS - filename

On an extract (X) function, there is already a file on the output device with
the same name as the logical record to be extracted. The logical record
is omitted in processing.

UPDATE FILE MATCHES INPUT MASTER: jfilename

The result is non-fatal as long as there existsat leastone valid update file argument,
In this case, the matching update file is ignored.

OCTAL EDITOR

The Octal Editor under DOS enables the user to examine and modify, either in octal or
in ASCII notation, any location in any type file. The program is supplied as a dumped
tape, 088-000013, and is called OEDIT.SV. Before OEDIT is invoked, a disk file must
be created from the tape using the LOAD command. The program is then invoked using
the command:

OEDIT filename)

where filename g any file that exists under DOS. If no filename is given, the fol -
lowing message will be printed:

ERROR: NO FILENAME SPECIFIED

Ay A EATT i e
ory, the following message is

D
bk
Q
3
[o 8

If the file specified cannot h
printed:

ERROR: INPUT FILE DOES NOT EXIST.

If a filename is successfully found, OEDIT will type a carriage return, line feed and is
ready to accept input commands. When first invoked, OEDIT is in octal mode.

Octal and ASCII Modes

OEDIT is by default in octal mode. Contents of locations are printed as six octal digits
and modifications are made in octal. To switch to ASCII mode, the user types the letter

A

When the user types A (whether at the beginning of a line or after examining and perhaps
modifying a register), the octal editor will generate a carriage return, line feed and is
ready to respond to a new request in ASCII. Contents of a location are printedin ASCII

as two characters. Transparent characters (carriage return, line feed, etc.) are printed
in octal enclosed in angle brackets,

To return to octal mode, the user types the letter
0]

The octal editor will generate a carriage return, line feed and is ready to respond to
a request in octal.

Opening and Examining a Location

Every word within a file can be examined by using a word address relative to the beginning
of the file. For example, the first two bytes of any file can be examined using the word
address ¢, the second two bytes by using the word address 1, and so forth.

A-35

OCTAL EDITOR (Continued)

Opening and Examining a Location (Continued)

To examine a location, it is necessary to type the word address, followed immediately
by a slash:

17/

The octal editor will respond in octal mode by printing the contents as six octal digits
or in ASCII mode by printing the contents as two characters.

17/ 045070

or

17/ %8

The location may be modified at this time or may be closed. If the location is to be
closed without modification, the user types one of the delimiters: carriage return ()),
line feed (4), or up arrow (1). The three delimiters perform the following functions:

Delimiter Meaning Example

Carriage Retarn Close the current register 17/ 045070)

y Line Feed Close current register and open 17/ %8¥
and print contents of next 000018 DC
register.

A Up Arrow Close current register and open 17/ 0450704
and print contents of preceding 000016 000023
register.,

While a given location is open, it is possible to print the contents in the other mode ,
whether ASCII or octal, without changing permanently to the other mode. The conven-
tions are:

= Equals sign Retype the contents of the current 17/ %8 =045070
location in numeric form. The
register remains open until
closed by one of the delimiters.

Apostrophe Retype the contents of the current 17/ 045070 ' %8
location in ASCII form. The regis-
ter remains open until closed by
one of the delimiters.

A-36

OCTAL EDITOR (Continued)

Modifying a Location

When a location has been opened and its contents examined, it may be modified by
typing the new contents before closing the location. In octal, for example:

17/ 045070 177) - the new contents will be 000177

In ASCII, the new contents must be preceded by a quotation mark (). If two characters
are given, the beginning quotation mark is sufficient to indicate the word in ASCII. If

a single character is given, it must be followed by a quotation mark and will be left
justified in the word. To enter a quotation mark, the user types two successive quotation
marks,

1m s 07 7ol
L7/ 700 07 V¥

000018 *D "D")

Expressions using octal numbers and + and - may be used in writing the new contents
for a location:

17/ 000177 20-3)
Locations
The user can give word addresses relative to the beginning of the file as previously
indicated. He can also use octal expressions containing + and - to denote the desired
location:

1745/
Since OEDIT is often used to make simple changes to executable save files, it should
be noted that a save file' s relative word address @ is really absolute location 16 under

DOS. For example, to examine absolute location 406 of a save file, the following command
should be given:

406-16/

Typing Exrrors

If illegal delimiters or illegal characters for the given mode are encountered, OEDIT
will respond with

?

and a carriage return, line feed. If a mistake is made while typing a line, RUBOUT
can be depressed, and a new command can be typed.

A-37

OCTAL EDITOR (Continued)

Return to CLI Level

To return to the CLI from OEDIT, the user types
H

The editor will echo OME on the same line. A R(eady) message is then issued, indicating
the user is at CLI level.

Sample OEDIT Commands

Following is a sample of commands using OEDIT. Note that locations 4, 7,and 11
have been modified by the time return is made to the CLI.

OEDIT MYFILEY

2/ 1777774

000003 126440M
000002 1777772

0/ 001456/

4/ 136112 1361134
6/ 000177

000007 000377 1774
000006 000177¢
000005 000030t
000004 136113 J
12/ 0000004

11/ 035612 35617 £
24/ 044045 'HR J
A

20/ TX{

000021 T <0115}
000022 *D+V
000023 FGV
000024 LA =046101 O
17/ 0511052

HOME

R

A-38

BINARY LOADER

A version of the stand-alone loader for loading absolute binary tapes is supplied as a
file of dumped tape 088-000013. The tape must be loaded onto disk using the LOAD
command, for example:

LOAD $PTR ,

The saved file created is BLDR. SV, and the binary loader is invoked with the BLDR
command. The BLDR command must have as an argument either the $TTR or the
$PTR, where the input device is loaded with an absolute binary tape,

BLDR is supplied as a convenience to users who may need to run in stand-alone mode.
If the DOS configuration is used in stand-alone, the user should note that the binary
loader will overwrite a portion of DOS. After stand-alone operations have been com -
pleted, the user must bootstrap the’DOS system.

A-39

APPENDIX B

GENERATING AND RESTORING THE SYSTEM

The procedures necessary to produce a Disk Operating System tailored tc the
user's precise hardware configuration are described in this appendix, These
procedures include loading a rudimentary DOS (12K bootstrap DOS tape) into
core, loading the system dumped tapes including SYSGEN using the rudimentary
DOS, configuring and generating the full system, preparing the configured DOS
for bootstrapping, and then bootstrapping in the system,

These procedures are used to generate DOS for the first time, which includes
configuring the system and INSTALLing it. However, when it is necessary to
restore a system that was previously generated, only part of the procedures
described may be used. For example, it may be necessary simply to bootstrap
the system from the default directory device (page B-7); or the user may load a
previously written paper tape of the system and then bootstrap from the default
directory device (page B-7); or the user may read in and bootstrap from a mag-
netic tape containing the system (page B-8).

When generating DOS for the first time, either a magnetic tape or paper tape
containing the configured system is always written and then loaded, This tape
provides system backup, Users having beth fixed and movable head disks may
also wish to generate two system tapes -- one bootstrappable from the fixed
head disk and the other bootstrappable from moving head disk.

TAPES AND HARDWARE FOR SYSTEM GENERATION

The 12K bootstrap DOS tape assumes a hardware configuration of at least the
following:

12K core

128K fixed head disk (091-000027), or

type 4047 or 4057 moving head disk (091-000053), or
type 4048 moving head disk (091-000058).

Teletype

A high speed paper tape reader, high speed paper tape punch, and an 80-column
line printer are all optional equipment,

B-1

TAPES AND HARDWARE FOR SYSTEM GENERATION (Continued)

DGC Tape Number Description
091-000027 12K bootstrap DOS (fixed head disk)
091-000053 12K bootstrap DOS (4047 and 4057 moving head disk)
091-000058 12K bootstrap DOS (4048 moving head disk)
095-000071 2314 Disk Pack formatter
095-000072 2311 Disk Pack formatter
088-000003 Dump tape SYSGEN.SV
088-000002 Dump tape RLDR.SV, SYS.LB
088-000012 Dump tape CLI.LB (CLI library)
088-000016 Dump tape SYSO.LB (first system library)
088-000010 Dump tape SYS1A.LB (second system library)
088-000011 Dump tape SYS1B. LB (second system library)

System Library Tapes

Tape 088-000011 is provided for systems having magnetic tape hardware, and
tape 088-000010 is provided for all other systems.

Disk Pack Formatter Tape

If the system is configured with either a type 4048 or type 4057 moving head disk,
pack, it is necessary to format the disk pack using the appropriate formatter
program before the SYSGEN procedure is begun. In general, all disk packs that
are to be used in the system must be formatted prior to their use. Note that

it is not necessary to format the disk cartridges used in a type 4047 disk drive.

The disk pack formatter programs are stand-alone programs which do not
require DOS for operation. The appropriate formatter programs and their
associated manuals are listed below:

Disk Pack Drive Formatter Program Manual
Type 4048 095-000072 096-000039
Type 4057 095-000071 096-000038

B-2

PREPARING FOR SYSTEM GENERATION

Before the DOS system can be generated, the following steps must be taken:

1.

Load the absolute binary tape containing the appropriate
bootstrap DOS:

091-000027 or

091-000053 or

091-000058
using the absolute binary loader (091-000004). After the tape has
been read into core, the binary loader wiil hait. There now

exists a rudimentary system that can be used to generate a full
system tailored to the correct hardware configuration.

Using the CPU switches, examine the contents of location 42.
Enter the contents of location 42 into the data switches.
Press RESET, then START. The rudimentary CLI will
respond:

R
signifying that the bootstrap is in operation.

Type the following command to the CLI:

$TTR
The CLI will respond:

LoaD/v {¥F TR} J

$PTR STRIKE ANY KEY.
LOAD { $TTR}

Load the paper tape reader or teletype reader with tape
088-000003 and strike any console key. The tape will be
read into core and

SYSGEN.SV

will be printed at the teletype, verifying that the tape has been
LOADed.

B-3

PREPARING FOR SYSTEM GENERATION (Continued)

40

Continue in like manner until all the dumped tapes of the
system have been loaded. Use the /V global switch to
verify the printed file names of the tapes. Check the
verification typeout against the list following to insure
that there are no tape identification errors:

SYSGEN,SV
RLDR.SV
SYS.LB
CLI.LB
SYS0.LB
SYS1A,LB or
SYS1B.LB

GENERATING THE SYSTEM

The SYSGEN program (tape 088-000003) contains the means of tailoring the DOS system
to the user's hardware configuration. When the system tapes have been loaded and
verified, type the command:

to invoke the

SYSGEN 2

SYSGEN program. SYSGEN then interrogates the user regarding his

particular hardware configuration. The dialogue is shown below. The SYSGEN
queries are given in capital letters as they appear on the teletype. The possible user
responses are discussed following each query.

ENTER CORE STORAGE (IN THOUSANDS OF WORDS)

The user may respond with any number from 12 (12K) to 32 (32K) in
increments of 2 (2K).

RESPOND " 1" (YES) OR "0" (NO) REGARDING SYSTEM CONFIGURATION

DSK?

The query asks whether a fixed had disk is to be part of the system.
If the user responds 0, SYSGEN will go on to the next question; if
the user responds 1, SYSGEN will query:

ENTER DISK STORAGE (IN THOUSANDS OF WORDS)
The user may respond with any number up to and including the
full capacity of the fixed head disk in the system. The usual

response is the full capacity of the fixed head disk.

B-4

GENERATING THE SYSTEM (Continued)

DKP?

The query asks whether moving head disks are part of the configuration.
The response is the same as for the fixed head disk: 0 for NO causes
SYSGEN to proceed to the next device inquiry; 1 for YES will cause
SYSGEN to ask for further moving head disk configuration information:

ENTER NUMBER OF UNITS

The user may specify 1, 2, 3, or 4 moving head units. (Note that the
40478 is considered to be two units,)

ENTER NUMBER OF SECTORS/TRACK

The user may specify 6 or 12 sectors per track depending on his type
of unit. The user specifies 6 for the 4048 unit or 12 for either the
4047 or 4057 units.

ENTER NUMBER OF HEADS

The user answers with 2, 10, or 20 depending on his type of unit,
The response is 2 for the 4047 unit, 10 for the 4048 unit, or 20
for the 4057 unit.

If the user has responded 1 to both the DSK and DKP queries, SYSGEN
will ask the following:

ENTER MASTER DEVICE

The user must then decide which device, fixed head disk or disk pack,
should be used for temporary storage space. Normally, the fastest
access time device (DSK) should be specified.

ENTER BOOTSTRAP DEVICE

The user must decide the type of device to be used for the system
bootstrap operation. A response of DKP or DSK is acceptable,

MTA?

The system queries the user about magnetic tape. A response of 0
will cause SYSGEN to proceed to the next device inquiry. If the
magnetic tape drive is to be included, a response of 1 causes SYSGEN
to query:

B-5

GENERATING THE SYSTEM (Continued)

ENTER NUMBER OF UNITS

A number of units from 1 to 8 may be specified.

PTR?
The user responds 1 if a paper tape reader is part of the configura-
tion; the user responds O for NO.

PTP?
The user responds 1 if a paper tape punch is part of the configura-
tion; the user responds 0 for NO,

LPT?
The user responds 0 if there is no line printer; a response of 1 causes
SYSGEN to query as to the line printer column count,
ENTER COLUMN SIZE
80 or 132 are acceptable responses.

CDR?
The user responds 1 (YES)ifthereis a card reader; otherwise the
user responds O,

PLT?

The user responds 1 (YES) if there is an incremental plotter; other-
wise the user responds 0.

On the basis of user responses to SYSGEN, SYSGEN creates a relocatable binary
system file SYS000.

CREATING A PRELIMINARY SAVE FILE OF THE SYSTEM

When the user has correctly responded to the system configuration queries, he is
now ready to create a preliminary system save file from the relocatable binary file.
To do so, he issues the following command:

RLDR/Z SYS000 CLL LB @NREL@ SYSO.LB {gg}g Iﬁ%} {E%/]I;)

B-6

CREATING A PRELIMINARY SAVE FILE OF THE SYSTEM (Continued)

SYS000. SV will be the name of the saved file on disk containing the system, The
user will give the argument SYS1B, LB if he has magnetic tape hardware; other-
wise, the argument SYS1A.LB is used. The loader will print the storage map on
the teletypewriter ($§TTO argument); if the system configuration includes a line
printer, the user can replace the argument with $LPT/L and the loader will list the
storage map on the line printer, Thefile NREL is produced by SYSGEN and forces
the system to be as high in memory as possible,

After the loader prints the storage map, the CLI will print R on the teletype.

TRANSFERRING THE SYSTEM FILE TO TAPE AND LOADING THE SYSTEM

The preliminary file, SYS000.SV, containing the system must now be transferred
to paper tape in absolute binary format or to magnetic tape,

Transferring to Tape and Loading (Paper Tape)

SYS000. SV must be transferred to paper tape so that it can be loaded (as was the
rudimentary system) with the absolute binary loader,

The user issues the command:
MKABS/Z SYS000.SV {%%TTII’,)

If available, the paper tape punch should be used. The absolute binary image of the
new DOS system will be punched. The paper tape constitutes not only a means of
generating the system initially but also a system backup.

Load the punched system tape using the absolute binary loader. After the system
tape is loaded, the binary loader will halt. As in Step 2, page B-3, examine the
contents of location 42, enter the contents into the data switches, and press
RESET and START. The CLI will respond with:

R

The system as now loaded is used to load the final version of the system into a
system file, ready it for bootstrapping, and bootstrap the final version of the system,

Preparation for Bootstrapping from Fixed Head Disk or Disk Pack

After the paper tape of the system has been loaded and the CLI gives the R response,
the user must take the following steps in preparation for bootstrapping:

1. Check to insure that the default directory device is the device that
was specified for bootstrapping when the system was configured.

B-7

Preparation for Bootstrapping from Fixed Head Disk or Disk Pack (Continued)

2, Load the system tape into the paper tape reader or teletype reader
and type the command:

$TTR
MKSAVE/Z{ $PTR}SYS. SV)

The DOS system tape will be read and the system file, SYS. SV will be
on the default directory (bootstrap) device.

3. Issue the command:
CHATR SYS.SV SP)
This protects the system file from accidental deletion,
4, Issue the command:
INSTALL SYS.SV)
This causes DOS to copy the bootstrap program from SYS.SV to logical
address zero of the default directory device, When the bootstrap pro-
gram begins, it locates the remainder of the system file and loads the

entire system into core. Unless the boostrap is copied to the default
directory device using INSTALL, the system cannot be bootstrapped.

Transferring to Magnetic Tape in Preparation for Tape Bootstrapping

The system saved file SYS000. SV can be transferred to magnetic tape, provided that
the user has a configuration that includes 9-track magnetic tape. * Users having a
configuration that includes 9-track magnetic tape receive a tape bootstrap program
in dump format (088-000015) called TBOOT. SV . This tape may be loaded any time
after the rudimentary system bootstrap has been loaded, using the command:

o $PTR

LOAD § ¢TTR (¥

For example, TBOOT. SV can be loaded after the absolute binary tape has been read
in, along with other dumped system tapes» or after system configuration.

Once SYS000. SV has been created, the user takes the following steps:

1. Select an unused tape, mount it on the tape drive, and issue the
command:

* 7-track magnetic tape cannot be used,

B-8

Transferring to Magnetic Tape in Preparation for Tape Bootstrapping (Continued)

INIT/F MTn o
where: n is the unit number selected by the magnetic tape adapter.

2, The tape bootstrap file is then transferred to the magnetic tape unit
n by the command:

This stores the tape bootstrap on magnetic tape. The tape bootstrap
program must be the first file (0) on the magnetic tape. The DOS
system must immediately follow the tape bootstrap program.

3. To transfer the system file, the user issues the command:
XFER SYS000,SV MTn:1 }

This tape, as written, canbe usedto initialize and bootstrap DOS. It
can also be preserved as a backup copy of the system.

If the user wishes, additional files may be written to the magnetic tape containing
the system, The user must, however, give such files a number other than 0

or 1. For example, the user may at some time write the DOS assembler to the
system tape using the command:

DUMP MTO:2 ASM.SV),

BOOTSTRAPPING

Bootstrapping from the Default Directory Device (DSK or DPK)

When SYS, SV has been INSTALLed, the system can be bootstrapped directly from
the default device (and only from this device). The bootstrapping procedure varies
slightly with the machine configuration.

Before bootstrapping from a moving head disk, it is necessary to insure that the
read/write heads are physically positioned in cylinder zero. With a type 4047
disk drive, this is accomplished by momentarily depressing the LOAD/RUN
switch to the LOAD position and then depressing the switch to the RUN position.
The heads are properly positioned and the bootstrap operation can proceed when
the READY light comes on. With a type 4048 or 4057 disk drive, depress the
POWER switch and allow approximately one or two seconds to elapse before de-
pressing the POWER switch again to restore power to the drive. The bootstrap
procedure can be continued when the READY light comes on.

B-9

ootstrapping from the Default Directory Device (DSK or DPK) (Continued)

Nova or Nova 1200/800 Series with No Program Load Option

1.

Enter in location 376:
601_n2

where: nn = 20 when bootstrapping from fixed head disk.
= 33 when bootstrapping from moving head disk.

Enter 377 in location 377.

Press RESET, then press START.

The message: DOS REV nn will be printed on the teletype,
where nn represents the current system revision level,

Press CONTINUE, The system will respond with R and the
system is ready for use.

Nova 1200/800 Series with Program Load Option

1. Set bit 0 in the data switches to a 1.
2. Enter in bits 10-15 of the data switches the disk device code:
20 for bootstrapping from fixed head disk.
33 for bootstrapping from moving head disk.
3. Press RESET, then press PROGRAM LOAD.
4, The message: DOS REV nn will be printed on the teletype, where
nn represents the current system revision level.
5. Press CONTINUE. The system will respond
R
and the system is ready for use,
Supernova
1. Enter in the data switches, bits 10-15, the disk device code:
20 for bootstrapping from fixed head disk.
33 for bootstrapping from moving head disk.
2. Press RESET, then press CHANNEL START.
3. The message: DOS REVnn will be printed on the teletype, where

B-10

Bootstrapping from the Default Directory Device (DSK or DPK) (Continued)

Supernova (Continued)

nn represents the current system revision level,
4, Press CONTINUE. The system will respond
and the system is ready for use.

Magnetic Tape Bootstrapping

The system that was written to magnetic tape must be bootstrapped from magnetic
tape unit 0; no other unit number can be used. To bootstrap from magnetic tape,
take the following steps:

1. Mount the tape on unit 0,

2, Position the tape to the load point, The bootstrap cannot be performed
correctly unless the tape is positioned to the load point.

3. Place the unit on-line.
4, Take the following action, depending upon the machine configuration:
a. Nova or Nova 1200/800 Series without Program Load

Deposit 60122 (NIOS MTA) in location 376; deposit 377 in
location 377, Press RESET and then press START.

b, Nova 1200/800 Series with Program Load
Set the data switches to 100022, Press PROGRAM LOAD.,
c, Supernova

Enter 22 in bits 10-15 of the data switches. Press RESET and
then press CHANNEL START.

S. The tape bootstrap program will be read into core and will type the
following message on the teletypewriter:

FULL(0) OR PARTIAL(L) ?

B-11

Magnetic Tape Bootstrapping (Continued)

The user responds by striking 0 or 1, indicating a full or partial
initialization procedure. If the system has just been generated, he
must perform a full initialization, If the system has been running
and the user wishes to maintain his directory and file system infor-
mation, he can perform a partial initialization,

6. When the user responds to the query, the remainder of the system
is read into core, initialization performed, and control transferred
to the CLI which will transmit the prompt character (R). The tape
is then rewound.

If the user is bringing up his system for the first time, he may wish to take the steps
that prepare the system for disk bootstrapping., This will insure that he will be able
to restore the system by bootstrapping from disk if necessary., The steps are

those previously described, i.e.,

1, Insure that the default directory device and the bootstrap device are
the same,

2. Issue the commands:
XFER MTO:1 SYS.SV)
CHATR SYS.SV SP)
INSTALL SYS.SV)

These commands enable the user to bootstrap DOS from whichever bootstrap device
(DSK or DPK) was specified at SYSGEN time,

B-12

APPENDIX C
SYSTEM AND USER PARAMETER TAPES
Supplied with DOS are two parameter tapes in ASCII, the User Parameter Tape,

090-000090, and the System Parameter Tape, 090-000176. Listings of the User
and System Parameters follow. The System Parameters begin on page C-9,

JHATHN

177771
177772
177773
177774
177775
177776
177777

vV L

} DEFINE THE

«DUSR
«IUSR
+ULISR
«NUSR
+RUSR
<SR
«PUSR
L DUISR

SSLGTs
SSNsPs
SSRTNs
SSEAD=
SSCkYn
S3ACAs
S$SaCls
SSAC2s

SYSTEM STACK

-7
L]
L3
-4
-3
=2
=]
)]

C-2

e we TS W8 W W

DISPLACEMENTS

VARIABLE LENGTH OF CALLING'S FRAME
PREVICGUS STACK POINTER

RETURN AODRESS OF CALLING PROGRAM
ENTRY ADORESS OF CALLED ROUTINE

CARNKY

SAVE STORAGE FOR CALLING'S ACCUMULATOR

(DON'T MODIFY THIS DISPLACEMENT!!)

JMATIN

2 A
vaABPpe 8
AAY A
Anteing
ARG
AHA L‘z ‘-’\ 1 1

W] @

RN IR N)
AA[1A1 4
DAy 8
ity 6
wrinmy 7
Ly g @
Cningy
VAInLP R
RN |

i d
g8
VA AZR

2@y
LArinl 3

177773
177774
1777278
177778

172777
GV ArR

177773
177776
177774
il

!
1 UFTY
!

«QUSR
«DUSR
«DUSR
«DUSR

+DUSR
DUSR

& -

+DUSR

«DUSR
«DUSR
+DUSR
+DUSR
+OUSR
«DUSR
«DUSR
«DUSR
+DUSR

«DUSR

+DUSR
«DUSR

«CUSR
+LUSR

ENTRY

UFTFNE2 JFILE NAME

UFTEX=S JEXTENMSION

UFTAT=6 JFILE ATTRIBUTES

UFTBKa? INUMBER OF LAST BLOCK IN FILE

UFTBC=1Q INUMBER OF BYTES IN LAST BLOCK

UFTAD®1} JOEVICE ADURESS OF FIRST BLOCK

UFTDL=12 JDCT LINK

UFTDC=13 JOCT ADDRESS

UFTUN®14 FUNIT NUMBER

UFTCARLS JCURRENT BLOCK ADQRESS

UFTCBe16 JCURRENT BLOCK NUMBER

UFTSTa17 JIFILE STATUS

UFTnAm2p INEXT BLOCK ADORESS

UFTLAR21 JLAST BLOCK ADDKESS

UFTORE22 $1SYS,OR DCB ADDRESS

UFTFAR23 JFIRST ADORESS

UFTHNE24 JCURRENT FILE BLOCK NUMBER

UFTBPa25 JCURRENT FILE BLOCK BYTE POINTER

UFTCHa26 JOEVICE CHARACTERISTICS
P(LEAVE "UFTCH" AS LAST WORD!})

UFTELBUF TCH=UFTFNe1 JUFT ENTRY LENGTH

UFDELBUFTOL=UFTFN#+1 JUFD ENTRY LENGTH

) SYSTE™M FILE ENTRY

!

«DUSR
«DUSR
«DUSR
+DUSR
«DUSR
«DUSR

«DUSR
«DUSR
+CUSR
«OUSR

SFKEYnaS
SFLKEm4
SFNXa=3
SFBKaw2
SFBCa={
SFDCBsi

UDBATSUFTAT=UFTDC
UDBADSUFTAD=UF TDC
UDBBKsUFTBK=UFTDC
UDBBNSUFTBN=UFTDC

IKEY

IMAP,DR LINK (=1 IF NOT DSK DVC)
JNEXT ENTRY IN CHAIN

JNUMBER OF LAST BLOCK IN FILE
JBEYTE IN LAST BLOCK

1DCB ENTRY

INEGATIVE DISP, TO ATTRIBUTES
INEGAVIE DISP, TO FIRST ADDRESS
INEGATIVE DISP, TO LAST BLOCK
IPOSITIVE OISP, TO CURRENT BLOCK

)RR RV
AV AL
2w e
S, /:V'?
by .’).!'1

BT |
I o
Poisir 4
FANAL
1 "otk A

Catiy g
N, @
A
v
socret A Qln
DR WO
viAl 2R

v w377
N T
AN Y
4,‘5.‘:/“.6
oyt 1@
Rt v.,ﬂ,lﬁ',
1776680
ekl
TERTERTIN
e 3
W oAy 4
poaihe e
RERGELE B2
ficiid A
et a4
Sty A g
EER A Tl |
w'*u,‘V!dP‘.
Ty ral
VA8 2
""3"9"(/'!‘3
ALY Y

? FILE ATTRIBUTES

)

+OUSR
+DUSR
«DUSR
+ OUSR
«OUSR

- wn we

+DUSR
«DUSR
«OUSR
+«DUSR
«LUSR

ATRPBIBY
ATCHAm1BY
ATSAVE{R2
ATPER®{b14d
ATwPe1810

FILE STATUS

STER®IBYIS
STIOPwIKLA
STFwRe{k1D
STINIwiDbY

JIREAD PROTECTED

PCHANGE ATTRIBUTE PROTECYED
JSAVED FILE

IPERMANENT FILE

IWRITE PROTECTED

JERRON DETECTED
11/0 IN PROGRESS
IFIRST wRITE FLAG
INO INIT BIT

STCMKELFE2 $SET = READ (FILIO)

)] BuUFFFR STATUS

«DUSR
« DUSR
+DUSR
«DUSR
DUSR
«DUSR
»DUSR

?

RYMOUDeLBLS
NTEre1R1A
QTIuP=IRL?2
QTLCK=ini)
RTCMDeirtn
QTEMDEIKRY
ATINDE1IEAR

?} SYSTEM CONSTANTS,

!

«DUSR
«LUSR
+DUSR
«DUSR
+USR
+ DUSR
+JUSR
+WUSR
«DUSR
+DUSR
o« DUSR
. DUSR
«DUSR
« DUSR
+DUSR
+OUSR
+DUSR
«DUSR
+DUSR
«DUSR
«DUSR
«DUSR

J(INIT/RELEASE SWTCH FNOR SYS,DR DCB)

}HAS BEEN MODIFIED

PERROK DETECTED

1170 IN PROGRESS

JHUFFER LOCKEL

JCOMMAND = | = READ, @ = WRITE
JERROR MODE (MAG TAPE)
JINUIRECT URIVER MODE 8w,

SCWFRE255, JwNRDS PER BLOCK

SCLLG=132, pMAX LINE LENGTH

SCAMX=24, pMAX ARGUMENT LENGTH IN BYTES
SCPMLBUFTEXeUFTFN®Y JFILE NAME LENGTH
SCMeReiv, JMAX ERROR RETRY COUNT
SCST1RE1A JSAVE FILE STARTING ADDRESS
SCTIMmmbi, IRINGIO § MS, LOOP TIME (SN)
SCSYSs1 JOEVICE ADORESS FOR SYS,DR
SCHMaPa?2 JIDEVICE ADORESS FUOR MAP,DIR
SCSVRaSCMAP+1 ta CONTIGUOUS RLOCKS FOR CORE IMAGES
sSCShdma PNUMBER OF LEVELS
SCEXTSUFTEXeUFTFN JEXTENSION QOFFSET IN NAME AREA
SCRr|.=64, JWORDS PER RANDOM RECOQORD
SFINTsi{RA PINTERRUPT FLAG

SFCxNEIR13 JCRITICAL READ ERROR
SFPRDs{H14 JPANIC ON READ ERRKRODR
SFRRKEIH1S JBREAK FLAG

CADZ=aR 1CA LOCATION IN BOOTSTRAP
LADZ2sCADZ+} JLA LOCATION IN BOOTSTRAP
SCFULSLANZ+}

SCPARESCFUL+1

SCKEYRSCPAR+1

CARNARRA
LSMIT"17 8 |
HAVAEQ
SR e
Lot 4
Wiy A 8
LAY B
Wi
L)AL A
SESETEAN W |
SRS B
GAtr1 Y
viiing 4
Mripiry 8
¥ fﬁ‘;:!;",?i
niy a2
A ngd
vavvga
LEvngs
Vi g8
A ’”'?V‘Q’
AR
a3l
R
i Aeady
ot 38
AR

) DEFINE THE EXCEPTIONAL STATUS CODES

« DUSR
«DUSR
«DUSR
«DUSR
«DUSR
+DUSR
+DUSR
+DNUSR
+DUSR
+DUSR
+DUSR
«DUSR
o« DUSR
+DUSR
«GUSR
«DUSR
«DUSR
+DOUSR
+DUSR
+ DUSR
«DUSR
+DUSR
+DUSR
«DUSR
«OUSR
+DUSR
+DUSR

ERFNOs
ERFNM=
ERICMs
ERICDm
ERSvinms
ERWNIS
EREUF»
ERRPRs=
ERWPRS
ERCNE®
ERULEn
ERDEl =
ERCHAS
ERFOPR
ERUFTs
ERLLIm
ERRTNS
ERPARSE
ERCm3=
ERMEME
ERSPCa
ERFILS
ERSELs
ERALRSE
ERRDs
ERN]IRm
ERDNME

!
'
!
!
!
!
)
H
!
H
}
!
!
!
I
!
!
!
!
!
)
!
!
H
}
!
'

ILLEGAL CHANNEL NUMBER

ILLEGAL FILE NAME

ILLEGAL SYSTEM COMMAND

ILLEGAL COMMAND FOR DEVICE

NOT A SAVED FILE

ATTEMPT TO WRITE AN EXISTENT FILE
END OF FILE

ATTEMPT TO READ A READ PROTECTED FILE
WRITE PROTECTEO FILE

ATTEMPT TO CREATE AN EXISTENT FILE

A NON=EXISTENT FILE

ATTEMPT TO ALTER A PERMANENT FILE
ATTRIBUTES PROTECTED

FILE NOT OPENED

ATTEMPT TO USE a UFT ALREADY IN USE
LINE LIMIT EXCEEDED O

ATTEMPT TO RESTORE A NON=EXISTENT IMAG
PARITY ERROR ON READ LINE

TRYING TO PUSH TOO MANY LEVELS

NUT ENUF MEMOWY AVAILABLE

OUT OF FILE SPACE

FILE READ ERROR

UNIT NUT PROPERLY SELECTED

ILLEGAL STARTING ADDRESS

ATTEMPT TO READ INTO SYSTEM AREA
FILES SPECIFIED ON DIFF, DIRECTORIES
ILLEGAL DEVICE NAME

C-5

r
.

eI

“s‘l; 7

P

L S

v

e 4
4%
e 8

ety 7

e

P 112
w113

RN

ot A

S b o e et

ad st

cann

Cape

cia t\ 1 v

IR o X2

[B e RL]

o A

RV AS

) CLI

«OUSR
«DUSR
<SR
o« OLISH
QUSSR
«LUSR
«DUSR
«DUSR
« IUSR
«UUSR
«NUSR
«DUSR

ERRUR CNDES

ChNEaAReEll 2
CILAT®1v
CNDEDSy{ 2
CNCTDmye)
CnSadelin 4
CCrENEBLILS
CNSFSm1©d
CNACHMELT7
CiLrXsti1A
CSPeErs11l
CPHERE112
CThaRs113

$~0T ENOUGH ARGUMENTS
JILLEGAL ATTRIBUTE

INO VDERULUG ADNRESS

IND CONTINUATINN ADDRESS
INO STARTING ADDRESS
JCHECKSUM ERROR

InD SOURCE FILE SPECIFIED
INOT A COMMAND
PILLEGAL BLOCK TYPE

INO FILES MATCH SPECIFIER
1PHASE ERROR

ITO0 MANY ARGUMENTS

} DEFINE THE PANICS

+ DUSR
«UUSK

«DUSR

.DUSR
.DUSR
«DUSR
.DUSR
JDUSR
.DUSR

PMlPe
FUFFS=

PLCU]I®

PnCSO=
PanClilvs
PanCURS
PNCDES®
PNCKRE
PNCMT =

f10 i NOP MAGIC

ie11 1 OFFSET

21#FOFFS+PNOP

P2*POFFS+PNUP
23%POFFS+PNQOP
24+*PDFFS+PNOP
25«pPNFFS+PNOP
26vPOFFSePNOP
27«POFFS+PNUP

C-6

- WS We W WE We wa wa

UNKNOWN INTERRUPT

DEVICE CODE IN ACO

SYSTEM STACK OVERFLOW

CRITICAL DISK WRITE ERRORS
CrRITICAL DISK READ ERRORS
CRITICAL DISK READ/WRITE ERROR
RUNAWAY READER

MTA CONTROLER ERROR

JHAIN

Cep g
R WY,
il A @ @
Videin 40
ity h
i 2uni
“OE A
A AR
Ly 3]
vlved
v2nkavn
wd4vdk
{viApr A

+«DUSR
«DUSR

«DUSR
+DUSR
«DUSR

« DUSR

LDUSR
«DUSR
DUSR
2 WUSR
.DUSR
.DUSR
+DUSR
+DUSR
+DUSR

! DEFINE THE CHARACTERISTICS

OCCPOm
DCCGNw

DCIDIs
DCCNF=
DCTO=

DCxEYE:
NCNAF=
DCRAT=
DCPCK=
ODCLACs
CFwuDm
DCFFOs=
DCLTU=
bCCe2a
DCDIRw

1815
1814

1813
1812
it}

Tt Q4n
A2 4V

189

1808
1807
1606
1824
1823
1622
18021
16070

™) Ve W W WE Ve WG WO W WS Ve WO W

!

DEVICE REQGUIRING LEADER/TRAILER
GRAPHICAL OUTPUT DEVICE WITHOUT TABBIN
HARDWARE

INPUT DEVICE REWUIRING OPERATOR INTERV
QUTPUT DEVICE WITHOUT FORM FEED MARDWA
TELETYPE OUTPUT DEVICE

KEYBCARD DEVICE

OUTPUT DEVICE REQUIRING NULLS AFTER FO
RUBOUTS AFTER TABS REQUIRED

DEVICE REQUIRING PARITY CHECK

REWUIRES LINE FEEDS AFTER CARRIAGE RTN
FULL WORD DEVICE (ANYTHING GREATER THaA
FORM FEEDS ON OPEN

CHANGE LOWER CASE ASCII TO UPPER

IREAD 8v COLUMS

!

DIRECTORY DEVICE

LHAlw

y ol 4@

vlLiAL O
vobivig
[AERRCREAY 2
13V“V3

Gt 4

sy B
ERLET RUTTIN
ARSI
Gty s
Couet
Awyulp

13
vy e
RSN G B

. a,;!ulf"\

g d
e e d
T
v g h

7

AT ‘1;‘(n
(R R
PN ¥ 3

! USER STaTyS TABLE (UST) TEMPLATE

«DUSR

.DUSR
«DUSR
«DUSK
o JLISR
.UUSP
o DUSR
+DUSR
«NUSR
«NUSR
«DUSR
+OUSR
JUUSR
JLUSR
« DUSR
«[IUSR

2NUSRK
JOUSR
JDUSR
LDUSR
LDUSR

LDUSR
JIUSK

«DUSR
JDUSR
LLUSR
+NUSR

USTs

USTPCs=
usTzmMs
USTSS=
I)STES=®
USTmMz
119 TSAR
USTi'Am
8 Twls
USTCSs=
USTITe
e Tnuws
8T1nNe
ISTISs
USTwAs=
HST~Se

1ISTAAE
ISTAts
118TA2s
USTA3e
UST(Ys=

HSTris
Us&TeCs

MXFrOmye

UFPTauUST+USTEL

arh

NN RD OGNS
=

P Yl g pl ps b
O DN S

23
24
25
26
27

UFTECaMXFNO

UFTasUFPTY+UFTEC

? START OF USER STATUS AREA

? PROGRAM COUNTER (LEAVE AT DISPLACEMENT
] ZMAX

7 START OF SYMBOL TABLE

) END QF SYMBOL TYABLE

3 NMAX

7 STARTING ADDRESS

) DEBUGGER ADDRESS

! AIGHEST ADORESS USED

$ FORTRAN COMMON AREA SIZE
1 INTERFRUPT ADDRESS

} BREAK ADDKESS

§ INITIAL START OF NREL CODE
JINTERRUPT SEKRVICE WORO

? I/0 WAIT RETURN

1 1/0 COMPLETION RESTORE

$ OEFINE 4 SPARE wORDS

$ SAVE STORAGE FOR ACPO

1 AC1H

3 AC2

} ACY

1 CARRY

} ENTRY LENGTH
$ ENTRY COUNT

$MAX NUMBSER OF FILE TABLES
JUSER FILE POINTER TABLE
JENTRY COUNTY

JUFT!S

A JATE,
[Bve g
A LT
CREEE I |
VAT e
e
Vv 4
T 1 4
1772777
it Ve] A
177741
IR B)
177763
1777¢ ¢
177765
1777¢2

v g2

Ay, 5
wim o aih g »

Vool Y

1777¢7
17777+
177771
177772
17777)
177774
177775
177776
177777
AP i
PLEIR Y A 4
“An4vi

reia19

!
J SYSTEM PARAMETERS,
!

!} LINKAGE

«DUSR SAVE s JSRe 3
+OUSR RTRN = JSKe 4
«DUSR RTLOCER?

+DUSR ACvsm]

+CUSR ACim2

«DUSR AC2m3

«DUSR TmPs4

«DUSR MXTMPETMPely
«DUSR SPmem

«DUSR SLATeMXTMPeSPe
sDUSR OSPe=SLGT+SF
«DUSR NSPRSLGT+SP
«NUSR OACPBACHSLGT
«DUSR DACISACiwSLGT
«DUSR DAC2mAC2«SLGT
+DUSR ORTNERKRTLOC=SLGT
«[IUSR NFRAMEQ2

!
! MISC,
!

+UUSR RLOC = &
+DUSR CSP = i
«PUSR PNIC » 7
DUSR UMSKn{4

!
! BUFFER ENTRY
H

«DUSR BQTLAmmy
«OUSR BANSTE=yn
.DUSR BQRDCRm=?
«DUSR BRENCE=p
«DUSR BQSTawS
+DUSR BADCTawa
«DUSR BQuUNa=3
+DUSR BQCAsa2
«DUSR BGONXTse}
+DUSR BQBFav
«DUSR BGNXLE3??
+DUSR BAXTAm4rn

JCALL TO SAVE REGISTERS
JCALL TO RESTORE REGISTERS
JRETUKN LOCATION

1ACQ

1ACH

o Y

1AC2
IFIRST TEMPORARY

ICURRENT STACK POINTER
1STACK FRAME LENGTH
1LAST FRAME POINTER
INEXT FRAME PQINTER
JOLD ACe
10LD ACH
10LD AC2
JRETURN LUCATION,
INUMBER OF SYSTEM STACK FRAMES

JPAGE ZERO TEMP,
1STACK POINTER

IPANIC

JUSER MASKING ROUTINE

JTIME LASY ASSIGNED (@ = USE ME FIRST)
JOEVICE STATUS WORD

IDCB ADDRESS

PERROR COUNT

ISTATUS WORD

! OCT ADDRESS

JUNIT NUMBER

JCURRENT BLOCK DEVICE ADDRESS
ILINK TO NEXT BUFFER

JSTART OF DATA

ILINK WORD/FILE NUMBER

PXTRA WORD

oDUSR BUEL ® BOXTA=BRTLA+Y

C-9

DEVICE CONTRAOL RLNACK

-e w8 WO

’ﬁhlh
LGNSR DCRCu 2 SLUCT ADURESS
s oLu2Y JDUYSR DCRUNSY JUNIT NUMBER
L enev D JNUSR DCBCA®2 JCURRENT «LOCKk DEVICE ADDRESS
voeard JOUSR DCBCEEY JCURRENT mLOCK NUMBER
reatd ZNUSR DCBSTE4a $1STATUS
% ,DUSR DCBnARS INEXT ADDRESS
L6 JNUSR DCBLARA ;JLAST ADIRESS
S w7 JDUSR DCALRE7? 1SYS,0R DCB POINTER
1" ,DUSR DCRFAmiv JFIRST ANORESS
.18 JOUSR SFELBLCHFA=SFKEY+] JENTRY ELNGTH

} DEVICE CONTROL TABLE (DCT) LAYGUT

} COMMON TNO ALL DEVICES

s GNUSR NCTCDs @ 7 OEVICE CODE
el 4BUSR DCTrSe 1 § MASK OF LOWER PRIORITY DEVICES
o e 2 JUUSR NDCTCHs= 2 ; DEVICE CHARACTERISTICS
vy DUSR DCTLKs 3 $ LINKR TO NEXT DCT
} (=1 TERMINATES THE CHAIN)
vty 4 GJLUSR DCTISs 4 § INTERRUPT SERVICE ROUTINE ADDRESS
cve A USSR DCTCws 5 ! COMMAND ENABLE BIT WORD
1 DEFINE THE (COMMAND RITS
SIS | USSR OF = 1815 1 OPEN FILE
e R JUSR CFa 1814 } CLOSE FILE
ooy d «NUISR RS= 1813 ; READ SEQUENTIAL
BEERITE « USSR]RL= 1812] READ LINE
Lo JCllgk Rke 1611 } READ RANDOM
SR AL o DUSR wes 161y } WRITE SENUENTIAL
R «DUSR Wis 1829 ? WARITE LINE
e JLUUSR WHS 1BnA § WRITE RANDOM
Ty Ay VUSSR lam tpa7 $OPEN FOR APPEND
~ave & JDUSR DETOTa & ; CUMMAND DISPATCH TABLE ADDRESS WORD

@]
1
[y
e}

.MAIN

[T ;_AV 7
ety
i 1-‘7('11 1

Ny

Ty T
T

-

oo

i1 2
RPN ETE B
'./“":":V'.14
Ay s
AR/ -]
NN R W
v 20
Arnr 2
Lerid@d
RS
e hege
e iglig
AT

ISELSVACYV Y/
YA l’/’,lg}
IIRNE" S B |
il e
BWinviidy
#ovid] 4
viaayinl 8
BEAN RN
[ZREARR W 4
RS Y,
v av gy

! COMMON TO DEDICATED DEVICES (I.E, SINGLE USER/SINGLE BUFFER)

«DUSR DCTSTa 7 JTADURESS OF DEVICE START ROUTINE
+DUSR DCTSPwm 1e FTADDRESS OF DEVICE STOP ROUTINE
«OUSR DCTFLa 11 'PFLAGS

JOEFINE THE FLAGS

«DUSR DCACT=1B15 JACTIVE FLAG

+DUSR DCACP®iB{3 JACCEPT CHARACTER FLAG

«UUSR DCKMDm1B12 JTTY KEYBOARD MODE FLAG
«OUSR DCTHS= 12 BUFFER SIZE (BYTES)
«DUSR DCTEFa 13 BUFFER FIRST ADDRESS (BYTE)
«CUSR DCTBLs 14 BUFFER LAST ADDRESS
«GUSR DCTIP» 15 BUFFER INPUT POINTER (BYTE)
«DUSR DCTOPs 16 BUFFER QUTPUT POINTER

!
!
!
}
)
«DUSR DCTCNs 17 } COUNT QF ACTIVE DATA

«DUSR DCTTOa 2n ! TIMEOUT WORD (ALL INPUT DEVICES)
«DUSR DCTCCwe 2 ?} COLUMN COUNTER (ALL OUTPUT DEVICES)
+DUSR DCTWCs 21 } RESTART CONSTANT (ALL INPUT DEVICES)
«DUSR DCTLCs 21 P LINE COUNTER (ALL OUTPUT DEVICES)
+UUSR DCTSAw 22 ! DEVICE SPECIAL WORD @

+DUSR DCTS!s 23 ! DEVICE SPECIAL WORD 1

«CUSR DCTTRs NDCTSA } TRANSLATION ROUTINE ADDRESS

! COMMON TO BLOCK TRANSFER DEVICES

«DUSR DCTRDR=7? JREAD A BLOCK

«DUSR DCTPRD=1Q JPREREAD NEXT HLOCK

«OUSR DCSTIsyy IJSTART INPUT

+DUSR DCSTO=12 ISTART CUuTPUT

«ODUSR DCCRO=1) JCURRENT REQUEST BUFFER PDINTER
+DUSR DCNCL=14 10CT LINK

«DUSR DCTRLu=1S IREAD LAST BLOCK

«DUSR DCTRNS16 IREAD NEXT BLOCK

«DUSR DCTIN®1? JDEVICE INITIALIZATION
+DUSR DCTKSs20 JOEVICE RELEASE

«DUSR DCNBKs=21 INUMBER OF BLOCKS ON DEVICE

C-11

ol AIN

N CRZEES |
RN~

AR TN |
e AL
LR TR X"
s G AlA
[W
RGN
ool A A
PR R,
Y AN
1400

- [1 M

R TR RN |
RRACNLRVE |

LA 4
R A
beAg R
AL T e
AR AT
R EA|

«DUSR
. DUSR

«DUSR
« DUSR
+DUSR
«DUSR
«DUSR

«DUSR

« DUSR
« DUSR
«DUSR
«DUSF

t DEFINE THE CHARACTEWISTICS

pDCCPNe
VCCEN®

NeIinls
CCNFm
CTO=

ODLRKEYE
NCNAFS
hPLrRaATs
NCPCK=
DCLACS
DCFwhEm
DCOIRm

1818
1814

1R13
1812
it
161w
1H9

1R
1RA7
18306
1nirg
18A

.y WO Ve VR Ca We WE W We WS WS WO W

DEVICE REGUIRING LEADER/TRAILER
GRAPHICAL OUTPUT DEVICE WITHOUT TABBIN
HARUWARE

INPUT DEVICE REGUIRING UPERATOR INTERV
OUTPUT DEVICE WITHOUT FORM FEED HARDWA
TELETYPE CQUTPUY DEVICE

KEYBOARD DEVICE

QUTPUT DEVICE REQUIRING NULLS AFTER FQ
RUBOUTS AFTER TABS REGUIRED

DEVICE REQUIRING PARITY CHECK

REGUIRES LINE FEEDS AFTER CARRIAGE RTN
FULL wORND DEVICE (ANYTHING GREATER THA
NDIRECTORY DEVICE

! DEFINE Trk DEVICE MASK BITS

+DUSR
+DUSR
«DUSR
CDUSR
+DUSR
+DUSR
+DOUSR
+DUSR

M8§TTNs=
MSTTI=
mSPTPsa
MSLPTe
MOPTRs
MSCLRE
MSDSKs=
MSDKPs

1R19
1414
1813
1812
1M1
11w
160y
187

H
H
!
!
}
!
!
!

C-12

TTO0
TT1
PTP, RTC
LPT, PLT
PTR
CNR, MTa
DSK
DKP

APPENDIX D
CLI INTERPRETATION OF USER COMMANDS

The action taken by the CLI upon reading a command line is sufficiently flexible so that
users can, if they wish, design programs to perform system command functions,

n
CLI always builds a command file before the save file of that name is loaded. The
command file reflects an edited version of the command line.
For example, suppose the user issues the command line:
FOOY

The CLI does not recognize FOO as a known command word. It builds a command file
with the byte organization shown below:

Byte Contents
0 F Each character of the file name occupies a byte, The fiie
1 0 name is terminated by a null byte. '
2 9)
3 null) Four bytes (2 words) are set aside for global switches of
4 FOO. Each letter switch sets a bit. A sets bit @ of the first
5 word, etc.,, as shown in the switch/bit correspondence
6 j diagram below,
7 -
8 377 —> The command file is always terminated by a 3778.
<—Byte 1, 3——Byte 2,4 — 5
E 111111
bit: 0123456:789012 3435
AIB|CID|E|F|G|H|I]]|K|LIM[N[O[P word 1
QIR[S|T{U|V|W|X]Y| Z word 2
\

Note that the CLI does not attempt any interpretation of switches in building the command
file, The CLI simply sets the appropriate hit.

Additional file name arguments and local switches are handled in the same way when the
CLI builds the command file, Suppose the user types the command:

FOO/B AA ZZ/X MUMB&#

CLI INTERPRETATION OF USER COMMANDS (Continued)

The CLI would then build the following command file:

Byte Contents
0 F
1 O Command file name FOO, terminated by
2 O null byte,
3 null
4 1
5 Global switches of FOO.
6 Bit 1 (switch B) set ON.
- .
8 A } Argument AA, terminated by null byte,
9 A
10 null
11 M ,
12 , Four bytes set aside for local switches of AA.
13 None set.
14 _
15 Z \ Argument ZZ, terminated by null byte.
16 Z
17 null _
18
19 1 Local switches of ZZ, Bit 23 (switch X)
20 1 set ON,
21 J
22 M
2 -
24 M Argument MUMB, terminated by null byte.
25 B
26 null J
27 1
28 Local switches of MUMB. None set.
29
30 w,
31 377 — Command file terminator.

Since the CLI does not interpret switches, the user can set up program interpretation
of such switches. This gives the user an added means of passing information to a program
to be executed, since he can use switches as well as arguments.
The command file is always named:
COM. CM

and is created on the default directory device,

D-2

CLI INTERPRETATION OF USER COMMANDS (Continued)

A read line from a disk file will terminate on a null (as well as carriage return and form
feed.) This is quite useful in reading COM, CM arguments. The following example
illustrates how a user could read the first argument of the command file as well as its
global switches,

LDA 0, CFILE ;COM. CM POINTER
.SYSTM
. OPEN 3 ;OPEN ON CHANNEL 3
JSR EROR 527
LDA 0, ARGL ; FIRST ARGUMENT POINTER
.SYSTM ;READ IT (THE NULL
.RDL 3 ;TERMINATOR IS ALSO
JSR EROR ;TRANSFERRED)
LDA 0, GLOB _ ;POINTER FOR GLOBAL
LDA 1,C4 ;SWITCHES
.SYSTM ;READ FOUR BYTES
.RDS 3
JSR EROR

C4: 4

GLOB: 2*GLOB

ARGL: 2*ARG1

CFILE: 2*, CFIL

.GLOB: .BLK 2

.ARGI1: .BLK 10

.CFIL: .TXT *COM, CM*

APPENDIX E

ADDING DEVICES TO THE SYSTEM

The I/0 devices that are included as part of the DOS system are listed in Chapter 1,
The user can, however, add device drivers to DOS enabling the use of additional
devices, All changes to DOS to incorporate another device should be made at the
source level. This Appendix describes briefly the required changes to add a device.
However, to understand fully the process of adding a device driver, the user must
make a source listing of those DOS programs described in this document and study
the entries made in tables for system devices. The tapes required are available from

DGC by ordering model number 3040 (without magnetic tape) or 3157 (with magnetic tape)

During full intialization of the system, names of all peripheral devices in the system
are added to the system file directory, SYS.DR. The device name will be entered only
if the user has forced the driver to be loaded. The general procedure for adding
a device driver is as follows: '

1. Add an entry to the SITAB table in DVINIT to enable entry of a device name in
SYS.DR.

2. Declare the Device Control Table (DCT) link and the Device Control Table
address as .EXTNs in DVINIT, forcing the driver to be loaded at SYSGEN
time,

3. Add an entry to the Device Control Table Pointer Table (DCTT) in TABLES,
determining the priority of device service at interrupt time.

4. Add an entry in TABLES for the DCT link word, insuring that it is assigned
after the last system defined link,

5. Define and supply all DCT information and routines required. Use the Library
File Editor to add this relocatable module to the system libraries.

6. Perform a SYSGEN using the updated libraries,

Sections following describe each of these steps.

CREATING A DEVICE ENTRY IN SITAB

SITAB is a table in DVINIT (System Device Initialization), SITAB consists of a series of
three-word entries, and the table is terminated by a word of zeroes. Each entry in
SITAB consists of:

WORD1 - A byte pointer to the device system name, packed left to right.

WORD 2 - The address of the word in TABLES that contains the Device
Control Table (DCT) link for the device, *

WORD 3 - File attributes of the device. (All system devices are declared
ATCHA and ATPER, "attribute protected"” and permanent'.)
The possible attributes are:

Mnemonic Bit Position Meaning

ATRP 1Bg Read protected device.
ATCHA 1B1 Attribute protected device.
ATPER 1B14 Permanent device.

ATWP 1B15 Write protected device.

An example of an entry in SITAB is shown below for the high speed paper tape reader:

2*SPTR ;NAME BYTE POINTER
PTRL ;POINTER TO DCT LINK
ATPER+ATWP+ATCHA ;ATTRIBUTES
SPTR: LTXT *$PTR*

DECLARING THE DCT ADDRESS

The last relocatable binary file of the system library, called TABLES, allocates storage
for all system tables not residing in page one. One of these tables is the Device Control
Table Pointer Table (DCTT). This table must contain an entry for every device control
table within the system. The form of each entry is:

.dvdDCT: dvd DCT
where dvd represents the DGC device mnemonic for each particular device's control

table. The label must be declared as an entry, while the control table address must
be declared as a normal external. When adding an entry, the user

* DCT links must be assigned beginning with the last link defined by the System +1.

tri
to

DECLARING THE DCT ADDRESS (Continued)

can select any three-letter device mnemonic not used for a DGC device.

A DCT link equivalence must also be defined and declared as an entry, The link is
used to index the table, DCTT.

DEFINING AND SUPPLYING DCT INFORMATION

Each device defined must specify its own Device Control Table. Each table consists
of 20 words, described below.

DEVICE CONTROL TABLE (DCT) LAYOUT
Word 1: Device code.
Word 2: Mask word,
Clear a bitfor every priority considered higher than the priority
of this device. The devices corresponding to the priority
bits that are left cleared will be permitted to interrupt the

current device.

Word 3: Device characteristic word, A list of device characteristics
is given in the table on the next page.

Word 4: Link to the next DCT. (Allocate as .BLK 1)

Word 5: Address of the device interrupt service routine,
This word is initialized by DVINIT,

Word 6: Command enable bit word.

A series of two-letter mnemonics, added together, indicating
the operations the device can perform.

Mnemonic Order Function
OF 1 open file (always necessary)
CF 2 close file (always necessary)
RS 3 read sequential
RL 4 read line
RR S read random
WS 6 write sequential
WL 7 write line
"'WR 8

write random

E-3

DEFINING AND SUPPLYING DCT INFORMATION (continued)

MNEMONIC

DCCPO

DCCGN

DCIDI

DCCNF

DCTO

DCKEY

DCNAF

DCRAT

DCPCK

DCLAC

DCFWD

DCFFO

DCLTU

DCC80

DCDIR

DEVICE CHARACTERISTICS

BIT POSITION

1B15

1B14

1B13

1B12

1B11

1B10

1B09

1B08

1B07

1B06

1B04

1B03

1B02

1B01

1B00

E-4

MEANING
Device requiring leader/trailer
Device requiring tab simulation.
Device requiring operator intervention.
Device requiring form feed simulation,
Teletype output device.
Keyboard input device (uncontrollable)
Device requiring nulls after form feeds.
Device requiring rubouts after tabs.

Device requiring even parity check on
input, even parity computation on output.

Device requiring line feeds after carriage
retuins,

Full word device (anything greater than

a byte).

Form feeds sent on . OPEN

Convert lower to upper case ASCII,
Read 80 columns on input if set, 72 if
reset, Send 80 characters on output, 72

if reset.

Directory Device,

DEFINING AND SUPPLYING DCT INFORMATION (Continued)

Word 7:

Word §:

Address of the device command dispatch table,

One entry is required for eVery bit specified in Word 6. Further,
the table order must correspond exactly to the order of the functions
given under Word 6. For example, if Word 6 appeared as follows:

OF+CF+RR+WL

the dispatch table must look as follows:

DTAB: OFILE ;OPEN FILE ROUTINE
CFILE ;CLOSE FILE ROUTINE
RNDOM ;READ RANDOM ROUTINE
LINE ;WRITE LINE ROUTINE

Address of device start routine,

Device Start Routine Specification

Input devices: Activate the device and return,

Output devices: Character passed in ACO.

Activate the device, If the device will not interrupt as a result

of this action, return to the normal return point, Otherwise, bump RLOC

for a return to normal return + 1,

For example:

LPTST: STA 3, RLOC ;SAVE RETURN LOCATION
DOAS 0, LPT ;KICK PRINTER
SKPBZ LPT sWILL IT INTERRUPT?
ISZ RLOC ;YES, BUMP RETURN
LDA 3, CSP ;STACK POINTER IN AC3
JMP @RLOC ;RETURN

E-5

DEFINING AND SUPPLYING DCT INFORMATION (Continued)

Word 9: Address of device clear routine.

Device Clear Routine Specification

Clear the device and return.

Word 10 : Flag word used by RINGIO (allocate as .BLK 1)
Word 11: Buffer size in bytes.

Word 12: Buffer starting byte address.

Word 13: Buffer ending byte address + 1.

Words 14-16: Variable words used by RINGIO (Allocate as .BLK 3)
Word 17: Input devices: EOF timeout constant.
A parameter "SCTIM" is defined on the user parameter tape, (090-000090),

which corresponds toa time of 1 millisecondon the Supernova SC, If the
device requires six millisecondsto timeout, the word can be allocated as

6*SCTIM
Output devices: column counter (allocate as . BLK 1).
. Word 18: Input devices: restart constant
Output devices: not used.

Words 19, on Spare words, which may be used for any special purpose device
temporaries or constants,

E-6

SUBROUTINE LINKAGE

Subroutine linkage among all system subprograms is implemented within the module
GSUB. Before attempting to interface a driver to the system, the user should be
familiar with the subroutine linkage facilities. Adhering to these conventions will
enable pure, reentrant routines to be written with little effort.

On all system I/O commands, the DCT address of the device requested will be
passed in AC2. The source or destination byte pointer for . RDL, .RDS, .WRL,

. WRS is passed in ACJ. The record number for .RDR, .WRR is passed in

ACl. On .RDS and . WRS, the byte count is passed in ACl. These parameters

are specifically those required by the generalized RINGIO routines (see next section),
and in many cases these RING I/0 routines alone suffice,

GENERALIZED RING I/O ROUTINES

The Ring I/0 Module (RINGIO) provides a number of useful, general purpose,
reentrant routines for handiing byte I/O from any device, input or output, using
the program interrupt facility. The basic ring buffer philosophy is to maintain
two pointers, a current input pointer and a current output pointer. The input
pointer indicates the first free byte slot in the buffer; the output pointer, if not
equal to the input pointer, indicates the next byte available for output. These
terms are relative. An input device "inputs" to the buffer at interrupt time and
"outputs" from the buffer at program base level, An output device "inputs"

to the buffer at program base level and "outputs” from the buffer at interrupt
time. (See diagram on the next page.)

A brief description of the major routines and their calling sequences will be given
below. More detailed information can be obtained by scanning the listing of RINGIO.
It is important to note that although buffer input/output is in byte increments,
devices transmitting larger data widths can use the same basic scheme. The card
reader, for example, inputs its full word by calling for two consecutive byte inputs.

Generalized Open Routine

Input: AC@ - file name byte pointer
AC2 - UFT address
Calling Sequence JSR OPN

error return
normal return

This routine clears the device and initializes its device control table, This implies

Generalized Open Routine (Continued)

the DCT has provided all necessary ring buffer information as well as the four
words of variable storage (Words 10, 14-16).

Input Devices

inter rupt

device
1 IBUF

base level
OBUF
L program data
Output Devices
base level
program data 7__> IBUF
interrupt
OBUF —
device

Generalized Close Routine

Input: AC2 - UFT address

Calling Sequence: JSR CLSO|CLSI (close output or close input)

error return
normal return

until all output has

s
; clears the device, and initia lizes the DCT

Q
T WiIT 1/0 4.

CLSO should be used only to close output devices. It wait
settled, clears the ¢ c , an
CLSI should be used to close input devices. It merely clears the device and initializes
the DCT.

Input: DCT address in AC2
Destination byte pointer in AC@,
Destination byte count in ACI.

Calling Sequence:
JSR RDS

error return
normal return

The device will be read, a byte at a time, until the byte count requested is satisfied.
The error return is taken if:

1. End of file occurs on device, The partial count read is returned
in AC1.

2. The device has the "full word" characteristic, and an odd
number of bytes is requested.

Generalized Write Sequential

Input: DCT address in AC2,
Source data byte pointer in AC@.
Source data byte count in AC1,

Calling Sequence:
JSR WRS

errory return
normal return

E-9

Generalized Write Sequential (Continued)

The data will be read and transmitted to the device until the byte count is expired.
Neither read nor write sequential alters the data in any manner, This mode is,
therefore, the standard mode for "binary" transfers.

Generalized Read Line

Input: DCT address in AC2,
Destination byte pointer in AC@.

Calling Sequence:

JSR RDL

error return
normal return

Output: Byte count read in ACl.

This routine is used to transmit ASCII data and terminate after transmission

of a carriage return or a form feed. All bytes transmitted are masked to seven
bits. Nulls, line feeds, and rubouts are unconditionally ignored. The error
return is taken and a system error code returned in AC2 for the following:

1. An end of file,

2. A parity error (the last character transmitted.)

3. An excessive line length (132 characters) without an appropriate
terminator.

Generalized Write Line

Input: DCT address in AC2,
Source data byte pointer in AC@.

Calling Sequence:

JSR WRL

error return
normal return

Output: Byte count read from data area in ACl,

This routine will transmit ASCII data to the appropriate device and terminate
after transmitting either a carriage return or a form feed. Termination will
also occur on a null but without transmitting it. Checks are made of the device
characteristics to determine whether to perform

E-10

Generalized Write Line (Continued)

fu—
.

Parity on output.

Nulls after form feeds.

Line feeds after carriage returns,
Tab simulation (every 8 columns).
Rubouts after tabs,

U s W N
*® e e

The error return is taken after 132 bytes have been transmitted without detection
of a terminator.

Input to Ring Buffer

Input: Character in AC@ (left byte ignored)

nddwncs e AMD
DCT ad\.u.cbb 1L AL,

Calling Sequence:

JSR IBUF
return - buffer full
return - buffer not full
return - puffer became full (active flag cleared)

The byte is input to the current slot in the ring buffer and all bookkeeping in
the DCT maintained. Note that for output devices the active flag should be

"set" again if the third return is taken.

Output from Buffer

Input: DCT address in AC2,
Calling Sequence:
JSR OBUF
return - buffer not empty
return - buffer empty (active flag cleared)

Output: Character returned in ACO (if successful) with bits 0-7 cleared.

Abyte is grabbed (if possible)from the buffer and all ring buffer bookkeeping in the
DCT maintained.

E-11

UPDATING THE SYSTEM LIBRARY

The system library is ordered as shown in the table following. To add a driver, it
must be inserted into the library using the library file editor, It must be placed
within the library somewhere after SYSTEM and before TABLES. To insure a driver
is loaded, an .EXTN for its device control table should be declared in DVINIT.

SYSTEM LIBRARY ORDER

Relocatable Binary Title Primary Function
INIT System full and partial initializations
DVINIT System device initialization
SYSTEM System call decoding
FILEIO Disk File I/O
FILSYS File system management
GSUB General purpose subroutines and linkage
PANIC Panic module
INTD First level interrupt determination
RINGIO Ring buffer I/O management
TTYDRV ASR 33 Teletype driver
PTRDRV High speed paper tape reader driver
PTPDRV High speed paper tape punch driver
PLTDRV Incremental plotter driver
LPTDRV Line printer driver
CDRDRV Card reader driver
MTADRV Magnetic tape driver
DKPDRV Disk pack driver
DSKDRV Fixed head disk driver
TABLES Tables storage allocation

E-12

SYSTEM GENERATION

To load the system, determine the additional space necessary to load your driver
plus any additional words added to the system. Invoke the SYSGEN save file and
answer all queries,

Invoke the RLDR and MKABS commands necessary to load and punch the system,

adjusting the value for NMAX down by the additional amount of space the system now
requires,

E-13

APPENDIX F

SYSTEM TAPES

The following dump tapes will be distributed with all DOS systems,

NUMBER NAME
088-000003 System Generation
(SYSGEN. SV)
088-000002 Relocatable Loader; Debug I11

(RLDR. SV, SYS. LB)

088-000001 Relocatable Assembler; Editor; Cross

Rofovranra
AVl Vil

(ASM. SV, EDIT.SV, XREF.SV)

088-000013 Octal Editor, Binary Loader
(OEDIT. SV, 3LDR.SV)

088-000008 Library File Editor
(LFE.SV)

088-000012 Command Line Interpreter Library
(CLI LB)

088-000016 System File §§
(SYS@. LB)

088-000010 SystemLibrary 1A (No magnetic tape
software)
(SYS1A. LB)

or

088-000011 System Library 1B (Magnetic tape software)

(SYS1B, LB)

Three 12K bootstrap systems will be provided in absolute binary format:

NUMBER NAME

091-000027 Fixed head disk bootstrap.

091-000053 Moving head disk bootstrap (4047 or 4057).
091-000058 Moving head disk bootstrap (4048).

F-1

SYSTEM TAPES (Continued)

If a 9-track magnetic tape drive is part of the configuration, the tape bootstrap
program will be sent.

NUMBER NAME
088-000015 Tape Bootstrap
(TBOOT. SV)

Two parameter tapes in ASCII will be provided:

NUMBER NAME
090-000090 User parameters.
090-000176 System parameters,

If the configuration is 16K or larger, the following compilers will be sent:

NUMBER NAME
088-000005 FORTRAN Compiler
(FIV.SV)
088-000014 FORTRAN Dispatch
(FORT. SV)
088-000006 ALGOL Compiler
(AL1.SV, ALGOL.SV LIBRARY)
088-000007 ALGOL Compiler
(AL2.SV)

F-2

INDEX

Absolute binary file
creating a (MKABS) 3-48
input to BLDR 3-24
input to MKSAVE 3-49
loading for stand-alone A-39,3-24
use of /Z switch in making 3-55,
3-48,B-6
Accumulators
Address space
addressable core 4-20 to 4-22
levels of 4-22
overlays of (. EXEC) 4-23
restoring overlaid 4-24

{see also Memory)
Analyze LFE function A-22
ALGOL
command invoking 3-17
compiler under DOS A-15
TRACE program A-16
.APPEND 4-11
APPEND 3-19
ASCII - Hollerith translation 4-16
ASM 3-20
Assembler
ASM command 3-20
DOS system program A-6
loading an ASM save file A-6
programmed DOS commands to
Chapter 4

4-1, 4-2

Asterisk (*) convention 3-9
At sign (@) convention 3-11
Attributes (see File attributes)

Binary loader A-39, 3-24
BLDR A-39, 3-24
Bootstrap
from disk B-9
from magnetic tape B-11
hardware configuration B-1
tapes supplied for B-1, F-1
BPUNCH 3-25
.BREAK 4-25

Break
address in UST A-12
CTRL A interrupt 2-1, 6-1, A-11
CTRL C break 2-1, 3-56, 4-25
continuing execution after 3-29
user servicing of 6-1

BREAK, SV file 2-1,3-57,4-25

Buffer
entry parameters C-9
implementation E-7
status parameters C-4

Byte
alignment for file name 4-6
command file - organization D-1
I/0 handling by RINGIO E-7
pointer to file name 4-4, 4-6
terminator of file name 4-6

Card reader
device 1-2
input 4-14
Carriage return
CLI line terminator 3-1,3-2
file name terminator 4-6
inhibiting a 3-2, 3-6
representation in manual
Channel, /0 4-1,4-2,4-10
Characteristics of devices 4-9, C-7
.CHATR 4-8
CHATR 3-26
CLG
command 3-27
system program A-18
CLI
activation 3-1
address space level 4-22
command file 3-1, App. D
command line handling 3-4to 3-12
commands Chapter 3
messages from 3-14to 3-16
ready message 3-1, 3-6
restoration to core 1-3, 4-22

1-3, 3-2

Index-1

CLI command list Command (Continued)

ALGOL 3-17 programmed
APPEND 3-19 .APPEND 4-11
ASM 3-20 .BREAK 4-25
BLDR 3-24 .CHATR 4-8
BPUNCH 3-25 .CLOSE 4-12
CHATR 3-26 .CREAT 4-6
CLG 3-27 .DELET 4-7
CONT 3-29 .DIR 4-4
CREATE 3-30 .ERTN 4-24
DEB 3-31 .EXEC 4-23
DELETE 3-32 .GCHAR 4-19
DIR 3-33 .GTATR 4-9
DISK 3-34 . INIT 4-4
DUMP 3-35 INST 4-5
EDIT 3-36 .MEM 4-21
FORT 3-37 .MEMI 4-21
INIT 3-39 .OPEN 4-10
INSTALL 3-40 .PCHAR 4-19
LFE 3-41 .RDL 4-13
LIST 3-45 .RDR 4-17
LOAD 3-47 . RDS 4-14
MKABS 3-48 .RENAM 4-7
MKSAVE 3-49 .RESET 4-13
OEDIT 3-50 .RLSE 4-5
PRINT 3-51 .RTN 4-24
PUNCH 3-52 .WRL 4-17
RELEASE 3-53 .WRR 4-19
RENAME 3-54 .WRS 4-18
RLDR 3-55 user-written App. D
SAVE 3-57 Command file (see COM, CM)
TYPE 3-58 Command line
XFER 3-59 definition 3-4
.CLOSE 4-12 length 3-6
COM, CM file syntax 3-2
building a App. D termination 3-4
format for Command line interpreter (see CLI)
ALGOL A-15 Command line syntax symbols
ASM A-6 (space argument separator 3-2
FORT A-17 R argument separator 3-2
LFE A-19 ; command terminator 3-5,3-2
RLDR A-7) command line terminator
Command 1-3,3-1,3-2
CLI (see Command List) ' command line terminator 3-1

Index-2

Command line syntax symbols (continued) CTRL C break 2-1,6-1,A-12, 3-29
4 command line terminator CTRL Z TTI terminator 1-3
suppressor 3-2,3-6

() filename list convention 3-12

$ in file name 1-1,1-2 DCT E-1,E-3to E-6

* in file name 3-9 DEB 3-31

A-7 in file name 1-1 Debugger

0-9 in file name 1-1 DEB command 3-31

. in file name extension 1-1,3-12 Debug III program A-14

in file name prefix 1-3 loading Debug III 3-55

@ indirect file (macro) 3-3, 3-11 effect on symbol table A-11 ff

- character erase 3-2 Default directory 1-5

\ line erase 3-2 .DELET 4-7

. prompt suppressor 3-2,3-6 DELETE 3-32

/ switch indicator 3-2,3-7 Delete LFE function A-25

A-7Z switches 3-8 Device

0-9 switches 3-7 adding a user App. E
Compile, load and go (see CLG) bootstrap 1-6, B-5
Compilers characteristics 4-9, C-7

ALGOL A-15 commands 1-6

configurations for F-2 control block C-10

FORTRAN A-17 control table (DCT) E-1 to E-6,C-10

tapes for F-2 default directory 1-5
Configuration, DOS B-4 ff directory 1-4,1-5, 5-1
CONT 3-29 mask bits C-12
Core 4-20to 4-25,A-7,A-8 master storage 1-5, B-5, 5-1

(see also Address space and Memory) multiple file Chapter 5
Core image prefix to file name 1-3

saving a (,BREAK) 4-25 specifier 1-3

saving a (SAVE) 3-57 supported by DOS 1-2
Core image file user-driver App. E

attributes 1-4 Diagnostics (see Error messages)

definition 1-1 .DIR 4-4

extension to name 1-2 DIR 3-33, 1-6

input to MKABS 3-48 Directory

output of ,BREAK 4-25 changing default 3-33,4-4

output of MKSAVE 3-49 contents of 1-4

output of RLDR 3-55 default 1-5

output of SAVE 3-57 denying access to 3-53, 4-5
Core map 3-5 devices havinga 1-5
.CREAT 4-6 referencing a file name in 1-3
CREATE 3-30 Disk
Cross reference symbol table 3-20, 3-22, configuration App. B

3-23 determining space on (DISK) 3-31

CTRL A interrupt 2-1,6-1,A-11 - fixed head 1-5,5-1,B-1

Index - 3

Disk (Continued)
movable head 1-5,5-1,B-1
packs 1-5,5-1, B-2
read or write errors 7-1
system bootstrapping using App. B
DISK 3-34
Disk Operating System
bootstrap of App. B
commands Chapter 3, 4
configuration App. B
constants App. C
generation of App. B
installation 1-6, B-7
library E-12
loading App. B
location in core A-7 ff
permanent files in 1-4
programs supported under App. A
stack displacements C-2
tapes supplied for App. F
DOS (see Disk Operating System)
DUMP 3-35
Dumped system programs App. A
Dumping files (DUMP) 3-35

EDIT 3-36
Editing
library file
LFE command 3-41
LFE program A-19 ff
octal
Octal editor A-35 ff
OEDIT command 3-52
text
EDIT command 3-38
text editor A-2 ff
End-of-file on teletype 1-2
Error messages
CLI 3-15
DOS programmed 4-26,C-5
LFE A-3
.ERTN 4-24
EST A-8
.EXEC 4-22

Extract LFE function A-31
Execution of program 3-5,4-22,3-29
Extension to file name 1-1, 3-12

File
attributes (see File attributes)
definition 1-1
directory 1-4 ff
length 1-4
name (see File name)
search 3-13
system saved (SYS.SV)
types of
absolute binary
core image
library A-19 ff
listing 1-1
relocatable binary
save 1-1,3-55,3-48,3-49
source 1-1,3-20
File attributes
accumulator settings for 4-8
changing 3-24,4-8
definition 1-4
information on 3-41,4-9
list of 1-4,4-8,C-4
File maintenance
APPEND 3-19
.CREAT 4-
CREATE 3-
.DELET 4-7
DELETE 3-31
.RENAM
RENAME
File name
definition 1-1
device prefix 1-3
extension 1-1,3-12
for a device 1-2,1
in command line 3-
pointer to 4-6
repetition of 3-12
searches for 3-13
text string containing 4-6

1-6, B-6

1-1,3-48

, 1-

3
)

Index-4

1-1,3-52,3-57,3-49

1-1,3-20,3-55

File status parameters C-4 I1/0 (Continued)

Fixed head disk 1-5, 5-1,B-1 CLI commands for
Form feed BPUNCH 3-25
in command line syntax 3-1,3-2 PRINT 3-51
terminating filename string 4-6 PUNCH 3-52
FORT 3-37 TYPE 3-58
FORTRAN IV XFER 3-59
command invoking 3-36,3-37 devices 1-2
compiler A-17 device/file equivalences 1-2,1-3
unlabeled common A-11,C-8 devices added by user App. E
Full initialization 1-6,3-39,B-11 generalized RINGIO subroutines E -7 ff

malfunctions 7-1
messages from CLI 3-15

.GCHAR 4-19 programmed commands
Global switch 3-8 channel/file
.GTATR 4-9 .APPEND 4-11
.CLOSE 4-12
sOPEN 4-190
Hardware malfunction 7-1 .RESET 4-13
HMA (highest memory address) 4-20, A-12 line mode
Hollerith-ASCII translation 4-16 .RDL 4-13
.WRL 4-17
Indirect input file 3-11 random mode
INIT 4-4 .RDR 4-17
INIT 1-6, 3-39, 5-2 .WRR 4-19
Initialize sequential mode
directory device 3-39, 1-6,4-4 .RDS 4-14
magnetic tape 3-39, 4-4, 5-2, B-11 .WRS 4-18
Input (see 1/0) teletype (, GCHAR, . PCHAR) 4-19
Insert LFE function A-26
.INST 4-5
INSTALL 1-6, 3-40,B-7,B-12 Location counter (PC) 4-23,A-10

Installing system 1-6, B-7,B-12, 4-5,3-40 Letter switches 3-8,D-1
Interprogram communication 4-22 to 4-24 Level of address Space 4-22

Interrupt (CTRL A) LFE
address in UST A-11 command 3-41
definition 2-1 description of program A-19 ff
for unknown malfunction 7-1 €rror messages A-32 to A-34
user servicing of 6-1 functions
(see also Break) analyze (A) A-22
I/0 delete (D) A-25
buffering implementation E-7 extract (X) A-31
card reader input 4-14 insert (I) A-26

Index - 5

LFE (Continued) Master storage device 1-5,5-1

functions (Continued) .MEM 4-21
merge (M) A-27 .MEMI 4-21
new (N) A-28 Memory
replace (R) A-29 allocation 4-20, A-7 ff
titles (T) A-30 change NMAX (. MEMI) 4-21
Library file (see also I_J_E_E_I) determine available (. MEM) 4-21
editor A-19 ff loading into A-7 ff
for ALGOL A-15 overlay (. EXEC) 4-22 to 4-24
for FORTRAN A-17,A-18 restore in debugger 3-31
for system F-1 restore overlaid 4-24
Line mode I/O 4-10 save current state
Line printer 1-2 .BREAK 4-25
Linkage SAVE 3-57
parameters C-19 Merge LFE function A-27
subroutine E-7 MKABS 3-48
LIST 3-44 MKSAVE 3-49
Listing Moving head disk 1-5, 5-1
assembly 3-20 Multiple file device Chapter 5
file for 1-1 :

of core map 3-54
of existing files 1-4,3-44

LOAD 3-47 New LFE function A-28
Loaders (see Relocatable loader and NMAX 4-20, A-7 ff
Binary loader) NREL A-7
Loading Null terminator
absolute binary tapes 3-24,A-39 of command argument D-1
addressable core for A-7 ff of filename string 4-6
DOS relocatable loader A-7 ff on .WRL 4-17
RLDR command 3-55 Numeric switch 3-7

system tapes App. B
Local switch 3-8
Logical record of library file 3-41 Octal editor
description A-35 ff
OEDIT command 3-50

Magnetic tape OEDIT 3-50

‘ bootstrapping from B-11 .OPEN 4-10
configuration 5-1,5-2 Output (see 1I/0)
device specifier 5-2 Overlay core 4-22

hardware malfunction 7-1
initializing 5-3, B-12

reference a file on 5-3 Panics 7-1, C-6
transferring system to B-8 Paper tape
writing a file to 5-4 punch 1-2
7 and 9 track 5-2 reader 1-2
Mask bits of device C-12 Parameter source tapes APP. C

Index - 6

Parentheses convention 3-12
Partial initialization 1-6, 3-39
.PCHAR 4-19
Permanent file 1-5
Plotter 1-2
Program
mode of operation Chapter 4
overlay 4-22
Programmed Command Chapter 4
(see also Commands, programmed)
Program counter (PC) 4-23, A-10
Prompt from CLI 3-1, 3-6
PUNCH 3-52

R (ready) message 3-1, 3-6
Random access I/O 4-10
.RDL 4-13
.RDR 4-17
.RDS 4-14
Read-protected file 1-4
RELEASE 3-53, 1-6, 5-2
Releasing
directory device 1-6
magnetic tape drive 5-3
Reload dumped files (LOAD) 3-47
Relocatable assembler A-6, 3-20
Relocatable binary file
arguments to LFE 3-41
definition of 1-1
extension to file name
input to RLDR 3-55
output from ASM 3-20
Relocatable loader A-7 ff, 3-55
.RENAM 4-7
RENAME 3-54
Repetition of file name arguments
Replace LFE function A-29
.RESET 4-13

1-2, 3-12

3-12

Resume execution in debugger 3-30, A-14

RETURN 3-1,3-2
RLDR 3-55
.RLSE 4-5
+RTN 4-24

SAVE 3-57
Save file
attribute 1-4
definition 1-1
file name extension 1-2,3-13
input to MKABS 3-48
output of ,BREAK 4-25
output of MKSAVE 3-49
output of RLDR 3-55
output of SAVE 3-57
Search, file name 3-13
Sequential, I/O 4-10
Source file
definition 1-1
editing A-2, 3-3
name extension 1-1, 3-13
Space (040) terminator of filename
Specifier, device 1-3
SST A-8
Stack
displacements
overflow 7-1
Stand-alone mode 3-24, A-39
Starting address
debugger (USTDA) A-11
normal relocatable code A-7
program counter (PC) A-10, 4-23
save file (USTSA) A-11, 4-23
symbol table A-10
zero relocatable code A-7
Subroutines, generalized I/O E-7 ff
Switches
alphabetic 3-8
CLI handling 3-7
global and local 3-8
numeric 3-7
settings in command line D-1
Symbol table
adjustment of A-12
cross reference of 3-20,3-22,3-23
debugger effect on A-11
loading of A-12
starting address A-10
SYSGEN App. B

4-6

C-2

Index - 7

System XFER 3-59
bootstrapping App. B
configuration App. B
constants C-4 ZREL A-7
file (SYS000.SV) B-6,B-7
generation of App. B
installation 1-6
programs supported under App. A
parameters C-9 ff
saved file (SYS.SV) 1-6,B-6
tapes supplied for App. F
System library
editing A-19
list of files in E-12
SYSTM 4-1

Tapes
magnetic (see Magnetic, tape)
system (see System, tapes)
Teletype
break or interrupt 2-1
commands given at Chapter 3
device mnemonics 1-2
end-of-file on 1-2
.GCHAR 4-19
.PCHAR 4-19
Text editor 3-33, A-2 ff
Titles LFE function A-31
Timing, added devices E-6
TRACE in ALGOL debugging A-16
Transfer of file 3-59
TYPE 3-58

User file table (UFT) C-3

User parameters App. C
User-written commands App. D
User-written device drivers App. E
User Status Table (UST) A-9 ff

Write-protected file 1-4
.WRL 4-17
.WRR 4-19
.WRS 4-18

Index - 8

cut along dotted line

TN M D e e mn en e G e G e G e S e D e e e T G G e e e G = e M8 e S e e w0 e e -

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

Specific Comments, List specific comments. Reference page numbers when

applicable, Label each comment as an addition, deletion, change or error
if applicable,

General Comments and Suggestions for Improvement of the Publication,

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN
FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
Postage will be paid by
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FCLD UP

STAPLE

DATA GENERAL
CORPORATION

Southboro,

Massachusetts 01772
(617) 485-9100

	0001
	001
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	5-01
	5-02
	5-03
	5-04
	5-05
	6-01
	7-01
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	F-01
	F-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	replyA
	replyB
	xBack

