SUPEREDIT

User’'s Manual

093—-0001M—-00

Ordering No. 093-000111

© Data General Corporation, 1974

All Rights Reserved.

Printed in the United States of America

Rev. 00, August 1974

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors.

Original Release - August 1974

CHAPTER 1

CHAPTER 2

TABLE OF CONTENTS

INTRODUCTION
1.1 General....cieeeeeieennennennnns 1-1
1.2 Documentation Conventions...... 1-1
1.2.1 Underlining...eeeeeeieneaens 1-1
1.2.2 Control Characters......... 1-1
1.2.3 SymbolS.eeeenneans Ceeeeaan i-2
1.2.4 Terminals.......... ce e 1-3
1.3 Running SUPEREDIT . .c e eeenennees 1-3
CONCEPTS
2.1 Data FileS..veeitieieeeeneneennn 2-1
2.2 Data Format...ioeeeeenteennnens 2-1
2.3 Edit Buffers......cceeieiunnnnn. 2-1
2.4 The Editing ProcCessS.....eeeee.. 2-2
2.5 Character Set...eeeiiieeeeeenns 2~-2
2.6 Character Pointer (CP)....ee... 2-6
2.7 Interpretation of Line-

Oriented Command Arguments..... 2-3
2.8 Command Structure....... cesessal2=3
2.9 Command Arguments and

MOAifiErSeeeeeeeneseoeeeeannenns 2-5
2.9.1 Alphanumeric Arguments..... 2-5
2.9.2 Numeric ArgumentS.......... 2-5
2.9.3 Numeric Variables.......... 2-6
2.9.4 Special Character Numeric

ArgumMENtS . eeeeeesoseecsoseeses 2-6
2.9.5 Command Modifiers.......... 2-8
2.10 Modes of Operation..e...e.... «..2-8
2.10.1 Input Mode..veeenn ceees e 2-8
2.10.2 Execution Mode...veeeeeoenn 2-8
2.11 Data Input ModeS..veeieeneeeenn 2-8
2.12 Correcting Command Strings..... 2-8
2.12.1 Erasing Characters and
LiNeSeeeneeeeseneeensennans 2-8

2.12.2 Aborting Command Strings...2-9
2,12.3 Verification of Command

CHAPTER 3

SUPEREDIT COMMANDS

3.1 File Specification Commands....3-1
3.1.1 The GW Command.....oceeeees 3-1
3.1.2 The GC Command..eoeeeeeeaeas 3-2
3.1.3 The UY Command...ceeesesess 3-2
3.1.4 The GR Command...eeeeoeeees 3-3
3.1.5 The US Command....ceeeeeees 3-3
3.1.6 The UE Command....c.ccoeeoes 3-4
3.1.7 The U? Command....eceeeeeeoe 3-5
3.2 Data Input Mode CommandS....... 3-5
3.3 File Input CommandS...eceeeesss 3-6
3.4 Text Type-Out CommandS......... 3-7
3.5 Character Pointer (CP)

COmMMANAS ¢ e e e o e s onsocosscacoees ..3-8
3.6 Search Commands and Control

Characters in Searches......... 3-9
3.6.1 Search CommandS..eeesessess 3-9
3.6.2 Control Characters in

SearchesS . veeeeecenansons eeo3-12

3.7 Insertion CommandS.....oceeceeess 3-15
3.8 Deletion CommandS. «..eeoseeeseass 3-16
3.9 Output CommandsS...cceeeeeceeeeess 3-16
3.10 Exit CommandS....««.. ceeseseasas 3-19
3.11 Buffer CommandS..ceeecesescsscs 3-19
3.12 Command String Insertion

CommManNdS.eeceeeeeacesases ceceenene 3-23
3.13 Iteration CommandS..c.ceeeoecesss 3-23
3.13.1 ConstrucCtionN.cseeeesesenses 3-23
3.13.2 Semicolon Command. ...«3-24
3.14 Numeric Variable CommandS...... 3-26
3.15 Flow Control CommandS...seeceese 3-26
3.15.1 Command String Labels...... 3-27
3.15.2 The O CommMand...escececeses 3-27
3.15.3 Conditional Branching...... 3-27
3.16 Special Commands and Command

Modifiers...ceeeen cerececeenans 3-28
3.16.1 Special CommandS.....eeeeee 3-28
3.16.2 Command Modifiers...... ee..3-30
3.17 Case Control CommandS....«..c.. .3-33

ii

CHAPTER 4

APPENDIX A

APPENDIX B

APPENDIX C

IMPLEMENTATION NOTES AND EXAMPLES
Core Utilization........

4.1

4.2 Error Handling...... cees
4.3 RDOS Channel Usage......
4.4

4.5

ASCII CHARACTER SET
SUPEREDIT COMMAND SUMMARY

SUPEREDIT ERROR MESSAGES

iii

Changing the Escape Character..4-3

ExampleS..iiieean.. ceeaccenns

CHAPTER 1

INTRODUCTION

1.1 GENERAL

SUPEREDIT is an extremely versatile and powerful ASCII text
editer specifically designed for use on Data General computers

LG IR L 4

running under an RDOS system.
Some of the major features of SUPEREDIT are:
® Multi-buffer editing
® Multiple I/0 files
® Macro programming
e Numeric variables
It is assumed that the user is on line with an operating
RDOS system. The system is described in the following

document:

093-000075 RDOS Real Time Disk Operating
System User's Manual

1.2 DOCUMENTATION CONVENTIONS
1.2.1 ©Underlining

Where clarification is required in the examples used in
this manual, underlined copy denotes entries output by
SUPEREDIT. Copy not underlined indicates user input.

1.2.2 Control Characters

Control characters such as CTRL-A are typed by holding down
the CTRL key and pressing the letter A. Control characters,
such as CTRL-A are represented in this manual and echoed by
SUPEREDIT as +A.

1.2.3 Symbols

The symbols listed in Table 1-1 are used throughout this
manual for clarity.

Table 1-1. Special Symbols

Symbol Character Explanation
Represented
) Carriage Return Pressing the RETURN key

generates an automatic line
feed in addition to the
carriage return.

S ESCape or The,.dollar sign ($) is
ALTmode echoed on the terminal as a
result of pressing the ESC
or ALT key on your terminal.

A Space Sometimes used in this
manual to emphasize a
space character,

+ Character Used to represent the posi-
Pointer (CP) tion of the Character
Pointer. Also used in con-
trol character (e.g., *A)
representation.

- Tab Represents use of the TAB
or +I character on the
terminal.

t1 Broken Brackets Enclose optional arguments
to a command.

{1} Braces Indicate a choice of
items enclosed.

1.2.4 Terminals

The use of the word "terminal" throughout this manual implies
a teletypewriter, CRT, or an equivalent interactive device.

1.3 RUNNING SUPEREDIT

SUPEREDIT is initialized for ECLIPSE™* line computers by
typing

SPEED)
or
SPEED filename)

! (the exclamation mark is
the SUPEREDIT prompt.)

If "filename" exists, a UYfilename$ command is executed (see
paragraph 3.1.3)., If "filename" does not exist, a GWfile-
name$ command is executed (see paragraph 3.1.1) and the
message CREATING NEW FILE is typed out.
For NOVA® * line computers type
NSPEED)
or

NSPEED filename)

*ECLIPSE is a trademark, and NOVA is a registered trademark
of Data General Corporation, Southboro, Massachusetts.

1-3

CHAPTER 2

CONCEPTS

2.1 DATA FILES

The ASCII user input files referred to in this manual are
those which have been created on an RDOS system. As such
the generalization "filename" used to indicate a user file
is more specifically defined as follows:

tprimary partition:} fsecondary partition:} fsub-directory:}+)
filename f.extension}t

For example:
DP1: MYDIR : FILEl.LS

extension
filename
secondary partition
primary partition

2.2 DATA FORMAT

An ASCII input file contains a string of ASCII characters.
Characters form lines which are terminated by a carriage
return ()). A string of characters up to, but not including,
a form feed character is defined as a page. Files may be
divided into pages or windows containing a fixed number

of lines.

2.3 EDIT BUFFERS

SUPEREDIT provides 36 Edit Buffers which may be used for
editing user files. Commands are available for transferring
data from input files to any buffer, transferring data

from one buffer to another and for outputting from buffers
to output files. Buffers may contain textual data, commands
to be executed, or both.

2.3 EDIT BUFFERS (Continued)

Buffers have single character names (A to 2 and 0 to 9), and
only one buffer is the current buffer at any given time.
Initially, buffer 0 is the current edit buffer. Any edit
buffer referenced during an editing session is considered

to be active.

A detailed explanation of buffer commands is provided in
section 3.11.

2.4 THE EDITING PROCESS
The editing process consists of the following steps:

1. Read text from an input file to an edit buffer
or type in text for a new file.

2. Modify the text in the edit buffer.

3. Write the contents of the edit buffer to an
output file.

Step 3, akove, is extremely important. The output commands
described in section 3.9 must be used to insure preservation
of edited material.

2.5 CHARACTER SET

The character set used by SUPEREDIT is the full ASCII char-
acter set in Appendix A. Both the octal and decimal values
of the characters are given and should be referenced when
using the nI variation of the Insert (I) command discussed
in section 3.7.

2.6 CHARACTER POINTER (CP)

The Character Pointer (CP) is the mechanism used by SUPEREDIT
to keep track of the current position within an edit buffer.
The CP may be located at the beginning of an edit buffer,
between two characters in the buffer, or at the end of the
buffer. The symbol "4" is used in some examples to show the

2.6 CHARACTER POINTER (CP) (Continued)

position of the CP. Character Pointer Commands described in
Chapter 3 are used to reposition the CP to any location
within an edit buffer. Most modification commands will alter
the edit buffer at the CP position. An insert (I) command
for example, will insert a text string at the position of

CP. The effect of a command on the CP is described with
respective command.

2.7 INTERPRETATION OF LINE-ORIENTED COMMAND ARGUMENTS

SUPEREDIT considers a line as a string of characters ending
with a carriage return. For those commands which are line-
oriented (e.g., K and L) SUPEREDIT treats the numeric
argument of these commands in the following manner.

THIS IS LINE 1
— |

THIS IS LINE 2
i 1
FHIS IS(T) LINE 3

{ f 1

THIS IS LINE 4

1 &l
In the above illustration the CP is located in the middle of
line 3. The command -2K kills lines 1, 2 and the characters
up to the CP in line 3. The command 2K kills the characters
in line 3 starting from the CP plus the entire line 4. A 0K
command kills the characters from the beginning of line 3 up
to the CP. A 1K command kills the characters starting from
the CP up to the end of line 3. A -1K command kills line 2
and the characters up to the CP in line 3. ‘

2.8 COMMAND STRUCTURE

The commands used in SUPEREDIT are of the general form:

{{m?n}}' tmodifierst code fstringts

or

fmodifiers}-[{m?n}J- code fstringts$

2.8 COMMAND STRUCTURE (Continued)

where: n is an optional numeric argument which may pre-
cede certain commands.
m,n is an optional double argument allowable on
certain commands.
modifiers may be used to alter the normal operation
of the command.
code is the character or characters which repre-
sent a SUPEREDIT command. Code may be either
upper case or lower case characters.
string is a character string argument required
by certain commands.
$ is an ESCape character which terminates a single
command .

A command string consists of one or more concatenated com-
mands. The last command in the string is always terminated

by a double ESC ($$) which signals SUPEREDIT to begin proc-
essing the command.

i.{{m?n}}' code Estring}${}m?n}}'code fstring}t$...S$$

Example:

Assume the current line is
SOMEONE&NEEDED

the command string
i—3D$IAHELP$T$$

would delete ONE, insert AHELP and type the line including
the current position of the CP shown as " (+)".

SOME HELP (+) NEEDED

Commands which never require string arguments following the
command code (e.g., L,T,D) do not require an ESC ($) to
delimit the command within a command string.

Example:

L3DL2TITEXTSTSS is equivalent to

13DSL$2TSITEXTSTSS

2.9 COMMAND ARGUMENTS AND MODIFIERS

There are two categories of command arguments: Alpha-
numeric arguments which follow commands and numeric argu-
ments which always precede commands.

2.9.1 Alphanumeric Arguments

Alphanumeric arguments are the character string arguments
which follow such commands as Insert (I) or Search (S).

- T~
Por example:

+IJUNE$S1974$5S Both "JUNE" and "1974" are
alphanumeric arguments to
the commands I and S respec-
tively.

An ESC ($) must always be used to terminate an alphanumeric
argument and thereby delimit the argument from the next
command in the command string.

2.9.2 Numeric Arguments

Numeric arguments which precede commands are always evaluated
to a decimal integer value before the command is executed.

A numeric argument may be an expression, may contain any
digit, the numeric operators described in Table 2-1,

numeric variables as described in section 3.14 and special
characters that represent numeric values as described in
paragraph 2.9.4.

Table 2-1. Numeric Operators

Operator Function
+ Addition
- Subtraction
* Multiplication
/ Division

2.9.2 Numeric Arguments (Continued)

Evaluation of numeric arguments which contain numeric oper-
ators is performed from left to right.

Single numeric arguments are represented in this manual by
n and double arguments by m,n. The double argument must
always be separated by a comma and m must always be less

than or equal to n. Generally, if the numeric argument (n)
is omitted from a command, n is assumed to be 0.

Example:

13+1,60TS$ Type out the 5th through 60th
characters in the buffer.

Numeric arguments may be positive or negative and are
interpreted as a value in the range of -32768 to +32767
with the following exceptions:

a) Double argument commands (m,n)

b)
c) J
d) =

which are interpreted as being in the range 0 to +65535.

2.9.3 Numeric Variables

There are 10 numeric integer variables (named 0 to 9). Each
of the 10 variables is initially set to 0. The variables

can be individually set to a value, incremented or decremented.
They can be used as numeric arguments to commands, alone,

or in argument expressions. Numeric variable commands are
described in section 3.14.

2.9.4 Special Character Numeric Arguments

These special characters stand for specific values associated
with the Character Pointer (CP), the size of the text buffer
or lines in the current buffer. The special characters are
described in Table 2-2 and can be used as numeric arguments.
Alphabetic characters can be either upper case oOr lower case.

2.9.4 Special Character

Numeric Arguments (Continued)

Table 2-2. Special Character Numeric Arguments

Operator

.
P NG

Meaning

N

. (period)

VL

Represents the CP position
immediately following the last
character in the buffer. This
is equivalent to the total num-
ber of characters in the buffer.

Represents current CP position.
This is equivalent to the
number of characters between
the beginning of the buffer
and the character to the left
of the CP.

A special double argument
which is equivalent to 0,2
(the entire buffer).

Represents the number of the
line which contains the CP.

Represents the number of lines
in the current buffer.

Example:

16VS0$.,.+VIOTSS

Type out the 7 characters
following the CP. This
command uses numeric
variable commands described
in section 3.14.

2.9.5 Command Modifiers

Several command modifiers (@ and :) are used with various
commands to extend the versatility of the commands by
altering their normal interpretation. The command modifiers
must precede the command code in the command string. The
command modifiers are described in detail in paragraph 3.16.2.

2.10 MODES OF OPERATION

2.10.1 Input Mode

When SUPEREDIT outputs a prompt (.:) to the terminal, SUPER-
EDIT is ready to accept a command string which must be
terminated by a double ESC ($$). Command strings may be

typed on more than one line.

2.10.2 Execution Mode

When SUPEREDIT recognizes a double ESC ($$) it outputs

a carriage return and begins execution of the commands in

the command string. When SUPEREDIT finishes execution of the
commands in a command string it outputs another prompt (L)
indicating that the user may enter additional commands .

2.11 DATA INPUT MODES

SUPEREDIT has the facility to input file data by pages
(form feed-to-form feed) or when in Window Mode by a set
number of input lines. The commands which control Page
and Window Mode operation are described in section 3.2.

2.12 CORRECTING COMMAND STRINGS

2.12.1 Erasing Characters and Lines

The RUBOUT key is used to delete erroneously typed char-
acters from a SUPEREDIT command string. Each time the
RUBOUT key is pressed, the right most character is deleted.
When a character is deleted it is echoed on the terminal.

2.12.1 Erasing Characters and Lines (Continued)

For example:

L IHELLOOLLEHBYESS The user pressed RUBOUT once
for each character in the
word HELLO.

A single line may be deleted by typeing CTRL-X (+X) and is
equivalent to typing RUBOUT back to the beginning of the
line. The line may not be recovered. A +X at the beginning
of a line deletes the previous 1line.

Example:

HELLO +4X is equivalent to the
<IBYESS previous example.

2.12.2 Aborting Command Strings

In Input Mode, an entire command string (on one or more
lines) may be aborted by typing CTRL-A (4A). SUPEREDIT
will return the user to the prompt condition. If +A is
inadvertently typed, the command string may be recovered
by a «n command (see paragraph 3.16.1) since SUPEREDIT
always saves the last command string.

Example:

LITEXTS
IMORETEXTS
ILOTSMORE TEXT +A *A eliminates all three lines
. of the command string.
In execution mode, typing a +A will terminate execution
of the command string and return SUPEREDIT to the Input Mode.

2.12.3 Verification Of Command Lines

A CTRL-R (4R) can be used to immediately retype the last line
of a command string for verification. This is useful for
those lines which have been corrected by excessive use of
RUBOUT and are difficult to read.

CHAPTER 3

SUPEREDIT COMMANDS

The commands described in this chapter provide the facility
for editing, splitting, rearranging and merging files.
Sections 3.1 through 3.10 describe the fundamental commands
required for most editing sessions. Section 3.11 through
3.17 describe commands for the advanced user.

Occassionally the user may precipitate an error message due
to incorrect command usage. Refer to section 4.2 for a
complete explanation of error handling.

3.1 FILE SPECIFICATION COMMANDS

Files are considered to be either global or local. A global
file is applicable to all 36 edit buffers while a local

file is only active for one particular edit buffer. Local
files take precedence over global files. Therefore, any
command which accesses a file (e.g., File Input, N and Q
Search, Output) will apply to an open local file if one
exists. Otherwise it will apply to an open global file.

Note: "Filenames" shown in command formats may include
extensions.

3.1.1 The GW Command

The GW (Get for Writing) command is used specifically for
creating a new file. The general form of the command is:

+GWfilenames$$

The "filename" specified in the command must not already
exist. A sequential file named "filename" is opened for
output. Only one global output file may be opened at one
time. If another file is already opened for output it
must be closed before a new GW command is specified

and executed.

3.1.1 The GW Command (Continued)

Text which is inserted into edit buffers is subsequently
copied to the "filename" specified in the GW command by
appropriate output and file closing commands.

Another form of the GW command is:
!:GWfilenames

This command is essentially the same as the GWfilename$$
command except that a random file is created and opened
for output rather than a sequential file.

3.1.2 The GC Command
This command is of the form:
LGCSS

The command closes the current output file as is. It dces
not provide for writing from any edit buffer or input file
before closing the output file.

3.1.3 The UY Command

This command opens an existing file for input, yanks a page
from the input file into an edit buffer and creates a new
file for output with the extension .SC.

The command 1s of the form:
LUYfilename$$
Example:

LUYTEST.EX$$ Open TEST.EX for input
Open TEST.SC for output
Y (Yank) a page

The "filename" specified for input in the UY command may

not have a .SC extension. If the input "filename" is
sequentially or contiguously organized then the new output
file will be sequentially organized. If the input "filename"
is randomly organized then the new output file will be ran-
domly organized. Only one global input file may be opened

at one time.

3-2

3.1.4 The GR Command

This command closes the currently open input file and opens
for input the "filename" specified in the command.

The form of this command is:
+GRfilenameSs

After the specified file is opened, a Yank (Y) or Append (A)
command (see section 3.3) must be used to insert a page into
the edit buffer. This does not occur automatically as in
the UY command.

Another form of the GR command is:
LGRS$S

This command closes the currently opened input file without
opening another file.

3.1.5 The US Command

The US command is used to copy the content of the current
buffer and the remainder of the input file to the output
file (an E command) and then close both the input and output
files. The current buffer is left cleared. The form of
this command is:

1US$$

If the input and output files were opened by a UY command

then the input file is renamed to filename.BU and the output
file is renamed from filename.SC to the orginal filename of
the input file. The result is a backup file of the original
input file and a new edited file with the original filename.

3.1.5 The US Command (Continued)
Example:

LUYSAMPLE.JKSS Open input file SAMPLE.JK
Open output file SAMPLE.SC

Edit commands

1Usss Copy current buffer and rest
of SAMPLE.JK to SAMPLE.SC
Close SAMPLE.JK
Close SAMPLE.SC
Rename SAMPLE.JK to SAMPLE.BU
Rename SAMPLE.SC to SAMPLE.JK

3.1.6 The UE Command

The UE command is used to copy the content of the current
buffer and the remainder of the input file to the output
file (an E command) and close the input and output files.

If the input and output files were opened by a UY command
then the input file is deleted, and the output file is
renamed to the name of the original input file. The cur-
rent buffer is left cleared.

The form of this command is:

1UES$S
Example:
LUYSAMPLE.JK Open input file SAMPLE.JK
Open output file SAMPLE.SC
: Edit Commands
LUE$$‘ Copy current buffer and rest

of SAMPLE.JK to SAMPLE.SC
Close SAMPLE.JK

Close SAMPLE.SC

Delete SAMPLE.JK

Rename SAMPLE.SC to SAMPLE.JK

3.1.7 THE U? Command
The U? command is the file status command. Tt provides a
list of open global and local input and output files. The
local files are those relevant to the current edit buffer,
The form of the command is:

'U?s8s

Example:

LUYSAMPLE.JK$U?$$

GLOBAL:
INPUT FILE - SAMPLE.JK
OUTPUT FILE - SAMPLE.SC
LOCAL:

INPUT FILE - NONE
OUTPUT FILE - NONE

3.2 DATA INPUT MODE COMMANDS

Data is read from an input file to the current edit buffer

in either page lengths (form feed-to-form feed) or in

window lengths (fixed number of lines). Initially SUPEREDIT
is in Page Mode and any File Input command (e.g., Y) causes
page lengths to be input. The commands described in Table 3-1
permit switching from one data input mode to the other.

Table 3-1. Page and Window Mode Commands

Command Description

WM Returns value of data input mode. If
WM=0, SUPEREDIT is in Page Mode. If
WM=n (where n>0) SUPEREDIT is in Window
Mode and n is number of lines per window.

nWwM Changes input from Page Mode to Window
Mode with a window length of n lines.
SUPEREDIT is initialized in Page Mode.

0WM Changes input from Window Mode to Page Mode.

3.2 DATA INPUT MODE COMMANDS (Continued)

Data read from an input file in Window Mode will include
any form feed characters embedded in the file exactly as
they are encountered. In Page Mode SUPEREDIT remembers
when the last character read by an input command was a form
feed but does not place the form feed character into the
edit buffer. The detection of the form feed character

on input is pertinent to the R, nR and E output commands
discussed in section 3.10.

3.3 FILE INPUT COMMANDS

The commands described in Table 3-2 read data from an input
file into the current edit buffer. Data is read in either
as pages or window lengths depending on the current data

input mode (Page or Window).

Table 3-2. File Input Commands

Command Description

Y The Yank command. The current edit buffer
is cleared, then a page or window length
of the input file is read into the buffer.
The CP is positioned at the beginning of
the buffer.

A Appends a page or window length from the
input file to the current edit buffer.
The CP position is unchanged.

:Y and :A Essentially same as Y and A, respectively,
except returns a command value of +1 if
Yank or Append was successful and 0 if
the command failed. No error message

is output. Both :Y and :A may be used

as numeric arguments to the next com-
mand. For example:

L:Y*10T$$ If Yank 1is successful
type 10 lines.

3.4 TEXT TYPE~OUT COMMANDS

Text Type-Out commands (described in Table 3-3) may be used
to examine part or all of the current buffer.

When used with a single numeric argument, the T command is

line-oriented.

, . . X o
When used with a pair of numeric arguments

(m,n), the T command is character oriented.

NOTE

The Text Type-Out commands do not move the CP.

Table 3-3. Text Type-Out Commands

Command Description

T Types the content of the entire current line
(line containing the CP) and includes the
character " (+)" at the current location
of the CP.

0T Types current line from beginning to loca-
tion of the CP.

nT Types the content of the current buffer from
the location of the CP through the next n
carriage returns.

-nT Types the content of the n lines preceding
the current line plus the content of the
current line up to the CP.

m,nT Types the content of the current buffer from
the m+lth character up to and including
the nth character.

: 0T Forms of T commands modified

:nT by colon (:) print output

:=nT on line printer rather than

:m,nT on terminal.

3.5 CHARACTER POINTER (CP) COMMANDS

The Character Pointer (CP) commands described in Table 3-4
may be used to move the CP between any two characters in

the current edit buffer. The CP may be moved forward or
backward, by characters or by lines. The CP is the means of
specifying within an edit buffer the position at which

insertions,

deletions or corrections are to be made.

Table 3-4. Character Pointer (CP) Commands

Command Description
nJ Move the CP to the beginning of line n in
the current buffer. n is always relative
to the beginning of the current buffer.
Line 1 is the first line of the buffer.
J, 0J Move the CP to the beginning of the first
or 1J line in the buffer.
nL Move the CP forward across n carriage
returns and position the CP at the beginning
of the line following the nth carriage
return.
-nL Move the CP backward to the beginning of
v the nth line preceding the current line.
L or Move the CP to the beginning of the current
0L line.
nM This command moves the CP n characters to

the right or left. If n>0 the CP is moved
n characters to the right. If n<0 the CP
is moved n characters to the left.

3.6 SEARCH COMMANDS AND CONTROL CHARACTERS IN SEARCHES

3.6.1 Search Commands

Search commands (see Table 3-5) are used to reposition the
CP by means of a character string search. The Search com~
mands cause SUPEREDIT to scan through the text until a
specified string of characters is found, and then positions
the CP after the last character in the string unless a +P
is inserted into the search string. If the end of the

edit buffer is reached

during a S or C command and the

search is not successful, an error message is printed on
the terminal and the CP is repositioned at the beginning of

the buffer. For N and

Q searches an unsuccessful search

will result in the entire file being read and the buffer
being left empty. Text strings being searched for may not

overlap page or window

Table

boundaries.

3-5. Search Commands

Command

Description

Stext$

nStext$

-nStext$S

Searches the current buffer from
position of CP for string "text". 1If
string is found, CP is positioned after
the last character in the string. I
not found, CP is positioned before the
first character in the buffer and an
error message is printed.

Similar to the S command except search
is from CP through next n carriage
returns. The CP is left at the begin-
ning of the line after the last line
searched if search is unsuccessful.

Similar to S command except search
starts from beginning of nth line
preceding the current line and ends at
the current position of the CP. If the
search fails, the CP is located at its
original positions and an error mes-
sage is printed.

3.6.1 Search Commands

Table 3-5.

{(Continued)

Search Commands (Continued)

Command

Description

0OStexts

m,nStext$

CtextlStext2$

nCtextlStext2$

-nCtextlsStext2$S

Searches for string "text" from the be-
ginning of the current line to the DOSi-
tion of the CP. If the string is found,
CP is positioned after the last char-
acter in the string. If not found, the
CP is located at its original position
and an error message is printed.

Searches the m+lth through nth char-
acters of the buffer inclusive for
string "text". If string is found,
CP is positioned after the last char-
acter in string. If not found, CP

is positioned after the nth character
and an error message is printed.

The C (Change) command is a combination
search and modify command. A search
is conducted from the CP position for
"textl". If found, "textl" is deleted
and "text2" is inserted in its place.
The CP is positioned after the last
character of "text2". If "textl" is
not found in current buffer, an error
message is printed and the CP is
positioned at the beginning of the
buffer.

Same as CtextlS$text2$ except search is
from CP through next n carriage re-
turns. The CP is positioned at the
beginning of the line after the last
line searched if search is unsuccessful.

Similar to the CtextlS$text2$ command
except the search starts from the
beginning of the nth line preceding the
current line and ends at the position
of the CP. If the search fails, the CP
is located at its original postion and
an error message is printed.

3-10

3.6.1 Search Commands

Table 3-5.

(Continued)

Search Commands (Continued)

Command

Description

OCtextlStext2$

m,nCtextlStext2$

NtextS$S

Qtexts$S

Searches for "textl" from beginning of
current line to the position of the CP.
If found, "textl" is deleted and

"text2" is inserted it ite place. The
CP is positioned after the last char-
acter of "text2". If "textl" is not
found, the CP is located at its
original position and an error mes-

sage is printed.

A search is conducted from the m+lth
through nth characters of the buffer
for "textl". If found, "textl" is
deleted and "text2" is inserted in

its place. The CP is positioned after
the last character of "text2". 1If
"textl" is not found an error mes-
sage 1is printed and the CP is
positioned after the nth character.

Performs same function as Stext$
command except search continues across
page boundaries if necessary until the
end of the input file is reached. The
search begins at the CP position in
the current buffer. If the end of

the buffer is reached an R command is
executed and the search continues until
the string is located or an end-of-
file is reached. If the search is not
successful, an error message is
printed.

Similar to an N command except a Y
command is executed rather than an R
command, if the string is not found in
the current buffer. ©No output is done
to the output file.

3.6.1 Search Commands

(Continued)

Table 3-5. Search Commands (Continued)
Command Description
@S%texts Same as Stext$ except the text is

:StextS$S

delimited by the first character after
S (arbitrarily shown as %). The @
modifier changes the command termina-
tor from ESC(S$S) to any other char-
acter (e.g., %) and may be used with
any S, N, C or Q command.

Same as Stext$ except the command
returns a value of +1 if it succeeds
and 0 if it fails. No error message
is output if search is unsuccessful.
The command can be used as a numeric
argument to the next command. The
colon (:) modifier may be used with
any S, N, C or Q command.

The command modifiers may also be
combined. For example, the following
command strings are legal.

2text?

@:5
:@C%textl%text2%

3.6,2 Control Characters In Searches

SUPEREDIT executes a search command by attempting to match
the search command argument character-for-character with
some portion of the current buffer. Several control char-
acters are available for altering the normal search process
and are described in Table 3-6.

3.6.2 Control Characters In Searches (Continued)

Table 3-6. Control Characters In Searches

Command Description
472 When the 42 character is included in a
search command string it is an indication
that the position occupied by +Z is un-
important and any character is an acceptable
match.
For example:
ABCDE matches AB+ZDE
ANx Any character in the pousition occupied by
*Nx is acceptable except for the character x.
For example:
ABCDE matches ABC4NEE
ABCDE does not match ABC+NDE
+Vx A +Vx in a search string indicates that any
number of the character x (including 0) is
an acceptable match.
For example:
ABCE and
ABCDE and
ABCDDDE are acceptable matches to
ABC4VDE
4+ This control character causes the char-

acter following +<« to be interpreted literal-
ly rather than as a special character.

This control character is useful when
conducting a search for other control char-
acters (e.g., %72, tN, etc.)

3.6.2 Control Characters In Searches (Continued)

Table 3-6. Control Characters In Searches (Continued)
Command Description
+P +P in a1 search string is a character pointer

(CP) positioning character. If the search

is successful, the CP will be positioned
where the 4P was in the search string,
instead of at the end of the matching string.

For example:

iStextl¢PAtext2$T$$
textl (+)Atext2!

+T This control character matches any number
of spaces, or TAB (including 0).

For example:

ABCAAADE and
ABCADE and
ABC —+|DE and
ABCDF. are all acceptable matches
for
ABC+TDE
NOTE

Any other control character (except TAB (+T), CR (+M), F¥F (#L),
VT (+K), +G, LF (4J), +3) in a search string is flagged as
an error unless precedcd by a '+ control character.

3

14

3.7 1INSERTION COMMANDS

All insertion commands described in Table 3-7 cause a string
of characters, specified in the command, to be inserted into
the current buffer at the position of the CP. The CP is
then repositioned to follow the last character of the
insertion.

Table 3-7. Insertion Commands

Command Description

Itext$ The string specified by "text" is inserted
into the current buffer at the position of
the CP and the CP is repositioned to follow
the last character of the insertion.

+Itexts$ This command is similar to I command except
that a TAB (-|) is inserted into the edit
buffer before the text string. The command
is equivalent to I-textS$.

nI A special form of the I command, it allows
insertion of a single character, where n

1s the decimal equivalent of any ASCII char-
acter given in Appendix A. The command is
particularly useful for inserting char-
acters which may not be available on the
input terminal. It is the only way to
insert the characters +B(2I) and +G(7I).

n\ Inserts the ASCII representation of the
decimal number n into the buffer at the CP
location. Leading zeroes are suppressed.

@I%text? Same as Itext$ and +ItextS$ except that the
A+I%texts text is delimited by the first character
after I (arbitrarily shown as %). The @

modifier changes the command terminator from
ESC ($) to any other character (e.ag., %).

3-15

3.8 DELETION COMMANDS

The commands described in Table 3-8 are used to delete char-
acters and lines from an edit buffer.

Table 3-8. Deletion Commands

Command

Description

nkK

-nK

K or OK

m, nk

nD

Deletes characters in the current buffer
from the CP up to and including the next n
carriage returns.

Deletes the n lines preceding the current
line plus the characters up to the CP in
the current line.

Deletes the characters from the CP back to
the beginning of the line containing the CP.

Deletes the m+lth through nth characters
inclusive from the current buffer. The CP
is positioned after the mth character.

Deletes characters from the current buffer.
If n is positive, deletes the n characters
following the CP. If n is negative, deletes
the n characters preceding the CP.

3.9 OUTPUT COMMANDS

The commands listed in Table 3-9 permit the user to output
data from edit buffers and input files to output files.

NOTE

The P and PW commands do not clear the buffer after
output unless modified by the colon (:) modifier.

3.9 OUTPUT COMMANDS (Continued)

Table 3-9. Output Commands

Commands

Description

nP

-nP

oP

PW

nPwW

-nPwW

Outputs the entire contents of the current
buffer to the output file with an appended
form feed character. The CP does not move.

Outputs n lines from the position of the CP
in current buffer to the output file with
an appended form feed character. The CP
does not move.

Outputs the preceding n lines plus the
characters up to the location of the CP in
the current line to the output file with an
appended form feed character. The CP does
not move.

Outputs the characters on the current line,
from the beginning of the line to the
location of the CP, to the output file with
an appended form feed character. The CP
does not move,

Outputs the m+lth to nth characters inclusive
from the current buffer to the output file
with an appended form feed character. The

CP does not move.

Outputs the entire contents of the current
buffer to the output file without appending
a form feed. The CP does not move.

Outputs n lines from the position of CP in
the current buffer to the output file with-~
out appending a form feed. The CP does

not move.

Outputs the preceding n lines plus the char-
acters up to the location of the CP in the
current line to the output file without
appending a form feed. The CP does not move.

3.9

OUTPUT COMMANDS (Continued)

3-9. Output Commands (Continued)

Command

Description

0PW

m,nPW

nR

and :nR

Outputs the characters on the current line,
from the beginning of the line to the
location of the CP, to the output file
without appending a form feed character.
The CP does not move.

Outputs the m+lth to nth characters inclusive
from the current buffer to the output file
without appending a form feed. The CP

does not move.

Modified form of P command clears buffer
after output. Eguivalent to P#K. The
colon (:) modifier may be used with all P
command variations.

Outputs the content of the current buffer,
appends a form feed only if detected as

last character read on the previous input

(A or Y) to the buffer, clears the buffer
and yanks another page or window length into
the buffer.

Performs an R command n times.

Modified forms of R and nR commands return
a value of +1 if input is successful and 0
if it fails. No error message is output.
The commands may be used as numeric argu-
ments to the next command.

Outputs the contents of the current buffer
and the remainder of the input file to the
output file. Any form feeds detected on
input are copied to the output file. The
current buffer is left cleared.

3.10 EXIT COMMANDS

The commands described in Table 3-10 are used to exit from
SUPEREDIT.

Table 3-10. Exit Commands

Command Description
u Exit from SUPEREDIT and return to the CLL.
SUPEREDIT closes all files before returning

to CLI. This command is used to make an
orderly exit from SUPEREDIT at the end of
an editing session.

+C A control character which interrupts SUPER-
EDIT, creates a BREAK.SV file and returns
the user to the CLI level. Should only be
used as an emergency exit from SUPEREDIT.

Buffer commands provide the flexibility for manipulating
blocks of data which can be stored in any of the 36 edit
buffers (0 to 9 and A to Z) available in SUPEREDIT. One
edit buffer is current at any time. Commands are available
to open input and output files which apply only to a given
edit buffer. These files are called local files. Files
which do not specifically apply to a given buffer are called
global files. Any commands which act on files (e.g., Y,

P, etc.) will apply first to open local files. Therefore

a local file must be closed before a global file can be
used for a particular command.

Buffer commands are described in Table 3-11.

3.

11 BUFFER COMMANDS (Continued)

Table 3-11. Buffer Commands

Commands

Description

BSx

B?S

B?x

BCx

This command changes the current edit buf-
fer to edit buffer x. x is a single char-
acter name for any one of the 36 edit buf-
fers (A to Z and 0 to 9). Only one edit
buffer may be current at a time. The
status of the CP position and of any open
local files is saved when the current

edit buffer is changed, and is restored
for the new edit buffer. Commands such

as Yank (Y) and Append (A) input data from
an input file to the current edit buffer.

The buffer status command provides a list
of all active buffers and their length
(characters) and indicates which edit
buffer is the current buffer with a right
angle bracket (3>).

For example:

1B?$$
BUFFER I - 36
> BUFFER A - 18749
BUFFER G - 1902

Buffer A is the current buffer.
Types out status of buffer x.

Copies the entire contents of the current
buffer to buffer x after clearing buffer x.
The content and CP position of the current
buffer remain unchanged. Buffer x CP is
positioned at the beginning of buffer x.

3.11 BUFFER COMMANDS (Continued)

Table 3-11. Buffer Commands (Continued)

Command

Description

nBCx

-nBCx

m,nBCx

BTx
nBTx
-nBTx

m, nBTx

BKx

Copies the next n lines starting from the
present position of the CP in the current
buffer to buffer x after clearing buffer X.

For example:

+BS3$5BCASS Copies 5 lines from
buffer 3 to buffer A
after clearing buffer
A. The content and
CP position of buffer
3 remain unchanged.
Buffer A CP is
positioned at the
beginning of buffer A.

Copy the n lines preceding the curren* line
plus the characters on the current line up
to the CP to buffer x after clearing buf-
fer x. The content and CP position of the
current buffer remain unchanged. Buffer x
CP is positioned at the beginning of buffer

X.

Copies the m+lth through nth characters
inclusive from the current buffer to buf-
fer x after clearing buffer x. The content
and CP position of the current buffer

remain unchanged. Buffer x CP is positioned
at the beginning of buffer x.

Same as BCx, nBCx, -nBCx and m,nBCx
respectively except characters moved from
current buffer are deleted (buffer
transfer).

Inactivate buffer x. Buffer x may not
be the current buffer.

3-21

3.11 BUFFER COMMANDS (Continued)
Table 3-11. Buffer Commands (Continued)
Command Description

BGx ffilenamet}t $

BUx tfilename}

BAX

Where Gx is GR, GW or GC. The file-
name specified is opened or closed
local to the current edit buffer.
Only one local file may be open for
input and one local file may be open
for output for each active buffer.
The U? command provides a status re-
port of global and local input/output
files for the current buffer.

Where Ux is UY, UE or US. The local
input and output files are opened or
closed in accordance with the re-
spective UY, UE or US command.

Activate buffer x. All buffers ex-
cept for the current buffer are
stored on disk unless explicitly
deleted by a BKx command. In the
event of an error, it is possible
to recover all the active buffers
in a subsequent invocation of
SUPEREDIT by use of the BAx com-
mand for each buffer to be activated.
The buffer status (i.e., content
and CP position) is retained. How-
ever local and global file status
will be lost.

w
|

22

3.12 COMMAND STRING INSERTION COMMANDS

The commands described in Table 3-12 are used to insert the
contents of a file or edit buffer into the command string.

Table 3-12. Command String Insertion Commands

Command Description

+Gfilenames$ The inclusion of this command in a command
string will cause the contents of the file
named "filename" to be inserted in the
command string in place of the +Gfilename$
command. The file may contain text to be
inserted, commands to be executed, or both.
The file must be less than 16K bytes long.

+Bx This command in a command string will cause
the contents of buffer x to be inserted in
the command string in place of the +Bx
command. Buffer x may contain text to be
inserted, commands to be exXecuted, or both.
Buffer x cannot be the current buffer.

The +Bx and +Gfilename$ commands may be nested up to 10
levels deep. When the 4Bx or tGfilename$ commands are used
as arguments to Search (section 3.6) or Insertion commands
(section 3.7) the characters up to the first ESC ($) in

the buffer or file are treated literally as text characters
rather than as commands.

3.13 ITERATION COMMANDS

3.13.1 Construction

A command string may be executed any number of times by
placing the command string between angle brackets and specify-
ing the number of iterations with a numeric argument pre-
ceding the brackets. A command string within angle brackets
is called a command loop. The general form of a command

loop is:

3.13.1 Construction (Continued)
n <command string>

If n<0, the commands within the brackets are skipped. If
n>0, the commands are repeated n times. If n is omitted,
the commands are repeated indefinitely.

For example:

! :SDATEAS <IJUNES > $$ Searches for DATEA and inserts
JUNE if found; otherwise CP
is repositioned to beginning
of buffer. No error messade
if string is not found. If
DATEA is found, value of
:SDATEA is +1 and loop is
iterated one time. If search
fails :SDATEA is 0 and loop
is skipped.

Nesting of command loops is permitted up to 10 levels deep.

Search commands and File Input commands within command loops
are treated as though they were modified by the colon (:)
modifier (paragraph 3.16.2). That is, rather than type out
an error message if the command fails, the command returns

a value of +1 if successful, 0 if it fails. Even if the
search fails, command execution within the command loop
continues. Therefore Search commands within command loops
should be written so as to provide a numeric argument to

the next command or be used in conjunction with the semi-
.colon (;) command described in the following paragraph.

3.13.2 Semicolon Command

A semicolon (;) command can be used to prematurely terminate
a command loop. The command transfers control out of the
current command loop to the command immediately following the
command loop if the last preceding Search command (s,C,N or Q)
failed. Otherwise command execution within the command

loop is continued. The semicolon (;) applies to the last
nrevious search even though other commands may appear in the
command string between the search command and the semicolon.

3.13.2 Semicolon Command (Continued)
For example:

+<CJUNESJULYS; >TSS This command string changes all
occurrences of JUNE to JULY
in the current buffer and types
out the first line in the buf-
fer when through.

LY<<StP;$;1KI) This command string removes
S>R;>8S the comment field from all

pages of a source code file.

Semicolon (;) commands may only be used in command loops and
are otherwise flagged as an error.

The semicolon command can also be of the form:
n;

where: n is any numeric argument
If n<0 then n; terminates the command loop.
If n>0 the n; is disregarded.

If a Search command in a command loop is not used as a
numeric argument to another command or followed by a semi-~
colon command, the n; command may be used as an alternate
means of testing for an exit from the command loop. Good
SUPEREDIT programming practice would dictate that one of
these techniques be used for determining the results of a
Search command in a command loop. Otherwise, command
interpretation may be incorrect.

A colon (:) command modifier can be used with the semicolon
(;) and n; commands. The form is:

o or n:;
and reverses the action of the semicolon (;). That is,

control is transferred out of the command loop if the last
search was successful or n>0.

3.14 NUMERIC VARIABLE COMMANDS

The commands which alter the ten numeric integer variables
(0 to 9) are described in Table 3-13. Each command returns
a command value. Therefore, the commands may be used alone,
in numeric expressions, or as numeric arguments to other
commands.

Table 3-13. Numeric Variable Commands

Command Description
Vv Represents the current value of variable v.
Viv Increments variable v and represents the

incremented value.

VDv Decrements variable v and represents the
decremented value.

nvSv Sets variable v to value n and returns
that wvalue.

Example:

15VS1$VI+1ITSS Set variable 1 to 5 and type
out 6 lines.

3.15 FLOW CONTROL COMMANDS

SUPEREDIT commands may be combined in a manner to provide
unconditional branching to predefined labels and to provide
branching based on the evaluation (true or false) of a
number of branching conditions. These features permit the
user to write SUPEREDIT "programs" to solve complex editing
problems.

3.15.1 Command String Labels

The facility used for naming locations within a command string
is the command string label which has the form:

tlabel!

Label is a string delimited by a pair of exclamation points
and may be placed anywhere in a command string except in text
string arguments.

Labels are ignored unless specifically referenced by an
unconditional branch command (paragraph 3.15.2). Therefore,
they may also be used as comments throughout a SUPEREDIT
proyram.

3.15.2 The O Command

The unconditional branch command is the O command and is of
the form:

!0labels$

The command causes an unconditional branch to be performed to
:label! in the command string and continues processing the
command string from the first command immediately following
:label!. The label must contain fewer than 48 characters and
may not be within a command loop.

However, an unconditional branch command may be used to exit
from a command loop.

3.15.3 Conditional Branching
The general form of a conditional branch command is:
n"xstring'

where: n is a numeric argument
X 1is one of the conditions (defined in Table 3-14)

which is checked against the argument n, and
string is a command string.

If the condition is true, the commands until the next single
quote (') are executed. If the condition is false, the
commands before the next single quote (') are skipped and
execution begins with the command which follows the single
quote (').

3.15.3 Conditional Branching (Continued)

Table 3-14. Conditional Branching Commands

E;nditional Branching Command (x) Meaning
n"G True if n >0
n"L True if n<O0
n"E True if n = 0
n"N True if n # 0

Conditional Branching commands can be nested and can also
contain or be contained within a command loop. If included
within a command loop, the single quote (') associated with
the double quote (") of the Conditional Branch command must
be within the same command loop level. That is, when
command loops are nested, a Conditional Branch command

may not start at one command loop level and end at another.

Acceptable Not Acceptable

'<SLDAS;0L1IT> <SLDAS"NOL1T>'

3.16 SPECIAL COMMANDS AND COMMAND MODIFIERS

3.16.1 Special Commands

There are several special commands available. These com-
mands are described in Table 3-15.

3.16.1 Special Commands (Continued)

Table 3-15. Special Commands

Command

Description

Xstring$

~n

The Trace command. Used primarily for de-
bugging complex SUPEREDIT macros. The first
appearance of a "?" command in a command
string turns tracing on and causes SUPEREDIT
to print each command and its numeric argu-
ments as it is executed. Subsequent "?"
commands in the command string complement
the trace mode flag thereby allowing the
user to turn tracing on or off within a

command string.
Execute "string" as a CLI command.
For example:

{XDISKSS

R
LEFT = 692, USED = 332
1

Numeric typeout command. Causes the value
of n to be printed on the terminal. n may
be any numeric argument or expression.

When used as the first command after a prompt,
causes the previous command line to be
placed in buffer n. This command is
particularly useful for recovering from an
inadvertant +A command (see section 2.12).
If a +n was intended as the first command
but something else was typed, recovery may
be accomplished by a +X or sufficient
RUBOUTs to rubout the remainder of the line.
If more than four characters had been typed,
however, part of the old command line will
be lost.

3.16.2 Command Modifiers

There are two command modifiers which alter the normal
interpretation of commands. The modifiers may be used
individually or in combinations. The modifiers are described
in Table 3-16.

Table 3-16. Command Modifiers

Command
Modifer Description

a Used with Insert (I) and Search (S,C,N,Q)
commands to change the command terminator
from an ESC ($) to any other character.

This modifier is particularly useful for
inserting or searching for a single ESC ($).

NOTE

A double ESC ($$) cannot be inserted
using the @ modifier since it will
terminate the command string. To
search for a double ESC ($$) one must
use the special control character "+t<".

When the @ modifier is used, the new command
terminator is defined as the first character
following the I, S, C, N or Q command.

Examples:

@I /text/ / 1s terminator
@S%texts % is terminator
@C3textl3text23 3 is terminator

: (colon) a) Can be used with any Search (5,C,N,Q)
File Input (A,Y) and the R and nR Output
commands to return a command value which
then may be used as an argument to the
next command. Command value is +] if
command was executed successfully; value
is 0 if execution was unsuccessful. Nc
error message is typed out if command

is unsuccessful.

3.16.2 Comman

Table 3-16.

d Modifiers (Continued)

Command Modifiers (Continued)

Command
Modifier

Description

a)

(Continued)
Example:

+:55texts$TSS If search was not
successful nothing
is printed because
the CP is at the
beginning of the
6th line following
the current CP
position. If search
was successful,
types balance of
line following
"text" (1T). There-
fore the success or
failure of the search
command provides a 0
or +1 numeric argu-
ment for the T com-
mand.

The colon (:) can be used with the Text
Type-Out commands (see paragraph 3.4)
to print the data on the 1line printer
rather than the terminal.

:0T, :nT, =-:nT, and :m,nT are modified
forms of the 0T, nT, -nT, and m,nT
commands respectively.

3.16.2 Command Modifiers (Continued)

Table 3-16. Command Modifiers (Continued

Command
Modifier Description
: (colon) b) (Continued)

Example:

'@:55%text%:TS$S If search was not

- successful nothing
is printed because
the CP is at the
beginning of the
6th line following
the current CP
position. If search
was successful print
balance of line
following "text"
on line printer (1:T).

c) Can also be used with semicolon (;) and
n; iteration commands (described in
section 3.13) to reverse the action
of the semicolon (;). That is, control
is transferred out of the command loop
if last search was successful of if n>O0.

d) Modifies the GWfilename$ command to
create a randomly organized output file
rather than a sequentially organized
file.

Example:

L:GWNETSAK.JR$$ Creates new ran-
domly organized
output file named
NETSAK.JR.

3.16.2 Command Modifiers (Continued)

Table 3-16.

Command Modifiers (Continued)

Command

L0 T I

Description

(Continued

e)

Modifies the P, nP, -nP, 0P, m,nP, PW,
nPW, -nPW, OPW and m,nPW commands to
clear the entire current buffer after
output.

Example:

+:5,500Ps$s Output the 6th through
500th characters in
the current buffer to
output file with ap-
pended form feed and
delete the entire buf-
fer. Equivalent to
+5,500P#KSS.

3.17 CASE CONTROL COMMANDS

The case control command, and its variations, are used to
create and edit upper and lower case files from an upper

case terminal.

Fn}WCEx}fy}

The command is of the form:

where: n may be 0 to deactivate case control, a positive
value for up-shifting, or a negative value for
down-shifting.
X is the shift character.
Y is the shift-lock character.

Case control command variations are listed in Table 3-17.
Examples and a discussion of the commands follow the table.

3.17 CASE CONTROL COMMANDS (Continued)

Table 3-17. Case Control Commands

Command

Description

WC

OWCSS$

nWCxSS$S

-nWCxS$$S

nweCxy$$
-nWCxy$$

Return value of case control mode.

0
1
-1

deactivated
up-shifting
down-shifting

iuo

Deactivate case control. Characters are
read from terminal exactly as typed without
any translation.

When n is positive, all characters are
translated to lower case except when pre-
ceded by shift character x which leaves
the character upper case.

When n is negative, all characters are
left as upper case except when preceded
by shift character x which translates
the character to lower case.

Same as nWCxS and -nWCxSS except y is

a shift-lock character which translates
all characters following the shift-lock
character (y) as all upper case (if
shifting-up) or all lower case (if
shifting-down) until next appearance of
y or a double ESCape.

Examples:

LIWC'$S

Set case control mode to shift-
up. Use single quote as shift
character.

3.17 CASE CONTROL COMMANDS (Continued)
Examples: (Continued)

LI'HELLOSOTSS Insert "Hello" and type out

'HELLO! line. On typeout, the same
shift character precedes any
upper case character sc that
output appears identical to
input.

If the user actually wanted to insert the shift character
itself, he would precede it with another shift character
which, in this situation, is a single quote. The two adjacent
single quote characters would be treated as one. The same is
true if the user wants to insert a shift-lock character,

i.e., if preceded immediately by a shift character, the
shift-lock character itself is inserted into the command
string.

-1WC#sS Set case control mode to shift-
down. User number sign(#) as
shift character.

LIS#UPE#RED#I#T$$ Insert "SuPErEDit".
< OWCsS$ Deactivate case control.

Case translation operates at the instant of type-in and type-
out. Thus, if a "shifted" character is "rubbed out," the
echo includes the shift character. If a user types a shift
character preceding a character other than a letter or an-
other shift character, shifting has no effect. It is as if
the shift character were never typed. The only exception to
this rule is the rubout character. Obviously, the rubout
cannot be shifted so when a shift character precedes a
rubout, the shift character itself is echoed and removed
from the input stream. Shift-lock characters may not be
rubbed out but can be nullified by typing a second shift-
lock character.

As a genéral rule, it is best to terminate all case control
commands with a double ESC ($$) to avoid the possibility of
confusion about when the command takes affect.

3.17 CASE CONTROL COMMANDS (Continued)

Examples:

LWC#s$ Set case control mode to shift-
up.
L IABCH##D#E#E User typed a rubout after

number sign(#) and after E.

Once case control is active, it affects everything which is
typed in, including WC commands.

Examples:

L-1WC#SS Changing modes with the same

LIWCH##SS shift character requires a
double shift character in
order for the command to be
properly interpreted.

L-1WCH#SS Deactivating before changing

LOWCS$ modes 1s an alternative to

L1WC#SS the preceding example.

L-1WCH#SS Changing modes and changing

L1WCeSS the shift character avoids
confusion.

LIWC'&SS Set shift-up mode using single

quote as shift character and
ampersand as shift-lock char-
acter.

LI'THE ¢NOVA& LINE COMPUTERS HAVE &ALGOL&.SS

Insert "The NOVA line computers
have ALGOL."

L0TSS

' 'THE 'N'O'V'A LINE COMPUTERS HAVE 'A'L'G'O'L.!

CHAPTER 4

IMPLEMENTATION NOTES AND EXAMPLES

4.1 CORE UTILIZATION

Initially, SUPEREDIT allocates 10K (decimal) of core. This
allows room for approx1mately 14,000 characters for ECLIPSE
line computers and 13,000 in the NOVA line computers. This
space is divided, as needed between the current edit buffer
and the command input line buffer. If more room is needed,
1K more core is obtained, and the message "**CORE**" is
typed on the console. Each additional 1K of core is enough
storage space for 2K characters.

When all available memory is exhausted, during command
execution, SUPEREDIT types out -- "MEMORY SPACE EXHAUSTED"
and the current command is aborted. Enough room is left
at this point to execute some commands, but an output com-
mand should be executed shortly.

If, when a command line is being typed in, available core
space is exhausted, the error message "MEMORY SPACE EXHAUSTED"
is typed out and a new prompt is issued. The old command

line can be saved at this point by use of the "<«n" command
(see paragraph 3.16.1).

4.2 ERROR HANDLING

There are two classes of errors in SUPEREDIT - editor errors
and RDOS errors. Fditor errors are defined in Appendix C.
There is a text file which contains the text of all these
messages. If the file is present in the directory that
SUPEREDIT is running in, errors are typed in the form
"ERROR:text", where "text" is the message shown in the
Appendix. If the text file is not present, the message
"ERROR MESSAGE TEXT FILE NOT FOUND" is typed before the first
prompt and editor errors are of the form "?nn" where nn is
the error code shown in the Appendix.

4.2 ERROR HANDLING (Continued)

RDOS errors are described in the RDOS User's Manual. If one
of these occurs, "RDOS ERROR n" is typed, where n is the
number of the error code.

After any error, up to nine characters of the command line
are typed, with the first character typed being the com-
mand in error. The only exception to this occurs when the
error is in a buffer or insert file being executed. In
this case, the part of the command line typed will be the
invocation of the file in error, e.g., if buffer A is being
executed and an error occurs, what will be typed is "4BA".

There is one other error that can occur, namely a fatal
internal error. If this happens, a return will be made to
the CLI, with the error code shown as the address of the
command in error, thus causing the CLI to type "UNKNOWN
ERROR CODE = XXXXX", where XXXXX is the address of the
error. This can only be caused by a malfunction in RDOS

or SUPEREDIT. If this ever occurs, please save all details
on how to recreate the error and notify your local DGC
Applications Engineer.

4.3 RDOS CHANNEL USAGE

The editor is initially built with eight RDOS I/O channels.
This is sufficient for most normal editing functions.
However, complex editing may require more channels. (With
36 buffers, SUPEREDIT has the potential to use more than
the RDOS limit of 64 channels, since it needs one channel
for each open input, output, command or insert file). When
SUPEREDIT runs out of channels, error code 21 (NO MORE
CHANNELS) is output. The number of channels can be
changed by modifying location 413, in the save file using
CEDIT (see OEDIT User's Manual, 093-000084). The right
byte in this word contains the number of channels which
are initialized for the editor.

4.4 CHANGING THE ESCAPE CHARACTER

SUPEREDIT uses the ASCII ESC character (octal 33) as its
escape character. Older model teletypewriters may generate
another code from the ESC (or ALT MODE) key. In order to
use SUPEREDIT from such a terminal, the user must change
location 453 in the save file using OEDIT (see OEDIT User's
Manual, 093-000084) so that it contains the octal code for
the character to be used as the escape character.

4.5 EXAMPLES

The following examples are provided to illustrate the use
of as many SUPEREDIT commands as possible. As such, the
examples do not necessarily represent the most efficient
method of solving the stated problems. In addition, some
problems are done by two methods to further illustrate the
use of SUPEREDIT commands.

4.5 EXAMPLES (Continued)

Example 1: Change file containing random size pages to
one which contains 50 line pages (Method A).

15 OWSUYfilename$<<S+LS$S; -1D>ZJI+LS$R;>USSS

Explanation of Example 1:
L50Ws Set window mode - 50 lines long.

UYfilename$$ Open "filename" for input and output.
Yank 50 lines.

<<S+LS$;-1D> Search buffer for all occurences of 4L
(form feed) and delete.
Exit inner command loop when search fails.

7ZJI+LS Position the CP at end of buffer and insert
a form feed.

R;> Output buffer to output file. Yank another
50 lines and repeat outer loop. If R fails
exit loop.

USssSsS Close 1/0 files with back=-up.

Although "Z" is a character oriented argument and "J" is

a line oriented command, use of the "2J" combination is
acceptable and provides a usetful technique for positioning
the CP at the end of the buffer. The combinations "ZM"
and "VN+1J" will also position the CP at the end of the
buffer.

4.5 EXAMPLES (Continued)

Example 2: Change file containing random size pages to
one which contains 50 line pages (Method B).

L el

s50WSUYfilename$BS1$121$BS0$
<<S+B1$;-1D>ZJI+B1SR;>USS$S

s50ws Set window mode - 50 lines long

UYfilename$ Open "filename" for input and output.
Yank 50 lines.

BS1$12IS$BS0S Put the ASCII decimal representation of
form feed in edit buffer 1 and return to
edit buffer 0.

<<S5+B1$;-1D> Search edit buffer 0 for all occurences of
the contents of edit buffer 1 (form feed
character) and delete. Exit inner command
loop when search fails.

ZJI+B1S Position the CP at end of buffer and insert
form feed character from buffer 1.

R;> Output buffer to output file. Yank another
50 lines and repeat outer loop. If R fails,
exit loop.

UsSss Close I/0 files with back-up.

4.5 EXAMPLES (Continued)

Example 3: Put consecutive page numbers at the top
of each page in file (Method A).

'UYfilename$

ovsS00vVs1ovs2

'PAGE! 7<4+IS$>IPAGEAS
VIO-10"EQVSQVI1-10"EQOVS1vVI2''
48+V2I48+V1I48+V0II)
$:R"NOPAGES'USSS

Explanation of Example 3:

UYfilename Open "filename" for input and output.
Yank first page.

0vVS00vVSsS10vs2 Set units, tens and hundreds counter
to zero.

!PAGE! 7<+IS>IPAGEAS Insert seven tabs and insert "PAGEA".

VIO-10"E Increment units counter and subtract

10. If not equal to 0 skip commands
to matching apostraphe (').

0VSOVI1-10"E If units counter reached 10, zero the
units counter, increment the tens
counter and subtract 10. If not equal
to zero skip commands to matching
apostrophe (').

povsivia2'! If tens counter reached ten, zero the
tens counter and increment the
hundreds counter.

48+V2I48+V1I48+V0II) Insert the ASCII decimal equivalent of
the integers stored in the hundreds,
tens, and units counters followed by
a carriage return.

$:R"NOPAGES'USSS Output page and yank another page. If
yank was successful jump to location
PAGE in macro. Otherwise close I/0
files with back-up.

4.5 EXAMPLES

Example 4:

(Continued)

Put consecutive page numbers at the top of
each page in file (Method B).

tUYfilename$0VS0$<7<+I$>IPAGEASVIO\SR;>USSS

Explanation of Example 4:

iUY¥filename$

0vsSos
<7<+IS$>IPAGEAS

VIO\S

R;>

USsSS$

Open "filename" for input and output.
Yank a page.

Set variable 0 to 0.
Space over seven tabs and insert "PAGEA".

Increment variable 0, convert integer to
decimal ASCII representation and insert.

Output page to output file and yank another
page. If yank is successful, repeat loop.
Otherwise, exit loop.

Close I/0 files with back-up.

4.5 EXAMPLES (Continued)

Example 5: Create file (FILE.3) comprised of rearranged
pages from two other files (FILE.l and FILE.2).

FILE.1 FILE.?2 FILE.3

Page 1 Page 1 FILE.1
Page 3

Page 2 Page 2 FILE.1l
Page 2

Page 3 Page 3 FILE.2
Page 3

FILE.1l
Page 1

FILE.Z2
Page 1

FILE.2
Page 2

!GWFILE.3$GRFILE.1$3<Y>P$
GRFILE.1$2<Y>P$GRFILE.2$3<Y>P$
GRFILE.1$YPGRFILE.2$YRPSGR$GCSS
Explanation of Example 5:

+GWFILE. 3$ Create new output file FILE.3.

GRFILE.1$3<Y>P$ Open FILE.1l for input, get the third page
and output to FILE.3.

GRFILE.1$2<Y>P$ Close and reopen FILE.l, get second page
and output to FILE.3.

GRFILE.2$3<Y>P$ Close FILE.l and open FILE.2 for input. Get
third page and output to FILE.3.

GRFILE.1S8YP Close FILE.2 and open FILE.l for input. Yank
and output first page to FILE.3

GRFILE.2S Close FILE.l and open FILE.2 for input.

YRPS Yank first page and output. Yank second page
and output

GRSGCSS Close FILE.2 and FILE.3.

4-8

4.5 EXAMPLES (Continued)

Example 6: Create macro of Example 4 in a buffer which
can be called for reuse by a +Bx command.

iBSl$@I%OVSO$<7<¢I$>IPAGEA $VIO\$R;>US%BSO$$
UY¥filename$+B1S$S

Explanation of Example 6:

+BS1$@I%...% Make buffer 1 current and insert
command string delimited by "g"
character.

BS0SS Return to buffer 0.

‘UY¥filename$+B1S$S Open "filename" for input and output

and execute macro in buffer 1. 1/0
files are closed by macro. This com-
mand line may be repeated for any
"filename" without the need for
entirely retyping the macro contained
in buffer 1.

4.5 EXAMPLES (Continued)

Example 7: Create macro of Example 4 in a file which
can be called for reuse by a tGfilename$
command. The file can be saved for use
in subsequent editing sessions.

E_GWM.ACRO .18@IZ0VSO0S<T<+I S>IPAGEASVI O\NSR;>US%PWUE S$S
iUYfilename$¢GMACRO.l$$

Explanation of Example 7:

‘GWMACRO.15% Open file MACRO.1l for output.
ChY

oo

o)
e e O

Insert command string delimited by "%"

=l .

PWUESS Write content of buffer to output file
and close file. Use PW to avoid form
feed which would be interpreted as an
erroneous command in the file.

'UYfilename$S4AGMACRO.1$$ Open "filename" for input and output
and execute commands in file MACRO.1.

APPENDIX A

ASCITI CHARACTER SET

CHARACTER OCTAL DECIMAL
NULL 000 0
+A 001 1
+B 002 2
+C 003 3
4D 004 4
+E 005 5
+F 006 6
+G 007 7
+H 010 8
TAB (41I) 011 9
LINE FEED (+J) 012 10
VERT. TAB (+4K) 013 11
FORM FEED (4L) 014 12
CARRIAGE
RETURN (+M) 015 13
+N 0le 14
+0 017 15
+P 020 16

CHARACTER OCTAL DECIMAL

+Q 021 17
+R 022 18
48 023 19
AT 024 20
+U 025 21
Y 026 22
W 027 23
+X 030 24
Y 031 25
4z 032 26
ESC or ALT MODE
or CTRL-SHIFT-K 033 27
CTRL-SHIFT-L 034 28
CTRL-SHIFT-M 035 29
CTRL-SHIFT-N 036 30
CTRL-SHIFT-0O 037 31
SPACE 040 32
. 041 33
" 042 34
043 35
$ 044 36
% 045 37
& 046 38

CHARACTER OCTAL DECIMAL

' (apostrophe) 047 39
(050 40
) 051 41
* 052 42
+ 053 43
; loomma) 054 44
=~ {minug) 055 45

056 46
/ 057 47
0 060 48
1 061 49
2 062 50
3 063 51
4 064 52
5 065 53
6 066 54
7 067 55
8 070 56
9 071 57

072 58
; 073 59
< 074 60

CHARACTER OCTAL DECIMAL

= 075 61
> 076 62
? 077 63
@ 100 64
A 101 65
B 102 66
C 103 67
D 104 68
E 105 69
F 106 70
G 107 71
H 110 72
I 111 73
J 112 74
K 113 75
L 114 76
M 115 77
N 116 78
o 117 79
P 120 80
Q 121 81
R 122 82

CHARACTER OCTAL DECIMAL

s 123 83
T 124 84
U 125 85
v 126 86
W 127 87
X 130 88
Y 131 89
Z 132 90
[133 91
\ (SHIFT-L) 134 92
] 135 93
4 136 94
< or _ 137 95
) 140 96
a 141 97
b 142 98
c 143 99
d 144 100
e 145 101
£ 146 102
g 147 103
h 150 104

CHARACTER OCTAL DECIMAL

i 151 105
j 152 106
k 153 107
1 154 108
m 155 109
n 156 110
o 157 111
P 160 o112
q 161 113
r 162 114
S 163 115
t 164 116
u 165 117
v 166 118
w 167 119
X 170 120
y 171 121
z 172 122
{ 173 123
I 174 124
} 175 125
~(tilde) 176 126
RUBOUT or
DELETE 177 127

APPENDIX B

SUPEREDIT COMMAND SUMMARY

B.1 FILE SPECIFICATION COMMANDS

Command

T@ATYE ~t i Py .)
vibLdLideliqalue

:GWfilename$

GCS

UYfilename$

GRfilename$

GRS

Uss

UES

u?s

Description

Create and open a new output
file in sequentially organized
format.

Create and open a new output
file in randomly organized
format.

Close current output file.

Open filename for input,
filename.SC for output
and Yank (Y) a page.

Close current input file and
open filename for input.

Close current input file.

Transfer remainder of input
file to output file. Close
input/output files. If
opened by UY command, create
back-up.

Transfer remainder of input
file to output file. Close
input/output files. If
opened by UY command, delete
input file and rename out-
put to input filename.

Type global and local file
status.

Page
Reference

3-5

B.2 PAGE AND WINDOW MODE COMMANDS

Command

nWwM

0wWM

B.3 INPUT COMMANDS

Command

:Y and :A

Page
Description Reference
Return value of data input
mode. (0 or n). 3-5
Change from Page to Window
Mode with n line window
length. 3-5
Change from Window to Page Mode. 3-5
Page
Description Reference
Clear buffer and read one
page from input file. 3-6
Read one page from input file
and append to current edit
buffer. 3-6
Same as Y and A respectively
except command returns a
value of +1 if it succeeds
and 0 if it fails instead
of an error message. 3-6

B.4 TEXT TYPE-OUT COMMANDS

Command
T

0T

Il

-nT

m,nT

:0T, :nT,

:=nT, :m,nT

Description

e)Y

fal SVt X
diis Wi

b
(0]

EaE 384

Type current 1
position of CP.
Type from beginning of cur-
rent line to position of CP.

Type from CP through next
n carriage returns.

Type n lines preceding cur-
rent line plus characters
on current line up to CP.

Type the m+lth through nth
characters inclusive.

Same as 0T, nT, -nT, and
m,nT except output to line
printer instead of terminal.

B.5 CHARACTER POINTER COMMANDS

Command

nJ
J or 0J
nL
-nL

L or 0L

ni

Description

Move CP to beginning of line n.
Move CP to beginning of buffer.
Move CP to beginning of line
following the nth carriage

return.

Move CP to beginning of nth
line preceding current line.

Move CP to beginning of current
line.

Move CP across n characters.

B-3

Page
Reference

Page

Reference

3-8

3-8

B.6 SFARCH COMMANDS AND CONTROL CHARACTERS IN SEARCHES

Command

Stext$

nStexts$S

-nStext$

0Stext$S

m,nStext$

NtextS$

Otext$

CtextlStext2s$

nCtextlStext2$

-nCtextlStext2$

OCtextlStext2$

Description

Starting at CP search for text
delimited by S and ESC($) in
current buffer.

Search from CP through next n
carriage returns for text.

Search preceding n lines plus
characters up to CP on current
line for text.

Search current line from be-
ginning of line up to CP for
text.

Search m+lth through nth
characters for text.

Search rest of input file for
text. Output buffer to output
file for each page until text
is found.

Same as Ntext$ except buffer
is not output.

Search for textl and replace
with text2.

Search from CP through next n
carriage returns for textl and
replace with text2.

Search preceding n lines plus
characters up to CP on current
line for textl and replace
with text2.

Search current line from be-
ginning of line up to CP for
textl and replace with text2.

Page
Reference

W
|
ot
o

3-11

B.6 SEARCH COMMANDS AND CONTROL CHARACTERS IN

Command

RS%text?

:Stext$

Description

Search mt+lth throu gl‘ nth
characters for textl and

X
replace with text2.

Same as Stext$ except text
delimited by first character
after S (arbitrarily shown as
"$"). Other variations are:

@nS%texts
@-nS%texts
R0S%text?
@m,nS%text?
AN%text$s

@0%texts
@C%textlstext2s
AnC3textl%text2%
@-nC%textlgtext2?
@O0C%textletext2s
@m,nC%textlstext2s

Same as Stext$ except command
returns a value of +1 if it
succeeds and 0 if it fails
instead of an error message.
Other variations are:

:nStexts$
:-nStext$
:0StextsS
:m,nStexts
:NtextS$§

:Qtexts
:CtextlStext2$
:nCtextlStext2s
:-nCtextlStext2$
:0CtextlStext2s
i, nCtextlStext2s

SEARCHES (C

Page
Refe

w
1

ontinued)

rence

12

12

B.6 SEARCH COMMAND AND CONTROL CHARACTERS IN SEARCHES (Continued)

Page
Command Description Reference

A:S%text? Combines the @ and : modifiers
described above. Other
variations are:

@:nS%texty
@:-nS%textg
AQS%texts
@:m,nS%text%
@:N%text$
A:Q%text%
@:C3textlstext2s
@:nC%textlstext2?
@:-nC%textlstext23
@:0C%textl%text2s
@:m,nC%textlstext2% 3-12

+Z Accept any character in
this position. 3-13

+Nx Accept any character except
X in this position. 3-13

+Vx Accept any number of the
character x in this position. 3-13

< Intrepret next character
literally, rather than as a
special character. 3-13

AP Position CP at location of +P
in search string if search is
successful. : 3-14

4T Accept any number of spaces
or tabs in this position. 3-14

B.7 INSERTION COMMANDS

Command

Itext$

+Itext$

nIl

n\

@I%texts
@+I%texts

Description

Insert text delimited by I
and ESC($) at the current
position of the CP.

Insert tab plus text de-
limited by +4I and ESC(S).

2l
Insert character who

decimal equivalent
Appendix A) is n.

a~NT T
oo L L

(4]

se A
from

Insert ASCII representation
of the decimal number n into
the buffer at the CP location.

Same as Itext$ and +Itext$
respectively except inserted

-text is delimited by first

character after I (arbitrarily
shown as "g").

B.8 DELETION COMMANDS

Command

nD

nkK

-nkK

K or 0K

Description

Delete n characters starting
at CP position.

Delete characters starting at
CP position through n
carriage returns.

Delete preceding n lines and
characters up to the CP on
the current line.

Delete the m+lth through
nth characters inclusive.

Delete characters starting at
CP position back to beginning
of line.

B~7

Page
Reference

3-15

Page
Reference

B.9 OUTPUT COMMANDS

Page
Command Description Reference

P Output edit buffer with
appended form feed to output
file. 3-17

nP Output n lines from CP to
output file with appended
form feed. 3-17

-nP Output preceding n lines plus
characters up to the CP on
current line to output file
with appended form feed. 3-17

0P Output current line from be-
ginning of line up to the CP
to output file with appended
form feed. 3-17

m,nP Ooutput m+lth through nth
characters inclusive to
output file with appended
form feed. 3-17

PW output edit buffer to output
file. 3-17

nPwW Output n lines from CP to
output file. 3-17

-nPW Output preceding n lines plus
characters up to the CP on
current line to output file. 3-17

0PW Output current line from
beginning of line up to the Ccp
to output file, 3-18

m, nPW Output m+lth through nth char-
acters inclusive to output file. 3-18

B.9

Command

;;;;;

B.10 EXIT COMMANDS

Command

H

+C

OUTPUT COMMANDS (Continued)

Description

Output edit buffer, clear
buffer, and yank next page
from input file.

Repeat R command n times.

Same as R and nR except
command returns a value of
+1 if it succeeds and 0 if
it fails instead of an error
message.

Same as P except buffer cleared
after output. Other variations
are:

:nP
:=nP

: 0P
tm,nP
:PW
:nPW
:-nPwW
:0PW
:m,nPW

Output buffer and rest of input
file.

Description

Normal exit from SUPEREDIT.
Returns user to the CLI.

Emergency exit from SUPEREDIT.
System break command returns
user to the CLI.

Page
Reference

18

w
I

Page
Reference

B.1l1 BUFFER COMMANDS

Page
Command Description Reference
BSx Change current buffer to

buffer x. 3-20
B?$ Type out buffer status for

all active buffers. 3-20
B?x$ Type out status of buffer x. 3-20
BCx Copy entire content from cur-

rent buffer to buffer x. 3-20
nBCx Copy the next n lines from CP

position in current buffer to

buffer x. 3-20
-nBCx Copy the preceding n lines plus

the characters up to the CP in

the current line to buffer x. 3-20
m,nBCx Copy the m+lth through nth char-

acters inclusive from current

buffer to buffer x. 3-20
BTx, nBTx, -nBTx, Same as BCx, nBCx, -nBCx and
m,nBTx m,nBCx respectively except char-

acters moved from current buf-

fer are deleted. 3-20
BKx Delete buffer x. 3-20
BGx ffilename} $ Execute a Gx command (where Gx=

GR, GW or GC) local to the cur-

rent buffer. 3-21
BUx ffilename}$ Execute a Ux command (where Ux=

UY, UE or US) local to the cur-

rent buffer. 3-21
BAXx Activate buffer x. 3-21

B.12 COMMAND STRING INSERTION COMMANDS

Command

+Gfilename

+Bx

Description

Inserts contents of file
filename into command
string in place of
+Gfilename command.

Inserts content of buffer
X into command string in
place of +Bx command.

B.13 ITERATION COMMANDS

Command

n<command string>

n;

Description

Perform enclosed commands n
times. If n < 0 skip
command loop.

Jump out of command loop if
last Search command
failed.

Jump out of command loop
if n < 0.

Jump out of command loop if
last Search command was
successful.

Jump out of command loop if
n>0.

Page
Reference

Page
Reference

B.14

gommand

Vv

Viv

VDv

nvsv

[

. (Pericd)

o=

W

VL

B.15

Command

!'string!

Ostring$

n"Gecommand string'

Description

Represents the
of variable v.

Increments the
variable v and

NUMERIC VARIABLES AND SPECIAL CHARACTERS

current value

value of
represents

the incremented value.

Decrements the

value of

variable v and represents
the decremented value.

Set variable v to value n and

return that value.

Represents the total number of

characters in the current

buffer.

Represents the
position.

Equivalent to double argument

current CP

0,2 (entire edit buffer).

Represents the number of lines

in current buffer.

e R

Represents tne

4
[
line which contains the CP.

FLOW CONTROL COMMANDS

Description

Define a label named "string"

in the command

A
i

JURPREN RPN of
rrulloer vl

string.

Transfer control to label

"string".

Execute command string if

n > 0.

Page
Reference

Page
Reference

B.15 FLOW

Command

n"Lcommand

n"Ecommand

n"Ncommand

CONTROL COMMANDS (Continued)

string'
H

string

string'

Description

Execute command string if
n>aQ,

Execute command string if
n= 0.

Execute command string if
n # 0.

B.16 SPECIAL COMMANDS AND COMMAND MODIFIERS

Command

?

Xstring$

Description

Complement trace mode flag.

Execute "string" as a CLI
command.

Type out value of numeric
arqument n.

Place previous command string
in buffer n. (Must be first
command after prompt).

Modify Insert and Search com-
mands to change text delimiter.

Modify Search and File Input com-
mands (A,Y,R,S,N,Q,C) to return
value of 0 if Search or Input
fails; +1 is successful.

Modify Type commands (nT,-nT,
m,nT) to output to line printer.

Modify Output commands (P,nP,m,nP
PW,nPW,m,nPW) to clear buffer
after output.

Modify GWfilename$ command to
create randomly organized output
file.

B-13

Page
Reference

Page
Reference
3-29

3-29

[4

B.17 CASE CONTROL COMMANDS

Command

WC

OWCS$

nWCxS$$

-nWCx$$

nWwCxy$$

-nWCxy$$

Description

Return value representing
case control mode
(0, 1, or -1).

Deactivate case control.

When n is positive shift-
up using x as shift
character.

When n is negative, shift-
down using x as shift
character.

When n is positive, shift-
up using x as shift
character and y as shift-
lock character.

When n is negative shift-
down using x as shift
character and y as shift-
lock character.

Page

Reference

APPENDIX C

SUPEREDIT ERROR MESSAGES

Error Error
Number Message
1 ILLEGAL FILE NAME
2 SYNTAX ERROR
3 ILLEGAL VARIABLE
NAME
4 ILLEGAL NUMBER OF
ARGUMENTS TO COMMAND
5 ILLEGAL BUFFER NAME
6 BUFFER IS INACTIVE
7 MAXIMUM ITERATION
LEVEL EXCEEDED
10 NO OPEN FILE
11 FILE ALREADY EXISTS
12 FILE DOES NOT EXISTS
13 FILE ALREADY OPEN

Explanation

Format of command incorrect
(eogol Z#T)-

Legal variable names are
0 through 9 only.

Commands such as m,nR are
not legal.

A through Z and 0 through 9
are the only legal buffer
names.

An attempt to BKx or +Bx
an inactive or empty buffer.

Command loop nesting level
is greater than 10.

Attempt to use A, Y, P, PW,
E, R, UE, or US command with-
out an open file,

Attempt to open an output file
with a GW or UY command with-
out first closing a previously
opened output file.

Error
Number

Error
Message

14

15

16

17

20

21

22

23

24

25

26

27

NO MORE CHARACTERS
IN INPUT FILE

UNSUCCESSFUL SEARCH

MAXIMUM INSERT
DEPTH EXCEEDED

SEARCH STRING OR <>

BROKEN OVER TWO
LEVELS

INSERT FILE TOO

LONG

NO MORE CHANNELS
AVAILABLE

INPUT LINE TOO LONG

ATTEMPT TO DELETE
CURRENT BUFFER

PARITY ERROR

STACK OVERFLOW

MEMORY SPACE
EXHAUSTED

ATTEMPT TO EXECUTE
CURRENT BUFFER

Explanation

End of file reached by an
A, Y, or R command.

Nesting level of +Bx and
+Gfilename$ command exceeded.

Search command or command
loop starts at one command
insert level and ends at
another level.

File larger than 16K
bytes.

All I/O channels in use.
See section 4.3.

Maximum line length is 132
characters. A line longer
than 132 characters read by
an A, Y, R, or E command.
Warning message only; execu-
tion of the command string
continues.

A BKx command may not be
used for the current buffer.

The character in error is
replaced by a backslash (\).
Warning message only; execu-
tion of the command string
continues.

No more core available.
See section 4.1.

A +Bx command may not be
used for current buffer.

Error
Number

Error
Message

30

31

32

33

34

35

36

=Y
j—=d

42

43

44

45

53

UNTERMINATED STRING
< WITH NO CORRESPOND-
ING >

" WITH NO CORRESPOND-
ING '

UNABLE TO OPEN SLPT

STRING ARGUMENT
TOO LONG

FIRST ARGUMENT
GREATER THAN SECOND
ARGUMENT

RENAMING ERROR

ILLEGAL COMMAND

ILLEGAL ARGUMENT
TO COMMAND

ILLEGAL CONTROL
CHARACTER 1IN

SEARCH STRING

FILE READ PROTECTED
FILE WRITE PROTECTED

DIRECTORY SPECIFIER
UNKNOWN

Explanation

@S or @I command without
second delimiter.

Label referenced by uncondi-
tional jump (0) command
not found.

In Ostring$ command, string
is > 48 characters.

In commands which have two
arguments, the first must
be less than or equal to
the second (e.g., m,nT).

A character or characters
were used which are not defined
as a legal SUPEREDIT command.

Command which only accepts a
positive argument was given
a negative argument.

A character other than those
described in paragraph 3.6.2
appeared in a search command
argument.

Title

No.

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you

would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Catalog (012-330).

O eop Manager (Listinorder: I = Primary use)

O senior System Analyst Introduction to the product
O Analyst/Programmer Reference

(] Operator Tutorial Text

O other Operating Guide

What programming language(s) do you use?

~«<
[¢]
»

Somewhat
Is the manual easy to read?
Is it easy to understand?
Is the topic order easy to follow?
Is the technical information accurate ?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you everything you need to know?

O
O
O
O
g
a
O

(Please note page number and paragraph where applicable.)

Name

Company

Address Date

SD-00742

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Software Documentation
Trowour TEmTTTTTTTTT TemmTTTTTT STSEGOND L oTTTTeTTTTTTTTTTT A YT

SD-00742A STAPLE

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	replyA
	replyB

