User’'s Manual

FLOATING POINT
INTERPRETER

093-000019-04

Basic Binary (5600-7600) 091-000012
Extended Binary (4100-7600) 091-000013
Extended Relocatable Binary 089-000046

cdering No. 093-000019
©Data General Corporation, 1969, 1971, 1972, 1973

All Rights Reserved.
Printed in the United States of America

Rev. 04, March 1973




NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical
or arithmetic errors.

Original Release - May 1969

First Revision - September 1971
Second Revision - December 1971
Third Revision - Maxrch 1972

Fourth Revision - March 1973

This revision of the Floating Point Interpreter User's Man-
ual, 093-000019-04, supersedes 093-000019-03 and con-
stitutes a minor revision. A list of changes is given at the
back of the manual, following the index.




wTmnn
'L\PRL] P EAN

Introduction

=
[®]
=g
=
—
Z.
rg
Q
-
7
3
2
=
t
S

Most small, general purpose computers do not have hardware for the manipulation
of floating point numbers, They have, therefore, implemented software packages
to provide floating point functions, Two approaches can be taken to solve this soft-
ware problem.

The first approach is to provide a number of subroutines, each of which performs
a specific function, e, g, floating addition. This requires that the user pass inputs
in a standard manner to the subroutine. Since many small computers have only
two accumulators, only a single operand (represented in two words) can be passed
in the accumulators. The address of the second operand must be provided with
the subroutine call, A typical calling sequence requires two load accumulator
instructions, a subroutine call, and an address word. One operand is always
destroyed and replaced by the result (usually the accumulator operand), This
means that an intermediate result cannot be tested without destroying an operand.
A lengthy program requiring these subroutines cannot make efficient use of
storage and the manipulation of operands becomes a tedious, cumbersome job.

The second approach is to provide an interpreter in which all the floating point
functions are imbedded and which can simulate floating point registers in storage. -
The interpreter is given control by a subroutine call. Once in control, it accesses
succeeding memory words and "interprets” a sixteen bit word in a manner similar
to the hardware, These instructions are not executed in the hardware sense but
are instead interpreted to provide extended machine features, The interpreter
approach was adopted for the Nova-line floating point package.

The interpreter provides four floating point accumulators which can be addressed
and manipulated in a manner similar to the actual hardware accumulators.
Floating point instructions are syntactically similar to machine instructions* and
are assembled in a similar way. For example, the instruction:

ADD# #,2,SNR

which adds AC@ to AC2, skips the next instruction if the result is non-zero, and
does not change AC@ or AC2, has a similar floating point version., The instruction

FADD# @,2, FSNR

adds floating accumulator @ (designated as FACP) to FAC2, skips the next instruction
if the result is non-zero, and does not destroy FAC@ or FAC2,

The interpreter can be implemented in Read Only Storage (ROS), and is completely
reentrant. These properties, in addition to the floating point instruction set, are
described in the body of this manual.

The reader should be thoroughly familar with machine instructions and the
Nova assembler. Instructions are described in "How to Use the Nova
Computers'; the absolute and relocatable assemblers are described. in
documents 093-000017 and 093-000040 respectively,




FLOATING POINT INTERPRETER

INTRODUCTION

Table of Contents

Chapter 1 - Interpreter Structure and Floating Point Numbcr

Representation

INterpreter StIUCTUTE & o ¢ v o v v o v o s s s oo s oneneness
Floating Point Number Representation

Chapter 2 - Basic Interpreter Use and Command Structure

General ... it ettt ercesenes

Basic and Extended Interpreters

The Writable Atea . ...4000000.
Initialization Ce e e e e eenn
Entering - Exiting the Interpreter Mode ... ..e0vv0eve..

Floating Point Instruction Set ..

Memory Reference Instructions
Arithmetic Instructions ....

Input/Output Instructions .
Special Instructions .....
Illegal Instructions .....
Requircments for Reentrance ...

Chapter 3 - Extended Floating Point Interpreter
Features ......0.00000ee.

Mathematical Functions ......
"F" Format Conversion ......

.

.

Chapter 4 - Extended Relocatable Floating Point Interpreter

Chapter 5 - Sample Programs

Square Root Newton Iteration
Polynomial Evaluation . ..eeveeeoensooensonnnnss

Appendix B - Floating Point Instruction Encoding

Appendix C - Extended Interpreter Mathematical Routines

Floating Point Arctangent cees
Floating Point Exponential .....
Floating Point Natural Logarithm

Floating Point Sine and Cosine ..
Floating Point Tangent .......
Floating Point Square Root ,.,,

iii

[URTE

[ e
O R W NN e e

NN NDNDDNDNDNNNDNDDNND
1 1
~N

(92391
]
-

1
B W N

i

OOO(:)OO



FLOATING POINT INTERPRETER

Chapter 1 - Interpreter Structure and Floating

pr

STRUCTURE OF THE INTERPRETER

The interpreter is non-destructive, i.e,, no instruction
is modified in any manner during execution. Further, it
docs not store temporary information within itself but
uses a writable area which must be provided by the user.

Within the interpreter, subroutine linkage is via a push-
down list, maintained in the writable area provided by
the user. This property, coupled with the properties
already mentioned, makes the interpreter reentrant,
This means that if a second user routine requires the
interpreter, it may interrupt the current routine, per-
form its function using the interpreter, and return to the
first routine without affecting the state of the interpreter.

The absolute interpreters (basic binary and extended
binary) require eight page ¢ locations which the user
must not destroy. These locations and their uses are:

204 contains the starting address of the interpreter.

335 contains the starting address of the initializa-
tion routine for the interpreter.

@36 one temporary word used by the interpreter and
saved by any routine reentering the package.

iy a word set up by the user to contain the address
of a writable area for the interpreter.

P40 a word containing the address of a user written
'get character' routine.

@41 a word containing the address of a user written

"put character" routine.
(#42-@43 words containing the linkage addresses to deter-
mine the location of extended code (if present).

In the relocatable version, the same functions are pro-
vided by six ZREL locations and two NREL locations.
Those of interest to the user are ITMP, which corres-
ponds to location 6 in the absolute versions and is de-
clared as an entry by the interpreter, and WSA, GETC
and PUTC, which correspond to locations 7, 4@, and 41
respectively and which must be page zero relocatable.
WSA, GETC and PUTC are defined as entries by the user
program,

Point Number Representation

FLOATING POINT NUMBER REPRESENTATION*

Floating point numbers are internally stored in two
consecutive 16-bit words. The form is:

g1 78 31

;EL C | M ]

S is the sign of the mantissa, M, in bits 8-31. The
mantissa is considered to be a normalized six digit
hexadecimal fraction, and the range of the magnitude
of the mantissa is:

16%%-1 <M <(1-16**-6).

The characteristic, C, is the integer exponent of 16

in excess 64)¢ code. The total range of magnitudes
is:

16*#-1*16**-63 < F < (1-16%*-6)*16**63
or approximately
2,.4*10%*-78 < F < 7.2%1¢**75
Any operand having a zero mantissa is represented in
true zero form, i.e,, bits §-31 are ). Negative
numbers are identical to their positive counterparts

except S = 1 instead of §.

The maximum error of a normalized mantissa is
less than 16**-6,

See also "How to Use the NOVA Computers”, Appendix C.

1-1



FLOATING POINT INTERPRETER

GENERAL

The interpreter provides four floating point accumula-
tors. They are numbered §3, 1, 2, and 3 like the
hardware accumulators. The designation FACn will

be used for floating accumulator n, Arithmetic is per-
formed accumulator-to-accumulator as with fixed

point instructions, Operands can be accessed and
stored using memory reference instructions. Instruc-
tions which reference floating point operands in memory
should provide an address which points to the first word
of the two word operand. If indexing is specified, the
hardware index register is used. For example,

loads FACL from two consecutive words in memory
whose first word address is 4 + C(AC2).* Certain
instructions that manipulate hardware accumulators
AC2 and AC3 will be described inthe section 'Floating

~ R E T R T I P
No facility is pro-

ot' an nace 2-9

Point Instruction Set' on pagc 2-2.,

QLniv ARSI UCtion

vided for manipulating AC@ and AC1 with the floating
point instruction set.

BASIC AND EXTENDED INTERPRETERS

This chapter describes the features of the Basic Float-
ing Point Interpreter. An extended version of the in-
terpreter, in both binary** and relocatable format, is
available. The extended version has the same features
described here; additional features of the Extended and
Extended Relocatable Interpreters are described in
Chapters 3 and 4 respectively.

THE WRITABLE AREA

The Basic Floating Point Interpreter requircs 64 (decima
words of contiguous writable memory, If the Extended
Interpreter is used, 1@ (decimal) words must be pro-
vided, The Extended Interpreter and its added features
are described in detail in Chapter 3. Other than the
difference in the length, the writable area of both
versions is the same,

The address of the first word of the writable area pro-
vided by the user must be stored in location P@7 of

page @ before any interpreter commands are executed,
If a second routine (or third, etc.) may reenter the
interpreter, the routine must provide an address
pointing to a different memory area before reentrance is
made,

*  C(x) means 'contents of x',

Ex]

(binary) requires locations 41¢pg - 7600g.

1)

2-1

Basic Inter preter Use and Command Structure

THE WRITABLE AREA (cont'd)

A number of flags are stored in this writable area and
may be examined by the uscr, To the flags,
the user must exit from the interpretive mode (des-
cribed on page 2-2), If an index register is loaded
from location @7, thc user may access the flag
words by an instruction of the form:

ACLLUSBS

LDA f#,n,i
where: 1 is the index register (2 or 3).

n is a constant displacement as described
below,

The first word contains the overflow/under-
flow flags, If the result of an operation is

less than 16*%-64, bit 15 of this word will be
set to indicate underflow, If the result of an
operation is greater than (1-16%*-6)*16**+63,
bit 14 of the word will be set to indicate over-
flow. Other conditions that may set overflow/
underflow will be discussed where appropriate.
This word is initially cleared., Once a bit is set
it will remain set. Itis the user's responsibil-
ity to reset these bits,

|=
I
=

After an input conversion (see page 2-6) this
word will be zero if no conversion was per-
formed (because of an—input error), Other-
wise the word will be non-zero,

|=
1]
f—

After an input conversion, this word will con-
tain the 7-bit ASCII character, right justified,
that served as the break character in the input
stream.

k=]
Il
[\

After an input conversion, this word will be ¢
if no decimal point ("', ") was encountered in
the input stream. [ a decimal point was seen,

the word will be 1.

=
1]
w

The diagram below summarizes these flags:

g 89 1415wd OFLO
w1 ] €= 9% Urio
COK 1
] BRKC 2
[d-s3  FPIF
used only by 4
interpreter

The Basic Interpreter (binary) requires locations 56@@g -~ 76@@g , and the Extended Interpreter




FLOATING POINT INTERPRIVTIIR

Chapter 2- Basic Interpreter Use and Command Structure

THE WRITABLIS AREA (cont’d)

A convenient means of accessing the flags is to define
four symbolic cequivalences such as:

FLGS=¢ ; OVERFLOW/UNDERFLOW FLAGS
COK =1 ; CONVERSION OK

BRKC = 2 ; BREAK CHARACTER

FPTF=3 ; FLOATING POINT FLAG

Now if AC2 contains the address of the writable area,
any flag may be accessed by statements like the
following:

LDA §,FLGS, 2
LDA 1,COK,2
LDA 1,BRKC,2
LDA 1, FPTF,2
INITIALIZATION

The interpreter, or more correctly the writable area,
must be initialized before floating point instructions
are executed, Initialization should be given once for
every writable area to be used. The command is

FINI
which generates the instruction
JSR @5

(Note that the initialization routine address is in loca-
tion P@5.) Location @7 must point to the writable
area, This command destroys AC3, but preserves

all other accumulators and Carry., The initialization
routine clears the overflow/underflow flags and sets up
linkage for the push-down list.

ENTERING-EXITING THE INTERPRET.IVE MODE

To use the Floating Point Interpreter, it is necessary

to distinguish between the processing of normal instruc-

tions (described in "How to Use the Nova Computers")
and the processing of floating point instructions. Since
floating point instructions are "interpreted” (not
executed per se), the interpreter must be given control
before floating point code will be executed properly.
Whenever the interpreter is in control, this will be
called the "interpretive mode, " Otherwise, the machine
will be referred to as in "normal mode.”™ To enter the
interpretive mode, the command is

FETR

2-2

ENTERING-EXITING THE INTERPRETIVE MODI (cont'd)

which generates the instruction:
JSR @4

As noted earlier, location @@4 will contain the starting
address of the interpreter. Once in the interpretive
mode, only the floating point instruction set can be
used, (Normal instructions will be decoded and exe-
cuted as floating point instructions. ) To return to
normal processing, the command

FEXT

must be given,

FETR destroys AC3, but the contents of all other

accumulators and Carry will be saved. AC2 and AC3 can

be used for indexing in the interpretive mode. Certain
instructions also enable modification of the contents of

AC2 and AC3. FEXT will restore AC§, AC?, and Carry to
AC2 and AC3

their state before entering the interpreter.
will reflect any changes caused by floating point
instructions that modified their contents.

The normal sequence of code using the interpreter would

be of the form:

FINI ;INITIALIZE INTERPRETER

LDA @,CNST

STA @, TEMP ;NORMAL INSTRUCTIONS

FETR ;ENTER INTERPRETER
;FLOATING POINT INSTRUCTIONS

FEXT ;EXIT INTERPRETER

LDA 1, C5

FLOATING POINT INSTRUCTION SET

The set of instructions for the Basic Floating Point
Interpreter obey the syntactic rules described in the
Assembler Manual, 093-000017. For example, all
floating ALC instructions require a source accumula-
tor and a destination accumulator. All floating point
instructions begin with an "F" to distinguish them
from normal instructions. Appendix A summarizes
the instructions and Appendix B gives their octal en-
coding.



FLOATING POINT INTERPRETER

Memory Reference Instructions

All memory reference instructions require an address,
which is represented in the following discussion by
"adr", The effective address is calculated exactly as in
the standard Nova instruction set, except that the auto-
incrementing, auto-decrementing properties of locations
2(-37 have not been implemented, (For a discussion of
effective address calculation, see "How to Use the Nova
Computers”, Section 2-1.)

The instruction
FLDA n, adr

causes FACn to be loaded with the two word operand at
adr, adr+1.

The instruction

FSTA n, adr
causes FACn to be stored in memory at adr, adr+l.
The instruction

FJMP adr

causes control to be transferred to the floating point
instruction at adr,

The instruction

FJSR adr
causes control to be transferred to the instruction
at 2dr and AC3 to be set to the valuc of the current

location counter + 1. For example, a floating point
subroutine can be executed by the following;:

;MAIN PROGRAM

FLDA @, LOC
FJSR SUBR

FSTA §,RSLT

SUBR: .

;LOAD FACH
;JUMP TO SUBROUTINE
;STORE RESULT

;SUBROUTINE

FJMP @, 3 ;RETURN
The instruction

FFIX adr

causes the floating point number at adr, adr+l to be

Chapter 2 - Basic Interpreter Use and Command Structure

2-3

Memory Reference Instructions (cont'd)

converted to a fixed point, double precision integer
(truncated) at adr, adr+1, If the conversion results in
an integer whose absolute value is greater than
2%*24-1, the overflow flag will be set and 2**24-1 will
be returned as the magnitude. Note that while floating
point numbers arc rcepresented in signed-magnitude
format, fixed point values will always be represented
in two's complement notation,

The instruction
FFLO adr

causes the fixed point, double precision integer at
adr, adrtl to be converted to a floating point number
at adr, adr+l, Negative integers must be represented
in two's complement format,

The instruction
FISZ adr

causes the contents of adr to be incremented by one and
the next floating point instruction in sequence to be
skipped if the result is zero,

The instruction
FDSZ adr

causes the contents of adr to be decremented by one

and the next floating point instruction in"sequence to

be skipped if the result is zero. FISZ and FDSZ should be
used with fixed point, single precision integers - not

with floating point numbers,

The instruction

FST3 adr
causes AC3 to be stored at adr,
The instruction

FLD3 adr
causes AC3 to be loaded from the contents of adr. FST3
and FLD3 operate on real accumulator 3, FST3 is
useful for saving the return address inside a floating point
subroutine. Note that the return address should always
be saved if a floating point subroutine exits and then
enters the interpretive mode, since FETR destroys AC3.

These two instructions also provide a means for initial-
izing loop counts without leaving the interpretive mode.




FLOATING POINT INTERPRETER

Chapter 2 - Basic Interpreter Use and Command Structure

Memory Reference Instructions (cont'd)

For example, the scquence:

FEXT

LDA @#,CNT
STA @, TEMP
FETR

0

LP1:

FEXT

DSZ TEMP
JMP LP1
FETR

can be replaced by:

FLD3 CNT
FST3 TEMP
LP1: .

FDSZ TEMP
FJMP LPI

Arithmetic Instructions (ALC)

Options

The floating point ALC instructions are similar to
normal ALC instructions, Two floating accumulators
must be specificd. The first is the source accumulator,
the second the destination accumulator,

Seven skip conditions are defined (in addition to the
default "no skip''). These conditions are listed in
Table 1. The conditions FSZR and FSNR should be
used with caution, Since floating point arithmetic is
inhc rently approximate, the probability of obtaining
true zero is very low. The normal procedure is to
test a rceult (or difference) against a small quantity,
& . For example, if we wish to test for the con-
vergence of an iterative procedure we might use the
following:

EPSLN: 1.§E-6 ;EPSILON IS 1§ ** -5

FLDA @, ORSLT ;GET OLD RESULT
FLDA 1, NRSLT ;GET NEW RESULT
FSUB 1,9 ;OLD-NEW

FLDA 1,EPSLN ;EPSILON

FPOS 0,0 ;ABS (OLD-NEW)
FSUB  1,@, FSLE ;SKIPIF < EPSILON

2-4

Arithmetic Instructions (ALC) (cont’d)

Skip Mncmonic ) Eft;ct

FSLT skip if result < §
FSLE skip if result < #
FSGT skip if result > @
FSGE skip if result >, #
FSNR skip if result # §
FSZR skip if result = @

FSKP unconditional skip

Table 1 - Skip Mnemonics
All ALC instructions permit the load/no load option,
As with normal instructions, if a floating point instruc-
tion mnemonic is suffixed with "#", the results of the

operation will not replace the contents of the destination
register.

A further option is available with one class of ALC
instructions. This option will prevent post-normaliza-
tion of the result, The instructions described in the
section following permit this option, It is called for
by suffixing "U" (for unnormalized) to the instruction
mnemonic, For example, FMOV @,1 moves FACH
to FAC! and normalizes the result, while FMOVU @, 1
moves FACP to FACI without normalization,
ALC Instructions with Post-Normalize Option
The instruction

FMOV n,m
moves FACn to FACm.
The instruction

FPOS n,m
moves the absolute value of FACn to FACm.
The instruction

FMNS n,m

moves the negative of the absolute value of FACn to
FACm,



FLOATING POINT INTERPRETER

ALC Instructions with Post-Normalize Option: (cont'd)
The instruction
FNEG n, m
moves the negative value of FAC 1 to FACm.
The instruction
FRND n,m

rounds the value of FACn and moves it to FACm. By
"round” we mean the tollowmg.

"6 L/**r PFTl/J

The instruction

adds FACn to FACm and moves the result to FACm.

If underflow occurs,_ the underflow flag is set and true

@ is returned as the result. If overflow occurs, the
overflow flag is set and a magnitude of (1-16**-6)*16**+63
is returned as the result, The operands are assumed

to be pre-normalized.

The instruction
FSUB n,m
subtracts FACn from FACm and moves the result to

FACm. The overflow conditions are handled as
with FADD., Prenormalized operands are assumed.

Table 2 summarizes the floating ALC instructions
with post-normalize option.

Instruction Effect
FMOV n, m FACn —FACm
FPOS n, m IFACn | —FACm
FMNS 1 n,m -{FACn| —FACm
FNEG n, m - FACn —FACm_
FRND n, m rounded FACn —>FACm
FADD n,m FACn+FACm - FACm
FSUB n, m FACrr_l-FACE — FACnl

Table 2 - ALC Instructions with Post-
Normalize Option

© X | gives the maximum integer K such that K ¢ x.

Chapter 2 - Basic Interpreter Use and Command Structure

ALC Instructions that Always Post-Normalize
This class of ALC instructions always post-normalizes
the result.  They assume pre-normalized operands.
Overflow is checked and indicated by setting the over-
flow flag and returning a magnitude of (1-16**-6)*16*%63
as the magnitude of the resuit, Underfiow is checked
and indicated by setting the underflow flag and returning
true ) as the result,
The instruction

FMPY n, m

multiplies FACn by FACm and moves the result to
FACm,

The instruction
FDIV n,m
divides FACm by FACn and moves the result to FACm,
The instruction
FHLV n,m
halves FACn and moves the result to FACm,

Table 3 summa rizes the ALC instructions that always
post-normalize the result,

Instruction Effect
FMPY n, m FACm*FACn —-FACm
FDIVhn, m FACm/FACn —FACm
FHLVp, m FACn/2. —FACm

Table 3 - ALC Instructions that Always
Post-Normalize

Floating ALC Instruction Examples

Some examples of legal floating point ALC instructions
are:

FMPY 1,

FADD ¢,1, FSGE

FSUB# 1,9, FSLT

FMOVU 3,0

FMOV @¢,9, FSLT

FNEG @, @, FSKP



FLOATING POINT INTERPRETER

Chapter 2 - Basic Interpreter Usc and Command Structure

Input/Output Instructions

The use of 1/0 instructions requires the user to pro-
vide two special routines. The first is an input routine
which, when called, must return an ASCII input char-
acter, right justified in AC§ with bit 8 = . The
address of this routine must be stored by the user in
location P49 of page 0.

The second routine is an output routine which, when
called, must accept an ASCII output character, right
justified in ACf} with bit 8 = . The address of this
routine must be stored in location #41 of page . All
output messages to this routine will be terminated
by a null (all zero) character.

These I/O routines must be reentrant for the interpreter
to be reentrant. (If the routines which interrupt and

use the interpreter do not use I/O instructions, the

user I/0 routines need not be reentrant, )

The instruction

FDFC n ;FLOATING POINT DECIMAL TO

;FLOATING CONVE RT

will cause an ASCII character string in engineering
notation to be converted to internal floating point form
and loaded in FACn. The input characters must be
provided by the user routine whose address is stored
in location 4f@g of page #. Numbers in the following
form will be converted.

b
[t]n ...n[.Jn...n Ei[t]m[m]—\‘g
[ 2are]

where: nis the decimal mantissa (the first seven non-zero
digits will be converted and the remaining digits ig-
nored) andeachm isadigit of the decimal charact-
eristic.
The signs of the mantissa and characteristic are
optional with the default assumed + .

The break character is any character other than

1. a decimal digit or
2. aI] "E" , l'_’_ll , l'_'! , Or 1" . 1"

If the break character is a rubout (177), the entire
string will be ignored and a new one must be given,
i.e., the conversion starts over.

If the conversion results in a number less than
16%%-1*%16**-63, the underflow flag will be set and
true zero will replace FACn, If the conversion results
in a number whose magnitude is greater than

2-6

Input/Qutput Instructions (cont'd)

(1-16%%-6)*16**63, this latter magnitudc will replace
FACn and overflow will be set, As described on page
2-1,~input conversion returns three additional words
of information: conversion OK flag, the break char-
acter, and decimal point seen flag. These may be
examined and used as necessary.

Examples of legal character strings are:

1*

1.%

_1*

+1*
1E3*
3.1415926*
1. E+70*
1.E-7p*

where * will be returned as the break character and
conversion OK will be non-zero.

Some illegal character strings are:

A (break character will be A)
+* (break character will be *)
+.! (break character will be !)

Conversion OK will be zero in all these illegal cases.
The instruction
FDFCI n ;FDFC WITH INDICATION

will provide the user with an indication before the
conversion begins. The ASCII character "F" followed
by a null character will be passed to the output routine
whose address is given in location §41. For example,
if the user has provided for I/O from the teletype,

the use of FDFCI will print "F" on the page copy every
time an input is required. In all other respects it is
identical to FDFC.

The instruction

FFDCn ;FLOATING POINT FLOATING TO
;DECIMAL CONVERT

will convert the number in FACn to an ASCII char-
acter string in engineering notation. The output
characters will be passed one at a time, right justi-
fied in ACf, to a user routine whose address is stored
in location 41g of page . The output string will be of
the form:



FLOATING POINT INTERPRETER

Chapter 2 - Basic Interpreter Use and Command Structure

Input/Output Instructions (cont'd)

where: each n represents a decimal digit of the man-

tissa.

each m represents a digit of the decimal
characteristic.

The string will be terminated by a null character.

Special Instructions

Two special instructions are defined which modify the
index registers,

The instruction
FIC2
causes AC2 to be incremented by two.
The instruction
FIC3
causes AC3 to be incremented by two. These instruc-
tions are useful for indexing through a table of float-

ing point numbers. Use of FIC2 in indexing is shown in
the second example in Chapter 5.

A third special instruction provides a HALT feature
within the interpretive mode, The instruction

FHLT

will cause the interpreter to HALT, Hardware AC{
will contain the address of the FHLT instruction, The
address lights will have no apparent relationship to the
HALT, since the address is within the interpreter, The
user may press CONTINUE to resume after this HALT.

Illegal Instructions

The proper encoding for all floating point instructions
is given in Appendix B, The interpreter will HALT if
an illegal instruction is encountered, Hardware ACP
will contain the address where the illegal instruction
was found, This HALT will occur if extended instruc-
tions are used and only the Basic Interpreter is loaded,
or on any bit configuration that cannot be decoded into a
floating point instruction, The user cannot press
CONTINUE to resume after this HALT.,

2-7

REQUIREMENTS FOR REENTRANCE

A number of points regarding reentrance of the interpreter
have been mentioned. This section explicitly defines

the rules which must be followed by any routine which
interrupts a base level routine and reenters the
interpreter,

1) All hardware accumulators, Carry, and
page @ locations #@6 and @7 must be
saved,

2) A new writable area address must be
provided in location @7,

3) An FINI must be issued after location g@7
has been set up (only necessary the first
time).

4) If I/0 instructions are to be used, the
user I/O routines must be reentrant.
(Alternatively, - locations 4@ and @41
must be saved and addresses provided to
different I/O routines),

5) Upon exit to the base level routine, the
hardware accumulators, Carry and
locations P@6 and @37 must be restored,



FLOATING POINT INTERPRETER

FEATURES

The Extended Interpreter pr+ides the instructions des-
cribed in Chapter 2, plus . number of mathematical
functions and "F" format output, If the Extended Inter-
preter is used, 1§ (decimal) words of writable storage
must be provided by the user.

MATHEMATICAL FUNCTIONS

The mathematical functions are implemented using ALC
instructions which always post-normalize, They permit
the no load option as well as the floating skip options.
Appendix C provides a detailed description of the methods
used to implement these {unctions as well as a discussion
of their accuracy. The following is a general description
of each instruction,

The siruciion
FALG n,m

computes the natural logarithm of the contents of FACn
and moves the result to FACm. If the argument is less
than @, the overflow flag is set and -(1-16**-6)*16**63
is returned as the result,

The instruction
FATN n, m

computes the arctangent of the contents of FACn and
moves the result to FACm. The result is an angle
expressed in radians in the range -m/2 & arctan(x) <
/2,

The instruction
FCOS n, m

computes the cosine of the contents of FACn and moves
the result to FACm,. The argument is assumed to be an
angle expressed in 1 radians. If the argument is greater
than 2**24, the overflow flag is set,and the result will
be incorrect,

The instruction
FSIN n, m

computes the sine of the contents of FACn and moves the
result to FACm, The argument is assumed to be an
angle expressed in radians. If the argument is greater
than 2%*24, the overflow flag is set,and the result will
be incorrect,

Chapter 3 - Extended Floating Point Interpreter

MATHEMATICAL FUNC TIONS (cont'd)

The instruction
FTANn, m

computes the tangent of the contents of FACn and moves
the result to FACm. The argument is assumed to be an
angle expressed in 1 radians.  If the argument is greater
than 2*#24, the overflow flag will be set,and the result
will be incorrect.

The instruction
FEXP n, m

computes e raised to the power contained in FACn
and moves the result to FACm. If the argument is
less than -177.5, true § is retumed.,and the under-
flow flag is set, If the argument is greater than
174.673, H1-16**-6)*16%*63 is returned,and the
overfiow fiag is set.

The instruction

FSQR n, m
computes the square root of the argument in FACn and
moves the result to FACm. If the argument is less

than @, the underflow flag is set,and true § is returned
as the result,

Table 4 summarizes the math functions.

Instruction Effect
FALG n,m In(FACn) —FACm
FATN n, m arctan (FACn) — FACm
FCOS n, m cosine (FACn) — FACm
FSIN n,m sine (FACn) — FACm
FTANn, m tangent (FACn) — FACm
FEXP n, m e** (FACn) —FACm
FSQR n,m (FACn)**1/2 — FACm

Table 4 - Math Functions

"F" Format Conversion

The Basic Interpreter provides floating point to decimal
conversion with "E" format output. The extended ver-
sion provides "F" format output as well,

The instruction

FFDCF n ;FFDC WITH "F" FORMAT OUTPUT



FLOATING POINT INTERPRETER

Chapter 3 - Extended Floating Point Interpreter

"F'" Format Conversion (Cont'd)

will convert the floating point number in FACn to decimal
and output a character string in "F" format via the user
routine whose address is stored in location #41., The
output will be of the form:

JAVAVAN nnpn, nnnn

< w A

The width of the field (including sign and decimal point),
W, and the number of places to be given after the dec-
imal point, D, must be set up in the writable area before
FFDCPF is given, The displacements of these words are

W = 121g

They can be accessed in a manner similar to the flags
described on page 2-1. Two conditions will cause the
overflow flag to be set and no conversion to be performed.

"F" Format Conversion (cont'd)

s
.

W > 32 (entire
32 characters. )

2, W <D + 2 (W

«idth of field limited to

must be 2 greater than D

to provide for sign and decimal paint.)

If W is not large enough to accommodate the number,
significant digits will be lost.

Assume W has been set to

12 (decimal) and D to 6.

Examples of "F" format versus "E" format outputs are:

"E" Format "F" Format
+.13746@@E+@2 +13. 746000
-.7968433E-%3 - PPP796
+. 10pP0PPE+P4 +1p00. pPP3PP
-, 10PPPPPE+DS 19099, POPARP (note sign lost)
+. 10pPPPPE+P6 PRgp0. POPPRAP (all lost)
-. 35PPPPPE-Po -. PPPPPP (significance lost)
+.4713279E-p1 +, 47132




FLOATING POINT INTERPRETER

The Extended Relocatable Floating Point Interpreter is
identical to the Extended Floating Point Interpreter, cx-
cept for the following:

1)

2)

3)

4)

No absolute locations are used.

The interpreter requires 2 zero relocatable lo-
cations® and approximately 35@@g normal reloca-
table locations,

Within any program that calls or initializes the
interpreter, the appropriate normal external
mnemonics must be declared, These are:

FENT
FINT

;FLOATING INTERPRETER ENTER
;FLOATING INTERPRETER
;INITIALIZE

FENT replaces the FETR command; used to call
the absolute interpreter.

FINT replaces the FINI command, used to
initialize the absolute interpreter,

For example:

.EXTN FENT, FINT

.NREL
FINT ; INITIALIZE
FENT ;ENTER INTERPRETER

FLDA @, FONE ;FLOATING INSTRUCTIONS

One ZREL location must be defined and declared
as an entry (, ENT) with the label

WSA

Location WSA must contain a pointer to the
writable area of the interpreter, WSA replaces
location @7 of the absolute interpreter, (The
writable area must be lﬂ(ll_g contiguous locations
as in the absolute interpreter, )

%
Three ZREL locations are required in the inte

GETC, and PUTC).

Chapter 4 - Extended Relocatable Floating Point Interpreter

5)

6)

If I/0 instructions are to be used, two more
ZREL locations must be defined and declared
as entries with the labels:

GETC
PUTC

Location GETC must contain a pointer to the
input character routine, GETC replaces
location P40 of the absolutc interpreter.

Location PUTC must contain a pointer to the
output character routine. PUTC replaces
location P41 of the absolute interpreter,

Requirements for Reentrance

a) All hardware accumulators, Carry, and
the contents of W5A aud ITMFP must be
saved.

b) A new writable area address must be

provided in WSA,

ot

¢) A FINI must be issued after location
WSA has been set up. (This is necessary
only once per writable area. )

d) If I/O instructions are to be used, the
user I/O routines must be reentrant (or
locations GETC and PUTC must be
saved and new addresses provided to
other I/O routines, )

e) Upon exit, all of the information saved
above must be restored,

The Extended Relocatable Floating Point Interpreter can
be loaded for stand-alone use or for use under the Disk
Operating System. The relocatable version of the
interpreter is sent in relocatable binary format, Tape
#089-000046,

4-1

rpreter,and three are provided by the user program (WSA,




FLOATING POINT INTERPRETER

Chapter 5 - Sample Programs

SQUARE ROOT NEWTON ITERATION

that pe:

crforms

The following routine is an example of a floating point subroutine pe
a square root Newton iteration on the trial guess in FACY given the argument in

FACI1.

;THIS ROUTINE PERFORMS A SQUARE ROOT NEWTON ITERATION
;FAC1 CONTAINS THE ARGUMENT AND IS NOT DESTROYLD
;FACP CONTAINS THE PREVIOUS GUESSTIMATE

;COMPUTES (FACf + (FAC1/FACg)) /2.

;CALLING SEQUENCE

. FISR NSR

LN e 2aN

H RETURN : RESULT IN FACg

NSR: FMOV 1,2 ;SAVE ARGUMENT
FDIV @,2 ;FACL/FACP
FADD 2, @ ;FACP I FACL/TACE
FHLV ¢, 0 (FACBHHFACL/FACP)/2.
FIMP @, 3 ;RETURN

POLYNOMIAL EVALUATION

This polynomial evaluation routine requires AC2 to point to the first word of a
table of floating point coefficients, ordered high order coefficient down and
terminated by true . For example:

Word
AC2 [ -?}/ Cn ]
1
Cn-1 2
3
Cn-2 4
— .
L .
C1
Co 2n+p
2n+1
g-=-=-=-—- - - -9 2n+2
- —- - ——— 9 2n+3

The routine uses Horner's method for evaluation, i,e,

f(x)=(...(((x+Cn)x+Cn-1)x+Cn-2)x...+C1)x+C¢

5-1




FLOATING POINT INTERPRETER

éﬁapter 5 - Sample Programs

POLYNOMIAL EVALUATION (Continued)

;:POLYNOMIAL EVALUATION

sFAC2 CONTAINS ARGUMENT (X)

:AC2 POINTS TO COEFFICIENT LIST TERMINATED BY 4,
; AND ORDERED HIGH TO LOW.

:RESULT RETURNED IN FACP

;FAC@, FAC1 DESTROYED

;CALLING SEQUENCE

; FJSR FPLY

; RETURN

FZRO: )
@

FLPY: FLDA @, FZRO ;CLEAR RESULT

FLPYl: FLDA 1,0,2 ;GET COEFFICIENT
FMOV 1,1, FSNR
FJMP 9,3 ;RETURN IF ZERO
FMPY 2,9 ;SUM * ARGUMENT
FADD 1,0 ;SUM * ARG, + COEF.
FIC2 ;BUMP POINTER TO NEXT COEF.
FIMP FPLY1



FLOATING POINT INTERPRETER

Standard Instructions

FADD
FDFC
FDFCI
FDIV
FDSZ
FETR
FEXT
FFDC
FFIX
FFLO
FHLT
FHLV
FIC2
FIC3
FINI
FISZ
FjMP
FJSR
FLD3
FLDA
FMOV
FMNS
FMPY
FNEG
FPOS
FRND
FST3
FSTA
FSUB

Extended Instructions

FALG
FATN
FCOS
FEXP
FFDCF
FSIN
FSQR
FTAN

Floating Point Options

#
FSGE
FSGT
FSKP
FSLE
FSLT
FSNR
FSZR
U

Appendix A - Floating Point Instructions

Floating Add

Floating Decimal to Floating Convert
FDFC with Indication

Floating Divide

Floating Decrement and Skip if Zero
Floating Mode Enter

Floating Mode Exit

Floating Floating to Decimal Convert
Floating to Fixed

Fixed to Floatmg

Floatmg Halt

Floating Halve

Floating In Increment AC2

Floating 1 I.ncrernent AC3

Floating Initialize

Floating Increment and Skip if Zero
Floating Jump

Floating Jump to Subroutine

Floating Load AC3

Eloaﬁng Load Floating Accumulator
Floating Move

Floating Move Minus

Floating Multiply

Floating Negate

Floating Move Positive

Floating Round

Floating St Store . AC3

F loatmgﬂore Floatmg Accumulator
Floating Subtract

Floating Natural Logarithm

Floating Arctangent

Floating Cosine

Floating Exponential

Floating Floating to Decimal Convert with "F" Format
Floating Sine

Floating Square Root

Floating Tangent

No Load

Floating Skip on Greater Than or Equal
Floating Skip on Greater Than

Floating Skip

Floating Skip on Less Than or Equal
Floating Skip on Less Than

Floating Skip on Non Zero Result
Floating Skip on Zero Result
Unnormalize (no post-normahzanon)




FLOATING POINT INTERPRETER

MEMORY REFERENCE WITHOUT ACCUMULATOR

IND‘IRECT

Appendix B - Floating Point Instruction Encoding

0

FUNCTION

\

INDEX

DISPLACEMENT

0000 FIMP
0001 FISR
0010 FISZ
0011 FDSZ

L § 3|l

5

1100 FFLO
1101 FLD3
1110 FST3
1111 FFIX

6‘1

9 I 10 H 12 l 13 14 15

MEMORY REFERENCE WITH ACCUMULATOR
INDIRECT

0

FUNC-

FAC
TION | ADDRESS

\

INDEX

DISPLACEMENT

t 2 3'4

01 FLDA
10 FSTA

5

n
6'7

SPECIAL

? i 19 n 12 'l! 14 15

1

00 FUNC-

TION

000000O00O0O0O

.II 2 )Il

00 FEXT
01 FIC2
01 FIC3

11 FHLT

CONVERSION

6'1

L] rlb " "’ ll! 4 15

"fiow [Aobkess[0 0 0 0 0 0 0 0 0 Ofe

2 ll‘

01 FDFC
10 FFDC

+
s 6 l 7 L] 9 w0 [ l 3 4 15

FDFC
1

1F

B-1

NO
NORP‘JALIZE

ARITHMETIC (OPTIONAL NORMALIZATION)

ot

DEST. | FUNCTION

ADDRESS

000 |¥

\

lll Stl7

9 'IO n 12

001 FNEG FSGT
010 FMOV 010 FSLT
011 FPOS FSNR
100 FMNS 100 FSZR
101 FSUB FSGE
110 FADD FSLE
111 FRND FSKP
ARITHMETIC (ALWAYS NORMALIZED)
FAC
, FuNcTion | NO  skip
1| il g 0 0 o rnenon [0

3 = 4 s & { 7 9 :.IC " 1”2 4 15
0001 FALG FSGT
0010 FATN FSLT
0011 FCOS FSNR
0100 FMPY FSZR
0101 FSIN FSGE
0110 FTAN FSLE
1000 FDIV FSKP

1001 FEXP

1010 FSQR

1100 FHLV




FLOATING POINT INTERPRETER

This appendix describes in some detail the function,
method, and accuracy of the mathematical routines
supplied with the Extended Interpreter. The accuracy
of the routines is influenced by two factors:

1. The accuracy of the argument

2. The accuracy of the algorithm
These two factors will be mentioned for each routine,
The accuracy of the algorithm itself assumes an

argument that is exact, i.e., no argument error.

The relative and absolute errors of a function routine
are defined as follows:

Let f(x) = the true valuc of the function at x

g{x) = the result returned by ihe function
routine,given x

Now the absolute error of the result is,
ABS (f(x) - g(x))

and the relative error of the result is
ABS ((f(x) - g(x))/f(x))

FLOATING POINT ARCTANGENT

Function:
To calculate the arctangent of x, where x is a floating
point number, and return an angle in radians in the
range -7 /2 < arctan (x) < 7/2 .
Method:
The range of x is immediately reduced to
Pexgl
by means of the identities
'arctan (-abs(x)) = - arctan(abs(x))
and if abs(x) > 1,
arctan @bs(x)) = 7/2-arctan(l/abs(x))
For x > tan ( m/12) the range is reduced to

tan (-7 /12) gy Ltan(w /12)

Appendix C - Extended Interpreter Mathematical Routincs

FLOATING POINT ARCTANGENT (Cont d)

by means of the identity
arctan(x) = arctan(x@) + arctan [(x-x@)/(1+x*xP)].
For xf = 1/3**). 5, we obtain

arctan (x) = 7 /6 + arctan [((x*3**@, 5)- 1)/(x+3**g@, 5)]
m./6 + arctan (y)

where y satisfies the range given above, The arctan
is computed using the first four terms of a polynomial
approximation of the form:

n
arctan (x) = x * Z

Ci X HH(2 )
i=¢

Accuracy:

Argument Error

If x is the argument, the absolute error of the result
is approximately

€/(1+x**2)
where € is the absolute error in x, Thus for small
values of x, the errors are almost equal, while as
X becomes larger, the effect of the argument error

decreases,

Maximum Relative Error

For the range
-tan (7/12) < x & tan(y/12),

the maximum relative error is approximately
10%*-7,6 .

FLOATING POINT EXPONENTIAL

Function:

To calculate e to the power x, where x is a floating
point number,

Method:

If x <-177.5, return @ as the result and set underflow
flag,

If x > 174.673, return the largest positive number as
the result and set overflow flag.



FLOATING POINT INTERPRETER

Appendix C - Extended Interpreter Mathematical Routines

FLOATING POINT EXPONENTIAL (cont d)

Otherwise, we use the equality

Let x*log2(e) = m*16**c

Further, let g = Lm*16**c] and f = (m*16*%c)-q.
Therefore B <f<l.@.

Now 2**(f + q )= 2**f*¥2%**q
Let us compute 2**f,

The range of f can be further reduced if we let
g="f-@.5where -f.5<g <@.5.

We compute 2**g directly if g >, otherwise we compute
2*%*g as

1/(2**abs(g))

2*%g (where P <g <§.5) is computed using the first five
terms of a polynomial approximation of the form:

n

2#%g ~ Z
i=¢

Ci*g**i
Now f=g+@.5
Therefore, 2%*f = 2%%g*2%*), 5
But the answer is 2 **{*2%*%*q
q is an integer and we let q = 4i +j
Now 2 F*f#2#%q = 2##f¥] 6+ *2**j
The characteristic of f is added to i to obtain 2**f*16%*i,

This result is shifted j positions left if i > f or j
positions right if i <@. The result is, of course, e**x.

Accuracy:

Argument Error

The relative error of the result is approximately equal
to the absolute error of the argument, Thus for large
values of x, substantial relative errors in the results
can occux.

Maximum Relative Error

For the range @ <x <@.5 the maximum relative error of
2%*x js approximately 1@**-7.0.

FLOATING POINT NATURAL LOGARITHM

Function:

To calculate the natural logarithm of x, where x is
a floating point number.

Method:

If x <@, overflow flag is set and minus the largest
floating point number is returned as the value.
Otherwise, let x = m*16**c, By means of a binary
normalization, the range of m' is reduced to

1/2 ¢m'<1,

and x = m' * 16 **p*2**(-q) where q = number of left
shifts required to normalize (f <q €3 ).

Now for 1/2 <m'<1/2**3,5
leta=1/2,b=1

for 1/2**. 5 <m' <1
leta=1, b= @

Define y = (m'- a)/(m'+ a)
then m' = a* (y+1)/(-y+1)

Now x = 16*¥p *2**(-q)*a*(1+y)/(1-y)
= 2*%(4p-q-b)*(1+y)/(1-y)

Using In(x) = In(2) * log2(x) we obtain

In(x) = In(2)* [(4p-q-b}+log2((1+y)/(1-y))]

In(x) = In(2) * (4p-q-b) +In((L+y)/(1-y )

From the above, we can determine that

2%-0. 5 < (14y)/(1-y) €2** §.5

The In ((1+y)/(1-y)) is determined for the above range using

the first three terms of a polynomial approximation of the
form:

n
n@) T z* Y C;*2**(2%i)
i=

¢

where z = (1+y)/(1-y).



FLOATING POINT INTERPRETER

FLOATING POINT NATURAL LOGARITHM (con t)

Accuracy:

Argument Error

The absolute error in the result is approximately equal
to the relative error in the argument. Therefore, an
argumernt close to 1 can give a large error since the
function at this value is quite small,

Maximum Relative Error

For the range
1/2%%-8,5 < (14x)/(1-x) <2**9, 5

the maximum absolute error of In(x) is approximately
10%%-7 6 |

FLOATING POINT SINE AND COSINE

Function:

To calculate sin(x) or cos(x), where x is the floating
point angle in radians.

Method:
Compute p = abs(x)*4/r
Letq=|pj, f=p-q where f <f <1

Now q represents the half-quadrant in which the abs(x)
falls, Using the following equalities.

sin(x) = -sin(-x)
cos(x) = cos(-x)
cos(x) = sin(x+n/2)
we define
ql = qif sin is required and x » @
ql = g+ 2 if cos is required
gl = q+ 4 if sin is required and x <@

Then for all values of x, the computation has been
reduced to

sin(w/4*(q1+f))= sin(t)

Since sine (and cosine)are periodic in 2*5, we take q =
qq mod 8. Using the further equality

sine(w/4+x) = cosine(w/4-x)

Appendix C - Extended Interpreter Mathematical Routines

FLOATING POINT SINE AND COSINE . (cont d)

we finally can produce the table

sin(t)

=

sin(7w/4 *f)
cos(w/4*(1-f))
cos(n/4*f)
sin(w/4* (1-£))
-sin(w/ 4 *)
-cos(4*(1-1))
-cos(1 4 *)
-sin(/4*(1-£))

N ONU R W =S

In all cases, the argument has been reduced to the
range # <t <m /4. The sine is computed using the
first four terms of a polynomial approximation of

the form:

The cosine is computed using the first four terms of
a polynomial approximation of the form:
n
cos(x) T )
i=¢@

C; *x*¥(2%)

Accuracy:

Argument Error

The absolute error of the resultis approximately equal
to the absolute error in the argument, Thus, the
larger the argument, the larger the absolute error

of the result,

Maximum Relative Error

For the range § < x < 7/4 the maximum relative
error for sin(x) and cos(x) is approximately 10**-7, 4 ,

FLOATING POINT SQUARE ROOT

Function:

To calculate the square root of a floating point
number, X,

Method:

Let x = m*16**c



FLOATING POINT INTERPRETER

Appendix C - Extended Interpreter Mathematical Routines

FLOATING POINT SQUARE ROOT (cont'd)

If m < @, set underflow flag and return §. as the result.
If m =@, return . as the result.

Otherwise, let ¢ = 2*p + q where p is an integer and
q=porl. Now if g=#, we have x = m*16**2p
and x**1/2 = m**1/2*16**p,

If g = 1, we have x = m*16**(2p+1)
= m*16%*(2p+2)/16

and x**1/2 = (m**1/2)/4*16**(p+l)
Therefore, the characteristic of the result is p + g,
and the problem has been reduced to finding a suitable

first guess for m**1/2 if q = f or (m**1/2)/4if q = 1.

An initial guess is taken in the hyperbolic form
y@ = atb/(c+m)

where for q = @, a=1,8p713
b=-1.57727
c=0.954182
and forq =1, a =@, 428795
b = -@. 3438368
c = (. 877552

The initial guess is now
yl = y@*16**(pt+q)
Two Newton iterations give us the result.

y2 = (yl+x/yl)/2
x**1/2 = y3 = (y2+x/y2)/2

Accuracy:

Argument Error

The relative error of the result is approximately half
the relative error in the argument,

Maximum Relative Error

The maximum relative error for x**3.5 is approximately

1(2‘**-6. 9.

' LOATING POINT TANGENT

Function:

To calculate the tangent of x, where x is the floating
point angle in radians.

Method:
Compute p = abs(x)*4/ T
Letg=1p}, f=p-qwhere § <f<1

Take q) = g mod 4 and in a manner similar to sine-
cosine we can obtain the table below:

q1 tan(x)

] tan (m/4*f)

1 cot (r/4*(1-1))
2 -cot (m/4*f)

3 -tan (7/4*(1-f))

In all cases, the argument has been reduced to the
range f garg <w/4 .

The tangent is computed using the first six terms of
a polynomial approximation of the form:

n
tan(x) = x* Z
i=9

Accuracy:

Argument Error

The absolute error of the result is approximately
equal to

€ * (1+tan(x)**2)
where & is the absolute error of the argument., Thus
if x is near an odd multiple of 7/2, an argument error

will produce a larger absolute error in the result,

Maximum Relative Error

For the range
Psx<m/4

the maximum relative error of tan(x) is approximately
1¢%*-6.6 .



CHANGES FROM REVISION 3 TO REVISION 4 OF THE FLOATING POINT
INTERPRETER USER'S MANUAL

Page

1-1 Lower bound of the decimal range of a floating point number changed
to 2.4x 10778,
Spelling of during corrected.

2-1 Second note at bottom of page corrected.

2-4 The action taken by FMOV 0,1 is corrected to read "... FMOV 0, 1

moves FACOto FAC1..."

2-7 Sentence on indexing example corrected,




FLOATING POINT INTERPRETER

# option 2-4, 3-1

ACCUMULATORS, floating : int 2-1,2-2,2-3
ARCTANGENT C-1, 3-1
ARITHMETIC and logical iustructions 2-4

BASIC Interpreter Chapter 2
BREAK character flag 2-1

CHARACTER string conversion 2-6
CONVERSION

character string 2-6

E format 3-2

F format 3-1

OK flag 2-1
COSINE C-3, 3-1

DECIMAL point seen flag 2-1

E Format conversion 3-2

EFFECTIVE address 2-3

ENCODING of instructions App. B
EXPONENTIAL C-1, 3-1

EXTENDED Interpreter (binary) Chapter 3
EXTENDED Interpreter (relocatable) Chapter 4

F Format conversion 3-1

FENT mnemonic 4-1

FINT mnemonic 4-1

FLAGS
break character 2-1
conversion OK 2-1
decimal point seen 2-1
overflow/underflow 2-1

FSGE skip option 2-4

FSGT skip option 2-4
FSKP skip option 2-4
FSLE skip option 2-4
FSLT skip option 2-4
FSNR skip option 2-4
FSZR skip option 2-4

GETC (get character) 4-1

HALT 2-7

INDEX register
modification 2-7
use in instructions 2-1

Index

INITIALIZATION 2-2
INPUT/OUTPUT Instructions 2-6
INSTRUCTIONS

arithmetic 2-4

illegal 2-7

formats in memory App. B
input/output 2-6
mathematical (extended) 3-1
meriory reference 2-3
rules for 2-2

special 2-7

INSTRUCTIONS,set of

FADD " 2-5
FALG 3-1
FATN 3-1
FCOS 3-1
FDFC 2-6
FDFCI 2-
FDIV
FDSZ

2-5
2-3
FETR 2-2
FEXP 3-1
2-2
2-5
3-1

5

, 2-3
FLXT

FFDC

FFDCF

FFIX 2-3

FFLO 2-3

FHLT 2-7

FHLV 2-5

FIC2 2-7

FIC3 2-7

FINI 2-2, 2-7, 4-1
FISZ 2-3

FJMP 2-3

FJSR 2-3

FLD3 2-3
FLDA 2-1
FMOV  2-4
FMNS 2-4
FMPY 2-5
FNEG 2-5
FPOS 2-4
FRND 2-5
FSIN 3-1
FSQR 3-1
FST3 2-3
FSTA 2-3
FSUB 2-5
FTAN 3-1

INTERPRETER

INDEX-1

Basic 2-1, Chapter 2
Definition of i

entering the 2-2

exiting the 2-2

Extended 2-1, Chapter 3
Extended relocatable Chapter 4
general structure 2-1



FLOATING POINT INTERPRETER

Index
INTERPRETIVE mode 2-2, 2-3
ITMP mnemonic 4-1

LOAD/no load cption 2-4, 3-1

MATHEMATICAL (extended) instructions
MEMORY reference instructions 2-3

3-1, App. C

NATURAL logarithm
NORMAL mode 2-2
NUMBER
conversion formats
representation 1-1
rounding 2-5

Cc-2, 3-1

3-1, 3-2

OVERFLOW/Underflow

flag 2-1
condition causing 2-1, 2-3, 2-5, 2-6, 3-1

PAGE Zero locations used by interpreter 1-1
POLYNOMIAL evaluation program 5-1

POSTNORMALIZE option 2-4
PUSH-DOWN list 1-1

PUTC (put character) 4-1

READ only storage (ROS) i, 1-1

REENTRANCE
in I/O routines 2-6
linkage enabling 1-1
requirements for 2-7, 4-1
ROUNDING a number 2-3

SAMPLE programs Chapter 5
SINE C-3, 3-1
SKIP options 2-4, 3-1

SPECIAL instructions 2-7

SQUARE root C-4, 3-1

SQUARE root Newton iteration program 5-1

STARTING address
initialization 1-1
interpreter 1-1
GETC 1-1
PUTC 1-1
writable svea 1-1

SUBROUTINE linkage

, 2-1
1-1, 2-3

TANGENT C-4, 3-1
TRIGONOMETRIC functions

3-1, App. C
UNNORMALIZE (U) option 2-4

WRITABLE area
WSA (ZREL location)

1-1, 2-1, 4-1
4-1

INDEX-2



DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments. Reference page numbers when
applicable, Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication.

FROM: Name: : Date:

Title:
Company:
Address:




FOLD DOWN FIRST FOLD DOWN

---—-——---------—--—-----------------—---—--------------------------------------——-_---------------

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary If Mailed In The United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE



	0001
	0002
	001
	003
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	4-01
	5-01
	5-02
	A-01
	B-01
	C-01
	C-02
	C-03
	C-04
	D-01
	Index-01
	Index-02
	replyA
	replyB

