DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

PROGRAM

FORTRAN IV RUN TIME LIBRARY
USER'S MANUAL

ABSTRACT

Data General's FORTRAN IV RunTime Library is an im-
plementation of the ANSI FORTRAN standard X3.9-

1966, with many extensions, The primary extension

is that all run time routines are reentrant. Routines

in the library permit integer, single and double preci-
sion real, and single and double precision complex
arithmetic and transcendental functions. String and

byte handling, array manipulation, and 1I/O conversion
routines are also provided.

Also provided in the Run Time Library is a set of real
time routines, which permit the writing of multitask
real time (RT) FORTRAN IV programs.

Techniques are given for interfacing the reentrant, re-
locatable library code with assembly language programs.

Copyright © Data General Corporation, 1971, 1972, 1973 - 093-000068-03
All Rights Reserved.

Original Release December 1971
First Revision - March 1972
Second Revision July 1972
Third Revision February 1973

This revision of the FORTRAN IV Run Time Library User's
Manual, 093-000068-03, supersedes 093-000068-02 and
constitutes a major revision. The primary change is the
addition of many real time routines. However, other
changes of importance have been made and are contained
in the list of changes following the Index.

INTRODUCTION

RUN TIME LIBRARY STRUCTURE

TABLE OF CONTENTS

® & 0 0. 0.0 060 00 0000 00

Fixed Point Numbers.

Real Numbers . .

* e o o ¢

s

s

Complex Numbers

Byte Manipulation

3

STACK STRUCTURE AND LINKAGE
SPStack e e eoeevesosea
Number Stack « .00 vo..
FORTRAN Linkage Stack. . .
Inter-Subroutine Linkage, FLINK
FORTRAN Addressing «..oeoeev...
Library Conversion of FORTRAN Addresses to Absolute

Addresses « o e veeeeevnnnns
Passing Arguments from the Caller. .
Returning Results to the Caller
Stack Allocation at Run Time

USING THE RUN TIME LIBRARY
Structure of Subroutine Descriptions . , .
Interfacing Assembly Language Routines to FORTRAN

Programs.........

INTEGER ROUTINES
BASC......

BDASC. .
IABS ...
IDIM ...
IPWER. .
ISIGN ..

MAX@, MINg@

]

MOD *® o e o 0o ¢ o e o o o
MPY, MPY@, DVD (hardware)
MPY, MPY@, DVD (software).

SDVD
SMPY

o o o

® % 0 % 0 0 0 0 0 0 00 0 0 0 0

® 0 0 0 0 0 0 0 07 0 0 0 0

SINGLE PRECISION FLOATING POINT ROUTINES ¢ e
ABS........
AINT.......
AILOG
AL.GB......
AMAX1, AMIN1
AMOD.......

e s 0o 0
o o o 0
* o o 0
¢« o o o
o o 0o 0
o e o0

@ % 0 0 00 00000000 0000600500000

* o o

t
=00 U1 B B W W e e

[\

e i e e e e T py S T
1

1
—
S

1-22
1-22
1-25
1-25

[
1

[\

(o)}

L I
0N ON U W

N NN NN NNDDNDN
] 4]

bt et e et \O

U W= O

W W W wwww
]
0N O U W

SINGLE PRECISION FLOATING POINT ROUTINES (Continued)

ATAN, ATAN2
CoOS

FCLT1, FCLEI,
FFLD1, FFST1

DIM ...
EXP cecsesevne
EXPCcc0c0n
FAD1, FSBL

.

FCEQI,

FML1, FDV1 ...

FNEG1
FPWER
FSGNI
PLYl
RATNL
SIGN
SIN v vveennnn
SINH
SQRT
TAN
TANH

FCGE1,

o s o
o o o
¢ o o
e o o
o o o
e o o
e o o
LI

* o o
o o0
e o o
* o o
* o o

e o 0 0 o 0

FCGT1

DOUBLE PRECISION FLOATING POINT ROUTINES

DATAN, DATAN2

DCOS, DSIN . ..
DEXP
DEXPC
DLOG, DLOGI10
DMAX1, DMINL

DMOD
DPWER
DSIGN
DSINH
DSQRT
DTAN
DTANH
FAD2, FSB2 ..
FCLT2, FCLE2,
FFLD2, FFST2

FML2, FDV2 ..
FNEG2
FPLY2
FSGN2
RATNZ

o o
e o
o o
o o
o o
LI
o o
o o
o o
o o
o o
o o

ii

1
DO DN o b b et e et = = O

U [
N
OOV U WNFHOWOWNONU W=

w NN

O Lo Lo LD LWL DLW W WLWWWWWWWWW
1

] 1 1]] 1 1 ' 1

1
NN N N NN N = b et e et et et e = 00 N ON U1 QO =

N O T W OO0 NONULEe WO

%Qh%&@%h»&#&?ﬂkﬂk%»&@@»&##%

SINGLE PRECISION

CABS

CAD1, CSB1

CCEQl
CCos .
CDV1 .
CEXP .
CFSTI1

CLIP1, CLIP2

CLOAD

CONJG
CPWRI
CSIN .
CSQRT
RCABS

3

.

COMPLEX ROUTINES

CL% e & o o & o o
CMLl e & & o 9 0 0
CNEGI1, CNEG2

REAL, AIMAG

* s 8 2 o

3 ¢ 8 8 5 8 s

DOUBLE PRECISION COMPLEX ROUTINES
CAD2, CSB2 ...
CCEQ2 ® e ¢ o o+ o 0

CcDV2 .
CFST2 .
CML2 .,
CPWR2
DCABS

DCCOS
DCEXP
DCLOD
DCSIN

DCSQR
DDCLO

RDCABS

.

DREAL, DAIMG

o o 0 0 o

® o o 0o 0

MIXED MODE ROUTINES
AMAXf@, AMINg

BREAK
CMPLX
CRCX1
CRCX2
CXFL1
CXFL2

.

LI

iii

ooooooo

g N
] 1 U 1

[V 10NV, SN BNV NG BN |
1

1
=k = \O 00 N ON UT O

N - O

[V
[

o N O
[]

[]
NO 00 NI O U s W

o

] 1

1
= e e et el e e
N O UL WN

1 1 1
LW =

NN N N NN
]
= \O oo 3 O\ W

1
=]

MIXED MODE ROUTINES (Continued)

DBREAK

.

DCMPLX

DIPWR
FLIP . ¢ co v
FRLD1, FR1.D2
FRST1, FRST2
FXFL1, FLFX1
FXFL2, FLFX2
IDINT
IFIX +eceeen

.

INT .coceeen

MAX1, MIN1

.NR1

.NR2
.NR3 e o 0 & o o
RIPWR

STRING/BYTE MANIPULATION ROUTINES
COMPOQ..........

LDBT, STBT ..
LOAD, STORE.
MOVE
MVBC
MVBT
MVF
MVZ

e o 0o o 0 o

POINTERS/DISPLACEMENTS
B I

FPTRS Module
FPZERO Module

LINKAGE AND INITIALIZATION ROUTINES .

CPYARG, CPYLS

FARG
FARGP
FCALL
FQRET
FRCAL
FRET
FRGLD

.

.["AV e o o 0 o

I * s o 0 0 0 0

MAD, MADO

® o 0 0 0 0 0 0

® o 00 0 0 0 o

.

e o o 0 0 0 0 0 0 0 0 0

e o o 0o 0 0

iv

7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-19
7-21
7-22
7-23
7-24
7-25
7-26

CDOO@OO0.000000000
= \O 00 1 O\ U1 W W =

1
o

\O\?\O\O
ar b W

10-1
10-3
10-5
10-6
10-7
10-9
10-10
10-12
10-13
10-14
10-16
10-18

INPUT/OUTPUT ROUTINES
CATIN, IMIO ...

CHSAV, CHRST .,

cour
DELETE
FCLOS ...
FFILE ...
FOPEN ...
FREAD ..

FSEEK

RDFLD ...

READL, WRITL

WRCH

MISCELLANEOUS FORTRAN SUPPORT

AFRTN
CGT
FINIT

® o 2 0 0 0 0 2 o

GT, GE, LT, LE

NFRTN
OVFLO

STOP, PAUSE
THREAD, ALLOC

ARRAY HANDLING ROUTINES

ARYSZ
FALOC

nnr
FREDI

FSBR, FSUB

e s 0 0 0 ¢

RTEO, RTER, RTES

o s 0o 0

® 6 0 06 0 0 0 000 0600 00

® 8 0 0 0 00 0 00 00 0 0 000

@ % 8 0 0 00 00 0 00 ¢ 0 0

® 0 0 0 0060 00 0 0 0 0690 0 00

¢ & 0 5 0 00 0 0 0 0 0

.

[

LI

APPENDIX A - RUN TIME ROUTINE TITLES AND NREL ENTRY

POINTS

APPENDIX B - USING EITHER A SIMPLIFIED INITIALIZER OR .1

APPENDIX C - ILLUSTRATIVE PROGRAMS

APPENDIX D - ARRAY STRUCTURE AND HANDLING

APPENDIX E - REAL TIME FORTRAN

Real Time FORTRAN Concepts
Run Time Stack Partitioning
User Interrupts ,.....
Real Time FORTRAN Routlne Descrlptlons
RDOS FORTRAN Error Arguments ,

ooooooooo

REAL TIME TASKING ,
AKILL
ARDY ...
ASUSP
FTASK
KILL ...
REC ...
SUSP
PRI

REAL TIME CLOCK/CALENDAR
DATE
FDELY ...

oooooooooooooooo

o o o o

REAL TIME INTERRUPT
FINRV , ,
FINTD
.IXMT .,

REAL TIME OVERLAY AND SWAP
FBACK

s 6 o s 0 0 0 0 s o 0

FOVRL
FQTASK +vvvtvnneennnnnns
FSWAP
OVOPN ...

8 o ¢ o & 0 0 0 o 8 0 0 0 0

oooooooooooooo
ooooooooo .
o o o o 6 0 0 0 s s o o s o
® 5 o o 8 o o 0 o 0 o ¢
o o o o o o o s o o o
. o o 0 o » o o o o o 0
. e o o o o o s s o e o
o o o @ o ¢ o o o o o o 0
® o 0 o o 8 0 o o . L)
o e o o o o o o 0
e o o o 0 o s o 0

e o o o o o o o e o o
@ o o ¢ o o . o 0o 0o 0 o
® o o o 6 0 0 0 0 0 0

o e o o o o 0 e o o o o
--------- e o o 0
* e o o 0o o o o o o o o o o
“ o o e o o .
® o 0 o 0 o s 2 0 s o .
e o o o o . o 0
e o . L] . .
. * o s o o o @ o o 0
oooooooo o e o o s
e o o o . . .
e o o ® ¢ o o o 0 s o o
e o o 0 0 0 0 0 0 o s s s e
) . e 0 0 s s o
oooooooooooo .
8 0 8 ¢ ® o 6 6 0 0 0 0 s e
e o 0 s o . o o
e o o o o s s 0 2 s 0 .
e 5 2 0 s 9 2 & 8 s 8 o o e
@ o o o o o ® o o o o 0 o o

APPENDIX E - REAL TIME FORTRAN (Continued)

REAL TIME FILE AND I/0 ce
APPEND
CCFILW ... oiien e,
CLOSE
DFILW et e
DIR c000...
FSTAT
GTATR
INIT . e e e e
OPEN e e e
RDBLK .

READR .

RESET
RLSE ceeon
WRBLK
WRITR et e e

REAL TIME BIT MANIPULATION

ICLR

ISET
ITEST e oo e e
Writing a Real Time Program

® o o 0 0 0 0 0 ® ¢ 5 s 0 s 0 o
oooooooooooooooooo
ooooo * o ® o o o 0 s o o 0
----- . e« o o o o o .
. e o o 0 o o LI Y o o o 0
. . . o o 0 o 2 0 o o .
-------- o o o o o .
------- e 2 2 ¢ 3
o s o o * o o . .
ooooooo ® o 0 0 0 8 e o 0 0 o
> o s & o o o LI Y .
s s 0 0 o ® 8 6 0 0 5 0 0 s 0 o
. . . . e . v .
e« o o . o o o e o .
oooooooooooo o 2 o o o o
. o o .
* 0 0 o s o ® o ¢ o e o 0 0 o
. ® e o 0 0 0 0 0 s s
. ® o o e o s 0 o o .

oooooooooooooooooo

Real Time FORTRAN Program Example0....
Preserving Reentrance During Interrupt Processing

APPENDIX F - FORTRAN PARAMETER LISTING

vii

FORTRAN RUN TIME LIBRARY

USER'S MANUAL

INTRODUCTION

The purpose of this manual is to provide FORTRAN and assembly language pro-
grammers with information about the Data General FORTRAN IV Run Time Libraries.
Users should familiarize themselves with DGC publications 093-000053 "FORTRAN

V USER'S MANUAL, " 093-000017 "ASSEMBLER, * 093-000040 "EXTENDED
ASSEMBLER, " and 093-000039 "RELOCATABLE LOADER. "

RUN TIME LIBRARY STRUCTURE

All subroutines in the DGC FORTRAN Run Time Library (hereafter called "the
library") possess certain common features. The primary identifying feature is
their reentrant nature. They are also relocatable; most entry points to these
routines are in page zero memory., This reentrant, relocatable nature makes

the routines suitable for use in Time-Sharing environments, as well as in assembly
language programs and in FORTRAN object programs.

Primarily because of the difference in the assembly of ., SYSTM calls, different
revisions of the Run Time Library must be used depending upon the operating
system supporting the main program. Programs supporte .. ‘tkc. the Stand-
Alone Operating System (SOS) or the Disk Operating System (DOS), must use the
DOS Run Time Library package. Programs supported by either the Real Time Disk
Operating System (RDOS) or the non-disk Real Time Operating System (RTOS)
must use the RDOS Run Time Library package.

Descriptions of routines in the main section of this manual, Chapter 2 "Integer Routines’
through Chapter 13 "Array Handling Routines, " are common to all operating system
types except where noted. Multitask real-time routines, required by programs run
with a real time operating system, and all routines peculiar to the RDOS FORTRAN IV

library, are detailed in Appendix E.
Fixed Point Numbers

Fixed point numbers (integers) are represented by 16-bit words, Bit O contains
the sign (0 if positive, 1 if negative)., Bits 1 through 15 express the magnitude

of the number in two's complement notation. All fixed point numbers are regarded
as integers by library routines. The range of values that may be expressed by
fixed point numbers is -(215-1) to +215-1, or -32,767y to 32, 76710 (the fixed
point number 100000 is an illegal signed number since attempting to obtain its
two's complement returns the same number). Zero must be expressed by an all
zero word.

1-1

Fixed Point Numbers (Continued)

S Two's Complement Magnitude

0 1 15

Real Numbers

Real numbers may be either single or double precision, and each precision may
be in packed or unpacked form. Numbers on the number stack are always un-
packed. Numbers elsewhere are usually in packed form.

Single precision floating point numbers (SPFL) in packed format occupy two
sequential sixteen bit words, Packed SPFL numbers are expressed as a sign,

a binary fractional mantissa 24] bits long and an exponent to the base 16 to which
is added an offset of 1008 (excess 64 notation). Decimal exponents of values from
1664 through 16163 are represented as 0 through 177g. Negative numbers are
formed by setting the sign bit of the positive representation of the number to a 1.
Thus +25. 01 becomes 041031, 000000 and -25. 01 becomes 141031, 000000 .

Sign | ~————Exponent —|=<——Mantissa ———
+25,=31g=.062g*162= [0]1]0J0J0[0]1JoJoJoJo]1]1]0]0[T]

bit 0 1 15
i* Mantissa ﬁ__!
[oJojofoJofofoJoJoJoJoJoJoJoJoJo]

bit 0 15

Packed Single Precision Real Format

Zero is represented as two sequential all zero words, but any SPFL number input
to a routine with an all zero mantissa is considered zero, An SPFL number is
considered normalized if at least one binary 1 is found in the first four positions of
the mantissa (bits positions 8 through 11 inclusive), All SPFL numbers input to
the library routines must be normalized. The range of values of an SPFL number
are 2,4 * 10778 to 7.2 * 1075 with significance in excess of 6 decimal digits.

Double precision floating point real numbers (DPFL) in packed form occupy four
sequential 16 bit words. The first word allocates bit positions for the sign, ex-
ponent, and most significant portion of the mantissa as does a packed SPFL number.
The remaining words express the rest of the mantissa. Rules for normalization
and expressing negative numbers and zero are the same as for SPFL numbers.,

The range of alues is identical to the range for SPFL numbers, 2.4*10°78 to
7.2*1075, with significance in excess of 16 decimal digits,

1-2

Real Numbers (Continued)

sign N

| | Exponent | Mantissa |

[Mantissa |

| Mantissa |

bce

| Mantissa

Double Precision Real Representation

Complex Numbers

Single precision complex numbers in packed format are composed of two sequential
packed SPFL numbers, the first expressing the real portion of the number and the
second expressing the imaginary portion of the complex quantity. Four sequential
memory locations are required, and the bit definitions, range and significance
which apply to SPFL numbers apply also to the real and imaginary portions of single
precision complex numbers,

Sign v

. rl | Exponent | Mantissa [increasing
Real 4 addresses
Part | Mantissa |
\.
sign
{ | Exponent i Mantissa I
Imag- $
inary | Mantissa | Y
Part ~

Single Precision Complex Representation

Double precision complex numbers in packed format consist of two sequential DPFL
numbers. The first expresses the real portion of the number and the second ex-
presses the imaginary portion. Eight sequential locations are required, and the
bit definitions, range and significance figures which apply to DPFL numbers apply
also to the real and imaginary portions of double precision complex numbers,

Byte Manipulation

Bytes and byte pointers used in the run time library are identical to bytes and
pointers discussed in "How To Use the Nova Computers, " with one exception:
bit 15 is set to zero if the left byte is pointed to , and bit 15 is set to a 1 of the
right byte is pointed to. Thus, to insure that packing occurs left to right, the

1-3

Byte Manipulation (Continued)

pseudo-op ".TXTM 1" should be included in any source program which generates
ASCII text messages.

Address of two packed bytes

0=L
bit 0 15

% Byte Pointer

STACK STRUCTURE AND LINKAGE

The following discussion details the structure of the various run time stacks
and the means used to access variables on these stacks in a single task FOR-
TRAN environment, Single task FORTRAN includes both DGC stand-alone
FORTRAN, DOS-supported FORTRAN, and RDOS single-task FORTRAN. For
a description of stack structure and the partitioning of the run time stack area
in multitask real time FORTRAN, see Appendix E.

SP Stack

The SP stack is a block of sequential locations with a page zero pointer, SP,
used for general purpose temporary storage by subroutines which have no run
time stacks. The SP stack is used primarily by the single and double precision
routines. The following example shows how it might be used to save and then
restore ACI:

STA 1,@SP
ISZ SP
DSZ SP
LDA 1,@SP

SP stack overflow is a fatal error undetected by the library routines.

1-4

Number Stack

‘The Number Stack is a block of locations reserved for the storage of numeric
values either as input or output for the arithmetic routines, or for temporary
computational storage by these routines. The default size of this stack is 630
octal locations, although this size may be redefined by the user at assembly
time by means of the following statements:

.ENT .FLSZ
FLSZ = n

where n represents an absolute integer expression that can be evaluated at
assembly time,

The maximum length of the number stack will then be equal to 2 * n + 308.
(These two statements might be included in the FORTRAN source program, with
an A in column one, so that they will be passed on to the assembler directly;
see the FORTRAN IV User's Manual, Chapter 1.)

The entire storage of the number stack is seldom used. Instead the number
stack expands dynamically as numbers are loaded onto it and contracts as they
are removed, It never exceeds its maximum allotted area however. This
stack is built in the direction of increasing addresses. The end of the number
stack is pointed to by .NDSP; NSP (also called FLSP) points to the beginning

of the most recently loaded number on the stack, the current top of the stack,

All numbers on the number stack are stored in sequential six word frames (or
multiples of six word frames); this format is called unpacked format, and is
shown in the following illustrations. Any attempt to load a number onto an
already filled number stack will cause overflow error message FENSO to be
issued., No such check or message is issued for number stack underflow, an
attempt to load a number below the first frame on the number stack.

1-5

Number Stack (continued)

15 ,Sign (

1 @ & Positive

| Exponent to Base 16

)

Sign

15
1 |° perPositive

Exponent to Base 16

g
Word 1 |
Word 2 | Two's Complement Exponent + 1008
Word 3 |IMSB MANTISSA
Word 4 Q MANTISSA LSB |
Word 5 { ¢]
Word 6 { 9 l

Unpacked SPFL Number Map

g
Word 1 |
Word 2 | Two's Complement Exponent + 100g |
Word 3 MsB MANTISSA b
wOrd 4 C[MANTISSA b
Word 5 Q MANTISSA J
Word 6 Q MANTISSA LSB|

Unpacked DPFL Number Map

An integer to be loaded onto the number stack is first converted to an unpacked

SPFL number. Single precision complex numbers are composed of two sequential
unpacked SPFL numbers; the first (topmost) SPFL number represents the imaginary
portion, and the next SPFL number represents the real portion of the complex
number, Similarly, unpacked double precision complex numbers are composed of two
sequential unpacked DPFL numbers.

In the following illustration of the number stack broken arrows denote noncurrent

values of NSP.

1-6

Operand 3, just
removed (popped)
from stack. {

Operand 1, top

of stack,
~
Operand 2, next 8
to top. <
.

+——— .NDSP

OP3 Mantissa (QOP3M)

OP3 Exponent (DP3X)

Ve

OP3 Sign (OP3S)

OP1 Mantissa (OP1M)

OP1 Exponent (OP1X)

OP1 Sign (OP1S)

OP2 Mantissa (OP2M)

OP2 Exponent (OP2X)

OP2 Sign (OP2S)

~=----— NSP

Number Stack Map

1-7

end of number
¥ stack
J
i
------- NSP
increasing
-at——— NSP addresses

FORTRAN Linkage Stack

FORTRAN Linkage Stack frames are variable length blocks of sequential locations
allocated for use by the main program and each run time subroutine requiring
temporary storage. Each FORTRAN frame is composed of an initial 11 octal word
header, and most routines require a varying length series of temporary locations
following each header.

Run Time Stack

(" 7 increasing
Header 1 addresses

Y { FORTRAN Stack frame A

f—‘
Temporaries

‘

(L_ W,
Header

1\ > FORTRAN Stack frame B
Temporaries {

J

(a
Header {

¢ > FORTRAN Stack frame C

-~
Temporaries !

L)

Each header location is used to store a specific type of information pertaining to
the subroutine which owns it, and each header location is at a fixed displacement
from a pointer called the current FSP. PARF, the FORTRAN parameter tape,
defines FSP to be stored in cell 164, and also defines the fixed displacements and
mnemonic assignments of each location in the stack header, The following illustra-
tion names these displacements and shows what information they contain,

1-8

FORTRAN Linkage Stack (Continued)

address contents
FSP =cell 16 ; 003000 = current contents of FSP

cell 2577 is the last temporary location of the previous stack frame,
\ " cell 2600 FLGT ;Length of variable portion of this stack,
1 in this example,
cell 2601 FOSP ;Old FSP
cell 2602 FPLP ;Unused

cell 2603 FEAD ;Entry address to the last routine called by
this routine,
Stack cell 2604 FCRY ;State of carry at the time this routine issues
Header 1 a subroutine call. Bit 15= e carry was @.

cell 2605 FAC@ ;Contents of AC@ when this routine issues
a subroutine call,

cell 2606 FACI1 ;Contents of AC1 when this routine issues a
2008 NREL subroutine call.
locations cell 2607 FAC2 ;Contents of AC2 when this routine issues a

subroutine call.
\ cell 2610 FRTN ;Address of next sequential instruction when
the routine issues a subroutine call,
Temporary cell 2611 FTSTR ;Temporary storage available for use by this
or TMP routine,
(cell 2612 will be the FLGT of the FORTRAN stack frame belonging to
the subroutine called by this routine,)

1 cell 3000 FSP ;Contents might be anything.

FORTRAN STACK

1-9

There is a page zero pointer, called QSP, which may reside anywhere from 20 through
377g, that points to FAC2, This is the location where AC2 will be stored should the
current routine call out, and it tracks FSP by an offset of -171g. This pointer is

used for immediate temporary storage by the FORTRAN linkage subroutines. For
example STA 2,@QSP frees AC2 while STA 2,@FSP is not acceptable, QSP is defined as
an external displacement in . I, the run time initializer.

Following FRTN is the series of temporary locations used for general purpose storage.
The first of these is called FTSTR or TMP. The calling routine's accumulators,

carry and return addresses are always recoverable from its stack header at locations
FCRY through FRTN. FPLP is not currently used by the library routines,

In reality, the stack mnemonics are negative displacements which are added to the
indexable center (FSP) of the current stack to obtain the effective address locations
used for header and temporary storage. For simplicity's sake, we refer to FLGT ...
FTSTR as though they were the effective addresses themselves, Similarly, we refer
to the current FSP and QSP, by which we really mean the current contents of cells
FSP and QSP, These mnemonics are defined in the PARF parameter tape, a portion
of which is listed below,

FSP = USP (USP is predefined in the assembled to be 16g.)
FRTN = -170
FAC2 = -171
FAC1 = -172
FACO = -173
FCRY = -174
FEAD = -175
FPLP = -176
FOSP = -177
FLGT = -200
FTSTR = -167
TMP = FTSTR
FZD = -200

The area occupied by the FORTRAN stack frames, called the Run Time Stack, expands
and contracts dynamically with the execution of the main program, expanding when
more nests of subroutines are called or as subroutines are called which demand temp-
orary storage. As the Run Time Stack expands, any FORTRAN stacks created earlier
for subroutines already executed are overwritten by the new stacks, ' Stack overflow

is said to occur if more storage area than the memory available at run time is de-
manded; AFSE is a page zero word used to determine the end or uppermost memory
location available for the entire Run Time stack. It isdeclared as an entry by the
library., '

1-10

Main Program

. lower addresses

call

Subroutine D

call

T

Subroutine E

(/f--——- etc.
N

higher addresses

Run Time Stack

lower addresses

Stack D
Stack E

€tc,

higher addresses

Stack Creation for Nested Subroutines

1-11

In every case, upon subroutine entry AC2 will then be set to contain a pointer to
the calling program’s stack frame (the old FSP) and AC3 will contain a pointer to
the called routine's stack frame (new FSP) if one has been allocated, or -1 if

no frame has been allocated. Upon return to the caller, carry and all registers
except AC3 will be restoredtotheir original values. AC3 will contain the caller's
FSP.

Inter-Subroutine Linkage, FLINK

The library contains a set of subroutines called the FLINK module which enables
the calling of other library routines and performs all stack frame creation/deletion
and maintenance functions required. FLINK forms the nucleus of the run time
subroutine’'s communications facility.

Library routines, including FLINK, have two types of entry points: page zero (. ZREL)
or normally relocatable (. NREL) locations outside page zero. Those with .ZREL
entries must be specified in an , EXTD statement, while those with . NREL entries
require . EXTN statements. The following lists the mnemonic entries of the FLINK
subroutines:

.EXTN .EXTD
FCALL (JSR @. FCALL) .FCALL
FRCAL

FSAV (JMP @. FSAV) .FSAV
FRET (JSR @. FRET) .FRET
FQRET

In reality, FRCAL and FQRET have page zero entries too, but these have not been
entered with a . ENT statement and are not available for programming use.

The following table highlights the purpose of each FLINK subroutine.

FCALL (or JSR @. FCALL) Used to call a library routine by its . NREL
entry point. Also performs FSAV functions.

FRCAL Used to call a library routine with its , NREL
entry contained in AC2. Also performs
FSAV functions.

FSAV (or JMP @. FSAV) Used to maintain the caller's header, allocate
a frame for the called subroutine, and update
FSP.

FRET (or JSR @. FRET) Used to return control to the caller, restore

the caller's registersandcarry, and update FSP,

FQRET Provide a quick return to a caller when the
called subroutine has no stack frame; restore
the caller's registers and carry.

1-12

FSAV and an integer stack length word must immediately precede any subroutine
which has a page zero entry point, The method of calling such a routine is JSR @, ADR

viy PY

where . ADR represents the page zero address containing the entry point (less two):

.ZREL
.SBR: SBR-2

.NREL
(page zero call) JSR @. SBR

FSAV
1
SBR: True beginning of the subroutine

FRET (or FQRET)

The Stack Length word, SLW, labeled n in the illustration, may take on positive
integral values § or -1, If the SLW is equal to -1, no stack header nor any
temporary storage locations will be allocated for the called subroutine. In addition,
no further calls can be made from the called routine. Subroutines which have a

-1 SLW use the FLINK subroutine FQRET for exit and return to the next sequential
address following the original subroutine call unless the user modifies FRTN.
Subroutines with a -1 SLW typically provide quicker call and return to the caller,

atanls fAs o eallad il e e . 4
I 1aintenance of a stack for the called subroutine is required.

since no creat

)
£5
)
R
2}

If the SLW is either zero or a positive integer, a new stack frame is created for
the called subroutine, and the subroutine FRET must be used to provide a return
of program control to the caller, If the SLW is @, a "bare bones" stack consisting
of only a stack header is created; this would provide for the storage and restoral
of the values in accumulators AC@ through AC3 and the state of carry should this
subroutine make a call to another routine.

If the SLW is a positive integer, then a stack is created with both a header and the
specified number of temporary storage locations.

Whenever one subroutine with a stack allocated for itself calls another subroutine
with a stack, the contents of AC@ through AC2, carry, and the return address of the
call are stored on the caller's stack, AC3 is set to the FSP value of the stack
belonging to the new, called subroutine and AC2 is set to the FSP of the caller's
stack. Should the called subroutine have no stack allocated for itself, AC2 is

1-13

set to the caller's FSP but AC3 is left free for general purpose use.

If a subroutine in the library has no page zero entry, FCALL (also part of
FLINK) may be used to perform the subroutine call, and the form of the call is:

FCALL
SBR

where SBR represents the . NREL entry point to the routine. Subroutines called
by FCALL need not be preceded by FSAV since FCALL performs the functions
of FSAV, although such subroutines must be preceded by a stack length word.
Subroutines which have normal entry points in page zero can also be called by
means of FCALL to the . NREL entry point. (Note that this type of call requires
2 words as opposed to 1 word.)

The FLINK module contains one other subroutine which permits the calling of a
subroutine by its . NREL entry point: FRCAL. Subroutines called by means of
FRCAL must have their entry points preceded by appropriate SLWs and as with
FCALL, no FSAV is needed preceding the SLW, FRCAL is not followed by the
name of the subroutine to be called; instead, AC2 is set to the address of the
subroutine to be called, and then the instruction FRCAL is issued., FRCAL
accomplishes the same functions as FCALL.

FORTRAN Addressing

The placing of current FSP values in AC3, and next-to-most-recent values of FSP
in AC2 by FLINK permits an addressing scheme called FORTRAN Addressing,
which is used by the library and the FORTRAN Compiler,

FORTRAN addressing extends the NOVA family addressing scheme in two ways:

1. Variables on the stack are referenced relative to that stack's FSP.
2, Full word addressing for all absolute addresses is effected by subroutines
.LD@ and .ST@.

Since NOVA family computers can address 256)(words in an indexed instruction,
using a bias of -200 through -+177 each address on the stack can be referenced

by using the centerpoint, FSP, and an offset stack displacement. Indirect stack
displacements are also generated for dummy arguments of a function or a subroutine,
Stack addresses are encoded as being between) and 377g inclusive, or as between
100000g and 100377g (the address of a variable, not the variable itself), FORTRAN
addresses, when referring to locations on a frame, are equal to the displacement
relative to 'SP minus FZD (=-200)., Thus the FORTRAN address of FLGT (=-200, see
PARF) is equal to @, since FLGT - FZD = -200 - (-200) = . Using similar
reasoning, all direct FORTRAN stack addresses are positive, with a range of @ through
377 inclusive,

1-14

FORTRAN STACK FRAME

FORTRAN address § FLGT
FORTRAN address 1 FOSP
FORTRAN address 2 FPLP
FORTRAN address 3 FEAD
FORTRAN address 4 FCRY

FORTRAN address 200 FSp

FORTRAN addresses greater than 377 are treated as absolute , NREL addresses.
The charton the following page illustrates the decisions made by library routines
in interpreting FORTRAN addresses,

1-15

FORTRAN Address

g1 7,8 15

Given a FORTRAN Address, FADR
to resolve

FADR + (current FSP) = 20§ is the
partially resolved address, ADR

ADR is resolved
absolute address

(ADR) — FADR

Since the most recent FSP is always placed in AC3 by the linkage routines (FLINK),
any of 377 locations on a frame can be address in such instructions as:

LDA @, -167, 3
which is equivalent to
LDA @, TMP, 3

1-16

As indicated earlier, stack frames may have lengths exceeding 377 locations, If
frames exceed 377 locations, variations on the FORTRAN addressing scheme must
be employed, possibly by placing pointers to new index values in the frame so that
all locations may be accessed:

Jumbo Frame

Header

new index

y 377 locations
FSp

Y

new index —————

FORTRANarray handling presents another means of accessing locations on a stack
(see Appendix D).

The following illustrations give examples of FORTRAN addressing applications.

To adjust a caller's FRTN (without using further linkage routines which will be
discussed), the following method might be employed:

FCALL |
NAME

Parameter

Next Sequential Instruction

Stack Length Word

NAME;: LDA @, @FRTN, 2 ;Parameter—+ AC{
ISZ FRTN, 2 ;Return can now be made to
. ;the NSI
FRET

1-17

One of the duties of FSAV is to preserve a caller's registers upon issuance of a
further call. In order to do this, a register must be freed. The following example
shows how FSAV's use of QSP accomplishes this end.

.ZREL B
TEMP: .BLK 1
.NREL
FSAV: STA 2, TEMP
LDA 2, FSP \ Without Using QSP

STA @, FACH, 2
STA 1, FACI, 2
STA 3, FRTN, 2
LDA @, TMP

STA @, FAC2, 2 J

FSAV: STA 2, @QSP
LDA 2, FSP |
STA @, FACH, 2 Using QSP
STA 1, FACI, 2
STA 3, FRTN, 2

QSP may also be used for temporary storage by a routine provided it is not being
so used when a call out is made to a subroutineby means of FLINK.

JSR NAME
Next Sequential Instruction

NAME: STA 3, @QSP

LDA 3, FSP
JMP @FAC2, 3

In spite of the fact that FLINK restores the original values of a caller's registers,

it is possible to pass results to a caller in one of the free registers, The following
example illustrates one possible method.

1-18

NAME: .

LDA 3,FSpP

LDA 2, FOSP, 3

STA 1, FACg, 2 ; The result is returned in
FRET ; the caller's AC@.

Similarly, conditional return can be provided by altering the caller's FRTN:

FCALL

NAME

Return if condition 1 satisfied
Return if condition 2 satisfied

NAME: .

LDA 2, FOSP, 3
SUB @4, 1, SZR ;Condition 2 satisfied?
ISZ FRTN, 2 ' ;Yes

wmnom
ER AW L3N §

Library Conversion of Fortran Addresses to Absolute Addresses

Several library routines are available for transforming FORTRAN addresses into
absolute addresses: FRG@/FRG1l, MAD/MADO, FRGLD, CPYARG/CPYLS, and

FARG. In addition to performing effective address calculation, FRGLD loads the
contents of this address in AC#. CPYARG/CPYLS and FARG transfer effective
addresses to the caller's stack. FRG@ computes the effective address of a stack frame
displacement with respect to the current FSP, while FRG1 performs this calculation
with respect to the next most current FSP,

1-19

FRGP operation

User Routine A

-JSR B
FORTRAN ADDRESS of argument

> B:
Addressof E
FORTRANADDRESS —AC2
—JSR @. FRG@ -
return to A

effective address of argument — AC

Routine A's stack argument
frame

Subroutine B must not specify a stack frame.

FRGLD computes the effective address of an argument stored at a FORTRAN
ADDRESS, and then loads the contents of that address; AC@ receives the argu-
ment. If the address is a stack frame displacement, it must be a displacement
on the next -most-recently created frame. FRGLD calls FRGI to resolve the
effective address of the argument,

The MAD/MADO module also computes effective addresses from FORTRAN
ADDRESSES. If the address . exceeds 377g, then it is resolved as either an
absolute NREL address or as an indirect address needing further resolution as
shown on page 1-15, If the address is from 0 to 377 8 inclusive, the address

is a stack frame displacement., The question "Which stack frame?" is answered
by the entry which was selected to this module, If MAD entry, then the caller's
stack frame is meant and the current FSP is used as a base for the address
calculation, The resulting effective address is returned in AC2. The MAD/
MADO module itself has no stack frame, and does not restore the accumulators
or carry to their entry values when return is made to the caller.

1-20

Passing Arguments from the Caller

There are two subroutines available in the library for resolving FORTRAN
ADDRESSES passed by a caller and storing them on the stack frame of called
subroutine B: FARG and CPYARG/CPYLS. FARG is used to pass argument
addresses to the stack frame of the called subroutine without restoring
caller B's accumulators and state of carry upon return to B,

CPYARG/CPYLS performs the same function, but restoring the original contents
of accumulators and state of carry upon return to caller B. The only difference
between CPYARG and CPYLS lies in the calling sequences which each accepts.

Routine A
Call Subroutine B
n _
FADDRI1
FADDR2
etc,
Next Sequential Instruction

NSubroutine B
Call CPYLS

. TN CPYLS

. \ Operations

CPYLS resolves effective addresses

of Subroutine A's calling parameters,
places these on Subroutine B's stack.
Updates Subroutine A's FRTN to NSI.

FRTN: NSI
STACK A FADDRI1
FADDR2

effective address FADDRI1
STACK B effective address FADDR2
etc.

1-21

Returning Results to the Caller

The order of a calling sequence generated by the FORTRAN statement CALL SUB2
(Pl' .. Pn) is as follows:

JSR @.FCALL

SUB2

n

FORTRAN ADDRESS of Parameter 1

FORTRAN ADDRESS of Parameter n
Next Sequential Instruction

The called subroutine, SUB2, must fetch the FORTRAN ADDRESSES of each of the
parameters, perform its function on the parameters, and return the result it has
obtained back to the caller at the FORTRAN ADDRESS of the result (which may be
one of the parameters). This it can do by first calling CPYARG (or CPYLS),
using the effective addresses it has received, and then by returning the result

to the caller's stack.

One way of returning this result is to load it into an accumulator and then store it:
STA @@, TMP, 3

where AC3 contains the current (i.e, SUB2's) FSP. Assuming parameter 1 is

the result address, TMP would contain the effective address of SUB1's Result,

since the list of addresses of SUB1's parameters were transferred in order onto
SUB2's stack. The effective address of the Result was transferred to SUB2's
FORTRAN address TMP, the effective address of the second parameter was
transferred to SUB2's TMP + 1, and so on by CPYARG. Often in assembly

language programs it will be helpful to assign mnemonics to the displacements of the
temporary storage locations following TMP, especially in cases where many of
these storage locations are being used.

Stack Allocation at Run Time

Before the main FORTRAN program may be run, there must be an initial allocation
of the primordial stacks, pointers to unlabeled common must be set up and the
FORTRAN Channel Assignment Table must be set up to define the relationships
between actual device drivers and logical FORTRAN channels. This whole complex
task of initialization is performed by single task . I at the beginning of run time,
(Multitask . I, found in library FMT. LB, is discussed in Appendix E.)

1-22

Stack Allocation at Run Time (Continued)

Single task .1 is a subroutine from the first library file, consisting of 134 octal
.NREL locations. .I also allocates a stack for itself, 60 octal locations plus header,
where the Channel Assignment Table is placed. .I is culled by the operating system
(either the Stand-Alone or Disk Operating Systems) at the beginning of Run Time. At
the end of the successful running of the FORTRAN program, return will be made to

. I which transfers control unconditionally to the STOP routine, STOP outputs the
message ""'STOP 999" to the system output device, and returns control to the oper-
ating system.

A system call is issued at the start, .SYSI, which initializes system I/O (this call
is a no-op to DOS and RDOS). Then 40 octal locations are allocated for the SP stack
immediately following the last loaded run time subroutine; a pointer to the beginning
of the SP stack is also created,

Immediately following the last location in the SP stack, the number stack is defined
and is allocated if floating point arithmetic is used in . MAIN or any of its subpro-
grams. This stack will be 630 octal words long, or 30 octal plus twice whatever value
a user has specified in a ., FLSZ statement. The default value sets aside enough
storage for 68 single precision complex numbers, or 17 double precision complex
numbers.

After allocating the number stack (or after allocating the SP stack if no number stack
is called for), a pointer to the beginning of the run time stack is defined, and .I's
stack is allocated here, ,MAIN's stack frame will be created, as soon as transfer
is made to . MAIN .

Before this happens, a check is made to see whether or not there is enough room for
blank common allocation, and blank common is allocated at the high end of memory
if there is room enough for both it and the stacks which have been allocated. If not,
a memory overflow message will be output and the system will wait for operator
intervention. Assuming there is enough room, .NMAX is updated to acknowledge the
stack allocations by means of a system call, . MEMI. The Channel Assignment
Table is initialized and deposited in .I's temporary stack area, and program control
is given to . MAIN.

The fact that no memory overflow is detected by .1 in no way implies that there will
be enough core space for all stack allocations which will be nec2ssary at the peak
requests of run time. Instead, a stack overflow check is made by the FLINK module
each time a stack allocation request is issued, and a stack overflow error message
is issued if insufficient space is detected. The following illustration depicts a
typical map of memory during the execution of . MAIN. A simplified version of .1

is given in Appendix B which illustrates the elements of .1 as they might be used in an
assembly language program. AFSE,referenced in both versions of .1, is a pointer
used to determine whether stack overflow has occurred.

1-23

AFSE-167

NDSP—____

NSP* >
SP

1000g
4440,

400g

508
47

16
15

*NSP moves

towards NDSP
as numbers are
loaded on the stack.

Top of Memory

top of memory

DOS

BLANK COMMON

etc,

second called subroutine stack

first called subroutine stack

.MAIN STACK

.1 STACK (CAT)

NUMBER STACK

SP STACK

. MAIN
and all its subroutines

USER STATUS TABLE AREA

-
if DOS environment
- top of memory
if SOS environment
\
q Run Time Stack

Area

End of Number Stack

::::::::> 630g
>

40g

. ZREL Pointers, Displacements|

Spare Programming Area

DOS/SOS
Page Zero

Bottom of Memory

MEMORY MAP OF ,MAIN AT RUN
1-24

4 start of . MAIN
in SOS environment,

TIME

USING THE RUN TIME LIBRARY

Structure of Subroutine Descriptions

Each subroutine description is subdivided into the following categories: Title,
Purpose, Calling Sequence(s), Subroutine Size (and Timing), Supporting Routines
(and Displacements), and Notes to User.

The "Title" is a name selected to describe the subroutine (or subroutines) being
discussed. Usually these correspond to loader-recognized titles. A list of loader-
recognized titles is given in the Summary Table in Appendix A,

The "Purpose" section is followed by "Calling Sequence" which illustrates the
subroutine entry point, input parameters, and output result. Requisite inputs and
output results are enclosed inparentheses. In most cases where alternate entry points
or alternate entry means (like FCALL and JSR @ entries) are possible, the [SR@
entry will usually be given in the calling sequence, with the FCALL entry point listed
in the "Notes to User, "

The section titled "Subroutine Size" gives the octal number of locations required in
both page zero and in the remainder of core men?ory for this subroutine (or set

of subroutines if this subroutine is part of a load module). The figures do not include
the storage requirements of any auxiliary subroutines requirved and ca'led by this
routine for support. Subroutines with the same Loader Title in the Summary Table
share common coding in a load module. Thus, if either one or all of the subroutines
in a module are loaded, the core storage requirements for thesc subroutines are the
same and are equal to the size given for any of the subroutines in the module,

Selected subroutines have been measured to determine their typical execution times,
and these are given in "Subroutine Size and Timing." The following comparisons

of typical execution times of single precision real arithmetic functions run on the
SUPERNOVA are given to illustrate the advantage obtained by using the hardware
fixed point multiply/divide option.

Single Precision Real Typical Execution Time Using Typical Execution Times With
Subroutine Software Multiply/Divide Hardware Multiply/Divide
SIN 3.3 ms 2.0 ms
COs 3.0 ms 1.9 ms
TAN 4,2 ms 2.5 ms
ATAN 3.6 ms 2.2 ms
EXP 4.9 ms 2.9 ms
LN 3.7 ms 2.4 ms
TANH 6.3 ms 4.2 ms
SQRT 2.9 ms 1.7 ms
ALOGI0 4,1 ms 2.6 ms
ATAN2 5.3 ms 3.4 ms

SAMPLE SUPERNOVA EXECUTION TIMES
1-25

The following chart compares the typical execution times of the NOVA, NOVA 1200,
and NOVA 800. The NOVA 1200 and NOVA 800 figures are given both with and
without the use of the integer hardware multiply/divide option.

Double Precision
Real Subroutine

NOVA with software
multiply, divide

NOVA 1200 with
software multi-

ply, divide//with
hardware multi-
ply, divide

NOVA 800 with
software multi-
ply, divide//with
hardware multi-
ply, divide

FAD2 *#

FSB*#

FML2*

FDv2*

DPWER

RIPWR

1.3 ms

1.4 ms

5.7 ms

11.4 ms

180 ms

3 ms

.55 ms//.55 ms
.55 ms//.55 ms
2.2 ms//1.2 ms
4,3 ms//2.0 ms
69 ms//37 ms

2.5ms//1.5 ms

.35 ms//.35 ms
.35 ms//.35 ms
1.2 ms//.7 ms
2.3 ms//1.4 ms
39 ms//25 ms

1.5 ms//1.0 ms

* includes time required for two floating load operations and one floating store
operation.
the integer multiply/divide routine is not used by this routine.

‘Thus to estimate the execution times for the NOVA 800 or NOVA 1200 with or without

the integer hardware multiply/divide option, a series of conversion constants can be
derived. The following series of conversion constants can be used to estimate the execu-
tion times of FORTRAN run time routines for which the execution time on the NOVA is
already given. ""With" means "with the hardware integer multiply/divide hardware, "

and "without" means "without the hardware. "

NOVA 800 without: NOVA 800 with as 1 : .66
NOVA 1200 without: NOVA 1200 with as 1 : .55
NOVA without: NOVA 1200 without: as 1 .40
NOVA without: NOVA 800 without as 1 .25

1-26

External subroutines, pointers, and flags found elsewhere in the library which support
each routine are indicated by the category "Supporting Routines. " External normals
will be listed to the left of the semicolon, external displacements to the right,

Note that displacements defined on the PARF and PARU tapes are not listed in this
section. Consequently, it is good programming practice to always assemble these
tapes with any user written subroutines.

"Notes to User" specifies whether error messages can be generated, and whether
the contents of accumulators and the state of carry are restored to their entry
values upon exit from this routine. The statement that accumulators and carry are
restored should be understood to be qualified because AC3 is always set to contain
the current FSP and AC2 the next most current FSP upon subroutine entry. Upon
return AC2 is the caller's original AC2, Moreover, error messages may be

issued by subroutines supporting a main routine which, itself, is incapable of issuing
such messages.

Finally, subroutine descriptions are arranged alphabetically by title within each
of twelve categories. The list and order of appearance of these categories is
as follows:

Integer

Single Precision Real

Double Precision Real

Single Precision Complex
Double Precision Complex
Mixed Mode

String/Byte Manipulation
Pointers/Displacements

Stack Linkage, Initialization
Input/Output

Miscellaneous Fortran Support ‘
Array Handlers |

Interfacing Assembly Language Routines to FORTRAN Programs

If it is desired to write a function or subroutine in assembly language which will
be called by a FORTRAN program, or which call FORTRAN programs or sub-
programs, several points must be borne in mind:

1, First 5 letters in name must be unique and distinct from library defined entries.
2, Include the statement , ENT name,
3. Select a unique title (. TITL title).

1-27

The code penerated by the FORTRAN statement CALL NAME (x,y,2z) is as follows:

. EXTN NAME

JSR @.FCAL

NAME

n ;sWhere n represents the number of arguments

'FORTRAN ADDRESS of x
FORTRAN ADDRESS of y
FORTRAN ADDRESS of z

All externals which are to be resolved in the displacement field of an instruction

at load time are specified by . EXTD. Examples of these are page zero entries
and page zero flags. All other externals (FCALL entries, primarily) are specified
by . EXTN.,

The lower case n in the above calling sequence represents an integer equal to the
number of parameters in the calling sequence. The . FCAL routine saves accumulators,
carry and the current FSP, and allocates a stack frame for the called subprogram.

The statement , EXTN NAME need appear only once in a program,

The converse of the calling sequence generated by the FORTRAN CALL statement
is the receiving sequence. This is the means by which the calling parameters are
fetched by the called subroutine, The form of the receiving sequence generated
by the use of the FORTRAN statement SUBROUTINE is as follows:

FS
NAME: JSR @.CPYL

FS in the above illustration is the number of temporary locations required by the
subroutine NAME in the FORTRAN stack. FS must be large enough to provide for

the maximum number of arguments expected by the routine, .CPYL converts the

n argument address to effective addresses and places these addresses in locations TMP,
TMP +1, ... TMP+n-1 on its FORTRAN stack. Even if no arguments are passed,

. CPYL is still called to correct the contents of FRTN so that program control will
return to the next sequential FORTRAN statement,

Lastly, the assembly language code generated by the FORTRAN RETURN statement
is JSR @.FRET, called FRET earlier. As mentioned earlier, FRET restores

accumulators, carry, the contents of FSP, and places the current FSP in AC3,

Appendix C lists two library routines and a sample program which calls routines from
the library to illustrate the linkage principles discussed above.

1-28

To call a FORTRAN subroutine or function in an assembly level program, care

must be exercised to assure that arguments passed to the subprogram agree in

number, order and type with the arguments required by the subprogram. Given
the following FORTRAN subroutine statements,

SUBROUTINE name (argj, argo, ..., argy)
the assembly language code required to call this subroutine would be:

.EXTN name
- FCALL

name

N

FORTRAN ADDRESS 1)

FORTRAN ADDRESS 2

. L Argument Addresses

FORTRAN ADDRESS n)

In like fashion, given the following FORTRAN function,

FUNCTION name (arg,,argy,...arg)

The assembly language code required to call this function would be:

TAT name
. EXTN name

FCALL

name

N+1

FORTRAN ADDRESS of result
FORTRAN ADDRESS 1)
FORTRAN ADDRESS 2

. i

. > Argument Addresses

FORTRAN ADDRESS n
J

If the argument list is empty in either a subroutine or function definition, N=g
must be specified explicitly.

Finally, if any text strings are to be passed to FORTRAN routines, the first
must be preceded by a statement to force the storing of text in left to right order:

.TXTM 1.,

1-29

BASC

BDASC

IABS
IDIM

. e

IPWER .

MAXf@, MINg.

MOD

SDVD
SMPY

ISIGN .

.

® 2 ¢ ¢ 2 0 0 e 0 8 P O e

® o 0 0 0 o s 0 00

MPY, MPY@, DVD (hardware)
MPY, MPY§, DVD (software)

INTEGER ROUTINES

. o

LI I)

® 0 o 0 0 3 0 0 0 00

o o 0

2-1

D T |
Ut WO

NN DNMNDNMDNDNNDNDDNDNNDNN
1
bt pt e b = O OO N ON U W

BASC

Pu;Eose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To convert an unsigned fixed point number to an ASCII string
of six octal digits converted to ASCIL.

(AC#® contains the Byte Pointer to the returned string,
AC1 contains the number to be converted.)

FCALL
.BASC

(Leading zeroes are not suppressed; string is terminated
with a null byte, AC@ contains updated pointer to null
byte.,)

FSAV, FRET; ,STBT .

35 octal locations of normally relocatable memory are
required.

The input fixed point number is of the following form,
with N representing an octal digit:

NeNgN4N3NoNy

The output ASCII string is in the following form, where
A, corresponds to Np:

Aghsg

- AyA3

A2A1
po

No error messages are output,
Contents of accumulators, carry are restored.

. BASC must be specified with an , EXTN statement,

2-3

Integer

BDASC

PuI_'Eose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To convert an unsigned fixed point number to a string
of ASCII decimal characters.

(AC# contains the output string pointer, ACI contains
the number which is to be converted.)

FCALL
. BDASC

(Leading zeroes are suppressed; string is terminated with
a null byte. AC@ contains the updated pointer to

the null byte.)

FSAV, FRET; ,STBT .

62 octal locations of normally relocatable memory are
required,

No error messages are generated.
Contents of accumulators, carry are restored,

. BDASC must be specified with an . EXTN statement.

)
t
>

Pumse:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Integer

To compute the absolute value of an integer argument,

JSR @IA.S

FORTRAN ADDRESS of result ; A NON-NEGATIVE INTEGER,
FORTRAN ADDRESS of argument ;ANY INTEGER

(The location containing the result will be expressed as
a FORTRAN ADDRESS immediately following the call).

FRET, FSAV; CPYARG .

One page zero location and 11 octal locations of normally
relocatable memory,

Original states of accumulators, carry restored upon exit,
No error messages are generated.
IA. S must be referenced by an . EXTD statement.

This routine has an FCALL entry point, .IABS .
- IABS must be referenced by an . EXTN statement.

2-5

Integer

IDIM

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To compute the positive difference of two integers I and J.
JSR @ID.M

FORTRAN ADDRESS of result

FORTRAN ADDRESS of 1

FORTRAN ADDRESS of |

(If I-] = @, the result is f§; otherwise, the result is the
difference I-J).

FSAV, FRET, .FARG .

One page zero location and 13 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are restored.
No error messages are generated.
ID. M must be referenced by an , EXTD statement.

This routine has an FCALL entry point, .IDIM .
. IDIM must be referenced by an . EXTN statement.

2-6

IPWER

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Integer

To raise an integer to aninteger . power, with an integer
result,

(The integral base is in ACl, and the integral power is in
ACP)

JSR @.IPWR

(The result is deposited in ACl1),

MPY; SP, .RTES .

One page zero location and 53 octal locations of normally
relocatable memory,

Original states of accumulators and carry are lost,

If overflow occurs, or if a zero base was input to the routine,
an error message is issued.

. IPWR must be referenced by an . EXTD statement,

2-7

Integer

ISIGN

Pumose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To transfer the sign of one integer to another integer.

JSR @ IS.GN

FORTRAN ADDRESS of result

FORTRAN ADDRESS of integer receiving the sign

FORTRAN ADDRESS of integer whose sign is being transferred.
FRET, FSAV;.FARG .

One page zero location and 14 octal locations of normally
relocatable memory,

Original states of accumulators, carry are restored.
No error messages are generated,
IS. GN must be referenced by an . EXTD statement,

This routine has an FCALL entry point, .ISIGN .
. ISIGN must be referenced by an . EXTN statement.

2-8

MAX@, MINg

Supporting Routines:

Subroutine Size:

Integer

To select the smallest (MIN@) or the largest (MAX@) member
from a set of integers, expressing the selection as an integer,

JSR @MA.p (or @ML.)

N (an integer constant specifying the number of members
+1 in the set of integers.)

FORTRAN ADDRESS of result

FORTRAN ADDRESS of I

FORTRAN ADDRESS of 13

FORTRAN ADDRESS of IN_ 1

(The integer result is stored at the FORTRAN ADDRESS
immediately following N.)

FRET, FSAV; .FARG .

‘Two page zero locations and 44 octal locations of normally
relocatable memory.

messages are generated,
FCALL entry points are MINg and MAX@.

MAX@ and MIN@ must be referenced by an , EXTN statement.
MA. @ and ML § must be referenced by an , EXTD statement.

2-9

Integer

MOD

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To fetch the remainder of an integer quotient when integer
I; is divided by integer L.

JSR @MO.

FORTRAN ADDRESS of result

FORTRAN ADDRESS of integer I;

FORTRAN ADDRESS of integer I

(The location of the result is expressed as a FORTRAN
ADDRESS immediately following the call.)

FSAV, FRET; .FARG, .SDVD .,

One page zero location and 11 octal words of normally
relocatable memory.

In the case of an illegal division, an error return will be
made by . SDVD, and a zero result will be returned.

Original contents of accumulators, carry will be restored
upon exit.

MO. must be referenced by an . EXTD statement, This
routine has the FCALL entry point . MOD .

2-10

MPY, DVD, MPYP

Purpose:

Calling Sequences:

Supporting Routine:

Subroutine Size:

Integer

To enable the use of the unsigned hardware multiply/divide
option on @ NOVA family computer and restore FSPupon exit.

(AC1 and AC2 contain the multiplier and muitiplicand
upon input to the routine; contents of AC@ will be added to
the product.)

MPY

(The product of AC1 and AC2 is computed, and the entry
contents of AC is added to the product, This sum is
returned with the more significant half in ACg, the less
significant half in ACl. AC3 contains the caller's FSP

upon exit.)

(AC1 and AC2 contain the multiplier and multiplicand
upon entry.)

MPY@

(The product of AC1 and AC2 is returned with the less
significant haif in AC1, and the more significant haif in
AC@. ACS3 contains the caller's FSP upon exit.)

(The high and low parts of the dividend are in AC@ and
AC1, the divisor is in AC2.)

DVD

(The remainder is in AC@, the quotient is in AC1, AC2
is unchanged, and carry is clearea; AC3 is set to FSP.
Upon overflow, carry is set, FSP is placed in AC3, and
return is made with the accumulators unchanged.)

SV,

Three page zero locations, 31 octal locations of normally
relocatable memory for NMPYD 3 3 page zero locations
and 15 locations of normally relocatable memory for HMPYD
(see Notes to User),

2-11

Integer

MPY, DVD, MPY@# (Continued)

Notes to User:

Tape NMPYD (099-000011) must be loaded at link load
time for the NOVA., For the NOVA 1200, 800 and
SUPERNOVAs, load tape HMPYD - (099-000009).

MPY, MPY@, and DVD must each be specified in a . EXTN
statement,

2-12

MPY, MPYp, DVD

Pugmse:

Calling Sequences:

Supporting Routine:

Subroutine Size

and Timing:

Notes to User:

Integer

To perform unsigned integer multiplication and division
on NOVA family machines lacking the hardware multiply/

Same as for machines with the hardware multiply/divide
option, (See page 2-11)

.Svg .

Three page zero locations and 33 octal locations of norm-
ally relocatable memory.

Typical execution times for MPY@ are:
74 ps on the Supernova and 349 ps on the Nova.

Typical execution times for MPY are:
73 ps on the Supernova and 343 Js on the Nova,

Typical execution times for DVD are:
96 pis on the Supemova and 491 ps on the Nova,

Tape MULT, (099-000008), must be loaded for software
multiply/divide on all NOVA family machines.

MPY, MPY@, DVD must each be specified in an . EXTN
statement,

2-13

Integer

SDVD
Purpose: To perform a division of two signed integers.
Calling Sequence: (AC#@ contains the signed divisor, AC1 contains the
signed dividend.)
JSR @.SDVD
(AC@ contains the signed remainder, AC1 the signed quotient,)
Supporting Routines : DVD; .RETS, SP..
Subroutine Size: One page zero location and 46 octal locations of normally
relocatable memory.
Notes to User: Division by zero or input value 215 will cause an error

message to be issued, with a zero quotient and remainder.

Original states of accumulators and carry will be
preserved except as noted.

. SDVD must be referenced by an . EXTD statement.

2-14

SMPY

Pux_‘Eose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes To User:

Integer

To perform a multiplication of two signed integers.

(ACf contains the signed multiplicand, AC1 contains the
signed multiplier)

JSR @,SMPY

(AC1 contains the signed result; the result is @ if overflow
occurs,)

MPY; .RTES, SP ,
One page zero location and 24 octal locations of normally
relocatable memory,
Original contents of accumulators and carry are preserved
except as noted. An error message is output if overflow

occurs,

. SMPY must be referenced by an . EXTD statement.

2-15

SINGLE PRECISION FLOATING POINT ROUTINES

AL.Gg
AMAX1, AMINI1
AMOD c e
ATAN, ATAN2

COS ¢ o 0 0 85 0 00 .
DIM o o 0 0 0 9 0 0 00
EXP e o 0 0 0 0 0 0 0 0 0

EXPC
FADI1, FSB1
FCLT1, FCLE],
FFLD1, FFSTI1
FML1, FDV1
FNEGl
FPWER

® o o o L] o s o o o o o 0 LI
o o o 0 e o 0o 0 0 o o . . e o
o e o @ 0 0 0 . e o 0o o 0 o o
e o 0 0 8 0 0 0 0 0 0 0 8 e o 0 0 0
o s 0o 0 o o o 0o 0 ® o 8 s O o 0

® o @ 0 0 0 8 0 0 0 00 e o LI
e o ¢ 0 0 0 0 0 0 0 0 0 LN) .
s o 0 o o 0 0 0 0 . e o . e

. ® @ @0 0 0 5 00 0 0 00 0 0 0 0 o0
e e 0 & o 0 0 0 0 0 00 0 0 0 0 0

e o 0o 0 0 o 0 0 o 0 e 0o 0 0 0 e o o o

e o o . . ® e 0 0 0 0 0 o o

ooooooo e« o0 e o o o 0 o 0

ooooo . o o ® o 9 0 0 0 ¢ 0

® o & 0 0 0 00 0 0 0 0 0 e 0 0 0 0 0o 0

ooooo . e e o 00 0 0 0 0 0 0 0
. . ® -0 o o 0 0 0 0 0 ® e o o

e o o o o o o o . .

e 6 0 ® 0 0 0 ¢ 8 0 0 0 0 0 0 00 0 0

® o @ @ o 0 0 0 0 0 0 0 0 0 0 0 00 00

FCEQl, FCGE1, FCGT1

e @ 0 0 0 0 0 0.0 0 0 0 0 0 0 0 ¢ o0

SPFL

ABS

LPurpose: To compute the absolute value of any real number.,

Calling Sequence: (The number whose absolute value is to be calculated is
on top of the number stack.)
JSR @.ABS
(The absolute value of the original number is on top of
the number stack.)

Supporting Routine: FSAV, FQRET ; NSP .

Subroutine Size: One page zero location and 6 locations of normally relocatable
memory.

Notes to User: Accumulators, carry are restored upon exit. No error

messages are generated.
ABS., XAS., and DABS., are each equivalent to JSR @. ABS .

- ABS must be referenced by an , EXTD statement. ABS.,
-XAS., and DABS. must each be referenced by an , EXTN statement.

This routine has an FCALL entry point, ABS . ABS must
be referenced by an . EXTN statement.

3-3

SPFL

AINT

Pumse:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To truncate a single precision real number,

JSR @ALT

FORTRAN ADDRESS of number to be truncated.
(The truncated real is placed on the number stack.)

none; , FRG@, FFLD1, NSP, SP .
One page zero location and 60 octal locations of normally
relocatable memory.

Accumulators, carry are not restored upon exit from this
routine., No error messages are generated.

JSR @XA.Tis equivalent to JSR @ALT .

XA. T and AL T must eack ke referenced by an . EXTD statement.

3-4

SPFL

ALOG
Purpose: To compute the single precision real natural logarithm
of a single precision real positive argument x,
Calling Sequence: (Input argument X is placed on the top of the number stack)
ALOG,
(Output result replaces x on the top of the number stack.)
Supporting Routines: FSAV, FRET;.RTER, .FARG, FSBl1, FAD1, FMLl,
FLIPl, FDV1, FFLD1, FPLY1l, FCLEl, FXFL1, NSP, FRLD1 .,
Subroutine Size: Two page zero locations and 205 octal locations of normally
relocatable memory are required.
Notes to User: The single precision real base 10 logarithm function has an

alternate entry point in this routine (see AL, G@).
ALOG. must be referenced by an . EXTN statement,

In the case of a zero argument, an error message is
given and the largest possible real number is returned

Aag o rnoizle
dS d 1CSuUlLL,

In the case of a negative argument, an error message is
given and the logarithm of the absolute value of the argument
is computed.

Accumulators and carry are restored upon exit from this
routine,

This routine has an FCALL entry point, ALG. ALG must
be referenced by an .EXTN statement.

3-5

SPFL

AL.G§

Pumose:

Calling Sequence:

Supporting Routines ;

Subroutine Size and Timing:

Notes to User:

To compute the single precision real base 10
logarithm of a single precision real argument x.

JSR @AL.G§
FORTRAN ADDRESS of x
(Output result jsplacedon the top of the number stack,)

FSAV, FRET; .RTER, .FARG, FSBl, FAD1, FMLI1, FXFL1,
FDV1, FPLY1, FFLD1, FCLEl, FLIPl, FRLD1, NSP .

Two page zero locations and 205 octal locations
of normally relocatable memory are required.

Typical execution times are 17 ms for the NOVA with
software multiply/divide and 2. 6 ms for the SUPERNOVA

with hardware fixed point multiply/divide.

The single precision real natural logarithm function,
ALOG., has an alternate entry point in this routine.

AL. GP must be referenced by an . EXTD statement.

Accumulators and carry are restored upon exit
from this routine, This routine has the FCALL
entry point ,ALGI10.

AMAX1, AMIN1

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

To select the smallest (AMIN1) or the largest (AMAX1)
member from a set of single precision real numbers,
expressing the selection as a single precision real number.

JSR @AM.X1 (or AM.NI)

N (an integer constant specifying the number of members
in the set.)

FORTRAN ADDRESS of R,

FORTRAN ADDRESS of Ry

.

FORTRAN ADDRESS of Ry

(The result is placed on the number stack,)

FCALL

AMAX1 (or AMINI)

N+1 (where N is an integer constant specifying the number
of members in the set,)

FORTRAN ADDRESS of RESULT

FORTRAN ADDRESS of R

FORTRAN ADDRESS of Ry

FORTRAN ADDRESS of Ry

(The result is expressed as a single precision real stored
at the FORTRAN ADDRESS of the result given in the calling

sequence.)

FSAV, FRET; FFLD1, FFST1, FCLTL .FARG .

Two page zero locations and 74 octal locations of normally
relocatable memory,

Accumulators, carry are restored upon exit from the

routine. No error messages are generated, AM.X1 and AM. N1
must be referenced by an . EXTD statement, AMAX1 and AMIN1
must be referenced by an , EXTN statement,

3-7

SPFL

AMOD

Pu se:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To fetch the remainder in the quotient of two single precision
real arguments,

JSR @ AM.D
FORTRAN ADDRESS of dividend
FORTRAN ADDRESS of divisor

(Result is placed on the top of the number stack.)

none; FFLD1, FDV1, FML1, .FRG@, NSP .

One page zero location and 100 octal locations of normally
relocatable memory.

If the quotient causes overflow or underflow, an error message
is output by FDV1 and no meaningful result is obtained.

Contents of accumulators, carry are lost,

AM. D must be referenced by an , EXTD statement.

3-8

ATAN, ATAN2

Purpose:

Calling Sequences:

Supporting Routines :

Subroutine Size

and Timi.ng:

Notes to User:

SPFL

To compute the real arctangent of either a real argument
X or the quotient of two real arguments, y/x.

One real argument x

(Input argument x on top of the number stack.)
ATAN,

(Output argument replaces x on the number stack.)

Two real arguments y and x

JSR @AT.N2
FORTRAN ADDRESS of y
FORTRAN ADDRESS of x

(Output argument is placed on top of the stack.)

FSAV, FRET; FAD1, FML1, FDV1, FPLY1, FSBl, FLIPI,
FCLT1, FNEGI1, FFLD1, FRLDI1, NSP .

Two page zero locations and 222 octal locations of normally
relocatable memory are required.

Typical execution times are 13 ms for the NOVA with software
multiply/divide and 2,2 ms for the SUPERNOVA with hardware
fixed point multiply/divide.

Although the routine will accept input arguments of any size,
results computed by the routine will fall within the following
ranges:

- /2 < ATN(x) < /2,

-1 < ATN2(%,Y) € 0 .

ATAN, ATAN2 (Continued)

Notes to User:

Overflow is possible as the divisor x approaches zero, In
the case of overflow + or - T/2 is returned.

ATAN. must be referenced by an . EXTN statement. AT, N2
must be referenced by an ., EXTD statement.

ATAN, has an FCALL entry point, ATN . ATN must
be referenced by an .EXTN statement,

3-10

COS

Pu se:

Calling Sequence:

Supporting Routines:

Subroutine Size and Timing:

Notes to User:

SPFL

To compute the real cosine of an argument x
expressed as a single precision real number,

(Input argument x is placed on the top of the number
stack.)

COS,

(Output result replaces x on the number stack.)

FSAV, FRET; FPLY1, FDV1, FMLI1, FSBl, FNEG],
FBRK1, FRLD1, NSP .

Two page zero locations and 145 octal locations
of normally relocatable mecimnor, arc required,

Typical execution times are 13 ms for the NOVA with
software multiply/divide and 1.9 ms for the SUPERNOVA

with hardware fixed point multiply/divide.

The single precision real sine function has an
alternate entry point in this routine.

In the case of large arguments of the form 2nf7+ 8,
-7 £ 8 < Y, when n becomes very large, significant
digits in the result will be lost.

COS. must be referenced by an .EXTN statement.

This routine has an FCALL entry point, CS.
CS must be referenced by an .EXTN statement.

3-11

SPFL

DIM

Pugmse:

Calling Sequence:

Supporting Routines: :

Subroutine Size:

Notes to User:

To compute the positive difference of two single precision
real numbers, R and S.

JSR @DL
FORTRAN ADDRESS of R
FORTRAN ADDRESS of S

(If R-S =@ the result is zero; otherwise, the result is the
difference R-S. The result is placed on the number stack,)

JSR @XD. is equivalent to JSR @DI.

none; FRG@, FFLD1, FCLTI1, IF'SB1 , FRLD1, NSP .

One page zero location and 32 octal locations of normally
relocatable memory.

Original contents of accumulators, carry are lost.

DI. and XD. must be referenced by an . EXTD statement,

3-12

EXP

Pumose:

Calling Sequence:

Supporting Routines :

Subroutine Size and

Timing:

Notes to User:

SPFL

To compute the real value of e* with x any single precision
floating point argument,

(Input argument x on top of number stack.)
EXP.
(Output result replaces x on top of number stack .)

FSAV, FRET; .RTER, FPLY1l, FSGN1, FSB1, FDV1l, FMLI1,
FLIP1, FBRK1, FRLD1, NSP .

One page zero location and 160 octal locations of normally
relocatable memory are required.

Typical execution times are 15 ms for the NOVA with
software multiply/divide and 2.9 ms for the SUPERNOVA
with hardware fixed point multiply/divide.

If x is the input argument, the routine performs the following
calculation:

eX=x *loge2 = 2(I+F)

where I and F are the integral and fractional portions of the
power whose base is 2, The argument x of eX must be
selected so that I < 175g.

If either underflow or overflow occurs, an error message
is typed on the TTY printer, and zero or the greatest possible
real value replaces x on the stack.

In the case of very large I values, where I 2 n*216, an

error message is output by FLFX1 (which is called by FBRK1).,
EXP. must be referenced by an . EXTN statement,

This routine has an FCALL entry point, EXPO . EXPO
must be referenced by an .EXTN statement.

3-13

SPFL

EXPC
Purpose: To calculate the value eX - 1
with x g single precision real number.
Calling Sequence: (Input argument x on top of number stack.)
JSR @EXPC
(Result replaces input on number stack.)
Supporting Routines: none; FMLI1, FLIP1, FPLY1, FSB1, FDV1, .NR1, FRLDI,
‘ SP, NSP .
Subroutine Size: One page zero location and 100 octal locations of normally
relocatable memory are required.
Notes to User: Original accumulator contents and state of carry upon

entry to routine are lost,

x must be selected such that 0= Z < 1/2 where
Z=x *logipe .

No error message is given when x is selected to yield
a value of Z outside the acceptable range.

EXPC must be referenced by an ., EXTD statement,

3-14

FAD1, FSB1

Pugp_ose:

Calling Sequences:

Supporting Routin€s:

SPFL

To add (subtract) two single precision real numbers,

FAD1

(The sum of the top, OP1, and next-to-top, OP2,
numbers on the number stack is computed; OP1 is
popped and the sum replaces OP2,)

FSB1

(The top number on the stack, OPl, is subtracted from
the next-to-top number, OP2; OP1 is popped, and the
value OP2-OP1 replaces OP2,)

Subroutine Size
and Timing:

Notes to User:

L

MPY, DVD; SP, FLSP, .NDSP, ,RTES .

17 octal page zero locations and 754 octal locations of
normally relocatable memory are required.

Typical execution time on the NOVA with software
multiply/divide is 1.0 ms if inputs to FAD1 have like signs
or the input subtrahend to FSBI is negative., Otherwise, the
typical execution time is 1,1 ms. On the SUPERNOVA

with hardware fixed point multiply/divide, typical execution
times are 250 us and 275 yus with the same qualifications
given above on the inputs to these subroutines. Each of
these times includes the time necessary to perform

1 floating store and 2 floating load operations.

Original states of accumulators, carry are lost. FFLDI,
FFST1, FXFIL.1, FLFX1, FSGN1, FML1, FDV1l, FNEGI,
FCLE1, FCLT1, FCGE1l, FCGT1, and FCEQ1 also

have entry points in the single precision floating point
module,

An error message is generated upon overflow or underflow
of the result, Results are normalized before being placed on
the number stack. FADI and FSB1 must be referenced by an

. EXTN statement,

3-15

SPFL

FCLT1, FCLE1l, FCEQl, FCGEl, FCGT1

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To compare the size and sign of two single precision
real numbers, and set the carry bit to a one if the
specified condition is true, Conditions which may be
examined are as follows:

OP2 < OP1 -- FCLT1
OP2 = OP1 -- FCLEl
OP2 =OP1 -- FCEQl
OP2 ZOP1 -- FCGEl
OP2 = OP1 -- FCGTI

where OP1 is the top number on the number stack (i.e.,
the most recently loaded number) and OP2 is the next-
to-top number on the stack (the next most recently
loaded).

(The two numbers to be compared are loaded on the
number stack.)

FCLTI (or FCLE1, FCEQl, etc.)
(Carry is set to a one if the comparison yields an affirmative

result, otherwise carry is set to a zero. Both compared
numbers are popped from the stack.)

MPY, DVD; .RTES, .NDSP, SP, FLSP

17 octal page zero locations and 754 octal locations of
normally relocatable memory are required.

Original states of accumulators, carry are lost.
FFLD1, FFST1, FXFL1, FLFX1, FSGN1, FADI1, FSBI,
FML1, FDV1, FNEGI also have entry points in the single

precision floating point module.

No error messages are generated.

FCLT1 (FCLEL, etc.) must be referenced by an , EXTN statement

3-16

FFLD1, FFSTI1

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size
and Timing:

Notes to User:

SPFL

To unpack and load a single precision real number
onto the number stack (FFLD1). To pack and store
a single precision real number from the number
stack into a FORTRAN ADDRESS (FFST1).

‘'ORTRAN ADDRESS of packed number

(The number is unpacked and loaded on the number
stack.)

FFST1
FORTRAN ADDRESS of destination

(The number stack is popped, and the popped number
is packed and stored at the specified FORTRAN
ADDRESS, with rounding.)

MPY, DVD: .RTES, .NDSP, SP, FLSP.

17 octal page zero locations and 754 octal locations of
normally relocatable memory are required.

Typical execution times are 250 us for FFLD1 and FFST1
on the NOVA, and 50 s for FFLDI1 and FFST1 on the
SUPERNOVA. '

Original states of accumulators and carry are lost, FXFL1,FCLTI,
FLFX1, FSGNI1, FAD1, FSB1, FML1, FDV1, FNEGI1, FCLE1,
FCGEl, FCGT1, and FCEQI all have entry points in the single
precision floating point module. JSR @DB. E is equivalent

to FFLDI.

No error message is given if an attempt is made to store
more numbers than exist on the number stack. A stack
overflow message is generated whenever an attempt is

made to load onto an already filled number stack. The

most significant bit of the fourth byte of the word to be stored
is checked. If set, the third byte is incremented before

the floating store is accomplished.

3-17

SPFL

FFLD1, FFST1 (Continued)

An error message is generated whenever a truncation
of significant exponent digits occurs as the result
of packing an unpacked number.

FFLDI1 and FFST1 must be referenced by an

.EXTN statement, DB, E must be referenced
by an . EXTD statement,

3-18

FML1, FDV1

Pugmse:

Calling Sequences:

Supporting Routines:

Subroutine Size

and Timing:

Notes to User:

To multiply (divide) two single precision real numbers.

FMLI1

(The product of the top, OP1, and next-to-top, OP2,
numbers on the number stack is computed; OP1 is
popped, and the product replaces OP2,)

FDV1

(The quotient of the next-to-top, OP2, and top, OP1,
numbers on the number stack is computed; OP1 is
popped, and OP2/0OP1 replaces OP2,)

MPY, DVD; .RTES, .NDSP, SP, FLSP .

17 octal page zero locations and 754 octal locations of
normally relocatable memory are required.

Typical execution times are 2,1 ms for FMLI and 2.5
ms for FDVI1 on the NOVA with software multiply/divide.
Typical execution times are 320 yus for FML1 and 340 ps
for FDV1 on the SUPERNOVA with hardware multiply/
divide, Each of these times includes the time necessary
to perform 1 floating store and 2 floating load operations.

Original states of accumulators, carry are lost,

FFLD1, FFST1, FXFL1, FLFX1, FSGN1, FADI1, FSB1, FCGEl,
FNEG1, FCLE1, FCLT1, FCGT1, and FCEQI also
have entry points in the single precision floating point module,

An error message is generated upon underflow or overflow,
Results are normalized before being placed on the number
stack, FMLI and FDVI1 must be referenced by an , EXTN
statement,

3-19

SPFL

FNEGI1

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To change the sign of any real number at the top of the
number stack.

FNEG1

(The sign of the number on the top of the number stack is
changed.)

MPY, DVD; .RTES, SP, FLSP , .NDSP .

17 octal page zero locations and 754 locations of normally
relocatable memory are required.

The contents of AC@#,AC1 and the original state of carry
are preserved.

FFLD1, FFST1, FXFL1, FLFX1, FML1, FDV1, FSGNI,

FAD1, FSB1, FCLE1l, FCLT1, FCGE1l, FCGT1 and FCEQl
also have entry points in the single precision floating point
module,

No error messages are generated.

FNEGI1 must be referenced by an ., EXTN statement.

SPFL

FPWER

Purpose: To raise a non-negative single precision real base to a
single precision real power.

Calling Sequence: (The real power is loaded onto the number stack, and

the real base is placed just below the power on the stack.)
FPWRI1

(The real power is removed from the number stack, and
the result replaces the base at the top of the stack.)

Supporting Routines : none; FLIP1, ,RTES, FRLD1, FML1, ALOG., EXP,

NSP, SP
Subroutine Size and One page zero location and 53 octal locations of normally
Timing: relocatable memory.

Typical execution times are 31 ms for the NOVA with
software multiply/divide and 4.9 ms for the SUPERNOVA
with hardware fixed point multiply/divide.

Notes to User: Original contents of accumulators and carry are lost. -

This routine generates an error message upon receipt

of a negative base argument, and returns the negative

base as a result; error messages generated upon underflow
or overflow are given by the supporting routines.

FPWR1 must be referenced by an . EXTN statement.

3-21

SPFL

FSGN1

Purpose: To examine the sign of a single precision real number,

Calling Sequence: (The number which is to be examined is at the top of the
number stack)
FSGN1
(ACQ is returned with -1, f, or 1 corresponding to a negative,
zero, or positive state of the examined number. The examined
number is popped from the stack.)

Supporting Routines: MPY, DVD; .RTES, .NDSP, SP, FLSP .

Subroutine Size: 17 octal page zero locations and 754 octal locations of
normally relocatable memory are required.

Notes to User: Original states of accumulators, carry are lost.

FFLD1, FFST1, FXFL1, FLFX1, FAD1, FSB1, FMLI1,
FDV1, FNEGI1, FCLT1, FCLE1l, FCEQl, FCGEIl, and
FCGT1 also have entry points in the single precision
floating point module.

No error messages are generated,

FSGNI1 must be referenced by an , EXTN statement,

3-22

PLY1

Pugpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

SPFL

To compute a polynomial function P(x) where x is a single
precision real argument,

(Input argument x on top of the number stack).
(AC@ contains the starting address of LIST+1. See "Notes
to User".)

FPLY1
{Output rcsult replaces x on top of the number stack.)

none; FRST1, FML1, FAD1, FRLD1, NSP, SP .

One page zero location and (34 octal + 4 % order of
polynomial) locations of normally relocatable memory
are required for this routine and its accompanying order-
and-coefficients list,

P(x) is of the form P(x) = Cy + CIX1 + C2X2 +... Can

where Cp ... C, are real coefficients and all powers
of X are positive integers.

The structure of the order-and-coefficients list is as
follows:

LIST: Single precision fixed point value expressing
the order of the polynomial,
LIST+1: Real coefficient C;, in unpacked format.

LIST+5: Real coefficient C,-j in unpacked format.

LIST + 4(n-1) + 1: Real coefficient C(in unpacked format,

FPLY1 must be referenced by an . EXTN statement,

3-23

SPFL

RATNI

Pux_:mse:

Calling Sequence:

SL{pporting Routines:

Subroutine Size:

Notes to User:

To calculate the arctangent of a quotient of two single
precision real arguments loaded onto the number stack.

(The argument denominator, OP1, is at the top of the
number stack., The argument numerator, OP2, is at the
frame following OP1 on the number stack.)

RATNI1

(Argument OP1 is removed from the number stack and the

arctangent of OP2/0OP1 replaces the input argument OP2
on the number stack.

none; ATAN,, FDV1, FRLD1, FSBl1, SP, NSP.

One page zero location and 35 octal locations of normally
relocatable memory.

The original contents of accumulators and carry are lost
upon exit,

RATNI must be referenced by an . EXTN statement.

SIGN

Puggose:

Calling Sequences:

Supporting Routines :

Notes to User:

SPFL

SN

To transfer the sign of one single precision real number to

another single precision real number,

JSR @SI.N

FORTRAN ADDRJ:,SS of R1
FORTRAN ADDRESS of R2

(The sign of R2 is transferred to R1 which is then stored

on the number stack,)

FCALL

SIGN

Integer 3

FORTRAN ADDRESS of Result
FORTRAN ADDRESS of R1
FORTRAN ADDRESS of R2

(The sign of R2 is transferred to R1 which is then stored

at the FORTRAN ADDRESS of the result.)

FRET, FSAV; FFLD1, FFST1, .FARG, NSP

1nn

One page zero location and 33 octal locations of normally
relocatable memory.

Accumulators, carry are restored upon exit. No error
messages are generated.

SI. N must be referenced by an , EXTD statement,
SIGN must be referenced by an . EXTN statement.

3-25

SIN
Purpose: To compute the real sine of an argument x expressed
as a single precision real number.
Calling Sequence: (Input argument x is placed on the top of the number
stack)
- SIN,
(Output result replaces x on the number stack)
Supporting Routines : FSAY, FRET; FNEG1, FML1, FSB1, FBRK1, FPLYI,

FDV1, FRLDI1, NSP.

Subroutine Size and Timing: Two page zero locations and 156 octal locations
of normally relocatable memory are required.

Typical execution times are 16 ms for the NOVA
and 2.0 ms for the SUPERNOVA with hardware
fixed point multiply/divide.

The single precision real cosine function has an

Notes to User:
g alternate entry point in this routine,

In the case of large arguments of the form 2nT(+ 9,
-™M <0 <Y, when n becomes a very large integer, significant
digits in the result will be lost.

SIN. must be referenced by an . EXTN statement,

3-26

SINH

Purp_gse :

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To compute the hyperbolic sine of a single precision real
number,

(Input argument on number stack.)
JSR @.SHIN

(Result is left on the number stack,)

L ———

JSR @SIL.H
FORTRAN ADDRESS of argument

(Result is left on the number stack.)

FRET, FSAV; NSP, EXP, EXPC, FDV1, FRLD1, FLIPI,
FCLT1, FMLI1, FSB1, FFLDI1, .FARG.

Two page zero locations and 66 octal locations of
normally relocatable memory.

Accumulators and carry are restored upon exit, No
error messages are generated.,

. SHIN and SI. H must be referenced by an . EXTD
statement,

.SHIN and SI.H have FCALL entry points, .SHIN

and SNH. .SHIN and SNH must be referenced by
an .EXTN statement.

3-27

SPFL

SQRT

Puzmse:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

To compute the single precision real square root of
any non-negative single precision real argument x.

(Input argument x on top of number stack.)
SQRT.
(Output result replaces x on top of number stack.)

FSAV, FRET; .RTER, FAD1, FDV1, FLIP1, FRLDI,
NSP .

One page zero location and 142 octal locations of
normally relocatable memory are required.

Typical execution times are 13 ms for the NOVA

with software mutliply/divide and 1,7 ms for the
SUPERNOVA with hardware fixed point multiply/divide.
If the input argument is negative, an error message

is output and the square root of the absolute value of the
argument is computed.

SQRT. must be referenced by an . EXTN statement,

Original contents of accumulators and carry are
restored upon exit from this routine.

This routine has the FCALL entry point SQR ,

3-28

TAN

Purpose: To compute the single precision real tangent of
X, any single precision real argument,

Calling Sequence: (Input argument x on top of number stack,)

-T

TAN.
(Output result replaces x on top of number stack,)

Supporting Routines : FSAV, FRET; FNEG1, FML1, FSB1, FBRK1, FLIPIl,
FPLY1, FDV1, FRLDI1, NSP,

Subroutine Size One page zero location and 116 octal locations of
and Timing: normally relocatable memory are required.

Typical execution times are 19 ms for the NOVA
with software multiply/divide and 2.4 ms for the
SUPERNOVA with hardware fixed point multiply/divide.

Notes to User: TAN. must be referenced by an . EXTN statement,
Original contents of accumulators and carry are restored
upon exit from this routine,

This routine has an FCALL entry point, TN . TN must
be referenced by an .EXTN statement.

3-29

SPFL

TANH

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To calculate the hyperbolic tangent of a single precision
real number,

JSR @TA.H
FORTRAN ADDRESS of the argument

(The result is loaded onto the top of the number stack.)

FSAV, FRET; . FARG, FRLD1, FRST, FSB1, FADI1,
FML1, FDV1, FFLD1, FCLEl, FLIPl, EXP., FNEGI,
NSP .

One page zero location and 126 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are restored
upon exit. Error messages, if issued, will originate
from the supporting routines,

TA. H must be referenced by an . EXTD statement,

This routine has an FCALL entry point, TNH .
TNH must be referenced by an . EXTN statement.

3-30

DOUBLE PRECISION FLOATING POINT ROUTINES

DATAN’DATANZ e @ 9 0 0 0 9 0 0 0 00 ® ® e 0 060 0 0 00 0 0 0 o0

DCOS’DSIN ® ¢ 0 06 0 0 © 00 O 0 0 0 0 0 00 P 000 0 s 0 0 b 0 oo

DEXP ® 06 0 6 06 06 06 06 006 00 00 0 0 00 0 0 00 00 000 s e 0 00

DEXPC I R IR
DLOG, DLOGI0 ... cceeceevocosonsccccsassse
DMAX1, DMINI . .¢ceceeocoaccoscscsccccococne
DMOD ...ccessceecscsccossnsossoscscssccacse

DPWER oo.oooo..0..on..lioloo..l.ootooooi

DSIGN © ® 8 0 06 8 8 0 06 06 0 0 0 ¢ 0 0 0 0 0 0 0 0 0 0 00 00 000 0o
DSINH ® © 06 0 0 9 8 8 0 @ 0 0 0 0 @0 0 0 0 0 % 0 00 0 0000 00

DSQRT R EEEEE I EEr Iy I I I I A A A I A

DTAN ® © 0 0 0 0 0606 00 006 060 0 00600 0 0 0 0 0.0 0 00 0 0 0 2 00
DTANH @ © 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 00 s 000000 e s

FADZ’FSBz o © 8 8 8 0 0 0 06 6 & 006 06 0 06 0 0 06 0 00 00 00 00 0 o
FCLT2, FCLE2, FCEQ2, FCGE2, FCGT2 ...¢ev e e

FFLD2, FFST2 + v evvencesonsocossasonsans
FML2, FDV2 &t eeeracncesancosoncasancens
FNEG2 &+ o vevoenoncneneasososnsnsosansnons
FPLY2 ot v ovevecencnsenensoncnsascasnnsas
FSGN2 v veenvecononscsossnannonns ceeeees
RATNZ o e evveeenonenenonaosasnsoansonns

T
o\ Ut W

1
DN DN DO DN bt ot ot ot ot fd et i e OO

i o
[T TR B]
~
= w o

Abhb#uhnhnhih»?ohrhthohthbhhh
NN W OV

'
NN

DATAN, DATAN2

Pugpose:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

DPFL

To calculate the arctangent of a double precision real number
(DATA.) or the arctangent of a quotient of two double
precision real numbers (DA. N2),

(The single argument whose arctangent is to be calculated
is loaded onto the number stack,)

DATA.

(The result replaces the input argument on the number
stack.)

JSR @DA.N2

FORTRAN ADDRESS of argument dividend
FORTRAN ADDRESS of argument divisor

(The arctangent of the quotient of the input argument is

loaded onto the number stack,)

FSAV, FRET; FDV2, FSB2, FFLD2, FPLY2, FCLT2,

FRLD2, FLIPZ, .FARG, NSP, FML2Z, FAD2 .

Two page zero locations and 301 octal locations of normally
relocatable memory,

Typical execution times for DA.N2 are as follows:

120 ms for the NOVA with software multiply/divide, and

14 ms for the SUPERNOVA with hardware fixed point
multiply/divide. Typical execution times required for DATA.
are as follows: 74 ms for the NOVA with software multiply/
divide and 15 ms for the SUPERNOVA with hardware fixed
point multiply/divide.

The sign of the result is the same as the sign of the single
input argument or argument quotient,

Original contents of accumulators and carry are restored.

4-3

DATAN, DATAN2 (Continued)

JSR @XA.N2 and JSR @DA. A2 are each equivalent to
JSR @DA.N2. Likewise, XAAN., is equivalent to DATA.

DATA, and XAAN. must be referenced by an . EXTN statement,
DA, A2, XA.N2 and DA. N2 must be referenced by an . EXTD state-
ment,

DPFL

DCOS , DSIN
Purpose: To calculate the sine (DSIN.) or cosine (DCOS.) of a double
precision real number,
Calling Sequence: (The input argument is loaded onto the number stack.)
DCOS. (or DSIN,)
(The result replaces the input argument on the number stack.)
Supporting Routines : FSAV, FRET; FPLY2, FBRK2, FML2, FDV2, FLIP2, FSB2, FRLD2,
NSP .
Subroutine Size and Two page zero locations and 161 octal locations of normally
Timing: relocatable memory.
Typical execution times for DCOS. are as follows: 86 ms
for the NOVA with software multiply/divide and 12 ms
for the SUPERNOVA with hardware fixed point
multiply/divide,
Typical execution times for DSIN, are 90 ms for the NOVA
with software mult1p1y/d1v1de and 11 ms for the SUPERNOVA
with hardware fixed point multiply/divide.
Notes to User : Original contents of accumulators and carry are restored

upon exit.

XCS. is equivalent to DCOS. and XSN, is equivalent to
DSIN.

DCOS., DSIN,, XCS., and XSN. must be referenced
by an . EXTN statement,

4-5

DPFL

Calling Sequence:

Supporting Routines :

Subroutine Size

and T iming:

Notes to User:

To calculate the value e* with x any double precision
real number.

(The input argument is loaded onto the number stack.)
XEP,

(The result replaces the input argument on the number
stack,)

FSAV, FRET; .RTER, FSGN2, FRLD2, FSB2, FML2,
FDV2, FLIP2, FPLY2, FRST2, FAD2, NSP, FBRK2 .

One page zero location and 232 octal locations of normally
relocatable memory. Typical execution times are 76 ms

for the NOVA with software multiply/divide and 11 ms

for the SUPERNOVA with hardware fixed point multiply/divide.

Original contents of accumulators and carry are restored
upon exit,

An error message is issued upon overflow or underflow
and either the largest possible value or zero is returned

as a result.

DEXP. is equivalent to XEP,

DEXP. and XEP. must be referenced by an . EXTN statement,

This routine has an FCALL entry point, DEXP .
DEXP must be referenced by an .EXTN statement.

4-6

DPFL

DEXPC

Purpose: To calculate the value e*-1 with x a double precision real
number,

Calling Sequence: (The input argument is loaded onto the number stack.)
JSR @DEXPC
(The result replaces the input argument on the number stack.)

Supporting Routines : none; FRLD2, FML2, FLIP2, FPLY2, FSB2, FDV2, .NRl,
NSP, SP .

Subroutine Size: One page zero location and 137 octal locations of normally
relocatable memory.

Notes to User: Original contents of accumulators and carry are lost.

Any error messages will be generated by the supporting
routines .

The range of values for input arguments to this routine is
restricted such that § = log)ge *x < 1/2,

DEXPC must be referenced by an , EXTD statement.

4-7

DPFL

DLOG, DLOGI10

Purpose:

Calling Sequencer:

Supporting Routines:

Subroutine Size and

Timing:

Notes to User:

To calculate either the natural logarithm or the logarithm
to the base 10 of a double precision real number.

(The afgument whose natural logarithm is to be calculated
is loaded onto the number stack,)

DLOG.

(The result is loaded onto the top of the number stack.)

JSR @DL.G@® (or @XA.GH)

FORTRAN ADDRESS of argument whose base 10 logarithm
is to be calculated.

(The result is loaded onto the number stack.)

FSAV, FRET; .RTER, .FARG, FFLD2, FML2, FCLT2,
FLIP2, FSB2, FDV2, FAD2, FRLD2, FPLY2, FXFL2, NSP

Two page zero locations and 275 octal locations of normally
relocatable memory., Typical execution times for the
natural logarithm function are as follows: 99 ms for the
NOVA with software multiply/divide, and 13 ms for the
SUPERNOVA with hardware fixed point multiply/divide.
Typical execution times for the base 10 logarithm function
are 103 ms for the NOVA with software multiply/divide and
14 ms for the SUPERNOVA with hardware fixed point
multiply/divide.

If the input argument is negative an error message is
issued, the argument is forced positive and the logarithm is

then calculated.

Upon receipt of a zero input argument the largest possible
negative number will be returned.

4-8

DLOG, DLOGI10 (Continued)

DLOG. and XAOG. are equivalent; DL.Gf and XA, Gf are
equivalent,

Original contents of accumulators and carry are restored
upon exit,

tatement,
tatement,

and XAOG, must be referenced by an . EXTN s
must be re dby an ,EXTD s

Al e AudN 4 aS

4-9

DPFL

DMAX1, DMIN1

Purpose: To select the smallest (DMIN1) or largest (DMAX1) member
from a set of double precision real numbers, expressing the
selection as a double precision real number.

Calling Sequences: JSR @DM.X1 (or DM.N1)
N (an integer constant specifying the number of members
in the set.)

FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

FORTRAN ADDRESS of DRN

(The largest or smallest member of the set is placed on
the number stack.)

FCALL
DMAX1 (or DMINL1)
N+1 (N is an integer constant specifying the number of
of members in the set.)
FORTRAN ADDRESS of RESULT
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

FORTRAN ADDRESS of DRN

(The largest or smallest member of the set is placed at the
FORTRAN ADDRESS of the result.)

Supporting Routines: FSAV, FRET; .FARG, FFST2, FFLD2, FCLT2 .

Subroutine Size: Two page zero locations and 72 octal locations of normally
relocatable memory.

Notes to User: Accumulators, carry are restored upon exit from the routine.

4-10

DFPFL

DMAX1, DMINI (Continued)

Noerror messages are generated.

JSR @XA.X1 is equivalent to JSR @DM.X1 , and
JSR XA.Nl is equivalent to JSR @DM. N1

DMAX1 and DMIN1 must be referenced by an . EXTN statement
DM. X1, DM, N1, XA, X1, and XA. N1 must be referenced
by an ., EXTD statement,

dvdn L as O 1130

4-11

DPFL

DMOD

Puggose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To fetch the modulus of two double precision real numbers
(i.e., the remainder of their quotient.)

JSR @DM.D
FORTRAN ADDRESS of DRI ;DIVIDEND
FORTRAN ADDRESS of DR2 ;DIVISOR

(Result is placed on the top of the number stack.)

JSR @XA.D is equivalent to JSR @DM.D .

none; FFLD2, FDV2, FML2, . FRGf@, NSP, SP .

One page zero location and 127 octal locations of normally
relocatable memory.

If the quotient DR1/DR2 causes overflow or underflow,

an error message will be output by FDV2 and no mean-

ingful result will be returned.

DM, D and XA,D must be referenced by an . EXTD statement.

4-12

DPWER

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

and Timing:

Notes to User:

To raise a non-pegative double precision real number
to a double precision real power,

(The real power is loaded onto the number stack, and the
real base is placed just below the power on the stack,)

FPWR2

(The real power is removed from the stack, and the result
replaces the base at the top of the stack,)

none; FLIP2, .,RTES, .FFLD2, FML2, FRLD2, DLOG.,
DEXP., NSP, SP .

One page zero location and 55 octal locations of normally
relocatable memory,

Typical execution times are 180 ms for the NOVA with
software fixed point multiply/divide and 24 ms for the
SUPERNOVA with hardware fixed point multiply/divide.

Original contents of accumulators and carry are lost.

This routine generates an error message and returns the
base as the result upon receipt of a negative base
argument; error messages generated upon underflow or
overflow are given by the supporting routines.

FPWR2 must be referenced by an . EXTN statement,

4-13

DPFL

DSIGN

Purpose:

Calling Sequences:

Supporting Routines :

Subroutine Size:

Notes to User:

To transfer the sign of one double precision real number to
another double precision real number.

JSR @DS.GN

FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

(The sign of DR2 is transferred to DR1 which is then stored
on the number stack.)

FCALL

DSIGN

Integer 3

FORTRAN ADDRESS of Result
FORTRAN ADDRESS of DR1
FORTRAN ADDRESS of DR2

(The sign of DR2 is transferred to DR1 which is then stored

at the FORTRAN ADDRESS of the result.)

FSAV, FRET; FFLD2, FFST2, ., FARG, NSP .
One page zero location and 33 octal locations of normalily
relocatable memory.
Accumulators, carry are restored upon exit.
No error messages are generated.,

JSR @XS.Nis equivalentto JSR @DS.GN .

DSIGN must be referenced by an . EXTN statement. DS.GN
and XS. N must be referenced by an . EXTD statement.

4-14

DPFL

Purpose: To calculate the hyperbolic sine of a double precision
real number,

Calling Sequence:

(The argument is placed on the number stack,)
JSR @.DSHIN

(The result replaces the arguinent on the number stack,)

|

JSR @DS.NH
FORTRAN ADDRESS of argument

(The result is placed on the number stack,)

Supporting Routines : FRET, FSAV; NSP, DEXP, DEXPC, FDV2, FRLD2,
FLIP2, FCLT2, FML2, FSB2, . FARG, FFLD2 .

Subroutine Size: ‘Two page zero locations and 72 octal locations of normally

relocatable memery,

Notes to User: Accumulators and carry are restored upon exit, No
error messages are generated. XS, H is equivalent to . DSHIN ,

DS.NH, .DSHI and XS. H must be referenced by an . EXTD
statement.

.DSHIN and DS.NH have FCALL entry points, DSINH

and DSNH . DSINH and DSNH must be referenced by an
.EXTN statement.

4-15

DPFI,

DSQRT

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size and

Timing:

Notes to User:

To calculate the square root of a double precision real number.
(The input argument is loaded onto the number stack.)

DSQR.

(The result replaces the input argument on the number stack.)

FSAV, FRET; FRLD2, FML2, FAD2, FLIP2, FDV2, FPLY2,
.RTER, NSP.

One page zero location and 127 octal locations of normally
relocatable memory.

Typical execution times are 82 ms for the NOVA with software
multiply/divide and 8,1 ms for the SUPERNOVA with
hardware fixed point multiply/divide.

Original contents of accumulators and carry are restored
upon exit,

An error message is output by this routine upon receipt
of a negative argument, In this case, the argument is

forced positive and the square root of the positive
quantity is calculated.

XSRT. is equivalent to DSQR .
DSQR. and XSRT. must be referenced by an , EXTN statement,

This routine has an FCALL entry point, DSQR .
DSQR must be referenced by an . EXTN statement.

4-16

DPFL

DTAN
Purpose: To calculate the tangent of a double precision real number,
Calling Sequence: (The input argument is loaded onto the number stack.)
DTAN.
(The result replaces the input argument on the number stack.)
Supporting Routines . FSAV, FRET; FML2, FDV2, FRLD2, FSB2, FBRK2,
FPLY2, FLIP2, NSP .
Subroutine Size: One page zero location and 165 octal locations of normally
and Timing: relocatable memory.
Typical execution times are 84 ms for the NOVA with
software multiply/divide and 9. 3 ms for the SUPERNOVA
with hardware fixed point multiply/divide.
Notes to User: Original contents of accumulators and carry are restored

upon exit.
XTN. is equivalent to DTAN,
DTAN. and XTN. must be referenced by an . EXTN statement.

This routine has an FCALL entry point, DTN .
DTN must be referenced by an . EXTN statement.

4-17

DPFL

DTANH

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User :

To calculate the hyperbolic tangent of a double precision
real number.

JSR @DT.NH

FORTRAN ADDRESS of argument

(The result is loaded onto the number stack.)

FSAV, FRET; FAD2, FML2, FDV2, FFLD2, DEXP.,
FSB2, FLIP2, FCLT2, FRST2, FRLD2, DEXPC, .FARG,
NSP .

One page zero location and 136 octal locations of normally
relocatable memory.

Typical execution times are 185 ms for the NOVA with
software multiply/divide, and 21.5 ms for the SUPERNOVA
with hardware fixed point multiply/divide.

JSR @XT.H is equivalent to JSR @DT.NH .

Original contents of accumulators and carry are restored
upon exit from this subroutine. If any error messages
are generated they will be generated by the supporting
routines,

DT.NH and XT. H must be referenced by an . EXTD statement,

This routine has an FCALL entry point, DTNH . DTNH
must be referenced by an . EXTN statement,

4-18

Pumse:

Calling Sequences:

Supporting Routines:

DPFL

To add (subtract) two double precision real numbers.

FAD2

(The sum of the top, OP1, and next-to-top, OP2,
numbers on the number stack is computed; OP1 is
popped and the sum replaces OP2,

FSB2

(The top number on the stack, OPl, is subtracted
from the next-to-top number, OP2; OP1 is popped,
and the value OP2-OP1 replaces OP2,)

Subroutine Size
and Timing:

Notes to User:

MPY, DVD; SP, FLSP, .NDSP, .SV@, .RTES .

17 octal page zero locations and 1233 octal locations of
normally relocatable memory are required.

divide is 1.3 ms if inputs to FAD2 have like signs or the
input subtrahend to FSB2 is negative. Otherwise, the typical
execution time is 1.4 ms, On the SUPERNOVA with hardware
fixed point multiply/divide, typical execution times are

300 ps and 400 ps with the same qualifications given above on
the inputs to these subroutines, Each of these times includes
the time necessary to perform 1 floating store and 2 floating
load operations.

Original states of accumulators, carry are lost, FFLD2, FFST2,
FXFL2, FLFX2, FSGN2, FML2, FDV2, FNEG2, FCLT2,
FCLE2, FCEQ2, FCGE2, and FCGT2 also have entry points

in the double precision floating point module,

An error message is generated upon underflow or overflow
of result. Results are normalized before being placed on the
number stack, FAD2 and FSB2 must be referenced by

an , EXTN statement.

4-19

DPFL

FCLT2, FCLE2, FCEQ2, FCGE2, FCGT2

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To compare the size and sign of two double precision real
numbers, and set the carry bit to a one if the specified
condition is true. Conditions which may be examined are
as follows:

OP2 <OP1 -- FCLT2
OP2 €0OP1 -- FCLE2
OP2= OP1 -- FCEQ2
OP2» OP1 -- FCGE2
OP2> OP1 -- FCGT2

- where OP1 is the top number on the number stack

(i.e., the most recently loaded number) and OP2 is the
next-to-top number on the stack,

(The two numbers to be compared are loaded on the number
stack.)

FCLT2 (or FCLE2, etc.)
(Carry is set to a one if the comparison yields an affirmative
result, otherwise carry is set to a zero. Both compared
numbers are popped from the stack.)

MPY, DVD; SP, FLSP, .NDSP, .SV@, .RTES
17 octal page zero locations and 1233 octal locations of

normally relocatable memory are required.

Original states of accumulators, carry are lost,

FFLD2, FFST2, FXFL2, FLFX2, FSGN2, FAD2,
FSB2, FML2, FDV2, and FNEG2 have entry points
in the double precision floating point module,

No error messages are generated.

FCLT2 (FCLE2, etc) must be referenced by an . EXTN statement,

4-20

FFLD2, FFST2

Purpose:

Calling Sequences:

Supporting Routines :

Subroutine Size

~ FI7S e 2em o
1

and iinnig:

Notes to User:

DPFL

To unpack and load a double precision real number onto
the number stack (FFLD2).

To pack and store a double precision real number from
the number stack into a FORTRAN ADDRESS (FFST2).

FFLD2
FORTRAN ADDRESS of packed number

(The number is unpacked and loaded onto the number stack.)

FFST2
FORTRAN ADDRESS of destination

(The number stack is popped, and the popped number
is packed and stored at the specified FORTRAN ADDRESS,

with rounding.) -

MPY, DVD; SP, FLSP, ,NDSP, .SV, .RTES

17 octal page zero locations and 1233 octal locations of
normally reiocatabie memory are required,

Typical execution times are 500 ps for FFLD2 or FFST2
on the NOVA, and 100 us for FFLD2 or FFST on the
SUPERNOVA,

Original states of accumulators and carry are lost,

FXFL2, FLFX2, FSGN2, FAD2, FSB2, FML2, FDV2,
FNEG2, FCLT2, FCLE2, FCEQ2, FCGE2, and FCGT2

also have entry points in the double precision floating
point module. JSR @XD. E is equivalent to FFLD2,

No error message is given if an attempt is made to store
more numbers than exist on the number stack. A stack
overflow message is generated whenever an attempt is made
to load onto a filled number stack. The most significant
bit of the eighth byte of the word to be stored is checked.
If set, the 7th byte is incremented before the floating
store is accomplished.

4-21

DPFL

FFLD2, FFST2 (Continued)

An error message is generated whenever a truncation of
significant exponent digits occurs as the result of packing
an unpacked number.

FFLD2 and FFST2 must be referenced by an , EXTN statement,
XD. E must be referenced by an ., EXTD statement,

4-22

FML2, FDV2

Puggse:

Calling Sequences:

DPFL

To multiply (divide) two double precision real numbers.

Supporting Routines:

Subroutine Size and
Timing:

Notes to User:

FML2

(The product of the top, OP1, and next-to-top, OP2,
numbers on the number stack is computed; OP1 is
popped, and the product replaces OP2 on the stack,)

r——————

FDV2

(The quotient of the next-to-top, OP2, and top, OP1,
numbers on the number stack is computed; OP1 is
popped, and OP2/OP1 replaces OP2,

MPY, DVD; SP, FLSP, .NDSP, . Sv@, .RTES .

17 octal page zero locations and 1233 octal locations
of normally relocatable memory are required,

Typical execution times are 5.7 ms for FML2 and 11,4

ms for FDV2 on the NOVA with software multiply/divide.
Typical execution times on the SUPERNOVA with hardware
fixed point multiply/divide are 700 us for FML2 and 1.28 ms
for FDV2, Each of these times includes the time necessary
to perform 1 floating store and 2 floating load operations.

Original states of accumulators, carry are lost,
FFLD2, FFST2, FXFL2, FSGN2, FAD2, FSB2, FNEG2, FLFXI,
FCLT2, FCLE2, FCEQ2, FCGE2, and FCGT?2 also have

entry points in the double precision floating point module.

An error message is generated upon underflow or overflow
of result,

Results are normalized before being placed on the number
stack,

FML2 and FDV2 must be referenced by an . EXTN statement,

4-23

DPFL

FNEG2

Pu se:

Calling Sequence:

Supporting Routines ;

Subroutine Size:

Notes to User:

To change the sign of any real number at the top of
the number stack.

FNEG2

(The sign of the number on top of the number stack is
changed)

MPY, DVD; SP, FLSP, .NDSP, .SV@, .RTES .
17 octal page zero locations and 1233 octal locations
of normally relocatable memory are required.

The contents of AC@, AC1, and the original state
of carry are preserved,

FFLD2, FFST2, FXF12, FLFX2, FSGN2, FAD2,

FSB2, FM12, FDV2, FCGE2, FCLT2, FCLE2, FCEQ2,
and FCGT2 also have entry points in the double
precision floating point module.

No error messages are generated.

FNEG2 must be referenced by an . EXTN statement,

4-24

FPLY2

PurEose:

Calling Sequence:

supporting Routines:

Subroutine Size:

Notes to User:

DPFL

To compute a polynomial function P(x) where x is a
double precision real number.

(The input argument x is at the top of the number stack.
ACH contains the starting address of LIST + 1. See

Notes to User,)

FPLY2

(The output resuit repiaces the input argument on the
number stack.)

none; FRLD2, FML2, FAD2, FRST2, NSP, SP .

One page zero location and (34 octal + 6 * order of
polynomial) locations of normaliy relocatablc memnry
are required for this routine and its accompanying order-
and-coefficients list,

P(x) is of the form P(x) = C,) + Cixl+cox? ...+ cxm
where C(through C,, are double precision real coefficients
and all powers of x are positive integers.

The structure of the order-and-coefficients list is as follows:

LIST: Single precision fixed point number expressing
‘: the order of the polynomial

L{ST+1: Double precision Real coefficient C, in unpacked
: form

L{ST+7: Double precision Real Coefficient C,.; in

: unpacked form
LIST+6(m-n+1)*+1
Double precision Real coefficient Cg in
unpacked form,

Original states of accumulators and carry are lost,
FPLY2 must be referenced by an . EXTN statement.

* where m is the order of the polynomial and x is the number of the term.

4-25

DPFL

FSGN2

Pu_11>_ose:

Calling Sequence :

Supporting Routines:

Subroutine Size:

Notes to User:

To examine the sign of a double precision real number.

(The number which is to be examined is at the top
of the number stack)

FSGN2
(ACf is returned with -1, 0, or 1 corresponding to a

negative, zero, or positive state of the examined number.
The examined number is popped from the stack.)

MPY, DVD; SP, FLSP, .NDSP, ,SV@, .RTES .

17 octal page zero locations and 1233 octal locations
of normally relocatable memory are required.
Original states of accumulators, carry are lost,
FFLD2, FFST2, FXFL2, FAD2, FSB2, FML2,
FDV2, FNEG2, FCLT2, FCLE2, FCEQ2, FCGE2,
and FCGT?2 also have entry points in the double

precision floating point module.

No error messages are generated.

FSGN2 must be referenced by an . EXTN statement,

RATN2

Purpose:

Calling Sequence:

Supporting Koutines:

Subroutine Size:

Notes to User:

DPFL

To calculate the arctangent of a quotient of two double
precision real arguments loaded onto the number stack.

(The argument denominator, OPI1, is at the top of the
number stack. The argument numerator, OP2, is at the
frame following OP1 on the number stack.)

RATN2

(Argument OP1 is removed from the number stack, and
the arctangent of OP1/OP2 replaces the input argument
OP2 on the number stack,)

none; DATA., FDV2, FRLD2, FSB2, NSP, SP .

One page zero location and 37 octal locations of normally
relocatable memory.

The original contents of accumulators and carry are
lost upon exit from this routine.

RATN2 must be referenced by an . EXTN statement.

4-27

SINGLE PRECISION COMPLEX RQUTINES

CABS
CADI, CSBl
CCEQL......vvuun.
CCOS vvvvevnnnnns
CDVI +.fvvreinnnn.

CEXP ooooooo * o o 0 o 0

CFSTl.oQ.Olooooto

CLIP1, CLIP2 ,.........
CLOAD'O......'....

CLOG

CMLl LI IR) ® o o s 0 o 0

CNEG1, CNEG2
CONJG
CPWR1
CSINc000

CSQRT ® o e 8 5.0 0 0 0 0 0

NMANDC
NDNUADO ¢ ¢ 60600000000

REAL, AIMAG

. ® o o 0 0 0 2
. LI ® @ ¢ o 0 o o
. e o o .
o o . LI .
. . . ¢« ® 0
¢ 8 ¢ 0 0 0 L] .
L) . L
® o 0 0 0 0o s e e o
. . ¢ o LI
® o 8 s s 0 & o o o .

0101010101010101(?01010101010!‘010101

Tt Lt 1
O 00 O\ Wb W

111)
DO b=t et ot et el ool et ek ped e
O VOO WU WN O

CABS

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

Single
Preciston
Complex

To obtain the absolute value of a single precision complex
number,

JSR @CA.S

FORTRAN ADDRESS of argument

(The absolute value of the argument is loaded onto the
number stack,)

none, . FRGH, FFLDi, RCABS, SP .

One page zero location and17 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are lost upon
exit from this routine, Stack overflow messages may be
issued by the supporting routines.

The result obtained by this routine is a real number, thus
occupying only one 6-word frame on the number stack.

CA. S must be referenced by an . EXTD statement,

5-3

Single

Precision
Complex
CAD1, CSBl
Purpose: To add (CAD1) the topmost two single precision complex
nuinbers on the number stack or to subtract (CSB1)
the top single precision complex number on the number stack
from the next-to-top single precision complex number on
the stack.
Calling Sequence: (The two arguments are loaded onto the number stack.)
CAD1 (CSBl1)
'(The top argument is removed from the stack, and the sum
or difference replaces the second argument,)
Supporting Routines: none; FAD1, FRST1, FRLD1, .NR2, SP, NSP .
Subroutine Size: Two page zero locations and 22 octal locations of normally
relocatable memory.
Notes to User: Original accumulator contents and carry are not restored

upon exit from this routine, Error messages are generated
by supporting routines upon overflow or underflow, '

CADI1 and CSB1 must be referenced by an . EXTN statement.

5-4

Single

Precision
Complex
CCEQ!
Purpose: To compare two single precision complex numbers for
identity,
Calling Sequence: (The two complex numbers to be examined are the topmost
numbers on the number stack.)
CCEQl1
(Carryis set to a one if they are equal, otherwise, itis
set to a zero, The two complex numbers are removed
from the number stack.)
Supporting Routines : none; FCEQI1, .NR2, .NR1, .NR3, FRST1, FRLD1, NSP, SP.
Subroutine Size: One page zero location and 21 octal locations of normally
relocatable memory.
Notes to User: The original contents of accumulators, carry are lost.

CCEQI! must be referenced by an . EXTN statement.

5-5

Single
Precision
Complex

CCOS

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size

and Timing:

Notes to User:

To compute the cosine of a single precision complex number,

(A complex argument is loaded on the top of the number
stack.)

CCOs.
(The cosine of the argument is expressed as a single precision

complex number and replaces the input argument on the
number stack.)

" none; COS., SIN., .SHIN, EXP., .NR2, FADI, FML1, FRSTI,

FRLD1, FLIP1 , SP, NSP .

One page zero location and 43 octal locations of normally
relocatable memory are occupied by this routine.

Typical execution times are 111 ms for the NOVA with
software multiply/divide and 17 ms for the SUPERNOVA with
hardware fixed point multiply/divide,

Original contents of accumulators and carry are lost.

Error messages will be generated by EXP, or FMLI
upon overflow or underflow,

CCOS. must be referenced by an . EXTN statement.

5-6

CDV1

Puggose:

Calling Sequence:

Supporting Routir_le_s:

Subroutine Size:

Notes to User:

Single
Precision
Complex

To divide one single precision complex number by another.

(The argument divisor is placed on the top of the number
stack, and the dividend is immediately below the divisor,)

CDhV1

(The divisor is removed from the number stack and the quotient
replaces the dividend on the number stack.)

nbne; FRLD1, FCLE1, FDV1, .NR2, CMLI1, FLIP1, FMLI,
.NR3, FAD1, FRST1, .NRI1, SP, NSP .

One page zero location and 75 octal locations of normally
relocatable memory,

Original contents of accumulators and carry are not restored
upon exit from the routine. Error messages are generated

by supporting routines upon overflow or underflow.

CDV1 must be referenced by an ., EXTN statement.

5-7

Single
Precision

Complex

CEXP

Purpose: To compute the value e with ¢ any single precision complex
number,

Calling Sequence: (The complex argument is loaded onto the number stack.)
CEXP.
(The complex result replaces the argument on the number
stack.)

Supporting Routines : .-none; EXP,, COS,, SIN., .NR2, FLIPl, FRLD1, FRST1, FMLI,
SP, NSP.

Subroutine Size One page zero location and 24 octal locations of normally

and Timing: relocatable memory are required by this routine,
Typical execution times are 47 ms for the NOVA with software
multiply/divide and 7.8 ms for the SUPERNOVA with hardware
fixed point multiply/divide.

Notes to User: Original contents of accumulators and carry are lost.

Error messages are generated upon underflow or overflow.

CEXP. must be referenced by an ., EXTN statement,

5-8

CFST1

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

N
3 .
®
Q Q
[T SN
[V RN
<.
Q
S

Complex

To pack and store a single precision complex number located
on the number stack.

(The argument is at the top of the number stack.)

CFST1
FORTRAN ADDRESS to receive the argument

(The top two six word frames are removed from the stack.)

none; . FRG@, FFSTI1, SP.

One page zero location and 17 octal locations of normally
relocatable memory.,

Original accumulator contents and state of carry are both
lost upon exit from this routine, No error messages are
generated,

The argument on the number stack occupies two sequential
six-word frames, with the top frame containing the imaginary
portion of the argument, After the argument has been packed
and stored at the indicated FORTRAN ADDRESS it occupies
only four sequential locations, with the first pair of words
containing the real portion of the argument,

CFST! must be referenced by an . EXTN statement,

Single
Precision
Complex

CLIP1, CLIP2

Purpose:

Calling Sequence:

Supporting Koutines:

Subroutine Size:

Notes to User:

To swap positions of the two topmost complex numbers on

the number stack (whether single or double precision
or both,)

(Two complex numbers are on the top of the number stack.)

CLIP1 (or CLIP2)

(The positions of the two complex numbers are interchanged)

none; .NR1, .NR2, .NR3, .FLIP, SP, NSP ,

One page zero location and 15 octal locations of normally
relocatable memory.

CLIP1 and CLIP2 are equivalent.
Original contents of accumulators and carry are lost,

CLIP1 and CLIP2 must be referenced by an ., EXTN statement.

5-10

Pugpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Single
Precision
Complex

To unpack and load a single precision complex number onto
the number stack.

FORTRAN ADDRESS of the packed real and imaginary
portions of the complex number

(The complexnumber is unpacked and loaded onto the
number stack.)

none; . FRGY, FFLDI, SP .

One page zero location and 16 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are lost,
Upon number stack overflow an error message will be
issued by FFLDI,

The FORTRAN ADDRESS following the call points to four
sequential stack locations containing first the real portion

(in single precision packed format) and then the imaginary
portion {(also in single precision packed format) of the argument,
The argument is then unpacked and loaded onto the

number stack in two sequential six word frames., The

top frame contains the imaginary portion and the next-to-top
frame contains the realportion of the argument,

CFLDI must be referenced by an . EXTN statement,

5-11

Single
Precision

Complex

CLOG

Purpose: To compute the natural logarithm of a single precision
complex number,

Calling Sequence: (The single precision argument is loaded onto the number
stack,)
CLOG.

(The result replaces the input argument on the number stack.)

Supporting Routines: none;. NR2, RATN1, FRLD1, FRSTI1, ALOG., CLIP1, RCABS, SP, NSP,

Subroutine Size One page zero location and 21 octal locations of normally
and Timing: relocatable memory are required by this routine.

Typical execution times are 60 ms for the NOVA with software
multiply/divide and 8.3 ms for the SUPERNOVA with
hardware fixed point multiply/divide.

Notes to User: Original contents of accumulators and carry are lost upon
exit from this routine. Error messages are generated
upon underflow or overflow by the supporting routines.

CLOG. must be referenced by an ., EXTN statement.

Single
Precision
Complex
CMLI1
Purpose: To multiply two single precision complex numbers by one
another,
Calling Sequence: (The two arguments are loaded onto the number stack.)
CML1

(The topmost argument is removed, and the product replaces
the second argument on the number stack.)

Supporting Routines: none; FML1, FRLD1,FADI,FRST1,FSB1, . NR1, . NR2, . NR3, SP, NSP _

Subroutine Size: One page zero location and 47 octal locations of normally
relocatable memory.

Notes to User: Original contents of accumulators and carry are lost upon
exit from this routine, Error messages generated upon
underflow or overflow are issued by supporting routines.

CML1 must be referenced by an . EXTN statement,

5-13

Single
Precision
Complex

CNEG1, CNEG2

Purpose:

Calling Sequence:

Supporting Routine:

Subroutine Size:

Notes to User:

To negate the real and imaginary parts of any complex
number,

(The complex number to be negated is at the top of
the number stack.)

CNEG1 (or CNEG2)

(The negated complex number replaces the input argument
on the number stack.)

NSP .

One page zero location and 6 locations of normally relocatable
memory,

Original contents of accumulators and carry are lost.
No error messages are generated,

CNEG1 and CNEG2 must be referenced by an , EXTN statement,

Single

Precision
Complex
CONJG
Purpose: To produce the conjugate of any complex number,
Calling Sequence: (The complex number whose conjugate is to be obtained

is loaded onto the number stack.)
~ CONJ.

(The signofthe imaginary portion of the input argument is
compiemented, replacing the original vaiue,)

Supporting Routine: | NSP .

Subroutine Size; One page zero location and five locations of normally
relocatable memory.

Notes to User: The original contents of carry and accumulators AC3 and
AC2 are lost; no error messages are generated,

AC3 contains FSP upon exit from this routine,

This routine accepts both single and double precision
complex numbers as input arguments,

XCN]J. and DCON, are each equivalent to CON]J,

CON]J., XCNJ. and DCON, must be referenced by an . EXTN
statement,

5-15

Single
Precision

Complex

CPWRI1

Purpose: To raise a single precision complex number to a single
precision complex power.

Calling Sequence: (The complex power is on the top of the stack, the complex
base is immediately below it.)
CPWR1
(The power and base are removed from the stack; the
complex result is loaded on the stack.)

Supporting Routines: none; CLOG., CEXP., CMLI, .NR3, .NR2, FRLDI, FRSTL,SP .

Subroutine Size: One page zero location and 20 octal locations of normally
relocatable memory.

Notes to User: Original contents of accumulators, carry are lost. Error

messages can arise from the supporting routines.

CPWRI must be referenced by an . EXTN statement,

5-16

Single
Precision

Complex
CSIN
Purpose: To compute the sine of a single precision complex number,
Calling Sequence: (The single precision complex argument is input on the top
of the number stack.)
CSIN,
(The result replaces the input argument on the number stack.)
Supporting Routines : none; COS,, SIN., .SHIN, EXP,, .NR2, FADI1, FMLi,FRSTl,
- FRLD1, FLIP1, SP, NSP .
Subroutine Size One page zero location and 42 octal locations of normally
and Timing: relocatable memory are required by this routine,
Typical execution times are 100 ms on the NOVA with
software multiply/divide and 15 ms on the SUPERNOVA
with hardware fixed point multiply/divide.
Notes to User: Accumulators, carry are lost. Any error messages

generated will be issued by the supporting routines,

CSIN. must be referenced by an , EXTN statement.

5-17

Single
Precision

Complex

CSQRT

Purpose: To compute the square root of a single precision complex
number,

Calling Sequence: (The complex argument is placed at the top of the number
stack.)
CSQR.
(The result replaces the input argument on the number
stack,)

Supporting Routines: ‘none; .NR2, FRLDI1, RATN1, FLIPl, CLIPl, FML1, SQRT., RCABS,
SIN., COS., FRST1, SP, NSP .

Subroutine Size One page zero location and 47 octal locations of normally

and Timing: relocatable memory are required by this routine,
Typical execution times are 89 ms on the NOVA with
software multiply/divide and 12 ms for the SUPERNOVA
with hardware fixed point multiply/divide.

Notes to User: Original contents of accumulators and carry are lost.

CSQR. must be referenced by an . EXTN statement,

5-18

RCABS

Purmse:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

Single
Precision
Complex

To obtain the absolute value of a single precision complex
number located on the number stack,

(The complex argument is loaded onto the number stack.)
JSR @RCABS

(The complex argument is removed from the number
stack, and the absolute value of the argument is loaded
there.)

none; . NR1, .NR2, SQRT,, FLIP1, FML1, FDV1, FADI,
FRLD1, FCLEl, SP, NSP .

One page zero location and 42 octal locations of
normally relocatable memory.

Original contents of accumulators and carry are lost.
Error messages are generated by supporting routines.

RCABS must be referenced by an , EXTD statement.

5-19

Single
Precision
Complex

REAL, AIMAG

Purpose: To fetch either the real or the imaginary parts of a single
precision complex number.

Calling Sequences: JSR @RE.L
FORTRAN ADDRESS of complex number

(The real portion of the complex number is loaded onto the
number stack,)

JSR @AI.AG
FORTRAN ADDRESS of complex number

(The imaginary portion of the complex number is loaded
|___onto the number stack.)

Supporting Routines: none; . FRGY, FFLDI1, SP

Subroutine Size: Two page zero locations and 22 octal locations of normally
relocatable memory.

Notes to User: Original contents of accumulators, carry are lost upon
exit, No error messages are generated.

RE. L and Al AG must be referenced by an , EXTD statemert.

5-20

DOUBLE PRECISION COMPLEX

ROUTINES

CADZ’CSBZ LU I I B IR T A A I T T I Y I Y

DREAL’ DAIMG ooooooo ® % 9 e 0 0 0 ¢

RDCABS ® ® 0 % 0 0 0 0 0 0 0 s 00 0 0 ¢ 0 e 0 o o

6-1

® o 8 0 0 0 o o o
® o s o 8 0 0 0
ooooooo e 0
* o o s s s 2 ¢ .
* o o LI)
® * 0 0 0 0 0 8 o
LI °
LI) * e
........ .
oooooo o e 0
L] ® o @ o o o .
e ¢ 0o 0 . .
LI . . .
L3 [o e .

CAD2, CSB2

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Double
Precision
Complex

To add (CAD2) the topmost two double precision complex
numbers on the number stack or to subtract (CSB2) the
top double precision complex number on the stack from the
next-to-+top double precision number on the stack.

(The two arguments are loaded onto the number stack.)
CAD2 (or CSB2)

(The top argument is removed from the stack, and the sum
or difference replaces the second argument,)

none; FAD2, FRST2, FRLD2, . NR2, SP, NSP,

Two page zero locations and 22 octal locations of normally
relocatable memory.,

Original accumulator contents and carry are not restored
upon exit from the routine, Error messages are generated

by supporting routines upon overflow or underflow.

CAD2 and CSB2 must be referenced by an . EXTN statement.

6-3

Double
Precision
Complex

CCEQ2

PuEEose:

Calling Sequence:

Supporting xoutines:

Subroutine Size:

Notes to User:

To compare two double precision complex numbers for
identity.

(The two complex numbers to be examined are the topmost
numbers on the number stack.)

CCEQ2
(Carry is set to a one if they are equal, otherwise, it is

set to zero, The two complex numbers are removed from
the number stack,)

none; FCEQ2, .NR2,,.NR1,.NR3, FRST2, FRLD2, SP, NSP .

One page zero location and 21 octal locations of normally
relocatable memory.

Original contents of accumulators, carry are lost.

CCEQ2 must be referenced by an . EXTN statement.

6-4

Double
Precision
Complex
CDV2
Purpose: To divide one double precision complex number by another.
Calling Sequence: (The argument divisor is placed on the top of the number
stack, and the dividend is immediately below the divisor,)
CDhv2
(The divisor is removed from the number stack and the
quotient replaces the dividend on the number stack.)
Supporting Routines : none; FRLD2, FCLE2, FDV2, CML2, FLIP2, FML2,
.NR3, .NR2, .NR1, FAD2, FRST2, SP, NSP.
Subroutine Size: One page zero location and 101 octal locations of normally
relocatable memory.
Notes to User: Original contents of accumulators and carry are not restored

upon exit from this routine. Error messages are generated
by supporting routines upon overflow or underflow.

CDV2 must be referenced by an . EXTN statement,

6-5

Double
Precision
Complex

CFST2

Pugmse:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To pack and store a double precision complex number
located on the number stack,

(The argument is at the top of the number stack,)

CFST2
FORTRAN ADDRESS to receive the argument

(The top two six-word frames are removed from the
stack.)

none; . FRG@, FFST2, SP .

One page zero location and 20 octal locations of normally
relocatable memory., _

Original accumulator contents and state of carry are
both lost upon exit from this routine. No error messages
are generated.

The argument on the number stack occupies two sequential
six-word frames, with the top frame containing the
imaginary portion of the argument, After the argument has
been packed and stored at the indicated FORTRAN ADDRESS
it occupies eight sequential locations, with the first group
of four words containing the real portion of the argument,

CFST2 must be referenced by an , EXTN statement.

6-6

Doub le
Precision

Complex

CML2

Purpose: To multiply two double precision complex numbers by
one another,

Calling Sequence: (The two arguments are loaded onto the number stack,)
CML2
(The topmost argument is removed, and the product
replaces the second argument on the number stack.)

Supporting Routines : none; DCLO., DCEX., .NR2, ,NR3, FRLD2, FRST2,
SP, FML2, FAD2, FSB2 .

Subroutine Size: One page zero location and 47 octal locations of
normally relocatable memory.

Notes to User: Original contents of accumulators and carry are lost

upon exit from this routine. Error messages are
generated upon overflow or underflow by supporting routines.

CML2 must be referenced by an . EXTN statement.

6-7

Doub le
Precision
Complex

CPWR2

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To raise a double precision complex number to a double
precision complex power.

(The complex power is on the top of the stack, the complex
base is immediately below it,)

CPWR2

(The power and base are removed from the stack; the
complex result is loaded on the stack.)

none; DCLO., DCEX., CML2, ,NR2, .NR3, FRLD2, SP
FRST2 .

One page zero location and 20 octal locations of normally
relocatable memory,

Original contents of accumulators, carry are lost upon
exit from this routine. Error messages can arise from
the supporting routines,

CPWR2 must be referenced by an , EXTN statement,

6-8

DCABS

Pugpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

Double
Precision
Complex

To obtain the absolute value of a double precision complex
number,

JSR @DC.BS
FORTRAN ADDRESS of argument

(The absolute value of the argument is loaded onto the
number stack.) ‘

none; . FRGY, FFLD2, RDCABS, SP

One page zero location and 22 octal locations of normally
relocatable memory.,

Original contents of accumulators and carry are lost
upon exit from this routine, Stack overflow messages may

be issued by the supporting routines,

The result obtained by this routine is a real number, thus
occupying only one 6-word frame on the number stack,

JSR @XC.S is equivalent to SR @DC. BS.

XC. S and DC, BS must be referenced by an . EXTD statement,

6-9

Double
Precision
Complex

DCCOS

Pumse:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

To compute the cosine of a double precision complex number,

(The double precision complex argument is placed on the
top of the number stack.)

DCCO.
(The result replaces the argument on the number stack.)

none; DCOS., DSIN,, ,DSHIN, DEXP,, .NR2, FAD2,
EMLZ, FRST2, FLIP2, SP, NSP, FRLD2

One page zero location and 45 octal locations of normally
relocatable memory are occupied by this routine,

Typical execution times are 580 ms for the NOVA with
software multiply/divide and 89 ms for the SUPERNOVA

with hardware fixed point multiply/divide.

Accumulators and carry are lost upon exit from this routine.
Any error messages generated will be issued by the supporting
routines,

XCOS. is equivalent to DCCO,

XCOS. and DCCO. must be referenced by an , EXTN statement,

6-10

DCEXP

Pu se:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

Double
Precision
Complex

c
To compute the value e~ with ¢ any double precision complex
number,

(The complex argument is loaded onto the number stack.)
DCEX.

(The complex result replaces the argument on the number
stack,)

none; DEXP., DCOS., DSIN,, .NR2, FLIP2, FRLD2, FRST2,
FML2, SP, NSP.

One page zero location and 24 octal locations of normally
relocatable memory are required by this routine,

Typical execution times are 295 ms for the NOV A with software
multiply/divide and 36.5 ms for the SUPERNOVA with
hardware fixed point multiply/divide.

Original contents of accumulators and carry are lost upon

exit from this routine. Error messages are generated

upon underflow or overflow.

XCXP. is equivalent to DCEX.

DCEX. and XCXP. must be referenced by an . EXTN statement,

6-11

Double
Precision
Complex

DCLOD

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To unpack and load a double precision complex number
onto the number stack.

CFLD2
FORTRAN ADDRESS of the packed real and imaginary
portions of the complex number,

(The complex number is unpacked and loaded onto the
number stack.)

none; ., FRGf, FFLD2, SP.

One page zero location and 21 octal locations of normally
relocatable memory,

Original contents of accumulators and carry are lost,
Upon number stack overflow an error message will be issued
by FFLD2,

The FORTRAN ADDRESS following the call points to eight
sequential stack locations containing first the real portion

(in double precision packed format) and then the imaginary
portion (also in double precision packed format) of

the argument, The argument is then unpacked and loaded

onto the number stack in two sequential six word frames. The
top frame contains the imaginary portion and the next -to-top
frame contains the real portion of the argument.

CFLD2 must be referenced by an ., EXTN statement.

6-12

DCSIN

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size

and T iming:

Notes to User:

Double
Precision
Complex

To compute the sine of an angle expressed as
a double precision complex number.

(The double precision complex argument is input on the
top of the number stack,)

DCSI.

(The rcsult replaces the argument on the number stack.)
none; DCOS., .DSHIN, DS,NH, DEXP,, .NR2, FAD2,
FML2, FRST2, FRLD2, FLIF2, SP, NSP.

One page zero location and 44 octal locations of normally
relocatable memory are occupied by this routine.
Typical execution times are 585 ms for the NOVA with
software multiply/divide and 90 ms for the SUPERNOVA
with hardware fixed point multiply/divide.

Accumulators and carry are lost. Any error messages

generated will be issued by the supporting routines.
XCIN. is equivalent to DCSI,

XCIN. and DCSI. must be referenced by an . EXTN statement,

6-13

Double
Precision
Complex
DCSQR
Purpose: To compute the square root of a double precision complex
number,
Calling Sequence: (The complex argument is placed at the top of the number
stack.)
DCSQ.
(The result replaces the input argument on the number stack.)
Supporting Routines: none; . NR2, FRLD2, RATN2, FLIP2, CLIP2, FML2, DSQR.,
DSIN., DCOS., FRST2, SP, NSP, RDCABS .
Subroutine Size One page zero location and 51 octal locations of normally
and Timing: relocatable memory are occupied by this routine.
Typical execution times are 655 ms for the NOVA with
software multiply/divide and 70.5 ms for the SUPERNOVA
with hardware fixed point multiply/divide.
Notes to User: Original states of accumulators and carry are lost,

XCQR. is equivalent to DCSQ.

DCSQ. and XCQR. must be referenced by an . EXTN statement.

6-14

DDCLO

Purgose:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

Double
Precision
Complex

To compute the natural logarithm of a double precision
complex number.

(The double precision argument is loaded on the number
stack.)

(The result replaces the input argument on the number

none; . NR2, RATN2, FRLD2, FRST2, DLOG., CLIP2,
RDCABS, SP, NSP.

One page zero location and 21 octal locations of normally
relocatable memory are required,

Typical execution times are 430 ms for the NOVA with
software multiply/divide and 45.5 ms for the SUPERNOVA
with hardware fixed point multiply/divide,

Original contents of accumulators and carry are lost upon
exit from this routine. Error messages are generated

upon underflow or overflow by the supporting routines.

DCLO. is equivalent to XCOG.

DCLO, and XCOG. must be referenced by an , EXTN statement,

6-15

Double
Precision
Complex

DREAL , DAIMG

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

To fetch the real or complex parts of a double precision
complex number.

JSR @DR.AL

FORTRAN ADDRESS of complex number

(The real portion of the complex number is loaded on the

number stack,)

JSR @DA.MG

FORTRAN ADDRESS of complex number

(The imaginary portion of the complex number is loaded

on the number stack,)

none; . FRG@, FFLD2, SP

'Two page zero locations and 24 octal locations of normally
relocatable memory.

JSR @XR.L is equivalent to JSR @DR,AL, and
JSR @XA.AG is equivalent to JSR @DA,MG .

Original contents of accumulators, carry are lost;
no error messages are generated,

DR.AL, DA.MG, XR.L, and XA, AG must be referenced
by an . EXTD statement,

6-16

Double
Precision

Complex

RDCABS

Purpose: To obtain the absolute value of a double precision complex
number located on the number stack,

Calling Sequence: (The complex argument is loaded onto the number stack.)
JSR @RDCABS
(The complex argument is removed from the number stack,
and the absolute value of the argument is loaded there,)

Supporting Routines : none; . NR1, .NR2, DSQR., FLIP2, FML2, FDV2, FAD2,
FRLD2, FCLE2, SP, NSP ,

Subroutine Size: One page zero location and 44 octal locations of normally
relocatable memory,

Notes to User: Original contents of accumulators and carry are lost, Error

messages are generated by supporting routines,

The result obtained by this routine is a real number,
thus occupying only one 6-word frame on the number stack.

RDCABS must be referenced by an ., EXTD statement.

6-17

MIXED MODE ROUTINES

AMAX@, AMINg
BREAK
CMPLX

CRCX1iivreencnns

CRCX2

* 0 0 00 LI}
. e o .
. LI .

. [N

CXFLloccoo oooooooooooooooo ® @ 0 o 0 0 o

CXFL2

DBREAK

DCMPLXveennsnn

DIPWR.......
FLIP........
FRLD1, FRLD2
FRST1, FRST2 .
FXFL1, FLFX1
FXFL2, FLFX2
IDINTo

IFIX. ® o 0o o 0 0 95 0 ¢

TATT
11N 1 * e 0 0 .

MAX1, MIN1 .
.NR]- ® & o o o ¢ 0

.
.
.
-
1

.

.

.
1

.
-
1

.

.

3
]

-
L]
[]
. .
NN NN
L]
o= = O 00 NNt W

-
.
.
.
]

coecesevassersans . 7-14
o . cee e es e 7-15
ces e cee s erceeens 7-16
..... N AL Y

.o T S . 7-19
...... tereeeteces evo 7-21
ce e e et s e e s ee e e oo oo 7722
ce s e et ee et aces oo ceeees /=23
ceeeseeieaes ceeceesess /24
ce e ceececacessesss /=25
oo ceececnee cereceeesl-26
......... ceee cecceneee 1727
v e eeao Y A9'1

7-1

AMAX@, AMING

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Mized
Mode

To select the smallest (AMIN@) or the largest (AMAX@)
member from a set of integers, expressing the selection
as a single precision real value,

—

JSR @AM. Ng (or @AM. Xp)

N (an integer constant specifying the number of members
in the set)

FORTRAN ADDRESS of I

FORTRAN ADDRESS of I;

FORTRAN ADDRESS of In.j

(The result is expressed as a single precision real
on the top of the number stack.,)

FCALL

AMAXP (or AMIN@) :

N+1 (where N is an integer constant specifying the number
of members in the set,)

FORTRAN ADDRESS of result

FORTRAN ADDRESS of Iy

FORTRAN ADDRESS of I

.

FORTRAN ADDRESS of Iy.1

(The result is expressed as a single precision real number
stored at the FORTRAN ADDRESS of the result given
in the calling sequence.)

FSAV, FRET; . FARG, FXFL1, FFSTI1 .

‘Two page zero locations and 76 octal locations of normally
relocatable memory.

Mixed
Mode

AMAX@, AMINg (cont'd)

Notes to User: Accumulators, carry are restored upon exit from the
routine, No error messages are generated.

AM, N§ and AM. X@ must be referenced by an ., EXTD statement.
AMAX@, AMIN@ must be referenced by an ., EXTN statement.
AM.N@and AM. X@ have FCALL entry points AMNf@ and

AMX@ respectively.

BREAK

Purggse:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

Mixed
Mode

To separate a single precision real number x
into its integral and fractional components,

(Input argument x on top of the number stack.)
FBRK1

(Output fractional result replaces x on the number
stack; integral result is placed in AC@.)

none; FXFL1, FLFX1, FSBl, FRLD1, NSP, SP .

One page zero location and 15 octal locations of
normally relocatable memory are required.

Original contents of all accumulators and the
state of carry upon exit from this routine are lost,

Upon exit from this routine AC is loaded with
the integral portion of the argument, expressed
as a single precision fixed point humber. The
fractional portion of the argument is expressed
as a single precision real value,

FLFX1 will generate an error message whenever
the integral portion of the argument exceeds the range
+ (215-1),

FBRK1 must be referenced by an ., EXTN statement.

7-5

Mixed
Mode

CMPLX

Pumose:

Calling Sequences:

Supporting Routines :

Subroutine Size:

Notes to User:

To construct a single precision complex number from two
single precision real numbers,

JSR @CM. LX
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and loaded on the number stack.)

FCALL

CMPLX

Integer 3

FORTRAN ADDRESS of result

FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and is then stored at the FORTRAN

ADDRESS of the result,)

FSAV, FRET; FFST1, .FARG, FFLD1

o ~Ff

One page zero location and 40 octal locations of normaily
relocatable memory.

Original contents of accumulators, carry are restored
upon exit. No error messages are generated.

CM. LX must be referenced by an , EXTD statement.
CMPLX must be referenced by an , EXTN statement,

7-6

CRCX1

Pug_)ose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Mixed
Mode

To convert a packed single precision real number R to
a single precision complex number of the form R + @i,

CRCX1
FORTRAN ADDRESS of single precision real argument R

(The real argument R becomes expanded to a complex
number of the form R + @i, which is loaded on the number
stack,)

none; . FRG@, FFLD1, FRLDI, SP,

One page zero location and 22 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are lost;
any error messages issued will be generated by the supporting

routines,

CRCX1 must be referenced by an , EXTN statement.

7-7

Mixed
Mode

CRCX2

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To convert a packed double precision real number D to
a double precision complex number of the form D + @i .

CRCX2
FORTRAN ADDRESS of double precision real argument D

(The real argument D becomes expanded to a complex number
of the form D + @i, which is loaded onto the number stack.)

none; . FRG@, FFLD2, FRLD2, SP .

One page zero location and 24 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are lost;

an error message will be generated by FFLD2 or FRLD2
upon number stack overflow.

CRCX2 must be referenced by an . EXTN statement,

Mixed

Mode

CXFL1

Purpose: To convert an integer I to a single precision complex
number of the form I + @i,

Calling Sequence: CXFL1
FORTRAN ADDRESS of the integer argument [
(The integer argument I becomes expanded to a complex
number of the form I + @i which is loaded onto the number
stack,)

Supporting Routines : none; FXFL1, FRLDI, . FRG#, SP .

Subroutine Size: One page zero location and 21 octal locations of normally
relocatable memory.

Notes to User: Original contents of accumulators and carry are lost;

an error message will be issued by a supporting routine
upon stack overflow,

CXFLI must be referenced by an ., EXTN statement,

7-9

Mixed
Mode

CXF12

Pu_l:EO se:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To convert an integer I to a double precision complex
number of the form I+ @i.

CXFL2
FORTRAN ADDRESS of the integer argument I

(The integer argument I becomes expanded to a double
precision complex number I+ @i which is loaded onto the
number stack.)

none; FXFL2, FRLD2, .FRGf, SP .

One page zero location and 23 octal locations of normally
relocatable memory.

Original contents of accumulators and carry are lost;
an error message will be issued by a supporting routine

upon stack overflow,

CXFL2 must be referenced by an ., EXTN statement,

7-10

DBREAK

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Mizxed
Mode

To separate a double precision real number into its
integral and fractional components.

(The input argument is loaded onto the number stack.)
FBRK2

(The integral portion is expressed as a single precision
fixed point vaiue which is ioaded into AC@. The fractional
component replaces the input argument on the number
stack,)

none; FXFL2, FLFX2, FRLD2, FSB2, NSP, SP.

One page zero location and 15 octal locations of normally
relocatable memory.,

Original contents of accumulators and carry are lost,

Error messages generated will be issued by the supporting
routines,

FBRK2 must be referenced by an . EXTN statement.

7-11

Mixed
Mode

DCMPLX

Purpose: To construct a double precision complex number from two
double precision real numbers.

Calling Sequences: | JSR @DC.PX
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and loaded on the number
stack,)

. FCALL
DCMPL
Integer 3
FORTRAN ADDRESS of result
FORTRAN ADDRESS of real portion
FORTRAN ADDRESS of imaginary portion

(A complex number is formed and is then stored at the
FORTRAN ADDRESS of the result,)

Supporting Routines : FSAV, FRET; .FARG, FFLD2, FFST2, SP.

Subroutine Size: One page zero location and 43 octal locations of normally
relocatable memory.

Notes to User: JSR @XC.1X is equivalent to JSR @DC, PX,

Original contents of accumulators and carry are restored
upon exit. No error messages are generated,

DCMPL must be referenced by an . EXTN statement,
XC. LX and DC, PX must be referenced by an . EXTD statement,

7-12

DIPWR

Purp_qse:

Calling Sequence:

Supporting Routines:

Subroutine Size
and Timing:

Notes to User:

Mizxed
Mode

To raise a double precision real base to an integer power.

FIPR2
FORTRAN ADDRESS of the integer power
FORTRAN ADDRESS of the real base

(The real result is loaded onto the number stack,)

FSAV, FRET; .FARG, FLIP2, FDV2, FML2, FRST2,

One page zero location and 52 octal locations of normally
relocatable memory.

Typical execution times on the NOVA with software multiply/
divide are 5 ms where the integer power, I, equals @, or
7ms + 5 ms * (I-1) where I » 1. Where I < -1, the
execution time equals 17,5 ms +(-I-1)* 5,5 ms.

Typical execution times on the SUPERNOVA with hardware
multiply/divide are 425 ps where I =@, and 1 ms + (I-1) * 6 ms
where I > 1, Execution times where [< -1 are
correspondingly larger.

Each of the above execution times includes the time required
for one floating store operation.

Original contents of accumulators and carry are restored
upon exit from this routine; error messages upon overflow
or underflow will be issued by supporting routines.

FIPR2 must be referenced by an . EXTN statement,

This routine has an FCALL entry point, DIPWR .
DIPWR must be referenced by an . EXTN statement.

Mixed
Mode

FLIP

Pu se: To interchange number stack positions of two single or double
rurpose: g p g
precision real numbers.

Calling Sequences:

(ACP and AC1 point to two six-word frames -- usually on
the number stack, but they could be anywhere -- whick are to be
swapped.)

JSR @.FLIP

(The contents of the two frames are now exchanged.,)

(The two topmost frames on the number stack contain variables
which will be interchanged.)

FLIP1, FLIP2

(The two topmost variables on the number stack are
swapped.)

FLIP1 and FLIP2 are equivalent,

Supporting Routines: SP, NSP ,

Subroutine Size: Two page zero locations and 26 octal locations of normally
relocatable memory are required.

Notes to User: Original accumulator contents and state of carry are lost,

Six word frames on the number stack may contain either single
or double precision real variables,

. FLIP must be referenced by an , EXTD statement.
FLIP1 and FLIP2 must be referenced by an . EXTN statement.

7-14

FRLD!, FRLD?

Puggose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

Mixed
Mode

To load any unpacked real number onto thc number stack.

(AC@ contains the address of the sign word of a single precision
real number which is to be loaded onto the number stack.)

FRLD1

(The single precision real number is loaded onto the top of

the number stack,)

(ACY contains the address of the sign word of a double

precision real number which is to be loaded onto the number
stack.)

FRLD2

(The double precision real number is loaded onto the top

of the number stack.)

none; ., RTER, NSP, SP, .NDSP .

‘Two page zero locations and 32 octal locations of normally
relocatable memory. '

Original contents of accumulators, carry are lost,

A fatal error message is generated upon stack overflow,

An unpacked single precision real number in normally
relocatable memory occupies four sequential memory locations.
Nonetheless, this four word block is expanded to 6 words

(by padding the two least significant mantissa words with
zeroes) so that all frame lengths on the number stack will

be of equal size.

FRLD1 and FRLD2 must be referenced by an . EXTN statement,

7-15

Mixed
Mode

FRST1, FRST2

Purpose:

Calling Sequences:

i

Supporting Routines:

Subroutine Size:

Notes to User:

To store any real number located on the number stack
at a specified address, in unpacked form,

(Address to receive sign word of single precision
real number is contained in AC@.)

FRST1

(The single precision number is stored, unpacked, at
the four sequential addresses specified, and the number

is popped from the number stack.,)

(Address to receive sign word of double precision

real number is contained in AC@)
FRST2

(The double precision number is stored, unpacked,
at the six scquential addresses specified, and the

number is popped from the number stack.)

SP, NSP .

Two page zero locations and 25 octal locations of
normally relocatable memory are required.

Original states of accumulators, carry are lost,
No error messages are generated.

No check is made by this routine to ascertain whether
or not there really is a number on the number stack.

FRST1 and FRST2 must be referenced by an , EXTN
statement,

7-16

FXFL1, FLFEX1

Purpose:

Calling Sequences:

Supporting Routines :

Subroutine Size:

Notes to User:

Mixed
Mode

To convert a fixed point number to an unpacked
single precision real, and load it on the number
stack (FXFL1).

To pop a single precision real number from the
number stack, convert it to fixed point format, and

store it at a specified FORTRAN ADDRESS (FLFX1).

FXFLI1
FORTRAN ADDRESS of fixed point number I

(Iis converted to a single precision floating point

number which is loaded on the number stack.)

FLFX1

FORTRAN ADDRESS to receive I

(The top member of the number stack is converted
to a fixed point number I, the stack is popped, and
I is stored at the FORTRAN ADDRESS following

the call.)

MPY, DVD; . RTES, SP, FLSP ,

17 octal page zero locations and 754 octal locations
of normally relocatable memory are required,

Original states of accumulators and carry are
lost,

FFLD1, FFST1, FML1, FDV1, FSGN1, FADI1, FSB1,
FNEGI1, FCLE1, FCLT1, FCGEl, FCGT1, and FCEQl
also have entry points in the single precision

floating point module.

An error message is generated if FXFLI attempts to
load an already filled number stack.

Mixed
Mode

FXFL1, FLFX1 (Continued)

An error message is issued if the input argument to
FLFXI1 falls outside the range [-215+1, +2 5-1] ;

a signed maximum integer is returned as a result, If
the input argument for FLFX1 is in the range
<-1,+1>, zero is returned as a result.

No error message occurs if FLFX1 is called with an
empty number stack.

FXFLI1 and FLFX1 must be referenced by an . EXTN
statement,

JSR @FL., AT is equivalent to FLFX1 and must be
referenced by an . EXTD statement,

7-18

FXFL2, FLFX2

Pugpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

Mized
Mode

To convert a fixed point number to an unpacked double
precision real, and load it on the number stack (FXFL2),

To pop a double precision real number from the number
stack, convert it to fixed point format, and store it
at a specified FORTRAN ADDRESS (FLFX2).

FXFL2
FORTRAN ADDRESS of fixed point number I

(I is converted to a double precision floating point
number which is loaded on the number stack.)

FLFX2
FORTRAN ADDRESS to receive I

(The top number of the number stack is converted to a
fixed point number I, the stack is popped, and I is
stored at the FORTRAN ADDRESS following the call.)

MPY, DVD; .RTES, SP, FLSP, ,NDSP, .SV@g .

17 octal page zero locations and 1233 octal locations of
normally relocatable memory are required,

Original states of accumulators and carry are lost.
FFLD2, FFST2, FSGN2, FAD2, FSB2, FML2, FDV2,
FNEG2, FCLT2, FCLE2, FCEQ2, FCGE2 and FCGT2
also have entry points in the double precision floating

point module.

An error message is generated if FXFL2 attempts to
load an already filled number stack,

7-19

Mixed
Mode

FXFL2, FLFX2 (Continued)

Notes to User:

An error message is issued if the input argument of
FLFX2 falls outside the range [-215-1, +2 5-1] ;

a signed maximum integer is returned as a result, If
the input argument for FLFX2 is in the range

<-1, +1 >, zero is returned as a result,

No error message occurs if FLFX2 is called with an
empty number stack.

JSR @DF. OT is equivalent to FXFL2,

FXFL2 and FLFX2 must be referenced by an . EXTN
statement.,

DF. OT must be referenced by an , EXTD statement.

7-20

IDINT

er—————

Pumose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

Mixed
Mode

To truncate a double precision real number and express the
result as a fixed point number,

JSR @ID.NT
FORTRAN ADDRESS of location where result is to be stored
FORTRAN ADDRESS of real number DR to be truncated

(DR is truncated, converted to a fixed point number, and
is stored at the FORTRAN ADDRESS following the call.)

FSAV, FRET; FLFX2, FFLD?, .FARG .

One page zero location and 11 octal locations of normally
relocatable memory.

Accumulators, carry are restored upon exit, Error
messages will be generated if the truncated real number
exceeds +219-1 or is less than -(215-1),

JSR @XI. is equivalentto JSR @ID,NT .

ID.NT and XI. must be referenced by an , EXTD statement.

This routine has an FCALL entry point, .IDIN ,
. IDIN must be referenced by an . EXTN statement,

7-21

Mixed

Mode

IFIX

Purpose: To truncate a single precision real number and express it
as a fixed point number,

Calling Sequence: JSR @IF.X
FORTRAN ADDRESS of integer result,
FORTRAN ADDRESS of real value to be truncated

Supporting Routines : FSAV, FRET; . FARG, FFLD1, FLFX1, NSP

Subroutine Size: One page zero location and 21 octal locations of normally
relocatable memory.

Notes to User: JSR @XI1.X is equivalent to JSR @IF.X .

Accumulators, carry are restored upon exit.

IF,X and XI.X must be referenced by an ., EXTD
statement,

This routine has an FCALL entry point, .IFIX .
. IFIX must be referenced by an . EXTN statement.

7-22

Mized

Mode

INT

Purpose: To truncate a single precision real and express the result
as the nearest integer,

Calling Sequence: JSR @IN,
FORTRAN ADDRESS of location where result is to be stored
FORTRAN ADDRESS of real number R to be truncated
(R is truncated, converted to a fixed point number and is
stored at the FORTRAN ADDRESS following the call,)

SUPPOTUNg XOUINES + ESAV, FRET; . FARG, FFLDI, FLFXI

Subroutine Size: One page zero location and 11 octal locations of normally
relocatable memory,

Notes to User: Accumulators, carry are restored upon exit.

If the truncated real is greater than 215.1 or less than
-(215-1)FLFX1 will generate an error message.

Result = Sign of argument * largest integer < | argument],
IN. must be referenced by an , EXTD statement.

This routine has an FCALL entry point, .INT .
. INT must be referenced by an . EXTN statement.

7-23

Mixed
Mode

MAX1, MINI1

Purpose: To select the smallest (MIN1) or the greatest (MAX1) member
from a set of single precision real numbers, expressing the
selection as a fixed point number.

Calling Sequence: JSR @MA.1 (or @MI. 1)
N+1 (where N is a fixed point number equal to the number
of members in the set being examined.)
FORTRAN ADDRESS of result
FORTRAN ADDRESS of Ry

.

FORTRAN ADDRESS of R,

(The result is a fixed point number stored at the FORTRAN
ADDRESS of the result given in the calling sequence.)

Supporting Routines: FSAV, FRET; . FARG, FLFXl1, FFLD1l, FCLT1 .

Subroutine Size: ‘Two page zero locations and 46 octal locations of normally
relocatable memory.

Notes to User: Accumulators, carry are restored upon exit, An error message
is generated if the truncated real number exceeds 27 -1
or if it is less than -(215-1),

JSR @XA.1 is equivalent to JSR @MA.1, and JSR @XI.1
is equivalent to JSR @MI.1 .

FCALL entry points are MAX1 and MIN1.
MA.1, MIL.1, XA.1, and XI,1 must be referenced by an . EXTD

statement. MAXI1 and MIN1 must be referenced by an . EXTN
statement,

7-24

. NR1

Pug_gose:

Calling Sequence:

Supporting Routine:

Subroutine Size:

Notes to User:

Mixed
Mode

To obtain a pointer to the first frame below the top frame of the
number stack,

JSR @.NRIl
(Pointer is returned in ACH).
NSP .

One page zero location and five locations of normally
relocatable memory.

Original contents of accumulators and carry are lost.
No error messages are generated.

AC3 loses FSP upon exit,

A frame is understood to be a block of six consecutive
locations on the number stack.

. NR1 must be referenced by an ., EXTD statement,

7-25

Mixed
Mode

Purpose:

Calling Sequence:

Supporting Routine:

Subroutine Size:

Notes to User:

To obtain a pointer to the second frame below the top frame
of the number stack,

JSR @.NR2
(Pointer is returned in AC@.)

NSP .

One page zero location and five locations of normally
relocatable memory,

Original contents of accumulators and carry are lost. No
error messages are generated.,

AC3 loses FSP upon exit.

A frame is understood to be a block of six consecutive
locations on the number stack,

- NR2 must be referenced by an ., EXTD statement.

. NR3

Puggose:

Calling Sequence:

Supporting Routine:

Subroutine Size:

Notes to User:

Mized
Mode

To obtain a pointer to the third frame below the top frame
of the number stack.

JSR @.NR3
(Pointer is returned in ACf.)
ISP,

One page zero location and five locations of normally
relocatable memory,

Original contents of accumulators and carry are lost, No
error messages are generated.

AC3 loses FSP upon exit,

A frame is understood to be a block of six consecutive
locations on the number stack.,

.NR3 must be referenced by an . EXTD statement,

7-27

Mizxed
Mode

RIPWR

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size

and Timing:

Notes to User:

To raise a single precision real base to an integer
power,

FIPR1
FORTRAN ADDRESS of the integer power
FORTRAN ADDRESS of the real base

(The real result is loaded onto the number stack.)

FSAV, FRET; FLIP1, FDV1, FMLI1, FRSTI1, FRLDI,
. FARG, FFLD1, NSP .

One page zero location and 50 octal locations of normally
relocatable memory.

Typical execution times on the NOVA with software

multiply/divide are 1,45 ms where I = §, and 3 ms +
(I-1) *1.7 ms where I » 1. Where I < -1, NOVA

execution times are 5.3 ms + (-I-1) * 1.6 ms .

Typical execution times on the SUPERNOVA with hardware
multiply/divide are 360 pus where I =@, and 550 ps + (I-1)
* 180 ps where I > 1. Execution times where I <-1

are correspondingly larger,

Each of the above execution times includes the time
required for one floating store operation.,

Original contents of accumulators and carry are restored
upon exit from this routine.

Error messages will be issued by supporting routines
whenever appropriate.

FIPR1 must be referenced by an . EXTN statement.

This routine has an FCALL entry point, RIPWR .
RIPWR must be referenced by an . EXTN statement.

7-28

STRING/BYTE MANIPULATION ROUTINES

COMP cecer e e 8-3
LDBT, STBT0ccveeeeaceann 8-4
LOAD, STOREcccce0eenn 8-5
MOVE0ceciereesoncocncns 8-6
MOVEF ceceecscesset st 8-7
MVBC ceececceneene 1ee.. 8-8
MVBT . . creceseressenne 8-9
MVF cesesesec e 8-10
MVZ oo 8-11

8-1

COMP

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

String/Byte
Manipulatio

To compare two character strings for identity.
(String byte pointers in AC@ and AC1).

JSR @.COMP

(Return is to the next sequential address if the strings
match, and to one after the next sequential address if
H—-Cn A~ not matnl« \

i y v v LEL 1ile }

FSAV, FRET; . LDBT .

One page zero location and 34 octal locations of normally
relocatable memory.

Accumulators, carry are restored upon exit; no error
messages are generated.

Each string must be terminated with a null byte.
The FCALL entry is COMP .,

. COMP must be referenced by an . EXTD statement,
COMP must be referenced by an . EXTN statement,

8-3

String/Byte
Manipulation

LDBT, STBT

Purpose: To load or store a byte by means of a byte pointer,
furpose: yte by

Calling Sequence:

(ACP contains byte pointer)
JSR @.LDBT

(AC1 contains the byte, right justified)

(AC1 contains word whose right byte is to be stored.
ACJ contains byte pointer.)

JSR @.STBT
Supporting Routine; .Svg .
Subroutine Size: Two page zero locations and 30 octal locations of

normally relocatable memory.

Notes to User: Accumulators, carry are lost except AC@; AC3 contains
FSP upon exit, No error messages are generated,

Byte pointer is left unchanged upon exit.

. LDBT and . STBT must be referenced by an . EXTD
statement,

8-4

String/Byte

Manipulation
LOAD, STORE
Purpose: To permit the loading or storing of any accumulator except

AC3 from or into any absolute address.

Calling Sequences: JSR a@.LD@g (.LD1, .LD2)
Any absolute address

(AC@ -- or AC1, AC2 -- is loaded with the contents of the
absolute address.)

JSR @.ST@ (.ST1, .ST2)
Any absolute address

(The contents of ACf -- or AC1, AC2 -- is stored at the
absolute address.)

Supporting Routines: None.

Subroutine Size: Six page zero locations and 17 octal locations of normally
relocatable memory.

Notes to User: This routine uses QSP for temporary storage, so the
existence of at least one Fortran stack frame is required for
the operation of this routine.

The value of FSP contained in AC3 prior to the call is
restored in AC3 upon exit from the routine, ,

No error messages are generated upon attempting to
reference a non-existent location.

The six above-named entries must be referenced by an
. EXTD statement.

8-5

String/Byte
Manipulation

MOVE

Pu@se:

Calling Sequences:

Supporting Routines :

Subroutine Size:

Notes to User:

To move all (MOVE) or part of (CMOVE) a byte string.

(ACP contains the byte pointer to the beginning of the
source string., ACI contains the byte pointer to the
beginning of the destination string. The source byte
string is terminated by an all zero byte.)

FCALL
MOVE

(AC1 points to the null byte in the destination string.)

(ACP contains the byte pointer to the beginning of the source
string. ACI1 contains the byte pointer to the beginning of
the destination string, AC2 contains the number of

bytes which are to be moved.)

FCALL
CMOVE

(AC1 points to the last byte moved to the destination
string,)

FSAV, FRET; ., LDBT, .STBT .
44 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit from this
routine,

No error messages are generated. No check is made by
CMOVE to determine if the value in AC2 exceeds the number
of bytes in the source string, The original source string
remains unaltered in both move operations., Both MOVE and
CMOVE must referenced by an . EXTN statement.

MOVEF

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

String/Byte
Manipulatio

4

To move a block of words.

JSR @.MOVE
Word Count
FORTRAN ADDRESS of word block

~T

FORTRAN ADDRESS of word block destination
.MAD, QSP, SP

One page zero location and 23 octal locations of normally
relocatable memory.

Original states of accumulators and carry are lost.

Upon completion of this routine, the word block is found
both at its original location and at the destination location.

8-7

String/Byte

Mantipulation
MVBC
Purpose: To move a byte string,
Calling Sequence: (Upon entry to this routine, accumulators contain the fol-

lowing parameters:
i AC@, the byte pointer to the present byte string;
AC1, the byte pointer to the destination of the string;
AC2, the number of bytes in the string,)

JSR @.MVBC

Supporting Routines: FSAV, FRET, FQRET; . LDBT, .STBT .

Subroutine Size: Two page zero locations and 37 octal locations of normally
relocatable memory are required for this routine,

Notes to User: Accumulators and carry are restored upon exit from this
routine,
Bytes are packed left to right: |BYTE 1 | BYTE 2 |
Bit0 Bit 7 Bit 8 Bit 15

Byte pointer structure is as follows:

[Memory Address|Byte Selector] (@ = Left)
Bit O Bit 14 Bit 15 (1 = Right)

Upon exit from the routine, the byte string is found both at
the specified destination and at its original location,

. MVBT has an alternate entry point in this routine, .MVBC
must be referenced by an . EXTD statement.

This routine has a FCALL entry point MVBC.

8-8

MVBT

Purmse:

" Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

String/Byte
Manipulation

To move a byte string.

(Upon entry to this routine, accumulators contain the
following parameters:

ACf, byte pointer to the present byte string;
AC1, byte pointer to the destination of the string;
AC2, terminal character in the byte string,)

JSR @.MVBT

FSAV, FRET, FQRET; .LDBT, .STBT .

Two page zero locations and 37 octal locations of normally
relocatable memory.

Accumulators and carry are restored upon exit from this
routine,

Upon completion of this routine, the byte string is found
both at the specified destination and at its original
location.,

MVBC has an alternate entry point in this routine.

. MVBT must be referenced by an . EXTD statement.

This routine has an FCALL entry point, MVBT .
MVBT must be referenced by an . EXTN statement.

8-9

String/Byte
Manipulation

MVF

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To move blocks of whole words within core memory.
(Beginning address of the word block to be moved is
in AC@; the destination address is in ACl, the
number of words in the block is specified as a
positive integer in AC2,)

JSR @ MVF

FSAV, FQRET ; none .

One page zero location and 16 octal locations of
normally relocatable memory are required.
Accumulators and carry are restored upon exit,
No error messages are generated,

The original word block remains unaltered.

. MVF must be referenced by an . EXTD statement,

This routine has an FCALL entry point, MVF .
MVF must be referenced by an . EXTN statement.

8-10

String/Byte

Manipulation

MVZ

Purpose: To clear blocks of memory words.

Calling Sequence: (Beginning address of block in ACl, number of words
in the block to be zeroed is in AC@.)

JSR @.MVZ

Supporting Routines: FSAV, FQRET ; none .

Subroutine Size: One page zero location and 13 octal locations of
normally relocatable memory are required for this
routine,

Notes to User: Accumulators and carry are restored upon exit from

this routine.
No error messages are generated.
«MVZ must be referenced by an . EXTD statement.

This routine has an FCALL entry point, MVZ .
MVZ must be referenced by an .EXTN statement.

8-11

LFISP

FPTRS Modute

POINTERS/DISPLACEMENTS

o o 0 0o 0 0 0 4 0 o o ® 2 0 0 0 008 0 ¢ 0 0 0 0

FPZEROMOdUle ¢ o 2 ¢ 0o 8 0 o 0 0 0 0 ® o 0 0 0 0 0 0 0 0 0

Dummy Module

Purpose:

Program:

Pointers/
Displacements

The dummy module, found only in the RDOS FORTRAN
library, defines dummy values for three FORTRAN run time
flags so that they will never be listed at load time as being
undefined. The three flags are: QTCK, FLSP, and . FISZ .

. TITLE DUMMY
.ENT QTCK,FLSP,,FLSZ

QTCK = -1
FLSP = -1
.FLSZ = -1

.END

9-2-1

. FLSP

Purmse:

Pro gram:

Notes to User:

Pointers/
Displacementd

To enable . I to determine whether or not real or complex
arithmetic is used, so that it may decide whether or not to
allocate core space for the number stack,

.NREL
.FLSP: FLSP
. END

. FLSP must be specified by an , EXTN statement.

. FLSP will always be loaded along with the run time initial-
ization program, .I ., If real or complex arithmetic is used
by the main program, the FPTRS module will have been
loaded and resolved, assigning a location to the number stack
pointer which is equivalent to FLSP.

. FLSP contains the default value 000377 at load time unless

the FPTRS module has been loaded, in which case it will

contain the resolved value for FLSP, which is some other ZREL
address. ,Iwill examine . FLSP to see whether it contains

377 or other ZREL address, and eitner allocate space

for the number stack or not depending upon the result

of this test.

Pointers/
Disp lacements

Stack Pointers for Real and Complex Arithmetic (FPTRS module)

Purpose: To define a page zero pointer, NSP (or FLSP), to the
current top of the number stack. This position will
also be used by .1 at initialization time to determine
whether or not arithmetic routines have been used and
thus whether the number stack should be allocated.

Program: .ZREL
FLSP: @
NSP= FLSP
.END
Notes to User: NSP and FLSP are synonymous labels for the page

zero location containing a pointer to the current top
of the number stack. This module will be loaded only
if real arithmetic routines are called for by . MAIN,

FLSP is the label of a ZREL location other than 3778.
This label is tested by .I (see . FLSP, "Notes to User")
which then either allocates a number stack or not,
depending on the result of this test,

FLSP and NSP must both be referenced by an , EXTD
statement,

9-4

Pointers/
Disp lacements

Run Time Page Zero Locations (FPZERO module)

Purpose: These page zero locations are reserved for use by
run time routines,

Definitions: SP - A pointer to the Return Address Stack,
which is a stack located after the .1 stack,
and whose size is determined by .1 .
Utilized by routines which do not use any of
the FSAV family for storage of return addresses
for exiting subroutines, and for miscell-
aneous storage.

.NDSP - Pointer to one greater than the topmost
possible location in the number stack.

SUCOM - Start of unlabeled common.

.OVFL - A flag used to indicate whether or not overflow
(or underflow) has occurred, and therefore
whether error messages should be issued, If
all zero, no overflow has occurred; if set to
a one, overflow has occurred,

AFSE - Indication of the end (top most memory
location) of available run time stack area,

.IOCAT - Pointer to the I/O Channel Assignment Table's
starting address.

.SOSW - Flag indicating whether or not the Stand-Alone
Operating System has been loaded. If non-
zero, SOS was loaded,

.SVp - Return save for zero level routines like MPY,
QSP - Pointer to FAC2.
Note to User: Each of the above-named locations must be referenced

by an ., EXTD statement, Under RDOS , TVR is defined
to be the starting address of the series of page zero
locations.

9-5

LINKAGE AND INITIALIZATION-ROUTINES

CPYARG, CPYLS
FARG
FARGp
FCALL
FQRET
FRCAL
FRET

FRGLD ® 0o 0 0 ¢ o

FSAV

.I ® e o0 0 0 0 0 0

MAD, MADO

o o o o

® e o 0 00

o e 0o ¢ e 0 ¢

® @ o & 0 0

® o 0 o e 0 o o o o 0

¢ ®© 0 0 o @ o o

e & &6 & 06 & & 5 0 0 0 o0

10

® 0 0 0 0 0 0 0 0 0

10-3
10-5
10-6
10-7
10-9
10-10
10-12
10-13
10-14
10-16
10-18

CPYARG, CPYLS

Purmse:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Linkage, Init-
talization

To transfer effective addresses of a caller's argument list
to its called subroutines's stack,

FCALL

SUBR

N sN=NUMBER OF ARGUMENTS IN LIST
FADDR ;FORTRAN ADDRESSES

FADDR

200 an

SUBR:

(ACP contains the number of arguments to be passed.)
JSR @.CPYA ;ADDRESS OF CALLER'S

;ARGUMENTS ARE NOW
;ON SUBR STACK,

N ;N=NUMBER OF ARGUMENTS IN LIST
SUBR: :
JSR @.CPYL ;ADDRESSES OF CALLER'S
;ARGUMENTS ARE NOW ON
;SUBR STACK.

FSAV, FRET; .MADO .

Two page zero locations and 42 octal locations of normally
relocatable memory.

10-3

I inkage, Init{
lalization

CPYARG, CPYLS (Continued)

Notes to User: This routine is more generalized than FARG ; accumulators
and carry are preserved upon exit,

CPYLS updates the caller's return address (stored in

FRTN) to the next sequential instruction following
the caller,

.CPYL and . CPYA must be referenced by an . EXTD
statement.

CPYARG has an FCALL entry point, CPYAR .
CPYAR must be referenced by an .EXTN statement.

10-4

Laligation

FARG

Purpose: To fetch a called subroutine's argument addresses, when
these are stored as FORTRAN ADDRESSES immediately
following the caller,

Calling Sequence: (ACP contains the number of argument addresses to be
fetched.)

JSR @.FARG

(Caller's argument addresses are stored on current stack.
Caller's FRTN is updated.)

Supporting Routine: SP,

Subroutine Size: One page zero location and 34 octal locations of normally
relocatable memory are required,

Notes to User: Caller's ACP, ACL1 contents are lost. . FARG must be referenced

by an ., EXTD statement,
The following example illustrates the use of . FARG:

.ZREL
AL.G@: .ALG1#-2

.NREL
. MAIN: .
.CALL: JSR @AL,G§- ;THIS IS THE CALLING

;ROUTINE
FADDR of ARGUMENT:

.

FSAV
3
.ALG1p: SUBZL 0,9 ;PUT 1 IN ACf@, SINCE
;THERE IS ONLY ONE
;ARGUMENT FOLLOWING
; THE MAIN CALLER,
.CAL2: JSR @, FARG ;ARGUMENT ADDRESS IS
. ;STORED ON ALG1@'S STACK.

10-5

I inkage, Intitq
alization

FARGY

Purpose:

Calling Sequences:

Supporting Routine:

Subroutine Size:

Notes to User:

To calculate the effective address of an argument on the
current stack frame (. FRGf@) or the next most current
stack frame (, FRG1) given its FORTRAN ADDRESS pointed
to by AC2,
(FORTRAN ADDRESS is pointed to by AC2,)
JSR @.FRG@ (or . FRG1)

(The address is returned in AC@,)

SP.

Two page zero locations and 24 octal locations of
normally relocatable memory are required.,

Original states of accumulators, carry are lost.
This routine avoids the need for reserving stack storage,
and is also useful when an argument list is variable

in length and contains single word arguments.

. FRG@ and .FRGI1 must be referenced by an . EXTD
statement.

10-6

FQRET

Pugmse:

Calling Sequence:

SUBR:

Supporting Routines:

Subroutine Size:

Notes to User:

Linkage, Initi
talization

To provide return from a called subroutine which neither
requires tempousary storage nor calls other subroutines.

FSAV
-1 ;NO TEMP STORAGE
LDA @, MNE, §

. ;NO FURTHER
. ;SUBROUTINE CALLS
FQRET

.I; AFSE, .RTEp.

Five page zero locations and 140 octal locations of
normally relocatable memory are required.

All subroutines which neither call others nor require
temporary storage (i.e., all subroutines lacking stack
frames) must use FQRET for return to the caller.

FQRET must be specified in an . EXTN statement.

Caller's accumulators, original state of carry are
restored upon exit from the called subroutine.

FCALL, FRCAL, FSAV, and FRET have alternate
entry points in this routine,

10-9

Linkage, Init
talization.

FRCAL

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To call a subroutine whose address is containea in AC2,
and create a stack for this subroutine if needed.

.ZREL
.SUBR: SUBR

. NREL
LDA 2, .SUBR
FRCAL

@ ;ZERO STACK LENGTH WORD
SUBR: .

.I; AFSE, .RTEg .

Five page zero locations and 140 octal locations of
normally relocatable memory ate required.

FRCAL creates a new stack for the called routine (if needed)
and allocates temporary storage on the new stack if this is
required. The stack length word immediately preceding

the called routine determines whether or not a stack will

be created and whether temporaries on the stack will be
allocated. The following summarizes the possible stack
length words:

SLW = -1 No stack, no temporaries will be created
for the called routine,

SLW=¢9 A stack will be created to permit deeper
subroutine calls; no temporary storage
is allocated on this stack.

SLW = +1 A stack will be created with [temporary storage
locations allocated.

Upon entry to SUBR, AC@ AC1 and carry will be the same
as the calling program's; AC2 will contain the calling program's
FSP,and AC3 will contain the called program's FSP,

10-10

Linkage, Init-
ialization

FRCAL (Continued)

A fatal error message is generated if insufficient core
storage is available for the creation of the called routine's
stack.

FCALL, FSAV, FRET, and FQRET have alternate entry
points in this routine,

Caller's accumulators (except AC3) and original stace of
carry will be restored by FRET or FQRET upon return
to the next sequential instruction following the call, and
AC3 will contain the caller's FSP,

FRCAL mustbe specified in an . EXTN statement.

10-11

Linkage, Init
talization

FRET

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To restore a caller's accumulators and state of Carry upon
exit from the called subroutine, and return to the next
instruction following the caller.

.ZREL
. SUBR: SUBR-2
.NREL
JSR @.SUBR
NEXT: MOV 1,1

FSAV
S
SUBR: LDA @, §, 2

FRET ;RESTORE CALLER'S A/C/C-UMULATOR'S
;RETURN TO NEXT

.I; AFSE, .RTEp .

Five page zero locations and 140 octal locations of normally
relocatable memory are required.

FRET is equivalent to JSR @,FRET . FRET must be
referenced by an . EXTN statement, . FRET by an . EXTD statement.

FRET also restores caller FSP, loads it into AC3 before
return.

FRCAL, FSAV, FCALL, FQRET have alternate entry
points in this routine,

10-12

FRGLD

Pumgse:

Calling Sequence:

Supporting »R}outinres :

Subroutine Size:

Notes to User:

Linkage, Init;
Lalization

To fetch the contents of the FORTRAN ADDRESS pointed
to by AC2,

(FORTRAN ADDRESS is pointed to by AC2,)
JSR @.FRGLD
(Result is returned in AC@.)
none; ., FRG1, SP .
One page zero location and 10 octal locations of normally
relocatable memory are required.
Original states of accumulators and carry are lost,

If the FORTRAN ADDRESS is a stack frame displacement,
it is resolved with respect to the next-most-current stack
frame, the caller's caller's frame.

. FRGLD must be referenced by an ., EXTD statement,

10-13

Linkage, Init-]

talization
FSAV
Purpose: To save a caller's accumulators and state of carry upon a
subroutine page zero call, create a new stack frame with tempo-
rary storage allocated (if needed), and check for stack overflow.
Calling Sequence: FSAV
I
(Iis a stack length word; see below and Notes to User).
.ZREL
.SUBR: SUBR-2
.NREL
JSR @.SUBR
NSI: MOV 2,3 ;NEXT SEQUENTIAL INSTRUCTION
. ;FOLLOWING RETURN FROM SUBR
FSAV ;SAVE ACCUMULATORS, CARRY
SLW: S ;TYPICAL STACK LENGTH WORD
SUBR: LDA ¢, @, 2 ;FIRST TRUE CALLED INSTRUCTION
Supporting Routines: .1; AFSE, .RTE¢@ .
Subroutine Size: Five page zero locations and 140 octal locations of normally
relocatable memory are required,
Notes to User: The stack length word (SLW) following FSAV can be equal

to either -1, @, or any positive integer I. The following
summarizes the meanings of these stack length words:

SLW= -1 No stack, no temporaries will be created
for the called routine; no further calls
are made from the called routine.

SLwW=§ A stack without temporary storage
allocated is created for the called routine.
The called routine calls some other
routine,

10-14

EFSAYV (Continued)

[inkoge, Initd
alization.

SLW=+I A stack will be created with I temporary
locations allocated for use by the called
routine; the called routine may call
other routines,

Upon entry to SUBR, AC@, ACl1 and carry will be the same as
the calling programs's; AC2 will contain the calling
program'’s FSP and AC3 will contain the called program's FSP.

A fatal error message is generated if insufficent core
storage is available for the creation of the called subroutine's
stack.

FCALL, FRCAL, FRET and FQRET have zlternate
entry points in this routine.

Caller's accumulators (except AC3) and original state

of carry will be restored upon return to the next sequential
instruction following the subroutine call by FRET or FQRET.
AC3 will contain the caller's FSP,

JSR @. FSAV is equivalent to FSAV. FSAV must be

referenced by an . EXTN statement, . FSAV by an . EXTD
statement.

10-15

[inkage, Init-
talization

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To allocate number and SP stacks, and blank and unlabeled
common for FORTRAN compiled program, initialize the
Run Time Stack, and to construct pointers to them in a SOS,
DOS or single task RDOS environment, (For a description
of the multitask real time initializer, also labeled .I, see
Appendix E.)

Program control is not transferred to .I in the manner that
all other library routines receive control. Instead of being
called, .I simply receives program control when the loaded
program is started. This is due to the fact that the . END
statement in this routine has the argument .1, whereas each
other library routine is terminated by a simple . END
statement.

Upon completion of the initialization procedure, .I issues an
FCALL to the assembly language routine having the entry
.MAIN. At the completion of . MAIN, it transfers

control to the CLI by calling STOP under DOS. Under RDOS,
.I calls STOP which then transfers control back to .I after
outputting STOP 999 / on the console, The system performs
an effective halt, J]MP., under SOS. For more information
concerning the use of ,I by an assembly language routine,
see Appendix B.

CATIN, FCALL, .FLSP, .FLSZ, .MAIN; .STOP, .IOCAT,
SP, NDSP, ,WRCH, AFSE, SUCOM .

144 octal locations of normally relocatable memory under
DOS, 153 locations under RDOS. A 60 octal word temporary
run time stack is also reserved for .1, and is used by the
operating system,

The following describes the functions performed by .1 in
the sequence that they occur.

A system call, .SYSI, is issued to initialize system I/O

under SOS (this is a no-op to DOS), and then a system reset
(.RESET) is issued. Forty octal locations are then allo-

cated for the SP stack immediately following the last loaded

run time subroutine, A -1 is placed in the first location

of the SP stack, and a pointer to the next location in the stack is

10-16

.1 (Continued)

Notes to User:
(con'd)

Linkage, Init
talization -

created, The SP stack is nothing more than a series of
temporary locations for use by subroutines which have no
stack set aside for their use.

Next, the number stack pointer is defined and number stack
storage is allocated if floating point arithmetic is used in

- MAIN, the FORTRAN program which is about to be run.

This storage will be 630 octal words long or 30 octal plus
twice whatever a user has specified in a . FLSZ statement.

The default value creates enough room for 68 single precision
real numbers (34 double precision real or single precision
complex numbers, or 17 double precision complex numbers).
After the allocation of the number stack (or after the

allocation of the SP stack if no number stack is called for)s

a pointer to the beginning of the run time stack is defined, and
.I's stack with 60 octal temporary storage locations is allocated;
the Channel Assignment Table will be placed in these locations.

Next, a check is made to see whether or not there is room
enough for blank common allocation, and blank common is
allocated at the high end of memory. .NMAX is now updated
with the system call . MEMI; the Channel Assignment Table
is initialized and placed in the . I stack with an FCALL to
CATIN.

After this, the main program, .MAIN, is called and upon

its completion return is made to . I which transfers control
to the CLI by calling STOP under DOS. Under RDOS, .I calls
STOP which then transfers control back to .1 after outputting
STOP 999 /on the console. The system performs an effective
halt,]MP,, under SOS.

Three additional entries exist in the RDOS single task .1
which return control to either the CLI or to the debugger:
FERTN, FERTI, and FERT@. FERTN transfers control to
the CLI via the call .SYSTM, .RTN. F ERT@ transfers
control to the CLI via the call .SYSTM, .ERTN. FERTI
transfers control to the debugger.

10-17

L inkage, Ini+-
Halization

MAD, MADO

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

To resolve an effective address from a given FORTRAN ADDRESS.

(Input FORTRAN ADDRESS in AC2; current (i.e., caller's)

FSP is base used in calculation),
JSR @.MAD

(AC2 contains effective address upon exit; AC3 does not

contain caller's FSP on exit.)

(Input FORTRAN ADDRESS in AC2; base FSP in ACLl.)

JSR @. MADO

(AC2 contains effective address upon exit; AC3 does not

contain caller's FSP on exit,)

None.

Two page zero locations and 25 octal locations of normally
relocatable memory.

Accumulators, carry are not restored upon exit, No
error messages are generated,

«MAD and . MADO must be referenced by . EXTD
statements.

INPUT/OUTPUT ROUTINES

CATIN, IMIOci0eeceeevee.s 11-3
CHSAV, CHRSTccceeeeen. . 11-6
CcouT B § £ Y4
DELETE T § £
FCLOS . . . o e ey
FFILE000ceeeees ceeees. 11-10
FOPEN B 2 £ 0 |
FREAD ceceoess 11-12
FSEEKteeeeccceoceceaass 11-24
RDFLD, RDFCHccc00000e0e.. 11-25
READL, WRITLcc00c0.. 11-27
WRCH D B R 2

11-1

CATIN, IMIO

PurEose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Input/
Output

To initialize the I/0O Channel Assignment Table, This
table lists the default assignments of the logical
FORTRAN channels, and is used to maintain information
about new assignments made by calls to FOPEN/FCLOS.

(ACP contains the starting address of the I/O Channel
Assignment Table.)

FCALL
CATIN

(The three word entries for each of the 16 FORTRAN
logical channels are set to the following states:

WORD 1, Closed ASCII file

WORD 2, -1 or word address of default file
name

WORD 3, Random Record Length @,)

FQRET, .SOS; .IOCAT, .SOSW .

110 octal locations of normally relocatable memory for
DOS; 105 locations for RDOS.

Original contents of accumulators and carry are restored
upon exit. CATIN and IMIO must be referenced by an
. EXTD statement,

The Stand-alone Operating System will be force loaded.
There are 16 entries in the I/0 Channel Assignment
Table, one for each FORTRAN logical channel. The
following table lists the FORTRAN channels and their

default assignments where applicable:

Logical Channel Number Default Assignment

0 none
1 none
2 none

11-3

Input/
Output

CATIN, IMIO (Continued)

TYPICAL WordO
/O CATALOGUE Word1
ENTRY Word 2

Logical Channel Number Default Assignment

3 none

4 none

S none

6 Plotter ($PLT)

7 none

8 TTY punch ($TTP)

9 Card Reader ($CDR)

10 TTY Printer ($TTO)

11 TTY Keyboard ($TTI)

12 Line Printer ($LPT)

13 High Speed Paper Tape
Reader ($PTR)

14 High Speed Paper Tape
Punch ($PTP)

15 TTY Reader ($TTR)

A table labeled IMIO (and given as an entry along with
CATIN) is located in the CATIN module, IMIO consists
of a block of 16 words with a structure identical to the
above table, Table entries which have default
assignments contain the absolute CATIN module
address of a byte string consisting of the appropriate
four letter device name ($PLT, $TTR, etc.).

The I/0 Channel Assignment Table is built in . I's stack
at initialization time, This table consists of a block

of 16 sequential three word entries, one entry for each
FORTRAN logical channel with default assignments
given in IMIO. The structure of each three word entry
is as follows:

bit 0 bit 1 bits 10 thru 15

OPEN switch|BINARY/ASCII switchZZ/Z,..JDOS 1/O Channel No.

FILE NAME POINTER

RECORD LENGTH OF RANDOM RECORDS

The OPEN switch is set to a zero only if the referenced
channel has been opened. The BINARY/ASCII switch

is set to a zero only if ASCII mode has been selected.

The DOS I/O CHANNEL field contains the DOS I/O

channel number for this FORTRAN logical channel.

(See the DOS or RDOS User's Manual, Chapter 4, "Command
Word Format, ") This field has meaning only if the

ii-4

CATIN, IMIO (Continued)

Input/
Output

logical channel is open.

The FILE NAME POINTER may be one of two things.
If the file is closed, the pointer is simply the word
address of a four letter file name or -1, If the file
is open, the pointer is a byte pointer to some file
name text string,

The RECORD LENGTH OF RANDOM RECORDS is
¢ if the file has not been opened as a random file,
Otherwise it is the integer record length in bytes of
random records in the file,

Default values for each three word entry are given
in the Calling Sequence description.

11-5

Input/
Qutput

CHSAV, CHRST

Purpose:

Calling Sequences:

To permit the rereading or rewriting of FORTRAN records on
disk. The method is to first save the status of a FORTRAN
channel (CHSAV), issue any number of reads or writes, and
then restore the original status of the channel (CHRST).
Records processed between the status save and status restore
operations may then be reread or rewritten,

(An integer array has been created with a two word block allocated
for storage of the channel status information,)

FCALL

CHSAV

2

FORTRAN ADDRESS of logical channel number
FORTRAN ADDRESS of first word in the two word block

(CHSAYV has been called previously.,)

FCALL

CHRST

2 :

FORTRAN ADDRESS of logical channel number

FORTRAN ADDRESS of the first word in the two word block
containing previously saved channel status data.

Supporting Routines: FRET; .CPYL, .RTER, .IOCAT .

Subroutine Size:

Notes to User:

63 octal locations of normally relocatable memory for DOS;
62 locations for RDOS.

Accumulators and carry are restored upon exit, Both routines will
issue a non-fatal error message if the specified channel has not
been opened. CHRST will also issue a non-fatal error message

if an attempt is made to restore channel status information

which was not previously saved. The status of more than one
channel may be saved in the same array. For example, an array
declared as 1(2, 100) can be used to save up to 100 blocks of
channel status information.

11-6

CouT

Purpose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

vvvvvvv

To input or output a character on a teletype,

(AC@ contains the character to be output, right justified)

JSR @.cout

e N

(The character is output to a TTY printer/punch)

JSR @.CIN

(ACQ contains a character input from a TTY reader/keyboard).
FSAV, FQRET ; none,

Two page zero locations and 23 octal locations of normally
relocatable memory.

If the character output was a carriage return, a line feed
will also be output,

This routine can only be used with either the stand alone or

No error messages are generated by this routine;
accumulators, state of carry will be restored.

Characters input via . CIN will also be echoed on the TTY
printer/punch. .COUT and . CIN must be referenced
by . EXTD statements.

.COUT has an FCALL entry, COUT. COUT must be
referenced by an . EXTN statement. ,CIN has an FCALL
entry point, CIN . CIN must be referenced by an , EXTN
statement.

11-7

Input/
Output

DELETE

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To delete a disk file.

FCALL

DELET

Integer 1

FORTRAN ADDRESS of file name

FCALL, FCLOS, FRET; .COMP, .CPYL, .IOCAT, .RTER

Forty-three locations of normally relocatable memory are
required under DOS, 100 under RDOS.

The file name is an ASCII byte string. This routine makes
a system call,
.DELET

Before issuing the .DELET command, a check is made to
determine whether or not the file has been closed. If the
file is open on one channel, it will be closed and error mes-
sage FEOPN will be issued. If the file is open on more than
one channel, the file is closed on all these channels.

If there is no disk file directory entry corresponding to the
file name byte string, the routine simply returns control to
the caller; no error message is issued.

Original contents of accumulators and carry are restored.
Good practice dictates the use of DELET in program init-
ialization to preclude the attempted writing of an already

existing file.

DELET must be referenced by an . EXTN statement.
DFILW and RLSE have alternate entry points in this routine.

11-8

Input/

Output

FCLOS
Purpose: To free a FORTRAN logical channel and close the file

associated with that channel,
Calling Sequence: FCALL

FCLOS

Integer 1

FORTRAN ADDRESS of logical channel number

(A call can now be made to FOPEN requesting th

free channel.)
Supporting Routines: FSAV, FRET, IMIO; .IOCAT, .RTER, .CPYL, .SOSW .
Subroutine Size: 41 octal NREL locations under DOS, 57 locations under RDOS.
Notes to User: The logical channel number is an integer constant with a

value between @ and 1510.

Original accumulator's contents, carry are restored
upon exit from this routine,

FCLOS must be specified in an , EXTN statement.

To close a channel under RDOS CLOSE may also be used
(see Appendix E).

11-9

Input/
Output

FFILE

Pumose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To position a sequential file which has been assigned
a FORTRAN Channel Number.

JSR @. FFIL

File Positioning Code

FORTRAN ADDRESS of FORTRAN Channel Number
(File Positioning Codes are: 1, position the file at its
initial record; 2, close the file associated with

this channel.)

FSAV, FRET, FCLOS, FSEEK, FCALL; .CPYARG,
.RTER, .IOCAT, .FCALL.

One page zero location and 76 octal locations of normally
relocatable memory.

Accumulators and carry are restored upon exit from this
routine,

This routine must be supported by the disk operating system.

I/0 error conditions and unopened files will cause error
messages to be generated.

. FFIL must be referenced by an . EXTD statement,

This routine has an FCALL entry point, FFIL .
FFIL must be referenced by an . EXTN statement.

1i-10

Input/

FOPEN Output
Purpose: To open a FORTRAN channel.
Calling Sequence: JSR @.FOPEN
Integer number of arguments to follow - - 2 through -{ possible.
FORTRAN ADDRESS of logical channel number,
FORTRAN ADDRESS of file name
optional FORTRAN ADDRESS of binary specifier
optional FORTRAN ADDRESS of random record byte length
(The specified channel is now assigned to the named file.)
Supperting Routincs: FSAV, FRET; .RTER, .CPYL, .SOSW, .IOCAT.
Subroutine Size: One page zero location and 141 octal locations of normally
relocatable memory under DOS; one page zero location and
162 NREL locations under RDOS.
Notes to User: Logical channel numbers are represented by integer constants

with values from @ through 15 10°
The file name is an ASCII byte string terminated by a null
byte. Likewise, the binary specifier is a single word

ASCII byte strilig consisting of an ASCII B, left justified,
followed by a null byte. If a binary specifier is given, the
named file is opened with all particular device characteristics
inhibited, e.g., such functions as a rubout character

following a tab character output by a paper tape punch.

The random record length parameter, given only when random
devices are selected, is an integer specifying the random
record length in bytes. If the file does not exist, a file is
created and then opened. This file is organized sequentially
under DOS, randomly under RDOS.

This routine must be supported by e ither a disk or stand-

alone operating system. Accumulators and carry are restored
upon exitfromthis routine. The FCALL entry to this routine

is FOPEN. .FOPEN must be referenced by an . EXTD statement;
FOPEN must be referenced by an . EXTN statement.

Random accessis permitted only under a disk supported
operating system.

This routine has an FCALL entry point, FOPEN. FOPEN
must be referenced by an . EXTN statement.

11-11

Input/
Output

FREAD, FWRIT

Purpose: To perform formatted or free form FORTRAN input
(. FREAD) or output(. FWRIT) of ASCII data, or to
perform FORTRAN input (., BRD) or output (. BWR)
of binary data,

Calling Sequence:

(Binary data is to be read.)

JSR @.BRD

FORTRAN ADDRESS of the logical channel number

g

ELEMENT DESCRIPTOR SEQUENCE(s) (see Notes to User)
5

(Binary data is to be written.)

JSR @.BWR

FORTRAN ADDRESS of the logical channel number

p

ELEMENT DESCRIPTOR SEQUENCE(s) (see Notes to User)
S

(ASCII data is to be read or written in free format,)

JSR @.FREAD (or @.FWRIT)

FORTRAN ADDRESS of the logical channel number

9

ELEMENT DESCRIPTOR SEQUENCE(s) (see Notes to User)
5

11-12

Input/
Output

FREAD, T'WRIT (Continued)

(Formatted ASCII data is to be read or written,)

JSR @.FREAD (or @. FWRIT)

FORTRAN ADDRESS of the logical channel number

FORTRAN ADDRESS of the beginning of the format
statement text string,

ELEMENT DESCRIPTOR SEQUENCE(s) (see Notes to User)

5

——

Supporting Routines: FSAV, FRET, MPY, DVD;‘. WRTS, .REDS, .ALLOC, . THREAD
. FRG1, .FRGLD, .READL, .WRITL, .RDFCH, . RTER,
.RDFLD, .STBT, .LDBT, .MVBC, .ARYSZ, . FSBR, .WRCH,
SP, .SV@. (FERTY is also used under RDOS.)

Subroutine Size: Four page zero locations and 3665 octal locations
of normally relocatable memory. This module also
has the unusually large run time stack frame size
0f256 octal locations including header.

Notes to User: Contents of accumulators and carry are restored upon
exit from this routine,

. FREAD, .FWRI, .BRD, and .BWR must be referenced
by an , EXTD statement.

If the contents of the first word in the format text string
(see formatted 1/0) are @P24@1, then the first four bytes

in this string are ignored. This permits FREAD to be used
by the FORTRAN compiler, which always precedes the
format text string with]MP @.+1. JMP @.+1 assembles

to PP24p1,

The ELEMENT DESCRIPTOR SEQUENCES describe

in detail the nature of each data type in the list of elements
to be input or output, Each SEQUENCE is in reality

a set of eight possible calling sequences. One sequence

is selected to describe each data element in the
input/output list,

11-13

Input/
Output

FREAD, FWRIT (Continued)

OB WN S

Thus the FORTRAN statement:
WRITE (19) 'REAL RESULT IS', X

generates a call to . FWRIT with two ELEMENT DESCRIPTOR
SEQUENCES. One is sequence 6 for the outputting of

the text string 'REAL RESULT IS';the other is sequence

@ to output the real variable X,

The first word of each ELEMENT DESCRIPTOR
SEQUENCE is an integer tag, labeling the type of
sequence which is to follow., The following list
summarizes the integers and their corresponding
sequences,

Integer Data Element Type

Variable

Array Element

Array

Left Parenthesis

End of loop Right Parenthesis
String

End of file address

Error return address

Integer 5 is used as a flag to terminate the entire
calling sequence,

Following are the detailed ELEMENT DESCRIPTOR
SEQUENCE parameters for each data element type,

with accompanying example FORTRAN statements

which generate them., Combining the appropriate
ELEMENT DESCRIPTOR SEQUENCE with one of the Calling
Sequences given above yields a complete FORTRAN
input/output calling sequence.

Variable Data Element Sequence

P

Integer variable type (see below)
FORTRAN ADDRESS of variable

11-14

Input/
Output

T 7

(Continued)

FORTRAN Statement

READ (11,1) TEST

FORTRAN Object Code

JSR @.FREA
.C1
L2.

. ;TEST

PR R Y

The integer variable type is an integer, 1 through 5,
which specifies the type of variable in the 1/0 list.
The following variable types correspond to integers 1
through 5 in the following fashion:

Integer, logical, alphabetic/hollerith
SPFL
DPFL
SPCX
DPCX

G W=

Thus the code generated by

READ (11,1) TEST

yields the following complete call to FREAD:
JSR @. FREA

FORTRAN ADDRESS of > - C1
Logical Channel Number

FORTRAN ADDRESS of L2,
Format Statement Text & —
String

Variable ELEMENT @
DESCRIPTOR - < 2
SEQUENCE - V.+)
Terminator S

The second ELEMENT DESCRIPTOR SEQUENCE
describes an Array Element in the I/O list.

11-15

Input/
Output

FREAD, FWRIT (Continued)

Array Element Sequence

1
N (see below)
FORTRAN ADDRESS of Three Word Specifier

p
FORTRAN ADDRESS of Subscript 1

FORTRAN ADDRESS OF Subscript N-1

FORTRAN Statements

DIMENSION NAME (25)

.

i(EAD (11, 199) NAME (1)

FORTRAN Object Code

.

JSR @.FREA
.C3
L2.

V.+8 {NAME

N in the array element sequence is an integer equal to
the number of parameters following N excluding the
list terminator flag, 5.

‘The Three Word Specifier is described in Appendix
D, "Array Structure and Handling, "

The ELEMENT DESCRIPTOR SEQUENCE for entire
arrays in FORTRAN I/O lists follows.

11-16

Input/
Output

FREAD, FWRIT (Continued)

Array Descriptor Sequence

2
FORTRAN ADDRESS of Three Word Specifier

FORTRAN Statements

DIMENSION A(1§)

READ BINARY (13) A

FORTRAN Object Code

JSR @.BRD

.C3

g

2

V.+ ;A
5

There are two possible ELEMENT DESCRIPTOR
SEQUENCES for left parenthesis data elements,
depending upon whether the parenthesis is significant
or not. Left parentheses are significant only in
implied DO-loops or nests of implied DO-loops.

Insignificant Left Parenthesis Sequence

3
FORTRAN ADDRESS of useless-right-parenthesis flag

This flag is an integer 4, to be described in the INSIGNIFICANT-
RIGHT-PARENTHESIS Sequence, sequence 4,

FORTRAN Statement

READ (11, 1) (TEST)

11-17

Input/
Output

FREAD, FWRIT (Continued)

FORTRAN Object Code

JSR @.FREA

.Cl1

L2,

3 } — Insignificant left parenthesis sequence
L3.

P

2
V.
4 ;TEST
5

Significant Left Parenthesis Sequence

3
FORTRAN ADDRESS of useful-right-parenthesis Flag

This flag is an address not equal to integer 4, and
will be described in the SIGNIFICANT-RIGHT-PARENTHESIS

sequence, sequence 4.

FORTRAN Statements

DIMENSION TEST 1 (19)

READ (11,1) (TESTI(I),I = 1,7)
FORTRAN Object Code

JSR @.FREA
.C3
L2.

i , } /Slgllflcant left parenthesis sequence

1

3

V.+9 ;TEST1
@

V.+3 ;1

4
V.+3

.C2
.C4
.C2
.4
S
11-18

Input/
Output

FREAD, FWRIT (Continued)

Corresponding to the two left parenthesis sequences
there are two right parenthesis ELEMENT DESCRIPTOR
SEQUENCES.

Insignificant Right Parenthesis Sequence

4

FORTRAN Statement

READ (11,1) (TEST)

FORTRAN Object Code

JSR @.FREA
.C1

+ insignificant right parenthesis sequence

Significant Right Parenthesis Sequence

4

FORTRAN ADDRESS OF Indexing Variable
FORTRAN ADDRESS of Start Value
FORTRAN ADDRESS of Test Value
FORTRAN ADDRESS of Increment Value

. -4

FORTRAN Statements

DIMENSION TEST1 (19)

READ (11,1) (TESTI(I), 1=1,7)

11-19

Input/
Output

FREAD, FWRIT (Continued)

FORTRAN Object Code

JSR @.FREA

.C3

L2,

3

L3.

1

3

V.+) ;TEST 1
@

V.+3 31

4

V.+3

.C2

.C4 Significant right parenthesis sequence
.C2

.-4

5

In the above sequence, .-4 is the address
containing the FORTRAN ADDRESS of the Indexing
Variable,

The ELEMENT DESCRIPTOR SEQUENCE for ASCII
string elements is straightforward, as shown below,

String Element Descriptor Sequence

6
TEXT STRING
(terminated by a null)

FORTRAN Statement

WRITE (19) "MESSAGE"

FORTRAN Object Code

JSR @.FWRI

.C1

/)

6 ,

. TXT /MESSAGE/

11-20

Input/
Output

It is possible for program control to branch from reading
or writing sequence upon receipt of an end-of-file, This
procedure is illustrated in the END-OF-FILE ELEMENT
DESCRIPTOR SEQUENCE below,

End-of-File Element Descriptor Sequence

7
FORTRAN ADDRESS of EOF Return

FORTRAN Statement

READ (11,1,END=7) A

FORTRAN Object Code

JSR @.FREA
. Cl
Lz.

'1743 } — EOF Sequence

.+ ;A

U

Finally, if a user wishes to gain program control
after an 1/0 error at the device level (parity, record
size) has been detected, the ERROR ELEMENT
DESCRIPTION SEQUENCE must be employed.

Error Element Descriptor Sequence

8
FORTRAN ADDRESS of Error Return

FORTRAN Statement

READ (11,1, ERR=7) A

11-21

Input/
OQutput

FREAD, FWRIT (Continued)

FORTRAN Object Code

JSR @.FREA

.Cl

L2.

19 Error Return sequence
L3.

g

2
V. 4
S

The following illustration shows the detailed structure
of a call to FREAD generated by the following test
FORTRAN program:

READ (11,1) TEST
1 FORMAT (1H@, E5.1)
END

. FREAD, . FWRIT, .BRD, and .BWR have the follow-
ing respective FCALL entry points: FREAD, FWRIT,
BRD, and BWR, FREAD, FWRIT, BRD, and BWR must
each be referenced in an . EXTN statement,

11-22

A

Dre2 qMATN

*arAny

MprAr i AgrnoA
harAnn
Rl L Rl [LY

Funa2 102401
ﬂpnmaiagmgg4|

Mﬁ?udlqaﬁ@glq
TUnaKIAgra2 40
PeAARLANPAY I
AEORTIIAQGACA
2N AIApneang
“arittepnnyy
Tgri121tapnpns

LB R RN -]
2urldtopop23n

TERIRIU24AK Y
¢W¢151n44@53
ﬂﬁﬂ17'*26tm§
SEPRMIAZD4RE
1@@21'730‘%1
LT TARY T PLY)

"en23PpARRQe

Mer24t2p0013
RRARANG
LY
177891
AP0y
177612
1776114
2012
2graly
npegyy
flngal&'

Fil2
F21

«MAINS

L1t

1
12,8

!
)

+C18

TESTs
Nis

READ (11,19

FORMAY (1HM,E8, 1) FREAD

EsiD

READ (11,1 TFST

o NRE|

#TITL JMAIN

LENT JMAIN

+NREL

2 TXTM 1

«EXTY

oFXTN o1

@

+CS812 2

Fe, o
Cali to FREAD

JMP 9,1

Lt

JSR 0.FREA

. £ ! @—— PORTRAN ADDRESS of Logical Channel Number
L?, «——— FORTRAN ADDRESS of Format Text String less two
—— ELEMENT DESCRIPTOR SEQUENCE Tag

& <—————— Real Variable code
Ye+# «———— FORTRAN ADDRESS of variable TEST

5 end of FREAD sequence

FARMAY (1H2,E5,.1)
JMP L]

L3,

«TXT OC1HA,ES,1)10

Format string

E~D

JSR
2AANLY
Fs,.92
§FS.27
T.a=167
V.820%eT

TS, 2T, +1

FTS,aT ¢

VS, BV, et

FVS.mVv e

V,+? <4———————— TEST will be read into MAIN's stack frame,
L2, at the first available temporary FTSTR
«END

FRET

Logical Channel Number

11-23

TEST #~FORTRAN I/O Statement, generating call to

Input/
Output

FSEEK

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To access a particular record on a random access
file.

JSR @.FCAL (cr FCALL)

FSEEK

Integer 2 (since two arguments follow)

FORTRAN ADDRESS of FORTRAN logical channel number
FORTRAN ADDIRESS of the record number to be accessed

FRET, DVD, MPY; .CPYL, .IOCAT .

56 octal locations for DOS and 55 for RDOS of NREL memory.

When more than one record is required to be written or
read without intervening calls to FSEEK, recocxds will

be written or read sequentially. A random file is positioned
initially to the beginning of record @ by the following:

FCALL

FSEEK

2

FORTRAN ADDRESS of logical channel number
FORTRAN ADDRESS of integer §

This routine requires the support of the disk operating
system,

Original contents of accumulators, carry are restored
upon exit from this routine,

FSEEK must be referenced by an . EXTN statement,
The file (with the given channe! number) is positioned at
the first byte of the first randoin record whose length was specified

by FOPEN.

A run time error is given if ‘ne file is not randomly organized
or if the file is not opened.

11- 24

RDFLD, RDFCH

Purpose:

Calling Sequences:

Supporting Routines :

Subroutine Size:

Input/
Output

To read and transfer a portion of an ASCII string from
one buffer to another, either by counting characters

in the transferred field (RDFLD) or by reading to a
specified character (RDFCH),

(AC2 contains the number of characters in the field
to be read.)

ISR @,RDFLD

FORTRAN ADDRESS of "FROM" string byte pointer

FORTRAN ADDRESS of "TO" string byte pointer

abnormal return (character count retained in AC1,
See Notes to User.)

normal return

(Both the "FROM" and the "TQ" string pointers are
updated upon exit,)

(AC2 contains the terminal field character.)

JSR @.RDFCH

FORTRAN ADDRESS of "FROM" string byte pointer

FORTRAN ADDRESS of "TO" string byte pointer

abnormal return (character count retained in ACl, See
Notes to User,)

normal return

(Both the "FROM" and the "TO" string pointers are

updated upon exit.)

FSAV, FRET; .FARG, .LDBT, .STBT, .RTER .

Two page zero locations and 115 octal locations of
normally relocatable memory,

11-25

RDFLD, RDFCH (Continued)

Notes to User: Original contents of accumulators and carry are
restored upon exit. .RDFLD and . RDFCH must
be referenced by an . EXTD statement.

A fatal error message will be output upon overflow

of the "TO" buffer only if the last buffer location
contains a word consisting of two ASCII rubouts,
P77577. FREAD will ensure that such a

buffer terminator exists in every case where it issues
a call to RDFLD or RDFCH.

Both RDFLD and RDFCH examine each character that
is transferred. If a null is detected before the
scheduled end of the field, a branch is made to the
abnormal return, ACI is then set to the number of
characters (excluding the null) which were read and
transferred before the branch.

Additionally, if a carriage return or form feed
character is detected by RDFLD a branch will be
made to the abnormal return location.

.RDFLD and . RDFCH have FCALL entry points
RDFLD and RDFCH respectively. RDFLD and
RDFCH must be referenced by an . EXTN state-
ment.

11-26

READL, WRITL

Pumse:

Calling Sequences:

Input/
Output

To perform line input of ASCII (. READL) or binary
(.REDS) data strings, or line output of ASCII (, WRITL)
or binary (. WRTS) data strings on a FORTRAN
logical channel,

(AC@ contains a byte pointer to the beginning of the

output string, ACI contains a pointer to the end of

the output string. AC2 contains the FORTRAN logical
channel number,)

JSR @.WRITL

FORTRAN ADDRESS of format flag

error return (System error code returned in AC2)
normal return

(ACP contains a byte pointer to the beginning of the
output string, ACI contains a pointer to the end of
the output string. AC2 contains the FORTRAN
logical channel number,)

JSR @. WRTS
error return (System error code returned in AC2)

¢ normal return

(AC# contains a byte pointer to the beginning of the
input string buffer, AC2 contains the FORTRAN
logical channel number,)

JSR @.READL
error return (System error code returned in AC2)
normal return

11-27

Input/
Output

READL, WRITL (Continued)

Supporting Routines :

Subroutine Size:

Notes to User:

(ACf contains a byte pointer to the beginning of the
input string buffer. ACI1 contains a pointer to the end
of the input string buffer, AC2 contains the FORTRAN
logical channel number,)

JSR @.REDS
error return (System error code returned in AC2.)
normal return

FSAV, FRET; . FOPEN, . FARG, .LDBT, . STBT,
. IOCAT, .SOSW .

Four page zero locations and 175 octal locations of
normally relocatable memory under DOS;212 under RDOS.

Contents of accumulators and state of carry are restored

upon exit from this routine. Descriptions of the system error
codes mentioned above can be found in the DOS User's Manual,
Chapter 4, "Input Output Commands, " or the RDOS User's
Manual, Chapter 5. Leading nulls are ignored and a trailing
null is recognized as a terminator under RDOS.

.WRITL, .WRTS, .READL, and .REDS must be refer-
enced by an . EXTD statement.

The format flag, given as a calling parameter for ASCII
Write, .WRITL, is simply a one word flag used to indicate
whether the data string will be output in free format or not.
If the flag is non-zero, formatted output is indicated and a
carriage return will be appended to the output string. If the
flag is all-zero, free format is indicated and a null will be
appended to the end of the string.

If formatted output is indicated, the first character in the
output string will then be examined. If this character is
found to be ASCII 4, this zero will be replaced by a carriage
return. If the first character is found to be ASCII 1, it will
be replaced by a Form Feed character. All first characters
which are neither ASCII #nor 1 will be dropped from the
output string.

11-28

Input/

Output
WRCH
Purpose: To print a string of ASCII characters on a teletype printer.
Calling Sequence: (ACf contains the byte pointer to the beginning of the

byte string,)
JSR @.WRCH
(Upon exit from the routine, ACI contains the number of

characters in the string,)

Supporting Routines: FSAV, FRET; .LDRT, .COUT. .

Subroutine Size: One page zero location and 15 octal locations of normally
relocatable memory are required,

Notes to User: Original states of accumulators (except AC1)and carry
are restored upon exit from this routine. The contents
of AC1 will be as noted above,

ASCII characters in the string must be packed left to
right, 2 characters per word.

This routine can only be used with either the stand-alone
or disk operating systems,

- WRCH must be referenced by an . EXTD statement.

This routine has an FCALL entry point, WRCH ,

11- 29

MISCELLANEOUS FORTRAN SUPPORT

AFRTN v iiveveevonossecoees 12-3
COT v vvvveveencencennneass 12-4
FINIT +vvevevecsccconsnennes 12-5
GT,GE, LT, LE ..veeveeeceees. 12-6
NFRTN ..evevececsccsoansoas 12-7
OVFLO v vvveveeseccnaoeeeees 12-8
RTEP, RTER, RTEScc00eee. 12-9
STOP, PAUSE0eeeeeeonesss 12-11
THREAD, ALLOCc0e0e0e. 12-12

12-1

Purpose:

Supporting Routines:

Subroutine Size:

Notes to User:

r
i8c. Fortran
Support

To provide an abnormal means of return from a FORTRAN
subroutine. Return is to an address specified on the called
subroutine's stack instead of the first location following the
caller's parameter list.

D TAT

JSR @.AFRTN
FORTRAN ADDRESS of variable containing the return address
FRET; .FRGg .

One page zero location and 5 locations of normally
relocatable memory.

No error messages are generated; accumulators and
carry are restored.

This subroutine has no FCALL entry point.

. AFRTN must be referenced by an . EXTD statement,

12-3

Mise. Fortran

Support

CGT

Purpose: To implement the FORTRAN "Computed GO TO" facility.

Calling Sequence: JSR @.CGT
N, The number of statement numbers which can be gone to
FORTRAN ADDRESS of the non-subscripted integer variable, V
Effective address Ny
Effective address Nj
Effective address N

Supporting Routines: FRET, FSAV; .RTER, .FRGL .

Subroutine Size: One page zero location and 23 octal locations of normally
relocatable memory.

Notes to User: The above assembly language calling sequence is generated

by the FORTRAN statement GO TO (ny,n2, ..., ny) V.
Accumulators and carry are restored upon exit from this
subroutine, A fatal error message is generated if the

integer variable V is less than 1 or greater than N, and
program control remains in the error message subroutine,

. CGT must be referenced by an ., EXTD statement,

This routine has an FCALL entry point, CGT . CGT must
be referenced by an . EXTN statement.

12-4

FINIT

Purp_ose:

Calling Sequence:

Supprortihg Routines:

Subroutine Size:

Notes to User:

Mise., Fortran
Support

To allocate unlabeled common storage.

JSR @, FINI
Absolute address of L1
Absolute address of L2

(L1 and L2 are the first and last entries respectively
in the blank common displacement table generated by
the FORTRAN Compiler, The last entry in the table,
L2, is zero unless blank common storage has been
requested more than once,)

FSAV, FRET; SUCOM .

One page zero location and 24 octal locations of
normally relocatable memory.

Accumulators and carry are restored .

This routine is of limited usefulness to assembly language
programmers. It is mentioned here only for the sake of

completeness.
. FINI must be referenced by an . EXTD statement,

This routine has an FCALL entry point, FINIT .
FINIT must be referenced by an . EXTN statement.

12-5

Mise. Fortran
Support

GT, GE, LT, LE

Purpose: To perform signed comparisons between the contents of
registers AC@ through AC2.

R1 =R2 -- GT
R1ZR2 -- GE
Rl1<R2 -- LT
RIS R2 -- LE

Calling Sequences: (The contents of the first register, R1, is multiplied
by 400g, and the contents of the second register, R2,
is added to that product. The product must be stored
in the next sequential location following the call before
issuing the call.)

JSR @.GT (.GE, .LT, .LE)

CODE: 4008 x+ Rl + R2

(If it is true that (R1) is greater than -- greater
than or equal to, less than, or less than or equal to --
(R2), -1 is loaded into R2., Otherwise, @ is loaded into

R2).
Supporting Routines: FRET, FSAV ; none,
Subroutine Size: Four page zero locations plus 76 locations of normally

relocatable memory.

Notes to User: Original states of all accumulators but AC3 and R2
are restored, and the entry state of carry is also restored.

No error messages are generated.

.GT, .GE, .LT, and . LE must be referenced by an
. EXTD statement,

.GT, .GE, LE, and .LT have the following respective

FCALL entry points: GT, GE, LE, and LT. GT, GE,
LE, and LT must be referenced by an . EXTN statement.

12-6

NFRTN

Purpose:

Calling Sequence:

Supporting Routine:

Subroutine Size:

Notes to User:

Misc., Fortraw
Support

To provide a called subroutine with a meun= of return to the
first location following the caller's parameter list.

JMP @.NFRTN
FRET; none.

One page zero location and 10 octal locations of normally
relocatable memory.

This subroutine assumes that FRTN points to N , the first
item in the caller's parameter list.

Accumulators and carry are restored, no error messages
are generated.

-NFRT must be referenced by an . EXTD statement,

This routine has no FCALL entry point,

12-7

Mise. Fortran
Support

OVFLO

Puzgose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To provide a means of abnormal return from a subroutine
by checking for the occurrence of non-integer arithmetic
overflow,

FCALL

OVERFLOW

20R 3

FORTRAN ADDRESS of return upon overflow
FORTRAN ADDRESS of return if no overflow
FORTRAN ADDRESS of string literal "S" or "N"

(The last argument is optional. If S, overflow error
messages are suppressed; if "N, overflow messages
are not suppressed. ''S" is the default value if no.string
literal argument address is given.)

none; . AFRTN, .CPYL, .OVFL .

23 octal locations of NREL memory.

Accumulators and state of carry are not restored.

The string literal argument consists of an ASCII S or N,
left justified and followed by a null byte,

OVERF must be referenced by an . EXTN statement,

12-8

T

Mise. Fertraf

Support
RTE@, RTER, RTES
Purpose: To indicate that a run time error has ncci -+, either by

specifying an error code (RTER) and the program ccnnter
contents, or by specifying an error code and the location
from which a call was issued upon detection of an error
(RTE@, RTES). In all cases, the message will specify
whether the error is fatal or non fatal.

Calling Sequences: (ACH set to called-from address.)
ERROR CODE
JSR @.RTEg

(Latest entry in SP stack is the called-from address.)
ERROR CODE

JSR @.RTES
ERROR CODE
JSR @.RTER

(The value of the program counter just prior to the call to
. RTER will be printed, alongwith the appropriate error
code.)

Supporting Routines: FCALL, FRET, FSAV, .FSAvV, . BASC, .BDAS, .I;
.OVFL, SP, . WRCH . (FERT1 is also used under RDOS.)

Subroutine Size: Three page zero locations and 221 octal locations of normally
relocatable memory under DOS: 214 locations under RDOS.

Notes To User: Original states of accumulators and carry will be restored
upon exit,

The structure of the ERROR CODE word is as follows:

[1]f] C g ¢ 1]
Bit P12 1112 15

Field f will be set to a 1 if and only if the error code signifies
a fatal run time error, and a "fatal run time error" message

12-9

Mise. Fortra
Support

will be output by this routine. Field C is the field containing
an octal value which will be converted to decimal and output
as the specific error code by this routine. A list of all

run time error codes is given in the FORTRAN Manual,
Appendix A, The definition of the ERROR CODE structure
and mnemonic error code assignments are defined on the
PARF tape.

Notice that bits zero, twelve, and fifteen are always set

to a one, and bits thirteen and fourteen are always set to
zero. These fixed bit assignments cause all ERROR CODES
to be effective skips. Thus the call to the error routine

can be made conditional on the result of a skip test, skipping
to the error code if no error message should be output. The
code will then be executed as an arithmetic/logic no load,
skip instruction skipping over the call to the error pro-
cessing routine,

The non-fatal error messages output by these routines
are of the form:

RUNTIME ERROR NN AT LOC. xxxxxx, CALLED FROM
LOC. yyyyyy

wher NN is the decimal run time error code (a complete

list of error codes is found in the FORTRAN IV User's
Manual, 093-000053). xxxxxx is the NREL starting address
of the subroutine detecting the error. yyyyyy is the address
(+1) in the main program (or user subroutine) of the assembly
language instruction causing the error to occur.

Fatal error messages will be of the same form as non-fatal
error messages with the specifier FATAL appended to the
message.,

. RTE@ is used by the FLINK module, .RTES by the signed
integer and single precision and double precision real
arithmetic modules, and . RTER by the remainder of the
run time routines,

.RTER, .RTES, and .RTE@ must be referenced by an
. EXTD statement.

All fatal evror conditicns cause program control to return to the
Debugger (if it is loaded), or otherwise to the operating system
under DOS. Under RDOS, control is returned to the De-
bugger, multitask scheduler, or CLI via the initializer.

12-10

[~ -
Misc. Fortran;
Support |
|
STOP, PAUSE
Purpose: To implement the FORTRAN STOP and PAUSE functions.
Calling Sequences: JSR @.STOP
TEXT

(The message "ST OP"') is output on the TTY printer, then
the text message is output with a terminating carriage
return and control returns to the operating system.)

JSR @.STOP
-1

(The message "STOP") is output, then control returns to
the operating system under DOS or to the CLI or multitask
scheduler via the initializer under RDOS.)

JSR @.PAUSE
TEXT
NSI

(The message "PAUSE") is output on the TTY printer,
then the text message ig)output, followed by a carriage

return. Control reverts to the operating system until any

key is struck, when control then returns to the Next Sequential
Instruction.)

JSR @.PAUSE
-1
NSI

(The message "PAUSE" is output on the TTY printer,
and control reverts to the operating system. Control
returns to the Next Sequential Instruction as soon as any

Supporting Routines: FRET, FSAV; .WRCH . (FERTN is also used under RDOS.)

Subroutine Size: Two page zero locations and 52 octal locations of normally
relocatable memory.

Notes to User: Accumulators and carry are restored upon exit from these
routines, .STOP and .PAUSE must be referenced by an
. EXTD statement.

12-11

Mise. Fortraw
Support

THREAD, ALLOC

Purmse:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To transfer the latest five word element of one list
to a second list (THREAD) or to examine a list and --
if it is a null list -- create a five word element and
transfer it to a second list (ALLOC).

JSR @.THREAD (or @. ALLOC)
FORTRAN ADDRESS of "FROM" list pointer
FORTRAN ADDRESS of "TO" list pointer

(See Notes to User for a detailed explanation of
. THREAD and . ALLOC operation.)

FSAV, FRET; .CPYARG .

Two page zero locations and 44 octal locations of
normally relocatable memory.

Contents of accumulators and carry are restored
upon exit from this routine., No error messages are
generated,

. THREAD and . ALLOC must be referenced by an
. EXTD statem

EXTD ment,
The five word elements which are list numbers are
composed of blocks of five sequential locations. The
first location (i.e., the one having the lowest core
address) is the link word; the remaining four words are
reserved for list data storage:

LINK

data

data

data

data

List Element

Lists are variable in length, and list elements may be
found in scattered locations throughout available core
memory. The oldest member of a list has a LINK of

12-12

Mise. Fortran
Support

THREAD, ALLOC (Continued)

zero; each successive list element has a LINK
which points to the next earlier element. F inally,
each list has a pointer to the most recent list element.

{ List Pointer " LINK

D

LINK

L LINK A

LINK = §

. THREAD takes the most recent element from one
list, the "FROM" list, and attaches it to a second
list, the "TO" list,where it then becomes the most
recent entry in the list.

\

["FROM" List Pointer |—[LINK |{ LINK -«—LINILR‘]
) "FROM" List
D B C A
["TO™ List Pointer |~ { LINK P§ LINK || LINKP o @
X Z W Y "TO" List

BEFORE THREAD OPERATION

12-13

Mise. Fortran
Support

THREAD, ALLOC (Continued)

["FROM" List Pointer [— LINK || LINK N 7]

B C A "FROM" List

LINK

["TO" List Pointer

LINK LINK |-~ LINK)

"TQO" List

AFTER THREAD OPERATION

.ALLOC, on the other hand, first examines the FROM
list pointer; if it is non-zero then the list has at least
one element, and . ALLOC calls . THREAD. If the
pointer contains zero, then the FROM list is a null
list. In this case, . ALLOC creates a five word list
element, appending it to the stack frame of the routine
(or . MAIN) which called . ALLOC. This new element
is preserved by adjusting the caller's FLGT, and the
new element is added to the TO list by . THREAD,

The routines have FCALL entry points, ALLOC and THREAD.
ALLOC and THREAD must be referenced by an . EXTN
statement.

12-14

ARRAY HANDLING ROUTINES

ARYSZ ‘00'00....0--oo.ooooo.aoo.no.nol3-3

FALOC ® 8 06 0 0 @ o 0 0 0 0 0 e 0 o'ooocoo..n-aooo-13-4

FREDI........0'.00..0!0.000.....t'0.013-5
FSBR, FSUB

.l.....0....0....!'.‘13-6

13-1

Array

hardlers
ARYSZ
Purpose: To determine the size of an array in terms of both
elements in the array and core locations needed to contain
the array,
Calling Sequence: (ACf contains the starting address of the subscript
bound specifier.,)
JSR @.ARYSZ
(ACH contains the total number of elements in the array,
AC1 contains the total number of words in the array.)
Supporting Routines: FRET, FSAV, MPY@ ; none .
Subroutine Size: One page zero location and 20 octal , NREL locations.
Notes to User: Accumulators and carry are restored upon exit from this

routine. No error messages are generated.
. ARYS must be referenced by an , EXTD statement.

This routine has an FCALL entry point, ARYSZ .

13-3

Array
Handlers

FALOC

Purpose:

Calling Sequence:

Supporting Routines :

Subroutine Size:

Notes to User:

To allocate an array on a caller’s stack.

JSR @, FALOC

FORTRAN ADDRESS of subscript bound specifier
FORTRAN ADDRESS of array specifier

Integer value of array size in words (not elements).

FSAV, FRET; .CPYARG, .RTER, AFSE .

One page zero location and 33 octal , NREL locations.,
Accumulators and carry are restored upon exit. A fatal
error message is generated if there is insufficient run

time stack area for allocation of the array.

Caller's FLGTis adjusted to include array size so that
newly created stacks will not overwrite the array.

. FALOC must be referenced by an ., EXTD statement,

This routine has an FCALL entry point, FALOC .
FALOC must be referenced by an . EXTN statement.

13-4

Array

Handlers
FREDI
Purpose: To permit the redefinition of array subscript values when
arrays are passed as dummy arguments,
Calling Sequence: JSR @. FRED

FORTRAN ADDRESS of special subscript bound specifier
(built by compilter)
FORTRAN ADDRESS of array data address
FORTRAN ADDRESS of area reserved for 3-word array
specifier

(A new three word specifier and subscript bound specifier

are constructed. The SBS is appended to the caller's
stack -- see Appendix D illustration.)

Supporting Routines: FRET, FSAV, MPY@, .OFLO; AFSE, .CPYAR, .FRGI

Subroutine Size: One page zero location and 111 octal locations of normally
relocatable memory.

Notes to User: Accumulators and carry are restored upon exit, Upon
stack overflow, the contents of the caller's FRTN are
printed as an error message.

The call to FREDI is generated by FORTRAN statements
of this general form:

SUBROUTINE TESTSUB (%,V,2Z,a,...)
DIMENSION (x(i), y(m), z(n))

If there is insufficient run time stack area for the

creation of a new SBS (see Appendix D, Array Structure

and Handling) is made to . OFLO. ,OFLO is an entry

in the FLINK module, used by FLINK to collapse run time

stack frames to permit the issuing of a stack overflow

message. Except for the FLINK subroutines, only FREDI needs
to use the , OFLO entry. This is true since at run time

only FSAV and FREDI allocate storage on the run time

stack. FREDI must be referenced by an , EXTD statement.

This routine has the FCALL entry point FREDI,

13-5

Array
Handlersz

FSBR, FSUB

Pumose:

Calling Sequences:

Supporting Routines:

Subroutine Size:

Notes to User:

To calculate the effective address of an array element for
the cowpiled program (FSUB), or for subroutine FREAD
in a formatted 1/0O entry (FSBR),

JSR @.FSUB

Integer number of arguments

FORTRAN ADDRESS of 3 word address specifier
FORTRAN ADDRESS of result

FORTRAN ADDRESS of subscript 1

FORTRAN ADDRESS of subscript 2

FORTRAN ADDRESS of last subscript
(The effective address of the array element selected by

the input subscript choices is placed in the FORTRAN ADDRESS
of the result.)

(AC@ contains pointer to FREAD argument list with Element
Descriptor List =1)
JSR @. FSBR

(The effective address of the selected array element is
returned in ACl1.)

MPY; .MADO, .RTES, SP .

Two page zero locations and 175 octal locations of normally
relocatable memory.

Accumulators and carry are not restored upon exit from
this routine. Subscript calculation errors will be flagged
by a fatal error message. .FSBR and . FSUB must be
referenced by an . EXTD statement,

13-6

*

APPENDIX A

RUN TIME ROUTINE TITLES AND NREL ENTRIES

To aid the debugging of FORTRAN programs and facilitate the interpretation of loader symbol
tables, the following list of run time subroutines’ NREL entry points is given. Subroutines

in this list are common to both the DOS and RDOS FORTRAN Run Time Libraries. This
information can be obtained by the user by running an LFE analysis of library programs.
However, the alternate names listed here are confined to those that represent meaningful

entry points.

Subroutine Title

ABSLT
AFRTN
AINT
ALG
AMNX@
AMNX1
AMOD

ARCTAN
ARGUM
ARYSZ
ATN
BASC
BDASC
BREAK
CABS
CADD
CATIN
CCEQ
ccos
CDIV
CEXPO
CGT
CHSAV
CLIP
CLOAD
CLOG
CMPLX
CMUL
CNEG
COMP
CONJG
cos
COSIN
couT
CPWR
CPYAR
CRCX1
CRCX2
CSIN
CSQRT
CSTOR
CXFL1
CXFL2
DBREAK
DCABS
DCADD
DCCEQ
DCCOS

DOS only.

NREL Entry Point

ABS
AFRTN

.AINT

ALG .ALGl@
AMAX@ AMINg
AMAX1 AMINI
.AMOD

DATN2 DATN
FARGU
ARYSZ
ATN2 ATN
.BASC
.BDASC

BRK

.CABS

CSUB CAD
CATIN IMIO
CEQ1

Ccos

CDV

CEXPO

CGT

CHSAV CHRST
CLP

CFLD

CLOG
CMPLX
CMUL
CNEG

COMP

CONJ

CS SN

DCS DSN
CuuT CIN
CPW1
CPYARG CPYLS
CRX2
DCRX2

CSIN

CSQRT
CFST

CIX

DCIX

DBRK

.DCAB
DCSUB DCAD
CEQ2
DCCOS

AMX@
.AMX1

.AMNI1

DCDIV
DCEXPO
DCLOD
DCMPLX
DCMUL
DCPWR
DCSIN
DCSQR
DCSTR
DDCLO
DELET*
DEXPC
DEXPO
DFL

DIM
DIPWR
DLOG
DMNX1
DMOD
DPOLY
DPWER
DREAL
DSIGN
DSINH
DSQRT
DTANH
EXP
EXPC
FALOC
FARGP
FCLOS*
FFILE
FINIT
FL

FLINK
FLIP
FOPEN
FPWER
FREAD
FREDI
FRGLD
FSBR
FSEEK

IABS

NREL Entry Point

DCDV

CEXP

DCFLD

DCMPLX

DCMUL

CPW2

DCSIN

NCSQR

DCFST

DCLOG

DELET

DXPC

DEXP

DFL DFS DFA DFB DFM DFD
DFXL DFLX DFSG DFLE DFLT
DFGE DFGT DFEQ DFNG
.DIM

DIPWR

DLOG .DLGI

DMAX1 DMIN1 ,DMNI .DMXI1
.DMOD

DPLY2

DPW

DREAL DAIMA

DSIGN DSYGN

TN MCNTIT
DSI 11N LJOVINI

DSQR
DTNH

EXPO

XPC

FALOC

FRG1 FRG§

FCLOS

FFIL

FINIT

FL FS FA FB FM FD FXL
FLX FSG FNG FLE FGT FLT
FGE FEQ

SAV@ SAV2 SAV3 RSTR QRSTR
FLP FLPP

FOPEN

FPW

FREAD FRWRIT BRD BWR
FREDI

FRGLD

FSBR FSUBA

FSEEK

.1

.1ABS

Subroutine Title NREL Entry Point Subroutine Title NREL Entry Point

IDIM . IDIM . RATN1 RATN

IDINT . IDIN RATN2 RTN2

IFIX .IFIX RCABS CABS

INT LINT RDCABS RCAB

IPWER IPWR RDFLD RDFLD RDFCH
ISIGN . ISIG READL READL WRITL REDS WRITS
LDp LDg LD1 1LD2 STP ST1 ST2 REAL .REAL .AIMA
LDREG LDR1 LDR2 RIPWR RIPWR

LDSTN LDB STB RTER RTER RTE@ RTES
LE LE LT GE GT SDVD SDVD

MAD MAD MADO SIGN SIGN SYGN
MNMX@ MAX@ MINP SINH SHIN SNH
MNMX1 MAX1 MIN1 .MX1 .MN1 SMPY SMPY

MOD . MOD SQRT SQR

MOVE MOVE CMOVE STOP STOP PAUSE
MOVEF MOVEF STREG ST1 ST2

MVBT MVBT MVBC TAN TN

MVF MVF TANGENT DTN

MVZ MVZ TANH TNH

NFRTN NFRTN THREA ALLOC THREAD
NPTR1 NR WRCH WRCH

NPTR3 NR3

NRPTR NR2

OVFLO OVERF

PLY1 PLY1

Following is a list of loader titles and NREL entry points for subroutines found
only in the RDOS FORTRAN Run Time Library.

Subroutine Title NREL Entry Point Subroutine Title NREL Entry Point
CFILW CFILW FTASK FTASK

CLOSE CLOSE FCLOS FTIME FGTIM FSTIM

DATE DATE FTMAX TMAX .IXMT LNKPR LQTSC
DFILW DELET DFILW QTCNT SVVAR

DIR DIR FXMT REC XMT XMTW

FACAL AKILL ARDY ASUSP GTATR GTATR

FDELY FDELY INIT INIT

FINTD FINRV FINTD ITEST ICLR ISET ITEST

FKILL KILL QUIT MTI FERTA FERTI FERTN .I
FOVLY FOVEN FOVLD FOVRL FQTRL OPEN APPEN OPEN OVOPN
FPEND PEND SUSP RESET RESET

FPRI PRI TIME TIME

FQTASK FQTASK FQTCK

FSTAT FSTAT

FSWAP FBACK FCHAN FSWAP

APPENDIX B
USING EITHER A SIMPLIFIED INITIALIZER OR .I

The following program illustrates a simplified version of the non-real time FORTRAN
initializer, .I. This simplified routine does not interface with an operating system

and performs no blank common allocation, It is modular in structure, permitting

only those portions to be used which are required by a particular assembly language
program, The program EXAMPLE given in Appendix C illustrates just such a use of this
simplified version of . I; EXAMPLE uses no number stack, so the number stack portion
of .1 is omitted in that program,

+TITLE INITIALIZER

THIS ROUTINE DOES NO CHECKING FOR AVAILABILITY OF
ADEQUATE MEMORY FOR STACK ALLOCATION...IT PRESUMES THERE IS
ENOUGH. NEITHER DOES IT CALL UPON AN OPERATING SYSTEM.

o Yo o

«ENT INIT 5 INITIALIZATION ENTRY

« ENT Sp 5 DEFINE THE 'SP'" STACK POINTER
«ENT NSP 5 DEFINE THE "NSP" STACK POINTER
«ENT «NDSP 5 DEFINE THE END OF THE NUMBER

’ ’ 5 STACK

«ENT AFSE 5 DEFINE THE END OF THE SUB-

ROUTINE LINKAGE STACK
LINKAGE CALL
ENTRY POINT OF MAIN PROGRAM

"o W

o« EXTN FCALL
+ EXTN «MAIN
« EXTD Qsp

e

« ZREL 5 PAGE ZERO POINTERS
Sp: « BLK 5 "SP'" STACK POINTER
NSP: « BLK 5 NUMBER STACK POINTER

+NDSP: « BLK
AFSE: OBLK

END OF NUMBER STACK INDICATION
END OF SUBROUTINE STACK
INDICATION

el N

Ve Ve e

B-1

>

INIT:

e

e

o

e o \go Vo

.o

«NREL

INITIALIZE THE

LDA
STA
LDA
ADD

INITIALIZE THE NUMBER STACK FOR

STA
LbA
ADD
STA

@s@«USTH
BsSP
1,SPSIZ
1,9

@sNSP
1>NSSIZ
1,0

@> «NDSP

""SP*'" STACK FOR

U

s wo Ve

.
k4

-
>

"SPSIZ'" WORDS

FIRST AVAILABLE ADDRESS
ABOVE LOADED ROUTINES
SIZE OF ''SP" STACK
""NSSIZ’' WORDS

FIRST WORD OF NUMBER STACK
SIZE OF NUMBER STACK

END OF NUMBER STACK

INITIALIZE THE SUBROUTINE LINKAGE STACK
“"FSP'" IS CENTERED ABOUT AN INDEXABLE FRAME

LDA
ADD
STA

ALLOCATE
LDA
ADD
STA

IIQ SP (4]

THE

35 CENTER
2,3
3sFSP

‘oo

e o Ve

INDEXABLE CENTER

FIRST FRAME'S STACK POINTER
("FSP'" IS DEFINED BY THE
FORTRAN PARAMETER TAPE)

SIZE OF THE LINKAGE STACK

1,LSSIZ
@s1
1, AFSE

e Mo Ve

INDICATION OF LINKAGE STACK
SIZE (IT IS COMPARED TO
"FSP'" FOR OVERFLOW)

MUST ALWAYS REMAIN IN A FIXED RELATION TO

"FSP'™ AND IS POSITIONED SUCH THAT ACCUMULATOR 2

CAN BE IMMEDIATELY FREED IF NECESSARY.

LDA
ADD
STA

INITIALIZE THE FIRST STACK FRAME

SuB
STA
ADC
STA

FCALL
«MAIN

JMP

STA

1,QSPDS
@1
1,QSP

2,0
B>FLGT» 3
@50
3sFOSP» 3

2,8QSP

e o

Ve Vs s e o Yo e e

EeGo

VARIABLE LENGTH OF THIS

FRAME IS ZERO

SET THE PREVIOUS FRAME

TO -1 (INDICATES NO PREVIOUS
FRAME)

CALL THE MAIN PROGRAM

JMP TO SELF IF RETURN IS EVER
MADE

LNKSZ=

SPSIZ:
NSSIZ:

LSSIZ:
QSPDS:

o.U STHU:

CENTER:

1000

40
609

200 -FFEL+LNKSZ
208+FAC2

UST+USTHU

290
«END INIT

e e W ‘oo

e Wwe ‘e We Ve e Yo e

Ve e Ve o

LINKAGE STACK TOTAL SIzZFE
(CaN USE a~l .. ALLABLE
MEMORY IF THE OPERATING
SYSTEM CALL oMEM IS USED)
SIZE OF 'SP' STACK

SIZE OF NUMBER STACK
(GOOD FOR 64. SINGLE
FrECISION FLOATING POINT
VARI ABLES)

LINKAGE STACK SIZE

QSP DISPLACEMENT FROM START
OF FRAME

FIRST WORD AVAILABLE
("UST'" DEFINED BY THE
USER PARAMETER TAPE)
CENTER OF A STACK FRAME

B-3

If instead of writing a simplified initializer routine for a non-real time program, a
user wishes to load .I and leave the details of allocating the run time stack to that pro-
gram, there are several features which must be incorporated into the main assembly
language program, First of all, .I must be referenced in an , EXTN statement, This
will cause ,I to be loaded and for it to gain control when the program is run,

Secondly, the main program must be , ENTered as . MAIN, and the label of its entry
point must also be . MAIN , This is due to the fact that .I transfers control to the
main program by means of

FCALL
. MAIN

. MAIN must be preceded by a non-negative integer stack length word describing the
number of run time stack temporaries required by the program, If none are required,
integer O should precede . MAIN so that it can call out to one or more run time
routines,

Finally, . MAIN must be terminated by a simple . END statement (as opposed to an . END
statement with an argument starting address). |

The following assembly language program is one which causes a memory address to
be printed out on the TTY printer. This address represents the highest memory
address, HMA, available to the user or the lowest address in the symbol table, EST,
in the case where the debugger is loaded with , MAIN, For a complete understanding
of these terms and the system calls issued by this program, see the DOS User's
Manual,

Those features which must be incorporated into any assembly language program using

. I are enclosed with rectangles for emphasis., If an assembly language program
requires run time stack storage, the appropriate integer (instead of zero as shown) must
precede the beginning of . MAIN code.

B-4

AnAy MEMS

nARPA'roGRRR
GreRL'an6n17 [MAINY
pean2tnpidean _
anan3'anpdon
aoanatiasapn
PAAAB ' A2m41 A
PAPN6Y 177777
anen7'177777

BARIA' 220405
22911 '006001 %

ARAL2'na6R17
vap1d'vnaann
ARRLA'2RA4RR
APAIS'PARAIANRUF S
Arp16n ,BUF?

ARR2

RUF
FCALL
.BDAS
«BUF

TMAIN
JWRCH

MEMS

fnants!
PAONOBIY Y
rARERY VX
2onRyL6!
177777 X
ngaaey!
NANARYL $ X

!

1 ADDRESS,
?

'

'

!

)

STITLE MEM

HMA,

THIS ASSEMBLY LANGUAGE
(SEE THE RDOS USFR!'S MANUAL)

]

EXTD WRCH

ﬁEﬁT“"fﬁrrm
FYPN | Er]

.LXIV‘I ruAL;_

«NREL
21

,SYST
JMEM
Jvp
MOV
LDA
FCALL
LBDASC

= Se
- -
T -

LDA n,B

uF

JSR &, WRCH

LSYST
JRTN

JMP .
2¢,BUF

.BLK 100
JEND

ts22
1723
1724
1/32

1718
1727

1/26

1733

B-5

'!8

PROGRAM TO DETERMINE THE HIGHEST AVATLABLE MFMARY

OR THE START OF THE SYMBNL TAGBLE

PROGRAM ISSUES RNJZ S¥&RTF-

AND 1T ALSO ISSUES FORTRAN RUNTIME LIBRARY CALLS

! SYSTEM CALL TO GEYT THE HMA

Ny

! CHANGE BINARY TO NECTYMAL IN ASCIZ

)} TYPE THE VALUE ON THE TTY

} SYSTEM CALL

1732

TO RETURM

TO

THE CL1

CAL

APPENDIX C

ILLUSTRATIVE PROGRAMS

Appendix C contains a series of assembly language routines which illustrate the use
of the library. The first two are subroutines found in the library. BREAK separates
an SPFL number into its integral and fractional components, and demonstrates

the use of the number stack, IDINT truncates a DPFL number, and expresses the
result as an integer. IDINT utilizes the FSAV/FRET stack managers and it calls
FARG, the argument fetching routine.

The illustrative program entitled EXAMPLE computes the product of any two
positive integers provided the product does not exceed 65535, The multiplier

and multiplicand, entered via the TTY keyboard, are separated by a comma and are
followed by a carriage return, The product is returned on the printer, followed by
a carriage return and line feed, after which the program is ready to accept new
data, Typical program output is as follows:

2,3
6

28,9
252
31500,2
63000

No error checking is done, so that input data which is non-numeric or causes a
product outside the acceptable range results in spurious results being given,

EXAMPLE also illustrates the use of parts of the simplified stack initializer, . I
given in Appendix B,

A flowchart of EXAMPLE follows the program listing to clarify the program
coding.

ApAy1 RREAK

PAARQA=RNABAN! BRKL?

nO6RPA-

PARRO'AS6MAR23RRK

paeR1'pianoes
nARR2'n200P01S
a0803'n0RARSS
20004'2P0R04S
popas'aanees

20006'2000038
wene7'nnpnes

A0R1R'ARR0RES
P0A11'n21605

PANLI2'140028
ann13'a320028%

geridtorionn

Ana2

BRK
FBRK Y
FLFX1
FRLD1
FsBa1
FXFL1
NSP
SP
«BRK1Y

BREAK

pananel
22600C=
2pPeRa8X
NANPASEX
PRRAPEESX
reoee3 s X
PANQO18X
PrARN28X
200000 =

I1BREAK U
JINTO AN
1INPUT!
JOUTPUTS
!

«TITLE

+ENT
JEXTD
JEXTD

+ZREL
BRK
FBRK1 =

«NREL
STA

182

LDA
FRLD1
FLFX1
FACR=FZD
FXFL1
FACO=FZD
FSB1

LDA

ns§z

LDA

ImnP

+END

1714
1718
1/22
1721
1/26
1724
1720
1718
1714

P SINGLE PRECISINN FLOATING POINT NUMBER
INTEGER AND A FRACTIONAL PART
ARGUMENT OM TOP OF NUMBER STACK
FRACTION REPLACES INPUT
INTEGER IN ACH

BREAK
FBRK1

NSP, 8P
FXFL1,FLFXt,FRLD1,FSR1Y

JSR #,BRK]
3,088P
SP
2,NSP
1COPY ARGUMENT
IFLOAY YO FIX IT
PFIX TO FLOAY INTEGER
JGET FRACTION = ARG = FLOAT(D)
?,FAC2,3
SP
2,08P
n,?

1END OF BREAK ROUTINE

1/18

1719 1/28 1/29
1715

C-2

2421
21
02
23
24
25
28
27
28
9
12
i1
i2

IDINT

13 222270202001

14

15 adeani(77777

16 2apay'200032 C28

17 20202220777
18 32223V 2768223s

19 2220412000028

29 137051122212

21 22a238'aacan1y

22 222071190211
23 222101177777

24
25

27222

€2
FFLD2
FLFX2
FRET
FSAvV
ID AT
XI,

2 FARG
o IDIN

IDINT

nxaAppgl
PAARA2EYX
AVARRLBYX
Anppinty
AARQAAN Y
AP A=
ARNCAAm
22000738 X
A00002°

IO NTE

«IDINI

1716
1719
1721
1/23
1715
1713
1712
1718
1713

JTRUNCATE D,P NUMBER AT SECOND FORTRAN

170 NEAREST INTEGER IN MAGNITUDF
PAND LEAVE RESULT AT FORTRAN ADDRESS
JBELOW CaALL

«TITLE IDINT
«ENT IDGNT, XT,
«EXTN FSAV,FRET
+EXTD FLFX2,FFLN2
«EXTOD « FARG

o IREL

e IDIN=?2
+NREL

FSAV

2

LDA 2,C2
J8R 8, FARG
FFLD2
eTMP+{=FZD
FLFX2
0TMP=FZD
FRET

ADDRESS

«END JEND OF TRUNCATINN OF D,P NUMBER

1717

1717

YWl EXAMP

1

ve « TITLE EXAMPLE

¥v3 H ASSEMBLE WITH PARF AND PARU

V4

95

yué

07 «EXTN FCALLs»MPY>FRET» «BDASC>MPYOQ

vy OEXTD 'LDB) OC‘JUT: OSTB

29 «EXTD «CIN>SP,AFSE,QSP

10

11 177612 D1=TMP+1 3 FIRST INPUT DIGIT
12 177613 BPTR=D1+1 3 FIXED BYTE POINTER TO BEGIN
13 177614 INPT=BPTR+1 3 MOVING PUINTER

14

15

16

17

18

19

29 «NREL

21 VbobwY'D22524 .1: LDA 0s@.USTHU 3SET UP SP

22 Yubol1'*0400uU5% STA @, SP

23 VUWB2'Y24527 LDA 1, SPSIZ

24 YBVB3*123VY0 ADD 1,0

25 VYYB4'334521 LDA 3, CENTER 3 SET UP FSP

26 YUBBS*117000 ADD ¥s3

27 YvPre6'YsSapl1 6 STA 3sFSP

28 VOBUYT'Y24517 LDA 1,5LSSIZ 3 SET UP AFSE

29 VLBILG*1L7U00 ADD Bs1

30 BUYU11°'0440065 STA 1,AFSE

31 0PE12'224520 LbA 1,QSPDS 3 SET UP QSP

32 GUY13*'1bT0VY ADD P51

33 00014 044007% STA 1,QSP

34 DOY15'1024D0 SUB Vs0 3 SET UP FIRST STACK FRAME
35 DUP16'V41660 STA UsFLGT»3

36 VEBY1T'102000 ADC 8,0

37 VLY2V'Y41601 STA P>FOSP,»3

38 QW21 1777717 FCALL

39 dpb22'00e02s5" oMAIN

40 YRB23'YYYT76 Jwp =2 3 REPEAT JOB

41 BPYV24'PPBYB4 4

42

43 0PY25°'P20510 «MAIN: LDA Vs PINPF 3CONSTRUCT MOVING PTR
44 PLV26'0V41614 STA 0s INPT» 3

45 00V27°'041613 STA UsBPTR» 3 3 CONSTRUCT FIXED POINTER
46 0VV30°'162400 SuUB Ws0 3 INITIALIZE FLAGS
47 VUYP31'Y4l612 STA ¥»D153

438

49

t QB2 EXAMP

g1

v2

83

B4 DOV32'VU6BB4ASSTPL: JSR @sCIN 3 INPUT CHARACTER
¥US ©¥POV33'105000 MoV @s1

W6 DVD34'B45611 STA 1, TMP, 3

U7 PBB35'V21614 LDA 0, INPTs 3 3 GET BYTE PUINTER
U8 BVW36'DO6WV3S JSR @.STB 3 STORE THE BYTE
09 BYB3T7'6l1614 152 INPT»3 3 UPDATE POINTER
16 00040'@25611 LDA 1,TMP>»3

11 00041020467 LDA 2, CRTN

12 90042122404 SUB 1,05 SER 5 IS IT A CR?

13 VBV43*'6ONTAT JMP STPY : REPEAT

14 00044041611 STA 0s TMPs 3

15 U0B45°R21613 STP2: LbA 0sBPTR»3 3 GET BEGINNING BYTE POINTER
16 VUB46°B41614 STA B, INPT,3

17 DB047°'006001S JSR @.LDB 3 GET TOP DIGIT
18 VVBSV'Y30466 LDA 2,CMA 5 IS IT A COMMA?
19 0VP51°132415 SuUB# 1,2, SNR

20 BYLS2'PVY416 JMP HSKP 3 YES.

21 PPY53'B3v455 L DA 25 CRTN 3 IS IT A CR?
22 YPY54*'132415 SUB# 1,25 SNR

23 J0B855'0bb423 JMP STP3 3 YES

24

25 UUG56'U20455 LDA 2,C017 3 NO», STRIP CODE
26 BBEBST'1234p0 AND 1,0

27 PVV6ew'B3B454 LDA 2,Cco12

28 UBve61'p25611 LDA 1,TMP, 3

29 vwe2R'1711711 MPY

30 VDG63°1B45611 STA 1, TMP» 3

31 U0064°021614 L.DA 25 INPT»>3 3 BUMP POINTER
32 LBL6S'10U1400 INC D, ‘

33 VUV66'U41614 STA 25 INPT»3

34 BOY6T*YRBT6D JMP STP2+2 '

35 DUBTV*B21611 HSKP: LDA ¥s TMP» 3

36 0BBTI'V4al1612 STA @sD153

37 DUBT2'102400 SUB 050

38 QVRT3'041611 STA Ps TMP» 3

39 0BBT4°Y21614 - LDA Ps INPT» 3

40 BBOTS*181480 INC 0,0

41 VBYT6'B41614 STA Qs INPT» 3

42 BIBTT'BOBTSY JMP STP2+2

C-5

t VYB3 EXAMP

21

0z

¥3

b4 VO1VB'VY25612 STP3: LDA

¥S VO1P1'Y31611 LbA

D6 VB1V2*'177777 MPYQ

07 PV1B3'Y45612 STA

U8 VB1V4'0V21613 LDA

¥g 0U105'00vBB21" FCALL

10 U186 17771717 +«BDASC
11 B0107'0Y24421 LDA

12 00110'0060933 JSR

13 V0111021613 FINALE: LDA

14 00112'041614 STA

15 90113'021614 LDA

16 00114'00V60015S JSR

17 0115121060 MOV

18 001160060025 JSR

19 98117'030411 LDA

20 00v120'112415 SuB#

21 981211777177 FRET

22 00122'011614 ISZ

23 00123'0VVTTE JMP

24 PU124°'0Y004VT7 «USTHU: UST+USTH
25 0U125'009200 CENTER: 200

26 JUY126'001167 LSSIZ: 2090-FFEL
27 0V127'00U0VUT £SPDS: 20Y+FAC2
28 UPD130'Y0VY1S5S CRTN: 215

29 90131°'BYBY4Y SPSIZ: 40

3% ©V132'0YBVYVT QSPDS: 200+FAC
31 0U133'VYOY1IT CO17: 17

32 VU134°0vVYO12 CO12: 12

33 BB10VY LNKSZ=100V0

34 VO135'UBUCTE"PINPF? 2% INPF
35 VB136'VBYU54 CMA: 054

36 VU196 INPF: «BLK 100
37 VEBLYY " +END

1,D1,3
2, TMP, 3

1,D1,3
0,BPTR»3

1>CRTN
@.STB
J»BPTR» 3
s INPT»3
@s INPT» 3
@.LDB
1,9
@.CouT
25CRTN
P25 SNR

INPT»3
FINALE+2
U

+LNKSZ

2

o1

C-6

we ‘oo

.

.o

-
2>

e

We s s Ve

INITIALIZE BYTE POINTER
CONVERT MS WORD TO *ASCII

INITIALIZE POINTER

GET BYTE POINTER
AC1 GETS BYTE

QUTPUT IT FROM ACY

LAST CHARACTER?

YESs RETURN

NOs, INCREMENT POINTER
AND REPEAT

VYL 4

AFSE
BPTR
cui12
co11
CENTE
CMA
CRTN
D1
FCALL

ITTAIAL

FINAL
FRET
HSKP
INPF
INPT

LNKSZ
LSSIZ
MPY
MPY@
PINPF
QSPDS
SP
SPSIZ
STP1
STP2
STP3
£SPDS
+«BDAS
«CIN
«COUT
oI

1 N
Cl.ID

eMAIN
«STB
«USTH

EXAMP

WUoUo638K
177613
Vo134
0oo133"°
vov125"
vov136"
¥oV130°
177612
PBY1B5"'X
vboiii®
vER121°X
0oBBTD"
PVYB137"
177614

P01000
voovi26"
Povv62"'X
000102°X

© 900135"

gov132"
POBBY5SX
vov131"
0ovB32"
voRB4S”
000100
voe127"
0vB106'X
VOBVBB4ASX

00BYB28X -

vYvBoY "

(ATATACRIX Y OV
(151011

200025
VO00Y3SX
vRvl124"

1730

1712

2727
2725
1725
2/18
2711
1711
1738
3713
3721
2/720
3734
1713
2741

3726

1728
2/29
3706
1743
1731
1722
1723
27904
2715
2723
3727
3710
2/04
3/18
1721
2717
1739
2708
1721

1713
3732
3731
3725
3735
2/21
1712
3709
3723

2735
3736
1744
3714
3733
3726

3734
3730

3729
2713
2/34
3704

3737
3716
1743
3712
3724

1745

3711

1747

2707
3715

2742

C-7

2/15

3719
2736

2709
3/722

3708

3728
3704

2716

3713

3707

2/31 2733 2/39

Strip Away
ASCII code

l

Build Complete
octal number;

TMP*10+digit
replaces TMP

Flow Chart of Hiustrative program, “EXAMPLET

Set Up Stacks
and
Pointers

Y

Initialize
Byte Pointer;
zero
Temporaries

Echo It

Y

Store the
Character,
Pointer + 1 =+

Pointer

Pointer + 1 —

Pointer

Carriage
Return

Reset Pointer

vy

Y -

Get ASCII Byte

>—f - -—~—--------—=—-(STEPI)
\

Read Character,

TMP—D1
g—— TMP

Pointer + 1 —»
Pointer

A

Carriage
Return
?

Convert DI to
string of
ASCII decimal

digits

End string with
carriage return

___________________ FINALE

Get ASCII byte

Output character
via TTY

Carriage
Return

?

No

Pointer + 1 —+
Pointer

y

CHANGES FROM REVISION 2 TO REVISION 3 OF THE FORTRAN IV RUN TIME
LIBRARY USER'S MANUAL

Substantive changes are described in the following list. Typographical corrections
are not included.

Page 1-26 Comparisons are now given of execution times on the NOVA, NOVA
1200 and NOVA 800 series computers.

Page 1-27 The category formerly entitled "Supporting Routines and Displace-
ments” is now entitled simply "Supporting Routines, "

Due to extensive changes throughout this revision of the FORTRAN
Run Time Library, the sizes of many routines have changed. The
pages containing size changes to previously existing routines are
as follows:

2-7,2-14,3-5,3-8, 3-11, 3-15, 3-16, 3-17,3-19, 3-20, 3-21, 3-22
3-24,3-28,4-8,4-12,4-13,4-16,4-19,4-20,4-21,4-23,4-24,4-26,
4-27,6-5,7-17,7-19, 8-4,10-7,10-9, 10-10, 10-12, 10-14, 10-16,
11-3,11-6,11-9,11-10,11-11,11-13,11-24,11-28, 12-9, 13-6,
E-9,E-11,E-15,E-16,E-17,E-18,E-19, E-20, E-22, E-23

Page 3-17 Rounding now occurs when a single precision floating point number
is stored.
Page 4-21 Rounding now occurs when a double precision floating point number

is stored,

Pages 10-16f The DOS and RDOS initializers have additional entry points to
return control to either the CLI, debugger, or task scheduler.

Page 11-6 The channel status array for CHSAV/CHRST has been changed from
a six to a two word array.

Page 11-8 If a file is open when DELETE is called, the file is first closed,
and only then is it deleted.

Page 11-11 If an attempt is made to open a non-existent file, a new file is
created and then is opened.

Page 12-9f The calling sequence for the run time error routines has changed
and the error code structure has also been modified. Run time
€ITOor messages are now more explicit. After a fatal error, control
goes to either the single task or multitask initializers which transfer

control to either the debugger, the CLI, or to the task scheduler as
appropriate.

CHANGES FROM REVISION 2TO REVISION 3 OF THE FORTRAN IV RUN TIME

LIBRARY USER'S MANUAL (Continued)

Appendix A

Appendix E

Appendix F

To aid in the debugging process, NREL entry points have been
assigned to the start of all run time routines. These entry points
also facilitate the interpretation of loader symbol tables. This
appendix no longer lists summary information for the library, but
does list all loader titles and all NREL entry points for routines
in the library.

Numerous additional real time subroutines are now available in the
RDOS FORTRAN Library. These routines are found principally in
three new categories: Swap and Overlay Commands, File and 1I/0

Commands, and Bit Manipulation Commands.

The FORTRAN Parameter Listing is now given in Appendix F.

This addendum updates and corrects revision 03 of the FORTRAN IV Run Time Library
User's Manual so that this manual may be used with revision 02 of the Real Time Disk
Operating System, Minor changes are indicated by page number on the following list.
This information should be annotated on the appropriate pages of the User's manual.
Following the minor changes is a series of new and changed pages which must either
replace existing pages in the manual or must be inserted into the manual. Changed
information on replacement pages will be indicated by a heavy vertical line in the

outside margin. New pages to be inserted into the manual will contain a page number
of the form

i-j-k

where i is the chapter or appendix number, j is the page in the chapter which
precedes the new page, and k is the number of the page.in the insertion series.
Thus page E-2 is a replacement page for the current page E-2, while page E-14-1
is a new page which must be inserted after the current page E-14.

Page where Change

Occurred

9-5

11-3

11-6

11-8

11"9, E"SS

11-10

11-11

11-24

Change

. SOSW has been removed from the FPZER module. A new
flag, . DSI, is used in its place; this flag is defined in the
SOS library.

Channel table assignment initialization is accomplished by the
run time stack initializer, .1, under RDOS. There is no CATIN
module under RDOS. The sizes of the single and multitask
RDOS initializers have changed to 253g NREL locations

(single task .I) and 402g NREL locations (multitask .I).

The 1/O Channel Assignment Table is built in .I's stack

frame.

A three-word integer array must be allocated for channel status
information in CHSAV/CHRST. This module is now 53 octal
NREL words in length.

DELET (now equivalent to DFILW) and RLSE are found in
separate modules under RDOS.

FCLOS is now equivalent to CLOSE. The supporting
routines for CLOSE are as follows: FSAV, FRET; .CPYL,
.IOCAT, .RTER . The size of this routine is 47 octal
NRE L locations.

Supporting routines for FFILE under RDOS are as follows:
FCALL, FCLOS, FRET, FSAV, FSEEK, IOPTR; . CPYA,
.FCAL, .IOCAT, .RTER. The size of this routine is

1 ZREL and 64 octal NREL locations.

Up to 64 FORTRAN channel numbers are allowed, O through 63.
Supporting routines for FOPEN under RDOS are as follows:
.DSI, FRET, FSAV, IOPTR; .CPYL, .IOCAT, .RTER . Sub-
routine size under RDOS has changed to 1 ZREL and 147 octal
NRE L locations.

Supporting routines for FSEEK under RDOS are as follows:

FRET, MPY; .CPYL, .IOCAT, .RTER . The size of this
routine is 51 octal NREL locations.

ii

Page where Change

Occurred Change
11-27,11-28 No parameter is input via AC1 to . WRITL . AC1

inputs the number of bytes to be written (or read) in . WRTS(or . REDS).

Supporting routines for READL and WRITL under RDOS
are as follows: .DSI, FCALL, FRET, FSAV, OPEN; .FARG,

.IOCAT, .LDBT, .STBT . The size of the READL/WRITL
module is 4 ZREL and 305 octal NREL locations.

13-5 Supporting routines for FREDI under RDOS are as follows:
FRET, FSAV, MIY(, .OFLO; AFSE, .CPYA, .FRGL, QSP.

A-1 CATIN is now found in the DOS library only.

A-2 Insert FOVLD (title) OVLOD (entry) before FOVLY.

Insert RLSE (title) RLSE (entry) before TIME.

E-17, E-15, E-16 Supporting routines for ASUSP, AKILL, and ARDY are as
follows: FRET, TAKIL, TAPEN, TAUNP; .CPYL . The
subroutines' module's size is 22 octal NRE L locations.

E-18 Supporting Routines for FTASK are as follows: CTASK, FRET;
.CPYL . The subroutine size is now 14 octal NREL locations.

E-19 The KILL task call is now part of the multitask scheduler
module. Its calling sequence remains the same.
E-20, E-23 Supporting routines for REC, XMT, and XMTW are now as

follows: FRET, RECC, XMTT, XMTTW; .CPYL . The sub-
routines' module's size is 33 octal NREL locations.

E-21 Supporting Routines for SUSP are as follows: FRET, TPEND;
. CPYL. The subroutine size is now 5 NREL locations. The
suspended task remains suspended until readied by an ARDY or
RELSE call.

E-22 Supporting routines for PRI are as follows: FRET, TPRI; . CPYL .
Subroutine size is 6 NREL locations.

E-29, E-30 Delete the date parameter from the calling sequences given for
FGTIM and FSTIM; change the integer argument count from
4 to 3. The size of this module is reduced from 41 to 24 octal
NREL locations.

iii

Page where Change

Occurred

E'46, E"43

E-57,E-60,E-65

E-64

Change

Supporting routines for FOVRL and FOVLD are as follows:
FRET, TOVLD, TOVRL; .CPYL, ,IOCAT. The subroutines'
module's size is 45 octal NREL locations. The overlay name
may be used in place of the overlay number if the name was
declared in an . ENTO or OVERLAY statement.

Supporting Routines for OVOPN are as follows: .DSI, FRET,
IOPTR; .CPYL, .IOCAT . The subroutine size is now 174
octal NREL locations.

DIR, INIT, and RLSE may use directory names instead
of device names as arguments.

Supporting Routines for RESET under RDOS are as follows:
FRET; .IOCAT . The subroutine's size is 21 octal NREL
locations.

Bit position indicator may be any integer from O to 151 o

Information in the CHANTASK statement may be selectively
overridden at relocatable load time by means of RLDR local
switches /C and /K. If channel/task number specification
information is given at relocatable load time, the CHANTASK
statement may be omitted. If the CHANTASK statement is
omitted and /C and /K RLDR switches are not used, 1 task
and 161 channels are allocated by default. A minimum of
16 logical FORTRAN channels will be allocated, even though
fewer may have been specified by the user. However, only
the number specified may be used simultaneously.

iv

APPENDIX D

ARRAY STRUCTURE AND HANDLING

Arrays are ordered sets of data, arranged in up to 128 dimensions (see
FORTRAN IV User's Manual). The library's allocation of array area pre-
sents an exception to the general rules of stack structure given in Chapter 1.

Arrays may be defined to be any size within the limits of available memory
storage. Array elements are numbers expressed in packed form, and these
are referenced by integer subscripts (one for each dimension). Values are
assigned to array elements so that the first subscript varies most rapidly,
then the second subscript, and so on.

An array ig allecated on 2 caller's stack by appendaing the needed nuinber
of locations to the current end of the caller's stack., Array allocation is ac-
complished by FALOC, whose caller's stack is then extended by the size of
the designated array. FALOC also adjusts the caller's FLGT so that any
further creation of stacks will follow the end of the array.,

Elements of an array are not referenced by the conventional FORTRAN
addressing scheme. Instead, routines FSBR, FSUB are used to calculate
the absolute addresses of an array element. The address in this instance
is an absolute NREL address instead of a relative stack displacement,

The following picture shows memory maps before and after FALOC execution.

MEMORY MAPS BEFORE AND At TER rALOC EXECUTION

FORTRAN statement DIMENSION A(x,y,z) generates a call to FALOC.

Map when FALOC is called, its stack
is allocated, but before FALOC

execution,
T™MP (7]]
variable p TMP
I
Variable Blank 3
Portion Blank Word
- of Blank Array
.MAIN Specifier
Stack variable q (TWS)
_ variable r
FALOC
Header
FALOC FTSTR
FALOC FTSTR+1

FALOC updates the caller's FLGT
to include new array size so that if
another subroutine is called, its

stack will be built after the array.

Map after FALOC execution.

variable p

13

. NREL address of SBS

4

Array address pointer

TWS

Integer size of Array

variable q
L

L

variable r

Memory
Area

Allocated for

Array

Two tables are needed by the array handling routines in order to accom-
plish the tasks of array allocation and element addressing, A third
table is required when an array is to be redimensioned and passed as a
dummy argument,

The first of these is the Subscript Bound Specifier (SBS). This table des-
cribes each subscript's boundaries and specifies the type of number element
stored in the array. Since array indices may begin at values other than 1,
both upper and lower index values are specified in the table.

A smaller table, the Three Word Array Specifier (TWS), contains a pointer
to the SBS, a pointer to the beginning of the array, and the total number of

words (not clements) in the array.

TWS

FORTRAN address of Subscript Bound Specifier
FORTRAN address of the first array element
Integer value of array size in words

SBS

Integer value = 2 * number of subscripts + 1
number element size* | number element typeA
1st subscript lower boundary (1 if defaulted)
uby; - 1b; +1

2nd subscript lower boundary (1 if defaulted)
(uby - Iby +1) * (ubg -lbg+1)

.
<

(ubg -1by1+1) *(ub2 -1b2+ 1) ... *(ubp-lbp+1)

Three Word Array Specifier and Subscript Bound Specifier Tables for
an array of the general form Array A (lower boundj:upper boundi,...
lower boundy: upper boundy).

* j,e., the number of words in the packed form of the number element type:

1 for integers, 2 for SPFL's, 4 for DPFL's and single precision complex number,

and 10g for double precision complex numbers.
A 14 integer, 2 +» SPFL, 3 4»DPFL, 4+* Single precision complex,
S++ double precision complex.
D-3

Space for the TWS is reserved on the caller's stack before calling FALOC,

which then fills in the three word table with the appropriate information.

The SBS, on the other hand, is built in NREL memory by the compiler

for an array defined in the main program (or in a subroutine if the array is not

a passed argument), If an array is to be redimensioned and passed to a subroutine
as adummy argument, a new SBS is created in the run time stack, reflecting the
new index values. Given that the array is passed to the subroutine as an argument,
the subroutine accesses the array via the new SBS. Array redimensioning and
passing is done by FREDI.

As with FALOC, FREDI requires that a 3 word area be reserved on the caller's
stack into which it builds the new TWS. FREDI also requires the address of

the array being passed, and the address of another table called the Special

Subscript Bound Specifier (SSBS). The SSBS is required so that re-dimensioning

can be accomplished. SSBS is similar to SBS except that in place of literal values and
cumulative partial products for each index, the addresses of the upper and lower

bounds for each index are given. The SSBS is built by the compiler in NREL
memory.

Special Subscript Bound Specifier

Integer value = 2 * number of subscripts + 1
number element size®* | number element typed
address of 1st subscript lower bound

address of 1st subscript upper bound

address of 2nd subscript lower bound

address of 2nd subscript upper bound

address of nth subscript upper bound

The new SBS, built by FREDI for the caller, is appended to its own stack, and
the TWS is built into the area of the caller's stack reserved for that purpose,
The stack area used by FREDI in its computations becomes a waste area, unused
by the caller upon completion of FREDI's operation., FREDI adjusts the caller's
FLGT, making the new SBS part of the caller's stack and protecting it from being
overwritten by future stacks. The array itself is not appended to the caller's
stack, since it is already defined by the calling program.

Same as for ordinary Subscript Bound Specifer

. Same as for ordinary Subscript Bound Specifier

D-4

MEMORY MAPS BEFORE AND AFTER FREDI EXECUTION

CALLER's STACK CALLER's STACK
Block (Blank 1 Dointexr to New SBS j'
reserved Blank Pointer to Array Beg, J TWS
for L
TWS Blank Integer Array Size in wds
FREDI STACK FREDI's used Stack
area
(unrecoverable)
~ new
Subscript
| Bound
Specifier

FREDI updates the caller's FLGT to
include the stack area and SBS
appended from FREDI,

D-5

APPENDIX E
REAL TIME FORTRAN

DGC Real Time FORTRAN (hereafter called RT FORTRAN) provides programmers
with the means to use the computational power of FORTRAN in programs written to
control a real time environment, This appendix describes methods for writing RT
FORTRAN programs and documents those routines, found only in the RDOS FORTRAN
library, which implement the RT FORTRAN capability,

Real Time FORTRAN Concepts

Effective use of RT FORTRAN presumes that users have familiarized themselves
thoroughly with DGC Real Time concepts as found in the RDOS User's Manual,
093-000075. This is due to the fact that RT FORTRAN programs will seldom, if
ever, be written entirely in FORTRAN, Those segments of control programs
handling special user interrupts, for example, must be written in assembly language.
Moreover, RT FORTRAN calls parallel closely their assembly language counter-
parts; a thorough understanding of RDOS will therefore facilitate the use of RT
FORTRAN,

The following summarizes DGC Real Time concepts and illustrates the relationship
between RT FORTRAN Task calls and RDOS Task calls. A task is a logically com-
plete execution path through a program demanding use of system resources, primarily
CPU control. A multitask environment is one in which logically distinct tasks com-
pete simultaneously for the use of system resources; a single task environment in

RT FORTRAN is a trivial subset of a multitask environment. By default, RT FOR-
TRAN programs have one task; this task is used to create other tasks if more

are needed.

Only one task receives CPU control at any single moment, CPU control is allocated
to tasks according to their relative priorities and readiness to use the CPU. Re-
source allocation is accomplished by the RDOS minimum Task Scheduler, TMIN, in
single task environments; the FORTRAN Task Scheduler, TMAX, allocates CPU
control to the highest priority ready task in a multitask environment. Note that the
RDOS Task Scheduler, TCBMON, differs from the FORTRAN multitask scheduler.

Task priorities range from zero, the highest priority, through 255 decimal. The
default task in RT FORTRAN exists at priority zero. Several tasks may exist at

the same priority. Among equal priority tasks, the time of a task's creation or task
priority modification determines the relative priority of the task within a priority
level, The first task created at a given priority has the highest priority within that
priority level, etc. There is no practical limit to the number of tasks which may be
created within any program. Nonetheless, users are cautioned to request only the
minimum number of tasks necessary for the running of an RT FORTRAN program in
order to minimize system overhead and to maximize the size of run time stacks
ailocated for each task,

E-1

Tasks may exist in any of four states. Tasks are either ready to perform their functions,
they are actually in control of the CPU and are executing their assigned instruction paths.(
they are suspended and temporarily unable to receive CPU control, or they are dormant,
having no priority and no chance of gaining CPU control until readied by an FTASK or ITASK
command. Executing, ready, and suspended tasks are linked in a queue called the active
chain., Tasks which have been deleted are removed from the active chain and are placed
in the inactive chain. The Task Scheduler maintains certain status information about

each task. This information is retained within an information structure called a Task
Control Block (TCB). There is one TCB for each task. The active chain is in reality the
collection of all active TCBs, linked in priority fashion. The inactive chain is merely

a pool of empty TCBs which may be used in the creation of new tasks. Whenever a

task receives control,that task's state variables (AC's, Carry, etc.) are re-established;
these state variables are saved in the task’s TCB whenever the task is reduced to the

ready or suspended states. Tasks may be assigned unique i.d. numbers in the range
0-2551(; this is especially helpful in distinguishing equal priority tasks. Only the highest
priority ready task will be given control of the CPU, and other ready tasks await their

turn in priority fashion. Suspended tasks are tasks that were once ready. A ready

task becomes suspended for one or more of a variety of reasons:

1. It has been suspended by SUSP, ASUSP, or HOLD.

2. It is waiting for a message from another task or awaits the receipt
of the message (REC/XMTW).

3. It is awaiting completion of a . SYSTM call.

4, It is waiting for the use of an overlay.

Just as a number of different events may suspend a ready task, several events can cause
suspended tasks to become readied:

1. A .SYSTM call has been completed.

2. A message has been posted for a suspended task awaiting its receipt.
3. Another task readied a suspended task via . ARDY or . TIDR .

4. An overlay or overlay area is ready for use.

If a task is suspended for two distinct reasons (e.g., HOLD and awaiting completion
of a .SYSTM call), it must be readied by two different events (e.g., . TIDR and
completion of . SYSTM call).

Return from a FORTRAN Task call is always either to an error return location (if
there is one reserved and an error occurs) or to the next sequential instruction
following the call. After the task call has been performed, however, both returns are
always routed through the FORTRAN Task Scheduler.

RT FORTRAN permits tasks to communicate with one another by sending and receiving
one word non-zero messages. A one word message (i.e., one which can be stored in

a single 16-bit cell), is sent to a task in an agreed upon location. The task sending a
message may either return control to the Task Scheduler immediately or it may wait
and place itself in the suspeilaza state until the receiving task has issued a receive
request and has received the message. Upon receipt of the message, the receiving
task reverts to the ready state. Interrupt requests from special (i. e., non-SYSGENed)
devices do not change the status of tasks in a multitask environment; these events freez
the environment, as will be described later.

E-2

Run Time Stack Partitioning

Number formats in RT FORTRAN routines are identical to those given in the
Introduction to this manual. Similarly, the SP, Number, and Run Time Stacks
are structured and maintained as described for non-real time routines. The
major difference in the whole run time stack structure is that the Run Time area
is partitioned by the RT initializer into equal segments, one segment for each
task specified at the beginning of the FORTRAN program,

Each run time stack segment can be viewed for the most part as a non-real
time stack area in miniature, That is, each segment has an SP stack, Number
Stack, and Run Time stack in that order. The SP stack is 40 octal words in
length, but the two other stacks are necessarily smaller than their non-real
time stack counterparts. FEach segment Number Stack is 330 octal words long,
and each Run Time stack will have the remainder of the segment area. It is
not possible to either adjust the number stack size or to omit the allocation

of a Number Stack on a selective basis.

Since each segment requires a family of pointers and displacements to des-
cribe it uniquely, each segment is preceded by an eight word state save area.
In this area are stored values for the following segment stack pointers and
flags:

FSp

. NDSP

AFSE

SP

QSP

.OVFL

.SVO0

NSP
Immediately preceding each state save area, the first word of each stack

serves as both link to the beginning of the next segment and as a flag (b1t Zero)
indicating whether or not a task is currently using the segment,

! Previous Stack Segment :

10 8 words Use
Bit

Link to Next Segment

STATE SAVE AREA
SP STACK

10g words
40g words

330g words { NUMBER STACK

RUN TIME VARIABLE

Segment Size - 401g words STACK
} Use ; .
| Bit L Link]
| =i

RUN TIME STACK SEGMENT

User Interrupts

As indicated earlier users wishing to incorporate non-SYSGENed devices into
RT FORTRAN programs must provide for the interrupt servicing to be done in
assembly language and the creation of a three-word Device Control Table as de-
tailed in Chapter 7 of the RDOS USER'S MANUAL, User Serviced Interrupts.
Procedures given throughout this manual will be used to write assembly language
modules which will be interfaced with the main RT FORTRAN program.

Interrupt requests from special (i.e., non-SYSGENed) devices do not, for the most
part, change the status of tasks in a FORTRAN multitask environment, In-

stead, user interrupts freeze the environment until servicing of the interrupt

is completed and the multitask environment is unfrozen. Likewise, all other

tasks will resume their former states when the environment becomes unfrozen
unless the user transmits a message to one of them by means of the transmit
interrupt message command, ,IXMT ,

User Interrupts (Continued)

Since control does not go through the FORTRAN Task Scheduler when the environ-
ment is unfrozen, .IXMT is not a command which can be issued via FORTRAN source
code; rather, .IXMT is a one-word Task call identical to . IXMT discussed

in the RDOS User's Manual, Chapter 5. As stated there, if the task for whom the
message is intended has issued a receive request for the message, thetasx state

is changed from suspended to ready even though the task environment is frozen. This
is the one exception to the rule that user interrupt servicingdoes not alter the task
environment.

It is still necessary, however, to identify the interrupt device to the system by means
of a FORTRAN call, and it is possible to remove this device from the system by means
of another FORTRAN call,

RT FORTRAN Routine Descriptions

The following seven sections describe allthe real time routines of interest to RT FORTRAN
programmers. The sections and their contents are:

REAL TIME INITIALIZATION Initialization and stack segmentation
routines.
REAL TIME TASK Real time single and multitask environment

management routines.

REAL TIME CLOCK/CALENDAR System clock and calendar management
routines,

REAL TIME INTERRUPT Real Time routines used to identify or
remove special user devices from the
system.

REAL TIME SWAP AND OVERLAY Routines implementing the RDOS swap
and overlay management calls.

REAL TIME FILE AND I/0 File management with block and file
I/0 RDOS commands.

REAL TIME BIT MANIPULATION Routines allowing individual bits to
be tested, set and cleared within 16 bit
words.

Note that notall of the supporting routines listed for .Iand ITCB are descri bed. Similarly.
other routines used by the FORTRAN Task Scheduler or by other internal routines

are mentioned but are not described. Only the two main initialization routines are
given since an understanding of these suffices to describe the structuring of the real

E-5

RT FORTRAN Routine Descriptions (Continued)

time run stack. Real time programmers wishing to write their own initialization pro-
cedures must first consult the program listings of all routines in the initialization
package. All real time programs, even those with only one active task, require the
support of the real time initialization routines,

All routines described in the REAL TIME TASK section have functions which parallel
closely the functions of RDOS task calls. None of these routines is of use in a single
task environment. As stated in the RDOS User's Manual, the killing of all tasks
causes return of program control to the next higher program level, usually the CLI
(Command Line Interpreter). Similarly, depressing either the teletypewriter keys
CTRL and A or CTRL and C interrupts the program and causes return to be made

to the CLI. The CTRL A break aborts an RT FORTRAN program with no facility for
preserving the current environment. CTRL C permits a qualified saving of the real
time environment; for more information, see the RDOS User's Manual, Chapter 2.

Routines described in both the REAL TIME CLOCK/CALENDAR and REAL TIME
INTERRUPT sections are useful in both single and multitask environments.

RDOS FORTRAN Error Arguments

Several routines in the RDOS FORTRAN library have an error argument which receives
a code character at the completion of the routine's execution. This code character
describes the success or failure of the routine's execution. The settings of this code
are as described below:

Setting Meaning

0 Indeterminate error.

1 No error occurred,

3...n RDOS system error code + 3

Error code 2 is generally not used. Thus if the error argument is placed in blank
common, the user may define code 2 for use inintertask communication endowing this
code with whatever meaning he wishes.

One such possible definition would be the definition given to 2 by FOVLD, i.e.,

that system action is in progress. FOVLD changes this code to one of the other settings
upon completion of the call.

E-6

REAL TIME INITIALIZATION

OI ® 6 5 ¢ 8 8 0 0 0 0 0P PO e e O O e 0o E-9
E-1

ITCB-.0.'01000000001'.-000' l

Pu:_:mse:

Calling Sequence:

Supporting Routines

Subroutine Size:

Notes to User:

Reql Time '
Initialization,

ek

To partition the free memory area into equal segments for the
creation of each task's run time stacks; to allocate a blank common
area if needed; to build an I/O Channel Assignment Table
initialized to the default values of the logical FORTRAN channels;
to allocate number, SP, and run time stacks and create the
associated stack pointers for the first task by means of a call

to the TCB initializer,

Real Time ,I receives control in the same manner that , I
used in DOS environments receives control, i.e., by means
of an end block which has the starting address .1 .

. I invokes the TCB Initializer (, ITCB) , after which it transfcrs
control to the FORTRAN Task Scheduler,

: DVD, .MAIN, QUIT, SVVAR, TVR; FLSP, .FTSCH, .INHB

.IOCAT, .OVFL, ,SOSW, SP, SUCOM .

2 page zero locations and 403 octal locations of normally relocatable
memory. The Channel Assignment Table, 60 octal locations

in length, is written over a portion of . I after that part of the
initialization code has been executed,

ITCB, the FORTRAN Task Control Block Initializer, has an
alternate entry point in the .I module,

The following describes the functions performed by .1 in the
sequence that they occur.

A system call, .RESET, is issued to initialize system I/0O,
USTCS of the User Status Table (UST) is examined to determine
the size of blank common. (For a description of the User

Status Table see the RDOS User's Manual, Chapter 5,) Blank
common is then allocated, if possible, and a pointer to the

start of blank common is created. If there is not enough memory
available for blank common allocation, an error message is
output,

MEMOVFL }

and a return to the next higher program level (usually the CLI)
is made by means of . SYSTM, .RTN.

E-9

Real Time
Initialization]

J
.1 (Continued)
Notes to User: A temporary SP stack is then created (and will later be over-
(Continued) written); this SP stack is required for the following operation,

which calls DVD. The number of tasks and FORTRAN channels
which will be required is determined by examining USTCH

of the UST. DVD is then called, and the remaining free memory
is partitioned into equal segments for each of the task's later
run time use. Each run time segment has a link to the following
segment built into its first word, and a flag bit is allocated

to indicate whether the segment has yet been assigned to a
specific task.

ITCB is then called, setting up stacks and stack pointers in

the first run time segment area for the first FORTRAN task,
The Channel Assignment Table is then built over the beginning
of .1 code; this code, having once been executed, is of no
further use in a multi-task environment. Upon completion of
this last operation, control is given to the FORTRAN Task
Scheduler.

As with the single task initializers, the multitask initializer

also has three additional entries which return control to either

the debugger or to the next higher level program (usually the

CLI), as in the event of a run time error. These entries are
FERTN, FERTI], and FERT@. FERTN transfers control to the
CLI via the call . SYSTM, .RTN . FERT transfers control

to the CLI via the call .SYSTM, .ERTN . FERTI transfers control
to the debugger.

Note that this version of .I is used only in multitask programs.

Single task FORTRAN programs use the single task version
of .1 given in Chapter 10.

E-10

ITCB

Purmse:

Calling Sequence:

Supporting Routines

Subroutine Size:

Notes to User:

H

S |
Real Time i
Initialization;

To allocate number, SP, and run time stacks and stack
pointers in a FORTRAN task's run time segment area,

(The priority of the task which is to be assigned the stack area
segment is input in ACO, AC1 contains the starting address

of the task's TCB)

JSR @.ITCB

(The following variables are initialized ror the task:
SP, NSP, .NDSP, AFSE, ,IOCAT, FSP, QSP, .OVFL ,)

: DVD, .MAIN, QUIT, SVVAR, TVR; FLSP, .FTSCH, .INHB,

.IOCAT, .OVFL, .SOSW, SP, SUCOM .

2 page zero locations and 403 octal locations of normally
relocatable memory.

. I, the Real Time FORTRAN Initializer, has an alternate
entry point in this module. .I calls ITCB as part of the initial-
ization process, and .ITCB is called each time a stack segment
is to be used by a FORTRAN task for the first time.

E-11

REAL TIME TASK

KILL.....occeeeeeeeeeeessss E-19
RECccevieeeeeecceasses E-20
SUSP ¢ ievveeeececesaceeeeess E-21
PRI .c..cccvviveenceceneeess E-22
XMT, XMTWcc000eee.. E-23

ABORT

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Task

To kill a task specified by i.d. number.

FCALL

ABORT

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

FRET, KTID; .CPYL
15 octal locations of normally relocatable memory.

Accumulators and carry are saved in the caller's TCB (unless
it is the caller who is killed).

ABORT must be referenced in an . EXTN statement.

The calling task itself may be killed by this call.

The TCB which is removed from the active queue is placed
in the free element TCB chain. The specified task is

not killed immediately only if it is suspended due to an
outstanding . SYSTM call, in which case it is killed as
soon as the . SYSTM call is completed.

If no task exists with the specified i. d. number, no action
is taken, and control goes to the scheduler.

E-14-1

AKILL

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

S

Real Time
Task

To delete all tasks of a given priority.

FCALL
AKILL
Integer 1

FORTRAN ADDRESS of the task priority

(Control returns to the FORTRAN Task Scheduler,)

KILL; .CPYL, .FTSCH, .INHB, .SVALL, SP.

60 octal locations of normally relocatable memory.

Accumulators and carry are saved in the caller's TCB (unless
the caller is also deleted).

AKILL must be referenced by an , EXTN statement,

ARDY and ASUSP have alternate entry points in this module,

The calling task itself may be deleted by means of this command.
All TCBs that are removed from the active queue are placed

in the free element TCB chain., If a task to be deleted by AKILL is
suspended (e.g., the task is awaiting completion of a system call)
it will be killed as soon as it becomes ready.

If no task exists at the given priority, this call is an effective
no-op, and control goes to the Scheduler,

E-15

Real Time
Task

ARDY

Pugmse :

Calling Sequence:

Subroutine Size:

Notes to User:

To ready all tasks of a given priority.
FCALL

ARDY

Integer 1

FORTRAN ADDRESS of the Task Priority

(Control returns to the FORTRAN Task Scheduler.)

KILL; .CPYL, .FTSCH, .INHB, .SVALL, SP.

60 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB.
ARDY must be referenced by an . EXTN statement.

ASUSP and AKILL have alternate entry points in this module,
This cémmand unconditionally readies all tasks of the given
priority, It is the caller's responsibility to insure that the

tasks to be readied are not awaiting the occurrence of some
other event like the completion of I/0.

E-16

CHNGE

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Task

To change the priority of a task specified by i. d. number.
FCALL
CHNGE
Integer 3
FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of new priority
FORTRAN ADDRESS of error code
FRET, TCHNG; .CPYL
16 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB.
The error code word will be set to one of the following states:
0 - Indeterminate error.
1 - No error occurred.

3...n - System error code + 3

CHNGE must be referenced in an . EXTN statement.

E-17-1

ASUSP

Pugmse:

Calling Sequence:

Sgpporti.ng Routines:

Subroutine Size:

Notes to User:

To suspend all tasks of a given priority.
FCALL

ASUSP

Integer 1

FORTRAN ADDRESS of the task priority

(Control returns to the FORTRAN Task Scheduler.)

KILL; .CPYL, .FTSCH, .INHB, .SVALL, SP.

60 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB,

ASUSP must be referenced by an . EXTN statement,

AKILL and ARDY have alternate entry points in this module.

The calling task may itself be suspended by this command.

The suspended tasks can be readied only by an . ARDY command.

If no tasks exist at the given priority, this call is an effective
no-op.

E-17

HOLD

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Task

To suspend a task specified by identification number.

FCALL

HOLD

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

FRET, STID; .CPYL

15 octal locations of normally relocatable memory.

Accumulators and carry are saved in the caller's TCB.

HOLD must be referenced in an . EXTN statement.

This call sets bit 1 of the task's priority and status word,

TPRST. Thus if the task is already suspended for some

other reason (e.g., XMTW,REC, or . SYSTM call), it becomes

doubly suspended and can be readied only when all its suspend

bits have been set to ready.

The error code word will be set to one of the following states:
0 - Indeterminate error.

1 - No error occurred.
3...n - RDOS system error code + 3.

E-18-1

Real Time
Task

ITASK

Purpose: To create a task in a real-time FORTRAN environment and
assign a unique i.d. to the task.

Calling Sequence: FCALL
ITASK
Integer 4
FORTRAN ADDRESS of Task Entry Point
FORTRAN ADDRESS of Task 1. D.
FORTRAN ADDRESS of Task Priority
FORTRAN ADDRESS of Error Code

(Control returns to the FORTRAN Task Scheduler.)

Supporting Routines:

CTASK, FRET; .CPYL

Subroutine Size: 24 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are stored in the caller's TCB.

ITASK must be referenced in an . EXTN statement.

The error code word will be set to one of the following
states:

0 - Indeterminate error.

1 - No error occurred.
3...n - System error code + 3.

E-18-2

Real Time
Task

FTASK

PugEgse:

Calling Sequence:

bupportmg R‘o[ltirne’s‘“:

Subroutine Size:

Notes to User:

To create a task in a real-time FORTRAN environment,

FCALL

FTASK

Integer 3

FORTRAN ADDRESS of Task Code entry point
FORTRAN ADDRESS of Error Return
FORTRAN ADDRESS of Task Priority

(Control returns to the FORTRAN Task Scheduler.)

.CPYL, .FTSCH, .INHB, .LNK, .SVALL, .ITCB, CTCB.
35 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB .
TASK must be referenced by an , EXTN statement,

When the RT FORTRAN program is loaded and first run,
only one task exists., This command must be issued to create
a multitask environment, The error return is taken if there

are no TCBs available, i.e,, if the maximum number of
tasks specified in CHANTASK was too small.

E-18

KILL

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Task

To kill (delete) the calling task, freeing its TCB so that a
new task can be created.

FCALL
KILL
0

(Control returns to the FORTRAN Task Scheduler.)

. FTSCH, .INHB, .ULNK .

25 octal locations of normally relocatable memory.

KILL must be referenced by an . EXTN statement,

This command deletes the calling task's TCB from the active
queue and places it in the free element TCB chain. The
calling task is the only task that can be deleted via this

command. There is no return from this call, The stack
block associated with the deleted task is released,

E-19

Real Time
Task

REC

Purgose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To receive a one-word message from a transmitting task.

FCALL
REC
Integer 2
FORTRAN ADDRESS of the message location ("key location")
FORTRAN ADDRESS to receive the one-word message
(must be different from the key)
(Control returns to the FORTRAN Task Scheduler.)

.AFRTN, .CPYL, .FTSCH, .INHB, .KSRCH, .SVALL, CTCB .,
74 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB.

REC must be referenced by an . EXTN statement. XMT and
XMTW have alternate entry points’ in this module.

If the contents of the key location are non-zero at the time
of this call (i.e., if a message has been sent), the message
is passed directly to the receiving task and the contents

of the key location are reset to zeroes, If the contents of
the key location are zero when this call is issued (i, e.,

if the message has not yet been sent), the receiving

task becomes suspended until the message is sent., When
the message is transmitted, it is sent directly to the re-
ceiving task, bypassing the key location entirely, and the
receiving task becomes readied.

E-20

SUSP

Purpose:

Calling Sequence:

Supportmg Rout'i-nés‘;

Subroutine Size:

Notes to User:

Task

Real Time

!
{

To suspend the calling task.
FCALL

SUSP

0

(Control returns to the FORTRAN Task Scheduler.)

. FTSCH, .INHB, .SVALL, CTCB.

12 locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB .
SUSP must be referenced by an , EXTN statement,

The syspended task remains suspended until it is readied
by an . ARDY command.

PEND is equivalent to SUSP.

E-21

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Task

To ready a task specified by i.d. number.

AT T

ruanl,

RELSE

Integer 2

FORTRAN ADDRESS of i.d. number
FORTRAN ADDRESS of error code

FRET, RTID; .CPYL

13 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB.

RELSE must be referenced in an . EXTN statement.

This call resets bit 1 of the task's priority and status field
word, TPRST. Thus if the task has bits 0 and/or 12 set

(e.g., due to an outstanding . SYSTM call or a . REC/. XMTW),
these bits would also have to be reset before the task could

be raised to the ready state.

The error code word will be set to one of the following
states:

0 - Indeterminate error.

1 - No error occurred,
3...n - RDOS system error code + 3.

E-22-1

Real Time
Task

STTSK

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To obtain the status of a task specified by i.d. number.

FCALL

STTSK

Integer 3

FORTRAN ADDRESS of i, d. number

FORTRAN ADDRESS of location to receive task status code
FORTRAN ADDRESS of error code

FRET, TIDST; .CPYL

10 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB.
STTSK must be referenced in an . EXTN statement.
The task status code will be one of the following:

- Ready.

- Suspended by a . SYSTM call

Suspended by SUSP, ASUSP, or HOLD

- Waiting for a message to be transmitted

or received.

Waiting for an overlay area to become free.

5 - Suspended by SUSP, ASUSP, or HOLD and
by a . SYSTM call.

6 - Suspended by SUSP, ASUSP, or HOLD and by
XMTW or REC.

7 - Waiting for an overlay area and suspended
by ASUSP, SUSP, or HOLD.

8 - No task exists with this i.d. number.

w N = O
1

S
'

The error code word will be set to one of the following states:
0 - Indeterminate error.

1 - No error occurred.
3...n - RDOS system error code + 3.

E-22-2

Real Time
Task

PRI

Puzmse:

Calling Sequence:

Subroutine Size:

Notes to User:

To change the priority of the calling task.
FCALL

PRI

Integer 1 .
FORTRAN ADDRESS of the new task priority

(Control returns to the FORTRAN Task Scheduler.)

.CPYL, .FTSCH, .INHB, .SVALL,.LNK, , ULNK, CTCB.

23 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller's TCB .

PRI must be referenced by an . EXTN statement,

The calling task is assigned the lowest priority of all

tasks within the new priority level. It is permissible to issue
a PRI command without changing the caller's present priority

level. This will cause the calling task to be assigned the
lowest priority of all tasks within the given priority level.

E-22

Real Time

Task
XMT, XMTW
Purpose: To transmit a one-word message (XMT) to a receiving
task, then remain ready to resume other task activity,
or to transmit a message and wait (XMTW), staying
suspended until the message is received.
Calling Sequences: FCALL
XMT (or XMTW)
Integer 3

FORTRAN ADDRESS of the message location (key location)
FORTRAN ADDRESS of the one-word mcssage
FORTRAN ADDRESS of the error return

(Control returns to the FORTRAN Task Scheduler.)

Supporting Koutines: ,AFRTN, .CPYL, . FTSCH, .INHB, .KSRCH, .SVALL , CTCB .

Subroutine Size: 74 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are saved in the caller's TCB,

XMT and XMTW must each be referenced by an . EXTN
statement,

REC has an alternate entry point in this module.

A one-word message is replaced in the key location if the
task for whom it is intended has not yet requested its
receipt, As soon as the receiving task issues a receive
request, the message is placed in the address specified

by the receiving task, and the contents of the key location
are reset to all zeroes, If the receiving task has requested
the message before its transmission, the message is sent
directly to the receiver's address, bypassing the key loca-
tion entirely.

The error return is taken if the message address is already
in use (i.e., its contents are non-zero) .

E-23

REAL TIME CLOCK/CALENDAR

DATEcccieeeeenenns ... E-27
FDELY ceesscen cecesecses E-28
FGTIMccceeeen. oo E-29
FSTIM cecreecscces oo E-30
TIME ... ceseseseses e . E-31

DATE

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Clock/
Calendar

To get the current day of the year.

FCALL

DATE

Integer 2

FORTRAN ADDRESS of date array
FORTRAN ADDRESS of error code

FRET ; .CPYL .

16 octal locations of normally relocatable memory.
Accumulators and Carry are restored upon exit.

This routine issues the RDOS system call, .GDAY. The date
is returned as the number of the current day of the year and
is stored in the second word of the date array, This array is
an integer array of at least three words.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.

E-27

Real Time %
Clock/ i
_Calendar

FDELY

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To suspend a FORTRAN Task for a specified period of
time,

FCALL

FDELY

Integer 1

FORTRAN ADDRESS of time interval

(Control returns to the FORTRAN Task Scheduler,)

FRET; .CPYL.
7 octal locations of normally relocatable memory.
Accumulators and carry are stored in the callef's TCB.
FDELY must be referenced in an . EXTN statement.
This time interval word indicates the number of real time clock

pulses during which the task will be suspended. (The real time
clock frequency was set at SYSGEN time,)

E-28

FGTIM

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Calendar

———

[Real Time
[Cloeck/

To get the time of day and current date.

FCALL

FGTIM

Integer 4

FORTRAN ADDRESS to receive the hour
FORTRAN ADDRESS to receive the minute
FORTRAN ADDRESS to receive the second
FORTRAN ADDRESS to receive the current date

(Control returns to the FORTRAN Task Scheduler.,)

FRET; .CPYL, .RTER.
41 octal locations of normally relocatable memory.

Accumulators and carry are stored in the caller's TCB.
FGTIM must be referenced in an , EXTN statement.

No error message is possible; the system does not reset the
current date to 1 at the end of the year. Instead it continues

to increment the date count,

The time of day is given by a 24 hour clock; the date is given
as an integer from 1 through 365 (or 366 for leap years).

FSTIM has an alternate entry point in this module,

E-29

]
i

Real Time |
Clock/
Calendar

FSTIM

Pu;p_ose:

Calling Sequence:

S"u-p-p c;rtihg Routines:

Subroutine Size:

Notes to User;

To set the system clock and system calendar,

FCALL

FSTIM

Integer 4

FORTRAN ADDRESS of the current hour
FORTRAN ADDRESS of the current minute
FORTRAN ADDRESS of the current second
FORTRAN ADDRESS of today's date

(Control returns to the FORTRAN Task Scheduler,)

FRET; .CPYL, .RTER.

41 octal locations of normally relocatable memory.
Accumulators and carry are stored in the caller's TCB,
FSTIM must be referenced in an . EXTN statement,

A fatal run time error message, ERTIM, is issued if an
attempt is made to set an illegal time or date., Upon
issuance of an error message, control returns to either the
Debugger or to the CLI

The system clock is a 24 hour clock; the system calendar is
simply an integer from 1 to 365 (or 366 for a leap year).
The system does not reset the system calendar to 1 on January

13 instead it continues to increment the date count.

FGTIM has an alternate entry point in this module,

E-30

TIME

PurEose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Clock/
Calendar

To get the current time of day.

FCALL

TIME

Integer 2

FORTRAN ADDRESS of time array
FORTRAN ADDRESS of error code

FRET; .CPYL.

16 octal locations of normally relocatable memory.
Accumulators and Carry are restored upon exit.

This routine issues the RDOS system call, .GTOD . The time
is returned in the order: hours, minutes, and seconds, and is
stored in the time array. This array is an integer array of at
least three words. '

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.

E-31

REAL TIME INTERRUPT

FINRV ®© 0060060600600 00 0000000 E - 35
FINTD ® & & & 0 & 0 ¢ ¢ 0 0 & 0 0 0 0 0 0 2 0 E = 36
o mMT e & 6 0 0 O 0 0 & O O 0 O O O P 0000 E - 37

E-33

FINRV

Purpose:

Calling Sequence:

Sg)p'o'rti'ng Routines:

Subroutine Size:

Notes to User:

|
Real Time
Interrupt

To remove a non-SYSGENed device, which had been identified
by FINTD, from the system's recognition,

FCALL

FINRV

Integer 1

FORTRAN ADDRESS of the device code

(Control returns to the Task Scheduler,)

FRET; .CPYL, .RTER.
21 octal locations of normally relocatable mémory.
Accumulators and carry are saved in the caller's TCB. FINRV
must be referenced by an . EXTN statement, FINTD has an

alternate entry point in this module,

This call removes the device entry from the system interrupt
vector table.

A system error code ERDNM is output, with consequent
return to the CLI if an illegal device code is given,

E-35

Real Time
Interrupt

FINTD

Purpose: To introduce to the system a non-SYSGENed device capable of
generating interrupt requests,

Calling Sequence: FCALL
FINTD
Integer 2
FORTRAN ADDRESS of the device code
FORTRAN ADDRESS of the three word DCT

(Control returns to the Task Scheduler).

Supporting Routines: FRET; .CPYL, .RTER

Subroutine Size: 21 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are saved in the caller's TCB. FINTD
must be referenced in an , EXTN statement, FINRV has an
alternate entry point in this module,

This call causes an entry for this device to be placed in the
system interrupt vector table,

A system error code ERDNM is output, with consequent return
to the CLI, if an illegal device code is given.

E-36

IXMT

r————

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Interrupt

To transmit a message from a user interrupt service routine to
a task in the multitasking environment.

FCALL

IXMT

Integer 3

FORTRAN ADDRESS of the message
FORTRAN ADDRESS of the error code

FRET, IXMTT; .CPYL
16 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit. Return is to the
caller, not to the task scheduler. This routine is issued only

in a user interrupt routine, outside the multitasking environment.
For more information about user interrupt routines, see the
RDOS User's Manual, Chapter 7.

T \lT PO e

IXMT must be referenced in an . EXTN statement.

The error code word will be set to one of the following states:
- Indeterminate error.

0
1 - No error occurred.
eeonl

3 - RDOS system error code + 3.

E-37

REAL TIME OVERLAY AND SWAP

FOVRL ettt e
FQTASK +vvvi vt vevnneennnnns .
FSWAP v vvvvvnnnnn. e
[0)170) . S

E-39

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

vine

Swap

=3
©
Q

<
s
!

Overla

To read in from disk the next higher level program swap.

FCALL
FBACK

FERT@, FERTN; .CPYL, .FRET, .RTER .

43 octal locations of normally relocatable memory.,

The calling program is overwritten and its accumulators and
carry are lost. Information can be passed to the higher level

program swap via blank common.

When the higher level program swap is read into core,
control goes to the highest priority ready task within the swap.

FCHAN and FSWAP have alternate entry points in this routine.

E-41

Real Time
Overlay and Swap

FCHAN

Pul_“eose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To perform a program chain. A new save file is read from disk,
overwriting the current core image while not changing program
levels.

FCALL

FCHAN

Integer 1

FORTRAN ADDRESS of the save file name

FERTY, FERTN; .CPYL, .FRET, .RTER .

43 octal locations of normally relocatable memory.

Since the calling program is overwritten, accumulators and
carry are not saved., Information can be passed via blank
common, since blank common is not overwritten during program

swapping or chaining.

When the program chain is read into core, control goes to
the highest priority ready task within the new save file.

Control is returned to the higher program level by the FORTRAN
call FBACK.

FCHAN and FBACK have alternate entry points in this routine.
Since this routine jssues the RDOS system call .EXEC, more

information about program swaps can be found in the RDOS User's
Manual.

E-42

FOVLD

Pugmse:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time

Overlay and Swap

To load a FORTRAN overlay into an overlay area. (This
routine is for use in multitask environments.)

FCALL

FOVLD

Integer 4

FORTRAN ADDRESS of the channel number upon which the
overlay file has been opened

Overlay number - e

FORTRAN ADDRESS of the conditional load flag

FORTRAN ADDRESS of the error code

FRET, KILL, SVVAR; .IOCAT, .CPYA, .CPYL, .KSRCH,
. FTSCH, CTCB, .INHB.

206 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

The overlay file which is to be used in this call must have

been opened previously by a call to OVOPN. The overlay number
is a word which contains the overlay area number in its

left byte and the overlay number within its right byte. This
number must have been declared either in an . ENTO statement

or an OVERLAY statement.

The conditional load flag is a word which is set to be either
zero or non-zero. If zero, overlay loading is to be done
unconditionally; if non-zero, overlay loading is to be done
conditionally.

In conditional loading, if the overlay area is free the overlay
is loaded (unless it is already core resident, in which case
return is made directly to the Task Scheduler). An

area is considered to be free if the overlay use count of the
currently resident overlay has gone to zero and if the area has
been released by the FOVRL call.

In unconditional loading, if an area is free the requested overlay
is loaded regardless whether it is currently core resident or
not. If the area is not free, the caller is suspended until the
area is released. For more information about conditional and
unconditional overlay loading, see the RDOS User's Manual,

E-43

Real Time
Overlay and Swap

FOVLD (Continucd)

Notes to User:

(Continued)
FOVRL has an alternate entry point in this routine.

The error code word will be set to one of the following states:

0 - Indeterminate error.

1 - No error occurred.,

2 - System action in progress.
3...n - RDOS System error code +3 .

This routine is found in the FORTRAN multitask library.
To cause this routine to be loaded (instead of FOVLD, the
single task overlay load module), the multitask library
must precede the RDOS FORTRAN library when relocatable
loading is performed.

E-44

Real Time
Overlay and Swup

FOVLY

Purpose: To load a FORTRAN overlay into an overlay area. (This
routine is for use in single task environments.)

Calling Sequence: FCALL
FOVLD (or OVLOD)
Integer 4

FORTRAN ADDRESS of the channel number upon which the,
overlay file has been opened.

Overlay number

FORTRAN ADDRESS of the conditional load flag

FORTRAN ADDRESS of the error code

Supporting Routines: FRET; .CPYA, . IOCAT
Subroutine Size: 46 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are restored upon exit.

The overlay file which is to be used in this call must have
been opened previously by a call to OVOPN. The overlay
number is a word which contains the overlay area number
in its left byte and the overlay number within its right byte.
This number must have been declared either by an . ENTO
pseudo op or in a FORTRAN OVERLAY statement.

The conditional load flag is a word which is set to be either
zero or non-zero. If zero, overlay loading is to be done
unconditionally; if non-zero, overlay loading is to be done
conditionally.

In conditional loading, the number of the currently loaded
overlay is checked. If it is the same as the requested overlay,
return is made immediately to the caller. Otherwise the
requested overlay is loaded.

In unconditional loading, the requested overlay is loaded
regardless of whether it is currently core resident or not. For
more information about conditional and unconditional overlay
loading, see the RDOS User's Manual.

OVLOD is equivalent to FOVLD.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS System error code + 3.

This routine is found in the RDOS FORTRAN Run Time library.,
E-45

Real Time
Overlay and Swap

FOVRL

Purgose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To release an overlay area.

FCALL

FOVRL

Integer 2

Overlay number

FORTRAN ADDRESS of the error code

FRET, KILL, SVVAR; .IOCAT, .CPYA, .CPYL, .KSRCH,
. FTSCH, CTCB, .INHB.

206 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit. The overlay
number is a word which contains the overlay area number in
its left byte and the overlay number within its right byte. The
overlay number must have been declared in either a . ENTO or
an OVERLAY statement.

This call should be issued each time a user completes his use
of a given overlay (i.e., it decrements the overlay use count).
When no users remain who wish to use the currently resident
overlay (i.e., the overlay use count goes to zero), the overlay
area becomes free for the loading of other overlays.

This call must not be issued from within the overlay area
which is to be released.

The error code word will be set to one of the following states:

0 =~ Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3 .

FOVLD has an alternate entry point in this routine.

E-46

FQTASK

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Interrupt

To load a user overlay and periodically execute a task within
the overlay or to periodically execute a core-resident task.

FCALL

FQTASK

Integer number of arguments, 4 or 5

Overlay number or dummy argument

FORTRAN ADDRESS of task entry.point

FORTRAN ADDRESS of task queue array

FORTRAN ADDRESS of error code

optional FORTRAN ADDRESS of constant -1
if a core resident task

FRET, TQTSK; .CPYL
42 octal locations of normally relocatable memory.

Accumulators and carry are saved in the caller's TCB;
return is to the task scheduler.

Note that the first argument is either an overlay number

(not the FORTRAN ADDRESS of an overlay number) in the case of
an overlay task or a dummy argument in the case of a core resident
task. The overlay number is a word which contains the overlay
area number in its left byte and the overlay number in its right byte,

The task entry point is the entry point within either the overlay
or the core resident task where program control is to begin execu-
tion; this point must have been globally ENTered.

The task queue array is a 13g word integer array, supplied by the
user, whose elements contain the following parameters and whose
displacements are given the following mnemonic assignments:

Displacement Contents
QPC Used by the system.
QNUM Number of times to execute task.
QTOV Used by the system.
QSH Starting hour of task execution.
QSMS Starting second within the hour QSH.
QPRI Task priority.

E-47

Real Time
Overlay and Swap

Displacement

Contents

QRR
QTLNK
QOCH
QCOND

QCOND+1

Rerun increment in seconds.

Used by system.

Overlay channel number (dummy for
core resident tasks).

Overlay conditional load flag (dummy
for core resident tasks).

Task i.d. number.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3.

The last parameter must be present and must point to a -1
constant only if the task to be executed is a core resident task.

FQTASK must be referenced in an . EXTN statement.

E-48

Real Time
Overlay and Swap

OVEXT

Purpose: To release an overlay and return control to an address specified
by the caller. This call is issued from within the overlay. If
several binaries comprise the overlay, this call is issued from
within the binary where the overlay name is defined via an

OVERLAY or .ENTQ statement.

Calling Sequence: FCALL
OVEXT
Integer 2
overlay number or name

FORTRAN ADDRESS of return

Supporting Routines: FRET, TOVRL; . CPYL, .RTER

Subroutine Size: 22 octal locations of normally relocatable memory.

Notes to User: The overlay name may be used in place of the composite overlay
number if the name has been defined in an OVERLAY or . ENTO
statement.

This call decrements the overlay use count and releases the
overlay area if the count becomes zero.

tors and carry are saved in the caller's TCB.
OVEXX has an alternate entry point in this routine.

OVEXT must be referenced in an . EXTN statement.

E-49-1

Real Time
Overlay and Swap

OVEXX

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To release an overlay and return control to an address specified
by the caller. This call is issued from within the overlay. If
several binaries comprise the overlay, this call is issued from
within a binary other than the one which defines the overlay
name via an OVERLAY or . ENTO statement.

FCALL

OVEXX

Integer 2

overlay number or name

FORTRAN ADDRESS of return

FRET, TOVRL; .CPYL, .RTER

22 octal locations of normally relocatable memory.

The overlay name may be used in place of the composite overlay
number if the name has been defined in an OVERLAY or . ENTO

statement.

This call decrements the overlay use count and releases the
overlay area if the count becomes zero.

Accumulators and carry are saved in the caller's TCB.
OVEXT has an alternate entry point in this routine.

OVEXX must be referenced by an . EXTN statement.

E-49-2

OVKIL

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to Users:

Real Time
Overlay and Swap

To kill a calling task and release its overlay. This call is issued
from within the overlay. If several binaries comprise the overlay,
the call is issued from within the binary which defines the overlay
name via the OVERLAY or . ENTO statement.

FCALL

OVKIL

Integer 1

overlay number or name

FRET, KILL, TOVRL; .CPYL, .RTER

20 octal locations of normally relocatable memory.

The overlay name may be used in place of the composite overlay
number if the name has been defined in an OVERLAY or . ENTO

Statement.

This call decrements the overlay use count and releases the
overlay area if the count becomes zero.

OVKIX has an alternate entry point in this routine.

OVKIL must be referenced by an . EXTN statement.

E-49-3

Real Time
Overlay and Swap

OVKIX
Purpose: To kill a calling task and release its overlay. This call is issued
from within the overlay. If several binaries comprise the overlay,
this call is issued from within a binary other than the one which
defines the overlay name via an OVERLAY or . ENTO statement
Calling Sequence: FCALL
OVKIX
Integer 1

overlay number or name

Supporting Routines: FRET, KILL, TOVRL; .CPYL, .RTER

Subroutine Size: 20 octal locations of normally relocatable memory.

Notes to User: The overlay name may be used in place of the composite overlay
number if the name has been defined in an OVERLAY or . ENTO
statement.

This call decrements the overlay use count and releases the
overlay area if the count becomes zero.

OVKIL has an alternate entry point in this routine.

OVKIX must be referenced by an . EXTN statement.

E-49-4

FSWAP

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real '['ime
Overlay and Swap

To save the current core image as a disk save file and read
in a new save file at a lower program level.

FCALL

FSWAP

Integer 1

FORTRAN ADDRESS of the save file name

FERTf@, FERTN; .CPYL, .FRET, .RTER .
43 octal locations of normally relocatable memory.

The calling program is suspended and is saved on disk. The
caller's task control block is used to save its accumulators,
carry and PC to allow the caller to be resumed when control
is transferred back to this level. Control is returned to the
caller by the FORTRAN call FBACK.

When the program swap is read into core, control goes to the
highest priority ready task within the new save file.

FCHAN and FBACK have alternate entry points in this routine.

Since this routine issues the RDOS system call , EXEC, more
information about program swaps can be found in the RDOS
User's Manual,

Information can be passed between the caller (the higher

level program) and the lower level program via blank common,
since blank common is not overwritten during program
swapping or chaining.

E-49

Real Time
Overlay and Swap

OVOPN

PurEo se:

Calling Sequence;:

Supporting Routines:

Subroutine Size:

Notes to User:

To open an overlay file on a FORTRAN channel.

FCALL

OVOPN

Integer 3

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of error code.

FRET; .CPYL, .IOCAT .

147 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

APPEND and OPEN have alternate entry points in this routine.

The file name is an ASCII byte string, including the file
. OL extension.

This routine issues the RDOS system call . OVOPN, Thus this
routine must be used before FORTRAN overlays can be
loaded in either a single or multitask environment.

The FORTRAN routine FCLOS is used to close the overlay
file and release its FORTRAN channel.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
...

3 - RDOS system error code + 3 .

REAL TIME FILE AND I/O

GTATR ccccc .oooooooouonou.--E'sg

WRITR -ooo-oovoo.o.--aoo-oooE-67

E-51

APPEND

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To open a file so that new file information may be appended to
that file. An optional blocking factor may be specified for the
record size.

FCAL

APPEND

Integer number of arguments, 4 or 5

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of open type indicator
FORTRAN ADDRESS of error code

FORTRAN ADDRESS of optional blocking factor

.DSI, FRET, IOPTR; .CPYL, .IOCAT
174 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit.

OPEN and OVOPN have alternate entry points in this routine.
The file name is an ASCII byte string.

The open type indicator must be one of the following codes:

2 - shared appending (more than one user)
3 - exclusive appending (only one user)

For a device like the magnetic tape, the file is first opened and
spaced to the end-of-file; appending takes place from that point.

The error code word will be set to one of the following:

0 - Indeterminate error
1 - No error occurred
3...n - RDOS system error code+3

The blocking factor constant is an integer indicating the number
of bytes/record. For random record I/0, the blocking factor
should be 128.

Up to 64 FORTRAN channel numbers are allowed, 0 through 63.

Append must be referenced by an . EXTN statement.

E-53

Real Time
File and 1/0

CFILW

Purpose:

Calling sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To create an RDOS disk file.

FCALL

CFILW

Integer number of arguments to follow -- 3 or 4
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of file type indicator
optional FORTRAN ADDRESS of file size
FORTRAN ADDRESS of error code

FRET; .CPYL, .RTER.

46 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.
The file name is an ASCII byte string.

The file type indicator is an integer. The following integers
correspond to the listed file types:

Integer Indicator File Type
1 Sequentially organized file.
2 Randomly organized file.
3 Contiguously organized file.

The file size argument is used only when a contiguously organized
file is being created. The file size is an integer describing the
number of disk blocks in the file,

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3 .

E-54

Real Time
File and I/0

CLOSE

Purpose: To free a FORTRAN logical channel under RDOS, and close the file
associated with that channel.

Calling Sequence: FCALL
CLOSE
Integer 2

FORTRAN ADDRESS of logical channel number
FORTRAN ADDRESS of error code

Supporting Routines: ~ FSAV, FRET, IMIO; .IOCAT, .RTER, .CPYL, .SOSW

Subroutine Size: 57 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are restored upon exit.

The logical channel number is an integer constant with a value from
@ through 15¢,.

This routine issues the RDOS system call . CLOSE .

The error code word will be set to one of the following states:

.
. o
- Indeterminate error.

N
1 - No error occurred.
n - RDOS system error code + 3 .

FCLOS has an alternate entry point in this routine.

E-55

Real Time
File and 1/0

DFILW

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To delete a disk file.

FCALL

DFILW

Integer number of arguments, 1 or 2
FORTRAN ADDRESS of file name
FORTRAN ADDRESS of optional error code

FRET; .CPYL, .RTER
27 octal locations of normally relocatable memory.
The file name is an ASCII byte string.
This routine issues the RDOS system call . DELET.
If a file requested to be deleted is open on one o1 more
FORTRAN channels, the file will not be deleted. Instead,
if no error code argument is supplied, a run time error
message will be issued. If the error code argument is
supplied, the error code will be set to one of the following
states:

0 - Indeterminate error

1 - No error occurred

3...n - RDOS system error code + 3

Original contents of accumulators and carry are restored.

DELET is equivalent to DFILW.

DFILW must be referenced by an . EXTN statement.

E-56

DIR

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

D1 m*
near Lime

File and I/0

To define a current default directory.

FCALL

DIR

Integer 2

FORTRAN ADDRESS of device name

FORTRAN ADDRESS of error code

FRET; .CPYI. .

16 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit.

The device name is an ASCII byte string.

This routine issues the RDOS system call .DIR .

The error code word will be set to one of the following states:
0 - Indeterminate error.

1 - No error occurred.
3...n - RDOS system error code + 3 .

Real Time
File and I/0

FSTAT

Purpose:

Calling Sequence:

Supporting Routines:

Subr outine Size:

Notes to User:

To set the attributes of a FORTRAN file (not a device).

FCALL

FSTAT

Integer 3

FORTRAN ADDRESS of the FORTRAN channel number ,
FORTRAN ADDRESS of the file attributes word ‘
FORTRAN ADDRESS of the error code

FRET: .CPYL, .IOCA .
27 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

This routine issues the RDOS system call . CHATR. Thus
the bit settings for the file attributes word are as follows.
Setting a bit to 1 sets the attribute for a file: ’

bit 0 - File is read-protected.

bit 1 - File is attribute-protected.
bit 2 - The file is a save file.

bit 15 - The file is write-protected.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
S ¢

3 - RDOS system error code + 3.

Real Time

File and I/0
GTATR
Purpose: To get the attributes of a FORTRAN file (not a device).
Calling Sequence: FCALL
GTATR
Integer 3

FORTRAN ADDRESS of the FORTRAN channel number
FORTRAN ADDRESS to receive the attributes word
FORTRAN ADDRESS of the error code

Supporting Routines: =~ FRET; .CPYL, .IOCA .

Subroutine Size: 27 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are restored upon exit.

This routine issues the RDOS system call . GTATR. Thus the
bit settings for the file attributes word are as follows. A
logical one in a bit position indicates the file has the given
attribute.

bit O - File is read-protected.

bit 1 - File is attribute-protected.

bit 2 - The file is a save file,

bit 12 - The file is organized contiguously.
bit 13 - The file is organized randomly.
bit 14 - The file is a permanent file.

bit 15 - The file is write-protected.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3 .

E-59

Real Time
File and I/0

INIT

PurEose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To initialize a directory device or a magnetic tape transport.
FCALL

INIT

Integer 3

FORTRAN ADDRESS of device name

FORTRAN ADDRESS of initialization mode word

FORTRAN ADDRESS of error code

FRET; .CPYL.

17 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

This routine issues the RDOS system call . INIT. Thus
full, partial, and partial initialization with overlays is per-

mitted. The mode word determines which kind of initialization
will occur, and has the following definitions:

-1 - full initialization
0 - partial initialion
1 - partial initialization with overlays

Only full or partial initialization is permitted on magnetic
tape transports. Full initialization causes a tape to be
rewound and two end-of-file characters to be written. Partial
initialization simply rewinds the tape and resets the tape file
pointer to file zero.

The device name is an ASCII string consisting of a valid string
mnemonic for either a disk or magnetic tape transport. This
string is terminated by a null byte.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3 .

E-60

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To open a file on a FORTRAN channel, optionally
specifying a blocking factor for the file.

FCALL

OPEN

Integer number of arguments, 4 or 5

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of file name

FORTRAN ADDRESS of open type indicator
FORTRAN ADDRESS of error code

FORTRAN ADDRESS of optional blocking factor

.DSI, FRET, IOPTR; .CPYL, .IOCAT

174 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit.

APPEND and OVOPN have alternate entry points in this

routine,

The file name is an ASCII byte string.

The open type indicator must be one of the following codes:

1 - Open for reading only by one or more users.
2 - Open for reading/writing by one or more users.
3 - Open for reading/writing by only one user.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3.

The file blocking factor constant is an integer indicating the

number of bytes/record. For random record 1/0,
factor should be 128,

the blocking

Up to 64 FORTRAN channel numbers are allowed, 0 through 63.

OPEN must be referenced by an . EXTN statement.

E-61

Real Time
File and I/0

RDBLK

Purpose:

Calling Sequence:

Supporting Routines:

' Subroutine Size:

Notes to User:

To read into an array a series of disk blocks from a file
that is organized either randomly or contiguously.

FCALL

RDBLK

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of the starting block number
FORTRAN ADDRESS of the array to receive the block data
FORTRAN ADDRESS of the number of blocks to be read
FORTRAN ADDRESS of the error code

FORTRAN ADDRESS of the optional block count

FRET; .CPYL, .IOCAT
72 octal locations of normally relocatable memory

Accumulators and carry are restored upon exit,

The starting block number is the logical (or relative) number
of the block within the file which will be read. The first
block in the file is logical block number 0, the second block
is block number 1, etc.

Since blocks are each 256, words long, the array size must
be n*256 where n is the number of blocks to be read. No
check is made to determine whether or not the size of the
array is adequate. In the case where a premature end of file
is detected, the optional block count argument will be set to
the number of blocks actually read.

The error code word will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred.
3...n - RDOS system error code +3

WRBLK has an alternate entry point in this routine.

RDBLK must be referenced by an . EXTN statement.

E-62

RENAM

Purgose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To rename a disk file.

FCALL

RENAM

Integer 3

FORTRAN ADDRESS of old name
FORTRAN ADDRESS of new name

FORTRAN ADDRESS of error code
FRET; ,CPYL
20 octal locations of normally relocatable memory.
Accumulators and carry are saved in the caller’s TCB.
Disk file names are byte strings of ASCII characters,
packed left to right and terminated by either a carriage
return, form feed, space, or null. Allowable ASCII
characters in the file name are all upper case alphabetics,
numerals, and $§. A file name can contain any number of
characters, but RDOS considers only the first 1010 significant.
The error code word will be set to one of the following states:
0 - Indeterminate error.
1 - No error occurred.

3...n - RDOS system error code + 3,

RENAM must be referenced by an . EXTN statement.

E-63-1

READR

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To read a series of records from a file into an array.

FCALL
READR
Integer number of arguments, 5 or 6 '
FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of the starting record number
FORTRAN ADDRESS of the array to receive the records
FORTRAN ADDRESS of the number of records to be read
FORTRAN ADDRESS of the error code

optional FORTRAN ADDRESS of the byte count.

——

FRET, MPY, DVD; .CPYL, .IOCAT, .RTER
100 octal locations of normally relocatable memory. '

Accumulators and carry are restored upon exit.

The starting record number is the logical (or relative) number
of the record within the file which will be read. The first
record within the file is logical record number 0, the second
is logical record number 1, etc.

The routine performs sequential reads by issuing RDOS system
call .RDS . If a premature end-of-file is detected, the routine
returns a byte count of all bytes read during the call, and places
this count in the FORTRAN ADDRESS of the byte count, if one is
provided.

No check is made to determine whether the size of the array is
adequate or not.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred
3...n - RDOS system error code + 3.

WRITR has an alternate entry point in this routine.
READR must be referenced by an . EXTN statement.

E-63

Real Time
File and I/0

RESET

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To close all currently open files and all FORTRAN channels.

FCALL
RESET

FRET, IMIO; .IOCAT .

27 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

This routine issues the RDOS system call . RESET. If this
call is issued in a multitask environment, it must be issued

only when no other task is performing any channel-related
operations.

E-64

RLSE

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To release a previously initialized device or dire ctory from the system,
FCALL

RLSE

Integer 2

FORTRAN ADDRESS of device or directory name ‘
FORTRAN ADDRESS of error code

FRET; .CPYL
16 octal locations of normally relocatable memory.

The device name is an ASCII byte string terminated by a
carriage return, null, form feed, or space.

This routine issues the RDOS system call ., RLSE .

Original contents of accumulators and carry are saved
in the caller's TCB.

The error code word will be set to one of the following
states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3.

RLSE must be referenced by an , EXTN statement.

E-65

Real Time
File and I/0

WRBLK

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

To write a series of 256-word data blocks from an array into
an RDOS disk file. The disk file must be organized either
randomly or contiguously.

FCALL

WRBLK

Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number
FORTRAN ADDRESS of the starting block number
FORTRAN ADDRESS of the array transmitting the block data
FORTRAN ADDRESS of the number of blocks to be written
FORTRAN ADDRESS of the error code

FORTRAN ADDRESS of the optional block count

FRET; .CPYL, .IOCAT
72 octal locations of normally relocatable memory.

Accumulators and carry are restored upon exit.

The starting block number is the logical (or relative) number
of the block within the file to which writing will occur. The
first block in the file is logical block number 0, the second
block is block number 1, etc.

Since disk blocks are each 256, words in length, the array
size must be n*256 where n is the number of blocks to be
written. No check is made to determine whether or not the
size of the array is adequate. In the case where disk overflow
occurs, the optional block count argument will be set to the
number of blocks actually written.

The error code word will be set to one of the following states:

0 - Indeterminate error.
1 - No error occurred.
3...n - RDOS system error code + 3

RDBLK has an alternate entry point in this routine.

WRBLK must be referenced by an . EXTN statement.

E-66

WRITR

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
File and I/0

To write a series of records from an array into a file.

FCALL .
WRITR |
Integer number of arguments, 5 or 6

FORTRAN ADDRESS of FORTRAN channel number

FORTRAN ADDRESS of the starting record number

FORTRAN ADDRESS of the array transmitting the records
FORTRAN ADDRESS of the number of records to be written
FORTRAN ADDRESS of the error code

optional FORTRAN ADDRESS of the byte count |

FRET, MPY, DVD; .CPYL, .IOCAT, .RTER
100 octal locations of normally relocatable memory. |

Accumulators and carry are restored upon exit.

The starting record number is the logical (or relative) number
of the block within the file to which writing will occur. The
first record within the file is logical record number 0, the
second record is logical record number 1, etc.

The routine performs sequential writes by issuing the RDOS
system call . WRS . No check is made to determine whether
or not the size of the array is adequate.

The error code word will be set to one of the following states:

0 - Indeterminate error
1 - No error occurred.
3...n - RDOS system error code + 3

If disk overflow occurs, RDOS system error code ERSPC
will be given.

READR has an alternate entry point in this routine.

WRITR must be referenced by an . EXTN statement.

E-67

REAL TIME BIT MANIPULATION

oooooooooooooooooooooo

ICLR

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time

Bit Manipulation

To clear a bit in a 16-bit word.,

FCALL

ICLR

Integer 2

FORTRAN ADDRESS of word with bit position to be cleared
FORTRAN ADDRESS of bit position indicator

FRET; .CPYL, .RTER.

50 octal locations of normally relocatable memory.

ITEST and ISET have alternate entry points in this routine.
Accumulators and carry are restored upon exit.

This routine clears one bit in a word, the bit selected
according to the bit position indicator which may be any

integer from O to 15g. The following bit position indicators
cause the following bit positions to be cleared:

MsB

LSB

14 13 12 1 10 9 8 7 6 5 4 3 2 1

Bit Position Indicators

Real Time
Bit Manipulation

ISET
Purpose: To set a bit in a 16-bit word.
Calling Sequence: FCALL

ISET

Integer 2

FORTRAN ADDRESS of word with bit position to be set
FORTRAN ADDRESS of bit position indicator

Supporting routines: =~ FRET; .CPYL, .RTER .

Subroutine Size: 50 octal locations of normally relocatable memory.

Notes to User: Accumulators and carry are restored upon exit.

This routine sets one bit position in a word. The bit position
set is selected according to the bit position indicator which may
be any integer from 0 to 15g. The following bit position indi-
cators cause the following bit positions to be set:

Bit Position Indicator Bit Position Set

0 Least significant bit.
1 Next least significant bit.
15 Most significant bit.

ITEST and ICLR have alternate entry points in this routine,

E-72

ITEST

Purpose:

Calling Sequence:

Supporting Routines:

Subroutine Size:

Notes to User:

Real Time
Bit Manipulation

To examine a bit in a 16-bit word.

FCALL

ITEST

Integer 3

FORTRAN ADDRESS of result

FORTRAN ADDRESS of word to be examined
FORTRAN ADDRESS of bit position indicator

FRET; .CPYL, .RTER.

50 octal locations of normally relocatable memory.
Accumulators and carry are restored upon exit.

This routine performs a logical AND between the word to be
examined and a bit mask, placing the result in the FORTRAN
ADDRESS of the result.

The bit position indicator is an integer from O to 15 g+ This
word is used as a power to which the base 2 is raised, creating
a bit mask for the AND operation. Thus the following bit pos-

ition indicators cause the following bit positions to be tested:

Bit Position Indicator Bit Position Examined

0 Least significant bit,
1 Next least significant bit.
15 Most significant bit.

ICLR and ISET have alternate entry points in this routine.

E-73

Writing a Real Time Program

Since RT FORTRAN is a superset of non-real time FORTRAN, all information
given in the DGC FORTRAN IV USER'S MANUAL, 093-000053, applies to the
writing of an RT FORTRAN program, Additionally, the following points must
be considered when writing an RT FORTRAN program,

The first statement which must be found in the main RT FORTRAN program is the
CHANTASK statement. This statement specifies both the maximum number of
tasks which will be active at any one moment and the maximum number of RDOS
channels which will be required. The CHANTASK statement is a specification
statement which is non-executable,

The format of the CHANTASK statement is as follows:

CHANTASK 11. i,

where: i, is an integer representing the number of RDOS channels which
will be required by the program.,

ig is an integer representing the maximum number of active
tasks at any one moment,

Users are cautioned to be precise in specifying i, since the use of a value larger
than the maximum number of tasks which will be active at any one moment will
cause the run time stack area to be segmented into more subdivisions than are re-
quired at any one moment, with a consequently smaller size allocated for each
segment, The use of a value smaller than this maximum value will cause a

fatal run time error to occur,

If the CHANTASK statement is omitted, a default value of 1 task and 8 RDOS channels,
will be presumed and TMIN (the RDOS minimum Task Scheduler) will be loaded.

The EXTERNAL statement given in non-real time FORTRAN has been expanded
for RT FORTRAN to include the names of the entry points of all tasks which will be
initiated by the main program. Correspondingly, each Task subprogram must be
declared by a TASK statement so that the Task module can become accessible by
other programs. The format of the TASK statement is as follows:

TASK taskname

E-74

Writing a Real Time Program (Continued)

where: taskname is the name given to the Task subprogram.

Since a task is a logically complete execution path through a program, parameters
cannot be passed to tasks (although one-word messages can be passed to them as
mentioned earlier).

Since RT FORTRAN programs will be written in FORTRAN source code, users
should be aware of the FORTRAN equivalence of the assembly language calling
sequences given in this appendix to describe each routine. As stated in the
introduction to this manual, the FORTRAN statement:

CALL SUBROUTINE (parameter cos parametern)

e
is equivalent to the assembly language calling sequence:
FCALL

SUBROUTINE
Integer n

FORTRAN ADDRESS of parametern

Thus, for example, a FORTRAN call to the PRI subroutine would be of the form:

CALL PRI (priority address)

The following two pages summarize the FORTRAN calls found only in the
RDOS FORTRAN run time library.

E-75

Task Commands

CALL ABORT (i.d. number,error word)
CALL AKILL (priority)
CALL ARDY (priority)
CALL ASUSP (priority)

CALL CHNGE (i.d. number, new priority
error word)

CALL FTASK (name, error return, priarity)
CALL HOLD (i.d. number, error word)

CALL ITASK (name,i.d, number, priority,
error word)

CALL KILL

CALL PRI (priority)

CALL REC (i.d. number, error word)
CALL RELSE (i.d. number, error word)

CALL STTSK (i.d. number, task status
word, error word)

CALL SUSP
CALL XMT (message address, message, €TTor
return)

CALL XMTW (message address, message,
error return)

Clock Calendar Commands

CALL DATE (date array, crror word)
CALL FDELY (number of RTC cycles)

CALL FGTIM (hour, minute, sccond)
CALL FSTIM (hour, minute, second)

CALL TIME (time array, crror word)

Interrupt Commands

CALL FINRV (device-code)
CALL FINTD (device-code, uscer-dct)

CALL IXMT (message address, message,
error word)

Swap and Overlay Commands

CALL FBACK
CALL FCHAN (save file name)

CALL FOVLD (channel number, overlay
name, conditional load flag,
error word)

CALL FOVRL (overlay name, error word)

CALL FQTASK (overlay name or dummy, task
name, task queue array, crror
word, optional core-resident
task flag)

CALL FSWAP (save file namc)

E-76

Kill a task specified by isd. number.
Ready a class of tasks.
Suspend a class of tasks.

Change the priority of a specific task.

Create a task.
Suspend a specific task.

Create a task and assign it an i.d. number.

Changce a task's priority.
Reccive a task message.
Ready a specific task.

Obtain the status of a specific task.

Suspend the calling task.
Kill the calling task.

Transmit a task message.

Transmit a task message and wait for its
receipt.

Get the current date.

Suspend the calling task for a specified
interval of time.

Get the current time.
Sct the system clock.

Get the current time of day.

Remove a special user device from the svstem.
Introduce a special user device to the system.

Transmit a message from a user interrupt routine.

Return to the next higher program level.
Perform a program chain.

Load a uscr overlay in a multitask environment.

Release an overlay arca.

Exccute a task at periodic intervals. If the task
is in an overlay, load the overlay so that the task
can be executed.

Save the current program level and call in a
program swap.

Swap and Overlay Commands: (Cont'd)

CALL OVEXT (overlay name, return address)

CALL OVEXX (overlay name, return address)

CALL OVKIL (overlay name)
CALL OVKIX (overlay name)

CALL OVLOD (channel number, overlay name,
conditional load flag, error word)

CALL OVOPN (channel number, overlay name,
error word)

File and 1/0 Commands:

CALL APPEND (channel number, file name,
open type indicator, error word,
optional blocking factor)

CALL CFILW (tile name, file type indicator,
optional file size, error word)

CALL CLOSE (channel number, error word)
CALL DFILW (file name, optional error word)
CALL DIR (device name, crror word)

CALL FSTAT (channel number, file attributes,
error word)

CALL GTATR (channel number, file attributes,
cerror word)

CALL INIT (device name, initialization mode
word, error word)

CALL OPEN (channcl number, file name, open
tvpe indicator, error word,
optional blocking factor)

CALL RDBLK (channel number, starting block
number, receiving array, number
of blocks to be read, crror word,
optional block count)

CALL READR (channel number, starting record
number, receiving array, number
of records to be read, error word,
optional byte count)

CALL RENAM (old name, new name, error word)

CALL RESET

CALL RLSE (device name, error word)

CALL WRBLK (channcl number, starting hlock
number, transmitting array,

number of blocks to be written,
crror word, optional block count)

CALL WRITR (channel number, starting record
number, transmitting array,number
of records to be written, error word,
optional byte count)

Bit Manipulation Commands:

CALL ICLR (word, bit indicator)
CALL ISET (word, bit indicator)
ITEST (word to be examined, bit indicator)

E-77

Release an overlay and return control to a
specified address.

Release an overlay and return control to a
specified address.

Kill a calling task and release its overlay.
Kill a calling task and release its overlay.

Load a user overlay in a single task environment.

Open an overlay file.

Close a f
Delete a disk file.
Change default directory or device,

Set file attributes.
To examine file attributes.

To initialize a magnetic tapc cassette,
disk device or directory.

Open a file on a FORTRAN channel.

Read a scries of disk blocks into an array.

To read a scries of file records into an array.,

Rename a disk file.
Closc all open files.
Releasce a previously initialized device or directory.

To write a scries of data blocks from an array
into a file.

To write a series of records from an
array into a file.

Clear a bit in a 16-bit word.
Set a bit in a 16-bit word.

Examine a bit in a 16-bit word.

RT FORTRAN Program Example

The following RT FORTRAN program example consists of three program modules,
each separately compiled by means of three commands:

FORT MAIN /
FORT TIMPLT /
FORT QUAD /

After compilation, the binaries are loaded by means of the following command sequence:
RLDR MAIN TIMPLT QUAD FMT.LB FORTI1.LB FORT2.LB FORTS3.LB FORT4. LB /

(Note that the multitask library, FMT.LB, is not loaded in single task programs.) The
first module is the main program. Its functions are to type the title, ***REAL TIME
QUADRATIC EQUATION SOLVER***, on the line printer and then to activate the two
tasks whose logic is contained in the two remaining modules.

The first task module, TIMPLT, prints a counter on the line printer, one count per
line, 55 lines per page. The counter is incremented once each second, given a real
time clock cycle of 100 milliseconds.

The second task module, QUAD, accepts coefficients for a quadratic equation from
the teletypewriter keyboard and prints these coefficients on the line printer at the
moment the carriage return terminator is detected. If the roots of the equation are
complex, a message is output. Otherwise, the two real roots, X and X3, are also
printed on the line printer. The program runs continuously until the user aborts it
by means of a CTRL A break.

Some sample output produced by this real time program follows the listing of the
source program modules.

E-78

EXAMPLE SOURCE LISTING

C MAIN PROGRAM
CHANTASK 3,3

EXTERNAL QUADs TIMPLT
WRITE (12) ' *xxREAL TIME QUADRATIC EQUATION SOLVER**x*"

C CREATE TIME PLOT TASK AT NEXT HIGHEST PRIORITY
CALL FTASK (TIMPLT,$10,1)

C CREATE QUADRATIC SOLVER TASK AT LOWEST PRIORITY
CALL FTASK (QUAD»S$10,1)

CALL KILL
12 WRITE (12> " NOT ENOUGH TCB'S"™
END

TASK TIMPLT
C SET OUTPUT COUNTER TO ZERO

N =20
1 LINES = 0 ,
C RESET LINE COUNTER TO ZERO, TOP OF PAGE
2 LINES = LINES + 1
N =N+ 1

CALL FDELY (18)
C IF BOTTOM OF PAGE, GO TO TOP OF NEXT PAGE

IF (LINES.EQ.55) GO TO 10
WRITE (12) N
GO TO 2

10 WRITE (12> N
WRITE (12,20

20 FORMAT (1H1)
GO TO 1
END

TASK QUAD v

C GET QUADRATIC EQUATION COEFFICIENTS

100 READ (11) AsB,C

C F(X) = A%X%%x2 + B%*X +C

C 1IF COMPLEX ROOTS, OUTPUT COEFFICIENTS AND FLAG
IF ((B**2-4%A%C).LT.0) GO TO 10

C FIND THE REAL ROOTS
XIR = (=B+(B%*2-4%A%C)%%e5)/(2%A)
X2R = (~B=(B%%2-4%A%C)%*%*e5)/(2%A)

C OUTPUT THE COEFFICIENTS AND THE TWO REAL ROOTS
WRITE (12,1) AsB,C>X1RsX2R

1 FORMAT (1H@,"A= ',F10+45" B= ", F10.4," C= ",
1 FlQ@eds'" X1= ", F10e45" X2= ",F10.4)
GO TO 100
19 WRITE (12,2) A,B,C
2 FORMAT (1H@, "*%* COMPLEX ROOTS**%", "A= ", Fl1@.4,"B= "
1 2F104 4, '"C= "5 F10e4)
GO TO 190
END

E-79

SAMPLE PROGRAM OUTPUT

wwwREAL TIME QUADRATIC LJUATION SOLVERwww

B GN e

www COMPLEX RQOTSwwwAs 1,00008s 2,0000Cs 9,0000
5
6

-]
9
1o
11
12

As 1,000 Bsm 20,0000 C= ~16,0000 Xis= 3,9999 X2= »3,9999
14
14
15
16
17
18
19
29
21
22
23
24
es
20
27

*w% COMPLEX ROOTSwwwAs 12345,60008= 12345,6000Cs 9876,5400
28
29
3u
31
32
33
34
35
36
37
38
39
4
41
42
43
44

E-80 .

Preserving Reentrance During Interrupt Processing

As noted earlier, when a special user interrupt occurs in a real time environ-
ment, all task states are frozen. Thus no saving of task states is required when
processing interrupts, since interrupt processing occurs apart from task con-
siderations. If, however, users wish to issue FORTRAN calls as part of their
interrupt processing, it is imperative that certain stack variables be saved
before these calls are made. Failure to preserve stack variables will disrupt
management of the run time stack when the multitask environment becomes
unfrozen. (Note that the system saves these variables when interrupts are
generated by SYSGENed devices,)

When the multitask environment becomes frozen, page zero contains the

variables for the stack segment of the FORTRAN task which was in control of

the CPU at the time of the interrupt, Therefore if FORTRAN calls are to be issued
from interrupt service routines, these routines must utilize the remaining

free area in the frozen executing task's stack segment for run time variable
storage. Although interrupts must be turned off while the interrupt processing
logic is saving the segment variables, interrupts may be enabled as soon as

these state variables have been preserved,

The segment stack variables which must be saved by the interrupt processing
routine are as follows:

.SVo *
.OVFL *
FSP

Sp *
NSP

Additionally, a new QSP*value must be calculated which corresponds to the
new FSP,

Of the five variables which must be saved, .SV0 and . OVFL may be saved in

the new stack frame. SP may simply be incremented by one before the first
FORTRAN call, and decremented by one after the last FORTRAN call in the
interrupt servicing routine, NSP must be incremented by 6 and similarly decre-
mented by 6 after the last FORTRAN call, A convenient location in which to store
the old FSP is in the new frame's FOSP, The old FSP must be restored upon exit
from the interrupt service routine. In order to create the new frame (and new
FSP), the following adjustment must be made to the old FSP:

C(FSP') = C(FSP)+ FLGT + 2*FFEL

A new value for QSP is calculated by adding PARF displacement FAC2 to its

* See the FPZERO module, Chapter 9.

E-81

Preserving Reentrance During Interrupt Processing (Continued)

associated FSP:
C(QSP') = FAC2 + C(FSP')
The old value for QSP must berestoredwhen its associated FSP value is restored.

The following code example adjusts FSP, stores the old FSP in the new frame's
FOSP, and stores .SVO0 and . OVFL in this frame's two temporaries:

LDA 3, FSpP ;GET THE FROZEN FSP
MOV 3,2
LDA 0, FLGT, 3 ;ADJUST NEW FSP
LDA 1, MAGIC ;ADJUST NEW FSP
ADD 0,1 ;ADJUST NEW FSP
ADD 1,3 ;ADJUST NEW ESP
STA 3, FSP ;INSTALL THE NEW FSP
LDA 0, TWO ;RESERVE TWO TEMPORARIES FOR , SV0
STA 0, FLGT, 3 ;AND . OVFL
STA 2, FOSP, 3 ;SAVE THE FROZEN FSP
LDA 0,.SV0 ;GET THE FROZEN , SV0
STA 0,SAV0, 3 ;SAVE IT
LDA 0,.OVFL ;GET THE FROZEN ,OVFL
STA 0,0VFL,3 ;SAVE IT
MAGIC: 2*FFEL ;FFEL = 11 OCTAL, FOUND ON PARF
TWO: 2
SAVO = FTSTR
OVFL = SAVO+1

E-82

APPENDIX F

The FORTRAN parameter tape, PARF, must be assembled with any user-

written programs using thc FORTRAN runtime libraries. A listing of the

RDOS FORTRAN parameters (090-001000-02) follows.

F-1

- -

RGN
FRV-T VIS B NI I

-

¢aQ

Ay

iy
1 /T7F?7
‘ST 2R
177+778%
1 /77474
Cr780R
SF7RTD
ty7%41
V/7e00

oty
7R
s TRy
1,7¢00

$ COPYKIGRT (C) CATA GENERAL CORPORATION, 1972, 1973
3 ALL RIGHRTS RESFRVED,

} FRARTRAN R v=TIME PARAMETER TAPE

$ NEFINE THF CUFRENT STACK POINTER LOCATION

ISR FSpPsa

LSP

} RFFTte The FIXED STACK DISPLACEMENTS

LNUSK FhT =
o VUSK FaC2s
JDHSR FA(CY=
JOLUSR FaCs=
+NUSR FCRY=
JRUSRK Frane

JDLS® ol Pe
JPUSK FmgUs
JDUSK FLGTs
«NUSR rFEL =
LPUSR FTSgTRE
JNUSK Tvps
o LISk F7ne

-177
=171
-172
-173
174
-1758
=176
-177

- (it

11
-167

F18TR

-277

- we w6 we We We We We we

DAN'T MADIFY THE DISPLACEMENTS
FOR FRTN, FAC2, FAC1, FACP
ACH

ACD

CARRY

SIBFOUTINE ENTRY ADDRESS
PeRAMETER LIST POINTER

OLD STACK PNTINTER

STACK FRAME |ENGTH

FIXFD LENGTH OF THE STACK FRAME
TFMPORARY STNRAGE STARTING DISKP,

JFURGE FACTAR FOR ZEROTH FORTRAN DISPLAC

LD B N Y DD s

SIAY N AT\ M AL - A e e s e e —a e s
I ® B (VIS S L SO S S D RN s S J NV N

v (W fa T (a (o sl Gt ") NI ND O
D XYXN B 5 AN

41
-
85
ES
a7

E K
e

RN Y}

- A e oa

- s e a4 e et s es s a e o o

i,1
B |
11
134
151
171
AN
271
23y
ARy
IR
ety
Sa
caBy
471
BRR!
h:{,
BN |
r'(j

,-'~';
=71
711
AR

. 75
- 77
101
131
oty

17y

i DEFTNE THF

i DEFINE TwE

JNUSR
«DUSK
JNUSE

» PSR
«NUSR
JPUSKH
+DHISK
JUSK
o NUSK

s TUSK

GIVFEN

Fanis
E(.8=
FATALS

FFEMIFs
FECHTS
FEPVvie
FEINve
FFIPwe
FFFiI'Fs=
FEFME S
Frp~wsa
FRLERS
FRhNrks
FFINRE
FEFILPa
FtSiRs
FrRENGs
FrCt 8=
Frnens
FrROMAE
£E(Q=
Fotrpe
FECws
FrRops
F=t.Qre
Frjols
FrrsTs

FELTS =
FFF R=
FENyL =
F;A"(y =z
FEORL 3
FEDUK S

PyeTE

crnep =

ALC MAGIC

t11
1711
189

1 *FOS+ENDP
2.%FOS+ENOF
4,+FENS+ENNP
5. #FOS+FNCP
€,wFOS+ENDP
7 ., +EQS4ENQP
B, «FOS+ENDP
S #EOSH+ENOP
11,+E0S+ENQP
13, «E0S+ENOP
14, «ENS+ELCP
15, #*EQS+ENOP
1A, «ENS+ENDP
17 ,*ENS+ENCP
18, *ENS+ENQP
19, «EOS+EMOP
P, *EQSSENOP
21, *FNS+ELOP
24 *ENS+ENOP
8, *ENS+ENOP
A YENS+ENQD
<7, *ENS+EHCP
cB ,«FOS+ErOP
20, #EQS+ENCP

? kFOS+ENOP
1t *ENS+EHQP

afCACaCr My
[4 A SRR B g NN S

3, ¢E0S+ENQP
34, «EOS+E 0P
35, *ENS+FACP

3
J
3
R
2

STACK
COMPUTER GOTO ERROR

RFurieTIMF FRROK CCODFS
FATAL ERKCRS USF @NCOLE"
KEL AW

NHERF THE "CODES" ARE

} ALC ND=OP
3 ERROR CNDE QFFSET
i FATAL ERROR BIT

OVERFLOW

3 DIVISION RY ZERD

t INTEGER OVERFLOW

3 INTEGER POWER OVERFLOW

$ FLOATING POINT UNDERFLOW

3} FILOATING POINT OVERFLOW
STLLEGAL FORMAT SYNTAX

$LOGIC COMVERSION ERROR

$NUMBER CONVERSION ERROR

31/0 ERROR

JFIELD ERROR

JSGUARE RNNT OF NEGATIVE NUMBER
$LOG NF NEGATIVE NUMBRER
PCHANNEL NOT OPEN

JCHANNEL A|READY OPFM

$N@ CHANNFLS AVAILARLE

INP0S EXCEPTINNAL STATUS

P EXPONENTIAL OVER/UNDERFLOW
JARRAY REFERENCE nuUT OF BOUNDS,
j=VE RASE FOR FLOATING POWER
JMUMRER STACK OVERFLOW
3IACKSPACE NOT IMPLEMENTED

5 ATTEMPT TO RESTORE CHANNEL

3 STAT(IS NNY PREVIOUSLY SAVED
$NUFUED TASK ERROR

PSEEK NN NONRANNOM FILE
FOVERLAY ABORTED
JILLEGAL ARGUMENT

JNELETF FRROR(FILE QPEN)
JOVERLAY FRROR IN OVERLAY KILL

FRFROR DISPLACFMENT

3

e S

o
2O PN DA ey -

. e s

A N
TS A AN

[USPRN
w 3 N

~)
y

ARG S I DI)

AV A0 Ay
NOPR T e N

-
b}
~

157778

Y77778
V27777
g

77777

o
|
ey

PR S

.
’

DFFTLE

+DLSK

N

DFFTNF

YLSR

NSk
s NUSK
«OUISK

i

NEFTLE

» USSR
JNUSK
W NSk
"‘;US;J

'F;US‘"

THE FLNATING POINT INTFRPRFTER PARAMETERS

“AYDRE 10, } MAXIMUM PRECISION
} (nD, CF wWNS, NF MANTISSA MAX,)

THE FLOATING REGISTER FQUIVALEMCES

ShN=z -3 i STGN (RIT %)
3 (LLEAVE AS MNST NEG, DISPLACE,)

Fxsz -2 3 EXPPNENT (BITS 9«15)
P<C= - ; RFGISTER PRECISION
vANTE 4 $ HIGK NRNER MANTISSA WORD

T/ LAANNMNFL ASSIGNMENT TABLE,
= Ta=t JCHANNFL COIUNT
CaTE| ey JFLAGS
CoT=tet 3 RECNRC LENMGTH (RANDOM ONLY)
FAT BelHp JOPEN SwITCHR
CrTrneiny 3} MONE

o4
21
22
a3
04
25
26
a7
28
29
ie
11
12
13

JMAIN

Begnava
povae!
vl

177772
177773
177774

p00ens
oaeee?
eodvoioe

0epoes

oaedeo
0epoel
peQaee2
pwaeveed
000004
voveesS
0e00es

oaeaw?

DEFINE T

+DUSR
+DUSR
«DUSR

«DUSR
+DUSR
«DUSR

«DUSR
+DUSR
«DUSR

« DUSR

HE NUMBER STACK DISPLACEMENTS

OPiS=2 PCURRENT STACK QPERAND = SIGN
OPi{X=y JEXPONENT

OPiM=2 JMANTISSA

OP28=a6 JLAST OPERAND = SIGN
OP2Xs=5 TEXPONENT

OP2M=ed JMANTISSA

0P3Sm6 JINEXT OPERAND = SIGN
OP3X=7 FEXPONENT

OP3M=10 IMANTISSA

REGL®6 IREGISTER LENGTH

? TASK EXTENTION PARAMETERS
! N,B, THESE MUST CORRESPOND TO THE FPZERO ,BLK DEFINITIONS

+DUSR
«DUSR
+DUSR
«DUSR
«DUSR
+DUSR
+DUSR

+DUSR

TNDSPs 2
TAFSPs {
TSPs 2

TOVFL® 3
TSvVos 4
TQSP=s §
TFLSP® 6

TLEXN= T

+EOT

JMUST BE LAST DUE TO FLOATING POINT LOAD
FLSP=TNDSP+1

JEND OF PARAMETERS

F-5

INDEX

ABS 3-1

ABSLT A-1

absolute address,conversion toc 1-19

active chain E-2

address conversion, FORTRAN to absolute 1-19

addresses, FORTRAN 1-14

AFSE 1-23, 1-24, B-1, 1-10

AFRTN 12-1

.AIMA A-2

AIMAG 5-20

AINT 3-4

AKILL E-13

ALG A-1

AL.Gp 3-6

LALG1g A-1

ALLOC 12-12

allocation of stack 1-22

ALOG A-1

AMAX@ 7-3

AMAX1 3-7

AMINg 7-3

AMIN1 3-7

AMNX@ A-1

AMNX1 A-1

AMX@ A-1

.AMX1 A-1

AMOD 3-8

.AMOD A-1

APPEND E-53,A-2

ARDY E-16,A-2

ARCTAN A-1

ARGUM A-1

argument
passing from caller 1-21
passing to FORTRAN program from assembly level

1-29

array handling 1-17,D-1ff

array handling routines Chapter 13

ARYSZ 13-3

assembly language interfacing to FORTRAN 1-26

ASUSP E-16

ATAN 3-9
ATAN2 3-9
ATN A-1
ATN2 A-1
BASC 2-3

- .BASC A-1
BDASC 2-4
.BDASC A-1

bit manipulation routines E-69

blank common 1-23, 1-24

BRD A-1

BREAK 7-5

BRK A-1

BWR A-1

byte
addressing 1-3
manipulation 1-3,1-26,Chapter 8
packing, pointer 1-3
structure 1-4

CEQ1 A

CABS 5-3,A-1,A-2

.CABS A-1

CAD A-1

CAD1 5-4

CAD2 6-3

CADD A-1

calling sequence 1-22,1-25,1-27,E-75
call types E-3

CATIN 11-3,A-1

CCEQl A-1

CCEQ2 6-4

CCOS 5-6,A-1

CDIV A-1

CDV A-1

CDV1l 5-
CDvV2 6-

—— 3

CEQ2 A-

CEXP 5-8,A-1

CEXPO A-1

CFILW E-54,A-2

CFLD A-1

CFST A-l1

CFST1 5-9

CFST2 6-6

CGT 12-4,A-1

channel assignment table 1-22,1-23

CHANTASK 7-4

CHRST 11-6,A-1

CHSAV 11-6,A-1

CIN A-1

CIX A-1

CLIP A-1

CLIP1 5-10

CLIP2 5-10

CLOAD 5-11,A-1

clock/calendar routines, real time E-25

CLOG 5-12,A-1

CLOSE E-55, A-2

CLP A-1

CML1 5-13

CML2 6-7

CMPLX 7-6,A-1

CMUL A-1

CNEG A-1

CNEGl 5-14

CNEG2 5-14

common 1-22,1-23,1-24

COMP 8-3,A-1

complex numbers
data representation 1-3
double precision 1-3,1-6,1-21
packed 1-3
single precision 1-3,1-6,1-21
unpacked 1-4

CONJ A-1

CONJG 5-15, A-1

COS 3-11, A-1

COSIN A-1

COUT 1-7,A-1

(=

INDEX-1

CPU control, allocation of E-~]
CPW1 A-1

CPW2 A-1

CPWR A-1

CPWR1 5-16

CPWR2 6-8

CPYARG 10-3, A-1,1-19,1-21,1-22
CcPYLS 10-3,1-19,1-21,1-22,1-27
CRCX1 7-7,A-1

CRCX2 7-8,A-1

CRX2 A-1

CS A-1

CSBl 54

CSB2 6-3

CSIN 5-17,A-1

CSQRT 5-18,A-1

CSTOR A-1

CSUB A-1

CTRL A interrupt E-6

CTRL C interrupt E-6

CXFL1 7-9,A-1

CXFL2 7-10,A-1

DAIMA A-1
DAIMG 6-16
data representation
byte 1-3
integer 1-1,1-6
single precision real
packed 1-2
unpacked 1-6
double precision real
packed 1-2
unpacked 1-6
single precision complex
packed 1-3
unpacked 1-6
double precision complex
packed 1-3
unpacked 1-6
DATAN 4-3
DATAN2 4-3
DATN A-1
DATN2 A-1
DATE E-27, A-2
DBREAK 7-11, A-1
DBRK A-1
.DCAB A-1
DCABS 6-9,A-1
DCADD A-1
DCCEQ A-1
DCCOS 6-10,A-1

DCDIV A-1
DCDV A-1
DCEXP 6-11
DCEXPO A-1
DCFLO A-1
DCFST A-1
DCLOD 6-12,A-1

INDEX-2

DCLOG A-l1
DCMPLX 7-12, A-1
DCMUL A-1
DCOS 4-5

DCPWR A-1
DCRX2 A-1

DCS A-1

DCSIN 6-13,A-1
DCSQR 6-14,A-1
DCSTR A-1
DCSUB A-1
DDCLO 6-15,A-1
DELETE 11-8,A~1,A-2
DEXP 4-7,A-1
DEXPC 4-7,A-1
DEXPO A-1
DFILW E-56,A-2
DFL A-1

DIM 3-12,A-1
.DIM A-1

DIPWR 7-13,A-1
DIR E-57,A-2
displacements 1-10,1-26,1-27
.DLG A-1

DLOG 4-8,A-1
DLOGI0 4-8
DMAX1 4-10,A-1
PMIN1 4-10,A-1
.DMN1 A-1
DMNX1 A-1
.DMX1 A-1
DMOD 4-12,A-1
.DMOD A-1
dormant task E-2
DOS 1-1,1-23,1-24
DPLY2 A-1
DPOLY A-1

DPW A-1

double precision complex routines Chapter 6

double precision floating point (DPFL)
data representation 1-3,1-6
normalization 1-2
packed 1-2
range 1-2
significance 1-2
unpacked 1-3,1-5,1-6
zero 1-2
double precision routines Chapter 4
DPWER 4-13,A-1
DREAL 6-16,A-1
DSHIN A-1
DSIGN 4-14,A-1
DSIN 4-5
DSINH 4-15,A-1
DSN "A-1"
DSNH A-1
DSQRT 4-16,A-1
DSYGN A-1
DTAN 4-17
DTANH 4-18,A-1
DTN A-1
DTNH A-1

DVD (hardware) 2-13
DVD (software) 2-11
DXPC A-1

.ENT 1-5,1-26
entries in routines Appendix A
environments E-1
error

messages 1-25

arguments of routines E-6
example

of program Appendix C

of real time program E-78 ff
executing task E-2
execution times 1-25, 1-26
“EXP 313, A A
EXPC 3-14,A-1
EXPO A-1
.EXTD 1-26
EXTERNAL E-74
.EXTN 1-27

FA A-1

FACg 1-9, 1-10, 1-18,1-19
FAC1 1-9,1-10,1-18

FAC2 1-9,1-10,1-18
FACAL A-2

FAD1 3-15

FAD2 4-19

FADDR (see FORTRAN addressing)
FALOC 13-4,A-1,D-1, D-2,D-4
FARG 10-5,1-21,C-1
FARG§ 10-6,1-20,1-19
FARGU A-1

FB A-1

FBACK E-41,A-2

FCALL 10-7,1-14,1-17,1-19,1-25,1-27
FCEQl 3-16

FCEQ2 4-20

FCGT1 3-16

FCGT2 4-20

FCHAN E-42, A-2

FCLEl1 3-16

FCLE2 4-20

FCLOS 11-9,A-1

FCLT1 3-16

FCLT2 4-20

FCRY 1-9,1-10,1-12,1-15
FD A-1

FDELY E-28,A-2,E-3
FDV1 3-19,

FDV2 4-23

FEAD 1-9,1-10,1-12,1-15
FEQ A-1

FERT@ A-1

FERT1 A-1

FERTN A-1

INDEX-3

FFIL A-1
FFILE 11-10,A-1
FFLD1 3-17
FFLD2 4-21
FFST1 3-17
FFST2 4-21
FGE A-1
FGT A-1
FGTIM E-29
file and I/0O routines, realtime E-51
FINIT 12-5,A-1
FINRV E-35,A-2
FINTD E-36,A-2
fixed point numbers
data representation 1-1,1-6
range 1-1
significance 1-1
unpacked 1-6
zero 1-1
FL A-1
FLE A-1
FLT A-1 .
FLGT 1-9,1-10,1-12,1-15,D-1,D-2,D-5
FIX A-1
FKILL A-2
FLFX1 7-17
FLFX2 7-19
FLINK A-1
FCALL 1-14,1-25,1-27
FQRET 1-13
FRCAL 1-14
FRET 1-13,1-27
.OFLO 13-5
FLIP 7-14,A-1
FLP A-1
FLPp A-1
FISP 1-5
.FLSP 9-3
.FISZ 1-5,1-23
FM A-1
FML1 3-19
FML2 4-23
FNEG1 3-20
FNEG2 4-24
FNG A-1
FOPEN 11-11, A-1
FORTRAN
addressing 1-12,1-15to 1-17, 1-19, 1-22,1-27
linkage routines (see FLINK)
FORTRAN stacks
FSP 1-9,1-10,1-12,1-14
header 1-8,1-13,1-14
jumbo 1-17
pointer 1-8
structure 1-9
temporaries 1-8,1-13,1-14
mnemonic assignments 1-9
FOosp 1-9,1-10,1-12,1-15,1-19,1-20
FOVEN A-2
FOVLD E-43,A-2
FOVLY E-45, A-2
FOVRL E-46,A-2

FPEND A-2

FPLP 1-9,1-10,1-12,1-15
FPLY2 4-25

FPRI A-2

FPTRS 9-4

FPW A-1

FPWER 3-21,A-1
FPZERO 9-5
FQRET 10-9,1-13
FQTASK E-47, A-2
FQTCK A-2

FQTRL A-2

FRCAL 10-10,1-14

FREAD 11-12,A-1

FREDI 13-5,A-1,D-1,D-5

FRET 10-12,1-13,1-27,1-19

FRGP A-1

FRG1 A-1

FRGLD 10-13,A-1

FRLD1 7-15

FRLD2 7-15

FRST1 7-16

FRST2 7-16

FRTN 1-17,1-18,1-19,1-9,1-10,1~-21,1-27
FRWRIT A-1

FS A-1 (Frame Size, see Stack Length Word)
FSAV 10-14,1-13,1-14,1-18

FSB1 3-15

FSB2 4-19

FSBR 13-6,A-1,D-1

FSEEK 11-24, A-1

FSG A-1

FSGN1 3-22

FSGN2 4-26

FSp 1-8,1-9,1-10,1-12,1~14 to 1-19, 1-22 to 1-26

FSTAT E-58, A-2
FSTIM E-30,A-2
FSUB 13-6,A-1, D-1
FSWAP E-49,A-2
FTASK E-18, A-2
FTIME A-2

FTMAX A-2

FTSTR (TMP) 1-9,1~10,1-16,1-18, 1-22,1-27,C-3,D-2

FUNCTION 1-27
FXFL1 7-17
FXFLZ2 7-19
FXMT A-2

GE 12-6, A-2

GT 12-6,A-2
GTATR E-59, A-2

hardware multiply/divide 1-25

.1 10-16,E-9,A-1,A-2,1-22 to 1-23, B-1
simplified version B-1ff, C-1
multitask E-9,E-10

I A-1

IABS 2-3,A-1
ICLR E-71, A-2
IDIM 2-6,A-2
.IDIM A-2
IDINT 7-21,A-1
.IDINT A-2
IFIX 7-22,A-2
IFIX A-2

IMIO 11-3

inactive chain E-2
INIT E-60, A-2
injitialization
real time routines E-7
routines (non-real time) Chapter 10
simplified or using .I Appendix B
INT 7-23, A-1
JINT A-2
integer routines E-7
integers (see fixed point numbers)
interrupt
processing reentrance during E-81
requests E-2
routines E-33
user E-3
input/output 1-26
input/output routines Chapter 11
IPWER 2-7,A-1

IPWR A-2
ISET E-72,A-2
LISIG A-2
ISIGN 2-8,A-1
ITCB E-1
ITEST E-73,

A-
JIXMT E-37,A-2
JSR calls 1-13,1-20,1-27
KILL E-19, E-3

LDI A-2
LD2 A-2
LDP A-2,1-12

TEDB A2

LDBT 8-4

LDR1 A-2

LDR2 A-2

LDREG A-2

LDSTN A-2

LE 12-6,A-2

library structure 1-1

linkage and initialization routines Chapter 10

INDEX-4

linking loader, titles 1-23,1-25 number stack

LNKPR A-2 default size 1-5,E-3
LOAD 8-5 FLSP 1-5

LQTSC A-2 frame size 1-5

LT 12-6 map 1-7

maximum length 1-5
NSP 1-5,1-7,1-24
OP1,0P2,0P3 1-7
MAD 10-18, A-2, 1-20 size definition 1-5,1-23,E-3
MADO 10-18,A-2,1-20 .NDSP 1-5,1-7,1-24
+MAIN 1-23,1-24
MAX@ 2-9, A-2
MAX1 7-24, A-2

.MEMI 1-23 .OFLO 13-5

messages E-2 OPEN E-61

MINg 2-9,A-2 OVERF A-2 o

MNP ASY T e e

miscellaneous FORTRAN support 1-26 overlay routines E-39

mixed mode routines 1-26,Chapter 7 OVOPN E-50

mnemonic assignments 1-8,1-9,1-10, 1-26

MNMX@ A-2

MNMX1 A-2

MOD 2-10,A-2 packed format 1-2,1-3

.MOD A-2 parameter tape

MOVE 8-6,A-2 PARF 1-10,1-26, Appendix F

MOVEF A-2 PARU 1-26

MPY (software) 2-11 PAUSE 12-11

MPY (hardware) 2-13 PEND A-2

MPY@ (software) 2-11 PRI E-22

MPY@ (hardware) 2-13 priorities E-2,E-3,E-22

multitask environment E-1 PLY1 3-23

MT1 A-1 pointer displacement routines Chapter 9

MVBC 8-7,A-2 purpose, description 1-25

MVBT 8-8,A-2

MVF 8-9,A-2

MVZ 8-10,A-2

.MN1 A-2 QRSTR A-1

MX1 A-2 Qsp 1-10,1-18,1-24,E-3,E-81
QTCNT A-2

naming subroutines 1-25

.NDSP 1-5,1-7,1-24,B-1,B-2,E-3 range of values
NFTRN 12-7 fixed point 1-1
.NMAX 1-23 * SPFL pumber 1-2
normalization 1-2 DPFL number 1-2
notes to user, description 1-27 RATN A-2
NPTRI A-2 RATN1 3-24
NPTR3 A-2 _ RATN2 4-27
NR A-2 RCAB A-2
.NR1 7-25 RCABS 5-19
.NR2 7-26 RDBLK E-62
.NR3 7-27 RDCABS 6-17
NREL entry points Appendix A RDFILD 11-25
.NREL 1-13, 1-14,1-15,1-23 RDOS 1-1, Appendix E
NRPTR A-2 READL 11-27
NSsp 1-5,1-7,1-24,B-1,B-2,E-3 READR E-63
ready task E-2
REAL 5-20
.REAL A-2
real numbers (see single or double precision floating

point)

INDEX-5

real time FORTRAN
calls E-75ff
command summary E-75ff
definition E-1ff
program example E-78ff
routine descriptions E-5ff]
writing programs using E-74ff
REC E-20
reentrance during interrupt processing E-81
relocatable loader (see linking loader)
representations
fixed point 1-2
packed single precision 1-2
double precision 1-3
single precision complex 1-3
RESET E-64
returning results 1-22
RIPWR 7-28
RLSE E-65
RSTR A-1
RTE# 12-9
RTER 12-9
RTES 12-9
RTN2 A-2
run time library
stack partitioning E-3,E-4
structure 1-1
use 1-25to 1-27
run time stack 1-10,1-11,1-24,E-3

SAV@ A
SAV2 A-1
SAV3 A
SDVD 2
SHIN A-2
SIGN 3-25
SIN 3-26
single precision complex routines Chapter 5
single precision floating point (SPFL)

data representation. 1-2

execution time 1-25

normalization 1-3

packed 1-2

range 1-2

routines Chapter 3

significance 1-2

unpacked 1-2,1-5,1-6
. zero 1-2 ‘
single task environment E-1

o SINH 827

SLW (see stack length word)

SN A-1

SNH A-2

software multiply/divide 1-25

SP stack 1-4,1-23,1-24,B-1,B-2,E-3
Special subscript bound specifier (SSBS) D-4
SPFL 1-2,1-6,C-1

SQR A-1

INDEX-6

SQRT 3-28

ST1 A-2

ST2 A-2

stack
SP 1-4,E-3
number 1-5,E-3
FORTRAN 1-9, E-3
size of 1-10
overflow 1-10
allocation of 1-22
segment E-3

stack length word (SLW.FS) 1-13,1-14,1-17,1-27,1-19

stack linkage 1-26
stand-alone operating system (SOS) 1-23,1-24-
state save area E-3
.STp 1-11
STBT 8-4
sTOP 12-11,1-2
storage 1-5,1-8
STORE 8-5
STREG A-2 .
string, byte manipulation 1-26, Chapter 8
SUBROUTINE 1-28 _
subroutine linkage 1-12 to 1-22, 1-26,1-27
subscript bound specifier D-1ff
summary table 1-25,A-1ff
subroutine size and timing diagram 1-25
supporting routines Chapter 12

description 1-25

nested 1-11
SUSP E-21, E-3
suspended task E-2
SVVAR A-2
SYGN A-2
swapping and overlay routines, real time E-39
.SYSI 1-23

3

TAN 3-29

TANGENT A-2

TANH 3-30

task E-1ff

task call Appendix E

TASK statement E-37

task control block (TCB) E-2 ff

task schedulers
TCBMON E-1ff
TMIN E-1ff
TMAX E-1ff

tasking routines E-13

“THREAD 12~12-

three word specifer (TWS) D-2 to D-4
TIME E-31

.TITL 1-26

title description 1-25

TMP (FTSTR) 1-9,1-10,1-16,1-18,1-22,1-27,C-3,D-2
TNH A-2

unpacked format 1-5to 1-7
user status table (UST) 1-24
USP 1-10

UST 1-24

WRBLK E-66

WRCH 11-29

writing a real time program E-74
WRITL 11-27

WRITR E-67

WRITS A-2

XMT E-23
XMTW E-23
XPC A-1

.ZREL 1-12,1-13,1-18,B-1,C-2 to C-4

INDEX-7

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

Specific Comments. List specific comments. Reference page numbers when

applicable. Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication.

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by: .
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FCLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	02-01
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-01
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	04-01
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	05-01
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02-1
	09-03
	09-04
	09-05
	10-01
	10-03
	10-04
	10-05
	10-06
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	changes-01
	changes-02
	changes-03
	changes-04
	changes-05
	changes-06
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-09
	E-10
	E-11
	E-13
	E-14
	E-15
	E-16
	E-17-1
	E-17
	E-18-1
	E-18-2
	E-18
	E-19
	E-20
	E-21
	E-22-1
	E-22-2
	E-22
	E-23
	E-25
	E-27
	E-28
	E-29
	E-30
	E-31
	E-33
	E-35
	E-36
	E-37
	E-39
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49-1
	E-49-2
	E-49-3
	E-49-4
	E-49
	E-50
	E-51
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	E-60
	E-61
	E-62
	E-63-1
	E-63
	E-64
	E-65
	E-66
	E-67
	E-69
	E-71
	E-72
	E-73
	E-74
	E-75
	E-76
	E-77
	E-78
	E-79
	E-80
	E-81
	E-82
	F-01
	F-02
	F-03
	F-04
	F-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB

