»

DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

PROGRAM

Real-Time Operating System
Reference Manual

TAPES

Relocatable Binary: 089-000061
Relocatable Binary: 089-000062
Relocatable Binary: 089-000063
Relocatable Binary: 089-000064
Relocatable Binary: 089-000065
Relocatable Binary: 089-000066
Relocatable Binary: 089-000067
Relocatable Binary: 089-000068
Relocatable Binary: 089-000069

ABSTRACT

The Real-Time Operating System (RTOS) for the Nova/Supernova computer
family consists primarily of a small, general-purpose multi-programming
monitor designed to control a wide variety of real-time input/output devices.
User programs are relieved from the details of I/0 timing, data buffering,
priority handling, and task scheduling. In addition, they are provided with
a parallel processing capability plus inter-task communication and synchro-
nization facilities, Communication with the monitor takes place through a
small set of meta-instructions (consisting primarily of machine-language
subroutine calls), The system, which is entirely core-resident, is highly
modular and largely reentrant, allowing for the straightforward addition

of special device handlers.

Copyright (C) Data General Corporation, 1971 093-000056-02
Printed in U. S, A,

REAL TIME OPERATING SYSTEM

Table of Contents

Chapter Page
1 USERS GUIDE
1.1 Introduction 1-1
1.2 RTOS Task States 1-2
1.2.1 Executing State 1-2
1.2.2 Pending State 1-3
1.2.3 Suspended State 1-3
1.2.4 Dormant State 1-3
1.3 RTOS Meta-Instructions 1-4
1.3.1 .JOX Instruction 1-5
1.3.2 .FORK Instruction 1-7
1.3.3 .QUIT Instruction 1-8
1.3.4 PTY Instruction 1-8
1.3.5 .WAIT Instruction 1-9
1.3.6 .XMIT Instruction 1-1
1.3.7 .RCV Instruction 1-1
1.3.8 .BRK Instruction 1-1
2 IMPLEMENTATION DETAILS
2.1 Task State Transition 2-1
2.1.1 Executing Task 2-1
2.1.2 Pending Task 2-1
2.1.3 Suspended Task 2-2
2.1.4 Dormant Task 2-3
2.1.5 Null Task 2-3
2.2 Inter-Task Communication 2-3
2.3 Real-Time Clock Servicing 2-4
2.4 Input/Output Servicing 2-6
3 DEVICE HANDLER IMPLEMENTATION
3.1 .I0X Instruction 3-1
3.1.1 Logical Device Number 3-1
3.1.2 Device Control Word 3-2
3.1.3 Data Item Pointer 3-4
3.1.4 Data Item Count 3-4
3.1.5 Error Routine Address 3-5

(i)

N = O

3.2

3.3

(AN R

HNUWWWWNN
NN W N NN
NO VTR N

[NSJN SO I GO 23 o8
LS B NS

Device Handlers

Device Initialization

Device Interrupt Servicing

Device Unit Control Block (DUCB)
Device Operation Complete Routine
RTOS Device Servicing Programs
Device Control Block Setup (.DUCB)
Input Handler (.CHIN)

Output Handler (.CHOT)

Input/Output Request Setup (.TTIO)
Machine Status Save Routine (PRIOR)
Machine Status Restore Routine (.DISN)
Input/Output Request Stacker (IOSTK)

SYSTEM INITIALIZATION

(i1)

') 1 []

A A LA LA A LA EAL AL AL KA EA (A (A
1
= b et b b e e 2 SO O U

PN WNNDNDNDE O

=N
[
p—

===
Ny

lecBorRovRoc)
Lo NS

oogouo
e IS

APPENDICES

SYSTEM GENERATION

RTGCS Parameter Tape

Program Assembly
System Loading
System Startup

WRITING A DEVICE HANDLER

Entry Point Definition
Initialization

Next I/0 Request Servicing
Interrupt Servicing

PERIPHERAL SUPPORT SUMMARY

RTOS VARIABLE DEFINITIONS

RTOS Meta-Instructions

RTOS System Definition Parameters
Device Handler Names

System Entry Points

WORKING EXAMPLES

FIGURES

TCB Format

Task State Transition

Teletype Device Control Word Format
Inter TASK Communication

(1i1)

=

CHAPTER 1

USERS GUIDE

1.1 INTRODUCTION

The Real-
family consists primarily of a small, general-purpose multi-prograi-
ming monitor designed to control a wide variety of real-time input/
output devices. User programs are relieved from the details of I/0
timing, data buffering, priority handling, and task scheduling. In
addition, they are provided with a parallel processing capability plus
inter-task communication and synchronization facilities. Communica-
tion with the monitor takes place through a small set of meta-instruc-
tions (consisting primarily of machine-language subroutine calls).

The system, which is entirely core-resident, is highly modular and
largely reentrant, allowing for the straightforward addition of spe-

cial device handlers.

RTOS is designed specifically for the handling of multiple user tasks.

These tasks are created by means of one of the meta-instructions, and
once initiated may be terminated at any time. A large number of commen

processing situations lend themselves admirably to this sort of opera-
tional control philosophy. Simple examples include the reading or
writing of a block of data while simultaneously performing some other
(possibly unrelated) operation, listening for input from several devices
at the same time, shared device use by multiple tasks, sophisticated
communications problems, etc. As will be seen from the meta-instruc-
tions available, RTOS is a small, rudimentary time-sharing system. Its
parallel processing capability is, however, discussed here more as a
means for writing control programs for a wide variety of I/0 devices
rather than as a way to run several computations in parallel, although

the latter feature is clearly a part of the system.

1-1

1.2 RTOS TASK STATES

As a "TASK" is the basic logical unit which is controlled by RTOS, it
1s necessary at this time to describe the concept of a TASK, and
define some of its operational states during existence. Essentially,
a TASK is a logically complete program segment, operating at a speci-
fied priority level, whose execution may proceed simultaneously with,
and independently of other TASKs (although communication and synchro-
nization between TASKs is permitted and provided for in RTOS). Due to
the serial nature of the computer, TASKs which appear to execute in
parallel are in actuality executed in short (serial) segments. It is
necessary, then for RTOS to maintain certain status information (pri-
marily active registers) concerning all TASKs which are not currently
in a state of execution. This information is retained within an in-
formation structure called the "TASK control block' (TCB), which is a
seven word block of storage structured as follows:

USAGE WORD

RTOS LINKAGE WORD
CARRY + PRIORITY
AC@ STORAGE
AC1 STORAGE
AC2 STORAGE
AC3 STORAGE
PC STORAGE

Figure 1-1 TCB FORMAT

[0 WL BRI FA I SO Rl S

The maximum number of TASKs which may be supported in any RTOS con-
figuration is defined at RTOS assembly time (by specifying a value for
the '"JOBS'" parameter). At any given time, each of these TASKs will
exist in one of four states which are described in the following

sections.

1.2.1 EXECUTING STATE

A TASK is executing when the central processing unit (CPU) has been
restored to the state specified in the TASK's TCB. Note that when a
TASK is in the executing state, it has control of the CPU and no TCB

is required.

-~ WT TV A vrs

1.2.Z2 PENDING TASK

A TASK is pending when it is ready and available for execution. A
TASK becomes pending if and only if:
a) it is being initiated for the first time (with the .FORK
command) ,
or b) an RTOS meta-instruction is executed and a TASK of equal or
higher priority is pending,
or ¢) a teletype break occurs (see description of the .BRK

command) ,

L]
(oW

~

+hn AT e lenn i D S oo Lot 1o S) |
LIC 1Cal-Luiic upcrallilll 1t wad> awdllillg ldsS occured/been

Q

completed.

1.2.3 SUSPENDED STATE

A TASK is suspended whenever it must await the occurrence or completion
of some real-time operation. More specifically, this condition may
exist if and only if:
a) an I/0 operation (.IOX) has been initiated by the TASK and
it is not yet complete,
or b) the TASK has given a .RCV request and is awaiting a corre-
sponding .XMIT fron another TASK,
or ¢) the TASK has given a .XMIT request with the ''@" option and
is awaiting the corresponding .RCV from another TASK,
or d) the TASK has given a .WAIT request and is awaiting the
passing of the specified number of clock cycles,
or e) the TASK has given a .BRK request and is awaiting the occur-
rence of the specified break character on a teletype.

1.2.4 DORMANT STATE

A TASK isdormant if it is neither suspended, pending, or executing.
This situation exists if and only if:
a) the TASK has not yet been created in the system (with the
.FORK command),

1-3

or b) the TASK has been terminated, either due to the execution
of a .QUIT command or the break character being received
or a .RCV being issued on a previously .RCV activated channel.

The various modes of transition between the four TASK states in RTOS are
illustrated in Figure 1-2.

EXECUTING
STATE
. FORK
CXMIT
‘Rev | | ooB
prY | | SCHEDULER 10X
"WALT WAIT
uv OMIT @
RCV
PENDING .BRK
STATE
REAL-TIME
OPERATION
COMPLETE
BREAK ON
TTY \

DORMANT SUSPENDED
STATE | N 7 STATE
Figure 1-2 TASK STATE TRANSITION

1.3 RTOS META- INSTRUCTIONS

Communication between user TASKs and RTOS is effected by means of eight
"meta-instructions'. These meta-instructions, mostly subroutine calls,
are declared as entry points (.ENT) to RTOS (which is supplied as a re-
locatable package, and thus must be declared as externals (.EXIN) to

1-4

could be prepared for special situations, in which case the meta-
instructions would be user-defined as transfers through the appro-

priate address vector on page zero.

It should be noted that all meta-instructions return control by

means of the RTOS TASK scheduler, which will place the current TASK
in the pending state if any TASKs of equal or higher priority are
pending when the meta-instruction is executed. In addition, the TASK
scheduler is activated whenever a TASK is transferred from the sus-
pended to the pending state (i.e. - when a real-time operation has
been completed). This technique is employed, rather than using the
real-time clock to generate ''time slices', in an attempt to reduce
overhead in the system as well as provide some user control over the
scheduling operation (which is desireable in a control environment).
A true, 'time-slicing" mode of operation is available to the RTOS
user, however, and will be discussed under the description of the .WAIT

instruction.

1.3.1 .IOX INSTRUCTION

LI0X

<logical device #>

<device control word>

<first data item pointer>

<data item count>

<error routine address>

<normal return>
This is the standard I/0 operation in RTOS, initiating an activity on
the specified device. If the device is currently busy (i.e., servicing
an .IOX request from another TASK), execution of the requested opera-
tion will be postponed until the device becomes free. Once this execu-
tion begins, absolute control of the device is guaranteed to the TASK
until the .IOX operation has terminated. In all cases, the execution
of an .IOX causes the current TASK to be placed in the suspended state,
making a transition to the pending state only when the requested func-

tion has terminated. Note that this may effectively be avoided, if

1-5

desired, by the logical structure created by the following command

sequence:
.FORK ; create parallel process
LI0X ; perform I/0 operation
.QUIT ; terminate TASK when I/0 complete

=== ; parallel process to avoid hang-up

The use of parallel processes (i.e., multi-TASK's) allows a TASK to
communicate with a given device without having to concern itself with
whatever other task may be using it. For example, a number of TASKs
could "simultaneously' be reading some control variable through an
A/D converter input. Needless to say, multiple TASKs generating out-
put on "serial'' devices such as the paper tape punch must take care

to include identifying information within the output data block.

The device type on which the I/O operation will be performed is in-
dicated by the '"logical device number', the first parameter of the
.10X command. Logical device numbers for each class of devices (e.g.,
§ = teletype, 1 = high speed paper tape reader, 3 = line printer) are
specified in the individual device handler descriptions which are in-
cluded in an appendix to this manual. It should be noted that device
handlers may be capable of servicing multiple units of the same device
type. In these cases, the specific unit is indicated by a device unit
number which forms part of the device control word. The teletype is

an example of a device whose handler can service multiple units.

The second parameter of the .IOX command is called the device control
word and is used to specify all device-dependent options. In this
section, the teletype device control word will be shown for illustra-
tive purposes; other device control words are specifically described
in the appendix on Peripheral Support.

An attempt has been made to keep these device control words as compat-
ible as possible, so much of what is given regarding the teletype will
hold true for other devices as well. The teletype device control word
is shown in Figure 1-3.

1-6

P 1 2 3 45 6 7 8 9 1011 12 13 14 15

22222% Device Unit Number

t— UNUSED

ASCIT Parity Bits

> = ASCII Mode, 1 = IMAGE Mode
> f)
—> (} = Echo on Input, 1 = Suppress Echo
> @ = Input, 1 = Output

Character Format, 1 = Word Format

Figure 1-3 Teletype Device Control Word Format

The next two parameters of the .IOX command give the starting address
of the data list and the data item count. These two parameters are
either a byte pointer/byte count or a word pointer/word count depending

on the format specified in the device control word.

The last .IOX parameter is the address of an error program. If an error
occurs during the processing of an .IOX meta-instruction, the error
return address parameter is used as the return PC when the TASK is

placed in the pending state.

1.3.2 .FORK INSTRUCTION

.FORK

<new task priority>

<new task address>

<return>
The .FORK meta-instruction is the basic mechanism for the creation of
parallel processes (i.e., multiple TASKs) in RTOS. Its execution causes
the creation of a new TASK (with its associated TCB) at a specified
priority level. Priorities in the range 1-2551¢ may be used (2551¢
being the lowest priority); specifying a level of § causes the new TASK
to be created with the same priority as the executing TASK. Both TASKs
are placed in the pending state when the .FORK is executed, and the
system scheduler determines which TASK will next be placed in the exe-

cuting state. From this point onward, the two TASKs exist as separate

1-7

entities in the system; no structure or hierarchy is remembered.
Much of the power of RTOS is inherent in the .FORK mechanism.

Note that if both the executing TASK and the new TASK created by the
.FORK are of the same priority (new task priority = @ in .FORK call)
the previously executing TASK will be re-scheduled before the new
one. This convention allows for the convenient initiation of 1/0
activities without suspending the corresponding computation (as il-
lustrated in the .IOX description).

1.3.3 .QUIT INSTRUCTION

.QUIT
This meta-instruction is used to terminate the execution of the cur-
rent (executing) TASK. The TASK is placed in the dormant state and
will not become pending unless re-created by a .FORK command. .QUIT
is implemented simply as an entry to the TASK scheduler, preserving
none of the current TASK information.

1.3.4 .PTY INSTRUCTION

PTY
<new priority level>
<return>

The .PTY meta-instruction is used to dynamically alter the priority of
the current executing TASK. Priorities within the range ¢-2551¢ are
permitted, being specified by the eight least significant bits of the
new priority level parameter. Level 2551¢ (3778) is the lowest priority.

Note that level @, the highest RTOS priority level, may only be speci-
fied by a .PTY command (i.e., not by a .FORK operation). A number of
special system operations take place at this level and the user should
exercise discretion regarding attempts to run TASKs at this priority.
System integrity will be maintained but any '‘compute-bound' operation

at level zero will cause a serious degradation in I/O operating speeds.

1-8

1.3.5 .WAIT INSTRUCTION

JWAIT
<# of clock cycles>
<return>

This meta-instruction is used to delay the execution of the current
TASK for a specified time interval. The executing TASK is placed
in the suspended state for the indicated number of clock cycles,
following whic
it available for scheduling. Specifying a zero or a negative number
of clock cycles as the waiting time causes the current TASK to be
immediately placed in the pending state, allowing the scheduling of
any other TASKs of the same priority. This feature is provided as a

convenient technique to force rescheduling.

The duration of a system clock cycle is set at 1§ milliseconds in the
distributed version of RTOS. Other frequencies are available (See
the appendix on System Generation) and may be in use at a given sys-

tem installation since it appears on the parameter tape.

It should be noted that the real-time clock interrupt routine which

is used by RTOS does not directly call the scheduler (although it may
do so indirectly by virtue of the fact that a TASK which has been sus-
pended due to a .WAIT operation will cause rescheduling when it be-
comes active again). This means that if a number of ''compute-bound"
TASKs are active at the same priority level, the current one will
remain running unless it executes a meta-instruction or a higher pri-
ority TASK forces rescheduling. This potentially undesireable (in
some cases) situation would be avoided in a true ''time-slicing' en-
vironment, which may be created by having a time slice clock task

which performs the following instruction sequence:

PTY ;Priority set to highest or could be
<@> ;set to one immediately below which
JWAIT ;time-sharing is to take place

<n> ;The time slice duration

JMP -2

1-9

The implementation of the time slice RTOS system assures that a compute
bound task will not lock out the activities of other tasks of the same
priority. The number of real time clock interrupts (n) that must occur
before the scheduler is entered is set by the user. Care must be
exercised when choosing this time slice interval because it affects
the system overhead.

1.3.6 .XMIT INSTRUCTION

LXMIT LXMIT
<channel #> or <@ channel #>
<return> <return>

This is the first of a pair of complementary meta-instructions which
are provided for the purposes of TASK synchronization and inter-TASK
communication. The synchronization is performed through a number of
transmit/receive ''channels', the available number being defined at
RTOS assembly time (nominally eight in the distributed system, with
zero being the first channel number).

The .XMIT command causes transmission of a ''synchronization signal"'
over the specified channel. If an "@'" sign is present in the channel
number argument, the TASK will be placed in the suspended state until
the .RCV signal has been received. Otherwise, the TASK will be al-
lowed to continue. In either case, the contents of AC# at the time
of the .XMIT request are retained by RTOS as a single word "message'
to the receiving TASK (this 'message' could, of course, be the address

of a more lengthy message stored somewhere in core memory).

It is intended that there be a one to one correspondence between .XMIT
and .RCV requests. An .XMIT to an illegal channel number functions as
a .QUIT. Second and subsequent .XMIT operations on the same channel
(before the corresponding .RCV is executed) act as no-operations, a
feature which may be used to ascertain first occurrences of specific

conditions, critical timing situations, etc.

1-10

1.3.7 .RCV_INSTRUCTION

.RCV
<channel #>
<return>

This meta-instruction forms the second half of the synchronization/
communication facility in RTOS. The .RCV command enables the recep-
tion of a "synchronization signal sent by a .XMIT over the specified
chamnel. Upon executing the command, the current TASK is placed in
the suspended state until the signal is received, at which time it
will be made pending and become available for execution again. Need-
less to say, if the signal (sent by .XMIT) had already been trans-
mitted (and was therefore awaiting reception), the TASK issuing the
-RCV would not enter the suspended state, but would be immediately
available for scheduling. In all cases, when the TASK resumes execu-
tion AC3 will contain a copy of the 'message' sent by the correspon-

ding .XMIT operation.

Specifying either a negative or an illegal channel number in the .RCV
request will be handled like a .QUIT. Second and following requests
to a channel activated by a previous .RCV command will also cause a
.QUIT operation.

It should be clear that the .XMIT/.RCV meta-instruction pair may be
used for both inter-task communication (via the "message' word) and
synchronization purposes. Note that a ''join' operation as shown in
Figure 1-4, logically complementing the .FORK instruction, is imple-
mented simply by the use of a .XMIT/.RCV pair, the .XMIT being
followed by a .QUIT. l

FiRK

XMIT

<NN>

.QUIT ROV
L <NN>

—
—
——
—
—
—

1.3.8 .BRK INSTRUCTION

.BRK
<character code (ASCII)>
<return>

The .BRK meta-instruction is a special-purpose command which allows

the input of a specified ASCII character to interrupt the normal oper-
ation of RTOS tasks. Any number of teletypes or teletype-like devices
in the system may be connected to this facility. It is an assembly
time parameter with the last word of the DUCB being set negative if
the break feature is disabled and set equal to the teletype unit number
if the break is enabled.

The TASK issuing the .BRK request is placed in the suspended state until
the specified break character is typed on one of the enabled teletypes.

At this time, any operation on this teletype will be terminated, suspended
TASKs awaiting I/0 on this teletype will be made dormant, the break TASK
will be returned to the pending state, and the scheduler will be called.
When the break TASK begins executing, AC3 will contain the unit number of
the teletype which initiated the break request.

Additional .BRK requests, result in the previous .BRK request being
terminated and an error message being sent back to the user in AC3. Its
value is dependent on the value of the new break character. Possible

values for AC3 are as follows:

AC3 -1 Break request terminated by another legal request
AC3 -2 Break request terminated by a new .BRK request with
a negative break character.

The new .BRK request may also return back to the user TASK with AC3 set to
-3. This indicates that the break character in the call was negative.

Note that the .BRK instruction is not intended to function as a general-
purpose meta-command. Its use is primarily intended for and should be
restricted to, the operation of a keyboard-oriented executive, or monitor

TASK running at the user level.

1-12

CHAPTER 2

RTOS IMPLEMENTATION DETAILS

The primary function of RTOS is the supervisory control of four
basic operations: TASK state transition, TASK synchronization/com-
munication, real-time clock servicing, and input/output device
servicing. Each of these areas of interest will be discussed
separately.

2.1 TASK STATE TRANSITION

2.1.1 EXECUTING TASK

An executing TASK, by definition, has control of the central proces-
sing unit (CPU). The only parameter which RTOS must necessarily re-
tain concerning such a TASK is its current priority. The variable
location '.CPTY' always contains the priority of the current executing
TASK.

When a TAK in RTOS is in the executing state, the CPU is said to be

in USER MODE. Otherwise (i.e., RTOS is engaged in some system function
such as TASK scheduling), the CPU is said to be in SYSTEM MODE. Due

to the random nature of interrupts in a real-time environment, plus the
desireability of reducing interrupt latency as much as possible, it

was not feasible to make all system functions in RTOS fully reentrant.
Instead, a variable location ('.SYS.') is used as a switch to denote
USER MODE ('.SYS.' = §) or SYSTEM MODE ('.SYS.' # #). This technique
protects against illegal reentrancy while still allowing for optimal
priority scheduling.

2.1.2 PENDING TASK

Two queue structures are maintained to facilitate the manipulation of
TASKs in the pending state. Of primary concern is the ""pending TCB

queue'', which is maintained by the TASK scheduler. TCBs contained in
this queue are linked in order of decreasing priority (i.e., increasing
numerical value). Location '.QUE.' contains the address of the first
TCB in the chain, which "points' to the next in turn, and so on to the
end of the queue. The final TCB entry has a zero pointer value to
mark the end of the chain. The pending TCB queue, then, is structured

as follows:
.QUE.:
link | =~ 1ink | ST Link | ~S—>1 §
\ —
\Y4
PENDING TCB's

The nature of a real-time environment dictates that suspended TASKs may
become active at any time. Unfortunately, the routine to enter a TCB
into the pending TCB queue cannot be reentrant, as correct chaining
must be assumed at all times. Therefore, the (non-reentrant) TASK
scheduler is given the unique right to insert TCBs into this queue.
TCBs which dynamically become pending are reentrantly pushed into a
special stack ('.JSTK') maintained for this purpose (this stack is
pointed to by '.JPNT'). Each time the scheduler is called, it checks
to see if any new TASKs have become pending (i.e., are in '.JSTK").

If so, the associated TCBs are entered into the pending TCB queue prior
to raising to the executing state the highest priority pending TASK.

2.1.3 SUSPENDED TASK

Pointers to the TCBs for suspended TASKs are maintained within the
various routines in RTOS which service real-time operations (i.e.,
routines handling the operations which caused the TASKs to become sus-
pended). More detailed descriptions of these specific structures are

covered elsewhere in this document.

2-2

When RTOS h

(o]

(O]
wn
[a N
[0}
ct
[0}
:
j
[
(a1
ot
jon pd

a c
the associated TCB is pushed into '.JSTK.' stack.
TCB will be entered into the pending TCB queue the next time the
scheduler is called, and will be executed according to its relative
priority.

TN AAATT TA 1

2.1.4 DORMANT SK

A dormant task is by definition unknown to RTOS, and therefore no
information need be maintained concerning it. The .QUIT meta-instruc-
tion, which causes an executing TASK to become dormant | is merely a

call to the system scheduler.

2.1.5 NULL TASK

When the RTOS TASK scheduler determines that the pending TASK queue
is empty, it initiates a null TASK. This TASK is started by clearing
location zero and the carry bit, restoring the system to USER MODE,
and jumping to location zero. The null TASK will continue executing
a '""JMP @" in location @ until a hardware interrupt causes a user TASK
to be made pending as described above. When the computer is in the
null TASK only the RUN, ION, and FETCH lights of the console will be
lighted.

2.2 INTER-TASK COMMUNICAT ION

Two tables of length 'CHAN' are maintained by RTOS to handle .XMIT/.RCV
inter-TASK communication. 'CHAN. is equal to the number of available
-XMIT/.RCV channels and is set by the user at system generation.

The first is the channel status table ('.CST.'), containing one entry
per channel. This entry is in one of four different formats:

P -- zero entry indicates channel in-

active

2-3

¢| ADDR -- indicates that a .RCV has been re-

quested on the channel. 'ADDR' is
the TCB address of the associated
suspended .RCV TASK.

-- indicates that a .XMIT has been

sent to the channel with no sus-
pension of the TASK

-- indicates that a .XMIT has been sent
1 AJH%EJ to the channel, and the TASK is
awaiting a corresponding .RCV re-
quest. 'ADDR' is the TCB address
of the suspended .XMIT TASK.

The second is the channel message table ('CMI'), also contalning one
entry per channel. When a .XMIT is initiated on a given channel, the
16-bit synchronization message (i.e., the contents of AC# at the time
of the .XMIT) is stored in the relevant channel entry in the message
table 'CMT'.

2.3 REAL-TIME CLOCK SERVICING

The real-time clock supplied with the Nova family of computers is capa-
ble of being operated at four different frequencies, one of which is
selected as the standard RTOS clock time. This is done at RTOS assembly
time, by specifying an appropriate value for 'FREQ'; it may also be
accomplished during system run-time by modifying the 'FREQ' entry in

the device control block for the real-time clock - '.CUCB+3.'. Each
"tick" of the clock is used to decrement an appropriate count down in-
terval value, which, when its value reaches zero, allows the suspended

TASK to be made pending.

In order to handle multiple simultaneous .WAIT requests, a ''clock count
down interval queue', '.CLK.', is maintained, structured in a similar

fashion to the pending TCB queue. Each queue entry contains three

2-4

words, defined as follows:

FWD LINK - link to next queue entry (final entry = @)
(DI ~ count down interval (# of clock ticks)
ADDR + address of suspended TCB

Location '.RTC.' in the clock service routine contains the address of

the first entry in the interval queue, thereby creating the following

structure:

RIC. : LINK | > | LINK | > | LINK | >35> | LINK |+ 55> | ¢
DI CDI, CDI; CDI,
TCBy TCB, TCB, TCB,0

Each count down interval value is, in reality, an incremental count
down value. In other words, the total elapsed time before the sus-
pended TASK represented by TCB; is made pending is given by x clock

"ticks'", where,

x = (CDI, + CDI, + CDI, + + CDIi

1 2 3

The routine to handle the clock count down interval queue, much as in
the case of the pending TCB queue routine, can not be reentrant, as

the queue requires protection from multiple simultaneous accesses.
However, the real-time clock must be allowed to run continuously as
long as the interval queue is not empty in order to prevent error accu-
mulation in multiple-interval timing situations. In order to alleviate
these problems, an "overcount' state has been provided in the clock
service routine, operating as follows: should RTOS (i.e., the .WAIT
service routine) be accessing the queue when the interrupt service
routine also desires access, the overcount state is entered and the
clock continues to run. When the interval queue again becomes available,

additional counts are provided according to the number of overcount

2-5

cycles which occurred thereby maintaining accuracy with minimal
processing overhead.

2.4 INPUT/OUTPUT SERVICING

All user I/0 is accomplished by a request to RTOS using the .IOX
comand. The .IOX section of RTOS is responsible for allocating
the use of all standard devices of the system. It provides for ref-
erencing all I/0 devices by logical unit numbers instead of physical
unit numbers. The assignment of the logical unit numbers is made

at system generation time (see Appendix A).

Each I/0 device on the system has a handler associated with it.
Control is transferred to the handler from the .IOX processor. If
the required device is already busy, the request is stacked for later
execution. If the device is not busy, the device is activated to
input or output the first character or word. The task requesting the

1/0 operation is suspended until the transmission is completed.

If the request is illegal for some reason (e.g., illegal logical unit
number, negative word count, etc.), control is returned to the user

program at the error return address.

Device handlers with two exceptions (real-time clock and teletype), are
written as separate, relocatable subroutines which are linked to RTOS
at load time by the relocatable loader. The two exceptions are made
for the following reasons:
a) the real-time clock is not treated as a standard peripheral
(it communicates with .WAIT rather than .IOX) and is not
an optional device.
b) the teletype is assumed to be present in most systems and
its handler is general-purpose and flexible enough to pro-

vide major services for almost all other device handlers.

Fach I/0 handler performs operations and functions on a specific device

only. This means that a handler must be provided for each hardware

2-6

device in the computer system. Handlers have been written and are

supp ie basic RTOS package for the high speed paper tape
reader and punch, the incremental XY plotter, and the analog to

digital converter. Handlers for the card reader, line printer, fixed
head disk, magnetic tape, data communications system, and other de-
vices interfaced to the Nova computer will be made available as they
are developed.

2-7

CHAPTER 3

DEVICE HANDLER IMPLEMENTATION

3.1 . I0OX INSTRUCTION

The .IOX meta-instruction of RTOS provides the linkage between user
TASKs and the individual device handlers. The calling sequence has
been briefly described in section 1.3.1.

3.1.1 LOGICAL DEVICE NUMBER

The device type on which the 1/0 operation will be performed is in-
dicated in the first parameter of the .IOX calling sequence and
referred to as the logical device number. Logical device numbers

for each class of device on the system have been arbitrarily assigned

in the released version of RTOS as follows:

Teletype keyboard and printer
High Speed paper tape reader
High Speed paper tape punch
Line printer

Incremental plotter

Card reader

Fixed head disk

Analog to digital converter
Magnetic tape

Data communications multiplexer

OO UVTHAWVNN S

The assignment of logical device numbers may be changed at system
generation time by the user modifying the order of the table of de-
vice handler addresses starting at location 'HANTB'.

If the logical device number is outside the above range (negative or
greater than 91¢) or it specifies a device that has nct been declared
as part of the hardware configuration at system generation time, an
illegal device number error will occur. The error return will be made
with AC3 = 0.

3.1.2 DEVICE CONTROL WORD

The device control word format will be discussed bit by bit in this
section. This control word is used to specify all the device-
dependent options to the device handler. In this description, the
teletype device control word will be used for illustrative purposes;
other device control words are specifically described with the device
handler description in the appendix on Peripheral Support. An attempt
has been made to keep these control words compatible, so much of what
is said regarding the teletype will hold true for other devices as
well.

The teletype device control word is structured as follows:

¢ 1 2 3 4 5 6 7 8 9 141112 13 14 15

Device Unit Number
I——-———-—-——-—-u;n.used

ASCIT parity bits
§ = ASCII mode, 1 = image mode

¢ = character format, 1 = word format

@ = echo on input, 1 = suppress echo

= input, 1 = output

The following conventions have been adopted in RTOS:
Bit # Input / Output Mode Switch

0

1

(Used only where device has both input and output mode
like a teletype. Paper tape reader is always in input
mode and this bit is not tested.)

Bit 1 Echo Indicator Switch
0
1

(Used only for teletype where characters typed on the
keyboard may be echoed on the teleprinter.)

input mode

"

output mode

echo on input

suppress echo

3-2

Bit 2

Bit 3

Data Format Switch
P = character format
i1 = word format

Character format is available for I/0 of data items
occupying 8 bits or less. The items are stored/ re-
trieved in byte format (two bytes per word - right
half first) and the data item pointer and data item
count are interpreted as the byte address and byte
count respectively.

Word format is available for I/0 of data items occu-
pying 16 bits or less. The items are stored/retrieved
in right justified form from successive memory loca-
tions (unused bits are cleared by the device on input
and ignored on output). The data item pointer and
count are interpreted as a word address and word count
respectively.

Transmission Mode Indicator
@ = ASCII mode
1 = Image mode

In ASCII mode 8 bit characters are handled according to
the following conventions:

1) characters are stored/retrieved with parity
generation/checking as specified by the ASCII par-
ity bits.

11) nulls are ignored on input unless listed as
terminators by the system.

1i1) input is terminated by any character in the
list of ASCII system terminators or by the data
item count going to zero, whichever occurs first.
(ASCII system terminators are simply a list of ASCII
characters masked to 7 bits).

iv) output is terminated by a null byte, the data
item count going to zero, or (in the special case of
a teletype) the input of a character, whichever
occurs first.

In image mode, data items are stored/retrieved in char-
acter or word format (as specified) exactly as received
by the hardware (no parity generation/testing, etc.)
Input is terminated only by the data item count going to
zero, while output is terminated by the item count going
to zero or in the case of the teletype by the operator
striking any key.

(93]
1
3|

Bits 4 ASCII Parity Bits

and 5 Control words for devices which are capable of handling
the ASCII mode of transmission have two bits reserved
for the specification of the parity operation required.
The various possibilities are as follows:

i) Input
g9 - mask to 7 bits (no parity check)
1 - mask to 7 bits (check even parity)
19 - mask to 7 bits (check odd parity)
11 - same as @@

i1) Output
@@ - channel 8 set to zero
#1 - even parity in channel 8
1§ - odd parity in channel 8
11 - channel 8 to one

Bits 6

and 7 Unused

Bits Device Unit Number

8-15 This number is applicable only in the case of multi-

unit device handlers such as the teletype or magnetic
tape. The device unit number specifies the specific
unit (of a particular device type) which is being
referred. In the case of teletypes, both keyboard and
printer are considered as being a part of the same de-
vice unit. The console teletype (hardware device codes
14 and 11) is device unit number zero.

3.1.3 DATA ITEM POINTER

The data item pointer is a byte address if the data is being input or
output in character format and is a word address if the data is input

or output in word format.

3.1.4 DATA ITEM COUNT

The data item count is a byte count if the data is being input or out-
put in character format and is a word count if the I/O operation is in

word format.

3-4

3.1.5 ERROR ROUTINE ADDRESS

If an error occurs during the processing of an .IOX meta-instruction,
the error routine address parameter is used as the return PC when the
TASK is placed in the pending state. The contents of AC3 at the time
of the return are used to specify the error. Error indications differ

from device to device; possibilities for the teletype are as follows:

AC3 = n Input of character ''n" caused termination of the
output

AC3 = § Illegal device unit number in the .IOX calling
sequence

AC3 = -1 Parity error on input

AC3 = -2 Negative word count in the .IOX calling sequence

AC3 = -3 Teletype unit number error in the .IOX calling

sequence.
A number of devices have no defined error conditions (e.g., high speed
paper tape punch, incremental plotter, etc.). The error routine ad-
dress parameter in these cases is merely a dummy parameter provided to
maintain .IOX format compatibility. The calling sequence to these de-
vices could be as follows:

JI0X

<DEVICE #>
<CONTROL WORD>
<DATA POINTER>
<DATA COUNT>
<, + 1>

<RETURN>

3.2 DEVICE HANDLERS

That portion of RTOS which deals with the processing of .IOX commands
is of primary interest to the real-time user wishing to add his own

(or modify the standard) I/O device handlers. These handlers, with
two exceptions (real-time clock and teletype), are written as separate,
relocatable subroutines which are linked to RTOS at load time by the

relocatable loader.

A device handler consists of three major sections: the device

3-5

initialization routine, which also includes a "mext I/0" segment, the

interrupt service routine, and the device unit control block (DUCB).

3.2.1 DEVICE INITIALIZATION

The device initialization routine is called by the .IOX processor by
using the device handler entry point orientated in logical device
code order in RTOS in a table called 'HANTB'. These entry points are
the interrupt service routine addresses. The location preceding each
entry point in the device handler must contain the address of the
initialization routine, and is used as the transfer mechanism by the
.IOX processor. This can be easily seen by reviewing some of the
supplied device handlers.

The device initialization routine tests for device availability. If
the device is available, it initiates the operation. If it is unavail-
able, the request is queued by the "IOSTK'" routine. The initialization
section of the handler also has an entry point which may be used by

the interrupt routine to activate an 'nmext I/0" operation for the de-
vice, a mechanism which should become apparent after reviewing a
supplied device handler.

3.2.2 DEVICE INTERRUPT SERVICING

The interrupt service routine is responsible for responding to the
interrupts which a device generates while in progress. It is pointed
to by two tables in RTOS: one oriented in hardware device code order
in the interrupt processor 'INTP', called 'DISP' and one oriented in
logical device code order, called 'HANTB'. If a hardware device has
not been included as part of the hardware configuration its entry in
the 'DISP' table is replaced by the address of a routine 'NODEV' which

will clear the interrupting device and dismiss the interrupt.

The interrupt processor when entered first checks whether the power
monitor option caused the interrupt if it is part of the hardware con-
figuration. If it was the power monitor, the power fail handler '.PWR'

3-6

is entered. If the power monitor did not cause the interrupt or is

At na ~ A cire ~ Trarocscnr will vraarl 3 o avrice code
not part of the system, the processor will read in the device code
of the interrupting device and branch through the correct entry in

the dispatch table.

Interrupt service is performed primarily by the system routine en-
titled 'PRIOR' (called by JSR @.SERV), which rearranges the system
interrupt priorities and saves the machine environment in the "PRIOR"
parameter block. The first parameter in the 'PRIOR' call is the new
priority interrupt mask to be used while the device is being serviced.
If desireable, this parameter may be altered dynamically by user pro-

grams,; but extreme caution is urged

The program then issues suitable I/O instructions to input or output
the next data item and test the status of the device being serviced.
In the case of character orientated devices like the teletype, paper
tape reader and punch, or plotter most of the necessary servicing

routines are supplied within RTOS.

3.2.3 DEVICE UNIT CONTROL BLOCK (DUCB)

Every device, or more specifically, every unit of every device type
in the system is defined by static and dynamic information contained
in the Device Unit Control Block (DUCB). The DUCB table is contained

WY

as part of the relocatable device handler.

A typical DUCB (in fact, the model on which other DUCB's are based) is
that for the teletype, which appears as follows:

.TTY@:) ; queue block address, § if inactive (DTCBA)
) ; variable storage location (DTEMP)
JMP #,3 ; subroutine return instruction
) ; address of get-store character
routine (DGSR)
19 ; device code for TTI (DVCDE)
) ; data pointer (DDADR)

3-7

P ; data count (DCNT)

) ; # = queue available,

1 = queue busy (DQBSY)
g ; # = ASCII mode, 1 = image mode (DOMDE)
) ; address of proper parity routine (DPRTY)
.TTIO ; address of 'mext I/0" routine (DNIOR)
TTO@ + 3 ; interrupt data block address (out-

put) (DIDBO)
.TERM ; address of input terminator list (DTERM)
TTIP + 3 ; interrupt data block address (in-

put) (DIDRI)
9 ; error return address (DERTN)
I/ ; device operating mode (f - 2) (DMODE)
) ; -1 = break disabled, else unit # (DBRK)

Given at the right of the comments is a list of parameter names by
which RTOS refers to these DUCB entries. These same names are made

into equates and used in the device handlers.

The first DUCB entry is set to zero when the device is inactive.
Activating a device (via an .IOX meta-instruction) results in this entry
being chained to the TCB of the TASK awaiting service. If a device is
already busy when the .IOX request is made, the new TCB is merely chained
to the list of TCBs waiting for the device. This operation is performed
by the IOSTK routine (called by JSR @.STAK), and results in a structured
equivalent to the pending TCB queue.

The '"subroutine return instruction' provides an 'execute' facility in
order for the device handlers to execute specific instructionsv(e.g.,
I/0 commands) without destroying their re-entrant nature. The instruc-
tion is merely stored preceding the return command and a JSR to the
instruction is issued. As the DUCBs are unique to each device, handler

re-entrancy is preserved.

The next location of the DUCB is used to save the address of a get/store
character/word routine. This address can be a fixed entry or it can be
taken from the table '.BTAB' in RTOS by the initialization section of

3-8

the handler. This table has the following entries:

.BTAB+1: SCHRP Store character (byte mode)
GCHRP Get character (byte mode)
STCHR Store character (word mode)
GTCHR Get character (word mode)

The fourth DUCB location contains the device code for the hardware
device which the DUCB describes. The next two entries following this
are for the data item pointer and data item count. These are either
in byte or word format depending on the word format indicator (bit 2
of the control word).

The aqueue availahili ty switch is set when

tialization section of the handler is made. It is used by the routine
'"IOEND' which handles the end of I/0 operation interrupt so that it
does not change the unit availability switch while the initialization
routine is testing it. It is reset before the operation is initiated
if the device is available or after the request is stacked in the pend-

ing queue for that device.

The mode indicator has the same meaning as bit 3 of the device control
word. The address of the parity routine is taken from a table of
parity checking generating subroutine addresses starting at '.PTAB+1'.
The address to be taken from this table is dependent on whether the
operation is input or output and the value of the ASCII parity bits.
The table has eight entries as follows:

BIT7 ;Mask to 7 bits (input)

BIT7 ;Mask to 7 bits (output)
TEVEN ;Test even parity

GEVEN ;Generate even parity

TODD ;Test odd parity

GODD ;Generate odd parity

BIT7 ;Mask to 7 bits (input)

CHNS8 ;Set channel 8 to one (output)

The next I/0 routine address is stored in the twelfth entry of the

DUCB table. It serves as the entry point for starting the next pending

1/0 operations for the device. Entries 13 and 15 provide the addresses

of the output and input interrupt data blocks respectively. These data

blocks are usually the part of the 'PRIOR' parameter block that contains

3-9

the machine status before it was interrupted.

The fourteenth entry of the DUCB provides the address of a list of
terminator characters that will terminate ASCII input. This list must
be terminated by a -1. The list used can be set up by the user. The
current version of RTOS has a 1list of ASCII terminator characters
starting at '.TERM' as follows:

.TERM: 177 ;Rub out, delimiter
15 ;Carriage return, control M
12 ;Line feed
33 ;Escape
3 ;End of text, end of message, control C
-1

The error return address is taken directly from the .IOX calling se-
quence if the device can generate an error condition. The operating
mode is usually fixed at the time of handler design. For example the
card reader can only operate in input mode and so this parameter would
be § while it would be a 1 for the high speed paper tape punch to
indicate output mode. The teletype can have an echo on input, input
only, or output only mode and so this parameter is a variable in the
case of the teletype.

It should be noted that the final entry in the DUCB shown above is
necessary only for the teletype (the .BRK facility) and will normally
not be used for other device handlers. It should also be clear that
some of the DUCB entries are not required for some devices types (e.g.,
output only devices do not require an input interrupt data block ad-
dress or input terminator list, devices with no error return conditions
require no error return address, etc.). Unused entry locations may be

used for storage of constants or handler variables.

3.2.4 DEVICE OPERATION COMPLETE ROUTINE

It is important to be aware of the fact that when termination of an .IOX
operation causes a device to become free, another request may be waiting
to be activated. In order to properly handle the complexity of inter-
acting interrupt levels at this point a "pseudo-TASK' (with priority

3-10

level @) is created by RTOS to initiate the next operatlo request.

ra L IR S ~ ™
i

system generation. A TCB must be provided for each interrupting hard-
ware device including the teletype and real time clock. Failure to
provide sufficient TCB storage will cause a HALT at location 'QSPOP+4'
or a branch to a user program at '.SHLT' depending on the value of
'SHALT' .

3.3 RTOS DEVICE SERVING PROGRAMS

Many of the subroutines withi
type have been written re-entrantly. The reason for this is that at
least the console teletype is assumed to be present in most systems
and its handler, if developed in a general-purpose and flexible
enough manner, will provide major services for almost all other de-
vice handlers that are included or may be developed for system hard-
ware devices. A brief description of the four most common routines

appears in the following sections.

3.3.1 DEVICE CONTROL BLOCK SETUP (.DUCB)

This subroutine is entered with AC3 containing the address of the con-
trol block for the device being initiated and the device control word
is contained in AC@. The routine sets the ASCII/image mode and opera-
ting mode indicators, claculates and saves the addresses for the get/
store character and parity generating/checking routines, and obtains
the data item pointer and count from the .IOX calling sequence.

After the DUCB is initialized, the first I/O operation is initiated.

If the operation is an input, the routine obtains the device code from
the DUCB and by using the temporary storage and return provided in the
devices DUCB, it executes an NIOS to start the device. If output is
requested another subroutine 'OUT' will be called to get the character,
generate the correct parity, and output the first character to the de-
vice. It should be noted that since this routine was developed for

the teletype which only has the device code of the keyboard in the DUCB,

3-11

any other device handler trying to use '.DUCB' for initiating output

operations must supply a device code one less than its true code.

3.3.2 INPUT HANDLER (.CHIN)

This re-entrant routine is used to handle input interrupts on the
teletype and similar byte oriented devices. It is entered with the
previous machine status saved and the new character as it came from
the device in AC@.

The routine first checks whether the device is being run in ASCII or
image mode. If it is in ASCII mode, a check is made to see whether a
null character has been entered in which case it is ignored. A parity
check is then performed and if not correct the error return is taken.
If correct parity is found, the routine then checks whether a match
between the list of terminator characters and the input character (now
masked to 7 bits) is present. If it is the input operation is complete
and if not, the character is stored in the input buffer, and another

request made if the data count has not gone to zero.

3.3.3 OUTPUT HANDLER (.CHOT)

This re-entrant routine is entered with ACZ containing the address of
the device unit control block and is used to handle output interrupts

on the teletype and similar character oriented devices.

The data count is checked upon entry to this routine. If it has gone
to zero, the output operation has been completed and the end of output
completion section 'IOEND' is entered. If data remains to be output,
the next character is obtained and the output device started using

the routine 'OUT'. The interrupt is then dismissed with the routine
'DISIN'.

3.3.4 INPUT/OUTPUT REQUEST SETUP (.TTIO)

This routine, used by the teletype .IOX handler and referred to as the

3-12

'"next I/0" routine, is entered when it is determined that the requested

1. A T /7

s the I/0

device is now available for

(o

i he next I/0 request. It se

queue indicator of the DUCB to the available status, restores AC2 to
the address to point to .IOX + 1 and stores the error return address
in the DUCB.

3.3.5 MACHINE STATUS SAVE ROUTINE (PRIOR)

'"PRIOR' is a module within the RTOS system that an interrupt connected
routine calls to save the environment of the TASK that was interrupted.

It also provides a mechanism whereby an interrupt servicing routine may

Arityvy nf +ha harduara devica
VidL)y Ul LIV {Riuimalil v Uovailto.

The calling sequence is shown below and shows that 'PRIOR' stores the
environment of the interrupted routine in the storage block just fol-
lowing the JSR, to the "PRIOR'" subroutine. An entry point '.SERV'

in the RTOS program is provided for use by the device handlers.

JSR PRICR

; New hardware priority word

; 01d priority word storage

; Carry storage

; AC@ storage

; AC1 storage

; AC2 storage

; AC3 storage

; Program counter storage

; Address of device control block

E<:<:<:c:c>c>c>§
(@)
o]

=~

The subroutine 'PRIOR' is entered with ACZ and AC3 having been pre-
viously saved in locations 'SACZ' and 'SAC3', respectively, by the

interrupt processor 'INTP'.

3.3.6 MACHINE STATUS RESTORE ROUTINE (.DISN)

The RTOS executive routine '.DISN' provides an interrupt service routine
with the means to perform the following functions:

i) restore the operating environment of the interrupted
routine,

3-13

ii) restore the hardware interrupt priority, and,
iii) return to the interrupted routine.

It is entered with AC2 containing the address of the interrupt data
block. The interrupt data block address is taken as the address of
where the carry bit is stored, i.e., three locations past the JSR
PRIOR.

3.3.7 INPUT/OUTPUT REQUEST STACKER (IOSTK)

This system routine is called when the I/0 request must be queued for
the device because a previous task is already using the device. An
entry point '.STAK' within the RTOS program is provided for use by the

device handlers.

3.3.8 END OF I/0 OPERATION ROUTINE(.IOEND)

This routine is used to handle the end of I/0 operations for a device
handler at either the interrupt or system level. When entered on the
interrupt level, the address of the interrupt data block will be in
AC#. At the non-interrupt level, AC# will contain a zero.

Upon entry, if it is found that the DUCB is not available, this routine
will create a job at priority zero to perform the end of I/0 operation
at the non-interrupt level.

If while in the .ICEND routine, it is determined that another request is
pending, the routine will create a job of priority zero to start the

next I/0 operation on the device.

3-14

The initialization program 'RTIN' is used to initialize stacks and
clear switches in the RTOS system. The first section of the routine
zeros system switches and sets all the device handlers to the avail-

hardware mask is made zero, the system is set in USER MODE, the real
time clock is set inactive, the clock queue and the TCB queue pointers

are both set to zero.

All the .XMIT/.RCV channel status table entries are made inactive by
setting them all to zero. The task control block and clock queue
stacks are initialized by linking each block together in a form simi-
lar to that described in section 2.1.2 for pending TASK. The break
request 1s set inactive by setting the break character '.BCHR' to -1.

The last operations performed by the initialization program are to do
an IORST, enable the interrupt facility by the INTEN instruction, and
to jump to the start of a user TASK which must be given a label 'START'

which is declared as an entry point in the user program.

The queue availability switch of each device handler must be zeroed
by the initialization program. The address of this location (the
first in the device's DUCB table) is available to the initialization
program by means of a second entry point in the handler and usually
defined using the first four characters of the handler interrupt entry

point followed by a digit "'1'".

4-1

APPENDIX A

SYSTEM GENERATION

System generation allows the user of the Real Time Operating System
to define the characteristics of his operating environment (the num-
be of .XMIT/.RCV channels, I/O devices on the system, speed of the
real time clock, etc.).

The input to an RTOS system generation is the set of relocatable
source and binary paper tapes of RTOS, the initialization program
(RTIN), and handlers for standard I/0 devices. When source tapes
are ordered in the customer software package, the user can easily
change the hardware configuration parameters, the operating system
specifications, and add or modify device handlers.

The RTOS system supplied supports a hardware configuration consisting
of at least 4K core memory, the real time clock, the high speed paper
tape reader and punch, and the console teletype. The operating sys-
tem allows sixteen user TASKS, and eight .XMIT/.RCV commmication
channels. The real time clock is set to operate at 100 Hertz.

Al RTOS PARAMETER TAPE

The parameter tape provides a definition of all system variables that
must be set by the user to tailor RTOS to his installation. The
system/device definitions provided on this tape are described in section
D.2.

Unless the user is adding new device handlers not provided for in the
released RTOS system or is changing the standard logical device numbers
of the system, the parameter tape is the only tape that must be
modified by the user. A reassembly of RTOS and the initialization
program using the new parameter tape is required to tailor the operating
system to the user's environment.

A listing of the RTOS Parameter Tape is provided with the supplied
program package. Note that all symbols have been declared using the
.DUSR pseudc-op. They will therefore not appear in the assembly's
symbol table output. Further, loading of the parameter tape can be

skipped on pass 2 or saved permanently as part of the assembler.

Most of the system definition parameters described in section D.2
must be set to a value of @ or 1 depending on whether the device or
option is present or not on the system. Other parameters can take on
values greater than 1 and will now be described in more detail than
appears 1n D.Z.
CHAN Number of .XMIT/.RCV channels on the system.
It should be given a value greater than zero. For

each channel that is defined, an entry is made in each
of the channel message and status tables.

FREQ Real time clock frequency.
0 = AC line frequency
1 = 10 Hertz
2 = 100 Hertz
3 =1,000 Hertz

JOBS Maximum number of parallel TASKS allowed in the system.
This must be set to the total number of user TASKS and
hardware devices tied to the interrupt facility.

SHALT System Resources Depleted Parameter
A "¢ implies the system should HALT if enough TASK
control blocks were not defined because the value of
'JOBS' was too small.
A "1" implies the system should branch to a user supplied
program with an entry point called '.SHLT' if the above
condition occurs.

TTYS Number of teletypes in the system.
It is assumed that all Nova computer systems will have
at least a console teletype and so this value should be
set to at least '"1".
If additional teletypes are added to the system this
value should be increased and the user must remember to
set up the DUCB tables and entry points in the logical
device number and interrupt entry point tables.

A-2

A.2 PROGRAM ASSEMBLY

Once the user has obtained a new parameter tape, he can then proceed
to assemble the Real Time Operating System and the initialization
program 'RTIN'. Each of these programs requires that the parameter
tape be the first tape in the assembly.

These programs should be assembled using either Extended Assembler
(091-000017) or the DOS Assembler (088-000001).

If the user desires to assemble the RTOS system absolutely using the
absolute assembler (091-000002), the code for relocation, interpro-
gram communication, and conditional assembly must be removed. Loca-
tion statements must be inserted into RTOS, the initialization, and
the device handler programs to provide starting addresses. An equate
table must be made for interprogram commmnication.

A3 SYSTEM LOADING

After generating relocatable binary tapes for all RTOS system and user
programs, the user is ready to load his system. The Extended Reloca-
table Loader (091-000038) is first loaded by the standard binary loader

and is then used to load the relocatable binary tapes. For operating

ialia Locliuialdl .o DLl S~ Cikvaiiy

instructions the Relocatable Loader Manual (093-000039) should be re-
ferenced.

The starting address of the user TASKs must be labelled 'START' and
declared as an entry point (.ENT).

A.4 SYSTEM STARTUP

The system should be started at location 'INIT' after loading all the user
TASKs, RTOS system programs and required device handlers. The initializa-
tion program when completed branches to the start of the user TASKs at
'START'.

APPENDIX B

WRITING A DEVICE HANDLER

The purpose of this appendix is to outline a step by step procedure
for adding a new device handler to the Real Time Operating System.

For the purpose of illustration, we shall call the device entry
point .DEV and its definition parameter will be DEVICE. The label
DEVICE will be edited into the RTOS parameter tape and given a value
of "1" to tell the system that this device is to be included in the
system.

To clarify what is said in the following sections, the user planning
to implement his own device handler should review some of the supplied

handler listings.

B.1 Entry Point Definition

The device handler entry point must be defined in two tables within

the RTOS system. The first table 'HANTB' is a list of entry points
oriented in logical device code order. The supplied system has defined
logical unit numbers for most of the standard I/0 devices that can be
supplied with a Nova computer. (See section 3.1.1: LOGICAL DEVICE
NUMBER). This table could be expanded by adding the new device handler
entry point at the end of the table or modified by changing one of the

present device assignments to the new device.

To include the new device as logical device number ten at the end of
the present list, the code

IFE DCOM
. IOBAD
.ENDC

B-1

.IFN DEVICE

.EXTN .DEV

.DEV ;DEVICE lﬂlg
.ENDC

should be added to the existing table. It must precede the label
'"HANTE' which is used to point to the end of the handler table.

To include the new device as logical device number four instead of

the incremental plotter, the code

.IEN PLOT
EXTN .PLT
.PLT ;DEVICE 4
.ENDC
.IFE PLOT
should be changed to read
.IFN DEVICE
.EXTN .DEV
.DEV ;DEVICE 4
.ENDC
.IFE DEVICE

The second table which must be supplied with the interrupt servicing
routine entry point is the interrupt dispatch table 'INIP'. The
entry in this table must correspond to the device code assigned to
the hardware device. If the device code was 3¢(8)’ the code that must
be added to the end of the table after

.IFN DCOM

.EXTN .DCOM

.DCOM ;Data Communication (Code24)
.ENDC

is as follows:

.IFE DCOM
NODEV
.ENDC

NODEV ;CODE 25
NODEV ;CODE 26
NODEV ; CODE 27

.IFN DEVICE
.DEV ;DEVICE CODE 3§
.ENDC

B-2

B.2 INITIALIZATION

Initial entry to the device handler is provided through the .IOX
meta-instruction. The portion of RTOS that processes the .IOX call
Creates a TASK control block, checks that the device number is within
the allowed range and is defined on the system, checks that the word
count is greater than or equal to zero, and then branches to the
initialization section of the device handler. If during the .IOX call
processing, the count is found negative, the .IOX call is set up to
take the error return with AC3 = -2. If it was not a legal device
number, the error return is made with AC3 = §.

The entry to the initialization section 1s provided by putting its
address immediately preceding the interrupt entry point. The .IOX
servicing program loads AC3 with the interrupt entry point address
".DEV' from the 'HANTB' table and does a JMP €-1,3 to enter the initial-
ization section of the handler.

Upon entering the initialization program, all system status information
has been saved in a TASK control block whose address is contained in
ACZ. Accumulator zero contains the device control word from the .IOX
calling sequence. The program must now check whether the device is
available to service the new request or the request must be stacked to

await completion of previous requests.

To insure that the DUCB is not modified by the interrupt servicing sec-
tion of the device handler while it is being accessed from the initial-
ization section of the handler, the eighth entry ('DQBSY') of the

DUCB is set non-zero to indicate the queue is busy. The check is then
made by loading the first entry of the DUCB. A zero value means the
device is inactive and the desired I/0 request can be initiated imme-
diately. A non-zero value means the request must be put into the stack
of TASKS awaiting to perform I/0 on the called device. The TASK can
be put in the stack by the 'IOSTK' routine which may be entered by a
jump indirect through a page zero variable called '.STAK' and defined
as an entry point in the RTOS program.

B-3

If the device is available to service the request, the initialization

program then branches to the 'next 1/0" section of the handler.

B.3 NEXT 1/0 REQUEST SERVICING

This section of the handler is used to complete the DUCB setup for the
I/0 request once the device is available. It is entered directly from
the initialization section of the handler if the device was available
at the time of the .IOX call or from the interrupt servicing section
if the previous request was completed. The address of this routine 1is
the eleventh entry of the DUCB table and is also used by the "TOEND'
routine of RTOS when the end of the previous I/0 operation is being

completed and additional requests are stacked for the device.

The next I/0 routine must be entered with the accumulators setup as

follows:
ACP = device control word (2nd .IOX parameter)
AC1 =
AC2 = address of the task control block
AC3 = address of the device unit control block (DUCB)

This occurs automatically when the end of I/0 operation of RTOS is per-
formed and must be the case when entering from the initialization sec-

tion.

The routine should first save the TCB address as the first entry in the
DUCB and zero the I/0 queue availability switch in the DUCB. It must
set up the data pointer, data count, and error return storage locations
within the DUCB from the .IOX call parameters. The device control word
is used to initialize the device operating mode switch, the address of
the get/store character routine, the address of the proper parity

routine, and the character mode indicator.

The device operating mode switch (parameter 'DMODE') and the character
mode indicator (parameter 'DCMDE') can be set directly from the control
word, their values being 0,1,2 or 0,1 respectively. The address of the

get/store character routine can be obtained from the table '.BTAB' in

B-4

RTOS and stored as the 'DGSR' parameter in the DUCB. The correct en-
is determined by examining the input/output mode and the data
format switches of the control word. The address of the parity rou-
tine can be obtained from the table '.PTAB' in RTOS and stored as the
'DPRTY' parameter in the DUCB. The correct entry is determined by
checking the input/output mode switch and the ASCII parity bits of

the control word.

After the DUCB has been completely initialized, the routine should
initiate the first I/O operation. If the device is operating in the
input mode, this need only be an NIOS instruction to start the device.
If output mode is used, the routine should get the first word or char-
acter and transmit it to the device. After starting the device in
either input or output mode, the program should return to the TASK
scheduler by the .QUIT meta-instruction.

If the handler is being developed for a teletype-like device (byte
oriented), many of the routines written into RTOS can be used. This
1s the case for the high speed paper tape reader/punch and the plot-
ter handlers. Routines that are commonly used and have been written
re-entrantly like '.DUCB' and '.TTIO' have been described in sections
3.3.1 and 3.3.4 respectively.

B.4 INTERRUPT SERVICING

The interrupt servicing section of the device handler is entered di-
rectly from RTOS when it responds to the hardware interrupt. It per-
forms the entry via an indirect jump through the interrupt dispatch
table 'DISP' by getting the device code from the interrupting device
through an interrupt acknowledge command 'INTA' and adding this num-
ber to the address 'DISP'.

Standard practice in handler development is to branch to the subrou-
tine 'PRIOR' as the first operation in the servicing program. This
can be performed by an indirect jump through the page zero entry point

B-5

'.SERV' and is used to rearrange the hardware priorities, save the
system status, and enable the interrupt facility again. The return
from this subroutine is to 1§ locations past the JSR with ACZ con-
taining the address of the device unit control block. For a detailed

description of the subroutine 'PRIOR', see section 3.3.5.

If it was an input operation, the routine must read the character/word
from the device, perform proper parity checking, save it in the input
buffer, and test if more input is required and restart the device if
necessary. If the operation was performing output, the routine must
test if further characters/words are to be sent to the device and if

so, initiate the next output operation.

If another I/0 operation must be performed, the interrupt should be
dismissed after the operation is initiated. This can be done by en-
tering the '.DISN' routine of RTOS with AC2 pointing to the interrupt
data block. This address is stored in the 'DIDBO' parameter of the
DUCB for an output device and in the 'DIDBI' parameter for an input
device. The '.DISN' routine will restore the hardware priorities and
machine status to that found previous to the occurrence of the in-

terrupt.

To initiate another I/0 operation on a byte-oriented device like the
teletype special re-entrant routines have been supplied in the RTOS
program. These routines '.CHOT' and '.CHIN' can be used to initiate
the next output or input operation respectively, in a manner similar

to the supplied high speed paper tape punch and reader handlers.

If the device is not byte-oriented or cannot be handled like a tele-
type, the user writing the handler must provide the necessary code to
start the next I/0 operation. This may have been written for the
"mext I/0'" servicing section or may have to be supplied for the in-

terrupt '"next I/0" request.

For an output operation, the next I/0 portion must test if further out-

put is required and if it is not, enter an end of output operation

B-6

phase. This routine is supplied in RTOS with the entry point being
defined as '.CHRO'. If further output is required, the routine must
use the get character/word subroutine, whose address has been entered
in the DUCB as the 'DGSR' parameter, to get the next data item, to
send it out to the device, and to dismiss the interrupt via the '.DISN'
routine.

For an input operation, the next I/0 routine must check the parity of
the newly entered data item if operating in the character mode and

then to store the data into the input data buffer via the routine whose
address is the *DGSR' parameter of the DUCB. The routine must then
test if further input is required and if it is not, enter an end of in-
put operation phase. A routine for this purpose is supplied in RTOS
with an entry point defined as '.CHRI'. If additional input data is
required, the device should be reactivated and the interrupt dismissed

via the RTOS routine starting at entry point '.DISN'.

B-7

APPENDIX C

PERIPHERAL SUPPORT SUMMARY

This appendix contains a summary sheet for each of the standard device
handlers. The sheet gives the format taken by the device control word

in the .IOX calling sequence. It also provides a summary of the pos-

- R,
ana error ret

amtn o Lmaman L.~ L 1
urli> 1

R | TR | o rman e o4
rom the handler and the meaning that

AC3 takes in

ct

hese cases.

Additional sheets for other device handlers will be added to this
appendix as the handlers are made available. Handers currently avail-
able include:

Device Name Page
Teletype C-2
High speed paper tape reader C-3
High speed paper tape punch C-4
Incremental plotter C-5
Card reader C-6
Line printer C-7
Analog to digital converter C-8
Multiple teletype system C-9

C-1

TELETYPE DEVICE CONTROL WORD

g 1 2 3 4 5 6 7 8 9 191112131415

27| TIY UNIT NOMBER

L Unused

Parity Bits (Ignored in image mode)

Input Mode

p@ - Mask to 7 bits, ignore parity

@1 - Test even parity

19 - Test odd parity

11 - Mask to 7 bits, ignore parity
Output Mode

@#p - Set channel 8 to zero

p1 - Generate even parity

19 - Generate odd parity

11 - Set channel 8 to one

- ASCII Mode
- Image Mode

- Character Format

Word Format

- Echo on Input
- Suppress Echo on input

- Input
- Output

=t~ Tl ~~ S
[

NORMAL RETURN CONDITIONS

AC3
AC3

AC3

Data count went to zero

Input of character "n'", either a null or from the list
of terminators, caused termination of input

Data output was terminated by a null character

ERROR RETURN CONDITIONS

AC3
AC3
AC3
AC3
AC3

Input of character '"n" caused termination of the output
Illegal device unit number in .IOX calling sequence
Parity error on input

Negative word count, in .IOX calling sequence

Teletype unit number error in .IOX calling sequence.

C-2

HIGH SPEED PAPER TAPE READER CONTROL WORD

g 1 2 3 45 6 7 8 9 1p 11 12 13 14 15

T2 2%

Parity Bits
§@ - Mask to 7 bits, ignore parity
Pp1 - Check even parity
1 - Check odd parity
11 - Mask to 7 bits, ignore parity

@ - ASCII Mode

1 - Image Mode

- Character Format
1 - Word Format
Unused

(Input only operation available)

NORMAL RETURN CONDITIONS

AC3 = -1 Data count went to zero

AC3 = n Input of character '"n', either a null or from the
list of terminators, caused termination of input.

ERROR RETURN CONDITIONS

AC3 = I1legal device unit number in .IOX calling sequence
AC3 = -1 Parity error on input
AC3 = -2 Negative word count in .IOX calling sequence

C-3

HIGH SPEED PAPER TAPE PUNCH CONTROL WORD

p 1 2 3 4 5 6 7 8 9 191112131415

Y Tmns i 27

L————————-Parity Bits (Ignored in Image Mode)
p@ - Channel 8 Zero

@1 - Generate Even Parity

18 - Generate Odd Parity

11 - Channel 8 One

@ - ASCII Mode

1 - Image Mode

@ - Character Format
1 - Word Format
Unused

(Output is only operation available)

NORMAL RETURN CONDITIONS

AC3
AC3

g Data output was terminated by a null character

1 Data count went to zero

ERROR RETURN CONDITIONS

AC3
AC3

] Illegal device unit number in .IOX calling sequence

H

-2 Negative word count in .IOX calling sequence

c-4

PLOTTER CONTROL WORD

g 1 2 2 4 5 6 7 8 9 1f 11 12 13 14 15

WLy iz

Unused
(6 Bit instruction assumed)

- Character Format
1 - Word Format

Unused
(Cutput is only operation available)

NORMAL RETURN CONDITIONS

AC3
AC3 = -1 Data count went to zero

/) Data output was terminated by a null character

ERROR RETURN CONDITIONS

AC3 = ¢ Illegal device unit number in .IOX calling sequence
AC3 = -2 Negative word count in .IOX calling sequence.

C-5

CARD READER CONTROL WORD

g 1 2 3 4 5 6 7 8 9 141112131415

Unused

- ASCII Mode
1 - Card Image Mode (Word Format only)

@ - Character Format
1 - Word Format

Unused
(Input is only operation available)

NORMAL RETURN CONDITIONS

AC3 = -1 Card read correctly

ERROR RETURN CONDITIONS

AC3 = @ Illegal device unit number in .IOX calling sequence

AC3 = -1 Card reader is not available (not on line)

AC3 = -2 Negative word count in .IOX calling sequence

AC3 = 1 A card has failed to move properly through the reader
or an error has been detected in the circuitry.

AC3 = 2 A card was not brought in from the hopper

AC3 = 4 The card hopper is empty or the stacker is full.

C-6

LINE PRINTER CONTROL WORD

g 1 2 3 4 5 6 7 8 9 1¢ 111213 14 15

/M2 /272

Unused
(7 Bit ASCII Assumed)

@ - Character Format
1 - Word Format

Unused
(Output is only operation available)

NORMAL RETURN CONDITICNS

AC3
AC3

g Data output was terminated by a null character

-1 Data count went to zero

ERROR RETURN CONDITIONS

AC3 = § I1legal device unit number in .IOX calling sequence
AC3 = -1 Line printer not available (not on line, power off
or out of paper)

r
Negative word count in .IOX calling sequence

=
(@)
w
"
1
(3]

C-7

ANALOG TO DIGITAL CONVERTER CONTROL WORD

g 1 2 3 4 5 6 7 8 9 141112131415

W,

L ADCV channel address

Unused

NORMAL RETURN CONDITIONS

AC3 = -1 Data count went to zero

ERROR RETURN CONDITIONS

AC3
AC3

1t
=

Illegal device unit number in .IOX calling sequence

1}
1
Do

Negative word count in .IOX calling sequence.

C-8

MULTIPLE TELETYPE SYSTEM

Provided with RTOS is a handler for two additional teletypes. These
are included in the program if at assembly time the parameter tape
specifies that TTYS is greater than one. Only a device unit control
block and the interrupt servicing logic for the teletype input and
output are necessary to implement an additional teletype under RTOS.

The two teletypes referred to as TTY Unit Numbers 1 and 2 are imple-
mented in the .MITY handler service device codes 50,51 and 40,41

respectively,

To implement other teletypes on the system, tape six of RTOS would
need to be modified so the necessary entries are made in the interrupt
and the teletype unit dispatch tables.

The control word for the additional teletypes has exactly the same
format as for the console teletype described on page C-2.

APPENDIX D

RTOS VARIABLE DEFINITIONS

The Real Time Operating System has a set of reserved words con-
sisting of the eight meta-instructions (.IOX, .WAIT, etc.), the
system definition parameters (JOBS, TTYS, TAPE, etc.), the de-
vice handler names (.PTR, .DSK, etc.), and the entry points de-
fined in RTOS (.JOB., .STAK, etc.) and the initialization program
(START). These reserved words cannot be used as variable names

in user programs except as their usage pertains to RTOS. The

f these variahles is defined below,

meaning and usage of th

D.1 RTOS META- INSTRUCTIONS

.BRK - 1is a meta-instruction (to be used as a special purpose
command) which allows input of a specified ASCII char-
acter to interrupt the normal operation of RTOS.

.FORK - 1is the RTOS meta-instruction for the creation of par-
allel processes (i.e., additional TASKS).

.I0X - 1s the meta-instruction that handles standard I/0
operations within RTOS, initiating an activity on the
specified I/0 device.

PIY - 1is the meta-instruction to alter the priority of the
current TASK, within the range ¢—25510 (@ being the
highest).

.QUIT - 1is the RTOS call to terminate a TASK.

.RCV - 1is the second half of the meta-instruction pair for TASK
synchronization and communication. It enables the recep-
tion of a 'synchronization signal' sent by an .XMIT in-
struction over a specified channel.

WAIT - 1is the meta-instruction used to delay the execution of
the current TASK for a specified time interval.

XMIT - 1is the first half of a complementary pair of meta-instruc-

tions provided for TASK synchronization and inter-TASK
communication. It causes transmission of a ''synchroniza-
tion'" signal over a specified channel.

D-1

D.2

RTOS SYSTEM DEFINITION PARAMETERS

These parameters are all defined on the system parameter tape that

is tailored to each installation and is used when assembling the

RTOS mainline and initialization programs.

NAME VALUE
A2D g orl
CARD §orl
CHAN + ve
DCOM g orl
DISK porl
FREQ #,1,2,3
HSP g orl
HSR §or 1l
JOBS + ve
PLOT @ or1l
PRINT pPorl
PWRFL @ or 1
SHALT @ or 1

PLACES
USED

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTOS

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS

DESCRIPTIONS

Analog to digital converter definition.
Card reader definition.
Number of .XMIT/.RCV channels in the

system.

Data communications multiplexer defi-
nition.

Fixed head disk definition.

Real time clock frequency.

High speed paper tape punch definition.
High speed paper tape reader definition.
Maximum number of parallel tasks allowed
in the system.

Incremental plotter definition.

Line printer definition.

Power monitor / auto restart option

definition.

System resources depleted definition.

D-2

NAME VALUE
TAPE #orl
TTYS > or =1

PLACES
USED

RTOS
RTIN

RTOS

DESCRIPTIONS

Magnetic tape definition.

Number of teletypes in the system.

D-3

D.3 DEVICE HANDLER NAMES

The following list of names is reserved for device handlers in RTOS.
As additional devices are interfaced to the Nova family of computers
and new device handlers become available, this list of names will be
expanded. The first name is the interrupt entry point while the
second name is the start of the device unit control block in the
handler.

.ADCV, ADC1 - analog to digital converter (4032)

.CDR, .CDR1 - card reader (4016)

.DCOM, .DCM1 - data communications multiplexer (4026)
.DSK, .DSK1 - fixed head disk (4019)

.LPT, .LPT1 - 1line printer (4034)

MIA, .MIA1 - magnetic tape (4030)

PLT, .PLT1 - incremental plotter (4017)

.PTP, .PTP1 - high speed paper tape punch (4012)
.PTR, .PTR1 - high speed paper tape reader (4011)
.PWR - power monitor / automatic restart option (XX06)
TTI1 .TTY1 - teletype unit 1 (device codes 50,51)
.TT01

TTI2 .TTY2 - teletype unit 2 (device codes 40,41)
.TT02

D-4

D.4 SYSTEM ENTRY POINTS

NAME VALUE PLACES DESCRIPTION
USED
.BCHR -ve = inactive RTOS Break character storage.
+ve = break char. RTIN
.BTAB .NREL RTOS Address of table of get/
address Device store character/word sub-

Handlers routine addresses.

.CHIN .NREL RTOS Routine to handle an input
address Device interrupt from a byte
Handlers oriented device.

.CHOT .NREL R10S Routine to handle an output
address Device interrupt from a byte
Handlers oriented device.
.CHRI .NREL RTOS Routine to dismiss an input
address Device interrupt at the end of an
Handlers input operation.
.CHRO .NREL RTOS Routine to dismiss an output
address Device interrupt at the end of an
Handlers output operation.
.CLK. .NREL RTOS Address of the clock count
address RTIN down interval queue.
.CPNT .NREL RTOS Address of the first entry in
address RTIN the clock pending stack.
.CPTY #-2557, RTOS Priority of the currently
RTIN executing TASK.
.CST. .NREL RTOS Address of .XMIT/.RCV chan-
address RTIN nel status table.
.CSTK .NREL RTOS Address of the stack of clock
address RTIN queue entries.
.CUCB @ = inactive RTOS Clock active switch.
#0 clock active RTIN
.DCB1 .NREL Device Entry point in the .DUCB

address Handlers routine to initiate the first
I/0 instruction

D-5

System Entry Points (cont'd)

NAME VALUE
.DISN .NREL
address
.DUCB .NREL
address
. ICER .NREL
address
.JOEND .NREL
address
.JOB .NREL
address
.JPNT .NREL
address
.JSTK .NREL
address
.PMSK (11--1777778
.PTAB .NREL
address
.QPNT .NREL
address
.QSTK .NREL
address
.QUE. .NREL
address
.RTC. .NREL
address
.SERV .ZREL
address

PLACES
USED

RTOS
Device
Handlers

RTOS
Device
Handlers

RTOS
Device
Handlers

RTOS
Device
Handlers

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
Device
Handlers

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

RTOS
RTIN

Device
Handlers

D-6

DESCRIPTION

Routine to restore the pre-
vious machine status and
dismiss an interrupt.

Routine to set up the de-
vice unit control block
for .IO0X calls.

.I0OX unit number error re-
turn subroutine.

Address of a routine to
handle end of I/0 operations

Address of pending job
TCB's.

Address of first entry in
job pending stack.

Address of stack of TCB
addresses to be put in the
pending queue.

Hardware mask for currently
executing TASK.

Address of table of parity
checking/generating sub-
routine addresses.

Address of first entry in
job queue stack.

Address of pending job TCB
address storage area.

Address of first TCB to be
queued.

Address of first entry in
clock count down interval
queue.

Address of the interrupt

priority controlling routine
(PRIOR).

System Entry Points (cont'd)

NAME VALUE
.SHLT .NREL
address
.STAK .ZREL
address
START .NREL
addrecs
.SYS. @= User
1= System
.TERM .NREL
address
.TTI0O .NREL
address
.TTY@ .NREL
address
TTYI .NREL
address
.TTYO .NREL
address

PLACES
USED

RTOS

Device
Handlers

RTIN

RTOS
RTIN

RTOS
Device
Handlers

RTOS
Device
Handlers

RTOS

T TN
4 1IN

RTOS
MITY

RTOS

DESCRIPTION

Start of a user program to
handle the case when too few
tasks were defined (also SHALT
=1)

Address of the I/0 job stacker
routine (IOSTK)

Starting address of user TASKS,
branched to after completion
of initialization.

RTOS operating mode switch.

Address of a list of termina-
tion characters used to ter-
minate input.

Next I/0 routine for the tele-
type interrupt handler.

Address of teletype unit
@ device unit control block.

Address of general routine
to pre-process all teletype
input

Address of general routine
to pre-process all teletype
output.

E.1 DEMONSTRATION PROGRAM NO. 1

This program demonstrates the usage of all eight meta-instructions
of the Real Time Operating System. To do this, it creates a number
of parallel tasks performing data input and output to the teletype,
suspends execution of the program for ten séconds, and uses the
break feature to allow the user to restart the program at any point
during its execution cycle. It uses the real time clock and
console teletype so it can be run on the minimum hardware configura-
tion necessary for using RTOS.

The new user of RTOS should have thoroughly read the RTOS Reference
Manual previous to attempting to follow the logic of this example.

Once the system is initialized, the user TASK priority is set to
100 octal. A restart TASK is then initiated at a higher priority
(10 octal) to await the user typing a control C charactér on the
teletype. When this break character is input, a complete re-
initialization of the system will be performed.

The initial TASK then initiates a parallel TASK (TASK1) to request
the user to enter a ten character name on the teletype. This TASK

1s at the same priority as the initial TASK and so does not begin
execution until the initial TASK has been completed or in this case
causes a system rescheduling after initiating the output of a message
"RTOS TEST PROGRAM" via an .IOX meta-instruction. This TASK, after
completely outputting the message, terminates itself by a .QUIT.

The first function performed by TASKl is to initiate a TASK (TASK2)

at priority 14¢ (octal) to input up to ten characters from the tele-
type. Because TASKI is higher priority than TASK2, it is scheduled
for execution after completion of the .FORK instruction and starts the
output of a message to the operator to enter a name "ENTER NAME:-

". TASK1 is now in a suspended state until the message is completed
and TASK2 is put in the executing state. TASKl after completely out-
putting this message issues a .RCV meta-instruction on channel 2 to

wait for completion of the data input function of TASK2.

After completing the input phase (ten characters entered or ter-
minated by one of the ASCII terminator characters: carriage re-
turn, line feed, escape, end of text, or rubout), TASK2 transmits

the contents of AC3 when it returned from the .IOX instruction to
TASK1 via channel 2. To use the .XMIT instruction, the message must
be moved into AC#. It then performs a .QUIT operation.

TASK1 upon receiving the message over channel Z is again put into
the pending state. When activated, it checks the message sent from
TASK2 and contained in AC3. If TASK2 input was terminated by a
carriage return, TASK1l types "<LF> IS'" and if not, it types "Is'.
TASK1 then initiates a parallel TASK (TASK@) at priority 16¢ (octal)
to wait ten seconds before requesting another name from the user.
After TASKJ is initiated, execution of TASK1 resumes and outputs the
characters of the name entered by the user in the reverse order to
which they were entered. After the output is complete, a .QUIT
instruction is executed to terminate the TASK.

Included in the following pages are a program flow chart, program
listing, and a copy of the program output.

DEMONSTRATION PROGRAM NO. 1

START
DPTY
<1¢p>
RSTRT
FORK BRK
<1@>) <3>
TASK ¢ ERROR
JWAIT TORST
<1000.>
TASK 1 TASK 2 JMP INIT
-FORK | .FORK ZERO TNPUT
<> <148> BUFFER
PRINT "RTOS PRINT READ 1§
TEST PROGRAM"' "ENTER NAME:-" CHARS FROM TTY
.QUIT .RCV <XMIT
<2> <2>
YES -QUIT
ERMINATED
Dl
<CR>
NO
PRINT PRINT
"<LF> IS" "IS"
L = .
.FORK TASK
PRINT INPUT
DATA REVERSED
.QUIT

tm1
|
(93]

s REAL TIME
S UEMUNSTRATION

« TITL LEMO1

«ENT START
eEXTN «I0Xs e PTYs « GUIT> o BRK

cEX TN o RCVs o XII Ty o WAL Ty « FOKK
o EXTN INT

sINITIALLIZATION

GEOBGT1TTTTT START:
GEREL Y BU8100

COgLeT1TITTT
BULOE' LIEGL S

ARG 4 vELelT!

APERS vovwe '
GENG 6T 908v0O0
CEEOT OBRE26T

Do la* Y7777
5 S

3110l
CEU12° 108040
BR¥13'E00BED=
BUel14'90U1B0

Lbuul5'eoeozt!’

i

PYuul1e" 177777

enNivEL

«PTY
100

o FUKK
1@
RSTR

4]
TASK 1

o I UK

o

OUTP
MESST*2
160
ERROK

SUUIT

TAHSK

E-4

OPERATING 5YSTEM
7

1

FROGRAM

5 SET INITIAL PRIORITY
310 18908

5 CRELTE KESTART TASK
sPRIOBLTY 1603)

s CREATE PARELILEL TASK
36T SAME PRIORITY (1G@CE)I)D

JUTPUT mESSAGE 10 T1Y
"<]15><12><12>RTOS TEST"
TERMINATED BY NUW.L CHARACTER

e Vs

.o

sTERMINATE INITIAL TASK

Tttt DEMO1

Bow17* 177777
00020000003

Bovz21'B62677
Uove2' 302491
LRWV23' 177777

@0024' 177777

EB25'331750

CoR26' VBVOBS'
POO2T ' 0ON1 40
0o03¢' BOR11 4

VOB31'PPOC1Y"
BRO32'Y0BGLY
BOB33'100869

D0W34'BRYYZ6=

PoP35'PBB10O
L 36'GovL21"

weE37'1777177
20040300002

vRB4l'B24412
BOD42' 166404
BOO43'6BL 4l

DOV 44" PGOB3L"’
6RO 4S5 GLERVG
RO0 46" 1002006
VeV 47 BROESE=
UPYSe ' VRO
boGs51'e0ne21"
BEO52'60w 410

PBBS53'BOLVLS

PeeS4'pRBC 44"
PPB55'02C000
bBBsS6' 100000
VBBST'BEBES1=
DRV6E'BR1009
gep6l1 vl

3 SYSTEM RESTART TASK

RSTRT:

« BRK
3

3 BREAK CHARACTER IS CONTROL C
31T WILL RESTART SYSTEM

3 ERROR HANILING ROUTINE (RESTART)

ERROK:

sMESSAGE OQUTPUT TASK

TASK1:

CRze

NOLFzs

I0RST
JMP e.+1
INIT

3 ERROR ROUTINE
SRE-INITALIZE SYSTEM

TASK (WAIT TEN SECONDS BEFORE REDOING)

LiANT T
e WAL T

1000.

« FORK
140
TASKZ

« 10X

4]

OUTP
MESSZ*x2
109
ERROK

«RCV
2

LDA 1,CR
SUB 351, SZR
JMP NOLF

» 10X
19
OUTP
MESS3*2
16¢

ERROR

J¥P REVEK

15

- 10X

(0]

OuUTP
MESS3*x2+1
186

ERKOR

E-5

e

Al ECONDS
HEF

2 S
RESTARTING TASK1

'ws ‘ep

X =

1
RE

O =3

3 CREATE PARALLEL TASK
3AT PRIORITY 148(8)

sOUTPUT MESSAGE
3'"<15><12>ENTER NAME :-"
3 TO PROMPT OPERATOR

s WAIT FOR MESSAGE FROM
TRANSMITTED IN AC3

TASKE

3 TEST IF INPUT TERMINATED
3 BY CARRIAGE RETURN
3NO

3PRINT "<LF> IS "

3 CARRIAGE RETURN ChARACTER

3PRINT ™ IS *

Tttt

LEMOL

V62 B20655-
OGE63'B4002Y
DoU64' Banpzl

LWE6S' 1wz 4BW
GPE66'UE 4D56-
PLL6T ' a2u20
LT 125404
GHEAT1ORNTT6

GEpTe 2 sSa-
POBT3I V4B 30
BUBTA' B2 4p5S6~
DYET5' 622030
BOGTE6" 101004
GGTT'@ 42021
PE1AG 125404
GO121'CubTT4

gplazeoeeee’
@133 wEnH 1yl
vwaluatyoubhza’

091059600054
126 30D06HE

BE1GT 120008
BEllG ' Hopkal-
POLI11'BoL10Y
goliarosgoel!

B2113'apen1 6t

PU114'02085 4-
0B115'040830
PO116'102400
BB117 024056~
BB12¢ "' 42630
Go121°"125454
BB122'082BT776

GE123' 000105
G124 ULy

2@125'gc2wou
yolee'dgun27-
pula7'devylz
23138 bzl
PE131'161E00
YE13e2" 177777
DE133'vueioe

Y134 00wl113"

REVER? LDA @G,LAST
STA U, INCI
STA ¥, INCZ2
SUR @, @

LbA 1, TEN
STA @, @INCI
INC 1515 SER
JMP =2

Lba s mIRST
STA ©» DEC1
LDA 1, TER
LDA G, 2LECI
MOV U Us SER
STA Bs @INC2
INC 1515 82K
JeiP e =4

« FORK

160

THSK &

o IC
&l

QUTF+WORL
QuTPUT

167

ERKOR

s DATA TnPUT TLSK

TaASKeZ: LD @, FIRST
5T& 0, DECH
SUEB (0,0
Lia 1, TEN
ST ©s SDECH
INC 1515 SER
JuP =2
« 1UX

@]
FVEN+WORD
INPUT
1.

ERBUR

MOV

YT
[GF Ry v

XML T

&

sLUIT

E-6

e

5 SETUP TO KREVERSE BUFFERS

s#EiO TRE QUTPLT BUFFLR

s REVEKSE ThE INPUT BUFFEK
3PUTTING ThE RESULTS
sIN ThE DUTPUT BUFFER

3 OrbEATE PeARELLEL TASK
3 TO STearT CYCLE AGAIN
sIn TEN SECONLS

sOUTPUT ThE ENTERED
I REVERRSE ORLER

NEME

STERMINATE TASKI

sZERU INPUT LUFFER

3 INPUT

uP T8 TEN

S CHARACTERS FrOM ThE 1TY
5 EVEN FPARITY, WORLD FORMAT

~AC3 VAL UE

5 20K RETURN
51F MESSAGE 10 TASKI]

f=
FANSMIT

s TERGINATE TrdSne

Tt DEMO1

DeBER-0B5015
Boo1-051012
CeB02-0 47524
PooB3-0620123
POBOB4-042524
POGBS-@52123
BUOV6-050040
PPRBET-B 47522

- 114277
20012-8511087

PEv11-0 46501
VL12-00VVOYY

bRP13-235015
POR14-047105
PER15-042524
bovl6-p02pg122
VOB17-046516
pBo20-742515
Ce021-035040
vwpoee-v2uv5s
BYB23-000690

Cbo24-p20012
VoY25-851511
BoB26-0000 40

0weYY12
pooB12
20053-800000
PRBS4- PGB 41~
POBS5-00R0 40~
VBBS6~-177766

202000
180800
B2oope
Gope2e
pepezi
BUee 30

pEoE21

3MESSAGE AND DATA STORAGE AREA OF PROGRAM

MESS2:

MESS3:

INPUT:
OuUTPUT:

FIRST:
LAST:
TEN:

« TXT !<15><12>ENTER NAME :- !

« ZREL
« TXT 1<15><i2><1
«TXT !'<12> IS5 !
«BLK 1@.
+HBLK 10.
@
OUTPUT
OUTPUT=-1
'l@o
EVEN= 2000
OUTP= 100000
WORD= 20000
INC1= 29

INCE= 21 3
DEC1= 30
« ENE ERROR

E-7

3 INPUT BUFFER
3 OUTPUT BUFFER

3 INPUT BUFFER ADDR.+1
3O0UTPUT BUFFER ADDR.-1
3 BUFFER LENGTH (NEGATIVE)

$ EVEN PARITY

sOUTPUT OPERATION
sWORD FORMAT

5 AUTO-INCREMENTING

REGI STERS

3 AUTO-LCECREMENTING REG.

G
LEC1
N RUR
i Vv
FIRST
Iwel
1NC2
INIT
INPUT
LAST
M ESS]
MESS3
WOLF
JUTF
DUTRFU
HEVER
ROTT
START
TASKH
TASK 1
TASKZ
TN

o BIK
« FORK
« TOX
o« P TY
« UTT
« RCV
« WALT
e Avill

[ZIFIGIC R
bZOU36
I515100C0 B
L2205
Pansa-
PEacuen
sopeel
apRe23*'R
GorpeT-
BB 55-
oLV~
AKGE1 3-
Bhowe 4~
MARHS4"
Voo
DEPGal-
L6z
doowlT!
HI0ees !
LpeUzat
dqnrvee’
Zulla
SOO056-

a3
coa

LEens
Gowr 17"
Goulie'X
peo1est'y
51515101 GO ¢
w134 X
VYWY 3T K
Copae4' X

Uil 3z2' X

E-8

DEMONSTRATION PROGRAM NO. 1

Operation

RT0S TEST FROGRAN
ENTER NAME = LT0S TEST IS TSET S01+#
ENTER NAME $= DESOD NOe ¢ IS # 0N OMED

TN a
iU
ENTER N

BTOS TEST PROGRSN
ENTER NAME t= DEMO NO 12 1S 21 On Owmbu
CWTER NAME &=

RETOS TEST PROGRAY
ENTER MNAMNE - IS

BACKWARLS IS SLhaws Al

[N e B i 7w [T Yt Sl
PUGNVEANES IS SDRAVEOR

KTOS TEST FRUGRAIN
ENTEC N

-1
—
-
[¥e}

TS5 JIRCGFEDCHEE

oo
o,

i
=
=[5

RTOS TEST PHOGRAN

ENTER NAME - Is

ENTER NAME $- EVE IS EVE

ENTER NAME $- ABCDEFGH
IS RGFELCBA

RTOS TEST POGRAM
ENTER NAME $-

E-9

	0001
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09

