DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

EPOCRAM

TAPES

Absclute Binary: 091--000017

ABSTRACT

The extended assembler, like the basic assembler, converts symbolic asscmbly
statements into machine language code. In additien to basic assembler features
the extended assembler provides relocation, interprogram communication, condi-
tional assembly and more nmowerful number definition facilities.

Copyright (C) Data General Corp., 1969 093-000040-00
Printed in U.S.A.

EXTENDED AG SEMBLER

The cxtended assembler differs from the besic assemblor'in four respects:
1) Relocatability - programs can be assembled so that they may be lozded by the
relocatable loader; 2) Interprograem cormunication - programs cen be asscmbled
which reference data,:instructions, and addresses defined in other programs or
vice-verssa (arfumcnt swapping or sha rlnp) 3) Number definition - simvler
methods for specifying double precision, decimal and flosting point constants
as well as bit boundary alignment of constants are provided; L) Conditional
assembly - whole S can
on the basis of an absolute expression evaluating to zero.

Except for these added features the extended asscmbler is identical to and
compatible with thc basic essermbler, 2nd a knowledge of the basic assembler
(see write-up 093-000017) is a prercquisite in the following discussion. The
vextended éssembler is also compatible with tho basic to the extent that programs
not using the relocatable or interrrogrsm cormunication facilities {Ze with no
occurrence of one of the pseudo-ops: .Z%EL, .WREL, .TITL, .EWT, .EXTN, or .EXTD)
will be assembled as absoclute and the binary tape will be punched in the same
format as the output of the basic asscmbler for loading by the absclute binary
lcader.

Use of the relocation and interprogram communication facilities requires
deferment of final address assignment until lcad time thus leaving this task
to the relocatable loader. It is not surprising then that the relocatable
loader (see write-up 093-000039) is a more sophisticated program than the absolute
binary loader and that the data passed to it by the extended assembler differs
from the output of the basic assembler passed to the absolute binary loader.

Together the extended assembler and relocatable loader provide a packege

that enables the programmer to work separately on subprograms in the coding,

-0-

debugging and testing phases without worrying about the absolute location of
a given program or the absolute locations of data and addresscs shavced by

programs at run-time.
RELOCATION

In addition to the assembly of absolute code the user may use the extended
assembler to produce two types of rclocatable code. These types will be referraed
to as zero relocatable and normal relocatsble.

Storage words that mey be relocated but must reside in page zero should be
asscmbled as zero relocatable using the zero rclocatable mode. The user informs
the assembler that a body of ccde is to be zero relocatable by preceding it with
the pseudo-op .ZREL. Likcwise, storage words that may be relocated anywhere
cxcept page zero must be assembled as normel relocatsble in normel relocatable
mode. The user indicates this by preceding his normally relocatable code with
the pseudo-op .NREL.

The extended assembler initially assumes assembly mode to be absolute and
continucs to assemble in this mode until it encounters an occurrence of either
.ZREL or .NREL in the user's code. The user may enter zero relocatablc or
normal relocateble mode at any point in his progrem simply by issuing a .ZREL
or .NREL pseudo-op and the assembler will pick up the assembly at the next
unused zero relocateble or normal rclocatable address. Also, having once entered
one of the relocatsble modes with a .ZREL or .NREL pseudo-op and having defined
symbols in that mode, the .LOC pseudo-op with an expression containing a
previously defined symbol or symbols may be used to reenter that mode. The type
of the expression determines the mode entered. Thus, when the cxpression used
in the pseudo-op evaluates to a zero relocatable value the zero relocatable
mode is entered and the zero relocatable relative location counter is set to

the next unused zero relocatable address or to the value of the expression if

—
o]

it is higher. Likewisc, when the expression evaluates as either normal vrelocn-
table or absolute, the normal relocatatle relative location counter or the
absolute location counter is set. At no time, however, may the .LOC pseudo-op
be used to move either of the two relative location counters or the absolute

location counter backwards, since this would create the possibility of overwriting

o

pertions of the preceding code which is not permitted by the relocatable loader.
The . used in an eﬁpression associated with the .LOC pseudo-op has the meanings:
"current absolute address", "current normal relative address", and "current page
zero relative address' when used within absolutc, normal relocatable, and page
zaro relocatable éode respectively. The following statements provide examples

of the use qf these pseudo-ops.

ve

C0000 000000
000C1 000000
. 000027
00027 000170
00030 000113
000074
000020

00000-003510

00001-000000"
000007~

00007~-000000

000377
00377 000000
00000 °022027
00001 '024030

. 000010~
00010-010074

00011~-020006

003510
03510 024007~
03511 030377
Q3512 010400

000006"°
00006°052027

At
Bs

TABL1

PNTR:
PNTR!
ARG!3

ARG23

MAINS

0 - 3ABSOLUTE .
0 | ‘,
.LOC 27 3ADJUST ABS LOC COUNTER
2¢TABL n o e

TABL+17,

«LOC ++43 $ADJUST ABS LOC COUNTER

. eBLK 29

WZREL . JZERO RELOCATABLE

SUBRT
~LOC +¢5% ; JADJUST ZREL LOC COUNTER

0

«LOC ARGl ~PNTR+370 $ABSOLUTE
¢ : ‘

CNREL : SMORMAL RELCCATABLE
- LDA 0,84
LDA 1,1

~eLOC ARZ1I+) 3ZZR0 RELGCATABLE

LSz TAREL

. .LOC PNTR1+2 JLOC COUNTER CAN'T GO BACK

SUBRT?

LPA 0,aRGI-PNT

«LOC 3510 3ABSOLUTE AGAIN

LDA 1:2RGI

LDA 2:;ARGE _

.LOC 3500 ' 3LOC COUNTER CAN‘T GO BACK

1SZ SUBRTe¢2

.LOC MAIN®6 SNORMAL RELOCATABLE
STA 2,0A .

«END

-5~

The assembler will begin assembly in absolute mode and will creatc Lwo
date words containing zeros for locations 00000 and 00001, then the .LOC

pseudo-op with the absolute expression 27 will change the location counter to

278 and the next two deta statements will create two data words which at run
time will contain respectively a byte pointer to the table called TABL, and

the address of the end of the table. The next two statements increment the
location counter h38 times and reserve 208 locations to storc the table. The
+ZREL pseudo-op causes the asscmbler to shift from -bsolute to zero-relocatablé
mode, and the next two statcments, which will be assigned zero relocatable
relative addresses 00000 and 00001, reserve words which are loaded with the
relative addresses of routines SUBRT and MAIN. ARGl is assigned zero reloca-
table relative address 00007 since the .+5 expression used in the .LOC pseudo-op

increments the zero relocatable location counter by five. ARG2 is assigned

absolute address 3778 since the expression ARG1-PNTR + 370 from the preceding
.LOC pseudo-op evaluates to an absolute value thus shifting the assembler into
absolute mode. The .NREL then shifts the assembler into normal relocatable mode
and proceeds to asserble the routine MAIN starting at the normal relocatable
relative address 00000. But, becausc when evaluated the expression ARG1+1 in
the next .LOC pseudo-op is zero relocatable, the assembler then returns to zero
relocatable mode. Note that the instruction ISZ TABL which follows this .LOC

is assigned page zero relocatsble sddress 10g which is both the value of the

expression ARG1+l and the next availsble unused page zero relocatable address.
Hence, exactly the same result could have been obtained by replacing the

.LOC ARG1l+l statement with a simpler .ZREL statement. In practice this would

be the most usual way of assigning the subsequent statement the next available
relocatable address. The expression PNTR1+2 in the next .LOC pseudo-op is zero
relocatable hence the assembly mode remains unchanged, but because the expression

evaluates to page zero relocatable address 00003 which has already been used the

-6

pseudo-op receives an L flag and the subsequent statement is assigned page zero
relocatable address 00011 which is the next available page zero relative loca-
tion. The .LOC 3510 shifts the assembler back to absolute mode, but the .LOC 3500
although keeping the assembler in sbsolute mode is given an L flag since in order
to complete the command the assembler would have to turn back the absolute loca-

tion counter.

Expression Evaluation
The extcnded assembler allows expressions using relocatable symbols, but

certain restrictions should be kept in mind when constructing them:

1) Expressions using beth page zero and normal relocatable symbols nust be

such that either the page zero or the normal symbols cancel out. Thus for

5 - 22‘+ N, - Ny

represent page zero relocatable symbols and the IIs normally relocatable symbols.

example, expressions of the fornm Zl + N are legal, where the Zs

2) Expressions that evaluate to twice a relocatable symbol or the sum of two

like relocatable symbols are permitted in date statements but those that will

evaluate to higher multiples or non-integer multiples of relocatable symbols

are illegal. 3) Externally defined symbols (relocatsble or absolute), op codes,

double precision, and floating point numbers arec all unuscable In expressions.
The last point is straightforward, but the first two require consideration

of the loading process to be understood. During loading the loader must add a
constant K, to each Ny and & constant X, to each Z; in the program it is loading

to determine the absolute addresses of the syrmbols in the loaded progrem. It
also must modify the contents of ecach storage word avpropriately which it doss

by adding one and only one of five possible constants to the word (O,Kl,K2,2Kl,

or 2K2). From this one can see that expressions that mix page zero and normal
relocatable syrmbols without one or the other cancelling will not be allowed.
A so one can see that loader modification of address contents by more than twice

a relocateble base is not permitted. At this point it is important to see why

-7~

expressions evaluating to twice a relocatable symbol are pernilted. Probably
the most comman use for exprcssions of this kind is in the creation of byte
pointers in data statements for use by input/output routines that process 8 bit

bytes. This is discussed on page 2-21 of How to Use the Nova, but breifly, a

byte pointer is a storage word in which bits 0-1% contains an address and bit 15
specifies which half of the word addressed is to be worked on. Clearly, a byte
pointer of this kind can be formed by simply doubling an address, and can be
retrieved and regenerated by a simpie shifting operation. It should be
remembered that this is = convenient software convention and is nct a hardware
function. We shall use the terms byte pointer type relocatable or byte

o describe expressions of this kind.

It is also important to stress here that these byte pointer type relocatable
cxpressions are only permisssble in deta statements and are not acceptable as
addresses in memory refercnce instructicns. Expressions used in the address
porticn of memory reference instructions must evaluate to be absolute, page zero
relocateble or normel relocatable.

Specifically, expressions of the following forms or which can be reduced
to these forms are acceptable to the cxtended assembler and produce values having

the properties stated.

Expression Attribute of Evaluated Result
AtA Absolute
. - - T
R-R Absolute A A o
RtA Releocatable
R+R Byte Relocatable
2%R Byte Reclocatsble

Expressions that cannot be cvaluated to be absolute, relocatable, or byte
pcinter type relocateble, as well as those that illegally mix page zero and

normal relocatable symbols will receive R error flags.

-8-

As part of the assembly listing the extended essembler prints the address

assigned (absolute or relative) and the contents (before load time) of each

storage word gencrated by the assembler from the programmer ‘s source code. In

the listings it flags each address to indicate in what way that storage word may

or mey not be relocated, and flags the contents of thc address to indicate how

they will be affected in reclocation.

These flags will be printed adjacent to

and to the right of these octal fields on the listing. The flags are:

Address Flags

blank

Content's Flars

blank

Address of word is

Address of word is

Address of word is

Contents

Contents

Contents

Contents

Contents

of

of

of

of

of

Mcaning

absolute.
page zero relocatable.

normally rclocatable.

Meaning

werd arc

word arc

word are

werd are

word are

chsolute.

page zero relocatable.

pace zero byte relocatable.
normally relocetable.

normally byte relocatable.

Storage word referenccs a displacement external.

These flags can be scen in the previous example and in the following.

A

DXI X/ X

ANNNN

000010
00010 000006
0001! 000000

CTG001 -
00001 -000400
00002-000501~
C3003-000004=
00004=-000005~
00005-034002~
C0C06-031525
C0007-042000
00010~000001"°
00011 -000002%
06012-020001%

26000 '000010
0G001 *000000°
0C002°*000C00"
00003°000401
00004°034775
00005°031525
00006°044003-
00607 °*000000
C0010°000000
00011 °060000

-00012°*000000

00013°000000
00014000000
00015 '020000
0004i6*
¢04186°'020402
00417°'000002~
00420°'000004=
00421 °040001S

000013~
¢2013-010000
00014-010006~

00015-000006-

000427°
00427°014000
00430°'014575

00431 °001452"

00432°'034000
00433°'010000
00434°'050000

00435°000000

At

Bt
Cs
D3

Ve
Xt

Es
Fs
Gs

Ht
It

Js

Ys
FA]

JMPs

«EXT

Q-
P

D Disp
+LOC 10
6
o
ZET
oLOC .4})
400 _3CONTENTS ABSOLUTE
B - 3CONTENTS PZ RELOCATABLE
C+C ~ 3CONTENTS PZ BYTE REL.
JMP ¢}
LPA 3,C
LDA 2,125,3. .
STA 1,6G " 3ADDRESS OUTSIDE PAGE ZERO -
F JCOMTENTS NCRM RELOCATARLE
FeF _JCONTENTS NORM BYTE REL.
LbA 0-DISP SADDR 1S DISPLACEMENT EXTERNAL
_ oLIRFL .
A . 3CONTENTS ABSOLUTE
E SCONTENTS KORM RELOCATABLE
¥+E "JCONTENTS NORM BYTE REL.
Jir et
Loa 2,F
LdA 25,1253 ‘
2 PR oo
232+é JEXPRESSION NOT ABS, RZIL», OR BYTE REL.
S5&F IDITTO o P
SeF/D INITIO
4¢F/3 IDITTO
$¥/3 3DITTO ;
g+r 3UNCANCELLED MIX OF Pz & N REL SYMBOLS
LDA 0,2¢Y+G-E~Z JERROR = +-200%4ADDRESS»e+177
. o + 400
ngco,gtgasos-z 30.Ke = o=200<ADDRESS<e+177
c 3CONTENTS PZ nsnccaz&nu:-
c+C . SCONTENTS PZ BYTE REL.
STA 0,DISP JADDR IS DICPLACEMENT EXTERNAL
+LOC VW3 3ZEROC RELOCATABLE
1SZ 3»weD/2 SERROR ~ ADDR IS gz BYTE REL. .
I1SZ 3sWeD/a 30.K. - ADDR 1S PZ RELOCATABLE
3sWeD/a . ~ 3CONTENTS PZ BYTE REL.
oLLOC Z+7 1 ORMAL RELOCATAB&E
DSZ 4sY~F-Z4C~D JERROR - ADDR 1S NORM BYTE REL..
‘DSZ 48Y-F~Ze+C=-Ds2 $30.Ke = ADDR IS KORM REL
4%Y-F=Z+C-D "$CANCELLED MiX OF PZ & N REL SYM
LDA 3,DISP+6 JEXTERNAL USED IN Expszssxou
ISZ JMP+4 30P CODS USED IN EXPRESSION
STA 2,6D+3 3LouB PREC ¢ U§ED IN EXPRe
2.0%Z) IFLTG PNT # USED IN EXPRe.
0 ' g 10P COPE USED AS SYMBOL

«END ..

-a

~10-

The example above also shows threc types of error flags: the 'R', the 'A';
and the 'Z'. The 'R' flag, 23 has bcen mentioned before, is used to flag
expressions that cannot be evaluated to be absolute, relocatable or byte pointer
type relocatable, or which mix parce zero and normal relocatable symbols in 2 non-
cancellinr fashion.

The 'A' flag pleys much the same role as it does in the absolute assembler
indicating address efrors. That is, when mermory reference instructions (JMP,
JSR, I8Z, DSZ, LDA, & STA) that are to bz page zero relocatable reference
addresses outside page zero, or when thoce that are to be normelly relecatable
reference addresses outside the range of lcention counter relative addressing
(.-200 < address < .+177), or when an expression used to specify an address does
not evaiuate to an accéptable absolute, page zero rcelocateble, or normal reloca-
tablc address, the statements will be flagrced with an 'A' and an absolute address
of 00000 will be substituted by the asscmller. Expressicns used in deta state-
ments arc not restricted in the nddresses they reference and hence when asscmbled
mey contain byte relocatable as well as absolute or ordinary relocatable data.

The 'Z' flag is generated whencver a stotement contains an cxpression that
uses symbols not evalusble by the assembler. These cxpressions containing
externals, op codes, double precision numbers, and floating point numbers will

receive 'Z' flags.
INTERPROGREAM COMMUNICATION

It is possibtle using the extended assembler to refcrence data, addresses
and constants in & program which are not defined within that program but rather
in others, and it is also possible to mcke symtols defined within that program
available to other programs by preceding the program code with pzcudo-cps
declaring the appropriate symbols as cither externals or entries. DNote that

although a symbol may be used in many programs tc refurence scme datum, address

-11-

or constant, it can only be defined in one program without being multiply defined.
Hence, within a suite of programs a symbol may be declared as an external by
several programs but should be declared as an entry in only one program.

Two types of externals may be specified using the extended assembler.
They will be referred to as normal externals and displacement externals (or
external displacements). Displaccment externals may be used in any memory
reference instruétion or data statement, but when evaluated by the assembler
must resolve to & value representable in eight binary dizits. That is, when
used in a data statement or in 2 memory reference instruction with index = 00
(referring to page zero) the displacement must rescolve to a value in the range
0 <D < 377: when used in a memory reference instruction with index # 00
(2ddressing relative to the location counter or relative to & base address con-
tained in AC2 or AC3) the displacement must fall in the renge of permissable
displacements =200 <D <177. Normal externals are pcrmissable only in data
statements, 7¢, an entire storage word must be reserved for a normal external.

Two pscudo-ops are used to declare symbols that will be used as normal
externals or displacement externals. The pseudo-op used to declare normal
externals has the form

LEXTHN S51, g2 ...
where 51, S2 represent the symbolic names of the normal externals. These
symbols must conform with the rules for symbol definition appliceble to all
other symbols. At least onc symbol rust be specified, but any number may appear
if separated by spaces or commes. The pscudo-op for declaring displacement
externals has the same form
.EXTD S1, s2 .

where 81, S2 represent the names of the displacement externals. Every external
must be declared in some other program as an entry by means of the entry pseudo-
op which has the form

.ENT 81, s2 ...

12—

where S1, S2 represcnt symbols(ﬁéfined within the current program. Programs
which use externals nr define entrics must declere the relevant symbols in the
.

.ENT, .EXTN, OR .IXTD pscude~ops before any cther statements. The order, how-
ever, in which these three pseudo-ops appear is immaterial. Any errors that
cccur in the declaration of internal or external symbols are indicated by
flagzing the statement with a G flag,

Since titles are key identifying clements required by the symbolic debugger
and library file editor used in conjunction with the extended assembler. a
pseudo-op for naming programs is provided. This statement takes the form

LTINL title

vhere title represehts o legitimate sywbol which becomes the program name. This
symbol may confl{;t with any other syrbel without csusing an error, since this
symbol is implicitly different from 211 others. However, if the title viclates
the rulesAfor symbol definitiqn, the statement will reccive o G flag. If no
LTITL statement is included in;ﬁ program, the assembler assumes the title .MAIN,
and this will be the symbol punched in the title block (sce Appendix 4). The
.TITL statement nust appear before any statement that generates cbject data.
If a sccond .TITL appears before a data statement, the first title is replaced
by lhe second.

The example that follows illustrates use of the external, entry, and title

facilities.

-

a%0060=-001764"
00001-001776"
090101
0ce03-1777177
00004-005015

00000 *006003~
00001 °020001 -
00002040002~
00003°'030002~
C0004°'014002-
00005024000~
00006132433
000070000028
00010°151220
00011'021000
00012'024001$
00013°101002
00014°101300
00015123400
00016177777
00017°000764
00020060111
00021 °000757
000772°
00772°040440
00773°047526
00774°020116
00775°'042522
00776°052520
00777'020123
G1000°000000

000020°*

CSTR:
CSTris
PNTH?

"«CRLF3

CCRLF

BGN?

LOOP?

INIT:

STRING?
vo

N

RE

PU

S

*

«TITL

Lo

REPUS

<ENT
«EXTN
+EXTD

BGN»CORLF, « CRLF
CRLF,TYPET
- C377,DCNE

«ZREL
STRING+STRING
STRING+STRING+12
«BLK 1

CHLF

501%

_+NRIL
‘JER
LbA C»C5TRY

8 «CRLF¥F

STA
LLA

0,PNTR
2,PNTRH
DSZ PNIH

LA 1.C3TR
SUBZe 1,2,5NC
JIER DORE '
MOVZR 2,2

LEA 0,0:2

Lea 1.C377

"MLV 0,0:57C

MOVS 0.0
AND 1.0
TYPET
JMe LCOP
NIOS TTO
JMP BGN

LN
«LOC .+750

«TXT * A

«END INIT

06000-000377
00001-000007"
00002-177777
00003-006002$
60004-063077
00005-002002+
006001~

C377s
«TTTOS
«BGN s
DONEs

TYPET=

00000 °054406
00001 *02C0G1 $
00002006001 -
00003*101300
00004 °006001 -
00305°002401
000001
006007063611
06010°000777
00011°061111
00012001400

CRLF3

PCRLF?
TTTO?

<14~

«TITL AVON

+EXTD CCRLFs<CRLF
«EX TN BCH

¢ENT C277+DONE, TYPET,CRLF
«ZREL

377

TTTO

EBEN

JSR O.CRLF

HALT

JHP 0. BON

JSR @.TTTO

«{IREL

STA 2»RCRLF
LDA 0,CCTILF
TYPEY =~

‘MOVS 0,0
TYPET

J:i® GRCRLF
eBLK 1

- SKPDN TT0
di”'n'i’ o=
DUAS (Q,%TO
-'_deP 053
. e BND

(2]
\S1
#

NUMEER DEFINITION

The number defining capability of the extcnded assembler has been expanded
considerably over that of the basic asscmbler. The imprevements help the user
interface more easily with Data General's math library and floating point

interpreter.

Decimal

To input decimal numbers using the basic assembler, it was first necessary
tc declare

JRDX 10

In addition to the .RDX psoudc-cp the extended assembler allows the user
to specify a decimal number at ony point in his rrogram by terminating a numeral
string with a decimel peint. FEowever, no numeral nay follow the decimal point
without fhe number being interpreted as floatirs peint. For cxample, in any
radix, 10. will be interpreted =s dzcimal 10 and be converted to octal 12
whereas 10.0 will be interpreted as a dceimal floating point number. The decimal
defining feature allows the prograrmer to combine decimal numbers in expressions

with numbers of cther radices. The following illustrates this.

Assembled Storapc Word Program Code
RDX 2
C00152 101 + 101.
.RDX 8
0002L6 101 + 101.
.RPX 10
000312 101 + 101.

Floating Point

If a numeral string is followed by an 'E' or if the numeral string contains
a decimel point followed by at lcast one more numcral or the letter 'E' the
extended assembler will interpret the string as a floating point number. It

will convert the string to a two word, floating point constant using the binary

~16~

fraction representation discussed in Appendix C of How to Use the Nova. This

format is the onc used by Data General's floating peint interpreter (sce write-
up 093-000019). If nurbers too larce or too small to be represented are specified
the assembler will rcegard them as errors and flar then with an I flag.

The followin~ examples illustrrte the definition of floating point

constants.

Assembled Storare Words Program Code
oLkohi20 1.0
000000
oLkol26 3.1415926
L1766
1Lkok2o -1E0
(s}e]e1e10]0]
oL0220 +5,0E-1
0C0009

The number following the 'E' is the decimal power of ton used to evaluate
the number. The last example therefore implics

+(5.o)=*<-(10)'l = +0.5

Note: Although floating point constants may be used in data statements they

are not pernitted in cxpressions,

Double Frecision

The math library provides for extensive manipuletion of double precision
numbers. These numbers are revresented using two contiguous memory words (or
two hardware accumulators) concntenated into a 32-bit string where the first word
comprises bits 0 to 15 of the number and the second word bits lo to 31 of the
number.

0 15 16 31
| wera1 ! word 2

-17-

Bit O contains the sign 2nd bits 1 to 31 contain the magnitude in two's
complement notation. Double precision constants can be defincd using the
extended assembler by termineting a numeral string with a D. The numeral string,
which may be signed, is then evaluated in the current radix, but as with single
precision nurber definition no check is made for arithmetic overflow. The

following strings convert ss shown (assuming radix 8).

Assenmbled Storage Werds Program Code
000000 1D
000C01
177777 ~-1D
TTT7TT
000001 200000D
000000

llote: Double precision numbers cannot be cormbined in expressions.

It is also possible to specify double precision decimal numbers =2t any
point in 2 program by using the decimal point followed by a 'D', but as with

all double precision numbers they may not be combined in expressions. For

exarmple,
Assemblced Words Program Code
00000k 262147.D
000003
000001 100000.2
103240

Bit Boundary Alignment
a facility for right justification of a single precision integer on a bit
boundary is provided in the extended assembler. The specification of an irteger
in the current radix fellowed by
B decimal number

will cause the binary equivalent of the integer to be aligned at tae tit boundary

18-

designed by the decimal number. Thus the decimal number is limited to the
range 0 to 15. The statement takes the form

nBd
where 7 is a number in the current radix (usually octal) and d is a decimal
number specifying the bit boundary. The nurber is given the value

. (15-d)
(n) *(2) 4

where »r represents the current radix. The following strings are converted -

as shown (redix 8).

Assembled Word (Binary) Procram Code
1 000 000 000 000 6C0 1BO

0 000 000 000 000 010 1B1k

0 00C 010 100 020 000 12B8

CONDITIGNAL ASSEMELY

The-extended asscubler provides o conditional assembly feature which allows
portions of a program to be assembled or to be by-passed by the assembler on the
hasis of the evaluation of absolute expressions. Three pseudo-ops are used to
control the conditional assembly feature. They have the form

.IFE Expression (cr .IFN Expression)

.éNDC
The cxpression in the .IFE (cr .IFN) pseudo-op must be evaluable in pass 1 of
the assembly process. Otherwise it will be regardcd as an error and flagged
with a K flag. That is, all symbols used in thc expression rust be absclute and
defined previous to the occurrence of the .IFE. If, when evaluated, the
expression equals zero, the statements following the .JFE will be assembled,
but when the eveluated expression does not equel zero all statements subsequent

to the .IFE pseudo-op up to thc occurrence ¢f an end conditicnal pseudo-op (.ENDC)

1
,__'
Ve
H

will be ignored. It is possible to specify the opposite situation by using the
-IFN pseudo-op with an expression. Vhen using the .IFH pseudo-op subscquent
statements will be assembled only if the evaluated expression does not equal
zero, and will be by-passed when the expression equals zero.

Two further points should be kept in mind when using the conditional
assenbly feature: .1) Conditionals may not be nested, 1e, if a second .IF
pscudo=~op is cncountered before an .ENDC pseudo-op is found, the second .IF
will be ignored and will receive a K flag., 2) The'pseudo—ops .END and .EOT

will not be ignored when imbedded in a section of con

ditionally assembled

code, e, in the following example the .END will not be bypassed but will cause

the assembler to cease the assembly process.
JIFE 1
LZND

B1ve Al
JLNTC

APPENDIX A

Opcrating Procedure

The procedure uscd in asscmbling sourcc code with the extended assembler
is identical to that uscd with the bacic assembler. However, two additiona
opticns for specifying the punched binery output ere provided. These options
cause the table of local symbols generated during assembly to be included in
the punched output. This table of lse2l symbels should be output only wiaen
the programmer intends to debug his prorsranm using the symbolic debugger since
the binary tapes without loecal symbols are considerably shorter.

Thus, when the assembler asks what form the binary output is to take, by
typing,

BIN.

there are four pessible responses whoce effects are shown below.

RESPONSE ZFFECT
1 Output binary on thc teletype without local symbols.
2 Cutput binary on the high specd punch without local symbels.
3 Output binary on the teletype with local symbols.
L Output tinary on the hirh speed punch with local symbols.

Like thc basic assembler, the extended assembler punchoes its output in
blocks separated by null characters. There are seven different types of
blocks punched by the extended esscmbler which are distinguished by the codce

rder in which

e}

contained in the first word of each block. There is a specific
these various types are punched with all blocks of one type being punched together.
For cach prorram cssembled the extended assembler will punch a Title Block, a
Start Block, and at least one other tlock, but aside from the Title and Start
Blocks no other typc of block must necessarily cprear in every program. The

seven types of blocks in the order in which they would be punched if all werc
required are shown on the next page. The exact formats of each of thesc blocks

can be found in Appendix C of the Relocatable Leader write-up (093-000039).

Order of Blocks Punched in Paper Tape

TITLE BLOCK

[L0l L L LT

EITRY BLOCKS({8)

i SN NNENY,

DISPLACEMENT EXTERNAL
RILOCK(S)

VAN NN YNNI

RELOCATABLE DATA

BLOCK(S)

/ / J / ’ /’/ / / / Jf/ 4 I’; / / Z // I'l"

HORMAL EXTERNAL
BLOCK(S)

g T A Ay A L A A S 4
VAR SR SN A S AR S AR A SR A A 4

K

APPENDIX B

Error Mnemonics

MEANING

Address error - Expression evaluates to something other than an
absolute, normal rclocatable, or page zero relocatable address.
Page zero relocatable instruction references address outside page
zero. Normally relocatable instruction references address outside
the range of locaticn counter relative addressing.

Error in declaration of an internal or extornal sympol.

Conditional assembly error - Exprcssion used in .IFE or .IFN
pscudo-cps iz not evalushle in pass 1, or the .IFE or .IFN
pseudo-op is nested within a previous conditional assembly
statement.

Number specified is too larpe or too small to be represented as
a floating point nunber.

Expressicn error - Expression dows not evaluate to be absolute,
relocatable, cr byte pointer type relocatable, or expression
mixes pagc zero and normal relocatable symbols incorrectly.

Expression contains illegal symbol, (eg, an external, an op code,
double precision number, or floating point number).

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	A-01
	A-02
	B-01

