

PROGRAM

Gray Code to Binary

TAPES

ASCII Source: 090-000039

ABSTRACT

This routine converts a 16-bit Gray code number to its binary equivalent.

1. REQUIREMENTS

1.1 Memory

1K or larger alterable memory

1.2 Equipment

NOVA central processor

1.3 External Subroutines

None

1.4 Other

None

2. OPERATING PROCEDURE

2.1 Calling Sequence

JSR .GRYB return

2.2 Input Format

A 16-bit Gray code word is passed in ACØ.

2.3 Output Format

The binary equivalent is returned in $AC\emptyset$.

2.4 Error Returns

None

2.5 State of Active Registers upon Exit

AC1, AC2 are unchanged. AC0, AC3, and Carry are destroyed.

2.6 Cautions to User

None

3. DISCUSSION

3.1 Algorithms

Let the Gray code number be represented by

$$G_n G_{n-1} \cdot \cdot \cdot G_1 G\emptyset$$

and the binary number as

$$B_n B_{n-1} \dots B_1 B_\emptyset$$

Then

$$B_{i} = \int_{j=1}^{n} G_{j} \mod 2$$

Note that this is equivalent to

$$B_{i} = G_{i} \oplus B_{i+1} \qquad (i < n)$$

The latter formula is the principle of this routine. Each successive binary result is computed as the exclusive OR of the previous result bit and the present Gray code bit.

3.2 Limitations and Accuracy

The routine is exact for all 16-bit Gray code numbers.

3.3 Size and Timing

The routine is 22 (octal) words in length.

Execution time is 536.4 μ seconds.

3.4 References

Norman R. Scott, Analog and Digital Computer Technology, McGraw-Hill Book Company (1960), 237 - 239.

3.5 Flow Diagrams

None

4. EXAMPLES AND APPLICATIONS

For analog to digital conversion, it is desirable to use

a code which represents successive decimal digits with only one bit change. This is necessary since a smooth analog transition causes discrete digital changes. During a digital change, many erroneous codes might be transmitted if a weighted binary code were used. For example, the transition from Ølll to $1\emptyset\emptyset\emptyset$ involves all four bits. Therefore, any code from $\emptyset\emptyset\emptyset\emptyset$ through llll could be transmitted during the analog transition. Using an n-bit Gray code, the maximum error is only 1/2**n of the total range.

The ASCII source of .GRYB is provided with the NOVA software. If a user requires this routine, this tape should be edited into the user source.

5. PROGRAM LISTING

A listing of .GRYB follows. No origin is given in the source, enabling the user to edit this tape anywhere within his routine,

; GRAY CODE TO BINARY

; COMPUTES THE BINARY EQUIVALENT OF A 16 BIT GRAY CODE

3 WORD

; INPUT: GRAY CODE WORD IN ACO

; OUTPUT: BINARY EQUIVALENT IN ACØ

; CALLING SEQUENCE:

JSR • GRYB

RETURN 3

; METHOD:

BIN(J) = SUM MOD 2 (N=0.J) GRAY(N)

UNCHANGED: AC1, AC2
DESTROYED: AC0, AC3, CARRY

00000 05401 00001 04401 00002 02402 00003 04402 00004 12644 00005 17666 00006 16312 00007 12510 00010 13520 00011 01402 00012 00000 00013 12100 00014 02401	6 1 0 0 0 0 • UC99: 0 0 0 0 0 5 0 6	STA 3UC03 STA 1UC01 LDA 1UC20 STA 1UC10 SUBO 1.1 SUBCR 3.3 ADDZL 3.0 MOVL 1.1 MOVR 1.3 DSZ .UC10 JMP .UC99 MOV 1.0 LDA 1UC01 JMP 0.UC03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
00016 00000		Ø	; *SAVE AC1
00017 00000		Ø	; SAVE RETURN

00020 000000 •UC10: 0

00021 000620 •UC20: 20

; LOOP COUNT STORAGE

3 DECIMAL 16