DATA GENERAL
CORPORATION

Southboro,

Massachusetis 01772
{617) 485-9100

NOVA DEBUGGER A UsL

Tapes: ©9i- 00000300 (‘hf“ﬁk eore)
09i-0000ip 00 (Jow wm)
09 1-0000i1-00 (BK high core)
09i-000015-00 (16K /‘ﬁiz cove)

June, 1909

093-000020-00

O

Copyrignt (C) Data General Corp., 196

TABLE OF COHNTENTS

l. Introduction

2. Commands

2.1 Kotation

2.2.1 Examine and deposit commands

2.2.,2.

Search memory commands
Breakpoint commands
Run commands

Punch commands

Special commands

3. OPERATI.C PR0OCEDURE

Appendix A: Command Summary

1. Introduction

The NOVA Debugger is a program used to interface with
user rnutines as an aid in debugging. It provides for up
to Tour active breakpoints within the user's routines. The
accumulators, Carry, and memory can be examined and modified
from the teletype after a breakpoint has occurred. The
machine state can be monitored during execution of a routine
using simple commands to the Debugger from the teletype. The
Debugger interfaces with any type routine, including those
using the NOVA interrupt structure. The Debugger can also
be used to punch ranges of memory in binary format acceptable
as input to the Binary Loader.

2, Commands
2.1 Format
Commands to the Debugger are of the general form:
(argument) command
Commands are single teletype codes, usually letters. The
argument may be null, a single digit, an address, or an
expression. Expressions are of the form:
Octal number + octal number + ...

where "+" causes octal addition and "_" octal subtraction.

A carriage return will be indicated by the symbol ") "
A line feed will be indicated by the symbol ";'”.

2.2 Descrintions

2.2,1 Evaomine and Modify Commands

Various commands are available which enable the user
to examine and change memory locations, accumulators, and
certain Debugger registers. If we denote all of these as
"registers", a register is said to be "open" after it has
been examined, The option is available to simply "close"
the register or to type an expression which is used to
replace the current contents of the register before closing
it.

The accumulators can be examined by the command,
n A

If "n" is not specified, the contents of all four accumulators
will be typed out. To examine individual accumulators, "n"
specifies the specific accumulator, For example, if "1A" is
typed, the Debugger will respond /DDDDDD, where the D's rep- -
resent the octal digits of the contents of ACl. ACl 1is now
opened and may be modified or simply closed. A J Closes
the register. The contents may be modified by typing an
expression followed by a . . Expressions may contain the
special symbol "$" which has the meaning "the current contents
of." For example, if AC2 contains 17, after

2A /000017 $+3-1¢

AC2 will contain 12.

Carry can be examined and modified in a similar manner
by the command "C".

The status of Interrupt Enable can be examined by the
command "I", Bit 15 will be set if interxrupts were enabled
when the Debugger was entered because of a breakpoint, reset
otherwise., The remainder of the register will be zero.

The Debugger tests the teletype busy flags upon entry
and will wait to take control until they have been cleared.
The status of the teletype done flags can be examined by the
command "T", Bit 14 represents TTO Done and bit 15 represents
TTI Done. Each bit will be set if the respective Done flip-
flop is set, The remainder of the register will be zero.

Any memory location can be opened by typing
adr/

where "adr" is the octal address of the memory location. The
contents of the location will be printed and can be modified
by tyring an expression and closing the register, "$" can
be used in the expression as well as second symbol, ".".

A period has the meaning "address of the register most
recently closed." For example, if "53/ Z74777,"

was the last command and response,’ the command /" will
cause "JZ4777" to be printed-again. In addition to using

a carriage return to close the register, two additional
codes can be used., A line feed closes the register and
opens the succeeding location. A "4&" closes the register
and opens the preceding memory location, The following
command sequence illustrates these options.

1971/ 217627 &
1772/ 142249 +
1971/ #176@%

To modify memory without examining, the following should
be given:
adr.

Location "adr" is now open for modification. Adjacent
registers can be open using "A" or line feed.

-

2.2.,2 Search Memory Commands

Three commands are associated with the search of
memory over a specified range for a given configuration,
The search command itself is of the form

adrl, adr2s

where "adrl" is the address where the search is to be
started and "adr2" is the last address to be examined.

If no address arguments are given, the search begins at

#¢ and ends at 77777. If only one address argument is given,
the search begins at # and ends at the specified address.
Two registers are used by the Debugger to determine how the
search is performed. The first is a 16-bit mask register
which is examined and modified exactly as an accumulator.
The mask register is opened by the command "M". The second
register contains a comparison word which is opened by the
command "W", If "adr" is the current address being examined,
then a match is said to occur if contents (adr)A M=W. A
match causes the Debugger to print the memory location and
its contents,

A common method of examing all words in a given address
range 1is a search with M and W = @, since contents (adr) A
M = =W in all cases. To search for all ISZ instructipons,
one .would set M= 174@@Z and W= 010¢7¢%.

2.2,3 Breakpoint Commands

Breakpoints are the key elements of the Debugger. A
breakpoint is an instruction address at which the user would
like to stop execution and examine the current state of his
routine. NOVA Debugger provides for up to four distinct
breakpoints.

The addresses of the current breakpoints will be typed
out by using the command "B". To change or activate a given
breakpoint, the format is

adrB

where "adr" is the octal address desired for the breakpoint.
The Debugger will assign this address to one of the four
breakpoints (numbered BZ to B3), unless all are active. In
the latter case, the Debugger will respond with "?" to
indicate all breakpoints are in use, The command "D" can be
used to deactivate all breakpoints. Alternatively, the

command
nD

can be used to selectively deactivate breakpoint n
(F<n<3).

Upon execution, if the instruction at the breakpoint is
encountered, execultion halts before the breakpoint instruction
is executed and contrsl is transferred to the Debugger.
Indication to the teletype is of the form adrBn where "adr"
is the breakpoint address and "n" is the breakpoint number.
The contents of all accumulators will be printed. The user
mey further examine the current machine state by using any
of the Debugger commands. If the user should examine any
breakpoint address, he will f£ind the proper contents. The
Debugger,upon entry, replaces the active breakpoint with
their original contents, leaving breakpoints invisible
to the user., However, if the user routine executes a HALT
or transfers wildly, the breakpoint can be seen by examining
the address from the console. Breakpoint n will appear as the
instruction.

JMP €1ln,

The Debugger uses locations 1# to 13 of page @ to store
address entry points to itself,

Some caution should be used in the placement of break-
points. If an arbitrarily ccmplex subroutine could be
transferred to at the breakpoint, the user should have
no difficulty (since this is actually what happens). The
following restrictions should, however, be noted.

1. The breakpoint should never be placed at a data word
(thece words are never executed).

2. The breakpoint should never be placed at an instruction
which is modified during execution.

3. If the teletype busy flags are set upon a breakpoint
entry, the Debugger will wait until they have been
cleared before taking control, If TTI Busy is set and
a tape is not mounted in the reader or a key is not
depressed, the Debugger will loop continuously.

4. The breakpoint should not be placed at a point where
interrupts cannot be held off for a long period of time,
since the Debugger executes an INTDS upon entry.

~. 5. The breakpoint should not be placed in an interrupt
routine after a INTEN instruction, since another
interrupt may occur and destroy location ¥ before
the Debugger gains control.

B

6. The breakpoint cannot be placed on any instruction
that enables or disables interrupts, e.g. INTDS.

2,2.4 Run Commands

The command issued to cause the Debugger to transfer
control to the user is
adrR,

If "adr" is specified, the Debugger will transfer to that
address. If no "adr" is specified, the Debugger will
transfer to an address the user must initialize in a
Starting location register. This register is opened and
modified by the command "L".

To return control after a breakpoint, the command
npP

is given. If "n" is given, execution will procede from the
breakpoint and control returned to the Debugger from that
breakpoint only after "n" times through it. For example,
3P will cause the breakpoint instruction to be executed
three times before a trap finally occurs, Note that 1P

has the same effect as P. There are four count registers,
each of which is associated with a breakpoint. These
registers can be examined and modified by the command

ni

where "n" is the breakpoint number. These registers contain
the procede count used in conjunction with the "P" command.

The user may modify the procede count for any breakpoint other
than the one which he intends to procede from. In other words,
"nP" unconditionally overwrites the count register for the
current breakpoint.

2.2.5 Punch Commands

The Debugger provides the user with the facility for
punching binary tapes from memory. In this mode it performs
a function identical to the Binary Punch Program (see program
description 093-000001). A punch device register is defined
to determine the output device. This register is opened with
the command "H". If the output device is to be the teletype
punch, the register should be set to Z. 1If the output device
is to be high speed punch, the register should be set to 1.

To punch blank leader on the output device, the command
nF

o

should be given, 7This will cause "n" inches of leader to
be punched.

{anges of memory can be punched in binary format by the
command

adrl, adr2p
Memory from "adrl" to "adr2" inclusive will be punched,

An End Block (also known as a Start Block) can be
punched using the command

ardE,
If no "adr" is given, the Loader will HALT after reading

the block. If "adr" is given, the Loader will transfer control
to this location after reading the block,

2.2.6 Special Commands

One special command is defined. Its form is:
exp=

The expression represented by "exp" is evaluated by the
Debugger and its value is printed, For Example,

7= returns 7
561~-472= returns 67
47+€2= returns 131
- = returns the address of the last
closed memory register
$= returns the contents of the last
closed register

3. OPERATING PROCEDURE

Two binary tapes of the Debugger will be provided as
part of the standard NOVA software package. The Debugger
is loaded using the Binary Loader and following the standard
loading procedure, One binary tape will load into locations
497 to 1777. The second binary tape will load into
locations 627 to 7577. The Debugger also requires locations
17 to 13 of page zero.

If control is lost during the testing process, the
Debugger can be restarted at 497 (or 62¢%). Restarting
will cause the contents of the accumulators to be printed
and the I (interrupt) and T (teletype) registers to be
cleared. All other Debugger registers and the breakpoint
locations will remain unchanged.

DATA GENERAL
CORPORATION

APPENDIX A

Command Summary

Command Effect
A Examine the contents of all accumulators
nh Open accumulator n
B Examine all breakpoint locations
adrB Place a brezkpoint at adr
C Open the Carry register
D Deactivate 2all breakpoints
nh Deactivate breakpoint n
E Punch 2n End Block to HLLT
adrE Punch an End Block to transfer control to
adr
nF Punch n inches of tape leader
H Open punch device register
(TTC = ¢, PTP = 1)
I Open interrupt enable register (Enabled = 1.
Disabled = ¥)
L Open starting location register
M Open mask register
nN Open count register for breakpoint n
P Proceed from breakpoint
nP Proceed from breakpoint and bresk again the
nth time it is encountered
n,mpP Punch memory in binary format from address

n to address m inclusive

DATA GENERAL
CORPORATION

.. Command] - Effect

R Begin execution at the address specified
in the L register

adrr Begin execution at adr
S Search memory from @@#@¥ to 77777 inclusive
adr$s Search memory from @PZ9¢7# to adr inclusive
n,mS Search memory from address n to address m
inclusive
T) Open teletype Done flags register

(TTO Done = bit 14, TTI Done = Bit 15)

W Open word register
i# Close current register (if open) and open
next register
‘) Close current register
? Close current register (if open) and open
preceding register
adr/ Open register at adr (Set "." = adr,
"$" = contents (adr))
adr. Open register at adr without printing its
contents

exp= Evaluate exp and give the eetal result

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Appendix A

