DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

INTRODUCTION
TO
PROGRAMMING

THE NOVA COMPUTERS

A general description of how to write a program in
Nova assembly language, edit the source program,
assemble the source program into an object
program, debug the object program, and load and

run the object program.

Copyright (C) Data General Corporation, 1972
Printed in U. S. A.

093-000067-00

This manual has been adapted from the notebook used in the
Data General Programming Course. It contains an
overview of programming of the Nova computers for
programmers with limited or intermediate programming
experience.,

It is intended primarily as a general presentation of
how the programmer writes, edits, assembies, loads,
debugs, and runs programs on Nova line computers,
with limited descriptions of the basic DGC programs
available for these purposes.

A limited abstract/bibliography of some of the DGC
publications describing DGC system programs men-
tioned in this manual is contained in Appendix B.

I

Generate
Source Tape

Generate
Object Tape
(Assembly)

Load Object
Program
into Computer

Execute
Program

Type Program On
Off-Line TTY

Write a Load Editor Pro-
Program gram into
Computer

« Run Source
Load Assembler Tapes Thru
Program into ——— ™ Assembler
Computer Program
Load Binary Load Binary
Loader Program Object Tape >
into Computer

Start Program
at Starting Addr.
from Console

Type Program
into Text Editor

Assembly
Listing

Load Debug
I, II, or III
(optional)

Source
Tape

TABLE OF CONTENTS

ooooo

CHAPTERI-INTRODUCTION e s o 8 2 o &6 6 ® 8 8 6 8 8 0 5 0 & t 3 3

CHAPTER 2 - CENTRAL PROCESSING UNIT INSTRUCTIONS

Memory Reference Instructions (MRI). .

Move Data MRI's ceee oo
Modify Memory MRI's et cevees
Jump MRI's ceeeen ceotossene v

Arithmetic and Logical Instructions (ALC). ...
Arithmetic and Logical Functions
Carry Field
Shift Field . v cv o e e ven.
Skip Field.
Load/No Load Field

Input/Output Instructions (I/O) « « v e e e o v v v oo e v
Data Transfer

110107 1

o o o
e e E e w
@ © o 8 0 o 0 06 0 0 0 0 0 0 0 0 0 .
® 6 0 0 0 0 0 0 0 s s 0 0 0

Control Field
Special Functions. « « o « o o« e e s s 00 e 0o

CHAPTER 3 - BASIC ASSEMBLER

Label «. . iei it ieeeeeeenonsns
Opcode

Operand « ¢ e e o v o o0 v v oo
COMMENT v ¢ v oo v oot veeeeocosenconosans
Program Format cecesecccees s .
Special Characters..... et e et se e
Assembler Pseudo-ops « c et et

.LoC e e serree s

BLK .. oo ceooas s oo o e .

Source Program Termination Pseudo-ops
L.END ..
LEOT

@ @ o 6 0 0 0 8 o 0 0 2 s 0 0 0 0 0 0 s 0 s

iii

® o 0 o 0 s 0 ® o 6 6 o 5 s 0 0 s o

.
N
1

1
= O 00~ O s o=

U

.
.
.
.
.
.

.
.
.
.
.
.
.
.
I

. L]
. o
. C
.
. o
. .
. o
. .

I

NN DN DNDNDNDDNDDN
]

.
.
.
.
.
.
.
.

........

oo 2-11
c e o 2-12
....... . 2-13
e o . . . -3-

........ 3-
........ 3-
° o . 0003—
e e 3-

CHAPTER 3 - BASIC ASSEMBLER (Coninuted)

Symbol Table Pseudo-ops .

. DUSR

.DMR

. DMRA

ODALC. .
.DIO ...

.DIOA

.DIAC

CHAPTER 4 - TEXT EDITOR

Assembler Operating Procedures

e o o
¢ o o
o o o
o o o
e o o

CHAPTER 5 - CONSOLE OPERATION

Power Switch
Indicators. .

Switches. . . .«

CHAPTER 6 - PROGRAM LOADER

Bootstrap Loader
Binary Loader ...

CHAPTER 7 - NUMERIC DEBUGGER

Debug I ..
Debug III
Debug II .

Exammmg and Modlfymg Registers

® o s 0 o o o 0

Searching Memory .

Breakpoints
Punching an Object Tape

¢ o o o
® o o o
o o [
* o o L]
e o o o o o
e o 0 0 o @

o o

LI
0

LI

. .

.

e o o

o o

Calculations using Debug II . .,

CHAPTER 8 - I/O DEVICE HANDLING

Program Interrupts

Interrupt Service Routines . ..

Power Monitor and Auto-restart

Data Channel

iv

.

o 5 0 o 0 o o

o e o e o o
. o o
. e o 0 o L)
o o o o o o
. ® o o o o o
® o 0 0 0 0 0 0 0

e s 0 0 . .
ooooooooo
. e o o 0 0 o

o o LI L)
. L) ® e
e o o s o 0

. e o o s o @

. L . .
----- L]

® o o 0 s o o s »

.
e e 0o 0 0 0 0 0 o @
o 9 o o 0 o o« .
LI} e o o o s o
e o 0 o o s e s @

.
.
3
.
-
.
.

(3
.
.
.
.
.
.
.

.
.
.
.
3

L
.
.
.
L]
L]
W W W Wwwwwww
]
bt el =\ \O 00 N1

.
.
.
.
.
.
[}

L]
.
L]
L]
L]
s
]
[y

o . . 5-1
s 0 DY . e 5-1
. LY L) 5-2

Relocatability
Interprogram Communication
Assembler Extensions

Floating Point Numbers.

.

Double Precision Numbers,
Bit Boundary Alignment . . .

Conditional Assembly , .
Symbolic Debugger.......

CHAPTER 10 - BYTE MANIPULATION, .
CHAPTER 11 - PROGRAMMING TRICKS ..
APPENDIX A - SAMPLE PROGRAMS
APPENDIX B - BIBLIOGRAPHY

APPENDIX C - PSEUDO-OPS

APPENDIX D - INSTRUCTION MNEMONICS AND TIMING

APPENDIX E - IN-OUT CODES

APPENDIX F - ASSEMBLY ERROR FLAGS

INDEX

-
O O \O O \O \O \© O
1

.
1

.

1
= = O 00 00 0 H» =

[l =]

.
1

. 10-1

.11-1

CHAPTER 1
INTRODUCTION

The Nova family uses 16-bit words; the bits are labeled from left to right, @ through 15.
The core memory (core storage) capacity is a maximum of 32K (32,768) words. Thus,
memory addresses range from

@ through 32,767
or @ through 77,7778

and all memory cells can be addressed with a 15-bit word. The program counter,
therefore, is 15 bits long; addresses stored in memory occupy bit positions 1
through 15.

Core Size (Words) Memory Range Address Range
4K (4,096) @ through 4, ¢951¢ @ through 77774
8K (8,192) @ through 8, 19119 @ through 17777

12K (12, 288) @ through 12,287105 @ through 277773

16K (16, 384) @ through 16,3834 @ through 37777g

32K (32, 768) @ through 32, 7671(5 @ through 777778

The computer has four (4) 16-bit accumulators (AC@, AC1, AC2, AC3) in which all
arithmetic and logical functions are performed and through which all Input/Output transfers
are made (except Data Channel transfers that bypass the active registers. See page 8-5.)

Associated with the accumulators is the Carry flag (carry bit, link, etc.) which
indicates the occurrence of an arithmetic carry out of bit @.

The computer has one 15-bit Program Counter (PC) which contains the address of the
memory location containing the next instruction. Following the execution of each
instruction, the Program Counter is incremented by 1, resulting in a sequential program
flow. Normal program flow may be altered by changing the contents of the Program
Counter with a SKIP or JUMP instruction.

On the computer console are several switches, which allow manual entry of data into
memory and into the accumulators and which control program and computer operation.
There are also a number of indicator lights which display program, register, and
accumulator information useful in program debugging.

The instruction set of the Nova family can be broken down in three classes:

Memory Reference Instruction Class (MRI): This class contains instructions
which move data between the accumulators and memory, instructions which

1-1

modify memory, and jump instructions which alter the program flow,

Arithmetic and Logical Instruction Class (ALC): This class contains
instructions which manipulate the contents of accumulators and the Carry
flag and instructions which perform all the arithmetic and logical functions
between accumulators.

Input/Output Instruction Class (I/0O): This class contains instructions which
move data between the accumulators and the I/O peripheral devices and
instructions which serve only to control the I/O devices.

1-2

CHAPTER 2

MEMORY REFERENCE INSTRUCTIONS (MRI)

Each 16-bit MRI instruction word is divided into four (4) fields:

Command Field (C) @ through 4
Addressing Mode Field (I) 5
Index Field (X) 6 through 7
Displacement Field (D) 8 through 15
C 1] x| D |
g 4 56 7 8 15

The command field determines the type of instruction: move data; modify memory;
jump,

Every MRI must contain an effective address (E) which specifies which memory cell
is to be referenced.

The effective address (E) is formed by the Index X and the Displacement D, The Index
X refers to a register or accumulator to whose contents is added the displacement
D, res{ilting in the address of the desired memory cell.

E=(X)+D *
where () means the "contents of., "

If the Index (X) is @, then D is unsigned and may have the range @@@ thru 377g
(¢ thru 2551).

With an index of 1, 2, or 3 specified, the displacement D is a signed number which
takes on the values

positive: #¢9 through 177g or @ through 1274
negative: 377g through 2¢¢g or -1 through -128; 4

In other words, if bit 8 (the left-most bit of D) is a §, D has a positive value, If
bit 8 is a 1, D represents a negative displacement.

* Except when X = 1, see next page.

2-1

To obtain the effective address, D is added to the contents of the register or accumulator
specified by the Index X,

If X is Then (X) is And The Effective Address E Has The Range

1] 1) ¢ = E =377g. This is page @ or base page addressing; it has
fixed bounds and can be referenced from anywhere in memory.

@1 (PC) (Present location -2¢¢8) = E = (Present location +1778), This
is relative addressing; referencing is relative to the present
location.

1¢ (AC2) [(AC2) - 2¢¢8] =E= [(AC2)+177g], This is base register

addressing and is solely a function of the (AC2) which is
called a memory pointer,

11 (AC3) [(AC3) -2¢8g 1 = E = [(AC3) +1774].

If the Addressing Mode bit (I) is a @, then the addressing is direct, and the effective
address points to the memory cell that is to be operated upon.

I = 1 specifies indirect addressing. That is, the effective address points to a memory
cell whose contents form another effective address which replaces the old one,

In the memory word addressed, bits 1 through 15 are the new effective address, and bit
@ is the new I (Addressing Mode bit) which may be a @ (the new E is a direct address)
or a 1 (the new E is another level of indirect addressing).

ExamEIe :

If location 21@ contains 100360,
and location 36¢ contains (@365
and location 365 contains 123450

Then, if a fetch command has I = ¢, X=0¢¢g, D= 21¢, the result is (210)
directly, which = 100360,

But, if a fetch command has 1= 1, X = @¢, D = 21¢J, then:
(210) becomes a new effective address with I =1 and E = 36(25',
so (36Q) becomes another new effective address with I = ¢ and E = 365,
and (365) is the result, which is 123450,

This last example has two levels of indirect addressing.

2-2

Move Data MRI's

There are two MRI's which move data, One moves data from a memory cell into an
accumulator; the other moves data from an accumulator into a memory cell, The MRI:

LDA AC,D,X loads accumulator AC with the contents of the
memory cell specified by the effective address
E, which is made up of the displacement D

and Index X.

ACcan=@, 1, 2, or 3

Dcan =-200=<D= 177 X=1, 2, or 3)
or= P=D= 377 (X =0 or null)

X can =null, 9, 1, 2, or 3
Null and 0 have the same effect,

STA AC,D,X stores the contents of accumulator AC into
memory location E.

In an LDA instruction, the contents of location E are unchanged, and in an STA instruction,
the contents of accumulator AC are unchanged.

Example:
Load AC3 from five (5) locations beyond where AC2 points.
LDA 3,5,2

now E = (AC2) +5.
If (AC2) = 196, then E=106+5=113 and (AC3) will = (113).

Example:

Store (AC3) in the 1¢¢8 location preceding our present location,
STA 3,-104¢, 1
now E = (PC)-1¢¢

Examgle :

To set the indirect bit to a 1 in order to cause indirect addressing, insert the @ symbol
somewhere in the instruction statement :

2-3

If (AC2) = 106
and (113)= @10¢4¢7

then LDA 3,@5,2 loads AC3 with (1¢4¢7).
The same result could have been obtained with:

DA 3,52 (AC3)=1$4¢7

L 3,5,2
LDA 3,8,3 (AC3)=(10407)

The last statement is valid because E is computed prior to the execution of the instruction,

Modify Memory MRI's

There are two MRI's which modify the contents of a memory cell. The MRI:

ISZ D,X increments (E) by 1 and stores it back into E. If the new (E) = §,
the next instruction in the program sequence is skipped. If the new
(E) # #, the normal program sequence is followed.

DSZ D,X decrements (E) by 1 and skips if the new (E) = @,

Jump MRI's

There are two MRI's which alter the normal program sequence by jumping to an
arbitrary location. One simply changes the (PC), and the other saves the old (PC) + 1
before changing the (PC). The MRI:

JMP D,X loads E into the PC, takes the next instruction from location E, and
continues sequential operation from there, i.e., transfers control to E.

JSR D,X first computes E, then saves (PC)+ 1 in AC3, then loads E into the PC,

takes the next instruction from location E, and continues operation from
there, i.e., transferscontrol to E and saves the former (PC)+1 in AC3.

ExamEIe :

Execute the routine LOOP ten (1¢) times.

LOOP: ----=---
------- executes this 10; g times
DSZ COUNT
JMP LOOP

COUNT: 12

2-4

Examgle :

Make a ¢ (seu initializing) subroutine called LOOP that is executed 10 times before
control i turned to the main program. LOOP needs AC3 for computation.
JSR LOOP

LOOP:

SAVE:

CONST:
COUNT:

Examgle :

(return here)

STA 3,SAVE ;SAVE RETURN ADDRESS
LDA 3, CONST ;INITIALIZE COUNTER

STA 3, COUNT ,
----------- } execute l[Z)lg times

DSZ COUNT _ ;SKIP IF EXECUTED 10 TIMES
JMP LOOP+3 ;EXECUTE AGAIN

JMP @SAVE ;RETURN

g

12

[/

In this example, parameters DATAl and DATA2 must be passed to LOOP, and return
must be to the instruction following DATAZ2,

LOOP:

JSR LOOP
DATA1L
DATA2
(return here)

STA 3,SAVE

LDA 1,4,3 ;PUT DATAL INTO AC1
LDA 2,1,3 ;PUT DATA2 INTO AC2
LDA 3, CONST

STA 3, COUNT

........... (Example continued on next page)

DSZ COUNT

JMP LOOP+5
ISZ SAVE Cannot say JMP @SAVE+2 because
ISZ SAVE it would indirectly address via
JMP @SAVE

SAVE:)

CONST: 12

COUNT: p -

There are a number of pre-defined memory cells:

Location @ and location 1 are used by the hardware interrupt service routine,
When an I/O device requests an interrupt, (PC) +1 are stored into location
@ and control is transferred by a JMP @1,

Locations 2(-27 are auto-incrementing locations, If addressed indirectly,
their contents are first incremented by 1, then used as the effective
address.

Locations 3¢-37 are auto-decrementing locations.

Example:
Assume (20) = @@p451.
The instruction STA 2,@2(1,?[will cause the contents of location 2¢f to be incremented

to 452, and then (AC2) will be stored in location 452,

ARITHMETIC AND LOGICAL INSTRUCTIONS (ALC)

All arithmetic and logical processing is done between accumulators.

ExamEle :

(ACf) could be added to (AC1) with the sum left in AC@A. Also, (AC@) could be added
to (AC@) with the sum left in AC@,

This is possible because all processing is done external to the accumulators in the
following manner,

2-6

17 bits

Y

FUNCTION GENERATOR SHIFTER
A | A
1 16 16 17 bits
bit bits bits
CARRY ACCUMULATORS SKIP SENSOR

1
bit

16
bits \\ 17 bits

A
‘LOAD/NO LOAD'

Arithmetic and Logical Functions

The functional portion of all arithmetic and logical instructions is contained in bits
@ through 7 in the following manner:

SOURCH DEST.

I R Ac | FUNCTION

g 1 23 45 6 7 8 15

A 1 in bit @ indicates an ALC.

The source AC is called ACS,and the destination AC is called ACD in text following,

The function is specified by 3 bits allowing 23=3 possible functions:

COM ACS, ACD the 1's complement of ACS is deposited into
ACD (1's complement = all 1's changed to #'s
and vice versa)

NEG ACS, ACD the 2's complement of ACS is deposited into
ACD (then (ACD) =-(ACS))
MOV ACS, ACD copy (ACS) into ACD
INC ACS, ACD deposit (ACS) +1 into ACD
ADD ACS, ACD deposit (ACS) + (ACD) into ACD
SUB ACS, ACD deposit (ACD) - (ACS) into ACD
ADC ACS, ACD deposit (ACD) + 1's complement of (ACS) into ACD
AND ACS, ACD deposit (ACD) logical AND (ACS) into ACD

If ACS is not also ACD, then the original (ACS) are preserved.

Once the function has been performed, the result can be operated upon before it is
loaded into ACD.

These additional operations make up bits 8 thru 15.

NO
ACS | ACD | FNC |[SHIFT|CARRY LOAD

g 1 23 4 5 6 7 8 9 1 11 12 13 14 15

SKIP

Carg Field

The value of the carry supplied to the function generator prior to performing the
function is called the base value of the carry bit. This base value may be affected
by the results of the function performed. If the function performed in the function
generator results in an overflow, the base value of carry is complemented.

2-8

The following conditions will cause overflow:

Function

ADD‘ACS, ACD
SUB ACS, ACD
NEG ACS, ACD
INC ACS, ACD

ADC ACS, ACD

Unsigned Conditions Causing Overflow

(ACS) + (ACD) >216

-1
(ACS) < (ACD)
(ACS)=§

(ACS) = 216-1

(ACS) < (ACD)

The initial or pase value of the carry bit is specified in the instruction by bits i and
11. (The mnemonic is appended to the 3 letter function mnemonic).

If the Function is

Appended With

[\

Example:

SUB 2,9
SUBO g, 9

Shift Field

This Supplies

The current state of Carry to the function
generator,

A @ to the function generator,
A 1 to the function generator.

The complement of the current state of
Carry to the function generator,

clears AC@; resultant Carry bit is unknown
clears AC@ and Carry bit, since SUB causes an
overflow which complements the C=1 base value.

After a function has been performed, its results may be rotated left or right as
specified in the instruction by bits 8 and 9. (The mnemonic is appended to the
3 or 4 letter function and carry mnemonic, after the carry mnemonic, if one

occurs,)

2-9

If the Shift Field is The result is

- unchanged

L rotated left by 1 bit: bit 15 —14, 14 —13, ...,
1 —@, § —Carry, Carry —15

R rotated right by 1 bit: bit1—2, 2 =3, ...,
14 —15, 15 —Carry, Carry —§

S bytes are swapped: bits) thru 7 are swapped with
bits 8 thru 15; Carry is unchanged.

Example: Perform a true shift left of (AC1) by one bit.

MOvzZL 1,1
Skip Field
After the function has been performed and the results shifted, the results can be tested
to see whether or not to conditionally skip the next instruction in sequence. The
conditions are based on the specifications of bits 13, 14, and 15 in the instruction.

(The following mnemonics can be used. They follow ACD with , SKIP,)

The shifted result will be tested and the
If the mnemonic is program will

- never skip

SKP always skip

SzZC skip if the Carry bit is zero

SNC skip if the Carry bit is non-zero

SZR skip if the result (bits §} thru 15) is zero

SNR skip if the result (bits @ thru 15) is non-zero

SEZ skip if either the Carry or the result or both is zero.
SBN skip if both the Carry and the result are non-zero

Looad/No Load Field

Once the function has been performed, the shifting completed, and the decision for
skip made, the result may or may not be loaded into ACD depending on bit 12 of the

instruction.
2-10

LOAD/NO LOAD BIT 12 RESULT IS

-] loaded into ACD

1 not loaded into ACD, leaving
ACS and ACD unchanged.

Example:
Test for the sign of a number in AC1, but do not destroy it.

MOVL# 1,1,SNC
JMP POS
(negative)

POS: (positive)

INPUT/OUTPUT INSTRUCTIONS (I/0)

The 1/0 instructions control all the operations between the processing unit and peripheral
equipment, Every I/O instruction has the following format:

P11 AC | TRANSFER | CONTROL| DEVICE CODE

@ 23 4 5 7 8 9 19 15

Data Transfer

Any transferring of data is done between a particular device and a particular
accumulator. The accumulator involved is specified by bits 3 and 4 (@, 1, 2, 3).

The device involved is specified by the device code in bits 1@ through 15, Bits

1@ through 15 decode to 64 unique possibilities; however, only 62 devices may

be addressed (#1 through 76g). Device code @@ is not used, and 77 is a special

function code denoting the CPU. In a device, there may be up to 3 data buffers

(A, B, and C). Bits 5 through 7, the transfer field, specify the buffer involved and the
direction of the data transfer, whether IN or OUT. An IN transfer implies a

data transfer from the device buffer to the processor. An OUT transfer implies

a data transfer from the processor to the device buffer,

2-11

If the transfer field is The transfer is The mnemonic is

@ No I/O transfer NIO
1 Data IN from buffer A DIA
2 Data OUT to buffer A DOA
3 Data IN from buffer B DIB
4 Data OUT to buffer B DOB
S Data IN from buffer C DIC
6 Data OUT to buffer C DOC
7 (reserved for skip tests described later)

Control Field

Once the device, buffer, and accumulator have been specified, it is necessary to
send control information to the device via the control field, bits 8 and 9.

Associated with every device is a Busy and Done flip-flop. If both flip-flops are
clear (reset), the device is in the idle mode. To place the device in operation, the
Busy flip-flop must be set, After the device has processed the unit of data on a DATA
OUT instruction, or when a device has information available in a buffer register on

a DATA IN instruction, the Busy flip-flop is cleared and the Done flip-flop is set.

Usingthe control field in an /O instruction, the following control functions can be
specified by appending the appropriate mnemonic to the instruction.

If the mnemonic is The control function is

- No control,

S Set the Busy flip-flop and clear the Done flip-flop,
thus starting the device.

C Clear both the Busy and Done flip-flops, thus idling
the device.

p Special pulse output for customer applications; does
not affect Busy nor Done flip-flop.

2-12

The general format of an I/0O instruction is:

A M TMNAacrd~s YT
ontrol AC, Device Code

Example:

To type the character in ACf on the teletype:

DOAS , TTO
— b .
T L———— device
AC
control
transfer

This instruction causes the contents of AC@ to be transferred to Buffer A of the
TTO. The TTO is then started by the S in the control field, and the character
is typed.

Example:

To idle the TTY output:

NIOC TTO
Example:
NIO TTO could be used as a no-op since there is no control or data transfer.

Special Functions

Using the special function transfer code 7, it is possible to test the status of the Busy
and Done flip-flops and to conditionally skip the next instruction as a result of the
test.

Mnemonic XFR Code Cont. Code Function

SKPBN 7 @ Skip the next instruction if the
Busy flip-flop is non-zero.

SKPBZ 7 1 Skip the next instruction if the
Busy flip-flop is zero.

SKPDN 7 2 Skip if the Done flip-flop is non-
zero.
SKPDZ 7 3 Skip if the Done flip-flip is zero.

Each skip-on-flag function must designate a specific device.

2-13

ExamEle :

SKPDN TTI Tests the Done flag of the TTI.
SKPBZ 36 Tests the Busy flag of Device 36.
Example:

Read a character from the TTY, wait until it is in the Done state.

NIOS TTI ;START A READ CYCLE.

SKPDN TTI ;SKIP WHEN TTI1 DONE. (COULD BE SKPBZ TTI.)
MP .-1 ;CONTINUE SENSING STATUS.

DIAC @, TTI ;FETCH THE CHARACTER AND IDLE TTIL

The following two special functions, that use a device code of 77, are of particular
interest:

Mnemonic Description
READS AC = DIA AC,CPU Reads the contents of the console data switches and
deposit in AC,
HALT = DOC §,CPU Halt the processor,

2-14

CHAPTER 3

The assembler allows the programmer to write his program in a symbolic
mnemonic language as opposed to direct octal numeric- coding, The instruction
format for the assembler separates a line into four possible fields:

LABEL: OPCODE OPERAND sCOMMENT
LABEL
Labels must be of the form abbbb: where:

a= A-Z arnd.
and b= A-7Z and -9 and .

Example:

DONE:
. DABS:
. EC9:

A label may contain one or more characters, but only the first five characters are

retained by the assembler, and labels whose first five characters are the same are
considered identical. Note: The period (.) cannot be used alone as a label.

Examgle :

SQUARE = SQUARE.ROOT = SQUAR
SQU # SQUAR

The label may occur in any column, and all labels must terminate with a colon,
OPCODE

The opcode may follow immediately after the colon of a label, or in the event that no
label precedes it, the opcode may begin in any column. '

OPERAND
The operand must be separated from the opcode by atleast one space, one comma,

or one TAB. There maybe up to 3 operands, but each must be separated from the
other by at least one space, one comma, or one TAB,

3-1

Example:

LDA 91,2 LDA Brssssl 2

ExamEle:

LDA 3,0,2 F3 LDA 3,,2 but LDA 3,2 = LDA 3,,2
COMMENT

The comment field must always be preceded by a semicolon, If a comment is to be
carried to a new line, a semicolon must be the first character of the comment on
the new line. Any character may appear in a comment field except a CR or an FF
(Carriage Return or Form Feed).

PROGRAM FORMAT

Every statement must end with a CR. Do not forget the CR after the . END statement,
which must be the last statement of the symbolic program.

The assembler contains pre-defined settings at every eighth space from the-
beginning of a line: columns 1, 9, 17, 25, ...

When the TAB key is depressed (CTRL I) or when the TAB code appears on the paper
tape, the softwarc spaces to the next tabulation column.,

The assembler automatically segments the listing into pages that are 11 inches

long. The top of each page is indicated on the listing by the appearance of three
underscore characters in the upper left-hand corner. It is possible for the pro-
grammer to force the assembler to begin a new page in the listing by merely in-
serting a form feed character in the input source tape. If the new page was begun
as a result of a program-executed FF, the three underscorcs will appear as follows:

L I

In arithmetic expressions, there is no hierachy of operations; they are performed
from left to right, with no parentheses allowed. Allowable operators arc:

+ -/ & ! where: & =A = AND 1 =V = OR

SPECIAL CHARACTERS

There are four special characters: . @ #

. indicates the current location or contents of the program counter,

3-2

Example:

JMP .+l = JMP (PCH1 or jump to the next instruction,
Example:

C=. . assigns the present contents of PC to the symbol C.

T

replaces the next character by its ASCII equivalence. (Does not apply to
RUBOUT, LINE FEED, FORM FEED, or NULL.)

Example:
A: "A stores the ASCII equivalence of the character A into the cell labeled A,

Example:

Make up a memory cell

@ places a 1 in the indirect bit of an MRI or an address word., This 1 bit is
OR'ed (V) with the assembled instruction after the rest of the instruction
has been assembled.

Example:
LDA@ 0,0,1 is assembled as
g2p400 v PP2000 = P224P0

(PP2pPP is the value of @ for an MRI instruction.
Example:
If AGET: @OE and JOE=¢27351

then AGET will contain 27351 v/ 19@00@ = 127351 because 1¢#0@¢ is the value of @
for an address word.

places a one in the no load bit of an ALC. As with @, the 1-bit is OR'ed
with the assembled instruction.

Example:
ADDL 1,2,SZC has @ in bit 12 (1]A1[10 [110]p1]pp R 010 |
ADDL# 1,2,SZC has 1 in bit 12 [1]g1]1g [110]d1 Tpd 1 [@10 |

The firstinstruction assembles as 13312 and places the sign of the sum in Carry,
the rest of the sum in bits $#J-14 of AC2, and either @ or 1 in bit 15 of AC2, depending
upon whether or not there is a carry out of the sign bit. The instruction causes the
processor to skip the next instruction on a positive sum,

The second instruction assembles as 133112 and causes the processor to skip the next
instruction on a positive sum without affecting either Carry or AC2,

ASSEMBLER PSEUDO-OPS

A number of pseudo-op instructions are associated with the assembler. These symbols
relay commands to the assembler.

. LOC Expression

This pseudo-op is used to set the contents of the location counter to the value determined
by the expression. If this pseudo-op does not appear in the symbolic program, the
program will be assembled starting at location f.

ExamEle :

If it is desired that the program be assembled starting at location 400, the first state-
ment of the program should be :

. LOC 400

The contents of the location counter may be changed at any point in the program with
a . LOC statement.

3-4

£

Reserve a block of ten locations for a table whose first location is TBL1.

. BLK Expression

This pseudo-op is used specifically to reserve a block of storage. It is important
to note that the block of storage reserved is not initialized to zero.

Example:

The previous example may be written in the following manner:

TBLl: ,BLK 12
or TBLl: ,BLK 2*5

. RDX Expression

At the beginning of each pass, the assembler is initialized to interpret all integers
‘as octal, The radix can be changed at any time by using the pseudo-op:

.RDX Expression
The expression must evaluate to an integer between 2 and 1) and any integers in the
expression are always interpreted as being decimal, Once a change of radix has been

made, all succeeding integers are interpreted to that radix until such time as another
radix change is made or the present assembler pass is completed.

Examgle:

To reserve a block of ten locations:

.RDX 14
TBL1: .BLK 19
.RDX 8

. TXT *message *

Character strings may be stored, 2 characters to a word, by using the ., TXT
pseudo-op followed by the character string enclosed by text delimiter characters,
which are any characters other than those contained within the string, CR, TAB,
comma, space, null, LF, FF or RUBOUT. Within the text message the assembler
ignores CR, FF, LF, RUBOUT, and NULL characters.

ExamEles:

@ 8
.TXT *ABCDEFG* gets stored as B A
D C
F E
null] G
.TXT *ABCD" gets stored as B | A
D |C
null|null

Normal packing is from right to left; however, the packing may be changed to left to
right at any time by a , TXTM pseudo-op described below. The packing remains in the
new modec until altered again or assembly terminates.

Prior to packing, each character is reduced to only the low order 7 bits of the ASCII
code, The 8th (leftmost) bit can be selected by using the following text pseudo-ops:

LTXT left bit is always @

. TXTF left bit is always 1

. TXTO left bit is odd parity
. TXTE left bit is even parity

Within the text string, any character can be introduced by enclosing it within angle
brackets,

Examplc:
. TXT 33+ puts in just the code 33

. TXTM Expression

If the expression evaluates to zero, packing is from right to left, If the expression
evaulates to non-zero, packing is from left to right,

3-6

Source Program Termination Pseudo-ops

Every source program tape must end with one of the following pseudo-ops:

. END This causes the assembler to put a START
block at the end of the object tape, forcing
the Binary Loader to halt when the object
tape has been loaded.

« END expression This causes the assembler to put a START
block at the end of the object tape, forcing
the Binary Loader to transfer control to the
location specified by Expression after the
object tape has been loaded.

.EQT This tells the assembler that there is
another tape for this source program. After
encountering this pseudo-op, the assembler
will halt, allowing the operator to load the
next tape. When the CONTINUE switch
is depressed, the assembly will continue.

Symbol Table Pseudo-ops

By using symbol table pseudo-ops, the user can define new instruction mnemonics
and assign names to constants,

.DUSR

This pseudo-op is used to define symbols which, when used in the source program,
require no additional arguments.

Example:

Define the following constants:
. DUSR TEN=12
now can be used as:
LDA 1, TEN,3
and is equivalent to:
LDA 1,12,3

3-7

ExamEle:

Define a no-op symbol.

.DUSR NOOP=MOV /)]

ExamE] e:

Define a symbol that will type the character in AC§
. DUSR TYPE@=DOAS §, TTO

Use the symbol in place of the instruction:

SKPBZ TTO
JMP -1
TYPE(

Define a symbol that will type the character in ACl:
. DUSR TYPEI=DOAS 1, TTO

.DMR

This pseudo-op is used todefine MRI's which do not require an accumulator as an
operand. An example of such an instruction is JMP,

Example:
Define a symbol GOTO that acts exactly like the JMP instruction,
.DMR GOTO=]MP @
can be used as:
GOTO ABC
and is equivalent to:

IMP ABC

» DMRA

This defines MRI'S which require an accumulator as an operand. An exampie of an
instruction of this type is LDA.

Example:
Define a symbol LOAD that acts exactly like the LDA instruction.
.DMRA LOAD=LDA ?,0
can be used as:
LOAD 3,XYZ
and is equivalent to:
LDA 3,XYZ
.DALC
This defines arithmetic and logic class symbols,
Ex_amEle:
Define a symbol which will skip the next instruction if (ACS) >(ACD).
.DALC SGT=SUBL# @, P, SNC
can be used as:
SGT 2,3
Skips if (AC2) >(AC3) and saves the contents of both.

For Unsigned Numbers:

SUBZ# 1,#,SZC ;SKIPIF ACp < AC1
ADCZ# 1,8,SZC - ;ACP < AC1

For Signed Numbers:

SUBL# ACS,ACD,SNC ;ACS > ACD
ADCL# ACS, ACD,SNC ;ACS =ACD

SUBL# ACS,ACD,SZC ;ACS <ACD
ADCL# ACS,ACD,SZC ;ACS<ACD

3-9

.DIO
This defines 1/0 symbols in which only a device code is required as an operand.
Example:
Define a symbol which will issue a start pulse to a device,
.DIO STT=NIOS [

. DIOA

This defines I/O symbols that require both an accumulator and a device code as
operands.

Example:
The DOA instruction is defined as shown,
.DIOA DOA= 61000

. DIAC

This defines an instruction that requires one operand which will replace bits 3
and 4 with an accumulator number.

Example:
The INTA instruction is defined as shown:
. DIAC INTA=DIB @, CPU
. DALC symbols can be appended with any onc of the following 4th characters:
L R S Z O C(Carry and shift fields. See pages 2-8 and 2-10),
and any one of the following Sth characters:

L. R S (Shift field after carry field. Sce pages 2-9 and 2-10),

3-10

. DIO and ., DIOA can be appended with:

S C or P (Control

Hence, care must be taken in selecting the fourth and fifth letters of ., DALC, .DIO,
and . DIOA symbols., See Assembler Manual (093-000017) for details,

The user defined symbols become part of the initial symbol table which also contains
the instruction mnemonics and the permanent symbois. The initial symbol table
can be reduced to its initial size only by reloading the assembler,

By using the pseudo-op . XPNG, all user defined symbols and instruction mnemonics
are erased from the initial symbol table leaving only the permanent symbols such as
. and the pseudo-ops. This enables the programmer to redefine even the instruction
mnemonics. But since there are no symbols in the table, new initial symbols must
be defined numerically.

The following ASCII characters are ignored by the assembler:

NULL - 10
RUBOUT - 377
LF - @12

ASSEMBLER OPERATING PROCEDURES

When the assembler is loaded, it requests information on the input and output devices
to be used and on the assembly mode. The assembler can be restarted at location
pPPP2, and new I/0 assignments can be made. Restarting at location @@@@3 initiates
only a new MODE request. The assembler queries are given below.

IN:

The user responds to the input device request with a single digit naming the device.
The following numbers may be given:

Teletype reader without parity checking
Teletype reader with parity checking
Paper tape reader without parity checking
Paper tape reader with parity checking
Teletype keyboard without parity checking

U s w N

LIST:

The user responds to the listing device request with a single digit naming the device.
The following may be given:

3-11

Teletype Model 33

Teletype Model 35

Line printer

Paper tape punch (for ASR33)
Paper tape punch (for ASR35)

Tt Wb

BIN:

The user responds to the binary output device request with a single digit naming the
device, The following may be given:

I Teletype punch without local symbols
2 Paper tape punch without local symbols
3* Teletype punch with local symbols

4* Paper tape punch with local symbols

MODE:

The user responds to the assembly mode request with a single digit naming the mode.
The following may be given:

Pass 1

Pass 2 - Output object tape

Pass 2 - Output listing

Pass 2 - Output object tape and listing
Output symbol list

U W N

* Only when using the Relocatable Assembler, See Chapter 9.

3-12

CHAPTER 4
TEXT EDITOR

The editor enables text editing on previously prepared files as well as generating and
editing new files, Once loaded, the editor is self-starting and, in a 4K machine,
provides over 3000 characters of text storage, This is approximately three 8-1/2 x
11 pages of normal symbolic source program text.

The editor logically segments the input string of characters into smaller subdivisions
for ease of editing. The entire input file is first segmented into pages where a page

is defined as a string of characters up to, but not including, an FF character.

Pages are further segmented into lines where a line is defined as a string of characters

un to. and includino. a carriace return
up to;, and includin g, a carriage return,

Once a file has been loaded into the text buffer, an implicit character pointer (CP)
is located within the text. It is the location of this CP that references all editing
processes, The CP can be considered as always pointing between two characters
in the edit buffer,

The normal editing procedure is to input a page, edit the text, and output the
edited page.

When loaded, the editor first requests I/0 device information, i.e.,
TTO (1) OR PTP (2) ?
TTI (1) OR PTR (2) ?
OUTPUT PARITY (1) OR NOT (2) ?
INPUT PARITY (1) OR NOT (2) ?
All editing commands are given from the teletype keyboard.

The following [/O commands are available:

Y Yank a page into the edit buffer from the input device. Old
contents of edit buffer are crased,

A Yank a page into the edit buffer from the input device, and
append it to the present contents of the edit buffer,

T Type the entire edit buffer on the TTY.

nT Type n lines of the edit buffer on the TTY starting at the current
position of CP.

p Punch the entire edit buffer on the output device, and follow it with
a FF.

4-1

npP

PW

nPW

nR

F

nk

Punch n lines of the edit buffer on the output device, and follow
it witha FF. Punches from current position of CP.

Punch the entire edit buffer on the output device, and do not follow
it with a FF,

Punch n lines of the edit buffer on the output device, and do not follow
it with a FF. Punches from current position of CP,

Perform a P followed by a Y (PY) n times,
Punch a FF on the output device.

Punch n inches of leader tape (null code) on the output device,

The following editing commands are available:

nk

nD

Position the CP to the beginning of the edit buffer,

Position the CP to the end of the edit buffer,

Position the CP n lines from the beginning of the edit buffer,
Position the CP n lines from the current position of the CP.
Position the CP n characters from the current position of the CP,
Delete (kill) n lines from the current position of the CP.

Declete n characters from the current position of the CP,

XMcommand ;...commandp$ Define the macro-command string.

nX Exccute the previously defined macro-command string n times,
XD Delete the previously defined macro-command,
Sstring$ Scarch for the string beginning at the current position

of the CP, and rcposition the CP after the last character
of the "found" string.

Cstringl $stringo$ Scarch for string 1 beginning at the current position of

the CP; when found, replace string 1 by string 2, and
reposition the CP after the last character of the
"inserted" string,

Istring$ Insert the string starting at the CP, and reposition the
P after the last character of the "inserted"” string.

In addition, the following special commands are available:

Print the number of characters in the edit buffer on the TTY.
Print the number of lines in the edit buffer on the TTY.

. Print the line number on the TTY where CP is now positioned.
RUBOUT Erase the last character (will echo character deleted)
CTRL C Return control to the Editor,

The editor ignores from text input:

NULL 300
RUBOUT 377 (not ignored in a command string)
LF ?12

Restarting the editor at location @@@P2 initiates a request for new /O assignments.
Restarting at location @@@@3 initiates only a command request.

The command delimiter is the ESC (escape) key, which is echoed as a $. Any number
of commands may be inciluded within a command statement, with no additional
delimiting required, over and above that specified for the individual commands.
Execution of a command string is not performed until the string is terminated

with two (2) consecutive ESC characters. All numeric arguments are in decimal.

4-3

ExamEIe :

Search the edit buffer for a string, insert a statement before this string, print the
new statement and the one following it. Then search the buffer for another string,

change it, print the line containing the new string, and punch the contents of the buffer
with a leader and trailer tape.

Buffer start
Search on GETC:
Reset CP to beginning of line
“nsert ";INPUT ROUTINEQ"

BSGETC:$¢LLI;INPUT ROUTINE
$-1L2TBCPUT:$PUTC:$@L1T25FP25F$$
'Y T A
Punch 25 inches of trailer
Punch entire buffer
Punch 25 inches leader
Type one line
Reset CP to beginning of linc
Change PUT: to PUTC:
Buffer start
Type two lines
Reset CP to beginning of previous line

When initially loaded, the editor will simulatc a software TAB. In other words,
the formatting switch within the editor is "set”. The condition of this switch can be
complemented at any time by typing CTRL P.

After loading the editor, tapcs may be created at the keyboard in the following manner:

4-4

CHAPTER 5

POWER SWITCH

The power switch has three positions:
OFF - Power off position.
ON - Power on, normal operation mode,

LOCK - Power on, operating switches disabled, only data switches enabled,

INDICATORS

The Nova family of computers have the following indicators on the console:

INSTRUCTION - Display left 8 bits (through 7) of most recently executed
~instruction, (Nova and Supernova only).
ADDRESS - Display contents of PC.
DATA - - Display data written in last MRIL
Supernova: Following a memory step, the data indicators
' display the address for the next reference.
RUN- - Processor is running.
ION - Program interrupts are enabled.
FETCH - Next cycle will fetch an instruction from memory.
DEFER - When executing an indirect addressing instruction, next cycle
will fetch an address word from memory.
- When executing a move data or modify memory instruction,

EXECUTE
' next cycle will fetch operand from memory.

The following additional indicators are on the Nova and Supernova:
DCH - - Next cycle will be used by data channel for 1/0,
PI - Next cycle will start a program interrupt,

The following additional indicators are on the Supernova:

OVERLAP - When executing ALC class instructions from read-only
memory, execute/fetch overlapping is occurring.

5-1

PROTECT

SWITCIIES

(Used with memory protect option),

When in RUN mode, only data switches and the STOP/RESET switch are enabled., The
switches have the tfollowing functions:

AC@® DEPOSIT

ACH EXAMINE

Loads the contents of the data switches in ACf,

Displays the contents of ACf in the data lights,

(AC1, AC2, and AC3 opcrate like ACf) in deposit and examine positions,)

EXAMINE

DEPOSIT

EXAMINE NEXT -

DEPOSIT NEXT

STOP

RESET

START

CONTINUE

INST. STEP

MEMORY 5TEP

1

Loads the address contained in the data switches into

PC and displays the contents of that address location in the
data lights. (PC is displayed in the address lights).
Deposits, and displays in the data lights, the contents of
the data switches into the address location specified by
the address lights,

Increments PC by 1, then performs an EXAMINE,
Increments PC by 1, then performs a DEPOSIT,

Finishes the current instruction, then stops the processor
by turning off the clock., (Resets the RUN {lip-flop.)

Performs a STOP, resets all 1/0 flags and disables
interrupt. (Resets the 10N flip-flop).

L.oads the contents of the data switches into PC and begins
normal operation by executing the instruction at the location
specified by PC. (Scts the RUN flip-flop).

Begin normal operation in the state indicated by the lights.

CONTINUE for onc instruction cycle,

CONTINUE for onc processor cycle, (An instruction
cycle can be comprised of up to five (5) processor cycles),

There is an additional switch on the Supernova, Nova 800, and Nova 1200:

PROGRAM LOAD -

This is a hardware loader that loads the Binary Loader
from a special tape.

5-2

There is an additional switch on the Supemmova:
CHANNEL START - Can be used to start a data channel input sequence manually,
It is good practice to RESET before START.

The figure on the page following shows the operator console of a Supernova that has
all indicators and switches. The consoles for other Nova-line computers are similar,

OVERLAP PROTECT RUN ION

POWER INSTRUCTION | | | | N
oN FETCH EXECUTE

ADDRESS | | | | |

OFF LOCK : - DEFER
DATA | l | l l

CARRY 0 " 1 2 3 4 5 6 7 8 9 10 11 12 13 1 15 | DCH PI

OO O 000 OIOOOO0 OO0 OO
DEPOSIT P ACO ACl AC2 AC3 ¢1RESET START DEPOSIT EXAMINE MEMORY STEP PROGRAM LOAD
EXAMINE ° STOP CONTINUE DEPOSIT NEXT EXAMINE NEXT INST. STEP CHANNEL START

DATA GENERAL CORPORATION SUPERNOVA

SUPERNOVA OPERATING CONSOLF,

5-4

CHAPTER 6

PROGRAM LOADERS

BOOTSTRAP LOADER

The Bootstrap Loader is a very short program which is manually loaded into memory.
When executed, this program reads in a more sophisticated loading program called the
Binary Loader. It is the Binary Loader which is used to load all other program tapes
into memory.

The Bootstrap Leader elimin then for manually entering a much longer loading

program,
The Bootstrap Loader program for Paper Tape Reader input is shown below. To
change this version for Teletype input, change the underlined portions of the program

as follows:

Change PTR to

£

Change 12 to 14

$7757 12644§ GET: SUBO 1,1 ;CLEAR ACl, CRY
p776p P63612 SKPDN PTR
g7761 PPP7I77 JMP.-1 sWAIT FOR DONE FLAG
p7762 P6PS12 DIAS @, PTR. ;READ INTO AC@ AND RESTART READ
#7763 127199 ADDL 1,1 ;SHIFT AC1 LEFT
#7764 127199 ADDL 1,1 " ;4 PLACES
$7765 197993 ADD §,1,SNC ; ADD IN THE NEW WORD
#7766 PPB772 IMP GET+1 ;FULL WORD NOT ASSEMBLED YET
#7767 PP14pp - JMP®,3 ;OK, EXIT
;BOOTSTRAP LOADER STARTS HERE
§7779 P6P112 BSTRP: NIOS PTR ;START THE READER
g7771 PP4766 JSR GET ;GET A WORD
g7772 (P444p2 STA 1,.+2 'STORE IT TO EXECUTE IT
#7773 PP4764 JSR GET ;GET ANOTHER WORD

; THIS WILL CONTAIN A STA INSTR

; THIS WILL CONTAIN JMP . -4
.END

6-1

In order to reduce the possibility of erasing the Bootstrap Loader, it is common
practice to load it into upper core. Thus, the Bootstrap Loader is entered beginning
at location X7757 where X is the number of 4K memory blocks available over and
above the initial 4K block.

Example:
Starting Address of The
Machine Core Size Bootstrap Loader

4K #7757

8K 17757
12K 27757
16K 37757
20K 47757
24K 57757
28K 67757
32K 77757

Once the Bootstrap Loader is in memory, the operator loads the Binary Loader

tape, 091-000004, into the reader, rurns the rcader ON, sets the data switches to x7770,
presses RESET then START. The Binary Loader program will then be read into
memory,

On the SUPERNOVA, there is no need to manually load the Bootstrap Loader. It

is necessary only to load the special Self-Load Bootstrap and Binary Loader tape,
091-000041, into the reader, set the data switches on the console to contain

the device code of the reader, turn the reader ON, and press PROGRAM LOAD. The
Binary Loader program will then be read into memory.

The NOVA 800 and NOVA 1200 have an optional self-load feature, The Bootstrap
Loader is part of the NOVA hardware and the Binary Loader is on a special self-

load tape. It is necessary only to load the special Binary Loader tape, 091-000036, into
the reader, set the data switches on the console to contain the device code of the
reader, turn the reader ON, and press PROGRAM LOAD. The LSI chips containing

the Bootstrap Loader are deposited in memory and the Binary Loader tape is then

read into memory,

BINARY LOADER

The Binary Loader program loads all absolute object tapes into memory and resides

in core locations x7646 through x7777. It is common practice to write programs which
do not alter these locations, thus eliminating the need to reload the loaders. In all

but very rate instances, DGC standard software is written so as not to destroy the
Binary or Bootstrap Loader programs. In no casc will any of this software destrov the
Bootstrap Loader program,

6-2

To load object format tapes using the Binary Loader, load the object tape into the
reader, turn the reader ON, set the switches to x7777, set data switch @ to specify
the reader in use (down for TTY reader, up for PTR), press RESET and START.

If the End Block on the object tape specifies a starting address of the program, the
Binary Loader will transfer control to that location once the tape is loaded. Otherwise,
load the starting address of the program into the data switches, press RESET then
START.

6-3

CHAPTER 7

There are two numeric debuggers and a symbolic debugger that can be used in
debugging programs on NOVA-line computers. The debuggers are called Debug I,
Debug II, and Debug III, Debug II is described in detail here.

DEBUG 1

Debug I is a stripped down version of Debug II. Debug I requires so little resident
memory (about 2%1@ locations) that in most cases it can be left resident in core.

Debug I provides for one breakpoint; examination and modification of the aﬂcumulators ,
Carry and memory from the TTY; and monitoring of the machine state,

DEBUG III

Debug III is a fully symbolic debugger which allows for the addressing of a program
during the debugging process using the same symbols that were defined at assembly
time, Debug III provides for up to eight breakpoints,

DEBUG 11

Although Debug II requires about 8@(2) resident core locations, it has an abundance
of additional features over and above those available with Debug 1.

Debug II provides for up to four breakpoints; examination and modification of the
accumulators, Carry, and memory from the TTY; monitoring of the machine
state; expression evaluation; punching of memory in binary format; and memory
searches.

Examining and Modifying Registers

To examine an accumulator, type:
nA

where n is the specified accumulator, The debugger response is /DDDDDD where the
D's represent the contents of the accumulator. If no modification is desired, type
a CR. To modify (AC), simply type in the new contents, then a CR.,

The new contents may be expressed as an octal number or an octal expression of the form:

T octal no. toctal no,+ =~ - - - -

7-1

In addition to octal numbers in an expression, a $ may be used. The $ will be replaced
with the current contents of the examine register.

Similarly, Carry can be examined and modified by typing:
C
Any memory location can be examined and modified by typing:
address/
Typing ./ opens the register most recéntly closed. If a memory location examination
or modification is followed by a CR, that register is closed. Replacing the CR with
a LF (line feed) closes the register and opens the succeeding one. Replacing the
CR with an # closes the register and opens the preceding one.
To modify a memory location without first examining it, type

address!

Searching Memory

All memory or portions of memory may be scarched for those locations with certain
contents, The portions of memory to be secarched are given by:

starting address, ending address S
When the search finds a core location that contains the information being searched for,
the memory location and its contents will be printed. The contents of the M(mask) and
W(word) registers determine the information to be searched for, These two registers
may be examined and modified in the same manner as an accumulator,
The search is conducted by taking the contents of the current memory location and
ANDing that word with the contents of the M register. If the result is equal to the
contents of the W register, a match is said to occur, and the memory location and
its contents are printed.

Example:

Find all occurrences of the word 132675 in the range of memory from location 4§
through location 757,

Examine the M register, and modify it to contain all 1's, i.e. 177777,

Examine the W register, and modify it to contain the word being searched for: 132675,

7-2

The command string 4@, 757S will cause locations 4 through 757 inclusive to be
searched for the 132675, Each time the equation:

W = (Location being searched) AM
is satisfied, the location and its contents will be printed.
Example:

A routine resides in locations 4@@ through 563. Find all DOA 1 instructions so that
they can be changed to DOA 11,

Since DOA 1§ = @ 11x x1 @xx @1 PoQ
examine and modify M to be:
1119 P11 199 111 111 = 163477
Examine and modify W to be:
g 119 pP1 pPP PP1 BPP = PO1P1Y
The debugger command 400, 563S can now be given to search memory.

If a complete octal listing of a range of memory is desired, set M and W equal to §.
Because (address) A #=§, every location produces a match and is printed,

Breakpoints
In the debugging of routines, it is very helpful to be able to execute small portions of
the routine and then examine various registers. Four breakpoints are provided for
this purpose. A breakpoint is essentially a HALT command given at a certain point
in a routine,
To set a breakpoint, type:

address B
The debugger will then replace the contents of the address with:

JMP @1p

when the routine is executed. The debugger replaces n with the number of the break-
point (§ through 3), and locations 1§ through 13 contain debugger re-entry points.

When a breakpoint is encountered, the original contents of the location are replaced,

7-3

and the following response is made:

address Bn
(ACY) (AC1) (AC2) (AC3)

where n is the number (§-3) of the breakpoint encountered,

All breakpoints may be examined by B.

All the breakpoints may be deactivated by D.

Any one breakpoint may be deactivated by nD,

Control may be transferred to any address by typing:
addressR

If the address is not specified, the debugger goes to register L and uses (L) as the
address. L may be examined and modified as is an accumulator.

If the routine halts at a breakpoint, control can be returned to the routine after
the breakpoint by typing:

p

If the breakpoint is within a loop, a routine break can be set at the nth occurrence
of that breakpoint by typing:

nP

Punching an Object Tape

Once a program has been debugged, a new binary object tape can be punched, with
leader and trailer tape, by issuing the following commands:

nF

addressl, address2P
E

nF

If an auto-start block is desired, replace the command E with addrE, where addr
is the desired starting address,

Calculations using Debug 11

In addition to the debugging capabilities, Debug II has a special command of the

7-4

form:
expression=
The expression may be an addition and/or subtraction of octal numbers, a ., ora $,

ExamEIe :

S561-472+3-5 = returns 65
. = returns the address of the last closed memory register,
$ = returns the contents of the last closed register (whether memory,
accumulator, breakpoint, etc,)

This feature is handy as an octal arithmetic scratchpad calculator,

7-5

CHAPTER 8

I/0 DEVICE HANDLING

PROGRAM INTERRUPTS

Although peripheral devices may be serviced by the processor on a dedicated basis,
as previously discussed, this usually results in extremely inefficient use of pro-
cessor time and/or temporary neglect of all other devices.

To overcome this, a device interrupt and servicing facility is available, This facility
provides for enabling and disabling devices from requesting service, establishing

16 levels of priority interrupts, and servicing devices only when they request service,
In addition to the BUSY and DONE flip- flops, every device has an Interrupt Disable
flip-flop and an Interrupt Request flip-flop arranged logically as follows:

INTERRUPT _\ INTERRUPT —— INTR
DISABLE) REQUEST (Interrupt
Request
Signal)
BUSY DONE

Within the processor is an interrupt system status flag (ION). When the flag is
reset, indicating that the interrupt system is disabled, no device can interrupt
the processor. When the flag is set and the interrupt system is on, selected
devices may request service via an interrupt.

The interrupt system is enabled by the instruction INTEN (NIOS CPU) and disabled
by the instruction INTDS (NIOC CPU), The status of the interrupt system can be
monitored by the ION indicator on the front panel or by the instructions:

SKPBZ CPU SKIP NEXT INSTRUCTION if interrupts are disabled.
SKPBN CPU SKIP NEXT INSTRUCTION if interrupts are enabled.
The CPU hardware prevents all devices from interrupting when the ION flag is reset.

In addition, a particular device cannot request an interrupt if its Interrupt Disable
flip-flop is set.

Thus, the following conditions must be met before a device can interrupt the processor.
l. The ION flag must be set. (Interrupts enabled).

2. The device's Intexrupt Disable flip-flop must be reset. (Interrupts
allowed from the device,)

3. The device's DONE flip-flop must be set, (Device is ready for service,)
The commands for controlling the ION flag are:

INTEN Interrupt Enable (set ION flag)

INTDS Interrupt Disable (resct ION flag)
The command for controlling the individual Interrupt Disable flip-flops is:

MSKO AC ;MASK OUT
When an MSKO AC command is given, the Interrupt Disable flip-flop of every device
is cffectively connected to one of the 16 bit positions in accumulator AC. If the bit
position contains a 1, all Interrupt Disable flip-flops connected to it are set, thus
disabling those devices from requesting interrupts. If the bit position contains a
@, all Interrupt Disable flip- flops connected to it are reset, thus enabling those

devices to request interrupts,

Because accumulator AC has 16 bit positions, there arc 16 possible levels of
interrupt priority.

Fxample:

A program is uscd for dedicated service as a contreller for a lathe. However, it
will permit only the teletype keyboard input to request an interrupt, Enable the
interrupt request facility for this device. (Assume the TTI Interrupt Disable flip-

flop is connected to data line 14 on the 1/0 bus),

LDA #, MASK

MSKO } DOBS @, CPU
INTEN
NIOS TTI

MASK: 177775 .1/111/111/111/111/101

disables all devices but those conncected to data line 14
on the 1/0 bus.

8-2

The I/0 bus consists of a total of 47 lines. There are:

16 data lines for bi-directional data transfer,
6 device selection lines, decodable to 64 devices,
19 CPU — Device control lines (S, C, P, IORST, etc,)
6 Device — CPU control lines (BUSY, DONE, INTR, etc.)

INTERRUPT SERVICE ROUTINES

When all criteria exist for a device to request an interrupt, the device puts a logical
one onto the INTR line. At the beginning of every memory cycle, the processor
tests the INTR line for an interrupt request. If a request does exist, the processor
resets the ION flag, thus disallowing any further interrupts, saves the contents of
PC in location @ and executes a]MP @1. Location 1 should contain a pointer to the
Interrupt Service Routine,

It is now up to the interrupt service routine to determine the device requesting the
interrupt; to save the contents of any accumulators, Carry, or memory cells that
may be destroyed by the service routine; to service the device; and then to restore
the program to its state prior to the interrupt,

One method of determining the device requesting service is the straightforward
polling technique. This technique involves simply checking the DONE flags of every
device in descending order of priority.

Another method of determining the device requesting service is the broadcasting
technique, When using this method, the interrupt service routine uses the command:

INTA AC ;JINTERRUPT ACKNOWLEDGE

When this command is issued, the device requesting an interrupt which is physically
closest (on the [/O bus) to the processor responds with its device code, and the device
code is deposited to the AC. The hardware implementation of this action is:

INT REQ

@
L

INTP (in) \k
[>o /

INTP (out) (to next interface)
-3

INT ACK STSTNT,
DC ¢
. L- . R
) DATA 15
DC5 e

8-3

If the first device is requesting an interrupt, its Interrupt Request flip-flop is set
(INT REQ(®) is at low level), This, in conjunction with an INTP IN of low level,
results in INTP OUT being high and the device code of this device will be sent in
response to a INTA, Only device code bits that are one need be sent. The device
code is set using input levels DC@ to DC5, which are device dependent and are at
high level for those bits to be 1, Ifthe first device is not requesting an interrupt,
INTP OUT remains low, and the device code is not sent,

Example:

If the PTP is the first device requesting an interrupt, INTP IN for the punch is low,
INT REQ(@) is low, and therefore INTP OUT is high. All inputs to the 3-input nand
gate in the figure are high, so the code is sent, For all prior device on the bus,
INTP OUT was low, so the device codes were not sent. For all succeeding devices,
the complement of INTP IN will be low, so their device codes will not be sent either,

The INTP OUT of this device is connected to INTP IN of the device with the next
highest priority. This daisy chain effect appears as follows:

INTA >
Y ¥
CPU
INTP A B

Thus, following INTA AC, accumulator AC bits 1§ thru 15 contain the 6-bit device
code of the first device on the bus that is requesting an interrupt.

Once the interrupt service routine has determined the device to be serviced, the

routine can do one of two things: (1) service the device allowing no interrupts to

occur during service; or (2) establishanew MSKO and then service the device, allowing
higher priority devices to interrupt during service, If the second approach is employed,
the contents of location @ should first be saved, because it contains the re-entry

pointer to the interrupted routine.

NOTE:
MSKO =DOB AC,CPU

It is possible to activate the interrupt mechanism by using the expanded mnemonics:

DOBIa} AC,CPU
where: S = enable
C = disable

The command IORST (I/O0 RESET) resets all flip-flops in all devices.

8-4

POWER MONITOR AND AUTO-RESTART

3 H SOt

am when power is failing by setting the Power

o
3
5
3

The optional power monitor warns a p
Failure flag., If a system contains this option, the monitor will appear as any other
I/O device to the interrupt system, except that it does not respond to an INTA command

and must be serviced by:
SKPDN CPU
or SKPDZ CPU

The first function of the interrupt service routine should be to test this Power Failure
flag. If this is the interrupting device, the program has 1 to 2 milliseconds to save
the contents of the accumulators, Carry, and the contents of location @; to put a

JMP to the desired restart location in location @; and then to HALT.,

With the power switch in the LOCK position, when POWER UP occurs, the instruction
in location @ will be executed.

DATA CHANNEL

For devices requiring high transfer rates, direct memory access is provided by the
Data Channel, Data channel commands have their own control lines on the I/0 bus
but use the same data lines for data transfer, The processor transfers data directly
between the device and memory using only the memory buffer., No accumulators

or other registers are used;thus, no saving of register coentents is necessary when
servicing a DCH request.

For I/O device - - - analogous - - - for DCH device
INTR DCHR
INTP DCHP
INTA DCHA

Instead of using a device selection code, a DCH device sets its DCH SEL (data channel
select) flip-flop. A data channel I/O device informs the processor of the mode of
data transfer it wants on the data channel mode lines DCHM@,1. The two I/0 bus
lines DCHM@ and DCHM1 select one of four transfer modes:

DCHM DCHM1

g /) data out

1 g data in

@ 1 increment memory

1 i add to memory (NOVA and

SUPERNOVA only)

8-5

During increment memory and add to memory, the processor will give an output
on the OVFLO (overflow) line of the 1/0 bus if the new contents of the memory
cellin use exceed 216-1.

8-6

CHAPTER 9

RELOCATABILITY

The use of relocation facilities allows the programmer to separately code, debug,

and test subprogramswithout worrying about the absolute location of the program, or
the absolute location of data and addresses shared by programs and subprograms at
run time,

All subprograms are assembled with a relative starting address of), Final address
assignment is deferred until load time, The relocatable loader is then used to load
these programs, assign absolute addresses, and define arguments that are being shared
by or swapped from several programs,

It should be noted that absolute programs can still be written using the relocatable
assembler since the relocatable assembler contains all of the features of the basic
assembler plus some extensions, This means that programs that were originally
assembled using the basic assembler need not be rewritten to be assembled on the
relocatable assembler,

Relocatable coding can be of twotypes: zero relocatable and normal relocatable.
Code written in the zero relocatable mode will reside in page zero when loaded, The
pseudo-op indicating zero relocatable mode is . ZREL. Code written in the normal
relocatable mode, indicated by the pseudo-op . NREL, may reside anywhere except
page zero.

There are three pseudo-ops available for relocation mode assignments:

. LOC expression
.ZREL
.NREL

When the extended assembler is started, it is initially in the absolute mode. The
assembler remains in a mode until it encounters one of the three relocation pseudo-
ops. If the zero relocatable mode is entered via the pseudo-op . ZREL, succeeding
labels are defined as zerc relocatable mode symbols.

Another method of entering the zero relocatable mode is to use the . LOC exoression
pseudo-op, where expression contains a zero relocatable mode symbol, This method
can be used once zero relocatable mode has been first entered with a . ZREL
pseudo-op and one or more symbols have been defined in that mode.

9-1

The normal relocatable mode is handled in the same manner as the zcro relocatable
mode. It is entered by cither of the following pseudo-ops: NREL or . LOC expression,
where the expression contains a previously defined normal relocatable mode symbol.

The absolute mode is entered with the pseudo-op . LOC expression, where the expression
is either an octal number or ¢untains an absolute mode symbol.,

When loading a program using the relocatable loader, three location counters are used:
Absolute, . ZREL, .NREL .

The initial values of these counters are:

ABSOLUTE ?
. ZREL 5¢
.NREL 490

When a mode is entered, cach succeeding statement is assigned the address specified
in its respective mode location counter; the inode location counter is then incremented
by 1. A mode location counter may be incremented by more than one if, when in that
mode, a .LOC ,+ expression pseudo-op is used, where expression is an absolute
expression. |

As additional relocatably assembled programs are loaded, they are appended in
memory to previously loaded programs. They arc assigned the next available addresses

as specified by the mode location counters,

The following statements contain examples of the use of relocation pseudo-ops.

9-2

47 1)
@oae1

G@n27
ITRT)

poB0B-
poda1-

¢dpe7-
pg377

¢opdp’

dgug1

ATE

¢351¢
#3511

pogge’

duaeay

Lol

Gdga27

000176 A
#dp113 B:
Podh74

00¢p2¢ TABL:

@p351¢ PNTR:

PpOOdd" PNTRL:

A
oPpda7 -

P0p@30 ARGI:
Aops77
pedose ARG2:
@#22¢27 MAIN:
$24¢3¢

PPP610-
P1p¢74

'¢¢3$1¢4
$249p7- SUBRT:

#3¢377

dddoge’
052027

1) ;ABSOLUTE

)

. LOC 27 ;ADJUST ABS LOC COUNTER
2*TABL

TABL+17

. LOC .+43 ;ADJUST ABS 1LOC COUNTER
.BLK 20

.ZREL ;ZERO RELOCATABLE
SUBRT

MAIN

. LOC .45 ;ADJUST ZREL LOC COUNTER
¢

. LOC ARGI-PNTR+37¢ ;ABSOLUTE

@

.NREL ;NORMAL RELOCATABLE
LDA ¢,QA

LDA 1,B

. LOC ARGI+1 ;ZERO RELOCATABLE

ISZ TABL

. LOC 351¢ ;ABSOLUTE AGAIN
LDA 1, ARGI1

LDA 2, ARG2

. LOC MAIN+6 ;NORMAL RELOCATABLE
STA 2,@A

.END

9-3

INTERPROGRAM COMMUNICATION

In addition to assembling programs for loading by the relocatable loader, it is also
possible, using the extended assembler, to producc subprograms that reference data,
addresses, and constants that are defined in some other program.

Likewise, symbols defined in a program may be made available for referencing

by other programs, It should be noted that, if a symbol s defined in one program
and is made available for referencing, it should not also be defined and made
available for referencing in another program since this would cause multiple symbol
definition,

To define global symbols, which are symbols for use by external programs, an cntry
pscudo-op must be used:

. ENT symboly, symbol, ...

Other programs can now reference these symbols as externals, There are two types
of externals: normal externals and displacement cxternals.

Displacement externals may be used in any MRI but must evaluate to 8 bits (¢ through
3778). If a displacement external is to be used in a program, it must be declared

as such with the pseudo-op:

.EXTD symboly,symboly ...

Normal externals may be used in data statements only because they occupy an
entire storage word, If a normal external is to be used in a program, it must be
declared as such with the pscudo-op:

.EXTN symboly, symboly ...

Every symbol declared as a displacement external or normal external in a subprogram
should also be declared as an entry point in onc of the other subprograms.

The pseudo-op:
LTITL title
defines the name of an assembled program.

The above four pseudo-ops must appear at the beginning of the subprogram, but they
may occur in any order.

NOTE: It is good practice in using the Relocatable Loader to key mode 6 just
prior to completing the load process. Mode 6 lists all global symbols and
their values. The starting address can casily be found if it is labeled as &
global symbol,

INTERPROGRAM COMMUNICATION (Continued)

the pseudo-ops that permit interprogram referencing,

e

PPOOP -
00001 -

AP@3-
PPoP4-

PoOG0’
00001’
0pgo2
PPaas’
piop4"
pONOs'
0dod6"
0gae7'
pog1p’
dgo11"
pdd12"
#p013"
gpgL4’
do@Ls’
00p16°'
gdg17'
pogg’
ppg21"

pp772"
po773'
pp774"
#d775"
gp776'
pd777"
01990’

@P1764™
pe1776"
P0pPp1
177777
005015

006003-
020001 -
P4¢0@2 -
030002 -
0149¢2-
024000 -
132433
PePOR2 $
151220
#2100
$240615
101002
161300
123400
177777
000764
@d6@111
@Bd757
pop772'
P4g44g
$47526
P2¢116
$42522
#52520
#2¢123
dpodgd

(0020’

CSTR:
CSTR1:
PNTR:
.CRLF:

CCRLF:

BGN:;

LOOP:

INIT:

STRING:

VO
N
RE
PU
S

B

. TITL REPUS

. ENT BGN, CCRLF,.CRLF

. EXTN CRLF, TYPET
.EXTD C377, DONE

.ZREL
STRING+STRING
STRING+STRING+12
.BLK 1

CRLF

5¢15

.NREL
JSR @. CRLF
LDA ¢, CSTR1
STA @, PNTR
LDA 2,PNTR
DSZ PNTR
LDA 1,CSTR
SUBZ# 1,2, SNC
JMP DCNE
MOVZR 2,2
LDA 0,6, 2
LDA 1,C377
MOV ¢,9, SZC
MOVS 9, 3
AND 1,0
TYPET

JMP LOOP
NIOS TTO
JMP BGN
.LOC .+7359
LTXT * A

. END INIT

9-6

edode-
00¢@1-
0p0g2-
pOde3-

600¢4-

#PP0S-

ueofr Ty
P00d1"
ggeg2’
dopp3’
gged4s
ppeps’

adoo7
00010
@pe1L’
@12’

@PP377 C377:

P¢dgg7’ . TTTO:

177777 .BGN:
g@6002$ DONE:

AL 77
woow/ Jj

002002 -

J@6@01- TYPET=

(¢54406 CRLF:
20001
Pope1 -

101309
po6dpL -

@p2401

pogedl RCRLEF:
$63611 TTTO:

00777
p61111

01400

.TITL
.EXTD
.EXTN
.ENT

.ZREL

377

TTTO

BGN

JSR @.CRLF

ITAT™T
11141

JMP @. BGN
JSR @. TTTO

.NREL
STA 3,RCRLF
LDA §, CCRLF
TYPET
MOVS @, ¢

T™VDRT
AR P VI §

JMP @RCRLF
.BLK 1
SKPDN TTO
JMP . -1
DOAS @, TTO
JMP ¢, 3
.END

9-7

AVON
CCRLF,.CRLF
BGN

C377,DONE, TYPET,CRLF

ASSEMBLER EXTENSIONS

In addition to handling relocatable programming and interprogram communications,
the extended assembler has expanded number definition capabilities.

Radix declarations using the . RDX pseudo-op have been expanded to allow decimal
numbers to be input at any point in the program, under any radix mode, by simply
following the number with a decimal point.

Example:
.RDX 3 Decimal point after 108 indicates base 1(;
108. = 1?181] all numbers following the pseudo-op that
192 = 102 3 do not have a decimal point are inter-

preted as base 3.
Floating Point Numbers

If the decimal point is followed by one or more numerals, or if a number is followed
by the letter E, the number is interpreted as a floating point number to be used with
the Floating Point Interpreter package.

Floating point numbers may only be used in data statements, are two words long,
and have the following format:

<—— 7 bits > - 24 bits

v

SIGN CHARACTERISTIC MANTISSA

@ 31

Double Precision Numbers

If a number is followed by the letter D, it is handled as a double precision integer.
That is, it is stored in two memory words as follows:

g 1 15 16 31

Word 1 Word 2

e o - -

The number is represented in two's complement form,

9-8

Examgle:

1207909pD P 0o o s 90 7 6 g d d
.RDX 5
13402D =>21164 => B 0 06 ¢ 06 [0 g 21 1 §

If a decimal point separates the number and the letter D, the number is handled as a
double precision decimal number,

Example:
19p@g0. D=>39324¢

= @ 0 0 d g1 [1 06 3 2 4 4

Double precision numbers may only be used in data statements.

Bit Boundary Alignment

Binary equivalents of integers may be aligned within a 16-bit word by the Bit Boundary
Alignment technique. The statement takes the form:

number B decimal number

Example: _
—_— /'——"numbcr-——ﬂ
- e
1¢3B1¢ = 0 P00 100 001 100 000
()
N\ hit position 1¢
Example:
.RDX 5
134(2B14
13462=> 0 000 G106 001 Gp1 110
right justify to bit position 14
0 006 100 010 011 100
Example:
«— 5 —> —— T — > e 4.
A data word has 3 fields: | W 1 | w2 [w3]

7] 45 1112 15

9-9

The mask for W2 is 3760

or (# of bits) B (alignment of rightmost bit)=> 177B11

The mask for W1 is 37B4

the mask for W1+W3 is 37B4+17B15 or 37B4+17

Conditional Assembly

The extended assembler allows portions of a program to be by-passed or assembled
at assembly time, This conditional assembly feature is controlled by the 3 pseudo-ops:

.IFE absolute expression
or .IFN absolute expression
and . ENDC

A portion of a program occurring between an ,IFE or .IFN pscudo-op and an . ENDC
pseudo-op is or is not assembled based on the evaluation of the absolute expression.

For the format .IFE absolute expression

the program between the pseudo-ops will be assembled if the expression evaluates
to . The program section will be by-passecd for a non-} expression evaluation.

For the format .IFN absolute expression

non-P evaluation causes assembly and () evaluation causes program by-pass.

Conditional assembly might be used to remove I/O drive routines from a very
general program if certain peripheral devices are not used. Conditional assembly
blocks cannot be nested or overlapped, but they may contain ., EOT and/or . END
pseudo-ops.

9-10

SYMBOLIC DEBUGGER

If the symbolic debugging features of Debug IiI are to be used to debug the program,
the Pass 2 BIN: mode of the extended assembler must include punching of local
symbols, Use assembler mode 3 or 4 so local symbols will be punched for use by
Debug III, These symbols must also be loaded, so the first mode command to the
relocatable loader should be 4. (See page 3-12 for assembly modes).

In any case, global symbols (those symbols declared as entry points) will always be
punched, loaded, and recognizable.

CHAPTER 10
BYTE MANIPULATION
In many applications, 8-bit words -- bytes -- are sufficient data word blocks, such as
for storage of 8-bit teletype character strings.

Because the address of any 16-bit word requires only 15 bits, the remaining bit
can be used to specify the left or right byte of the contents of a memory location,

A memory capacity of 32K words contains 64K bytes, where each memory cell
contains 2 bytes,
@ 78 15

It has been seen how word addresses or word pointers are of the format:

g 1 15

I 15-bit word address

Similarly, byte addresses or byte pointers are of the form:

@ 14 15

15-bit word address B

where B= f§ specifies the right hyte (A)
B= 1 specifies the left byte (B)

Thus, incrementing the byte pointer addresses first the right byte and then the left
byte of sequential memory locations.

Right shifting the byte pointer leaves a memory address. Following this with
program skipping based on the Carry flag designates the specific byte.

10-1

CHAPTER 11
PROGRAMMING TRICKS

Clear AC and Carry.

SUBO AC, AC
Clear AC and preserve Carry.

SUBC AC,AC
Generate the indicated constants.

SUBZL AC,AC ;generate +1

ADC AC,AC ;generate -1
ADCZIL AC,AC ;generate -2

Let ACX be any accumulator whose contents are zero.

Let ACY be any other

accumulator, Generate the indicated constants in ACY.

INCZL ACX,ACY ;generate +2
INCOL ACX,ACY ;generate +3
INCS ACX, ACY ;generate +4{fg

Subtract 1 from an accumulator without using a constant from memory.

NEG AC,AC
COM AC,AC

Check if both bytes in an accumulator are equal.

MOVS ACS, ACD

SUB ACS, ACD,SZR

JMP - ;not equal
--- --- ;equal

Check if two accumulators are both zero.

MOV ACS, ACS,SNR

SUB ACS, ACD,SZR

JMP --- ;not both zero
- - ;both zero

11-1

8.

10.

11.

12,

Check an ASCII character to make surc it is a decimal digit,
is in ACS and is not destroyed by the test,

destroyed,
LDA ACX, Co6p
LDA ACY,C71
ADCZ# ACY, ACS,SNC
ADCZ# ACS,ACX,SZC
JMP -
C60 : 6p
C71: 71

Test an accumulator for zero.

MOV AC,AC,SZR
JMP -

Test an accumulator for -1,

COM# AC,AC,SZR
IMP -

Test an accumulator for 2 or greater,

MOVZR# AC, AC,SNR
IMP ---

Assume it is known that AC contains {,

MOVZR# AC,AC,SEZ

JMP THREE
MOV AC, AC,SNR
TMP ZERO
MOVZR# AC,AC,SZR
JMP TWO

The character
Accumulators ACX and ACY are

;ACX=ASCII zero
sACY=ASCII nine
;skips if (ACS) > 9
;skips if (ACS) > @
;not digit h
;digit

;ASCII zero
;ASCII nine

;not zero
;ZeTo

;not -1

;less than 2
;2 or greater

1, 2, or 3, Find out which one.

;was 3
swas

;was 2
;swas 1

11-2

13. Multiply an AC by the indicated value.

MOV ACX, ACX ;multiply by 1
MOVZL ACX,ACX ;multiply by 2
MOVZL ACX,ACY ;multiply by 3
ADD ACY, ACX

ADDZL ACX,ACX ;multiply by 4
MOV ACX, ACY ;multiply by 5
ADDZL ACX,ACX

ADD ACY, ACX

MOVZL ACX,ACY ;multiply by 6
ADDZL ACY,ACX

MOVZL ACX, ACY ;multiply by 7
ADDZL ACY,ACY

SUB ACX, ACY ;in ACY
ADDZL ACX,ACX ;multiply by 8

MOVZL ACX,ACX

MOVZL ACX,ACY ;multiply by 9
ADDZL ACY,ACY
ADD ACY,ACX

MOV ACX,ACY smultiply by 101
ADDZL ACX,ACX
ADDZIL ACY,ACX

MOVZL ACX,ACY ;multiply by 12,
ADDZL ACY,ACX
MOVZL ACX, ACX

MOVZL ACX, ACY smultiply by 18,

ADDZL ACY, ACY
ADDZL ACY,ACX

11-3

APPENDIX A
SAMPLE PROGRAMS

Following are some programs that illustrate some of the features described in this
document, - ‘

pop4pp

@P409 P54433
AR4P1 Poep11p
#9402 (B6361H
AN403 PpN777
Pp4p4 popory
PP4Ps B24431
gp4pe 123490
PR4A7 PP4419)
@P4lp P34425
PP411 116404
PP412 pP2421
PP413 P2p424
PP4L4 PP4493
00415 @2p42¢
#Pa16 PP2415

;ROUTINE TO READ CHARACTERS FROM THE TELETYPE. AS
;EACH CHARACTER IS READ, IT IS ECHOED, IF A CARRIAGE
;RETURN CHARACTER IS INPUT, THE ROUTINE AUTOMATICALLY
;GENERATES A LINE FEED,

;CALLING SEQUENCE:
GETC

.
14

;OUTPUT:

.
’

GETC:

USED WITH PUTC ON PAGE A-3.

ACP=CHARACTER RIGHT JUSTIFIED

. LOC

STA
NIOS
SKPDN
JMP
DIAC
LDA
AND
ISR
LDA
SUB
JMP
LDA
ISR
LDA
JMP

400

3,SGET
TTI
TTI
.-1

@, TTI
1, MSK
1,0
PUTC
3, CR
¥, 3, SZR
@SGET
#, LF
PUTC
¢, CR
@SGET

;SAVE RETURN ADDRFSS
;START TELETYPE
;WAIT FOR INPUT

;GET CHAR AND CLEAR TTY
;AC1=177

;KEEP RIGHT 7 BITS
;OUTPUT CHARACTER
;CHECK FOR CR

;SKIP IF CR

;NOT CR-RETURN
;CR-GENERATE LF

;RESTORE CR
;RETURN

PP417 P63511
PP429 PA777
Pp421 P61111
Pp422 101pp4
PP423 PP1APY
Pp424 P5441p
PP425 $2ip410
@p426 PP4771
@p427 P2p419
#P430 BP4767
PR431 102400
PP432 PP2402

Pp433 PPPPRP
pp434 PPOPRP
pp435 PPPP1S
Pp436 pPP177
Pp437 PPPP12

; ROUTINE TO OUTPUT CHARACTERS ON THE TELETYPE. IF
;THE CHARACTER OUTPUT IS NULL, THE ROUTINE WILL
;AUTOMATICALLY GENERATE A CR AND LF,

;CALLING SEQUENCE:

.
’

JINPUT:

b

PUTC:

SGET:
SPUT:
CR:
MSK:
LF:

JSR

177
12

PUTC USED WITH GETC ON
PAGE A-2
TER RIGHT JjUSTIFIED

TTO ;WAIT UNTIL NOT BUSY
-1

@, TTO ;OUTPUT CHARACTER

@,8,SZR ;SKIP IF NULL CHAR

2,3 ;NULL-RETURN

3, SPUT ;SAVE RETURN

@, CR ;OUTPUT CR

PUTC ;RECURSE

@, LF ;OUTPUT LF

PUTC ;RECURSE

@, 9 ;RESTORE NULL

@spUT ;NOT NULL - RETURN

;SAVE FOR RETURN (GETC)
;SAVE FOR RETURN (PUTC)
; ASCII CARRIAGE RETURN
; MASK FOR RIGHT 7 BITS
;ASCII LINE FEED

DOPP4p

PoPP8 54914
PPPR1 126400
pppR2 PPop4p
PUdd3 B34815
gPdP4 116415
popps PP2p14
pPPPo P34P16
pPPP7 163499
peP1Y 127120
@PP11 125120
pop12 197000
pRp13 Pappp2

pogL4 PRPRPP
popLS PPPP1S
pppLO PRPPRT

;OCTAL TO BINARY CONVERSION ROUTINE. THE ROUTINE
;CONVERTS UNSIGNED OCTAL NUMBERS TO BINARY. THE
;ROUTINE CONTINUES TO INPUT NUMBERS UNTIL IT SEES A
;CARRIAGE RETURN WHICH SIGNALS THE END OF THE NUMBER,

;CALLING SEQUENCE:

.
’

s INPUT:

;OUTPUT:

AGET=4§
OCTBN:

OCTL:

SAVE:
CR:
C7:

JSR OCTBN

THIS ROUTINE ASSUMES AN INPUT ROUTINE IS
AVAILABLE AND IS POINTED TOBY LOCATION
4p IN PAGE ZERO., WHENEVER THIS ROUTINE
NEEDS A CHARACTER, IT DOES AN INDIRECT
JUMP THRU LOCATION 44.

AC1=CONVERTED OCTAL NUMBER.

STA 3,SAVE ;SAVE RETURN ADDRESS
SUB 1,1 ;CLEAR AC1

JSR @AGET ;GET A CHARACTER

LDA 3,CR ;AC3=ASCII CR

SUB# @,3,SNR ;SKIP IF NOT CR

JMP @SAVE ;CR-RETURN

LDA 3,C7 ;AC3=MASK FOR 3 BITS
AND 3,0 ;AC@=RIGHTMOST 3 BITS
ADDZL 1,1 ;SHIFT AC1 LEFT 3
MOVZL 1,1

ADD 9,1 ;ADD IN NEW BITS

JMP OCTL ; LOOP

1] ;SAVE FOR RETURN ADDRESS
15 ;ASCII CARRIAGE RETURN
7 ;MASK FOR 3 BITS

.END

Pogg4l

popEP P54P16
BPPe1 152620
gopg2 20915
PPPg3 146443
ggpp4 141401
@PpRs 147pp1
gppp6 peRPR3
g0p07 PPopal
gpg1p 151220
gegLl 151220
Pppl2 151224
pap13 PPEPP2
pop14 PP2016

PopLS PPPpop
pogre PPPPRP

;BINARY TO OCTAL CONVERSION ROUTINE., THE ROUTINE
;CONVERTS A 16-BIT BINARY INTEGER TO AN ASCIIL

;CHARACTER STRING FOR OUTPUT.

;CALLING SEQUENCE:

; JSR BNOCT

;INPUT:

; AC1=INTEGER TO BE CONVERTED

;OUTPUT:

; THIS ROUTINE ASSUMES AN OUTPUT ROUTINE IS

; AVAILABLE AND IS POINTED TO BY LOCATION 41

I IN PAGE ZERO. AS EACH ASCII CHARACTER IS

; GENERATED, THIS ROUTINE DOES AN INDIRECT

; JSR THRU LOCATION 41,

APUT=41

BNOCT: STA 3,SAVE :SAVE RETURN ADDRESS
SUBZR 2,2 ;AC2=100000

LOOP: LDA (,Cé68 ;AC=ASCII ZERO
SUBO 2,1,SNC ;STILL PLUS IF NO CARRY
INC @, @, SKP ;INC ASCII CHAR
ADD 2,1,SKP :TOO MUCH-ADD BACK
JMP .-3
JSR @APUT ;OUTPUT CHARACTER
MOVZR 2,2 :SHIFT ONE BIT RIGHT
MOVZR 2,2
MOVZR 2,2,SZR ;LAST DIGIT?
JMP LOOP ;NO-CONTINUE
JMP @SAVE ;YES-RETURN

Co6@: 60 ;ASCII ZERO

SAVE;:) :SAVE FOR RETURN ADDRESS
.END

pppp4L

P49
PP4PD P54425
PP4p1 P34422
pp4p2 P544p1
PP4P3 pPpPPe
PP4p4 p2p42p
PP4P5 146443
PP406 191491
PP4p7 147pP1
pP419 PPP775
Pp411 ppop4l
Pp412 PLP771
Pp413 151293
PP414 PPP767
PP415 Pp241p

popp12
Pp416 @23429
PP417 @P1750
PP420 PPP144
@421 ppep12
pp422 pppPp1

poppLp

P#P423 P3p413
pp424 ppppop
pp425 pppape

;BINARY TO DECIMAL CONVERSION ROUTINE, THE ROUTINE
;CONVERTS A 16-BIT UNSIGNED BINARY INTEGER TO

;AN ASCII CHARACTER STRING FOR OUTPUT.

IT DOES

;NOT SUPPRESS LEADING ZEROES,

;CALLING SEQUENCE:

;INPUT:

’

;OUTPUT:

’
.
»-
.
’
.
’

b4

APUT=41
BNDEC:

LOOP:

TENS:

INST:
Co6@:
SAVE:

JSR

BNDEC

ACEFBINARY INTEGER TO BE CONVERTED.

THIS ROUTINE ASSUMES AN OUTPUT ROUTINE IS
AVAILABLE AND IS POINTED TO BY LOCATION
41 IN PAGE ZERO, AS EACH CHARACTER IS
GENERATED, THIS ROUTINE DOES AN INDIRECT
JSR THRU LOCATION 41,

. LOC
STA
LDA
STA

LDA
SUBO
INC
ADD
JMP
JSR
ISZ
MOVR
JMP
JMP

. RDX
1ppP
1009
199
19

.RDX
LDA
60

p

. END

4pp
3,SAVE ;SAVE ROUTINE ADDRESS
3, INST ;SET UP LDA COMMAND
3,.+1

;AC2=POWER OF 10
@, Cop ;AC@=ASCII ZERO
2,1,SNC ;STILL PLUS IF NO CARRY
@, 9, SKP ;INC ASCII CHAR
2,1,SKP ; TOO MUCH-ADD BACK
.-3
@APUT ;OUTPUT CHARACTER
LOOP ;INC LDA COMMAND
2,2,SNC ; LAST DIGIT?
LOOP ;NO-CONTINUE
@SAVE ; YES-RETURN
19 ;CHANGE RADIX TO 14
8 ;CHANGE BACK TO 8
2, +#TENS-LOOP

;ASCII ZERO

;'SAVE FOR RETURN

A-6

PP4PP 192409
#P491 P@4534
PP4p2 (P20446
#9483 PP4532
23494 PP4435
PR435 PP4454
#P4p6 @50447
PP407 P2p442
@p410 PP4525
PP411 @443
PP412 PP4a447
#p413 (#5p443
PP414 P1p442
@P415 (24442
(P416 P44442
PP417 #24436
pp420 ppasep
@p421 (2434
#p422 (24434
PP423 106415
PP424 GOG754
@425 @20427
PR426 @P4507
Pp427 B26426
Pp43p PPa45p
PP431 @1p9424
Pp432 PPgap?
Pp433 @PP745
PP434 14424
#p435 PPA764
#p436 102400
PP437 PP4476
Pp449 PPP755
(#p441 P54406
gg442 P2p410
#P443 Pp4472
pga44 P2p4g7
PP445 @P4479
pP446 PP2401
pp447 PPpOpRP
PP45P PPp114
PP451 @ep125
pp452 Fp1p2
#453 gpgg7s
gd454 dgddag
P45 dedggy
pp4s6 PPppEp
PP457 PPPPLe
pp4cp PPPPPP

TA:

TB:

TD:

TC:

STC:

EQ:
SP:
LB:

UB:

;DUMP PROGRAM

SUB
JSR
LDA
JSR
JSR
JSR
STA
LDA
JSR
JSR
JSR
STA
ISZ
LDA
STA
LDA
ISR
LDA
LDA
SUB#
JMP
LDA
JSR
LDA
JSR
ISZ
JMP
JMP
DSZ
JMP
SUB
JSR
JMP
STA
LDA
ISR
LDA
JSR
JMP
9
"L
"U
"B

8,9
PUTC
g, L
UTC
TC
OCTBN
2,LB
#,U
PUTC
TC
OCTBN
2,UB
UB
I,K
1,C
1,1LB
BNOCT
g, LB
1,UB
@,1,SNR
TA
@, SP
PUTC
@1, LB
BNOCT
LB
.12
TA
C
TD
8,9
PUTC
TB
3,STC
7, B
PUTC
%, EQ
PUTC
@STC

;ACP=NULL
;OUTPUT CR-LF
;OUTPUT L

;OUTPUT B=
;READ LB
;SAVE LB
;OUTPUT U

;OUTPUT B=
;READ UB
;SAVE UB

;SET COUNTER
;OUTPUTADDRESS

;COMPARE LB AND UB

;EQUAL-RESTART
;UNEQUAL-OUTPUT SPACE

;OUTPUT (LB)
;INCR LB

;RESTART
;DECR COUNTER
;CONTINUE
;ACP=NULL
;OUTPUT CR-LF
;NEW LINE
;SAVE RETURN
;OUTPUT B

;OUTPUT=

;RETURN
;SAVE FOR RETURN (TC)

; LOWER BOUND

;UPPER BOUND
;CONSTANT
;COUNTER

PP461 P54414
@P462 15240
@P463 PPa433
#p464 334413
@P465 116415
PP466 PP2407
#P467 #34407
gP479 163400
@P471 153120
gP472 151120
(@473 113009
0P474 Gog767

#9475 dooa0d
#9476 Q0dad7
#9477 pOPO1S

doS0F ¥54775
gosg1 152620
00502 920413
QUSP3 146443
Josg4 191401
gUsgs 147001
gu506 90Y775
00507 gg4426
0Ys1¢ 151220
0Ps11 151220
00512 151224
90513 90767
00514 992761

00515 Qoppep

PP516 P54433
pps517 P6P11Y
P9520 P63619
00521 ppp777
@p522 P6P61H
00523 P2443¢
#0524 123490
00525 pP4419
#3526 P#34751
#3527 1164@4
#3530 @#@2421
00531 @2¢423
#3532 @#@44@3

#9533 20744
00534 (92415

OCTBN:

OCT1:;

SAVE:
C7:
CR:
BNOCT:

LOOP:

Co6:

GETC:

STA
SUB
JSR
LDA
SUBH
JMP
LDA
AND
ADDZL
MOVZL
ADD
JMP

15

STA
SUBZR
LDA
SUBO
INC
ADD
JMP
JSR
MOVZR
MOVZR
MOVZR
JMP
JMP

60

STA
NIOS
SKPDN
JMP
DIAC
LDA
AND
JSR
LDA
SUB
JMP
LDA
JSR
LDA
JMP

3,SAVE
2,2
GETC
3,CR
@,3,SNR
@SAVE
3,C7
3,0

2,2

2,2

@,2
OCT1

3,SAVE
2,2

@, Cop
2,1,SNC
@, 9, SKP
2,1,SKP
.-3
PUTC
2,2

2,2
2,2,SZR
LOOP
@SAVE

3,SGET
TTI
TTI
-1

@, TTI
1, MSK
1,4
PUTC
3,CR
?,3,SZR
@SGET
@, LF
PUTC
@, CR
@SGET

A-8

#P#535 P63511
p@s36 @pp777
##537 #61111
Pd548 181094
$p541 @p140¢
@p542 @gs5441¢
@#@543 P2@734
gp544 gga771
#p545 g2gagy
@d546 @G4767

00547 1¢24¢¢
@gssg d@2492

9#551 odpsd
9552 Padped
@553 god177
g9554 gapp12

govgad
ddg4g PBoes16
#oga1 @odsss

PUTC:

SGET:
SPUT:
MSK:
LF:

SKPBZ
JMP
DOAS
MOV
JMP
STA
LDA
JSR
LDA
JSR

SUB
JMP

177
12

. LOC
GETC
PUTC

. END

TTO

8, TTO

R Qr7zn

#,9,5ZR
9,3
3,SPUT
@, CR
PUTC
@, LF
PUTC

2,0
@SPUT

49

A-9

D000’ 132400
POPOL'GY6RP1 $
PPPP2’ 2 P446
POPP3'JP6PPL $
POPP4'PP4435
PPOPS'Ge60g2$
DOpp6'§59447
POOP7’Y2g442
POP1Y'GR60Y1 $
POO11'004430
POP12'0Y6092$
POP13'950443
20014010442
POP15'g24442
POP16'Q044442
POP17'924436
PPPZP YY6Y3$
PPP21'920434
0PP22'924434
PPP23'196415
PPP24'000754
PPP25'020427
PPP26'006001
PPP27'926426
PPP3P 0060035
POP31'01Q424
PPP32'00Y4G2
PPP33°'00G745
PPP34'014424
PPP35'00G764
P9P36'102409
$PP37'0Y6001 %
MOY4P 90755
PPP41'954406
PPP42'p2p41p
PPP43’'PPOPPLS
PPP44' 20407
PPP45'PPOPP1 S
pPP46'pP24P1
PPR47"PPPPOP
PPPSP'PPP114
PPPS1'PPP125
PPP52'PPP1P2
PoRs3'BPPR75
PB4’ BPPP4P

TA:

TB:

TD:

TC:

STC:

EQ:
SP:

. TITL
.EXTD
.NREL

SUB
JSR
LDA
JSR
JSR
JSR
STA
LDA
JSR
ISR
JSR
STA
ISZ
LDA
STA
LDA
ISR
LDA
LDA
SUB#
JMP
LDA
JSR
LDA
JSR
ISZ
JMP
JMP
DSZ
JMP
SUB
ISR
TMP
STA
LDA
ISR
LDA
JSR
JMP
@

:Il:uic:tj

DUMP
APUTC, AOCBN, ABNOC

2,9
@APUTC

@, L
@APUTC
TC
@AOCBN
2,LB
@,U
@APUTC
TC
@AOCBN
2,UB
UB

1,K

1,C
1,LB
@ABNOC
@, LB
1,UB
@,1,SNR
TA
@,Sp
@APUTC
@1, LB
@ABNOC
LB

.2

TA

C

TD

9,0
@APUTC
TB
3,STC
@,B
@APUTC
¥, EQ
@APUTC
@sTC

A-10

1)
@oB56'0PPRas
@o@s7" BPpE1 P
Pog6d' pRPD

Bopp@'PS4414
PAPP1°15240p
PRpa2'PP6AR1 $
PPpP3'P34413
PPPP4'116415
PApps' 9P2407
PRPYo ' P34407
PAPP7'163490
PAP1P'153120
PPp11'151120
pRP12°113ppp
PepL3'0PP767
papL4’ BPPAPP
POPLS ' BPPAP7
PRP16'pPPP15

LB:
UB:

OCTBN:

OCTI:

SAVE:
C7:
CR:

OCTBN, SAVE, CR

g

g

10

g

.END

.TITL OCTBN
.EXTD AGETC
.ENT

.NREL

STA 3,SAVE
SUB 2,2
ISR @AGETC
LDA 3,CR
SUB# @,3,SNR
JMP @SAVE
LDA 3,C7
AND 3,0
ADDZL 2,2
MOVZL 2,2
ADD 9,2
JMP OCTI
@

7

15

.END

A-11

PPPPP'P54416
PPPP1'152620
PPPp2'P2p413
PPPP3'146443
0pPpP4'191401
PPPPS'147¢01
PPPp6'PPR775
PPPp7' BP6PP1 $
gPP1P'151220
@P@A11'151220
PPP12'151224
PPP13'pP@E767
PPP14'PP2442
geR15'0nov6s
pRP16'BPPREP

BNOCT:

LOOQOP:

Cog:
STORE:

.TITL BNOCT
.EXTD APUTC
.ENT BNOCT
.NREL

STA 3,STORE
SUBZR 2,2

LDA @,C6f
SUBO 2,1,SNC
INC @, 9, SKP
ADD 2,1,SKP
JMP .-3

JSR @APUTC
MOVZR 2,2
MOVZR 2,2
MOVZR 2,2,SZR
JMP LOOP
JMP @STORE
60

@

.END

A-12

PopBY'P54417
PRoe1 960110
PRpp2' 363610
Pope3 90777
PRPE4' B6B610
P3PP5'324413
PPPP6'12340p
2007 BPoPEL S
poP16'B36002$
PPP11'116404
PPP12'PP24@5
PAP13'p20406
Po@14'PP60P1$
PPPL5'@220P2 $
Pop16'pP24p1
peg17'BPRPRP
Pop20'PBPL77
PPp21'pPpp12

GETC:

SGET:
MSK:

LF:

.TITLE GETC

.ENT GETC,LF
.EXTD APUTC, ACR
.NREL

STA 3,SGET

NIOS TTI
SKPDN TTI

MP . -1
DIAC @, TTI
LDA 1,MSK
AND 1,0

ISR @APUTC

LDA 3,@ACR
SUB #,3,SZR
JMP @SGET
LDA @,LF
JSR @APUTC
LDA §,@ACR
JMP @SGET
@

1777
r/77

12
. END

.TITL PUTC
.ENT PUTC, AGETC, APUTC, AOCBN, ABNOC, ACR, ALF
.EXTN GETC, OCTBN,BNOCT, CR, LF

.NREL
PPPPP'P63511 PUTC: SKPBZ TTO
PPPP1'BPP777 JMP -1
PPPP2'P61111 DOAS @, TTO
PPPR3'1p10p4 MOV 4,8,SZR
P4 9P1 409 JMP 9,3
POPP5'P54407 STA 3,SPUT
PPPR6'P22045 LDA #, @ACR
POPR7'PP4771 JSR PUTC
POPLP'B22B46 LDA @,@ALF
PPPL1'PP4767 JSR PUTC
PpP12°102409 SUB g,9
PPP13'gP24P1 JMP @SPUT

PPP14'pppPPP SPUT: ?

PPPP4p .LOC 4¢
#@p4p 177777 AGETC: GETC
@dpp41 gp@PPP’ APUTC: PUTC
@@pP42 177777 AOCBN: OCTBN
@#PP43 177777 ABNOC: BNOCT

PPPP45 .LoCc 45
PPP45 177777 ACR: CR
@PP46 177777 ALF: LF
.END

A-14

AAAAAAL

)
pApPp1
pPppp2
popnp3
PRoPp4
PPPRPS
PPPPP6

pogPpL
popaL PPp4pP

Ppp4pp
#56464
$34463
P414p1
P45402

pp4pp
PP4p1 -
PP4p2
PP4p3
PP4p4
PP4APS
PP4P6
PP4p7
PP41P
pP411
pp4a12
pp413
PP414 157000
PP4a15 P54447
PP4a16’ 61477
PP417 P3P446
pp429 113009
pp421 P319pP
PP422 Ps5P44s
PP423 P34443
pp424 117999
PP425 ¢72177
pp426 pp74pP
PP427 P6p277
PP43p P34434
PP431 p3p437
pP432 1564p9
PP433 B31406
PP434 p72¢77

192560
P414p4
P20pp0
P414p5
P2p456
($41406

@51403 -

P3p455

;LAYOUT OF STACK ENTRY

SAC3=§
SAC@=1
SAC1=2
SAC2=3
SCRY=4
SRTN=5
SMSK =6

ISR:

ISR1:

;SAVE FOR AC3

;SAVE FOR AC¢

;SAVE FOR AC1

;SAVE FOR AC2

;SAVE FOR CARRY

;SAVE FOR RETURN ADDRESS (WORD §)
;SAVE FOR CURRENT MASK

.Loc 1

ISR

.LOC 40¢ ;LOAD IN SECOND PAGE
STA 3,@ADSTK ;NO-SAVE AC3 IN STACK
LDA 3,ADSTK ;AC3 ADDRESS OF STACK
STA §,SACS,3 ;SAVE ACCUMULATORS
STA 1,SACL,3

STA 2,SAC2,3

SUBCL @, ;SAVE CARRY

STA §,SCRY,3

LDA @, ;SAVE RETURN ADDRESS
STA §,SRTN,3

LDA @, CMASK ;SAVE CURRENT MASK
STA @,SMSK, 3

LDA 2,SIZE ;PUSH STACK

ADD 2,3

STA 3,ADSTK

INTA ¢ ;ACP=DEVICE CODE

LDA 2,AMTAB ;AC2=ADDR-1 OF MASK TAB
ADD §,2 ;AC2=ADDRESS OF MASK
LDA 2,8,2 ;AC2=NEW MASK

STA 2,CMASK ;SET CMASK TO NEW MASK
LDA 3,AJTAB ;AC3=ADDR-1 OF JUMP TAB
ADD #,3 'AC3=ADDR OF ADDR WORD
DOBES 2,CPU ;MSKO AND TURN ON INT
ISR @g, 3 ;EXIT TO ROUTINE

INTDS ;DISABLE INTERRUPTS
LDA 3,ADSTK ;POP STACK

LDA 2,SIZE

SUB 2,3

LDA 2,SMSK, 3 ;AC2=0LD MASK

MSKO 2 ;ISSUE OLD MASK

A-15

PP435
PP436
#p437
PR44p
Ppa41
Pp442
PP443
Pp444
PP445
PP446
Pp447
Pp459
PP451
PP452
PP453

pp454
AP455
456
AP457
pp4o0
@461

#1462
Pp463

Ap464
Pp465
p#p466
#p467

pp479

$#61477
191994
Ppp7 60
P54424
#5094 26
#214p5
p49ppp
p214p4
191220
921491
p25402
p314p3
#3641 3
p6P177
P20

#244p5
123099
p4p4p1
PPPpoP
Pp140p
pop2pp

po3p77
ppp771

PPP545
PPP474
ppaSPo
pooppd
pP2RP7

INTA
MOV
JMP
STA
STA
LDA
STA
LDA
MOVZR
LDA
LDA
LDA
LDA
INTEN
JMP

p
P,,SZR
ISR1

3, ADSTK
2, CMASK
@, SRTN,3
P,
@,SCRY, 3
9,0
@,SACH, 3
1,SAC1,3
2,SAC2,3
3,@ADSTK

@p

;ROUTINE TO IGNORE INTERRUPTS,

IGNOR:

CLEAR:

LDA
ADD
STA
P
JMP
NIOC

;ERROR HALTS.

ERROR:

;9STORAGE AND ADDRESS CONSTANTS.

ADSTK:

AMTAB:

AJTAB:
CMASK:
SIZE:

HALT
JMP

STACK

MTAB-1

JTAB-1
¢
7

I, CLEAR
1,0
ﬂ, . +1

g,3
g

IGNOR

A-16

;GET DEVICE CODE
;SKIP IF NO INTS
;PROCESS PENDING INT
;UPDATE POINTER
;UPDATE MASK

;RESTORE RETURN ADDRESS

;RESTORE CARRY

;RESTORE AC@ THRU AC2

;RESTORE AC3
;ENABLE INTERRUPTS
;RETURN TO ROUTINE

; LOAD NIOC COMMAND
;ADD IN DEVICE CODE
;STORE IN NEXT
;EXECUTE NIOC COMMAND
;RETURN TO ROUTINE

;ADDRESS OF PUSHDOWN STACK

;ADDR-1 OF MASK TABLE
;ADDR-1 OF JUMP TABLE

;STORAGE FOR CURRENT MASK
;SIZE OF STACK ENTRY (7 WORDS)

;MASK TABLE,

177777 ALL=177777 ;MASK TO DISABLE ALL INTERRUPTS.
@@471 177777 MTAB: ALL ‘ ’
gp472 177777 ALL
@473 177777 ALL
@p474 177777 ALL
@475 177777 ALL
@p476 177777 ALL
Pp477 177777 ALL
pospp 177777 ALL
p@EsP1 177777 ALL
ppsP2 177777 ALL

;JUMP TABLE.

#pP464 ERR=ERROR

pPsP3 PPPa64 JTAB: ERR
PPS5P4 PPP464 ERR
PE5P5 PPP464 ERR
PE506 PPP464 ERR
P@507 PPP464 ERR
PPS1P PPP464 ERR
Pp511 pppacs . ERR
PP512 PPP4a64 ERR
#9513 BPP464 ERR
pp514 PPP464 ERR

;INITIALIZATION ROUTINE.

515 924420 INIT: LDA 1, ASTK ;JINITIALIZE POINTER
PP516 P44746 STA 1, ADSTK

P4517 126409 SUB 1,1 ;ZERO CURRENT MASK
PP520 P44747 STA 1, CMASK

#P521 P20415 LDA @, ADERR ;AC#=A (ERROR ROUTINE)
#0522 p24415 LDA 1, MALL ;AC1=FULL MASK
PP523 P3P415 LDA 2,MI12 ;AC2=-1¢

PP524 P34741 LDA 3,AMTAB sMEM(20)=A(MTAB)-1
PP525 540920 STA 3,20

PP526 B3474f LDA 3,AJTAB sMEM(21)=A(JTAB)-1
#p527 P54p21 STA 3,21

#953p P42021 INITI: STA @,@21 ;ENTER IN JTAB

#3531 P46020 STA 1,@2¢ ;ENTER IN MTAB

#P532 1514p4 INC 2,2,SZR ;LOOP 1§ TIMES

#8533 PP@775 jMP INIT1

#P534 P63977 HALT

A-17

#P535 PPPs45
#9536 0PP464
#@537 177777
PP5-49 177766

PPpp43

ASTK:
ADERR:
MALL:
M12:

STACK:

STACK ;ADDRESS OF STACK

ERROR ;ADDRESS OF ERROR ROUTINE
ALL sMASK TO ENABLE ALL INTS
=12 ;MINUS 19

.BLK 5*%7

. END

A-18

APPENDIX B
BIBLIOGRAPHY
More complete information on the programs mentioned in this manual is contained in
the documents listed here.

ASSEMBLERS

Absolute Document: 093-000017

The Absolute Assembler is a two-pass assembler accepting symbolic input and pro-
ducing absolute binary output or an assembly listing or both. Pseudo commands are
available to alter the program origin, change the current number radix, and define
new operation codes., Source input is free-form, using special characters to delimit
labels and comments. Assembly speed is entirely I/O limited. The assembler is ap-
proximately 5000 (octal) words in length and uses all remaining memory locations

for symbol table storage.

Extended Document: 093-000040

The Extended Assembler, like the Absolute Assembler, converts symbolic assembly
statements into machine language code. In addition to Absolute Assembler features, the
Extended Assembler provides relocation, interprogram communication, conditional
assembly, and more powerful number definition facilities. It contains about 7, 400
(octal) instructions and uses the remainder of memory for symbol table storage.

DEBUGGERS
Debug 1 Document: 093-000038

Debug I is a software debugging routine that allows one breakpoint, Virtually no
restrictions are applied to its placement or use. Debug I can interface with any type
of routine, including those using the Nova interrupt hardware, Debug I requires only
300 (octal) locations,

Debug II Document: 093-000020

Debug II is a software routine that allows for simultaneous activation of up to four
breakpoints. Virtually no restrictions are applied to their placement or use. Debug
II can interface with any type of routine, including those using the interrupt hardware.
Commands are provided for examining, searching, and altering memory, as well as
punching ranges of memory in absolute binary format, This program consists of
less than 1400 (octal) instructions.

B-1

Debug 111 Document: 093-000044

Debug III is a routine for symbolic debugging of user programs. It provides all of

the features of Debug II in addition to those following. Instructions may be input in
symbolic format in a manner similar to the symbolic input to the assembler. Further,
symbols defined at assembly time can be output as part of the user's relocatable
binary, loaded by the relocatable loader, and accessed by Debug III. This provides
great flexibility for symbolic debugging at run time, giving the user access to all
symbolic information known at assembly and load time. Further, eight breakpoints
may be active at one time. Debug III requires approximately 4000 (octal) locations
and is supplied in relocatable binary format.

EDITING ROUTINES

Editor Document: 093-000018

The Editor is a routine that enables editing of source input to produce updated
source output, It is most commonly used to modify program source tapes in
preparation foranew assembly. The Editor executes simple command strings, input
using the teletype,to modify text on either a character or a line basis, The location
of specific text is facilitated by means of string searches. The program is less than
2000 (octal) words in length.

Macro Editor Document: 093-000018

The Macro Editor provides all the features of the Editor and in addition allows the
user to define command strings in a special "macro™ register. The command string
can then be executed repeatedly by merely specifying the macro register name in
further command strings.

FLOATING POINT INTERPRETER Document: 093-000019

The Floating Point Interpreter is a program designed to expand the instruction set

to include over thirty-five additional instructions. These instructions cover a wide
range of floating point operations, floating point conversions, and transcendental
function operations. Numbers are represented in floating hexadecimal, providing the
user with 7 significant digits and an approximate range in magnitude of 10**-78 to
10**+75. The Basic Floating Point Interpreter is 2000 (octal) locations in length. The
Extended version is approximately 3500 (octal) locations in length. The interpreter

is supplied in both absolute and relocatable binary formats. The absolute version is
origined to occupy the upper locations of a 4K memory.

LOADERS

Bootstrap Document: 093-000002

The Bootstrap Loader is a short routine to load the Binary Loader into memory., The
Bootstrap requires 15 (octal) words and 2 temporary locations.

Supernova Selfload Bootstrap Document: 093-000055

The Selfload tape is used in conjunction with the program load feature of the Supernova
to place an Absolute Binary Loader in the highest locations of alterable storage, This
program contains 40 (octal) instructions.

Nova 800/1200 Selfload Bootstrap Document: 093-000055

This program is used in conjunction with the optional program load feature of the Nova
1200 or Nova 800. This feature automatically loads the Absolute Binary Loader into
the highest locations of the machine's alterable storage, using a bootstrap program
implemented in hardware.

Absolute Binary Loader Document: 093-000003

The Absolute Binary Loader is a routine used to load any absolute binary tapes, such
as those produced as output by the Absolute Assembler. The Loader is 120 (octal)
words in length, 116 of which immediately precede the Bootstrap Loader in memory.
The speed of the Binary Loader is limited by the speed of the input device.

Relocatable Binary Loader Document: 093-000039°

This program is used to load relocatable binary tapes produced as output by the
Extended Assembler. The loader accepts any number of relocatable binary tapes

as input, resolves external displacements and normal externals, and maintains an
entry symbol table that can be printed on demand. This routine consists of less than
2200 (octal) instructions.

SYSTEM REFERENCE MANUAL "How to Use the Nova Computers"

The system reference manual:

l. Complements the material contained in the Assembler manuals,

2. Contains more advanced and detailed information on programming of
the Nova Computers than is found in this manual, "Introduction to
Programming the Nova Computers™,

3. Supplies needed information on equipment available, interfacing and
installation.
B-3

APPENDIX C

ASSEMBLER PSEUDO-OPS

.BLK expression Allocate a storage block by incrementing
: the location counter by expression.
.DALC equivalence statement Define a symbol for an arithmetic and logical
instruction.
. DIAC equivalence statement Define a symbol for an instruction that will

1 hita 2 A A i+h m T
replace bits 3 and 4 with an AC number,

. DIO equivalence statement Define a symbol for an I/O instruction having
only a device code,

. DIOA equivalence statement Define a symbol for an I/O instruction having
a device code and accumulator.

.DMR equivalence statement Define a symbol for a memory reference

H 'S 44 that+ A
instruction that does not use an accumulator,

. DMRA equivalence statement Define a symbol for a memory reference
instruction that does use an accumulator.

.DUSR equivalence statement Define a user symbol.
. END [expression] Terminate source program. The optional

expression evaluates to a location to which
to transfer when the object tape is loaded.

. ENDC Terminate conditional assembly coding.

.ENT symboll, [symbolz. oo Define an entry within a program that can be
referenced by another program in which the
symbol has been declared . EXTN or . EXTD
(normal external or displacement external,)

.EOT End of tape, implying there is another source
program tape. Assembler halts, allowing
the operator to mount the next tape and to press
CONTINUE to continue assembly,

C-1

. EXTD symbol, [symbol, ...] Declare a symbol as a displacement external,

. EXTN symboly, [symbol, ...] Declare a symbol as a normal external.
. IFE expression Assemble statements following until

a . ENDC is encountered if expression
evaluates to zero in pass 1.

. IFN expression Assemble statements following until a
. ENDC is encountered if expression
does not evaluate to zero in pass 1.

. LOC expression Set the location counter to the value

of expression.

.NREL Assemble instructions following as normal
relocatable,
. RDX expression Interpret integers following as having

the radix given by expression.

. TITL name Define a symbol as the name of the program.
. TXT *message* Store characters of message two per

word (one per 8-bit byte). * represents
any delimiting symbol not in the text,
The rightmost 7 bits are used to store
the character and the leftmost bit is
determined as follows:
Value of Left Bit

. TXT *message* - zero

. TXTE *message* - even parity for byte

. TXTF *meéssage* - one

. TXTO *message* - odd parity for byte

. TXTM expression Change packing mode of text. Default packing
is right to left, If a . TXTM is encountered and
expression evaluates to non-zero, packing is
left to right; if it evaluates to zero packing is
right to left,

. XPNG Undefine all previously defined (. DUSR, etc.)
symbols except permanent symbols,

.ZREL Assemble statements following as zero
relocatable,

C-2

APPENDIX D

INSTRUCTION MNEMONICS AND TIMING

Tha +ahla hasinning An fha mave smaan aitraa tlha e gbamradd ace e o

1€ taoie oeginning on tic next page 51\"Cb the instruction menemonics in numerical
order. Following that is an alphabetic listing that gives the octal value and a short
description of the instruction. Instruction execution times in microseconds are listed
on page D-12,

The derivations of the instruction mmemonics are as follows:

LoaD
STore

Increment
Decrement

JuMP
Jump to SubRoutine

COMplement \
NEGate
MOVe current carry ~

INCrement for carry bit YZero shift Left {~

} A ccumulator

} and Skip if Zero

ADd Complement{ base value use }One shift Right #
SUBtract Complement of current carry Swap bytes

ADD
AND /

SKiP {on Zero } {Carry
Skip on Nonzero iResult
if Either is Zero

if Both are Nonzero

~

No IO transfer
In A ’ and Start
Data { } B buffer Clear

Out

C special Pulse
SKiP if {g‘::e} is {I;;‘;mo
READ Switches
I0 ReSeT
HALT
INTerrupt Acknowledge
MaSK Out

INTerrupt ENable
INTerrupt DiSable
MULtiply

DIVide

000000
000001
000002
000003
000004
000005
000006
000007
000010
002000
004000
010000
014000
020000
040000
060000
060100
060177
060200
060277
060300
060400
060477
060500
060600
060700
061000
061100
061200
061300
061400
061477
061500
061600
061700
062000
062077
062100
062200
062300
062400
062500
062600

JMP
SKP
SZC
SNC
SZR
SNR
SEZ
SBN

JSR
ISZ
DSZ
LDA
STA
NIO
NIOS
INTEN
NIOC
INTDS
NIOP
DIA
READS
DIAS
DIAC
DIAP

DOAS
DOAC

DIB

INTA
DIBS
DIBC
DIBP

MSKO
DOBS

DOBP
DIC
DICS
DICC

INSTRUCTION MNEMONICS
NUMERIC LISTING

062677
062700
063000
063077
063100
063200
063300
063400
063500
063600
063700
073101
073301
100000
100000
100010
100020
100030
100040
100050
100060
100070
100100
100110
100120
100130
100140
100150
100160
100170
100200
100210
100220
100230
100240
100250
100260
100270
100300
100310
100320
100330
100340

D-2

1I0RST
DICP
DOC
HALT
DOCS
DOCC
DOCP
SKPBN
SKPBZ
SKPDN
SKPDZ
DIV
MUL

@

COM
COM#
COMZ
COMZ#
COMO
COMO#
COMC
COMC#
COML
COML#
COMZL
COMZL#
COMOL
COMOL#
COMCL
COMCL#
COMR
COMR#
COMZR
COMZR#
COMOR
COMOR#
COMCR
COM.CR#
COM3
COM! #
COMZS
COMZS#
COMOS

100350
100360
100370
100400
100410
100420
100430
100440
100450
100460
100470
100500
100510
100520
100530
100540
100550
100560
100570
100600
100610
100620
100630
100640
100650
100660
100670
106700
100710
100720
100730
100740
100750
100760
100770
101000
101010
101020
101030
101040
101050
101060
101070

COMOS#
COMCS
COMCS#
NEG
NEG#
NEGZ
NEGZ#
NEGO
NEGO#
NEGC
NEGC#
NEGL
NEGL#
NEGZL
NEGZL#
NEGOL
NEGOL#
NEGCL
NEGCL#
NEGR
NEGR#
NEGZR
NEGZR#
NEGOR
NEGOR#
NEGCR
NEGCR#
NEGS
NEGS#
NEGZS
NEGZS#
NEGOS
NEGOS#
NEGCS
NEGCS#
MOV
MOV#
MOVZ
MOVZ#
MOVO
MOVO#
MoOvVC
MOVC#

101100
101110

101120
101130
101140
101150
101160
101170
101200
101210
101220
101230
101240
101250
101260
101270
101300
101310
101320
101330
101340
101350
101360
101370
101400
101410
101420
101430
101440
101450
101460
101470
101500
101510
101520
101530
101540
101550
101560
101570
101600
101610
101620
101630
101640
101650

MOVL
MOVL#

MOVZL
MOVZL#
MOVOL
MOVOL#
MOVCL
MOVCL#
MOVR
MOVR#
MOVZR
MOVZR#
MOVOR
MOVOR#
MOVCR
MOVCR#
MOVS
MOVS#
MOVZS
MOVZS#
MOVOS
MOVOS#
MOVCS
MOVCS#
INC
INC#
INCZ
INCZ#
INCO
INCO#
INCC
INCC#
INCL
INCL#
INCZL
INCZL#
INCOL
INCOL#
INCCL
INCCL#
INCR
INCR#
INCZR
INCZR#
INCOR
INCOR#

101660
101670

101700
101710
101720
101730
101740
101750
101760
101770
102000
102010
102020
102030
102040
102050
102060
102070
102100
102110
102120
102130
102140
102150
102160
102170
102200
102210
102220
102230
102240
102250
102260
102270
102300
102310
102320
102330
102340
102350
102360
102370
102400
102410
102420
102430

INCCR
INCCR#

INCS
INCS#
INCZS
INCZS#
INCOS
INCOS#
INCCS
INCCS#
ADC
ADC#
ADCZ
ADCZ#
ADCO
ADCO#
ADCC
ADCC#
ADCL
ADCL#
ADCZL
ADCZL#
ADCOL
ADCOL#
ADCCL
ADCCL#
ADCR
ADCR#
ADCZR
ADCZR#
ADCOR
ADCOR#
ADCCR
ADCCR#
ADCS
ADCS#
ADCZS
ADCZS#
ADCOS
ADCOS#
ADCCS
ADCCS#
SUB
SUB#
SUBZ
SUBZ#

102440
102450
102460
102470
102500
102510
102520
102530
102540
102550
102560
102570
102600
102610
102620
102640
102650
102660
102670
102700
102710
102720
102730
102740
102750
102760
102770
103000
103010
103020
103030
103040
103050
103060
103070
103100
103110
103120
103130
103140
103150
103160
103170
103200
103210

SUBO
SUBO#
SUBC
SUBC#
SUBL
SUBL#
SUBZL
SUBZL#
SUBOL
SUBOL#
SUBCL
SUBCL#
SUBR
SUBR#
SUBZR
SUBZR#
SUBOR
SUBOR#
SUBCR
SUBCR#
SUBS
SUBS#
SUBZS
SUBZS#
SUBOS
SUBOS#
SUBCS
SUBCS#
ADD
ADD#
ADDZ
ADDZ#
ADDO
ADDO#
ADDC
ADDC#
ADDL
ADDL#
ADDZL
ADDZL#
ADDOL
ADDOL#
ADDCL
ADDCL#
ADDR
ADDR#

103220
103230
103240
103250
103260
103270
103300
103310
103320
103330
103340
103350
103360
103370
103400
103410

ADDZR
ADDZR#
ADDOR
ADDOR#
ADDCR
ADDCR#
ADDS
ADDS#
ADDZS
ADDZS#
ADDOS
ADDOS#
ADDCS
ADDCS#
AND
AND#

103420
103430
103440
102450
103460
103470
103500
103510
103520
103530
103540
103550
103560
103570
103600
103610

ANDZ
ANDZ#
ANDO
ANDO#
ANDC
ANDC#
ANDL
ANDL#
ANDZL
ANDZL#
ANDOL
ANDOL#
ANDCL
ANDCL#
ANDR
ANDR#

103620
103630
103640
103650
103660
103670
103700
103710
103720
103730
103740
103750
103760
103770

ANDZR
ANDZR#
ANDOR
ANDOR#
ANDCR
ANDCR#
ANDS
ANDS#
ANDZS
ANDZS#
ANDOS
ANDOS#
ANDCS
ANDCS#

ADCC

ADCCL

ADCCR

ADCCS

ADCL

ADCO
ADCOL

ADCOR

ADCOS

ADCR

ADCS

ADCZ
ADCZL

ADCZR

ADCZS

102000
102060

102160

102260

102360

102100

102040
102140

102240

102340

102200

102300

102020
102120

102220

102320

103000
103060
103160

103260

103360

103100
103040
103140

INSTRUCTION MNEMONICS
ALPHABETIC LISTING

Add the complement of ACS to ACD; use Carry as base for carry bit.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; rotate left.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; rotate right.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; swap halves of result.

Add the complement of ACS to ACD; use Carry as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use 1 as base for carry bit.

Add the complement of ACS to ACD; use 1 as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use 1 as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use 1 as base for carry bit,;
swap halves of result.

Add the complement of ACS to ACD; use Carry as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use Carry as base for carry
bit; swap halves of result.

Add the complement of ACS to ACD; use O as base for carry bit.

Add the complement of ACS to ACD; use O as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use O as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use O as base for carry bit;
swap halves of result.

Add ACS to ACD; use Carry as base for carry bit.
Add ACS to ACD; use complement of Carry as base for carry bit.

Add ACS to ACD; use complement of Carry as base for carry bit;
rotate left.

Add ACS to ACD; use complement of Carry as base for carry bit;
rotate right.

Add ACS to ACD; use complement of Carry as base for carry bit;
swap halves of result.

Add ACS to ACD; use Carry as base for carry bit; rotate left.
Add ACS to ACD; use 1 as base for carry bit.
Add ACS to ACD; use 1 as base for carry bit; rotate left.

D-5

COMCL

COMCR

COMCS

COML

COMO
COMOL

103240
103340
103200
103300

103020
103120
103220
103320
103400
103460
103560

103660

103760

103500
103440
103540
103640
103740
103600
103700
103420
103520
103620
103720
100000
100060

100160

100260

100360

100100

100040
100140

Add ACS to ACD; use 1 as base for carry bit; rotate right.
Add ACS to ACD; use 1 as base for carry bit; swap halves of result.
Add ACS to ACD; use Carry as base for carry bit; rotate right.

Add ACS to ACD; use Carry as base for carry bit; swap halves of
result.

Add ACS to ACD:; use 0 as base for carry bit.

Add ACS to ACD; use 0 as base for carry bit; rotate left.

Add ACS to ACD; use O as base for carry bit; rotate right.

Add ACS to ACD; use O as base for carry bit; swap halves of result.
And ACS with ACD; use Carry as carry bit.

And ACS with ACD; use complement of Carry as carry bit.

And ACS with ACD; use complement of Carry as carry bit; rotate
left.

And ACS with ACD; use complement of Carry as carry bit; rotate
right.

And ACS with ACD; use complement of Carry as carry bit; swap
halves of result.

And ACS with ACD; use Carry as carry bit; rotate left.

And ACS with ACD; use 1 as carry bit.

And ACS with ACD; use 1 as carry bit; rotate left.

And ACS with ACD; use 1 as carry bit; rotate right.

And ACS with ACD; use 1 as carry bit; swap halves of result.
And ACS with ACD; use Carry as carry bit; rotate right.

And ACS with ACD; use Carry as carry bit; swap halves of result.
And ACS with ACD; use 0 as carry bit.

And ACS with ACD; use O as carry bit; rotate left.

And ACS with ACD; use O as carry bit; rotate right.

And ACS with ACD; use 0 as carry bit; swap halves of result.
Place the complement of ACS in ACD; use Carry as carry bit.

Place the complement of ACS in ACD; use complement of Carry as
carry bit.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; rotate left.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; rotate right.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; swap halves of result.

Place the complement of ACS in ACD; use Carry as carry bit; rotate
left.

Place the complement of ACS in ACD; use 1 as carry bit.
Place the complement of ACS in ACD;use 1 as carry bit; rotate left.

COMOR

COMOS

COMR

COMS

COMZ
COMZL
COMZR

COMZS

DIA
DIAC
DiAP
DIAS
DIB
DIBC
DIBP
LCIBS
DIC
DICC
DICP
DICS
DIV

DSZ

100240
100340
100200
100300

100020
100120
100220

100320

060400
060600
060700
060500
061400
061600
061700
061500
0624

062600
062700
062500
073101

061000
061200
061300
061100
062000
062200
062300
062100
063000
063200
063300
063100
014000

Place the complement of ACS in ACD; use | as carry bit; rotate
right.

Place the complement of ACS in ACD; use 1 as carry bit; swap
halves of result.

Place the complement of ACS in ACD;use Carry as carry bit; rotate
right.

Place the complement of ACS in ACD; use Carry as carry bit; swap
halves of resuit.

Place the complement of ACS in ACD; use 0 as carry bit.
Place the complement of ACS in ACD; use 0 as carry bit; rotate left.
Place the complement of ACS in ACD; use 0 as carry bit; rotate

right.
Place the complement of ACS in ACD; use O as carry bit; swap
halves of result.

Data in, A buffer to AC.

Data in, A buffer to AC; clear device.

Data in, A buffer to AC; send special pulse to device.
Data in, A buffer to AC; start device.

Data in, B buffer to AC.

Data in, B buffer to AC; clear device.

Data in, B buffer to AC; send special pulse to device.
Data in, B buffer to AC; start device.

Data in, C buffer to AC.

Data in, C buffer to AC; clear device.

Data in, C buffer to AC; send special pulse to device.
Data in, C buffer to AC; start device.

If overflow, set Carry. Otherwise divide ACO-AC1 by AC2. Put
quotient in ACI1, remainder in ACO.

Data out, AC to A buffer.

Data out, AC to A buffer; clear device.

Data out, AC to A buffer; send special pulse to device.
Data out, AC to A buffer; start device.

Data out, AC to B buffer.

Data out, AC to B buffer; clear device.

Data out, AC to B buffer; send special pulse to device.
Data out, AC to B buffer; start device.

Data out, AC to C buffer.

Data out, AC to C buffer; clear device.

Data out, AC to C buffer; send special pulse to device.
Data out, AC to C buffer; start device.

Decrement location E by 1 and skip if result is zero.

HALT
INC
INCC

INCCL

INCCR

INCCS

INCL
INCO
INCOL
INCOR
INCOS

INCR
INCS

INCZ

INCZL
INCZR
INCZS

INTA

INTDS
INTEN
IORST

ISZ
JMP
JSR

LDA
MOV
MOVC
MOVCL
MOVCR

MOVCS

MOVL

063077
101400
101460

101560

101660

101766 -

101500
101440
101540
101640
101740

101600
101700

101420
101520
101620
101720

061477

060277
060177
062677

010000
000000
004000

020000
101000
101060
101160
101260

101360

101100

Halt the processor (= DOC 0,CPU).

Place ACS + 1 in ACD; use Carry as base for carry bit.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit; rotate left.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit; rotate right.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit; swap halves of result.

Place ACS + 1 in ACD; use Carry as base for carry bit; rotate left.
Place ACS + 1 in ACD; use 1 as base for carry bit.

Place ACS + 1 in ACD; use 1 as base for carry bit; rotate left.
Place ACS + 1 in ACD; use 1 as base for carry bit; rotate right.

Place ACS + 1 in ACD; use 1 as base for carry bit; swap halves of
result.

Place ACS + 1 in ACD; use Carry as base for carry bit; rotate right.

Place ACS + 1 in ACD; use Carry as base for carry bit; swap halves
of result.

Place ACS + 1 in ACD; use O as base for carry bit.
Place ACS + 1 in ACD; use 0 as base for carry bit; rotate left.
Place ACS + 1 in ACD; use 0 as base for carry bit; rotate right.

Place ACS + 1 in ACD; use O as base for carry bit; swap halves of
result.

Acknowledge interrupt by loading code of nearest device that is
requesting an interrupt into AC bits 10-15 (= DIB -,CPU).

Disable interrupt by clearing Interrupt On (= NIOC CPU).
Enable interrupt by setting Interrupt On (= NIOS CPU).

Clear all 10 devices, clear Interrupt On, reset clock to line frequency
(= DICC 0,CPU).

Increment location E by 1 and skip if result is zero.
Jump to location £ (put E in PC).

Load PC + 1 in AC3 and jump to subroutine at location E (put £
in PC).

Load contents of location E into AC.

Move ACS to ACD; use Carry as carry bit.

Move ACS to ACD; use complement of Carry as carry bit.

Move ACS to ACD; use complement of Carry as carry bit; rotate left.

Move ACS to ACD; use complement of Carry as carry bit; rotate
right.

Move ACS to ACD; use complement of Carry as carry bit; swap
halves of result.

Move ACS to ACD; use Carry as carry bit; rotate left.

MOVO
MOVOL
MOVOR
MOVOS
MOVR
MOVS
MOVZ
MOVZL
MOVZR
MOVZS
MSKO

MUL

NEG
NEGC

NEGCL

NEGCR

NEGCS

NEGL

NEGO
NEGOL
NEGOR

NEGOS

NEGR
NEGS

NEGZ
NEGZL
NEGZR

NEGZS

NIO
NIOC
NIOP

101040
101140
101240
101340
101200
101300
101020
101120
101220
101320
062077

073301

100400
100460

100560
100660
100760
100500

100440
100540
100640

100740

100600
100700

100420
100520
100620

100720

060000
060200
060300

Move ACS to ACD;use 1 as carry bit.

Move ACS to ACD; use 1 as carry bit; rotate left.

Move ACS to ACD; use | as carry bit; rotate right.

Move ACS to ACD; use 1 as carry bit; swap halves of result.
Move ACS to ACD; use Carry as carry bit; rotate right.

Move ACS to ACD; use Carry as carry bit; swap halves of result.
Move ACS to ACD; use O as carry bit.

Move ACS to ACD; use 0 as carry bit; rotate left.

Move ACS to ACD; use O as carry bit; rotate right.

Move ACS to ACD; use O as carry bit; swap halves of result.

Set up Interrupt Disable flags according to mask in AC
(= DOB -,CPU).

Multiply AC1 by AC2, add product to ACO, put result in ACO-ACI.
Place negative of ACS in ACD; use Carry as base for carry bit.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit; rotate left.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit; rotate right.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit; swap halves of result.

Place negative of ACS in ACD;use Carry as base for carry bit; rotate
left.

Place negative of ACS in ACD;use 1 as base for carry bit.
Place negative of ACS in ACD; use 1 as base for carry bit; rotate left.
Place negative of ACS in ACD; use 1 as base for carry bit; rotate

right.
Place negative of ACS in ACD; use 1 as base for carry bit; swap
halves of result.

Place negative of ACS in ACD;use Carry as carry bit; rotate right.

Place negative of ACS in ACD; use Carry as carry bit; swap halves of
result.

Place negative of ACS in ACD; use O as base for carry bit.
Place negative of ACS in ACD; use O as base for carry bit; rotate left.
Place negative of ACS in ACD; use O as base for carry bit; rotate

right.
Place negative of ACS in ACD; use O as base for carry bit; swap
halves of resuit.

No operation.
Clear device.

Send special pulse to device.

D-9

NIOS
READS
SBN

SEZ

SKP
SKPBN
SKPBZ
SKPDN
SKPDZ
SNC

SNR

STA
SUB
SUBC

SUBCL

SUBCR

SUBCS

SUBL
SUBO
SUBOL
SUBOR
SUBOS

SUBR
SUBS

SUBZ

SUBZL
SUBZR
SUBZS

SzC

SZR

060100
060477
000007

000006

000001

063400

063500
063600
063700
000003

000005

040000
102400
102460

102560

102660

102760

102500
102440
102540
102640
102740

102600
102700

102420
102520
102620
102720

000002

000004

Start device.
Read console data switches into AC (= DIA —,CPU).

Skip if both carry and result are nonzero (skip function in an arith-
metic or logical instruction).

Skip if either carry or result is zero (skip function in an arithmetic
or logical instruction).

Skip (skip function in an arithmetic or logical instruction).
Skip if Busy is 1.
Skip if Busy is 0.
Skip if Done is 1.
Skip if Done is 0.

Skip if carry bit is 1 (skip function in an arithmetic or logical
instruction).

Skip if result is nonzero (skip function in an arithmetic or logical
instruction).

Store AC in location E.
Subtract ACS from ACD; use Carry as base for carry bit.

Subtract ACS from ACD; use complement of Carry as base for carry
bit.

Subtract ACS from ACD; use complement of Carry as base for carry
bit; rotate left.

Subtract ACS from ADC;use complement of Carry as base for carry
bit; rotate right.

Subtract ACS from ACD; use complement of Carry as base for carry
bit; swap halves of result.

Subtract ACS from ACD; use Carry as base for carry bit; rotate left.
Subtract ACS from ACD;use 1 as base for carry bit.

Subtract ACS from ACD; use 1 as base for carry bit; rotate left.
Subtract ACS from ACD; use 1 as base for carry bit; rotate right.

Subtract ACS from ACD; use 1 as base for carry bit; swap halves of
result.

Subtract ACS from ACD; use Carry as base for carry bit; rotate right.

Subtract ACS from ACD; use Carry as base for carry bit; swap halves
of result.

Subtract ACS from ACS; use O as base for carry bit.
Subtract ACS from ACD; use 0 as base for carry bit; rotate left.
Subtract ACS from ACD; use O as base for carry bit; rotate right.

Subtract ACS from ACD; use 0 as base for carry bit; swap halves of
result.

Skip if carry is O (skip function in an arithmetic or logical instruc-
tion).

Skip if result is zero (skip function in an arithmetic or logical in-
struction).

D-10

002000

100000

000010

When this character appears in an instruction, the assembler places

a1 in bit S to produce indirect addressing.

When this character appears with a 15-bit address, the assembler
places a 1 in bit 0, making the address indirect.

Appending this character to the mnemonic for an arithmetic or
logical instruction piaces a 1 in bit 12 to prevent the processor from
loading the 17-bit result in Carry and ACD. Thus the result of an
instruction can be tested for a skip without affecting Carry or the
accumulators.

D-11

INSTRUCTION EXECUTION TIMES

Supernova read-only time equals semiconductor time, except add .2 for LDA, STA, ISZ, DSZ if reference is to core.

Nova times are for core; for read-only subtract .2 except subtract .4 for LDA, STA, ISZ, DSZ if reference is to read-only
memory.

When two numbers are given, the one at the left of the slash is the tifi¢ for an isolated transfer, the one at the right is
the minimum time between consecutive transfers.

Supernova
SC Core Nova 800 Nova 1200 Nova
LDA 1.2 1.6 1.6 2.55 5.2
STA 1.2 1.6 1.6 2.55 5.5
ISZ, DSZ 1.4 1.8 1.8 3.15% 5.2
IMP .6 .8 .8 1.35 2.6
JSR 1.2 1.4 .8 1.35 35
Indirect addressing add .6 .8 .8 1.2 2.6
Base register addressing add 0] 0 0 0 3
Autoindexing add 2 2 2 .6 0
COM, NEG, MOV, INC 3% 8* .8* 1.35% 5.6
ADC, SUB, ADD, AND 3% 8* 8* 1.35% 5.9
*1f skip occurs add i .8 2 1.35
10 input (except INTA) 2.8 29 2.2t 2.55 4.4
NIO 3.2 33 2.2% 3.15 44
10 output 3.2 3.3 2.2% 3.15 4.7
+S.CorPadd .6
10 skips 2.8 2.9 1.4* 2.55 4.4
INTA 3.6 3.7 2.2 2.55 44
MUL 8.8 1.1
Average 3.7 3.8
Maximum 53 54
DIV 6.8 6.9 8.8 11.9
Unsuccessful 1.5 1.6 1.6
Interrupt 1.8 2.2 1.6 3.0 5.2
Latency 12
With multiply-divide 9 9 10.6
Without multiply-divide 5 5 4.6 6
Data Channel
Input 2.3 2.3 20 1.2 35
Output 2.8 2.8 2.0 1.2/1.8 4.4
Increment 2.8 2.8 2.2 1.8/2.4 4.4
Add 2.8 2.8 5.3.
Latency 3.6 12
With multiply-divide 9
Without multiply-divide 5 5 6
High speed channel
Input 8 8 8
Output .8/1.0 .8/1.0 .8/1.0
Increment 1.0/1.2 1.0/1.2 1.0/1.2
Add 1.0/1.2 1.0/1.2
Latency
With 10 4.5 4.5 3.6
Without 10 2.5 25 2.0

1 Add .3 if arithmetic or logical instruction is skipped, otherwise add .6.

D-12

APPENDIX E

IN-OUT CODES

1. Tnvrnn 1 QINN Ffrs +han

The table on the next two pages lists the in-out devices, their octal codes, mnemonics and DGC
for the Nova 120 , O4UU 10T Ui

option numbers. 8000 series options are the Supernova only, 8100
Nova 800, and 4000 series options are for all machines or the Nova only. Codes 40 and above are used
in pairs (40-41, 42-43, .. .) for receiver-transmitter sets in the high speed communications controller.
The table beginning on page E4 lists the complete teletype code. The lower case character set (codes
140-176) is not available on the Model 33 or 35, but giving one of these codes causes the
teletypewriter to print the corresponding upper case character. Other differences between the 33-35
and the 37 are mentioned in the table. The definitions of the control codes are those given by ASCIL.
Most control codes, however, have no effect on the computer teletypewriter, and the definitions bear

no necessary relation to the use of the codes in conjunction with the software.

Octal
Code

01
02
03

05

07
10
11
12
13
14
15
16
17
20
21
22
23
24

25
26
27

30
31*
32
33
34
35
36
37
40
4]
42
43

45
46
47
50
51
52

Mnemonic

MDV
MAPO
MAP1 }
MAP2

MCAT
MCAR
TTI
TTO
PTR
PTP
RTC
PLT
CDR

DSK
ADCV
MTA
DACV

IBM1
IBM2

Priority
Mask Bit

13

IN-OUT DEVICES

Device
Multiply-divide

Memory allocation and protection

Multiprocessor adapter transmitter
Multiprocessor adapter receiver
Teletype input }

Teletype output

Paper tape reader

Paper tape punch

Real time clock

Incremental plotter

Card reader

Line printer

Disk

A/D converter

Industry compatible magnetic tape
D/A converter

Data communications multiplexer

Other multiplexers and/or
control signal options

IBM 360 interface

Receiver
Transmitter

Second tkletype input
Second teletype output
Second paper tape reader

E-2

Option
Number

8008

4038

4010

4011
4012
4008
4017
4016
4018
4019
4032 4033
4033
4037
4026

4025

4015

4010
4011

Octal Priority
Code Mnemonic Mask Bit Device

53 Second paper tape punch

60 Second disk

62 Second magnetic tape

71%*)
72
73
74
75
76

77 CPU Central processor
Power monitor and autorestart

Second IBM 360 interface

*Code returned by INTA

A Supernova, 8007; Nova 1200, 8107; Nova 800, 8207; Nova, 4031
B Supernova, 8001; Nova 1200, 8101 ; Nova 800, 8201; Nova, 4001
C Supernova, 8006; Nova 1200, 8106; Nova 800, 8206; Nova, 4006

Option

Number

4012

4019

4030

4025

TELETYPE CODE

Even 7-Bit
Parity Cctal
Bit Code Character Remarks

0 000 NUL Null, tape feed. Repeats on Model 37. Control shift P on Model 33 and 35.

1 001 SOH Start of heading; also SOM, start of message. Control A.

1 002 STX Start of text; also EOA, end of address. Control B.

0 003 ETX End of text; also EOM, end of message. Control C.

1 004 EOT End of transmission (END); shuts off TWX machines. Control D.

0 005 ENQ Enquiry (ENQRY); also WRU, “Who are you?” Triggers identification
(“Here is. . .”) at remote station if so equipped. Control E,

0 006 ACK Acknowledge; also RU, “Are you. . .?” Control F.

1 007 BEL Rings the bell. Control G.

1 010 BS Backspace; also FEO, format effector. Backspaces some machines.
Repeats on Model 37. Control H on Model 33 and 35.

0 011 HT Horizontal tab. Control I on Model 33 and 35.

0 012 LF Line feed or line space (NEW LINE); advances paper to next line. Repeats
on Model 37. Duplicated by control J on Model 33 and 35.

1 013 VT Vertical tab (VTAB). Control K on Model 33 and 35.

0 014 FF Form feed to top of next page (PAGE). Control L.

1 015 CR Carriage return to beginning of line. Control M on Model 33 and 35.

1 016 SO Shift out; changes ribbon color to red. Control N.

0 017 SI Shift in; changes ribbon color to black. Control O.

1 020 DLE Data link escape. Control P (DCO).

0 021 DC1 Device control 1, turns transmitter (reader) on. Control Q (X ON).

0 022 DC2 Device control 2, turns punch or auxiliary on. Control R (TAPE, AUX
ON).

1 023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF).

0 024 DC4 Device control 4, turns punch or auxiliary off. Control T (AUX OFF).

1 025 NAK Negative acknowledge; also ERR, error. Control U.

1 026 SYN Synchronous idle (SYNC). Control V.

0 027 ETB End of transmission block; also LEM, logical end of medium. Control W.

0 030 CAN Cancel (CANCL). Control X.

1 031 EM End of medium. Control Y.

1 032 SUB Substitute. Control Z.

0 033 ESC Escape, prefix. This code is also generated by control shift K on Model 33
and 35.

1 034 FS File separator, Control shift L on Model 33 and 35.

0 035 GS Group separator. Control shift M on Model 33 and 35.

0 036 RS Record separator. Control shift N on Model 33 and 35.

1 037 Us Unit separator. Control shift O on Model 33 and 35.

1 040 Sp Space.

0 041 !

0 042 ”

E-4

Even
Parity
Bit

O.—-o»—-v—tooa—u—-cp—-oou—tc»-‘r—-o»-oo»-au—loo»—-o:—-y—-c._‘co»—o-a-—aoou—-r-tOv—n

7-Bit
Octal
Code

043
044
045
046
047
050
051

052

053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115

Character

SO 00~ D E W N TR

OR-S-"@DQT@OUOUOWP>eE YV AT

Remarks

Accent acute or apostrophe.

Repeats on Model 37.

Repeats on Model 37.
Repeats on Model 37.

Repeats on Model 37.

Even 7-Bit
Parity Octal
Bit Code Character Remarks
116
117
120
121
122
123
124
125
126
127
130
131
132
123
134
135
136
137 Repeats on Model 37.
140 : Accent grave.
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160

161
162

163
164
165
166
167
170

o~
'

Repeats on Model 37.

Shift K on Model 33 and 35.
Shift L. on Model 33 and 35.
Shift M on Model 33 and 35.

157 " TN XE<CcH Ym0 DO Z

OO'—“—‘O"‘QO'—‘O‘—"—0—OO>——OO'—‘O-‘—‘OO"'—'C'-‘OO'—‘—‘OO'—O""—‘O’-‘

M E €~ ¥ RO T 0B g ~E- = >0 MmN a0 o

Repeats on Model 37.

Even
Parity
Bit

o O O

REPT

PAPER ADVANCE
LOCAL RETURN

LOCLF
LOC CR

7-Bit
Octal
Code

171
172
173
174
175

176
177

Character

—— e e N

DEL

INTERRUPT, BREAK
PROCEED, BRK RLS

HERE IS -

Remarks

{On early versions of the Model 33 and 35, either of these codes may
be generated by either the ALT MODE or ESC key.
Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 33 and 35 only: causes any other key that is struck to repeat continu-
ously until REPT is released.

Model 37 local line feed.

Model 37 local carriage return.

Model 33 and 35 local line feed.

Model 33 and 35 local carriage return.

Opens the line (machine sends a continuous string of null characters).

Break release (not applicable).

Transmits predetermined 20-character message.

E-7

APPENDIX F
ASSEMBLY ERROR FLAGS

The listing output of assembly will contain alphabetic flags for errors occurring

in assembly. The error flag appears on the lefthand side of the listing, beside

the line containing the error. A given line may generate two or more error codes;
for example, an undefined symbol appearing in an equivalence statement produces
the flags U (undefined symbol) and E (equals error).

Flag Error Example and Type of Error
A STA 1,G (assume the STA instruction is in . ZREL coding

and G is a symbol defined in . NREL coding.)
A flags an addressing error indicating the address is out of the range for
the type of assembly code. The error occurs on MRIs when the address is
not within the range determined by the value of the index and/er is not
within the current mode (. ZREL or .NREL) in relocatable assembly.
B LA$L: LDA 1,23
B flags a bad character; in the example, the $ in the label causes the erwr.

C A+2:

C flags a colon error. In the example, no expression is permitted to
precede a colon,

D RDX 12

D flags a radix error. Inthe example, radix 12 is not permitted.
E REG= 3+B

E flags an equals error, In the example, assume that B is undefined.
F ADD 2

F flags a format error. In the example, the ADD instruction requires at
least two operands,

G EXTN S5
G flags a symbol declaration error. In the example, the error would occur
if S5 is not defined as . ENT in some extended assembly program communicating

with the program containing the . EXTN.

F-1

Error Example and Type of Error

This error occurs on a parity check of input of the source program. The
assembler flags the line and substitutes a back slash for the character
in error,

This error occurs on ,IFE and . IFN pseudo-ops. It indicates either that

the expression in the pseudo-op cannot be evaluated during pass 1 of assembly
or that a second . IFE or .IFN has been encountered before an . ENDC pseudo-op.
This is taken as an illegal attempt to nest conditional assemblies.

.LOC -1 (bit @ is set.)
L flags a locauon error and can occur on , LOC and . BLK pseudo-ops, for example,

an attempt to set the location counter back or set it to an address outside
the range of memory.

A: 3
A: 4

M flags a multiply-defined symbol.
C77: 7A

N flags a number error. In the example, 7A is not a number, since no
letters are permitted.

LDA 4,.L0C

O flags a field overflow -- an accumulator greater than 3, as in the example,
a skip field greater than 7; etc.

P flags a phase error in which the value of a symbol on pass 2 of assembly
differs from its value on pass 1,

.+. END

Q flags a questionable line of any type not specifically defined for another
error code,

J: CG+F (assume C is page zero and F normal relocatable,)
R flags expression errors occurring in relocatable assembly when the expression

cannot be evaluated to be absolute, relocatable, or byte pointer type relocatable;
or when p3ge zero andnormal relocatable symbols are mixed in an expression and

F-2

neither the page zero nor normal relocatable symbols are canceled out
when the expression is evaluated,

S flags the overflow of the symbol table, occurring when memory capacity
for the particular machine has been reached.

14+.XPNG

T flags an error occurring in a symbol table pseudo-op. In the example,
no expression is permitted to precede the pseudo-op . XPNG.

LDA 2,B (assume B is undefined.,)

U flags an undefined symbol. Symbois that will be flagged undefined are:
A symbol whose value is not known on pass 2.
A symbol in an expression that must be evaluated in pass 1.

LET: "C3
3H+.TXT

X flags a text error. In the first example, only a single character may

follow "; in the second example, the ., TXT pseudo-op cannot be preceded
by an expression,

LDA 3, DISP+6 (assume DISP appears in a .EXTD in the program.,)
Z flags certain illegal symbols appearing in expressions in relocatable

assembly code: externals, op-codes, double precision numbers, and
floating-point numbers,

F-3

INDEX

! ACCUMULATOR (con'd)

in debugging command 7-2 in MRI instruction 2-1
(OR) 3-2 switches 5-2
" special character 3-2, 3-3 ACD (destination AC) 2-7
special character 3-2 to 3-4 ACS (source AC) 2-7
$ A/D converter (ADC) E-2
in editing command 4-3
in debugging command 7-2 ADC 2-8, D-5
& (AND) 3-2 ADD 2-8, D-5
ADD COMPLEMENT instructions (ADC)
editing command 4-3 2-8, D-5
special character 3-2, 3-3
in label 3-1 ADDITION instruction (ADD_) 2-8, D-5, D-6
ADDRESS
after label 3-1 examining an _ 7-2
editing command 4-3 indicators 5-1

modifying an _ 7-2

Debug II command 7-5 ADDRESSING
editing command 4-3 absolute 9-1
device register 2-2
@ special character 3-2, 3-3 direct 2-2
error F-1
4+ in debugging command 7-2 indirect 2-2
mode field of MRI 2-1
A normal relocatable 9-1
editing command 4-1 relative 2-2
error flag F-1 use of @ sign 2-3
Debug II command 7-1 zero relocatable 9-1
ABSOLUTE addressing 9-1 ALC (see arithmetic and logical instructions)
ACCUMULATOR ALIGNMENT, bit 9-9
examine/modify under Debug 7-1
general 1-1 AND 2-8, D-6
in ALI instructions 2-6 ‘
in I/0O instructions 2-11 ANDING instruction (AND) 2-8, D-6

I-1

AUTO-DECREMENTING locations

AUTO-INCREMENTING locations

ARITHMETIC AND LOGICAL instructions

definition 1-2
discussion 2-6 to 2-11
functional portion 2-7
functions of 2-8
processing 2-7

ARITHMETIC EXPRESSION

calculations under Debug II 7-5
permitted by assembler 3-2

ASCII (teletype)codes E-4

ASSEMBLER

Basic Chapter 3, B-11
binary output devices 3-12
extensions to relocatable 9-8
input devices 3-11

listing devices 3-11

operating mode 3-12
operating procedures 3-11
Relocatable Chapter 9, B-1

ASSEMBLY, conditional 9-10

AT SIGN (@) 2-3, 3-2, 3-3

2-6

2-6

AUTO-RESTART 8-5, E-3

Debug II command 7-3
editing command 4-2
error flag F-1

3-12

BINARY

-decimal conversion routine A-6
-octal conversion routine A-5

I-2

BIT BOUNDARY alignment 9-9

.BLK
error F-2
pseudo-op 3-5, C-1, 9-1 ff

BREAKPOINT 7-1, 7-3
BROADCASTING DS code 8-3, 8-4

BUFFER
I/0 2-11
editing 4-1

BUSY
flip flop 2-12to 2-14, 8-1

BYTE
manipulation 10-1
swapping 2-10

carry bit 2-9, 3-10
control function 2-12, 3-10, 8-3
Debug II command 7-2
editing command 4-2
error flag F-1

CARD READER (CDR) E-2

CARRY
base value 2-8, 2-9
field 2-9
general 1-1
value on overflow 2-8

CARRIAGE RETURN (CR)
end of line 3-2
in character string 3-5
use in debugging command 7-2
CENTRAL PROCESSOR (CPU) E-3

CHANNEL START switch 5-3

CHARACTER
pointer 4-1
string 3-6
special 3-2

3-2, 3-3

3-2, 3-3

@ 3-2, 3-3
3-2, 3-3, 3-4

teletype input routine A-2

teletype output routine A-3

COLON (:)
error F-1
usage 3-1

~—

COM 2-8, D-6

COMMA separator 3-1
COMMAND field of MRI 2-1
COMMENT 3-1, 3-2

COMPLEMENT instructions (COM_)
D-6, D-7, 2-8

CONDITIONAL assembly
error F-2
pseudo-ops 9-10

CONSOLE
indicators Cahpter 5
Supernova 5-4
switches Chapter 5

CONTINUE switch
after .EOT 3-6
on console 5-2

CONTROL function 2-11, 2-12

CONVERSION

octal-binary routine A-4
binary-octal routine A-5
binary -decimal routine A-6

I-3

CORE storage
amount 1-1
modification 2-4

CP (character pointer) 4-1

CPU
code E-3
instructions Chapter 2

displacement field 2-1
error code F-1
editing command 4-2
Debug II command 7-4

D/A converter (DACV) E-2
.DALC 3-9, C-1

DATA
indicators 5-1
i/0O transfer 2-i1, 8-5
manual entry of 1-1
moving instructions 2-3
‘transfer lines 8-3, 8-5

DATA COMMUNICATIONS multiplexer (DCM)
E-2

DATA IN instructions (DI) D-7, 2-14
DATA OUT instructions (DO_) D-7, 2-13

DCH
indicator 5-1
interrupt 8-5

DEBUGGING
Debug I 7-1, B-1
Debug II Chapter 7, B-1
Debug III 7-1, B-2, 9-11

DECREMENT and skip if zero instruction
(DSZ) 2-4, D-7

DEFER indicator 5-1

DEPOSIT switch 5-2

DEPOSIT NEXT switch 5-2

DEVICE
code field 2-11
code 77 2-14

octal codes for Appendix E
selection lines 8-3
service code (DS) 8-3, 8-4
.DIAC 3-10, C-1
DIAGNOSTICS Appendix F
.DIO 3-10, C-1
.DIOA 3-10, C-1
DISK (DSK) E-2
DISPLACEMENT external symbol 9-4
DISPLACEMENT field of MRI 2-1
DIVIDE instruction (DIV) D-7
.DMR 3-8, C-1
.DMRA 3-9, C-1

DONE

flip flop 2-12 to 2-14, 8-1, 8-2, 8-3

DOUBLE PRECISION numbers 9-8
DSZ 2-4, D-7
DUMP routine A-7

.DUSR 3-7, C-1

Debug II command 7-4
effective address 2-1
error code F-1
EDITOR Chapter 4, B-2
EFFECTIVE ADDRESS
definition 2-1
range 2-2
.END 3-7, C-1
.ENDC 9-10, C-1
.ENT 9-4, C-1
ENTRY POINT of subprogram 9-4
.EOT 3-7, C-1
EQUIVALENCE statement
example 3-4
error in F-1
ERROR FLAGS Appendix F
EXAMINE switch 5-2
EXAMINE NEXT swiitch 5-2
EXECUTE indicator 5-1
EXECUTION TIMING D-12
EXPRESSION
arithmetic 3-2
error in F-2

.EXTD 9-4, C-2

.EXTN 9-4, C-2

F IBM 360 interface E-2
Debug II command 7-4
editing command 4-2 IFE 9-10, C-2
error flag F-1
JIFN 9-10, C-2
FETCH indicator 5-1

IN: 3-11
FIELD
ALI 2-7, 2-8 INC 2-8, D-8
assembler 3-1
I/0 2-11 INCREMENT and skip if zero instruction
MRI 2-1 (ISZ) 2-4, D-8
FLIP FLOP INCREMENT instructions (INC) 2-8, D-8
Busy 2-12, 8-1
Done 2-12, 8-1, 8-2 INCREMENTAL PLOTTER (PLT) E-2
Interrupt Disable 8-1, 8-2
Interrupt Request 8-1 INDEX field of MRI 2-1

FLOATING POINT interpreter 9-8, B-2 INDICATOR 1-1, 5-1

FORM FEED (FF) 3-2 INPUT
instructions 2-11
FORMAT parity error F-2
assembler program 3-2 to assembler 3-11
error F-1

INITIALIZATION routine A-17
FUNCTION GENERATOR 2-7

INPUT/OUTPUT
FUNCTION OF ALI 2-7 to 2-11 instruction
definition 1-2
G error flag F-1 discussion 2-11 to 2-14

device codes Appendix E
GLOBAL symbol 9-4

INST., STEP switch 5-2
HALT 2-14, D-8

INSTRUCTION
HARDWARE INTERRUPT execution time D-12
locations used for 2-6 indicators 5-1
handling of Chapter 8 mnemonic derivations D-1
set, octal listing D- 2
I set, alphabetical listing D-5
addressing mode bit 2-2
editing command 4-2 INTA instruction 8-3, D-8

error flag F-2
1-5

INTDS 8-1, 8-2, D-8 LABEL 3-1

INTEN 8-1, 8-2, D-8 LDA 2-3
INTERRUPT LINE

acknowledge instruction (INTA) 8-3, D-8 editing a 4-1

disable error in F-2

flip flop 8-1, 8-2 of listing page 3-2
instruction (INTDS) 8-1, 8-2, D-8

enable instruction (INTEN) 8-1, 8-2, D-8

enabling 8-1, 8-2 LINE FEED (LF)

levels of 8-2 ignored as symbol 3-11

of program by device Chapter 8 use in debugging command 7-2

request flip flop 8-1

routine to ignore A-16 LINE PRINTER (LPT) E-2

servicing Chapter 8

LIST: 3-11
INTP (Interrupt priority line) 8-3
LISTING
INTR (Interrupt Request Signal) 8-1, 8-3 assembler 3-2, 3-11
under debugger 7-3

I/O bus 8-3
ION indicator 5-1, 8-1, 8-2, 8-3 LOAD ACCUMULATOR instruction (LDA)

2-3, D-8
IORST (I/0O Reset) instruction 8-4, D-8
LOAD/NOLOAD field 2-10, 2-11

ISZ 2-4, D-8
LOADING
J editing command 4-2 Binary Loader 6-2, B-3
Bootstrap Loader 6-1, B-3
JMP 2-4, D-8 Nova 800/1200 Selfload Bootstrap 6-2, B-3
. Relocatable Loader 9-2, B-3
JSR 2-4, D-8 Supernova Selfload Bootstrap 6-2, B-3
JUMP instruction (JMP) 2-4, D-8 . LOC
, error F-2

JUMP subroutine instruction (JSR) 2-4, D-8 pseudo-op 3-4, C-2, 9-1 ff
K LOCAL symbol 9-11, 3-12

editing command 4-2

error flag F-2 LOCK switch 5-1
L editing command 4-2 M

error flag F-2, 9-3 editing command 4-2

register in debugging 7-4 error flag F-2

shift bit 2-10, 3-10 mask register 7-2

I-6

MAGNETIC TAPE (MTA) E-2
MASK OUT instruction (MSKO) 8-2, D-9

MEMORY (see also core storage)
. modification instructions 2-4
search in debugging 7-2

MEMORY ALLOCATION and protection
(MAP) E-2

MEMORY REFERENCE instructions
definition 1-1

discussion 2-1 to 2-6

MEMORY STEP switch 5-2
MODE: 3-12
MODE OF ASSEMBLY 3-12

MODIFY MEMORY

instructions 2-4

2D LE WLl VLS

under debugger 7-2

MOV 2-8, D-8

MOVE instructions (MOV_) 2-8, D-8, D-9

MOVE DATA instructions 2-3

MRI (See memory reference instructions)
MSKO instruction 8-2, D-9)
MULTIPLE DEFINITION error F-2
MULTIPLEXERS E-2
MULTIPROCESSOR adapter (MCA) E-2
MULTIPLY DIVIDE option (MDV) E-2

MULTIPLY instruction (MUL) D-9

i-7

N error flag F-2

NEG 2-8, D-9

NEGATE instructions (NEG) 2-8, D-9

NO I/O TRANSFER instruction (NIO)

D-9, D-10, 2-13, 2-14

NORMAL EXTERNAL symbol 9-4

NORMAL RELOCATABLE code 9-1

.NREL 9-iif, C-3
NULL
ignored as symbol 3-11
in character string 3-5
NUMBER error F-2
0]
ALI carry bit 2-9, 3-10
error flag F-2
OBJECT TAPE 3-12
OCTAL BINARY conversion routine
OFF switch 5-1
ON switch 5-1
OPCODE 3-1
OPERAND 3-1
OUTPUT
binary from assembly 3-12

instructions 2-11
listing 3-2, 3-11

A-4

OVERFLOW
carry valueon 2-8
conditions causing 2-9
error F-2
I/0 bus line 8-6
of symbol table F-3

OVERLAP indicator 5-1

P

control function 2-12, 3-10, 8-3

Debug II command 7-4
editing command 4-1
error flag F-2

PACKING character string 3-6

PAGE
editing 4-1
listing 3-2

PAPER TAPE punch (PTP) E-2
PAPER TAPE reader (PTR) E-2

PARITY
character string 3-6
requesting checking 3-11

PERIOD (.)
in label 3-1

special character 3-2, 3-3

PHASE ERROR F-2

PI indicator 5-1
PLOTTER (PLT) E-2
POLLING DS requests 8-3

POUND SIGN (#) 3-2to 3-4

PRE-DEFINED MEMORY cells

PRIORITY
device 8-1
determining 8-3

PROGRAM COUNTER 1-1

PROGRAM
examples
sequence

changing the 2-4
normal 1-1
tips Chapter 11

Appendix A

PROGRAM LOAD switch 5-2
PROTECT indicator 5-2

PSEUDC-0OP 3-4,
PW editing command 4-2

Q error flag F-2

Appendix C

QUOTATION MARK (") 3-2, 3-3

R
Debug II command 7-4
editing command 4-2
error flag F-2
shift bit 2-10, 3-10

RADIX
changes 3-5
error F-1
.RDX 3-5, C-2, 9-8
READS 2-14, D-10

REAL TIME clock (RTC) E-2

POWER MONITOR and auto-restart 8-5, E-3

POWER switch 5-1

I-8

RELOCATABLE
coding Chapter 9

symbol error F-3
RELOCATABLE LOADER 9-2
RELOCATION PSEUDO-OP 9-1 ff
RESET switch 5-2
RUBOUT

in character string 3-5

ignored as symbol 3-11
RUN indicator 5-1

S

control function 2-12, 3-10, 8-3

editing command
error flag F-3
shift bit 2-10, 3-10

SAMPLE PROGRAMS Appendix A
SBN 2-10
SEMICOLON (;) 3-2
SEZ 2-10
SHIFT
byte - 10-1
shifter 2-7
field 2-10
SIGN 2-11
SKIP
field 2-10

sensor 2-7
list of mnemonics D-1

instruction (SKP_) 2-13, D-10

SKP
field 2-10
instructions 2-13, D-10

SKPDZ 2-13, D-10

SNC 2-10

SNR 2-10

SPACE separator 3-1
SPECIAL characters 3-2 to 3-4
STA 2-3, D-10

START switch 5-2

STOP switch 5-2

STORE ACCUMULATOR instruction (STA)
2-3, D-10

SUB 2-8, D-10
SUBTRACT instructions (SUB) 2-8, D-10
SWITCHES, console Chapter 5

SYMBOL
declaration error F-1
error F-3
external displacement 9-4
global 9-4
local 3-12, 9-11
multiple definitionerror F-2
normal displacement 9-4
relocatable assembly - error F-3

SYMBOL TABLE

overflow error F-3
pseudo-op 3-7 fif
pseudo-op error F-3

SYMBOLIC DEBUGGER 9-11, 7-1, B-1
SZC 2-10
SZR 2-10

T
editing command 4-1
error flag F-3

TAB
separator 3-1
tabulation 3-2

TELETYPE
character 10-1
character codes E-5
character output routine A-3
character reading routine A-2
device codes for E-2
models E-1

TERMINATE source program 3-6
TEXT

Editor Chapter 4, B-2

error in F-3

pseudo-ops 3-6
TIMING of execution D-12
TIPS, programming Chapter 11
.TITL 9-4, C-2
TRANSFER

field 2-11, 2-12

special code 7 2-13

TTI E-2
TTO E-2

. TXT 3-6, C-2

.TXTE 3-6, C-2

.TXTF 3-6, C-2
.TXTM 3-6, C-2
.TXTO 3-6, C-2

U error flag F-3

W(word) register 7-2
WORD, Nova 1-1
X

editing command 4-2
error flag F-3
index 2-1, 2-2

XD editing command 4-2
XM editing command 4-2
.XPNG 3-11, C-2
Y editing command 4-1
Z
ALI carry bit 2-9, 3-10
editing command 4-2
error flag F-3
ZERO relocatable code 9-1

.ZREL 9-1ff, C-2

I-10

cut along dotted line

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

Specific Comments, List specific comments, Reference page numbers when
applicable, Label each comment as an addition, deletion, change or error
if applicable,

- General Comments and Suggestions for Improvement of the Publication,

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Maited In The United Stales
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

DATA GENERAL
CORPORATION

Southboro,

Massachusetts 01772
(617) 485-9100

	0001
	001
	002
	003
	004
	005
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-01
	11-01
	11-02
	11-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	F-01
	F-02
	F-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	replyA
	replyB
	xBack

