DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

PROGRAM
REAL TIME OPERATING SYSTEM

REFERENCE MANUAL

ABSTRACT

The Real Time Operating System (RTOS) for the DGC family computers
consists primarily of a small, core resident, general-purpose multi-

task monitor designed to control a wide variety of real time input/output
devices. User programs are relieved from the details of I/O timing,

data buffering, priority handling, and task scheduling. In addition, tasks
are provided with a parallel processing capability plus inter-task commun-
ication and synchronization facilities.

Communicaiion with the monitor takes place through a small set of system
and task commands. Calling sequences and mnemonics are identical to
those in Data General's Real Time Disk Operating System (RDOS). This
allows software development and debugging to be carried out on an RDOS
system for later use in a core-only RTOS system. Moreover, since
RTOS is highly modular, additional device handlers can be added to an
RTOS system with relative ease.

Copyright ©Data General Corporation, 1971, 1972, 1973, 1974 093-000056-05
All Rights Reserved. Printed in U.S.A.

(RTOS 00) Original Release - June, 1971
(RTOS 01 and 02) First Revision - August, 1971
(RTOS 03) Second Revision - January, 1972
(RTOS 04) Third Revision - August, 1972
(RTOS 05) Fourth Revision - August, 1973
(RTOS 3.00) Fifth Revision - March, 1974

This revision of the Real Time Operating System Reference
Manual, 093-000056-03, is a major revision. A vertical bar
on the outer margin of each page indicates substantially new,
changed, or deleted information.

TABLE OF CONTENTS

Chapter 1 - Introduction to RTOS

.

Task StatesS . v v v o v v v oo s e osens

Task Identification Numbers.
Task Synchronization and Communication .

Device Support Under RTOS.

Svstem and Task Call Formats

A.uol\\.ault\.«\.,ybo-o.-c'ooooouooooao
L)

Magnetic Tape and Cassette Units.
Initializing and Releasing a Tape Drive .
Free FormatI/O ... i innennnn

Asynchronous Data Communications Multiplexor

Disk Files. v v ettt v et vnnenenannnenas

Disk File Organization
RTOS/RDOS Compatibility . « v v v v v v
Tape and Disk File Structures
Task and System Calls
Channel /Task Specification

RTOS Program Development Under RDOS

Avoiding Global Symbol Conflicts under RTOS.
Generating Console INterrupts « . v oo oo vs ..
Inter-revision Source Level Incompatibilities

Chapter 2 - System Calls

File and Input/Output Commands. . « + + & « . .
Systemcall List..'.......l.'.....

Open a File or Device (.OPEN). ...

Get the Number of a Free Channel (. GCHN) .
Open a Device for Appending (. APPEND). . .

Close a File or Device (. CLOSE)

Close all Files and Devices (. RESET) .

Initialize a Magnetic Tape Unit or Cassette (. INIT)
Open a Cassette or Magnetic Tape Unit for Free

Format I/O (.MTOPD). . .
Release a Magnetic Tape Unit or Cassette (. RLSE)

Read a Series of Disk Blocks (. RDB)

® o ¢ 8 o s 0 0 0 0

Reada Line (\RDL) v v vttt v vt v nevonnnceses
Read Sequential (.\RDS) + v v v v e o v 0o eeeess
Use of the Card Reader in . RDL and . RDS

Commands . .

. .
b et e
[
w w

. .
L e R T T T S S U T
1

NN DNDNDNDNDDNDN
1

]
p——

'
N

D R I |
NN U1 W

1
= O \O \O 00 0o N]

1
o

[a—
[|
-
=]

1-11
1-11

]]
CoN NN RN

Chapter 2 - System Calls (Continued)

Hollerith - ASCII Translation Table o e e ¢ v o oo oo...2-14
Write a Series of Disk Blocks(.WRB).00...2-16
Write a Line (WRL) v v v v vttt et ene seveeeeec2-16

Write Sequential (. WRS) . . v vt vt it v e v e v e v v ee.2-17
Free Format Tape [/O(MTDIO). v v v e 2-18
Teletypewriter and Video Display Commands 2-22
Get a Character (.GCHAR)........ et e e e 2-22
Put a Character ((PCHAR) e e e .2-22
Wait for a Keyboard Character (WCHAR).2-23
Memory Size Commands .+ « v o v v o v v vt e n s ve e e e eeaa2-23
Determine Available Memory (MEM) e e e ee2-24
Allocate Memory by Changing NMAX (. MEMI). cee .. 2-24
System Return Commands « « v v ¢ v v s v o s v v 00 s o e e eees2-25
System Return (.RTN). + v o v v vt v vttt enneeneeee2=25
System Error Return . ERTN) v ve e e e 2-26
Clock and Calendar Commands. c e s e e e 2-26
Delay the Executlon of a Task (DELAY) et e e 2-26
Get Today's Date (.GDAY)......... et v 2-27
Set Today's Date (. SDAY) e e e e e e 2-27
Get the Time of Day (.GTOD). e e e ...2-28
Set the Time of Day (.STOD) . . vt vt vttt e v ve v 2-28
Examine the System Real Time Clock (. GHRZ) 2-28
Define a User Clock (.DUCIK)......... e e eees2=29
Exit from a User Clock Routine (UCEX)2-30
Remove a User Clock ((RUCLK) e eeeea.2-30

Chapter 3 - Task Calls

Aborta Task (ABORT). . v v v v v v v C et eeereased
Kill All Tasks of a Specified Priority (.AKILL) 3
Ready All Tasks of a Specified Priority (. ARDY). 3-
Suspend All Tasks of a Given Priority (.ASUSP)...... 3
Get a Task's Status ((IDST)o v v v v v S
Transmit a Message from a User Interrupt

Service Routine ((IXMT). 3
Delete a Calling Task ((KILL)4t vveeeeeo.. 3"
Change the Priority of a Task (.PRI) 3-
Receive a Message (.REC). e et eseneaesesd
Suspend a Task (.SUSP). e et e e R
Create a Task (.TASK) e e R

ii

Chapter 3 - Task Calls (Continued)

Kill a Task Specified by I. D. Number (. TIDK)+ s + + «
Change the Priority of a Task Specified by L. D.

Number ('T‘Tnp\

U831 w5 N

Ready a Task Specified by I.D. Number (. TIDR) . . .
Suspend a Task Specified by I. D. Number (. TIDS) . .
Transmit a Message (. XMT), and Wdit (. XMTW), . .

Chapter 4 - User Interrupts and Power Fail/Auto Restart Procedures

Servicing User INtEITUPLS + v v v v v v ot e vennnnonans
Identifying User Interrupt Devices (.IDEF).......
Exit from a User Interrupt Routine ((UIEX)
Modifying the Current Interrupt Mask (.SMSK)
Remove User Interrupt Servicing Program (. IRMV) ,
Power Fail /Auto Restart Procedures v v v v oo o o o 0 0 0 o o o
Exit from a Power Fail Service Routine (. UPEX) . . .
High Priority User Interrupt SErviCe « v v v v v v v oo v v o v

Chapter 5 - Multiple Processor Systems

Multiple Processor Programming . . e e v o o oo oo eo oo
Data TransmissionS . v v veeeeeesoeoeeoeeess
Get the Current CPU's MCA Number (. GMCA).

Multiprocessor System IUStTation o o v v v v v v o o000 v s
Chapter 6 - System Organization

RTOS Page Zero. v v v v v v oo eeueenonnceeeas
RTOS Core Map. v vt veveneneeenecnencenns
User Status Table (UST) .4 vvveneneeneeennss
Task Control Block (TCB) PoOL v v v o v e v e oo 00w
User File Pointers Table (W UFPT). 4 v v v o oo o0 oo
Device File TableS. « v v v v v v v e e vnveneenans
High Priority Interrupt Table ((HINT)
Interrupt Table ((ITBL). v v v v v vttt v v e vnnnans
Standard Device Name Table (.CHTB) . .. v v o0 oo

AppendiXA'RTOSCOmmaIldSummary.onooooocolo.ooo-oooo.

Error Message SUMMATY. « v o vt oo oo oeveseeennsse

iii

. 3-7

1
W WM

Al i S N S SN TN
'

1
15N

1
i an

g o ur
1
W N = =

o =

L]
(=N« e Ne Nle Nle N Ne Nie N
1]
'S

]
= \O o ON ON U

1
]

Appendix B - Generating and Loading an RTOS System .

Definition of TETIS « o o o e oo e e ennss
Preparation for System Generation
System Generation « « « o e s o s o s oo oo

.

.

List of Tapes for System Generation and System
Loading

Loading RTOSGEN in a SOS or Stand -alone

Environment .
Loading RTOSGEN in an RDOS Environment .
Producing the RTOS Module « « 4 ¢ e e s s 0 s s
Sample RTOSGEN DialogUue « v s e o e o v s 0s s

Loading and Running a Program in a Stand-Alone

.

.

.

.

Environment

Performing a Stand-alone or SOS Relocatable Load.
Executing a Stand-alone Programeso004s
Loading and Running a Program in an RDOS Environment
Loading an RTOS Program under RDOS

Executing an RTOS Program with HIPBOOT

Executing an RTOS Program with TBOOT .,
MCABOOT or CBOOT . v v o+

Executing an RTOS Program via Paper Tape Produced

Under RDOS .

Executing an RTOS Program with the SOS Core Image

Loader/Writer,

RTOS Execution Procedures s « « « « »

Appendix C - RTOS Parameters . .

Appendix D - RTOS Assembly Language and FORTRAN IV Programming .

..

.

Assembly Language Ilustration « « « « « + «
Sample Assembly Language Program. . .
Load Dialogue and Program Output « « « »
Real Time FORTRAN IV Programming. .

Appendix E - RTOS Source Level Incompatibilitiess « « « + «

iv

LI)

o e o o

o o o 0

.

.

CHAPTER 1

INTRODUCTION TO RTOS

The Real Time Operating System (RTOS) for the DGC family computers consists

primarﬂy of a Small gnnprn] purpose multi-task monitor d"“"smu\.d to control a

34 IS RIS R0 S A
CiiTicl pul pu [X=Rw} LA

wide variety of real time input/output devices. RTOS is entirely core-resident,
highly modular and largely reentrant, and allows for the straightforward addition
of special device handlers. Moreover, RTOS, revision 3.00 is a compatible subset
of RDOS revision 3.00, Data General's Real Time Disk Operating System.

User programs are relieved from the details of I/O timing, data buffering,

priority handling, and task scheduling. In addition, users are provided with a
parallel processing capability plus inter-task communication and synchronization
facilities. Communication with the RTOS monitor takes place through a small

set of RTOS system and task calls.

A task is the basic logical unit controlled by RTOS. Tasks are created by means of
one of the RTOS task calls, and having been created, a task may be terminated

at any time. A large number of common processing situations lend themselves
admirably to this sort of operational control philosophy. Examples of these
processing situations include the reading or writing of a block of data while simul -
taneously performing arithmetic computations, listening for input from several
devices at the same time, shared device use by multiple tasks, sophisticated
communications problems, etc.

RTOS TASK CONCEPTS

A task is a logically complete execution path through user address space which
demands the use of system resources. Many tasks may be assigned to operate
asynchronously in a single reentrant sequence of instructions, and each task may
be assigned a unique priority and identification number.

Due to the serial nature of a computer, tasks which appear to be executing their
operations in parallel are in actuality executing these operations in short, serial
segments. It is necessary then for RTOS to maintain certain status information
(primarily active registers) concerning all tasks which are not currently in control
of the Central Processing Unit (CPU).

This information is retained in an information structure called the Task Control

Block (TCB). The maximum number of TCBs is defined at the time of system
generation.

1-1

Task States

In a multitask environment, tasks may exist in either of two states. Tasks are
either ready for execution or they are suspended. The highest priority ready task
will be given control of the CPU and the other ready tasks await their turn in a
queue organized by priority.

Suspended tasks are tasks which were once ready. A task may become suspended
for one or more of the following reasons:

It has been suspended by . SUSP, . ASUSP, or . TIDS.
. It has suspended itself for a specified period by . DELAY.
It is waiting for a message from another task, .REC .,

. It has issued a message-and-wait call, . XMTW,

It is awaiting the completion of a . SYSTM call.

U W N

Just as a number of different events may suspend a ready task, several events
can cause a suspended task to be readied:;

1. The completion of a . SYSTM call (such as a request for 1/0 or the
cXpiration of a time delay).

2. The posting of a message for a suspended task awaiting its receipt,
or the awaited receipt of a transmitted message.

3. The readying of a task by . ARDY or . TIDR task calls.

If a task is suspended by both a task suspend call and by some other event, the
call must be readied both by an . ARDY (or . TIDR) call and by whatever other
event is required to ready the task.

Suspended and ready tasks are each connected in queues. Tasks may be deleted
from either the ready or the suspended queues, either separately (. ABORT or

. TIDK) or as a priority class (. AKILL), Tasks which have been deleted add their
empty TCBs to an inactive chain of free TCBs. When a task is initiated (. TASK), a
TCB is taken from the free chain, the state of the calling task is saved in its own
TCB, and both tasks are entered into the ready queue as ready tasks. The . TASK
command must be used to initiate a multitask environment.

If all tasks are killed, the effect is to place the entire system in the idle state

and to close all channels, with control passing to the task scheduler. The system
remains capable of servicing interrupts.

1-2

Task Identification Numbers

When a task is created, it may be created both with a unique identification number
(I.D.) from 1 to 377R and at a specified priority level (from 0 to 377,). The
identification number allows tasks to be readied, suspended, or killed on a
salective basis. If unique I.D.'s are not desired, tasks may sll be created with
I.D.'s of 0. Tasks may exist at priority levels of O (the highest) through 377
(the lowest priority). Moreover, several or all tasks may exist at the same
priority level. The task scheduler always allocates CPU control to the highest

priority ready task; ready tasks within the same priority level receive CPU control
on a round-rohin basis,

Task Synchronization and Communication

RTOS permits tasks to communicate with one another by sending and receiving
one-word non-zero messages. A one-word message is sent to a task in an agreed-
upon location in user address space. User address space is understood to include
all locations from address 16 through NMAX-1 inclusively.

The task sending a message may either return to the Task Scheduler immediately
(. XMT) or it may wait (. XMTW) and place itself in the suspended state until the
receiving task has issued a receive request (. REC) and has received the message.
Receipt of the message includes the resetting of the contents of the message address
to all zeroes. Upon receipt of the message, the recipient reverts to the ready
State.

System and Task Call Formats

PRy

Calls to the RTOS monitor can be separated into two categories: system calls
and task calls, System calls generally perform system [/O. Task calls perform
user task management functions.

System command words and the mnemonic . SYSTM that must precede each command
word are recognized as legal mnemorics by both the RDOS and stand-alone extended
assemblers. Appearance of the mnemonic . SYSTM in a program results in the
assembling of a JSR @ 17 instruction. The specific system command word is assem-
bled as the word following the mnemonic . SYSTM.

Once systera action is complete and the task receives CPU control in priority fashion,
normal return is made to the second instruction after the system command word. If
an exceptional condition is detected, return is made to the first instruction following
the system command word.

1-3

Svstem and Task Call Formats (Continued)

The general form of a system call description is:

ACn - required input to the call

.SYSTM

command

error return (error code in AC2)

normal return (all AC's except AC3 are restored unless output
is returned via accumulator)

ACn - output from the call

There are 2 basic command word formats:
command n and command

where n is a number from 0 to 76_ representing an /O channel number. The
maximum number of channels, like the maximum number of tasks, is defined at
the time of system generation. Any system command requiring a channel number
n need not specify this number in the command word. Instead, by specifying

n to be octal 77, the system will use the number passed in AC2 as the channel
number.

When no 1/0 is needed in command execution, the command word appears alone in
the instruction. If the command requires arguments, these are passed in the
accumulators.

Status of the accumulators upon return from the system call is as follows. If the
system returns no information as a result of the call, the carry bit and all
accumulators except AC3 will be preserved.

A2 is used when an exceptional return is made to return a numeric error code.

Error codes are listed by number in the RTOS parameter listing, and the applicable
codes are listed for each command.

1-4

System and Task Call Formats (Continued)

AC3 is destroyed by both .SYSTM and task calls, since they are each equivalent
to JSR instructions. On return from the system however, AC3 is loaded with the
contents of memory location 016, This location is defined as a permanent symbol
by the assembler and has the name User Stack Pointer (USP). A convenient
method of saving AC3 is to store it in location 016 before issuing either .SYSTM
or task calls.

The general form of a task call in a program is:

ACn - required input to the call
command

error return (error code in AC2)
normal return (all AC's except AC3 are restored unless
output is returned via accumulators)

ACn - output from the call

Users of task calls are cautioned to reference all task call commands whose
operations are required within a program by their call names in an . EXTN state-
ment in that program. Only those calls which are so referenced will have the
appropriate task call processing modules loaded by the relocatable loader.

The significant differences between a . SYSTM call and a task call are as follows:
1. Task calls are not preceded by the . SYSTM mnemonic.
2. Not ali task calls have error returns. Those which do not
have an error return do not reserve an error return location.
All system calls reserve error return locations even if there

is no error return possible.

DEVICE SUPPORT UNDER RTOS

/0 devices are given special reserved names which often begin with the character
$. The'following list gives the names of devices supported under RTOS and their
reserved names:

$CDR - ‘Card reader.

$CDR1 - Second card reader.

CTn - Data General cassette unit n (n can be from 0 to 7.
DFO - Data General fixed head NO—\-/'A_]'DISC,

DEVICE SUPPORT UNDER RTOS (Continued)

DPn - Moving head disk, unit n (n can be from 0 to 3).

$LPT - 80- or 132-column line_iar—i-nter.

$LPTI1 - Second line printer, 80 or 132 columns.

MCAR - Multiprocessor Communications Adapter Receiver.

MCAT - Multiprocessor Communications Adapter Transmitter.

MTn - 7- or 9-track magnetic tape transport (n can be from
0 to 7).

$PLT - Incremental plotter.

$PLT1 - Second incremental plotter.

$PTP - Paper tape punch.

$PTP1 - Second paper tape punch.

$PTR - High-speed paper tape reader.

$PTR1 - Second paper tape reader.

QTY - 4060 asynchronous data communications multiplexor.

$TTI - Teletype* or video display terminal keyboard. **

$TTIL - Second teletype or display terminal keyboard. **

$TTI2 - Third teletype or display terminal keyboard. **

$TTO - Teletype printer or display terminal screen.

$TTO1 - Second printer or display terminal screen.

$TTO2 - Third printer or display terminal screen.

MAGNETIC TAPE AND CASSETTE UNITS

RTOS accesses data on magnetic tape and cassettes in free format. A single
system may contain up to eight magnetic and eight cassette tape drives. Magnetic
tape units can be in any combination of 7- and 9-track units at high or low desnity.

Initializing and Releasing a Tape Drive

Before any tape files on a tape drive can be accessed, the drive must be initialized
via the . INIT system call. Initializing a tape drive causes the tape on that drive
to be rewound. Full initialization causes the tape to be rewonnd and two EOF's

T~ {nffa T+ i
to be written \pllp_pl'v'ely D.LCLDJJL5 all files from the tape). In both cases the top file

pointer maintained by RTOS is reset to 0.

The system call .RLSE is issued to remove the transport from the system, reset
the tape file pointer, and rewind the tape.

*Teletype®Pis a registered trademark of Teletype Corporation, Skokie, Illinois.
All references to teletypes in this manual shall apply to this mark.

""" “*If the teletype reader is turned on for line reads, data read will be echoed on
the teletype printer.

1-6

Free Format [/0

Data is read and written on magnetic and cassette tape in free format. Data
records may be of varying length, containing from 2 to 4096 16-bit words each,
and with 1 or more records per file. Each tape reel can contain as many files as
the reel size will permit, although only the first IOO 10 files can be positioned

A
dlretf]" when a file ig opencd.

Before any free format I/0 can occur on a de:ice, that device must first be initialized
and then opened for this type of [/0. The system call . MTOPD is issued to open
either mag tape or cassettes for free format I/O. When a tape unit is opened, it is
positioned to a specified file, and the unit is associated with an RTOS channel. Thus,
even though the unit has positioned a tape reel to a specific file, all files on the

tape can then be accessed via space forward/space backward commands, and all
records within each file can be similarly accessed.

ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXOR (QTY)

The type 4060 asynchronous data communications multiplexor is another device
supported by RTOS. RTOS assigns the system mnemonic QTY to this device.

The QTY can accommodate from 1 to 64 full or half duplex lines, in either half or
full duplex operation.

Each multiplexed line of the QTY corresponds to a file name of the form
QTY:ixx.

where xx is a multiplexor line number in the range 0-64 decimal. Input/output

upera.tlons are performed on each line by RTOS Iine or sequential read and
write commands.

Each single QTY line may be opened on a single RTOS channel only. No more than
one read or one write request can be outstanding on any one line,

RTOS provides a facility for monitoring line activity on all unopened QTY lines.
If line number 64, QTY:64, is opened and either a read line or read sequential
operation is attempted, the task issuing this call will be suspended until such
time as an unopened line receives an interrvpt request. When this occurs, the
normal return of the read sequential or read line call will be taken, and AC2
will contain the following data word:

{1[0]Line # [Char.]

012 7 8 15

1-7

ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXOR (QTY) (Continued)

Thus this data word describes the line providing the character, and contains the
character itself in its right byte.

If two unopened lines receive an interrupt, only the first one to receive the
interrupt will be reported. There will be no report of other unopened interrupting
lines occurring before the next read line or read sequential on QTY:64 is issued.

DISK FILES

RTOS extends support to both fixed and moving head disk units. RTOS supports
a fixed head NOVADISC controller with up to eight logical units of 128K, 256K,
512K or 756K storage words; total fixed head storage per controller is from 131
thousand to 2 million words. Up to four moving head disk devices (disk pack or
cartridge type) can also be included in any system, with from 2 to 20 surfaces
per unit; maximum total moving head disk storage is 49.2 million words.

Disk files are defined at the time of system generation. At this time, file sizes

are specified and names are assigned to each file. File names consist of from 4

to 6 ASCII characters followed by a trailing null. Allowable ASCII characters in the
file name are all upper case alphabetic characters and numerals O through 9. A file
must be opened (i.e., associated with an RTOS channel) before it can be accessed.

Disk File Organization

Disk files in RTOS may be organized contiguously only. Contiguously organized
files consist of a fixed number of one or more disk blocks located at an unbroken
series of disk block addresses. These files can be neither expanded nor reduced
in size. Since the data blocks are at sequential logical block addresses, all that
is needed to access a block within a contiguous file is the address of the first
block and the relative block number within the file.

1-8

Disk File Organization (Continued)

File ABCD .
- Block Address N Block Address N+1 Block Address N+2
all 256
words are
utilized
for data . .
storage < . . .
~ Relative Block No. 0 Relative Block No. 1 Relative Block No. 2

Contiguously organized files have the advantage of allowing quick access to their data
blocks, with all disk storage being used for data.

RTOS/RDOS COMPATIBILITY

The design intent of RTOS is to make this operating system a compatible subset

of RDOS, the DGC Real Time Disk Operating System. Accordingly, all file
Structures, task concepts, system and task calls, and other features discussed for
*TOS may be tested and run on an RDOS system. RDOS features omitted from RTOS
were omitted becausc they could not be applied in RTOS, given the constraints of a
quick responding core-resident-only operating system.

Tape and Disk File Structures

Cassette and magnetic tape file structures under RTOS are identical to those
provided by free format 1/0 under RDOS.

Disk files in RI'OS must be organized contiguously; sequentially and randomly
organized disk files are available only under RDOS. Names are assigned to RTOS
disk files at RTOSGEN time. Allowable ASCII characters in RTOS file names are

all upper case alphabetics and numerals 0 through 9. Unlike RDOS, however,

disk file names must be 4 to 6 characters in length, may not include the $ character,
and can have no file name extensions; file names defined at RTOSGEN time cannot

be changed. Disk files must be opened before they may be accessed.

Task and System Calls

Unless otherwise specified, all RTOS system and task calls operate as
they do under RDOS. Any attempt to reference a task call under RTOS which is not

1-9

Task and System Calls (Continued)

found in its library will cause an unresolved external to be reported by the loader.

In most cases, an attempt to execute an RDOS system call which is not implemented
in RTOS results in an error return being taken with error code 2, ERICM (illegal
system command), reported in AC2., However, some calls are treated as no-ops
by RTOS to achieve downward compatibility (from RDOS to RTOS). The following
list names all of these calls which cause control to go directly to the normal return
with no further action:

. CCON Create a contiguous file.
. CRAND Create a random file.
.DELET Delete a file.

.RENAM Rename a file.

.SYSI SOS-compatible call.
.SPKL Kill spooling.

.SPDA Disable spooling.

.SPEA Enable spooling.

Note that these calls will not operate correctly under RTOS in the presence of
error conditions. Thus, for example, an attempt to delete a non-existent file would
take the error return for .DELET under RDOS, but would take this call's normal
return under RTOS.

Channel /Task Specification

The number of channels and tasks in a program run under RTOS is defined at
RTOSGEN time. RTOS programs being tested under RDOS may specify channels
and tasks by means of the RLDR local switches /C and /K, or by the .COMM TASK
(or CHANTASK) statements.

RTOS Program Development Under RDOS

Bearing in mind the above restrictions, RTOS program development under an RDOS
system is convenient. RTOS programs are edited, assembled, loaded and debugged
under RDOS, and when they are considered to be error free they are reloaded with
an RTOS module (produced by RTOS SYSGEN) and the RTOS library, using the RDOS
RLDR command with the /C global switch. This load procedure creates a version of
the program (called a save file) which can be run under RTOS.

Having created this save file, one of several bootstrap procedures are followed to
execute the program, depending upon whether the RTOS program is to be run on the
system which is currently executing under RDOS or whether it is to be run under
another system, with or without disk, which is not running under RDOS.

1-10

RTOS Program Development Under RDOS (Continued)

Complete details describing the use of the RDOS RLDR command, operation of
TBOOT, CBOOT, HIPBOOT, and procedures for relocatable loading of an RTOS
program module on a stand-alone system are outlined in Appendix B of this manual.

AVAG L 2y adiaUl NV iiiar L LS wiuc

A_Voiding Global Symbol Conflicts inder RTOS

In order to minimize the incidence of global symbol conflicts between user pro-
grams and RTOS subprograms, RTOS generally follows the convention of using a dot
as the first character in each symbol. Thus user-defined global symbols should

4182 UST L TULCTLUIC

always avoid the use of a dot as the first character in a symbol.

This rule has several exceptions which users should be aware of, i.e., several
global symbols in RTOS are not preceded by dots. These undotted global symbols
are as follows: PWRIS, RTCIS, DCT names (summarized at the end of system
generations), entries in the buffer package (BFPKG), entries in Fortran libraries
FORT. LB and RTOS FMT. LB, and user high priority interrupt handlers.

Generating Console Interrupts

RTOS does not permit the generation of console interrupts (CTRL A, CTRL C, or
CTRL F) which are available under RDOS. Nonetheless, RTOS does provide a
facility which resembles an RDOS keyboard interrupt. This facility is the keyboard
character wait command, .WCHAR . This command, discussed fully in Chapter 2.
activates logic within RTOS such that when a user-specified character is received
from any console keyboard, control will branch to a user-specified routine for
appropriate processing.

Lnter-revision Source Level Incompatibilities

Users of RTOS 05 who wish to be upgraded to RTOS 3. 00, the current revision,-
should be aware of certain sour ce level incompatibilities between the two revisions. A
summary of these considerations is given in Appendix E.

1-11

CHAPTER 2

SYSTEM CALLS

The following page contains an alphabetized L:st of all RTOS system command word

mnemonics,
All system calls except user interrupt calls will be discussed in this chapter, with
calls being grouped in the following sections:

File and Input/Output Commands
Teletvpewriter /Video Display Commands

Memory Size Commands
System Return Commands

Clock and Calendar Commaands

FILE AND INPUT/OUTPUT COMMANDS

All I/0 is handled by system I/O commands. These commands require a channel
number from O to 77 to be given in the argument field of the command word as
discussed in Chapter 1. The number of channels available is determined by the
user when the RTOS module is generated by the user (see Appendix B).

The user may also define a number of fixed length files when the RTOS module

is generated, and may assign alphanumeric names to these files. Such files

are organized contiguously, and are composed of a fixed number of disk blocks
which are located at an unbroken series of physical block addresses. These

files can neither be expanded nor reduced in size. Since the data blocks are in
sequence, all that is needed to access a block within a contiguous file is the

name of the file (indicating to RTOS the address of the first block) and the relative
block number within the file. Since no time is required for reading a file index,
disk files under RTOS can be accessed rapidly.

.APPEND

.CLOSE
.DELAY
.DUCLK

.ERTN

.GCHAR

. GCHN
.GDAY
.GHRZ
.GMCA
.GTOD
.IDEF

.INIT

. IRMV
.MEM

.MEMI

.MTDIO

Vi L xsaNs

.MTOPD

.OPEN

.PCHAR

.RDB
.RDL
.RDS

.RESET

.RLSE
.RTN

.RUCLK

.SDAY
.STOD

TWCHA

VY iy

.WRB
.WRL
.WRS

R
n

System Call List

Append to a device.

Close a file or device.

Suspend a task for a specific interval of time.
Define a user clock.

Idle the system abnormally.

Get a character.

Get a free channel number.

Get today's date.

Get the real time clock frequency.
Get the current CPU's MCA number.
Get the time of day.

Identify a user interrupt device.
Initialize a magnetic tape or cassette.
Remove a user interrupt device.
Determine available memory.

Change NMAX.,

™ vt T
Perform free format I/

Open a magnetic tape or cassette for free format 1/0.

Open a file or device other than the magnetic tape or cassette.
Output a character to the teletypewriter.

Read a disk block.

Read a line.

Read sequential bytes.

Close all devices and files.

Release a magnetic tape or cassette unit.

Idle the system normally.

Remove a user clock.
Set today's date.

Set the time of day.
Wait for a character on
Write a disk block.
Write a line.

Write sequential bytes.

oAt + -
/O on magnetic tape or cassette.

FILE AND INPUT/OUTPUT COMMANDS (Continued)

A channel is initially linked to a particular file or device by means of the . OPEN
(or .APPEND) command. A channel is linked to a magnetic tape transport or
cassette unit by means of the . MTOPD command only. The association between
file or device and channel number is broken by using the . CLOSE command. All
currently open files and cavices can be closed, and their associated channels

freed, by means of the system .RESET command.

RTOS provides four different I/O modes for reading and writing. These modes
are:

direct block

line

sequential

free format tape I /0

In direct block mode, the user effects a transfer of a continuous group of disk
blocks. Core locations used in the transfer are also in sequence, The direct block
mode commands are . RDB and . WRB, read a block series and write a block series.
This mode is used only with disk I/0, and no other I/0 mode is used for disk I/0
under RTOS.

Line mode data transfers assume that the data read or written consists of ASCII
character strings terminated by either carriage returns, form feeds, or nulls.
Position within a file is implicit from the last call. That is, file data is processed
line by line in sequence from the beginning of the file to its end. In this mode the
system handles all device dependent editing at the device driver level. For
example, line feeds are ignored on paper tape and teletype input devices and are
supplied after carriage returns to all paper tape and teletype output devices.
Moreover, reading and writing do not require byte counts since reading continues
until a terminator is read and writing proceeds until a terminator is written. The
line mode commands are .RDL and .WRL, read and write a line.

The third mode is sequential mode. In this mode data is transmitted exactly as
read from the device or from core memory. No assumption is made by the system
as to the nature of this information. Thus this mode would always be used for
processing binary data. This mode requires the caller to specify a byte count for
each read or write request. The sequential mode commands are . RDS and . WRS,
read and write sequential.

Free format I/O permits the reading or writing of data on a word by word basis

to cassette or magnetic tape. This mode provides users with the means of accessing
data in variable size records within tape files. Free format I/0 permits the

reading or writing of data records containing from 2 to 4096 words each. Free
format I/O commands also permit a tape reel to be spaced forward or backward
from 1 to 4095 records or to the start of a new data file, and these commands permit
the transport status word to be read.

2-3

FILE AND INPUT/OUTPUT COMMANDS (Continued)

Before free format [/O operations can be performed, the cassette or magnetic
tape unit must be initialized (. INIT) and opened (. MTOPD). To prevent further
I/O access from occurring, the device is released (. RLSE) and its channel is
closed (. CLOSE).

Open a File or Device (. OPEN)

Before other 1/O commands can be used, files and devices must be linked to channels.
Two parameters must be passed to . OPEN : a byte pointer to the device or file
name string, and a characteristic inhibit mask.

For every bit set in the characteristic inhibit mask word a corresponding device
characteristic is inhibited. (This mask is ignored when . OPEN is opening a file.)
Furthermore, these characteristics will be inhibited for as long as the device
remains open. The following lists the bit assignments, characteristic mnemonics,
and the characteristics in the inhibit mask:

Bit Mnemonic Meaning
1 DCC80 80~-column device.
2 DCLTU Device changing lower case ASCII to upper case.
3 DCFFO Device requiring a form feed on open.
4 DCFWD Full word device (reads or writes more than a
byte).
6 DCLAC Device requiring line feeds after carriage returns.
7 DCPCK Input device requiring a parity check; output
device requiring parity computation.
§ DCRAT Output device requiring a rubout after every tab.
9 DCNAF Output device requiring nulls after every form
feed.
10 DCKEY A keyboard input device.
11 DCTO A teletype output device.
12 DCCNF Output device without form feed hardware.
14 DCCGN Output device without tabbing hardware.
15 DCCPO Output device requiring leader /trailer.

If an MCA line is being opened, ACI cannot contain a characteristic inhibit mask.
Instead, for receiver lines, ACl must be cleared to all zeroes. If a transmitter
line is to be opened and the default number of retries (specified at RTOSGEN
time) is to be used, ACI must be cleared to all zeroes. However, if a different
timeout value is to be specified, bit 15 of AC1 must be set to one (and all other
bits in AC1 must be clgeared). The actual specification of a retry count will then
be deferred to the time the write sequential I/O command (. WRS) is issued.

Open a File or Device (.OPEN) (Continued)

T +h 3 + viiavrantand ~AFf lhatme thAa oA
Having opened a file via . OPEN, the user is not guaranteed of being the cxclusive

user of the file; others may also have opened ‘the file via . OPEN and may have
modified its contents. This command cannot be used to open a cassette or
magnetic tape file.

The format of the . OPEN command is:

ACO - Byte pointer to file or device name terminated by a null. The
pointer must be even, i.e., the string must begin on a full word
boundary.

ACl - Characteristic inhibit mask.

.SYSTM

.OPEN n ; OPEN CHANNEL n
error return

normal return

In general, the user will wish to preserve all device characteristics as defined by
the system. This can be accomplished by preceding the . OPEN call with a SUB
L, I instruction, passing an all-zero mask in ACI.

As an example, if the user wishes to read an ASCII tape without parity from the
high speed reader, he may inhibit parity checking by the following command
sequence:

LDA 0, READR

LDA 1, MASK
.SYSTM
.OPEN 3
READR: H1*2
.TXT *PTR*
MASK: DCPCK ;PARITY CHARACTERISTIC

Possible errors resulting from the .OPEN command are:

AC2. Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM lllegal file name.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel already in use.
31 ERSEL Unit improperly selected.
60 ERFIU Attempt to open a busy MCA unit.

2-5

Get the Number of a Free Channel (. GCHN)

This call enables the user to obtain the number of a channel that is currently unused,
if any, so that a file may be opened on this channel via one of the file open calls.
.GCHN does not open a file on a free channel; it merely indicates a channel that is
free at the moment. Thus if . GCHN is issued in a multitask environment where it
is followed by a call to one of the file open commands, the channel may not be free
by the time the file open call is issued. To solve this problem, the user should
process error return ERUFT (""Channel already in use") given by the file open
command by reissuing the call to . GCHN; this will ensure that a truly free channel
is discovered.

The format of this call is:
.SYSTM
. GCHN
error return
normal return
Upon a normal return, the channel number is returned in AC2:
AC2 - Free channel number

One possible error return may occur.

AC2 Mnemonic Meaning

21 ERUFT No channels are free.

Open a Device for Appending (. APPEND)

An alternate system call for opening a device is implemented that is identical to
.OPEN in every respect except that it may not be used with disk files.

This routine requires the same two input parameters as does .OPEN, viz., a
byte pointer to the device name string, and a characteristic inhibit mask. The
mask bit definitions are as described earlier for . OPEN .

The format of the . APPEND command is:

ACO - Byte pointer to device name. The pointer must be even, i.e., the string
must begin on a full word boundary. The string must be terminated by a
null.

AC1 - Characteristic inhibit mask.

Opena Device for Appending (. APPEND) (Continued)

oxroe

SYSTM
-APPEND n
error return
normal return

Possible errors resulting from the . APPEND command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number,
21 ERUFT Attempt to use channel already in use.

Close a File or Device (. CLOSE)

This command closes a device (performing any housekeeping required like trailer
output) and frees the device channel. If a file is closed, the file's channel is
released. The format of the . CLOSE command is:

.SYSTM

.CLOSE n ;CLOSE CHANNEL n
error return

normal return

Possible errors resulting from a . CLOSE command are:

AC2 Mnemonic Meaning
0 ERFN lllegal channel number.
15 ERFOP Attempt to reference a channel not in use.

Close all Files and Devices (.RESET)

This command causes all currently open files and devices to be Closed The
format of the . RESET command is:

.SYSTM
.RESET
error return
normal return

The error return is never taken.

2-7

Initialize a Magnetic Tape Unit or Cassette (. INIT)

Before free format tape 1/O can occur, the magnetic tape unit or cassette must be
initialized. Initialization for a magnetic tape unit or cassette consists of making

the device known to the system, rewinding the tape to BOT, and resetting the tape
file pointer to zero.

A full initialization causes the tape to be rewound to BOT and two end-of-file marks
to be written. This effectively erases any information which may have been on the
tape. A partial initialization causes the tape to be rewound to BOT and resets the
system tape file pointer to zero; no end of file mark is written.

Input parameters to this call are as follows:

ACO - Byte pointer to cassette or magnetic tape name (e.g., MT0, CT2, etc.).
The byte pointer must be even, i.e., the string must begin on a full
word boundary.

ACl1 - -1 for full initialization; other values indicate a partial initialization.

The format of the .INIT command is:

.SYST™
JINIT
error return

normal return

Possible errors resulting from an .INIT command are:

AC2 Mnemonic Meaning
2 ERICM [llegal command for device.
31 ERSEL Unit improperly selected.
36 ERDNM Device not in system.
45 ERIBS Device already initialized.

Open a Cassette or Magnetic Tape Unit for Free Format I/0O (. MTOPD)

Before free format reading or writing can be performed on either an initialized
magnetic tape or cassette unit, the device must be opened and be linked to an
RTOS channel. The RTOS command to open files or devices (.OPEN) cannot
be used to open a magnetic or cassette tape unit for free format [/O; only
.MTOPD can be used to open these devices.

2-8

Open a Cassette cr Magnetic Tape Unit for Free Format 1/O (.MTOPD) (Continued)

Input parameters to this call are the same as for the . OPEN command. .MTOPD
positions a free format tape to a desired file, since the file name passed to .MTOPD
will be of the form MTn:m or CTn:m . The input parameter to .MTOPD is as
follows:

ACO - Byte pointer to cassette or magnetic tape file name terminated by a null.
The pointer must be even, i.e., the string must begin on a full word
boundary.

The format of the MTOPD command is:

.SYSTM

.MTOPD n ;n IS THE CHANNEL NUMBER
error return

normal return

Possible errors resulting from a . MTOPD command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
1 ERFNM Illegal file name.
12 ERDLE File does not exist.
21 ERUFT Attempt to use channel already in use.
31 ERSEL Unit improperly selected.

Release a Magnetic Tape Unit or Cassette (. RLSE)

To prevent further file access to either a magnetic tape or cassette unit, the system
command . RLSE must be issued. This command prevents further file access until
the device is initialized (see the .INIT command), and causes the tape to be rewound
to BOT.

One input parameter is required for this call:

ACO - Byte pointer to device name. The byte pointer must be even, i.e., the
string must begin on a full word boundary.

The format of this call is:

.SYSTM
.RLSE

error return
normal return

Release a Magnetic Tape Unit or Cassette (.RLSE) (Continued)

Possible errors resulting from an . RLSE command are:

AC2 Mnemonic Meaning

2 ERICM Illegal command for device.
36 ERDNM Device not in system.

Read a Series of Disk Blocks (. RDB)

This command causes a series of disk blocks to be read into a user-specified
area in core memory. This routine requires four input parameters includ ing

the number of the channel upon which the disk file was previously opened. These
parameters are: the starting disk block number within the disk file, the number
of disk blocks to be read, and the starting (i.e., lowest) core address to receive
the data. In the case where the channel number 1 in the command argument is set
to 77, the right byte of AC2 contains the channel number. The left byte of AC2
contains the number of blocks to be transferred. Each block that is read contains
256 16-bit words of disk storage.

The format of the . RDB command is:

ACO - Starting core address to receive the data.
ACl - Starting relative disk block number.
AC2, left byte - Number of blocks to be read.
AC2, right byte - Optional channel number.

.SYSTM

.RDB n ;n IS THE CHANNEL NUMBER.
error return

normal return

Possible error codes resulting from an .RDB command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
6 EREOF End of file.
15 ERFOP File is not opened.

Upon detection of error EREOF the error code is returned in the right byte of
AC2Z; the left byte of AC2 contains the partial read count.

2-10

Read a Line (.RDL)

This command causes an ASCII line to be read. Required input to this command
is a byte pointer in ACO to the starting byte address within the user area into
which the line will be read. This area should be 133 bytes long.

Reading will be terminated normally after a carriage return, form feed, or null
is detected. Reading will be terminated abnormally after reading 132 (decimal)
characters without detecting a carriage return, form feed, or null; upon
detecting a parity error; or upon an end of file. In all cases the read byte count,
including the carriage return, form feed, or null, will be returned in ACI.

If the read is terminated because of a parity error, the character having the
incorrect parity will be stored (with its parity bit cleared) as the last character
read. The byte pointer to the character in error can always be computed as:
(ACO) + (AC1)-1 =
The format of the . RDL command is:
ACO - Starting byte address.
.SYSTM
.RDL n ;READ FROM CHANNEL n
error return
normal return

ACl - Byte count.

Possible errors resulting from a .RDL command are:

AC2 Mnemonic Meaning
0 ERFNO lllegal channel number.
3 ERICD Illegal command for device.
6 . EREOF End of file.
15 ERFOP Attempt to read an unopened file.
22 ERLLI Line limit (132 characters) exceeded.
24 ERPAR Parity error.
47 ERSIM Simultaneous reads on same QTY line.
106 ERCLO QTY input terminated by channel close.

*(ACn) means "contents of ACn"

2-11

Read Sequential (. RDS)

This command causes a sequential mode data transfer, causing data to be read
exactly as is. Required input parameters to this command are as follows: a byte
pointer to the starting byte address within the user area into which data will be
read, and the number of bytes (215-1 maximum) to be read.

The format of the . RDS command is:

ACO - Starting byte address.
ACl - Number of bytes to be read.

.SYSTM

.RDS n ;READ SEQUENTIAL FROM CHANNEL n
error return

normal return

Possible errors resulting from an .RDS command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
15 ERFOP Attempt to read an unopened device or file.
47 ERSIM Simultaneous reads on same QTY line.
106 ERCLO QTY/MCA input terminated by channel close.

Use of the Card Reader in .RDL and .RDS Commands

When using $CDR or $CDRI, the end of file condition on a .RDL will occur only if

a special end of file code is detected in column 1 of a card. This code is "all rows
punched. " It can be punched on a 029 keypunch by multipunching "+", "-", and '0"
through "9."

Note also that a Hollerith to ASCII translation only occurs if a .RDL has been
requested. The translation assumes 029 keypunch codes. A table of Hollerith-
ASCII translation is given in this section.

A .RDL is terminated upon the first trailing blank (which is translated as a
carriage return). If all 80 columns are data, a carriage return is appended as the
eighty-first character. If an illegal character is detected, a back slash is sub-
stituted for the illegal character. '

2-12

Use of the Card Reader in .RDL and .RDS Commands (Continued)

In an .RDS command, the card is read in image binary. Each two bytes will be
used to store a single column. The packing is done as follows:

Byte < 1 > < 2 >
Column Number ; i 0123456789
Bit 01 2 345678 9111111
01 2 3 4 5

LA

OOOOdddd:dddddddd

l

The "d's" will be 1 for every column punched.

The byte count and byte pointer input to an . RDS command must both be even.

2-13

|

CHAR. CARD CODE ASCII CODE | CHAR. CARD CODE ASCIT CODE
NUL 12-0-9-8-1 000 SPACE NO PUNCHES 040
SOH 12-9-1 001 ! 12-8-7 041
STX 12-9-2 002 " 8-7 042
ETX 12-9-3 003 # 8-3 043
EOT 9-7 004 $ 11-8-3 044
ENQ 0-9-8-5 005 Y% 0-8-4 045
ACK 0-9-8-6 006 & 12 046
BEL 0-9-8-7 007 " or 8-5 047
BS 11-9-6 010 (12-8-5 050
HT 12-9-5 011) 11-8-5 051
LF 0-9-5 012 11-8-4 052
VT 12-9-8-3 013 + 12-8-6 053
FF 12-9-8-4 014 , 0-8-3 054
CR 12-9-8-5 015 - 11 055
SO 12-9-8-6 016 . 12-8-3 056
SI 12-9-8-7 017 / 0-1 057
DLE 12-11-9-8-1 020 0 0 060
DC1 11-9-1 021 1 1 061
nNC2 11-9-2 022 2 2 062
DC3 11-9-3 023 3 3 063
DC4 4-8-9 024 4 4 064
NAK 9-8-5 025 5 5 065
SYN 9-2 026 6 6 066
ETB 0-9-6 027 7 7 067
CAN 11-9-8 030 8 8 070
EM 11-9-8-1 031 9 9 071
SUB 9-8-7 032 8-2 072
ESC 0-9-7 033 ; 11-8-6 073
FS 11-9-8-4 034 < 12-8-4 074
GS 11-9-8-5 035 = 8-6 075
RS 11-9-8-6 036 > 0-8-6 076
Us 11-9-8-7 037 ? 0-8-7 077

Hollerith - ASCII Translation Table

CHAR. CARD CODE ASCII CODE CHAR CARD CODE ASCII CODE
@ 8-4 100 . 8-1 140
A 12-1 101 a 12-0-1 141
B 12-2 102 12-0-2 142
C 12-3 103 c 12-0-3 143
I 12-4 104 d 12-0-4 144
E 12-5 105 e 12-0-5 145
F 12-6 106 f 12-0-6 146
G 12-7 107 g 12-0-7 147
H 12-8 110 h 12-0-8 150
12-9 111 i 12-0-9 151
] 11-1 112 j 12-11-1 152
K 11-2 113 k 12-11-2 153
L 11-3 114 1 12-11-3 154
M 11-4 115 m 12-11-4 155
N 11-5 116 n 12-11-5 156
0 11-6 117 0 12-11-6 157
P 11-7 120 p 12-11-7 160
Q 11-8 121 q 12-11-8 161
R 11-9 122 r 12-11-9 162
S 0-2 123 s 11-0-2 163
T 0-3 124 t 11-0-3 164
U 0-4 125 u 11-0-4 165
\Y 0-5 126 v 11-0-5 166
w 0-6 127 w 11-0-6 167
X 0-7 130 X 11-0-7 170
Y 0-8 131 y 11-0-8 171
Z 0-9 132 z 11-0-9 172
[12-8-2 133 { 12-0 173
5 0-8-2 134 g 12-11 174
] 11-8-2 135 } 11-0 175
— or ¢ 11-8-7 136 —~ 11-0-1 176
— or - 0-8-5 137 DEL 12-9-7 177

Hollerith - ASCII Translation Table (Continued)

Write a Series of Disk Blocks (. WRB)

This command causes a series of data blocks, each 256 16-bit words in size, to
be written onto disk from a user-specified area in core memory. This routine
requires four input parameters including the number of the channel

upon which the disk or disk file was previously opened. These parameters are: the
starting relative disk block number within the file , the number of disk blocks to be
written, and the starting (i.e., lowest) core address to transmit the data. In

e case where the channel number n in the command argument field is set to 77,
the right byte of AC2 contains the channel number. The left byte of AC2 contains
the number of blocks to be written.

The format of the . WRB command is:

ACO - Starting core address to transmit the data.
AC1 - Starting relative disk block number.

AC2, left byte - Number of blocks to be read.
AC2, right byte - Optional channel number.

.SYSTM

.WRB n ;n IS THE CHANNEL NUMBER
error return h

normal return

Possible error codes resulting from an . WRB command are:

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.
15 ERFOP File is not opened.

27 ERSPC Disk space is exhausted.

Upon detection of error ERSPC, the error code is returned in the right byte of
AC2; the left byte of AC2 contains the partial write count.

Write a Line (.WRL)

This command writes a line to a user ASCII file. Required input to this command
is a byte pointer in ACO defining the user core area from which writing will occur.

Characters are written with even parity and writing will be terminated normally

upon encountering a null, carriage return, or form feed. Writing will be
t2rminated abnormally after the transmission of 132 (decimal) characters if

2-16

Write a Line (.WRL) (Continued)

the 133rd character is not a carriage return, form feed, or null. In all cases,
AC1 will contain, upon termination of the write, the number of bytes written from
the user area. The termination of a write line on a null allows formatting of output
without forcing a carriage return.

The format of the . WRL command is:
ACO - Starting byte address.
.SYSTM
.WRL n ;sWRITE FROM CHANNEL o
error return
normal return

ACl - Byte count.

Possible errors resulting from the . WRL command are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
15 ERFOP Attempt to write an unopened file.
22 ERLLI Line limit (132 characters) exceeded.
47 ERSIM Simultaneous writes on same QTY line.
106 ERCLO QTY output terminated by channel close.

Write Sequential (. WRS)

This command writes binary data from a user core area. In addition to the channel
number, two parameters are input: a k?fte pointer to the starting address of the

user area, and the number of bytes (21 -1 maximum) to be written. The byte pointer
must be even if this call is issued for an MCA transmission. To transmit an end -of-
file in an MCA transmission, a byte count of zero is used in ACI and the contents of
ACO are disregarded. Also, if the MCA transmit line was opened with a timeout to
be specified, the left byte of AC2 input to . WRS specifies the length of the timeout
period. Each unit period is approximately 200 milliseconds, and acceptable multiples
input in AC2 are 1 to 255 decimal. A zero value yields the default timeout period
specified at RTOSGEN time.

2-17

Write Sequential (.WRS) (Continued)

The format of the . WRS command is:

ACO - Starting address of the data within the user area.
ACl1 - Byte count,

AC2, left byte - Optional timeout constant.

AC2, right byte - Optional channel number,

.SYSTM

-WRS n sWRITE TO CHANNEL n
error return

normal return

Possible errors are:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device.
15 ERFOP Attempt to reference an unopened file or device.
47 ERSIM Simultaneous writes on same QTY line.
101 ERDTO Timeout has occurred.
103 ERMCA No complementary MCA request.
104 ERSRR Incomplete MCA transmission due to short receiver
request.
106 ERCLO MCA/QTY output terminated by channel close.

113 ERNMC No MCA receiver request.
Free Format Tape I/O (. MTDIO)

This command permits the operation of magnetic tape and cassette units on a
machine level: To read and write words in variahle length records of from 2

to 4096 words within a data record, to space forward or backward from 1 to

4095 data records or to the start of a new data file, and to perform other similar
machine level operations. Before free format I/O can be performed on a tape unit,
that unit must first have been opened for free format 1/0 by means of the . MTOPD
system command.

The input parameters to . MTDIO are as follows:

ACO - Core data address, if data is to be transferred.
ACl - Command word, subdivided into the following fields:

2-18

Free Format Tape I/O (.MTDIO) (Continued)

bit 0: set to 1 for even parity, 0 for odd parity.
bits 1-3: set to one of the seven command codes which follow.

0

[V O SV

~lov n

read (words)*

rewind the tape

space forward (over records or over a file of any size)
space backward (over records or over a file of any size)
write (words)

write end of file

read device status word

bits 4-15: word or record count. If O on a space forward (or space

backward) command, the tape is positioned to the beginning
of the next (or previous) file on the tape. If 0 on a read or
write command 4096 words are read (or written) unless an
end of record is detected.

AC2 - channel number if nequals 77g. (Note that when a file is opened for
free format I/0O, it is opened globally. That is, all files on the
specified device can be accessed.)

The format of the . MTDIO command is:

.SYSTM:

. MTDIO

n ;n IS THE CHANNEL NUMBER

error return
normal return

Upon a rewind or read status command, if no system error is detected, AC2 returns
containing a status word with one or more of the following bits set:

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7

- error (bitl, 3, 5, 6, 7, 8, 10 or 14 is set to 1)

- data late

- tape is rewinding

- illegal command

- high density if set to 1; otherwise, low density (always 1 for cassettes)
- parity error

- end of tape

- end of file

* When attempting to read a 7-track tape with odd parity (i.e., a tape not written on
an RTOS system), the end-of-file is not detected by the controller; the first word
in the next record is read as 007417, Thus the first recoxrd of each file (after the
first file) has appended to it the end -of-file of the previous file.

2-19

Free Format Tape I/O (.MTDIO) (Continued)

bit 8 - tape is at load point

bit 9 - 9-track if set to 1; otherwise, 7-track (always set to 1 for casettes)
bit 10 - bad tape or write failure

bit 11 - send clock (always set to zero for cassettes)™

bit 12 - first character (always set to zero for cassettes)™

bit 13 - write-protected or write-locked

bit 14 - odd character (always set to zero for cassettes)

bit 15 - unit ready.

For more information about each of these status bits, see ''Nova Cassette' or
"Magnetic Tape" in How To Use the Nova Computers.

Upon a read, write, space forward, or space backward command, if no system
error is detected, AC1 contains the number of words written (or read) or the
number of records spaced. A word or record count is returned in ACl upon a
premature end of file.

Upon detection of a system error, the error return is taken and AC2 is set to
contain one of the following:

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
3 ERICD Illegal command for device (i.e., improper open).
15 ERFOP Attempt to reference an unopened file.
30 ERFIL File read error.

If no system error is detected but a hardware error occurs (i.e., bit O of the
status word is set), the error return is taken and AC2 is set to the transport status
word. If no system error and no hardware error occurs, the normal return is
taken and the transport status word is returned in AC2.

PRI |

The following tab

£ 1

le summarizes the return taken and contents of AC1 and AC2 with
different MTDIO command selections.

* Bits used for maintenance only.

2-20

Free Format Tape 1/O (.MTDIO) (Continued)

COMMAND RETURN ACl AC2

Any MTDIO command with a Error Same as | System error

system error detected input code

Rewind (TSW bit 0 = 0) Normal Original | Transport status
input is | word (TSW)

Rewind (TSW bit 0 = 1) Error lost

Read Status (TSW bit 0 = 0) Normal Original | TSW
input is | (status bit O is 0)
lost

Read Status (TSW bit 0 = 1) Error Original | TSW
input is | (status bit O is 1)
lost

Read, Write, Space Forward, Normal
Space Backward; bit 0 in TSW

is setto O Word or
Record | TSW
Read, Write, Space Forward, Error count
Space Backward; bit 0 in TSW (only after
is setto 1 10 retries
in read/
write)
Write end-of-file Error Original | TSW
(TSW bit 0 = 1) input is
lost

The system will perform 10 read retries before taking the error return. For
write errors, the following sequence will be performed 10 times before taking
the error return: backspace and write 9 times, then backspace, erase a 2-1/2"
length of tape, and write. Thus the system will perform 100 write retries before
signaling an error.

2-21

TELETYPEWRITER AND VIDEO DISPLAY COMMANDS

Transfer of single ASCII characters between $TTI/$TTO and ACO is handled by
the system commands .GCHAR and .PCHAR . No channel is required for the
transfers, and $TTI/$TTO is always available without requiring a prior . OPEN
command.

An additional system call exists which allows a task to be readied upon detection
of a user-defined character input via a teletype or display keyboard.

Get a Character (. GCHAR)

This command returns a character input via $TTI to ACO. The character is right
adjusted in ACO with bits 0-8 cleared. No channel is required; the $TTI is always
used as input for this command. The format of the . GCHAR command is:

.SYSTM

. GCHAR
error return
normal return

ACO, bits 9-15 - ASCII input character
No error return is possible from this command.

Put a Character (. PCHAR)

This command transmits a character in AC0, right adjusted, to $TTO. No channel
is required, and the $TTO is always used with this command. The format of the
. PCHAR command is:

ACO0, bits 9-15 - ASCII output character
.SYSTM
. PCHAR
error return

normal return

No error return is possible from this command.

2-22

Wait for a Keyboard Character (. WCHAR)

This command suspends the caller until either a specified character is typed onto
any console keyboard or the call is reissued by another task to terminate this
keyboard wait. Only one task may be suspended for a keyboard character wait
at any one moment.

The required input to this call is either the keyboard character which will ready the
task or -1, terminating the keyboard character wait and readying the suspended
task. These parameters are input via ACO. Since the calling task may be readied
by either the transmission of a specified keyboard character or by the keyboard wait
call being terminated, an appropriate code is returned in AC1 when the normal
return is taken. This code will be either the device code of the console keyboard
which issued the r=quested wait character, or -1; -1 indicates that the previous
wait was terminated.

The format of this call is:

ACO - Wait character in right byte, or -1 to terminate another
task's wait request.

.SYSTM

. WCHAR
error return
normal return

AC1 - Device code of the keyboard transmitting the wait character ,
or -1. Minus 1 indicates that the previous wait request
was terminated.

The error return is taken if a second task tries to suspend itself for a keyboard
character while another task is still suspended for a wait character. In this

case, AC2 is set to the following:

AC2 Mnemonic Meaning

47 ERSIM A previous wait-character request is outstanding.

MEMORY SIZE COMMANDS

RTOS provides a pair of system commands used to determine the first location
available above the loaded user program (NMAX), the highest memory address
available in user address space (HMA), and a means to increase or decrease the
address space allocated to the user program by varying NMAX. NMAX is a pointer

2-23

MEMORY SIZE COMMANDS (Continued)

contained in the User Status Table at displacement USTNM; this table is discussed
in Chapter 5, SYSTEM ORGANIZATION. (Note that the /S switch must not be used
in the RLDR command.)

-LOO8 Binary Loader <~ HMA Binary Loader <~—HMA
<+— NMAX
<«—— NMAX Symbol Table
User Program User Program

Memory Maps with and without Symbol Table

This command returns the current value of NMAX and the value of HMA. HMA
represents the location immediately below the bottom of the binary loader (or

the top of the symbol table). A SUB 1, O instruction after the . MEM call determines
the additional amount of memory available to the user program by putting its

value in ACO.

The format of the . MEM command is:

.SYSTM
.MEM

error return
normal return

AC1 - NMAX.
ACO - HMA.

There are no error returns from this command.

Allocate Memory by Changing NMAX (. MEMI)

This command permits the user to increase or decrease the valuve of NMAX.
The increment or decrement is passed (in two's complement) in ACO. This
command causes the value of NMAX to be updated in the User Status Table,
and the new value of NMAX is returned in ACIl.

2-24

Allocate Memory by Changing NMAX (.MEMI) (Continued)

NMAX will not be changed if the new value would be equal to or higher than the
lowest address of the binary loader. No check is made as to whether or not the
user decreases NMAX below its original value (as determined at relocatable
load time) nor, if a symbol table resided in upper memory, whether NMAX is
increased beyond the bottom of the symbol table.

The format of the . MEMI command is:
ACO - NMAX increment or decrement:
.SYSTM
.MEMI
error return
normal return
ACl1 - New NMAX.

There is one error which may result from a .MEMI command:

AC2 Mnemonic Meaning

26 ERMEM Attempt to overwrite the binary loader.

SYSTEM RETURN COMMANDS

These calls return control to their error returns unconditionally.

System Return (. RTN)

This command stops all tasks (except the caller), closes all channels, and
returns control unconditionally to the error return; no normal return is reserved.
The format of the .RTN command is:

.SYSTM
.RTN
error return

The following error code is returned:

AC2 Mnemonic Meaning

23 ERRTN Attempt to restore a nonexistent image (as in RDOS).

2-25

System Error Return (. ERTN)

This command stops all tasks (except the caller), closes all channels, and returns
control unconditionally to the error return; no normal return is reserved. The
format of the . ERTN command is as follows:

.SYSTM
.ERTN
error return

The following error code is returned in AC2:

AC2 Mnemonic Meaning

23 ERRTN Attempt to restore a nonexistent image (as in
RDOS).

CLOCK AND CALENDAR COMMANDS

RTOS clock and calendar commands may be used in any system which includes a
real time clock. RTOS clock and calendar commands permit ready tasks to be
suspended for a period of time, permit the system real time clock to be examined,
and allow the creation of a user clock to specify a recurring interruption of
multitask activity.

Delay the Execution of a Task (. DELAY)

This command suspends the caller for a specifiable number of pulses of the system
real time clock. Thus this command permits the creation of a time slicing facility
within RTOS. The system real time clock frequency is set when a system is
generated, and no system call can alter this frequency.

The format of the .DELAY command is:
ACl1l - Number of RTC pulses in the delay period.
.SYSTM
.DELAY
error return

normal return

Contents of AC1 are lost upon return. One possible error may occur:

2-26

Delay the Execution of a Task (.DELAY) (Continued)

AC2 Mnemonic Meaning
2 ERICM Illegal system command (i.e., no RTC in system).

Get Today's Date (. GDAY)

This command requests the system to return the number of the current day, month,
and year. The day is returned in ACO, the month in ACI, and the year in AC2. The
The format of the . GDAY command is:

.SYSTM
.GDAY

error return
normal return

ACO - Day of the month.
ACl1 - Month of the year.
AC2 - Year.

The error return is never taken.

Set Today's Date (.SDAY)

'This command permits the system calendar to be set to a specific date. The system
will increment the date when the time of day passes 23 hours, 59 minutes, and 59
seconds. The caller passes the number of the day within the month in ACO, the
number of the month in AC1 (January is month number 1), and the current year in
AC2. The format of the .SDAY command is:

ACO - Day of the month.
ACl - Month of the year.
AC2 - Year.

.SYSTM
.SDAY

error return
normal return

One possible error return is:

AC2 Mnemonic Meaning
41 ERTIM Illegal day, month or year.

2-27

Get the Time of Day (. GTOD)

This command requests the system to pass the current time in hours, minutes
and seconds to the caller. The format of the . GTOD command is:

.SYSTM
.GTOD

error return
normal return

ACO - Second.
AC1 - Minute.
AC2 - Hour (using a 24+hour clock).

No error return is possible.

Set the Time of Day (.STOD)

This command permits the caller to set the system clock to a specific hour,
minute, and second. The format of the .STOD command is:

ACO - Second.
ACl1 - Minute.
AC2 - Hour (using a 24-hour clock).

.SYSTM
.STOD

error return
normal return

If the error return is taken, the following error code is given:

AC2 Mnemonic Meaning
41 ERTIM Illegal time of day.

Examine the System Real Time Clock (. GHRZ)

This system call permits the caller to examine the frequency of the real time
clock (the frequency was set when the RTOS system was generated). One of
five frequency codes is returned in ACO, as described below. The format of the
.GHRZ command is:

2-28

Examine the System Real Time Clock (. GHRZ) (Continued)

.SYSTM
.GHRZ
error return
normal return
ACO: 0 - there is no real time clock in the system.
1 - the frequency is 10HZ.
2 - the frequency is 100HZ.
3 - the frequency is 1000HZ.
4 - line frequency is 60HZ.
5 - line frequency is 50HZ.

The error return is never taken.

Define a User Clock (. DUCLK)

'This command permits the definition of a user clock. When the user-defined
interval expires, the task scheduler and multitask environment--if any--are
placed in suspension, and control goes to a user -specified routine outside the
task environment. No task calls (other than .UCEX and .IXMT) may be issued

from this interrupt routine, since multitask activity is in suspension. Only one
user clock may be defined at any one moment.

‘The format of the .DUCLK command is:

ACO - Number of RTC pulses during each user clock interval.
ACl - Address of user interrupt routine.

.SYSTM
.DUCLK
error return
normal return

Only one error condition is possible:

AC2 Mnemonic Meaning
45 ERIBS A user clock already exists.

2-29

Exit from a User Clock Routine (.UCEX)

Upon a user clock interrupt, AC3 will contain the address of the return upon
entry to the routine specified in . DUCLK. To return from the user clock routine,
AC3 must be loaded with the return address that it contained upon entry to the
routine, and task call .UCEX must be issued. ’

The format of this call is:
AC3 - Return address upon entry to routine.
.UCEX
Control returns to the point outside the user routine which was interrupted by
the user clock. No errors are possible from this call. This call can be issued

in a single task environment.

Remove a User Clock (.RUCLK)

This system command removes a previously defined user clock from the system.

The format of this call is:
.SYSTM
.RUCLK
error return

normal return

The error return is never taken.

sk ¥k

2-30

CHAPTER 3

TASK CALLS

T o Wt o o VT L

The _OHOWL‘g is a list of all RTOS task call MIEmoiics:

.ABORT Terminate a task immediately.

.AKILL Kill all tasks of a specified priority.
.ARDY Ready all tasks of a specified priority.
.ASUSP Suspend all tasks of a specified priority.
.IDST Get a task's status by I.D. number.
JAXMT Transmit an interrupt message.

.KILL Kill the calling task.

. PRI Change the calling task's priority.

.REC Receive a task message.

.SUSP Suspend the calling task.

. SMSK Modify the current interrupt mask.

. TASK Create a task.

. TIDK Kill a task specified by I.D. number.

. TIDP Change the priority of a task specified by I. D. number.
. TIDR Ready a task specified by 1. D. number.

. TIDS Suspend a task specified by I.D. number.
. UCEX Exit from a user clock routine.

. UIEX Exit from a user interrupt routine.

. UPEX Exit from a user power fail routine.
LXMT Transmit a task message.

XMTW Transmit a task message and wait for its receipt.

All RTOS task calls except . SMSK, .UCEX, .UIEX and .UPEX are described in
this chapter in alphabetical order. .UCEX is found in Chapter 2, and the
remaining task calls are described in Chapter 4.

Abort a Task (. ABORT)

‘The . ABORT task call causes a specified task to be readied immediately and to
execute the equivalent of a .KILL task call as soon as it gains control of the CPU.

The exact time of completion of the .KILL is dependent on the priority of the
aborted task relative to other ready tasks. For example, a task attempting to
perform a write sequential of 500 bytes might be aborted after writing any
number of bytes. The task which is to be aborted is specified by I. D. number.
Thus the caller may abort either itself or some other ready or suspended task.

3-1

Abort a Task (.ABORT) (Continued)

Outstanding operations performed by the task, like waiting for a message trans-
mission/reception (. XMTW /. REC), are terminated. Likewise, all system calls
are aborted with the exception of calls performing QTY or MCA 1/0, QTY and
MCA 1/0 can be aborted by closing their channel(s) with a . CLOSE or . RESET
system command.

The format of this call is as follows:
AC1 - 1.D. of the task to be aborted.
.ABORT
error return
normal return

The contents of ACO is lost upon return.

The error return is taken under one of two conditions:

AC2 Mnemonic Meaning
61 ERTID An' 1. D. of zero was specified, or no such task I.D. was
found.
110 ERABT The specified task was performing QTY or MCA 1/0.

Kill All Tasks of a Specified Priority (. AKILL)

This command deletes all tasks with a priority given in ACO. The calling task
itself may be deleted by this command. All tasks that are killed have their TCB's
placed in the free element TCB chain. If an attempt is made to kill a task which is
suspended due to an outstanding .SYSTM call, that task will be killed at the com-
pletion of the .SYSTM call. Tasks suspended by . XMTW, .REC, .TIDS, or .SUSP
will also be killed.

The format of this call is:
ACO - Task priority.

.AKILL
" normal return

There is no error from this call. If no tasks exist with the priority specified in
ACO, no action is taken. If all tasks become deleted, the effect is to close all the
channels and to idle the system, since control returns to the task scheduler.

3-2

Ready All Tasks of a Specified Priority (.ARDY)

This call readies all tasks which were previously suspended by . ASUSP (.SUSP
or . TIDS) whose priority is specified in ACO. That is, bit 1 in word TPRST of

each TCB (see Chapter 5) that was set by a previous call to . ASUSP, .SUSP, or
. TIDS is now reset. Tasks suspended for other reasons too (e.g., outstanding
system calls) will only be readied when the task is fully ready, i.e., bits 0

and 2 are also reset. The format of this call is:

ACO - Task priority.

.ARDY
normal return

There is no error return from this call. If there are no tasks with the priority
specified in ACO, no action is taken and control goes to the normal return.

Suspend All Tasks of a Given Priority (. ASUSP)

This command suspends all tasks with the priority given in ACO. The calling task
itself may be suspended by this call. All tasks suspended by . ASUSP (including
those additionally suspended for other reasons such as an outstanding system call
or waiting for a task message transmission) will remain suspended until readied
by an ., ARDY or . TIDR command.

The format of this call is:
ACO - Task priority.

. ASUSP
normal return

There is no error return from this call. If no tasks exist with the given priority,
no action is taken and control goes to the normal return.

Get a Task's Status (. IDST)

This command obtains a code describing a task's status. The task whose status
is to be obtained is specified by inputting its identification number in ACl. The
format of this call is:

ACl1 - Task 1. D. number

LIDST
normal return

3-3

Get a Task's Status (. IDST) (Continued)

The code describing the task's status is returned in ACO:

0 - Ready.

1 - Suspended by a . SYSTM call.

2 - Suspended by a .SUSP, . ASUSP, or . TIDS.

3 - Suspended by . XMTW or .REC.

4 - Not used.

5 - Suspended by . ASUSP, .SUSP, or .TIDS and by . SYSTM.

6 - Suspended by . XMTW or . REC and by . SUSP, . ASUSP, or . TIDS.
7 - Not used.

10- No task exists with the specified I. D. number.

There is no error return from this call.

Transmit a Message from a User Interrupt Service Routine (. IXMT)

Whenever a device requiring special user service generates an interrupt request,
(see Chapter 4), the entire task environment becomes frozen until servicing of the
special user interrupt is completed. All tasks will resume their former states
when the environment is restarted unless the user transmits a message to one of
them by means of the . IXMT call from the interrupt service routine. In the latter

~Aaan vr\nCLlﬁ’J 13 A 4on ol Aaerrtananaan maade 3o e b anden T

~ rla A~ o~
LaonCs LCTOo cuuu.u.s OCCUrs wiiell uie tasK enviroiment is restartea.

If the task for which the non-zero message is intended has issued a . REC for the
message, the task state is changed from suspended to ready even though task
activity is in suspension. If more than one task is awaiting a message at this
location, only one will receive the message and be readied. Contents of all
accumulators are destroyed upon return from . IXMT, so the user is cautioned to
restore AC2 and AC3 before attempting an exit from the service routine.

As with . XMT (described later in this chapter), .IXMT causes a non-zero message
to be deposited in a location. The contents of this location must be zero at the time
. IXMT is invoked, or else the location will be deemed to be already in use.

T H 11 3
111

A Faremmant AL 412 An ey
C 1ULlllal UL Uild Cdll 1d.

ACO - Message location.
ACl1 Message.

« IXMT
error return
normal return

3-4

Transmit a Message from a User Interrupt Service Routine (.IXMT) (Continued)

The error return is taken if the message address is already in use (i.e., if its contents
are non-zero).

AC2 Mnemonic Meaning

43 ERXMT Message location is in use.

Delete a Calling Task (.KILL)

This command deletes the calling task's TCB from the ready queue and places it in
the free element TCB chain. The calling task is the only task that may be deleted
via this command.

The format of this call is:

.KILL

There is no return from this call. Control goes to the task scheduler.

Change the Priority of a Task (.PRI)

This command changes the priority of the calling task. The calling task will be
assigned the lowest position in the new priority class. That is, equal priority
tasks receive control on a round-robin basis, and this task will be the last task
in this priority class to be allocated CPU control by the scheduler.

The format of this command is:

ACO - New task priority.

PRI
normal return

There is no error return from this command. If a priority greater than 255 3 is
requested, only the value in bits 8 through 15 will be accepted.

Receive a Message (.REC)

This command returns a message in AC! that another task or interrupt service
routine has posted by means of a transmit command, and restores the contents
of the message location to all zeroes. Only one task at a time can receive a
message from a given location.

Receive a Message (.REC) (Continued)

If the transmitter has not yet posted a message for the receiving task, the receiver
becomes suspended until the message is issued. If the message has already been
issued and if the task has not also been suspended by some other event, control
returns to the task scheduler.

The format of this command is:

ACO - Message address.

.REC

normal return,
AC1 - Message.
There is no error return from this command.

Suspend a Task (. SUSP)

This command places the calling task in the suspended state by setting bit 1 of the
task's status and priority word. The format of this call is:

. SUSP
normal return

There is no error return. The suspended task remains suspended until it is readied
by an . ARDY or . TIDR command.

Create a Task (. TASK)

This command creates a new task in the user environment, and assigns to it a

TCB from the TCB pool allocated during system generation. This command creates
a task at a specified priority and assigns a unique identification number (L. D.)

to the task, if desired. When the user program is started, only one task (the

default task) exists. Thus this command is used to start up a multitask environment.

The new task can be assigned any priority from 0 through 255 decimal, and any
task I. D. in the same range. If the priority input to this command is 0, the
priority of the caller will be assigned to the new task. More than one task with
anl. D. of zero can exist. This call will pass to the new task the contents of the
caller's AC2; thus this accumulator can be used for relaying an initial one-word
message to the newly created task.

3-6

Create a Task (. TASK) (Continued)

The format of this command is:

ACO, left byte - New task's L. D.

ACO, right byte - New task's priority.

ACl - New task's starting address.

AC2 - Caller's AC2 passed to the new task.

. TASK
error return

normal return

If the error return is taken, AC2 will contain one of the following error codes:

AC2 Mnemonic Meaning
42 ERNOT No TCB's available.
61 ERTID Same L. D. number (except 0) already assigned.

Kill a Task Specified by I. D. Number (. TIDK)

This callkills only that task whose identification number is specified in ACI.
The format of this command is:

ACl - I.D. of task to be killed.

. TIDK

e e yde s

ErYor redturn

normal return
If the error return is taken, AC2 will contain the following error code:

AC2 Mnemonic Meaning

61 ERTID No task exists with this I. D.

Change the Priority of a Task Specified by I. D. Number (. TIDP)

This command changes the priority of that task whose identification is specified by
the contents of ACl. The new priority to be assigned to the task is given in ACO,
bits 8 to 15. Thus the format of this task call is as follows:

ACO, right byte - New priority,
ACl - LD. of task whose priority is to be changed.

3-7

Change the Priority of a Task Specified by 1. D. Number (. TIDP) (Continued)

. TIDP
error return
normal return

If the error return is taken, the following code is given:

AC2 Mnemonic Meaning

61 ERTID No task exists with this I D.

Ready a Task Specified by I. D. Number (. TIDR)

‘This command readies only that task whose identification number is input in AC1.
That is, this command resets bit 1 in TPRST of this task's TCB which was set by
a previous call to . ASUSP, .SUSP, or . TIDS. The format of this call is:

AC1 - I1.D. of task to be readied.
. TIDR
error return
normal return

If the error return is taken, AC2 will contain the following error code:

AC2 Mnemonic Meaning

61 ERTID No task exists with this I. D.

Suspend a Task Specified by I.D. Number (. TIDS)

This command suspends only that task whose identification number is input in AC1.
That is, this call sets bit 1 in word TPRST of the specified task's TCB. The format
of this command is:

. TIDS
error return
normal return

If the error return is taken, AC2 will contain the following error code:

AC2 Mnemonic Meaning

61 ERTID No task exists with this 1. D.

3-8

Transmit a Message (.XMT), and Wait (XMTW)

These two calls permit the sending of a one-word non-zero message by one task

to an empty (all -zero) message location for another task. The difference between
these commands is .XMT simply causes the message to be deposited, while

- XMTW deposits the message and suspends the caller until the message is received.

issued for this message.

The format of this call is:

ACO - Message address.
ACl - Message.

+XMT (or .XMTW)
error return

normal return

The error return is taken if the message address is already in use (i.e., if the
contents are non-zero). AC2 will then contain the following error code:

AC2 Mnemonic Meaning

43 ERXMT The message address is already in use.

% %k %k %k %k

3-9

CHAPTER 4

USER INTERRUPTS AND POWER FAIL / AUTO RESTART PROCEDURES

SERVICING USER INTERRUPTS

User devices may be identified either at the time an RTOS system is generated
(RTOSGEN time) or at run time. This chapter describes the procedure for
identifying a user device at run time, and describes the special considerations
applying to special, high priority user interrupt devices.

Upon detection of an interrupt request, the system will be dispatched through the
device interrupt vector table, .ITBL . In this table are pointers to Device Control
Tables (DCTs) for devices established at RTOSGEN time, whether system or user
devices. Procedures for writing a device driver for insertion in the system at
RTOSGEN time are given in DGC application note 017 -000006, User Device Driver
Implementation in the Real Time Operating System.

In order to identify a user device to the system at run time, the user must provide
a three-word DCT as an interface between the system interrupt dispatch routine

and the user -interrupt servicing routine. The structure and mnemonic assignments
of this three-word table are as follows:

Displacement Mnemonic Purpose
0 DCTSV Pointer to the state save area (an 8word
area).
1 DCTMS Interrupt service mask.
DCTIS Interrupt service routine address.

DCTSV is a pointer to an eight-word state variable save area used by the system to
store the PC, accumulators, carry, etc. DCTIS is a pointer to the routine which
services this particular device interrupt. DCTMS is the interrupt mask* that the
user wants to be ORed with the current interrupt mask while in the user interrupt
service routine. This mask establishes which devices --if any--will be able to
interrupt the currently interrupting device.

£

See "How to Use the Nova Computers, " Section 2.4,

4-1

SERVICING USER INTERRUPTS (Continued)

Upon transferring control to the user interrupt service routine, the system will
ensure that AC3 contains the return address required for exit from the routine,
and that AC2 contains the address of the DCT. (Caution: RDOS 03 does not place
the DCT address in AC2,) Exit is accomplished by issuing task call . UCEX;
this call may be issued in both single and multitask environments.

All multitask environment activity ceases at the moment a user device interrupt is
detected. Nonetheless, it is possible for a user to communicate a message to
a task from a service routine. If the task in question has been expecting such a

3 3 in th dad tat
message through issuance of a . REC and is now in the suspended state, issuance

of the message via .IXMT will cause that task to be readied even though multi-

task activity is in abeyance. If no task has issued a .REC for such a message,

. IXMT simply posts the message and takes no further action. For more information
on communicating to tasks from a user interrupt service routine, see Chapter 3.

Identifying User Interrupt Devices (. IDEF)

In order to introduce to the system those devices (not identified at RTOSGEN time)
whose interrupts the system is to recognize, the system call .IDEF must be issued.
This call places an entry in the device interrupt vector table, .ITBL . Required
inputs to this call are the device code of the user device and the starting address

of this device's DCT. The format of this call is:

ACO - Device code of the user device.
AC1 - Starting address of the user device's DCT.

.SYSTM
.IDEF

error return
normal return

Possible error messages are:

AC2 Mnemonic Meaning
36 ERDNM Illegal device code (>77g). Device code 77g is
reserved for the power monitor/auto restart
option.
45 ERIBS Interrupt device code in use.

Exit from a User Interrupt Routine (. UIEX)

Upon a user device interrupt, AC3 will contain the return address upon entry to the
user routine and AC2 will contain the DCT address. To return from the user

4-2

Exit from a User Interrupt Routine (. UIEX) (Continued)

interrupt routine, AC3 and AC2 must be restored to the values they contained upon
entry to the routine, and task call. UIEX must be issued. (Caution: RDOS 03 wiil
execute this call correctly without the DCT address in AC2.)

The format of this call is:
AC2 - DCT address.
AC3 - Return address upon entry to routine.

. UIEX
Control returns to the point outside the user routine which was interrupted by the
user device. No errors are possible from this call. This call can be issued in a

single task environment. Rescheduling occurs only if a task state change occurred.

Modifying the Current Interrupt Mask (. SMSK)

Whenever a user interrupt occurs, the interrupt mask is ORed with the mask
contained in DCTMS of the user DCT to produce the current interrupt mask.
Nonetheless, it is possible in the service routine to produce a current mask which
ignores the contents of DCTMS, producing a new mask which is the logical OR of
the old mask (upon entry to the service routine) and a new value. This is done by
task call .SMSK, whose format is as follows:

ACO -~ New value to be ORed with old mask.
AC2 - DCT address.

.SMSK

normal return

There is no error return possible from this call. This callmay be issued in a
single task environment. (Caution: RDOS 03 will execute this call correctly without

the DCT address in AC2.) o
Remove User Interrupt Servicing Program (. IRMV)

To prevent the system's recognition of user interrupts which have been previously
identified by the .IDEF command, the .IRMV command is issued. Required input
to this call is the user device code corresponding to the device control table which
is to be removed. The format of this call is:

ACO - Device code.

.SYSTM

. IRMV

error return
normal return

One possible error message may be given:

AC2 Mnemonic Meaning

36 ERDNM Illegal device code (> 77_) or attempt to remove
a system device (i.e., one established at RTOSGEN
time).

POWER FAIL/AUTO RESTART PROCEDURES

RTOS provides software support for the power fail/automatic restart option. Upon
detection of a loss of power, the system transfers control to a power fail routine
which saves the status of accumulators 0 through 3, the PC and Carry.

When power is restored, if the console key is in the LOCK position, the message

POWER FAIL

is output on the system console and the state variables are restored before control
resumes operation at the point where it was interrupted. If the console key was in
the ON position when input power failed, the user must set the console switches to
all zeroes (down) and START must be pressed when rower is restored. This causes
the console message to be output and state variables to be restored as when the key
is in the LOCK position.

The following system devices are given power-up restart service:

paper tape readers/punches
Teletypes

quad multiplexors

card readers

line prihters

disks

Character devices may lose one or more characters during power up. Each card
reader may lose up to 80 columns of information on a single card. Line printers
may lose up to a single line of information. Since power up service for disks
includes a complete re-read or re-write of the current disk block, no disk
information is lost, although moving head disk units will require 30 to 40 seconds
before disk operations can continue. Devices requiring operator intervention (like
line printers, card readers, etc,) must receive such action if power was lost for
an extended period of time. No power up service is provided for magnetic tape

or cassette units. ‘

4-4

Power up service for special user devices (or for magnetic tape or cassette units)
must be provided by the user via the system call .IDEF . To use .IDEF for this
purpose, ACO must be input with 77g and AC1 must input the starting address of
the user power up routine. Exit from this power up routine is accomplished by
task call .UPEX, described below.

Exit from a Power Fail Service Routine (. UPEX)

Upon entering a user power fail service routine, AC3 will contain the address
required for exit from the routine. To return from the user power fail service
routine, AC3 must be loaded with this return address and task call . UPEX must
be issued.

The format of this call is:
AC3 - Return address upon entry to the routine.
. UPEX
Control returns to the location which was interrupted by a power failure. No

error return or normal return need be reserved. .UPEX can be issued in a
single task environment.

HIGH PRIORITY USER INTERRUPT SERVICE

As described in Chapter 6 and in Appendix B, special high priority interrupt
devices may be incorporated into an RTOS system at RTOSGEN time. The real
time clock and power fail /auto restart device are two such high priority interrupt
devices; users may also specify custom high priority interrupt service routines.

All high priority devices have entries in a high priority interrupt dispatch table,
.HINT . Entries in this table are scanned whenever an interrupt occurs, and only
if no high priority device has caused an interrupt will control branch through the
normal interrupt table, .ITBL . All other system devices, and user devices
announced at run time (via system call .IDEF), have entries in .ITBL .

Interrupts are disabled whenever high priority interrupt service is being performed.
Users writing high priority interrupt service routines must also conform to several
programming conventions. In general, these conventions are as follows:

HIGH PRIORITY USER INTERRUPT SERVICE (Continued)

1) Issue no task or system calls.

2) Save and restore accumulators and Carry if used by this routine.

3) Save the contents of location 0, and place a HALT instruction in
location O (optional).

The state of Carry and the contents of accumulators ACO through AC2 must be saved

within this routine if they are altered in this routine, and these state variables must
be restored before leaving the routine. AC3 is saved by the system in location . SAC 3
(a location within module INTD), and AC3 too must be restored before exit is accom-
plished even if the routine didn't use AC3. The contents of location 0 will contain

the return address needed for exit; this address should be stored in a user-provided
location, e.g., RET, and a HALT instruction should be stored in location 0. This
practice is adhered to by RTOS to capture program control in the event of system

failure.

The final two instructions which must be executed when leaving a high priority
interrupt service routine are to enable interrupts and then to perform an indirect
JMP to the location containing the original return PC, e.g., RET . Control will
then pass to the next instruction which would have been executed had no high
priority interrupt occurred. The following instruction sequence accomplishes
these operations.

.EXTN .SAC3

; RESTORE ACO, ACl1l, AC2, CARRY

LDA 3 @ SAC3
INTEN
JMP @ RET
SAC3: .SAC3
RET: .BLK1
. END

sk o skosk %k

4-6

CHAPTER 5

MULTIPLE PROCESSOR SYSTEMS

MULTIPLE PROCESSOR PROGRAMMING

All features of RTOS discussed in previous chapters are available to systems with
two or more processors. Additional hardware support extended to multiple pro-

tor (NM(CTAY Aantinn 4029
L \avioda

‘mapb\r' A 4ajy UpLLULL TUUUe

Data Transmissions

The type 4038 Multiprocessor Communications Adapter receiver/transmitter
(MCAR/MCAT) makes it possible for full duplex interprogram communications to
take place, in blocks of up to 8192 bytes, via the data channel. MCA support can
be given to a single processor in a multiple processor system so that an RTOS
program running in one processor can communicate with an RTOS program
running in another processor or with either a foreground or background program
running under RDOS in another processor. Each CPU may communicate with any
of up to 14 other CPUs.

Each MCA line corresponds to a file name of the following form:

MCAT:mm or MCAR:n
where mm represents a receiver unit number from 1 - 15 inclusive and where nn
represents a transmitter unit number in the range 0 - 15, Thus a four-CPU, RTOS-

only system would be logically configured with 10 separate lines if every possible
communications link were to be used.

e

5-1

Data Transmissions (Continued)

If CPU #1 wanted to read from CPU #3, each unit would have to issue the following
sets of instructions:

Unit #1 Unit #3

.OPEN n ;OPEN MCAR:3 .OPEN n ;OPEN MCAT:1
.RDS n .WRSn

Note that units #1 and #3 are operating under distinct operating systems. Thus,
in the illustration on the previous page there is no correspondence between channel
n for unit #1 and channel n for unit #3.

If, in a receive request, unit number zero is specified to be the transmitter (e.g.»
MCAR:0), the receive request becomes generalized to indicate that any unit may
transmit to this receiver. Thus if unit #1 had three outstanding receive requests,
MCAR:4, MCAR:3, and MCAR:0, it could receive concurrént transmissions from
three sources: a transmission unit from unit #4,a transmission from unit #3, and
a message from any other unit that chose to transmit to it.

1) 3 v A AF T
A timeout can occur only in the MCA transmitter; the receiver can wait indefinitely.

'The timeout period ranges from approximately 10 milliseconds to approximately
655 seconds. The default timeout, specified at RTOSGEN time, may be super-
seded by specifying a different timeout both when the transmitter is opened and
when the write sequential is issued.

Get the Current CPU's MCA Number (. GMCA)

It is possible to get the MCA unit number in the CPU which is currently executing a
user program. To obtain the unit number, system call . GMCA is issued. The
format of this command is as follows:

.SYSTM
.GMCA

error return
normal return

If the normal return is taken, the MCAunit number is returned in ACl. If the error
return is taken, the following error code will be input in AC2:

AC2 Mnemonic Meaning

36 ERDNM Device not in system (i.e., no MCA was specified
at SYSGEN time in this operating system).

5=-2

MULTIPROCESSOR SYSTEM ILLUSTRATION

Consider the following application for a multiprocessor system. A large labora-
tory complex needs an automated system to control the environmental conditions
within the complex, to keep track of the number of personnel at locations through -
out the complex, and to monitor the complex for alarm conditions (alerting key
personnel when a condition cannot be corrected by the system itself). Moreover,
the system must be fail-safe, and can allow down-time for no longer than a few
seconds.

Such a system might well be configured along the lines suggested by the illustration
at the end of this section. Two master CPUs, a Dual Nova system running under
RDOS, are connected in redundant fashion so that if one fails, the other detects
this failure and gains immediate control. The masters access a common data base
which contains, among other information, alarm messages and destinations to
which they should be sent in the event of an alert. Also contained in this file space
is a log of the current master's activity, so that if it should experience failure,

the alternate master CPU would have a record of recent events. An IPB connects
the masters so that they may access common disk files and so that one may act as
a watchdog on the other's behavior.

There are three slave CPUs, each of which monitors and controls various para-
meters within one zone of the building complex. Each slave is capable of monitor-
ing and adjusting both the humidity and the temperature of each zone. Additionally,
each slave keeps track of the positions of personnel within each zone. Finally,
each slave monitors its zone for the occurrence of alarm conditions, and it can
perform limited response to emergencies, e.g., it can activate a sprinkler system
if fire is detected. The functions performed by each slave are relatively simple
and could be performed by Nova 2's running under RTOS.

Each slave has a high speed data channel line, MCA1 through MCA®6, to each of the
two master computers, so that continuous status reports can be generated by them
for transmission to CRT monitors via the Multiline Asynchronous Controller, MAC.
‘The MAC also has direct "hot lines" to key personnel (security guards, fire

station personnel, etc.) who should be alerted in the event of an emergency.

5-3

CRT
and
"Hot Lines"

IPB
M1l - M2
MCAl MCA6
MCA2 CAS
MCA3 MCA4
s1 S3
a a
b b
s2
7 c
a HER a
R/“—J a b ¢ 4a IR
Zone 1 \ / Zone 3
Zone 2
a - temperature sensing and control Ml - Master CPU
b - census taking M2 - Back-up Master CPU
¢ - humidity sensing and control S1,S82,S3 - Slave CPUs
d - intrusion/fire/smoke alarm and control

MULTIPROCESSOR SYSTEM ILLUSTRATION

S5-4

CHAPTER 6

SYSTEM ORGANIZATION

'This chapter describes the collection of tables and fixed locations which are used by
programs running under the real time operating system. As described in Appendix
C, each user program supported by RTOS is loaded with an RTOS module generated
by the RTOSGEN program, followed by user-supplied RTOS drivers and the RTOS
system library. Loading itself is accomplished by means of the stand-alone or SOS
extended relocatable loader or the RDOS loader. At the completion of loading,
pointers and tables are found as illustrated in the RTOS Core Map shown on the
following page.

RTOS Page Zero

Locations 0 through 15 are reserved for use by the system and cannot be taken

by user programs. Location O receives the current PC upon each interrupt, and
location 1 contains a pointer to the system interrupt dispatch logic. This is usually
either .HINT, the high priority interrupt dispatcher, or .INTP, the regular interrupt
processor. These modules are produced by RTOSGEN.

When a task in RTOS is in the executing state, the CPU is said to be in User Mode.
Otherwise (as when RTOSis engaged in some system function like task scheduling)
the CPU is said to be in System Mode. Location 5, .SYS. , is a flag which is set
to zero when the system is in User Mode, and is set to non-zero in System Mode.
Interrupts in a real-time environment occur randomly. Since it is inappropriate
for certain interrupt-triggered system functions to be reentrant (e. g., task
scheduling) .SYS. serves as an interlock to prevent undesired entries into these
routines.

Location 2, BEGIN, contains a pointer to the RTOS initialization program. This
program is used to initialize stacks and clear switches in RTOS. The first section
of this routine zeroes system switches and intializes all device handlers. The
starting task is initially set to a priority of zero, the hardware interrupt mask is
made zero, the system is set in User Mode (.SYS. = 0), the real time clock is
started, and TCB chain pointers are initialized. The wait character logic,
activated by .WCHAR, is also reset.

The last operations performed by the initialization program are to enable the
interrupt facility by the INTEN instruction, and to jump to the start of the user
program (which must have been specified in an . END statement).

6-1

RTOS Core Map

Pagre Zero Contents

1 Interrupt service routine address.

2 BEGIN Starting address for system initializer,

3 CTCB Address of currently executing task's TCB.

4 SCHED Entry point to task scheduler.

5 .SYS. System mode indicator.

6 RLOC Page zero temporary.

7 IOEND Entry point to I/O end processor.

10 .CMSK Current system interrupt mask.

11 DISMISS Interrupt dismissal address.

12 USTP Reserved for RDOS/RTOS compatibility; set to 400.

13 TLINK Entry point to routine linking ready TCB to TCB chain.

14 RSCHD Entry point to reschedule the system.

15 . TSAVE Address of TCB state save routine.

16 USP User Stack Pointer (USP).

17 Entry point to system call processor.

20 First page zero location available to user program.

Page One

400 UST Start of User Status Table.

426 End of User Status Table.

440 Beginning of NREL area into which RTOS and user modules may be loaded.
The following global symbols may be present in the RTOS modules:

. TCBP Start of TCB pool (total length = no. of TCBs*12 10).

.UFPT Start of User File Pointers Table, UFPT (total length = no. of channels *2).

.DTBL Start of fixed head disk table, DTBL (total length = I + 5*number of disk
files defined at RTOSGEN time).

.PTBL Start of moving head disk table, PTBL (total length = 1 + 6 *number of disk
files defined at RTOSGEN time).

.QTBL Start of 4060 asynchronous multiplexor (QTY) table, QTBL (total length
= IOIO*number of QTY lines).

.MCTB Start of Multiprocessor Communication Adapter line table, (total length

= 7 + number of adapters in the network *1410).

.HINT Start of high priority dispatcher (length = 11+ 3*number of high

priority interrupt devices). 10
.ITBL Start of interrupt table, ITBL (6410 words long).
.ETBL End (last location) of ITBL (user power fail handler, if present).
.CHTB Start of device name table, CHTB (length = 144 *number of devices in system).

User program with user device drivers, if any.
RTOS device drivers.
RTOS system library modules.

6-2

RTOS Page Zero (Continued)

fw) .

Location 3, CTCB, contains the TCB address of the currently executing task., Location |
4, SCHED, points to the main entry in the task scheduler. This entry causes the

highest priority ready task (if any) to be executed. Location 14, RSCHD, points to

an alternate entry in the scheduler. This entry links the currently executing task's

TCB to the ready chain, then transfers control to the entry pointed to by SCHED .

Location 6, RLOC, is a temporary location used by RTOS; location 7, IOEND, is
the entry point to the I/O end processor module. This routine is used to handle the
end of I/O operations for a device handler at either the interrupt or system level.
If while in this routine it is determined that another request is pending, the routine
will cause the next 1/O operation on the device to be started. .CMSK, location 10,
contains the current system interrupt mask.

DISMISS, location 11, contains the interrupt dismissal routine address. USTP,
location 12, is reserved for use by RTOS FORTRAN, and points to the start of the
User Status Table (location 400). The value ""0400" is also equivalent to a "JMP . "
instruction, so RTOS transfers control to this location whenever a system panic is
detected. System panics result from unknown system errors and are generally
unrecoverable; restarting at location 376 will restart the system provided the RTOS
program has not been damaged.

Location 13, TLINK, points to a routine which links a ready TCB to the ready chain.
This routine is entered by the system whenever a task is raised to the ready state.
RSCHD, location 14, contains the entry point to the task scheduler which links the
current TCB to the ready chain, then executes the highest priority ready task.
Location 15, . TSAVE, contains the address of the TCB state save routine.

Location 16 contains the User Stack Pointer, USP. This location is used by
FORTRAN 1V and is loaded into AC3 by RTOS on return from system or task calls.
AC3 is destroyed whenever any such call is issued, since it is equivalent to a JSR
instruction. On return from a call however, ACS3 is loaded with the contents of USP,
Thus a convenient method of saving AC3 before issuing a call is to first save AC3

in USP. AC3 will then be restored by the system upon returning from the call,
Furthermore, since USP is saved in the TCB as part of the state of a task in
execution, it may be used as the equivalent of an extra register by tasks without
stacks.

6-3

User Status Table (UST)

The User Status Table (UST) is found at the start of NREL memory. This table
is 27, words long, and contains information pertaining to the status of the user
program. Unused words within the UST are set to -1. The structure of the UST

is as follows:

Displacement Mnemonic
0 USTPC
1 USTZM
2 USTSS
3 USTES
4 USTNM
S USTSA
6 USTDA
7 USTHU
10 USTCS
11 USTIT
12 USTBR
13 USTCH
14 USTCT
15 USTAC
16 USTFC
17 USTIN
20 USTOD
21 USTSV
22 USTSQ
23 USTXQ
24 USTPQ
25 USTOS
26 USTNA

Contents

Maintained for RDOS compatibility only.

ZMAX, the lowest unused ZREL memory location.
The start of the symbol table.

The end of the symbol table (i.e., its lowest

core address),

NMAX, the lowest unused NREL memory location.
The user program starting address.

The address of the debugger.

The highest address occupied by the user program
and RTOS upon completion of loading.

FORTRAN common area size.

Maintained for RDOS compatibility only.
Maintained for RDOS compatibility only.

Number of tasks (left half), number of channels
(right half).

TCB address of the first user task to execute
after RTOS initialization.

Start of ready TCB queue.

Start of the free (dormant) TCB chain.

Start of user NREL program (set by the loader).
Reserved only for compatibility with RDOS.
FORTRAN state-save routine.

Start of suspended TCB queue.

Start of the . XMTW/.REC queue.

Start of internal system queue of tasks

being serviced (i.e., TCBs returning to

base level after 1/0).

Scheduler idle counter (used in checking

$PTR timeouts).

Number of active tasks (TCBs in use).

The last word in the UST is also assigned the mnemonic USTEN.

Task Control Block (TCB) Pool

Following the User Status Table is found the TCB pool. This is a collection of TCBs
which will be available to the user program. Each TCB is a 14 8—word frame defined
as follows:

Displacement Mnemonic Contents
0 TPC Carry in bit 0, PC in bits 1-15.
1 TACO ACO
2 TACI1 ACl1
3 TAC2 AC2
4 TAC3 AC3
5 TPRST Task status and priority.
6 TSYS System call word.
7 TLNK TCB link word (-1 if last TCB in the queue).
10 TUSP Task USP
11 TELN FORTRAN IV variables save area address.
12 TID Task identifier.
13 TTMP Used to service . ABORT calls.

Word 5, the task status and priority, contains information describing the state of
the task, its priority, and whether it has any outstanding message transmit or
receive request:

TPRST: ‘ ' l T !
’ priority

I L |

012 9 15

Bit 0 is set to a 1 if the task is suspended due to an outstanding system call. Bit 1
is set to 1 if the task is suspended due to task calls .SUSP, .ASUSP, or . TIDS.

Bit 2 is set to a 1 only if the task is suspended due to outstanding task calls . XMTW
or .REC . The task priority is contained in bits 9-15.

Word 6, TSYS, is used by RTOS in executing system calls. Word 7 contains the
starting address of the next TCB in the queue (the last TCB in a queue has a link of
-1). Word 12, TID, contains the task's 8-bit identifier in bits 9-15.

User File Pointers Table (. UFPT)

Following the TCB pool is a table called the User File Pointers Table (. UFPT).

The purpose of this table is to indicate what device or file is open on which RTOS
channels. The .UFPT consists of a series of two-word frames, one for each
channel defined for the RTOS system at RTOSGEN time. The first frame represents
the device (or file) opened on channel zero, etc.

The two-word frame will contain one of two sets of information, depending upon
whether it is a single- or multi-file device which is opened on the designated
channel. Frames for all devices contain the device DCT address in displacement O.
Displacement 1 for single-file device frames is unspecified. Displacement 1 of
multi-file device frames, however, contains a pointer to a frame within a device
file table or within a device driver itself. Device file tables are discussed in the
following section. Frames within device file tables describe disk files, QTY lines,
or MCA units. Frames for cassettes and magnetic tape units point to unit control
tables within these devices' drivers.

Device File Tables

One or more device file tables may follow the .UFPT. The following devices have
special device tables and have no entries in the standard device name table (. CHTB,
to be discussed later):

Device Table Name
fixed head disk .DTBL
moving head disk . PTBL
asynchronous mux .QTBL

Multiprocessor Communications .MCTB
Adapter

ice file table established for fixed head disks is com s
five-word frames, one for each file defined at RTOSGEN time. Each frame contains
the name of the file and its contiguous disk block address boundaries. This
approach allows four-, five-, or six-character file names to be given to each disk
file. Disk files in RTOS will be comprised of sets of contiguous blocks on disk,
fully compatible with contiguous disk files as defined in the real time disk operating

system, RDOS. Each frame in . DTBL has the following structure:

6-6

Device File Tables

.DTBL frame

(Continued)
Displacement

0-2

3

(4
'The device file table for moving head disks (cartridge or pack) is similar to . DTBL,
but has one additional entry to describe the drive unit number:

.PTBL frame

Displacement

0
1-3

4
S

Contents

File name, left justified, trailing null
bytes.

Starting disk block address.

Ending disk block address.

Contents

Drive unit number.

File name, left justified, trailing null
bytes.

Starting disk block address.

Ending disk block address.

The 4060 asynchronous multiplexor driver (QTY) device table is named .QTBL .
This table consists of a series of ten-word frames with one frame reserved for each
QTY line; the first frame corresponds to line number 0, the second frame corres-
ponds to line number 1, etc. Each frame in .QTBL has the following structure:

.QTBL frame <

Displacement

~ 0

N Ul B W N

~l

C11

Contents

Bit zero set if not opened; line number if
open.

Receive byte pointer.

Transmit byte pointer.

Read request TCB address.

Write request TCB address.

Read sequential limit; O if read line.
Write sequential limit; -1 if finished
writing; O if write line.

Character hold for echo during read line.
Line feed insertion flag (non-zero for
insertions).

Device characteristics:

DCKEY echo characters

DCPCK parity check/generation

DCLAC . line feeds after carriage
returns.

Device ile Tables {(Continuad)

The device file table for MCA lines is named .MCTB . This table consists of a
series of seven-word frames, each frame reserved for an MCA unit-number; each
MCA line connects two MCA units (a transmitter and a receiver). The total
number of frames equals two times the number of lines defined at RTOSGEN time
plus one (for unit number zero reception requests). The first frame corresponds
to unit number zero, etc. Each frame in .MCTB has the following structure:

Displacement Contents

(‘ List link.
Word count.

| Current address.
1 Device code of the adapter at the other end
! of the line; code is positioned as in the
j MCA status words.

Error retry count.
TCB address of task issuing the read or
write request; -1 if no task is issuing

such a request. This word is set to zero
if thoe line ic clncad

44 LAT L2d1T 40 LiUDTuU e

w = o

Mt

aor
. .L\v/i\, 10

frame

Ut M

6 Device retry specification input in AC1 to
\ .OPEN..

Line table entries are linked via displacement O of each frame. Entries in the
chain correspond to MCA units which have MCA transmit or receive requests
outstanding.

igh Priority Interrupt Table (. HINT)

If any high priority interrupt devices were defined during system generation, one
of two high priority interrupt dispatch tables will be loaded. If only the power fail/
auto restart option was selected in the RTOS system, a truncated high priority
interrupt dispatcher will be placed after the last device file table; otherwise, the
full high priority interrupt dispatcher, .HINT, will be placed there. These
dispatch routines are illustrated on the following page. In essence, the operation
of .HINT is as follows. Each high priority interrupt device is examined to see if
it generarel the interrupt. The power fail monitor is tested first, then the real
time clock, and then each of the other devices specifiad at RTOSGEN time in the
order that they were specified during system generzticn, If the scurce of the
interrupt is found, control is dispatched to its interrupt service routine; otherwises
control is given to the ordinary interrupt dispatcher.

6-8

High Priority Interrupt Table (. HINT) (Continued)

'The format of the high priority interrupt dispatcher is as follows:

SKPDZ CPU ; CHECK FOR POWER FAIL INTERRUPT

IMP@ A ; YES. GO TO POWER FAIL INTERRUPT SERVICE.
STA 3@B ; OTHERWISE, SAVE 3

INTA 3 ; AND GET INTERRUPT DEVICE CODE.

SKPDZ RTC ; WAS IT THE REAL TIME CLOCK?

IMP @ C ; YES. GO TO RTC INTERRUPT SERVICE

SKPDZ device] ; WAS IT DEVICE 17

JMP @ D ; YES. GO TO DEVICE 1INTERRUPT SERVICE

: ; ETC.
SKPDZ devicen

JMP@ N ; GO TO DEVICE N INTERRUPT SERVICE, BUT IF
JMP @ . +1 ; NO HIGH PRIORITY DEVICE INTERRUPT
.INTD ; GO TO ORDINARY INTERRUPT DISPATCH ROUTINE
B: .SAC3
A: PWRIS ; POWER FAIL INTERRUPT SERVICE ADDRESS
C: RTCIS ; RTC INTERRUPT SERVICE ADDRESS
D: DV1IS ; DEVICE 1 INTERRUPT SERVICE
N: DVNIS ; DEVICE N INTERRUPT SERVICE.

The power fail - only interrupt dispatcher looks like the following:

SKPDZ CPU ; POWER FAIL INTERRUPT?
- JMP @ .+3 ; YES. GO TO POWER FAIL SERVICE
JMP @ . +1 ; NO, GO TO ORDINARY INTERRUPT DISPATCHER
.INTP
PWRIS ; POWER FAIL INTERRUPT SERVICE ROUTINE

Interrupt Table (. ITBL)

One table which is always loaded is the interrupt table, .ITBL . .ITBL is a 6410-
word table which has 64 one-word frames, one for every possible device code.

The first entry in the table corresponds to device code zero, the second entry
corresponds to device code 1, etc. Table entries corresponding to devices in the
system will contain the address of that device's Device Control Table (DCT). Move-
over, if the device is a system device, bit zero of this entry will be set to one; if
the device is a user device, bit zero will be reset to zero.

6-9

Interrupt Table (.ITBL) (Continued)

The last entry in this table, the entry for device code 77g, is named . ETBL. 'This
entry is reserved for a user power fail/auto restart handler address.

System devices will be initialized by the RTOS initialization program .RTOS. No
such initialization is performed for user devices. User device drivers must perform

their own initialization.

Standard Device Name Table (. CHTB)

The last RTOS table which may be loaded is the name table, . CHTB. This is a
table containing entries for single-file devices like the teletypewriter, paper tape
reader /punch, card reader, line printer, and plotter. This table is built at system
generation time, and consists of a series of four-word frames.

Device entries are listed in this table in the order that the devices are found in
.ITBL (i.e., order is by ascending device code). The first three words of each
frame contain the system name for the device, left justified and with trailing

nulls. The fourth word in each frame contains the base address of the device's

neom CLTITD $a tnverminag fad wuri -
DCT . .CHTB is terminated with a -1.

Thus a typical . CHTB would have the following structure:

$ T
T I
null null
TTIDC
$ T
T 0]
null null
TTODC
P VA=
—~ o
$ L
P T
1 null
LPT1DC
-1

ok ok sk ok

6-10

Cail

APPENDIX A

RTOS COMMAND SUMMARY

ACO

ACl1

AC2

.ABORT

I.D. of task to be aborted.

.AKILL(I)

Priority of tasks to be killed.

.

.SYSTM
.APPEND n

Byte pointer to device name.

Device characteristics mask
(see .OPEN).

Channel number (ifﬂ =77).

.ARDY

)

Priority of tasks to be readied.

.ASUSP

(1)

Priority of tasks to be suspended.

N

.SYSTM
.CLOSE n

Channel number (if n = 77).

.SYSTM

MNP AN

SULLLAY

Number of RTC ticks.

.SYSTM
.DUCLK

Number of RTC ticks.

i

Address of user interrupt
routine.

()

.SYSTM
.ERTN

Data word to be placed in
AC2.

.SYSTM
.GCHAR

bits 9-15: character.
bits 0-8: clear.

.SYSTM
.GCHN

(returned)
Free channel number

(1) No error return.
(2) No normal return.

Call

ACQO

ACI

AC2

(returned)

(rcturned)

(returned)

.SYSTM Day. Month. Ycar.
.GDAY
'
.SYSTM
.GHRZ 0: no RTC.
1: 10 HZ. ;
2: 100 HZ. \

; 3: 1000 HZ. §

| 4: 60 HZ (line frequency) !

! 53: 530 HZ (line freguency) : |

i | ;

i | |

L .SYSTM ! (returned)

I .GMCA Unit number. ;

(returned) (returned) (returned)
.SYSTM Second. . Minute. - Hour (using a 24 -hr clock).
.GTOD |
|

. .SYST™M Device code. | DCT.

- .IDEF

: i

: (returned) i

. L1IDST 0: ready. bits 8-15: task I.D. number.

? I: suspended by .SYSTM call. ;

[2: suspended by .SUSP, .TIDS, ;

. ASUSP. :

: 3: waiting for .XMTW/.REC . !

! 4: not used.

5: suspended by .SUSP, ASUSP, or
. TIDS and .SYSTM call.

6: suspended by . XMTW/.REC and
.SUSP, ASUSP, or . TIDS

7: not used.

10: killed.

b L.SYSTM Byre pointer to device name. -1: full init. ,
CINIT 0: partial init, |
.SYST™M Device code.

. IRMV
JOXMT Message address. Message (non-zero).

ASCII.
form feed on open.

|
1B3: j
full word device. |

1B4:

(continued on next page)

Call ACO AC1 AC2
’:' [}
LD @) |
.SYSTM HMA NMAX
S MEM
5 ‘ (returned)
.SYSTM ,: NMAX increment or decrement New NMAX (after change).
. MEMI i (2's complement).
i
; Channel number (if n=77).
.SYSTM Core data address, if a data bit 0: 1, even parity; (Status word or system error
-MTDIO n ;- transfer. 0, odd parity. code if error return; status
: word if read status normal
| { bits 1-3: return.)
' ; 0 read (words) 1BO: error.
1 rewind tape. 1B1: data late.
: 3 space forward. 1B2: tape rewinding.
‘ . 4 space backward. i 1B3: illegal command.
; S5 write (words). . 1B4: high density or cassette
6 write EOF. if 1; low density if 0.
7 read device IB5: parity error.
. status word. 1B6: end of tape.
? bits 4-15: | 1B7: end of file.
word or record count. ; 1B8: tape at load point.
! If O on space command, | 1B9: 9-track or cassette if
; position tape to new file.| I; 7-track if 0.
! 1B10: bad tape; write failure.
j '1B11: send clock (0 if cassette)
i '1B12: first character
; i (0 if cassette).
| | 1B13: write-protected or
i : } write-locked
; "1Bl4: odd character (0 if
f cassette).
| 1B15: unit ready.
| |
.SYSTM 3yte pointer to tape Characteristic inhibit i Channel number (if n = 77).
. .MTOPDn file specifier. © mask (see . OPEN). :' -
.SYSTM Byte pointer to file name 1B1: 80-column device ' Channel number (if n = 77).
.OPENn 1B2: lower-to-upper case

(1) no error return
(2) no normal return

0
PNV

ACI

AC2

1B6: LF after CR.

SYST™NM 1B7: parity check/ ‘
COPEN n ’ 5 generation. 1
¢ (Continued) !: 1B8: rubout after tab. l
‘ i 1B9: null after FF, | ’
* 1B10: keyboard input. ; |
b 1B11: TTY output device. ’ |
: ¥ 1B12: no FF hardware. :
i 1 1B14: no TAB hardware. "
: | i 1B15: leader/trailer.
; L (01" if uscer-specified
' Vi i MCAT timeout).
¥ !
.SYSTM || bits 9-15: character ;
.~ .PCHAR | !
! -
o (1) S el -
PRI ; bits §-15: new task priority.
4&' ‘ t
¥ f
.SYSTM E Starting core address to Starting disk relative block ' bits 0-7: number of blocks
.RDB n ; receive data. number. ; to be read. (2)
bits 8-15: channel number
‘ (if n=77). @
| L
LSYSTM Byte pointer to user core area. Read byte count (including ‘ Channel number (if n = 77).
.RDLn terminator) at end of read. |
.SYSTM Byte pointer to core buffer. Number of bytes to be read | Channel number (if n = 77).
.RDS n (even for MCA) (if EOF detected, partial |
byte count returned). E
1
. REC() Message address. Message. |
| .
' i
.SYSTM ;
.RESET j
1
! !
; H
.SYST™M . Byte pointer to device name. :
.RLSE : I
|
3 | i
SYSTM | |
RTN }

(1) no error return

(2) if error EREOF, error code in bits 8-15, partial read count in bits 0-7.

(3) no normal return

A-4

Call ACO ACl1 AC2

SYSTM || |
RUCLK |
|
SYST™ |
SDAY Day. | Monih. Year.
|
.SM3K New interrupt mask to be ORed DCT cddress
‘I with old mask.
.SYSTM | Second. Minute. Hour. !
.STOD i
susp®) ‘ ;
| ‘ 1
! H I
. TASK | bits 0-7: task 1.D. New task entry point Message to new task. f
bits 8-15: task priority. | address 5 |
‘ i !
; ; 1
.TIDK * bits 8-15: task I.D. number.
. TIDP - bits 8-15: task L.D. number. | {
!
. TIDR bits 8-15: task I.D. number. :
. TIDS . ¢ bits 8-15: task I.D. number
|
1)(2)(3) | !
. Ué‘g& ¢ ¢ Any non-zero value if
? i rescheduling is to occur.
M) | .
.Ul ‘ . Any non-zero value if DCT address
+ rescheduling is to occur.
;
3) i
.Ulqi))g)() i Any non-zero value if
j i rescheduling is to occur.

(1) no error return.
(2) no normal return.
(3) return address is in AC3.

Call

ACO

ACl

AC2

.SYSTM -1, terminatc wait request. Device code of keyboard v
.WCHAR bits 9-15: wait character. transmitting the wait char- :
acter or -1 if wait request :)
terminated. ; |
;
.SYSTM Starting core address. Starting relative block | bits 0-7: number of disk |
-WRBn number. ’ blocks. !
bits 8-18: channel number ;
(if n = 77). !
.SYST™M Byte pointer to core buffer. Write byte count, including = Channel number (if n=77).
-WRLn terminator, returned at end
of write.
.SYST™M Byte pointer to core buffer. Nu@er of bytes to be right byte: channel number
.WRSn written. .
= ! (if n=77).
! i left byte: # of MCA retries
1 (each retry takes
i 200 milliseconds).
CXMT Message address. Message (non-zero).
CXMTW Message address. Message (non-zero).

A-6

Code

0

12

15

21

22
23

24
26

27
30
31

LRIVSIN WVALGOOAA UL O ULYRIVILAL

Mnemonic Meaning

ERFNO Illegal channel
number.,

ERFNM lllegal file
name.

ERICM Illegal system
command,

ERICD Illegal command
for device.

EREQOF End of file.

ERDLE Attempt to refer
to a non-existent
file or device.

ERFOP Attempt to refer-
ence an unopened
file or device.

ERUFT Attempt to use a
channel which is
already in use.

ERLLI Line limit exceeded.

ERRTN Attempt to return
(.RTN/.ERTN) from
current program.

ERPAR Parity on read line.

ERMEM Not enough memory
available.

ERSPC Out of disk space.

ERFIL File read error.

ERSEL Unit improperly

selected.

Applicable Commands

.APPEND
.MTOPD
.RDL
.WRB

. OPEN

+RLSE

.RDS
.WRL
.MTDIO

.RDB
.OPEN

.RDS
. WRS
.RDB

.APPEND
.MTOPD

.RDL

.RTN

.RDL
.MEMI

. wRB
. RDS

LINIT

.CLOSE
-MTDIO
.RDR
.WRL

.MTOPD

LINIT

.WRS
.RDB
.GMCA

.RDL
.MTOPD

.WRL
.CLOSE
.WRB

. GCHN

.WRL
.ERTN

.RDL

.OPEN

.OPEN
.RDB
.RDS
.WRS

INIT

.DELAY

.RDL
.WRB

.RDL

. MTDIO

.OPEN

.RDS

. MTDIO
.MTOPD

Code Mnemonic Meaning Applicable Commands

36 ERDNM Device not in sys- LINIT .RLSE .IRMV
tem, or illegal . IDEF .GMCA .STMAP
device code.

41 ERTIM Attempt to set .STOD .SDAY
illegal time or
date.

42 ERNOT Out of TCBs . TASK

43 ERXMT Message address . IXMT .XMT . XMTW
already in use.

45 ERIBS Device code already .DUCLK .IDEF JANIT
in system.

47 ERSIM Simultaneous read or . RDL .RDS .WRL
write attempt on .WRS . WCHAR
same QTY line.

60 ERFIU Attempt to open a . OPEN
busy MCA unit.

61 ERTID Task I.D. error. . TASK . TIDK . TIDR

. TIDS . TIDP .ABORT

101 ERDTO Device timeout .WRS

103 ERMCA No complementary .RDS .WRS
MCA request.

104 ERSRR Short MCA receive .RDS .WRL .WRS
request.

106 ERCLO Channel closed by .RDL .RDS .WRL
another task. .WRS

110 ERABT Task not abortable. .ABORT

113 ERNMC No MCA receive .WRS
request.

3 %k %k ok ok

APPENDIX B

GENERATING AND LOADING AN RTOS SYSTEM

DEFINITION OF TERMS

‘This appendix details the steps to be followed when creating an RTOS system tailored

to a specific device/core configuration and to the channel /task environment of the real

time program which will be supported by the system and user program, both in a disk
and in a non-disk environment.

System generation is the procedure followed to produce a relocatable binary which
will trigger the loading of appropriate device drivers from the RTOS library, allo-
cate tables and control blocks used by the system, and allocate a fixed number of
channels and task control blocks. The system generation program, RTOSGEN,
produces a relocatable binary with the default name RTOS. RB, by issuing a series
of questions about the hardware configuration and the task/channel requirements of
the user program.

System loading is the procedure followed to load the system generation relocatable
binary, user drivers if any, user relocatable binaries, and the RTOS library.
System loading is accomplished by using a relocatable loader.

PREPARATION FOR SYSTEM GENERATION

If the system is configured with either a type 4048 or type 4057 moving head disk
pack drive, it is necessary to format the disk pack using the appropriate formatter
program before system generation is attempted. In general, all disk packs that

are to be used in the system must be formatted prior to their use. Note that it is

not necessary to format the disk cartridges used in a type 4047 disk drive. The

disk pack formatter programs are stand-alone programs. The appropriate formatter
programs and their associated manuals are listed below:

Disk Pack Drive Formatter Program Manual
Type 4048 095 -000072 096-000039
Type 4057 095-000071 096-000038

SYSTEM GENERATION

The following page contains lists of tapes required to generate and load a system in
stand -alone and RDOS environments. To generate an RTOS program under the
Stand -alone Operating System (SOS), the RTOSGEN program itself must be con-
figured with appropriate device support before it can be used. Consult the Stand -
alone Operating System User's Manual, 093-000062, for the procedures to be
followed to configure and load SOS programs.

B-1

Stand -Alone Svstems:

RTOS TASK MONITOR LIBRARY
RTOSI. LB

RTOS HANDLER LIBRARY
RTOS2. LB

RTOS CASSETTE HANDLER LIBRARY
(CASDR. LB)

RTOS MAGNETIC TAPE HANDLER
LIBRARY (MTADR, LB)

RTOS FIXED HEAD DISK HANDLER
LIBRARY (DSKDR. LB)

RTOS MOVING HEAD DISK HANDLER
LIBRARY (DKPDR. LB)

Stand -alone Extended Relocatable Loader,
or
SOS Relocatable Loader

RTOS SYSTEM GENERATION PROGRAM
RTOSGEN

RTOSGEN. RB (to produce RTOSGEN
under SOS)

GSUBR. RB (10 produce RTOSGEN
under SOS)

RDOS Systems:

RDOS/MRDOS DUMP: RTOS SYSGEN PROGRAM
RTOSGEN. SV

RDOS/MRDOS DUMP: RELOCATABLE LOADER
RLDR. SV

RTOS TASK MONITOR LIBRARY
RTOS!1. LB

RTOS HANDLER LIBRARY
RTOS2. LB

RTOS CASSETTE HANDLER LIBRARY
(CASDR. LB)

RTOS MAGNETIC TAPE HANDLER
LIBRARY (MTADR. LB)

RTOS FIXED HEAD DISK HANDLER
LIBRARY (DSKDR. LB)

RTOS MOVING HEAD DISK HANDLER
LIBRARY (DKPDR. LB)

List of Tapes for System Generation and System Loading

0199-000060

(199-000061
- 199-000062
099-000063
099-000064

099-0000635

091-000038
089-000120

091-000081

089-000163

089-000164

088-000082

088-000049

099-000060

099-000061

099-000062

099-000063

099- 000064

099-000065

Loading RTOSGEN in a SOS or Stand-alone Environment

RTOSGEN is provided as a stand -alone program on paper tape for users wishing
to perform RTOS system generations without the support of RDOS. Standard
binary load procedures, described in section 2.8 of How to Use the Nova

Computers, must be followed to load either the stand -alone R TOSGEN program
or RTOSGEN run under SOS

VA NSDNTaALa Y A wl UL INSJ e

Loading RTOSGEN in an RDOS Environment

RTOSGEN is provided as a save file on paper tape for users wishing to perform a
system generation on an RDOS system. To load this save file, mount tape number
088-000082 in the reader, and type the following command to the CLI:

LOAD/V { 2?{};})

The system will respond:

{ggfl:}, STRIKE ANY KEY.

Load the reader with the dump tape and strike any console key. The tape will be
read, and the teletype will respond:

RTOSGEN. SV

LOAD

Producing the RTOS Module

You are now ready to begin executing RTOSGEN. This program configures the
system by interrogating you as to the hardware characteristics and channel /task
requirements of your program. If RTOSGEN is loaded using binary load procedures,
it will self-start. In an RDOS system, type the command

RTOSGEN)
to invoke the program.
The system generation program now outputs the message:
RTOS SYSTEM GENERATION
and proceeds to issue a series of questions requiring operator keyboard res;ponses.
An improper reply to an RTOSGEN question causes the question to be repeated.

‘The questions are given and responded to in the following order unless stated
otherwise,

B-3

Producing the RTOS Module (Continued)

1.

CORE STORAGE (IN K WORDS)

Respond with any number from 4 (4K) to 32 (32K) in increments of 2 (2K), and
follow this and all other responses with a carriage return.

RTC FREQ (0=NONE, 1=10HZ, 2=100HZ, 3=1000HZ, 4=LINE)

Respond with 0,1,2, 3, or 4 as appropriate. If you give a non-zero response,
the system will maintain the system clock and calendar. You are cautioned to
select the lowest acceptable frequency, since higher clock frequencies increase
system overhead. If the line frequency is requested, RTOS asks question 3;
otherwise, it steps to question 4.

LINE FREQ (0=50HZ, 1=60HZ)
Select 0 or 1 as appropriate. RTOSGEN now goes to question 4.
TASKS (1-255) ?

Respond with a decimal integer from 1 through 255 corresponding to the number
of tasks required by your program which will be loaded with the RTOS module.

If you select one task, the minimum task scheduler, TMIN, will be loaded from
the RTOS library; otherwise the multitask scheduler, TCBMON, will be loaded.

CHANNELS (1-63) ?

Respond with a decimal integer from 1 through 63, corresponding to the number
of simultaneously open channels required by your program.

After you have answered questions 1 through 5, RTOSGEN responds:
RESPOND WITH NUMBER OF UNITS

RTOSGEN now continues with a series of questions concerning peripheral
support given to your program.

DSK (0-1) ? (fixed head disks)

If you respond "0", the program steps to the next question; a response of '"1"
prompts the following series of questions:

DISK STORAGE (IN K WORDS)

Respond with any decimal integer from 128 (K equals 102410) through 2048

(2 million words) in increments of 128 (128K). The program then queries you
about the file subdivisions and file names you may wish to assign to the disk
space for the fixed head disk. These queries are made in a series of questions
with three parts each:

Producing the RTOS Module (Continued)

IST BLOCK?
END BLOCK?
NAME?

You respond with the first logical block address in each disk file; the first avail-
able block will be 0 unless you plan to use the disk bootstrap program, HIPBOOT,
to load and execute RTOS programs. If disk space for HIPBOOT is to be reserved,
the first available block address is block number 6..

You must ign a file name to all disk space which you want to be program

accessible. The file names you define will be the names by which the disk
files are opened via the system . OPEN command. Flle names consist of
from 4 to 6 upper-case alphabetic and numeric characters. Each file name
must uniquely identify its associated file; the same block cannot be assigned
more than one file name, since one disk block cannot be included within the
file space of more than one file. Files defined during system generation
cannot be expanded or reduced in size. For a discussion of contiguous disk
files, see Chapter 1,'Disk File Organization."”

After defining all file space, respond with a carriage return to the "1ST
BLOCK" question. RTOSGEN will now proceed to question number 7.

DKP (0-4) ? (moving head disks)

#espond with the number of moving head disk units in your system (the 4047B
is considered to be two units). If there are no moving head units, respond 0;
the system will then proceed to question 8.

After you answer the unit number question affirmatively, the program requests
the number of sectors per surface in each unit, "and the number of disk sur-
faces per unit (see How to Use the Nova Computers for a discussion of disk
terms):

#SECTORS ?
SURFACES/UNIT ?

Specify 6 sectors for the 4048 unit, or 12 sectors for either the 4047 or the
4057 units. Specify 2 surfaces for the 4047 unit, 10 for the 4048 unit, or 20
for the 4057 unit.

The program then queries you about the file subdivisions and file names you

wish to assign to the disk space for each moving head disk unit. These queries
are made in a series of questions with three parts each:

B-5

10.

11.

Producing the RTOS Module (Continued)

1ST BLOCK?
END BLOCK?
NAME?

You respoad with the first logical block address in each disk file; the first
available block in each unit will be 0 unless you plan to load the disk boot-
strap program, HIPBOOT, for use in loading and executing RTOS programs.

If disk space for HIPBOOT is to be reserved, the first available block address

is block number 6.

You must assign a file name to all disk space which you want to be program
accessible. The file names you define will be the names by which the disk
files are opened via the system . OPEN command. File names consist of
from 4 to 6 upper-case alphabetic and numeric characters. Each file name
must uniquely identify its associated file; the same block cannot be assigned
more than one file name, since a single disk block cannot be included within
the file space of more than nne file. Files defined during system generation
cannot be expanded or reduced in size. For a discussion of contiguous disk
files, see Chapter 1, 'Disk File Organization."

After defining all file space within each moving head unit, respond with a
carriage return to the "1ST BLOCK" question. RTOSGEN will now proceed
to question number 8.

MTA (0-8) ? (magnetic tape transports)

Respond with the appropriate integer indicating the number of 7- or 9-track
magnetic tape transports in your system.

CAS (0-8) ? (cassette units)

Respond with the appropriate integer indicating the number of cassettes in
your system.

PTR (0-2) ? (high-speed paper tape readers)

Respond with the appropriate integer indicating the number of high-speed
paper tape readers in your system.

PTP (0-2) ? (high-speed paper tape punches)

Respond with the appropriate integer indicating the number of high-speed
paper tape punches in your systes.

Producing the RTOS Module (Continued)

12,

14.

15.

16.

17.

LPT (0-2) ? (line printers)
Respond with the appropriate integer indicating the number of line printers
in your system. If your response is 1 or 2, the program asks you for the
column size(s) of your printer(s) with the query:

COLUMN SIZE (80, 132)
The query is repeated if you have specified 2 line printers in your system.

CDR (0-2) ? (punched or mark sense card readers)

Respond with the appropriate integer indicating the number of card readers in
your system.

PLT (0-2) ? (incremental plotters)

Respond with the appropriate integer indicating the number of digital plotters
in your system.

QTY (0-64) ? (asynchronous data communications multiplexor lines)

Respond with the appropriate integer indicating the number of full duplex
lines in your system.

TTYS (0-3) ? (teletypewriters or video displays)

Respond with the appropriate integer indicating the number of teletypewriters
or video display units in your system.

MCA (0-15) ?

Respond with the appropriate integer indicating the number of MCA lines in
your system (each line is capable of both transmitting and receiving). If your
response is non-zero, the program asks you for the default number of trans-
mission retries:

#TIMEOUT RETRIES (0-65535)?

Each hardware timeout consumes approximately 10 milliseconds. After you
respond to this question, the program outputs a query signaling the approach
of the last block of RTOSGEN questions:

RESPOND WITH 0 FOR NO, 1 FOR YES

B-7

Producing the RTOS Module (Continued)

18.

19.

20.

AUTO RESTART?

Respond " 1" if the power fail/auto restart is included in your system; other-
wise, respond to "0".

HIGH PRIORITY INTERRUPTS?

Respond "1'" if you have any user-written drivers whose interrupts you want

to be serviced before all system devices (but after the power fail monitor

and real time clock). Respond "0'" if you do not have any high priority interrupt
devices. If you respond "1", the program will ask you for the name and device
code of each high priority interrupt device (the name consists of 3 alpha-
numeric characters):

DEVICE CODE?
NAME?

The system appends "IS" to the device name and inserts the name into the high
priority interrupt table. After listing all high priority interrupt devices,
respond with a carriage return to the DEVICE CODE query, and the program
will then step to question 20.

USER SUPPLIED DRIVERS?

Respond "1" if you have any user=-written drivers you want included in the
RTOS module output by RTOSGEN. (This is an alternative to introducing
drivers at run time by the system call .IDEF .) If you have no such drivers,
respond "0". If you respond in the affirmative, the program requests the
device code and name of each device (the name consists of 3 alphanumeric
characters):

DEVICE CODE?
NAME?

The system appends "DC" to the device name to create the DCT name for the
device. After listing all user device drivers, respond with a carriage return
to the DEVICE CODE query, and the program will then step to the RTOS
system generation summary.

Having responded to the above questions, RTOS outputs a list of all device
codes, DCT names, and device names for all system devices and user devices
specified during the system generation process. The power fail/auto restart
option and high priority user interrupt devices are not included in this list,
since there is no DCT associated with these devices.

B-8

21,

Producing the RTOS Module (Continued)

After the list has been finished, the program asks whether the system gener-

ation procedure has been followed satisfactorily:
SYSGEN OKAY?

At this point you must decide whether or not there are any errors in your
selections of devices; if there are no errors, type "l"; otherwise type "0".
If you type "0" the entire system generation dialogue will be repeated.

If you respond "1", RTOSGEN will then ask the name of the file ordevice
which is to be used for outputting the RTOS module:

OUTPUT FILENAME?

Respond with the name of the appropriate file or device. Respond with a
carriage return if the default name RTOS. RB is desired.

After the RTOS module has been output under RDOS, the system will output an R

prompt and return to the CLI, RTOSGEN will restart itself in a stand-alone
program.

B-9

Producing the RTOS Module (Continued)

The following information is given as a guide for estimating the size in words of any
tailored RTOS system. Sizes are given in decimal and exclude page zero require-
ments:

Basic System: () 1393
Options:
Multitask Programming(z) 662
Each additional TCB 12
Each additional channel 2
Power Fail/Auto Restart (PWRDR) 103
High Priority Interrupts (n = number of high priority 11+3n
devices excluding RTC and PWR)
Real Time Clock (RTCDR) 296

PeriEherals:

Fixed Head Disk (DSKDR) 147
Moving Head Disk (DKPDR) 309
Each disk file 5 for fixed head,
6 for moving head
Magnetic Tape Controller (MTADR) 49
Cassette Controller (CASDR) 49
Tape service routine (MTSER); can be shared by
MTA and CAS 444
Teletype Driver (TTYDR) 233
Each additional Teletype (TTY1D, TTY2D) 65
Paper Tape Reader (PTRDR) 141
Second Paper Tape Reader (PTR1D)) 37
Paper Tape Punch (PTPDR) 44
Second Paper Tape Punch (PTP1D) 24
Card Reader (CDRDR) 289
Second Card Reader (CDR1D) 120
Line Printer (LPTDR) 44
Second Line Printer (LPT1D) 24
Plotter (PLTDR) 43
Second Plotter (PLTID) 24
Device Name Table, .CHTB 4* no, of single
file devices
Type 4060 Multiplexor (QTYDR) 502
Each QTY line 10
Multiprocessor Communications Adapter (MCADR) 495
MCA Device File Table (. MCTB) 20* (no. of lines

+ 1)

(1) T™MIN, SYSTE, INTD, RTIN, GENIO, IOSER
(2) TCBMON (less the size of TMIN), TXMT, TACAL, TSKID, TUMOD, TABOR
B-10

This page illustrates a sample ourput listing of the RTOSGEN dialogue.

<

ETC FREG (2=NOWL

LINE FIEC (g=821Z

TASKS(1-255) 2 1¢
CHEANELS(1-€3) 7 5

FESPOUT WITH HNUMEEN OF UNITS

DEX(E-1> ? 1
PISK STOFACE (I X VORLS) 125

DISH FILL STTUCTURE
IST BLOCK? 5
ZND BLOCK? 2g¢
NAML? FILEA
IST BLOCKX? 221
END ELOCK? &52¢
NANME? FILLEL
15T BLOCX? 5¢7
ZilD ELOCK? 569
NAME? FILEC
IST ELOCK? 51¢
END BLOCK? 3511
NAME? FILED
DhF(@-4) ? ¢
MTA(R-8)
CreCe-8)
PTr(g-2)
PTP(z-2)
LPT(C~-2)
COLUMN
CCF(e-2)
PLT(EZ=-2)
LTY(2~€4) ? ¢
TTYS(2-3) 2 |
MCACZ=-15) 2 2
TINMZOUT R

RS RV G IV N I S)

RESPONE UWITE € FOR O, 1 FOT vuc

HIGHE PFIORITY INTERIURTS? ¢
USER SUPFLIZED DRIVEFS? ¢

SUMNAFY OF ZTUS 5YSCGE

COLE DCT ek HWEME.
ge MCTEC

7 HCELC

12 TTIDC $TTI

11 TTULC $TTO
PTEDC $FTR

13 PTPRPLC SPTPE
RTCLC

17 LFTLC SLP

2e DSHELC

SYSCEN OHAY? |
QUTPUT FILZHANE ? SY51

Sample RTOSGEN Dialogue

B-11

LOADING AND RUNNING A PROGRAM IN A STAND-ALONE ENVIRONMENT

Having produced the RTOS module, you are now ready to load the operating
system with program relocatable binaries and execute it as an RTOS program

or run it under RDOS. If you wish to load and execute it in a stand-alone environ-
ment you must first pcrform a stand -alone or SOS relocatable load.

Performuiy o Stand -alone or SOS Relocatable Load

For a complete description of operating procedures using the SOS and stand -
alone extended relocatable loaders, refer to the Extended Relocatable Loaders
Manual, 093-000080. The following summarizes stand-alone procedures
required for loading system and user programs.

The stand-alone relocatable loader is in absolute binary format, and thus it
is loaded by means of the binary loader. Once loaded, the relocatable loader
self-starts and types on the console:

SAFE=

You respond with a carriage return to reserve the upper 200 words of memory,
preserving both the bootstrap and binary loaders. The relocatable loader now
outputs the prompt:

You now proceed to load a series of paper tapes, following tape loading pro-
cedures which will be described. The order in which the first three categories
of tapes is loaded is not critical; the RTOS libraries must be the last items
loaded:

The RTOS module

User drivers (if any)

User relocatable binaries (the user program proper)
The RTOS libraries

B> N =

To load each of the above paper tapes, mount each tape in turn in either the
teletype reader or the paper tape reader, and type either 1 or 2 indicating to
the loader whether the teletype reader (1) or the high-speed reader (2) is to
be used. After loading each tape, the loader outputs the star prompt (¥).

B-12

Performing a Stand-alone or SOS Relocatable Load (Continued)

After the last paper tape has been loaded, you may request a loader map by typing
the number 6. Then, to terminate the load process and preparc the program for
execution, type the number 8. This causes the previously loaded program to be
moved so that it resides at the absolute addresses indicated by the loader map.
After shuffling the program downward to its indicated positions in core memory,

the loader halts.

If the SOS Magnetic Tape/Cassette relocatable loader (SOS loader) is to be used,
the core image loader /writer should first be loaded into main memory; the same
series of [iles must then be loaded in sequence. After the prompt

RLDR

is received, a command line must be input via the console. Suppose that cassette
files are used and three cassette transports are available. Moreover, the user
RTOS program binaries exist on file zero of one cassette, and the RTOSGEN
module, user drivers, and RTOS libraries exist on files 0, 1, and 2 of another
cassette. One possible command line would be as follows:

$TTO/L CTO:1/S CTi:0 CTIl:1 CT2:0 CT1:2')..

'This command line would cause a numeric symbol table listing to be output on
$TTO and the RTOS save file to go to file 1 of transport 0 (CBOOT, the cassette
bootstrap, exists on file 0). The RTOS module, user drivers user program
binaries, and RTOS libraries are then loaded in order. Upon the successful com-
pletion of the relocatable load, the message 'OK" is output on the console and the
system halts with the loaded program in core memory ready to be executed.

Executing a Stand -alone Program

'The first operation performed by any program run under RTOS is a system initial-
ization. Since the address of the RTOS initialization routine always resides in
location 2, control must be dispatched to the address in location 2 in order to start
an RTOS program. RTOS has a JMP @2 instruction at location 376. Thus to

start your program, place "376" in the data switches, press RESET, then START.

RTOS will initialize the system and transfer control to your program if you defined
a starting address in your program in the . END statement. If you defined no such
starting address, you must now place your program starting address in the data
switches and press START. Your program now runs until a HALT or JMP .instruc-
tion is encountered, or all tasks are killed (in which case control is returned to the
task scheduler).

B-13

LOADING AND RUNNING A PROGRAM IN AN RDOS ENVIRONMENT

After writing your program, you may test it as an RDOS save file, you may run it
on an RDOS system as a stand-alone program (disabling RDOS temporarily), or you
may output it as an absolute program on some external medium for execution on
another system.

Running the program under RDOS for test purposes may save you debugging time.
This procedure is equivalent to testing and running an RDOS save file, since the
RTOS command set is a compatible subset of the RDOS command repertoire. If
you wish to test your program under RDOS, consult the Extended Relocatable
Loaders Manual, 93-000080, and the Real Time Disk Operating System User's
Manual, 93-000075. Note that you may specify task/channel information either via
RLDR local switches /C and /K, orin the . COMM TASK statement.

Alternatively, you want o load your RTOS program using the RDOS loader but with
the RTOSGEN module and RTOS libraries, and execute your program on this RDOS
system or on another RDOS system. The following sections describe these pro-
cedures.

Loading an RTOS Program under RDOS

For a complete description of operating procedures using the RDOS relocatable
loader, refer to the Extended Relocatable Loaders Manual, 93-000080, and to the
Real Time Disk Operating System User's Manual, 93-000075. The following
summary information gives procedures for loading a user program with the RTOS
module under RDOS.

The following files are required for the relocatable loading process:

RTOS.RB (produced during RTOS system generation).
Userdrivers, if any.

User relocatable binaries (i.e., the user program proper).
The RTOS libraries.

B N

These four files must be loaded onto disk by mounting each on the teletype reader
or high-speed reader and by issuing the following command:
$PTR

$TTR} filename)

XFER {

Having loaded all the necessary tapes, you now issue the CLI relocatable load
command:

B-14

Loading an RTOS Program under RDOS (Continued)

RLDR/C{/Dq user binaries f user drivers§ RTOSGEN module RTOS libraries }

$TT0/L}
$LPT/L)
L . |

This command will cause the complete save file to be constructed, starting at
location zero. The load map will be output on the listing device, if one is specified.

If in the above illustration you have loaded the debugger (global /D), you must do
one of two things to transfer control to the debugger. Your choice depends upon
the means selected to start the RTOS program. These means are described

fully in the following section. If location 2 will receive control upon the execution
of the save file, then the debugger address (found in the load map, DEBUG) must
be placed on location 2 via the Octal Editor. Alternatively, you may get the
debugger address from location 406 of the program's User Status Table and start
at that address. In either case, after starting the debugger, the command

" .RTOS$R" will transfer control to the RTOS initializer, starting the RTOS pro-
gram.

Executing an RTOS Program with HIPBOOT

Having performed a relocatable load of your program with the RTOS module and
RTOS libraries, you may now choose from many different methods to execute the
program; your choice of method will be made largely on the basis of the type of
system which will be used to run the program.

If you intend to execute the program on an RDOS system, you may use the disk
bootstrap program, HIPBOOT, to transfer control to your program. Otherwise,
you must produce an absolute binary paper tape, or a magnetic tape/cassette
version of the program and load it on another system by means of an appropriate
loader. If HIPBOOT is used, the computer halts at the termination of loading.
This provides an opportunity to activate the debugger via the front panel
switches, if desired.

If your program is to be executed on the present RDOS system or on another RDOS
system you may invoke the disk bootstrap program, HIPBOOT, to execute your
program. If the RTOS program is on a removable pack or cartridge you may
simply transfer the pack or cartridge to the new system; otherwise you must dump
the RTOS save file and reload it on the new system:

B-15

Executing an RTOS Program with HIPBOOT (Continued)

DUMP outputdevicename program-name. SV J

LOAD inputdevicename program-name. SV)

Having obtained a copy of the RTOS program on the RDOS system where it is to be
run, you now invoke HIPBOOT, following ordinary disk bootstrap procedures.
These procedures are described fully in the RDOS User's Manual, Appendix E; a
summary of these procedures follows.

Disk bootstrap procedures vary with the type of computer used and the presence or
absence of the program load feature. The following three procedures are given.

1. Nova 2/Nova 1200/Nova 800 series without the Program Load Option:
a. Enter in location 376: 601lnn
where nn=20 when bootstrapping from the fixed head disk and
nn=33 when bootstrapping from the moving head disk.
b. Enter in location 377: 377.
Ce Press RESET, then start at location 376; go to step 3c.
2. Nova 2/Nova 1200/Nova 800 series with the Program Load Option:

a. Set bit O of the data switches up.

b. Enter the proper disk device code (20 or 33 as described in
la.) into. the data switches, bits 10-15.

Ce Press RESET, then PROGRAM LOAD; go to step 3c.
3. Supernova:
a. Enter the proper disk device code (20 or 33 as described in la).
b. Press RESET, then CHANNEL START.
Ce HIPBOOT now requests the name of your program.

FILENAME?

B-16

Executing an RTOS Program with HIPBOOT (Continued)

You must now respond with the name of your program in one of two ways:
l. name/A)

2 A N
Lo 11aiic)

If you select the first method, your program will be loaded into memory and the
computer will halt. You then place a starting address (your program's or the

t i i ART T
debugger's) into the address switches, press RESET, and then START. If you

select the second response, the program will self-start.

Having been loaded, if the RTOS program self-starts it will initialize the system
and transfer control to your program if you defined a starting address via your
program's . END statement. If the program does not self-start, you may start at
either the contents of location 2 or, to activate the debugger, at the contents of
location 406.

Since this procedure overwrites portions of RDOS, RTOS gains control; RDOS can
only be restored via disk bootstrap procedures similar to those given on the pre-

vious page.

Executing an RTOS Program with TBOOT, CBOOT or MCABOOT

If you wish to execute your program on a system which has a magnetic tape
transport or cassette unit, you must first transfer the magnetic tape bootstrap
(TBOOT) or cassette bootstrap (CBOOT) to file 0 of the tape on unit O.

INIT {Mm})

CT0

TBOOT.SV MTO0:0
XFER {)

CBOOT. SV CTO:0

After transferring the appropriate tape bootstrap to file 0, transfer the RTOS
program to file 1 of the same tape:

MTO:1
XFER program name.SV {)
CTO:1

B-17

Executing an RTOS Program with TBOOT, CBOOT or MCABOOT (Continued)

If several RTOS programs are to be stored on the tape reel, they can be trans-
ferred to sequential file numbers following file 1.

Having produced the tape reel, release the reel via the RDOS command

MTO
RELEASE } ’)

CTO

Dismount the reel, and mount it on the unit zero transport or cassette unit of the
system where the RTOS program(s) is to be executed.

After mounting the reel, perform one of the following operation sequences:

1. On machines having the Program Load feature (Nova 2/800/1200
families), set the console switches to 100022 for a magnetic tape
transport, or 100034 for a cassette unit, and press PROGRAM
LOAD.

2 On Supernovas with the Channel Start option, set the console
switches to octal 22 (for a magnetic tape unit) or octal 34 (for a
cassette unit), and press RESET, then CHANNEL START.

3. On machines without Chanhel Start or Program Load
options, deposit NIOS MTA (60122) or NIOS CTA (60134) in
location 376, deposit 377 in location 377, press RESET, and
START at location 376.

The appropriate tape bootstrap program will be loaded into memory, and the
following initialization message will be output on the console:

FULL (0) OR PARTIAL (1) ?

Type "1" in response to this query, and the tape bootstrap will then request the
number of the file containing the program which is to be executed:

MTO:}

FROM {
CTO:

B-18

Executing an RTOS Program with TBOOT, CBOOT or MCABOOT (Continued)

Respond with the number of the file containing the program, and follow this with
a carriage return. The tape file will be read, and control will be given to your
program.,

To transmit an RTOS program from one CPU to another via the muitiprocessor
communications adapter, two actions must be performed: one at the transmitting
RDOS CPU, and another at a receiving CPU. At the transmitting CPU, the fol-
lowing CLI command must be issued.

MCABOOT MCAT:n RTOS program name/S

where n is a number from 1 to 15 decimal denoting the receiving MCA unit
number. At the receiving CPU, an operator must have requested the sender's
transmission by first placing "100007" in the receiver's data switches, then by
depressing RESET, followed by PROGRAM LOAD. The transmitting unit
will wait for the receiver to request the transmission, up to the default timeout
period. After the RTOS program has been received, the receiving operator must
place the value "376" in the data switches, and then press RESET followed by
START,

EXECUTING AN RTOS PROGRAM VIA PAPER TAPE WHICH WAS PRODUCED UNDER
RDOS

If you have loaded your RTOS program via the RDOS relocatable loader, but now
wish to run this program in a stand-alone environment, you may output this program
onto paper tape. If you do not wish to preserve a disk file containing this RTOS

. . 4
program, simply issue the command:

$TTP
MKABS/Z program name.SV t 376/59 { ')
$PTP

Alternatively, if you wish to preserve a disk copy of this program before outputting
it onto paper tape, issue the commands:

MKABS/Z program name.SV program name.AB t 376/S1 ’)

XFER program name.AB $PTP)

'The paper tape version of your program can now be loaded onto a non-RDOS
system following conventional binary load procedures. After loading the paper
tape, if you supplied the intializer entry with the /S switch, control will be

B-19

EXECUTING AN RTOS PROGRAM VIA PAPER TAPE WHICH WAS PRODUCED UNDER
RDOS (Continued)

transferred to the RTOS initializer; if you did not specify an initializer entry
address, you must place the value "376" into the data switches, press RESET,
then START.

In either case, after RTOS performs its initialization it will transfer control to
the starting address of your program if you specified a starting address as an
argument in the main program's . END statement. If you specified no such
starting address, the machine will stop after initialization and you must place
your program's starting address in the data switches, press RESET, then START.
Your program will now run until a HALT or JMP. instruction is encountered.

EXECUTING AN RTOS PROGRAM WITH THE SOS CORE IMAGE LOADER/WRITER

If the SOS core image loader /writer is to be used to execute an RTOS program,
one of two relocatable loaders must have been used and one of two corresponding
means must have been used to place the RTOS program onto cassette or magnetic
tape:

1. SOS relocatable loader (the core image loader/writer must have
been resident in main memory before the relocatable load).

2. RDOS relocatable loader.

If the first method is selected, the core resident RTOS program must be written
onto either a reel of magnetic tape or a cassette cartridge onto which the loader/
writer has been written as file zero. Core image loader/writer operation is
discussed in detail in the SOS User's Manual, 093-000062. In summary, to
transfer the SOS relocatably loaded program to tape, start the computer at the
next to last address in main memory. This will activate the loader /writer, which
outputs a prompt, "#'. After outputting the prompt, the loader/writer waits for
you to input a device number and file number, separated by a colon, to which the
core resident program is to be written. After the file has been specified, the
core image writer will request specification of the upper core address (NMAX)
to be written onto tape. It does this by typing

NMAX:

on the console. You must then respond with the highest core address (in octal)
which is to be written out.

B-20

EXECUTING AN RTOS PROGRAM WITH THE SOS CORE IMAGE LOADER/WRITER
(Continued)

Having written the RTOS program onto tape, it then may be read in from tape and
be executed by means of the core image loader. Set the console data switch O up,
and activate the core image loader by starting the computer at the highest available
memory address. The loader issues the "#" prompt on the console, and then awaits
your response of a device number (0-7),colon, and a file number (0-99) followed by
a carriage return. The indicated tape file is then loaded into memory starting at
address zero. The loader will halt after loading is complete.

If instead of the SOS loader the RDOS relocatable loader is used to create the RTOS
program, this save file can be XFERed by the CLI to a file on cassette or magnetic
tape. This file can then be executed by means of the core image loader as des-
cribed above.

The illustration on the following page summarizes the various methods which may
be used to execute an RTOS program. The illustration starts with the relocatable
binary modules comprising the program; these binaries are produced either by an
RDOS assembler or by the SOS assembler.

B-21

Stand-alone SOS
Extended Relocatable
Relocatable Loader
Loader

y

Core -resident Core-resident
RTOS program
{SOS loader /writed]

resident)

RTOS program

RTOS
Program
Relecatabl
Binaries

Write to tape
with SOS
loader /writer

"XFER"

writer, and

magnetic tape
or
cassette file

\

SOS
loader /writer

TBOOT
(CBOOT)
partial

initialization

RTOS Execution

program. SV

Execution
under
RTOS

TBOOT (CBOOT)
or SOS loader/

"RLDR/C™

"RLDR..."

A b
prograrm. sV program.SV

disk filc) .

(following RTOS disk file
conventions)
|
“prograiit’
"MKABS/S" Execution
to under
program. AB RDOS
"MKABS"
to
$PTP
program, AB
"BOOT" disk file
(HIPBOOT) "XFER" =
or to
MCABOOT /$PTP

absolute binary
paper tape
program

/

binary
loader

Procedures

B-22

APPENDIX C

wrhisrh Tan nacapnrmhlad vris B o Te o alot aa o
VT aoOCliluITuU Wi

Qr:3ma2n13 1 o.34l. DTNQ 0 A aom$+ N
QUpplicd Wil N 1UD 1o a dCL v

using RTOS and using system -defined
begins on page C-2.

=

nemonics. A listing of these parameters

el mAIN MACKO REV 2

vl
(s
43
A4
4>
b
w7
Po
s
lv
11
12
13
14
15
io
17
1a¢
19
20
21
2¢
28
24
2%
2o
27
28
29
R
31
RV
do
34
3>
3b
37
38
3y
dy
41
42
44
44
45
46
47
4y
4y
5¢
51
bhe
59
54
55
56
57
7]
59
(-1

AA o

177771
177772
177773
1727774
177775
177776
177777
WALG W

davnngl
AAava2
dhudvd
42001
Anoehen
JBeved
Adglap
wAuend
AP 4R
WP 1ann
ARAEA¢ Y
wdadiy
alvdiy
venavd
d4vdve

rTud

.
’
.
’

KrRKk

R "
KR W
RKRKRK

R ~
[L
K K

11T
I

I
I
T
T
T

1y 259229 ve/P7774

nrT

N
1]
&
o
n

THE OPEWRATING oYSTEM YOU

uout

c

0

anan

CaN UNDERSTAND
AR R R A R R R R R R R R I T

= = WEAL TIME UPENRATING SYSTES
= = FOk The NUVA FAMILY OF LOMPUTERS

H *drx KINS PARAMETER TAFE *xww

FFORTRAN 4 LONDITIONAL ASSEMBLY SwlTCH

FaSwey

i LeFL

+LUUSR
s UUSR
« ISR
«ULISR
+UUSR
JUUSR
+UUDR
+VUSK

. UUSR

s DUSR
» VUSSR
+DUSR
s UUSK
+DUSR
«JUSR
«UUSR
«ULISR
«DJUSR
LUUSR
«JUSR
sUUSR
+DUSR
i «0DuUSK

"'Qﬁ'ﬁt*'ﬁ'*iti"’tii""tttiti*tttt'it!'tittttit*iitt;

5558
S S

S N
5888

.
H
.
4
.
’
.
’
.
!
S ;
.
’
.
i
.
i
.
‘
.
’

FOUPERSEDEU BY FOGRTRAN LIV PARAMETERS [F PRESENT

NE THE USER STA(K

SSLGT=
S505P=
SSKTINE
$StADs
SSCrY=
SSALus
$$acCls
SSA(2=

-7
-t
-2
-4
-3
-¢
-1
4]

i DEVICE CHARACH

DCCPOs
DCCuN=
NneIuls
DCCnFs=
DCTo=
LVLKEYS
DENAF =
DCRAT=
ODCPLKs
DCLACSs
DCPFR=
DLFwD=
DCFRU=
DCLTus=
UCCbR=

1615

1old
ibtla
lold
1ole
loll
lpl
1y
18¥y
lown/
1hvo
1805
1oV
lo@o
loee
1801
low

DISFLACEMENTS

Vak[AbLE LENGTH OF CALLING'S FRAME
PREVICUS STACK PODINTER
RETURN ADUNESS COF CALLING PROLRAM

CARKY

H
H
i
7 EnTRY ALUKRESS
;
*
H

OF CALLED RUUT INE

SAVE STURAGE FOK CALLER'S ALCUMULLATORS

POLUON'T MOQIFY TnI> VISPLACENMENT!L)

ERISTICS

-

BUF'D

WO WA WM ME We We WE We We e e s W We We We e we ws

1

OUTPUT DEV,
TelETYPE
KeYoOARL ODEVICE
REQUIKES
REQUIKES
REQUIKFS
REGUIRES
INTERNAL TO KTN>:
INTERRUFT PER FulLL wORD 1/0 DEVICE
REQUIRES FOrRM FcEUu ON NFEN

CHANGE LOWER CASE ASCITI TU UPPENR
wRITE 8o COLLUMNS
OEVICE WITH BEAD GWUEUE

(INTERNAL TU RTOS, NON=PARAMETRIC)

NPUY DEV,

IF SUFPKRESSED ON UPEN:

USER SPECTIFIED TIMEOUT (MCA).
REGUIKES LEADER/TRALILEK
ReQUIKES TAB SImMULATIUN.

(RODS: 0P, INTERV.)

WITHOUT FURM FEED HARDWARE
UUTPUT DeVvICE

NULLS AFTER FOrM FEFUS
RLUBNUTYS AFTEK TABS
FAKITY CnECK

LINE FEFUS AFTER C.k,'S

AUTORESTART M(DE BIT

vdvndud
BR0dae
Jdeeni
ANJave
430dY3
dAnica
¢
sAvaLL
WApdv?
@ ld
oRRNLL
Mevl2
d8aa1y
“avbBig
40nd15
vwduid b
iy
ddiduen
Wzl

“AYne?
Yawvve2d
anrged
waudes
WAuAch
oWuded

wavayo
[T L L3
wdgied
dludid
YluR4
WAvYed
dAvnv6
vhvou?
60udl1
vdvoll
viéedi2
aaun1l
gAvaL 4

P USER STATUS TABLE (uST) TeMPLATE

«UUSR
+UUSR
«UJUSK
«UUSR
«DUSR
«UUSR
«UUSR
» ULSR
«WUSR
«DUSR
«UUSR
sULSR
«UUSR
«UUSR
«UUSR
JUUSR
s UUSR
«ULUSRK
s WUSR
i

«UUSR
SUUSR
«DUSR
+UJUSR
WDUSR
«UUSR

UsTs

USTPCs
uUsTems
UsSTsSs
USTeSss
USTNME
USTSAs
USTDAs
USTHU=
UsSTCS=
USTITs=
USToks
USTCHs
USTCTs=
UsTaCs
IISTFCs
USTIN=
H3TOD =
UsTSvs

UsTsas=
usSTXx@s
USTrQ=
uUsTOS=
USTNAE
USTENS

i LAYGUT uf AN

~ULISR
«DUSK
s UUSR
«DUSR
«WUSR
«WUSR
+UUSR
«DUSR
«UUSR
«UUSR
W DUSR
«UUSR
«DUSR

4@ 7 START OF USER STATNS AREA

4 ? RESERVEU FOR NDUS COMFATIWILITY

1 ;i ImAX

2 i START OF SYumbul TARLE

3 P END OF SYMBUL TARLE

a 7 ONMAX

5 i STARTING ADURESS

6 } DEBUGGENK ADDRESS

7 3 HIGHEST ADDRESS LSED

te } FURTRAN CUMMON AREA SI1Zt

11 i INTERRUPT AUDKRESS (NOT usSteD)

12 i BREAK AULDKRESS (NOT USED)

13 i # TASKS (LEFT), & CHANS (wIGHT)
14 7 INITIAL YCR AUDKRESS

15 : STAanT 0F K b oAy Y T el
io 7 START OF FREE TCB CrAIN

17 i INITIAL START OF NREL Cult

¢ 7 RESERVED FOR RDUS COMPATIRILITY
21 7 FURTRAN STATE SAVe ROUTINc (Uk)

==RUNS UST ENDS HeRb=e

22 ? STArT OF SUSPEND wlUEUE

23 7 START QOF ,XMT/,.REC GQUEUE

24 i START OF PSEUDO TASK GllEuE

25 i 1=SECUND CLUCK, SCREUULER ITuLE COUNTER
26 i NUMBER UF ACTIVE TASKS (TCR'S IN USE)
26 7 LAST ENTRY
RTGS TASK CONTROL BLUCK (TCB)

TPC=y 7 USER F(C + CARRY
TaCys=l 7 AL®

TaCi=2 P ALY

TaCzzy ; AC?2

TALd=4 7 OAL3

TPRST=S P STATUS HITS + PRIURITY
TSys=e } SYSTEr CALL wWORD

TLNKE7 ? LINK wWORD

TUSPs @ 7 USP

Telnsty i TUB EXTENSIUN AUDK(USED RY FORTRAN SCHELULERS)
Tius12 i TASKR D ENTKY

TTMP=13 ? RDDS REV 3'S CONTRIBUTIUN
TLNSTTMP=TP(C+]

{¥de d

vl
w2
)
Pa
vo
36
87

«MAIN

dAvhdve
ddivdel
T rdps
vl
AQv0pe
YPudvo
VveuvuYb
vdeoe?

vAeba?
WAvAnd

ARvBv4
vAYALd

VAvBYs
anedn7
ARKY10
WAwAll
unev12
wdgel2
duedld
4l a
wAudld

7 INTERKUPTED

+WUSR
'U'JSR
«WUSR
«WUSR
+VUSR
+VUSR
«LUSR
«DUSR

i PARAMETERS UESCRIDING

H
i
«LUUSR
«JVUSR

«UUSR
s JUSR

» DUSR
+DUSR
«DUSR
«UUSR
«UUSR
«UUSR
JULSR
+UUSK
«UUSR
7« DUSK

IPCL= 4]
IACus= 1
IACls= 2
IACZ= 3
IACYs= 4
ICMSK= b

IxKLOC=s 6

IsviM=s IRLOC+!

» 80 w
LN] 1
bEGINS 2
CTCops= 3
SCHED= 4
«3Y5,= b
RLuCe 6
I0ENDs 7

«LMSK= 1v
DISMIsSSall

UsSTP= 12
PANIC= USTP
TLINKS 14
RSCHDs 14
«TSAVE=s 15
UsSP= 16
LIE N] 17

e We We e e We W Ve We We Wy WE W e W s W Wa we WO

MACHINE SYATHUS STURAGe BLOCK LAYOUT

;] PROGLRAM CULNTER AND CARKY
i ACCUMULATUR STURALE

? CURKENT HARUWARE MASK
;i RLOC
i SAVL AwrA LENLTH

LAYUuT LGLATIUNS uel?

INTERKUFT PL STURAGE

INTERRUPT SERVILE RUUTINE AULUDKESS
OVERALL STARTINGL ANLURKESS (FLXED AT 2)
CURRENT TCh AUURESS=«]INITIALLY mHAD

7 STARTING AUODW FOR TBOO0OT USE (FLIXED

;7 AT 3),

ENTKRY PUINT TU SCHEUULER

SYSTEM mMQUE INDICATUR

7 (INTTIALLY © FUR HIPuNOT)

PAGE ZERO TEMP (=0 FOr LOMPATIRILITY)
ENTRY PUINT TOU I/u ENU PRUCESSOK
CURRENT SYSTEM INTERRUPT MASK
INTERRUFT NISMISSAL ROVUTINE AUDWESS
NEFINED FUR CUMPATIBILITY, SET TO 4dun
SYSTEM PANIC (CUNTAINS JMP)

ENTRY PUINT TU ENwEUE READY TCH
ENTRY PUINT TO READY (CTCu), SCHEUDULE
AUDRESS OF TCb STATE SAVE RUUTINE
USER STACK POINTER

ENTRY POINT TU SERVICE SYSTEM REQUEST

C-4

lbbed MaAIN

vl

e i DevICe CONTROL TAoLe (OCT) LAYOGUT

iR

4 vluBBAd ,DUSR DCTSVs] 7 INT STATE SAVE ADUR

35 WOCVEl L,UUSR DCTMS= 1 i MASKR UF LOWEK PRIURLITY DEVILES
(]] vALBB2 ,VUSR DCTIS= 2 ? INTERKRUPTY SERVILE ADDK

a7 wdubdEd ,uiISR ULTCH= 3 i DEVICE CHARACTERISTICS

/)]

QY vdnioud ,UUSR DLTCDs= 4 7 DEVICE COGuE

1¢ wARBNS L uUSR DCTeXs 5 I whENE TuU eXeCuTe 1/0 INSTRUCTINN
11 WOvAv6 VUSSR DCTUTs & i CUMMAND DISFATCH JABLE ANUKESS
12

1o ; DEFINE THE LUMMANL UFFSETS

14 6AYne +UUSR OF = [7 OPEN A FILE

15 vAvRK SDLSK CFs= 1 ;7 CLUSE A FlLE

16 0N Aw2 <DUSR RS= 2 7 READ SEWUENTIAL

17 TR «UUSR RiL= 3 i REAU LINE

18 BAwbuvdé +DUSRKR WSz 4 7 WKRITE SEQUENTIAL

1y Ueuvnps LISk Wi s 5 7 WRITE LNt

20 YOuvee6 «ULSR Rps [; REAL HLUCK

21 vhedu7 «LUSR Wi s 7 ! WRITE BLOCK

22 wavate JOUSK QA= 10 !} OPEN FILE FOR APPENLING
23

24 ¢deV6? L,OUSR DCTST= 7 } DEVICe START KOUTINE

2b d4ae@le ,0USR OCTIN= 1u 7 DeviCe INITIALIZATIUN ROUTINE

206 vdvbll JDUSR NDLTLKs 11 i FURWARD TCB LINKAGE

27 6AGA12 ,DUSR DCTI0s= 1¢ i TIMEOQUT CUNSTANT QR ZER(

28

29 7 TnE REMAINING DEFINITIONS ARE FUR BEAU DEVICES UNLY,

dv

R} WRUVAE3 ,UUSR DLTuLs= 138 i LINK IN DEVICE REWUEST BEAD CHAIN
3¢ vAvB14 ,DUSK DCTUP=s 14 i DEVICE BYTE DATA PUINTER

33 vlveld ,VUSR DLTLC= 15 7 DEVICE UATA CUUNT

34 vAeR16 VUSSR ULTUSE 16 "7 BEAD STATUS wWURD

35

36 videel17 ,ulUSR OLTuus 17 i BeAD ADDRESS (.-4)

37 Vdd¥eY ,uUSR DLTuP= 2u 7 REGUEST BEAU wlUBUE STARTING ALDR
3o bdudel ,UUSR DCTUCs 21 7 OPENFD UEVICE CrnARKACTERISTICS

3¢9 “RuR22 JOUSR DLTTYs= 2¢ 7 TEMP | FOx UEVICE CONTROUL

49 020023 ,uUUSR PLTT2s 23 i TeMP 2 PO UEVICE CONTROUL

41 vlLvded ,UUSR DCTCT= 24 7 CURKENT TIMEOUT CUUNT (INPUT UEVICE)
a2 vwovwed ,UUSR DCTCCs 24 i CuLuMN COUNTER (OUTPUT UEVICE)
49 2025 ,UUSR DLTPRs= 2> 7 EChU UEVICE PAIR POINTER (TTI AKLY)
44 vAYAeS ,UUSR DCTLC= 25 P LIne COUNTER (OJUTPUT DEVILF)

45 i =FOR SPELCIAL QUTRPUT MUDE:

46 6WVAE6 ,UUSR DCTSCs 2o FSAVED DEVICE REGUEST BYTE COUNTER
47 vdunde? ,DUSR DCTGN= 27 JUHARALTER FCR GENERATION

{@vnd
a1
ne
@23
Qa
25
LX)
a7
"X
0y
10
11
12
13
14
1>
16
17
18
16
2¢
21
22
23
24
25
26
27
28
29
du

oMALN

VvAvdv?
Wavavl
VLA 2
LY IR

;7 Bc AL COMPONENTS

+UUSR RULKsS
+UUSR RQUPTR=
SDUSR RUCNTs=
+DUSR RQySTs

REQGUEST LINK

REQUESYT BYTr POINIER
KEQUEDST BYTc COUNT
REQUEST STATUS (MuDt)

GRS
~. w8 we we

STATUS/MODE BITS Akt UEFINEU AS FOLLOWS:

180 BEAU IN DCT (MAIN BEAD), ASSULIATED WIThH TCo eDLTLK
iol PRESERVE TASK'S ACi, DON'T CALCULATE BYTES IxANS4]ITTEL
1815 MEANING OEPENUS ON BlT ¢ =

MAIN BEAD: LINE MUDE

UTHER BeAD: keQUEST DUNE (CLEARED IN ENWUE wOUTINE)

i OFFSETS FOk USER TAaSK WUBRUE TAdLE

we ws wp w8 ws wa We Wa Ve e

«OUSK wPCs
7 «DUSK WUNUMs

a STARTING PC
1

7 «DUSKR QTuvs= 2
3
4

NUMBEKR OF TIMES TU exeluTe
OVEKRLAY NuMpEwr (RUDS)
STARTING HOUR

STARTING SEC IN HUUkK

e wo wu we

7 «DUSR GShs=
7 +OUSKR WSMS=

;
i.DUSK WPRI=z TPRST ; MUST BE SAME
$DUSR WRR= 6 ; RERUN TIME IN SECUNDS
7«DUSR QTLNKs® TLNK 7 MUST ok SAME
7 DUSR WOCHs= 19 7 CHAN OVERLAYS OPEN UN (RDUS)
§.DUSK WCONLS= 11 ; TYPE OF LUAU
JoUUSR GTLN= GCOND=QPRC+1

Lot MAIN

d1

w2

0

a4 3} DEFINE THt UEVICE MASK plITs

2> : RUOS REv 3 VERSION

/]

a7 40U¥LEd ,UUSR MKTTO= 1514+i8i5 AR TS
28 Q00863 ,OUSR MKTTIz MKTTO PoTII
3y WRLALd LUUSR MKQTYs MKTTI PGTY
1o Wavae? L,UUSR MKPTP2 1Bbl3+MKTT] } PTP
11 ¢d¢®17 ,UUSR MKMCAs {B12+MKPTP ! MCA
12 vPAYALl7 ,UUSR MAPLT= MKM(CA] PLT
13 woud17 JuUSR MKLLPTes MKPLT P LPTY
id ¥Wéu2i7 ,UUSR MKDPO= 10Qu+MKMCA ;3 DPO
15 ¥ea217 ,0OUSR MRDPI= MDPO i DPI
io wvv617 L,0USR MKDKPz {pa7+mkPU ? MAD
17 dBe717 LUUSR MKDSKS {509¢MKDKP ;s FHD
in vwal717 JUUSR MKIPBs 1B6W6+MKUSK i IPB
19 ¢d1737 LUUSR MKPTR= 1611+MKIPH } PTR
2v w1777 LDUSR MKCUR® 181lo+MKPTR } CLk
21 401777 JDUSR MKMTAs MKCOR 7 MTaA
22 ©A1777 JUUSR MKCAS= MKMTA 7 CAS

love7

a1
ve
)
a4
a5
no
a7
d8
9y
1o
11
12
13
14
15
16
17
18
19
2u
el
22
23
24
25
26
e/’

JMAIN

0dbAay
sRvIRl
ARNnd62
0dBa0d
¢A¢LA6
4aeny2
AuvdtLs
vanuey
©wAwag?2
LY
vhved
Yoo
uBuue?
Woaadd
douvndy
0dvv36
WNdi4y
WArd4e2
wavgas
WAk ad
VAvv4a6
vAndaz

ARA60
vouvvol
bvovlel
Pl ad
wavivd
vdulae
TR RY]
voLL1d

} VEFINE THE

+UUSR
sUUSR
«WUSR
«UUSR
s UUSR
«UUSR
«JUSR
«DUSR
«JUSR
« DUSR
«UUSR
sUUSR
«UUSR
«DUSR
+DUSR
+UUSR
+DUSR
«VUUSR
+JUSR
«DUSR
«UUSR
«DUSR

7+DUSK ERUTSS

+DUSR
LOUSR
LUUSR
JUUSR
+OUSR
«DUSR
»DUSR
+UUSR

ERFNDOS
ERFNME
FERICMS
ERICD=
EREUF=
ERNDLE=
ERFUP=
ERUFT=
ERLL]S=
ERRINZ
ERPAR=
ERMEM=
ERSPCs
ErRFILE
ERSLL=
ERDNMI
ERTIMz
ERNUT=
ERXMTs=
ERIBS=
ERICB=
ExSiM=

ERFIUS
ERTID=
ERDTU®=
ERMCA=
ERSKR=
ERCLO=
ERABT=
ERNMCE

oe0T7

EXCEPTINONAL STATUS CULOES

ILLEGAL CHANNEL NUMHEXR
ILLEGAL FiLE NAME

ILLEGAL SYSIEM (Na4aNy
ILLEGAL CUMMAND FURrR DEVICE
END OF FILE

A NUNeBEXISTEMT FILE

FilLe NnOT UPENED

ATTEMPT TU USt A UFT aLkEADY 1IN
LINE LIMI) eXCBEDCED
dRTIN/LJERTN WITH NuwhEKE Tu LN
PARITY eRrROR uN READ LINE

NUT ENUF MEMOWRY AVAILARLE

OuT OF FILE SPALE

FILE READ ERKUR

UNIT NOT PRUPERLY SELECTEL
ILLEGAL DEVICE NAME

USER SET TIME ERRuR

OuUT OF TCo's

SIGNAL ADUKESS ALKEADY #lisY
DEVICE ALREADY IN SYSTE#
INSUFFICIENT CONTLIGUOUS BLNCKS
WYY ERROR

ERRUR IN USER TASK QUEUE TABLE
Flie IN USF

TASK ID ERRQOR

DEVICE TIMEQUY

MCA ERRUK

SHORTER RECEIVE REQUEST

I/70 TERMINATEU BY CLOSE

TASK NOT ABORTADLE

NUO MCA RECFIVE REWUEST

We WE WS WE Ve W We e W We s W We We We W Ws Vs Ve W6 s We Ws Ws We We We e we we wa

? END OF KTuS PARAMETER TAPE

JoE

APPENDIX D

RTOS ASSEMBLY LANGUAGE AND FORTRAN IV PROGRAMMING
This appendix illustrates a sample real time assembly language program and de-
scribes the procedures which must be followed in order to load and execute a

FORTRAN IV program under the Real Time Operating System.

Assembly Language Illustration

The sample assembly language program, illustrated on the following pages, causes
four user tasks to compete for the use of the system console, $TTO. Each task
types a unique message on channel zero. The sequence of events in the user
program is as follows.

First, all of the task calls which will be issued within the program are referenced
externally by an . EXTN statement on line 6. Thus the following two task calls will
be issued: .PRI and .TASK. If any task call were issued which was not externally
referenced, the assembler would report an undefined symbol and the program would
not be executable. System calls, on the other hand, must not be externally refer-
enced; the SOS and RDOS assemblers recognize each system call mnemonic and
assemble the appropriate value for each mnemonic. The . TXTM 1 statement,

line 7, packs all text strings from left to right; this is always required under RTOS
and RDOS.

Upon entry to TOT, the start of the program and only entry point declared by the

. ENT statement (line 5), the teletype is opened on channel zero.

Next, the program creates three tasks and passes to each task a different displace-
ment into the series of message byte pointers which will be used when the tasks
output to the teletype. Note that each of the three tasks is created at priority 10g.
When rescheduling occurs after each task call, the default task will continue to
receive control since it is created at priority zero when the program is first
started. After creating the three tasks, the default task adjusts its priority to that
of the other three tasks so that it can compete for the teletype on an equal priority
basis (line 30).

Each of the four tasks now executes the code beginning on line 33, and outputs its
message via system call .WRS . As each task issues the system call, it becomes
suspended and control goes to the task scheduler, which raises the highest priority
ready task to the executing state. Each task remains suspended until its system call
is completed. If the error return from any system or task call is taken, the program
issues a "JMP." call, and the task is idled.

The program . END statement has the argument "TOT". This will enable the RTOS
initializer to transfer control directly to the program.

D-1

rAal

wl
42
a3

Pk
no
wn7
Ao
0y
1
11
1¢
19
14
12
10
17

19
2¢
21
22

24
25
26
27
28
29
3w
31
3¢
33
34
35
36
37
38

ae
41
42
49
44
40
46
47
a8
49
5¢
51
5¢
54
54
55
56
57
58
59
oY

TurT MACHwO

F1YPELUTY

CAVPUY

APARAt 20436 TUT:
deviki'1264uy
dhneetvvonl’
St nldpvg
DRk 4tandayy

AlvEd 1 p20nd2h
Aot s2adaehd
wrunZt152avp
APRVNLAY\77777
ave11'a0daz4

nrv12'1514un
Pvl1atavupte!
APn1dtvndd2l

Ari1dt1514ue
ahaioturap1d!
ARu17 1414416

BRN2u1 177777
dru21'i%1adr

vwhe22'vw3442p L3
aru2311570nvu
LwEn24tn214dvn
ngwed'ngadn7
bprvzetanerl’7
Qw27 'l avp
G0y tvndagpd
weudltuun77

Seuw32tAhunly PRIUGRS
NRBSIT" AV 2 'NEWTASK S
dredatanarle COUNTS

R3OV b ERR:

vendotynge76" TT0S

ehwd7tazzi24
052117
ARENOG

wavdZ ' gnrdd MESS:
dvvd3trent LRy
dedaatapnloen
avaahtvevide"
nevaotavipy Han
Y- YRRV

451513

420Kko

MESOWN?

KEV ¢

1atvid2
TEST WiTrh My TITASKING

LTITL Tur
oENT TCGT
EXTN PRI
oTXTM
oNREL

«TaSK

LLOA & 4170
suB 1

s SYST
IPEN @
JSP EKR

LLA 2 PrIUW
LuA | NEwTASK
SuB 2 2

. TASK

JSR ERR

INC 2 2
o+ TASK
JSR Erw

InC 2 2
« TASK
JSR EKR

«PK1
Int 2 2

LOA
AQ0
LUA
LUtA
e SYSHT

.NRS v
JSR EnR
JmP L

«.MESS
3

3
COUNTY

- SN G

et in2

«TXT /8TT0/

stl

MESoN 2

MESSiwe?2

MESS2wY

MESSIw?

oTXT /TASK 1<15><12>/

w2/25/74

Sample Assembly Language Program

¥44az TuT
a1 w64y
v ANBRBR

A3 J0adatE521dl MESSI: JTXT /TASA 2<15><12>/
"X} 51513

abd N2UR62
a6 Whbd1?2
a7 NI AR

WB aCun61'nd21ul MESS2: L TXT /TASK 39€15><12>/
Ay ¢51513

19 HA2NNn6J
11 JR0412
12 sdBnpp

13 weub0'152101 MESS3: LTXT /TASK 4<15><12>/
14 ©51513

15 A2v06d

16 w6412

17 APk

13

19 oENL TOIT

Sample Assembly Language Program

2R3 Tud

CUUNT puricdal 1736 1744

bre nieeds?t 1/14 1/72¢ 1724 1/2¢8 1/3y 1/4¢6
L MWepg22! 1/39 174 1748

MEIDV Wudvid/! 1/54 1/58

MESOY vuldvda! 1755 2/93

MESS? wprasl! 1756 2/08

MESSI Puuvbd! 1/57 2713

NEATA Nudad ! 1717 1743

PrRIuKk rudede! 1716 1742

Tu? naAINY ! ke 1/4v4 1/7d 1714 2/19
JMESS pinpd! 1733 1753

PRI Pvaun2e! xn 1/46 1730

«TASK 2ndrie' XN 1/06 1719 1/23 1727
WITO videdo? 1719 1748

Sample Assembly Language Program (Continued)

The relocatable binary produced bv assembling this program can be loaded by

[

either the stand-alone extended relocatable loader, the SOS loader, or the RDOS
loader. In this illustration we show the dialogue that ensues when the program is
loaded by the stand-alone loader.

nA Antraifg +ha Ao aana AT (1]
.

After the loader is loaded § ana outputs the MeSsage oAr L=

o
AN CANANS L A P

, 1
A carriage return response causes the top 200 locations to be saved, preserving

the binary loader. After this, the star prompt is output. The program relocat-
able binary (TOT), RTOSGEN module, and two RTOS libraries are then loaded.

The RTOS module loaded with this program specifies 5 user tasks. Four user

tasks are needed, and a system task is also required since use of the peripheral
device is simultaneously requested by more than one user task. At the termination
of loading, (*8), the initializer starting address, 376, is placed in the data switches.
RESET, is then pressed, followed by START. The program is initialized and begins
at entry TOT, outputting the task messages until STOP is pressed.

SAFE =
*2 TOT
*2 RTOS
*2

*2
*8TASK |
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK
TASK

W WM =W WMND =DM N WwIND

Load Dialogue and Program OQutput

D-5

Real Time FORTRAN IV Programming

Since RTOS is a compatible subset of RDOS, RTOS will support a subset of

DGC Real Time FORTRAN IV. To write a Real Time (RT) FORTRAN IV program

for use with RTOS, you may use either the RDOS FORTRAN IV compiler or the

12K SOS FORTRAN IV compiler. Operating procedures for using these compilers
are documented in the FORTRAN IV User's Manual, 093-000053, Appendix D.

The only restriction on use of DGC RT FORTRAN IV under RTOS is that only those
real time calls may be used which have corresponding system and task calls imple-
mented in RTOS. Thus you must exclude use of the OVERLAY statement, and you
may use all RT FORTRAN IV calls except the following: FCHAN, FOVLD, FOVRL,
FSWAP, OVEXT, OVEXX, OVKIL, OVKIX, OVLOD, OVOPN, CFILW, DFILW, DIR,
FSTAT, and WRITR. Only the following disk and tape I/O-related call are available:
WRBLK and RDBLK for disk I/O, and MTOPD and MTDIO for magnetic tape.

Having produced one or more FORTRAN IV relocatable binaries, you use relocatable
load procedures which are similar to those documented in this manual, Appendix B,
for assembly language program binaries. The only addition to these procedures

is the loading of the FORTRAN run time libraries, RTOSFMT. LB, FORTI. LB,
FORT2. LB, FORT3. LB and the appropriate integer multiply/divide library. Thus
the relocatable load sequence using either the stand-alone extended relocatable
loader, the SOS relocatable loader, or the RDOS relocatable loader is as follows:

1. FORTRAN relocatable binaries (the program proper)
2. RTOS module produced by RTOSGEN.
3. RTOSFMT. LB (the RTOS real time FORTRAN IV run time library).
4, FORTIL. LB
5. FORT2.LB
6. FORT3.LB
7. An integer multiply/divide library
8. RTOSI.LB
9, RTOS2.LB
10. Other RTOS libraries as required (RTOS MTA. LB, RTOS CAS. LB,
RTOS DSK. LB, or RTOS DKP. LB)

After relocatable loading is complete, the FORTRAN program is started just as
any other RTOS program is started. Details for executing an RTOS program are
given in Appendix B.

APPENDIX E

RTOS Source Level Incompatibilities

Certain features of RTOS revision 3 operate differently from the way they did in
the previous revision. A summary of these differences follows.

R
1)

3)

An attempt to initialize or release a tape unit which has already been
initialized will result in error ERIBS being reported, 'device already
initialized". Under revision 05, no error was reported, the normal
return was taken, and the call performed no operation if the device was
initialized.

Under revision 05, system calls .RTN and . ERTN idled the system by
executing a "JMP . " in locations USTRL/USTEL of the User Status
Table. In revision 3 these displacements of the User Status Table have
been removed; execution of either of these calls causes the error return
to be taken unconditionally.

The label of the entry point to the RTOS initialization routine has been
changed from "INIT" to ".RTOS" .

.ARDY 1-

ASCII codes 2-14f

assembly language illustration D-1ff
ASUSP 1-2, 3-1, 3-3

asynchronous data communications mux (see QTY)

BEGIN 6-1f

cassette tape
data format 1-6f
initialization (see ,INIT) 1-6
I/0 (see , MTOPD, .MTDIO)
CBOOT 1-11, B-17f, B-22
channel 1-4 (see .GCHN)
characteristics inhibit mask 2-4f
.CHTB 6-2, 6-10
clock and calendar commands 2-26ff
close a file or device (see , CLOSE, .RLSE, or
.RESET)
.CLOSE 2-2f, 2-7, 3-2
.CMSK 6-2f
.COMM TASK 1-10
command summary A-1ff
compatibility with RDOS 1-9ff

console interrupts (see , WCHAR)
CSP 6-2f

CTCB 6-2f

.DELAY 1-2, 2-2, 2-26

device control table (DCT) 4-1f, B-8, C-5

device file tables (see ,DTBL, . PTBL, .QTBL,
. MCTB)

device support under RTOS 1-5f

direct block I/O 2-3, 2-10, 2-16

disk file structure 1-8f, 2-1

DISMISS 6-2f

.DTBL 6-2, 6-6f

.DUCLK 2-2, 2-29

error message summary A-7f
.ERTN 2-2, 2-6

INDEX

INDEX -1

£11 T I ; B D]

filc and 1/0 sys
formatting a disk
FORTRAN IV
free format 1/O 2-3, 2-8f, 2-18ff

~
o
o
Q
2
&
w

o
o~]
'
—

.GCHAR 2-2, 2-22

.GCHN 2-2, 2-6

.GDAY 2-2, 2-27

generating an RTOS system Appendix B

) 9_9q9rc

.GIIRZ 2-2, 2-28f
.GMCA 2-2, 5-2f
.GTOD 2-2, 2-28

high priority interrupt devices
.HINT 6-2, 6-8f

HIPBOOT 1-11, B-15f

HMA 2-24f

Hollerith - ASCII translation 2-14f

.IDEF 2-1f, 4-2f, 4-5, B-8
idle the system 1-2, 2-25
.IDST 3-1, 3-3f
incompatibilities, source level
LINIT 1-6, 2-2f, 2-8
interrupt table (., ITBL) 4-1, 4-5f, 6-2, 6-9
I/0 modes (see direct block, line, sequential,
free format)

E-1

INTP 6-1

IOEND 6-2f

IRMV 2-1f, 4-3f

IXMT 2-29, 3-1, 3-4f, 4-2, 4-6
.KILL 3-1, 3-5

line I/0 2-3

loading an RTOS program B-12ff, D-5

magnetic tape
data format 1-7, 1-9
initializing (see ,INIT) 1-6
I/0 (see .MTOPD, .MTDIO)
MCABOOT B-19

.MCTB 6-6
.MEM 2-2, 2-24
.MEMI 2-2, 2-24f

4-1, 4-5f, 6-8f, B-8

memory size commands 2-23ff System call

.MTDIO 2-2, 2-8, 2-18ff descriptions Chapter 2, Chapter 4
.MTOPD 1-7, 2-2f, 2-8f format 1-3ff, 1-9f
Multiprocessor Communications Adapter (MCA) cquivalence 1-3, 1-3

1-6, 2-4f, 2-17, list 2-2

Chapter 5, 6-6, B-7, B-10 system gencration (see RTOSGEN)
NMAX 1-3, 2-23f Task
no-ops 1-10 Concepts 1-1, Chapter 3

format 1-3ff, 1-9f
identification (see , TIDR, ,TIDK, ,TIDP, . TIDS,

. TASK)
.OPEN 2-2f, 2-4f scheduler 1-2f
states 1-2
status (see , IDST)
synchronization 1-3
panics 6-3 .TASK 1-2, 3-1, 3-6f, D-1
.PCHAR 2-2, 2-22 TBOOT 1-11, B-17f
power fail 4-4f, B-8 TCB 1-1ff, Chapter 3, 6-1f, 6-5
. PRI 3-1, 3-5, D-If Teletype commands 2-22f
.PTBL 6-2, 6-6f .TIDK 1-2, 3-7
.TIDP 3-1, 3-7f
.TIDR 1-2, 3-1f, 3-8
.TIDS 1-2, 3-1f, 3-8
.QTBL 6-2, 6-6f TLINK 6-2f
QTY 1-7f, 6-2, 6-6f .TSAVE 6-2f
.RDB 1-4, 2-2f, 2-10 .UCEX 2-30, 3-1
RDL 2-2f, 2-11ff JUIEX 3-1, 4-2f
.RDS 2-2f, 2-12f .UPEX 3-1, 4-5
.REC 3-1, 3-5f, 4-2 User File Pointers Table (, UFPT) 6-2, 6-6
.RESET 2-2f, 2-7 User interrupts Chapter 4
RLOC 6-2f User Status Table (UST) 6-2, 6-4
.RLSE 1-6, 2-2f, 2-9f USP 6-2f
RSCHED 6-2f USTP 6-2
.RTN 2-2, 2-25
RTOS
device support 1-5f
organization Chapter 6 .WCHAR 2-2, 2-23, 6-1
parameters 1-4, Appendix C .WRB 1-4, 2-2f, 2-16
RTOSGEN 2-1, 4-1f, 6-1, Appendix B, D-3 .WRL 2-2f, 2-16f
.RUCLK 2-2, 2-30 .WRS 2-2f, 2-17f
SCHED 6-2f .XMT 1-3, 3-1, 3-9
.SDAY 2-2, 2-27 .XMTW 1-3, 3-1, 3-4, 3-9

sequential I/0 2-3

.SMSK 3-1, 4-3

standard device table (see , CHTB)
.STOD 2-2, 2-28

. SUSP

. SYS.

1-2, 3-1, 3-6
6-1f

INDEX - 2

cut along dotted line

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments. Reference page numbers when

applicable. Label each comment as an addition, deletion, change or error
if applicable,

General Comments and Suggestions for Improvement of the Publication.

FROM:; Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST

FOLD DOWN
FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	Index-01
	Index-02
	replyA
	replyB

