3
)
p..m ‘

¢y DataGeneral

Notice

DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, LICENSEES, AND CUSTOMERS. THE INFORMATION CONTAINED HEREIN IS
THE PROPERTY OF DGC; AND THE CONTENTS OF THIS MANUAL SHALL NOT BE REPRODUCED
IN WHOLE OR IN PART NOR USED OTHER THAN AS ALLOWED IN THE DGC LICENSE
AGREEMENT.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes have
been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND
THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIR-
MATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR
USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DGC
WHATSOEVER.

This software is made available soley pursuant to the terms of a DGC license agreement which governs its use.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA, PRESENT,
ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, TRENDVIEW, SWAT, GENAP, and MANAP are U.S.
registered trademarks of Data General Corporation, and AZ-TEXT, DG/L, ECLIPSE MV/10000, GW/4000, GDC/1000,
REV-UP, XODIAC, DEFINE, SLATE, microECLIPSE, BusiPEN, BusiGEN and BusiTEXT are U.S. trademarks of Data
General Corporation.

Revision History:

093-000075
Original Release - June 1972
First Revision - November 1972
Second Revision - May 1973
Third Revision - August 1973
Fourth Revision - December 1973
Fifth Revision - April 1974
Sixth Revision - January 1975
Seventh Revision - September 1975
Eighth Revision - March 1979
017-000002
Original Release - September 1972
First Revision - November 1972
Second Revision - January 1974
Third Revision - February 1975

093-000231 (Change in part number only from 017-000002-03)
Original Release - March 1979

093-400027
Original Release - October 1983

This manual (093-400027-00) supersedes the Real Time Disk Operating System (RDOS)
Reference Manual (093-000075-08) and the User Device Driver Implementation in the Real-Time
Disk Operating System (RDOS) manual (093-000231-00).

Ordering No. 093-400027

©Data General Corporation, 1983

All Rights Reserved

Printed in the United States of America
Rev. 00, October 1983

Licensed Material - Property of Data General

Preface

This is the primary reference manual for Data General’s
Real-Time Disk Operating System, RDOS. It describes all
features of the operating system for the NOVA and ECLIPSE
computers that it supports, and covers the salient points of
dual programming for mapped machines. Much of the man-
ual concerns system and task calls that can be used in as-
sembly language programs. Users who intend to program
in a higher-level language, such as FORTRAN, will find
this book most helpful in conjunction with the manual that
specifically describes that language.

Reading Path

This manual assumes (1) a basic understanding of RDOS
features and concepts, (2) a currently running system that
has been tailored to the user’s hardware and software needs,
and (3) a working knowledge of the RDOS/DOS Command
Line Interpreter (CLI) program. First-time users of RDOS
are strongly urged to consult the following manuals before
this one.

Introduction (o RDOS {DGC MNe. 069 400010 umilinrizes
readers with RDOS concepts and capabilities. The manual
describes the Command Line Interpreter (CLI), the RDOS
file system, input/output, memory organization and man-
agement, and special uses of RDOS such as user device
drivers and multiple-processor systems. The manual also
introduces RDOS utilities, providing practical examples in
some cases to demonstrate their use.

How to Load and Generate RDOS (DGC No. 069-400013)
steps readers through the procedures of program loading,
disk initialization, installing the bootstrap root and RDOS
starter system, and generating an RDOS system that meets
their particular needs.

RDOS/DOS Command Line Interpreter (DGC No. 069-
400015) describes the features and commands of the CLI—
the primary interface between RDOS and its users. Among
their many functions, CLI commands enable the user to
create and protect files, and to invoke such utility programs
as assemblers and text editors.

RDOS/DOS User's Handbook (DGC No. 069-400018) pro-
vides a handy summary of all CLI. utilitv. and RDOS com-
mands.

Organization

This manual contains ten chapters and nine appendices, as
follows.

Licensed Material--Property of Data General

3

Chapter 1, ‘‘Overview,’
how it runs in memory.

introduces RDOS and explains

Chapter 2, “‘Files and Directories,”” explains RDOS files
and file access, including file types, access modes, direc-
tories, linking, magnetic tape files, and multiplexors.

Chapter 3, ‘‘Single-task Programming,’’ describes most of
the system calls needed to program RDOS in a single-task
environment. It summarizes the most commonly used sys-
tem calls in table form.

Chapter 4, **Extending User Address Space,’” explains cer-
tain tools for extending addressable memory space, among
them, program swaps, chains, user and virtual overlays, and
window mapping.

Chapter 5, ‘‘Multitask Programming,”” explains the pro-
cedure of creating tasks within one program to manage
diverse, real-time requirements.

Chapter 6, ‘‘Foreground-Background Programming,”’ out-
lines the technique of running two programs simultane-
ously—in the foreground and background—on mapped and
unmapped machines.

Chapter 7, ‘‘Interrupts and Power Failures,”” assists users
who want to write their own interrupt handlers or define
nonstandard devices in their RDOS systems.

Chapter 8, ‘‘Multiple Processor Systems,”’ covers multi-
processor programming for those with more than one CPU
who want to implement communications between them.

Chapter 9, ‘‘System Tuning,”’” describes how RDOS uses
stacks, cells, and buffers, and how the RDOS tuning feature
checks and improves a system’s performance.

Chapter 10, ‘‘Running in LEF Mode,”” explains for users
with mapped ECLIPSE computers how to use the Load
Effective Address (LEF) instruction.

Appendix A summarizes all RDOS system calls, task calls,
and error messages.

Appendix B lists the source file PARU.SR, which describes

all RDOS user parameters. This listing helps the user build
program tables and understand how RDOS operates.

RDOS System Reference i

Appendix C demonstrates real-time programming with two
examples.

Appendix D describes the directory RDOS uses to manage
overlays.

Appendix E explains two error conditions, traps and ex-
ceptional system status, and how to recover from them.

Appendix F lists page zero and hardware reserved locations.
Appendix G contains a Hollerith-ASCII conversion table.
Appendix H contains the ASCII character set.

Appendix I explains advanced multitask programming fea-
tures for users who want to extend their multitasking en-

vironments.

The index alphabetically lists the concepts and terms in this
book and references the pages on which they appear.

Several lists and forms follow the index.
“DG Offices’” lists all Data General facilities world-wide.

‘“How to Order Technical Publications’’ points to the agen-
cies from which order forms and manuals can be obtained.

““Technical Publications Comment Form’ invites you to
assist DGC in improving future publications by evaluating
this book.

““Users’ Group Membership Form™ brings DGC sofiware
users together, in group meetings and through various pub-
lications, to exchange ideas, applications, problems, and
solutions.

i RDOS System Reference

Related Manuals

Prerequisite readings are described under ‘‘Reading Paths’’
in this Preface.

Additional manuals describing RDOS are listed below.
RDOS/IDOS Text Editor (DGC No. 069-400016)
SUPEREDIT Text Editor (DGC No. 069-400017)

RDOS/DOS Assembly Language and Programming Utilities
(DGC No. 069-400019)

RDOS/DOS Debugging Utilities (DGC NO. 069-400020)
RDOS/DOS Backup Utilities (DGC No. 069-400022)

RDOS/DOS Sort/Merge and Vertical Format Utilities (DGC
No. 069-400021)

Conventions

We use these conventions for command formats in this manual:

COMMAND required [optional] ...

Where Means

COMMAND Enter the command (or its accepted ab-
breviation) as shown. Upper-case letters
indicate the command mnemonic.
required Enter some argument (such as a filename).
Sometimes, we use:

required, | required,

You can choose between the arguments
listed. Do not use the vertical bar; it merely
separates the choices. Lower-case italic
letters indicate an argument.
[optional] Brackets mean that you have the option
of entering the argument. (Command
switches also appear in this format.) Do
not include the brackets in your code; they
only set off the choices.

Repeat the preceding entry or entries. The
explanation will tell you exactly what to
repeat.

The process has continued without inci-

dent, and you may now take the next ac-
tion described.

Licensed Material--Property of Data General

Additionally, we use certain symbols in special ways:

Symbol Means
(CR) Press the RETURN key on your keyboard.
O Include a space at this point. (We use this

to clarity in some cases. Normally, you
can see where to put spaces.)

All numbers are decimal unless otherwise indicated, for

PPN 1. &
cXamnipi€, 55;.

Licensed Material--Property of Data General

In examples of dialogue, we use:

THIS TYPEFACE TO SHOW YOUR ENTRY
and

THIS TYPEFACE FOR SYSTEM RESPONSES.

R is the RDOS/DOS Command Line Interpreter prompt.

RDOS System Reference

Preface

Reading Path i
Organization i
Related Manuals i
Conventions i

Chapter 1

Overview

Generating an RDOS System 1
Communicating with RDOS 1
Program Development 2
Higher-Level Languages 2
Assembly Language 2
Main Memory Considerations 2
Pnregrmmd’Ra(‘kgrmmd
Programming 2
Mapped Features 3
Device Access 3
RDOS Organization 3
System Library and Source Files 6

Chapter 2

Files and Directories

Definition of a File 7
File Overview 7
Reserved Device Names 7
Disk Filenames 9
File Attributes and
Characteristics 9
Disk File Characteristics 10
File Transfer 10
Disk File Block Organization 10
Sequentially Organized Files 11
Randomly Organized Files 12
Contiguously Organized Files 13
RDOS Disk Directories 13
Initial Disk Block
Assignments 14
System Directory (SYS.DR) 14

Table of Contents

Master Directory 18
User Directories 15
Partitions and Subdirectories 15
Initializing and Releasing User
Directories 17
Referencing Disk Files 18
Link Entries 18
File Access Example 20
Directory Command Summary 23
Magnetic Tape Files 23
Nine and Seven Track Data
Words 24
Tape File /O 25
Free Form /O 25
Initializing and Releasing a Tape
Drive 2§
Referencing Tape Files with File
O 26
Linking to Tape Files 27
Multiplexors 27
Line 64 Reads 28
Line 64 Writes (ALM and ULM
only) 29
ULM Line Codes 29
Multiple Channels 29
Modem Support Under RDOS 29
Multiplexor Error Messages 30
ALMSPD.SR 30

Chapter 3

Single-task Programming

Multiple and Single-task
Environments 33
System Task Calls 33
Status On Return From System
Calls 34

I/0O Channel Numbers 34
Commonly Used Commands 35
Device and Directory Commands 39
File Maintenance Commands 45
File Attribute Commands 51

Link Commands 53 OPCOM Command Syntax 147

Input/Output Commands 56 OPCOM Command Example 153
Console VO Commands 72 Disabling and Enabling the Multitask
Memory Allocation Commands 74 Environment 154
Device Access Commands 76 Disabling and Enabling the Task
Clock and Calendar Commands 78 Scheduler 155
Spooling Commands 80 Summary 157
Keyboard Interrupts 82
Defining Interrupt Routines 83 Chapter 6
Summary 88 Foreground and Background Programming
Chapter 4 Overview 159
Extending User Address Space Dual Programming in Mapped
Systems 160
Program Swapping and Chaining 91 Executing Dual Programs 160
User Overlays 97 Checkpointing a Background
Protecting User Memory Under Program 161
Mapped RDOS 102 Dual Programming in Unmapped
Virtual Overlays 108 Systems 161
Window Mapping 107 Building Foreground
Defining a Window Map 107 Programs 161
Performing a Remap 109 Executing Dual Programs 162
Extended Direct Block 'O 112 Foreground/Background System
Extended Direct Block /0O Calls 164
Example 115 Summary 170
Summary 116 Chapter 7
Chapter 5 Interrupts and Power Failures

Multitask Programming Servicing User Interrupts 171

Task Priorities 117 Commands for Interrupt and
Task Control Blocks 117 Power Fail Routines 171
Building Multitask Programs 119 Power Fail/Auto Restart
Conserving ZREL Space 119 Procedures 175
Task States 119 Power-up Service for User
TCB Queues 120 Devices 176
Task Synchronization and Summary 176
communication 121 Chapter 8
}rJ::; i;zz;ussyzszle Caﬁlzs 1 123 Multiple Processor Systems
Task Initiation 123 Overview 177
Task Termination 124 Interprocessor Buffer (IPB)
Task State Modification 127 Programming 178
Inter-task Communication 129 Interval Timer 178
Locking a Process Via Transmit Dual Processor Program
and Receive Commands 130 Communications 178
User Overlay Management 131 IPB Example 178
Enqueuing Tasks 135 MCA Programming 180
User/System Clock Commands 138 Data Transmissions 180
Managing Tasks by ID Number 141 Using CLI Commands on MCA
Task/Operator Communications Calls 144 Lines 180
Task/Operator Communications Transmitting Copies of Systems or

Module (OPCOM) 146 Stand-alone Programs 181

Multiprocessor System
Illustration 182

Chapter 9
System Tuning

Overview 185
System Stacks, Cells, and
Buffers 185
System Stack Requirements 186
System Cell Requirements 186
System Buffer Requirements 187
How Tuning Works 189

Chapter 10 193
Running In LEF Mode

Appendices 195
Appendix A 197
RDOS System and Task Calls

Appendix B 213

User Parameters

Appendix C
Real-time Programming Exampies

TIMEC Program 231
EXAMPLE Program 234

Appendix D _ 241
Overlay Directory Structure

Appendix E
Exceptional System Status

Traps 243

Exceptional Status 243

Controlling Exceptional Status 244
Producing a Core Dump 244

Appendix F 249
Page Zero and Hardware Reserved Locations
Appendix G 251
Hollerith—-ASCII Conversion Table

Appendix H 255

ASCII Character Set

Appendix I
Advanced Multitask Programming

Definitions 257
General Terms 257
State Definitions 258

Coding Your Own Task Calls 258
TCB and Status Bits 258
Scheduler Calls 258

Handling Additional Task

Resources 262

Task Scheduler Call-Outs 262
Additional Resource Handler 265
Operator Communications 266

Task Control Block Values 266

Index 269
DG Offices

How to Order Technical Publications

ISD User Documentation Remarks Form

Users’ Groups Membership Form

Figures

1.1
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
3.1
3.2
33
3.4
3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

RDOS address space 5
Sequential file block organization 11
Random file block organization 12
Contiguous file block organization 13
Apportioning disk space 16

Link entries 19

Sample organization of an RDOS disk 21
Data encoding (nine-track units) 24

Data encoding (seven-track units) 24
Data block structure 25

Writing the first tape file 26

Overwriting tape files 27
Double-precision byte pointer 62

Image binary code reading 65

MTDIO status word bits 71

Unmapped background memory 74
Program with interrupt handler 83
Program with .INTAD task 84

Program interruption logic sequence 85
Program swapping 93

Program chaining 94

User overlays 98

Segment | of overlay file RO.OL 99
Loading the overlay root programs 99
Write-protecting memory 103
Virtual overlays before .OVLD
Virtual overlays after .OVLD

106
106

Defining a window map 108

Memory before remap 109

Remapping 109

Extended block read 115

Task state/priority information (TPRST) 118
TCB chain 120

TOVLD logic sequence 133

QTSK example 137

Sample console commands and messages 153

Loading foreground and background programs in an
unmapped system 163
Multiple processor line connections

o + 11 $rnti e
Multiprocessor system illustration

180

101
oo

Adequate cell apportionment 187
Inadequate cell apportionment 187
Disk blocks of the tuning file 190

Details of the tuning summary report, first disk
block 190

Tuning overlay report
PARU.LS 213
TIMEC and TASK messages
TIMEC flowchart 232
TIMEC program listing 233
EXAMPLE flowchart 235
EXAMPLE program listing 236
Overlay directory structure (multitask)
Sample line printer dump 246
Listing of PARS, giving page zero and hardware
reserved locations 249

190

231

241

Tables

1.1
2.1
22
2.3
2.4
2.5
2.6
3.1
3.2

33

3.4
3.5
3.6
3.7
3.8
3.9
4.1
5.1
5.2
5.3
5.4

6.1
7.1
9.1
Al
A2
I.1

System file names 6

Reserved device names 8

Initial disk block assignments 14
Directory command summary 23
Characteristic bits that affect multiplexors 28
Selecting a ULM line speed 29

Multiplexor error messages 30

Commonly used commands 36

Calls that control memory, returns and

overlays 37

Possible errors from calls that control memory,
returns and overlays 38

UFD template with displacement mnemonics 49
Bit-attribute relationships 51

Disk file characteristics assigned by RDOS 52
Bits and associated device characteristics 53
.MTDIO values returned 71

System call summary 88

System and task call summary 116
Structure of a task control block (TCB)
Structure of user status table (UST)
User task queue table 136

System, task, and OPCOM command
summary 157

System call summary 170

System and task call summary 176
System overlays and their functions
RDOS command summary 197
Error summary 210

TCB words and how they can be changed

118
121

188

267

Chapter 1

Data General’s Real-Time Disk Operating System (RDOS)
combines the advantages of a disk operating system with
the speed of a memory-resident system. RDOS is real-time
oriented: it can allocate program control to many tasks within
separate foreground and background programs, while of-
fering maximum efficiency and economy to a wide variety
of installations.

Some of the major features that RDOS offers include:
e Disk and memory-residence

e Support for real-time FORTRAN IV, FORTRAN 5.
DG/L, Extended and Business BASIC, and other ad-
vanced languages

e Support for BATCH processing

o A flexible file structure that allows disk partitioning and
sharing of user fiies, bullered and unbuliered 1O and
multiple user overlays

e Modular multitask levels of task priority
e 256 software levels of task priority

e Hardware mapping support for foreground/background
programming, including protection and management of
each program; access to mapped extended memory; and
checkpointing of background programs

e Spooling (disk buffering) of output to slow peripherals
e Dual processor—shared disk support
e Multiprocessor support

e Tuning for improved performance

These and other basic RDOS concepts are explained in
Introduction to RDOS (DGC No. 069-400010).

The minimum of hardware needed to run RDOS is a suitable
Data General computer, a hard-copy or CRT terminal, and
a disk. Larger versions of RDOS can support a real-time
clock, power fail—auto restart, up to 16 megabytes of fixed-
head disk storage, and more than 1,500 megabytes of mov-
ing-head disk storage. In addition, RDOS can support 16
magnetic tape units, multiple line printers, terminals, plot-
ters, readers and punches, multiplexors, and CPUs. Mapped

Licensed Material--Property of Data General

Overview

RDOS features hardware memory protection, and can sup-
-~ IANTONLT A

ort up io 256K bytes (NOVA) or 2M bytes (ECLIPSE) of
p p Y y
memory.

Generating an RDOS System

Each system installation is unique; it must perform diverse
tasks with one of many possible hardware combinations.
An RDOS system is tailored to the user’s environment with
the system generation program, SYSGEN.

The builder of tailored operating systems, SYSGEN is an
executable system program that can operate in any instal-
lation. Data General delivers a standardized starter (boot-
strap) system with RDOS; this starter system, along with
the SYSGEN program, enables the user to generate one or
more configured systems. If you know your future require-
ments, you can generate other RDOS systems at this time
W iuiliii tiem. How o Loud and Generuie ROOS (DGC
No. 069-400013) describes the procedures for doing so. The
tailored system is bootstrapped into execution via BOOT,
the RDOS bootstrap program.

Communicating with RDOS

You can communicate with RDOS and make it work for
you in four ways:

via system and task calls in an assembly language pro-
gram,

with Command Line Interpreter commands,
with the Batch monitor, or
indirectly, through a higher-level language.

The user writes system and task calls as instructions in a
program, using the CLI as a dynamic console interface to
RDOS. System and task calls activate logic within the sys-
tem or task processing modules. Only those task-processing
modules that the program needs become part of it.

The Command Line Interpreter (CLI) is a system utility
program that accepts command lines from the console and
translates them into commands to RDOS. Thus, the CLI is
an interface between your console and the system. Unless

RDOS System Reference 1

otherwise directed, RDOS will load the CLI at system in-
itialization. RDOS will reload the CLI upon termination of
a user program if the user did not chain to that program
from the CLI (with the CLI CHAIN command). The CLI
indicates that it is ready for input by outputting a ready
message prompt, R, and a carriage return, and is interrupted
when you press the keys CTRL and A, CTRL and C, or
CTRL and F. (Keyboard interrupts are discussed further in
Chapter 3.)

CLI commands allow the user to load programs, invoke
other utility programs, and activate the BATCH monitor.
BATCH executes jobs serially, without operator interven-
tion, using job control commands in the job stream.

Advanced Data General compilers, and the BASIC inter-
preter, allow users to write programs in languages like
DG/L, FORTRAN, and BASIC.

Program Development

Along with the CLI, Data General supplies a number of
utility programs with RDOS. Each program is described in
a separate manual, as listed in the Preface. The utilities help
the user write code and develope it into useful, executable
programs. During system generation, the utility programs
are transferred to disk, making each of them accessible by
a CLI command.

Your first step in program development is to write a source
program that performs useful work for your computer ap-
plication. This program can be written in a higher-level
language like DG/L or FORTRAN, or in assembly language
via one of the text editor utilities. The CLI’s EDIT command
invokes the Text Editor; Its MEDIT command invokes the
Multiuser Text Editor; and its NSPEED or SPEED com-
mands invoke the Supereditor. Your next step depends on
whether you have used a higher-level language like FOR-
TRAN, or assembly language. This manual will be most
useful to assembly language requirements.

Higher-Level Languages

If you have written your program in FORTRAN, DG/L, or
another higher-level language, you will compile and assem-
ble it by invoking the appropriate utility with a CLI com-
mand. You will then use the Relocatable Loader utility,
invoked with the CLI's RLDR command, to produce an
executable program file. A program written with the BASIC
interpreter can be corrected with the aid of the appropriate
manual for that language, while using the CLI to access,
maintain, and protect files and devices.

Assembly Language

A source program written in assembly language with the
Text Editor or Supereditor utilities must be assembled into
a relocatable binary file, using the CLI's ASM or MAC

2 RDOS System Reference

commands. After assembling the source program into a
binary file, you will use another utility to process the binary
file into an executable program, or save, file. This utility
is the Relocatable Loader, invoked with the CLI’'s RLDR
command. A program generally requires debugging the first
time it is loaded; you may therefore load it with a symbolic
debugger. You can then try to execute the program and, if
it fails to run properly, debug it via the CLI’s DEB com-
mand. CLI commands can be issued atter any of these steps
to maintain, protect, and examine the file.

Main Memory Considerations

Your computer arrived with a given amount of memory.
The amount of this memory available for user programs will
necessarily be a percentage of the total figure, as determined
by the requirements of your tailored RDOS system. Each
of the peripherals and software structures specified during
system generation requires a certain portion of memory, as
listed in How to Load and Generate RDOS. After deducting
the system’s memory from your maximum figure, you must
also consider the space, aside from your own code, that
each user program will actually require.

When you load a program, RLDR builds certain required
tables, modules, directories, and the Task Scheduler into
it. The code for each task call used is taken from the system
library and loaded into the program. (Because system calls
are executed in RDOS space, they require a minimum of
user space.) These components require user memory space
when the program executes. You may therefore want to
conserve space by coding certain segments of the program
as overlays. Overlays are called into memory one by one,
as the program needs them; otherwise, they reside on disk.
You define overlays within a program in the RLDR com-
mand line. Another way to extend effective user address
space is to instruct an executing program to swap itself to
disk, call a new program into memory, and return to memory
when the new program has executed. This method, called
swapping, has a variation called chaining. Overlays, swaps,
and chains are described in Chapter 4, along with the ex-
tended memory available to users with mapped machines.

Foreground/Background
Programming

You may want to run two logically distinct programs con-
currently. RDOS allows the user to divide memory into two
areas, called foreground and background, and to run a pro-
gram simultaneously in each. When bootstrapped, RDOS
starts up in the background; similarly, all executing pro-
grams run in the background until you command RDOS to
execute one in the foreground. When running in two grounds,
programs share such system resources as CPU time and
/O devices. The foreground program has priority unless
otherwise specified by the user. Foreground and background
programs can communicate with one another via system

Licensed Material--Property of Data General

calls or commonly-known disk files, as explained in Chapter
6.

A system that has no hardware mapping device is unmapped,
and runs under unmapped RDOS. Such a system requires
that memory be manually assigned to a program that runs
in the foreground. You do this in the RLDR command line
by specifying two starting addresses for the foreground pro-
gram. They are the start of page zero relocatable memory,
called ZREL, and the start of normal relocatable memory,
called NREL. Once the program has been loaded and ex-
ecuted in the foreground, these addresses separate the two
grounds. Up to 32K words of user address space, excluding
RDOS space, can be directly addressed in an unmapped
system.

Certain system calls, features, and CLI commands apply
only to mapped systems. These exceptions are noted in the
text. If a discussion makes no reference to mapping or the
MAP unit, it applies to both mapped and unmapped systems.

Mapped Features

If your hardware features a MAP unit, it runs under mapped
RDOS. In mapped RDOS, background and foreground pro-
grams can operate autonomously, either alone or via a CLI.
Using mapped address space, both programs can share all
memory not used by the system. Naturally, this amount
depends on the total memory afforded by your computer
and the oize of your RDOS system, au determined by the
features selected during system generation. Tools for ac-
cessing extended memory include virtual overlays and win-
dow mapping, as explained in Chapter 4. Any Data General

computer with mapping hardware can support mapped RDOS.

Addresses are specified similarly in mapped and unmapped
systems, except that a mapped system can remap addresses
in pages of 1,024 words. Addresses in mapped systems are
called logical, instead of physical, addresses.

When you run two programs, the system maps them sep-
arately; each program is aware of its address space only,
and cannot reference locations outside it. The system allots
memory to each program according to its highest address.
It assigns each program a complete logical address space
from page zero through its highest address NMAX, in 1,024-
word pages.

When RDOS starts up, it assigns all memory to the back-
ground; you reserve memory for the foreground with the
CLI's SMEM command, and execute a program in the fore-
ground with the EXFG command.

Aside from hardware separation of foreground and back-
ground address space, the mapped system protects itself in
three ways: it guards system devices, prevents infinite ad-
dress defers, and protects data channel operations.

Licensed Material--Property of Data General

Device Access

Initially, no user can access any device directly, including
the MAP and CPU, on a machine-language level. If the
user attempts to reference a device on a machine level with-
out having been enabled to do so, the system refuses the
request, prints a ‘‘trap’’ message, creates a break save file
called BREAK.SV, and returns to a higher-level program—
usually the CLI. The system responds in the same way if
it encounters more than 16 levels of indirect address—that
is, it traps, creates the break file, and returns. Appendix E
describes traps in more detail.

Users can gain direct access to any system device—and
avoid the map’s safeguards—by using the system call .DEBL,
discussed in Chapter 3. The map also monitors the data
channel and allows user devices to access it through the
system call .STMAP, described in Chapter 7. You can in-
clude your own devices in a system and allow them to
communicate with RDOS by writing device drivers and user
interrupt service routines for them.

RDOS Organization

The RDOS executive is the main framework of the operating
system and must be memory-resident before any processing
can occur. This resident portion of RDOS processes system
calls and interrupts. and manages RDOS buffers. Other
modules of the system reside in system overlays; they are
Drougnt 1INt MEMmory ITom disk a5 required L Perivli suct
functions as initializing the system, opening, closing, re-
naming or deleting files, and spooling control.

In an unmapped system, the RDOS executive resides at the
top and bottom of memory. Locations O through 15, contain
program and interrupt entry points into the top area of RDOS.
In a mapped system, resident RDOS begins at location 0
and extends to the highest address required; it is invisible
to user programs. Above resident RDOS in all systems—
and at the very top of memory in unmapped systems—is a
series of system buffers. The system buffers handle buffered
/O transfers, and hold system overlays and directories from
disk.

The portion of page zero memory available for user pro-
grams begins at location 16, (labelled USP): skips to lo-
cations 20q through 37,; and then extends from 50, through
address 377;. In an unmapped system, these are physical
addreses; in a mapped system, they are logical addresses.
NREL memory is allocated in much the same way for both
mapped and unmapped systems. In a mapped system, ZREL
and NREL addresses are logical: in an unmapped system.
they are absolute. This distinction is not important, how-
ever. to user programs.

Above program ZREL, the Relocatable Loader (RLDR)
builds a User Status Table. called UST, for your program.

RDOS System Reference 3

This table starts at address 400, in an unmapped background,
and at logical address 400; in both the mapped foreground
and mapped background areas. The UST describes, among
other things, your program’s length, number of tasks re-
quired, and number of /O channels needed.

Above the UST RDOS reserves an area for a pool of Task
Control Blocks (TCBs). RDOS uses TCBs to store task state
information, such as the state of the accumulators and carry .
If you have defined overlays in your program via RLDR,
an overlay directory resides above the TCBs. And above
the overlay directory, if any, is NREL memory, which holds
the rest of your program. RLDR reserves a node, or vacant
space, in the program for each overlay segment you defined;
overlays from each group will occupy this mode one by
one.

4 RDOS System Reference

Above your background or foreground program, but still in
NREL memory, are the task-processing modules and Task
Scheduler that it requires in order to run. RLDR searches
the system library for these components and places them on
disk with your program. During execution, they are gen-
erally highest in NREL memory.

Figure 1.1 is a simplified illustration of unmapped and mapped
memory, in which each system is running foreground and
background programs, and each program has one overlay
node.

Licensed Material--Property of Data General

= 77777 4

RDOS Buffers
Resident
RDOS Program Extended All memory not used
Memory Area by Progrém A and system
(Accessible via window {and optionally, Program B)
~_ . . —~
~— mapping or virtual M=
overlays)
A= ~
~ . ~
Foreground NREL ~)= Program B's NREL "=
Overlay node Proqram B
Foreground overlay (optional)
node
Foreground NREL Program B’s page O 20003
UST.TCB's overlay
FG overlay directory directory ZREL
Forearound TCB pool n
Foreground UST
~ ~o
Y ~N—
= Program A’s NREL ‘=
Background NREL
Overlay node
Background Program A
overiay node
2000
Background NREL Program A's page O 8
UST.TCB's overlay
BG overlay directory directory ZREL
Background TCB pool Y
Background UST
400
8 Foreground ZREL RDOS buffers
15 Background ZREL RDOS
8 RDOS space
Physical Iogical
addresses (words) addresses (words)
UNMAPPED MAPPED
RDOS ADDRESS SPACE
Shading indicates RDOS address space
* in a mapped system, resident RDOS is invisible.
Figure 1.1 RDOS address space D-00334
Licensed Material--Property of Data General RDOS System Reference 5

System Library and Source Files

The system library, named SYS.LB, contains task-proc-
essing modules, task schedulers, and other useful routines
for user programs.

Other files supplied with your system contain definitions
for system features and for system and user parameters.

Depending on the programs you write, you may want to
include some or all of these files in the Macroassembler’s
permanent symbol file, MAC.PS, as described in RDOS/
DOS Assembly Language and Programming Utilities (DGC
No. 069-400019). The CLI's LIST or PRINT commands
can be used to display the files’ contents or obtain a hard
copy. Table 1.1 lists and describes the most common of
these files.

Filename Description Where Used
PARU.SR User parameter file containing mnemonics for all system constants Aids in assembly language programming on all
. and errors (see Appendix B for a listing of PARU.SR) Data General computers
PARS.SR System parameter file containing internal RDOS constants and All Data General computers
some macros for system-level tables, such as device control blocks
and certain buffers
NBID.SR NOVA basic instruction definition, providing the basic instruction All Data General computers
set for ali DG machines
OSID.SR Operating system instruction definition All Data General computers
(varies) Multiply-divide instructions, provided with your language All Data General computers
LITMACS.SR Literal macros, used by RDOS, which can also be incorporated in All Data General computers
the user’s programs
NFPID.SR Floating point instructions Computers with floating point hardware
FPID.SR Floating point instructions Computers with floating point software (floating
point interpreter package)
ALMSPD.SR Contains default characteristics of multiplexed lines. Can be edited, All Data General computers
assembled, and included in tailored system to reflect special line
configurations (see Chapter 2 for details)
NSID.SR Stack instruction definition NOVA 3 and NOVA 4 computers
RDOS.SR Unmapped RDOS switch settings All NOVA computers
NRDOS.SR Mapped RDOS NOVA 3 and NOVA 4 computers
MRDOS.SR Mapped RDOS switch settings All mapped NOVA computers except 830s and
840s
NEID.SR NOVA extended instruction definitions ECLIPSE computers
NCID.SR Commercial ECLIPSE instructions ECLIPSE computers
BRDOS.SR Unmapped RDOS switch settings ECLIPSE computers
ARDOS.SR Mapped RDOS switch settings Mapped S/200 and C/300 ECLIPSE computers
ZRDOS.SR Mapped RDOS switch settings Mapped ECLIPSE computers except S/200 and
C/300
TRDOS.SR Mapped RDOS system instructions ECLIPSE S/20 computer
Table 1.1 System file names

6 RDOS System Reference

Licensed Material--Property of Data General

Chapter 2

This chapter defines the different RDOS media for files—
gencrally disk and magnetic tape—and explains how to use
each medium. A section on disk files describes the mech-
anisms used to organize and speed up access to files on
disk, and outlines the file structure that RDOS imposes on
every disk it uses. These mechanisms include directories—
called partitions and subdirectories—which contain groups
of files, and link entries. Link entries allow users in different
directories to use a single file. The chapter concludes with
a description of multiplexors.

Definition of a File

A file is any collection of information, or one of several
devices for receiving or sending that information. Typical
examples of both file types include:

source files

ielocatable bihaly fies

executable program files (save files)
listing files

teletypewriter or CRT keyboards
teletypewriter printers or CRT screens
line printers

magnetic tape files

Source, binary, program, and listing files have special char-
acteristics; each represents a step in program development.
The developer writes a source file with a text editor and
inputs it to an assembler, which produces a relocatable bi-
nary file. The relocatable binary file is processed with the
loader; as a result, the file is placed on disk, with absolute
location data, as a save file. A save file is an executable
program version of the original. Each save file is a core-
image file: it is stored on disk word-for-word as it will be
loaded into memory and executed.

Unless otherwise specified, the keyboard and printer or screen
are the default input and output files for most system op-
erations. The line printer is another type of output file.
Magnetic tape files are discussed extensively later in this
chapter. Cassette files are handled exactly as magnetic tape.

Licensed Material--Property of Data General

Files and Directories

File Overview

All devices and disk files are accessed by filename; all
magnetic tape files are accessed by device name and file
number. Both reserved device names and disk filenames are
discussed at the outset of this section.

A file must be opened—that is, associated with an RDOS
channel via an .OPEN system call—before the user can
access it. The CLI’s file 'O commands do this automati-
cally, but an RDOS program must be coded to open any
files that it needs. You can open a disk file and allow several
concurrent users to access and modify its contents; you
might open it exclusively, permitting only onc user to mod-
ify the file and allowing others to read it; or you could open
it for reading only by several users. This section describes
the attributes that control file access in general terms.

Finally in this section, certain characteristics of disk files
and methods of transferring one file to another file or device
are briefly discussed.

Reserved Device Names

I/O devices have special names, most of them beginning
with the character $. Within the limits of the particular
device, each device name can be used in a command exactly
as a disk file’s name would be. Table 2.1 shows how to
enter each device name reserved by RDOS.

RDOS System Reference 7

$PTR

Device Device
Name

$CDR Punched card reader; mark sense card reader.

Data General cassette unit n, first controller, where
n is in the range of 0-7.

Data General model 6001-6008 fixed-head disk,
first controller.

Data General moving-head disk pack, first con-
troller, where n is a unit numbered 0, 1, 2, or 3,
second controller where n is a unit numbered 4,
5,6, 0r7.

DPnF Top loader (dual-platter Disk Subsystem), first

controller, where n is a unit numbered 0, 1, 2,
or 3, second controller where n is a unit num-
bered 4, 5, 6, or 7. Each unit has two disks. The
top (removable) disk is DPn, the fixed disk DPnF.
This controller also supports diskette drives.

Data General Model 6063/6064 fixed-head disk.
The 6063 is single-density, the 6064 is double-
density, and n is a unit numbered 0, 1, 2, or 3.

6060-series and 6122, 6160, 6161 disk units,
first controller, where n is 0, 1, 2, or 3, second
controller where n is a unit numbered 4, 5, 6, or
7. Model 6060 uses single-density disks; 6061
uses double-density disks.

Input dual processor link (see Chapter 8).

$DPO Output dual processor link (see Chapter 8).

80- or 132-column line printer.

$LPT1 Second line printer.

MCAR Multiprocessor communications adapter re-
ceiver.

MCAT Multiprocessor communications adapter trans-
mitter.

7- or 9-track magnetic tape transport, first con-
troller, where n is in the range of 0-7, second
controller where n is in the range of 10—-17.

Incremental plotter.

$PLT1 Second incremental plotter.

High-speed paper tape punch.

$PTP1 Second paper tape punch.

High-speed paper tape reader.

$PTR1 Second paper tape reader.

Table 2.1 Reserved device names

RDOS System Reference

Device Device

Name

QTYy Asynchronous line multiplexor (ALM), asyn-
chronous data communications multipiexor
(QTY), or Universal line multiplexor (ULM).

$TTi Teletypewriter or display terminal keyboard™.

$TTH Second teletypewriter or display terminal key-
board.

$7TO Teletypewriter printer or CRT display.

$TTO1 Second teletypewriter printer or CRT display.

$TTP Teletypewriter punch.

$TTP1 Second teletypewriter punch.

$TTR Teletypewriter reader.

$TTR1 Second teletypewriter reader.

Table 2.1 Reserved device names (continued)

*For most devices, RDOS supplies an end-of-file mark. On $TTl and
QTY input, however, you must indicate an end-of-file by pressing
the CTRL and Z keys (CTRL-2).

Aside from the ALM and QTY, device drivers have been
written reentrantly, allowing RDOS to support devices in
pairs. Thus, an RDOS system can support two controllers
for every type of disk drive that Data General provides.
Each controller—except for models 6001-6008—can su-
pervise up to four disk drives. The 6045 or 4234 controllers
can support both disk and diskette drives. Use the following
names to address second device controllers on your system:

DK1 Second Data General fixed-head disk.

DPn Second moving-head disk pack controller, where
nis4,5,6,or7.

tur;)vllve;:\;here nis4,5,6, 6; 7 The removeable
disk is DPn, and the fixed disk is DPnF.

DPnF Second top loader (model 6045 or 4234A) con-

DSn Second 6063/6064 fixed-head disk controller,
where nis 4,5, 6, or 7.

DZn 6060-series unit, second controller, where n is
4,5,6,o0r7.

CTn Second cassette controller, where » is 10 through
17 octal.

MTn Second magnetic tape controller, where n is 10

through 17 octal.

For other secondary device names, append a 1 to the primary
name, for example, $LPT1, $PTP1, $CDRI1, and so on.

Licensed Material--Property of Data General

Disk Filenames

A disk filename is a string of up to 10 ASCII characters,
including upper- and lower-case letters, numbers, and the
dollar sign ($).(RDOS converts lower-case letters to upper-
case by default.) The string is packed from left to right and
terminated by a carriage return, form feed, space, or null.
A filename may consist of any number of characters, but
the system recognizes only the first ten. The dollar sign can
also be used freely in a disk filename. However, the reserved
device name combinations should be avoided.

A disk filename may contain an extension—a period fol-
lowed by one or two alphanumeric characters, which may
include the dollar sign. Although an extension may consist
of any number of characters, the system recognizes only
the first two. SIMULATOR.SV is an example of a filename
with an extension.

The CLI often appends an extension to a filename to indicate
the type of information the file contains and to distinguish
it from other types of files created from the same source
file. Assume, for example, that your source file is named
FORECAST.SR. The CLI will append extensions to dif-
ferent versions of FORECAST as follows:
FORECAST.RB Relocatable binary file (after assem-
bling source file).

FORECAST.SV Core image, or save, file (after loading
or binding binary file).
FORECAST.LS Listing file (only if such a file was
specified during the assembly step).
FORECAST.OL Overlay file (only if overlays were
specified in the load or bind com-
mand).

While developing source programs into executable save files
via the system assemblers and binders, you may ignore
extensions if you assign the extension .SR, or no extension,
to your assembly language source files. The utilities use a
search algorithm to find the file with the appropriate exten-
sion. RDOS will always be given the extension .SV. Al-
though RDOS assigns the extension .SV to each executable
program, you need not enter .SV to execute it. Instead,
simply type the file’s name—for example, FORECAST (CRy—
from your console. If you append a unique extension to a
filename, you must always include it when accessing the
file via the CLI or a system call. (Save files will not execute
with an extension other than .SV.) When adding your own
extension to a filename. either avoid a CLI extension or use
it properly. Do not, for example, confuse the CLI by giving
a source file the extension .SV.

Licensed Materiai--Property of Data General

File Attributes and Characteristics

A file’s attributes protect it by permitting or restricting the
functions of reading, writing, renaming, deleting, or link-

ing.

The attributes listed here apply primarily to disk files. RDOS
protects nondisk files by assigning attributes that cannot be
altered. (Of course, the user can write-protect a file on
magnetic tape by removing the write-enable ring.) Use either
the RDOS system call .CHATR (Chapter 3) or the CLI
command CHATR to change the access attributes of a file.

P Permanent file. No user can delete or rename a file
that has this attribute.

S Save file (core image). RLDR assigns this attribute
automatically, and no file can be executed without it.

W Write-protected file, which no one can modify.
R Read-protected file, which no one can read.

A Attribute-protected file, whose attributes cannot be
changed. Once the A attribute has been set, it cannot
be removed.

N No resolution permitted. A file with this attribute can-
not be linked to.

? First user-definable attribute. When placed in bit 9 of
the attributes word, permits the user to assign his own
file attribute. (See Chapter 3, under the .CHATR com-
mand, for details.)

& Second user-definable attribute. When placed in bit
10 of the attributes word, permits the user to assign
his own file attribute. (See Chapter 3, under the
.CHATR command, for details.)

Note that user-defined attributes should not be more restric-
tive than the file requires. A file with the attributes AP, for
example, can only be deleted by erasing the entire disk with
a procedure called full initialization.

RDOS System Reference 9

Disk File Characteristics

Disk file characteristics are determined when you create a
disk file, and cannot be changed thereafter. These charac-
teristics include:

D Randomly organized file. (All save files must have
this characteristic.)

C Contiguously organized file.

L Link entry. (Such a file contains nothing, but points
to another file.)

T Partition file. (All partitions also have the C charac-
teristic.)

Y Directory file. (A directory may include partitions and
subdirectories.)

The CLI's LIST/A command allows the user to obtain in-
formation from a file directory about one or more files.

File Transfer

The CLI’s XFER command copies a file from one device
to any other. It requires two arguments:

XFER sourcefile destinationfile

For example, the statement

XFER @MTO0:0 INDEX (CR)

causes the CLI to create a disk file named INDEX and to
copy to it the contents of the first file on magnetic tape unit
0. (The symbol (CR) represents a carriage return.) In a
second example, this statement

XFER MYFILE YOURFILE (CR)

creates YOURFILE on disk and transfers the contents of
MYFILE to it.

10 RDOS System Reference

Disk File Block Organization

The primary unit in an RDOS disk file is the disk block,
which contains 256 16-bit words, or 512 bytes. When you
create a disk file, the system call or CLI command directs
the system to organize the file in one of three ways: se-
quentially, randomly, or contiguously.

In a sequential file, the system reads disk blocks in logical
sequence, one by one. It reserves the last word, or last two
words (depending on the disk), for a pointer to the next
block. RDOS always reads and writes sequential files in
blocks via system buffers, which slows the process signif-
icantly. Sequential files are created with the system call
.CREAT or the CLI command CREATE.

In a random file, the system uses a file index to access any
block. Generally, no more than two disk accesses are needed
to access a block. (Very large files may require more.)
RDOS uses all 256 words for data storage. Random file
blocks can be read or written via direct block I/O, without
system buffering, to save time. To create a random file, use
the system call .CRAND or CLI command CRAND.

In a contiguous file, access is the fastest because all blocks
are contiguous on disk and each contiguous file has a fixed,
unalterable length in blocks. This means that RDOS does
not need a file index and requires only one disk access.
Each block uses all 256 words for data storage. Direct block
/0 can be used for contiguous files. They are created with
the system calls .CCONT or .CONN, or with the CLI com-
mand CCONT. Chapter 3 explains the difference between
.CCONT and .CONN.

RDOS ofters five ways to access disk files for I/O. In all

but direct block I/O, RDOS transfers files via system buff-
ers. Chapter 3 discusses the /O modes in detail.

Licensed Material--Property of Data General

Sequentially Organized Files

When the system writes a sequential file to disk, the first
block has relative number 0, the second 1, and so on. RDOS
assigns each block a logical address, which it uses to derive
the block’s physical sector/track location on disk. In the Iast
word of this block (or last two words on multiple-platter
disks), RDOS stores a link to the next block. This link is
invisible to the user but not to RDOS, which uses it to
compute the physical address of the next relative block.

Assume, for example, that RDOS is reading block 0 of a
sequential file. When it reaches the link at the end, RDOS
finds the logical address of block 1, moves to block 1, and
continues reading. Blocks O and 1 need not be contiguous
on disk. From block 1, RDOS reads forward but can never
skip a block. Thus, to reach block 7, RDOS would have to
read forward until it encountered the link at the end of block
6. Figure 2.1 illustrates this concept.

Logical block

3765 data words
(3754 for double-word
addressing disks)

Link word

(2 words for double-word
addressing disks) —{

address 7
word O
Relative
block 0O
224
Logical block
address 224
word O
Reiative
biock 1
11 8
Logical block
address 164
word 0
. Relative
. block 2
224

Any link word is the block address of the
previous biock, XORed with the block address

of the next block. Links for the first and last relative
blocks are XORed with zero. {as there is no previous or
next block, respectively).

Figure 2.1 Sequential file block organization

Licensed Material--Property of Data General

SD-00534

RDOS System Reference 11

When you access a sequential file for I/O, RDOS transfers
it via system buffers. Block by block, RDOS reads the file
into a system buffer for the transfer. When writing data into
its system buffer area, RDOS overwrites the oldest available
buffer block first. When all buffers have been used, the
least-recently used is the first to be overwritten. After RDOS
has read a block into its buffers, you can read or write the
block’s records directly; no further disk access is required.

Randomly Organized Files

In RDOS, all save files employ random organization. RDOS
creates a file index for any random file that you create. In

this index, the system enters one or two words, depending
on the disk size, for each block that you write in the file.
These index entries contain the block’s logical disk address,
allowing you to access any block on the disk. Index blocks
are linked in the same way as sequential blocks, except that
the last word or two points to the next index block. The
first data block in the file is numbered O, the second 1, and
so on; the first entry in the index, entry O, contains the
logical address of block 0, and so on. If an index entry
contains zeros, or no address, its corresponding block has
not been written.

Figure 2.2 shows the relationship between the file index
and data blocks in a randomly organized disk file.

FILE INDEX
entry O Block O's address
entry 1* Block 1's address

Block 2's address

entry 3764 |Block 376(177)address
(or 1765)

Link

Block 377(177) address

Link

DATA BLOCKS
> Word O \
Relative
block O
word 377
- word 0 \
. Relative
. block 2
word 3774

*Index entries are two words for some disks.

Figure 2.2 Random file block organization

12 RDOS System Reference

SD-00635

Licensed Materiail--Property of Data Generai

For files that contain less than 255 data blocks, RDOS
generally needs only two disk accesses to read or write a
block: one for the file index, and one tor the block of data
itself. If the file index is memory-resident—as it would be
if you accessed the file previously and the index remained
in a system buffer—only one access need be made. If the
data block itself resides in memory, RDOS requires no disk
accesses at all.

You can use all I’/O commands available for sequential or
random files. Because random organization is more effi-
cient, I/O is generally faster on these files. For large-scale
I/O, processing time can be shortened even further by using
direct block I/O commands to transfer random files. Direct
block I/O transfers cause RDOS to transfer an entire block
from disk to the specified memory area without using system
buffers. By avoiding buffering, you save time but forfeit
the automatic management of the system buffers.

Contiguously Organized Files

As shown in Figure 2.3, RDOS accesses data blocks in
contiguously organized files randomly, without a file index.
Contiguous files consist of a fixed number of disk blocks
located at an unbroken series of disk block addresses. The
user can neither expand nor reduce the size of these files.
Since the data blocks are at sequential logical block ad-
dresses, all that RDOS requires to access a block within a
<ontiguous £l s the address of s first bluck, w il Gl s
name, and the relative block number within it. RDOS organ-
izes all disk partitions and overlay files contiguously.

All /O operations permitted on randomly organized files
can be performed on contiguous ones, but the size of the
contiguous file remains fixed. Block access is faster in a
contiguous file, because RDOS does not need to read a file
index.

Licensed Material--Property of Data General

Block address n word O
Relative
biock O
word 377
Block address n + 1 word 0
Relative
block 1
word 377
Block address n + 2 word O
Reiative
block 2
word 3774
Figure 2.3 Contiguous file block organization SD-00536

RDOS Disk Directories

Before introducing a disk to the system, the user must check
and fully initialize it with the disk initializer, DKINIT.SV.
DKINIT, a stand-alone program, accompanies RDOS on
your DG-supplied release tape or diskette, and is described
in How to Load and Generate RDOS. After running DKINIT
on the disk, the user may elect to install a bootstrap root
on it. This routine enables you to bootstrap an RDOS system
on any other disk from this one, as long as the new disk
also contains the program BOOT.SV. The bootstrap root
occupies blocks 0 and 1 of the disk: the disk ID is in block
3. and the bad block pool created by DKINIT occupies block
4.

When a disk is first introduced into the system, RDOS
creates on it two system directories, SYS.DR and MAP.DR.
SYS.DR records all filenames and other file data on the
disk. and is updated by RDOS whenever you create. modify.
or delete a file or user directorv. MAP DR is a block al-
location map. It records those blocks which are in use and
those that are free for data storage. MAP.DR is aware of
all disk space except blocks 0 through 5.

RDOS System Reference 13

Initial Disk Block Assignments

Certain blocks on every disk have fixed assignments, while
the remaining blocks are free for system use or file storage.
Table 2.2 shows the initial block assignments on an RDOS
disk.

Disk block Assignment

no. (octal)

0,1 Root portion of the disk bootstrap program,
BOOT

3 Disk ID

4,5 Bad block pool index

6 First index block of SYS.DR

7 Index of file index blocks used whenever a
program swap occurs

8to 16 Storage for swap file index blocks

17ton MAP.DR blocks, where n depends on disk size

(n+1)tom BOOTSYS.OL (always allocated by INIT/F)
Free blocks for RDOS or user files

Table 2.2 Initial dick block assignments

The MAP.DR file starts at block 17. It is a contiguous file.

Each bit of each word in MAP.DR indicates whether or not

a specific block is in use, as follows:

Word (octal) Contents

0 Block allocation map. One bit for each
block, from ieft to right in ascending or-
der, starting with block number 6. 0 means

that a block is available, 1 means that a
block is in use.

Variable n represents the size of the par-
tition in blocks divided by 16 (integer di-
vision).

14 RDOS System Reference

System Directory (SYS.DR)

A user can create many directories within an RDOS system,
and numerous files in each directory. RDOS creates a SYS.DR
for each directory to keep track of the files within it. Each
copy of SYS.DR is a random file.

The system directory employs a hashing algorithm to speed
up access of directory entries. RDOS allocates an initial
system directory area when the disk is initialized with
DKINIT.SV. This area, called a frame, is a contiguous set
of disk blocks, minimizing head travel time. Users can check
and modify the frame size on a disk with DKINIT com-
mands.

The first word in each block of SYS.DR is the number of
files listed in the block. Following this word is a series of
22.-word entries called user file descriptors, or UFDs, which
describe each file. Each block in SYS.DR is composed as
follows:

Word (octal) Contents

0 Number of files in this block of the di-
rectory (16, maximum)

1
User file descriptor (UFD)
22
23
User file descriptor (UFD)
44
Remainder of block
376 Contains maximum number of UFDs that

ever existed in this block; if the number
is 16, an overflow block may exist.

Licensed Material--Property of Data General

The UFD describes the file’s name, its two-character name
extension, its size. its attributes and characteristics, the ad-
dress of the first block, other qualities, and a logical code
for the device that holds this file, as follows:

Word (octal) Contents

0—4 Filename (padded with nulls, if necessary)

S Extension (padded with nulls, if neces-
sary)

6 Attributes and characteristics

7 Link access attributes

10 Number of last block in file

11 Byte count in last block

12 First address (physical address of first block
in sequential or contiguous file, or first
block of index for a random file)

13 Year and day last accessed

14 Year and day created or most recently
modificd

15 Hour and minute created or most recently
modified

16 UFD variable information

17 UFD variable information

20 Use count

21 Device code DCT link

The attributes in words 6 and 7 permit or restrict access to
the file, as explained in the discussion of .CHATR and
.CHLAT in Chapter 3. A nonzero file use count indicates
that one or more users have opened the file. If a malfunction
occurs when a file is open, its count will often be incorrect,
requiring that you clear it to zero (via the CLI's CLEAR
command) before closing, renaming, or deleting the file.

Licensed Material--Property of Data General

Master Directory

The master directory (device) on each disk has the following
uses:

e It becomes the current directory after you bring up the
system, bootstrap a new system, or release a different
current directory.

e It contains the current RDOS system save and overlay
files, and usually contains the system utilities and library
unless they were loaded into another directory, or were
never loaded or copied.

o It contains push space for program swaps.

o It holds the spool files and tuning file, if any.

The master directory is determined when you bootstrap RDOS
into operation. It remains the master until released. or until
you bootstrap another system or program via the CLI's
BOOT command.

User Directories

Within any RDOS system, each user requires disk space
for files. Disk partitions and subdirectories permit you to
organize and assign file space flexibly. by user or category

name

Although either CLI commands or system calls can be used
to organize disk space, the CLI is the method of choice.
Error interpretation is faster and simpler via the CLI. Once
a hierarchy has been created from the console, you can
access its directories and manipulate files via system calls
in your programs.

Partitions and Subdirectories

Each disk introduced to the system contains a given number
of blocks available for storage. These blocks comprise an
area called the primary partition. Sections of the primary
partition can be logically detached and assigned different
filenames, according to the users’ needs. These discrete
sections are called secondary partitions; you create them
and give them a fixed size with the CLI’'s CPART command
or .CPAR system call.

Within the primary partition (and secondary partitions, if
any) are smaller groups called subdirectories. You create a
subdirectory with the CLI's CDIR command or .CDIR sys-
tem call. Each subdirectory is flexible: it grows or shrinks
according to the files that you append to or delete from it.
A file may also exist in the master directory. A subdirectory
and its files can never outgrow the fixed size of its parent
partition. A newly-created subdirectory consists of three
blocks: SYS.DR’s initial index block, and two data blocks
for the SYS.DR and MAP.DR entries.

RDOS System Reference 15

In a multiuser RDOS system, the type of disk space a user
receives depends on the installation. Typically, each user
has a personal directory and unlimited reading access to
several, common public files. In some systems, each user
has a large secondary partition for subdirectories and files;
in others, each has a subdirectory on the primary partition.

Figure 2.4 shows a disk before and after partitioning, along
with the CLI commands that make partitioning possible.
DXn is a general term that varies according to your own
disk name(s), as described in Table 2.1.

Each primary partition, secondary partition, and subdirec-
tory contains a version of the disk’s system directory to keep
track of the files within it and enable it to access I/O devices.
Each partition’s SYS.DR also contains a version of the map
directory ,to maintain a record of free and occupied data
blocks. Each subdirectory’s SYS.DR uses a copy of its
parent partition’s MAP.DR.

CLIDIALOG
R

DIR Dxn)
R

CPART SECONDPART 2000)
R
DIR SECONDPART)

R

CDIR SUBDIR)

R
DIR Dxn)
R

Primary Partition Dxn

Figure 2.4 Apportioning disk space

16 RDOS System Reference

CDIR SUBDIRA)
R

One important advantage of secondary partitions is that a
disk failure in a secondary partition will not affect files in
other partitions. This is because the map directories in other
partitions are not vulnerable to a failure. For this reason,
some users prefer to place their systems and utilities in a
secondary partition, and operate from that partition, using
directory specifiers.

Parititons are contiguous files, while subdirectories are ran-
domly organized. Both are unusual in that they contain other
files and receive the extension .DR, but are no more priv-
ileged than data files. You can dump, list, or load partitions
and subdirectories, and delete all but the primary partition.

SUBDIR
SUBDIRA

Primary Partition Dxn

SD-00537

Licensed Material--Property of Data Genera!

Initializing and Releasing User Directories

Subdirectories and partitions must be initialized before you
can access the files or subdirectories within them. Initiali-
zation opens a subdirectory or partition, introduces it to the
system, and prepares it for use. This procedure is called
partial initialization. (Full initialization introduces new disks
to the operating system; it writes a new SYS.DR, MAP.DR,
and BOOTSYS.OL on the disk, effectively destroying all
existing file structures.)

Once you have bootstrapped RDOS and set the parameters
of date and time, the CLI displays its R prompt. At this
point RDOS has initialized only the master directory, which
holds the current RDOS system. Most often the master
directory is DPO, DPOF, DZ0, or DSO, but it may also be
another disk or secondary partition.

The CLI's INIT or DIR commands (or the system calls .INIT
or .DIR) are used to initialize a subdirectory or partition,
for example:

R
INIT partition-or-subdirectory (CR)

While many partitions and subdirectories can be initialized
at any moment, RDOS allows only one current directory at
a ume. The current directory is the one in which RDOS
searches for all files unless vou have directed it to search
elsewhere. The DIR command simultaneously selects and
initializes a new current directory, for example:

R
DIR partition-or-subdirectory (CR)

During system generation, the user specifies a maximum
number of subdirectories and partitions that can be initial-
ized at any moment. The current maximum is 64. If the
number of initializations exceeds the maximum defined for
your system, the CLI returns an error message (or the pro-
gram takes an error return). :

Once a directory has been initialized, it is part of the system;
RDOS will remember where it is, and access it, even if it
resides on another partition or subdirectory. It remains in
the system until you release it. The CLI's RELEASE com-
mand (or system call .RLSE) performs this function, for
example:

R
RELEASE subdirectory-or-partition (CR)

The act of releasing a directory removes its initialization.
When the current directory is released, the master directory
becomes current until you specify another directory via DIR
or .DIR. The master directory holds the operating system,
which closes down when you release it.

Licensed Material--Property of Data Generai

During an orderly shutdown, the master directory is released
via the CLI. This directory must be released before phys-
1cally removing the disk that holds it. If two programs are
running, the foreground program must be terminated and
the master directory released from the background console.
RDOS verifies the release as follows:

R
RELEASE DPO (CR)
MASTER DEVICE RELEASED

At this point you may turn off the computer, disk drive(s),
and peripherals.

When more than one disk unit is present in the system, a
global directory specifier is required to initialize each one.
Global specifiers were listed earlier under ‘‘Reserved De-
vice Names™'; examples include DPO and DPOF (removable
and nonremovable disks in unit O of the first top-loader
controller). and DZ0 (first 6060-series unit).

Assume, for example, that you have just bootstrapped a
system that includes three disks: DPO, DPOF, and DZ0. The
disk from which RDOS was bootstrapped automatically be-
comes the current and master directory.

For runtime convenience, RDOS offers the CLI’s equiva-
lence command, EQUIV, or system call .EQIV. Either ver-
sl alivws the Usci 1o change the giobal specificr of any
tape drive or disk—except the master device—before ini-
tializing it. Thus, the developer can write programs using
a generic, rather than a specific, name for a disk or tape
device. At runtime, an available device is selected and its
global specifier changed to the generic one via EQUIV. In
the example that follows, the global specifier DP4 takes on
the generic name DISK:

R
EQUIV DISK DP4 (CR)

Now DP4 can be initialized under its new name and the

program can be executed. When the device is released,
RDOS restores its old specifier.

RDOS System Reference 17

Referencing Disk Files

Because a file may exist in one of many subdirectories and
a subdirectory may reside in one of many partitions, your
CLI command or system call must indicate where RDOS
can find this file. When more than one disk unit is present,
you may need to enter a global specifier (eg, DP4) when
initializing the directory that holds the file. A directory need
only be initialized once with the INIT or DIR commands.
Afterwards, the directory’s name followed by a colon and
filename will suffice, as shown earlier in Table 2.4. As-
sume, for example, that you want to execute file MY-
PROG.SV, in subdirectory SUBDIR, on secondary partition
SECONDPART. Further assume that SUBDIR has not been
initialized. (Otherwise, the statement SUBDIR:MYPROG (CR)
would suffice.) You initialize SUBDIR, or any other di-
rectory, by entering the hierarchy of names in descending
order, separating each from the next with a colon, for ex-
ample:

R
INIT SECONDPART:SUBDIR (CR)

Or, using the same format with the DIR command instead
of INIT, you can designate the directory you want as the
current directory, for example:

R
DIR SECONDPART:SUBDIR (CR)

This statement initializes SUBDIR and makes it the current
directory. All references to filenames that do not include
directory specifiers are directed to the current directory.
With one or more colons present, RDOS assumes that you
want a file in another directory and searches for it there.
The simple statement

R
MYPROG (CR)

executes the program MYPROG.SV because SUBDIR is

now the current directory.

Link Entries

The link entry allows a user in any directory to access any
disk file by its name or by any other filename. Link entries
are most often employed to save disk file space by allowing
users in different directories to access a single copy of a
commonly-used disk file. A link entry may point to other
link entries, with a depth of resolution of up to ten. The
file that is finally linked to is called the resolution file. Link
entries are created with the CLI’s LINK command or .LINK
system call.

18 RDOS System Reference

Creating a link entry is simple, requiring only its name be
unique within its directory; the resolution file need not even
exist when you do it. The link entry can have the same
name as the resolution file, or not; it can exist on the same
partition as the resolution file, or not.

The LINK command has two arguments:

LINK link-entry-name resolution-file-name

RDOS creates the link entry in the current directory unless
instructed otherwise. It assumes that the resolution file re-
sides in the current directory’s parent partition—which can
be either a secondary or the primary partition— not in a
subdirectory. If the resolution file is elsewhere, its location
must be indicated with one or more colons and specifiers.

Although the link entry need not have the same name as
the resolution file, link operations are clearer and simpler
if the entry shares a name with its resolution file. Link entries
with different names are called aliases.

To use a link, the user or program must initialize the di-
rectory containing its resolution entry, along with all direc-
tories containing intermediate links. Moreover, the attributes
of the resolution entry and of all intervening link entries
must allow this operation. (The discussions of .CHATR and
.CHLAT in Chapter 3 include the relevant attributes.)

As shown in Figure 2.5, two links exist to the resolution
entry EDIT.SV on primary partition DP0O. The resolution
systems. Normally, Data General utilities are loaded onto
the master directory before system generation, and EDIT.SV
is included among them. Because it is not in a subdirectory,
linking to it is easy.

Licensed Material--Property of Data General

“SUBDIR”

Link
“EDIT.SV"

“SUBDIRA"

“CREDIT”

Link “BILLING"

“ARREARS”

i

Link “EDIT.SV”

\ Y
res entry

res entry

res file
“BILLING”

res file
“EDIT.SV”

DPO

Figure 2.5 Link entries

To recreate the structure of DPO in Figure 2.5, you would
enter the CLI command line

R
DIR SECONDPART (CR)

to initialize the secondary partition and make it the current
directory. The next statement creates a link to the resolution
file, EDIT.SV

R
LINK EDIT.SV EDIT.SV (CR) or LINK EDIT.SV/2 (CR)

where the first argument is the link entry’s name, and the
second, the name of the resolution file. The alternative
command format containing the /2 switch directs RDOS to
repeat the arguments twice. The result is an entry named
EDIT.SV in the secondary partition that links to the Text
Editor on DP0. This only works if you are in the parent
directory. Otherwise you must specify a directory. For ex-
ample, in the command line

LINK EDIT.SV UTIL: EDIT.SV

UTIL is the directory specifier. Users in partition
SECONDPART can work with the editor while it occupies
disk space on DPO only.

Licensed Material--Property of Data General

]I Link “BILLING” l

DPOF

S§D-00502

The following command sequence creates a link from sub-
directory SUBDIR to the Text Editor:

R
DIR SUBDIR (CR)

R
LINK EDIT.SV DPO:EDIT.SV (CR) or LINK EDIT.SV/2 (CR)

In a third command sequence, SUBDIRA is initialized,
made current, and linked to EDIT.SV:

R
DIR DP0:SUBDIRA (CR)

R
LINK EDIT.SV/2 (CR)

The next series of commands creates two links—one in
subdirectory CREDIT and the other in subdirectory AR-
REARS—from DPOF to file BILLING on DPO:

R
DIR DPOF:CREDIT (CR)

R
LINK BILLING DPO:BILLING (CR;

R
DIR ARREARS (CR)

R
LINK BILLING DPO:BILLING (CR)

RDOS System Reference 19

Again, colons and specifiers are required if the resolution
file does not reside on the partition that holds the current
directory.

Before a link can be used, all intermediate links must be
resolvable. This is accomplished by initializing all inter-
vening directories. Figure 2.5 provides examples: if DPO
had not been initialized, neither link in DPOF would work;
and if the link entry in SECONDPART were removed, the
link in SUBDIR would be useless while the link in SUB-
DIRA would still function. Note that the CLI's UNLINK
command or the system call .ULNK are the only ways to
remove a link entry. The DELETE command and .DELET
system call cause the link to persist and the resolution file
to be deleted.

Each link entry is a filename whose sole function is to point
to the resolution entry, or to a closer, intermediate link.
Like other files, each resolution entry has a user file defi-
nition which includes two sets of attributes: (1) file access
attributes, called resolution entry attributes; and (2) link
access attributes.

Resolution entry attributes govern direct access to the file.
They can be changed via the CLI command CHATR or the
system call .CHATR, as explained in Chapter 3. The at-
tribute N allows a link to exist but prevents anyone from
using it. Other attributes govern reading, writing, renaming,
or deletion. The A attribute makes permanent all other at-
tributes of a resolution entry or file.

Link access attributes permit or restrict access to the reso-
lution entry. Again, the N attribute forbids linking. The CLI
command CHLAT or system call .CHLAT can be used to
change these attributes.

Thus, although links to a resolution file are easily estab-
lished, two sets of resolution entry attributes guard the res-
olution file. As seen by a link entry, the resolution file has
a composite of link attributes and resolution entry attributes.
More than one link entry may point to a resolution entry.
Single user read-write opens and multiple read-only opens
are allowed. In any command or system call, links and
resolution filenames have the same effect. For an example,
return to Figure 2.5 and assume that the current directory
is CREDIT on DPOF. The statement

CRAND DPO:RATINGS (CR)

creates a randomly organized file named RATINGS on DPO,
as do the statements

R
LINK RATINGS DPO:RATINGS (CR)

R
CRAND RATINGS (CR)

20 RDOS System Reference

After either set of commands, the current directory remains
CREDIT and file RATINGS exists on DPO.

After creating and linking a file, all directories in the path
to the resolution file must be initialized before that file can
be opened with the .OPEN system call. Otherwise, the
system returns error ERDNI (Directory Not Initialized) or
error ERDSN (Device Not In System) from .OPEN, indi-
cating that onc or morc intervening directories arc unini-
tialized.

Note that the link entry offers much more than a simple
way to share user files. A link entry can be created for any
file, including a reserved device such as the line printer.

If a link is established to a file on magnetic tape, the device
must be initialized before the link will work. A nondisk
device cannot be linked, in turn, to another resolution file.

File Access Example

When a new disk is introduced to the system, only its pri-
mary partition exists. This section shows, by example, how
a new disk might be organized according to the structures—
partitions, subdirectories, and links-—discussed earlier in
this chapter. The example assumes that five users—two
developers, two documentation specialists, and one support
person—need space on one disk for their files. Ideally, each
user would have as much disk space as needed; file space
would be used efficiently; and each user’s files would be
safe from unauthorized access or alteration.

There are at least two obvious ways to approach these goals:

1. Create five secondary partitions and assign one user to
each.

2. Create a single, large secondary partition and assign
each person to a distinct subdirectory within it.

Both approaches protect all disk files while allowing each
person to access files, such as utility programs, in the pri-
mary partition. The first option guarantees a fixed amount
of file space to each user. A person who exhausts his or
her space, cannot appropriate unused space on another per-
son’s partition. The second option allows each person to
use as much file space as required from within the common
secondary partition, as long as any unused space remains.
Although this option guarantees no user a minimum amount
of file space at any moment, it organizes file space more
efficiently than the first alternative.

The best solution for this hypothetical installation adopts a
middle ground, and is illustrated in Figure 2.6. The disk,
DP0, is organized into one secondary position (DE-
VELOP.DR) for two application programmers, and another
secondary partition (DOCUUMENT.DR) for two writers;

Licensed Material--Property of Data General

the fifth, more modest user works in a subdirectory
(MARGE.DR) with files. Commonly-used public files are
divided into two categories—system-related software, and
all other utilities—and assigned discrete subdirectories
(SYSTEM.DR and UTILITIES.DR). Users can link to these
files from their directories, allowing an application program
to run in the primary partition. A sample dialogue with this
system’s CLI follows Figure 2.6 to show how this orga-
nization might work in practice.

DOCUMENT.DR

PAT.DR

JOAN.DR

BOOK$ 1

BOOKS$2

MARGE.DR

PROJECTS

EDIT.SV

SYSTEM.DR

RDOS.LB SYSGEN.SN

UTILITIES.DR

EDIT.SV TOOLS.SN

Figure 2.6 Sample organization of an RDOS disk

Licensed Material--Property of Data General

FREVIEW

IR
<
b3

HS" | $904«
HA'3IAILS

HS'T$O0Hd

RDOS.LB
SGEN.SV

RDOS System Reference

¥a'do13nla—

1D-00485

21

The first objective of this session is to obtain a line printer
copy of file PROJECTS in subdirectory MARGE. After a
bootstrap and log-on sequence, the CLI announces itself
with the R prompt and the master directory, DPO, auto-
matically becomes the current directory. The CLI's PRINT
command is used to obtain line printer copies of a file:

R
PRINT MARGE:PROJECTS (CR)
NO SUCH DIRECTORY :MARGE.PROJECTS

The CLI returned an error because, to RDOS, an unini-
tialized directory does not exist. The INIT command opens
directory MARGE so that file PROJECTS can be printed.

R
INIT MARGE (CR)

R
PRINT MARGE:PROJECTS (CR)

Two directories, DPO and MARGE are initialized at this
time. The CLI's GDIR command shows which one is the
current directory:

R
GDIR (CR)
DPO

The next objective—to print a copy of BOOKS$1—requires
that secondary partition DOCUMENT and subdirectory PAT
be opened.

R
DIR DOCUMENT:PAT (CR)
NO MORE DCBS :PAT

The CLI’s error message indicated that this RDOS system
was generated to allow only three partitions to be initialized
at any given time. Since DPO and MARGE are already open,
the addition of directories DOCUMENT and PAT brought
the total to four.

The CLT's RELEASE command solves this problem by
closing MARGE, allowing the DIR command to open two
more directories and make PAT the current one. Once di-
rectory PAT has been opened, the CLI can print BOOKS$1.

R
RELEASE MARGE (CR)

R
DIR DOCUMENT:PAT (CR)

R
PRINT BOOKS$1 (CR)

22 RDOS System Reference

The next sequence of commands creates a link from sec-
ondary partition DOCUMENT to the Text Editor program,
EDIT.SV, contained in subdirectory UTILITIES. First the
DIR command makes DOCUMENT the current directory.
Then the LINK command creates a link entry named EDIT.SV
that resolves to file EDIT.SV in the UTILITIES directory.
Finally, the RELEASE command closes the current direc-
tory, causing DPO to become current in its place.

R
DIR DOCUMENT (CR)

R
LINK EDIT.SV UTILITIES:EDIT.SV (CR)

R
RELEASE DOCUMENT (CR)

As a result of this sequence, the Text Editor can be refer-
enced and used from partition DOCUMENT, while the ac-
tual program occupies significant amounts of space in
subdirectory UTILITIES only.

The objective of the last sequence is to back up all files in
partition DEVELOP onto magnetic tape. First the DIR com-
mand makes this partition the current directory. Then the
INIT command introduces the magnetic tape device to the
system. Next, the DUMP command instructs RDOS to copy
the contents of DEVELOP to the first file on magnetic tape.
Note the use of the /V switch, which verifies each file on
the console as it is copied.

R
DIR DEVELOP (CR)

R
INIT MTO (CR)

R

DUMP/V MT0:0 DEVELOP (CR)
PROG$1.DR
*STEVE.DR
PROG$2.DR
"KEN.DR
EDIT.SV
RDOS.LB
REVIEW
SYSGEN.SV
TOOLS.SV

To conclude this session, the RELEASE command closes
current directory DEVELOP, causing DPO to become cur-
rent in its place. Then DPO itself is released, enabling an
orderly shut-down of the operating system.

R
RELEASE DEVELOP (CR)

R
RELEASE DPO (CR)
MASTER DEVICE RELEASED

Licensed Material--Property of Data General

Directory Command Summary

Table 2.3 summarizes the CLI commands and system calls
used to manage disk files and directories. Chapter 3 dis-
cusses each system call in detail. The manual RDOS/DOS
Command Line Interpreter provides more information on
the CLI commands.

CLICommand System Call Meaning

CCONT .CCONT Create a contiguous file
with all words zeroed.

CDIR .CDIR Create subdirectory.

CHATR .CHATR Change file attributes.

CHLAT .CHLA Change link access entry
attributes.

CLEAR Set a file’s use count to
zero.

.CONN Create a contiguous file
without zeroing words.

CPART .CPART Create a secondary par-
tition.

CRAND .CRAND Create a random file.

CREATE .CREAT Create a sequential file.

DELETE .DELET Delete a file.

DIR .DIR Specify a new current di-
rectory and initialize it if
necessary.

EQUIV .EQIV Assign a new name to a
global directory specifier,
removing the old name or
system name.

INIT ANIT Initialize and open a di-
rectory or device.

LINK LINK Create link entry to a file
in any directory.

RELEASE .RLSE Remove a directory or de-
vice from the system.

RENAME .RENAM Rename a file.

UNLINK JULNK Delete a link entry.

Table 2.3 Directory command summary

Licensed Material--Property of Data General

Magnetic Tape Files

Data on magnetic tape can be accessed by both file and free
form I/O. RDOS permits file access on nine- and seven-
track magnetic tape, and supports up to 16 magnetic tape
drives. The tape controller supports reading and writing at
any density.

The operating system generates the following I/O modes:

Tape File I/O: 7-track 800BPI, even parity

Q-track NRZIROORPI. odd pari{y

dalh ANALaOVUVET:, LGl

9-track PE 1600BPI, odd parity
Free Form I/O: Parity in any hardware combination ex-
cept WRITE EOF is always even for 7-
track, and odd for 9-track

If a controller detects an error during reading, the system
makes ten attempts to reread the data before issuing error
ERFIL, ‘‘File Data Error.”” If a data error is detected and
returned to the CLI, the system displays the message PAR-
ITY ERROR: FIE MTn:dd, where n is the unit number and
dd the file number.

When an error after writing is detected, RDOS attempts to
backspace. erase. and rewrite up to ten times. The user
receives an error message if the rewrite fails the tenth time.

An undefined error causes RDOS to return the tape status
word as the error code. When this code is returned to the
CLI, the message UNKNOWN ERROR CODE n is dis-
played, where n is the tape status word.

RDOS System Reference 23

Nine and Seven Track Data Words Data output to seven-track units is necessarily encoded in
tape file I/O. RDOS encodes each 16-bit word as two data

words, in four successive frames. The system encodes each
word as two successive frames in free form I/O. Figure 2.8
shows how data is encoded on seven-track units.

Under file and free format I'O, each data word output to
nine-track units is written as two successive eight-bit bytes.
Figure 2.7 shows how data is encoded on nine-track units.

original data word .
Each tape has a physical end-of-tape (EOT) marker. An
| 0 I ! I 2 | 3 I 4 l 5 l 6 [’ l 8 | 9 |10|1 1[1 2|13|1 4|1 5| attempt to write beyond this marker causes RDOS to return
9-track encoding the error ERSPC after completing the operation. A new file
cannot be started beyond the physical end-of-tape marker.
If you are writing to tape via the CLI’s DUMP command

\ 4 |12 \ and the system reaches the EOT mark, it stops writing and
\ 6| 14 \ aborts the command. When writing on a system level, make
l ol 8 } sure that the reel holds enough tape to accept the file. If it
/ 1 1 9 7 reaches the physical end of tape (EOT) while writing, it
will terminate writing to the tape.
/ 2 |10 -/
/ PP /
[3 |11]
| 7 |15 |
\ 5|13 \
-
Figure 2.7 Data encoding (nine-track units) SD-00538
TAPE FILE 1/0 FREE FORM (DIRECT BLOCK) I/0
AN plpPplP]P \ N Pl N\
\ * * * j \ 2 10 \
I P IO P I]] 3 |11)
/ REREREE -/ / 4 12]
/ 15918 / 5 (13 /
/ 26 [10]14 / / 6|14 /
[3|7 [11]15 | [7 |15 [
-€ -«
“Forced to 0 on writing; don't care on reading.
Figure 2.8 Data encoding (seven-track units) SD-00539

24 RDOS System Reference Licensed Material--Property of Data General

Tape File I/O

In tape file format, RDOS writes and reads data in fixed-
length blocks of 257, 16-bit words. It fills short blocks with
nulls. Data files are variable in length; each one contains
as many fixed-length blocks as the user needs. The first 255
words of each block contain user data, while each of the
last two words contains the file number. Figure 2.9 shows
how a data block is structured.

Data words
255 words
file number 1 word
file number 1 word
Figure 2.9 Data block structure SD-01032

RDOS writes a double end-of-file (EOF) mark after the first
file on tape. The system begins writing at the first double
EOF that it finds, overwriting the second EOF in the pair.
After writing the file. RDOS leaves another double EOF at
the end of it. The system writes files in consecutive order,
starting with file number 0 and continuing through file num-
ber 99.

Licensed Material--Property of Data Generai

Free Form I/O

In addition to tape file I/O, RDOS allows users to read and
write data to magnetic tape in free format. record by record.
The system call .MTOPD opens a tape unit for free form.
Data is read or written via the system call .MTDIO. (Both
calls are fully described under *‘Input/Output Commands”’
in Chapter 3.)

Essentially, .MTDIO allows a program to read or write from
two to 4096 words within a data record, and to space forward
or backward through one to 4096 data records or to the start
of a new data file. Additionally, this call allows the program
to rewind a reel, write an end-of-file mark, read the transport
status, and perform other machine-level operations. Under
free form /O, the system does not maintain a tape file
pointer after it locates the file specified in .MTOPD.

Initializing and Releasing a Tape Drive

The CLI's INIT command initializes a tape drive and re-
winds the tape on that unit, for example, INIT MTO (CR). Full
initialization with the INIT/F command rewinds the tape
and writes two EOFs (logical end-of-tape indications) at its
beginning. The INIT/F command must be executed on all
new magnetic tapes before they are used. Note that this
command effectively erases a tape by permitting the system
to overwrite all files on it.

Ine ULl s KELEADE COMMAnd rewinds a tape and releases
its drive from the system.

RDOS System Reference 25

Referencing Tape Files with File 1/O

Files are placed on tape in numeric order, beginning with
file number 0. A tape that is long enough can contain up
to 100 files, the last having file number 99.

To access a tape file in a CLI command line, enter the
command followed by the tape specifier and drive number,
colon, and a file number. In this statement, for example.

R
PRINT MT0:6 (CR)

MT is the specifier for magnetic tape, O is the unit number,
and 6 is the file number. All tape specifiers have the format
MTn:m or CTn:m, where n is a drive number between 0 and
17 octal and has no leading zero, and m is a file number in
the range of O through 99. No leading zero is needed to
enter the first 10 file numbers. Thus, file number 8 on
magnetic tape unit 2, could be represented as MT2:08 or
MT2:8. Both the global tape specifier and file number must
be entered. Otherwise the system responds with an error
message, ILLEGAL FILE NAME.

The following examples reference files on magnetic tape
and disk from the CLI:

R
DUMP MTO0:0 (CR)

Dump all nonpermanent files from the current directory onto
tape. (This statement is commonly used to perform magnetic
tape backups.) The disk files will comprise file number O
of the tape on unit O when this command line is executed.

R
LOAD MTO0:0 (CR)

Load the files tfrom tape tile U into the current disk directory.
Note that the LOAD command transfers only files that have
been previously dumped with the CLI's DUMP command.
Likewise, the FLOAD command transfers only files that
have been previousty dumped with the CLPs FDUMP com-
mand. The XFER command must be used to transfer any
file that is not in DUMP format.

XFER MT0:0 DATABASE (CR)

Transfer the contents of the first file on tape unit 0 to DA-
TABASE, the current disk directory.

26 RDOS System Reference

Files must be written on magnetic tape in numeric order.
Assume, for example, that you have transfered a disk file
to tape unit 0, which contains a new, fully initialized tape.
The command line

R
XFER SOURCEFILE MT0:0 (CR)

posits SOURCEFILE on tape as shown in Figure 2.10. The
system recognizes only file numbers 0 and | on this tape;
that is, because RDOS assigns numbers incrementally, only
these numbers exist. An attempt to reference any other file
on the tape would result in an error message, FILE DOES
NOT EXIST:MTO:n, because file O is the last file on this
tape.

First file (0)
containing the
contents of
SOURCEFILE.

eof
eof

Once afileis
written, the

. number of the next
file is assigned.
File 1 is a null file

Figure 2.10 Writing the first tape file DG-25453
Users are advised to make a note of each file number when
writing files on tape. Otherwise, a file may be inadvertently
overwritten and destroyed. along with all subsequent files.
Assume, for example, that a tape on drive O contains four
files, as shown in Figure 2.11. The XFER command over-
writes the contents of file 1 with MYFILE, voiding the
location data of files 2 and 3 in the process. As a result.
the original file 1 and all subsequent files are lost.

Licensed Material--Property of Data General

1 A tape file on drive O contains four files.

eof

eof

eof

eof

Logical end

eof } of tape;
eof)
null file

User issues XFER MYFILE MTO:1 %pi(22)

Command overwrites contents of file 1 with
MYFILE. The original file 1 and all sub-
seauent files are lost.

———————————— Original
file zero

- — o — o —

eof

-«——— MYFILE

eof) Logical end

eof of tape;
null file
°
: - Lost data

Figure 2.11 Overwriting tape files 1D-00487
Before physically removing a reel of tape, its transport must
be released with the CLI's RELEASE command. This com-
mand rewinds a tape and resets the system’s tape file pointer
to file O for correct file access in the future. The implications
of the logical end-of-tape mark employed by RDOS should
also be noted. For example, a user who deliberately writes
a null file can write no other files to that tape; the null file
becomes the last file.

Licensed Material--Property of Data General

Linking to Tape Files

Links can be established from disk files to resolution files
on tape using the linking mechanism described earlier. The
act of linking disk file STATISTICS to tape file MTO0:0
creates a link entry in the current disk directory for resolution
file MTO:0; the link entry to file MT0:0 is named STATIS-
TICS. References to this file in the current disk directory
are resolved as references to file MTO:0.

Multiplexors

The SYSGEN program allows users to specify multiplexors
and their characteristics. RDOS supports three kinds of Data
General multiplexors:

1. Type 4255-4258 Asynchronous Line Multiplexor (ALM),
with device code 344 for the primary unit and 44y for
the secondary unit. The ALM supports from one to 64
full- or half-duplex lines.

2. Type 4060-4063 Asynchronous Communications Mul-
tiplexor (QTY). with device code. 20, for the primary
unit and 70 for the secondary unit. The QTY supports
from one to 64 full- or half-duplex lines.

3. The Universal Line Multiplexor (ULM), with device
code 34, for the primary unit and 44, for the secondary
unit. The ULM handles up to one synchronous and four
asynchronous, full-duplex lines.*

A full-duplex line allows data to flow two ways simulta-
neously: users can transmit to RDOS over it, while RDOS
transmits to users’ terminals. Although RDOS assumes full-
duplex lines, half-duplex protocols can be incorporated if
desired.

Each ALM, ULM, or QTY line is a filename, of the form
QTY:x where x is a number from 0 to 63. A muitiplexed
line can be opened on any RDOS I/O channel; the system
calls .RDL/.WRL and .RDS/.WRS are used to read and
write to it. (Chapter 3 explains how to select a channel
number. open files. and use the read/write calls.) No more
than one read and one write may be outstanding on any
single line. The system call .CLOSE must be used to close
a line and abort /O, since the task call . ABORT does not
affect QTY/ALM I/O.

When you open a multiplexed line. or any other file. the
contents of AC1 determine what operations RDOS will al-
low on it. ACI acts as a characteristic disable mask, as
described in Chapter 3. Table 2.4 lists the characteristic bits
that affect multiplexors.

*RDOS does not support the synchronous lines: rather, other software

available with RDOS, such as the Communications Access Manager, sup-
ports them.

RDOS System Reference 27

AC1 Meaning

DCEDT = 1BO Masking allows editing features such as
rub-out and backslash to work even when
echoing is suppressed.

DCCRE = 1B4 Masking disables carriage return echoes
online reads. (CR then acts as enter key.)

DCLAC = 1B6 Masking disables line feed after CR.

DCPCK = 1B7 Masking disables software parity on QTY;
no effect on ALM or ULM.

DCXON = 1B8 Masking enables XON/XOFF protocol for
$TTR. (This protocol prevents the tele-
typewriter reader from overflowing the
multiplexor read buffer.)

DCNAF = 1B9 Masking disables 20 nulls after line feed.

DCKEY = 1B10 Masking disables echo, CTRL-Z (end-of-
file), CTRL S, and CTRL Q, along with
line and character rubout.

DCTO = 1B11 Masking enables backspacing for rubout
on CRT displays only. For QTY/ALM/ULM
lines, the Newline key is treated as a car-
riage return.

DCLOC = 1B13 Masking makes this a modem line.

DCCGN = 1B14 Masking disables TAB expansion.

DCNI = 1B15 Masking enables multiplexor interrupts.

Table 2.4 Characteristic bits that affect muitiplexors

When ACI equals zero on the .OPEN, the multiplexed
console has the following default characteristics:

e Line feeds after carriage returns.
e Twenty nulls after line feed.

e Characters echoed during line reads. SHIFT-L (\) de-
letes line. RUBOUT deletes character and is echoed as
<— CTRL-Z and ESCAPE also result in end-of-file
error.

e This is a local line.

e TABS are expanded as spaces.

Line 64 Reads

RDOS allows you to monitor activity on all unopened mul-
tiplexed lines, and to monitor console interrupts from ail
opened multiplexed lines. If a task opens QTY:64 and issues
a read line or read sequential call, RDOS suspends this task
until (1) a user presses a key at the end of an unopened
line, or (2) a user hits an interrupt on an opened line. After
receiving the character typed, RDOS readies the task, takes

28 RDOS System Reference

the normal return from the read call, and passes the follow-
ing data in AC2:

l 1 (O ’ Multiplexed line number
r t + T T T T T

0 1 2 7 8 15

Character typed on unopened terminai —‘

1

When RDOS receives and answers a ring from a modem,
it sends the following data to line 64, in AC2:

[1 I 1 | Multiplexed line number ’ o] l
b t + T T T — + — r T T T v !

0 1 2 7 8 15

This data allows your program to detect a service request
from a distant terminal. If the request comes from an un-
opened line, your program can then .OPEN the line for
communications. QTY:64 can be opened by a foreground
and a background task; when this occurs, each task receives
characters from unopened lines. If an open line receives an
interrupt (CTRL-A and CTRL-C are defaults), RDOS readies
the task that opened line 64 and passes the following data
in AC2:

Multiplexed line number Interrupt character -I

F T T T T T T T T T T T T T T 1

0 1 2 7 8 15

The system generation program allows you to select inter-
rupts other than CTRL-A and CTRL-C. A task receives and
interrupts from an opened line only if it is in the ground
that opened that line’s channel.

If an open line receives a hangup notification, RDOS returns
the following data in AC2:

Line number
T

Licensed Materiai--Property of Data Generai

Line 64 Writes (ALM and ULM only)

RDOS allows you to change the device characteristic disable
mask, line speed, or modem state on any ALM line. To
effect these changes, issue the system call .'WRL (o a chan-
nel opened on QTY:64 and pass the following data.

To change the mask (on opened lines only):

ACO = W64DC + line number
ACl = new mask.

To change the line speed:

ACO WO64LS + line speed

AC1 = new line speed (0, 1, 2, or 3 for ALM clock; 1
through 15 for ULM line code, as shown in Table
2.5)

To change the modem state:

ACO W64MS + line number
ACl = [W64DTR]| + |[W64RTS]

These bracketed entries are optional. W64DTR raises Data
Terminal Ready; if you omit it, DTR is lowered. W64RTS
raises Request To Send; without it, RTS is lowered.

To change any or all characteristics on any line:

ACO
ACI

W64CH + line number
new characteristic mask

These symbols are defined in the user parameter file,
PARU.SR, which is listed in Appendix B. Note that RDOS
does not check the validity of user input, requiring that you
exercise care when changing the characteristics of an open
line.

ULM Line Codes

During system generation, a line speed is selected for all
ULM lines. Subsequently, a user can change the line speed
of any ULM line via the line 64 write mechanism described
earlier. Table 2.5 lists the 15 (decimal) ULM codes, one
of which you will specify in AC1 to select the matching
line speed.

Licensed Material--Property of Data General

ULM code Matching line speed
1 19200
2 50

3 75

4 134.5
5 200

6 600

7 2400
8 9600
9 4800
10 1800
11 1200
12 2400
13 ; 300
14 150
15 110

Table 2.5 Selecting a ULM line speed

Multiple Channels

A ground may have several channels opened to the same
line. Except for line 64, however, the same line cannot be
opened in both grounds. The first channel opened on a line
becomes the master channel, and all other channels opened
on this line become subordinate to it. Closing the master
channel prevents subordinate channel numbers from using
the line. Each subordinate channel must be closed before it
can be opened again, or reassigned, on another line. If you
open a new channel on a line after closing the master, the
new channel becomes the master channel.

Modem Support Under RDOS

A modem control interface allows software to be written
that controls various asynchronous modems. These modems
must support a subset of the EIA RS-232C interface stan-
dard. A modem must supply the following signals:

e Receive Data
e Clear to Send (may be strapped to DSR or RTS)
¢ Ring Indicator

e Carrier Detect or Data Set Ready

RDOS System Reference 29

Any inactive signal that is wired in the interface cable should
be properly terminated to avoid false activation.

The modem must be fully operative by controlling only the
Transmit Data, Request to Send, and Data Terminal Ready
signals. In situations where remote consoles are connected
to a DG system via the Bell switched voice network, the
modem must also have full-duplex and auto-answer capa-
bilities; transmit and receive data at equal rates; and drop
Data Terminal Ready low, forcing a disconnect.

If standard modem timer software is selected during system
generation, the modem must supply the Carrier Detect sig-
nal, which ensures proper handling of connect and discon-
nect procedures by RDOS. If the standard modem timer is
not included, the modem must provide the Data Set Ready
signal. Further, it should be capable of raising this signal
after Carrier Detect and lowering it after a disconnect.

It is essential that the modem be able to recognize a dis-
connect and drop Data Set Ready. Loss of Carrier Detect
is not sufficient to determine when to drop this signal. Bell
modems use direct current on the phone line as an indication
of a disconnect, and drop Data Set Ready as a result. If the
modem does not provide this function, the line will appear
busy to the next caller if the previous caller has hung up.

When RDOS is bootstrapped, it raises DTR and RTS unless
you have changed the ALM parameter file (ALMSPD.SR)
to drop either or both signals. On a ring interrupt, RDOS
raises both DTR and RTS; on a disconnect, if DSR is low,
it lowers DTR and CTS.

When a modem’s Data Set Ready signal is low, it cannot
communicate. In this case, RDOS takes the error return on
all reads and writes to its modem line, and places code
ERRDY in AC2. Note, however, that the error return occurs
only if you defined the line as a modem line by masking
DCLOC on the .OPEN.

Multiplexor

Table 2.6 lists the errors that relate to reads and writes on
multiplexed lines. Other read/write errors are described in
Chapter 3.

30 RDOS System Reference

AC2 Mnemonic Meaning

24 ERPAR Parity error detected on read.

47 ERSIM Duplicate read or duplicate write.
127 ERRDY Line not ready; modem’s DSR is low.
130 ERINT Console interrupt received.

131 EROVR Hardware overrun error on read.”
132 ERFRM Hardware framing error on read.*

Table 2.6 Muitiplexor error messages
*This error clears the read buffer and errors the read request.

ALMSPD.SR

The source file ALMSPD.SR defines the characteristics of
each line of the ALM or ULM. This source file can be
edited with the Text Editor and assembled with MAC, the
macroassembler utility, to tailor multiplexed lines for spe-
cific applications. The new line specifications are contained
in the binary file ALMSPD.RB and incorporated by the
system generator when it builds a new RDOS system. If
you do not define a line in this module, or if you set its
characteristics at default, the line has these characteristics:

clock frequency (ALM) or line speed (ULM) as defined
to SYSGEN

one stop bit

seven bits per character

even parity

no loopback

signals DTR and RTS raised on initialization
no modem support

no carrier monitoring protection

Licensed Material--Property of Data General

These characteristics can be defined for any line by entering
the statement

LNDEF xx,DEFAULT

in ALMSPD.SR, where xx is the two-digit, decimal number
for the line to be set. To define unique line characteristics,
insert a line of the form

LNDEF xx,spd,stop,bits,par,loop or
LNDEF xx,spd,stop,bits,par,loop,dtr,rts where

XX is the two-digit decimal line number

spd is the clock frequency (may be O, 1, 2, or 3 for
ALM clock or 1 through 15 for ULM line speed

stop is the number of stop bits per character (may be 1
or 2)
bits is the number of bits per character (may be 3, 6.

7, or 8, not including the parity bit)

par indicates whether you wish no parity to be gen-
erated or checked (specify NO), even parity (EVEN),
or odd parity (ODD)

ioop indicates whether vou want to enable loopback
(specify LOOPBACK or NOLOOPBACK)

dtr defines the state of Data Terminal Ready on ini-
tialization (DTRHIGH or DTRLOW)

rs defines the state of Request To Send on (RTSHIGH
or RTSLOW)

Licensed Material--Property of Data General

Note that the arguments for dts and rts may be omitted if
you wish to set their states high. The following example
defines the characteristics of ALM line 3, including a clock
frequency of one; two stop bits; seven bits per character;
even parity; and no loopback. Upon initialization, the DTR
and RTS signals will be high.

LNDEF 03,1,2,7,EVEN,NOLOOPBACK

The next example determines that ULM line 4 will run at
4800 baud, and have one stop bit, seven bits per character,
odd parity, and no loopback. Again, the DTR and RTS
signals will be initialized high.

LNDEF 04,9,1,7,0DD,NOLOOPBACK
After defining ALMSPD.SR, execute the command line

MAC ALMSPD $LPT/L (CR) before generating a new RDOS
system.

RDOS System Reference 31

Chapter 3

Single-task Programming

This chapter describes most of the system calls needed to

DAL

program under RDOS 1n a single-task environment. i ex-
plains system and task command structures, summarizes the
most commonly-used system calls, and then discusses in-
dividual, single-task calls under the following headings:

e Device and Directory Commands
¢ File Maintenance Commands

o File Attribute Commands

¢ Link Commands

e Input/Output Commands

e Console I/O Commands

e Memory Allocation Commands

e Duviee Accoss Cuniinainds

e Clock and Calendar Commands
e Spooling Commands

e Keyboard Interrupt Commands

In conclusion, the system calls described in this chapter are
summarized in table form.

Readers will find further information on single-task pro-
gramming in Chapter 4, where program swaps and overlays
are discussed; in Chapter 5, which covers system clock
commands used in single-task environments; in Chapter 6,
which explains how to run in two grounds; and in Chapter
7. where user interrupts are explained.

Multiple and Single-task
Environments

A program task is an execution path through user address
space that uses system resources such as 1'O. overlays, or
simple CPU control. User address space includes all mem-
ory from location 16, through NMAX—T1.

In a single-task environment. the program itself is the only

task. A program initiates a multitask environment by cre-
ating a task via task calls .TASK or .QTSK. In planning a

Licensed Material--Property of Data General

multitask program, you must specify multiple tasks with
asseimbly language pseudo-ops or with RLDR switches. Then
RLDR will copy the multitask scheduler, called TCBMON,
into your program and allot the number of Task Control

Blocks (TCBs) specified.

If you omit task and I/O channel pseudo-ops and task/chan-
nel switches, RLDR assumes a single-task program and
copies the single-task scheduler into it. RLDR also allots
eight channels — enough for most single-task programs.
Either a single- or multitask program can use all system
calls described in this chapter. For more information on
multitasking, consult Chapter 5.

Note that the task scheduler and other modules differ for
certain kinds of systems (eg, unmapped and mapped NOVA
and ECLIPSE systems), meaning that programs loaded un-
der one type of system may not execute on a system of
another type. When loading for a different system, obtain
the appropriate system library (SYS.LB) for the target sys-
tem and ensure that RLDR searches it, rather than the current
library, during the loading process. This procedure is most
easily accomplished from a subdirectory that contains the
target system’s library and links to RLDR.

System and Task Calls

RDOS system and task calls allow users to communicate
directly with the operating system; they are similar, but not
identical.

You begin each system call with the mnemonic .SYSTM,
which assembles as a JSR (@ 17 instruction. This instruction
enables the system to respond to your command. After ex-
ecuting a system call, the system (1) takes a normal return
to the second instruction after the command word, or (2)
takes the error return to the first instruction following the
command word, if an exceptional condition is detected.
System calls always reserve AC2 for the error code.

RDOS System Reference 33

Descriptions of system calls in this manual abide by the
following, generic format:

ACn - Required input to the call.

.SYSTM
command
error return
normal return

On an error return, RDOS passes an error code in AC2. On
a normal return, each accumulator, except AC3, is restored
unless used to return output.

ACn - Output from the call.

AC3 - The content of location 16 (the User Stack Pointer)
is the default value.

Required input for many system calls includes a byte pointer
to a specific filename. When you include this byte pointer,
the filename pointed to may include directory specifiers as
well.

A task call resembles a system call, with these exceptions:
(1) you enter no .SYSTM mnemonic before the task com-
mand word; (2) RDOS executes task calls in user address
space, not in system space; and (3) task calls that cannot
take an error return do not reserve an error return location.
Almost all system calls reserve an error return location,
even if no error return is possible. The comands in this
chapter are all system calls.

Status On Return From System Calls

This discussion summarizes the status of the accumulators
upon return from a system or task call.

For certain calls, the system returns information in ACO,
ACl1, and/or AC2; if it does not, the carry and all accu-
mulators except AC3 are preserved. The system always
returns the contents of location 16, (the USP) in AC3 by
default, unless you specified a particular module, such as
ESAC3, in the RLDR command line. Thus, if you loaded
a program with module N3SAC3 (NOVA3s only), AC3
would contain the contents of the frame pointer register upon
return from a call. Similarly, if you loaded a program with
module ESAC3 (ECLIPSEs only), the system would return
the contents of location 415, the frame pointer, in AC3. On
error returns, RDOS uses AC2 to return numeric error codes,
which are listed in Appendix A.

NOTE: In this book, the error codes associated with
each system call represent the most common errors
only; their meanings have been expanded and inter-
preted in light of the call.

34 RDOS System Reference

I/0 Channel Numbers

Before a file can be accessed for I/O, it must receive an
I/0O channel number in your open call. The file retains its
channel number while it is open, and must be accessed via
this number instead of the filename. The associated channel
number is released when you close the file. An I/O channel
number immediately follows the call word in your program.
Thus, if the channel number is n, the IO calls for a file
could run as follows:

open n

file reads/writes n

close n

In a mapped system, the number of foreground and back-
ground channels is specified during system generation; the
maximum for each ground is 377,. SYSGEN asks no ques-
tion about channels for an unmapped system, whose max-
imum of 377 is predefined. RLDR allots eight I/O channels,
numbered 0O through 7, for a single-task program. Although
this number is generally sufficient, you may want to specify
more channels using the RLDR program’s /C switch or the
macroassembler’s pseudo-op, .COMM TASK.

Selecting a Channel

There are two ways to assign a channel number to a file:
either directly when you open, for example,

.OPEN 3

or via AC2. If your opening specifies number 77 (or CPU),
RDOS opens the file on the channel number contained in
the right byte of AC2. To open on a number above 77—
assuming that your program permits one— you must open
on 77 and pass the number in AC2.

The major advantage to opening on 77 is that the system
call .GCHN can be used to find a free channel for your
open. .GCHN returns the number of a free channel in AC2.
This number can be assigned a name that identifies the
channel for all /O to the file. Unless all channels are in
use, this method ensures a free channel for file /O. The
following example demonstrates:

Licensed Material--Property of Data General

.SYSTM
.GCHN

JMP ER
STA 2. FILEA

LDA 2,FILE1
.SYSTM
.OPEN 77
JMP ER
.SYSTM
\WRS 77

.SYSTM
.GCHN

JMP ER

STA 2, FILE2
SYSTM
.APPEND 77
JMP ER

:STORE THIS CHANNEL
;NUMBER UNDER “FILE1".

;OPEN “FILE1".

;WRITE TO “FILE1”

; STORE NUMBER UNDER “FILE2".

;OPEN “FILE2” FOR APPENDING.

Licensed Material--Property of Data General

Commonly Used Commands

In the process of developing application programs, you will
use certain system calls quite frequently and others rarely
or not at all. Table 3.1 attempts to summarize the most
useful calls in the sequence that you might use them in a
program. Each call is described by name, format, accu-
mulator data, and possible error codes. The table assumes
that you will use the CLI to create and initialize partitions
and subdirectories, to execute magnetic tape I/O, and to
control spooling. It further assumes that your program will
not attempt to alter file attributes, create link entries, or
manage a multitask environment, although these objectives
can be accomplished via RDOS system calls if you choose.

Note that Table 3.1 assumes a single-task environment; it
does not cover foreground/background calls (Chapter 6) or
multitasking (Chapter 5). Each file /O command requires
a channel number, as indicated; the term bzptr means byte
pointer; and each system call has the generic form:

.SYSTM
call name
error return to program

The following example shows this format in practice:

LDA 0.BTPTR
.SYSTM
niR

JSR ERROR

BTPTR: 172

.TXT “DP1:SUBDIR”
ERROR: .SYSTM

.ERTN

JMP.—2

RDOS System Reference 35

Call
.CRAND

.CCOND

.OPEN n

.APPEND n

.RDL n

.RDS

WRL n

WRS n

WRB n
and
.RDB n

.CLOSE n

DELET

Purpose
Creates a random file.

Create a contiguous file.

Open a file for /0 on channel n.

Opens a file for appending, on channel n. Sets position
for writing at the end of the file.

Reads an ASClI line on channel n. Counterpart of WRL
command.

Reads sequentially from the file opened on channel n.
Sequential mode is required for binary data.

Writes an ASCI! line to the file opened on channel n.
Writing begins at start of file if you opened it with .OPEN;
at end if you opened it with .APPEND. Limit is 132
characters terminated by a CR, null, or form feed.

Writes sequential bytes to the file on channel n. See
the WRL command for position information.

Direct block I/O calls that write or read a series of disk
blocks to or from the random or contiguous file on chan-
nel n.

Closes the file opened on channel n. RDOS then up-

dates the file’s UFD information. (.(ERTN and .RTN close
all channels in the current program.)

Delete a file.

Remarks
ACO: btptr to filename.

ACO: btptr to filename.
AC1: number of disk blocks for the file.

ACO: btptr to filename.

AC1: characteristic disable mask. You can specify the
system defauit mask (normal procedure) by passing 0
via a SUB 1,1 instruction before the .OPEN.

ACO: btptr to filename.

AC1: characteristic disable mask. As with .OPEN you
can specify the system default mask before the .AP-
PEND.

ACO: btptr to area large enough for line (133 maximum).
ACH1: returns the count of characters read.

ACO: btptr to starting byte address of data.
AC1: number of bytes to be read.

ACQO: btptr to area that holds the ASCII line.

ACO: btptr to starting byte address of data.
AC1: number of bytes to be written.

ACO: starting address for the block write or read.
ACH1: starting relative block number in the series.
AC2: left byte number of 256-word biocks to be written
or read to the file.

ACO: btptr to filename.

Table 3.1 Commonly used commands

36

RDOS System Reference

Licensed Material--Property of Data General

Table 3.2 lists the system calls that control NMAX, that
execute and return from program swaps or chains, and that
load overlays. Table 3.3 lists the error codes that AC2 may
contain if your program takes the error return from any of
these system calls.

Catl Purpose

.MEM Return the current program’s NMAX value in ACO, along
with the value of the highest memory address available
for user programs in AC1.

MEM! Raise NMAX to the value entered in ACO, or lower
NMAX by the value entered in two’s complement in
ACO. RDOS returns the new value in AC1.

.ERTN Close the channels in the current program and return
or to (resume execution of) the next higher-level program
.RTN (usually the CLI). .ERTN returns an error code in AC2;

~ifreturn is to the CL{, it also prints an error message
on the console.

.OVOPN n Open overlay file for reading on channel n. Before your
program can use overlays, you must open them on a
channel. You close the channel via a .CLOSE n.

.OVLOD n ~_Load an overlay from the overlay file opened on chan-
nel n into its reserved memory node.

Remarks

ACO: btptr to overlay filename, including .OL extension.

ACO: overlay descriptor.
AC1: conditional load flag.

Table 3.2 Calls that control memory, returns and overlays

Licensed Material--Property of Data General

RDOS System Reference

37

AC2 Mnemonic Meaning AC2 Mnemonic Meaning
0 ERFNO llegal channel number (legal range is 36 ERDNM Device not in system.
0 through 377,.
37 EROVN llegal overlay number.
1 ERFNM lilegal filename (only alphanumeric or
$ characters are permitted). 40 EROVA File not accessible by direct block
/0.
3 ERICD llegal command for device (for ex-
ample, trying to read from the line 47 ERSIM Simuitaneous reads or writes at-
printer). tempted to same QTY/ALM line.
6 EREOF End of file detected while reading, or 52 ERIDS llegal directory specifier.
attempt to write beyond the end of a
contiguous file. 66 ERDNI Directory not initialized.
7 ERRPR File is read-protected. 74 ERMPR Address outside address space
(mapped systems only).
10 ERWPR File is write-protected.
101 ERDTO Disk timeout occurred.
11 ERCRE File already exists.
103 ERMCA This MCA channel is in use.
12 ERDLE File (directory) does not exist.
104 ERSRR A short receive request terminated the
13 ERDE1 File cannot be deleted because it has MCA transmission.
the permanent attribute.
106 ERCLO MCA/QTY/ALM output terminated by
15 ERFOP File has not been opened. ' channel close. -
21 ERUFT This channel is in use. 124 ERZCB Attemnpt to create a contiguous file of
zero length.
22 ERLLI Line limit (132 characters) exceeded.
) Table 3.3 Possible errors from calls that control memory,
26 ERMEM AttemPi to allocate more memory than returns and overlays (continued)
is available.
27 ERSPS File space exhausted in current par-
tition.
33 ERRD Attempt to read or write into system
space (unmapped systems only).

Table 3.3 Possible errors from calls that control memory,
returns and overlays

38 RDOS System Reference Licensed Material--Property of Data General

Device and Directory Commands

This section describes the RDOS system calls that pertain
to opening and releasing disk and magnetic tape drives and
disk directories: it also covers the commands that create disk
partitions and subdirectories. In order of discussion, these
commands are:

ANIT Initialize a directory or device

.DIR Select a different current directory

.RLSE Release a directory or device

.GDIR Get the current directory’s name

.CDIR Create a subdirectory

.CPART Create a secondary partition

.EQIV Temporarily rename a nonmaster device
or tape drive

.GSYS Get the current RDOS system’s name

.MDIR Get the master directory’s name

Licensed Material--Property of Data General

JNIT

Initialize a directory or device

A program can initialize devices and directories via the
system call .INIT. When this command is invoked and AC]1
does not contain — 1, a partial initialization of the device
or directory occurs, making all files in the directory available
to the system software, as a result. Partial initialization of
a magnetic tape rewinds the tape and resets the tape file
pointer to file zero. If AC1 contains 177777 when you
invoke .INIT, a full initialization of the device results. Full
initialization of a magnetic tape rewinds the tape and writes
two EOFs to signify the logical end-of-tape. All files on
that tape are lost as a result. Full initialization of a disk
builds new system (SYS.DR) and map (MAP.DR) direc-
tories on it, effectively destroying all existing files. RDOS
treats full initialization of a secondary partition or subdi-
rectory as a partial initialization.

Required Input

ACO - Byte pointer to a directory or device specifier.

In each byte pointer, bits 0—14 contain the word address
that holds or will receive the byte. Bit 15 specifies which
half (O left, 1 right).

Format

DYSIM
ANIT

error return
normal return

RDOS System Reference 39

Possible Errors

AC2 Mnemonic

Meaning

1 ERFNM Illegal filename

10 ERWPR Device is write-protected (full initial-
ization only).

12 ERDLE Directory does not exist.

27 ERSPC Out of disk space.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

45 ERIBS Insufficient number of Device Control
Blocks (DCBs) specified during sys-
tem generation.

51 ERNMD Same as above.

52 ERIDS Illegal directory specifier.

56 ERDIU In a dual processor system using an
IPB: the other CPU is using this direc-
tory.

57 ERLDE Link depth exceeded.

74 ERMPR Address outside address space.

77 ERSDE Error detected in SYS.DR of nonmas-
ter device.

101 ERDTO Disk timeout occurred.

102 ERENA No linking aliowed (N attribute).

112 EROVF Too many chained directory specifiers
caused system stack overflow. Occurs
only when links are used in the spe-
cifier string.

121 ERFMT Disk format error. Try to dump the disk
and run DKINIT on it.

122 ERBAD Disk has invalid bad block table. Dump
the disk and run DKINIT on it.

40 RDOS System Reference

.DIR

Initialize a directory or device

When you bootstrap an RDOS system, the directory that
holds the system becomes the current directory. The .DIR
command selects a different current directory, and—pro-
vided that directory has not been initialized—performs a
partial initialization.

After invoking the .DIR command, you can access all files
in the new directory without using directory specifiers. .DIR
is not mandatory for file access in nonmaster directories,
however, since RDOS permits directory specifiers in all
filename arguments to system commands. The following
example shows how a directory specifier isused to access
MYFILE, in DP4, from master directory DPOF.

TIXTM 1
LDA O, .MYFILE

172
TIXT “DP4:MYFILE”

MYFILE:
The next example invokes the .DIR command to achieve
the same results.

TIXTM 1

LDA O, .DP4
.SYSTM
.DIR

LDA 0, .MYFILE

.DP4: 12

TIXT “DP4"
MYFILE: 4172

IXT “MYFILE"

In the first example, DPOF remained the current directory;
in the second, the .DIR command made DP4 the current
directory.

Required Input

ACO - Byte pointer to directory name string.

Format

.SYSTM

.DIR

error return
normal return

Licensed Material--Property of Data General

If RDOS takes the error return, the current directory defi-
nition remains unchanged.

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

12 ERDLE Directory does not exist.

27 ERSPC Out of disk space.

36 ERDNM Device or directory not in system.

51 ERNMD Attempt to initialize too many direc-
tories at one time (not enough DCBs
specified during system generation).

52 ERIDS Illegal directory specifier.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout secumed.

112 EROVF System stack overflow due to excessive
number of chained directory specifiers.

121 ERFMT Disk format error. Try to dump the disk
and run DKINIT on it.

122 ERBAD Disk has invalid bad block table. Dump

the disk and run DKINIT on it.

Licensed Material--Property of Data General

.RLSE

Release a directory or device

This command dissociates a directory or device from the
system and prevents further I/O with it. A removable disk
should always be released via the CLI's RELEASE com-
mand or .RLSE before removing it from the unit. All files
within a directory must be closed before releasing it. Release
of a master directory releases all directories. The master
directory is the directory that holds the current RDOS sys-
tem; its name is returned by system call .MDIR or the CLI’s
MDIR command.

Required Input

ACO - Byte pointer to a directory or device specifier.

Format

.SYSTM
.RLSE

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

! FRFNM Hleoal filaname

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

56 ERDIU Directory in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

114 ERNIR Attempted release of a tape unit con-

taining an open file.

RDOS System Reference 41

.GDIR

Get current directory name

This call returns the name of the current directory or device,
for example, DPO. This name is followed by a null; it does
not include the names of superior directories or colon spe-
cifiers. In the case of current directory DPOF:PART2:DIRI,
for example. it would return DIR1.

Required Input

ACO - Byte pointer to 134 byte area to receive the current
directory or device name.

Format

SYSTM
.GDIR

error return
normal return

The first 12, bytes will contain the name, with trailing nulls
if necessary: byte 13; will contain a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read into system area.
74 ERMPR Address outside address space.
42 RDOS System Reference

.CDIR

Create a subdirectory

This call creates an entry for a subdirectory name in the
current partition’s system directory (SYS.DR). The subdi-
rectory automatically receives the extension .DR.

Required Input

ACO - Byte pointer to the directory name (directory spe-
cifiers permitted).

Format

SYSTM
.CDIR

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal directory name.

11 ERCRE Attempt to create an existent directory.

53 ERDSN Directory specifier unknown.

55 ERDDE Attempt to create a subdirectory within
a subdirectory.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Materiai--Property of Data General

.CPART

Create a secondary partition

This command creates an entry for a secondary partition
name in the current SYS.DR. The secondary partition au-
tomatically receives the extension .DR.

Required Input
ACO - Byte pointer to secondary partition name.

ACI - Number of contiguous disk blocks in secondary par-
tition. (The minimum is 60,.) RDOS allocates disk
blocks in integer multiples of 20,; if your number
is not an integer multiple of 20;, the system will

truncate it to the lower multiple.

Format

.SYSTM
.CPART
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 FRENM Megal secondary nartition name

11 ERCRE Attempt to create an existing secondary
partition.

46 ERICB Insufficient number of free, contiguous
disk blocks available.

53 ERDSN Directory specifier unknown.

54 ERD2S Partition too small (must have at least
605 blocks).

55 ERDDE Attempt to create a secondary partition
within a secondary partition, that is, a
tertiary partition.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data Generai

EQIV

Assign temporary name to disk or tape unit

This command assigns a temporary name to a disk or tape
unit, permitting unit independence during the execution of
your program. Thus, you might write all magnetic tape
references in a program as MTAPE and, at runtime, use the
.EQUIV command to assign the name MTAPE to a specific
device such as MT6. This command must be issued before
initializing the device under its new name. The master de-
vice cannot be assigned a temporary name.

A device keeps a temporary name until released, then reverts
to its original specifier. You can then assign another, tem-
porary name before initialization, if desired.

Required Input

ACO - Byte pointer to current global specifer name.
ACI - Byte pointer to temporary name.

Format

SYSTM
EQIV

error return
normal return

Possible Eiiois

AC2 Mnemonic Meaning

53 ERDSN Directory specifier unknown.

56 ERDIU Device in use, that is, already initial-
ized.

74 ERMPR Address outside address space.

RDOS System Reference 43

.GSYS

Get the current operating system name

This call returns the name of the currently executing op-
erating system, its .SV extension, and a null terminator.

Required Input
ACO - Byte pointer to 154 bytc area.

Format

.SYSTM
.GSYS

error return
normal return

The first 12, bytes contain the name, with trailing nulls if
necessary; bytes 13; and 144 contain SV. and byte 154 con-

tains a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read or write into system
area.

74 ERMPR Address outside address space.

44 RDOS System Reference

.MDIR

Get the name of the master directory

Because you can bootstrap an RDOS system in a secondary
partition, the master directory may not have an obvious disk
name like DPO. The .MDIR command returns the name of
the master directory.

Required Input

ACO - Byte pointer to 13, byte area to receive the directory
name.

Format

.SYST™M
.MDIR

error return
normal return

The first 12, bytes contains the name, with trailing nulls if
necessary: byte 13 contains a null terminator.

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read or write into system
area.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

File Maintenance Commands

The commands described in this section relate to individual
files: they cnable you to create, delete, sct position, and
check the status of files. In order of discussion, the file
maintenance commands are:

.CCONT Create a contiguous file with data words
zeroed

.CONN Create a contiguous file with no data words
zeroed

.CRAND Create a random file

.CREAT Create a sequential file

.DELET Delete a file

.RENAM Rename a file

.GPOS Get the current file pointer

.SPOS Set the current file pointer

.STAT Get a file’s status

.RSTAT Get a link entry’s resolution file status

.CHSTS Get a channel’s file information

.UPDAT Update an open file’s size information

Each file maintenance command requires that you specify
the filename(s) by means of a byte pointer to it. Bits 0—
14 of the pointer contain the word address that holds or will
receive the first byte. Bit 15 indicates which half: 0 is left,
1 is right. To specify an extension, separate it from the
filename with a period. In the following example, the word
at location BTPR contains a byte pointer to a properly spec-
ified file name, MYFILE.SR.

TIXTMA

+1*2
.TXT “MYFILE.SR”

BPTR:

Filenames may include directory specifiers. If you attempt
to create a file with the same name as a device in the current
system (eg, SLPT), the system treats the command as a no-
op and takes the normal return.

Licensed Material--Property of Data General

.CCONT

Create a contiguously organized file with all data words
zeroed

This call creates a contiguously organized file with ali data
words initialized to zero. If the file’s name exists as a link
entry and if no resolution file exists for it, RDOS creates a
contiguous resolution file.

Required Input
ACO - Byte pointer to the filename.

ACI1 - Number of disk blocks in the file.

Format

.SYSTM
.CCONT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create a
.SYS.DR for this file.

46 ERICB Insufficient number of free, contiguous
disk blocks available to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

124 ERZCB Attempt to create a zero length, con-

tiguous file.

RDOS System Reference 45

.CONN

Create a contiguously organized file with data words zeroed

This command creates a contiguously organized file; it is
faster than system call .CCONT because it does not require
RDOS to zero the data words. If the file’s name exists as
a link entry and if no resolution file exists for it, RDOS
creates a contiguous. resolution file.

Required Input
ACO - Byte pointer to filename.

AC1 - Number of disk blocks in the file.

Format

.SYSTM
.CONN

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

il ERCRE File already exists.

27 ERSPC Insufficient disk space to create a

' SYS.DR entry for this file.

46 ERICB Insufficient number of free, contiguous
disk blocks available to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

124 ERCZB Attempt to create a zero length, con-
tiguous file.

46 RDOS System Reference

.CRAND

Create a randomly organized file

This command makes an entry for the filename of a ran-
domly organized file in the system directory (SYS.DR), and
assigns the first index block to the file. If the file’s name
exists as a link entry and if no resolution file exists, RDOS
creates a random. resolution file.

Required Input
ACO - Byte pointer to the filename.

Format

.SYSTM
.CRAND
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create the file.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

100 ERMDE Error detected in MAP.DR of non-
master device.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data General

.CREAT

Create a sequentially organized file

This call creates an entry in the system directory (SYS.DR)
for the tilename of a sequentially organized file, and assigns
the first index block to it. If the file’s name exists as a link
entry and if no resolution file exists, RDOS creates a se-
quential resolution file.

Required Input
ACO - Byte pointer to the filename

Format

.SYSTM
.CREAT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Ilegal filename.

11 ERCRE File already exists.

27 ERSPC Insufficient disk space to create the file
53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

Licensed Materiai--Property of Data General

DELET
Delete a file

Use this command to delete a file and its entry in the system
directory. Do not apply it to link entry names, however, or
the resolution file will be deleted unless (1) the link access
or resolution entry attribute words contain the permanent
attribute (in which case RDOS returns error ERDEI); or (2)
a resolution file does not exist (ERDLE is returned).

Required Input
ACO - Byte pointer to filename.

Format

.SYSTM
.DELET

error return
normat return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

i2 ERDLE File does not exist.

13 ERDEI File is permanent.

53 ERDSN Directory specifier unknown.

56 ERDIU Directory in use.

57 ERLDE Link depth exceeded.

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

100 ERMDE Error detected in MAP.DR of non-
master device.

101 ERDTO Disk timeout occurred.

102 ERENA Link access not allowed (N attribute).

RDOS System Reference 47

.RENAM

Rename a file

This call renames a file. It can be applied to a file in a
different directory as long as you use the same directory
specifier in both the current and new names.

Required Input

ACO - Byte pointer to the current filename.
AC1 - Byte pointer to the new filename.

Format

.SYSTM
.RENAM
error return
normal return

After a normal return, the original name no longer exists in
the system directory.

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

11 ERCRE Attempt to create an existent name
(AC1).

12 ERDLE Attempt to rename a nonexistent file
(AC0).

13 ERDEI] Attempt to rename a permanent file
(ACO).

35 ERDIR Files specified in different directories.

53 ERDSN Directory specifier unknown.

60 ERFIU File in use.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occured.

48 RDOS System Reference

.STAT and .RSTAT

Get a file’s current directory status

These system calls obtain a copy of a file’s current directory
status. Both calls write a copy of the 22,-word UFD, as it
exists on disk, into an area that you specify. The resulting
information can then be accessed via the displacements de-
fined in Table 3.4. When this information pertains to an
open file, the result 1s a ““snapshot’* of the UFD as 1t existed
on disk at the time of the most recent .CLOSE or .UPDAT.

Use system call .STAT to return the UFD of a file, and
.RSTAT to find the UFD of a link’s resolution file. Both
calls have the same effect on a nonlink file. If you issue
.STAT to a link entry, RDOS returns the link’s UFD. In a
link UFD, words 7 and 14 octal have mnemonics UFLAD
and UFLAN while words 7—13 and 14—21 contain the
link’s alternate directory specifier and alias (if any), re-
spectively.

Licensed Material--Property of Data General

Offset or
Displacement
00000-00004

000005
000006
000007

000010
000011
000012
000013
000014
- 000015

000016

000017

000021

Mnemonic
UFTFN

UFTEX
UFTAT
UFTLK

UFTBK

UFTBC

UFTAD

UFTAC

UFTYD

UFTHM

UFTP1

UFTP2

UFTUC

uDTDL

Content

Filename (ASCII file num-
ber for open tape file)
Extension

File attributes

Link access attributes

Number of the last block in
the file (ie, block count —1)

Number of bytes in the last
block : ~

Starting logical block ad-
dress of the file (the random
file index for random files)
Year/day tast accessed

Year/day created, updated,
or closed after write

Hour and minute the file was
created, updated, or closed
after write

UFD temporary

Number of data words on a
disk block

.EOPEN, .APPEND,
.TOPEN, 1B1 = .OPEN)

DCT link, where bits 10—
16 contain device code of
device that holds file; left
byte is unused except for
large disks, for which bits
0—2 contains the high or-
der of the disk address.

Table 3.4 UFD template with displacement mnemonics

Licensed Material--Property of Data General

Required Input
ACO - Byte pointer to filename string

AC1 - Starting address of 22, word UFD data area.

Format

.SYSTM

.STAT or .RSTAT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

12 ERDLE File does not exist.
33 ERRD Attempt to read or write into system
file space.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded (.RSTAT only).
66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Device timeout.

RDOS System Reference 49

.CHSTS

Get the file directory information for a channel

This command returns a copy of current directory status
information for the file that is currently open on a specified
channel. RDOS returns directory status information as a
copy of the 22,-word UFD, except that it reports status as
of the last system—mnot user—file 1/O for this channel. Thus,
.CHSTS would return the status after a . WRL, while .STAT
or .RSTAT would return the status, on disk, as of the last
update or close.

Required Input

ACO - Starting address of data area. This area must be at
least 22, words long.

Format

.SYSTM
.CHSTS n
error return
normal return

Variable n is the file’s channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP No file opened on the given channel.
33 ERRD Attempt to read into system area.

75 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

50 RDOS System Reference

.UPDAT

Update the current file size

This system call allows you to update the size information
in a file’s UFD while the file is open. The UFD contains a
file’s size, date of creation, attributes, and other informa-
tion. In particular, this call updates information in UFTBK
and UFTBC in the disk UFD for the file opened on a spec-
ified channel, and it writes all modified system buffers not
in use to ensure that the file contains all information written
to it by your program.

The .UPDAT command is especially useful when a file is
open for a long time. Any file that is open during a system
failure may contain inaccurate size information in its UFD,
preventing you from reading new data. By updating the file
frequently, you keep its UFD current and minimize the
amount of data that could be lost.

Format

.SYSTM
.UPDAT n
error return
normal return

Variable n is the file’s channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
15 ERFOP File not opened.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data General

File Attribute Commands

File attribute commands allow you to check or change the
current attributes of a file. They can also be used to check
device characteristics. The bit settings of ACO determine
the file attributes, while AC1 contains device characteristics
of the file. In order of discussion, the file attribute com-
mands are:

.CHATR Change the attributes of the file opened
on channel n.
.GTATR Get the attributes or characteristics of the

file opened on channel n.

Note that these calls work only on an open file. Link com-
mands are discussed in the next section.

Licensed Material--Property of Data General

.CHATR
Change file attributes

This command changes the access attributes of an open
file—or the resolution entry attributes, as viewed from a
link entry—according to the contents of ACO.

When you create a file, it has no attributes. If a link user,
or a user who has opened via system call .ROPEN, issues
the .CHATR command, RDOS temporarily changes his copy
of the file attributes until he closes the file; meanwhile, the
true resolution entry attributes persist. You must open a file
before changing its attributes.

Note that RDOS provides two special attribute bits that can
be used to define unique, file access specifications.

Format

.SYSTM
.CHATR n
error return
normal return

Variable n is the file’s channel number.

Required Input

ACO - An attribute word that contains bits set according
to the desired attributes. Set the contents of ACO
according to the bit/attribute relationships show in

lable 3.5.
Bit Symbolic Mnemonic Meaning
Attribute

1B0 R ATRP Read-protected file;
cannot be read

B0 A ATCHA Attribute-protected file;
no attribute can be
changed after you set
this bit

1B2 S ATSAV Save file (core image
file)

187 N ATNRS No link resolution al-
lowed

1B9 ? ATUS1 First user-definable at-
tribute for the file

1B10 & ATUS2 Second user-definable
attribute for the file

1B14 P ATPER Permanent file; cannot
be deleted or renamed

1B15 W ATWP Write-protected file;
cannot be written

Table 3.5 Bit—attribute relationships

RDOS System Reference 51

Table 3.6 lists the disk file characteristics that RDOS assigns
when you create a file. These characteristics cannot be changed
by the user.

Bit Characteristic = Mnemonic Meaning

183 L ATLNK Link entry

1B4 T ATPAR Disk partition

1B5 Y ATDIR Subdirectory

186 —_ ATRES Link resolution file
(temporary); other
file attributes per-
sist for the dura-
tion of the open

iBi2 C ATCON Contiguous file

1B13 D ATRAN Random file

Table 3.6 Disk file characteristics assigned by RDOS

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

14 ERCHA Illegal attempt to change file attributes
(file has A attribute).

15 ERFOP No file open on this channel.

101 ERDTO Disk timeout occurred.

52 RDOS System Reference

.GTATR

Get the file attributes and characteristics

This command obtains the attributes or device character-
istics of a file.

Format

.SYSTM
.GTATR n
error return
normal return

Variable n is the file’s channel number. When RDOS re-
turns, ACO will contain the file attributes. (Table 3.5 de-
scribed the bit positions that specify attributes.) AC1 will
contain the device characteristics of the file. These char-
acteristics pertain to files on reserved devices such as $LPT.
They do not reflect the characteristic disable mask supplied
when the file was opened. Table 3.7 lists bits and their
associated characteristics to aid you in interpreting the bit
configuration returned in AC1.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

15 ERFOP Attempt to get attributes of an un-
opened file.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data General

AC2 Mnemonic Meaning

1B0 DCSPC When file is a spoolable device:
spooling enabled (disabled if 0B0)

1B0 DCDIO When file an MCA link: protocol is
suspended on transmit

1B1 DCC80 80-column device

1B2 DCLTU Device changes lower-case ASCIl to
upper-case

1B3 DCFFO Device requiring form feeds on open-
ing

1B4 DCFWD Full-word device (reads or writes more
than a byte)

1B5 DCSPO Spoolable device

1B6 DCLAC Output device requiring line feeds af-
ter carriage returns

1B7 DCPCK Input device requiring a parity check;
output device requiring parity to be
computed o :

1B8 DCRAT Output device requiring a rubout after
every tab

1B9 DCNAF Output device requiring nulls after
every form feed

1B10 DCKEY CTRL Z (end-of-file), backslash (line
delete), and rubout (character de-
lete) are disabled for this keyboard
input device

1B1t DCTO Teleteypewriter output device or equat
leader and trailer $TTP and $PTP

1B12 DCCNF Output device without form-feed
hardware

1B13 DCIDI Input device requiring operator inter-
vention

1B14 DCCGN Output device without tabbing hard-
ware

1B15 DCCPO When file is $TTR/$TTP: output de-
vice requiring leader and trailer

1B15 DCSTO When file is MCA line: user-specified
MCA transmitter timeout

1iB15 DCNI When file is MUX line: no CTRL-A or
CTRL-C interrupts from this line

iB15 DCSTB When file is $CDR: trailing blanks are
suppressed

Tabie 3.7 Bits and associated device characteristics

Licensed Materiai--Property of Data General

Link Commands

As described in Chapter 2, RDOS permits you to link files
in one directory to files in another. Either directory can be
a primary partition, secondary partition, or subdirectory. In
order of discussion, the link commands are:

.LINK Create a link entry.
.UNLK Delete a link entry.
CHLAT Change the link access attributes of a file

RDOS System Reference 53

.LINK Format

Create a link entry .EJ\J?(TM
error return

This system call creates a link entry from the current di- normal return

rectory to a file in the same or another directory. The re-
sulting link entry may or may not have the same name as
the resolution file; if not, the link entry’s name is referred
to as an alias. Although no attributes restrict a link when - -
you create it, it cannot reach the resolution file without ~ ACZ2 Mnemonic Meaning
satisfying both the link entry and file access attributes of

the resolution entry. Your program can alter the link, but 1 ERFNM llegal filename.
not the file, access rights of any nonlink file by using the

system call .CHLAT. The following examples show the 11 ERCRE
relationships between linknames and various resolution file-

Possible Errors

Link entry name already exists.

names, and their meaning to RDOS. 27 ERSPC Insufficient disk space to create SYS.DR
entry.
Linkname Resolution ~ Meaning to RDOS
Filename 53 ERDSN Directory specifier unknown.
LFE.SV LFE.SV Create link entry LFE.SVinthe 66 ERDNI Directory not initialized.

current directory, and link it to

resolution file LFE.SV on the 74 ERMPR Address outside address space.
current directory’s parent parti-

tion. 101 ERDTO Disk timeout occurred.

LFE.SV SAM:LFE.SV Create link LFE.SV in the cur-
rent directory, and link it to re-
solution file LFE.SV in directory
SAM.

NLFE.SV DP1:.LFE.SV Create link NLFE.SV in the cur-
rent directory, and link it to re-
solution file LFE.SV in primary
partition DP1.

Required Input
ACO - Byte pointer to link entry name string.

ACI1 - Zero if the link and resolution file have the same
name, and if the resolution file resides in the parent
partition. Byte pointer to the name string if the link
entry has an alias or is not on the parent partition.
You may omit a directory specifier from the reso-
lution filename if the resolution file resides on the
link entry’s parent partition.

54 RDOS System Reference Licensed Material--Property of Data General

.ULNK
Delete a link entry

This command deletes a link entry in the directory to which
the link entry name points. This command does not delete
other links of the same name in other directories. Before
issuing .ULNK, make sure that the link entry you are de-
leting does not also exist between other links and the re-
solution entry; otherwise, you will be unable to resolve these
more remote links after this deletion.

Required Input
ACO - Byte pointer to the link entry name string.

Format

.SYSTM
ULNK

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

12 ERDLE File does not exist.

53 ERDSN Directory specifier unknown.
66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.
75 ERNLE Not a link entry.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data General

.CHLAT

Change link access entry attributes

This command changes the link attributes word of the file
opened on a channel, according to the contents of ACO.
When you open a file via a link entry, the attributes you
see will be a composite of the resolution entry’s file attri-
butes and your copy of the link access entry attributes. When
you create a file, no link entry access attributes exist. Note
that RDOS provides two special attribute bits that can be
used to define unique, link access specifications.

Required Input
ACO - File attributes word (identical to .CHATR)

Format

.SYSTM
.CHLAT n
error return
normal return

Variable n is the channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

14 ERCHA Resolution entry is attribute-protected
(has A attribute).

15 ERFOP No file is open on this channel.

101 ERDTO Disk timeout occurred.

RDOS System Reference 55

Input/Output Commands

This section describes the system calls a program may use
to write data to, and read data from, an existing, open file.
It begins by describing the five /O modes available, and
goes on to explain the calls that open and close a file. Then
the calls used to change position in a file are discussed,
followed by descriptions of the different writing and reading
calls themselves.

Generally, you can do nothing with a file until you have
opened and assigned it a channel number with one of these
commands: .OPEN, .EOPEN, .ROPEN,.APPEND, or
.MTOPD. Remember, too, that a file may be a device such
as $TTI for console input, or a disk file such as MY-
FILE.SR, which can include a directory specifier (eg,
DP1:MYFILE.SR) if you have initialized the directory.

In order of discussion, the file 1/0 calls are:

.OPEN n Open a file for I/O on channel n.

.EOPEN n Open a file for exclusive writing on chan-
nel n.

.ROPEN n Open a file for reading only on channel
n.

APPEND n Open a file for appending on channel n.

.GCHN Get the number of a free channel.

.CLOSE n Close the file on channel n.

.RESET Close all files.

.GPOS ‘n Get the position of the file pointer.

.SPOS n Set the position of the file pointer.

.RDL n Read an ASCII line from a file.

.WRL n Write an ASCII line to a file.

.RDS n Read sequential bytes from a file.

.WRS n Write sequential bytes to a file.

.RDR n Read a 64-word record.

.WRR n Write a 64-word record.

.RDB n Read a series of disk blocks from or to a
file, without a system buffer.

56 RDOS System Reference

.WRB n Write a series of disk blocks from or to a

file, without a system buffer.

.MTOPD n Open a magnetic tape file for free-form
1/0.
.MTDIO n Write or read data to or from a magnetic

tape file in free form.

If RDOS detects an error when it executes an I/O command,
it reattempts the command, if possible, before reporting the
error with code ERFIL.

Input/Output Modes

RDOS provides five basic modes for reading and writing
files:

line

sequential
random record
direct block
free form (tape)

The line and sequential modes are generally used for ASCII
character strings and binary files, respectively.* Random
record mode allows you to read or write 64-word records,
while direct-block I/O allows you to transfer a contiguous
group of disk blocks without a system buffer. Free-form
I/O allows you to read or write free form blocks of data to
magnetic tape.

Line Mode

In line mode, the system assumes that the data you want to
read or write consists of ASCII character strings terminated
by a carriage return, form feed, or null character. RDOS
processes file data line by line, in sequence, from the be-
ginning of the file to its end.

In line mode, the system handles all device-dependent ed-
iting at the device driver level. Furthermore, reading and
writing never require byte counts, since reading continues
until RDOS reads a terminator and writing proceeds until
the user writes one. The line mode commands include .RDL
(read a line) and .WRL (write a line).

Sequential Mode

In unedited sequential mode, RDOS transmits data exactly
as it is read from or written to the file or device. This mode
is required for the processing of sequential, binary files. To
use sequential mode, your program must specify the byte
count necessary to satisfy a read or write request. The se-
quential mode commands are .RSD (read sequential) and
.WRS (write sequential).

*The RDOS system library contains a module called the Buffer I/O Package

that speeds up line and sequential mode operations. The module is described
in application notes.

Licensed Material--Property of Data General

In line or sequential modes, your position within a file is
always the position at the end of your last .SPOS, line mode,
or sequential mode command. The first read or write occurs
at the beginning of the file uniess your program opened this
file for appending.

Random Record Mode

Random record mode permits random access to fixed-length
records within random or contiguous disk files. The fixed
length of a random record is 100; words. The system calls
for this mode are .RDR (read a record) and .WRR (write
a record).

Direct Block Mode

Direct block I/O allows you to transfer a continuous group
of blocks in a random or contiguous file without using a
system buffer. RDOS uses sequential memory locations for
this purpose, and transfers only 512-byte blocks of data
between memory and disk. Relative block numbers must be
transterred in an unbroken series. Thus, you may process
the third, fourth, and fifth blocks in a file in a single call,
but not the third, fifth, and sixth blocks. Direct block /O
can be executed with the system calls .RDB (read a series
of blocks) and .WRB (write a series of blocks). Note that
window mapping, which permits extended, direct block
/O, can be employed in a mapped system. In this mode.
your program can transfer disk blocks to and from extended

addrecc cpace via the ERDE und

Crretarn b ™\WnDn
yetem Wit Lis vy iNis, do

< Ckiao .

described in Chapter 4.

Free Form Mode

Finally, free form I/O permits you to read or write free-
form blocks of data to magnetic tape. In this mode, you
can read or write from two to 4096-word data records; space
forward or backward through one to 4096 data records or
to the start of a new data file; and read the transport status
word. To use free-form I/O, a file must be opened via the
.MTOPD command and its operation directed via call
-MTDIO. The latter cannot be mixed with the .WRL or
-WRS commands on the same tape drive.

Licensed Material--Property of Data General

.OPEN
Open a file

Before a program can issue other I/O commands, it must
associate a file to an RDOS channel number. The .OPEN
command associates a file with a channel number and makes
the file available to any user for reading and writing. The
command does not guarantee exclusive use of the file; others
may also have opened the file via .OPEN and modified its
contents. A file must be closed before it can be deleted or
renamed.

There is no RDOS command that reduces the size of a file.
Thus, files never shrink but maintain space for all material
written to them by any user. To remove redundant or useless
material from a file, edit it with the Text Editor utility; or,
using file position and system write calls. overwrite the
useless data with nulls or new material.

Required Input
ACO - Byte pointer to the filename.

ACI - Characteristic disable mask (except for MCA lines).
For every bit set in the mask word, RDOS disables
the corresponding device characteristic for the du-
ration of the .OPEN. (See also Table 3.7 under
“"File Attribute Commands’’ earlier in this chapter.)
For example, it you want to read an ASCII tape
without parity checking from the paper tape reader,
you can disable checking by the following:

LDA 0,READR
LDA 1,MASK
.SYSTM
.OPEN 3

+1*2
TIXT “$PTR”
DCPCK

READR:

MASK: ;DISABLE PARITY

;CHECKING.

RDOS normally restricts console output to 80 columns. If
your terminal is a DASHER®, you can instruct RDOS to
print the full 132 columns by opening $TTO ($TTO1) with
disable bit DCC80 set, for example:

LDA 0, NTTO

LDA 1, DMASK
SYSTM
.OPEN n
NTTO: +172
TIXT “$TTO”
DMASK: DCC80

RDOS System Reference 57

To use system mnemonics like mask and error words, your
program should be assembled with the macroassembler util-
ity. The assembler’s symbol table file must include PARU.SR.
In general, you will want to preserve all device character-
istics defined by the system. To do so, insert a SUB 1, 1
instruction before the .OPEN call.

To open an MCA line for transmit, you must specify a
transmit timeout period, rather than a mask, in ACI. Set
ACl to 0 to specify the default timeout period of 655 sec-
onds. For a shorter timeout period, set AC1 to 1, specifying
the actual timeout period in the write-sequential call, .WRS.
Pass 0 in AC1 to open an MCA line for receiving.

Format

SYSTM
.OPEN N
error return
normal return

Variable n becomes the channel number of the file until it
is closed.

In a multitask environment, a task that opens a disk file
previously opened by another task cannot read past the end-
of-file point that existed when it opened the file, even if a
previous task extends the file. Also note that the .OPEN
system call executes in two parts to allow efficient per-
formance in a multitasking environment. If .OPEN is im-
mediately followed by a .CLOSE or a .RESET, timing
problems may arise. If a timing problem exists, insert the
command .DELAY ahead of the .CLOSE or .RESET calls.
One further point of interest to multitask developers is that
RDOS interleaves line printer output if multiple tasks in the
same program write to the printer. If an opened file requires
leader, RDOS outputs it on the .OPEN. If an opened file
requires intervention, RDOS displays the message LOAD
filename, STRIKE ANY KEY.

58 RDOS System Reference

Possible Errors

AC2 Mnemonic

Meaning

12

21

27

31

36

53

57

60

66

74

101

102

111

ERFNO

ERFNM

ERDLE

ERUFT

ERSPC

ERSEL

ERDNM

ERDSN

ERLDE

ERFIU

ERDNI

ERMPR

ERDTO

ERENA

ERDOP

Illegal channel number.

Illegal filename.

File does not exist.

Attempt to use channel already in use.
File space exhausted.

Unit improperly selected.

Device not in system.

Directory specifier unknown.

Link depth exceeded.

File opened for exclusive use (. EOPEN).
Directory not initialized.

Address outside address space.

Disk timeout occurred.

No linking allowed (N attribute).

Attempted open of an open tape file.

Licensed Material--Property of Data General

.EOPEN

Open a file for exclusive write access

This command gives you exclusive write access to a file.
Thus, only you can modify a file when you open it via
-EOPEN, although other users may gain read access to it
via the .ROPEN command. RDOS cannot exclusively open
peripheral filenames such as SLPT, although an attempt to
do so will not result in an error. Multiple .EOPENs have
exactly the same effect as multiple .OPENs.

Required Input
ACO - Byte pointer to filename.

AC1 - Characteristic disable mask.

Format

.SYSTM
.EOPEN n
error return
normal return

Variable n is the file’s channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

1 ERFNM Illegal filename.

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel already in use.
31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

60 ERFIU File already opened for writing.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N attribute).

111 ERDOP Attempt to open a file that is already

open.

Licensed Material--Property of Data General

.ROPEN

Open a file for reading only

This system call opens a file for reading only. A program
may gain read-only access to a file that is currently open
as a result of an .EOPEN, .OPEN, or another .ROPEN
command. Thus, several users may access a file for reading
only while one of them has write-access to it. All users
must have closed the file before anyone can delete or rename
1t.

Required Input
ACO - Byte pointer to filename.

ACI1 - Characteristic disable mask.

Format

.SYSTM
.ROPEN n
error return
normal return

Variable n is the file’s channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

1 ERFNM Illegal filename

12 ERDLE File does not exist.

21 ERUFT Attempt to use channel already in use.
32 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.
101 ERDTO Disk timeout occurred.

102 ERENA No linking allowed (N attribute).
111 ERDOP Attempt to open an open tape file.

RDOS System Reference 59

.APPEND Possible Errors
Open a file for appending

AC2 Mnemonic Meaning

This system call is identical to the .EOPEN command, ex-
cept that it opens a file specifically for appending. If your ERENO
program attempts to read such a file, RDOS returns error

code EREOF (end-of-file), because the file pointer is po- 1 ERENM
sitioned after the last byte.

Illegal channel number.
Iliegal filename.

e . 3 ERICD Illegal command for device.
RDOS opens a disk file and appends whatever you write to

it. On a magnetic tape device, RDOS opens the tape file, 12 ERDLE
reads to the end-of-file (EOF), and then writes from that
point. RDOS opens the line printer without a form feed. 21 ERUFT

File does not exist.

Attempt to use channel already in use.

Note that if you plan a BATCH environment in which a 31 ERSEL

i Unit improperly selected.
program outputs to, say, file SYSOUT, that file must be

opened for appending, not simply opened. 36 ERDNM Device not in system.
Required Input 53 ERDSN Directory specifier unknown.
ACO - Byte pointer to filename.

57 ERLDE Link depth exceeded.
AC1 - Device characteristic disable mask.

60 ERFIU File in use.
Format
SYSTM 66 ERDNI Directory not initialized.
.APPEND n
error return 74 ERMPR Address outside address space.
normal return

101 ERDTO Disk timeout occurred.

Variable n is the file’s channel number.
102 ERENA No linking allowed (N attribute).

111 ERDOP Attempt to open a file that is already
open.

60 RDOS System Reference Licensed Material--Property of Data General

.GCHN

Get the number of a free channel

This system call returns the number of a free channel 1n
AC2. Your program can then use AC2 to open a filc via
one of the open calls. The command does not open a file
on a free channel, but merely indicates a channel that is
free at the moment. Occasionally, in a multitask environ-
ment, you will find that the channel indicated by .GCHN
is no longer free when you issue your open. In this case,

the system returns error ERUFT, indicating that you should
reissue .GCHN to discover another free channel.

ICISSV0 L) Q1500 will 1ICT O

Format

.SYSTM
.GCHN

error return
normal return

Upon a normal return, RDOS returns the free channel num-
ber in AC2.

Possible Errors

Only one error is possible: its mnemonic is ERUFT . its error
code (returned in AC2) is 21, and it occurs when no channels
are free.

Licensed Material--Property of Data General

.CLOSE

Close a file

A tile must be closed after use in order to update its UFD
in the system directory, to delete it, or to release its directory
or device. When you close a file, its channel number be-
comes available for other I/O. The system calls .RTN, .ERTN,
.BREAK, and .RESET automatically close all channels. In
a multitask environment, it is imperative that all read and
write commands to the same channel be allowed to complete
their execution before issuing the .CLOSE command. The
only exception is when using .CLOSE to abort /O opera-

tions on an MCA or QTY device.

Format

.SYSTM
.CLOSE n
error return
normal return

Variable n is the channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
15 ERFOP Attempt to close a channel not in use.
101 ERDTO Disk timeout occurred.

RDOS System Reference 61

RESET
Close all files

This command closes all open files after writing any partially
filled system buffers. The .RESET command can be issued
in a multitask environment only when no other task is using
a channel.

Format

.SYSTM
.RESET

error return
normal return

Possible Errors

Only one error is possible. Its mnemonic is ERDTO, its
error code (returned in AC2) is 101, and it results when a
disk timeout has occurred.

62 RDOS System Reference

.GPOS

Get the current file pointer

This command is used to determine the next character po-
sition within a file where program writes or reads will occur.
RDOS indicates a relative character position within a file
by a double-precision byte pointer. This two-word byte pointer
contains the high-order portion of the byte address in ACO
and the low-order portion of the byte address in AC1. Bit
15 of the second word indicates the byte selection (left or
right), as shown in Figure 3.1.

high order byte address

low order byte address

o -
[l
—>D

0 14

-
4]

Figure 3.1 Double-precision byte pointer DG-25452

Format

.SYSTM
.GPOS n
error return
normal return

Variable n is the file’s channel number. RDOS returns the
pointer position in ACO and AC1 as just described. It returns

zero if you open a nondisk file on channel n.

Possible Errors

AC2 Mnemonic Meaning
0 ERFNO Illegal channel number.
15 ERFOP No file is open on this channel.

Licensed Material--Property of Data General

.SPOS

Set the current file pointer

This system call sets the current, system file pointer to a
new character position in preparation for future writing or
reading. It enables you to access characters and lines ran-
domly within any block of a given file, and allows you to
read a character after writing or rewriting it by simply back-
ing up the pointer to its previous position.

RDOS indicates the relative character position within a file
by the double-precision byte-pointer illustrated in Figure
3.1. If you set the file pointer beyond the end of a file,
RDOS automatically extends its length. If the file is con-
tiguous, that is, cannot be extended, RDOS takes the error
return and passes ERSCP in AC2. Only position 0, the file
starting location, can be specified on magnetic tape.

Required Input
ACO - High-order portion of byte pointer.

AC1 - Low-order portion of byte pointer.

Format

.SYSTM
.SPOS n
error return
normal return

Variable n is the file’s channel number.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.
15 ERFOP Attempt to reference an unopened file.
64 ERSCP File position error.

Licensed Material--Property of Data General

.RDL

Read a line

This command reads an ASCII line from a file to the area
of user memory that you specify. This are should be 133
decimal bytes in length, and ACO must contain a byte pointer
to the starting byte address within user memory into which
RDOS will read the line.

An .RDL operation terminates normally after RDOS has
read either a carriage return, form feed, or null and trans-
mitted 1t to your program. The system stops reading and
takes the error return if it transmits 133 characters without
detecting a terminator or upon discovering a parity error or
end of file. The operation also terminates if RDOS reads a
preassigned interrupt character from a multiplexed line.

If RDOS is reading from the keyboard ($TTI or $TTI1), its
controls work as usual unless you have masked DCKEY in
ACI, as discussed under the .GTATR command. Rubout
deletes the preceding character, and backslash (SHIFT-L)
deletes the preceding line, from the keyboard stream. RDOS
echoes all printing characters and ignores line feeds. An
end of file is indicated by pressing CTRL-Z. Note that when
reading from a multiplexed line, ESC also indicates an end
of file.

When the card reader serves as an input device to the .RDL
command an end of file must be indicated by punching all
rows in column 1, that is, multipunching the characters +,
—, and 0 through 9. The Hollerith-to-ASCII translation that
occurs during an .RDL operation assumes the keypunch
codes shown in Appendix B. The operation terminates the
first trailing blank unless your .OPEN command suppressed
DCSTB, causing RDOS to transfer all 80 characters. In this
case, RDOS appends a carriage return as the 81st character
unless your .OPEN command suppressed DCC80, allowing
the system to process a maximum of 72 characters. RDOS
replaces each illegal character with a backslash.

Note that where card readers are concerned, RDOS ignores
all columns following the EOF. The card reader driver per-
mits an unlimited amount of time to elapse until it reads the
next card, thereby permitting the operator to correct pick
errors or insert new card files. Because the driver employs
double buffering, you will lose at least one card image if
you close prematurely; a program must therefore wait until
RDOS reads the last card or end of file to close $CDR.
After closing, the reader can be reopened without loss of
data, and reading may continue. When RDOS reads an end-
of-file card, it returns a byte count of 0 along with EREOF.
If another .RDL command is issued, RDOS reads the next
card normally.

For all files and devices, RDOS returns the number of bytes
read, including the terminator, in ACI. If the read terminates

RDOS System Reference 63

because of a parity error, RDOS stores the character having
incorrect parity as the last character read and clears the parity
bit. The algorithm for computing the byte pointer to the bad
character is (AC0) + (ACI1)—1, where (ACO) means the
contents of accumulator.

Required Input
ACO - Byte pointer to receiving buffer.

Format

.SYSTM
.RDL n

error return
normal return

Variable n is the channel number of the file from which
RDOS will read. After a normal return, AC1 contains the

number of bytes read.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICE Illegal command for device.

6 EREOF End of file.

7 ERRPR Attempt to read a read-protected file.

15 ERFOP Attempt to reference a file not open.

22 ERLLI Line limit (133 nonterminator charac-
ters) exceeded.

24 ERPAR Parity error; often occurs on tape due
to dirty heads.

30 ERFIL File read error; often signals a bad tape
or a tape drive with dirty heads.

33 ERRD Attempt to read into system area.

34 ERDIO File accessible by direct block /O only.

47 ERSIM Simultaneous reads from the same mul-
tiplexor (ALM/QTY) line.

74 ERMPR On mapped systems only: address out-
side address space.

101 ERDTO Disk timeout occurred.

106 ERCLO Channel closed by another task.

64 RDOS System Reference

.WRL

Write a line

This command. the counterpart of .RDL, writes an ASCI
line to the file open on a specified channel. ACO must
contain a byte pointer to the starting byte address within
user memory from which characters will be written. Writing
commences at the start of the file unless you have moved
the file pointer via the .SPOS command or opened the file
via .APPEND.

Normal operation stops when the system detects a null,
carriage return, or form feed. Under abnormal circum-
stances, the system stops writing after it transmits 132 dec-
imal characters without detecting a terminator as the 133rd
character.

Upon termination, AC1 contains the number of bytes written
from your area of memory to the file. The null terminator
does not force a carriage return or line feed. A carriage
return generates a line feed on ouput, provided the device
characteristics so dictate.

Required Input
ACO - Byte pointer to starting byte address.

Format

.SYSTM
WRL n

error return
normal return

Variablie n represents the channel number of a file to which
the system will write.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file when writing to a contig-
uous file.

i0 ERWPR Atiempi 0 wriie 0 a wrlie-protected
file.

15 ERFOP Attempt to write to a file not opened.

22 ERLLI Line limit (132 characters).

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block /O only.

47 ERSIM Simultaneous writes to the same mul-
tiplexor (ALM/QTY) line.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA receiver on this channel is-
sued no transmit request.

104 ERSRR MCA transmission terminated by re-
ceiver (short receive request).

106 ERCLO Channel closed by another task.

*If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Material--Property of Data General

.RDS

Read sequential

In sequential mode, RDOS transmits data exactly as read
to or written from a file. This mode must be used for binary
data, and is often helpful for MCA transmissions. The com-
mand instructs RDOS to read data exactly as it appears in
the file, unless it is reading from the system console. In this
case, RDOS sets the parity bits to zero. Note that in read
sequential mode, the system does not recognize CTRL-Z
from the console as an end-of-file character. Upon detecting
a legitimate end of file, RDOS returns the partial byte count

in AC1.

Where card readers are concerned, RDOS reads the card in
image binary, using each of two bytes to read a single
column and packing them as shown in Figure 3.2. Each
variable d in this figure will be 1 for every punched hole
in the column. A byte pair containing the word 100000
signifies an end of card (EOC). Thus, to read two entire
80-column cards one at a time, you would issue two suc-
cessive .RDS commands for 162 bytes each. If you request
only 160 bytes for each read, the second .RDS command
returns the first end-of-card word. along with the first 79
columns of the second card.

Q.o - 1 ! e
Row I
Number 121101:23456789

|
BitO1234567|89
|
I

OOOOddddIdddddddd

o =
N —
w =
Fg—y
o —

Figure 3.2 Image binary card reading SD-00430A

Required Input

ACO - Byte pointer to the starting byte address within user
memory into which RDOS will read data.

AC1 - Number of bytes to be read.

Format

.SYSTM
RDS n

error return
normal return

Variable n is the channel number of a file from which data
will be read.

RDOS System Reference 65

Possible Errors

AC2 Mnemonic

Meaning

0 ERFNO Illegal character number.

3 ERICD Illegal command for device.

6 EREOF End of file.

7 ERRPR Attempt to read a read-protected file.

15 ERFOP Attempt to reference a file not open.

24 ERPAR Parity error on tape, often caused by
dirty heads.

30 ERFIL File read error, often caused by bad
tape or dirty heads.

33 ERRD Attempt to read into system area.

34 ERDIO File accessible by directory block /O
only.

47 ERSIM Simultaneous reads from same multi-
plexed line.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA transmitter issued no trans-
mit request.

106 ERCLO Channel closed by another task.

66 RDOS System Reference

.WRS

Write sequential

This command, the counterpart of .RDS, writes data ver-
batim from memory to a file. Note that RDOS recognizes
no character as an end of file in this mode. The system
commences writing at the start of the file unless you have
moved the file pointer via the .SPOS command or opened
the file via .APPEND.

Required Input

ACO - Byte pointer to the starting address of the data within
user memory.

ACI1 - Number of bytes to be written.

Format

.SYSTM
WRS n
error return
normal return

Variable n is the channel of a file to which data will be
written. To transmit (write) data over an MCA line, you
must pass an even byte pointer in ACO and specify an even
byte count in ACI. If you opened this MCA channel and
specified a nondefault retry period in AC1, you must also
define the length of the timeout period in the left byte of
AC2. Each retry takes about 200 milliseconds. Acceptable
values for AC2 range from 1 to 377;. If the left byte of
AC2 is 0, RDOS allots the maximum transmit retry period
of approximately 655 seconds.

To send an end of file over an MCA line, set AC1 to O;

RDOS disregards the contents of ACO. Chapter 8 describes
MCA programming in greater depth.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

6 EREOF End of file when writing to a contig-

uous file.

Attempt to write to a write-protected

file.

15 ERFOP Attempt to write to a file not open.

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block /O only.

47 ERSIM Simultaneous writes to the same QTY/
ALM line.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

103 ERMCA The MCA receiver on this channel is-
sued no receive request.

104 ERSRR MCA transmission terminated by re-
ceiver (short receive request).

106 ERCLO Channel closed by another task.

113 ERNMC No outstanding receive request.

*If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Material--Property of Data General

.RDR

Read random record

This system call allows a program to read one 64-word
record in either a random or contiguous disk filc. Each disk
block contains four, 64-word records numbered 0, 1, 2, and
3 in the first block of a file; 4, 5, 6, and 7 in the second
block; and so on. These numbers need only be considered
when issuing the random record commands. To read or write
blocks, that is, four records at a time, you would use system
calls .RDB or .WRB, and the commands .RDL, .WRL,

RDS. or WRS tg read or write lineg
s OO LW X L VWIILL 111U S,

AN PN W WU ivalG O

Required Input

ACO - Destination memory address.
AC! - Record number. (Record numbers start with 0.)

Format

.SYSTM
.RDR n

error return
normal return

Variable n is the channel number of a file from which data
will be read.

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal comand for device.

6 EREOF Attempt to read past the end of a con-
tiguous file.

7 ERRPR Attempt to read a read-protected file.

15 ERFOP No file is open on this channel.

30 ERFIL File read errors. usually due to bad tape.

33 ERRD Attempt to read into system area.

34 ERDIO File accessible by direct block /O only.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

RDOS System Reference 67

.WRR

Write random record

This command writes a 64-word record from memory to a
randomly or contiguously organized disk file. RDOS writes
64 words to the record number specified, starting from the
address that you pass in ACO.

Required Input
ACO - Memory address.

AC1 - Destination record number.

Format

.SYSTM
.WRR n

error return
normal return

Variable n is the channel number of a file to which data
will be written.

Possible Errors

AC2 Mnemonic Meaning

Iliegal channel number.

Illegal command for device.

)]
to
)
tn
Q
&)

3 Atempt to write past the end of a con-

tiguous file.

10 ERWPR Attempt to write to a write-protected
file.

15 ERFOP Attempt to reference a file not opened.

27 ERSPC* Out of disk space.

34 ERDIO File accessible by direct block I/O only.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*If you write to a sequential or random file and get ERSPC, you must
delete the file in order to recover the disk space allocated to the file before
the error occurred. You must do this even though the CLI LIST command
may show a zero file length.

68 RDOS System Reference

.RDB or .WRB

Read or write a series of disk file blocks

These system calls, for direct block I/O, are used to transfer
blocks to or from random or contigous files. RDOS employs
no system buffers for the transfer. Blocks in random and
contiguous disk files have a fixed length of 256 decimal
words, and are numbered sequentially from 0. Thus, an
.RDB command issued for the first block in a file would
transfer the 64-word records numbered 1, 2, and 3, as de-
scribed earlier under system call .RDR.

Required Input
ACO - Starting memory address for the block transfer.

AC1 - Starting relative block number in the series to be
transferred.

AC2 - The left half of AC2 must contain the number of
blocks to be transferred. The right half of AC2 must
contain the channel number if you specify channel
77.

Format

.SYSTM

.RDB or .WRB n
error return
normal return

Variable n represents the channel number.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

4 ERSVI Not a random or contiguous file.

6 EREOF* End of file.

7 ERRPR File is read-protected (.RDB).

10 ERWPR File is write-protected (.WRB).

15 ERFOP File is not open.

27 ERSPC* Disk space is exhausted.

30 ERFIL File read error, usually on magnetic
tape due to a bad tape or dirty head.

33 ERRD Attempt to read 1nto system area
(.RDB).

40 EROVA File not accessible by direct block 1/O.

74 ERMPR On mapped systems only: address out-
side address space.

101 ERDTO Disk timeout occurred.

*Upon detection of error EREOF or ERSPC, RDOS returns the code in
the right byte of AC2; the left byte contains the partial read or write count.

If you write to a sequential or random file and get ERSPC, you must delete
the file in order to recover the disk space allocated to the file before the
error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Material--Property of Data General

.MTOPD

Open a tape unit and file for free format I/O

Before you can read or write in free format on magnetic
tape, the device must be opened and associated with a chan-
nel. The .MTOPD command performs this function. It is a
global system call, allowing access to all files on the spec-
ified device after it is issued.

To position a free format tape to a specific file, pass the
filename to .MTOPD in the form MTn:m, where n is the
drive number, and m, the file number. After compieting aii
operations on a tape drive, remember to release it.

Required Input
ACO - Byte pointer to the magnetic tape file specifier.

ACI1 - Characteristic disable mask, as described earlier un-
der system call .GTATR.

Aside from the tape file specifier, these parameters are iden-
tical to those for the .OPEN command. To learn more about
device characteristics, see the descriptions of the .OPEN
and .GTATR commands earlier in this chapter.

Format
.SYSTM
WMICFC n
error return
normal return

Variable n represents the channel number.

RDOS System Reference 69

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO [llegal channel number.

1 ERFNM Illegal filename.

3 ERICD Illegal command for device.

12 ERDLE File does not exist.

21 ERUFT Attempt to use a channel already in
use.

27 ERSPC File space exhausted.

31 ERSEL Unit improperly selected.

36 ERDNM Device not in system.

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.

111 ERDOP Attempted open of an open tape file.

70 RDOS System Reference

.MTDIO

Perform free format I/O

This command provides a direct interface with magnetic
tape units on a machine level. It enables you to read or
write data in variable length records of 2 to 4096 words; to
space forward or backward from 1 to 4096 data records or
to the start of a new data file; and to perform similar,
machine-level operations. Before any of these operations can
be performed. the tape unit must be opened for free format
I/O with system call .MTOPD. For information about the
hardware characteristics, see the manual Peripherals, Pro-
grammer’s Reference Series (DGC No. 014-000632).

Required Input

The following input is required to read the device status
word.

ACO - Command word, with bits 1 through 3 set and all
other bits 0.

AC2 - Channel number, if equal to 77.

The following input is required for other .MTDIO opera-
tions.

ACO - Memory address for data transfer.
AC1 - Command word, subdivided into three fields:

Bit 0 Set to 1 for even parity, O for odd

parity.
Bits 1—3 Set to one of these seven command
codes: O for reading words;* 1 for
rewinding the tape; 3 for spacing
forward over records or over a file
of any size up to 4096 words; 4 for
spacing backward over records or a
file of up to 4096 records in size; 5
for writing words; 6 for writing end
of file (odd parity for 9-track, even
parity for 7-track); 7 for reading de-
vice status word.
Bits 4—15 Word or record count. If 0 on a space
forward or backward command and
the file is no more than 4096 words,
RDOS positions the tape to the be-
ginning of the next (or previous) file
on the tape. If 0 on a read command,
RDOS reads words until it encoun-
ters either an end of record or 4096
words. If O on a write command,
the system writes 4096 words.

AC2 - Channel number, if equal to 77.

*When reading a 7-track tape with odd parity, that is. a tape not written
on an RDOS system, the controller does not detect the end of file; instead,
it reads the first word in the next record as 007417. Thus, RDOS appends
the first record of each file after the first to the EOF of the previous file.

Licensed Material--Property of Data General

Format

.SYSTM
MTDIO n
error return
normal return

Variable n represents the channel number.

If no system error is detected during a read status command,
RDOS takes the normal return and AC2 contains a device
status word with one or more bits set. These bits are shown
in Figure 3.3.

When your program issues a read, write, space forward, or
space backward command, the command word in AC1 con-
tains the number of words written or read, or the number
of records spaced. The system returns a word or record
count if it encounters a premature end of file.

bit 0, error (bit1.3.5.6.7.8.10.0r 14)

bit 1, data late
bit 2, tape is rewinding
bit 3, illegal command

bit 4, high density if set to 1, otherwise, low
density (always 1 for cassettes)

bit 5, parity error

bit 6. end-of-tape

bit 7. end-of-file

bit 8, tape is at load point

bit 9, 1 for 9-track, O for 7-track
(always 1 for cassettes)

bit 10, bad tape (or write failure)
bit 11, send clock (0 for cassettes)
bit 12, first character (0 for cassettes)

bit 13, write-protected or write-locked
bit 14, odd character (O for cassettes)
bit 15, unit ready

Figure 3.3 MTDIO status word bits SD-00540A

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.,

3 ERICD Illegal command for device (ie, im-
proper open).

15 ERFOP Attempt to reference a file not opened.

40 EROVA File not accessible by free form /0.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

Table 3.8 summarizes the possible returns by .MTDIO and
the values passed in ACl and AC2. RDOS sets bit 0 of
TSW (in AC2) when a hardware error occurs, and clears
this bit in the event of a system error. The system retries a
read operation 10 times before taking the error return. For
write errors, it takes the error return after 10 attempts to
backspace, erase a length of tape, and write.

COMMAND | RETURN AC1 AC2
Any .MTDIO | Error Same as System error
command input code
with a
system error
detected
Rewind Normal Transport
Original input | status word
Rewind (tape lost (TSW)
at load point, | Error
etc.)
Read Status | Normal TSW
Original input
Read Status | Error lost TSW
Read, Write | Normal
Space For-
ward
Space Back-
warg
Word or re-
cord count TSW
Read, Write, | Error
Space For- | (only after 10
ward, retries in read/
Space Back- | write
ward
Write EOF Error Original input | TSW
lost

Table 3.8 .MTDIO values returned

RDOS System Reference 71

Console I/O Commands

This section begins by describing the . GCHAR and .PCHAR
commands, which transfer single characters between your
console and ACO. These calls operate in the manner of a
read or write sequential of one character. They do not affect
the column counter, nor do they provide special character
handling (eg, of carriage returns). Both commands reference
$TTUS$TTO or $TTI/$TTOL; the console is always avail-
able to them, and no channel number or open command is
required.

Also discussed in this section are the .GCIN and .GCOUT
commands, which return the name of the console 1/0 device.

72 RDOS System Reference

.GCHAR

Get a character

This command places a character typed on the console in
ACO. RDOS right-adjusts the character, without parity in
ACO, and clears the left byte of this accumulator. The sys-
tem does not echo this character on the console. No I/O
channel for . GCHAR need be specified to issue the .GCHAR
command.

Format

.SYSTM
.GHCAR
error return
normal return

If the console input buffer does not contain a character, the
system waits.

Possible Errors

Only one error is possible as a result of this command. Its
mnemonic is ERICD, meaning that the console is not in the
system, and RDOS passes code 3 in AC2 when it occurs.

Licensed Material--Property of Data General

PCHAR

Put a character

This system call types the character in bits 9 through 15 of
ACO on the console.

Format

.SYSTM
.PCHAR
error return
normal return

Possible Errors

Only one error is possible as a result of this command. Its
mnemonic is ERICD, meaning that the console has not been
defined to the system, and RDOS passes error code 3 in
AC2 when it occurs.

Licensed Material--Property of Data General

.GCIN

Get the input console name

This command returns the name of the current console input
device: STTI for the background program, and $TTII for
the foreground program. The .GCIN command and its coun-
terpart, .GCOUT, are useful in dual-ground systems be-
cause they allow each program to select the appropriate
console for its ground at runtime.

Required Input

ACO - Byte pointer to a six-byte area that will receive the
console name.

Format

SYSTM
.GCIN

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

33 ERRD On unmapped systems only: attempt to
read into system area.

74 ERMPR Address outside address space.

RDOS System Reference 73

.GCOUT

Get the output console name

This command returns the name of the current output con-
sole: $TTO for the background program, and STTOI for
the foreground program.

Required Input

ACO - Byte pointer to the six-byte area that will receive
the console name.

Format

.SYST™M
.GCOUT
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

33 ERRD Attempt to read into system area (un-
mapped only).

74 ERMPR Address outside address space.

74 RDOS System Reference

Memory Allocation Commands

Excluding the Task Scheduler and octal locations O through
15, RDOS resides in upper memory and excutes user pro-
grams in lower memory. Figure 3.4 diagrams RDOS mem-
ory as it exists in unmapped systems.

RDOS system and
buffers

Unused address space

<«—NMAX {first unused
location above the
executing program)

~ User program ;L:
16s
RDOS
0

Figure 3.4 Unmapped background memory $D-00432A
The highest memory address available (HMA) is usually
the first word below an unmapped RDOS system. However,
the RLDR symbol table also occupies upper memory if the
global switch /S was included in the RLDR command. In
this case, the HMA falls directly below the symbol table;
otherwise, RLDR loads its table just above your program
by default.

This section discusses the .MEM and .MEMI commands,

which allow you to monitor and control the amount of mem-

ory available to your programs.

Licensed Material--Property of Data General

.MEM

Determine available memory

This command returns the current value of NMAX in AC1,
and the value of HMA in ACO. It can be followed with a
SUB 1,0 instruction to determine the amount of additional
memory available to your program.

In unmapped systems, HMA represents the location im-
mediately below the bottom of RDOS—or the bottom of
the symbol table, if the program was loaded or bound with
the global /S switch. In mapped systems, HMA is the highest
logical address available in the current program space.

Format

.SYSTM
.MEM

error return
normal return

Possible Errors

None.

Licensed Materiai--Property of Data General

.MEMI
Change NMAX

This system call allows a program to increase or decrease
the value of NMAX. It updates the value of NMAX in the
UST (in USTNM), and returns the new value of NMAX in
AC1. RDOS does not permit an adjustment to NMAX that
would cause its value to exceed HMA 4 1. Nor does the
system check NMAX against the original value that RLDR
determined for it.

A program that requires memory space above its current
NMAX can invoke the .MEMI command to allocate the
number of words needed. RDOS uses the value of NMAX
to determine the amount of memory to save if it suspends
a program. Generally, NMAX should be updated even for
temporary storage that exceeds its current value. Otherwise,
the stored program may be suspended without enough in-
formation to continue. For the largest possible save file,
NMAX must be a value less than or equal to 77416. As a
general rule, each program should request only the amount
of memory that it requires, and should release memory space
when needed.

Required Input

ACO - The incremet (positive) or decrement (in two’s com-
plement) of NMAX.

Format

.SYSTM
.MEMI

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

26 ERMEM Attempt to allocate more memory than
available.
74 ERMPR Address outside address space.

RDOS System Reference 75

Device Access Commands

This section describes the .DEBL and .DDIS commands,
which enable or disable device access at the machine level,
and the .RDSW command, which permits a program to read
the position of the front panel switches or the contents of
the switch register.

In mapped RDOS systems, the map unit traps if a user
program attempts to access system devices such as the CPU
or floating point unit (FPU). System call .DEBL makes it
possible for a program to access a system device. It should
be used carefully, however, since it circumvents the map
unit’s safeguards. Instructions such as INTDS or IORST,
for example, can deactivate the system if access to the CPU
is enabled.

The .DEBL command must be used in any system with
floating point hardware and programs, running in two grounds,
that use floating point arithmetic. Each program in such a
system must enable access to the FPU so that the system
can save and restore it.

In mapped NOVA systems, the .DEBL command can be
issued from either ground to device code 75 or 76. The call
enables access to all three FPU devices (codes 74, 75, 76).
It should not be issued to device code 74 in a NOV A system.

In ECLIPSE systems, programs enable access to the FPU
by issuing the .DEBL command to device code 74, unless
a device such as the 1/0 bus is already wired to device codes
74, 75, or 76. If yours is an ECLIPSE system in which only
wired to codes 74, 75, or 76, programs can access these
devices via system call .IDEF as explained in Chapter 7.

Similarly, if your system has an optional interger MPY/
DVD and both programs need to use it, they must enable
access via the .DEBL command, and then save and restore
the MPY/DVD. In an unmapped system whose grounds will
not access the FPU, the device access calls .DEBL and
.DDIS are no-ops, and take the normal return. In any sys-
tem, it is recommended that the .DEBL command be issued
for the FPU before using it.

76 RDOS System Reference

.DEBL

Enable user access of a device

This system call permits a program to reference any device
on a machine level; it bypasses the normal system safe-
guards, in order to do so, and should be used carefully for
that reason. The command is a no-op in unmapped systems
except for hardware FPUs, as noted earlier.

Required Input

ACO - Device code of the device to be accessed.

Format

.SYSTM
.DEBL

error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERDNM, meaning that the device code in ACO
exceeds 77 octal. The system passes error code 36 in AC2
as a result.

Licensed Material--Property of Data General

.DDIS

Disable user access of a device

This system call, the complement of the .DEBL command,
prevents further machine-level access of a device in the
system. Thus it restores the system safeguards removed if
a .DEBL command was issued previously. The command
is a no-op in unmapped systems, except as noted earlier.

Required Input

ACO - Device code of the device to which user access will
be disabied.

Format

.SYSTM
.DDIS

error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERDNM, meaning that the device code exceeds
77 octal, and RDOS passes error code 36 in AC2 when it
occurs.

Licensed Material--Property of Data General

.RDSW

Read the front panel switches or register

This system call aliows a program to read the position of
the front panel switches or the contents of the switch reg-
ister. RDOS returns the switch configuration in ACO, where
bit 0 equals switch 0, bit 1 equals switch 1, and so forth.
To locate the contents of the switch register in a computer
with a virtual console, consult the Internal Calls table in the
Programmer’s Reference guide for your CPU.

Format

.SYSTM
.RDSW

error return
normal return

Possible Errors

None.

RDOS System Reference 77

Clock and Calendar Commands

RDOS provides four commands to keep track of the time
of day and the current date. It stores dates as days from
December 31, 1967, where day one is January 1,1968. The
24-hour clock can be set by passing binary hours, minutes,
and seconds in three accumulators

In order of discussion, the clock and calendar commands
include:

.GTOD Get the current time.
.STOD Set the time of day.
.GDAY Get the current date.
.SDAY Set today’s date.

78 RDOS System Reference

.GTOD
Get the time of day

This command causes RDOS to pass the current time in
binary form. The system returns seconds in ACO, minutes
in AC1, and hours in AC2 according to 24-hour format.

Format

.SYSTM
.GTOD

error return
normal return

Possible Errors

None.

Licensed Material--Property of Data General

.STOD
Set the time of day

This command sets the system clock to a specific hour,
minute, and second when the user passes seconds in ACO;
minutes in ACI; and hours, according to 24-hour format,
in AC2. All values passed must be in binary form.

Format

.SYSTM
.STOD

erort return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERTIM, signifying an illegal time of day, and the
system passes error code 41 in AC2 when it occurs.

Licensed Material--Property of Data General

.GDAY
Get today’s date

This command causes the system to return the number of
the current month, day and year. RDOS returns the month
in AClI, the day in ACO, and the current year—less 1968—
in AC2.

Format

.SYSTM

.GDAY

error return
normal return
Possible Errors

None.

RDOS System Reference 79

SDAY
Set today’s date

This command sets the system calendar to a specific date.
The system increments the date when the time of day passes
23 hours, 59 minutes, and 59 seconds. This routine applies
to the years 1968 to 2099.

Required Input
ACO - Number of the day within the month.

AC1 - Number of the month where January is month one.
AC2 - Number of the current year less 1968.

Format

.SYSTM
.SDAY

error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERTIM, signifying an illegal day, month or year,
and RDOS returns error code 41 in AC2 when it occurs.

80 RDOS System Reference

Spooling Commands

SPOOL is an acronym for simultaneous peripheral operation
on line. RDOS automatically spools data output to devices
$DPO, $LPT, SLPT1,$PTP, $PTP1, $TTO, $TTOL, $TTP,
and $TTP1. Spooling to plotter devices $PLT and $PLT1
must be explicitly enabled.

The system performs spooling by queuing data on disk for
one or more spoolable devices to receive, leaving the CPU
available for further processing. This procedure occurs only
when no other system operations are ready, and is controlled
by means of the system calls described in this section. In
order of discussion, they are the .SPKL, .SPDA, and .SPEA
commands.

Spooling requires that you include, during system genera-
tion, at least two stacks for a single-program environment,
and at least three system stacks for a dual-program envi-
ronment. All spooling commands become inoperative if the
number of stacks specified is insufficient for RDOS to ex-
ecute them. Spooling also requires disk buffering, an op-
eration for which RDOS dynamically allocates space from
the master directory. The system temporarily disables spool-
ing if it requires more disk space for its buffers than is
currently available. Spooling operations can be re-enabled
when more disk space is free.

Licensed Material--Property of Data General

.SPKL

Stop a spool operation

This command halts a current spool operation for a given
device. All data on the output queue is forfeited as a result.

Required Input

ACO - Byte pointer to the name of the device receiving
spooled data.

Format

.SYSTM
.SPKL

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

3 ERICD Illegal command for device.
36 ERDNM Device not in system.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

.SPDA
Disable Device Spooling

This command stops a device from spooling its output. If
issued while a device is spooling, execution is delayed until
RDOS has completed the spooling operation. Data output
to the device before the spooled data has been exhausted
will itself be spooled, delaying execution of the .SPDA
command even longer.

Required Input
ACO - Byte pointer to the device for which spooling will
be disabled.

Format

.SYSTM
.SPDA

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

3 ERICD Illegal command for device.
36 ERDNM Device not in system.

74 ERMPR Address outside address space.

RDOS System Reference 81

.SPEA
Enable device spooling

This system call enables spooling after it has previously
been disabled for a given device. RDOS itself may have
disabled spooling because of insufficient disk space, or a
user may have stopped spooled operations with system call
.SPDA or CLI comand SPDIS.

Required Input
ACO - Byte pointer to the device name.

Format

.SYSTM
.SPEA

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

3 ERICD Illegal command for device.
36 ERDNM Device not in system.

74 ERMPR Address outside address space.
82 RDOS System Reference

Keyboard Interrupts

Programs that run under RDOS can be interrupted by typing
certain control characters from the console. This book rep-
resents control characters as CTRL-x, where x is an alpha-
betic character that is pressed simultaneously with the CTRL
pad on your keyboard. Typing CTRL-A or CTRL-C inter-
rupts a background program from the console, while typing
CTRL-F halts a foreground program from the background
console.

The control characters CTRL-A and CTRL-F work abruptly:
they halt program execution in their respective grounds, save
nothing, and pass control to the higher-level program—
generally the CLI. The control character CTRL-C writes
the current core image to disk file BREAK.SV—or to
FBREAK.SV, if you issued CTRL-C from the foreground
console—and passes control to the CL1. The system returns
the message -INT to your console after executing CTRL-
A, or the message BREAK after executing CTRL-C. Chap-
ter 6 explains the effects of CTRL-F in more detail.

Interrupts can also be programmed with the aid of the system
calls described in this section. In order of discussion, they
are:

.BREAK lntgrrupt a program and save the state of
main memory.

.ODIS Disable console interrupts.

.OEBL Enable console interrupts.

INTAD Assign a task to service keyboard inter-

rupts.

To pass control to a program other than the CLI after a
keyboard interrupt, you must set up its user status table, or
UST, as described next. Note that processing of the .BREAK
command is invalidated after an exceptional status condi-
ton.

Licensed Material--Property of Data Generat

Defining Interrupt Routines

For each program level, the system creates a user status
table (UST). Each UST is 24; words long and resides in
user address space, starting at location 400 octal. A UST
includes two words, USTIT and USTBR, which contain
addresses for interrupt routines that service CTRL-A and
CTRL-C. Word USTIT contains the address of the routine
that gains control after you enter CTRL-A, while word
USTBR holds the address of the routine for CTRL-C. Both
words are initialized to —1 when you load a program. This
number must be changed in order to specify your own in-

tormint s
terrupt routines. Note, however, that the value of word

USTBR is set to zero whenever RDOS passes control to its
address as a result of a user trap. Thus, if a program is to
receive control at address USTBR after traps, it must reset
that address after each trap occurs. Chapter 5 describes the
user status table in more detail.

If word USTIT contains —1 when you hit CTRL-A, or if
word USTBR holds —1 when you type CTRL-C or issue
the .BREAK command, the system closes all channels on
the current level and loads the next higher level program.
Then RDOS checks this level’s UST for the address of an
interrupt routine: it will not pass control to the address of
a user-defined break routine if that adddress is less than 16
octal. The system continues this process until it reaches a
program and level whose UST contains the address of an
interrupt routine. If it reaches the CLI on level O, it uses
the CLI’s routine. 1f you have chained trom the CLI, how-
ever, and the new program at level O contains no address
for an interrupt routine, the system halts in an exceptional
status condition as explained in Appendix E.

During its search for the address of an interrupt routine, the
system checks each program level for a TCB queue. If the
queue is missing—perhaps because you accidentally over-
wrote it or because it is in user address space—the system
skips this program and examines one at the next-higher
level.

After finding a program with words USTIT or USTBR set
to an address other than — 1, RDOS checks word USTIA,
also contained in the UST, to find a task’s TCB address.
Although the loader initializes word USTIA zero, it may
contain a TCB address under certain conditions.

Licensed Material--Property ot Data General

If word USTIA contains zero, the system appropriates the
TCB of the task (pointed to by USTAC) whose priority is
currently highest; transfers that task’s PC to temporary stor-
age (TTMP in the TCB): and places the UST’s interrupt
address in TPC. (TPC is the program storage counter in the
TCB.) Control then passes to the scheduler, which launches
the task of highest priority. Since the UST’s interrupt ad-
dress is placed in TPC of the highest priority task, RDOS
executes the interrupt routine. (A single-task program is
itself the highest priority task.) Figure 3.5 shows a program
with an interrupt handler.

START: LDA 2, USTP : Put UST address in AC2.
LDA 0, .BRKA ; Pointer to address of
; CTRL-A handler.
STA 0, USTIT, 2 ; Store CTRL-A address
;in USTIT.

; The main program follows here.

MAIN:

; CTRL-A handler, whose code will be
, executed on CTRL-A.

BRKA:

.BRKA: BRKA

Figure 3.5 Program with interrupt handler

RDOS System Reference 83

If a task issues system call .INTAD before the interrupt,
RDOS finds a nonzero value in word USTIA. This value
is the issuing task’s TCB address. RDOS then readies the
issuing task and stores the value of USTIT or USTBR in
its TPC. Next, the systemn disables further interrupts via
CTRL-A or CTRL-C, and passes control to the Task Sched-
uler. When the .INTAD task gains control, it executes the
appropriate interrupt service and reenables console inter-
rupts—if desired—Dby issuing system calls .INTAD or .OEBL,
described later in this section. Note that your main program
should not issue the .INTAD command unless you want it
to suspend itself. Figure 3.6 shows a program containing
an .INTAD task, while Figure 3.7 shows the logic of pro-
gram interrupts in flow chart form.

The break file created by an interrupt via CTRL-C or the
.BREAK command is a save file. This file contains the
current state of main memory, from SCSTR (the start of
save files, location 16) through the highest of NMAX or
the start of the symbol table, SST. RDOS creates the break
file in the current directory under the filename BREAK.SV,
or under FBREAK.SV if the foreground program issued a
.BREAK command. The system deletes any existing break
file before writing a new one. If RDOS cannot write a break
file, possibly because it lacks sufficient file space on disk,
control passes to the address specified in USTBR less one
location, and the system returns an error code in AC2. If
disk space is insufficient for a new break file, RDOS uses
the available disk blocks but lists this file as zero bytes. To
release these blocks, delete the file.

84 RDOS System Reference

; The main task creates the .INTAD task and
; initializes the CTRL-A processing address.

START: SUB 0,0
LDA 1, INTSK
.TASK
JMP ER
LDA 2, USTP
LDA 0, .ROUT1
STA 0, USTIT,2

;0 priority for .INTAD task.

; Add of .INTAD task.

; Create the .INTAD task.

; Mandatory.

; Put UST address in AC2.

; Name of CTRL-A routine.

; Put CTRL-A routine in address
; of .INTAD task in USTIT.

; The main program follows here.

MAIN: ...

ANTSK: INTSK

.ROUT1: ROUTH

; This is the INTAD task.
INTSK: .SYSTM
INTAD

JMP ER

JMP INTSK
.ROUT1:

JMP INTSK

.ER: .SYSTM
.ERTN
JMP .

.END START

; On program execution, the .INTAD
; task issues .INTAD, suspending

; itself until CTRL-A is entered.

; System never takes error or

; normal return from .INTAD

; On CTRL-A, the .INTAD task

; executes this code.

; After performing its routine, the
; INTAD task reissues .INTAD,
; thereby suspending itself and
; reenabling CTRL-A interrupts.

, If program reads from console,

; error handler must pass EREOFs,
; since CTRL-A and CTRL-C supply
;EOFs to console.

Figure 3.6 Program with .INTAD task

Licensed Material--Property of Data General

Y

Console
Interrupt

Does
USTIT (USTBR)

contain -1
?

Was
ANTAD issued?
(USTIA = 0)

Yes

Go to next
higher level.

Yes

Y

Get highest Disable further
priority task’s CTRLA(CTRLC)
TCB. Interrupts.

!

Put task’s old PC
in TTMP.

—

Y

Put USTIT (USTBR)
contents into
TPC.

!

Ready the .INTAD
task; place contents
of USTIT (USTBR) in

TPC*.

)

RDOS task
scheduler

*If break fails, USTBR-1 is placed in TPC.

Figure 3.7 Program interruption logic sequence $D-00753

Licensed Material--Property of Data General

RDOS System Reference 85

Although the break file is, in essence, a snapshot of main
memory’s current state, the file is not directly executable;
it is generally useful for debugging. Before attempting to
execute it, you must consider how the interruption generated
by CTRL-C or the .BREAK command has affected the
system:

1. It closed all open channels, requiring that you reopen
them if needed by the break file.

2. Itpurged all . DELAY commands, yet their tasks remain
suspended.

3. Itremoved all user-defined clocks and interrupt devices.
which must now be redefined if you require them.

4. It destroyed all read-operator messages.

5. It disabled your access to all devices enabled via the
.DEBL command, including the floating point unit.
Access must be reenabled if the break file needs these
devices.

Keyboard interrupts are enabled by default when you exe-
cute a program. RDOS provides two system calls, .ODIS
and .OEBL, to disable or reenable further keyboard inter-
rupts. Neither call affects the .BREAK command, which
performs the same operation as CTRL-C. To restore key-
board interrupts after an .INTAD operation—and any in-
terrupt via CTRL-A, CTRL-C, or the .BREAK command—
the .INTAD task must issue the .OEBL command or another
call to .INTAD.

86 RDOS System Reference

.BREAK

Interrupt program and save main memory

This system call is operationally equivalent to typing CTRL-
C on the console. It saves the state of memory in save file
format from location 16 to the highest of NMAX or the start
of the symbol table, SST. The filename used is BREAK.SV,
or FBREAK.SV if the command was issued by the fore-
ground program). Any previous break file is deleted before
the new one is written to the current directory, where you
may retain it, save it under another name with the CLI’s
SAVE command, or delete it. Generally, because system
breaks close all channels, the break file is useful only for
debugging with a disk editor such as OEDIT or SEDIT.

The break file that results from an interruption via CTRL-
C or BREAK saves the program in the following state:

o All open channels are closed.

e All .DELAY commands have been purged, while their
tasks remain suspended.

o Blocks and interrupt devices defined by the user are
removed.

e All read-operator messages are lost.

e All user accesses enabled via the .DEBL command are
lost.

Unlike its console counterpart CTRL-C, the .BREAK call
is operative at all times and the .ODIS command, described
later, cannot disable it.

As explained earlier, if word USTBR contains a valid ad-
dress, control passes to this address after RDOS writes the
break file to disk. If USTBR contains —1, RDOS searches
the user status tables of programs at progressively higher
levels until it finds a valid address in word USTBR. Control
goes to the first higher-level program whose USTBR con-
tains such an address. If RDOS cannot write the break file
due, for example, to insufficient file space, control passes
to the address contained in word USTBR less one location.

Format
.SYSTM
.BREAK

There are no standard error or normal returns.

Possible Errors

AC2 Mnemonic Meaning

27 ERSPC Out of disk space.

60 ERFIN BREAK.SV (or FBREAK.SV)isin use.
101 ERDTO Disk timeout occured.

Licensed Material--Property of Data General

.ODIS

Disable console interrupts

This command disabies console interrupts within a program.
When issued from the background, it disables interrupts via
CTRL-A and CTRL-C. When issued from the foreground,
it disables interruptions that result from CTRL-A and CTRL-
C, and CTRL-F. Operations that issue from the .BREAK
command cannot be disabled with this system call. The
.OEBL, presented next, reenables console interrupts when
issued from your program.

Format

.SYSTM
.ODIS

error return
normal return

Possible Errors

None.

Licensed Materiai--Property of Data General

.OEBL

Enable console interrupts

When you first bootstrap a system, RDOS enables console
interrupts via CTRL-A, CTRL-C, and CTRL-F. If you dis-
able console interrupts by system call .ODIS or by proc-
essing a console interrupt with an .INTAD task, this call
reenables them within its program environment.

Format
.SYSTM

-~

OEBL
error return
normal return

Possible Errors

None.

RDOS System Reference 87

INTAD

Reserve a program interrupt task

This system call enables keyboard interrupts and permits
you to assign a task to service interrupts from CTRL-A,
CTRL-C, and the .BREAK command. The servicing task
must issue the .INTAD call; RDOS will recognize it as the
interrupt task. Because the .INTAD command causes the
issuing task to suspend itself, the servicing and main tasks
are generally not the same; that is, the main program or
task should not issue this command. RDOS uses the .INTAD
task (instead of a program task’s TCB) for interrupts, thereby
preserving the current program environment aside from any
system call executing when the interrupt occurs.

Format

.SYSTM
INTAD

error return
normal return

Possible Errors

None.

88 RDOS System Reference

Summary

This section summarizes all commands discussed in this
chapter in Table 3.9.

Funétion)

‘System Call
APPEND Open a file for appendmg
BREAK R lntemzpt the wrrent pragram and save the
o ~ current state of memory in save file format.
.CCONT k 'Craate a cont;guously orgamzed file with all
R et , data words zeroed -
e CONN 'Cfeate a com;guousty ongamzed me wﬁh no

5 queiay the execnmn of atask
_DELET Delete ame

DIR © - Change the currrent directory.
.DUCLK o | Defme a user dock

| EOPEN o kOpen a me for readmg and wrmng by one
o ‘ ’ user only.
EQiV Assign a temporary name to a device.
.ERTN On an error, return from program and de-

scribe error (if to CLI).

.GCHAR | Get ehéra‘cter ffomthe console.
.GCHN Get the number of a free channel.

Table 3.9 System call summary

Licensed Material--Property of Data General

System Call
.GCIN
.GCOUT
.GDAY
.GDIR
.GPOS

.GSYS

.GTATR
GTOD
IDEF
INIT
INTAD
LINK
MDIR
MEM
MEMI

.MTDIO

.MTOPD

- .0DIS
.OEBL
.OPEN

.OVLOD
.OVOPN
.OVRP
.PCHAR
.RDB
.RDL
.RDR

.RDS

Function

Get the operator input console name.
Get the operator output console name.
Get today'’s date.

Get the current directory name.

Get the current file pointer.

Get the name of the current operating sys-
tem.

Get file attributes.

Get the time of day.

~ Identify a user device.

Initialize a device or a directory.

Define a program interrupt task.

Create a link entry.

Get thé |og|ca| nanuvem of the ﬁwaster device.
Determine available memory.

Change NMAX.

Perform free format /O on tape or cassette.

_.Open a magnetic tape or cassette for free

format 1/O.
Disable keyboard interrupts for this console.
Enable keyboard interrupts for this console.

Open a file for reading and/or writing by one
or more users.

Load a user overlay into memory.

Open a user overlay file.
Replace an overlay file.

Write a character to the console.
Read one or more disk blocks.
Read a line.

Read a random record.

Read sequential bytes.

Table 3.9 System call summary (continued)

Licensed Material--Property ot Data General

System Call Function

.RDSW Read the console switches.

.RENAM Rename a file.

.RESET Close all files.

.RLSE Release a directory or device.

.ROPEN Open a file for reading only by one or more

users.

.RSTAT Get a resolution file’s statistics.

.SDAY Set today’s date.

.SPDA Disable spooling.

.SPEA ~ Enable spooling.

SPKL Delete the current spool file.

.SPOS Set the current file pointer.

.STAT Get a file's statistics.

.STOD Set the time“of day.

ULNK Delete a link entry.

.UPDAT Update the current file size.

.VMEM Determine the number of memory blocks.
.WRB.. _ Wirite one or more 256-word blocks to disk. .

WRL Write a line.

.WROPR Write an operator message.

WRR Write a random record.

\WRS Write sequential bytes.

Table 3.9 System call summary (continued)

RDOS System Reference

89

Chapter 4

Extending User Address Space

Occasionally a program will require more memory than is
available in the computer. This chapter introduces the fa-
cilities that RDOS provides for augmenting the limits of
main memory, and explains how to use them. Its two major
sections cover the following subjects:

e Program swapping and chaining
e User overlays

¢ Memory protection

e Virtual user overlays

e Window mapping

e Extended direct block I'O

All system calls described in these sections are summarized
at the end of the (‘hapter in tahle form

Program swaps, chains, and user overlays are tools that
effectively extend main memory with disk space. These
tools apply to all systems and applications, and must be
understood in order to write advanced programs in RDOS.

When a program swaps or chains, it calls another program
into execution. During this process, the same areas of your
address space can be used for diverse operations.

Program swapping is executed from one of four RDOS
levels of control, where one level calls another.

Chained programs are called in sequence by a program on
the same level, and overwrite the calling program.

Overlays also operate on one level, but are called in succes-
sion by a core-resident root program and placed in a reserved
area (node) of memory.

In any Data General computer, mapped or unmapped, the
directly addressable memory available to a program cannot
exceed 32K words. Naturally, this depends on the total
amount available in the machine. In a dual-program envi-
ronment, each of two programs may use up to 32K of this
space, known as logical address space in mapped systems.

Licensed Material--Property of Data General

Mapped RDOS permits a program in either a single or dual
environment to access memory outside its logical address
space. This supplementary area of memory is called ex-
tended address space, or extended memory. The total ad-
dress space (both logical and extended) is allotted to a program
in a mapped system via the CLI’s SMEM command.

Mapped RDOS offers two programming tools for manip-
ulating extended address space: window mapping and virtual
overlays. Window mapping is most useful for extended data
storage, made possible by a window map defined by your
program. It also allows you to transfer 256-word blocks of
data via extended direct block 1/O. Virtual overlays, like
conventional ones, are most useful for storing subroutines,
and are defined via utility RLDR. Both features can be
implemented in one program.

The tanle af memaory nratection and extended direct hlock
I/O are also available for programming with extended mem-
ory, and the sections that discuss them apply to users of
mapped RDOS only.

Program Swapping and Chaining

This section discusses the operations of swapping and chain-
ing, along with the system calls that enable you to implement
these operations in your programs. In order of discussion,
the system calls are:

.EXEC Swap or chain a save file into execution.
.RTN Return to the next higher level program.
.ERTN Return from a program swap with the error

status of the calling program.

Any program executing under RDOS can suspend its own
execution and swap in another program, or chain to an
executable segment of itself. Occasionally this book uses
the term push instead of swap. The terms are synonymous,
meaning to execute a program on the next lower level via
the .EXEC command. The CLI command POP, which in-
structs RDOS to execute the program on the next higher
level, corresponds roughly to system call .RTN.

RDOS System Reference 91

Programs with open multiplexor lines must close them be-
fore swapping; otherwise, they will take the error return
from system call .EXEC. Note that any program you plan
to swap or chain must be an executable save file.

Program swaps may exist in up to five levels, where one
level calls for another and the Command Line Interpreter
exists at the highest level, level 0. The CLI is merely one
program that RDOS can execute. Its only special property
is that it normally executes at the highest level in the system.
Generally, the utilities supported by the CLI—that is, the
text editors, assemblers, and binder or loader—execute at
level 1. When you execute a program or utility from the
CLI, RDOS commonly swaps the CLI to disk and calls it
back automatically, via the .RTN command, after the pro-
gram has completed its execution. Figure 4.1 illustrates the
swapping process.

Alternatively, a large program can be composed of a se-
quence of executable segments in which the end of each
segment invokes the beginning of the next, ending with the
CLI. This process, called chaining, occurs on one level.
The length of the entire program is limited only by the disk
space available to it. A program chain can be invoked with
system call .EXEC or, from the console, via the CLI’s
CHAIN command. Figure 4.2 diagrams the chaining proc-
ess.

When a program issues the .EXEC command, a swap or
chain occurs depending on your input in AC1. If a swap is
specified, RDOS saves a core image of the current program;
brings the new program, specified in ACO0, into main mem-
ory; and executes this program. The calling program’s task
control block (TCB) saves its accumulators, carry, and PC.
The new program can swap itself and execute the original
one by issuing the .RTN or .ERTN commands, or it may
swap to a lower level by issuing system call .EXEC. Any
program can check its current level via the . FGND command
discussed in Chapter 4.

If AC1 specifies a chain, RDOS brings the program spec-
ified in ACO into core and executes it. The system does not
save a core image of this program. After it has finished,
this program can launch any other into execution via the
.EXEC command.

92 RDOS System Reference

When planning program swaps, make sure that NMAX ac-
curately reflects core memory for every program in use.
Remember that during a swap RDOS saves the current core
image up to the higher of NMAX or SST (start of the user
symbol table). Thus, if your program exceeds NMAX and
invokes another program, RDOS can save only a portion
of the calling program’s memory state; the remainder of the
calling program will be lost. Even if the executing program
does not call another. a break from your console may force
suspension. To avoid these problems, your program should
never use temporary storage at load time above its original
value of NMAX without first instructing the system to al-
locate more memory for this purpose. The .MEMI com-
mand, discussed in Chapter 3, performs this function.

The operations of swapping, chaining, and returning halt
activity in the current program. RDOS terminates calls and
conditions that would not be appropriate in the new program,
most of them involving multitask activity. The following
conditions are terminated when a change of program occurs;
to restore them, refer to the appropriate chapter and system
call, as indicated:

1. A return or chain closes all channels, requiring the new
program to open the channels it needs as described under
Input/Output Commands in Chapter 3. When the calling
program’s execution resumes after a swap, all channels that
were open when the swap occurred will be open.

2. All $TTI or $TTI! input is halted. The system calls
affecting this condition include .GCHAR, discussed in Chapter
3; .TRDOP, discussed in Chapter 5; and .RDOP, discussed
in Chapter 6.

3. Any system devices enabled for user access via the .DEBL
command (Chapter 3) are disabled. Thus, the new program
must enable access to the hardware floating point unit, if
one is present.

4. Console interrupts are enabled, cancelling any outstand-
ing instructions to disable them via the .ODIS command

(Chapter 3).

5. The state of the floating point unit is not preserved.

Licensed Material--Property of Data Genera!

6. All interrupt message transmissions are removed. Refer
to the .IXMT command in Chapter 5 for details.

7. If you have defined a user clock or a system delay, it is
removed. Consult the .DUCLK and .DELAY commands in
Chapter 5 for details.

8. If your system has operator messages, the state of the
OPCOM, discussed in Chapter 5, is lost.

9. All user-defined interrupt service is removed, as is any
mapped system data channel map setting in a mapped sys-
tem. See the discussions of .IDEF and .STMAP in Chapter
7 for details.

10. Mapped systems only: all write-protection of mapped
memory, defined via the .WRPR command (Chapter 4), is
removed.

11. Mapped systems only: extended space reserved for vir-
tual overlays is released, and all definitions of extended
memory made via window mapping are removed.

12. Mapped systems only: any dual-program communica-
tions area, defined via system call .ICMN (Chapter 6), is
removed.

R
MYSWAP) LEVELO
R
A
TITL MYSWAP
|
]
SUB 1,1
LDA 0, byte pointer to LEVEL2.SV LEVEL 1
SYSTM
EXEC
:4————‘
1 y
RTN
JMP ERR TITL LEVEL2
END !
SUB 1,1
LDA O, byte pointer to LEVEL3.SV LEVEL 2
SYSTM
EXEC
|
RTN)
JMP ERR TITL LEVEL3
END]
1
RN LEVEL 3
JMP ERR
END

Figure 4.1 Program swapping

Licensed Material--Property of Data General

SD-00504

RDOS System Reference 93

R
CHAIN MYCHAIN)
—» R ,

qP .T|ITL MYCHAIN
l
|
I

|
SUBZR 1.1

SYSTM

LDA 0O, byte pointer to "CHAIN1.SV" E

EXEC

JMP ERR
.END

.T‘|TL CHAIN1
|

t
SUBZR 1.1

LDA 0. byte pointer to “CHAIN2.SV" I

.SYSTM
.EXEC

.JMP ERR

.END

Y

.TITL CHAIN2

LDA 0. byte pointer to “CLI.SV” :

SYST™M

EXEC
JMP ERR
.END

. LEVELO

Figure 4.2 Program chaining

94 RDOS System Reference

SD-00505

Licensed Material--Property of Data General

EXEC

Swap or chain a save file into execution

This command requests the system to swap or chain a pro-
gram. See Figures 4.1 and 4.2, shown earlier, illustrate
each process.

Required Input

ACO - Byte pointer to filename of new program (save file).

AC1 - Specifies a code for swap or chain, as shown in the
following table.

Code in AC1 Meaning

0 Swap to user program. Control goes to the
ready task with highest priority.

1BO Chain to user program.

1 Swap and start at debugger address.

1BO+ 1BIS Chain and start at debugger address.

The code in ACI indicates one of two starting addresses:
lhe program starting address (USTSA), and the Debuyg ili
starting address (USTDA). Chapter 5 discusses these ad-
dresses in detail.

Note that if bit O of AC1 is 1, RDOS does not save the
current level, and the operating level remains unchanged.
This feature provides unlimited program chaining. Also note
that you cannot swap from the foreground of an unmapped
system. An attempt to do so causes RDOS to return error
code 25 (ERCM3). You can, however, chain from an un-
mapped foreground provided the new program’s memory
requirement is less than or. equal to that of the previous
program.

The new program receives the contents of AC2. If this
program is the CLI (CL1.SV) and AC2 contains a nonzero
value, the CLI searches its special command file, CLI.CM,
for commands. This mechanism is fully described in RDOS/
DOS Command Line Interpreter.

Format

.SYSTM
.EXEC

error return
normal return

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

4 ERSVI File requires save attribute (S).

12 ERDLE File does not exist.

25 ERCM3 More than five swap levels, or swap-
ping from unmapped foreground.

26 ERMEM Attempt to allocate more memory than
is available.

32 ERADR Illegal starting address.*

53 ERDSN Directory specifier unknown.

57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

73 ERUSZ Too few channels defined at load time

or during system generation.

7+ BERMPR Address vubside addiess spacc.

101 ERDTO Disk timeout occurred.
102 ERENA No linking allowed (N attribute).
125 ERNSE Program not swappable.

*RDOS returns ERADR status if (1) no starting address was specified for
the save file and bit 15 is reset to 0, or (2) the debugger was not loaded
as part of the save file and bit 15 is set to 1.

RDOS System Reference 95

.RTN

Return to the program at the next higher level

This system call closes all open channels and returns to the
calling program at its normal return point. All the calling
program’s accumulators are restored, and control passes to
the instruction at the return point. If the level O foreground
program issues this command, RDOS closes all foreground
channels, releases the foreground, and displays the message
FG TERM on the background console.

Format

.SYSTM
.RTN
error return

Normal returns are precluded by the fact that RDOS restores
the calling program in memory. The error return, reserved
for compatibility with RTOS, is never taken. Error condi-
tions cause exceptional system status, as explained in Ap-
pendix E.

9 RDOS System Reference

.ERTN

Return from program swap with calling program’s error
status

This command instructs a called program to return error
information to its caller, enabling you to determine why a
swapped program took the error return. The command is
identical to system call .RTN, except that normal return is
made to the error return of the higher-level program. Upon
return, AC2 contains the value for the lower-level program
instead of the value for the higher-level program. A single
word of status can therefore be returned.

If a program issuing the .ERTN command executes at level
1 and returns to the CLI, the CLI outputs an appropriate
message concerning the status code in AC2. The CLI prints
a textual message if it recognizes a system error code; the
error ERDLE, for example, corresponds to system error
code 12 and evokes the message FILE DOES NOT EXIST.
If RDOS returns null error ERNUL (code 20) in AC2, the
CLI reports no error message.

Note that if the called program passes error EREXQ (code
17) in AC2, the CLI takes its next command from disk file
CLI.CM. If the CLI does not recognize the code, RDOS
displays the message UNKNOWN ERROR CODE r, where
n is the numeric code in octal.

Format

.SYSTM
.ERTN
error return

The error return, reserved for compatibility with RTOS, is

never taken. Error conditions cause exceptional system sta-
tus, as explained in Appendix E.

Licensed Materia!l--Property of Data General

User Overlays

This section explains how to extend your memory resources
with user overlays, which apply to mapped and unmapped
systems alike. After a thorough examination of how user
overlays are constructed, the system calls that control them
are presented. In order of discussion, these calls are:

.OVOPN Open an overlay file on a specified chan-
nel.

.OVLOD Load an overlay into the area of memory
reserved for it.

.OVRP Replace the overlays in an overlay file.

User overlays are blocks of code, placed in an overlay file,
that support a root program. The root program is a save file
that remains in memory throughout a program level; it ex-
tends from location 16, to NMAX, and calls overlays from
disk into core memory as required. The overlay file is con-
tiguously organized, and divided into segments. Each seg-
ment contains the overlays that the root program will load,
one at a time, into a reserved area of memory called a node.

The RLDR command loads the root program; creates the
overlay file; places overlays into segments of the file; and
sizes the reserved area of memory, or node. If you specify
cuverlays in the RLDR command line, the lvader program
produces a save file, filename.SV, and an overlay file, file-
name.OL, where filename is the name of the first binary in

the command line unless you specify otherwise with switches.

To use overlays, your program must (1) open the overlay
file on an RDOS channel vis system call .OVOPN, and (2)
instruct RDOS, via system call OVLOD to load one overlay
at a time from a segment into its node. The node is reserved
for the overlays in its segment until the program terminates.
Your program can free the channel by closing it via the
.CLOSE command. (This process differs slightly for a mul-
titask program, as explained under ‘‘User Overlay Man-
agement’’ in Chapter 5.) Appendix C demonstrates the use
of overlays in a real-time programming example that in-
cludes a root program supporting two overlays.

The size of each node is the smallest multiple of 400, words
large enough to contain the largest overlay in the node’s
segment. Any overlay that is not the same size as its node
will be padded out with zeroes. This means that any segment
size equals the node size multiplied by the number of over-
lays within the segment. Each segment is identified on disk
by its corresponding node number.

An overlay file can hold up to 124 overlay segments; a

segment may contain a maximum of 125 overlays; and each
overlay can be as large as 126 disk blocks, or 31,256 words,

Licensed Material--Property of Data General

in size. When a segment contains overlays dissimilar in
length, considerable disk space will be used to pad out the
smaller overlays to standard size; likewise, valuable mem-
ory is consumed to pad out the core node. for this reason,
you should place overlays of roughly equal size in the same
segment whenever possible.

Directory information for each overlay resides in an overlay
directory. RLDR builds this directory into your program’s
save file, as explained in Appendix D. Each overlay has a
label which the system uses to identify it; the label resolves
to a node number and an overlay number, packed by half-
words.

The format used to create an overlay file and associate it
with a root program is explained under the RLDR command
in RDOS/DOS Command Line Interpreter. The following
command line, examined in conjunction with Figure 4.3,
serves as an example:

RLDR RO {A,B,C,D} R1 R2 [E,FG,H] (CR)

As Figure 4.3 shows, this statement creates a disk save file,
RO.SV, and an overlay file, RO.OL. The save file contains
RO. R1. and R2. along with vacant areas, or nodes, for the
overlays in each segment. The overlay file contains seven
overlays—binary versions of A, B, C, D, E, F, G, and H.
These overlays are grouped in two segments of overlay file
RO.OL, where Segment O contains overlays A through D
(numbered O through 3)—all destined for node O in main
memory—and Segment 1 contains overlays E through H
(numbered 0 through 2)—which will occupy node 1 in core.
Note that the order in which you specify the overlay binaries
in the command line determines both the overlay number
and node number of each overlay.

RDOS System Reference 97

Node 1 ‘

Node 0 §

400

Figure 4.3 User overlays

98

For overlays
in segment 1

R2

R1

For overlays in
segment O

RO

Overlay Directory

MAIN MEMORY

RDOS System Reference

Overlay 2(H)

Segment 1

Overlay 1(F G)

Overlay O(E)

Overlay 3(D)

Overlay 2(C)

Segment O

Overlay 1(B)

Overlay O(A)

-
-~

L)

rl
AN}

|

Vacant disk space for
overlays in segment 1

Node 1 l

R2

R1

Node O {

Vacant disk space for
overlays in segment O

RO

Overlay Directory

Overlay file
RO.OL

Save file RO.SV

SD-00498

Licensed Material--Property of Data General

You may disregard the loading order of overlays in a node
if you use pseudo-op .ENTO. (Appendix C demonstrates
the use of .ENTO in a real-time programming example.)

This pseudo-op allows you to assign a unique name to each
overlay, rendering the order of overlays in the RLDR com-
mand line unimportant. Each binary is given a unique name
in argument to .ENTO, and is referenced by that name in
your program. All unique labels must be declared with pseudo-
op .EXTN. Whenever .ENTO has not been used, your RLDR
command line must list overlay binaries in their proper
order.

Figure 4.4 takes a closer look at the overlay file, RO.OL,
that resulted from our sample RLDR command line. It fo-
cuses on Segment 1 to show some of the possible entry
points in overlays E, F, G, and H. Note that these binaries
have been assigned unique names via pseudo-op .ENTO,
eliminating the need to know which node and overlay num-
ber corresponds to them. Thus, our sample RLDR command
line could have read:

RLDR RO [A,B,C,D] R1 R2 [H,E,F G] (CR)

filename E
.ENTO TAGE
ENT Y
Node 1 .
Overlay O :
Z: subprogram entry point
1. SuDprograim eniry poini
tilename F filename G
.ENTO TAGF .ENTO TAGG
ENT XW ENT VvV
Node 1 M .
Overlay 1 X: subprogram entry point
W: subprogram entry point V: entry point
filename H
.ENTO TAGH
ENT U
Node 1 .
Overlay 2

U: subprogram entry point

Figure 4.4 Segment 1 of overlay file R0.OL SD-00533

Licensed Material--Property of Data General

Figure 4.5 shows how save file RO.SV uses unique labels,
created via .ENTO, to load each overlay root program.
When RO.SV issues system call .OVLOD, RDOS loads all
of binary E into core, where routines Z and Y serve as cntry
points.

EXTN TAGE, TAGF, TAGG, TAGH
EXTNZ Y, X, W, V, U
OVE: TAGE :TAGE IS RESOLVED TO
:NODE 1, OVERLAY 0
;(ENCODED AS 400).
-TAGF IS RESOLVED TO
;NODE 1, OVERLAY 1
;(ENCODED AS 401).
:TAGG IS RESOLVED TO
:NODE 1 OVERLAY 1
:(ENCODED AS 401).
;TAGH IS RESOLVED TO
:NODE 1, OVERLAY 2
:(ENCODED AS 402).

.OVF: TAGF

.OVG: TAGG

.OVH: TAGH

LDA 0,bptr-to-R0.OL

.SYSTM

;OPEN R0O.OL ON

.OVOPN 3 ;CHANNEL 3.

JMP ERR ;ERROR RETURN.

LDA 0, OVE ,GET OVERLAY NUMBER.

ADC 11 yPREPARE FOR UNCON-
; DITIONAL LOAD.

.SYSTM ;LOAD OVERLAY E

.OVLOD 3 yUNCONDITIONALLY.

Figure 4.5 Loading the overlay root programs

RDOS System Reference 99

.OVOPN Possible Errors

Open overlays for reading

AC2 Mnemonic Meaning

Before you can call an overlay in either a single or multitask

environment, you must open the overlay file on a channel. 0 ERENO
(The same rule applies to virtual overlays in a mapped

system, as a later section explains.) Several users can open 1 ERENM
an overlay file simultancously, on different channels. The

.CLOSE command closes the channel on which an overlay ¢ EREOF
file has been opened.

Illegal channel number
Illegal filename

Mapped systems only: end of virtual

overlay.
Required Input 7 ERRPR Mapped systems only: attempt to open
ACO - Byte pointer to the name of the program overlay a read-protected overlay node.
file, including its .OL extension.
12 ERDLE Nonexistent file.
Format
SYSTM 21 ERUFT Attempt to use a channel already in
.OVOPN n use.
error return
normal return 26 ERMEM Mapped systems only: insufficient
memory to load (.OVLD or .TOVLD)
Variable n represents the channel number. virtual overlays.
30 ERFIL File read error on virtual overlay file
(mapped only), mag tape (bad tape).
40 EROVA Mapped systems with virtual overlays
only: not a contiguous file.
53 ERDSN Nonexistent file.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.
74 ERMPR Address outside address space.
101 ERDTO Disk timeout occurred.
102 ERENA No linking allowed (N attribute).
100 RDOS System Reference

Licensed Material--Property of Data General

.OVLOD

Load an overlay

This command loads an overlay into its reserved memory
node using one of two methods. The first method, called
unconditional loading, loads an overlay regardless of whether
it resides in memory or not. This method guarantees a fresh
copy of the overlay (but does not apply to virtual overlays).
The second method, called conditional loading, loads an
overlay only if it is not already in memory. Although the
conditional request saves you time, it should be used for
reentrant overlays only.

The .OVLOD command loads an overlay conditionally
if you set AC1 to 0, or unconditionally if you set AC1 to
—1. It is recommended that you make your overlays reen-
trant, or load them unconditionally if they are not.

Required Input

ACO - Left byte contains the value of the overlay node;
right byte contains the value of the overlay number.
Alternatively, contains the symbolic name, if the
.ENTO pseudo-op was used to create one.

AC1 - Input O to load conditionally, or —1 to load un-
conditionally.

ez o b
Ul illat

.SYSTM
.OVLOD n
error return
normal return

Variable n represents the channel number. Note that only
one task may issue .OVLOD in a multitask environment,
and that, under certain conditions (such as a nonmatching
save and overlay file), the left byte of AC2 may be nonzero
on an error return.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic

Meaning

[
(9]

30

37

40

74

101

ERFNO

EREOF

ERRPR

ERFOP

ERFIL

EROVN

EROVA

ERMPR

ERDTO

Illegal channel number.
End of file.

Attempt to read a read-protected file.

Read error (tape).

Illegal overlay number.

Overlay file is not a contiguous file.
Address outside address space.

Disk timeout occurred.

RDOS System Reference 101

.OVRP

Replace overlays in an overlay file

Although the RLDR utility can create an overlay file, it
cannot modify one. You can, however, create a replacement
for an overlay file with the CLI's OVLDR command, and
execute the replacement with system call .OVRP or CLI
command REPLACE.

With the OVLDR facility, you create a new overlay file,
make the desired changes, and assign to this file the same
name as the overlay it will replace. The CLI appends the
extension .OR to this name. The original file is not affected
by the execution of the OVLDR command; it remains the
current overlay file until you execute either the .OVRP or
REPLACE commands. Even if both grounds are using the
original overlay file, your program can update it via system
call .OVRP without halting the programs that are using it.
RDOS/DOS Command Line Interpreter discusses the OVLDR
facility in full detail.

Required Input

ACO - Byte pointer to the overlay replacement’s filename
(savefilename .OR).

ACl1 - Byte pointer to overlay filename.
name.OL).

(savefile-

Format

.SYSTM
.OVRP

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

1 ERFNM Illegal filename.

6 EREOF End of file.

12 ERDLE One or both files do not exist.
27 ERSPC Out of disk space.

53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.

66 ERDNI Directory not initialized.

74 ERMPR Address outside address space.
101 ERDTO Disk timeout.

102 RDOS System Reference

Protecting User Memory Under
Mapped RDOS

This section applies to users with mapped RDOS systems.
It explains how to enable and disable protection of user
memory with the .WRPR and .WREBL commands. System
call .WRPR allows your programs to write-protect memory
in 1K blocks. This protection, which RDOS does not pro-
vide by default, remains in force until you disable it via
system call .WREBL or by executing a new program.

Write protection prevents system read calls such as .RDL
or .RDB—which read from a file and write to a specified
address—from writing to the protected block. It also pre-
vents such instructions as STA from writing to protected
blocks. The. WRPR command does not prevent a program
from loading overlays, or swapping or chaining a new pro-
gram, into the write-protected blocks.

An RDOS memory block contains 1,024 decimal (1K) words;
the system allots mapped memory to programs (via the CLI’s
SMEM command) in 1,024-word blocks; and system call
.WRPR write-protects memory accordingly, in blocks of
1,024 words. If an area defined for write-protection extends
across a 1024-word boundary, RDOS write-protects both
blocks.

Overlay nodes can be write-protected to enhance the integ-
rity of user code. This operation should be performed care-
fully, however, since a program that inadvertantly write-
protects areas other than the overlay node may be unable
to run properly. The RLDR utility reserves overlay nodes
in integer multiples of 4005 words, which can aid you in
aligning your write-protection.

The following example steps you through the process of
write-protecting an overlay node. It assumes that you are
about to bind/load a program that will have one overlay
segment and include 3 overlays. Ordinarily, you would enter
this command line:

RLDR RO R1 R2 [A,B,C D] (CR)

Instead, you begin by checking the sizes of all binaries with
the Library File Editor, LFE. RO, R1, and R2 require 3600,
words, which you round off to 4000 octal. A and B are
1000, words each, while C D is 1500 octal words. The
loader reserves an overlay node for the largest overlay—in
this case, the third one of 1500, words. Thus, the overlay
node will be 2000, words in length, since 15005 exceeds
3*400,. Because 2000 octal words convert to 1,024 in dec-
imal, this size dovetails perfectly with one block of memory.
As a result, you need only write-protect one memory block
for this overlay node, provided you align it properly.

Licensed Material--Property of Data General

You align the node for future write protection by judicious
use of the RLDR program’s local /N switch. The following
command line demonstrates its use:

RLDR RO 2000/N R1 R2 4000/N [A,B,CD] (CR)

The /N switch forces the NREL pointer to the specified octal
value. RLDR builds NREL upward from the bottom of user
space for each binary loaded. The NREL figure pertains to
the file whose name follows the switch. (RDOS/DOS Com-
mand Line Interpreter explains the use of the /N switch in
full detail.) As a result of this command line, locations 4000,
through 60005 are reserved for the overlay node.

Figure 4.6 shows the correct and incorrect alignment of the
overlay node in memory. RO contains enough room to insert
the .WRPR instruction that will protect this node without
affecting the rest of the save file, for example:

LDA O,LA
LDA 1,HA
.SYSTM
WRPR
JMP ER

,THE LOWER ADDRESS
;THE HIGHER ADDRESS

LA:4000
HA:5777

60004 >
OVerlay Node
Overlay Node ; 1024 ¢ 1
4000, R2
- (
R1
R1 1,024
20004
E 1,024 .
CORRECT INCORRECT

Shading indicates memory protection.

Figure 4.6 Write-protecting memory

Licensed Material--Property of Data General

SD-00499

RDOS System Reference 103

.WRPR

Protect a memory area from modification

RDOS write-enables all memory blocks by default. This
system call write-protects contiguous sections of mapped
memory as specified in ACO and ACI1. The blocks you
specify remain protected until (1) your program disables this
protection via the .WREBL command; (2) your program
issues system call .EXEC, .RTN, or .ERTN; or (3) you
enter a keyboard interrupt. RDOS protects memory in 1024,
word blocks, just as it allocates mapped memory in blocks
of 1024 decimal words. If the addresses you specify cross
a block boundary, RDOS write-protects both blocks in their
entirety.

Required Input
ACO - Lower address of the series to be protected.

ACO - Higher address of the series to be protected.

Format

.SYSTM
.WRPR

error return
normal return

The .WRPR command is a no-op in unmapped systems,
and takes the normal return.

Possible Errors

This command has only one possible error: its mnemonic
is ERMPR, meaning illegal address, and RDOS returns error
code 74 in AC2 when it occurs.

104 RDOS System Reference

.WREBL

Remove the write protection from a protected memory area

This system call removes the write-protect restriction from
one or more blocks of memory. It write-enables memory in
1024 ,,-word blocks, just as the .WRPR command protects
blocks of 1024,, words. Thus, if the addresses you specify
cross a block boundary, RDOS write-enables all addresses
in both blocks.

Required Input

ACO - Lower address of the series to be write-enabled.
AC1 - Higher address of the series to be write-enabled.

Format

.SYST™M
.WREBL
error return
normal return

Possible Errors

This command has only one possible error: its mnemonic
is ERMPR, meaning illegal address, and RDOS returns error
code 74 in AC2 when it occurs.

Licensed Material--Property of Data General

Virtual Overlays

This section applies to users with mapped RDOS systems.
It explains how to incorporate virtual overlays in your pro-
grams as a means of using extended address space. The
major difference between user and virtual overlays is that
the former are disk-resident, permitting only one memory-
resident overlay at a time from any segment, while all virtual
overlays reside simultaneously in extended address space.

After you build a virtual overlay file into your program,
your program handies it as a conventional overlay file. That
is, user and virtual overlays are contained in the overlay
(.OL) file, which must be opened via the .OVOPN com-
mand before you can access any overlay within it. And each
virtual overlay, like each conventional one, must be loaded
via the .OVLOD command (or system call .TOVLD, de-
scribed in Chapter5) before your program can use it. Mul-
tiple tasks may share a virtual overlay reentrantly; when all
tasks have released the overlay (via system call .OVREL,
in Chapter 5), another task can use the overlay node. Virtual
overlays load more quickly than conventional ones because
only a memory remap operation—rather than a disc access—
is required. Note that you cannot *‘refresh”” virtual overlays
by reloading them. Virtual overlays are defined with the
/V switch in an RLDR command line, as follows:

RLDR root program...[virtual overlay,...))V

Virtual overlays must precede conventional ones in the RLDR
command line. Space for each virtual overlay is allocated
in 1K-word (1,024,,) pages. The loader program pads un-
used space. Each page begins on a 1K boundary (from page
0).

The virtual overlay node always occupies logical address
space. It holds the first virtual overlay in the RLDR com-
mand line when you open the overlay file. Other virtual
overlays occupy extended address space. When the program
loads another virtual overlay, the new one remaps into log-
ical space, while the original remaps into extended space.
Thus, the amount of extended space that RDOS uses for
each virtual overlay segment equals the node size multiplied
by the number of virtual overlays in segment 1.

The following example steps through the procedures of load-
ing and remapping virtual overlays. It is premised on the
RLDR command line

RLDR MAIN [VW,X.Y.Z)'V [A.B.C]
which creates save file MAIN.SV and overlay file MAIN.OL.

MAIN.OL contains binaries A, B, and C as conventional
overlays, and VW,X, Y, and Z as virtual overlays.

Licensed Materiai--Property of Data General

When MAIN opens the overlay file, RDOS uses the map
to set up a pointer from the virtual node to overlay VW.
The .OVOPN command allocates extended memory to vir-
tual overlays and loads them from disk into this area. Mean-
while, RDOS ignores the conventional overlay node. Figure
4.7 shows the structure of memory and disk at this time.

Next, assume that program MAIN has opened overlays on
channel 3; has used virtual overlay VW; and required the
use of virtual overlay Z. The new overlay is loaded as
follows:

LDA 0,0vVZ

;OVZ WAS ASSIGNED

:VIA .ENTO.
SUB 1,1 ; VIRTUAL OVERLAYS ARE
.SYSTM ;ALWAYS LOADED

; CONDITIONALLY.

;LOAD VIRTUAL OVERLAY Z.

.OVLOD 3

As a result of this step, VW remaps into extended memory
and Z remaps into logical address space, as shown in Figure
+.8.

Remember that virtual overlays are page-buffered, and that
RDOS uses the largest one to determine the overlay size.
Thiue averlave chanld he ranghly 2gual in length ©

memory will be inefficient.

v oarea oy
i owow Ui

Also note that virtual overlays release extended address
space only when the program performs a program swap,
chain, or return. For this reason, a program that has opened
virtual overlays should close them before swapping and
reopen them when it returns.

RDOS System Reference 105

1K

e et

Figure 4.7 Virtual overlays before .OVLD

C
Segment 1 B
A
: 7
¢ Virtual
. K { Overlay Z
: Y
1K Virtual s o <
User Overlay Overlay Y egment
Node X
1K Virtual
Virtual Overlay Overlay X
Node vw
Virtual \
MAIN Overlay VW) i
o s
. ~r -
: : MAIN.SV
LOGICAL EXTENDED .
MEMORY DISK
SD-00509
. Virtual
. Overlay VW
Virtual Overlay
User Overlay Y
Node
Virtuai Overlay
virtual Overiay X
Node (Z) "
MAIN .
LOGICAL EXTENDED
I
MEMORY
SD-00506

Figure 4.8 Virtual overlays after .OVLD

106

RDOS System Reference

Licensed Material--Property of Data General

Window Mapping

Swaps, chains, and overlays help you write large programs
that can run in limited amounts of address space. If your
main program requires more logical memory than the com-
puter provides, RDOS offers a different solution: window

mapping.

Window mapping applies to mapped systems only. It per-
mits direct access to portions of extended memory and al-
lows you to transfer blocks between extended memory and
disk. Both virtual overlays and window mapping can be
incorporated in one program. To use a window map, follow
these steps:

1. Determine the amount of memory available for extended
addressing. The .VMEM command, described later in this
section, enables you to do so. Check the available memory
after .OVOPN and all . MEMI operations.

2. Define the size and position of the window in user ad-
dress space, along with the number of blocks in the extended
map. System call .MAPDF, discussed later in this section,
performs these functions.

3. Logically transfer data between the window and ex-
tended memory by activating the memory management unit.
Task call .REMAP, described later in this section, is used
tor this purpose. (Note that no true data transter occurs; a
remap operation changes the address of the data.)

After defining the map, your program can repeat the .RE-
MAP operation as often as needed. The command should
not be issued, however, when another task is using the
window for I/O; .ERDB and .EWRB, the extended read/
write block calls described later in this chapter, are per-
missible, but a task will mistakenly access the new window
if other calls are issued during this time.

A program can also redefine the window, but may have
only one window and one window map at a time.

Windows, like virtual overlays, are defined in multiples of
1024-word pages: they are also page-aligned. Your program
accesses data in extended space by redefining the start of
the window in logical address space. RDOS returns window
blocks (allocated via the .MAPDF command) to the pool
only when a program executes a swap, chain, or return. If
your program performs a swap, the window goes away and
the program must redefine it. Note that after a break or trap
the state of the window in the break file is indeterminate.

Licensed Material--Property of Data General

Defining a Window Map

The following example demonstrates the use of the . VMEM
and .MAPDF commands in defining a window map. You
may want to refer to the descirptions of these commands,
later is this section, to aid your understanding of how they
are used here.

The example assumes that you want to define a window of
2K in logical space, with a total of 10 blocks in extended
address space. Considering the rest of your program, you
decide to start the window at 20000,; it will end at 23777,.
The following sequence defines this map:

.SYSTM

.VMEM ;ALWAYS CHECK THE NUMBER
;OF EXTENDED BLOCKS
AVAILABLE. THIS CODE
;GIVES THE PROGRAM
;AN OPTION IF, FOR
;WHATEVER REASON, THE
:REQUIRED NUMBER OF
;16K BLOCKS ARE
;UNAVAILABLE.

LDA 0,C10 ; TOTAL SIZE OF WINDOW (2
;BLOCKS IN LOGICAL SPACE,
10 TOTAL IN EXTENDED
;SPACE).

LDA 1,C8 ;BOTTOM OF WINDOW AT 2000 =
yRELATIVE LOGICAL BLOCK.
;SPECIFY 2 BLOCKS

LDA 2,C2 [IN AC2.

.SYSTM ;DEFINE THE MAP.

.MAPDF

JMP ER

C10: 10.

C8: 8.

Cc2:2

Figure 4.9 shows what logical and extended memory look
like as a result of this sequence.

RDOS System Reference 107

Relative extended
block numbers:

Logical
block 9

Logical
block 8

-

WINDOW
(Contents

unchanged by .MAPDF)

—

20000

vy

¢

2000g

A\

¢

Logical
block O

Forbidden

LOGICAL MEMORY

Figure 4.9 Defining a window map

108

RDOS System Reference

9
8

7

3

‘ . Window

2
1
0

|
|
|
|
d
|
|
|
|
|

:

EXTENDED MEMORY

SD-00507

Licensed Material--Property of Data Generai

Performing a Remap

The following example demonstrates a remap operation. It
is based on the two-block window and ten-block window
map discussed previously and shown in Figure 4.10. The
blocks now occupying this window have become relative
block numbers 0 and 1. In the coming example, a program
using the .REMAP command will instruct RDOS to remap
relative blocks 2 and 3 from the extended address area into
the logical window.

.EXTN .REMAP

; THE CODE IN FIGURE 4.8 IS
:IN HERE.
.LDA 1,BLK2 ;PUT 1ST BLOCK NUMBER(S)
;TO BE REMAPPED IN LEFT BYTE
;OF AC1. PUT 1ST BLOCK
;IN WINDOW INTO RIGHT BYTE
;OF AC1. AC1 NOW CONTAINS
;THE CORRECT DATA IN
;EACH BYTE FOR THE REMAP.
:SPECIFY THE NUMBER OF
;BLOCKS TO BE REMAPPED
:IN AC2 (2).
:PERFORM THE REMAP.

LDA 2,C2

.REMAP

BLK2: 2B7 +0B15
c2:2

Relative block 9

Logical block 9

Logical block 8

Relative block 3 mr;dow
Relative block 2
Relative block 1
Logical block 0 Relative block 0
LOGICAL EXTENDED
Figure 4.10 Memory before remap DG-25463

Licensed Material--Property of Data General

The remap occurs with little system overhead because RDOS
does not actually transfer data between memory locations;
rather, it simply updates the map of the memory manage-
ment unit and then triggers that map. As mentioned earlier,
the .REMAP command should not be issued when another
task has I/O outstanding to or from a window, or this task’s
/O will reference the new window.

This sequence remapped two blocks, relative block numbers
2 and 3, into the window. Alternatively, either of the blocks
could have been mapped independently. Figure 4.11 shows
the results of the remap operation.

Relative block 9

Logical block 9

Logical block 8

Relative block 3 n’;’;“‘”
Relative block 2
Relative block 1
Logical block 0 Relative block O
LOGICAL EXTENDED
Figure 4.11 Remapping SD-00508

RDOS System Reference 109

.VMEM

Determine the number of free blocks

The CLI's SMEM command allocates your address space.
System call . VMEM provides a count of the number of free
blocks available to your program for extended map use. If
too few blocks are free for your program, you can change
memory allotments via the SMEM command.

Required Input

None. ACO returns the number or free memory blocks for
this program.

Format

.SYST™M

.VMEM

error return
normal return
Possible Errors

None in a mapped system.

110 RDOS System Reference

.MAPDF

Define a window and window map

As described earlier, window mapping allows your program
to transfer data between a window area within logical ad-
dress space and a series of blocks in extended address space.
An extended or window map contains a list of physical
memory blocks that can be mapped into the window. System
call .MAPDF defines a window and window map; only one
window and map can exist within a program. You must
define the window area in the address space below NMAX.

The .MAPDF command assigns relative extended block
numbers 0 to n-1 to the blocks in extended memory, where
n equals the number specified in ACO. The first window
block in logical space receives extended relative block num-
ber 0, the second block (if any) in logical space receives
number 1, and so forth; the numbers proceed sequentially
in extended space, as Figure 4.9 showed earlier. Note that
defining the window map does not alter the initial contents
of the window.

Required Input

ACO - Total number of memory blocks to be assigned to
the extended memory area. (This number includes
any blocks in logical address space that currently
reside within the window.)

AC1 - The starting page number for the window in logical
space, from 1 through 31,, (or 1 through 30 for
NOVA 830 and 840 computers). The first block,
number 0, cannot be specified in AC1 because it
includes page zero. Remember that a window is
block-aligned, causing its logical starting address to
coincide with the start of a block.

AC2 - The size of the window in 1K blocks.

Format

SYSTM
.MAPDF
error return
normal return

Possible Errors

Only one possible error results from this command: its mne-
monic is ERMEM, indicating that the specified block is out
of the window map’s range. RDOS returns error code 26
in AC2 as a result.

Licensed Material--Property of Data General

.REMAP

Perform a logical window transfer

Once your program has defined a window and window map,
it can remap data from the memory in the window map to
or from any part of the window in logical space. The .RE-
MAP command performs a remap operation by placing blocks
from the extended address area into the window.

On machines with a memory expansion option, user pro-
grams can access main memory above the 256th IKW page.
if you chose ihe opiion of a shared data area during sysiem
generation, the .REMAP command allows you access to it.
In systems that incorporate an array processor, array pro-
cessor memory can be mapped into the user program win-
dow. Note that .REMAP may be issued from either ground,
if both grounds issue this call, the same address can be
allocated to both. However, interground communication via
the array processor is not supported. Also note that the
.REMAP command is a task call, requiring that you specify
its name in an .EXTN statement.

Required Input
ACI: - Window position in MAP tabie as follows:

Relative biock in map I] l QUADR I Relative window page
T T T T 1

T T T ¥ T T T T T

F T v
Q0 7 8 g 1 M 15

The left hute of AC1 containe the ctarting relative block

number in the map. Pass the starting, relative block number
of the array processor if you have this feature and plan to
use window mapping in conjunction with it.

The right byte of ACI1 contains an extension field, QUADR,
and the relative window page. For all except the ZRDOS
version of mapped RDOS, bits 8 through 10 must be zero.
For ZRDOS, bit 8 must be zero, while bits 9 and 10 select
the desired 256-page segment in the program’s extended
memory mapping table.

Bits 9 and 10 may be nonzero only if the program will run
on a mapped ECLIPSE system having more than 256 KW
of main memory, and that program has reserved more than
256 one-KW memory pages.

Bits 11 through 15 contain the relative window page num-
ber.

Main Memory access extension field, **QUADR’’ -
*ZRDOS”’ only

Licensed Material--Property of Data General

QUADR Relative position (page) in MAP table

0 — 255 decimal (0 — 377 octal)

00

01 256 — 511 (400 — 777)
10 512 - 767 (1000 — 1377)
1 768 — 1023 (1400 — 1777)

AC2 - The call parameters passed in AC2 determine into
which area of extended memory the user program’s
mapping window is to be remapped, along with the
number of pages to be remapped. The window may
be mapped into the program’s own unshared, ex-
tended memory space; the shared data pages; or the
array processor memory in systems that include ar-
ray processor hardware. The option of shared data
pages is available with all mapped RDOS systems
and is selected during system generation.

For unshared, extended memory access, the parameters passed
in AC2 are:

[ofofefo]ofofo]o]ofo]o]

— + t T T T T 1
10 11 15

Page count

o 1 2 3 4 5 & 7 8 9
For shared, extended memory access, the parameters passed

AT
1l AL L dic.

[Jofo]ofofofofo]o]o]o]

o 1 2 3 4 5 6 7 8 9 10 11 HRETR

Page count J

For array processor memory access, the parameters passed
in AC2 are:

2's complement of page count J
. T T T T v T T v T v T T T 5
RDOS System Reference 111

Note that all bits indicated as set to zero must be zero for
proper operation of the . REMAP system call. Also note that
block numbers within the windows and map are relative
numbers beginning with 0.

Format

.REMAP
error return
normal return

The contents of all accumulators are lost upon return from
this call.

Possible Errors

AC2 Mnemonic Meaning

32 ERADR Illegal starting address.

36 ERDNM The array processor was not specified
during system generation.

26 ERMEM Insufficient memory; attempt to .RE-
MAP past the end of memory.

112 RDOS System Reference

Extended Direct Block 1/0

After your program has defined a window map, it can use
extended, direct block 1/O—a special form of I/O similar
in concept and operation to direct block I/0O, which transfers
256-word blocks between core and disk without using an
intermediary system buffer.

The extended direct block I/O commands .ERDB and .EWRB
apply to mapped RDOS systems only and are the subject
of this section. Descriptions of these commands are followed
by an example illustrating their use. Both system calls trans-
fer 256-word data blocks between the map in extended mem-
ory and disk files. This I/O type provides a quick means of
altering data in the extended memory area. Your reference
is independent of any remaps that have occurred or may
occur during the execution of these calls. Moreover, this
form of I/O transfers disk file data directly to the extended
memory area, without passing it through the window in
logical address space.

Neither the .ERDB or .EWRB commands use an interme-
diary buffer, and their calling sequences resemble those of
the direct block I/O commands (.RDB and . WRB) discussed
in Chapter 3.

Note that the .ERDB and .EWRB commands are restricted

from access to the shared data area, if you reserved one
during system generation.

Licensed Material--Property of Data General

.ERDB
Extended read direct block

This system call reads up te 128 disk blocks (256 words
each) from a randomly or contiguously organized file into
one or more 1024-word extended memory pages. The com-
mand resembles its direct block I/O counterpart, system call
.RDB, except for the parameter passed in ACO. Because
.ERDB reads into extended memory rather than directly
addressable, logical memory, the parameter you pass in AC0
specifies the map’s relative memory page number (in the
range 0—1023), and a 256-word offset into this page. Since
you must have defined a window map in order to issue this
command. you should know the relative block numbers in
the map.

Required Input

ACO - Contains the extended map page number, the block
offset into the page, and the high order bits of the
page number. The bits are organized as shown be-
low:

HERNE—

o + 2 3 4 5 6 7 8 T s
| L— Sector offset on page
Extended map page (high bits)

The following table shows the organization of bits
six and seven, which point to one of the four page
sectors, which we call quarter block sectors.

Extended map page
T T T

Contents of Quarter block sector

bits 6-7 ranges (octal)
00 0- 377
01 400 - 777
10 1000 — 1377
11 1400 - 1777

AC1 - The starting, relative disk block number in the file
from 0 to n-1 for a file consisting of n disk blocks.

AC2 - Left byte specifies the number of 256-word disk
blocks to be read. Right byte specifies the channel
number, if file was opened on channel 77.

Format

.SYST™M
.ERDB n
error return
normal return

Variable n signifies a read from the disk file opened on
channel n (or 77).

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

0 ERENO Illegal channel number.
3 ERICD Illegal command for device.
4 ERSVI Not a randomly or contiguously orga-

nized file.

o
e
)
T
D
T
*

End of file,

j AN DLV}

7 ERRPR File is read-protected.

15 ERFOP No file is open on this channel.

30 ERFIL File read error (on magnetic tape, sig-
nalling a bad tape).

40 EROVA File not accessible by direct block
1/0.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*Upon detection of error EREOF, RDOS returns code 6 in the right byte
of AC2; the left byte contains the partial read count.

RDOS System Reference 113

.EWRB
Extended direct write block

This command writes up to 128, 256-word blocks from
extended memory to a randomly or contiguously organized
disk file. The current contents of the window remain un-
changed, as do the contents of the map.

The .EWRB call resembles its direct block I/O counterpart,
system call .WRB, except for the parameter passed in ACO.
This parameter must indicate both the relative, extended
memory block number (in the range 0—244) and a 256-
word offset into this block. Your program must have defined
a map via the .MAPDF command before issuing .EWRB;
thus, you should know the relative, 1K block numbers in
the map. For details on the offset, see the previous discus-
sion of system call .ERDB.

Required Input

ACO - Right byte specifies the extended memory block
number. Left byte specifies a write from the first
256-word group if set to 0; a write from the second
256-word group if set to 1; a write from the third
256-word group if set to 2; or a write from the fourth
group of 256 words if set to 3.

ACI1 - Start writing to this relative block number in the
disk file. '

AC2 - Left byte specifies the number of 256-word blocks
to be written. Right byte specifies the channel, if

file was opened on channel 77.

Format

.SYSTM
.EWRB n
error return
normal return

Variable n signifies a write to the disk file opened on channel
n (or 77).

114 RDQOS System Reference

Possible Errors

AC2 Mnemonic Meaning

0 ERFNO Illegal channel number.

3 ERICD Illegal command for device.

4 ERSVI Not a randomly or contiguously orga-
nized file.

6 EREOF End of file in a contiguous file.

10 ERWPR File is write-protected.

15 ERFOP No file is opened on this channel.

27 ERSPC* Disk space is exhausted.

40 EROVA File not accessible by direct block
/0.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*Upon detection of error ERSPC, RDOS returns code 27 in the right byte
of AC2; the left byte contains the partial write count.

If you write to a sequential or random file and get ERSPC, you must delete
the file in order to recover the disk space allocated to the file before the
error occurred. You must do this even though the CLI LIST command
may show a zero file length.

Licensed Material--Property of Data General

Extended Direct Block I/0 Example

To conclude the discussion of extended, direct block 170,
Figure 4.12 demonstrates the use of the .ERDB command
to transfer a disk file to the map. This figure continues the
example of Figures 4.10 and 4.11, in which the .REMAP
command was used to remap relative blocks 2 and 3 their
extended address area into the logical window. Now, in-
structed by the code in Figure 4.12, RDOS writes file E to
relative block number 0 and | in the map.

RELATIVE
BLOCK NUMBERS:
L — ° -
. 3
. 2
L] 1
* 0
LOGICAL EXTENDED
LDA O, FILEE ;BYTE POINTER TO DISK FILE E.
SuB 1,1 ;DEFAULT DISABLE MASK.
.SYSTM
.OPEN 3 ;OPEN E ON CHANNEL 3.
SUBO, 0 ;GETOTO START READING
‘-TOEXTENDED BLOCK 0.
SUB 1 1 GET OTO START READING
;FROM STARTING POSITION IN
:DISK FILEE.
LDA 2,C8 :SPECIFY THE NUMBER OF DISK
;BLOCKS TO BE READ, IN LEFT
;BYTE OF AC2 -- 8. THESE
,BLOCKS WILL FILL MAP BLOCKS
;OAND 1.
SYSTM
.ERDB 3 ;READ FROM FILE E ON CHANNEL 3.
C8:8.B7
FILEE:.x1*2
TIXT“E”
P — 9 :
. 3
Ll 2
° 1
: 0 FILEE =
LOGICAL EXTENDED
Figure 4.12 Extended block read SD-00746

Licensed Material--Property of Data General

The 256-word offset into the selected block will indicate
either 0, 4004, 1000,, or 1400, for the start of each 256-
word disk block. RDOS adds the extended memory block
number and the offset. This produces the memory block
number in the right byte and either 0, 1, 2, or 3 in the left
byte for the first, second, third, or fourth 256-word disk
block.

RDOS System Reference 115

Summary

This section summarizes all system (and task) calls dis-

cussed in this chapter in Table 4.1.

System Call

ERDB

.ERTN

EWRB
EXEC
MAPDF

.OVLOD

.OVOPN
OVRP
REMAP

RTN
VMEM
WREBL

WRPR

Function

Read data blocks from disk into extended
memory.

Return from a program swap with the error
status of the calling program.

Write blocks from extended memory to disk.

Swap or chain in a new program.

Define a window and window map.

Load an overlay into the area of memory

reserved for it.

Open an overlay file on a specified channel.

- Replace the overlays in an overlay file.

Activate a logical window transfer.

Return from a program to a higher-level pro-

gram.

- Determine the - number of memory blocks
available for extended addressing.

Remove the writé-prmection from a- pro-
tected area of memory.

Protect an area of memory from modification.

Table 4.1 System and task call summary

116

RDOS System Reference

Licensed Material--Property of Data General

Chapter 5

This chapter describes tasks, task management, task overlay
management, and task control from the console via operator
messages. It begins by explaining task prioritites and the
Task Control Block, which the RDOS Task Scheduler uses
to keep track of each task in a program. Then the possible
task states and the User Status Table, which monitors all
TCBs during program execution, are described. The re-
maining sections discuss the commands that task may issue
to control itself or other tasks. In order of appearance, these
sections are:

e Task Initiation

e Task Termination

e Task State Modification

s Intertask Communication

e Uverlay Management

¢ Enqueuing Tasks

e User/System Clock Commands

o Task Management by ID Number

o Task/Operator Communications

e Task/Operator Communications Module (OPCOM)
¢ Disabling and Enabling the Multitask Environment

o Disabling and Enabling the Task Scheduler

The task and system calls discussed in each section are
summarized at the end of the chapter in table form.

Your program is the initial task in a multitasking environ-
ment. After it initiates one or more tasks, any of those tasks
may issue a task or system call. It is recommended that you
assign an ID to each task routine that you write. Although
not mandatory, an ID number is required by certain useful
task calls and by OPCOM. the console communications
feature described later in this chapter.

Your program initiates a task via the .TASK or .QTSK
commands or, from the console, via OPCOM commands
RUN or QUE. RDOS then assigns the task a TCB from the
TCB pool that you establish via a .COMM TASK statement

Licensed Material--Property of Data General

Multitask Programming

or during loading. The task is then ready for execution.
Depending on its priority and other conditions specified in
your program, the task achieves CPU control and executes.
It retains control of the CPU until it suspends itself, or until
it is suspended by a task of equal or higher priority that has
requested the CPU’s services after an interrupt.

When suspended, the task’s TCB saves its current state.
The program’s User Status Table monitors all TCBs and
their associated tasks, enabling the Task Scheduler to re-
sume execution of any suspended task from the point of
suspension. The task retains its TCB until it is killed (or
kills itself) via the .KILL, .AKILL, .ABORT, or .OVKIL
commands, or via the OPCOM command KIL. After a task
has been killed, its TCB returns to the free TCB pool. The
task remains inert until you reinitiate it, when it receives
another TCB.

Each task that you include in your program is memory-
resident during program execution unless it resides in an
overlay. If a task resides in an overlay, the program must
open the overlay with system call .OVOPN and load it via
the .TOVLD or .QTSK commands discussed later in this
chapter.

Task Priorities

Task priorities range from O through 255 decimal, where 0
is the highest priority. RDOS automatically assigns priority
0 for the task whose starting address you specify in the
.END statement at the end of your program.

Several tasks may exist at the same priority. Tasks of equal
priority receive CPU control on a round-robin basis, in
which the task that most recently received control will be
the last to receive it again, unless other tasks are unable to
assume control when they are scheduled to do so. When
your program changes a task’s priority via the .PRI com-
mand, RDOS places this task at the end of a list of all other
tasks that share its new priority.

Task Control Blocks

A task is an asynchronous, execution path through user
address space that demands the use of system resources.
You can assign many tasks to a single reentrant path, and
you can assign each of these tasks a unique priority. Given

RDOS System Reference 117

the asynchronous nature of tasks, the RDOS Task Scheduler
must maintain information about the status of each. RDOS
retains status information within a Task Control Block (TCB);
there is one TCB for each task. Table 5.1 describes the
structure of TCBs. The text that follows expands on the
information in this table.

Word Mnemonic Contents

0 TPC User PC (B0-14) and Carry (B15)

1 TACO ACO

2 TAC1 AC1

3 TAC2 AC2
4 TAC3 AC3

5 TPRST Status bits and priority

6 TSYS System call word

7 TLNK Link word, to-next TCB

10 TUSP USP (User Stack Pointer)

11 o TELN Extended sava,area ' ‘

12 ﬁD’ Task 1D number, right byte

13 TIMP Temporéry storage area for Sched-

uler

14 TKLAD Taskkil address if program speci- -

[. fied one : o

15 | TSP Stack péinter

6 TEP ~ Frame pointer

171 TSL Stack 1imit’ ~~

20 TSO Overflow address, for single task

environment

Table 5.1 Structure of a task control block (TCB)
Words 1 through 4 of the TCB structure are self-explanatory.

Figure 5.1 diagrams the task state and priority information
contained in word 5, TPRST.

118 RDOS System Reference

System Field
Suspend Field
Transmit/Receive Field or TOVLD
.TRDOP
} ABORT Lock
| User task extension bits

Priority

Figure 5.1 Task state/priority information (TPRST) SD-00541
Note that word TPRST divides into five fields, associated
with letters S, U, T, R, and A. The Task Scheduler sets
these fields as follows:

Field Bit Setting/Meaning

S 1 = Task has issued a system call and has been
suspended until the call has executed. 0 = Sys-
tem call has finished executing, or no call is
outstanding for the task.

U 1 = Task is suspended by a .SUSP, .ASUSP,
or .TIDS command.

T | = Task has issued either the . XMTW and
.REC commands or call .TOVLD.

R 1 = Task is awaiting a message via the . TRDOP
command.

A 1 = Task is in the process of aborting.

As shown in Figure 5.1, the remainder of word TPRST
contains a reserved bit 5; two extension bits {6 and 7. or
TSUPN and TSUSR). which allow vou to expand the RDOS
task-handling mechanism as described in Appendix I; and
bits 8 through 15, which hold the task’s priority.

RDOS uses word 6 of the Task Control Block, TSYS, to
store information about system calls and the . XMTW, .REC,
and .TOVLD commands.

Word 7, TLNK, contains the starting address of the next
TCB in the chain.

Word 10, TUSP, contains the value of location USP at the
time this task last changed from the executing state. You
may use USP as a general-purpose storage location for each
task while it is executing. The system restores the value of
USP for each task that gains control of the CPU.

Licensed Material--Property of Data General

Word 11, TELN, points to the task’s highest-level language
save area; if you do not use it, the system sets TELN to 0.

Word 12, TID, contains the task identification number, if
any, in its right byte.

Word 14, TKLAD, contains the address that will receive
control whenever a task 1s killed, provided you have defined
such an address via the .KILAD command. Bit 0 is set if
a .KILL or . ABORT command has been issued for this task.

Words 15 through 20 of the TCB contain save information
pertaining to a stack’s state. This information is reserved
for TCBs.

Building Multitask Programs

Before running a multitask program, you must specify both
the number of RDOS channels and the number of TCBs
that this program needs. You can do this before assembly.
within the program, via a .COMM TASK statement. You
can also specify tasks and channels with the local /K and
/C switches in an RLDR command line.

A .COMM TASK statement must appear in the first binary
of the RLDR command line, since it affects the loading
process of the remaining program and determines which
tash schieduier (TMIN o1 TCBMON) wili becoine a part oi
it. When the /C or /K switches are used in conjunction with
a .COMM TASK statement, the switch information over-
rides that of the statment. The format of source program
statements is:

.COMM TASK, k*400 + ¢

where k represents the octal number of tasks, and ¢ repre-
sents the octal number of RDOS channels that your program
will use, for example:

.COMM TASK, 7400 + 16

In mapped systems, the maximum number of tasks (k) can-
not exceed 44,,. This is due to the requirement, in mapped
systems, that all TCBs reside in NREL, in the first, 1K-
page of memory. If the program uses overlays, the overlay
directory must also reside in the first 1K-page, which re-
duces space for TCBs.

Data General supplies task schedulers TMIN and TCBMON.
all task command modules, and the interrupt-on symbolic
debugger in the system library. SYS.LB. Unless you specify
otherwise with an RLDR switch, the loader program places
all items required from the library directly above the pro-
gram code.

Licensed Material--Property of Data General

NOTE: Because the system library differs for each type
of system (eg, unmapped and mapped NOVA), programs
loaded under one type of system may not execute under
another tvpe. To load for a different kind of svstem. vou
must obtain the proper system library for it and ensure
that RLDR searches for this library, rather than the cur-
rent one, during the loading process. You can do this by
loading from a subdirectory that contains the target sys-
tem’s library and links to RLDR.

To write your own task command modules or define a task
memory or FPU save area, you can refer to the source
listings for the system library if you acquired them with
your system.

Conserving ZREL Space

Normally. each unique task call in vour program requires
one word of page zero (ZREL) space. Note, for example,
the conventional use of the .TASK command:

.EXTN .TASK

. ;SET UP ACCUMULATORS.
.TASK

In this example the task call word (. TASK) is resolved by
SYS.LB to a JSK instruction that transters control through
a page zero address. Thus, .TASK requires one word of
ZREL. (Subsequent .TASK calls will not require additional
ZREL.) Alternatively, to conserve ZREL space, replace
each task call with a transfer to a label with the same name
as the original task call, but with the first two characters
transposed. The transfer must be a JSR or equivalent, and
you must declare the transposed call in an .EXTN statement.
The following example demonstrates this transposition
scheme, and uses no ZREL space:

.EXTN T.ASK

. ;SET UP ACCUMULATORS.
JSR @ TASKO
TASKO: T.ASK

Task States

A task can exist in any of three states: (1) it is ready to
perform its functions; (2) it is actually in control of the CPU
and is executing its assigned instruction path: or (3) it 1s
suspended and temporarily unable to receive CPU controt.
A task can also be dormant, having relinquished its TCB
(or never having had one): a dormant task has no priority
and no chance of gaining CPU control until activated by a
.TASK or .QTSK command. The Task Scheduler always
gives CPU control to the highest priority task that is ready.

RDOS System Reference 119

Suspended tasks are those having at least one of the four
status bits (S, U, T, or R) in word TRPST set to 1. A task
may become suspended for one or more of the following
reasons:

e It has been suspended by an .ASUSP or .TIDS com-
mand.

e It has suspended itself for a specified period via the
.DELAY command, or for an indefinite period via the
.SUSP command.

o It is waiting for a message from another task via the
.REC command.

e It has issued a message-and-wait command, . XMTW.
e It is waiting for the use of an overlay node.

e It has issued a system call and is waiting for it to finish
executing.

Just as a number of different events can suspend a ready
task, several events can ready a suspended task:

e The .ARDY or .TIDR commands can be issued for the
task.

e The task message that it has been instructed to wait for
via the .REC command.

e The loading of a requested overlay.

e The completion of a .SYSTM call (such as a request for
I/O).

A task that is suspended by a command and by some other
event must be readied by an .ARDY or .TIDR call and by
whatever other event suspended it. Such a task is said to
be doubly suspended, with bits S and U set in word TPRST
of its Task Control Block. The environment must allow
RDOS to reset bits S, U, T and R to ready this task.

You can delete tasks from the active queue and place them
in dormancy either separately, via the .KILL, .TIDK or
.ABORT commands, or by priority group, via the .AKILL
command. Tasks that you have deleted add their empty
TCBs to an inactive chain of free element TCBs.

If all tasks are killed and no task is awaiting execution via
the .QTSK command, the effect is the same as if system
call .RTN had been issued. Program control then returns to
the next-higher program level.

TCB Queues

There is one TCB queue for tasks that are currently exe-
cuting, suspended, or ready. This queue consists of a chain
of TCBs, connected by word TLNK in each TCB, and is
called the active chain. USTAC of the User Status Table
points to the first TCB; this TCB points to the next one,
and so forth. The last TCB in the chain has the value -1 in
word TLNK.

A free element chain is a simple queue of dormant TCBs.
TCBs in the free element chain are joined by TLNK words;
all other words in each dormant TCB are unused. There is
no priority among TCBs in this kind of chain. USTFC of
the User Status Table points to the first TCB in the free
element chain, as shown in Figure 5.2.

TCB; TCB, TCB,
USTFC TLNK TLNK Terminator (TLNK=-1)
or : : .
USTAC . N .
Figure 5.2 TCB chain SD-00542
120 RDOS System Reference Licensed Material--Property of Data General

Task Synchronization and communication

Each task can communicate with another by sending a one-
word message to an agreed-upon location in user address
space. This address space includes all locations from address
16 through NMAX. (Avoid locations 0 through 17, and 40
through 47, in ZREL, along with system tables directly
above 400,.)

The task sending a message may either return to the Task
Scheduler immediately (.XMT) or suspend itself (. XMTW)
until a receiving task has issued a receive request (.REC)
and has received the message. Receipt of the message in-
cludes resetting the contents of the message location to zero.
Upon receipt of the message, its recipient has bit T set to
0. The message location must contain 0 before the message
is sent.

User Status Table

The User Status Table (UST) is a 24, word table that records
runtime information about a program. This table is located
at addresses 0400, through 0423;. Table 5.2 shows the struc-
ture of the UST in memory; the contents of each address
are expanded on in the text that follows.

Licensed Material--Property of Data General

Address Label Contents
012 USTP ZREL pointer to UST*
400 UsTPC Used by the system
401 UsSTZM ZMAX
402 USTSS Start of Symbol Table (SST)
403 USTES End of Symbol Tabie (EST)
404 USTNM NMAX after runtime .MEMIs
405 USTSA Starting address of Task Sched-
406 USTDA Debugger address: -1~if~the}de- ‘
bugger was not loaded
407 USTHU USTNM after loading (original
NMAX)
410 USTCS FORTRAN common area size
411 UsTIT CTRL-A interrupt address: -1 in-
e T ey e SR
412 USTBR CTRL-C or .BREAK address: -1
initially
413 USTCH Number of TCBs (ieft byte) and
channels (right byte)

414 USTCT Current TCB pointer

415 USTAC Start of active TCB chain

416 USTFC Start of free TCB chain

417 USTIN Initial start of NREL code (IN-
‘MAX) :

420 USTOD Overlay directory address

421 USTSV ~ Available for use by the syszemk

422 USTRV Revision level number, and, dur-
ing execution, the environment
state.

423 USTIA Address of TCB for console in-

terrupt task: O initially.

Table 5.2 Structure of user status table (UST)
*The UST for a program running in an unmapped foreground starts
at the beginning of the foreground memory partition.

RDOS System Reference 121

Location 12 in page zero is USTP, which points to the start
of the User Status Table belonging to the currently executing
foreground or background program. The loader creates sym-
bol USTAD as an .ENTO declaration. This symbol also
points to the base of the program’s UST.

Location 400, or USTPC, indicates which program is run-
ning, where 0 indicates the background program and 1 in-
dicates the foreground program.

Location 401, or USTZM, contains ZMAX, the first free
location in page zero after loading.

Locations 402 and 403, USTSS and USTES, point to the
start and end of the symbol table, respectively. By default,
RLDR loads the symbol table so that its last location plus
one coincides with the value of NMAX. If you request that
RDOS place the symbol table in upper memory (via the
global /S switch in your RLDR command line), the symbol
table is moved so that it will be immediately below RDOS
space when the save file is executed. If the symbol table
has not been loaded, locations 402 and 403 contain zeroes.

Location 404, or USTNM, contains the current value of
NMAX at runtime. This value changes as NMAX is in-
creased or decreased. Location 407, USTHU, is set by the
loader to the value of NMAX after loading. RDOS never
changes this word during program execution.

Location 411, USTIT, is the interrupt address (CTRL-A).
After loading, this address is set to -1. If it is unchanged
at runtime, control goes to the next higher-level program
with USTIT set to a valid address when a CTRL-A interrupt
occurs. (If the foreground is interrupted and no higher level
program exists in the foreground with a valid USTIT ad-
dress, RDOS terminates the foreground.) The user core
image is not saved. At execution time, your program can
set USTIT to an address to which the system will transfer
control when a CTRL-A interrupt occurs.

122 RDOS System Reference

Location 412, or USTBR, is the break address (CTRL-C).
After loading, RDOS sets this address to -1. Whenever a
CTRL-C break occurs, the system writes the core image to
file BREAK.SV (or FBREAK.SV in the foreground) in the
current directory. If USTBR remains unchanged at runtime,
control passes to the next higher-level program with USTBR
set to a valid address when a CTRL-C interrupt occurs.
Alternatively, you can set USTBR to an address to which
control will pass upon successful creation of the break file.
If RDOS cannot create a break file (eg, because it is out of
disk space), control goes to the address specified by USTBR
minus one. AC2 will contain the error code.

Location 413, USTCH, contains the number of program
TCBs in its left byte, and the number of I/O channels in its
right byte.

Location 421, USTSV, is reserved for RDOS.

Location 422, USTRYV, is reserved for storage of the re-
vision number for this save file, and for runtime data on
the machine that is running the program. Revision numbers
can extend from 00 to 256; RDOS stores the major revision
number in the left byte, and the minor revision number in
the right byte, of this word. During a program’s execution,
USTRYV contains values that indicate what kind of machine
and RDOS system is running the program. You can find
these values, along with interpretations of them in the listing
of file PARU.SR contained in Appendix B. (Refer to the
heading ENVIRONMENT STATUS BITS IN USTRV.) Location
423, or USTIA, of the User Status Table contains the TCB
address of the task that issued an .INTAD system call. The

Vondar foieialic ;
loader initializes this word to 0.

Licensed Material--Property of Data Genera!

Task and System Calls

There are four essential differences between task calls and
system calls:

o Task calls have no .SYSTM mechanism. Instead, each
call uses a module from the system library, requiring
that you declare each task call included in a program as
external via an .EXTN statement. If your program fails
to declare each call external, RLDR neglects to load the
call’s module and the call will not work.

e RDOS executes all system calls in RDOS space, but
executes all tasks calls in user space. Thus, the diversity
of task calls in a program affects the program’s size,
while the diversity of system calls does not.

e Most task calls do not have error returns, and hence do
not reserve an error return location.

e Accumulators are used to pass all parameters to most
task calls. You will generally use ACO and AC1 to enter
or return data. Occasionally, AC2 is used to enter data.
When an error is defined for a call, AC2 will contain
the code on an error return.

On return from all task calls, AC3 contains USP, the con-
tents of location 164, by default. RDOS maintains the frame
pointer in location CSP. If yours is a NOVA 3 computer,
you can rcturn the contents of the hardware frame pointer
in AC3 by loading the program with module N3SAC. (In
NOVA 3s, the hardware stack is moved for each task swap,
but the stack overflow handler remains at location 43,.) On
an ECLIPSE computer, you can return the frame pointer by
inserting module ESAC3 in the RLDR command line. Re-
turns in AC3 can be summarized as follows:

If program was loaded with
module:

Then upon return AC3 con-
tains:

NSAC3 (any machine; Contents of USP (location
always used by 164)
default)
NSAC3 (NOVA 3s only) Contents of frame pointer
register
ESAC3 (ECLIPSEs only) Contents of frame pointer
(location 41y)

Licensed Material--Property of Data General

In summary, task calls differ from .SYSTM calls in four
ways:

1. Task calls reference library modules, and must be de-
clared external. Task calls are not preceded by the .SYSTM
mnemonic, and are resolved by the binder/loader to be JSR
calls to task processing modules.

2. Task calls are processed in user address space, while
RDOS or system calls require system action which occurs
in RDOS space.

3. Only some task calls have error returns. Those without
error returns do not reserve an error return location.

4. You must pass all parameters to task calls via the ac-
cumulators. (The .QTSK command is the only exception to
this rule.)

Task Initiation

This section describes the . TASK command, which initiates
any memory-resident task. The .QTSK command, described
in a later section, initiates either a core-resident or overlayed
task for periodic execution.

RDOS System Reference 123

.TASK

Create a task

This command initiates a new task at a specified priority in
your program, and assigns an identification number to the
task if you desire. When you load the program. only one
task exists; therefore your system must issue this or the
.QTSK command to initiate a multitask environment.

The .TASK command passes the contents of AC2 to the
created task. This permits your program to relay an initial,
one-word message to the newly created task.

Required Input

ACO - Right byte: priority of the new task, ranging from
1 to 377. If you set this byte to zero, the priority
of the new task will be identical to that of the calling
task. Left byte (optional but recommended): ID
number for the new task, ranging from 1 to 377.
You may give an ID number of zero to more than
one task. Each nonzero ID must be unique.

AC1 - Address where the new task will begin execution.

Format
.TASK

error return
normal return

Possible Errors

AC2Z Mnemonic Meaning

42 ERNOT No TCBs available.

61 ERTID A task with the requested ID (except

0) already exists.

124 RDOS System Reference

Task Termination

This section describes the commands your program can use
to kill tasks without using their ID numbers.* In order of
discussion. these commands include:

.KILAD Define an address that will receive control
when a task is killed.

KILL Kill the calling task.

.AKILL Kill all tasks of the specified priority.

.ABORT Kill the specified task and its currently

executing system call, if any.

So that your program can proceed efficiently, RDOS pro-
vides the .KILAD command, which specifies an address to
receive control before a task is killed. This address can
instruct the task to close its channel(s), release its overlay(s),
or give it a choice of action.

For most orderly terminations, or for those that occur via
the .AKILL or .TIDK commands, RDOS raises each task
you are terminating to the highest possible priority and read-
ies it. If several tasks exist with a priority of 0, RDOS
services them before killing the specified task(s). Thus, if
a task has been suspended by the .REC, . XMTW, .SUSP,
or .TIDS commands, RDOS lifts the suspension. If the task
is suspended because of an outstanding system call, RDOS
completes that call before readying the task. In either case,
RDOS terminates the task you wish to kill when it receives
control of the CPU. unless your program has specified a

kill-processing address.

When you specify a kill-processing address via task call
.KILAD, control passes to that address when the task gains
control of the CPU. This allows the task to close any chan-
nels or release any overlays it was using. Moreover, the
Kill-processing routine serves as a reprieve, since RDOS
does not actually terminate the routine until it is killed a
second time. The kill-processing routine can thus act as a
validating procedure in which it determines whether or not
the target task should be terminated. At this point, the task
being killed can renew its kill-processing address by reis-
suing the .KILAD command.

After a task has been killed by any means, it relinquishes
its TCB to the free TCB pool for possible use by future
tasks.

*Commands that control tasks by ID number are described in the section
entitled **Task Management By ID Number’’ later in this chapter.

Licensed Material--Property of Data Generat!

.KILAD

Define a kill-processing address

This task call permits a task to define a special address that
will gain control the first time that your program tries to
terminate the target task. On a second attempt to kill the
task, RDOS terminates it without transferring control to the
kill-processing address.

The kill address allows a task to release system resources
before terminating. Each task must explicitly release such
resources as averlays, channels, user devices and user clock
definitions; the code that performs this function can be writ-
ten into the task’s .KILAD routine. After releasing these
resources and following any other instructions, the task must
issue a .KILL command to terminate itself. On this second
attempt to terminate the task, termination occurs immedi-

ately.

Alternatively, the target task may decide not to terminate
itself. In this case, before branching out of the kill-proc-
essing routine, the task should issue a .KILAD call to the
same or to a different kill-processing routine. This measure
ensures that a later attempt to kill this task will cause it to
branch once again to its kill-processing routine.

A task in a kill-processing routine executes at the highest
priority; it has CPU control. Such routines retain control
unul ey relinguisii 1t via d@ wansituon 1 lask stale or d
change of priority level.

Required Input

ACO - Address of the kill-processing routine.

Format

KILAD
normal return

Possible Errors

None.

Licensed Material--Property of Data General

KILL
Delete the calling task

This command deletes the calling task’s TCB from the active
queue and places it in the free element TCB chain. The
calling task is the only one that you may delete via this
command. There is no return from this call. If you have
defined a kill-processing address for this task, RDOS raises
it to the highest priority and control returns to the Task
Scheduler. Otherwise, control returns to the Task Scheduler
so that it can allocate system resources to the ready task of

highest prioritv.
Iy =i r J

Format

KILL

Possible Errors

None.

RDOS System Reference 125

AKILL
Kill all tasks of a given priority

This command first raises all tasks of a given priority to the
highest priority, and then either kills them or transfers con-
trol to their kill-processing addresses. All TCBs that it de-
letes from the active queue are placed in the free TCB chain.
This command also immediately kills any tasks suspended
by the . XMTW, .TIDS, .REC, or .SUSP calls. An attempt
to kill a task waiting for completion of a system call will
not succeed until the system call has executed. If the calling
task itself belongs to the specified priority, RDOS deletes
1t.

Required Input
ACO - Priority class of the tasks you wish to kill.
Format

AKILL
normal return

Possible Errors

None. If no tasks exist with the priority specified in ACO,
RDOS takes no action.

126 RDOS System Reference

ABORT
Abort a task

This command readies a specified task immediately and
instructs it to execute the equivalent of task call .KILL when
it gains CPU control. If a kill-processing address exists,
RDOS transfers control to it. The exact time of completion
depends on the internal priorities of the system. For ex-
ample, a task attempting to perform a sequential write of
500 bytes might be aborted after writing any number of
bytes. You use an ID number to specify the task you want
to abort. Thus, the caller can abort either itself or some
other ready or suspended task.

Task call .ABORT does not release open channels or over-
lays used by the aborted task. All outstanding operations
performed by the task. such as message transmission or
reception, are terminated. Likewise, all system calls are
aborted, with two exceptions: (1) calls performing multi-
plexor or MCA I/O, and (2) System read or write operator
message calls, such as the .RDOPR and .WROPR described
in Chapter 6.

Your program can abort multiplexor or MCA I/O by closing
their channel(s). Operator messages initiated by task calls
.TRDOP and .TWROP can also be aborted. (Only messages
initiated by the system call versions, .RDOPR and .WROPR,
are not aborted; a single program cannot use both task and
system versions of these calls.)

Required Input

AC1 - ID of the task to be aborted.
Format

ABORT
error return
normal return

The contents of ACO are lost upon return.

Possible Errors

AC2 Mnemonic Meaning

61 ERTID An ID of zero was specified, or no such
task ID was found.

110 ERABT The specified task was in the process

of performing multiplexor or MCA
I/O; of performing a system read/write
operator message call; or of being
aborted by another task.

Licensed Material--Property of Data General

Task State Modification PRI

.y Change the calling task’s priority
This section describes commands that modify the priority

or state of a task. In order of discussion, they are: This command changes the priority of the calling task to

the value contained in ACO. RDOS assigns this task the

-PRI Change the calling task’s priority. lowest priority in its new priority class; the Task Scheduler
! o o allocates CPU control to all other ready tasks in the same
-ARDY Ready all tasks of a given priority. class before passing control to this one. Naturally, its po-
. sition in this priority class will change as rescheduling pro-
.SUSP Suspend the calling task. ceeds.
ASUSP Suspend all tasks of a given priority. Required Input

ACO - New priority value for the calling task. If you re-
quest a priority higher than 377,, RDOS accepts
only the value in bits 8 through 15.

Format

PRI
normal return

Possible Errors

None.

Licensed Material--Property of Data General RDOS SYStem Reference 127

.ARDY
Ready all tasks of a given priority

This command readies all tasks that have been suspended
by the .ASUSP, .SUSP, or .TIDS commands and that share
the priority you specify in ACO. That is, the .ARDY com-
mand resets bit U in word TPRST of each Task Control
Block that was set by a previous call to .ASUSP, .SUSP,
or .TIDS. Tasks suspended for any other reason (eg, out-
standing system calls) will not be readied until bit S of word
TPRST is also reset (eg, by receiving a task message via
the .REC command). RDOS cannot ready a task until the
program environment allows it to zero bits S and U of word
TPRST in the task’s TCB.

Required Input
ACO - Priority of task(s) you wish to ready.

Format

.ARDY
normal return

Possible Error

None. If there are no tasks of the priority given in ACO,
RDOS takes no action.

128 RDOS System Reference

.SUSP
Suspend the calling task

This command suspends the calling task by setting bit U of
that task’s TCB to one. The task remains suspended until
your program readies it with the .ARDY or .TIDR com-
mand.

Format

.SUSP
normal return

Possible Errors

None.

.ASUSP

Suspend all tasks of a given priority

This command suspends all tasks of the priority you specify
in ACO. The calling task may suspend itself with this call.
All tasks suspended by . ASUSP—even those suspended for
other reasons, such as an outstanding system call or setting
bit S of TPRST—remain suspended until readied by an
.ARDY or .TIDR command.

Required Input
ACO - Priority of the task(s) you wish to suspend.

Format

.ASUSP
normal return

Possible Errors

None. If no tasks exist with the priority given in ACO, RDOS
takes no action.

Licensed Material--Property of Data Genera!

Inter-task Communication

RDOS provides a mechanism that allows single tasks to
transmit and receive one-word messages. You can also use
this mechanism to lock a task process and prevent multiple
tasks from entering the process concurrently. Your program
specifies an address for the one-word message, and must
clear this address to 0 before depositing the message via a
transmit call. If several tasks attempt to receive a message
from the same address, only the task of highest priority will
receive the message.

Licensed Material--Property of Data General

XMT and .XMTW

Transmit a message and wait

These commands instruct the calling task to send a one-
word, nonzero message to an empty (all zero) message
location for another task. If a task has issued call .REC for
this location. it will receive the message and be readied. If
no .REC command is outstanding, RDOS deposits the mes-
sage. The . XMTW command does not return until the mes-
sage has been received, while the .XMT command returns
as soon as the transmitting task is readied.

Required Input

ACO - The address in user address space where you want
to deposit the message. This address must not have
bit O set to 1.

ACI - The one-word, nonzero message that RDOS will
pass to the address in ACO, for the receiving task.

Format
XMT or XMTW

error return
normai return

Possible Errors

ACZ Mnemonic Meaning

43 ERXMT The message address is already in use.

115 ERXMZ Zero message word.

RDOS System Reference 129

JXMT

Transmit a message from a user interrupt service routine

This command enables an interrupt routine to send a mes-
sage to a task in the current environment. The .IXMT com-
mand issued from an interrupt routine has the same effect
as the .XMT command issued from a task.*

As Chapter 7 explains, your program can specify a user-
defined device—that is, a device not defined during system
generation—via the .IDEF command. When a user-defined,
device interrupt occurs, control passes to the interrupt ser-
vice routine that you have written for the device. RDOS
freezes the entire task environment while the interrupt rou-
tine executes; the routine ends with task call .UIEX. If ACI
contains 0 at call .UIEX, RDOS restarts the environment
at its former state; if ACl contains nonzero, it forces re-
scheduling. If the message sent to a task will affect the
environment, you may want to force rescheduling on exit
from the interrupt routine.

Even though the task environment may be frozen, RDOS
immediately readies a task that has issued a .REC call for
the message that it is intended to receive via .IXMT. The
contents of all accumulators are destroyed upon return from
JIXMT. Hence, your program must restore AC3 and AC2
(if unmapped) before attempting to exit from the service
routine via .UIEX. For full details, refer to Chapter 7 under
“‘Servicing User Interrupts.”’

Required Input

ACO - Location of the message. The conienis of this lo-
cation must be zero before you invoke the .IXMT
command.

AC1 - The nonzero message you want to transmit.

Format
AXMT

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

43 ERXMT Message address is already in use.

115 ERXMZ Zero message word.

*The IXMT command and certain other user interrupt calls are not really
task calls, since you can issue them only from an interrupt-processing
routine. When you use them. the task scheduler and task environment are
in suspension. Refer to Chapter 7 for details.

130 RDOS System Reference

.REC

Receive a message

This command returns a message in ACI that another task
(or interrupt service routine) has posted by a transmit com-
mand, and restores the contents of the message address to
all zeroes. The message address must be lower than 2,5,
and bit 0 must not be set.

If a task issues a .REC command and no other task has
posted a message to the message address, the receiving task
remains suspended until the message is sent. If the message
has already been issued and if the receiving task has not
also been suspended by an .ASUSP or .TIDS command,
control returns to the Task Scheduler. Otherwise, the task
remains suspended until you ready it with task call .ARDY.
If several tasks attempt to receive the same message, only
the task of highest priority will receive it.

Required Input
ACO - The message address.

Format

.REC
normal return

Possible Errors
None. RDOS returns AC2 unchanged.

Locking a Process Via Transmit and Receive
Commands

You can use the .REC and .XMT commands to lock and
unlock a process or database shared by several tasks, and
to prevent more than one task at a time from accessing the
database or process path. To do this, your program must
define a synchronization word, the message location, to
which all tasks will issue a .REC comand. The task in
control of the locked resource then issues call . XMT to the
synchronization word when it wants to open the resource
to other, waiting tasks. RDOS then readies the task of high-
est priority waiting to receive (.REC) the synchronization
word, and gives it unique control of the resource. This task,
in turn, uses and then unlocks the resource for another task,
and so forth.

Your program must initialize the locking facility before any
tasks can use it. It can do this by initially setting the syn-
chronization word to a nonzero value, or by having an
initialization task issue .XMT to the synchronization word.

Licensed Material--Property of Data General

User Overlay Management

In a multitask environment, different tasks can compete for
an overlay node, or can use the same overlay simultane-
ously. These factors create the need for overlay management
strategies that do not apply in single-task environments. The
commands described in this section enable you to handle
user overlays effectively in multitask programs. In order of
discussion, they are:

.TOVLD Load a user overlay.

.OVREL Release an overlay.

.OVEX Release an overlay and return to the caller.
.OVKIL Kill the calling task and release its over-

lay.

The .TOVLD command is the task call version of .OVLOD,
and should always be used to load overlays in a multitask
program. If you use system call .OVLOD, only one task in
the program can load overlays; moreover, the two calls
cannot be included in the same program. When the . TOVLD
command 1s used, the maximum number of overlay nodes
you can reserve is 125.

As part of its resource management activities, the Task

Cohadula ntaing a record

r mai Aallad tha aaoaelae.
STACQUICT MAIMAINS 3 reéCorG, Cauld ik over'd

(OUC), of the number of tasks using a currenﬂy-resident
overlay. It keeps the OUC in an overlay directory created
by RLDR for each node in your program. (See Appendix

E)

Licensed Material--Property of Data General

A ready task can request an overlay (via .TOVLD) either
by segment and overlay number, or by symbolic name if
you assign the name via an .ENTO pseudo-op. Whenever
a task requests an overlay, RDOS checks the overlay di-
rectory and the overlay request for certain parameters. If
the parameters permit, RDOS loads the overlay into the
node, increments the OUC by 1, and gives control to the
Scheduler. If the parameters disallow the load, RDOS sus-
pends the calling task (bit T of TPRST) and passes control
to the Scheduler; the task will be readied and the overlay
loaded when the parameters permit. These actions occur
each time a task requests an overlay load.

Every time a task releases a resident overlay (via the .OVREL,
OVEX, or .OVKIL commands), the overlay’s use count is
decremented by 1. The overlay currently occupying the node
is not released (allowing a task to load another overlay into
the node) until the OUC reaches 0. When the use count
equals 0, another task can load a new overlay, resulting in
an OUC of 1.

An unconditional disk overlay request (not virtual) guar-
antees a fresh copy of the overlay. A conditional overlay
request loads the overlay only if it is not already in memory;
if the overlay is memory-resident, RDOS increments the
OUC by 1. Conditional loads can save time, but may be
used only for reentrant overlays. As mentioned in Chapter
4, 1t 1s recommended that all your overlays be reentrant; if

;;;;;

unconditionally.

RDOS System Reference 131

.TOVLD

Load a user overlay

This command requests the use of the appropriate overlay
node and the loading of the overlay whose node and number
you specify in ACO.

If you did not assign a symbolic name to the overlay via
.ENTO before loading the program, you must pass the node
number that it will occupy in the left byte, and its overlay
number in the right byte. of ACO. The node number cor-
responds to the segment number within the overlay file. The
first segment, number 0, is defined by the first set of brackets
in your RLDR command line; it corresponds to node 0 in
memory.

The overlay number is the relative position of the overlay
within its segment. Segment 0’s overlays are numbered 0,
1, and upward sequentially through n. The second segment
loaded is segment 1, corresponding to node 1; its overlays
are also numbered sequentially from O through n, and so
forth.

You can specify either a conditional or unconditional load
in ACI. If the load request is conditional and the node is
free, RDOS loads the overlay. If the node already contains
the requested overlay, RDOS returns to the Scheduler im-
mediately. Because another task is also using the overlay.
it must be reentrant. If another overlay currently occupies
the node and its OUC is a nonzero value, the caller is
suspended until the node becomes free.

If the load request is unconditional and the node is free,
RDOS loads the overlay whether it is currently memory-
resident or not. If the overlay use count has not decremented
to zero (freeing the node), the caller is suspended (bit T of
TPRST) until the node becomes free. Figure 5.3 charts the
sequence that RDOS follows when you issue the . TOVLD

comimand.
Required Input

ACO - Overlay node/number word.

AC1 - For a conditional load, pass 0. For an unconditional
load, pass -1.

AC2 - The channel number on which you opened the over-
lay file. (See the description of .OVOPN in Chapter
4.

Format
.TOVLD

error return
normal return

132 RDOS System Reference

Note that you must pair all overlay load requests with an
eventual overlay release (.OVREL/.OVKIL) or the node
will be reserved indefinitely. Also note that under certain
conditions—such as a nonmatching save and overlay file—
the left byte of AC2 may be nonzero on an error return.

Possible Errors

AC2 Mnemonic Meaning

37 EROVN Invalid (nonexistent) overlay name or
segment.

40 EROVA Overlay file is not a contiguous file.

101 ERDTO Ten-second disk timeout occurred.

Licensed Material--Property of Data General

Task
issues
.TOVLD

Conditional Yes

load ?

No
No
-t
-
N
ouc=07? 0
Yes

OUC becomes 1

'

System suspends
task until load
is complete

System suspends
task until
ouc =0

QUC becomes
OuUC +1

Is another
task loading
this overiay ?

Yes

System suspends
task until load
is complete

Task

Figure 5.3 TOVLD logic sequence

Licensed Materiai--Property of Data General

Scheduler

RDOS System Reference

SD-00540

133

.OVREL

Release an overlay

This command decrements the overlay use count (OUC) and
releases the node if the use count equals zero. The overlay
that you wish to release must not issue this command.

Required Input

ACO - Overlay node/number word. Pass the node number
in the left byte and the overlay number in the right
byte.

Format

.OVREL
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is EROVN, signifying an invalid overlay node/num-
ber, or that the overlay node is not occupied by the overlay
specified. RDOS passes error code 37 in AC2 when this
error occurs.

134 RDOS System Reference

.OVEX

Release an overlay and return to the caller

This command decrements the overlay use count (OUC) and
releases the node if the use count equals 0. Additionally,
control returns to an address specified by the caller—typi-
cally the return address of the caller if returning from a
subroutine within an overlay.

Required Input
ACO - Overlay node/number word.

AC2 - Return address upon successful execution of this
call.

Format

.OVEX
error return

Possible Errors

Only one possible error message results from this command.
Its mnemonic is EROVN, signifying an invalid overlay
number, or that the overlay node is not occupied by the
overlay specified. RDOS passes code 37 in AC2 when this
error occurs.

Licensed Material--Property of Data General

.OVKIL

Kill the calling task and release its overlay

This command kills the caller and decrements the overlay
use count; it also releases the node if the OUC equals 0.
This is the conventional method of terminating a queued,
overlayed task. The overlay that you wish to release can
issue this call.

Required Input

ACO - Overlay node number in the left byte; overlay num-
ber in the right byte.

Format

.OVKIL

error return
Possible Errors

Only one possible error results from this command. Its mne-
monic is EROVN, signifying an invalid overlay number,
and RDOS returns error code 37 in AC2 when it occurs.

Licensed Material--Property of Data General

Enqueuing Tasks

.QTSK

Queue a memory-resident or overlay task

This command periodically initiates a task and queues it for
execution. If the task resides within an overlay, this com-
mand loads the overlay. You need not issue .TOVLD for
an overlayed task, but the .QTSK mechanism requires that
you declare . TOVLD external, via an .EXTN statement, in
the program. If no TCB is currently available for the creation
of the new task, RDOS executes this command as soon as
a TCB becomes available. If two tasks are queued for ex-
ecution at the same time of day, the task of highest priority
receives control first. (Appendix C demonstrates the use of
-QTSK and overlays in a real-time programming example.)

A task created and queued by .QTSK resembles any other
task, and it is your responsibility to kill or suspend it after
it has performed its function. If it resides in an overlay, it
can kill itself and release the overlay node via the .OVKIL
command. (If the overlay node is not released, no other
task will be able to use it.)

If RDOS does not take the error return, control returns to
the task issuing the call at the nvrinal ictuin based on the
task’s priority; the calling task is not suspended. When the
queued task gains control, AC2 contains a pointer to the
Task Queue Table.

If your program does not declare either . TOVLD, OVKIL,
OVREL, or .OVEX external via an .EXTN statement, RDOS
executes the equivalent of an .ERTN command, and passes
error code 117 (ERQOV) in AC2.

The .QTSK command needs no input to ACO or AC1, but
requires you to build a table of specifications for the new
task and to input the starting address of this table in AC2.
The table must be QTLN* words long and contain the entries
shown in Table 5.3.

*These symbols are defined under USER TASK QUEUE TABLE in the
listing of file PARU.SR in Appendix B.

RDOS System Reference 135

Displacement - Mnemonic Meaning
0 QPC Starting address of task
1 QNUM Number of times to queue
) the task (-1 if task is to be
. queusd an unlimited num-
__ber of times)
2 ' o QTOV Symbolic name or node
e 5 ~ o number/oveﬂaynumber(- :
; fora memory resadent task):
a3 QSH Startinghour (1 iftaskisto
: be queued immediately)
4 QSMS Starting second in hour (re-
‘ :yservend but unused it QSH,_
L -1) ,
5 . Q@PRl _:Task mask ptmnty
6 ORR Rern time mcrement in
) o seconds ‘
b QTLNK i : ~System wefd
 QOCH Overlay chamnel (unused by
e ~memory-resedent tasks) :
SO ~Ioac! flag {unused by éare-‘ i
.+ resident tasks) e

Table 5.3 User task queue table

According to Table 5.3, entry OPC must contain the entry
address in the overlay or memory-resident task where con-
trol will be directed when RDOS raises the task to the
executing state.

Entry QNUM is an integer value describing the number of
times the task will be queued. The task is queued QNUM
times—or without limit if QNUM equals -1—unless you
issue task call .DQTSK. This call halts the queuing of the
specified task. RDOS decrements QNUM each time it queues
the task.

Entry QTOV must contain the overlay’s .ENTO name or
its number in the left byte, and the overlay number in the
right byte for overlay tasks; for memory-resident tasks, set
this word to -1. If you did not assign a symbolic name to
the overlay via .ENTO, you must use the segment/node and
overlay numbers assigned by the loader. Make sure that the
values of QTOV correspond to the values assigned at load
time.

Entries QSH, QSMS, and QRR all affect the time at which
RDOS creates the task. QSH sets the hour to execute, and
QSMS sets the second within that hour that the task will be
created. If QSH contains -1, RDOS creates the task im-

136 RDOS System Reference

mediately; if QSH occurs before the current time of day,
or is greater than 24 but less than 48 hours, RDOS queues
the task for the next day; and if QSH equals (24*d) + h,
RDOS queues the task in d days. Entry QRR sets the interval
(in seconds) between the times the task will be queued.

Entry QPRI contains the task ID (if any) in its left byte and
the task priority in its right byte. If a task with the same 1D
exists at the time that RDOS activates the task, the system
clears this task’s ID number to zero.

The system maintains word QTLNK.

Entry QOCH must contain the number of the channel on
which you opened the overlay file with an .OVOPN com-
mand. Entry QCOND must contain -1 if you want the over-
lay load to be unconditional. Both entries are unused by
memory-resident, queued tasks.

QAC?2 is used as a temporary storage area by RDOS.

Required Input
AC2 - Pointer to the task queue table.

Format

.QTSK
error return
normal return

On the normal return, AC2 contains the contents of .QAC2.

Possibie Errors

AC2 Mnemonic Meaning

50 ERQTS lllegal information in Task Queue
Table.
117 RQOV .TOVLD not loaded for an overlay

queued task.

.QTSK Example

To demonstrate the use of the .QTSK command, Figure 5.4
shows its application in a closed-circuit, television display
network of airline arrivals and departures. The figure con-
tains excerpts from a main program in which one overlayed
task checks a central control panel for each arrival and
departure, and displays it, along with pending or recent
arrivals and departures, on network screens throughout the
terminal. The amount of air traffic varies with the time of
day; accordingly, .QTSK adjusts the interval at which the
task checks the control panel. Figure 5.4 shows .QTSK
code for 12:30 p.m., a time of relatively slow traffic; thus,
.QTSK specifies a 60-second check on the panel.

Licensed Materiai--Property of Data General

.EXTN QTSK

LDA 2, .TABLE
.QTSK

TABLE :TABLE
TABLE :START

01214
12.

30.760.
7°400+4

Figure 5.4 QTSK example

Licensed Material--Property of Data General

.TOVLD .DQTSK .OVKIL

etc.

;DECLARE ALL RELEVANT

;CALLS EXTERNAL.

;STARTING ADDRESS OF PANEL MONITCR TASK.

;QUEUE THE TASK CONTINUOUSLY (UNTIL

;A DQTSK AND NEW QTSK CHANGE THE INTERVAL).

;GET THE TASK FROM OVERLAY 01214

;IN THE OVERLAY FILE.

;QUEUE THE TASK AT THE 12TH HOUR.

;30 MINUTES PAST THE HOUR.

;THE TASK'S ID IS 7, AND ITS PRIORITY

yWILL BE 4.

;QUEUE THE TASK FOR EXECUTION

;EVERY 60 SECONDS.
;RDOS WILL USE THIS WORD.

;THE PROGRAM'S OVERLAY FILE
;WAS OPENED ON CHANNEL 3.
;LOAD THE OVERLAY UNCONDITIONALLY.

,RDOS WILL USE THIS WORD,
;AND THIS WORD.

RDOS System Reference

137

.DQTSK

Dequeue a memory-resident or overlay task

This command dequeues a task which has been queued for
execution by task call .QTSK. In effect, the .DQTSK com-
mand bypasses the value currently stored in QNUM of the
queued task’s queue table. (See Table 5.3.) If, at some later
moment, the task is requeued by a call to .QTSK. the queuing
process resumes its normal course since .DQTSK does not
actually modify the contents of QNUM.

Required Input
ACI1 - ID of the task to be queued.

Format

.DQTSK
error return
normal return

Upon a normal return, AC2 returns the base address of the
task’s queue table.

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERTID, signifying a task ID error, and RDOS
returns code 61 in AC2 when it occurs.

138 RDOS System Reference

User/System Clock Commands

All system clock commands can be issued from either a
single-task or multitask environment. These commands are
of little practical use in a single-task environment, however,
and are presented here for that reason. The commands in
this section permit your program to define, exit from, and
remove a clock driven by the system’s Real Time Clock
(RTC). In order of discussion, they include:

.DELAY Delay the calling task’s execution.
.DUCLK Define a user clock.

.UCEX Exit from a user clock routine.
.GHRZ Examine the system’s RTC frequency.

The Real Time Clock suspends the environment at the in-
tervals you define, and passes control to the routine whose
address you specify. You can exit from this routine and
return to the environment via system call .UCEX. You may
not issue any system or task calls (other than .IXMT, .SMSK,
or .UCEX) from this routine because RDOS freezes all
multitask activity, just as it does for a user interrupt. (See
Chapter 7.) Any user clock routine executes in the interrupt
world, not in program space; for this reason, you should
make sure that your routine is correct.

Licensed Material--Property of Data General

.DELAY

Delay execution of the calling task

This command suspends the calling task for the number of
real time pulses indicated by AC1. You set the Real Time
Clock’s frequency during system generation. (See and check
it via the .GHRZ command described later in this section.)

The accuracy of the .DELAY command can be affected by
three variables:

e The frequency of the Real Time Clock, as set during
system generation

o The priority of the issuing task, compared to other tasks

e The priority of the issuing program (ground) compared
to the other program.

RTC pulses are not synchronized with the .DELAY call;
thus, it may be unrealistic to request single-pulse delays.
Single-pulse delay requests can be delayed anywhere be-
tween 0 and | RTC pulse.

Required Input
AC1 - Number of RTC pulses.

Format

.SYSTM
.DELAY

error return
normal return

Possible Errors

None. The error return is never taken. You lose the contents
of AC1 upon return.

Licensed Material--Property of Data General

DUCLK

Define a user clock

This command defines a user clock, which will be entered
at the intervals you specify in ACO. When this interval
expires, RDOS suspends the Task Scheduler and multitask
environment, if any; control then goes to the address spec-
ified in AC1. Each time control passes to this address, ACO
contains a value indicating where control came from at the
interrupt. ACO contains -1 if control originated from the
system while it was in an idle loop (ie, awaiting an interrupt);
it contains 100000 if the other ground’s program held con-
trol; or it contains the current PC if control originated from
your program.

When control passes to your user clock routine, AC3 con-
tains the address of the return upon entry to the user routine.
In unmapped systems, you must use this address in the
.UCEX command to return to the multitask environment.

Required Input

ACO - The integer number of system RTC cycles that you
want to elapse between each clock interrupt.

AC1 - The address of the routine to receive control when
each interval expires. Note that no system or task
calls (excepting .UCEX, .IXMT, or .SMSK) can
o¢ issucd fivin thils 1outine. Noi shwouid asseiubiy
instruction INTEN be issued in an unmapped sys-
tem.

Format

.SYSTM
.DUCLK
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

45 ERIBS A user clock already exists.

74 ERMPR Mapped systems only: address outside

address space.

RDOS System Reference 139

JUCEX

Exit from a user clock routine

When RDOS enters a user clock interrupt routine, it places
the return address in AC3. In an unmapped system, RDOS
requires this address to return to the multitask environment;
thus, if your interrupt routine uses AC3, it must restore this
accumulator before issuing the .UCEX command. In a mapped
system, RDOS ignores the value input in AC3 when you
issue this command. In all systems, RDOS reschedules both
the task and program environments only if AC1 contains a
nonzero value upon exit. Control returns to the point where
the .DUCLK interrupt occurred. You may issue this com-
mand in a single-task environment.

Required Input

AC1 - Zero to continue the environment; nonzero to re-
schedule.

AC3 - Return address to routine (unmapped systems only).

Format

.UCEX

Possible Errors

None.

140 RDOS System Reference

.RUCLK

Remove a user clock

This system call removes a previously defined user clock
from the system.

Format

SYSTM
.RUCLK
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERIBS, indicating that no user clock is defined,
and RDOS passes code 45 in AC2 when it occurs.

Licensed Material--Property of Data General

.GHRZ

Examine the system real time clock

This system call returns a code for the Real Time Clock
frequency in ACO. The possible codes and their meanings
are:

0 There is no Real Time Clock in the system.

1 Frequency is 10 HZ.

2 Frequency is 100 HZ.

3 Frequency is 1000 HZ.

4 Line Frequency is 60 HZ.

5 Line Frequency is 50 HZ.

Format

.SYSTM
.GHRZ

error return
normal return

Required Input

None.

Possible Errors

None.

Licensed Material--Property of Data General

Managing Tasks by ID Number

This section describes commands that manage tasks ac-
cording to the ID number specified in AC1. In order of
discussion, they include:

IDST Get a task’s status.
.TIDP Change a tasks’s priority.
.TIDR Ready a task.

.TIDS Suspend a task.

.TIDK Kill a task.

RDOS System Reference 141

JADST

Get a task’s status

This command returns a code in ACO describing a task’s
status. The possible codes and their meanings are:

0 Ready

1 Suspended by a .SYSTM call or .TRDOP command
2 Suspended by a .SUSP, .ASUSP, or TIDS command
3 Suspended by a . XMTW or .REC command

4 Waiting for an overlay node

5 Doubly suspended by .ASUSP, .SUSP, or .TIDS and
by .SYSTM

6 Doubly suspended by . XMTW or .REC and .SUSP,
.ASUSP, or .TIDS

7 Waiting for an overlay node and suspended by . ASUSP,
.SUSP, or .TIDS

10 No task exists with this ID number

Required Input
AC1 - The task’s identification number.
Format

IDST
normal return

On the normal return. RDOS passes a status code in ACO
and the base address (displacement TCB) of the task’s TCB
in AC2.

Possible Errors

None.

142 RDOS System Reference

.TIDP
Change a task’s priority

This command changes the priority of the task whose 1D

you specify in AC1.

Required Input

ACO - The new priority (from 0 to 255 inclusive) in the
right byte (bits 8 through 15).

AC1 - ID of task.

Format

.TIDP
error return
normai return

Possible Errors

Only one possible error results from this command. Its mne-
monic is ERTID, indicating an erroneous task ID, and RDOS
returns code 61 in AC2 when it occurs.

Licensed Material--Property of Data Generai

.TIDR
Ready a task by ID number

This command readies only the task whose identification
number you place in ACI. It resets bit U in word TPRST
of this task’s TCB, which was set by a previous call to
.ASUSP, .SUSP, or .TIDS. If bit U has already been reset,
RDOS takes the normal return.

Required Input
ACI1 - ID number of the task you wish to ready.

Format

.TIDR
error return
normal return

Possible Errors

Only one possible error results from this commend. Its mne-
monic is ERTID, indicating an erroneous task ID, and RDOS
returns code 61 in AC2 when it occurs.

Licensed Material--Property of Data General

.TIDS
Suspend a task by ID number

This command suspends only the task whose identification
number you pass in ACI. It sets bit U in word TPRST of
the specified task’s TCB. If bit U in word TPRST is already
set, RDOS takes the normal return.

Required Input
AC1 - ID number of the task you wish to suspend.

Format

.TIDS
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic 1s ERTID, indicating that no task exists with the
specified 1D number, and RDOS returns code 61 in AC2
when it occurs.

RDOS System Reference 143

.TIDK
Kill a task by ID number

This command kills only the task whose identification num-
ber is specified in AC1. RDOS raises the task to the highest
priority (0); places it at the end of that priority chain; and
transfers it to a kill-processing address (if any) or terminates
it. If the task is executing a system call, it will not be killed
until the system call is completed.

Required Input
ACI1 - ID number of the task you wish to kill.

Format

TIDK
error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monic, ERTID, signifies a task ID error, and RDOS returns
code 61 in AC2 when it occurs.

144 RDOS System Reference

Task/Operator Communications
Calls

This section describes two commands, .TWROP and
.TRDOP, that a task can issue to communicate with the
system console, STTO/$TTI. You can use these calls to
interact directly with tasks in your program via OPCOM
commands, discussed in the next section; or you can use
the task calls or OPCOM commands alone. To use either
(or both) features, you must have selected the option of
operator messages during system generation. If your pro-
gram uses operator message calls or OPCOM commands,
you must specify an extra task in the RLDR command line
to provide a TCB for system use. The format of console
commands is similar for the task calls and OPCOM mes-
sages.

Note that your program cannot use both system and task

versions of the operator message calls. The system versions,
.WROPR and.RDOPR, are described in Chapter 6.

Licensed Material--Property of Data General

.TWROP

Write a task message to the console

This command instructs the calling task to write an ASCI1
string to the system console, $TTO. The message may in-
clude up to 129 characters. including the required carriage
return, form feed, or null terminator. RDOS always displays
two exclamation points (!!), along with the letters ‘B’ or
“‘F,”’ before it displays the text string. These letters indicate
that a background (B) or foreground (F) task issued the
message. Then, depending on your input, RDOS displays
the task’s ID number and the message. Thus, the format of
task messages to the console is:

!IF [TID} message or !\B [TID] message

If AC1 contains -1 when the task issues call .TWROP,
RDOS displays the three-character prefix (!!F or !!B) fol-
lowed by a message string of up to 129 characters, including
the required terminator. If AC1 contains a value other than
-1 on this call, the first four characters of the message area
are overwritten by the three octal digits of the task 1D num-
ber and one space. Text written to the console includes a
three-character prefix (!!'B or !'F) followed by the task ID
number and the remainder of the message—a string of up
to 124 characters, including the terminator.

More than one task may have an outstanding request to
write task messages to the console. However, the save file
~annot inchide hoth tack and cvetem calle ta read or write
messages to or from the console. Several tasks can use the
same message string (same byte pointer), but only if you
suppress TID information. Note that the . TWROP command
requires an extra TCB in the program.

Required Input

ACO - Byte pointer to area that holds the message. (If AC1
does not equal -1, this area must include a four-byte
null prefix to receive the task ID and space sepa-
rator.)

AC1 - Specify -1 to suppress the task 1D, or some other
value to display the ID (see ACO, above).

Format
TWROP

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address space.

120 EROPM Operator messages not specified during

system generation.

Licensed Material--Property of Data General

.TRDOP

Read a task message from the console

This task call prepares the calling task to receive a message
from the system console, $TTIL. The task issuing this call
may reside in either the foreground or background program
areas, and more than one task may issue an outstanding
request for a task message. However, if you use task calls
.TWROP/. TRDOP to write or read messages to or from the
console, you cannot also use system calls .WROP/.RDOP
within the save file.

You must type CTRL-E as the first character (echoed on
the console as an exclamation point, !). If the cursor is not
at column O, press the RETURN key first. The second
character must be either an F or B to indicate whether the
task resides in the foreground or background. If you type
some character other than F or B in column 2, RDOS sounds
the console bell as a warning and accepts no further char-
acters until you provide the correct input.

After letters F or B, type the ID of the task to receive the
message, followed by a comma delimiter; then type the
message itself immediately after the comma. The last char-
acter 1n the message string must be a carriage return, form
feed, or null terminator. Your input—including CTRL-E,
letters B or F, the task’s ID and comma, your message, and
the terminator—should not exceed 132 characters. The re-
Fovvemat Fiae o Foall whao

IR =Y, revraat avaac Caera e < ro
Uit O Y L Y S e e S N L REterte

angle brackets indicate an ASCII character:

(CTRL E) F or TID, message (CR)

If, after pressing CTRL-E, you want to cancel the message
transmission, press the RUBOUT key. This key erases a
command or message starting with the most recent character
typed. On TTY consoles, a left arrow «+— is echoed for
each rubout.

Remember to specify an extra TCB for the .TRDOP com-
mand in your RLDR command line (or two extra TCBs for
both reads and writes). There must also be one TCB avail-
able for use by the system. RDOS uses this TCB to create
a task to monitor the $TTI keyboard for task—keyboard
messages, allowing one or more tasks to issue the . TRDOP
command.

RDOS System Reference 145

RDOS can dislay two messages to indicate errors in mes-
sages intended for tasks. These messages and their meanings
are:

TID NOT
FOUND

No task with the specified ID number was
waiting for a console message.

INPUT ERROR Nonnumeric character found in task ID.

Required Input

ACO - Byte pointer to message area. RDOS will not trans-
mit the task ID and comma to the message area.

Format

.TRDOP
error return
normal return

On the normal return, RDOS gives the byte count in ACI
(including the terminator but excluding the task ID and

delimiter).

Possible Errors

AC2 Mnemonic Meaning

42 ERNOT Out of TCBs (ie, there is no TCB avail-
able to monitor the console).

74 ERMPR Mapped systems only: address outside
address space.

120 EROPM Operator messages not specified during

system generation.

146 RDOS System Reference

Task/Operator Communications
Module (OPCOM)

This section presents the task/operator communications
package, OPCOM, which allows you to use console com-
mands to check or change the status of tasks, and to run
these tasks or queue them for periodic execution.

OPCOM is unrelated to the Command Line Interpreter (CLI),
and has its own syntax and command definitions. OPCOM
has a limited command repertoire since it—unlike the CLI—
is part of the save file with which it is being used.

Following a discussion of command line syntax, the .IOPC
command, which initializes the OPCOM package, is intro-
duced. Then the OPCOM commands themselves are de-
scribed. In order of discussion, they are:

DEQ Dequeue a queued task.

KIL Kill a task.

PRI Change a task’s priority.

QUE Queue a task for periodic execution.
RDY Ready a task.

RUN Execute a task.

SuUS Suspend a task.

TST Display a task’s status.

An example at the end of the section demonstrates the use
of these commands.

In addition to the OPCOM module, this package requires
modules OPMSG (unmapped) or MOPMS {mapped). The
RLDR program loads these modules if you declare the in-
itialization command, .IOPC, external via an .EXTN state-
ment. You must also specify an extra TCB (or two for reads
and writes) for RDOS, unless you have included one or two
extra TCBs for the operator task calls described earlier. In
addition. you must have selected the option of operator
messages during system generation.

The OPCOM module requires approximately 457, NREL
words, while the OPMSG or MOPMS modules require ap-
proximately 472;. Thus, you will need a total of roughly
1150, NREL words for any system.

Licensed Material--Property of Data General

Each OPCOM command evokes a task call that performs
the desired function; accordingly, you will find details on
the internal operation of each command under its related
task call (eg. QUE and .QTSK). Each OPCOM command
requires that you enter a program number for the task; you
specify this number in a table that you build for each task
before initializing OPCOM. The program number can be
the task ID number, or not. Certain commands require 1D
numbers, while others (RUN and QUE) require program
numbers; to avoid confusion, it is recommended that you
use the task’s ID number as its program number. After
initializing the communications package, you can enter
commands using the format and syntax described next. OP-
COM responds with the message OK if it has executed a
command, or with one of four descriptive error messages.

OPCOM Command Syntax

OPCOM has been designed to accept a limited number of
keyboard commands to keep the command processor small,
since it must always remain a resident part of the save file.
All OPCOM commands have the following, fixed format,
where angle brackets indicate an ASCII character and brack-
ets surround any optional input:

(CTRL-E) B or F *,command,task,farg1, ... argn(CR)

You enter CTRL-E by pressing the CTRL and E keys si-
multaneously. If the cursor is not at column 0, press the
RETURN hey fiist. You wust then type cither B or F o
indicate whether the save file being commanded is in the
background or foreground. Both background and foreground
programs use $TTI/STTO. Immediately following letters B
or F, type an asterisk followed by a comma. Enter the
OPCOM command immediately after the comma. Follow
the command with a comma and one or more task argu-
ments; separate multiple arguments by commas. Terminate
the command line with a carriage return.

Note that the command structure is rigid; if you depart from
the command format (eg, use spaces or delimiters), OPCOM
rejects the command and displayss the messge

INPUT ERROR

on the console. When OPCOM has executed a command,
it reports to your console as follows:

IIB or F OK

Licensed Material--Property of Data General

JOPC

Initializing the operator communications package

This command initializes the OPCOM package, and must
be issued before you can execute any of OPCOM’s com-
mands. If you do not plan to use OPCOM commands RUN
and QUE or DEQ, the first three accumulators (ACO, AC1,
and AC2) must each contain 0 when you issue the .IOPC
call. Otherwise, you must input three parameters to the
JOPC command.

The first of these parameters, passed in ACO, is the address
of the queue area reserved for this call. OPCOM needs one
queue area frame for each RUN or QUE command. (The
QUE command awaits execution until the task has been
queued for the last time.) The total queue area is n*QTLN
words long. where n equals the number of queue frames
and QTLN is the queue frame size. (QTLN is defined in
the listinng of PARU.SR found in Appendix B.) The queue
area is managed exclusively by OPCOM.

You pass the second parameter in AC1. The left byte must
contain the channel number on which you opend the overlay
file: if no overlay is involved. this byte must contain 0. The
right byte of AC1 must describe the maximum number of
different tasks that you will queue or run simultaneously.
(This value defines the queue area when multiplied by QTLN.)
OPCOM can load overlay tasks on request, but your pro-
gram must release each node used for these tasks by issuing
the .OVKIL or .OVEX commands.

The last parameter, passed in AC2, is the base address
(displacement 0) of the task table. This table consists of a
series of five-word frames that describe each task to be run
or queued. To build this table, use the following specifi-
cations:

Displacement Contents

0 Program number

1 Overlay symbolic name, or node (left byte)/
number (right byte); (-1 if a core-resident
task)

2 -1 only if unconditional loading is re-
quired

3 Task 1D (left byte); task priority (right
byte)

4 Task starting address

RDOS System Reference 147

The program number is distinct from the task ID, but you
may assign the same value to them if desired. You can
modify the task priority by an appropriate OPCOM com-
mand. Terminate the task table series with a word containing
-1.

Required Input

Pass the following parameters only if you plan to issue
OPCOM commands RUN or QUE. Otherwise, clear ACO,
AC1, and AC2 to zero when you issue the .IOPC command.

ACO - Queue area address.

ACI1 - Left byte: overlay channel (or zero). Right byte:
maximum number of queues.
AC2 - Task table address.

Format
.IOPC

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

42 ERNOT Out of TCBs.

120 EROPM Operator messages not specified during
system generation.

148 RDOS System Reference

DEQ

Dequeue a previously queued task

This OPCOM command dequeues the previously-queued
task whose ID you specify as an argument. The task ar-
gument must be an octal integer ranging from 1 to 377, it
cannot be 0. After executing the command, OPCOM dis-
plays the message OK; you can then issue another command.
If OPCOM cannot execute the command, it displays one of
two error messages and await another command.

Format

(CTRL-E) F or B *,DEQ,task ID (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden-

tification number was found.

Licensed Material--Property of Data General

KIL
Kill a task

This OPCOM command immediately kills the task whose
ID you specify as an argument. The task ID argument must
be an octal integer in the range of 1 to 377; it cannot be 0.
After executing the command, OPCOM displays the mes-
sage OK; you can then issue another command.

Format

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden-

tification number was found.

Licensed Material--Property of Data General

PRI
Change a task’s priority

The PRI command changes the specified task’s priority to
the priority given as an argument. The task ID and new
priority arguments must each be an octal integer within the
range 1 to 377. After executing the command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format

(CTRL-E) F or B *,PRl,task ID, new priority (CR)

Possible Errors

Message Meaning

INPUT ERROR New priority exceeded 377,, or syn-

tax error detected.
TID NOT ACTIVE No task with the specified task iden-
tification number was found.

RDOS System Reference 149

QUE

Queue a task for periodic execution

This command creates and periodically executes a task for
execution using task call .QTSK'’s logic. The task may be
either memory-resident or an overlay.

If the task resides in an overlay, the QUE command loads
the overlay. If no TCB is currently available for the creation
of a new task, RDOS waits for one and then carries out this
command. If two or more tasks are queued for execution
at the same time of day, the task of highest priority receives
control first. After this call creates and activates a new task,
you must ensure that the system kills or suspends it. If the
task resides within an overlay, your program must release
the node after the task has executed; otherwise, no other
task will be able to use the node.

After successful completion of the QUE command, OPCOM
displays the message OK on the system console; you can
then issue another command. If OPCOM cannot execute
the command, it displays one of four error messages and
awaits another command.

Format

(CTRL-E) F or B *,QUE,program#, 4 (CR)
[hour,minute,second,repeats,] interval [,priority(CR)

In this command line, program # is the number that you
chose when initializing OPCOM via the .IOPC command.
This argument may be the same as the task ID, or not. Note
the use of the up-arrow (4) to continue a long statement

on the next line.

All bracketed entries are optional. If hour is less than the
current time of day, or is between 24 and 48, RDOS queues
the task for the new day. If hour equals (24*d) + h, RDOS
queues the task in d days. To queue for midnight, queue
for hour 24. To queue the task immediately, omit hour,
minute, and second (but retain their comma delimiters in the
command line.

Argument repeats defines the number of times the task will
be executed, and interval determines the number of seconds
to elapse between each time RDOS queues the task. The
interval may not exceed 65,535 seconds (about 18 hours).
If argument repeats is omitted, the task is queued an unlim-
ited number of times. (Even if you omit this argument, you
must include its comma delimiter.)

150 RDOS System Reference

The priority argument indicates the priority of the task you
want to queue; it is optional because the task’s priority
(along with other task information) is required in the task
table that you input to the .IOPC command. If you enter
the priority argument here, it overrides the one you specified
to .IOPC. The priority argument is an octal integer: all others
are decimal.

Possible Errors

Message Meaning

INPUT ERROR One or more required arguments are
missing in the command string, or
you specified an invalid priority ar-

gument.

PROG NOT FOUND You did not issue the .JIOPC call,
or did not define the program num-
ber in this call (ie, the program table
is incomplete).

NO QUEUE AREA You defined an insufficient number

of queue area frames in the call to

.IOPC, hence no free queue area is

available.

ILLOGICAL QUEUE You input illegal information in the
argument string (RDOS detected this
when it passed to .QTSK).

Licensed Material--Property of Data General

RDY
Ready a task

This command readies the task whose ID you specify as an
argument. The task ID must be an octal integer ranging
from 1 to 377. After executing this command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format

(CTRL-E) F or B *,RDY, task IDI& (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden-

tification number was found.

Licensed Material--Property of Data General

RUN

Execute a task

This OPCOM command initiates either a memory-resident
task or one within an overlay, and queues this task for
immediate execution. If the task resides within an overlay,
this command loads the overlay. If no TCB is currently
available for the creation of a new task, RDOS carries out
the command as soon as a TCB becomes free. After creating
and activating a task with the RUN command, you must
ensure that it is killed or suspended. If the task resides within
an overlay, you must release the overlay node.

After completing this command, OPCOM displays the mes-
sage OK on the system console, indicating that it is ready
to accept another command.

Format

(CTRL-E) F or B *RUN.program # [priority] (CR)

In this command line, program # is the number assigned to
this program when you issued the initialization command.
JAOPC. This argument mav or mayv not be the same as the
task ID, and must be expressed as a decimal integer.

The priority is an optional argument indicating the priority
of the task you wish to queue. If you enter the priority here,
1L overrides the one specitied to the .JOPC command when
you initialized the OPCOM package. The priority must be
an octal integer.

Possible Errors

Message Meaning

INPUT ERROR You did not specify a program num-
ber in the command line, or you

specified an invalid priority.

PROG NOT FOUND You did not issue the .IOPC call,
or did not define the program num-
ber in this .JOPC call (ie. the pro-
gram table is incompiete).

You defined an insufficient number
of queue area frames in the call to
JOPC: thus no free queue area is
available.

NO QUEUE AREA

RDOS System Reference 151

SUS
Suspend a task

This command suspends the task whose ID you specify as
an argument. The task ID must be an octal integer in the
range of 1 to 377. After executing this command, OPCOM
displays the message OK on the system console; you can
then issue another command.

Format
(CTRL E) F or B *,SUS task ID (CR)

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden-

tification number was found.

152 RDOS System Reference

TST
Display a task’s status

This OPCOM command displays a specified task’s status
on the console. After executing the command, OPCOM
displays the following status on the console:

STAT = s, PRI = ppp

Where s is an octal integer from O to 7 representing one of
eight states; and ppp is an octal number, ranging from 0 to
377, indicating the task’s priority. The possible values of s
and their meanings are:

0 Ready

1 Suspended by a .SYSTM call or TRDOP command

2 Suspended by a .SUSP, .ASUSP, or TIDS (SUS)
command

3 Suspended by a . XMTW or .REC command
4 Waiting for an overlay node

5 Doubly suspended by .ASUSP, .SUSP, or .TIDS (SUS)
and by a .SYSTM call

6 Doubly suspended by .XMTW or .REC and by a
.SUSP, .ASUSP, or .TIDS (SUS) command

7 Waiting for an overlay node and suspended by an
.ASUSP, .SUSP, or .TIDS (SUS) command

Format

(CTRLE)F or B *TST, task ID (CR)

The task 1D argument must be an octal integer ranging from
1 to 377,

Possible Errors

Message Meaning

INPUT ERROR Command syntax error.

TID NOT ACTIVE No task with the specified task iden-

tification number was found.

Licensed Material--Property of Data General

OPCOM Command Example

Figure 5.5 demonstrates the use of the OPCOM commands
discussed in this section. It shows a typical series of console
commands and messages, along with explanations of each

sequence.
Dialogue Meaning
'B*,RUN, 1) Run task with program number 1 in the background, and OPCOM
1B OK verifies execution of the command. Similarly, program 2 is run and is
IB* RUN2! verified.
/1B OK
IB*RUN,3!) An attempt is made to run 3, but OPCOM detects a syntax error
!IB INPUT ERROR {missing comma).
1B*,TST, 1! Operator requests status of program 1.
/1B STAT=1,PRI=002 OPCOM responds with status 1, read), and priority 2. Operator
'B*,SUS, 1) suspends 1 and OPCOM verifies execution of the command.
/1B OK
IB*,TST, 1) Operator gets status of 1 again;
IIBSTAT=2,PRI=002 status is suspended by SUS.
1B* KIL, 1) Operator Kills program 1, and after system verifies this, operator tries
1B OK to test its status.
IB*,TST, 1)
!IB TID NOT ACTIVE OPCOM responds with error message.
Figure 5.5 Sample console commands and messages DG-25445

Licensed Material--Property of Data General

RDOS System Reference 153

Disabling and Enabling the
Multitask Environment

This section describes the .SINGL and .MULTI commands,
which disable and enable the multitask environment, re-
spectively. In a normal multitask environment, ready tasks
compete for CPU control according to their relative priority.
Although you can assign the highest priority (0) to one or
more tasks, rescheduling occurs on each system interrupt,
or when the executing task issues a system or task call.
Thus, in a multitask environment, even the highest priority
task may be suspended. Under some circumstances, you
may want a task to retain CPU control continuously. To
give a task such control, RDOS provides the task call .SINGL.

When a task issues .SINGL, it disables the multitask en-
vironment and retains CPU control despite system calls and
most task calls that it issues; although interrupts continue,
the task Scheduler allows the task to retain control. How-
ever, user interrupt routines defined via the .IDEF command
continue to execute as usual. The privileged task retains
CPU control until it restores the multitask environment by
issuing task call .MULTI. The multitask environment is also
restored if the task suspends or kills itself.

Generally, a task should not disable the environment unless
it must be absolutely autonomous; certainly it should not
do so if it relies on other tasks. If you must deny other tasks
access to a critical resource, such as a database, use the
transmit and receive (.XMT/.REC) mechanism provided by
RDOS and discussed earlier in this chapter.

Neither the .SINGL or .MULTI commands affect the other
program in a foreground/background environment. As with
other task calls, you must declare these two external (.EXTN)
in a source program if you want to use them.

154 RDOS System Reference

SINGL

Disable the multitask environment

This command disables the multitask environment and gives
the issuing task continuing CPU control, despite its priority
or any system calls (and most task calls) that it issues. The
command is useful for operations outside of user state, as
described under *‘State Definitions’” in Appendix 1.

Required Input

None.

Format

.SINGL
normal return

Possible Errors

None.

Licensed Material--Property of Data Generai

-MULTI

Restore the multitask environment

This command enables normal scheduler operations and the
multitask environment after they have been disabled by the
.SINGL command.

Required Input

None.

Format
MULTI

Possible Errors

None.

Licensed Material--Property of Data General

Disabling and Enabling the Task
Scheduler

Generally, the RDOS multitask commmands permit you to
manage a multitask program with complete satisfaction; the
task scheduler always gives CPU control to the ready task
of highest priority. In some instances, however, you may
want to suspend the task scheduler briefly. You might, for
example, suspend rescheduling to control race conditions
between several tasks competing for a single resource. This
section describes the .DRSCH and .ERSCH commands,
which enable you to do so.

Note that disabling the scheduler—even briefly—is a drastic
step. The action does not affect system activities such as
interrupt service. Moreover, RDOS reactivates the sched-
uling function as soon as the issuing task loses control of
the CPU, even though you may not yet have reenabled
rescheduling explicitly. For instance, all system calls, as
well as the .SUSP and .KILL commands, reenable sched-
uling.

RDOS System Reference 155

.DRSCH

Disable rescheduling

This task call prevents rescheduling in this program envi-
ronment until you explicitly reenable scheduling or the is-
suing task loses control of the CPU. Issue task call .DRSCH
with caution, since it disrupts the ordinary management of
the multitask environment. The task that issues this com-
mand retains control even though other, higher priority tasks
are ready. This call has no effect when scheduling is dis-
abled.

Required Input

None.

Format

.DRSCH
normal return

Possible Errors

None.

156 RDOS System Reference

.ERSCH

Reenable rescheduling

Normally, the task scheduler is enabled and manages the
multitask environment within its program. If you have sus-
pended task scheduling by a call to .DRSCH, you can reac-
tivate the scheduler by issuing task call .ERSCH. This call
has no effect when scheduling is enabled.

Required Input
None.

Format

.ERSCH
normal return

Possible Errors

None.

Licensed Material--Property of Data Genera!

Summary

Table 5.4 summarizes the task, system, and OPCOM com-
mands described in this chapter. Remember that all task
names must be declared external via the pseudo-op .EXTN.

Task or Function Task or Function
System Call System Call
ABORT Terminate a task immediately. SINGL Disable the multitask environment.
LAKILL Kilt all ylasks of a given pfidrity.) ' .SUSP Suspend the calling task.
ARDY - Ready all tasks of a given priority. TASK Initiate a task.
ASUSP Suspend all tasks of a given priomy e TIDK *Kill a task by ID number.
.DELAY Dsiay the eaﬂer for me specmed number ef TIDP Change the pﬂority of a task by ID number
o TIDR . - Ready a task by ID number.
.DQTSK ; Dequeue a prewously-queued task. - .
e .TIDS Suspend a task by ID number.
.DUCLK Define a user clock.
: .TOVLD Load a user overiay in a multitask environ-
.DRSCH Disable the rescheduling of the task envi- ment.
OO, e . e
“ o .TRDOP Read an operator message.
.ERSCH Reenable the rescheduling of the task en-
vironment. .TWROP Write an operator message.
.GHRZ Examine the system real time clock. .UCEX Exit from a user clock routine.
ADST . Get a task’s status. XMT Transmit a message to another task.
Initialize the Operator Commumcanons ' XMTW Transmita messageto anothef task and wau ;
" Package (OPCOM)." ’ i T for its receipt.” o
CXMT Transmrt a message from a user interrupt. OPCOM Commands k
: DEQ Dequeue a previously queued task
KILAD Deflne a kiu-proeessmg address i i
S ; KL Kill a task.
JKILL : Kill the cal%mg task ' i :
‘ PRI Change a task’s priority.
MULTE Enable the multitask environment. o : ;
)) ! QUE Queue a task for periodic execution.
.OVEX Release an overlay and return to the caller.
i RDY Ready a task.
LOVKIL Kill an overlayed task and release the over-
lay. RUN Execute a task.
.OVREL Release an overlay node. Sus Suspend a task.
PRI Change the calling task’s priority. TST Get a task’s status.
AQTSK. Queue a core-resident or overlay task. Table 5.4 System, task, and OPCOM command summary
.REC Receive a message from a task.
.RUCLK Remove a user clock from the system.

Licensed Material--Property of Data Generat RDOS System Reference 157

Chapter 6

Foreground and Background Programming

So far this book has described tools for using RDOS effec-
tively in one program. Chapter 3 explained the essential
system calls, Chapter 4 introduced tools for extending mem-
ory resources, and Chapter 5 described multitasking; each
chapter built upon the features explained in preceding chap-
ters, but all were presented in the context of a single pro-
gram.

This chapter describes dual programming—the technique of
running two, discrete programs simultaneously and letting
RDOS apportion CPU and disk I/O time between them.

When you first bootstrap RDOS, only the background is
running; the CLI, running in background memory, displays
its R prompt. You can then execute a foreground program
directly, via the CLI’s EXFG command, or you can execute
a background program, which in turn may execute another
program in the foreground via svstem call FXFG

How you handle dual programming depends largely on
whether or not your system has a hardware map to separate
the two programs. Dual programming is safer and easier in
mapped systems, which offer the added advantages of ex-
tended address space described in Chapter 4. If your system
is unmapped, you must configure a program for foreground
execution by specifying starting ZREL and NREL addresses
in the RLDR command line; nonetheless, with a little care,
you can execute a program in both an unmapped foreground
and background.

This chapter contains the following, major sections:
o Overview

¢ Dual Programming in Mapped Systems

¢ Dual Programming in Unmapped Systems

e Foreground/Background System Calls

Licensed Material--Property of Data General

In a final section, the commands presented in this chapter
are summarized in table form. Occasionally a discussion
will refer to certain, related commands whose descriptions,
in earlier chapters, you may want to refer to. These com-
mands include:

.MEM Check the current program’s NMAX (Chapter
3).

.MEMI Change the value of NMAX (Chapter 3).

EXEC Swap or chain a save file (Chapter 4).

.ERTN Return to the next higher level program (Chapter

and 4).

RTN

-WRPR Write-protect a memory block, in mapped sys-
tems only (Chapter 4).

Overview

The two programs that run under RDOS are called the fore-
ground and background programs. These programs exist
independently of each other, and each has its own task
scheduler. The two programs can have equal priority, or
you may assign a higher priority to the foreground program.
In this case, control goes to the background only when no
task in the foreground is ready. When you need to run a
real-time program with critical response time, execute it in
the foreground. The foreground will then receive the higher
priority, while the background can be used for programs
not requiring fast response (eg, assemblies, compilations,
and the like).

Foreground and background programs can communicate via
a Multiprocessor Communications Adapter line, or they can
each define a common communications area via the .ICMN
command and transmit messages to the other via system
calls ' WRCMN and .RDCMN. The .FGND command en-
ables the background program to determine whether or not
a foreground program exists. The foreground program can
terminate itself via .RTN from level O (or you can terminate
it by typing CTRL-F from the background console). and it
can release all its former memory.

RDOS System Reference 159

Foreground and background programs can access common
disk files and common directories. If foreground and back-
ground tasks are using the same directory, either task may
release that directory without affecting the other task’s use
of it. If one program, F for example. releases a directory
which is in use by program B, F receives the error return
with error code EROPD as an indication that the directory
is in use by B. Nonetheless, RDOS releases the directory
from F.

The foreground and background cannot use the same re-
served device file simultaneously; nor can they spool data
simultaneously to the same output device. Only the first
ground to open the reserved device request will be able to
use that device. Similarly, foreground and background pro-
grams should not issue simultaneous read commands to a
common input device, since RDOS has no way to separate
elements in an input data stream and divert them to two
different programs.

If you have a mapped system, you can use all mapped system
and task calls. RDOS treats any special mapped calls issued
in an unmapped environment as no-ops, and gives control
to the call’s normal return.

Dual Programming in
Mapped Systems

Mapped systems provide an absolute hardware boundary
between the foreground and background programs. More-
over, the map provides both programs with a complete page
zero (including auto increment/decrement locations) and a
complete NREL memory area. You can run two CLIs con-
currently in a mapped environment, if two consoles are
available.

In mapped systems, all programs may use locations 165 and
above, up to the limits of available memory, since each
program has its ‘own page zero. The system initially allots
all memory blocks to the background program. You can
change the initial memorv allocation via the CLI's SMEM
command, and can check the current memory allocations
via CLI command GMEM or system call .MEM. Each
program can change its own NMAX value via system call
.MEML.

Whenever a map violation occurs in an instruction that is
not a call (eg, an infinite defer, illegal address, or illegal
attempt to reference a system device), RDOS outputs the
contents of the program counter and accumulators as fol-
lows:

TRAP PC ACO AC1 AC2 AC3
PC gives either the location of the instruction that caused

the trap, or -1 if RDOS is unable to report a meaningful
address. You might receive -1, for example, if your program

160 RDOS System Reference

tried a seriously illogical operation such as existing from a
user interrupt routine (.UIEX) when no such routine had
been defined.

Following its TRAP message. RDOS creates a break save
file (named BREAK.SV); places it in the current directory:
and displays the message BREAK on the console. Control
then goes to the next higher level program in which location
USTBR of the UST is set to a valid address. (See Chapter
3 under ‘‘Keyboard Interrupts.™’)

If you pass an illegal address to a system call, RDOS returns
error code 74, ERMPR.

Writing interrupt routines for special user devices is slightly
casier in a mapped system. If you want a user device to use
the data channel, however, you must identify the device via
system call .STMAP, described in Chapter 7.

When your program issues a .MEMI command in a mapped
environment. RDOS sets NMAX at whatever value is re-
quired by the specified memory increment, up to the highest
memory address (HMA) available to your program. None-
theless, the map always allocates memory in blocks of 2000,
words. Thus, for example, if NMAX is set to 4000, and
you request a memory increment of 500;, NMAX becomes
40500 even though a total of 42000 memory words are
reserved for the program.

You can build foreground save and overlay files for either
ground in a mapped system in the same way that you would
for a single-program background. since RDOS reserves an
entire ZREL and NREL memory for each ground.

Executing Dual Programs

The RDOS system bootstrap operation brings the CLI 1nto
execution in the background. At this point, when the fore-
ground program has yet to be loaded, all available memory
is allocated to the background. Thus, before you can issue
any foreground command on a mapped machine, you must
allocate memory to the foreground with the SMEM com-
mand.

After you have built an executable foreground save file (with
optional overlays). you can load and execute in the fore-
ground area by entering the CLI's EXFG command followed
by the save file’s name and a terminator. (Any background
program can also execute a program in the foreground by
issuing system call. EXFG.)

You can issue the EXFG or .EXFG commands for any
executable program, including a system utility or the CLI
itself, and access it via a second system console, $TTI1/
$TTOI. (If you use system call .EXFG instead of its CLI
counterpart—a utility command-—you must set up the fore-

Licensed Material--Property of Data General

ground command file, FCOM.CM, as described in the man-
ual RDOS/DOS Command Line Interpreter.)

To execute a single-system utility program in the fore-
ground, issue the following command from the background
console:

EXFG system-utility-command-stream (CR)

For example, to assemble source file ABC in the foreground
with a cross reference and listing to the line printer, you
would type:

EXFG MAC ABC $LPT/L (CR)

To execute the CLI itself or any other save file in the fore-
ground, use the form:

EXFG programname (CR)

Any program executing in the foreground may push other
program levels into execution via system call .EXEC.

The foreground program can terminate by issuing as many
-RTN (or .ERTN) commands as needed to pop through level
O (f the CLI is not active in the foreground). This occurs
when a single-system program, executed at level 0 in the
foreground. terminates its operation. Alternatively. vou can
terminate a foreground program by typing CTRL-F on the
SucKgivuiid vonsuic. Tuu iust use Lills second method 1o
terminate a program that incorporates a CTRL-A or CTRL-
C handler. When you issue CTRL-A or CTRL-C via the
foreground console (if any), the foreground program ter-
minates if (1) RDOS finds no interrupt processing address
in USTIT/USTBR of the foreground UST, and (2) no higher
level program contains such a processing address in its UST.
Each system utility automatically issues a .RTN command
when it terminates to return control to the background (or,
if executing in the background, to return control to the CLI).

Whenever the foreground program terminates via system
calls .RTN or .ERTN, RDOS displays the message

FG TERM

on the console. The same message appears if you terminate
the foreground with a CTRL-F interrupt.

Checkpointing a Background Program

Checkpointing allows a foreground program to interrupt the
current background program. run a new program in the
hackground. and then restore the original background pro-
gram.

Some processing applications function more effectively if

the foreground program can make use of the background's
resources in this way. One example of such an application

Licensed Material--Property of Data General

is a mapped. dual-program system containing a data col-
lection program in the foreground and one of several system
utilities in the background. In such an application, the fore-
ground might occasionally need to execute a data rcduction
program in the background. Checkpointing the data reduc-
tion program into execution from time to time would fulfill
this need. You can checkpoint via the mapped RDOS system
call .EXBG, described in this chapter.

Dual Programming in Unmapped
Systems

Unmapped systems must use software boundaries to sepa-
rate the foreground and background program arcas. You
must define these boundaries before execution, in the RLDR
command line.

Each boundary is a starting address for execution; the local
/F switch defines the starting NREL address, and the /Z
switch defines the starting ZREL address for execution.
Locations 20, through 37, are reserved for use by the back-
ground.

Building Foreground Programs

When you plan to run foreground and background programs
in an unmapped system, bear in mind that the memory
requirements of cach will be critical. Aside from this factor
and any foreground/background svstem calls that vou plan
to use, writing the source code for a foreground program
does not require special consideration.

Depending on your application, you may want a background
program to change NMAX (.MEMI, Chapter 3) if it will
execute a specific program in the foreground via system call
.EXFG.

After writing and assembling your source program, con-
figure it for foreground operation by including the starting
ZREL and NREL addresses in the RLDR command line.
(Adopt the practice of checking the ZMAX and NMAX
requirements of programs that you may want to execute
simultaneously in the background; you can do this with the
program load map or with the SEDIT utility.) The software
boundaries must include both NREL and ZREL address
information in local switches F and Z, for example:

RLDR 13000/F 250/Z RO R1 [OVO OV1, OV2]

This command line creates a save file named R0.SV (con-
taining binary files RO and R1). and an overlay tile named
RO.OL (containing two overlavs) When vou load the save
file into memory. RDOS loads its ZREL portion into lo-
cations 250, and above. and its NREL portion into locations
13016, and above.

RDOS System Reference 161

When building programs for an unmapped foreground, re-
member that they will be separated by soft boundaries only:
hardware does not protect the address space of the two
programs. Thus, for example, you must ensure that no back-
ground program attempts to return to a higher-level. back-
ground program requiring more core storage. If such a return
is performed (eg, via .RTN) and the larger background
program requires space now occupied by the foreground
program, system failure results. This situtation would occur
after the following sequence of program loads:

1. The CLI resides in the background, and no foreground
program is executing.

2. A background program named BGD, smaller than the
CLI, is executed via the CLI on level 1.

3. BGD issues the foreground load command, .EXFG,
loading a larger program whose starting address immedi-
ately follows BGD’s NMAX.

4. BGD issues the .RTN command, attempting to return to
the CLI. The CLI, however, requires memory storage which
the foreground program now occupies. System failure oc-
curs.

You can avoid this mistake by planning your program flow
with care.

Executing Dual Programs

The RDOS bootstrap operation brings the CLI into execution
in the background. At this point, when the foreground pro-
gram has yet to be loaded, all memory is allocated to the
background. Once you have built an executable save file,
you can execute it in the foreground via the CLI's EXFG
command or with system call .EXFG. For either command
to work, you must have loaded the foreground program with
information about its software boundaries.

M 1o d oo d aaaiiba o e 3
10 10ad anda execiite a prograim in t

command line:

EXFG programname (CR)

If the boundary requirements of this program threaten to
overwrite any portion of the CLI or background program,
RDOS will not load the foreground program. Otherwise, if
its boundaries are valid, RDOS loads and executes the fore-
ground program; the CLI displays its R prompt when ex-
ecution begins. You can then try to execute a new background
program via the CLI, thereby swapping the CLI to disk. If
the program you wish to execute in the background requires
more memory than is available, RDOS does not execute it.

You can terminate a foreground program by typing CTRL-
F on the background console, or CTRL-A (or CTRL-C) on

162 RDOS System Reference

the foreground console, $TTII (if any). Any of thos actions
terminate a foreground program as long as (1) it has no
interrupt processing address in USTIT (or USTBR) in its
UST. and (2) no higher-level foreground program has such
a processing address in its UST. The foreground program
can release its memory to the background by issuing a .RTN
command.

When you terminate the foreground via CTRL-F, CTRL-
A, or CTRL-C, or when the foreground program yields its
memory to the background via a .ERTN or .RTN command,
the message FG TERM appears on the background console.

Figure 6.1 depicts two possible command sequences to pro-
duce foreground/background operation in an unmapped sys-
tem. It uses two sample programs, FGN and BGD. Shaded
areas represent storage areas occupied by User File Tables
(UFT’s). These are 45,-word structures used by the oper-
ating system to record file and device information for each
disk file opened on a channel. RDOS stores file information
in a section of each UFT called a UFD; you can access UFD
information with the .STAT command, described in Chapter
3. In all mapped systems, UFTs reside in system space.

Licensed Material--Property of Data General

RDOS
free area
NREL
BG NMAX b— — ——]
CLl
free area
— — —— — —,ZREL
CLI
STAGE 1
Execute program BGD via
Execute program FGD ClLlon level 1;CLlis
via the CLI: EXFG FGD) swapped to disk: BGD)
RDOS RDOS
free area
FGNMAX }— — — — —
. free area
FGD'S NREL NREL NREL
free area
BG NMAX f— — —— — — BG NMAX b— — — —
CLI BGD'S NREL]
FGD'S ZREL free area
— —— —— —— —1,ZREL —— —— —— — —) ZREL
CLI BGD'S ZREL
STAGE 2 STAGE 2
Execute program BGD via Program BGD executes program
the CLI on level 1; the CLI FGD via .EXFG
is swapped to disk: BGD) /
\ RDOS
free area
FG NMAX b— — — ——
FGD'S NREL NREL
free area
BDG'S NREL UFT Storage
BG NMAX [uer storag
FGD'S ZREL
— — ——— e [__Jroos
BDG’'S ZREL
STAGE 3

To return to stage 1, FGD issues RTN, relinquishing its
memory to BGD. BGD then issues .RTN. From the console,
typing CTRL-A, then CTRL-F would achieve the same
end by interrupting the programs.

Figure 6.1 Loading foreground and background programs in an unmapped system

Licensed Material--Property of Data General RDOS System Reference

SD-00531

163

Foreground/Background System

Calls

This section describes the system calls used to implement

dual programming. In order of discussion, they are:

.EXFG

.FGND

JCMN

.WRCMN

.RDCMN

.WROPR

.RDOPR

.EXBG

164

Execute a program in the foreground.

See if the foreground is running, and check the

status of the current program.

Define a program communications area.
Write a message to the other program.
Read a message from the other program
Write an operator message.

Read an operator message.

Checkpoint a mapped background program

RDOS System Reference

EXFG

Execute a program in the foreground

This call loads a program save file into foreground memory
and transfers control to it. Only a background program can
issue this command. In an unmapped system, you must have
loaded the save file with boundary information as explained
in the preceding section. RDOS passes the contents of AC2
to the foreground program.

Required Input

ACO - Byte pointer to the foreground program save file’s

name.

ACI1 - Appropriate starting address/foreground priority code.
Two possible addresses are allowed: the program
starting address (USTSA), and the Debug III starting
address (USTDA). The codes permitted in AC1, and
their meanings, are:

0B15

IB15

0Bl

1B1

Format

.SYSTM
EXFG

error retrn
normal return

USTSA. Pass control to the ready task of
highest priority in the program. (Initially
this is the program itself.)

USTDA. Pass control to the debugger.

Give the foreground program a higher
priority than the background.

Give the foreground and background the
same priority.

Licensed Material--Property of Data General

Possible Errors

AC2 Mnemonic Meaning

I ERFNM Illegal filename.

4 ERSVI File requircs Save attribute.

12 ERDLE File does not exist.

21 ERUFT Mapped systems only: not enough
channels defined during system gen-
eration to satisfy the value specified in
USTCH of the save file.

26 ERMEM Attempt to allocate more memory than
1s available.

32 ERADR* Hiegal starting address.

53 ERDSN Directory specifier unknown.

66 ERDNI Directory not initialized.

70 ERFGE Foreground already exists.

73 ERUSZ Too few channels defined at load time
Ul dutiig sysictl gelieratiol.

74 ERMPR Address outside address space.

101 ERDTO Disk timeout occurred.

*RDOS returns ERADR if the code input in ACI is illegal or if the required
address is missing from the UST. This can occur if (1) you did not specify
a starting address for the save file and you input code 0B15 in AC!, or
(2) you did not load the debugger as part of the save file and you input
code 1B15 in ACI.

Licensed Material--Property of Data Generai

.FGND

See if a foreground program is running and check your own
level

This system call is used to determine whether or not a
foreground program is running in the system, and at what
level the calling program is running. The command passes
-1 in ACO if it finds a foreground program, and passes 0
in ACO if it does not. In AC1, the .FGND command returns
a code indicating the calling program’s level. The possible
codes and their meanings are:

1 Background level 0

2 Background level 1

3 Background level 2

4 Background level 3

5 Background level 4

6 Foreground level 0

7 Foreground level 1

10 Foreground level 2

11 Foreground level 3

12 Foreground level 4

Required Input

None.

Format

.SYSTM
.FGND

error return
normal return

Possible Errors

None

RDOS System Reference 165

JCMN

Define a program communications area

This system call permits your program to define a contiguous
area of up to 256, words within its own address space to
send or receive messages from another program. The fore-
ground and background may each define one communica-
tions area.

Required Input

ACO - Starting address of the communications area.
AC1 - Size of the communications area in words.

Format

.SYSTM
.ICMN

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

62 ERCMS Communications area exceeds the pro-
gram size or would overwrite the sys-
tem.

74 ERMPR Address outside address space.

166 RDOS System Reference

.WRCMN

Write a message to the other program

This system call writes a message of up to 256,, words from
the calling program (foreground or background) into the
other program’s communication area. The message sent may
originate from anywhere within the sender program’s ad-
dress space.

Required Input
ACO - Word address of the start of the message.

ACI1 - Word offset within the other program’s communi-
cations area which will receive the message.

AC2 - Number of words to be sent.

Format

.SYSTM
.WRCMN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

62 ERCMS Message too large for communications
area.

63 ERCUS No communications area is defined in
the other program.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

.RDCMN

Read a message from the other program

This system call allows the calling program to read a mes-
sage of up to 256 decimal words from another program’s
communications area. The receiving program may accept
the message anywhere within its address space.

Required Input

ACO - Starting word address to receive the message.

ACI - Word offset within the other program’s communi-
cations area where the message originated.

AC2 - Number of words to be read.

Format

.SYSTM
.RDCMN
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

62 ERCMS The size of the requested message ex-
ceeds the size of the communications
area.

63 ERCUS No communications area is defined in
the other program.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

.WROPR

Write an operator message

This system call instructs the calling program to write a text
string to the system console. $TTO. There may be only one
outstanding write-operator command in a program area. The
message must consist of an ASCII string less than or equal
to 129 characters in length, including a carriage return, form
feed, or null terminator. On the console, RDOS displays
two exclamation points (!!). either an F or B. and then the
message. Letters F or B indicate whether the message came
from the foreground or background program, respectively.
Thus, text strings appear on the console are in one of two
forms:

!IFtext string or //Btext string

You should not issue this call if you have also used OPCOM
commands or task calls . TWROP and .TRDOP in the en-
vironment

Required Input
ACO - Byte pointer to text string.

Format

.SYST™M
.WROPR
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address space.

120 EROPM Operator messages not specified during

system generation.

RDOS System Reference 167

.RDOPR

Read an operator message

This system call prepares the calling task to receive an
operator message from the system console, $TTI; the task
may exist in either the foreground or background programs.

Before typing the message to the program, you must type
CTRL-E (echoed on the console as !), followed by an F or
a B to indicate whether a foreground or background program
is to receive the message. RDOS recognizes CTRL-E only
if it is the first character in a line.

If no program has requested a console message, the TTY
bell (if any) rings when you press CTRL-E; if the second
character is any other than an F or B (or rubout), the TTY
bell rings again and RDOS accepts no further input until
you type the correct character.

If immediately after pressing CTRL-E you wish to cancel
the message transmission, press the RUBOUT key instead
of characters F or B. This key erases message characters,
starting with the most recent one typed. RDOS echoes a
left arrow (=—) on teletypewriters; on CRT displays, it
erases the last character each time you press the key. The
last character in the message string must be a carriage return,
form feed or null, and the total length of the message,
including its terminator, can be up to 132 characters.

Only one program (task) in each ground may have a read-
operator message request outstanding at any given moment.
The .RDOPR command should not be issued if you are
using OPCOM commands or task calls . TWROP and .TRDOP
in this program environment.

Required Input

ACO - Byte pointer to message area.

Format

.SYSTM
.RDOPR
error return
normal return

On the normal return, RDOS passes the message byte count
(including the terminator) in ACI.

Possible Errors

AC2 Mnemonic Meaning

74 ERMPR Address outside address space.

120 EROPM Operator messages not specitied during

system generation.

168 RDOS System Reference

.EXBG
Checkpoint a mapped background program

Checkpointing is the practice of suspending one background
program (the checkpointed program) temporarily so that you
can execute a new program in the background. Only a mapped.
foreground program may issue the checkpoint call. The
foreground can also pass an optional, onc-word message to
the new background program. There may be only one check-
pointed program at a time; RDOS does not allow nested
checkpoints.

Before you can checkpoint a background program, it must
meet two conditions: (1) it must not perform any multiplexor
[/O, and (2) it must not use any of the following system
calls:

.DELAY

.RDOP
.IDEF/.IRMV
.DUCLK/.RUCLK

When a background program is checkpointed, RDOS dis-
plays the message

CP ENT

on the console. RDOS saves the following constants from
the original background program. and restores them when
it restores that program:

priority

floating-point processor state
ongoing console input
current directory.

During the checkpoint, the current directory for both grounds
is the foreground’s current directory. Thus, if the new back-
ground program needs to access files, they must be n the
current directory or you must include directory specifiers to

them.

The new program can be assigned one of two priorities: that
of the foreground, or that of the checkpointed program.

Since RDOS preserves $TTI input to the checkpointed pro-
gram, STTI becomes unavailable for use by the new back-
ground program except via the .RDOP command. The new
program can direct output to $TTO via system call .WROP,
which writes an operator message.

The new program can restore the checkpointed program by
issuing the .ERTN or .RTN commands: you can also restore
the checkpointed program by entering CTRL-A or CTRL-
C from STTI. provided the new program’s UST does not
specify a different interrupt routine.

Licensed Material--Property of Data General

On a keyboard interrupt, RDOS displays the message Possible Errors

CP INT AC2 Mnemonic Meaning

on $TTO. Tt displays the message
1 ERFNM Illegal tilename.

CP RTN
2 ERICM Attempt to checkpoint in an unmapped
on $TTO when the new program restores the checkpointed system.
program normally, via a .RTN or .ERTN command.
4 ERSVI File requires S (save) attribute.
Required Input
ACO - Byte pointer to the new background save file’s name. 12 ERDLE File does not exist.
ACl1 - 1BO: give the new background program the same 21 ERUFT Not enough channels defined during
priority as the checkpointed program. Clear all other system generation to satisty the value
bits in AC1 to zero. specified in USTCH of the new back-

ground program.
AC2 - Optional, one-word message to the new background
program. 25 ERCM3 Attempt to checkpoint a checkpointed
background program.

Format)
SYSTM 26 ERMEM Attem.pt to allocate more memory than
EXBG is available.
error return
normat return 53 ERDSN Directory specifier unknown.
57 ERLDE Link depth exceeded.
66 ERDNI Directory not initialized.
73 ERUSZ Too few channels defined at load time

or during system generation.

74 ERMPR Address outside address space.

76 ERNTE Program to be checkpointed is not
checkpointable, or attempt to create two

outstanding checkpoints.

101 ERDTO Disk time-out occurred.

Licensed Material--Property of Data General RDOS System Reference 169

Example

In the following sequence, three sample programs complete
a checkpoint procedure. The background program to be
suspended with a checkpoint is called BACK, the fore-
ground program that will execute the checkpoint is called
FORE:; and the program to be checkpointed into the back-
ground is named COMP.

1. First the programs FORE and BACK are executed from
the CLIL:

EXFG FORE (CR)
R

EXFG BACK (CR)

2. While both FORE and BACK are running, FORE issues
the .EXBG command to COMP, checkpointing COMP into
execution. BACK is suspended, but RDOS saves its current
state, the FPU, all $TTI input to it, and remembers its
current directory. The console displays the message CP ENT.

3. COMP reads data from some of FORE’s files; it issues
a few .WROP and .RDOP commands and receives replies
from the console.

Having done its work, COMP writes data to a file in FORE’s
current directory. It then signals FORE that it is done via
call . WRCMN. FORE receives the message, reads COMP’s
data from the file, and continues.

4. COMP issues system call .ERTN. The console displays

cP RTN. And BACK resumes execution from its original,
current directory. The console displays CP RTN.

170 RDOS System Reference

Summary

Table 6.1 summarizes the system calls for dual program-
ming discussed in this chapter.

System Cail Function

.EXBG Suspend one mapped, background program
and execute another.

EXFG Load a program save file into foreground
memory and execute it.

.FGND See if a foreground program is running, and
check the program level at which the caller
is running.

ACMN Define a communications area.

.RDCMN Read a message from another program’s
communications area.

.RDOPR Read an operator message from the system
console, $TTI.

WRCMN Write a message from the calling program
(foreground or background) to the other pro-
gram’'s communications area.

WROPR Write a text string to the system console,
$TTO.

Table 6.1 System call summary

Licensed Material--Property of Data General

Chapter 7

Interrupts and Power Failures

Many real-time computer control systems require interaction
with nonstandard devices to obtain information from, and
provide information to, real world environments. This chap-
ter explains how to service interrupts from devices, how the
system handles power failures, and how you can write user
power-fail routines.

Servicing User Interrupts

This section includes

o Commands for Interrupt and Power Fail Routines
o Generalized I/O Routines

e [/O Buffer Module

When the CPU detects an interrupt request, it suspends the
current program and directs control to its device interrupt
service program, INTD. (INTD is part of RDOS and is
always memory-resident.) The CPU then directs control
through the interrupt vector table to the proper device control
table (DCT), using the device code as a guide.

After a user interrupt occurs, control goes to your service
routine; AC3 contains the return address required for exit
from your routine, and AC2 contains the address of the
DCT. The task call .UIEX exits from the routine and returns
to the current environment. You can issue .UIEX in both
single- and multitask environments.

RDOS removes all user devices from the system when either
a program swap or a chain occurs. When the system receives
a user interrupt on a program level that has not identified
the user device, it issues an NIOC to the device and then
returns to normal program execution.

Whenever a device requiring special user service generates
an interrupt request, the entire task environment halts until
RDOS has serviced the interrupt. All tasks resume their
former states when the environment restarts, unless you
transmit a message to one of them via the .IXMT command
from the interrupt service routine. (The .IXMT command
was discussed in Chapter 5.) Rescheduling of the program
and task environment can occur upon return from the rou-
tine, depending on the contents of ACI in the return com-
mand. (See .UIEX, described next.)

Licensed Material--Property of Data General

Commands for Interrupt and
Power Fail Routines

In addition to the .IXMT command, your user interrupt or
user power fail routine can issue task calls .SMSK, .UIEX,
and .UPEX. These commands, along with system calls .IDEF,
JIRMYV, and .STMAP, are described in this section. They
apply to both single- and multitask environments, and, un-
less otherwise noted, to both mapped and unmapped ma-
chines.

RDOS System Reference 171

JIDEF Format

Identify a user interrupt device .ISI;/ES';I'M

normal return

This system call introduces to RDOS a device that you did o000

not identify during system generation, but whose interrupts
you want the system to recognize. (The .IDEF call places
an entry in the interrupt vector table.) A maximum of 10
user devices can be identified to the system at any moment.
An .IDEF to any device also provides access to device code
775, so that you can do such things as disable and enable

Possible Errors

AC2 Mnemonic Meaning

interrupts. 36 ERDNM Illegal device code (greater than 76;).
Device code 77; is reserved for CPU

The number of free device codes (those that you can assign which supervises the power monitor/

to user devices) depends on the hardware in your RDOS auto restart option.

system. You can find system devices and their codes on the

instruction reference card for your computer. 45 ERIBS Interrupt device code in use, or 10 user

devices already identified.
If your system has an IPB, and you want control when the

watchdog timer times out, you must identify the timer via 65 ERDCH Unmapped systems only: insufficient
the .IDEF command. (See Chapter 8.) If you generated the room in data channel map.

current RDOS system without an IPB and subsequently

introduce a device on device code 36, RDOS issuesa NIOP 74 ERMPR Mapped systems only: address outside
to device code 37 whenever the real-time clock or power- address space.

fail monitor interrupts. (The IPB has device code 36, and
the watchdog timer, device code 37.) To prevent this in-
teraction from occurring, avoid using device codes 36 or
37 for a user device.

To introduce a data channel device, your program must
establish the data channel map for the device via the .STMAP
command discussed later in this section. (The .STMAP
command applies to mapped systems only.)

If you introduce communication software such as CAM,
RDOS throws away interrupts left outstanding from pro-
grams that terminate without clearing their devices.

Required Input

ACO - Device code of the new device.

ACl1 - Address of the new device’s DCT. In a mapped
system, this address must be in NREL space, ie,
above 400;. Also in a mapped system, set bit 0 to
1 if you want the new device to use the data channel.

AC2 - Mapped systems only: number of 1K core blocks
required by the data channel map. This number must
be one larger than the integer number of 1,024-word
blocks used for data channel core buffers. (Appli-
cable only if you have set bit 0 of AC1 to 1 for this
call.)

‘172 RDOS System Reference Licensed Materia!--Property of Data General

UIEX

Exit from a user interrupt routine

This command returns control to a program environment
after a user interrupt; you can use it only to terminate an
interrupt service routine. In all systems, you can force re-
scheduling by passing a nonzero value in ACI; if ACI
contains O when you issue this command, the environment
resumes without rescheduling. In a mapped system, RDOS
ignores values input in the other accumulators. In an un-
mapped system, you must restore AC2 and AC3 to the

addresses they held on entry to the routine:; otherwi

CLILSSLS 1L 1O O CIly 0 UIC ToU

system will crash.

Required Input
ACI1 - Zero only to suppress rescheduling.

AC2 - Unmapped systems only: address upon entry to rou-
tine (DCT).

AC3 - Unmapped systems only: address upon entry to rou-
tine (return address).

Format
UIEX

Possible Errors

None.

Licensed Material--Property of Data General

.UPEX

Exit from a powwer fail service routine

This command accomplishes an exit trom a user power fail
service routine, forcing rescheduling. Control returns to the
location that was interrupted by a power failure. The same
restrictions applying to system and task calls in a user in-
terrupt service routine apply to a user power fail routine.
The .UPEX command is discussed again in the context of
power fail/auto restart procedures at the end of the chapter.

AC3 - Return address upon entry to the routine (unmapped
systems only).

Format
.UPEX

Possible Errors

None.

RDOS System Reference 173

JRMYV
Remove a nonSYSGENed interrupt device

To prevent the system from recognizing an interrupt device
that was identified by the .IDEF command, issue system
call .IRMV.

Required Input

ACO - Device code for the device that you want to remove
from the system.

Format

.SYSTM
IRMV

error return
normal return

Possible Errors

Only one possible error results from this command. Its mne-
monicis ERDNM, indicating an illegal device code (greater
than 77,) or an attempt to remove a SYSGENed device.
RDOS returns code 36 in AC2 when this error occurs.

174 RDOS System Reference

SMSK

Modify the current interrupt mask

Use this task call to change your interrupt mask for a service
routine in both single- and multitask environments. When-
ever a user interrupt occurs, RDOS ORs the interrupt mask
with the mask in the DCTMS of your DCT to produce the
current interrrupt mask. The .SMSK command allows your
interrupt routine to change the old mask and produce a new
one which is the logical OR of the old mask and a new
value. The .SMSK command destroys the accumulators, so
you must restore them for the subsequent exit via task call
.UIEX.

Required Input
AC1 - New value to be ORed with old mask.

Format

.SMSK
normal return

Possible Errors

None.

Licensed Material--Property of Data General

STMAP

Set the data channel map

Before a user device can employ the data channel in a
mapped system, your program must issue the .STMAP com-
mand to set up the data channel map. This is a special map
maintained by the mapping hardware for data channel use.
The .STMAP command sets up the data channel map for
the user device and returns in ACI the logical address that
you should send to the device. This call is a no-op when
issued in an unmapped system.

Required Input
ACO - Device code.

AC1 - Starting address (in your address space) of the de-
vice buffer.

Format

.SYSTM
.STMAP
error return
normal return

Possible Errors

AC2 Mnemonic Meaning

36 ERDNM Device code not previously identified
via .IDEF as a data channel device.

74 ERMPR Address outside address space.

Licensed Material--Property of Data General

Power Fail/Auto Restart
Procedures

RDOS provides software support for the power fail/auto-
matic restart option. When the system detects a power loss,
it transfers control to a power fail routine that saves the
status of all accumulators, the PC, and Carry.

If the console key is in the LOCK position when power
returns, the system console displays this message once power
18 restored:

POWER RESTORED

If possible, the system restores task state variables, resuming
operating at the point of interruption. After this message
appears, your disk drives may require extra time (up to one
minute) to come back on line.

If the console key is in the ON position when power returns,
you must set all data switches to zero (down) and lift START
once power is restored. The message POWER RESTORED
is then displayed; task state variables are restored, and op-
eration resumes.

RDOS provides power-up restart service to the following

system devices:

Teletypewriters and CRTs
Disks

Multiplexors

Line printers

Paper tape readers and punches
Card readers

Plotters

Character output devices may lose one or more characters
during power up. Since power-up service for disks includes
a complete reread or rewrite of the current disk block, you
will lose no disk information, although you must wait for
the disk unit’s READY indicator to light. When power
returns, RDOS restores modem multiplexor lines when the
user dials in. Line printers may lose up to a single line of
information. Card readers may lose up to 80 columns of
information on a single card. Devices requiring operator
intervention, such as line printers, must receive an opera-
tor s attention it power was lost tor an extended period of
time.

Note that RDOS does not provide power-up service for
magnetic tape units, and that no power-up service is possible
for semiconductor memory without a backup battery.

RDOS System Reference 175

Power-up Service for User Devices

To provide power-up service for a magnetic tape unit or for
your own device. you must write an interrupt service routine
using the .IDEF command as follows.

Required Input

AC1 - Starting address of the user power-up service rou-
tine.

Format

.SYSTM
IDEF

error return
normal return

The error return is never taken.

In both mapped and unmapped systems, exiting from a user
power-up service routine forces rescheduling and is accom-
plished by task call .UPEX. The same restrictions applying
to the use of system and task calls in a user interrupt service
routine apply to a user power fail routine.

Upon entering a user power fail service routine, AC3 con-
tains the address required to exit from it. To return from
the routine in an unmapped cnvironment, AC3 must be
loaded with this return address, and task call .UPEX must
be issued. In mapped systems, the value input in AC3 when
this call is issued is ignored. Issue the .UPEX command
according to the following guidelines.

Required Input

AC3 - Return address upon entry to the routine (unmapped
systems only).

Format
UPEX

Control returns to the location which was interrupted by a
power failure. No error or normal returns need be reserved.
The .UPEX command can be issued in a single-task envi-
ronment. Note that this command applies only to revisions
03 and higher of RDOS.

176 RDOS System Reference

Summary

This chapter described several system and task calls that
figure importantly in interrupt and power fail programs.
These commands are summarized in Table 7.1.

Command Function

.IDEF Introduce to RDOS a device, not defined dur-
ing system generation, whose interrupts you
want the system to recognize.

RMV Prevent the system from recognizing a device
defined via the .IDEF command.

.SMSK Modify the current interrupt mask.

.STMAP “Set up the data channel map for a user device.

UPEX Exit from a power fail service routine.

UIEX Exit from a user interrupt routine.

Table 7.1 System and task call summary

Licensed Material--Property of Data General

Chapter 8

Multiple Processor Systems

This chapter describes managing a system that includes more

than one Data General comnuter There are twa hardware
LIIQLl Vliv 470410 Jviivi g VUllll.lul\/ln 4A1lviv diIv LYY udiuyvals

options available to manage such a system: (1) an Interpro-
cessor Buffer (IPB), Model 4240, which allows two CPUs
to communicate via full duplex lines; and (2) a Multipro-
cessor Communications Adapter (MCA), Model 4206, which
allows up to 15 CPUs to communicate via full duplex lines.
The MCA also allows foreground and background programs
to communicate at data channel speeds.

Overview

If you have an IPB or MCA, you can run your processors
together, in a multiprocessor system: this system can usc
any or all of the features described in previous chapters of
this book. If you have neither device, cach CPU in your
installation must run independently

You can coniigure an KDOUS system to support either (or
both) an IPB or MCA during system generation by correctly
answering the questions that SYSGEN asks these devices.

The IPB provides one, full-duplex line for sequential and
line I/O between two processors. It also provides a half-
duplex line for RDOS; this enables RDOS to assure that
systems sharing disk partitions do not simultaneously mod-
ify the system (SYS.DR) or map (MAP.DR) directories of
any partition. The IPB also provides an interval timer that
permits each processor to monitor the activity of the other.
If either processor fails to service its real time clock pe-
riodically. the timer alerts the other processor.

Note that on a hardware level, each shared disk must be
installed with the same device code and unit name. If one
processor has a disk hard-wired as the first controller, DPO,
the second processor must also have the disk hardwired as
the first controller, DPO. Both processors reference the disk
as DPO. If a disk is unshared. however. its device name
must be unique.

Both processors must run with an RDOS of the same re
vision level for IPB support to work. If not. one processor
or the other will very likely enter Exceptional Status, a

condition described in Appendix E.

IPB support maintains the integrity of system files and disk

Licensed Materiai--Property of Data General

file structures, but does not provide protection tor the con-
tents of uscr files. Thus, if both users try to access the same

file simultaneously one file, or fractions of it, may be lost.

A typical IPB system consists of two CPU’s operating in-
dependently. This system permits each CPU to have a fore-
ground and background program; programs in both CPUs
can access files in the same disk partition. The IPB maintains
the integrity of SYS.DR and MAP.DR in common disk
partitions, and allows cach CPU to monitor the other’s ac-
tivity.

Another dual-processor application might use the IPB to
Dack up a clibical, feal-tie prograni. in cntical real-time
situations, redundancy helps safeguard the total system, and
allows it to continue running even if a CPU fails. One
example of a fail-safe IPB application is a main system that
rune the critical process whil
ready to assume the main system’s functions should it fail.
While it is standing by, the back-up system runs jobs of
lower priority, such as data analysis. summary reporting,
and program development. If the main system fails, the
interval timer detects this failure and signals the back-up
system to take control.

The MCA does not have an interval timer; nor does it allow
CPUs to share disk directories. It does, however, enable up
to 15 CPUs to communicate via their data channels. Each
MCA controller supports up to 15 separate lines, and each
MCA line provides asynchronous, full-duplex communi-
cations links for sequential I/O. Each line is a filename,
which your program can access via system calls and which
vou can access via CLI commands. You can also transmit
an entire RDOS system via the special CLI command,
MCABOOT. Each MCA line offers high-speed, interpro-
gram or interprocessor communications with little processor
overhead.

RDOS 1tselt does not use the MCA. Unless you generate
RDOS with IPB <upport. it does not maintain the integrity
of a partition accessed by more than one processor.

To run a multiprocessor system under either IPB or MCA,

each CPU must bootstrap an operating system in a seperate
disk partition, and each partition must have its own copy

RDOS System Reference 177

of an RDOS system and CLI (files CLL.SV. CLI.OL. and
CLLER).

Interprocessor Buffer (IPB)
Programming

This section discusses IPB programming considerations such
as the interval timer and full-duplex, communications line
featured IPB hardware. The section also examines a hy-
pothetical IPB program, and describes system call .BOOT,
which bootstraps the separate operating systems required in
multiprocessor environments.

Interval Timer

The Interprocessor Buffer (IPB) hardware features an in-
terval timer that tells one processor when the other processor
has stopped. Specifically, the timer generates an interrupt
request if either processor fails to service its real time clock
every second. RDOS treats this interrupt request as a user
interrupt. You can write routines to identify the interrupt
via system call .IDEF, described in Chapter 7. The device
code of the interval timer is 37,.

An interval timer interrupt indicates to RDOS that the other
processor has stopped; hence, you should not use IDEB, or
any other program that suspends interrupts for extended
periods, while both processors are running.

Dual Processor Program Communications

IPB hardware also allows two processors to communicate
via a full-duplex line. This communications link permits a
user program running in either processor to read or write
line or sequential /O to the other processor, via special
filenames. The filenames for the read and write operations
are:

$DPI - Input dual processor link (device code 40,).
$DPO - Output dual processor link (device code 41.)

Each side has links $DPI and a $DPO. The output link
($DPO) of each side is connected to the other side’s input
link ($DPI). Thus, one side’s $DPO writes to the other side’s
$DPI. To show how this scheme works in practice, assume
two CPUs named CPUA and CPUB, and their respective
programs, PROGA and PROGB. If PROGA wants to write
to PROGB, it would do so via output link SDPO; PROGB
would read from input link $DPI. Simultaneously. PROGB
could write a message to PROGA via its own output link.
Each $DPO is a spoolable device. (PROGB should issue
the read request before PROGA issues the write, or a char-
acter will be lost.)

178 RDOS System Reference

IPB Example

In this example, the main program (P) monitors and controls
areal-time environment, and a secondary program (S) stands
by to take over if P fails. A special restart task will bootstrap
a system for S via system call .BOOT, described next.

P, the control program, runs in the foreground of one CPU,
while less critical programs run in the background. (P could
also run in the background of a single-ground environment.)

As the primary program (P) monitors and controls the real-
time environment, it sends periodic status reports to a log
file on its disk so that, in the event of its failure, S can seize
control and maintain continuity.

The backup program, S, runs in the second CPU, in either
a single- or dual-ground environment. At its very beginning,
S creates a highest-priority restart task, which suspends itself
by issuing a .REC call to the user’s interval timer interrupt
routine. This interrupt routine issues the .IXMT command
to activate the restart task, which then bootstraps S.

If the main CPU, running P, develops a problem, the interval
timer generates an interrupt, and the interval timer service
program in S readies the restart task. The restart task then
closes all files in program S; releases all of S’s directories:
resets 1/O; and bootstraps a new RDOS system, identical to
P’s. Having bootstrapped this new system, S reads P’s status
reports to determine where it stopped, and proceeds to mon-
itor and control the real-time environment.

Licensed Material--Property of Data General

.BOOT Possible Errors

Bootstrap a new operating system
AC2 Mnemonic Meaning

‘This command executes an orderly shutdown of the current
RDOS system, and bootstraps the system you have indicated 23 ERRTN File RESTART.SV does not exist, yet
by a byte pointer in ACO. Specifically, a .BOOT operation
resembles that of the CLI's BOOT command—it closes all
background and foreground files; releases their directories;
resets all I/O; and then bootstraps the new system, which 53 ERDSN
must exist in a secondary or primary partition. If the byte
pointer specifies a link entry to the new system, you must 74 ERMPR

data switches were set for restarting
without operator intervention.

Unknown directory specifier.

: Address outside address space (mapped
also link the new svstem’s overlayv file and initialize all

aidsy LI UV Syowi 3 Uviiidy 1ub dnu uuiuaiiZe ain SyStemS Only)

partitions involved in the resolution chain.

) , 101 ERDTO Disk timeout occurred.
When you bootstrap a system conventionally, it asks ques-
tions about the date and time, and then invokes the CLI. If 107 ERSFA
all data switches are in the up position or the switch register
contains -1, RDOS searches for a file named RESTART.SV
and, if unable to find it, invokes the CLI. If a program
issues the .BOOT command and all data switches are in the
up position or the register contains -1, the new system comes
up automatically with the default time and date of January
1, 1968; then .BOOT chains control on level 0 to the file
RESTART.SV. If this file does not exist. the .BOOT com-
mand asks the conventional log-on questions.

Spool file is active.

The file RESTART.SV does not initially exist, but must be
created in order to bootstrap a system without operator in-
tervention. It could also be the name of the user program
itself, or linked to the program name. If the current date
and time are important to the real-time process, you must
find some way to get them to the new program—perhaps
via RESTART.SV itself, if the old program periodically
stored date/time data in a file that RESTART can read when
it assumes control.

Required Input

ACO - Byte pointer to name of new operating system.

Format

.SYSTM
.BOOT
error return

There is no normal return, since upon the normal completion

of this call BOOT receives and then passes control to the
new operating system.

Licensed Material--Property of Data General RDOS System Reference 179

MCA Programming

This section discusses the MCA programming considera-
tions of data transmission, the use of CLI commands on
MCA lines, and the transmission of operating systems or
stand-alone programs from one MCA unit to another. The
section also describes the .GMCA command which retrieves
the MCA number of the current CPU.

Data Transmissions

The type 4206 Multiprocessor Communications Adapter re-
ceiver/transmitter (MCAR/MCAT) allows programs to com-
municate over full-duplex lines, in blocks of up to 8192
bytes, via the data channel. Each program can exist within
the program space of a single CPU, or within up to 14 other
CPUs, or both. A second 4206 receiver/transmitter, MCAR1/
MCAT1, provides up to 15 more communications links.
Each CPU may communicate with any other CPU.

Depending on whether it is transmitting or receiving, each
MCA line is a filename of the following form:

MCAT(1):rr
or
MCAR(2):tt

where rr represents a receiver unit number from 1 through
15, and tt represents a transmitter unit number in the range
of 0 through 15. Thus, four CPU’s, each running foreground
and background programs, may have ten possible lines con-
nections, as shown in Figure 8.1.

CPU
No. 1

MCAj > ¥

MCA] - MCA
CPU \ f cPuU
No. 3 J o & No. 2
e A =/
MCA | &
CPU
No. 4
Figure 8.1 Multiple processor line connections SD-00554

180 RDOS System Reference

Referring to Figure 8.1 and assuming that CPU 1 wants to
read (receive) from CPU 3. each unit would issue the fol-
lowing sets of instructions:

CPU 1

.OPEN N ;OPEN MCAR:3.

.RDS n ;WAIT FOR THE DATA.
;READ IT WHEN SENT.

CPU3

.OPENn ‘WRITE (TRANSMIT) TO.

WRS n :WRITE (TRANSMIT) TO

; THE RECEIVER LINE.

CPUs 1 and 3 operate under distinct RDOS systems. Thus,
in the excerpt of code just shown, there is no relationship
between channel n for unit 1 and channel n for unit 3.

A receiver can request a transmission from any transmitter
by issuing a read call to receiver 0 (filename MCAR:0).
After a receiver issues this call, any transmitter can write
to it. Thus, if a program in CPU 1 had issued three receive
requests—to MCAR:1, MCAR:3, and MCAR:0—it would
receive transmissions from three sources: (1) from its own
machine (transmission from the other ground), (2) from a
program in CPU 3, and (3) from any other program that
wanted to transmit to it. Each transmitter would transmit
by issuing a write to MCAT:1.

All messages must begin on a word boundry, and the receive
and transmit byte counts must match. To transmit an end
of file, you can transmit a zero-byte message (eg, a .WRS
operation of zero bytes).

A timeout occurs only in an MCA transmitter; a receiver
can wait indefinitely. The timeout period ranges approxi-
mately from 200 miliseconds to 655 seconds. The default
timeout is 655 seconds; you can select a shorter period when
you open the MCA line and issue a write sequential. Refer
to the descriptions of the .OPEN and .WRS commands in
Chapter 3 for details.

Using CLI Commands on MCA Lines

As described earlier, each MCA line has a filename. This
name can be used in conjunction with many of the CLI
commands that take a filename in argument. The only spe-
cial requirement is that the CLI command be present in both
receiver and transmitter, since no data transmission can
occur without simultaneous receive and transmit requests.

Moreover, you can transfer (via the XFER, but not the
LOAD or DUMP, command) disk files across MCA lines.
Thus, assuming the configuration shown earlier in Figure
8.1, the following CLI sessions would occur to transfer file
ABC from CPU 4s disk to that of CPU 2.

Licensed Material--Property of Data General

From CPU 2, an operator enters this statement on the system
console:

R
XFER MCAR:4 ABC (CR)

With this command, CPU 2 tells its MCA to transfer the
contents of MCAR:4 to ABC on its disk. Because CPU 2
is addressing a receive line, this is a receive request. Al-
ternatively, the same operator could type:

R
XFER MCAR:0 ABC (CR)

With this statement, CPU 2 tells its MCA to transfer any
transmitter’s input to ABC on its disk.

From CPU 4, an operator enters the following command
line on the system console:

R
XFER ABC MCAT:2 (CR)

With this statement, CPU 4 tells its MCA to transfer the
contents of ABC on its disk to MCAT:? Because CPL' 4
is addressing its transmitter, this is a transmit request.

When a CPU issues a CLI command over an MCA line.
the CLI prompt does not return to its console until RDOS
has executed the command—or, if the transmitter issues the
request—until the transmitter has timed out.

Transmitting Copies of Systems or Stand-alone
Programs

RDOS provides a bootstrap program, MCABOOT, that
transfers and bootstraps a copy of an RDOS system to an-
other unit’s disk. Before sending the system, MCABOOT
can either fully or partially initialize the receiver’s disk.
Alternatively, MCABOOT can send and bootstrap a copy
of a stand-alone program to another unit’s disk, provided
that this program follows the conventions of programs which
BOOT can load. (BOOT need not reside in the receiving
unit’s disk space.) As with other MCA data transfers, both
receiver and transmitter must participate.

You execute the MCA bootstrap by issuing the CLI's MCA-
BOOT command. The transmitter and receiver must be on
the same network (MCA or MCA1) for transmission to
occur. An operator at the receiving CPU must have re-
quested the transmission by placing 100007, (MCA) or
100047, (MCAL1) in the receiver's data switches, and by
pressing RESET followed by PROGRAM LOAD. The
transmitting unit waits for the request from the receiver. but
only up to the timeout period of 655 seconds.

Licensed Material--Property of Data General

.GMCA
Get the current CPU's MCA number

Your program can get the MCA unit number of its CPU by
issuing system call .GMCA. It can then communicate this
number to programs running in other CPUs.

Required Input

ACO - MCA transmitter octal device code (6 for MCAT,
46 for MCATI).

Format

.SYSTM
.GMCA

error return
normal return

Upon the normal return, AC1 contains the MCA unit num-
ber.

Possible Errors

AC2 Mnemonic Meaning

3 ERICD Improper device code input to system
call
36 ERDNM Device not in system, that is, you did

not specify an MCA for this RDOS
system during system generation.

RDOS System Reference 181

Multiprocessor System Illustration

This section illustrates one application of a multiprocessor
system. It assumes a large, laboratory complex in need of
an automated system to control the environmental conditions
within the complex; to keep track of the number of personnel
at different locations; to monitor the complex for alarm
conditions; and to alert key personnel if it cannot correct a
condition. This system must be fail-safe, and can allow
down-time for no longer than a few seconds.

Figure 8.2 suggests one configuration for this system. Two
master CPUs, running under mapped RDOS, are connected
via an IPB, so that each can act as a watchdog on the other’s
behavior and can take control if the other fails. The IPB
also allows the CPUs to access common disk files. The
masters access a common data base which contains, among
other information, alarm messages and destinations to which
they should go on an alert. This file space also contains a
log of the current master’s activity, providing a record of
recent events for the alternate, master CPU in the event that
the current one fails.

182 RDOS System Reference

The laboratory includes three vital zones; a slave CPU mon-
itors and controls conditons within each zone. Each slave
can monitor and adjust both humidity and temperature. Ad-
ditionally, each slave keeps track of the positions of per-
sonnel within each zone. Finally, each slave monitors its
zone for alarm conditions; if they occur, it takes some re-
medial action, such as, activating a sprinkler system in the
event of fire. Each slave computer performs relatively sim-
ple operations, and could therefore run under RTOS, a core-
resident compatible subset of RDOS.

Each slave has a data channel line through its MCA to each
master computer (lines MCA through MCAG). This allows
the current master to generate continuous status reports and
transmit them to CRT monitors via the bus switch to an
ALM. An SLM multiplexor connects ‘‘hot lines’” to security
guards and fire station personnel to alert them in an emer-
gency.

Licensed Material--Property of Data Generai

“HOT LINES”

SLM

1/0 BUS SWITCH
DISK a
f S B x
-
CPU 1 IPB CPU 2
(MASTER) < > (MASTER)
L] I
MCA 1 MCA 2
IMCA BUS
MCA 3 MCA 4 MCA S5
L L1 L]
SLAVE 1 SLAVE 2 SLAVE 3
a b ¢ d a b ¢ d a b ¢ d
N——— e’ N——— s’
BUILDING ZONE 1 BUILDING ZONE 2 BUILDING ZONE 3

a - temperature sensor and control

b - personnel monitor

¢ - humidity sensor and control

d - intrusion, fire, smoke alarm and control

Figure 8.2 Multiprocessor system illustration

Licensed Material--Property of Data General RDOS SYStem Reference

DG-2544Y

183

Chapter 9

This chapter describes the tuning facility, which allows an
RDOS system to monitor its own performance and suggests
more efficient configurations for any application. The chap-
ter begins with a discussion of the data structures involved
in tuning, including system stacks, cells, and buffers. In
the course of this discussion, the RDOS system overlays
are listed by name and function. Then the operation of tuning
is explained, followed by a description of pertinent system
calls.

Overview

During system generation, you tailor an RDOS system for
a specific environment by answering the questions of the
program SYSGEN.SV. (For details on SYSGEN, refer to
How to Load and Generate RDOS. DGC No. 069-400013.
This manual also provides a practical discussion on tuning.)
Your answers o SYSGEN's questions deiermine the fea-
tures that your RDOS system will include, and the peripheral
hardware that it will support. SYSGEN also asks questions
about the tuning facility, allowing you to choose whether
your RDOS sytem will have tuning at all, and how extensive
the tuning function will be.

The tuning mechanism itself deals with certain software data
structures, called stacks, cells, and buffers. SYSGEN asks
you to supply specifications for each of these structures; the
tuning mechanism takes your answers and tests them as
RDOS runs. It can then print a tuning report that allows
you to decide on more efficient answers, or it can instruct
SYSGEN to modify your original answers when you gen-
erate a new system.

The latter approach, called self-tuning can generate a mod-
erately efficient version of RDOS for any application. Dur-
ing self-tuning, SYSGEN examines a previously generated
tuning report file and selects more appropriate responses to
questions about buffers, stacks, and cells. You can direct a
system to tune itself by including the name of the original
SYSGEN dialog file. along with the 'T switch, in the com-
mand line that invokes SYSGEN:

SYSGEN dialog-file/A tuning-file/T (CR)

SYSGEN examines the tuning file and attempts to generate
a system more efficient for this application than the one that

Licensed Material--Property of Data General

System Tuning

was ru_nmno when the hln}ng file was recorded. Du«‘n‘g sclf-

tuning, SYSGEN does not have a global view: it has only
the tuning file to work from, and must therefore make cer-
tain, arbitrary decisions—the value of user memory to this
given application, for example. As a result, SYSGEN can-
not completely determine the impact of tuning decisions
upon any given application’s efficiency. Nonetheless, it does
an adequate job for applications not requiring maximum
efficiency. By themselves, tuning file statistics are helpful;
but, in the final analysis, comparative timing of different
system configurations provides the true measure of effi-
ciency.

System Stacks, Cells, and Buffers

Before exploring tuning. it is important to understand how
system buffers, stacks, and cells are defined. RDOS is par-
tially core-resident and paruialiy disk-resident. ihis design
enables RDOS to offer features ordinarily found only on
larger operating systems, while the total, memory-resident
portion of the system remains modest. Stacks, cells, and
system buffers are all memory-resident parts of RDOS.

RDOS uses a system stack as a data base, to execute each
concurrent system call. The greater the number of outstand-
ing .SYSTM requests, the more system stacks RDOS needs
to service each request in parallel. If, for example, two
executing user tasks issue a system call concurrently, two
system tasks are then outstanding. To service both system
tasks in parallel, RDOS would require two system stacks.
At a single moment, RDOS services only as many requests
as it has available system stacks, in the order that these calls
were made. System tasks are associated not only with system
calls, but also with I/O device requests and with spooling.

Each system task also requires a cell, to save state infor-
mation. just as each user task has a task control block. There
is a fundamental difference between cells and TCBs, how-
ever: RDOS sometimes appropriates cells for temporary data
storage. but it never uses TCBs for this purposc.

A large part of memory-resident RDOS is a collection of
system buffers, which serve two functions. First, RDOS
uses buffers to receive system overlays, which provide code
not found in the resident portion of the system. Second,
RDOS buffers all I/O. except read/write block operations,

RDOS System Reference 185

via system buffers. RDOS requests and uses system stacks,
buffers and cells dynamically, as resources. When it needs
and cannot get any of these resources a fault occurs, it
suspends the calling system task, and system operation suf-
fers.

System Stack Requirements

The following guidelines will help you select the proper
number of system stacks during system generation. RDOS
requires stacks for disk I/O, spooling, and the concurrent
execution of system calls, as follows:

System Task Number of stacks required

Disk 1/0 Two stacks if you will be running multi-
task programs, or foreground and back-
ground programs that need to issue disk
/O system calls concurrently (eg, .OPEN,
JNIT, .WRL).

Spooling One stack.

System calls One stack for each user task permitted to
execute a .SYSTM call (requiring the use
of an /O device) concurrently with other
user tasks.

SYSGEN offers a choice of one to 10 (decimal) system
stacks. If this RDOS system will run single-task programs
in a background-only environment, you need only specify
one system stack. To spool output data, add another system
stack. If you allocate only one stack, RDOS will not spool
and will treat any system spooling commands that you issue
as no-ops. Likewise, if a system also has a foreground
program active and you have defined only two stacks, no
spooling will occur. At least two stacks are recommended
for a single-ground system; three, for a dual-ground system;
and more for Extended BASIC.

To illustrate further, suppose that you plan a background-
only, multitask program that spools to the line printer and
performs disk /O on only one channel at a time. This
program requires the allocation of three system stacks: one
stack for disk I/O, a second for line printer output, and a
third for the spooler.

In general, you should allocate enough stacks to prevent
system calls issued to slow peripherals (SPTR, MTA, etc.)
from interfering with system calls necessary to support a
real-time environment. Each .RDL or .RDS call to a non-
multiplexed console requires a system stack until the read
is completed.

Each system stack requires approximately 250, or 3505 words,
depending on your computer; the manual How to Load and

186 RDOS System Reference

Generate RDOS provides exact figures. Add the stack total
to the basic memory requirements of the RDOS system.

When the system attempts to allocate a stack and none is
free, it suspends the calling task and passes control to the
next system task that is ready for execution; RDOS will
attempt to allocate a stack for the suspended task at some
future moment. Thus, the tuning report may indicate mul-
tiple, unsuccessful stack requests for the same system task.
The same is true of certain cell requests. However, all un-
successful buffer and overlay requests, and most unsuc-
cessful cell requests, cause the system task to wait until the
appropriate resource becomes free.

System Cell Requirements

A system cell is a 20;-word control table that the system
uses primarily to save system task state information. The
optimum number of cells depends largely upon your sys-
tem’s application

.SYSGEN automatically allocates two cells for future read/
write block operations; three cells for each stack; and two
cells for an IPB, if you selected this option. It is recom-
mended that you specify two extra cells for each active spool
request, and one or two extra cells to improve the perform-
ance of the IPB, if any. Each active system call also needs
an extra cell.

Since one goal of tuning is to keep all peripheral devices
active concurrently,you need not allocate a cell for every
possible, future concurrent system call. For slow periph-
erals, a lack of cells can degrade the system’s operation.
Consider the apportionments of cells illustrated in Figures
9.1 and 9.2. In Figure 9.1, this RDOS system contains three
devices—a disk, a tape drive, and a line printer—and has
nine cells. The program environment contains 20 user tasks,
each one desiring the use of each of the three devices. As
it happens, these tasks want to use different devices; hence,
the system runs efficiently. As each task issues an I/O re-
quest, RDOS enqueues its cell to that device so that the
next task in line will eventually be able to use it when it
becomes free. Thus, RDOS enqueues only nine system tasks
for the devices (and stores 11 requests in a special system
table, PTBL). Even though 11 requests are waiting in table
PTBL, the system runs efficiently.

Notice the difference in Figure 9.2. This is the same system,
except that nine ready tasks want to use the magnetic tape
drive; and these tasks monopolize the cell queue. Although
up to 11 other tasks want to use the disk and line printer,
they can not be readied until they receive a cell. RDOS
frees cells one by one as the ready tasks finish with the tape
drives; meanwhile, the other tasks stagnate in PTBL. Nine
cells are too few for this program, although this number is
sufficient for the same system and a different program,
demonstrated in Figure 9.1. The waiting tasks cannot use

Licensed Material--Property of Data General

the disk and line printer, even though these devices are not
busy, and the system is running inefficiently.

RDOS would report cell faults in both of the environments
illustrated by these figures. Yet additional cells would not
improve system efficiency in the example of Figure 9.1.
Thus, you must supplement the fault information provided
in the tuning report by timing your application programs to
determine whether the reported faults actuaily degrade sys-
tem performance.

DEVICE QUEUE

System Buffer Requirements

System buffers are portions of memory which RDOS al-
locates dynamically to receive either user data or system
overlays. RDOS requires a minimum of two buffers per
system stack, or six buffers total, whichever is greater.
SYSGEN automatically allocates this minimum,; during sys-
tem generation, you can specify as many extra buffers as
core memory will allow. Each system buffer requires 416,
or 274,, words. In mapped systems, any multiples of 274
words available in the last 1024-word block of system space
are used by RDOS for additional system buffers.

When RDOS needs a buffer, it flushes the contents of the
oldest buffer that is not in use. However, if extra buffers
are available, fewer of them are flushed and their contents
remain accessible to system memory. If your application
favors having buffered data in core (for fast reaccess). or
having many system overlays resident in core (for fast sys-
temn call execution), you should specify extra buffers. Extra
buffers increase system speed but reduce the total amount
of memory available for your programs. The ideal solution
incorporates enough system buffers to provide the desired
speed while leaving adequate memory for your programs.

RDOS requires some system buffers to receive system ov-
erlays. Table 9.1 describes each overlay and the system
calls or functions that it executes. Each overlay’s number
(octal) precedes its name in the list; vou will need this
number to understand the tuning report, since the report
does not refer to system overlays by their names.

Task | Task | Task
Disk
Cell7 | Cell 4 | Cell 1
Task | Task | Task M
Cell8 | Celis | Cell3] @ [
- o Mag
| i ape
@/
Task | Task | Task -
Cell9 | Cell& | Cell 2 Ll N
© 9 Line
PTBL 'yl Printer
Task 10 s
6//’;
L]
Task 20
Figure 9.1 Adequate cell apportionment DG-25450
DEVICE QUEUE DEVICE
Task Task Task '{
LRI N
Cell 9 Cell 2 Cell 1 B
’r \./ /4 7‘ ‘ M
=i ag
@l V Tape
| -
PTBL L
.
Task 10 - .
%7 Line
i Printer
Task 20 &
Figure 9.2 Inadequate cell apportionment DG-25451

Licensed Material--Property of Data General

RDOS System Reference

187

Overlay
Number

0

11

11

12

13

14

15

16

17

20

Name

DFRWS

DFRWS

uTiL1

CREATE

DELETE

FILSY

Sov1

SOv2

SOV3

SOv4

DVINI

CRSFS

RING1

RING2

RING3

SOvV5

MTAIO

Functions

Disk file .WRL, .RDR/.WRR, .RDS/
\WRS.

Disk file .CHSTS, .RDL, .LINK, .RDL,
.STAT.

Magnetic tape .GCHN, .GMEM,
.SMEM; tape .MTDIO.

Starts file creation: .CONN, .CCONT,
.CRAND, .CREAT.

Delete a file, a subdirectory, or a
secondary partition: .DELET.

Maintains directories and searches
for entries in them.

Implements periodic rescheduling for
.QTASK and QUE. Also implements
the following system calls: .CHATR,
.CHLAT, .FGND, .GCIN, .GCOUT,
.GTATR, .GTOD, .ODIS, .OEBL, and
.STOD.

Checks filenames for validity, interprets
directory specifier prefixes, and unpacks
file names into SYS.DR format.

Processes disk file errors and reads
disk core images.

Opens files (.OPEN, .EOPEN,
.ROPEN); .CLOSE, .RESET, and
implements CLI CLEAR command.

Initializes directories; .EQIV.

Creates a MAP.DR entry in SYS.DR,
and creates peripheral device entries
in SYS.DR after a full initialization.

Opens and closes character devices
on level; writes messages to the
console.

Console keyboard and reader .RDL/
.RDS; .RDS, .GCHAR: system-level
character /O (ACHR, WRS, PCH).

Performs system-level character /O
(ACHR, WRS, PCH).

Performs housekeeping necessary
to execute keyboard interrupt or
.BREAK.

INIT, .RLSE, .CLOSE; biock-level
reading and writing for magnetic
tapes units.

Overlay
Number

21
22
23

24

25

26

27

30

31

32

33

34

35

36

37
40
41
42

43

44

Table 9.1 System overlays and their functions

188

RDOS System Reference

Name

MTAUC
TUON
CDROV

WDBLK
SPOLR
CODER

SOVe

Sov7

Sovs

SOV
SOovio
SOV

JEHOV

Sovi2

SOvV13
SOvVi4
SOV15
SOV16

FILS2

SOv17

Functions

.OPEN for magnetic tape units.
.TUON: turn tuning on.

Card reader ASCII .RDL.
Completes the file creation activities
originating in CREATE; withdraws a
single block from MAP.DR.

Supports spooling.

Encodes and decodes 7-track mag-
netic tape; .SKPK, .SPDA, .SPEA.

Wirites a core image to disk.

Continues disk core image read
function started by SOV3.

[EXEC, EXFG, EXBG.

Resolves directory link entries;
.EXEC, .EXFG, .EXBG.

Continues directory resolution func-
tion of SOV9; .INIT, .RLSE.

Determines size of a fixed-head disk
for .INIT system call; ICMN, .RDCM,
WRCM.

Creates an initial system directory.
Continues the function performed by
SOV5; creates file BREAK.SV and
completes a program break caused
either by . BREAK or console key-
board interrupt.

Opens, closes a disk file; .UPDAT.
.DIR, .RDOP/.WROP.

.CDIR, .CPART.

.IDEF, .DEBL/.DDIS.

Preprocesses the deletion of parti-
tions and subdirectories; .RENAM.

Finishes the housekeeping started
by SOV5 for .EXEC/.RTN and key-
board interrupts; .IRMV.

Table 9.1 System overlays and their functions (continued)

Licensed Materiai--Property of Data General

Overiay
Number

45

51

52

55
56

61

65

66

Name

sovis

WDCBK

- sov1g
SOV20
sova1

SOV22

sova3

Sovos

sOV25

_FSTAT

Functions

Produces an orderly shutdown upon
a system release; .BOOT.

Withdraws a series of contiguous
blocks from MAP.DR; creates an el-
emental MAP.DR for DIVINI and
SOV15.

Determines 'size of a moving head

- disk during .INIT system call; per-

forms QTY openiciose.

Prepares program environment for
a core-image load (mapped sys-

) tems only)

Provides MCA read/write sequentzal"
" and other MCA suppon functwns

' Data overlay used to buudmpd pe-

ripheral device entries during a full
system initialization.

k Connnues the code begun in SOV18; :

Aborts a system pcocesé,

“Resolves spooling deadlocks;

.GPOS/.SPOS, .CA; .OPEN for MCA.

. Completes the operation initiated by

overlay 46 (WDCBK).

__Provides .support to other system
~--overlays by getting and/or updating
 file'status and by obtaining block ad-
~ dress for disk 1/O. Deposits a free

i biock in MAP DR

8OV2E

sovar
s ostanted in SOVS; continues the func-

TUNOV
QTYov

S0Ov29

:Heteases a éirectory, determmes the

tines in overlay 26 (CODEF-!), GDIR

MDIR, .GSYS.

WRPR, WREBL, STMAP.
Completes the execute functions

tions performed by SOV3, SOV5, and
SOV1 2 RTN/ ERTN.

OVOPN; MAPDF and .VMEM for

‘mapped systems only.
.TUOFF: turn tuning off.
Provides QTY/ALM driver support.

Replaces overlays in an overlay file.

Table 9.1 System overlays and their functions (continued)

Licensed Material--Property of Data General

How Tuning Works

After you have generated a system with tuning (having
specified a number of stacks, cells, and system buffers),
you can turn tuning on and start recording in the tuning file.
If you find your system inefficient, you can examine the
tuning report and generate a new system, specifying a dif-
ferent number of stacks, cells, and/or buffers. As mentioned
earlier, you can also instruct SYSGEN to examine the tuning
file and modify your original answers to these questions.
This procedure, known as self-tuning, can be performed as
often as needed to arrive at one or more RDOS systems that
run your application(s) well. You will cause a system failure,
however, if you activate tuning in a system before deleting
the tuning file of a previous system with the same name.

As with many RDOS features, you can use either system
calls or CLI commands to turn tuning on or off. You must,
of course, have selected the tuning option during system
generation, along with the type of tuning report you desire.
SYSGEN automatically reserves extra buffers within the sys-
tem for use by the report function. One buffer is required for
the summary report; detailed reports require three buffers.

The CLI commands that wrn tuning on and off are TUON
and TUOFF, respectively. The command that displays the
contents of the tuning file is TPRINT. The system calls
corresponding to these commands are . TUON and . TUOFF.
Use of the CI FAR command to clear the funing file doec
not turn tuning off or affect the report file. However, you
must not delete this file while tuning is on. To produce a
fresh tuning report, issue CLI commands TUOFF, RE-
NAME or DELETE, and TUON.

When tuning is on, the tuning feature accumulates the num-
ber of requests for stacks, cells, buffers, and system ov-

erlays. RDOS records this information in a disk file named
sysname.TU, where sysname is the name of the current RDOS

system. This file resides in the master directory. Addition-
ally, RDOS records the number of times it defaulted a re-
quest because the resource was not available. You can then
compute the ratio of requests to faults as an indication of
your system’s efficiency.

Note that your program can access the tuning file by opening
it and then issuing system call .RDS for 2*TULEN bytes.
(TULEN defines the number of words in the summary re-
port).

The tuning report file is a contiguous disk file consisting of
either one or three disk blocks, depending on whether you
requested an overlay report during system generation. The
first disk block contains the summary report. The overlay
report, if requested, follows on the next two disk blocks.
Figure 9.3 shows the composition of disk blocks in the
tuning file.

RDOS System Reference 189

Block O Summary Block O
Report
Block 1
Detailed
Report
Block 2

Figure 9.3 Disk blocks of the tuning file SD-00569
The summary report contains four sections: one each for
system stacks, cells, buffers, and overlays. Each section in
the summary is composed of five, 16-bit words. The first
word in each section lists the number of elements (stacks,
buffers, etc.) in the system. The next two words are a
double-precision integer count (two, 16-bit words) of all
requests for this element. The last two words are a double-
precision integer count of faults, ie, unsuccessful requests
for the resource. Each double-precision count returns to zero
upon overflow. The remaining words in the summary disk
block are not meaningful.

Figure 9.4 shows the arrangement of information in the
summary portion of the tuning report file. The named word
displacements relative to the beginning of the file are defined
in PARU.SR, a file of user parameters supplied with your
RDOS system and listed in Appendix B.

Word
Number of stacks in system | .TUNSTK
Stack s stack .TUSTK
Data requests TUSTK+1
(stack .TUPSTK
faults TUPSTK+1
Number of cells in system .TUNCEL
Cell ‘ cell TUCEL
Data requests TUCEL+1
I cell .TUPCEL
faults TUPCEL +!
‘ Number of buffers in system RJJQLBJ!;:JF
buffer .
g:{faer requests .TUBUF + 1
l buffer .TUPBUF
faults .TUPBUF +1
Number of system overlays TUNOV
Overlay system overlay .TUOV
Request requests TUOV +1
Data system overlay TUPOV
faults TUPQV +1
meaningless

Figure 9.4 Details of the tuning summary report, first disk
block SD-00570

190 RDOS System Reference

Referring to Figure 9.4, the number of stacks and cells
(displacements .TUNSTK and .TUNCEL) is the total of
each in the system; the number of buffers (displacement
.TUNBUF) is the total number of buffers, excluding tuning
buffers. The buffer request count reflects requests for buffers
needed to receive data or system overlays. As indicated
earlier, multiple stack and cell faults can occur and be re-
corded for the same system task.

If you specified a detailed tuning report during system gen-
eration, RDOS places it in the blocks immediately following
the summary in the tuning report file. The detailed report
consists of a series of four-word descriptors, with one de-
scriptor for each system overlay. Each descriptor contains
a count of requests for a system overlay, and a count of the
number of requests that required the overlay to be read from
disk because it was not then resident in memory. Each count
is a double-precision integer; if an overflow occurs, RDOS
returns the count to zero. The detailed report can list up to
128, separate system overlays. The counts of defined, but
unused, overlays are set to zero.

Figure 9.5 depicts the arrangement of information in the
detailed tuning report for a system with m overlays. Each
system overlay was described earlier in Table 9.1.

overlay zero request

count

Tuning file overlay zero fault

block 1

count

(other syst.em overlay
descriptors)

overlay m-1 request

count

Tuning file overlay m-1 fauit

block 2

count

(meaningless)

Figure 9.5 Tuning overlay report SD-00571

Licensed Material--Property of Data General

.TUON

Start recording in the tuning file

This system call turns on the tuning mechanism, which
reports system resources and faults in the tuning file. If the
tuning report file does not exist, this command creates it as
a contiguous file of either one or three blocks; the size
depends upon your choice of report functions during system
generation. RDOS names the file sysname.TU, where sys-
name is the name of the current RDOS system. This file
resides in the master directory.

If the tuning file already exists, any new information will
be added to it. If the tuning report function is already on,
the .TUON command is an effective no-op.

Required Input
ACO - Set to zero.

Format

.SYST™M
.TUON

error return
normal return

Possible Errors

ACZ Mnemonic Meaning

2 ERICM Illegal system command. (Tuning was
not selected during system generation.)

27 ERSPC Insufficient disk space to create tuning
file.

46 ERICB Insufficient number of free contiguous
disk blocks available to create the tun-
ing file.

101 ERDTO Disk timeout occurred.

Licensed Material--Property of Data General

.TUOFF

Stop recording in the tuning file

This system call halts the tuning report function until and
unless you turn it back on with the .TUON command. The
.TUOFF command does not delete the tuning file itself.
Any extra system buffers used by the tuning function are
released to the system. If the tuning report function is al-
ready turned off, this call is an effective no-op.

Required Input

None.

Format

.SYSTM
.TUOFF

error return
normal return

Possible Errors

AC2 Mnemonic Meaning

12 ERDLE Tuning file was deleted before tuning
was turned off.
101 FRDTO Dick timeont occurred.

RDOS System Reference 191

Chapter 10

This chapter applies to users running RDOS on mapped,
ECLIPSE computers. It describes the Load Effective Ad-
dress (LEF) instruction, which allows you to load an address
directly into an accumulator, or to load, add, or subtract a
constant between + 127 and — 128 (1773 and —200,) to an
accumulator without using a separate memory location to
hold that constant.

Before you issue this instruction, you must set bit 9 in the
user status word to put the CPU into LEF mode. Task call
.LEFE, described in this chapter, serves this purpose. Once
the CPU is in LEF mode, you cannot issue I/O instructions
because the system interprets them as LEF instructions. To
disable LEF mode, use task call .LEFD.

When you plan to use LEF mode, you can determine whether
it is currently set or reset with task call .LEFS. This and
other LEF calls are used according to your program’s needs.
If, for example, vou define a device service routine via the
.IDEF command, you must start the device at base or pro-
gram level in order for it to generate an interrupt and be
serviced. If the CPU is in LEF mode, you cannot issue the
device start (or any other I/0) instruction until the LEF mode
is disabled. Further details on LEF mode and the LEF in-
struction can be found in Programmer’s Reference Manual,
ECLIPSE Line Computers, 014-000626.

By default, LEF mode is disabled. Once you enable it, it
remains set only for the duration of current program; a .RTN
or .EXEC call will disable it for the new program. The LEF
tasks calls are:

.LEFD Disable the LEF mode.
.LEFE Enable the LEF mode.
.LEFS Get the LEF mode status.

As with task calls you must reference these names in a
.EXTN statement before issuing the calls. LEF commands
may be issued in both single- and multitask environments.

Licensed Material--Property of Data General

Running In LEF Mode

This task call disables the LEF mode. After you issue it,
single-word LEF instructions cannot be issued. If the CPU
is currently set with LEF mode disabled, this call becomes
an effective no-op. The contents of ACO and AC3 are lost
upon return.

Required Input

None.

Format

.LEFD
normal return

Possible Errors

None.

RDOS System Reference 193

.LEFE
Enable the LEF mode

This task call enables the LEF mode and allows user pro-
grams to issue single-word LEF instructions. If the LEF
mode is already set on your CPU, this call becomes a no-
op. The contents of ACO and AC3 are lost upon return from
this command.

Required Input

None.

Format

.LEFE
normal return

Possible Errors

None.

194 RDOS System Reference

.LEFS
Get the LEF mode status

Issue this task call to determine whether the LEF mode is
currently set or reset in the CPU. When you issue this call,
RDOS returns the user status word in ACO; bit 9 of this
word is set only if you enabled LEF mode. Consult the
Programmer’s Reference Manual. ECLIPSE Line Com-
puters (DGC No. 014-00626) for a complete definition of
the user status word. The contents of AC3 are lost upon
return.

Required Input

None.

Format

.LEFS
normal return

ACO contains the user status word upon return.

Possible Errors

None.

Licensed Material--Property of Data General

Appendices

The nine appendices that follow supplement the foregoing
chapters with command and error summaries, programming
examples, conversion tables, and more. In order of ap-
pearance, the appendices include:

e Appendix A: RDOS System and Task Calls and Error
Summary

e Appendix B: User Parameters

o Appendix C: Real-time Programming Examples
e Appendix D: Overlay Directory Structure

e Appendix E: Exceptional System Status

o Appendix F: Page Zero and Hardware Reserved Lo-
cations

e Appendix G: Hollerith-ASCII Conversion Table
o Appendix H: ASCII Characater Set

e Appendix I: Advanced Multitask Programming

Licensed Material--Property of Data General RDOS System Reference 195

Appendix A

RDOS System and Task Calls

Table A.1 describes each RDOS system and task call, along
with the required input to (or remarks on) the accumulators.
Variable n in this table represents the file’s channel number,
as assigned on the open. After a task or system call, AC3
contains the user stack pointer (USP) by default. To return
the frame pointer, refer to the section ‘‘System and Task

and Error Summary

Calls’” in Chapter 3. RDOS returns error codes, if any, in
AC2. Task calls sometime destroy accumulators, as noted.
System calls preserve accumulators if they do not specifi-
cally return values.

Table A.2 lists and describes error codes in numeric order.

Command Description input and Remarks
.ABORT Abort a task. ACo: Destroyed.
AC1: Task ID number in bits 8-15.
AKILLY Kill all tasks of a given priority. ACQ: Priority of task to be killed.
BYST™ Open a file for appending. ACO- Byte nainter to fitename
APPEND n : : ; : ,
: AC1: Device characteristic mask (see .GTATR).
“ - AC2: Channel number, if n=77.
ARDY' Ready all tasks of a given priority. ACO: Priority of tasks o be readied.
ASUSP' Suspend all tasks of a given priority. ACO: Priority of tasks to be suspended.
SYSTM Bootstrap a new system. ' ~ACO: Byte pointer to primary partition o specifier: filename.
BOOT: ' i R
SYSTM! Interrupt the current program and save the current
.BREAK? state of memory in save file format.
.SYSTM Create a contiguously organized file-with all data ACO: Byte pointer to filename.
.CCONT words zeroed. ; o
AC1: Integer number of disk blocks.
.SYSTM Create a subdirectory. ACO: Byte directory to new directory name.
.CDIR : ‘

Table A.1 RDOS command summary

Licensed Material--Property of Data General

RDOS System Reference 197

Command Description . Input and Remarks
.SYST™M Change file attributes. ACO: 1B0, read-protect this file.
.CHATR n ;
1B1, attribute-protect this file.
1B7, éliow no link resolution.
189, user atiribute.
1B10, user attribute.
1814, make this file permanent.
1B15, write-protect this fﬂe o

A02 Channel number if n 77,

N ,.,svsw - Change link access attributes. . Ag:g;ﬁmas CHATR above.

"~ AC2: ‘ehannet numﬁer, of

L ACO: Staning adéress of a.wd area.

- .8Y ~ Getthe status of a file currently open on a specifiec
2 Channe1 number ifn= 77 .

. Create a random file.

AT Numbe! of eomtgwaus blwks (must exesed 60,).

TR R L Byt pomtor o lename.
B e

TsvsM Disable user access to a devuce ina mapped sys- “ACO: Device code to be disabled from user access. |
,DDGS L - tef'“ & EI S R st i e R A e e S e

.SYST™M Enable user accesss to a device in a mapped sys- ACO: Device code to be enabled for user access.
.DEBL tem.

SYST™M - 'Delay the execution of a task. o AC1: Number of RTC pulses.
.DELAY i : : ! ; B

SYSTM Delete a file. ‘ ' ACO: Byte pointer to filename.
.DELET

.SYSTM Change the current directory. ACO: Byte pointer to directory/directory device specifier.
.DIR

DQTSK Dequeue a previously queued task. - AC1: Task ID number in bits 8-15.

AC2: Base address (returned) of released queue area.

.DRSCH' Disable the task scheduler.

Table A.1 RDOS command summary (continued)

198 RDOS System Reference Licensed Materiai--Property of Data General

AC1:

AC2:

Command Description Input and Remarks
.SYSTM Define a user clock. ACO: Number of RTC pulses.
.DUCLK
AC1: Address of user interrupt routine.
.SYSTM Open a file for reading and writing by one useronly. ~ ACO: Byte pointer to filename.
.EOPEN n
AC1: Characteristic disable mask (see .GTATR). 0 leaves char-
acteristics unchanged.
AC2: Channel number, if n=77.
SYSTM Assign a temporary name io a device. ACO: Byte pointer to current disk or tape specifier.
EQIV ' ‘ ; ,
AC1: Byte pointer to temporary specifier.
SYSTM Read one or more dlsk blocks into extended, mapped ACO: External rhemory block rgwu‘mber‘ 0,1,2, or 3) in rigﬁt byte,
ERDB ~ memory. .
AC1: Starting relative block number in disk file.
~AC2: In nght byte, number of 256-word blocks to be read. In
left byte, channel number if n=77.3
ERSCH' Reenabie the task scheduler.
.SYSTM ; Onan error return from program and describe error AC2: Data word to be passed to next-higher level.
CERTNe. . (ftoCLY). . e
.SYSTM Write one or more 256-word blocks from extended, ACO: Extended memory block number in right byte. 256-word
-EWRB mapped memory to disk. ~group number (0,1,2, or 3) in left byte.

Starting relative block number in disk file.

In right byte, number of 256-word blocks to be written. In
left byte, channel number if n=77.3

AC1:

o Checkpoint a background program ina ‘mapped ACO: Byte pointer to new background program's name
| sys‘em | AC1: 0B1, new bé#kground to have same priority as old.
1B1, new background to have same priority as fore-
ground. : }
: AC2: Optional message to new background.
2;2(1;% | Swap or chain in a new program. ACO: Byte pointer to new save file’s name.

0, swap to user program.
1B0, chain to user program.
1, swap to debugger.

1BO + 1, chain to debugger.

Table A.1 RDOS command summary (continued)

Licensed Material--Property of Data General

RDOS System Reference

199

Command Description Input and Remarks

.SYST™M Execute a program in the foreground. ACO: Byte pointer to save file’'s name.

e AC1: 0B1, foreground to have over background.
1B1, foreground/background equal priority.
0B15, pass control to save file.

1815, pass control to debugger.

SYSTM Determine whether or not a foreground program is ACO: (returned) 0.
.FGND running.
AC1: (returned) program level code; 1= background level 0 ..
12={oreground level 4.

SYST™M “Get character from the console. ACO: Bits 0-8‘c|eared; charader returned in bits 9-15.
SYSTM Gt the number of a free channel. ' ~AC2: (returned) free channel number.

GCHN , ; ; ' y ~

.SYSTM Get the operator input console name. ACO: Byte pointer to 6-byte area recenvmg the input oonsole s

name

f 'Get the operator output consote name.

C0: ;By:e po:mer to s-byte area recalvmg me‘ omput consate s

;'name
SYSTM B Get todéy's date. O T ACO: (returned) day
JBDAY. o e e e o e e e
L --ACY: (:etumed) momh
AC2: (returned) year minus 1968
S?ﬁTM | Getmecurfent directory namé.: e Acoayte pomier to 13,~byte area Sty
~.GDIR , o ‘ , e , o
“ '.SYSTM ~ Examine the real time clock. o ~ ACO: (retumed) o
':1,;: W0HZ
2=100HZ
3 = 1000 HZ
4 = 60 HZ
5 = 50 HZ
.SYSTM Get the current MCA unit number. ACO: MCA transmitter device code (6 or 46 octal).
GMCA AC1: (returned) MCA unit number.
SYST™M Get the current file pointer. ACO: (returned) high-order portion of byte pointer.
GPOS ™ ' ‘ AC1: (returned) low-order portion of by!e poihter.
AC2: Channel number, if n=77.
2232“ Get the name of the current operating system. ACO: Byte pointer to 15,-byte area.

Table A.1 RDOS command summary (continued)

200 RDOS System Reference Licensed Material--Property of Data General

Command Description Input and Remarks
SYST™ Get file attributes. ACO: (returned)
.GTATR n
1B0, read-protected.
1B1, attribute-protected.
1B2, save file
1B3, link entry.5
1B4, partition.®
1BS, directory file.
1B6, link resolution entry.s
1B7, no link resolution allowed.
1B9, user attribute.
1B10, user attribute.
1B12, contiguous file.s
1B13, random file.s
1B14, permanent file
1815, wite-protected
AC1: (returned)
MCA shares 0 and 15; see file PARU.SR
1B0, spoolable device.

1B1, 80-column card.

183, form feed on open.
1B4, fuli word device.

186, LF after CR.

1B7, parity check/generation.
1B8, rubout after tab.

1B, nult after FF.

1B10, keyboard input.

1B11, TTY output.

1B12, no FF hardware.
1B13, operator intervention needed.
1B14, no TAB hardware.
1B15, leader/trailer.

AC2: Channel number, if n=77.

Table A.1 RDOS command summary (continued)

Licensed Material--Property of Data General RDOS System Reference 201

Command Description Input and Remarks
.SYSTM Get the time of day. ACO: (returned) seconds.
.GTOD
AC1: (returned) minutes.
AC2: (returned) hours (using a 24-hour clock).
.SYSTM Define a program communications area. ACO: Starting word address of communications area.
ICMN
AC1: Size of area in words.
SYSTM Identify a user device. ACO: Device code of user device.
.IDEF
AC1: DCT. (1B0 if data channel device is mapped systems.)
User power restart address if ACO = 77,.
ADST" Get a task’s status ACO: 0, ready.
1, suspended by .SYSTM call. -
2, suspended by .SUSP, .TIDS, .AUSUSP.'
3, waiting for XMTW/.REC.
4, waiting for overlay node. ,
5, suspended by .SUSP, .ASUSP, or .TIDS and .SYSTM
call.) :
6, suspended by .XMTW/.REC and .SUSP, .ASUSP, or
.TIDS. C
7, suspended by .ASUSP, .SUSP, or .TIDS and waiting
for overlay node.
10, no such task exists.
AC1: (returned) base address of task’'s TCB.
AC2: Task ID in bits 8-15.
.SYST™M Initialize a device or directory. ACO: Byte pointer to directory/global device specifier.
INIT ~ .
AC1: -1, full initialization (tape or disk).
0, partial initialization.
SYSTM Define a program interrupt task.
INTAD
.SYSTM Initialize the Operator Communications Package ACO: Queue area address (0 if no RUN or QUE).
oPC (OPCOM).
AC1: In right byte, max number of queue areas (0 if no RUN
or QUE).
In left byte, overlay channel no. (O if right byte = 0).
AC2: Program table address (0 if no RUN or QUE).
.SYST™M Remove a user device. ACO: Device code.
ARMV

Table A.1 RDOS command summary (continued)

202 RDOS System Reference

Licensed Material--Property of Data Generatl

Description

Command Input and Remarks
IXMT Transmit a one-word message from a user interrupt ~ ACO: Message address (destroyed).
routine.
AC1: Nonzero message (destroyed).
AC2: Destroyed.
KILAD* Define a kill-processing address. ACO: Address of kill-processing routine.
KILLY2 Kill the calling task.
LEFD? Disable the LEF mode in a mapped, ECLIPSE sys- ACO: Contents lost upon return.
, tem.
LEFE' Enable the LEF mode in a mapped, ECLIPSE sys- ACO: Contents lost upon return.
tem
. Get the LEF mode status in a mapped, ECLIPSE ACO: (returned) user status word;
system.
o 1B9, LEF mode is enabled.
0B9, LEF mode is disabled.
.SYST™M Create a link entry. ACO: Byte pointer to link name.
.LINK
s “AC1T: 110, Tink will be resolved in parent partition of ink entry’s
residence.
If not O, byte pointer is either to an alternate directory
alias name or to an alias name string.
.SYSTM Define a window map in a mapped system. ACO: Number of blocks for extended addressing use.
MAPDF
AC1: Starting logical block number of window.
AC2: Size of window in 1K blocks.
‘ SYSTM " Get the logical name of the master device. ACO: Byte pointer to 13,-byte area.
-MDIR
- .8YST™M Determine available memory. ACO: HMA.
.MEM :
: AC1: NMAX.
SYSTM ‘Change NMAX. ACO: NMAX increment of decrement (2's complement).
AC1: (returned) new NMAX (after change).

Table A.1 RDOS command summary (continued)

Licensed Material--Property of Data General

RDOS System Reference 203

Command

.SYSTM
.MTDIO n

Description

Perform free format /O on tape or cassette.

Input and Remarks

ACO: Core data address, if a data transfer.

AC1:

Even parity if bit 0 = 1; odd parity if bit 0 = 0.
Bits 1-3:

0, read (words).

1, rewind tape.

3, space forward.

4, space backwards.

5, write (words).

6, write EOF.

7, read device status word.

Bits 4-15: word or record count; if 0 on space command,
position tape to new file if it is less than 4096 records away.

(returned) number of words read/written, or number of
records spaced.

Status word or system error code if error returns; status
word if read status normal return. :

Returned:

1B0 error.

1B1, data late.

1B2, tape rewinding.

1B3, illegal command.

1B4, high density or cassette if 1;
low density if 0.

1B5, parity error.

1B6, end of tape.

1B7, end of file.

1B8, tape at load point.

1B9, 9-track or cassette if 1; 7-track if 0.
1B10, bad tape; write failure.

B11, send clock (0 if cassette).

1B12, first character (0 if cassette).
1B13, write-protected or write-locked.
1B14, odd character (0 if cassette).

1B15, unit ready.

Table A.1 RDOS command summary (continued)

204 RDOS System Reference

Licensed Material--Property of Data General

Command Description Input and Remarks
SYST™M Open a magnetic tape or cassette for free format ACO: Byte pointer to tape global specifier.
.MTOPD n /0.
AC1: Characteristics inhibit mask (see .GTATR).
AC2: Channel number, if n=77.
:MULTI Restore the multitask environment.
SYSTM " Disable keyboard interrupts for this console.
.ODIS s
.SYSTM Enable keyboard interrupts for this console.
~SYSTM Open afile for readmg and/or wrlting byoneormore ACO: Byte pomter to mename
OPENR users. L . :
g © ACt: Characatenstm inhibit mask (see GTATR) Oleaves pre-
rrrrrr - vious characteristic unchanged. MorMCAorﬂospecify“
; your own MOAT retry ameout :
AC2: Channel number, if n=77.
OVEX®s Retease an oveﬂay and return to a specmed ad- -~ ACO: Node number in bits 0-7.
Overlay number in bits 8-15.
AC2: Return address.
- OVIKIL2 -Kili-the calling task and release: ﬁsoveflay node. - ACO:-Node number-in bits-0-7.
f‘ve"ay number in bits '8-15,
SYSTM Load a user overlay into memory. ACO: Node number in bits 0-7.
OVLOD n
B o R A s ~ Overlay number in bits 8-15.
AC1: -1 for unconditional load;
0 for conditional load.
- AC2: Channel number, if n=77.4
SYSTM Open a user overlay file. ~ ACO: Byte pointer to overlay filename (with .OL extension).
.OVOPN n_ ;
s AC2: Channel number, if n=77.4
{OVREL Release an overlay. ACO: Node number in bits 0-7.
Overlay number in bits 8-15.
SYST™ Replace an overlay file. ACO: Byte pointer to overlay replacement filename.
.OVRP o ;
‘ AC1: Byte painter to overlay filename (with .OL extension). ‘
.SYST™ Write a character to the console. ACO: Cha‘ractér“ih biis 9-15;
.PCHAR
bits 0-8 ignored.
PRI Change a task’s priority. ACO: New task priority in bits 8-15.
AC2: Address of user task queue table.

Table A.1 RDOS command summary (continued)

Licensed Material--Property of Data General

RDOS System Reference 205

-RDOPR

Command Description Input yand Remarks
.QTSK Queue a memory-resident or overiay task.
.SYSTM Read one or more disk blocks. ACO: Starting core address ta receive data.
AP AC1: Starting disk relative block number.

AC2: Number of blocks to be read in bits 0-7; channei numbef

ifn= 77!nbﬂ$8—15‘~ :

SYSTM : Read a message from the other program’s com-r ACb: k Word address to r'ead into.
.RDCMN munications area. : e T e .

AC1: Offset into communications area.

' AC2: Word count,
SYSTM Read a line. - ACO: Byte,,poénter s,o user core ia:aa?V; i
-ROLn “ACH: (fetumed) read by:e count, mtudmg tenmnator i
S ACQ:;Channei number ifn«v

.SYST™M Read an 6perator message. ACb: Byte pomter to message area

: Acf:'(rewmed): ytécount”
SYSTM Read a random record. . ACO: Core address o receive recor
RDRn TR I
. AC1: Record number.
* AC2: Channel number, if i=77."
.SYST™™ Read sequential bytes. ACO: Byte pointer to core area (must be even for MCA).
-Rﬁs n ‘ ;,‘ o S g 4 . £, ot . L ::;ym s t:::::: g
' ~ACT:N
S eount retumed
: A02 Channel number, ifn= 77
SYST™M Read the console switches. ACO: (returned) console with switch position.
.REC Receive a message from another task. ACO: Messagaadéfess
AC1: Message.
REMAP Activiate a logical window transfer inamapped sys- ACO: Destroyed.
tofn:) ; e
AC1: Destroyed. In feft byte, starting relative block number in
map. in right byte, starﬁng,reiaﬁvebioekﬂumbe:o@w’w
AC2: Destroyed. Number of 1K blocks to be remapped
.SYSTM Rename a file. ACO: Byte pomter to old name.
.RENAM
AC*: Byte pointer to new name. -
.SYSTM Close all files.
.RESET
.SYSTM Releae a directory or device. ACO: Byte pointer to directory or global device specifier.
.RLSE

Table A.1 RDOS command summary (continued)

206

RDOS System Reference

Licensed Material--Property of Data General

Command Description

.ROPEN n

SYST™ Open a file for reading only by one or more users.

Input and Remarks
ACO: Byte pointer to filename.

AC1: Characteristic inhibit mask (see .GTATR). 0 preserves
characteristics without change. For MCA, see .OPEN.

AC2: Channel number, if n=77.

“ACO: ‘,,Byte pomter to f%sename stnng

AC*JA:”' Startmg addrass of 223-word area

. ACO: Day.

- AC1: Month.

“ AC2: Year minus 1968.

SINGL

SMSK' o Modify the current interrupt mask.

ACO: Lost.
AC1: New interrupt mask to be ORed with old mask.

ACO: Byte pointer to deviée name. =

i Ace Byte pmnter to dewee name.

'ACO: Byte pointer to device name.

ACO: ‘ngh-efder on of byte pumtef
~ AC1: ,‘Low-order poru on of byte pomter o

il Aczt.‘}hannei numbes ~ri,n"=77‘. :

SYSTM. Get a file's statistics.
sTar al ; :

'ACO: Byte pointer to filename string.

AGH: String adress of 2, word aren

~ Set the data channel {nap for a user device in a

~AC1: Starting user address of device buffer. Logical address

ACO: Device code.

of device buffer is returned.

Table A.1 RDOS command summary (continued)

Licensed Material--Property of Data General

RDOS System Reference 207

Command Description Input and Remarks
.SYST™M Set the time of day. ACO: Seconds.
.STOD
AC1: Minutes.
AC2: Hours.
.SUSP Suspend the calling task.
TASK Create a task. ACO: Task ID number in left byte.
Task priority in right byte.
AC1: New task entry point address.
AC2: Contents bassed to new task.
~.TIDK - - -Kill-a task. - “AC1: Task ID number in right byte.
TIDP Change a task’s priority. ACO: New priority in bits 8-15.
| AC1: Task ID number in right byte.
.TIDR Ready a task. AC1; Task ID number in right byte.
TIDS Suspend a task. ACt: Task ID number in right byte.
TOVLD Load a user overléy. ACO: Area number in bns 0-7.
| . Overlay number in bits 8-15.
AC1: -1 for unconditional load.
0 for conditional load.
AC2:. Channei numbér on Which ovérlay mé iwas' opened
.TRDOP Read a message from the console. ACO: Byte pointer to message area (must be even).
‘ AC1: (returned) byte count.
~.SYST™M Turn off the tuning report function.
.TUOFF
.SYSTM Turn on the tuning report funcfion. ACO: 0.
.TUON
.TWROP Write a message to the console. ACO: Byte pointer to message area.
AC1: -1 to suppress task ID number.
.UCEX"27 Exit from a user clock routine. AC1: Any nonzero value to force rescheduling.
UIEX 127 Exit from a user interrupt routine. AC1: Any nonzero value to force rescheduling.
AC2: In unmapped systems, value upon the call = return ad-
dress. in mapped systems, unimportant.
.SYST™M Delete a link entry. ACO: Byte pointer to link ehtry name.
ULNK
.SYST™M Update the current file size. AC2: Channel number, if n=77.
UPDAT n

Table A.1 RDOS command summary (continued)

208 RDOS System Reference

Licensed Material--Property of Data General

Command Description Input and Remarks
_UP'EX1:2;7
.SYSTM Determine the number of memory blocks. ACO: (returned) number of available blocks.
.VMEM
.SYSTM Write one or more 256-word blocks to disk. ACO: Starting memory address.
WRBn
AC1: Starting relative block number.
AC2: Number of disk blocks in left byte; channel number, if
n=77, in right byte.?
SYST™ Write a message to the other program’'s commu- ACO: Word address of message.
WRCMN nications area.
AC1: Offset into communication area.
AC2: Word count.
.SYST™M Remove the write-protection of a memory area. ACO: Starting address of series.
AC1: Ending address of series.
SYSTM "Write a fine. ‘ ACO: Byte pointer to core buffer.
WRL n
AC1: Write byte count, including terminator, returned at end of
write.
_AC2: Channel number, if n=77.
.SYST™ Write an operator message. ACO: Byte pointer to text string.
WROPR
SYSTM Protect an area of memory in a mapped system. ACO: Starting address of 1K-block series.
.WRPR
AC1: Ending address of 1K-block series.
8YSTM Write a random record. ACO: Core address of record.
WRR n
B ACtT: Record number.
AC2: Channel number, if n=77.
.SYSTM Write sequential bytes. ACO: Byfe pointer to core buffer (must be even for MCA).
WRS n ' o
AC1: Number of bytes to be written. B
AC2: Inright byte, channel number if n =77, in left byte, number
of MCA retries. (Each MCA retry takes milliseconds.)
XMT Transmit a message. ACO: Message address.
AC1: Message must be nonzero.
XMTW Transmit a message and wait. ACO: Message address.
AC1: Message must be nonzero.

Table A.1 RDOS command summary (continued)

'No error return.

2No normal return.

31f error EOF, error code in right byte, partial count in left byte.

*If error EREOF, error code in bits 8-15, partial read count in bits 0-7.

5Cannot be set by user.

sNormal return through AC2.

7Unmapped systems : on the interrupt, AC3 contained the return address. You must restore AC3 to this value before issuing this call.
8If error ERSPC, error code in right byte, partial read count in left byte.

Licensed Material--Property of Data General RDOS System Reference 209

10
ik

12

21

23

24

27

13

5.
46

:. ’17)

Mnemonic Meaning

ERFNO liegal channel number.

ERFNM Hegal filename.

ERICM liegal system command.

ERICD llegal command for device.

ERSV1 - File requires the Save attribute and
the random characteristic.

EREOF End of file.

ERRPR Attemipt to read a read-protected file.

_ERWPR. . Attempt to write a write-protected file.

“ERCRE = Attempt to create an existing file.

ERDLE - Attempt to reference a nonexistent

- ERDE1) Attempt to alter a permanem ﬁ!e
 ERCHA ,megal aﬁempt to change me attn-
~ ERFOP | Attempt to reference an unopened

ERFUE ... - Fatal utility error.

 EREXQ Execute CLLCM on return to CLI.

-~ {Thisis not really an error, but an
mstructaon)

ERNUL Inwslble error code

ERUFT Attempt to use a channe! already in

ERLLL Liaé"tinﬁt exceed'edon tead orwrite .
line command.

ERRTN Attempt to restore a nonexistent im-
age.

ERPAR Parity error on read line. Magnetic
tape parity. (Often caused by dirty
heads.)

ERCM3 Trying to push too many levels.

ERMEM Attempt to allocate more memory
than avallabie

ERSPC Out of disk space or end of magnetic
tape (EOT).

Table A.2 Error summary

210

RDOS System Reference

Code

31

32

8

35
36
a7

40

w

42

45

46
47

50

51

52

55
56
57
60
61

62

Mnemonic

ERFIL

ERSEL
ERADR
ERRD

ERDIO
ERDIR
ERDNM
EROWN

EROVA

- ERTM
"ERNOT
ERXMT

_ERIBS

ERICB

‘ERSIM

ERQTS

"ERNMD

ERIDS
ERDSN
ER2DS
ERDDE
ERDIU
ERLDR
ERFIU
ERTID

ERCMS

Meaning

File read error. Magnetic tape: bad
tape or odd count. Often caused by
dirty heads.

Unit improperly selected.

liiegal starting address.

Attempt to read into system area.

Attempt to perform direct block /O
on a sequentially organized file.

Files specified on different directo-
ries.

Device not in system or illegal de-

vice code. -

liegal overlay number.

File not accessible by direct (free
form) 1/O. i

- Attempt to set megaJ tsme or day

Out of TCBs

‘Message address is already in use.

Interrupt device code in.use.

Insufficient number of free, contig-
‘uous disk blocks to create file.

Duplicate read or duplicate write to
muitiplexed | Ime

legal mformat:on in queue taMe

Attempt to open too many devices

. or.directories. .

lllegal directory specifier.
Directory specifier unknown.
Partition is too small.
Directory depth exceeded.
Directory in use.

Link depth exceeded.

-File is in use.

Task ID error.

Communications area size error.

Table A.2 Error summary (continued)

Licensed Material--Property of Data General

8

74
75

76

100

102
103
104

105

106
107

110

112

113

1o

Mnemonic
ERCUS
ERSCP

ERDCH

ERDNI

ERNDD
ERFGE
ERMPT

EROPD
ERUSZ
ERMPR
ERNLE
ERNTE

ERSDE

ERMDE

ERDTOQ

ERENA
ERMCA
ERSRR

ERSDL

ERCLO
ERSFA
ERABT

ERDOP
EROVF

ERNMC

Meaning
Communications usage error.
File position error.

Insufficient room in data channel
map.

Directory or device not initialized.
No default directory.

Foreground aiready exists.

Error in partition set.

Released directory in use by other
program.

Not enough room for UFTs within

USTCH.

Address outside address space (in
a mapped system only).

Attempt to delete an entry |ack1ng

...the link characteristic. ..

Background program cannot be

; checkpointed,

Error detected in SYS.DR

Error detected in MAP.DR.

__Device timemout.

Link not allowed.

No complementary MCA request. ,

Short MCA recé‘we request.

System dead!ook (RDOS is out of
buffers).

17O terminated by a channel close.

Spool file is active.
Task not found for abor.

Attempt to open a magnetic tape or
cassette unit that is already open.

System stack overflow (the current
system command is aborted).

No outstanding receive request by
an MCA device.

Code

114
115
116
17
120
121
122
123
124

125

126

131
132
133

134

Mnemonic

ERNIR

ERXMZ

ERCANT

ERQOV

EROPM

ERFMT
ERBAD

ERBSPC

ERZCB

ERNSE
ERBLT

ERRDY

ERINT

- EROVR

ERFRM
ERSPT

ERPWC

Meaning

Attempt to initialize or release a tape
unit with a currently open file.

Attempt to transmit a zero-word
message.

Gross input error, such as ECLIPSE
code on a NOVA, or lowercase ASCII
characters.

.TOVL not loaded for overlay task.

Operator messages. not specified
during sys*em generation.

Disk format error it recurs, dpmp

‘the disk and run DKfNIT Sv.

DKINT. SV

Insufficient space in core for bad
block pool. -

' Auempt to create a contlgous file of

Program is-not swappable.
Blank tape.

Line not ready; modem’s DSR is low
(multiplexors oniy) :

plexo only)

Hardware overrun erfor (mumplex-
ors only).

Hardware framing error (mu&hplex»
ors only).

Too many framing errorsy(DOS only, k
not RDOS)

Previous .WCHAR outstanding (re-
turned from .WCHAR only).

Table A.2 Error summary (continued)

Licensed Material--Property of Data General

Table A.2 Error summary (continued)

RDOS System Reference 211

Appendix B

This appendix provides a listing of source file PARU.SR,
eters define important system calls, task calls, and mne-
monics for user programs. PARU.SR was delivered with
your RDOS system, along with the file PARS.SR, which
contains all system parameters. Both files were loaded into
your master directory during system generation.

User Parameters

An assembler, cross-reference listing follows the listing of
parameters. Use this cross-reference to find individual pa-
rameters. The numbers in the cross-reference indicate list-
ing, not appendix, pages. Parameter UFTCN, for example,
has entries 1/56 and 2/05; these indicate listing page one,
line 56 and listing page two, line five, respectively.

0001 PARU
01 ;
02 ; COPYRIGHT (C) DATA GENERAL CORPORATION 1977,1978,1979,1980,1982,1983
03 ; ALL RIGHTS RESERVED.
04 ; LICENSED MATERIAL-PROPERTY OF DATA GENERAL CORPORATION.
05 ;
06
07 jE=====================
08 ; RDOS REVISION 07.10 USER PARAMETERS
09 ISE=E====================
10
TITL PARU
12
13
14
15
16 ;
17 ; USER FILE TABLE (UFT) TEMPLATE
18 ;
19
20 ; USER FILE DEFINITION (UFD) OF UFT
21 000000 .DUSR UFTFN=0 ;FILE NAME
22 000005 .DUSR UFTEX=5 ;EXTENSION
23 000006 .DUSR UFTAT=6 ;FILE ATTRIBUTES
24 000007 .DUSR UFTLK=7 ;LINK ACCESS ATTRIBUTES
25 000007 .DUSR UFLAD=7 ;LINK ALTERNATE DIRECTORY
26 000010 .DUSR UFTBK=10 ;NUMBER OF LAST BLOCK IN FILE
27 000011 .DUSR UFTBC =11 ;NUMBER OF BYTES IN LAST BLOCK
28 000012 .DUSR UFTAD=12 ;DEVICE ADDRESS OF FIRST BLOCK (0 UNASSIGNED)
29 000013 .DUSR UFTAC=13 ;YEAR-DAY LAST ACCESSED
30 000014 .DUSR UFTYD=14 ;YEAR-DAY CREATED
31 000014 .DUSR UFLAN=14 ;LINK ALIAS NAME
32 000015 .DUSR UFTHM =15 ;HOUR-MINUTE CREATED
33 000016 .DUSR UFTP1=16 ;UFD TEMPORARY
34 000017 .DUSR UFTP2=17 ;WORDS/BLOCK .STAT.RSTA.CHST
35 000020 .DUSR UFTUC=20 ;USER COUNT
36 000021 .DUSR UFTDL = 21 ;DCT LINK (RH) HIGH-ORDER DEVICE ADDRESS (LH)
37
38 ; DEVICE CONTROL BLOCK (DCB) OF UFT
39
40 000022 .DUSR UFTDC =22 ;DCT ADDRESS
41 000023 .DUSR UFTUN =23 ;UNIT NUMBER
42 000024 .DUSR UFCA1=24 ;CURRENT BLOCK ADDRESS (HIGH ORDER)
43 000025 .DUSR UFTCA=25 ;CURRENT BLOCK ADDRESS (LOW ORDER)
44 000026 .DUSR UFTCB=26 ;CURRENT BLOCK NUMBER

Licensed Material--Property of Data General

RDOS System Reference 213

45 000027 .DUSR UFTST=27 ;FILE STATUS

46 000030 .DUSR UFEA1=30 ;ENTRY'S BLOCK ADDRESS (HIGH ORDER)
47 000031 .DUSR UFTEA=31 ;ENTRY'S BLOCK ADDRESS (LOW ORDER)
48 000032 .DUSR UFNA1=32 ;NEXT BLOCK ADDRESS (HIGH ORDER)
49 000033 .DUSR UFTNA=33 ;NEXT BLOCK ADDRESS (LOW ORDER)
50 000034 .DUSR UFLA1=34 ;LAST BLOCK ADDRESS (HIGH ORDER)
51 000035 .DUSR UFTLA=35 ;LAST BLOCK ADDRESS (LOW ORDER)
52 000036 .DUSR UFTDR=36 ;SYS.DR DCB ADDRESS

53 000037 .DUSR UFFA1=37 ;FIRST ADDRESS (HIGH ORDER)

54 000040 .DUSR UFTFA=40 ;FIRST ADDRESS (LOW ORDER)

55

56 ; DCB EXTENSION

57

58 000041 .DUSR UFTBN =41 ;CURRENT FILE BLOCK NUMBER

59 000042 .DUSR UFTBP =42 ;CURRENT FILE BLOCK BYTE POINTER
0002 PARU

60 000043 .DUSR UFTCH=43 ;DEVICE CHARACTERISTICS

o1 000044 .DUSR UFTCN =44 ;ACTIVE REQ COUNT

02 ;BO INDICATES Q, 0=DSQ1,1=DSQ2

03

04

05

06

07 000045 .DUSR UFTEL=UFTCN—-UFTFN+1 ;UFT ENTRY LENGTH

08 000022 .DUSR UFDEL =UFTDL - UFTFN +1 ;UFD ENTRY LENGTH

09

10 177764 .DUSR UDBAT =UFTAT-UFTDC ;NEGATIVE DISP. TO ATTRIBUTES

11 177777 .DUSR UDDL =UFTDL - UFTDC ;NEGATIVE DISP. TO FIRST ADDRESS (HIGH ORDER)
12 177770 .DUSR UDBAD =UFTAD - UFTDC ;NEGATIVE DISP. TO FIRST ADDRESS (LOW ORDER)
13 177766 .DUSR UDBBK = UFTBK—- UFTDC ;NEGATIVE DISP. TO LAST BLOCK

14 000017 .DUSR UDBBN =UFTBN - UFTDC ;POSITIVE DISP. TO CURRENT BLOCK
15

16

17

18 ; FILE ATTRIBUTES (IN UFTAT)

19

20 100000 .DUSR ATRP =1B0 ;READ PROTECTED

21 040000 .DUSR ATCHA =1B1 ;CHANGE ATTRIBUTE PROTECTED

22 020000 .DUSR ATSAV=1B2 ;SAVED FILE

23 000400 .DUSR ATNRS=1B7 ;CANNOT BE A RESOLUTION ENTRY

24 000100 .DUSR ATUS1=1B9 ;USER ATTRIBUTE # 1

25 000040 .DUSR ATUS2=1B10 ;USER ATTRIBUTE # 2

26 000002 .DUSR ATPER=1B14 ;PERMANENT FILE

27 000001 .DUSR ATWP =1B15 ;WRITE PROTECTED

28

29

30 ; FILE CHARACTERISTICS (IN UFTAT)

31

32 007400 .DUSR ATMSK =17B7 ;TO GET HIGH ORDER PART OF 3330
33 : ADDRESSES OUT OF UFTDL

34 010000 .DUSR ATLNK=1B3 ;LINK ENTRY

35 004000 .DUSR ATPAR=1B4 ;PARTITION ENTRY

36 002000 .DUSR ATDIR=1B5 :DIRECTORY ENTRY

37 001000 .DUSR ATRES=1B6 ;LINK RESOLUTION (TEMPORARY)

38 000010 .DUSR ATCON=1B12 ; CONTIGUQUS FILE

39 000004 .DUSR ATRAN=1B13 ;RANDOM FILE

40

41 ;

42 ; DCT PARAMETERS.

43 ;

44

45 000000 .DUSR DCTBS=0 ;1B0=1 =) DEVICE USES DATA CHANNEL
46 000001 .DUSR DCTMS =1 ;MASK OF LOWER PRIORITY DEVICES
47 000002 .DUSR DCTIS=2 ;ADDRESS OF INTERRUPT SERVICE ROUTINE
0003 PARU

01

02 ; DEVICE CHARACTERISTICS (IN UFTCH)

03

214 RDOS System Reference Licensed Materiai--Property of Data General

04 000001 .DUSR DC100= 1B15 ; CONSOLE INPUT DEVICE IS D100 OR D200

05 ; TERMINAL (SET BY INIT1)

06 000001 .DUSR DCSTB= 1B15 ; SUPPRESS TRAILING BLANKS $CDR ONLY

07 000001 .DUSR DCCPO= 1B15 ; DEVICE REQUIRING LEADER/TRAILER

08 000001 .DUSR DCSTO= 1B15 ; USER SPECIFIED TIME OUT CONSTANT (MCA)

09 000002 .DUSR DCCGN= 1B14 » GRAPHICAL OUTPUT DEVICE WITHOUT TABBING
10 ; HARDWARE

11 000004 .DUSR DCIDI= 1B13 ; INPUT DEVICE REQUIRING OPERATOR INTERVENTION
12 000010 .DUSR DCLCD= 1B12 ; INPUT DEVICE IS 6053-TYPE TERMINAL

13 000010 .DUSR DCCNF= 1B12 ; OUTPUT DEVICE WITHOUT FORM FEED HARDWARE
14 000020 .DUSR DCTO= 1B11 ; TELETYPE OUTPUT DEVICE

15 000040 .DUSR DCKEY= 1B10 ; KEYBOARD DEVICE

16 000100 .DUSR DCNAF= 1B09 ; OUTPUT DEVICE REQUIRING NULLS AFTER FORM FEEDS
17 000200 .DUSR DCRAT= 1B08 ; RUBOUTS AFTER TABS REQUIRED

18 000400 .DUSR DCPCK= 1BO7 ; DEVICE REQUIRING PARITY CHECK

19 001000 .DUSR DCLAC= 1B06 ; REQUIRES LINE FEEDS AFTER CARRIAGE RTN

20 002000 .DUSR DCSPO= 1B05 ; SPOOLABLE DEVICE

21 004000 .DUSR DCFWD= 1B04 ; FULL WORD DEVICE (ANYTHING GREATER THAN
22 004000 .DUSR DCLT8 = 1B04 ; LESS THAN 8 BITS / CHARACTER (BYTE DEVICES).
23 010000 .DUSR DCFFO= 1B03 ; FORM FEEDS ON OPEN

24 020000 .DUSR DCLTU= 1B02 ; CHANGE LOWER CASE ASCII TO UPPER

25 040000 .DUSR DCC80 = 1B01 ; READ 80 COLUMNS

26 100000 .DUSR DCDIO= 1B00 ; SUSPEND PROTOCOL ON TRANSMIT (MCA)

27 100000 .DUSR DCBDK= 1B00 ; DISK CHARACTERISTIC (SET NON-PARAMETRICALLY)
28 ; SET MEANS ITS 3330

29 100000 .DUSR DCSPC= 1B00 ; SPOOL CONTROL

30 ; SET = SPOOLING ENABLED

31 , RESET = SPOOLING DISABLED

32

33 ;CHARACTERISTICS WORD FOR MY DCT'S

34

35 143432 .DUSR TTOCH =DCCGN + DCCNF + DCTO + DCPCK + DCLAC + DCC80 + DCSPO +DCSPC
36 020040 .DUSR TTICH=DCKEY + DCLTU

37

0004 PARLY

01 ;

02 ; DEVICE CHARACTERISTICS FOR QTY, ULM, AND ALM (PARU.SR)

03 ;

04 000001 .DUSR DCNI = 1B15 (MASKING ENABLES) CONSOLE INTERRUPTS

05 ;.-DUSR DCCGN= 1B14 ;(MASKING DISABLES) TAB EXPANSION

06 000004 .DUSR DCLOC= 1B13 ;LOCAL LINE (MASKING MAKES MODEM LINE)

07

08 ;.DUSR DCTO= 1B11 ;— FOR RUBOUT (MASKING GIVES BACKSPACE)

09 ,IGNORE LINEFEED (MASKING CONVERTS

10 ; LF/NL TO CR)

11 ;.DUSR DCKEY= 1B10 ;(MASKING DISABLES) INPUT ECHOING.

12 ;MASKING ALSO DISABLES LINE EDIT

13 ;(ZESC,DEL,\),

14 ;UNLESS “DCEDT” ALSO MASKED.

15

16 ;.DUSR DCNAF= 1B9 ;(MASKING DISABLES) 20 NULLS AFTER FORM FEED
17 000200 .DUSR DCXON= 1B8 ;(MASKING ENABLES) XON/XOFF FOR $TTR

18 ; 1B7 ;SAVE FOR FUTURE USE

19

20 ;.DUSR DCLAC= 1B6 ;(MASKING DISABLES) LINE FEED AFTER

21 ; CARRIAGE RETURN

22 ;.DUSR DCSPO= 1B5 ;(MUST BE OFF) SPOOLING

23 004000 .DUSR DCCRE= 1B4 ;CARRIAGE RETURN ECHO (MASKING DISABLES)
24 100000 .DUSR DCEDT= 1BO ;LINE EDIT (ESC, Z,DEL, \) DISABLED IF

25 ; MASK THIS BIT OR “DCKEY”, BUT NOT BOTH.

26 ;

27 , WRL TO QTY:64

28 ;

29 ; ACO= CODE +LINE #

30 ; AC1= DATA

31

32 000000 .DUSR W64DC= 0B7 ;NEW DEVICE CHARACTERISTIC MASK

33 ;FOR OPEN CHANNEL, AC1 AS ABOVE.

Licensed Material--Property of Data General v RDOS System Reference 215

34 000400 .DUSR We4LS= 1B7 ;CHANGE LINE SPEED FOR DG/CS,

35 : AC1 RIGHT-JUSTIFIED CLOCK SELECT.
36 001000 .DUSR W64MS= 2B7 :CHANGE DG/CS MODEM STATE, AC1=
37 000001 .DUSR W64DTR= 1B15 : RAISE DATA TERMINAL READY
38 ; ELSE LOWER

39 000002 .DUSR W64RTS = 1B14 ;. RAISE REQUEST TO SEND

40 ; ELSE LOWER

41 001400 .DUSR W64CH= 3B7 ;CHANGE CHARACTERISTICS FOR LINE
42 :AC1 SAME AS DG/CS HARDWARE SPEC.
43

0005 PARU

01 ;

02 ; SWITCHES

03 ;

04

05 100000 .DUSR ASW= 1B00

06 040000 .DUSR B.SW= 1B01

07 020000 .DUSR C.SW= 1B02

08 010000 .DUSR D.SW= 1B03

09 004000 .DUSR E.SW= 1B04

10 002000 .DUSR F.SW= 1B05S

11 001000 .DUSR G.SW= 1B06

12 000400 .DUSR H.SW= 1B07

13 000200 .DUSR 1.SW= 1808

14 000100 .DUSR J.SW= 1B09

15 000040 .DUSR K.SW= 1B10

16 000020 .DUSR L.SW= 1B11

17 000010 .DUSR M.SW= 1B12

18 000004 .DUSR N.SW= 1B13

19 000002 .DUSR O.SW= 1B14

20 000001 .DUSR P.SW= 1B15

21 100000 .DUSR QSW= 1B00

22 040000 .DUSR R.SW= 1801

23 020000 .DUSR S.SW= 1B02

24 010000 .DUSR T.SW= 1B03

25 004000 .DUSR USW= 1B04

26 002000 .DUSR V.SW= 1B05

27 001000 .DUSR W.SW= 1B06

28 000400 .DUSR X.SW= 1B07

29 000200 .DUSR Y.SW= 1808

30 000100 .DUSR Z.SW= 1B09

0006 PARU

01

02 ;

03 ; SYSTEM CONSTANTS

04 ;

05

06 000377 .DUSR SCWPB = 255. ;WORDS PER BLOCK

07 000400 .DUSR SCDBS =256. :SIZE OF DISK BLOCK

08 000100 .DUSR SCRRL=64. :WORDS PER RANDOM RECORD

09 000204 .DUSR SCLLG=132. :MAX LINE LENGTH

10 000030 .DUSR SCAMX =24. :MAX ARGUMENT LENGTH IN BYTES

11 000006 ‘DUSR SCFNL=UFTEX—-UFTFN+1 ;FILE NAME LENGTH

12 000005 .DUSR SCEXT=UFTEX-UFTFN :EXTENSION OFFSET IN NAME AREA
13 000012 .DUSR SCMER=10. :MAX ERROR RETRY COUNT

14 000016 .DUSR SCSTR=16 :SAVE FILE STARTING ADDRESS

15 177660 .DUSR SCTIM=-80. :RINGIO 1 MS. LOOP TIME (SN)

16 000000 .DUSR SCPPL=0 :PRIMARY PARTITION LEVEL

17 000006 .DUSR SCPPA=6 :PRIMARY PARTITION BASE ADDRESS
18 000003 .DUSR SCDSK=3 :ABSOLUTE ADDRESS OF DISK INFORMATION BLOCK
19 000004 .DUSR SCBAD=4 :ABSOLUTE ADDRESS OF BAD BLOCK TABLE BLOCK
20 000000 .DUSR SCSYS=0 :SYS.DR ADDRESS OFFSET

21 000001 .DUSR SCPSH=1 :PUSH DIRECTORY OFFSET

22 000004 .DUSR SCPNM =4 :MAX NUMBER OF PUSH LEVELS

23 000011 .DUSR SCMAP =SCPNM*2+SCPSH ;RELATIVE BASE ADDRESS OF MAP.DR
24 000001 .DUSR SCBPB=1 :RELATIVE BACKGROUND PUSH BASE
25 000006 ‘DUSR SCFPB=SCBPB+SCPNM+1 ;RELATIVE FOREGROUND PUSH BASE
26 000021 'DUSR SCFZW = SCPNM*4 + SCBPB ; FRAME SIZE WORD (SKIP DOUBLE WORD PUSH INDICES)

216 RDOS System Reference Licensed Material--Property of Data General

27 000022 .DUSR SCNVW =SCFZW + 1 ;NUMBER-OF-SYSTEM-OVERLAYS WORD

28 100000 .DUSR SFINT=1B0 /INTERRUPT FLAG

29 000001 .DUSR SFBRK=1B15 ;BREAK FLAG

30 000100 .DUSR SCNSO=64. 'NUMBER OF SYSTEM OVERLAYS

31 000072 -DUSR SNSOU =72 ;NUMBER OF SYSTEM OVERLAYS IN USE
32 000017 .DUSR SCSOP =SNSOU +3/4 ;NUMBER OF MEMORY PAGES TO HOLD SYSTEM OVERLAYS
33

34

35 ; SYSTEM BOOTSTRAP CONSTANTS

36 .

37 000000 .DUSR SCTBP=0 ; TEXT STRING BYTE POINTER

38 000001 .DUSR SCINS =1 ;SWITCHED FULL/PARTIAL-OVERLAYS ADDRESS
39 000002 .DUSR SCPSA=2 ;PROGRAM START ADDRESS

40 000002 .DUSR SCPAR=SCPSA ;PARTIAL INIT ADDRESS

41 000003 .DUSR SCINT=3 ;FULL/PARTIAL-OVERLAYS INIT ADDRESS
42 000004 .DUSR SCCLI=SCINT+1 yADDRESS OF END OF CLI

43 000005 .DUSR SCZMX =SCCL{+1 ;SQUASHED/UNSQUASHED FLAG

44 000006 .DUSR SCCPL =SCZMX +1 ;CURRENT PARTITION LEVEL

45 000007 .DUSR SCPBA=SCCPL +1 ;PARTITION BASE ADDRESS (LOW ORDER)
46 000010 .DUSR SCOFA=SCPBA +1 ;OVERLAY BASE ADDRESS (LOW ORDER)
47 000011 .DUSR SCPB1=SCOFA+1 ;PARTITION BASE ADDRESS (HIGH ORDER)
48 000012 .DUSR SCOF1=SCPB1+1 ;OVERLAY BASE ADDRESS (HIGH ORDER)
49 000013 .DUSR SCBAS=SCOF1 +1 ;BASE OF INFORMATION BLOCK

50 000013 .DUSR SCSWC =SCBAS ;SWITCH FOR SCINS ENTRY

51 000020 .DUSR SCIDV=20 ;INITIAL DEVICE CODE

52

53 000000 .DUSR SCAUN=0 ;ASCI!t UNIT NUMBER

54 000001 .DUSR SCUN=1 yUNIT (DEVICE CODE)

55 000002 .DUSR SCGO=2 ,ENTRY TO PASS FILENAME

56 000004 .DUSR SCNGO=4 ;ENTRY TO ASK FROM CONSOLE

0007 PARU

01

02 ; SYSTEM ERROR CODES

03

04 000000 .DUSR ERFNO = 0 ; ILLEGAL CHANNEL NUMBER

05 000001 .DUSR ERFNM = 1 ; ILLEGAL FILE NAME

06 000002 .DUSR ERICM= 2 ; ILLEGAL SYSTEM COMMAND

07 000003 .DUSR ERICD = 3 ; ILLEGAL COMMAND FOR DEVICE

08 000004 .DUSR ERSV1 = 4 ; NOT A SAVED FILE

09 000005 .DUSR ERWR0= 5 ; ATTEMPT TO WRITE AN EXISTENT FILE
10 000006 .DUSR EREOF = 6 ; END OF FILE

1 000007 .DUSR ERRPR = 7 ; ATTEMPT TO READ A READ PROTECTED FILE
12 000010 .DUSR ERWPR = 10 ; WRITE PROTECTED FILE

13 000011 .DUSR ERCRE = 11 ; ATTEMPT TO CREATE AN EXISTENT FILE
14 000012 .DUSR ERDLE = 12 ; A NON-EXISTENT FILE

15 000013 .DUSR ERDE1 = 13 ; ATTEMPT TO ALTER A PERMANENT FILE
16 000014 .DUSR ERCHA = 14 ; ATTRIBUTES PROTECTED

17 000015 .DUSR ERFOP = 15 ; FILE NOT OPENED

18 000016 .DUSR ERFUE = 16 ; FATAL UTILITY ERROR

19 000017 .DUSR EREXQ= 17 ; EXECUTE CLI.CM (NO ERROR)

20 000020 .DUSR ERNUL= 20 ; INVISIBLE ERROR CODE

21 000021 .DUSR ERUFT = 21 ; ATTEMPT TO USE A UFT ALREADY IN USE
22 000022 .DUSR ERLLI= 22 ; LINE LIMIT EXCEEDED O

23 000023 .DUSR ERRTN = 23 ; ATTEMPT TO RESTORE A NON-EXISTENT IMAGE
24 000024 .DUSR ERPAR = 24 ; PARITY ERROR ON READ LINE

25 000025 .DUSR ERCM3 = 25 ; TRYING TO PUSH TOO MANY LEVELS

26 000026 .DUSR ERMEM = 26 ; NOT ENUF MEMORY AVAILABLE

27 000027 .DUSR ERSPC= 27 ; OUT OF FILE SPACE

28 000030 .DUSR ERFIL = 30 , FILE READ ERROR

29 000031 .DUSR ERSEL = 31 ; UNIT NOT PROPERLY SELECTED

30 000032 .DUSR ERADR = 32 " ILLEGAL STARTING ADDRESS

31 000033 .DUSR ERRD = 33 ; ATTEMPT TO READ INTO SYSTEM AREA
32 000034 .DUSR ERDIO = 34 ; FILE ACCESSIBLE BY DIRECT I/O ONLY
33 000035 .DUSR ERDIR= 35 ; FILES SPECIFIED ON DIFF. DIRECTORIES
34 000036 .DUSR ERDNM = 36 ; DEVICE NOT IN SYSTEM

35 000037 .DUSR EROVN = 37 ; ILLEGAL OVERLAY NUMBER

36 000040 .DUSR EROVA= 40 ; FILE NOT ACCESSIBLE BY DIRECT /O

37 000041 .DUSR ERTIM= 41 » USER SET TIME ERROR

Licensed Material--Property of Data General RDOS System Reference 217

39
41
42

45
46
47
49
51
52
55
57

59

0008 PARU

000042
000043
000044
000045
000046
000047
000050
000051
000052
000053
000054
000055
000056
000057
000060
000061
000062
000063
000064
000065
000066
000067
000070

000071
000072
000073
000074
000075
000076
000077
000100
000101
000102
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
000117
000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132
000133
000134

000300
000301
000302
000303

.DUSR ERNOT =
.DUSR ERXMT =
.DUSR ERSQF =
.DUSR ERIBS =
.DUSR ERICB =
.DUSR ERSIM=
.DUSR ERQTS =
.DUSR ERNMD =
.DUSR ERIDS =
.DUSR ERDSN =
.DUSR ERD2S =
.DUSR ERDDE =
.DUSR ERDIU=
.DUSR ERLDE =
.DUSR ERFIU=
.DUSR ERTID =
.DUSR ERCMS =
.DUSR ERCUS =
.DUSR ERSCP =
.DUSR ERDCH =
.DUSR ERDNI=
.DUSR ERNDD =
.DUSR ERFGE =

.DUSR ERMPT =
.DUSR EROPD =
.DUSR ERUSZ =
.DUSR ERMPR =
.DUSR ERNLE =
.DUSR ERNTE =
.DUSR ERSDE =
.DUSR ERMDE =
.DUSR ERDTO =
.DUSR ERENA =
.DUSR ERMCA =
.DUSR ERSRR =
.DUSR ERSDL =
.DUSR ERCLO =
.DUSR ERSFA=
.DUSR ERABT =
.DUSR ERDOP =
.DUSR EROVF =
.DUSR ERNMC =
.DUSR ERNIR=
.DUSR ERXMZ =
.DUSR ERCANT =
.DUSR ERQOV =
.DUSR EROPM =
.DUSR ERFMT =
.DUSR ERBAD =
.DUSR ERBSPC=
.DUSR ERZCB=
.DUSR ERNSE =
.DUSR ERBLT=
.DUSR ERRDY =
.DUSR ERINT =
.DUSR EROVR=
.DUSR ERFRM=
.DUSR ERSPT =
.DUSR ERSOF =

; CLI ERROR CODES

.DUSR
.DUSR
.DUSR
.DUSR

218 RDOS System Reference

CNEAR =
CILAT=
CNDBD =
CCLTL=

42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70

71

72

73

74

75

76

77

100
101
102
103
104
105
106
107
110
1
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134

300
301
302
303

; OUT OF TCB'S

; SIGNAL TO BUSY ADDR

; FILE ALREADY SQUASHED ERROR

; DEVICE ALREADY IN SYSTEM

; INSUFFICENT CONTIGUOUS BLOCKS
: SIMULTANEOUS READ OR WRITE TO MUX LINE
: ERROR IN USER TASK QUEUE TABLE
; NO MORE DCB'S

; ILLEGAL DIRECTORY SPECIFIER

; DIRECTORY SPECIFIER NOT KNOWN
; DIRECTORY 1S TOO SMALL

; DIRECTORY DEPTH EXCEEDED

; DIRECTORY IN USE

; LINK DEPTH EXCEEDED

; FILE IS IN USE

; TASK ID ERROR

; COMMON SIZE ERROR

; COMMON USAGE ERROR

; FILE POSITION ERROR

: INSUFFICIENT ROOM IN DATA CHANNEL MAP
: DIRECTORY NOT INITIALIZED

; NO DEFAULT DIRECTORY

; FOREGROUND ALREADY EXISTS

; ERROR IN PARTITON SET

: DIRECTORY IN USE BY OTHER PROGRAM

; NO ROOM FOR UFTS ON EXEC/EXFG

; ADDR ERROR ON .SYSTM PARAM

; NOT A LINK ENTRY

; CURRENT BG IS NOT CHECKPOINTABLE

; SYS.DR ERROR

; MAP.DR ERROR

; DEVICE TIME OUT

; ENTRY NOT ACCESSIBLE VIA LINK

; MCA REQUEST OUTSTANDING

: INCOMPLETE TRANSMISSION CAUSED BY RECIEVER
; SYSTEM DEADLOCK

; 11O TERMINATED BY CHANNEL CLOSE

; SPOOL FILE(S) ACTIVE

; TASK NOT FOUND FOR ABORT

; DEVICE PREVIOUSLY OPENED

; SYSTEM STACK OVERFLOW

: NO MCA RECEIVE REQUEST OUTSTANDING

: NO INIT/RELEASE ON OPENED DEVICE (MAG TAPE)
: XMT & .IXMT MESSAGES MUST BE NON-ZERO

; 'YOU CAN'T DO THAT

: .TOVLD NOT LOADED FOR QUEUED OVERLAY TASKS
: OPERATOR MESSAGE MODULE NOT SYSGENED

; DISK FORMAT ERROR

: DISK HAS INVALID BAD BLOCK TABLE

: INSUFFICIENT SPACE IN BAD BLOCK POOL (CORE)
: ATTEMPT TO CREATE CONTIG OF ZERO LENGTH

; PROGRAM IS NOT SWAPPABLE

; BLANK TAPE

; LINE NOT READY

; CONSOLE INTERRUPT RECEIVED

; CHARACTER OVER RUN ERROR

; CHARACTER FRAMING ERROR

; TOO MANY SOFT ERRORS (DOS ONLY)

; QTY BUFFER OVERFLOW

; NOT ENOUGH ARGUMENTS
; ILLEGAL ATTRIBUTE

; NO DEBUG ADDRESS

; COMMAND LINE TOO LONG

Licensed Material--Property of Data General

08 000304 .DUSR CNSAD= 304 ; NO STARTING ADDRESS

09 000305 .DUSR CCKER= 305 ; CHECKSUM ERROR

10 000306 .DUSR CNSFS= 306 ; NO SOURCE FILE SPECIFIED

11 000307 .DUSR CNACM= 307 : NOT A COMMAND

12 000301 .DUSR CILBK = 310 ; ILLEGAL BLOCK TYPE

13 000311 .DUSR CSPER= 311 ; NO FILES MATCH SPECIFIER

14 000312 .DUSR CPHER= 312 ; PHASE ERROR

15 000313 .DUSR CTMAR= 313 ; TOO MANY ARGUMENTS

16 000314 .DUSR CTMAD= 314 ; TOO MANY ACTIVE DEVICES

17 000315 .DUSR CILNA= 315 ; ILLEGAL NUMERIC ARGUMENT

18 000316 .DUSR CSFUE= 316 ; FATAL SYSTEM UTILITY ERROR

19 000317 .DUSR CILAR= 317 ; ILLEGAL ARGUMENT

20 000320 .DUSR CCANT= 320 ; IMPROPER OR MALICIOUS INPUT

21 000321 .DUSR CTMLI= 321 ; TOO MANY LEVELS OF INDIRECT FILES
22 000322 .DUSR CSYER= 322 ; SYNTAX ERROR

23 000323 .DUSR CBKER= 323 ; BRACKET ERROR

24 000324 .DUSR CPARE= 324 ; PAREN ERROR

25 000325 .DUSR CCART= 325 ; WITHOUT) OR) WITHOUT ¢

26 000326 .DUSR CCAR1= 326 ; ILLEGAL NESTING OF () AND ()

27 000327 .DUSR CINDE = 327 ; ILLEGAL INDIRECT FILENAME

28 000330 .DUSR CPAR1= 330 T ILLEGAL NESTING OF () AND]

29 000331 .DUSR CIVAR = 331 ; ILLEGAL VARIABLE

30 000332 .DUSR CILTA= 332 ; ILLEGAL TEXT ARGUMENT

31 000333 .DUSR CTATL= 333 ; TEXT ARGUMENT TOO LONG

32

33 000333 .DUSR CCMAX= CTATL ; MAX CLI ERROR CODE

34 000036 .DUSR ERML = 30. ; MAXIMUM ERROR MESSAGE LENGTH
35

36

37

38

39 ; EXCEPTIONAL SYSTEM STATUS CODES

40

41 100001 DUSR PNMPF = A - MAP DR ERROR

42 100002 .DUSR PNSDE = @2 ; SYSTEM DIRECTORY ERROR

43 100003 .DUSR PNCSO = @3 ; SYSTEM STACK FAULT

44 100004 .DUSR PNIDA = @4 ; INCONSISTENT SYSTEM DATA

45 100005 .DUSR PNMDD = @5 ; MASTER DEVICE DATA ERROR

46 100006 .DUSR PNMDT = @6 ; MASTER DEVICE TIME OUT

47 100007 .DUSR PNDPE = @7 ; MOVING HEAD DISK ERROR

48 100010 .DUSR PNCUI= @10 ; UNCLEARABLE UNDEFINED INTERRUPT
49 100012 .DUSR PNCBK= @12 ; INSUFFICENT CONTIGUOUS BLOCKS TO BUILD
50 ; PUSH SPACE INDICES

51 100011 .DUSR PNILL= @11 ; ILLEGAL EXTENDED INSTRUCTION

52 100013 .DUSR PNPSH= @13 ; RTN BEYOND TOP OF WORLD

53 100014 .DUSR PNIPB = @14 ; INCONSISTENT OR IMPOSSIBLE CONDITION
54 ; RELATED TO DUAL PROCESSORS (IPB)
55 100015 .DUSR PNITR= @15 ; INT WORLD TRAPPED

56 100016 .DUSR PNERC= (@16 ; MULTIBIT MEMORY ERROR

57 100017 .DUSR PNPAR= @17 ; MEMORY PARITY ERROR

58 100020 .DUSR PNMEM= @20 ; INFOS INSUFFICIENT MEMORY (INIT TIME)
59 100021 .DUSR PNSPL = @21 ; SPOOLER

60 100022 .DUSR PNEMT= @22 ;MICRO-ECLIPSE EMULATOR TRAP

0010 PARU

01 ;PANIC -- UNMAPPED RDOS ONLY !!!!

02 100023 .DUSR PNPSF = @23 ;POWER SUPPLY FAULT-UPSC

0011 PARU

01

02 ;PANIC CODES MADE FROM GENERIC EXCEPTIONAL SYSTEM STATUS CODES
03 ;#R013 ED6 8/31/79

04 :

05

06 ; PANIC STAT MODULE

07

08 110002 .DUSR P1SDE = 1B3!PNSDE ;WDBLK

09

10 110003 .DUSR P1CSO = 1B3!PNCSO ;GSUB

11 120003 .DUSR P2CSO = 2B3!PNCSO ;INTD

Licensed Material--Property of Data General

RDOS System Reference

219

: USER STATUS TABLE (UST) TEMPLATE

12 130003 .DUSR
13 140003 .DUSR
14 150003 .DUSR
15

16 110004 .DUSR
17 120004 .DUSR
18 130004 .DUSR
19 140004 .DUSR
20

21 110005 .DUSR
22 120005 .DUSR
23 130005 .DUSR
24 140005 .DUSR
25 150005 .DUSR
26 160005 .DUSR
27

28

29 170005 .DUSR
30 110006 .DUSR
31 120006 .DUSR
32 130006 .DUSR
33 140006 .DUSR
34 150006 .DUSR
35 160006 .DUSR
36

37 110007 .DUSR
38 110010 .DUSR
39

40 110012 .DUSR
41 120012 .DUSR
42

43 110011 .DUSR
44

45 110013 .DUSR
46 120013 .DUSR
47

48 110014 .DUSR
49 120014 .DUSR
50 130014 .DUSR
51 140014 .DUSR
52

53 110015 .DUSR
54 120015 .DUSR
55

56 110016 .DUSR
57

58 110017 .DUSR
59

60 110021 .DUSR
0012 PARU

01 110022 .DUSR
02 110023 .DUSR
03

0013 PARU

01

02

03

04 ;

05 000400 .DUSR
06

07 000012 .DUSR
08 ; NOTE-
09

10 000000 .DUSR
11

12 000001 .DUSR
13 000002 .DUSR
14 000003 .DUSR
220 RDOS System Reference

P3CSO
P4CSO
P5CSO

P1IDA
P2IDA
P3IDA
P4IDA

P1MDD
P2MDD
P3MDD
P4MDD
PSMDD
P6MDD

P7MDD
P1MDT
P2MDT
P3MDT
PAMDT
PSMDT
PEMDT

P1DPE
P1CUI

P1CBK
P2CBK

P1ILL

P1PSH
P2PSH

P1IPB
P2iPB
P3IPB
P4IPB

P1ITR
P2ITR

P1ERC

P1PAR

P1SPL

P1EMT
P1PSF

UST =

USTP=12

USTPC=

USTZM =
USTSS =
USTES=

3B3!PNCSO
4B3IPNCSO

= 5B3!PNCSO

1B3!PNIDA
2B3!PNIDA
3B3!PNIDA

= 4B3!PNIDA

1B3!PNMDD
2B3!PNMDD
3B3!PNMDD
4B3!PNMDD
5B3!PNMDD
6B3!PNMDD

7B3!PNMDD
1B3!PNMDT
2B3!PNMDT
3B3!PNMDT
4B3!IPNMDT
5B3!PNMDT
6B3!IPNMDT

1B3!PNDPE
1B3!PNCUI

= 1B3!PNCBK
= 2B3!PNCBK

1B3!PNILL

~ 1B3IPNPSH
— 2B3IPNPSH

1B3!PNIPB
2B3!PNIPB
3B3!PNIPB

= 4B3!PNIPB

1B3!PNITR
2B3!PNITR

1B3!PNERC

1B3!PNPAR

1B3!PNSPL

= 1B3IPNEMT
= 1B3IPNPSF

400

0

"
2
3

:GSUB
:GSUB
;GSUB

;FILIO
;BLKIO
;I0BUF
;OPPRO

:OVLAY
JINIT3
;SOV3
;SOV6
:SOV7
;SOV3

,FILIO
;INIT3
:OVLAY
;SOV3
;SOV6
:SOV7
:SOV3

;DZPDR
INTD

;FINIT2
;INIT2

;GSUB

;SOV12
;S0V27

;DPMOD
;DPMOD
;DPMOD
;DPMOD

;MAPZ
;MAPZ

;INTD
;INTD
;SPOLR

;PANIC
;UPSC

: START OF BACKGROUND USER STATUS AREA

; PZERO LOC FOR UST POINTER
USTP MUST CORRESPOND TO PARS PZERO ALLOCATIONS

; 0=)BACKGROUND, 1=)FOREGROUND
; (WHEN NOT IN SCHED STATE)

; ZMAX

; START OF SYMBOL TABLE
: END OF SYMBOL TABLE

Licensed Materia!l--Property of Data General

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
141
42
43
44
45
46
47
48
49
50
51
52
53
54
55
0014 PARU
01
02
03
04
05
06
07
08
09
10
11
12
i3
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Licensed Material--Property of Data General

000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022

000023

000023

000030

100000
020000
010000
004000
002000
001000
000400
000200

000100
000020
000010
000004
000002
000001

000000
000001
000002
000003
000004
000005

000007
000010
000011
000012
000013
000014
000015
000016
000017
000020

000015
000021

.DUSR USTNM= 4 ; NMAX
.DUSR USTSA= 5 ; STARTING ADDRESS
.DUSR USTDA= 6 ; DEBUGGER ADDRESS
.DUSR USTHU= 7 ;, HIGHEST ADDRESS USED
.DUSR USTCS= 10 ; FORTRAN COMMON AREA SIZE
.DUSR USTIT= 1 ; INTERRUPT ADDRESS
.DUSR USTBR= 12 ; BREAK ADDRESS
.DUSR USTCH= 13 ; # TASKS (LEFT), # CHANS (RIGHT)
.DUSR USTCT= 14 ; CURRENTLY ACTIVE TCB
.DUSR USTAC= 15 ; START OF ACTIVE TCB CHAIN
.DUSR USTFC= 16 ; START OF FREE TCB CHAIN
.DUSR USTIN= 17 ; INITIAL START OF NREL
.DUSR USTOD= 20 ; OVLY DIRECTORY ADDR
.DUSR USTSV= 21 ; FORTRAN STATE VARIABLE SAVE ROUTINE (OR 0)
.DUSR USTRV= 22 ; REVISION
; ENVIRONMENT STATE WORD WHEN EXECUTING
.DUSR USTIA= 23 ; TCB ADDR OF INT OR BREAK PROC
.DUSR USTEN= USTIA ; LAST ENTRY
.DUSR UFPT = 30 ; SAVE SOS

; ENVIRONMENT STATUS BITS (IN USTRV DURING EXECUTION)

.DUSR ENMAP= 1BO yMAPPED MACHINE
DUSR ENUEC= 1B2 ;UNMAPPED ECLIPSE
.DUSR ENMEC= 1B3 'MAPPED ECLIPSE

.DUSR ENUNV- 1B4 ,UNMAPPED NOVA

.DUSR ENMNV= 1B5 ;MAPPED NOVA

.DUSR ENUN3= 1B6 ;UNMAPPED NOVA 3
.DUSR ENMN3= 1B7 :MAPPED NOVA 3

.DUSR ENUMN= 1B8 ;UNMAPPED MICRO NOVA
.DUSR ENCTD= 1B9 ;#MSB# D FROM TTY FOR ICOS SYSTEMS
.DUSR ENDOS= 1B11 ;DOS SYSTEM

.DUSR ENINFO= 1B12 /INFOS SYSTEM

.DUSR ENSOS= 1B13 ;STAND ALONE SYSTEM
.DUSR ENRTOS= 1B14 ;RTOS SYSTEM

.DUSR ENRDOS= 1B15 ;RDOS SYSTEM

; TASK CONTROL BLOCK (TCB) TEMPLATE

)

.DUSR TPC = 0 ;USER PC (B0O—14) + CARRY (B15)
.DUSR TACO= 1 ;ACO

.DUSR TAC1 = 2 ;ACH

.DUSR TAC2= 3 ;AC2

.DUSR TAC3= 4 ;AC3

.DUSR TPRST = 5 ;STATUS BITS (LEFT) + PRIORITY (RIGHT)
.DUSR TSYS = 6 ;SYSTEM CALL WORD

.DUSR TLNK= 7 ;LINK WORD

.DUSR TUSP = 10 ;USP

.DUSR TELN= 11 ;TCB EXTENSION ADDR

.DUSR TID= 12 ;TASK ID

.DUSR TTMP = 13 :SCHEDULER TEMPORARY

.DUSR TKLAD = 14 ;USER KILL PROC ADDR

DUSR TSP-= 15 ;STACK POINTER

.DUSR TFP= 16 ;FRAME POINTER

.DUSR TSL-= 17 ,STACK LIMIT

.DUSR TSO= 20 ;OVERFLOW ADDR

.DUSR TLN=TKLAD-TPC +1 ;SHORT TCB LENGTH

.DUSR TLNB- TSO-TPC +1 ;LONG TCB LENGTH

RDOS System Reference

221

28 ; TASK STATUS BITS (IN TPRST)

29

30 100000 .DUSR TSSYS= 1B0 ;SYSTEM BIT

31 040000 .DUSR TSSUSP= 1B1 ;SUSPEND BIT

32 020000 .DUSR TSXMT= 1B2 ; XMT/REC AND OVERLAY BIT

33 010000 .DUSR TSRDOP = 1B3 ;. TRDOP BIT

34 004000 .DUSR TSABT= 1B4 ;ABORT LOCK BIT

35 002000 .DUSR TSRSV= 1B5 ;RESERVED

36 001000 .DUSR TSUPN= 1B6 ;USER PEND BIT

37 000400 .DUSR TSUSR= 187 :USER FLAG BIT

0015 PARU

01 ;

02 ; OVERLAY DIRECTORY

03 ;

04

05 000000 .DUSR OVNDS= 0 ;NUMBER OF NODES

06

07 ; FOR EACH NODE:

08

09 000001 .DUSR OVRES= 1 ;CURRENT OVLY(B0-7), USE COUNT(B8-15)
10 000002 .DUSR OVDIS= 2 ;# OVLYS (B0-7), LOADING BIT (B8),
1 ; SIZE IN BLKS (B9-15)

12 000003 .DUSR OVBLK= 3 ;STRT BLK # IN OVLY FILE FOR FIRST OVLY
13 000004 .DUSR OVNAD= 4 ;CORE ADDR FOR NODE(B1-15)

14 ; 1BO FLAGS VIRTUAL NODE

15

16

17

18 ;

19 ; USER TASK QUEUE TABLE

20 ;

21

22 000000 .DUSR QPC= 0 ;STARTING PC

23 000001 .DUSR QNUM = 1 ;NUMBER OF TIMES TO EXEC

24 000002 .DUSR QTOV= 2 ;OVERLAY

25 000003 .DUSR QSH= 3 ; STARTING HOUR

26 000004 .DUSR QSMS = 4 ;STARTING SEC IN HOUR

27 000005 .DUSR QPRI = TPRST ;MUST BE SAME

28 000006 .DUSR QRR= 6 ;RERUN TIME INC IN SEC

29 000007 .DUSR QTLNK= TLNK ;MUST BE SAME

30 000010 .DUSR QOCH= 10 ;CHAN OVERLAYS OPEN ON

31 000011 .DUSR QCOND= 11 ;TYPE OF LOAD

32 000012 .DUSR QAC2= 12 ; WAKEUP AC2

33 ; 1B0= LOADING, 1B15= DEQUE REQ REC
34 000013 .DUSR QTLN= QAC2-QPC +1

35 000013 .DUSR QPEX = QTLN ;USER TASK Q AREA EXTENSION

36

37

38

39 ;

40 ; USER PROGRAM TABLE FOR OPERATOR COMMUNICATIONS PACKAGE
41 ;

42

43 000000 .DUSR LPN= 0 ;PROGRAM NUMBER

44 000001 .DUSR LOV= 1 ;OVERLAY NUMBER OR -1

45 000002 .DUSR LCOND= 2 ;CONDITIONAL/UNCONDITIONAL LOAD
46 000003 .DUSR LTPR= 3 :TASK ID (LEFT) + PRIORITY (RIGHT)
47 000004 .DUSR LPC= 4 ;PROGRAM COUNTER

48

49 000005 .DUSR LTLN= LPC-LPN +1 ; TABLE LENGTH

50

51 000005 .DUSR LPEX= LTLN ;COMMUNICATIONS EXTENSION AREA START
0016 PARU

01 ;

02 ; TUNING FILE DISPLACEMENTS

03 ;

04

05 000000 .DUSR .TUN=0 ;OFFSET TO NUMBER WORD IN PAIR
222 RDOS System Reference Licensed Material--Property of Data General

06 000001 .DUSR TUC=.TUN+1 ;OFFSET TO 1ST COUNT IN PAIR

07 000003 .DUSR TUP=.TUC+2 ;OFFSET TO 2ND COUNT OF PAIR

08 000005 .DUSR .TUNX=.TUP +2 ;LENGTH OF COUNT PAIR

09

10 000001 .DUSR TUNSTK =1 ;NUMBER STACKS IN SYSTEM
11 000002 .DUSR TJUSTK= .TUNSTK+.TUC-.TUN ;STACK COUNT

12 000004 .DUSR .TUPSTK=.TUNSTK +.TUP -.TUN ;STACK PEND COUNT
13

14 000006 .DUSR .TUNCEL = . TUNSTK +.TUNX ;NUMBER CELLS IN SYSTEM
15 000007 .DUSR .TUCEL= .TUNCEL+.TUC-.TUN ;CELLS COUNTS

16 000011 .DUSR .TUPCEL =.TUNCEL +.TUP ~.TUN

17

18 000013 .DUSR .TUNBUF = .TUNCEL +.TUNX ;BUFFERS, EXCLUDING TUNING BUFFERS
19 000014 .DUSR .TUBUF= .TUNBUF+.TUC-.TUN ;COUNTS

20 000016 .DUSR .TUPBUF = . TUNBUF +.TUP —.TUN

21

22 000020 .DUSR TUNOV= .TUNBUF +.TUNX ;OVERLAYS

23 000021 .DUSR .TUOV= .TUNOV+.TUC-.TUN

24 000023 .DUSR .TUPOV= .TUNOV +.TUP-.TUN

25

26 000025 .DUSR TULEN =.TUNOV + .TUNX

**0000 TOTAL ERRORS, 00000 PASS 1 ERRORS

0017 PARU

ATCHA 040000 2721
ATCON 000010 2/38
ATDIR 002000 2/36
ATLNK 010000 2/34
ATMSK 007400 2/32
ATNRS 000400 2/23
ATPAR 004000 2/35
ATPER 000002 2/26
ATRAN 000004 2/39
ATRES 001000 2/37
ATRP 100000 2/20
ATSAV 020000 2/22
ATUS1 000100 2/24
ATUS2 000040 2/25
ATWP 000001 2/27
A.SW 100000 5/05
B.SW 040000 5/06
CBKER 000323 9/23
CCANT 000320 9/20
CCAR1 000326 9/26
CCART 000325 9/25
CCKER 000305 9/09
CCLTL 000303 9/07
CCMAX 000333 9/33
CILAR 000317 9/19
CILAT 000301 9/05
CILBK 000310 9/12
CILNA 000315 917
CILTA 000332 9/30
CINDE 000327 9/27
CIVAR 000331 9/29
CNACM 000307 9/11
CNDBD 000302 9/06
CNEAR 000300 9/04
CNSAD 000304 9/08
CNSFS 000306 9110
CPAR1 000330 9/28
CPARE 000324 9/24
CPHER 000312 9/14
CSFUE 000316 9/18
CSPER 000311 913
CSYER 000322 9/22
CTATL 000333 9/31 9/33

Licensed Material--Property of Data General RDOS Syslem Reference 223

CTMAD 000314
CTMAR 000313
cT™LI 000321
Cc.swW 020000
DC100 000001
DCBDK 100000
DCC80 040000
DCCGN 000002
DCCNF 000010
DCCPO 000001
DCCRE 004000
DCDIO 100000
DCEDT 100000
DCFFO 010000
DCFWD 004000
DCIDI 000004
0018 PARU

DCKEY 000040
DCLAC 001000
DCLCD 000010
DCLOC 000004
DCLT8 004000
DCLTU 020000
DCNAF 000100
DCNI 000001
DCPCK 000400
DCRAT 000200
DCSPC 100000
DCSPO 002000
DCSTB 000001
DCSTO 000001
DCTBS 000000
DCTIS 000002
DCTMS 000001
DCTO 000020
DCXON 000200
D.SW 010000
ENCTD 000100
ENDOS 000020
ENINF 000010
ENMAP 100000
ENMEC 010000
ENMN3 000400
ENMNV 002000
ENRDO 000001
ENRTO 000002
ENSOS 000004
ENUEC 020000
ENUMN 000200
ENUN3 001000
ENUNV 004000
ERABT 000110
ERADR 000032
ERBAD 000122
ERBLT 000126
ERBSP 000123
ERCAN 000116
ERCHA 000014
ERCLO 000106
ERCM3 000025
ERCMS 000062
ERCRE 000011
ERCUS 000063
ERD2S 000054
ERDCH 000065
ERDDE 000055
ERDE1 000013
ERDIO 000034
224

RDOS System Reference

9/16
9/15
9/21
5/07
3/04
3/27
3/25
3/09
3/13
3/07
4/23
3/26
4/24
3/23
3/21
311

3/15
3/19
3/12
4/06
3/22
3/24
3/16
4/04
3/18
317
3/29
3/20
3/06
3/08
2/45
2/47
2/46
3/14
417
5/08
13/50
13/51
13/52
13/41
13/43
13/47
13/45
13/65
13/54
13/53
13/42
13/48
13/46
13/44
8/16
7/30
8/26
8/30
8/27
8/22
7/16
8/14
7/25
7/54
7/13
7/55
7/48
7/57
7/49
7/15
7/32

3/35
3/35
3/35

3/36
3/35

3/36

3/35

3/35
3/35

3/35

Licensed Material--Property of Data General

ERDIR 000035 7/33

ERDIU 000056 7/50
ERDLE 000012 7/14
ERDNI 000066 7/58
ERDNM 000036 7/34
ERDOP 000111 8/17
ERDSN 000053 7/47
0019 PARU

ERDTO 000101 8/09
ERENA 000102 8/10
EREOF 000006 710
EREXQ 000017 719
ERFGE 000070 7/60
ERFIL 000030 7/28
ERFIU 000060 7/52
ERFMT 000121 8/25
ERFNM 000001 7/05
ERFNO 000000 7/04
ERFOP 000015 m7
ERFRM 000132 8/34
ERFUE 000016 718
ERIBS 000045 7/41
ERICB 000046 7/42
ERICD 000003 7/07
ERICM 000002 7/06
ERIDS 000052 7/46
ERINT 000130 8/32
ERLDE 000057 7/51
ERLLI 000022 7/22
ERMCA 000103 8'11
ERMDE 000100 8/08
ERMEM 000026 /26
ERML 000036 9/34
ERMPR 000074 8/04
ERMPT 000071 8/01
ERNDD 000067 7/59
ERNIR 000114 8/20
ERNLE 000075 8/05
ERNMC 000113 8/19
ERNMD 000051 7/45
ERNOT 000042 7/38
ERNSE 000125 8/29
ERNTE 000076 8/06
ERNUL 000020 7/20
EROPD 000072 8/02
EROPM 000120 8/24
EROVA 000040 7/36
EROVF 000112 8/18
EROVN 000037 7/35
EROVR 000131 8/33
ERPAR 000024 7/24
ERQOV 000117 8/23
ERQTS 000050 7/44
ERRD 000033 7/31
ERRDY 000127 8/31
ERRPR 000007 711
ERRTN 000023 7/23
ERSCP 000064 7/56
ERSDE 000077 8/07
ERSDL 000105 8/13
ERSEL 000031 7/29
ERSFA 000107 8/15
ERSIM 000047 7/43
ERSOF 000134 8/36
ERSPC 000027 7/27
ERSPT 000133 8/35
0020 PARU

ERSQF 000044 7/40

Licensed Material--Property of Data General RDOS System Reference 225

ERSRR 000104
ERSV1 000004
ERTID 000061
ERTIM 000041
ERUFT 000021
ERUSZ 000073
ERWPR 000010
ERWRO 000005
ERXMT 000043
ERXMZ 000115
ERZCB 000124
E.SW 004000
F.SW 002000
G.SW 001000
H.SW 000400
I.SW 000200
JSW 000100
K.SW 000040
LCOND 000002
LOV 000001
LPC 000004
LPEX 000005
LPN 000000
LTLN 000005
LTPR 000003
L.SW 000020
M.SW 000010
N.SW 000004
OVBLK 000003
OVDIS 000002
OVNAD 000004
OVNDS 000000
OVRES 000001
o.sw 000002
P1CBK 110012
P1CSO 110003
P1CUI 110010
P1DPE 110007
P1EMT 110022
P1ERC 110016
P1IDA 110004
P1ILL 110011
P1IPB 110014
P1ITR 110015
P1MDD 110005
PIMDT 110006
P1PAR 110017
P1PSF 110023
P1PSH 110013
P1SDE 110002
P1SPL 110021
P2CBK 120012
P2CSO 120003
P2IDA 120004
P2iPB 120014
P2ITR 120015
P2MDD 120005
0021 PARU

P2MDT 120006
P2PSH 120013
P3CSO 130003
P3iDA 130004
P3iPB 130014
P3MDD 130005
P3MDT 130006
P4CSO 140003
P4IDA 140004
P4iPB 140014
226

RDOS System Reference

8/12
7/08
7/53
7/37
7/21
8/03
7/12
7/09
7/39
8/21
8/28
5/09
5/10
511
5/12
5/13
5/14
5/15
15/45
15/44
15/47
15/51
15/43
15/49
15/46
5/16
5/17
5/18
15/12
15/10
15/13
15/05
15/09
5/19
11/40
11/10
11/38
11/37
12/01
11/56
11/16
11/43
11/48
11/53
11/21
11/30
11/58
12/02
11/45
11/08
11/60
11/41
11/11
117
11/49
11/54
11/22

11/31
11/46
11/12
11/18
11/50
11/23
11/32
1113
11/19
11/51

15/49

15/49
15/51

Licensed Material--Property of Data General

P4MDD 140005 11/24

P4MDT 140006 11/33

P5CSO 150003 11/14

PSMDD 150005 11/25

P5MDT 150006 11/34

P6MDD 160005 11/26

P6MDT 160006 11/35

P7MDD 170005 11/29

PNCBK 100012 9/49 11/40 11/41

PNCSO 100003 9/43 1110 11/11 1112 11/13 11/14

PNCUI 100010 9/48 11/38

PNDPE 100007 9/47 11/37

PNEMT 100022 9/60 12/01

PNERC 100016 9/56 11/56

PNIDA 100004 9/44 11/16 1117 11/18 11/19

PNILL 100011 9/51 11/43

PNIPB 100014 9/563 11/48 11/49 1150 11/51

PNITR 100015 9/55 11/53 11/54

PNMDD 100005 9/45 11/21 11/22 11/23 11/24 11/25 11/26
11/29

PNMDT 100006 9/46 11/30 11/31 11/32 11/33 11/34 11/35

PNMEM 100020 9/58

PNMPE 100001 9/41

PNPAR 100017 9/57 11/58

PNPSF 100023 10/02 12/02

PNPSH 100013 9/52 11/45 11/46

PNSDE 100002 9/42 11/08

PNSPL 100021 9/59 11/60

P.SW 000001 5/20

QAC2 000012 156/32 1534

QCOND 000011 15/31

QNUM 000001 15/23

QOCH 000010 15/30

QPC 000000 15/22 15/34

QPEX 000013 15/35

QPRI 000005 15/27

QRR 000006 15/28

QSH 000003 15/25

QsMs 000004 15/26

QTLN 000013 15/34 15/35

QTLNK 000007 15/29

QTov 000002 15/24

Q.sw 100000 5/21

R.SW 040000 5/22

SCAMX 000030 6/10

SCAUN 000000 6/53

SCBAD 000004 6/19

SCBAS 000013 6/49 6/50

0022 PARU

SCBPB 000001 6/24 6/25 6/26

SCCLI 000004 6/42 6/43

SCCPL 000006 6/44 6/45

SCDBS 000400 6/07

SCDSK 000003 6/18

SCEXT 000005 6/12

SCFNL 000006 6/11

SCFPB 000006 6/25

SCFzZw 000021 6/26 6/27

SCGO 000002 6/55

SCIDV 000020 6/51

SCINS 000001 6/38

SCINT 000003 6/41 642

SCLLG 000204 6/09

SCMAP 000011 6/23

SCMER 000012 6/13

SCNGO 000004 6/56

SCNSO 000100 6/30

SCNVW 000022 6/27

Licensed Material--Property of Data General RDOS System Reference 227

SCOF1 000012
SCOFA 000010
SCPAR 000002
SCPBt 000011
SCPBA 000007
SCPNM 000004
SCPPA 000006
SCPPL 000000
SCPSA 000002
SCPSH 000001
SCRRL 000100
SCSOP 000017
SCSTR 000016
SCSWC 000013
SCSYS 000000
SCTBP 000000
SCTIM 177660
SCUN 000001
SCwPB 000377
SCZMX 000005
SFBRK 000001
SFINT 100000
SNSOU 000072
S.SW 020000
TACO 000001
TAC1 000002
TAC2 000003
TAC3 000004
TELN 000011
TFP 000016
TID 000012
TKLAD 000014
TLN 000015
TLNB 000021
TLNK 000007
TPC 000000
TPRST 000005
TSABT 004000
TSL 000017
0023 PARU

TSO 000020
TSP 000015
TSRDO 010000
TSRSV 002000
TSSUS 040000
TSSYS 100000
TSUPN 001000
TSUSR 000400
TSXMT 020000
TSYS 000006
TTICH 020040
TTMP 000013
TTOCH 143432
TULEN 000025
TUSP 000010
T.SW 010000
UDBAD 177770
UDBAT 177764
UDBBK 177766
UDBBN 000017
uDDL 177777
UFCA1 000024
UFDEL 000022
UFEA1 000030
UFFA1 000037
UFLAt 000034
UFLAD 000007
UFLAN 000014
228

RDOS System Reference

6/48
6/46
6/40
6/47
6/45
6/22
6/17
6/16
6/39
6/21
6/08
6/32
6/14
6/50
6/20
6/37
6/15
6/54
6/06
6/43
6/29
6/28
6/31
5/23
14/07
14/08
14/09
14/10
14/16
14/20
14/16
14/18
14/24
14/25
14/13
14/06
14/11
14/34
14/21

14/22
14/19
14/33
14/35
14/31
14/30
14/36
14/37
14/32
14/12
3/36
14/17
3/35
16/26
14/14
5/24
2/12
2/10
2/13
214
2/11
1/42
2/08
1/46
1/53
1/50
1/25
1/31

6/49
6/47

6/48
6/46
6/23

6/40
6/23

6/44

6/32

14/24

15/29
14/24
15/27

14/25

6/25

14/25

6/26

Licensed Material--Property of Data General

UFNAT
UFPT
UFTAC
UFTAD
UFTAT
UFTBC
UFTBK
UFTBN
UFTBP
UFTCA
UFTCB
UFTCH
UFTCN
UFTDC
UFTDL
UFTDR
UFTEA
UFTEL
UFTEX
UFTFA
UFTFN
UFTHM
UFTLA
UFTLK
UFTNA
UFTP1
UFTP2
UFTST
UFTUC
UFTUN
0024 PARU
UFTYD
usT
USTAC
USTBR
USTCH
usTCS
usTCT
USTDA
USTEN
USTES
USTFC
USTHU
USTIA
USTIN
usTIT
USTNM
USTOD
USTP
USTPC
USTRV
USTSA
USTSS
USTSV
USTZM
u.sw
V.SW
W64CH
W64DC
W64DT
we4Ls
W64MS
W64RT
W.SW
X.SW
Y.SW
zZsw
-TUBU

000032
000030
000013
000012
000006
000011
000010
000041
000042
000025
000026
000043
000044
000022
000021
000036
000031
000045
000005
000040
000000
000015
000035
000007
000033
000016
000017
000027
000020
000023

000014
000400
000015
000012
000013
000010
000014
000006
000023
000003
000016
000007
000023
000017
000011
000004
000020
000012
000000
000022
000005
000002
000021
000001
004000
002000
001400
000000
000001
000400
001000
000002
001000
000400
000200
000100
000014

1/48
13/35
1/29
1/28
1/23
1/27
1/26
1/58
1/59
1/43
1/44
1/60
2/01
1/40
1/36
1/52
1/47
2/07
1/22
1/54
1/21
1/32
1/561
1/24
1/49
1/33
1/34
1/45
1/35
1/41

1/30
13/05
13/24
13/21
13/22
13/19
13/23
13/17
13/33
13/14
13/25
13/18
13/31
13/26
13/20
13/15
13727
13/07
13/10
13/29
13/16
13/13
13/28
13/12

5/25

5/26

4/41

4/32

4/37

/34

4/36

4/39

5/27

5/28

5/29

5/30
16/19

Licensed Material--Property of Data General

2/12
2/10

2/13
2/14

2/07
/10
2/08

6/11

2/07

13/33

2/11
2/11

6/12

2/08

2112

6/11

2/13

6/12

2/14

RDOS System Reference

229

.TUC
.TUCE
.TUN

.TUNB
.TUNC
.TUNO
.TUNS
.TUNX
.TUOV
.TUP

.TuPB
.TUPC
.TUPO
.TUPS
.TUST

000001
000007
000000

000013
000006
000020
000001
000005
000021
000003
000016
000011
000023
000004
000002

16/06
16/15
16/05
16/20
16/18
16/14
16/22
16/10
16/08
16/23
16/07
16/20
16/16
16/24
16/12
16/11

Figure B.1 Listing of PARU.LS

230

RDOS System Reference

16/07

16/06
16/23
16/19
16/15
16/23
16/11
16/14

16/08

16/11

16/11
16/24
16/20
16/16
16/24
16/12
16/18

16/12

16/15

16/12

16/22
16/18
16/26
16/14
16/22

16/16

16/19

16/15

16/26

16/20

16/23

16/16

16/24

16/19

Licensed Material--Property of Data General

Appendix C

Real-time Programming Examples

This appendix contains two examples of assembly language

programs written for a real-time environment.

TIMEC Program

The first example is TIMEC, a bare-bones program that
creates an additional task at the same priority. During ex-
ecution, TIMEC creates TASK at the same priority as itself
(0). The new task competes for CPU control, gets it when
TIMEC suspends itself, and retains it until it suspends itself.
Each task prints a message on the console when it gains
control. TIMEC suspends itself for two seconds, and TASK
suspends itself for four seconds. After roughly eight seconds
elapse, the console shows the following messages:

I'M TIMEC I'M TIMEC I'M TASK I'M TIMEC I'M TASK

Seconds ——Q 2 4 6 88—
I'M TASK I'M TIMEC I'M TIMEC
Figure C.1 TIMEC and TASK messages 1D-00497

Licensed Material--Property of Data General

I'M TIMEC
I'M TASK
I'M TIMEC
I'M TASK
I'M TIMEC
I'M TIMEC
I'M TASK
I'M TIMEC

The messages appear in syncopated fashion because the
tasks suspend themselves for different times, as shown in
Figure C.1. A flowchart of the TIMEC program appears in
Figure C.2, and Figure C.3 lists the program code.

Because TIMEC includes no code to return to the CLI. you

must use the RDOS interrupts CTRL-A or CTRL-C to stop
it and return to the CLIL

RDOS System Reference 231

TADDR

!

\
TIMEC opens
$TTO TADDR gets
and writes
“'M TASK"”

\

A

TIMEC creates

TADDR TADDR delays itself
for 4 seconds

'

\

TIMEC gets
and writes
“I'M TIMEC”

A\

TIMEC delays itself
for 2 seconds

Each procedure box represents a request
to the system, which then surrenders control
to the task scheduler.

Figure C.2 TIMEC flow chart SD-00572

232 RDOS System Reference Licensed Material--Property of Data Genera!l

START:

TIMEC:

TADDR:

NTTO:

.TADDR:

.TIMES:

T2MES:

.S2:

.S4:

ERROR:

TITL TIMEC
.COMM TASK,2*400 + 1

.EXTN .TASK

.ENT START

TXTM 1

.NREL

LDA 0, NTTO ; Pointer to console
;output filename.

SUB 1,1 ;Use default mask
;on $TTO.

.SYSTM

.OPEN 0 ;Open $TTO on channel 0.

JMP ERROR ;On most errors, let the
;CLI explain.

SUB 0,0 ;Give new task priority
;and ID of 0.

LDA 1,.TADDR ; Start task at this
.address.

.TASK ; Create the task.

JMP ERROR

LDA 0, .TIMES ; TIMEC, pick up
;pointer to message.

.SYSTM

\WRL 0 :Write message.

JMP ERROR

LDA 1, S2 ; Pointer to interval.

.SYSTM

.DELAY ; TIMEC, delay

JMP ERROR ;yourself, giving TASK

JMP TMEC :control until delay
‘expires

LDA 0, .T2MES ; TASK, pick up
;pointer to message.

.SYSTM

WRL 0 ; Write message.

JMP ERROR

LDA 1, .54 ; Pointer to interval.

.SYSTM ; Delay yourself,

.DELAY ;giving TIMEC control.

JMP ERROR

JMP TADDR ;When you awaken, write
;message again.

+172

TXT “$TTO”

TADDR

+172

TIXT “I'M TIMEC .(15)"

172

TIXT “I'M TASK.(15)"

20. ;2010 Hz RTC frequency
,is 2 seconds.

40 ;40"10Hz is 4 seconds.

.SYSTM

.ERTN

JMP ERROR :Reserved. never taken.

.END START

Figure C.3 TIMEC program listing

Licensed Material--Property of Data General

RDOS System Reference

233

EXAMPLE Program

The second program, EXAMPLE, is a multitasking program
that uses overlays; it shows multitask overlay calls and a
queued overlay task. Figure C.4 charts the program flow.
The assembler listings for EXAMPLE and its two overlays,
QUE and COMP, appear in Figure C.5. In EXAMPLE, the
main program task opens the console input, output, and
overlay files; then it sets its priority to 40y and creates a
second task via call .QTSK at priority 30g. The new task,
called QUE, will be created and readied every three seconds.
After creating task QUE, the main program momentarily
retains CPU control and types a prompt (?) on the system
console. The main program task recognizes two commands:
the letter B, meaning return to the CLI, and the letter C,
meaning load overlay COMP and execute the code within
it.

Overlay COMP types the message:

| AM A DATA GENERAL COMPUTER.

COMP then releases the overlay node and returns to the
prompt loop in the main program. (On characters other than
B or C, the main program repeats the prompt loop.)

Shortly after the main program has typed its prompt, and
while it is waiting for input, the QUE task is readied. At
the next device interrupt (from the real time clock, console,
etc.), rescheduling occurs and the task scheduler gives QUE
control of the CPU because it has a higher priority than the
main program. The system, under direction of the task
scheduler, suspends the main program, loads the overlay
containing QUE, and transfers control to code in QUE. QUE
then types the message:

I'M THE QUEUED TASK...ABOUT TO .OVKIL MYSELF.

At this point, QUE prints the prompt (?) and kills itself via
the call .OVKIL command. Control returns to the main
program, which again waits for input. In three seconds, task
QUE is recreated and readied, and the entire sequence re-
peats itself.

When QUE is ready to run, it gains control, types its mes-
sage, and kills itself very quickly. In fact, because QUE
issues system calls, it is briefly suspended before it can type
the message and prompt—thus allowing the main program
a slice of CPU control. This scheme enables the person who
runs the program to type commands B or C at any time and
receive a very fast response.

Both tasks (the main program and QUE) are completely
unaware of one another. Furthermore, when an interrupt
occurs and the scheduler decides to suspend one task and
execute another, the original task simply continues from the
point at which it was suspended—which can be from any

234 RDOS System Reference

location in its address space. When QUE Kkills itself, its
entire state (TCB data) is wiped out; after the .QTSK in-
terval, it is created as a brand-new task. Thus, there is no
simple way that QUE can return control to the prompt loop
in the main program. This is why QUE is coded to type a
prompt before killing itself. (The .XMT and .REC com-
mands could return control to the main prompt loop, but
this would produce a far more complex example.)

A dialogue with the EXAMPLE program might transpire
as follows:

R
EXAMPLE (CR)

?
I'M THE QUEUED TASK...ABOUT TO .OVKIL MYSELF.

?
C (CR)
I'M A DATA GENERAL COMPUTER.

/?’M THE QUEUED TASK...ABOUT TO .OVKIL MYSELF.

B (CR)

R

The assembler command for the EXAMPLE program was:
MAC/L (EXAMPLE,QUE,COMP) (CR)

The load line was:

RLDR 2/K EXAMPLE [QUE,COMP] (CR)

Licensed Materiai--Property of Data General

MAIN
PROG.

Open console
output file

Y

Open console
input file

!

Open overlay
file

!

Change priority
to 40

!

Queue "QUE" task
every 3 seconds
at priority 30

!

Write prompt
to console

/

Read line
from console

Write message
to console

y

Write prompt
to console

/

Kill seif,
reiease overlay

Overlay routines
prints “COMPUTER”
message

Yes Return to
the CLI
No
Yes Load “COMP”
overlay
No

]

As with TIMEC, each procedure box represents a request
arequest to the system, which then surrenders full control
to the task scheduler.

Figure C.4 EXAMPLE flowchart

Licensed Material--Property of Data General

RDOS System Reference

SD-00573

235

.TITLE EXAMPLE
02 ENT AGAIN ICOMP IQUE,ERROR :OVERLAYS NEED THESE
03 EXTN OCOMP,0QUE,COMP,QUE :OVERLAYS CONTAIN THESE.
04 EXTN .PHI,.QTSK,.TOVLD :GET TASK CODE FROM SYS.LB.
05 000001 TXTM 1 :PACK BYTES LEFT TO RIGHT.
06
07 :For RDOS revisions 6.00 through 6.20, apply patch “JMP .+2" to
08 -location “Q.TSK + 333" of any save file that uses .GTSK.
09 ‘Include the debugger (RLDR/D) or symbol table ((EXTN .SYM.)
10 :to patch with the SEDIT editor.
1
12 .ZREL
13 00000-177400 PMASK: 177400 :MASK FOR FIRST 2 BYTES IN LINE BUFFER.
14 00001-000226'OCHAIN: OVCHN :POINTER TO CHANNEL NUMBER OF OVLY FILE.
15 00002-002003-ERROR: JMP @.+1 ;:ON ERROR, JUMP TO
16 00003-000213’ SERR ; ERROR HANDLER SERR.
17
18 .NREL
10
20 : OPEN CONSOLE OUTPUT, INUT, AND OVERLAY FILES FOR I/O.
21
22 0000'020445 START LDA ONTTO :BYTE POINTER TO CONSOLE OUTPUT FILENAME.
23 :(FOR OPERATION IN EITHER GROUND, INCLUDE
24 . GCOUT, .GCTN CALLS BEFORE OPEN CALLS.)
25 00001°126400 SuB 1,1 :SET DEFAULT DEVICE CHARACTERISTIC MASK.
26 00002006017 .SYSTM :OPEN THE CONSOLE OUTPUT FILE
27 00003'014000 .OPEN 0 ; ON CHANNEL 0.
28 00004'004002- JSR ERROR :CAPTURE ANY ERROR. (JSR HELPS DEBUG.)
29
30 00005°020444 LDA 0, NTTI :BIT POINTER TO CONSOLE INPUT FILENAME.
31 00006'006017 .SYSTM :OPEN CONSOLE INPUT FILE ON
32 00007°014001 .OPEN 1 - CHANNEL 1. (AC1 STILL CONTAINS MASK 0.)
33 00010'004002- JSR ERROR ; ERROR.
34
35 00011'020444 LDA 0,0FILE ; GET OVERLAY FILENAME.
36 00012'032001- LDA 2,@OCHAN : GET CHANNEL NUMBER FOR OVERLAY FILE.
37 00013'006017 .SYSTM ; OPEN OVERLAY FILE ON THE
38 00014'012077 .OVOPN 77 : SPECIFIED CHANNEL.
39 00015'004002- JSR ERROR ; ERROR.
40
11 :PROCEED--SET YOUR PRIORITY TO 40 AND QUEUE A TASK.
42
43 00016'020446 LDA 0,C40 ;GET A 40.
44 00017°'077777 .PRI : SET YOUR PRIORITY TO 40.
45
46 00020'030556 LDA 2,QADDR :GET TASK QUEUE TABLE ADDR.
47 00021°077777 .QTSK SET UP OVLY TASK TO RUN EVERY 3 SECONDS.
48 00022'004002- JSR ERROR . ERROR.
49
50 -THIS IS THE MAIN PROMPT AND KEYBOARD LISTENER LOOP.
51
52 00023'020442 AGAIN: LDA 0,PROMPT :BYTE POINTER TO PROMPT.
53 00024'006017 .SYSTM :WRITE THE PROMPT
54 00025'017000 WRL O ; TO THE CONSOLE ON CHANNEL 0.
55 00026'004002- JSR ERROR ; ERROR.
56 00027'020441 LDA O,LINER :BYTE POINTER TO LINE BUFFER.
57 00030°006017 .SYSTM ;READ A LINE FROM
58 00031'015401 .RDL 1 - CONSOLE KEYBOARD ON CHANNEL 1.
59 00032'004002- JSR ERROR ; ERROR.
01 : CHECK LINE FOR B OR C. (THIS MIGHT BE STREAMLINED FOR A COMPUTER
02 : WITH HARDWARE LOAD, STORE BYTE))
03

Figure C.5 EXAMPLE program listing

236 RDOS System Reference

Licensed Material--Property of Data Genera!

04 0033'024436 LDA 1,LINE ;GET RIGHT WORD (2 CHARS) FROM LINE BUFFER.

05 00034°03000- LDA 2,PMASK ;MASK TO STRIP PARITY, RIGHT CHAR IN AC2.
06 00035'133700 ANDS 1,2 ;ISOLATE FIRST CHAR IN BITS 0-6 OF AC2,SWAP.
07 00036'023536 LDA 1,B ;GET A"B".

08 00037'147415 suB 2,1,SNR ;SKIP IF FIRST CHAR WASN'T A “B".

09 00040°000550 JMP BYE ; ON "B”, RETURN TO THE CLI.

10 00041°024534 LDA 1,C ;GET A “C".

11 00042146415 SUB# 2,1,SNR ;SKIP IF FIRST CHAR WASN'T A “C".

12 00043'000514 JMP GCOMP ; ON “C”, GO TO THE “COMPUTER” OVERLAY.
13 00044°000757 JMP AGAIN ;NOT “R” OR "C”, IGNORE CHARACTER, TRY AGAIN.
14

15

16 00045°000114“NTIO: 172 ;POINT TO

17 00046°022124 TIXT “$TTO” ; FILENAME “$TTO".

18 052117

19 000000

20

21 00051°000124"NTTI: 4172 ;POINT TO

22 00052'022124 TIXT “$TTI” ; FILENAME “$TTI".

23 052111

24 000000

25

26 00055'000134OFILE: 172 ;POINT TO

27 00056'042530 IXT "EXAMPLE.OL” ; OVERLAY FILENAME.

28 040515

29 050114

30 042456

31 047514

32 000000

33

34 00064'000040 C40: 40 ;NEW PRIORITY FOR MAIN PROGRAM TASK.
35

36 00065'000154"PROMPT: . +1*2 :POINT TO

37 00066'037415 TIXT “15)” ; MAIN PROGRAM PROMP.

38 000000

39

40 00070'000162“LINEP: LINE*2 ; POINTER TO FIRST BYTE OF LINE BUFFER.
41 00071'000103 LINE: BLK 132./2"1 ; BUFFER TO HOLD MAX. LINE LENGTH.
42

43 00174'000102 B: "B ;ASCH “B”.

44 00175°000103 C: "C ;ASCII “C”.

45 00176’000216'QADDH: QTAR ;ADDRESS OF “QUE” TASK QUEUE TABLE.
46

47

48 ; THIS CODE PROCESSES THE “C” CHARACTER. IT LOADS THE “COMP"

49 ; OVERLAY AND TRANSFERS TO WRITE-LINE CODE IN THE OVERLAY.

50

51 00177°020410 GCOMP: LDA 0,ICOMP ;GET "COMPUTER” OVERLAY NAME.

52 00200°'126400 sus 1,1 ySPECIFY CONDITIONAL LOADING.

53 00201°'032001- LDA 2,@OCHAN ; GET OVERLAY FILE CHANNEL NUMBER.
54 00202'077777 .TOVLD ; REQUEST SYSTEM ACTION.

55 00203'004002- JSR ERROR ; ERROR.

56 00204'006402 JSR @ACOMP yEXECUTE THE OVERLAY CODE, THEN

57 00205'000616 JSR AGAIN ; GO BACK FOR MORE INPUT.

58

59 00206'077777 ACOMP: COoMP ;START ADDRESS IN OVERLAY.

60 00207°077777 ICOMP: OCOMP ,"COMPUTER” OVERLAY IDENTIFIER.

01

02

03 ; THIS CODE PROCESSES THE “B” CHARACTER. IT TERMINATES

04 ; THE PROGRAM AND RETURNS TO THE CLI.

05

Figure C.5 EXAMPLE program listing (continued)

Licensed Material--Property of Data General RDOS System Reference 237

06 00210°006017 BYE: .SYSTM

;RETURN TO THE RDOS CLI.

07 00211'004400 .RTN ;

08 00212'000002- JMP ERROR ;RESERVED, NEVER TAKEN.

10

11 ; THIS IS THE ERROR HANDLER.

12

13 00213'006017 SERR: .SYSTM ;LET THE CLI REPORT WHAT'S WRONG.
14 00214'006400 .ERTN :

15 00215'000776 JMP ;NEVER TAKEN.

16

17

18 ; THIS IS THE QUEUE TABLE FOR THE “QUE” OVERLAY TASK.

19

20 00216'077777 QTAB: QUE ;STARTING ADDRESS FOR THE TASK.

21 00217177777 -1 ;EXECUTE UNLIMITED NUMBER OF TIMES.
22 00220°077777 IQUE: OQUE ;OVERLAY IDENTIFIER -- .ENTO.

23 00221177777 -1 ; STARTING HOUR: RIGHT NOW.

24 00222'000001 .BLK 1 ;STARTING SECOND (UNIMPORTANT HERE).
25 00223000430 1B7+30 ;TASK ID OF 1, PRIORITY OF 30.

26 00224'000003 3. ;RERUN EVERY 3 SECONDS.

27 00225'000001 .BLK 1 ;SYSTEM WORD.

28 00226'000002 OVCHN: 2 ;USE CHANNEL 2 FOR THE OVERLAY FILE.
29 00227'000000 0 ; CONDITIONAL OVERLAY LOADING.

30 00230°000001 .BLK 1 ;SYSTEM WORD.

31 00231°000001 .BLK 1 ;WORD FOR EXTENDED QUEUE TABLE USAGE.
32

33 .END START ;STARING ADDRESS IS START.

**00000 TOTAL ERRORS, 000000 PASS 1 ERRORS

02 TJITLE QUE

03 ENT QUE

04 .ENTO OQUE

05 .EXTN ERROR,IQUE,AGAIN

06 000001 TXTM 1

07 .NREL

08

09 ; "QUE" OVERLAY - WRITES MESSAGE TO CONSOLE, KILLS SELF AND

10 ; QUEUED TASK.

11

12 00000°020420 QUE: LDA 0.MESS ; BYTE POINTER TO MESSAGE.
13 00001°006017 .SYSTM ; WRITE MESSAGE

14 00002'017000 WRL 0 ; TO CONSOLE OUT.

15 00003'006411 JSR @ERR ; ERROR RETURN.

16 00004'020411 LDA 0,PROMPT ; BYTE POINTER TO PROMPT.
17 00005'006017 .SYSTM ; WRITE PROMPT

18 00006017000 WRL 0 ; TO CONSOLE OUT (FOR CONSISTENCY).
19 00007°006405 JSR @ERR ; ERROR.

20

21 00010022403 LDA 0,@0Q ; GET THE OVERLAY IDENTIFIER.
22 00011°077777 .OVKIL ; RELEASE OVERLAY AND KILL TASK.
23 00012°006402 JSR @ERR ; ERROR.

24

25 00013'077777 OQ: IQUE ; OVERLAY IDENTIFIER.

26 00014'077777 ERR. ERROR ; ERROR HANDLER.

27

28 00015000034 ' PROMPT: . +1*2 ; POINT TO

29 00016'037415 TIXT “(15)" , PROMPT.

30 000000

31

32 00020'000042"MESS: 172 ; POINT TO "QUEUED"” MESSAGE.
33 00021'044447 TIXT “I'M THE QUEUED TASK...READY TO .OVKIL MYSELF.(15)"

34 066440

35 072150

Figure C.5 EXAMPLE program listing (continued)

238 RDOS System Reference

Licensed Material--Property of Data General

36 062440

37 070565
38 062565
39 062544
40 020164
41 060563
42 065456
43 027056
44 071145
45 060544
46 074440
47 072157
48 020117
49 053113
50 044514
51 020155
52 074536
53 062554
54 063056
55 006400
56

57 .END

**00000 TOTAL ERRORS, 00000 PASS 1 ERRORS

02 .TITLE COMP

03 ENT COMP

04 .ENTO OCOMP

05 .EXTN .OVEX

06 000001 .TXT™ 1

07 .NREL

08

09 ;, 'COMPUTER' OVERLAY - PRINT MESSAGE AND RLCTURN

10

11 00000'054016 COMP: STA 3,USP ;FOR REENTRANCY.

12 00001'020412 LDA 0,CMESS ;GET MESSAGE ADDR.

13 00002'006017 .SYST™M SWRITE IT

14 00003'017000 WRL 0 ; TO THE CONSOLE.

15 00004006405 JSR @ERR ;ERROR RETURN.

16

17 00005022405 LDA 0,@0CP ;GET THE OVERLAY IDENTIFIER.
18 00006°030016 LDA 2,USP ; AND THE RETURN ADDRESS
19 00007°077777 .OVEX ; TO EXIT AND RELEASE THIS OVERLAY.
20 00010°006401 JSR @ERR ;ERROR

21

22 00011'077777 ERR: ERROR ;ERROR HANDLER.

23 00012'077777 OCP: ICOMP ;OVERLAY IDENTIFIER.

24

25 00013'000030*CMESS: .+172 ;POINT TO “COMPUTER” MESSAGE.
26 00014'044440 TIXT “| AM A DATA GENERAL COMPUTER.(15)”

27 060555

28 020141

29 020104

30 060564

31 060440

32 043545

33 067145

34 071141

35 066040

36 061557

37 066560

38 072564

39 062562

Figure C.5 EXAMPLE program listing (continued)

Licensed Material--Property of Data General RDOS SYStem Reference 239

40 027015

41 000000

42

43 .END

“*00000 TOTAL ERRORS, 00000 PASS 1 ERRORS

Figure C.5 EXAMPLE program listing (continued)

240 RDOS System Reference

Licensed Material--Property of Data Genera!

Appendix D

Overlay Directory Structure

When you load a program that has an associated overlay
file, the loader program creates an overlay directory for it.
During program execution, this directory occupies low NREL
memory, right above the TCB pool, and contains a four-
word descriptor for each overlay. In a mapped system, the
directory must fit into the lowest, 1K-block of memory.

You, or your program, can examine the overlay directory
through entry USTOD in the user status table. USTOD
points to the directory base; it contains -1 if there are no
overlays. The overlay directory built for each multitask pro-
gram has the structure shown in Figure D.1.

o
[
P

Uits .

Qverlay OVNAD [V] node address
node “‘n" OVBLK starting block number
descriptor) OVDIS number of overlays Tioad] size in blocks
frame OVRES overlay number | overlay use count
Overlay QOVNAD [V] node address
node 0 OVBLK starting block number
descriptor) OVDIS number of overlays [load] size in blocks
frame { OVRES overlay number | overlay use count
r OVDNS [total node count]
increasing
memory

Task Control Blocks

addressesI

User Status Table

USTOD

400g

Figure D.1 Overlay directory structure (multitask) $D-00532

Licensed Material--Property of Data General

As Figure D.1 shows, each overlay node in the save

file has a corresponding, four-word descriptor frame in the
overlay directory. Bits O through 7 of OVRES contains the
number of the overlay that currently resides in the overlay
node or which RDOS is loading into it. The overlay use
count (OUC) (bits 8 through 15 of OVRES) describes the
number of tasks using or requesting the resident overlay.
RDOS uses OUC only in a multitask environment, as

explained in Chapter S.

Bits 0 to 7 of OVIDS describe the number of overlays
associated with this overlay node (ie, included in the same
pair of square brackets in the RLDR command line. RDOS
uses the load bit. bit 8, in multitask programs (.TOVLD).
Bits 9 to 15 of this word describe the size (in integer multiples
of 400, words, the size of each disk block) of this overlay
node. OVBLK contains the starting, logical disk block address
of this node’s segment in the overlay file, and OVNAD
conldins e memory addiess ior the start oi this overiay
mode. For a virtual overlay node, RDOS sets BO of OVNAD
to one.

The overlay directory built for a single-task environment is
identical to that described here except that the system ignores
the load bit. A program can define a maximum of 256
overlay nodes in both single- and multitask environments.
The maximum number of 256-word overlay nodes is 124
(which need about 60K bytes of memory). Page zero and
task scheduler space requirements limit the maximum size
of a single overlay to 126 disk blocks (64K bytes).

RDOS System Reference 241

Appendix E

Exceptional System Status

Certain serious error conditions can either halt the entire
system in a crash, or cause the system to suspend processing
and display an exceptional status or trap message. The mes-
sage returned from exceptional status or a trap helps identify
the error; no information is returned from a crash. Both
exceptional status and crash conditions require full initial-
ization of all disks that were initialized when the condition

occurred.

Traps

A trap is less serious than an exceptional status or a crash;
they are described here, however, because they do stop
program execution. On a trap, the system displays the con-
tents of the program counter and the accumulators on the
console in this format:

TRAP (PC) (ACO)(AC1)(AC2)(AC3)

Bit 0 of the PC is carry. In both mapped and unmapped
systems, a trap usually results from a violation of map
protection. The memory-image file (F)BREAK.SV is cre-
ated and placed in the current directory.

In its discussion of dual programming in mapped systems,
Chapter 6 provides details on certain user-caused traps. Among
the most common of these causes are:

e An attempt to access memory outside your logical space
e An attempt to modify write-protected memory
e More than 16 indirect references to an address

e An attempt to access a system device without having
issued the .DEBL command.

Exceptional Status

In exceptional status, the system outputs the contents of the
accumulators and an error code on the console, for example:

000015 177777
ACO ACl

000011 037500
AC2 AC3

100010
Error Code

Note that if a system error caused the exceptional status,

bit O of the error code will be reset to 0, and the rest of the
code word will contain a system error number (explained

Licensed Material--Property of Data General

in Appendix A). The dump procedure described later in this
section applies to both kinds of error.

If bit O of the error code is set to 1, the last two digits of
the error code have the following meanings:

1 File system inconsistency detected, that is, RDOS tried
to return a master device block which had no record in
MAP.DR.

2 RDOS detected a SYS.DR error while accessing a di-
rectory on the master device. This means that either the
entry count in a block of the directory exceeds 16, or
a free entry in the block was indicated but RDOS could
not find it. If ACO contains 16, AC2 contains the illegal
count; otherwise RDOS expected a free entry but did
not find it.

3 Interrupt stack overtiow. lhe low-order bits of ACO
contain the address of the overflowed stack. If this is a
system stack address (see load map), the cause can be
a system device. If the address is not a system stack
address, the cause is a software stack fault.

4 Inconsistent system data, such as an illegal device ad-
dress. This also occurs if you issue INIT or DIR to a
new disk before fully initializing it with INIT/F.

5 Master device data error; run a disk reliability test.

6 Master device timeout. If there are no obvious errors,
run a disk reliability test.

7 llegal device address on the moving-head master de-
vice. This can be caused by a misreading of the disk.
Run a disk reliability test.

10 RDOS has detected an undefined interrupt and cannot
clear it via an NIOC. The right byte of AC2 contains

the code of the device.

12 There are not enough contiguous disk blocks available
to build push space indexes.

RDOS System Reference 243

13 Attempted RTN from level 0 in the background. Remove
this instruction from the level O program, or execute it
at a lower level.

14 Inconsistent IPB data. Perform an IPB reliability test.
AC2 can give a clue to the problem, if the following
conditions were true when the exceptional status oc-
curred:

e Both processors were up and running the same re-
vision of RDOS.

e No user program issued /O commands to the IPB
or overwrote the (unmapped) system.

If both conditions are true and AC2 contains -1 or a
DCB address, the exceptional system status indicates an
internal system (software) bug.

If AC2 has a cell address, RDOS has received an invalid
message type. ACI has the type byte. This problem
indicates IPB hardware failure.

If AC2 has an address in the IPB interrupt handler (be-
tween IPBDC and IVTINT), this is the address at which
the exceptional system status actually occurred. If ACO
and AC1 do not contain 64400, the interrupt handler
detected an invalid condition such as incorrect message
length. This indicates an IPB hardware failure. If ACO
and ACI equal 644005, one processor timed out to the
other processor, but resumed communication without
booting. This would occur if the operator pressed the
STOP switch and more than one-and-a-haif seconds iater
pressed CONTINUE; or if a user program turned inter-
rupts off for more than one-and-a-half seconds (eg, via
the interrupt-disable debugger).

15 A hardware map violation (trap) occurred while a user
interrupt routine or user clock had control. The ACO
data field output on the console will contain the PC, not
the contents of ACO, in this exceptional status.

16 ECLIPSEs with ERCC option only. Multibit ERCC
memory error. Consult the appropriate Technical Ref-

erence for your computer.

17 NOVA 3s with hardware parity option only. Hardware
parity error.

20 INFOS systems only. Insufficient memory available at
initialization time.

21 The spooler detected a MAP.DR error.

244 RDOS System Reference

Controlling Exceptional Status

If you have an unmapped system, you can write your own
routine to handle exceptional status situations. Your pro-
grams must store the address of your routine in location 11,
at runtime, and restore the original value before the program
ends. Your routine will then gain control at an exceptional
status: the console will not display the accumulators and
error code, but ACO, ACI, and AC2 will retain the contents
they held at the error, and AC3 will contain the address of
the error code.

If yours is a mapped system, you must modify the operating
system at source level to insert your own exceptional status
routine.

Producing a Core Dump

If you select the core dump feature during system genera-
tion, you can dump a core image of address space after a
system crash or an exceptional status. A SYSGEN question
asks if the core dump facility is desired and where the dump
should go:

CORE DUMP? (0 = NO, 1 = LPT, 2 = MTA, 3 = 6030, 4 = 6097)

If you answer 0, no core dump routine is included in the
operating system you are generating. If you answer 1, the
line printer routine is included and dumps will go to the
primary line printer, SLPT. Answering 2 causes the routine
for magnetic tape to be included, and SYSGEN will ask for
the number of the magnetic tape unit to receive the dump.
You may specify any unit (0 through 7) on the primary
controller. Answering 3 will include the routine for single-
density diskette (6030), and 4, the routine for double-density
diskette (6097).

An answer of 3 or 4 prompts another SYSGEN question to
determine whether the dump should go to the primary or
secondary controller. Single-density diskette dumps go to
the third unit on the selected controller (DP3 for the primary
controller, DP7 for the secondary). For double-density disk-
ette dumps, SYSGEN asks the unit number of the device
that will receive the core dump.

Note that a device nced not be generated to receive corc
dumps, and that any diskette used to receive a core dump
must be hardware formatted.

The advantages of dumping to magnetic tape or diskette are
that these media are more easily shipped to Data General
for analysis. Moreover, once there, the dumps can easily
be duplicated to facilitate distribution to various areas for
investigation of the problem.

Licensed Material--Property of Data General

To produce a core dump after an exceptional status, follow
the instructions for the device that will receive it. After a
system crash, the console will display nothing. To prepare
for a core dump, if your computer’s front panel has data
switches, read the section called Data Switches. If your
computer has a virtual console, read the section called Vir-
tual Console.

Data Switches
1. Press the STOP switch on the front panel of the CPU.

2. Record the contents of the accumuiators, the PC, carry,
USER MODE, and the state of ION.

3. Lift the RESET switch.
4. Enter 11, in the data switches.

5. Lift the EXAMINE switch and note the number re-
turned in the data lights.

6. Set the CPU front panel switches to the number found
in location 11,.

7. Deposit the contents of location 11; into AC3.

8. Push the CONTINUE switch. RDOS displays the con-
tents of the accumulators and carrv.

9. Continue by responding to questions about the device
you have chosen to receive the core dump. Questions
will vary, depending upon how you did your sysgen.

Virtual Console

1. Enter the Virtual Console. (Refer to the Programmer’s
Reference Guide for your CPU for specifics on how to
do this.)

2. At the (') prompt, type: 11/ (NEW LINE).
RDOS displays two sets of numbers, one set beside the
slash and the other after a space, at the right. For ex-
ample, if you type 11/ (NEW LINE) your console dis-

plays numbers similar to the following:

111/000011 025173
!

3. Type 3A without typing NEW LINE.
RDOS displays the contents of accumulator thice.

Whatever you type at this point goes into accumulator
three.

Licensed Material--Property of Data General

4. Type the right-hand number that displayed when you
typed 11/. In our example, the number is 256173 (Note
that you do not need to include leading zeros). Then
type NEW LINE to put the number into AC3. Your
console displays numbers similar to the following:

!3A 0003A 25173

!

This means that RDOS will start running at address
25173.

5. Next, to execute the panic routine, (not a true panic
but one forced by these procedures), type 25173R (with-
out a NEW LINE).

RDOS displays the panic code and the contents of all
of the accumulators.

6. To proceed with the core dump. type P (without a NEW
LINE).

7. Continue by responding to questions that RDOS dis-
plays about the device that vou have chosen to receive
the core dump. The questions will vary depending upon
how you did your sysgen.

Line Printer Dump

In this dump, you can select portions of memory, or dump
all of memory. The line printer dump has three parts: the
left column shows a memory address; the middle eight col-
umns show the contents of each word in the address; and
the right column shows the ASCII value, if any, of each
byte in the address. Figure E.1 illustrates a sample line
printer dump.

To dump the entire address space of either a mapped or
unmapped machine, press CONTINUE twice. To dump se-
lected portions of address space, follow one of these pro-
cedures:

Unmapped Machines Load the desired starting dump ad-
dress into the data switches. Press CONTINUE; the CPU
will halt. Load the desired ending address of the dump into
the data switches, and again press CONTINUE. You can
enter as many starting/ending address pairs as you wish.

RDOS System Reference 245

Mapped Machines RDOS will shift three bits to the left
of each address that you input via the data switches, so that
you can dump the full range of possible mapped addresses.
That is, if data switch 15 is up and the rest down, RDOS
interprets this as address 10;, adding an implicit zero to any
address you enter. To dump a range of mapped addresses,
load the desired starting dump address into the data switches,
and press CONTINUE. The CPU will halt. Load the desired
ending address of the dump into the data switches, and again

press CONTINUE. RDOS will dump all locations from the
low-order address (times 10;) to (but not including) the high-
order address (times 10g). That is, if you select low address
I and high address & on the data switches, RDOS dumps
locations 10; *1 through (10, *h) -1. Repeat the dumping
process as often as you wish.

You can abort the core dump any time by striking any key
on the console and proceed with another dump sequence as
you desire.

01020 060227 014510 060277 014506 060277
01030 060277 014500 060277 014476 060277
01040 054532 176660 054524 024466 125224
01050 163000 042741 025415 021414 101005
01060 106414 000404 025406 041406 045405
01070 030436 061405 025377 044017 025414
01000 060177 024016 045010 024426 044505
01110 034502 152120 021420 043410 175400
01120 025776 044511 014467 000410 176440
01130 000011 000011 001014 015766 000406
01140 004404 000763 034450 000535 054455
01150 006446 024446 034475 137000 025400
01160 102120 107037 125401 002436 006423
01170 006326 000005 001014 054411 006420
01200 006407 006414 005124 005124 000000
01210 001400 177777 003777 002076 002013
01220 001631 000000 002001 100000 002031
01230 002000 000405 002032 000000 000424

014504 060277 014502 H™H**D**'B
040532 044532 040432 @t > AZIZQZ
000420 034012 020742 YZ**YT)6****B*!*
045414 020454 025405 PETTH#TKE
034012 025405 044546 e CrKTB
044537 030431 051414 1*S** H**I*1*S*
020536 040422 040422 *(J*)'IEFATA*
153102 000774 137000 98*P#*G****B****
002466 005731 005756 +Pr7e e
011766 030453 004434 R e
006447 126400 044450 YY1
006443 024441 010440 *&)>)
000763 000000 000013 P
020411 143000 006426 Ry e
002014 041057 003146 il Rl = Tl
002617 003137 000000 A bk
000000 006000 003257 il
000714 002367 177770 IR

Figure E.1 Sample line printer dump

246 RDOS System Reference

Licensed Material--Property of Data General

Magnetic Tape Dump

To dump to magnetic tape, follow these steps:

1. Select the same unit number specified to SYSGEN on a
magnetic tape drive, and make sure no other drive has this
number. Mount a blank tape (300 feet or more), with write-
enable ring inserted, on this drive. Then press drive switches
LOAD and ON LINE.

2. Press the CPU switch CONTINUE. The dump program
then displays the message, READY?

3. Again, press the CPU switch CONTINUE. The dump
program copies all memory addresses to the tape and then
displays the message DONE, followed by READY, on the
console. To stop the program, press CPU switch STOP. To
produce another dump, press the RESET and UNLOAD
switches on the tape drive; mount another tape; and repeat
steps two and three.

4. If you have forgotten a step, the program dislays the
message ERROR, then READY? Execute the step and press
the CPU switch CONTINUE.

Core dumps from machines with the maximum amount of
memory supported by RDOS (512 KB) will fit onto one
tape. The magnetic tape cannot be read or copied under
RDOS. You may, however, write to file numbers one and
higher on the tape, since the dump is written to file number
Zero.

Diskette Dump
To dump to diskette, follow these steps:

1. For a single-density diskette on the primary controller,
select unit number three on the diskette drive. For a single-
density diskette on the secondary controller, select unit num-
ber three on the diskette drive. For a double-density diskette,
select the unit number and controller specified to SYSGEN.
Make sure that no other diskette drive has the same unit
number.

2. Tape the write-protect hole of a Data General diskette
(or other diskette that has been hardware formatted); insert
this diskette in the drive. Shut the door and turn the diskette
drive ON.

3. Press the CPU’s CONTINUE switch. The dump program
then displays the message READY?

Licensed Material--Property of Data General

4. Again press the CPU switch CONTINUE. The dump
routine copies memory to the diskette; if it displays the
messages DONE and READY, proceed to step nine.

5. If all addresses cannot fit on one diskette, the program
displays the message REPLACE, followed by READY?
Open the diskette door, remove the diskette, insert another
hardware-formatted diskette in the drive, and close the door.
Press the CPU switch CONTINUE. The program then cop-
ies the rest of memory to the second diskette, and displays
the messages DONE and READY?

6. The diskette dump is complete. To stop the program,
press the CPU switch STOP; to produce another dump,
remove the diskette, and repeat steps three, four, and five.

7. If you have forgotten a step, the program displays the
message ERROR, then READY? Execute the step and press
CONTINUE.

CORE DUMPS taken from a machine with the maximum
amount of memory supported by RDOS (2048 KB) will fit
onto two double-density diskettes. If dumping to single-
density diskette, eight diskettes will be needed. When the
first diskette is full, the message REPLACE followed by
UNIT X READY? will be displayed on the console. Replace
the diskette and lift the CONTINUE switch. The diskette
dump cannot be copied under RDOS. In order to read a
diskette dump as an RDOS file, the diskette must have been
fully initialized with the disk initialization program, DKINIT,
before the dump was taken. Then, after taking the dump,
bring up RDOS on another RDOS disk. Type INIT/F to the
diskette containing the core dump. Next, create a three-
block, contiguous file on this disk with the CCONT com-
mand. Create a second continguous file, without zeroing
the data blocks, by issuing the CCONT command followed
by the /N switch. The number of blocks in this file should
be equal to four times the size of memory. This file will
contain the core dump.

When the core dump is complete, the message DONE,
followed by UNIT X READY? appears on the master con-
sole. To replicate the core dump, mount another tape or
insert another diskette (as appropriate); ensure that the de-
vice is ready to receive a core dump, and press the CON-
TINUE key on the front panel. The core dump procedure
will then be repeated.

1t an error is encountered (ie, unit off line, etc.), the message
ERROR! followed by UNIT X READY? appears on the
system console, and the CPU halts. After the error has been
corrected, press CONTINUE and the process will auto-
matically restart.

RDOS System Reference 247

Appendix F

Page Zero and Hardware Reserved Locations

12
13
003 PARS
01
02
03
04
05
06
07
08
09
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

; COPYRIGHT (C) DATA GENERAL CORPORATION 1977, 1978, 1979, 1980, 1981, 1982, 1983

ALL RIGHTS RESERVED.
; LICENSED MATERIAL-PROPERTY OF DATA GENERAL CORPORATION.

.TITLE PARS

. PAGE ZERO

’

000000 .DO ?ANSW

;.-DUSR SYST=
;.DUSR NSTOV =

;-DUSR RTN=
.DUSR CC=
.DUSR RLOC=
.DUSR .SAV =
.DUSR CSP=
.DUSR .PNIC =
;.DUSR USTP =
.DUSR cQ=

.DUSR CRSEG=
.DUSR CMSK =

.DUSR HRBEG =
; DEFINED IN NSID.SR
;.DUSR TRPC =
;.-DUSR TRHN=

;.-DUSR CSL=
;-DUSR CSO=
.ENDC

; 29 OCTOBER 1980

NO oA WN

10
1
12
13
14
15

40

46
47
42
43

; SYSTEM CALL ADDRESS

; NOVA STACK OVER FLOW VECTOR
; ADDRESS OF RETURN ROUTINE
; CURRENT CELL

; PAGE ZERO TEMP.

; ADDRESS OF SAVE ROUTINE

; STACK POINTER

; PANIC

; USTP DEFINED IN PARU

; CURRENT TASK QUEUE

; PTR TO OVERLAY TABLE ENTRY
; CURRENT MASK

; START OF HARDWARE RESERVED AREA
; INSTRUCTION TRAP PC FOR NOVA 3
; INSTRUCCTION TRAP HANDLER FOR NOVA 3

STACK LIMIT FOR NOVA 3
; STACK OVERFLOW HANDLER FOR NOVA 3

PR5 SAF # R-101

; AUTO-INCREMENT TEST LOCATION FOR DETECTING ALPHA

; (MICRO-ECLIPSE)
000020 .DUSR AITST =

20

Figure F.1 Listing of PARS, giving page zero and hardware reserved locations

Licensed Material--Property of Data General

RDOS System Reference

249

36 000001 .DO ?7ABSW

37

38 ; HARDWARE RESERVED LOCATIONS

39 000040 .DUSR HRBEG= 40 ; START OF HARDWARE RESERVED AREA
40 ; DEFINED IN NEID.SR

41 ;-DUSR SP= 40 ; STACK POINTER

42 ;. DUSR CSP= 41 ; FRAME POINTER (LOGICAL STACK PTR)
43 ;.DUSR CSL= 42 ; STACK LIMIT

44 ;.DUSR CS0= 43 ; STACK OVERFLOW ROUTINE PTR

45 ;.-DUSR XOPA= 44 ; XOP ORIGIN ADDRESS

46 ;.-DUSR FPFA= 45 ; FLOATING POINT FAULT ADDRESS

47 ;

48 ;; DEFINE OFFSETS FOR PAGE 0 INT STK LOCATIONS

49 ;.DUSR ISP = 4 ; SKP SP

50 ;-DUSR CMSK= 5 ; CURRENT MASK

51 ;.DUSR ISL= 6 ; LIMIT

52 ;.;DUSR ISO= 7 ; OVERFLOR ADDR

53

54 ; OTHER PAGE ZERO LOCATIONS

55 ; LOCATION 12 1S USTP (DEFINED IN PARU)

56 ; LOCATION 2 IS THE SYSTEM ENTRY POINT

57 ; LOCATION 3 1S THE PROTECTION FAULT ROUTINE POINTER
58 000010 .DUSR CC= 10 ; CURRENT CELL

59 000011 .DUSR .PNIC= 11 ; PANIC

60 000013 .DUSR cQ-= 13 ; CURRENT TASK QUEUE

Figure F.1 Listing of PARS, giving page zero and hardware reserved locations

250 RDOS System Reference

Licensed Material--Property of Data General

Appendix G
Hollerith—ASCII Conversion Table

Char. Card Code ASCII Code Char. Card Code ASCII Code
NUL 12-0-9-8-1 000 NAK 9-8-5 025
SOH 12-9-1 001 SYN 9-2 026
STX 12-9-2 002 ETB 0-9-6 027
ETX 12-9-3 003 CAN 11-9-8 030
EOT 9-7 004 EM 11-9-8-1 031
ENQ 0-9-8-5 005 SUB 9-8-7 032
ACK 0-9-8-6 006 ESC 0-9-7 033
BEL 0-9-8-7 007 FS 11-9-8-4 034
BS 11-9-6 010 GS 11-9-8-5 035
HT 12-9-5 011 RS 11-9-8-6 036
LF 11-9-5 012 US 11-9-8-7 037
VT 12-9-8-3 013 SPACE NO PUNCHES 040
FF 12-9-8-4 014 ! 11-8-2 041
CR 12-9-8-5 015 “ 8-7 042
SO 12-9-8-6 016 # 8-3 043
SI 12-9-8-7 017 $ 11-8-3 044
DLE 12-11-9-8-1 020 % 0-8-4 045
DCl1 11-9-1 021 & 12 046
DC2 11-9-2 022) 8-5 047
DC3 11-9-3 023 (12-8-5 050
DC4 4-8-9 024) 11-8-5 051

Licensed Material--Property of Data General RDOS System Reference 251

Char. Card Code ASCII Code Char. Card Code ASCII Code

* 11-8-4 052 C 12-3 103
+ 12-8-6 053 D 12-4 104
’ 0-8-3 054 E 12-5 105
- 11 055 F 12-6 106
12-8-3 056 G 12-7 107

/ 0-1 057 H 12-8 110
0 0 060 1 12-9 111
1 1 061 J 11-1 112
2 2 062 K 11-2 113
3 3 063 L 11-3 114
4 4 064 M 11-4 115
5 5 065 N 11-5 116
6 6 066 0 11-6 117
7 7 067 P 11-7 120
8 8 070 Q 11-8 121
9 9 071 R 11-9 122
8-2 072 S 0-2 123

; 11-8-6 073 T 0-3 124
(12-8-4 074 U 0-4 125
= 8-6 075 \% 0-5 126
) 0-8-6 076 w 0-6 127
? 0-8-7 077 X 0-7 130
@ 8-4 100 Y 0-8 131
A 12-1 101 Z 0-9 132
B 12-2 102 [12-0-5-8 133
\ 0-8-2 134

252 RDOS System Reference

ticensed Material--Property of Data General

Char. Card Code ASCII Code Char. Card Code ASCIH Code
] 12-11-5-8 135 0 12-11-6 157
—ort 11-8-7 136 p 12-11-7 160
— or -— 0-8-5 137 q 12-11-8 161
\ 8-1 140 r 12-11-9 162
a 12-0-1 141 $ 11-0-2 163
b 12-0-2 142 t 11-0-3 164
c 12-0-3 143 u 11-0-4 165
d 12-0-4 144 v 11-0-5 166
e 12-0-5 145 w 11-0-6 167
f 12-0-6 146 X 11-0-7 170
g 12-0-7 147 y 11-0-8 171
h 12-0-8 150 z 11-0-9 172
i 12-0-9 151 { 12-0 173
1 12-11-1 152 12-7-8 174
k 12-11-2 153 11-0 175
1 12-11-3 154 ~J 11-0-1 176
m 12-11-4 155 DEL 12-9-7 177
n 12-11-5 156

Licensed Material--Property of Data General

RDOS System Reference

253

Appendix H
ASCII Character Set

and read the figure at the far left of its row; this is the third
digit in the octal code. (In the legend, the octal code for @
is 100).

To use this chart in octal, find the character whose code
you want, then read straight up the column. The figures at
the top are the first two digits. Now, return to the character

DECIMAL OCTAL HEX SYMBOL MNEMONIC

KEY
DECIMAL OCTAL HEX SYMBOL

KEY
DECIMAL OCTAL HEX SYMBOL

KEY
DECIMAL OCTAL HEX SYMBOL

[[ofooo] o[t @] nut |

I 32 1040 120 1 snul

[e5[101]41] A |

[o7 [wi[s1] 2 |

[1]oo1] o1 [4A | soH |

[33]oar] 21] |

[e6]102] a2] B |

[98 T142] 62| b |

[2]o02] 028 | s7x |

[34 Toa2] 22 [olou]

[677103} 43] C |

(o9 [143] 63 c |

[l i< [ex]

(e84} 4] D |

[100[144] 64T d |

{ 4]o0a}-04]4D| fOT |

[Flw[a] 7]
[36 [o4a] 241 s |

[69]105T4s.] € |

|yugl 145} 65| e |

[s]oos[os[tE [Ena |

[37oss[25] % |

e[7]

[6Too6] 08 T4F [ack |

e low[2] 2]

[7]oor] o7 [$c] eet |

{39 Joa7] 27 | .|

[72]110] 48] H |

[104]150] 68| h |

| 8 o1o| 08] tH [_‘ggﬁ;

[20 Joso[28] ¢ |

[73]111]4a0] 1 |

[os[s] 5] 7]

{ 9]o1if o9 t1 | TAB |

p4r]os1[29 1)]

[7aT112[2A])]

[106]152]6Aa7 j |

[10]o2]oa) [¥ |

[42 Jos2] 2a] = |

[75]113] 48] Kk |

[107]153] 6B | K |

[r1]os] o8]k [,

[23Tos3f 28] + |

[76]11a] ac| 1 |

[ro8]154] 6€ | 1 |

[12]o1a] ocTte [FEY
[13]o15] 00 |t M|

[44 Josa] 2C |..0...]

[72]115] 40| M|

[109]155] 6D] m]

[4sJoss| 2] - |

[78[me] e[N]

[110]156] 6E [n |

[aTot6] oE [tNTs0 |

[ehwl#]o]

[o]

[1s5]o7[oF [to] s |

Leofr20]50] P |

[‘1 %:zl 16ﬂf79‘,l P J

[eTos 7ot o |

[48 [oso[30 0]

[81]121] 51 Q]

[113]161] 71] a]

f17]o21} 11 [4Qf oct |

[4s]o61] 31] 1]

[82T122] 52 r |

[11a]162] 72 r |

[[18]022] 12 [4r] DC2 |

[50 [o62] 321 2 |

(B[] s]

[115]163] 73] s |

{18]o23] 13]¢s | oc3 |

[51Toe3[337 3 |

[8a]124] 54 T |

[116]164] 72 | t]

[20]024] 14 |47 | Dca |

[52 [o6a] 34| 4 |

[elm[w=]0]

[117]165] 75 | u |

[21T025] 15 [fu] nak]

[53]oe5] 35| 5 |

[86]126]56 | v |

[f18]1e6] 76 v |

[22]o26] 16 [v s]

[54 [o66] 36 | 6 |

CAEEAE

[119]167] 777 w |

[23]o27] 17 [tw] €8 |

[s8 Joe7[37] 7 |

Lss]130]s8] x |

[zl 78] x|

[24 Jo30] 18 tx | can |

[56 Jo7o] 38 8 |

[89]131] 59 v |

DRI EER

[25Joz1[194y [em |

[67 [o71] 39| 9 |

[90]132]sa] 7 |

[iz2]172] 78] 2]

[on[altz s

(58 [072[3a] : |

[27 033] 1B | ESC]escare]

[sefor3] 38] |

[o1]133] s8] [|

[123]173] 78 [{]

{28034] 1c[t\|Fs |

[60 Jo7a] 3c | <]

[92]13a] sc | \ |

[124]17a] 7c] 1]

[29]oss] 1041 [es]

Le1Jors[30] -]

[e3]13s]s0[1]

[125]175] 70]] |

[30]036] 1€ |14]Rs |

[62 Jore] 3 [>]

(94]36] 5¢ [t

[31]o37] 1F [t—] us |

[63]o77] 3¢ 2 |

Fo5T137] 5% 5

[127]177] 7¢ [D8

Figure H.1 ASCHl character set

Licensed Material--Property of Data General

[64 [100] 20] @ |

["96 [140] 60 [cone]

RDOS System Reference

DG-05495

255

Appendix I

Advanced Multitask Programming

For most multitask application programs, the features de-
scribed in Chapter 5 of this manual are sufficient. This
appendix is intended for users who want to write their own
multitasking primitives (task calls), or whose tasks require
one or more special resources, such as floating-point hard-
ware, that the system does not provide for in a TCB. All
discussions assume a familiarity with the material covered
in Chapter 5.

The features described in this appendix can (1) provide more
programming flexibility than the standard features alone,
without requiring you to modify the task monitor sources;
and (2) provide this flexibility in a system-independent way.
You can use the calls in this appendix to develop application
programs for any system contiguraion—RDOS or RTOS,
mapped or unmapped. All you need do to reconfigure for
a different system is load a program, via RLDR, with the
appropriate system libraries.

Definitions

The following definitions relate to tasks and task states; they
apply throughout RDOS and RTOS.

General Terms

Task Resources are those storage elements of the computer,
such as accumulators and special memory locations, that
two or more tasks must share. The task scheduler allows
such sharing by ensuring that the proper values for each
task’s resources appear in the actual storage elements of the
computer while the task is executing. When a task is not
executing, the current values of its resources are held in its
TCB.

Rescheduling is the process of selecting and executing the
ready task of highest priority. The task scheduler performs
rescheduling after each task call, after receiving control from
the system following an interrupt, and when a system call
completes. You can suppress rescheduling via task calls
.DRSCH or .SINGLE. or by entering the scheduler state.
as described later in this section. If you have not disabled
rescheduling. you must assume that it can happen at any
time.

Task swaps occur during rescheduling, when the task sched-
uler determines that it should execute a different task from

Licensed Material--Property ot Data General

the last one executed.If the last task to execute was not
terminated, the scheduler saves the current state of its re-
sources in its TCB. Then the scheduler restores to a new
task its resources, in their former state, from its TCB. The
scheduler places the new task’s TCB in the active TCB
chain at the end of its priority class; thus, the next time
rescheduling occurs, this task will be considered for exe-
cution only after all others in its class. Finally, the new task
receives CPU control and becomes the current task.

CTCB 1s a location maintained by the scheduler containing
the address of the current task’s TCB. It no task is currently
active—for example, if all tasks are suspended or resched-
uling is occuring—CTCB contains the address of the most
recent task’s TCB. as long as that task was not terminated;
otherwise CTCB contains 0. Thus, CTCB identifies the task
to which the current values of task resource storage elements
belong: zero means that these values are no longer relevant.

CTCB is a page zero location. You can access it as folows
to obtain the TCB address for the current task:

.EXTD CTCB
LDA ac, CTCB

Location USTCT in the user status table (UST) also contains
the current TCB address. However, you should use CTCB
instead of USTCT.

Hardware stacks are the storage elements of the computer
with built-in stack functions. The hardware stack on an
ECLIPSE computer occupies locations 40, through 43,. On
a NOVA 3 or microNOVA computer, the stack occupies
the stack and frame pointers and location 42, which the
system interprets as the stack limit. RDOS treats the hard-
ware stack as a task resource, thereby making it available
for use by all tasks.

A reentrant section of code (sequence of instructions) allows
another task to enter this code before the original task exits.
Code which several tasks can access is reentrant only if each
task has its own local storage. which no other task executing
the code can access. Reentrancy is commonly achieved by
giving each task its own stack area and using the stack for
local storage.

RDOS System Reference 257

State Definitions

User state is the normal state for an application program.
This is the state from which system and task calls are made,
as described in Chapter 5. Code must be reentrant in user
state if more than one task will use it. In this state, task
execution is suspended on an interrupt if a higher-priority
task is ready for execution. A task in user state can use the
user stack pointer (USP) and the hardware stack: it can also
examine, but not modify, CTCB and the current TCB. In
dual-ground operation, it can determine the current ground
by examining USTPC in the UST; USTPC contains O for
the background, or 1 for the foreground. If there are no
indicators of other states, the program is in user state.

Single-task state is used occasionally for a critical section
of an application program. You enter this state via task call
.SINGL; it prevents other tasks from gaining control. How-
ever, interrupts and the other ground (if any) continue to
execute. A task can issue system calls from single-task state
as well as from user state; it can also issue any task call
except .MULTI, kill, or suspension commands. If a task
issues .MULTI, or kills or suspends itself, the progrm enters
user state. Code executed from single-task state need not
be reentrant. It can use USP, the hardware stack, CTCB,
and the current TCB as it can in user state. If location
SM.SW contains a nonzero value, the program is in single-
task state.

Scheduler state is the normal state for task call code. An
interrupt can cause temporary loss of control, but, unlike
user and single-task states, control returns to the point of
interruption without rescheduling. Thus, scheduler state en-
sures that no other task in the same ground will get control,
although interrupts and the other ground continue. Code
executed in scheduler state need not be reentrant. It should
not use USP or the hardware stack; but it can both read and
modify CTCB and the current TCB, subject to restrictions
described later. In unmapped RDOS systems, code cannot
use USTPC to distinguish foreground from background;
instead, it should compare the UST base (USTAD) to the
value 400;. A value of 400, for USTAD indicates the back-
ground; a value other than 400; indicates the foreground.
A task is in scheduler state for unmapped RDOS if location
USTPC contains a value other than 0 or 1; or, for mapped
RDOS, if location 1 is nonzero. For RTOS, location .SYS
is nonzero in scheduler state.

Interrupt-disable state is used to perform critical manipu-
lation of TCB data or the active TCB chain. There is no
way for a task in this state to lose control of the CPU, even
temporarily.

258 RDOS System Reference

Coding Your Own Task Calls

This section describes components of the task control block
available for your use, along with the following, task sched-
uler commands:

EN.SCHED Enter the task scheduler state.

.TSAVE Save the task state.

RE.SCHED Take normal exit from task scheduler state.
ER.SCHED Take abnormal exit from scheduler state.
INT.DS Enter interrupt-disabled state.

INT.EN Exit from interrupt-disabled state.
ID.SRCH Search for a task of a given priority.

TCB and Status Bits

Two status bits of word TPRST in a TCB are allocated for
your use; you can use them to extend the standard features.
Bit TSUPN, the user suspend bit, prevents a task from
running when set. Bit TSUSR, the user status bit, does not
affect task readiness but is available for storing an additional
piece of task-related information.

Word TELN is also available for your own use. This word
is typically employed to store the address of a TCB exten-
sion, allowing you to store as much additional, task-related
information as you need.

Scheduler Calls

Like task calls, the scheduler commands defined here are
external symbols that must be identified as such via an
.EXTN statement in your source program. The relocatable
loader, RLDR, resolves them at load time, according to
system type. Each version of SYS.LB defines the scheduler
commands for its version of the system—RDOS or RTOS.
mapped or unmapped, and NOVA or ECLIPSE computers.

Licensed Material--Property of Data General

EN.SCHED

Enter scheduler state

Use the following format to enter scheduler state from user
or single-task state:

;AC3 NOT EQUAL TO 0 AND NOT EQUAL TO 1

;FOR UNMAPPED RDOS SYSTEMS.

EN.SCHED

yRETURNS HERE WITH ALL ACS AND CARRY PRESERVED.

A task already in scheduler state can safely reissue

EN.SCHED, but no change in state will occur.

Licensed Material--Property of Data General

.TSAVE

Task state save

For a task in scheduler state, this command saves the ACs,
carry, and program counter in its TCB. The PC saved is
the value in bits 1 through 15 of AC3 at the time of the last
EN.SCHED command. The format for .TSAVE is as fol-
lows:

;ACS, CARRY, PC TO BE SAVED.

.TSAVE

;RETURNS HERE WITH AC0, AC1, AND CARRY UNCHANGED,
; AND AC2 = VALUE THAT WAS IN AC3

; AT TIME OF LAST EN.SCHED;

; AT AC3 = TCB ADDRESS

The .EN.SCHED and .TSAVE commands are meant to be
used together at the start of code which implements a user-
designed task call. For a task call with error return, they
might be used as follows:

.ENT .TASK, T.ASK

.EXTN EN.SCHED, .TSAVE
.ZREL
JSR@
T.ASK
NREL

INC 3,3
EN.SCHED
TSAVE

.TASK=

T.ASK: ;ASSUME NORMAL RETURN.

:ENTER SCHEDULER STATE.
;SAVE TASK STATE.

For a task call without an error return, this code would omit
the increment instruction, INC.

RDOS System Reference 259

RE.SCHED

Leave scheduler state normally

When you successfully complete the processing for a task
call, issue the RE.SCHED command to exit to the scheduler
for rescheduling. Use RE.SCHED in scheduler state, ac-
cording to the following format:

;NO INPUT.

RE.SCHED
;NO RETURN.

260 RDOS System Reference

ER.SCHED

Leave scheduler state abnormally

When you detect an error during task call processing, place
an error code in AC2 and exit to the scheduler via the
ER.SCHED command. This returns control to the location
preceding the one specified by TPC, and passes back the
error code in AC2. Use ER.SCHED in scheduler state,
according to the following format:

;AC2 = ERROR CODE.

ER.SCHED
;NO RETURN.

Licensed Material--Property of Data General

INT.DS INT.EN

Enter interrupt-disabled state Leave interrupt-disabled state

Use this command to enter interrupt-disabled state from Use this command to leave interrupt-disabled state and re-

scheduler state. Its format is as follows: turn to scheduler state. Its format is as follows:
:NO INPUT 'NO INPUT.

INT.DS INT.EN

;:RETURNS HERE WITH ACO, AC1, AC2, ;RETURNS HERE WITH ACO, AC1, AC2,

;:AND CARRY UNCHANGED. ;AND CARRY UNCHANGED.

Licensed Material--Property of Data General RDOS SYStem Reference 261

ID.SRCH
Task ID search

Use this command to search for a task with a given ID.
You can issue ID.SRCH in either scheduler or interrupt-
disabled state. Its format is as follows:

;RIGHT BYTE OF AC1 = ID OF SOUGHT TASK.
ID.SRCH

;ERROR RETURN HERE, WHERE AC2 = ERROR CODE.
;NORMAL RETURN HERE, WHERE

;AC2 = TCB ADDRESS OF SOUGHT TASK.

For both returns, ACO and carry are preserved, while the
left byte of AC1 is zeroed and the right is preserved.

262 RDOS System Reference

Handling Additional
Task Resources

This section explains how to manage task resources that are
not automatically managed by the system. It contains three
discussions. At certain points in its scheduling process, the
scheduler calls out to routines which you may supply to
handle your additional task resources. These callouts are
described first.

Second, if floating-point hardware and/or a block of con-
tiguous memory locations are among the resources you need,
you can simply use a handler supplied in SYS.LB, as dis-
cussed under ‘‘Additional Resource Handler.”’

Third, under ‘‘Operator Communications,’’ the method of
handling additional task resources while using the operator
communications package (OPCOM) is explained.

Task Scheduler Call-Outs

To use any callout described here, write, assemble, and load
a routine of the appropriate name and function. You must
insert the name of the routine in the RDLR command line
before the loader program searches SYS.LB. (By default,
this search occurs at the end of the command line.) If you
do not supply a routine, RDLR loads a dummy routine,
which does nothing, from SYS.LB.

Licensed Materiai--Property of Data General

TSK.X

Task initiation callout

This callout allows you to endow a new task with additional
resources. When the scheduler initates a task, it first removes
a TCB from the free TCB chain. Then it initializes certain
parts of the TCB, as described in a later section titled ‘‘Task
Control Block Values.’’ The scheduler then calls out to your
TSK.X routine in scheduler state.

Your TSK.X routine can initialize certain parts of the TCB
and change other parts initialized by the scheduler (subject
to restrictions noted under ‘‘Task Control Block Values’’).
On a normal return, the scheduler links the TCB for the
new task, as modified by your TSK.X code, into the active

TCB chain.

The scheduler transfers control to address TSK.X with the
accumulators set up as follows:

ACO Contains the value passed to .TASK in AC2. ACO
is irrelevant if .QTSK initiates the task.

AC1 Contains -1 if TASK initiates the task. or the address
of the task queue table if .QTSK initiates the task.

AC2 Contains the address of the new task's TCB.

AC3 Contains the (error) return address.

The routine you supply with entry address TSK.X need not
preserve accumulators or carry. If you detect an error, place
an error code in AC2 and return control to the location
whose address you received in AC3. On a normal return,
pass control to the location whose address is one greater
than the one you received in AC3, for example:

Licensed Material--Property of Data General

ENT TSK.X

.NREL

TSK.X: STA 3, RTNAD ;SAVE RETURN.
COM # 1,1SZR ;.TASK OR .QTSK?
JMP QUE

QUE: . ;HANDLE .QTSK CASE.

.BAD: LDA 2, CODE ;ERROR RETURN.
JMP @RTNAD

GOOD: ISZ RTNAD ;NORMAL RETURN.
JMP @RTNAD

RTNAD: .BLK 1

When you return an error indication and . TASK is the in-
itiator, the task is not initated, and its TCB returns to the
free TCB chain; the error code that you place in AC2 is
passed to the task which issued .TASK. When you return
an error indication and .QTSK is initiating the task, the
system tries again one second later.

RDOS System Reference 263

TRL.X

Task termination callout

This callout frees a task’s additional resources when it ter-
minates—typically those resources that you assigned in a
TSK.X routine. The scheduler calls this routine in scheduler
state whenever a task is being killed, with the task’s TCB
already unlinked from the active chain but not yet restored
to the free chain. The scheduler transfers control to address
TRL.X, with ACs set up as follows:

AC2 Contains the TCB address of the task being killed.
AC3 Contains the return address.

The routine supplied with entry address TRL.X need not
preserve accumulators or carry. When you have finished
your processing, return control to the location whose address

you received in AC3. There is no way to signal an error
from TRL.X.

264 RDOS System Reference

ESV.X

Task swap callout

This callout allows you to save and restore additional task
resources as needed when a task swap occurs. The scheduler
calls the routine in scheduler state and transfers control to
address ESV.X, with the accumulators set up as follows:
AC2 TCB address for the task losing control, or 0 if no
task is losing control (as described in the definition
of CTCB, earlier)

.CTCB TCB address of the task gaining control.

AC3 Return address.

The routine supplied with entry address ESV.X need not
preserve accumulators or carry. When you have finished
processing, return control to the location whose address you

received in AC3. There is no way to signal an error from
ESV.X.

A 0 passed to you in AC2 indicates that no valid, most
recently active task exists whose resources should be saved.
This situation occurs as the default task is initially selected
for execution. ESV.X will be called with 0 in AC2, and
the TCB address for the default task in CTCB. It also occurs
after a task terminates, because its resources were freed by
TRL.X and are no longer meaningful to ESV.X.

Licensed Material--Property of Data General

Additional Resource Handler

The system library, SYS.LB, contains an ESV.X routine
that provides, in part, for the additional task resources of
floating-point hardware and a block of contiguous storage
words. To load this module, insert the statement .EXTN
ESV.X in any source module whose name will occur in the
RLDR command line before SYS.LB is searched.

For each task requiring access to the floating-point hard-
ware, you must provide a block of words to store the task’s
values for its floating-point state. The size and content of
this block depend on the kind of computer you use. For an
ECLIPSE computer, the block has this format:

Status 2 words
FPACO 4 words
FPACI1 4 words
FPAC2 4 words
FPAC3 4 words

This format matches the one used by the FPSH and FPOP
instructions. For a NOVA computer, storage block has the
following format:

FPAC 4 words
TEMP 4 words
Status 1 word

To provide for a block of contiguous, memory locations as
an additional task resource, you must define two symbols
via .ENT and give them the following values:

ESV.S Equals the starting address of the block.

ESv.Z Equals the number of words in the block.
In addition, you will need to provide a block of memory,

whose length in words equals the value of ESV.Z, for each
task that is to use this additional resource.

Licensed Material--Property of Data General

Finally, for each task that will use either the floating-point
hardware or contiguous memory locations, you must ini-
tialize offset TELN in the TCB. within the TSK.X routine
that you must supply. The value placed in TELN depends
on the task’s needs.

e If TELN contains either 0 or 100005, neither the floating-
point nor the contiguous memory resources will be han-
dled. RDOS initializes TELN to O; thus, you need not
change it for a task requiring neither resource.

o If the task requires floating-point hardware but not con-
tiguous memory, set TELN to the indirect address of the
appropriate floating-point block described earlier.

e If the task needs contiguous memory but not floating-
point hardware, set TELN to the (direct) address of a
block of words ESV.Z + 1 words long, and set the first
of these words to either 0 or 1000005. The contiguous
memory locations will be saved in the remaining words
of this block.

o If the task requires both resources, set TELN as described
immediately above, but set the first word of the block
to the (direct) address of a floating-point save area

When initializing TELN, you can also initialize the contents
of these save areas. The values that your TSK.X routine
places in these areas will be the initial values when the task
being initiated starts executing.

Restrictions and Warnings

The system-supplied, additional resource handler assumes
that TELN is set up properly for either or both of the re-
sources; it does not prevent an unprepared task from using
one of these resources inadvertantly. If this occurs, results
are unpredictable.

For a task to use these resources, you must set up the task’s
TELN in your TSK.X routine. You cannot change a task’s
TELN after the task has been initiated.

Extra Resources

If a task requires resources in addition to floating-point
hardware and contiguous memory locations, you can write
your own ESV . X routine to handle the extra resources, using
the system-supplied handler as a subroutine. From within
your own ESV X routine, call out to the supplied handler
using the alias ESV.A instead of ESV.X, with the accu-
mulators set up appropriately.

RDOS System Reference 265

Operator Communications

When issuing a task call .QTSK, you must pass in AC2 the
address of a task queue table, whose format and length
conform to the description in Chapter 5. When the scheduler
calls out to TSK.X, it passes the queue table address in
AC1. Thus, you can append additional information to the
queue table—that is, supply a longer table—and access this
information from within TSK.X.

The operator communications feature (OPCOM) describes
programs to be run from the console by means of a program
table consisting of program frames of a given length. When
the operator types a QUE command, the scheduler copies
information from a program frame into a queue table. You
can increase the size of a program frame, causing the sched-
uler to pass additional information about a program to TSK.X
via a longer queue table. To do this, define symbol LPN.X
via .ENT, assigning it a value equal to the number of ad-
ditional words in each program frame. On an OPCOM QUE
command, these words will be copied, in order, to the end
of the associated task queue table, where they will be ac-
cessible to TSK.X.

266 RDOS System Reference

Task Control Block Values

Table 1.1 describes the initial values that the scheduler as-
signs to words in a TCB, and when these values can be
changed during a task’s lifetime. Each name is a symbol in
PARU.SR representing the offset within the TCB. Initial
contents are values placed in a TCB word by the task sched-
uler and seen on input to TSK.X. Each value applies to
both .TASK and .QTSK unless two of them are separated
by a slash (/); in this case, the first entry applies to .TASK
and the second to .QTSK. A “‘Yes’’ under column .TASK?
means that TSK.X can set or change the contents of this
word if .TASK is initiating the task; ‘‘No’’ means that
TSK.X can not change this word. A “‘Yes’’ or *‘No’’ in
column .QTSK? means the same thing as applied to .QTSK.
A ““Yes’ in column ‘‘Later?”’ means that this word can be
changed later in the task’s life; ‘‘No’” means it cannot be
changed. Each italicized number refers to a note at the end
of the table.

Licensed Material--Property of Data General

Name Initial Contents .TASK? .QTSK? Later?
TPC BO-14: Start addr; B15: Undefined Yes Yes Yes
TACO Undefined/System-maintained Yes No Yes
TAC1 Undefined/System-maintained Yes No Yes
TAC2 AC2 at .TASK/System-maintained Yes No Yes
TAC3) K.ILLT /System-maintained? Yes No Yes
‘ TPRST BO0-7: 0; B8-15: Start pri. Yes Yes 3,4
TSYS System-maintained No No No
TLNK System-maintained , No No No
TUSP Undefined Yes Yes 5
TELN 0 ; , Yes Yes 6
TID Task identifier No No No
TTMP System-maintained No No No
TSP Undefined Yes Yes 5
TFP) Undefined ‘ Yes Yes 5
TS Undefined Yes Yes 5
TSO ~ Undefined Yes Yes 5

Table 1.1 TCB words and how they can be changed

'Address K.ILL is the entry for the .KILL task call code. This address is placed in TAC3 so that a task can kil itself by simply returning to
the address it receives in AC3.

At TSK.X time for a task initiated by Q.TSK, TAC3 does not contain the address K.ILL. However, after TSK.X completes but before the new
task gains control, the scheduler places the address K.ILL in TAC3, so that the task’s initial AC3 will be correct. (See also note 1.)

3The interrupt world can modify the status bits on suspended tasks only. Thus, modifying status bits of a ready task must be a “task-indivisible”
operation, while modification of a suspended task must be an “interrupt-indivisible” operation. The scheduler and interrupt-disabled states
provide task-indivisibility. Interrupt-disabled state provides interrupt-indivisibility, as does the use of bit instructions on an ECLIPSE computer.
“Do not modify the priority portion of TPRST; use task call .PRI instead.

*Because these values are saved and restored only on task swaps, it is meaningless to change them while in scheduler state. Instead, you
should change the actual storage locations. Change USP (16;) instead of TUSP. On an ECLIPSE computer, change locations 40 through
43 octal instead of TSP through TSO. On a NOVA computer with hardware stack, change the hardware stack and frame pointers, and
locations 42, (stack limit) and 46, (instruction trap PC).

¢As mentioned earlier, you cannot change word TELN after TSK.X time if you use the additional resource handler (ESV.X routine) supplied
in SYS.LB.

Licensed Material--Property of Data Genera! RDOS System Reference 267

A

A (attribute protect) 9

.ABORT (abort a task) 126

Accumulators, status upon return from system calls 34
Active chain 120

Additional resource handler 249

Addressable memory, see logical address space
Addresses, mapped and unmapped system 3
.AKILL (kill all tasks of a given priority) 126
Aliases, link entries 19

ALMSPD.SR (line characteristics sourcefile) 30
.APPEND (open file for appending) 60

.ARDY (Ready all tasks of a given priority) 128
ASCII character set 239

Assembler cross-reference listing, see PARU.SR
Assembly language programs, examples 215

4‘ lanamea avtanginng 0
Assembly language source filename extensions 0

Assembly language, executable program files 2

.ASUSP (suspend all tasks of a given priority) 128

Asynchronous communications multiplexor (QTY), see
multiplexors

Asynchronous line multiplexor (ALM), see multiplexors

B

Background memory, introduction to 2

Background program, checkpoints in 161

Background programming, introduction to 2

Bad block pool, location on disk 13

Binary file, definition of 7

Bits and associated device characteristics (Table 3.7) 53

Block access, contiguous file 13

.BOOT (bootstrap a new operating system) 179

BOOT.SV 13

Bootstrap root, location on disk 13

BOOTSYS.OL 17

.BREAK (interrupt program and save main memory)
86

C

C (contiguously organized file) 10
.CCONT (create contiguously organized file) 45
.CDIR (create a subdirectory) 42

Licensed Material--Property of Data General

Index

Chained programs, definition of 91

Chammg process (Flgure) 94
Chaining, introduction to 2
Channel selection 34

example 35
Channels, multiple 29
.CHATR (change a file’s attributes) 51
Checkpoint procedure, example 170
.CHLAT (change link access entry attributes) 55
.CHSTS (get the file directory information for a

channel) 50
CLI commands

CDIR 15

CHATR 9

CHATR 20

CHLAT 20

CRAND 10

CREATE 10

DEB 2

DELETE 20

DIR 17

DUMP 26

EQUIV 17

EXFG 159

INIT 17

INIT/F 25

LINK 18

LIST/A 10

LOAD 26

on MCA lines 180

POP 91

RELEASE 17

tuning 189

UNLINK 20

XFER 10
CLI levels 92
CLI LINK command examples 18
CLI, function of 1
CLI, use to organize user disk space 15
.CLOSE (close a file) 61
Closing down the operating system, see system shutdown
Commands

clock 138

commonly used 35

file maintenance 45

269

.CONN (create contiguously organized file) 46
Console I/O commands 72
Contiguous file 10
Contiguous file block organization (Figure) 13
Contiguous file block organization, block access speed
16
Contiguous file block organization, definition of 13
Contiguous memory locations block, to provide 249
Control calls (Table 3.2) 37
Control characters interrupts, see keyboard interrupts
Controller support, disk drives 8
Core dump
procedures for 229
to produce 228
.CPART (create a secondary partition) 43
.CRAND (create randomly organized file) 46
.CREAT (create sequentially organized file) 47
Current directory, definition of 17

D

D (randomly organized file) 10
Data block structure (Figure) 24
Data channel, mapped system 3
Data encoding
nine-track units (Figure) 24
seven-track units (Figure) 24
.DDIS (disable user access of a device) 77
.DEBL (enable user access of a device) 76
DELAY (delay execution of the calling task) 139
.DELET (delete a file) 47
DEQ (dequeue a previously queued task) 148
Device access 3
Device access commands 76
Device and directory commands 39
Device name
in command lines 7
reserved 7
.DIR (initialize a directory or device) 40
Direct block input/output 10
Direct block input/output transfers 13
Direct block mode 57
Directory commands (Table 2.3) 23
Disk block 10
Disk file characteristics (Table 3.6) 52
Disk file
access 7
attributes 9
characteristics 10
methods for finding 18
to open 7
to reference 18
Disk filename, definition of 9
Disk space
apportionment (Figure) 16
multiuser system 16
Diskette dump 231
DKINIT.SV 13
.DQTSK (dequeue a memory-resident or overlay task)
138

270

.DRSCH (disable rescheduling) 156
DSR (data set ready) signal 30
Dual processor, program communication 178
Dual programming 159
Dual programs 159
in unmapped system (Figure) 163
to execute 162
.DUCLK (define a user clock) 139

E

EN.SCHED (enter scheduler state) 243
End-of-file (EOF) marker 24
End-of-tape (EOT) marker 24
.EOPEN (open file for exclusive write access) 59
.EQIV (assign a temporary name to disk or tape unit)
43
ER.SCHED (leave scheduler state abnormally) 244
.ERDB (extended read direct block) 113
Error codes, exceptional status 227
Error summary 210
Errors from control calls (Table 3.3) 38
_ERSCH (reenable rescheduling) 156
.ERTN (return from program swap with call program’s
error status) 96
ESV.X (task swap) 248
.EWRB (extended direct write block) 114
EXAMPLE program listing (Figure) 219
Examples, line printer dump (Figure E.1) 230
.EXBG (checkpoint a mapped background program)
168
Exceptional status 227
.EXEC (swap or chain a save file into execution) 95
.EXFG (execute a program in the foreground) 164
EXFG command (execute a program in foreground) 03
Extended address space, window mapping and virtual
overlays 91
Extended direct block 1/O
example 115
overview of 112
Extended memory, see extended address space

F

.FGND (see if foreground program running and check
level) 165
File access attributes 20
File access, change attributes 9
File attribute commands 51
File types, examples 7
File
backup on magnetic tape 22
index 12
overview of 7
random organization 12
save 12
transfer 10

Licensed Material--Property of Data General

Filename extensions 9

Filename.OL 97

Filename.SV 97

Floating point hardware, to manage task 249
Foreground memory, introduction to 2
Foreground program priority 2

Foreground program, to execute 162
Foreground programming, introduction to 2
Foreground/background system calls 164
Frame, definition of 14

Free element chain 120

Free form input/output modes 23

Free form mode 57

Full initialization, function of 17

G

.GCHAR (get a character) 72

.GCHN (get the number of a free channel) 61
.GCIN (get the input console name) 73
.GCOUT (get the output console name) 74
.GDAY (get today’s date) 79

.GDIR (get current directory name) 42

.GHRZ (examine the system real time clock) 141
Global directory specifier 17

.GMCA (get current CPU’s MCA number) 181
.GPOS (get the current file pointer) 62

.GSYS (get current operating system name) 44
.GTATR (get the file attributes and characteristics) 52
.GTOD (get the time of day) 78

H

High level languages, executable program files 2
Hollerith-ASCII conversion table 235

I

ICMN (define a program communication area) 166
ID.SRCH (task ID search) 246
IDEF (identify a user interrupt device) 172
IDST (get a task’s status) 141
Index blocks 12
UNIT (initialize a directory or device) 39
Initial disk block assignments 14
Initial disk block assignments (Table 2.2) 14
Input files, default 7
Input/output
calls 56
device names 7
modes 23
INT.DS (enter interrupt-disabled state) 245
INT.EN (leave interrupt-disabled state) 245
INTAD (reserve a program interrupt task) 88
task program 84
Interprocessor buffer (IPB) 178
introduction 177
to program 178

Licensed Material--Property of Data General

Interrupt handler program (Figure) 83

Interrupt routines, to define 83

Interrupts, to service 171

JOPC (initializing the operator communications
package) 147

IPB, see interprocessor buffer

IRMYV (remove a nonSYSGENed interrupt device) 174

JIXMT (transmit a message from a user interrupt
service) 130

K

Keyboard interrupts 82

KIL (kill a task) 149

.KILAD (define a kill-processing address) 125
KILL (delete the calling task) 125

L

L (link entry) 10
.LEFD (disable the LEF mode) 193
.LEFE (enable the LEF mode) 194
.LEFS (get the LEF mode status) 194
LFE instruction, see mapped systems
Line characteristics, to define 31
Line mode 56
Line printer copy of file, to obtain 21
Line printer dump 229
Line sixty-four reads and writes 28
.LINK (create a link-entry) 54
Link commands 53
Link entries

aliases 18

definition of 7

overview of 19
Load effective address (LFE) instruction 193
Loading the overlay root programs (Figure) 99
Logical address

mapped system 3

sequentially organized files 11

space 91
Lower case letters, RDOS conversion of 9

M

MAC.PS (macroassembler permanent symbol file) 6
Magnetic tape dump 231
Magnetic tape files 23
MAP unit, introduction of 3
.MAPDF (define a window and window map) 110
MAP.DR
definition of 14
function of 13
Mapped and unmapped memory (Figure) 05
Mapped system
addresses 3
affect of program swaps and chains 93
extended block input/output 112

271

extending address space 103
load effective address (LFE) instruction 193
page length 3
protecting user memory 102
traps 3
window mapping 107
Master device, see master directory
Master directory 15
MCA, see multiprocessor communications adaptor
MCABOOT program 181
.MDIR (get name of master directory) 44
.MEM (determine available memory) 75
.MEMI (change NMAX) 75
Memory allocation commands 74
Memory allotment, see mapped system
Memory block size 102
Memory considerations 2
Memory extension with disk space 91
Memory location numbers and mnemonics 122
Minimum hardware to run RDOS 1
Modem support 29
Modes, input/output 56
.MTDIO (perform free format 1/0) 70
.MTDIO values 71
.MTOPD (open a tape unit and file for free format 1/0)
69
Muliplexors, to monitor line interrupts 28
.MULTI (restore the multitask environment) 155
Multi-task and single-task environments, definition of
33
Multiple processor line connections 180
Multiple processor systems 177
Multiplexor error messages (Table 2.6) 30
Multiplexor lines, condition for swapping 92
Multiplexors, bits that affect (Table 2.4) 28
Multiplexors, overview of 27
Multiprocessor communications adaptor (MCA)
introduction to 177
MCABOOT program 181
to program 180
Multiprocessor system, example 182
Multitask environment, disabling and enabling 154
Multitask programs, procedures for building 119
Multitask scheduler (TCBMON) 33

N

N (no links possible) 9

NMAX (highest address) 3

NMAX, affect upon program swaps 92
NREL (normal relocatable memory) 3

0

.ODIS (disable console interrupts) 87
OPCOM, see task
OPCOM command examples (Figure) 153
OPCOM commands

DEQ 148

272

KIL 149
PRI 149
QUE 150
RDY 151
RUN 151
SUS 152
TST 152
.OPEN (open a file) 57
.OPEN system call, function of 7
Operator communication module (OPCOM) 146
Output files, default 7
Overlay directory
place in memory 225
structure (Figure) 225
Overlays
directory of 97
file size 97
format to 97
in swaps and chains 91
management of 131
memory considerations 02
node size 97
procedures for using 97
program 91
user 97
user (Figure) 98
.OVEX (release an overlay and return to the caller) 134
.OVKIL (kill the calling task and release its overlay)
135
.OVLOD (load an overlay) 101
.OVOPN (open overlays for reading) 100
.OVREL (release an overlay) 134
.OVRP (replace overlays in an overlay file) 102

P

P (permanent file) 9

Page length, see mapped system

Page zero memory locations for user programs 3
Parameters, user 213

PARS, page zero and hardware reserved locations 233
Partial initialization, function of 17

Partitions and subdirectories 15

Partitions, primary and secondary 15
PARU.SR, assembler cross-reference listing 223
PARU.SR, file 213

.PCHAR (put a character) 73

Power fail-auto restart procedures 175
Power-up service, user devices 176

PRI (change a task’s priority) 149

.PRI (change the calling task’s priority) 127
Primary partition subdirectories 15

Program development, steps 2

Program frame, to increase size 250

Program return, affect on current program 92
Program swapping (Figure) 93

Program swaps and chains 91

Program swaps, definition of 91

Pseudo-op .ENTO 99

Push, see program swapping

Licensed Material--Property of Data Generat

Q

.QTSK (queue a memory-resident or overlay task) 135
.QTSK example (Figure) 137
QUE (queue a task for periodic execution) 150

R

R (read protect) 9
Random file 15
Random file block organization (Figure) 12
Random record mode 57
.RDB (read a series of disk file blocks) 68
.RDCMN (read a message from the other program)
167
.RDL (read a line) 63
.RDOPR (read an operator message) 168
RDOS command summary (Table A.1) 197
RDOS
disk organization (Figure) 21
executive 3
features 1
media 7
minimum hardware 1
organization 3
.RDR (read random record) 67
.RDS (read sequential) 65
.RDSW (read the front panel switches or register) 77
RDY (ready A task) 151
.REC (receive a message) 130
Relocatable binary file, see binary file
.REMAP (perform a iogicai window Lransfer) 111
.RENAM (rename a file) 48
RE.SCHED (leave scheduler state normally) 244
Reserved device names (Table 2.1) 08
.RESET (close all files) 62
Resolution file 18
RLDR
function of 3
in program load 2
.RLSE (release a directory or device) 41
Root program, definition of 97
.ROPEN (open file for reading only) 59
.RSTAT (get a file’s current directory status) 57
.RTN (return to the program at the next higher level)
96
.RUCLK (remove a user clock) 140
RUN (execute a task) 151

S

S (save file) 9
Save file, definition of 7
Scheduler call, . TSAVE 243
SDAY (set today’s date) 80
Second controller, names 8
Secondary partitions, use of to prevent loss 16
Sequential file block organization 11
(Figure) 11

Licensed Material--Property of Data General

Sequential file, definition 10
Sequential mode 56
SINGL (disable the multitask environment) 154
SMEM (reserve memory in foreground) 3
SMSK (modify the current interrupt mask) 174
SPDA (disable device spooling) 81
.SPEA (enable device spooling) 82
SPKL (stop a spool operation) 81
.SPOS (set the current file pointer) 63
STAT (get a file’s current directory status) 48
State, definitions 242
.STMAP (set the data channel map) 175
STOD (set the time of day) 79
Subdirectories, see primary partition subdirectories
Subdirectories and partitions, maximum number allowed

17
Summaries, error code meanings 227
SUS (suspend a task) 152
.SUSP (suspend the calling task) 128
Swapping, introduction to 2
Symbolic debugger, use with file load 2
SYS.DR

block composition 14

contents 16

function of 13
SYS.LB (system library)

contents of 6

memory considerations 2
SYSGEN, see system generation program
System

buffer requirements 187

cell requirements 186

self-tuning 189

stack requirements 186

tuning 185
System and task calls

definition of 33

function of 1

(Table 3.9) 88

(Table 4.1) 116
System buffers

location in memory 3

use in file access 12
System calls

.APPEND 60

.BOOT 179

.BREAK 86

.CCONT 45

.CDIR 15, 42

.CHATR 51

.CHLAT 20, 55

.CHSTS 50

clock/calendar 77

.CLOSE 61

commonly used (Table 3.1) 36

.CONN 46

.CPART 43

.CRAND 10, 46

.CREAT 47

273

274

.DDIS 77
.DEBL 76
.DELET 20, 47
.DIR 17, 40
.EOPEN 59
.EQIV 17,43
.ERDB 113
.ERTN 96
.EWRB 114
.EXBG 168
.EXEC 95
.EXFG 164
.FGND 165
file attribute 51
file maintenance 45
.GCHAR 72
.GCHN 61
.GCIN 73
.GCOUT 74
.GDAY 79
.GDIR 42
generic format for 34
.GMCA 181
.GPOS 62
.GSYS 44
.GTATR 52
.GTOD 78
ICMN 166
IDEF 172
INIT 17, 39
INTAD 88
IRMV 174
.LEFD 193
.LEFE 194
.LEFS 194
.LINK 18, 54
.MAPDF 110
.MDIR 44
.MEM 75
.MEMI 75
.MTDIO 24, 70
.MTOPD 24, 69
.ODIS 87
.OPEN 7, 57
.OVLOD 101
.OVOPN 100
.OVRP 102
.PCHAR 73

program swaps and chains 91

.RDB 68
.RDCMN 167
.RDL 63
.RDOPR 168
.RDR 67
.RDS 65
.RDSW 77
.REMAP 111
.RENAM 48

.RESET 62

.RLSE 17, 41

.ROPEN 59

.RSTAT 57

.RTN 96

.SDAY 80

.SMSK 174

.SPDA 81

.SPEA 82

SPKL 81

.SPOS 63

STAT 48

.STOD 79

.TUOFF 191

.TUON 191

JUIEX 173

.ULNK 20, 55

.UPDAT 50

.UPEX 173

.VMEM 110

.WRB 68

.WRCMN 166

.WREBL 104

.WRL 64

.WROPR 167

.WRPR 104

.WRR 68

.WRS 66

with multiplexors 27
System directory, see SYS.DR
System file names (Table 1.1) 6
System generation program (SYSGEN) 1
System library, see SYS.LB
System overlays and their functions (Table 9.1) 187
System shutdown

examples 22

procedures for 17

T

T (partition file) 10
Tape drive
initializing and releasing 24
rewinding with RELEASE command 26
Tape file
input/output modes 23
overwrite (Figure) 27
to link 27
to reference 26
write first file (Figure) 26
Task
clock commands 138
definitions 241
ID 117
initial 117
initiation 123
inter-task communication 129
managing by ID number 141
operator communication module (OPCOM) 146

Licensed Material--Property of Data General

overview 117

priorities 117

states 119

suspended 120

synchronization and communication 121

to delete 120

to enqueue 135

to lock a process 130
Task and system calls 123
.TASK (create a task) 124
Task calls

.ABORT 126

.AKILL 126

.ARDY 128

.ASUSP 128

.DELAY 139

.DQTSK 138

.DRSCH 156

.DUCLK 139

.ERSCH 156

IDST 141

IOPC 147

JIXMT 130

KILAD 125

KILL 125

.MULTI 155

operator communication 144

.OVEX 134

.OVKIL 135

.OVREL 134

PRI 127

.REC 130

.RUCLK 140

SINGL 154

single-task 33

.SUSP 128

.TASK 124

.TIDK 144

.TIDP 142

.TIDR 143

.TIDS 143

.TOVLD 132

to write 241

.TRDOP 145

.TWROP 145

.UCEX 140

XMT and . XMTW 129
Task control block (TCB) 117

queues 120

structure (Table 5.1) 118

values 250
Task-processing modules, location in memory 4
Task resources, to handle additional 246
Task scheduler

enabling and disabling 155

location in memory 4

memory considerations 2
Task scheduler callouts, ESV.X 248

Licensed Material--Property of Data General

Task scheduler callouts, TRL.X 248
Task scheduler callouts, TSK.X 247
Task scheduler commands
ER.SCHED 244
ID.SRCH 246
INT.DS 245
INT.EN 245
RE.SCHED 244
summary of 242
Task state modification 127
TCB, see task control block
.TIDK (kill a task by ID number) 144
.TIDP (change a task’s priority) 142
.TIDR (ready a task by ID number) 143
.TIDS (suspend a task by ID number) 143
TIMEC program listing (Figure) 217
.TOVLD (load a user overlay) 132
TOVLD logic sequence (Figure) 133
Traps
comparison with exceptional status reports 227
mapped system 3
.TRDOP (read a task message from the console) 145
TRL.X (task termination) 248
.TSAVE (task state save) 243
TSK.X (task initiation) 247
TST (display a task’s status) 152
Tuning commands, CLI 189
.TUOFF (stop recording in the tuning file) 191
.TUON (start recording in the tuning file) 191
.TWROP (write a message to the console) 145

U

JUCEX (exit from a user clock routine) 140
UFD (user file descriptor) 14
template with displacement mnemonics (Table 3.4)
49
JUIEX (exit from a user interrupt routine) 173
ULM line codes 29
ULM line speed selection (Table 2.5) 29
.ULNK (get the file directory information for a channel)
55
Universal line multiplexor (ULM), see multiplexors
Unmapped RDOS, see unmapped system
Unmapped system
definition of 3
dual programs in 161
location of executive 3
.UPDAT (update a file) 50
UPEX (exit from a power fail service routine) 173
User address space, to extend 2
User-defined attribute
& (ampersand) 9
? (question mark) 9
User directories 15
User file descriptors 14
User overlay management 131
User status table (UST), contents of 3
User status table (UST), structure of (Table 5.2) 121
User task queue table (Table 5.3) 136
UST, see user status table

275

\%

Virtual overlays
procedures for loading and remapping 102
use to store subroutines 91
with .OVLD 106
.VMEM (determine the number of free blocks) 110

A4

W (write protect) 9
Window map
to define and perform 107
use in mapped system 91
.WRB (write a series of disk file blocks) 68
.WRCMN (write a message to the other program) 166
.WREBL (remove write protection from protected
memory area) 104
Write-protecting memory (Figure) 103
.WRL (write a line) 64
.WROPR (write an operator message) 167
.WRPR (protect memory area from modification) 104
.WRR (write random record) 68
.WRS (write sequential) 66

X

XMT and . XMTW (transmit a message and wait) 129
Y

Y (directory file) 10
Z

ZREL (page zero relocatable memory) 3
ZREL space, to conserve 119

276

Licensed Material--Property of Data General

DG OFFICES

NORTH AMERICAN OFFICES

Alabama: Birmingham
Arizona: Phoenix, Tucson
Arkansas: Little Rock

California: Anaheim, El Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Riverside,

Sacramento, San Diego, San Francisco, Santa Barbara, Sunnyvale, Van Nuys
Colorado: Colorado Springs, Denver

Connecticut: North Branford, Norwalk

Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise

lowa: Bettendorf, Des Moines

Minois: Arlington Heights, Champaign, Chicago, Peoria, Rockford
Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge, Metairie

Maine: Portland. Westbrook

Maryland: Baltimore

Massachusetts: Cambridge, Framingham, Southboro, Waltham, Wellesley, Westboro,

West Springfield, Worcester

Michigan: Grand Rapids, Southfield
Minnesota: Richfield

Missouri: Creve Coeur. Kansas City
Mississippi: Jackson

Montana: Billings

Nebraskat Omaha

Nevadat Reno

New Hampshire: Bedford, Portsmouth
New Jersey: Cherry Hill, Somerset, Wayne
New Mexico: Albuguerque

New York: Buffalo, Lake Success, Latham, Liverpool, Melviie, New York City,

Rochester, White Plains

North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park
Ohio: Brooklyn Heights, Cincinnati, Columbus, Dayton
Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego

Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh
Rhode Island: Providence

South Carolina: Columbia

Tennessee: Knoxville, Memphis, Nashville

Texas: Austin, Dallas, El Paso, Ft. Worth, Houston, San Antonio
Utah: Sait Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: Bellevue, Richland, Spokane

West Virginia: Charleston

Wisconsin: Brookfield, Grand Chute, Madison

DG-044706

INTERNATIONAL OFFICES

Argentina: Buenos Aires

Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney
Austria: Vienna

Belgium: Brussels

Bolivia: La Paz

Brazil: Sao Paulo

Canada: Calgary. Edmonton. Montreal Ottawa Quebec. Toronto Vancouver
Winnipeg

Chile: santiago

Columbia: Bogata

Costa Rica: San Jose

Denmark: Copenhagen

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

France: Le Plessis-Robinson Lille Lvon Nantes Paris Saint Denis Strasbourg
Guatemala: Guatemala City

Hong Kong

India: Bombay

Indonesia: Jakarta, Pusat

Ireland: Dublin

Israel: Tel Aviv

Italy: Bologna, Florence, Milan, Padua, Rome, Tourin
Japan: Fukuoka, Hiroshima, Nagoya, Osaka, Tokyo, Tsukuba
Jordan: Amman

Korea: Seoui

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City, Monterrey

Morocco: Casablanca

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington

Nicaragua: Managua

Nigeria: Ibadan, Lagos

Norway: Osio

Paraguay: Asuncion

Peru: Lima

Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jeddah, Riyadh

Singapore

South Africa: Cape Town, Durban, Johannesburg, Pretoria
Spain: Barcelona, Bibao, Madrid

Sweden: Gothenburg, Malmo, Stockholm

Switzerland: Lausanne, Zurich

Taiwan: Taipei

Thailand: Bangkok

Turkey: Ankara

United Kingdom: Birmingham, Bristol, Glasgow, Hounslow, London, Manchester
Uruguay: Montevideo

USSR: Espoo

Venezuela: Maracaibo

West Germany: Dusseldort, Frankturt. Hamburg, Hannover. Munich. Nuremburg,
Stuttgart

CUT ALONG DOTTED LINE

¢»DataGeneral

group Installation Membership Form

Name Position Date
Company, Organization or School
Address City State Zip
Telephone: Area Code No. Ext.
1. Account O OEM 5. Mode of [Batch (Central)
Category 0 End User Operation O Batch (Via RJE)
[J System House 0 On-Line Interactive
[Government
2. Hardware Qty. Installed | Qty. On Order 6. Communication 0O HASP O X.25
M/600 J HASP Il [O SAM
MV /Series ECLIPSE® (1 RJEBO 00 CAaM
Commercial FECLIPSE M RCX 70 1 XODIATT™
Scientific ECLIPSE 0 RSTCP 0O DG/SNA
ggasy Processors] 4025 O 3270
oS Series
NOVA®4 Family 0 Other
Other NOVAs Specify
microNOVA® Family
MPT Family
7. - -
Other . Appllcaflo?
(Specify) Description o
3. Software O AOS O RDOS
O AOS/VS 0O DOS
0O AOS/RT32 [J RTOS
0O Mp /éS O Other 8. Purchase From whom was your machine(s)
- MPI/AOS purchased?
Specify 0 Data General Corp.
0 Other
- Specify
4. Languages 0 ALGOL O BASIC
O DG/L 0 Assembler
1 COBOL ™1 FORTRAN 77 9, Users Group Are you interested in joining a
O Interactive [J FORTRAN & special interest or regional
COBOL O RPG I Data General Users Group?
O PASCAL (O pL/1 0)
[J Business [J APL
BASIC 3 Other
Specify

¢vDataGeneral

Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911

FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

¢y DataGeneral

ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

CUT AL ONG DOTTED LINE

ISD User Documentation Remarks Form

Your Name

Your Title

Company

Street

City State Zip

We wrote this book for you, and we made certain assumptions about who you are and how you would
use it. Your comments will help us correct our assumptions and improve the manual. Please take a few
minutes to respond. Thank you.

RDOS System Reference 093-400027-00

Manual Title Manual No.
Who are you?
O EDP Manager S Analyst/Programmer
O Senior Systems Analyst Z Operator
O Other

What programming language(s) do you use?

How do you use this manual? (List in order: I = Primary Use)
— Introduction to the product Tutorial Text
Reference — Operating Guide
— Other

About the manual: Yes Somewhat N
Is it easy to read? —
Is it easy to understand?
Are the topics logicaliy organized?
Is the technical information accurate?
Can you easily find what you want?
Does it tell you everything you need to know?

~ ab Pl e et _ L1 _
Do the illustiations help youl - - -

©

]
]

Ltroan
a0
(v oy

[

If you have any comments on the software itself, please contact your Data General Systems Engineer.
If you wish to order manuals, see your Data General Sales Representative.

Remarks:

Date

FOLD FOLD
TAPE TAPE
FOLD FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.26 SOUTHBORO,MA. 01772

Postage will be paid by addressee:

¢»DataGeneral

User Documentation, M.S. E-111
4400 Computer Drive
Westborough, Massachusetts 01581

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

{-DataGeneral umnmaummlummmumuummmmm«numlmmm

- 093-400027-00

	00001
	00002
	00003
	0001
	0002
	0003
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	269
	270
	271
	272
	273
	274
	275
	276
	277
	replyA
	replyB
	replyC
	replyD
	xBack

