DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

PROGRAM

Macro Assembler
User's Manual

ABSTRACT

The DGC Macro Assembler is upward compatible
with the RDOS Extended Assembler. The Macro
Assembler takes full advantage of the RDOS file
system capabilities. It executes under RDOS and
requires 16K core.

Copyright © Data General Corporation, 1972, 1973 093-000081-02
All Rights Reserved

Original Release - July 1972
First Revision - November 1972
Second Revision - June 1973

This revision, 093-000081-02, of the Macro Assembler Manual
constitutes a major manual revision to 093-000081-01. The
previous revision contained only those features peculiar to the
macro assembler; this revision describes all features of the
macro assembler, including those features common to both the
macro and extended assemblers.

INTRODUCTION

The DGC macro assembler is upward compatible with the RDOS extended assembler,
providing the following added features:

1.

Expanded expression evaluation that provides for explicit as well as
implicit precedence. The class of operators has been expanded to
include relational operators.

A class of special symbols having a value (like ".") related to an
internal assembler variable. This new class of symbols allows the
user to determine useful information such as the number of argu-
ments specified by a current macro call. Further, many pseudo-
ops have a value associated with them and, using the proper syntax,
may be used within expressions.

An assembly repeat feature for producing many lines of source from
a simple repeat construct, This facility also encompasses conditional
assembly. Conditionals may be nested to any depth.

A powerful macro facility which allows complete recursion as well
as nested macro calls,

Literal references by any memory reference instruction. All literals
will be optimally resolved in page zero. Literals are not restricted
to absolute numeric quantities and, in fact, may consist of any legiti-
mate expression,

The assembler has the facility to generate three-character alphanumerics
for each occurrence of the character $ within a label, The facility is im=
plemented in such a way that, for example, unique labels can be generated
within nested macros.

NOTATION CONVENTIONS USED IN THIS MANUAL

The formats shown imr this manual contain certain notations that are not part of the
Macro Assembler language itself but are of the formal language used to describe the
Macro Assembler. The notation conventions are:

< >

upper
case
letters

lower

case
letters

t+ }

<Sp >

Angle brackets enclose a variable definition of a class. The programmer
replaces the variable definition with the appropriate atom within the class.

<variable >
Two or more words may be required for a variable definition, These are
comnected by underscores to indicate that the number of words in the var-
iable definition is not significant when replacing the variable definition.
for example:

«.MACRO <user_sym >
) represents a carriage return.
{ represents a form feed.
Parts of the format that are written in upper case letters are literal parts
of the Macro Assembly Language and must appear in context exactly as
shown in the format,
Parts of the format that are written in lower case letters are variables
indicating that the programmer substitutes an appropriate item within a

class., (user symbol, punctuation character, etc.)

Broken square brackets are used to enclose optional parts of a format,
e. g. ’

LDA <exp> <exp>t <exp>%)

Three dots indicate an omission of a word or words that should be obvious
from the format.

A terminator or break character, defined as any number and combina -

tion of spaces, tabulations, and commas (i.e., class of space).

In certain positions a terminator must consist of a single space, a single
tabulation, or a single comma. A terminator of this type is designated
<sp> . For example:

<macro_symbol >t A <argl><sp>... <argn>t)

iii

NOTATION CONVENTIONS USED IN THIS MANUAL

Used to designate a terminator that may be written as a single equals

sign (=) or class of space followed by an equal sign (&).

Used to designate a terminator that may be written as a single colon (:)
or class of space followed by a colon (A:).

{ } Braces indicate alternate choices of formats one of which must be used.
Where the choices are themselves optional, square brackets with hyphens

will be used.

Example:

~

\

.DUSR "
.DIAC
.DALC
.DIO
.DIOA
.DMR
.DMRA
.DISD

» A <user_sym >= <stmt>)

NOTATION VARIABLES

Some of the standard notation variables used throughout this manual are listed below.,

<user sym>

<semi sym>

<mac sym>

<exp>

<stmt>

Any programmer defined symbol.

A symbol previously defined as semi-permanent by a
symbol table pseudo-op.

A symbol previously defined by the . MACRO pseudo -op.

An expression that may consist of symbols, numbers,
and operators.,

A syntax implicit statement of the form
<semi sym> A .., where< semi sym>>

is followed by expressions appropr_iate to the
type of semi-permanent symbol,

iv

TABLE OF CONTENTS

Introduction

® & ¢ @ 0 0 0 0 0

Notation Conventions Used in This Manual

Chapter 1 - Introduction to Macro Assembly

The Assembly Process

"Procéssing of Assembly Language -

Macro Facility .

Input and Qutput of the Assembler

Assembler Input
Types of Agsembler Qutput
Relocatable Binary Output
Program Listing «......

Cross Reference Listing

Error Listing

LI)

e o 0

. e

0 s @ s 0 0 e

Processing Input into Output. .

Relocatability
Chapter 2 - Atoms coeee

Character Input.....
String Mode ..
Normal Mode

Terminals ..

Atoms

Operators
Break Atoms .

Numbers.
Representation of Numbers , .

Use of Numbers
Source Representation of Numbers

LI

® & 8 & 6 0 2 0 0 088 0 00

L

Single Precision Integers

Special Formats of Single Prec1sion Integers
Double Precision Integers « ..o eeeveevoo
Single Precision Floating Point Constants . . .
Examples of Numbers

Symbols.......

Special Atoms

s o 80 0

® 0 @ 0 e 0 e 0 00 e 0o

e 9 2 0 0 0 ¢ 0 0 0 o

U

['Y
' ' e
— -

LN D T N Y I I |
AV EEN BN IR R A N T A X

1
ot

S
QOO U W W WN =

NNNNNNNNNNNN?NNNNNNP—'—i—'l'-‘ﬁ-‘b—‘l—‘

1
ot et ek e et QO
B wNn -0

]
—

Chapter 3 - Syntax
Expressions ..

6 & & & 5 8 5 5 5 5 8

Bit Alignment Operator

Examples of Expressions
Relocation Properties of Expressions

Symbols
Permanent Symbols

Semi-permanent Symbols

User Symbols .

Statements .o
ALC Statements

Input/ Output Statements

I/0 Statements with an Accumulator

Expressions Evaluating to Zero or One

. o

e s o 0

¢ 5 s 0 0 0 o 0

* e o 8 0 0 s 0 o

e o o o & s 0 0 0 0 0

Memory Reference Statements
Semi-permanent Symbols with No Field Specifications

Assembly
Labels

® o 0 0 ¢ 0o o 0

Equivalence e ae

Chapter 4 - Permanent Symbols .
Title Pseudo-op (. TITL) .

s 0 8 o

Number Rdix Pseudo-ops and Values

.RDX
.RDXO
Symbol Table Pseudo-ops .
DALC . cveeenn
DIAC ..voennn
.DIO ‘e

¢ & o 0 0 0 0 0

oDIOA s e e 9 0 s 0 0 e o .

.DMR e o o s 0 0 o o

.DMRA e o 0 o 0 0 0 0 0
.DUSR ® o 0 o 0 0 0 s 0

e o s 0 0 0 9

. XPNG

o o

e o

. o

o o

.

3

Location Counter Pseudo-ops and Values

.BLK
. LOC

¢« o o0 0 o o

¢ o 0o ¢ o 0o

o o

vi

* e o 0

L)

]

W W W ww
U
DN bt et

1
- O O 0~ N1 b b W

[
N O

]
[T
O 00 00~ Wb W

LWL WWWWWwWwWwWwWwww
]

| B T J |
B DN bt

Y O S T Y N N N N N N L A
]
P et et e = O~ W O

[
Pt
O WO

4-17
4-18
4-19
4-20

Chapter 3 - Syntax (Continu ed)

Interprogram Communication Pseudo-ops . e e e e e ena
.COMM e e e Gttt et e e e
LCSIZ ... ceecocanae et e e es e
LENT ... ceeceseas ceeeen ceere
.ENTO cessecnns cecsosnn
.EXTD e et e e e et e et ee et e o co e
LEXTN et i i i e, B
.EXTU cececesneas cesons ceeecsos o
.GADD cee e oo c et ee e anan
.GLOC et e e et e e ceeeseeans .o
Text Pseudo-ops and Values e st eeanae ceceveean oo
.TXT, .TXTE, .TXTF, . TXTO .+ seveueo.. ceees
. TXTM Sttt et e ettt es e . -
LJOIXTN oo, coecene cececsesens
File Terminating Pseudo-ops+00.... ceeecere s s
.END e et eecses e s ceeees
.EOT ceecenan cc e s et eeec ettt saas e
Repetition and Conditional Pseudo-ops ses s as
.DO et et ecsteessna s et eetecosees
.IFE, .IFG, .IFL, .IFN crese oo
. ENDC Cetecseesseaaas Ceieea
Macro Pseudo-ops and Values ce o s e e seee co oo e
.MACRO ceeeraeaas Ce et e e eas st eaes e
ARGCT it iieinnnn., e
+MCALL
-Listing Pseudo-ops and Values Gt e ea s et s e esas e ce oo e
.NOCONo cececscasens
. NOLOC cececsosensne teseee e ee s nns
.NOMAC ce et oo ns oo
Variable Stack Pseudo-ops and Values .o s e eeeecne e
. PUSH ceeeuas s sevesnes ceecsenne
. POP ceeceeane Gt e s ee e eesoctesesanns
.Top ..., ceeecessesae ceeceocens
Pass Value (,PASS) cetaae e . ceec e s .
Chapter 5 - Extended Capabilities of the Macro Assembler
The Macro Facility00.... e et eee .
Macro Definition ce s ee e . cesese
MacroCalls ce s e eseccasn .
Listing of Macro Expansions. ,...... cec oo N

vii

[=))

~

[}

[V NS, BN BNJ BN | B>
1
[BT oS

Chapter 5 - Extended Capabilities of the Macro Assembler (Continued)
The Macro Facility (Continued) -

Macro Exanlples @ © @ & &6 @ & 8 5 0 & 0 0 0 0 s e " 0 * e & o *® & & 0 o

L‘ogical Or e o 0 o 0 08 e 0 8 0 0 0 e o s 0o 0 0 0 0 e o 0o 0 o

Logical Exclusive Or « s+ s+

FaCtOI'ial e 8 6 6 0 ¢ 0 060 00 00 00
Packed Decimal Output ce e

VF D e 8 6 6 s 0 0 0 0 0 0 s e 0 0
Gene rated Labe].S 2 8 0 606 68 0 6 6 s 0 0 0 5 0 0 0
Literals ® 68 0 0 60 0 e 0 s e e e P e s

Chapter 6 - Operating Procedures «.eeeeeeeeoccsen

Loading the Macro Assembler
MAC Command Line
The Macro Assemblerls Symbol Table Files

Appendix A - Error Messages

~“Appendix B - Relocatable Binary Block Types
Appendix C - Radix 50 Representation

Appendix D - Syntax Summary

Appendix E - DGC-defined Semi-permanent Symbols
Appendix F - Permanent Symbols

viii

ooooooooooooo

.
[
=0 NN O

(=} UIU'I('IICHUIUT
[N
e

CHAPTER 1

INTRODUCTION TO MACRO ASSEMBLY

THE ASSEMBLY PROCESS

Assembly Language

A language is a set of representations, conventions, and rules used to conve
A machine language is a language designed to be interpreted by a compt

ni i i
mput 14 1 151
of numeric codes that can be understood bV’ the computer.

<
.E’
=
g
o)
.,
o
=]
=]

An assembly language substitutes symbols for numeric codes. The purpose of an assembly
language is to ease the task of the programmer by permitting him to write instructions in a
forinthatis more meaningful to the programmer and €asier for hiin to learn and reéim€mber,
For example, if the programmer wishes to load a value that is stored at a given memory
address, e.g., 5, into an accumulator, e.g., 0, the numeric code in machine language

for this instruction to the Nova family computers would be:

20005 in octal or 0010000000000101 in binary

It is much easier for the programmer to remember symbolic names rather than numeric codes.
For example, the instruction can be input to an assembler as:

LDA O, 5

LDA is a symbol, in this case an instruction mnemonic meaning 'load accumulator' .
The accumulator to be loaded is 0 and the memory address from which the
accumulator is to be loaded is 5. The address might also have been represented

by some symbol defined by the programmer, For example, the programmer
might have defined the address as TEMP and the instruction would have been written:

LDA 0, TEMP

Processing of Assembly Language

A symbolic language, which is meaningful to the programmer, is not meaningful to the
computer. Therefore, the symbolic assembly language must be translated into machine
language. The process of translation from symbolic assembly language into machine
language is called assembly, and the program that handles the translation is called

an assembler,

1-1

Processing of Assembly Language (Continued)

The assembler simply substitutes numeric codes for symbolic instruction codes and
numeric addresses (either absolute or relocatable as defined later) for symbolic addresses.
There is a one-to-one correspondence between the symbolic instruction format written

by the programmer and the numeric instruction format generated by the assembler.

In other words, one line of symbolic instruction will be translated into one line of numeric
instruction by the assembler.

The machine language output of assembly must then be processed by the computer

- executed - to perform the functions desired by the programmer. The assembly
process only translates symbolic language, called a source program, into machine language,
called an object program.

Macro Facility

When symbolic assembly language and use of assemblers are substituted for machine
language programming, the work of the programmer is simplified. Macro assembly
is another step in simplifying the writing of a program.,

Quite often a programmer needs to use the same set of symbolic instructions many
times within his program. The basic function of macro assembly is to permit the
programmer to write a set of instructions only once and then cause those instructions
to be substituted in his program wherever he wishes.

Fundamentally, a macro facility works as follows:

1. The programmer writes a set of symbolic instructions. The set of
instructions is called a macro definition. The macro definition is
given a name by the programmer,

2. Wherever the programmer wants that set of symbolic instructions in
his program, he writes a macro call, At a minimum, the macro call
contains the name of the macro definition,

3. The assembler contains a macro processor which substitutes the sequence
of instructions (macro definition) for the macro instruction. This
substitution is called macro expansion.

The macro facility is in fact much more sophisticated than this. For example, if the
programmer has a series of instructions that repeat, except for accumulators
and addresses, the macro definition may contain dummy arguments for the

accumulators and addresses. The macro call in the program will contain the
actual arguments to be substituted for the dummy arguments when the macro pro-

cessor expands the macro. Thus, a macro definition is usually a skeleton of the
actual instruction set that will result from macro expansion.

INPUT AND OUTPUT OF THE ASSEMBLER

The diagram below shows the input to and the possible outputs from the Macro Assem-
bler. Input consists of one or more source files written in a subset of the ASCII
character set. Output includes, at a minimum, a listing of any source program

errors., Output can consist of a program listing, which includes any errors, a separate
error listing, and an object file that can be loaded and executed. The object file is in

a form called relocatable binary, The object file can be loaded by the relocatable
binary loader for execution. The program and error listings are for programmer
information purposes.

INPUT OUTPUT
Error
File
Kol E B o
Files ASSEMBLER | File :
| I J
Fo————-
| Listing
| File !
L 1

Broken boxes in the diagram represent optional output.

Assembler Input

The source program input to the assembler consists of characte
of the ASCII character set. The elementary scan of input by the assembler is a line-
by -line read as follows:

1, Characters scanned up to a carriage return or a form feed
character constitute a line of source program.

2, Three characters are unconditionally ignored., These are:

Character l Value
null 000
line feed 012
rubout 177

3. Characters having incorrect parity are replaced by the ASCII
character " \". This character is transparent to higher
level character processing, i.e., L\ A is processed as LA.

1-3

Types of Assembler Output

There are three possible outputs from assembly:
1. A relocatable binary object program.
2. A program listing.
3. An error listing.

Relocatable Binary Output

The relocatable binary output is a translation of the lines of source program into a
special blocked binary code. Most lines of source input translate into

a single 16-bit (one-word) binary number for storage in core by the loader. Associ-
ated with each number is an address. The address associated w ith the number by

the a ssembler is not necessarily the final computer address in which the number will
be stored by the relocatable binary loader; it may be a relative address that is relocated
by the 1oader. The assembler produces as part of the object file the information needed
by the 1oader for mapping each address as well a s the contents of each a ddress.

The programmer may choose not to output an object file.

Program Listing

The program listing permits the programmer to compare his input against the
assembler output. A line of the program listing contains the following information:

Columns 1-3 If there are no errors detected in the input, these columns con-
tain a two-digit line number followed by a blank space.

If there are any input errors, each error generates a single letter
code. The first error generates a letter code in column 3, the next
in column 2, and a third in column 1. Only three error codes can
be listed per line. If any error code is generated, there will

be no line number given the line.

Columns 4-8 The 1ocation counter, if relevant. Otherwise the columns are left
blank.

Column 9 The relocation flag pertaining to the location counter.

Columns 10-15 The data field, if relevant, Otherwise, the columns are left blank.

Column 16 The relocation flag pertaining to the data field.

Column 17-on The source line as written and as expanded by the possible recogni-

tion of macros.

1-4

INPUT AND OUTPUT OF THE ASSEMBLER (Continued)

Program Listing (Ccntinued)

An error flag is a single letter indicating the type of error appearing somewhere in
the source line. A parity error on input, for example, produces the flag I in column
3 of the program listing line. Up to three error flags may appear on a given line.
Additional errors will not produce flags.

The 5-digit location counter assigned by the assembler to an instruction or datum is
output in columns 4-8. The location counter (LC) is immediately followed by a single
character indicating the relocation mode of the address. The location counter flags are:

Flag Meanin

space absolute

- page zero relocatable

= page zero byte relocatable
normal relocatable
normal byte relocatable

Following the location counter is the 6-column value field which is immediately
followed by a single character indicating the type of relocatability associated with the
value. The data value flags are:

Flag Meaning
space absolute

- page zero relocatable

= page zero byte relocatable

normal relocatable

normal byte relocatable

$ displacement field is externally defined

The last item on the line of program listing is the ASCII source line. The line is
given as input, except for further expansion that may occur as a result of macro

calls.

Certain lines of the listing, for example the expansions of macros, may optionally be
suppressed by the programmer.

The programmer may choose not to output a program listing.

1-5

Cross Reference Listing

As part of the program listing, the macro assembler produces a c¢ross reference
listing of the symbol table, which may include user symbols or both user symbols
and semi-permanent symbols. A sample cross reference listing follows.

wng? ALPHA

ALL A= 1726 5/m7 5717 7773

c11 ALY - 1719 3/

L1d UG AP P 1720 712 d/26

Cid77 264 4747 B/4R YAV

cA WAL LA - 1718 2722

Cdu MV Jw 1721 a/1H

Crk TIATICR AT 1727 3/v6 3/n9 377

CHMPR wddels MC 17938 6/h4 6/13 Crv2 65731 6/41

CNT AR R Y 1/24% 3773 4/?8 Bre 7/14

conem guez71! 1 /47 5738

TAR! PEAITILITY T 1722 3721

Vigh wipapiwe 1724 27384 a/s3

ohd BAGVL D= 1723 H/1w 77114

ERUR unaL266° {744 4732 7711 8733

FIND w9045 3745 a/27

FINDL winiada! 3748 3719

FIX dAGZa2! 2737 3/A2

HEKE 0Ll 2= 1/24 3707 4/23

1 Vg ne 6742 6/09 6/12 6/11 5711 6713
/29 57920 6/27 6720 6/29 6727
6737 6/38 6733 6/45 6/48 6s47

LDbT k235! 1741 8/n4

LNECN pupnilde 1/73% 2/13 2/38 302 5/94 S/s06

MUVE e iint! A/A5 4713

ME W 216!t /24 6b/36 6715 6/24 6733 6742
7/44

UNE pag2e2! h/14d 7/68

KU TR ERY 2745 2/41

KTN WrL265! 3/u4 1711 8/13 R/27 3731

51 PhnL1dm 17314 8/15 B/25

52 WOGWLSm 1732 8/14 8/24

SURT w2137 5/08 7/15

SPACE ulinylbm 1733 3/24 4a/73

STARY urunnen! EN 1744 2/08 8748

ST3T yRe24H! 1742 B/13
\—“‘"‘""‘ NS —

type of symbol page and line where referenced, e.g.,
relocatability 1/2?
L]

symbol location where defined page line

~T0ss Reference Listing {Continued)

The meaning of the relocatability values given in the cross reference listing is iden-
tical to those given on page 1-5 for the program listing.

‘The symbol types that may appear in the cross reference listing are as follows:

AA user symbol

EN entry (., ENT)

EO overlay entry (. ENTO)

XD external displacement (. EXTD)
XN exlernal normai (. EX1TN)

NC named common (. COMM)

Error Listing

Error listing output differs from other assembler output in that a small class of
errors detected on the first pass over the input will be output at that time, During
the second pass, all errors in the program will be included as part of the program
listing if the program listing is output. A separate error listing will be output if
there is no program listing and is optional if there is a program listing, The separate
error listing on the second pass is a subset of the program listing containing only
those lines in which errors were detected.

The error listing is always to the teletype.

Processing Input into Output

The initial reading of a source line is the first step taken in assembly to produce the
translation into relocatable binary output. To accomplish the translation the

assembler must:

1. Build syntactically recognizable elements, called atoms, e. g.»
numbers, symbols, terminals, etc.

2. Recognize and act upon the basic atom of each line.

RELOCATABILITY

In relocatable assembly, storage words are assigned a relative location counter
value. This value is initially zero and is incremented for every storage word
generated. At the termination of the assembly, if n words have been generated,
they have been assigned to relative locations 0, 1, ..., n-1. The actual addresses
assigned to the words generated are determined at load time. The loader maintains
the value of the first location available for loading, based on the programs previ-

1-7

RELOCATABILITY (Continued)

ously loaded. If we call this value r, then a storage word of relative address a is
actually loaded at absolute location r+a.

After the entire binary has been loaded, again assuming it took n words, the loader
updates its first available location value by

In this way, any number of separately assembled modules can be loaded together
without any conflict in absolute storage assignment. This is the major advantage
of relocatability. The action of the loader is shown in the following diagram.

Order of Loading Core Image
Relative Module A Absolute
Address - 0 Address -+ 0
A \ Relocatable / A
Loader ’
n n
n+1
Module B
0 B
n+m+1:
B n+m+2;
m C
Module C
0 n+m+p+-2
C
p

1-8

CHAPTER 2

ATOMS

CHARACTER INPUT

The input to the assembler is a string of characters. The assembler scans the input
in one of two input modes: normal mode and string mode.

String Mode

In string mode, any ASCII character may be used with no interpretation of the input
string. String mode is entered in one of three ways,

1. Comments

Start of comment: ;
Terminator: L or i
Example: ;SET MASK BITS)

2. Macro Definition Strings

Start of macro string: «MACROA<usr_sym>)

Terminator: %
Example: .MACRO X)
LDA 0,2)
MOVZL 1,1)
%
3. Text Strings
E
Start of String: LOXT TF TA<O >
0]
Terminator: < a>
Example: . TXT *EXPECTED VALUE= 60% of GROSS $. *

In this form, < &> can be any character that is not used in the
character string. In the example, the character * is used,

2-1

Normal Mode

All other input is in normal mode. In normal mode, the input string consists of char-
acters from a subset of the ASCII character set, divided into lines. Each line is a
string of characters terminated by either a carriage return or a form feed, The ASCIL
codes that are recognized by the assembler in normal mode are:

7 - Bit 7 - Bit 7 - Bit 7 - Bit
Octal Octal Octal Octal

Code Character | Code Character| Code Character| Code Character
014 FF 066 6 115 M 145 e
015 CR 067 7 116 N 146 f
040 SP 070 8 117 O 147 g
041 ! 071 9 120 P 150 h
042 " 072 : 121 Q 151 i
043 # 073 ; 122 R 152 j
045 % 074 < 123 S 153 k
046 & 075 = 124 T 154 1
047 ' 076 > 125 U 155 m
050 (077 ? 126 \% 156 n
051) 100 @ 127 w 157 o
052 * 101 A 130 X 160 P
053 + 102 B 131 Y 161 q
054 ’ 103 C 132 Z 162 r
055 - 104 D 133 [163 s
036 ; 105 E 134 \ 164 t
057 / 106 F 135] 165 u
060 0 107 G 136 4 166 v
061 1 110 H 137 - 167 w
062 2 111 I 141 a 170 X
063 3 112] 142 b 171 y
064 4 113 K 143 c 172

065) 114 L 144 d

Normal Mode (Continued)

In normal mode, lower case alphabetics are unconditionally translated to their upper
case equivalent. Any character not within the subset given above, if encountered during
assembly, is given a B (bad character) flag and is ignored syntactically.

In normal mode, the assembler recognizes certain characters and certain groups of
characters as different types of atoms. The atoms recognized are numbers, terminals,
symbols, and special atoms.

ATOMS

A syntactic element of assembly language recognized by its specific class is called
an atom. The classes of atoms are:

1) Terminals

2) Numbers

3) Symbols

4) Special Atoms

TERMINALS
A class of atoms, called terminals, serve the general function of separating numbers

and symbols from other numbers and symbols. A terminal is a single character or
double character. The terminals are operators and break characters.

Smerators

Operators are a class of terminals that are used with single precision integers and
symbols to form expressions. The operators are:

B Bit Alignment (shift)
+ Addition
. . - Subtraction

Arithmetic * Multiplication

/ Division
. & And
L 1
oglea { ! Or (Inclusive)
(- Equal

>= Greater than or equal

Relational < <= Less than or equal
> Greater than
< Less than
<> Not equal

2-3

Operators (Continued)

The bit shift operator B is distinguishable from a character used in a symbol by the
atom that precedes it. A bit shift operator is implied if the type of the last atom is
a single precision integer or if the bit shift operator is immediately preceded by a
right parenthesis.

Break Atoms
The terminals that are used primarily as separators are:

A A represents the class of spaces -a space, a comma, a
tabulation, or any number or combination of spaces, commas,
and tabulations. The meaning of A is changed if followed
immediately by a colon or equals sign (: or =) as defined

below.

A colon (or the class of colons, A:) is one means used to
define the symbol preceding

<usr sym=>:

= An equal sign (or the class of equal signs, A=) is another
means of defining the symbol preceding

<usr_sym-~=

) Parentheses may enclose a symbol or an expression.

[] Square brackets may enclose the actual arguments of a macro
call,

; A semicolon indicates the beginning of a comment string.

h) A carriage return terminates a line of source code.

v A form feed terminates a line of source code.

2-4

NUMBERS

Three types of numbers are defined for the Macro Assembler. These are:
1) Single precision integer - stored in one word
2) Double precision integer - stored in two words

3) Single precision floating point constant - stored in two words

Representation of Numbers

A single precision integer is represented as a single word of 16 bits, having the
range 0-655351((0-177777g). The integer may be interpreted as signed using
two's complement arithmetic in which bit 0 indicates a positive integer if 0 and a
negative integer if 1.

01 15

A double precision integer is represented in core in two contiguous words, where
the first word is the high order word, Using two's complement notation, a double
precision integer is represented as:

st «—high order
~low order

0 15
where: bit O of the high order word is the sign bit.

A single precision floating point constant is represented in core in two contiguous words
having the format:

| s! integer characteristic | mantissa 1
0 1 7 8 31
where: S is the sign, 0=+and 1 = -

The integer characteristic is the integer exponent of 16 in excess

64, (100;) code. Exponents from -64 to +63 are represented by the
10 8’

binary equivalents of 0-12710 (0-177g). An exponent of zero is repre-

sented as 1008.

The mantissa is represented as a 24-bit binary fraction. It is convenient
to view the binary fraction as six, 4-bit hexadecimal digits. The range
of the magnitude of the mantissa is:

161 < mantissa < (1-1676)

The negative of a number is obtained by complementing bit 0 (from 0 to 1 or 1to 0). The
characteristic and mantissa remain the same. When an expression evaluates to zero,

2-5

Representation of Numbers (Continued)

it is represented as true zero, i.e., two words of all zeroes in sign, characteristic,
and mantissa bit positions.

The range of magnitude of a floating point number is:

1671 * 16764 <floating-number < (1-1676) * 1663

which is approximately

5.4 * 10779 <floating-number <7.2 * 1075
Most routines that process floating point numbers assume that all nonzero operands
are normalized, and they normalize a nonzero result. A floating point number is
considered normalized if the fraction is greater than or equal to 1/16 and less than 1;
in other words it has a 1 in the first four bits (8-11) of the high order word. All

floating point conversions by the assembler are normalized.

Use of Numbers

Single precision integers may appear inexpressions and data statements, while double
precision integers and floating point numbers may appear only in data statements

Source Representation of Numbers

Single Precision Integers

The source format of a single precision integer is:

f+}dfd...d}{.} <break>

where: each d is a digit within the range of the current input radix. The
initial d must be in the range 0-9.

<break >is any character other than a digit within the range of

1

the current radixora . .

If a decimal point precedes the break character, the integer is evaluated as decimal,
If there is no decimal point, the integer will be evaluated in the current input radix
as set by the programmer. The range of input radix values is 2 through 20 as set by
the . RDX pseudo-op. The representation of digits is shown in the table following.

2-6

Single Precision Integers (Continued)

Digit Representation | Digit Value | Radix Must Digit Representation|Digit Value |Radix Must
Be > Be >
0 0 any A 10 11
1 1 any B 11 12
2 2 3 C 12 13
3 3 4 D 13 14
4 4 S E 14 15
5) 6 F 15 16
6 6 7 G 16 17
7 7 8 H 17 18
8 8 9 I 18 19
9 9 10 I 19 20

If the input radix is 11 or greater, a number that would normally begin with a letter
must be preceded by an intial 0 to distinguish the number from a symbol, e.g.,
to represent the decimal numbers, 15, 255, 4095, and 65, 535 in hexadecimal:

2008227 «RDY 156
220217 2F
223377 AFF
227777 BJFFF
177777 BFFFF

The <break> character normally terminating the single precision integer is one of
the following characters:

1. Operator: +-*/B
| &

== <> <= Se > <
2. Terminal: AC))
Note the following exception:

The operator B (bit shift operator) will be interpreted.as a digit if

the radix is 12 or greater. To obtain the correct interpretation as a bit
operator, the programmer must use the «— convention. The <~ acts as
a break character to the number string and is then ignored.

222722 «RDY 15
m25423 22E13 3B REPRESENTS DIGIT 11
202210 22+<B13 ;B PEPRESENTS BIT SHIFT OPERATOR

2-7

Single Precision Integers (Continued)

Within an expression, one integer might have the current radix and another might

be given in radix 10 using the decimal point convention. Some examples of assem -
bled values of expressions in which single precision integers of different radixes are
used are shown below.

303222 «RDY 2

272212 121+171
PP¢31¢ +PDX 3

pa@2922 121+101
AAZZ12 «RDY 17
22312 121+121
272229 2D 16
gEleze 121+131

Special Formats of Single Precision Integers

There is a special input format that is converted to the single precision 7-bit octal
value for the single ASCII character following. The input format is:

llg‘

where: a represents any ASCII character except line feed (012g), rubout (1 778),
or null (000).

Only the single ASCII character immediately following the quotation mark is inter-
preted. The ASCII characters, null, rubout, and line feed, which are invisible to the
Macro Assembler, cannot be input using this format. However, the other

ASCII characters can be represented as single precision integer in this manner.

2722131 "A
028365 "5
203345 "%
Z@az134 "\

The format can be used as an operand within an expression as shown,

200123 “A+2
g@2@826 "E/3
177751 "%x-"A

Note that "'/ assembles an octal 15 and also terminates the line.

2-8

Special Formats of Single Precision Integers

A second format can be used to convert up to two ASCII characters to a single
precision integer, The format is:

where: <string> can consist of any number of ASCII characters; only th

first two characters are used

Characters are packed left-to-right in the word:

'AB’ 0f A{O B
01 789 15

‘A’ 0] A 0
01 78 15

Note that packing of '<string>' contrasts with packing of a single ASCII character

that is input using the "o format, Such a character is stored

[0 0 o
0 789 15

A string format consisting of two apostrophes without an intervening character will

generate a word containing absolute zero,

Special formats of single precision integers may be used in any context that integers
are allowed. The values of some simple expressions using string constants are given

below,

2409502 'AB*
241191 'BAY
200303
@20@03 *'*+5-2
641205 *'B'+5
B2g1e1 * A
240521 "A+*Ar

If a carriage return is encountered before the second ' , the string is
terminated. For example:

Be640g
240415 A
240502 *'AB

2-9

Double Precision Integers

A double precision integer has the following source format:

fttddd...d}f.} D <break>

where: each d is a digit within the current radix, The initial d must
be in the range 0-9.

The character D before the break character indicates a double
precision integer,

The optional decimal point is used to indicate that the integer
is converted in decimal.

<break> is a terminal character that indicates the end of the
double precision integer.

The break character is typically one of the terminals:

A ‘; >
Operators may not terminate double precision integers (a format error results).
The radix of a double precision integer may be in the range 2 - 20, If the radix is

greater than or equal to 14, the letter D will be interpreted as a digit. To force the
assembler to interpret D as indicating double precision, use the < convention, e.g.,

289027 +RDX 16
333455 12D 3D IS INTERPRETED AS THE DIGIT 13
@0@@3% 12D 3D IS INTERPRETED AS SIGNALING THAT
290022 312 1S A DOUBLE PRECISION INTEGER

Some examples of assembled values of data statements containing double precision
integers are:

302318 <«RDX 3
233628 1D
Zce201

177777 -1D
177777

20331 2202830D
2220307

2002323 262147..D
2022923
92028721 1882003.D
133242

2-10

Single Precision Floating Point Constants

Much of the floating point number format is optional. The minimal format recognizable
as a floating point number must consist of at least one digit in the range 0 -9 followed by
either a decimal point or the letter E followed by at least one digit in the range 0-9.
The minimal floating point format is:

¢ (i) o

where: dis a digit in the range 0-9.

A single precision floating point number is represented in source format as:

f+}dfd...d}. dfd...d} (E {+} dtd})
<break>
ft}1dfd...d} Ef+} dfd}
where: each d is a digit 0-9. The mantissa and exponent are always converted

in decimal, e.g., 2E9 2> 2 *109.
One or two digits may represent an exponent following the letter E,

Equivalent floating point numbers may be formatted using either the letter
E or the decimal point or both as shown below:

141376 -254.,33
452172

141376 -254433E0
452172

141376 -25433k-02
52172

141376 -25433E-2
4521782

141376 -2543.3k-1
T5R1T2

<break > is typically one of the terminals:

A B

2-11

Single Precision Floating Point Constants (Continued)

If the current radix is radix 15 or larger, a letter E appearing in a number can
cause interpretation of the number as an integer in the current radix rather than
as a floating point number, To avoid this ambiguity, use the < convention, for
example,

733028 «RDX 16

155335 -25E3 SE IS HEXADECIMAL 14
142141 -25«E3 $E INDICATES FLOATING POINT
124202

Some examples of floating point constants in data statements with their stored
values are:

740420 1€
2203299

Fug4a62 3.1415926
241766

148420 -1E0
23C2929

240200 +S5.0E-~1
Z30e00

pala21 +273.2E82
212287

Examples of Numbers

Following are some additional examples of the format of source program numbers
and their assembled value.

2-12

Examples of Numbers (Continued)

:U’Z(Z?,OQ) opDX 16

753175 567D sHEXADECIMAL SINGLE PRECISION INTEGEPR

ABEBEL S57«D 5 HEXADECIMAL DOUBLE PRECISION INTEGER

32547

QA1G67 567, ;5 DECIMAL SINGLE PRECISION INTEGER

A80080 S67.+D 5 DECIMAL DOUBLE PRECISION INTEGER

3731367

G72547 567 5 HEXADECIHMAL SINGLE PRECISION INTEGER

A53175 567D SHEXADECIMAL CSINGLE PRECISION INTEGER

705316 567«514 5HEXADECIMAL SINGLE PRECISION INTEGER, BIT
5 SHIFTED ONE BIT

712634 567«B13 SHEXADECIMAL SINGLE PRECISION INTEGER, RIT
5 SHIFTED TWO BITS

B42026 567+E1 5 FLOATING POINT CONSTANT (DECIMAL)

223060

SYMBOLS

A primary function of the assembler is the recognition and interpretation of symbols,
Symbols are used both to direct the action of the assembler and to represent numeric
values. The various classes of symbols will be discussed in Chapter 3. Their source
representation is given below,

atb... bj < break >

where: a is one of the characters A-Z . ?
b is one of the characters A-Z . ? 0-9
< break > is any character other than A -Z 0-9 ., ?

If more than five characters precede the < break > character, only
the first five are regarded as significant,

? as the first character of a symbol should not be used. It will be used by DGC in
System macros to "guarantee" uniqueness of macro names.

2-13

SPECIAL ATOMS

There are three atoms that are transparent during the assembly scan, The effect of
these atoms upon a line occurs after the entire line has been scanned.

@ An at sign (@) oranynumber of at signs appearing anywhere in a source pro-
gram line of a memory reference instruction (MRI) or before an expression
has the following effect.

1) When the rest of the MRI has been evaluated, presence of the @
sign or a series of @ signs anywhere in the instruction causes a 1 to be
stored in bit 5. In the format of a memory reference instruction, bit
5is the indirect addressing bit.

gaaz2% LDA 1,20

326320 LDA 1,825

2) In the format of a data word, bit 0 is the indirect

addressing bit. When the expression has been evaluated, presence of
the @ sign or series of @ signs causes bit zero of the word to be set
to 1.

293325 25

1222525 @25

A pound sign (#) or any numbexr of pound signs appearing anywhere in a
source program line of an arithmetic and logical instruction (ALC) has the
following effect.

When the rest of the ALC has been evaluated, alis stored in bit 12,
(Bit 12 in the format of the ALC is the no load bit.)

2-14

SPECIAL ATOMS (Continued)

*x ‘Two consecutive asterisks appearing anywhere in a source program line
(or any series of two or more asterisks) cause the suppression of listing

of that line.

LDA G2
LDA (s Gs 3%k

Ay
L?iDL »€53 source program
L3t
/
GA6GE ¢

21600 LDA G,0,2
21446 LDA 9,¢,3
« END

listing

G
BoGs2

The atom may occur anywhere in the line. For example, all of the
following would suppress the listing of . NOMAC.

o NIMAC 1
eNOMAC 1%
e NOMACH® 1
« NIMAC *% 1

2-15

EXPRESSIONS

An expression <exp> has the format:

<opn, >{<opr><opny>
1 2

where: <opr> is a macro assembler operator.

<opny~ and<opny> are operands which may be single precision
integers or symbols or expressions evaluating to single precision
integers. An operand preceding the operator is necessary for
each operator, except for unary operators +and -, Either unary
operator may follow an operator or precede an expression.

The macro assembler operators are:

Operator

+

zg*l

Meaning

Bit alignment

Addition or plus

Subtraction or minus

Multiplication

Division

Logical AND. The result in a given bit
position is 1 if and only if <opn;>=1
and <opn,> = 1 in that bit position.
Inclusive OR. The result in a given bit
position is 1 if either <opnj> or <opn,y>
or both is 1 in that bit position.

Equal to

Not equal to

Less than or equal to

Less than

Greater than or equal to

Greater than

EXPRESSIONS (Continued)

Operators of more than one type may appear in an expression. Order of evaluation
depends upon the precedence of the operators:

Operator Precedence Level

B 3 (highest precedence)
+ - */ & ! 2

< <= >>= == <> 1 (lowest precedence)

When operators are of equal precedence, the operators proceed from left to right.
Parentheses around an expression may be used to alter precedence; an expression
in parentheses is evaluated first.

Expressions are evaluated with no check for overflow,

Expressions Evaluating to Zero or One

An expression containing one of the operators

el s < > >

evaluates either to absolute zero or absolute one.

Examples:
pa3g25 A=Z25
177763 B=-15
EOHEE0 A==D
B95801 A<>D

261 A+D-10==A-(2%10+5)
Fa6BG1 A==(=B)+15
BGEA0E A<>(=B)+ 10
G30006 A==(-B)&A

3-2

Bit Alignment Operator

When the bit alignment operator is used, the operand <opn;> preceding operator
B is the value that is to be aligned. The operand <opny > following the operator

represents the rightmost bit to which <opnj > is aligned. The value of < opny>
has the range:

0 = <opny > =< 157

The formula for determining the result of a bit alignment operation is as follows:
for <opn1>B<opny >, the resultant value will be
<opnj>*2**(15. - <opny>)

where: <opny> is implicitly evaluated in decimal unless
parentheses are used, e.g.,

.RDX 8
1B15 = 000001
1B(15) = 000004

The operator B can be misread as a symbol or part of a symbol. If the operand
preceding the operator is a symbol, the operand must be enclosed in parentheses
to avoid this misinterpretation. Some examples of bit alighment operations are:

Poua2s a=25

GEHYL 160658 (A)BE
UUHH6 124560 (AYB4
GEG11 @12460 (AIBT
UBG17 U0E124 (AYELD
DEU21 SUBERS5 (AXELS

o

NEEEy22 GrHouibl CAYELE

Parentheses around <opn;> and <opn,> can be used to insure that the correct
value is aligned properly. The effect of parenthesized operands is shown below.

782025 A=25
792019 C=1g

206640 (A=-CI%*ZE(3+C)
DoG643 (A-Cx2)B(3+0C)
177425 A-(C#2)B(3+C)
260647 A-Cx2B(3+C)

3-3

Examples of Expressions

Some examples of expression evaluation are:

5 2
S

1
—
(G0N0

3%

)

<

2z2A0 A7ee1Z Ax(2-10)/B
N3l 2ACC15S AX3B/A1D
RAGA2 ZAICHEGEL (A-12)==5
OC33 2E0Els6 A/DB+E

GoCRL HBAZCH A&B/(AlS)
GE2es CrCedl ((B3/7A8)Y+5)>%

Relocation Properties of Expressions

Associated with each operand of an expression is its relocation property, and the
relocation property of the result of evaluation of an expression will depend upon
the relocation properties of the operands. Expressions described thus far have
had absolute operands and the result of evaluation has been absolute.

A value, however, may have one of several relocation properties. These are:

absolute

page zero relocatable
page zero byte relocatable
normal relocatable
normal byte relocatable

The relocatable value is converted to absolute during the loading process by the
addition of a constant, C, called a relocation constant, A relocation constant is
added once if the value is singly relocatable and twice if the value is doubly
relocatable (byte relocatable).

Two relocation constants are maintained by the loader, the normal relocation
constant and the page zero relocation constant. In RDOS the initial value of

the page zero relocation constant is 50, while the initial value of the normal
relocation constant is variable but can be found in the User Status Table (UST) at
location USTIN.

Page zero relocatable and normal relocatable operands cannot both be operands of
a given expression. However, some mixing of like relocation properties is
permitted. The relocation properties of operands and the relocation value of the

Relocation Properties of Expressions (Continued)

result are given below. In the list,

a represents an absolute value

T represents a relocatable value (either ZREL or NREL)
2r represents a byte relocatable value (either ZREL or NREL)
kr represents a relocatable value that can be converted to

an absolute quantity by addition of a relocation constant,
¢, k times. However, if the final value of a expression
is k-relocatable, the statement is flagged with a
relocation error (R).

Expression Relocation
ata a
atr T
r+r 2r
nr+mr (n+m)r
a-a a
r-a T
a-r -ir
r-T a
nr-mr (n -m)r
a*a a
a*r ar
r¥*r Illegal
a / a a
kr/a K + (only if k/a yields no remainder)

a

a/r Illegal
a&a a
ala a
r&T Illegal
a&r Illegal
rir Illegal
alr Illegal

3-5

S

Relocation Properties of Expressions (Continued)

All expressions involving the operators < < =>> == <> result in an absolute value
of zero (false) or one (true). When operands of these expressions are of differing
relocation properties, all comparisons will result in a value of absolute zero
(false) except when the operator is <> (not equal to).

Expressions evaluated using the rules given that result in a value of a, r, or 2r
are legal. Expressions that do not evaluate to a legal relocation property
will be flagged as relocation errors (R).

An example showing the relocation properties of expressions is given below. The
assembler map indicating the relocation properties of each symbol is included.

Q030E2 A=2 ;A IS ABSOLUTE
«NREL

ZOCGE 202020 «+208
20021'006C0E R © JR IS5 RELOCATABLE

GEeEa2 S=R+1 3 RELOCATABLE + ABSOLUTE I3 RELOCATABLE
23002 336EE1 A/A 5 ABSCLUTE OPERATOR ABSOLUTE RESULTS IN ABSOLUTE
QreA3'CBABA2"R+R ;RELOCATABLE + RELOCATABLE IS5 BYTE RELOCATABLE
20004 177777"R-A 3RELOCATABLE - ABSOLUTE IS RELOCATABLE
70AG5'@AEEA1 S~R SRELOCATABLE - RELOCATABLE I5 ABSOLUTE

REAZDO6ACTOZG AR 5OPERATORS & AND ! [UST B USED WITH ABSOLUTE

5 OPERAINDS
Azl aal (a%xR) /A SNO REMAINDER

« WND
BE2 «MALN
Aeyeaz2 1/741 1786 1726 1/38 1713 i/12 1713
/714 1714
carenl: 1764 1785 1727 17287 1708 1785 1710
1712 1713 1714
G2’ 1/€5 1729

3-6

SYMBOLS

Symbols recognized by the macro assembler are classified as:
1. Permanent
2. Semi-permanent
3. User

The distinction between these classes is essential to the understanding of the
assembly process,

Permanent Symbols

Permanent symbols are defined within the assembler and cannot be altered in any
way. These symbols are used for two purposes: 1) they are used to direct the
assembly process; and 2) they are used to represent numeric values of internal
assembler variables,

Symbols used to direct the assembly process are called pseudo-ops. Pseudo-ops
are used for such purposes as setting the input radix for numeric conversions,
setting the location counter mode, assembling ASCII text, etc. They are discussed
in detail in Chapter 4.

A number of permanent symbols represent numeric values of internal assembler
variables. For example, the symbol , PASS is used to represent the current pass

e, LG LR LNAE Y

number. On the first assembly pass its value is 0, while on the second its value
is 1. If a symbol can be used both as a pseudo-op and as a value, the assembler
recognizes which use is intended by the context in which it is used.

This is determined as follows:

1. If the first atom of a line is a pseudo-op, it is used to direct
the assembler,

2. If the occurrence of the pseudo-op atom is in any other
position within the line, its value is used.

A few examples will illustrate these rules.

The assembler has a pseudo-op, . TXTM, used to direct the packing of text bytes
within a word. The two methods are left/right and right/left. The directive takes
the form:

LIXTM <exp>
3-7

SYMBOLS (Continued)

Permanent Symbols (Continued)

If <exp> evaluates to zero (the default mode), bytes are packed right/left. If
<exp> evaluates to non-zero, bytes are packed left/right.

Example 1
The line
LTXT™M 1)
directs the assembler to pack bytes left/right.
Example 2
The line
(. TXTM) /
assembles a storage word containing the value of the last
expression used to set the text mode.
Example 3

If the following are given,

ol
0OBGE GE:

N

2001 o THTM 1

10
7235 +«TXTM+4

=X

The first line sets text mode to pack left/right while the second
line generates a storage word containing absolute 5. (Note that the
first atom of the second line is +,)

A list of all permanent symbols is given in Appendix F. These symbols cannot be
redefined and must be used as described in this document, These symbols will

never be printed as part of the user’s symbol table.

Semi-permanent Symbols

Semi-permanent symbols form a very important class usually thought of as
operation codes. Using appropriate pseudo-ops, symbols may be defined as semi-
permanent; and their future use implies further syntax analysis. For example, a
symbol may be defined as ‘requiring an accumulator”., Use of this symbol causes

3-8

Semi-permanent Symbols (Continued)

the assembler to scan for an expression following the symbol. If not found, a for-
mat error results. If found, the value of the expression determines the value of

the accumulator field bit positions to give a 16-bit statement value. Statements are
discussed fully in the next section.

Semi-permanent symbols can be saved and used, without redefinition, for aill sub-
sequent assemblies. The assembler supplied by DGC contains a number of semi-
permanent symbols defined specifically to conform to the Nova family instruction
set. A list of these symbols is given in Appendix E. The user can eliminate these
symbols and define his own set, or, more commonly, he can add to the given set.
{See Chapter 6.)

Semi-permanent symbols will, by default, not be printed as part of the user's
symbol table but can be printed if enabled by the global /A switch (see Operating
Procedures, Chapter 6.)

User Symbols

The user can define any symbol that does not conflict with the permanent or semi-
permanent symbols. Symbolic definitions are used for many reasons: to
symbolically name a location, to assign a numeric parameter to a symbol, to name
external values, to define global values, etc. These user symbols are maintained
for the duration of an assembly in a disk file symbol table that is printed after the
assembly source listing.

User symbols can be further classified as local or global. Local symbols have a
value which is known only for the duration of the single assembly in which they are
defined. Global symbols have a value which is known at load time, i.e., they are
used for interprogram communication.

STATEMENTS

In discussing source line syntax, the concept of a statement must be clearly
understood. A statement, in the context of this manual, is the assembly of one

or more fields, initiated by the occurrence of a semi-permanent symbol*, to form

a 16-bit value with relocation. Fields are separated by the class of space, A. This
16-bit value need not generate a storage word, i.e., cause the location counter to be
incremented. A statement is terminated by the successful assembly of the neces-
sary number of fields as determined implicitly by the type of semi-permanent symbol,

* Except a .DUSR semi-pérmanent symbol,

3-9

STATEMENTS (Continued)

The Nova family of computers recognizes six basic instruction formats. Correspond-
ing to each format is a pseudo-op enabling the definition of a semi-permanent symbol
requiring fields appropriate to each format. Statements then fall into one of six
formats:

Arithmetic and Logical

Input/Output

Input/Output with Accumulator
Instruction with Accumulator
Memory Reference

Memory Reference with Accumulator

N Ul W LW
e« & & & = =

The instructions corresponding to these statement types are discussed fully in
"How to Use the Nova Computers.' The syntax required for each statement type

is given below. (Note that the semi-permanent symbols listed are those defined
by DGC.)

ALC Statements

ALC statements are implied wherever the semi-permanent symbol is one of the
following:

ADC
ADD
AND
COM
INC

MOV
NEG
SUB

Any one of these symbols will be represented as
<ale>

The ALC statéement format is:

<ale>fery sh>}A <sre> A <des>t A <skp> 1

3-10

STATEMENTS (Continued)

ALC Statements (Continued)

where: <alc> is one of the semi-permanent ALC statement symbols.

<cry_sh> represents the optional carry bits and shift options.

<src> and <des> represent the source and destination accumula-

tors, respectively,

<skp > represents the optional skip field.

The special character # may appear as a separator for any field and forces bit 12
of the value to be 1 (no-load). The <src>, <des>, and <skp> fields can be
specified by any legal expression. The optional <cry_sh> field must be one of the

following alternatives:

<cry sh>

X OON||

CR
CS

Carry bias and shift options, as well as the other fields of the ALC statement, are
described in "How to Use the Nova Computers, "

Some ALC statements are:

ADD 0,1

SUB 2,3,SKP
ADC# 2,1
NEGZL 1,0,SBN
COM 1,0,#SZC

3-11

STATEMENTS (Continued)

Input/Qutput Statements

Input/output statements without an accumulator are implied whenever the semi-
permanent symbol is one of the following:

NIO
SKPBN
SKPBZ
SKPDN
SKPDZ

Input/output statements with an accumulator are implied whenever the semi-per-
manent symbol is one of the following:

DIA
DOA
DIB
DOB

mra

DIC
DOC

The format for an I/O statement without an accumulator is:

NIOf<pls >4 A <dvc >
or

<jo> A <dvc>

where: <pls> is the optional pulse specification, S, C, or P.
<dvc> is any legal assembler expression specifying a device code,

<io> is one of the semi-permanent symbols SKPBN, SKPBZ, SKPDN,
or SKPDZ.

The format for an I/O statement with an accumulator is:

<ioa>f<pls>{ & <ac > A<dve>

3-12

STATEMENTS (Continued)

Input/Output Statements (Continued)

where: <ioa> is one of the semi-permanent symbols for an I/O statement
with an accumulator.,

<pls> is the optional pulse specification, S, C, or P.
<ac> is any legal assembler expression specifying an accumulator.
<dvc> is any legal assembler expression specifying a device code.

Some examples of I/O statements are:

NIO TTI
NIOS PTR
DOAS 0,PTP
SKPBZ TTI

DIA 2,CPU

Instructions with an Accumulator

The semi-permanent symbols below require an accumulator specification:
INTA
MSKO
READS

The format for an instruction with an accumulator is:

<jac> A<ac>

where: <ac> is any legal expression specifying an accumulator.

For example:

READS 1
MSKO 3

3-13

STATEMENTS (Continued)

Memory Reference Statements

Memory reference statements not requiring an accumulator are:

DSZ
ISZ
JMP
ISR

Those requiring an accumulator are:

LDA
STA

Two formats can be used for memory reference instructions. They are

1. <mr> Af <ac> Aj <dsp > A <ndx>

2, <mr> Af <ac> A{ <adr>

In the first format: <ac> is any legal expression specifying an accumulator.,
is given for LDA and STA statements.

<ndx> represents an index field and its value must be
0, 1, 2, or 3.

<dsp> represents a displacement that, for index modes
1, 2, and 3, must be in the range

-200 .LE. <dsp> .LT. 200
and for index mode 0 must be in the range
0 .LE. <dsp> .LT. 400
Normally, indexing is based on AC2 or AC3. Occasionally, however, index

mode 1 is used to force PC relative addressing. Using explicit index mode O is
unheard of,

The second form of address specification is most common. Using this form, the

assembler attempts to form a correct address representation according to the
flow chart shown on page 3- 16 . The final index mode for this implicit type

3-14

It

STATEMENTS (Continued)

Memory Reference Statements (Continued)

addressing is either 0 (page zero) or 1 (PC relative).

The basis for this type of address representation is to simplify the specification for

the user,

If the address is addressable directly (.ZREL or . EXTD), the index field is set
to 00 and the displacement field is set as follows:

i. If absolule, (o the <adr> vaiue (0 to 377) with absolute relocation.

2, If page zero relative (. ZREL), to the relative address <adr> with
page zero relocation,

3. If external displacement (. EXTD), to the external's ordinal value
(1 to 377) with external displacement relocation.

However, if the <adr> is not directly addressable butis of the same relocation as
the current relocation counter and is within addressable range, then the index field

is set to 01 and an absolute displacement is computed as

<adr> - LC

3-15

ADDRESS EVALUATION

Yes
<adr>ZRELor

<adr> NREL?

-200< <adr> -LC<= 200

<ndx> = 01

<dsp> <« <adr> -LC

3-16

<ndx> <« 00

<dsp> =< <adr>

STATEMENTS (Continued)

Semi-Permanent Symbols with No Field Specifications

The discussion of statement types would not be complete without mentioning the
one type of semi-permanent symbol that represents a 16-bit value and requires no
additional field specification. A number of these symbols are defined and can

be used simply as operands within expressions,

For example, these symbols represent:
1. Skip mnemonics

SKP
SZR
SNR
SZC
SNC
SBN
SEZ

2, Device codes, e.g.,

3. Self-complete instructions, e.g.,

INTEN
INTDS
IORST
HALT

3-17

ASSEMBLY

Having discussed expressions and statements, the line by line assembly scan
to produce relocatable binary output can now be described. The majority of
source lines effect the generation of a 16-bit value with relocation properties
that is to occupy a memory location at execution time. Any line of this type
is said to produce a storage word. The storage word has a value, usually
defined by an expression or statement, and an address. At assembly time,
the address assigned is the current location counter (LC) and, as discussed
earlier, this LC may be absolute, relocatable within page zero (ZREL), or
relocatable outside page zero (NREL). The generation of each 16-bit storage
word causes the LC to be incremented by one. Thus, in general, storage words
are assigned to consecutive, increasing LC values.

Labels

The programmer often needs to name a storage word symbolically. This
allows him to reference these words without regard for their assembler de-
fined numeric address. The value of the current location counter can be
assigned to a user symbol at the start of any source line using the following
syntax:

< usr sym>

The value of < usr sym > will, therefore, be the address of the next storage
word assembled. Since some assembler lines do not generate storage words,
this definition is not necessarily associated with the statement that it appears
within. More than one definition can be made, providing all symbols are de-
fined at the beginning of the line, For example,

LAB1: LAB2: LAB3:)

Equivalence

Another means of defining a symbolic name to a numeric value is by equivalence.
An equivalence line associates a value to a symbol, and that symbol can then
be used any time the value is required. The syntax of an equivalence line is:

< usr sym> = < exp>1< stmt >

3-18

Equivalence (Continued)

Note that a statement can be used to determine the symbol's value. This is
the simplest example of a statement being used without generating a storage
word,

Some equivalence lines are:

A= 345%(4-1)
B= 10.
C= ADD# 0,1,SKP

Storage words can be assembled using a most common syntax:

<exp>)

or
< stmt>)

These forms account for the majority of assembly source lines. For example,
if the current location counter has a value of zero NREL 00000"), the state-
ments below generate words at locations 00000' through 00006 " .

1

344 < > (17-10)/2
. MOV @,1

NIOS PTR

JMP A
B= 6+10 .

B

A

Two number types discussed earlier, double precision integer and floating
point, produce 32-bit values. These numbers can never be combined in exp-
ressions. They are used to assemble a double storage word. If a label is
used to start the line, it is assigned the value of the first word's address.
For example, at location 100 the following are assembled:

100,D
100.0
A: 1E2

‘Two words are produced by each line and A is assigned the value 100 absolute.

3-19

CHAPTER 4

PERMANENT SYMBOLS

The permanent ymbol are grouped into logical categories. The format for
describing perm nt symbols is as follows:

1. Permanent symbols that are pseudo-ops are listed as such and their
syntax and purpose are given,

2, Permanent symbols that may be either a pseudo-op or a valuc arc
listed as pseudo-ops and their syntax, purpose, and their value as a
symbol are given,

3. Permanent symbols that are not pseudo-ops are listed as symbols and
their value is given,

TITLE PSEUDO-OP

Pseudo-op: . TITL
Syntax: . TITLA<usr sym>
Function; This pseudo-op names a program. The title given is printed

at the top of every listing page. In addition, it is used to
identify the relocatable binary output to the loader, library
file editor, and the debugger. The <usr_sym~> need not be
unique from other symbols defined by the program.

Default: . MAIN

Example:

«TITL SYB3

4-1

NUMBER RADIX PSEUDO-OPS AND VALUES

Pseudo-op

or Symbol:

Syntax:

Purpose:

Value:
Default:

Examples:

202020

Broo1

008092
P90203

020319
0020123
oreg12
#99173
320020
000443
A009320

Note:

.RDX
. RDX A <exp>

This pseudo-op defines the radix to be used for numeric input
conversion by the assembler, <exp> is evaluated in decimal
and the range of <exp> is:

2 £ exp £ 20
The numeric value of , RDX is the current input radix.

The default input radix is 8.

+RDX 8

123

«RDX 10

123

«RDX 16

123

(«RDX) 3 CURRENT VALUE OF INPUT RADIX

Input and output radices are entirely distinct. Setting the input
radix has no effect upon the listing radix.

NUMBER

RA

S
1><
b
g
3
D

Pseudo-op

or Symbol:

Syntax:

Purpose:

Value:
Default:

Examples:

. RDXO
. RDXOA<exp~
This pseudo-op defines the radix to be used for numeric
conversion of the listing output fields. The <exp> is
evaluated in decimal and the range of <exp> is

8 < <exp> < 20

The numeric value of ,RDXO is the current output radix.

The default output radix is 8.

flf’ﬂiﬁ

Uownla

«RDX 182

input radix 10

#2013 «RDXO 19 output radix 10
pzaTT 17
29022 22 } decimal listing
GOB45 45
2238 «RDX 8 input radix 8
702213 «RD¥X0 8 output radix 8
@Base77T 17
B29g%22 22 } octal listing
pEaB4aAS5 A5
0070273 «RDX 16 input radix 16
2212 «RDX0O 16 output radix 16
@377 177 \
gg22 22 hexadecimal listing
Z2@4a5 45 J
227719 «RDX0 8§ output radix 8 (input radix 16)
BoG167 77
209042 22 } octal listing
G185 45
22210 «RDX0 10 output radix 10 (input radix 16)
o119 77
20034 22 decimal listing
20369 4S5
20819 «RDX 10 input radix 10
2210 <RDX0O 16 output radix 16
@e4D 77
6p16 22 hexadecimal listing
292D 45
@20 1@ (+RDX0) current value of output radix (always prints as 10)
Note:

Input and output radices are entirely distinct. Setting the output
radix has no effect on the input radix.

4-3

SYMBOL TABLE PSEUDO-OPS

The symbol table pseudo-ops are of the form:

<pseudo-op>A<usr_sym>= <stmt

where: <pseudo-op> is one of the following:

.DALC

.DIAC
.DIO
.DIOA
.DMR
.DMRA
.DUSR

<usr_sym> is a programmer chosen symbol

<stmt >is a statement (based on previously defined semi-permanent
symbols) or expression

The symbol table pseudo-ops define a user symbol <usr_sym=> as a semi-permanent
symbol <semi_sym> that has as its value the value of the statement or expression
following the equals sign.

Each symbol table pseudo-op, except . DUSR, implies a certain type of instruction.
Thus, once defined, the semi-permanent symbol must be used with expressions
appropriate to the format required. For example, the pseudo-op . DALC defines

a symbol that is an implied arithmetic and logical mnemonic and which requires
expressions following the symbol that are entered into those bit fields that would
represent in an ALC the source and destination accumulators and the optional skip
field. The format for .DALC definition of a symbol and the format of the symbol as
it would later be used are:

.DALCA<usr_sym>= <stmt>

L

<usr_sym>A<exp;>A<expy>A t<exps>}

where: <exp;> , <expp>, and <expsz~ are stored as:

111111
012345678901_2’2/45
Z \

ZAN =Z
<exp2> <exp3>
<exp1>

SYMBOL TABLE PSEUDO-OPS (Continued)

For example:

MULT#4 is defined [1000011001010000]

1931206 «DALC MULTA4=1023120

v o x s MULT 4 must be used with two expressions that
poLia dad evaluate within the limits of the ALC instruction
accumulator fields (2 bits for each)

{1010111001010000]

If the field to which an expression is to be added cannot accommodate the value of
the expression an overflow error will occur. The field will be unaltered.

123120 +DALC MULT4=103122

002290 187129 MULT4 4,1

If the field to which an expression is to be added is not zero, the expression to be
added must evaluate to zero. Otherwise, an overflow error will occur.,

123120 «DALC MULT4=123123 ;BITS 1-2 NOT ZEROED

0B@831 127120 MULT4 1,1 JOVERFLOYW ON <EXPI1>
22062 123120 MULT4 2,0 JACCEPTABLE SINCE
3<EXPl>=¢g

If the expressions following a semi-permanent symbol do not fit the implied format
a formatting error will result.

123128 +DALC MULT4=12312¢9 ;TW0, OPTIONALLY THREE,
3 EXPRESSIONS REQUIRED FOR
SMULT4.
F 123120 MULT4 1
Bo@Z1 127121 MULT4.,1,1,1
Fegzoz 127121 MULT4 1,1,1,1

SYMBOL TABLE PSEUDO-OPS (Continued)

A symbol defined as semi-permanent by a symbol table pseudo-op must, in summary,
meet the following conditions:

lc

As many expressions must follow the semi-permanent symbol as are
required by the implied format. Some formats permit optional expressions
as well as required expressions.

If the number of expressions following the semi-permanent symbol do
not meet the requirements of the implied format, a format error (F)
will result,

If an expression does not meet the requirements of the field, i.e., if

<exp> .CT. (Zﬂeld-width -1)

the field is unaltered and an overflow (O) error results.
If the field in which the expression is to be stored # 0, the expression

must = 0. Otherwise, an overflow (O) error results, and the field is
unaltered.

A given<usr_sym> defined in one symbol table pseudo-op may be redefined in another
symbol table pseudo-op. The last definition will be the one assigned to <usr_sym >,

The implied format required by each symbol table pseudo-op is given as part of the
pseudo-op summary descriptions following.

4-6

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: .DALC
Syntax: .DALCA <usr_sym>=< stmt>
Purpose: This pseudo-op defines <Uusr_sym> as a semi-permanent

symbol having the value of <stmt>. In addition, the use of
this symbol implies formatting of an ALC instruction. At
least two fields, and optionally three, are required. These
fields are assembled as shown below.

[
S
U1

111
0123456789012

%_< €Xpy> é<exp3>
I

<exp1>

\

The format in which the semi-permanent symbol is used is:
<semi sym>A< €xXp;~ A<expy>{A <exp3>}

Examples:

1934008 «DALC ADD=1034020

200200 1234G3 ADD 3,0
20001 103402 ADD @.,8.,SZC
208922 133481 ADD 1,2, SKP

F 123406 ADD |
F 163432 ADD
Notes: The atom # may be specified anywhere as a break character.

If seen, a 1 is assembled at bit position 12,

A given < usr_sym > defined in one . DALC pseudo-op may be
redefined in another . DALC pseudo-op. The last definition will
be the one assigned to <usr_sym >,

SYMBOL TABLE PSEUDO-OPS (Continued)

Notes: If a three character symbol is defined using this pseudo-op, it can
(Continued) be used and followed immediately by one or two letters of the
following format:

Z L
<sym >| O R
C S

Use of these letters (or letter) will cause bits 8 - 9, 10 - 11
to be set as follows:

Mnemonic Bits 8 - 9 its 10 -
L 01

R 10

S 11

Z 01

(0] 10

C 11

4-8

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op:

Syntax:

Purpose:

Examples:

pesee

Fogeel
F

213430

280430
220439

.DIAC
.DIACA <usr_sym>=<stmt>

This pseudo-op defines <usr_sym~ as a semi-permanent

symbol having the value of <stmt>, The use of the symbol
implies the formatting of an instruction requiring an accumulator.
One field is thus required. The field is assembled as shown

below,

111111
0123456789012345

LA

L _____<exp>

The format in which the semi-permanent symbol is used is:

<semi sym>A <exp>

«DIAC RPT=3303437
RPT 2

zzg 2,0 } Illegal number of expressions

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: .DIO
Syntax: .DIOA <usr_sym>=<stmt>
Purpose: This pseudo-op defines <usr_sym> as a semi-permanent

symbol having the value of <stmt>. The use of the symbol
implies the formatting of an I/O instruction without an AC
field. One field is required; it is assembled as shown below.

111111
0123456789012345

///{ = <exp>

The format in which the semi-permanent symbol is used is:

\

<semi sym>A <exp>

Examples:

7634727 «DI0 SKION=£634C¢

F 5634305 SKION
TREH2 F63452 SHIOW 2

FO0063 63422 SKION 2,3

Note: If a three character symbol is defined using this pseudo-op, it
can be used and followed immediately by a single letter S, C, or
or P. The use of one of these letters causes bits 8-9 of the
statement word to be set as follows:

Mnemonic Bits 8-9
S 01
C 10
P 11

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: . DIOA
Syntax: .DIOAA <usr_sym>=<stmt>
Purpose: This pseudo-op defines <usr _sym-> as g semi-permanent
symbol having the value of <stmt>. The use of the symbol
implies the formatting of an I/O instruction with two required
fields. The fields are assembled as shown below.
111111
0123456789012345
< €xp; > L__< expg>
The format in which the semi-permanent symbol is used is:
<semi_sym>A< expy A <expy>
Example:
760597 «DI0A DIA =2605%5
«MNREL
Begee 373513 DIA 2, TTI
20201'063645 DIA ©,45
Note: If a three character symbol is defined using this pseudo-op, it can be

used and followed immediately by a single letter S, C, or P. The use
of one of these letters causes bits 8-9 of the statement word to be
set as follows:

Mnemonic Bits 8-9
S 01
C 10
P 11

4-11

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op:
Syntax:

Purpose:

Examples:

.DMR
.DMR A <usr_sym>=<stmt~

This pseudo-op defines <usr_sym>as a semi-permanent
symbol having the value of <stmt>. In addition, the symbol
implies the formatting of an MRI instruction with either

one or two required fields (an address or a displacement
and index). The fields are assembled as shown below.

111111
0123456789012345

E— S

L

<dsp:>
T <ndx -~

The formats in which the semi-permanent symbol is used are:

<semi_sym>A<dsp >
< semi-sym> 2 < dsp >4 < ndx >

The <dsp >and «ndx > fields are set according to the format used and
a set of addressing rules as described in Chapter 3.

Blslololons)

AL AR A T -

26331305490
0A%2' 3538461

FABG3T 234 T]

«DMR JUP=285300
«NFPEL
JHMP o+ 2

JSR 3,3
JHP 21,2

JHP 1,1

Note:

The atom @ may be specified anywhere as a break character.
If seen, a 1 is assembled at bit position 5.

4-12

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: .DMRA
Syntax: .DMRA A <usr_sym>=<stmt>
Purpose: This pseudo-op defines <usr_sym™> as a semi-permanent
symbol having the value of <stmt>. In addition, the symbol
implies the formatting of an MRI instruction with either two
or three required fields. The first field specifies an accumu-
lator. Where there are three fields, the second and third
fields are a displacement and index respectively.
Where there are two fields, the second is an implied address.
The fields are assembled as shown below.
111111
0123456789012345
£ < dsp>
T < ndx >
< >
exp,
The formats in which the semi-permanent symbol is used are:
<semi_sym>A <exp,; > A <expy>
<semi_sym=>A <exp; > A<expy>A <expz>
The <dsp > and «ndx > fields are set according to the format used
and a set of addressing rules as described in Chapter 3.
Examples:
B203000 «DMRA LDA=22309
+NREL
53542C LDA 3,G,3
Z32432 LDA 2, .2+1
BOBE0H «R: «BLK 4
Note: The atom @ may be specified anywhere as a break character. If seen, a

1 is assembled at bit position 5.

4-13

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: . DUSR
Syntax: .DUSRA <usr_sym>=< stmt>
Purpose: This pseudo-op defines <usr_sym> as a semi-permanent

symbol having the value of <stmt>, Unlike other semi-
permanent symbols, a symbol defined by a . DUSR is
merely given a value and has no implied formatting, It
may be used anywhere a single precision operand would
be used.

Example:

N

n

‘,JL

¥}

0325 «DUSE DB=25

2
[N
(S
Ao}
(6)]
=

+«DUSR C=B*1g

«NREL
geEsgr 177555 B-C
GroE1'006712 BxC+2

4-14

SYMBOL TABLE PSEUDO-OPS (Continued)

Pseudo-op: . XPNG
Syntax: . XPNG
Purpose: This pseudo-op removes all macro definitions and all symbol

definitions, except permanent, from the assembler 's symbol table.
. XPNG is used primarily as follows:

1. The programmer writes a program containing
. XPNG followed by definitions of any semi-
permanent symbols.

2. The program is assembled using the global switch
S to the MAC command. This causes the assembler
to terminate after pass 1.

3. The programmer can then use the assembler containing

permanent symbols and those semi-permanent symbols
defined by the programmer in step 2.

Example:

«TITL XP
« XPNG

Vo RN ter drdel ey A Ny

920076 .DMRA LDA=20000
40200 «DMRA STA=4203¢C

«END

IAC/S XP

R 'The assembler's symbol table now contains LDA and STA.

4-15

LOCATION COUNTER PSEUDO-OPS AND VALUES

Pseudo-op: .BLK
Syntax: .BLKA <exp>
Purpose: This pseudo-op allocates a block of storage. <exp~ is

the number of words to be reserved. The current
location counter is incremented by < exp =~ .

Example:

« MREL
GRBAC0aL4G3 STA 1, F+1
BHAA1 340483 STA T eTF+2

FEHN2'HB0024 «F: «BLK 4
CERG6T 0GRS «Fle 3
OQGEGT00CB37 «F2: O

4-16

LOCATION COUNTER PSEUDO-OPS AND VALUES (Continued)

Pseudo-op: .LOC
Syntax: . LOCA <exp>
Purpose: This pseudo-op changes the setting of the current location

counter to the value and relocation property given by <exp>.

Value: The current location counter value and relocation property.

Yxr Yy e

See, however, the exce ption given below.
Default: Absolute zero.

Example:

g3200 206608 A 2

o337 6200893 NO: 0
«ZREL
220023-020300 £: O

803198 .LOC 109
22120 2382393 A
UZ23181 802029 B
Ugoloz o029 C

@221 LOC A+
000

Q&

A

(S

2
28221 @

B22281-+L0OC Z+1
@23221-200322 A

Exception: If . LOC is.pushed to the assembler variable stack (see VARIABLE
STACK PSEUDO-OPS AND VALUES) and subsequently used to
restore the location counter, e.g.,

«PUSH .LOC

«L0OC .POP

then the value is ignored and only the relocation property is
changed. " This allows the user to save the current relocation
mode within a macro and restore it correctly without affecting
the relative location counter value which may have been altered”
within the macro.

4-17

LOCATION COUNTER PSEUDO-OPS AND VALUES (Continued)

Symbol: .

Value: The symbol . has the value and relocation property of the
current location counter,

Example:

«NREL

2332000003 3
200005 .LIC ++2
POVR5° 20013 LDA 0,10

4-18

LOCATION COUNTER

Pseudo-op: .NREL
Syntax: .NREL
Purpose: This pseudo-op causes subsequent source statements to be assembled

using normally relocatable addresses. If NREL mode is exited
during assembly, the current . NREL value is maintained and used
if NREL mode is entered again.

Examples:

L]

(4
cJg@3 177775 M: =3
pP@l2@ .LOC 100
¢o100 200003 M
«NREL
PoP0R'00B@33 <At M
gaeal'ee2777 JMP €.A

ge2200 .LOC 200
22200 2008083 M
+NREL

oP302'2020083 M ;note next available NREL address

4-19

LOCATION COUNTER

Pseudo-op: .ZREL
Syntax: .ZREL
Purpose: This pseudo-op causes subsequent source statements to be assem-

bled using page zero relocatable addresses. If ZREL mode is exited
during assembly, the current . ZREL value is maintained and is used
if .ZREL mode is entered again.

Example:

Q2000 Q00208 AL: O

« ZREL
P200C0-000000 Z£: Q@
0001 -000000 ZL: O

Pe2108 .LOC 120

20100 @22@02 AL

« ZREL
0oor2-303032 AL

4-20

INTERPROGRAM COMMUNICATION PSEUDO-OPS

Pseudo-op: .COMM
Syntax: .COMM 4 <usr _sym > A <exp >
Purpose: This pseudo-op is used to reserve an area for interprogram com-

munication having the name <usr_sym > and the size in words

as given by <exp >. This area will be reserved by the first routine
loaded that declared the named <usr _sym >. The area is reserved
at NMAX, immediately preceding any NREL code loaded. Further
routines loaded declaring the same symbol share this original area,
provided the sizes specified are the same.

Since <usr_sym > is an entry in the program, it cannot be redefined
elsewhere in the program The <usr_sym > may be referenced
from other programs loaded together using . EXTN, .EXTD, or

. GADD pseudo-ops.

Example:
+TITL A 1d la :
200180 .COMN X 100 Loading would take place as follows:
020340 +COMM Y.,4@ . —
200058 +COMM Z,50 high core B
.
« END
A
.TITL B <«—— A's start of NREL
@e3108 .COMM X,100 50 words 7
. 40 words Y
« END o 100 words
1mt1a1NMAX_. X

4-21

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op: .CSIZ

This pseudo-op specifies the size in words of a program area

to be used for interprogram communication.

The assembler evaluates <exp> and passes this value to the
loader. More than one . CSIZ pseudo-op may appear in a pro-
gram. At load time, the largest value specified by all . CSIZ
blocks is used to set USTCS at the termination of the load.

Syntax: .CSIZ A <exp>
Purpose:
Example:
«TITL A
20002@ .CSIZ 20
« END
«TITL X
@@e250 .CSIZ 58
«END
RLDR A X
A
X

NMAX @@1837
ZMAX 209050
CSZE 200850
EST
SST

4-22

20 words allocated

“50 words allocated in communicating
program to be loaded with A.

At load time the largest area is selected
for USTCS (prints as CSZE).

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op:

Syntax:

Purpose:

Example:

.ENT
.ENT A<usr_sym1>{ <usr_sym,>.., A <usr_symj >}

This pseudo-op declares each <usr_sym~> as a symbol that is
defined within the program and that may be referenced by

separately assembled programs.

A <usr_sym> appearing in a , ENT pseudo-op must be defined

as a user symbol within the program in which it is declared.

This symbol must be unique from entries defined in other programs
loaded together to form a save file. If not, the loader will issue

a message indicating multiply defined entries.

Entries are referenced in separately assembled programs using
one of the following pseudo-ops:

.EXTD
.EXTN
.GADD
.GLOC

+TITL A

GE!\gT Bj .C

+EXTN C
+ZREL

P0BRB-177777 «C: C

«NREL

009200 0D6030-B: JSR @.C
]

.

«END

4-23

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op: .ENTO
Syntax: . ENTO A<usr_sym=>

Purpose: This pseudo-op is used when a program is to become an
overlay within an overlay segment. Theé pseudo-op causes
the name <usr_sym> to be associated with the node number
and overlay number assigned to the particular overlay. The
overlay may then be referenced from another program by
<usr_sym> . <usr_sym> must be declared as an ., EXTN
in the referencing program.

Caution: <usr_sym> cannot appear elsewhere in the program in
which is declared as the name of an overlay, since its
value is assigned at load time.

Example:

«TITLE TIME
<ENTH METER

4-24

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op: .EXTD

Syntax: . EXTD A <usr_sym, > § < usr_sym,>... & <usr _symp >}

Purpose: This pseudo-op declares each <usr_sym> as a symbol which
may be referenced by the program but which is defined in
some other program. The <usr_sym> must be declared by
an . ENT pseudo-op in the program in which it is defined.

Any symbol declared as an , EXTD may be used as an address
or displacement of a memory reference instruction. In addi-

tion, it can be used to specify the contents of a 16-bit storage word.

If used as a page zero address or as a displacement, it is
the programmer's responsibility to insure the value of the
entry meets the specific requirements, i.e.,

0 < page zero adr <. 377

-200 < displacement < 200

Example:

+EXTD .CR

P0o0C-220201%.CR
ZZZ@I—G@é@GISﬁ.QONE: JSR @.CR

v

«END

4-25

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op: .EXTN
Syntax: .EXTN A <usr_sym; >{<usr_sym,> ... & < usr_symp~}

Purpose: This pseudo-op declares each <usr_sym> as a symbol that is
externally defined in some other program but may be refer-
enced by the current program. The <usr_sym> must be
declared using an . ENT pseudo-op in the program in which it
is defined.

A symbol declared as a . EXTN can be used only to specify

the contents of a 16-bit storage word. The value at load time is
therefore a number in the range 0 to 216.;,

Example:

«TITL B

+EXTN C

« ZREL
DO0BB-177777 «C: C

4-26

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op: .EXTU
Syntax: .EXTU
Purpose: This pseudo-op causes the assembler to treat all symbols that
are undefined after pass 1 as if they had appeared in an , EXTD
statement,
Example:
«TITL Al3
« EXTU

P2008 224C013LDA 1,B

« END

4-27

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op:

Syntax:

Purpose:

Example:

uga10a

390209

931092
AxanaT

.GADD
.GADD A <usr_sym > A <exp~>

This pseudo-op generates a storage word whose contents is re-
solved at load time. The value of <usr_sym > is searched for
at load time and, if found, its value plus the value of the <exp >
are added to form the contents of the storage word. If the
<usr_sym > is not found, a loader error results and the storage
word will contain just the value of <exp >.

The <usr_sym > must be a symbol defined in some separately
assembled program and appearing in that program in an ,ENT,
.ENTO, or .COMM pseudo-op. .GADD may thus be used

in a similar manner to . EXTN with the following differences:

A user symbol appearing in a . EXTN pseudo-op and used as a
storage word is resolved regardless of whether the defining
program is loaded before or after the program containing

the .EXTN.

A user symbol appearing in a . GADD block is resolved only
if the defining program is loaded before the program containing
the . GADD block.

STITL Y
JENT A
LLDC 200
Al

« EEND

Value of A is 200.

+TITL X

«LIC 109

«GADD A, 3+4 Value of 7 assigned on assembly.
« TND

When loaded in the order Y - X, the value stored will be 207.

If X is loaded first, an error message will result and the value
stored will be 7.

4-28

INTERPROGRAM COMMUNICATION PSEUDO-OPS (Continued)

Pseudo-op:
Syntax:

Purpose:

Example:

eeoea3

PoEow0vv001
00000000602
20002'390003

.GLOC
.GLOC & <usr_sym >

This pseudo-op begins a block of absolute data origined at the value
of <usr_sym > at load time. The block is terminated by the next
occurrence of a . LOC, .NREL, .ZREL, or . END pseudo-op.

‘The <usr_sym > must be defined by an . ENT or .COMM in a
program loaded prior to the global location block or a fatal load
error will result,

Within the block, there can be no external references, no label
definitions and no label references.

+TITL A
«COMM MYAREA, 3

14
.
L]

« END

+TITL B €— Program B, loaded after program A will
+GLOC MYAREA R

—

4-29

TEXT PSEUDO-OP AND VALUES

Pseudo-op: . TXT
. TXTE
. TXTF
. TXTO
Syntax: .TXT A @ <string > o

. TXTE A« <string > o
. TXTF Ax <string > o
. TXTO Ao < string >«

Purpose: These pseudo-ops cause the assembler to scan the input following
the character @ up to the next occurrence of the character o
in string mode. The character @ may be any character not used
within the string except null, line feed, or rubout. « delimits but is
not part of the string. Carriage return and form feed may be used
to continue the string from line to line or page to page, but are
not stored as part of the text string.

Every two bytes generate a single storage word containing the
ASCII codes for the bytes. Storage of a character of a string
requires seven bits of an eight-bit byte. The leftmost (parity)
bit may be set to 0, 1, even parity, or odd parity as follows:

. TXT Sets leftmost bit to 0 unconditionally.

. TXTF Sets leftmost bit to 1 unconditionally.

. TXTE Sets leftmost bit for even parity on byte.
. TXTO Sets leftmost bit for odd parity on byte.

The packing mode can be altered using the . TXTM pseudo-op.

If an even number of bytes are assembled, the null word following
these packed bytes can be suppressed by the . TXTN pseudo-op.
See pages 4-33 and 4-32.

Within the string, angle brackets can be used to delimit an arith-
metic expression. The expression will be evaluated, masked to
seven bits, and the eighth bit set as specified by the pseudo-op.
Note that no logical operators are permitted within the expression.
This is the only means, for example, to store a carriage return as
part of the text string.

.TXT "LINE 1<15>" /

4-30

TEXT PSEUDO-OPS AND VALUES (Continued)

Default: Bytes are packed right/left, and a null byte is generated as the
terminating byte.

Example:

POAAD B41101 TXT #AR CD#
041440
0001084

BY0A3 41101 TXTE #AB CD#
141640
00104

B0006 141301 TXTF #AB CD#
141640
002304

02011 141301 TXTD #AB CD#
B41449
PB2304

4-31

TEXT PSEUDO-OPS AND VALUES (Continued)

Pseudo-op
or Symbol:

Syntax:

Purpose:

Value:

Default:

Example:

200000
o2000 041101
B4a144@
gealoa
po003 6E0C0Qe
p22081
p9004 8405082
8201023
242000
o007 200001

. TXTM.

. TXTMA <exp>

This pseudo-op changes the packing of bytes generated using the

text pseudo-ops, . TXT, . TXTE, .TXTF, or . TXTO . If <exp>
evaluates to zero, bytes are packed right/left; if <exp> does not
evaluate to zero, bytes are packed left/right.

The value of . TXTM is the value of the last expression used
within the . TXTM pseudo-op.

Bytes are packed right/left.

«TXTM @
«TXT #AB CD#

(«TXTM)
«TXTM 1
«TXT #AB CD#

(« TXTM)

4-32

TEXT PSEUDO-OPS AND VA LUES (Continued)

Pseudo-op
or Symbol:

Syntax:

Purpose:

Value:

Default:

Example:

loladolo)

20003
A00034

P0G 6

. TXTN

.TXTN A <exp >

This pseudo-op determines whether or not a string that contains
an even number of characters will terminate with a word con-
sisting of two zero bytes. (When the number of characters in the
string is odd, the last word contains a zero byte in all cases.)

If <exp > evaluates to zero, all text strings containing an even
number of bytes will terminate with a full word zero. If <exp > does
not evaluate to zero, any text string containing an even number of
bytes terminates with a word containing the last two characters

of the string.

The value of . TXTN is the value of the last expression used
within the . TXTN pseudo-op.

The string terminates with a zero word.

Q00003 +TXTN @
#31061 «TXT 71234/
932063

200000

2000008 C«TXTN)
200031 «TXTN 1
@31861 «TXT /1234/
232663

220001 +.TXTN

4-33

FILE TERMINATING PSEUDO-OPS

Pseudo-op: .END
Syntax: .END f A <exp >1
Purpose: This pseudo-op terminates a source program, providing an end

of program indicator for the loader. The <exp > is an optional
argument specifying a starting address for execution. The loader
initializes TCBPC of the active TCB to the last address, if any,
specified by a relocatable binary at load time. Execution of the
loaded save file begins at this address. (If the loader finds no
starting address among programs loaded, an error message is given.)

Example:

+TITL GETCT

182408 GETCT: SUB @,@ 3INITIATE FOR STARTUP

«END GETCT

4-34

FILE TERMINATING PSEUDO-OPS (Continued)

Pseudo-op: .EOT
Syntax: .EOT
Purpose: This pseudo-op is used to indicate the end of an input file but not.

the end of input source. End of file from an input file is an
implicit . EOT if other source files follow; end of file from the last

i i i i 1i~i¢ BN
input file is an implicit . END.

E xample:

«TITL PGM

+EOT

4-35

REPETITION AND CONDITIONAL PSEUDO-OPS

Pseudo-op:
Syntax:

Purpose:

Examples:

.DO
.DOA <exp>
This pseudo-op causes the source program lines between the . DO

and the corresponding . ENDC to be assembled the number of times
given by <exp> .

00000
PoBAA4
00000 100000
000001

Q0001 040000
p02002

ppen2 020000
200003

06383 010090
BB 4

020003

Y02000

200001
PP004 260005
P00A5 0QEA02

1=0 N
D0 4 Source Program
1BI

I=1+1

I1=0
;Eél;mc .DO 4 ¢ loop is assembled

I=1+1 1BI 4 times
.ENDC 5 I1=1+1

1BI Listing -ENDC

I=1I+1
<ENDC
1B1
I=1+1
«ENDC

A=3

.DO 4==A .« Relational expression evaluates to 0 (false).
5

2

+ENDC

«DO 4==(A+1) < Relational expression evaluates to 1 (true),
5 so loop is assembled once.

2

<ENDC

Note: The .DO's may be nested to any depth, the innermost . DO corresponding to
the innermost . ENDC, etc.

4-36

REPETITION AND CONDITIONAL PSEUDOQ-0OPS (Continued)

Pseudo-op:
Syntax:
Purpose:
Example:
222000
0o2002
0o0000
peo200
2000081
00220220900
go2001
02001020000

.IFE

.IFG

.IFL
. IEN

.IFEA <exp>
. IFGA <exp >
.IFLA <exp>
. IFNA <exp>

These pseudo-ops cause the statements following to be assembled
if the condition defined in the pseudo-op is met. The pseudo-ops
define the following conditions:

. IFEA <exp > Assemble if <exp> equals 0.

IFGA <exp> Assemble if <exp> is greater than 0.
.IFLA <exp> Assemble if <exp> is less than 0,

. IFNA <exp > Assemble if <exp> is not equal to 0,

The value field of the listing is 1 if the condition is true and O if
the condition is false.

A
B

2
A
R

=4

EL

«IFE B=2 Y
LDA @,A
« ENDC

;r‘he expression evaluates to false in these cases, so
«IFG B=-2 the load instruction is not assembled.
LDA @.,A
+ ENDC

J\\

«IFL B-2

LbA @.,A . .
«ENDC >The expression evaluates to true in these cases, so

the load instruction is assembled.
«IFN B-2
LDA @.,A J
+ ENDC

Note: The .IF's may be nested to any depth, the innermost . IF corresponding to the
innermost . ENDC, etc. Note that all . IF conditions are degenerate forms of
.DO's. For example:

.IFG A is equivalent to .DO A= 0
4-37

REPETITION AND CONDITIONAL PSEUDO-OPS (Continued)

Pseudo-op:
Syntax:

Purpose:

Example:

1=1
.D‘:) S
Ix1
I=1+1
<ENDC

.ENDC

.ENDC

This pseudo-op terminates statements for repetitive assembly
(statements following a . DO pseudo-op) or statements whose

assembly is conditional (statements following one of the pseudo-
ops: .IFE, .IFG, .IFL, .IFN).

4-38

MACRO PSEUDO-OPS AND VALUES

Pseudo-op: - MACRO
Syntax: - MACROA<usr_sym >)
Purpose: This pseudo-op defines <usr_sym > as the name of the macro

definition that follows. Any line or lines that follow are part
of the macro definition up to the first % character encountered,

Once defined, <usr _sym > can be used to call the macro.

Example:

+MACR) TEST 5 <USR-SYM> IS TEST

t1

t2 $MACRD DEFINITION

t3

%

TEST 4,5,6 3MACR) CALL WITH ARGS 4,5,6

Qo020 go2004 4
20001 200005 S
0oRn2 Y0006 6

Q00020 <RDX 16
TEST 0A,2B,0C 3MACRO CALL WITH ARGS 0A,0B,0C
00003 90PeR12 OA
v0oB4 098013 0B
0ABAS PBCY14 BC

4-39

MACRO PSEUDO-OPS AND VALUES (Continued)

Symbol: .ARGCT
Value: .ARGCT has as a value the number of actual arguments specified
by the most recent macro call. If the symbol is used outside a

macro, its value is ~1.

Example:

+NREL
«MACRO X
t1+12
«ARGCT

%

X 455 3CALL HAS TWO ARGS

POE0R 000311 4+5
20001 ' 000002 ARGCT sVALUE OF <ARGCT IS TWO

4-40

MACRO PSEUDO-OPS AND VALUES (Continued)

Symbol: .MCALL

Value: .MCALL has value 1 if the macro in which it appears has been called
previously on this assembly pass, and value 0 if this is the first
call on this pass. If used outside a macro, its value is -1.

Example:

«MACRO X

«D0 «MCALL

JSR @.¥ 35JSR IF NCT FIRST CaLL
«ENDC

«D0 .MCALL ==g 3IF FIRST CaLL , GENERATE SUBROUTINE
«PUSH «LOC 5SAVE LOCATION COUNTER
«ZREL

«X: X 3POINTER TO SUBROUTINE

«LOC .POP ;RESTORE LOCATION COUNTER
JS5R X 3 CALL X

JMP XEND 3 JUMP PAST X

X

1

.

. 5CODE FOR X
JMP 06,3 SRETURN

XEND:

«ENDC

o
o

4-41

LISTING PSEUDO -OPS AND VALUES

This pseudo-op either inhibits or permits listing of those condition-

al portions of the source program that do not meet the conditions

ited; if the value of <exp> = 0, listing is permitted.

If the value of <exp> # 0, listing is inhib-

Conditional portions of the source program that would be assembled

The value of . NOCON is the value of the last expression used

030233

A=3

Pseudo-op: . NOCON
Syntax: . NOCONA <exp >
Purpose:
given for assembly.
are not affected by the . NOCON pseudo-op.
Value:
within the . NOCON pseudo-op.
Default: Listing is permitted.
Examples:
A=3
+NOCON 9
«D) 4==A
)
3
«ENDC

+DJ 4==(A+1)
S5

3

«ENDC

«NJCON 1
«DD 4==
5

3

«ENDC

DI 4==(A+1)
S

3

«ENDC

> Source
Program

62222
20001

vBooe
BoY23

4-42

2lagslalols|
DAB333

200901
@aseas
300093

020321

Na3391

BRB335
00333

«NOCON @
DN 4==47
5

3

«ENDC

« DO
5
3
+ENDC

4==(A+1)

+NOCON 1

+DJ 4==CA+1)
5

3

«ENDC

} Listing

X7

LISTING PSEUDG-0OPS AND VALUES (Continued)

Pseudo-op: .NOLOC
Syntax: .NOLOC A <exp >
Purpose: This pseudo-op is used to inhibit listing of lines which do not

include a location field. If the value of <exp > is not equal to zero,
listing is inhibited; if the value of <exp > is equal to 0, listing
occurs,

Value: The value of . NOLOC is the value of the last expression used
within the . NOLOC pseudo-op.

Default: Listing is permitted.

4-43

LISTING PSEUDO-OPS AND VALUES (continued)

Pseudo-op: .NOMAC
Syntax: .NOMACA <exp>
Purpose: This pseudo-op is used to inhibit the listing of macro expansions.

If <exp> evaluates to zero, macro expansions will be listed;
otherwise, macro expansions are inhibited.

Value: The value of . NOMAC is the value of the last expression used
within the . NOMAC pseudo-op.

Default: Expansions are listed.

Exa mples:
«MACRO OR
cCoM tl1,t1
AND t1,1t2
ADC t1,1t2
%

79001 «NOMAC 1 sEXPANSION INHIBITED
OR [1,2]
PERERH <NOMAC @ sEXPANSION PERMITTED

OR (3,01 -

Q0083 1740023 COM 3,3

PPBP4 163400 AND 3,0

20005 162000 ADC 3,0
«MACRO TEST
5
6
«NOMAC 1 $MACRO EXPANSION MAY BE INHIBITED OR PERMITTED
7 sAT ANY TIME WITHIN THE MACRO
8
%
TEST

POGe3 90BBB5 S

P0091 Q00306 6
+END

Note:

. NOMAC can be used within a macro definition to selectively inhibit listing,

4-44

VARIABLE STACK PSEUDO-OPS AND VALUES

Pseudo-op: . PUSH
Syntax: .PUSHA < exp >
Purpose: This pseudo-op allows the programmer to save the value and relo-
cation properties of any legal assembler expression on an internal
assembler stack. Additional expressions may be pushed until the
stack space is exhausted. The stack is referenced by the perma -
nent symbols . POP and . TOP. As with any push down stack, the
last expression "pushed" is the first expression to be "popped. "
Example: 'The current value of the input radix may be saved, its value altered,
and then restored by the following statements.
002010 +PUSH .RDX
Q00012 RDX 1@
200010 «RDX +PIP

4-45

VARIABLE STACK PSEUDO-OPS AND VALUES (Continued)

Symbol: . POP

Value: The value of . POP is the value and relocation property of the last
value pushed on the variable stack (. PUSH pseudo-op). In addition,
use of . POP causes the value and relocation property to be popped.

Default: If there are no values on the variable stack, . POP has a value of
absolute zero and a zero flag will be given the line in which it is used.

Example:

po@d25 A=25
200825 A

@B2@25 «PUSH A
PgeBB15 A=1S5
goe315 A

@P0025 A=.POP
BoBR25 A
« END

4-46

VARIABLE STACK PSEUDO-OPS AND VALUES (Continued)

Symbol: .JTOP

Value: The value of .TOP is the value and relocation property of the last

value pushed to the variable stack. .TOP differs from .POP in
that use of the symbol does not pop the last pushed value from the

stack. If no values are pushed, absolute 0 is returned and the 0
flag is given.
Example:

P20020 «PUSH 20

0Q0ere 080028 «TOP
00201 @O0020 .TOP

4-47

PASS VALUE

Symbol: . PASS

Value: . PASS has a value of zero on pass 1 and a value of one on pass
2 of assembly.

Example:

PO0020 .RDX 16
0pvP0 0000008 C: O
Po001 000021 D: 08+9

goor2 032001 LDA 2,eD
20003 00NAB1 +PASS ;Value on listing pass (pass 2) is
>

; always 1,

']
.

4-48

CHAPTER 5

EXTENDED CAPABILITIES OF THE MACRO ASSEMBLE

THE MACRO FACILITY

The macro facility allows a string of source characters, perhaps consisting of many
lines, to be named and subsequently referenced by name. In addition, the definition
string may specify formal arguments within the string that are replaced by actualarg-
uments whenever the macro is expanded., The macro is defined only once within a pro-
gram but may be referenced (called) any number of times after the definition.

The macro definition associates a user symbol with the definition. Then whenever the
macro symbol is encountered in assembly of the source program, the definition is sub-
stituted for the symbol., The substitution is called macro expansion, and the encounter
of the symbol is a macro call.

Macro Definition

The programmer writes a macro definition once. The macro definition can then be sub-
stituted in his program anywhere the appropriate macro name is encountered during assembly.
A macro definition has the form:

+MACRO A < usr_sym>)

<macro_definition_string>%

where <usr_sym> is the name to be used in the macro call to identify the macro
that is to be expanded into the program at that point,

<macro_definition_string>is a string of ASCII characters to be substituted
for the macro call,

% terminates <macro_definition_string>and is not part of the definition.
Within <macro_definition_string> two characters (< and t) have special meanings.
The back arrow (—) is ignored but causes the character immediately following to be
stored without any interpretation. It would be used, for example, if the user wishes a
percent sign (%) to be part of the macro definition string, (Normally, the % terminates

the macro definition.) If the user wants to write a <macro_definition_string> that will
be

ABC%D

he would write <macro_definition_string> as:

5-1

Macro Definition (Continued)

ABC— %D

Similarly, if the user wishes to write a <macro_definition_string> that will be
X+—-YZ

he would write the <macro_definition_string> as:
X—=<YZ

The back arrow convention can be used for any ASCII character., For example, if the
user writes either

X or — X

the character will be read as X in either case. However, the back arrow convention is
most often used for characters that will otherwise be interpreted, suchas %, t, and
- itself,

The second character having a special meaning is the up arrow (+). An up arrow is
followed by an alphanumeric character representing a formal argument interpreted as
follows:

tn where n is 1-9

ta where a is A-Z
A digit following 4 represents the positional value of an actual argument in
the argument list of the macro call that will replace the formal argument tn
wherever it appears within the macro definition. For example, if the formal
argument t 3 occurs in the <macro_definition_string> , then it will be re-
placed by the third argument in the macro call as described in the next sec-
tion. (A zero following + is unconditionally replaced by the null string,)

A letter following t is a symbol whose value is looked up when macro expan-
sion occurs. The value of the symbol is used as the positional value of the
actual argument to the macro call that is to replace ta wherever it appears
within the macro definition, B

The carriage return following <user_sym> is required to distinguish <user sym>
from the macro definition string. Except for the characters previously noted («—, % ,
%)» all characters in the <macro_definition_string> are returned during macro ex-
pansion exactly as written. For example, if the definition consists of a string that is
to be expanded into several lines of source language, each line must be terminated by
a carriage return,

If the definition consists of a single expression that is to be substituted as, for example,
the second operand of a three-operand instruction, the macro definition string

cannot contain carriage returns, comments, etc. To define an expression within a
macro definition string, the expression must fall within the line limitations of the
assembler (132 characters maximum).

The % terminating the macro definition string will appear in the macro definition as the
first character of the last line of the macro definition if the macro definition is one or
more complete lines of assembly source program, If the definition is not a complete
line , the % will appear immediately following the string that constitutes the definition.

The user symbol that names the macro must follow assembler rules for user symbols.

Examples of macro definitions are:

.MACRO T}
LDA 0,0,3)
MOV 0,0, SNR)
%

.MACRO EXP)
TEST41+42%

.MACRO COM)
;TEST FOR 95 < % DONE)

%

The definition of a macro may be temporarily terminated and then continued. This is
especially useful if a first macro is used to define a second macro. The first macro
may terminate definition of the inner macro temporarily, assign new equivalences, and
continue, The macro VFD given later illustrates this continuation property.

Syntactically, if a macro of the same name as the last defined macro is encountered,
the second and subsequent "definitions" are appended, in order, to the first definition.
For example,

.MACRO TEST)
1=0)
%

.MACRO TEST)
J=0)
%

is equivalent to:

.MACRO TEST)

5-3

Macro Calls

For a given macro definition, any number of macro calls of that definition may appear
in the source program. A macro instruction consists of the user symbol given in a
macro definition followed by any actual arguments to replace formal arguments in the
macro definition string.

A macro call has one of the following forms:

1) <mac_sym>)

) <mac_sym>A <string1 > F <sp ><string2 ><SP>ae <stringn>-}-)y

(3) <mac_sym> tA} | f~<string1 >§ <sp> Qtringz S>LEP>aa. < string11 >¥]),
where: <mac_sym > is the name of some macro definition.

Each <stringi> is an actual argument that is to be substituted for
the appropriate formal argument during macro expansion.

The first form of the macro instruction presumes that there are no formal arguments
within the macro definition. Forms two and three presume that one or more formal
arguments must be replaced by actual arguments.

Substitution of actual arguments is accomplished by using <string, >to replace every
occurrence of 41 (or to replace ta where a evaluates to 1), <string, >to replace every
occurrence of 42, etc. If no formal arguments were specified in the definition, no
arguments can be specified by the call. If more arguments are given by the call than
specified by the definition, they are ignored.

The list of arguments of a macro call may either be enclosed in square brackets (form
3) or not enclosed in square brackets (form 2). The difference is that form 2 terminates
with a carriage return before the first byte of the macro expansion, whereas form 3
does not. If a macro is to replace the index field of an instruction, form 3 should be
used. In general, form 2 type calls are more common. For example:

Macro Definition Alternative Instructions and their Expansions
.MACRO D } STA 3,D[2] <—macro call
TEMP+1%

STA 3, TEMP2 - after expansion

D 2) —macro call

+3

TEMP2+3 +— after expansion

Macro Calls (Continued)

Argument strings, like text strings, may consist of any characters. Argument strings
are separated by a single break character <sp>. The effect is that leading commas,
spaces or tabulations may be part of the argument, * The argument string is terminated
by the first <sp> encountered.

Listing of Macro Expansions

The manner of substituting a macro definition for a macro instruction follows the pro-
cedures just described. However, the listing output showing the expanded source text
is not the same as the macro expansion used to generate the object file output. The
listing will show both the macro call and the macro expansion, while the object file will
contain only the object code equivalents of the macro expansion with the appropriate
actual arguments, An example is:

«MACRO DSP) < macro definition

+1%

LDA 0,DSP [121], 3 <—source listing line with macro

LDA 0, 121, 3 <~ expanded line to be translated to
object file

LDA 0, DSP[121] 121, 3 <—expanded line as it appears in the
listing file

The listing of macro expansions may be suppressed using the pseudo-op . NOMAC, If
suppressed, the load instruction above would appear on the listing exactly as it appears
in the source listing line,

ox"’lACLU ‘e
5
LDA t1,12

Macro expansions are listed by default.,

Ggiuiinl e NUNAC 1 An expression evaluating to a value other than

D S zero following . NOMAC causes suppression of
GULEHUYn «NOMAC 4 listing of macro expansions.

s Ua 4
YHE4 PUEsHS 5 An expression expansion evaluating to zero
GUUES B U b following . NOMAC restores the listing of

o LD macro expansions.

* This applies to all argument strings except for the first argument string of an
argument list that is not enclosed by square brackets.

5-5

Macro Examples

A number of macro examples follow.

VED.

Note that use of the recursive property of the
macro, FACT, and the use of macro continuation and the special character - within

The first example is a macro to compute the logical OR of two accumulators. Its call
takes a form similar to an ALC instruction, i.e.,

ORA <src><sp><des>

The source accumulator is unchanged by the call. Note also that actual arguments re-
place formal arguments within the comments,

00000124000
PAAA1* 133400
P0Pv2'132000

NPvA3' 100000
PPODA' 107400
Po03S' 1060600

e ‘oo s

‘.

%

Definition

LOGICAL OR MACRO

CALL:

WHERE THE RESULT IS:

«MACRO
CoMm
AND
ADC

+«NREL

OR

COoM
AND
ADC
OR

CcoMm
AND
ADC

OR

<QP-0>

OR

T1,t1

t1,t2
.tl1,t2

Calls

1,2
151
1,2
1,2
@1
Bs0
7,1
@51

<OP-@>,<0P-1>

>

.
>

oo

I3
2

we \eo

CLEAR '"ON" BITS OF ACt}
OR RESULT TO ACt2

CLEAR "ON'" BITS OF ACI1
OR RESULT TO AC2

CLEAR "ON' BITS OF ACO
OR RESULT TJ AC1

Macro Examples (Continued)

A somewhat more illustrative example is that of logical exclusive OR. This macro
allows an optional third argument. If absent, AC3 is used as a temporary accumu-
lator and is destroyed. If the third argument is given, it is used as a temporary
storage location for saving and restoring AC3. The absence of an argument is con-
veniently tested for by making a comparison with the null string, e.g.,

.DO "t3'=="

In addition, this macro saves the state of the no conditionals list option, turns them
off, and restores the original state upon exit. Further, since a number of the listing
control and variable stack manipulation pseudo-ops print, they have been suppressed
using the ** atom. This enables a "clean" listing output.

5-7

Macro Examples (Continued)

20000-000001

00009155000
2009@1° 137520
Neen2°* 133000
P00B3°172400

P0004°'054900-
0000nS°* 135000
000936°'117520
o007 1907000
P0010'166400
Peo11°' 034000~

‘oo

.o

.o

s wo ‘eo

* %k
* %
* K

* %k

*k %

* %k
*%k

TEMP:

CALL:

EXCLUSIVE OR

XOR <SRC>s<DES>(,<TMP>]

IF NO <TMP>, AC3 1S USED AS THE TEMPORARY AC
IF <TMP>, MEM LOC <TMP> IS USED TO
SAVE AND RESTORE AC3

«MACRD XOR
« PUSH «NJ CON

«NOCON 1

.D) '130¢> "

STA 3,13 3 SAVE AC3 IN t3
«ENDC

MOV t2,3

ANDZL t1,3 3 2%(ACt1 «AND. ACt2)
ADD t1,1t2 3 ACtl + ACt2

SUB 3,12 3 ACt1 «XORe. ACt2

DO 1437¢> 1"

LDA 3,13 3 RESTORE AC3 FROM 3
«ENDC

«NOCON «POP

«ZREL

« BLK 1

«NREL

XOR 1,2

MOV 2,3

ANDZL 1,3 3 2%(AC1 «AND. AC2)
ADD 1,2 3 AC1 + AC2

SuUB 3,2 3 AC1 .XOR. AC2
XOR @1, TEMP

STA 3, TEMP 3 SAVE AC3 IN TEMP
MOV 1,3

ANDZL Ps3 3 2%(ACO .AND. AC1)
ADD 2,1 3 ACO + AC1

SUB 3,1 3 ACO .XOR. ACI

LDA 3, TEMP 35 RESTORE AC3 FROM TEMP

5-8

Macro Examples (Continued)

The recursive property of macros is illustrated by the factorial macro, FACT.,

Its input consists of a variable, v, and an integer, i, where the following is com-
puted:

v=il
using the recursive formula
il=1i *(i-1)!

The macro expands as follows:

Until the input integer becomes 1, the second conditional expands and re-
cursively calls FACT. (Note that when return is finally made after these
calls, the macro will return the string

t2 = (11)*2)
and terminate.) When the input becomes 1, the first conditional expands and

terminates its expansion, This begins the succession of returns to each
level at which a recursive call was made, in the process computing i !

5-9

Macro Examples (Continued)

AN

5161510140

200000

BRAAA1

annann

anang

200060

Arne]

2003000

aanam
BOAna1
Hanme

G191ado1619)

apnna2

ABA0 6

nwanA3¢

aaE1Te

"31320

t 2=

%

«MACRI FACT

« DO tl==

1

«ENDC

« DD t1<>1

FACT t1-1,t?2
(t1)%*t2

« ENDC

FacCT 651

« DO 6==

1

«ENDC

« DO 6<>1

FACT 6"‘1,1

« DO 6-1==

1

+«ENDC

« DO 6=-1<>1

FACT 6-1-1,1

« DO 6=-1-1==

1

«ENDC

« DD 6-1-1<>1
FACT 6-1-1-1,1

« DD 6-1-1-1==

1

«ENDC

« DO 6-1-1-1<>1
FACT 6=-1-1-1-1,1
« DO -1-1-1-1==
1

«ENDC

« DD 6=1=-1-1-1<>1
FACT 6-1-1-1-1-1,1
« DO 6-1-1-1-1=-1:==1
1

«ENDC

« DD h=1= =~1- -1<>1
FACT 6-1-1-1-1~-1-1,1
(6-1-1-1-1-1)%1]
<ENDC

(6-1-1-1-1)%T

«ENDC

(E-1-1-1)%T

«ENDC

(6-1-1)%T

«ENDC

(6-1)%1

+ENDC

(6)%T

«ENDC

5-10

Macro Examples (Continued)

A macro to output "packed decimal" is given next. It illustrates a number of useful
techniques for use within macros.

In packed decimal, each decimal digit is represented as a 4-bit binary nibble. The
sign of the number always occupies the least significant nibble, The translation of

of decimal to 4-bit binary is

decimal 4-bit binary

0011
0100
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O OO N WN=O 1 F

The input to PACK is the decimal string of digits, separated by spaces, followed by
an explicit sign (+ or -) and the precision in Nova words. The macro produces the

s i 1 e
output least significant word first.

Some further explanation is necessary.

1, The input radix within the macro must be decimal. Therefore, it
is saved, setto decimal, and restored within the macro body.

R To present the output as 4-bit nibbles, the output radix within the
macro must be hexadecimal. Therefore, the output radix is also
saved, set to hexadecimal, and restored. Note the order of the save
for these radices is the opposite of the order of the restore. (See
.PUSH, .POP descriptions in Chapter 4.)

3. Many statements are assembled with: each macro call, but expansion is
inhibited except for the storage words assembled.

Macro Examples (Continued)

00042
20041
00040

A0a45
PPv44
0043

00R 49
20348
p0e47
00046

000100

3453
po12
0000

3454
pp12
5141515

3214
P654
4] 1%
11417

3

e e ‘o ‘oo

% %k
* %k

* %

%k

* %
%

PACKED DECIMAL

PACK D Dooo DS)W
WHERE D'S REPRESENT DIGITS, S THE SIGN (+ OR =),

-2 4

CALL:

W THE NUMBER OF WORDS.
«MACRO PACK
« PUSH +«NOMAC
+NOMAC 1
« PUSH « RDX
« PUSH « RDXO
« RDX 10
« RDXO 16
« ARGCT
I-1
11
3+("'J-"+/2)
J=-1
«LOC o+tI-1
« DO tI
« DO B+1/4
W+@tJBB
B=-4
« DO J<>0
J=1
«ENDC
+ENDC
+NOMAC @
W
«NOMAC 1
2
15
«LOC «=2
«ENDC
«LOC o+t I+1
« RDXO « POP
« RDX « POP
+«NOMAC «POP
«LOC 100
PACK 1 23 45 +,3
W
W
W
PACK 1 23 45 -,3
W
W
W
PACK 6 54321
W
W
W
W

5-12

AND

Macro Examples (Continued)

o1
g2
23
P4

b5
gé

Q00 4F
APB4E
P004D
99084C
P0048B
pod4A

7683
#e32
000
71453
P00
00D

PACK

EsEss=sZ

5-13

327 68 +,6

Macro Examples (Continued)

A powerful macro, used to associate a specified field layout with a given name, is
given below. The macro, VFD, is used to define a new macro named as the first
argument in the call to VFD. Subsequent use of the name given in the VFD call
generates a 16 -bit storage word having a primary value to which fields are assembled
as described in the call to VFD, The call is of the form:

VFDA <type name><sp><primary value><sp><field, right bit><sp>
! <P =

<fie1d1mask ><SP>ees <fie1di right bit><sp ><ﬁeldi mask><sp>.,..

The 3rd, 5th, ... arguments specify the rightmost bit positions of the 1st, 2nd, ...
fields, The 4th, 6th, ... arguments specify the field masks for the 1st, 2nd, ...
fields. To assemble the fields in the proper bit positions, with overflow and field
zero checking, a call is made of the form:

<type_name >A <field 1><sp><field 2><sp>...

The example below defines a <type name > of SPECL. This name is for words of the
following layout:

01 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 | <field 1> <field 2>

The definition of VFD is:

5-14

Macro Examples (Continued)

-7

-7

-%
%

«MACRO VFD

I=4

«D0 <ARGCT/2-1

I=1-1

I=1+1

I=1+2

+ENDC

+MACRO t1

*%¢ PUSH «NOMA
*koe NOMA 1
VALU=t2

J=1

«MACRO t1

eIFN tI>=et]
MASK=t1
DATA=«1tJ

+MACRO t1

oDO lSo"I
MASK=MASK*2
DATA=DATA*2
«ENDC

«MACRO t1
«IFN VALU&MASK
ERROR {FIELD NON-ZEROQO]
«ENDC
. IFE VALU&MASK
VALU=(VALU&(-MASK-1))+DATA
«ENDC

+ENDC

o IFE tI>=et]

ERRORLFIELD OVERFLOW]

«ENDC

«MACRO t1

J=J+1

«MACRO t1
%+ NOMA 0

VAL U
*% e« NOMAC «POP

5-15

Macro Examples (Continued)

«MACRO ERROR

*%e¢ PUSH «NOMAC

*%x s« NOMA 0
3 %k % % ok 3k vk 3k %k 3k 5k ok %k o k3 vk 3k K o ok ok ok ok ok ok ok sk ok ke ok %
3 t] t2 t3 t4 t5 t6 t7 8 *9
$ %k 3 vk ok ok sk 3k %k ok ok 3k ok 3k ok sk ok sk sk ok sk sk ok ok e ok sk ok ok ok ok Kk

*% e NOMAC « POP

5-16

Macro Examples (Continued)

The call to define SPECL produces:

VFO SPECLplﬁnU@U15p7015.a17

iy 4 I=4
+MACRO SPECL

wr FUSH (NOMA

*w NOMA |
VALUS {00000
Jsi
%
wdudege W00 LARGCT /=]
«MACRU SPECL
o IFN 7>ma]
MASKn?7
DATAzAJ
%
WBicvd Iel=y
«MACRO SPECL
W00 15,#3
MASKEMASK®2
DATA=DATA2
+ENDC
%
vl Isl+y

MACRU SPECL

oIFN VALUSMASK
ERROR [FIELD NON=ZERO)
+ENDC

»IFE VALUSMASK
VALUR (VALUS (=MASK=1))+DATA
«ENDC

+ENDC

5-17

Macro Examples (Continued)

%

cdedvo Is]I+2
%

sENUC
%

idpded Ia]l=y
%

pdvdipd I=1+i
%

Gdaglwn Isl+2
%

«ENUC
%

IFE 7234
EKRUR {FIELD OVERFLOW]
«ENDC

«MACRU SPECL

JaJel

«MACRD SPECL

W IFN 17>34A])
MASK=17
DATA=zAY

«MACRU SPECL

.DO 15.‘15.
MASARBMASK®?2
DATASDATAW2
«ENUC

«MACRU SPECL
oIFN VALUKMASK
ERRUR [FIELD NON=ZERO])
«ENDC
o IFE VALUBMASK
VALUS(VALUS (=MASK=1))+DATA
«ENDC

«ENDC

IFE 17>2a)
ERRUR(FIELD OVERFLOW)

ENUC
«MACRU SPECL

JaJ+y

+MACRQ SPECL
*% .NOMA 0

VALY
*% NOMAG .POP

5-18

Macro Examples (Continued)

And, finally, calls of SPECL for fields having values of 1,1 and 7, 17 gives:

SPECL 1,1

aieal 1ledvy VALY
SPECL 7,17

“wapng 174417 VALY

5-19

GENERATED LABELS

In non-string mode, each occurrence of the character $ is replaced by three
characters from the set #-9, A-Z. The three characters are determined by
converting a count of the number of macro calls in radix 36 to ASCIL. In
nested macros, the replacement string for $ in the outer macro is saved and
restored upon completion of the expansion of the inner macro. $ can therefore
be used, for example, to generate unique labels in macros. When used in

labels,$ should generally not be the first character as the first replacement
character may be a digit.

Example:
.MACRO X
X$: 1
%
.MACRO Y
Y1$: t1442
X[tZ]
Y2$: t3+14
%
.NREL
A$: 123
Y[1’2,3’4]
B$: 456
Y[5,6,7,8.]

5-20

All memory reference instructions must specify an address field, This address is
used to:

1. Access the contents of the memory location in the case of an LDA.
2. Modify the memory location in the case of an STA, ISZ, or DSZ.

3. Transfer control in the case of a JMP or JSR.

Often, however, the programmer merely wishes to specify the contents of a memory
location and is not concerned about its address. This is referred to as a
literal reference.

Literals are permitted for all memory reference instructions. The macro assembler
dumps these literals and assigns memory locations using the first and subsequent
. ZREL locations available after pass 1. Therefore, all literal references are
directly addressable.
The syntax of a literal reference is as follows:
<mem_ref >f{ <ac >, } = <statement >
Note that a literal may be any expression or statement,
Frequently literals are used to load an accumulator with some constant. For example,
LDA 1,=3
indicates that the programmer wishes to load AC1 with the value 3.
Expressions are acceptable
LDA 0,=1B0+"A/2
indicates that the programmer wishes to load ACO with the value 40040.
Statements are also acceptable:
LDA 1,=SUBZ# 2,3,SNC

indicates the programmer wishes to load AC1 with the value 156433,

The previous examples have given absolute expressions as literals. However, any

5-21

LITERALS (Continued)

relocatable expression is legal.

.NREL
A: .
LDA 2,=A

indicates the value of "A" is to be loaded into the index register 2. If the programmer
needs a byte pointer to a text string labeled "TX" for example, it is a simple matter:

LDA 1,=2*TX)
TX: TXT "TEXT STRING")

The use of a label as a literal can make subroutine communication without concern
for addressing errors simple. If a call to "XOR" is to be made and "XOR" may not
be directly addressable, the following creates a directly addressable reference

JSR @=XOR
A literal can be used as a temporary. For example

STA 1,=0
would allocate a page zero word containing 0. Obviously, since 0 can always be gen-

erated by a SUB instruction, the programmer does not intend to define a constant
of 0. He has merely generated a temporary address, using =0 by convention.

5-22

CHAPTER 6

OPERATING PROCEDURES

LOADING THE MACRO ASSEMBLER

The Macro Assembler is supplied as three files of dumped tapes of the RDOS system.
The files are:

MAC.SV - Macro Assembler
MACXR.SV - Cross Reference Listing
MAC.PS - Permanent Symbols
The files must be LOADed by the user before the CLI command, MAC, can be used

to assemble programs.

MAC COMMAND LINE

The command to assemble files using the Macro Assembler has the format:

MA CAfilename lf-A cee filenamen}-

The MAC command line is used to build a command file a5 described in the
the RDOS User's Manual, 093-000075.

A MAC command causes one or more source files (filename,) to be assembled. Output
may be a relocatable binary file, a listing file, or both, Thé command name MAC
must be used in assembling programs; the name MAC cannot be changed.

Command line switches, conventions, and examples are given below:

Switches:

Global: By default, output of an assembly is a relocatable binary file with-
out a listing file.

/A - add semi-permanent symbols to cross reference.

/L - Iisting file is produced. Listings iiclude a cross ref-
erencing of the symbol table, MACXR. SV must be
available on disk.

/N - no relocatable binary file is produced.

6-1

MAC COMMAND LINE (Continued)

Global Switches: /U - user symbols are included im» the relocatable binary
(Continued) output,
/E - error printouts on the TTO are suppressed unless there
is no listing file,
/S - skip pass 2 and save a version of the assembler's symbol
table, MAC. PS, that contains new symbols and macro
definitions. (See page 6-3.)

/O - override all listing suppression controls.
Local Switches: /E - error output is directed to the given file name.
/B - relocatable binary output directed to the given file name.
/L - listing output directed to the given file name,
/S - skip this file on pass 2 of assembly (This switch should be

used only if the file does not assemble any storage words.
Macro definition files can be skipped on pass 2.)

Asterisk: Not permitted.
Errors: NO SOURCE FILE SPECIFIED,
ILLEGAL FILE NAME.
FILE DOES NOT EXIST. (input file)
FILE ALREADY EXISTS. (output file)
FILE WRITE PROTECTED. (output file)
FILE READ PROTECTED. (input file)
SWITCH ERRORS. (listing and binary files cannot be
the same)
Extensions: On input, search for filename.SR . If not found, and the filename did

not have an extension, search for filename.

On default output, produce filename, RB for relocatable binary and
filename. LS for listing (global L switch), where filename will be
the name portion of the first source file specified without a /S local switch.,

6-2

MAC COMMAND LINE (Continued)

Examples: MAC Z

causes assembly of source file Z, producing a relocatable binary file
called Z.RB. |

MAC LIB/S A B C $LPT/L

causes assembly of relocatable binary files A, B, and C. File LIB
contains macro definitions and thus is skipped during the second pass.
A listing and cross-referenced symbol table are produced on the line
printer,

The standard semi-permanent symbols (macro, floating point, and
RDOS) are defined in three source files, NBID.SR, FPID,SR, and
OSID.SR. To incorporate these symbols into the macro assembler,
use the following command:

MAC/S/N NBID FPID OSID .

THE MACRO ASSEMBLER'S SYMBOL TABLE FILES

The macro asse mbler maintains its symbol table and macro definition table in a
disk file called MAC.ST. At the start of each assembly, the "permanent" symbol
table file, MAC. PS, is copied to create MAC.ST. Thus, MAC. PS can be used to
save symbol and macro definitions from one assembly to the next.

When the pseudo-op . XPNG is seen, MAC. ST is deleted and a new, empty MAC. ST
is created. The global /S switch causes the assembler to terminate at the end of
pass 1 and to rename MAC. ST to MAC. PS.

Therefore, the programmer can create an entirely new set of retained symbols
and macros by performing MAC/S on a source file beginning with an . XPNG; or
he can add to his retained symbols and macros by performing MAC/S on a source
file not containing an . XPNG.

The symbol table portion of MAC.ST can hold approximately 8000 symbols while
the macro definition table portion can hold about 1/2 million bytes of macro defi-
nition strings.

APPENDIX A

ERROR MESSAGES

Assembler error messages are single letter codes that are output in the first three

character positions of a listing line.

The first error code will appear in character

position three of the line in which the error occurred. If there is a second error,
the code is output in character position two, and if there is a third error, the code
appears as the first character of the listing line,

Assembler errors are output as part of the assembly listing to any device and also
If the listing is suppressed, the error listing is always out-

to the teletypewriter.

put at the teletypewriter.

If there is a listing device, output of errors at the tele-

typewriter can be suppressed. Certain errors encountered on the first nass will
be output, since they may not be detected on the second pass.

The list of possible assembler error codes is as follows.

XCOWOmWOoOZZrR—-QUEEUQ® >

Address error.

Bad character,

Macro error,

Radix error.

Equivalence error.

Format error.

Global error.

Parity error on input,
Conditional or repetitive assembly error
Location counter error.
Multiply defined symbol error.
Number error.

Overflow field or stack er:or.,
Phase error.

Questionable line.

Relocation error.

Undefined symbol error.

Text error.

Some typical causes of error codes are given on pages following.
possible to pinpoint all possible causes of assembly errors.

However, it is not

ADDRESSING ERROR (A)

An A flags an error appearing in a memory reference instruction (MRI) and indi-
cates an illegal address. For example:

1. A page zero relocatable instruction references an NREL

address.

Example:
«NREL

A3 3°'BAAA1A G: 10 $sNREL ADDRESS
«ZREL

ANAABA -0 440030 STA 1,G 3ZREL ADDRESS

2. A normal relocatable address references an address outside
the range of the program location counter's relative address
range: (.-200 < displacement < .+177)

Example:

«NREL
AQBODB 4020000 "LDA 95:Y 3Y IS OUTSIDE THE
000423 °'.LOC .+416 3INSTRUCTION'S RANGE
00423'000002 Y: 2

BAD CHARACTER (B)

Error code B indicates an illegal character in some symbol. The statement con-
taining a symbol that has an erroneous character will be flagged with a B, A bad
character error often leads to other errors as shown in the example below:

Example:
«NREL

BAAAGA'A24023 .A%: LDA 1,23 3% IN LABEL SYMBOL CAUSES
3BAD CHARACTER ERROR

MACRO ERROR (C)

The macro error code C occurs under the following circumstances:

1. At attempt is made to continue the definition of a macro when
it is not the last macro defined.

Example:

.MACROAA)

< macro definition >%

L4
-

.MACROAA) :LEGAL CONTINUATION
<macro_definition> %

.MACROAB)
<macro_definition>J

C .MACROAA) ;ILLEGAL TO CONTINUE ANY
;MACRO EXCEPT B

9 A vranmn areae arill Anniie i A manra avhatratg naanmhlar urAarlbing
e LA 1IAVLIUV C©LALUL Wil ULLUL 11l A llldbLl U CTALIAUDLD aDOCTLILUICL WUL N
space. However, this should only occur if the macro definition

causes endless recursion.

A-3

RADIX ERROR (D)

Error code D occurs on a . RDX or . RDXO pseudo-op when . RDX contains an
expression that is not in the range 2-20 and when . RDXO contains an expression
that is not in the range 8-20, or when a digit is used that is not within the current
input radix.

Examples:

D 297333 «RDX 4%6
«END

ANABA2 «RDX 2
Da2a9%7% 403313 B: 35

EQUIVALENCE ERROR (E)

Error code E occurs when an equivalence statement contains an undefined symbol
on the righthand side of the equals sign. This may occur on pass one before the

symbol on the righthand side has been defined or on pass two if the symbol is
never defined.

Examples:
EUU A=B 3PASS ONEs; B UNDEFINED
n «NREL
EU AAAAAA A=B 3PASS TWOs B UNDEFINED
«END

FORMAT ERROR (F)

An F error results from any attempt to use a statement format that is not legal
for the type of statement and often often occurs in conjunction with other errors.

4+~
When a format er

P - - al.

1struction, the code generated by the instruction
assembled before the error was detected.

~

O OCC
S

reflects only those field

ur

inn an

o0
i

Examples:
F 143073% aDD 2 3NOT ENOUGH OPERANDS

FAR425'341 413 STA Bs1M53,SNC 3TOO MANY OPERANDS AND WRONG
3OPERAND FOR INSTRUCTION TYPE

F ANAARAG -« ZREL =1 3ZREL CANNOT HAVE ARGUMENT
64512 «DUSR C = DIAS A,PTR

Fag 426065512 C 1 SATTEMPT TO GIVE ARGUMENT TO A
5 SYMBROL DEFINED IN A «DUSR

3PSEUDO-0P

EXTERNAL/INTERNAL SYMBOL ERROR (G)

A G error code results when there is an error in the declaration of an external or
entry symbol.

Examples:
GuU «ENT HH 3HH NEVER DEFINED
722 «END
G AA: 3AA IS ENTRY IN PROGRAM IN
<EXTN AA 3sWHICH THE SYMBOL IS DECLARED
«END s EXTERNAL

INPUT (PARITY) ERROR (1)

An I error code occurs when an input character does not have even parity. The
assembler will substitute a back slash (\) for any incorrect character and flag
the line containing the error with an L.

CONDITIONAL ASSEMBLY ERROR (K)

A K error code occurs when an . ENDC pseudo-op does not have a preceding . DO
or .IFx pseudo-op.

Example:
09@0@92 DO 2
. l
+« ENDC
K «ENDC

LOCATION ERROR (L)

The L code occurs when an error is detected in a statement that affects the location
counter.,

Examples:

1. The expression in a . LOC evaluates to less than zero or cannot
be evaluated on the first pass of the assembler. If the expression
is outside the range of locations or cannot be evaluated, the . LOC
is ignored, and the location counter is unchanged.

L 177777 .LOC -1

2. The expression in a . BLK statement cannot be evaluated on the
first pass of the assembler or its value, when added to the cur-
rent value of the program location counter, is less than zero.
If an L error occurs, the .BLK statement is ignored and the
location counter is unchanged.

77711°'000000 At O
L 100012"' «BLK ++100

A-6

MULTIPLE DEFINITION ERROR (M)

The M code flags a multiply defined symbol. Within an assembly program a symbol
appearing, for example, as a label cannot be redefined as another unique label.
Any multiply defined symbol will be flagged M at each appearance of the symbol.

Example:

sNREL
MZOC20' 002230 A €
PMZ@ZE1 202221 A 1

Note that the second definition of A is also flagged as a phase error (P) on the
second assembler pass. (See Phase Error).

NUMBER ERROR (N)

The N code is given when a number exceeds the proper storage limitations for the
type of number; the N error occurs under the following conditions:

16 .
1. An integer is greater than or equal to 2° . The number is
evaluated modulo 210,
AR 2 LROX 19
NAAL 4 A3 65539
2, A double precision integer is greater than or equal to 232, The
number is evaluated modulo 232,

NAAADS 167153 49093R330%0 « D
D2470A

3. A floating point number is larger than 7. 2*1075.

NANB1 3 ATTTTT T« 3ETS
177777

FIELD OVERFLOW ERROR (O)

A field overflow error occurs when variable stack space is exceeded, when a . TOP
or . POP is given with no previous . PUSH, or when a instruction operand is not within
the required limits, e.g., 0-3 for an accumulator, 0-7 for a skip field, etc. When
overflow occurs in an instruction field, such as an accumulator field, the field will
remain unchanged.

Examples:
Qaaan7a A20775 LDA 5s =3
A1 43057 «DIAC R=140009
09531 514320 R 1
FO A93737373 «POP

FO AA7NAAG « TOP

PHASE ERROR (P)

A phase error is caused when the assembler detects on pass 2 some unexpected
difference from the source program scan on pass l. For example, a symbol
defined on the first pass which has a different value on the second pass will cause
a phase error. If, as in the example, a symbol is multiply defined, the M error
flags each statement containing the symbol while the phase error will flag the
second (and any subsequent attempt to redefine the symbol.)

Example:

«NREL

MAQ001 000230 B: @
PM3Q002°'020000 B: @

QUESTIONABLE LINE (Q)

A Q error occurs when a # or @ atom has been used improperly or when a ZREL
value is used where an absolute value is expected.

Examples:

BR379%2 113479 ADD 3,892 3 INCORRECT USE OF SPECIAL ATOW
S CAUSES

5CAUSES & ERRKOR

+ ZREL
©2022-22231% FLD: .BLK 10

+«NREL
Q0022 °'0e2222 LDA @,FLD,2 3ASSEMBLER EXPECTS ABSOLUTE
sFOR FLD
«END

RELOCATION ERROR (R)

The R error indicates that an expression cannot be evaluated to a legal relocation
type (absolute, relocatable, or byte relocatable as described in Chapter 3) or that
the expression is a mix of ZREL and NREL symbols,

Example:
« NEEL
AAGHFA%3910 K1 10 SCONTENTS ARSOLUTE
ABFA1 ' AGAAAIE+E 3CONTENTS NREL BYTE
ROGAG2 ' FAAATD ' B+ E+E 3CONTENTS NOT ABSOLUTE, RELOCATABLE

30K BYTE RELJCATABRLE

UNDEFINED SYMBOL ERROR (U)

The U error occurs on pass 2 when the assembler encounters a symbol whose value
was never known on pass one. The error occurs on pass one when the definition of
a symbol (by equivalence) depends upon another symbol whose value is unknown at
that point.

Example:

Uooo22'930000 LDA 2,B' ;WHERE B IS UNDEFINED

See also the example given for equivalence error E.

TEXT ERROR (X)

An error occurring in a string is flagged as a text error (X). A text error occurs
if the expression delimiters < and > within a string do not enclose a recognizable

arithmetic or logical expression. (Relational expressions cannot be used within
text strings.)

Examples:

«UIBBAn 747516 «TXT #NO SPACE ALLOWED IN AN EXPRESSION < X+ Y>#

[
L 4

LAAN03 M54105 «TAT #EXPRESSIONS MUST HAVE OPERANDS <+>#

UAAa43 352101 «TXT #ATTEMPT TO USE RELATIONAL OPERATOR <X<=Y>#

APPENDIX B
RELOCATABLE BINARY BLOCK TYPES
The relocatable binary output of the Macro Assembler is divided into a series of blocks.

The order in which blocks appear, if each type of block is present, is shown in the
figure following,

Title Block

Labeled COMMON Blocks

Entry Blocks

Unlabeled COMMON Blocks (. CSIZ)

External Displacement Blocks

Relocatable Data Blocks
Global Addition Blocks
Global Start and End Blocks

Normal External Blocks

Local Symbol Blocks

Start Block

The relocatable binary output must contain at least a Title Block and a Start Block.
Presence of one or more of the other types of blocks will depend upon source input.
The pages following describe the content of each of the blocks.

The first word of each block contains a number indicating the type of block. The num-
ber is in the range 2 - 178. Block type formats are described later in the appendix in
numerical order,

The second word of each block is the word count, It is always in two's complement
format, and the counter never exceeds 15, Where the word count is a constant for
every block of the particular type, the word count constant is shown in parentheses
in the format,

Words 3-5 are reserved for relocation flags, The relocation property of each address,
datum, or symbol is defined in three bits. For example, for a Relocatable Data Block,
bits 0-2 of word 3 apply to the address, bits 3-5 apply to the first data word, bits 6-8
apply to the second data word, etc. The meaning of the bit settings is given in the table
following.

Bits Meaning

000 Olegal

001 Absolute

010 Normal Relocatable

011 Normal Byte Relocatable

100 Page Zero Relocatable

101 Page Zero Byte Relocatable

110 Data Reference External Displacement
111 DNlegal

All other blocks use bits of word 3 only and set words 4 and 5 to zero.

Word 6 contains a checksum, such that the sum of all words in the block is 0.

For those blocks containing user symbols, each symbol entry is three words in length,
The first 37 bits of the three-word entry contain the user symbol name in radix 50

form. (See Appendix C for radix 50 notation,) The last five bits of the second word
are used as a symbol type flag, where the currently defined types are:

Bit Meaning

00000 | Entry Symbol

00001 | Normal External Symbol
00010 | Labeled Common

00011 | External Displacement Symbol
00100 | Title Symbol

00101 | Overlay Symbol

01000 Local Symbol

The setting of the third word allocated for each user symbol entry varies with the
type of block and is described in the format writeups of each block.

RELOCATABLE DATA BLOCK

Word

2
word count
relocation flags 1
relocation flags 2
relocation flags 3

checksum
address

AULLLECSS

NO 0 I O\ U WN

data word count +6

Contents of the relocation flag words (words 3-5) are as described previously.

ENTRY BLOCK (. ENT)

Word
3 1
word count 2
relocation flags 1 3
relocation flags 2 4
relocation flags 3 5
checksum 6
symbol in 7
radix 50 | flags 8
equivalence 9
symbol in
radix 50 I flags
equivalence word count +6

Note that the relocation flags for the Entry Block are as previously described, except
that they apply to the third word of every user symbol entry. For Entry Block user
symbols, the third word of the user symbol entry is used for the equivalence of

entry symbol.

The overlay block . ENTO is the same as the . ENT block except for different flags
value in word S1 (word 8, etc.).

EXTERNAL DISPLACEMENT BLOCK (. EXTD)

Word
4 1
word count 2
6 3
6 4
6 5
checksum 6
symbol in 7
radix 50 | flags 8
77777 9
symbol in
radix 50 rﬂags
77777 word count +6

The third word of each user symbol entry in the External Displacement Block is set to
77777.

NORMAL EXTERNAL BLOCK (. EXTN)

Word

5
word count
relocation flags 1
relocation flags 2
relocation flags 3
checksum
symbol in
radix 50 [flags |
adr, of last referencz

O oo JOoO b WN -

symbol in
radix 50 | flags
adr. oflastreference word count +6

The third word of each user symbol entry in the Normal External Block contains the
address of the last reference., Relocation flags are used as in . ENT blocks.

B-4

START BLOCK

Word
6 1
word count (-2) 2
relocation flags 1 3
0 4
0 5
checksum 6
address 7
0 8
TITLE BLOCK (., TITL)
Word
7 1
word count (-3) 2
0 3
0 4
0 S
checksum 6
title in 7
radix 50 i flags 8
0 9

The third word of the user symbol entry for a title is set to 0.

LOCAL SYMBOL BLOCK

Word
10 1
word count 2
relocation flags 1 3
relocation flags 2 4
relocation flags 3 S
checksum 6
symbol in ’ 7
radix 50 I flags 8
equivalence 9
symbol in
radix 50 | flags
equivalence word count +6

The third word of every symbol entry is used for the equivalence of local symbols.
Relocation flags are used as in . ENT blocks.
B-5

LIBRARY START AND END BLOCKS

The format of the Library Start and Library End Blocks differs from the format of other
relocatable binary blocks, since the blocks are not generated by the assembler and are
thus not internal to the binary output program but mark the beginning and termination

of a file of binary output programs that constitutes a library file.

Library Start Block

11

0

0
0
0

~-11

LABELED COMMON BLOCK (. COMM)

13

word count (-4)

relocation flags 1

0

0

checksum

symbol in
radix 50 l flags

0

expression value

word

1

NV W

Library End Block

12

0

0

0

0

-12

Bits 0-2 of the relocation flags (word 3) apply to the expression (<exp> following

. COMM).

GLOBAL ADDITION BLOCK (. GADD)

14

word count (=5)

relocation flags 1

0

0

checksum

address

symbol in

radix 50 | 00000
0

expression value

All other bits of the word are zeroed.

Bits 0-2 of the relocation flags (word 3) apply to the address and bits 3-5 apply to the
expression. All other bits of the word are zeroed.

B-6

UNLABELED COMMON SIZE BLOCK (,CSIZ)

Word

15 1

word coeunt (-1) 2
relocation flags 1 3
0 4

0 S
checksum 6
expression value 7

Bits 0-2 of the relocation flags (word 3) apply to expression (< exp-> following
. CS51Z). Ali other bits of the word are zeroed.

GLOBAL LOCATION START AND END BLOCKS (. GLOC)

Start Block Word End Block
16 1 17
-3 2 -1
0 3 0
0 4 0
0 5 0
checksum 6 checksum
symbol in 7 0
radix 50 | 00000 8
0 S

APPENDIX C
RADIX 50 REPRESENTATION

Radix 50 representation is used to condense symbols of five characters into two words
of storage using only 27 bits. Each symbol consists of from 1 to 5 characters and a
symbol having five characters may be represented as:

3433323130

where: Each a, may be one of the following characters: A-Z (26 characters)
B 0-9 (10 characters)
. or ?(2 characters)

All symbols are padded, if necessary, with nulls. Each character can be trans-
lated into octal representation as follows:

Character ai Translation bi
null 0

Oto 9 1tol2

Ato Z 138 to 44 8

. 45 g

4?

7 46 8

If a, is translated to bi’ the bits required to represent the symbol can be computed
as follows:

To— * *
1\1 (((b4 50+b 50)+b2

3)

. =(50)3 - 1 = 174777, which can be represented in 16 bits (one word)
1 maximum

N, = (b *50)+b,

N —_ (50 2 . . .
2 maximum) -1=3077, which can be represented in 11 bits.

Thus the symbol can be represented in 27 bits of storage, as shown in Appendix B
in the binary output block formats.

APPENDIX D
BASIC SYNTAX SUMMARY

The basic syntax of the macro assembler is defined here in Backus Normal Form notation. In following the language
definition, note that the last term of each list of alternative terms is defined in full, then the next to last, etc

OO0LC Udy 1N 1881 e O €40n 118t O alleriati is 4Cil & 11 Ui, NCH N0 NCAL 10 ias i,

This summary covers Chapter 2 and the permanent macro assembler symbols. All DGC-defined semi-permanent
symbols are given in Appendix E.

<input_mode > ::= <string mode >] <normal mode >

<normal mode> ::= <atom> ... <atom>

<atom> ::= <symbol > | <number> | <terminal > | <special atom>
<special atom> = @] #| **

<terminal> ::= <break>z <operator>

<operator> :i:= <re1ationa1_op>] <10gica1_op>] <arithmetic_op>
<arithmetic op> = +]-|*| /[B

<logical op ::= & |1

<relational op> = > | >=| ==| <|<=]| <>

<break> == (|)| []1};] =l 1) |<c_sp> | <sp>

<sp> = ,| | tahulation

<C _sp> = <Sp>... <sp>

<number> := <integer> | <floating point>

<floating point> ::= <sign> <decimal digit>...<decimal digit>. <decimal digit>... <decimal digit> E <sign>

<decimal digit> < decimal digit>

<decimal digit> ol11213]4!5]61718]|9

<sign> 1= +| -
<integer> ::= <single precision integer> | <double precision_ integer>
<double precision integer> ::= <sign> <decimal digit> <digit>... <digit>.D

<digit> = <decimal digit>|A|B|C|D|E|F|G|H|1]|]
<single precision integer> ::= ' <character> | ' <string>' | <sign> <decimal digit> <digit>. .. <digit>. ; ! <string>

<string> ::= <character>... <character>

<character> ::= <letter> | <decimal digit> | <operator> | <break> | <special atom> PrpeINT e =12
<letter> = A|B|C... |Z|a|b...]z
<symbol> ::=

<initial symbol character > < symbol character> ... <symbol character >
<symbol character > ;:= <initial symbol character > | < decimal digit> | $
<initial symbol character> ::= <letter > | . ?

<string_mode > ::= <text_string> | <macro_definition_string> |} <comment_string>
<comment string> := ; <string> <comment terminator>

<comment terminator> ::=) |4

<macro_definition string> 1= MACRO < c_sp><string> %

<text_string> ::= <text_initiator op> <c_sp> <character not in string> <string> <character not in string>

<text_initiator op> = .TXT | .TXTE|.TXTF | .TXTO

<permanent_symbol> ::= <pseudo_op>} <value>
<value> ::= .ARGCT | .PASS| . | .POP| .TOP | .MCALL
<pseudo op>::= .TITL | .MACRO | . PUSH | <radix_op> | < symbol_table op> | <location_counter op> | <text op>

| <interprogram communication op> | <file terminator op> | <listing op> | <conditional or_repeat op>

<conditional or_repeat op> = .DO|.IFE| .IFG |.IFL| .IFN| .ENDC

<listing op> ::= .NOCON | .NOMAC | .NOLOC

<file_terminator op> ::= .END | .EOT

<interprogram_communication_op> ::=.COMM | .CSIZ | .ENT | .ENTO | .EXTD | .EXTN | .EXTU| .GADD | .GLOC
<text op> = .TXT | .TXTE | .TXTF| .TXTM | . TXTN | . TXTO

<location_counter op> ::= .BLK | .LOC | .NREL | .ZREL

<symbol table op> ::= .DALC | .DIAC | .DIO | .DIOA | .DMR|.DMRA | .DUSR | . XPNG

<radix op> ::= .RDX | .RDXO

IEZEZZZEAXRASRE X NESAREALSAS S AR AR AR AS AR A SRS RSN XRR 2SR SR 2D D |

NaME: NRTID,SR PART NIIMBER: n90e@P14B82

DESCRIPTIONS NOVA BASIC INSTRUCTION DEFINITIONS

DOCUMENTATION REFERENCESE
TITLE DOCUMENT NO,
EXTENMOED ASSEMBLER ART=00N164

RDONS EXTENDED ASSEMBLER . NP7 ="QN285
808 EXTENDED ASSEMBLER N7 =APR322

REV, NATE

na n4/27/73

COPYRIGHT (C) NATA GENERA| CORPQRATION, 1973
ALL RIGHTS RESERVED,

4
!
!
!
!
!
!
!
'
} REVISION HISTORY!
'
H
!
!
!
!
!
!
R R R R R R R A XA R)]

PINSTRUCTION ODEFINTTON FILE

« XPNG JOFLETFE ALl SYMBOLS

JOEFINE STANDARD IO DPEVICES

LDUSR MDV =ny PMULTIPLY=DIVINE

«DUSR MaAP=22 $1220n /8B MAP BOY

DUSR MAPn=za2 IMEMORY ALLOCATINN AND PROTECTION
JDUSR MAP{=n3 [

+DIISR MAP2B24 [

.DUSR MCAT=26 JMULTI=PROCESSOR COMMUNICATINNS ACAPTER TRANSMITTER
LDUSR MCARE(? PMULTI=PRCCESSOR COMMUNICATIONS ADAPTER RECEIVER
LOUSR TTI s=i@ JTELETYPE READER/KEYBOARD

LDUSR TTO =14 PTELETYPE PUNCH/PRINTER

DUSR PTR =12 JPAPER TAPE READER

LDUSR PTP =13 fPAPER TAPE PUNCH

.DUSR RIC =14 IREAL TIME CLOCK

OUSR PLY =158 $ INCREMENTAL PLOTTER

.DUSR CDP =216 PCARD READER

.DUSR LPT =17 PILINE PRINTER

.DUSR DSK =z2m $FIRST FIXED HEAN DISK CONTROLLER
+DUSR ADCV=2Y JA/D CONVERTER

LNUSR MTA =22 IFIRST MAG TAPE CONTROLLER

JOUSR DACVE2Y 1D/A CONVERTER

LDUSR DCM =24 PDATA COMMUNICATIONS MULTIPLEXOR
LDUSR QATY =3n POUAD MULTIPLEYOR

LDUSR IRM{=3y PIBM 3I60/370 INTERFACE

LOUSR IRM2232

.DUSR DKP 833 JFIRST MOVING HEAD DISK CONTROLLER
LDUSR CAS =34 JFIRST CASSETTE CONTROLLER

«DUSR IVT =35 JINTERVAL TIMER

.DUSR IPB =36 PINTER=PROCESSOR BUS

LDUSR NPT =an sDUAL PROCESSOR INPUT

.DUSR DPD =41 JOUAL PROCESSOR OUTPUT

LOUSR TTIf=sSn PSECOND TTY

DUSR TTO1=%51 ’

DUSR PTRy=52 ISECAND PAPER TAPE READER

JOUSR PTP1 =53 ISECOND PAPER TAPE PUNCH

«DUSR P T1255 PSECOND PLOTTER

DUSR CNR1=56 1SECOND CARD READER

.DUSR | PT1=57 PISFCOND LINE PRINTER

LDUSR NSKi=6M $SECOND FIYED HEAD DISK CONTROLLER
LDUSR MTA1862 !SECOND MAG TAPE CONTROLLER

DUSR DKP1873 FSECOND MOVING HEAD DISK CONTROLLER
.DUSR CAS1e74 ISECOND CASSETTE CONTROLLER

LDUSR Fpiy=a74 JSINGLF=PRECISION FLOATING POINT
.DUSR FPII2=75 JOOURLE=PRECISION FLNATING POINT
.DUSR FPUE?6 IFLOATING=POINT CONTROLLER

.DUSR CPI) =77 JCENTRAL PRNCESSING UNTIT

SHULTIPLVY/DIVIDE
LOUSR DIVan73101
LDUSR MUL 2273301

POEFTNE MEMDRY REFEQFNCE INSTRUCTIONS THAT DON'T REGUIRE AC'S
LDMR JMP = napago

LDMR JSR32A4040

LOMR ISZaniaCAn

MR NS7EA14202

INEFINE MEMORY RFFERENCE INSTRUCTIONS THAT REQUIRE AC!S
«DMRA LDAA2RAA
LOMRA STAzP4NARR

JOEFINE THE ALC TNSTRUCTIONS
LPNALC CoMs1nnana
JDALL MNEGzInD407
«CALC MOVEIR1G0G
«UALC INCz1214020
«DALC ADC=122000
«JALC SUB=1m2470
LNALC ADD=R3N0N
LWALC ANDE12340D

$DEFINE THF ALC SKIPS
.DUSR SxPat
«DUSR S57C=2
LOUSR SnMCe3
LNUSR S2Re4
«JUSK SNR=S
JDUSR SF7=6
«JUSR SeEN=?

E-3

$AEFINF THE INn INSTRUCTYINNS
LNIND MNINsrAALAN
LDINA DIARUARAR)
JOINA DNAsRALAAR
JNINA DIRzARI4AM
LOIa DNReNA2AMR
LDIGA NDIC=A52400
JOINA DOCang320N

sNEFINE THE I0 SKXIP INSTRUCTIONS
JNIN SKPRNEAR3ANN
L0IN SKPHZ=z?6380M
JUID SKPNMNERBIEAR
LDIN SKPDZ=2n637 00

$DEFINE SPECTAL JINSTRUCTIONS

LDUSR INTENaNTIOS CPU JINTERRUPT ENABLE
.DUSR INTDS=NIOC CPU PINTERRUPT DISABLE
LDIAr READS=DIA 2,CPU JREAD THE SWITCHES
DIAC INTA® NDIR 2,CPU $INTERRUPT ACKNOWLEDGE
.DIAC MSKO= O0B @,CPU pMASK QUT
,OUSR TORSTzDICC &,CPU 110 RESET
,0Use MaLT= DOC a,CPU THALT

LEOT

E-4

3******tii*ﬁti***i‘*i*'t0*i******ti**i***t****#*t*i**'*i‘l‘***'ﬁ***i'

WA WG TH U NG TE R TE TE W S Ul WO NG S WO WE NP WG We " ws we

!
/

NAMES FPIN,SR PART NUMBER: p9p=221483

DESCRIPTINME FLNATING POINT INTERPRETER INSTRUCTION DEFINITIONS

DOCUMENTATION REFEREMCEST

TITLE DOCUMENT NO,
EXTENDED ASSEMBLER AN7=70N164
RONS EXTENDFED ASSEMRLER ART7=ARAN285
305 EXTENDED ASSEMBLER AP7 =PRI 22

REVISION WISTNRY!
REV, DATE

X7 n4as27/73

COPYRIGHT (C) NDATA GEMERA| CORPORATION, 1973
ALlL RIGHTS RESERVED,

"**tt**i*‘b***‘ttti**ii***********t*it*t*i'****i*i***titﬁ**tit*i**

E-5

-e

LUUSR
LUSH

- we wo

L0481 C
JDALC
«UALC
JUALL
JNALL
AL
NALC
JDALC
JNALL
JNALC
1AL C
2DALC
LDALL
+DALC
«DALC
SDALC

-e WO

«DALC
JOALC
JDALC

ABRSOLUTE FLUATING INTERPRETER INSTRUCTYIOMAL ENTRIES

FETwHS
FINnTs=

JSR @4) ENTER
JsP 65 1 INTITYALIYZE

FLOATING ALC INSTRUCTIANS WITh NGRMALIZE/NP MORMALTIZE OPTION

FNERE 1PP4R2
FNEGHEICA42m
FMAve (¢ionp
FMOVUs IO 102R
FPNSe (w140n
FARSsSFRUS »,0
FOAHSE2FPNS ¢,0
FPOSU=121420
FMNS=E (nopanp
FMNSU=1G2022
FSilBp= (p247n
FSIIRLIZIP2420
FADD® 103075
FADDU=1¢3020
FRND=E 1023477
FRNDUSIP 3420

FLOATING ALC INSTRUCTINNS WITHOUT NORMALIZE/ND NNRMALIZE OPTINN

FMPYRIAQNIZA
FRIveiou2en
FHMLVa1DA3AR

! ONLY AVAILABLE WITKH EXYTENDED FLOATING ROINT PACKAGE

«NRALC
LDALL
.DaLC
JNALLC
LDALC
2ALC
JDALL
LDALC
LNALC
JDALC
LDALD
LDALC
«DALC
.DALC
+NALC
«NALC
LDALC
JDALL
«DALC
DALC
2DALC

JNALC

FALGEYR2P2M
FALNG=FALG 2,2
FRLOG=FALG 7,7
FATNB{AZRAR
FATANSFATN 0,2
FDATANSFATMN 7,0
FCOS=12GP6R
FOCOSsFCNS @,
FRIns1AKMI22
FOSINBFSIN g,
FTANBIAR1 4"
FOTAMEFTAN @,¢
FEXP=212022D
FOEXPeFFEXP 7,2
FSGNs1n262
FHLYVS122 307
FSNRE1AH2402
FSART=FSOR 2,1
FDSLUR=FSAK &,1
FLFx=10p320 3
FXFL=1iRP2 342 7}

(RELD, INTER, ONLY)

(KELO, INTER, ONLY)
(RELO, INTER, ONLY)

FhvDe FDIV 2,0

E-6

- e we we we

-

FLOATING MP INSTRUCTIONS

WITH AM ACCUMULATUR

DNHRA
JOIMRA

FLDAs
FSTas

p2ae0n
243000

WITHOUT AN ACCUMIILATOR

«DMR
LOMR
LT
.DMR
LOMR
LOMR
«DMR
JOMR

FJMPa
FJSR=
FISz=
FDSZs
FFLO=
FLO3s
FST3s
FFIX=

AARQRAQ
and4anmn
210p0p
Al4n0p
nepadp
n6dpnp
A7aROQR
n74000

SPECIAL FUMCTION INSTRUCTIONS

.DUSR
.DUSR
.DUSR
LDUSR

FEXT=
FIC2a
FIC3s
FHLT=

L'

iade0n
11opnn
114920

INSTRUCTIONS REQUIRING ONE

«DTAC
SDIAC
.DIAC
LDIAC

FFDCm
FOFCs

1420209
12nenn

FFDCFe14nany
FOFCYI=120p01

SKIP DEFINITIONS

JUIISR
.DUSR
.DUSR
.DUSR
ISR
LDUSR
LDUSR

B Y

FSGTw
FSLTs
FSNRm
FSZRw=
FSGEs=s
FSLEs=
FSKP=

NDIAD W N -

ACCUMULATOR

9 DEFINE THF PRECISINN INSTRUCTION
LNIOo FPRCsn6POe? 3 (RELO, INTER, ONLY)

} DEFINE THE FORTRAN INTERPRETER MNEMONICS
t (ONLY AVAILABLE WITH THE RELOCATABLE INTERPRETER)

LOALC FCEGs1A@17A § EQUALITY TEST
JDALC FCLE®1@n172 1 LESS THAN OR EQUAL TEST
JOALC FCLT®10r162 3 LESS THAN TEST

LDALC FSTMELUP 16
JDALL FLDMS12R216RY
JNALEC FADMBIMN165
LDALC FSMRe{AN167
LALC FSRM=172G171
wNALC FML . M210AA173
«DALC FOMKRE{0DR175
2DALC FDRM=1PE177

STA TO ADDRESS FOLLOWING
LDA FROM ADDRESS FOLLOWING
ADD FROM ADDRESS FOLLOWING

R = MEMORY TO R

MEMDRY = R TO R

MULTIPLY BY ADDRESS FOLLOWING
MEMCRY/R TO R

kK/MEMORY TO R

- MG WO we WO WE W we

JDUSR FSNGL sFPRC 2 P SINGLE
.DUSR FDBLESFPRC 4) DCUBLE

JFENT

E-8

’O*ﬁ****ii*******@**tt**i*******tt***i*i*ii*****ﬁ*t**i’*i**tti**

H
1 NAME: 0SIn,SR PART NUMAER? A9¢=001484
H

’

} DESCRIPTIONS OPERATING SYSTEMS INSTRUCTION UEFINITIONS

’ .

H

i DOCUMENTATION REFERENCES?

!

! TITLE DNCUMENT NO,

!

! EXTENDED ASSFMRBLER PR7=00N164

’ RNNS EXTFNNED ASSEMRBLER PA7=0pn285

! SOS EXTENDED ASSEMBLER A7 =000322

H

!

? REVISION MISTORY:

!

] REV, DATE

!

’ B n4/27/73

!

H

? COPYRIGHT (C) DATA GENERAL CORPORATION, 1973

!} ALL RIGHTS RESERVED,
lt**tit*t**#tttt**t*t*t*ttttt****ttt*tié*tt*tt****t*tt**it*it*tﬁ

E-9

DEFJINE AS PERMANENT SYMBOLS ALL MONITOR RELATED SYMBOLS

DEFINE THE NQOVA SYSTEM CALL

USSR «SYSTMs

DEFINE THE LSER STACK

,DUSR USPsE

JSP 017

POTMTER LOCATION

16

DEFINF THE MONITPR CALLS

COMMANDS WHICH DO NOT

LDUSR ,CREATE
.DUSR L DELET=
L DUISR LRENAME
. NMISR . MEM®
.UUSR ,BREAKE
.NUSR ,RLSEs=
LDUSR ,DIR=
L,DUSR _EXEC®
LDUSR ,INIT=
LOUSR ,RTN®
LOUSR ,RESETs
.OUSR LERTN=
.NUSR ,CRAND®
LDUSR GCHARS
.DUSR PCHARS®
LDUSR ,DELAY®
LOUSR MEMI®
.DUSR ,CCONs
. DUSR JEXFG=
JRESERVE
JRESERVE

REQRUIRE DEVICE ACTION OR

CHANNEL NUMBER

nB7 } CREATE FILE

1B7 ! DELETE FILE

287 ? RENAME A FILE

aB7?) RETURN MEMORY LIMITS

467 } BREAK

587 } RELEASE A DEVICE

6R7 t CHANGE BASE DIRECTORY

767 ?} EXECUTE A PROGRAM OVERLAY
1287 $ INIT DISK DEVICE

11R7 } SYSTEM RETURN

1287 ! I/0 RESET

1587) ERROR RETURN FROM COMMAND
{687 ? CREATE RANDOM

1787 ?} GET TTY ChAR

2eB7 ! TTY PUT CHAR

2187) WAIT N CYCLES

2287 } ALLOCATE MEMORY TINCREMENT
4187 } CREATE CONTIGUOUS

43R7 !} EXECUTE FOREGROUND

4487 110CS

45R7 110CS

E-10

COMMANDS WHICH REQUIRE CHANNEL NUMBER

WDI0
.NI0
.01
D10
NID
.NIO0
.DI0
010
NIN
LDIN
NIN
.DI0
WDI0
DID
010
.DIN
«DID
.NI0
«DID
010
010
.DID
D10
D10
LDIN

LROPENS
LMTOPOR

™ MDA,
s QVNPN=

JCHATRS®
JGTATR®
JRDBE
«WRBE

2387
2387

nady
248D/

2687
2787
1387
1487

<APPEND=2587

+(PENS
.CLOSE=
.RDS=
JRDLS
«ROR=
WRS®
WRL®
.WRR®=
LOvenps
«SCALL®=
«MTDIO=
«SPDS=
«GPOSs
+EQPENS
« TOPENS
CCHLAT®
.CHSTSs=

3IBR7
3187
3287
3387
34R7
3587
36R7
3787
4¢R7
42R7
4687
4787
5087
5187
5287
53R7
5487

WD UG WH NE WG VD U MO WD WD WP W WG GO WY WG WS NG WS WG WS WS W W W

OPEN FOR READING

OPEN MAG TAPE FOR DIRECY I/0
OPEN OVERLAYS

CHANGE THE FILE ATTRIBUTES
GET THE FILE/DEVICE ATTRIBUTES
READ BLOCK

WRITE BIOCK

OPEN FILE FOR APPENDING

OPEN FILE

CLOSE FILE

READ SEQUENTIAL CHARACTERS
READ SEGUENTIAL LINE

READ RANDOM

WRITE SEQUENTIAL CHARACTERS
WRITE SEGUENTIAL LINE

WRITE RANDOM

LOAD OVERLAY

GENERAL CALL

MAG TAPE QIRECT 1l/0

SET FILE POSITION

GET FILE'S CURRENT POSITION
OPEN FOR EXCLUSIVE USE
TRANSPARENT OPEN

CHANGE LINK ACCESS ATTRIBUTES
GET CHANNEL STATUS

E-11

? THE FOLLOWING

JDUSR
. DUSR
.DIUSR
JNUSR
LDUSR
JDUSR
. DUSR
JDUSF
DUSR
.DUSR
LDISR
,NUSR
LDUSR
LDUSR
.DUSR
, DUSK
LDUSR
.DUSR
JDISK
.DUSR
JDUSR
LDIUSR
LDUSR
LDUSR
»DUSR
DISR
LDUSR
LDUSR
.DIISR
.DUSR
+DUSR
LDUSR
.DUSR
LDUSR
JDUSR
JDUSR
LDUSR
.DUSR
LNUSR
,DIISP
.DUSR
.DUSR
LDUSR

JEND

CALLS ARE SCALLS

LGHRZE ,SCALL ©
DUCLK® SCALL 1
+JRUCLKE _SCALL 2
.GTODs ,SCALL 3
,ST0D= ,SCALL 4
.SDAYs ,SCALL 5
.GDAYz: _SCALL 6
JIDEFs SCALL 7
LIRMVE _ SCALL 1
JSPKLE ,SCALL 1
+SPDA® ,SCALL 1
LSPEAz _SCALL 1
LENO® _SCALL 1
«CPART= ,SCALL 1
«CDIRE _SCALL 1
JLINKE SCALL 1
JEQIVE ,SCALL 2
.GDIRS® ,SCALL 2
.8YSIs ,SCALL 2
LWCHARE _SCALL 2
LICMNE _SCALL 2
LWRCMNB _SCALL 2
+RDCMNE SCALL 2
LODISE ,SCALL 2
JOEBL® ,SCalLL 3
SDEBL® _SCALL 3
LDDIS® ,SCALL 3
.RDOPR® ,SCALL 3
LWRNPRE _SCALL 3
.STMAPS _SCALL 3
CGCINE _SCALL 3
.GCOUTE ,SCALL 3
.STATE _SCALL 4
JECLR® ,SCALL 4
LTCRET= ,SCALL 4
+TCRNDE _SCALL 4
.TCCANE ,SCALL 4
JFGND® ,SCALL 4
.GMEM= _SCALL 4
LSMEM= _SCALL 4
B00TE ,SCALL &
+MDIRE ,SCALL 5
«GCHN® ,SCALL 5
LULNKZ _SCALL 5

E-12

JIGET CLOCK FREQ
INEF USER CLOCK
IREMAOVE USER CLOCK
IGET 10D

JSET YOO

$SET DAY

1GEY DAY

JDEFINE DEVICE INY
IREMOVE DEV INT
1SPOOL KILL

JSPOOL DISABLE

ISTREAM OUTPUT

SJCREATE PARTITION

JCREATE SUBDIRECTORY

JLINK ENTRY

PCHANGE DIRECTNRY SPECIFIER
JGET DIRECTORY SPECIFIER
150S COMPATIBLE CALL

IWALIT FOR TTY CHAR

PINIT COMMON

JWRITE TO COMMON

IDISABLE INT (CONTL A,C,F)
JENARLE INT

JENABLE MAPPED DEV ACCESS
IDISABLE MAPPED DEV ACCESS
JREAD OPERATOR

IWRITE OPERATOR

I10CH MAP REQ FOR USER

IGET CONSOLE INPUT DEV
JGET CONSOLE OQUTPUT DEV
J1GET STATUS OF FILE
JRELEASE A FILE

"ITRANSPARENT ,CRFATE

JTRANSPARENT ,CRAND
JTRANSPARENT ,CCON

11S THERE A FOREGROUND
JGET MEM PARTITIONS

$SET MEM PARTITIONS
JINVOKE HIPBOQT

JGET MASTER DIR, SPECIFIER
JGEYT A FREE CHANNEL
SDELETE A LINK ENTRY

APPENDIX F

PERMANENT SYMBOLS

Permanemt Symbol Pseudo-op (directive) Value
. No Yes
.ARGC No Yes
. BLK Yes No
. COMM Yes No
. CSI1Z Yes No
.DALC Yes No

DIAC Yes No
.DIO Yes No
.DIOA Yes No
.DMR Yes No
.DMRA Yes No
.DO Yes No
.DUSR Yes No
.END Yes No
.ENDC Yes No
.ENT Yes No
.ENTO Yes No
.EOT Yes No
EXTD Yes No
.EXTN Yes No
.EXTU Yes No
. GADD Yes No
. GLOC Yes No
.IFE Yes No
IFG Yes No
.IFL Yes No
. IFN Yes No

PERMANENT SYMBOLS (Cont'd)

Permanent Symbol Pseudo-~-op (directive) Value
. LOC Yes Yes
.MCALL No Yes
. MACRO Yes No
. NOCON Yes Yes
.NOLOC Yes Yes
. NOMAC Yes Yes
.NREL Yes No
. PASS No Yes
. POP No Yes
. PUSH Yes No
.RDX Yes Yes
.RDXO Yes Yes
. TITL Yes No
. TOP No Yes
. TXT Yes No
. TXTE Yes No
. TXTF Yes No
. TXTM Yes Yes
. TXTN Yes Yes
. TXTO Yes No
. XPNG Yes No

. ZREL Yes No

MACRO ASSEMBLER ERROR CODES

Up to three error codes may be output per source line. The error codes are
output in the first three character positions of the listing line. The first
error encountered causes a code to be placed in column 3, the second in column|

2, and the third in column 1.

S Ewr m e b v onwmme o oww -

Code . Error

A Addressing error
B Bad character

C Macro error

D Radix error

E Equivalence error

s

Formatting error

Q

Global symbol error

Pt

Parity error on input

Conditional or repetitive assembly error
Location counter error

Multiply defined symbol error

Number error

Overflow field or stack error

Phase error

Questionable line error

Relocation error

Undefined symbol error

X o ®W O v 0o Z 2 B R

Text input error

MACRO ASSEMBLER USER'S MANUAL

® % ®»] =

3
¥

|

macro definition terminator 2-1.4-40,5-1*%

relocation flag 1-5
special atom 2-14*,A-9
gpecial atom 2-14*,A-9
special atom 2-15

carriage return
effect in special integer 2-8,2-9
line terminator 2-1,2-4%*,2-7,2-10
notation convention iii

form feed
line terminator
notation convention

2-1,2-4
iii

label indicator 3-18
notation convention
break atom 2-4

iv

break atom 2-1,2-4,2-7,2-10
comment indicator 2-1
integer format delimiter 2-9
relocation flag 1-5
integer format delimiter 2-9
relocation flag 1-5

Index 1

INDEX
Where there are a large number of page references for a given
topic, the primary page reference will be indicated by an asterisk
(*) following the reference.
or 2-3,2-7,3-1* A break atom 2-4
in-equivalence symbol 3-19
-3,2-7,3-1* €
and 2-3,2-7,3-1 notation convention iv
addition 2-3,2-7,3-1* relocation flag 1-5
- - -]k
. subtraction 2-3,2-7,3-1* L relocatlon Mg < 15
muldplication 2-3,2-7,3-1*
[] breakatoms 2-4
- - 1%
division 2-3,2-7,3-1 in actual argument formatting 5-4
equal to 2-3,3-1*
3 3_1% () Dbreak atoms 2-4
less then or equalto 2-3,3-1 denoting value of permanent symbol 3-8
less than 2-3,3-1* in clarification of meanings 3-3
greater than 2-3,3-1* in expression evaluation 3-2
greater than or equal to ~ 2-3,3-1* . character in symbol 2-13
decimal point 2-6,2-10
- -1%*
mot equal o 2-3,3-1 permanent symbol 4-18
angle brackets text 4-31
notation convention iii, iv ’ break atom 2-4
symbol character 2-13 t argument position indicator 5-1,5-2

<+ non-interpretation of character 2-722-10,2-12,5-1
A4 symbol type 1-7
\ incorrect parity character = 1-3
- underscore convention iii
.+« elipsis convention iii
f3 optional convention iii
{1} alternative convention iv
A
error code A-2
global switch 3-9,6-1*
numeric 2-7
absolute
address 1-8
address in MRI 3-15,3-16
location counter 3-18
one evaluation 3-2,3-6
value of expression 3-5
zero evaluaton 3-2,3-6
accumulator
in ALC instruction 3-11
in I/0O instruction 3-12, 4-11
in MRI instruction 3-14,4-13
in instruction having 3-13

actual argument to macro 1-2,4-40,5-1,5-4*

MACRO ASSEMBLER USER'S MANUAL

INDEX
ADC 3-10 assembly (cont'd)
processing input 1-1,1-3%,1-7,2-1
ADD 3-10 normal input -2
addition 3-1 scan of input 1-3*,1-7,3-18
addressing string input = 2-1
absolute 3-15,1-8
direct 3-15 asterisk 2-14*, A-9
error in A-2
evaluation 3-16 atoms
indirect 3-15 break atoms 2-4
page zero 3-15 definition of 1-7,2-3
relative 1-7,3-15 numbers 2-5
operators 2-3
ALC instruction (see arithmetic and logical) special 2-14
alphabetic symbols 2-13
in symbol 2-13 terminals 2-3
lower case translation to upper case 2-3 transparent 2-14
AND 3-10 B
, bit alignment operator 2-4,2-7,3-1,3-3*
ANDing 3-1 error code 2-3, A-2*
local switch 6-2
apostrophe numeric 2-7
in integer formatting 2-9
relocation flag 1-5 bad character error A-2
JARGCT 4-40 bit alignment 2-4,2-7,3-1,3-3*
argument
actual 1-2,4-40,5-1,5-4* -BLK 4-16", A-6
formal (or dummy) 1-2,5-1,5-4* block
number of actual 4-40 entry (.ENT) B-1,B-3*
arithmetic and logical instruction (ALC) external displacement (.EXTD) B-1, B-4*
sign used for no load in 2-14 external normal (.EXTN) B-1,B-4*
defining semi-permanent symbol for 4-4,4-7* global addition (.GADD) B-1,B-6*
definition of 3-10 global start and end (. GLOC) B-1,B-7*
format 3-10,4-7 _ labeled COMMON (. COMM) B-1,B-6*
local symbol B-1, B-5*
ASCIL overlay (,ENTO) B-2,B-3*
character set 2-2 relocatable data B-1, B-3*
input to assembler 1-3 start B-1, B-5*
title (.TITL) B-1,B-5*
assembler unlabeled COMMON (. CSIZ) B-1,B-7*
command line invoking 6-1
definition 1-1,1-2 break atom 2-4
differences between Extended and Macro i
error codes App. A byte
files that make up the 6-1 packing 4-30,4-32*
loading onto disk 6-1 relocatable value 3-5,3-4*,1-5
termination of string 4-3:3
assembly to store character 4-30
definition of 1-1
language 1-1 C
macro 1-2, Chapt 5. carry field of ALC 3-11%, 4-8
output of 1-4 error code A-3
cross reference listing 1-6 numeric 2-7
error listing 1-7 pulse field of I/0 3-13%, 4-10,4-11

program listing 1-4
relocatable binary file 1-4

Index 2

MACRO ASSEMBLER USER'S MANUAL
INDEX

carriage return direct address 3-15,5-21
as break atom 2-4
as line terminator 2-1, 2-4%,2-7,2-10
in text string 4-30

notation convention iii displacement
external 4-25*%,B-4
carry field of ALC 3-11*, 4-8 field of MRI 3-14,4-12*,4-13
L symbol in .EXTD 4-20 o
character
input as a string of 2-1 division = 3-1
of symbol 2-13
storage of strings of 4-39 - . .DMR 4-4,4-12*
checksum of block B-2 .DMRA 4-4,4-13*
.DO 4-36*,4-37,4-38
colon 2-4 DOA 3-12
DOB 3-12
COM 3-10 DOC 3-12

dollar sign i, 5-20*
.COMM 1-7,4-21*,4-28

double
comma 2-4 precision flag 2-10
precision integer
command line for assembly Chapt. 6 range A-7
< representation in core 2-5
comment 2-1 source program format 2-10

storage word 3-4
conditional assembly

error code A-6 DSZ 3-14

.IFE, .IFG, .IFN, .IFL 4-37

listing and listing suppression 4-42 dummy argument of macro 1-2,5-1,5-4*
.CSIZ 4-22 .DUSR 4-4,4-14*
D E

double precision flag 2-10 error code A-4

error code A-4 floating point indicator 2-11

numeric 2-7 global switch 6-1

numeric 2-7
.DALC 4-4, 4-7*
EN symbol type 1-7
data, relocatable block B-3
end
decimal point 2-6,2-10 of input file (.EOT) 4-35
of program (. END) 4-34*,4-29,4-35
device code field of I/0 3-12,3-17
.ENDC 4-30,4-37,4-38*
DIA 3-12
.ENT 1-7,4-2.3*,4-25,4-2'8,B-1,B-3
.DIAC 4-4, 4-9*
.ENTO 1-7,4-24%,4-2%,B-2,B-3

DIB 3-12
entry
DIC 3-12 block B-1,B-3*
naming (.ENT) 4-23
.DIO 4-4,4-10* symbol error A-5

.DIOA 4-4,4-11*%
Index 3

MACRO ASSEMBLER USER'S MANUAL

INDEX
EO symbeol type 1-7 F
error code 2-10,4-6,A-5*,A-8
.EOT 4-3s numeric 2-7
equal sign 2-4,3-18 field of instruction
ALC 3-11,4-7
equalto 3-1 implied by semi-permanent symbol 3-9
instruction having accumulator 3-13,4-9
equivalencing = 3-18%, A-4 I/0 with accumulator 3-12,4-11
1/0 without accumulator 3-12,4-10
error MRI with accumulator 3-14,4-13
command line 6-2 MRI without accumulator 3-14,4-12
file output 1-4,1-5,1-7 overflow error in A-8
output codes
A A-2 file
B A-2 symbol table 6-3
C A-3 termination of = 4-34,4-35
D A-4
E A-4 flag
13 A-5 error 1-4,1-5
G A-5 relocation 1-4,B-2
I A-6
K A-6 floating point number
L A-6 range of magnitude 2-6,A-7
M A-7 representation in core 2-5
N A-7 source program format 2-11
o A-8
P A-8 form feed
Q A-9 break atom 2-4
R A-9 line terminator 2-1,2-4
U A-9 notation convention iii
X A-10

format error 2-10,4-6,A-5*
evaluation of expression Chapt 3

G
expression error code A-5
evaluation 3-2ff numeric 2-7
format 3-1
in literal 5-21 .GADD 4-21,4-28*,4-23,B-1,B-6
in text string A-10
operators of 3-1 generating unique labels 5-20
relocation properties of 3-4
global
.EXTD 1-7,3-15,4-21,4-25%,4-23,B-4 addition block B-1,B-6*
start and end blocks B-1,B-7*
external switch 6-1
blocks B-1,B-4* symbol 3-9
displacement (.EXTD) 4-25,B-4
normal (.EXTN) 4-26,B-4 .GLOC 4-29*,4-23,B-1,B-7

symbol error A-5
greater than 3-1
.EXTN 1-7,4-21,4-26%,4-23,4-24,4-28,B-4
greater than or equalto 3-1
.EXTU 4-27
: H
numeric = 2-7

HALT 3-17

Index 4

MACRO ASSEMBLER USER'S MANUAL

hexadecimal number 2-13
I
error code A-6
numeric = 2-7
JFE 4-37, 4-38
IFG 4-37%, 4-38
JIFL. 4-37%, 4-38
.IFN 4-37*, 4-38
INC 3-10

index field of MRI 3-14*, 4-12, 4-13

indirect addressing 2-14,3-15
input
error code A-6
to assembly 1-3 ff
normal mode 2-2
string mode 2-1
instruction
definition 3-9
format
ALC 3-10
I/Owith AC 3-12,4-11
I/0 without AC 3-12,4-10
MRI with AC 3-14,4-13
MRI without AC 3-14,4-12
with accumulator 3-13,4-9
listof App E
mnemonic 1-1
types of 3-10
INTA 3-13
INTDS 3-17
integer
characteristic of floating point number 2-5
core representation 2-5
double precision source representation 2-10
single precision source representation 2-6 to 2-9
INTEN 3-17

interprogram communication pseudo-ops 4-21 to 4-29
IORST 3-17

ISZ 3-17 .

Index 5

INDEX
J mumeric 2-7
JMP 3-14
JSR 3-14

K error code A-6

L
error code A-6
global switch 6-1i
local switch 6-2 o
shift field of ALC 3-11,4-8
label

generation of 3-character 5-20
in source line 3-18

labeled COMMON 1-7,B-1,B-6*

LC 1-4,1-5*,1-7,3-9,3-15, 3-18
LDA 3-14

less than 3-1

less than or equal to 3-1

line feed character 1-3,2-8

line of source input - 1-3

listing
cross reference 1-6
error 1-7
program 1-4
suppression of
by ** atom 2-15
by .NOCON 4-42
by . NOLOC 4-43
by .NOMAC 4-4
overriding suppression 6-1
literal
in MRI 5-21
page zero resolution i, 5-21

loading 1-7
.LOC 4-17*,4-29,A-6

local symbol 3-9

THE MACRO ASSEMBLER USER'S MANUAL

INDEX

location counter memory reference instruction (MRI)
absolute, ZREL, or NREL 3-18 fields of 3-14*, 4-12, 4-13
in MRI addressing 3-14, 3-15 format 3-14%, 4-12, 4-13
in program listing 1-4, 1-5 illegal address in A-2
incrementing the 3-9 indirect address setting 2-14
relation to label 3-18
relative 1-7 MOV 3-10
setting the 4-17
value (.) 4-18 MSKO 3-13

multiplication 3-1
M error code A-7
multiply defined symbol exror A-7
MAC command line Chapt. 6

MAC.PS permanent symbol table file 6-3 N

error code A-7

MAC.ST symbol and macro definition table 6-3 global switch 6-1

machine language 1-1,1-2 named COMMON 1-7, B-1, B-6*
macro
actual arguments 5-1, 1-2, 4-40 5-4*
cal .
arguments to 5-4
definition of 1-2, 5-1, 5-4*

naming a program 4-1

NC symbol type 1-7 -

format 5-4 NEG 3-10

value 4-41
carriage return after symbol definition 5-2 NIO 3-12
continuation after interruption 5-3)
definition 1-2, 4-39, 5-1* .NOCON 4-42
definition string 2-1 43
error code A-3 .NOLOC 4-4
examples)

FACT 5-9 .NOMAC 4-44

OR 5-6

PACK 5-11 no load of ALC 2-14

Yor o normal

XOI% > external 4-26
expansion of 1-2, 5-1* S e 2.6t
expansion listing p

format 5-5

normal relocation (NREL)
constant 3-4
in MRI 3-16
location counter 3-18
mode, setting the 4-19
pseudo-op (.NREL) 4-19%, 4-29
value of expression 3-5

suppression of 4-44*%, 5-5
formal (dummy) arguments 5-1, 1-2, 5-4*
interrupted definition 5-3
positional value of actual argument (4) 5-2, 5-4
processor 1-2
pseudo-op .MACRO 4-39,* 5-1
semi-permanent symbol files App. E
symbol associated with 5-1
termination of definition (%) 2-1, 5-1*
uninterpreted character in definition («) 5-1

not equal to 3-1

notation
conventions of manual iii

.MAIN 4-1 . X
variables iv

N Iy . 7-
mantissa of floating'point 2-5 .NREL 4-19F 4-29

.MCALL 4-41 null character 1-3, 2-8

Index 6

THE MACRO ASSEMBLER USER!S MANUAL

number
character in symbol 2-13
class of atom 2-3
double precision integer 2-10
error A-7 '
floating point 2-11
hexadecimal 2-13
internal representation 2-5
single precision integer 2-6
source representation 2-6
special format integers 2-8, 2-9
/symbol recognition 2-~7
use of 26

carry field of ALC 3-11, 4-8
error code 4-6, A-8*

object program
definition 1-2
output of assembly 1-3

operand
definition 3-1
relocation properties 3-4

operation code 3-8

operator
as class of terminals 2-3

list of 2-3, 3-1
precedence 3-2
use in expression 3-1 ff

ORing 3-1
output of assembly 1-3ff, App, B
overflow error 4-6, A-8*

overlay (.ENTO) 4-24F B-3

P
error code A-7, A-8*
pulse field of I/0O 3-13*, 4-10, 4-11

packing of bytes 4-32

page zero relocation (ZREL)
constant 3-4
in MRI 3-16
location counter 3-18
mode, setting the 4-20
pseudo-op (. ZREL) 4-20
use for literals 5-21

parentheses
as break character 2-1
denoting value instead of pseudo-op 3-8
in clarifying meanings of data 3-3
in expression evaluation 3-3

INDEX

parity
error code for incorrect A-6
in text string 4-30
listing character (\) for incorrect 1-3

pass
assembly 1-7
value (. PASS) 4-48

PC 3-14, 3-15
permanent symbols
. 4-18
.ARGCT 4-40
list of App. F, D
«MCALL 4-41
.PASS 4-48
.POP 4-46
pseudo-ops (see pseudo-op list)
.TOP 4-47
types of 3-7, 4-1

phase error A-7, A-8*

pound sign 2-14*%, A-9

.POP 4-17, 4-45, 4-46*, A-8
preced®nce of evaluation i, 3-2ff

pseudo-op
file terminating 4-34
interprogram communication 4-21
listing 4-42
location counter 4-16
macro 4-39
radix 4-2
repetition and conditional 4-36
stack 4-45
symbeol table 4-4
text 4-30
title 4-1

pseydo-op list
.BLK 4-16
..COMM 4-21
.CSIZ 4-22
.DALC 4-7
.DIAC 4-9
.DIO 4-10
.DIOA 4-11
.DMR 4-12
.DMRA 4-13
.DO 4-36
.DUSR 4-14
.END 4-34
.ENDC 4-38
.ENT 4-23
.ENTO 4-24
.EOT 4-35
.EXTD 4-25

THE MACRO ASSEMBLER USER'S MANUAL

INDEX
pseudo-op list (continued) READS 3-13
.EXTN 4-26
EXTU 4-27 relational
.GADD 4-28 expression 4-36
.GLOC 4-29 operator 3-2
IFE 4-37
IFG 4-37 relative address
JFL 4-37 in MRI 3-14, 3-15, 3-16
JIFN 4-37 location counter 1-7
.LOC 4-17 relocated by loader 1-4,1-8
«MACRO 4-39
.NOCON 4-42 ¢ relocatable data block B-1, B-3*
.NOLOC 4-43
.NOMAC 4-44 relocation
.NREL 4-19 constant 3-4
.PUSH 4-45 definition 1-7, 1-8
.RDX 4-2 error 3-5, 3-6, A-9*
.RDXO 4-3 flags B-2
.TITL 4-1 property of adaress 1-7
.TXT 4-30 property of operand 3-4
.TXTE 4-30
.TXTF 4-30 repetitive assembly using .DO 4-36
L.TXTM 4-32
.TXTN 4-31 rubout character 1-3, 2-8
.TXTO 4-30
. XPNG 4-15 S
-ZREL 4-20 carry field of ALC 3-11, 4-8
global switch 4-15, 6-1*, 6-3
PIP 3-17 local switch 6-2
PTR 3-17 pulse field of I/O 3-13*, 4~10, 4-11

SBN 3-17, 3-11
.PUSH 4-45%, A-8
scan
of expression after semi -permanent symbol 3-9
of input 1-3, 1-7

push-down stack 4-45 to 4-47

Q error code A-7 self -complete instructions 3-17

question mark 2-13 -
semicolon
as break character 2-4

questionable line error A-7 in comment 2-1

quotation mark 2-13 semi -permanent symbol

ALC instructions 3-10
defining a new 4-4ff

R definition of 3-8, 4-4ff
error code A-9 files. containing 6-2, App. E
shift field of ALC 3-11, 4-8 incorporating in assembler 6-2

instructions without field specifications 3-17
" radix 1/0 instructions 3-12

50 format for symbols B-2, App. C* list of App. E
changing input (.RDX) 4-2 MRI instructions 3-14
changing output (. RDXO) 4-3 not used as instruction 4-4, 4-14*
range 2-6, 2-10, 4-2, A-4* removing 4-15

.RDX 4-2 SEZ 3-17

.RDXO 4-3 shift field of ALC 3-11

Index 8

THE MACRO ASSEMBLER USER!S MANUAL

sign of number 2-5
single precision integer
range of magnitude 2-3, A-7
representation in core 2-5
source program formats 2-6 to 2-9
skip field of ALC 3-11, 3-17

SKP 3-17, 3-11

* SKPBN 3-12

INDEX

storage word

double 3-19

generated by characters 4-30
resolved at load time 4-28
single 3-18

value of .EXTN 4-26

string

input mode 2-1
packing 4-31

_termination 4-33 . .

text pseudo-ops 4-30
SKPBZ 3-12 SUB 3-10
SKPDN 3-12 subtraction 3-1
SKPDZ 3-12 switch
global 6-1
SNC 3-17 local 6-2
SNR 3-17 symbol

source program

class of atom 2-3
definition 1-1, 2-13

definition 1-2 global 3-9
lines of 1-3 multiply defined error A-7
scan 1-3 /number recognition 2-7

space (&) 2-4

permanent 3-7, Chapt. 4
removing 4-15

representation in Radix 50 App. C

special atom semi-permanent 3-8 ff
@ 2-14 table
2-14 creating a new App. G, 6-2
** 2-15 cross reference listing 1-6
as class of atom 2-3 -files used for App. G
: pseudo-ops 4-4ff
square brackets ‘ types of 1-7

as break atoms 2-4 undefined error A-9
in macro call 5-4)
syntax summary App. D

STA 3-14
SZC 3-17, 3-11
stack
determining current value on 4-47 SZR 3-17
popping values from 4-46
saving values on 4-45 terminal atom 2-3
start block B-1, B-5* text
error A-10
statement string 2-1, 4-30
ALC 3-10
definition 3-9 .TITL 4-1
in literal 5-21
1I/0 3-12 title
MRI 3-14 block B-1
pseudo~-op 4-1

Index 9

THE MACRO ASSEMBLER USER!S MANUAL

INDEX

. TOP 4-45, 4-47*, A-8
translation to machine language 1-7
TTI 3-17
TTO 3-17
JTXT 2-1, 4-30*%, 4-32
.TXTE 2-1, 4-30F 4-32
.TXTF 2-1, 4-30*, 4-32
.TXTM 4-30, 4-32*
.TXTN 4-30, 4-31*
.TXTO 2-1, 4-30%, 4-32
U
error code A-9
global switch 6-1
undefined symbol
error code A-9
pseudo-op (.EXTU) 4-27
USTCS 4-21
value
relocation 1-9
storage word 3-18
X error code A-10
XD symbol type 1-7
XN symbol type 1-7
. XPNG 4-15*, 6-2, 6-1
Z carry field of ALC 3-11, 4-8
ZREL
- constant 3-4
for literal 5-21-
mode setting (. ZREL) 4-20

value of expression 3-5

.ZREL 3"15’ 3'16’ 4"‘20*’ 4"29

Index 10

cut along dotted line

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

applicable. Label each comment as an addition, deletion, change or error
if applicable,

General Comments and Suggestions for Improvement of the Publication,

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

- n e - .- =
- n - — - - . " e R S e am Tm e E% Gm e R e e
- e W e e = R em e e S D G en e B Gw SN R T S R S S SN as Ge BR e M Mm s e W W WD e = e - -

FIRST
CLASS
PERMIT
No 26
Southboro
Mass 01772
BUSINESS REPLY MAIL
Postage will be paid by:
Data 6 I1C i
ata General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

A GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	G-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB
	xBack

