DATA GENERAL
CORPORATION

Southboro,

Massachusetts 01772
{617) 485-9100

PROGRAM

Floating Point Interproter

TAPES

Basic Binary: 0981-000012 (5600 - 7577)

Extended Binary: 091-000013 (4100 - 7577)

June, 1969

Copyright (C) Data General Corp., 1969 023~-000019~01

Table of Contents

1. Introduction

2. Structure of ths Interpreter

3. TFloating Point Number Represcntation
4, Interpreter Use and Command Structure

General
The ¥ritable 2rea
Initialization
Entering and Exiting the Interpretive Mode
Floating Point Instruction Set
4.5.1. Memory Reference Instructions
4,5,2. Arithmetic Instructions
4,5.2.1. Options
4,5.2.2. PRLC Instructions with Post-
normalize Option
4.5.2.3. B2LC Instructions that Always Post-
normaliza
4.5.2.4. Floating PLC Instruction Ewawples

L]
[

*

3

B b b D
Ut oWs WoN
*

o
»

4,5.3. Input/Output Instructions
4.,5.4, Special Instructions
4,5.5, Illegal Instructions

4,6, Reguirements for Reentrance

5, Extended Floating Point Features

5.1. Mathematical Functions
5.2. “F" Format Convarsion

6. Examples
rppendicies
» Floating Point Instruction Summary

B Floating Point Instruction Encoding
C Mathematical Function Methods

1. Introduction

Most small, general purpose computers do not have hardware
for the manipulation of floating point numbers. They have,
therefore, implemented software packages to provide floating
point functions., Two approaches can be taken to solve this soft
ware problem.

The first approach is to provide a number of subroutines,
each of which performs a specific function, e.g. floating addition.
This approach requires the user to pass inputs in a standard
manner to the subroutine. Since most small computers have only
two accumulators, only one operand (which requires two words to
represent) can be passed in the accumulators. The address of the
second operand must be provided along with the subroutine call.
A typical calling seguence requires two load accumulator
instructions, a subroutine call, and an address word. Furthermore,
one operand is always destroyed and replaced by the result (usually
the accumulator operand). This means that an intermediate result
cannot be tested without destroying an operand--a function often
useful in computation. A lengthy program requiring these sub-
routines cannot make efficient use of storage. Further, the

manipulation of operands becomes a tedious, cumbersome job.

2=

The second approach is to provide an interpreter in which all
the floating point functions are imbedded and which can simulate
floating point registers in storage. The interpreter is given
control by a subroutine call. Once in control, it accesses
succeeding memory words and "interprets" a sixteen bit word in a
manner similar to the hardware. These instructions are not
executed in the hardware sense but are instead interpreted to
provide extended machine features,

This second approach was adopted for the NOVA floating point
package and is the subject of this manual. The Interpreter
provides four floating point accumulators which can be addressed
and manipulated in a manner similar to the actual hardware
accumulators. Floating point instructions are syntactically
similar to machine instructions and are assembled in a similar way.
For example, *the instruction

ADD# #,2,5NR
which adds ACZ to AC2, skips the next instruction if the result
is non-zero, and does not change ACZ or AC2, has a similar floating
point version. This instruction

FADD# #,2,FSNR

* This manual requires the reader to have a good understanding
of both, "How to Use The NOVA" and the Assembler Manual.

-3

adds floating accumulator ¥ (designated as FACZ) to FAC2, skips
the next instruction if the result in non-zero, and does not
destroy FACY or FAC2.

The Interpreter has additional desirable properties. It can
be implemented in Read Only Storage (ROS), and it is completely
reentrant. These properties, in addition to the floating point

instruction set, are described in the body of this manual.

-l

2. Structure of the Interpreter

The Interpreter is non-destructive, i.e. no instruction is
modified in any manner during execution. Furthermore, it does not
store temporary information within itself, Instead, it uses a
writable area which must be provided by the user., These properties
enable the Interpreter to be wired in ROS as a customer option.

Within the Interpreter, subroutine linkage is via a push
down list. This list is maintained in the writable area provided
by the user. This property, coupled with the properties already
mentioned, make the Interpreter reentrant. This simply means that
if a second user routine requires the Interpreter, it may interrupt
the present routine, perform its function using the Interpreter
and return to the first routine without affecting the state of the
Interpreter. One implication of this is that the Interpreter may
"call itself." This property has actually been used, enabling an
extended version of the package to compute elementary trans-
cendental functions using floating point instructions.

The Interpreter requires eight page @ locations which the
user must not destroy. These locations and their uses are:
gZ#4: will contain the starting address of the Interpreter
7#75: will contain the starting address of the initialization

routine for the Interpreter

g#6: one temporary word used by the Interpreter and saved by any
routine reentering the package.

-5

2%7: a word set up by the user to contain the address of a writable
area for the Interpreter

#4%: a word containing the address of a user written "get character"
routine

#41: a word containing the address of a user written "put character”
routine

#42~F43: words containing linkage addresses to determine the

location of extended code (if present)

3. Ploating Point Number Representation®

Floating points numbers are internally stored in two

consecutive 16-bit words. The form is:

o
. |
13d

"s" is the sign of the mantissa, "M", in bits 8-31. The mantissa
is considered to be a normalized six digit hexadecimal fraction,
and the range of the magnitude of the mantissa is therefore,
16%%-1 £ ML (1-16%*-6).
The characteristic, "C", is the integer exponent of 16 in excess
641g code. The total range of magnitudes is this:
1e**-1*16%*~63 L FL(1-16**~6)*16**63
or approximately
8.7%10%*-78 gF\g?.z*lo**?s
Any operand having a zero mantissa is represented in true zero
from, i.e., bits #-31 are @. Negative numbers are identical to
their positive counterparts except "S"=1 instead of Z.
The maximum error of a normalized mantissa is less than

16**-6,

%
See also "How to Use The NOVA," Appendix C.

4, Interpreter Use and Command Structure

4.1. General

The Interpreter provides four floating point accumulators.
They are numbered #,1,2, and 3 similar to the hardware accumulators.
The deslgnationE%Cn will be used for floating accumulator n,
Arithmetic is performed accumulator to accumulator as with fixed
point instructions. Operands can be accessed and stored using
memory reference instructions. Instructions which reference
floating point operands in memory should provide an address which
points to the first word of the two word operand. If indexing
is specified, the hardware index register is used. For example,

FLDA 1,4,2

loads FAC1l from two consecutivewords in memory whose first word
address is 4+ contents (AC2)., Certain instructions manipulate
hardware AC2 and AC3 and will be described in Section 4.5. No
facility is provided for manipulating AC#Z and ACl with the
floating point instruction set.

4,2. The Writable Area

The basic Floating Point Interpreter requires 64 (decimal)
words of contiguass writable memory. If the Extended Interpreter
is used, 117 (decimal) words must be provided. The Extended

Interpreter and its added features are described in detail in

-8

Section 5. Other than the above differences in the length of
the writable area, this description applies to both versions.

The address of the first word of the writable area provided
by’the user must be stored in location #@7 of page @ before any
Interpreter commands are executed. If a second routine (or
third, etc.) may reenter the Interpreter, this routine must
provide an address pointing to a different memory area before
reentrance is made.

A number of flags are stored in this writable area which may
be examined by the user. To access these flags, the user must
exit from the interpretive mode (as described in Section 4.4).
If an index register is loaded from location @#7, the user may
access these flag words by an instruction of the form:

LDA @,n,i

where i 1is the index register (2 or 3), and n is a constant

displacement as described below.

n = Z: The first word contains the overflow/underflow flags.
If the result of an operation is less than 16**-64,
bit 15 of this word will be set to indicate underflow.
If the result of an operation is greater than
(1-16**-6)*16**+63, bit 14 of the word will be set to
indicate overflow. Other conditions may set overflow/

underflow, These will be discussed where appropriate.

n = 1:
n=2:
n = 3:
The

Q07

This word is initially cleared. Once a bit is set, it

will remain set. It is the user's responsibility to re-
set these bits.

After an input conversion (see Section 4.5.,3.) this

word will be zero if no conversion was performed
(because of an input error). Otherwise the word will
be non-zero.

After an input conversion, this word will contain the
7-bit ASCII character, right justified, that served as
the break character in the input stream.

After an input conversion, this word will be ¢ if
no decimal point (".") was encountered in the input

stream. If a point was seen, the word will be 1.

diagram below summarizes these flags.

WOR D
@ 39 1415 —~OFLO
'M QMLMMM N 3:
COK YR LRe
BRKC Z

used onaiy \Qa

U)
Lﬁf&“vg:)*rﬁ. i’er

-

~10-

A convenient means of accessing these flags is to define four

symbolic equivalences such as:

FLGS = ¢ ;overflow/underflow flags
COK = 1 ;conversion OK

BRKC = 2 sbreak character

FPTF = 3 ;floating point flag

Now if AC2 contains the address of the writable area, any flag

may be accessed by statements like the following:

LDA Z,FLGS, 2
LDA 1,C0XK,2

LDA 1,BRKC, 2
LDA 1,FPTF, 2

4,3, Initialization

The Interpreter, or more correctly the writable area,
must be initialized before floating point instructions are
executed. This initialization should be given once for every
writable area to be used. The command is simply

FINT
which generates the instruction

JSR @5
(note that the initialization routine address is in location
#75). Location @7 must point to the writable area. This
command destroys AC3, but preserves all other accumulators and
the carry. The initialization routine clears the overflow/

underflow flags and sets up linkage for the push down list.

-11~

Entering-Exiting the Interpreter lMode

To use the Floating Point Interpreter, it is necessary
to distinguish between the processing of normal instructions
(described in "How to Use The NOVA") and the processing of
floating point instructions. Since the latter instructions are
"interpreted" (not executed per se), the Interpreter must be
given control before floating point code will be executed
properly. Whenever the Interpreter is in control, this will
be called the "interpretive mode." Otherwise, the machine
will be referred to as in the "normal mode.” To enter the
Interpretive mode, the command is
FETR
which generates the instruction
JSR G4
As noted earlier, location @@#4 will contain the starting address
of the Interpreter. Once in the interpretive mode, only the
floating point instruction set can be used.(normal instructions
will cause unpredictable results). To return to normal processing,

the command
FEXT

must be given.

-12-

FETR destroys AC3, but the contents of all other accumulators
and Carry will be saved. AC2 and AC3 can be used for indexing
in the interpretive mode. Certain instructions also enable
modification of the contents of AC2 and AC3. FEXT will restore
ACZ and Carry to their state before entering the Interpreter.
AC2 and AC3 will reflect any changes caused by floating point
instructions that modified their contents.

The normal sequence of code using the Interpreter would be

of the form:

FINI s INITIALIZE INTERPRETER
Lpa #4,CNST
STA 7, TEMP NORMAL INSTRUCTIONS

;
FETR sENTER INTERPRETER

;FLOATING POINT INSTRUCTIONS

FEXT ; EXIT INTERPRETER
LDA 1,C5

4,5, Floating Point Instruction Set

This section contains a description of the instruction
set for the basic Floating Point Interpreter. These instructions
obey the syntactic rules described in the Assembler Manual.
For example, all floating ALC instructions require a source
accumulator designation and a destination accumulator designation.
All floating point instructions begin with an "F" to distinguish
them from the normal instruction set. Appendix A summarizes

the instructions and Appendix B gives their octal encoding.

-13-

4,5,1. Memory Reference Instructions

The instruction
FLDA n,adr
causes FACn to be loaded with the two word operand at adr,adr+l.
The instruction
FSTA n,adr
causes FACn to be stored in memory at adr,adr+l.
The instruction
FJMP adr
causes control to be transfered to the floating point instruction
at adr.
The instruction
FJSR adr
causes control to be transfered to the instruction at adr and
AC3 to be set to the value of the current location counter +1.

For example, a floating point subroutine can be executed by the

following:
¢MAIN PROGRAM
FLDA Z,LocC : LOAD FACY
FJSR SUBR : JUMP TO SUBROUTINE
FSTA 7, RSLT : STORE RESULT
SUBR:s
. ; SUBROUT INE

FJIMP 7,3 ;RETURN

~14-

The instruction
FFIX adr
causes the floating point number at adr, adr+l to be converted
to a fixed point, double precision integer (truncated) at
adr, adr+l. If the conversion results in an integer whose
absolute value is greater than 2%**24-1, the overflow flag will
be set and 2**24-1 will be returned as the magnitude. Note
that while floating point numbers are represented in signed-
magnitude format, fixed point values will always be represented
in two's complement notation.
The instruction
FFLO adr
causes the fixed point, double precision integer at adr,adr+l
to be converted to a floating point number at adr,adr+l.
Negative integers must be represented in two's complement format.
The instruction
FISZ adr
causes the contents of adr to be incremented by one and the next
floating point instruction in sequence to be skipped if the

result is zero.

-15-

The instruction
FDSZ adr
causes the contents of adr to be decremented by one and the
next floating point instruction in sequence to be skipped if
the result in zero. FISZ and FDSZ should be used with fixed
point, single precision integers--not with floating point
numbers,
The instruction
FST3 adr
causes AC3 to be stored at adr.
The instruction
FLD3 adr
causes AC3 to be loaded from the contents of adr. FST3 and
FLD3 operate on real accumulator 3. FST3 is useful for saving
the return address inside a floating point subroutine. Note
that the return address should always be saved if a floating
point subroutine exits and then enters the interpretive mode,
since FETR destroys AC3. These two instructions also provide a
means for initializing loop counts without leaving the

interpretive mode.

-16=-

For example,
FEXT

STA
LP1l: FETR

FEXT
DSZ
JMP
FETR

can be replaced by
FLD3

F8T3
LP1l: .

FDS2Z
PIMP

4.5.2. Arithmetic Instructions (ALC)

4.5.2,1. Options

TEMP
Pl

CNT
TEMP

TEMP
Pl

The floating point ALC instructions are similar to

normal ALC instructions. Two floating accumulators must be

specified. The first is the source accumulator,

the destination accumulator.

the second

Seven skip conditions are defined (in addition to the

default "no skip"). These conditions are listed in Table 4-1.

The conditions FSZR and FSNR should be used with caution.

Since

-17-

floating point arithmetic is inherently approximate, the
prcbability of obtaining true zero is very low. The normal
procedure is to test a result (or difference against a small
guantity, £ . For example, if we wish to test for the convergence

of an iterative procedure we might use the following:

EPSLN: 3544% ;EPSILON IS 2*16%*-4
7
FLDA #Z,0RSLT ;GET OLE RESULT
FLDA 1,NRSLT ;GET NEW RESULT
FSUB 1,4 ;:OLD-NEW
FLDA 1,EPSLN ;EPSILON
FPOS Zz,9 ;ABS (OLD-NEW)
FSUB 1,%,FSLE ;SKIP IF ¢ EPSILON

Table 4~-1

Skip Mnemonic Effect
FSLT skip if result < fg.
FSLE skin 1if result < f.
FPEGT skip if result > 7.
FSGE skip if result > 7.
FEHR skip if result # 4.
FEZR skip if result = 7,

unconditional skip

-18-

All ALC instructions permit the load/no load option. As
with normal instructions, if a floating point instruction
rnemonic is suffixed with "#", the results of the operation
will not replace the contents of the destination register.

A further option is available with one class of ALC
instructions. This option will prevent post-normalization of
the result. The instructions described in Section 4.5.2.2.
permit this option. It is called for by suffixing "U" (for
unnormalized) to the instruction mnemonic. For example,

FMOV #,1 moves FACY to FACl and normalizes the result, while
FMOVU ##,1 moves FAC# to FAC1l without normalization.

4.5,2.2., ALC Instructions with Post~-Normalize Option

The instruction
FMOV n,m
moves FACn to FACm,
The instruction
FPOS n,m
moves the absolute value of FACn to FACm.
The instruction
FMNS n,m

moves the negative of the absolute value of FACn to FACm.

-19-

The instruction
FNEG n,m
moves the negative value of FACn to FACm.
The instruction
FRND n,m
rounds the value of FACn and moves it to FACm. By "round" we
mean the following.
F = 16%%-6% | 16%*6*F+1/2 | t
The instruction
FADD n,m
adds FACn to FACm and moves the result to FACm. If underflow
occurs, the underflow flag is set and true 7 returned as the
result. If overflow occurs, the overflow flag is set and a
magnitude of (1-16**-6)*16**+63 is returned as the result. The
operands are assumed to be pre-normalized.
The instruction
FSUB n,m
subtracts FACn from FACm and moves the result to FACm. The
overflow conditions are handled as with FADD. Prenormalized
operands are assumed.

Table 4-2 summarizes the floating ALC instructions

with post-normalize option.

" L» . gives the maximum integer K such that K £ X

Table 4-2

ALC Instructions with Post-Normalize Option

Instruction Effect

FMOV n,m FACn -3z FACMm
FPOS n,m |FACn| —> FACm
FMNS n,m — |FACn| —= FACm
FNEG n,m — FACn —= FACm
FRND n,m rounded FACn —3> FACm
FADD n,m FACn+FACm ——> FACm
FSUB n,m FACm-FACn -—3> FACMm

-20-

4.5.2.3. ALC Instructions that Always Post-Normalize

This class of ALC instructions always post-normalizes
the result. They assume pre-normalized operands. Overflow is
checked and indicated by setting the overflow flag and returning
a magnitude of (1-16**-6)%*16**63 as the magnitude of the result.
Underflow is checked and indicated by setting the underflow flag
and returning true Z as the result.

The instruction

FMPY n,m
multiplies FACn by FACm and moves the result Qg'FACm.
The instruction
FDIV n,m
divides FACm by FACn and moves the result to FACm.
The instruction
FHLV n,m
halves FACn and moves the result to FACm.
Table 4-3 summarizes the ALC instructions that

always post-normalize the result.

Table 4-3

ALC Instructions that Always Post-Normalize

Instruction Effect
FMPY n,m FACm*FACn —> FACm
FDIV n,m FACm/FACn — FACm

FHAV n,m FACn/2. —> FACm

-2l

4,5,2,4, Floating ALC Instruction Examples

Some examples of legal floating point ALC instructions

are:
FMPY 1,7
FADD #,1,FSGE
FSUB# 1,4,FSLT
FMOVU 3,7
FMOV 7,%,FLST
FNEG Z,%,FSKP

4,5,3. Input/Output Instructions

The use of I/0 instructions requires the user to provide
two special routines. The first is an input routine which, when
called, must return an ASCII input character, right justified in
ACZ with bit 8 = @, The address of this routine must be stored
by the user in location @Z4% of page {.

The second routine is an output routine which, when
called, must accept an ASCII output character, right justified
in ACZ with bit 8 = . The address of this routine must be
stored in location @41 of page ¢. All output messages to this
routine will be terminated by a null (all zero) character.

These I/0 routines must be reentrant for the Interpreter
to be reentrant. (If the routines which interrupt and use the
Interpreter do not use I/0 instructions, the user I/O routines

need not be reentrant).

~22-

The instruction

FDFC n ;FLOATING POINT DECIMAL TO FLOATING
; CONVERT

will cause an ASCII character string in engineering notation to
be converted to internal floating point form and loaded in

FACn. The input characters must be provided by the user routine
whose address is stored in location 4%8 of page #. DNumbers in

the following form will be converted.

(r - - | i
Qt&” nptc-mMLdn 'miE{i}fm[m}ﬂ

R

L

where n is the decimal mantissa (the first seven non-zero digits
will be converted and the remaining digits ignored). The signs
of the mantissa and characteristic are optional with the default
assumed +. The break character is any character other than

l. a decimal digit
2' an :sEn

or
If the break character is a rubout (177), the entire

string will be ignored and a new one must be given, i.e. the

conversion starts over.

-23-

If the conversion results in a number less than
16%*-1%*16%*-63, the underflow flag will be set and true zero
will replace FACn. If the conversion results in a number whose
magnitude is greater than (1-16%%¥-6)*16**63, this latter
magnitude will replace FACn and overflow will be set. As
described in Section 4.2, input conversion returns three
additional words of information: conversion OK flag, the break
character, and decimal point seen flag. These may be examined
and used as necessary.

Examples of legal character strings are:

l*

1.%*
—1%
+1*

1E3*

3.1415926%*

1. E+7¢*

where * will be returned as the break character and conversion

OK will be non-zero.

Some illegal character strings are:

A (break character will be A)
+% (break character will be *)
+,1 (break character will be 1)

Conversion OK will be zero in all these illegal cases.

~24-

The instruction
FDFCI n :FDFC WITH INDICATION

will provide the user with an indication before the conversion
begins. The ASCII character "F" followed by a null character
will be passed to the output routine whose address is given
in location @41. For example, if the user has provided for
I/0 from the teletype, the use of FDFCI will print "F" on the
page copy every time an input is required. In all other
respects it is identical to FDFC,

The instruction
FFDC n ; FLOATING POINT FLOATING TO DECIMAL CONVERT
will convert the number in FACn to an ASCII character string
in engineering notation. The output characters will be passed
one at a time, right justified in AC{, to a user routine whose
address is stored in location 41g of page #. The output string

will be of the form:

{(Hl.mannn nn 2 lmm

where the n's represent the decimal digits of the mantissa, and
the m's represent the decimal characteristic. The string will

be terminated by a null character.

—05m

4,5,4, Special Instructions

Two special instructions arc defined which modify the
index registers.
The instruction
FIC2
causes AC2 to be incremented by two
The instruction
FIC3
causes AC3 to be incremented by two. These instructions are
useful for indexing through a table of floating point numbers
(see Section 6, example #2).
2 third special instruction provides a HALT feature within
the interpretive mode. The instruction
FHLT
will cause the Interpreter to HALT. Hardware 2C@Z will contain
the address of the FHLT instruction. The address lights will
have no apparaent relationship to the HALT, since the address
is within the Interpreter. The user may press CONTINUE to
resume after this HALT.

4,5,5, Illegal Instructions

The propar cncoding for all floating point instructions
is given in 2ppendix B. The Interpreter will HALT if an illegal

instruction is encountered. Hardware 2C¢ will contain the

-26-

address whera the illegal instruction was found. This HALT will
occur 1if extended instructions are used and only the Basic
Interpreter is loaded, or on any bit configuration that cannot
be decoded into a floating point instruction. The user cannot
press CONTINUE to resume after this HALT.

4.6, Reguirements for Reentrance

A number of points regarding reentrance of the Interpreter
have been mentioned. This Section explicitly defines the rules
which must be followed by any routine which interrupts a base
level routine and reenters the Interpreter.

2. 21l hardware accumulators, Carry, and page @ locations
276 and @27 must be saved.

B. 2 new writable area address must be provided in
location @%7.

C. 2n FINI must bes issued after location @Z@7 has been
set up (only necessary the first time).

D. If I/0 instructions arz to be used, the user I/0
routines must be recntrant. (2lternatively, locations
J4g and @41 must be saved and addresses providzd to
differaent I/0 routines).

E. Upon =xit to the base level routine, the hardware
accumulators, Carry and locations @@6 and @g7
must be restored.

=27 =~

5., Extended Floating Point Features

The instructions described up to this point are available
with a 1K Interpreter. 2An extended version of the Interpreter
is available which occupies 2K of storage;* The extended version
provides the instructions already described, in addition to a
number of mathematical functions and "F" format output. If the
extended Interpreter is used, 117 (decimal) words of writable

storage must be provided by the user.

5.1. Mathematical Functions

The math functions are implemented using ALC instructions
which always post-normalize (see Section 4.5.2.3.). They
permit the no load option as well as the floating skip options.
Appendix C provides a detailed description of the methods used
to implement these functions as well as a discussion of their
accuracy. The following is a general description of each
instruction.

The instruction

FALG n,m
computes the natural logarithm of the contents of FACn and
moves the result to FACm. If the argument is less than Z,
the overflow flag is set and ~-(1-16**-6)*16**63 is returned as

the result.

‘With a 4K configuration, the Interpreter requires locations
56f#-6577 (octal) and the Extended Interpreter reguires

locations 41¢7-5577.

-28-

The instruction
FATN n,m

computes the arctangent of the contents of FACn and moves the
result to FACm. The result is an angle expressed in radians
in the range -pi/2 arctan(x) £ pi/2.

The instruction

FCOS n,m

computes the cosine of the contents of FACn and moves the result
to FACm. The argument is assumed to be an angle expressed in
radians. If the argument is greater than 2%*%*24, the overflow
flag is set and the result will be incorrect.

The instruction

FSIN n,m

computes the sine of the contents of FACn and moves the result
to FACm. The argument is assumed to be an angle expressed in
radians. If the argument is greater than 2**24, the overflow
flag is set and the result will be incorrect.

The instruction

FTAN n,m

computes the tangent of the contents of FACn and moves the
result to FACm. The argument is assumed to be an angle
expressed in radians. If the argument is greater than 2**24, the

overflow flag will be set and the result will be incorrect.

-2 Q-

The instruction
FEXP n,m

computes e raised to the power contained in FACn and moves
the result to FACm. If the argument is less than -177.5, true
7 is returned and the underflow flag is set. If the argument
is greater than 174.673, +(1-16**-6)*16%**63 is returned and the
overflow flag is set.

The instruction

FSOQR n,m

computes the sgquare root of the argument in FACn and moves
the result to FACm. If the argument is less than £, the under-
flow flag is set and true ¢ is returned as the result.,

Table 5-1 summarizes the math functions.

5.2. "F'" Format Conversion

The standard Interpreter provides floating point to decimal
conversion with "E" format output. The extended version provides
"F" format output as well,

The instruction

FFDCF n ;FFDC WITH "E" FORMAT OUTPUT
will convert the floating point number in FACn to decimal and

output a character string in "F" format via the user routine

=30 —--
whose address is stored in location @41l. The output will be

of the form:

The width of the field (including sign and decimal point), W,
and the number of places to be given after the decimal point,
D, must be set up in the writable area before FFDCF is given.
The displacements of these words are

w 136
D = 137.

1]

They can be accessed in a manner similar to the flags described
in Section 4.2. Two conditions will cause the overflow flag

to be set and no conversion to be performed.

MATH FUNCTIONS

Table

5-1

Instruction Effect

FALG n,m 1n{FACn) —32 FACH
FATN n,m arctan (FACn) —FACm
FCOS n,m cosine (FACn) —= FACm
FSIN n,m sine (FACn) —=—FACm
FTAN n,m tangent (FACn) —>FACm
FEXP n,m e*¥% (FACn) e FACM
FSQR n,m (FACn) **%» ——> FACm

-31- :

l1.) W >32 (entire width of field limited to 32 characters)

2.) w<D+2 (W must be 2 greater than D to provide for
sign and decimal point)

If W is not large enough to accommodate the number, significant
digits will be lost.
Assume W has been set to 12 (decimal) and D to 6. Examples

of "E" format versus "F" format outputs are:

"E" Format, "F" Format
+.137467FE+72 +13.746929
-.7968433E~73 -. 327796
+. 1JPPAABE+T4 +1000. 002008
- 139934 7E+75 1¢207 . 223993 (note sign lost)
+. 10PPIIIE+P6 22899d.02227% (all lost)
-. 3500 9ZIE~76 -.@7799% (significance
+.4713279E~-1 +,047132 lost)

-32

6. Examples

The followiuyg routine is an example of a floating point
Subroutine that performs a sguare root Newton iteration on the

trial guess in FACH given the argument in FAC1.

THIS ROUTINE PERFORMS A SQUARE ROOT
NEWTON ITERATION
FACl CONTAINS THE ARGUMENT AND IS
NOT DESTROYED
FACZ CONTAINS THE PREVIOUS GUESSTIMATE
COMPUTES (FAC@+(FAC1/FACH)) /2.
CALLING SEQUENCE
FJSR NSR
RETURN : RESULT IN FACY

A T T N

NSR: FMOV 1,2 :SAVE ARGUMENT

FDIV 7,2 ;FACL1/FACY

FADD 2,7 ;FAC@+FAC1/FACY

FHLV &,7 ;(FAC@+FAC1/FACYH) /2.

FIJMP #,3 ;RETURN

The next routine is an example of polynomial evaluation,
This routine requires AC2 to point to the first word of a table

of floating point coefficients, ordered high order coefficient

down and terminated by true . For example:

, — Vord
ac2 | ~ | &> "cn a4
" 1
Cn-1 2
3
Cn=-2 4

S——

-33-

— Word
Cl

Co 2n+¢

2n+1

7] 2n+2

7 7 2n+3

The routine uses Horner's method for evaluation, i.e.

£(x) = (""" (((x + Cp) X + Cp_q) X + Cp_p) x°°*+ Cy) x + Cy

-34-

?

FEOTVIIOM TATL, EVAILUAT ION

iFAC2 CONTAINS ARGUMENT (X)

iAC2 POINTS TO COEFFICTENT I.TST TERMINATED BY &,
H AND ORDERED HIGH TO 1.0W

;RESULT RETURNED IN FACH

;FACY,FAC1 DESTROYED

;CALLING SEOUENCE

: FJSR FPLY
; RETURN
FZRO:
74
FPLY: FLDA Z,FZRO ;CLEAR RESULT

FPLY1l: FLDA 1,7,2, ;GET COEFFICIENT
FMOV 1,1,FSNR

FJIMP 7,3 ;s RETURN IF ZERO

FMPY 2,7 ;SUM * ARGUMENT

FADD 1,7 ;SUM * ARG, + COEF.

FIC2 ;BUMP POINTER TO NEXT COEF.

FJMP FPLY1

APPENDICHES

Bppendix 2

Floating Point Instruction Summary

Standard

FADD
FDFC
FDFCI
FDIV
FDS7
FETR
FEXT
FFDC
FFIX
FFLO
FHLT
FHLV
FIC2
FIC3
FINI
FISZ
FIMP
FJSR
FLD3
FLDA
FMOV
FMNS
FMPY
FNEG
FPOS
FRND
FST3
FSTA
FEUB

Extended

FALG
FATN
FCOS
FEXP
FFDCF

FSIN
FSCR
FTAN

Floating
Floating

rdd
aecimal to Floatlng Convert

FDFC with Indlcatlon

Floatlng

Floating D
Floating
Floating

Floating

gloating
Fixed to
Floating H

Floating

Eloating
Eloating

Floating

Eloating
Floating
Floating
Floating L

Floating

Eloating
Floating
Floating
Floating

Floating

Eloating
Floating
Floating
Floating

Floating
Floating

Floating
Floating E
Floating

with
Floatlng
Floating
Floatlng

DlVldG

Decrement and lep if Zero
Mode Enter

Mode Exit

Floating to Decimal Convert
to Fixed - -
Flozting

Halt

Halv

Incremﬁnt AC2

Incrument AC3

Inltlaliz

Tncrement and gkip if Zero
Jump - -
Jump to Subroutinw

Load ﬁc3

Load Floating Accumulator
Move -

Move Minus

Multiply

Negats

Mova Eggitive

Roqgﬁ

Store AC3

Store Floating Accumulator
Subtract

Natural Eogarithm
Arctangent
gggine
xponuntlal
Floatlng to Decimal Convert
”F“ Format
qzne
qquar@ Root
‘I‘angunt

Floating Point Options

No Load
FSGE Floating Skip on Greater Than or Egqual
FSGT Floating Skip on Greater Than
FSKP Floating Skip
FSLE Floating Skip on Less Than or Egqual
FSLT Floating Skip on Less Than
FSNR Floating Skip on Non Zero Result
FSZR Floating Skip on Zero Result

U Unnormalize (no post-normalization)

Appendix B

Floating Point Instruction Encoding

Memory Reference

Dy 2.324 3 67T.Q RS
|
ﬁF& Foiel 1 i)
Fl = 71 LDA
Fl = 1¢ STA F2 is FAC
Fl = ¢g¢& F2 = @g¢ FJIMP
F2 = @1 FJISR
F2 = 1¢ FISZ
F2 = 11 FDS2Z
Fl1 = 11 F2 = g¢ FFLO
F2 = 1 FLD3
F2 = 1¢ FST3

F2 = 11 FFIX

Instructions Reguiring an Accumulator

©12 345 i4 ,i5
LIFLie @ D F2
Fl = 71 FDFC F2 =1 "I1*
F1 = 1¥¢ FFDC F2 =1 "p"

Fl1 = 11 Illegal

Special Instructions

@ 22 45 15
i]
polFilo- o

F1 = g¢ FEXT

Fl = @1 FIC2

Fl = 19 FIC3

Fl = 11 FHLT

ALC Instructions
@1 7245 798 9wn1213 1§

i

LIASIACD) FL{F21F3l&] ©

s =4 No skip S =4

§ = 1 FSGT s =5

s = 2 FELT g8 = 6

s =3 FENR F 7

F1 # ¢ (8-1Z must be #; 11 is "U" option)

Fl =1 FNEG

Fl = 2 FMOV

Fl1 = 3 FPOS

rl = 4 FMNS

FL = 5 FEUB

Fl = 6 FADD

Fl = 7 FRND

FSZR
FSGE
FSLE
FSKP

Fl

i

F3 =#

F2
F2
F2 =

it

]

F3 # ¢

F2,F3 =

F2,F3
F2,F3
F2,F3
F2,F3
F2,F3
F2,F3
F2,F3

F2,F3 =

F2,F3
F2,F3
F2,F3

F2,F3 =

F2,F3
F2,F3

1 FMPY
2 FDIV
3 FHLV
(Extended)
1 FALG
= 2 FATN
= 3 FCOS
= 4 Illegal
=5 FSIN
= 6 FTAN
= 7 Illegal
= 17 Illegal
11 FEXP
= 12 FSCR
= 13 Illegal
= 14 Illegal
15 Illegal
= 16 Illegal
= 17 Illegal

(FMPY)

(FDIV)

(FHLV)

Appendix C

The following pages describe in some detail the function,
method, and accuracy of the mathematical routines supplied
with the extended Interpreter. The accuracy of the routine
is influenced by two factors:

1. The accuracy of the argument and 2. The accuracy of
the algorithm. These two factors will be mentioned for each
routine. The accuracy of the algorithm itself assumes an
argument that is exact, i.e. no argument error.

The relative and absolute errors of a function routine
are defined as follows:

Let f£(x) the true value of the function at x

il

il

the result returned by the function routine
given X

Let g(x)

Now the absolute error of the result is,
ABS(f(x) - g(x))
and the relative error of the result is,

ABS((£f(x) -g(x))/f(x)).

Function:

Method:

Floating Point Arctangent

To calculate the arctangent of x, where x 1is a
floating point number, and return an angle in
radians in the range =-pi/2 {arctan {x)é:gi/z
The range of x is immediately reduced to

7<LxL1l
by means of the identities

arctan (=-abs(x)) = - arctan(abs(x))
and if abs(x)>1,

arctan abs(x)) = pi/2-arctan(1l/abs(x))
For x > lan(pi/12) the range is reduced to

tan(=~-pi/12) £y {tan(pi/12)
by means of the identity

arctan (x) = arctan (x%) + arctan (x-x@/(l-x*xf)).
For x¢f = 1/3**g.5, we obtain

arctan (x) = pi/6 + arctan (x*3**@.5-1/(x+3**F.5))
= pi/6 + arctan (y)

where y satisfies the range given above. The arctan
is computed using the first four terms of a poly-

nomial approximation of the form:

n
arctan (x) = x % = Cixxrn(2%i)
(=0

Accuracy:

Argument Erxrrorxr

If x is the érgument, the absolute error of the result
is approximately
€ /(1+x**2)
where £ is the absolute error in x. Thus for small values
of x, the errors are almost equal, while as x becomes larger,
the effect of the argument error decreases.

Maximum Relative Error

For the range

-tan(pi/12) £ x < tan(pi/12),

=~

the maximum relative error is approximately 1l#Z**-7.6.

Floating Point Exponential

Function: To calculate e to the power x, where x is a floating
point number,
Method: If x £-177.5, return ? as the result and set underflow
flag.
If x>174.673, return the largest positive number as
the result and set overflow flag.
Otherwise, we use the equality
e**x = 2%%(x*log2(e))
Let x*log2(e) = m*1l6**C
Further, let g = |m*l6é%¥c]
and £ = m*lo**Cc=-g
Therefore FLELL.Y
Now 2**(f+q~) = 2**f*2%*g
Let us compute 2*%*f,
The range of £ can be further reduced if we let
g=f - f.5 where -f.549gLf#.5
We compute 2**g directly if g >, otherwise we

compute 2%*g as
1/(2**abs(g))

2%*g (where @ g <¥.5) is computed using the first
five terms of a polynomial approximation of the form:
n
2**9 % E Cl*g‘k*i
i=g

Now f = g+#.5
Therefore, 2%*f = 2%k*kg¥2%*(5
But the answer is 2%¥f%2%%*g
g is an integer and we let g = 4i + j
Now 2**f‘§2**q = 2**5*1&**1*2**i
The characteristic of £ is added to i to obtain
2%%f%16%%*i_, This result is shifted j positions
left if i> @ or j position right if i< d.
The result is of course e¥*x,
Accuracy:

Argument Error:

The relative error of the result is approximately equal
to the absolute error of the argument. Thus for large values
of x, substantial relative errors in the results can occur.

Maximum Relative Error

For the range

FLx LF.5

the maximum relative error of 2**x is approximately 1g**-7.4.

Function:

Method:

Floating Point Natural Logarithm

To calculate the natural logarithm of x, where x is
a floating point number,
If x<#, overflow flag is set and minus the largest
floating point number is returned as the value.
Otherwise, let x = m¥16%**c, By means of a binary
normalization, the range of m' is reduced to

1/2 {m' L1,
and X = m' *16¥%p*2%%(-g) where q = number of left
shifts reguired to normalize (#£q «3).
Now for 1/2 {m! L 1/2%%¢,5
let a =1/2, b =1
for 1/2%*y.,5 Lt L1
let a =1, b =¢
Define y = (m'-a)/(m'+a)

then m' = a*(y+1l)/(-y+1)

16**9*2**(~q)*a*(1+Y)/(l"'Y)
= 2%*(4p-g-b) *(1+y)/(1l~-y)

Now x

Using ln(x) = 1ln(2) *log2(x) we obtain
In(x) = 1n(2)* [(4p-g-b)+log2((1+y)/(1-y))]
In(x) = 1n(2)* (4p-g-b)+In((1+y}/(1-y))
From the above, we can determine that

2%%-.5 £ (1+y) /(1-y) L 2%*F.5

The 1n((l+y)/{1l-y)) is determined for the above
range using the first three terms of a polynomial

approximation of the form:
™
In(z) 5 z* S ci¥z**(2*i)
(=@
where z = (1l+y)/(1-y).

Accuracy:

Argument Errxor

The absolute error in the result is approximately
equal to the relative error in the argument. Therefore, an
argument close to 1 can give a large error since the function

at this value is guite small.

Maximum Absolute Error

For the range
1/2%%=ff .5 L (1+x) /(1-x) L 2%*7.5
the maximum absolute error of 1ln(x) is approximately

lg**"?: 60

Floating Point Sine and Cosine

Function: To calculate sin(x) or cos(x), where x is the
floating point angle in radians.

Method: Compute p = abs(x)*4/pi
ﬁef g =|p|, £ =p-qg where F<f<L

Now g represents the half-quadrant in which the abs(x) falls.,

Using the following equalities,

sin(x) = -sin(-x)
cos(x) = cos(=-x)
cos(x) = sin(x+pi/2)

we define gl = g if sin is required and x3¥@
ql g+2 if cos is reqguired
gl = g + 4 if sin is required and x L ¥

il

Then for all values of x, the computation has been reduced to
sin(pi/4*(ql+f)) = sin(t)
Since sine (and cosine) are periodic in 2*pi, we take gy = gy mod8
Uging the further ecuality
sin(pi/4+x) = cosine(pi/4-x)
we finally can produce the table below

93 sin(t)

sin(pi/4*f)
cos(pi/4*(1-£f))
cos({pi/4*f)
sin(pi/4*(1-£))
-sin(pi/4*f)
~cos(pi/4*(1-£))
-cos(pi/4*£)
-sin(pi/4*(1-£))

NGy U D W N R

In all cases, the argument has been reduced to the range
#<Lt<pi/4. The sin is computed using the first four terms of

a polynomial approximation of the form:
n
sin(x) = x* EE,Ci*x**(Z*i)
i =
The cosine is computed using the first four terms of a poly-

nomial approximation of the form:
m
cos(x) = == cCi*x*¥(2%i)
=)
Accuracy:

Argument Error

The absolute error of the result is approximately
equal to the absolute error in the argument. Thus, the larger
the argument, the larger the absolute error of the result.

Maximum Relative Error

For the range

7 <L x < pi/a

\

the maximum relative error for sin(x) and cos(x) is approximately

1g%% -7 .4

Floating Point Square Root

Function: To calculate the square root of a floating point
number, X.

Method: Let x = m*¥16%*C
If m<f, set underflow flag and return . as the
result,
If =g, return Z, as the result.
Otherwise, let ¢ = 2*p + g where p is an integer
and g = J or 1. Now if g = @, we have x = m*16**2p
and x**1/2 = m**1/2 * 16**p,

m*16** (2p+1)
m*16**(2p+2) /16

If g = 1, we have x

n

and x** 1/2 = (m**1/2)/4 *16%%(p+1)

Therefore, the characteristic of the result is

P + g, and the problem has been reduced to finding
a suitable first guess for m**1/2 if g = # or
(m**1/2)/4 if q = 1.

An initial guess is taken in the hyperbalic form

yZ = a+b/(c+m)

where for g = ¢, a = 1.84713
b = -1,57727
c = 7.954182
and for g = 1, a = #.428795
b = -7.3437368
c = ¥.877552

The initial guess is now
vyl = y#*16%%*(p+q)

Two Mewton iterations give us the result.

i

(yl+x/yl) /2
(v2 + x/y2)/2

v2
x**1/2 = y3

i

Accuracy:

Argument Error

The relative error of the result is approximately
half the relative error in the argument.

Maximum Relative Error

The maximum relative error for X**F .5 is approximately

1g**-6.g.

Floating Point Tangent

Funrtion: To calculate the tangent of x, where x is the floating
point angle in radians,

Method: Compute p = abs(x)*4/pi
Let g = |p] , f = p~g where Z ££f <1
Take ql = g mod 4 and in a manner similar to sine-
cosine we can obtain the table below

a,; tan(x)

Z tan (pi/4*f)
1 cot (pi/4*(1-£f))
2 -cot (pi/4*f)
3 -tan (pi/4*(1-£))

In all cases, the argument has been reduced to the

range 7 Larg<pi/4.
The tangent is computed using the first six terms of

a polynomial approximation of the form:
g}
tan(x)= x* > Ci%*x**(2%i)
(=&
Accuracy:

Argument Error

The absolute error of the result is approximately
equal to

£ * (1 + tan(x)**2)
where ¢ is the absolute error of the argument. Thus if x is
near an odd multiple of pi/2, an argument error will produce

a larger absolute error in the result,

Maximum Relative Error
For the range
ﬁéx { pi/4

the maximum relative error of tan(x) is approximately 10%**-6,6,

	Table of Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	Table 4-1
	18
	19
	Table 4-2
	20
	Table 4-3
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	Table 5-1
	31
	32
	33
	34
	Appendies
	A1
	A2
	B1
	B2
	B3
	C1
	C2
	C3
	C4
	C5
	C6
	C7
	C8
	C9
	C10
	C11
	C12
	C13

