RDOS/DOS
Macroassembler

User’s Manual

093-000081-05

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000081

© Data General Corporation, 1972, 1973, 1974, 1975, 1978
All Rights Reserved

Printed in the United States of America

Revision 05, August 1978

Licensed Material - Property of Data General Corporation

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel, licensees,
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the materials presented, including but not limited to typographical, arithmetic, or listing
errors.

RDOS/DOS
Macroassembler
User’s Manual
093-000081

Revision History:

Original Release - July 1972

First Revision - November 1972
Second Revision - June 1973

Third Revision - March 1974
Fourth Revision - January 1975
Fifth Revision - August 1978

This manual replaces manual no. 093-000131.

This document has been extensively revised from revision 04; therefore,
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

U.S. Registered Trademarks Trademarks
CONTOUR 1 INFOS NOVALITE DASHER
DATAPREP NOVA SUPERNOVA microNOVA

ECLIPSE NOVADISC

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Preface

This manual describes the Data General
Macroassembler, as provided for use within our
Real-Time Disk Operating system (RDOS) or Diskette
Operating System (DOS). It assumes that you plan to
program in assembly language, and that you have a
background in this language.

The Macroassembler {(which you invoke with the CLI
command MAC), processes source files written in
assembly language and produces relocatable binary
files, called RBs by convention. After assembling a
source file with MAC, you can make the RBs an
executable save file with the RLDR utility, or generate
an RB library with the LFE utility.

Within this manual:

Chapter | introduces the Macroassembler; it describes
input, output, and relocatability.

Chapter 2 details the characters you input to the
assembler, and its behavior thereafter; it covers
character, number, and symbol formats.

Chapter 3, Syntax, explains expressions and
introductions to the assembler, like LDA and DIA.

Chapter 4 lists and describes the pseudo-ops and value
symbols which you can define in your source program.
It gives these directives by category and in alphabetical
order. The alphabetical section begins on a yellow page.

Chapter 5 explains advanced features of the assembler:
macros and generated labels.

Chapter 6 describes operating the assembler from the
console, and includes the required files, command
switches, and symbol table files.

093-000081-05

Among the appendixes, Appendix A explains the
assembler error messages, B summarizes permanent
symbols, and C contains an ASCII character subset.

Other manuals you will find helpful are:

Programmer’s Reference Manual for NOVA Computers
(ordering number 015-000023) or Programmer’s
Reference Manual for ECLIPSE Computers
(015-000024). One of these details the instruction set
for your machine.

RDOS/DOS Command Line [nterpreter (CLI) User’s
Manual (093-000109). This explains how to operate any
system utility from the console.

Text Editor User’s Manual (093-000018) or Supereditor
User’s Manual (093-000111). Both editors allow you to
write and modify source programs; the Supereditor is a
more powerful, programmable version of the basic
Text Editor.

Library File Editor User’'s Manual (093-000074). This
utility helps you analyze and edit relocatable binary
libraries (LBs) and RBs.

Extended Relocatable Loaders User’s Manual
(093-000080). This utility, RLDR, binds MAC’s RB
output into an executable program.

RDOS Reference Manual (093-000075) or DOS
(Diskette) Reference Manual (093-000201). The
appropriate book explains the features of your
operating system, and all of its system and task calls.

Preface

DataGeneral

SOFTWARE DOCUMENTATION

Notation Conventions for This Manual

We use the following conventions for instruction and
command formats in this manual. Note that these
conventions are used to describe the Macroassembler
language, but are not part of the language itself.

COMMAND required [optionall ...

Where Means

.COMMAND You must enter the command (or
its accepted abbreviation) as
shown.

required You must enter some argument
(such as a filename). Sometimes,
we use:

{required1 I
required;

which means you must enter one of

the arguments. Don’t enter the

braces; they only set off the choice.
loptionall You have the option of entering
some argument. Don’t enter the
brackets; they only set off what’s
optional.

You may repeat the preceding
entry or entries. The explanation
will tell you exactly what you may
repeat.

Licensed Material - Property of Data General Corporation

Additionally, we use certain symbols in special ways:

Symbol Means

) Press the RETURN key on your
terminal’s keyboard.

.

Be sure to put a space here. (We use
this only when we must; normally,
you can see where to put spaces.)

All numbers are decimal unless we indicate otherwise;
c.g., 353

Finally, we usually show all examples of entries and
system responses in THIS TYPEFACE. But, where we
must clearly differentiate your entries from system
responses in a dialog, we will use

THIS TYPEFACE TO SHOW YOUR ENTRY)
THIS TYPEFACE FOR THE SYSTEM RESPONSE

We welcome your comments and suggestions for this
and other Data General publications. To communicate
with us, either use the comments form provided at the
back of this manual or write directly to:

Software Documentation
Data General Corporation
Westboro, MA 01581

End of Preface

093-000081-05

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Contents

Chapter 1 - Introduction to the Macroassembler

Assembly Language Processing 1-1
Macro Facility 1-1
Assembler Inputand OQutput 1-1
AssemblerInput 1-2
Types of AssemblerOQutput., 1-2
Binary FileOutput 1-2
Relocatable Binaries 1-2
ProgramListing 1-3
Cross-Reference Listing 1-4
Error Listing, 1-4
Relocatability 1-6
Chapter 2 - Fundamental Assembly Tools
CharacterInput e 2-1
StringMode, 2-1
NormalMode 2-1
AtOMS 2-1
OPerators 2-2
Break Characters, 2-2
Number AtOms 2-2
Number Representations 2-3
Single-Precision Integer Representation 2-4
Special Formats of Single-Precision Integers 2-4
Double-Precision Integer Representation 2-5
Single-Precision Floating-Point Constants 2-6
Examplesof Numbers. 2-7
Symbols e 2-7
Special Characters o v e e e e e 2-7
@ Commercial ATSign 2-7
NumberSign. 2-7
EOASIEIISKS © . . o 2-8

093-000081-05 v Contents

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Chapter 3 - Syntax
EXPIESSIONS o vttt e e 3-1
OPETALOTS . o o o e i e e e e e e e e e e e 3-1
Bit Alignment Operator 3-2
Examples of Expressions 3-2
Relocation Properties of Expressions 3-3
SYMDOIS e 3-4
Permanent Symbols 3-4
Semipermanent Symbols L L 3-5
User Symbols e 3-5
INSITUCHIONS o o o et e e e e e e e e e e e e 3-5
Arithmetic and Logical (ALC) Instructions 3-6
I/0 Instructions without Accumulator 3-7
I/0 Instructions with Accumulator 3-8
1/0 Instructions without DeviceCode 3-9
1/0 Instructions without Argument Fields. 3-10
Memory Reference (MR) Instructions 3-10
MR Instructions without Accumulator 3-10
MR Instructions with Accumulator 3-13
ECLIPSE INStructions i ittt e e e e e e e e 3-14
Extended MR Instructions i i e 3-14
Commercial MR Instructions 3-15
Floating-Point Instructions e 3-15
Chapter 4 - Pseudo-ops and Value Symbols
Symbol Table PSEudo-0ps o ot e 4-1
Symbol Table Pseudo-opFormat 4-2
Location Counter PSEudo-0PS v v v v v v e e e e 4-3
Intermodule Communication Pseudo-ops e 4-3
Repetition and Conditional Pseudo-ops 4-4
Macro Definition Pseudo-opand Values i 4-4
Stack Pseudo-opsand Values 4-4
Text String Pseudo-opsand Values 4-4
Listing Pseudo-opsand Values 4-5
Miscellaneous PSeudo-0ps o ottt e 4-5
() Current Location COUNLET. o v v vttt e e e e e e e e e 4-5
ARGCT . e 4-6
BLK . 4-6
COMM . 4-7
CSIZ . . e e 4-8
DALC . . e 4-9
DM R . e 4-10
DEMR . . . e 4-11
DERA 4-12
DEUR . . 4-13
DELM e 4-13
DFELS . 4-14
DIAC . . 4-14
DICD . . . e 4-15
DIMM . e e 4-15
DIO . . e 4-16
DIOA . . e 4-16
DISD . e 4-17
DISS . . 4-17

vi 093-000081-05

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Chapter 4 (continued)

Miscelianeous Pseudo-ops (continued)

DMR 4-18
DMRA . 4-18
DO 4-19
DUSR . 4-19
DXOP . 4-20
EIEC 4-20
END 4-21
ENDC . . . 4-21
ENT 4-22
ENTO . .. 4-22
EOF, EOT. 4-23
EXTD . . 4-23
EXTN 4-24
EXTU 4-24
GADD . 4-25
GLOC . .. 4-25
GOTO . .. 4-26
GREF . . 4-26
AFE, IFG, IFL, IFN . o o 4-27
LMIT o 4-28
LOC 4-29
MACRO . . 4-29
MCALL 4-30
NOCON . 4-30
NOLOC . . . 4-31
NOMAC . . . 4-31
NREL 4-32
PASS 4-32
POP | 4-33
PUSH . . 4-33
RB 4-34
RDX 4-34
RDXO . . 4-35
REV 4-35
TITL 4-36
TOP . 4-36
TIXT, TXTE, TXTF, TXTO 4-37
TIXTM e 4-38
TXTN . e 4-38
XPNG 4-39
ZREL 4-39

Chapter 5 - Macros and Other Advanced Features

The Macro Facility 5-1
Macro Definition. 5-1
MacroCalls 5-3
Listing of Macro Expansions. 5-5

.DO Loopsand Conditionals 5-6
Macro Examples 5-8

Generated Labels 5-15

Literals 5-16

Generated Numbersand Symbols 5-17

093-000081-05 vii Contents

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

Chapter 6 - How to Operate the Macroassembler

Assembler Files e e e 6-1
File LITMACS.SR e e e e 6-1
Operating Procedures e 6-2
Global Switches e e e e e 6-2
Local SWItChes o i i e e e e e 6-3
Macroassembler Symbol Table Files, 6-4

Appendix A - Error Codes

Assembly Errors A-1
Addressing Error (A) A-2
Bad Character (B) A-2
Macro Error (C) A-2
Radix Error (D) A-2
Equivalence Error (E) A-3
FormatError (F) R A-3
Global Symbol Error (G) A-3
Input (Parity) Error (I) A-3
Conditional Assembly Error (K) A-3
Location Error (L) A-3
Multiple Definition Error (M) A-4
Number Error (N) A-4
Field Overflow Error (O) A-4
Phase Error (P). e, A-4
Questionable Line (Q) A-5
Relocation Error (R) A-5
Undefined Symbol Error (U) A-5
Variable Label Error (V) A-S
TextError (X) A-5

Fatal Errors
Appendix B - Permanent Symbols
Appendix C - ASCII Character Subset

viii 093-000081-05

Licensed Material - Property of Data General Corporation

Illustrations

Figure Caption

1-1 Macroassembler Qutput
1-2 ProgramListing
1-3 Cross-Reference Listing
1-4 How RLDR Operates on Binary Modules.
3-1 Assembly of ALC Instruction
3-2 Assembly of an I/0 Instruction without Accumulator
3-3 Assembly of I/0 Instructions with Accumulator . . .
3-4 Assembly of I/0 Instructions without Device Code .
3-5 Assembly 1/0 Instructions without Argument Fields

3-6 Assembly of MR Instructions without Accumulator .
3-7 Formation of Effective Address for MR Instruction .
3-8 Assembly of MR Instructions with Accumulator . . .
5-1 Macro Calls and Expansions,
5-2 Forms2and 3 MacroCalls.
5-3 LogicalORMacro
5-4 FactorialMacro
5-5 Packet DecimalMacro
5-6 VFD, ERROR, and SPECL Macros
5-7 GeneratingLabels

093-000081-05 ix

N .

SOFTWARE DOCUMENTATION

Contents

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 1
Introduction to the Macroassembler

A language is a set of common representations,
conventions and rules that convey information in a
well-defined way. Computer languages range from
those which resemble and are tailored to computer
hardware operations, to those which are more like
human language. Machine language uses numeric
codes that a computer can understand directly, while
FORTRAN, BASIC, and other high-level languages
are more akin to human expressions. The
Macroassembler employs a language that is somewhere
in betwezn. It accepts symbols which are often only
names for machine code, yet frees you from the need
to be concerned with exact memory locations:; it
provides mathematical and logical operations for
symbol manipulation; and it provides a macro facility
that permits your own character sequences to be
expanded into different forms by the assembler.

Assembly Language Processing

The assembler translates symbolic instruction codes
(such as ““LDA 0,2"") and symbolic addresses (such as
“TEMP’’) into numeric codes and numeric addresses.
These addresses may be either absolute (i.e., “‘real’’)
or relocatable; these terms are defined at greater length
later in this chapter.

Symbolic language that you input to the assembler is
called a source file or source module. The assembler’s
output is called a relocatable binary file or RB file or RB

module. The computer cannot execute a source file (it is
symbolic), nor can it execute a binary file directly. One
or more binary files must be further processed to make
them executable. This process, called loading, forms
the binary file(s) into an executable save file which the
computer can execute.

Macro Facility

Symbolic assembly language programming is simpler
than machine language programming. Macro assembly
can further simplify programming.

093-000081-05 1-1

Quite often a program uses the same set of symbolic
instructions many times. Macro assembly permits you
to write a set of instructions only once, and substitute
this set wherever you wish during assembly of a source
file.

Fundamentally, a macro facility works as follows:

I. You write a set of symbolic instructions, called a
macro definition, and give the macro definition a
name.

2. Wherever you want that set of symbolic instructions
in your source file, write a macro call. At minimum,
the macro call contains the name of the macro
definition.

3. The assembler contains a macro processor which
substitutes the sequence of instructions (macro
definition) for the macro call. This substitution is
called macro expansion.

The macro facility also offers more sophisticated
features. For example, the same set of instructions
(differing in only accumulators and addresses) may be
used many times within a program. If so, you can write
formal (dummy) arguments for accumulators and
addresses into the macro definition. The macro call in
the program will contain the actual arguments. During
macro expansion, the Macroassembler will substitute
the actual arguments for the dummies. Thus, a macro
definition is usually a skeleton of the actual instruction
set that will result from macro expansion.

Assembler Input and Output

Figure 1-1 shows the input to and the possible outputs
from the Macroassembler. Input consists of one or
more source files written in an ASCII character subset.
Output includes, at minimum, a list of any source
program errors. Maximum assembler output includes a
program listing (which includes any errors), a separate
error listing, and a binary file. The program and error
listings give you information; the binary file can be
processed by RLDR to make it executable.

Assembler Input and Output

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Assembler Input

The source program input to the assembler consists of
characters which are a subset of the ASCII character
set. The assembler reads the source program twice;
each read is called a pass. On each pass it performs the
following elementary functions:

.1. It reads a line of source consisting of a character
string terminated by a carriage return () -- ASCII
15) or aform feed (| -- ASCII 14) character.

2. It ignores three characters unconditionally. These
are null (value 000), line feed (012) and rubout
(value 177).

3. Itreplaces characters having incorrect parity with the
ASCII character backslash “\". This character is then

transparent to the assembier; for example, L\A is
processed as LA.

Types of Assembler Output
There are three possible outputs from assembly:

1. A relocatable binary file.
2. A program listing.

3. Anerror listing.

Input Output
ASCII MACRO =
Source.] ASSEMBLER File |
Files
-
Listing |
File
SD-00420
Figure 1-1. Macroassembler Output

Binary File Output

The assembler begins the translation into binary output
by reading the source line. To translate the source line,
the assembler must:

1. Build syntactically recognizable elements called
atoms. Atoms are numbers, symbols, operators,
break characters, or special characters.

2. Recognize and act upon each basic atom.

The binary output is a translation of source program
lines into a special blocked binary code. Most lines of
source input translate into single 16-bit (one-word)
binary numbers for input to RLDR. The assembler
gives each number an address. This address is not
necessarily the final memory address for the number; it
may be a reiative address that RLDR wiii reiocate. The
assembler produces as part. of the binary file the
information which RLDR needs to map each address
and its contents.

You may choose not to output a binary file.

Relocatable Binaries

An RB can have three different sections of code:
absolute, ZREL (page zero relocatable) and NREL
(normal relocatable). Within a source program, you
specify absolute code with the .LOC pseudo-op, ZREL
code with the .ZREL pseudo-op, and NREL code with
the .NREL pseudo-op.

093-000081-05

Licensed Material - Property of Data General Corporation

Program Listing

The program listing permits you to compare your input
against the assembler output. A line of the program
listing contains the following information:

Columns1-3

If the assembier finds no errors in
the input, columns 1-3 contain a
two-digit line number followed by a
blank space. If there are any input
errors, each error generates a single
letter code. The first error generates
a letter code in column 3, the next
in column 2, and a third in column

Column 9

Columns 10-15

DataGeneral

SOFTWARE DOCUMENTATION

Contains the relocation flag
pertaining to the location counter.

Contain the data field, if relevant.
Otherwise, these contain the value,
in the current radix, of an
equivalence expression (such as A
= 2*3) or of a pseudo-op argument
(such as .RDX 16). In other cases,
columns 10-15 are left blank.

relocation

ains the

Contains e
pertaining to the data field.

flag
Eaed]

1. Oniy three error codes can be
listed per line. Lines which have
errors receive no line number.

Contain the source line as written
and as expanded by macro calls.

Column 17 -on

Contain the location counter, if
ielevaiit. Otherwise, columns 4-8
are left blank.

Columns 4 -8

V601 EXAMP MACKO REV ¥6,u0
«TITL EXAMPLE

1S:11:42 07/726/77

ve «NREL

"X L TTLH JTXTM | iPACK ,TXT BYTES LEFT=TQ RIGHT,
w4 «ENT START,ER,TASKY, AGAIN JVEFINED MERE,

wz JEXTN JTASK, PRI, TOVLD ;GET MULTITASK HANDLERS.
"

47 290v¥'00o6017. START: ,SYSTM iSYSTEM, GET A FREE

08 VYYb1'v21052 L6CHN iCHANNEL NUMBER, PUT IN AC2.

©9 ¥veve'vaulle JMP STAKT iON ERKOK, TRY AGAIN,

iSTORE CHANNEL NUMBER IN "CHNUw",
iPUINTER TO CONSULE OUTPUT NAMg,

lo 00003 ' 050427
11 00004'020433

STA ¢, ChNuM
LLA ¥, NTTU

12 99¥Y05'1264v0 Sug 1, 1 ;USE DEFAULT DISABLE MASK,

13 dvove'vdoul7 SYSTM 7SYSTEM, UPEN CUNSULE OUT-

14 20v07'014077 <UPEN 77 iPUT UN CHANNEL NUMDER IN AC2,

15 2d01¢'v0RLR3 JMP ER iON ERRUK, GET CLI TO REPORT,

16 v¥011'020432 LUA v, Py JGET NUMBER "4",

17 dw0l12'077777 PRI iCHANGE YOUR PKIORITY TO 4,

18 309013'v2vull LDA ¥, 1DPKI FGET NEW TASK'S ID ANV PRIURITY,

19 0vu14'v24431 LDA 1, TASK] iSTAKRT NEW TASK AT THIS ADUKESS.

2v YYB1S'v777177 « TASK FCREATE NEw TASK, wWHICH GAINS CONTROL

21 FIMMEDIATELY, SINCE ITS PRIORITY IS 3,

22 0V016'00041S JMP Bk JLET CLI TO REPURT ERRUR,
;’3 00017'096017 AGAIN: ,SYSIM FTHIS IS THE MAIN KEYBOARD L1STENER TASK,
24 00020 'vaT4VY «GCHAR FGEYT A CHARACTEKR FkUM THE CUNSOLE.

JMP R

25 d0v21'vvdye

23 00UY17'008617 AGAINS
24 0nR2y'2@74¢v
25 ¢0n21'v9Ldy2

iTHIS IS Ti
iGET A CHAF

e SYSTW
sGCHAK
JVMP EFK

2 4 5 6 7 891011121314 151617
— [— i | - —

} ‘ * | |
Line Source line
Number !

Data Field Relocation Flag

123
e ’ Data Field or Expression
Error Flag 1 Relocation Flag f/ - ZR el

|)
Location Counter (LC) ™ / N E, FL

SD-00468A V

Fl }'gure 1-2. Program Listing

093-000081-05 - Assembler Input and Output

DataGeneral -

SOFTWARE DOCUMENTATION

An error flag is a single letter indicating the type of
error which appeared in the source line. A parity error
on input, for example, produces the flag I in column 3
of the program listing line. Up to three error flags may
appear on a given line.

The 5-digit location counter (LC) assigned by the
assembler to an instruction or datum is displayed in
columns 4-8. The LC is immediately followed by a
single-character flag indicating the relocation mode of
the address:
Flags Meaning
space absolute
- page zero relocatable
normal relocatable
Following the LC flag is the 6-column data value field,
immediately followed by a single-character flag
indicating the relocation mode of the value.
Flags Meaning
space absolute
- page zero relocatable
= page zero, byte-relocatable

‘ NREL code
” NREL code, byte-relocatable

$ displacement field is externally
defined

1-4

Licensed Material - Property of Data General Corporation

The last item on each program listing line is the ASCII
source line. This line is given as input, except for
expansion by macro calls.

You may choose to suppress certain lines of the listing
(macro expansion, for example). You may also choose
not to output a program listing.

Cross-Reference Listing

A program listing always includes a cross-reference
listing of the symbol table, which includes user symbols
alone or both user and semipermanent symbols. A
sample cross-reference listing follows in Figure 1-3.

Here is an explanation of all cross-reference symbols:
OJ4O user-symbol

EN entry (ENT pseudo-op)

EO overlay entry (ENTO pseudo-op)

XD external displacement (EXTD pseudo-op)
XN external normal (EXTN pseudo-op)

MC

macro

NC named common (.COMM pseudo-op)

Error Listing

The error listing contains the title of the source module
and all source lines that have been flagged with an error
code. The error listing is useful in programs with very
long listings since it acts as an abstract; nonetheless, it
contains no information which is not also present in the
assembly listing.

093-000081-05

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

SD-00469

0006 MTACA

C377 000075
C5 000023"
CTCB 000001$ XD
CTSUS 000077
CXMT 000076
KILL 000072 XN
MSW 000001"

PCTMP 000002$ XD

TACM1 000031
TACM2 000040"
TACMN 000016"
TAK1 000054"

TAK2 000003
TAK3 000064"
TAKIL 0000007 EN
TAPEN 000005" EN

TAPR 000042"
TAPRX 000052"

TAUNP 000012" EN
TMAX2 000073" XN
TSAVE 000074" XN

.AKRT 000067"

. TMN1 000073"

. TSAV 000074"

— \ - J Y/

Symbol Symbol's | Type of
Address | Symbol

Relocation Flag

093-000081-05

Page and line where referenced, for example
4/20 indicates page 4, line 20

Figure 1-3. Cross-Reference Listing

1-5

4/20 4/47 5/04

4/06 4/10

2/13 2/31 4/11

4/42 5/08

4/44 5/06

.2/30 4/59

2/01 2/04 2/37 2/40 2/51
3/08 4702 4/05

2/14 2/31 2/43 2/57 3/11
4/26

4/17 4/25

4/24 4/35

2/46 2/60 4/01

4/29 4/39

2/45

4/47

2/17 2/29 2/36

2/18 2/29 2/50

4/23 4/26

4/34 4/46 4/49

2/19 2/29 3/04

2/30 4/60

2/30 5/01

4/39 4/51

2/14 4/18 4/60

2/14 2/44 2/58 3/12 5/01
\ v /

Assembler Input and Output

DataGeneral

SOFTWARE DOCUMENTATION

Relocatability

MAC is a relocatable assembler, which means that it
assigns each storage word a relative location counter
value. RLDR takes each relative value and gives it an
absolute memory address.

MAC can produce output that will be placed by RLDR
for execution in either the absolute, the ZREL, or the
NREL sections of memory.

MAC assigns relative values via three counters which it
maintains for each type of relocatability: one each for
absolute, ZREL, and NREL code. The ZREL and
NREL counters are initially zero; MAC increases them
by one for every storage word it generates. When a
program has been completely assembled, it has used :
ZREL words and » NREL words. These words have
been assigned relative addresses ZREL 0 to (z-1) and
NREL 0to (n-1).

RLDR’s role is to take a number of assembled modules
and form a nonoverlapping save file for execution. It
does this by taking the assembler’s relative addresses
and making them into absolute addresses, via its own
counters. Like MAC, RLDR maintains three counters

Licensed Material - Property of Data General Corporation

(for absolute, ZREL, and NREL code). Using these
counters. RLDR establishes an absolute address for
each relative address of the modules it processes. It
initializes the ZREL counter to 505 and initializes the
NREL counter(s) according to the UST length, the
number of tasks specified, and the size and number of
overlay nodes in the program. RLDR assigns each
symbol an absolute address by adding its relanve
address to the ZREL and NREL counter(s). After
loading each module, RLDR updates its counters to
include the number of ZREL and NREI words used by
that module, thus setting up the starting addresses of
absolute memory for the next module.

In this way, RLDR loads any number of separately
assembled modules together, without storage conflict.
This is the major advantage of relocatability. Figure 1-4
shows RLDR’s action in a simple case, where only
three modules, A, B, and C are loaded together to form
a simple program. Note that the binding of real
modules is more complex; for example, true programs
do not normally begin at location 0. .ZREL code usually
begins at location 505, and .NREL code begins after the
last system-generated table. For more on tasks and the
system tables see Chapter 5 of your operating system
manual; for more on overlays, see Chapter 4 of the
same book.

Order of Loading

Relative Module C
Address > p
(o} | B
i ﬁ
Module B
m /
B
0
Module A
n
A
0
Relative
Address
SD-00637

RLDR

Figure [-4. How RLDR Operates on Binary Modules.

Position in Memory During Execution

m+n+p+2

m+n+2
m+n+1

n+1
n

0

Absolute
Addresses

End of Chapter

1-6

093-000081-05

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 2
Fundamental Assembly Tools

Character Input

Y ou can input characters to the assembler in one of two
modes: normaland string.

String Mode

In string mode, the assembler accepts any ASCII
character and returns it unchanged. String mode input
is not interpreted. You can set string mode in one of
the three different forms:

1. Comments

A comment begins with a semicolon and is
terminated with a carriage return or form feed, e.g.,
;SET MASK BITS.

2. Macro Definition Strings (not macro calls)

A macro definition string begins with the pseudo-op
.MACRO, is followed by one or more spaces, tabs,
or commas, and is terminated with the character %.
For example, the following three source lines define
a macro:

.MACRO X)
LDA 0,2)
MOVZL 1,1)

%
3. Text Strings

A text string begins with a text pseudo-op, followed
by a standard delimiter, followed by a delimiter that
is any character not used in the character string. The
text string is terminated by the appearance of the
same delimiting character that was used at the
beginning. For example,

) l
TIXT “EXPECTED VALUE=60% OF GROSS $.”

093-000081-05 2-1

Normal Mode

All other input is in normal mode. In normal mode, the
input string consists of characters in a subset of the
ASCII character set, divided into lines. Each line of
characters is terminated by either a carriage return or a
form feed. In normal mode, the assembler recognizes
the following ASCII codes:

All alphabetics, numerals, relational operators, most
conventional punctuation, and certain special
characters. See the ASCII subset in Appendix C.

In normal mode, lowercase alphabetics are always
translated to wuppercase. During assembly, any
character not within the subset in Appendix C is given a
B (bad character) flag and is syntactically ignored.

Atoms
In normal mode, the assembler recognizes certain
characters and certain groups of characters as different
types of atoms. An atom is a syntactic element of
assembly language recognized by its specific class.
Atoms fall into five classes:
1. Operators
2. Break Characters
3. Numbers
4. Symbols

5. Special Characters

Atoms

DataGeneral

SOFTWARE DOCUMENTATION

Operators

Operator characters are used with single-precision
integers and symbols to form expressions. There are
three classes of operators:

y B Bit alignment (shift)
+ Addition
Arithmetic < - Subtraction
’ * Multiplication
\ / Division
. & Logical AND
Logical
! Inclusive OR
== Equal
> = Greater than or equal
> Greater th
Relational ater than
< Less than
< = Less than or equal
< > Not equal

The assembler distinguishes the bit shift operator B
from the ordinary ASCII B in two ways. A bit shift
operator is implied if the preceding atom is a
single-precision integer, or if the Bimmediately follows
aright parenthesis; e.g., 8B7 or (377) B7.

Break Characters

Break characters are used primarily as separators. They
are:

O represents the class of spaces -- a space, a
comma, a horizontal tab, or any number or
combination of spaces, commas, horizontal tabs.
The meaning of O is changed if a colon or equal
sign ((:) or (=))immediately follows it. We use
O only where we must; normally, spaces are
obvious in the formats.

Note that when a wmacro call references
arguments, commaf(s) and space(s)/tab(s) do
not produce the same results. For example, the
macro calls:

TEST 12
TEST 1,2

Licensed Material - Property of Data General Corporation

a each have two arguments, and assemble the
same way; but the calls:

TEST,1,2
TEST,12

each have three arguments; the first a null.
Also, a space with a comma in a macro call may
produce a format error, because the assembler
will try to use it to expand the macro; e.g.,

TEST 1,2

See Chapter 5 for more on break character usage
in macros.

A colon (:) defines the symbol preceding it, for
example COUNT:0

= An equal sign also defines the symbol preceding
it, for example DATA3=4*DATA

O Parentheses may enclose a symbol or an
expression.

[] Square brackets may enclose the actual

arguments of a macro call; for example

MYMACRO [3,4)
5,6]

; A semicolon indicates the beginning of a
comment string (string mode); for example

LDA 0,@20 ;GET NEXT ADDRESS IN TABLE.

) A carriage return terminates a line of source
code; for example
MOVZR 0,0,SNR ;CHECK FOR ODD NUMBER)

| A form feed also terminates a line of source
code.

Number Atoms

Three types of numbers
Macroassembler. They are:

are defined for the

1. Single-precision integer - stored in one word.
2. Double-precision integer - stored in two words.

3. Single-precision floating-point constant - stored in
two words.

You can use single-precision integers in expressions
and data statements, but you can use double-precision
integers and floating-point numbers only in data
statements.

2-2 093-000081-05

Licensed Material - Property of Data General Corporation

Number Representations

A single-precision integer is represented as a single
word of 16 bits, in the range 0to 65,535 (0to 177777,).
The integer may be interpreted as signed, using two’s
complement arithmetic. If bit 0 equals 0, it indicates a
positive integer; if bit 0 equals 1, it indicates a negative
integer, in the range 0 - 32767.

A double-precision integer is represented in memory in
two contiguous words, where the first word is the
high-order word. Using two’s complement notation, a
double-precision integer is represented as:

S — high order

— low order

0 15

Bit 0 of the high-order word is the sign bit.

A single-precision floating-point constant is represented in
memory in two contiguous words having the format:

S| Characteristic Mantissa
Mantissa
0 7 8 15
093-000081-05 2-3

SOFTWARE DOCUMENTATION

Bit 0 of the high-order word is the sign bit, set to zero
for positive numbers and set to one for negative
numbers.

The integer characteristic is the integer exponent of 16
in excess-64,, (1005) code. Exponents from -64 to + 63
are represented by the binary equivalents of 0 to 127,
(0to 1775). Zero exponent is represented as 1005.

The mantissa is represented as a 24-bit binary fraction.
It can be viewed as six 4-bit hexadecimal digits. The
range of the mantissa’s magnitude is:

16t < mantissa < (1-16%)

The negative form of a number is obtained by
complementing bit 0 (from 0 to 1 or 1 to 0). The
characteristic and mantissa remain the same. When an
expression is evaluated as zero, it is represented as true
zero, two words of all zeroes in sign, characteristic, and
mantissa.

The range of magnitude of a floating-point number is:
161 *16° < floating-number < (1-16-¢) * 1653
which is approximately

5.4* 107 < floating-number < 7.2 * 1075

Most routines that process floating-point numbers
assume that all nonzero operands are normalized, and
they normalize a nonzero result. A floating-point
number is considered normalized if the fraction is
greater than or equal to 1/16 and less than 1. In other
words, it has a 1 in the first four bits (8-11) of the
high-order word. All fioating-point conversions by the
assembler are normalized.

Atoms

DataGeneral

SOFTWARE DOCUMENTATION

Single-Precision Integer Representation

The source format of a single-precision integer is:

{/+1

{-1
where:

} d/d...d][]break

each d is a digit within the range of the
current input radix. The initial d must be
in the range 0-9.

break is any character or digit outside the
range of the current radix, or a period

(*.).

If the decimal point precedes the break character, the
integer is evaluated as decimal. If there is no decimal
point, the integer will be evaluated in the current input
radix. The range of input radix values is 2 through 20 as
set by the .RDX pseudo-op. The following table shows
digit representation.

If your highest the digit value and your radix
digit will be will be must be > =

0 0 any
1 1 any
2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

9 9 10
A 10 11
B 11 12
C 12 13
D 13 14
E 14 15
F 15 16
G 16 17
H 17 18

I 18 19
J 19 20

If the input radix is 11 or greater, a number that would
normally begin with a letter must be preceded by an
initial zero to distinguish the number from a symbol.
The following example shows how to represent the
decimal numbers 15, 255, 4095, and 65,535 in
hexadecimal. The source representation is shown in the
right column, and the created storage word is shown in
the left column.

000020 LRDX 16

000017 OF iDecimal 15,
000377 OFF ;Decimal 255,
007777 OFFF $Decimal 4095,
177777 OFFFF j;Decimal 65535,

2-4

Licensed Material - Property of Data General Corporation

Normally, you terminate a single-precision integer by
one of the following operators or terminals:
Operators: B

Terminals: ©

L

Note the following exception. The bit shift operator B
will be interpreted as a digit if the radix is 12 or greater.
To force the assembler to interpret B as a bit operator,
use the backarrow («—) convention. This breaks the
number string and is then ignored. The foliowing
example illustrates this. As usual, the left column
indicates the storage word, the right column the source
line (as in an assembly listing).

000020
025423 02B13

+RDX 16
3B represents digit
311 (2B13225423 octal).

000010 02_B13 B represents bit shift

joperator,

current radix while another is given in radix 10 by the
decimal point convention. Some assembled
expressions which use single-precision integers of
different radixes are shown below.

000002
000012

+RDX 2
101+101

000010
000202

«RDX 8
101+104

¢coo01e
000312

«ROX 1¢
101+101

000020
001002

+«RDX 16
101+101

Special Formats of Single-Precision Integers

There is a special input format that converts a single
ASCII character to its single-precision 7-bit octal value.
The input format is:

X

a
where: a represents any ASCII character except
line feed (0125), rubout (177;) or nuli
(000).
093-000081-05

Licensed Material - Property of Data General Corporation

Only the single ASCII character immediately following
the quotation mark is interpreted. The ASCII
characters null, line feed, and rubout are invisible to
the assembler, and cannot be input with this format.
All other ASCII characters can be converted to
single-precision integers:

000101
000065
000045
000100

YA
"S
"%
"3

The format can aiso be used as an operand within an
expression.

000103 "A+2
000026 "B/3
177751 "xe"p

In every case, “) assembles an octal 15 and also
terminates the line. An “‘aformat character is packed
this way:

15

A second format, which uses apostrophes, can convert
up to two ASCII characters to a single-precision integer.
The format is:
“string”’ or “string”’)

string consists of any number of ASCII
characters; oniy the first two characters
will generate a 16-bit value.

where:

String characters, unlike an ‘‘a character, are packed
left to right in the word:

0 A 0 B
0 789 15
0 A 0
0 8 15

Two apostrophes without an intervening character will
generate a word containing absolute (as opposed to
relocatable) zero.

093-000081-05

2-5

DataGeneral

SOFTWARE DOCUMENTATION

You may use special formats wherever integers are
allowed. Some simple expressions using the string
format follow:

040502
041101
020040
000003
041005
020101
040S01

OABO
OBAO
.)
"'5.2
‘B’+S
L4 A.
"ALCAC

A return entered before the second apostrophe
terminates the “string”’format. For example:

006400 *
040415 ‘A
040502 “AB

Double-Precision Integer Representation

A double-precision integer has the following source
format:

{[+]

3 } d/dd...d] []D break
where:

each d is a digit within the current radix.
The initial d must be in the range 0-9.

The character D before the break character
indicates a double-precision integer.
The optional decimal point tells the
assembler that the integer is decimal.

break is a terminal character (typically O or
; or)) that indicates the end of the
integer.

An operator may not terminate a doublé-precision
integer; if it does, a format error (F) will result.

The radix of a double-precision integer may be in the
range 2 - 20. If the radix is greater than or equal to 14,
the letter D will be interpreted as a digit. To force the
assembler to interpret D as indicating double-precision,
use the — (backarrow) convention:

000020 LRDX 16 o
0004SS 12D iD represents digit
313 (decimal),
000000 2.0 il2 is a doubleeprece
000022 Jisfion integer,
Atoms

DataGeneral

SOFTWARE DOCUMENTATION

On some consoles, you enter the backarrow as a
shift-O.

Some assembled data statements which contain
double-precision integers are:

000010 LRDX 8
000000 1D
000001

177777 =10
177777

000001 2000000
000000

000004 262147,D
000003

00000f 100000,D
103240

Single-Precision Floating-Point Constants

Much of the floating-point number format is optional.
The minimal format of a floating-point number is one
digit in the range 0 to 9, followed by either a decimal
point or the letter E (exponent), followed by one digit
in the range 0 to 9. The minimal floating-point format
is:

dz E}dbreak

where: dis a digit in the range 0 - 9.

A single-precision floating-point number is represented
in source format as:

{+lald.al ald.d] (EL] *] dlay

3ir§d [d..d]E{ ‘f’}d [d] break

where: each dis a digit 0 to 9. The mantissa and
exponent are always converted in decimal

(e.g.,2E9 = >2*10°.

One or two digits may represent an
exponent following the letter E.

break is typically one of the terminals: O or
;or)

Licensed Material - Property of Data General Corporation

You can format the same floating-point number with
the letter E, the decimal point. or both as shown below:

041376 254,33
0s2172

041376 254,33E0
052172

041376 25433E-02
0s2172

041376 25433Ew2
052172

041376 2543,3E-1
052172

If the current radix is 15 or larger, the assembler will
interpret the letter E preceding number as an integer in
the current radix rather than as a floating-point
number. To avoid this ambiguity, use the —
convention (backarrow, ASCII 137); for example:

000020 LRDX 16 .

155035 =2S5E3 E is hex 14,
142141 =25_E3 ;E indicates
124000 ifloating point.,

Examples of floating point constants in source
statements, with resulting stored values, follow.

000010 LRDX 8
00000 040420 1,0 iNote
000000 ilocation
jeounter.
00002 040462 3,14159
041763
00004 140420 <~1EO
000000
00006 040200 +S,0E-1
000000
00010 041421 +273,0E0
010000
093-000081-05

Licensed Material - Property of Data General Corporation

Examples of Numbers

Some additional source program numbers and their
assembled values follow.

000020 LRDX 16]
053175 567D iHex singleeprece
iision integer,
000000 5S67.D jHex doubleeprec=
002547 iison integer,
001067 567, ;Decimal single-
jprecison integer,
000000 S67..D ;Decimal double~-
001067 iprecison integer,
002547 567 iHex single-
iprecision integer,
005316 S67_Bl4 jHex gingle= N
iprecision int, bit
ishifted one bit,
012634 S67_B13 iHex singlevprec-
jiision integer, Dit
ishifted two bits,
042026 S67_El ;Floating=point
023000 jconstant (decimal),

Symbols

A primary function of the assembler is the recognition
and interpretation of symbols. Symbols may direct the
action of the assembler or they may represent numeric
values. The various classes of symbols will will be
discussed in Chapter 3. Their source representation is
given below:

a [b...b] break

where: a can be one of the characters A through Zor .
or ?.

b can be one of the characters A through Z, or 0
through 9 or . or ? or _ (underscore).

break is any character not rated above; e.g.,
space, comma, etc.

By default, MAC recognizes only the first five
characters before the break character, although it prints
more than five on listings. You can specify
eight-character symbols with the MAC global /T switch

(described in Chapter 6), which produces an extended

(as opposed to a standard) RB file.

Special Characters

The characters @, # , and **are transparent during an
assembly line scan. These atoms affect a line after it has
been scanned. See the appropriate reference manual for
your computer for more on @ and # .

093-000081-05 2-7

DataGeneral

SOFTWARE DOCUMENTATION

Other special characters are a set of square brackets
surrounding a symbol (e.g., [MYSYM]), a dollar sign
in a macro definition (e.g., TR$=), and a backslash
followed by a symbol (e.g., \ ONES). See the . GOTO
pseudo-op (Chapter 4) and Chapter 5 for more on
these atoms.

@

Commercial AT Sign

In a source program line of memory reference
instruction (MR, in an extended memory reference
instruction, or beforc an cxpression, a commercial
“at” sign (@) (or a series of @ signs) will set bits in the
following ways:

1. When the rest of the MRI has been evaluated, an @
sign anywhere in the instruction stores a 1 in bit 5. In
the MRI format, bit 5 is the indirect addressing bit.

020020
022020

LDA 0, 20
LDA 0, @ 20

2. In the data word format, bit 0 is the indirect
addressing bit. When the expression has been
evaluated, an @ sign sets bit zero of the word to 1.

000025 25
100025 @25

3. An @ sign in an extended memory instruction sets
bit 0 in the second word of the instruction.

00000 103470 EJMP
008000 N

ooeoe 103470 EJVP @ @, 3
190000

e, 3

#
Number Sign

A number sign (#) may appear in an ALC instruction.
When the rest of the ALC has been evaluated, #
causes the assembler to store a 1 in bit 12, the no-load
bit.

\

00000 101123 mMovzL 2, 2, SNC

oo001 101133 mMovzZL # @, @, SNC

Special Characters

DataGeneral

SOFTWARE DOCUMENTATION

%k %k

Asterisks
Two consecutive asterisks (**) at the start of a source
program line will suppress the listing of that line.

:Source program:

LDA 0, 0, 2
*x LDA 1, 1, 2
LOA 0, 0, 3
«END
iListing:
00000 021000 LDA 0, 0, 2
00002 021400 LDA 0, 0, 3
+END

Licensed Material - Property of Data General Corporation

Note that the relative location numbers jump from ‘0"’
to “‘02” since all lines of source are assembled but the
second source line is not listed.

*% ,NOLOC 0

x*x PASSWORD: 012345

End of Chapter

2-8

093-000081-05

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 3
Syntax

Expressions

An expression has the format:
[operand,] operator operand.

where: operator is a Macroassembler operator.

operand; and operand, may be single-precision
integers, or symbols, or expressions evaluated to
single-precision integers. An operand must precede
each operator, except for the unary operators + and -.
Either unary operator may follow an operator or
precede an expression. Note that spaces are not allowed
in expressions.

Operators
The Macroassembler operators are:

Operator Meaning
B Bit alignment
+ Addition, e.g. (2 + 3), or

unary plus, e.g., (+ 3)

- Subtraction, e.g., (5-2), or
unary minus, e.g., (-7)

Arithmetic/J

Logical Multiplication

/ Division

Logical AND. The result in
a given bit position is 1 only
if operand, = 1 and
operand, = 1.

! Inclusive OR. The result in
a given bit position is 1 if
either or both operands is
1.

093-000081-05

Operator Meaning

I
it

Equal to

A

Not equal to

Less than or equal to
Relational q

Less than

Greater than or equal to

vV V. A A

Greater than

More than one type of operator may appear in an
expression. Operators are evaluated in the order of
their priority:

Operator Priority Level

B 1 (highest priority)
+-*/&! 2

< <= > >= == <> 3 (lowest priority)

When operators are of equal priority, they are
evaluated from left to right. Parentheses can be used to
alter priority; an expression in parentheses is evaluated
first. Expressions are evaluated with no check for
overflow. An expression containing one of the
operators

< <= > >= == <>

Expressions

DataGeneral

SOFTWARE DOCUMENTATION

is a relational expression. It evaluates either to absolute
zero (false) or absolute one (true). These values are
called **absolute’’ because they are not relocatable.

Examples:
000010 LRDX 8
000025 A=2S
177763 Bz=15 ‘
000000 == ;False (0) since A
jdoesn’t equal B,
000001 A<>B iTrue (1) since
;A doesn’t equal B,
000001 A#B-10==A7(2*10*5) iTrue,

isince 020,

000001 ==(=B)+10 iTrue,
isince 25325,
000000 ss(-B)J&A ;False, since

AND of (=B) and
A doesn’t equal A,

Bit Alignment Operator

When the bit alignment operator is used, operand,
preceding operator Bis the value to be aligned; operand,
following operator B represents the right-most bit to
which operand, is aligned. The value of operand, has the
range

0 < operand> < 1549

The following formula determines the result of a bit
alignment operator:

for operand, B operand,, the resultant value will be
operand; *2**(15. -operand,)

where: operand, is implicitly evaluated in decimal
unless parentheses are used; e.g.,

.RDX 8
1B15=000001

18(1 5):(\!\{\(\{'\4

vuUuuUuUuv

3-2

Licensed Material - Property of Data General Corporation

The B operator can be misread as a symbol or part of a
symbol. If the operand preceding the operator is a
symbol, the operand must be enclosed in parentheses
to avoid this misinterpretation. Some examples of bit
alignment operations are:

P0@02S A=25 ;The radix is 8,

160000 (A)BO ;The rightemost bit
iof 25 is in bit pos~
jition @== the rest
jiof "25" is lost,

124800 (A)BY4 ;The right=most bit
jof 25 is in bit
tposition 4,

212408 (A)B7 ;Here, in pcs. 7,

820124 (A)B13 ;And so on,

Gege2s (A)B1S

N ge@eee (A)Bl16 jNote N error=-there

}is no bit 16,

Parentheses around operand, and operand, will ensure
that the correct value is aligned properly. Parentheses
affect operands as shown below.

000025 Ase2S

000010 C€=10 _
"B(34C)" means "align at
713 octal, 11 decimal,

bit number

000640 (A=C)*2B(3+4C) 332 octal is _
ialigned at bit 11

000640 (A=Cx2)B(3+C) iSame,

177425 A=(C*2)B(3+4C) ;(Cx2)B(3+C)
iequals 400, 25-400
jequals 17742S.

000640 A=C#2B(3+C) i32 octel is

;aligned at bit 11,

Examples of Expressions

Some examples of expression evaluation are:

000025 A=2S

000015 B=1S

000010 Ax(B=10)/B ;In decimal,
7105/13=8-=dfiscard
iremainder in {nteger
jarithmetycy

000015 A8B/AlB ;A&B=S, S/1530, 0!B=8B,
;0.E.D,

000001 (A=10)s=B ;True (1) since 15215+

000016 A/B¢B :25/715=1, 1+15=16,

000000 ABB/(A!B) ;5/35s0,

000001 ((B/A)+5)>0 ;15/25=0, 0+S >0,
jthus true (1),

093-000081-05

Licensed Material - Property of Data General Corporation

Relocation Properties of Expressions

Each operand in an expression has a relocation
property. The relocation property of the expression’s
result depends upon the relocation properties of its
operands. Thus far in this manual, expressions have
had absolute operands which produced absolute
results.

A value, however, may have one of five properties.
These are:

absoiuie

page zero (ZREL) relocatable

page zero (ZREL) byte-relocatable

NREL code

NREL code, byte-relocatable

RLDR makes a relocatable value absolute by adding a
relocation constant (called ¢) during the loading
procedure. The relocation constant is added once if the
value is word relocatable, and twice if the value is

doubly-relocatable (byte-relocatable).

You cannot use certain relocatable operands (such as

ZREL and normal relocatable) together in one
expression. However, some mixing of similar
relocation properties is permitted. The relocation

properties of operands and the relocation value of the
results are listed below. In the list,

a represents an absoiute vaiue

r represents a relocatable value (either ZREL or
NREL code)

2r represents a byte-relocatable value (either
ZREL or NREL code)

kr represents a relocatable value that can be

converted to an absolute value by addition of a
relocation constant, ‘‘c’’, k times. However, if
the final value of an expression is k-relocatable,
the statement is flagged with a relocation error
(R).

NOTE: In the following list, the & and ! operators
indicate logical AND and inclusive OR,

respectively.

093-000081-05 3-3

DataGeneral

SOFTWARE DOCUMENTATION

Expression Relocation
ata a
a+r r
r+r 2r
nr+mr (n+m)r
a-a a
r-a T
a-r -Ir
r-r a
nr-mr (n-m)r
a*a a
a*r ar
r*r lllegal
ala a
kr/a (k/a)r (only if k/a yields no
remainder)
alr lilegal
a&a a
ala a
r&r Hlegal
a&r Ilegal
r'r lllegal
alr IHlegal

All expressions involving the operators < = < > =

== or < > result in an absolute value of either
zero (false) or one (true). When operands in these
expressions have different relocation properties, all
comparisons will result in a value of absolute zero
(false) except when the operator is < > (not equal to).

Given these rules, expressions that result in a value of
“a’, “r’’, or “*2r” are legal. Expressions that do not
evaluate to a legal relocation property will be flagged as

relocation errors (R).
The example below shows the relocation properties of

expressions; the assembler cross-reference showing
the relocation properties of each symbol is included.

Expressions

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

000002 A=2
«NREL
00000°000020° .+20 sNormal relocatable,
;
000017000000 R: O iR’s address is relocatable, but {ts contents
saren’t, thus no final ‘.,
000002° S= R+l ;Relocatable=Operator=Absolute is relocatable,
;
00002°000001 A/A ;Absolute=Operstor-Absolute is Absolute,
H
00003°000002" RtR ;Reloc=Operator-Reloc is Byte=Relocatable,
;
00004°177777° ReA jReloc=Oper~Absolute i{s Relocatable,
H
00005°000001 SeR jReloc~Oper~Reloc is Absolute,
;
R00006°000000° AR ;Operators & and | require absolute
joperands,
+END
0002 MAIN
A 000002 1701 1707 1709 1711
R 000001° 1704 1706 1/08 1/09 1710 1/11
S 000002° 1706 1710
Symbols If a symbol could be either a pseudo-op or a value, the
. assembler recognizes the intended use by the symbol’s
The macroassembler recognizes three classes of

symbols:

1. Permanent

2.‘ Semipermanent
3. User

To understand the assembly process, you must
understand the difference between these classes.

Permanent Symbols

Permanent symbols are defined within the assembler
and cannot be altered in any way. These symbols serve
two purposes: 1) they direct the assembly process; and,
2) they represent numeric values of internal assembler
variables.

Symbols which direct the assembly process are called
pseudo-ops. Among other purposes, pseudo-ops set
the input radix for numeric conversions, set the
location counter mode, and assemble ASCII text.
Chapter 4 describes pseudo-ops in detail.

Other permanent symbols represent numeric values of
internal assembler variables. For example, the symbol
.PASS represents the current pass number. On the first
assembly pass its value is 0, while on the second its
value is 1. "

3-4

position in a line. If the first atom of a line is a
pseudo-op, it directs the assembler. If the pseudo-op
atom occurs anywhere else in the line, it represents a
value. A few examples will illustrate these rules.

The assembler pseudo-op . TXTM directs the packing of
text bytes within a word. The two methods are
left/right and right/left. The directive takes the form:
.TXTM expression

If expression evaluates to zero (the default mode), bytes
are packed right/left. If expression evaluates to nonzero,
bytes are packed left/right.

Example 1

The line

TIXTM 1)

directs the assembler to pack bytes left/right.

Example 2

When enclosed in parentheses,

(TXTM))

assembles a storage word, which contains the value of

the last expression used to set the text mode.

093-000081-05

Licensed Material - Property of Data General Corporation

Example 3
in the following usage:

JIXTMA
+.TXTM+4

000001
00000 000005

The first line sets text mode to pack left/right while the
second line generates a storage word containing
absolute (nonrelocatable) 5. (Note that the first atom
of the second line is +.)

Appendix B lists all permanent symbols and Chapter 4
describes each one. These symbols must be used as
described in this document; they cannot be redefined.
Permanent symbols will never be printed in the
cross-reference listing.

Semipermanent Symbols

Semipermanent symbols form a very important class of
symbols usually thought of as operation codes. Symbols
may be defined as semipermanent with appropriate
pseudo-ops; these symbols imply future syntax
analysis. For example, a symbol may be defined as
‘“‘requiring an accumulator’’. This symbol will cause the
assembler to scan for an expression following the
symbol. If no expression is found, a format error
results. If found, the value of the expression sets the
accumulator field bit positions to given a 16-bit
instruction value. Instruction values are discussed in
Instructions later in this chapter.

Semipermanent symbols can be saved and used,
without redefinition, for all subsequent assemblies.
The DGC assembler contains a number of
semipermanent symbols defined specifically for the
DGC instruction set. You can eliminate these symbols
and define your own set, or you can add to the given set
(see Chapter 6).

093-000081-05 3-5

DataGeneral

SOFTWARE DOCUMENTATION

Semipermanent symbols are not printed in the
cross-reference listing unless enabled by the global /A
switch {(Chapter 6).

User Symbols

You can define any symbol that does not conflict with
permanent or semipermanent symbols. User symbols
serve many purposes: to symbolically name a location,
to assign a numeric parameter to a symbol, to name
external values, to define giobai vaiues, and so on.
These user symbols are maintained during assembly in
a disk file table that is printed after the assembly source
listing.

.User symbols can be further classified as local or global.

Local symbols have a value which is known only for the
duration of the single assembly in which they are
defined. The value of global symbols is known at load
time, and thus they may be used for intermodule
communication. The assembler always includes global
symbols in its RB output; you can instruct it to include
local symbols in the RB via the global /U switch
(Chapter 6).

By default, MAC recognizes only the first five
characters in any user symbol, although it prints longer
symbol names on the program listing. The
cross-reference listing al/ways shows only the first five
characters of a symbol. You can specify eight-character
symbols with the global /T switch in the MAC
command; this also produces an extended (as opposed
to a standard) RB file. See Chapter 6, global /T switch,
for more detail.

Instructions

DataGeneral

SOFTWARE DOCUMENTATION

Instructions

An instruction is the assembly of one or more fields,
initiated by a semipermanent symbol (called the
“‘instruction mnemonic’’) to form a 16-bit or 32-bit
value.

Fields in an instruction must conform in number and
type to the requirements of the semipermanent
symbol; they can be separated by a space, comma, or
tab.

Data General computers recognize a number of
instruction types. Each type has a pseudo-op and its
own group of semipermanent symbols. These
pseudo-ops are described in Chapter 4.

Instructions marked with an asterisk (*)
can be assembled on any machine, but will
execute on ECLIPSE computers only.

NOTE:

Instructions fall into the following types:

Instruction Type Defining
Pseudo-op

Arithmetic and Logical (ALC). (e.g., .DALC

ADD)

*Extended ALC - 2 accumulators, no .DISD

skip (e.g., IOR)

*Extended ALC - 2 accumulators, skip .DISS

(e.g., SGT)

1/0 without Accumulator (e.g., .DIO

SKION)

/0 with Accumulator (e.g., DIA) .DIOA

Licensed Material - Property of Data General Corporation

i Defining
1
nstruction Type Pseudo-op
1/0 without Device Code (e.g., RPT) .DIAC
Memory Reference (e.g., JIMP) .DMR
*Extended Memory Reference (e.g., .DEMR
EJMP)
Memory Reference with Accumulator .DMRA
(e.g.,LDA)
*Extended Memory Reference with .DERA
Accumulator (e.g., ELDA)
*Commercial Memory Reference (e.g., .DCMR
ELDB)
Count and Accumulator (e.g., ADI) .DICD
*Extended Immediate (e.g., ADDI) .DIMM
*Extended Memory without Argument .DEUR
Fields (e.g., SAVE)
*Extended Memory Operation (e.g., .DXOP
XOP)
*Floating-Point Load/Store (e.g., .DFLM
FLDS)
*Floating-Point Load/Store, no .DFLS
accumulator (e.g., FLST)
Define a User Symbol as .DUSR

Semipermanent without Argument

+ Fields

3-6 093-000081-05

Licensed Material - Property of Data General Corporation

Arithmetic and Logical (ALC) Instructions

An arithmetic and logical (ALC) instruction is implied
by one of the following instruction mnemonics:

COM MOV ADC ADD
NEG INC SUB AND

The format of the source program instruction is:
alc-mnemonic /c/[s/Csource-acOdest-ac [Oskip/

¢ aic-mnemonic is one of ihe eight semiper-
t symbols listed above.

¢is an optional carry mnemonic (Z, O, or C).

sis an optional shift mnemonic (S,L, or R).

DataGeneral

SOFTWARE DOCUMENTATION

destination-ac specifies the destination accumu-
lator - 0,1, 2, or 3.

skip is an optional skip mnemonic SNR, SZR,
SNC, SEC, SKP, SBN, or SEZ.

In addition, the atom # (number sign) can be specified
anywhere in the source line as a break character. This
atom assembles a 1 at bit 12, the no-load bit, and this
prevents the destination-ac from being loaded and
leaves the carry unchanged.

Figure 3-1 shows each assembled ALC instruction, its
bit pattern, and the effect of the instruction, shft, carry,
and skip mnemonics.

Examples of ALC instructions follow.

) 107000 ADD 0, 1
source-ac specifies the source accumulator - 112412 SuB # o0, 2, S2C
0,1,2,0r 3. 146000 ADC 2, 1
101123 MOVZL 0, 0, SNC
120014 COM # 1, 0 SZR
- imation- ALC . no .
1 source-ac destination-ac mnemonic shift carry load skip
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ALC Bits Carry Bits
Mne. 567 [Effect Mne. 1011 Effect
COM 000 Places logical complement of C Z 01 Sets Carry to zero
(source-ac) in destination-ac
(6] 10 Sets Carry to one
NEG 001 Places negative of C (source-ac) in
destination-ac C 11 Complements current state of Carry
MOV 010 MovesC (source-ac) to destination-ac Skip Bits
Mne. 131415 Effect
INC 011 Places C (source-ac) + lin
destination-ac SKP 001 Skips next sequential word
(NSW) unconditionally
ADC 100 Adds logical complement of C
(source-ac) to C (destination-ac) SZC 010 Skips NSW on zero Carry
SUB 101 Substracts C (source-ac) from C SNC 011 Skips NSW on nonzero Carry
(destination-ac)
SZR 100 Skips NSW on zero result
ADD 110 Places sum of C (source-ac)and C
(destination-ac) in destination-ac SNR 101 Skips NSW on nonzero result
AND 111 Placeslogical AND of C (source-ac) SEZ 110 Skips NSW on zero Carry or
with C (destination-ac) in destination-ac result
Shift Bits SBN 111 Skips NSWon zero Carry and
Mne. 89 Effect result
L 01 Shifts word left one bit
R 10 Shifts word right one bit See appropriate programmer's reference manual, for
your computer, for more information on the effect of
S 11 Swaps bytes of words these instructions on the Carry bit.
SD-00639

093-000081-05

Figure 3-1. Assembly of ALC Instruction

3-7

Instructions

DataGeneral

SOFTWARE DOCUMENTATION

1/0 Instructions without Accumulator

An input/output instruction without an accumulator
tield is implied by one of the following instruction
mNemonics;

NIO SKPBN SKPDN

SKPBZ SKPDZ
The format of the source program instruction is:

io-mnemonic /busy/done] Odevice-code

Licensed Material - Property of Data General Corporation

device-code is any legal expression
evaluating to an integer specifies a device.

Figure 3-2 shows each assembled I/0 instruction, its bit
pattern, the effect of the instruction and Busy/Done
mnemonics.

Examples of 1/0 Instructions without an accumulato:
follow:

where: io-mnemonic is one of the five gzgiig :igg lsTR
mipermanent symbols listed above.
semipermanent sy 060177 NIOS CPU
. . . 060177 NIOS 77
busyldone is an optional Busy/Done bit
mnemonic (NIO instruction only).
0 1 1 o] 0 170-mnemonic Busy/Done device-code
0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1’0 Bits The following Busy/Done mnemonics can be appended
Mne. 56789 Effect only to the NIO instruction.
NIO 00000 No operation Busy/Done Bits
Mne. 89 Effect
SKPBN 11100 Skips next sequential
word (NSW) if Busy is 1 S 01 Clears Done and sets Busy, starting
device (If device = 77 or CPU, sets
SKPBZ 11101 Skips NSW if Busy is 0 Interrupt On Flag)
SKPDN 11110 Skips NSW if Done is 1 C 10 Clears Done and Busy, idling device
(If device = 77 or CPU, clears
SKPDZ 11111 Skips NSW if Done is 0 Interrupt On flag)
P 11 Sets Done and Busy, pulsing 1/0
bus control line (If device = 77 or
CPU, has no effect)
SD-00640

Figure 3-2. Assembly of an 1/O Instruction without Accumulator

3-8 093-000081-05

Licensed Material - Property of Data General Corporation

1/0 Instructions with Accumulator

An input/output instruction with an accumulator field
is implied by one of the following instruction
mnemonics:

DIA DIB DIC
DOA DOB DOC

The format of the source program instruction is:

ioa-mnemonic [busy/done] Dac Oidevice-code

DataGeneral

SOFTWARE DOCUMENTATION

device-code is any legal expression
evaluating to an integer that specifies a
device.

Figure 3-3 shows each assembled I/0 instruction, its bit
pattern, and the effect of the instruction and
Busy/Done mnemonics.

v"hcrcz ioa-mnemonic is one Of the Sl)\ E,\dmples Of I/O !nSf.ructlonS With an aCCumulatO! fle!d
semipermanent symbols listed above. follow:
busy/donq is an optional Busy/Done bu 074477 DIA 3, CPU
mnemonic. 070512 DIAS 2, PTR
063077 ©0DOC 0, 77
ac is a 0, 1, 2, or 3, indicating the
accumulator to receive or supply the data.
o] 1 1 ac 10A . Busy/Done device-code
mnemonic
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I0A Bits Busy/Done Bits
Mne. 567 Effect Mne. 89 Effect
DIA 001 Inputs data in device’s buffer A to AC S 01 Clears Done and sets Busy, starting
device (If device = 77 or CPU, sets
DOA 010 Outputsdatain AC to device's buffer A Interrupt On flag)
DiB Cii Inputs data in device’s buffer B io AC C i 0 Ciears Done and Busy, idiing device
(If device = 77 or CPU, clears
DOB 100 Outputsdatain AC to device's buffer B Interrupt On flag)
DIC 101 Inputs data in device’s buffer C to AC P 11 Sets Done and Busy, pulsing 1/0
bus control line (If device = 77 or
DOC 110 Outputsdatain AC to device's buffer C CPU, has no effect)
SD-00641 . . .
Figure 3-3. Assembly of 1/O Instructions with Accumulator

093-000081-05

3-9

Instructions

DataGeneral

SOFTWARE DOCUMENTATION

1/0 Instructions without Device Code

Three common I/0 instructions are defined with the
CPU device code. These instructions require an
accumulator field but have no device code field:

READS INTA MSKO HALTA (ECLIPSE only)
The format of the source program instruction is:
iac-mnemonic Oac

iac-mnemonic is one of the four

semipermanent symbols listed above.

where:

ac specifies which accumulator will receive
or supply the data-0, 1, 2, or 3.

The following I/0 instructions are equivalent.

1/0 Instruction

Equivalent Instruction
Without Device ‘

Code

READS accumulator DIA accumulator, CPU
INTA accumulator DIB accumulator, CPU
MSKO accumulator DOB accumulator, CPU
HALTA accumulator ~ DOC accumulator, CPU

Figure 3-4 shows each assembled I/0 instruction, its bit
pattern, and the effect of the instruction mnemonics.

Examples of I/0 instructions without a device code
follow:

Licensed Material - Property of Data General Corporation

1/0 Instructions without Argument Fields

Four common I/0 instructions are defined as
semipermanent symbols that require no argument
field:
IORST INTEN INTDS HALT

The equivalent 1/0 instruction and effect of both
instructions follow:

170 Equivalent Octal Effect

Instruction Instruction Value

Without

Argument

I0RST DICCO,CPU 062677 Clearalll/O
devices and
Interrupt On flag;
reset clock to line
frequency.

INTEN NIOS CPU 060177 Set Interrupt On
flag, enabling
interrupts.

INTDS NIOC CPU 060277 Clear Interrupt
On flag, disabling
interrupts.

HALT DOC 0,CPU 063077 Halt the
processor.

L F igure 3-5. Assembly 1/O Instructions without Argument -

Fields

074477 READS 3 ;Read console suitgh)]
ipositions into AC3, Examples of these instructions follow:
061477 INTA 0 ;Read interrupt device
icode into ACO, 062677 I0RST
062077 MSKO 0 ;Diseble interrupts 063077 HALT
ifrom devices not 060177 INTEN
imasked in ACO,
0 1 1 ac IAC 0 0 1 1 1 1 1 1
mnemonic
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IAC Bits
Mne. 567 Effect
READS 001 Reads contents of console data
switches into AC
INTA 011 Places device code of first device on
bus in bits 10 through 15 of AC,
acknowledging interrupt
MSKO 100 Sets Interrupt Disable flags in
devices according to mask in AC
SD-00642

Figure 3-4. Assembly of I/O Instructions without Device Code

3-10

093-000081-05

Licensed Material - Property of Data General Corporation

Memory Reference (MR) Instructions

MR Instructions without Accumulator

A memory reference (MR) instruction without an
accumulator field is implied by one of the following
. uction mnemonics:

JMP JSR ISZ DSz

The format of the source program instruction is:

or
mr-mnemonictldisplacementCmode
where:

mr-mnemonic is one of the four semipermanent
symbols listed above.

displacement is any legal expression evaluating to an
8-bit integer, ranging from -2005 through +1775.

modeis a0, 1, 2, or 3, indicating a mode for forming an
effective address (E). Mode 0 or 1 are implied by the

format; you do not specify either explicitly. Th.
assembler forms an effective address as follows:

Mode Formation of Effective Address (E)

9 Address equals displacement.

1 Address is based on the contents of location
counter:

E=CI(LC) +displacement
and, therefore

C(LC) -2005 < E < C(LC) + 1775
2 Address is based on the contents of AC2:

E=C(AC2)+displacement
and, therefore

C(AC2)-2005 < E < C(AC2) + 1774

3 Address is based on the contents of AC3:
E=C(AC3) +displacement
and, therefore

C(AC3)-200s < E < C(AC3)+ 177s

093-000081-05

3-11

DataGeneral

SOFTWARE DOCUMENTATION

aadress is any legal expression evaluating to an 8-bit
integer in one of the following ranges:

1. Page zero addressing: 0 through +377;. Addressing
is direct and E = address.

2. LC-relative addressing: C(LC)-2003 through
C(LC)+1775. Address is based on the contents of
the location counter and E=C(LC)+ address.

1in addition, you can insert the atom @ in the souice
line address field as a break character. This atom
assembles a 1 at bit 5, the indirect addressing bit. Thus,
the effective address in the instruction is a pointer to
another location, which may, in turn, contain an
indirect address.

If only address s specified, the assembler determines if
this address is in page zero (0 through 377;) or within
177s words of the location counter. If the address is in
page zero, bits 6 and 7 of the instruction word are set to
00 and the displacement field is set as follows:

1. If the address is absolute and fits in 8 bits, the
displacement field is set to address.

2. If the address is page zero relocatable (that is.
assembled with the .ZREL pseudo-op), the
displacement field is set to address with page zero
relocation, and the line is flagged with a dash (-) in
column 16 of the source program listing.

(78]

If the address is an external displacement (that is,
assembled with the .EXTD pseudo-op), the
displacement is set to the assembler .EXTD number
and the line is flagged with a $ in column 16 of the
source program listing. (The assembler assigns each
.EXTD a number, which RLDR uses to fill in the
value of the external.)

If address is within 177; words of the contents of the
location counter, bits 6 and 7 are set to 01 and
addressing is based on the current contents of the
location counter (as in addressing mode 1). The
displacement field of the instruction word is set to:

address- C(LC).
If address or the evaluation of displacement to an
address does not produce an effective address within

the appropriate range, an addressing error (A) is
reported.

Instructions

DataGeneral

SOFTWARE DOCUMENTATION

Figure 3-6 shows each assembled MR instruction, its
bit pattern and the effect of the instruction mnemonics.

Licensed Material - Property of Data General Corporation

Figure 3-7 illustrates how effective addresses are
formed.

Figure 3-6. Assembly of MR Instructions without Accumulator

6] 6] MR . 1 mode displacement
mnemonic
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MR Bits
Mne. 34 Effect
IMP 00 Jumps to effective address (loads
effective address into LC)
ISR 01 Jumps to subroutine at effective
address: loads C(LCY+ 1 into AC3
IS/ 10 Increments contents of effective
address: skips next sequential word
(NSW) if resultis zero
DS/ 11 Decrements contents of effective
address: skips NSW il result is zero
SD-00643

address in bits 8- 15
00inbits6 + 7

address =
0to 377
?

Displacement =
-200to +177

8D-00422

address =

C(LC)-200to

C(LC) + 177
?

A
ERROR

displacement in bits 8- 15
mode in bits €6 + 7

Yes

address - C(LC) in bits 8 - 15
O1inbits6 + 7

Figure 3-7. Formation of Effective Address for MR Instruction

3-12 093-000081-05

Licensed Material - Property of Data General Corporation

Examples of MR instructions with their assembled
addresses and values follow.

DataGeneral

SOFTWARE DOCUMENTATION

where:

mra-mnemonic is a semipermanent symbol: LDA or
STA.

010012 SORT1: ISZ STAK
014013 DSZ COUNT
. accumulator specifies the accumulator to receive or
004005 JSR PROC supply the data: 0, 1, 2, or 3.
L[]
. : displacement, mode, and address are the same as MR
054014 PROC:STA 3, SAV3 instructions without an accumulator field.
034014 LDA i, SAV3 The atom @ can be specified in the source line address
001400 JMP 0, 3 field as a break character. This atom assembles a 1 at bit
000000 STAK:0 5, the indirect addressing bit.
000400 COUNT:400
000000 SAV3: 0 Figure 3-8 shows each assembled MR instruction, its
bit pattern, and the effect of the instruction
. mnemonics.
MR Instructions with Accumulator
A memory reference (MR) instruction with an Examples of MR instructions follow.
gcc;.xmt:_lator field is m.lphed by one of the following 040064 STA 0, FB11
instruction mnemonics: 024063 LDA 1, FB10
046020 STA §, a20
LDA STA .
The format of the source program instruction is: 000000 FB10:0
000000 FB11:0
- icOacOdi Omode
mra-mnemonicCacOdisplacementOm ;Indexed MR exsmplest
or 035003 LDA 3, 3, 2
031002 LDA 2, 2, 2
mra-mnemonicOacCaddress 021425 LDA 0, TEMP, 3
000006 TEMP:6
o} MRA . ac i mode displacement
mnemonic
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 - 15
MRA Bits
Mne. 12 Effect
LDA 01 Loads contents of effective address in
AC
STA 10 Stores contents of AC in effective
address
SD-00659
Figure 3-8. Assembly of MR Instructions with Accumulator
093-000081-05 3-13 Instructions

DataGeneral

SOFTWARE DOCUMENTATION

ECLIPSE Instructions

MAC recognizes certain instructions which will execute
only on an ECLIPSE computer. The remainder of this
chapter describes these instructions. If your programs
will run on NOVAs only, skip to Chapter 4. The
ECLIPSE-only insructions are:

Extended Memory Instructions (defined by
pseudo-ops .DEMR and .DMRA)

EDSZ EISZ EJMP EJSR

ELDA ESTA ELEF

Commercial Instructions (defined by pseudo-op
.DCMR)

ELDB ESTB

Floating-Point Instructions (defined by pseudo-op
.DFLM and .DFLS)

You can code, assemble, and load these instructions on

any Data General computer but the resultant save file
will execute only on an ECLIPSE.

Extended MR Instructions

Extended memory instructions can reference any
memory location in a full 32K address space. The
extended memory instructions not requiring an
accumulator are:

EDSZ EISZ EJMP EJSR

Those requiring an accumulator are:

ELDAESTAELEF

There are two formats for extended memory reference
instructions: one specifies an index, the second
specifies no index. The first format is:

instruction [indirect] DidisplacementDindex for EDSZ,
etc.,

or

instructionCacO [findirect] Odisplacementdindex for
ELDA, etc.

The second format is:

instruction [indirect]/ address for EDSZ, etc.,

Licensed Material - Property of Data General Corporation

or
instruction ac [indirect] address for ELDA., etc.

where:

instruction is any extended memory reference

instruction.

(@) represents an indirect address
in the second word (bit zero) of this
instruction.

indirect

ac specifies accumulator 0, 1, 2 or 3. It
must be given for ELDA, ESTA, or
ELEF.

displacement represents a displacement in the

following ranges (r).

Index mode 0: 0<r<100,000g

Index modes 1, -40,000; <r<

2.3: 40,0004

represents an index field whose value
must be 0 0 (absolute addressing), 1
(PC relative), 2 (contents of AC2) or
3 (contents of AC3).

index

address may specify any word in the full 32K
address space.

Extended memory reference instructions require two
words of memory. The first word specifies the
instruction and index. The second specifies the

displacement and whether the instruction is indirect.

The first format is used with the specified mode of
indexing (0, 1, 2, or 3). When the second format is
used, the assembler attempts to form the correct index
mode and address representation. The assembled index
mode will always be either 0 or 1. Rules for determining
the assembled index mode in the second format are as
follows:

1. Mode is 1 if the current program counter and
addressed location have the same address type. The
addresses must be both NREL, both ZREL, or both
absolute.

2. Mode is 0 if the current program counter and the
addressed location do not have matching address
types.

3-14 093-000081-05

Licensed Material - Property of Data General Corporation

3. Mode is 1 if the addressed location is Cxteru&l to the
assembly. In this case, the assembler must make an
assumption about the ultimate relocation of the
destination symbol. The assembler assumes that the
resolved address of an EDSZ, EISZ, EIMP, EJSR,
ELDA, ESTA or ELEF will be determined by word
relocation, not byte relocation. Only if the object of
an ELEF is byte-relocatable could the assembler’s
assumption logically be false. In this case, force
absolute addressing by using the first format with an
index value of zero.

Commercial MR Instructions

There are two commercial memory reference

qte inna avtandad land huta /E B\ A Aviaadad
llloll U\tllUllO VALVIIULVU 1UGM UYLV J alu \./Al.\.;uu\.«u

store byte (ESTB). These instructions can reference
any eight-bit byte in a full 32K address space. These
instructions have the following formats:
comm’l-mnemonicOacOdisplacementOindex

or

comm’l-mnemonicCacCaddress

where: comm(ercia)l-mnemonic is
either ELDB or ESTB;

ac specifies accumulator 0, 1, 2
or 3 using any legal
expression.

displacement represents a displacement
that must range from

-37,777s through +37,7775,
or an from (0 through 7777,
if index equals 0).

index represents an index field
whose value must be 0
(absolute addressing), 1 (PC
relative), 2 (contents of
AC2), or 3 (contents of
AC3).

address may specify any word in a 32K

address space.

Each commercial extended MR instruction requires
two words of memory. The first word specifies the
insruction, accumulator field, and optional index; the
second specifies the displacement.

093-000081-05

3-15

DataGeneral

SOFTWARE DOCUMENTATION

Each of these insructions forms a bytepointer by either
taking the value specified by index (PC, AC2 or AC3),
multiplying it by 2, and adding the low-order 16 bits of
the result to the value specified by displacement or, if
absolute addressing is used, the bytepointer is simply
the displacement. The byte addressed by ths
bytepointer is placed in or stored from bits 8-15 of the
specified ac.

The resolved address of an ELDB or ESTB instruction
is assumed to be byte-reiocatabie. An exampie using a
commercial extended MR instruction is:
ELDB 1, ASC.A jlLoad ASCII
JA into ACH,
ino indexing,

TX:, TXT "AB"
ASC.A = TXx2
ASC.B = TXx2+}

Floating-Point Instructions

There are two general types of floating-point

instructions:

Those which use a displacement, and those which do
not, as follows.

instructionOfpac [indirect] displacement [index]

instruction is any floating-point instruction;
examples of those which use
displacements (first format) are
FLDD, FLDS, and FSTS. Examples
of those without displacements
(second format) are FLAS and

FFAS.

fpac is one of the four floating-point
accumulators: 0, 1, 2, or 3.

(@) specifies an indirect address in
the second word (bit 0) of the
instruction.

indirect

is a value used to calculate the
effective address (see below).

displacement

Instructions

DataGeneral

SOFTWARE DOCUMENTATION

index

used

is a value in bits 0 and 1, which the
assembler

to calculate the

effective address, as follows:

Index
Value

00

01

Effective Address
Determination

displacement is treated
as an unsigned
unsigned integer,
which is the address of
a word in memory.

displacement is treated
as a signed, two’s
complement number,
which the address of
the word containing the
displacement bits.

Licensed Material - Property of Data General Corporation

[index]

Index 2 or index 3 is
used as an index
register. The
displacement is treated
as a two’s complement
number which is added
to the contents of the
appropriate register to
provide a memory
address. The value of
the sum cannot exceed
0777775.

10,11

ac is one of the normal accumulators:
0,1,2o0r3.

Instructions of the first type (FLDS) require two words
of memory while instructions of the second form
(FLAS) require only one.

End of Chapter

3-16

093-000081-05

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 4
Pseudo-ops and Value Symbols

This chapter lists the Macroassembler pseudo-ops and
value symbols, both by category (below) and
alphabetically {(on ihe yeillow pages of this chapter).

The Macroassembler assembles a source program, and
RLDR processes it into the assembler. All pseudo-ops
are permanent, there is no pseudo-op or facility which
can change or delete them. Symbols defined by
pseudo-ops are semipermanent. That is, they can be
deleted (XPNGed), but ordinarily persist for the
duration of an assembly. Value Symbols contain values
during an assembly process. The value symbol
-ARGCT, for example, has the number of arguments
given in the most recent macro call.

Symbol Table Pseudo-ops

Symbol table pseudo-ops comprise the largest category
of pseudo-ops; they define machine instructions,
define user symbols, and expunge macro and symbol
definitions. Certain symbol table pseudo-ops define
instructions which will execute only on an ECLIPSE
computer, although you can code, assemble, and load

them on any Data General computer. These
pseudo-ops are:

.DCMR .DIAC

.DEMR .DICD

.DERA .DIMM

.DEUR .DXOP

.DFLM

.DFLS

093-000081-05

The symbol table pseudo-ops listed alphabetically are:

Pseudo-op Instruction

.DALC Define an ALC instruction or
expression.

.DCMR Define a commercial memory
reference instruction or expression.

.DEMR Define an extended memory reference
instruction or expression, without
accumulator.

.DERA Define an extended memory reference
instruction that requires an
accumulator.

.DEUR Define an extended user insruction or
expression.

.DFLM Define a floating-load or -store
instruction or expression that requires
an accumulator.

.DFLS Define a floating load or store
instruction or expression that requires
no accumulator.

.DIAC Define an instruction requiring an
accumulator.

.DICD Define a instruction requiring an

accumulator and a count.

Symbol Table Pseudo-ops

DataGeneral

SOFTWARE DOCUMENTATION

Pseudo-op Instruction

.DIMM Define an immediate-reference
instruction requiring an accumulator.

.DIO Define an I/0 instruction that does not
use an accumulator.

.DIOA Define an 1/0 instruction having two
required fields.

.DISD Define an instruction with source and
destination accumulators, no skip.

.DISS Define an instruction with source and
destination accumulators allowing skip.

.DMR Define a memory reference instruction
with displacement and index.

.DMRA Define a memory reference insruction
with two or three fields.

.DUSR Define a user symbol without implied
formatting.

.DXOP Define an instruction with source,
destination and operation fields.

XPNG Remove all semipermanent symbol

definitions and macros.

All symbol table pseudo-ops (except .DUSR and
.XPNG) name assembler instructions (such as LDA)
which are described in the appropriate programmer’s
reference manual for your computer. Parameter files
supplied by DGC employ these pseudo-ops to define
assembler instructions; these definitions reside in disk
file MAC.PS. MAC.PS is usually required for assembly
of source programs, and it is further described in
Chapter 6.

Symbol Table Pseudo-op Format
Symbol table pseudo-ops have the form:

instruction s
expression

pseudo-opliuser-symbol = ;
where:

pseudo-op is a symbol table pseudo-op;

user-symbol is a symbol chosen by the programmer;
instruction and expression are as defined in Chapter 3.
In symbol table pseudo-ops, a user symbol is

semipermanent; its value is the value of the instruction
or expression following the equals sign.

Licensed Material - Property of Data General Corporaticn

Excepting .DUSR and .XPNG. each symbol table
pseudo-op defines a certain type of instruction. After
definition, the semipermanent symbol must be used
with appropriate expressions. For example. the
pseudo-op .DALC defines a symbol that is an implied
arithmetic and logic mnemonic. Following the symbol
are expressions entered into bit fields that represent
the source and destination accumulators and the
optional skip field in an ALC instruction. The format
for .DALC definition of a symbol, and the format of
the symbol as it would later be used are:

{instruction)

.DALC user-symbol = :
expression)

user-symbol expry exprs lexpr; |

expr(ession);, exprlession)s,

expr(ession)s are stored:

where:

012345678 9101112131415

g /7 11111111/,
Y

v
T_f_expressiong
expression,

expression; _1
For example:

MULT4 = 103120
IMULTY {s defined as:
71=000=-011-001=010=000,

103120 ,DALC

127120 MULT4Y, 1, | MULTY must be used
iwith 2 expressions that evaluate
iwithin the 1imits of an ALC
iinstruction== 2 bits for esch AC.
iThe assembled instruction is:
312010~111-001-010=000

If the field cannot contain the value of the added
expression, an overflow error will occur. The field will
be unaltered.

«DALC MULTY = 123120
MULTY 4, 1 iNote overflow
ierror,

123120
o} 107120

If the field is not zero, the expression to be added must
evaluate to zero. otherwise, an overflow error will
occur.

123120 LDALC MULT4 = 123120
;Bits 12 not zeroed,

00002 127120 MULTY 1,1 iNo overflow=

00003 103120 MULT4 0,0 ;Also accept=

jable,

4-2 093-000081-05

Licensed Material - Property of Data General Corporation

If the expressions following a semipermanent symbol
do not fit the implied format, a format error {F) wiii
result.

103120 LDALC MULT4=123120

iMULTY requires 2, optione
ially 3, expressions,

FF MULT4, | }Format errors.

F00004 127121 MULT4, 1, 1, 1, 1

In summary, a symbol defined as semipermanent by a
symbol table pseudo-op must meet the following

conditions:

® As many expressions must follow the
semipermanent symbol as are required by the
implied format. Some formats permit optiona:
expressions as well as required expressions. If the
number of expressions following the semipermanent
symbol does not meet the requirements of the
implied format, a format error (F) will result.

® If an expression does not meet the requirements of
the field, i.e., if

expression > (2(supfield-width)-1)

the field is unaltered and an overflow error (Q)
results.

o If the field in which the expression is to be stored
does not equal zero, the expression must equal zero
(0). Otherwise, the field is unaltered, and an
overflow error (O) results.

A given user-symbol defined in one symbol table
pseudo-op may be redefined in another symbol table
pseudo-op. The last definition will be the one assigned
to user-symbol. A redefinition of a permanent symbol
will result in a multiple definition (M) error if the
global /M switch was used.

Location Counter Pseudo-ops

Location counter pseudo-ops are used to reserve a
block of memory locations and to specify a memory
location or class of relocatable locations.

Pseudo-op Instruction

.BLK Reserve a block of storage locations.

.LOC Set the current location counter.

.NREL Specify NREL code relocation.

.ZREL Specify page zero relocation.

093-000081-05 4-3

DataGeneral

SOFTWARE DOCUMENTATION

The symbol ““.” (period) has the value and relocation
properiy of the current iocation counter.

Intermodule Communication
Pseudo-ops

Intermodule communication pseudo-ops allow symbols
in one module to be referenced by modules after the
modules are bound together. These pseudo-ops work
by defining entries, external references and named and
unlabeled common areas for communications:

Pseudo-op Instruction

.COMM Reserve a named common area.

.CSIZ Reserve an unlabeled common area.

.ENT Define an entry.

.ENTO Define an overlay name.

.EXTD Define an external displacement
reference.

.EXTN Define an external normal reference.

EXTU Treat undefined symbols as external
displacements.

.GADD Add an expression value to an external
symbol.

.GLOC Reserve an absolute data block.

.GREF Add an expression value to an external

symbol without affecting the sign bit.

When a source file defines a symbol which other source
files will use, the defining file must declare this symbol
with .ENT or .COMM at its beginning. The other
source file(s) can then reference the defined symbol
with .EXTN or .EXTD pseudo-ops. Symbols named by
.ENT can be entry points, which can be called or
jumped to, or they can be data available to their
modules for external reference.

.ENTO identifies the number and node of an overlay so
that it can be referenced by name.

Intermodule Communication Pseudo-ops

DataGeneral

SOFTWARE DOCUMENTATION

Repetition and Conditional
Pseudo-ops

These pseudo-ops perform two different functions.
Source lines following the .DO pseudo-op are
assembled a specified number of times. Source lines
following conditional pseudo-ops will be assembled
based on the evaluation of an expression provided to
the pseudo-op. The following pseudo-ops are provided:

Pseudo-op Instruction

.DO Assemble the following source lines a
specified number of times.

.ENDC Define the end of a series of
conditional-assembly source lines.

.GOTO Suppress assembly of source lines
until the specified symbol is
encountered.

IFE Assemble only if expression equals
Zero.

IFG Assemble only if expression exceeds
Zero.

IFL Assemble only if expression is less
than zero.

JFN Assemble only if expression is

nonzero.

The .ENDC pseudo-op delimits source lines which are
to be assembled conditionally.

Macro Definition Pseudo-op and
Values

The .MACRO pseudo-op defines the start of a macro
definition, and names that macro. Macros are described
at length in Chapter 5.

Two symbol values are provided for use in macros:
ARGCT and MCALL. .ARGCT has as a value the
number of arguments specified by the most recent
macro call. MCALL indicates macro usage; its value is
1 if the macro in which it appears has been called
previously in ths assembly pass. Its value is zero if this
is the first call in the pass. Outside a macro call, the
value of MCALL is-1.

Licensed Material - Property of Data General Corporation

4-4

Stack Pseudo-ops and Values

The assembler maintains a last-in first-out stack onto
which you may save the value and relocation property
of any valid assembler expression. Expressions are
pushed onto this stack by the .PUSH pseudo-op; they
are removed from this stack by the .POP pseudo-op.

The .TOP pseudo-op returns the value and relocation
property of the expression most recently pushed onto
the stack.

Text String Pseudo-ops and Values

The assembler permits you to insert ASCII text strings
within source programs in a variety of ways. Characters
can have their most significant bit set to zero or one
unconditionally, or to even or odd parity. Even strings
can be terminated with two zero bytes or no zero byte;
strings with odd numbers of bytes are always
terminated with a single zero byte. The following string
management pseudo-ops are available:

Pseudo-op Instruction

TXT Set the leftmost bit to zero
unconditionally.

.TXTE Set the leftmost bit for even byte parity.

.TXTF Set the leftmost bit to one
unconditionally.

TXTM Set bytepacking to left/right or
right/left.

TXTN Terminate an even bytestring with no
zero bytes or two zero bytes.

TIXTO Set the leftmost bit for odd byte parity.

Enclosing the .TXTN pseudo-op with parentheses,
when it has no argument, returns the value of the most
recent . TXTN expression. Likewise, TXTM can return
the most recent . TXTM value.

093-000081-05

Licensed Material - Property of Data General Corporation

Listing Pseudo-ops and Values

The assembler provides several pseudo-ops to suppress
portions of output listings. By default, all source lines
are listed; this includes conditional areas, macro
expansions, and lines lacking a location field. The
following pseudo-ops can affect the listing of source
lines:

Pseudo-op Instruction

.EJEC Begin a new listing page.

.NOCON Omit or restore listing of conditional
source lines.

.NOLOC Inhibit the listing of source lines
lacking location fields.

.NOMAC Inhibit the lising of macro

expansions.

You can override any of the suppression pseudo-ops by
including the global /O switch in the MAC command
line; you can also suppress the listing of an assembly by
omitting the /L switch in the CLI command line.

Miscellaneous Pseudo-ops

These pseudo-ops perform miscellaneous assembly
functions.

The .REV pseudo-op can be used with an argument to
assign a numeric major and minor revision level to a
save file.

.RDX specifies the number base to be used in
evaluating all numeric expressions input to the
assembler. .RDXO defines the radix to be used for
numeric conversion output.

.COMM TASK can assign a number of tasks and 1/0
channels for the save file to use. At load time, you can
override the values specified with RLDR local
switches.

093-000081-05 4-5

DataGeneral

SOFTWARE DOCUMENTATION

.TITL assigns a name to an object module. .RB names a
relocatable binary file, and can be overridden by global
/B. .LMIT causes the partial loading of an assembled
binary file; loading of the remainder of the binary file
ceases when the entry which you specified as an
argument to .LMIT is detected.

The .PASS pseudo-op returns a value corresponding to
the current pass of the assembler, either 0 (pass 1) or 1
(pass 2). An explicit end-of-file can be established for
any source module by means of the . EOF pseudo-op. If
this pseudo-op is missing from a source module, the
system supplies an end-of-file for this module
automaticailly. The .END pseudo-op specifies the
end-of-file for the last module in the assembly. If you
omit .END, the system automatically supplies an
end-of-file. .END can also supply a starting address for
the program file. At least one module loaded into each
program file must specify a starting address with a
.END statement.

)

Current Location Counter

Value:

The symbol . (period) has the value and relocation
property of the current location counter.

Example(s):
«NREL
00000000003 3
000003° ,LOC ,+2
00003020010 LDA 0, 10

Miscellaneous Pseudo-ops

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
.ARGCT -BLK
Number of Most Recent Macro Reserve a Block of Storage
Arguments
Syntax:
Syntax: .BLK expression
.AARGCT
Purpose:
Value: This pseudo-op reserves a block of storage. expression

is the number of words to be reserved. The current

,ARGCT has as a value the number of actual) .. ;
location counter is incremented by expression.

arguments given in the most recent macro call. If the
symbol is used outside a macro, its value is -1.

Example(s):
Example(s):
<NREL

+NREL 9000@'0844403 STA 1, .F+l

+MACRO X 20001'040403 STA 2, .F+2

A x 'Ae

+ARGCT 90002'000004 .F3 «BLK 4

% 20006 '2020¢¥0 ,F13 e

X 4, S jMacro call has 200@7'002200 ,F2)
00000°000011 4+5 jtwo 8rgs.

00001°000002 <ARGCT

4-6 093-000081-05

Licensed Material - Property of Data General Corporation

.COMM

Reserve a Named Common Area

Syntax:
.COMM user-symbol expression

Purpose:

This pseudo-op reserves a named common area for
interprogram communication having the name
user-symbo! and the size in words as given by
expression. This area will be reserved by the first
routine loaded that declared the named user-symbol.
The area is reserved at NMAX, immediately above all
NREL code. Other programs bound with the defining
program can share a .COMMon area, provided that
they declare the same .COMMon size.

Since user-symbol is an entry in the program, it cannot
be redefined elsewhere in the program. You can
reference the user-symbol from other programs loaded
together by using .EXTN, .EXTD, .GLOC, or GADD

pseudo-ops.

.COMM TASK defines the number of tasks and 1/0
channels which the entire save file will need to execute.
You can also specify tasks and channels with local
switches in the RLDR command line - this switch
information overrides any .COMM TASK data.

093-000081-05 4-7

™ Vo | |
SOFTWARE DOCUMENTATION
.COMM TASK has the following format:
.COMM TASK,k¥400+c

where k is the number of tasks, and c is the number of
I/0 channels, in octal.

Example (COMM):

+TITL A
000100 LCOMM X, 100 3100 words for X,
000040 LCOMM Y, 40 340 for VY.
0000SC LCOMM Z; S¢ ;SO for 2,

«END

.TITL B
000100 LCOMM X, 100

+END

After loading, A and B would look like this when the
program executes:

NMAX
B
A
Z 1 50words
Y| 40words
X1 100 words
initial NMAX
0

.COMM

DataGeneral

SOFTWARE DOCUMENTATION

.CSI1Z
Specify an Unlabeled Common Area

Syntax:
.CSIZ expression

Purpose:

This pseudo-op specifies the size in words of an
unlabeied common area for interprogram
communication.

The assembler evaluates expression and passes this
value to the RLDR. More than one .CSIZ pseudo-op
may appear in a program; the RLDR uses the largest
value specified by all .CSIZ blocks.

4-8

Licensed Material - Property of Data General Corporation

Example(s):

LTITL A
.CS1Z 20

geeezo J2 eallots 2¢ woraos,

«ENC

STITL X

.CS12 S¢ ;X allots S¢ woros,

ceeese
JENC

After assembly, you issue the command:

RLDR A X)
A
X
NMAX 001037
ZMAX 000050
CSZE 000050

RLDR selects the largest .CSIZ value for USTCS(50).

093-000081-05

Licensed Material - Property of Data General Corporation

.DALC
Define ALC Instruction
Syntax:
.DALC user-symbol = |nstruct|.on
expression

Purpose:

The .DALC pseudo-op defines user-symboi as a
semipermanent symbol having the value of instruction
or expression. This symbol implies the format of an
ALC instruction. At least two fields, and optionally
three, are required. These fields are assembled as
shown below.

012345678 9101112131415

/, ///////J///
uexpressionz expression,

The format for user-symbolis:

user-symbol expression; exprz [expr; J)

Example(s):
. 103400 LDALC ADD = 103000
00021°103000 ADD 0, ©

00022°103002 ADD 0, 0, S2C
00023°133001 ADD 1, 2, SKP
FF ADD 1

093-000081-05 4-9

DataGeneral

SOFTWARE DOCUMENTATION

Notes:

You can insert the atom # before the arguments in the
source line to specify no loading of the destination
accumulator. If you use # in a source line without a
skip field, the assembler will return a “‘Q> error
(because such lines assemble as special ECLIPSE
instructions).

A given user-symbol defined in one .DALC pseudo-op
may be redefined in another .DALC pseudo-op The

last definition will be the one assigned to user-symboi.

If you use this pseudo-op to define a three-character
symbol which includes, or is followed immediately by,
the letters Z, O, C, L, R, or S (or any combination of
them), the Macroassembler will set bits 8-9 to 10-11 as

follows:

Mnemonic Bits8-9 Bits 10 - 11
L 01

R 10

S 11

Z 01

0] 10

C 11

.DALC

DataGeneral

SOFTWARE DOCUMENTATION

.DCMR
Define Commercial Memory Reference
Instruction
Syntax:
.DCMR user-symbol =) instruction
expression
Purpose:
This pseudo-op defines user-symbol as a
semipermanent extended commercial memory

reference symbol having the value of instruction or
expression. This symbol implies the format of an
instruction that requires an accumulator and
displacement, and permits an optional index. The fields
are assembled as shown below.

012345678 9101112131415
7 N
T t.index
accumulator
012345678 9101112131415

SN

displacement

L

4-10

icensed Material - Property of Data General Corporation

The format for using this ssmipermanent symbol is:

user-symbol displacement findex]/

Example(s):
000001 oTXTM 1
102170 DCMR ELDB=3102170
NREL
000000°112170 ELDB 2, ASC.A jGet "A"
001400" iin AcC2.
000002°112170 ELDB 2, ASC,B ;Get "B"

0o01401" iin AC2,

000600°041101 AI:PHA: «TXT "AB"
000000
001400" ASC.ASALPHAx2

001401" ASC.B = ALPHA*2+}

093-000081-05

Licensed Material - Property of Data General Corporation

.DEMR
Define Extended Memory Reference
Instruction

Syntax:

instruction
-DEMR user-symbol = | gxpression

Purpose:

This pseudo-op defines user-symbol as a
semipermanent extended memory reference symbol
and gives it the value of instruction or expression. This
symbol implies the format of an instruction that does
not require an accumulator. One field is required; an
index is optional. They are assembled as shown below.

01234567 8 9101112131415

Y
L index

012345678 9101112131415

SN \?\\\\\\

093-000081-05

DataGeneral

SOFTWARE DOCUMENTATION

The format for using the semipermanent symbol is:
user-symbol displacement [index/

The displacement and index fields are set according to
the format used and the set of addressing rules
described in Chapter 3.

Example(s):

.EXTN ADDR}, ADDR2, ADDR3
102070 .DEMR EJMP = 102070
«NREL

000007102070 EJMP ADDR1
077777

00002°102470 EJMP ,+3
000002

000004°103470 EJMP 2, .+3 ;There is no AC

4-11

000002
70000443,

000067103470 EJMP @TABLE, 3 3Go to either

100013°
. }ADDR1, ADDR3, or
. 3ADDR3, based on
. jvalue in AC3,
00617°077777 TABLE: ADDR1
00620°077777 ADDRZ
00621°077777 ADDR3

Note:

You can use the @ atom in the address field as a break
character, to specify indirect addressing.

.DEMR

DataGeneral

SOFTWARE DOCUMENTATION

.DERA
Define Extended Memory Reference
Instruction with Accumulator

Syntax:
.DERA user-symbol = 5 instructi,on }
Q expression

Purpose:

This pseudo-op defines user-symbol as a
semipermanent extended memory reference symbol
having the value of instruction or expression. This
symbol implies format of an instruction that requires an
accumulator. Two fields are required and index is
optional. They are assembled as shown.

01234567 8 9101112131415

L index
accumulator

1 2 34567 89101112131415

Akt E\\\\\\\

4-12

Licensed Material - Property of Data General Corporation

The format for using this semipermanent symbol is:
user-symbol ac displacement [index]
The displacement and index fields are set according to

the format used and the set of addressing rules
described in Chapter 3.

Note:

You can specify @ in the address field to specify
indirect addressing.

Example(s):

+TITL TESTY

122070 «DERA ELDA = 122070
« NREL

00034°133470 ELDA 2, ,+5, 3
000041°

000367122470 ELDA 0, ,+3
000002

00040°132470 ELDA 2, .+4
000003

FFO ELDA ,+3 ;AC needed,

093-000081-05

Licensed Material - Property of Data General Corporation

.DEUR

Define Extended User Instruction

Syntax:
instruction
.DEUR user-symbol = expression
Purpose:
This pseudo-op defines wuser-symbol as a

semipermanent extended symbol having the value of
instruction or expression. The expression can be either
an expression, an external normal, or a external
displacement. This symbol implies the format of a
instruction that does not require an accumulator. One
field is required and is assembled as shown.

012345678 9101112131415

2 34567 8 9101112131415

. N
T_ field

The format for using this semipermanent symbol is:

01

user-symbol expression

DataGeneral

SOFTWARE DOCUMENTATION

.DFLM
Define Floating Load or Store Instruction
Syntax:
.DFLM user-symbol = Instruction
expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent floating-point ioad or store memory
reference symbol having the value of instruction or
expression. This symbol implies the format of an
instruction that requires an accumulator. Two fields are
required and one is optional. They are assembled as
shown.

2 34567 8 9101112131415
7N\
1‘ Lﬁeld

index

01

01234567 8 9101112131415

oY T_\

The format for using ths semipermanent symbol is:

Example(s): user-symbol fpac displacement [index]
163710 LDEUR SAVE = 163710 11“\'101? tha; y0111(cla;n sptec1£y the ?Poﬂd@ 11t1 tctilcei: adc!ress
061777 "DEUR VCT = 061777 ield as a break character to specify indirect addressing.
NREL
JEXTN SYMB Example(s):
00042°163710 SAVE 4
000004 102050 JDFLM FLDS = 102050
00044°061777 VCT SYMB +NREL
077777 000467122050 FLDS 0, ,+2
000001
00050°146050 FLDS 1, .+3, 2
000053°
FFO FLDS .+3 ;Format errore
$AC needed.
093-000081-05 4-13 .DFLM

DataGeneral

SOFTWARE DOCUMENTATION

.DFLS
Define Floating Load or Store Instruction
Syntax:
instructio
.DFLS user-symbol = { express'io: }
Purpose:
This pseudo-op defines wuser-symbol as a

semipermanent floating load or store memory
reference symbol having the value of instruction or
expression. This symbol implies the format of an
insruction that does not require an accumulator. One
field is required; an index is optional. These are
assembled as shown.

01234567 8 9101112131415

7

T_ index

01234567 89101112131415

B \\\L\\\\

The format for using this symbol is:

user-symbol displacement [index]

Note that you can specify the atom @ in the address
field as a break character to specify indirect addressing.

Example(s):
123350 «DFLS FLST = 123350
«EXTD ADDR1
00052°123350 FLST ADDR1
00000S$
FF FLST jFormat error-

idisplacement needed.

L

4-14

icensed Material - Property of Data General Corporation
.DIAC
Define an Instruction Requiring an
Accumulator
Syntax:

instruction

.DIAC user-symbol = expression

g

This pseudo-op defines user-symbol and gives it the
value of instruction or expression. This symbol implies
the format of an instruction requiring an accumulator.
One field is required, and it is assembled as shown
below.

Purpose:

234567 8 9101112131415

W
L cxoressin

The format for using this symbol is:

01

user-symbol expression

Example(s):
123370 .DIAC XCT = 123370
«NREL
123370 XCT | iok,
F00054°123370 XCT 0y 0 ;I11egal
FF XCT inumber of

iexpressions,

093-000081-05

Licensed Material - Property of Data General Corporation

.DICD
Define an Instruction Requiring an
Accumulator and Count

Syntax:
.DICD user-symbol = instructi.on
expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent symbol having count and destination
fields. The symbol has the value of instruction or
expression. This symbol implies the format of a
instruction that requires an accumulator and a count
from 1 to 4. Two fields are required and are assembled

as shown.

011 2 3 4\5 6 7 8 9101112131415
MIN

T Ldestination AC (ACd)
count

The format for using this semipermanent symbol is:

user-symbolOcountOdestination-ac

DataGeneral

SOFTWARE DOCUMENTATION

.DIMM
Define an Instruction Requiring an
Accumulator and an Immediate Word

Syntax: , ,
instruction
.DIMM user-symbol = expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent immediate-reference symbel having
the value of instruction or expression. This symbol
implies the format of an instruction that requires an
accumulator and a 16-bit immediate word. Two fields
are required and are assembled as shown.

2 34567 8 9101112131415
7
2

T__ accumulator

012345678 9101112131415

\\T_\\Q

0 1

Example(s):
100010 :3;25 ADI = 100010 The format for using this semipermanent symbol is:
00055104010 ADI 1, . . .
00056°110040 ADI 1, 2 user-symbol immediate value destination-ac
00057°160010 ADI 4, 0
000060°104010 ADI S5, | ;Overfiow .
"jerror~ count field too large, Example(s).
FF ADI 1 ;Format
serropr- 2 '1e]d. need’d. 163770 .DIMM ADDI s 163770
+NREL
. 00061°173770 ADDI 1002, 2
Note: 001002
counts are entered in the instruction as ‘‘(specified FF ADDI 0 iFormat errore
value-1)”’. Thus the range of permitted values is 1 - 4. P2 tields needed,
093-000081-05 4-15 .DIMM

DataGeneral

SOFTWARE DOCUMENTATION

.DIO
Define an 1/O Instruction Without an

Accumulator

Syntax:)
instruction

.DIO user-symbol =)
expressmnf

Purpose:

This pseudo-op defines user-symbol as a
semipermanent symbol having the value of instruction
or expression. This symbol implies the format of an I/0
instruction without an AC field. One field is required; it
is assembled as shown below.

01234567 8 9101112131415

W \T\§

expression

user-symbol is used in this format:

user-symbol expression

Example(s):
063400 .DIO SKION = 063400
063402 SKION 2 iok,
FF SKION 31 field needed,
F 063402 SKION 2, 3 iToo many
jfields,
Note:

If you use this pseudo-op to define a three-character
symbol which is followed immediately by the letters S,
C, or P, the Macroassembler will assume that letter to
be an optional expression and will set bits 8-9 of the
instruction word as follows:

Mnemonic Bits

01
10
11

T W

4-16

Licensed Material - Property of Data General Corporation

.DIOA
Define an 1/0
Required Fields

Instruction With Two

Syntax:
instruction
.DIOA user-symbol = {expression}
Purpose:
This pseudo-op defines user-symbol as a

semipermanent symbol having the value of instruction
or expression. This symbolimplies the format of an /O
instruction with two required fields. The fields are
assembled as shown below.

01234567 8 9101112131415

expression,

user-symbol is used in this format:

user-symbol expression; exprz

Example(s):

060400 ,DICA DIA = 060400
«NREL

070410 DIA 2, TTI

070610 DIAC 2, TTI

Note:

If you use this pseudo-op to define a three-character
symbol which is followed immediately by the letters S,
C, or P, the Macroassembler will assume that letter to
be an optional expression and will set bits 8-9 of the
instruction word as follows:

Mnemonic Bits8-9

S 01
C 10
P 11

093-000081-05

Licensed Material - Property of Data General Corporation

.DISD
Define an Instruction With Source and
Destination Accumulators

Syntax:
_Jinstruction
.DISD user-symbol expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent reference symbol with source and
destination fields; it does not allow the no-load flag or
skip conditions. The instruction cannot cause a skip.
The symbol has the value of instruction or expression.
This symbol implies the format of an instruction that
requires a source and a desiination accumuiator. Two
fields are required and are assembled as shown.

012345678 9101112131415
/ N
NN

1
ACd

ACs

The format for using ths semipermanent symbol is:
user-symbol source-ac destination-ac

Example(s):

T 4
000001 o TXTM

DataGeneral
SOFTWARE DOCUMENTATION
.DISS

Define an Instruction With Source and
Destination Accumulators Allowing Skip

Syntax:) i
instruction
D'SS user'symb0| = expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent reference symbo! with source and
destination fields. The no-load flag cannot be used and
no skip condition can be specified, but the instruction
may cause a skip to occur. The .DISS symbols differ
from the .DISD symbols only in that .DISS symbols
may cause a skip and .DISD symbols never cause a
skip. The symbol has the value of instruction or
expression. This symbol implies the format of an
instruction that requires a source and a destination
accumulator. Two fields are required and are assembled
as shown.

2345678 9101112131415
I~
AN

t ACd

ACs

01

The format for using this semipermanent symbol is:

user-symbol source-ac desination-ac

102710 .DISD LDB = 102710
«NREL Example(s):
030402 LDA 2, .PTR P
146710 LDB 2, 1 ;ACI loads
’ ibyte A", 101010 .gégf SGT = 101010
. 131010 SGT 1, 2
000162" PTR:,t1%2 FF SGT l. iFormat error-
041101 .TXT "ABCDE" ;2 fields needed.
042103
000105
093-000081-05 4-17 .DISS

DataGeneral

SOFTWARE DOCUMENTATION

.DMR
Define a Memory Reference Instruction
With Displacement and Index

Syntax:
.DMR user-symbol = ¢ instruction
expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent symbol having the value of the
instruction or expression. This symbol implies the
format of an MR instruction with either one or two
required fields (an address or a displacement and
index). The fields are assembled as shown below.

01234567 8 9101112131415

_/%\ T*

displacement

The format for using this symbol is:
user-symbol displacement [index]
The displacement and index fields are set according to

the format used and the set of addressing rules
described in Chapter 3.

Example(s):
000000 ,DMR JMP = 000000
NREL
00000°000402 JMP ,+2
00001°003001 JMP a1, 2
00002°001401 JMP 1, 3
Note:

You can use the atom @ in the address field as a break
character to specify indirect addressing.

4-18

Licensed Material - Property of Data General Corporation

.DMRA
Define a Memory Reference Instruction
with Two or Three Fields

Syntax:
instruction
.DMRA user-symbol = expression
Purpose:
This pseudo-op defines user-symbol as a

semipermanent symbol having the value of instruction
or expression. This symbol implies the format of an
MR instruction with either two or three required fields.
The first field specifies an accumulator. Where there
are two fields, the second is an implied address. Where
there are three fields, the second and third fields are
displacement and index respectively. The fields are
assembled as shown below.

01234567 8 8101112131415

displacement

user-symbol is used in one of these formats:
user-symbol expression; exbrz

user-symbol expression; exprz exprs

The displacement and index fields are set according to

the format chosen and the set of addressing rules
described in Chapter 3.

Example(s):
020000 .DMRA LDA = 20000
NREL
000007035400 LDA 3, 0, 3
00001°030402 LDA 2, .B¢l
1000027000100 .BLK 100

00102°000004 ,B: ,BLK 4

Note:

You can use the atom @ in the address field as a break
character to specify indirect addressing.

093-000081-05

Licensed Material - Property of Data General Corporation

.DO

Assemble Source Lines Repetitively

Syntax:
.DO expression

Purpose:

.DO assembles all source program lines between itself
and its corresponding .ENDC, the number of times

Note that nondisk devices, like a card reader or mag
tape, cannot execute a .DO loop more than once,
because they cannot ‘‘back up’’ to the beginning of the
loop. We recommend that all files you input to the
assembler be on disk; if any are not, transfer them to
disk with the CLI command XFER or LOAD, then
assemble the disk file.

Example(s): Example(s):
iSource program: +ZREL
000025 LDUSR B = 25
1=0 000250 LDUSR C = Bx10
.00 4 ;Assemble loop +NREL
74 times, 00001°177555 B-C
181 “00002°006712 BxC+2
11+l
<ENDC
iListing?
000000 1=s0
000004 .00 4 ;Assemble loop
;4 times,
00001°100000 1Bl
000001 I=sl+1
+ENDC
4 times,
00002°040000 181
000002 IsI+l
«ENDC
4 times.
000037020000 181
000003 I=1+1
«ENDC
74 times.
00112°010000 1Bl
000004 I=1+1
«ENDC
Notes:
.DOs may be nested to any depth, the innermost .DO
corresponding to the innermost .ENDC, etc.
Chapter 5 describes the handling of .DOs and other
conditionals within macros.
093-000081-05 4-19 .DUSR

SOFTWARE DOCUMENTATION

.DUSR
Define User Symbol Without Formatting
Syntax:
.DUSR user-symbol =) instruction
expression
Purpose:
This pseudo-op defines wuser-symbol as a

semipermanent symbol having the vaiue of the
instruction or expression following the = sign. Unlike
other semipermanent symbols, a symbol defined by
.DUSR is merely given a value and has no implied
formatting. It may be used anywhere a single-precision
operand would be used.

Symbols defined by .DUSR do not become part of the
RLDR symbol table.

DataGeneral

SOFTWARE DOCUMENTATION

.DXOP
Define an Instruction With Source,

Destination, and Operation Fields

Syntax:

'DXOP user-symbol =) '"struction

expression

Purpose:

This pseudo-op defines user-symbol as a reference
symbol with source and destination fields and an
optional operation number field. The symbol has the
value of instruction or expression. This symbol implies
the format of an instruction that requires a source and a
destination accumulator. Two fields are required; a
third is optional. The fields are assembled as shown.

0123456 7 8 9101112131415

WA

L ANARNRNRNRNY

T L ACd T_ operation number

ACs

The format for using this semipermanent symbol is:

user-symbol source-ac destination-ac operation no.

Example(s):
100030 .DX0P XOP=100030
«NREL
000007130630 X0P t, 2, 6
000017154030 X0P 2, 3 ;Operation no.

iis optional,

4-20

Licensed Material - Property of Data General Corporation

EJEC
Begin a New Listing Page

Syntax:
EJEC

Purpose:
To begin a new page in the listing output.

Example(s):

Source code

iSource program:
+EXTD SYM
MOVS 1, 2
+EJEC
LDA @, SYM
LEND

;Listing page 1:
«EXTN SYM

131308 MOVS 1, 2
+EJEC

AL LA R L AL AT R LYY LY Y Y)

sListing page ¢
0200013 LDA 9, SYM
«END

093-000081-05

Licensed Material - Property of Data General Corporation

.END
End-of-Program Indicator

Syntax:
.END [expression]

Purpose:

This pseudo-op terminates a source program, providing
an end-of-program indicator for RLDR. The expression
is an optional argument specifying a starting address for
execution. RLDR intializes the first TCB PC to the last
address, if any, specified by an assembled binary.
Execution of the save file begins at this address. (If
RLDR finds no starting address among modules
bound, an error message is given.)

Example(s):

+TITL GTSET _)
GTSET: SUBO 0, 0 ;Initialize
ifor startup,

102440

JEND GTSET

093-000081-05

4-21

DataGenerai

SOFTWARE DOCUMENTATION

.ENDC
Specify the End of Conditional Assembly

Syntax:
.ENDC [user-symbol]

Purpose:

If you omit user-symbol, . ENDC terminates lines for
repetitive assembly (lines following .DO) or lines

whose assembly is conditionai (iines foiiowing .IFE,
IFG, IFL, or IFN).

If your syntax is .ENDC user-symbol, this pseudo-op
both terminates assembly of lines following the last
.DO or .IFx and suppresses the assembly of lines
{oiiowing .ENDC untii the scan encouniers another
user-symbolenclosed in square brackets.

Example(s):
000001 .JIFN HOR ;Assemble only if
000000 O ;HDR is nonzero,
LENDC LABEL ;Skip to LABEL
1 ;if HDR {8 nonzero.
000022 (LABEL] 22
.ENDC

DataGeneral

SOFTWARE DOCUMENTATION

ENT
Define a Program Entry

Syntax:
ENT user-symbol, [user-symbol,]

Purpose:

This pseudo-op declares each user-symbol as a symbol
that is defined within this source file and that may be
referenced by separately-assembled programs.

A user-symbol appearing in a .ENT pseudo-op must be
defined as a user symbol within the program. This
symbol must be unique from external entries defined
in other binaries loaded together to form a save file. If it
is not unique, RLDR will issue a message indicating
multiply-defined entries.

You can reference user-symbol(s) from
separately-assembled programs by using one of the
following pseudo-ops:

.EXTD

.EXTN

.GADD

.GLOC

.GREF

Example(s):
STITL A
. E N T B [) c
+EXTN C
«ZREL

00000-077777 €t C
+«NREL

00000°006000= B: JSR @ .C
+END

Licensed Material - Property of Data General Corporation

.ENTO
Define an Overlay Entry

Syntax:
.ENTO overlay-name

Purpose:

The .ENTO pseudo-op enables you to assign a symbolic
name to a file which will eventually be an overlay. (If
you omit .ENTO, you must reference the overlay later
by memory node number and overlay number - which
is a nuisance.)

You can then access the overlay from the root program
by overlay-name, which must be declared as an .EXTN
in the root program. Caution: overlay name cannot
appear elsewhere in the file whch declares it as an
overlay name, since its value is assigned at load time.

Example(s):

;This is the
ioverlay.

«TITL METER
«ENTO METER
«ENT PROC1
«TXTM |
«NREL

suszL 0, 0

50001
)2520 PROCI:
END

«TITL ROOT ;Root program,
+EXTN METER

000001 «TXTM |
«ZREL

077777 +METER: METER
«NREL

020411 START: LDA 0, ,OFILE ;Get name

006017 +«SYSTM jand open ROOT,.OL
012004 +OVOPN 4 jon chanmel 4.
020000~ LDA 0, ,METER ;Pointer.
126000 ADC 1,1 iUncond. load,
006017 +SYSTM

020004 +0VLOD 4 ;Losd METER,
000024" JOFILE: .+1x2

051117 «TXT "ROOT.OL"

047524

027117

046000

4-22 093-000081-05

Licensed Material - Property of Data General Corporation

.EOF, .EOT
Explicit End-of-File

Syntax:

.EOF
.EOT

Purpose:

Either pseudo-op indicates the end of an input file but
not the end of an input source; it provides an explicit
end-of-file for any source module but the last one in a
series for assembly. If .EOF pseudo-ops are missing
from source modules, the assembler supplies them
implicitly.

Example(s):
«TITL MPROG
JEOF

Note that .EOF could be omitted in the example, with
no effect on the assembly.

093-000081-05

DataGeneral

SOFTWARE DOCUMENTATION

EXTD
Define
Reference

an External Displacement

Syntax:
.EXTD user-symboly [...user-symbol, |

Purpose:

This pseudo-op declares each user-symbol as a symbol
which may be referenced by this program but which is
defined in some other program. The user-symbol must
be declared by an .ENT pseudo-op in the program
which defines it.

Any .EXTD user-symbol may be an .address or
displacement of a memory reference instruction. It can
also specify the contents of a 16-bit storage word.

If used as a page zero address or as a displacement, the
value of the entry must meet these specific
requirements:

O<page-zero-address <377
-200 < displacement <200

Note:

Because the displacement field of memory reference
instructions must fit in 8 bits, RLDR will usually report
an error if the user-symbol referenced has an address
displacement of more than 8 bits. RLDR will not check
the symbol, and thus not report an error, if the left byte
of the instruction word is 0 (as it would be for a JMP
instruction with an index mode of 0). Therefore, you
should make sure that any JMP instruction without an
index, which uses an .EXTD address, can be resolved
in a displacement within 8-bit bounds.

Example(s):

STITL C
+ENT LIST
«L0C 100
LISTY
L1sTe
LIST3

LIST:

«END

«TITL D

JEXTD LIST

«NREL

LDA 2, C2)

LDA 0, LIST, 2 iPiek up 3rd
iLIST entry, LIST,

e

«END

4-23 .EXTD

DataGeneral

SOFTWARE DOCUMENTATION

.EXTN
Define an External Normal Reference

Syntax:
.EXTN user-symbol, [...user-symbol,]

Purpose:

This pseudo-op declares each user-symbol as a symbol
that is externally defined in some other program but
may be referenced by the current program. The
user-symbol must be declared using an .ENT
pseudo-op in the program which defines it.

An .EXTN user-symbol specifies only the contents of a
16-bit storage word. The value at load time must
therefore be a number from 0 through 65,535.

Example(s):

.TITL B

+EXTN C

+ZREL 7Put pointer in ZREL,
00000=077777 .C: C

+NREL

00000°006000- JSR 3 ,C

4-24

Licensed Material - Property of Data General Corporation

EXTU
Treat Undefined Symbols as External
Displacements

Syntax:
.EXTU

Purpose:

This pseudo-op causes the assembler to treat all
symbols that are undefined after pass 1 as if they had
appeared in an .EXTD statement. Use .EXTU
carefully; if you forget to define each .EXTU symbol
elsewhere, RLDR will detect each undefined symbol.

Example(s):
«TITLE A13
«EXTU
0200018 LDA 0, MURKO

LJEND

093-000081-05

Licensed Material - Property of Data General Corporation

.GADD
Add an Expression Value to an External
Symbol

Syntax:

.GADD user-symbol expression

Purpose:

.GADD (global add) generates a storage word whose
contents is resolved at load time. The value of
user-symboi is sought and, if found, its vaiue is added
to expression to form the contents of the storage word.
If the user-symbol is not found, an RLDR error will
result and the storage word will contain just the value
of expression.

The user-symbol must be a symbol defined in some
separately-assembled binary in conjunction with a
.ENT, .ENTO, or .COMM pseudo-op.

Note:

To resolve .GADD user-symbol, RLDR requires that
user-symbol be defined in a preceding relocatable
binary. The file which defines user-symbol must
precede any file(s) which use . GADD user-symbol, in
the RLDR command line. If, after assembling the
example below, you issued the command RLDR Y X,
the value shared would be 207. If you transposed the
loading order (RLDR X Y), then RLDR would resolve
the value 7, and an error message would result.

Example(s):

LTITLE Y
LENT A
000200 LLOC 200)
As sValue of A is 200,
LEND

«TITLE X

LEXTN A

LOC 100

+GADD A, 3+4 iAssembler
;assigns value of 7,

000100
00100 000007

+END

093-000081-05

4-25

DataGeneral

SOFTWARE DOCUMENTATION

.GLOC

Reserve an Absolute Data Block

Syntax:
.GLOC user-symbo!

| Purpose:

This pseudo-op tells RLDR to load the following block
of data starting at the location assigned to user-symbol.
You can terminate the absolute block by a .LOC,
.NREL, .ZREL or .END pseudo-op.

Within the .GLOC block, there can be no external
references, no label definitions, and no label
references.

.GLOC reserves locations in memory, and these
locations may impact on binaries loaded earlier or later
in the RLDR command line.

Note:

One source file cannot both define user-symboland use
itin a .GLOC statement. You must define user-symbol
via the .COMM (or .ENT) pseudo-op in one source file
before you can use .GLOC user-symbol in another
source file(s). The .GLOC file(s) must declare
user-symbol external (EXTN), or an assembler U
error will occur. The defining binary must precede the
.GLOC binary(ies) in the RLDR command line or a
fatal RLDR error will occur.

Example(s):
.TITLE A
000003 .COMM MYAREA, 3
<END
+TITLE B iProgram B
+NREL iwill initialize
+EXTN MYAREA ;prog A’s
jnamed common area,
+GLOC MYAREA
000007000001 1
00001°000002 P4
00002°000003 3
“END

.GLOC

DataGeneral

SOFTWARE DOCUMENTATION

.GOTO
Suppress Assembly Temporarily

Syntax:
.GOTO user-symbol

Purpose:

This pseudo-op suppresses the assembly of lines until
the scan encounters another user-symbol enclosed in
square brackets.

Example(s):

.GOTO LABEL
LDA 0,0,2 ?Don’t assemble
ithis instruction,

040001 (LABEL) STA 0, TEMP ;Start
jassembling agein here,
000000 TEMP: O

Licensed Material - Property of Data General Corporation

.GREF

Add an Expression Value to an External
Symbol (0B0)

Syntax:
.GREF user-symbol expression

Purpose:

The .GREF (global reference) pseudo-op functions
exactly like the .GADD pseudo-op except that when
RLDR resolves the contents of the storage word (i.e.,
adds the value of the symbol and the value of the
expression), a carry out of the low order fifteen bit
positions is never allowed to alter bit zero.

Example(s):
See . GADD

4-26 093-000081-05

Licensed Material - Property of Data General Corporation

AFE, .IFG, .IFL, .IFN
Perform Conditional Assembly

Syntax:

.IFE expression
IFG expression
.IFL expression
IFN expression

Purpose:

The lines following these pseudo-ops will be assembied
if the condition defined in the pseudo-op is met. You
must always terminate the conditional lines with an

.ENDC. The pseudo-ops define the following
conditions:

AFE expr Assembile if expr equalis 0.

AFGexpr Assemble if expr is greater than 0.

AFL expr Assembile if expr is less than 0.

AFN expr Assemble if expr is not equal to 0.

The value field of the listings is 1 if the condition is true
and 0 if the condition is false.

093-000081-05

SOFTWARE DOCUMENTATION

Example(s):
000000 As{
000000 B=A
«NREL
000000 «IFE Be?2)
LDA 0,A j;Expression evale
«ENDC juates to false
00000020000 LDA 0, B 3im these cases,

4-27

780 the LDAs aren“t assembled,

000001 +IFL B=2 JExpr evaluates
00001°020000 LDA 0, A jto true {n
+ENDC ithese cases,
000001 «IFN B=2 isoc the LDAs
00002°020000 LDA 0, A iare assembled,
«ENDC
Notes:

.IFs may be nested to any depth, with the innermost .IF
corresponding to the innermost .ENDC, etc. Note that
all .IF conditions are degenerate forms of .DOs. For
example: .IFG A is equivalent to .DO A > 0.

Chapter 5 describes handling of .IFs and .DOs within
macros.

JAFE, .IFG, .IFL, .IFN

DataGeneral

SOFTWARE DOCUMENTATION

AMIT
Load Part of a Binary Module

Syntax:
.LMIT user-symbol

Purpose:

This pseudo-op specifies partial loading of the
assembler’s binary output by RLDR. A .LMIT
pseudo-op in one RB file will cause an RB later in the
loading process to be partially loaded. user-symbol
must appear as an .ENTry point in the later-loaded RB
file. At load time, the RB will be bound only as far as
the first occurrence of user-symbol;e.g.,

Order of Loading
TITLA
LMIT SYM Module A
.END
TITLB I B
‘END s Module
TITLC '
'END ‘ Module C
.TITLD)
.ENT SYM
SYM: Module D
.END v
SD-00645

In this example, Module D contains the entry point
SYM that corresponds to the user-symbol SYM
appearing in the .LMIT pseudo-op in Module A. RLDR
will bind D up to but not including the line identified by
SYM.

4-28

Licensed Material - Property of Data General Corporation

The limiting symbol, in this case SYM, must be
declared an entry point in the module to be partially
loaded. If the limiting symbol is in NREL, all of
Module D ZREL will be loaded and Module D NREL
will be loaded up to the limiting symbol. If the limiting
symbol is in ZREL, NREL will be completely loaded
and ZREL will be loaded up to the limiting symbol. A
module may be limited in NREL and in ZREL by two
different symbols. If two symbols limit either NREL or
ZREL, the lower symbol in value will be the limiting
symbol. There are no restrictions on the number of
limiting symbols that you may use.

If the limited module is in a library, the module will be
loaded up to its limiting symbol, even if the module
would otherwise not have been loaded (i.e., even if
there is no undefined external to cause the library to be
loaded.

If there is an undefined external that references an
entry point in the unloaded part of the module, the
module will still be only partially loaded as indicated by
the limiting symbol.

All of the entry points of a partially loaded module will
appear on the load map as though the corresponding
parts of the module were actually loaded. Any
references to them will be resolved, but, of course, will
actually point into the succeeding module.

Note:

The .LMIT mechanism enters user-symbol in RLDR’s
symbol table as an entry point with a value of 1000005.

After defining a .LMIT symbol, you must use it only as
a limiting symbol in the program, because RLDR
assumes that any later reference to this symbol is a
.LMIT instruction, and doesn’t flag it as a
multiply-defined symbol.

093-000081-05

Licensed Material - Property of Data General Corporation

.LOC

Set the Current Location Counter

Syntax:
.LOC expression

Purpose:

This pseudo-op sets the current location counter to the
value and relocation property given by expression. The
default value is absolute zero.

Exception:

If .LOC is .PUSHed to the assembler variable stack (see
“Stack Pseudo-op and Values’’) and is subsequently
used to restore the iocaiion counier, e.g..

.PUSH .LOC

.LOC .POP

then the value is ignored and only the relocation
property is changed. This allows you to save the current
relocation mode within a macro and restore it correctly,
without affecting the relative location counter value
which may have been altered within the macro.

Example(s):
00000 000000 A:0
<NREL
00000°000000 NO:0
«ZREL
00000000000 230
000100 .LOC 100
00100 000000 &
U00101 000000 B ;uUndefined,
U00102 000000 C ;Ditto.
000001 LLOC A+l
00001 000000 A
000001= ,LOC Z+}

00001=000000 A
000003« ,LOC ,+1
00003=177777+ 2-1 iMinus 1,

00004000000~ Z

093-000081-05

4-29

DataGeneral

SOFTWARE DOCUMENTATION

.MACRO

Name a Macro Definition

Syntax:
.MACRO macro-name

Purpose:

This pseudo-op defines macro-name as the name of the
macro definition that follows. Any line or lines that
follow are part of the macro definition up to the first %
characler encountered.

After definition, macro-name calls the macro.

Example(s):
«MACRO TEST ;Macroname,
41 iMacro
a2 sdefinie
A3 ition,
%

iCall macro with arguments 4,S,6:

TEST 4,5,6

00000 000004 4 iMacro

00001 000005 S jdefinie

00002 000006 6 ition,

iChange radix; cell macro with
jarguments 0A, 0B, 0C,

000024 «RDX 20
TEST 0A,08,0C
00003 000012 0A iMacro
00004 000013 0B jdefini=
00005 000014 oC ition,

MACRO

DataGeneral

SOFTWARE DOCUMENTATION

.MCALL
Indicate Macro Usage

Syntax (in macro):
[conditional-or-.DO] MCALL [expression]

Value:

.MCALL has value 1 if the macro containing it has
been called on ths assembly pass, and value 0 if this is
the first call on this pass. If used outside a macro, its
value is -1.

Example(s):

.MACRO TESTZ

.00 +MCALL>0

JSR @ .X 3JSR if not 1lst call.
+ENDC

.00 L MCALLE=0 It 1st call, gen-
ierate subroutine,

«PUSH ,LOC iSave location counter,
+ZREL

X3 X iPointer to subroutine,

.L0C ,POP ;Restore loc., counter,

JSR X iCall X,

JMP XEND ;Jump past X on rtn,

X: ‘HI’ 3Code which will

. jassemble only once,

JMP 0, 3 iReturn,

XEND: LENDC

%

4-30

Licensed Material - Property of Data General Corporation

.NOCON
Inhibit or Re-enable Listing Condition
Lines

Syntax:
.NOCON expression

Purpose:

This pseudo-op either inhibits or permits listing of
those conditional portions of the source program that
do not meet the conditions given for assembly. If the
value of expression is not zero, listing is inhibited; if
the value of expression equals zero, listing occurs. If
you omit .NOCON, listing occurs.

.NOCON does not affect conditional portions of the
source program that would be assembled.

Value:

The value of .NOCON
expression.

is the value of the last

Example(s):

iListing: Source Program:

000003 A=3 3 As3
000000 ,NOCON 0 ;7 NOCON 0O
000000 .DO 4=sA ; DO 4s==A
S i S
3 i 3
+ENDC i JENDC
000001 ,DO 4s=(A+1)7;.00 ds=(A+])
00007°000005 S i S
00010°000003 3 i 3
«ENDC 7 JENDC
000008 NOCON 1 ;3 NOCON 1
i <D0 4==A
i S
i 3
7 JENDC
000001 .DO 433(A+1);.D0 4s=(A¢+1)
00011°000005 S i S
00012°000003 3 7 3
+ENDC 7 +ENDC

093-000081-05

Licensed Material - Property of Data General Corporation

.NOLOC

Inhibit or Re-enable Listing Source Lines
Without Location Fields

Syntax:
.NOLOC expression

Purpose:
This pseudo-op either inhibits or permits listing of lines

ﬂﬂﬂﬂﬂﬂ

does not equal zero, listing is inhibited; if the value of
expression equals 0, listing occurs. If you omit
.NOLOC, listing occurs.

Value:

The value of .NOLOC
expression.

is the value of the last

Example(s):

iSource Program:?

«TXTM 1

«NREL

«NOLOC 0 ‘
«TXT "ABCDEFGHIJKL" JWon’t print,
«NOLOC 1 sNor will this print,

o TXT "ABCDEFGHIJKL" 3Prints,

LDA 0, .TMP JLDA prints
ibecause it has a.
ilocation field.

LOC .+10 iThis won’t print.

«TMP: 0 iThis prints.

+END 3 .END won’t print,

iListing:
000001 ,TXTM 1§
+NREL
NOLOC 0
+TXT "ABCDEFGHIJKL"

000000
040s02
041504
042506
043510
044512
045514
000000
040502
020411
000000

.TXT "ABCDEFGHIJKL" ;Prints,
LDA 0, TMP JLDA prints
«TMP: 0 ;This prints,

093-000081-05

4-31

SOFTWARE DOCUMENTATION

.NOMAC
Inhibit or Re-enable Listing Macro
Expansions

Syntax:

.NOMAC expression

Purpose:

This pseudo-op either inhibits or permits the listing of
macro expansions. If expression evaluates to zero,
macro expansions wili be lisied; otherwise, macro
expansions are inhibited. .NOMAC can also be used
within a macro definition to inhibit listing selectively. If
you omit NOMAC, expansions are listed.

Value:
The value of NOMAC is the value of the last
expression.
Example(s):
+MACRO OR
cCov 11, 1
AND tt, 12
ADC t1, 2
%
@edee1 NOMAC | ;00 mot excarc.
;Call macro with args 1 ang 2:
vweeee 124eve OR [1,2)
@éeécoé (NOMAC © iResume expandirg,
iCall macro with args 3 ang €3
¢ceees 174200 OR (3,90} ccmw 3, 3
Le00yY 163492 AND 3, @
C0OOS 162000 ADC 3, 0

iHere {s another macrc:

«MACRG TESTY

5

b - = -

«NUMAC | 7You can inhibit
ior re~eratle expersiors
iat any time in a raecro,

7

10

%

iNOw,

TESTY

S

6

call TEST4:

beQoe ceoeos
£00@7 Q00006

.NOMAC

DataGeneral

SOFTWARE DOCUMENTATION

.NREL
Specify NREL Code Relocation

Syntax:
NREL

Purpose:

This pseudo-op assembles the following code using
NREL code relocation.

Example(s):

«NREL
000007000123 EXMP1: 123
00001°000456 4s6

4-32

Licensed Material - Property of Data General Corporation

.PASS
Number of Assembly Pass

Syntax
[conditional-or-.DO] .PASS [expression]

Value:

.PASS has a value of zero on pass 1 and a value of one
on pass 2 of assembly.

Example:

The following macro, HIFND, picks the largest
argument from a list of positive numbers and
assembles it into a location at the end of pass 1:

«MACRQ HIFND
.IFE .PASS
Is2 ilnit counter,
~1=0
.00 JARGCT=}
JIFG Aletrl
Al:AI
+ENDC
I=I+1
+ENDC
+ENDC
Al
%

The calling sequence for this macro is as follows:

HIFND temp-sym value; ..., value,

HIFND uses temp-sym to hold the current highest
value and the resulting highest value in the argument
list. That value is then put into a storage word at the
current location counter.

093-000081-05

Licensed Material - Property of Data General Corporation

.POP
_Pop the Value and Relocation of Last
Item Pushed onto Stack

Syntax:
[expression] .POP

Value:

The value of .POP is the value and relocation property
of the last expression pushed onto the variable stack
{_PUSH pseudo-op). In addition .POP pops the value
and relocation property.

If there are no values on the variable stack, .POP has a
value of zero (i.e.. absolute relocation) and an overflow
flag (O) will be given to the line in which it is used.

Example(s):

000025 Az25
00000 000025 A

000025 +PUSH A

000015 Az15
00001 00001S A

000025 As,POP
00002 000025 A
000003 000000 +«POP 30verflow
ierror,
+END

+«NREL
00000°000100 «BLK 100
000100° A=,
00300°000100°
000100° LPUSH A
000101° A=,
00101°000101° A
000100° As=,POP
001027000100 A
+END

SOFTWARE DOCUMENTATION

.PUSH
Push a Value and its Relocation Property
onto a Stack

Syntax:
.PUSH expression

Purpose:

This pseudo-op allows vou to save the value and
relocation properties of any valid assembler expression
on the assembler stack. Additionai expressions may be
pushed until the stack space is exhausted. The stack is
referenced by the permanent symbols .POP and .TOP.
As with any push down stack, the last expression
pushed is the first expression to be popped.

Example(s):

The current value of the input radix may be saved, its
value altered, then restored, by the following
statements:

000010 «RDX 8
000010 +PUSH ,RDX
000012 «RDX 10
000010 +RDX ,POP

093-000081-05 4-33 .PUSH

DataGeneral

SOFTWARE DOCUMENTATION

.RB
Name a Relocatable Binary File

Syntax:
.RB filename

Purpose:

This pseudo-op names the relocatable binary file,
filename, that is the output of MAC assembly. If more
than one .RB pseudo-op occurs in the source, the .RBs
will be flagged with an M (multiply-defined symbol)
and the binary file will have the name given in the first
pseudo-op encountered.

If you insert the global /N switch in the MAC
command line, denoting that no binary file is to be
created, the .RB pseudo-op is ignored. If you use the
local /B switch, the .RB pseudo-op will be overridden
and the binary file will have the name given preceding
the /B switch. The precedence for naming the
relocatable binary file is thus:

Precedence Binary Name
Highest /B name
.RBname
Lowest Default name (first name in MAC line)

One of the primary uses of .RB is in conditional
assembly code when alternative file names are to be
used, depending upon the type of assembly; for
example, in mapped and unmapped versions of an .RB
file.

Example(s):
000001 +IFE MSW ;MSW means .
imepped switches= See file
; "xRDOS,SR",

.RB SYSTEM,RB iName binary

LENDC i"SYSTEM,RB",

000000 +IFN MSw iNeme binary
: .RB MS8YST,.RB i"MSYST,RB"
+ENDC i (mapped),

4-34

Licensed Material - Property of Data General Corporation

.RDX
Radix for Numeric Input Conversion

Syntax:

.RDX expression

Purpose:

This pseudo-op defines the radix to be used for
numeric input conversion by the assembler. expression
is evaluated in decimal and the range of expression is:

2<expression<20
The default radix is 8.

Value:
The numeric value of .RDX is the current input radix.

Note:
Input and output radices are entirely distinct. Setting
the input radix does not affect the listing radix.

Syntax:
(.RDX)

Example(s):
(Assuming a listing output radix of 8:)

000010 «RDX 8
00000 000123 123

000012 «RDX 10
00001 000173 123

000020 «RDX 16

00002 000443 123
00003 000020 (.RDX) 3Current value of
}{nput redix,

093-000081-05

Licensed Material - Property of Data General Corporation

.RDXO
Radix for Numeric Output Conversion

Syntax:
.RDXO expression

Purpose:

This pseudo-op defines the radix to be used for number
conversion by the assembler. The expression is
evaluated in decimal and the range of expression is

8 <expression<20
The default output radix is 8.

Value:

The numeric value of .RDXO is always expressed as
*10”°. .RDXO is printed as *‘(RDXO0)"".

Example(s):
000012 «RDX 10 jInput radix 10,
00010 +RDX0 30 ;Output radix 10,
00004 00077 77 iDecimal listing,
00005 00022 22
00006 00045 4s
00008 +RDX 8 iInput radix 8.
000010 «RDX0 8 ;Output radix 8,

00007 000077 77
00010 000022 22

00011000045 45
000020 .RDX 16 ;lnmput rdx 16,
0010 .RDX0 16 jOutput rdx 16,
00004 0077 717 iHex listing,
00008 0022 22
0000C 0045 4s
000010 .RDX0 8 ;Output rdx 8,

00015 000167 17
00016 000042 22
00017 000105 4s

jinput stays 16~
joctal listing,
thex input,

00010 «RDX0 10 ;0yutput rdx 10e-
00016 00119 77 ;Decimal listing,
00017 00034 22 iHex input,
00018 00069 45
00010 «ROX 10 ;Inmput rdx {0,
0010 +ROX0 16 ;Output rdx 16,
000313 004D 77 iDec. input,
00014 0016 ee ihex 1istimg,
00015 0020 45
00016 0010 (.RDX0) j;Value of output rdx
ialways prints as 10,
0008 +RDX 8 iRestore radixes,
000010 +RDX0 8

093-000081-05

4-35

DataGeneral

SOFTWARE DOCUMENTATION

.REV
Set the Revision Level

Syntax:

.REV major-revision-no. minor-revision-no.

Purpose:

This pseudo-op identifies the revision level of a
program; it may be placed anywhere in the source
entered as numbers in the current radix. Revision
levels are carried into the RB file and then into the save
file. Both the major and minor revision levels have a
numeric range of 0-99.

If two or more RB files containing revision numbers

are to be loaded into a program, RLDR chooses the
revision level for the file as follows:

® If the save file is to have the same name as any RB
file, the revision in that RB will be carried over to the
save file.

® Otherwise, revision level information will be selected
from the first RB loaded that contains such
information.

e If none of the modules being loaded contains
revision information, the save file will be assigned
major and minor revision number 00.00.

For example, assume that SCHED.RB, IODRIV.RB,
and DISP.RB are to be loaded into SCHED.SV. If
SCHED.RB contains revision information, that
revision information will be passed to the program file.
If SCHED.RB does not contains revision information,
the revision information contained in either
IODRIV.RB or DISP.RB will be passed depending
upon which module is loaded first.

Use the CLI command REV to obtain revision
information of a save file.

Example(s):
«TITL MART
+EXTN TASK, .LIM
000001 «TXTM 1§

00422 005001 +REV 12, 1 jRevision
ilevel information is
iin octal (default input
iradix,

.REV

DataGeneral

SOFTWARE DOCUMENTATION

TJITL
Entitle an RB file

Syntax:
TITL user-symbol

Purpose:

This pseudo-op names a binary file. This title is
required by the library file editor to distinguish binaries
that have been grouped into a library. The title given is
printed at the top of every listing page. The
user-symbol need not be unique from other symbols
defined by the program, but it should not be used as a
macro name.

If you omit .TITL, the assembler supplies the default
title: . MAIN.

Example(s):
JTITL SYMB
000001 L TXTM 1

4-36

Licensed Material - Property of Data General Corporation

.TOP
Value and Relocation of Last Stack
Expression

Syntax:

.TOP

Value:

.TOP has the value and relocation property of the last
expression pushed to the variable stack. .TOP differs
from .POP in that the symbol does not pop the last
pushed expression from the stack. If no expressions are
pushed, zero (absolute relocation) is returned and the
overflow flag (O) is given.

Example(s):

000020 .PUSH 20
00027 000020 ,TOP
00030 000020 ,TOP

093-000081-05

Licensed Material - Property of Data General Corporation

.TXT, .TXTE, .TXTF, .TXTO
Specify a Text String

Syntax:

.TXT a stringa

.TXTE a stringa
.TXTF a stringa
.TXTO a stringa

Purpose:

These pseudo-ops cause the assembler to scan the
input following the character ¢ up to the next
occurrence of the character a in string mode. The
character @ may be any character not used within the
string except null, line feed, or rubout; a delimits, but
is not part of, the string. You may usc RETURN or
FORM FEED to continue the string from line to line or

page to page, but these characters are not stored as part

of the text string.

Every two bytes generate a single storage word

containing ASCII codes for the bytes. Storage of a

character of a string requires seven bits of an eight-bit

byte. You can set the leftmost (parity) bit to 0, 1, even

parity or odd parity as follows:

TXT Sets leftmost bit to 0
unconditionally.

TXTF Sets leftmost bit to 1
unconditionally.

.TXTE Sets leftmost bit for even parity on
byte.

TXTO Sets leftmost bit for odd parity on
byte.

093-000081-05

4-37

DataGeneral

SOFTWARE DOCUMENTATION

By default, bytes are packed left/right, and a null byte is
generated as the terminating byte.

You can change the packing mode with the .TXTM
pseudo-op. If an even number of bytes are assembled,
you can suppress the null word following these packed
bytes with the . TXTN pseudo-op.

Witin the string, you. can use angle brackets (< >) to
delimit an arithmetic expression. The expression will
be evaluated, masked to seven bits, and the eighth bit
set as specified by the pseudo-op. This is the only
means, for exampie, io siore a carriage return and/or
line feed character as part of the text string. Note that
no logical operators are permitted within the
expression.

TIXT“LINE 1 <16> <12>7)

Example(s):

000001
040502
020103
042000
040502
120303
042000
140702
120303
142000
140702
020103
142000

JTXTM |

00000 +TXT "AB CD" 7Each example

00003 +TXTE *AB CD* ;assembles

00006 +TXTF *AB CD’ jtext string

00011 «TXTO /AB CD/ :"AB CD",

JIXT, .TXTE, .TXTF, .TXTO

DataGeneral

SOFTWARE DOCUMENTATION

JXTM
Change Text Byte Packing

Syntax:
.TXTM expression

Purpose:

This pseudo-op changes the packing of bytes generated
using the text pseudo-ops, .TXT, .TXTE, .TXTF, or
.TXTO. If expression evaluates to zero, bytes are
packed right/left; if expression does not evaluate to
zero, bytes are packed left/right. If you omit .TXTM,
bytes are packed right/left.

Value:

The value of .TXTM, expressed as (TXTM), is the
value of the last expression.

Example(s):
000000 ,TXTM 0
00000 041101 ,TXT "AB CD*
041440
000104
00003 000000 (,TXTM)
000001 ,TXTM 1
00006 040502 ,TXT "AB CO"
020103
042000

00011 000001 (.TXTM)

Licensed Material - Property of Data General Corporation

.TXTN
Determine Text String Termination

Syntax:
.TXTN expression

Purpose:

This pseudo-op determines whether or not a string that
contains an even number of characters will terminate
with a word consisting of two zero bytes. (When the
number of characters in the string is odd, the last word
contains a zero byte in all cases.) If you omit TXTN,
the string terminates on a zero word.

If expression evaluates to zero, all text strings
containing an even number of bytes will terminate with
a full word zero. If expression does not evaluate to
zero, any text string containing an even number of
bytes terminates with a word containing the last two
characters of the string.

Value:

The value of .TXTN, expressed as (TXTN), is the
value of the last expression.

Example(s):
000000 ,TXTN 0
00000 030462 ,TXT "1234"
031464
000000
00003 000000 (,TXTN)
000001 LTXTN 1}
00004 030462 ,TXT "1234"
031464
00006 000001 (,TXTN)

4-38 093-000081-05

Licensed Material - Property of Data General Corporation

XPNG
Remove All Nonpermanent Macro and
Symbol Definitions

Syntax:
XPNG

Purpose:’

This pseudo-op removes all macro definitions and all
symbol definitions, except permanent, from the
assembler’s symbol table. . XPNG is used primarily as
follows:

1. You write a program containing .XPNG followed by
definitions of any semipermanent symbols.

2. The program is assembled using the global switch /S
to the MAC command. This causes the assembler to
stop the assembly after pass 1 and save the symbols
in MAC.PS.

3. You can then use the MAC.PS with those
semipermanent symbols defined in step 2 to
assemble other files.

Chapter 6 further describes this mechanism.

Note that file NBID.SR begins with a . XPNG.

Example(s):

«TITL XP

« XPNG

«OMRA LDA=20000
+DMRA STA=240000
«END

After assembling and loading XP, you issue the CLI
command:

MAC/S XP)

The assembler’s symbol table now contains values for
LDA and STA.

DataGeneral

SOFTWARE DOCUMENTATION

.ZREL
Specify Page Zero Relocation

Syntax:
ZREL

Purpose:

This pseudo-op assembles subsequent source lines
using page zero relocatable addresses (these addresses
extend from 50; through 377;. If ZREL mode is exited
during assembly, the current .ZREL value is
maintained and is used if . ZREL mode is entered again.

Example(s):
00064 V00000 AL:O
< ZREL
00000000000 Z:0
00001-000000 ZL:0

000100 +LOC 100
00100 000064 AL
«ZREL
00002-000064 AL

End of Chapter

093-000081-05 4-39

.ZREL

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 5
Macros and Other Advanced Features

The Macro Facility

urce characters,

The macre facility allows a string of s
perhaps consisting of many lines, to be named and
subsequently referenced by name. This string of source
characters'is the macro definition (or simply ‘‘macro’’).
While defining a macro, you assign it a symbol; this
symbol will represent a macro call whenever it appears
within your program. During assembly, the symbol
expands to the original string. The original string may
contain formal arguments, and the macro call actual
arguments; the actual arguments replace the formal
arguments as each macro call expands the macro
symbol.

Macro Definition

You write a macro definition once, but use the macro
as often as needed. Each macro definition has the form:

.MACROOuser-symbol}
macro-definition-string %

where:

user-symbol is the name which calls the macro. This
name cannot exceed five characters.

macro-definition-string is a string of ASCII characters to
be substituted for the macro call.

% terminates macro-definition-string and is not part of
the definition.

Your user-symbol must conform to the standard rules
for user symbols. Within macro-definition-string two
characters (— and 1) have special meanings. The
back-arrow (—) stores the very next character without
interpretation; the back-arrow is otherwise ignored.
The back-arrow convention is generally used to render

093-000081-05

literally a character that would otherwise be interpreted
(%, 1, or —). It can be used with any ASCII character: —
X and X will both be read as X. On soimie teriminals, you

enter a backarrow as SHIFT-O.

For example, if you want to use a percent sign (which
terminates a macro definition) within a macro
definition string, you would use the backarrow. For the
definition string ABC IS 15% OF D, the format would be
ABCIS 15 — % of D%.

For a macro-definition-string containing a backarrow
literally, such as:

X—YZ

the format would be:

Xe——YZ

The second character with a speciai meaning is the
uparrow (1). An uparrow followed by an alphanumeric

character specifies arguments for macro expansion.
This convention has the following form:

tn where nis a digit from 1to 9.

1a where a is a single letter from A to
Z.

1?a where a is a single character from

the following set: A-Z, 0-9, and ?

A digit following { represents the position of an actual
argument in the argument list of the macro call. The
argument in position n will replace the formal argument
n wherever n appears within the macro definition. For
example, if the formal argument {3 occurs in the macro
definition string, then 13 will be replaced by the third
argument in the macro call, as described in the next
section. (A zero following 1 is unconditionally replaced
by the null string.)

The Macro Facility

DataGeneral

SOFTWARE DOCUMENTATION

1 n can be used only for arguments 0-9. To reference
arguments 10-63, you must define symbol in the form
of a or ?a having the desired argument number in the
range 10-63. By convention, we use ?0-?9 to reference
arguments 10 through 19. For example:

?20=10,

«MACRO A
(B=4720
X

137
;Call macro with ten args:
A1 2345678912
iCB now has the value of the
itenth arg, 2, which is 7.

An a or ?a following | is a symbol whose value the
assembler looks up when it expands the macro. The
value of the symbol indicates position of thc macro
argument that replaces it (as in 1 n). The value of aor
?a ranges from 1 through 63, since no macro can have
more than 63 arguments.

The carriage return following usér-symbol is required
to distinguish user-symbol from the macro definition
string. .

Aside from the |, —, and %, all characters return from
macro expansion as they were written. Carriage returns
are not inserted automatically into macro definitions;
when a macro definition string contains more than one
line of source language, you must terminate each line
(except the last) with an explicit carriage return.

You must define each expression in a macro definition
string within one line; an expression cannot be broken
by a carriage return or comments. Thus each single
expression can have a maximum of 132 characters, the
line limit of the assembler.

If the macro definition string requires more than one
line, you should use the % terminator as the last line. If
the definition does not fill a single line, terminate the
definition with a %.

Licensed Material - Property of Data General Corporation

Examples of macro definitions are:

«MACRO T iT is equivalent

LDA 0,0,3 ito this two-

MOV 0,0, SNR jinstruction sequence.
%

«MACRO EXP iEXP defines TEST as

sthe sum of two
jarguments,

TESTAL+42 %

«MACRO COMM iCOMM expands to @
;TEST FOR 95_.% DONE.X jcomment line,

The use of macros is illustrated further in the

remainder of this chapter.

The definition of a macro may be temporarily
terminated and then continued. This is especially
useful when you use a first macro to define a second
macro. The first macro may terminate definition of the
inner macro temporarily, assign new values and
continue. The macro VFD, described later, illustrates
this continuation property.

Syntactically, when a macro of the same name as the
last defined macro is encountered, the second and
subsequent ‘‘definitions’” are appended, in order, to
the first definition. For example,

+MACRO TEST
1s0
%

«MACRO TEST
Js0
%

;These two macros are equivalent to!
«MACRO TEST

1=0
J=s0
%

5-2 093-000081-05

Licensed Material - Property of Data General Corporation

Macro Calls

You can place any number of macro calls for a given
macro in your source program. A macro call consists of
the user symbol in a macro definition followed by
actual arguments to replace the formal arguments (if
any) in the macro definition string.

A macro call has one of the following forms:

user-symbol

user-symbol O strings /O string/

user-symbe!, [O] left-bracket [O / string,)}
[string][...] right-bracket

P N =

where:

user-symbol is the name you assigned to the macro
definition.

Each string is an actual argument that will replace the
appropriate formal argument during macro expansion.

left-bracket and right-bracket are ASCII brackets (we

use these terms because the brackets themselves are
notation conventions, meaning optional entries).

093-000081-05

DataGeneral

SOFTWARE DOCUMENTATION

The first form of the macro instruction presumes that
there are no formal arguments within the macro
definition. Forms 2 and 3 presumc that one or more
formal arguments must be replaced by actual
arguments. If an argument list extends to one or more
additional lines, the carriage return character acts as an
argument delimiter (and therefore should not be
preceded by comma or space).

During macro expansion, string; will replace every
occurrence of 11 (or replace | a where aevaluates to 1),
string, will replace every occurrence of 12, and so on. If
more actual arguments are given by the call than were
specified formally by the definition, they are ignored; if
the definition specified none, all call arguments will be
ignored. No macro can have more than 63, arguments.

The following rules govern argument lists:
1. All leading spaces and tabs are ignored.

2. Multiple, contiguous imbedded spaces and tabs are
treated as a single break character.

3. Multiple commas are treated as multiple null
arguments, and a leading comma is treated as a null
first argument.

Figure 5-1 shows how spaces, tabs, and commas in
macro calls expand.

5-3 The Macro Facility

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

+MACRO EXAMP ;Define the macro?

.
’

HE S Lab! A2=42 AlzAl Adz~y ASsAS
;ttttikﬁﬁtttttttktttnttittiﬁt*i*tt
X

EXAMP A B C il space between args,

’
JAL=A A2=B A3sC A4s AS=
PRRARNRRRRRAARARRRAKRRARRARRARRARR

EXAMP A B C ;2 spaces between args,

’
JAlsA A23=B A3sC A4s ASs
FRRARRAARKARRRARARARARKRRRRARRAK AR

EXAMP A B C i 1 teb,

H
JALl=A A2=zB A3sC A4z ASE
FRRARRRRRRNAARRRRR AR ARNRARA RS ARR AR

EXAMP ABC :2 tebs:l speace,

’
iAl=sA A2=8B A3sC A4z ASz
FRAKRKARKKAARARKARRRARAKRRARARRARAR

EXAMP B C 71 teb,2 tabs.

’
7A1=8B A2sC Als Ads ASs
FRARRARARRARRAKN KRR RRRRRRR AR ARA KK

EXAMP ,8,C iLeading comma.

H
jAls A2sB A3s=C Ads ASsz
TRARARRRRKAKARRKARRRRARARRRRARARARKRR

ExamP ,,8,C 3 2 leading commas,

H
jAls A2s A3=B A4sC ASs
;ttt*kt*ttt*ttttttttttt**t**t*iitt

EXAMP ,,.B,C 7 3 leadimg commas,

H
jAls A2z Al= AUsB ASsC
FRRRKARANKRAARRAKRRRRRKRRRRRARRARK

<END

Figure 5-1. Macro Calls and Expansions

5-4 093-000081-05

Licensed Material - Property of Data General Corporation

The list of arguments in a macro call may either be
enclosed in square brackets (form 3), or not (form 2).
Form 2 calls are terminated with a carriage return
before the first byte of macro expansion, whereas form
3 calls are not. To replace the index field of an

instruction, use a form 3 call.

In form 2, you use a return to terminate the argument
list. In form 3, you use a right bracket (]) to terminate
the argument list. Therefore, if you have more
arguments than you can write on one line, use form 3.
Remember that RETURN acts as an argument
delimiter. For example:

ABCI1,2)
3,4]

calls macro ABC with 4 arguments. The call

ABCI1,2,)
3,4]

calls macro ABC with 5 arguments. The third argument
(which follows the secon'd comma) is a null.

Figure 5-2 shows a simple macro, form 2 and 3 calls to
the macro, and a consequent macro expansion.

Macro Definition

MACRO D
TEMP 11%

Macro Calls and Their Expansions

D2+3 ;FORM 2 MACRO CALL

TEMP2+3 :MACRO EXPANSION

STA3,D[2] ;FORM 3 MACRO CALL
;(BRACKETS ARE LITERAL
ENTRIES).

STA 3, TEMP2 ;MACRO EXPANSION.

- Figure 5-2. Forms 2 and 3 Macro Calls
093-000081-05 5-5

DataGeneral

SOFTWARE DOCUMENTATION

The action performed by the two asterisks atom (**) is
unique in form 3 calls. If the first line in a form 3 macro
definition staris with two asterisks, the last line of
arguments will not be printed but the macro will
assemble correctly.

Argument strings, like text strings, may consist of any
characters. You can separate argument strings by a
space, comma, horizontal tab, or return; but a leading
comma indicates a null first argument.

In a macro call, the assembler stops scanning
arguments when it encounters a semicolon (;). To
include arguments whch follow a semicolon, inseit a
backarrow immediately before the semicolon. For
example, in the call

MYMAC ARGA ARGB ; ARGC
ARGC would be dropped, but in the call
MYMAC ARGA ARGC —; ARGC

ARGC would be included.

Listing of Macro Expansions

Macro definitions replace macro calls in the binary file
and in listings of macro expansions. However, the
listing output showing the expanded source text differs
from the macro expansion that generates RB file
output. The listing shows both macro calls and macro
expansions, while the file contains only the RB codes of
the macro expansions with their appropriate actual
arguments. An example is:

+MACRO MYMAC

a3 ¥ 1

LDA 0 MYMAC [121) 3 iLine from source
iprogram,

LDA 0 MYMAC (121] 121 3 jExpanded

iline from
ilisting file.

LDA 0 +121 3 iExpanded line from
tRB binary file.
The Macro Facility

DataGeneral

SOFTWARE DOCUMENTATION

You can suppress the listing of macro expansions with
the pseudo-op .NOMAC. If suppressed, the load
instruction above would appear on the listing exactly as
it appears in the source listing line. The following
example shows the results of suppressing macro
expansion listings.

+MACRO 2

S

LDA 4Af,42
%

iBy default, expansions are listed:

z 0,4
S
LDA 0,4

;Call 2Z,

i +NOMAC suppresses expansion in
i listings, unless it precedes an
i expression which evaluates to 0.

+NOMAC 1
Z 0,4 1Call 2Z,
jRe-enable 1isting of expansions:
«NOMAC 0
4 0,4

S
LDA 0,4

iCall Z,

«END

Licensed Material - Property of Data General Corporation

.DO Loops and Conditionals

In any macro, you should terminate each .DO loop or
.IF conditional with a .ENDC. If you omit .ENDC in a
IF conditional, the assembler supplies the .ENDC
before the terminating %. It’s good programming
practice, however, to include the .ENDC. If you omit
.ENDC from a .DO loop and terminate this .DO with
%, the code will be assembled once (if the argument to
.DO is more than 0), or not at all (if the argument to
.DOis0).

The following example shows a macro, X, which
defines four storage words containing the values 1, 2,
3, and 4 respectively. This macro contains a .DO
statement which is not terminated by a .ENDC
statement. Since it goes unterminated, the .DO is
ignored (in other words, the macro is not written as it
should be, but is presented here to make the point that
.DO statements must be terminated by .ENDC
statements or they will be ignored).

The calling sequence contains a .DO statement and a
terminating .ENDC statement. Since this application of
the .DO facility is proper, it causes the macro and
storage words ““7”” and *‘3”’ to be repeated three times.
Note that in the assembly listing the line ‘*.DO 2
appears three times since it is part of the macro X.

However, since that .DO statement in X has no .ENDC
terminator, it has no effect in the macro expansion
even though it does appear in the listing.

In this example, no K error occurs because the .ENDC
always terminates the .DO 3, not the .DO 2 in the
macro. The .DO 2 loop is never repeated because it is
discarded before it hits a .ENDC.

5-6 093-000081-05

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

093-000081-05

00000

00001
00092

00003
00004
0000S

00006

00007
00010

00011
00012
00013

00014

00015
00016

00017
00020
00021

000003
000007

000001
600002
000002
000003
000004
000003

000007

000001
000002
000002
000003
000004
000003

600007

000001
000002
000002
000003
000004
000003

iThe macro definition of X is:

H +MACRO X .

; 1 JFirst arg in macro.

; 2)

H .D0 2 iThis DO does nothing,
; 3

’

; 4 iLast arg in macro.

H

X

o X §is part of a properly~
cors, 38 follows:

~e we

The macro call t
terminated DO !}

H .00 3 . .
; 7 i Al args in this DO
i X i loop, and {m the macro,
; 3 i repeat 3 times because
H +ENDC i it is closed by ENDC,

+MACRO X .

i iFirst arg in macro,

e

.00 2 iThis DO does nothing,

3

4 iLast arg in macro.
%

.00 3

7

x -

1 iFirst arg in macro.

2 .

.00 2 iThis DO does nothing,

3

4 iLast arg in macro.

3

+ENDC

7

x -

i iFirst 8arg in macro.

2

D0 2 ;This DO does nmothing,

3

4 iLast arg in macro.

3

+ENDC

7

x -

1 iFirst arg in macro.

2

.00 2 iThis DO does nothing,

3

4 iLast arg in macro.

3

+ENDC

5-7 .DO Loops and Conditionals

DataGeneral

SOFTWARE DOCUMENTATION

Macro Examples

A number of macro examples follow in Figures 5-3
through 5-6. Note the use of the recursive property in
the macro, FACT, and the use of macro continuation
and the special character — within VFD.

The first example is a macro to compute the logical OR
of two accumulators. Its call takes form similar to an
ALC instruction, i.e.,

Licensed Materisl . T-aperty of Data General Corporation

OR source-ac [destination-ac

The source accumulator is unchanged by the cail. Note
also that actual arguments replace formal arguments
within the comments.

If you have an ECLIPSE computer, you could use the
IOR instruction to OR the accumulators. Treat this
macro as an example.

jLogicasl

; OR 1,2
H OR 0.1

jAC comments:

OR
00000°124000 COM
000017133400 AND
00002°132000 ADC
00003°124000 CcoM
000047100000 COM
00005°107400 AND
000067106000 ADC
00007°100000 COM

OR macro.

iMacro definitions

«MACRO OR
COM A1,41 ;Clear "ON" bits
AND e Wt sof AC*1.
ADC ALyhe sOR result to AC42,
COM ~1,4 }Restore AC*i{,
X
$The macro call has the form:
i OR acs,acd
jand the expansion js?
i acs LOR, eecd

;The following calls to OR:

sproduce this expansion.

Figure 5-3. Logical OR Macro

Note affect on

1,2

1+1 3Clear "ON"
1,2 sof ACl,
1,2 i0R result to AC2,
11 /Restore AC1,

OR 0,1

0 ;Clear "ON"
1 s0f ACO.
1
0

bits

bits

J0R result to ACH,
iRestore ACO,

093-000081-05

Licensed Material - Property of Data General Corporation

FACT is a factorial macro, and illustrates the recursive
property of macros. Its input consists of an integer, i,

and a variable, v, and it computes the value:
v=i!

using the recursive formula

ivt=i*(i-1)

First, FACT checks for a negative number and either a

DataGeneral

SOFTWARE DOCUMENTATION

0 or 1; then, it expands the macro as follows:

Until the input integer becomes 1, the second
conditional expands and recursively calls FACT. When
the input becomes 1, the first conditional expands and
terminates its expansion. This begins the succession of
returns to each level at which a recursive call was made,
in the process computing //. All these recursive calls
stack up until T 1 becomes 1; they are then executed.
After the final call, the macro will return the string:

12=1(1)*12
and terminate.

;The macro definition is:

+MACRO FACT

ithe macro call is FACT 6,1

FACT 6,1

FACT 6=1,1

FACT 6e1=l,]
FACT é=i=i=i,I
FACT 6bel=lelel,]
FACT 6=l=lel=i=},]

FACT 6ei=lelej=le],]

093-000081-05

i1t negative,
ireturn 0,

;1¢ arg 1 I8 0

iElse ca)) yourself

k& «D0 *1<0
Ak a2=0
kx «ENDC DONE
LR .00 “1c¢3]
LR 23l jor 1§,
Ak +ENDC DONE
FACT ~lel,%2
AgsAL kA
(DONE}
%

jElse call yourself

jE1se call yourself

iEise call yourself

Izsbelmiel=lelx]
[DONE]

000002 Is6=leleleix]
(DONE)

000006 Izbeiei=ix]
[DONE]

000030 Isbeielx]
(DONE)

000170 Is6=12]
IDONE]

001320 I1s6x]
{DONE)

Figure 5-4. Factorial Macro

return 1,

recursively,

recursively,
recursively.
recursiveiy.
3Else call yourself recursively,

jElse cal) yourself recursively,

iElse ca8ll yourselt recursively,

5-9 .DO Loops and Conditionals

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

A macro to output ‘‘packed decimal’ is given next. It ~ The input to PACK is the decimal string of digits,

illustrates a number of useful techniques. separated by spaces, followed by an explicit sign (+ or
-) and the precision in 16-bit words. The macro outputs

In packed decimal, each decimal digit is represented as the least significant word first, and the number sign is

a 4-bit binary nibble. The sign of the number always stored in the rightmost nibble of this word.

occupies the least significant nibble. The translation of

decimal to 4-bit binary is: Some further explanation is necessary:

1. The input radix within the macro must be decimal.
Therefore, it is saved, set to decimal, and restored
within the macro body.

decimal 4-bit binary nibble

+ 0011 (same bit pattern as *“3*")
E) 8(1)88 (same bit pattern as *4™") 2. To present the output as 4-bit nibbles, the output
1 0001 radix within the macro must be hexadecimal.
) 0010 Therefore, the output radix is also saved, set to
3 0011 hexadecimal, and restored. Note the order of the
4 0100 save for these radices is the opposite of the order of
5 0101 the restore. (See .PUSH and .POP descriptions in
6 0110 Chapter 4.)
; (l)(l)(l)(l) 3. Many statements are assembled with each macro
9 1001 call, but listing is inhibited except for the storage
words assembled.
iThe macro call has the form? ;The following four calls to PACK
; PACK d d ses d 8,w) iproduce the expansions belows
iwhere each d is a digft, s is the sign
i(¢+ or =) and w is the number of words. .L0C 100
) L PACK 12345 +,3
iHere ‘is the macro definition, We have PACK 123465 «,3
ishown it as part of the macro expansion, PACK 654321 =4
jto avoid repetition, PACK 32768 +,6
s ':ngo PQS:AC i (Normally, the macro definition would be
. TNOMAC 1 irepeated here,) Expansions are:
AT 000100 ,L0C 100
.RDX 10 . PACK 1 23 45 +,3
'R 00042 34S3 W
-AgxoT“’ 00041 0012 W
i anee 00040 0000 W
B; 11 PACK 12345 e,3
ST
J ot Lot 00043 0000 w
‘00 11 PACK 654321 =,4
¢ 174 00049 1214 W
) .DOI~ B¢ 00048 0654 W
: niotJes 00047 0000 W
B= EDO Je>0 00046 0000 W
’s 3_1 PACK 32768 +,6
EN 0004F 7683 W
‘ENBE 0004E 0032 W
. .NOMAC 0 0004D 0000 W
\:‘ 04 0004C 0000 [
05 00048 0000 W
;: GNOMAC 1 06 0004A 0000 [
B= 15
-LOC 0'2
+ENDC
«L0C tAI¢1
+RDX0 +«POP
«RDX .POP
* & «NOMAC ,POP
* Figure 5-5. Packet Decimal Macro

5-10 093-000081-05

Licensed Material - Property of Data General Corporation

A powerful macro, used to associate a specified field
layout with a given name, is shown below. The macro,
VFD, defines a new macro named as the first argument
in the call to VFD. Subsequent use of the name given
in the VFD call generates a 16-bit storage word with a
primary value to which fields are assembled as
described in the call to VFD. The call has the form:

VFDOtype-namedprimary-valueOfield; -right-bitdt)
fieldy -maskO...field, -right-bitOfield, -mask...

093-000081-05 5-11

DataGeneral

SOFTWARE DOCUMENTATION

The 3rd, 5th, ... arguments specify the rightmost bit
positions of the 1st, 2nd, ... fields. The 4th, 6th, ...
arguments specify the field masks for the 1st, 2nd, ...
fields. To assemble the fields in the proper bit
positions, with overflow and field zero checking, a call
is made of the form:

type-namellfield: Ofield; ...

The example that follows defines a type-name SPECL.
This name is for words of the following layout:

0 1234567 89 101112131415

1 field, field,

.DO Loops and Conditionals

DataGeneral

SOFTWARE DOCUMENTATION

The definition of VFD is:

Licensed Material - Property of Data General Corporation

iWNe define three macros in this figure: VFD, ERROR,
;and SPECL. VFD actually uses ERROR to define SPECL,
iNote that spaces are critical in these macros- for example,
7SPECL 1,1 {s NOT the same as SPECL 1, 1, When you call VFD,
iyou can use values other than we show== on certain resuits,
JERROR wil)l print one of two error messages,
iThe macro definition for VFD {8
«MACRO VFD
I=d
«MACRO 4}
*% PUSH «NOMAC
kk ,NOMAC 1
VALUEs*2
Jst
-k
«D0 ARGCT/2-1
«MACRO 41
JIFN AId>3_AJ
MASKsA1
DATA=_AJ
-
I=I~1
«MACRO 41
D0 1S5,-41
DATASDATAR?2
<ENDC
=%
IsI+!
«MACRO *1t
«IFN VALUEZMASK
ERROR (FIELD NONZERO)
«ENDC
«IFE VALUEZMASK
VALUES(VALUER (=MASK=1))+DATA
+ENDC
+ENDC
«IFE Al>3_AJ
ERROR [FIELD OVERFLOW)
«ENDC
Y 3
Isl+2
+MACRO 1
J=J+l
<%
+ENDC
+MACRO ~}
xx ,NOMAC 0
VALUE
% k% ,NOMAC ,POP

Figure 5-6 VFD, ERROR and SPECL Macros

093-000081-05

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

;Here is the macro definition for macro ERROR:

+MACRO ERROR

xx ,PUSH (NOMAC

*x*x ,NOMAC 0
FRARKARRARRRRARR KR KRR A RANNKRKARRR AR R A &

; Al Aa A} Aa AS A6 A7 AB "AQ

FRRARRKARRAARRARR R AR AN R AR KR ARRRAR R A A&
xx _NOMAC ,POP

X

iThe following call to macro VFD creates macro SPECL
$VFD uses ERROR {n the process):

VFD SPECL,100000,3,7,15,,17

000004 I=4
«MACRO SPECL

*% (PUSH « NOMAC
** ,NOMAC 1
VALUE=100000

Js1

000002 «D0 .ARGCT/2-1
«MACRO SPECL

JIFN 7334y
MASK=7
DATA=4J
%
000003 I=]=]
«MACRO SPECL
.00 15.-3
MASKSMASK=*2
DATA=DATAxZ
«ENDC
x
000004 Isi+}
«MACRO SPECL

o« IFN VALUERMASK

ERROR [FIELD NONZERO)

+ENDC

+IFE VALUERMASK

VALUE=(VALUER (*MASK=1))+DATA

+ENDC
+ENDC

oIFE 7>=4J
ERROR [FIELD OVERFLOW)

<ENDC
X
000006 IsI+2
+MACRO SPECL
JsJ+1
X
LENDC

«MACRO SPECL

Figure 5-6 VFD, ERROR, and SPECL Macros (continued)

093-000081-05 5-13

.DO Loops and Conditionals

DataGeneral

SOFTWARE DOCUMENTATION

Licensed Material - Property of Data General Corporation

Figure 5-6. VFD, ERROR, and SPECL Macros (continued)

«IFN 17>34J

MASK=17
DATAsA)
X
000005 Isl=l
«MACRO SPECL
.00 15,~15,
DATAsDATAx%?
+ENDC
X
000006 Isl+l
«MACRO SPECL
«IFN VALUE&MASK
ERROR (FIELD NONZERO)
+ENDC
«IFE VALUE&MASK
VALUES(VALUES (*MASK=1))+DATA
«ENDC
<ENDC
«IFE 17537
ERROR (FIELD OVERFLOW)
+ENDC
b4
000010 I=l+2
+MACRO SPECL
JeJ+l
3
+ENDC
+MACRO SPECL
%% ,NOMAC 0
VALUE
iNow, we can fssue two cells to SPECL,
iwith srguments 1,1 and-7,17.
SPECL 1,1
00000 110001 VALUE
’ SPECL 7,17
00001 170017 VALUE

093-000081-05

Licensed Material - Property of Data General Corporation

Generated Labels

You can use the dollar sign ($) to generate unique
labels within macros. In normal (nonstring) mode,
each occurrence of the character $ is replaced by three
characters from the set 0-9, A-Z. The three characters
are determined by converting a count of the number of
macro calls in radix 36 to ASCIIL. In nested macros, the
replacement string for $ in the outer macro is saved and
restored when the inner macro has been expanded.

DataGeneral

SOFTWARE DOCUMENTATION

When used in labels, $ should generally not be the first
character, as the first replacement character may be a
digit. If the number of macro calls on pass two differs
from the number on pass one, the label will receive a
different value on each pass, and produce phase errors
when used.

Figure 5-7 shows the generation of label entries via the
macro BKT.

+MACRO BKT
DSz COUNT
TR$=s

%

sThe macro definition is:

iUnique label,

iNow, call BKT S times with & ,DO S, BKT,
7 +ENDC sequence, to produce S labels,

COUNT:
«NREL
D0 S
BKT
+ENDC

093-000081-05

00000 000000 COUNT: ,

Figure 5-7. Generating Labels

iThe expanded listing is:

«NREL
00000S .00 5
BKT
00000°014000 DS2Z COUNT
000001° TR$001= , iUnique label,
+ENDC
BKT
0003°014000 08§ COUNT
000002° TR$002s jUnique label,
<ENDC
BKT
00002°014000 DsZ COUNT
000003* TR$003=z , iUnfque label,
+ENDC
BKT
00003014000 DS COUNT
000004° TRS$004s iUnique label,
<ENDC
BKT
00004°014000 DSz COUNT
000005° TR$00S= iUnique)abel,
+ENDC

Generated Labels

DataGeneral

SOFTWARE DOCUMENTATION

Literals

All memory reference instructions must specify an
address field. This address is used to:

1. Access the contents of the memory location in the
case of an LDA.

2. Modify the memory location in the case of an STA,
ISZ, or DSZ.

3. Transfer control in the case of a JMP or JSR.

Often, however, you merely wish to specify the contents
of a memory location and are not concerned about its
address. Such a specification is called a /iteral reference
(or simply a literal).

Literals are permitted for all memory reference
instructions. The macro assembler dumps these literals
and assigns relocatable memory locations using the first
and subsequent .ZREL locations available after pass 1.
Therefore, all literal references are directly addressable.

To conserve ZREL address space, define literals before
you use them. The assembler assigns two storage
locations to each forward reference to a location but
only one to each backward reference. For example,

LDAO, —AFTER
LDA 1, —AFTER
AFTER:0

requires two locations - one for each reference to the
literal. Whereas

BEFORE:O
LDAO, =BEFORE
LDA 1, =BEFORE

requires only one ZREL location.

The syntax of a literal reference is as follows:

expression
memory-reference [ac,] = P }

instruction

5-16

Licensed Material - Property of Data General Corporation

Note that a literal may be any expression or instruction.

Frequently, literals are used to load an accumulator
with some constant. For example,

LDA 1,=3

loads AC1 with the value 3.
Expressions are acceptable:
LDAO,=1B0O+"A/2

loads ACO with the value 40040.
Instructions are also acceptable:
LDA 1,=SUBZ# 2,3,SNC

loads AC1 with the value 156433.

The previous examples give absolute expressions as
literals. However, any relocatable expression is legal.
For example:

.NREL

LDA 2,=A
loads the value of ‘A’ into index register 2. You can
also use a literal to form a bytepointer to a text string
labeled “TX’’:

LDA 1,=2"TX)

™>: TIXT “TEXT STRING”)

Literal labels permit communication with subroutines

without concern for addressing errors. To call
“SUBI” (whether or not “SUBI” is directly
addressable), the following creates a

directly-addressable reference:

JSR @=SUB1

093-000081-05

Licensed Material - Property of Data General Corporation

Generated Numbers and Symbols
The format:

\symbol

may appear anywhere in assembly code. When
assembled, \symbol is replaced by a three-digit
number, representing the current value of \symbol,
truncated if necessary and in the current input radix.

\symbol may stand alone in the code to form an
integer, or it may immediately follow characters that,
together with the value of \symbol, will form a number
or symbol. The number or symbol consists of any
number of combined characters. For example:

;Source program:

+RDX 8

I 2 1234

ANI iwill become symbol A234
i(1 wil) be dropped),
iwill become symbol BB234,
iwill become symbol CCC23,

BB\I
CCCNI
450,\I ;wild

equal 450,234,

iAssembled listing:

0000310 ,RDX 8
001234 I = 1234
000000 A\I234 iwill become symbol A234
(1 will be dropped).
iwill become symbol BB234,
iwill become symbol CCC23,

000000 BB\I234
000000 CCCN\I234
041434 4S0,\I1234 will equal 450.234.
021676

DataGeneral

SOFTWARE DOCUMENTATION

\symbol will be printed in the assembly listing (but not
in the cross-reference) even lhough it is suppressed in

the gc‘ﬁef‘dtcd relocatable code. For example,

Source Code: Listing:
ONES=111 ONES=111
A\ONES: A \ONESI111

\symbol can be incremented, using the .DO facility, to
provide labels for a table. For example,

this source code:

RDX 8.
*e =0
TABLE: .DO 64.
A\l: 0
. =141
ENDC

assembles into this:

.RDX 8.
TABLE: .DO 64.
ANIOOO: 0
A\IOO1: 0
A\IOO2: 0
A1077: 0

.ENDC

Note that “\I”, included in the labels “A\I00O," etc., is
not included in the actual symbol. It appears in the
symbol table as ““ A000:**

End of Chapter

093-000081-05

5-17

Generated Numbers and Symbols

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Chapter 6
How to Operate the Macroassembler

Assembler Files

Data General supplied the macroassembler along with
your operating system in the following files:

Filename Definition
MAC.SV The assembler program.
MACXR.SV Cross-reference file.

Often, during RDOS system generation, these files are
placed in the master directory (the directory which
holds the operating system). For DOS, you may need
to LOAD these files, as well as the files listed under
microNOVA Systems below, from your DG Utilities
diskette.

Before you can use MAC, you must create a tailored
version of the initial symbol table file, MAC.PS. You
can do this with the assembler itself, by typing the
appropriate command from the master directory.

For NOVA 3 systems:

MAC/S NBID, OSID, NSID, systype [,PARU])

For microNOV A systems:

MAC/S MBID, OSID, NSID [,PARU,])

For other NOV A systems:

MAC/S NBID, OSID, systype, [,PARU])

For ECLIPSE systems:

MAGC/S NBID, OSID, NEID, [NCID] systypel)
[[NFPID][[PARU],)

093-000081-05

To find the systype, type LIST -DOS.SR) from the
master directory and insert the name displayed. PARU
is the system parameter file, which you’ll need if you
plan to use system mnemonics (like EREOF for
end-of-file error). NFPID is the hardware
floating-point instructions. Other files are defined later
in this chapter. You can examine the contents of any of
these files with the TYPE command. The names of all
these source files end in .SR; thus PARU’s full name is
PARU.SR and OSID’s full name is OSID.SR.

The proper MAC command above produces a tailored
initial symbol table file, which the assembler will then
access automatically for all future assemblies.

If you want to use the macroassembler from a different
directory, you can create link entries to the assembler
files in the master (or directory which holds the MAC
files). For master directory Dxx, you’d type the
following commands from the nonmaster directory:

LINK MAC.SV Dxx:MAC.SV)

LINK MACXR.SV Dxx:MACXR.SV)

LINK MAC.PS Dxx:MAC.PS)

File LITMACS.SR

File LITMACS.SR, supplied with your system,
contains a number of useful macros, already coded, for
storing literals in NREL space. You may want to
examine this file and copy the macros you like from it.

Assembler Files

DataGeneral

SOFTWARE DOCUMENTATION

Operating Procedures

MAC can assemble source files input from a nondisk
device, like a mag tape or card reader, but it works far
more efficiently if the source files are on disk. The
assembier cannot execute certain operators, like the
iteration of .DO loops, from a nondisk file. We
recommend that you code all your source files on disk
with one of the text editor utilities, and that, if a file is
not on disk, you transfer it to disk via the CLI
command XFER or LOAD before trying to assemble
it.

You invoke the macroassembler by typing the CLI
command MAC, followed by one or more arguments.
You can modify execution of a MAC command by
inserting optional global switches, and modify an
argument by inserting optional local switches.

The format of the Macroassembler command line is:
MAC [global switches ...] filename [local switch ...])

The MAC command line assembles one or more
source files (filenames), and produces either an RB
file, a listing file, or both. MAC assigns the extension
.RB to filename; you must then process filename.RB
with RLDR to make it executable.

Unless you specify otherwise with switches, the
assembler output will receive the name of the first
source program in the MAC command line; no listing
will be produced, and assembly errors will be sent to
the console.

You can include the following switches in the

assembler command line:

Global Switches:

/A Add semipermanent symbols to the
cross-reference listing (used with global or
local /L). By default these symbols are not
included.

/E Do not report assembly errors unless

there is no listing file (global /L). In any
case, error codes will always go to the
console (unless you use both /E and /L).
Error codes are described in Appendix A.

6-2

Licensed Material - Property of Data General Corporation

/F Generate or suppress form feeds as
required to produce an even number of
assembly pages. This feature keeps the
first page of successive listings on the
outsides of paper folds, and makes
refolding unnecessary. By default, a form
feed is always generated at the end of a
listing, whether the number of pages is

odd or even.

/K Keep the assembler’s temporary symbol
file (MAC.ST) at the end of the assembly.
Since virtually no programs require the
use of this file, it is deleted by default.
Using the /L switch will give you a list of
all symbols in this file used in the

assembled program.

/L Produce a listing of the assembly,
including cross-reference. If you omit /ocal
/L, the listing will go to a disk file, named
for the first source file in the command

line, with the extension .LS.

/N Produce no RB file. This switch is often
used the first or second time that a file is
assembled since there will probably be
assembly errors (and the resulting binary

would not be useful).

/M Flag multiple-definition errors on pass
one. Normally MAC flags these errors

only if they remain at the end of pass two.

/0 Override all listing control pseudo-ops:
.NOCON, .NOLOC, and .NOMAC. Also
override the ““**° listing suppression

feature.

/S Skip the second assembly pass (produce
no .RB file) and save a version of the
assembler’s symbol table, MAC.PS. This
procedure is described in detail below,
under ‘‘Macroassembler Symbol Table

Files”’.

093-000081-05

Licensed Material - Property of Data General Corporation

/T

Invoke the eight-character symbol
feature. This instructs MAC to recognize
symbol namecs of up o eight characters,
and to store and output eight characters
for each symbol name. Normally, MAC
recognizes and stores only the first five
characters of each symbol, although it
prints longer symbol names in program
listing. To allow for longer symbol names,
the RB produced by a MAC/T command
will be in extended RB format. If you plan
to use global /T, be aware of the following
restrictions when you write your source
program:

1. No macro name can exceed five
characters.

2. The first tive characters of each macro
name must differ from the first five
characters of any other symbol name;
e.g., .MACRO TESTt and TEST100:
MOVS 0,0 could not be used in one
module. If MAC encounters such a
symbol, it treats it as a macro call and
tries to expand the symbol (e.g., it
would try to expand TEST100 using the
macro definition of TEST1.)

3. The cross-reference listing will show
only the first five characters of each
symbol name.

Eight-character symbols may also affect
debugging, if you plan to use the
debugger. See the Program Symbol Table
section of the Extended Relocatable Loaders
manual, for debugger restrictions
associated with eight- character symbols.

4. A MAC.PS file created without a global
/T switch wiil not work properly with
files that need global /T. If you plan to
use eight-character symbols in your
sources, create a MAC.PS file
specifically for assembly of these files.
You’ll use the MAC.PS created
without global /T to assemble
five-character symbol sources. See the
local /T and the ‘‘Symbol File”
sections of this chapter for more
details.

If you omit global /T, MAC defaults to
five-character symbol names and standard
RB output.

093-000081-05

6-3

DataGeneral

SOFTWARE DOCUMENTATION

/U Include local user symbols in the RB file.
When the /U switch is also applied to the
RLDR command line, then the debugger
will be able to find local user symbols. This
facilitates program debugging.

/2 For DGC personnel only: list the DGC
proprietary license heading at the top of
each assembly and cross-reference page.
By default this heading is not listed.

Local Switches:

name/B Direct RB output to ‘‘name’’. Normally,
the assembier places its output under the
filenaine of the first souice fiie in ihe
MAC command line, with the RB
extension, unless an RB module contains
the .RB pseudo-op.

name/E Direct assembly errors to file ‘‘name’’,
when a listing file has been specified.

name/L Direct assembly listing to file ‘‘name”
(global /L is not required with this
switch).

name/S Skip file ‘““name’ on the second pass of
the assembly. File name must not define
any storage words. Typical files that might
be skipped include parameter definition
files and macro definition files. Skipping
such a file on the second assembly pass
does not hinder the assembly of other files
in the command line; it merely decreases
the size of the output listing and reduces
assembly time. :

name/T This file holds the initial symbol table. If
you omit ‘‘name/T’’, the assembler uses
MAC.PS as the initial symbol table file.

Whether or not any filename in an assembly command
line bears the source file extension, ‘“.SR”’, the
assembler will always search first for “‘name.SR’’ and
only if this file cannot be found will the assembler
search for filename without an extension. In every
case, the assembler will name its output after the first
source file in the command line (unless you specify /B,
or insert the .RB pseudo-op). That is, the following
commands,

MAC ABC)and MACA.SRB.SRC)

Operating Procedures

DataGeneral

SOFTWARE DOCUMENTATION

each produce file A.RB. Error messages from these
commands go to the console, and no listing file is
produced. If, instead, the command was

MAC ABC SLPT/L

then A.RB would be produced as before, the assembly
listing would go to the line printer, and error codes
(and copies of the offending source code lines) would
go to the console. You can give your source files any
extensions you want (.SR is conventional), but avoid
the extension .RB, because two identical filenames
can’t exist in the same directory.

You may not want a separate error file (local /E) since
all assembler error messages consist simply of a letter
code beside a bad line of source code and since all bad
lines of source code are also flagged within an assembly
listing.

The global /F switch is useful when you are performing
a series of assemblies. For example:

MAC/F PROG<1,2,3,4> TFILE/L

assembles PROG1, PROG2, PROG3, and PROG4 (see
the CLI Reference Manual for other uses of < >).
TFILE will contain listings of the four files in the order
they were assembled. The Macroassembler will insert
either one or two form feeds between listings so that
each separate listing starts on an even-numbered page.
Before typing the command, position the paper in the
printer so that the first page of TFILE will fold facing
up. (The proper starting position will vary from one
printer model to another.) This will make the first
pages of the PROG2, PROG3, and PROG4 listings also
fold facing up.

Macroassembler Symbol Table Files

The assembler maintains its symbol table and macro
definition table in a disk file called MAC.PS. The
symbol table is required to associate standard DGC
machine instruction names (such as LDA) with their
appropriate machine instructions (see the discussion of
symbol table pseudo-ops in Chapter 4).

These machine instructions are provided in file NBID
(NOVA Basic Instruction Definition). Additional
instructions are contained in NSID.SR (NOVA Stack
Instruction Definition, for NOVA 3 and microNOVA
computers only), and NEID.SR (NOVA Extended
Instruction Definition, for ECLIPSE machines).
Additional instructions, for Commercial ECLIPSE
computers, are defined in NCID.SR

Licensed Material - Property of Data General Corporation

Operating system call definitions are in file OSID.SR,
and in another file whose name varies with your
operating system (as described at the beginning of this
chapter). The macro definition part of the table is used
during assembly of your own macros.

At the start of each assembly, the permanent symbol
table file, MAC.PS, is copied to create a temporary
symbol file. Thus MAC.PS can be used to save symbol
and macro definitions from assembly to assembly.

When the assembler detects the .XPNG pseudo-op, it
deletes the symbol file and creates a new, empty
symbol file. The /S function switch stops the assembler
at the end of its first pass; the new symbol file then
receives the name MAC.PS.

The requirements of MAC.PS will vary with your
needs. If, for example, you will use operating system
mnemonics for error codes, the system parameter
definitions (found in PARU.SR) must be part of
MAC.PS. You will probably find it convenient to build
different versions of this file, and specify them at
assembly time with the local /T switch. You could
create such a file this way:

MAC/S sourcefile; ... sourcefile,)

Then, RENAME the MAC.PS file to a useful name:
RENAME MAC.PS SYMBOLS3.PS)

Then, use the /T switch to specify your special file:
MAC FILEA SYMBOLSS3.PS/T)

After each RENAME step, you’d need to recreate the
original .PS file, as shown at the beginning of this
chapter.

You can also change the original MAC.PS file by
inserting global /S for a source file that begins with an
XPNG pseudo-op; or you could add to the retained
symbols and macros by using global /S on a source file
not containing .XPNG. These procedures allow you to
define symbols or macros for one assembly and use
their definitions for subsequent assemblies. You could
also use . XPNG and the /S switch to assign new
mnemonics to machine instructions (such as JUMP or
some foreign language equivalent to the instruction
that DGC names JMP). File NBID.SR, which is part of
most MAC.PS files, starts with . XPNG.

6-4 093-000081-05

Licensed Material - Property of Data General Corporation

Any MAC command has the following effects on the
symbol table:

1. Copies MAC.PS into MAC.ST.

2. During pass 1, copies all user symbols, macros, and
semipermanent symbols to MAC.ST (f it
encountered . XPNG, it would have deleted the old
table before adding these).

By including global /S, you effectively instruct the
assembler to rename the MAC.ST to the MAC.PS; it
will then use this MAC.PS file for subsequent
assemblies unless you specify another file with the /T
switch.

DataGeneral

SOFTWARE DOCUMENTATION

The symbol table portion of the symbol file can hold
approximately 8,000 symbols. By default, MAC
truncates symbols longer than five characters to five
characters; if you include global /T, it truncates
symbols to eight characters. It then stores the symbols
in radix 50 representation to save space. Using smaller
symbols will not increase the potential total beyond
8,000 symbols. The macro definition portion of the file
can hold approximately 1/2 million characters or macro
definition strings. Radix 50 representation and MAC’s
formats for different binary blocks are described in an
appendix of the Exrended Reiocatabie Loaders manual.

End of Chapter

093-000081-05 6-5

Macroassembler Symbol Table Files

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Appendix A
Error Codes

MAC outputs two kinds of error messages. The first
kind consist of one or more ietter codes which MAC
places beside a line of source code on the listing. These
letter flags indicate assembly errors, which do not abort
the MAC command. The second kind of error occurs
when MAC cannot continue with the command
(possibly because it lacks an essential file like
MACXR.SV); this is a fatal error. This appendix
describes first the alphabetical assembly error codes,
then explains the fatal error messages.

Assembly Errors

Assembly error messages appear as single letter codes
in the first three character positions of a listing line. The
first error code appears in character position three of
the line in which the error occurred. If there is a second
error, the code is output in position two; for a third
error, the code appears as the first character of the
listing line.

Assembly errors are output as part of the assembly
listing and to the console. If the listing is suppressed.
the error listing is always output to the console.

093-000081-05

The list of possible assembler error codes is as follows:

Address error.

Bad character.

Macro error.

Radix error.

Equivalence error.

Format error.

Global error.

Parity error on input.
Conditional or repetitive assembly error.
Location counter error.
Multiply-defined symbol error.
Number error.

Overflow error or stack error.
Phase error.

Questionable line.

Relocation error.

Undefined symbol error.
Variable label error.

Text error.

X<OROTOZZC A~ QEMIONmUOw»

Some typical causes of errors are given on the pages
following. However, there is no way to pinpoint all the
possible causes of assembly errors.

Assembly Errors

DataGeneral

SOFTWARE DOCUMENTATION

Addressing Error (A)

An A flags an error appearing in a memory reference
instruction (MR) and indicates an illegal address. For
example:

1. A page zero relocatable instruction references a
normal relocatable (NREL) address.

Example:
«NREL
900010 G: 10 JNREL acdress,
«ZREL
A -=04v000 STA @8, G :ZREL

jinstructionm,

2. An NREL address references an address outside the
program location counter’s relative address range:
(.-200 < displacement < .+177).

Example:

+NREL]

A 'p2e002 LDA @, Y ;Y is out
jof MRI
sinstruction

poedzo! .LOC .+416 jrange.
'¢eeaee Y: 2

Bad Character (B)

Error code B indicates an illegal character in some
symbol. The line containing a symbol that has an
erroneous character will be flagged with a B. A bad
character error often leads to other errors.

Example:

.NREL
B0O0O000’ 024023 .A%:LDA 1,23 :% IN LABEL
:SYMBOL
CAUSES
:BAD
CHARACTER
:ERROR.

Licensed Material - Property of Data General Corporation

Macro Error (C)

The macro error code C occurs under the following
circumstances:

1. You attempted to continue the definition of a macro

A-2

when it is not the last macro defined.

M «MACRO A
_mMovZL @, ex

M +MACKO A
CoM 1, 11X iLecel)
. jcontinuation,

«MACRO B
ADDZL @, eX

L]
M «MACKO A illlegal to
NEG 0, @ icortinue any
jmacro but B,
iError goes to
;ell A defs.

2. If a macro exhausts assembler working space.
However, this should only occur if the macro
definition causes endless recursion.

3. If more than 63, arguments are specified.

Radix Error (D)

Error code D occurs on a .RDX or .RDXO pseudo-op
when .RDX contains an expression that is not in the
range 2-20 or when .RDXO contains an expression that
is not in the range 8-20, or when you used a digit that is
not within the current input radix.

Examples:
D 000030 LRDX 4xé i0ut of renge,
P0R0VB2 LRDX ¢

0 000013 B: 35 iNot within
jcurrent reacix,

093-000081-05

Licensed Material - Property of Data General Corporation

Equivalence Error (E)

Error code E occurs when an equivalence line contains
an undefined symbol on the right-hand side of the
equals sign. This may occur on pass one before the
symbol on the righthand side has been defined or on
pass two if the symbol is never defined.

Examples:

+NREL
EUU AsB JEUL on first pass,
UFU Az JUFL On seccnc pess.

Format Error (F)

An F error results from any attempt to use a format
that is not legal for the type of line and often occurs in
conjunction with other errors.

When a format error occurs in an instruction, the code
generated by the instruction reflects only those fields
assembled before the error was detected.

Examples:

FFD ADD 2 iNot enough operands,

FD STA e, 18, 3, SNC ;Toco meny operands
janc wrong operand for
iinstruction type.

F «ZREL=1 iPsuedorop does not
iellow argument,

066612 ,DUSK C s CIAC @, PIR

jAttempt to give srgument
i to a symbol defined
i by OUSK Fseudo-oF,

F 060612 C 1

F 125085 MOV 1, 1, SNR ;lnstruction with skip
i field preceeds
i twoeworo instructior.

FU 00VOGE ELDA 6, SYMB

Global Symbol Error (G)

A G error code results when there is an error in the
declaration of an external or entry symbol.

Examples:
«TITL Z

GU +ENT FH ikH never defined,
<ENC

093-000081-05 A-3

SOFTWARE DOCUMENTATION

Input (Parity) Error (1)

An | error code occurs when an input character does
not have even parity. The assembler substitutes a back
slash (\) for any incorrect charcter and flags the line
containing the error with an I.

Conditional Assembly Error (K)

A K error code occurs when an .ENDC pseudo-op does
not have a preceding .DO or .IF xpseudo-op.

Example:
.00 2
L]
<ENDC
K +ENDT iNo D0 or IF for this EMDC,

Location Error (L)

The L code occurs when an error is detected in a line
that affects the location counter.

Examples:

L 177777 LCC -y

Here, the expression in a .LOC evaluates to less than
zero or cannot be evaluated on the first pass of the
assembler. If the expression is outside the range of
locations or cannot be evaluated, the .LOC is ignored,

and the location counter is unchanged.

e0436'0000080 A "

L 000443! «BLK ,+108

Here, the expression in a .BLK statement cannot be
evaluated on the first pass of the assembler or its value,
when added to the current value of the program
location counter, is less than zero. If an L error occurs,
the .BLK statement is ignored and the location counter
is unchanged.

Location Error (L)

DataGeneral

SOFTWARE DOCUMENTATION

Multiple Definition Error (M)

The M code flags a multiply-defined symbol. Within an
assembly program a symbol appearing, for example, as
a label cannot be redefined as another unique label.
Any multiply-defined symbol will be flagged M at each
appearance of the symbol.

Example:

«NREL
v A e jFirst pass,
PM A 0 ;Secord pass,

Note that the second definition of A is also flagged as a

phase error (P) on the second assembler pass. (See
Phase Error.)

Number Error (N)

The N code is given when a number exceeds the proper
storage limitations for the type of number; the N error
occurs under the following conditions:

1. An integer is greater than or equal to 2'6. The
number is evaluated modulo 2'¢.

oogele «RDX 1@,
N vereo3 65539

2. A double-precision integer is greater than or equal
to 232 The number is evaluated modulo 232

N 167153
024090

doeeoeoeeece,D

3. A floating point number is larger than 7.2*1075.

N 077777

T.3E75
177777

Licensed Material - Property of Data General Corporation
Field Overflow Error (O)
A field overflow error occurs when:
® Variable stack space is exceeded; or

® When a .TOP or .POP is given with no previous
.PUSH; or

® When an instruction operand is not within the
required limits; e.g., 0-3 for an accumulator, 0-7 for a
skip field, etc.

When overflow occurs in an instruction field, such as
an accumulator field, the field will remain unchanged.

Examples:

o] 40020020 «PCP

8] 700000 . TCOP

0 020775 LDA 5S¢ =3

Phase Error (P)

A phase error is caused when the assembler detects on
pass 2 some unexpected difference from the source
program scan on pass 1. For example, a symbol defined
on the first pass which has a different value on the
second pass will cause a phase error. If, as in the
example, a symbol is multiply-defined, the M error
flags each statement containing the symbol, while the
phase error flags the second and any subsequent
attempt to redefine the symbol.

Example:
M Bs (%) iFirst pass.
P~ B: 1 iSecond pass,

093-000081-05

Licensed Material - Property of Data General Corporation

Questionable Line (Q)

A Q error occurs when you have used a # or @ atom
improperly, or a ZREL value where an absolute value is
expected, or an instruction that may cause a skip
immediately before a two-word instruction.

Examples:

«ZREL

.BLK 1D

:NREL

¢ LDA &, FLD, 2

FLDs

Asserbler
expects @sbe
s

clute for FLD,

G MoV # 2, 1 iNo=load bit set
i nc skip field
i given,

Relocation Error (R)

The R error indicates that an expression cannot be
evaluated to a legal relocation type (absolute,
relocatable, or byte relocatable as described in Chapter
3) or that the expression mixes ZREL and NREL
symbols.

Example:

«NREL
Q012 £: 19 iContents atsclute,
f81130" E+E 7 Contents NREL
3 byte relocatable,
R @2¢ieny! E+E+E $ Contents not
i werd or tyte
’

relocatstle.

Undefined Symbol Error (U)

The U error occurs on pass 2 when the assembler
encounters a symbol whose value was never known on
pass 1. The error occurs on pass 1 when the definition
of a symbol (by equivalence) depends upon another
symbol whose value is unknown at that point.

Example:

U LDA B, XX XX was never defined.

See also the example given for equivalence error E.

093-000081-05

DataGeneral

SOFTWARE DOCUMENTATION

Variable Label Error (V)

A V error occurs if anything other than a symbol
follows the pseudo-op .GOTO.

Example:

Fv «GOTO 14

Text Error (X)

An error occurring in a string is flagged as a text error
(X). A text error occurs if the expression delimiters <
and > within a string do not enclose a recognizable
arithmetic or logical expression. (Relational
expressions cannot be used within text strings.)

Examples:
X Q37131 LTXT "<X+ Y>" ;Nc spaces are
20¢000)
;7 allowed in
;i exrressicns,
X 0002820 L,TXT "<+>" jExpressions must
; have crerancs,
X 037867 LTXT "<x=>y>" iRelatioral
237131
0ee00e
; OFerators
; are not
i ailoweon,
Text Error (X)

DataGeneral

SOFTWARE DOCUMENTATION

Fatal Errors

The following error messages abort
command and return control to the CLI.

the MAC

ATTEMPT TO POP LINKED ELEMENT WHEN NONE
EXISTS

This results from an internal MAC error. An internal
stack containing linkage information has become too
small. When it tried to pop a link from the stack, MAC
couldn’t find any link. This error produces a
BREAK.SV file (FBREAK.SV if MAC was running in
the foreground). Please send a copy of your command
line, source file(s), and (F)BREAK.SV to your local
Data General Software Engineer.

COMMAND FILE ERROR

The CLI's command file (COM.CM or FCOM.CM),
which it uses to communicate with MAC, has the
wrong format. See the CLI manual for (F)COM.CM
formats.

INSUFFICIENT MEMORY

The minimum configuration of MAC is too large to run
in available memory.

Licensed Material - Property of Data General Corporation

LINKAGE STACK OVERFLOW

An internal stack containing linkage information has
become too large for its allotted memory space.

MACRO DEFINITION OVERFLOW

Macro definitions have overflowed the maximum
addressable size of the MAC.ST file. This is
approximately a half-million bytes; see Chapter 6.

MACXR.SV DOES NOT EXIST

File MACXR.SV generates the cross-reference listing;
it is required. You can either MOVE it to or LINK to it
from the current directory (see the beginning of
Chapter 6).

SYMBOL TABLE OVERFLOW

MAC can handle a maximum of about 8,000 symbols.
If the file(s) in your command contain more than this
number, you receive this message. Try assembling files
in smaller groups.

End of Appendix

A-6

093-000081-05

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Appendix B
Permanent Symbols

Permanent Symbol Pseudo-op Value Permanent Symbol Pseudo-op Value
(directive) (directive)
ARGT No Yes .GOTO Yes No
BLK Yes No .GREF Yes No
.COMM Yes No JFE Yes No
.CSIzZ Yes No IFG Yes No
JFL Yes No
.DALC Yes No JAFN Yes No
.DCMR . Yes No
.DEMR Yes No LMIT Yes No
.DERA Yes No
.LOC Yes Yes
.DEUR Yes No
DFLM Yes No .MCALL No Yes
.MACRO Yes No
. .NOCON Yes Yes
DFLS Yes No
DIAC Yes No NOLOC Yes Yes
.DICD Yes No
.DIMM Yes No .NOMAC Yes Yes
.DIO Yes No .NREL Yes No
.DIOA Yes No .PASS No Yes
.POP Yes Yes
.DISD Yes No
.DISS Yes No PUSH Yes No
.DMR Yes No
.RB Yes No
.DMRA Yes No
DO v N .RDX Yes Yes
.DUSR Yes NO .RDXO Yes Yes
: €s 0 REV Yes No
DXOP Yes No 'E)TPL :st r:gs
.EJEC Yes No ’
.END Yes No
.ENDC Yes No TXT Yes No
ENT Yes No TXTE Yes No
.ENTO Yes No TXTF Yes No
TXTM Yes Yes
.EOF Yes No TXTN Yes Yes
EXTD Yes No
EXTN Yes No TXTO Yes No
EXTU Yes No
XPNG Yes No
.GADD Yes No ZREL Yes No
.GLOC Yes No ’

End of Appendix

093-000081-05 B-1 Permanent Symbols

DataGeneral

Licensed Material - Property of Data General Corporation SOFTWARE DOCUMENTATION

Appendix C
ASCII Character Subset

040

042

045

047

SP

k)

%

064

066

072

074

076

100

102

107

111

113

115

117

121

123

125

132

134

141

143

145

147

_—

7-Bit 7-Bit 7-Bit 7-Bit 7-Bit

ASCII ASCII ASCll ASCll ASCH

Code Character Code Character Code Character Code Character Code Character
014 FF 062 2 105 E 130 X 154 1

156

160

164

166

170

172

093-000081-05

End of Appendix
C-1

ASCII Character Subset

Licensed Material - Property of Data General Corporation

DataGeneral

SOFTWARE DOCUMENTATION

Index

Within this index, the letter “‘f”’ following a page
number means ‘‘and the following page’”; *“‘ff”’ means
“and the following pages’'. /talics indicate the primary
page reference (where applicable). Entries in
CAPITAL letters are generally assembler pseudo-ops
(if they begin with a period, e.g., .ARGCT),
instructions (e.g., ADC), or filenames (e.g., MAC.PS).

(CR) 1-2,2-2.5-5
(Space) 2-2,5-3
(OR, inclusive) 3-1f
(quote) 2-4f
(number sign) 2-7
(generate label) 5-15
(macro definition terminator) 5-1
(AND) 3-If
(apostrophe) 2-5
(parentheses) 2-2
(multiply) 3-If

** (asterisks) 2-8

+ (plus) 3-1If

s = [

PRew

* e~
~—

’ (comma) 2-2, 5-3
(current location) 4-5

(decimal input) 2-5f
- (minus) 3-1f
(divide) 3-1f
(colon) 2-2
(semicolon) 2-1f
> (relational operators) 3-1f
(equals) 2-2
(commercial AT) 2-7
(brackets) 2-2, 5-3
(backslash-generate a number or symbol) 5-17
(dummy argument in macro definition)
5-1ff, 5-5
(backarrow) 2-4ff, 5-1

—TZe AT

I

093-000081-05

Index-1

Aerror 3-11f, A-2
absolute code 1-2, 1-6
ADC 3.7
ADD 3-7
address
assembler, loader operations 1-6
forming effective 3-11, 3-14f
indirect 2-7
ALC instructions 3-7
AND
& 3-1f
instructions 3-7
.ARGCT 4-4, 4-6
arguments
to macros 1-1, 2-2, 5-1ff
to pseudo-ops, see pseudo-ops
arithmetic operators 2-2, 3-1f
ASCII character subset C-1
assembler, see macroassembler
asterisks (**) 2-8
atom (special character)
definition 1-2

B, see bit alignment

bit alignment (B) 3-1f
.BLK 4-6

break characters 2-2
busy/done mnemonics 3-8f

carriage return ()) 1-2,2-2, 5-5
case of characters (upper/lower) 2-1
code, absolute 1-2, 1-6
COM 3-7
.COMM 1-4,4-7
.COMMTASK 4-7
comments 2-1f
commercial at sign (@) 2-7
commercial instructions 3-15, 6-4
communication between modules 4-3
conditionals 4-4, 5-6f

also see .DO, .IFE, etc.
counter, location 1-3f, /-6, 4-3, 4-5, 4-29
cross-reference listing 1-4f
.CSI1Z 4-8

Index

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation
data field 1-3 : G error A-3
.DALC 4-9 .GADD 4-25
.DCMR 4-10 generated
defining macros 4-29, 5-1ff labels 5-15
.DEMR 4-11 numbers/symbols 5-17
.DERA 4-12 .GLOC 4-25
DEUR 4-13 .GOTO 4-26
DFLM 4-13 .GREF 4-26
.DFLS 4-14
DIA, etc. 3-9 HALT 3-10
.DIMM 4-15 HALTA 3-10
.DIO 4-16
DIOA 4-16 1/0 instructions
DICD 4-15 with ac 3-9
DISD 4-17 without ac 3-8
DISS 4-17 without arguments 3-10
DMR 4-18 without device code 3-10 -
DMRA 4-18 IFE, .IFG, .IFL, .IFN 4-27
DO 4-4,4-9,4-27 INC 3-7
.DO loops in macros 5-6f indexed addressing, 3-11f, 3-14f
DOA, etc. 3-9 indirect addressing 2-7
documentation conventions iv input to assembler
double-precision numbers 2-5f ASCII subset C-1
DSZ 3-11ff break characters 2-2
.DUSR 4-19 comments 2-1
.DXOP 4-20 macros, see macro normal code 2-1
numbers 2-2to 2-7
E (exponent, floating-point) 2-6 strings 2-1
E-series ECLIPSE instructions 3-14f instructions
eight-character symbols 6-2 ALC 3-7
.EJEC 4-20 by type 3-6
.END 4-21 1/0, see 1/0 instructions
.ENDC INTA 3-10
in macro 5-6f INTDS 3-10
pseudo-op 4-21 integer storage 2-2ff
.ENT 1-4,4-3, 4-22 INTEN 3-10
.ENTO 1-4, 4-22 IORST 3-10
.EOF, EOT 4-23 ISZ 3-11ff
error
assembly A-1to A-S JMP 3-11ff
fatal A6 _ JSR 3-11ff
field in listing 1-3f
expressions labels, generated 5-15
general 3-1f LDA 3-13
relocation of 3-3f LFE (library file editor) iii
.EXTD 1-4, 3-11, 4-23 listing
extended RBs 6-2 fields 1-3f
.EXTN 1-4,4-3, 4-24 pseudo-ops 4-5
.EXTD 4-24 literals 5-16
LITMACS.SR 6-1
Ferror A-3 LMIT 4-5, 4-28
fields in source code 1-3 LOC 1-2 4-29
fllgs . - location counter 1-3f, 1-6, 4-3, 4-5, 4-29
instruction definition 6-4 logical operators 2-2, 3-1f
macroassembler 6-1, 6-4f lowercase characters 2-1

floating-point

constants 2-6f

instructions (ECLIPSE) 3-15f
form feed 2-2

Index-2 093-000081-05

Licensed Material - Property of Data General Corporation

macro
calls 2-2, 5-3ff
definitions 5-1f
.DO loops in 5-6f
examples
FACT 5-9
PACK 5-10f
OR 5-8
VFD, ERROR, SPECL 5-12ff
expansions 5-2, 5-5ff
overview 1-1
pseudo-ops 4-4
.MACRO 2-1, 4-2¢9
macroassembler
errors, see error

files 6-1
input, see input to assembler
language 1-1

listing 1-3f
macro overview 1-1, 5-1ff
operating Chapter 6
output 1-1f, also see RB
switches 6-2f
symbol
capacity 6-5
file, see MAC.PS
table file 6-4f
MAC.PS
building 4-39, 6-1, 6-4
/T switches 6-2
MAC.ST 6-5
MCALL 4-30
memory reference instructions 3-11to 3-16
commercial (ECLIPSE) 3-15f
extended (ECLIPSE) 3-14f
~ with ac 3-13ff
without ac 3-11
mnemonics, busy/done 3-8f
modules, communication between 4-3
MOV 3-7
MSKO 3-10

NBID.SR 4-39, 6-1, 6-4
NCID.SR 6-4

NEG 3-7

NEID.SR 6-4

NIO 3-8

.NOCON 4-30

no-load instructions 2-7
.NOLOC 4-31
.NOMAC 4-31,5-6
normal-relocatable (NREL) code 1-2, 1-6
.NREL 1-2, 4-32
NSID.SR 6-4

number sign (#) 2-7

093-000081-05

Index-3

DataGeneral

SOFTWARE DOCUMENTATION

numbers
doubie-precision 2-5f
general 2-2to 2-7
generated 5-17
operators 2-2
single-precision 2-2ff

operators 2-2, 3-1f

OSID.SR 6-4

OR 3-1f

organization of manual iii

output of assembler 1-1f
also see RB

page zero (ZREL) code 1-2, 1-6
conserving 5-16
specifying 4-39
parity 1-2, 4-4
PARU.SR 6-4
.PASS 4-32
permanent symbols, summary C-1
.POP 4-33
program listings 1-3f
pseudo-ops Chapter 4
alphabetically 4-5to 4-39
by category 4-1to 4-5
purpose of 3-5f
summary B-1
.PUSH 4-29, 4-33

radix 2-4, also see .RDX
RB
extended, see extended RB
format 6-5
overview 1-1f
.RB 4-33
.RDX 2-4,4-34
.RDXO 4-35
READS 3-10
relational operators 2-2, 3-1f
relocatable binary see RB
relocation
counters 1-6
expressions 3-3f
flags 1-3ff
overview 1-6
pseudo-ops 4-32, 4-39
removing symbols 4-39
related manuals iii
.REV 4-35
RLDR 1-6

Index

DataGeneral

SOFTWARE DOCUMENTATION Licensed Material - Property of Data General Corporation

single-precision numbers 2-2ff
skip (ALC instructions) 3-7
SKPBN, etc. 3-8
source files for definitions 6-4
space @) 2-2,5-3
special characters (@, #,**) 2-7f
STA 3-13
stack pseudo-ops 4-4, 4-33,4-36
storage, integer 2-2ff
SUB 3-7
switches (MAC) 6-2f
symbols
capacity 6-5
eight-character 6-2
file, see MAC.PS
format of 2-7
generated by MAC 5-17
global 3-5
local 3-5
permanent 3-4f, B-1
removing 4-39
semipermanent 3-5
storage 6-5
user, see user symbols
value 4-1
symbol table pseudo-ops 4-1f

/T switches (MAC.PS) 6-2

tab 2-2, 5-3

terminating a line, see break characters
text strings 2-1, 4-4

.TITL 4-36

.TOP 4-36

TXT, .TXTE, etc. 4-37

.TXTM 4-38

.TXTN 4-38

U error A-5
uppercase (characters) 2-1
user symbols
defining semipermanent, see pseudo-ops
format of 2-7
length 6-2
overview 3-5

value symbols 4-1
XPNG 4-39
ZREL 1-2, 4-39

Index-4 093-000081-05

Titie No.

|
a
O
]
a
w

hat programming language(s) do you use?

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

EDP Manager (Listinorder: 1 = Primarv use)

Senior System Analyst — Introduction to the product
Analyst/Progra — Reference

Operator _ Tutorial Text

Other Operating Guide

<
@
»

O
]
O
O
O
a
O

Somewhat

Is the manual easy to read?

Is it easy to understand?

Is the topic order easy to follow?

Is the technical information accurate ?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you everything you need to know ?

aoooooo

(Please note page number and paragraph where applicable.)

Name Company

Address Date

SD-00742

FOLD DOWN FIRST

FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States

Postage will be paid by:

Data General Corporation
Southboro, Massachusetts 01772

ATTENTION: Software Documentation

FOLD UP SECOND FOLD UP

SD-00742A STAPLE

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	C-01
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB

