User’s Manual

EXTENDED
ASSEMBLER

093-000040-01

ABSTRACT

The DGC Extended Assembler is upward compatible with the DGC
Absolute Assembler, providing the additional features of reloca-
tion, interprogram communication, conditional assembly, and
more powerful number definition. The Extended Assembler may
be used under the Real Time Disk Operating System (RDOS), the
Real Time Operating System (RTOS), the Stand-alone Operating
System (SOS), or in stand-alone operation.

Ordering No. 093-000040-01

© Data General Corporation 1969, 1974
All Rights Reserved.

Printed in the United States of America
Rev. 01, May 1974

NOTICE
Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.
DGC reserves the right to make changes without notice in the specifications and materials

contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented, including but not limited to typographical
or arithmetic errors.

Original Release October, 1969

First Revision May, 1974

This manual, 093-000040-01, supersedes

093-000040-00 and is a complete revision
of the manual,

NOTATION CONVENTIONS USED IN THIS MANUAL

The formats shown in this manual contain notations that are not part of the assem-
bly language itself but are of the formal language used to describe the Extended

Assembler.

)

UPPER
CASE
LETTERS

lower
case
letters

t 1

C()

The notation conventions used in this manual are:

A curved arrow represents a carriage return.

Parts of the format in upper case letters are literal parts of
the assembly language and must appear in context exactly as
shown in the format. :

Parts of the format in lower case letters are variables indi-
cating that the programmer must substitute an appropriate item
within a class, such as a symbol, a digit, or an expression.
Standard notation variables used in this manual are:

usr -sym a programmer -defined symbol
exp an expression
n a number

Broken square brackets enclose optional parts of a format,
(Parts of a format not in square brackets are required.)

A delta represents a terminator or break character; it can be
any number and combination of spaces, tabulations, and
commas.

Ellipsis indicates that the preceding field can be repeated.

A parenthesized quantity preceded by C means contents of .

For example,
C(AC2)

means the contents of the accumulator AC2.

As an example of notation conventions, the source line format for the .END

pseudo-op is:

.END {aAexpt)

The format shows that the programmer must include the characters .END in the
source line and may optionally include an expression. If an expression is included
in the line, it must be preceded by a terminator such as a space, tab, or comma
or series of spaces, tabs and commas. A carriage return must terminate the

entire line.

TABLE OF CONTENTS

NOTATION CONVENTIONS USED INTHISMANUAL ¢ ¢ c e c o s s 0 seveososcosecccssssacccsl

CHAPTER 1 - INTRODUCTION TO THE EXTENDED ASSEMBLER

Special Extended Assembler FacilitieS+ « s c s e e e v cveenccesescsrosannsasl-l
Relocatable Programs « e o c e s o s e o e seoseovssoecsessssosnscensessal=l
Interprogram Communication « « « + s e s et o s essasssscsocsssoseneasl=l

Conditional ASSembly « « cocececersosrsrsosscsscsoancnsns
Input and OULPUL ¢ « c e s o e s e s s e esessnassnscsssssesasscncs
SOUrCe FileB e e e ceesveocveccsocessnesntacsoccnsnsns
Source Program ListiNg e « c s e e e v v et erooesesccsssencsns
Relocatable Binary File e« ¢ ¢ e eocaovconecsvocscscnoscnans

CHAPTEKR Z - SOURCE PROGRAMS

CHAPTER 3 -

CHAPTER 4 -

Character SEt « ¢ o s s s e s o s s s o s oo esssssnsesessocessosas
SOUTCe LiNES « « « o o s s s ascanccssoossesanasaascsasasaanan
Datd LiNeSe « o e ¢ s s s e s s s s e s sossoscsaccssocscosssncsse
Instruction LiNES « « ¢ o e e s o e s e s e e s s s coscoocsoscssoaceos
Pseudo-0op LiNeS e c e e o s e v v vvenvnsoscsccnncsosacensoas
Equivalence Lines. « « c e o e et e vt tesssooesscssecasensss
LabelS ¢ e o eo s onsecacasosonassesscaccssssssenscsss
Source Line FOrmatting e « « « e s s v s veensoeesacsssosssssss

ATOMS

Terminators <+ ccco o oo oeoseessssasssossossosssssasconcsns
OpEratOrS « s e o s s s s coeosssccccsssssscsssoscsssnnosas
Breaks o« ¢ o o s s c s 6 6 s s s e e 06 cossosssescscscsscsascscas

NUMDETS ¢ ¢ o ¢ o 6606000 0cvsooossossosossssoccsossssssssse
Single PrecisSion INtEZeTrS « « « s v oo eeeerensessecanonancan
Double Precision Integers. « « « c c o eeveeecesccsosscssccccs
Floating Point NUMbeTrs « « e e e ot e veeeosococcscscosscsns

Symbols ¢ v eesveccoancns cececsccsssecscssssssscnosen
Permanent SymbolS .+ « « o s c e covesssesectscscsccssccsosas
Semi-Permanent SymbolS . « ¢ s ¢ e e s e s e et soeccsccossocenne
User SymbolSe « s s s e e sosersevsassosssaasssssnsenonsoes

Special AtOINS ¢« c e s cosseeeecotsccsccscosocnascsssssoscssnss
ASCII Character CONVersione « « « s s s e e s v acsssovesscscsss
Indirect AJATesSSINg. « « e v c ot e et seve st et venrsanecnaean
Setting No-Load Bit. « c ¢ s s o e eeevncascnnsosaocossooen

EXPRESSIONS

e e o

LICE IS

e s e

LR Y

s e e

LRCIC Y

A |
R L |
. !
eee.3-2
ceee3-2
eoee3-3
. e |
e
0036
-]
U
.ee3-7
e eee3-7
.
e

Evaluation of EXPressions o e e oo cooeeoeececocsconsssosascssoonsseessd=2

Bit Alignment Operator « « c s e s o s s s o seeecoocsssscssascasas .

N

TABLE OF CONTENTS (Continued)

CHAPTER 5 - INSTRUCTIONS

Arithmetic and Logical INStruCtions « « o ¢« « e s et e e e vt oo ossonossosnns

Memory Reference Instructions Without Accumulator. .
Memory Reference Instructions With Accumulator. . . .
1/0 Instructions Without Accumulator « « v s e oo e s 00 s
1/0 Instructions With Accumulator . . « « o e cvee e
1/0 Instructions Without Device Code
1/0 Instructions Without Argument Fields .

CHAPTER 6 - PSEUDO-OPS

. TITL Pseudo-op. « + « -

PEERE I

Radix Pseudo=0p ¢ e e oo ovcevecnes
Symbol Table Pseudo-ops . .
.DALC Pseudo-op . .
.DMR Pseudo-op + + « »
. DMRA Pseuod-op . .
.DIO Pseudo-op.
.DIOA Pseudo-op.
.DIAC Pseudo-op. . - «

.DUSR Pseudo-0p ¢« coeoese

e e 00 0000

.XPNG Pseudo=0p ¢« ceooovsocane
Location Counter Pseudo-0OpS.« « « « ¢ o o ¢ o«

.BLK Pseudo-0p ««¢sce.e

.LOCPseudo-0p ¢+ ¢« soveescececcs
.ZREL and . NREL Pseudo-ops
Interprogram Communication Pseudo-ops. .
.COMM Pseudo=0pe « s e o s s 0s s sae
.CSIZ PseudO-0Op ¢ + o s e s e e s s o s aas
.ENTPseudo-0p ¢« covoovececocas

. ENTO Pseudo-op .
. EXTD Pseudo-op .
. EXTN Pseudo-op .

.EXTU Pseudo—0p « « + « + .« & .

. GADD Pseudo-op .
.GLOC Pseudo-op .

Text Pseudo-0pS ¢ « s o o s 0 oo s

LEOT .0 ven

CEND ¢t teteeeeesessasocaccscsescosscasscsocsscssccssssas

e e s s e s s 0 e e e

L R A S RS)

e o e s e ee s 0000 00

s o0 00 0000 oa 0 e

DR R N R A A S L I B

@ e 6 s e s s 00 c0 000000000 s

iv

. TXT, .TXTE, . TXTF, and . TXTO Pseudo-ops. .
LTXTNPseudo-OP ¢ c e et s vvococecscssssas
. TXTM Pseudo-op . .
Conditional PSeudo-0PS. « « c s s s oo s s s o oovsvoscsscanssasssncons
.IFE, .IFG, .IFL, and .IFN Pseudo-ops. . ..
.ENDCPseudo=Op ¢ c e s s coescancaosens
File Terminating Pseudo-0pS: ¢« ¢ ¢ s s e ¢« s o0 00 o s

s s e 0 s e s e 0000000

s 000000000 e

s e e e 00 0000 e

DR A I I I IR N A}

DR I I Y I

e 00 e e

® 00 00 s

e oo e e

e s0 00 00

s e e 000

¢ s s s 0

s o0 00 00

s e e 0 e

S8 000 0 0000000 e

[3= = = = N~ W~ W= o W N~ W= (e N~}
1

5-2
5-4

5-9

5-11
5-13
5-14

O\O\O\?\O\O\O\

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

TABLE OF CONTENTS (Continued)

EXTENDED ASSEMBLER CHARACTER SET
ASSEMBLY LISTING ERROR CODES

EXTENDED ASSEMBLER PSEUDO-OPS

OPERATING PROCEDURES

RDOS Operating Procedures. . « « v s v e oo vunnnn .
SOS Operating Procedures v v e v v e v eosnoenenenoneeennns
Stand-alone Operation.
RTOS Operation. . o .o v vvevevanens
RELOCATARI.E RINARY RLOCK TYPES

RADIX 50 REPRESENTATION

-

.D-2
«..D-5
...D-8

CHAPTER 1

INTRODUCTION TO THE EXTENDED ASSEMBLER

The Extended Assembler allows the user to write source programs using such
familiar characters as letters and numbers. With these characters, symbols can
be created that are meaningful to the programmer, but not meaningful to the com-
puter. It is the responsibility of the assembler to process source programs to pro-
duce object programs in machine language, meaningful to the computer. To do
this, the assembler simply substitutes a numeric code for each symbolic instruction
code and a numeric address for each symbolic address. Each line of symbolic

3 i i i 3 i 3 inm ey ¢lan Aoomam-t T
instruction is translated intc one line of numeric instruction by the assembler.

SPECIAL EXTENDED ASSEMBLER FACILITIES

In addition to providing basic assembly functions, the Extended Assembler includes
facilities for relocatable programs, interprogram communication, and conditional
assembly.

Relocatable Programs

Relocation is the process of moving a program from one portion of core to another
and adjusting the necessary address references so that the program, in its new
location, can be executed. This means that the address at which a relocatable
program is loaded (its loaded origin) need not be the address at which it is assem-
bled (its assembled origin). A relocatable program can be placed in any suitable
area of core. The Relocatable Loader computes the algebraic difference between
the loaded and assembled origins of a program and uses it to adjust all addresses
that are dependent on the assembled origin so that the program can execute properly
from its loaded origin.

The Extended Assembler offers two pseudo-ops that specify that program code is
to be relocatable. Normally, the Extended Assembler assembles each source
statement at an absolute address until it encounters these pseudo-ops. Refer to
"Location Counter Pseudo-ops" in Chapter 6 for more information on these pseudo-
ops and relocatable programs.

Interprogram Communication

With the interprogram communication facilities of the Extended Assembler, data,
addresses, and constants can be defined in one program and referenced in another.
By using the interprogram communication pseudo-ops, explained in Chapter 6,
programmers can write related subprograms without concern for the absolute

1-1

locations of data and addresses shared by these programs at run time.

Conditional Assembly

The conditional assembly facilities of the Extended Assembler provide the pro-
grammer with the capability to include or not to include portions of source code
in the assembly process. Depending on the evaluation of an absolute expression,
the Extended Assembler will either assemble or bypass a section of source code.
The pseudo-ops necessary for controlling the conditional assembly are explained
in Chapter 6.

INPUT AND OUTPUT

The Extended Assembler accepts one or more source files written in assembly
language as input. It makes two passes (or reads) through the source files to
produce output which includes, minimally, a listing of source program errors
and, optionally, a source program listing and relocatable binary file. Figure 1-1
illustrates the input to and possible output from the Extended Assembler. Each
type of 1/0 is explained separately below.

ERROR
LISTING

SOURCE EXTENDED SOURCE

FILE(S) ASSEMBLER | PROGRAM
LISTING

(OPTIONAL)

RELOCATABLE
BINARY FILE
(OPTIONAL)

Figure 1-1, Extended Assembler Input and Output
Source Files

The source file input to the Extended Assembler consists of characters that are
a subset of the ASCII character set, written as a series of lines. The assembler
scans this input line by line and translates it to binary machine language code.

1-2

Error Listing

On the first pass over the source input, the assembler outputs a small subset of
errors on the teletype. If a program listing is output, the error listing is optional
and during the second pass, all errors in the source program are included as part
of the program listing. (If a program listing is not output, a separate error listing
is produced automatically.) The error listing output on the second pass is a list of
only those lines containing errors. The format of these lines is the same as the
format of the source program listing.

Source Program Listing

The optional program listing allows the programmer to compare source input to the

win et e erasaa TE bl 2 At meem Sl TIE_ . 1 N\
assembler output. (A sample source program listing is shown in Figure 1-2.)

Each line of the program listing contains the following information:

Column(s) Contents
1-3 Up to three error codes. Each error in input

generates a single-letter error code. The first
error generates a letter in column 3; the second,
in column 2; and the third, in column 3. Additional
errors cannot be flagged. The meaning of each
error code is given in Appendix B. If no error is
detected in the line, these columns contain a two-
digit line number, followed by a space.

[
I
o

3 'y i€ 1 s
Location counter, if relevant; ot

columns are blank.

9 Relocation flag pertaining to the location counter.
It can be one of the following:

Flag Meaning
blank absolute
- page zero relocatable

! normal relocatable

10-15 Data, if relevant; otherwise, these columns are
blank.

1-3 :

Column(s) Contents

16 Relocation flag pertaining to the data field. It can
be one of the following:

Flag Meaning
blank absolute

- page zero relocatable

= page zero byte relocatable
normal relocatable
normal byte relocatable

$ displacement field is externally
defined
17 on Source line as input.

As part of the program listing, the Extended Assembler produces a cross reference
listing of the symbol table, which may include user symbols or both user symbols
and semi-permanent symbols. A sample cross reference listing follows.

0002 EXAMF

A 000000 1719 1721 1/25 1/32

Al 177777 1/22 15329

Az 177774 1/24 1/40)

BITS 000020~ 1709 1/1% 1/32

LiOoF 000011~ /11 1/14

MAGIC 000022~ 1/0= 1/35

ouT eJelelobric iy 1714 1712 1/20 1/2¢&
SPROW 0000227 X 1/27

START 000000~ 1/04

SUER Q000=2" 1/14 17232 1124 1/37
. J\ J O J

‘ T page and line wheTre referenced, e. g.» 1/26
] type of symbol pag% li‘ne
relocatability
symbol location where defined

Figure 1-3. Sample Cross Reference Listing

The meaning of the relocatability values given in the cross reference listing is
identical to those given for the program listing.

1-4

Relocatable Binary File

The optional relocatable binary file is an object file that can be loaded by the re-
locatable loader and executed. It is a translation of the lines of source program

into a special blocked binary code. Most lines of source input translate into a

single 16-bit (one-word) binary number for storage in core by the loader. Associated
with each number is an address, although it is not necessarily the computer address
at which the number will be stored by the relocatable loader.

1-5

|0en2 FTASK

21
2 } INITIATE A TASK
73
04
05
06
o7
28
29
10

«TITLE FTASK
12 +ENT FTASK
13 «EXTN CTASK
14 «EXTN FRET
15 «EXTD ,CPYL
16 «NREL
17 000000000024 4
18 0Q@R1'1M240@ FTASKS SUB 2,0
19 A2002'041614 STA 0,IASM,3
20 ¥08A3'ND6021S JSR ¢.CPYL
21 0P0R41023613 LDA @,#PRI,3
22 20005'025611 LDA 1)NAME, 3
23 ¥BOO6'12512¢ MOVZL 1,1
24 PP0B7'031614 LDA 2,1ASM,3
25 ¥0R10'151015 MOV# 2,2, SNR
26 ¢P011'000404 JMP FTASY
27 000121033614 LOA 2,01ASM,3
28 200131151014 MOV# 2,2,82R
20 ¥PU14'125241 MOVOR 1,1,SKP
30 908151125220 FTAS11 MOVZR 1,1
31 P0016'206407 JSR 0. CTASK
32 ¥AB17'uun4u2 JMP ERR
33 08020'177777 FRET
34 PAV21'0316Q1 ERR: LDA 2,FOSP,3
35 06P22'021612 LDA @,ERTN,3
36 2P223'041210 STA 2,FRTN,2
37 00024'900020! FRET
38 0@V25'177777 .CTASKS CTASK
39 177611 NAME = FTSTR
40 177612 ERTN = NAMEe!
41 177613 PRI = ERTNe{
42 177614 IASM = PRI+1
43

Figure 1-2, Sample Source Program Listing

1-6

CHAPTER 2

SOURCE PROGRAMS

Assembly language source programs are composed of a series of lines. A line is
all characters scanned by the assembler up to a carriage return or form feed. The
assembler recognizes several types of lines; each source line must conform to a
given structure, depending on its type. In addition, each line must contain only
characters in the Extended Assembler character set.

CHARACTER SET

The Extended Assembler accepts the following characters in a source program:

l. Alphabetics A through Z

2. Numerals 0 through 9

3. Special Characters:
P # & * +, -
e /i3 <=>@

4. Format control and line terminators:
carriage return, form feed, space, tab

Appendix A contains a table of the Extended Assembler character set and their
octal equivalents. As shown in that table, the assembler also accepts lower-case

alphabetics, but automatically translates them to their upper-case equivalent.

Three characters are unconditionally ignored by the assembler:

Character Octal Value
null 000
line feed 012
rubout 177

Any character not in the Extended Assembler character set is flagged with a B
(bad character) on the assembly listing.

Source program characters having an incorrect parity are replaced by the assembler
with the ASCII character "\". This character is ignored by higher level processing;
that is, L\ A is processed as LA.

2-1

SOURCE LINES

Members of the Extended Assembler character set are combined to form source
lines. The majority of source lines affect the generation of a 16-bit value (with
relocation properties) that is to occupy a memory location at execution time. Any
line, of this type is said to produce a storage word. The storage word has a value,
usually defined by an expression or instruction, and an address. At assembly time,
the address assigned is the contents of the current location counter (LC). The
generation of each 16-bit storage word causes the contents of the location counter
to be incremented by one. Thus, in general, storage words are assigned to
consecutive increasing LC values.

Several types of source lines produce storage words. Others are used to define
symbols, control the assembly process, and provide instructions to the assembler.
Assembly source lines must be one of the following types:

1. Data

2. Instruction
3. Pseudo-op
4, Equivalence

Data Lines

A data line is one of the simplest in the assembly language. It consists of a single
numeric expression,

A data line generates either a 16-bit storage word (if the expression is a single
precision integer) or a 32-bit storage word (if the expression is a double precision
integer or a floating point number). In fact, data lines provide the only means for
storage of double precision and floating point values.

The special character @ (explained in the next chapter) can be used anywhere in a
data line to generate a full word indirect address. After the expression is evaluated,
the assembler places a 1 in bit 0 (the indirect addressing bit) of the storage word.
Thus, for example, all of the following data lines have the same value.

192644
102644@
2644@
@1322*2

2-2

Instruction Lines

An instruction line is an instruction mnemonic, or op code, and any required or
optional argument fields. All instruction lines generate a 16-bit storage word,
which provides an instruction to the assembler, such as load an accumulator, add
two accumulators, or increment an accumulator.

Instructions are described in Chapter 5.

Pseudo-op Lines

A pseudo-op line must begin with a permanent symbol (except the symbol .) and
may be followed by one or more required or optional arguments. Some pseudo-
op lines (such as . NREL and . ZREL) are merely commands to the assembler and
do not generate either a storage word or 16-bit value. Others (such as .RDX)
generate a 16-bit value, but do not increment the location counter.

Pseudo-ops and pseudo-op line syntax are described in Chapter 6.

Equivalence Lines

One means of assigning a symbolic name to a numeric value is by equivalence. An
equivalence line associates a value with a symbol; that symbol can then be used
any time the value is required. An equivalence line has the form:

uSr-syms=exp

where usr-sym is a user symbol (conforming to the rules for symbols given in
Chapter 3) and exp is an expression or instruction. The symbol to the left (usr-
sym) must be previously undefined in pass 1, and the expression at the right must
be evaluable in pass 1. Examples of equivalence lines follow.

A = 342

B=A/2
INS = ADD# @, 1, SKP

An equivalence line assembles as a 16-bit value, but does not affect the current
location counter.

2-3

Labels

Any source program line can contain a label. A label allows the programmer to
name a storage word symbolically, Using the label, a programmer can then ref-
erence the storage word without regard for its numeric address.

A label is simply a user symbol; it must appear at the beginning of a source line and
must be followed by a colon (:). A label must conform to rules established for any
symbol, as described in Chapter 3. Like other symbols, a label has a value: its
value is that of the current location counter; that is, it is the address of the next
storage word assembled. Since some source lines do not generate storage words,
this definition is not necessarily associated with the statement that it appears in.
The following source line is given the label LOOP:

LOOP: ADD# g, 1, SKP)

A source line can consist solely of a label. For example:

LAB:)

Any source line can have one or more labels, provided all symbols are defined
at the beginning of the line. For example:

LOOP:LAB1:LAB: ADLC# 9,1, SKP)
Comments

An assembly language program can include comments to facilitate program check-
out, maintenance, and documentation. A comment is not interpreted in any way by
the assembler and camnot affect the generation of the object program. All comments
must be preceded by a semicolon (;). Upon encountering a semicolon, the assem-
bler ignores all subsequent characters up to a carriage return. The following
source program lines illustrate the use of comments.

; THIS SUBROUTINE CALCULATES THE ABSOLUTE VALUE OF A NUMBER
; IN AC@

.TITL .ABSL

.ENT .ABS

.NREL
.ABS: MOVL#@, 9, SZC ;TEST SIGN

NEG 9, 0 ;NEGATE IF NEGATIVE

JMP @, 3

.END :END OF ABSOLUTE VALUE SUBR.

>
N

Source Line Formatting

Within broad limits, the programmer is free to determine the format of the source
lines for a program. For example, all of the following lines are identical in mean-
ing to the assembler; they differ only in format.

LAB: ADD# 2,3, SZR ;SKIP IF SUM = ZERO
LAB:ADD, 2, 3, SZR#;SKIP IF SUM = ZERO
LAB: ADD 2 3SZR # ; SKIPIF SUM = ZERO

(The special character # can appear anywhere in a source line.)

A common practice in writing source programs is to divide each line into four
columns by means of three tab settings, using the leftmost column for labels, the
second column for the beginning of the source line, the third for arguments, and
the rightmost for comments. The first example above is in this format. If the
listing device is not equipped with automatic tabbing (such as the ASR 33), the
Extended Assembler simulates tabs by spacing to the nearest assembler-defined
tab position (and always leaving at least one space between fields). Assembler-
defined tab positions are at every eight columns; that is, at columns 9, 17, 25 etc.

2-5

CHAPTER 3

ATOMS

An atom, the basic unit of the assembly language, is a character or group of
characters having special meaning to the assembler. All characters, except
those in comments or text strings, are interpreted by the Extended Assembler
as an atom or part of an atom. The general classes of atoms,

1. terminators,
numbers,
symbols, and
. special atoms
are described on the following pages.

= W N

TERMINATORS

Terminators separate numbers and symbols from other numbers and symbols.
They can be used as either operators or breaks.

Operators

Operators are a set of terminators used with single precision integers and symbols
to form expressions. The operators are:

B bit alignment (shift)

+ addition
Arithmetic - subtraction
* multiplication
| / division
Logical & AND
! inclusive OR

Breaks

Break characters are terminators that are used primarily as separators. These
characters are:

space

» (comma)

; (semicolon)
(colon)

= (equals sign)

horizontal tab

form feed

Space, comma and tab are interchangeable in source code; the assembler handles
them identically. These characters are represented by a A in this manual. When-
ever a A is shown, any number or combination of spaces, commas, and tabs can
be used.

Colon terminates a label, Equals sign terminates an equivalenced symbol. A semi-
colon is used to indicate the beginning of a comment and may, optionally, terminate
a line of source code. Carriage return and form feed terminate a line of source
code.
NUMBERS
The Extended Assembler recognizes three types of numbers:

1, Single precision integer

2. Double precision integer

3. Single precision floating point

Single Precision Integers

A single precision integer is a string of one or more digits in the current radix.

It can be preceded by a minus sign (-) if it is negative or an optional plus sign

(+) if it is positive. (An unsigned integer is considered positive.) If the integer
is decimal it may be followed by a decimal point. All integers must be terminated
by an operator or break atom. Thus, the source code format for a single precision
integer is:

(F+3dfd...dJ f.] term

where d is any digit within the current radix and term is a terminator (operator

or break atom). If a decimal point precedes the terminator, the integer is evaluated
as decimal. If there is no decimal point, the integer is evaluated in the current
radix. (The normal radix, eight, can be changed by the . RDX pseudo-op. Refer

to "Radix Pseudo-op" in Chapter 6.)

The Extended Assembler translates all single precision integers to a single word
of 16 bits. The integer can be interpreted as signed using twos complement
arithmetic in which bit 0 is the sign bit. Bit 0 is 0 if the integer is positive; 1

if it is negative. A single precision integer is represented in core as:

The range of a single precision integer must be 0 through 65535 (decimal) or 0
through 177777 (octal).

Double Precision Integers

A double precision integer is one or more digits followed by the letter D, It can be
preceded by a minus sign or optional plus sign. If the integer is decimal, it may
be followed by a decimal point. All double precision integers must be terminated
by a break atom. Thus, the source code for a double precision integer is:

fF+3df d...d3f. 3D break

where d is any digit within the current radix and break is a break atom, typically

a space, semicolon, or carriage return. (If a double precision integer is followed
by an operator, a format error results.) If a decimal point precedes the D, the
integer is evaluated as decimal. If there is no decimal point, the integer is evaluated
in the current radix.

The Extended Assembler translates all double precision integers to two contiguous
words, the first word of which is the high-order word (the first 16 bits of the
integer). Bit O of the high-order word contains the sign and bits 1 through 31
contain the magnitude in twos complement notation. A double precision integer is
represented in core as:

0 1 15
| high-order word
[low=-order word
sign {O =+
1=-

Double precision integers cannot be combined in expressions; they can be used only
in data lines.

Some examples of assembled values of data lines containing double precision integers
are:

| 000001 200000D
000000
000003 262147.D
000003

3-3

Floating Point Numbers

A floating point number is one or more digits followed by (1) a decimal point
and at least one more digit and/or (2) the letter E and at least one digit.

It can be preceded by a minus sign or optional plus sign. All floating point
numbers must be terminated by a break atom. Thus, the source code for a
floating point number is:

f+}dfd..d} .df d...d} break

or

f+} dfd...d} .dfd...d} Ef+} df d} break

or

f+3dfd...dtEf+%} df d} break

where d is any digit within the current radix and break is a break atom, typically
a space, semicolon, . or carriage return. (If a floating point number is followed
by an operator, a format error results.) The number following the E is a decimal
power of ten used to evaluate the number. For example, the number .5 can be
represented as:

+0.5
or

0.5
or

5.0E-1

The Extended Assembler translates all floating point numbers to two words, using
the binary fraction representation described in Appendix C of How to Use the Nova
Computers. If a number is specified that is too large or too small to be represented,
it is regarded as an error and flagged with an N on the assembly listing.

Floating point numbers cannot be combined in expressions; they can be used only
in data lines.

Some examples of floating point numbers in data lines with their assembled values
are:

P4p4a29 1.9

P PR

P4P426 3.1415926
941766

140429 -1E@

2 PR

P4020p +5.0E-1
0 PPPRp

SYMBOLS

A primary function of the Extended Assembler is the recognition and interpretation
of symbols. Symbols are used both to direct the action of the assembler and to
represent numeric values. A symbol can be written as a series of letters, numbers,
or periods. Any other character in a symbol is interpreted as an error and is

given a bad character (B) flag in the assembly listing. The following rules also
apply to symbols.

1. The first character in a symbol must be an alphabetic (A through Z)
or a period (.)

2. A symbol must be unique within the first five characters. Although
symbols can have any number of characters, the assembler uses only
the first fiveto differentiate among them. All symbols whose first
five characters are the same are indistinguishable to the assembler.

3. A symbol must be terminated by an operator or break atom.

Thus, the character strings
Al2 ,SYB EXIT Z

are ali legitimate symbols while the strings
1.27 1BC LAS$3

are not: the first two do not begin with a letter or . and the last contains an illegal
character. Also, the character strings

BITMASK BITMA. 7 BITMALl
are treated as the same symbol (BITMA) by the assembler.

3-5

Symbols recognized by the Extended Assembler are classified as:

1. Permanent
2. Semi-permanent
3. User

An understanding of the differences among these classes is essential to the use of
the assembly language.

Permanent Symbols

Permanent symbols are defined by the assembler and cannot be altered in any way.
These symbols are used to direct the assembly process and to represent numeric
values of internal assembler variables.

Symbols used to direct the assembly process are called pseudo-ops. Pseudo-ops
are used for such purposes as specifying the radix for numeric conversions, set-
ting the location counter, and assembling ASCII text. Pseudo-ops are described
in Chapter 6.

The permanent symbol period (.), when used alone, is a special symbol whose
value is equal to the current contents of the location counter. Thus, the ipstruction

LDA 3,.46
is equivalent to the instruction
LDA 3,6,1

Semi-Permanent Symbols

Semi-permanent symbols form a very important class usually thought of as
instruction mnemonics or op codes. With appropriate pseudo-ops, symbols can
be defined as semi-permanent; their future use implies further syntax analysis.
For example, a symbol can be defined as "requiring an accumulator”. Use of
this symbol causes the assembler to scan for an expression following the symbol.
If not found, a format (F) error results. If found, the value of the expression
determines the value of the accumulator field bit positions to give a 16-bit value.

ML~ 1.1 3 +3 H i i
The assembler instruction set is described in Chapter S.

Semi-permanent symbols can be saved and used, without redefinition, for all
subsequent assemblies. The Extended Assembler contains a number of semi-

3-6

Semi-Permanent Symbols (Continued)

permanent symbols defined specifically to conform to the Nova family instruction
set. The user can eliminate these symbols and define his own set or, more
commonly, can add to the given set. In addition to instruction mnemonics, several
semi-permanent symbols are provided by Data General that can be used as operands
within expressions. These include the skip mnemonics (such as SKP, SZR, SNR,
and SZC) used in arithmetic and logical instructions and device codes (such as TTI,
TTO, PTR, and PTP) used in I/O instructions.

User Symbols

The user can define any symbol that does not conflict with permancnt or semi-
permanent symbols. Symbolic definitions are used for many reasons: to name

a location symbolically, to assign a numeric parameter to a symbol, to name
external values, to define global values, etc.. These user symbols are maintained
for the duration of an assembly in a symbol table that is printed after the
assembly source listing.

User symbols can be further classified as local or global. Local symbols have a
value known only for the duration of the single assembly in which they are defined.
Global symbols have a value known at load time; these symbols are used for inter-
program communication. During assembly, the user can specify whether or not
local symbols are to be included with the binary output,

SPECIAL ATOMS

Three special one-character atoms are available to the Extended Assembler user
for:

1. Converting an ASCII character to its 7-bit octal equivalent (").
2. Performing indirect addressing (@), and
3. Setting the no-load bit of an arithmetic or logical instruction (#).

ASCII Character Conversion

A single ASCII character (except null, line feed, and rubout) can be converted to
its 7-bit octal equivalent if it is preceded by a double-quote (") character; thus
an ASCII character can be represented as a single precision integer. For example:

BANASS "4 } ASCIT mev
AN ADS " - ! ASCLY "wn

3-7

ASCII Character Conversion (Continued)

The " atom can be used in expressions, for example:

000141 "A+40
200172 nzean
pan112 "A+9,

Note that ") assembles as octal 15 and also terminates the line.

Indirect Addressing

Indirect addressing can be specified for a memory reference instruction or a
data word if one or more "at" signs (@) are included anywhere in a source pro-
gram line. If the Extended Assembler encounters an @, it evaluates the memory
reference instruction or data word, then sets the indirect addressing bit (bit 5
for a memory reference instruction, bit O for a data word) to 1. For example:

200004 ,JMP RLO
en2004 JMP @#RLO

Setting No-load bit

The programmer can set the no-load bit (bit 12) of an arithmetic or logical
instruction by including one or more "pound” signs (¥) in the source program
line. If the assembler encounters a #, it evaluates the arithmetic or logical
instruction, then sets bit 12 to 1, thus preventing the loading of the shifter
output.

101102 . MOVL ©9,9,82C
101112 MOVL #0,8,S2C

3-8

An expression is

CHAPTER 4

EXPRESSIONS

1. A symbol or single precision integer or

2. A series of symbols and/or single precisicn integers separated by

operators.

Thus, the format of an expression in source code is:

f opny} opr opny

where opn, and opn, are operands: a symbol, a single precision integer, or another
expression evaluating to a single precision integer. opr is one of the following

operators:
Operator

B

Meaning

bit alignment (See below.)

addition or plus

subtraction or minus

multiplication

division

logical AND. The result in a given bit position is 1

if both opn; and opn, are 1 in the corresponding bit
position.

logical inclusive OR. The result in a given bit position

is 1 if opn. and/or opn, is 1 in the corresponding bit
e —2 .

position.,

Except for the unary operators + and - , an operand must precede every operator.
Either unary operator can follow an operator or precede an expression.

~ If an expression contains an illegal operand (such as an external symbol, instruction

mnemonic, double precision number, or floating point number), the source line is
given a Z error flag on the assembly listing.

4-1

EVALUATION OF EXPRESSIONS

Like a symbol or single precision integer, an expression has a 16-bit value which

the assembler computes by performing the indicated operations. This computation,

or evaliation, generally proceeds from left to right, one operator at a time. However,
bit alignment is always performed before any other operation in an expression.

If two operators are contiguous, the assembler assumes a zero operand between them.
Hence, the expression:

A+-B
is equivalent to
A+0-B
or simply A-B; while the expression
A*-B
is equivalent to
A*0-B
or -B. (However, the expression -B*A correctly multiplies A by -B.)
During expression evaluation, no check is made for overflow.

BIT ALIGNMENT OPERATOR

The Extended Assembler bit alignment operator provides a facility for right justi-
fication of a single precision integer on a bit boundary. The bit alignment operator
is used in source code as follows:

nBd

where n is a number in the current radix to be aligned and d is a decimal number
specifying the rightmost bit at which n is to be aligned. The aligned number is
given the value:

m_* 2159

4-2

100000 1BO -
000002 1B14 RADIX 8
002400 12B8

RELOCATION PROPERTIES OF EXPRESSIONS

Associated with each operand of an expression is its relocation property. The
relocation property of the operands in an expression, in turn, determines the
relocation property of the expression. Expressions described thus far have had
absolute operands and the result of their evaluation has been absolute.

An operand can have one of several relocation properties:

absolute
page zero relocatabhle
normal relocatable
page zero byte relocatable
normal byte relocatable
An absolute operand is one whose address is fixed; its loaded address is the same

as its assembled address.

Page zero relocatable operands are relocatable, yet must reside in page zero;
normal relocatable operands can be relocated anywhere in core except page

zero. These relocatable operands are converted to absolute during the loading
process by the addition of a relocation constant. ' The relocatable loader maintdins
two relocation constants, a zero relocation (C,) and a normal relocation (Cy)
constant, to "fix" the addresses of relocatable values.

Byte relocatable operands are page zero or normal relocatable storage words that
act as byte pointers: bits 0-14 of the pointer contain an address and bit 15 specifies
the byte to be operated on. (Refer to page 2-21 in How to Use the Nova Computers.)
A byte pointer of this kind can be formed simply by doubling an address, and can be
retrieved and regenerated by a shifting operation. The loader adds either 2Cz or
ZCn to each byte relocatable value to convert it to absolute.

4-3

During loading, the relocatable loader can add one and only one of five possible
constants to a word: O, Cz’ Cn’ ZCZ, or ZCn. This has two implications when
relocatable operands are combined in expressions:

1. Although the Extended Assembler permits the combining of page zero
and normal relocatable operands in expressions, the operands must be
such that either the page zero or the normal relocatable operands
"cancel out". For example, the expression

Z; +Ny - Zz~l-N2 - Ny

(where Z, represent page zero relocatable operands; N; represent normal

relocatable operands) is legal, but

Z1+ZZ+N1

is not.

2, Loader modification of an address by more than twice a relocation
factor is illegal.

The following list indicates legal combinations of absolute and relocatable operands
in expressions. Any expression not in that list, or not reducing to a form in that 1

list, is flagged as a relocation (R) error in the assembly listing. (In the following

list, a is an absolute operand, r is a relocatable operand,)

Expression Relocation Property
ata absolute
a-a absolute
. r+a relocatable
r-a relocatable
r+r byte relocatable
r-r absolute
a*a absolute
a/a absolute

Expression Relocation Property

a &a absolute
ala absolute
2*r byte relocatable

In addition, the following expressions are unconditionaly illegal:

T*r a&kr
a/r rir
r&r alr

In the example following, A is defined as an absolute value and R as a relocatable
value,

000002 A=2
.NREL

00000 * 000020" .+20

00001 * 000000 R: O

000002° S= R+1 ;RELOCATABLE + ABSOLUTE = RELOCATABLE
00002 * 000001 A/A ;ABSOLUTE / ABSOLUTE = ABSOLUTE
00003 * 000002" R+R ;RELOC + RELOC = BYTE RECOCATABLE
00004 * 177777 R-A ;RELOCATABLE - ABSOLUTE = RELOCATABLE
£ 00005 ' 000001 S-R ;RELOCATABLE - RELOCATABLE = ABSOLUTE
 R00006 ' 000000* A!R ;ILLEGAL. RESULTS IN RELOCATION ERROR

4-5

CHAPTER 5

INSTRUCTIONS

An instruction is the assembly of one or more fields, initiated by the occurrence
of a semi-permanent symbol(called the "instruction mnemonic") to form a 16-bit
value. Fields in an instruction can be separated by a space, comma, or tab and
must conform in number and type to the field requirements for the type of semi-
permanent symbol. ‘

The DGC family of computers recognizes seven basic types of instructions. Each
type has a corresponding pseudo-op enabling definition of semi-permanent symbols
within the type. (Refer to "Symbol Table Pseudo-ops" in Chapter 6 for additional

information on these pseudo-ops.) Instructions fall into the following seven types:

1. Arithmetic and logical (Instruction mnemonic defined by . DALC)

2. Memory reference without (Instruction mnemonic defined by .DMR)

accumulator

3. Memory reference with (Instruction mnemonic defined by , DMRA)
accumulator

4, Input/output without (Instruction mnemonic defined by , DIO)
accumulator

S. Input/output with accumu- (Instruction mnemonic defined by .DIOA)

lator

6. Input/output without de- (Instruction mnemonic defined by . DIAC)
vice code

7. Input/output without ar- (Instruction mnemonic defined by , DUSR)

gument fields

The instructions corresponding to these instruction types are described fully in
How to Use the Nova Computers. The syntax required for each instruction type is
given on the following pages. The semi-permanent symbols listed for each type
are those defined by Data General.

5-1

ARITHMETIC AND LOGICAL (ALC) INSTRUCTIONS

An arithmetic and logical (ALC) instruction is implied when the instruction
mnemonic is one of the following:

COM MOV ADC ADD
NEG INC SUB AND

The format of the source program instruction is:

alc-mnemonic fcarry} fshift] A4 source-ac A destination-ac faskip}

where:
alc-mnemonic is one of the eight semi-permanent symbols listed above.
carry is an optional Carry bit mnemonic.
shift is an optional shift mnemonic.
source-ac isao0, 1, 2 , or 3, indicating the accumulator to be
used as the source accumulator.
destination-ac isa0, 1, 2, or 3, indicating the accumulator to be
used as the destination accumulator,
skip - is an optional skip mn~monic.

In addition, the atom # can be specified anywhere in the source line as a break
character. If it is used, a 1 is assembled at bit 12, the no-load bit, thus
inhibiting loading of shifter output.

Figure 5-1 shows the assembled ALC instruction as well as the bit pattern and
effect of the instruction, shift, Carry, and skip mnemonics.

Examples of ALC instructions follov
151112 MOVL® 2,2,82C
137000 ADD 1,3

source destin alc no
1 ac ac mnemonic shift carry load skip
60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ALC Bits
Mne. 56 7 Effect*
COM 000 Places logical complement of C (source-ac) in destination-ac
NEG 001 Places negative of C (source-ac) in destination-ac
MOV 010 Moves C (source-ac) to destination-ac
INC 011 Places C (source-ac)t+l in destination-ac
ADC 100 Adds logical complement of C (source-ac) to C (destination-ac)
SUB 101 Subtracts C (source-ac) from C (destination-ac)
ADD 110 Places sum of C (source-ac) and C (destination-ac) in destination-ac
AND 111 Places logical AND of C (source-ac) with C (destination-ac) in
destination-ac
Shift Bits Carry Bits
Mne. 89 Effect Mne. 10 11 Effect
L 01 Shifts word left one bit Z 01 Sets Carry to zero
R 10 Shifts word right one bit O 10 Sets Carry to one
S 11 Swaps bytes of word C 11 Complements current state
of Carry
Skip Bits
Mne. 13 14 15 Effect
SKP 0 0 1 Skips next sequential word (NSW) unconditionally
SZC 0 10 Skips NSW on zero Carry
SNC 0 11 Skips NSW on nonzero Carry
SZR 1 00 Skips NSW on zero result
SNR 1 01 Skips NSW on nonzero result
SEZ 1 1.0 Skips NSW on zero Carry or result
SBN 1 11 Skips NSW on zero Carry and result

*Refer to Chapter 2 of How to Use the Nova Computers for the effect of these
instructions on the Carry bit.

Figure 5

-1. Assembly of ALC Instruction

5-3

MEMORY REFERENCE (MR) INSTRUCTIONS WITHOUT ACCUMULATOR

A memory reference (MR) instruction without an accumulator field is implied
when the instruction mnemonic is one of the following:

JMP ISZ
JSR DSZ

The format of the source program instruction is:

mr-mnemonic A displacement A mode

or
mr-mnemonic A address

where:
mr-mnemonic is one of the four semi-permanent symbols listed above.
displacement is any legal expression evaluating to an 8-bit integer
in the range of -200g through +177g.
mode , isa 1, 2, or 3, indicating an explicit mode for forming an

effective address (E), as follows:

mode Formation of Effective Address (E)
1 Addressing is based on the contents of location
counter:
E=C(LC) + displacement
and, therefore

C(LC) -200g< E <C(LC}+1774

2 Addressing is based on the contents of AC2:
E = C(AC2) + displacement
and, therefore
C(AC2)-200g<=E =C(AC2)+177g

3 Addressing is based on the contents of AC3:
E = C(AC3) + displacement
and, therefore
C(AC3)-200g <E < C(AC3)+177g

5-4

address is any legal expression evaluating to an 8-bit integer in one
of the following ranges:

L. 0 through +377g (for page zero addressing) : addressing
is direct and E = address.

2. C(LC)-200g through C(LC)+177g (for LC-relative addressing);
addressing is based on the contents of the location counter
and E=C(LC)+address.

In addition, the atom @ can be specified anywhere in the source line as a break
character. If it is used, a 1 is assembled at bit 5, the indirect addressing bit.
Thus, the effective address in the instruction is a pointer to another location,
which may, in turn, contain an indirect address.

If only address is specified, the assembler determines if this address is in page
zero (0 through 377g) or within 177g words of the location counter. If the address
is in page zero, bits 6 and 7 of the instruction word are set to 00 and the dis-
placement field is set as follows:

1. If the address is absolute, the displacement field is set to address.

2. If the address is page zero relocatable (that is, assembled with the . ZREL
pseudo-op), the displacement field is set to address with page zero
relocation and the line is flagged with a - in column 16 of the source
program listing, o

3. If the address is an external displacement (that is, assembled with the
- EXTD pseudo-op), the displacement is set to the external's value and
- the line is flagged with a $ in column 16 of the source program listing.
(The value of an external is given in the cross reference listing following
the program listing.)

If address is within 177¢ words of the contents of the location counter, bits 6 and 7
are set to 01 and addressing is based on the current contents of the location
counter (as in addressing mode 1), The displacement field of the instruction word
is set to: address - C(LC).

effective address within the appropriate range, an addressing (A) error is
reported.

If address or the evaluation of displacement to an address does not produce an

5-5

Figure 5-2 shows the assembled MR instruction as well as the bit pattern and
effect of the instruction mnemonics. Figure 5-3 illustrates how effective addresses
are formed.

Examples of MR instructions and their assembled address and value follow.

APRRAY 11456 SORTY: 152 STAK
AVA4S ¢M4735 JsP SORTHY
MPP6Y PAPPAR STAKS 2
ARNA2 P1LAAR JMP #,3
mr . .
0 O O {mnemonic } mode displacement
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MR Bits
Mnemonic 3 4 Effect
JMP 00 Jumps to effective address (loads effective address into LC)
JSR 01 Jumps to subroutine at effective address; loads C(LC)t+1 into
AC3
ISZ 10 Increments contents of effective address; skips next sequen-
tial word (NSW) if result is zero
DSZ 11 Decrements contents of effective address; skips NSW if

result is zero

Figure 5-2. Assembly of MR Instruction without Accumulator

5-6

address=
0to 377

address— bits 8-15
00 — bits 6+7

displacement=
-200 to +177

?

displacement— bits 8-15
mode —bits 6+7

address=

AT AN _IINN e
\)\LI\J)-LUU (80}

(LCY+1772”

YES

address-C(LC) —bits 8-15
01 —bits 6+7

Figure 5-3. Formation of Effective Address for MR Instruction

5-7

MEMORY REFERENCE (MR) INSTRUCTIONS WITH ACCUMULATOR

A memory reference (MR) instruction with an accumulator field is implied when
the instruction mnemonic is one of the following:

LDA STA

The format of the source program instruction is:

mra-mnemonic Aaccumulator Adisplacement A mode

or
mra-mnemonic A accumulator A address

where:
mra-mnemonic is a semi-permanent symbol: LDA or STA,
accumulator isa 0, 1, 2, or 3, indicating the accumulator to receive or

supply the data.

displacement, mode, and address are the same as for MR instructions without
an accumulator field.

In addition, the atom @ can be specified anywhere in the source line as a break
character. If it is used, a 1is assembled at bit 5, the indirect addressing bit.

Figure 5-4 shows the assembled MR instruction as well as the bit pattern and
effect of the instruction mnemonics.

Examples of MR instructions follow.

AMR14'040434 ' STA @, FBY}
Po015'024432 LDA {1, FBiO
AMA47 TANRNAR FB1A: 0
one5atenpAnn FBI13- @ 7
PAR14'025001 LDA §,1,2
20015'235003 LDA 3,3,2
ar@16'231m02 LDA 2,2,2

5-8

0| mra ac i mode displacement
mnemonic
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MRA Bits
Mnemonic 12 Effect

LDA 01 Loads contents of effective address in AC
STA 10 Stores contents of AC in effective address
Figurc 5-4. Assembly of MR Instruction with Accumulator

I/0 INSTRUCTIONS WITHOUT ACCUMULATOR

An input/output instruction without an accumulator field is implied when the
instruction mnemonic is one of the following:

NIO SKPBN SKPDN

SKPBZ SKPDZ

The format of the source program instruction is:

io-mnemonic f busy/done § & device-code

where:

io-mnemonic

busy/done

device-code

is one of the five semi-permanent symbols listed above.

is an optional Busy/Done bit mnemonic (NIO instruction
only).

is any legal expression evaluating to an integer that
specifies a device. (Refer to Appendix E of How to Use
the Nova Computers for legal device codes.)

Figure 5-5 shows the assembled I/0 instruction as well as the bit pattern and
effect of the instruction and Busy/Done mnemonics.

5-9

Examples of I/0 Instructions without an accumulator follow:

zeelle wiozs le
zee 11z NI1og BT
eeg 177 410& CFU
CezZ 17T J10%5 77

0 1 1 0 0 io-mnemonic device-code

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1/0 Bits
Mnemonic 56789 Effect

NIO 00000 No operation

SKPBN 11100 Skips next sequential word (NSW) if Busy is 1
SKPBZ 11101 Skips NSW if Busy is zero

SKPDN 11110 Skips NSW if Done is 1

SKPDZ 11111 Skips NSW if Done is zero

The following one-character mnemonics can be appended to the NIO instruction
only.

Busy/Done Bits
Mnemonic 8 9 Effect
S 01 Clears Done and sets Busy, starting device
(If device=77 or CPU, sets Interrupt Onflag)
C 10 Clears Done and Busy, idling device
(If device=77 or CPU, clears Interrupt On flag)
p 11 Sets Done and Busy, pulsing I/0 bus control line

(If device=77 or CPU, has no effect)

Figure 5-5. Assembly of I/O Instruction without Accumulator

5-10

1/0O INSTRUCTIONS WITH ACCUMULATOR

An input/output instruction with an accumulator field is implied when the instruc-
tion mnemonic field is one of the following:

DIA° DIB DIC

DOA DOB DOC

The format of the source program instruction is:

_ ioa-mnemonic f busy/done § Aaccumulator A device-code

where:

ioa-mnemonic is one of the six semi-permanent symbols listed above.

busy/done is an optional Busy/Done bit mnemonic.

accumulator isa 0, 1, 2, or 3, indicating the accumulator to receive
or supply the data.

device-code is any legal expression evaluating to an integer that

speciiies a device. (Refer to Appendix E of How To
Use the Nova Computers for legal device codes.)

Figure 5-6 shows the assembled I/O instruction as well as the bit pattern and
effect of the instruction and Busy/Done mnemonics.

Examples of I1/0 instructions with an accumulator field follow.

074177 DIA 3,CPU
271514 DIAS 2,PTR
063077 DOC 8,77

5-11

ioa busy/

(If device=77 or CPU, has no effect)

o 1 1 ac mnemonic done device-code
o 1 2 3 5 6 7 8 9 10 11 12 13 14 15
IOA Bits
Mnemonic 5 6 Effect
DIA 00 Inputs data in A buffer of device to AC
DOA 01 Outputs data in AC to A buffer of device
DIB 01 Inputs data in B buffer of device to AC
DOB 10 Outputs data in AC to B buffer of device
DIC 10 Inputs data in C buffer of device to AC
DOC 11 Outputs data in AC to C buffer of device
Busy/Done Bits
Mnemonic 8 9 Effect
S 01 Clears Done and sets Busy, starting device
(If device=77 or CPU, sets Interrupt On flag)
C 10 Clears Done and Busy, idling device
(If device=77 or CPU, clears Interrupt On flag)
P 11 Sets Done and Busy, pulsing I/O bus control line

Figure 5-6. Assembly of I/O Instruction with Accumulator

5-12

1/0 INSTRUCTIONS WITHOUT DEVICE CODE

Certain commonly used I/0 instructions have been defined with a device code of
CPU. These instructions require an accumulator field, but no device code field.
An 1/0 instruction without a device code field is implied when the instruction
mnemonic is one of the following:

READS INTA MSKO

The format of the source program instruction is:

iac-mnemonic A accumulator

where:
iac-mnemonic is one of the three semi-permanent symbols listed above.
accumulator isa 0, 1, 2, or 3, indicating the accumulator to receive

or supply the data.

These instructions are ‘equivalent to the following I/0 instructions.

I/0 Instruction

Without Device Equivalent
Code Instruction

READS accumulator DIA accumulator, CPU
INTA accumulator DIB accumulator, CPU
MSKO accumulator DOB accumulator, CPU

Figure 5-7 shows the assembled I/O instruction as well as the bit pattern and
effect of the instruction mnemonics.

Examples of I/0 instructions without a device code follow.

874177 READS 3
0EL4T7T INTA 0

5-13

iac
0 1 1 ac mnemonic | O 0 1 1 1 1 1 1

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IAC Bits

Mnemonic 567 Effect

READS 001 Reads contents of console data switches into AC

INTA 011 Places device code of first device on bus in bits 10
through 15 of AC, acknowledging interrupt

MSKO 100 Sets up Interrupt Disable flags in devices according

to mask in AC

Figure 5-7. Assembly of I/O Instruction without Device Code

I/O0 INSTRUCTIONS WITHOUT ARGUMENT FIELDS

Four commonly used I/0 instructions have been defined as semi-permanent symbols
that do not require any argument field:

IORST INTDS
INTEN HALT

The equivalent I/O instruction, assembled octal value, and effect of these
instructions are given below.

I/0 Instruction Equivalent Octal

Without Argument. Instruction vValue Effect

IORST DICC ﬂ, CPU 062677 Clears all 1/O devices and
Interrupt On flag; resets clock
to line frequency

INTEN NIOS CPU 060177 Sets Interrupt On flag, enabling
interrupts -

INTDS NIOC CPU 060277 Clears Interrupt On flag, dis-

' : abling interrupts
HALT DOC g, CPU 063077 Halts the processor

5-14

I/0 INSTRUCTIONS WITHOUT ARGUMENT FIELDS (contd.)

Examples of these instructions follow.

p€e2677 IORST
263877 HALT
BeB1717 INTEN

5-15

CHAPTER 6

PSEUDO-OPS

Pseudo-ops are permanent symbols that direct the assembly process. Extended
Assembler pseudo-ops are grouped into the following eight categories, according
to the functions they perform:

1.

2’

7.

8.

Each category and pseudo-op is explained in this chapter in the above order. Appen-
dix C gives a summary of all pseudo-ops, including their function, syntax, and use.

In general, pseudo-op lines can appear anywhere within a source program; however,

Title pseudo-op

Radi;t pseudo-op

Symbol table pseudo-ops

Location counter pseudo-ops
Interprogram communication pseudo-ops
Text pseudo-ops

Conditional assembly pseudo-ops

File terminating pseudo-ops

the title and entry pseudo-ops must be declared before any statement generating
object data,

TITLE PSEUDO-OP

The debugger, relocatable loader, and library file editor all use titles to identify
relocatable binary output. For this reason, the Extended Assemlber includes the
. TITL pseudo-op, which allows the user to specify a title for a program. The
syntax for the . TITL pseudo-op is: '

. TITL Aysr-sym

6-1

TITLE PSEUDO-OP (Contd.)

The symbol specified with the pseudo-op becomes the program title and is printed
at the top of every listing page. The symbol need not be unique from other symbols
defined by the program.

The . TITL source line must appear before any statement generating object data
in a source program. If this pseudo-op is omitted, the program assumes the
default title of . MAIN. If more than one . TITL pseudo-op is specified in a
program, the last one before a line generating data is used as the program title.

The following pseudo-op line names the program SQRT.

JTTTL SORT

RADIX PSEUDO-OP

At the beginning of each assembly pass, the Extended Assembler interprets integers
not containing a decimal point as octal. The user can change the radix of a number
by including the ,RDX pseudo-op in the source program, The format of the pseudo-
op is:

.RDX A exp

where exp is evaluated in decimal. Its range must be between 2 and 10 (decimal);
that is, the range of exp must be:

2<exp=10
When the assembler encounters a , RDX pseudo-op, it converts every integer
thereafter to the specified radix. Note that regardless of the radix used, any
number containing a decimal point is interpreted as decimal. This feature allows
the programmer to combine decimal numbers in expressions with numbers of

other radices.

Examples of the use of the , RDX pseudo-op follow.

6-2

.RDX 2

000005 101
000152 101+101.
.RDX 8
000101 101
000246 101+101.
.RDX 10
000145 101

000312 101+101.

SYMBOL TABLE PSEUDO-OPS

The symbol tabie, maintained by the Extended Assembler, is a list of all semi-
permanent symbols defined by Data General (such as the instruction mnemonics)
and permanent symbols (such as pseudo-ops). In addition, the symbol table can
contain semi-permanent symbols defined by the user. The Extended Assembler
includes eight pseudo-ops that allow users to add or delete semi-permanent symbols
in the symbol table.

The symbol table pseudo-ops define a user symbol as a semi-permanent one and
assign a value to it. The pseudo-ops have the general form:

pseudo-op A symbol = expression

where pseudo-op is one of the following:
.DALC .DMRA .DIOA .DUSR
.DMR .DIO .DIAC

(An eighth pseudo-op, .XPNG, has a unique form and is described later.) The
pseudo-op defines symbol as a semi-permanent symbol; its value is the value of
expression.

Each symbol table pseudo-op, except .DUSR, implies a certain type of instruction,
Thus, once defined, the semi-permanent symbol must be used with expressions
appropriate to the format required, For example, the pseudo-op .DAL.C defines

a symbol that is an implied arithmetic and logical instruction mnemonic and
which requires expressions following the symbol that are entered into those bit
fields that would represent in an ALC the source and destination accumulations
and the optional skip field, The symbol table pseudo-ops can be used to define
semi -permanent symbols of the following instruction types.

6-3

SYMBOL TABLE PSEUDO-OPS (contd.)

Pseudo-op Instruction Type

.DALC Arithmetic and logical

.DMR Memory reference without accumulator
.DMRA Memory reference with accumulator
.DIO 1/0 without accumulator

.DIOA I/0 with accumulator

.DIAC 1/0 without device code

For example, the pseudo-op . DALC defines a symbol that is an implied arithmetic
and logical instruction mnemonic. When this symbol is used in a source program,
the fields following the symbol are entered into the bit positions that represent
source and destination accumulators and an optional skip mnemonic. The format
for .DALC symbol definition and the source line with the symbol as it would later
be used follow.

.DALC Asymbol = expression

symbol A source-ac Adestination-ac f A skip]

The fields are assembled as shown below,

source destin,
ac ac skip
0 1 2 3 4 13 14 15

The following is an example of . DALC symbol definition.

163120 «DALC MULT4=183120

1271273 MULTA 1,1

6-4

SYMBOL TABLE PSEUDO-OPS (contd.)

If an expression is to be added to a field that cannot accommodate it, an overflow
(O) error is reported and the field remains unaltered. The following example
illustrates a field overflow.

183128 +DALC MULT4=103128

DB2030 107120 MULT4 4,1

If an expression is to he added to a nonzero field, the expression must cvaluate to
zero; otherwise, an overflow (O) error occurs. For example:

23128 .DALC MULT4=123128 ;BITS 1-2 NOT ZEROED

o

020981 127120 MULT4 1,1 . " $OVERFLOW ON EXP!

280062 123120 MULT4 2,0 3 ACCEPTABLE SINCE EXPl =@

If an expression following a semi-permanent symbol does not fit the implied
format, a format (F) error results. For example:

123126 +DALC MULT4=183128 ; TwO, OPTIONALLY THREE,
3 EXPRESSIONS REQUIRED FOR

F 123120 MULT4 1 i
ABOG1 127121 MULT4. 1,1, 1

Fe0002 127121 MULT4 1,1,1,1

In summary, the expressions following a semi?permanent symbol must meet the
following criteria.

l. As many expressions must follow the semi-permanent symbol as are

required by the implied format. Some formats permit optional as well
as required fields.

2. The expression must be able to fit the field in the semi-permanent
symbol; otherwise, if

expression.> (2 field-width _ 1)

the field is unaltered and an overflow (O) error is reported.

6-5

SYMBOL TABLE PSEUDO-OPS (contd.)

3. If the expression is to be stored in a nonzero field, the expression must
evaluate to zero; otherwise, the field is unaltered and an overflow (O)

error results,

4, The expression must meet the requirements of the implied format;
otherwise, a format (F) error results.

Although a user symbol defined in one pseudo-op can be redefined in another symbol
table pseudo-op, only the last definition is assigned to the user symbol.

6-6

.DALC Pseudo-op

The . DALC pseudo-op

.DALC 4 symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of an arithmetic and logical
instruction. At least two fields, and optionally three, are required with the symbol.
The format in which the semi-permanent symbol is later used in a source program
is:

symbol 4 source-ac 4 destination-ac f A skip §

The fields are assembled as shown below.

source | destin.
ac ac skip

0o 1 2 3 4 13 14 15

The atom # can be specified anywhere in the source line as a break character. If
it is used, a 1 is assembled at bit 12, the no-load bit, thus inhibiting loading of
shifter output.

The shift and Carry bits can be set by appending the following letters to a three-
character symbol during ., DALC definition:

Z| |L
.DALC A symbol R1 = expression
C| |S

These letters cause the shift and Carry bits to be set as described in Chapter 5
for ALC instructions.

An example of the ,DALC pseudo-op follows.

103400 «DALC ADD=103420
20200 103489 ADD 2,0
20081 103402 ADD 2,8, SZC
80282 133481 ADD 1,2, SKP

6-7

.DMR Pseudo-op

The .DMR pseudo-op

.DMR 4 symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of a memory reference (MR)
instruction without an accumulator field. The format in which the semi-permanent
symbol is later used in the source program is:

symbol A displacement & mode

The fields are assembled as shown below,

mode displacement

0 6 7 8 9 10 11 12 13 14 15

The atom @ can be specified anywhere in the source line as a break character. If
it is used, a 1 is assembled at bit 5, the indirect addressing bit.

An example of the , DMR pseudo-op is given below.

000000 .DMR JMP = 000000

00205 001400 JMP 0,3

6-8

.DMRA Pseudo-op

The .DMRA pseudo-op

.DMRA A symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of a memory reference
instruction requiring an accumulator field. The format in which the semi-perman-
- ent symbol is later used in the source program is:

symbol A accumulator A displacement f A mode

The fields are assembled as shown below.

ac ~ mode displacement

0 ' 3 4 5 6 7 8 9 10 11 12 13 14 15

The atom @ can be specified anywhere in the source line as a break character.
If it is used, a 1 is assembled at bit 5, the indirect addressing bit.

An example of the , DMRA pseudo-op is given below,

020000 .DMRA LDA = 20000

00011 023400 LDA 0,@0,3

6-9

. DIO Pseudo-op

The . DIO pseudo-op

.DIO A symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of an 1/0 instruction with-
out an accumulator field. Only one field is required with the instruction. The
format in which the semi-permanent symbol is later used in the source program is:

symbol Adevice-code

The field is assembled as shown below.

device-code

0 10 11 12 13 14 15

The Busy/Done bits can be set by appending one of the following letters to a three-
character symbol during , DIO definition.

S
.DIO A symbol{C] = expression
P

These letters cause the Busy/Done bits to be set as described in Chapter 5 for 1/0
instructions without an accumulator field.

An example of the ,DIO pseudo-op is shown below.

063400 .DIO SKPDN = 063400

6-10

. DIOA Pseudo-op

The ,DIOA pseudo-op

. DIOA A symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of an I/O instruction
requiring two fields. The format in which the semi-permanent symbol is later
used in a source program is:

symbol A accumulatorAdevice-code

The fields are assembled as shown below.

ac device-code

0 3 4 10 11 12 13 14 15

The Busy/Done bits can be set by appending one of the followmg letters to a three-
character symbol during .DIOA definition.

S
. DIOA A symbol {CJ = expression
P

These letters cause the Busy/Done bits to be set as described in Chapter 5 for 1/0
instructions with an accumulator field.

An example of the ,DIOA pseudo-op is shown below.

060500 .DIOA DIA = 060500

00110 060545 DIA 0, 45

6-11

. DIAC Pseudo-op

The .DIAC pseudo-op

.DIAC A symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. In
addition, the use of this symbol implies the formatting of an I/0 instruction
without a device code field. The format in which the semi-permanent symbol is
later used in the source program is:

symbol A accumulator

The field is assembled as shown below.,

ac

0 3 4 15

The following is an example of the ., DIAC pseudo-op.

000430 .DIAC RPT = 000430

00150 010430 RPT 2

6-12

. DUSR Pseudo-op

The , DUSR pseudo-op

.DUSR & symbol = expression

defines symbol as a semi-permanent symbol with the value of expression. Unlike
other semi-permanent symbols, a symbol defined by a , DUSR pseudo-op is
merely given a value and has no implied formatting, The semi-permanent symbol
can be used in the source program anywhere a single precision operand can be
used. The following illustrates the , DUSR pseudo -op.

000025 .DUSR B =25

000250 .DUSR C=B*10

000223 C-B

- XPNG Pseudo ~op

All symbol definitions except permanent symbols can be deleted from the assembler
symbol table by the pseudo -op:

. XPNG

i

After expunging the symbol definitions from the ‘table, the programmer can define
instruction mnemonics, such as ADD and JMP, in any way desired.

. XPNG
020000 .DMRA LDA = 20000
040000 .DMRA STA = 40000

.END

6-13

LOCATION COUNTER PSEUDO-OPS

The extended Assembler provides four pseudo-ops directly affecting the location
counter that allow the user to:

1. Allocate a block storage (.BLK),

2. Change the value and relocation property of the current location
counter (, LOC), and

3. Specify the relocation property of source lines (.ZREL and ,NREL).

. BLK Pseudo-op

The .BLK pseudo-op

.BLK A exp .

allocates a block storage, exp words in length. The current location counter is
incremented by exp. If the expression cannot be evaluated in pass 1 or the value
of the current location counter exceeds 215-1, a location (L) error results.

. B | :
The following example shows the effect of the .BLK pseudo-op on the
contents of the location counter.

an125'®p2ned BYO3? O
pR20R4 BYL1AS LBLK 4

peAne2 BYL13? LBLK 2
eni134'eoe2na BYL3T @

. LOC Pseudo-op

The . LOC pseudo-op

.LOC b exp

changes both the value and relocation property of the current location counter to
that of exp. For example, if the expression evaluates to a zero relocatable
value, ‘the current location counter is set to that value and subsequent code is
assembled as zero relocatable. Similarly, when the expression evaluates as
either normal relocatable or absclute, the location counter is set to the normal

relocatable or absolute address.

The following pseudo-op sets the absolute location counter to octal 1400:

00000' 000010 10 ;NORMAL RELOCATABLE
001400 .ILOC 1400 ;RETURN TO ABSOLUTE LOCATION 1400
01400 103400 ADD O 0

The current location symbol (.) can be used with the . LOC pseudo-op. Depending
on the relocation property of the code it is used with, it can mean: "current

absolute address, " "current normal relocatable address, " or "current page zZero

relocatable address. "

«NREL

3022000003 3
BARBAS* LIC «+2
POvasS 020019 LDA 3,10

. ZREL and ., NREL Pseudo-ops

In addition to the assembly of absolute code, the programmer can use the Extended
Assembler to produce two types of relocatable code: zero relocatable and normal
relocatable. '

Storage words that can be relocated but must reside in page zero should be assem-

bled using zero relocatable mode. The user informs the assembler that a body of
code is to be zero relocatable by preceding it with the pseudo-op:

6-15

.ZREL and . NREL Pseudo-ops (Contd.)

.ZREL

Storage words that can be relocated anywhere except page zero must be assembled
using normal relocatable mode. The user informs the assembler that a portion of
code is to be normally relocatable by preceding it with the pseudo-op:

.NREL

The Extended Assembler initially assumes the assembly mode to be absolute and
assembles in this mode until it encounters either a , ZREL or . NREL pseudo-op.

Thereafter, the assembly continues at the next available zero relocatable or
normal relocatable address. :

70000 002008 AL: @ ;ABSOLUTE
+ZREL
P0000-202000 Z: O ;ZERO RELOCATABLE
P0001-000000 ZL: 2
200122 .LOC 100 ;RETURN TO ABS. TO REMAIN IN ZREL,
20120 000023 M ;USE. THE .LOC .+ nuinber - C
«NREL -
0QooR*'P008383 <A M ;NORMAL RELOCATABLE

g2e21'202777 JMP €.A

6-16

INTERPROGRAM COMMUNICATION PSEUDO-OPS

The Extended Assembler provides facilities for separately assembled programs
to share data, addresses, and symbols. Using the interprogram communication
pseudo-ops, the programmer can:

1. Reserve a labeled or unlabeled program area to be shared by several
programs (, COMM and . CSIZ),

2. Define entry symbols that can be referenced by other programs (.ENT),
and

3. Name a program that is to become an overlay segment (. ENTO).

Then using the pseudo-ops . EXTD, .EXTN, .GADD, and . GLOC, programs can
reference these program areas, entry symbols, and overlays. Because not all
symbols will be defined at the end of pass 1 if these pseudo-ops are used, the
Extended Assembler also includes the . EXTU pseudo-op which directs the
assembler to treated undefined symbols as displacement externals.

. COMM Pseudo-op

The . COMM pseudo-op specifies the name and size of a program area to be used
for interprogram communication by programs loaded together. The format of
the pseudo-op is:

.COMM A usr-sym A exp

where usr-sym is the name of the area for interprogram communication and exp
is its size, in words. This area is reserved by the first loaded routine declaring
the name usr-sym. The area is reserved at NMAX (the first location available to
load normal relocatable data), immediately preceding any normal relocatable
code loaded. Other loaded routines declaring usr-sym share this original area,
provided the sizes specified (exp) are the same.

Since usr-sym is an entry in the program, it cannot be redefined elsewhere in
the program.

The symbol usr-sym can be referenced by other programs loaded together using
any of the following pseudo-ops:

.EXTD .EXTN .GADD .GLOC
1 6-17

. COMM Pseudo -op (Contd.)

oool100
290040
000050

200100

«TITL A

«COMM X, 100
«COMM Y,40
«COMM Z,58

«END

«TITL B
+COMM X,100

L]
+«END

. CSIZ Pseudo-op

The . CSIZ pseudo-op specifies the size of an unlabeled program area to be used for

Loading would take place as follows:

high core —»

Als start of NREL __

Z
Y
X

initial NMAX —»

interprogram communication. Its format is:

where exp is the size, in words of the program area, The Extended Assembler eval -
uates this expression and passes the value to the loader. The loader stores this value
in the User Status Table, at location 410 (USTCS). If more than one . CSIZ pseudo-op
appears in a program to be loaded, at the termination of the load USTCS is set to the

.CSIZ A exp

largest value specified by all . CSIZ pseudo -ops.

RLDR

X

«TITL X

@@0850 .CSIZ 50

-
]

« END
X

NMAX @010837
ZMAX @00050
CSZE 000850
EST
SST

6-18

B

50 words

40 words

100 words

;50 WORDS ALLOCATED BY LOADER

.ENT Pseudo-op

A program can define a symbol that can be referenced by separately assembled pro-

grams by including it in the .ENT pseudo-op line. The .ENT pseudo -op has the format:

.ENTA usr -sym; fA usr-symy...Ausr-sym}

where .€ach usr-sym is a symbol defined in the declaring program and available to
other programs. Each usr-sym must be defined with the program in which it is de-
clared. Each symbol must be unique from entries defined in other programs loaded
together to form a save file. If not, the loader issues an error message indicating
multiply defined entriés, Entry symbols can be referenced in separately assembled
programs using any of the following pseudo -ops:

.EXTD .EXIN .GADD .GLOC

oTITLE OVKIL

«ENT OVKIL,0vVKIX
+EXTD o CPYL, RTER
+EXTN FRET, TOVRL,KILL

NREL
90002 a00a0] 1
PREVL1RA6RA250VKIL: JSR *.CPYL
000B2 ' ¢23611 LUA 2, POVNUM, S
PAG07 'Y4AQul 1
WeB1B 931210 UYKIX: LDA 2,FRTN, 2
Re011'021901 LUA A,1,2

. ENTO Pseudo-op

If a program is to become an overlay within an overlay segment, the .ENTO
pseudo-op can be used to name the overlay. The overlay can then be referenced
from other programs using this name. The format of the . ENTO pseudo-op is:

. ENTO Ausr-sym

where usr-sym becomes associated with the node number and overlay number
assigned to the overlay at load time. Programs referencing this overlay must
include the symbol usr-sym in an ., EXTN or . GADD pseudo-op line.

Because the order in which overlays are loaded determines the overlay and node
numbers, usr-sym is assigned a value at load time. For this reason, the symbol

UST "Sym cannot be used elsewhere in the program,

6-19

.ENTO Pseudo-op (Contd.)

Overlay Referencing Program
.TITL TIME . TITL ROOT
.ENTO METER .EXTN METER
: .NREL
ONO: METER
LDA 0, ONO
ADC1, 1
. TOVLD :RDOS MULTITASKING LOAD
; COMMAND

.EXTD Pseudo-op

A symbol can be defined in one program and referenced in a memory reference in-
struction or data line in another program if the referencing program contains the
.EXTD pseudo-op. The format of the pseudo-op is:

.EXTD Ausr-symj f A usr-symg. - - & usr-symp

where each usr-symj is a symbol (externally) defined in another program. This
pseudo-op declares the symbols as displacement externals (or external displace-
ments). Once a symbol has been declared a displacement external, it can be used
in either of two ways: (1) as an address or displacement in a memory reference |
instruction or (2) to specify the contents of a 16-bit storage word.

When evaluated by the Extended Assembler, displacement externals must resolve
to a value representable in eight binary digits. This means that:

1. If used as a page zero address in a memory reference instruction with
index = 00, or in a data line, the displacement must resolve to a value
in the range of 0 through 377 (octal), inclusive.

2. When used in a memory reference instruction with index # 00 (addressing
relative to the location counter or a base address contained in AC2 or
AC3), the displacement must resolve to a value in the range of -200
through 177 {octal), inclusive.
The program defining the symbol usr-sym must declare it an entry symbol in a

. ENT or , COMM pseudo-op. 6-20

. EXTD Pseudo-op (Contd.)

«TITLE HOLD
ENT HOLD
«EXTD «CPYL

«NREL

vovan'vavadve 2
0201V AA0ALSHOLDS JSR 6,CPYL

EXTN Pseudo-op

With the . EXTN pseudo-op a program can reference a symbol in a data line that
is defined in another program. The format of the pseudo-op is:

.EXTN Ausr-sym; f Ausr-sym,... Ausr-symyp]

where each usr-sym; is a symbol (externally) defined in another program. This
pseudo-op declares the symbol(s) as normal external symbols. Normal externals

can be used only in data line because an entire storage word must be reserved
for each symbol.

The usr-sym must be defined in a separately assembled program and must appear
in that program in an , COMM, .ENT, or .ENTO pseudo-op.

«TITLE STTSK
«EXTN FRET,TIDST

L]
.
v

00wa7'177777 FRET
Weu18'177777 L,10ST: TIDST

END

6-21

.EXTU Pseudo -op

This pseudo-op causes the assembler to treat all symbols that are undefined after
pass 1 as if they had appeared in an . EXTD pseudo -op. The format of the pseudo-op
is:

i .EXTU

.TITL FRED
.EXTU

3
.

00006'024001$ LDA 1, UNDEF ;UNDEF IS TREATED AS EXTERNAL

. GADD Pseudo-op

The . GADD pseudo-op generates a storage word whose contents is resolved at
load time. The format of the pseudo-op is:

.GADD A usr-sym A exp

where the value of usr-sym is searched for at load time and, if found, is added
to the value of exp to form the contents of the storage word. If usr-sym is not
found, a loader error results and the storage word contains just the value of exp.

The usr-szfn must be defined in a separately assembled program and must appear
in that program in an , ENT, .ENTO, or ,COMM pseudo-op. .GADD can thus be
used in a similar manner to , EXTN with the following differences:

1. A user symbol in a , EXTN pseudo-op and used as a storage word is
resolved regardless of whether the defining program is loaded before

or after the program containing the . EXTN,

2. A user symbol in a . GADD block is resolved only if the defining program
is loaded before the program containing the , GADD block.

6 -22

. GADD Pseudo-op (Contd.)

.NREL

00027'000032' . +3
000202 .GADD CL1, 2 ;CL1 MUST HAVE BEEN LOADED AND HAVE A
00031'000020 20 ;VALUE OF 200

- GLOC Pseudo-op

The , GLOC pseudo-op defines a global location block containing absolute data. Its
format is:

.GLOC Ausr-sym

which begins the block of absolute data origined at the value of usr-sym at load
time. The block is terminated by the next occurrence of a , LOC, .NREL, .ZREL
or , END pseudo-op.

The uar-sym must be defined by an . ENT or .COMM in a program loaded pri
to the global location block or a fatal load error results,

‘The global location block cannot contain external references, label definitions, or
label references.

]
i .TITL B
«GLOC MYAREA
00000000001 1
0001000002 2
00002°'0020083 3

TEXT PSEUDO-OPS

.TXT, . TXTE, . TXTF, and . TXTO Pseudo-ops

These text pseudo-ops store ASCII octal equivalents of characters of a string. The
pseudo -ops have the forms:

.TXT A /string/
.TXTE &/string/
.TXTF A/string/
.TXTO &/string/

where string is a text string of ASCII characters and / represents a character that
is used to delimit string.

Any character may be used to delimit string except:

1. A character that also appears within the strirg.

2. Carriage return, space, tab, comma, null, line feed, form feed, or rubout.

Upon encounicring a text pseudo-op, the assembler takes the next sionificant charac-
ter as a delimiter. Thereafter, pairs of characters are assigned to consecutive
words of memory until the terminating delimiter is encountered. Every two
characters generate a storage word. If the string contains an odd number of charac-
ters, the final character is paired with a null. If the string contains an even number
of characters, a null word is assigned to the location immediately following the string
(unless the , TXTN pseudo-op, described later, is used).

Storage of ASCII octal codes requires seven bits of an eight-bit byte. The leftmost
bit is used to indicate parity, as indicated by the text pseudo-op used:

.TXT sets the leftmost bit of the byte to 0 unconditionally.
.TXTE sets the leftmost bit of the byte for even parity on the byte.
TXTF sets the leftmost bit of the byte to 1 unconditionally.
.TXTO sets the leftmost bit of the byte for odd parity on the byte.

Within the string, any character may be used with the following limitations:

1. A carriage return or form feed appearing in the string will continue
the string to the next line or page respectively and willnnot be stored

aede L dlan Sbaad

as part o1 uic Siriig.

6-24

TEXT PSEUDO-OPS (contd)

IXT, .TXTE, . TXTF, and . TXTO Pseudo-ops

2. The characters null, line feed, and rubout are not interpreted and
thus will not be stored if they appear in the string.

3. The characters < and > are used to delimit characters that would
otherwise not be stored and, as delimiters, are not stored as part
of the string.

The characters listed above that are not normally stored can be introduced as part
of a text string by enclosing either the octal equivalent of the character or the
special integer form of the character in angle hrackets:

JIXT @LINE 1 <15>@ ~—stores carriage return

JTXT @PENS SELLING <"@> $20/ DOZEN@ -edelimiter stored

- TXT @LESS THAN IS WRITTEN AS <'<>,@ -—angle bracket stored

By default, text bytes are packed from right to left; the programmer can change the
packing mode by using the . TXTM pseudo -op described later.,

@0000 841191 .TXT #AB CD#
041440
800104

0003 041101 «TXTE #AB CD#
141640
Q00104

00006 141301 TXTF #AB CD#
141640
0aB304

BB011 141301 TXT) #AB CD#
241 449
PR0304

. TXTN Pseudo-op

The user can suppress the addition of a null word to a character string containing an
even number of characters using the pseudo-op . TXTN. This pseudo-op has the

form:

6-25

TEXT PSEUDO-OPS (contd)

. TXTN Pseudo-op

. TXTN Aexp

where exp is ény legal expression. The assembler evaluates exp and performs the fol -
lowing action.

Value of exp Assembler Action

Zero All subsequent text strings containing an even number of
bytes are followed by a full word consisting of two zero
bytes.

nonzero All subsequent text strings containing an even number of

bytes terminate with the last two bytes of the string.

The .TXTN pseudo-op has no effect on text string containing an odd number of bytes; the
last character is always paired with a zero byte,

0000208 TXTN 0
A0A0G 231061 «TXT 71234/

232063

200000

2000081 «TXTN 1
@N0083 3310861 «TXT /12347

032063

. TXTM Pseudo-op

Normally, bytes are packed from right to left. This packing mode can be changed by
the pseudo-op . TXTM, which has the form:

| .TXTMAexp
i

where if the value of exp is 0, bytes are packed right to left and if the value of exp is
nonzero, bytes are packed left to right.

6-26

TEXT PSEUDO-OPS (contd)

. TXTM Pseudo-op (contd)

22022

22283

Cooerd
241101
241449
fodi1d4a

Bo2221
B40502
220183
242200

«TXTM @
«TXT #AB CD#

«TXTM 1
«TXT #AB CD#

6-27

CONDITIONAL PSEUDO -OPS

The Extended Assembler provides a conditional assembly feature w hich allows por -
tions of a program to be assembled or to be by -passed by assembly on the basis of
evaluation of absolute expressions. The conditional portion of the program has the
general form:

.IFa Aexp

.ENDC

2

where a is one of the letters E, G, L, or N and exp is an absolute expression. To-
gether a and exp determine the conditions under which assembly will take place.

The lines following, indicated by the elipsis, are assembled conditionally up to the
the . ENDC pseudo-op, which terminates conditional assembly. The meaning of the
letters E, G, L,. and N is:

IFE exp Assemble if exp is equal to 0.
JAFG exp Assemble if exp is greater than O,
JIFL exp Assemble if exp is less than 0.
IFN exp Assemble if exp is not equal to 0.

The expression in the . IFE, .IFG, .IFL, or .IFN pseudo-op must be evaluable in
pass 1 of the assembly process, that is, all symbols used in the expression must be
absolute and defined previous to the occurence of the .IFE, .IFG, .IFL, or .IFN,

Conditional assemblies should not be nested; if a conditional pseudo-op is encoun-
tered after a .IFa but before an .ENDC, the second conditional pseudo-op is ignored
and is flagged with a K in the assembly 1listing.

If an . END or . EOT pseudo-op is included in conditionally assembled code, it will
not be ignored. Regardless of the value of the expression with the ,IFa, the . END
or ., EOT pseudo-op always terminates the assembly process. For example, in the
conditionally assembled code:

JFE 1
.END
.ENDC

the . END is not bypassed but causes the assembler to cease assembly.

6-28

CONDITIONAL ASSEMBLY PSEUDO-OPS (contd)

622002

A=D
Q22003 B=A
«NR

Znn

EL

@00008 «IFE B=2 O
LDA @,A
« ENDC

\The expression evaluates to false in these cases, so

00203 +1FG B=2 (the load instruction is not assembled.

LDA @.,A
+« ENDC
J
PO0B81 «1FL B-2)
P0D00 020000 LDA @,A . .
«ENDC >The expressmn evaluates to true in these cases, so
the load instruction is assembled.

@022@1 «IFN B=2
Q0001020000 LDA 8,A J
+ ENDC

FILE TERMINATING PSEUDO -OPS

It is sometimes necessary to continue a program on more than one input source tape.
The following pseudo-op indicates the end of the input file, but not the end of the
input source:

+

.EOT

Upon encountering the . EOT pseudo-op, the Extended Assembler stops the source
input device and halts with a 00006 in the address lights on the programmer’s con-
sole. The assembly can be continued by loading the input device and pressing the

console CONTINUE switch.

The . END pseudo-op terminates a source program, providing an end-of-program
indicator for the relocatable loader. The syntax of the , END pseudo-op is:

.END{Aexp}

FILE TERMINATING PSEUDO -OPS (contd)

where exp is an optional argument specifying a starting address for execution. The
loader initializes TCBPC of the active TCB to the last address, if any, specified by
a relocatable binary at load time. Execution of the loaded save file begins at this
address. If the loader finds no starting address among programs loaded, an error
message is given.

The following example illustrates the use of the . END pseudo-op.

+TITLE FP
+ENT PRI
dEXTN TPR
+EXTN FR
«EXTD WCP
+NREL

QOERB it 1

vl taeordl $PRIS JSR ¢.CP"

e 'v2dontl LUA h,8PRI0O,3

W03 w64y e , JOR . TPRI

Baur4rtLz27777 Fr’

177611 PRIO = FTSTR

neend'177777 LTPRI: TPR
CWEND

6-30

APPENDIX A

EXTENDED ASSEMBLER CHARACTER SET

7-Bit 7-Bit 7-Bit 7-Bit
Octal Octal Octal Octal
Code Character |Code Character | Code Character] Code Character
000 Null* | 072 125 U 165 u
011 Tab | 073 ; 126 v 166 v
012 LF* | 074 < 127 W 167 w
014 FF 075 = 130 X 170 X
015 CR 076 > 131 Y 171 y
040 SP 100 @ 132 7 172 z
041 ! 101 A 141 a 177 Rubout*
042 102 B 142 b

043 # 103 C 143 c

046 & 104 D 144 d

052 * 105 E 145 e

053 + 106 F 146 f

054 R 107 G 147 g

055 - 110 H 150 h

056 . 111 I 151 i

057 / 112] 152 j

060 0 113 K 153 k

061 1 114 L 154 1

062 2 115 M 155 m

063 3 116 N 156 n

064 4 117 0] 157 0

065 5 120 P 160 p

066 6 121 Q 161 q

067 7 122 R 162 T

070 8 123 S 163 s

071 9 124 T 164 t

*These characters are ignored by the Extended Assembler.

A-1

ERROR CODE

A

APPENDIX B

ASSEMBLY LISTING ERROR CODES

MEANING

An address error has occurred: (1) an expression evaluates

to other than an absolute, normal relocatable, or page zero
relocatable address; (2) a page zero relocatable instruction
references an address outside page zero; or (3) a normally
relocatable instruction references an address outside the range
of the location counter relative addressing.

An illegal character (not in the Extended Assembler character
set) has been encountered.

~ A colon error has occurred; a label was defined improperly.

A radix error has occurred. Possible sources of error include
an expression that is outside the range (2 through 10) of the
. RDX pseudo-op.

An equals sign has been used incorractly.

A format error has occurred. Possible sources of error in-
clude an incorrect number of arguments for an instruction or
an operator follows a double precision or floating point number.

An error has occurred in defining an internal or external symbol.
A parity error has occurred on input.

A conditional assembly error has occurred: (1)an expression
used with a .IFE, .IFG, .IFL, or .IFN pseudo-op cannot be
evaluated in pass 1, or (2) a .IFE, .IFG, .IFL, or .IFN
pseudo-op is nested within a conditional assembly.

A location counter error has occurred. An attempt was made to
set the location counter to an illegal value.

A symbol has been defined more than once.

A number error has occurred. Possible sources of error
include (1) a letter directly follows a number, (2) a digit
has been used that is greater than the current radix, or (3)
a number is too large or too small to be represented as a
floating point number.

B-1

ERROR CODE

MEANING
A field overflow has occurred.

A phase error has occurred; the value of a symbol in pass
2 differs from that of pass 1.

A source statement is questionable. The Extended
Assembler is not able to evaluate a source line.

An expression error has occurred: (1) an expression does
not evaluate to be absolute, relocatable, or byte relocat-
able; or (2) any expression combines normal and page
zero relocatable symbols incorrectly.

The symbol table capacity has been reached.

A symbol table pseudo-op has been specified incorrectly.
A symbol is undefined.

A text error has occurred.

An expression contains an illegal operand such as an

external symbol, instruction mnemonic, double precision
number, or floating point number.

B-2

APPENDIX C

EXTENDED ASSEMBLER PSEUDO-OPS

FUNCTION AND
MNEMONIC SYNTAX USE
Title

. TITL . TITLA usr-sym Names a program.
Number Radix

-RDX -RDX Aexp Defines the radix ﬁ to be
used for numeric conversion:
2 = exp < 10({decimal)

Symbol Table

.DALC .DALC A sym = exp Defines a symbol as an arith-
metic or logical instruction.

.DIAC .DIAC A sym = exp Defines a symbol as an in-

' struction requiring an
accumulator.

. DIO .DIO A sym = exp Defines a symbol as an input/
output instruction without an
accumulator field.

. DIOA . DIOA A sym = exp Defines a symbol as an input/
output instruction requiring
an accumulator.

.DMR .DMR A sym = exp Defines a symbol as a memory
reference instruction without
an accumulator field.

. DMRA -DMRA A sym = exp Defines a symbol as a memory
reference instruction requir-
ing an accumulator.

.DUSR .DUSR A sym = exp Defines a user symbol.

EXTENDED ASSEMBLER PSEUDO-OPS (cont.)

FUNCTION AND
MNEMONIC SYNTAX USE
Symbol Table (cont.)

. XPNG . XPNG Removes all symbols, except
permanent symbols, from the
symbol table.

Location Counter

.BLK .BLK A exp Allocates a block of storage
exp words in length.

. LOC . LOC A exp Changes the value and loca-
tion property of the current
location counter to that of
exp.

.NREL .NREL Specifies that subsequent
source lines are to be
assembled using normally
relocatable addresses.

.ZREL .ZREL Specifies that subsequent
source lines are to be
assembled using page zero
relocatable addresses.

Interprogram
Communication

.COMM .COMM A usr-sym A exp | Reserves an area exp words
in length with the name usr-
sym for interprogram
communication.

. CSIZ .CSIZ Aexp Reserves exp words for inter-
program communication.

.ENT

.ENT A usr-sym, ...

Specifies that each usr-sym,
is an entry point that can be
referenced by other programs.

EXTENDED ASSEMBLER PSEUDO-OPS (cont.)

FUNCTION AND
MNEMONIC

SYNTAX

Interprogram
Communication (cont.)

.ENTO

.EXTD

.EXTU

.GADD

.GLOC

.ENTO A usr-sym

.EXTD A usT-sym,...

.EXTN A UST-Sym, ...

.EXTU

.GADD A usr-sym A exp

.GLOC A usr-sym

Associates usr-sym with the
node and overlay numbers
assigned to the overlay,

Specifies that each usr-sym,
is a displacement external
that is defined in another
program.

Specifies that each usr-sym,
is a normal external that is
defined in another program,

Specifies that all symbols
undefined after pass 1 are
to be treated as if they were
in an .EXTD pseudo-op.

Generates a storage word
whose contents is, at load
time, usr-sym + exp. usr-
sym must be defined in a
separately assembled program.

Begins a block of absolute data
starting at the value of usr-
sym up to the next .LOC,
.NREL, .ZREL, or .END.

Text
L TXT

. TXTE

. TXT A #string#

. TXTE A #string#

Stores the ASCII code for each
byte in the text string. Left-
most bit of each byte is set to
zero,

Stores the ASCII code for each
byte in the text string, Left-
most bit of each byte is set for
even parity.

C-3

EXTENDED ASSEMBLER PSEUDO-OPS (cont.)

[FUNCTION AND
MNEMONIC SYNTAX USE
Text (cont.)

. TXTF . TXTF & #string# Stores the ASCII code for each
byte in the text string. Left-
most bit of each byte is set to
one.

TXTM .TXTM A exp Defines the packing of bytes for
other text pseudo-ops:
exp = @ bytes are packed
right to left.
exp# @ bytes are packed
left to right.

. TXTN . TXTN A exp Suppresses a terminating null’
word, normally appended to an
even number of text bytes.

. TXTO . TXTO A #string# Stores the ASCII code for each
byte in the text string. Leftmost
bit of each byte is set for odd
paritv.

aonditional Assembly

.ENDC .ENDC Terminates a group of lines of
conditional assembly.

.IFE IFE A exp Specifies that subsequent lines
up to .ENDC are assembled if
exp = §.

IFG IFGAexp Specifies that subsequent lines
up to .ENDC are assembled if
exp > 9.

IFL JIFL Aexp Specifies that subsequent lines
up to .ENDC are assembled if
exp <P .

IFN JIFNAexp Specifies that subsequent lines
up to .ENDC are assembled if
exp # 0.

EXTENDED ASSEMBLER PSEUDO-OPS (contd.)

FUNCTION AND

MNEMONIC SYNTAX USE
File Terminating
.END .END{ expi} Terminates a source program
and optionally provides a
starting address for execu-
tion.
.EOT .EOT Indicates the end of an input

tape but not the end of the
source file,

APPENDIX D

OPERATING PROCEDURES

This appendix describes the procedures for operating the Extended Assembler
under control of the Real Time Disk Operating System (RDOS) and the Stand-Alone
Operating System (SOS) as well as in stand-alone mode, without operating system
intervention.

The input to and output from the assembler are described in Chapter 1. Appendix
E describes the format of the relocatable binary output from the assembler that
must be input to the extended relocatable loader. Operation of the loader is
described in the Extended Relocatable Loaders User's Manual, document number
093-000080.

RDOS OPERATING PROCEDURES

One or more source files can be assembled by the RDOS Extended Assembler using

the CLI command:

ASM filenamej . . . filename)

n

Input to the assembler must be ASCII source files. Output can be a relocatable
finary file, a listing file, or both,

Switches
Global; The following switches can be appended to the ASM command name.

/L Produce a listing file,

/N Do not produce a relocatable binary file.

/U Include local (user) symbols in the relocatable binary output,

/E Suppress error messages.

/S Skip pass two. A BREAK is signaled after pass one, permitting
the user to save a version of the assembler containing user
semi-permanent symbols.

/T Do not produce a symbol table list as part of the listing. (If
a listing is requested, a symbol table is produced by default;
this switch must be used to suppress the symbol table.)

/X Produce a cross reference list of the symbol table.

Local: The following switches can be appended to a file name.

/B Output the relocatable binary to the specified file name.

/E Output error messages to the specified file name,

/L Output the listing to the specified file name, overriding the

global /L.

D-2

Switches (Continued)

/S Skip this file on pass two, (This switch should be used only if
the file does not assemble any storage words.)

/N Do not list the specified file, (This switch is used when a
listing is requested and only a selected number of files are to

be assembled.)

File Name Searches

For input files, a search is performed first for filename,SR, If it is not found and
filename has no extension, a search is then made for filename. On output, a re-
locatable binary file, filename,RB and a listing file (if the global /L switch is
specified), filename. LS, are produced; filename is the first source file specified
without a /S, /L, or /B local switch.

Caution

The following command would cause the loss of the first relocatable binary disk
image:

ASM ($PTR, $PTR) $LPT/L
Although two distinct source files are read by the high-speed reader, each reloca-
table binary produced is labeled $PTR,RB. Thus, the first relocatable binary is

overwritten by the second.

Error Messages

The following error messages may be produced during assembly,

Message Meaning

NO SOURCE FILE SPECIFIED, No input source file was specified in
‘ the command line,

ILLEGAL FILE NAME. A file name is illegal.

FILE DOES NOT EXIST. An input source file does not exist.

FILE ALREADY EXISTS. An output file already exists,

Error Messages (Continued)

Message Meaning
FILE WRITE PROTECTED. An attempt has been made to write to a

write-protected output file.

FILE READ PROTECTED, An attempt has been made to read from
a read- protected input file,

SWITCH ERRORS The same file has been specified for
both the listing and binary files.

Examples

1. The following command line assembles source file Z, producing the re-
locatable binary file Z, RB,

ASM Z)
2, This command line assembles file A, producing a listing file A, LS.
ASM/N/L A)

3. The following RDOS command assembles files A, B, C, and D from the default
directory, of file E on fixed head disk unit 0 and paper tape mounted on the
high-speed reader. (The source program mounted on the reader must be
reloaded since the assembler requires two passes.) Binary relocatable files
for each source file are output on the high-speed punch., Separate assembly
listings are produced on the line printer,

ASM (A, B,C,D,DKO:E, $PTR) $PTP/B $LPT/L

D-4

SOS OPERATING PROCEDURES

The SOS Extended Assembler assembles one or more ASCII source files and
produces a relocatable binary file with an optional listing file. The assembler can
be loaded from paper tape; once loaded the assembler prints the prompt:

ASM

The user must respond with a command line of the form:

where:

0, 1, and 2 are keys describing the number of passes to be performed:

0

Perform one pass only on the specified input source file(s), then
halt with the highest symbol table address in ACO. Normally,
if this key is used, the input source is a Command Definition
tape. The core image writer can then be called to preserve a
copy of this assembly.

Perform two passes on the specified input source file(s),
producing the specified binary and listing files. At the comple-
tion of pass two, the assembler outputs a new prompt and
awaits a new command line.

Perfrom pass two only on the specified input source file(s), pro-
ducing the specified binary and listing files. The symbol table
used for this pass is that produced by the most recently executed
pass one assembly. At the completion of this pass, the
assembler outputs a new prompt and awaits a new command line.

filename1 . . . filename, are file or device names specifying input or

output files. Input to the assembler must be ASCII source files.
Input files are assembled in the order specified in the command
line, from left to right. A cassette or magnetic tape unit can-
not be used for both input and output or for more than one out-
put file. However, a cassette or magnetic tape unit can be used
for more than one input file,

D-5

Switches

Global: The following switches can be appended to the numeric keys at the be-
ginning of the command line,

/E Suppress assembly error messages normally output to the $TTO.
/T Suppress symbol table listing.
/U Include local (user) symbols in the binary output file.

Local: The following switches can be appended to a file name.

/B Output the relocatable binary file on the specified device.
/L Output the listing file on the specified device.
/N Do not list the specified file on pass two.

/P Pause before accepting a file from the specified device. The
following message is output by the assembler:

PAUSE - NEXT FILE, devicename

Assembly does not continue until the user depresses any key on
the teletypewriter console.

/S Skip the specified source file on pass two.

/n Repeat the specified source file n times, where n is a digit
from 2 through 9.

Error Messages

The following error messages may be produced during assembly.

Message Meaning
[/O ERROR 1 A filename is illegal.
I/0 ERROR 7 An attempt was made to read from a

read-protected input file,

Error Messages (Continued)

Message Meanin
I/0 ERROR 10 An attempt was made to write to a write-

protected output file,
1/0 ERROR 12 File does not exist,

NO .END No . END statement was found in any
source file.

Examples

1.

The following command line executes a two-pass assembly using cassette
files 0, 1, and 2 on unit 0 as input., A binary file is produced on unit 1,
file O; a listing file is printed on the line printer, On pass 2, input file
CTO0:0 is skipped and input file CTO0:2 is not listed.

1 CT1:0/B $LPT/L CT0:0/S CTO0:1 CTO:2/N)

The following command executes the second pass of an assembly using input
files 13, 14, 18, and 8 (in that order) on cassette unit 0. The binary, con-

taining user symbols, is produced on file 1 of cassette unit 1; the listing is

produced on file O of cassette unit 2,

2/U CTO0:13 CTO0:14 CTO0:18 CT0:8 CT1:1/B CT2:0/L)

This command line executes a two-pass assembly on input files CT0:16,
CTO0:17, CT1:0, and CT1:1 with a listing printed on the line printer. Error
messages normally output to the $TTO are suppressed; no binary file is
produced.

1/E CT0:16 CT0:17 CT1:0 CTl:1 $LPT/L)

This command executes a two-pass assembly on two files, both read from unit
0. The first file is a parameter list to be read during the first pass only.
After this parameter list is read, the pause message is output, and a new file
must be placed in cassette unit 0, The first file of this new reel is scanned
for both passes to complete the assembly. File 1 of unit 1 receives the binary
output; no listing is produced.

1 CT0:0/S CT0:0/P CT1:1/B)

D-7

STAND-ALONE OPERATION

The assembler can be loaded from paper tape using the binary loader. Once
loaded, the assembler requests information of the user concerning input/output
devices and assembly mode, The user must respond to these queries with a single
digit. The assembler queries and appropriate responses are given below.

Query User Response and Meaning
IN: Input device is one of the following:
1 Teletypewriter reader without parity checking
2 Teletypewriter reader with parity checking
3 High-speed paper tape reader without parity
checking
4 High-speed paper tape reader with parity checking
5) Teletypewriter keyboard without parity checking
LIST: Listing device is one of the following:
1 Teletypewriter Model 33 printer
2 Teletypewriter Model 35 printer
3 Line printer
4 Teletypewriter Model 33 paper tape punch
) Teletypewriter Model 35 paper tape punch
BIN: Output device for relocatable binary (object tape) is one of
the following:
1 Teletypewriter punch without local symbols
2 High-speed paper tape punch without local symbols
3 Teletypewriter punch with local symbols
4 High-speed paper tape punch with local symbols
MODE: Assembly mode is one of the following:
1 Perform pass 1 only
2 Perform pass 2 only and output an object tape
3 Perform pass 2 only and output a listing
4 Perform pass 2 only and output an object tape and

listing. (In this case, the same device cannot be
used for both the object tape and listing.)

RTOS OPERATION

To assemble one or more relocatable binaries, either the RDOS Extended Assembler
or the SOS Extended Assembler may be used. Procedures for each have been given
previously in this appendix.

To load and execute relocatable binaries under RTOS, follow the procedures given
in Appendix B of the RTOS Manual, 093-000056. As described there, the relocatable
binaries may be loaded using the (1) SOS relocatable loader, (2) RDOS relocatable
loader, or (3) stand-alone relocatable binary loader.

D-9

APPENDIX E

RELOCATABLE BINARY BLOCK TYPES

The relocatable binary output of the Extended Assembler is divided into a series

of blocks. The order of the blocks, if each type is present, is shown in Figure E-1.

Title Block

Labeled Common Blocks

Entry Blocks

Unlabeled Common Blocks

External Displacement Blocks

Relocatable Data Blocks
Global Addition Blocks
Global Start and End Blocks

Normal External Blocks

Local Symbol Blocks

Start Block

Figure E-1. Order of Relocatable Binary Blocks

The relocatable binary output must contain at least a Title and Start Block.
Presence of one or more of the other types of blocks depends upon source input.

Every block contains the following information:

Word

3=5

Contents
Type of block, indicated by the following octal values:

Value Block Type

2 Relocatable Data Block

3 Entry (. ENT) Block

4 External Displacement (. EXTD) Block
5 Normal External (. EXTN) Block

6 Start Block

7 Title (. TITL) Block

10 Local Symbol Block

11 Library Start Block

12 Library End Block

13 Labeled Common (. COMM) Block

14 Global Addition (. GADD) Block

15 Unlabeled Common Size (. CSIZ) Block
16 Global Location Start Block

17 Global Location End (. GLOC) Block

Word count, in two's complement format, never exceeding
15. If the word count is a constant for every block of the
type, the word count is shown in parentheses in the format
of the block.

Relocation flags or zero. The relocation property of each
address, datum, or symbol is defined in three bits. For
example, for a Relocatable Data Block, bits O through 2 of
word 3 apply to the address, bits 3 through 5 apply to the first
first word of data, bits 6 through 8 apply to the second word
of data, etc, The meaning of the settings of three bits are as
follows:

Bits Meaning

000 Illegal

001 Absolute

010 Normal Relocatable

011 Normal Byte Relocatable

100 Page zero Relocatable

101 Page zero Byte Relocatable

110 Data Reference External Displacement
111 Illegal

If a block does not use relocation flags, these words are
set to zero.

6 Checksum, such that the sum of all words in the block is
Zero,

Additional words in the block vary with block type.

For blocks containing user symbols, each symbol entry is three words in length.
The first 27 bits of the three-word entry contain the user symbol name in radix
50 form. (Appendix F contains an explanation of radix 50 notation.) The last five
bits of the second word are a symbol type flag. The meaning of the bit settings
are as follows:

Bits Meaning

00000 Entry Symbol

00001 Normal External Symbol
00010 Labeled Common

00011 External Displacement Symbol
00100 Title Symbol

00101 Overlay Symbol

01000 Local Symbol

The setting of the third word for each symbol entry varies with the block type.

The following pages show the format of each block type, arranged numerically
by block type.

E-3

RELOCATABLE DATA BLOCK

2

word count

relocation flags 1

relocation flags 2.

relocation flags 3

checksum

address

data

data

.

.

data

Word

O 00 N1 N U W N

word count +6

Contents of the relocation flag words (words 3 through 5) are as described

previously.

ENTRY BLOCK (, ENT)

3

word count

relocation flags 1

‘relocation flags 2

relocation flags 3

checksum

symbol in

%radix 50 [flags]|

equivalence

symbol in
radix 50 |flags

equivalence

Word

O 00 N1 O U W

.

word count +6

ENTRY BLOCK (,ENT) (Continued)

Note that the relocation flags for the Entry Block are as previously described,
except that they apply to the third word of every user symbol entry. For Entry
Block user symbols, the third word of the user symbol entry is used for the
equivalence of entry symbol.

The overlay ,ENTO is the same as the .ENT except for different flag

values in word S1 (word 8, etc.).

EXTERNAL DISPLACEMENT BLOCK (, EXTD)

Word

4
word count

6

6

6
checksum
symbol in
radix 50 lflags’
{ 077777

.

O 00 N1 ON U W N

symbol in
radix 50 | flags
Q077777 ‘ word count +6

The third word of each user symbol entry in the External Displacement Block is
set to 077777.

E-5

NORMAL EXTERNAL BLOCK (, EXTN)

Word

S
word count
relocation flags 1 (
relocation flags 2 i
g relocation flags 3
checksum
symbol in
radix 50 |flags
- adr., of last reference |

O 00 N1 ON U b W N

symbol in
radix 50 |flags
adr. of last reference word count +6

The third word of each user symbol entry in the Normal External Block contains
the address of the last reference. Relocation flags are used as in , ENT blocks.

START BLOCK

Word

6
word count (-1)
relocation flags 1
0
0
checksum
address

~N O U e N

TITLE BLOCK (, TITL)

Word

7 l
word count (-3)

0

0

0

checksum
title in

radix 50 | flags

0

NO 00 N1 O Aol W N

The third word of the user symbol entry for a title is set to 0.

LOCAL SYMBOL BLOCK

Word

10
word count
relocation flags 1
relocation flags 2
relocation flags 3
checksum
symbol in
radix 50 |flags
equivalence

NO 0O NI Ot W N

symbol in

radix 50 | flags

equivalence word count +6

The third word of every symbol entry is used for the equivalence of local symbols,
Relocation flags are used as in , ENT blocks.

LIBRARY START AND END BLOCKS

The format of the Library Start and Library End Blocks differs from the format of
other relocatable binary blocks, since the blocks are not generated by the assembler
and are thus not internal to the binary output program but mark the beginning and
termination of a file of binary output programs that constitutes a library file.

Library Start Block Word Library End Block
11 1 12
0 2 0
0 3 0
0 4 0
0 ; S 0 |
-11 | 6 -12 ’

LABELED COMMON BLOCK (. COMM)

Word

13
word count (-4)
relocation flags 1
0
0
checksum
symbol in
radix 50 |flags
0
expression value,

= \O 00 N ON U W W N M=

0

Bits 0 - 2 of the relocation flags (word 3) apply to the expression (exp following
.COMM). All other bits of the word are zeroed.

E-8

GLOBAL ADDITION BLOCK (.GADD)

Word

14 |
- word count (~5) !
relocation flags 1:
: 0 :
0 ;
checksum
address
f symbol in
radix 50 |00000
0
expression value

= = O 00 N ON U b W N =

0
1

Bits 0 - 2 of the relocation flags (word 3) apply to the address and bits 3 - 5 apply
to the expression. All other bits of the word are zeroed.

UNLABELED COMMON SIZE BLOCK (,CSIZ)

Word

15 !
word count (-1)
relocation flags 1
0
0
checksum
expression value

N ON U W N e

Bits 0 - 2 of the relocation flags (word 3) apply to the expression (exp) following
the . CSIZ pseudo-op. All other bits of the word are zeroed.

E-9

GLOBAL LOCATION START AND END BLOCKS (. GLOC)

Start Block Word End Block
16 ! 1 17
-3 2 -1
0 3 0
0 4 0
0 5 0
checksum 6 17
symbol in 7
radix 50 IOOOOO 8
0 9

E-10

APPENDIX F

RADIX 50 REPRESENTATION

Radix 50 representation condenses symbols of up to five characters into two words
of storage using only 27 bits. Each symbol, consisting of from one through five
characters, is representable as:

agazajaja

where each a, can be one of the following characters:
A through Z
0 through 9

If necessary, all symbols are padded with nulls to make a five-character symbol.
Each character is then translated into an octal representation, as follows:

Character a; Octal Translation bi
nuil 0

0 through 9 1 through 12

A through Z 13 through 44

. 45

Then, if a; is translated to b;, the bits required to represent the symbol can be
computed as follows:

N; = ((byg*50 + bg) *50) + b,y

3

50° - 1 = 174777, which can be represented in 16 bits (one word).

Nlmaximum =

2

NZmaximum = 50" - 1 = 3077, which can be represented in 11 bits.

Thus, the symbol can be represented in 27 bits of storage, as shown in Appendix B
in the binary output block formats,

F-1

-

Where there are a large number of page references for a given
topic, the primary page reference will be indicated by an asterisk
(*) following the reference.

or 3-1, 4-1*, 4-5 % optional convention <
and 3-1, 4-1%*, 4-5 A error code B-1, 5-5
addition 3-1, 4-1%*, 4-4 absolute

} address 5-4, 5-5
subtraction 3-1, 4-1%, 4-4 address in MR 5-5

value of expression 4-3ff
multiplication 3-1, 4-1*, 4-4, 4-5

accumulator
division 3-1, 4-1*, 4-4, 4-5 in ALC instruction 5-3
in I/O instruction 5-11, 5-13
angle brackets 6-25 in MR instruction 5-8
relocation flag 1-4, 5-5 ADC 5=-2
special atom 3-8*, 5-2 ADD 5-2
addition 4-1ff
special atom 2-2, 3-8*%, 5-5, 5-8 addressing 5-4ff
carriage return ALC instruction (see arithmetic and logical)
effect in special integer 3-8 alphabetic
line terminator 3-1, 3-2 in symbol 3-5
notation convention < lower case translation to upper
case 2-1
form feed line terminator 3-1, 3-2
AND 5-2
label indicator 2-4
break atom 3-1 ANDing 3-1, 4-1*%*
break atom 3-1 angle brackets 6-25

comment indicator 2-4
apostrophe relocation flag 1-4

relocation flag 1-4
arithmetic and logical instruction (ALC)

relocation flag 1-4 # sign used for no load in 5-2
special atom or integer 3-8 defining semi-permanent symbol

for 6-7
equivalencing line 2-3 definition of 5-2
relocation flag 1-4 format 5-2
break atom 3-1 ASCII
notation convention < character conversion 3-7
relocation flag 1-4 character set A-1

input to assembler 2-1
relocation flag 1-4

assembler
character in symbol 3-5 command line invoking D-2
decimal number indicator 3-2 definition 1-1
decimal point 3-4 error codes App.: B
permanent symbol 3-6, 6-15, 6-16 files that make up the Chapter 1
break atom 3-1 assembly
definition of 1-1
incorrect parity character 2-1 output of 1-2ff
cross reference listing 1-4
elipsis convention < error listing 1-3

program listing 1-3ff, 1-6

Index 1

assembly (cont'd) checksum of block App. E
relocatable binary file 1-5

processing input Chapt. 1, Chapt. 2 colon 2-4*, 3-1
atoms COM 5-2
break atoms 3-1
definition of 3-1 .COMM 6-17*, E-8
numbers 3-2ff
operators 3-1 comma 3-1
special 3-7
symbols 3-5 command line for assembly App. D

terminators 3-1
comment 2-4

B
bit alignment operator 3-1, 4-2%* conditional assembly
error code B-1*, 2-1, 3-5 error code B-1
local switch D-2, D-6 .IFE, .IFG, .IFN, .IFL, .ENDC
bad character error B-1i%*, 2-1, 3-5 crPy 5-13
bit alignment 3-1, 4-2% cross reference listing 1-4
.BLK 6-14 .CSIZ 6-18*, E-9
block D
entry (.ENT) E-4 double precision flag 3-3
external displacement (.EXTD) E=5 error code B-1
external normal (.EXTN) E-6
global addition (.GADD) E-9 .DALC 6-5, 6-7*, 5-1
global start and end (.GLOC) E-10
labeled COMMON (.COMM) E-8 data line 2-2
library start and end E-8
local symbol E-7 data, relocatable block E-4
overlay (.ENTO) E-4, E-5
relocatable data E-4 decimal point 6-2, 3-4
start E-6
title (.TITL) E-7 . device code field of 1/0 5-9ff

unlabeled COMMON (.CSIZ) E-9
DIA 5-11
break atom 3-1
.DIAC 5-1, 6-12%
busy/done bit 5-9

DIB 5-11
byte
packing 6-26 ' DIC 5-11
relocatable value 4-3)
termination of string 6-24 to 6-26 .DIO 5-1, 6-10%*
to store character 6-24
.DIOA 5-1, 6-11*%
C
carry field of ALC 5-3 displacement
error code B-1 external 6-20, E-5
pulse field of 1/0 5-10 field of MR 5-4ff

symbol in .EXTD 6-20
carriage return

as break atom 3-1 division 3-1, 4-1*,4-4, 4-5
as line terminator 3-2
in text string 6-24, 6-25 .DMR 5-1, 6-8%*

notation convention <
.DMRA 5-1, 6-9%
carry field of ALC 5-2

DOA 5-11
character
in symbol 3-5 DOB 5-11
set A-1
storage of strings of 6-24 DOC 5-11

Index 2

6-28

dollar sign 1-4

done/busy bit 5-9

double
precision flag 3-3
precision integer 3-3

DSz 5-4

.DUSR 6-13*, 5-]1

E

effective address 5-4ff
error code B-1

floating point indicator 2-2
global switch D-2, D-6
local switch D-2
effective address 5-4ff
end
of input file (.EOT) 6-29
of program (.END) 6-29
.ENDC 6-28
.ENT 6-19
.ENTO 6-19
entry
block E-4
naming (.ENT) 6-19
.EOT 6-29
equal sign 2-3, 1-4

equivalence line 2-3

error
command line D-3, D-6
file output 1-3
output codes

ARAARANAAAR
o e

1
NONNNNNNONN

NXCHNYONOZRPrRHOMBOQA® Y
wwmmmulummwww

evalua

expres

«EXTD

extermn

«EXTN

. EXTU

field

file

flag

floati

tion of expression Chapt. 4

sion

definition 4-1

evaluation 4-2

format 4-1

operators of 4-1

relocation properties of 4-3ff

6-20*, E-5
al
blocks E-5, E-6

displacement (.EXTD) 6-~20*, E-5
normal (.EXTN) 6-21*, E-6
2

sym'l-\r\ 1 arror Re

6-21*, E-6
6-22
error code B-1%*, 3-6, 6-5

of instruction
ALC 5-2

implied by semi-permanent symbol 6-3ff

I/0 with accumulator
I/0 without accumulator
I/0 without device code
MR with accumulator 5-8
MR without accumulator 5-4
overflow error in 6-5

5-11, 5-12
5-9, 5-10
5-13, 5-14

relocatable binary 1-5
termination of 6-29

error App. B
relocation 1-4

ng point number 3-4

form feed line terminator 3-1, 3-2

format error

G
.GADD

global

. GLOC

HALT

3-6, B~-1*, 6-5
error code B-1

6-22*, E-9

addition block E-9

start and end blocks
switch D-2, D-6

E-10

symbol 3-7
6-23*%, E-10
5-14

horizontal tab 3-1

Index 3

I error code B-1

.IFE 6-28
.IFG 6-28
.IFL 6-28
.IFN 6-28
INC 5-2

inclusive OR 3-1
indirect addressing 5-5
input

error code B-1*, 2-1
to assembly 1-2ff

instruction
definition 5-1
format
ALC 5-2

I/0 with AC 5-11
I/0 without AC 5-9
I/0 without device code 5-13
MR with AC 5-8
MR without AC 5-4
without argument fields 5-14
line 2-3
mnemonic 3-6
types of 5-1

INTA 5-13

INTDS 5-14

integer
ASCII conversion to 3-7, 3-8
core representation 3-2
double precision 3-3
single precision 3-2

INTEN 5-14

interprogram communication pseudo-ops

IORST 5-14

IsZ 5-4
JMP 5-4
JSR 5-4

K error code B-1

error code B-1

global switch D-2

local switch D-2, D-6

shift field of ALC 5-2, 5-3

label 2-4
labeled COMMON E-8
LC 3-6, 2-2*, 5-5, 6-15
LDA 5-8
library start and end blocks E-8
line, source
comment 2-4
data 2-2
equivalence 2-3
formatting 2-5
instruction 2-3
label 2-4
pseudo-op 2-3
line feed character 2-1
line of source input 1-3, Chapter 2
listing
cross reference 1-4
error 1-3
program 1-3ff
loading App. D
.LOC 6-15
local switch D-2, D-6
local symbol 3-7, E-7
location counter
absolute, ZREL, or NREL 6-15
definition 2-2
in MR addressing 5-4
in program listing 1-3
incrementing the 2-2, 2-3
relation to label 2-4
setting the 6-15
value (.) 3-6, 6-15, 6-16
M error code B-1
machine language 1-1
+.MAIN 6-2
memory reference instruction (MR)
fields of 5-4ff
format 5-4
illegal address in B-1
mode in MR instruction 5-4
MOV 5-2
MSKO 5-13
multiplication 3-1

multiply defined symbol error B-1

Index 4

error code B-1 error code B-2
global switch D-2 local switch D-6
local switch D-3, D-6 pulse field of I/0 5-10
named COMMON E-8 packing of bytes 6-26
naming a program 6-2 page zero relocation (ZREL)
constant 4-3
NEG 5-2 in MR 5-5
location counter 6-15
NIO 5-9 pseudo-op (.ZREL) 6-15
no load of ALC 5-3 parity
error code for incorrect B-1
normal external E-§; 6-21% in text string 6-24

listing character (\) error 2-1
normal relocation (NREL)

constant 4-3 pass, assembly 1-2
location counter 6-15

pseudo-op (.NREL) 6-15 permanent symbols

value of expression 4-3ff . 3-6, 6-15, 6-16

pseudo-ops (see pseudo-op list)
notation conventions of manual <
phase error B-2
.NREL 6-15
pound sign 3-8%, 5-2
null character 2-1

pseudo-op
number file terminating 6-29
character in symbol 3-5 conditional 6-28
class of atom 3-2 interprogram communication 6-17
double precision integer 3-3 line 2-3
error B-1 location counter 6-14
floating point 3-4 radix 6-2
internal representation 3-2,3-3,3-4" symbol table 6-3
single precision integer 3-2 text 6-24
source representation 3-2,3-3,3-4 title 6-1
special format integers
(atoms) 3-7, 3-8 pseudo-op list of
.BLK 6-14
0 .COMM 6-~17
carry field of ALC 5-2, 5-3 .CSIZ 6-18
error code B-2%*, 6~-5 ' .DALC 6-7
. .DIAC 6-12
operand 4-1 .DIO 6-10
.DIOA 6-11
operating procedures App. D .DMR 6-8
.DMRA 6-9
operation code 3-6 .DUSR 6-13
.END 6-29
operator .ENDC 6-28
as class of terminals 3-1 .ENT 6-19
list of 4-1 .ENTO 6-19
.EOT 6-29
ORing 3-1 .EXTD 6-20
.EXTN 6-21
output of assembly 1-2ff, App. E .EXTU 6-22
.GADD 6-22
overflow error 6-5, B-2 .GLOC 6-23
. .IFE 6-28
overlay (.ENTO) E-4, E-5, 6-19* .IFG 6-28

Index 5

.IFL 6-28 semi-permanent symbol

.IFN 6-28 ALC instructions 6-7

.LOC 6-15 defining a new 3-7, 6-13
.NREL 6-15 definition of 3-6

.RDX 6-2 incorporating in assembler 3-7,6-13
.TITL 6-1 instructions without field
.TXT 6-24 specifications 6-13
.TXTE 6-24 I/0 instructions 6-10ff
.TXTF 6-24 list of App. C

.TXTM 6-26 MR instructions 6-8ff
.TXTN 6-25 removing 6-13

.TXTO 6-24

.XPNG 6~-13 SEZ 5-3

.ZREL 6-15

shift field of ALC 5-2, 5-3
Q error code B-2

sign of number 3-2
questionable line error B-2

single precision integer 3-2
quotation mark 1-4, 3-7, 3-8

skip field of ALC 5-2, 5-3

error che B-2 SKPBN 5-9
shift field of ALC 5-2, 5-3

SKPBZ 5-9

radix

50 format for symbols App. F SKPDN 5-9
changing input (.RDX) 6=2%, 3-2 _
changing to base 10 6-2, 3-2%*, 3-3 SKPDZ 5-9
pseudo-op 6-2 SNC 5-3
range 6-2

SNR 5-3

RDOS operating procedures D-2
source program Chapt. 2

.RDX 6-2%*, 3-2 definition 1-2
lines of 1-2, 2-2ff
READS 5-13 scan 1-3
relative address space (A) i, 3-1
in MR 5-4ff
relocated by loader 1-1 special atom
@ 3-8
relocatable data block E-4 # 3-8
" 3_8
relocation
constant 4-3 STA 5-8
definition 1-1, 4-3ff
error B-2 start block E-6
flags 1-4
property of expression 4-3ff storage word
definition 2-2
rubout character 2-1 double 3-3, 3-4

generated by characters 6-24
value of .EXTN 6-21

S
carry field of ALC 5-2, 5-3 string
error code B-2 packing 6-26
global switch D-2 termination 6-24, 6-25
local switch D=2, D=6 text pseudo-ops 6-24ff
pulse field of I/0 5-10
SUB 5-2
SBN 5-3

subtraction 3-1, 4-1
semicolon 3-1, 2-4

Index 6

switch
global D-2, D-6

local D-2, D-6 value
relocation 4-3ff
symbol storage word 2-2
class of atom 3-1
definition 3-5 X
global 3-7 error code B-2
local 3-7 global switch D-2
multiply defined error B-1
permanent 3-6, Chapt. 6 .XPNG 6-13
removing 6-13
representation in Radix 50 App. F Z
semi-permanent 3-6 carry field of ALC 5-2
table error code B-2*%,6 4-1
cross reference listing 1-4
pseudo-ops 6-3ff .ZREL 6-15
types of 23-5ff
undefined error B-1

user 3-7

SzC 5-3
SZR 5-3
T

error code B-2
global switch D-2, D-6

tabulation 3-1, 2-5
terminal atom 3-1
text
error B-2
pseudo-ops 6-24
string 6-24
.TITL 6-1
block E-7
pseudo-op 6-1
LTXT 6-24
.TXTE 6-24
LTXTF 6-24
.TXTM 6-26
.TXTN 6-25

.TXTO 6-24

error code B-2
global switch D-2, D-6

undefined symbol
error code B-2
pseudo-op (.EXTU) 6-22

unlabeled COMMON block E-9

Index 7

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments. List specific comments. Reference page numbers when

applicable, Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication,

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

o e - o e o P ™ P oM e S e SR G b S S G N S e Em G K BB M G D A W N SR BN GRS G R U B Y GB PR P Sm S S R SR U e D P 68 SR ED G BB G5 GD N Gm SD GR GH AR S5 R D TR Am G0 SR G5 GE GO G U D MR Mm e SR S R AR R SR SR MRS m oS =

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	A-01
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	F-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB

