DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

INTRODUCTION

TO THE

REAL TIME DISK OPERATING SYSTEM

ABSTRACT

This document provides an introduction to the

DGC Real Time Disk Operating System (RDOS).

It also contains a basic description of the con-
cepts and terms found in other documentation
describing the use and structure of RDOS.

Copyright (¢) Data General Corporation, 1972
All Rights Reserved

093-000083-02

This revision of the Introduction to the Real Time Disk Operating System,
093-000083-02, is a major revision and supersedes manual number
093-000083-01. For a description of changes made in this revision, see
the list of changes at the end of this manual.

TABLE OF CONTENTS

An Introduction to RDOS
RDOS Organization ,....
System Generation

Foreground - Background Programming . ..

© 6 6 s 0 0 6 s 5 0 0 0 8 o e

® o o o 0 0 8 0 o

e & & ¢ & ¢ @ o © @ & ¢ ° 3 8 o

e o o s 2 o o

Foreground - Background with Memory Protection . .
Dual-Processor and Shared-Disk Systems

Communication with RDOS ..

Command Line Interpreter (CLI) .

Program Swaps and Chains .

Task States and Priorities ..
Task Environments
Task Execution Control ...

User Program Segmentation . .
Tasks e -

® 6 0 0 0 0 s 0 o

e o o 6 2 ¢ 2 0 0 0

e & 0 0 0 0 s 0 0 o

Intertask Communication/Synchronization .

Task Timing Control
Real Time FORTRAN
System Calls
RDOS Input-Output Control . .
Input/Output Command Modes
System Input/Output Buffering
Spooling ...t vveeenoaas
Buffer Control Package
Disk File Organization
Disk File Structures

Disk File Input/Output Control

Interrupt Servicing Program .
User Interrupt Processing ..
Multiple Devices and Units . .
System Library
RDOS Supported Software ...

o ¢ o 0 s s 0 0 0

® o o 0 2 0 0 0 o

® ® o6 8 0 0 0 0 0

ooooo o o o
e o o o o o o o
s 0 0 e o o o o

e o o 0 0 0 0 o o

e o o ¢ 0 0 0 0 o

® o o6 0 0 0 o 0 o

ooooooo

® 0 o o 0 0 0 0 0 0 0
* o o e s o o o o
e o o o s 0 . o o
e s 2 2 2 2 2 2 2 2 2

AN INTRODUCTION TO RDOS

Data General's RDOS is a Real Time Disk Operating System. RDOS is real time
oriented since it can schedule and aliocate program control to many different
subprogram tasks to provide simultaneous disk operation, to maximize through-
put, and to insure efficiency and economy of operation.

Data General's RDOS resulted from the desire to provide a real time system that
had the capabilities of both the existing Disk Operating System (DOS) and the core-
only multi-tasking Real Time Operating System (RTOS), a compatible subset of
RDOS. Feedback from customers and potential users of the Nova family of com-
puters also indicated some additional features that would be desirable in a new
system.

A modern real time operating system must be geared to change and diversity. The
RDOS system itself can exist in an aimost uniimited variety of machine configur-
ations: different installations will typically have different configurations as well
as different applications. Moreover, the configuration and scope of the project

at a given installation may frequently change. We see that the operating system
must cope with an unprecedented number of environments. All of this puts a
premium on the system modularity and flexibility which has been designed into
RDOS.

To obtain the full capabilities of the Real Time Disk Operating System, the user
only requires a Nova computer with 12K words or core memory, a real time

clock, console Teletype, and a disk. In addition to this minimum machine
configuration, RDOS supports additional core storage (in excess of 65K words), 2
million words of fixed head disk, four disk cartridges or pack drives, eight
magnetic tape transports (7 and/or 9 track), card readers, line printers, commun-

ication equipment, analog and digital front end equipment.
Some of the major features of RDOS are:

. Operating system not completely core resident
. Modular multi-task monitor

. Multiple user overlay areas

. 256 software levels of task priority

. Spooling (disk buffering) of output

. Flexible disk file structures

. Buffered and non-buffered I/0O

. Support for Real Time Fortran IV

. Hardware protected foreground/background programs

The modular structure of the RDOS multi-task monitor permits it to be tailored
by the user at program load time to include only those real time features which he
currently needs, This tailoring promotes more efficient core utilization for each
single or multi-task user program supported by RDOS.

N

USER
ADDRESS ﬁ

SPACE

RDOS

r“=r

Core
Resident
RDOS

Disk Resident
RDOS

free
area

Task Processing
Modules

Overlay Area

User

Program

Overlay Directory

User File Tables

User Status Table

User
Page
Zero

RDOS Communication Area

Core

RDOS

TN
N

Directories
RDOS Overlays
User Programs
Data Files
User Overlays

QOrganization

2

RDOS ORGANIZATION

The RDOS executive constitutes the main framework of the operating system, and
must be resident in permanent core storage before any continuous and coordinated
processing can take place. Functions performed by this resident portion of RDOS
include interrupt processing, overlay and buffer management, system call
processing and the device interrupt servicing routines. Other modules of the
system are brought into core from disk storage as they are required to perform
specific functions such as full or partial system initializations, file maintenance
operations like opening, closing, renaming, or deleting a file and spooling control.

The RDOS system occupies two areas in memory. The lowest 16g memory loca-
tions are used for entry points (interrupt and program) into the second area
located at the top of memory. The lowest address used by this second module is
defined as one greater than the highest user memory address available (HMA).
The value of HMA is determined by system generation and is a function of the
user's application and system hardware configuration.

‘The portion of page zero memory available for user programming begins at loca-
tion 16 (labeled USP), and extends through location 377, USP is a special location
preserved by RDOS whenever program control goes from one task to another.

There is one User Status Table for each program level. This table extends from
400 octal through 427 and contains information describing the user program such
as its length, and the number of tasks and active I/O channels that the program
specifies. Above the UST are individual User File Tables, one for each channel
in the user program. The UST contains the name of the file associated with the
channel and the file attributes.

Above the last User File Table is an area reserved for the pool of TCBs. This pool
contains both the active and the inactive TCB chain. If the user overlays are called
in the program, an overlay directory will be found above the TCB pool. Above

the overlay directory lies the user program.

After loading the user program, the relocatable loader will load all modules
referenced by the user program. These modules will be extracted from libraries
like the System Library. By default, System Library modules will be the last to be
loaded, after the user program and overlay areas. In this group will be the Task
Scheduler and other task monitor modules.

SYSGEN
CORE STORAGE (IN THOUSANDS OF WORDS) 28
ENTER NUMBER OF STACKS (1-5) 5
RESPOND '"1'" (YES) OR "@'" (NO) REGARDING SYSTEM CONFIGURATION
RTC? 1
ENTER RTC FREQ (1=10HZ,2=100PHZ,3=100QHZ) 1
DSK? 1
ENTER DISK STORAGE (IN THOUSANDS OF WORDS) 256
DKP? 1
ENTER NUMBER OF DEVICEW 2
ENTER NUMBER OF SECTORS/TRACK 12
ENTER NUMBER OF HEADS 2
ENTER MASTER DEVICE DSK
ENTER BOOTSTRAP DEVICE DSK
MTA? 1
ENTER NUMBER OF DEVICES 2
PTR? 1
ENTER NUMBER OF DEVICES 1
PTP? 1
ENTER NUMBER OF DEVICES 1
LPT? 1
ENTER COLUMN SIZE 80
ENTER NUMBER OF DEVICES 1
CDR? 1
PLT? 1
eTY? @
SECOND TTY? 1

System Generation

SENERATION

In real time operating systems, individual user installation requirements may vary
from installation either in the hardware itself or in dissimilarities inherent in the
application. These differences may take the form of different applications, differ-
ent configurations of standard hardware, special process input/output hardware,
core storage sizes, system throughput and priority considerations.

This means that each installation must be tailored to the specific system function
requirements and input/output configuration of that installation. The tailoring
function is defined as system generation (SYSGEN). SYSGEN provides facilities
for the creation of a monitor system composed of DGC and user written programs
and subroutines. The end product of system generation is a disk resident oper-
ating system which is custom built to provide an efficient executive system for

a specific machine environment,

In the DGC Real Time Disk Operating System, the builder of the tailored operating
system is an executable program that can operate on any RDOS configuration.
SYSGEN permits a system to be constructed for one or more fixed head disks, disk
cartridges, or disk packs from relocatable program modules stored in library files.
Furthermore, the user installation may modify the DGC - supplied configuration,
deleting those functions not required by the installation and adding installation-
created functions and programs.

The modular design and availability of numerous features and attachable units
make possible multiple RDOS configurations tailored to individual application
requirements.

‘To assist users in generating their initial system, a standardized starter system
called a BOOTSTRAP system is provided with each customer installation, and
contains the basic elements essential for system generation in a form that will
be directly usable by a majority of customers. It is designed to support a minimum
hardware configuration:

Nova Computer

12K words of memory
Console Teletype

Fixed or moving head disk

When they are available, it will take advantage of additional devices such as:

Paper tape reader
Paper tape punch
Line printer
Magnetic tape

-

A

free area

CLI

free area

CLI

Fd 2.

STEP 1

L L

> NREL

ZREL

N

7 7 N\ P 7
RDOS /RDO
/f L / / _ls
free area
free area
User Foreground > NREL
TT TS T mo T T User Background
CLI
~
User Foreground free area
e e m m = e —— = ZREL e e e e e
CLI User Background
2 v4 Z 2 Z yd £ 2 Z. 4
STEP 2 STEP 2
7 7/
/.7os” /)
ya wa
free area
$ NREL
User Foreground
User Background _
User Foreground
e e e ZREL
User Background
L Z . ra w4
STEP 3

Loading Foreground and Background Programs

\.

> NREL

ZREL

FOREGROUND - BACKGROUND PROGRAMMING

In most current computer installations, real time control and program development

unctions are nerformed epnnpnfially. That is program development must be com-~

LI LAVAS QLT pPraaliith Syt xSl 1Oy Ciil VO VO IUPLLITLIL LlIUoL MO VUL

pleted before any real time program may be run, Moreover, once a real time pro-
gram is run, no other programs can be run concurrently even though the real time
program itself requires only a fraction of available system resources at any given
moment.

To increase system utilization, RDOS permits multiprogramming. Multiprogramming
permits unrelated collections of tasks to be performed concurrently, sharing basic
system resources. Thus the total system is kept as productive as possible continuously.
Two separate programs may be run under the RDOS multiprogramming system: a fore-
ground and a background program. Priority for CPU processing time between these two
programs is based on a multi-level software/hardware interrupt hierarchy controlled by
RDOS. All foreground program tasks have priority over all background tasks.

A typical foreground - background system might contain a real-time process control
program in the foreground area and an assembly, compilation, or payroll program at
different times in the background area.

Separating the foreground and background programs in core are software partitions
created during the relocatable loading of the two programs. There is both a page zero
(ZREL) partition and a normally relocatable (NREL) partition. Each indicates the
starting address of the foreground program area and is indicated by dashed lines in
the illustration on the preceding page. Programs may access common disk files, yet
disk file integrity remains the responsibility of the user.

The illustration on the preceding page outlines three steps taken to load and run a
foreground - background system. Step 1 illustrates a typical core map after a disk
bootstrap has been performed. The Command Line Interpreter alone is resident in
user address space.

In step 2, one of two procedures may be followed. First, the CLI may be used to

load a previously developed user foreground program by means of the EXFG command,
which loads a foreground program into memory and transfers control to it. However,
EXFG will load a foreground program only if it can coexist with the CLI. The fore-
ground partitions were set when the program was loaded by means of the relocatable
loader. Alternatively, the CLI may be used in step 2 to load another background pro-
gram, overwriting the CLI and pushing to a lower program level.

To make the transition from step 2 to step 3, a full foreground - background
environment, one of two procedures must be followed. Either the background program
must be loaded by means of the CLI, or the foreground program must be loaded via an

. EXFG system call issued from the background program. The CLI may be restored in
memory by having the user background program issue a .RTN . Similarly, the fore-
ground program may be terminated by issuing a .RTN . Both the foreground and back-
ground programs may be individually terminated by issuing a keyboard interrupt.

4K \\\
by b3
bg by
0 ,
N
Background \\\
Logical Address
Space
8K
fe £7
£4 £5
£2 £3
£ £
0 0 1
Foreground
Logical Address
Space

Logical to Physical

Address

Mapping

nk
f5 free
~7 -/
~ N
£ b,
fe bl
fq b3
free f3
f2 bo
£, fO
\
RDOS \ Fixed
Area
Physical
Address
Space

FOREGROUND/BACKGROUND WITH MEMORY PROTECTION

A memory mapping and protection device has been developed for the NOVA 800 series
computers which will be supported under the Real Time Disk Operating System.

This device extends the maximum core configuration for a single CPU from 32K to
128K, Within the framework of an executing program, two modes exist., The first
mode is the absolute mode. In this mode, only the lower 32K is directly address-
able and the mapping device is not used, RDOS resides in the low physical memory
locations and executes in the absolute mode.

The second mode is called the mapped or user mode. In this mode, up to thirty-two
102410 word biocks of memory are mapped using the device so to appear as a iogical
32K address space to the executing program. The foreground and background programs
execute in user mode and are not aware of their actual memory locations.

Any program operating in user mode uses a complete logical address space including
its private page zero and extending through its upper memory bound (NMAX), NMAX
is determined by the requirements of the individual program in 1024; word incre-
ments, and may extend as high as 32K. The operating system is responsible for
assigning free memory from its available pool to the user program prior to its exe-
cution. The technique used to manage the mapping device and the construction of the
user program in a logical address space is also the responsibility of RDOS.

While a user program is running, it may communicate with the operating system via
the standard RDOS . SYSTM commands (including those provided for managing user-
defined I/0 devices).

A user defined device may not utilize the data channel. The data channel is managed
via a second mapping device, and consequently its utilization must be allocated by the
operating system,

RDOS

FOREGROUND L.
Partitioned

Disk

BACKGROUND

Single Processor / Partitioned Disk System

Partitioned Disk

RDOS RDOS
FOREGROUND
FOREGROUND
ONLY
BACKGROUND

Dual Processor / Shared Disk System

MCA
RDOS RDOS

FOREGROUND FOREGROUND

BACKGROUND \ BACKGROUND

1/0 Bus Switch

Stand-by + Main
System A/D System
DIO
etc.

Parallel Main and Standby System

10

DUAL-PROCESSOR AND SHARED-DISK SYSTEMS

s continues to drop, many new application areas are devel-
oping for multi-processor systems. Such systems commonly consist of two CPUs which
share some or all of the system peripherals, thus lowering the total cost of the systems,
Multi-processor systems permit processors to communicate via disk files on a common
disk. Portions of disk space are also protected or partitioned to preserve each proc-
essor's disk file integrity. (Such disk file segmentation can also be useful in single-

processor systems.)

Ag the cost of am

Dual-processor systems contain a main system and a back-up system. The main system
controls or monitors some process or series of processes continuously. The back-up
system stands ready to assume the main system functions in the event of failure in the
main system. While in the standby state, the back-up system can be employed on lower
priority tasks such as data analysis, summary reporting, and the development of new
real-time programs. Both the main and the back-up systems can run under the Real
Time Disk Operating System, either in a foreground/background arrangement or as a
single real time program.

Some method of communicating information between the main and the back-up systems
must be continuously maintained. Often the means is a CPU interconnection link treated
as an I/O device, or a bulk storage medium such as a disk or tape that both CPUs can
access. The communication must be operated continuously or at some periodic rate
compatible with the particular system's requirements for smooth transfer of control,

If the main system fails, some method for detecting the trouble must be available.

Such methods include extensive software cross checking of critical functions and the

use of such special hardware as a watchdog timer. If failure occurs, transfer to the
back-up system must be made quickly with a minimum disturbance of the controlled pro-
cess. To provide a smooth transfer of control, process information can be passed via
disk files, via a multiprocessor communications adapter (MCA), or by means of some
other hardware interface between the two systems.

To permit several program areas to use a common disk independently, that disk's stor-
age must be partitioned. Partitioning must also be done if complete disk file integrity
is to be assured in single processor foreground/background systems,

Disk partitions are subsets of the total file space on a disk; partitions are established

by the user via system calls or the CLI. Each partition contains its own file directory
and its own bit allocation map (MAP,DR). There are two types of partitions: primary
and secondary. A primary partition includes all of a disk's file space, while the sec-

ondary partition's file space is a subset of the primary partition.

Files in the primary partition may be accessed (linked) by file directories in the second-
ary partitions, although files in the secondary cannot be accessed directly by entries in
the primary directory. Distinct file names may be created within each partition and
appear in the partition directory.

11

Core Disk
Resident Resident

REAL TIME DISK OPERATING SYSTEM

Command Line Interpreter System Calls Task Calls
ASM PROGI +SYSTM «TASK
«CRAND
Communicating with RDOS

12

COMMUNICATING WITH RDOS

‘There are three principal ways for a user to interface with RDOS and to make the
system work for him. These ways are (1) with system calls, (2) with task calls,
and (3) via the Command Line Interpreter (CLI).

System calls and task calls are issued as program instructions, while the CLI
is a dynamic interface to RDOS via the teletype console. System calls and task
calls activate logic within either the system or task modules.

‘The Command Line Interpreter (CLI) is a system program that accepts command
lines from the console teletypewriter and translates the input as commands to the
operating system. The CLI is basically a string handler that acts as an interface
between the user at the teletypewriter and the system. In addition, the CLI per-
forms certain file housekeeping chores for the user.

The system restores the CLI to core whenever the system is idle -- after initial-
ization, after a bootstrap, after a teletype break, after execution of a program,
etc.

The CLI indicates to the user that the system is idle and the CLI is ready to
accept commands by typing a ready message on the teletypewriter. The message
consists of "R" followed by a carriage return.

The user activates CLI responses to a command by typing a line and pressing the
RETURN key or the CTRL L (form feed) keys. The CLI will not respond until
RETURN or CTRL L is pressed.

In addition to the above means of communicating with RDOS, operators obtain the
system's immediate attention by issuing one of three console keyboard interrupts:
CTRL A, CTRL C, and CTRL F.

CTRL A interrupts the currently éxecuting user program (or the background pro-
gram in a dual program environment) and returns control to the CLI. This inter-
Tupt is a simple abort, giving no means of continuing the program at the point

where it was interrupted. CTRL C, by contrast, interrupts the currently executing
program as does CTRL A yet preserves a snapshot of this program: file BREAK,SV .
Thus CTRL C allows an interrupted program to be restarted.

CTRL F is issued to abort the foreground program and, like CTRL A, returns
control to the CLI.

13

CLI Commands

ALGOL - Compile an ALGOL source file.

APPEND - Append one, two or more files to produce a single file.

ASM - Assemble a program.

BLDR - Load an absolute binary tape with the binary loader.

BPUNCH - pPunch a file in binary on the high speed punch.

CCONT - Create a contiguous file.

CHATR - Change the attributes of an existing file.

CLG - Compile, load, and execute FORTRAN programs.

CREATE - Create a file or series of files.

DEB - Read in a program from disk and transfer control to
the debugger.

DELETE - Delete a file or a series of files.

DIR - Change the current default directory device .

DISK - Obtain a count of the number of blocks used and the
number of blocks available on the default device.

DUMP - Dump files. The dump includes directory information for
each file which enables their later reloading.

EDIT - Edit or build source files in the background.

EXFG - Execute a program in the foreground.

FEDIT - Edit or build source files in the foreground.

FILCOM - Compare two files, word by word.

FORT - Compile and assemble a FORTRAN source file.

GTOD - Get the time and date.

INIT - 1Initialize a directory device or magnetic tape transport.

INSTALL - Specify a save file for use in bootstrapping.

LFE - Update RDOS library files.

LIST - List names of files in the default file directory with
their length in bytes and their attributes.

1OAD - Reload dumped files.

MAC - Perform a macro assembly.

MKABS - Make an absolute binary file from a saved file.

MKSAVE - Make a save file from an absolute binary file.

OEDIT - Examine or modify locations' contents in octal.

PRINT - Print a file on the line printer.

PUNCH - Copy an ASCII file on the high speed punch.

RELEASE - Prevent further I/0O access to a directory device, or
rewind the magnetic tape.

RENAME - Change the name of a file.

RLDR - TLoad a save file from a series of relocatable binary files.

SAVE - Name a save file created by a CTRL C interrupt.

SPDIS - Disable spooling.

SPEBL - Enable spooling.

SPKILL - Stop a spool operation.

STOD - Set the time and date.

TYPE - oOutput an ASCII file on the TTY printer.

XFER - Transfer the contents of one file (or device) to another

file (or device).

14

COMMAND LINE INTERPRETER {CLI)

Having gained control, the CLI can perform a variety of necessary functions for
the operator sitting at the console terminal.

The CLI itself executes certain system commands such as CREATE and RENAME.
More complex commands cause the CLI to build a file containing an edited version
of the command line and then to load the program named in the command line for
execution, When execution is finished, control is returned to the CLI.

Some of the functions performed by the CLI are:

. System Initialization and Installation
. File Creation and Maintenance
. File Display and Reproduction
. Setting/Reading the Time of D

. Spooling Control
. Interfacing to System Software

ay

CLI commands can be stacked (new ones can be issued while the current command
is still being performed), and a variety of symbol conventions can be added to the
basic commands to extend their meaning. Among these symbols are global switches
which are appended to CLI commands themselves and local switches which are
appended to CLI command arguments.

A list of all CLI commands is given on the previous page. These commands range
from the simple to the complex. A simple command

DISK)

causes a count to be printed of disk blocks used and disk blocks still available on
the default directory device., A complex command like

RLDR/D MAIN TIMPLT QUAD FMT.LB FORT.LB $LPT/L)

causes a real time FORTRAN program to be loaded with the debugger, and a load
map to be printed on the line printer.

If commands issued to the CLI cannot be executed, the CLI responds with appropriate
error messages. Commands requiring operator intervention (like mounting paper
tape in a paper tape reader) cause prompting messages to be given. The spooling
feature (to be discussed later) permits the CLI to execute new commands while it

is waiting for previous I/O operations to be completed. Thus, program editing

could be continued while an assembly listing is still being output.

To allow a user to take full advantage of the CLI and its command repetoire, and to

permit the operation of the CLI within 12K core configuration, the CLI program has
been subdivided into smaller portions called program overlays.

15

Command Line Program Editor,
Interpreter, Swap Level 1
Level O

Communicating Via a Disk File

FORTRAN

Program,

Leveltl

RDOS S—
continue pt.
Program
Swap
Fetch
Blank Common Results
NMAX —»
User
Program
Space Results FORTRAN

Program,

Level 2
Return to Level 1
Program at its
Continue Point

15.—y
0 —» RDOS

Communicating Via Blank Common

16

PROGRAM SWAPS AND CHAINS

Any program running under RDOS can suspend its own execution and either invoke
another distinct program or call for a new section of itself. The current program
is overwritten in both cases.

Every new program (or section of the same program) which is invoked must exist as a
disk save file. If the file constitutes an entirely new program, it is called a program
swap. If the file is merely a new section of the current program, the file is called

a program chain, Both program swaps and chains contain core images extending from
address 16 (USP) through the highest address in the user program (NMAX). Not in-
cluded in this area is blank common (in the case of FORTRAN programs).

The program whose core images are overwritten is stored temporarily on disk,

along with its User Status Table, Information in this table enables the program to be
restarted upon termination of a swap. Each entire program is considered to reside

at a program level. The Command Line Interpreter (CLI) is just such a program,

and it resides at level O (the highest level in the system). Correspondingly, a program
swapped into core resides at a level which is one lower than that of the caller. Program
chains, segments of the same program, reside at the same level.

The program chain facility permits programs to be run which require more core
storage than is ever available at one time. To use chaining, a program must be

written in Qpria'l'ly executable segments each of which calls the next se ent

X ELLOTAL il STXxiTax TATLCULGAIT ST11iTai0Ty T4 Viialodl e LR § L S 9 1110 1i0e

The program swap facility, by contrast, permits distinct programs to call one another
in much the same manner as subroutines are called. The primary difference is the
size of the routine and the manner of argument passing. Whereas subroutines are
always smaller than the total amount of resident core, program swaps are as large as
total user program space (or as large as multiples of user address space if chaining
is performed).

The operating system permits up to five levels of program swaps to occur. This
implies that a program called by the CLI can in turn invoke a third, etc. The
nesting of program swaps can therefore occur to a level of four distinct swaps (with
a virtually unlimited number of chains for each program level).

There are two ways that parameters can be passed to program swaps and that results
can be returned to the callers. These means are: (1) via disk files with agreed upon
names, and (2) via blank common. Communication via disk files is possible under
both program swaps and program chains. The CLI uses this method in passing
switch and file name information to utility programs which it then calls; the name

of the disk file that is written by the CLI and read by utilities is COM.CM .

FORTRAN program swaps may pass arguments via blank common provided they ob-
serve two requirements. These requirements are that all participating FORTRAN
programs be either single tasking or multitasking (not both), and the size of blank

common must be the same for each.

17

R

node
points

RDOS

.available memory

task modules

overlay area

< — top of memory

Overlay O

Overlay 1

overlay area

Overlay O

Overlay 1

User
Program

RDOS

RDOS Memory Map With Overlays

18

@— highest memory available (HMA)

@—— highest user NREL (NMAX)

Overlay n-1

Overlay n

Overlay m-1

Overlay m

USER PROGRAM SEGMENTATION

When the user address space of an RDOS system is not sufficient to hold all the
necessary programs at one time, some form of program read-in scheme must be
employed whereby programs, upon demand, are brought in from disk storage. The
RDOS system reserves part of the user address space for this program read-in,
and divides it into fixed-length partitioned core storage areas which form a repos-
itory for programs of a limited size. This allows the RDOS user to make a seg-
mentation of his program into one or more parts which fit into the fixed-size

core areas at execution time. These program segments are called user overlays
and are stored on disk in core image format to facilitate rapid loading when
execution is desired.

User overlays differ from program swaps in that user overlays overwrite only

a fixed area within a root program which remains active and core resident during
the load time. RDOS itself uses overlays to enhance its own operation; these are
called system overlays to distinguish them from user overlays. The complete
set of user overlays used by a root program is called a user overlay file.

The beginning of each overlay area is called its node point. Associated with each
area is a collection of one or more user overlays. Each overlay area within the
root program must be large enough to accommodate the largest overlay associated
with it. There may be up to 8 overlay areas in each root program.

User overlays can be called in either single or multi-task environments. Overlays

are created at the same time the executable root program is built by the relocatable
loader.

19

Single Task Environment

[1
|
|

1

Task
Scheduler

Multi-task Environment

20

TASKS

A task is a logically complete active execution path through a program, subprogram,
or overlay which demands use of system resources (usually CPU control). Single
task environments are already familiar to users of non-real time operating systems.
FORTRAN IV programs, most user assembly level programs, even system utility
programs like the assembler, editor, etc., are all examples of programs running
in a single task environment. A single task environment is a program which has a
single unified path connecting all its program logic, no matter how complex the logic
branches.

There is no compelling reason why a program should be limited to performing just
one task, however. Indeed, most user environments contain a multitude of unre-
lated tasks which must be performed. It was the problem of efficiently controlling
real time environments which led to the notion of multi-task real time operating
systems.

One real time program may have from several to a virtually unlimited number of
logically distinct tasks. Each task performs a specified function asynchronously
and in real time (i.e., as close to instantly as possible). CPU control is allocated
by the RDOS Task Scheduler to the highest priority task that is ready to perform or
continue performing its function.

Examples of multitask environments are airline reservation systems, inventory
control systems, process control operations, and communications networks with
message queuing and switching. The individual tasks within an inventory control
system might be the immediate updating of inventory totals from data received by
remote terminals, and the reordering of those items whose quantities fall below
specified reorder points.

21

Task States

EXECUTING - A Task has control of the Central Processing Unit.

READY - A Task is available for execution, but is waiting for a
a higher priority Task to be readied, suspended, or
killed.

SUSPENDED - A Task is awaiting the occurrence or completion of some
system call or real-time operation.

DORMANT ~ A Task has not been initiated in the system or its execution

was completed.

22

TASK STATES AND PRIORITIES

User multi-task programs run under RDOS will have one task (called the "default
task") initiated for them by default. If the user wants more tasks, he initiates these
tasks by issuing the appropriate task monitor call from this first task.

When a multi-task environment is established there becomes a requirement for a
task scheduler to decide which task should be executing. To enable the scheduler
to function, each task is assigned a priority at the time of initiation. Within RDOS
there can be 256 levels of task priority in the range 0 to 255, with priority 0

being the highest. Several tasks may exist at the same priority level.

The default task is initated at the highest priority and since it is the only task in the

i i H iritias +1 A A svalas st dom =l
system it receives control, When this task initiates the second and subsequent tasks,

the task scheduler is called upon to put the highest priority task into execution.
Other tasks that have been initiated but are of lower priority are said to be ready to
Tun.

‘The executing task becomes suspended when it makes a call to the operating system
to perform some function such as an I/O transfer, get time of day, etc. The task
remains suspended until the operation is completed, at which time it becomes readied.

Thus we have seen that tasks under the RDOS system can exist in either of four states.
Tasks are in control of the CPU and are executing their assigned instruction paths,
they are ready and waiting for their turn to gain control, they are suspended and
awaiting the occurrence or completion of some real-time operation, or they are
dormant and have not been initiated into one of the other states.

23

word O

Start
of
Chain

10

11

Task Control Block Structure

User PC and Carry

ACO

ACl

AC2

AC3

Status bits and
Priority

System call word

Link

USP

TELN

Used to store the task's Program Counter and Carry
and Carry.

Used to store the task's ACO-

Used to store the task's ACL-

Used to store the task's AC2.

Used to store the task's AC3.

Contains task priority and task status.

Used by RDOS when task issues a system call.
Points to the next TCB in the chain.

Contents of location 16, used for general

purpose storage or for FORTRAN STACK POINTER.

Points to the Run Time Stack segment associated
with this task if it is a FORTRAN task. (Other-
wise, unused.)

TCB Chain

24

TASK ENVIRONMENTS

As discussed in the previous section, a task within an RDOS system can either be
dormant or active. If the task is dormant, the system does not know that it exists
even though the code could be resident within the user address space. When a task
is active (executing, ready or suspended state) certain status information must be
maintained about each task to enable the scheduler to maintain the highest priority
ready task in the executing state.

This status information about each active task is contained within an information
structure called a Task Control Block (TCB). There is one TCB for each task in the
active state (and no TCB for a dormant task). TCBs are used to store active
register states and other priority and status information when the task exists in
either the ready or suspended state. The TCB of the executing task is allocating to
the task but the TCB remains unused by the system until the task loses control of
the CPU. If the task becomes readied or suspended, its TCB is then used to store
its status information. If, on the other hand, the rescheduling resulted from the
task terminating its own execution, its TCB is placed into a pool of available TCBs.

The TCBs of ready, executing, and suspended tasks are linked together in an active
chain. This chain is organized in order of decreasing task priority. Each TCB in
the active chain is connected by its link word to the next TCB in the chain. Among
equal priority tasks, a round-robin scheduling of system resources is performed.
Whenever a task has its TCB entered in the active chain, the task is automatically
assigned the lowest priority within a priority level., The last TCB in the active
chain has a link of -1. ‘

Unused TCBs in the system are linked together to form an inactive chain of available
TCBs. Except for the link words, these TCBs are unused until a task is created, at
which time a TCB is removed from this chain and placed on the active chain.

25

EXECUTING

STATE

.ASUSP| .ARDY
.PRI} .TASK
. TOVLD{| .OVREL Task
XMTW| . XMT sh Zsl
.REC| .QTSK cheduler
System Call
- XMTW
.REC
. SUSP
READY STATE
. TASK .ASUSP Real \ Time
Event\or
System\ Call
Completibn
L IXMT \ . XMTW
.ARDY |\ .XMT
.REC \ .QTSK
DORMANT STATE SUSPENDED STATE
Task State Transitions

26

TASK EXECUTION CONTROL

Unlike .SYSTM calls, task calls consist of single word instructions. Task calls are
used to create tasks, modify their priority, etc. The differences in structure be-
tween an RDOS system call and a task call are the following. First, task calls re-
quire a one word call with all parameters passed in the accumulators. Secondly,

not all task calls have error returns. Those which do not have error returns do

not reserve error return locations. Third, task calls are processed in user address
space, while system calls require system action., Finally, task calls are not preceded
by the .SYSTM pseudo-op.

Each task call has an associated modular package of code needed to perform the call
operation. Thus for each type of task call used, the task call name must be refer-
enced by an . EXTN statement in the user program. This feature enhances core
utilization since only those modules selected by the user will occupy program space
at load time. Upon return from a task call, program control is routed through

the Task Scheduler to the highest priority task that is ready.

Each task call causes a task state transition. Most task calls cause the issuing task
to move from the executing state to the ready state. Task calls in this category
are the following:

. TASK Create a task.
. PRI - Change a task priority.

.ARDY - Make an entire class of tasks ready.

.ASUSP - Suspend an entire class of tasks (of a different priority from caller).
.XMT - Transmit a task message.

-XMTW - Transmit a task message and wait (but no wait required).

JIXMT - Transmit a task message from an interrupt service routine.

.REC - Receive a task message (which has already been sent).

. TOVLD- Perform a multitask overlay load (of a currently resident overlay).

.OVREL- Release a multitask overlay.
.OVKIL - Kill an overlay task.
.QTSK - Queue an overlay task.

The executing task is suspended whenever it issues a system call, in some cases when
it issues task calls , ASUSP, .XMTW, .REC, or . TOVLD, and whenever it issues the
task call . SUSP which causes the executing task to suspend itself,

Issuance of task calls can result in a suspended task becoming readied. Calls in this
category are . ARDY, .IXMT, ,REC, and .XMT .

When the executing task issues a . TASK command, not only is the executing task
raised to the ready state but the task which has been activated is raised from the dor-
mant state to the ready state., Conversely, whenever the task issues a . KILL call, the
task goes from executing to dormant. .AKILL reduces all tasks of the specified
priority level to the dormant state including the caller if the caller's priority is the
same as the priority specified in the call.,

27

Task A

Task B

g\\\ »

Task A sends message and goes into the ready state.
Task B is suspended until the message is received.

Intertask Communication

Task C Task D

« XMITW

<\\ »

Neither task proceeds until message is passed from
Task C to Task D.

Task Synchronization
Tas? E Tasﬁ F Tas? G
| ‘ I
.SUSP .SYSTM .SYSTM
.DELAY .GTOD
Task Timing Control

28

INTERTASK COMMUNICATION/SYNCHRONIZATION

Even though tasks operate asynchronously, it is often desirable for one task to be
capable of talking to another task. Tasks communicate with one another under
RDOS by sending and receiving one word messages in agreed-upon core locations.
One word messages may, of course, be pointers to larger messages if the tasks
agree beforehand on the use of such a technique.

A transmitting task may simply deposit the message in an agreed-upon location

(by means of the . XMT call), or the caller may deposit the me ssage and wait until

its receipt (. XMTW). To receive such a message another task issues a . REC task
call. If the transmitting task has not yet sent the message when the . REC call is
issued, the receiving task waits until the message is sent. If the message has
aiready been sent, the receiving task accepts the message and is put into the

ready state for execution when it becomes the highest priority task. If the message
was sent via a . XMTW task call, both the receiving task and the transmitting task are
put into the ready state before control is sent to the task scheduler. If more than one
task has issued a . REC using the same core address for communication, they will

all be put into the ready state by a transmitting task issuing e€ither 3 ,XMT or .XMTW .

It is possible too for a message to be sent to a receiving task from a user interrupt
service routine; this is done by means of the ., IXMT call.

TASK TIMING CONTROL

A task may suspend itself for a period of time which the task specifies. This allows
users to implement a time slicing or round-robin allocation of CPU control to users.
The delaying of a task is accomplished by means of a system call .DELAY . Tasks
may suspend themselves for time periods that are multiples of the real time clock
cycles.

RDOS also maintains a system clock and calendar for those tasks that should be
scheduled on a time-of-day basis. Tasks may examine the frequency of the system
clock and may obtain or set the date or the correct time in seconds, minutes, and
hours. Moreover, tasks within user overlays may be scheduled to gain control at
periodic intervals by means of a call to ,QTSK .

Finally, RDOS provides a pair of system commands which permit the definition and
removal of a user clock driven by the system clock. This user clock generates
interrupts at user-definable intervals. When one of these interrupts occurs, the
Scheduler and task environment are frozen and control goes to a user-specified
routine outside the multitask environment. .

29

10

1@

20

MAIN LINE PROGRAM

CHANTASK 1,3

EXTERNAL PROGA, PROGB
CREATE TASK-A AT PRIORITY 100
CALL FTASK (PROGA,S$10,100)
CREATE TASK-B AT PRIORITY 100

CALL FTASK (PROGB»$10,100)
TERMINATE MAIN LINE PROGRAM
CALL KILL

ERROR RETURN FROM TASK-CREATE CALL
WRITE ¢ 12) °NOT ENOUGH TCB'S"
END

TASK TO OUTPUT *MSG1'" EVERY 30 SECONDS
TASK PROGA

CALL FDELY (19%*30)
TYPE "MSG1"™

GO TO 10

END

TASK TO OUTPUT "MSG2" EVERY 45 SECONDS
TASK PROGB

CALL FDELY C10%45)

TYPE "MSG2*

GO TO 20

END

r MSG1
MSG2
MSG1
MSG2
MSG1
Program Output ﬁ MSG1

MSG2
MSG1
MSG2
_ MSG1

Real-Time FORTRAN Example

30

REAL TIME FORTRAN

Data General's Real Time (RT) multitask FORTRAN is a superset of single task
DGC FORTRAN IV, Each assembly language task command discussed earlier has
a counterpart in RT FORTRAN. Each RT FORTRAN task command has been
implemented as a FORTRAN CALL statement. This means that a user can code his
multi-tasking application in a high level language like FORTRAN with which he is
probably more familiar. The following list describes briefly each of these calls:

CALL FTASK (NAME, ERROR, PRIORITY) Initiate atask

CALL AKILL (PRIORITY) Kill a class of tasks

CALL KILL Kill the calling task

CALL ASUSP (PRIORITY) Suspend a class of tasks
CALL SUSP Suspend the calling task
CALL ARDY (PRIORITY) Ready a class of tasks

CALL PRI (PRIORITY) Change the calling task's priority
CALL XMT (KEY, MESSAGE, ERROR) Transmit a task message
CALL XMTW (KEY, MESSAGE, ERROR) Transmit a message and wait
CALL REC (KEY, MESSAGE) Receive a task message
CALL FDELY (TICKS) Delay the calling task

CALL FSTIM (HR, MIN, SEC, DAY) Set the time of day and date
CALL FGTIM (HR, MIN, SEC, DAY) Get the time of day and date

Two FORTRAN specification statements are used to name a user task module and to
specify the maximum number of tasks and channels which will be active at any single
moment. These statements (CHANTASK and TASK) are shown in the illustration
program on the previous page.

The illustration program given as an example consists of three FORTRAN modules,
MAIN, PROGA, and PROGB. The purpose of this program is to perform two asyn-

chronous tasks: Print a message ("MSG1") on the Teletype every 30 seconds and a
second message ("MSG2") on the Teletype every 45 seconds.

The CHANTASK statement in the main line program specifies that a maximum of 3
tasks will be active at any one time and that one channel will be required by the
program. The main line program activates PROGA and PROGB, after which it KILLS
itself. An error message output is provided ("NOT ENOUGH TCB'S") for the error
return required by FTASK.

31

N = O

LIST OF COMMAND WORDS

Open a file for appending.

Save the current state of memory in save file format.

Create a contiguous file.

Change file attributes.

Close a file.

Create a random file,

Create a sequential file.

Delay the execution of a task.

Delete a file.

Change the current default directory device.
Return with exceptional status.

Execute a save file program swap.

Execute a program in the foreground.

Read a character from the console TTI.

Get the current date.

Get file or device attributes.

Get the current time.

Identify a user interrupt.

Initialize a mag tape or directory device.

Install a new RDOS system from the default directory device.

Remove a user interrupt.
Determine available memory space.
Allocate an increment of memory.
Open a file.

Kill a user overlay task.

Load a user overlay.

Open user overlays.

Write a character to the console TTO.
Queue an overlay task.

Read in block mode.

Read a line.

Read a random record.

Read sequential.

Rename a file.

Close all open files.

Release a directory device, preventing further access.

Return to the previous program swap.
Get the Real Time Clock frequency.
Define a user clock.

Turn off a user clock.

Set the system calendar.

Disable device spooling.

Enable device spooling.

Stop a spooling operation.

Set the time of day.

Write in block mode.

Write a line.

Write a random record.

Write sequential.

32

SYSTEM CALLS

Users communicate with the Real Time Disk Operating System by making a system
call followed by a system command word. The general form of a system call is
as follows:

.SYSTM

command
exceptional return
normal return

The mnemonic .SYSTM (defined by the RDOS assembler to be JSR @17) must precede
each command word. It passes control to the system through the task monitor. The
task monitor saves the task environment in the calling task's TCB before passing
control to RDOS. A list of legal sys tem command word mnemonics is given on the
opposite page.

There are three basic command word formats:
1. command
2. command n

3. .SCALL p
In the first command word format, the command is a predefined mnemonic (as shown
on the previous page) which is not followed by an integer.

In the second format, n is a positive integer representing an I/O channel number. The
channel number n indicates a logical link to an opened file or device. The largest value
of n may not exceed 76g When no I/O channel is needed in the command execution,

the command word appears alone in the instruction. If the command requires arguments,
these are passed in the accumulators.

Any system command requiring a channel number n need not specify this number in
the command itself. By specifying octal 77 as the channel number in the instruction,
the system will use instead the number passed in AC2. This gives the user a very
flexible runtime device selection method.

In the third command word format, the mnemonic . SCALL is followed by a digit
P to specify a particular command type.

33

CDR Rea TTO Print DKP \ TTO Print

N /-
~—

Useful System Processing

Single Task Operating System

Task #1 TTO Print TTO Print \\\

Task #2 \\\ DKP \\ CDR Read \\

SONONONOIONNANANNNNSNNNNNN

—~—
Useful System Processing

N

Multiple Task Operating System

I/0 Processing or Task Suspension

Useful System Processing

34

RDOS INPUT-OUTPUT CONTROL

An important function of any real time operating system is the efficient handling of
input-output operations. Optimum usage of machine devices and central processor
time in the accomplishment of tasks is the real reason for designing and implement-
ing a multi-tasking system.,

Since I/0 devices are slow compared to the internal speed of the computer, they
must be programmed to overlap their operations with computations, when possible,
in order to:

. Increase usable CPU time
. Greatly increase efficiency of 1/O operations
. Provide more throughput of data

The responsibility of RDOS I/O control is to react during normal program execution
to the structuring of I/O requests, making assignments of requests to machine devices
when they are idle, and queuing requests for devices which are busy. Through the
queuing facility, RDOS makes it possible to achieve maximum and continuous overlap
of multi-tasks without direct intervention by the tasks themselves.

All input and output of data via devices permanently installed in the system must

be done via system I/O commands. The system does not reject any user I/O commands,
but the issuance of any such commands by a user would be both risky and unnecessary
since a full complement of system I/O commands is provided.

As described earlier, system I/O commands require a channel number (0-76) to

be given in the second field of the command word. This channel number is assigned
to a particular device or file when the device or file is first opened. Devices are
opened by means of the system command . OPEN which associates a given file name
with a channel number. Having made this association, all commands pertaining to
the file merely require that file's channel number.

35

I/0 Modes

Type Call Data Termination
Line .SYSTM ASCII carriage return
.RDL (.WRL) n* (even parity) form feed
null

132 characters

Sequential .SYSTM binary byte count = 0
.RDS (.WRS) n*

Random .SYSTM binary 64 word record

Record .RDR (.WRR) n*

Access

Direct .SYSTM binary m logical 256

Block .RDB (.WRB) n¥* word blocks

*n is the logical channel number associated with the desired device or file name.

36

INPUT/OUTPUT COMMAND MODES

The system provides four basic modes for reading and writing data: Line, Sequential,
Random Record Access, and Direct Block.

In Line Mode, data read or written is assumed to consist of ASCII character strings
terminated by carriage returns, form feeds, or nulls. Reading or writing continues
until one of these three characters is detected. The system handles all device-
dependent editing at the device driver level. For example, line feeds are ignored on
paper tape input devices and are supplied after carriage returns on all paper tape
output devices. Furthermore, neither reading nor writing require byte counts,
since reading continues until a terminator is detected and writing proceeds until

a terminator is written.

Sequential mode provides unedited data transfers. In this mode, no assumption

is made by the system as to the nature of the information. Thus this mode would
always be used for processing binary data and could also be used for processing
ASCII data (provided no editing of this data is required). Sequential mode transfers
require specific byte counts in order to satisfy read or write requests. All I/O
devices may be used in sequential data transfers.

Y]
[l

Random Record Access mode permits 64-word segments of disk block dat

o be
accessed randoml Data which is transferred in this mode mav be eithe

acces randomly. which is transferred in this mode may ither ASCIL

or binary, although no device level editing occurs.

In Direct Block mode, binary data is transferred directly between a disk file and
a specified core area. This specified core area takes the place of the system
buffer which is required for all other types of data transfers., The elimination of
a system buffer makes direct block transfers faster than all other types of data
transfers.

Two additional system commands are provided which permit unedited character

transfers via the console teletypewriter: .GCHAR and .PCHAR . These two commands
do not constitute an I/O mode since only the console teletypewriter is referenced.

37

RDOS

., BFPKG
(\ Buffer #1 F———— — — —

Data K \\ Buffer #2 :-;’//'
Stream
N Buffer #3
L Main . .
) User Line Printer

Program

RDOS

Buffered I/O Package, BFPKG

Disk

. Spooled
Data

Data
Stream

Main
s User
— Program
Line Printer
RDOS

Simultaneous Peripheral Operation On Line (SPOOLING)

38

SYSTEM INPUT/OUTPUT BUFFERING

All data transfers (except Direct Block) to or from disk files and hardware devices
are buffered in the operating system before the data is transferred into the user's
buffer. Each system device handler has a small buffer associated with it depending
on the speed of the device, e.g., 162 (decimal) words for the card reader, 40 bytes
for the paper tape punch, and 160 bytes for the line printer. The other area is the
system buffer area which is organized into blocks of 256 words each. When trans-
ferring data from a disk file it is first read into this buffer area before accessing
the data within the block. This allows smaller transfers of data to or from the
user area.

SPOOLING

Efficient I/O handling is the most important single factor in the effective utilization
of CPU time. When messages are output on a slow device like a Teletype and its
buffer fills up, the calling task will be suspended until the buffer is emptied. When
spooling is provided, the next message called is temporarily stored on disk, and is
later returned to core when the current message is completed, The significance of
spooling is that queuing of output messages or information can now be accomplished
easier without putting excessive loads on user core partitions. This also frees the
user from having to optimize his message requests, thus permitting more effective
use of the device. Spooling normally operates transparently on the Teletype, paper
tape punch, plotter, and line printer but system and CLI commands allow the user to
control spooling.

BUFFER CONTROL PACKAGE

The RDOS system library provides a module which permits faster line and sequential
I/0 transfers than is possible using the system I/O calls discussed previously. It
utilizes tasking concepts to fill two or more buffers asynchronously and therefore
provides a constant supply of data for program processing.

39

SYS.DR File Entry
Displacement Contents

0-4 File name in ASCII, bytes packed left/
right, left justified, trailing null
bytes.

5 Two-character name extension (SV,
RB, etc.); trailing null bytes.

6 File attributes (permanent, etc.).

7 File Block Count, less one.

10 Byte count in last block.

11 Address of the first block in the file.

12 Device code.

SYS.DR

Device Entry

Displacement

0-4

10
11
12

Contents

Device name in ASCII, bytes packed left/
right, left justified, trailing null
bytes ($PTR, etc).

0

Device attributes (germanent, attribute-
protected, and read/write protected).

0

0

0

Device code.

40

DISK FILE ORGANIZATION

The term "file" applies to any collection of information contained in blocks of
disk storage. Typical examples include a source program file, a relocatable
binary file, and a core image (save) file.

All files and devices are accessible by file name. A basic file name is a string of
alphanumeric characters and the character $. A file name can contain any number
of characters, but the system considers only the first 10 significant. A file name
extension can be appended to a file name as a qualifier. Such an extension is a
string of alphanumeric characters and may include the character $; the system
considers only the first two significant, A period (.) separates the extension from
the file name. When the character $ is the first character of a system file name,

a hardware device is indicated.

Some typical file names that might be found on a disk pack are as follows:

ABC.RB - relocatable binary
SYS. SV core image (save file)
CLI.OL overlay file

$LPT line printer

All files have attributes which characterize them. These file attributes can be
set and changed by the user, and include such items as:

C - contiguously organized file

D - randomly organized file

P - permanent file, one which cannot be deleted or renamed
S - save file (core image)

w - write-protected file, one which cannot be written

Names of all files on any moving head disk surface are contained in a table called
the system directory, SYS.DR . (The directory itself is a disk file.) SYS.DR
contains the file name, attributes, and all other pertinent information describing
each file on the disk. Another table is used to keep track of the availability of each
block for data storage. This table is called the map directory, MAP.DR , and it

too is a disk file, The system scans MAP, DR whenever a disk file is to be written
so that those blocks which are free can be found and used. Whenever a file is
deleted, the disk space formerly occupied by the file becomes free for other storage,
and that file's entry in SYS.DR is removed.

41

TYPE: Sequential
CREATION: .SYSTM
.CREATE
EXTENDIBILITY: yes
ORGANIZATION:
132
782
783
164
ACCESS
COMMANDS : RDL/WRL
RDS /WRS
RDR/WRR
MAXIMUM
REQUIRED
DISK SEEKS: n (where n is the

number of blocks
in the file)

Disk

Random

.SYSTM
. CRAND

yes

{

: 68

893

File

RDL/WRL
RDS/WRS
RDR/WRR
RDB/WRB

Structures

42

Contiguous

. SYSTM
.CCONT

no

85

86

87

RDL/WRL
RDS/WRS
RDR/WRR
RDB/WRB

DISK FILE STRUCTURES

Sequentially Organized Files

Sequential organization is the simplest organization to understand. Information in
sequentially organized files is stored in groups of disk blocks. The last word of each
256 word block is used to store a pointer to the next block in the file, This pointer is
invisible to the user, and is solely for system use. Each 256 word block has a unique
address called a physical block address which is derived from the physical disk
sector/track addresses. Distinct from the physical block addresses is the logical
block number which denotes the relative position of a block of data within its disk file.

The physical block addresses of a sequentially organized file need not be (and seldom
are) in an unbroken series. When building a sequential file the system simply approp-
riates the next available disk block when storage is needed, and comnstructs a pointer
to the block. Sequentially ordered blocks are sequential in this sense: After pro-
cessing any given block, the system may step either to the previous block or to the
next block in the series. To access the tenth block after the first block, the system
would have to read the nine intervening blocks -- a time-consuming process.

Randomly Organized Files

Random file organization provides the best combination of flexibility and accessibility
arnmAdnmnTer Aarorn 1Toag a ragéaw An<r ~F o nherainal WlAanly adAdw~gana ia

~F nda T « frad £ H 1 3
UL L. 1 Lalluuliily U.Lgcu.u.Zcu Ii1eS & IMiasSteY 1NGeX O auL piiysital JIULR aUuliTsosded 1o

created. The master index blocks themselves are sequential files,

Blocks of data storage in random files utilize all 256 words for information storage.
Each block is assigned a sequential positive integer by its position within the master
index, indicating the block's logical position within the file. In processing randomly
organized files, two disk accesses at most are all that is generally required for the
reading or writing of each block: One to access the file index and one for the block of
data itself, If the index is core resident (having previously been read into a system
buffer), only one access need be made. In most cases the index will be core resident.

Contiguously Organized Files

Contiguous file organization has a rigid structure yet provides the quickest access to
data. Contiguous files are composed of a fixed number of disk blocks which constitute
an unbroken series of disk block addresses. These files can neither be expanded nor
reduced in size, since by definition they occupy a fixed series of disk blocks. Contig~
uous files may be considered as files whose blocks may be accessed randomly but
without the need for a random file index.

All I/0 operations which can be performed on randomly organized files can be performed
n contiguously organized files. Contiguous files have the advantage of usually requiring

less time for accessing blocks within the file, The draw-back to contiguous files is that

they may not always be created, and may never be changed in size. Their creation de-

pends upon the availability of the required number of free neighboring disk blocks.
43

RDOS

User

Program

—
I~ T

UFT, PTR

User ZREL

RDOS

.COMM TASK 400xn

Disk File Input/Output Control

44

DISK FILE INPUT/OUTPUT CONTROL

Since there are commonly more files and devices than there are communication
channels, a series of tables are maintained to specify which files or devices are
currently associated with each channel. These tables are core resident and are
called User File Tables (UFTs). There is one UFT for each channel specified in
the user program.

When a file is opened on a specified system channel, that file's description is
copied from its System Directory entry into the UFT, This information is required
for processing the file and includes the file name and its extension, its attributes,
and file access information.

All UFTs are built in contiguous frames. The first UFT is associated with
channel 0, the second with channel 1, etc. up to the maximum specified by the user
at program load time. Immediately preceding the UFTs is a small table called the
User File Pointer Table (UFPT) which contains pointers to each UFT, The system
uses the channel number to index the UFPT, getting the UFT address whenever a
system command references a channel number.

In summary, to access a file or device the user first opens this file on a currently
unused channel, setting up a UFT for this file. Each UFT contains all the file and
I/0O information required to associate a given file and channel at open-time. The
UFT also contains information on the current status of any active I/0 requests
whether they are sequential (.WRS or .RDS), line (. WRL or .RDL), random record
(.WRR or .RDR), or direct block (.WRB or .RDB) calls.

45

User Program

interxupt
~ Y INTD ITBL
o | >
DISMIS DCT
SAVE
MASK
b INTS
L[]
L]
INTS:
7-Word
State
Save Area
JMP -
A DISMIS -
Interrupt
Service
Routine
Flow of Control During Interrupts

46

INTERRUPT SERVICING PROGRAM

When an interrupt is detected by the hardware, the currently executing program is
suspended and control goes to an interrupt dispatch program, INTD. INTD is

an integral portion of the RDOS system and resides in core at all times. It directs
control to the correct servicing routine by using the device code as an index into an
interrupt branch table. The entry in this table is the address of a device control
table (DCT) associated with the servicing routine,

The first three entries of the DCT are as follows:

Word Menmonic Purpose

0 DCTSV Address of 7 word state save area

1 DCTMS Interrupt service mask

2 DCTIS Device Interrupt Service Routine Address

USER INTERRUPT PROCESSING

Enough said about standard I/0O devices. What about non-standard devices, the type
customers are always most interested in? For these devices, a simple software in-
terface exists to attach non-standard user devices to RDOS. This interface is pro-
vided through an abbreviated DCT (the first three entries of a standard DCT) which
supplies the address of a 7-word state save area, the hardware interrupt mask to
be set while servicing the user interrupt, and the address of the interrupt servicing
routine. The system will store the program counter, accumulators, carry, current
hardware mask, etc. in the state save area before transferring control to the
interrupt service routine. The interrupt service routine is written by the user, and
contains all program code necessary for processing the interrupt.

A system call, JDEF, is used to insert pointers to user DCT's into the interrupt
vector table, identifying the device to the system. Input parameters necessary
for the call to IDEF are the device code of the user device and the DCT address of
the user written driver. To remove these entries from the table, the system
call, .IRMYV, is issued with the device code passed as a parameter.

It is possible to activate user tasks from the interrupt servicing world. This is done
by transferring a non-zero message from the interrupt servicing routine to a user task
via the . IXMT task monitor call, If the task expecting such a message has issued

a .REC call, the task will be put into the ready state by the . IXMT call. If .REC

has not been issued, the .IXMT call simply posts the message and the interrupt service
routine finishes its processing.

47

NOVADISC
(fixed head)

. Moving Head
disks

e

Magnetic T;E;\“‘x

Transports

o

NOVA
Family
Computer
Console
Teletypewriter

Card Reader [::::::::]

Paper Tape
Reader/Punch

Line Printer

RDOS Hardware

NOVA

Cassettes

4060 QT

pe

— ()
-,

Multiple Asynchronous
Lines

Configurations

48

MULTIPLE DEVICES AND UNITS

The Real Time Disk Operating System is capable of supporting multiple disk and tape
storage units, and multiple data processing devices.

The master system device for RDOS can be either a fixed or a moving head disk.
RDOS supports a fixed head NOVADISC with total storage from 128 to 2048 thousand
words. Up to four moving head units (disk pack or cartridge type) can also be
included in any system, with from 2 to 20 disk surfaces per unit; maximum total
storage is 49.2 million words. Disk files are referenced by specifying both the
disk unit number and the file mme, since every disk unit contains its own system
directory. Referencing a file named TEST on a fixed head disk via the CLI is

accomplished by means of the expression DKO:TEST .

Referencing a file named TEST on a disk pack (unit 2, for example) via the CLI is
done by means of the expression DP2:TEST. Prefixing the file name by a device
specifier is only necessary when the device is not the current directory device.

From 1 to 8 magnetic tape transports and from 1 to 8 cassette drives can also be
supported by RDOS. Magnetic tape units must be set at high density (800 bpi), and
both 7 and 9 track tapes are allowed. Individual files can be referenced on both
magnetic tape and cassette units by specifying both the transport drive and file
number, Up to 100 files can be referenced on each unit. To reference a file via the
CLI or from a user program, the file must be specified by a file number as part

of the file name. An example of a CLI command to reference the second file on mag-
netic tape transport 7 is XFER MT7:1 TEST. This command would load the second
file on transport 7 and transfer it to disk under the file name TEST.

The type 4060 asynchronous data communications multiplexor (QTY) is another de-
vice which can be considered to be unit expandable. The QTY can accommodate from
1 to 64 full duplex lines at speeds up to 9600 baud. Each multiplexed line of the QTY
corresponds to a file name of the form QTY:x, where x is the multiplexor line number
in the range 0 to 63. Input/output operations are performed on each line by RDOS
line/sequential reads and/or writes.

Since the system device drivers have been written reentrantly, multiple devices can be
easily supported by RDOS. This can be accomplished by simply adding another

device control table (DCT) and by using existing device driver routines. Devices

in this category are the teletypewriter, paper tape reader/punch, line printer, card
reader, and incremental plotter.

49

D
E T
B T C
U M B
m
G 1 M o n
G N 0 a Z
B N a u
R / / / 1 1
e e
1 n

RDOS System Library

TMIN - single task monitor

TCBMON - multitask monitor, .TASK and .KILL logic
Task Module, - .AKILL, .ASUSP, .ARDY logic

Task Modulen - other task processing logic

50

SYSTEM LIBRARY

The system library (SYS. LB) is a collection of program modules which support
user programs run under RDOS., These modules can be likened to volumes on

a library shelf. Each user program needing one or more of these modules selects
them from the library by means of the Relocatable Loader, leaving behind those
modules which are of no current use. By placing system modules in the library, a
savings in user program core storage requirements thus results.

Whereas the DOS system library contained only the debugger, the RDOS system
library also contains the multi and single task schedulers (TMAX and TMIN),
command processing modules for each task call type, and the Buffered I/0
package (BFPKG) which has been discussed earilier.

Modules are extracted from this library by the relocatable loader. This loader

is told which modules to load either by switches in the relocatable load CLI command
or by means of the external normal pseudo-op, . EXTN . Except for the loading of

a Task Scheduler, only those task modules will be loaded which are referenced by
an . EXTN statement in the user program. The program must externally reference
each task call name that is issued as a task call by the user program, or the loader
will be unable to resolve the call. By only loading those task modules whichare
required for program operation a net savings in total core requirements is obtained.
All modules taken from the library are loaded after the main (or root) program.
Thus the loading of user programs and library modules occurs from low core to high
core.

In addition to the debugger, task schedulers and other task modules, the Buffered
I/0 package (BFPKG) is also found. This module further enhances system operation
by providing the user with asynchronous Line and Sequential data transfers,
buffered in user program space.

51

Binary Loéder

Compile, Load, and Go
Command Line Interpreter
Symbolic Debugger
Extended ALGOL

Extended Real-Time FORTRAN
Library File Editor
Octal Editor

Extended Assembler

Macro Assembler
Background Text Editor
Foreground Text Editor

Relocatable Loader

Real Time Disk Operating System Programs

v

52

RDOS SUPPORTED SOFTWARE

The Real Time Disk Operating System (RDOS) can be used for both the development
and the implementation of user programs in both real-time and non real-time
applications. As discussed earlier RDOS includes all the file capabilities normally
only available on large machine disk operating systems, allowing the user to

edit, assemble, execute, debug and compile, and create, extend and delete files.
Software currently supported under RDOS includes:

1. Text Editor, for editing and updating program files.

2. A foreground Text Editor.

3. Extended Assembler producing relocatable or absolute binary
output from symbolic source programs.

4. Relocatable Loader for linking relocatable binary files into an
output core image file,

S. Extended FORTRAN IV with language extensions.

6. Extended ALGOL compiler which provides many facilities in
addition to those of ALGOL 60,

7. Library File Editor enabling the user to easily separate, edit,
and maintain relocatable binary program libraries,

8. Debug III which allows symbolic debugging of user programs.

9. Octal Editor enabling the user to examine and modify the
contents of disk files.

53

CHANGES FROM REVISION 1 TO REVISION 2 OF THE INTRODUCTION TO THE REAL

TIME DISK OPERATING SYSTEM

Substantive changes and additions to this manual are described on the following page by
page basis. Typographical corrections are not included in this list.

Pages 6 and 7

Pages 8 and 9

Pages 10 and 11
Page 13
Pages 14, 26,

27, 29, and 32

Page 18

These new pages describe foreground/background program-
ming concepts as found in RDOS revision 1.

These new pages describe a memory protection and mapping
device which has been developed for the NOVA 800 series
computers,

These new pages describe disk partitioning concepts as
applied to single and dual processor systems.

Page 13 has been expanded to describe the use of keyboard
interrupts for communicating with RDOS.

These pages have been expanded to include additional system
and CLI commands made available by RDOS revision 1.

This illustration has been expanded to depict multiple over-
lay areas.

cut along dotted line

DATA GENERAL CORPORATION

PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

Specific Comments., List specific comments. Reference page numbers when

applicable. Label each comment as an addition, deletion, change or error
if applicable,

General Comments and Suggestions for Improvement of the Publication.

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No 26
Southbaoro
Mass 01772
BUSINESS REPLY MAIL
No Postage Nevess.ary if Mojied In Tha Urited States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FCLD UP

STAPLE

DATA GENERAL
CORPORATION

Southboro,
Massachusetts 01772
(617) 485-9100

	0001
	0002
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	replyA
	replyB
	xBack

