User’s Manual

FORTRAN IV

093-000053-07

Ordering No. 093-000053

© Data General Corporation, 1971, 1972, 1973, 1974
All Rights Reserved.

Printed in the United States of America

Rev. 07, July 1974

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC

and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical

or arithmetic errors.

Original Release
First Revision
Second Revision
Third Revision
Fourth Revision
Fifth Revision
Sixth Revision
Seventh Revision

March 1971
March 1971
October 1971
February 1972
July 1972

April 1973
December 1973
July 1974

easier.

This revision to the FORTRAN IV User’s Manual, 093-
000053-07, supersedes 093-000053-06. This revision is
a minor revision to the manual, incorporating the correc-
tions that appeared in the addendum (086 -000005) to revi-
sion 6 and additional corrections. Some change in the
manual format has also been made to make referencing

Format of the FORTRAN IV Manual

The FORTRAN IV User's Manual has been segmented into three parts. Part I consists of a
description of the DGC FORTRAN IV language. Part II describes the FORTRAN IV interface to
the DGC operating systems. Chapters 1, 2, and 3 of Part II apply to users having either SOS,
RTOS, or RDOS. Chapters 4 and 6 apply to users of RTOS or RDOS, and Chapters 5 and 7
apply only to users of RDOS, The third section of the manual consists of appendices which
may be used with both Part I and Part II of the manual.

Features ot FORTRAN 1V

Data General's FORTRAN IV for the DGC family of computers is an implementation of the
ANSI FORTRAN Standard X3.9-1966 plus extensions. Certain restrictions in the interest of
compiler efficiency and the run-time stack placement of variables will be noted in this manual,
where pertinent, and summarized in Appendix C.

All improved features of FORTRAN 1V, including complex arithmetic, logical expressions,
labeled COMMON, DATA initialization, and run-time FORMATS, are included in Data General's
FORTRAN IV, Thus, the DGC computer user has a widely known language fully adapted for any
major computer application.

Extensions include certain important features of FORTRAN that are not yet standardized. Some
of these are double precision complex arithmetic, mixed mode arithmetic, generalized subscript
expressions, abnormal returns from subprograms via a dummy variable, Hollerith constants
surrounded by quotation marks or apostrophes, array declarations in which the lower subscript
bound need not be one, full word bit-by-bit logical operations, a string FORMAT descriptor,
reentrant subroutines, and end-of-file and error returns from I/O statements.

Extensions to I/O offer the user a choice of standard formatting or simplified input/output using
either conversational 1/0 from the teletypewriter or programmed, unformatted I/O. Both ASCII
and binary I/0 are implemented. All I/O can be device indepehdent with devices assigned to
channel numbers at run time,

The code generated provides optimized register and storage allocation and reentrant machine
language code, which can be interfaced with assembly language code. Since the generated code

is in the form of assembler source code, the user can include segments of his own machine language
code directly in a FORTRAN-generated program. An option permits the user to intersperse
assembly language instructions with FORTRAN statements in the FORTRAN source code as well.
Another option allows the user to selectively inhibit the compilation of any source statement.

Additional Reference Material

Insofar as feasible, the FORTRAN IV manual constitutes a complete guide to the FORTRAN

user 's needs under any DGC operating system. For more detailed descriptions and further
uses of the operating systems and related utility programs, refer to one or more of the following
manuals:

FORTRAN IV Run Time Library User's Manual 093-000068
Interfacing Assembler Programs to FORTRAN IV 017-000012
Extended Relocatable Assembler 093-000040
Introduction to RDOS 093-000083
RDOS User 's Manual 093-000075
RDOS User Device Driver Implementation 017-000002
BATCH User 's Manual 093-000087
Introduction to RTOS 093-000093
RTOS User ' s Manual 093-000056
RTOS User Device Driver Implementation 017 -000006
Stand -alone Operating System User 's Manual 093-000062
Relocatable Loaders User 's Manual 093 -000080
Octal Editor User's Manual 093-000084
Library File Editor User 's Manual 093-000074
Text Editor User 's Manual 093-000018
DOS - Compatible SOS System Manual 093 -000094
The Symbolic Debugger 093-000044
RTIOS User 's Manual 093-000095
Discrete Fourier Transform 093-000104
Commercial Subroutine Package 093-000106

Dataplot User 's Manual 093-000060

ii

PART |

Chapter 1 - FORTRAN PROGRAMS

Chapter 2 - ARITHMETIC AND STRING DATA
Chapter 3 - EXPRESSIONS

Chapter 4 - ASSIGNMENT STATEMENTS
Chapter 5 - CONTROL STATEMENTS
Chapter 6 - INPUT/ OUTPUT STATEMENTS
Chapter 7 =-SPECIFICATION STATEMENTS
Chapter 8 - DATA INITIALIZATION

Chapter 9 - FUNCTIONS AND SUBROUTINES

TABLE OF CONTENTS

CHAPTER 1- FORTRAN PROGRAMS

Program Unitsc00iiviiivnnnnn. 1-1
Lines of Program TeXtcoveeu.. I
Comment Line (C) e 1-1
Optionally Compiled Line (X) 1-1
Assembly Source Code Line (A) i-2
Label........ 1-2
Comment Following 1-2
FORTRAN StatementS. « « o+ v« o s e s s o vesaeas 1-2
Continuation Lines . « v v v v v v v v v v vuenn 1-2
Partial Ordering of Statements 1-2
FORTRAN Source Program1-3
FORTRAN Character Set. . o v v v v oo v v e ... 1-3

CHAPTER 2 - ARITHMETIC AND STRING DATA

Constants, Variables and Parameters 2-1
IntegerData0iiiiineeanns 2-2
RealDatao v v ittt i i s v 2-3
Double PrecisionData. 2-3
ComplexData « « v v v v v v v v i veeneenns 2-4
Double Precision Complex Data. . . « o 2-4
logicalData . « v v v v v it inn i e e 2-5
String (Hollerith) Constants 2-5

Arrays and Subscripts. .«l ceeea2-6

CHAPTER 3 - EXPRESSIONS

Definition of an Expression - « ¢« ¢ v oo v v v o .. 3-1
Arithmetic EXpressions « « « -« « oo v vvn 3-1
Sample Arithmetic EXpressions -« v+ e v oo s o s 3-3
Relational and Logical Expressions: « «+ «+ ¢ . 3-3
Relational EXpressions « « « « « « + « . cee e 3-3
Logical Expressionscoeeu... 3-4
Evaluation of Logical and Relational
EXpressions « ¢ ¢« v v v vt v v v nennns 3-4

CHAPTER 4 - ASSIGNMENT STATEMENTS

Definition - « ¢ « o v v vt it it e e e e e e 4-1
Assignment toa Variable 4-1
Assignment Examples.t 4-2

CHAPTER 5 - CONTROL STATEMENTS

Definition viin ... 5-1
Unconditional GOTO Statement P N |
Computed GOTO Statement « « ¢ « o e s v v v v oo 5-1
Assigned GOTO Statement - ceenen 5-2
ASSIGN Statement - e e 5-2

CHAPTER 5 - CONTROL STATEMENTS (Continued)

Arithmetic IF Statementc0.. 5-3
Logical IF Statement.ot uees 5-3
CALL Statementoceuueeoennnns 5-3
RETURNStatement. oo vvuvnnenenenns 5-4
CONTINUE Statement , , ., .,cocuveeooss 5-4
PAUSE Statementc.oveuunnsnns 5-5
STOPStatementviiveennonennens 5-5
DOStatement. o.vu e v vennnnnnannsss 5-5
CHAPTER 6 - INPUT/OUTPUT STATEMENTS
FORTRAN INput/OUtPUt -« « « « o« o s o o s o s oo e nn 6-1
Programmed 1/0 Using READ and WRITE...... 6-1
1/0 Lists of READ and WRITE Statements. 6-2
Unformatted I/O- « « « ot v v v v v oot e oeeen 6-3
Formatted I/O « ¢ v v v e vt et eeee e s ae e 6-6
FORMAT Statement. « « « o o« e o o s a0 o0 s 6-6
Specification of Format Information. 6-6
Separators of Descriptor Field 6-7
Basic Numeric Field Descriptors. 6-7
Numeric ConversiononInput 6-7
Output Conversion of Integers. 6-8
Output Conversion of Real and Double
PrecisionDatacc000eeeenn 6-8
Radix 8 I/O Using the O Specifier 6-10
Non-numeric field Descriptors 6-10
I/Oof Logical Data. . v e v v v v v v v o e e 6-10
Positioning Descriptors . « « « v e v v o v v v v 6-11
FS o} (Tl D 1 : H R 6-11
String Literals. . . .« v v v i iv v i v 6-12
Alphabetic Data e e 6-12
Multiple Record Forms e 6-13
Vertical Carriage Control 6-15
Scale Factor eeeeo. ceess e 6-17
Run Time Format Specifications 6-18
BInary I/O v v ittt 6-19
Teletype I/O « « v v vttt e e i i e e vees 6-20
ACCEPT and TYPE Statements 6-20
Sample Program. ooeeeeonooos 6-21
Rules of Teletype I/O - v vt v v i v v e v vt 6-21
CONTROLI/O ¢ v ot vttt iieeetanaenanns 6-23
Channel ACCESS « ¢ v v v v v oo v s vnonesas 6-23
End-of-File or Transfer of Control 6-23
REWIND Statement « . o o « o e oo e 0o s oo v 6-23
ENDFILE Statement . « « « o o o v o0 o a0 s o 6-24
Random Access Files (FSEEK) 6-24
Rereading and rewriting Records
(CHSAV, CHRST)} 6-24

Vi

CHAPTER 7 - SPECIFICATION STATEMENTS

Definition . v v v v v vt vt s v e st e e e 7-1
DIMENSION Statement. - « « « o o s s e oo 0o s oow . 7-1
Data-type Statements . . . o o v« oo oo o v o000 ss 7-3
COMPILER DOUBLE PRECISION Statement7-3
COMMON Statement + « « ¢ « e s e v o s 60000 oo 7-4
EQUIVALENCE Statement . « « « v e v o0 0 s 0o .. 7-5
EXTERNAL Statement . . .« v v v v v v v s o v ocnes 7-6
COMPILER NOSTACK .+« .« s s s assssennsnal-

CHAPTER 8 - DATA INITIALIZATION

DATA Statement .« « « « o v s o o v s s v s e o oo oo 8-1
BLOCK DATA Subprogram.oooeea. 8-2

CHAPTER 9 - FUNCTIONS AND SUBROUTINES

Functions s eee s ccseans 9-1
Statement Functions- ... 9-1
Function Subprograms 9-2
Arguments of Function Subprograms9-4
FORTRAN Library Functions. 9-4

SUbToOUtineS . « v v v v o v v vttt e e 9-8

Abnormal REtUrnsoovvvevons 9-9

DGC Fortran IV Library.c00... 9-10

Bit/ Word Manipulation+« e 9-10
Clear a Bit (ICLR, BCLR)..... ceeeees9-10
Set a Bit (ISET, BSET) ee..9-10
Test a Bit (ITEST, BRTEST). vees.9-11
Shift a Word (ISHFT). o« v o e v v o & e 9-12

vii

CHAPTER 1

FORTRAN PROGRAMS

PROGRAM UNITS

A FORTRAN program is made up of one or more program units. Program units are separately
compiled entities that may be any of the following:

1) Main program

2) Subroutine subprogram
3) Function subprogram
4) Block Data subprogram

5) Task subprogram*

A FORTRAN program can have only one main program as a program unit.

FORTRAN program units are implemented as reentrant programs. All variables and arrays not
declared as being in COMMON storage (see COMMON statement, Chapter 7) are placed on a run-
time stack. Repeated entry prior to taking a RETURN can be made to any program that does not
alter COMMON storage.

LINES OF PROGRAM TEXT

The source text of a program unit consists of those ASCII characters that make up the FORTRAN
character set. The text is divided into lines and terminates at an END line. An END may appear
anywhere on the line, starting at or after character position 7 and must be terminated by a carriage
return.

Commeant Line (C)

A line of text that has a C in character position 1is a comment line. The comment may be written
anywhere in the line following the C.

Optionally Compiled Line (X)

A line of text that has an X in character position 1 will be optionally compiled. At compile time, the
compiler tests whether or not lines having an X in that position should be compiled as part of the source
program. If yes, all lines having an X in column 1 will be compiled; if no, the lines containing X in
column 1 will be ignored. See Appendix D, "Operating Procedures', for a description of how to use

the X option.

*A task subprogram is used under the Real Time Disk Operating System or the Real Time Operating
System. Task subprograms can be activated by the run time routines FTASK or ITASK, discussed
in PART II of this manual.

1-1

LINES OF PROGRAM TEXT (Continued)

Assembly Source Code Line (A)

Lines of assembly source code may be included in a FORTRAN source program. A line of assembly
source code must have an A in character position 1. The compiler will delete the A when the line is
encountered and pass the line intact to the assembler.

Label

If a line does not have a C, X, or A in character position 1, character positions 1 through 5 are
reserved for a label. If the line contains an X in column 1, character positions 2 through 5 are
reserved for a label.

A label can be any unsigned integer of 1 to 5 digits and can be placed anywhere in character positions
1 through 5.

Leading zeroes are significant in labels; 12 and 0012 will be treated as two different labels.

Comment Following Semicolon

The syntactical scan of a line may be terminated by a semicolon. A semicolon in column 7 or any
character position thereafter reserves the remainder of the line for an optional comment. (A
semicolon appearing within a Hollerith constant is not recognized for this purpose.)

FORTRAN STATEMENTS

The basic semantic unit of a FORTRAN program unit is called a statement. A line of text may
contain a FORTRAN statement or part of a FORTRAN statement.

A statement must start at character position 7 or beyond. The programmer can press the TAB key
once to tabulate to position 8 or can press the space bar 6 times. The programme r can also tabulate

to position 8 after a label.

Continuation Lines

When a FORTRAN statement requires more than one line of text, continuation lines must be indicated
by putting a character other than 0 or blank in character position 6 of the continuation line. Initial
FORTRAN statement lines must have 0 or blank in character position 6.

Partial Ordering of Statements

For compiler efficiency, Data General's FORTRAN IV requires a partial ordering of statemerts. The
order of statements is:

1) COMPILER DOUBLE PRECISION or COMPILER NOSTACK statement.
2) OVERLAY or CHANTASK statement.

3) PARAMETER statements.

4) FUNCTION, SUBROUTINE, and TASK statements.

5) Declaration statements. These begin with the keywords: COMMON, COMPLEX, DIMENSION,
DOUBLE PRECISION, EQUIVALENCE, EXTERNAL, INTEGER, LOGICAL, or REAL.

*6) Statement functions.

*7) Executable statements.
*FORMAT statements and DATA initialization statements are permissible in either category.

1-2

FORTRAN SOURCE PROGRAM

An example of a DGC FORTRAN IV source program is:

REAL FUNCTION MAG (A, I,])
DIMENSION A (20, 20)
c ASSUME A (I,1) LARGEST
MAG=A(1, 1)
C SCAN ARRAY A TO CHECK ASSUMPTION
DO5SK=11
DO6L=17]
IF A(K, L) IS LARGER, SUBSTITUTE IT
FOR A1 T)
IF (MAG. LT. A(K, L))MAG=A(K, L)
6 CONTINUE
5 CONTINUE
RETURN
END

N aQ

FORTRAN CHARACTER SET

The ASCII characters that make up the FORTRAN character set are:

Letters: A through Z
Digits: @ through 9
Special symbols listed below:

Symbol Name of Symbol

Biank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

. Decimal Point

$ Currency Symbol
: Colon

! Apostophe

" Quotation Mark

! Exclamation Point

AN x4+

Blanks are significant delimiters in Data General's FORTRAN IV, except as noted in Chapter 2 in
regard to variable names and in Chapter 5 in regard to the GO TO statement.

All ASCII characters are allowed in Hollerith constants with the exception of those characters that

have special meaning for the operating system in control or for the Extended Assembler. The
characters that are not permitted are:

1-3

FORTRAN CHARACTER SET (Continued)

ASCII Code

012

014

015

034

074

Character

Line Feed
Form Feed
Carriage Return
Shift L (\)

<

1-4

CHAPTER 2

ARITHMETIC AND STRING DATA

CONSTANTS, VARIABLES AND PARAMETERS

A constant is a known value that does not alter during program execution.

A variable is represented by a symbolic name and is a quantity that may be altered during execution.
The symbolic name of the variable must consist of from 1to 31 alphanumeric characters, beginning with
a letter. Subprogram names must be distinguishable within the first five characters for compatibility
with the DGC Assembler and Loader.

Imbedded blanks appearing within variable names are not significant. For example, the following
identifiers are equivalent.
]

XSQUARE

X SQUARE

XSQUARE

DGC FORTRAN IV has a list of reserved words consisting of statement names (DO, PAUSE, etc.)
library function names (SQRT, AIMAG, etc.) and operator names (.AND.,.LE., etc.). * The reserved

words cannot be used as variable names. In addition, imbedded blanks in a variable name that cause a
portion of the name to be recognized as a reserved word are not permitted. For example:

DOZEN legal variable name

DO ZEN illegal variable name

A parameter is represented by a symbolic name and can be used anywhere a constant of the same type
can be used. (Statement numbers, octal strings in PAUSE and STOP statements, and numbers in FORMAT
statements are not constants.)

A parameter has the data type of the associated constant. Parameters are given their value in a
PARAMETER statement. The format of the PARAMETER statement is:

PARAMETER v =¢y, vg=C9, ..., Vp=Cp

*This exception to ANSI FORTRAN Standard X3. 9-1966 was made in the interest of FORTRAN compiler
efficiency. A list of the reserved words is given in Appendix B.

2-1

CONSTANTS, VARIABLES, AND PARAMETERS (Continued)

where: eachyv is a variable name.
each c is a numerical or logical constant
Example of PARAMETER statement:

|
PARAMETER PI=3. 141592653, Ql=.1731523D-7

Examples of use of parameter K:

PARAMETER K = 8

COMMON / COMLABEL / CKK), CX(K)
DATA CI/K*K/

DO 1151, K

CI(I) = I*K

CALL SUBROUT (Cl1, AB, K)

Constants and variables have data types associated with them. Mathematical data may be of types
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE PRECISION COMPLEX.

INTEGER type data is represented internally in fixed-point notation. All other mathematical data
types are represented internally in floating-point notation.

Constants and variables may be associated with a LOGICAL data type. In addition, string constants
are permitted in the source code. String constants cammot be associated with parameters.

Integer Data
An integer constant is a signed or unsigned whole number written without a decimal point.
An integer variable is usually implicitly typed, i.e., if the first character of the symbolic name is

I,], K, L, M, or N, the symbolic name represents an integer variable unless otherwise specified.
Examples of integer constants and variables are:

Constants Variables
-125 ITEM
0 JOBNO
+4525 LUCKY
377K MASKBYTE

As shown, integer constants can be specified in octal format by writing the number followed by the
letter K. Some additional examples are:

2-2

CONSTANTS, VARIABLES, AND PARAMETERS (Continued)

Integer Data (Continued)

Octal Constant Decimal Value
10K 8
777K 511
-1IK -1

An integer datum is stored in one word (16 bits). The range of integer values is -32, 767 to 32,767
inclusive.

Real Data
A real constant is signed or unsigned and consists of one of the following:

1) One or more decimal digits written with a decimal point.

2) One or more decimal digits written with or without a decimal point, followed by a decimal
exponent written as the letter E followed by a signed or unsigned integer constant. When
the decimal point is omitted, it is always assumed to be immediately to the right of the
rightmost digit. The exponent value may be explicitly 0; the exponent field may not be
blank.

A real variable is usually implicitly typed. If the first character of the symbolic name is not I, J,
K, L, M, or N the symbolic name represents a real variable unless otherwise specified.

Constants Constant Value Variables
0.0 0.0 ALPHA
. 000056789 . 000056789 B25
+15. E-04 +. 0015 EXIT
-00SE2 -500 C

A real datum is stored in two 16-bit woxrds.

Double Precision Data

A double precision constant is signed or unsigned and consists of the following:

A sequence of decimal digits written with or without a decimal point, followed by a decimal
exponent written as the letter D followed by a signed or unsigned integer constant. When the
decimal point of a double precision constant is omitted, it is always assumed to be immediately
to the right of the rightmost digit. The exponent value may be explicitly 0; the exponent field
may not be blank.

A double precision variable must be explicitly specified as such in a DOUBLE PRECISION type
statement, *

*If the first statement of the FORTRAN program is: "COMPILER DOUBLE PRECISION" each real
variable or constant will be forced to type DOUBLE PRECISION. See page 7-3.

2-3

CONSTANTS, VARIABLES, AND PARAMETERS (Continued)

Double Precision Data (Continued)

Constants Constant Value
-21987654321D0 -21987654321
5.0D-3 . 005
. 203D0 .203

Variable Type Statement

DOUBLE PRECISION D, E, F2

A double precision datum is stored in 4 words.

Complex Data

A complex constant is an ordered pair of signed or unsigned real constants, separated by a comma and
enclosed in parentheses.

A complex single-precision variable must be explicitly specified as such in a COMPLEX type statement.

Constants Constant Value
(3.2, L 86) 3. 2+1. 86i

(2.1, 0.0) 2. 140.0i
(5.0E3, -2.12) 5000. -2.12i

Variable Type Statement

COMPLEX Cl, C2

A complex single-precision datum is stored in 4 woxds.

Double Precision Complex Data

A double precision complex constant is an ordered pair of signed or unsigned double precision
constants separated by a comma and enclosed in parentheses.

A double precision complex variable must be explicitly specified as such in a DOUBLE PRECISION
COMPLEX type statement, *

Constant

(-3456. 0012D-5, . 003456 7D+-3)

Variable Type Statement
DOUBLE PRECISION COMPLEX DC1, DC2

*If the first statement of the FORTRAN program is: "COMPILER DOUBLE PRECISION" each complex
variable or constant will be forced to type DOUBLE PRECISION COMPLEX. See page 7-3.

2-4

CONSTANTS, VARIABLES AND PARAMETERS (Continued)

Double Precision Complex Data (Continued)

A double precision complex datum is stored in 8 words.
Logical Data
A logical constant is a truth value written as:

. TRUE. or .FALSE.

A logical variable must be explicitly specified as such in a LOGICAL type statement. For example:

LOGICAT ROQOI1 RONIA2

-
A logical datum is stored in one word. The value . TRUE. is stored as octal 177777 and . FALSE. as

000000. When testing for logical, any non-zero word will be treated as the value . TRUE. . (Octal
177777 is also the integer value -1.)

String (Hollerith) Constants

String constants are strings of characters of the FORTRAN character set, including blanks. A string
may be enclosed in quotation marks, it may be enclosed in apostrophes, or it may be represented by
a Hollerith constant. A Hollerith constant is an integer constant followed by the letter H followed by
the string. The integer constant indicates the number of characters in the string:

'END’ equivalent strings

3HEND J

Quotation marks may appear in strings that are surrounded by apostrophes; apostrophes may appear
in strings that are surrounded by quotation marks. Both apostophes and quotation marks may be used
as characters within Hollerith constants.

String constants may appear in:

1) The I/0 list of a TYPE or ACCEPT statement. The constant is written out precisely as it
appears in the statement.

2) A FORMAT statement. On output, the string is written to the output device. On input, the
string is overwritten by an equal number of characters from the input record.

3) A DATA initialization statement. The data type of the corresponding variable (or variables)
in the variable list is ignored.

4) The argument list of a CALL statement or the argument list of a function reference.
String constants may also appear in relational and logical expressions as described in Chapter 3. In

these cases, however, only the first two characters of the string constant are significant ard are treated
as a one-word integer operand rather than a string.

2-5

CONSTANTS, VARIABLES AND PARAMETERS (Continued)

String (Hollerith) Constants (Continued) .

Within string constants, octal codes for ASCII control characters, delimited by angle brackets, may
appear. The codes will be passed to the DGC assembler for interpretation. For example, a
carriage return can be passed in a string as follows:

"DATA FOLLOWS: <15> "

Note that when using formatted 1/0 (WRITE/FORMAT statements), carriage control information
should not be passed in string constants but should follow ANSI FORTRAN standard conventions.

String constants are stored one character per byte (two characters per word). Normally, if the
character count of a string is even, a word of all zeroes is generated to indicate the end of a string.

This does not occur, however, in the case of DATA initialization using a string constant.

ARRAYS AND SUBSCRIPTS

An array is an ordered set of data of one or more dimensions. Up to 128 dimensions are permitted;
a single symbolic name identifies the array. Each element of the array is identified by a qualifier
of the array name, called a subscript.

An array is specified by appearance of its symbolic name in a DIMENSION, COMMON, or data type
statement with parenthesized dimensioning information. Some examples are:

DIMENSION A(10, 10) A is a two-dimensional real array of 100 elements.

COMMON B(2,5,5) B is a 3-dimensional real array of 50 elements stored in
common.

INTEGER C(5,2,2,2) C is a 4-dimensional integer array of 40 elements.

Variables may be used in the specification of array subscripts in DIMENSION and data type state-
ments. This is called adjustable dimensioning.

Variables can only be specified if the array name and the variable subscript bounds are dummy
arguments of a subprogram in which they specify the array. Then, actual arguments giving values
to variable subscript bounds can be passed when the subprogram is called. Example:

SUB25 (MAT, 1,],)
INTEGER I,]
REAL MAT (I, 0:])

Values for 1 and] would be passed in a call to SUB25.
Note that array MAT is subscripted as

MAT(1, 0:])

2-6

ARRAYS AND SUBSCRIPTS (Continued)

This specifies that the lower bound of the second subscript is 0 and the upper bound is J. If only
the upper bound of an array dimension is specified, the lower bound is assumed to be 1, e.g.:

DIMENSION B(5)

assumes that the first array element is B(l) and the last is B(5). Both upper and lower bounds
are specified in the following example:

DIMENSION F(0:11), G(-2:4, -3:0)

The array F is a one-dimensional array of 12 elements, the first of which is F(0). The second
array is a two-dimensional array of 7x4 or 28 elements; the first element is G(-2, -3).

The subscript of an array element is written as a parenthesized list of subscript expressions. Each
subscript expression can have one of the following forms:

1) In the non-executable statements EQUIVALENCE and DATA, each element of the subscript
list must be an integer constant (or a parameter representing an integer constant.)

2) In expressions within executable statements, each element of the subscript list must be
an expression whose value is of type integer.

Examples:

AL]

could be an element of array A(10, 10)
B(1,1,1)

is the first element of array B(2,5,5)
C(ITEM-1)

could be an element of array C(0:6)
D(IHFIX(SQRT(R -B/3.0)), J/K)

could be an element of IX3, 8)

The subscript of an array element cannot assume a value during execution that is less than the
lower bound for that dimension of the array or larger than the upper bound for that dimension of
the array, except if a single subscript is given for a multidimensional array. (A single subscript
can be used to index a multidimensional array. If A is dimensioned (0:4, 0:4), the 25 elements of
A can be referenced as A(l) through A(25). This is the same as the single subscript reference
allowed in DATA and EQUIVALENCE statements.)

ARRAYS AND SUBSCRIPTS (Continued)

Values are assigned to array elements so that the first subscript expression varies most
rapidly, then the second subscript expression, etc.

For example, elements of array C(15) are stored:

CM, C(2,. .., C(I5)

Elements of array A(10,10) are stored:

ALD, A(2,D5. .., A(9,1),
A(10,1), A(1,2)..., A(9,10), A(10,10)

Elements of array B(2, 3,4) are stored:

B(1,1,1), B(2,1,1), B(L 2,1), B(2,2,1),
B(1,3, 1), B(2,3,1), B(1,1,2),. ..,
B(1,3,4), B(2,3,4)

2-8

CHAPTER 3

EXPRESSIONS

DEFINITION OF AN EXPRESSION

An expression is a combination of data elements (variables, array elements, functions, and constants)
with operators. The FORTRAN operators are arithmetic, relational and logical.

ARITHMETIC EXPRESSIONS

An arithmetic expression is formed with arithmetic operators and arithmetic data elements. The
operators are:

Operator Operation
+ Addition (or unary plus)
- Subtraction (or unary minus)
* Multiplication
/ Division
*ok Exponentiation

An arithmetic datum has one of five possible data types:

Type Rank of Data
double precision complex highest
complex

double precision

real J

integer lowest

The following rules apply to evaluating arithmetic expressions:

1) When either plus (+) or minus (-) is used as a unary operator, the data type of the result
is the same as that of the operand.

2) When two operands of the same data type are used in an expression containing one of the
operators
+-*/

the data type of the result is the same as that of the operand.

3) Mixed data type operands are permitted. In expressions formed with the operators
+-*/

the lower ranking data type operand is converted to a temporary of the higher ranking

type, and the result of evaluation will have the higher ranking data type. When a COMPLEX
or DOUBLE PRECISION COMPLEX operand is combined with an operand that is not complex,
the temporary has an imaginary part equal to zero.

When an expression consists of a DOUBLE PRECISION operand and a COMPLEX operand, the
DOUBLE PRECISION operand is converted to a single precision COMPLEX temporary and the
result of evaluation is COMPLEX.

3-1

ARITHMETIC EXPRESSIONS (Continued)

3)

4)

5)

(Continued)

Arguments of library functions are not converted to temporaries of the appropriate type.
Mixed data types are permitted in expressions consisting of base and exponent operands

(** operator), except that it is illegal to raise an INTEGER base to a COMPLEX or DOUBLE
PRECISION COMPLEX exponent.

When base and exponent operands are of the same type, the result is also that data type.
Whenthe base and exponent are of differing data types, the resultant value will be of the
higher data type, except in the case of raising a COMPLEX base to a DOUBLE PRECISION
exponent. The result of this operation is DOUBLE PRECISION COMPLEX.

The following rules govern the order in which operations are evaluated within an
arithmetic expression.

a) The arithmetic operators have the following precedence:

Operator Precedence
o highest (evaluated first)
/ *
+ - lowest (evaluated last)

b) When two operators are of equal precedence, operations are evaluated from left to
right in the expression.

c) Parentheses are used to alter the order of operator precedence. A parenthesized
expression is evaluated as an entity before further evaluation proceeds. When parenthesized
expressions are nested, the innermost is evaluated first.

The rules for evaluating mixed data types are shown in tabular form in the tables following. The
resulting data types are given in the double lined area.

OPERATORS OPERAND A
+-%/ Double Double
Integer Real Precision Complex Complex
Integer ||Integer Real Double Complex Double
Precision Complex
Real Real Real Double Complex Double
Precision Complex
OPERAND Double Double Double Double Complex Double
B Precision||{ Precision Precision | Precision Complex
Complex || Complex Complex | Complex Complex Double
Complex
Double Double Double Double Double Double
Complex || Complex Complex | Complex Complex Complex

3-2

ARITHMETIC EXPRESSIONS (Continued)

OPERATOR EXPONENT OPERAND
** Double Double
Integer Real Precision Complex Complex
Integer |Integer Real Double ILLEGAL ILLEGAL
Precision
Real Real Real Double Complex Double
Precision Complex
Double |/ Double Double Double Complex Double
BASE Precision|| Precision Precision | Precision Complex
OPERAND
Complex | Complex Complex | Double Complex Double
Complex Complex
Double |} Double Double Double Double Double
Complex || Complex Complex | Complex Complex Complex

SAMPLE ARITHMETIC EXPRESSIONS

Some examples of legal arithmetic expressions are shown beiow with the data type of each data element
of the expression.

INTEGER 1,]
REALA, B

DOUBLE PRECISION D
COMPLEX C

DOUBLE PRECISION COMPLEX DC, CD

C*DC**C
B/(14])
D-B**A

legal arithmetic expressions

RELATIONAL AND LOGICAL EXPRESSIONS

Relational Expressions

A relational expression consists of 2 arithmetic expressions separated by a relational operator. The
relational operators are:

Operator Representing
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

3-3

RELATIONAL AND LOGICAL EXPRESSIONS (Continued)

Logical Expressions

A logical expression is formed with logical operators and logical or integer elements. Logical elements
are those that have been given the data type LOGICAL. The logical operators are:

Operator Representing

.OR. Logical disjunction. Result is 1 if either operand has a 1 in that
bit position.

. AND. Logical conjunction. Result is 1 if and only if both operands are
1 in that bit position.

.NOT. " Logical negation. Result is the bit complement of the operand.

Evaluation of Logical and Relational Expressions

Logical and relational operations may be combined within expressions.

Logical and relational expressions can be treated as full-word operations, evaluated bit-by-bit, as in
masking, or can be considered as evaluating to truth values:

.TRUE. or .FALSE.
where: .TRUE. is 177777, (-)
.FALSE. is 000000 (0)

These octal values for . TRUE. and .FALSE. are generated for literals and as the result of evaluations
to a truth value. When testing for a truth value, any non-zero word is considered .TRUE. and a word of
all zeroes is considered . FALSE.

Hollerith (string) constants may appear wherever integers are permitted in logical and relational
expressions. Only the first two characters of the string constant are significant, and represent the
ASCII value of the characters. The first two characters of the string constant can be ANDed, ORed,
or compared with integer and logical values.

The general rules of precedence in evaluating relational and logical expressions are the same as for
arithmetic expressions: parenthesized expressions are first evaluated as entities and evaluation
proceeds from left to right when two operators are of equal precedence.

Arithmetic expressions are evaluated first, in accordance with the rules of arithmetic operator
precedence, then relational operations, and then logical operations. The precedence of all operators
in a FORTRAN expression is:

Operator Precedence

** highest
=/

+ -

.GE.,.GT.,.EQ.,.NE.,.LT.,.LE.

.NOT.

.AND.

.OR. lowest

The tables following show examples of evaluation of logical and relational expressions, both for truth
value results and on a full-word, bit-by-bit basis.

3-4

RELATIONAL AND LOGICAL EXPRESSIONS (Continucd)

Evaluation of Logical and Relational Expressions (Continued)

TRUTH OPERATIONS
(.FALSE, =0000008 . TRUE. =1777778)
Logical Truth Table
Y Operand Z Operand NOT.Y Y.AND. Z Y.OR.Z
.FALSE. .FALSE. . TRUE. .FALSE. .FALSE.
.FALSE. .TRUE. . TRUE. .FALSE, . TRUE.
.TRUE. .FALSE. .FALSE. .FALSE. .TRUE.
. TRUE. .TRUE. .FALSE. . TRUE. .TRUE.
Logical and Relational Truth Evaluations
Assume that: = .TRUE. W=2 X =4 Y=6
Expression Value Interpretation
W.LE.X . TRUE.
W.LT.X.AND.W.LT.Y . TRUE. true and true
W.NE. X.AND..NOT.A .FALSE. true and false
.NOT.A.OR.W.EQ.X .FALSE false or false
FULL WORD QPERATIONS
Bit-by-Bit Logical Operations
Operands .NOT.Y .NOT.Z Y.AND. Z Y.OR.Z
Y = 101010
7 = 110100 010101 001011 100000 111110
Logical and Relational Full Word Evaluations
Assume that:] = 3778 K =47117¢ L = 2004
Expression Value Interpretation
J .AND, K 117 Mask K with J.
NOT. J .AND, K 47000 Mask K with the complement of J.
5* ~(K .EQ. L)) 0 Since K does not equal L., the parenthesized
expression evaluates to .FALSE, (0).
5%(- (K .EQ."NO")) 5 47117 is ASCII for NO , The result of the pa-
renthesized expression is .TRUE, (-1).

CHAPTER 4

ASSIGNMENT STATEMENTS

DEFINITION

The format of an assignment statement is:

variable = expression

where: variable is a subscripted or non-subscripted variable name.

expression is any legal FORTRAN expression.
The expression on the righthand side of the equals sign is evaluated according to the rules given in
Chapter 3, and the resulting value is assigned to the variable on the lefthand side of the assignment

statement.

ASSIGNMENT TO A VARIABLE

The rules for assignment of the value of an expression to a variable are:
1) The only illegal assignment statements are:
INTEGER = (DP) COMPLEX
REAL =(DP) COMPLEX

DOUBLE PRECISION = (DP) COMPLEX

2) If the expression and variable are of the same data type, the expression is simply evaluated
and assigned.

3) INTEGER = REAL
INTEGER = DOUBLE PRECISION

Fix the floating point number and assign.
4) REAL = INTEGER

Float the fixed point number and assign.
5) REAL = DOUBLE PRECISION

Truncate the mantissa by 32 bits and assign.
6) DOUBLE PRECISION = INTEGER

Float the fixed point number to a full 56 bits of mantissa and assign. (The expression is not.
floated to REAL and then extended by 32 bits of zeroes.)

4-1

ASSIGNMENT TO A VARIABLE (Continued)

7) DOUBLE PRECISION = REAL
Extend the single precision mantissa by 32 bits of zeroes and assign.
When assigning any single-precision expression to a double-precision variable, error
message No. 2 will be given. This is a warning that the double-precision variable will
only be precise to 6 or 7 decimal digits.

8) COMPLEX = DOUBLE PRECISION COMPLEX
Truncate each mantissa by 32 bits and assign.

9) DOUBLE PRECISION COMPLEX = COMPLEX

Extend each single-precision mantissa by 32 bits of zeroes. (Error message 47 will
be given)

10) COMPLEX = INTEGER
Float the fixed point number, set the imaginary part to zero, and assign.
11) COMPLEX = REAL
Set the imaginary part to zero and assign.
12) COMPLEX = DOUBLE PRECISION
Truncate the mantissa by 32 bits, set the imaginary part to zero, and assign.
13) DOUBLE PRECISION COMPLEX = INTEGER

Float the fixed point number to a full 56 bits of zeroes, set the imaginary part to zero,
and assign.

14) DOUBLE PRECISION COMPLEX = REAL

Extend the single-precision mantissa by 32 bits of zeroes, set the imaginary part to
zero, and assign.

15) DP COMPLEX = DOUBLE PRECISION
Set imaginary part to zero and assign.
16) Assignment to a LOGICAL variable follows the rules of assignment to integers.
17) String constants may be assigned to INTEGER variables. The ASCII value of the first two

characters of the constant are assigned.

ASSIGNMENT EXAMPLES

Some examples of assignment statements are:

ASSIGNMENT EXAMPLES (Continued)

J = 10. 0*SIN(X)

S = 5. ¥(3**A+SQRT(A*)/D
B = C(D+SIN(C(I))
LOGIC(4) = X.GT.5.0R.Y.LT.Z

K(I) = 34567.D+4/1

L=7Z.1LE.2.5.0R.I.NE. "NO"

The following chart is a synopsis of the rules for the assignment of an expression to a variable.

Type of Expression

4-3

' DOUBLE

TYPE INTEGER REAL DOUBLE COMPLEX PRECISION

PRECISION COMPLEX

T evaluate
y {INTEGER and fix and fix and ILLEGAL ILLEGAL
P assign assign assign
e
o
£ evaluate truncate

REAL float and mantissa and ILLEGAL ILLEGAL
\ and assign assign assign
a
T
i float to extend evaluate
8 IDOUBLE PRECISION |56 bits and mantissa and ILLEGAL ILLEGAL
f assign and assign assign
e

float, set set imag- truncate man-

COMPLEX imaginary inary part tissa, set imag- evaluate truncate
part and to zero and inary part to and and
assign assign zero, and assign assign assign

extend

DOUBLE PRECISION | /102t set mantissa, . extend
imaginary set imagi- set imaginary mantissa evaluate

COMPLEX :
part to zero, nary part, part to zero, by 32 bits and
and assign and assign and assign of zeroes assign

DU SN

CHAPTER 5

CONTROL STATEMENTS

DEFINITION

Statements in a FORTRAN program are normally executed sequentially. Control statements allow
the programmer to change the flow of program logic.

UNCONDITIONAL GO TO STATEMENT

Format:

GOTOn

GO TOvV

where: n is a statement number.
v is a non-subscripted integer variable.
Format 1 of the statement causes control to transfer to the statement numbered n.

Format 2 of the statement causes transfer to the address which is the current value of integer
variable v. This value must have been preset by an ASSIGN statement.

GO TO 25 Control is transferred to statement 25.

.

25 CONTINUE

In all GO TO statements, "GOTO" may be written with blanks between "GO" AND "TO".

COMPUTED GO TO STATEMENT

Format:

GO TO(EI» ng,. .. ’Em)’ v

where: nl, Nose v vy En-] are statement numbers.

v is a non-subscripted integer variable name. (Note that the comma separating the right
parenthesis from Vv is not required.)

5-1

COMPUTED GO TO STATEMENT (Continued)

Control is transferred to nj, where i is the value of v. Ifv >m or v<l, the GO TO statement is not
executed and a fatal run-time error will result.

GO TO (10, 100, 40, 25,9), K K must evaluate to 1, 2, 3, 4, or 5

ASSIGNED GO TO STATEMENT

Format:

GOTOv, (ng, 02+« v Em)

where: nj, ng, ..., Ny are statement numbers.

v is a non-subscripted integer variable name appearing in a previously executed ASSIGN
statement. (Note that the comma separating the v from the left parenthesis is not required.)

The statement causes control to transfer to the statement whose number was last assigned to v by an
ASSIGN statement. (This statement is accepted by DGC FORTRAN IV but is treated as an unconditional
GO TO, i.e., the list (ny. . . ny) is superfluous.)

ASSIGN STATEMENT

Format:

ASSIGNn TOv

where: n is a statement number.

v is a non-subscripted integer variable name that appears in an assigned or unconditional
GO TO statement.

The statement causes a subsequent assigned GO TO statement to transfer control to the statement
numbered n.

ASSIGN 5 TO J

GOTO]J Control is transferred to the statement numbered 5
. when the unconditional GO TO or when the assigned
GO TO is executed.

GO TO], (25,16,5,40)

5-2

ARITHMETIC IF STATEMENT

Format:

IF () 3> mp, 13

where: e is an integer, real, or double precision expression.
ny, ng, 13 are statement numbers.
The expression is evaluated. Control transfers to statement n; if the value of the expression is less

than zero. Control transfers to statement ny if the value of the expression is zero, and control transfers
to statement ng if the value of the expression is greater than zero.

IF (A(,K)-B) 10,4, 30

IF (Q*R) 5, 5, 2

I

LOGICAL IF STATEMENT

Format:

‘ IF (le) s

where: le is a logical expression.

s is any executable statement (assignment statement, control statement, or I/O statement)
except a DO,

~al as 3

The logical expression is evaluated. I the expression is true, statemeiit s is executed. Control then
passes to the next statement following the logical IF unless statement s transfers control.

If the expression is false, statement s is bypassed and control passes to the next sequential statement.

IF (A.AND.B) F=SIN(R)

IF (I.GT.0) GO TO 25

CALL STATEMENT

Format:

CALL subr (2, a9,. . ., ap)

CALL subr

CALL STATEMENT (Continued)

where: subr is the name of a subroutine or a dummy variable (see EXTERNAL)

a1, 32, + .., 3p are actual argument names that replace dummy argument names in
the subroutine.

The statement references the designated subroutine, which is executed. Control is returned to the
statement after the CALL statement when execution of the subroutine is completed unless the sub-
routine makes an abnormal return.

Arguments of subroutines are described in the section dealing with subprograms.

—

; CALL QUAD (9. 73,Q/R,5,R-5**2.0, X1, X2)

CALL OPTIONS

RETURN STATEMENT

Format:

RETURN

RETURN v

where: v is a dummy integer variable whose value represents a statement number in the calling
program.

The statement marks the logical end of a subprogram. Execution of a return without v is a normal return.
Control is returned to the calling program as follows:

1) Return from a subroutine is made to the statement following the CALL statement.

2) Return from a function is made to the statement containing the function reference and a value
is substituted for the function in that statement.

An abnormal return (RETURN v format) allows for error returns or multiple-decision branches, and
is described further in Chapter 9, "Abnormal Returns.’™ An abnormal return must return to the
immediately calling program.

CONTINUE STATEMENT

Format:

CONTINUE

CONTINUE is a dummy statement that causes continuation of the normal execution sequence. It is
most frequently used as the last statement in the range of a DO to provide a transfer address for IF
and GO TO statements that are intended to begin another repetition of the DO range.

CONTINUE STATEMENT (Continued)

S=0
5 DO15I=1, N
IF (B(I)-1000.) 10, 15, 15
10 S = S+C(I)*B(I)
15 CONTINUE

PAUSE STATEMENT

Format:

PAUSE

PAUSE s

where: s is a string of ASCII characters which will be typed out following the pause.

The statement causes the program to cease executing. A message, indicating a pause and giving the
text string at the pause, will be printed at the console printer. To resume execution at the point of
interruption, the programmer presses any console key.

STOP STATEMENT
Format:
STOP
STOP s

where: s is a string of ASCII characters.

The statement causes unconditional termination of program execution. A message indicating a stop
and giving the text string, if present, will be printed at the console printer,

STOP LABEL 70

DO STATEMENT

Format:

5-5

DO STATEMENT (Continued)

w here: n is a statement number.
i is a nonsubscripted integer variable name called the control variable.

mj;, my, M3 are integer constants or nonsubscripted integer variable names. They
are the initial parameter, final parameter, and incremental parameter respectively of
i. Default value of mg is 1. mg must be greater than or equal to L.

The DO statement sets up a loop. Statements following the DO statement up to and including the
statement labeled n can be repetitively executed. This set of statements is called the range of the DO.

The parameters indicate the values that control variable i may assume within the range of the DO.
m; is the starting value of i; mj is terminal value (or value beyond which i cannot assume values);
and mg is the value by which i is incremented at each execution of the loop. A simple DO loop is:

DIMENSION A(100) The DO range, which is assignment statement 25,
. is used to form the sums of squares of the elements
of array A:
SUMSQ = 0.0 100 9
DO 25 1 =1,100 l A®)
25 SUMSQ = SUMSQ + A(D)**2 i=1

DO loops can be nested. The range of a nested DO cannot extend beyond the range of an outer DO loop.
Following is an example of the summation of values of an integer, two-dimensional array. Both the
nested and outer DO loops terminate at dummy statement CONTINUE.

INTEGER SUM, MATRIX (10, 20)

SUM =0

DO301I=1, 10

DO30J=1, 20

SUM = SUM + MATRIX (I,])
30 CONTINUE

DO loops have the following restrictions:

1) Control cannot be transferred into the range of a DO. (Control can be transferred out of
the DO range.)

2) The statement terminating the range of the DO cannot be a GO TO of any form, an arithmetic
IF, RETURN, STOP, PAUSE, DO, or a logical IF containing any of these statements.

3) The control variable cannot be redefined within the DO range.
If DO loop conditions are satisfied by the control variable reaching its final parameter value, the

control variable becomes undefined and the DO loop is exited by executing the next statement following
the statement labeled n.

5-6

DO STATEMENT (Continued)

If a DO loop is exited by execution of a GO TO or arithmetic IF statement, the control variable
remains defined. Its value is equal to its value at the time of exit from the loop via the GO TO or
arithmetic IF.

The range of a DO loop can be extended to include additional statements or program units if:

1) A statement (GO TO or arithmetic IF) exists in an innermost, completely nested loop
of the DO loop that transfers control out of the innermost, completely nested loop, and

N
~=
>

statement transferring contrel back inte the innermest, completely nested loop cxists
S

and might logically be executed as part of the extended range.

The extended range includes all statements that might logically be executed outside the innermost,
completely nested loop (including the transfer statement).

SUM =0
DO30I=1, 10
DO25J=1, 20
SUM = SUM + MATRIX (1,]) completely nested innermost DO
IF (SUM .GT. TOTAL) GOTO 50
25 CONTINUE
30 CONTINUE
50 ---- R
. > extended range of DO containing at least one statement
GO TO 25 transferring control back into the innermost DO.
. J

5-7

CHAPTER 6

INPUT/QUTPUT STATEMENTS

FORTRAN INPUT /OUTPUT

FORTRAN IV provides for five types of input/output:

1) Unformatted values: Externally recognizable numbers in ASCII (teletype standard) code
can be read and converted to their internal computer representation and vice versa.

2) Formatted values: On input, external values in ASCII code are interpreted according to
a FORMAT specification. On output, internal values are displayed or stored on the
external medium according to a FORMAT specification.

3) Binary values: Internal data is transferred to an external device or vice versa with
absolutely no change in structure (representation).

4) Run-time values: Conversational input /output is permitted from the teletypewriter, in
accordance with programmed ACCEPT and TYPE statements.

5) Control: Positioning of devices and end of input and output are directed by specific
statements (REWIND and ENDFILE) or by subroutine CALLs.

PROGRAMMED 1/0 USING READ AND WRITE

The two basic FORTRAN IV input/output statements are READ and WRITE. These statements are
both taken from the computer's viewpoint, i.e., the computer READs into itself from an external
device and WRITESs out to an external device.

General forms of the READ and WRITE statements for ASCII mode arec:

READ| WRITE (chamnel) f list}

READ| WRITE (chamnel, format) f List}

The first form is used for unformatted I/O and the second for formatted 1/0.

In the statement formats:
channel is an I/0 channel number associated with the file or device. There are 64 channels
(0—6310). See page 6-23 for a list of devices and files associated with pre-assigned channels

and for information on programmer assignment of channels.

format is the number of the associated FORMAT statement or the name of an array containing
the format specification.

list is a list of names of variables which are to be given values (READ) or whose values are to

be written (WRITE). If list is not given, READ will read and ignore an entire record while WRITE
will output any Hollerith information in the FORMAT statement, perform any carriage control
specified and write a record.

6-1

I/0 LISTS OF READ AND WRITE STATEMENTS

The 1/0 list contains the names of variables, including arrays and array elements, which are to
be given values or whose values are to be written. Array elements must be specified with unsub-
scripted integer variables and/or constants as subscripts.

If a WRITE statement is unformatted, the I/O list may contain Hollerith strings to be written verbatim
as they are encountered in the list.

An I/0 list may be written as a simple list of variables; in addition, an I/O list can specify effective
DO loops with reference to all or a portion of the list of variables. These are called DO-implied
lists. The form of the DO-implied list is:

(list, i=my, my [, m3l)

where: i is the control variable and must be an unsubscripted integer variable.
mj is the lower bound; my is the upper bound; and mgq is the increment of i. my,
m,, and mg must be integer constants or unsubscripted integer variables. If

mgq is not given, the increment is +1.

Somc examples of 1/0 lists are:

READ(13,5) G, B(1), C, B(2), D, B(3)

WRITE (12, 101) A, B, I

DIMENSION A(3,4)

READ (11, 5) A The READ statement reads in the entire array and is the same as:

READ (11,5)A(1, 1),A(2,1), « « « » A(3,4)

For punctuation purposes, any portion of an 1/O list can be enclosed in parentheses, except within
the loop specification of a DO-implied loop, i.e.,

WRITE (12) I, A, A(LT
WRITE (12) (D), A, A(L])
are all equivalent

WRITE (12) (I, A), (AL,]))

WRITE (12) (0, A), (AL

6-2

I/0 LISTS OF READ AND WRITE STATEMENTS (Continued)

The DO-implied list affects the transfer of its associated list of variables in much the samc way
that the DO statement affects the range of the DO. Some examples of DO-implied lists are:

READ (13, 20)A, B, (C(1),1=1, 3)
is equivalent to

READ(13, 20)A, B, C(1), C(2), C(3)

WRITE (10, 20) (A,B,C,D,I=1,2)
is equivalent to

WRITE (10, 20)A,B,C,D,A,B,C,D

READ (11, 20) (C(1, 1), I=1,4,1)
is equivalent to

READ (11, 20) C(1, 1), C(2, 2),C(3, 3), C(4, 4)

Note that a DO-implied list must be enclosed in parentheses.

DO-implied lists may be nested to any depth. A comparison of examples of nested DO-implied lists
with nested DO loops will indicate how the nested DO-implied lists are interpreted.

READ(13, 25)((A(L, J)»]=1, 4),1=1,9, 2)
The equivalent DO statements would be:
DO201=1,9, 2
DO20]=1, 4
20 READ (13, 25) A(L])
The equivalent simple list would be:

READ (13, 25)A(1, 1), A(1, 2), A(1, 3), A(L, 4),
A(3,1),A(3,2),A(3, 3),A(3,4),

A(9,1),A(9,2),A(9,3),A(9,4)

6-3

UNFORMATTED 1/0O

The spacing of output, when unformatted, provides an 8-character field for integer and logical data,
a 16-character field for real data, a 32-character field for double precision or complex data, and

a 64-character field for double precision complex data. A carriage return is inserted when the

next value to be output would make the line longer than 72 characters. Some examples of unformatted
WRITE statements and their possible output are:

I1=7
WRITE(12) I

Chamnel 12, by default, is the line printer. The above causes printing of the line:

FAVAYAVAVAVAVAYYS

R=7.1
WRITE (12) R, I

causes printing of the line:

AAAAQ. 7TI0000EAAL AAAAANAAT

DIMENSION A(3, 2)

R=7.1
DO2I=1,3
DO2]=1,2
2 A(L]) = (-1)
WRITE (12) A(3,1), R, A(1,1)

causes the printout, where I{J-1) has been floated before assignment to A(1,]), of the following:

AAANO. 300000EAATAAALQ, 7I0000EAALAAAAQ. 100000EAAL

The same array A with the output statement as:

l WRITE (12)"ARRAY A: <15> ", A

causes the printout:

6-4

UNFORMATTED 1/0O (Continued)

ARRAY A:
AAANAQ. 100000EAALAAAAQ, 200000EAAIAAAAD. 200000EAAIAAAAOD. 300000EAAL
AAANAQ. 300000EAALAAANAD, 400000EAAL

If the output statement is:

WRITE (12) ((,K,A(,K), " <15 >",K=l, 2)j=1, 3)

the following printout results:

AAAAAANIAANDAANIAAAND. 100000EAAL

1 2 0.2
2 1 0.2
2 2 0.3
3 . 1 0.3

JAVAYAVAVAVAVAY YAVAVAVAVAVAVANVYAVAVAVA'O I 100101010} 2aVAN §

Free form or unformatted READ uses an I/O list to determine the order of input exactly as unformatted
WRITE uses it for output.

On input, the programmer distinguishes individual data by separating the data with commas or end-of-

record indicators (carriage return from the teletype.) Thus to fill array A of six elements the FORTRAN
program will read the teletype (channel 11):

READ (11) A

The programmer can satisfy the READ by typing:

1, 2,3, 4,5, 6)

or by typing:
1, 2, 3)
4,5)
6)

or by typing

1, 2, 3.1, -5B2, 0, .1E-3)

The READ will convert data types from integer to floating point or vice versa if required by the
internal data type.

6-5

FORMATTED I/0

In DGC FORTRAN 1V, the specification of format serves two basic purposes:

1) For input (READ), formatting allows the data to be represented compactly and in a
form suitable for ready duplication of large quantities of input from a card or card
image medium.

2) For output (WRITE), formatting allows precise control of the layout of the data as
it will appear on the printed page.

Formatting specifications allow the programmer to control field width allotted to any datum, the
spacing between fields, the assignment of data to particular records or lines, and the notation in

which the data will be represented externally.

The specification of format can be given in a FORMAT statement or can be contained in an array
that is read into at run-time.

FORMAT Statement

A FORMAT statement has the form:

i

LE FORMAT (specification)

where: 1 is a statement number that appears in the READ or WRITE statement that references
the format specification.

specification is the list of field descriptors, field separators, Hollerith strings, repetition
constants, etc., that together define the formatting of the data being input or output.

The field descriptors of a FORMAT statement are associated with the variables appearing in correspond-
ing order in the list of a READ or WRITE statement.

20 FORMAT (F10. 2, E15.5)

WRITE (12,20) A, B

In the example, the WRITE statement references FORMAT statement 20. Variable A is associated
with the field descriptor F10. 2, and variable B is associated with the field descriptor E15. 5.

Specification of Format Information - General

The specification allows the programmer to describe the format of all forms of numeric data and
string data, to include Hollerith constants, to set tabular output, to control vertical spacing of output,
etc.

Essentially, the specification consists of one or more field descriptors that must be separated
unambiguously.

FORMATTED I/O (Continued)

Separators of Descriptor Fields

The following are used to separate field descriptors in a format specification:

Commas can be used to separate field descriptors within a single unit record. A unit record
is generally defined in terms of the device being accessed -- end of lines on teletype or printer,
80 columns on a card, etc.

No separator is needed in DGC FORTRAN IV if two field descriptors can be identified
unambiguously.

Slashes separate field descriptors at the termination of a unit record.

Repetitive slashes can be used to indicate empty unit records, for example, lines to be
skipped on the teletype or the line printer.

21 FORMAT (14, E15.5)

comma between 2 numeric descriptor fields.
22 FORMAT (14 "DATA IS: " 4E15.5)

quotes set Hollerith string off unambiguously from preceding and following descriptors.
23 FORMAT (14, 4E15.5///5F10.2)

if output to TTO or LPT, triple space before output of data represented by descriptor
following slashes.

Basic Numeric Field Descriptors

The basic field descriptors to handle numeric data have the following formats:

- Integer

- f‘laati.ng Point

- Explicit exponent floating point
- :Double precision floating point
- Generalized floating point

|Q|glgtg'5

ladalala

where: W is the ficld width given in character positions.

d is the number of digits after the decimal point in real and double precision data (except
for G output conversion, described later.)

Complex data is represented by two real (F, E, G) descriptors. Double precision complex data is
represented by two double precision (D) descriptors.

Numeric Conversion on Input

Blanks are ignored for all purposes other than field width count, unless they are between two digits or
between a digit and a decimal point; in those cases they are treated as zeroes.

6-7

FORMATTED 1I/0O (Continued)

Numeric Conversion on Input (Continued)

Any decimal point in the datum will override the position given for the decimal point in the FORMAT
descriptor.

All real or double precision data (F, E, G, or D conversion) may have the following forms:
1) A string of digits optionally signed, containing an optional decimal point, e.g.,
-33.456 67321 7890. 001
2) A string of digits as above, followed by an exponent of one of the forms:
Signed integer constant: +44.5+05
E followed by signed integer constant: 673E+04
D followed by signed integer constant: 789.1D-01
E followed by unsigned integer constant: 90.E03
D followed by unsigned integer constant: -25D02

(D and E are equivalent forms)

The field width w always represents the exact number of characters in the external datum on input.
This includes decimal point, sign if any, and any leading blanks.

15 FORMAT (13,F7.2,E13.3,G9.1,D16.7)
A22/+25, 65A-4. 22201E -01AA7654321AAAA-67567567-02
- T T

13 F7.2 E13.3 G9.1 D16.7
w=3 w=7 w=13 w=9 E=16

Output Conversion of Integers

The integer is right justified in the field w, and is signed if negative. If the field width is not wide
enough to output the datum, an * is output, followed by as many digits of the number as will fit.

10 FORMAT (13, 14, 13, 16)

AALN-33%21AA-388
N

I3 14 13 16

Output Conversion of Real and Double Precision Data

For all numeric conversions, the datum is right justified in the output field with leading blanks,
if needed. Negative data are signed, and the decimal point will occupy the position determined by
the decimal indicator d in E, F, G, and D conversions.

If the field width w is not wide enough to output the datum, an * is output followed by an many digits
of the number as will fit.

6-8

FORMATTED I/O (Continued)

Output Conversion of Real and Double Precision Data (Continued)

F conversion causes output of a real number, signed if negative. Example:

2 FORMAT (F10. 2)
AN-2107. 99
S —

E conversion outputs a real number, signed if negative, as a fraction and an exponent, with the
rightmost four character positions reserved for an exponent of the form:

Elee E-e_e DA_e_g D-ee

3 FORMAT (E16. 8)

AALA. 10001110EA03

D conversion outputs a double precision number, signed if negative, with the rightmost four character
positions reserved for an exponent of the same form as that for E conversion. (The choice of D or E
as the fourth from the rightmost character position depends upon the internal data type.)

4 FORMAT (D25. 18)

A-,212212211000005000DA07

In the G conversion format, d represents the number of significant digits in the external field. Out-
put of G conversion is either in E format or F format depending upon the magnitude of the stored
datum. The output is in E format, except when the magnitude of the datum, N is:

.1 \<N<10C—l

Within that range F conversion is used according to the following formula:

Magnitude of Datum Conversion

0.1 <N <1 F(w-4).d,4X

1 <N <10 F(w-4).(d-1), 4X
1057 <N < 108! F(w-4). 1, 4X

10 <N <10 F(w-4).0, 4X

6-9

FORMATTED 1/0 (Continued)

Output Conversion of Real and Double Precision Data (Continued)

For example:

Stored data: 920 9000
Format: FORMAT (2G9.3)
External A90. 0AAALNL. 900EAD4
Representation:

90 9000

Radix 8 Input/Output Using the O Specifier

The I, F, D, E, and G descriptors, when preceded by the letter O, do a radix 8 (octal) conversion of
the same form as they normally do a radix 10 conversion. Note, however, that exponents in all cases
for the D, E, and G specifiers will be decimal, not octal.

For example:

100 FORMAT (213, 2013, E13.7, OE13.7)
WRITE (2,100) 11, 12, 11, 12, R1, R1

where: I1 = 2079, 12=8, R1=. 125*109, the output will be:

A20AA8024A104. 1250000E £09A. 1000000EA09

Non-numeric Field Descriptors

In addition to numeric field descriptors, the following descriptors are used:

Lw - Logical

Aw - Alphabetic

Sw - String with maximum width w

Tw - Tabulate to position w -

nX - Leave n blank character positions

“string" - ASCII character string

'string’ - ASCII character string

nHstring - ASCII character string of n characters

Z - Suppress output of the carriage return at the end

of a record.

Input and Output of Logical Data (Lw)

On input T or F as the first non-blank character in the field determines the value. T stores a
-1(177777) word (true) and F stores a word of all zeroes (false). On output T or F is right justified
in field w.

FORMATTED 1/O (Continued)

Input and Output of Logical Data (Lw) (Continued)

5 FORMAT (L3)

MT

rositioning Descriptors (nX, Tw)

The nX descriptor can be used on both input and output. On input n characters of the external record
will be skipped. On output, n blank spaces will precede the next datum.

The tabular descriptor 'L'w is used on output to cause tabulation to the character position given by w.
If the carriage is currently positioned beyond the value of W, the descriptor is ignored.

8 FORMAT (10X, 14, T25, 14)

JAYAY AANNN-456 A A-T789

String Data (Sw)

In Nova line computers, characters are stored two per word, and when read in, a character string is
always terminated by a null byte (8 bits of zero). In Sw format w represents the number of characters
to be read or written. On input, w characters are read to an associated single variable* (not array) in
the 1/0 list, with as many words used as are needed to store w characters, followed by a terminating
null byte. If the record read does not contain w characters only those characters read are stored and
terminated by a null byte. Use of the null byte may increase the number of words required to store a
string as shown in the examples following:

External datum: AA@A$2)

S2 stores: AN in two words
S3 stores: AN@ in two words
S4 stores: AD@A in three words
S6 stores: AL@AS2 in four words
S8 stores: AL@AS2 in four words

On output, if the length of the string is 1 characters, characters will be written as follows:

entire string is written out
entire string is written out, followed by Ww-n spaces.
first w characters are written out.

ENERE:
AVl
(R-RE=R-]

*A single variable includes an array element. To input or output a string variable to or from an array,
specify the initial array element.

6-11

FORMATTED 1/0 (Continued)

String Data (Continued)

Internal string: ANOW AISATHE ATIME

S16 produces: ANOW AISATHEATIMEAAAA

520 produces: ANOWAISATHEATIME AAAAAAANA
S11 produces: INOWAISATHE

String Literals

ASCII character literals may be read or written, using one of the string literal forms:

nHstring "string" 'string’
"THISAISAAASTRING.
"THISAISAAASTRING. ' equivalent string literal formats.
17HTHISAISAAASTRING.

Use of delimiting quotation marks or apostrophes eliminates the need for counting characters, required
in the nH format.

An apostrcphe cannot appear within a string delimited by apostrophes. A quotation mark cannot appear
within a string delimited by quotation marks.

Alphabetic Data (Aw)

ASCII characters can be read or written using the Aw format descriptor. On both input and output, W
represents the field width on the external device.

On input, since the computer stores two characters per word, a limit of two characters can be read to
a single variable. The variable should be typed INTEGER (or LOGICAL). The rightmost two char-
acters in the field w will be stored. If w is 1, one character will be stored in the left half of a word
and a blank stored in the right half. To store a series of characters in contiguous locations, an integer
array variable and repetitive Aw formats can be used.

If the next input for processing is: AAGA$2

A4 stores: @A
A2 stores: AA
A3 stores: A@
A6 stores: $2
2A2 stores: AA and @A
in next two variables of the I/0 list
3A2 stores: AN and @A and $ 2
in next three variables of the I/0 list
3A1 stores: AL and AAand @A

in next three variables of the 1/0 list

6-12

FORMATTED I/O (Continued)

Alphabetic Data (Continued)

On output, the characters are right-justified with leading blanks, if any. If the field width is less
than two, the leftmost character will be represented with truncation to the right.

6 FORMAT (A6)
WRITE (12,6) B where B contains HOUR

JAVAWAWAY 5 (0] representation on external device

Note that all four characters (HOIUR) could have heen o1

- pal b - =

Repetition Constant

One field descriptor or group of field descriptors can be preceded by an integer, called a repetition
constant. The field descriptor or group of field descriptors will be repeated the number of times
indicated by the integer.

All numeric field descriptors and the Aw and Lw descriptors can be preceded by repetition constants.
The remaining non-numeric descriptors cannot have repetition constants.

An example of repetition of individual field descriptors is:

9 FORMAT (212, 3F1l1.2)
which is the same as:

9 FORMAT (12, 12, F11.2, F11,2, F11.2)

If a group of two or more field descriptors are enclosed in parentheses, the entire group can be
preceded by a repetition constant. For example, the specification:

10 FORMAT (12, 3(E14.5, L1))
is the same as:

10 FORMAT (12, E14.5, L1, E14.5, L1, E14.5, L1)

Individual and group repetition constants can be combined in a given format; for example:

11 FORMAT (G13.2, 2(F10.1, 314))
is the same as:

11 FORMAT (G13.2, F10.1, 14, 14, 14, I';0.1, 14, 14, 14)

FORMATTED I/0O (Continued)

Multiple Record Forms

The statement

—
10 FORMAT (12, 3F12.1)

can be used to transmit more than four items of data., Each record (or output line) would consist
of four data. For example:

WRITE (12, 10)1, A, B, C,], D, E, F

10 FORMAT (I2, 3F12.1)

might produce:

|
| A4AAN3456798. 6AAL4545551. 14133333366, 7
L2 AANLAN99999. 24 112, 32222900785, 4

The FORMAT specification may have two or more different record formats. They are separated by
slashes. For example:

WRITE (12, 10)1, A, B, C,], D, E, F

10 FORMAT (12, 3F12.1/I4, 3F12.1)

would affect the same data as follows:

PANSN3456798, 6004545551, 1/.433333366. 7
NAN2DL N0 99999, 2A0 4 O AL 112, BANLAN900785. 4

If the list of the WRITE statement above has 16 variables, then the first and third lines would be
output in the same format and the second and fourth lines would be output in the same format. Record
processing thus returns to the delimiting left parenthesis when the format descriptors are exhausted.

If multiple-line format is desired, the second record specification is enclosed in parentheses,
Multiple-line format is where the first line is priated in a given format while the remaining lines
are printed in another format. This is done without returning to the first left parenthesis when
the list has been exhausted. For example:

FORMATTED I/0 (Continucd)

Multiple Record Forms (Continued)

WRITE (12, 10)I, A, B, C,], D, E, F

10 FORMAT("RESULTS IN INCHES"/(I5, 3F12. 1))

would produce the following:

RESULTS IN INCHES
AAANLANL3456798, 642244545551, 1AA33333366. 7
AANAN2ANLNL99999, 28004 ANA112. BAAAA900785. 5

Additional slashes will cause vertical lines (records) to be skipped. For example:

WRITE (12, 10)1, A, B, C,], D, E, F
10 FORMAT("RESULTS IN INCHES"/ / (I5, 3F12.1))

RESULTS IN INCHES

ALANGANN3456798, 62244545551, 14433333366, 7
AALAZNNNALIG999, 282 ANNAANTL2, 3AALN900785. 4

When parentheses are nested in a FORMAT statement, they are assigned level numbers, with the

ocutermost parentheses assigned level 0, For example:

oSt P IWACS assSigned

10 FORMAT (3E10.3, (12, 2(F12.4,F10. 3)), D20. 12)
0 1 2 21 0

If data items remain to be transmitted after the descriptors in a multiple level FORMAT statement
have been 'used'', the format is repeated from the last previous parenthesis that is a level zero or
a level 1 left parenthesis. Inthe FORMAT statement above, the format would be repeated beginning
at 12, the first descriptor following a level 1 left parenthesis.

Vertical Carriage Control

The first character of formatted output is a vertical carriage control character. The control characters
recognized are:

0 - double space before printing
1 - form feed before printing

Carriage control characters are normally placed at the beginning of unit records in the FORMAT
specification. One of the string descriptors can be used to insert the carriage control character.

FORMATTED I/O (Continued)

Vertical Carriage Control (Continued)

5 FORMAT (1H1, 4E15.5/("'0", F11.2, 4E15.5))

A "
form | double space
feed single space

When the first character of formatted output is part of a datum associated with a numeric field descriptor,
it will be interpreted as a carriage control character.

15 FORMAT (12)

If the datum associated with 12 is 15, a form feed is given and 5 is printed. If the associated datum is
05, a double space is given before 5 is printed. If the associated datum is £ 5, the normal single
carriage return/line feed occurs before 5 is printed.

The Z field descriptor can be used to suppress carriage return on output. The Z descriptor should
always be the last descriptor in the FORMAT statement and will suppress the carriage return when
writing the record.

1=3
j=4

3 FORMAT (1X, I6)
WRITE (12, 3) I
WRITE (12, 3)]

will print:

but

I1=3
J=4

3 FORMAT (1X, 16, Z)
WRITE (12, 3) 1
WRITE (12, 3) J

will print

FORMATTED I/O (Continued)

Vertical Carriage Control (Continued)

I JAVAVAVAVAR TAVAVAVAVAY: Y

The Z descriptor should only be used with WRITE statements.

Scale Factor

All floating' point numeric conversions (F, E, D, G) can be preceded by a scale factor of the form:

where: 1 is a signed or unsigned integer.
A scale factor precedes the basic field descriptor and any repetition constant. Once a scale factor

is given for a field descriptor it remains in effect for all F, E, G, and D conversions in the
FORMAT statement, unless changed. For example:

10 FORMAT (3PF9.3, 2E15.1)
is the samec as:

10 FORMAT (3PFY.3, 3PE15.1, 3PEI15.1)

A scale factor of OP is the same as no scale factor. For example:

11 FORMAT (0PG10. 2)
is the same as:

11 FORMAT (G10. 2)

The effect of a scale factor on a datum varies with the datum, the type of conversion (F, E, D, or G),
and the direction (input or output).

On input if the datum has an explicit exponent, the scale factor has no effcct. This is true for all
conversion formats: E, F, G, or D.

On input if the datum has no explicit exponent, the scale factor conversion formula is:

- -no_ . .
input datum x 10 — = internal representation

FORMATTED I/O (Continued)

Scale Factor (Continued)

For example:

External data: -25.44 345.71
Format: 15 FORMAT (2PF10. 2, G8.2)
Data stored: -. 2544 3.4571
(decimal representation)

On output using E or D conversion, the real constant portion of the stored value is multiplied by 102
and n is subtracted from the exponent portion of the stored value. This means that the value remains
the same although formatted differently, e.g.:

Stored data: 9000 9000

Format: 14 FORMAT (E13.4, 2PE13.4)
External AAANL9000EA04A90. 0000EAD2
Representation:

When G conversions are in E format, they also follow the formula above.

On output on F conversion, the stored value is multiplied by 102, actually altering the external
value, e.g.:

Stored data: 9000 9000

Format: 16 FORMAT (F10.2, -4PF10. 2)
External AAA9000. 002245840, 90
Representation:

The scale factor has no cffect on G conversion within the F range. G conversion thus always transfers
the value unchanged whether the F or E format is chosen.

Run-Time Format Specifications

1/0 statements can reference an array containing a formatting specification, rather than a FORMAT
statement. This allows formatting information to be read in at run-time and changed for different
data.

The formatting array contains a format specification, including the zero-level left and right parentheses,
but not the word FORMAT. The closing right parenthesis must be followed by an exclamation point (!).
The character string that is the format specification can be stored in an array by use of a formatted
READ that uses a format containing Aw or Sw descriptors.

FORMATTED I/O (Continued)

Run-Time Format Specification (Continued)

To use run-time formatting, the user must:

1) Determine how large an array will be needed for the largest incoming format specification.
If core space is not critical, thc user can cstimate.

2) Dimension the array in a DIMENSION, COMMON, or type declaration statement.

3) Include an appropriate storage statement or statements. Most commonly, this will be a
READ statement and a FORMAT statement that will read the format specification into array
storage using Aw or Sw descriptors.

4) Reference the format array in the READ statement used for input of data.

5) Supply formatting information to be read into the array at run-time.

For example using the Aw format:

DIMENSION FT (12)
2 FORMAT(24A2)

READ (11,2) (FT(D), I =1, 12)

READ (11, FT)J, W, X, Y, Z, (C(D), I=1, 7)

Or using the Sw format:

DIMENSION FT (12)
2 FORMAT (547)

READ (11, 2) ET (1)

READ (11, FT) J, W, X, Y, Z, (C(D), 1=1,7)

The information supplied at run-time might be:

(13, 4E15.6/7F10. 3)!

The number of characters to be stored in the example is 20, including blanks, well below the 48-
character maximum allowed in array FT.

BINARY 1/O

Binary data can be transferred to and from an external medium using the statements:

BINARY 1/O (Continued)

WRITE BINARY (channel) list

READ BINARY (channel) list

where: channcl and lx_s_t are the same as for ASCII mode

In accordance with the 1/0 list, data is transferred at two bytes per word, where the number of words
transferred depends upon the internal data representation: 1 word for integer, 2 for real, 4 for
double precision and complex, and 8 for double precision complex. The high order or left byte is
transferred first.

CONSOLE INPUT AND OUTPUT

ACCEPT and TYPE Statements

Unformatted 1/0 on the console frees the user from the details of FORMAT specifications while
providing for legible documents and easy-to-use I/O statements.

The statements ACCEPT and TYPE are used with console input and output respectively. The format
of ACCEPT is:

ACCEPT list

where: list is a list of variables and, optionally, string constants. When the ACCEPT statement
is executed, values for the variables of the ACCEPT list are input from the console. Any
string constants given in the list of the ACCEPT statement are output at the console and can

serve as a guide as to what input value is required.

The format of the TYPE statement is:

! TYPE list

where: list is a list of variables for which values are to be output when the statement is executed
and, optionally, string constants to be output.

Note that if channel 10 is to be reassigned via OPEN or FOPEN, either no TYPE or ACCEPT state-
ments should be used or channel 10 must be closed. The following code will produce a fatal run-
time error (illegal channel number):

TYPE "STARTED"
CALL OPEN (10, "FILE",...)

Channel 10 is already open to $TTO at this point; insertion of CALL CLOSE (10, IER) will prevent
this problem.

6-20

TELETYPE INPUT AND OUTPUT (Continued)

ACCEPT and TYPE statements (Continued)

Sample Program

A sample program using teletype 1/O is shown below:

C BENCHMARK TEST OF DGC FORTRAN
DIMENSION RARRAY (2000)
COMMON RARRAY, AUTOC, SD
1 ACCEPT "ARRAY SIZE=", IAS,
1"INITIAL RANDOM NUMBER=", RN1
IF(IAS-2000) 2,2, 3
3 TYPE "ARRAY SIZE MAX IS 2000"
GOTO i
2 CALL RANDOM (RN1, IAS, RARRAY)
CALL CORRELATE (IAS)
TYPE "AUTOCORRE LATION=", AUTOC,
1" <15 > ", "STANDARD DEVIATION=", SD
PAUSE
GOTO 1
END

The teletype operation might appear as follows. Underscoring indicates computer output, (values
not underscored are input by the programmer), and) stands for carriage return given by the
programmer.

ARRAY SIZE =500)

INITIAL RANDOM NUMBER = . 93826)
AUTOCORRELATION = . 73152E - A 1
STANDARD DEVIATION = . 201552EAA 0
PAUSE

Rules of Teletype 1/0

The following rules apply to input:

1) More than onc value can be called for in an ACCEPT statement. The input values can be
separated by commas or a carriage return.

2) Output of Hollerith strings can be mixed with input of data in the ACCEPT statement, providing
for example, a guide as to what input value is required.

3) When Hollerith string output is interspersed with data, a carriage return must be given at
the teletypewriter to force the next string to be output. For example, the carriage return
after 500 is necessary to prompt the typing of "INITIAL RANDOM NUMBER=",

4) ACCEPT will convert integers to real or double precision if the data type of the intcrnal
variable requires.

6-21

TELETYPE INPUT AND OUTPUT (Continued)

Rulcs of Teletype 1/0 (Continued)

On output the TYPE statement provides the following field widths:

8 - integer

16 - real

32 - double precision and complex
64 - double precision complex

A carriage return is inserted when the next quantity will not fit on the current line. In either the
ACCEPT or TYPE statement, a carriage return’ is output by " <15>". A form feed is output by

" <14>", These characters must be the last characters in a Hollerith string since they cause the
operating system to terminate output.

TYPE or ACCEPT statements also provide for transfer of whole arrays and array elements with
integer variables or constant subscripts.

‘ TYPE "RARRAY: <15>", RARRAY

I

causes the entire array, RARRAY, to be typed out. More reasonably:

TYPE "THE", IAS, "RANDOM NUMBERS ARE <15>",
L(RARRAY (I), 1= 1, IAS)
outputs only that portion of RARRAY that is filled by subroutine RANDOM.

Note in the example that the DO-implied loop must be enclosed in parentheses and that a comma
precedes the control variable, I.

DO-implied loops can be nested.

DIMENSION A(3, 5)

ACCEPT ((A(L,]), 1=1,3),] =1,5)

C VERIFY INPUT
TYPE "] 1 VALUE <13>",
I(G’L A(I’J)) 1=1,3), I= 1,5)

1/0 lists can contain all combinations of variables, arrays, array elements, Hollerith strings, and
DO-implied loops, separated by commas.

6-22

CONTROL 1/0
Channel Access
Files including devices, are associated with a channel number (0-63) before that file or device may be

accessed. To open a file, an I/O statement must reference a pre-assigned channel from the list below
or the file and channel must be associated by a call to FOPEN or OPEN (see pages 3-10 and 3-11, Part II).

Pre-assigned Channel # Device Name Device
6 : $PLT Incremental Plotter
8 $TTP TTY punch
9 $CDR Card reader
10 $TTO TTY printer $TTOI in foreground
11 $TTI TTY keyboard $TTII in foreground
12 $LPT Line printer
13 $PIR Paper tape reader (ASCLL 1nput must be even parity.)
14 $PTP Paper tape punch
15 $TTR TTY reader (ASCII input must be even parity.)

Any of the 64 chamnels 0 - 63 can be referenced in a call to FOPEN with any device or file name as
an argument. If the channel has an associated device, this association is temporarily suspended until
FCLOS or RESET is called.

End-of-File or Error Transfer of Control

The user can regain control after an end-of-file has been encountered or an I/O error at the
driver level (parity, record size) has been detected.

Within a READ or WRITE statement, the return statement number is given by the following
syntax:

READ (channcl, [format,]ERR = n;) [list]
WRITE (channel [format, JERR = nl) [].lst]

READ (chamnel, [format, JEND = nj) [list]
WRITE (cha.nnel (format, JEND =ny) [hst]

READ (channel, [format, JERR =nj , END = no) [list]
WRITE (cha.nnel [format,]ERR ny , END =ny) [hst]

READ (channel, [format, JEND =ny , ERR =1)[hst]
WRITE (channel, [format,]END ny , ERR = nl) [hst]

where: mnjis the return statement number for an I/O error.
n3 is the return statement for an end-of-file.

REWIND Statement

REWIND channel

6-23

CONTROL 1I/O (Continued)

REWIND Statement (Continued)

The REWIND statement causcs the file associated with channel (0-6310) to be positioned at the initial
record. B

If the REWIND statement is executed in the same program as the OPEN (or FOPEN) call for that
particular channel, no special handling is required for the file name associated with the channel.
However, if the REWIND is to be executed in some other program (for example, one at a higher
level than that containing the OPEN), the file name of the file to be rewound must be stored in
blank or labeled COMMON.

ENDFILE Statement

| ENDFILE channel
1

The ENDFILE statement causes the file associated with channel (0-631() to be closed. If an end of
file is encountered during execution of a READ statement, execution of the program is terminated
unless the end of file was prepared for in the READ statement.

Random Access Files (FSEEK)

Using the Real Time Disk Operating System, random access files are keyed by record number. By
default, a random file is initially positioned to the beginning of record 0. As records are read or
written, the file is positioned to the beginning of the next unread or unwritten record.

The user, though, can position the random file to a given record for reading or writing by giving a
call to FSEEK preceding READ or WRITE. The call to FSEEK has the format:

CALL FSEEK (chamnel, recordnumber)

where: channel is the channel number of the random file.

recordnumber is the number of the next record to be read or written.
An example of a call to FSEEK is:
CALL FSEEK (JCHAN, INUM)

Rereading and Rewriting Records (CHSAV, CHRST)

Two library routines are provided that enable the user to reread or rewrite records of a disk file.
The mechanism employed is to save the status of a FORTRAN channel, issue any number of reads
or writes, and then restore the original status of the channel. The records processed between the
save and restore can now be read or written again. The following call to CHSAV is used to save the
status of a channel:

CALL CHSAV (channel, start-word)

where: channel is an integer constant or variable specifying the number of the channel to be used
within the range 0 to 63 (decimal).

start-word is an element of an integer array specifying the start of a three-word block.
The three-word block is used to save the channel status for restoration.

The call to CHRST is used to restore channel status, it's format is:

CONTROL 1/0 (Continued)

Rereading and Rewriting Records (CHSAV, CHRST) (Continued)

CALL CHRST (channel, start-word)

where: channel is an integer variable or constant with a value between 0 and 63 (decimal)
specifying the number of the channel to be used.

start-word is the first element of the three-word block in which the previously saved
channel status is stored,

Note, for example, that this provides the user with the ability to read a record that contains
formatting information and use this information to reread the same record using a different
format.

The status on more than one channel may, of course, be saved, and the status of every read
on a given channel may be saved using an appropriate two-dimensional integer array. This
gives the user a powerful means of returning to process any record within a given disk file.
An array declared as:

1(3, 100)
can be used to save up to 100 blocks of channel status information.
Both routines will cause a non-fatal error message if the channel specified is not open, and

CHRST will cause a non-fatal error message if an attempt is made to restore channel information
that has not been saved.

6-25

CHAPTER 7

SPECIFICATION STATEMENTS

DEFINITION

Specification statements are non-exec{;table statements that provide the FORTRAN IV compiler with
information about storage allocation and data types of simple variables and arrays to be used in the
program,

DIMENSION STATEMENTS

Format:

DIMENSION a; (i1), ag(ig)s + + » 2p,(ip)

where: each a is the name of an array.
each i represents the subscript bounds of the array.
DIMENSION statements give the subscript bounds of arrays for allocation of storage to the arrays.
A given array can only be dimensioned once. It can be dimensioned in a DIMENSION, COMMON, or data-
type statement. Dummy array argument names may appear in DIMENSION statements (adjustable

dimensions).

The general form of a subscript bound is:

8bys Sbose v v s shy

where: each sb is an integer constant, a dummy integer variable, or a (possibly mixed)
pair of these separated by a colon (:).

When a subscript bound consists of a pair of values or variables separated by a colon, the first value
or variable gives the lower bound of the dimension of the array and the second value or variable gives

the upper bound of the dimension of the array.

When a subscript bound is a single integer, a lower subscript bound of 1 is implied. For example:

DIMENSION GEORGE (3, 5, 2, 2)

is identical to:

DIMENSION STATEMENTS (Continued)

7

l DIMENSION GEORGE (1:3, 1:5, 1:2, 1:2)

If the same array structure were desired with the subscripts starting at zero, the following
statement would accomplish this:

\ DIMENSION GEORGE (0:2, 0:4, 0:1, 0:1)

Subscript bounds may give adjustable dimensions when the dimensions and the array name are
contained within a subprogram and are dummy arguments to that subprogram. For example:

‘, SUBROUTINE R(A, I,], K)

‘ DIMENSION A(,], K)

Array dimensions are not passed to subroutines, the dimensions declared within the subroutine determine
the array size and structure usable within the subroutine.

Two methods are available to support variable size arrays within subroutines. The first method is called
adjustable dimensioning and merely involves using variables to specify array dimensions. For example,
the array dimensions could be passed as arguments to the subroutine as follows:

SUBROUTINE ABC (I,], K, A)
DIMENSION A (I,], K)

END

The second method available is to dimension the array to be essentially boundless. This is performed
by specifying the array size to be one. Caution must be exercised with this method. For example, if the
following subroutine is executed, an endless loop will result:

SUBROUTINE PRINT (A)
DIMENSION A(1)
WRITE (10) A
RETURN

END

Since the array A has no bounds, subroutine PRINT will start printing the contents of core starting where
array A is allocated. This subroutine should have used an implied DO loop to write the contents of array
A, such as the following:

WRITE (10) (A (I), I=1, 10)

7-2

DATA-TYPE STATEMENTS

Format:

INTEGER Vi, Vose e vy V.
REAL V), Vs e v e ¥y
DOUBLE PRECISION vy, Vo, .+ . » Vn

OMPLEX V15 Vo0t Va

DOUBLE PRECISION COMPLEX V{, Vg 5+« « 5 ¥

LOGICAL Vys ¥V95eves ¥y

where: eachv is a variable name, an array name, a dimensioned array name, a function name, or
a statement function argument name.

A data-type statement is used to specify the type of data that can be assigned to a variable. Variables
used for storage of double precision, complex, double precision complex, and logical values must be
specified in the appropriate data type statement. The data type of a variable may not be changed within
a program unit. INTEGER and REAL type statements may be used to override implicit data typing.

Arrays may be dimensioned in data-type statements and dummy arguments may appear in data-type
statements:

INTEGER X1, X2
REAL MEAN, MEDIAN

DOUBLE PRECISION DBL, LONG(10)
COMPLEX IMAG

LOGICAL QUES, WHICH (0:9, 0:9)

-—

COMPILER DOUBLE PRECISION STATEMENT

As the initial statement of a program, the statement

COMPILER DOUBLE PRECISION

forces all REAL variables and constants to DOUBLE PRECISION and all COMPLEX to DOUBLE

PRECISION COMPLEX. The COMPILER DOUBLE PRECISION statement overrides any succeeding

REAL or COMPLEX statements and forces all floating-point constants to four word precision. Single
precision library functions having double precision counterparts will be recognized, and calls generated to
the appropriate double precision functions. (Library function precision is not overriddan for functions
passed as arguments nor at any time in the 8K compiler.)

The programmer can reduce his object program size by using all single or all double precision var-
iables and constants, since the single and double precision arithmetic packages are separate. Each
requires about 600 words of storage. Use of the COMPILER DOUBLE PRECISION statement thus
insures that only the double precision arithmetic package is loaded.

7-3

COMMON STATEMENT

Format:

l COMMON / blocky / listy. ../ block, / listy

where: each list is a list of names of variables and arrays
each block is the name of a block of common storage that is to contain the list following

A common block is a storage area shared by program units of a FORTRAN program. Storage is
allocated to variables and arrays in a common block in the order in which the variables appear in
COMMON statements.

There are two types of common storage. If a block name precedes a list of variables, all listed
variables following that name are placed in a common storage area having the block name as a label;
this is called labeled common. If no block name precedes the list, all variables of the list are placed

in an unlabeled common area; this is called blank or unlabeled common. In a 7OMMON statement, blank
common can be indicated by an empty field betwegn two slashes (/ /). If the blank common list

appears as the first list in the COMMON statement, the slashes are not nceded.

The size of blank common in the various program units does not have to match; blocks of labeled common
must match in size in the different program units. The size of a common block can be increased
by EQUIVALENCE statements as well as COMMON statements.

A given common block may appear more than once in a COMMON statement or given program unit.
Variables continue to be assigned in that order to the given common block. Arrays may be dimensioned
in a COMMON statement. Dummy arguments may not appear in a COMMON statcment.

Labeled COMMON takes space at load time, whereas unlabeled COMMON (and stack variables and arrays)
are allocated at execution time and can thus use space previously occupied by the relocatable loader.
To reduce object program spacc requirements, keep labeled COMMON to a minimum.

COMMON A, B, C, D(3,4), E
COMMON / LB / U, V (2,3), VAR

The two COMMON statements above are the same as the following COMMON statement:

COMMON / LB / U, V(2,3), VAR // AV,B,C,D(3,4), E

7-4

COMMON STATEMENT (Continued)

COMMON /BLK /A, B, C <program unit 1
COMMON /BLK /E, F, G -program unit 2

storage in BLK

A B C|
{E F Gl

COMMON A, B, C (10, 10) ~-program unit 1
DOUBLE PRECISION A, B

COMMON P(4), D (100) —program unit 2

In the above example, the programmer wants to reference array C in program unit 1 by array D in
program unit 2. To do so, he must leave four dummy locations in common (P(1) to P(4)) representing the
two double precision variables A and B:

storage of blank common

P(1) P(2)gP(3) P(4)1D(1) |[D(2) D(100)

T
A iA ;B B |C1,1){CE,1)]... |C(10,10)
¥

EQUIVALENCE STATEMENT

Format:

[EQUIVALENCE (list)), (listy), ..., (list)

where: each list is a list of names of variables, arrays , and array elements having constant
subscripts

An array name with no subscript is assumed to be the first element of the array.

All variables named within a given list of an EQUIVALENCE statement share the same storage area.

Dummy argument names of arrays cannot appear in EQUIVALENCE statements.

Since Data General's FORTRAN IV places non-COMMON variables on a stack separate from all
other variables, no EQUIVALENCE is allowed to non-COMMON variables.

Equivalencing storage should not be used to equate entities mathematically. For example, if a REAL

variable is equivalenced with a DOUBLE PRECISION variable, the REAL variable will share storage
with only the first storage unit of the two-unit DOUBLE PRECISION variable.

7-5

EQUIVALENCE STATEMENT (Continued)

Array elements in EQUIVALENCE statements may be referenced by complete subscripts or a single
subscript equal to the element’s positional value.

When an element of one array is equivalenced with an element of another array, that determines
storage correspondence for all elements of the arrays.

Only one variable, array, or array eclement from a given EQUIVALENCE list can appear in a
COMMON statement within the program unit.

When an array element appears in an EQUIVALENCE list with an array element that is in a common
area, the equivalencing may lengthen the common area. Common may only be extended beyond the last
assignment of storage made in a COMMON statement; no core storage is left empty to provide for
EQUIVALENCE extensions in the other direction.

DIMENSION B(6), D(4)
COMMON D
EQUIVALENCE (B(1), D(2))

Storage in Blank Common Area

D(1)|{D(2)| D(@3) | D(4)
B(1) | B(2) | B(3) B(4)IB(5) B(6)

—
Extended Common

EXTERNAL STATEMENT

Format:

—
EXTERNAL 51, Sgs. ++» Sy

where: each s is the name of a function subprogram or subroutine subprogram.

The EXTERNAL statement specifies subprograms as external to the program unit in which the
specification is made.

The EXTERNAL specification must be given to names of functions, subroutines, and tasks that appear in
the program unit as arguments to be passed to another subprogram. The EXTERNAL specification causes
the argument to be recognized as a subprogram, rather than an array or variable. An address for the
subprogram argument can then be passed to the called subprogram.

The data type of an EXTERNAL function subprogram may appear in a data type statement in the calling
program.

7-6

EXTERNAL STATEMENT (Continued)

REAL ROOT
EXTERNAL ROOT

CALL MULT (A, B, ROOT) Subroutine MULT is called with REAL function ROOT as
the last argument.

SUBROUTINE MULT (Q, R, S)

Q =5(Q,R) } This generates a call to the function passed via dummy
’ argument S.

COMPILER NOSTACK

Format:

COMPILER NOSTACK

The COMPILER NOSTACK statementmay optionally appear as the first statement of a program unit
or as the second statement if the COMPILER DOUBLE PRECISION statement is given.

The statement may be used with all versions of DGC FORTRAN IV except the 8K configuration. When
given, the statement causes all non-COMMON variables and arrays to be placed in a fixed location in
memory rather than on the run-time stack. It provides the following: ’

1) DATA initialization of non-COMMON variables.
2) All free variables are initialized to zero at load time.

3) Variables within a subprogram are available upon re-entry to the subprogram for the
second and subsequent times.

Attributes 2 and 3, although not ANSI FORTRAN requir=ments, exist at many installations and are expected
by many existent FORTRAN programs. If a working program compiles successfully using the DGC
FORTRAN compiler without the NOSTACK option but does not run correctly, use the option to determine

if the programmer was expecting either memory to be zeroed or variables to remain unchanged. If so,

the program can be recoded to generate the most efficient code by placing just the necessary variables

in a labeled COMMON and recompiling without the NOSTACK option.

CHAPTER 8

DATA INITIALIZATION

DATA STATEMENT

Format:

ArmA

™ -1 _e 7% . A L B LY ’ 1. . R T ”
DA VUSLY/CUSt /vusStz/cusiy /e « o vUSiy/Clisit,/

where: each vlist is a list of names of variables, arrays, and array elements with constant
subscripts.

each clist is a list of optionally signed constants.

A DATA statement defines initial values Ior variables and array elements. Variable and constant
lists are paired in the statement. Constants are assigned to variables according to their positions in
the paired list.

In general, arithmetic and logical variables are initialized with constants that have the same data
type. COMPLEX variables are initialized with two single-precision real numbers; DOUBLE PRECISION
COMPLEX variables are initialized with two double-precision real numbers.

Any variable, except COMPLEX and DOUBLE PRECISION COMPLEX, may be initialized with string
data. Each character of a string constant will occupy one byte (two characters per 16-bit word). For
example, an 8-character string constant will fill 4 INTEGER or LOGICAL variables, 2 REAL variables,
or 1 DOUBLE PRECISION variable. A string constant will initialize any number of consecutive words,
depending only upon the length of the string. No correspondence is required between data type and
string length.

A string constant in a DATA statement is different from one in a FORMAT statement or elsewhere
in the program in that a word of binary zeroes is not generated at the end of the constant when the

character count is even. Elsewhere in a program, the word of zeroes is generated to indicate the

end of a string. (See Chapter 6, Sw Field Desciptor).

The variable list may contain the names of variables, arrays, and array elements that are in a labeled

common area.* Stack variables and variables in blank common may not appear in the list. Dummy
arguments may not appear in the variable list.

If the name of an array appears in the variable list, the name is assumed to stand for the first element
of the array unless it is the last name in the list. In the latter case, all remaining constants will be
assigned to the sequential elements of the array.

*According to ANSI FORTRAN standard X 3. 9-1966, variables stored in labeled common may have
the initial values assigned only if the DATA statement appears in a BLOCK DATA subprogram. This
is not necessary in DGC FORTRAN IV.

8-1

DATA STATEMENT (Contimued)

Within the constant list, a group of constants may be specified with a repeat count and multiplication
symbol. The repeat count specifies the number of times the constant is to be assigned to variables
of the variable list. For example:

DATA A, B, C,AR(1, 1), AR(2, 2), AR(3, 3)/6*1.0/

causes the datum 1.0 to be assigned to the six variables of the variable list. A repeat count
cannot be used with a string constant.

If the constant list is longer than the variable list, the constants will be placed in succeeding storage
locations as long as their data type agrees with the type of the last variable in the list.

DATA L,A/1,7.0,382.0,5%*3.0,0,0/

A is intialized to 7.(, and the next seven storage locations are initialized to the seven real constants
following 7.0 in the constant list.

The contents of the DATA statement may consist of one or more paired lists of variables and constants.

DATA X,Y,1,L,S,P/2*1.1,0,. TRUE. , SHPRICE /
is equivalent to

DATA X,Y/2*1.1/,1/0/,L/. TRUE. /, S, P/SHPRICE /

Note the commas preceding I, L, and S. These are allowed for compatibility with other compilers but
are not required for DGC FORTRAN IV.

BLOCK DATA SUBPROGRAM

Variables in labeled common may be initialized to values in a BLOCK DATA subprogram. The BLOCK
DATA subprogram begins with the statement BLOCK DATA and terminates with an END line. It contains
only DIMENSION, DATA, COMMON, data-type, and EQUIVALENCE statements.

All variables in a given labeled common block must be listed in the COMMON statement (or statements)
in the BLOCK DATA program even if not all the variables are initialized to values in a DATA statement.

BLOCK DATA
COMMON/ELN/C, A, B/RMC/Z,Y

DIMENSION B(4), Z(3)

DOUBLE PRECISION Z

COMPLEX C

DATA B(1), B(2)/2*1. 1/C/2. 4, 3. 769/Z(1)/7. 649D5/
END

8-2

CHAPTER 9

FUNCTIONS AND SUBROUTINES

FUNCTIONS
Functions have the following characteristics:

1. They are referenced by the appearance of the name of the function in an expression. The name
is followed by any actual arguments to the function.

2. They return a single value for the function to the point of reference.
3. They have a data type.
DGC FORTRAN functions are:

1. Statement functions, which are single statements written and compiled as part of a program
unit (internal).

2. Function subprograms, which are written and compiled as separate program units (external).
3. FORTRAN library functions, which are supplied with the compiler.

Statement Functions

Format:

f(ay, ag. . . ,3) = ¢

where: f is the name given by the programmer to a function. Within a program unit, statement function
names must be unique in their first five characters.

Each a is a dummy argument name,
e is an expression.

The expression on the righthand side of the statement function is evaluated and assigned to the function
name on the lefthand side.

Statement functions follow the rules of data type assignment as given in Chapter 4. Function names can
be explicitly typed using data-type statements or can be implicitly typed as REAL or INTEGER by
applying the IJKLMN convention to the function name.

Where dummy argument names are identical to identifiers appearing in type declaration statements, the
dummy arguments will have the type declared.

Besides the dummy arguments, the expression e can contain:

9-1

FUNCTIONS (Continued)

Statement Functions (Continued)

1. Constants of any type.
2. Variables stored in a COMMON area.

3. Function references to previously defined statement functions, to FORTRAN library functions,
and to external functions.

The name of the function in a statement function is internal to the program unit and cannot appear in an
EXTERNAL statement.

To use a statement function, the programmer places a reference to the function in an expression to be
evaluated. The reference contains the function name and actual arguments to replace the dummy
arguments. The actual arguments are passed to the statement functions, e is evaluated, and the value
is returned to the reference point. -

The actual arguments in a statement function reference must agree in order, number and type with the
corresponding dummy arguments. Actual arguments in a reference may be any expression of the same
type as the corresponding dummy argument.

The statement function is:

ROOT(A, B, C)=(-B+SQRT(B**2-4 *A*C)) /(2. *A)

.

This statement function might be referenced by:

VAL = ROOT(D(6), 122.6, ABS(X-Y)) + Z**3

In the example, D(6) replaces A, 122, 6 replaces B, the absolute value of A-Y replaces C, and the
expression:

(-122. 6+SQRT(122. 6**2-4. *D(6)* ABS(X-Y))) /(2. *D(6))

is evaluated and returned to the assignment statement. Z**3 is added to the returned value, and the
total is assigned to location VAL.

Function Subprograms

When a programmer needs a function that cannot be expressed as a single statement (statement function),
he writes a function subprogram. A function subprogram is external (separately compiled). A function
subprogram is referenced in the same manner as any function, returning a single value for the function
to the referencing point.

A function subprogram is defined by the FUNCTION statement that begins the function subprogram. The
FUNCTION statement has the format:

type FUNCTION name (31,32, P :a_n)

FUNCTIONS (Continued)

Function Subprograms (Continued)

where: type is INTEGER, REAL, COMPLEX, DOUBLE PRECISION, LOGICAL, DOUBLE
PRECISION COMPLEX, or blank.

name is the name of the function subprogram.

each a is a dummy argument to be replaced by an actual argument when the function sub-
program is referenced. The argument list may not be blank.

The function returns a value that is of the data type in the FUNCTION statement. If no data type is
given, the function returns an INTEGER or REAL value depending upon the beginning letter of the
function name (IJKLMN convention).

Bach duttny arguinent of a funciion subprogram may be a variabie name, an array name, or an
external subprogram name (function or subroutine).

The name of the function subprogram must appear on the lefthand side of an assignment statement at
least once in the function subprogram. DGC FORTRAN IV subprogram names must be unique within
the first 5 characters. See Appendix B for specific names reserved for other purposcs.

A value is returned for a function when a RETURN statement in the function subprogram is cxccuted.
The function subprogram must contain at least one RETURN statement

Function subprograms, like subroutines, can execute abnormal returns, as described in the scction
"Abnormal Returns", page 9-9.

Except for the FUNCTION statement itself, the name of the function subprogram cannot appcar in
any non-executable statement in the function subprogram.

Dummy argument names cannot appear in DATA, COMMON, or EQUIVALENCE statements in the
function subprogram.

Through assignment of values to its arguments, the function subprogram can effectively return more
than one value to the referencing program unit,

The function subprogram cannot contain statements that define other program units, e.ec., it cannot
contain another FUNCTION statement, a BLOCK DATA statement or a SUBROUTINE statcment.

An example of a function subprogram is REAL function SWITCH:

FUNCTION SWITCH (X)
IF(X.LE.0.) GO TO 5
IF(X.LT.1.) TO TO 10

20 SWITCH = 1. ;FIRST ASSIGNMENT TO SWITCH
RETURN
10 SWITCH = X
RETURN
5 RETURN
END
e

9-3

FUNCTIONS (Continued)

Arguments of Function Subprograms*

When a function subprogram* is referenced, dummy argument names of a given structure are replaced
by actual argument names of a similar structure as shown below:

1. Dummy Argument: Variable Name

Actual Arguments: Variable Name
Array Element Name
Any Expression

When the actual argument is an expression, its value is passed.

2. Dummy Argument: Array Name

Actual Arguments: Array Name
Array Element Name

When an array name is passed:
dummy length g actual array length
When an array element name is passed:
dummy length < actual array length + I - the actual array<s subscript.
3. Dummy Argument: Name that can be used as a function call.
Actual Argument: External Function Name

The dummy argument cannot be defined or redefined in the function subprogram, *

4, Dummy Argument: Name that can be used as a subroutine name in a CALL statement.
Acrtual Argument: Exrernal Subreutine Name

The dummy argument cannot be defined or redefined in the function subprogram. *

As external function or subroutine name that is used as an actual argument in the referencing program
unit must appear in an EXTERNAL statement in the referencing program unit.

If a function reference causes association of two dummy arguments in the function subprogram, neither
dumimy argument can be defined in the function subprogram.

FORTRAN Library Functions

The FORTRAN library functions are those functions supplied with the FORTRAN compiler. Library
functions are referenced in the same way as other functions:

X = ABS (SIN(X)) -~ function references
A list of the library functions is given on the following page. All angular quantities are in radians.

*The same correspondence of dummy to actual arguments holds for subroutine subprograms when the words
"subroutine subprogram' are substituted for the words "function subprogram' as indicated by the asterisks.

9-4

Functions

Number of Type of

Name Function Definition Arguments | Argument Function - Used For

ATAN arctan (arg) Arctangent 1 Real Real

ATAN?2 (quadrants 1 and 4) 2 Real Real

DATAN 1 Double Double

DATAN2 arctan(gggl /arg 2) 2 Double Double

DATN2* (all quadrants) 1 Double Double

COs cos(arg) Trigonometric 1 Real Real

DCOS - Cosine Double Double

CCOS Complex Complex

DCCOS DP Complex | DP Complex Trigonometric
" Opcrations

SIN sin(arg) Trigonometric 1 Real Real

NSIN Sine Dauhle Double

CSIN Complex Complex

DCSIN DP Complex | DP Complex

SINH sinh(arg) Hyperbolic 1 Real Real

— Sine

TAN tan(arg) Trigonometric 1 Real Real

DTAN Tangent Double Double

TANH tanh(arg) Hyperbolic 1 Real Real

DTANH - Tangent Double Double

ABS |arg] Absolute 1 Real Real

IABS Value Integer Integer

DABS Double Double

AIMAG y where: Obtain imagi- 1 Complex Real

DAIMAG arg =X +yi nary part of DP Complex | Double :

complex argu- CAvithincic
ment and

Conversion

AINT Sign of arg times Truncation 1 Real Real ' Operations

INT largest integer Real Integer :

IDINT < |arg| Double Integer

ALOG log, (arg) Natural 1 Real Real

DLOG Logarithm Double Double

CLOG Complex Complex

DCLOG DP Complex | DP Complex

*DATN?2 is used with the 8K FORTRAN compiler in place of DATAN, because DATAN and DATAN2 arc

identical in their first five characters.

9-5

DATAN and DATAN2 can be used with the 12K compiler.

Number of Type of Function
Name Function Definition Arguments | Argument Function Used For
ALOG10 logo(arg) Common 1 Real Real
DLOG1g Logarithm Double Double
AMAXOQ max(argy,argg,...) | Choosing 2 Integer Real
AMAXI1 Largest Real Real
MAX0 Value Integer Integer
MAX1 Real Integer
DMAX1 Double Double
AMINO min(argy,argo,«..) Choosing 32 Integer Real
AMIN1 Smallest Real Real
MINO Value Integer Integer
MIN1 Real Integer
DMIN1 Double Double
AMOD * argy(mod argy) Remaindering* 2 Real Real
MOD Integer Integer
DMOD Double Double Arithmetic
L B and

CABS x2 4 y2 where: Modulus 1 Complex Real Conversion
DCABS arg=x+yi DP Complex | Double Operations
CMPLX complex=arg,+iargy Express 2 Rea} 2 Real Complex
DCMPLX Arguments in Double DP Complex

Complex Form
CONJG For: arg = x + yi Obtain Conju-~ 1 Complex Complex
DCONJG conj =x - yi gate of Complex DP Complex | DP Complex

Argument
DBLE Double = (ﬁ, 0) Express Single 1 Real Double

Precision Argu-

ment in Double

Precision Form
DIM arg) -min(arg;, E_g_Z) Positive 2 Real Real
IDIM Difference Integer Integer
EXP earg Exponential 1 Real Real
DEXP Double Double
CEXP Complex Complex
DCEXP DP Complex | DP Complex

AMOD

*The function{MOD }(%1, argo) is defined as: argy - [argy / argy] arg,

DMOD

where: [arg; / argq] is the truncated value of that quotient.

9-6

B i Definiti Number of Type of Function
Name unction inition Arguments| Argument |Function Used for -
FLOAT Float Convert from Integer 1 Integer Real
DFLOAT to Real Integer Double
. Convert from Real to
IF1X Fix Integer hy Truncation 1 Real Integer Arithmetic
o . - o) o and
REAL x where: Obtain Real Part of 1 Complex Real
arg =x+yi Complex Argument DP Complex| Double Conversion
SIGN Real Real Operations
ISIGN sign of arg,+arg, Transfer of Sign 2 Integer Integer
DSIGN B Double Double
Obtain Most Signifi-
SNGL arg cant Part of Doublc 1 Doublc Real
Precision Argument
SQRT Real Real
DSQRT 1/2 Double Double
CSQRT (arg) Square Root 1 Complex Complex
DGSQRT DP Complex] DP Complex
IAND * arg, ~ arg, 16-bit ANDing 2 Integer Integer
IOR * arg, arg, 16 -bit ORing 2 Integer Integer Bit/Word
Manipulation
NOT arg Logical Complement 1 Integer Integer and Testing
IEOR arg, arg, 16 -bit Exclusive OR 2 Integer Integer
1 &
ISHFT arg,,arg, Shift arg, by the num- 2 Integer Integer
ber of bits given in
arg,, where:
arg, < 0 right shift
arg, = 0 no shift
argy >0 left shift
ITEST arg,, arg, Test a Bit within the 2 Integer Logical
BTEST

Word Given by arg,.
The Bit Tested Is
15-argy. The Result
Returned Is:

0 if tested bit = 0
-1 if tested bit = 1

9-7

SUBROUTINES

Subroutines, also called subroutine subprograms, are external (separately compiled). They return
values to the calling program unit only through actual-dummy argument correspondence, and they
return to the calling program unit at the statement following the subroutine call unless they execute
a RETURN via a dummy argument.

A subroutine is defined by the SUBROUTINE statement that begins the subroutine and has the format:

SUBROUTINE name (31,32, e e ey 311)

where: name is the name of the subroutine.

each a is a dummy argument to be replaced by an actual argument when the subroutine
is referenced. The argument list may be blank.

Each dummy argument of a subroutine may be a variable name, array name, or an external subprogram
name (function or subroutine). Dummy argument names cannot appear in COMMON, EQUIVALENCE, or
DATA statements in the subroutine subprogram.

The correspondence between dummy argument names of subroutines and actual arguments passed
to the subroutine when it is referenced is the same as that given for function subprograms (page 9-4).

Within the subroutine, name may only appear in the SUBROUTINE statement immediately following
the word SUBROUTINE. Subprogram names must be uniquely distinguishable by their first five
characters. See Appendix B for names reserved for other purposes.

Through assignment of values to its arguments, the subroutine can effectively return values to the
referencing program unit.

The subroutine must contain at least one RETURN statement. Return is made to the referencing
program unit when a RETURN statement is executed.

The subroutine cannot contain statements that define other program units, i.e., it cannot contain
another SUBROUTINE statement, a BLOCK DATA statement, or a FUNCTION statement.

An example of a subroutine subprogram is:

SUBROUTINE REV(ARRAY, 11, 12)
DIMENSION ARRAY (100)
112 =11 +12
MID = 112/2
DO 501 =11, MID
J=112 -1
C USE TEMPORARY TO REVERSE
C ELEMENTS OF ARRAY
TEMP = A(T)
AQD) = AQ)
A(]) = TEMP
50 CONTINUE
RETURN
END

9-8

SUBROUTINES (Continued)

A subroutine subprogram is referenced by a CALL statement. (See Chapter 5.) If the SUBROUTINE
statement contains dummy arguments, the CALL statement must contain actual arguments that
replace the dummy arguments.

When the subroutine has been executed, normal return is made to the statement in the calling program

unit immediately following the CALL statement. For example, subroutine subprogram REV might be
called from another program unit as shown.

DIMENSION A(100)

CALL REV (A, K1, K2)

ABNORMAL RETURNS

Normally, return from a subroutine is to the statement immediately following the CALL statement,
and return from a function is to the point of function reference.

It is possible to return to some other statement in the calling program. To do so, the called function
or subroutine must contain a dummy integer argument that is used as a variable in a RETURN statement.

SUBROUTINE SUB (DUM, I, R1, Q, K)
INTEGER Q

RETURN Q
URNQ

When the subroutine SUB is referenced, the calling program passes a statement label to replace the
dummy integer argument. The statement label must be preceded by a dollar sign ($).

CALL SUB (A, K1, K2, $25, K3)

If an abnormal RETURN statement in SUB is executed referencing the fourth dummy argument, return
will be made to the statement labeled 25 in the calling program.

9-9

ABNORMAL RETURNS (Continued)

Abnormal returns from functions are made in the same way. Rather than returning to the point of the
reference, the return will be made to a statement, whose label is passed as an argument replacing
the integer variable in the RETURN statement of the function being referenced.

DGC FORTRAN IV LIBRARY

Certain functions and subroutines supplied with the FORTRAN 1V library are described in brief
in this manual. Functions are described on pages 9-5 to 9-7; Chapter 6 contains non-real time
1/0 calls; and PART Il describes calls that provide the real time interface to RDOS, In addition
the next section of this chapter describes three bit manipulation routines.

However, the functions and subroutines described in this manual are limited to those that can most

commonly be used by programmers as well as by the system. For a full description of the FORTRAN IV
library, see the FORTRAN IV Run Time Library User's Manual, 093-000068.

BIT/WORD MANIPULATION

Calls to run time routines permit bits of an integer variable to be accessed to change the setting or
for testing.

Clear a Bit (ICLR, BCLR)

A single bit in a word can be set to zero by executing a call to ICLR or to BCLR. The format of the
call is:

CALL ICLR (word, position) CALL BCLR (word, position)

where: word is an integer variable, one of whose bits is to be cleared.

position is an integer constant or variable whose value specifies the bit position in the
word to be set to zero:
0 Least significant bit 5

. 15

15 Most significant bit

=}

Example:

CALLICLR (IX, 10) BIT 10 of IX will be cleared.

Set a Bit (ISET, BSET)

A single bit in a word can be set to one by executing a call to ISET or to BSET. The format of the
call is

CALL ISET (word, position) CALL BSET (word, position)

BIT/WORD MANIPULATION (Continued)

Set a Bit (ISET, BSET) (Continued)

where: word is an integer variable, one of whose bits is to be set to one.

position is an integer variable or constant whose value specifies the bit position in the
word to be set to one:

0 Least significant bit)
L 15 0

15 Most significant bit J

Example:

CALL ISET (MON, 0) BIT 0 of MON will be set

Test a Bit (ITEST, BTEST)

A single bit in a word can be tested, using the integer function ITEST or BTEST. ITEST and BTEST
are referenced by the following formats:

ITEST (word, position) BTEST (word, position)

where: word is a]ogical variable, one of whose bits is to be tested.

position is an integer constant or variable whose value specifies the bit position to be
tested, The bit tested is 158 - position.

The logical value returned by ITEST (BTEST),4s a -1 (true) if the tested bit is one and zero if the
tested bit is zero (false).

Example:

IF (ITEST(,J)) GOTO10

9-11

BIT/'"NORD MANIPULATION (Continued)

Shift a Word (ISHFT)

A word can be shifted a number of bits left or right using the integer function ISHFT. ISHFT is
referenced by the following format:

ISHFT (word, bits)

where: word is an integer variable that is to be shifted.

bits is an integer constant or variable whose value specifies the number of bit
postions to be shifted and:

a negative value represents a right shift.
a positive value represents a left shift.

Example:

ISHFT (J, -5) Shift contents of | 5 bits to the right.

INDEX - PART I

A (assembly source code line) 1-2
A (in format conversion)) 6-10, 6-12
abnarmal return 5-4
ABS library function 9-5
ACCEPT statement
description of 2-5

strings in 2-5
input/outputof 6-20
addition 3-1, 3-2
adjustable dimensions 2-6, 7-1
AIMAG library function 9-5

9-5
9-5
9-6

AINT library function
ALOG library function
ALOGI10 library function
AMAXO library function
AMAXI1 library function
AMINO library function
AMINI library function
AMOD library function
angle brackets 2-6
.AND, 3-4
apostrophes
argument
correspondence to dummy
external subprogram 7-5
of function Chapter 9
of subroutine Chapter 9
arithmetic data
assignment
constant
conversion
expression
IF statement
I/O conversion
operators 3-1
mixed data types

9-6

9-6
9-6
9-6
9-6

2-5

9-4

4-1
2-1
Chapters 2, 3, 4
3-1
5-3
Chapter 6

3-2

representation Chapter 2, Append, E

storage Chapter 2, Appendix E

variable 2-1
arithmetic statement function 9-1
arrays

assigning values to 2-8

adjustable dimensions of 2-6, 7-1

arrays (Continued)

dimensions 2-6, 7-1
boundless 7-2
element of 2-6

equivalencing Chapter 7

format specification in

input/output of 6-1, 6-2

not declared in COMMON

variable size of 7-2
ASCII characters 1-1
assembly source code
ASSIGN statement 5-2
assigned GOTO statement
assignment

statements Chapter 4

definition of 4-1

illegal versions of 4-1

rules for using 4-1, 4-2

of arithmetic data 4-1

of values to arrays 2-8

of logical data 4-1
asterisk 1-3, 3-1, 3-2, 3-4, 6-8
ATAN library function 9-5
ATAN2 library function 9-5

1-1

1-2

5-2

basic field descriptor =~ Chapter 6
BCLR routine 9-10, 9-11
binary I/O 6-1, 6-19
bit manipulation
clear bit and set bit 9-10
logical ogperations 3-5, 9-7
test bit 9-7, 9-11
blank
common 7-4
descriptor Chapter 6
in input conversion Chapter 6
as space
in GOTO 5-1
in string constant
in variable 2-1
as delimiter 1-3

block data
statement
subprogram

2-5

8-2
1-1, 8-2

INDEX -1

Chapter 6

INDEX - PART I (Continued)

boundless arrays 7-2 COMPILER DOUBLE PRECISION 1-2, 7-3
BSET 9-10, 9-11 COMPILER NOSTACK 1-2, 7-7
BTEST routine 9-7, 9-11 COMPLEX statement 1-2, 2-3
complex constant 2-2
C (comment line) 1-1 complex
CABS library function 9-6 : data 2-4
CALL ' inunformatted 1I/O 6-4
strings in 2-5 ?computed GOTO statement 5-1
statement 5-3 CONJG function 9-6
to function Chapter 9 conjunction (logical) 3-4
to run time routines (see PART II) constant
to subroutine Chapters 5, 9 complex 2-2
carriage definition 2-1
control tabulation 1-1, 6-10, 6-11 double precision 2-3
use of slashes in 6-7, 6-14 double precision complex 2-4
vertical spacing codes 6-15 Hollerity or string 1-3, 2-5
7 suppressor of 6-10, 6-16 integer 2-3, 2-1
return 1-2, 2-4, 6-10 logical 2-2, 2-5
CCOS library function 9-5 real 2-3
CEXP library function 9-6 repetition 6-6, 6-13
CHANTASK statement 1-2 continuation lines 1-2
character positions 1-1, 1-2 CONTINUE statement 5-4
character set 1-3, 1-1 control statements
character string arithmetic IF 5-3
constant 2-4 assigned GOTO 5-2
data initialization to 8-1 ASSIGN statement 5-2
I/0 conversion Chapter 6 CALL statement 5-3
storage 2-6, App. E computed GOTO 5-1
CHSAV routine 6-24 CONTINUE statement 5-4
CHRST routine 6-24 ' definition 5-1
CLOG library function 9-5 DO statement 5-5
CMPLX library function 9-6 logical IF 5-3
Comma 6-7 PAUSE statement 5-5
comment line RETURN statement 5-4
following semicolon 1-2 STOP statement 5-5
indicated by C 1-1 unconditional GOTO 5-1
common conversion of data Chapters 3, 4
blank 7-4 conversion, I/0 Chapter 6

effect on reentrant program 1-1 COS library function 9-5
effect when equivalencing Chap. 7 CSIN library function 9-5

extended 7-6 CSQRT library function 9-7
labeled 7-4

statement 1-2, 2-6, 7-3

storage 1-1 D (double precision) 2-3

INDEX - 2

INDEX - PART I (Continued)

D in format conversion 6-7f declaration statements
DABS library function 9-5 COMMON 1-2
DAIMAG library function 9-5 COMPLEX 1-2
data DIMENSION 1-2
alphabetic 6-1 ff DOUBLE PRECISION 1-2
character string 2-4 EQUIVALENCE 1-2
complex 2-4 EXTERNAL 1-2
conversion Chapters 3, 4 INTEGER 1-2
double precision 2-3 LOGICAL 1-2
double precision complex 2-4 REAL .1-2
formatting of Chapter 6 define
Hollerith 2-4 initial values for variables 8-1
initialization 8-1f initial values for array elements 8-1
integer 2-1 descriptor, field Chapter 6
octal 2-2, 2-6 DEXP library function 9-6
precision of Chapters 2, 3, 4 DFLOAT library function 9-7
real 2-2 diagnostics = Appendix B
statement dimension
description 1-2, 2-7, 8-1 adjustable 2-6, 7-1
strings in 2-5 of an array 2-6, 7-1
- type statement 1-2, 2-6
statements Chapter 7 DIM library function 9-6
specification of 7-3 ff disjunction (logical) 3-4
descriptionof 7-3 ff division 3-1, 3-2, 3-3
evaluating mixed 3-2 DLOG library function 9-5
of parameters 2-1 DLOGIO library function 9-6
typing of 2-1, 7-1 DMAX]I library function 9-6
DATAN library function 9-5 DMINI library function 9-6
DATAN 2 library function ~ 9-5 DMOD library function 9-6
DATN2 library function 9-5 DO
DBLE library function 9-6 -implied list 6-1
DCABS library function 9-6 statement 5-5
DCCOS library function 9-5 nesting of 5-6
DCEXP library function 9-6 restrictions of -5-6
DCLOG library function 9-5 extended range of 5-7
DCMPLX library function 9-6 double precision
DCON]JG library function 9-6 constant 2-3
DCOS library function 9-5 data 2-4
DCSIN library function 9-5 in unformatted I/0 6-4
DCSQRT library function 9-7 output conversion 6-8

statement 1-2, 2-3

INDEX -3

INDEX - PART I (Continued)

DOUBLE PRECISION COMPLEX expression
statement (data) 2-4 arithmetic 3-1
in unformatted I/0 6-4 definition 3-1
DREAL library function 9-7 evaluation Chapter 3
DSIGN library function 9-7 in non-executable statement 2=7
DSIN library function 9-5 in executable statement 2-7
DSQRT library function 9-7 logical 3-4
DTAN library function 9-5 mixed mode 3-2
dummy argument Chapter 9 operators for 3-1 ff

relational 3-4
extended common 7-6

E format conversion 6-7 extended DO range 5-7
E (real data) 2-3 extending core 1-1
element of an array 2-6 EXTERNAL statement 1-2, 7-6
end

of line 1-1

of program 1-1 F format conversion 6-7

of subprogram 5-2 factor, scale 6-17

of record indicators 6-5 .FALSE. 2-5, 3-4
END line 1-1 field descriptors 6-6 ff
END FILE statement 6-24 field separators 6-6 ff
.EQ. 3-3 filename 6-24
equals sign 1-3 fixed memory locations 7-7
EQUIVALENCE statement 1-2,2-7,7-5 fixed-point notation 2-2
equivalencing of arrarys Chapter 7 FLOAT library function 9-7
error messages Appendix B floating-point notation = 2-2
evaluating forcing values 7-3

expressions Chapter 3 format

mixed data types 3-2 I/O Chapter 6
exclamation point Chapter 6 strings in 2-5
executable statements 1-2 strings constant 2-6
execution statement 1-2, 6-6

of program Appendix D specification

resume after PAUSE 5-5 purpose of 6-6
execution - time formatting Chapter 6 during runtime 6-18
EXP library function 9-6 form feed 1-2, 6-15

explicit data typing 7-1

INDEX -4

INDEX - PART I (Continued)

FORTRAN

assembler interface Appendix

character set 1-3, 1-1
compilation Appendix D
execution Appendix D
I/0 Chapter 6

library functions 9-4
operators Chapter 3
programs 1-1

program units 1-1
statements 1-2

FSEEK routine 6-24
full-word logical operations 3-3
function

subprogram 1-1, 1-2, Chapter 9

statement 1-2, 9-2
names 9-1

G format conversion 6-7
.GE, 3-2, 3-3
GOTO
unconditional 5-1
computed 5-1
assigned 5-2
.GT, 3-2, 3-3

H format conversion 6-10
hierarchy of operations 3-3
Hollerith string

constants 1-3, 2-5

in relational expressions 3-4

in logical expressions 3-4

in FORMAT specification 6-6

I format conversion 6-7
IABS library function 9-5
IAND library function 9-7
ICLR routine 9-10

IDIM library function 9-6

IDINT library function 9-5
IEOR library function 9-7
IF arithmetic 5-3
IF logical 5-3
IFIX library function 9-
IJKLMN convention 2-3
initialization, of data 8-
input /output
types of 6-1
statements Chapter 6
programimed 0-1
unformatted 6-4 ff
formatted 6-6
binary 6-1, 6-19
integer
conversion Chapters 3, 4
definition 2-1
implied typing 2-1
I/0 conversion 6-6
statement 1-2, 7-1
storage 2-3
field for (unformatted I/0) 6-4
INT library function 9-5
IOR library function 9-7
ISET routine 9-10
ISHFT library function 9-7, 9-12
ITEST library function 9-7, 9-11

7

1

K (following octal integer) 2-2

L format conversion 6-10
label
character positions for 1-2
leading zeroes in 1-2
labels 1-2, 5-1, Chapters 6, 9
labeled common 7-4
LLE, 3-3
leading zeroes in labels 1-2

INDEX -5

INDEX - PART I

library functions library functions (Continued)
ABS 9-5 DMAX1 9-6
AIMAG 9-5 DIMN1 9-6
AINT 9-5 DMOD 9-6
"ALOG 9-5 DREAL 9-7
ALOG10 9-6 DSIGN 9-7
AMAXO 9-6 DSIN 9-5
AMAX1 9-6 DSQRT 9-7
AMINO 9-6 DTAN 9-5
AMIN1I 9-6 EXP 9-6
AMOD 9-6 FLOAT 9-7
ATAN 9-5 IABS 9-5
ATAN2 9-5 IAND 9-7
BTEST 9-7 IDIM 9-6
CABS 9-6 IDINT 9-5
CCOs 9-5 IEOR 9-7
CEXP 9-6 IFIX 9-7
CLOG 9-5 INT 9-5
CMPLX 9-6 IOR 9-7
CONJG 9-6 ISHFT 9-7
COS 9-5 ISIGN 9-7
CSIN 9-5 ITEST 9-7
CSQRT 9-7 MAXO0 9-6
DABS 9-5 MAX1 9-6
DAIMAG 9-5 MINO 9-6
DATAN 9-5 MINI1 9-6
DATAN2 9-5 MOD 9-6
DATN2 9-5 REAL 9-7
DBLE 9-6 SIGN 9-7
DCABS 9-6 SIN 9-5
DCCOS 9-5 SINH 9-5
DCEXP 9-6 SNGL 9-7
DCLOG 9-5 SQRT 9-7
DCMPLX 9-6 TAN 9-5
DCONJG 9-6 TANH 9-5
DCOS 9-5 line
DCSIN 9-5 comment 1-1, 1-2
DCSQRT 9-7 continuation of 1-2
DEXP 9-6 end of 1-1
DFLOAT 9-7 label withina 1-2
DIM 9-6 of assembly code 1-2
DLOG 9-5 list, definition 6-1
DLOG10 9-6

INDEX -6

INDEX - PART I (Continued)

literal declaration 2-1, 6-12 .NE., 3-3

logical negation (logical) 3-4
assignment of 4-1 - nested
conjunction 3-4 do loop 5-6
data type 2-2, 2-5 do-implied list 6-1
definition 2-2, 2-5 parenthesis in formatting 6-
disjunction 3-4 .NOT., 3-4
expression 3-4 numbers, in FORMAT 2-1
field for 6-4 ' numerical conversion
input/output of 6-10 on imput 6-7
negation 3-4 on output 6-8

operators 3-4

statement 1-2, 7-1
logical IF statement 5-3 O format specifier 6-10
loop octal

DO 5-5 constant 2-2

DO-implied 6-1 I/O conversion 6-10
lower bound 7-1 strings
LT, 3-3 in PAUSE 2-1

in STOP 2-1
operator

main program unit 1-1 arithmetic 3-1
mathematical data types logical 3-4

INTEGER 2-2 precedence 3-4

REAY, 2-2 relational 3-3

DOUBLE PRECISION 2-2 optionally compiled line 1-1

COMPLEX 2-2 .OR, 3-4

DOUBLE PRECISION COMPLEX 2-2 order
MAXOQ library function 9-6 of statements 1-2
MAX1 library function 9-6 of operator evaluation 3-3
MINO library function 9-6 of assignment of values
MIN1 library function 9-6 to array elements 2-5
mixed data types 3-2 output conversion of integers 6-8
mixed made expression Chapters 3, 4 OVERLAY statement 1-2

MOD library function 9-6

multiple record format 6-14

multiplication 3-1 PARAMETER statement 1-2, 2-1
parenthesis 1-3, 3-1, 6-13, 6-15
PAUSE statement 5-5

name positioning field descriptors 6-11

of subprogram 2-1, 9-3 preassigned 1/0 channels 6-23
of varijable 2-1

INDEX - 7

INDEX - PART I (Continued)

precedence
of arithmetic oper. 3-1
of relational oper. 3-4
of logical oper. 3-4
precision of data Chapters 2, 3
program
definition 1-1
end of 1-1
loop 5-5ff
reducing size of 7-3, 7-4
stop execution of 5-5
unconditional termination 5-5
units 1-1
reentrant 1-1
program units
main 1-1
subroutine subprogram 1-1
function subprogram 1-1
block data subprogram 1-1
task subprogram 1-1
source text of 1-1

quotation marks 2-5

radix 8 conversion 6-10
range of a DO loop 5-5, 5-7
READ statement
free form 6-5
description 6-1
unformatted 6-5
READ BINARY statement 6-20
real
data
field for 6-4
definition 2-3
output conversion of 6-8
statement 1-2, 2-3
REAL library function 9-7

reentrant programs 1-1
reference

a subroutine 5-4
an array element 2-6f
common variables 7-4

function Chapter 9
relational
expression 3-3, 3-4

strings in 2-5

operators 3-3
repetition constant
resewed

words 2-1

library functions 2-1

operator names 2-1
restore

channel status 2-12
return

abnormal 5-4, 9-9

from function 5-4

from subroutine 5-4, 9-8
RETURN statement 5-4, 9-8
REWIND statement 6-23
runtime stack 1-1
runtime format specifications

6-6, 6-13

S format conversion
scale factor 6-17

segmentation 1-1

semicolon

indicating start of comment 1-2

in a Holbrith constant 1-2
shift ., 1-4
SIGN library function 9-7
SINH library function 9-5
SIN library function 9-5
slash in field description

INDEX -~ 8

6-10, 6-11

6-7, 6-14

INDEX - PART I (Continued)

source statement list (Continued)
text 1-1 DOUBLE PRECISION 1-2, 2-3
program, example 1-3 DOUBLE PRECISION COMPLEX 2-4
code, assembly 1-2 ENDFILE 6-24
SNGL library function 9-7 EQUIVALENCE 1-2, 2-7, 7-5
special symbols 1-3 EXTERNAL 7-6
specification statements FORMAT 1-2, 6-5
definition 7-1 FUNCTION
DIMENSION 7-1 GOTO 5-1, 5-2
COMPILER DOUBLE PRECISION 7-3 IF 5-3
COMMON 7-4 INTEGER 1-2, 7-1
EQUIVALENCE 7-5 ITEST 9-7, 9-11
EXTERNAL 7-6 LOGICAL 7-1
COMPILER NOSTACK 7-7 PARAMETER 2-1
SQRT library function 9-7 ' PAUSE 5-5
statement READ
assignment Chapter 4 READ BINARY
control Chapter 4 REAL 2-3
data initialization Chapter 8 RETURN 5-4
definition of 1-1 REWIND 6-23
format of Chapter 6 STOP 5-5
functions Chapter 9 SUBROUTINE
I/O of Chapter 6 TYPE 2-5
label of a 1-1 WRITE 6-1, 6-23
numbers 2-1 WRITE BINARY
order of 1-2 STOP statement 5-5
specification Chapter 7 storage
statement list allocation Chapter 7
ACCEPT 2-5 blank common, of 7-5
ASSIGN 5-2 blocks of 7-4
BLOCK DATA 8-2 common 7-4, 1-1
CALL 5-3 sharing of 7-4
COMMON 1-2, 2-6, 7-3 strings
COMPILER DOUBLE constants
PRECISION 1-2, 7-3 in CALL statement 2-5
COMPILER NOSTACK 1-2, 7-7 in DATA statement 8-1
COMPLEX 1-2, 2-3 in TYPE statement 2-5
CONTINUE ~ 5-4 blank space in 2-5
DATA 1-2, 2-7, 8-1 description 2-5
DIMENSION 1-2, 2-6 in source code

2-2
DO 5-5 with parameters 2-2

INDEX -9

INDEX - PART I (Continued)

strings (Continued)
data 2-1
literals 6-12
end of 2-6, 6-11
I/O of 6-11, 6-12
using S descriptor
subprogram
subroutine 1-1
function 1-1
block data 1-
task 1-1
subroutine
subprogram 1-1, 1-2
referencing a 5-4
statement 1-2, 9-8
subscript
bounds 7-1f
of an array
range of values 2-7
single 2-7
in multi dimensional 2-7
symbolic name 2-1

6-10, 6-11

1

T format descriptor 6-10, 6-11
TAB key 1-2
tabulation

to character position 8 1-1

using T descriptor 6-10, 6-11
TAN library function 9-5
TANH library function 9-5
task

subprogram unit 1-1

statement 1-2
TASK statement 1-2
teletypewriter [/O 6-20
termination

of program 1-1

statement 1-1

transfer of control Chapter 5

. TRUE, 2-5, 3-4
truth values 3-4
type

of file created 2-2
TYPE statement 2-5, 6-20

unconditional GOTO 5-1
unformatted I/O Chapter 6
unlabeled common 7-4
unsigned integers as labels 1-2
upper bound 7-1

\'

variables
blank space in 2-1
common 7-4
complex 2-4
definition 2-1
double precision 2-3
double precision complex 2-4
integer 2-2
logical 2-5
not declared as COMMON 1-1
real 2-3
size of array 7-2
vertical carriage control 6-15
WRBLK routine

WRBLK routine 2-11
WRITE statement 6-1, 6-23
WRITE BINARY statement 6-20

X (optionally compiled line) 1-1
X field descriptor 6-10, 6-11

Z field descriptor 6-10, 6-16

INDEX = 10

PART 1l

Chapter 1 - INTRODUCTORY CONCEPTS OF THE OPERATING SYSTEMS
Chapter 2 - SYSTEM AND DIRECTORY MAINTENANCE

Chapter 3 - FILE MAINTENANCE AND I/0

Chapter 4 - TASKING

Chapter 5 - SWAPPING, CHAINING, AND OVERLAYS

Chapter 6 - REAL TIME CLOCK AND CALENDAR

Chapter 7 - FOREGROUND/BA CKGROUND PROGRAMMING

CHAPTER 1

CHAPTER 3

TABLE OF CONTENTS

INTRODUCTORY CONCEPTS OF THE OPERATING SYSTEMS

Discussion of TEIMS .+ v v v i it vt ittt v enevsonoonnnsas 1-1
Multitasking et s e e e e et e e s e e as 1-1
Program Segmentation ittt oaoan 1-2
System DIiTeCtOTY « v v v v v v v v oo oo vt nnesnensans ceee.1-2
File Structurescoveeveenn se e aeean e 1-2
Dual PIrOgraminifg « « v o v v v oo v v o v nnoacosaennnassos 1-3
Mapping « ¢« o« v ot it it it i i e e e 1-3
User Status Table vuiiiini it oreesnas .. 1-3

FORTRANIV Error FIags . v v v i ittt it ittt v st oennnas 1-3

Directories, Disks, and Disk Partitionso v eveeennss 2-1
FORTRAN Calls Interfacing to System Directory Commands ., .. .2-2
Change the Current Directory (DIR) . . v v v v v v v v v nvnenen. 2-3
Initialize a Directory (INIT)t ve..2-3
Release a Directory (RLSE) « v i v i i ittt vttt teenennnn 2-4
Get the Default Directory/Device Name (GDIR) . « v v . v 0o u ... 2-4
Create a Subdirectory (CDIR). « » v v vt v it v et vt v v e onn .. 2-5
Create a Secondary Partition (CPART) e i iiii v 2-5
Get the Logical Name of the Master Device (MDIR) 2-5
Perform a Disk Bootstrap (BOOT) . v v v v v v v e e v v et awnnnn 2-6
Get the Name of the Current System (GSYS) + v v v v v v v v v v ann 2-6
Device Control . . v v v vt ittt ittt ittt i e et e n et 2-7
Disable Console Interrupts (ODIS)t v v vt vnennnnnnnn 2-7
Enable Console Interrupts (OEBL)ciuvien.n 2-7
Enable Spooling (SPEBL) .+ v v v vt et vt et oo neeenneeeenn 2-7
Disable Spooling (SPDIS) & v v v v vt vttt et et e ennnnn .. 2-8
Stop a Spool Operation (SPKIL) . « . v v v v .. C e e s e e e 2-8
User Interrupt SErviCing . v v v v o v v v e v oo st s o v o ononenns 2-8
Identifying a User Interrupt Device (FINTD) . . . oo v v v v v nn 2-9
Remove a Service Interrupt Device (FINRV) e 2-9
FILE MAINTENANCE AND I/0 CONTROL
Files, File Names . . v v o o o i v i it ittt i et ittt e e nnennns 3-1
Referencinga File o v it it i i it it e e it enenean 3-2
Referencing a File on Magnetic Tape or Cassette Units3-2
Links, Link Entries . « o v o v v ittt i ittt v e e e3-3
Linking Attributesot it ittt ittt e e e 3-3
File MaintenanCe « « v v v v v v v v v v ot vt a ot oennnaas veeee 34
Assign a New Name to the Multiple File Device (EQUIV). 3-4
Create an RDOS Disk File (CFILW). . v v v v v v v v v 0w v o34
Delete an RDOS Disk File (DFILW) . v v v vt i vt i vt et v ee e 3-5
Delete a File (DELETE)ttt i v o v e e v e 3-5
Rename a File (RENAME) o i i it ittt it i ie e inee 3-5
Create a Link Entry (DLINK) et et veeea3-6
Delete Link Entries in the Current Directory (DULNK). 3-6
Get File Directory Information for Given Channel (CHSTS) 3-6
Get Current File Directory Information (STAT). . . . v v v v v v n. 3-7
Update Current File Size (UPDATE) v it i vttt v inenns 3-8

CHAPTER 3

CHAPTER 4

CHAPTER 5

FILE MAINTENANCE AND 1/0O CONTROL (Continued)

File Attribute Maintenance0ccueue.. e e 3-8
Examine the Attributes of a File (GTATR) 3-8
Change, Add, or Delete File Attributes (FSTAT)........... 3-9
Change or Add Link File Access Attributes (CHLAT) 3-9

File Input/Output . o v v v v s v v v v v e v avoe v e e 3-10
Get the Name of the Current Input/Output Console

(GCIN, GCOUT) . v vt e vt et et o sannsanns 3-10

Opening Files iie it ittt et ennnessnsoonoenean . 3-10
Opena File (OPEN) . .. ittt ttneneereeoconenos 3-10
Opena File (FOPEN)ttt vennosoessnseonas 3-11
Open a File for Appending (APPEND) . , ., v... ve. . 3-12
Closing Files e e e e 3-13
Close @a File (CLOSE) . . v v vttt ettt neessoonnnsas . 3-13
Close a File (FCLOS) . v v i vt ittt i et e s et e tnnnsnaas 3-13
Close All Open Files (RESET) vt i ie i v v 3-13
Reading and Writing Blocks and Records000.. 3-14
Read a Series of Blocks (RDBLK) i v eeunannns 3-14
Read a Series of Records (READR, RDRW) 3-14
Write a Series of Records (WRITR, WRTR) 3-15
Write a Series of Blocks (WRBLK) 3-15

Free Format Cassette and Magnetic Tape I/O 3-16
Open a Cassette or Magnetic Tape Unit for

Free Format I/O(MTOPD) 3-16
Free Format Tape I/O(MTDIO) . . . vt vttt v v e v nneeons 3-17

TASKING

Multitasking Conceptso eeo.. e et 4-1
Task StatesS . v v v v vt vt st ot o nanonssnsnsonecsonsnn 4-1
Task Control BloCKS & . v v v vttt e e vnvasennssanoessas 4-1
Task Prioritiesot v vvvvveeseasennss e ae e 4-2
Task Schedulert et inenneertveneenanasnas 4-2

Task Execution Control. . . i v v v v vt v oo e e etesnennnonas .4-3
Writing a Multitask Programuoeivvieenenonnas 4-3
Task Activation (FTASK, ITASK, ASSOC) eenn 4-4
Task Activation Based on Time of Day (FQTASK) P
Start a Task after a Time Delay (START) R TV
Execute a Task at a Specified Time (TRNON) v0 v v 4-8
Task Suspension (SUSP, ASUSP, HOLD, WAIT, FLCELY)..... ,4-8
Ready a Task (ARDY, RELSE)....... v e e s e s s s ceee.a4-9
Task Priority Modification (PRI, CHNGE) e e e 4-10
Task Termination (KILL, AKILL, ABORT, EXIT).......... 4-11
Obtaining a Task Status (STTSK)c000e 0. c e e s e e 4-11

Intertask Communication (XMT, REC, XMTW) vv e ... 4-12

Sample Tasking Program et e e e e 4-14

SWAPPING, CHAINING, AND OVERLAYS

Program Swapping and Chainingccoeeu. c e 5-1
Program Swapping (SWAP, FSWAP)00 uen eo.0-1
Restoring a Swapped Program (BACK, FBACK, EBACK) 5-3
Program Chaining (CHAIN, FCHAN)ttt eeeos. .04
Returning to Level Zero (STOP, EXIT)0 v evenaen .54

ii

CHAPTER 6

CHAPTER 7

L0 o F: £
Numbering of Overlays within Overlay File
Overlays in a Single and Multiple Task Environment
Naming an Overlay (OVERLAY) . .o v e ittt i i oo
Opening an Overlay File (OVOPN) oo vttt v i v i e v v v nn
Closing an Overlay File (CLOSE) cvi it e e,
Loading Overlays in a Single Task Environment (OVLOD)
Loading an Overlay in a Multiple Task Environment

(FOVLD) v i vt e i ittt et ennnncennas
Releasing an Overlay Area (FOVRL) et e

Releasing an Overiay (OVKIL, OVKIX, OVEXT, OVEXX)..... 5

The Overlay Loader . .. v v v v ittt vt i ae s aiannnnn.
REAL TIME CLOCK AND CALENDAR

Introduction ce e e T T
Setting the Real Time Clock (FSTIM).. ... o0 ven ceee e
Setting the Real Time Clock (STIME). oo v i i iii e e e an
Getting the Time of Day (TIME) v i i v i i ii i ie v v v
Getting the Time (FGTIM) . v v v v vt vt i vttt et s vt ennonean .
Getting the Date (DATE) + v v vt i et i it i ittt i i i it eeenn
Setting the Date (SDATE). ¢ v v v v vttt ittt st naeanssanss
User/System Clock Commands. . v v o v v v e e e e nsveennnnnns
Define a User Clock (DUCLK) . v v v vt vttt s e v seososononos
Remove a User CIoCK (RUCLK) 4 v v v e vt et et v e vvonanssens
Examine the System Real Time Clock Frequency (GFREQ)

FOREGROUND/BACKGROUND PROGRAMMING

Introductory CONCePtS. « ¢ v v o e v oo ot o s a s o s veoessocossos
Foreground/Background Considerations in an Unmapped
Environment . « « v v v v o v et et e ne oo
Foreground/Background Considerations in a Mapped
Environment « « o v v v o e v v vt v et eeen e
Foreground/Background Calls « ..o vv v veneeens e .
Load a Foreground Save File (EXFG)c00eceeetene.
Load and Execute a Background Program (EXBG)......... .
See If a Foreground Program is Running (FGND) . .+ o ¢ v v v v v
Define a Communications Area (ICMN) et
Write a Message (WRCMN)o veee e fhe e .
Read a Message (RDCMN) ¢ « o e oo v v v v e o nos oo nvonnoaas
Write an Operator Message (WROPR)o vvoesann
Read an Operator Message (RDOPR) ceee e s e .

5-7

NN
U

'
Bk B W WD N NN

CHAPTER 1

INTRODUCTORY CONCEPTS OF THE OPERATING SYSTEMS

FORTRAN IV can be used in conjunction with DGC 's three operating systems, namely, the Real Time
Disk Operating System, the Real Time Operating System, and the Stand-alone Operating System.
FORTRAN IV can also be executed in stand-alone mode (without the use of an operating system).

The Real Time Disk Operating System (RDOS) is a disk-oriented, modular, multitasking system. It
is possible to segment FORTRAN IV programs under RDOS into overlays which are stored on disk and
brought into a fixed area of core as needed at execution time, Any FORTRAN [V program under RDOS
can suspend its own execution and either invoke another distinct program (called program chaining)

or call for a new section of itself (called program swapping).

Two programs may be executed concurrently under RDOS, a foreground and a background program.
The two programs may have equal priority or the foreground program may have the higher priority
of the two. Foreground and background programs are hardware protected from ear» ather and from
the operating system when the system is a NOVA* 840 computer with a Memory Management and
Protection Unit (MMPU). This hardware protection enables a debugged program to be run in the
foreground, while a lower priority program is constructed and debugged in the background.

The other DGC operating systems (SOS and RTOS) provide the user with compatible subsets of RDOS,
The Stand-alone Operating System provides a single program runtime facility in a non-disk environment,
while RTOS provides a multitasking, memory-only real time system. All file structures, task concepts,
and other features described for RDOS FORTRAN IV also apply to an RTOS system unless otherwise
specified in this manual.

DISCUSSION OF TERMS

Multitasking

Multitasking provides an advanced method of having multiple execution paths through a user program.
Assume a program A to be operating perhaps putting together statistical information. Somewhere along
the line it determines that it needs another routine (or task) to be called in to assist it in performing some
calculation. The second task may then be activated, while the first task may or may not cease its
operation. In fact, both tasks could be operating concurrently, each contending for the system's
resources (CPU time, 1/0 time, core storage, etc,).

Multitasking allows a user to coordinate many independent tasks by having cach task share subroutines,
the access of data buffers, and disk files. Programmable control of tasks is made possible by calls
which activate, make ready, and suspend a task, and those that examine the status of tasks on a group
or individual basis. Other calls to the task monitor allow independently executing tasks to be
synchronized or to exchange information.

System resources in the form of CPU time and I/O peripherals are allocated to each task under a user-
specified task priority structure. The user can also define task subprograms in assembly language

for separate incorporation as task units.

* NOVA, SUPERNOVA, and NOVADISC are registered trademarks of Dara General Corporaticn.

1-1

DISCUSSION OF TERMS (Continued)

Swapping and Chaining

An executing program may invoke another program that exists as a save file on disk. The invoking
program is swapped out to disk and the invoked program executes. When the invoked program ter-
minates execution, the calling program is restored to core. Up to five levels of program swaps
are permitted.

In chaining, the invoking program is not saved. It simply executes until it invokes another program
that exists as a save file on disk. There is no limit to the number of programs that may be chained.

Overlays

Another method of overwriting resident core images is the overlay facility. Unlike program swap-
ping or chaining, the overlay facility associates disk files that are the user overlays with a root
program that remains core resident. Overlays overwrite each other but do not overwrite the root
program. Both the overlay facility and swapping and chaining are described in detail in Chapter 5.

System Directory

Each partition or subdirectory has a directory to the files of the partition or subdirectory; the
directory is named SYS.DR. The information within every SYS.DR includes file names, the length
in bytes of the files, and the file's attributes and characteristics.

The structure of SYS. DR for both system file directories and subdirectories is identical. That is,
SYS.DR is a randomly organized file, and the first word in each block of the file is the number of
files that are listed in this block of SYS.DR. Following this word is a series of 22 octal word
entries, called user file descriptions or UFDs, which describe each file. The contents of the UFD
differ somewhat for link entries; links are described in Chapter 3.

File Structures

There are three types of file organizaiion: sequential, random, and contigucus. Each type of fil
of 256-word blocks. The organization of these files is described in detail in the RDO
and is only briefly discussed here.

wn
©
=}
o
£,
<
ot
D O
w
1
o
S
S
S
3
w0

Each block of a sequentially organized file has a 255-word data area followed by a word containing a
pointer to the next block. The pointer is to the logical block address assigned by the system and derived
from the physical sector/track address of the disk. Logical addresses need not be accessed sequentially;
a sequentially organized file might have the last word of block 7 pointing to block 14 which in turn points
to block 4, etc. Sequential I/O transfers are buffered, i.e., only whole blocks are transferred and each
one is read into the buffer first.

Randomly organized files utilize all 256-words of the block for data. The blocks are accessed by a
file index which is created when the random file is created. The file index is a sequentially organ-
ized file of pointers to the data blocks of the random file. Each random block is assigned a sequential
positive integer by its position within the file. The first block is block 0. In processing randomly
organized files, two disk accesses are generally all that is required for reading and writing of each
block: one to access the file index and one for the block of data itself. If the index is main-memory
resident (having previously been read into a system buffer), only one access is necessary.

Contiguously organized files use all 256 words of a block for data. These are files whose blocks may be ac-
cessed randomly but without need for a random file index. Contiguous files are composed of a fixed number
of disk blocks, located at an unbroken series of disk block addresses. The files cannot be expanded nor

1-2

DISCUSSION OF TERMS (Continued)

File Structures (Continued)

reduced in size. Since the data blocks are at sequential logical block addresses, all that is needed
to access a block within a contiguous file is the address of the first block (or the name of the file)
and the relative block number within the file.

All 1/0O operations which can be performed on randomly organized files can be performed on con-
tiguously organized files, but the size of the contiguous file remains fixed. Contiguously organized
files have the advantage of usually requiring less time for accessing blocks within a file, since
there is no need to read a file index.

Dual Programming

Dual programming, also referred to as foreground/background programming, allows two programs
to execute concurrently, sharing system resources. One of these concurrently operating programs
resides in the foreground and the other resides in the background. Either the foreground program
has a higher priority than the background program, or the foreground and background programs may
have equal priority in competing for system resources.

The division between the foreground and background programs may be either a software memory
partition (created during the relocatable load process) or a hardware partition. The hardware
partition exists when a Memory Management and Protection Unit (MMPU) is included with the Nova
840 system.

Mappin,

When Nova 840 systems include an MMPU, there are two modes for addressing memory. The modes
are: absolute mode and user (mapped) mode. In absolute mode memory addresses are unmapped,
with only the lower 31K of memory addressable. In user (mapped) mode, the background and the
foreground programs can each be allotted up t< 31 blocks of memory of 1024 (decimal) words each.
Addresses are mapped; each user program is aware of its portion of address space only and therefore,
cannot reference locations outside its own logical address space.

User Status Table (UST)

Each UST contains informatipn describing each user program including the program's length, the
number of tasks required, and the number of I/O channels required. Each program has an associated
UST.

FORTRAN IVERROR FLAGS

Many of the run time calls contain as part of their format an integer variable error that returns an
error code. The possible error codes returned in the integer variable error are:

Indeterminate error

Call successfully completed
System action in progress
RDOS system error code + 3

w N~ O

Error code 0 will be returned only as a result »f a bug within the user program. Error code 1
indicates that the specified ~peration was successfully completed, therefore encountering no error
condition. Error code 2 indicates system activity in progress; this is actually only momentarily
placed within error during the time it takes to complete the operation. Error codes 0, 1, or 3 and
higher are the only codes returned at completion of a call. An error code of 3 or higher indicates
one of the RDOS system error codes, e.g., FORTRAN error 3 is RDOS error 0, FORTRAN error 4
is RDOS error 1, etc. A list of all error codes can be found in Appendix A.

1-3

CHAPTER 2

SYSTEM, DIRECTORY, AND DEVICE CONTROL

DIRECTORIES, DISKS, AND DISK PARTITIONS

A disk is a device (fixed or moving head) capable of storing information in the form of files. Total
disk space (except the first six blocks which are reserved for HIPBOOT) is labeled the primary
partition.

primary partition

One or more portions of this primary partition may be designated as secondary partitions (created
by a call to CPART).

N
secondary
partition
primary partition
| secondary
] partition
S

Secondary partitions are fixed areas of contiguous file space. Within a partition a user may be
allocated a subdirectory (created by a call to CDIR). Subdirectories allow users to share a
partition's file space on a variable basis.

Each partition and subdirectory has a file directory called SYS. DR which contains the following
types of information:

SYS.DR for the primary partition contains information concerning each file contained
within the primary partition, a list of each subdirectory associated with the primary
partition, and a list of the names of each secondary partition.

SYS.DR for each secondary partition contains information concerning each file within
that secondary partition, and a list of all subdirectories associated with that secondary
partition.

Each subdirectory within a partition has its own SYS. DR containing a list of all files of
that subdirectory.

DIRECTORIES, DISKS, AND DISK PARTITIONS (Continued)

A bit allocation map (called MAP. DR) is contained within each partition. MAP.DR keeps a current
record of which disk blocks are in use and which are free for data use within each partition. The
primary partition's MAP, DR keeps a record of total disk file space except blocks 0 through'5. These
six blocks contain the disk bootstrap program which can never be destroyed since the system is
unaware of its existence. Subdirectories use the parent partition's MAP.DR as they do not have one
themselves.

Since all directories (except the primary partition's directory) are listed in a parent directory,
there is a hierarchy among directory specifiers. Primary partitions are at the highest level. Fol-
lowing these are primary partition subdirectories and secondary partitions. Lowest of all are the
secondary partition subdirectories.

Level 0 rimary partition—
Level 1 subdirectories secondary partition secondary partition
1 2
Level 2 subdire¢ ory, subdirectory2 subdiréétorya sua\irectory 4

To initialize a directory so that the files it contains can be referenced, the user must initialize all
directories in a path from the closest higher level directory which has already been initialized. If
necessary, the primary partition itself must first be initialized. Thus if in the above illustration a
user wished to access files in subdirectory] and no directory in this file space has been initialized,
the following directories must be initialized in the following order: primary partition, secondary
partition;, subdirectory;.

A user can also access a file using links, as described in Chapter 3. In brief, a common application
of a link entry is to permit the conservation of disk file space by allowing a single copy of a commonly
used disk file to be linked to by users in the same directory or partition, or in other partitions. Link
entries may point to other link entries, with a depth of resolution of up to 10 decimal. The entry which
is finally linked to is called the resolution entry.

Secondary Partition Secondary Partition 1
File Directory File Directory Subdirectory
r LINK A & | LINKB e LINK C

Primary Partition
File Directory Subdirectory

2 ASM.SV P A— LINK D

ASM. SV /'_

FORTRAN CALLS INTERFACING TO SYSTEM DIRECTORY COMMANDS

FORTRAN calls to run time routines that interface to system directory commands are described in
this section; they are:

BOOT - perform a disk bootstrap

CDIR - create a subdirectory

CPART - create a secondary partition

DIR - change the current directory

GDIR - get the current default directory name

INIT - initialize a directory or magnetic tape device
MDIR - get the name of the master device

RLSE - release a directory or magnetic tape device

2-2

Changc the Currcnt Directory (DIR)

Disk files are accessed by file name., Under RDOS a disk file name may reside in onc of three kinds of di-
rectories: the primary partition’s directory, the secondary partition’s dircctory, or a subdirectory’s
directory, The primary partition is a fixed or moving head disk device. Secondary partitions and
subdircctories result from partitioning of disk space of a primary partition among users.

When RDOS is hootstrap 1
093-000075), a current directory is established. l*l]cb in thc current dlrcctorv may be accebsed by
file name, e.g., if the current directory is DPO, then FILEY in DPO is accesscd by the name FILEY,
However, files in dircctories other than the current directory can be accessesd enly by prefixing the
file name with the specifiers of the directorics in which they are found, e.g.,

DPIL:PART2:FIX

a hootstran
st ad HIPBOO'T or

bed (using HIPBOOT or the

where: DP1 is the primary partition and PART2 is the secondary partition containing the name of file
FIX.

The user can change the current directory with a ce1l to DIR. Thus if the current directory is changed
from DPO to PART2 of DP1, the user may access FIX without directory specifiers prefixed to the disk
file name. A call to DIR also initiziizes the directory if it was not previously initialized. The call to
DIR has the format:

CALL DIR (directoryname, error)

where: directoryname is the name of a file or device that is to become the new current directory.

error is an integer variable which will return one of the error codes upon completion of
the call.

Examples of calls to DIR follow:

CALL DIR ("DP0", IER)
CALL DIR ('SPART', IER)

Initialize a Directory (INIT)

Before any file can be referenced, its directory must be initialized. Initialization opens a directory,
specifying its name to the system for future access, Initialization can be either full or partial

Full initialization is used to introduce new disk packs or cartridges, magnetic tapes, or cassettes

to the system; or it can be used to erase all existing files releasing their space from the partitions
and subdirectories. Partial initialization is used to reintroduce to the system an entire unit with
valuable file contents (i.e., a primary partition) or to reintroduce a portion of the primary partition,
namely, a secondary partition or subdirectory.

Although more than one directory can be initialized at any one moment, there can be only one
current default directory. The current default directory is the directory to which all file ref -
erences are directed in the absence of additional directory specifier information.

A directory can be initialized by executing a call to INIT. The call has the format:

CALL INIT (directoryname, type, error)

where: directoryname is the name of the directory file or the directory device to be initialized.

Initialize a Directory (INIT) (Continued)

type is an integer constant or variable whose value determines the type of initialization
to be performed:

-1 full initialization
0 partial initialization

error is an integer variable which will return one of the error codes upon completion of
the call.

Partial initialization with overlays applies only to directory devices. Full initialization clears all
previous files and information from the specified directory device. Subdirectories (non-device
directories) are always partially initialized. See the RDOS User's Manual for further information
on the initialization of directories. Examples of calls to INIT are:

CALL INIT ("DP1", 0O, IER)
CALL INIT ("PARTITION", 0, IER)
CALL INIT ("MTO", -1, IER)

Release a Directory (RLSE)

The user can terminate access to files on a given directory by releasing the directory. (All files
of a directory must be closed before the directory can be released.) The call to RLSE has the
format:

CALL RLSE (directoryname, error)

where: directoryname is the name of the directory or directory device to be released.

error is an integer variable which will return one of the error codes upon completion of
the call.

Releasing a directory is the reverse of initializing it. After a directory is released, files in that
directory can only be accessed after initializing (CALL INIT) the directory again. An example of
a call to RLSE is:

CALL RLSE "MT1", IER)

In the case of magnetic tape or cassette units, the RLSE call will rewind these tapes.

When the current directory is released, the master directory becomes the current directory until a
new directory is specified explicitly.

Get the Current Default Directory/Device Name (GDIR)

A call to the routine GDIR returns the name of the current default directory/device. The format of
the call is:

CALL GDIR (array, error)

where: array is the name of the array which will return the name of the current default directory/
device. array must be large enough to accommodate 13 bytes.

error is an integer variable which will return one of the error codes upon completion of
the call.

Get the Current Default Directory/Device Name (GDIR) (Continued)

An example of a call to GDIR is:
CALL GDIR (IAR, IER)

Create a Subdirectory (CDIR)

A subdirectory is a subset of the parent partition’s file space. Unlike secondary partitions,
subdirectories have no defined amount of file space. Instead, subdirectories take file space
from the parent partition as required and release the space when it is no longer needed. A
call to the routine CDIR causes an entry to be made in a primary or secondary partition's file
directory for a subdirectory. The format of the call is:

CALL CDIR (name, error)

where: name is the name of the subdirectory

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to CDIR is:

CALL CDIR ("SDIR", IER)

Create a Secondary Partition (CPART)

RDOS permits the parceling of disk file space among several users, on both a fixed and semi-
variable basis. Fixed parcels of a contiguous disk file are called secondary partitions.

A call to CPART creates a secondary partition and enters the name of the secondary partition in
the primary partition's system directory. The primary partition can never be deleted; however,
secondary partitions and subdirectories can be deleted. If a secondary partition is deleted, any
subdirectories within that secondary partition are also deleted. The format of the call to CPART
is:

CALL CPART (name, size, error)

where: name is the name to be assigned to the newly created secondary partition.

size is an integer constant or variable indicating the number of contiguous blocks in
the secondary partition.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to CPART is:
CALL CPART ("SECP", 14, IER)

Get the Logical Name of the Master Device (MDIR)

Since inter-device bootstrapping is possible under RDOS, the current master device may not be
the master device which was defined at the time of system generation. A call to the routine MDIR
permits the user to determine the current name for the current master device. The format of the
call is:

CALL MDIR (array, error)

Get the Logical Name of the Master Device (MD‘IR) (Continued)

where: array is the name of an array which will return the name of the master device.

error is an integer variable which will return one of the error codes upon completion
of the call.

The master directory device is a primary or a secondary partition which becomes the current
directory device after either a full system initialization or a disk bootstrap. The master device
contains all of the system overlays.
An example of a call toc MDIR is:

CALL MDIR (IAR, IER)

Perform a Disk Bootstrap (BOOT)

A call to the BOOT routine causes all open files in a currently executing system (both foregfound
and background)* to be closed, all directories to be released, and all system 1/0 to be reset.
Control is then transferred to HIPBOOT which will bootstrap a new operating system.

Bootstrapping may be performed with or without operator intervention. With operator intervention,
the format of the call to BOOT is:

CALL BOOT (partition, _e_xlgl_')
where: partition is the name of the partition containing HIPBOOT.

error is an integer variable that will return one of the error codes upon completion of the call.
An example of a call with operator intervention is:

CALL BOOT ("DP0", IER)

which will load HIPBOOT from moving head disk unit 0. When loaded, HIPBOOT queries the user with
FILENAME?, requesting the name of the system to be bootstrapped. A system file response is then given
by the user as described in Appendix D.

Without operator intervention, the following conditions must be fulfilled: (1) the operating system to
be bootstrapped must be in a primary partition, (2) HIPBOOT must be in the same partition as the
operating system, (3) the default operating system, SYS.SV, must be the system to be bootstrapped,
(4) the user must have placed -1 in the CPU data switches (all switches in up position), and (5) the
user must provide a save file named RESTART. SV that will perform whatever restart procedures are
necessary to resume control of the real time process that was interrupted. When HIPBOOT bootstraps
SYS.SV, the new system control will be chained to RESTART.SV, RESTART.SV must be in the same
primary partition with SYS.SV. The time and date are not updated automatically and must be set by
the user.

With operator intervention, the format of the call to BOOT is the same as without operator intervention,
except that the partition specified must contain, HIPBOOT, SYS.SV and RESTART. SV.

Get the Name of the Current System (GSYS)

A call to the GSYS routine will return the name of the current operating system. The name returned
will consist of the name plus its two-character extension terminated by a null terminator. The format
of the call is:

CALL GSYS (array, error)

*BOOT should not be issued from the background when the foreground is active.

2-6

Get the Name of the Current System (GSYS)XContinued)

where: array is the name of the array which will return the name of the current operating
system. The array must be large enough to accommodate 15 octal sytes.

€rror is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to GSYS is:

CALL GSYS (IAR, IER)

DEVICE CONTROL

Disable Console Interrupts (ODIS)

A call to the routine ODIS will permit the user to prevent console interrupts from occurring within
his program environment. CTRL A, CTRL C, and CTRL F console interrupts may not occur
unless reenabled by a call to OEBL. The format of the call is:

CALL ODIS

Enable Console Interrupts (OEBL)

By default, when a system is first bootstrapped, console interrupts CTRL A, CTRL C, and CTRL F
are enabled. If console interrupts have been disabled by a call to the routine ODIS, this call re-
enables them within its program environment. The format of the call is:

CALL OEBL

Enable Spooling (SPEBL)

Simultancous peripheral operation on-line {(spooling) has been impiemented for the following devices:

$LPT $LPTI
$PLT $PLTI
$PTP $PTP1

$TTO $TTOL
$STTP $TTPL

Spooling permits the queuing of data for one or more spoolable devices, making the CPU available for
further processing while those devices receive the queued data, Spooling occurs only when no other
system operations are ready. (System operations are given a higher priority than any user tasks.)
Spooling is possible in a single program environment only if two or more system stacks have been
allocated at SYSGEN time; a dual program environment requires three or more system stacks. When
an insufficient number of system stacks is allocated, all spooling commands become no-ops. Since
spooling requires disk buffers, the system will disable spooling if no free disk space is available at
the time spooling is attempted. The user may re-enable spooling at some later time when sufficient
disk buffer space becomes available.

A call to SPEBL will enable spooling on a device for which spooling had been previously disabled. The
format of the call is:

CALL SPEBL (devicename, error)

DEVICE CONTROL (Continued)

Enable Spooling (SPEBL) (Continued)

where: devicename is the name of the device which the user wishes to be a spoolable device.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to SPEBL is:
CALL SPEBL ("$LPT", IER)

Disable Spooling (SPDIS)

The call to SPDIS causes a spoolable device to discontinue spooling its output. If this call is issued
while a device is spooling, execution of the call will be delayed until all data waiting to be spooled has
been output. Data output to the device before the spooled data has been exhausted will itself be spooled
to the output device, delaying execution of the call to SPDIS even longer. The format of the call is:

CALL SPDIS (devicename, error)

where: devicename is the name of the device which will no longer be a spoolable device.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to SPDIS is:
CALL SPDIS ("$LPT", IER)

Stop a Spool Operation (SPKIL)

It is possible to stop a spool operation which is currently being performed, losing any data which
was in the output queue, The format of the call to SPKIL is:

CALL SPKIL (devicename, error)

where: devicename is the name of the device currently spooling the output which is to stop.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to SPKIL is:
CALL SPKIL ("$LPT", IER)

USER INTERRUPT SERVICING

Users who wish to incorporate non-SYSGENed devices into real time FORTRAN programs must
provide for the interrupt servicing to be done in assembly language, and for the creation of a three-
word device control table (DCT) as explained in the RDOS User's Manual, 093-000075.

Interrupt requests from special (non-SYSGENed) devices do not, for the most part, change the status
of tasks in a FORTRAN multitask environment. Instead, such interrupts freeze the environment until
servicing of the interrupt is completed and the multitask environment is unfrozen. Likewise, all
other tasks will resume their former states when the environment becomes unfrozen, unless the user
transmits a message to one of them by means of the transmit interrupt message command , IXMT.

USER INTERRUPT SERVICING (Continued)

It is still necessary, however, to identify the interrupt device to the system by means of a FORTRAN
call (FINTD) and it is possible to remove this device from the system by means of another FORTRAN
call (FINRV). Interrupt servicing and the FORTRAN run time routines FINTD and FINRV may be used
in both single and multitask environments.

Identifying a User Interrupt Device (FINTD)

The FINTD routine is used to identify to the system a device that is capable of generating interrupt
requests but which was non-SYSGENed. The format of the call to FINTD is:

CALL FINTD (device-code, dct)

where: device-code is an integer variable or constant which is the code of the user device,
where device-code is less than 63.

det is the name of a three-word device control table which may be a dimensioned
array or an externally defined item. The dct cntrics arc defined in the RDOS
Manual, 093-000075. Since the third entry is an address, the dct is usually

handled in assembly language and defined as an external to the FORTRAN program
rather than an array.

Those devices that were not identified to the system at SYSGEN time must be made known to the
system by the FINTD routine. FINTD causes an entry for the specified device code to be placed in
the system interrupt vector table.

M example of a call to FINTD is:

CALL FINTD(62, IDDCT)
where: IDDCT is defined in the program either as
EXTERNAL IDDCT
or

DIMENSION IDDCT (3)

Note that if IDDCT is an array, it must always be accessible in case of an interrupt, i. e., it should
be in labeled or unlabeled COMMON.

There is a special usage of a call to FINTD to provide for automatic restart of user-defined devices and
system devices to which power-up service is not extended after a power failure. Users having

the power monitor/automatic restart hardware may make use of this call to provide power-up

service in a user-written routine. The call has the format:

CALL FINTD(63, name)

where: name is the name of an externally declared user-written routine that provides the power-
up interrupt servicing.

63 is the device code of the CPU.
An example of this special usage call to FINTD is:

EXTERNAL IPRUP
CALL FINTD(63, IPRUP)

2-9

USER INTERRUPT SERVICING (Continued)

Remove a Service Interrupt Device (FINRV)

A previously added (FINTD) user interrupt device can be removed from the system interrupt vector
table by a call to FINRV. The format of the call to FINRV is:

CALL FINRV (device-code)

where: device-code is an integer variable or constant which must be the device code of a previously
identified user interrupt device.

If an attempt is made to remove a SYSGENed device or if the device code argument is not within the
legal range of user interrupt devices (less than 63), a fatal run time error occurs and execution
is terminated.

An example of a call to FINRV is:

CALL FINRV (23)

2-10

FTTA DT 2
vonrion o

FILE MAINTENANCE AND I/O ‘CONTROL

FILES, FILE NAMES

A file is a collection of information or any device receiving or providing this information. AIll devices
and disk files are accessible by file name. File names are hyte strings of ASCII characters, packed
left to right and terminated by a carriage return, form feed, space or null. Allowable ASCII char-
acters are all upper case alphabetics, all numerics, the character dollar sign ($) and the character

colon (:).

A file name may consist of any number of characters, but only the first ten are considered significant
(in addition to a two-character extension preceded by a period). Therefore, file names must be unique
within their first ten characters.

ABCDEFGHI] is equivalent to ABCDEFGHIJKL

I/0 devices are given reserved device names; the list of these reserved names is given below. Where
second devices/controllers are allowed, the name appears in the second column.

Device Reserved Device Name
incremental plotter $PLT $PLT1
teletypewriter punch $TTP $TTP1
card reader $CDR $CDR1
teletypewriter printer or display unit screen $TTO $TTO1
teletypewriter or display unit keyboard $TTI $TTI
80 or 132 column line printer $LPT $LPT1
high-speed paper tape reader $PTR $PTR1
high-speed paper tape punch $PTP $PTPL
teletypewriter reader $TTR $TTR1
magnetic tape unitn (n =0 to 7) MTn MT1n
cassette unit n (n = 0to 7) CTn CTin
DGC NOVADISC Tixed head unit DKO DK1
moving head disk unit n DPn (11:0-3) DPn (13:4-7)
input dual processor link $DPI -
output dual processor link $DPO
multiprocessor communications adapter

receiver MCAR MCAR1
multiprocessor communications adapter

transmitter MCAT MCAT1
asynchronous data communications

multiplexor QTY:nn (nn = 0 - 64 = line number)

Under FORTRAN IV, when writing a file name, that file name must appear either within quotation
marks (quotes), or within apostrophes (sometimes referred to as single quotes). For example:

"PTP" *CTO:6° "ABC" "TEST" *TEST.SV’

In the call formats appearing on following pages, the variables filename and devicename often appear.
For example:

CALL DFILW (filename, error)
CALL SPEBL (devicename, error)

FILES, FILE NAMES (Continued)

File names and device names follow the RDOS naming conventions, i.e., the name is a string of
upper case ASCII alphabetic characters, numerals or the $§ character. While the file name may be
any length, only the first 10 are considered significant. A literal file or device name appearing in
a FORTRAN IV call is enclosed in quotation marks or apostrophes or the file name may be passed
as part of a string array.

Referencing a File

A file must be opened (i.e., associated with a channel number) before it can be accessed. The

channel number may have been pre-assigned (see list below) or may be user-assigned in a call to

OPEN or FOPEN. Any of the 64 channels (0-63) can be associated with any file or device in a call to OPEN
or FOPEN (even if the file/device already has a pre-assigned number). The pre-assigned channel/device
number is temporarily suspended for the duration of the call to OPEN or FOPEN (e.g., a call to CLOSE,
FCLOS, or RESET will disassociate the channel/device number).

The pre-assigned channel numbers (with foreground associations listed within parentheses) are as
follows:

Device Channel
$PLT 6
$TTP 8
$CDR 9
$TTO ($TTOL) 10
$TTI ($TTIL) 11
$LPT 12
$PTR 13
$PTP 14
$TTR 15

Note that when issuing a TYPE statement, channel 10 is associated with either $TTO or $TTO1
(depending on whether executing in the background or the foreground) and when issuing an ACCEPT
statement, channel 11 is associated with either $TTI or $TTIl. Both of these channel associations
are made without issuing a call to the routine FOPEN or OPEN.

Referencing a File on Magnetic Tape or Cassette Units

Files are placed on tape in numeric order (0 - 99). A given file is referenced by the device name
followed by a colon followed by the file number:

CTn:m (CTln:m) or MTn:m (MTln:m)
where: 1 is the unit number (0to7)

m is the file number (0 - 99)

CTn, CTln, MTn, and MTIn are the default names of the particular devices. It is possible to
change these device names by a call to EQUIV.

FILES, FILE NAMES (Continued)

Links, Link Entires

Users can access any disk file, magnetic tape file, or cassette file by its name or by several different
names (called aliases). By using link entries, users can access files outside their own directories.
(For those readers not familiar with directories, turn to Chapter 2.) A single copy of a commonly
used disk file can then be linked to by several users in the same or in different partitions, resulting
in a conservation of total disk file space.

These link entries may in turn point to other link entries, and so on, up to a depth of ten (decimal).
This depth is referred to as the depth of resolution, as the final file linked to is called a resolution
file, or resolution file entry.

ABC.
yd primaty LINK 12
LINK 13 e secondary
Sliil?- . //'_\ partition
o TINK L LINK L1
Sub- secm}d.ary
directory partition

Link entries are created by a call to DLINK, and can be deleted by a call to DULNK.

Whenever a link is to be resolved (i.e., when the link is opened), the directory containing the resolution
entry is initialized by the system if not already initialized. However, when the link entry to this file

is created, the pertinent directory containing the resolution file need not be initialized, in fact, the
resolution file need not even exist at this time, The link entry name must be unique within its own
directory.

Looking at the diagram above, four links exist to the resolution entry for the file ABC.SV. In order
for any given link to be resolvable, all intermediate links must be resolvable. Thus, if LINK L1 is
unlinked, LINK L is no longer resolvable. LINK L2 and LINK L3 will be resolvable at that point,
however.

Each resolution entry contains two kinds of attributes:

resolution file attributes
link access attributes

Resolution file attributes apply to direct users of files. Link access attributes specify file attributes
for users linking to these files. The attributes for the resolution entry are set when the resolution
file is created and could have been subsequently changed by the user (by a call to FSTAT). Link
access attributes are initially set to zero, but are subsequently changed by the user by a call to
CHLAT).

After a user has opened a file via a link entry, that file's attributes can be changed via a call to
FSTAT. These attributes are in effect for only the length of time the file is open via the link entry.

FILE MAINTENANCE

Assign a New Name to a Multiple File Device (EQUIV)

A call to the routine EQUIV assigns a temporary name to a multiple file device, permitting unit
independence during the execution of a FORTRAN program. Thus magnetic tape file references
might be made to temporary name MTAPE in a FORTRAN program, with assignment to a specified
magnetic tape transport unit (¢.g., MT6) at run time by means of a call to EQUIV. No temporary
name can be assigned to the master device, : ’

The call must be issued before the device is intitialized. Temporary names persist until either a
disk bootstrap, release, or new temporary name assignment is made. The format of the call is:

CALL EQUIV (namel, name2, error)

where: namel is the reserved or most recently assigned name of the multiple file device.
name? is the temporary name of the multiple file device.

error is an integer variable which will return one of the error codes upon completion
of the call.

The devices which can be equivalenced are:
cT0 - CT7, CTI10 - CT17
MTO - MT7, MTI0 - MT17
DPO - DP7
DKO0, DK1
An example of a call to EQUIV is:
CALL EQUIV ("MT6", "MTAPE", IER)

Create an RDOS Disk File (CFILW)

An RDOS disk file is created by executing a call to the CFILW routine. The call has the format:
CALL CFILW (filename, type t , size }, error)
where: filename is the name to be assigned to the new file.

type is an integer constant or variable whose value indicates the type of the file to be
created, either:

1 Sequentially organized file
2 Randomly organized file
3 Contiguously organized file

size is an integer constant or variable giving the size iv. rmber of blocks (256 words) of
a contiguously organized file. This argument is used only for type 3 (contiguous) files.

error is an integer variable which will return one of the error codes upon completion
of the call.

3-4

FILE MAINTENANCE (Continued)

Create an RDOS Disk File (CFILW) (Continued)

The name filename must be unique with respect to all other file names in the system. The size of a
contiguously organized file must be specified by size and cannot be changed after the file has been
created. An example of a call to CFILW is:

CALL CFILW ("Y10", 3, 20, IER)

Delete an RDOS Disk File (DFILW)

An RDOS disk file may be deleted by issuing a call to DFILW. The file must be closed before being

deleted, The call has the format: o

CALL DFILW (filename, error)
where: filename is the name of the file to be deleted.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to DFILW is:
CALL DFILW ("DATA12", IER)

Delete a File (DELETE)

Files may be deleted using the library routine DELETE (although DFILW is preferred to DELETE).
The call takes the form:

CALL DELETE (filename)
where: filename is the name of the file to be deleted.
The file specified will be deleted from the system directory if it exists and is not open. Only closed
files can be deleted. If the file is currently open, an error message will be returned. An example

of a call to DELETE is:

CALL DELETE ("DATAFILE")

Renaming a File (RENAM)

A disk file may be renamed by executing a call to the RENAM routine. The format of the call is:

CALL RENAM (oldfilename, newfilename, error)

where: oldfilename is the file name that is to be changed.
newfilename is the new name which is to be assigned to the file.

error in an integer variable which will return one of the error codes upon completion of
the call.

An example of a call to RENAM is:

CALL RENAM ("TEST", "SORT", IER)

FILE MAINTENANCE (Continued)

Create a Link Entry (DLINK)

A call to the routine DLINK creates a link entry in the current directory to a file in another
directory. The file being linked to (i.e., the resolution entry) may have the same name as that
specified in the link entry, or the link and file names may differ (i.e., the link entry name is an
alias.) No attributes are applied to a link except the link characteristic. All access rights to
the linked file are determined by an inclusive OR of the resolution entry's attributes and the link
access attributes of the resolution entry. (Link access rights of each resolution entry can be
altered by means of a call to CHLAT.)

The format of the call to DLINK is:
CALL DLINK (namel, { name2,} error)
where: namel is the name of the link entry.

name?2 is the name of the alternate directory, alternate partition, or the alias name.
name?2 is omitted if the resolution entry has the name namel in the current primary partition.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to DLINK is:
CALL DLINK ("ABC.SV'", "ABB.SV", IER)

Delete Link Entries in the Current Directory (DULNK)

This call deletes a link entry (created earlier by DLINK) in the current directory. This call does not
delete other links of the same name in other directories. Care must be exercised to ensure that
the link being deleted is not required by links further removed from the resolution entry, or else the
deletion of this link will render these more remote links unresolvable. The format of the call is:

CALL DULNK (name, error)
where: name is the name of the link entry to be deleted.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to DULNK is:
CALL DULNK ("ABC.SV", IER)

Get File Directory Information for a Given Channel (CHSTS)

A call to the routine CHSTS returns a copy of the current directory status information for whatever
file is currently opened on a specified channel. The format of the call is:

CALL CHSTS (channel, array, error)

where: channel is an integer constant or variable whose value specifies the number of the channel
on which the device was opened.

array is an integer array which will return a copy of the 22 octal word UFD for the
current file. (See chart for STAT call.)

FILE MAINTENANCE (Continued)

Get File Directory Information for a Given Channel (CHSTS) (Continued)

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to CHSTS is:

CALL CHSTS (ICHAN, IAR, IER)

Get Current File Directory Information (STAT)

A call to the routine STAT allows the user to get a copy of the current directory status information
for a specified file. This call causes a copy of the 22 (octal) word UFD to be written into a user-
specified area. The file whose UFD is heing copied need not he open at the time thig call iz issued,
If the file is open, however, the information returned is a "snapshot” of the UFD as it existed at
the time of the most recent OPEN.

Following is a template of the UFD with displacement mnemonics:

Displacement Mnemonic Contents
0-4 UFTFN File name
5 UFTEX Extension
6 UFTAT File attributes
7 UFTLK Link access attributes
10 UFTBK Number of the last block in the file
11 UFTBC Number of bytes in the last block
12 UFTAD Starting logical block address of the file
(random file index for random files)
13 UFTAC Year/day last accessed
14 UFTYD Year/day created
15 UFTHM Hour/minute created
16 UFTP1 UFD temporary
17 UFTP2 UFD temporary
20 UFTUC. User count
21 UFTDL DCT link

Link UFDs assign mnemonics UFLAD and UFLAN to words 7 and 14, Also in link UFDs, words
7 - 13 and 14 - 20 are reserved for an alternate directory specifier (if any) and an alias (if any)
respectively,

The format of the call to STAT is:

CALL STAT (filename, array, error)

where: filename is the name of the file for which status information is to be copied.

array is an integer array which will return the status information.

error is an integer variable which will return an error code upon completion of the call,
An example of a call to STAT is:

CALL STAT ("Y10", IAR, IER)

3-7

FILE MAINTENANCE (Continued)

Update the Current File Size (UPDATE)

A call to the run time routine UPDATE permits a file's size information to be updated without
first closing the file. Specifically, this call causes information in UFTBK and UFTBC in the
UFD on disk to be updated with current information for the file opened on a specified channel,
and it flushes all system buffers to ensure that the file contains all information which has been
written into it by the user, The format of the call to UPDATE is:)

CALL UPDATE (channel, error)

where: channel is an integer variable or constant which specifies the channel on which the file is
currently open.

error is an integer variable which will return one of the error codes.
An example of a call to UPDATE is:
CALL UPDATE (ICHAN, IER)

FILE ATTRIBUTE MAINTENANCE

File attribute calls allow the user to determine the current attributes of a file or device and to change
the file attributes if desired.

Examine the Attributes of a File (GTATR)

The GTATR call will obtain for examination by the user the attributes of a file. To obtain attributes,
the file must first have been opened on the channel number specified within the GTATR command.
The call to GTATR has the format:

CALL GTATR (channel, attributes, error)

where: channel is an integer constant or variable whose value specifiesthe number of the channel
on which the file whose attributes are to be examined is opened.

attributes is an integer variable whose value is set to represent the attributes of a file.

error is an integer variable which will return one of the error codes upon completion of
the call,

The representation of attributes is as follows:

Bit Meaning

1BO Read-protected file. Cannot be read.

1B1 Attribute-protected file. Attributes cannot be changed.

1B2 Save file (core image file).

1B3 Link entry.

1B4 Partition.

1B5 Directory file.

1B6 Link resolution (temporary). Some or all of the attributes persist for the duration
of the open.

1B7 No link resolution allowed.

1B9 User attribute.

1B10 User attribute.

1B11 Reserved

1B12 Contiguous file.

1B13 Random file.

1B14 Permanent file. Cannot be deleted or renamed.

1B15 Write-protected file. Cannot be written.

3-8

FILE ATTRIBUTE MAINTENANCE (Continued)

Examine the Attributes of a File (GTATR) (Continued)

An example of a call to GTATR is:
CALL GTATR (5, IAT, IER)

Change, Add, or Delete File Attributes (FSTAT)

The call to FSTAT causes a file's attributes (or its resolution attributes, in the case of a link) to be
changed as specified by the user. If this call is issued by a link user, his copy of the file attributes
is temporarily changed until he closes the file; the resolution attributes persist. To change the
attributes of a file, the file must first be opened. The format of the call to FSTAT is:

CALL FSTAT (channel, attributes. error)

where: channel is an integer constant or variable whose value specifies the number of the channel
on which the file whose attributes are to be changed is opened.

attributes is an integer constant or variable whose value specifies the attributes to be
assigned to the file.

error is an integer variable which will return one of the error codes upon completion
of the call.

The representation of the attributes which may be assigned to attributes is the same as listed
on page 3-8 for the GTATR call, An example of a call to FSTAT is:

CALL FSTAT (12, 1, IER)

Change or Add Link File Access Attributes (CHLAT)

This call causes the user's copy of the link access attributes word to be changed. When a file is
opened via a link entry, the attributes of the file as seen by the user are formed by the inclusive OR
of the resolution entry's attributes and the user's copy of the link access entry attributes. The link
access entry attributes are zero by default. The format of the call is:

CALL CHLAT (channel, attributes, error)

where: channel is an integer constant or variable whose value specifies the number of the channel
on which the file whose attributes are to be changed is opened.

attributes is an integer constant or variable whose value specifies the attributes to be
assigned to the file.

error is an integer variable which will return one of the error codes upon completion
of the call.

The representation of attributes is as shown on page 3-8 for the GTATR call. An example of a call
to CHLAT is:

CALL CHLAT (5, IAT, IER)

3-9

FILE INPUT/OUTPUT

Get the Name of the Current Input/Output Console (GCIN, GCOUT)

Before opening the console device, the user might find it necessary to find out which device is the
current console to be used for input and which is the current console to be used for output. This is
accomplished by issuing a call to either the routine GCIN or the routine GCOUT. The format of
the two calls is:

CALL GCIN (array) -——— get the name of the current input console ($TTI or $TTI1)

CALL GCOUT (array) «——— get the name of the current output console ($TTO or $TTO1)
where: array is the name of an integer array that will contain the console name requested,
An example of a call to GCIN and GCOUT is:

CALL GCIN (IAR)

CALL GCOUT (IARR)

Opening Files

Open a File (OPEN)

An RDOS disk file may be opened by executing a call to OPEN, The call has the format:

array

CALL OPEN (channel, filename, mode} »_error f, size)

where: channel is an integer variable or constant whose value specifies the number of the channel
(0 - 63) on which filename is opened.
filename is the name of the file which is to be opened.

mode (an alternate argument in the command line) is an integer constant or variable whose
value indicates the mode of the file being opened, either:

1 - open for reading only
3 - open for writing by one user but for reading by one or more users

other than 1 or 3 - open for user-shared reading and writing

array (an alternate argument in the command line) is a three-element integer array whose
elements contain the following information:

First element: contains -1 (the array flag)
Second element: contains either:
1 - open for reading only
3 - open for writing by one user

other than I or 3 - open for user-shared reading and writing
Third element: contains the device characteristic mask (see next page)

error is an integer variable which will return one of the error codes upon completion
of the call.

size is an argument which is an integer constant or variable specifying the number of bytes that
are to make up a record of a random file, size must be given only if the file is random.

3-10

FILE INPUT/OUTPUT (Continued)

Opening Files (Continued)

Open a'File (OPEN) (Continued)

When a call to OPEN is executed, the file with the specified name filename will be opened on the
channel specified by the value of chamnel. If filenaime is a sequentially organized file to which informa-
tion is to be written, all previous information contained in the file will be overwritten. Note that if

a TYPE or ACCEPT statement was issued before the call to OPEN, channel numbers 10 or 11,

respectively, are already open unless closed by the user.

The bit/characteristic correspondence used in setting the device characteristic mask is:

Bit Meaning

1BO Spooling enabled (0BO is spooling disabled)*

1B1 80-column device

1B2 device changing lower case ASCII to upper case

1B3 device requiring form feeds on opening

1B4 full word device (reads or writes more than a byte)

1B5 spoolable device *

1B6 output device requiring line feeds after carriage returns
1B7 input device requiring a parity check; output device requiring parity to be computed
1B8 output device requiring a rubout after every tab

1B9 output device requiring nulls after every form feed

1B10 a keyboard input device

1B11 a teletype output device

1B12 output device without form feed hardware

1B13 device requiring operator intervention

1B14 output device requiring tabbing hardware

1B15 output device requiring leader/trailer

If an MCA line is being opened, the third element of the array cannot contain a characteristic
inhibit mask. Instead, for receiver lines the word must be cleared to zero. If a transmitter line
is to be opened and the default number of retries (requiring 655 seconds) is to be used, the element
must again be cleared to all zeros. However, if a differernt timeout value is to be specified, bit 15
of the element must be set to one (and all other bits must be cleared). The actual specification of a
retry count will be deferred to the time the call to WRITR is issued.

Examples ofcalls to OPEN follow:

CALL OPEN (3, "TEST", 2, IER, 128)
CALL OPEN (5, "X45", IAR, IER)
Open a File (FOPEN)

A call to the routine FOPEN will assign a specified channel number to a device or to a disk file. By
default, a disk file will be opened in random mode and a device will be opened in sequential mode. The
call to FOPEN has the following format:

CALL FOPEN (channel, filename f, "B"j{, recordbytesq)

where: channel is an integer constant or variable with a value between 0 and 634

*

Cannot be changed by an OPEN command.

3-11

FILE INPUT/OUTPUT (Continued)

Opening Files (Continued
Open a File (FOPEN) (Continued)

filename is a string constant or array name. The array is initialized to an ASCII string by
a DATA statement or is input using the S (not the A) FORMAT descriptor. (When using the

Stand -alone Operating System, filename is ignored and channel is opened to its pre-assigned

device.)

"B" indicates that the file is opened with all device characteristics inhibited. (This inhibits
such functions as outputting a rubout after a tab to the paper tape punch.)

recordbytes implies a random file record and is the length in bytes of the random file record

referenced as an integer constant or a variable.

Examples of calls to FOPEN are:

CALL FOPEN (ICH, "RFILE", "B", 200)
CALL FOPEN (3, 'DATAFILE’, 40)
CALL FOPEN 4, '$PTR', 'B')

Open a File for Appending (APPEND)

A file is opened for appending by executing a call to the APPEND routine, The call has the format:

where:

CALL APPEND (channel, filename, } mode | , error {,size })
array

channel is an integer variable or constant whose value specifies the number of the channel
(0 - 63) on which filename is appended to.

filename is the name of the file to be opened for appending.

mode (an alternate argument in the command line) is an integer constant or variable whose
value indicates the mode of the file being appended to, either:

1 - open for reading only

~ open for writing (by one user only, though one or more users
may open it for readfig.

other than 1 or 3 ~ open for user-shared reading and writing.
array (an alternate argument in the command line) is a three-element integer array whose
elements contain the following information:

First element: contains -1 (the array flag)
Second element: contains either:
1 * opened for reading only
3 opened for writing by one user

other than 1 or 3 opened for user-shared reading and writing

Third element: contains the device characteristics mask (as listed for the
OPEN call).

error is an integer variable which will return one of the error codes upon completion of
the call.

size is an integer constant or variable specifying the number of bytes that are to make up
a record of a random file. size must be given only if the file is random.

FILE INPUT/OUTPUT (Continued)

Opening Files (Continued)

Open a File for Appending (APPEND) (Continued)

When a call to APPEND is executed, the end of the file filename is located and filename is opened
on the specified channel. Subsequent output of the file is appended to the data already there., An
example of a call to APPEND is:

CALL APPEND (5, "SQRT", 2, IERR, ISIZ)
Closing Files

Close a File (CLOSE)

An RDOS file may be closed by a call to the routine CLOSE (which is preferred to FCLOS). The
call has the format:

CALL CLOSE (channel, error)

where: channel is an integer variable or constant whose value specifies the channel number
associated with the file to be closed.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to CLOSE is:

CALL CLOSE (14, IER)

The FCLOS routine may also be called to free a channel and to close a file on the specified channel.
The format of the call is:

CALL FCLOS (channel)

where: channel is an integer constant or variable with a value between 0 and 63 specifying
the channel which the user wishes to free.

An example of a call to FCLOS is:

CALL FCLOS (10)

Close all Open Files (RESET)

All open files can be closed by issuing a call to RESET. The call has the format:

CALL RESET

FILE INPUT/OUTPUT (Continued)

Reading and Writing Blocks and Records

Read a Series of Blocks (RDBLK)

A series of blocks can be read from a contiguously or randomly organized file without utilizing a systcm
buffer by executing a call to the RDBLK routine. Thecall has the format:

CALL RDBLK (channel, sblock, array, nblock, error f , iblk })

where: channel is an integer constant or variable whose value specifies the number of the channel
on which the contiguously organized file to be read from is opened.

sblock is an integer constant or variable whose value specifies the number of the first block
to be read.

array is the name of an integer array that is to receive the blocks that are read. The array
must be nblock * 256 words in length. (No error check is made on the adequacy of the array

length.)

nblock is an integer constant or variable whose value specifies the number of consecutive
blocks to be read.

error is an integer variable which will return one of the error codes upon completion
of the call.

iblk is an optional integer variable that will be set to return the number of blocks read
on encountering an EOF.

An example of a call to RDBLK is:
CALL RDBLK (10, 100, IARR, 15, IER, IBLK)

Execution of this call causes 15 contiguous blocks to be read, starting from the 100th block, into array
IARR. The IARR array must have been previously dimensioned to a length of 3840 words

Read a Series of Records (READR, RDRW)

A series of records can be read from a randomly organized file into an integer array by executing
a call to READR or a call to RDRW. The calls have the formats:

CALL READR (channel, srec, array, nrec, error { , nbyte })

CALL RDRW (channel, srec, array, nrec, error{ , nbyte })

where: channel is an integer variable or constant whose value specifies the number of the channel
on which the random file to be read is opened.

srec is an integer constant or variable whose value specifies the number of the first record
to be read.

array is the name of an integer array that is to receive the records to be read. (There is no
check on the adequacy of the array length.)

nrec is an integer constant or variable whose value specifies the number of successive
random records to be read.

FILE INPUT/ OUTPUT (Continued)

Reading and Writing Blocks and Records (Continued)

Read a Series of Records (READR, RDRW) (Continued)

error is an integer variable which will return one of the error codes upon completion on the
call.

nbyte is an optional integer variable that returns the byte count read if an EOF or disk
full is encountered.

CALL READR (15, 0, IARR, 20. IERR)

Write a Series of Records (WRITR, WRTR)

A series of records can be written into a file by executing a call to the WRITR routine or to the WRTR

routine,

where:

The calls have the formats:

CALL WRITR (channel, srec, array, nrec, error f, nbyte })

CALL WRTR (channel, srec, array, nrec, error f , nbyte 1)

channel is an integer constant or variable whose value specifies the number of the channel
on which the file to be written is opened.

srec is an integer constant or variable whose value specifies the number of the first record
to be written.

array is the name of the integer array that contains the information to be written. (No check is
made on the adequacy of the array's length.)

nrec is an integer constant or variable whose value specifies the number of consecutive
records to be written.

error is an integer variable which will return one of the error codes upon completion of
the call.

nbyte is an optional integer variable that returns a partial byte count if an EOF or disk
full is encountered.,

CALL WRITR (12, IRECD, IRAR, NRECD, IER, NBYTE)

Write a Series of Blocks (WRBLK)

A series of blocks may be written into a contiguous or random disk file, without intermediate system
buffering, from an integer array by executing a call to WRBLK routine. The call has the format:

CALL WRBLK (channel, sblock, array, nblock, error [, iblk })

FILE INPUT/OUTPUT (Continued)

Reading and Writing Blocks and Records (Continued)

Write a Series of Blocks (WRBLK) (Continued)

where: channel is an integer constant or variable whose value specifies the number of the channel
(0 - 63) on which the file to be written into is opened.

sblock is an integer constant or variable whose value specifies the number of the first
block to be written.

array is the name of an integer array that contains the blocks that are to be written. The
array must be 256 * nblock words in length, but no check is made on the adequacy of the
array's length.

nblock is an integer variable or constant specifying the number of blocks to be written.

error is an integer variable which will return one of the error codes upon completion of
the call.

iblk is an optional integer variable that is set equal to the number of blocks written should
a disk full occur.

An example of a call to WRBLK is:
CALL WRBLK (12, 200, IARR, IBLK, IERR, IBYTE)

FREE FORMAT CASSETTE OR MAGNETIC TAPE I/0

Open a Cassette or Magnetic Tape Unit for Free Format /O (MTOPD)

Before free format reading or writing can be performed on either an initialized magnetic tape or
cassette unit, the device must be opened and linked to a channel. The routine to open files or
devices (OPEN) cannot be used to open a magnetic or cassette tape unit for free format 1/0: only
MTOPD can be used to open these devices for this purpose.

A call to MTOPD pesitions a free format tape to a desired file, since the file name argument given
to MTOPD includes both the unit name and the file number (MTn:m or CTa:m). The format 5f the
call is:

CALL MTOPD (channel, filename, mask, error)

where: channel is an integer constant or variable whose value specifies the number of the channel
on which filename is to be opened.

filename is the name of the magnetic tape unit or cassette unit to be opened.
mask is the device characteristic mask.

error is an integer variable which will return one of the error codes upon completion
of the call.

For a list of the bit/characteristic correspondences see the OPEN call.

FREE FORMAT CASSETTE OR MAGNETIC TAPE I/0 (Continued)

Open a Cassette or Magnetic Tape Unit for Free Format I/0 (MTOPD) (Continued)

An example of a call to MTOPD is:

CALL MTOPD (16, "MT6:1", 3, IER)

Before free format I/O can be performed on a tape unit, that unit must first have been opened for
free format I/O by means of a call to MTOPD. The call to MTDIO permits the operation of mag-
netic tape and cassette units on a machine level: reading and writing of records in variable length
records or to the start of a new data file, and performing of other simiilar machine ievel operations.
Free format I/O is entirely under user control; the user must check for proper formatting when
using MTDIO. The format of the call is: .

CALL MTDIO (channel, commaadword, I[/O-array, status, error

record-count
” word -count)

where: channel is an integer constant or variable specifying the channel number (0 - 63) on
which the device was opened.

commandword is an integer constant or variable whose bits specify which operation
is to be performed as follows:

Bit Meaning
0 Parity bit (1 = even, 0 = odd)
1-3 0 - read (words)
1 - rewind the tape
3 - space forward (over records or over file of any size
4 - space backward (over records or over file of any size)
5 - write (words)
6 - write end of file
7 - read device status word
4-15 Word or record count. If O on a space forward (or space

backward) command, the tape is positioned to the beginning
of the next (or previous) file on the tape. If O on a read or
write command, 4096 words are read (or written) unless an
end of record is detected.

1/0-array is an integer array used for transmitting and receiving data. (In many
instances, MTDIO is not used for data transfer, e.g., when status is requested,
for rewinding, etc. In these instances, I/O-array must be present but is a dummy.)

status is an integer variable that can return the following status information if command-
word has a 7 (read device status word) in bits 1-3:

o=}

it Meaning

Error (bits 1, 3, 5, 6, 7, 8, 10 or 14 set)
Data late

Tape is rewinding

Illegal command

High density if = 1 (always 1 for cassettes)
Parity error

End of tape

cxc.n»hww»—:ol

FREE FORMAT CASSETTE OR MAGNETIC TAPE 1/0 (Continued)

Free Format Tape 1/0 (MTDIO) (Continued)

Bit

7
8

9

10
11
12
13
14
15

Meaning

End of file

Tape is at load point

9-track if =1, 7-track if = 0 (always 1 for cassettes)
Bad tape or write failure

Send clock (always O for cassette)

First character (always O for cassette)

Write protected or write-locked

0Odd character (always set to O for cassettes)

Unit ready

error is an integer variable that returns either one of the FORTRAN error flags
(page 1-3), which is a positive value, or returns the transport status word listed

above.

record -count or word-count is an optional integer variable that returns the num-

ber of words written or read on a write or read or returns the number of records
spaced over on space forward or backward.

An example of a call to MTDIO is:

DIMENSION IRRAY (1024)

CALL MTDIO (5, ICOM, IRRAY, ISTAT, IER)

CHAPTER 4

TASKING

MULTITASKING CONCEPTS

A task is defined as a logically complete execution path through a user program that demands

use of system resources such as peripheral devices for I/0, system or user overlays, or simply
CPU control; task execution may occur independently and asynchronously with other tasks.

A FORTRAN IV program run under RDOS can consist of any number of these tasks.

When a running program consists of more than one task, it is said to be a multitasking program.
In such a multitask environment, tasks compete simultaneously for the use of system resources.
Only one task may receive CPU control and the desired resource at any single moment, This
allocation is awarded to tasks according to their priority and readiness to use the resources,

A task scheduler governs the transfer of control to each task.

FORTRAN IV uses the multitask programming facilities available under RDOS, which allow
execution of various routines to be performed asynchronously as separate tasks.

Task States

At a given time during execution of a multitask program, a task can be in one of four states:
dormant, suspended, ready, or executing. A dormant task is one that has not been activated
yet or has been terminated. A ready task is one that can proceed when given control of the
processor. A suspended task is one that is not ready to proceed but is still alive. Tasks are
said to be active if they exist in either the ready, suspended, or executing states.

When a task is activated (FTASK or ITASK), it enters the ready state and competes with other
ready tasks for control of the processor based on assigned priorities. When the task
scheduler gives a ready task control of the processor, that task goes into the executing state
and retains control until it has been completed or some event forces it to relinquish control.
When a task cannot proceed until some event occurs, that task goes into the suspended state
until that event occurs.

The diagram on the following page outlines the various task states pertaining to the calls
which transfer a task from one state to another.

Task Control Blocks

A task control block (TCB) {s a block of 13 or 14_ locations used to store the status of an active task.
Each active task, including the main program, has a single TCB maintained for it by the task
scheduler. These TCB's are linked together to form the active chain. When a multitask pro-

gram is loaded, a number of TCB's are created as specified in the CHANTASK statement (or

in the RLDR command line format). During the execution of the program, those TCBs that

are not being used are linked together to form the free chain.

When a task is activated, a free TCB is taken from the free chain and linked to the active chain.
This TCB is then filled with status information for the newly activated task.

EXECUTING

i

PRI TASK
XMTW SCHEDULER
REC
' : WAIT
FDELY
EXIT READY ‘ : HOLD
OVKIL . XMTW
OVKIX | REC
AKILL FQTASK SUSP
KILL XMT ASUSP
ABORT XMTW
WAIT
FDELY SUSP
TRNON ASUSP
AKILL FTASK RELSE FDELY
ABORT ITASK REC HOLD
ARDY XMTW
START *
DORMANT ASSOC ~———em————»p{ SUSPENDED
’ ABORT I
AKILL

Task State Transitions

Task Priorities

When a task is activated it is assigned a priority number in the range 0 to 255 decimal. Tasks
with the lowest numbers have the highest priorities. The task scheduler always gives control
of the processor to the task in the ready state withthe highest priority. The priority number
assigned to a task can be changed while that task is executing a CALL PRI statement.

More than one task may be assigned the same priority number. The relative priority of
ready tasks with a common priority number is determined by the relative positions of their
respective task control blocks (TCBs) on the active chain maintained by the task scheduler,
Each time a task relinquishes control to the scheduler, its TCB is moved to the end of the
active chain. This gives ready tasks with a common priority number approximately equal
opportunities to receive control of the processor.

Optionally, a task may have a task identification number (ID) which can be used in referencing
that particular task. Task identification numbers have a default value of zero, or may be sct
with a value from 1 to 255. Only one task may be assigned to one identification number from 1
to 255, although many tasks may have the default identification number of zero.

Task Scheduler

During the execution of a multitask program, the task scheduler receives control of the pro-
cessor when a task issues 1/0 or other system calls. The task scheduler searches the active
chain for the TCB of the ready task with the highest priority number. This task is then given
control of the processor to the task. If there are no tasks in the ready state, the task scheduler
will wait until some event causes a task to be readied.

4-2

TASK EXECUTION CONTROL

Writing a Multitask Program

The main FORTRAN program and one or more task subprograms are written as program units of a
multitasking program. The main program is at priority level zero at initiation of execution and thus
receives control initially for execution. If the main FORTRAN program unit is killed, it cannot be re-
activated unless the program is restarted, i.e., the FORTRAN program cannot be activated by a call

o TITA QIS
LO " 10N

The user must specify, before program execution, the number of channels that may be open at any
time and the number of tasks that may be simultaneously active at any time during program execu-
tion. There are several ways to specify the number of channels and tasks. They may be given in the
FORTRAN CHANTASK statement, where CHANTASK is a specification statement of the following form:

CHANTASK nuom

ber of channels; number of tasks

where: number of channels is an integer constant in the range 1 to 64 decimal, repre-
senting the maximum number of channels that may be open at any one time,

number of tasks is an integer decimal constant representing the maximum number of
tasks that can simultaneously be active at any one time during program execution.

When making channel and task specifications within a CHANTASK statement, the CHANTASK state-
ment must precede all other statements in the main FORTRAN program, except a COMPILER
DOUBLE PRECISION statement, COMPILER NOSTACK statement, or an OVERLAY statement.

The CHANTASK specification of the number of tasks may be overridden at load time by a user-
written assembly language program that is loaded just before the run time library and is called
FRTSK. The source code of FRTSK would be:

.TITL FRTSK

.ENT FRTSK
FRTSK = (n) where 1 is the number of tasks
.END

The RLDR /K switch may be used at load time to override the CHANTASK specification of the
number of tasks. The /K switch is preceded by an octal value that is the number of required

simultaneously active tasks.

The RLDR /C switch may be used at load time to override the number of channels given in a CHANTASK
statement. The /C switch is preceded by an octal value that specifies the number of required channels.

The number of channels specified indicates the exact number of RDOS channels, A minimum of

16 decimal FORTRAN logical channels will be allocated even though fewer RDOS channels are
specified. However, the number of FORTRAN logical channels available for concurrent use will be
limited to the number of RDOS channels specified.

At load time, the total run time stack area available is divided into as many parts as there are tasks
specified. Each task has only the space of one of these equal portions available to it at run time. If
a task needs more than its available stack area at run time, a fatal run time error results. The
user can allot more stack space to each task only by further limiting the number of simultaneously
active tasks. For example, assume a user program contains the tasks:

A BCDETFGHTI]JK .

The number of active tasks may be set to 11 in the CHANTASK statement. If this results in a fatal
run time error, the user may be able to limit further the number of simultaneously active tasks. For
example, if A, B, C, and D are written in assembly language, they may be excluded. If, of the re-
maining tasks written the FORTRAN, only three are active at any one time, the user should reload
the program, setting the number of active tasks to 3 with the /K switch or an FRTSK program.

Writing a Multitask Program (Continued)

The number of tasks specified indicates the number of task control blocks that will be available
at run time, If an attempt is made to activate a task when all available TCBs are in use, an
error condition will result (see Activating a Task). Each task subprogram must begin with a
TASK statement and end with an END line, The TASK statement has the following format:

TASK taskname

where: taskname is the name assigned to the task program unit, This name must be unique within
its first five characters with respect to all function, subroutine, task, and overlay names.

A task name must be declared EXTERNAL in each external program unit that references it, Each
task may be executed an arbitrary number of times during execution of a multitasking program,

Task Activation (FTASK, ITASK, ASSOC)

All tasks except the main FORTRAN program unit are activated by executing a call to either
FTASK or ITASK. FTASK activates a task by task name; ITASK associates the identification num-
ber with the task name by which the task may later be referenced. A call to ASSOC associates a
task name with an identification number and then puts the task in the suspended state; it can later
be executed by calling START or TRNON. The call to FTASK has the format:

CALL FTASK (taskname, $error-return, priority-number f, IASM})

where: taskname is the name of the task to be activated., taskname 1is declared EXTERNAL
in the calling task.

$error-return is a number of a statement in the calling program to which control is re-
turned if the task cannot be activated (used when no TCB is available for the task).

priority number is an integer constant in the range 0 - 255 (decimal) specifying
the priority assigned to the new task. (A priority of 0 indicates priority the same
as the calling program.)

IASM is an optional parameter which must be in the argument list and set to non-
zero if the task to be activated is written in other than FORTRAN IV (i,e.,

written in assembly language) and is not using the FORTRAN run time stack. Con-
versely, if IASM does not appear within the FTASK command line, taskname must
be written in FORTRAN IV,

An example of a call to FTASK is:
EXTERNAL PROG
CALL FTASK (PROG, $14, 0)
14 WRITE (10) "NOT ENOUGH TCBS"

A call to ITASK will, as well as activate a task, associate an identification number with the
specified task. The format of the call to ITASK is:

CALL ITASK (taskname, identification, priority-number, errort, IASM{)

where: taskname is the name of the task to be activated. taskname must be declared EXTERNAL
in the calling task.

identification is the task identification number which is either an integer

variable or an integer constant in the range 0 - 255; zero is the default value
of the ID.

4-4

Writing a Multitask Program (Continued)

priority-number is an integer variable or constant in the 0 - 255 (decimal)
range specifying the priority to be assigned to the newly activated task. A
priority number of zero indicates that the task will have the same priority as
the calling program,

error is an integer variable which will return one of the error codes upon
completion of the call,

IASM is an optional parameter which must be in the argument list and set

to non-zero if the task to be activated is written in other than FORTRAN IV (i.e.,
written in assembly language) and is not using the FORTRAN run time stack.
Conversely, if IASM does not appear within the ITASK call, taskname,

must be written in FORTRAN IV,

An example of a call to ITASK is:

EXTERNAL P1
CALL ITASK (P1, 10, 6, IER)

.

A call to ASSOC has the format:

CALL ASSOC (taskname, identification, priority-number, error f , IASM})

where: taskname is the name of the task to be put in the suspended state. taskname is declared
EXTERNAL in the calling task.

identification is the task identification number which is either an integer
variable or constant in the range 0 - 255 (decimal); zero is the default ID value,

priority-number is an integer variable or constant in the 0 - 255 (decimal)
range specifying the priority to be assigned to the newly activated task. A
priority number of zero indicates that the task will have the same priority as
the calling task.

error is an integer variable which will return one of the error codes upon
completion of the call,

IASM is an optional parameter which must be in the argument list and set to
non-zero if the task to be activated is written in other than FORTRAN IV
(i.e., in assembly language) and not using the FORTRAN run time stack.
Conversely, if IASM does not appear within the ASSOC statement format,
taskname must be written in FORTRAN IV,

The difference between a call to ITASK and a call to ASSOC is that both calls associate
a task name with an identification number, but ITASK puts the task in the ready state
while ASSOC puts the task in the suspended state. Routines activated by ASSOC may
later be put into the ready state for execution by a call to START or a call to TRNON,
both described on pages following.

4-5

Task Activation Based on Time of Day (FQTASK)

Tasks contained in overlays or resident in main memory can be executed periodically with
an FQTASK call, If the task is contained in an overlay, it causes the overlay containing
the task to be loaded so that execution of the task can proceed. Provision is also made to
periodically execute core resident tasks. The call has the format:

CALL FQTASK (overlayname, task, array, error f, type})

where: overlayname is the name of the overlay containing the task subprogram to be
executed. overlayname must be declared EXTERNAL in the calling task,

task is the name of the task subprogram (specified by TASK statement), task
must be declared EXTERNAL in the calling task.

array is the name of an 11-element integer array that is unique for the task.

error is an integer variable which will return one of the error codes upon
completion of the call.

type is an optional parameter which must be in the call if the task to be
activated is written in other than FORTRAN IV (i.e., written in assembly
language) or if the task is core resident, But, if type does not appear
within the FQTASK call, t_a_s_k must have been written in FORTRAN IV
and must be an overlay. In the case of non-overlay tasks, overlayname
is a required dummy. type, when present, is an integer variable or
constant specifying:

0 task is a FORTRAN overlay
-1 task is core-resident (non-overlay)
-2 task is non-FORTRAN overlay
-3 task is non-FORTRAN and core-resident non-overlay

Each task to be called by FQTASK must have a unique array. Before a call to FQTASK is
executed, elements of array must have been assigned values as shown:

Element Value

Used by the system

Number of times task is to be executed
Used by the system

Starting hour of the first task (0<hour<23)
Starting second within the hour of the

first task execution (0< second= 3599)

U W N

6 Task priority

7 Time (seconds) between successive task
executions

8 Used by the system

9 Channel number on which the overlay file
is opened (not used if task is core-resident)

10 Overlay conditional flag (0 = unconditional,
1 = conditional). Not used if task is core-
resident.

11 Task ID. If no task ID is required, the

element must be set to zero.,

4-6

Task Activation Based on Time of Day (FQTASK) (Continued)

In addition to setting up array, the overlay file containing overlayname must have been
opened via a call to OVOPN.

When a call to FQTASK is executed, overlayname is loaded at the time specified in array
elements 4 and 5 and task is first executed. The task is executed periodically after each
increment specified by element 7 until the task has been executed the number of times
specified by array clement 2.

While it is not necessary for FORTRAN resident tasks queued in by FQTASK to be term-
inated bya call to KILL or for overlay tasks to be terminated by OVKIL if they are queued
in by a call to FQTASK, it is recommended that the user provide the terminating KILL or
OVKIL calls respectively.

Assembly language resident tasks and overlays are handled in a slightly different manner,
but they also need not be terminated by a call to KILL or OVKIL respectively if queued in
by a call to FQTASK. Assembly language resident tasks do not need a call to KILL if the
address stored in AC3 is saved on entry and jumped to on exit. Assembly language
overlay tasks queued in do not need a call to OVKIL if the address stored in AC3 is saved
on entry and jumped to on exit with the overlay number stored in ACO.

If the necessary overlay area for overlayname is not available or if there is no TCB avail -
able for the task, task execution is postponed until the resource is available. Examples
of calls to FQTASK are:

CALL FQTASK (OV, TASK1, IAR, IER)

CALL FQTASK (DUM, TASK1, IAR, IER, -l)

Start a Task After a Time Delay (START)

A call to the routine START will cause a task, which has been activated and put into the
suspended state by a call to ASSOC, to be put into the ready state for execution after
expiration of a specified time delay. The format of the call is:

CALL START (id, time, unit, error)

where: id is the identification number of the task which is to be delayed then executed
at the expiration of the delay.

time is an integer variable, constant or array element specifying the length of
time (in units specified by unit) of the delay before execution of the task. (If time
equals zero, id will be executed as soon as permissible.)

unit is an integer variable, constant or array element specifying the units of
time as follows:

0 pulses of the real time clock
1 milliseconds

2 seconds

3 minutes

error is an integer variable which will be set equal to one of the error codes
upon completion of the call.

Start a Task after a Time Delay (START) (Continued)

An example of a call to START is:
CALL START (26, 30, 3, IER)
Execution of the task with 26 as its identification number will commence in 30 minutes.

Execute a Task at a Specified Time (TRNON)

A call to theTRNON routine will ready a task that was activated and suspended by a call
to ASSOC for execution at a specified time of day. The format of the call is:

CALL TRNON (id, array, error)

where: id is an integer variable, constant, or array element specifying the identification
number of the task to be executed at a specified time,

array is an integer 3-element array specifying:

first element - hours .
second element - minutes
third element - seconds

error is an integer variable which will return one of the error conditions upon
completion of the call.

An example of a call to TRNON is:
CALL TRNON (32, IAR, IER)

Task Suspension (SUSP, ASUSP, HOLD, WAIT, FDELY)

The following may cause suspension of an executing task:

A CALL SUSP is executed.

A CALL HOLD is executed,

The task must wait for some 1/0 event.

A CALL FDELY is executed.

A CALL ASUSP is executed to suspend all tasks of the
same priority as the executing task.

A CALL REC is executed to receive a message not yet sent.
7. A CALL XMTW is executed to transmit a message for which
a corresponding CALL REC has not yet been received.

8. A CALL WAIT is executed.

U W N

=2}

Note that a task may be doubly suspended, e.g., by a call to ASUSP and 1/O completion.
In this case, two separate suspend bits are actually set and both must be reset before the
task will be readied.

Execution of a call to SUSP causes the task in which it is executed to be suspended. The
format of the call is:

CALL SUSP

Task Suspension (SUSP, ASUSP, HOLD, WAIT, FDELY) (Continued)

Execution of a call to ASUSP causes all tasks of a given priority (ready and executing) to
be suspended. The format of the call is:

CALL ASUSP (priority-number)

where: priority number is a decimal integer (0-255) giving the priority number of the
tasks to be suspended. A priority number of O indicates a priority equal to that

of the caller's.

Execution of a call to HOLD causes the task having the identification number given in the
call to be suspended. The format of the call is:

CALL HOLD (identification, error)

where: identification is an integer variable, constant, or array element specifying the
identification number of the task.

error is an integer variable which will return one of the error codes upon
completion of the call.

A call to the WAIT routine allows the executing task to voluntarily relinquish control of the
system for a specified period of time. This enables lower~priority tasks to be executed
for the duration of the delay. When execution is resumed, system resources will be as
they were before the delay. The format of the call is:

CALL WAIT (time, units, error)

where: time is an integer variable, constant, or array element specifying the length
of time (in terms of units) delay to elapse before execution is resumed.

units is an integer variable, constant, or array element specifying the unit of
time to be used as follows:

pulses of the real time clock
milliseconds

seconds.

minutes

W N O

error is an integer variable which will return one of the error codes upon
completion of the call.

Execution of a call to FDELY will suspend that task for a specified amount of time. The
format of the call is:

CALL FDELY (number-of-pulses)

where: number-of-pulses is a decimal integer, giving the number of real time clock
pulses for which the task will be suspended,

Readying a Task (ARDY, RELSE)

When a task is activated, it is put into the ready state, and while active, remains in
either the ready state, the executing state, or the suspended state. A suspended task can
be readied under the following circumstances:

Readying a Task (ARDY, RELSE) (Continued)

I. A task suspended by execution of a call to SUSP, HOLD, or ASUSP may be
readied by execution of a call to ARDY,

2. A task suspended for performance of 1/0 is readied automatically when
1/0 is completed.

3. A task suspended by execution of a call to FDELY is readied at the end
of the time period specified.

4. A task suspended by execution of a call to REC is readied by the execution
of a corresponding call to XMT or XMTW,

5. A task suspended by execution of a call to XMTW is readied by the
execution of a corresponding call to REC,

Note that a doubly suspended call must be doubly readied. Execution of a call to ARDY
causes all tasks of the priority specified in the call to be readied if they were previously

suspended by a SUSP, ASUSP, or HOLD call. No other tasks are affected. The format of
the call is:

CALL ARDY (priority-number)
where: priority-number is the priority number of the tasks to be readied.
Execution of a call to RELSE causes the task having the identification number given in
the call to be readied if it was suspended by a SUSP, ASUSP, or HOLD call. The format
of the call is:

CALL RELSE (id, error)

where: id is the identification number assigned to the task in an ITASK call.

error is an integer variable which will return one of the error codes upon
completion of the call,

Task Priority Modification (PRI, CHNGE)

When a task is activated it is assigned a priority number. A call to PRI makes it possible
to change the priority number of the task. The call has the format:

CALL PRI (priority-number)
where: priority-number gives the new priority of the task.
Execution of a call to PRI causes the priority number of the executing task to be changed.
A task may change its priority any number of times while it is active. An example of a

call to PRI is:

CALL PRI (37)

Execution of a call to CHNGE causes the priority number of the task having the identification
number given in the call to be changed. The format of the call is:

CALL CHNGE (id, priority-number, error)

4-10

Task Priority Modification (PRI, CHNGE) (Continued)

where: id is the identification number of the task.
priority-number gives the new priority of the task.

error is an integer variable which will return one of the error codes upon
completion of the call.

Task Termination (KILL, AKILL, ABORT, EXIT)

A task may be terminated (placed in the dormant state) by execution of a call to KILL, AKILL,
ABORT, or EXIT. Execution of a call to KILL kills the executing task. The format of the call is

CALL KILL
Execution of a call to AKILL immediately terminates all ready or executing tasks of the
priority number given in the call. Any suspended tasks having that priority number
are killed immediately, unless they are awaiting an I/O eveunt, in which case they are killed
immediately after they are readied. The format of the AKILL call is:

CALL AKILL (priority-number)

Execution of a call to ABORT terminates the task having the identification number given
in the call, The format of the call is:

CALL ABORT (i;d, error)
where: id is the identification number previously assigned in an ITASK call

error is an integer variable which will return one of the error codes upon
completion of the call.

Execution of a call to EXIT causes the executing task to be terminated and causes a return
to the CLI. The format of the call is:

CALL EXIT

Obtaining Task Status (STTSK)

The user can obtain the current status of a given task (ready, suspended, or inactive)
by a call to the STTSK routine. The format of the call is:

CALL STTSK (E, status, error)
where: id is the identification number of the task, assigned in a call to ITASK.
status is an integer variable for which a status code is returned.

error is an integer variable which will return one of the error codes upon
completion of the call,

4 -1

Obtaining Task Status (STTSK) (Continued)

The possible status codes that may be returned are:

Ready

Suspended by a . SYSTM call

Suspended by ASUSP, SUSP, HOLD

Wait due to XMTW or REC

Wait for overlay node

Suspended by ASUSP, SUSP, or HOLD and by a .SYSTM call
Suspended by XMT/REC and by SUSP, ASUSP, or HOLD

Wait for overlay node and suspended by ASUSP, SUSP, or HOLD
No tasks exist for this identification number.

[sSIEN e N IRT -V - B o

INTERTASK COMMUNICATION (XMT, REC, XMTW)

Active tasks may communicate with each other through shared COMMON (labeled or blank).
Information generated by one executing task can be retained in data or subprogram units
until one or more other tasks are executing and can access this information. No
synchronization of creation and use of information is implicit in this scheme. Unless
precautions are taken, attempts may be made by tasks to use information not yet generated.

Synchronized transmission of one word messages between active tasks can be accomplished
using three calls: CALL XMT, CALL XMTW, CALL REC, The format of the call to
XMT is:

CALL XMT (message-key, message-source, $error-return)

where- message-key is an integer variable common to both the transmitting and
receiving tasks.

message-source is an integer variable in the transmitting task containing the
non-zero message to be transmitted.

error-return is the number of a FORTRAN statement (in the program unit con-
taining the CALL XMT statement) to which control is returned if the message-
key is non-zero when the CALL XMT is executed.

A one-word non-zero integer message can be transmitted by setting message-source
equal to that value and then executing the CALL XMT, A message transmitted to XMT is

received by execution of a call to the REC routine. The call has the format:

CALL REC (message-key, message-destination)

where: message-key is an integer variable common to both the transmitting and
receiving tasks.

message destination is an integer variable accessible by the receiving task.

In the transmission of a message using corresponding CALL XMT and CALL REC
statements, the order in which these statements are executed is unimportant. If CALL XMT
is executed first, the value of message-source is assigned the variable message-key,
Message-key should have the value of 0 when CALL XMT is executed; if it does not, a
return is made to statement error-return and the value of message-key is left unchanged.
When CALL REC is subsequently executed, message-destination is assigned the value of
message-key and message -key is assigned the value of 0.

4-12

INTERTASK COMMUNICATION (XMT, REC, XMTW) (Continued)

If CALL REC is executed before the corresponding CALL XMT, the receiving task is
suspended until CALL XMT is executed. When CALL XMT is executed, message-
destination is assigned the value of variable message-source and the receiving task is

is placed in the ready state. .

A call to XMTW routine is used in place of CALL XMT when it is desired that the trans-

mitting task be suspended until the receiving task receives the message. The call XMTW
has the same format as CA L XI\‘/IT' with XMTW merelvy voplur-inn« XMT The transmitting

das tne sEame iormat as va DeTCLy Iepiacing Anii, 0 rail Lng

task is suspended only if CALL XMTW is executed before the corresponding CALL REC,

An example of the intertask communication calls is:

CALL REC (KEY, MDEST)
END
TASK SEG2
COMMON KEY
CALL XMT (KEY, MSRCE, $17)
17 WRITE (10) "KEY ALREADY SET"

END

4-13

SAMPLE TASKING PROGRAM

The program following is an illustration of a FORTRAN IV program written for a multitask
environment, The main program contains calls that activate two tasks, TIMPLT and QUAD,
at priority levels 1 and 2 respectively. The main program then deactivates itself by issuing

a call to KILL,

QUAD outputs to the teletypewriter solutions to quadratic equations from input values provided
by the programmer. TIMPLT prints a counter on the line printer, one count per line, 55 lines
per page. The counter is incremented once each second, given a real time clock cycle that

is set to 100 milliseconds,

~ e

Ne s ™E Ve Ne mB wE em wa W Ve We WS wa W Ve e e

TEST 3
EXTERNAL : TIMPLT,QUAD

Cwwwhnw
1PUR1?2

22222
SRITE (TPU,376)

a7k FORMAT (31H1,31X,24HF0ORTRAN TEST PROGRAM =a ///)
WRITE (1PU,378)

378 FORMAT (17HPABEGTN TEST 3)
RRITE(IPUY 7 START OF mAINT
caLl. ITASK (QUAL,19,112,1ER)
CALL ITASK (TIMPLT,17,111,IER)

IF (IER,NEL1) GO Tu ive .
«RITE(IPU) ' EXIT FROM MAIN!
wRITE (IPU,377)

277 FORMAT (17HPENG OF TEST 3)
CALL KILL

100 »RITE (IPLH) ' ERPOR|!

END

4-14

SAMPLE TASKING PROGRAM (Continued)

H

) c

' C MTEST1A USED IN TEST3

1 C

? TASK QUAD

| 2 GET GUADRATIC EQUATION CNEFFICTENTS
7 Az, (v

H Bs2,v

1 Cedn

1 100 AmAe+y

s BuBwA

' CsC+(BeA)

1 C F(X) 8 AwXwi2eBwXs(

¢ IF((Bes2=q+a%C) LT 216070 (2

[FIND THE REAL RONTS

! X1R u (wBe(Brw2=dedsC)ww ,5)/(2x4A)

H YP2R 8 (=Be(BeudmdehnC)we,5)/(2¢A)

s C DUTPUT THE COEFFICIENTS AND THE REAL RNOTS
H v:RITE(Hé;I)A.b.C.Xlﬂ.x2R

} 1 FORMAT(1HB,"A & " ,Fi10n 4,"B s " F10,4,"C = ",
! 1 Fip,4,"xy = ",F12,4,"X2 & ",F10,4)
H CALL FDPELY(59)

H GOTH {m)

P o1 wWRITE(12,2)4,8,C

} 2 FORMAT (1HA,"www COMPLEX RNOTSwws",
’ i "A & ",F10,4,"B = ", Fin,4,"C » ",F10,4)
H GOTD (a2

H END

i

1 C

) € MTESTIRB LISED IN TESTY

? C

’ TASK TIMPLT

! C SET OUTPUT COUNTER TH ZERD

! Jaa

H N A

[LINES & @

1 C RESET LLINE COUNTER TN ZERD
12 LINES = | INESe]}

H N & N&i

H CALL FRELY(O1®)

t C IF BOYTOM OF PAGE, GOTO TOP OF NEXT PAGE
’ IF(LINES,.EQ,55)6N YO 10

$ KRITE(12)N

H caTNn 2

| I] WKRITE (12N

H WRITE(12,27)

? 2y FORMAT(1HL)

H JaJel

H IF(J.eG, 2) CALL AKILL(1®)

H GUYN 4

H END

SAMPLE TASKING PROGRAM (Continued)

FORTRAN TESY PROGRAM =m

\

BEGIN TEST 3
START GF MATH
EXIT FRUM MATIN

END OF TEST 3

ex¥ COMPLEX RUOTS#wed = 1,10008 = ",9200C

29,8000

wwve COMP|IEX RODTSwwwd = 2.1000R = =1,2000C 26,5000

www CUMPLEX ROOTSwweA = 3,1up08 n -4,3000C

19,1009
www COMPLEX ROONTSewwA s 4,10008 = =8,4000C = 6,6000

A = 5,1000R = “13,5%400C = »12,7000X1 = 3,3495x2 = =@,7025

D AN -

o~

A= F,1VHNE ® ©18,6uARC = =37 ,72%0X1 = 4,5665%X2 » n],3534

LG ol O]

1

11
Aw 7.1003k = =26,7400C = =71,5000X1 ® 5,5689x2 = ={,8083
12
13
14
18

16 .
A e B,1UNAR = ©34,8000C 8 w114,4001X) = 6,4769%X2 = »2,1806
17
14
19
29

21
A = 9,17M2B = «43,9000C
22
23
24
25

«167,4001X1 = 7,3328X2 = -2,5087

26
A= 10, 1Pk = w54,00000 8 @231,5001%X1 = 8,1566%2 = =2,8101
27
28
29
n

31
Aw 11,1706 = «65,109nC

»307,7002X} ® 8,9590x2 = -3 ,0942
4-16

SAMPLE TASKING PROGRAM (Continued)

32
33
34
35

30
4 s 12.1900R » =77 ,2vGPC & =307 0002%1 = 9,7468X2
37
35
g
44

n
L
(2]

L)

(2]
(<3
[+]
(]

41
A s 13,10P¢R = =0, 3ruC & «500,4004X1 = 10,5231x2
42
43
44
45

=3, 6300

46
A = 16,10P4R &8 =iye,4u00C
ay
a4
4y
53

=618,9004%X] = 11.2916x2

=3,8873

51
A= 15,1008 » w119,50021C
52
53
54
55

n753,5005x1 = 12,0538x2 -4,1398

56
As 16,17PvR 8 =135,60P1C = «905,2007X) = 12,8112%2 » nd 3887
57
8
59
L1

61
A s 17,1PM9E 8 «152,7401C = «1075,0010%X1 13,5644%2 = =4 ,6346
62 .
63
€4
A5

6
A 1R, IVMOR 8 «i70,R101C & «1263,0010X1 = 14,3146%X2 = wd 878
87
68
69
7e

71

SAMPLE TASKING PROGRAM (Continued)

A

{0, 1R 8
72
73
74
7%

76
20, 10P0R =
77
78
79
8u

A1
21,1200R =
82
83
R4
&5

RE
22,1U00R =
A7
BA
89
oy

91
23.,1700R =
92
94
4
95

o8
24,1200R =
Q7
ap
99

104

191
28,14P0R =
1n2
{1n3
104
175

106
26,1v0yYB =
107
103
109
110

=189,9n0¢C

=210,0001C

=231,1¢401C

=253 ,2104C

=276,30400C

300, 4un1C

=325,85002C

»351{,6003C

T =1472,9010Y%}

® «{703,0010X]

" =1055,2010X1

s =2230,801nX1

® «2529,9010X1

" -2854,4020X1)

s =3205,0020X1

s =3%582,7020X4

15,0622x2

15,8076x2

16,5812x2

17,2933x2

18,0340x2

18,7736x2

19.5122x2

29,2500x%2

=5,1198

=3,3598

-5,5986

5,08362

«6,0729

-6,3089

w@,8544%

wB,7787

CHAPTER 5

SWAPPING, CHAINING, AND OVERLAYS

Program Swapping and Chaining

During run time, programs may be swapped or chained. In chaining, the currently executing
program (the caller) issues a call to either FCHAN or CHAIN which causes the program to be
overwritten in core by another program loaded from disk. The core image of the calling pro-
gram is not saved. In program swapping, the currently executing program issues a call to
FSWAP or SWAP which causes the current program's core image to be temporarily saved on
disk and a new program to be loaded from disk for execution. The saved program can later be
restored to core by a call to BACK, FBACK, or EBACK and continue its execution from the point
of suspension.

The diagram on page 5-2 illustrates the results of the various program segmentation calls and
statements concerning swapping and chaining.

When performing a program swap, the calling program is said to execute at a level higher than
the called program. (The higher the level of execution of a program, the lower its associated
level number is. The CLI is always at level number 0, an assembler or the FORTRAN IV
compiler is usually at level number 1, etc.) When a program issues a call to FS\WWAP, the exe-
cution level number is incremented, the calling program is saved on disk, and the called program
is brought into core for execution, When a call to FBACK, BACK, or EBACK is encountered,

the execution level number is decremented and the calling program is restored to core, If anat-
tempt is made to nest swaps to a level deeper than four, an RDOS error will result,

Program swapping allows core images of programs to be saved and called for execution more than
once during a program’s execution. Each program swapped to must contain a complete FORTRAN
IV program consisting of a main program unit and all subroutines directly or indirectly linked to it,

When performing a program chain, the called program will replace the calling program at the
same execution level. The calling program is not saved but is entirely overwritten by the
called program. There is no limit on the number of chains performed. Program chaining can
be used to subdivide an exceedingly large program that would exceed the limits of core if it
were to reside in core in its entirety. Each chained-to file must contain a complete FORTRAN
IV program consisting of one main program unit and all subroutines directly or indirectly linked
to it.

This chapter is divided into two sections, the first dealing with swapping and chaining. The
second deals with overlays, defining what an overlay is, and how it is created, deleted, loaded,

etc.

Program Swapping (SWAP, FSWAP)

An executing program can cause its core image to be temporarily saved on disk and another
program to be loaded from disk for execution. This is accomplished by issuing a call to either
the SWAP routine or to the FSWAP routine; the difference between the two calls being that
SWAP contains an error location. The format of the two calls is:

CALL SWAP (filename, error)
CALL FSWAP (filename)

'ﬂ—LEVEL 0—"‘-— LEVEL 1 —."—— LEVEL 2 “""— LEVEL 3 —9

| User E

CHAIN(G) SWAP(D)
————— - e
: —BACK l -----
————{ BACK

CLI
{User G]
. User E|
SWAP(E)
SR I S+ R
————— SWAP(D) -——l
EBACK(IER)}] | f_____
| == BACK l
Calls and Statements Change of Level
SWAP, FSWAP Level n - level n+1
CHAIN, FCHAN Level n —>level n
STOP, EXIT, EBACK (chaining) Level n —» CLI

BACK, FBACK, EBACK (swapping) Leveln —»level n-1

LEVELS OF SWAPPING AND CHAINING

Program Swapping (SWAP, FSWAP) (Continued)

where: filename is the name of the save file to be executed next.

error is an integer variable which will return one of the error codes upon
completion of the call.

The calling program is suspended and its current status is saved in the current TCB. If the
execution level of the calling program is n, filename executes atlevein+ 1. Anexample
of a call to SWAP and a call to FSWAP is:

CALL SWAP ("ABC", IER)

CALL FSWAP ("A2")

Restoring a Swapped Program (BACK, FBACK, EBACK)

An executing program can cause the last program to be swapped out to disk to be brought back
into core for a resumption of execution. The executing program will, at that time, be swapped
out to disk until called for again. Calls to the run time routines BACK, FBACK, and EBACK
will perform this restoration of the last swapped program to disk. The format of the call to
BACK (which brings back programs swapped by SWAP or FSWAP) is:

CALL BACK

The format of the call to FBACK (which brings back programs swapped by either SWAP
or FSWAP) is:
CALL FBACK

The call to EBACK can be made from either a chained-to or swapped-to program and restores
the program that is at the next higher level with a standard error return. The restored pro-
gram is either the last program swapped out or in the case of chaining the next higher level pro-
gram, e.g., the CLL. The format of the call to EBACK is: -

CALL EBACK {error)

where: error is an integer variable which will return one of the error codes upon completion
of the call.

An example .of a calling sequence is:
CALL SWAP ("A2", IER)
. Al, executing at level 1, swaps in A2

. at level 2.

CALL SWAP ("A3", IER)

. A2, executing at level 2, swaps in A3
. at level 3.

CALL BACK
. A3 at level 3 swaps to disk and brings
. back A2 at level 2,

CALL SWAP ("A4", IER)
. A2 at level 2 swaps in A4 at level 3.

CALL EBACK (IER)
. A4 at level 3 swaps to disk and brings
. back A2 at level 2.

: 5-3

Program Chaining (CHAIN, FCHAN)

The currently executing program can cause its core image to be overwritten by another program
on disk when the user issues a call to either the CHAIN routine or the FCHAN routine. The
formats of thec CHAIN and FCHAN calls are:

CALL CHAIN ('"filename", error)

CALL FCHAN ("filename'")

where: filename is the name of the save file to be executed next. The execution level is
the same as that of the caller's.

error is an integer variable which will return one of the error codes upon com-
pletion of the call.

An example of a call to CHAIN and a call to FCHAN is:
CALL CHAIN ("AA", IER)
CALL FCHAN ("ABC")

Returning to Level Zero

The FORTRAN IV statement STOP, or call to the run time routine EXIT, will each cause the
termination of a task or program and return to level zero, the CLIL

The format of the STOP statement is:
STOP { message]

where: message is an optional message which can be printed upon termination of the
executing task or program.

The call to EXIT has the format:

CALL EXIT

OVERLAYS

Overlays may be used when core is not.large enough to accommodate an entire user program.
During loading of relocatable binaries, two files are created rather than a single save file that would
have to be brought into core in its entirety for execution. One file is the save file which contains
the root program to be brought into core. The other is an overlay file that will remain on disk.
When an overlay is referenced either from the root program or from another overlay that was
previously brought into core, the overlay will be brought into core,

The save file contains, in addition to the root program, a directory of the overlay file and a se-
ries of overlay areas. Each overlay area in the save file corresponds to an overlay segment in
the overlay file. Each overlay area in the save file represents an area of core that will accom-
modate a single overlay, Each overlay segment in the overlay file may contain up to 256
(decimal) overlays. Each overlay area in the save file is large enough to accommodate the
largest overlay in that overlay segment. Only one overlay of an overlay segment may re-

side in core at a given time, On the save file, up to 128 (decimal) overlay areas may be
allocated. They are designated O through 127,

When loading relocatable binaries, those binaries that make up an overlay area are enclosed
in square brackets in the RLDR command line. Separate overlays of the overlay area are

5-4

OVERLAYS (Continued)
indicated by commas, The format of the RLDR command when overlays are included is:

rootname rootname . A
} n x libraries)

RLDR rootnameo ——l"‘_l . e —1-—_
— [overlay areao] loverlay -area I

where: rootname, is the name of the main FORTRAN program in relocatable binarv.
- VU

other rootnames are names of relocatable binaries to become part of the save'file program.

each overlay -area contains the names of relocatable binaries that are overlays or part of
of a single overlay.

To see how save and overlay files are created, compare the following examples of RLDR commands:

RLDR A B C D E F libraries)

A.SV
system

F

E

A, B, C, D, E, and F must all be in core during executinn.

i

system
RLDR A B [C, D] [E, F] libraries)

A5V A.OL
system . F
overlay area 1 Areas to be used for -— TTE T overlay segment 1
overlays during exe-
overlay area 0 cution. D

¢ Rootprogram i —TTE -) t 0
B I Root program in C overlay segmen

core during
A - execution

system

5-5

OVERLAYS (Continued)

RLDR A B [C, D E, F] libraries)

A.SV
system

‘overlay area 0

L S

system

i
i
A

)
|
N

1

; overlay area

root program

overlay segment 0

+> node 0

Note in the previous example that two or more relocatable binaries may be loaded as a single overlay

within an overlay area.

In this case, D and E are loaded as a single overlay, since there is no

comma between the relocatable binaries in the command line.

RIDR A [C, D] B [F, F]]ibraries’)

A.SV
system

overlay area 1

B

overlay area () :

A

system

A.OL
F l
B J overlay segment 1
5 \L-— node 1
________) overlay segment O
€ !
e node 0

Note in the example above that tasks and overlay areas may be interspersed after the main
FORTRAN program is loaded.

Within each overlay éegment in the overlay file, each overlay occupies an equal area. The area is a
multiple of 400 octal locations and is large enough to accommodate the largest overlay of the overlay
segment, For instance, if there are four overlays, OV1, OV, OV3, and OV4 in an overlay segment:

OV2 OV3

OV4 l

then each overlay will be allotted 1000 octal locations to accommodate the largest overlay:

5-6

OVERLAYS (Continued)

Oov4

ov3 \ . .
p Overiay segment containing the four overlays

@]
<,
N

__0£~)4.__ node

The overlay file is created as a contiguous file. This allows the operating system to use multiple
block reads (moving head disk)* for faster loading of overlays. As a result, each overlay within
an overlay area is the same size. This is not a restriction on the user, however, as the reloca-
table loader will automatically adjust each overlay to be equal in size to the multiple of octal 400
that will accommodate the largest overlay within the overlay area. For better disk space utili-
zation, though, the user should put overlays of approximately the same size within the same over-
lay area.

Overlays maintained in the overlay file are never altered during the execution of a program.
Each time an overlay is loaded into core in the overlay area, it is in its original form whether
or not it contains a non-reentrant routine. No part of an overwritten overlay i< ever saved.

Once an overlay file has been loaded and resides on disk, it can be altered only by being reloaded
using RLDR or, if desired, one or more overlays can be changed using the overlay loader, OVLDR,

described in a later section.

Numbering of Qverlays within an Overlay File

Overlays are numbered octally within an overlay file. There may be up to 128 decimal overlay
segments within an overlay file (numbered 0 - 177g), and there may be up to 256 decimal overlays
within each overlay segment of the overlay file (r:mbered 0 - 377g). The overlay is referenced
by a word that identifies the node (overlay area; .-.!the overlay within the area. Thus overlay

1 of area 0 is numbered 1 while overlay 1 of area 2 is numbewved 1001,. The chart on the
following page illustrates the numbering scheme in referencing a particular overlay within an
overlay file.)

In FORTRAN IV, each overlay of each segment i ' given a unique name in an OVERLAY statement
(see page 5 - 8), and is referenced in cells by that name, so that it is not necessary to reference
an overlay by number.

*While use of contiguous files enables faster loading from moving head disks, this does not imply
that overlays are only used when the system configuration includes a moving head disk.

Numbering of Overlays Within an Overlay File (Continued)

Segment Number Qverlays Within This Segment
0 0 1 2 3 4 ... 375 376 377
1 400 401 402 403 404 ... 775 776 777
2 1000 100l 1002 1003 1004 ... 1375 1376 1377
3 1400 1401 1402 1403 1404 ... 1775 1776 1777
4 2000 2001 2002 2003 2004 ... 2375 2376 2377
126 77000 77001 77002 77003 77004 ... 77375 77376 77377
127 77400 77401 77402 77403 77404 ... 77775 77776 77777

Overlays in Single or Multiple Task Environments

Overlays may exist in either single or multiple task environments. In either environment, the
overlay must be assigned a name in an OVERLAY statement, the overlay file must be opened
by a call to OVOPN before an overlay file can be loaded into core, and the opened file is closed
by a call to CLOSE.

H _over, in a multiple task environment, overlays and overlay areas can be shared by two or
more tasks, This requires that checks be made upon loading the overlay to determine whether
or not the overlay area is already in use. A task waiting for an overlay area that is in use must
be suspended until the overlay area is released. Thus, different loading routines are called in
single task and multiple task environments, and in a multiple task environment, a call to a
routine that releases an overlay after use must be made.

Features common to both single and multiple task environment are discussed first in sections
immediately following; then the differing features of single task loading and multiple task loading

and the release of overlay areas are described.

Naming an Overlay (OVERLAY)

In both single and multiple task environments, each overlay must have an overlay name assigned
to it. Overlay names are assigned in the OVERLAY statement, which has the format:

OVERLAY overlayname

where: overlayname is the name of an overlay.

An OVERLAY statement must be the first statement (except for possible COMPILE R DOUBLE PRECISION,
COMPILER NOSTACK, or CHANTASK statements) in one of the program units belonging to an overlay.

If a single overlay was created from two or more relocatable binaries, each of which contained an
OVERLAY statement, each overlayname specified in these statements is associated with that overlay.
The overlay can then be referenced by any one of the names.

An overlay name is an external symbol (like the names of subprograms) and must be unique
within its first five characters from all other external symbols and all reserved words. Overlay

5-8

Naming an Overlay (OVERLAY) (Continued)

names are referenced when loading overlays or releasing overlay areas. FEach overlay name
must be declared EXTERNAL in anv program unit in which it is referenced.

Opening an Overlay File (OVOPN)

In both single and multiple task environments, the overlay file associated with a program using
overlays must be opened by execution of a call to the OVOPN routine before any overlays can
be loaded. The format of the call to OVOPN is:

CALL OVOPN (channel, filename, error)

where: channel is an integer variable whose value specifies the channel on which the overlay
file is to be opened.

filename is the name of the overlay file to be opened (this file name should end with
the extension . OL).

error is an integer variable which will return one of the error codes upon completion
of ©7 call.

i csample of a call to OVOPN is:

CALL OVOPN (JCHAN, "PGM.LOLY, 1ER)

[t rthe value of ICHAN were 7, u.eriay Sl would be opened on channel 7, with [ER
receiving the error code upon completios ¢t 1.

Closiiz an Gverlay File 7L 57

In both sing;.” and multiple task environmernsis, ea h overlay iile is clo d in the samc woav any
file is clused. An overlay file is closed by vxeriion of a call to the Ci.OSE routine, Mo call
to CLLOSE has the formar:

CALL CLCSt (channel, cooor

where: channel is an integer variable or ¢ v vhose value specifies thic channel nun:iw -
the overlay file to be closed.

¢rror is an integer variuble which *ill rerurn one of the error codes upon completion
of the call.

An example of a call to CLOSE is:

CALL CLOSE (7, IER)

Loading Overlays in a Single Task Invironment ©:VLOD)

In a single task environment, an overlay 1s Joaced by execution of a call to the OVLOD routire.
The call has the format:

CALL OVLOD (channcl, overlay, conditional-flag, error)

where: channel is an integer varisble or constant whose alue is the nuraber of the channel
on which the overlay file has been opened.

overlay is the namie of the overlay which is to be ioaded.

Loading Overlays in a Single Task Environment {OVLOD)Continued)

conditional-flag is an integer variable or constant whose value indicates conditional
or unconditional loading.

error is an integer variable which will return one of the error codes upon completion
of the call.

An unconditional load loads a user overlay regardless of whether the overlay is present in core
or not. This permits the initializing of non-reentrant code. A conditional overlay load request,
on the other hand, causes a user overlay to be loaded only if it is not already core resident.
Conditional loading saves time in some cases but should be used only when overlays are
reentrant, For variable conditional-flag, the value zero specifies unconditional loading and

a non-zero value specifies conditional loading.

Associated with each overlay is an overlay use count (OUC) that contains a value indicating whether

or not the overlay is core resident. If a conditional load has been specified, the OUC is checked. If
the OUC contains zero, the overlay may not reside in core or may be core resident but not in use; if
the OUC contains one, the overlay is core resident. The conditions for loading an overlay depend upon
the state of the OUC and the conditional flag as given below.

1. If the load request is conditional (flag# 0) and if the area is free (OUC= 0), the
OUC is incremented, the overlay is loaded, and the error return is set to 1 to
indicate the overlay has been loaded.

2. If the load request is conditional and if the overlay area already contains the re-
quested overlay (OUC=1), the overlay remains in the area, the OUC is decremented,
and the error return is set to 1 to indicate that the overlay has been loaded.

3. If the load request is unconditional, the OUC is set to 1, the overlay is loaded and
the error return is set to 1 to indicate that the overlay has been loaded.)

4, If for any reason the overlay cannot be loaded, an appropriate error code is set -
and a return is made to the calling program.,

The conditions specified above are shown in the following chart,

CALL OVLOD

¥

No Is load request Conditional?
(flag # 0)

l Yes

Is area free? \ No, OUC> 0
(OUC = 0) /

lYes

QuC =0UC +1
Overlay is Loaded
Error=1

OouC =0uC -1 i

Y

Error=1
ouc=1 pe—————————p Overlay is Loaded

5-10

Loading Overlays in u Single Task Environment (CVLOD) (Continued)

An example of a call to OVLOD is:
CALL OVLOD (JCHAN, OV3, IFLAG, IERR)

Loading an Overlay in a Multiple Task Environment (FOVLD)

In a multiple task environment, an overlay is loaded by execution of 2 call to the FOVLD routine;
the call has the format:

CALL FOVLD (channel, overlay, conditional-flag, error)

where: channel is an integer variable or constant whose value is the number of the channel on
which the overlay file was opened.

overlay is the name of the overlay to be loaded.

conditional-flag is an integer variable or constant whose value indicates whether the
load is to bc conditional or unconditional.

error is an integer variable which will réturn one of the error codes upon completion
of the call.

As in the single task environment, the loading of an overlay depends upon the state of the conditional
flag and the overlay use count (OUC). However, since overlays and overlay areas can be shared
by two or more tasks, the conditions for loading are somewhat more complex.

When a task causes an overlay to be loaded, the task is suspended until the loading process is
completed. When a task tries to load an overlay into an overlay area and cannot because the overlay
area is already in use, the task is suspended until the overlay area is freed and the desired overlay
is then successfully loaded. If more than one task is suspended while waiting for an overlay area

to be freed, the task with the highest priority waiting for the overlay area has its desired overlay
loaded when the overlay area becomes free. The task then is readied when loading is complete.

The overlay use count is incremented each time a task requests an overlay load and is de-
cremented each time a task causes the overlay to be released (see the section on FOVRL).
Since more than one task can use an overlay, the OUC may be greater than 1. An overlay area
is only free when the OUC goes to 0. The conditions for loading an overlay in a multiple task
environment are as follows:

1. If the load request is conditional (flag # 0) and if the area is free (OUC=0),
then the OUC is incremented, the overlay is loaded, and the error return is
set to 1 to indicate the overlay has been loaded.

2, If the load request is conditional, and if the area is not free but already contains
the requested overlay, the overlay remains in the area, the OUC is incremented,
and the error return is set to 1 to indicate that the overlay has been loaded.

3. If the load request is conditional and the area is not free and does not contain
the requested overlay, the caller is suspended until the area is freed.

4. If the load request is unconditional (flag=0), and if the area is free (OUC=0),
the OUC is incremented and rhe overlay is loaded regardless of whether it is
core resident or not.

5. If the load request is unconditional and if the OUC has not gone to zero freeing
the area, the calling tack is suspended until the area becomes free.

Loading an Overlay in a Multiple Task Environment (FOVLD) (Continued)

6. If for any reason the overlay cannot be successfully loaded, the error indicator will be
set to the appropriate error code.

Ti . cenditions specified above are shown in the following flow chart.,

CALL FOVLD

No J; load conditional?

\ (flag # 0)
Yes

i \
Yes Is area free? No
Is Area Free? 1 (oucC =0) /

Yes

No

Overlay is Loaded
OuUC = 0oUC +1
Error =1

No Is requested overla;\
occupying area? /
‘ Yes

QUC = OUC +1
Error =1

| Caller is suspended until
area is freed

When a task causes an overlay to be loaded, the task is suspended during the loading process
as it would be for any other I/O operation. For those cases in which no loading occurs, and the
task does not have to wait for an overlay area to become available, the task is not suspended.
An example of a call to FOVLD is:

CALL FOVLD (ICHAN, IOV, ICON, IER)

Releasing an Overlay Area (FOVRL)

All overlay loads (FOVLD) in the multiple task environment must eventually be paired with an
overlay release or the area will be reserved indefinitely. An overlay area can be relcased from

outside of the overlay by the execution of a call to the FOVRL routine. The call to FOVRL has
the format:

CALL FOVRL (overlay, error)

where: overlay is the name (or any one of the names) of the overlay resident within the
overlay area to be released.

error is an integer variable which will return one of the error codes upon completion
of the call.

Releasing an Overlay Area (FOVRL)(Continued)

Execution of a call to FOVRL causes the OUC for that overlay area to be decremented. (The
overlay area is only freed when OUC goes to zero.) If an overlay other than the one resident in
the overlay area is named by overlay, an error condition results and the overlay area is not
released. An example of a call to FOVRL is:

CALL FOVRL (AOVLY, IER)

Releasing an Overlay (OVKIL, OVKIX, OVEXT, OVEXX)

Overlays may be released from inside the overlay area, either from the routine in which
the overlay was named or from some other routine within the overlay.

A call to OVKIL can be made from the rontine in which the overlay was named (QVERLAY

statement) and causes the overlay to be released and the task containing the overlay to be killed.
The format of the call is:

CALL OVKIL (overlay)
where: overlay is the name of the overlay (specified in an OVERLAY statement).
A call to OVKIX is made from a routine outside that in which the overlay was named. The
OVKIX routine causes the overlay to be released and the task containing the overlay to be killed.
The format of the call to OVKIX is:

CALL OVKIX (overlay)

where: overlay is the name of the overlay.

A call to OVEXT can be made from the routine in which the overlay is named. It causes the
overlay to be released and provides a return location. The format of the call is:

VEXT (overlay, external-label)

CALL

Q

where: overlay is the name of the overlay.
external-labe] is the external label to which return is made upon completion of the call.

A call to OVEXX is made from outside the routine in which the overlay is named. OVEXX
causes the overlay to be released and provides a return location. The format of the call is:

CALL OVEXX (overlay, external-label)

where: overlay is the name of the overlay to be released.
external-labe] is the external label to which return is made upon completion of
the call.

5-13

The Overlay Loader (OVLDR)

It is possible to replace one or more overlays within an overlay file. To do so, a file of replacement
overlays must be loaded using the overlay loader, which is invoked with the command OVLDR. When
the replacement file of overlays has been loaded, overlays within the current overlay file may be re-
placcd by overlays in the replacement file, using the command REPLACE. The replacement of over-
lays is described in Appendix D in thessection, OPERATION UNDER RDOS.

CHAPTER 6

REAL TIME CLOCK AND CALENDAR

Systems with a Real Time Clock (RTC) maintain a system clock and calendar for scheduling

task activities on a time-of-day basis, Tasks may obtain or set the correct time in seconds,
minutes, and hours or the current date in month, day and year. Tasks may also synchronize
their activities with the real time clock for periods of time as short as one millisecond each.

Six calls are available to permit the system to keep track of the time of day and current date.
Dates are alwavs referenced as month/day/year. The time is always given using a 24 -hour
clock. The six calls are:

CALL FSTIM - setthe time of day
CALL STIME - set the time of day
CALL TIME - get the time of day
CALL FGTIM - get the time of day
CALL DATE - get the current date
CALL SDATE - set the current date

Setting the Real Time Clock (FSTIM)

The real time clock can be set using the run time routine FSTIM, Users may access the real
time clock in both single and multiple task environments. The format of the call to FSTIM is:

CALL FSTIM (hour, minute, second)

where: hour is an integer variable or constant in the range 0 to 23,
minute is an integer variable or constant in the range 0 to 59,
second is an integer variable or constant in the range 0 to 59.

If an attempt is made to set a time outside the specified legal range, a run time error occurs,
The clock used is a 24-hour clock. An example of a call to FSTIM is:

CALL FSTIM (7, 25, 11)

Setting the Real Time Clock (STIME)

A call to the STIME routine allows the user to set the Real Time Clock. The format of the call
is:

CALL STIME (array, error)

where: array is a three-element integer array specifying the time to be set in the order
of hours, minutes, and seconds.

Setting the Real Time Clock (STIME) (Continued)

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to STIME is:
CALL STIME (IAR, IER)

Getting the Time of Day (TIME)

The time of day can be obtained in the form of a three-element array by a call to TIME which has
the format:

CALL TIME (time-array, error)

where: time-array is the name of a three-element integer array that is set equal to the time.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to TIME is:
CALL TIME (ITAR, IER)

Getting the Time (FGTIM)

The real time clock can be accessed to obtain the time using the routine FGTIM, The format of
the call to FGTIM is:

CALL FGTIM (hour, minute, second)

where: hour, minute, and second are integer variables which will return the current hour,
minute and second.

The current time will be given in terms of a 24-hour clock. An example of a call to FGTIM is:
CALL FGTIM (IHR, IMIN, ISEC)

Getting the Date (DATE)

The date can be obtained in the form of a three-element array indicating month, day, and year
using a call to the DATE routine, which has the format:

CALL DATE (date-array, error)
where: date-array is the name of a three-element integer array that is set equal to the date.

error is an integer variable which will return one of the error codes upon completion
of the call.

The first, second, and third elements of array date-array are set equal to the date expressed as
month, day, and year. An example of a call to DATE is:

CALL DATE (IAR, IER)

Setting the Date (SDATE)

The user can set the date by issuing a call to the SDATE routine which has the format:
CALL SDATE (array, error)
where: array is a three-element integer array specifying month, day and year in that order.

error is an integer variable which will return one of the error codes upon completion
of the call.

An example of a call to SDATE is:
CALL SDATE (IAR, IER)

User /System Clock Commands

The user may execute a call to the routine DUCLK to define a user clock and a call to RUCLK
to remove a user clock. The user clock is a software clock that is controlled at predefined
intervals by the operating system clock. This user clock allows control to be given to a user-
specified routine when each predefined interval lapses. A call is provided to GFREQ which
permits the user to examine the Real Time Clock frequency. It is assumed that the user who
is considering the definition of a user clock is familiar with the Real Time Disk Operating
System. The following descriptions of calls to run time routines concerning the user /system
clock commands should be read in conjunction with the section User /System Clock Commands
in the RDOS manual (093-000075).

Define a User Clock (DUCLK)

A call to the DUCLK routine permits the definition of a user clock. When an interrupt is
generated by the user clock, the environment becomes frozen as is, and control passes to a
user-specified routine at a user-defined location. (This routine cannot be a FORTRAN routine.

Furthermore, no system or task calls may be issued from this routine, with the ¢ cxception of

.UCEX and .IXMT .) The format of the call to DUCIK is:

CALL DUCLK (ticks, name, error)

where: ticks is an integer variable or constant specifying the integer number of system
RTC cycles which are to elapse between each user clock interrupt.

name is the name of a non-FORTRAN routine to which control is passed upor}
an 1nterrupt and which must have been previously defined.

error is an integer variable which will return one of the error codes upon
completion of the call.

In unmapped systems, the task call . UCEX must be issued to exit from a user clock routine.
Refer to the RDOS User's Manual for further information concerning the task call , UCEX,

An example of a call to DUCLK is:
CALL DUCLK (100, IROR, IER)

Remove a User Clock (RUCLK)

To remove a previously defined user clock from the system, the user may issue a call to the
RUCLK routine. The call has the format:

CALL RUCLK

Remove a User Clock (RUCLK) (Continued)

The user clock must have been previously defined before it may be removed.

Examine the System Real Time Clock Frequency (GFREQ)

A call to the GFREQ routine permits the user to examine the Real Time Clock frequency. The
format of the call is:

CALL GFREQ (variable)

where: variable is an integer variable which will return the frequency of the Real Time
Clock, either:

- line frequency(60 cycles per second)
- line frequency (50 cycles per second)

0 - no real time clock in system
1 - 10HZ

2 - 100 HZ

3 - 1000 HZ

4

5

An example of a call to GFREQ is:

CALL GFREQ (IVAR)

CHAPTER 7

FOREGROUND/BACKGROUND PROGRAMMING

INTRODUCTORY CONCEPTS

As discussed in Chapter 4, 3 multitasking environment increases the potential utilization of
system resources. Multitask environments were understood to exist in a single program
environment, and a program was considered to be an orderly collection of tasks.

To increase system utilization still further, it is possible to have two programs sharing system
resources concurrently, each with its own single or multi-tasking scheme. This sharing of
system resources between two concurrently operating programs is called dual-programming,

In dual-programming, one program is designated as operating in the background, the other as
operating in the foreground. The two programs are independent of each other, each containing
its own Task Scheduler. The two programs may have equal priority, or the foreground program
may be designated as having the higher priority of the two. When the foreground program has
the higher priority, control is passed to the background program only when there are no ready
tasks in the foreground.

Although the foreground and background programs are independent of each other, they may

communijcate with each other. This is accomplished by defining a communications area within
each program to be used in sending and receiving these messages.

Foreground/Background Considerations in an Unmapped Environment

Systems lacking the MMPU use software memory partitions to separate foreground and background
program aréas. These boundaries are user -defined at load time, using switches.

In unraapped systems it is useful to include a user -written assembly language program, FHMA, to
specify the highest memory location for a FORTRAN program in the background partition. This is
necessary in determining the size of the run time stack and in insuring ample memory space for a
foreground program. FHMA is loaded just before the run time library and has the source code:

. TITL. FHMA

.ENT FHMA

FHMA = (n) where n is a value between NMAX and the highest memory ad-
. END dress available below RDOS

In an unmapped, background-only environment, memory can be represented as:

<—— top of memory

RDOS
4———————— HMA (highest unused memory address)
Unused address space }

FHMA may be in this range
<+— NMAX (first location above loaded program)

User program and task
scheduler A

- 6
RDOS 1

-

FHMA should be set to an address in the range between NMAX and HMA. Then FHMA to HMA will be
reserved for the foreground.

7-1

Foreground/Background Considerations in an Unmapped Environment (Continued)

The RLDR command line (and all of its uses) is described in Appendix D, OPERATING PROCEDURES.

Foreground/Background Considerations in a Mapped Environment

Nova 840's, which can include a DGC 8021 Memory Management and Protection Unit (MMPU), provide
au absolute hardware protection to separate foregrout:! and background partitions. Foreground save
and overlay files in a mapped environment are built in the same way that save and overlay files are
built i a single program environment, since an entire page zero and NREL memory is available for

both programs.

FOREGROUND/BACKGROUND CALLS

The 1ollowing calls to be used in foreground/background programming are applicable to both mapped
and uniapped systems, except for EXBG, which is used only in a mapped environment.

Load and Execute a Foreground Program

To load and execute a user program in the foreground, the user can issue a call to EXFG. This call
can be made only from a background program; it is written in the following format:

CALL EXFG (filename, priority, error)

where: filename is the name of the file to be executed in the foreground.

priority is the integer variable or constant that irdicates the priority of the new foreground
program, either:

0 - foreground is of higher priority than background.
1 - foreground and background are of the same priority.

error is an integer variable that returns one of the error codes on completion of the call.

If the partition requirements set in the RLDR command line would cause any portion of the background
0 am is not lo .

ram area to be overwritten, the foregro:

rieen,; the 10re

5]
=
3
oY

"3
5
3

g
[
i3

CALL EXFG ("PROG1", 1, IER)

Checkpointing - Load and Execute a Background Program (EXBG)

Checkpointing is the practice of suspending one background program (the checkpointed program)
temporarily so that a new background program can be loaded and executed. Only a foreground program
may issue the checkpoint call, EXBG, and the call may only be issued in a mapped environment. To
checkpoint a background program, it must be checkpointable, i.e., the program must perform no

QTY I/0 and must make no calls to RDOPR, DUCLK, FINTD, WAIT, or FDELY.

The checkpointed program is restored to execution when the new background program has been executed
or when either a CTRL A or CTRL C keyboard interrupt is detected. There may be only one check-
pointed program; nested checkpoints are not allowed.

If the program specified in EXBG is not given higher priority than the currently executing background
program, the currently executing background program will complete execution before the program
specified in EXBG is loaded and executed. Otherwise, the currently executing background program
will be saved on disk until restored to execution.

7-2

Checkpointing - Load and Execute a Background Program (EXBG) (Continued)

The call to EXBG has the format:

CALL EXBG (filename, priority, error)

where: filename is the name of the file to be executed in the background.

priority is an integer variable or constant that indicates the priority of the new background
program, either:

0 - same priority as present background program.

AAAAAAAAA Ton ~loaan s ~AF s cmsa s e P

A and r3aad ORI}
}. - fUJ.CSA_ULllLU QiU DaLhAg Lo Ullu alC UL LLUC SalllC priutLilye.

error is an integer variable that returns one of the error codes upon completion of the
call.

An example of a call v EXBG is:
CALL EXBG ("MAIN6", 0, IER)

See if a Foreground Program is Running (FGND)

A call can be made to the FGND routine from a background program to determine whether or not a
foreground program is currently running in the system., The call has the format:

CALL FGND (foreground)
where: foreground is an integer variable which returns a value of 0 or 1:

- a foreground program is executing
1 - a foreground program is not executing

An example of a call to FGND is:

CALL FGND (IRUN)

Define a Communications Area (ICMN)

A call to the routine ICMN permits an area to be defined within a user program's address space which
will be used for sending or receiving messages to or from another user program. The foreground and the
background may each define one communications area. The call to ICMN has the format:

CALL ICMN (array, length, error)

where: array is an array specifying the communications area.

length is an integer variable or constant specifying the size of the communications
area in words.

error is an integer variable which will return one of the error codes upon completion
of the call.

A cxample of a call to ICMN is:

CALL ICMN (A, 10, IER)

Write a Message (WRCMN)

A call to the routine WRCMN causes a message to be written by one program, either in the fore-
ground or background, into the other program's communications area. The message that is sent
may originate from anywhere within the sender program's address space. The format of the call
to WRCMN is:

CALL WRCMN (array, start word, number of words, error)

where: array is an array specifying the origin of the message to be sent to the other program's
communications area.

start word is an integer constant or variable specifying the word offset within the com-
munications area to receive the message.

number of words is an integer constant or variable specifying the number of words to be sent.

error is an integer variable which will return one of the error codes upon completion of the
call.

Note that start word represents an offset in words. For example, an offset of five will be the fifth
element of an integer array but will be the first word of the third element of a real array.

An example of a call to WRCMN is:
CALL WRCMN (IAR, 6, INUM, IER)

Read a Message (RDCMN)

A call to the RDCMN routine causcs a message to be read by one program, either in the foreground
or background, from the other program's communications area. The message may be received
anywhere within the receiving program's address space. The format of the call to RDCMN is:

CALL RDCMN (array, start word, number of words, error)

where: array is an array specifying the destination of the message sent from the other program'’s
communications area. -

start word is an integer variable or constant specifying the word offset within the com-
munications area where the message originates.

number of words is an integer constant or variable specifying the number of words to be
read.

error is an integer variable which will return one of the error codes upon completion of
the call.

Write an Operator Message (WROPR)

A call to the WROPR routine causes an output string to be written from either the foreground or
background program areas to the system console, $TTO. The message consists of an ASCII string,
less than or equal to 129 characters in length including the required terminator (carriage return,
form feed, or null), The system will prefix two exclamation characters and the alphabetic B to

the text string, or two exclamation characters and the alphabetic F to the text string.

B = originating from the background
F originating from the foreground

7-4

Write an Operator Message (WROPR) (Continued)

The format of the call to WROPR is:
CALL WROPR (array, error)
where: array is the name of the array containing the text string to be written to $TTO.

error is an integer variable which will return one of the error codes upon completion
of the call.

The operator messages (text strings) output on the console after execution of this call will
appear as follows:

IFtext string) or !IBtext string)

WROPR must not be used if RDOS calls . TRDOP or . TWROP are used or if the RDOS OPCOM
package is used.

An example of a call to WROPR is:
CALL WROPR (IAR, IER)

Read an Operator Message (RDOPR)

A call to the RDOPR routine causes an operator message to be transmitted from the system console,
$TTIL to either the foreground or the background program. The first character in this message
must be a CTRL E character (this is echoed as an exclamation character); the second character
must be either of the alphabetics F or B, These alphabetics (F and B) indicate which program is to
receive the message:

B = background program is the receiver
F = foreground program is the reciever

If some character other than F or B is typed, no further text string is accepted until a F or B is
typed. If the user should try to transmit an unsolicited message (i.e., one for which there is no
outstanding read operator message call), the bell is sounded when CTRL E is depressed. The
last character in the message string must be the carriage return terminator. The entire message
string (including the terminator) can be up to 132 characters in length. The format of the call to
RDORPR is:

CALL RDOPR (array, nchar, error)

where: array is an integer array element specifying the location of the message area.

nchar is an integer variable returning the number of characters transferrred (including
the terminator). On an error, nchar is set to 0.

error is an integer variable which will return one of the error codes upon completion
of the call.

7-5

PART II - INDEX

ABORT routine 4-11 blocks
absolute addressing mode 1-3 number of in contiguous file 3-4
access reading 3-14, 3-15

files 3-1 task control 4-1

real time clock 1-2, Chapter 6 writing 3-14, 3-15

real time calendar 1-2, Chapter 6 bootstrap 2-6

resolution entry 3-3 BOOT routine 2-6

active tasks 4-1
activating a task 4-4, 4-6

add attributes 3-9 calendar commands Chapter 6
AKILL routine 4-11 card reader ($CDR) 3-1
aliases 3-3 carriage return, terminating file
allocation map 2-2 name 3-1
alphabetics, in file name 3-1 cassette unit I/O0 3-16ff
APPEND routine 3-12 cassette unit names 3-1
appending to a file 3-12 CDIR routine 2-5
apostrophes 3-1 CFILW routine 5-4
ARDY routine 4-9 CHAIN routine 5-4
ASCII characters chaining
changing from lower to upper to level zero 5-4
case 3-11 to programs 5-4, Chapter 1
in file names 3-1 change '
assign a file's name 3-5
attributes 3-9 attributes 3-9
new names to multiple file current directory 2-3
device 3-4 channel
ASSOC routine 4-5 associating to a file 3-2
ASUSP routine 4-8 examining file on a 3-6, 3-7
attributes freeinga 3-13
changing 3-9 linking for free format I/O 3-16ff
examining 3-8 numbers 3-2
list of 3-8 restoring status (see PART I)
setting 3-9 saving status (see PART I)
attribute protected file 3-8 CHANTASK statement 4-3
automatic restart 3-20 characteristics
examining 3-8
BACK routine 5-3 mask 3-10, 3-12
background program 7-1 CHLAT routine 3-9
bit allocation map 2-2 CHNGE routine 4-10

INDEX -1

CHSTS routine 3-6
clock commands Chapter 6
CLOSE routine 3-13
closing
a channel 3-13
a file 3-13
an overlay file 5-8
communications
between programs 7-1
between tasks 4-12
defining area 7-3
read a message for 7-4
write a message for 7-3

concurrent program execution Chapter 7

console interrupts
disable 2-7
enable 2-7
contiguous file
attribute 3-8
creating 3-4
organization 1-3
reading a 3-14
writing a 3-15
control, device 2-7
control table, device Chapter 3
core image attribute 3-8
CPART routine 2-5
CPU availability 4-1
create
a file (CFILW) 3-4
a link entry 3-6
an overlay file 5-12
a subdirectory (CDIR) 2-5

CTRL A 2-7
CTRL C 2-7
CTRL F 2-7

current system 2-6
current devices 3-10
current directory 2-3, 2-4

PART II - INDEX (Continued)

DATE routine 6-2
DCT link 3-7
define
a user clock 6-3
communications are 7-3
delete
a file 3-5
attributes 3-8
link entries 3-6

DELETE routine 3-5

depth of resolution 3-3

device
characteristics 3-10, 3-12
control 2-7
default names 3-2
get current name of 2-4
master 2-5
names 3-1
non-SYSGENed 4-i3, 3-20
spoolable 3-11

DFILW routine 3-5

DIR -routine 2-3

direct block record I/O 3-14ff

directory
get current name of 2-4
change the current 2-3
maintenance routines Chapter 2
default device 2-3
information, obtaining 3-6
initialize a 2-3
specifier 2-3
file attribute 3-8
releasing a 2-4

disable
console interrupts 2-7
spooling 2-8

discontinue,spooling 2-8

INDEX -2

PART II - INDEX (Continued)

disk EXIT routine 4-11, 5-4
blocks, number of 3-4 extensions
bootstrap 2-6 file name mnemonic 3-7
creating a file on 3-4 to file names 3-1

deleting a file on 3-5
discussion of 2-1ff

name of 3-1 FBACK routine 5-3
partitions 2-1ff FCHAN routine 5-4
display unit ($TTO, $TTT) 3-1, 3-18 FCLOS routine 3-13
DLINK routine 3-6 FDELY routine 4-8
dollar sign ($) 3-1 FGND routine 7-3
dormant state of a task 4-1 FGTIM 6-2
dual-program environment Chapter 7 FHMA user-module 7-1
dual-programming Chapter 7 file
DUCLK routine 6-3 attribute displacement mnemonic 3-7
DULNK routine 3-6 attribute maintenance 3-8ff

change attributes of 3-9
directory information 3-6, 3-7

EBACK routine 5-3 examine attributes of 3-8

enable I/0 3-10ff
console interrupts 3-18 maintenance 3-4ff
spooling 2-7, 3-11 name 3-1

environment parceling of space ina 2-5
foreground/background 7-1 name displacement mnemonic 3-7
mapped 7-1 size information update 3-8
multiple task 5-6, 7-1 structures 1-3
single task 5-6, 7-1 FINRV routine 2-9

EOF 3-14ff FINTD routine 2-9

EQUIV routine 3-2, 3-4 fixed head disk (DK(Q, DK1) 3-1

error codes 3-2, 2-2 FOPEN routine 3-11

error flags 3-2, 2-2 foreground/background programming

error recovery procedures, in mapped environment Chapter 7
warning 3-17 introductory concepts Chapter 7

examine in unmapped environment 7-1
a device's characteristic 3-8 foreground program, executinga 7-2
a file's attributes 3-8 form feed, terminating a file name 3-1
real time clock frequency 6-4 FORTRAN IV error messages 3-2, 2-2

eéxecute a background program 7-2 FOVLD routine 5-10

executing state of a task 4-1 FOVRL routine 5-11

EXBG routine 7-2 FQTASK routine 4-6

EXFG routine 7-2 free format I/O 3-16ff

INDEX - 3

PART II - INDEX (Continued)

freeing a channel 3-13
frequency of the TRC 6-4

FSTAT routine 3-9
FSTIM routine 6-1
FSWAP routine 5-1

FTASK routine 4-4
full initialization 2-3

GCIN routine 3-10
GCOUT routine 3-10
GDIR routine 2-4
&¢ attributes 3-8
current date Chapter 6
current default directory device
name 2-4 v
file directory information 3-6
logical name of master device 2-5
name of current I/O device 3-10
time of day Chapter 6
name of current system 2-6
GFREQ routine 6-4
global specifiers, temporary names
names of 3-1 '
temporary names
GSYS routine 2-6
GTATR routine 3-8
hardware partition 7-2
highest memory address (FHMA) 7-1
high-speed paper tape
punch ($PTP, $PTP1) 3-1
reader ($PTR, $PTR1) 3-1
HIPBOOT 2-6
HOLD routine 4-8

3-4

ICMN routine 7-3
identification numbers 4-3

identify user interrupt devices 2-8

incremental plotter ($PLT, $PLT1) 3-

3-18

1,

indeterminate error (0) 3-2
INIT routine 2-3
initializing a directory 3-3, Chapter 2
input

current device 3-10

dual processor link ($DPI) 3-1
interrupts

disable 2-9

enable 2-9

identifying device for 2«9

message 2-8

servicing user 2-8, 2-9
intertask communication 4-12
1/0, free format 3-16ff
ITASK routine 4-4
.IXMT routine 3-20

KILL routine 4-11
keyboard, interrupts 3-18, 3-20

levels of program segmentation 5-1,5-2
link frequency 6-3
line printer ($LPT, $LPT1) 3-1, 3-18
link
access attribute word 3-3, 3-7
aliases 3-3
chaining attributes
entry 3-3, 3-6
entry attribute 3-3, 3-8

3-9

examining attributes 3-8
resolution attribute 3-3, 3-8
to filea 3-3

load

a foreground save file 7-2

and execute a background program 7-2

overlays 5-8ff

Py

PART II - INDEX (Continued)

magnetic tape I/O 3-16ff ODIS routine 2-7
MAP,DR 2-2 OEBL routine 2-7
master device 3-4, 2-5 OPEN routine 3-10
MDIR routine 2-5 opening
memory management and protection an overlay file 5-8

unit 7-1 cassette unit for free format
MMPU 7-1 I/0 3-16
modeg open

for opening a file 3-10 a file (OPEN) 3-10
modification of priorities 4-10 a file (FOPEN) 3-11
moving head disk 3-1 a file for appending (APPEND 3-12
MTDIO routine 3-17 ouC 5-10
MTOPD routine 3-16 output
multiplexor (QTY) 3-1 current devices 3-10
multiprogramming Chapter 7 dual-processor link ($DPO) 3-1
multitasking Chapter 4 spooling of 3-11, 3-18
multitask monitor Chapter 4 OVERF LOW routine E-3

OVERLAY statement 5-7
overlay use count (OUC) 5-8ff

name overlays 5-4ff
a file 3-1, 3-2 overlay loader 5-14
an Qverlay file 5-7 OVEXT routine 5-12
a task 4-3 OVEXX routine 5-12
of current system 2-6 OVKIL routine 5-12
of master device 2-5 OVKIX routine 5-12
node points 5-4ff OVLDR command 5-14
non-SYSGENed devices 2-9, 4-13 OVLOD routine 5-8
NREL memory 7-2 OVOPN routine 5-8
null, terminating a file name 3-1 page zero memory 7-2
numbering paper tape
of bytes in last block 3-7 reader ($TTR, TTRIL) 3-1
of last block in file 3-7 punch ($TTP, $TTP1) 3-1, 3-18
of significant file name characters 3-7 parceling of disk file space 2-5
of user overlays 5-6 parent partition 2-5
numerics, in file name 3-1 partial initialization 2-3
partition
attribute 3-8
obtaining discussion 2-1ff
file directory information 3-6, 3-7 primary 2-1ff
task states 4-11 secondary 2-1ff, 2-5

INDEX -5

PART II - INDEX (Continued)

perform a disk bootstrap 2-6 random mode 3-10

periodic execution random record size 3-10, 3-12
of an overlay 4-6 RDBLK routine 3-14
of a task 4-6 RDCMN routine 7-4

permanent file attribute 3-8 RDOPR routine 7-4

power failure, restart after 2-9 RDOS

power-up service 2-9 discussion Chapter 1, Chapter 7

preassigned channel numbers 3-2 file names 3-1

prevent operating procedures App. D
interrupts 2-9 system error codes App. B
spooling 2-7 RDRW routine 3-14

PRI routine 4-10 reading

priorities a message from a program 7-4
modification of 4-10 an operator message 7-4
numbers 4-3 blocks 3-14
of foreground/background programs -only mode 3-10, 3-12

programs 7-1 records 3-14

of tasks 4-1, 4-3 read-protected file attribute 3-8

program READR routine 3-14
called 5-1 ready state of a task 4-1
calling 5-1 Real Time Clock Chapter 6
chaining 5-1, 5-4 Real Time Disk Operating System
overlays 5-4ff (see RDOS)
segmentation Chapter 5 Real Time Operating System (see RTOS)
swapping 5-1 REC routine 4-12

programmable control of tasks Chap. 4 referencing

pulses of the RTC 6-3 channel numbers 3-2

files 3-2

files on magnetic tape 3-2
files on cassette tape 3-2

QTY 3-1 release an overlay area 5-11, 5-12
queuing of output data 2-7, 3-11 release a dil_'ectory 2-4
quotation marks 3-1 RELSE routine 4-9

remove

a user clock 6-3
interrupt devices 2-8

random file RENAM routine 3-5
attribute 3-8 renaming a file (RENAME) 3-5
creatinga 3-10 REPLACE command 5-15
organization 1-3 reserved
reading a 3-14 channel numbers 3-2
writing a 3-15 device names 3-1

INDEX -6

P

PART II - INDEX (Continued)

RESET routine 3-13
resolution
entry 3-3
file attributes 3-3
RESTART.SV 2-6
restoring a swapped program 5-2
RLDR command line 4-3, 5-2, 7-2
RLSE routine 2-4
root program 5-4
RTC Chapter 6
RTOS
discussion Chapter 1
file names 3-1
RUCLK routine 6-3
run time stack 7-1
run time errors App. B
save

save file attribute 3-8

saving channel status (see PART I)
secondary partition 2-1ff, 2-5
segment of an overlay file 5-5

SDATE routine 6-3

sequential
creating 3-4
opening 3-10

mode 3-10, 3-4

organization Chapter 1
servicing, user interrupts 3-20
set

attributes 3-9

calendar Chapter 6

time of day 6-1
sharing system resources 7-1
significant characters in file name 3-1
simultaenous peripheral operation on-

line (see spooling)

size

of contiguous file 3-4

of overlay file 5-4

of random record 3-10

of run time stack 7-1
software memory partition 7-1
SOS Chapter 1, App. D
space, terminating a file name 3-1
SPDIS routine 2-8
SPEBL routine 2-7
SPKIL routine 2-8

spooling
device 2.7, 2-8, 3-11
disable 9_g
enable 9.7
stop 2-8

Stand-alond Operating System (see SOS)

start a task 4-7

starting logical address of a file 3-7

START routine 4-7

STAT routine 3-7

status
information from file d
information on free format I/O 3-16ff
information on tasks 4-1

STIME routine 6-1

STOP statement 5-4

stop, a spool operation 3-19

STTSK routine 4-11

subdirectory 2-1ff, 2-5

SUSP routine 4-8

suspended state of a task 4-1

SWAP routine 5-1

swapping programs 5-1

SYS.DR 1-3, 2-1ff

system clock commands 6-3, 6-4

system maintenance routines Chap. 2

INDEX -7

PART II - INDEX (Continued)

system directory

addition to 3-4

deletion from 3-5

discussion Chapter 1, 2-5
system errors App. B
system, get name of current 2-6
system utilization, improve upon

Chapter 4, Chapter 5

TASK statement 4-4
task concepts 4-1, 4-2, 4-3
task control block 4-1
task scheduler 4-1ff, 7-1
task states 4-1
task status, obtaining 4-11
task identification numbers 4-3
task priority levels Chapter 4
TCB 4-1
temporary names of devices 3-4
terminating

a file name 3-1

a task 4-11
TIME routine 6-2
TRNON routine 4-8
TYPE statement 3-2

type
contiguous 3-4
of a file 3-4

of initialization 2-4
random 3-4
sequential 3-4

UFD 3-7

unmapped memory Chapters 7 and 1

unresolvable links 3-6

update current file's size
information 3-8

UPDATE routine 3-8

user
addressing mode Chapter 1
attribute 3-8
clock commands 6-3, 6-4
file directory 3-7
interrupt device
identifying 3-20
servicing 3-20
removing 3-21
servicing routines 3-20
-shared
reading 3-10, 3-12
writing 3-10, 3-12

vector table 3-21

WAIT routine 4-9

WRBLK routine 3-15
WRCMN routine 7-4

write-protected file attribute 3-8
write
a message between programs
a multitask program 4-3
an operator message 7-4
blocks 3-14, 3-15
-only mode 3-10, 3-12
records 3-14
WRITR routine 3-15
WROPR routine 7-4
WRTR routine 3-15

XMT routine 4-12

XMTW routine 4-12

INDEX -8

7-3

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D
APPENDIX E

Summary of FORTRAN IV
Error Messages

DGC FORTRAN Variations
from Standard FORTRAN

Operating Procedures

Data Storage and Handling

CONTENTS OF APPENDICES

APPENDIX A - FORTRAN IV SUMMARY

FORTRAN IV Statement SUMMATY . « v v o o o s o o e asoesnnnnss e e .A-3
FORTRAN IV Run Time Call SUMMATY. « ¢ v v o vt e v e vennnennnnn. eeeeA-9
APPENDIX B - ERROR MESSAGES

Compiler Error Messages. . v o v oo oo v ceoe e St e et B-1

FORTRAN IV Run Time Error Messages . . « « e v v vov v .. L - 1)

System Error Messages et reeaaes St te ettt B-6

APPENDIX C - DGC FORTRAN VARIATIONS FROM STANDARD FORTRAN
PPENDIX D - OPERATING PROCEDURES

Operationunder RDOS. .+« v v ottt it i it v en v e nnns ettt e D-1
Compilation and Assembly........... et ettt D-2
Compile-time Options. A, ceenenn «...D-3
Loading Procedures « v .v vt v v v vnneennn.. S ettt e e e aes D-4
Loading in a Single Task Env1ronment ettt e D-4
Loading in a Multitask Environment C et et e D-5
The Overlay Loader St e e e Cr et ...D-6
Loading in Foreground /Unmapped Environment.ccoeveeeene.. D-8
Loading in Background/Unmapped Environment . . .« v v v o vveuuwss...D-8
Examples of RLDR Command Lines. C s esee e eaeans «...D-8
Undefined Symbols « v v v v v v v v v v v u et e e D-9
Debugging. Ce ettt e C ottt e D-9
Merging Library F]les Cee e C e e eeees.D-9
The CLG Command. et et P » S 1]

Operationunder RTOS. . .4t vvvn e e nenn C et ee e cete s D-12

Operation under SOS....... s e e s ereceenn s L D RS)
Operation under RDOS-Compatible SOS 0o vu .. et D-14
Compilation. . v v v v v vnnnnnnennn C ettt e et et e D-14
Assembly . ..o ivi i, Ceee e e eessenae e ceesecsraenan D-16
Loading e e et et ecesn et enan «e..D-17
Execution and Restart Procuedures ¢« « v v v v v v ot venennneennnans D-18
Producing a Trigger . v v v s o v i vt it ee et nnnneens S eceenresesse.D-18
Possible Error Messages. et Sttt ettt D-19
Examples « v v v o v e v e annnnans St e e e e cecssesesesa.D-19

Operation under DOS-Compatible SOS . . . o v v v h v e vn s, ceereeseaseD-21
Compile- tlmeOptlons e es e se et s et s s teceacen s ...D-21
Assembly PR T N cetsce et e aas D-22
loading .. vovvvivn v N P b Y]
Restart Procedure . .. oo v veennneenenen. cerersesvans ee...D-23
Execution . . . v v o vv e vnnns et et i e A D E VA

Operation of 8K Stand - alone FORTRAN IV e . D-24
OperatmgProcedures............. e ee et et e e D-24
Language Limitations . . . e v v o vav. . et e s ee s e....D-24

Smaller Object Programs. . « « v v v v vaevvnvne. cee e eeeeseesse.,D=25

Disk BoOtStrapping « « « o v o s e v e e 0 v v vw v I b 901)

APPENDIX E - DATA STORAGE AND HANDLING

Storageof Dataceveceaeenncns c et e e et R
Integers oot ieeneanesncscnn e he e e ct s e s eseeans E-
Real Numbers........ e . ceses e
Double Precision Numbers. . . v oo e e v e v e v o nne t et ee e e
Complex NUMbDETIS . . v v i vsvvvnnnneoesocesoness S e e E-
Double Precision Complex Numbers F I)
StringData.,........... et s et e C et e na e we.o E-
Logical Data « « oo v o e o v aosonns ce e e e e ee s s se s e s ne o ... E

Data Handling « + ¢ =« o+ ¢ Ceeen et B R I I E
Number Stack « ¢ o ¢ e e e s 0o C et e e e e e tecsene e veseeess E
Byte Manipulation. « s o s s e v ev ettt ittt E-

Overflow Checking e « e o ¢ o v s v oo e oeans Cre s ee s ceas e e E

ii

APPENDIX A

FORTRAN IV SUMMARY

The following pages contain a summary of each call to a run time routine which can be made under
FORTRAN 1V and each statement which is a part of the FORTRAN IV programming language. Beside
each statement or call description is a row of five boxes specifying respectively:

whether or not the call/statement is used under RDOS
whether or not the call/statement is used under RTOS
whether or not the call/statement is used under SOS

a page reference within the manual

An X signifies a positive answer as to whether or not a particular call/statement can be used under
a particular operating environment. The page reference column is divided into two sections, the
first corresponding to PART I and the second corresponding to PART II.

A summary of the format descriptions used is as follows:

upper case letters - are essential parts of the format description and must be used
exactly as they appear.

are variable portions of the format descriptions; the user, when
writing to correspond to the format, will insert his own variable
name, device name, file name, etc.

lower case letters

= - equals sign is a necessary part of the format description

, - comma is an argument delimiter and is a necessary part of the
format description.

tt - broken square brackets indicate optional portions of the format
description.
() - pareatheses are used to delimit all arguments from the command

word. (They are a necessary portion of the format description.)

o - quotation marks are used as ASCII string delimiters and are
necessary parts of the format description.

() - braces are used to denote alternate portions of the format
description.
. - three dots indicate that portions of the format description have

been omitted. When they appear, the user should readily see
what portions of the format are missing.

FORTRAN IV STATEMENT SUMMARY

Statement Format

RDOS

RTOS

SOs

Page Ref,
Part I

Page Ref,
Part II

functionname (argument, argument, . . . , argument) = expression

n armerifiad £iooer
da OpCLLICU LUl L1011,

variable = expression

assigns the value of an expression to a specified variable.

ACCEPT list

values appearing within the list of the ACCEPT statement are
input from the console.

<

6-20

ASSIGN statementmumber TO variable

causes a subsequent assigned GOTO statement to transfer control to
the statement number specified within the ASSIGN statement

5-2

BLOCK DATA

defines a subprogram which contains only DIMENSION, DATA,
COMMON, data-type, and EQUIVALENCE statements.

CALL subroutine (argument, argument, . . . , argument)

references a specified subroutine, replacing dummy
arguments with actual arguments.

5-3

CALL subroutine

references a specified subroutine.

5-3

CHANTASK number-of -channels, number-of-tasks

specifies the number of channels that may be open at any
one time, and the number of tasks which can be simultane-
ously active at one time.

4-3

COMMON name . . . name

specifies names of variables and/or arrays to be placed in blank
common. The arrays may be dimensioned in the statement.

7-4

COMMON block-name/list of names ... /block -name/list of names

specifies lists of arrays and/or variables to be placed in labeled
common areas defined by block names.

7-4

FORTRAN IV STATEMENT SUMMARY

Page Ref, | Page Ref.

Statement Format RDOS JRTOS |SOS Part [Part II

v

COMPILER DOUBLE PRECISION

forces all REAL variables and constants to DOUBLE PRECISION
and all COMPLEX to DOUBLE PRECISION COMPLEX.

.

COMPILER NOSTACK

causes all non-COMMON variables and arrays to be placed in a
fixed location in memory rather than on a run time stack.

COMPLEX variable, variable, . . . , variable

specifies single precision complex variables and/or arrays. The
arrays may be dimensioned in the statement.

CONTINUE

causes continuation of the normal execution sequence.

L)
DATA variable-list/constant-list/. .. variable-list/constant-list/

defines initial values for variables and array elements.

DIMENSION arrayname (subscript bounds), ..., arrayname
(subscript bounds)

specifies the subscript bounds of arrays for allocation of
storage to the arrays.

DO statementnumber variable = integer, integer f,integery

sets up a programming loop.

DOUBLE PRECISION variable, variable,..., variable

specifies double precision variables and/or arrays. The
array may be dimensioned in the statement.

DOUBLE PRECISION COMPLEX variable, variable,...,variable

specifies double precision complex variables and/or arrays. The
arrays may be dimensioned in the statement.

ENDFILE channel
X X X 6-24
causes the file associated with the specified channel to be
closed.

W
1
(SN

FORTRAN IV STATEMENT SUMMARY

Page Ref.] Page Ref,
Statement Format RDOS |RTOS |SOS Part I Part II
EQUIVALENCE (list-of-names), (list-of-names),... (list-of -names)
X X X 7-5
determines shared storage for variables and /or arrays.
EXTERNAL subprogram-name, ..., subprogram-name
X X X 7-6
specifies subprograms as external to the program unit in
which the specification is made.
statementhumber FORMAT (specification)
X X X 6-6
allows for the formatting of input and output data according
to a specification.
type FUNCTION name (argument, ... , argument)
X X X 9-2
defines a function subprogram.
GOTO statement-number
X X X 5-1
causes transfer to a specified statement number.
GOTO variable
X X X 5-1
causes transfer to the address which is the current value
of the specified variable.
GOTO (statement-numberl, statement-number2,...statement-
numbern), variable
) X X X 5-1
causes possible transfer to one of several statement numbers
depending on the value of the specified variable.
GOTO variable (statement-numberl, statement-number?2, . . . ,
statement-numbern)
X X X 5-2
causes transfer to one of several possible statement numbers
depending on the value of the specified variable after the last
execution of an ASSIGN statement.
IF (logical expression) statement
X X X 5-3
causes either execution or bypassing of the specified statement
depending on the specified logical expression being true or false.

FORTRAN 1V STATEMENT SUMMARY

Page Ref,] Page Ref.
Statement Format RDOS |RTOS |SOS Pfitl pagrt 11
IF (expression) statement-numberl, statement-number2,
statement-number3
X X X 5-3
causes transfer to one of three statement numbers depending
on the value of the specified expression.
INTEGER variable, variable, ... variable
X X X 7-3
specifies integer variables and/or arrays. The arrays may be
dimensioned in the statement.
LOGICAL variable, variable, ... variable
X X X 7-3
specifies logical variables and/or arrays. The arrays may be
dimensioned in the statement.
OVERLAY overlayname
X 5-7
names an overlay.
PARAMETER variable = constant, ... variable = constant
X X X 2-1
assigns values to symbolic names, which may then be used
like constants throughout the program.
PAUSE t string
X X X 5-5
causes the program to cease execution with an optional
message printed at the console.
READ (channel) f list-of -variablesq
READ (channel, format) f list of -variables 4
X X X 6-1
reads from a device or file the data associated with the vari-
ables in the list; formatting may be preset (unformatted 1/0)
or in accordance with a format specified by the user.
READ (channel, { format, 7 fERR] = statementnumber) flist}
{ENDf
READ (channel, { format, § JERR) = statementnumber,
{END)’
{ERR} = statementnumber) flistj
END
X X X 6-23
reads information (as in READ description above) and also
allows the user to gain control after an end-of-file or an 1/0O
error at the driver level has been detected.

FORTRAN IV STATEMENT SUMMARY

Page Ref. | Page Ref,
Statement Format RDOS JRTOS }SOS Part 1 Part 1I
READ BINARY (channel) list
X X X 6-20
transfers binary data from an external medium
REAL variable, . . . , variable
X X X 7-3
specifies real variables and/or arrays. The arrays may be
dimensioned in the statement.
RETURN f variable q
X X X 5-4
indicates the logical end of a subprogram, by default, causing
a normal return when executed. Optionally, the user may cause
an abnormal return.
REWIND channel
X X X 6-23
causes the file associated with the specified channel to be
positioned at the initial record.
STOP { string g
X X X 5-5
causes an unconditional termination of a program's (or a
task's) execution, and optionally causes a message to be
printed at the console.
SUBROUTINE name (argument, . . . , argument)
X X X 9-8
defines a subroutine subprogram unit.
TASK taskname
X X 4-3
-assigns a name to a task program unit.
TYPE list
X X X 6-20
causes output of the values of the variables specified in
the statement.
WRITE (channel) f list-of-variables 3
WRITE (channel, format) f{ list-of-variables j
X X X 6-1

write to a device or file the data associated with the vari-
ables in the list; formatting may be preset (unformatted 1/0)
or in accordance with a format specified by the user.

A-7

FORTRAN IV STATEMENT SUMMARY

Statement Format

RDOS

RTOS

SOSs

Page Ref,
Part 1

Page Ref.
Part 1I

WRITE (channel, {format,q {END} = statementnumber) tlistj
ERR

WRITE (channel, fformat,] {END} = statementmumber, fEND) =
ERR {ERR}

statementmumber Flist]
writes information (as in WRITE description on previous page)

and also allows the user to gain control after an end-of-file or
after an I/O error has been detected.

6-23

WRITE BINARY (channel) list

transfers data in binary to an external medium.

6-20

>
t
co

FORTRAN IV RUN TIME CALL SUMMARY

Page Ref.] Page Ref,
Call Format RDOS JRTOS |SOS Part I Part 1I
CALL ABORT (& error)
X X 4-11
causes termination of the task with the specified identification
nnnnnnn
CALL AKILL (priority number)
X X 4-11
terminates all ready or executing tasks with the
specified priority nunibel.
CALL APPEND (channel, filename, mode,) error f,size J)
{array, X X 3-12
opens a file for appending
CALL ARDY (priority-number)
X X 4-9
causes all tasks of a given priority number to be readied.
CALL ASSOC (task, id, priority-no., error f,IASM]
X 4-5
associates a task with an identification number,
without causing that task to go to ready state.
CALL ASUSP (priority -number)
X X 4-9
causes all tasks of a given priority number to be suspended.
CALL BACK
X 5-3
causes the last program that was swapped out to disk to be
restored to core.
CALL BCLR (word, position)
X X X 9-10
sets a single bit in a word to zero.
CALL BOOT (device, error)
X 2-6
perform a disk bootstrap.
CALL BSET (word, position)
X X X 9-10
sets a single bit in a word to one.
CALL CDIR (name, error)
X 2-5
creates a subdirectory with a specified name.
CALL CFILW (filename, type, f,size], error)
X 3-4

creates an RDOS disk file.

A-9

FORTRAN 1V RUN TIME CALL SUMMARY

P . Ref,
Call Format RDOS JRTOS |sos |Fage Ref. | Page Ref
Part L Part 1I
CALL CHAIN (filename, error)
X 5-4
causes the current program's core image to be overwritten by
another program loaded from disk.
CALL CHLAT (channel, attributes, error)
X 3-9
causes a change, addition, or deletion of link file access attributes.
CALL CHNGE (identification, priority-number, error)
X 4-10
causes the priority number of a specified task to be changed.
CALL CHRST (channel, start-word)
X 6-24
restores previously saved channel status to enable rereading and
rewriting of records.
CALL CHSAV (channel, start-word)
X 6-25
saves the status of a channel to enable rereading or rewriting
of records.
CALL CHSTS (channel, array, error)
X X X 3-6
returns a copy of the current directory status information
for a file on the specified channel.
CALL CLOSE (channel, error)
X X X 3-13, 5-8
closes a file.
CALL CPART (name, size, error)
) X 2-5
creates a secondary partition.
CALL DATE (date-array, error)
X X 6-2
gets the current date.
CALL DELETE (filename)
X 3-5
deletes a file.
CALL DFILW (filename, error)
X 3-5
deletes an RDOS disk file.
CALL DIR (directoryname, error)
X 2-3

changes the current defaait directory device.

FORTRAN IV RUN TIME CALL SUMMARY

Page Ref, | Page Ref.
Call Format RDOS RTOS 1S0S Part [Part II
CALL DLINK (namel, {name2, § error)
X 3-6
creates a link entry in the current directory to a file in
another directory.
CALL DUCLK (ticks, address, error)
X X 6-3
permits the definition of a user clock.
CALL DULNK (name, error)
X 3-6
deletes a link entry in the current directory.
CALL EBACK (error)
X 5-3
returns the last swapped program back to disk, or if there is no
such program, causes return to level 0 - the CLI.
CALL EQUIV (namel, name2, error)
X 3-4
assigns a new name to the multiple file device.
CALL EXBG (name, priority, error)
X 7-2
loads and executes a program in the background.
CALL EXFG (name, pricrity, error)
X 7-2
loads and executes a program in the foreground.
CALL EXIT
X X 5-4, 4-1]L
causes termination of executing task.
CALL FBACK
X 5-3
causes the last program that was swapped out to disk to
be restored to core.
CALL FCHAN (filename)
_ X 5-4
causes current program's core image to be overwritten by
another program loaded from disk.
CALL FCLOS (channel)
X X X 3-13
closes a file on a specified channel and frees the channel.
CALL FDELY (number -of -pulses)
X X 4-8
suspends a task for a specified amount of time.

FORTRAN IV RUN TIME CALL SUMMARY

Call Format

SOs

Page Ref.
Part 1

Page Ref.
Part 1I

CALL FGND (foreground)

determines whether or not a foreground program is running.

7-3

CALL FGTIM (hour, minute, second)

gets the current time.

6-2

CALL FINRV (device-code)

removes a user interrupt device from the system interrupt
vector table.

2-9

CALL FINTD (device-code, dct)

specifies a device which is capable of generating interrupt
requests.

2-9

CALL FOPEN (channel, filename f, "B"] {, recordbytesq)

assigns a specified channel to a file (device) and opens that
file or device.

CALL FOVLD (channel, overlay, condition-flag, error)

loads overlays in a multiple task environment.

CALL FOVRL {overlay, error)

releases a specified overlay.

CALL FQTASK (overlayname, task, array, error {, type ¥

causes periodic execution of a task or overlay.

4-6

CALL FSEEK (channel, recordnumber)

positions a random file to a given recoxd.

6-24

CALL FSTAT (channel, attributes, error)

sets or changes the attributes of a file.

3-9

CALL FSTIM (hour, minute, second)

sets the real time clock.

CALL FSWAP (filename)

causes the current program's core image to be saved on
disk, and another program to be loaded from disk.

FORTRAN IV RUN TIME CALL SUMMARY

Call Format RDOS

RTOS

SOS

Page Ref,
Part I

Page Ref,
Part 1I

CALL FTASK (taskname, error-return, priority-number f. IASM7)

activates a task by task name.

e
rllk

CALL GCIN (array)

obtains the current input device name.

obtains the current output device name.

CALL GDIR (array, error)

returns the name of the current default directory/device name.

2-4

CALL GFREQ (variable)

examines the Real Time Clock (RTC) frequency.

CALL GSYS (array, error)

gets the name of the current system.

2-6

CALL GTATR (channel, attributes, error)

examines the attributes of a file,

3-8

CALL HOLD (identification, error)

causes the task with the specified identification number to
be suspended.

4-9

CALL ICLR (word, position)

sets a single bit in a word to zero.

CALL ICMN (array, length, error)

defines an area in a program's address space which will
be used for sending and receiving messages.

7-3

CALL INIT (directoryname, type, error)

causes a directory to be initialized.

2-3

CALL ISET (word, position)

sets a single bit in a word to one.

FORTRAN IV RUN TIME CALL SUMMARY

Page Ref. | Page Ref.
Call Format RDOS JRTOS1SOS } parer | part 1
CALL ITASK (taskname, id, priority-number, error t, [ASMj])
X X 4-4
activates a task and associates an id number with the task
name.
CALL KILL
X X 4-11
kills the executing task.
CALL MDIR (array, error)
X 2-5
obtains the current master device name.
CALL MTDIO (channel, commandword, 1/O-array, status, error f,count
X X 3-17
permits the operation of magnetic tape and cassette units
on a machine level.
CALL MTOPD (channel, filename, mask, error)
X X 3-16
opens a magnetic tape or cassette unit for free format 1/0.
CALL ODIS
X 2-7
disables console interrupts.
CALL OEBL
X 2-7
enables console interrupts.
CALL OPEN (channel, filename, (mode,) error {, sizej)
{arraz,}
X X X 3-10
opens a file.
CALL OVERFLOW (statementl, statement2 {”S"})
X X X E-3
checks for floating point overflow and returns to statementl, or
statement2 depending upon whether or not overflow occurred.
CALL OVEXT (overlay, return-location)
X 5-12
causes an overlay to be released and provides a return
location).
CALL OVEXX (overlay, return-location)
X 5-12
causes an overlay to be released and provides a return
location.

IS
>
i
[
Ha

FORTRAN IV RUN TIME CALL SUMMARY

Page Ref.] Page Ref.
Call Format RDOS JRTOS 1508 Part I Part 1l
CALL OVKIL (overlay)
X 5-12
causes an overlay to be released and the task containing
the overlay to be killed.
CALL OVKIX (overlay)
X 5-12
causes an overlay to be released and causes the task containing
the averlay to he killed.
CALL OVLOD (channel, overlay, conditional-flag, error)
X 5-8
loads overlays in a single task environment.
CALL OVOPN (channel, filename, error)
X 5-8
opens an overlay file.
CALL PRI (Eriorig—number)
X X 4-10
changes the priority number of an executing task.
CALL RDBLK (chamnel, sblock, array, nblock, error F» iblkq)
X X 3-14
causes a series of blocks to be read from a contiguously or
randomly organized file.
CALL RDCMN (array, stari-word, number-of-words, error)
X 7-4
reads a message from another program's communication
area.
CALL RDOPR (array, nbyte, error)
' X 7-5
reads an operator message.
CALL RDRW (channel, srec, array, nrec, error f, nbyte])
X 3-14
causes a series of records to be read from a file into an
array.
CALL READR (channel, srec, array, nrec, error F,» nbytet)
X 3-14
causes a series of records to be read from a file into an
array.
CALL REC (message-key, message -destination)
X X 4-12
receives a one-word message.

FORTRAN IV RUN TIME CALL SUMMARY

P Ref. | P Ref.
Call Format rRDOS |rTOs |sos |Fage Ref-| Page
Part I Part 11
CALL RELSE (identification, error)
X X 4-9
causes the task with the specified identification number to be readied.
CALL RENAM (oldfilename, newfilename, error)
X 3-5
renames a disk file.
CALL RESET
X X X 3-13
closes all open files.
CALL RLSE (directoryname, error)
X X 2-4
closes and releases all files of a given directory.
CALL RUCLK
X X 6-3
removes a previously defined user clock.
CALL SDATE (array, error)
X X 6-3
sets the date.
CALL SPDIS (devicename, error)
X 2-8
disables spooling on a specified device.
CALL SPEBL (devicename, error)
X 2-7
enables spooling on a specified device.
CALL SPKIL (devicename, error)
X 2-8
stops a spool operation which is currently being performed.
CALL START (id, time, unit, error)
X X 4-7
starts a task after a specified time delay.
CALL STAT (filename, array, error)
X 3-7
obtains current status of a given file.
CALL STIME (array, error)
X X 6-1
sets the time of day.
CALL STTSK (id, status, error)
X X 4-11
obtains current status of a task.

FORTRAN IV RUN TIME CALL SUMMARY

Page Ref.] Page Ref.
Call Format RDOS JRTOS §SOS Part I Part 1I
CALL SUSp
X X 4-8
causes an executing task to be suspended.
CALL SWAP (filename, error)
X 5-1
causes the current program's core image to be saved on
disk, and another program to be loaded into core from disk.
CALL TIME (time-array, error)
X X 6-2
gcts the current time of day.
CALL TRNON (id, array, error)
X X 4-8
executes a task at a specified time.
CALL UPDATE (channel, error)
X 3-8
permits the current file's size information to be updated.
CALL WAIT (time, units, error)
X X 4-9
causes executing task to be suspended for specified amount of time.
CALL WRBLK (channel, sblock, array, nblock, error f, iblkj)
X X 3-15
causes a series of blocks to be written into a disk file from an
integer array.
CALL WRCMN (array, start-word, number-of-words, error)
X 7-4
causes a message to be written by one program into another
program's communication area.
CALL WRITR (channel, srec, array, nrec, error f, nbytej)
X 3-15
causes a series of records to be written into a file.
CALL WROPR (array, error)
X 7-4
writes an operator message.
CALL WRTR (channel, srec, array, nrec, error {, nbytej)
X 3-15
causes a series of records to be written to a file.
CALL XMT (message-key, message-source, error-return)
X X 4-12

transmits one-word messages between active tasks.

FORTRAN IV RUN TIME CALL SUMMARY

Call Format RDOS ‘RTOS SOS Page Ref. | Page Ref.
Part | Part 11
CALL XMTW (message -key, message-source, error return)
X X 4-13

transmits a one-word message between active tasks and waits
until the message has been received.

APPENDIX B

ERROR MESSAGES

COMPILER ERROR MESSAGES

Error checking by the FORTRAN IV compiler is quite extensive. Syntax, identifier usage conflict,
and allowable variable types in arithmetic expressions are all thoroughly checked.

Whenever possible, the statement scan is continued after an error is detected and noted. This is
donc for non-syntactic crrors in declaration statements aind expression evaluation. In ihe scan of

FORMAT statements, recovery will be attempted under certain conditions.

Obviously, one error may lead to later error messages because information which should have been
available to the compiler at this later point is not available.

An error message consists of one or two lines, The FORTRAN source line is typed preceding the
first error detected, followed by the error code (s). Sometimes the FORTRAN source line given in
the message is not the line containing the error but the succeeding one. This occurs because some
errors are not detected until it has been verified that the line following is not a continuation line; by
that time, the erroncous line is not available for output.

In specification statements, certain errors are detected when all declarations are being resolved and
the first non-declaration line is in the buffer. Error messages resulting will be qualified by a second
line specifying at least one of the identifiers involved in the error detected.

Error messages 61 and 76 will be qualified with the statement number in question.

Error messages are output to the teletype in all cases and to the listing device if different from the
teletype. Error messages are always preceded by semicolons. A semicolon indicates to the
assembler that the remainder of the line is a comment. Its use permits the listing and output devices
(or the error and output devices) to be the same.

Each error message terminates with a decimal character count. This refers to the last character
scanned and indicates that the source error occurred somewhere within the statement at or prior to
the character given in the character count. Character count does not equal the column number, except
when no tabs precede the character in question.

Some examples of error messages are:

B-1

COMPILER ERROR MESSAGES (Continued)

; DATA CP1/1,1.D9/CP2/3.D-5,.01D2/
;¥*¥*050*** ACHR 215

(Presume in the example above that CP1 and CP2
are double precision complex variables,)

;1 FORMAT(1HO0,1P3E15. 4, F8.2)
;¥F*051*** ACHR 203
;0 L2

(The error, as indicated by the variable, L2,
occurred in a specification statement preceding
the FORMAT statement.)

5 L1 = R3+1..GE. *R4
J¥*F*013*** ACHR £14

In the list of error messages that follows:
N - Means that the syntax error is not necessarily fatal.
C - Means the scan of the statement is continued if the error is a syntax error. The
continued scan applies only to syntax errors; errors at a diffferent level may or may

not allow the scan to continue.

In FORMAT statements, the error is generally fatal. In declaration statemerts, if a
conflict occurs, the last declaration for the identifier is ignored.

B-2

Codé

00

01
02 N

04 N
05

07
10 C
11
12

13
14
16
17
20

21
22
23

24
25 ¢C
26 C

27
30
31
32
33
34 C
35
36

37 C
40 C
41
42 C
43
44
45
46

Meaning

Working space exhausted. Fatal, but compiler
continues.

Multiply-defined parameter.

Mixed precision operands.

Unknown statement type.

Something other than blanks at statement end.
Syntax error in DATA variable list.

Syntax error in DATA literal list.

Syntax error in statement function.

Missing integer in FORMAT,

Error in parameter list of CALL.

Array identifier not followed by a left or right
parenthesis or comma.

Illegal element in expression.

Improper use of array name.

Missing operator.

Illegal sequence of adjacent operators.

Illegal element/operator when " (" or literal or
variable expected.

Premature statement end for an IF.

Trailing "." missing in operator such as .EQ.
Illegal contlnuatlon line (after comment or having
label).

"." not followed by letter or number.

Format error.

Format error after repeat count. (Errors 25 and 26
together indicate an illegal character. These errors
may repeat on one statement.)

Abnormal end to FORMAT statement.

Expression didn't close at end of statement.
Multiply-~defined error.

Variably-dimensioned array not a dummy .
Variable list longer than value list in DATA.
Identifier in more than one type declaration.
Unclosed DO loop in program.

Common variable previously declared EXTERNAL,
subprogram or dummy.

Dummy identifier predefined.

Dimension error.

Improper statement terminating DO loop.
Variable dimension for main program array.
Array size is greater than 32K.

Parentheses don't close before statement end.
Expected numeric operand for unary minus.
Expected logical operand for .NOT.

FORTRAN IV ERROR MESSAGES (Continued)

Code Meaning

47 N Illegal operand types for current operator.

50 C Data statement error; types don't match.

51 Both members of equivalence pair in common.

52 Beginning of common extended by equivalence.

53 Irrecoverable format error.

54 Statement function name in conflict with previous
declaration.

55 Multiply-defined dummy identifier in statement
function.

56 C Too few subscripts in DATA or EQUIVALENCE.

57 C Subscripts out of bounds in DATA or EQUIVALENCE.

60 C Formal syntactical structure of statement is in

error, punctuation is missing or an identifier is of
the wrong variety.

6l Undefined label.

62 Attempt to load or store external or array.

63 Array element can't be specified for a dummy array.
64 C Identifier in EXTERNAL previously declared in other

than type declaration.

65 C A variable dimension is not a dummy.

66 Variable on DATA list not in labeled COMMON.

67 Two variables, neither in COMMON, are equivalenced.
70 A subscript is not type integer.

71 Wrong number of arguments for reserved name function.
72 Wrong type of arguments for a reserved name function.
73 N Non-digit in label field.

74 N Carriage return in label field.

75 Improper statement in block data subprogram.

76 N Unreferenced label.

77 Stack variable referenced in statement function.

100 C Variable stack has no room for all run time variables.
101 Undeclared identifier in statement function expression.
102 RETURN statement in main program.

104 $ followed by something other than a digit.

105 End of file without END.

106 Wrong number of subscripts.
111 Hollerith constant not ended at statement end.

112 C Truncated integer. Magnitude greater than 2**15-1 .
114 C Exponent error in real.

115 C Exponent error in double precision.

lle C Illegal character for FORTRAN statement.

120 Literal error of one of the following types: (a) two
operands not both literals, (b) two literals of differ-
ent types, or (c) source line is (literal, literal
operator where: operator is not a right parenthesis.

140-160 Compiler errors for debugging only.

B-4

* %

FORTRAN IV RUN-TIME ERROR MESSAGES

Error Number Meaning

1 Stack overflow

2 Computed GOTO error

4 Division by zero

5 Integer overflow

6 Integer power error (illegal or overflow)

7 Floating point underflow.

8 Floating point overflow

9 Illegal format syntax

11 Logic conversion error

13 Number conversion error

14 1/0 error

15 Field error (i.e., F5.10, E5.4, etc.)

16 Square root of negative number

17 Log of negative number

18 Channel not open

19 Channel already open

20 No channels available

21 System exceptional status *

24 Exponential over/underfliow

25 Array element out of bounds

26 Negative base for floating-point power

27 Number stack overflow

28 BACKSPACE not implemented

29 Attempt to restore status of channel when the
status was not saved.

30 Queued task error.

31 Seek on a non-random file.

32 Overlay aborted

33 Illegal argument

34 Delete erxror (file open)

35 Overlay error in overlay kill.

36 Undefined entry. **

This error is generated when a system-related function (e.g., setting
time) encounters an error (e.g., invalid time) and has no way to return
an error indication to the FORTRAN program. Note that

CALL FSTIM (hour, min, sec) cannot indicate the error. However,

CALL STIME (array,ierror) provides for an error and consequently, pro-
cessing continues.

This error occurs when an attempt is made to call a subroutine that was
not loaded.

SYSTEM ERROR MESSAGES

FORTRAN RDOS

Code Code Meaning

0 Indeterminate error

1 Call successfully completed

2 Activity in progress

3 0 Illegal channel number

4 1 Illegal file name

5 2 Illegal system command

6 3 Illegal command for device

7 4 Not a saved file

8 5 Attempt to write an existent file.

9 6 End of file.

10 7 Attempt to read a read-protected file.

11 10 Attempt to write a write-protected file.
12 11 Attempt to create an existent file.

13 12 Attempt to reference a non-existent file.
14 13 Attempt to alter a permanent file.

15 14 Illegal attempt to change file attributes.
le 15 Attempt to reference an unopened file

17 16 (not assigned)

18 17 (not assigned)

19 20 (not assigned)

20 21 Attempt to use a channel already in use

21 22 Line limit exceeded on read or write line
22 23 Attempt to restore a non-existent image.
23 24 Parity error on read line

24 25 Trying to push too many levels

25 26 Attempt to allocate more memory than available
26 27 Out of file space

27 30 File read error

28 31 Unit not properly selected

29 32 Illegal starting address

30 33 Attempt to read into system area

31 34 File accessible by direct block I/0 only
32 35 Files specified on different directories
33 36 Illegal device code

34 37 Illegal overlay number

35 40 File is not accessible by direct block I/0
36 41 Attempt to set illegal time or date

37 42 Out of TCB's

38 43 Message address is already in use

39 44 File already squashed error

40 45 Device already in system

41 46 Insufficient number of free contiguous disk

blocks

42 a7 QTY error

43 50 Illegal information in task queue table.
44 51 Attempt to open too many devices or directories

FORTRAN RDOS

Code Code Meaning

45 52 Illegal directory specifier

46 53 Directory specifier unknown

47 54 Directory is too small

48 55 Directory depth is exceeded

49 56 Directory in use

50 57 Link depth exceeded

51 60 File is in use

52 61 Task ID error

53 62 Common size error

54 63 Common usage error

55 64 File position error

56 65 Insufficient room in data channel map

57 66 Directory/device not initialized

58 67 No default directory

59 70 Foreground already exists

60 71 Error in partition set

"6l 72 Directory in use by another program

62 73 Not enough room for UFTs

63 74 Illegal address

64 75 Not a link entry

65 76 Program to be checkpointed is not checkpointable,
or attempt to create two outstanding checkpoints

66 77 Error detected in SYS.DR

67 100 Error detected in MAP.DR

68 101 Ten second disk time-out occurred

69 102 Entry not accessible via a link

70 103 MCA request outstanding

71 104 Incomplete MCA transmission/request

72 105 System deadlock

73 106 Input terminated by channel close

74 107 Spool file(s) active

75 110 Task not found for ABORT

1.

10.

11.

12,

DGC FORTRAN VARIATIONS FROM STANDARD FORTRAN

Comments may be placed on the same line with statements. The syntactical scan of the line ends
at a semicolon (;) and comments may follow the semicolon delimiter.

Variables may be typed DOUBLE PRECISION COMPLEX.

When declaring arrays, upper and lower bounds may be given for subscripts of arrays; thus the
lower bound of an array subscript does not have to be zero but can be any integer including negative
integers. A colon delimits the lower from the upper bound.

An array may have up to 128 dimensions.

Subscripts of array elements in executable statements (other than lists of 1/O statements) may be
any form of expression whose value is type integer.

String constants enclosed in quotation marks or in apostrophes may be used instead of Hollerith
constants.

Formatting includes the tabulation format descriptor, Tw, tab to column w.
Abnormal returns are allowed from subprogram units.

All variables not stored in COMMON are placed on a run-time stack. Any program that does
not alter COMMON storage is therefore a reentrant program.

Program units must be ordered as follows:

a. COMPILER DOUBLE PRECISION and COMPILER NOSTACK statements.

b. OVERLAY and CHANTASK statements.

c. PARAMETER statements.)

d. FUNCTION, SUBROUTINE, or TASK statement.

e. Declaration statements, which begin with the keywords: COMMON, COMPLEX, DIMENSION,
DOUBLE, EQUIVALENCE, EXTERNAL, INTEGER, LOGICAL, or REAL.

f. Statement functions. (FORMAT statements and DATA initialization statements may be given
in this area.)

g. Executable statements. (FORMAT statements and DATA initialization statements may be
given in this area.)

Imbedded blanks are significant except when they appear in the name of a program variable or in
the statement identifier GOTO (GO TO).

Statement identifiers, operator names, and names of library functions are reserved and cannot be
used as program variables, The reserved names are:

12,

13.

14.

(Continued)

.AND.
.EOT.
.EQ.
.FALSE.
.GE.

.GT.

.LE.

.LT.

.NE.
.NOT.
.OR.
.TRUE.
ABS
ACCEPT
AIMAG
AINT
ALOG
ALOG10
AMAX10
AMAX1
AMINO
AMINI
AMOD
ASSIGN
ATAN
ATAN2
BINARY
BLOCK DATA
CABS
CALL
CCos
CEXP
CHANTASK
CLOG
CMPLX
COMMON
COMPILER
COMPLEX
CONJG
CONTINUE
cos

CSIN
CSQKRT
DABS
DAIMAG
DATA
DATAN
DATAN2
DATN2

Names identical to DGC extended assembler mnemonics are not available for use as subprogram

names.

An assigned GO TO is treated as an unconditional GO TO.

Statements with an X in column 1 are compiled only if the X option is true at compile time.

DBLE
DCABS
DCCOS
DCEXP
DCLOG
DCMPLX
DCOS
DCSIN
DCSQRT
DEXP
DFLOAT
DIM
DIMENSION
DLOG
DLOG10
DMAX1
DMIN1
DMOD

DO
DOUBLE PRECISION
DREAL
DSIGN

DSIN
DSQRT
DTAN
DTANH
END
ENDFILE
ENTRY
EQUIVALENCE
ERR

EXP
EXTERNAL
FLOAT
FORMAT
FUNCTION
GOTO

IABS

IAND

IDIM

IDINT
IEOR

IF

IFIX

INT
INTEGER
IOR

ISHIFT
ISIGN

ITEST
LOGICAL
MAX0

MAX1

MINO

MIN1

MOD
NOSTACK
NOT
OVERLAY
PARAMETER
PAUSE

READ
REAL
RETURN
REWIND
SIGN

SIN

SINH

SNGL

SQRT

STOP
SUBROUTINE
TAN

TANH

TASK

TO

TYPE

WRITE

15.

16.

17.

18.

23.

24,

25,

26.

27,

28.

30.

31.

32.

33.

34.

35.

Generated code treats logical variables as full words, thus providing for 16-bit logical operations.
When testing for a truth value, any non-zero word = . TRUE.

Octal numbers can be read and written under FORMAT control.

Binary data can be read and written using READ BINARY and WRITE BINARY statements.
Unformatted I/0 leaves all conversion between internal and external forms up to the I/O processor.
Variable names may be up to 31 characters in length.

Hollerith strings are permitted in the lists of I/O statements.

Specific verbs, 'I“YPB and ACCEPT, are used for teletype 1/0.

Combined input and output is allowed in the ACCEPT statement.

Sw string ficld descriptor is accepted in FORMAT specifications.

Mixed arithmetic expressions combining integer with real and/or double precision quantitics
are accepted.

Hollerith data may appear in integer arithmetic expressions and will be interpreted as integer data.

Octal constants can be specified in the FORTRAN source program as +d ... dK, where each d
is an octal digit.

DATA initialization is provided for labeled COMMON only.

Only COMMON variables can be EQUIVALENCed.

DATA initialization of labcled COMMON is possible in any FORTRAN program or subprogram.
Subprogram names must he unique within the first five characters (ANSI standard is six).

A repeat count cannot be used with a Hollerith constant in a DATA initialization statement.
PARAMETER statements can be used to definc names for constants.

Under the Real Time Operating System, a multitasking environment is provided as well as a
single task environment. A task is a FORTRAN program unit and is defined in source language
beginning with a TASK statement and terminating with an END, The FORTRAN task scheduler
is used in multitasking and all tasking functions arc handled at run time by run time tasking

routines and the scheduler.

Under RDOS, FORTRAN run time routines allow the user to identify to the RDOS system a device
capable of generating interrupts.

Under RDOS, FORTRAN run time routines provide access to the real time clock.

APPENDIX D

OPERATING PROCEDURES

There are several operating procedures within this appendix, they are:

Operation under RDOS e e e e Page D-1

Operation under RTOS wivivvinvnuunevnnnn ... Page D-12
Operation under RDOS-compatible SOS Page D-14
Operation under DOS-compatible SOS v Page D-24
Operation of 8K Stand-alone FORTRANIV Page D-25
Operation of HIPBOOTo uun s, Page D-26

Turn to the appropriate procedures corresponding to the environment your FORTRAN [V program

will be operating in.

OPERATION UNDER RDOS

The FORTRAN IV compiler is supplied to the user in the form of two dumped tapes,

Dump Tape 1, FIV.SV -088-000032

Dump Tape 2, FORT. SV, CLG. SV -088-000033

Before invoking the compiler, the user must create save files from the tapes using the LOAD command.
After the compiler has been LOADed, the FORTRAN library tapes must be transicrred 1o the disk
using the XFER command. The library tapes to be transferred are:

RTIOS (099-000072)
DFT. LB (099-000082)

CSP. LB (099-000085)
FMT. I.B (099-000034)
MFMT. LB (099-00058)
FORTI, LB (099-000033)
FORT?2. LB (099-000036)
FORTS3. LB (099-000037)
FORT4. LB (099-0000553)
(099-000056)
(099-000057)
FSYS. LB (099-000083)

The Real Time 1/O system library. (Transfer the tape first when using
Analog-to -Digital equipment; otherwise, the tape may be ignored.)
Transfer first when using the Discrete Fourier Transform; otherwise, the
tape may be ignored.

Transfer first when using the FORTRAN Commercial Subroutine Package.
The FORTRAN IV muliitusk iibrary {unmapped environment)

The FORTRAN IV multitask library (mapped environment)

FORTRAN 1V Run Time Library 1

FORTRAN IVRun Time Library 2

FORTRAN 1V Run Time Library 3

SMPYD. LB - Software multiply /divide

HMPYD. LB - Hardware multiply /divide (Nova 800's, Nova 1200's Supernova)
NMPYD. LB - Hardware multiply /divide (Nova)

An optional FORTRAN 1V library to be used only if certain run time routines
are to be utilized in the user's program. The list of the concerned run time
routines is shown following.

If any of the following run time routines are to be CALLed from the user's program, the FORTRAN IV
library, FSYS. LB, must have been loaded.

BOOT
CDIR
CHLAT
CHSTS
CPART
DIR
DLINK

DUCLK GCoUT MDIR RUCLK
DULNK GDIR MTDIO SPDIS
EQUIV GFREQ ODIS SPEBL
EXBG GSYS OEBL SPKIL
EXFG GTATR RDCMN STAT
FGND ICMN RDOPR UPDATE
GCIN INIT RENAME WRCMN
RLSE WROPR

OPERATION UNDER RDOS (Continued)

Once the compiler and library tapes are loaded onto disk, the FORTRAN IV compiler can be invoked
using the FORT command followed by appropriate arguments. Unless the user specifies a /A switch
(see Compile-Time Options) the compiler expects the save file ASM. SV to be resident on disk.

Each FORTRAN main program, external subroutine, or external function is separately compiled.
When the main program and its external subroutines and functions have been successfully compiled,
the programs are loaded using the RLDR command. The FORTRAN libraries must always be
loaded with the programs.

A series of commands for compiling, loading, and running a FORTRAN program is shown following:
FORT MAIN)
FORT XSUBI)
FORT XFUN)
FORT XSUB2)

RLDR/D MAIN XSUBI XFUN XSUB2 FORTIL, LB FORT2.LBt)
FORT3.LB FORT4.LB)

MAIN)

Compilation and Assembly

The Command Line Interpreter command FORT is used to compile a FORTRAN IV source program
file. The format of the FORT command line is:

FORT f global switches} inputfilename f{ outputfilename f local switchesq J)

where: global switches can be appended to the command word, FORT. (These are discussed
within the next section.)

inputfilename is the name of the source file the user wishes to be compiled.

outputfilename is an optional file name specifying the name of the file to be output as a result
of compilation. (By default, the name of the file to receive the output is inputfilename.)

local switches are optional switches which can be appended to the optional output file name.
(These switches are described within the next section.)

By default, the CLI will search for the FORTRAN source file with the specified name inputfilename. FR
(or, inputfilename if no file name with the . FR extension is found).

If compilation is successful, an intermediate source file is produced. This file is the output of
compilation which is used as the input to assembly. Once the assembly process has been success-
fully completed, the intermediate source file is deleted. Output from the default form of the command
line is a relocatable binary file called inputfilename.RB. Or, if an output file name is specified in the
FORT command line, the output file will be a relocatable binary file with the name outputfilename. RB.

Compile-Time Options

Output of compilation may be a relocatable binary file (by default), an intermediate source file, a
listing file, or a combination of these files. The type of output received is determined by use of

local and global switch options. In addition, switches are used to determine whether or not statements
with an X appearmg in column 1 are to be compiled and whether FORTRAN variable names and
statement numbers are to be equivalenced to symbols acceptable to the assembler.

D-2

OPERATION UNDER RDOS (Continued)

Compile-Time Options (Continued)

The global switches which may be appended to the command word FORT are:

/A
/B
/E
/F
/L
/N
/P
/S
JU

/X

assembly is suppressed, the source file will only be compiled (and
intermediate source file is deleted by default).

brief listing (the compiler source program will be the o iy resultant
listing).

error messages from the compiler are suppressed at the $TTO,
(Assembler error messages, though, are not suppressed.)
FORTRAN variable names and statement numbers are equivalenced
to symbols which are acceptable to the assembler.

the listing will be written to a file named inputfilename. LS .

no relocatable binary will be produced.

process only 72 characters per record/line (punched card).

save the intermediate source output file; by default, this file is
deleted.

causes user symbols to be output in the assembly phase (must be
used with /F).

compile statements with an X appearing in column 1. (X indicates an
optionally compiled line.)

Local switches are appended to the appropriate outputfilename in the FORT command line. Note that
there may be more than one outputfilename within the command line. The local switches are:

/B
/E
/L

/S

the relocatable binary output is directed to outputfilename. This
switch overrides the global /N switch.

the resultant error messages are directed to outputfilename. The
local /E switch overrides the global /E switch.

listing output is directed to outputfilename. This switch overrides
the global /L switch.

intermediate source output is directed to outputfilename.

Some examples of FORT command lines are:

FORT/L PROG)

produces a relocatable binary file with the name PROG. RB, and a compiler and assembler
listing written to the file PROG. LS .

FORT/N DPL:PROGI $LPT/L APROGL/S)

compiles the file PROGI from disk pack unit I and produces compiler source and assembly
listings on the line printer and intermediate source output file, named APROGI, to the default
directory. This command line will not produce a relocatable binary file from the assembly.

Loading Procedures

All loading is accomplished via the RLDR command line. The format of the command line, though,
is different depending upon the particular RDOS system configuration and environment. Procedures
are outlined on following pages for loading in:

D-3

OPERATION UNDER RDOS (Continued)

Loading Procedures (Continued)

a single task environment

a multiple task environment
overlays, creating an overlay file

a foreground /background environment
a mapped /unmapped environment

Global and local switches may be appended to the command word or file name where pertinent. These
switches are listed under the procedures for loading in a single task environment, but they should
be remembered and referred to when reading the other loading procedures detailed within this section.

In general, loading proceeds as follows:

Main FORTRAN program

User subprograms and optional user modules such as FHMA and FRTSK.

Specific, optional, DGC supplied FORTRAN libraries such as RTIOS. LB (Real Time
1/0 System) or DFT. LB (Discrete Fourier Transform).

Required FORTRAN Libraries in the order given in sections following (FMT. LB,
FORTL. LB, etc.).

Loading in a Single Task Environment

The RLDR command line is used to load relocatable binary output produced from compilation. The
format used for loading in a single task environment is:

RLDR fglobal switches] mainprogram flocal switches] Fsubprograms] flocal switches]1)
f FHMA] FORTIL.LB {FSYS.LB] FORT2.LB FORTS3. LB FORT4.LB)

where: global switches which can be appended to the command word RLDR are:

/A - produce an additional symbol table listing with symbols
) ordered alphabetically.
/C - cause loading to be compatible with RTOS/SOS conventions.
/D - load the symbolic debugger.
/E - output errors to the error file (console, by default).
/H - output all numerics in hexadecimal format (radix 16). By default,
all numeric output is in octal format.
/N - inhibit search of SYS. LB.
/S - symbol table left at the high end of memory.
/Z - start save file at location zero. (CAUTION must be exercised if

this switch is used.)
mainprogram is the name of the FORTRAN IV main program unit.

local switches are switches which may be appended to an input file name or octal number,

these are:

/C - preceding octal number specifies number of channels
required (this is not used in a single task environment).

/E - error messages are output to given file name.

/F - preceding octal value is the foreground NREL partition address
(used only when loading in foreground /background unmapped
environment).

OPERATION UNDER RDOS (Continued)

Loading in a Single Task Environment (Continued)

/K preceding octal value specifies the number of tasks required.
(This switch is not used in a single task environment).

/L listing of the symbol table is written to the given file name.

/N NMAX is forced to an absolute address.

/S file specified will be labeled with the .SV extension.

/U user symbols are loaded from relocatable binary file specified.

/Z preceding octal value is the foreground ZREL partition address.

(Used only in a foreground /background loading environment.)

subprograms are the optional names of one or more F ORTRAN subprograms to be used
by the main FORTRAN program umit.

FHMA is an optional user module which defines the highest memory address accessible.
The default value is at the bottom of the system.

FORTI. LB, FORT2. LB and FORTS3. LB are three FORTRAN IV Run Time Libraries
which must be loaded. FORT4. LB is one of three tapes depending upon the system
configuration, either:

099-000056 hardware multiply /divide (HMPYD. LB)
(used with Nova 800's, Nova 1200's and
the Supernova)

099-000057 hardware multiply /divide (NMPYD. LB)
(used with the Nova)
099 -000055 software multiply /divide (SMPYD. LB)

FSYS. LB is a FORTRAN library which is loaded only if one or more of the CALLs
listed on page D-1 are to be issued from within the user program.

The main program is always loaded first, followed by any external subprograms, followed by the
FORTRAN IV library files.

Loading in a Multitask Environment

In a multitasking environment, the multitask library (called FMT. LB) must be loaded before any of
the other FORTRAN libraries. The switches and comments which applied to single task loading
apply also to multitask loading. The format of the RLDR command line used in a multitask environ-
ment is:

) k ..
RLDR mam{{[(%zr‘;—%“irea] }} fnumber/C] fnumber/K] fFHMA] fFRTSKj FMT.LB1)

FORTL.LB fFSYS.LB{ FORT2.LB FORT3.LB FORT4. LB)
where: main is the name of the FORTRAN main program unit,

taskname is the name of a relocatable binary compiled from a task written in FORTRAN IV
or assembled from an assembly language program.

overlay-area is a bracketed list of relocatable binaries to become part of the overlay file,
main, OL; relocatable binaries separated by blanks are part of the same node while those
separated from the preceding by a comma belong to another node.

OPERATION UNDER RDOS (Continued)

Loading in a Multitask Environment (Continued)

number/C specifies the number of system channels required.
number /K specifies the number of tasks to be used. (The numbers specified by the C and
K switches overwrite the values specified in the CHANTASK statement. If these values are

unspecified, the default values are a single task environment with 8 channels required.)

FHMA is an optional user module which defines the highest memory address accessible.
The default value is at the bottom of the system.

FRTSK is an optional user -supplied module specifying the number of tasks written in
FORTRAN which will be active simultaneously.

FMT. LB is the name of the FORTRAN IV multitask library.

FORTL. LB, FORT2. LB and FORT3. LB are three FORTRAN IV Run Time Libraries which
must be loaded. FORTH4. LB is one of three tapes depending upon the system configuration,

either:
099-000056 hardware multiply /divide (HMPYD. LB)
(used with Nova 800's, Nova 1200's and the
Supernova)
099-000057 hardware multiply /divide (NMPYD. LB)
(used with the Nova)
099-000055 software multiply /divide (SMPYD. LB)

FSYS. LB is a FORTRAN library which is loaded only if one or more of the CALLs
listed on page D-2 are to be issued from within the user's program.

The Overlay Loader (OVLDR)

It is possible to replace one or more overlays within an overlay file. To do so, a file of replacement
overlays must be loaded using the overlay loader, which is invoked with the command OVLDR. When
the replacement file of overlays has been loaded, overlays within the current overlay file may be re-
placed with overlays in the replacement file, using the command REPLACE. Up to 127 overlays can
be replaced.

Use of the overlay loader requires that there exist a save file filename. SV and an overlay file
filename. OL, and that the save file contain a symbol table. (The save file will contain a symbol table
either if the symbolic debugger is loaded (global/D in the RLDR command line) or if the symbol table
only is loaded by declaring it as an external normal, . EXTN . SYM., in the code loader is part of the
save file. For example, save file A.SV and overlay file A. OL could be loaded using the following
command line:

RLDR/D A B [C,DE, F]G M, N, O] FORT. LB)

The diagrams on the following page would represent the save and overlay files created.

D-6

OPERATION UNDER RDOS (Continued)

The Overlay Loader (OVLDR) (Continued)

A.SV A.OL node 0
~
A C
B DE
node 0 ~
F
overlay area 0 _ node 1
G M
node 1 \ B
overlay area 1 N
O

Then if one or more overlays of A.OL are to be replaced at a later time, the overlay loader can be
used to load a replacement overlay file, A.OR. The format of the OVLDR command line is:

where:

OVLDR filename { overlay symbol/N} overlay list ... 4
{ overlay number/N

overlay symbol/N } overlay list {devieenarne / L} 4
{overlaz number /N

filename is the name of the save file associated with the overlay file in which overlays
are to be replaced.

overlay symbol and overlay number are alternative means of referencing the overlay(s)
to be replaced. overlay number is a 1 to 6 digit octal number (see page 5-8). overlay
symbol, if used, must have been a symbol declared by . ENTO .

overlay list is a list of one or more overlays which are to replace the overlay specified
by overlay symbol or overlay number.

devicename/L is the name of the device to contain the listing file.

devicename/E is the name of the device to contain the error file.

For example, if the user wishes at some time to replace overlay F in A, OL with overlay F1 and
to replace overlay O in A. OL with overlay Ol, he must first load the overlays into a replacement
file using the overlay loader:

OVLDR A 2/N Fl 402/N Ol $LPT/L $TTO/E)

OPERATION UNDER RDOS (Continued)

The Overlay Loader (OVLDR) (Continued)

The resulting overlay replacement file would contain:

A.OR
. OR directory
F1
01

To substitute F1 for F and Ol for O, the user would then give the command:
REPLACE A)

Loading in a Foreground /Unmapped Environment

All relocatable loads are loads in the background unless indicated as foreground loads. This is
indicated by including memory partition address information within the command line. The partition
addresses define the starting ZREL (/Z switch) and NREL (/F switch) addresses of the foreground
load.

The selected NREL partition address must be equal to 16g +1 * 400g where n is a positive integer. If
the given NREL partition address is not of this form (i.e., n is not an integer), the loader will adjust
the NREL partition address upwards by rounding n to the next higher integer value.

The format of the RLDR command line is:
RLDR main {{taskname ..
—_ overlay-area] ..

number/F number/Z FMT.LB FORTL.LB {FSYS.LB] FORT2.LB !)
FORT3. LB FORT4. LB)

}} fFRTSK] foumber/Cq fnumber/K3 t)

where: the command line is identical to previous command line formats except for the inclusion of
the /F and /Z switches.

Loading in a Background Unmapped Environment

The RLDR command line format used is identical to that given for the multitask loading environment,
except that an optional user-supplied module (called FHMA) may be loaded anywhere before the
libraries in the command line.

FHMA specifies the highest memory address a FORTRAN background program may have. This
insures that memory will be available for a potential foreground program.

Examples of RLDR Command Lines

RLDR MAIN SUB1 FORTL.LB FORT2.LB FORTS3.LB FORT4. LB)

loads one main program unit and one external subprogram unit and the FORTRAN libraries.

OPERATION UNDER RDOS (Continued)

Examples of RLDR Command Lines (Continued)

RLDR MAIN TASKl TASK2 FMT.LB FORTI.LB FORT2.1B FORTS3.LB FORT4.LB)

loads one main program unit and two tasks along with the multitask library and the other
four FORTRAN libraries.

RLDR MAIN T2 [OVl OV2, OV31 T3 FRTSK FMT.LB 10/C 4/K FORTI. LBt)
FORT2.LB FORT3.LB FORT4.LB)

loads a FORTRAN main program unit, two tasks, and an overlay file consisting of two
overlays, the user-supplied FRTSK module, the multitask library, and the four FORTRAN
libraries. The number of tasks is set to 4 and the number of channels to 10.

Undefined Symbols

At the termination of loading, only the . DSI symbol (which is used in stand -alone) should be undefined.
When in a multitasking environment, no symbol should remain undefined in the load map.

To provide dummy definition on BATCH runs, .DSI can be defined as:
.DSI = -1

Debugging

To use the symbolic debugger, DEBUG III, for run time debugging of FORTRAN programs, the
global /D switch should be appended to the RLDR command word. The switch causes DEBUG to be
loaded. To replace DEBUG III with IDEB, the RLDR command line must also contain the file name
IDEB in addition to the /D global switch. The mnemonic IDEB must precede SYS. LB in the command
line if SYS. LB is present in the line.

Merging Library Files

'The merging of library files can be accomplished by use of the M function within the LFE command
line. The library files FORTL. LB, FORT2.LB, FORT3. LB and FORT4. LB can then be merged to-
gether as one library file. This file should be named FORT. LB to be recognized by CLG (see The
CLG Command on page D-10). The command to merge the FORTRAN libraries is:

LFE M FORT.LB/O FORTI.LB FORT2.LB FORTS3. LB FORT4.LB)
where the local /O switch signifies the name of the output library file, FORT. LB.

It is then possible to load a FORTRAN program, with necessary libraries, with the following command
line:

RLDR MAIN FORT.LB)
The FORTRAN multitask library, FMT. LB, and the FORTRAN Mapping Library, MFMT. LB, are
merged only with the other library files when multitasking in mapped or unmapped facilities is

desired.

The FORTRAN IV library FSYS. LB can be merged when it is necessary for its inclusion in the set
of libraries, because of a program's issuance of CALLS to one or more of the routines listed on page D1 .

OPERATION UNDER RDOS (Continued)

Merging Library Files (Continued)

To load a FORTRAN program, with two subprograms, in a multitask environment, the following
command line can be given:

RLDR MAIN TASKl TASK2 FMT.LB FORT.LB)

The CLG Command

The CLG Command is used to perform a FORTRAN IV compilation, load, and execution of one or
more FORTRAN IV source files. The CLG (compile, load, and go) will bring in whatever system
programs are required to create a save file from the specified input files and then execute the save
file just created.

Output includes one or more intermediate source files, one or more relocatable binaries, and an
executable save file. The save file is created by the relocatable loader, using the relocatable binary
files and four of the FORTRAN IV libraries which must have been merged into a single library called
FORT. LB.

CLG is supplied as a file on the FORTRAN system dump tape, which is loaded as part of the FORTRAN
compiler. All other needed system programs must have been loaded onto disk. These include, besides
the FORTRAN IV compiler, the Assembler and the Relocatable Loader.

The format of the CLG command line is:

CLG filename f filename2 ... filename;)

By default, all filename arguments are presumed to be file names of FORTRAN IV source files.
Optional load switches to the particular file names specified indicate whether the file is an assembly
source file or an assembled file that is to be loaded. The CLI will first search for filename. extension
(where extension is either . FR, .SR or .RB) and if not found, will search for filename.

Global switches can be appended to the command word CLG. The allowable global switches are:

/B brief listing (compiler source program input only).

/M the loader map is suppressed. All compiler and assembler source
programs are listed.

/E error messages from the compiler are suppressed at the $TTO.
(Assembler error messages, though, are not suppressed.)

/T indicates multitask CLG command line. (Note that the multitask

library FMT. LB must be available on disk.)

Local switches are appended to the appropriate filename within the CLG command line. Allowable
local switches are:

/C preceding octal number specifies number of channels required.
/L listing output is directed to the given file name.

/A assemble and load this file only; do not compile.

/N load this file only, do not compile or assemble.

/K preceding octal value specifies number of channels required.

An example of a CLG command line is:

CLG/M PROGl PROG2/A PROG3/N MTO:1/L)

OPERATION UNDER RDOS (Continued)

The CLG Command (Continued)

In the example, CLG will take the following action:

1. Compile PROGI. FR (or PROG1) producing temporary assembler source file,

PROGIL.SR. Assemble PROGI. SR producing PROG1. RB. Delete PROGI. SR.

2. Assemble PROG2, SR (or PROG2) producing PROG2. RB. Delete PROG2.SR.

3. Listings from each compilation and assembly are appended to file 1 on magnetic
tape unit O.

4.

Load PROG1.RB. PROG2. RB, and PROG3. RRB tngether with the FORTRAN IV

library file FORT. LB, to a save file named PROG1.SV. The loader map is
suppressed.

5. Execute PROGI. SV.

In a single task environment, the FORTRAN merged library file, FORT. LB, must be on disk when

the CLG is executed. For multitasking, both the multitasking library, MFMT. LB, and the merged
file FORT. LB must be on disk.

OPERATION UNDER RTOS

Since the Real Time Operating System (RTOS) is a compatible subset of the Real Time Disk Operating
System (RDOS), RTOS will support a subset of DGC Real Time FORTRAN IV. To write a FORTRAN IV
program for use with RTOS, you may use either the RDOS FORTRAN IV compiler or the SOS
FORTRAN IV compiler. Operating procedures for each are given within this chapter, beginning on
page D-1 for RDOS and page D-14 for SOS.

The only restriction when writing a FORTRAN IV program under RTOS is that only those real time
calls may be used which have corresponding system and task calls implemented in RTOS. There-
fore, use of the OVERLAY statement is prohibited, but all Real Time FORTRAN IV calls except
the following may be issued. The calls which are prohibited in a RTOS environment are:

BACK CPART FBACK FSTAT ODIS RDCMN WRCMN
BOOT DFILW FCHAN FSWAP OEBL RDOPR WRITR
CDIR DIR FCLOS GCIN OVEXT RDRW WROPR
CFILW DLINK FGND GCoUT OVEXX READR WRTR
CHAIN DULNK FOVLD GDIR OVKIL RENAM

CHLAT EBACK FOVRL GSYS OVKIX STAT

CHSAV EXBG FQTASK ICMN OVLOD SWAP

CHSTS EXFG FSEEK MDIR OVOPN UPDATE

After having produced one or more FORTRAN IV relocatable binaries, the relocatable binaries
may be loaded using the (1) SOS relocatable loader (RLDR), the (2) RDOS relocatable loader
(RLDR), or the (3) stand -alone extended relocatable loader (091-000038).

Using (1) or (2) the format of the command line is:

RLDR main { subprogramsj RT module f RTOSFMT.LB] FORTI.LB fFSYS.LB] FORT2.LB!)
FORT3. LB FORT4.LB RTOSI.LB RTOS2.LB)

where: main is the name of the main FORTRAN program unit.
. subprograms are the names of one or more optional subprogram units called by main.

RT module is the name of the module produced in the RTOS SYSGEN procedure.

RTOSFMT.LB (099-000077) is the RTOS multitasking FORTRAN IV run time library.
The library must not be used in a single tasking environment,

FORTI1.LB, FORT2. LB, FORT3. LB, and FORT4. LB are the FORTRAN libraries. (These
libraries may exist on paper tape, magnetic tape, or cassette tape.) Note that these are
the RDOS libraries described on page D-1.

FSYS.LB (099-000083) is a library that is to be loaded if the user’s program is to issue one
of the following run time calls: DUCLK, GFREQ, INIT, MTDIO, RLSE, and RUCLK.
(If this library is to be loaded, it must be loaded between FORT1.LB and FORT2.LB.)

RTOS1.LB (099-000060) is the first RTOS library to be loaded, and RTOS2.LB (099-900061)
is the second RTOS library to be loaded.

If using the (3) stand -alone relocatable loader (091-000038) which is loaded via the binary loader,
it will self-start and print:

SAFE =

OPERATION UNDER RTOS (Continued)

after which the user responds with a carriage return which will reserve the upper 200 words of
memory, preserving both the bootstrap and binary loaders. The loader then prompts:

*

The paper tapes may then be loaded in the same order as they were typed in response to an RLDR
command line format. Briefly, the load process is to mount each tape, in turn, in either the
teletypewriter reader or the high-speed paper tape reader, then type either 1 or 2.

1 - teletypewriter reader
2 - high speed paper tape reader

After each tape is loaded. the loader prompts with *. After the pertinent tapes have been loaded
a loader map can be requested by typing 6. At this time the load process can be terminated by
typing 8.

To restart, set the restart address, 376, in the data switches, press RESET, and then press START.,

For more detailed instructions of operation in an RTOS environment, refer to the RTOS User's
Manual, 093-000056, Appendix B.

OPERATION UNDER SOS

SOS operating procedures are subdivided into three segments (1) those for users whose SOS

system does not support a cassette or magnetic tape unit (SOS library tape 099-000010), (2) those
for users whose SOS system includes a magnetic tape or cassette unit (SOS library tapes
099-000010 and either 099-000042 (magnetic tape) or 099-000041 (cassette)), and (3) those for
users whose SOS system is DOS-compatible (SOS library tape 099-000071). Operation for

numbers (1) and (2) is given below and on the following pages, operation for (3) begins on page D-21.

OPERATION UNDER RDOS-COMPATIBLE SOS

This SOS version of the FORTRAN IV compiler is supplied as two absolute binaries, FORTIL. AB
(091-000039) and FORT2.AB (091-000043) and four libraries, FORT1, FORT2, FORT3, and FORT4,
which are the RDOS libraries described on page D-1.

For users whose system supports a cassette or a magnetic tape unit, two relocatable tapes are
provided which allow users to configure their own FORTRAN IV compiler to be used with their
specialized peripheral devices. These tapes are:

SOSFIL. RB - 089-000041
FORT.RB - 089-000161

The SOS relocatable loader can be used to configure a specialized version of the FORTRAN
compiler. The trigger used may be generated by the SOS SYSGEN program or a separate
assembly may be produced to generate external normal symbols which will trigger the loading
of SOS device drivers. For example, if the user wants a compiler with a high speed paper tape
reader, a high speed paper tape punch, and two cassette units, he could input to the SYSGEN
program:

(SYSG) trigger/T $PTP/O .PTRD .PTPD .CTUIL J)
The SOS relocatable loader can then be used to load the following files in the order:
TRIG
SOSCT
SOS. LB

FORT.RB
SOSFI.RB

Compilation
When SOS FORTRAN 1V is loaded, the prompt:

FORT
is printed on the teletypewriter. The user should respond by typing in a command line giving the
file names of the files to be input for compilation, the output file name, and the listing file name
if any, along with optional compile -time option switches. The FORT command line will be written

in the following format:

FORT filenamel tffilename2 ... filenameny)

where: FORT followed by a space is typed by the system.

each filename can be modified by one or more of the switches described on the following
page.

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

Compilation (Continued)

The switches which may be appended to a given filename are:

/0 - this file is to be used for output.
/L - this file is to be used as the listing file,
/X - compile statements with an X appearing in column 1 of the source line.

(This must be used to modify the output file name, the file name which is
appended with the /O switch.

/S - FORTRAN IV variables and statement numbers are equivalenced to
symbols which are acceptable to the assembler. (This switch must
modify the output file name).

/n - n is a single digit representing the number of files to be input, e.g.,
$PTR/3.

At a minimum, the command linec must contain one file name which is the input file name. If more
than one input file is specified, e.g.,

FORT MT0:2 MTO0:3 MTI:0/0)
the message:
TO CONTINUE, STRIKE ANY KEY)

is typed on the teletypewriter console whenever one of the intermediate files has passed through
the compiler. The next input file must be ready for opening when the user strikes the key. No
other prompt messages are output for intermediate input files.

Input files are compiled in the order in which they are specified within the command line. At the
completion of each compilation, the prompt:

FORT

is again typed on the teletypewriter. The prompt is reissued if no input file name is found in the
command line. If the last specified input file does not have an END statement, the message:

END OF FILE)

is typed at the console. The compiler must then be restarted (the restart location is 377). 1If any
unexpected system error occurs, the message:

FATAL I/O ERROR xx)

is typed at the console. Xx is one of the two-digit error codes defined in the SOS User Parameter
Tape, PARU.SR (a copy of which can be found in the Stand -alone Operating System User's Manual,
093-000062).

The command line may be deleted, continued, or modified in the following manner:

1. Pressing SHIFT and L keys will delete the line.
An up arrow immediately preceding a carriage return (line feed) allows the
command line to be continued onto the next console line.

3. Pressing RUBOUT erases the last character typed in the command line.
Repeated RUBOUTS delete characters from right to left.

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

Compilation (Continued)
An example of a FORT command line is:
FORT $PTR/2 $PTP/O $LPT/L)

The SOS SYSGEN procedures allow the user to tailor the compiler 1/0 configuration. See the SOS
User's Manual.

Assembly

FORTRAN IV output is assembled with the DGC Extended Assembler, 091-000017. The assembler
can be loaded from paper tape, at which point it will print the prompt ASM. Or, when a cassette or
magnetic tape unit is configured in the system, the CLI command ASM may be issued. In either case,
the format of the ASM command line is:

0
ASM[1 filenamel f{...filenameni)

L2

The ASM command line is used to assemble one or more ASCII source files. Output may be an absolute
binary file or a relocatable binary file. Files are assembled in the order specified in the command
line, left to right. The same cassette or magnetic tape unit cannot be used for more than one output
file but may be used for more than one input file. Further, the same cassette or magnetic tape unit
cannot be used for both input and output.

Action taken by the assembler is determined by the key specified in the ASM command line (0, 1, or 2).

0 - Perform pass one on the specified source file, then halt with the highest
symbol table address (SST) in ACO.

1 - Perform pass one and pass two on the specified FORTRAN input files, producing
the specified binary and listing files. At the completion of pass two, the assembler
outputs a new prompt, ASM, and awaits a new command line.

2 - Perform pass two only on the specified input files producing the specified binary
and listing files. At the completion of this pass, the Assembler outputs a new

prompt, then ASM, and awaits a new command line.

The global switches which may be appended to the key number are:

/E - suppress assembly error messages normally output to the $TTO.
/T - suppress the listing of the symbol table.
/U - include local (user) symbols in the binary output file.

The local switches which may be appended to individual file names are:

/B - relocatable or absolute binary file is output on the given device.
/L - any output device to which the listing is directed.

/N - any input file which is not to be listed in pass 2.

/P - pause before accepting a file from a device. The message:

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

Assembly (Continued)
PAUSE - NEXT FILE, devicename

is output by the assembler which waits until any key is struck on the
teletypewriter console,

/S - skip this source file during pass two.

/n - n is a digit from 2 to 9.

ASM 1/E CTO0:16 CTO:17 CT1:0 CTl:1 $LPT/L)

causes a two-pass assembly to be executed on FORTRAN input source file CT0:16, CT0:17, CT1:0,
and CT1:1 with a listing produced on the line printer. Error messages normally output to the $TTO
are suppressed, and no binary file is produced. :

Loading

Having produced one or more FORTRAN IV relocatable binaries, the relocatable binaries for sys-
tems using magnetic tape or cassette may be loaded using the SOS relocatable loader (089-000120).
Systems using paper tape may be loaded using the stand -alone relocatable loader (091-000038). The
SOS relocatable loader prints the prompt RLDR, and the user responds with the command line:

(RLDR) main f subprogramsj FORTL.LB FORT2. LBt)

FORT3.LB FORT4.LB trigger [cassette library SOS main library)
‘ mag tape library}

where: main is the name of the FORTRAN main program unit.

subprograms are the names of one or more optional subprograms to be called by main.

FORTIL. LB, FORT2. LB, FORT3. LB are FORTRAN libraries. (These libraries may
reside on paper tape, magnetic tape, or cassette tape.)

FORT4. LB is a FORTRAN library tape selected to correspond to the user's system con-
figuration, either:

099-000056 hardware multiply /divide (Nova 1200;s, Nova 800's
Supernova)

099-000057 hardware multiply /divide (Nova)

099-000055 software multiply /divide

trigger is the SOS trigger which is created during the SOS SYSGEN procedures. It
is a tape containing external symbols for those devices that are to be a part of the
system. (trigger is outlined on the following page.)

cassette library is tape number 099-000041 and must be loaded only when cassette
units are to be a part of the system.

mag tape library is tape number 099-000042 and must be loaded only when magnetic
tape units are to be a part of the system.

SOS main library is tape number 099-000010 and it contains the main library and all
driver routines for SOS 1/0 devices (except cassette and magnetic tape units).

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

Loading (Continued)

Upon completion of a successful load, the message OK is printed at the console and the system
will halt with the loaded program in core.

The stand-alone version of the relocatable loader (091-000038) is used as described under RTOS,
page D-12, Loading of FORTRAN tapes proceeds in the same order as given for the SOS loader

just described.

Execution and Restart Procedures

The loaded program may be executed by pressing CONTINUE or by using the RESTART procedures.
When a PAUSE statement is executed, the program will continue when the programmer presses any
teletypewriter key. Restart procedures are as follows:

1, Set switches to 377.
2. Press RESET,
3. Press START,

Producing a Trigger

A trigger is produced using the SOS SYSGEN program which is loaded via the binary loader, or
loaded using the core image loader/writer. Basically, the SYSGEN program accepts a command
line conteining device driver entry symbols and outputs a file containing external references to the
named devices. When the trigger is loaded in the RLDR command line (preceding other SOS
libraries) the external normal references on the trigger will cause the named device drivers to be
loaded from the SOS libraries. The format of the SYSGEN command line is:

(SYSG) driver P .driver ~ .RDSI f .CTBIJ output-device/O f triggername/T}
n

driver may be one or more device driver entry symbols selected from the following chart:

Device Name Device Driver Entry Symbol evice
$CDR .CDRD card reader
CTO .CTAD cassette unit 0
CTo,1 .CTU1 cassette units 0 and 1
CTo0,1,2 .CTU2 cassette units 0, 1, and 2
cT0,1,2,3,4,5,6,7 .CTU7? cassette units 0,1,2,3,4,5,6 and 7
$PTP . PTPD high-speed paper tape punch
$PTR . PTRD high - speed paper tape reader
$LPT . LPTD 80-column line printer
. L132 132-column line printer
MTO .MTAD magnetic tape unit 0
MTO, 1 . MTU1 magnetic tape units 0 and 1
MToO,1,2,3,4,5,6,7 . MTU7 magne'tic tape units 0,1,2,3,4,5,6 and7
SPLT . PLTD incremental plotter
$TTO/$TTI .STTY teletype printer and keyboard
TTIl/TTO1 .TTIL second teletype printer and keyboard
.RTC1 real time clock, 10HZ
.RTC2 real time clock, 100HZ
.RTC3 real time clock, 1000HZ
.RTC4 real time clock, 60HZ
.RTC5 real time clock, S0HZ

For more detailed instructions for producing a trigger for SOS systems, refer to the Stand-alone
Operating System User's Manual, 093-000062.

D-18

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

Possible Error Messages

'The possible error messages resulting from the ASM or RLDR command lines are:

Error Message Meaning ASM | RLDR
NO END No END statement was specified in any source X

program.
NO INPUT FILE No input file name was specified. X
SPECIFIED

SAVE FILE IS READ/ The save file device must permit both reading
WRITE PROTECTED and writing: only cassette and magnetic tape X
units are permitted as save file devices.

<
>

1/O0 ERROR n Input/output error n

where n =

1 lllegal file name.

7 Attempt to read a read-protected file.
10 Write-protected file.

12 Non-existent file.

KX X
)X

\

SOS FORTRAN IV Examples

FORT CT0:0 $LPT/L CTI1:0/0)

FORT $LPT/L CTO:1 CT1:1/0)

FORT CT1:2/0 CTO0:2 $LPT/L)
FORTRAN 1V input files on CT0:0, CTO0:1, and CTO:2 are compiled and assembly source files are
produced on CT1:0, CT1:1, and CT1:2 (indicated by a /O switch) respectively with all listings
produced on the line printer.

ASM 1 $LPT/L CTO:0/B CT1:0)

ASM 1 CTO0:1/B CTl:1 $LPT/L)

ASM 1 CT1:2 $LPT/L CTO:2/B)

Assembly source files on CT1:0, CT1:1, and CT1:2 are assembled and relocatable binary files are
produced with a listing to the line printer.

(SYSG) TRIG/T CTI1:0/0 .RDSI.CTU2 .PTRD .PTPD)

A trigger file is produced on CTL:0 with external normal references necessary to load drivers for
3 cassette units, $PTR driver, $PTP driver, and the RDOS-t0-SOS interface from the SOS libraries.

RLDR $LPT/L CT2:0/S CT0:0 CTO:1 CTO:2/P CTI1:0/P CTL:0t)

CT1:0 CTI1:1 CT1:2)

OPERATION UNDER RDOS-COMPATIBLE SOS (Continued)

SOS FORTRAN IV Examples (Continued)

A save file is produced on CT2:0 and also loaded into core with a load map printed on the $LPT.
This command line assumes that the following procedure is executed:

1) The relocatable binaries generated from the FORTRAN compilations are loaded from

CT0:0, CTO:1, and CTO:2 with a pause (indicated by the /P switch) following the last one
loaded.

2) A merged version of the four FORTRAN libraries on a single cassette reel is mounted
on unit 1 and loaded with a pause following this file.

3) The reel on unit one is now replaced with a reel which contains the trigger file, the

SOS cassette library file, and the SOS library file. These files are then added to the
load module.

OPERATION UNDER DOS-COMPATIBLE SOS (STAND-ALONE F ORTRAN)

Using the binary loader, FORTRAN IV program tapes 091-000039 and 091-000043 are loaded in that
order. Restart location, if needed, is at location 377.

- Compile-Time Options

When FORTRAN IV is loaded, the system queries the user in regard to device assignments and
compile ~time options as follows:

IN:

The user responds to this query with a single number representing the source code input device as
follows:

- $TTI

- $T'TR$
$PTRJ

- $CDR

ASCII output must have even parity.

H W N =
'

When the source code input device has been given, the system queries:
OUT:

The user is expected to respond to the query with a number representing the assembler source
output device (including error listing). The possible responses are:

1 - $TTO

2 - $TTP

3 - $PTP

4 - $LPT

0 - no device ; used when only a listing is desired

After the user's response is complete, the system then queries:
LIST:

The user responds with a number indicating the designated listing device. The possible responses
are:

0 - nodevice (no listing desired)
1 - $TTO

2 - $TTP

3 - $PTP

4 - $LPT

The listing includes the FORTRAN source program complete with error messages. All lines of
this output listing are preceded by a semicolon in order that the OUT and LIST devices may be the
same. It is important to note that error messages are always output to the teletypewriter regard-
less of whether a LIST or OUT device was specified or not. The system will then query:

COMPILE X ?
Tequesting the user to specify whether source lines preceded by an X in column 1 should be compiled.
A response of 1 will compile the lines; a response of 0 will cause the assembler to treat the lines as
comments. The system then queries:

SYMBOLS ?

D-21

OPERATION UNDER DOS-COMPATIBLE SOS (STAND-ALONE FORTRAN) (Continued)

Compile Time Options (Continued)

where the user responds with a number indicating whether symbols should be equivalenced or
not. Possible responses are:

0 - suppresses the symbol list
1 - all FORTRAN variables and statement numbers will be equivalenced as discussed in

Appendix C. The symbols will be output.

If the user issues an illegal response to SYMBOLS, the query will be repeated ignoring the illegal
response.

After the user has responded successfully to the queries, the source program can be input for
compilation from the designated input device. When compilation is complete (as determined by an
END statement in the source program), the FORTRAN compiler will type:

TO CONTINUE, STRIKE ANY KEY

To compile another program, using the same designated input and output devices, press any key
on the teletypewriter keyboard. To change the device assignments, restart at location 377.

An option is open to the programmer to input his source program from several separate tapes. To
do so, each tape must end with the line:

.EOT
The . EOT line will then allow for separate tapes in parameter definition and COMMON declarations.

Assembly

FORTRAN TV output can be assembled with the DGC Extended Assembler. Each FORTRAN IV pro-
gram generated is complete with all necessary declarations and pseudo-ops in order to use the
assembler. (There are many errors which may be ignored by the compiler but detected by the
assembler, particularly, usage of assembler reserved mnemonics; therefore, do not suppress
error typeout.) The binary output resulting from the assembled mode of operation 2 or 4 is
relocatable.

Loading
To run under DOS-compatible SOS, the binary tapes for the . MAIN FORTRAN program and all sub-
programs can be loaded using DGC's Extended Relocatable Loader. This loader is described in
Chapter 1 of manual number 093-000080.
Loading should proceed as outlined below:

1. Load the FORTRAN main program relocatable binary.

2. Load all FORTRAN subprograms which are called by the main program.

3. Load FORTRAN library tape number 099-000005.

4. Load FORTRAN library tape 099-000006.

5. Load FORTRAN library tape 099-000007.

v
1
1o
o

OPERATION UNDER DOS-COMPATIBLE SOS (STAND-ALONE FORTRAN) (Continued)

Loading (Continued)

6. Then load one of the following tapes:

099-000009 if system is configured with multiply /divide hardware
option {Nova 1200's, Nova 800's, Supernova)

099-000011 if system is configured with multiply /divide hardware
option (Nova)

099-000008 no multiply /divide hardware option

7. Load the DOS-compatible SOS library tape (DOS tape no. 099-000071).
8. A loader map can be obtained at this time with load mode 6.

9. Check undefined symbols (load mode 9). Undefined symbols will be listed at the tele-
typewriter. The following may reasonably be undefined.

FLSZ Number stack size; if undefined a default value is used.
FLSP Real arithmetic package.
CMSP. Complex arithmetic package.

10. Terminate the load (mode 8). The loaded system may be run by pressing CONTINUE
or by using the restart procedure.

Restart Procedure

The loaded system may be restarted by:
1. Set switches to 377
2, Press RESET
3. Press START

Execution

When a PAUSE statement is executed, the program will continue when the programmer presses
any teletypewriter key.

D-23

OPERATION OF 8K STAND-ALONE FORTRAN IV

The FORTRAN IV program tape 091-000052 is loaded with the binary loader. The library tapes
for 8K FORTRAN are the same as for DOS-compatible SOS, (in addition to library FORTO. LB).

Operating Procedures

Operating procedures for the 8K version of FORTRAN 1V differ from those of the DOS/SOS FORTRAN IV
version at compile time. These differences are:

1. There is no separate LIST output.
2. Responce to the "IN:" query is one of the following:

2 Teletypewriter reader
3 Paper tape reader

3. Response to the "OUT:" query is one of the following:
0 None
2 Teletypewriter punch
3 Paper tape punch
4. There is no "SYMBOLS'" query and no symbol list output.

3. The . EOT tape option is not available.

6. After the query "COMPILE X?" has been answered by either a 1 or a0 the compiler
will type:

LD RDR HIT CR

The programmer should prepare the tape in the appropriate reader and type a carriage
return (press the RETURN key).
7. At the end of the compilation, the compiler will reinitialize and type again:

IN:

8. To restart the compiler after shutdown or to change initial assignments, start at
location 377.

9. The object code produced by the 8K compiler may need library FORTO. LB to be loaded
before the others.

OPERATION OF 8K STAND-ALONE FORTRAN IV (Continued)

Language Limitations

The following features of DGC FORTRAN IV are not available for an 8K memory configuration:

1. DATA statement

2. Statement functions

3. EXTERNAL statement

4. Mixed mode arithmetic

5. File positioning

6. EQUIVALENCE statement

7. FORMAT syntax checking at compile time

8. Library function argument count and type checking
9. Complex literals
10. PARAMETER statement

Most of the features of the larger FORTRAN IV, though, can be cffectively replaced by combinations
of other FORTRAN IV statements, for example:

Statement functions are identical to FUNCTION subprograms in calling sequence and code
generated.

The two major functions of an EQUIVALENCE statement are to equate logical and numerical
storage and to share temporary storage. DGC FORTRAN IV automatically equates logical
and integer variable types. To share temporary storage, labeled COMMON that is to be used
to contain EQUIVALENCEJ storage can be defined in several program units with a different
structure being specified in each.

‘The absence of library function argument and type checking deserves close attention. Functions which
are not typed correctly by the IJKLMN convention must appear in a type declaration statement or
insufficient temporary storage will be allocated for the return of the function value. All double pre-
cision, complex, and double precision complex functions must have their type declared.

SMALLER OBJECT PROGRAMS

The FORTRAN IV programmer should be aware of two means of saving considerable space:
1. The single and double precision arithmetic packages are totally distinct and each
requires about 600 words of storage. If possible, use only single or double precision.
To force all real variables and constants to double precision, use the statement:
COMPILER DOUBLE PRECISION
2. Labeled COMMON takes up space at load time, whereas unlabeled COMMON and

stack variables and arrays are allocated at the time of execution and thus can use
the space previously occupied by the relocatable loader.

D-25

DISK BOOTSTRAPPING (HIPBOOT)

Disk bootstrapping can be performed by issuing a call to the BOOT routine. After having issued
this call, HIPBOOT queries the user with:

FILENAME ?

after which the user must respond in one of three ways:

1. A carriage return, which indicates the default system SYS.SV and SYS.OL on the
bootstrap device.

2. A system save file and overlay file name (the overlay file name must have the . OL
extension) followed by a carriage return.

3. A partition name on the bootstrap device, with the partition containing the default
system save and overlay file names SYS.SV and SYS.OL.

The system file must be prefixed by a global specifier only when an inter-device bootstrap is being
performed. If an inter-device bootstrap is performed, i.e., a bootstrap of the form DPn:ABC where

DPn is different from the bootstrap device, DPn will become the master device even though a different
master device may have been specified during “the generation of system ABC.

Not only must a system overlay file exist for each system file specified, but each overlay file must
bear the same name as the system save file, with a . OL extension.

Any unrecognizable characters input to HIPBOOT will not be accepted: the TTY bell is sounded for
each such character. Erroneous characters can be deleted by typing the RUBOUT key. On the TTY,
a left arrow followed by the deleted character is echoed each time the RUBOUT is pressed; on video
display units, the deleted character is simply erased.

If after receiving a response o the FILENAME query, [HIPBOOT is unable to locate a system
directory, the message:

FILE NOT FOUND, FILE: SYS.DR
will be output. This is a fatal error; full initialization is the only recovery procedure possible.

For further detail of disk bootstrapping, refer to the RDOS User's Manual, Appendix E.

D-26

APPENDIX F

DATA STORAGE AND HANDLING

STORAGE OF DATA

Intcgers

Integers are stored in iwu's complement form, using one full 16-bit word. Tle allowable range
is =2%#15-1 to +2%*15-1 (-32, 76710 to 32, 76710). The storage format is:

s | Two's Complement Magnitude

bit 9 15.

where: s is the sign (§ = plus, 1 = minus)
Real Numbers

Real numbers are stored in two words with the high order word preceding the low order word in
memory. Position §f contains the sign , bits 1 through 7 represent the exponent, and bits 8 through
31 are the mantissa,

The exponent is represented in excess 64 form, that is, as a seven digit, two's complement integer to which
is added an offset of 1008. Thus,

IOOR is an exponent of ¢
1778 is an exponent of 631¢

077 is an exponent of -1

14

The mantissa is a normalized hexadecimal fraction between . 0625000 and . 999999. (All floating point
numbers in DGC FORTRAN IV computations are maintained in normalized form.) Real numbers have
6 to 7 decimal digits of significance.

The storage format of real numbers is:

bit 78 15
S | exponent J mantissa
mantissa
16 31

Double Precision Numbers

Double precision numbers are stored in four words. The sign and exponent are stored in the same
manner as real numbers. The normalized hexadecimal mantissa is stored in the remaining 56 bits.
Double precision numbers have 16 to 17 decimal digits of significance.

The storage format of double precision numbers is:

STORAGE OF DATA (Continued)

Double Precision Numbers (Continued)

bit 0 78 15
s | exponent | mantissa
i mantissa
mantissa
mantissa

Complex Numbers

Complex numbers are stored as two real data. The real part is stored in the first two words and
the imaginary part in the second two words. The storage format of complex numbers is:

bit 0 78 15
s | exponent | mantissa real part
mantissa
s | exponent | mantissa imaginary part
{ mantissa

Double Precision Complex Numbers

Double precision complex numbers are stored as two double precision data. The real part is stored
in the first four words and the imaginary part is stored in the second four words. The storage format
of double precision complex numbers is:

bit 0 78 15
s | exponent | mantissa real part
mantissa
mantissa
mantissa
s | exponent | mantissa imaginary part
mantissa
mantissa
mantissa
String Data

String data are stored ascending in core, with one character stored per 8-bit byte (two characters per
memory word). The leftmost bit of each byte is always §.

If the character count of a string is odd, the terminating byte is all zeroes; if the character count is
even, the string is terminated by a word of all zeroes. However, when a variable is initialized to a

string datum (DATA statement) and the character count is even, no all-zero word is generated.

The storage format of string data is:

bit 0 78 15
0 chary (0 charn
0 char2 |0 chary
1 char i-1]0] charj
0"

STORAGE OF DATA (Continued)

Logical Data

v

One word of all zeroes is stored for the value . FALSE. and one word containing -1 (1777778) is
stored for . TRUE..

DATA HANDLING

Number Stack

A stack of 630 octal locations is reserved for storage of numeric values, either as input or output
or for temporary computational values.

The number stack expands dynamically as numbers are loaded onto it and contracts as they are
removed.

In the event that the number stack is not large enough, the user can alter its size by defining a
parameter at assembly timc by mecans of the following statements:

.ENT .FLSZ
.FLSZ = XXX
.END

where: xxx is an octal number and the number of locations reserved for the number stack will be:

2 * xxx +308

Byte Manipulation

String data handling is accomplished through the use of byte pointers. Byte pointers are identical
to those discussed in "How to Use Nova Computers' except that bit 15 is set to zero if the left byte
is pointed to and bit 15 is set to one if the right byte is pointed to.

The format of the byte pointer is:

bit ¢ 15
IAddress of 2 packed bytes 1=

OVERFLOW CHECKING

Programmable overflow checking is provided by the library routine OVERFLOW. The calling sequence
of OVERFLOW is:

CA X non]
LL OVERFLOW ($sl , $sl,,, ..N}) |

where: _s_ll and sl, are statement labels.

. .
Either the literal S or the literal N appears as the third argument.

E-3

OVERFLOW CHECKING (Continued)

OVERFLOW checks a system flag to determine whether or not a non-integer arithmetic overflow has
occurred since the last call to OVERFLOW. If overflow has occurred, control is returned to the
statcment numbered sly. If overflow has not occurred, control is returned to the statement numbered
sig.

The system overflow flag is reset by any call to OVERFLOW and is only reset by a call to this routine.

If the argument "N is given, all error messages will be output. If the third argument is "S" or is
omitted, messages associated with floating point overflow or underflow will be suppressed.

tr
-

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments. Reference page numbers when

applicable, Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication.

FROM:; Name: Date:

Title:
Company:
Address;

FOLD DOWN FIRST FOLD DOWN

--—--—--——_-—--_----------—_---------------—-—----------—-----——-----------------—-.—--—--——-----

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	005
	006
	007
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_4-01
	1_4-02
	1_4-03
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_6-09
	1_6-10
	1_6-11
	1_6-12
	1_6-13
	1_6-14
	1_6-15
	1_6-16
	1_6-17
	1_6-18
	1_6-19
	1_6-20
	1_6-21
	1_6-22
	1_6-23
	1_6-24
	1_6-25
	1_7-01
	1_7-02
	1_7-03
	1_7-04
	1_7-05
	1_7-06
	1_7-07
	1_8-01
	1_8-02
	1_9-01
	1_9-02
	1_9-03
	1_9-04
	1_9-05
	1_9-06
	1_9-07
	1_9-08
	1_9-09
	1_9-10
	1_9-11
	1_9-12
	1_Index-01
	1_Index-02
	1_Index-03
	1_Index-04
	1_Index-05
	1_Index-06
	1_Index-07
	1_Index-08
	1_Index-09
	1_Index-10
	2_000
	2_001
	2_002
	2_003
	2_1-01
	2_1-02
	2_1-03
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_3-12
	2_3-13
	2_3-14
	2_3-15
	2_3-16
	2_3-17
	2_3-18
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_5-10
	2_5-11
	2_5-12
	2_5-13
	2_5-14
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_7-01
	2_7-02
	2_7-03
	2_7-04
	2_7-05
	2_Index-01
	2_Index-02
	2_Index-03
	2_Index-04
	2_Index-05
	2_Index-06
	2_Index-07
	2_Index-08
	A-000
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	E-01
	E-02
	E-03
	E-04
	replyA
	replyB

