

PROGRAM

Double Precision Negate

TAPES

ASCII Source: 090-000019

ABSTRACT

This routine negates a double precision, two's complement number.

1. REQUIREMENTS

1.1 Memory

1K or larger alterable memory

1.2 Equipment

NOVA central processor

1.3 External Subroutines

None

1.4 Other

None

2. OPERATING PROCEDURE

2.1 Calling Sequence

JSR .DNEG return

2.2 Input Format

A double precision, two's complement number in ACØ (high order), ACl (low order).

2.3 Output Format

The negative of the input is returned in ACØ (high order), ACl (low order).

2.4 Error Returns

None

2.5 State of Active Registers upon Exit

 $AC\emptyset$, AC1, AC3, and Carry are destroyed by .DNEG. AC2 remains unchanged.

2.6 Cautions to User

The negative of -2**31 cannot be represented and is returned unchanged.

3. DISCUSSION

3.1 Algorithms

If the input is

then the negative of the input

$$= 2*32 - (2**16*A + B)$$

$$= 2**16*(2**16 - A) + 2**32 - B$$

Now $2^{**}32 - B$ is equivalent to a two's complement of B which always causes a "borrow" from the high order unless $B = \emptyset$. Therefore, if $B = \emptyset$, the two's complement of A is required. Otherwise,

is required (which is the one's complement).

3.2 Limitations and Accuracy

The routine is exact.

3.3 Size and Timing

The routine is 4 words in length.

Execution time is 13.8 \(\mu \) seconds.

3.4 References

See section 2.2 of "How to Use the NOVA" for a further discussion of double precision arithmetic.

3.5 Flow Diagrams

None

4. EXAMPLES AND APPLICATIONS

An ASCII source tape of .DNEG is provided with the NOVA software. The tape should be edited into user software that requires double precision negate.

5. PROGRAM LISTING

A listing of .DNEG follows. No origin has been given, enabling the user to edit the source anywhere within his routines.

```
; DOUBLE NEGATE
; COMPUTES -D WHERE D IS A DOUBLE PRECISION TWO'S
; COMPLEMENT INTEGER.
              D IN ACO, ACT (HIGH ORDER, LOW ORDER)
: INPUT:
              -D IN ACO. ACI
; OUTPUT:
 ; CALLING SEQUENCE:
       JSK .DNEG
       RETURN
              THE NEGATIVE OF -2**31 CANNOT
 ; CAUTION:
              BE REPRESENTED AND IS RETURNED UNCHANGED
              ACO, ACI, AC3, CARRY
 ; DESTROYED:
              AC2
 ; UNCHANGED:
```

	124404	2 12 1 4 12 C A 2 1 1 1 1 2 1 1	1:1:52K 0:0:5KP	; LOW ORDER NEGATE ; IF ACI NON-ZERO ; ACØ IS A ONE'S COMPLEMENT
99998	100400	NEG	000	; IF AC1 IS ZERO ; AC0 IS A TWO'S COMPLEMENT
00003	001400	JMP	0.3	; RETURN