DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

PROGRAM

Assembler

TAPES

Binary: 091-000002

Copyright (C) Data General Corp. 12(9 053-000017-02

CONTEMTS

1 The Assembly Language

2 Format

3 Integers

L Symbols

5 Special Atoms

{ Operators and Expressions
/ Location Counter |

3 Comments and Statements

9 Symbol hLefinition

10 Label and Equivalence Statements
11 Storage Yord Statcments

12 Basic Psecudo-ors
Radix, location, block, ¢nd of tape, end, text

i Symbel Table Fseudo-ops

15 9dperating Procedure

APPEMDICES

A- Characters

3 Fscudo-ops

C Symbol Table

2 Error Mpocmonics
E Listing Format

F Cbject Tape Format

1{TRODUCT I10M

The WOVA assembly program allows the programmer to write a source
program in a symbolic, mnemonic language using the English alphabet, numerals,
and other common characters. The assembler takes the source program as
input (or more precisely the ASCl! codes for the characters that make up the
source program) and assembles it into an cbject program. The output of the
assembler is a complete listing of the source program on some output device
and a tape of the object program ready for loading into memory by a binary

loader.

1 THE ASSE!MBLY LAMNGUAGE
The assembler recognizes the codes for all ASCI| characters, tut null,
line feed, rubout and form feed are transparent. The first three can be
used in any way in the input and the assembler responds to the input tape
as though those characters were not there at all; hence blank frames on the
tape have no effect, and mistakass can be overpunched with rubouts. A form

.

feed is eaualily transparent with respect both to the assembly of the object
program and to the characters that appear in the listing, but it can affect
the format of the listing. Throughout this manual a reference to "any
character’ mea#s any ASCII character except these four. 0Of the remaining
characters many can be used only to refer to themselves, Ze to supply their
own codes to the assembler rather than being used as symbols to represent
something else.

dence the set of characters in the symbolic language is a subset of
the ASCII character set, and this subset is listed in Appendix A. 3asically

the characters in the language are used as operators, as punctuation, as

elements in numbers, and as elements in symbols that provide instructions

to the assembler. Integers and numeric symbols are character strings used
as numbers. An integer, which specifies its own value, is a strina of
numerals. A symbol is a string of letters, numerals and periods whose
value is either predefined (an initial symbol) or is defined by the source
program. Symbols may be numeric and/or operational. An operational symbol
tells the assembler to do something, purely operational symbols are called
pseudo-ops. A symbolic address is an example of a purely numeric symbel.
tany symbels, such as the instruction mnemonics, are numeric in that they
represent numbers, but they are also operational as they provide informaticn
to the assembler concerning the characteristics of the statements in which
they appear.

Inteocrs and symbols are the basic units or gtoms of the lanuyuage.
There are also several special atoms that do not satisfy the definitions
for integers and symbols. A double quote combined with any character can
be used just as thouch it were an integer whose value is the code for the
charactaers. The soecial atoms also include the characters @ and # that
are used for indirect addressinc and to inhibit loading in an arithmetic
and looical instruction., These characters can te used only in certain
statements, but they are completely transparent in relation to grammatical
structure the assembler responds to one of these in terms of assembling an
instruction, but ignoras it completely when determining the structure of
the statement in which it appears.

Operators are characters that specify arithmetic end logical relations
among numbers, e integers and numeric symbols. A string of integers and
symbols combined by operators is an expresston. Some characters are used
as punctuation to Legin and end expressions, statements and comments, and

to specify how parts of the source program are to be interpreted.

)

The language has a formal hierarchy. Certain characters can be combined
into intergers and symbols; integers and numeric symbols can be combined
with operators into expressions. Using punctuation, expressions and purely
operational symbols can be combined into statements. These are the
fundamental macroelements of the language: they provide instructions to the
assembler, they define all symbols that are not initial, and they specify
both the values of the words in the object program and the memory locations
that will eventually receive them. Storage word statements and certain
pseudo-op statements can generate output words for the obiect nrogram.
(Storage word statements are of two types, data statements and <nstruction
statements.) Label statements, equivalence statements and the remaining
pseudo-op statements are used to define symbols, locate the object program
and control the assem5ly. Accompzanying the statements are comments which
provide commentary on the source program.

As menticned above, the characters null, line feed and rubout are
totally transparent: the assembler completely ignores them and responds
to a character string containing them as though they simply were not there.

A form feed is recognized by the assembler but only for format purposes (§2);
in any other respect it is just as transparent as a rubout. The characters @
and # are also transparent with respect to grammatical structure even

though they have a very definite effect on the generation of the object
program; when one of these characters appears in a statement the assembler
responds to its presence only after evaluating the entire statement as

though the character were not there. Among the characters used for punctua-
tion, comma, space and tat, which are used to separate expressions in a
statement, are grammatically identical and can be used interchangeaily.

‘loreover in a string of these characters, all after the first are redundant;

after encountering one such character, the assembler ignores them until
some other character appears. Following a carriage return all commas,
spaces, tabs and further carriage returns are ignored until some other
character appears.

At the micro-level the source program is a long string of characters,
but at the macro-level it is a string of lines separated by carriage
returns. A single line may contain a comment, any number of label state-
ments, but no more than one statement of another type. In other words a
carriage return may be followed by 2 comment or any kind of statement;

a label statement may be followed by a comment or any kind of statement
including another label statement; but any statement other than a label
statement must be followed either by a carriage return, which starts

a new line, or by a comment, which in turn is terminated by a carriage

return.

2 FORMAT

The HOVA assemtly lanquage is format free. However, the listing of
a symbolic source program has a very definite format. A listing is the
output produced when the characters that comprise the source program are
printed. The teletype is the usual output medium, but a listing can be
obtained on the line printer, and the string of characters in the listing
can be punched in paper tape. The format of a listing is its visual
appearance vith respect to ‘orizontal and vertical spacing, e the use of
spaces, tabs (tab settings) and carriage returns.

Some format is intrinsic to the language because these format characters
are used as punctuation, and the source program is automatically formatted
into lines by the requirement that sometime after any statement other than

a label statement, a carriage return must appear before another statement

AV]

can be given. Furthermore these characters can be used expressly to format
the listing: all redundant spaces, tabs and carriage returns are interpreted
only with respect to the listing format. Eg a logically redundant carriage
return produces a blank line in the listing (although line feeds are

ignored in the input the assembler automatically follows every carriage
return with a line feed in order to properly space paper in the listing
device).

Within broad limits, the programmer is free to determine the format of
the listing for his program. All of these lines are identical as far as the
assembler is concerned, Ze they differ only in format but are identical in
grammatical structure.

LABEL: 2DD# 2,3,SZR ;SKIP IF Sut ZERD
LABEL:ADD,2,3,SZR#;SKIP |F Su* ZEPH

LABEL:ADD 2 3 # SZR ;SKIF IF SUt ZERO
LABEL:,,, ,#A0D, 2, 3 SZR;SKIP IF SuM ZERQ
LABEL :AD#D,Z;S, SZF ;SKIP |IF SUM ZERC
A common practice is to divide each line into four columns by means of three
tab settings, using the left column for latels, the second column for all
othsr statements with the arguments of an instruction mnemonic starting at
a second tab éetting, anc the right column fer program comments. This is
the format of the first example above. |If the listing device does not have
automatic tabbing (eg the ASR33), the assembler simulates tabs by spacing to
the nearest assemhler defined tab position (always leaving at least one
space). These positions are every eight columns, {e¢ columns %, 17, 25,

Although the form feed character is completely transmarent as far as ihe
assembly is concerned, it does affect the listing format. The assembler puts

a form feed (and hence starts a new pace in the listing) before any line

in which that character is encountered. If the device is not equipped for
form feeding, the function is simulated by line feeds, sixty lines per page.
In producing a listing the assembler actually orints out more than just
the source program. In each line of the listing the assembler first prints
one-letter mnemonics (flags) indicating errors that have been made by the
ddress of the location that will con

" HHR S 4151

word (if any) generated by a statement in the line, then the contents of
that location (or if no storage word is generated, the value of whatever
statement does appear in the line), and finally the line of the source program
as formatted by the programmer. If the first instruction statement given
above is assembled to be stored in location 3414, the line would appear in
the listing as follows:

03414 157014 LABEL: ADD# 2,3,SZR ;SKIP IF SUM ZERD
Following the program the assembler lists the values of the symbols defined

by the programmer.

3 INMTEGERS

An integer is a number computed in any radix from two to ten. The
assembler converts each integer into one 1{-bit unsigned number. The
decimal integers 0 to 32767 yield the octal numbers 000000 to 377777,
the decimal integers 32768 to 45535 convert to 100000 to 17777. Using
twos complement conventions the program may treat the former words as
positive numbers, the latter as negative. (The programmer can also
generate signed numbers by using integers with operators as discussed in §%.)

An integer is any string of numerals that is preceded and followed by
an operator or punctuation character and is neither in a program comment
nor in a text string unless enclosed by angle brackets (§12). £g the four
strings

3 38 9 1234567

arc all integers. (In all examples such as the above it is to be assumed
that appropriate delimiting characters, such as commas, spaces or operators,
precede and follow each ecxample.) Clut the threc charactcr strings
31.27 SCA £123
are not: the first two are illegal and would be flagged as number errors (N);
the third is actually a symbol.
The assembler assumes that all intcgers are octal unless the programmer

gives a radix pseudo-cp to spccify otherwise (§12). An integer that contains

any numere!l greater than or egual to the current radix is flagged o5 &
. . 6 .
number error. An integer greater than or cqual to 21 is alsc flagged and

5

is evaluated modulc 2] .

L sydpoLs

A symbol may have cither or both of twe propertics: a nﬁmeric symbo]l
represents a 15-bit number: an opzrational symbol conveys information to the
assembler. Some symbols are alrcady defined before the asscmbly starts; these
are known as initial symbcls and includc the instruction mnemonics and
pseudo-ops. Other symbols can b defined in the sourcc program as labels
(which rcpresent addresses), as other purcly numeric symbols, or os opera-
tional symbols that function like the instructicon mnemcnics. Operational
symbols can bc used to tcll the assembler to do semething; numeric symbols
can be ysed as numbcrs in exprcssions. A symbol with both properties can be
used tc initiate an instruction statecment. It is then used as a number in
evaluating the statement as well as Scing uscd to tell the assembier how
to evaluate it. The difference botween a numaric symbol and an intcger is
that an integer specities its own valuc, whereas the velue of a numeric
symbol must be lcoked up during assembly.

Any string that becgins with & lettcr or period and is composed entirely

of letters, numcrals and periods is 2 symbol if it is preceded and followed

by an operator or punctuation character and is neither in a program comment
nor in a text string unless enclosed by angle brackets (§12). A period that
by itself obeys these conditions is a special sincle character symbol whose
value, which is determined each time it is used, is equal to the current
contents of the location counter (§7). The character strings

[2. .123 M12345578 . G.1 ABC
are symbols (the fifth is the special location symbol), but the strings

1.27 123 LASE

are not: the first two do not begin with a letter or period (the second is
actually an integer), and the last contains an illegal character. Although
the assembler would flag the last string for a bad character (8), it would
interpret the string as two separate symbols. But depending upon the type
of statement in which the string occurs, this interpretation would usually
lead to other errors as well.

Although a symbol can have any number of characters, the assembler uses
only the first five to differentiate among them; in other words, all symbals
whose first five characters are the same are indistinguishable to the assembler.
Hence

B ITMASK BRITHAL7 B1TMAQPRXJSK
are treated as the same symbol and can be used interchangeably. Long symbols
are often used for clarity, but caution must be taken to ensure that symbols
that are meant to be different actually differ in the first five characters.

The assembler will accept the codes for lower case letters as input,
hut in symtols it simply translates them into upper case. Hence all of these
symbols as source program input

A3CD ABCd abed AbcD abCd

are equivalent to ABCD, which is the only form that appears in the listing.

5 SPECIAL ATOMS

Atoms in the assembly language correspond to words in a natural
language. They are the strings of characters that are combined using
operators and punctuation into epxressions and statements. Besides
integers and symbols, there are a few special atoms that have some of their
properties but which contain characters that cannot be used in integers
and symbols.

The character pair

"z
where & is any character other than rubout, line feed, form feed or null,
Is interpreted by the assembler as an integer whose value is the 7-bit

ASCl! code for the character x, provided the pair otherwise satisfies

the conditions given for an integer. Hence qiving the string

i,
’

is the same as giving the octal integer 73, which is converted into the
octal word 007073. The character r is rccognized only to the extent of
using its value 2s an integer, and the preceding double cuotc destroys
whatever operational value it may ctherwise have, eg as punctuation or as
a user defined symbol.

The other two special atoms are the symbols @ and #: the former is
used to nlace a 1 in the indirect bit cf a memory reference instruction or
address word, and can appear only in a statement that generates an output
word of these types; the latter is used to place a 1 in the no-load bit of
an instruction statement of that tyoe. These atoms are completely transparent
with respect to the overall structure of any statement in which either appears
and with respect to the structure of any other atom in the statement.

The appearance of either @ cr # any number of times in a given statement

10

is equivalent to its appearance only once, and its effect is exactly the

same no matter where it appears in the character string that makes up the

statement. The assembler first evaluates the entire statement as though

the special atom were not there at all, and then ORs a 1 into the appropriate

bit of the 16-bit result as indicated by @ or #. Hence all of these

character strings are interpreted by the assembler as being the same integer:
@L673 46073 46730 4e67e3

and all of these are interpreted as the same symbol:

#ADDZL AD#DZL ADDZL# A#DD#ZL

6 OPERATORS ALD EXPRESSIONS

Operators are characters that specify arithmetic and logical relations
among integers and symbols, both types of relations can be intermixed in one
expression. An expression is any series of integers and numeric symbols
separated by operators. The term iexpression' always includes the case of
an integer or a symbol standing alone. As with all integers and numeric
symbols, an exnression has a 16-bit value, which the assembler computes by
performing the indicated logical and arithmetic operations from left to
right,

An operator specifies an operation to be performed on the operands at
either side of it. The onerand at the left is all of the expression at the
left, ie that part of the whole cxnression from the beginning to the preceding
inteaer cr symbol, the operand at the right is the next integer or symbol.
Logical operators work bitwise on pairs of operands; arithmetic opearators
treat operands as numbers. Mote that operands are intrinsically neither
arithmetic nor logical: they are simoly 15-bit numbers that are treated in

different ways.

11
L
The assemblier interprets the following six characters as operators to

specffy two logical and four arithmetfcabperatioﬁﬁ with no check for overflow.

Operator Operation Interprétation of Operands
+ Addition ku-ﬂnsigned 1€-bit integers
- Subfréétfon - Unsigned 16-bit integers
K i Huifiplié%tionh Sféned twééwébmplemeht intégérs; result

is low order word

/ Division Signed twos complement integers; result
is one word, unrounded

& Logical ANC 1e-bit logical words

: Logical OR 16-bit logical words

The plus and minus sign are additive operators, the others are product
operatcrs. An additive cperatcr may take either one or twoprerands,&be
in the former case the operator must be at the left in order to be meaningful.
Actually the assembler assumes a zerc opcrand at the béginnihg of anyA
expression that begins with an opcrator and at the end of any cxpression
that ends with an operator, but this can cause difficulty only with product
opérators--it has no effect on add%tivé operators. Consequently

: L " :

being eguivalent to

is alright; the operator in

P
:

is meaningless but not,illegal, and. the expression s equivalent to. A. ote
that an integer that is used to produce a necyative number must have a .
magnitude. less than or cqual to 21Z: eg the expression

-100001
is not evaluated correctly but is not flagged as an error since there is no
overflow check, The expression -x where x is greater than 215 is evaluated
215,

as 216-x, which results in a positive number less than In the example

given, the evaluation is 077777.

12

Expressions are evaluated from left to right taking one operand at
a time; in evaluating
A+8/C
the assembler adds A to £ and then divides the sum by C. If two operators
are contiguous, the assembler assumes a zero operand between them. For a

string of additive operators this means that only the final one is signi-

ficant:
A+-+-B
is interpreted as
A+0-0+0-B
which is equivalent to
h-B

But with product operators you lose:
A*-B
is interpreted as
A%Q-B

which is simply -B. To Multiply A by -B the programmer must either give

or define some symbol C as equal to -U and then use the expression

ARC

~

7 LOCATION COUNTER
As the assembler translates the source program intc an object program.
it not only generates the object words, but also generates information as
to where they will be stored; for this purpose the assembler keeps a loca-
tion count. ‘lhenever a storage word is generated, it is assigned to the

location addressed by the current contents of the location counter.

13

At the start of an assembly, the assembler initiallzes the counter to
location 0. During assembly the contents of the counter can be altered in
several ways:

The source program can set the counter to any desired 15-bit address
by means of a location statement (§12).

Every time a storage word is generated in the object program, the
counter is incremented by one. Hence unless something else changes
the counter, words are assigned to consecutive memory locations.
(The location following 77777 is 00000.)

At the appearance of the pseudo-op .BLK the counter is incremented
by the value of the argument of the pseudo-op (§12).

The period, when used alone, is a special symbol whose value is equal
to the current conténts of the location counter. Thus

LDA 3,.+46 |
is equivalent to

LDA 3,6,1
If the instruction is assembled at location 1215, it is also equivalent
simply to

LDA 3,1223

8 COMMEWTS AlD STATEMENTS

As previously mentioned, a source program can be regarded as one long
character str}ng. Except for redundant carriage returns, tabs, spaces and
commas, every character in the string either is part of a comment or state-
ment, or terminates a comment or statement.

A comment is not really part of the source program because it cannot
affect the generation of the object proaram. Its only function is in
conjunction with the source program listing--a comment presumably explains
something related to the portion of the program where it appears. A semi-

colon as a statement terminator or as the first significant character

14

following a statement or comment terminator indicates the bcginning of a
comment; the comment terminates with the next carriage return. Any
character except carriage return, but including semicolon, can be used in
a comment. Of course a control character produces no printable output--it
has its given effect (if any) on the listing device at the point that it
appears. {(Remember, a form feed is cxecuted prior to the line in which it
appears and cannot be part of a comment).

Statements in the assembly language correspond to the statements or
sentences in a natural language. A statcment cither definzs a symbol,
generates a word in the object program, or supplic information to thc
assembler. The next threc sections describe the four types of statements:
label statements, cquivalence statemcnts, storage word statements, and
nseudo-op statements.

A statemcnt terminator is a character that ends a statement but is
not itself part of the statcment. No character is used to indicatc the
beginning of a statement. Instead a statement is assumed to begin with
the first significant character that follows a statement or comment
terminator, provided this character is not a semicolon (which indicates the
beginning of a comment). A statement that contains a single undefinced
symbol terminated by a colon is a label statement. Every other statement
is terminated by o semicolon or a carriage rcturn. An cguivalence state-
ment begins with an undefined symbol followed by zn equal sign; a pseudo-op
statament begins with a pscudo-op. A statement that is none of the above
.5 taken to bs a storage word statement, and the assembler inspects the
first nontransparent atom in it to dectermine the type. [If it begins with an
integer or a purely numeric symbcl, it is a data statement and can contain

only one expression; if it begins with an instruction mnemonic or equivalent,

15

it is an instruction statemcnt and thc number of expressions it may contain
depends upon the instruction class to which it belongs. |In determining the
structure of a statement or cvaluating it, the assembler ignores all spaces,
tabs and commas that immediately precede the statement or its terminator,

or precede or follow an equal sign.

9 SYMBOL DEFINITION
A symbol is said to be definad if the assembler has a value for it.
The value of a numeric symbol is the 16-bit numbcr it reorescnts; the value

of an operational symbol is its meaning. Somec symbols, suchvaé the instruc-
tion mnemonics, have both numeric and opcrational properties. for such a
‘symbol to be défined the assemblcr must both have a numcriﬁ value for }t

and also know its meaning. ~11 symbols that appeér fn a program’must be
defined. The initial symbols are‘predefined ahd hence already h$ve values
at the start qf the assembly. The sourcevorograh cén dcfiﬁe a symbo{ és;a
symbolic address by means of a label statement, as a numericﬁsymbol by

means of an eqﬁivalence s?atcment, or as a symbol that hay have both numeric
and opecrational properties by means of certain pscudo-op statements.

The assembly of a source program is done in two passcs, e the assembler
goes through' the entire character string twice. The first pass locates the
entire program and determincs the definitions of all symbols. lence: the
assembler must be ablc to evaluate all symbol-defining statements. in the:
first pass. This means thc source rrogram cannot usc a pseudo-op or
cquivalence statement to define A as a function of the symbol B unless the
statement that defincs 8 appears carlicr in the source program. In order
to define all symbcls and locatz the program, the asscmbler must also be

able on the first pass to evaluate all statements that indicate how integers

16

are to be interprcted or that alter the normal consecutive sequence of the
location counter. Hence the assembler must be ablc to evaluatc any expression
that appears in 2 radix, location or block pscudo-op steatement. If two

or morc statzments define (Ze assign valucs to) the same symbol, every

occurrence of the symbol is flagged as multiply-defined (™).

e

A o - f , mcmembl et Talelall H i
As oart of the assembler's initialization, it determings the memory

7

size of the configuration in which it is running. This cnables onc
version of the Assembler to run in all memory sizes efficiently, building
its symbol table upward until thc mcmery capacity is rcached. AQ attempt
by thc program to‘*dcfinc morc symbols than the assembler can accomodate

in the arca of corc sct aside for them rcsults in a symbol teble error (s),
and the assembler will accept no more symbol definitions.

The assembler cvaluates all other statements in the sccond pass. Any
symbol whosc valuc is not known tc thc asscmbler when it is cncountered in
the sccond pass or in an cxpression that must be cvaluated in the first pass
is flagged as‘an undcfined symbol (U). A symbol whose value in the sacond

pass differs from its valuc in the first pass is flagged as a phase crror (r).

10 LABEL AND ENUIVALENCE STATEMEATS

Only numeric values can be assigned to symbols by label and equivalence
statements. These statcments arc cvaluatcd in the first pass and must be
uscd to assign values to symbols that arc not dafined elscwherc.

A label statement follows a carriage return cor colon, consists of
one symbol that has not bhzen defined previously in pass 1, and is terminated
by a colon. The statement dcfincs the symbol, and its value is taken from
the current contents of the location counter. Ordinerily a label statement

is used in conjunction with a storage word statement. |f the latter

17

immediately follows the formcr, the label provides a (symbolic) address for
the memory location that will receive thc storage word when the object
program is loaded. |f the storage word statement
LDA 2,30
is immediatcly preceded by a label statement, say
LOOP:

ze if the coding is

Look. LPA 2,39
or zquivalent, then the storagc word statement

JMP LOOP

is assembled to produce a jump to the same location that receives the stcrage
word LDA 2,30 (provided of course that location LOOP is in page zero or within
range of the location containing the Jii? LOOP (sce 511)). A previously
defined symbol terminated by & colon is rccegnized as a label statement, and
the symbol is redefincd and flagged (). A label-type statement containing
other atoms besides an undafined symbol is flagged as a colon crror (C).

An equivalence statement foliows a carriage return or colon and uscs an
equal sign to define the symbol at its left by assigning to it the value of
the storage word statement at its right. These are all legal equivalence
statements. ‘

A = 342

[}

8 =h/2
C= SZC+17*A/11-8
D = LDA 2,330,3
E=ADDZ-SHC
The symbol at the lcft must be previously undefined in pass 1, and the

statement at the right must be capablz of evaluation in pass 1, ie any

18

symbols in it must alrcady have bcen defined (an undefined symbol is
flagged as a equivalenca crror (E)). The statement at the right of the
equal sign is not rcally a storage word statement in that the asscmbler
does not actually gencrate a storage word from it, but it must be recognized
by the assembler as cquivalent to such a statement. Note that in the last
examplc, the statemcnt at the right is rccognized as @ storage word statc-
ment for a format crror (F) but would assemble it corrcctly, Ze weuld assign
the actual value of the exprassicn at the right to thc symbol at the left.
An equivalcnce statement terminates with the first semicolon or carriage
return, but any expression following 3 complcte storage word statement
after tho cqual sign is ignorcd. Any number of tabs, spaccs or commas
at eithcr side of the cqual sign arc elsc iznored.

deither a label statzmont nerc an cquivalence statement has any effect
on the location counter. 3cginning at location 1322,

LDA 1,.

O
-
(=
>
)

ic assemblad as cquivaient to

A=1323

LDA 2,1323

o3

C:
D. LDA 3,1324
1323

when B8, € and D are all assigned tho value 1324,

19

11 STORAGE WORD STATEMENTS
A storage word statement gencratcs the output for onc word to be
stored as part of thc object program. Except for a text or end pseudo-op
statement, only this type of statement actually produces output, although
other types can affect the value of the 16-bit word produced. The following
are typical storagc word statements.
135602
152 GA+C,2
STA ’3,0
CoM# 1,1,SZR
A+B/C*D
@3720+E
DIAS 2,PTR
HALT
The currcnt contents of the location counter designote the memory
location that is to reccive the word when the objcct program is loaded.
The counter is incremcnted every time a storage word statement is processcd,
so the words gecnerally are assigned to consccutivc locations unless the
counter is changcd by a location or block pseudo-op statcment.
A statement that is not a label statement and does not contain an
cqual sign or a pscudo-op is assumed to bc a storage word statemcnt
that is tcrminated by the first scmicolon or carriage rcturn. The assembler
examines the first nontransparent afom in the statcment to determing the
typc, and hence the maximum number of oxprissions or fields the statement
can contain nnd the minimum number it must contain. A statcment with fewer
than the minimum or more than the maximum is flagged for a format error (F),

but the assemblcr ignores any cxprossions beyond the maximum allowed in it.

A transparcnt atom can appear anywherc from the first character to the
last before the terminator, whcn one is uscd, thc asscmblcr first
evaluates the statement without it, and then adjusts the rcsult for the
spccial atom by ORing a 1 into the appropriate bit (hence it has no effect

if the bit is already 1).

Data
If the first nontransparent atom in a storage word statcment is an

integer or a purely numeric symbol, the assembler takes it as a data state-
ment containing a singlc expression. In the abovc examples the first,
fifth and sixth are data statcments. In such a statement the special
atom @ can be used in generating a full word indirect address. Since it
has its offect after the statcment is evaluated, all of thesc data statc-
ments have the same value,

102644

102644@

26LL4e

1322%2 3@
although the last onc is flagged for a format crror. Rcmember that the
special atom is ncither an integer, a symbol, nor an operator, and therc-
fore cannot be part of an cxpression. Hencc either of thesc,

190000@

@0
is 2 data statement whose value is 100000, but this,

e
is not. In other words a storage word statement must contain at least one

cxpression--@ by itself does not suffice.

N2
p—y

A statcment being taken as a data statemcnt docs not mean that the
object word guncrated by it is ncccssarily an operand in thc program. A
data statcment is simply a way of representing 2 15-bit valuc: it nced not
be used as an operand anymorc than a number generated by an instruction
mnemonic need be executed as an instruction. £7 the first example of a
storage word statement given at the beginning of this section,

1358902
if cxecuted a5 en instruction would be cguivalent to

raee 1,3

’

Szc

’ -

Instructions

If the first nontransparecnt atom in & storage word statement is an
instruction mncmonic (cr cquivalzant), the asscmbler tekes it as 2n
instruction statement, dctcrmines the class to which it bzalongs (memory
refecrence, with or without accumulator; arithmctic and logic; input-output,
with or without accumulator) and thoreforc the number of ficlds in it.
In ganeral an instructicn statemcnt is made up of a mnemonic fiald followed
by 2 number of argument ficlds, thc standard procedurc is to scparatc the
argument ficlds from the mncmonic ficld by a tab and the argument ficlds
from cach other by commas, but sincc tab, spacc znd comma arc zquivalent,
they ca2n be used arbitrarily as fizld secarators. Every ficld is en
expression which is cvaluated in the normal way. The mnemonic ficld should
be simply thc mnemonic, which specifics only certain bits in the instruction
word, but rcsults in 2 18-bit valuc (ey AIDZIL is cvaluated as 103530).
A mnemonic Ticld containing more than just 2 mnemonic is flagged as a
format crror but is cvaluatcd correctly. In any cvent the expression must
begir with 2 mnemonic; 24 onc could give

LDDZL+400

which (although flagged with an F) is cquivalent tc

1031304400
ie to ANDZL. Thc argument fields rcpresent cother parts of the instruction
word, such as an accumulator addrcss or a skip function; and their eoffccts
arc limited to those parts of thc word--cach argument ficld is cvaluated as
a 16-bit number, but the asscmblcr cvaluates thc total statcment by taking
only thc nccessary low order bits from cach argument value and C"ing them
into thc appropriate bits for the total statcment value. If the statement
contains a transparcnt ctom (which is not rcgarded as a ficld even though it
reprosents a specific part of the instruction word), its valuc is ORed into
the result after cvaluating all ficlds.

Although the assembler masks out unnccessary bits in the values of
field cxprossions, it flags as a ficld overflow crror (0) any AC address or
index ficld whose value is groater than 3, any skip ficld whose valuc is greater
than 7, and any device fizld whose valuc is greater than 53. Tha assembler
flags as a format crror (F) any instruction statement that contains a
transparent atom when none is allowed. An overflow crror also results if
any argument fiuld roquircs the assembler to place a nonzero number in any
fizld of thc storagc word that has alrcady rcceived a nonzero number duc to
the cvaluatioﬁ of the mnecmonic field; ey cxcept for incorrcct format in
the sccond, thosc two statements arc cquivalent:

AND 0,2,SKP
AND+1 0,2
so this statemcnt results in both format and overflow crrors:

AND+1 0,2,5Kr

N
L

Memory Reference. A statement for an instruction that refarences

.

memory has onc or tho other of thesc forms depending upon whether it
recquires an accumulator.

Mnemonic ddress, Index (optional)

Mnemonic Aeccumulator, Address, Index (optional)

The mnemonics for these two forms arc 2s follows.

Without Accumulator With Accumulator
JHe LDA
JSR STA
182
DRYA

The transparcnt atom @ may “¢ uscd to indicate indirecct addressing; it is
usually nlaced immediately befeorc the address ficld.

The index ficld determines the action the assembler takes with respect
to the address ficld. Lat I be the current valuc of the location counter,

A the value of the address ficld, and x the valuc of the index ficld.

Index Action
0 or Blank (ie If 4 < 377, place 0C in bits &-7 and 4 in bits 2-15
no expresston) (pagc zerc addressing). If 1 = 200 < A <L + 177,

plzce 31 in bits (-7 and 4 - L in bits 8-15 (rclative
addrossing).
1, 2 or 3 If -200 < 2 <177, place y in bits £-7 and 4 in
hits 8-15,
If the condition associat:d with 2 given index valuc is not satisficd, the
assembler flags the statcment for an address error (A) and placcs the low
order bits in thz disnlacement and indcx parts of the instruction word as

shown in this flow chart.

24

(:: START

NO YES

w

0<4<377 >0
YES
-200< NO NO
\\4;f+177 ‘
\
00~»BI1TS €-7 01->81TS 6-7 FLAG STATE- X+B8ITS 6-7
MENT FOR ADDF
A->BITS 8-15 A-L+B1TS8-15 RESS ERROR(A’ A-+BITS 8-15

Arithmetic and Logic. A statoment for an instruction in tho arithmetic
znd logical clacs has this form
!'nemonic Source AC, Destination AC, Skip Funection (optional)

The instruction and skis mnomonics for this class arc as follows.

Instruction JRkip
Ny SKF
ies L szC
MV R SHC
e S IR
£DC 7Y (L SR
sus n f ? R ¢rl
ADD | o o
AtD

The transparent atom # may be uscd to inhibit the processor from loading the
instruction rcsult into the dostination accumulator; it is usually placed im-

mediatoly after tho instructicon mnemonic.

25

Input-cutput. A statement for an instruction in thc in-out class has
onc or the other of thcse forms deocnding upon whether it requires an
accumulator.

Mnemonic Device
Mnemonic Accumulator, Device

The mnemonics for thase two forms arc as follows.

Without Accumulator With Accumulator
S DA
NID {c DOA -
P » IS {5
SKFSN nce [lg
SKPEZ DIC *
SKPDil oocJ
SKpDZ

Special Mnemonics. The asscmblir also recognizes some special
instruction mncmonics which combince 2 basic in-out code with the central
nrocessor device code. This climinatcs the nced for a doevice ficld, and

two of thcm even eliminate the usuzlly roquired accumulator ficld.

Special Required
Mnemonic Equivalent Arguments
READS NIA 0,Cry Accumulator
1ORST pIcc n,CRY Mone
HALT 91C 0,ceu None
INTEN N10S CFrU Hene
IMTDS nioc chU tone
INTA DiIB n,CPU Accumulator
HSKD noe n,Cru Accumulator

Hence the assemblcr recognizas
READS 3
as a storagc word statemant cquivalent to

DIA 3,CPU

and ignorcs anything aftcr onc argument ficld in a2 statcment beginning
with READS.

The pscudo-ops discusscd in §13 allow the programmer to define symbols
that will then be accepted by the asscmbler as cquivalent to instruction
mncmonics.

Floating Point Instructions. Thc programmer must remember that it is
illcgal for him to define symbels that arc identical to the initial symbols.
The initial symbols include thc instruction mnemonics listed in Appendix D
of How to iisc thc Mova and zlso th;ifloating noint instructicn mnemonics
that aro 2ssembled likc ordinary instructions but for cxccution by an
intcrpretive routine. The floating point mnemonics are cxplained in the

writcup of the Floating Point Intcrpreter program and arc listed below.

Instruction Mnemonics Option Mnemonics
FADD Fietd FSCE
FALG F1sZ FSET
FATN FJMP FSKP
FCOS FJSR FSLE
FDFC FLD3 FSLT
FDFCI FLDA FSNR
FDIV Faev FSZR
FDSZ FMNS

FETR Fipy

FEXP FNES

FEXT FPOS

FFRC FRMD

FFDFF FSIi

FFIX FSQR

FFLO FST3

FHLV FSTA

FIC2 Fsue

FiC3 FTAN

[a%]
~4

12 3RSIC FSEUND-OPS

A pseudo-op is a purcly opuraticnal symbol. Such symbols arc commands
to tho assembler rathcer then symbolic rcpresentations of numbirs; they can
affect the intcrnal operation of tho asscmbloer, gencrate pertions of the
objcct program, and define symbols (the last type is trecated in the next
section). “ost pseudo-op statemcnts havz the form of a pscudo-op followed
by onc argument.

Radiz. At the boginning of cach pass the asscembler starts by intorpreting
integers as octal. Thc source program can change the radix by giving a
statement of the form

. 2DX Ixpregsion
where intcgers in the exorcssion arc aluaye interpreted as decimal. The
valuc of the exprassion becomes the now radix for intoger evaluation. |If
the cxpression cannot be cvaluated in pass 1 or its valuc is lcss than two
or greater than ton, the asscmblor flags the statement for a radix crror (D)
and continues to us2 tho provious radix.

This cxample of source coding illustrates the effect of the radix

pseudo-op on th2 octal valucs of uxnrussions.

Location Value Statement

000002 LRDX 2

20000 003037 101110 <5 ORED "1TH 33
000003 LRDX 3

20001 200013 21+ 11 ,7+4

10002 000006 12%12/11 s Ex54
000012 20X 10

20003 000115 i

30004 000077 53

0009% 000037 %L/ 3+7

28

Location. ‘fenever the asscmblor oncountors a statement of the form

.LoC Ezpressicn
it sects thc location countor to tho value of the cxpression. |If the
expression cannot be cvaluasted in pass 1 or its valuc cxcceds 32’7C7|O
(ie produccs an =ddross of more than fiftecn bits), the asscmbler flags it
for a location =rror (L) and ignores thc statement. In other words an
crroncous locztion statecment has no <ffcct on the lccation countcr.

When resctting the countcr, the programmer should be careful not to

produc. an overlap, as in

Location
ng214 LIK0 2
£o215 Lon nLTTSAY
0021f PHTE
20217 IMP RTTSAV+HI
202290 TTSAV.Y D
23221 o
00222 n
L2C 220
06220 PTFIM . STA nOPPSAY
007221 STh 1,PPSAY+HI
nz22 CTA 2,PPSAV42

The assembler would zssicn tho zero words to locaticons 220-222. But
rcsctting the counter to 220 causcos the next throc instructicns to bo
assignec te the samc throe locations with no crror diagnostic. “'en the
object program is loaded the zero dat» words arc loaded first, but arc
rcplaced ty the 5743 when they arc loaded. Furthermore, as soon as the

program szves somcthing in the TTSAV locations, the SThs arc destroyaed.

N
D

A location statement can be uscd to rescrve a block of storage. The
following cxamplc allocatcs a block of twenty locations for a tablc whercin
the first location in thc tablc is labeled TAB20, and the first location
aftcr the tablc is labcled TEND.

TAB20: .LOC +24

TEWD:

Block. This pscudo-op is used cxplicitly to allocate blocks of
storage. At the appearance of a statement of thc form
.BLK Expression
the asscmbler increments the location counter by an amount equal to the
valuc of the expression. & location crror (L) rcsults if the expression
cennot be cvaluated in pass 1 or its valuc when odde:d to the current value
of thc location counter ecxcceds 212 - 1.

block of six words starting at

[0

This linc of source coding rcscrves
location BLKC.
SLKS. LBLK 273
End of Tape. It is sometimes necessary to continuc a program onto
ancther scurcc tape. Upon cncountzring the pseudo-cp
JEOT
the assembler stops the source input device and halts with 00006 in thc
address lights. The assembly can be continucd by loading a new tapc and
and pressing the console continuc switch.
End. The final statement in a sourcc program must bc one of thesc,
LEND Expression
.END
and thc line in which it appcars (including 2 comment if any) must be

terminated by a carriage return. |If the pscudo-op has an argument, its

30

valuc is taken as the starting addruss cof the program just assembled:
after reading in the object tape. the loader automatically starts the
cxecution of the program at thce location given. If there is no argument,
the loadcr halts after loading the object program.
Caution

An end statement rust be followed by a carriage return.

Omission of this character causcs the asscmbler to act as

though it had encountcred an end of tape statemont instcad.

It will thus halt and woit for further action by th¢ operator.

Text. To storc thc octal codes for a string of characters packed two
to a word, the programmer can usc the toext pseudo-ops. The basic text
statement is of the form

JTXT Etext stringk
where & is any charactcr other than carriage return, space, tab, comma,
null, line feed, form fecd or rubout, and which docs not appcar in the
text string. Upon cncountering tho 2seudo-op TXT, the esscmbler takes
the next significant character cther then a carriage rcturn as the text
delimiter, and then assigns succeeding pairs of characters to consecutive
memory locations until it again cncounters the delimiter. |f the string
contains an odd numbcr of characters, the final onc is paired with a null
character; if an even number, a null word is assigned to the location
following the string. This provides a convenient mcans for an output
routine to dctect the end of the string.

As usual, null, linc feed, form fced and rubout are not regarded as
elements in thc statement; but from the time the assembler encounters the
first delimiter until its sccond occurrence, carriagc rceturns are also

ignored (of course a carriage rcturn preceding the first occurrence

31

terminates the statemant). Hencc when the programmer is preparing an
input tapc on an ASR, hc can continue the toxt string onte additional
lines on thc tclctype paper without introducing spurious carriage returns
into thc statement.

The programmer can introducc any character, oven a rubout, into the
text string by cnclosing an expression for it in anglc brackets:; hence
anglc brackets cannot themsclves appear s characters in the string. Upen
encountcring = left brackct, the 2ssumbler evaluates the expression contained
Botween it and the noxt right bracket. and takes the lew order seven bits
of that valuc as thc ASCI| code for thc next byte to be packed. Thus to
storc the scentence

GO TN <I'>
the programmor can give 2 text statement of the form
LIXT 930 TN <745 1H<7658
or, if he cannct remermbcr the codes,
LTAT RGN T <Micx ba<!''>>@
The example just given would appear in the listing this way.
LTXT 8RO

T

<ie> |
Mt

<>

o
The assemblcr generates R-hit bytcs, made up cf the 7-bit ASCII code and a

lcftmost bit of 0, and packs thcm from right to left in the storage words.,

Our example would thus produce thc words

32

0G ah7507
T 032540
2 220117
1< Q44474
>N 037116
00 402000

Altogether therc arc four forms of tho text pseudo-op that vary the

disposition of thc Icftmost bit in the 8-bit bytes gencrated from the text

string.
Pseudo-op Iffect on Left Bit
JIXT Left bit is 9.
.TXTO Left bit is odd parity fcr the byte.
LTXTE Lzft Sit is cven parity for the byte.
TIXTF Forces left bit to be 1.

The assembler initially packs text bytes from right to lcft unless the
Y

programmer gives a text modc pscudo-op. After ths appearance of the statement

LTXTH Expression
with a nonzerc cxpression, the asscmbler uscs 12ft-right packing for any
text string it encountirs. The programmcr can switch back to right-left

packing by giving .TXTA with 2 zero argument. EFg in this sequcence,

LA 0
LTET !/
N
TX /r/

the sccond statcment generates the storage word 900101, the fcurth generatcs

sLkokoo.

33
13 SYMBOL TABLE PSEUDN-OPE

By using certain pseudo-ops the programmer can definc symbols 1ike
the special instruction mncmonics (such as ITEN and MSKC), Ze symbols

that include an instruction mnemonic and other fields of an instruction state-

ment as well. The general form of a symbol-defining pseudo-op statcment is
Pseudo-op Equivalence Staterent
1e
Pseudo-op Undefined Symbol = Storage Word Statement

The simplest of these pseudo-ops, .DUSR, defines symbols which retain
no operational propertics: in othcr words it acts just like a simple

equivalence statement insofar as the value of the symbol is concerned. Defin-

ing CNT by
.DUSR CiT = 24

means that

STA 2,CNT
is equivalent to

STA 2,24
Similarly

.DUSR RDR = DIAS O,PTR
allows us to give
RDR

to bring in 2 character from the reader to ACO and start the reader again.
But we cannot givc

ROR 1
A symbol defined by .DUSR has no operational properties and therefore can

take nc arguments; the last example would be flagged for a format error (F).

The other six pscudo-ops of this type definc symbcls with operational
properties. Typically cach pseudc-op allows the programmer to definc a
symbol as equivalent to an instruction statement in which certain fields
arc zero. The symbol is then uscd with arguments corresponding to the
zcro fields in the definition. Suppcse we often have to comparc the
magnitudes of unsigned numbers in thc accumulatcrs. We could use .DALC for
thesc definitions.

.DALC SL = SuBz# 0,0,SZC
.DALC SLE = ADCZ# 0,0,SZC
Then
SL z.Y
skips if ACy < ACx, and
SLL x,y
skips if ACy < ACx. In other words these newly defined symbols act just
like instruction mnemonics in the arithmetic and logical class. The
number of arguments given with the symbol plus the number absorbed in it is
2quzl to the number th: original mnemonic takes. With a symbol defined
by .DALC, a skip field is opticnal if none was given in the definition.
The effect of 2 transparent 2tom can accompany every use of a symbol by
giving it in the definition, or it can be given at the programmcrfs
discration when the symbol is uscd.

Mow even though 3 symbol defined by .CALC has certain operational
properties (specifically taking certain araouments), the stofage word state-
ment in the definition nced not have any. Hence SL could just as well be
defined this way:

.DALC 5L = 102432

and it would still require two accumulator arguments in use. Also, the

argument ficlds required in usec nced not be zerc in the definition-~-thc
restriction is that thc programmer must not attempt tb put a nonzero
guantity in the same storagec word ficld twice. Thus to have a convenient
symbol for testing whether AC1 is less than some other accumulator, we could
definc TEST by

.DALC TEST = SUBZ# 0,1.SZC

or equivalently

TEST 2,0
skips if AC1 < AC2, tHote that the rcquired arquments must be given even if
zero.
The table on page 7 lists -11 ~f these n5oudTeps,. the tyals of
symbols they can dcfine, and for cach type, the arcuments that must
accompany the symbol when it is usced. Optional clements are indicated by

square brackets.

The programmer can specify certain parts of ALC 2nd 10 instruc-
tion words by appending l:ttoers to the basic three-letter
mngmonics for these instructicns. This property is ratained
by the cquivalent symtzl types defined by the pscudo-ops
discussed here., Eg if the orecgrammer uses .DALC to definé a
symbol whose fourth character is &, whenever the assembler
zncounters a statcement in which that symbol is used, it will
place 1s in bits § and 9 of the sterage word generated from

c

the statemant (just as it would if the programmer used ADDS

or MNESS) regardless of the valuc assigned to the symbol by

the .DALC statcment. Hencce unless thc programmer actually
wishcs to usc this function of the assembler in generating
stcrage words, he should aveid the following:

Using L, R, S, Z, 0 or C as the fourth character in a
symbol dcfined by .DALC;

Using L, R er S as the fifth character in a symbol
defined by .DALC and whosc fourth character is Z, 0
or C,

Using S, C or F as the fourth character in a symbol
defined by .DIO or .CIDA.

Conversely if the programmcr limits his symbols of thesc types

to thrce characters,he can apoend the above letters to them to
producc the samc cffects as with ALC and 10 mnemonics. (In

fact the instruction mncmonics are not built into the assembler--
they are dofined by oscudo-ops.)

Although symbols defincd by .DUSR take no arguments, therc is one
property that all symbols dafined by these pscudo-cps have in ccmmon and
that differentiates them from symbols dcefinced by label and equivalence
statements. #A11 symbols defincd by pscudo-ops become initial symbols, ie
they becomz initial entries in thc symbol tablc and can be used without
definition by programs that are assemblcd ofter they are defined. (This
alsc mzans thét a latzr program cannot usc the samc character string for
come other nurpeose, eg 2s 2 labcl.) Thesc symbols remain in the symbol
tzble until thc assembler is reloaded or the programmer expunges the table.
Reloading thc assemblcr reduces the table to its initi2]l state, in which
it contains only the instructicn mnumonics ond the permanent symbels, ie
the special location counter symbol (.) 3nd‘tho pscudo-ops. Civing the

nseudo-op /

A\VN]
~J

undefines all but the permancnt symbols and rccovers the space uscd by
thc expunged dcfinitions. After oxpunging the table, the programmer can

even define instruction mnemonics such as ADD and JMP in any way hc wishes.

SYMROL DEFIWING PSEUDO-OPS

Symbol Type

Pseudo-op Defined Arguments in Use

WIS He v [mrem Vo Moam~ [aam b ie~d in

LI A VIt \rlu' \;'y EA AN A S A Wlilt o D s rie
numeric) any exprcssion)

.DMR omory roference {@lﬂddress [,indcx]

.DMRA Mimory refercnce ~C L@]Address [,lndcx J
with AC

LBALC Arithmetic and [4lacs, reo [skinl
logical class

.010 In-out Device

.DIDA In-out with 4LC AC, Devicc

DAL

1
v

Instruction
ith

A ol
LAY

o>
(]
o~
5
o
o
w
[\
n

jo N

-
~—

38
14 OPERATIMG PROCEDURE

To assemble a source program it is first necessary to load the object
tape of the assembler (a tape is included in the standard HOVA softwarc
package). OCnce loaded, the assembler automatically takes control and
orints requests for various parametcrs on the teletype. The programmer
supplfcs the necessary information by typing numerals back.

The assembler first types

1

in response to which the programmer identifizs the source input device by

typing on¢ of the following numerals.

1 Teletype reader without parity checking

2 Teletype reader with parity checking

3 Paper tape rcader without parity checking
4 Papcr tape reader with parity checkina

5 Teletypc kcyboard without parity checking

When parity is checked the asscmbler substitutes a backward slash () for
any incorrect character and flags the line containing it for an input error
(1.
dext
LIST:
requests the p;ogrammer to scloct the device on which the assembler is to

list thc source program.

1 Teletype A5SR33 (tabs and form fceds simulated)
2 Teletyne KSR35

3 Line printer

L Paper tape punch with tape orepared for later

listing on an ASR33
5 Paper tapc punch with tapc prepared for later

After
By
is typed, sclect the output device on which the objcct (binary) tape is
to be punched.
1 Teletype punch
2 Paper tape punch
The abeve respenses identify the 10 devices to be uscd during
assembly, and at this time the sourcs tapc should be mounted on the
selccted input device. The assembhler types out
“0DE:
to determine what function to perform during the upcoming pass.

1 Pass 1 (all symbols arc dafined)

[2¥)

2 Pass ~ Qutput an object tapc

3 Pass 2 - Output a listing (including an alphabectical
symbol list)

4 Pass 2 - Output both an object tape and a listing

5 ‘ Output an alphabetical symbol list
Note that 4 is illegal if the programmer selected the same device in
respense to both BIN: and LiST:. VWhcn a pass is complcted, the asscmbler
again types .

MODL:

to rcauest thc next function to be porformed, if any.

If it is neccssary ot any timc to sclect @ new 10 device, do the
following:
1. Pross RESET
2. Sct 000002 into the data switches

3. Precss START

4o

To recassign the mode, do this:
1. Press RESET
2. Sct 000003 into the data switchcs
3. ®°ress START

To save the symbol table (eg because new initial symbols have been
defincd), punch 2 new object tape of the assembler itsclf after pass 1 as
follows,
i. Pcrform pass 1 on the defining tapc.
2. Yhen the assembler finishes pass 1 it types out "MODE'. Respond by
typing in 1", This causcs the asscmbler to eliminate neninitial entries
from the symbol tablc, and it then stops since therc is no sourcc tape in
the rcader.
3. Using the Binary Punch Program (qu). punch thc tape from lccation
000002 ;o the location addressced by the contents of location 000004
(1ocation 990904 addresscs the last location in the symbol tablc).
L. Spccify 600002 as the asscmbler start address to be punched in the

start block at thc cnd of the tanc.

APPENDIX A

CHARACTERS

7 Bit 7 Bit 7 8Bit
Character ASCII Character ASCII Charactcr ASCI |
Null 000 L 064 | (RN
Hor fzontal Tab o1 5 065 J 112
Line Feed 0i2 § 066 K 113
Form Fecd Cth 7 067 L 114
Carriage Rcturn 01¢ 8 070 M 115
Spacc 240 g 071 o 116
! oh41 : n72 v ii7
H 042 ; 073 P 120
43 < 074 Q 121
& 045 = 075 R 122
* 052 > 076 S 123
+ 053 @ 130 T 124
, 054 A 101 u 125
- 055 B 102 v 126
. 056 C 103 g 127
/ . 057 N 104 X 130
0 060 E 105 Y 131
1 | 081 F 10¢ z 132
2 062) 107 Rub Out 177

3 053 H 110

APPENDIX B

PSEUDO-0PS

Hnemonic Effect
.BLK Assign a block of storage
.DALC Define an arithmetic and logical instruction
.DIAC Define an instruction requiring an accumulator
.10 Define an input/output instruction
.DIOA Define an input/output instruction requiring an accumulator
.DMR Define a memory rcference instruction
.DMRA Definc a memory reference instruction requiring an
accumulator
.DUSR Define a uscr symbol
LEMD £nd qf source input
LEOT End of tapc
.LoC Assign 2 location counter valuc
ROX Change the number radix
LIXT Definc packed test strings in octal--force parity to O
LTXTE Define packed text strings in octal--computc even parity
TIXTF Definc packed text strings in octal--force parity to 1
LTXTH Definc text packing modc
LTXTO Define packcd text strings in octal--compute odd parity
. XPNG Expungc all but the permanent symbols from the symbol

table

APPENDIX C

SYMBOL TABLE

Al pred:fined and user defined symbols are entered in a table called
the symbol table. This table is origined at the end of thc assembler and
is upward expandable until the memory capacity of the machine being used is
exhausted. Each entry in the table occupies threc 16-tit words. The maximum

length of a stored symbcl is five characters and is represented in radix 508

form. This method uses the first word to store the first three characters
of the symbol and eleven bits of thc sccond word to store the last two
characters of the symbol. The five remaining bits of the second word are
used to dcfinc attributes of the sympbol, eg, a memory rcference instruction
symbol. The third word is used to stcre the numeric valuc of thc symbol.
Symhol table capacity for 2 LK systcm is approximately 400 symbols.
Radix 50 representation is uscd to condensc symbols of five characters
into two werds of storage using only 27 Lits. Assume a symbol of the form:

Ay 03 Gy Oy O

S

a. may be A -7 (2€)
1

o-9 - (10)

or . , (1)

A1l symbols arc padded (if necessary) with nulls. Therefore, thare are

3810 = h&s possible characters. Each character can be translated as follows:

character (ai) translation (Bi)
Null 00
0 to 9 1 to 12
AtoZ 12 to Lk

[

€2

iIf a translates to 8,, wc can computc the following numbers:

N

I

g = ((By * 50)+B3)*50+8,

‘52 (Bl * 50)+80

i, maximum is (SO)3 -1 which equals 174777 and will take 2 maximum of 1€ bits
toc represent. Mz maximum i3 (53)2 -1 which cquals 3077 and will take 11 bits
tc represent. The symbol is thus represented by Hl and ﬁz which take 27 bits
of storage.

A number of symbols exist which are permanently decfined in the assembler.

They cannct be climinated by the .XPN% pscudo-cp. These symbols are:

.BLK .DMRA LTXT
.DALC .DUSR LTXTE
.DIAC .END JTXTF
.DI0 .EOT LTXTH
LOICA .LcC LTXTO
. DR .RDX L XPMEG

Thesc symsols will never appear in the symbol list follcwing an assembly
listing. #Hete that a sccond class of symbols cxists (initia! symbols) which
have becn entercd in the symbol tahle by thc cperator defining pscudo~ops
(§12). A1l of the WAWA instruction mnemonics arc in this category. They

are never orinted in the symbcl list following an assembly listing. They

can be eliminated, howecver, by using thz .XPNG pscudo-op. Carc must be taken
not to confusc this sccond class of symbcls with permanent symbols when

using thae .XPNG pseudo-op.

APPENDIX D

ERROR MNEMOMICS

Extensive examination of statement syntax takes place during both
passes of the assembly in order to detect syntactic errors in the input. A
stétament found to be in error will te flagged with from one to three letters
indicating general classes in which the error(s) fall. Statcments in error
during pass 1 will be printed (with flags) on the teletype. #After pass |1

the user may decide whether to continue to pass 2 or to correct any errors which

b e fmsnd -
hov oC pirinced on

~veA AnnnrnnA rhiie Fow- C+ IR R
Gave CCCUrvyCa UnusS var. o] !

P o | o diiwat e mmma N
LacLeinciined R *L I RV Uui 1ty padss 4 wii
the teletype as well as flags appearing oppositce the statements on the list-
ing device (if any).

nn alphabetical list of crror codes along with examples of statements

causing such errors is given on the next page.

D2

ERROR| GENERAL CLASS
FLAG | OF PROBLEM EXAMPLES - COMMERTS
A Addrass error LDA 2,400
182 4317
B 5ad character LASL: LDA 1,23 ;S NOT PERMITTED
c Cclon error A+2: . N0 EYPRESSION PERMITTED PEFORE
;A CNLOY
D nadix error .RDX 12 - RADIX 12 NOT PERMITTED
E Equal error REG= 3+8 , WHERE B IS UMDEFIMED
F Format error £DD 2 ~ WEED AT LEAST 2 NPERAMDS
| Input crror ; PAKITY CHECKED OM INPUT AND SOME CHARACTER WAS IN ERRCR
L .L0OC crror .LOC -1 - BIT 9 SET
" Multiply defincd| 2 - SYMBOL MAY APPEAR OHLY
symbcl A N . NMCE IM LAZEL FIELD
N Mumber error €77: 74 - MO LETTERS PERMITTED I A
, HWUMBER
0 Ficld overflow LoA h.L0C , MO REGISTER
g Phasc crror CVALUE OF 4 SY4BOL 14 PASS 1 DIFFERS FROM THAT OF PASS 2
0 {lucstionablc
linc A+ EMD
S Symbol table , MEMORY COPACITY F0R A CIVED MACHINE HAS BEEN
overfiow . REACHED
T Zrror in tablc T4+, 0pue W0 EXPRESSION BEFORL A TABLE
pscudo-op . TSEUSH-0P
U Undefined Symtol| . A SYBOL tH CPERAMD FICLD LWAS MEVER DEFIUED
)3 Text error LET.) - ONLY OWE CHARACTER IN '' ATOM
3+.TXT © MO EXPRESSION PERMISSIBLE

BEFORE .TXT

APPENDIX E

LISTING FORMAT

J SAVMPLE ASSEMBLY LISTING

00000 024002 STRT: LDA 15042
92001 050080 STA se-}
00002 157000 ADD 2,3
08023 014020 DS 2o

20004 170491 NEG 3,2,5KP

20005 842524 +TXT *TE
20086 952136 XT '
00007 0OSO1S <15><12>

00016 200008 »

000040 ACNST= 4@
900002 +RDX 2
200085 BCNST= 101

80811 680135 CNST: 1911181

eoep10 +«RDX 8
A 00812 0208766 LDA 0,400 3 ADDRESS ERROR
A 80813 018717 I1se 317,13 3 ADDRESS ERROR
UB 0@P14 924023 LASL! LDA 1,23 ' 3 BAD CHARACTER IN LABEL
mC A+213 3 MULTIPLY DEFINED AND
5 COLON ERROR
UUF REG= 3+8B 3 EQUIVALENCE ERROR
F 008815 143000 ADD 2 3 FORMAT ERROR
L LOC -1 3 LOCATION ERROR

PHASE FERROR
MULTIPLY DEFINED

MP 00016 800CB3 A3

)
M PAZ17 000R25 AS 3
N P2020 000007 CT171 1A 3 NUMBER EKROR .
0 99021 020816 LDA 4s5¢=3 3 FIELD OVERFLOW
R +RDX 20 3 RADIX ERROR
T 2%3+.DUSK 3 SYMBOL TABLE ERRC
U 00022 936015 LDA 2,8 3 B IS UNDEFINED
X 3+.TXT*2 3 TEXT ERROR
Q «+<END 3 QUESTIONABLE

A
ACNST
B
BCNST
c17
CNST
LA
LAL
REG
STKT

epeert
2COR a0
eevel s
2000C 5
0ANR2e¢
oretd
pocet 4
ae@el 4
eeen1s
peerne

m
N

APPEUDIX F

NBJECT TAPE FORMAT

The output of thc asscmbler is an object tape. Its format is acceptable
as input to the binary loader. The tape is punched in blocks separated by
null (all 3) characters. There arc threc block types: data, start and
arror. The Loader reads twe tape characters to form a 16-bit word. The
format is as follows:

tapz channel

R745L321 : direction of motion
P\,W
o |
o
0
1 o = > 0 78 15
#2 ¢ [#2 | #1 |
)
0 word

In other words, the first taps character forms bits C-15 of the data word
(Channel 8 to kit 2, ctc.) and the sccond tape character forms bits 0-7
of the data word (Channel 8 to bit 3, ctc.). The first non-null tape
character significs that start cf a tlock. The block type is determined
by the first word recad. ! dcscription of zech tiock type foliows:”

Data Block - Eit 0 of first word is = 1.

word

1 ~We

2 addross

3 checksum |

4 data wd 1

5 data wd 2

weC = n

34+ n dat2 wo n

The two's complament of tne numbor of data words in the block is given in
the first word (therefore bit 3 is a 1). dormally 15 data words will be

punched per data block. Howevor, the (EHD and .LOC pscudo-ops may cause

BN)

F2

short blocks to be punched. Thc sccond word contains the address at which
the first data word is to bz loaded. Subscquent data words arc loaded in
sequcntially ascending locations. The third werd contains 2 checksum. This
numbcr is such that the binary sum of all words in the block should give a
zcro result. The remaining words 2re the data to be loaded.

Start Zlock - First word is 000001,

0,1 15

__ 000001

s |address
chaoclksum

The first word contains 1. The szcond word uscs the sign bit as @ flag.

If S=0, thc loadzr will transfer te the address in bits 1-15 of the word.
If S=1, the loader will halt. The third word choecksum is the samc as that
for a dat> block.

trror Block - First word > 1.

> i

1arbene

The first word is greater than +1,
an ocrror hlock is ignered in its zntircty by the loader. All error blocks

are terminated by a rubout.

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	A-01
	B-01
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	F-01
	F-02

