DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

APPLICATION NOTE

User Device Driver Implementation
in the
Real Time Disk Operating System

User device drivers may be supported by the Real Time Disk Operating System
(RDOS) in two ways: on a system level and on a user program level. Incorporating

a user driver into the operating system provides the same level of support for the
user device which the system accords to system devices, Implementing a user
driver in a user program is simpler, yet requires more support by the user program.

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and
customers as a guide to the proper installation, operation, and maintenance of DGC equip-
ment and software. The drawings and specifications contained herein are the property

of DGC and shall neither be reproduced in whole or in part without DGC prior written
approval nor be implied to grant any license to make, use, or sell equipment manufac-
tured in accordance herewith.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical
or arithmetic exrors, company policy and pricing information,

Copyright ©Data General Corporation, 1972, 1974 017-000002-02
All Rights Reserved Printed In U.S. A.

Licensed Material - Property of Data General Corporation

Original Release - September, 1972
First Revision - November, 1972
Second Revision - January, 1974

This revision of application note 017-000002-02,
is a major revision. A vertical bar on the outside
margin of each page indicates substantially new,
changed or deleted information.

TABLE OF CONTENTS

CHAPTER 1 - RDOS DRIVER IMPLEMENTATION

Introductione + « « « v ¢ o oo Cr et e et e et .o 1-1
Characteristics of Interrupts « e e e e e eoo1-1
Interrupt Priority Scheme. « « v v v v v v v v v B £
Interrupt Dispatch Program A
Device Control Table (DCT) Structure e e et e «e.1-5
R 2 - OPERATING SYSTEM DEVICE IMPLEMENTATION

General . @ v vt v i ittt e e nennnns S |

Reentrant Coding and Subroutine iinkage . . . v .o vv . vv v vy, .. 2-1

General Subroutine Package (GSUB, MGSUB) . . v v v v v v v v v 0w .. 2=2
Save State Variables. et e et it e e 2-4
Restore State Variables, Return a Frame 2-4
MoveaByte Stringvvvvi i v e, ceeseneaes 24
Load/Store aByte e e e e e e 2-5
Exclusive Or.......... e e e Sttt et e e e 2-5
Clear aBlockofCore............ et 255
Move a Word String0 vv v ..)
Compare Two Word Strings et 2-6
Single /Double Precision Integer Divide,2-6
Set/ResetBitsinaWord., e e s e e eee.2=6
Initialize a Device Control Block, e e e e e e 2-7
Lock a Directory.. et e e e et et e 2-9
Flush a System Buffer to Disk (and erase
ifadual-CPUsystem) ,,..........00.... e *2-9
Unlock a Directory, ,c0.. e 2-10
Move a Byte String (mapped system only) . et i e 2-10

Load and Store Bytes (mapped system only) A B |
Move a Word String (mapped systemonly)2-11
Clear a Block of Core (mapped systemonly) 2-12

CHAPTER 2 - OPERATING SYSTEM DEVICE IMPLEMENTATION (Continued)

Generalized I/O Routines ., e R
Open (OPNO, OPNI)0 iivvnenrnnsannasa.215
Close (CLSO, CLSD) vvvvnvn s e e 2-16
Read Sequential (RDS), vvvv v e ennnnnens cees.. 2716
Read Line (RDL)t iv i ininennnnnnnnnnesaa2-17
Write Sequential (WRS) . . v v i iv it v it venenennessss2-18
Write a Line (WRL) . P R £
Get Master or Default Dlrectory Name
(GMDIR/GDIRS): « + e e s s e s e s sosstsssssssassssasss2=l9

I/OBufferModule(IOBUF)...........................2-19
Common Input Device Interrupt Service
(CISER) + « v v o ettt e oo nnnnnneeeeannensneea220
Common Output Device Interrupt Service
(COSER, STOUT) « t o v e vessssacssnsssssossseess2=2l
AddaBeadtotheStrmg(ENQUE) et e e e es2=21
Terminate Bead from Head of List (DEQRQ)« . ¢+ ¢ v e v v v o 2-21
Remove a Bead from the String (DEQUE) e e 2=22
Partial Input Interrupt Service (FINP) « .« ¢ e v e v e v v v v oo 2=22
Input a Character to the I/O Buffer (IBUF) « .+« e v v v v v v v 02-23

Priority Enqueue a Bead (PENQU) « « « ¢ ¢ ¢ ¢ 4« et e e e ee2=23
Priority Enqueue a Bead and Input to an
I/O Buffer (XIBUF) « ¢ ¢ ¢ ¢ ¢ e v v . R
Output a Character from the I/0 Buffer
(OBUF)e v v v v v v v u it Cee e e ea2-24
I/0 Buffer Management e e s e s e e e e e e e e e e e e e 2-24
Retrieve a Character from the I/0O Buffer
(RCHR). . ettt e s e e e aess2=25
Add a Character to the 1/0 Buffer (ACHR) C et e 2-26
Declaring the DCT Address .« - « « « « « s e et s s e e e e e e .. 2-26
Creating a Peripheral Device Entry in a
Directory........-.... e e s e v e e e s e s 2-27
Updating the System Libraries . ..« .coccocieceion, 2-28
RDOS (MRDOS) 03 System Library List. « « ¢ e e s v o0 v v .2-28
Creating a System Queue Entrycoeceee. ee e e.2-30
System Generation « .« ssoe oo oo e s e s esseasss2=30
Practical Hints for System Device Driver
Implementation e ettt ..2-30
Elements Required in User-Written
I/0 Routines , , . .. e e e et ettt e ..2-31
Examination of a System Device Driver.......... .. 2=32

ii

CHAPTER 3 - USER PROGRAM SERVICED INTERRUPTS

Servicing User Interrupts

User Device Driver Implementation at

RunTime.............00uuuuu...

Identify a User Interrupt Device (. IDEF)
Exit from a User Interrupt Routine (.UIEX)

Remove User Interrupt Servicing Program

ey ui

CIRMYV) . e ittt i e ittt it iee . 34
Set the Data Channel Map(STMAP) .

Writing User Power Fail Service

Exit from a Powcer Fail Service Routine (. UPEX) .

User Programmed Clock.
Define a User Clock (.DUCLK).
Remove a User Clock (.RUCLK).

Examples of User Serviced Interrupts .
Analog to Digital Converter.
External Interrupt Recognition . .

Modifying the Current Interrupt Mask (.SMSK) .

T TDTIYWN

.

Multiprocessor Communications Adapter . .

iii

. .
.
.
.
. -
1 1
N ON N1

.
.
.
.
.
.
.

1
= \O 00 o o

L]
W W w Www www
] 1
o

Licensed Material - Property of Data General Corporation

CHAPTER 1

RDOS DRIVER IMPLEMENTATION

INTRODUCTION
In all real time computer control systems, the CPU reacts to input data from a real
warld onviranmoent and nravidoa antnnt dAatka +a cavrront ar cantral the pnvn"onmpn

WwuLiu \/.lJ.VL.l.U.I.Ll.LLbI.I.L a.uu P.I.U ViuL O \JULPUL UALG LU LULLLVWL ULl LVULILA VL LIy ¥=er

The incoming data is normally the result of a process device interrupt or an input-
output operation completion interrupt. In general these interrupts differ from one
another only in the way in which they are serviced.

When a significant event occurs, a signal is transmitted to the computer as an

interrupt requiring a special subroutine to take appropriate action. Interrupts are
usually assigned in order of urgency or priority, so that if two interrupts occur at
the same moment, the more important interrupt is serviced first by the computer.

How well a computer is able to respond to interrupts generally determines the max-
imum capability of the real time system. A significant element in the responsive
ability of any real time system is the inclusion of a powerful and flexible multi-
priority interrupt control program.

This document outlines the methods of adding customer-assignable multi-priority
servicing routines, These device drivers can be included as part of the resident
RDOS operating system or they can be implemented as part of the user application
program and attached to the interrupt dispatch program,

CHARACTERISTICS OF INTERRUPTS

Interrupts can be generated by conditions internal to the computer hardware itself
(power monitor option), or by events which originate in the plant or the environ-
ment that is being controlled (an external hardware interrupt like an analog-to-digital
converter completion).

Non-process interrupts may be caused by an error condition being detected, an interval
timer run-down, an input-output (I/O) complete interrupt, etc. The I/O interrupt

is characterized by the completion of an I/O device operation such as a paper tape

or disk storage transfer function, which may involve the reading or writing of one
character or word in the case of program control or multiple words in the case of

data channel operation. The concept of this type of interrupt is based on the impor-
tance of keeping I/0 devices active, thus improving job throughput .

Process interrupts reflect process conditions which have been detected and which
require an immediate change in program execution, such as may be caused by the
closing of an electrical switch or contact, a rise in temperature above a prescribed
limit, etc.

Licensed Material - Property of Data General Corporation

INTERRUPT PRIORITY SCHEME

There are several ways in which priorities are determined for or assigned to devices
on the I/O bus. An elementary priority is established by the hardware for devices
that are requesting interrupts simultaneously: among those devices waiting with an
active interrupt, the one which is physically closest to the processor on the bus is

at the highest priority.

The most significant method is to specify which devices can interrupt a service routine
currently in progress. This is done by using a 16 bit priority mask. Each device
is wired to a particular bit of this mask word.

By means of the mask word, the-interrupt servicing program can inhibit specified
levels of interrupts and thus establish any priority structure. The biggest advantage
of this means of priority level control is a near optimum priority response. To
guarantee minimum response time to an interrupt, the mask bit assigned to this device
should not be set for long periods of time. Through the judicious use of masking,

data channels can be kept functioning for the transmission of data into and out of core
storage while process interrupts are prevented from occurring. The function of
masking is used to delay recognition of an interrupt (the important fact is that the
interrupt is not lost).

The mask bit assignments for standard devices supplied by DGC are as follows:

Bit Positions Assigned Devices
15 TTO
14 TTI, QTY (4060 quad multiplexor), SLA (4073/4074
Synchronous Line Adapter)
13 ' PTP, RTC, IBM 360/370 interface
12 PLT, LPT, MCAT (4038 multiprocessor communications

adapter trarismitter), MCAR (4038 multiprocessor com-
munications adapter receiver)

11 PTR
10 CDR, CAS, MTA
9 DSK
8 ADCV, SCR (4015 synchronous communications

controller receiver), SCT (4015 synchronous
communications controller transmitter)
7 DKP, DIO (4066 digital interface)

6 XI (4067 external interrupt generator), PIT (Programm-
able Interval Timer 4068), IPB (Interprocessor Buffer)

5 unassigned -

4 "

3 1t

2 "

1 "

0 DCM (4026 asynchronous data communications

multiplexor)

1-2

Licensed Material - Property of Data General Corporation

Although slower devices are assigned to higher numbered bits in the mask, there is
no established priority, since the program can use any mask configuration. All
devices which have their mask bits set cannot cause an interrupt and are therefore
regarded by the program as being of lower priority.

An example of multi-level priority interrupt servicing is shown below for an environ-
ment including a Teletype, line printer, and fixed head disk.

Program Mask
Fixed Head Disk Interrupt 717 {]
Line Printer Interrupt 17 —]

Teletype Interrupt 3 Vg et } >)SL

—

Main Line User 0 — - W Pl

INTERRUPT DISPATCH PROGRAM

At the precise moment an unmasked interrupt has been detected at the hardware
level, the Interrupt Dispatch program (INTD) receives control to service the
interrupt. The INTD program is assembled as an integral portion of the RDOS
system and resides in core at all times.

The INTD program is designed to do the following:

. Identify the interrupting device . Direct control to the proper servicing routine.

. Save the machine status and all . Restore the previous priority mask
addressable registers . Restore the machine status and registers

. Set up the new priority mask . Returi to the interrupted program

The INTD program directs control to the correct servicing routine by using the
correct entry in the system Interrupt Branch Table (ITBL). ITBL is a 664 word
table, with displacements 1-64 corresponding to device codes 1-64. FEach dis-
placement corresponding to a device in the system contains the address of that
device's DCT. All other displacements contain -1.

1-3

User Program

interrupt

Licensed Material - Property of Data General Corporation

%A\ A, INTD ITBL

INTD |-~

DISMIS T

INTS:

JMP
|\ DISMIS

Interrupt
Service
Routine

Flow of Control During Interrupts

N

DCT
SAVE
MASK

> INTS

- 8-word
State
Save
Area

Licensed Material - Property of Data General Corporation

DEVICE CONTROL TABLE (DCT) STRUCTURE

Each device defined in the RDOS system must have the address of its DCT included
in the interrupt branch table (ITBL) as explained in later sections. For interrupt

servicing routines defined in the user's area, only the first three entries are needed.
Words 7-26 of the DCT differ for byte and block oriented devices.

Word 0, DCTSV: Address of an eight word interrupt state save area not used

Word 1, DCTMS: Mask Word. Clear a bit for every priority considered
higher than the priority of this device. The devices cor-
responding to the priority bits that are left cleared will
be permitted to interrupt the current device. Mask words
which disable interrupts for all devices of equal or lesser
priority than the named device follow:

TTO 3

TTI, QTY, SLA 3

PTP, RTC, IBM 7

PLT, LPT, MCAT, MCAR 17

PTR 1737

CDR, MTA, CAS 1777

DSK 717

ADCV, SCR, SCT 200

DKP, DIO 617

XI, PIT 1000
Word 2, DCTIS: Address of the device interrupt service routine.
Word 3, DCTCH: Device characteristic word. A list of device characteristics

is given in the table on the page following.

1-5

Licensed Material - Property of Data General Corporation

DEVICE CONTROL TABLE (DCT) STRUCTURE (Continued)

MNEMONIC BIT ME ANING

DCCPO 15 Device requiring leader/trailer

DCCGN 14 Device requiring tab simulation

DCIDI 13 Device requiring operator intervention
DCCNF 12 Device requiring form feed simulation
DCTO 11 Teletype output device

DCKEY 10 Keyboard input device (uncontrollable)
DCNAF 9 Device requiring nulls after form feeds
DCRAT 8 Device requiring rubouts after tabs

DCPCK 7 Device requiring even parity check on input,

even parity computation on output

DCLAC 6 Device requiring line feeds after carriage returns
DCSPO 5 Spoolable device (LPT, PTP, PLT, TTO)
DCFWD 4 Full word device (any size greater than a byte).
DCFFO 3 Form feed sent on . OPEN
DCLTU 2 Convert lower to upper case ASCII
DCC80 1 Read 80 columns on input if set, 72 if reset. Send
80 characters on output, 72 if reset.
DCSPC 0 Spooling enabled if set to 1, disabled if reset
Word 4, DCTCD: Device code.
Word 5, DCTEX: Address of variable 1/0 instruction routine.
Word 6, DCTDT: Address of the device command dispatch table; bit 0 set

implies disk device. One entry for every RDOS I/0 function.
The table order must correspond exactly to the order of the
function given below. Each entry is an address to the routine
implementing the named RDOS function. If the device does
not permit a command, a -1 should be entered in place of

the address.

MNEMONIC DISPLACEMENT ME ANING

OF 0 Open a file for reading/writing by one
Or more users.

CF 1 Close a file

RS 2 Read Sequential
RL 3 Read Line

RR 4 Read Random
WS 5 Write Sequential
WL 6 Write Line

WR 7 Write Random

Licensed Material - Property of Data General Corporation

DEVICE CONTROL TABLE (DCT) STRUCTURE (Continued)

MNEMONIC DISPLACEMENT MEANING

OA
RO

EO
TO

10 Open a file for appending

11 Open for reading only

12 Exclusive read/write open

13 Transparent (exclusive) open (does not

alter file access info)

Words 7-26, byte-oriented devices

Word 7, DCTST:

Word 10, DCTBC:

Word 11, DCTBP:
Word 12, DCTPC:
Word 13, DCTPP:
Word 14, DCTQL:
Word 15, DCTDP:
Word 16, DCTDC:

Word 24, DCTTO:

(Word 24, DCTCC:

Word 25, DCTLC:

(Word 25, DCTPR:

Word 26, DCTON:

(Word 26, DCTLK:

Word 27, DCTOF:
Word 30, DCTSL:

*set by RDOS,

Address of the device start routine. The device start routine
specification is as follows:

Input device: Activate the device and return
Output device: Character is passed in ACO

Size of device buffer in bytes.

Byte pointer to device buffer.

Base level (program) byte count.

Base level (program) byte pointer.

Link to device request bead chain.

Device data byte pointer.

Device data count.

Bead status word (described in GENERALIZED I/O ROUTINES).
he first bead, word i4)
Device queue starting address (initially -1).

First temporary for device control.

Second temporary for device control.

Time out constant for input devices.

Output device column counter.)

Output device line counter.

Echo device DCT pair pointer, TTI only.)

"ON'" DCB address for spooler.*

Link to TTR, TTI DCTs only.) "

"OFF" DCB address for spooler.*

Link to next spoolable device DCT (-1 terminates the chain).

1-7

Word 31,
Word 32,

Word 7,

DCTOP:
DCTTS3:

DCTRD:

Word 10 (no label):

Word 11,
Word 12,

Word 13,
Word 14,
Word 15,
Word 16,
Word 17,
Word 20,
Word 21,
Word 22,
Word 23,
Word 24,

DCSTR:
DCDST:

DCCRQ:
DCTSZ:
DCTRL:
DCTRN:
DCTIN:
DCTRS:
DCNBK:
DCTNS:
DCTNH:
DCTMN:

Licensed Material - Property of Data General Corporation

Device queue starting address for operator messages.

Temporary for operator message status word whose bits
are defined as follows:

Bit Meaning
0 Set to 1 if "!" has been received.
15 Set if "F" or "B'" has been received.

Words 7-26, block transfer devices

Read a Block.

Used by the system to reconstruct the original device
name upon the release of an EQUIValenced name.

Device start routine.

Set DST word (used for logical-to-physical disk block
address computation).

Routine to perform disk sizing (not used by MTA/CAS).
Read last block.

Read next block.

Device initialization routine.

Device release routine.

Number of blocks on device.

Number of sectors per track.

Number of heads per unit.

Hash frame size (one of the following):

Moving Head Disk Type Frame Size (decimal)

4047 97
4048 193
4057 773

1-8

Licensed Material - Property of Data General Corporation

Agegregate Fixed Frame Size (decimal)
Head Storage

128K 7
256K 13
384K \ 23
512K 31
640K 41
768K 47
896K 53
1024K 61
1152K 71
i280K 79
1480K 89
1536K 97
1664K 103
1792K 113
1920K ' 113
2048K 127

(For a description of hashing under RDOS, see
the Stand Alone Disk Editor manual, 093-000092,
appendix B.)

Word 25, DCHMP: First slot in data channel map (mapped systems only).
Word 26, DCHNM: Number of slots needed in data channel map (mapped

systems only).

& ok ok ok ok

1-9

Licensed Material - Property of Data General Corporation

CHAPTER 2
OPERATING SYSTEM DEVICE IMPLEMENTATION

GENERAL

The list of I/0O devices that are included as part of RDOS can be found in the RDOS
User's Manual (093-000075). The user can, however, add device drivers to RDOS
enabling the use of additional devices not furnished by DGC. All changes to RDOS

to incorporate another device into the operating system should be made at the source
program level. This section describes briefly the required changes to add a device.
However, to completely understand the process of adding a device driver, the user
may need to review listings of those RDOS programs mentioned later that require

modification. The source programs required are available from DGC.

During full initiatization of the system, names of all single-file peripheral devices
in the system are added to the system file directory, SYS.DR . The device name
will be entered only if the user has forced the driver to be loaded. The general
procedure for adding a device driver is as follows:

. declare a DCT entry for the device

. enable entry of the device name in SYS.DR
. update the system library

. Create a system queue entry

. perform a system generation

Sections following describe each of these steps.

REENTRANT CODING AND SUBROUTINE LINKAGE

One of the basic problems that arises in multi-level priority interrupt programming
is that different levels require use of the same subroutine. This means that a higher
priority interrupt could interrupt a lower priority one before it has completely

used a common suboutine and argument pointers, temporary core storage locations,
etc., with the result that the return point for the lower level interrupt would be lost.
Reentrancy, then, is defined as that property of a subroutine whereby use of the routine
does not modify any of its locations; temporary values are stored outside the routine,
Thus one user may be prevented temporarily from completing use of a reentrant
routine because a higher priority user needs to use it. When the higher priority
user has finished with the routine, the lower priority user completes his use of

the routine at the point where he was interrupted.

A method of reentrant coding using a system stack has been devised for RDOS to
allow one subroutine to be entered at any time and from any interrupt level without
loss of results. The operating system has several stacks used for the saving of
state variables whenever a call to a system subroutine is executed. Each of these
stacks is of a fixed length and stack frames are defined in the same manner for each
stack. The stack frame is the basic increment of storage on a system stack.

Licensed Material - Property of Data General Corporation

REENTRANT CODING AND SUBROUTINE LINKAGE (Continued)

Each system stack frame is 16 octal locations in length, and each of these locations
has the following definitions:

Displacement Mnemonic Contents
-1 SP Beginning of stack pointer (i.e., pointer to
RTLOC)
0 RTLOC Return location
1 ACO ACO
2 AC1 ACl1
3 AC2 AC2
4 TMP General purpose subroutine storage
13 MXTMP Eighth and last storage location
14 VRTN Overlay virtual address

The system maintains a pointer for the current system stack in location 10, CSP.
Linkage to save subroutine state variables on a system stack and restore these
variables is provided by three routines contained in the RDOS utility package called
GSUB, The save/restore routines are entitled SAV, SRTN, AND RTN, Calls to these
routines are defined in the system parameters as being SAVE, SRTRN, and RTRN,

GENERAL SUBROUTINE PACKAGE (GSUB, MGSUB)

GSUB (MGSUB) is a core resident module which contains a series of other utilities
for the system's use; GSUB is used by RDOS, and MGSUB is used by mapped RDOS
(MRDOS). Each of these utilities is self-contained, i.e., none of them calls out

to other routines and none of them save variables outside a system stack frame
(except the byte-handling and compare-word routines, as noted later). The following
list gives the entry names and uses of each of the utilities in the GSUB or MGSUB
module; starred modules (*) are available only to mapped RDOS (MRDOS), and are
found only in MGSUB. All other routines are available to both RDOS and MRDOS.,

NAME USE

RTN Restore state variables, return the frame to the system
stack.

SAV Save state variables on a system stack.

SRTN Restore current state variables and do not return a frame

to the system stack; return to the immediate caller (not to
the address stored in RTLOC).

MVBYT Move byte string.
LDCHR Load an eight bit byte.
STCHR Store an eight bit byte.
XOR Perform an exclusive or,

2-2

Licensed Material - Property of Data General Corporation

GENERAL SUBROUTINE PACKAGE (GSUB, MGSUB) (Continued)

NAME USE

CLEAR Set a block of core to all zeroes

MVWD Move a word string

CMPWD Compare two word strings

DIVD Perform double precision integer divide

DIVI Perform single precision integer divide

SETFL Mask bits in a word to a one state

FIDCB Initialize a DCB

DLCK** Lock a directory process

DFLSH ** Flush a system buffer to disk, and erase if needed
DULK** Unlock a directory process

MTMVB* Move bytes with a mapped to address

MFMVB* Move bytes with a mapped from address

MLDBT* Mapped load byte (both byte'_po}nters mapped)
MSTBT* Mapped store byte (both byte pointers mapped)
MTMVW* Move words with a mapped to address

MVMVW* Move words with a mapped from address

MBMVW * Move words with both addresses mapped

MCLR* Clear a block of words with a mapped starting address
MBLK* Convert user address to mapped address

Except for RTN, SAV, and SRTN, each of these routines is called by means of an
indirect call to a pointer within the calling routine containing the routine name, e.g.,
a call to XOR would be performed in the following manner:

.EXTN XOR
JSR @. XOR
.XOR: XOR

SAV, RTN, and SRTN are used frequently in the operating system routines, so their

entry points have been stored in the RDOS page zero area at locations 3, 4, and 11
octal respectively. Calls to these routines are defined in the system parameters
(PARS or MPARS) as follows:

SAVE = JSR@3
RTRN = JSR @4
_ SRTRN = JSR @11

** dual CPU shared-disk systems only
* mapped systems only

2-3

Licensed Material - Property of Data General Corporation

GENERAL SUBROUTINE PACKAGE (GSUB, MGSUB) (Continued)

Use of these mnemonics is sufficient to invoke the routine (except that SAVE must
be preceded by one additional instruction as shown below).

The following summarizes the inputs required by each GSUB routine and describes
the outputs obtained upon return from each call. Each description (except SAV,

RTN, and SRTN) presumes the existence of a pointer containing the routine name
as illustrated above.

Save State Variables

Calling Sequence: STA @ 3,CSP (CSP, the current stack pomtef, is defined in PARS.SR)
SAVE

Output: ACO, ACl, and AC2 are saved on a stack frame and are returned
unchanged to the caller. AC3 contains the address of a new
stack frame.

Restore State Variables, Return a Frame

Calling Sequence: RTRN

Output: Accumulators ACO through AC2 are restored; program control
returns to the caller. A frame is returned to the system stack.

Calling Sequence: = SRTRN

Output: Accumulators ACO through AC2 are restored; program control
returns to the immediate caller (i.e., not to the next higher
level). The system stack pointer remains unchanged, since
no frame is released.

Move a Byte String

Input: ACO, From byte pointer
AC1, To byte pointer
AC2, Byte count

Calling Sequence: JSR@ .MVBYT
Output: The specified byte string is copied to the destination string

area. MVBYT cannot be called during interrupt servicing,
since MVBYT is not reentrant,

2-4

Licensed Material - Property of Data General Corporation

Load/Store a Byte

Input:

Calling Sequence:

Output:

Exclusive Or

Input:

Calling Sequence:

Output:

ACl1, Byte pointer
ACO, Byte (right adjusted)

JSR@ .LDCHR (or .STCHR)

The specified byte is loaded or stored. STCHR cannot be
called during interrupt servicing, since it is not reentrant.

AC1, First operand
ACO, Second operand

JSR@ .XOR

The exclusive OR of the inpﬁt operands is returned in AC1,
Both ACO and AC2 are restored to their input values.

Clear a Block of Core

Input:

Calling Sequence:

Output:

Move a Word String

Input:

Calling Sequence:

Output:

ACO, Number of sequential words to be cleared to zeroes
AC2, Starting (lowest) address of the block

JSR@ .CLEAR

The speéified block of core is cleared. ACO through AC2 are
restored upon exit. '

ACO, Starting address of the string to be copied
ACl, Starting address to receive the string copy
AC2, Number of words to be copied

JSR@ .MVWD

The specified word string is copied to the specified receiving
core area. ACO through AC2 are restored to their input values.

2-5

Licensed Material - Property of Data General Corporation

Compare Two Word Strings

Input: ACO, Starting address of the first string
~ AC1, Starting address of the second string
AC2, Number of Words to be compared

Calling Sequence: JSR@ .CMPWD
success return
failure return

QOutput: The word strings are compared. If equal, control returns to the
success return; otherwise, control goes to the failure return.
ACO through AC2 are restored upon exit. CMPWD cannot be called
during interrupt servicing, since CMPWD is not reentrant.

Single/Double Precision Integer Divide

Input: ACO0, more significant dividend word for double precision divide
only
ACl, less significant dividend woxrd
AC2, integer divisor

Calling Sequence: JSR@ .DIVI (single precision) or
JSR@ .DIVD (double precision)

Output: Quotient is returned in AC1, remainder in ACO. AC2 is restored
upon exit. '

Set/Reset Bits in a Word

Input: ACO, operand word whose bits are to be set to 1 (or reset to 0).
ACl1, bit mask

Calling Sequence: JSR@ .SETFL ¢ RSTFL)

Output: Operand has all its bit positions set which correspond
to bit positions set in the mask word.

2-6

Licensed Material - Property of Data General Corporation

Initialize a Device Control Rlock

Every 256-word disk block has a unique identifier which might be used to locate the
block within core memory if it has already been read from disk. This identifier consists
of three elements, the first three entries in the device control block portion of a UFT:

DCBDC or UFTDC DCT address (the core address of the DCT associated with the
device containing the disk block)

Unit number (the number of the disk unit, i.e., DP3, DK1, etc.)

Current Block Address (the logical address--as opposed to

physical address--of the disk block)

BUN or UFTUN
BA or UFTCA

3 3

o Z

10 FaN LA

If the block has been read into core memory, and thus is resident within a system
buffer, the above identifier triplet is sufficient to locate the block; if the block is
not core resident, it can be read into a system buffer.

Whenever either a file is to be opened on a channel or a directory is to be initialized,
a DCB for the file or directory must be initialized via a call to the GSUB/MGSUB
routine FIDCB. (A DCB is a portion of a UFT which describes information listed
below; the other portion of a DCB describes user information about the file such as
file name, last access time, etc.)

DCB information for a file opened on a channel or for a directory is as follows:

Directory File

Mnemonic Mnemonic

DCBDC UFTDC Core address of the DCT address for the device containing
the file or directory.

DCBUN UFTUN Specific unit number of the device (since there is only
one DCT for each device controller).

DCBCA UFTCA Current block address (logical block address of that
portion of the file which was most recently accessed).

DCBCB UFTCB Current block number (i. e., relative block number of the
block within the file).

DCBST UFTST Status of the file. The status is indicated by the following
bits:

1B15 Error detected
1B14 I/0 in progress

- 1B13 The first write of the file has been made
1B12 Directory is in use
1B9 Opened for MTA read/write block (. MTOPD)
1B1 File can be initialized (i.e., is a directory

other than the master directory).

1BO The file is being read

2-7

Licensed Material - Property of Data General Corporation

Initialize a Device Control Block (Continued)

DCBUC

DCBNA
DCBLA
DCBDR

DCBFA

UFTEA

UFTNA
UFTLA
UEFTDR

UFTFA

If a directory, this word indicates whether the Fore-
ground or Background initialized the directory, and

how many files within the directory are open. If this

is a file's DCB, UFTEA is the logical address of the
portion of the system directory which contains this

file's entry.

The next logical block address of the file.

The last logical block address of the file.

The file's SYS. DR DCB address. This is needed so that
the MAP. DR associated with this file can be accessed in
the event the file changes size, and so that other elements
in its UFD can be accessed (e.g., the file use count).
The first logical block address of the file or directory.
This is the first logical block of the file if it is contig-
uously or sequentially organized, or the starting address
of the index if it is randomly organized (all directories
are randomly organized).

The DCB had a four-word extension if it is for a file opened on a channel;

UFTBN

UFTBP

UFTCH

UFTCN

The relative block number of that portion of the file
currently being processed.

The byte pointer to the character position where pro-
cessing in the file is to resume.

Data words per block (3768 for sequential files, 377 for
random and contiguous files).

Active system request count. This count indicates how
many requests have been made to the system to access
the file.

The calling sequence for the routine used to initialize a DCB is as follows:

Input:

Calling
Sequence:

ACO, First logical block address of the file or directory (the starting
address of the index if randomly organized)

AC1, The starting core address of the DCB describing the SYS. DR
which contains the file or directory entry

AC2, The starting core address of the DCB which is to be initialized.

JSR @ . FIDCB

2-8

Licensed Material - Property of Data General Corporation

Initialize a Device Control Block (Continued)

Output: DCBDC,DCBUN, and DCBDR of the system directory containing the
file or directory entry are copied into the new DCB. The first
logical block address (input via ACO) is copied into DCBNA and
DCBFA of the new DCB. The current block number contained in
DCBCB is set to -1 (indicating that no processing within the file
or directory has taken place), and the last address, current address
and user count (DCBLA, DCBCA, and DCBUC) are cleared to zero.
Lastly, the status of the file or directory is cleared, setting bits 12,
11, 1 and O only if they were set in the system directory containing
this file or directory entry.

Lock a Directory

In systems with two CPUs and shared disk space, a directory lock-out mechanism
is required so that only one CPU at a time can access and modify the contents of

a directory. Failure to lock out a directory would render it impossible to retain
current directory information for either CPU's use. Thus, in a dual CPU shared -
disk environment when one CPU desires to access a directary, it must first lock
the directory. After accessing the directory, the CPU must re-write the directory
to disk and erase its copy of the directory from core memory, and finally it must
unlock the directory so that the directory can again be accessed by either CPU.

The format of this call is as follows:
Input: AC2 - DCB of directory to be locked.
Calling Sequence: JSR @ .DLCK

Output: The directory status word, DCBST, is set to indicate the directory
is locked (bit 12 is set to 1).

Flush a System Buffer to Disk (and erase if a dual-CPU system)

This routine flushes a system buffer by writing its contents out to disk. In the
case of a buffer containing a directory, the updated copy of the directory is written
out to disk. In a dual CPU environment, the core resident buffer is erased so the
contents of the buffer must be re-read to be re-used by the system.

The format of this call is as follows:

Input: AC2 - Starting address of the system buffer to be flushed.

Licensed Material - Property of Data General Corporation

Flush a System Buffer to Disk (and erase if a dual-CPU system) (Continued)

Calling Sequence: JSR @ .DFLSH

Output: The modified contents of the system buffer are returned to the
host device, and the buffer's identity is erased.

Unlock a Directory

Having locked and modified a directory and then flushed the system buffer containing
the directory, the directory must be unlocked so that the other CPU can access the
directory. The format of this call is:

Input: AC 2 - DCB of directory to be unlocked.

Calling Sequence: JSR @ .DULK

Output: The directory status word is set to the unlocked state.

Move a Byte String (mapped system only)

There are two move byte string routines for mapped systems; one routine accepts a

mapped "to" address, while the other accepts a mapped "from' address. The result
accomplished by both routines is identical: the specified byte string is copied to the

destination area. Neither of these routines is reentrant.

The formats of the two routines are as follows:
1) Input: ACO, Mapped "from" byte pointer

AC1, "To" byte pointer
AC2, Byte count

Calling
Sequence: JSR @ .MFMVB
2) Input: ACO, "From' byte pointer
AC1, Mapped "to" byte pointer
AC2, Byte count.
Calling
Sequence: JSR @ .MTMVB

2-10

Licensed Material - Property of Data General Corporation

Load and Store Bytes (mapped system only)

There are two load/store byte routines for mapped systems; each routine accepts
mapped byte pointer inputs only. The result accomplished by both routines is
identical: the byte is loaded or stored where the mapped byte pointer specifies that
it should be accomplished. Neither of these routines is reentrant.

The formats of the two routines are as follows:

1) Input: AC1, Mapped byte pointer
AC2, Byte to be stored (right adjusted)
Calling
Sequence: JSR @ .MSTBT
2) Input: AC1, Mapped byte pointer
Calling
Sequence: JSR @ .MLDBT
Output: AC2, Byte (right adjusted)

Move a Word String (mapped system only)

There are three move word string routines for mapped systems. One routine accépts
a mapped "to" address, another routine accepts a mapped "from' address, while the
third accepts both a mapped "to" address and a mapped "from" address. The result
accomplished by all three routines is identical: the specified word string is copied

to the specified receiving core area. ACO through AC2 are restored to their input
values.

The formats of the three routines are as follows:
1) Input: ACO, Mapped starting address of the string to be copied

AC1, Starting address to receive the string copy
AC2, Number of words to be copied

Calling -
Sequence: JSR @ .MVMVW
2) Input: ACO, Starting address of the string to be copied

AC1, Mapped starting address to receive the string copy
AC2, Number of words to be copied

2-11

Licensed Material - Property of Data General Corporation

Move a Word String (mapped system only) (Continued)

Calling
Sequence: JSR @ .MTMVW
3) Input: ACO0, Mapped starting address of the string to be copied
AC1, Mapped starting address to receive the string copy
AC2, Number of words to be copied
Calling
Sequence: JSR @ .MBMVW

Clear a Block of Core (mapped system only)

Mapped systems may clear a block of core memory to zeroes by means of a routine
which accepts a mapped starting address. The format of this call is as follows:

Input: ACO0, Number of sequential (mapped) words to be cleared
AC2, Starting (lowest) mapped address of the block

Calling

Sequence: JSR @ .MCLR

Output: The specified core area is set to zeroes. ACO through AC2

are restored upon exit.

There also exist three sets of system I/O commands, modules entitled RING1, RING2,
and RING3. Each of these modules is a system overlay, described in the following
section.

GENERALIZED 1/0 ROUTINES

The 1/0 modules (RING1, RING2, and RING3) provide a number of useful, general
purpose reentrant routines for handling byte I/O from any device, on input or out-
put, using the program interrupt facility. Entry names of the appropriate I/0
routines are placed in each device driver dispatch table as required (see Device
Control Table Structure, word 6). Each I/O module is a system overlay.

The basic buffer philosophy is to maintain one or more fixed length buffers, with
pointers and counters maintained to indicate the amount of data in the buffer s and
the current word input or output. A virtually unlimited number of buffers can be
appended to the first buffer, with a four-word bead assigned to maintain status
information and pointers for each additional buffer.

2-12

i.nterruRt PP o
level DP_; ‘ \

Licensed Material - Property of Data General Corporation

GENERALIZED I/O ROUTINES (Continued)

An input device inputs to the buffer at interrupt time and outputs from the buffer at
program base level, An output device inputs to the buffer at program base level

and outputs from the buffer at interrupt time.

\ orie N . \
\ oot r \
pc) | l . __program IBUF DC
< PP %veri PC < |
rogram
' RE%FM interrupt

o DP level

Input Devices Output Devices

Pointers PP and DP indicate the current slot in the buffer used for character storage
or retrieval by the program and device respectively. Counters PC and DC indicate
the current number of characters stored or retrieved from the buffers by the pro-
gram and device respectively, The inputting of data to the buffer by the program
or device halts temporarily when the last buffer has been filled. When the program
or device retrieves the last buffer character, characters may once again be input
to the beginning of the buffer. In the case of multiple buffers, each buffer becomes
free to receive input as soon as the last character in that buffer has been retrieved
by the program or device.

When DC becomes equal to zero (after the last character in a buffer has been accepted
by an output device), or when DC becomes non-zero (when a character is placed in a
buffer by an input device), the task with pointer PP is readied.

A virtually unlimited number of buffers can be appended to the first buffer, providing

the facility for unformatted stream I/0 and substantially reducing system overhead.
Moreover, these additional buffers may exist in user program space as well as

in system address space. Additional I/O buffers are appended to the first buffer
by linking or stringing additional beads to the first bead. Each bead has a link to
the next bead in the string; the terminating bead has a -1 link.

2-13

Licensed Material - Property of Data General Corporation

GENERALIZED I/O ROUTINES (Continued)

One device bead consists of words 14 through 17 of the device's DCT. The structure
of each bead is as follows:

Word 0 Link word

Word 1 Data Pointer (DP)
Word 2 Data Count (DC)

Word 3 Bead status/mode word

Succeeding beads, used by system tasks like echoing, are linked to by previous bead
links. The first bead in the string is pointed to by DCTQP of the device's DCT.

The status/mode bit definitions for word 3 of each bead are as follows:

Bit Meaning
1BO Ready the task after each character
1B1 Ready the task upon request completion
1B2 I/0 request made by the foreground
1B3 1/0 request made by the background
1B4 Foreground operator message is outstanding
1B5 Background operator message is outstanding
1B6 Device opened
1B14 Echo the character (TTI only)
1B15 Request is completed (cleared by ENQUE routine)
DCT
Beadi .
LINK |=— - -1
Bead, / DP, .« DPn
[LINK DC, DCn
DCTQP '%IT STATUS STATUS
. DCy
STATUS
DC,
DC, DCn -

2-14

Licensed Material - Property of Data General Corporation

GENERALIZED I/O ROUTINES (Continued)

A brief description of the major routines and their calling sequences follows. More
detailed information can be obtained by reviewing the listing of RING1, RING2, and
RING3. I/0 Buffer management funtions are also provided by the RING 1/0 modules;
these functions are discussed in the following section entitled I/O BUFFER MANAGE -
MENT. It is important to note that although buffer input/output is in byte increments,
devices transmitting larger data widths can use the same basic scheme. The card
reader, for example, inputs its full word by calling for two consecutive byte inputs.
Before discussing specific I/0 routines, the following observations must be made
about all I/0 routines. whose entries are used in device dispatch tables.

First, system I/O routines are usually not called in the conventional sense. Rather,
the namcs of those routines which are required by a device driver are inserted into
the appropriate displacements of that driver's dispatch table. If the routines provided
by the I/O modules are inadequate, the user writing a device driver must write his
own I/O routines (preferably making them core resident), and insert their names into
his driver’s dispatch table. User-written routines may either do some preprocessing
of inputs to the . SYSTM call and then transfer control to one of the I/O routines, or
the user-written routine may perform all the processing of inputs to the . SYSTM call.
(Preprocessing of inputs to the system OPEN or CLOSE calls are not allowed.)

The following descriptions of routines in the I/O module also provide the parameters
passed to these subroutimes as input to the system. Users wishing to write their own
resident I/O routines may usually pass whatever parameters they wish in ACO and AC1.
However, ordinarily the parameters passed in ACO and AC1 are the same as were given
in the user-issued . SYSTM call. The value passed in AC2 is always provided by the system.

Open (OPNO, OPNI)

OPNO is used to open output devices, while OPNI is used to open input devices. OPNI
issues an operator intervention message (if required), while OPNO issues the message,
provides a form feed, and outputs leader if required. Both routines clear a device and
initialize its DCT. This implies that the DCT has provided all necessary I/0 buffer
information as well as the seven words of variable storage (words 12-16 and 22-23 of
the DCT.)

Input: .
AC2 - UFT address

Calling Sequences: 1) Insert OPNO (OPNI) mnemonic into device dispatch table at
displacement 0, OF. (Input is provided by the system.)

2-15

Licensed Material - Property of Data General Corporation

Open (OPNO, OPNI) (Continued)

Calling Sequences: 2) .EXTN OPNO (OPNI), OVLAY
(Continued) JSR @ .OVLY
OPNO (OPNI)
error return (never taken)
nomal return

.OVLY: OVLAY
Users may do no preprocessing of inputs to OPNO (OPNI). If a user wishes to provide
a special open routine for a device, the system OPNO (OPNI) routine cannot also be
called for that device.

Close (CLSO, CLSI)

CLSO should be used only to close output devices. It waits until all output has settled,
clears the column counter, clears the device, initializes the DCT, and provides
trailer if required. Alternatively, CLSI should be used only to close input devices.

It merely clears the device and initializes the DCT.

Input : AC2 - UFT address

Calling Sequences: 1) Insert either mnemonic CLSO or CLSI into the device
dispatch table at displacement 1 (CF). (Input is provided
by system.)

2) .EXTN CLSO (CLSI), OVLAY
JSR @ .OVLY
CLSO (CLS))
error return (never taken)
normal return

.OVLY OVLAY

Users may do no preprocessing of inputs to CLSO (CLSI). If a user wishes to provide
a special close routine for a device, the system close CLSO (or CLSI) routine may
not also be called for that device.

Read Sequential (RDS)

The device will be read, one byte at a time, until the byte count requested is satisfied.
The data is not modified in any manner; this command is used for binary transfers.

Input: AC2 - UFT address
AC1 - byte count for RDS
ACO - destination byte pointer

2-16

Licensed Material - Property of Data General Corporation

Read Sequential (RDS) (Continued)

Calling Sequences: 1) Insert RDS mnemonic into device dispatch table at dis -
placement 2 (RS). (Input is provided by system.)

2) +EXTN RDS, OVLAY
JSR @ .OVLY
RDS
error return
normz.il return

.OVLY: OVLAY

The error return is takenifanendoffile or device timeout occurs, at which time
error code EREOF is returned in AC2 and the partial byte count is returned in ACI,
If the normal return is taken, the full byte count read is returned in AC1.

Read Line (RDL)

This routine is used to transmit ASCII data and terminate after transmission of a
carriage return, form feed, or null. All bytes transmitted are masked to seven
bits. Line feeds and rubouts are unconditionally ignored.,

Input: AC2 - UFT address
ACO - destination byte pointer

Calling Sequence: 1) Insert RDL mnemonic into device dispatch table at displace-
ment 3 (RL). (Input is provided by system.)

'

2) .EXTN RDL, OVLAY
JSR@ .OVLY
RDL

error return
normal return

.OVLY: OVLAY

The read byte count is returned in AC1, whether the error or normal returns are

taken. The error return is taken and a system error code returned in AC2 for the
following conditions:

AC2 Mnemonic Meaning

6 EREOF End of file or device timeout.

22 ERLLI Line length exceeded 132 characters without a valid
terminator,

24 ERPAR Parity error i the last character transmitted.

2-17

Licensed Material - Property of Data General Corporation

Write Sequential (WRS)

Data is output in byte form to a device until the byte count has expired. The data
is not altered in any manner. This mode is therefore the standard mode for binary

output transfers.

Input: AC2 - UFT address
AC1 - byte count for WRS

ACO - source byte pointer

Calling Sequences: 1) Insert mnemonic WRS into the device dispatch table at dis-
placement 5 (WS). (Input is provided by the system.)

2) .EXTN WRS, OVLAY
JSR& .OVLY
WRS ‘

error return
normal return

.OVLY: OVLAY
The byte count written is returned in AC1. The error return is never taken.

Write a Line (WRL)

This routine transmits ASCII data to the appropriate device and terminates after
transmitting either a carriage return or a form feed. Termination also occurs
upon detection of a null, but the null is not written, Checks are made of the device
characteristics to determine whether to perform:

Parity on output

. Nulls after form feeds

. Line feeds after carriage returns
. Tab simulation (every 8 columns)
. Rubouts after tabs

cnq:-wm:—-

Input: AC2 - UFT address
ACO - source byte pointer

Calling Sequences: 1) Insert WRL mnemonic into device dispatch table at dis-
placement 6, WL . (Input is provided by the system.)

2) .EXTN WRL, OVLAY
JSR@ .OVLY
WRL

error return
normal return

.OVLY: OVLAY
2-18

Licensed Material - Property of Data General Cerporation

i1

Write Line (WRL) (Continued)

The write byte count is return in AC1 upon exit. The error return is taken after 132
bytes have been written without detection of a valid terminator, and AC2 contains the
following error code:

AC2 Mnemonic Meaning

22 ERLLI Line limit exceeded.
The RING I/0 modules do not provide for random record reading or writing.
Get Master or Default Directory Name (GMDIR /GDIRS)

o o~ amn v P R RPN ST SPuUy. [I ETNTTI N

These routines pass the name of the master directory device (GMDIR) or the name of
the current directory (GDIRS). The master directory device is the primary or secon-
dary partition which becomes the current directory after a full system initialization or
a bootstrap; this directory also contains the system overlays. Since several versions
of the operating system may be available for bootstrapping, different devices may
become the master device. If the name of the current directory is requested, only the
current directory name, not the colon delimiter and not the names of superior
directories, is returned. The format of these calls is:

Input: ACO~Byte pointer to 138 byte user area

Calling Sequences: .EXTN OVLAY, GMDIR, GDIRS
JSR @ .OVLAY
GMDIR ; GET THE MASTER DIRECTORY NAME
error return ; ATTEMPT TO OVERWRITE THE SYSTEM
normal return

JSR @ .OVLAY

GDIRS INT D

ATA W Fv

H NT DIRECTORY NAME
error return ; ATTEMPT TO OVERWRITE THE SYSTEM
normal return

o ~ .OVLAY: OVLAY
Two error codes may be returned:
AC2 Mnemonic Meaning
33 ERRD ~ Attempt to overwirte system (unmapped only),
74 ERMPR Address outside address space (mapped only).

1/0 BUFFER MODULE (IOBUF)

IOBUF is a core-resident module used by nearly all system drivers. One use of
IOBUF is to execute certain types of I/O instructions; this permits the writing of
reentrant drivers used by multiple devices (e.g., a multiple TTY system requiring
only one TTY driver). Another use of IOBUF is to provide common input/output

2-19

Licensed Material - Property of Data General Corporation

1/0 BUFFER MODULE (IOBUF) (Continued)

character device interrupt processing. IOBUF also provides routines to place a bead
at the end of a bead string and to remove any bead from the string. Finally, IOBUF
provides routines which perform common input and output character device interrupt
servicing.

The following list summarizes the entries in IOBUF:

Entry Use

CISER Common input interrupt service.

COSER Common cutput interrupt service.

DEQUE Remove any bead from the string.

ENQUE Add a bead at the end of the string.

FINP Partial input interrupt service..

IBUF Input a character to the I/0 buffer.

OBUF Output a character from the 1/0 buffer.
PENQU Priority enqueue a bead.

STOUT Initiate an output device, then provide interrupt service.
XDIAC DIAC instruction processor.

XDOAS DOAS instruction processor.

XNIOC NIOC instruction processor.

XNIOS NIOS instruction processor.

XSKPB SKPBZ instruction processor.

XDIAP DIAP instruction processor.

XIBUF Priority enqueue a bead and input to buffer.

Calls to any of the instruction processor entries (XDIAC, XDOAS, etc.) cause that
instruction to be built (for the specific device in question), stored in the driver's
"execute I/0 instruction" area (pointed to by DCTEX of the device's DCT), and
executed. Control is then returned to the caller. Calls to the instruction processors
are issued solely by the system; specific calltypes depend upon the entries selected
in the device dispatch table or in displacement DCTST of the Device Control Table.

Common Input Device Interrupt Service (CISER)

CISER provides interrupt service for character input devices, CISER is called
either by placing the mnemonic CISER in word 2 of the input device's DCT or by
means of the following calling sequence:

Input: AC2 - DCT address

Calling Sequence: .EXTN CISER
JSR @ .CISE
return to DISMIS

.CISE: CISER

2-20

Licensed Material - Property of Data General Corporation

Common Input Device Interrupt Service (CISER) (Continued)

Output: If the instruction execution returns a character, this character is
returned in the device buffer. The input contents of ACI are lost;
the input contents of AC2 are preserved.

Common Output Device Interrupt Service (COSER, STOUT)

COSER provides interrupt service for character output devices. STOUT initiates
an output device, starts the device, then branches to COSER. Fach routine can be
called either by placing its mnemonic in word 2 (DCTIS) of the DCT or by means of
the following calling sequence:

Input: AC2 - DCT address

Calling Sequence: .EXTN COSER (STOUT)
JSR@ .COSE
return to DISMISS

.COSE: COSER (STOUT)

Output: If a character is available for output in the device buffer, it is
output. AC2 is preserved upon exit.

Add a Bead to the String(ENQUE)

ENQUE attaches a bead and I/0 buffer to the end of the string of beads and buffers.
‘This new bead becomes the last bead in the string, and is given a LINK of -1,
ENQUE is called by means of the following calling sequence:

Input: ACl - Bead address
AC2 -~ DCT address

Calling Sequence: .EXTN ENQUE
JSR@ .ENQU

return
.ENQ: ENQUE

Output: The bead and its associated buffer are attached to the end of the
bead string. If the device is not busy, it is started. AC2 is
unchanged upon exit.

Terminate Bead from Head of List (DEQRQ)

Like FINP, DEQRQ shares common code with CISER, DEQRQ's operations, how-
ever, are limited to the following: Sets "Request Done" in the bead status word,
readies a system task if necessary, and determines if any other beads are enqueued

2-21

Licensed Material - Property of Data General Corporation

Terminate Bead from Head of List (DEQRQ) (Continued)

for the device. If other beads are enqueued, updates the bead pointer in DCTQP
and restarts the device; otherwise clears the device,

Input: AC2 - DCT address
Calling .EXTN DEQRQ
Sequence: JSR @ .DEQRQ

normal return
. DEQRQ:DEQRQ

Remove a Bead from the String (DEQUE)

DEQUE removes a bead from the bead string by setting the bead status word to
"inactive' and adjusting the adjoining bead links, and by clearing the device
associated with this string if the device is no longer active. The DEQUE calling
sequence is:

Input: ACl - Address of the bead to be removed
AC2 - DCT address

Calling .EXTN DEQUE
Sequence: JSR @ .DEQU
return

.DEQU: DEQUE

Output: The bead is inactivated and removed from the string. AC2 is
unchanged upon exit.

Partial Input Interrupt Service (FINP)

FINP performs all functions accomplished by CISER without initially issuing a call
to XDIAC followed by a restart of the device; FINP is thus an entry in CISER code
which omits those two functions. FINP presumes that these functions have been
performed elsewhere (as in the TTY and CDR drivers).

Input: AC2 - DCT address
Calling .EXTN FINP
Sequence: JSR @ FINP

normal return

.FINP: FINP

2-22

Licensed Material - Property of Data General Corporation

Input a Character to the 1/0 Buffer (IBUF)

IBUF places an eight-bit character in the currently available buffer slot. All book-
keeping in the DCT is maintained.

Input: ACO - character (left byte ignored)
AC2 - DCT address

Calling Sequence: .EXTN IBUF
- JSR @ .IBUF
return - buffe

+ f111
4. LWL
return - buffer not full

1
AL

.IBUF: IBUF

Priority Enqueue a Bead (PENQU)

PENQU places a bead and its buffer at the head of a bead string. If the device is not
busy, it is started.

Input: AC1- Bead address
' AC2- DCT address

Calling Sequence: .EXTN PENQU
JSR @. PENQU
normal return

.PENQU: PENQU
Output: The bead and its associated buffer are attached to the beginning of the
bead string. If the device is not busy, it is started. AC2 is unchanged

upon exit.

Priority Enqueue a Bead and Input to an I/O Buffer (XIBUF)

XIBUF places a bead and its buffer at the head of a bead queue, and places an eight-bit
character in the currently available buffer slot. All bookkeeping in the device's DCT
is maintained.

Input: ACO~ Character
AC2- Base address of a dummy DCT. The only portion of this
DCT which is used by the routine is the bead portion of the
DCT: displacements DCTQL through DCTQS. It is this
bead which is placed at the head of the device queue.

2-23

Licensed Material - Property of Data General Corporation

Priority Enqueue a Bead and Input to an I/O Buffer (XIBUF) (Continued)

Calling Sequence: .EXTN XIBUF
JSR @ .XIBUF
error return ;BUFFER FULL
normal return

.XIBUF: XIBUF

Output a Character from the I/0 Buffer (OBUF)

OBUF retrieves an eight-bit character from position PP of the input buffer if one is
available. All bookkeeping in the DCT is maintained.

Input: AC2 - DCT address

Calling Sequence: .EXTN OBUF
' JSR @ . OBUF
return - buffer empty
return - buffer not empty
.OBUF: OBUF

Output: If the buffer was empty, a character is returned in ACO, bits 8-15.

1/0 BUFFER MANAGEMENT

As mentioned earlier, there is an I/O buffer for each device in the system, whose
size may be increased or decreased by the addition or removal or buffer beads. At
program base level (as opposed to interrupt level), users wishing to fetch a character
from a buffer issue either an RDL or RDS call which, in turn, calls another routine,
RCHR. RCHR, RDL, and RDS are disk resident I/O routines in RING I/O. The
purpose of RCHR is to perform a generalized character fetch using the Device Control
Table address to read a character from the physical device. Having received a
character from the buffer, RCHR passes this character to the calling read routine.

Each time RCHR is called, interrupts are disabled and OBUF is called. A character
is fetched from the buffer, if one is available. (OBUF is a core resident routine in
the IOBUF module, described earlier.) If a character is not available in the buffer,
the caller is suspended for a period of time less than or equal to the device timeout
constant, DCTTO. If a timeout occurs, RTRN is executed; otherwise a loop back to
the beginning of the RCHR sequence is made.

At interrupt level, input devices input characters to a buffer by means of a call to
CISER, also described above.

2-24

Licensed Material - Property of Data General Corporation

I/0 BUFFER MANAGEMENT (Continued)

A similar sequence of subroutine calls occurs for output devices. At program base
level, a call to WRL or WRS results in a call to ACHR which adds a character to the
1/0 buffer. ACHR is a disk resident I/0 routine which calls IBUF to add a character
to the buffer.

RCHR makes an attempt to place the character in the I/0 buffer by means of a call

to IBUF. IBUF, described earlier, performs functions complementary to those of
OBUF. If the buffer was not full, then the character is added to the buffer and thence
is output to the device (spooled, if possible). If the buffer was full, a spool for the data
is started (if spooling is possible). Otherwise the system task is suspended for a
period less than or equal to the device timeout constant.

ot
n
Q
=

At the output interrupt level, COSER is uged to output a character to the device,

Interrupt /\
RDL} ¥ Drcir 4 Posur Service £ 3,CISER
RDS Routine
INPUT DEVICE
WRL) o~ V2N Interrupt
. —»IBUF
WRS } ACHR Service —————3COSER
Routine
, .
OUTPUT DEVICE
Retrieve a Character from the I/0 Buffer (RCHR)

Retrieve a character from the buffer by means of a call to OBUF.

Input: AC2 - DCT address
Calling Sequence: .EXTN RCHR OVLAY
JSR @ .0OVLY
RCHR

timeout return
normal return
.OVLY: OVLAY

Output: ACO- (if successful) character in bits 8-15.

3

Licensed Material - Property of Data General Corporation

Add a Character to the 1/0 Buffer (ACHR)

Insert a character in the I/O buffer by means of a call to IBUF.

Input: AC2 - DCT address
ACO - character to be inserted

Calling Sequence: .EXTN ACHR, OVLAY
JSR @ .OVLY
ACHR
normal return
.OVLY: OVLAY

Declaring the DCT Address

The last relocatable binary in system library RDOSC. LB is TABLE. TABLE
contains the interrupt vector, named ITBL, discussed earlier. This vector is
a linear array of DCT addresses which the system interrupt handler indexes
by device code. The form of each ITBL entry is:

.dvdDCT: dvdDCT ; OCTAL DEVICE CODE
where dvd represents the DGC device mnemonic for each device, and dvdDCT is
the DCT address of each device. Each DCT address must be declared as a

normal external, When adding an entry, the user can select any three-letter
device mnemonic not used by a DGC device.

2-26

Licensed Material - Property of Data General Corporation

Creating a Peripheral Device Entry in a Directory

All peripheral device entries are created (and deleted) as required on every
initialization of a disk device. All information necessarv to accomplish this

LI U LiIoN ViILT 4222 AV GV IR ESsoaL)

is in the system overlay CRSFS (revision 02 of RDOS) or SFTAB (revision 03).
The information has the same format in either overlay and is as follows:

Word 1: Byte pointer (overlay relative) to entry name,
packed left to right.

Word 2: File attributes of the required entry.

Word 3: Logical device code. This is the same as the
' physical device code except in cases where
two or more logical devices share the same
device code, such as $TTI/$TTR.

The latter part of the overlay contains the directory entry text strings. The
text string for the paper tape reader, for example, is as follows:

PTRP :NAME POINTER
ATPER+ATWP+ATCHA :ATTRIBUTES

PTR :LOGICAL DEVICE CODE
LTXTM 1

PTRP: .TXT /$PTR/

2-27

Licensed Material - Property of Data General Corporation

Updating the System Libraries

The RDOS 03 system libraries (RDOSA, RDOSB, RDOSC and the mapped versions)
are arranged as shown in the following table. Differences between the RDOS 03
and 02 revision libraries are indicated after the table. For a listing of the modules
in other libraries, perform an analyze via the library file editor (LFE). To add a
driver, insert it into any of the libraries (A,B, or C) provided it is inserted after
SYSTE and before TABLE (MSYST and MTABL in the mapped versions).

RDOS (MRDOS) 03 SYSTEM LIBRARY LIST

Relocatable Binary Title Primary Function or Contents

INIT1, INIT2, INIT3 Full and partial system initializations.

(MPWRF) Mapped power fail handler. -

(MAPZ) Mapped system page zero.

SYSTE (MSYST) .SYSTM call processor.

OVLAY (OVLAY) System overlay handler.

FILIO (MFILI) Disk file 1/0.

BLKIO (BLKIO) Block I/O management.

OPPRO (MOPPR) : Operator -Foreground /Background
communications.

TTY1D (TTY1D) Second Teletype driver.

TTYDR (MTTYD) Teletype /video display driver.

DPMOD (DPMOD) * Dual processor module.

GSUB (MGSUB) General purpose subroutines and
linkage.

PLTID (PLT1D) Second plotter driver.

PLTDR (PLTDR) Incremental plotter driver.

CDR1D (CDRID) Second card reader driver.

CDRDR (CDRDR) Card reader driver.

PTPID (PTP1D) Second high speed punch driver.

PTPDR (PTPDR) High speed punch driver.

PTR1D (PTRI1D) Second high speed reader driver.

PTRDR (PTRDR) High speed reader driver.

LP132 (LP132) 132 column line printer characteristics
word for $LPT.

LP180 (LP180) 80 column line printer characteristics
word for $LPT.

LP232 (LP232) 132 column line printer characteristics
word for $LPTI.

LP280 (LP280) 80 column line printer characteristics
word for $LPT1.

LPT1D (LPTI1D) Second line printer driver.

2-28

Licensed Material - Property of Data General Corporation

RDOS (MRDOS) 03 SYSTEM LIBRARY LIST (Continued)

Relocatable Binary Title

LPTDR
IOBUF
M17DB
C17DB
MTADR
MTAI1D
MTADC
CTAILD
CTADC
STKO09
DKDCB
DK1DB
DSKDR
DSKDC

DSK1D
DP7DB

DKPDR
DKPDC

DKP1D

MCTID
MCTDC
MCADR
QTYDR
P31DB

PWRFL
INTD
PANIC
TABLE

The ma jor differences between the RDOS 03 and 02 libraries are as follows.

(LPTDR)

(IOBUF)

(M17DB) through MOODB (MOODB)
(C17DB) through CO0DB (C00DB)
(MMTAD)

(MTA1D)

(MTADC)

(CTA1D)

(CTADC)

(STKO09) through STK00 (STKO00)
(DKDCB)

(DK1DB)

(MDSKD)

(DSKDC)

(DSK1D)
(DP7DB) through DPODB (DPODB)

(MDKPD)
(DKPDC)

(DKP1D)

(MMCT1)

(MMCTD)

(MMCAD)

(MQTYD)

(P31DB) through POODB (POODB)

(MINTD)
(MPANI)
(MTABL)

Primary Function or Contents

Line printer driver.

I/0 buffer handlers.

Magnetic tape device control blocks.
Cassette device control blocks.
Magnetic tape/cassette driver.
Second magnetic device control table.
Magnetic tape device control table.
Second cassette device control table.
Cassette device control table,

System stacks nine through zero.
Fixed head disk DCB, first controller.
Fixed head disk DCB, second controller.
Fixed head disk driver.

First fixed head disk device control
table.

Second fixed head disk device control
table.

Moving head disk DCBs for units 7
through 0.

Moving head disk driver.

First moving head disk device control
table.

Second moving head disk device control
table.

Second MCA device control table.
First MCA device control table.

MCA driver.

Asynchronous multiplexor driver.
Partition/subdirectory DCBs 31
through 0.

Unmapped power fail handler.
Interrupt determinator.

System PANIC handler. .
Tables section.

FirSt’

RDOS 02 does not support the multiprocessor communications adapter; thus modules

MCT1D (MMCT1) and MCTDC (MMCTD) are not found in the 02 libraries.

Secondly,

the system stack modules were entitled PSTK5 through PSTK1 in RDOS 02. Finally,
full and partial initialization was performed by module INIT in RDOS 02. For more
information about the contents of the RDOS 02 libraries, perform an analyze.

2-29

Licensed Material - Property of Data General Corporation

Creating a System Queue Entry

A system queue must be created for the device within the device driver. The structure
of this entry is as follows:

.ENT dvdQ

dvdQ: .BLK 2 ;USED TO POINT TO DCT AND UFT
100000 ;SYSTEM STACK IS REQUIRED
dvdDCT ;DCT ASSOCIATED WITH QUEUE

.BLK SGLN-.+dvdQ ;SYSTEM STORAGE AREA

The address of this queue entry must be defined in the system queue table (SQ) in the
TABLE module.

An examplé of a system queue entry for the paper tape reader is as follows:

PTRQ: .BLK 2
100000
PTRDCT
.BLK SQLN-.+PTRQ

System Generation

Invoke the SYSGEN save file and answer all queries. Determine the additional space
necessary to load the new, user driver plus any additional words added to the system.
Before creating the new operating system save file, the value contained in the file
named NREL should be adjusted down by the additional amount of space required by
the new device driver.

To insure that the driver will get loaded from the library at system generation time,
a small program should be written and loaded at this time ahead of the RDOSA. LB
(MRDOSA, LB) library. The program could take the following form: :

.EXTN dvdDC
.END

and the relocatable binary called DUMMY.RB .

File SRLDR.CM (SRLDR1.CM, MSRLDR.CM, or MSRLDR1, CM) must be modified so that
DUMMY appears as an entry after @NREL@.

Invoke SRLDR.CM (SRLDR1,CM, etc.) to build the new RDOS system

PRACTICAL HINTS FOR SYSTEM DEVICE DRIVER IMPLEMENTATION

This section is devoted to a line-by-line examination of an actual RDOS driver, the
high speed paper tape reader.

2-30

Licensed Material - Property of Data General Corporation

Elements Required in User-Written I/O Routines

User device drivers may perform I/0O in three ways:

1. By using system routines, placing the routine names in the user
device dispatch table.

2. By appending some pre-processing instructions to an existing
system routine.

3. By substituting system I/O routines with user written routines, and
either placing these routines in-line or by placing the routine names
in the dispatch table.

The first case, placing a system I/O routine name in the device dispatch table, is
the easiest to implement.

In the second case, where the user wishes to do some pre-processing of input para-
meters,* then transfer control to a system routine, the following steps must be
followed. The steps in this example illustrate the case where RDL is the system
call which will have instructions appended to it by the user:

1. Perform a SAVE before calling RDL.

2. Ensure that RDL is passed its requisite parameters. These are the
UFT addresses in AC2 and the destination byte pointer in AC0O. Use
the RDL calling sequence defined earlier.

3. Perform an RTRN upon return from the call to RDL.

In the last case, a user wishes to write an I/O routine which will be used instead of
a system routine (perhaps placing this routine in his driver module). The following
example sketches the essential elements of such a routine (leaving blank the 1I/0
code sequence proper):

.ENT RDL1
RDLI: STA@ 3,CSP
SAVE ;SAVE CALLER'S AC'S
LDA 0, 0ACO, 3 ;FETCH INPUT ACO
MOV# 2,2,SNR ;TEST FOR END OF FILE ERROR
JMP TIMEOUT
ISZ ORTN, 3 ;GO TO NORMAL RETURN
RTRN
TIMEOUT: LDA 2, ERROR ;GET ERROR CODE
STA 2, 0AC2 ;RETURN ERROR CODE IN AC2
RTRN

ERROR: EREOF

* except upon opening or closing a device,
2-31

Licensed Material - Property of Data General Corporation

Examination of a System Device Driver

This section is devoted to a line-by-line examination of an actual RDOS driver, the
high-speed paper tape reader driver (PTRDR),

Following are the first 11 lines of the RDOS paper tape reader driver:

lvdve PTRDR

B}

05 +TITLE PTYRDRV) PAPER TAPE READER DRIVER
@4 ’ +NREL

25

gg «ENT PTRDC,PTRQ,PTRDT,PRSAV,PTREX

a8 +EXTN RDS,0PNI,CLSI,ROL 7COMMAND ENABLE
29 +EXTN XNIOS JEXECUTE I/0 INSTRS

i:ﬁ «EXTN CISER JINTERRUPT SERVICE

The entries PTRDC and PTRQ on line 6 define the PTR Device Control Table address
and the system queue entry respectively. PTRDT, PRSAV and PTREX define the dis-
patch table address, start of the save state routine, and the execute - I/O instruction
routine respectively. PTRDT, PRSAV and PTREX are entered so that they can be
‘referenced by PTR1D, the second paper tape reader driver.

2-32

12

Y|
%]

17
18
19

ce
21

23
24
25
26
27
28
2y
39
31
32
33

Examination of a System Device Driver (Continued)

PoRRR'coLI1A'PTRDCT: PRSAV

poeai'eons77
peee21'177777
QUURI ' nppdRd
PARR4'cRARR12
P0RO5'eRVR6S!
¢hea6'evGi2a}
0eRee7'177777
peele'napieo
pevil'paves2n
peet2'pavenl
pre13'oBLan!
vRelatvaonnl
er215'v0000
ePu16'pnPBdl
LR AN T I TY
20020'v0RRnt 4!
@ue21'177777
pAu22'v0p0R2
PR024'004002

} PAPER TAPE READER DEVICE CONTROL TABLE

) SAVE MACHINE STATE
MSPTReMSTTI+MSTTO+MSPTP«MS LPTeMSECOR«MSDSKeMSDKP) MASK

CISER JINT SERVICE

DCIDI+DCPCK ,) CHARACTERISTICS

PTR JOEVICE CODE

PTREX JEXECUTE 10 INSTRUCTION

PTROT j DISPATCH TABLE ADDRESS

XN10S) READER START ROUTINE ADDRESS
PTRSZe2) BUFFER SIZE

PTRBF#2 } BUFFER FIRST BYTE ADDRESS
LBLK 1 JPROGRAM BYTE COUNT

BLK 1 JPRCGRAM BYTE POINTER

JBLK 1 JDEVICE BEAD LINK

oBLK 1 JDEVICE DATA BYTE POINTER

«BLK 1 JDEVICE DATA COUNT

1Bi#1B15 JBEAD 8TATUS WORD» INIT TU REGUEST DONE
y=4 JBEAD ADDRESS

-y JREQUEST QUEUE POINTER

JBLK 2 JDEVICE TEMPS

2 | ITIME OUT IN SECONDS

Locations 0 through 24 (lines 14-33) comprise the pziper tape reader Device Control
Table (DCT). PRSAV is the start of the state save area (this area is defined later on).
Word 1 (line 15) defines the interrupt mask. The paper tape reader mask word, 577,
prevents all devices with mask bit assignments 7 and 9 - 15 inclusive from interrupting
the reader (thus preventing chatter). Word 2 specifies that reader interrupt service is
performed by CISER, the common interrupt service routine found in the IOBUF module.
Words 4 and 5 define the device characteristics and device code; DCIDI indicates that
the reader requires operator intervention, while DCPCK indicates that the reader is a
device requiring an even parity check on input.

PTREX, word 5, is a pointer to the reader I/O execute instruction area. This area will
be seen later. PTRDT points to the reader dispatch table; this table will be seen on
page 2 of the reader driver listing. XNIOS, line 21, is an entry in the IOBUF module
and will be resolved by the loader. XNIOS starts the reader.

Words 10 and 11 (lines 22 and 23) define the size of the reader buffer in bytes (100) and
a pointer to the first byte in this buffer. Words 12 and 13 (lines 24 and 25) are allocated
for the program byte count (PC) and the program byte pointer (PP) respectively.

Words 14 through 17 (lines 26-29) allocate a bead frame for the reader buffer, and
initialize the bead status word to "request done.” Word 20 contains the address of the
bead allocated by words 14-17, and word 21 contains the pointer to the currently active
bead, This word is initialized to -1

2-33

Licensed Material - Property of Data General Corporation

Examination of a System Device Driver (Continued)

Words 22 and 23 (line 32) are allocated for the first and second temporaries for
device control. The last word in the DCT, word 24, contains the reader timeout
constant, 2 seconds.

Line 35 defines the size of the reader buffer in words, and line 37 allocates the
buffer space.

Lines 39 through 41 define the 1/O instruction execution area defined for the paper
tape reader. Location PTREX receives the I/O instruction constructed by IOBUF,
and after executing that instruction control is returned to the interrupt service
routine by either the second or third instructions, lines 40 and 41 (depending upon
whether that instruction causes a skip or not).

PTRQ (entered previously on line 6) defines the system queue entry for the paper

tape reader.
34
g: J0UP4P PTRSZs 40 ') BUFER SIZE
g: pRPR25'NQrR408 PTRBF: ,BLK PTRSZ] RESERVE THE BUFFER SPACE
39 00E65'0ALRWD PTREX: 2
aY ARL6L'uniane JMP 2,3
41 eoub67'vyatdnt JMP 1,3
42
43
44 ¢P070'000n02 PTRWS JBLK 2
45 prhe72'198024@ 1000200.
40 BAV73'20np0un) PTROC
47 ran74'yoc214 oBLK SALN=_ +PTRQ
48

Finally, on page 3 of the driver liéting we find the machine save state area definition,
PRSAV, and the paper tape reader dispatch table, PTRDT. This table provides entries
to open and close the reader and to perform read line and read sequential operations:

lgpvd PTRUR

¢l

2§ pAlletvapailne PRSAVE ,BLK ISVLN JSAVE MACHINE STATE

gg ! OEFINE THE PAPER TAPE READER DISPATCH TABLE

@6 wwul2e'177777 PTRDT: OPNI 7 PTR OPEN

@7 ew121'1777727 CLS1I) PTR CLOSE

n8 ne122'177777 RDS } PTR READ SEQUENTIAL
29 0n123'177777 ROL) PTR READ (INE

16 va124'177777 -) PTR READ RANDOQM

11 ¢0125'177777 -) PTR WRITE SEQ

12 va1261177777 -1) PTR WRITE LINE

18 127177777 -1) PTR WRITE RANDOM

14 o013¢'177777 -1) PYR OPEN FOR APPENDING
15 ve131'vvetiea! OPNI)} PTR READ ONLY OPEN
16 pi1d2'vvnldy! OPNI1 ¢ PTR EXCLUSIVE OPEN
}; 0eL133'1772777 'éuu } PTR TRANSPARENT OPEN

" Licensed Material - Property of Data General Corporation

Examination of a System Device Driver (Continued)

The read random record and all write commands are illegal for the paper tape
reader. This is indicated by the placement of -1 in these positions of the
dispatch table.

Following is the cross-referenced symbol listing for the paper tape reader
driver: ’

Q¢4 PTROKR

CISER 2¢Bwn2' XN 2/1¢0 2/16

CLSI owm121' XN 2/98 3/07

OPNI @o@132' XN 2/028 3/06 3/15 3/16
PRSAV agnlip' EN 2/26 2/14 3702
PTRBF daau25! 2/23 2/37

PTRUC anacag! EN 2/26 2/14 2/46
PTRDT @v@i2u' EN 2/26 2/20 3s06
PTREX Qu@s65' EN 2/26 2/19 2/39
PTRG 2ewu7a! EN 2/06 2/44 2747
PTRSZ Quuwdu 2/22 2/35 2/37
RDL wpRa1egs! XN 2/08 3/09

RDS Apn122' XN 2/08 3sa8

XNIUS Queen7' XN 2/29 2/21

2-35

Licensed Material - Property of Data General Corporation

CHAPTER 3

USER PROGRAM SERVICED INTERRUPTS

Special user devices may be identified either at the time an RDOS system is
loaded or at run time. This chapter describes the procedure for identifying
n

ting a user r‘lnr‘l(driven bv the system

-
Q
=
0
1
D
!D [«

a user device at run time and f
real time clock. The cons1dera* g1ven for identifying a user device are
common to both single and multltask environments; the user clock facility may
also be used in both task environments.

FALLS RLAVIAL Ay LT Sy oevail

Upon detection of an interrupt request, the system will be dispatched through
the device interrupt vector table, .ITBL (see Chapter 1). In this table are
pointers to Device Control Tables (DCTs) for devices established at system
initialization time, whether system or user devices. Chapter 1 describes
the structure of system DCTs,

User Device Driver Implementation at Run Time

In order to identify a user device to the system at run time, the user must
provide a three-word DCT as an interface between the system interrupt
dispatch routine and the user-interrupt servicing routine. The structure and
mnemonic assignments of this three-word table are as follows:

"I.._

Displacemen Mnemoiic Purpose
0 DCTSV Pointer to an 8-word state save area,
1 DCTMS Interrupt service mask.
2 DCTIS Interrupt service routine address.

DCTSV is a pointer to an eight word state variable save area reserved by the
system for compatibility with RTOS., DCTIS is a pointer to the routine which
services this particular device interrupt. DCTMS is the interrupt mask* that
the user wants to be ORed with the current interrupt mask while in the user
interrupt service routine. This mask establishes which devices--if any--will
be able to interrupt the currently interrupting device.

*See "How to Use the Nova Computers, " Section 2. 4.

3-1

Licensed Material - Property of Data General Corporation

User Device Driver Implementation at Run Time (Continued)

Upon transferring control to the user interrupt service routine, the system will
ensure that AC3 contains the return address required for exit from the routine,
and that AC2 contains the address of the DCT upon exit from the routine. In
revision 02 of RDOS, for unmapped systems, exit is accomplished by a jump to
the return address specified by AC3 upon entry. Rescheduling does not occur.
For mapped systems under revision 02 of RDOS, return and rescheduling is
accomplished by loading integer 3 into ACO, then by issuing instruction NIOC MAP,
In revision 03 of RDOS, task call .UIEX is issued, and rescheduling may occur
as an option.

All multitask environment activity ceases at the moment that a user device
interrupt is detected. Nonetheless, it is possible for a user to communicate a
message to a task from a service routine, If the task in question has been
expecting such a message through issuance of a , REC and is now in the suspended
state, issuance of the message via .IXMT will cause that task to be readied
even though multitask activity is in abeyance. If no task has issued a .REC for
such a message, .IXMT simply posts the message and takes no further action.
For more information on communicating to tasks from a user interrupt service
routine, see Chapter 5 of the RDOS User's Manual, 093-000075-04.

In addition to .IXMT, certain other task calls can be issued from a user
interrupt routine or user power fail routine. A complete list of these task calls
follows: .IXMT, .SMSK, .UIEX and .UPEX,

All user devices are removed from the system when either a program swap or
chain occurs. Receipt of a user interrupt on a new program level (which has not
identified the user device) will cause the system to clear the device's done and
busy flags and then return to normal program execution.

Identify a User Interrupt Device (.IDEF)

In order to introduce to the system those devices (not identified at SYSGEN time)
whose interrupts the system is to recognize, the system call .IDEF must be
issued. This places an entry in the interrupt vector table. ACO contains the
device code of the new device, ACI contains the address of the new device's
DCT. In unmapped systems, this address must exceed 400g; in mapped systems,
bit O of this address is set if the device is a data channel device. In mapped
systems with a device using the data channel, AC2 contains the number of 1K
core memory blocks which will be needed by the data channel map. This number
will be one larger than the integer number of 10241 word blocks used for data
channel core buffers, The format of this command is:

3-2

Licensed Material - Property of Data General Corporation

Identify a User Interrupt Device (. IDEF) (Continued)

.SYSTM
. IDE F
€rror return

is]
normal return

Possible error messages are:

36 ERDNM Illegal device code (> 778). Device cbde
77g is reserved for the power monitor /auto
réestart optioi.

45 ERIBS Interrupt device code in use.
65 ERDCH Insufficient room in data channel map.
74 ERMPR Address outside address space (mapped

systems only).

3-3

Licensed Material - Property of Data General Corporation

Exit from a User Interrupt Routine (. UIEX)

Upon a user device interrupt, AC3 will contain the return address upon entry
to the user routine., In both revision 02 and 03 of RDOS, exit may be accom-
plished by either a jump to the return address specified by AC3 upon entry to
the user routine, or by loading "3" into ACO and then by issuing an NIOC MAP.
In revision 03 of RDOS, however, task call ,UIEX is issued.

In unmapped systems, before issuing task call . UIEX AC3 must be loaded with
the return address that it contained upon entry to the user routine. In mapped
systems, the contents of AC3 are ignored when . UIEX is issued. In both mapped
and unmapped systems, rescheduling of both the task and program environment
(if a foreground/background system) will occur upon exit only if AC1 contains
some non-zero value.

The format of this call is:
AC1 - Zero only if rescheduling is to be suppressed.
AC3 - Return address upon entry to routine (unmapped systems
only).
.UIEX
Control returns to the point outside the user routine which was interrupted by
the user device. No errors are possible from this call. This call can be

issued in a single task environment.

Remove User Interrupt Servicing Program (, IRMV)

To prevent the system's recognition of user interrupts which have been previously
identified by the ,IDEF command, the ,IRMV command is issued. Required input
to this call is the user device code corresponding to the device which is to be
removed.

The format of this call is:
ACO - Device code.
.SYSTM
. IRMV

error return
normal return

3-4

Licensed Material - Property of Data General Corporation

Remove User Interrupt Servicing Program (. IRMV) (Continued)

One possible error message may be given.
AC2 Mnemonic Meaning
36 ERDNM Illegal device code (>778) or attempt to

remove a system device (i.e., one
established at SYSGEN time).

Set the Data Channel Map {, STMAP)

User devices employing the data channel in mapped systems must issue a

system call to set up the data channel map. (A separate map is maintained by
the mapping hardware for data channel usage.) This call sets up the data channel
map for the user device and returns in AC1 the logical address which should be
sent to the device. Required inputs to this call are the user device code in ACO,
and in AC1 the starting address of the device buffer in user address space.

The format of this call is:

.SYSTM

. STMAP
error return
normal return

This call is a no-op when issued in unmapped systems. In mapped systems,
two possible error conditions may occur.

AC2 Mnemonic Meaning
36 ERDNM - Device code not previously identified as a data channel device.
74 ERMPR Address outside address space (mapped systems only).

3-5

Licensed Material - Property of Data General Corporation

Mbodifying the Current Interrupt' Mask (.SMSK)

RDOS 03 and subsequent revisions contain a task call which permits the current
interrupt mask to be modified. Whenever a user interrupt occurs, the interrupt
mask is ORed with the mask contained in DCTMS of the user DCT to produce the
current interrupt mask. Nonetheless, it is possible in the service routine

to produce a current mask which ignores the contents of DCTMS, producing a
new mask which is the logical OR of the old mask (upon entry to the service
routine) and a new value. This is done by task call .SMSK, whose format is as
follows:

ACO - New value to be ORed with old mask.

.SMSK
normal return

There is no error return possible from this call. This call may be issued in a
single task environment.

WRITING USER POWER FAIL SERVICE

RTOS provides software support for the power fail/automatic restart option,
Upon detection of a power loss, the system transfers control to a power fail
routine which saves the status of accumulators 0 through 3, the PC and Carry.

When power is restored, if the console key is in the LOCK position, the message

POWER FAIL

is output on the system console and the state variables are restored before
control resumes operation at the point where it was interrupted. If the console
key was in the ON position when input power failed, the user must set the
console switches to all zeroes (down) and START must be pressed when power is
restored. This causes the console message to be output and state variables to
be restored as when the key is in the LOCK position.

The following system devices are given power-up restart service by RDOS:

3-6

Licensed Material - Property of Data General Corporation

WRITING USER POWER FAIL SERVICE (Continued)

paper tape readers/punches
Teletypes '

Aind raviledeal A, naa o

Juad muitipiexors
card readers

line printers
disks

Character devices may lose one or more characters during power up. Each card
Teader may lose up to 80 columns of information on a single card. Line printers
may lose up to a single line of information. Since power up service for disks
includes a complete re-read or re-write of the current disk block, no disk
information is lost, although moving head disk units will require 30 to 40 seconds
before disk operations can continue. Devices requiring operator intervention
(like line printer, card readers, etc.) must receive such action if power was

lost for an extended period of time. No power up service is provided for
magnetic tape or cassette units.

Power up service for special user devices (or for magnetic tape or cassette units)
must be provided by the user via the system call ,IDEF, The format of this
call when used to identify user power up service is as follows:

ACO - 778

ACl1 - Starting address of user power up service
routine,

.SYSTM

. IDEF

error return
normal return

The error return is never taken.

Exit from a user power-up service routine for mapped systems under RDOS 02
forces rescheduling, and is accomplished by loading integer 4 into ACO, then
by issuing the instruction NIOC MAP. Unmapped revision 02 systems must
exit from user power-up service routines by jumping to the return address
specified by AC3, and this also forces rescheduling to occur.

Exit from user power-up service routines under revision 03 of RDOS may be

performed in the same manner as for revision 02. Alternatively, revision
03 provides a task call .UPEX, for performing this exit.

3-7

Licensed Material - Property of Data General Corporation

Exit from a Power Fail Service Routine (.UPEX)

Upon entering a user power fail service routine, AC3 will contain the address
required for exit from the routine. To return from the user power fail routine
in an unmapped environment, AC3 must be loaded with this return address and
task call .UPEX must be issued. In mapped systems, the value input in AC3
when this call is issued is ignored.

The format of this call is:

AC3 - Return address upon entry to the routine (unmapped systems
only).

. UPEX

Control returns to the location which was interrupted by a power failure.

No error return or normal return need be reserved. .UPEX can be issued in
a single task environment, Note that this call can be issued only in revision 03
and higher revisions of RDOS.

USER PROGRAMMED CLOCK

Two system commands, .DUCLK and .RUCLK, are available to permit the
definition and removal of a user clock driven by the system's real time clock
(RTC). This user clock generates interrupts at user-definable intervals. When
one of these intervals expires, control goes to a user-specified routine outside
the current single or multitask environment. No task calls (other than .IXMT)
may be issued from this interrupt servicing routine.

Define a User Clock (.DUCLK)

This command permits the definition of a user clock. When an interrupt is
generated by this clock, the task scheduler and multitask environment--if any--
are placed in suspension, and control goes to a user-specified routine. The
format of this call is:

ACO - Integer number of RTC cycles between each
user interrupt.

ACl1 - Address of user routine to receive control,

.SYSTM

.DUCLK

error-return
normal return

Licensed Material - Property of Data General Corporation

T XN 70 et dnes A N
N) LG ULILLIIUEU

If the error return is taken, the following error code is issued:

AC2 Mnemonic Meaning
45 ERIBS A user clock already exists

Upon a user clock interrupt, AC3 will contain the address of the return upon entry
to the user routine. Exit from the user clock routine can be performed in ail
unmapped versions of RDOS by jumping to the return address specified by AC3
upon entry to the routine. If this means of exit is selected, rescheduling will

not occur. In the mapped version of RDOS 02, ACO must be loaded with "2" and
instruction NIOC MAP must be executed. In rev. 03 and higher revisions of RDOS,
task call . UCEX can be issued to provide a means of exiting from the clock routine;
optional rescheduling of the task environment is permitted if this means of exit is
selected.

Upon a user clock interrupt, AC3 will contain the address of the return upon
entry to the routine specified in , DUCLK, To return from the user clock
routine in an unmapped environment, AC3 must be loaded with the return
address that it contained upon entry to the routine and task call .UCEX is
issued. In mapped systems, the value input in AC3 when this call is issued

is ignored. In both mapped and unmapped systems, rescheduling of both

the task environment and the program environment (if a foreground /background
system) will occur upon exit only if AC1 contains some non-zero value.

The format of this call is:

ACl - Zero only if rescheduling is to be suppressed.
AC3 - Return address upon entry to routine (unmapped
systems only).

.UCEX

Control returns to the point outside the user routine which was interrupted
by the user clock. No errors are possible from this call. This call can be
issued in a single task environment. Note that this call can be issued only in
revision 03 and in higher revisions of RDOS,

Remove a User Clock (, RUCLK)

This system command removes a previously defined user clock from the system.
The format of this call is:

3-9

Licensed Material - Property of Data General Corporation

Remove a User Clock (. RUCLK) (Continued)

.SYSTM

. RUCLK
error return
normal return

The error return must be reserved, but it is never taken.

EXAMPLES OF USER SERVICED INTERRUPTS

This section illustrates two implementations of user-written interrupt servicing
programs for devices not incorporated into the system at SYSGEN time.

Analog to Digital Converter

The first of the two illustration programs is an analog to digital converter driver,
found on page 3-12. This driver consists of four subroutines which can be called
from a user program, the interrupt servicing subroutine, and a Device Control
Table. The following is a line by line analysis of the A/D driver,

Lines 6 - 10 show that the title of the driver is AIDEV, that four entry points exist
for user access of this driver, and that the driver program is normal relocatable
(i.e., that it does not use any page zero locations). Line 15 gives the address of
the Device Control Table which is defined in lines 17-19. This is an abbreviated
DCT as discussed earlier.

The first location in the DCT (line 17) points to an 8-word state save area defined
on line 30. The second entry in the table is the hardware mask that is set while the
A /D interrupt is serviced. 1BS8 indicates that all other devices can interrupt the
A/D converter. The third and final entry in the DCT is the address of the interrupt
servicing program, AINTS, AINTS is found on page 4 of the driver listing, and
will be discussed later.

Lines 25 - 29 contain additional variables and constants which are required while
servicing requests to this handler. These values are, in order, the device code
of the A/D converter, a busy/done status flag, pointers to the address and data
tables, and the number of points to be read for this call.

Page 2 of the driver listing illustrates two subroutines called by the user to attach
(detach) the A/D converter interrupt servicing routine to (or from) the RDOS
dispatch table, ITBL. The first routine, AIDEF, clears the ACTIV flag to indicate
that there are no active requests in the handler for data. AIDEF then issues the
system call .IDEF to define this handler and introduce it to'RDOS. An error return

3-10

Licensed Material - Property of Data General Corporation

Analog to Digital Converter (Continued)

could result if the A/D converter device code (21g) already was assigned to some
other device. This would happen if a second call to AIDEF were issued without
any intervening call to AICLR. AICLR removes the A/D routine from the RDOS
dispatch table.

Page 3 of the driver listing contains two subroutines, the analog read random routine
(AIRDR) and the read request routine (AICHK). The first of these routines, AIRDR,
is called with AC2 containing the address of a control table. This table is described
on page 1 of the listing (lines 34 - 50). This subroutine first checks whether the
device is currently active on another request by testing the ACTIV flag defined
earlier (page 1, line 26). If the handler is already active, an error return is made
to the user. If the handler is not active, the ACTIV flag is set and the request is
initiated. The address of the control table is saved in the active switch and the num-
ber of points to be read is moved into the handler from the table. Since this routine
performs reads of analog inputs, two tables must be provided by the user. One
table must contain the input point addresses to be read, and the other table (of equal
or greater size) is used to store the analog input readings. The addresses of these
two tables is given in the control table. Before returning control back to the caller,
the address of the first point is fetched, sent to the converter, and the converter

is started.

The fourth routine, AICHK, is used to check the status of a call made to the
converter. There are two returns to the caller: busy and call completed.

Page 4 of the driver listing contains the interrupt service routine, AINTS, This
routine is entered from the RDOS interrupt dispatch program with AC2 containing
the address of the A/D converter DCT and AC3 containing the address of the
RDOS interrupt dismissal program. AINTS reads the new converted value, saves
it in the user-supplied data buffer, and then checks to see if there are additional
points to be read. If there are, it initiates the next conversion. If this was the
last point to be read, AINTS sets the status of the request to indicate that the call
is completed and the handler is available for the next user request.

3-11

LICENSED MATERIAL = PROPERTY OF DATA GENERKAL CORPORATION

0024 AIDEV MACRO REV @2 B1i10126 12/08/73
a1
a2) ANALOG TO DIGITAL CONVERTER DEVICE ULRIVER

aa , A L XX R F X X XXX XS NN YN Y Y Y P Y

a5

oTITL AIDEV

az
38 »ENT AIDEF,AICLR,AIRDK,AICHK

S

{0 oNREL

11

12) DEVICE CONTROL TABLE LAYOUT

‘3 ’ (AT LY LR R LY Y Y X ¥

14

15 o0veu'e0eday ' ADDCTE USDCT ! ADDRESS OF aADCV DCT

16

17 20001'000211'USDCTT AISAVE ? INTERRUPT STATE SAVE AREA
18 20202'920200 ige } MASK WORD

19 o00023'e00063! AINTS ! INTERRUPT ROUTINE ADDRESS
20

21) ADDITIONAL VARIABLES FOR ADCV HANDLER

22 ' LA 2 X X X X X L X3 ¥ R X XX R X R XX ¥ Q%N

23

24 00@R4'¥R2G21 DCODES ADCV) DEVICE CODE OF A/D CONVERTER
25 20005'd00Be2 ACTIV: @ 7 STATUS FLAG

26 PPYB6'VARRVO DAPTRS @ } DATA ADDRESS ARRAY POINTER
27 20027'92000® DVPYR: 0 !} DATA VALUE ARRAY POINTER
28 Q0Q10'200022 DTCNTS: @ !} DATA COUNT STOURAGE

29

S0 20011'000810 AISAVE: ,BLK 10] STATE SAVE AREA

31

32

33) USER CONTROL TABLE LAYOUT

34] wepennsrasswesnnvnerseansan

35

36 ! WORD O STATUS FLAG

37) @ = CALL COMPLETED SUCCESSFULLY
38] ~VE 8 REQUEST BEING PROCESSED

39

40 ! WORD | ADDRESS TABLE PUINTER

41

42] WORD 2 DATA STORAGE TABLE POINTER

43

44 ! WORD 3 NUMBER OF POINTS TO Bt READ

45

46 Q2voea ,DUSR STATER

47 weavel ,DUSR ATPTRs={

48 A@eAB2 ,DUSR VTIPTR=2

49 0oPRV3 ,DUSR NPTs3

50

3-12

{0082 AIDE

21
02
23
24
25
06
ez
28
7R
10
1
{2
$3
14
)
16
17
18
19
20
21
22
a3
24
25
26
27
28
29
30
31
32
33
34

Ll

aev21'254016
v00e2'1082400
020231040762
pRR24'@2076¢
P0v25'024753
P0026'006217
euv27'p21007
0003v'vR1400
20031 '001401

¥An32'454016
00833'020751
a0034'sabnly
@0B35'u21212
20036'001 400
00V37'an1404

< O
m
4
(7]
m
<

a3
=
-4
m
b
-4
»
T
|
w
A
o
W
m
A
—4
-
[o]
N
<
) 3
-4
x»-
<
m
pid

!} INITIALIZE THE A/D HANDLER

, L T Sl Y X X

} CALLING SEGQUENCE:

H JSR AIDEF

H <ERROR WRETURN> § DEVICE CODE In USE ALKEADY
? <NORMAL RETURN>

AIDEF: STA 3 USP 3} SAVE RETURN ADDRESS
SUB 2 @ } SET RUUTINE NOT BUSY
STA @ ACT1V
LDA @ DCODE ! GET DEVICE CODE
LOA { ADDCT } GEY DCT ADDRESS
+SYSTM] ATTACH TO RUDS INTERRUPT SYSTEM
«IDEF
JMP @ 3 } ERRUR RETUYRN
JMP 1 3 7] NURMAL RETUKN

?} DETACH THE INTERRUPT SERVICING <OUTINE

’ (LYY XY X R Y XN N KX X K X N K K R K L R K X B R L A J B B B X J

CALLING SEQUENCE?
JSR AICLR
<NORMAL RETURN>

- we

-

AICLR: STA 3 USP] SAVE KETURN ADDRESS
LDA 2 DCODE
+SYSTM] DETACH FROM RDUS INTERRUPR
« IRMV
JMP 2 3
JMP 2 3 7 NORMAL RETURN

3-13

01
02
Q3
24
@5
06
e7
o8
09
10
i1
12
13
14
15
16
17
18
{9
20
21
22
23
R4
5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4
41
42
43
44
45
46
47

LICENSED MATERIAL = PROPEKRTY OF DATA GENERAL COKPORATION
1803 ALDEV

0401028745
00411101004
00421001400
P00V43'050742
000441821003
000451040743
d0046te21901
0004a7'040737
evusu'n2ia02
p0051'040736
pees2ti02000
PeRS3'p4slove
PP054'9v22732
P0055'e61121
ped56'aB1401

ageas7'e21000
006V '101004
P00V61'¢a1400
vees2'enidel

} ANALOG READ RANDOM SUBROUTINE

' --..-.--------.--.-----------

3 INPUT:

-

AC23CONTRUL TABLE ADDRESS

CALLING SEUENCES
JSR AJIRDR
<ERROKR RETURN>) HANDLER ALREADY ACTIVE
<NORMAL RETURN>

AIRDR: LDA

@ ACT1V } PICKUP STATUS FLAG
MOV @ @ SZR) CHECK IV
JMP 2 3 } ALREAUY ACTIVE==ERROR RETURN
STA 2 ACTIV } SAVE CONTKUL BLUCK ADDRESS
LDA B NPT 2 ! GET & POINTS TO BE READ
STA © DYCNT] SAVE AS DATA COUNT
LDA @ ATPTR 2 } GET STARTING ADDRESS OF PUINT ADDRESSE
STA @ DAPTR } SAVE POINT ADDRESS TABLE
LDA @ VIPTR 2] GET VALUE STORAGE TABLE ADDRESS
STA @ DVPTIR } SAVE FOR STURING VALUES
ADC @ @ !} SET REQUEST ACTIVE STATUS
STA @ STAT 2
LDA @ @DAPTR J GET FIRST PUINT ADODKESS
DOAS @ ADCV) START UP CONVERSION
JMP 1 3 7 TAKE NORMAL RETURN

} ANALOG INPUT READ REQUEST CHECK SUBROUTINE

’ ----------.--.----------------------.-----

i INPUT?

! AC2sCONTROL TABLE ADDRESS

?} CALLING SEGUENCES

! JSR AICKK

! <BUSY RETURN>

! <COMPLETED RETURN>

AICHK: LDA @ STAT 2 ! GET CALL STATUS
MOV 2 @ SIR ‘
JMP 2 3 } REQUEST BEING PROCESSED
JMP 1 3)} CaLL COMPLETED

3-14

LICENSED MATERIAL = PROPEKTY OF

{0024 AIDEV

a4
22
23
24
25
@7
es
29
1@
1
12
13
14
id
16
17
18
19
20
21
22
23
24
25

-

00063'062621
00R64'042723
00P651214723
00e66'000403

! ANALDG TO DIGITAL CONVERTER INTERRUPT ROUTINE

*nDLIY
AN W}

- we “we

AINTS?

Q00671122440

2087081042713
00B71'040714
0RB72'001400

00073'210713
2007411410713
00075022711
aeo7e6'ae6112!}

AIMORES

B00B77'001404

ACTIV
ADDCY
AICHK
AICLR
AIDEF
AIMOR
AINTS
AIRDR
AISAV
" DAPTR
DCODE
DTCNTY
DVPTR
usocT

AC2=DCT ADDRESS

ACISINTERKUPT DISMISSAL RUUTINE ADDRESS

DICC v ADCV
STA @ SDVPTK
DSZ DTCNT
JMP AIMORE
SuB @ @

STA @ #aCT1Iv
STA @ ACTIV
JMP @ 3

152 DAPIR
ISZ DVPIR
LDA @ eDAPTR
DOAS @ ADCV

JMP B 3

+END

e We W WP WP we W N

-e we

- we Wy

DATA GENERAL COKPORATIUN

READ vALUE==CLEAR CONVERTER
SAVE NEWLY KEAD DATA vapUL

DECREMENT DATA COUNTER

MORE TO COMe

REQUEST COMPLETE

SET

USER UONE FLAG
SET CONVERTER NUN=BUSY
DISMISS THE INTERRUPT

INCREMENT ADDRESS POINTER

" DATA TABLE POINTER
SETUP NEXT CONVERSION

START IT

DISMISS THE INTERRUPT

LICENSED MATERIAL = PROPEKTY OF DATA GENERAL CORPORATION
Q825 AIDEV

P00005!
oraena!
Qvees57!
Quop3e!
poe21!
Peep73!
QVou63!
Quvouvdan!
eventLy!
e00Q06!
PB0BR4!
Audv10!
oeoenz!
guoo0y!

EN
EN
EN

EN

1/25%
1715
1/08
1/08
1/e8
4713
1719
1/08
1717
1/26
1/24
1/28
127
17195

2712
2/14
3/744
2/29
2/1¢
a/19
4/10
37158
1/3v
3722
2/13
3/20
3724
1717

3-15

371495 /18
3s27 4/19
e/3u
4s712
4/11 4/20

4/15

4/21

4/10

DUNE FL

Licensed Material - Property of Data General Corporation

External Interrupt Recognition

This driver program illustrates an interrupt servicing routine which readies a
user task as a result of an external interrupt. This program illustrates a type
4066 digital interface device driver.

Page 1 of the listing is almost identical in form to the first page of the A/D driver
listing discussed earlier. The only difference is in the variables and storage
required by the digital interface. Here, the user must supply the address of a
communications core location., When a call is made to attach the interrupt routine.
address to the RDOS dispatch table (page 2 of the listing), ACO must contain the
communications core address. After attaching the interrupt to the RDOS dispatch
vector table, the initialization routine arms the digital interface so that is can
cause an interrupt.

When the external interrupt occurs, control is dispatched to the digital interface
servicing routine, starting on line 38 of page 2. After the service routine gains
control, -it reads a sixteen bit digital register provided by the interface. If the
register's contents are non-zero, the contents are transmitted to a user task using
the task call . IXMT; after this, the interrupt is dismissed. If the register's
contents is zero, the interrupt is simply dismissed. Upon dismissal of the
interrupt, the system re-arms the digital interface interrupts.

A practical example of the use of such a scheme would be the servicing of an
operator's console. Such a console would generate an .external interrupt indicating
that the operator desires some form of action by the computer; the sixteen bit
register contents (selected by the console operator) would indicate exactly the type
of action desired.

3-16

LICENSED MATERIAL = PROPERTY OF DATA GENEWAL CORPURATION

@021 DIDEV MACRO REV @2 w1s11392 12/08/73
21
02
23 } DIGITAL INTERFACE (TYPE 4066) NDEVICE DRIVER
04 ’ -Qp.,.--.---..-----------’.--.--.-------.-.
05 ' ...----.--_-’--------.------------.---------
26
«TITL DIDEV
28
@9 +ENT DIDEF,DICLR
10
11 JEXTN ,IXMT
12
13 JNREL
14
15 000042 ,DUSR DI0O=42) DEVICE CODE ODEFINITION
16
17) DEVICE CONTROL TABLE LAYOUT
15 , LA 31 A XY R XY X R X N XX X 8 K & 2 B 2 J
{9
20 20000'902Q0W1'DIDCY: USDCT) ADDRESS GF DIO OCT
a1
22 02001'220004'USDCT: DISAVE ? INTERRUPT STATE SAvVet ARcA
23 Q0pp2'oep4en 187) INTERRUF® MASK
24 00003'000036! DINTS] INTERRUPT ROUTINE ADDRESS
25
26 ? ADDITIONAL VAKIABLES AND STURAGE USELC BRY HANDLER
27 ’ LA X 3 KX 2 8 X 2 X 0 RN X ENN N KX X N XX K E.E XX X X R R K X _N-K X K N N A B R 2 N _J
28
29 00004'000212 DISAVES ,BLK 1@ } STATE SAVE AREA
30 P0A14'000242 DCODES D10) DEVICE CODE
3} 00015'00000e DICOM: @ ! COMMUNICATIONS ADDRESS

3-17

21
02
23
24
es
26
e7
08
Q9

LICENSED MATERIAL = PROPERTY OF DATA GENERAL COKPORATION
|v@p2 DIDEV

A00161084016
00017'040776
eR20'020774
pee2119024757
o0v22'va6n1?
e0p23'v21007
pRv24tyel4aoa
peo23'060142
00026'00140}

0B027'954216
PRR3n'a60242
20031'020763
e0032'tve6017
epB33'a21010
00034'401400
000351001400

? INITIALIZE THE DIGITAL INTERFACE

' GO PRGNSR EEEE DS ® W N

? INPUTS ACOSMESSAGE ADDRESS

} CALLING SEGUENCE?
! JSR DIDEF
) <ERROR RETURN> J DEVICE CODE (DIU) ALREADY IN USE
) <NORMAL RETURN>
DIDEFt STA 3 USP
STA @ DICOM } SAVE COMMUNICATIONS ADDRESS
LDA 2 DCODE
LDA 1 DIDCTY
W SYSTHM 7] ATTACH TO RDUS INTERRUPT SYSTEM
o IDEF
JMP @ 3] ERROR RETURN
NIOGS DIO ! ARM THE EXTERNAL INTERRUPY
JMP 1 3)} NURMAL RETURN

} DETACH THE INTERRUPT SERVICING WOUTINE & CLEAR DEVICE

! ...----"----.-----U----.-.--------.-.------.--.----.

$} CALLING SEGUENCES
! JSR DICLR
) <NORMAL RETURN>

DICLR: STA 3 USP
NIGC DIO } CLEAR DIO DEVICE
LDA @ DCODE
»SYSTH) DETACH HANDLER
o IRMV
JWP @ 3 } NORMAL RETURN
JHP @ 3 ' i 1

3-18

38
39
40
41
42
43
44
45
46
47
48
49
30
51
52
53
54
35
36
57
38
59

P2036'864542
60B37 1125045

2040021400

0Pvd1'954412
P0Q42'a50410
00043'{0240¢
Q00441042751
0004d' 20754
20B46'1777277
A0R47'000401
Q0o50'23ndn2
Q00511002402

20052'92000@ SaVE2:
Q0853'9RY0ALd DISMISS:

DCODE
DICLR
DICOM
pIpCTY
DIDEF
DINTS
" DISav
DISMI
SAVER
USDCTY
W IXMT

TOACMEER MATEC
bYW L L

- PROAPELTY
Ll sl S R SR A O B

3

0
S

DATA G

EnNERAL CORPORATION

s
=

} DIGITAL INTERPACE EXTERNAL INTERRUPT HMANDLER

' [T F L T R P LR XY XY PEEEYREREE LR R & K2 L R A KL 2 & &4

P INPUT?

DINTS:

eReel 4!
pooe27!
PVaeLs!
Qvaeen!
PoRai6!
220036
Quevea4!
60RY53!
0uBeBS2!
Queeol!
buRuv4s!

EN

XN

AC28DCT ADDRESS
ACIBINTERRUPT DISMISSAL ADDRESS

DIAS 1 LIO
MMy !‘ SNR

DUV 4
JMP 3

[

STA 3
STA 2 SAVEZ
he

@ eDICOM

DICOM

sus
§TA
Lhba @
I XMT
JMP .+

LDA 2 SAVER2
JMP BLISM]ISS

DISMISS

4

]

eEND

ATERIAL = PROPER
1/30 2/14
1/09 2/29
1/31 2/13
1/2¢ 2/15
1/09 2/12
1/24 2/44
1/22 1/29
2/48 2/56
2/49 2/55
1/2¢ 1/22
1/11 2/53

3-19

e .
T our

READ 16 BIT REGISTER

VALUE ZERU 7

YeSe={(ISMISS INTERRUPT

NO==SAVE DISMISSAL ROUTINE ADDRESS
SAVE ACZ ALSQ

CLEAR SIGNAL ADUDRESS

GET SIGNAL ADURESS
wWhKE UP USER TASK

RESTOKRE AC2
DISMISS THE INTERRUPT

TEMPURARY STURAGE FUR AC2
INTERRUPT DISMISSAL ADDRESS

(Y g

DATA GENERAL COKPURATION

2/31

2/51 2752

2/53
2/548

Licensed Material - Property of Data General Corporation

Multiprocessor Communications Adapter

RDOS 03 extends system support to option 4038, the multiprocessor communications
adapter (MCA). Nonetheless, the MCA can be treated as a user defined device.

The following program illustrates such an MCA driver and illustrates the . STMAP
call which is required when running data channel devices in the user area on a
mapped system.

Page 1 of the listing illustrates the MCA receiver and transmitter DCT's, RUSDCT
and TUSDCT. These DCT's are standard user DCT's; note that bit zero is set to
one. This is required when the devices are identified to the system in subroutine
MIDEF, since they are data channel devices used in a mapped system.

The MCA handler must be initialized before use, and this is done by a user call to
MIDEF illustrated on page 5 of the listing. This routine identifies both the trans-
mitter and receiver to the system and defines the number of 1024y word blocks
which will be required for data channel transfers (two blocks each for transmissions
and receptions). Additionally, this routine converts the logical buffer addresses,
input to the initialization call, to physical addresses required for data channel
transfers in mapped machines (lines 34-43). That is, whenever a user program sets
aside a series of logical locations as a data channel buffer, .STMAP returns the
actual address assignments made by the mapping unit. All addresses in mapped
user programs are logical, since the user program is unaware of the actual
locations assigned by the hardware; the actual address assignements, however,
must be sent to data channel devices. Beyond sending these addresses to the data
channel devices, the user program need not be concerned with the actual address
assignments.

Since MIDEF identifies the MCA units to the system only once, MIDEF can be
invoked by the user whenever different read/write buffers are to be used.

The read and write subroutines proper are found on listing pages 2 and 3. Each of
these routines first checks to see if the device is busy; if so, the error return is
taken. Otherwise, each routine outputs the word count and logical starting address
to its device, and the transmit routine also outputs the receiver number to the
transmitter. Then each routine waits, via a call to .REC, until its associated
interrupt processor (page 4 of the listing) readies it via an interrupt message call,
.IXMT, indicating that the process is complete. The read/write routine then
resets its busy flag and takes the call's normal return.

3-20

21
42
@
Da
a5
Wo
ez

0y
16
11
12
19
14
1 K]
io
17
18
19
2¢
21
2¢
29
24
25
20
27
28
24y
Y]
31
d¢
33
J4
35

LICENSED MATERIAL
WAR1 MCAUR MACRO REV ue

veude'leapue!
el 1aues!

Vv 'vapal 2!
bReBI'vBuRL1R
4wty

vAuned'vaal2!
bhvao'wanvla
A7 'avdlies!

wewia'lvaunae?
eedlil''vovave
waevl12'vludin

e wa we

«TITLE MCADK H

«ENT MCARD MCAWT MIDEF

Y TN TYMT .
CTAN »AMY

wEr
Fenntw

«NREL

DEVICe CONTKROL TABLE LAYOUT

= PROPERTY OF DATA GENERAL CORPURATION
13212224 12/18/73

MULTIPROCESSOR COMMUNICATIONS AUAPTER (TYPE 4v38)

MCA DRIVER

MRDCT: 1s@+RUSOCT i AUDKESS OF MCA RECEIVER DCT
MTOCT: 1BB+TUSDCT i AUDRESS OF MCA TRANSMITTER |
RUSOCT: MSAVE ! INTeRRUPT STATE SAVE ARLA

1812 7 MASK WOKD

RINTS i INTERKRUPT ROUTINE ADDRESS
TUSUCT: MSAVE i INTERKUPT STATE Savk AREA

iple } MASK WORD

TINTS 7 INTERRUPT RUUTINE ALDKESS

-e we

ADDITIONAL VARTABLES FUR MCA URIVER

ReCEIVEK UEVICE CUDE

DEVICE CODE

RCOUVE: MCAR ;
TCOLE: MCAT 7 TRANSMITTER
MSAVE: ,BLk 10 7 STATE SAVE ARLA

3-21

LICENSED MATERIAL = PROPERTY OF
1d@v2 MCALR

DATA GFNERAL CORPURATION

41

ne 7 MCA RtAD SUBRUUTINE

A3 | Temsscssrnscscsesenn

da

)3} 7 INPUT S

we H ACAsWUORD COUNT

a7

Yo ? CALLING StQUENCES=

w9 ; JSR MCARD

1 H <cRROR RETIIRN> ; HANDLER ALREADY ACTIVE

11 ; <NORMAL RETURN>®

1¢

18 7 OUTPUT =

14 H AC1aMCA STATUS w«0ORD

1>

1o VNe22'0u3va2a MCARD: LDA 2 RBUSY ; PICKUP STATUS FLAD

17 vou23'1510v4 MOV 2 2 SIR 7 CHECK TT

1¢ wvuw24'pRuvd22 JMP RERTN 7 NDEVICE BUSY

1y kRv29'wiuvdlh I1SZ7 RBUSY i ST ROUUTINE BuSY

20 WPw2b'ubdudle STA 2 RSIGL+Y 7 RESET DUNE SISGNAL

21 way27'vdady2 STA 3 RRTN 5 SAVE RETURN AUDRESS

22 wAnda'tube2ve? D08 ¥ MCAR $ ScND wOKD COUNT TO RECEIVER

29 pviudl'tp24414 LDA 1 RADDR ; PICK UP LUGLICAL STARTING ADODRESS
24 vnude'ubdlu? LOAS 1 MCAR 7 SEND STARTING ADDRESS

25 pudds'v2ndld LOA ¥ RSIGL ! WAIT FOR uPERATION COMPLETE FLAG
26 whwd4ly77777 «REL

27 v dHn!'1n24un Sy 2 ¥

26 Bundotvudavdvd STA @ RBUSY ! RESET RECEIVER BUSY FLAG

29 vided7'vludu? 1SZ RRTN

3Y vrndu'luiacdul JMP OrRTN ;i TAaKE NOxkMAL RpTURN

31

32 sl 'vnvdeid RRKTNS]

33 vkgd2'vnuinipl RplSY: i

34

35 BPEd4d3TnAVABA'REIGL: L+

36 BPwdd'pynpAng oBLK 1

37

3y Vhead'vdvibied RAULURST W § RECEIVFR BUFFER LUGICAL BALDKRESS
3y 3 AS DEFPINED BY ,STMAP SYSTEM CALL
4y ; DURING DEVICE INITIALIZATION ,
41

42 pundd'a3r4p2 RERTNG LDA 2 RLVHBSY 7 DEVICE ALKEADY BUSY

49 wrud7'yRl14un JMP @ 3 ; PROCESSING A PREVIOUS CALL

44

45 vuybu'aneAa7 RUOVEBSYS ERSIM ; SIMULTANEGUS wEADS UR WKITES nNOT ALLOW

3-22

LICENSED MATERIAL = PKROPERTY UF DATA GENERAL CORPURATION
lenpd MLADR

bl

be } MCA WRITE SUBROUTINE

a3 HEECE EE T T o e R T TS

ha

vs ;7 INPUT:=

e H ACAsW{RD COUNT

a7 H AC1=RECRIVER NUMBER In BIT1S =3 (1=17(8))

'd.]

29 i CALLING SEQUEWCEL:=

le : JSR MCAwT

11 H SERROK RETUKRN>

1e¢ ; <NORMAL RETURN>

13

14 i OUTPUT =

15 H ACI=MCA STATUS wORD FUR TRANSMITTER

10

17 aRad1'¢030423 MCAWT: LDA 2 TBUSY 7 PICRUP STATUS FLAL

16 brvs52'151004 MOV 2 2 SZR ; CHECK I7

19 vrud3'vww?73 JMP TERTN 7 ALREALY ACTIVE = LRROR RETURN
2¢ vhudalinlndce 18Z TwUSY ? INDICATE VEVICE IS BUSY

21 vhodn'vdadq23 STA 1 RECDV i SAVE KRECEIVER NUMBEK

2¢ vuSbluhuded STA 2 TSIulL+t i RESET TRANSMITTER DUNE STIuNAL
23 viAvdH/7'pSadia STA 3 TwrIN i Save wETUKN AUDKRESS

24 uWbY'VH62006 DYB @ MCAT .

25 YRAvb1'y24416 LUuA 1 TADUR ? PICKUP LOGTICAL STARTING ADDKRESS
206 vRL62'VWEDYNE Doa 1 MCAY

27 VWL I'BIR4LLH LUA 2 ReCDV

28 rvbha'u7d1v6 Vacs ¢ MCAT

25 Lub5'a2vd1d LDA w.TsIuL 7 WAll FOR UPERATION COMPLETE
Jig vAVBO 'RV IA! «REL

31 veve7'122464 SuB @ @

32 Bru74a'ndpana STA @ TBUSY ! RESET TRANSMITTER BUSY FLAG
33 “WuZi'vivdy? 182 TKTN

34 vvu7le'vAcdal JMP &TRTN 7 TAXE NOKMAL RETURN TO USER

35

36 Veu738'vAvddY TRTIN i)

37 vva74'vdudv] ToUSY: 1

kY.

39 BBe72'GAeAZ61TSTIGLY L+1

40 Ahvn76'nrviring LK]

41

42 VW77 '00e0ia® TADOR: @ ;7 TRANSMITTER BUFFER LLOGICAL ADDRESS
40 ¢ AS DEFINEUL BY ,STMAP SYSTEM CALL
44 ? DURINGLG DEVICE INITIALIZATION ,
45

45 WOURAB'TERTNE RERTN ; TRANSMITTER BUSY ERROR KETURN

47

48

49 ¢l tvdanvit RECOVE @4 ? RECEIVEKR UEVICE NUMBEK

LICeNSED MATENTAL

lvevd MUAUR

21
Ve
ne
nda
"5
ne
h7
vib
nYy
lu
11
12
14
14
15
16
17
18
19
2y
21
2e

[
’
.
’

vlal'vbobd?7 RINTS:
wa1A2'v2a74]
va1nst'177777
vVl1idd'vRidub
¢A10 ' yniddud

velno'cbobn6 TINTSS
Lela7'226706
vdllu'tynelind!
eAl111'vdran
gnll12'vdediu? DISMISS:
w113t ebr2an?

wolla'vdenud DSCYE:

WICC 1 MCAR
LUA v RSIuL
s IXMT

JMP DISM]ISS
JMP DISMISS

DICC 1 MCAT

LOA & TSTwLL

o« 1 XMT

JMP L+

LOA 2 DUSCDE
MNIOEL MAP

0

3-24

- PROFERTY UF DATA GENERAL CORPURATION

MCA RECEIVER INTERRUPT PRUCESSOK

CLEAR RECEIVER/READ STATUS
GeET SIGNAL ADURESS

MCA TRANSMITTER INTERRUPT PROCESSUR

CLEAR TRANSMITTER/READ STATUS
GET SIGNAL ADDRESS

GEY DISMISS CuDt
TRIGGER TrmE MMPU

CODE FOr DISMISSING THE INTERKUPT
UNDER A NUVA B84y SYSTEM

41
0e
23
04
ik]
po
a7
as
a9
10
i1
1e
13
14
15
i6
37
186
19
20
21
2¢
20
24
25
26
27
2b
2y
3¢
31
32
do
34
35
R])
37
38
36
4y
a1
4z
43
44
45
40
4)
48
ag
56
51
5«
53

LICENSED MATERIAL = PROPERTY OF DATA GENERAL LOKPURATION
{B0US MCAUR

bU115'0544437
valie'nan724
BA117'044755
U120 'vivdds
vn121'vinvdl 4
0B122'¢021606
WR1231424605
0wn124'9304052
we125tvnobul7
vwel120'u2ive7
VRA127 'vngazs
WA13v'v2ub61
6buldl'y2465¢
urnide'vnoinyz
1391921007
kr1ddatynzazy
bvl135'y54420
Pn1361vu218652
wlid4'ynrony7
@141 'v218435
vpldz2'vingd)12
wl49'vd44a792
wnid44'u2v645
vl1460'p24727
wnl1de'puvonly7
wR147'p21005
whldn'tvunedea
Wa151'v44726
WAL1d2'vlvdun?
w13t aRedat

w154 dypuaai

walso'177777
BAlse 'Ry 2

7 INITIALLIZE THE MCaA HANDLER

’ TR S S SR R A P TP D G D B S R S NN AD T TR AN SR TR W W

? OIanPUT =
; ACO=STARTING CORE
; AC1=STARTING CORE

CALLING SEQUENCE:=
JSR MIDEF
<ERROR RETUKN>
SNORMAL RETURWN>

—e wa wa we

MIDEF: STA 3 MIRTN
STA @& RBULSY
STA | TBUSY
187 MCATV
JMP MACTV
LA B RCOUE
LDA | MRDCT
LDA 2 C2
«SYSTHM
« IDEF
JMP 6MIRTN
LDA » TCUDE
LUA § MTLLCT
e SYSTM
o IDEF
JMP SMINKTN

MACTV: STA 3 MCATV
LUA b RCOULE
LDA 1 RHUSY
«3YSTM
e STMAP
JMP #MIRTN
STA { RaADUR
LDA & TCout
LUA 1 ToUSY
e OYSTM
e STMAP
JMP OMIKRTN
STA 1 TabuR
ISZ MIRTN
JMP SMIRTN

. we ws ws W .- W4 Wy W . W8 we WS wa we -a we

we wa wme wn we

-e we

-e

MIRTN: @ i

MCATV: =} i

Ce: 2 i
W END

3-25

AUDRESS Or KECEIVER BUFFER
ADDKRESS OF TRANSMITTER BUFFER

SAVE KETURN ADDRESS
SAVE USER BUFFER ADODRESSES

DEVICE ALKEADY [NTRODUCED TU SYSTEM?
YeS, JUST GET LUGICAL ADUKESSES
RECEIVER DEVICE CuDE

RECEIVEKR DEVICE CUNTROL TARLF

NUMBEKR UF i1K BLOUCKS

DEFINE UEVICE TO SYSTEM

TAKE ERROKR RETURN

TRANSMITTER DEVICE COULE
TRANSMITTER DEVICE CONTROL TABLE
DEFINE DEVICE TU SYSTEM

TAKE ERROR RETURN

SeT ACTIVE FLAG

GET DEVICE COUE

USER BUFFER ADDRESS

GET LOGICAL ADDRESS OF BUFFER

TAKE ERROR RETURN

SAVE LOGICAL ADURESS

DEVICE COUE

GET BUFFER ADURESS

GET LOGICAL ADDRESS OF USER BUFFER

TAKE ERROR KRETURN
SAVE LOGICAL ADDRESS UF TRANSMITTER ¢

NURMAL RETURN

RETURN ADURESS

MCA DEVICE ACTIVE FIAG
NUMBER OF 1024 wWOKRD BLOCKS FOR MCA

LICENSED MATERIAL = PROPERYY

boob MCADK

Ce

DISMI
DSCULE
MAaCTyV
MCARD
MCATYV
MCAWTY
MIDEF
MIRTN

MRDCT
MSAVE
MTDCTY
RADLR
RBUSY
RCODE
RuvpS
RECDV
RERTN
RINTS
RRTN
RSIGL
RUSDC
TADDR
TBUSY
TLOLE
TERTN
TINTS
TkTIN
TSIGL
TusDC
eI XMT
«REC

neol1de!
noayte!
Aueltla!
noYl13n!
Jveu2e!
nuRLen!
BovuSl!
agel11d!
naB154!

Wynvidu!
nuaate!
Qunnal!
gyevas!
apanaz!
aegole!
wpidsSe!
du2ine!
nvevas!
aueiny!
Avnayal!
Bavy 4!
ndawnne!
Az
hadaza!
donvtl!
Adiovian!
npuaine!
brng7s!
Aduzs!
AvAyns!
nuelte!
Avrubo!

EN

EN
EN

XN
XN

Sr22
4/08
4718
5719
1/10
5/18
1719
1710
5715
5/47
1719
/22
172
2/23
2/16
1733
2/42
drs21
2/18
1/24
2/21%
2/2¢
1719
3725
3/17
1734
3719
1/28
3723
3s22
1/2¢4
1712
1712

5/561
a/¢9
4721
5731
2/16
5731
3717
5715
5725

5s21%
1/26
bre7
2738
2/19
5/29
2745
3/27
2/42
4/05
2/29
2/25
1722
3/42
3720
5/26
3740
4/14
3733
3729
1/206
4,47
2/20

4/10

5/5u

5/3u

1735
5/37
2/28
8732

J/49
3/40

2/3¢
2735

5743

3732
5/38

3734
3734

4/106
3739

s g ke ok

3-26

5/36

2/33

2/32
4/006

3736
4/19

5742

5710

5717

OF NDATA GLENEKAL CORPURATION

5/744

5734

5739

5745

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments, Reference page numbers when

applicable. Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication.

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

--.—-—..--—-_-—_--—-------—---—-----—--------—-------------—-------------—-------------------------

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by:
Datua General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

DATA GENERAL
CORPORATION
Southboro,

Massachusetts 01772
(617) 485-9100

	0001
	0002
	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	replyA
	replyB
	xBack

