User’s Manual
PROGRAM

Relocatable Math
Library File

TAPES
Library Binary: 099-000001

093-000041-03

ABSTRACT

This document provides a brief description of all the routines
available using Data General's math library tape 099-000001.
These descriptions are in alphabetical order according to
function. All the information necessary to CALL these routines
is provided in this document.

Ordering No. 093-000041

© Data General Corporation, 1970, 1972, 1973
All Rights Reserved.

Printed in the United States of America

Rev. 03, May 1973

Original Release - January 1970
First Revision - April 1972
Second Revision - December 1972
Third Revision - May 1973

This revision of the Relocatable Math Library
File manual, 093-000041-03, supersedes manual
number 093-000041-02. For a description of the
changes made in this revision, see the list of
changes at the end of the manual.

INTRODUCTION

The following is a brief description of all the relocatable math library

subroutines available on tape number 099-000001. These subroutines appear in
alphabetical order according to function. Each description will elaborate on the

items explained below.,

PURPOSE:

TITLE:

ENTRY:

INPUT:

OUTPUT:

Explains the function performed by the routine.

Gives the name of the routine (necessary for editing the library tape)

Gives the name by which a routine is referenced in an . EXTN

statement. This name is identical to the JSR entry point unless

specified otherwise.
Describes necessary input format,

Describes results of the routine.

CALLING SEQUENCE AND ENTRY POINTS:

The relocatable routines contained in the math library

are called by declaring the appropriate entry point as

a normal external within the user program. For example,
to call double precision absolute value:

«.EXTN . DABS
JSR @DUMMY
DUMMY: . DABS

The names of the entry point(s) are given for all routines, and unless

otherwise noted all user calls must use the above method,

ERROR CONDITIONS:

Explains or cautions about the idiosyncrasies of the routine,

CARRY AND REGISTERS:
Gives states of active registers upon exit,

LENGTH AND TIME:
Gives the number of words used by this routine and an approxi-
mation of execution time. Unless otherwise noted, execution
times are calculated for the Nova. To obtain approximate exe-
cution times for other Nova-family machines, use the following
conversions:

.2 * Nova execution time = Supernova or Nova 800 execution times
.35*% Nova execution time :: Nova 1200 execution time.

ALGORITHM:
Describes the method used to produce the desired result,

REFERENCE:
Cites literature that may be of use in obtaining further information.

PROGRAM LISTING:
An assembly listing of the routine is given.

In most instances there will be no ENTRY, ALGORITHM, or PROGRAM
LISTING entries given. The ALGORITHM and PROGRAM LISTING

entries will be included in future editions of this manual. ENTRY infor-
mation is given only when the entry is different from the JSR entry point.

ii

TABLE OF CONTENTS

BCD to Binary (Single Precision) .BCDB0ueveuvrunn... ceveens
BCD to Binary (Double Precision) .DBCB ...v.veeveveerernnnnnnn..

Binary to BCD (Single Precision) \BBCDc00vvuuuunnn.. .
Binary to BCD (Double Precision) ,DBBC seeessnns veseessns

Binary to Decimal (Single Precision) ,BIND Ceeineas
Binary to Decimal (Double Precision) .DBD Ceeeeeea
Binary to Gray Code .BGRY . .uvvtrnnnnniineineeeinnnnnnnnns
Binary to Octal (Single Precision) . BINO cececanes N

Decimal to Binary (Single Precision) ,DBIN ,..... ceecoacansaas

Decimal to Binary (Double Precision) .DDB .vuuevnevrnnennnnn..
Signed Divide (Single Precision) DIV v..vveeeerivrrenrennnnnnnn.
Signed Divide (Double Precision) .DDIV .vvvevuvnrnnnnnnnn. cecene
Unsigned Divide (Single Precision) DVD..... fetetsrie e cee
Gray Code to Binary . GRYB vuuuvierinneneenneneeeennnnnnnnns
Logical Exclusive OR ,XORvvvvuinnnn. terssasenesnnssas .
Logical Inclusive OR ,ORvvvvvrunnenn.. tesbseseesssttannns

Signed Multiply (Single Precision) .MPYt eneeennnnnnns
Unsigned Multiply (Single Precision) MPY ceeeasas
Signed Multiply (Double Precision) DMPY cheeeseaa
Negate (Double Precision) ,DNEG Ceetres ittt
Octal to Binary (Single Precision) ,OBIN000u.... ceeeraees
Parity Generator s PRTY ttivunneernninernrnnneeeennnneennnnns
Polynomial Expansion (Single Prec1smn) POLYN..........oc.....
Random Number Generator .RAND,........ Ceeereeessacnsssaaas
Sine, Cosine (Single Precision) SINX Chesaeeeee
o o) 4
Unsigned Square Root (Single Prec1s10n) ISQRT sovvviieninnnon...

Unsigned Square Root (Double Precision) DISQR ceeiees

Subtraction (Double Precision) ,.DSUB......... cesens feeeseseas

iii

ABSOLUTE VALUE
- (Single Precision)
PURPOSE:
This routine computes the absolute value of a fixed point,
single precision, two's complement number,
TITLE:
The title is . ABS.
INPUT:
The input is a single precision number in ACO.
OUTPUT:

The absolute value of the input is returned in ACO,

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . ABS with normal return to the instruction
following the call.

ERROR CONDITIONS:
The absolute value of -2**15 cannot be represented and
will be returned unchanged.

CARRY AND REGISTERS:
Carry and ACO may be destroyed; ACl, AC2 and AC3 are

unchanged.

LENGTH AND TIME:
This routine consists of 3 words and is normally relocatable.
For X = 0, execution time is 8.2 ps,
For X = 0, execution time is 13,8 ps.

ABSOLUTE VALUE

(Double Precision)

PURPOSE:
This routine computes the absolute value of a double precision,
fixed point, two's complement number,
TITLE:
The title is . DABS.
INPUT:
A number in ACO (high order), ACI (low order).
OUTPUT:

The absolute value of the input returned in ACOQ, AC1 - high
order in ACO, low order in ACI.

CALLING SEQUENCE AND ENTRY POINT:
Indirect at . DABS, with normal return to the instruction
following the call,

ERROR CONDITIONS:
Caution: The absolute value of -2**31 cannot be represented
and is returned unchanged.

CARRY AND REGISTERS:
ACO, ACIl, and Carry are destroyed; AC2 and AC3 remain
unchanged.

LENGTH AND TIME:
This routine consists of 6 instructions and is normally
relocatable.
For X = 0, execution is 8.2.ps
For X = 0, execution is 19.4 ps

ADDITION

(Double Precision)

PURPOSE:
This routine computes the sum of two double precision, two's
complement integers.

TITLE:
The title is . DADD.

INPUT:
The first operand must be in ACO, ACI (high order, low order),
The second operand must be in storage, higher order word
followed by lower order word. The address of the higher
order word of the second operand must be given after the
JSR @DUMMY.

OUTPUT:

[—
T
¢}
IR}
[}
.
H
(¢}
o
3
>
2
(&)

The double precision sum wil
order, low order).

CALLING SEQUENCE AND ENTRY POINT:
Indirect at , DADD, then address of second operand with
return to the instruction following the second operand
address.

ERROR CONDITIONS:
Caution: No check is made for overflow.

CARRY AND REGISTERS:
ACO, ACIl, AC3 and Carry are destroyed; AC2 remains
unchanged.

LENGTH AND TIME:
This routine consists of 15 (octal) instructions and is
normally relocatable,
Execution time is 54.9 ps.

ARCTANGENT

(Single Precision)

PURPOSE:
To calculate the fixed point arctangent of the quotient
of two input arguments,
TITLE:
ATANX
ENTRY:
.ATANX
INPUT:
Argument dividend in ACO, argument divisor in ACIL.
Both arguments are expressed in radians in the following
format:
[sign|integer | fraction
bit 0 bits1land2 bits 3 through 15
The sign bit is set to a 1 only if the argument is negative.
OUTPUT:

The result X, expressed in radians, falls in the range

=Tr £ x<1T ., The result, in AC2, is given in the same format
as that described for input arguments.

CALLING SEQUENCE:
JSR indirect through page zero entry . ATANX . Return
is to the next sequential location following the call.

ERROR CONDITIONS:
None; all input arguments will be interpreted in the
format illustrated above,

CARRY AND REGISTERS:
ACD and ACI are saved; AC3 and Carry are destroyed.

LENGTH AND TIME:
One ZREL and 100 octal NREL locations. Average
execution time on the NOVA 1200 is 1.3 ms,

ARCTANGENT (con' t)

(Single Precision)

ALGORITHM:
The quotient of the input arguments, x, is found by means
of a call to the unsigned integer divide routine, DVD, For
the range 0 <x = 1, the arctangent of x is calculated to be
equal to x * P (x**2), Calls to the unsigned integers multiply
routine (. MPYU) and Polynomial expansion function (. POLY)
are made. A sixth order polynomial is computed,
P(x?) = Py +P x+Pyx* ... + P x % with the following

coefficients:

Py = . 99999

Py = - ,33326

Py = .19881

P3 = - .13487 -1
Py= . 83871 * 10_1
PS = L3702 * 10
Pg = .78633 * 1072

For other values of x, one of the following quadrant
adjustments is made, where m and n represent the original
arguments input in ACO and ACI respectively,

+
ARCTAN ($3—) =T(/2 - ARCTAN (&)

-m m
ARCTAN (17)= -ARCTAN ()

m m
ARCTAN (.,) = T - ARCTAN(7)

m m
ARCTAN () = - (77 - ARCTAN (377))

REFERENCE;:
John F. Hart, "Computer Approximations"” New York: John
Wiley & Sons, Inc., 1968; pages 128 - 129, INDEX 4990

ARCTANGENT (cont'd)
(Single Precision)

PROGRAM LISTING:
3 FIKED POINT ARCTANCIF 11D AnCUMENTS)
CTITLE ATANX
<ENT . ATANX
CEXID oPOLY, MPYU
CEXTN DD
. 7 KEL
AANGO-GAAGATY «ATANX: ATANX
« NREL
AGEEA ARAAEA RTURN: 9
ARAAL PABCAGE SAVAT 0
AREAL AGAAAR SAV1: 0
ANAAS TAGARGA SAV2: A
ARGA4 T AAACAN SICGN: O
ABEAS GAnCas COMPL: 0
AAAC 61 OAAAG SUPPL: 0
ABCCTIAS4TTL ATANX: STA s KTURN 3 SAVE RETURN ADDRESS
ABE16G1040771 STA s SAL 3 SAVE ACH, 1
AGA1L T A44TT STA 1, 5AV1
AAA1P 101100 MOVEL A,/ 3GET ST GN
AE1R 11525 En SURCL 2,2 5IN AC2
ANE141ASATT0 STA s STEN 3SAVE IT
AAM1S 1195120 MOVEL 1,1 $SAVE STGN OF AC1
GO 67152560 SUBCL 2,2 505 SUFPLIMENT FLAG
ARAL T HSAT 6T STA 2, SUFPL
AnADE 11T 6400 SUR 3,3 3 SET COMPLEMENT FLAG
AGAAL] T 1A 6432 SUBZ# M, 15 SEC 51F ACA>ACT
ARALD 1A 403 4 JMP .y $AND SUAP AKGUMENTS
nazP3t111600 MOV M2
AAAL 4175400 NG 3,3
ann2s 121061 MOV 1575 SKP
AAARE " 131007 MOV 1,2 $ ACH<=ACI
AAMDT 5475 6 STA 3, COMPL
AAARA 112415 SUR# (15 25 SNK 3CANNDT RE ERUAL
AAAR1 ' 151470 NG 2,2 SACAZACS < 1
AMARR 126400 SUR 1,1
AAARA1TTTTT DVD $GRT ACA/AC?
AAA34 1131000 MOy 1,2
AREIS 1AM 6NARS JSk o MPYU 3GET X#x2
ABAR 6 ASATA4S STA 2, SAVP
AAART 111007 MO fs 2
ACO AR (RN 430 1.DA 5 ATNCF 3POINT AKCTAN COFFF.S
ANG4L 1 APL426 LDA 1, ATCFCT $AKCTAN COFFF COUNT
AAMAD YAM ERA T JSR 0. POLY

3 EVALUATE POLYNOMIAL

ARCTANGENT (cont'd)

(Single Precision)

PROGRAM LISTING:

DAGLI ' ARAT 4G L.DA - Pa5AV2

AAAL4 QA ENA2S JSR n MPYU 3 GET Xxp

AANLS 01 47 4% AN COvPL : COMPLEMENT ANGLFE?
HBORA6AA0 404 JMp o+ 4 3DO NOT COMPLEMENT
AAF4T 24417 LDA 1,PT.2 sPI/2

AAGSH 166400 SUR 751 $PT e 2=Xxp

AGH51'1 210809 MOV 1,0

ARAS2*101 220 MO VZR s 0

20053214733 D52 SUPPL 3 SUPPLIMENT?

PAASL AAR4LG 4 JMP ot 4 3NO

AAAS5 135000 MOV sl

256 A2R 417 LDA MsPTe?

AAAST 122440 SuB 1,0 3PI-ANCLE
DACEA'ARATOH LDA 15 5TGN

AT 6L 125200 MO VZ R 151 3GET SIGN

AARE2'1 11207 M9 Vk (g 2 SRIT 1IN

(AARER*' 2071 6 LDA sy SAYA 3 RESTORE ACO, 1

AN 642471 6 LDA 1, 58V1

BARES'AM2T713 JMP O RTURN

ANAE6° 144417 Ple2: 144417 3P1/2 1.44417 OcTAL
AANET'ONOAAE ATCFCT: &
ARATAAAAATL* ATNCF: o +1

ANATL *AA0 402 472 3478633 7627 -2
aAa72'175502 -22176 3=e377112 9999] -1
AAATIATACS275 5275 3483871 18962 -1
AAAT4*1 67274 =10504 3-,13427 191233
POATS*M14563 14563 319881 480243 4
ANCITET152527 =25251 3-.33326 51491 7
AGATT*ATTTIT7 77777 399999 93478 2

« END 3END OF ARC TAN

BCD to BINARY

(Single Precision)

PURPOSE:
This routine converts a single precision number in BCD to
binary.
TITLE:
The title is . BCDB.
INPUT:
A BCD integer in AC] (maximum value 9999 decimal).
OUTPUT:

Binary equivalent of BCD intcger is returned in ACI,

CALLING SEQUENCE AND ENT RY POINT:
Indirect at . BCDB with normal return to the instruction
following the call.

ERROR CONDITIONS:
If a digit greater than binary 1001 is encountered in the
input, Carry will be set, ACl will be unchanged, and ACO
will contain the bad digit. Otherwise, Carry will be zero
on returnm.

CARRY AND REGISTERS:
ACO, ACl, AC3, and Carry are destroyed; AC2 is unchanged.

LENGTH AND TIME:
This routine consists of 53 (octal) words and is normally
relocatable.
Execution time is 1,034 ms.

RCD to BINARY

LSRR D 2 B Do ¥ A U 4

(Double Precision)

PURPOSE:
This routine converts a double precision number in BCD to
binary.

TITLE:
The title is . DBCB.

INPUT:
A double precision integer is passed in AC0, ACI (high order,
low order) of maximum value of 99999999 decimal.

OUTPUT:

The binary equivalent of the input is returned in AC0O, AC1
(high order, low order).

CALLING SEQUENCE AND ENTRY POINT:
Indirect at , DBCB with normal return to the instruction

Fallnssrismarm lan ~A~17
ioiiowing tne call,

ERROR CONDITIONS:
If a digit greater than 9 is encountered in the input,
Carry will be set and ACO will contain the bad digit,
Otherwise, Carry will be zero.

CARRY AND REGISTERS:
ACO, ACI, AC3, and Carry are destroyed; AC2 is unchanged,

LENGTH AND TIME:
This routine consists of 76 (octal) words and is normally
relocatable,
Execution time is 2,174 ms.

BINARY TO BCD

(Single Precision)

PURPOSE:
This routine converts a binary number to its BCD equivalent,
TITLE:
The title is . BBCD.
INPUT:
An unsigned binary number in ACI,
OUTPUT:

The BCD equivalent in ACI.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . BBCD with normal return to the instruction
following the call,

ERROR CONDITIONS:
If a number greater than 9999 is input for conversion, no
conversion will take place and Carry will be set. Otherwise,
Carry will be zero,

CARRY AND REGISTERS:
ACl, AC3 and Carry are destroyed; ACO, and AC2 are unchanged.

LENGTH AND TIME:
This routine is 41 (octal) words and is normally relocatable.
Execution time is 273.8 + N * 14,1 ps where N is the
sum of the digits of the result.

-10-

BINARY to BCD
(Double Precision)

PURPOSE:
This routine converts a double precision binary number to a
BCD number, '

TITLE:
The title is . DBBC,

INPUT:
A positive, double precision binary number in AC0O, ACI
(high order, low order).

OUTPUT:

'The BCD equivalent is in ACO, ACI (high order, low order).

CALLING SEQUENCE AND ENTRY POINT:
Indirect to ., DBBC with normal return to the instruction
following the call.

ERROR CONDITIONS:
If ACO, ACI contains a number greater than 99999999, no
conversion will take place and Carry will be set. Otherwise,
Carry will be reset,

CARRY AND REGISTERS:
ACO, ACl, AC3, and Carry are destroyed; AC2 is unchanged.

LENGTH AND TIME:

This routine consists of 57 (octal) words and is normally
relocatable.

-11-

BINARY to DECIMAL

(Single Precision)

PURPOSE:

TITLE:

INPUT:

OuUTPUT:

This routine converts a single precision two's complement
number to an ASCII character string.

The title is , BIND.

A single precision, two's complement integer is passed in
ACl,

An ASCII character string terminated by a null word.
Characters are passed right adjusted in ACO to the
routine whose address must be in ZREL location . PTCH.
The string is of the form:

+DDDDD(NULL)

-DDDDD(NULL)

or

CALLING SEQUENCE AND ENTRY POINT:

Indirect at , BIND with normal return to the instruction
following the call. |

CARRY AND REGISTERS:

ACl, AC3 and Carry are destroyed; ACOand AC2 remain
unchanged.,

LENGTH AND TIME:

This routine consists of 51 (octal) words and is normally
relocatable.,

Execution time is (378.3 + N * 14, 1) ps where
N is the sum of the digits of the result,

BINARY to DECIMAL

PURPOSE:

TITLE:

INPUT:

OUTPUT:

(Double Precision)

This routine converts a double precision two's complement
number to an ASCII decimal character string,

The title is . DBD.

A double precision, two's complement integer is passed
in ACl, AC2 (high order, low order).

ASCII character string of the form:
or +DDDDDDDDDD(NULL)
-DDDDDDDDDD(NULL)
1s outputted. Characters are passed right adjusted,
bit 8 = 0, in ACQ to a user routine whose address must
be stored in ZREL location . PTCH.

CALLING SEQUENCE AND ENTRY POINT:

Indirect to .DDBD with normal return to the instruction
following the call,

CARRY AND REGISTERS:

ACl, AC2, AC3, and Carry are destroyed; AQD remains
unchanged.

LENGTH AND TIME:

This routine consists of 112 (octal) words and is normally
relocatabie,

Execution time is 1.061 + N * , 047 ms where N is

the sum of the digits of the result.

-13-

BINARY to GRAY CODE

PURPOSE:
This routine computes the Gray Code equivalent of a 16-bit
binary word.
TITLE:
The title is . BGRY.
INPUT:
A binary word in ACOQ.
OUTPUT:

Gray Code equivalent in ACO.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . BGRY with normal return to the instruction
following the call,

CARRY AND REGISTERS: ,
ACO, AC3, and Carry are destroyed; ACl, AC2 are unchanged,

LENGTH AND TIME:
This routine consists of 13 (octal) words and is normally
relocatable,
Execution time is 50. 3 us.

-14-

BINARY to OCTAL
(Single Precision)

PURPOSE:
This routine converts a 16-bit binary word to an octal
ASCII character string,
TITLE:
The title is . BINO.
INPUT:
A 16-bit binary number is passed in ACI.
OUTPUT:

An ASCII character string terminated by a null character.
Characters are passed right adjusted in ACO to the user
routine whose address must be stored in ZREL location . PTCH.
The string is of the form:

OOOOOO(NULL)
where "O" represents octal digits.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . BINO with normal return to the instruction
following the call,

CARRY AND REGISTERS:
ACO, ACI, AC3, and Carry are destroyed; AC2 remains
unchanged,

LENGTH AND TIME:
This routine consists of 27 (octal) words and is normally
relocatable,
Execution time is 367.6 + N * 20,0 us,where N is
the sum of the digits of the result (the sum expressed in
decimal),

-15-

DECIMAL TO BINARY

(Single Precision)

PURPOSE:
This routine converts ASCII characters to a single precision
binary number,

TITLE:
The title is . DBIN.

INPUT:
Input characters will be requested by calling a user "get a
character” routine whose address must be stored in ZREL loca-
tion . GTCH. This user routine must be provided. ASCII
characters should be returned, right adjusted in ACOwith
bit 8 =0. This routine need not save any registers or Carry.
Input should be in the form:

SDD. . . DD (break)

where "S" represents the sign ("'-" or optionally "+"), D
represents an ASCII decimal digit, and "break” is any ASCII
character other than a digit.

OUTPUT:
Upon exit, ACO will contain the ASCII break character and
AC] will contain the single precision, two's complement
binary equivalent of the input.

CALLING SEQUENCE AND ENTRY POINTS:
Indirect to . DBIN with normal return to the instruction
following the call.

If it is desired to output a signal character, the calling sequence is
indirect to .DBNI, An ASCII ""S" followed by a null character

will be transmitted via ACO to a "put a character” routine

whose address must be in ZREL location . PTCH.

ERROR CONDITIONS:
Caution: The absolute value of the result is N MOD 2**15,
For example: +96741 converts to +31205.
-2**]15 converts to O.

CARRY AND REGISTERS:
ACO, ACI, and Carry are destroyed; AC2 and AC3 are unchanged.

LENGTH AND TIME:
This routine consists of 65 (octal) words and is normally relocatable.
Execution time is approximately 110 + I * 82.2 ps where I
is the number of digits in the input.

-16-

DECIMAL to BINARY

PURPOSE:

TITLE:

INPUT:

OUTPUT:

(Double Precision)

This routine converts ASCII characters to a double precision
binary number.

The title is , DDB .

Input characters will be requested by calling a user "get a
character" routine whose address must be stored in ZREL location
. GTCH. This user routine must be provided. ASCII
characters should be returned, right adjusted in ACO with
bit 8 = 0. This routine need not save any registers or Carry.
Input should be in the form:

SDD. .. DD (break)
where "S" represents the sign ("'-" or optionally "+"), D rep-
resents an ASCII decimal digit, and "break’ is any ASCII

character other than a digit.

Upon exit, ACO will contain the ASCII break character., ACl
and AC2 contain the double precision two's complement equiva-
lent of the input,

CALLING SEQUENCE AND ENTRY POINTS:

Indirect to . DDB with normal return to the instruction following
the call.

To output a signal character, the call is indirect to . DDBI .
This will cause an ASCII "D followed by a null to be sent via
ACO to a "put a character" routine whose address must be
stored in ZREL location .PTCH . This routine must accept
ASCII characters in the same format as ,GTCH .

ERROR CONDITIONS:

Caution: The absolute value of the result is N MOD 2*#*31,
(see .DBIN).

CARRY AND REGISTERS:

All accumulators and Carry are destroyed.

LENGTH AND TIME:

This routine consists of 77 (octal) words and is normally
relocatable., Execution time is approximately

69.90 + 1 * 43.35 us on the Nova 1200, where [
is the number of digits input.

-17-

Signed DIVIDE

(Single Precision)

PURPOSE:
Divides two fixed point , two's complement numbers,
TITLE:
The title is . DIV.
INPUT:
Dividend in ACO (high order) and ACI (low order).
Divisor in AC2.
OUTPUT:

Quotient in ACl. Remainder in ACQ (same sign as dividend).

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . DIV with normal return to the instruction
following the call.

ERROR CONDITIONS:
If the magnitude of the quotient exceeds 2 **15-1, Carry is
set and the dividend remains unchanged. Otherwise, Carry
will be zero.

CARRY AND REGISTERS:
ACO, ACl, AC3, and Carry are destroyed; AC2 remains
unchanged.

LENGTH AND TIME:
This routine consists of 45 (octal) words and is normally

relocatable,
Total average execution time is 605 ps.

-18-

Signed DIVIDE
(Double Precision)

PURPOSE:
This routine calculates the quotient of two signed double
precision numbers.

TITLE:
The title is DDIV.

INPUT:
The double precision divisor must be in ACO, ACI (high order,
low order). The quadruple precision dividend should be stored
in four consecutive words, highest order to lowest order. AC2
must contain the address of the highest order word of the dividend.

OUTPUT:

‘The double precision quotient is returned in ACQ, ACl (high
order, low order). Its sign is determined by the algebraic
rules for signed division. The double precision remainder

is stored in two consecutive memory words with the high order
word first. AC2 will contain the address of the higher order
remainder word, The sign of the remainder is the same as

the sign of the dividend.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . DDIV with normal return to the instruction
following the call.

ERROR CONDITIONS:
If the ma%nitude of the quotient would exceed 2**31-1 or| dividend i

>ldivisor » an error condition exists, Carry is set, and return
is made with unpredictable results.

CARRY AND REGISTERS:
All accumulators and Carry are destroyed.

LENGTH AND TIME:
This routine occupies 140 (octal) locations. Execution
time is approximately 2. 98 milliseconds.

REFERENCE:
"How to Use the Nova Computers", section 2, 2,

-19 -

Unsigned DIVIDE

(Single Precision)

PURPOSE:
To calculate the quotient of two unsigned integers.

TITLE:
DVD

ENTRIES:
DVD, .DIVI, .DIVU

INPUT:
If DVD or . DIVU entry, the dividend is input in ACO (high order
portion) and AC1 (low order portion). If ., DIVI entry, the
dividend is input in AC1 alone. In either case, the divisor is
input in AC2,

OUTPUT:

The remainder is output in ACO, the quotient in ACI.

CALLING SEQUENCES:
The calling sequences consist of indirect calls through
page zero entries . DIVI or . DIVU with return to the
next sequential location following the call. DVD is
equivalent to JSR @ . DIVU,

ERROR CONDITIONS: 16
Any inputs which would yield a quotient larger than 2 -1
(i.e., ACO > AC2) causes Carry to be set and return to
be made to the caller. Otherwise Carry is reset.

CARRY AND REGISTERS:
AC2 is unchanged; ACO, AC1 and AC3 are destroyed
under normal operation. AC1 is also left unchanged
under error conditions, and Carry is always set or
reset as discussed above.

LENGTH AND TIME:
Two ZREL locations and 21 octal NREL locations are
required. Average execution times for . DIVI are 103 us
on the Supernova and 545 us on the Nova. Average exe-
cution times for DVD are 102 s on the Supernova and
539 ps on the Nova.

20

Unsigned DIVIDE (cont'd)
(Single Precision)

ALGORITHM:
. DIVI creates an all-zero high order dividend upon entry
and then enters the DVD common logic.

DVD initially compares the divisor with the high order portion
of the dividend. If that is greater than or equal to the divisor,
the result would exceed 210-1 and could not be represented in
16 bits using conventional two's complement notation. In this
case Carry is set and return is made.

Otherwise, the less significant (LS) half of the dividend is
shifted left, and 16__ iterations of the following logic are
performed, First ‘g}?e more significant (MS) half of the
dividend (ACO) is shifted to the left and is compared to the
divisor (AC2). If the divisor is equal to or less than the
MS dividend, the divisor is subtracted from the MS dividend
and the LS dividend (AC1) is shifted left. Otherwise, no
subtraction is performed and only the LS dividend left shift
is performed. In both cases, Carry contains the latest
quotient bit and is shifted in behind the MS portion of the
dividend when the iteration is repeated. Upon completion,
the 16-bit quotient is entirely assembled in AC1, and the
final adjusted dividend in ACO is the remainder. The
routine yields an exact answer.

REFERENCE:

"How to Use the Nova Computers", section 2.2 .

—21—

Unsigned DIVIDE (cont’d)

(Single Precision)

00000 -3003081*.DIVU:
P0001-000003"*.DIVI:

06000~

Q0p00'102400
P2201'354416
PP@2"142432
geee3'@egala
Q0004'334414
P20P5'125120
ore26*101100
peeaT*142412
PoB10'142400
peo11°'125100
aer12'1754084
P2213'200773
PP@B14'176441
P2215'176420
B0016'002401

Peo17'23002020

@eB20'177760

DIVI:
DIVU:

DVD@:

DIVI:

SAV3:

M2@:

«TITLE DVD
+ENT

«ZREL
DIVU
DIVI

«NREL

DVD = JSR

SUB 2,0

STA 3,SAV3
SUBZ# 2,0,S5%C
JMP DIV1

LbA 3.,M20
MOVZL 1,1
MOVL ©@.,0
SUB# 2,0,SZC
SUB 2.0

MOVL 1,1

INC 3,3,S%#R
JMP DVD@
SUBO 3,3,SKP
SUBZ 3,3

JMP @5SAV3

-22-

JEND OF

DVUD,«DIVI,«DIVU

@..DIVU

Ve Mo Ve We Ve Mo Mo %o Mo We Ve Ve

Ve Vo G

INTEGER DIVIDE.,

SAVE AC3

CLEAR ACO

TEST FOR OVERFLOW
SET CARRY AND RETURN

16 ITERATIONS

SHIFT LOW DIVIDEND
SHIFT HIGH DIVIDEND

DOES DIVISOR
YES

GO IN?

SHIFT LOW DIVIDEND

CHECK COUNT
NOT DONE
DONE » CLEAR
SET CARRY
RETURN

SAVE AC3

- 16 DECIMAL

INTEGER DIVIDE

CARRY

GRAY CODE to BINARY

PURPOSE:
This routine computes the binary equivalent of a 16-bit
Gray Code word.
TITLE:
The title is . GRYB.
INPUT:
Input is a Gray Code word in ACQ.
OUTPUT:

The binary equivalent is returned in ACO,

CALLING SEQUENCE AND ENTRY POINTS:
Indirect to , GRYB with normal return to the instruction
following the call,

CARRY AND REGISTERS:
ACO, AC3 and Carry are destroyed; ACl, AC2 are unchanged.

LENGTH AND TIME:
This routine consists of 22 (octal) words and is normally
relocatable,
Execution time is 536.4 ps.

-23-

Log}cal Exclusive OR

PURPOSE:
This routine computes the exclusive OR of two unsigned
numbers.
TITLE:
The title is . XOR.
INPUT:
One 16-bit quantity is passed in ACO, the second in ACI,
OUTPUT:

The exclusive OR of the two quantities is returned in ACO.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to , XOR with normal return to the instruction
following the call.

CARRY AND REGISTERS:
ACO, AC3, and Carry are destroyed; ACl and AC2 are unchanged.

LENGTH AND TIME:

This routine is 7 words and is normally relocatable.
Execution time is 34,0 ps.

-24-

Logicai Inclusive OR

PURPOSE:
This routine computes the logical inclusive OR of two
unsigned numbers,
TITLE:
The title is .OR ,
INPUT:
One 16-bit quantity is passed in ACO, the second in ACL,
OUTPUT:

The inclusive OR of the two quantities is returned in ACO.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . OR with normal return to the instruction
following the call,

CARRY AND REGISTERS:
ACO is destroyed; ACl, AC2, AC3, and Carry are unchanged.

LENGTH AND TIME:
This routine consists of 5 words and is normally relocatable,
Execution time is 25,6 ps.

Ei_g}ed MULTIPLY

(Single Precision)

PURPOSE:

TITLE:

INPUT:

OUTPUT:

This routine multiplies two, fixed point, single precision,
two's complement numbers,

The title is . MPY.

One fixed point, single precision operand is passed in ACI,
the second in AC2,

The double precision result is returned in ACO (high order)
and ACI (low order).

CALLING SEQUENCE AND ENTRY POINT:

Indirect to . MPY with normal return to the instruction
following the call.

CARRY AND REGISTERS:

ACG, ACl, AC3, and Carry are destroyed, AC2 remains unchanged.

LENGTH AND TIME:

This routine consists of 16 (octal) words and is normally
relocatable,

For execution time in addition to unsigned multiply,
56.4 ps.

For execution time in unsigned multiply, 340 ps.

Total average execution time is 396. 4 ps.

-26 -

Unsigned MULTIPLY

(Single Precision)

PURPOSE:
To calculate the product of two unsigned integers or the sum
of that product and a third unsigned integer (MPY).
TITLE:
MPY
ENTRIES:
MPY, .MPYU, .MPYA
INPUT:
The multiplier and multiplicand are input in ACl and AC2 (MPY).
If a third integer is to be added to the product, the integer is input
in ACO.
OUTPUT:

The result is output with the high order portion in ACO and the
low order portion in ACI,

CALLING SEQUENCES:
The calling sequences consist of indirect calls through page zero
entries , MPYU and . MPYA, with return to the next sequential
location following the call. MPY is equivalent to JSR @ .MPYA.
-MPYU is used if no third integer is to be added to the product.

ERROR CONDITIONS:
None.

CARRY AND REGISTERS:
AC2 and Carry are restored; ACO, ACl, and AC3 are destroyed.

LENGTH AND TIME:
‘Two ZREL locations and 14 octal NREL locations are required.
Average execution times for . MPYU are 87 ps on the Supernova
and 441 ps on the Nova. Average execution times for MPY are
86 ps on the Supernova and 435 ps on the Nova,

ALGORITHM:
. MPYU creates an all-zero addendum upon entry, and then enters
the MPY common logic. The multiply-and-add function is performed
by iteratively examining the least significant bit (LSB) of the multipli-
cand and then shifting the multiplicand to the right. If the LSB was a
one, then the multiplier is added to an accumulating partial product

-27-

Unsigned MULTIPLY (Continued)

(Single Precision)

ALGORITHM (cont'd)

and that sum is shifted to the right. If the LSB was a zero, the
accumulating partial product is simply shifted rightwards.
Initially the partial product is zero in . MPYU, and is equal

to the addendum in MPY. The process is carried out for 1610
iterations and yields the exact answer.

REFERENCE:
"How to Use the Nova Computers', section 2.2 .

-28-

Unsigned MULTIPLY (cont’d)

00000 -000@331 ' .MPYA:
20001 -200200°* «MPYU

206000~

PeeBo* 182460
Q201254411
QB282'@34411
P@@@33'125203
pooBar101201
20005143220
00006175404
@283 T7'080774
20210125260

2o011'002401

20012'000200
20013'177760

ey arey
MFTU S

MPYA:

MPY1 :

SAV3:
M2 ¢

«TITLE MPY

«ENT
«ZREL

MPYA
MPYU

+NREL

MPY = JSR

SUBC @.,8

STA 3.,5AV3
LDA 3,M20
MOVR 1,1,SNC
MOVR @,08,SKP
ADDZ#R 2,7
INC 3,3,S5%R
JMP MPYl
MOVCR 1,1

JMP @S5SAV3

-29-

JEND OF

€.

Ve e Ve %e Mo Ve Ve Mo Mo Ve La Mo N

e

(Single Precision)

MPY, «MPYU, «MPYA

MPYA

CLEAR ACO, DON'T DISTURB
CARRY ’

SAVE AC3

16 TIMES THRU LOOP

CHECK NEXT MULTIPLIER BIT

@, JUST SHIFT

1, ADD MULTIPLICAND AND SHIFT

CHECK FOR 16TH TIME THRU

NO, CONTINUE

YES, SHIFT LAST LOW BIT
(NOTE IT WAS COMPLEMENTED BY
FINAL INC) '
RETURN

RETURN ADDRESS
-16 DECIMAL

UNSIGNED MULTIPLY

Signed MULTIPLY

(Double Precision)

PURPOSE:
This routine calculates the product of two signed double
precision numbers.

TITLE:
The title is DMPY.

INPUT:
The double precision multiplier must be in AC0, ACI (high
order, low order). The double precision multiplicand should
be stored in two consecutive words, higher order first. The
location following the calling instruction (JSR) should contain
the address of the high order word of the multiplicand.

OUTPUT:

The quadruple precision product is stored in four consecu-
tive locations within the DMPY subroutine, highest order word
first., AC2 contains the address of the highest order word.
The sign of the product is determined by the algebraic rules
for signed multiplication,

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . DMPY with return to the second location after
the call since the location after the call contains the address
of the multiplicand.

CARRY AND REGISTERS:
All accumulators and Carry are destroyed.

LENGTH AND TIME:
This routine occupies 103 (octal) locations. Execution
time is approximately 1. 62 milliseconds.

REFERENCE:
""How to use the Nova Computers’, section 2. 2.

30

NEGATE

LNTLy 4 a

(Double Precision)

PURPOSE:
This routine computes -D where D is a double precision
two's complement integer.

TITLE:
The title is . DNEG,

INPUT:
A double precision, two's complement number in AC0, ACI
(high order, low orcer).

OUTPUT:

The negative of the input is returned in ACO (high order),
ACI (low order).

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . DNEG with normal return to the instruction
following the call.

ERROR CONDITIONS:
Caution: The negative of -2**3] cannot be represented and
is returned unchanged.

CARRY AND REGISTERS:
ACO, ACI, AC3, and Carry are destroyed; AC2 remains unchanged.

LENGTH AND TIME:
This routine consists of 4 words and is normally relocatable,
Execution time is 13. 8 ps.

OCTAL to BINARY

(Single Precision)

PURPOSE:

TITLE:

INPUT:

OUTPUT:

This routine converts an ASCII octal character string to a
binary number.

The title is . OBIN .

Input characters will be requested by calling a user-written
"get a character"” routine whose address must be stored in
ZREL location ,GTCH . This user routine must be provided.
Upon return from the call, this routine should return an
ASCII character, right adjusted in ACO with bit 8= 0. Input
should be of the form:

00. ..00(break)
where "O'" represents octal digits.

ACO contains the break character, and AC1 contains the
binary number (MOD 200000 octal).

CALLING SEQUENCE AND ENTRY POINTS:

Indirect to , OBIN .

It is desired to output a signal character, the calling
sequence is indirect to . OBNI .

An ASCII "0" followed by a null character will be
transmitted via ACO to a user-written "put character”
routine whose address must be stored in ZREL location
.PTCH . In both cases, return is to the first word after
the call.

ERROR CONDITIONS:

Caution: Result is N MOD 200000 (octal) e. g., 576452*
Converts to 176452,

CARRY AND REGISTERS:

ACO, ACl1, AC3, and Carry are destroyed; AC2 is unchanged.

LENGTH AND TIME:

This routine consists of 42 (octal) words and is normally

relocatable.
Execution time for .OBIN is 63.0+1 * 70.2 us
where I represents the number of digits in the input,

-32-

PARITY GENERATOR

PURPOSE:
This routine computes the even parity bit over a 16-bit
number and returns the bit in Carry.
TITLE:
The title is . PRTY.
INPUT:
A 16-bit number is passed in ACO,
OUTPUT:

The even parity bit over the contents of ACO will be returned
in Carry.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . PRTY with return to the word following the call,

CARRY AND REGISTERS:
AC3 and Carry are destroyed; ACO, ACl, AC2 remain unchanged.

LENGTH AND TIME:
This routine consists of 16 (octal) words and is normally
relocatable.
Average execution time is 215.4 ps.

-33-

POLYNOMIAL EXPANSION
(Single Precision)

PURPOSE:
To calculate an integer Polynomial expansion series of the form P(x) =
Py + Pyxt 4 Pyx? ...+ Pyt
TITLE:
POLYN
ENTRY:
.POLY
INPUT:

The order of the polynomial is input as an integer in ACl. The argument
X is a positive number input in ACl with its binary point normally to the
left of bit 0, the most significant bit, (There is no sign bit reserved
since all inputs must be positive.) Any shifting of the binary point

is understood to shift the implicit point of the result in like fashion.

16 bits of SIGNIFICANCE

}
implicit binary point

A pointer to the highest order coefficient is in ACO where all
coefficients are two's complement numbers, usually in the following
format:

- 15 bits of SIGNIFICANCE

sign/ bitQ t
bit

Any shifting of the binary point is understood to shift the implicit
binary point of the result in like fashion. The coefficients are placed in
a list with the following structure:

implicit binary point

increasing addresses

)
.:3' oo
[

o
—

OUTPUT:
The result, output in AC1, is in the same format as the coefficients,
with shifting of the implicit binary point as required.,

-34-

POLYNOMIAL EXPANSION (Continued)
(Single Precision)

CALLING SEQUENCE:
JSR indirect through page zero entry
LY

ERROR CONDITION:
None,

CARRY AND REGISTERS:
AC2 is saved; ACO, AC1, AC3 and Carry are destroyed.

LENGTH AND TIME:
One ZREL location and 22 octal NREL locations. Execution time
depends directly upon the order of the polynomial expansion.

ALGORITHM:
A cumulative partial product is formed by successively adding
the next highest order coefficient not processed to a partial
product formed by x and the highest order coefficient not pro-
cessed, and then by multiplying this partial sum by x. Only the
most significant word of this product is retained. The process
is performed iteratively, until all coefficients through Py
have been processed. Py is added to the final result,

In equation form,

P(x) + (Pyx)+ Pp-1)x)...) + Py

-35-

POLYNOMIAL EXPANSION (Cont'd)

(Single Precision)

PROGRAM LISTING:

AAAR = ARG

AGGAN ' AS5441 7
GIOARY YAAGH T

AAGAR 444177
AAAAR A2 6415
AARGA*12112°2
NAARS 124447

AAAAE O EAALS

AGRGBET 1 AS000
AACLA 1 L4400
EIZICE IS IECE Ra P A0 N
AAGLL'AP04M 6
STl SRR ROk IeYols
AAAL AR 24005
AAFLS AT 6T
MGG 6 AR AT

AGALT OARAGO
ARG AAAAARD
ARALL ' AAAAAG

«POLY:

POLYN:

LOOP:

PLRTN:
COEFF:
COUNT:

sFIXED POINT POLYNOMI AL

s INPUT: IN AC?2

H AS A ONFE UKD INTECGER

3 COFFFICIENT POINTER IN AC2

H COEFFICIENTS TN DESCENDING POVER

3 IN TUN's COMPLEMENT FORM

3 OKDERX OF POLYNOMIAL IN ACI1
sOUTPUT IN T 'S COMPLEMENT

3 FOrM IN AC1

«TITLE POLYN

o ENT « POLY

«EXTD MPY U

« ZREL

POILLYN

«NRKEL

STA R, PLRIN 3 SAVE KETURN

Wl Gis COREFRF 3 SAVE COEFFe POINTEL
5TA 1,COUNT 3 AND COUNT

LDa 1, PCHEFF SHIGHEST COEFF

MO V7L 1,75, 57%C SNFGATI VE?

NEGO 151 SYESSMAKE IT +VE, SET CARRY
JS5kK n MPY ! 3ACA, 1 = ACIH=AC?
MOV iy 15550 SNEGATIVE STGN?
NECG 151 SYESONEGATE KRESULT
I5% COEFF *rAISE COEFFe POINTEL
LDA iy ACOWEF $ARD NEXT COEFF
anb s 1 3TO LINNING SUY
D57 COUNT 3 DONE?

JMP LOOP 360 ID NEXT CORFF
Jap APL TN s RETURY

(7

1%t

il

« FNID 3 FEND OF PHOLYNOMT AL

-36-

RANDOM NUMBER GENERATOR

PURPOSE:
This routine generates a (pseudo) random sequence of integers
in the range 0 to 2**16-1.

TITLE:
The title is . RAND.

INPUT:
The address of the previous random value(or initially a
starting value) must be provided in the word after the call
to . RAND,

OUTPUT:

The new 16-bit random result will be returned in ACO and
will also replace the previous value in memory.

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . RAND followed by the address of the old
value, Return will be to the instruction after the
address parameter,

ERROR CONDITIONS:
Caution: If a K-bit number (1 < K <16) is needed, use the most

significant K bits (the least significant K bits are
not as random), For example, to obtain random
N MOD 2, use the sign bit of the result,

CARRY AND REGIS:TERS:
ACO, AC3, and Carry are destroyed; ACl and AC2 are unchanged.

LENGTH AND TIME:
This routine consists of 36 (octal) words and is normally

relocatable.
Execution time is 244, 7 ps,

-37-

SINE, COSINE

(Single Precision)

PURPOSE:
To calculate the sine or cosine of an angle cxpressed in
radians,
TITLE:
SINX
ENTRIES:
.SINX, .COSX
INPUT:
The argument m is input in ACO, within the range
-4<n=4, in the following format:
|sign|integer | fraction
bit 0 bits1and2 bits 3 through 15
The sign bit is set to a 1 only if the argument is negative,
OUTPUT:

The result is output in ACI, in the same format as the
input,

CALLING SEQUENCES:
JSR indirect through either page zero entry .SINX
or ,COSX as appropriate.
Return is to the next sequential location following the call,

ERROR CONDITIONS:
None,

CARRY AND REGISTERS:
ACOQ is saved; AC2, AC3, and Carry are destroyed.

LENGTH AND TIME:

Two ZREL and 65 octal NREL locations.
Average execution time on the NOVA 1200 is .9 ms,

-38-

SINE, COSINE (cont'd)

(Single Precision)

ALGORITHM:
Upon entry to ., COSX, m is subtracted from TT/Z, and
the sine logic is performed on this difference. If the original
argument input to ., SINX is negative, the result will be equal
to -SIN(m); negative arguments input to . COSX will be treated
as positive arguments, since COS(-m)=COS (m).

Upon entry to ., SINX the product of m and 2/r is calculated
by means of a call to . MPYU.

The heart of the SINE logic consists of the following
expansion:

SIN(%’T—)=m (Pg+m (P + m (Py +m Py))

with the following poiynomial coefficients:

Py= .15707 * 10
P| = -.64589)
P, =+.79434 * 10
Pg = -.43330 * 10

1

REFERENCE:
John F. Hart,"Computer Approximations', New York:
John Wiley & Sons, Inc., 1968; pages 116 and 117, INDEX 3300.

-39~

SINE, COSINE (cont'd)

(Single Precision)

PROGRAM LISTING:

s FIXED POINT

« TTTLFE
« ENT
«EXTD

e FREL

OAGAA-GRANAATL Y « SINX: SINK
AGAN ~ABAAAN Y «COSX: COSK
o NFFIL
ApAGRAY1 264001 CIOSX: SUR
AAAczl *1265200 SINX: SUBEL
AEGAPL Y A4H445 6 S5TA
AAGOHR Y AA4U45T sTa
AAAGAYAS54455 S5TA
gEaast11112n MO VL
AG6*125085 MOV
AAAAT 11 A2 MO V7
ANATG 126567 SURCL
AR " 44453 5TA
CER12'024437 Lha
AQAIR'AAENTPS J3Si
AAl1Aat1 25120 MO VEL
ArE15'141100 MO VL
A1 61525607 SUBCL
AAG1 7125120 MO L
AEACG*101100 MO\
AP 151100 ISRYM
AAAP2YN14436 NSz
AANP3*15142% INC
FAGA24°15122°2 MO VZE R
AAAL5* 1 ARG coM
AOAD A1 51032 MO VER#
ARADT I AARS 157
AAARA*111007 MOV
AR *A56432 STA
AGAZI2 105060 MOV
AGAARI N EENLS Jok

SINX

« STNK» o G0 SX
MPY U

. PQL.Y’

1515 5KP
1,1

15 5NFLG
Ay SAVA
35 KTURN
My 2
1515, 5NK
EFYs]

151
1,5IGN
15 ¢ 20VPT
R MPYl
151

oy 0

2,2

1,51

Gyl

252
SNFLG
252
2525 S%C0
My
PPy 37 C
ST EN
Dy 2

Py SHV2
M1

2 MPYU

-40-

SIN/ZCOS

3SET »IN/COS FLACG

3 SAVE INFUT

3 SAVE RETURN

3 CGET SIGN

sMAKE IT +VE IF COS5 ENTKY
3 SAVE STGEN

s GET 2/°P1

5ACH, 1 = ACLIxAC?

sPUSH OUT INTECEM PAERT
3AC2 TS5 INTEGER PART

3 SINE?

3NDL INCREMENT INTEGH
$JODD INTEGER PART?

3YFS, COMPLTIMENT FRACTION
30D INTRGER/ 27

3YES CHANGE S5IGN
FFRACTINN TN ACP

3 SAVE X

.
3

Kotk P

SINE, COSINE (cont'd)

(Single Precision)

SIN/COS PROGRAM LISTING (cont'd):

PAA34 111000 M0V 00
AOARS ' A27 41 6 LDA 75 SNCOF SACH POTINTS TO COFFF. s
AAGR6 ' A2441 4 1LDA 1,CFCNT 30KDER OF POLYNOMI AL
AGART G0 AR S JSk 0+ POLY 3 EVALUATE POLYNOMT AL
AON 40 ARG 403 LDA 2, 5AV2
ACC4] * A0 6FA2S JSk 3 MPYU
AAE42'151 220 MOVER 2,2
AGT 431 43020 ADDZK 2,0
AAALH 3D 4420 LDA 15 STGN
G451 05000 MOVER 1,1 5CET SIGN IN CARRY
AGG4E1052mm M0 Vi @s 1 SPUSH INTO RESUET
AOAAT H2GA41 S LDA 7y SOV $RESTORE INFUT ARGUMENT
AGHSH G241 1 JMP ORTUERN SRETUSN TO CALL+1
PUASIT121377 20VPI: 121377 32/PIC.505746 OCTAL, TLEAKED)
AQES2'AAAGAEA CFONT: 3
AAGSI ' AGAC54" SNCOF: o +1
BAAS4' 177562 -216 5 =0 0143233
BACGS5'ARSASI 5053 34779 4343
BAA56'126524 -51254 ;-. 6459901
OBAST ' 044420 44420 31.579791¢ADD 1 LATEF)
ARG 6AAAAZEE SNFLG: 0
ANCG 61 ' ARAGAG KTURKN: (4
G062 ABGARE 5aVA: 6
AP EI T ACFAAA SAVL: @
AAG64°AAAAAR SIGN: o

« END 5END OF SINX»COSX

-4] -

SORT

PURPOSE:

TITLE:

INPUT:

OUTPUT:

This routine sorts a table of pairs of words so that the
first words of the pairs are in ascending order.

The title is RSORT.

A table containing pairs of words; the firstword of each
pair, the key word, must be an unsigned integer. ACl must
contain the starting address of the table; AC2 must contain
the ending address of the table.

A table of pairs of words, sorted so that the key words are
in ascending order. The key word and its accompanying
data word are unchanged by the sort.

CALLING SEQUENCE AND ENTRY POINT:

Direct to RSORT with normal return to the instruction
following the call.

CARRY AND REGISTERS:

ACO, AC3, and Carry are destroyed; ACl and AC2 are
unchanged.

LENGTH AND TIME:

This routine consists of 127 (octal) words and is normally
relocatable. Execution time is approximately . 3 seconds
for a table containing 1000 pairs of words.

-42-

SORT (cont’d)

PROGRAM LISTING:

221 FSORT
3EJUTINEG 1D SHUFFLE A TARLE JF PATLS JF wJUbDS
350 THE FIRST wOhDS JUF (HE PATRSCKEY wIkDS)
FARE TN ALCENDING JRDEH.
3KEY wIRD=DATA wIhD PATRING LAFT ONCHANGED.

SHEY wWIRDS UNSTCENED TNTEGERS.

3CLIAD IN ACT SIARTING ADDRESS JF TARLE

SAND ADDRESE JF IHE LASE wJRD JF 1ARLY IN AR2)
JSE FESORT

FETURN

e we

sTYPTCAL TTYE: .

w
72
™
O
X
C
gl

17200 PaTis

«TTIHILE FsORT
e N T SR
] \‘l‘Fla

AARAA T ADALEM FSIET: DA s e SiAK $SET P SIACK PUINIER
AAAA " A 47 4 604 STa A, 51A4

AAAAD)2 (0 SURAR M Bl ATE A
AAAAR AL VLoe SO0 01 e Tst Wiad

AAANLY 256425 SN CFREINE Wit TR Bl By BN

AAAAS YA A4S 4 T 8= Siau

ARG ETAS52453 sia Py LIAK 3 SAVE HIGH PUINTER
AARAT Y 3527 MUV 1,3 30w R2OTNTED

AAA) AN RO L 450 Lna 1,02
ATV €777 aAND 351
ARy L1 32112 ADCL # 1,25 570
AL QYA L 47 Jmp SOKRT 6
AR L AS54447 STa 3, TEMP
AAAL S5 A254773 SORIP: LDA 1,753
AR €°123415 AND # 157, SNk sLJw KZY RIT 5K17
AAAL T ARA 407 JMP SIRIR 3N

AARPASADLL{ALD LDA 1,C2
AARA0L '] 30417 SuRr 1,2
AAALO A2 5777 LDA 1,MA,2
AAAOI 10341 4 AND # 1575 SZR sHIGH KeY RBIT SETD?
AAAP L AAA4L S JMP SJiT4 SY S ND LwhAR

AAADS* AHA 4237 STA Ay 1] 3 SAvE CoMPARTSON T
AAAD LV AD] 4737 LNa M Ns 3
AAA2T ' A2 5077 Lia 15752

N CuMPLETE?

e we s
~

ioLLiJw RPUINTER

DhoPr HIGH PIINTERN

e

3 SWAP KEY WORD-DATA WORD PAIRS

SORT (cont’d)

PROGRAM LISTING (cont’d):

AAA 3N A 41 A7
ARA 31 ' A45407
AAN 32121 471
A71333' 125771
AAA34T A 41N
ARN 35T A 45471
AAAR 6 APA LD 6
ANA37 ' 1P 4493
A 4701 37177
2741156414
A9A42*AAAT53
ANI43'171 222
ARN4£4° AAN 47 6
ABA LS5 A2441 6
AANL6' A 4735
ANA4T ' A3P 412
AANSA A3 4733
27751 '171121
ANAS52* 171117373
AAAS3' A2 6476
ABR54' A1 4495
AR 552136474
ABAS56" M1 44723
AA57 ' A1 4937

SORT4¢:

SIRTS:
SORT6:

ANFEA"ARBA 65" « STAK:

ARA 61 *AAAYAA
AA7 62 AAAAAL
AAA 63" ANARAN
MAAR 64" ANAARD

AAAN 42

STAK:
co:
TEMP:
RIT:

STAKA ¢

STA
STA
LDA
LDA
Sra
STA
LDA
L DA
4DD
SUR#
JmP
MOVER
JMP
1.DA
JSR
LDA
J Sk
MOVZL
MO VL
LDA
DSZ
LDA
DSZ
JMP

STAK?

A>3, 2
15753
d5153
15152
D212
151,23
A PIT
1-,CP
1,3

Ps 35 SAR
SORT2
MAs%s SEC
SOKRTS
1, TEMP
SURT1
2,8 5TAK
SORTI1
As @B s SKP
cryy
1,8STAK
STaK
3,2 STAK
STAK
Ms3

42

«END

s RECIVER COMPART SUN BT

sRUMP LUw PUINTER

3 5CAN JOVER?

sNJs» CONTINUE

sALL BIT POSITIONS COVERED?
3YES

sNO»NZXT BIT

5END OF KADIX EXCHANGE SURT

H T NI, n 'atanl
Unsigned SQUARE ROOT

(Single Precision)

PURPOSE:
This routine calculates the square root of an unsigned single
precision integer,
TITLE:
ISQRT
ENTRY:
. ISQR
INPUT:
An unsigned fixed point number is input in ACO.
OUTPUT:

The square root of the input, truncated to the nearest
integer, is output as an integer in ACI, Accuracy is to
within one binary digit.

CALLING SEQUENCE AND ENTRY FOINT:
Indirect through page zero entry . ISQR with return to
the next sequential instruction following the call,

ERROR CONDITIONS:
There are no error conditions, All input values are
acceptable as unsigned integers,

CARRY AND REGISTERS:
ACO, AC2, AC3, and Carry are destroyed,

LENGTH AND TIME:
This routine consists of 1 ZREL and 24 octal NREL
locations. Average execution time is 82, 4 us on both
the Supernova and Nova 800, and 153 jus on the Nova 1200.
Average execution time on the Supernova SC is 60. 5 Hs.

ALGORITHM;:
One of three different algorithms is usually selected when
extracting a square root: the sum of odd integers method,
Newton's iterative method of successive approximations,
and the longhand partial quotient procedure, The partial
quotient procedure was selected for this subroutine,

‘The partial quotient method of square root extraction

is the same as the pencil-and-paper procedure commonly
used to extract square roots of decimal numbers. In
this method the number n whose root is to be extracted,
is first paired off in groupings of two digits each

(no nj, etc,)

=45«

Unsigned SQUARE ROOT (cont’d)

(Single Precision)

ALGORITHM (cont'd) :

— N

~ /26 0
\
n

n, 1
The largest integer root less than or cqual to the

exact root of n(y is selected, qq and becomes the most
significant digit of the extracted root. qyis squarcd

and is subtracted from the first pair, yiclding remainder r.

a0

|5 & en
o
B

[—
o

—la
Tr

0

d)

rois multiplied by 100 and is added to n}, forming a new
partial dividend, dj (the first partial dividend, dgequaled ng,
the first pair of digits). dy is divided by 20 * qg+ q;, Where
q) is the largest possible integer such that q; * (20*qy+ qy)
Edl. The process is repeated with each partial dividend until
all digits in n have been processed.

49 /ql
\
51
26 01

(20*qgtq)) Y 25
G101
101

9

The subroutine algorithm is similar to that described above,
but is modified to process 16-bit unsigned binary numbers
instead of real decimal numbers. The subroutine considers
n as 8 pairs of binary digits and repeats its procedure

8 times,

-46 -

Unsigned SQUARE ROOT (cont’d)

(Single Precision)
ALGORITHM (cont'd):

This algorithm was selected since its use results in the most
efficient coding and fastest execution time for the complete
range of permissible input values for all Mova family
machines.

The sum of odd integers method given in "How to Use the
Nova Computers" yields more efficient coding and faster
execution times when input arguments are no greater than
100010, Over the whole range of permissible inputs
however, its average execution time is 412 ps on the

Supernova.

Newton's method requires either the use of hardware
divide or the softwarc divide subroutines, and its
average execution time over the entire permissible
range of inputs is 114 ps on the Supernova (with
hardware divide),

REFERENCE:
Section 2,2 of "How to Use the Nova Computers” contains
a discussion of the sum of odd integers method of square
root extraction.

-47-

Unsigned SQUARE ROOT (cont’ d)

(Single Precision)

' PROGRAM LISTING:

Al I S50K1

$ CALLING SeQUENCE:
3 JSK Be 1 SOKI
H RETURN LOCATIUN
I TLE TSOKT
o ENT I SUK
« ZREL
RIIAY=-0B200N2° « ISOK: 1Sart
oNKEL
PAANAOBIAAM RTRN: 5/ s RKETURN ADDRESS
ARND1 A0 COUNT: @ 5COUNTING LUCATION
ABBY2° 054776 T50Kk1I: STA 3syRITKN 3SAVE KEITURN ADDRESS
BANN3 V24429 LDA 1,CR 3SET UP COUNL &
ANV 4°A44775 sSTA 15CUUNI
ABUNS* 126499 SUB 151 35 CLEAR PARTIAL QUUOTIENT
PNOD6T 152400 SUR 252 3AND REMAINDEK
poRRT*101128 1501 MOVEL D0 $ADD (NEXT) HIGHEST
A2016° 151100 MOVL 2,2 3TwO BITS UF ARGe. 10
NRB11°191120 MOVZL Ds 3FOUK TIMES PARTIAL KEMAINDER
aa12° 151180 MOVL 2,52 310 GET NiEw PAxTIAL DIVIDEND
MPR13*1351249 MUOVEL 1,3 SNEW QUIOTTENT Ts TwWICKE THE OLD ONE
APB14° 175149 MOVOL 3,3 5IF TWICE NEw QUOTIENT+1 (DIVISOK)
PAN1S* 172432 SUBFA# 3525S#C 31S EGUAL 13 JRK LESS 1HAN
AIN16° 172420 SUBZ 3,2 3THE DIVIDEND, INCREMENT
BAB17'125100 MOVL 151 3RQUUTIENT AND SUBTRACT
nuueatal1 4761 DS#E CUUNT sDIVISOR FROM DIVIDEND
N3B21'AV2766 JMP 1501 310 GET NEw REMAINDEK
pape2' Bnu2156 JMP BRTRN 3AND KEPEAT 7 MORE TIMES
20230080010 CR: 10 SEIGHT
«lEND SEND OF SERTCINTEGERK)
pOPe TSART
c8 pona23" 1719 1737
COUNT 220001 1717 1720 1/33
1501 nAovAT" 1724 1734
ISQRT popop2’ 1714 1718
RTRN plolalulo)i 1716 1718 1/35
«I1SAKR 200030 - 1/14

5 SQUARE RUJ I

S INTEGEK
30UTPUT:
SINTEGER
SREGISTE

OF AN UNDSIGNED INIEGEKR
AKQUMENT IN ACY
SCUARE KOUOT TRUNCATED
KETURNED IN ACI

KS AND CAKRY DESTROYED

P NeEAKES]

Unsigned SQUARE ROOT

(Double Precision)

PURPOSE:
This routine calculates the square root of an unsigned
double precision integer, and expresses the result as a
truncated single precision integer.

TITLE:
DISQR

INPUT:
An unsigned double precision fixed point number is input
in ACO and ACI (more significant half in ACO).

OUTPUT

The square root of the input, truncated to the nearest integer,
is output as an integer in AC2, Accuracy is to within one

hinarv dicit
bmary cigit,

CALLING SEQUENCE AND ENTRY POINT:
Indirect through page zero entry .DISQ with return to the
next sequential instruction following the call.

ERROR CONDITIONS:
There are no error conditions, All input values are
acceptable as unsigned integers.

CARRY AND REGISTERS:
ACO, ACIl, AC3, and Carry are destroyed.

LENGTH AND TIME:
This routine consists of 1 ZREL and 16 octal NREL
locations. Average execution time on the Nova 1200 with

software divide is 6 ms.

ot
3]

ALGORITHM:
Initially a trial square root of 177777 octal is assumed. An
integer division of the input argument by this trial square root
is then performed, and the arithmetic mean of this quotient and
the trial root is calculated, yielding a new trial root., The
process of dividing the new trial root by the input argument
continues until the new root differs by less than two from the
next most recent trial root,

-49«

Unsigned SQUARE ROOT (cont'd)
(Double Precision)

PROGRAM LISTING:

oocC1 DISER
3ECUAPE FOOT CF o piv UNEICHEL TWO WOFRDL LG THCLED
SINPUT INTEGEP 1L ACO, 1]
JEESULT (TPUNCATED TC WEATEST DINLTRCER 1l ACE
S ACCUMULATCDRS AL CAFERY LOST

s CALLINC GECUREKCE:
------- (LCeD I2TFCEY I ACO £010 £CD)
JET g 7170

PESULT LCCATICH

Mo e e We G e

JPANCE OF APGUMENT O TL (Zxx1&-1)k%E

SHNC EFROR MESSACES

; SUPRCRTING PCUTINE VD

SCUNSICGNED SINGLE PRECISICH INTEGED LDIVIDED

«.TITLE CLISGF

CENT LTIE0

« EXTN CUL
0Co00-00CCC2T IS DISCF
0COOC'CCCO00 INTGO: 0

00001 'CCCCCO INTGl: O
00CCz*'CCCCO0 PTRN: &

QCOCZE'0E4777 DISCE: STA 3, FRTEN 3 SAVE DETURN ADLDFESS
0CCC4a'04a0T774 STA 0,INTGC J8AVE HICK VCYLD
Q00CS'0L4774 STA 1,INTGI1 s AND LGY T~

TF P

SN O
0G6CCée'152000 ADC 2,2 H POCT SET 177777CJCTAL)
gceoc7'020771 pIsel: LDA 0, INTGO
CCcCcl10'024771 LDA 1,INTGI H
occl11t"177777 VD H
oco12'133220 ALDZF 1,2 H

APCUMEN

DE IT EY TPIAL FOCT

THE MEAN CF QUOTIENT AND
L BOCT TC IKPRECVE ROOT
F NEY ®OCT LIFFERS BY LESS
HUAN TUC FrOM QUOTIENT», RETURN

D
_a

O0CG13'146654 SUBOR# 2,1,5ZT
0CC14°'000772 JIMP Cisel
00015'002765 JMP @FTEN

«END 5END OF S0UAFPE PCOCT OF INTEGEFR

SUBTRACTION

(Double Precision)

PURPOSE:
This routine computes the difference of two double precision
two's complement integers.

TITLE:
The title is , DSUB.

INPUT:
The minuend is passed in AC0O, ACl, (high order, low order).
The subtrahend must be in two consecutive memory words,
higher order followed by lower order. The word following
the JSR should contain the address of the higher order
word of the subtrahend.

OUTPUT:

The daubie precision difference is returned in AC0, ACI
(high order, low order).

CALLING SEQUENCE AND ENTRY POINT:
Indirect to . DSUB followed by the address of higher order
word of subtrahend. Return will be to the instruction
following the address parameter,

ERROR CONDITIONS:
Caution: No check is made for overflow.

CARRY AND REGISTERS: :
ACO, ACIl, AC3, and Carry are destroyed; AC2 remain
unchanged.

LENGTH AND TIME:
This routine is 15 (octal) words and is normally relocatable,
Execution time is 54.9 us.)

CHANGES FROM REVISION 2 TO REVISION 3 OF THE RELOCATABLE MATH

LIBRARY FILE MANUAL

Substantive changes are described in the following list, Typographical corrections
are not included,

Page 19

Page 30

Page 42

Signed double precision division is now performed by the routine DMPY,

Signed double precision multiplication is now performed by the routine
DDIV. The descriptions of DDIV and DMPY (page 19) replace that of

. DPMD,

A description of RSORT, which sorts pairs of words in ascending order,

has been added.

Some character conversion routines now require a "get a character"
and/or "put a character" routine whose address must be stored in ZREL
locations , GTCH and , PTCH, respectively. This change is reflected in

the following pages: 12, 13, 15, 16, and 17.

. cut along dotted line

DATA GENERAL CORPORATION
PROGRAMMING DOCUMENTATION
REMARKS FORM

DOCUMENT TITLE

DOCUMENT NUMBER (lower righthand corner of title page)

TAPE NUMBER (if applicable)

Specific Comments, List specific comments. Reference page numbers when

applicable. Label each comment as an addition, deletion, change or error
if applicable.

General Comments and Suggestions for Improvement of the Publication,

FROM: Name: Date:

Title:
Company:
Address:

FOLD DOWN FIRST FOLD DOWN

) g e e e EE SR e S e SR e ey G G Gl P R EE e S D G G e M D R P S G0 AS Em G OE (M A e N ED ED e G G e s G G WP MR N N G SR D SR SR W S G Am G Gm G G SR G S S SN SN S RS PR e e e T e S B D D R OU W SR G4 R U OB RS @

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Mailed In The United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Programming Documentation
FOLD UP SECOND FOLD UP

STAPLE

	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	replyA
	replyB

