DATA GENERAL
CORPORATION

Southboro,

Massachusetts 01772
(617) 485-9100

PROGRAM

Debug 111 User’s Manual

TAPES

Binary: 089-000030

ABSTRACT

Debug I11 is a routine used for symbolic debugging of user programs.

Copyright (C) Data General Corp., 1970 093 -000044 -00

CONTENTS

Introduction

Operation

Command Format

Symbols and Conventions

User Typing Errors

Command Summary

Opening, Modifying and Closing Memory Registers
Opening, Modifying and Closing Disk Registers
Punch Commands

Search Commands

Setting and Deleting Breakpoints

Entering and Leaving the Debugger Via Breakpoints
Examining and Setting Special Registers

Starting and Restarting a Program

Removing and Restoring User Symbols

Conversion Mode Commands

Error Responses

APPENDIX A Loading and Use of Relocatable and
Absolute Versions of DEBUG 11

12, 13
14, 15
16
17

19

20-23

INTRODUCTION

The NOVA symbolic debugger, DEBUG 111, is a program that interfaces with user
routines as an aid in debugging. DEBUG 111 provides for up to 8 active breakpoints
within the user’s routines, The accumulators, Carry, and memory can be examined
and modified from the teletype after a breakpoint has occurred. The machine state
can be monitored during execution of a routine using simple commands to the debug-
ger from the teletype. The Debugger interfaces with any NOVA routine, including
those using the NOVA interrupt structure. The Debugger can also be used to punch
ranges of memory in binary format acceptable as input to the Binary Loader,

The following versions of DEBUG 111 are available:
1. Relocatable - No Disk Operating System

DEBUG 111 uses a pointer to the user symbol table, placed by the loader in location 44.
Disks are optional. The version can be used with any NOVA or SUPERNOVA config-
uration but 8K is recommended to insure that the debugger, user program, and
symbol table can all be loaded. This version is described in full in the manual,

2. Relocatable - Disk Operating System
DEBUG I11 uses a symbol pointer contained in the user status area. Certain features
of version 1 are unnecessary. These include all disk commands, all punch commands,

and the register commands $T and $I. Any NOVA or SUPERNOVA configuration having
the Disk Operating System can be used.

3. Absolute - No Disk Operating System

DEBUG 111 can be used without symbolic debugging features with any NOVA or
SUPERNOVA. Use of disks is optional. Absolute addresses replace symbolic input
and output.

Instructions for loading the various DEBUG 111 versions are given in the APPENDIX.

OPERATION

DEBUGIII is loaded into memory with a user program or programs. DEBUGIII
can be loaded before or after the user program. In the relocatable, non-DOS
DEBUG I1I described in this manual, DEBUG I11 starts at location 400 if loaded
before the user program and can be restarted from that point if control is lost
during the testng process. Loading instructions for this and other versions of
DEBUG I1I are given in the APPENDIX.

To use symbolic addressing when debugging, the user program must contain at
least one user symbol. User symbols are made known to the debugger by issuing
the command:
name%
where: name is the title given the user program via the . TITL pseudo-op.

The command can be issued as soon as the debugger and user program are loaded.

COMMAND FORMAT

Commands to DEBUG 111 have one of the following formats:
<
Sc
argdc
where: command ¢ is a single teletype code
argument arg may be null, a digit, an address, or
an expression.
$ is the mode change character. (Press ESC Key or
Shift 4 on the teletypewriter for this symbol.)
Expressions have the form:
where: each X is some symbol, octal number; or decimal number

+ and - are addition and subtraction.

Commands begin at the first character position on the teletype line,

SYMBOLS AND CONVENTIONS

SYMBOL MEANING

+ addition

- subtraction

(Space) separates instruction fields

s separates instruction fields

adds 10 (used with a source-
destination accumulator
instruction)

@ adds 100000 to data and

adds 2000 to an instruction

" delimits beginning and end
of a one character string;
delimits beginning and,
optionally, the end of a
two-character string.

can be used as first charac-
ter of a user symbol

terminates a decimal number

can be used to represent
current location. In the ex-
ample, AA is the current
location symbol and the
commands AA/ and . / produce
identical results, The JMP
instruction causes a transfer
to the current location plus 2

EXAMPLE

NEXT+SUM+1
SUM2-SUM1

LDA 000

LDA 0,0,0,

ADCZ# 0 1 SZC= 106032

D s ‘«..Vm-—!
command response

@= 100000

LDA 0 @ 0= 022000,

command response

” an
n abn
1 ab
. PR2
-5.

AA/ NECOO
./ NEGOO

JMP .42

SYMBOLS AND CONVENTIONS (cont'd.)

SYMBOL

4

USER TYPING ERRORS

MEANING

conventional representation for
pressing carriage RETURN key.
This closes a memory register
after examination and possible
modification

conventional representation
for pressing LINE FEED key
This closes a memory register
after examination and possible
modification and opens the next
consecutive register

conventional representation for
the ESC key (although the $
symbol may be typed.) $ signals
a mode change in a command.

symbol used to close a8 memory
register after examination and
possible modification and open
the previous register

EXAMPLE

AA/ NEGDGNEGlﬁ

AA/ NEG1 IJ
AA+1/1LDA O .FDZIJ
AA+2/STA 1 .FD10

$S
$L

AA+2/STA 1 FD10 4
AA+1/LDA O -FD21

The user can kill an incorrect command oxr typing error by pressing the RUBOUT key.

COMMAND SUMMARY

The Symbolic Debugger provides extensive facilities for examining and modifying

program status.

COMMAND

L |

~?u-

gwop

t

£

adr/

R AL |5

name %

$K
njK
sym$K

$5

adrys
adr<§S
adrl<adr2$S

The summary below indicates available commands.

Print last typed quantity in numeric form.
Print last typed quantity in symbols,

Print last typed quantity in instruction form.
Print last typed quantity in half-word form.
Print last typed quantity in ASCII form.

Print subsequent quantities in numeric form.
Print subsequent quantities in user symbol form.,
Print subsequent quantities in instruction form.
Print subsequent quantities in half -word form.
Print subsequent quantities in ASCII form.

Open register adr and type contents.
Open register adr,

Close open register.

Close open register and open next.
Close open register and open previous.

Enable symbols in program name.

Kill all user symbols.

Kill local user symbols. n is single digit.
Kill user symbol sym.

Search all memory
Search memory from location 0 to location adr.

PAGE WHERE

DESCRIBED

18
18
18
18
18

18
18
18

NN N

2, 17

17
17

10
10

Search memory from location adr to 077777 inclusive. 10
Search memory from location adrl to adr2 inclusive. 10

Punch 10 decimal inches blank tape.

Punch n (octal or decimal) inches blank tape.
Punch end block on tape.

Punch end block with transfer point adr.

Punch binary mape from location adrl to adr2 inclusive.

O ND ND ND D

PAGE WHERE

COMMAND SUMMARY (cont'd.) DESCRIBED
§T Open TTI done register, 15
$C Open Carry and TTO done register, 15
31 Cpen interrupt register. 15
njA Open accumulator register n. (n= 0-3). 14
n$Q Open break proceed counter o, (n=0-7). 12
$B Print locations of all user program breakpoints. 11
adr$B Insert breakpoint at location adr., 11
$D Delete all breakpoints, 11
n$D Delete breakpoint n. (n=0-7). 11
$P Proceed from current breakpoint with break ,
proceed counter set at +1. ‘ 12
n$P Proceed from current breakpoint with break
proceed counter set at o 12
adr$0 Activate disk block with address adr, 8
n) Open disk register n. of currently active disk block. 8
n(Open and print disk register n of currently active disk
block. 8
$A Print all accumulator register contents. 14
$M Open mask register, 14
W Open word register. 14
$L Open location register. 14
$N Open numbers register. 14
$H Open high/low punch register. 9
R Restart program at address in location register. 16
sym $R Restart program at address sym. 16
$G Restart program at address in location 16
register; set C(AC3) to address of Debugger. 16
sym$G Restart program at address sym; 16
set C(AC3) to address of Debugger. 16

- OPENING, MODIFYING, AND CLOSING MEMORY REGISTERS

FORMAT MEANING

adr! Open register adr.
adx/ Open register adr and print contents.
< Close most recently opened register.
<j> Close most recently opened register and open the succeeding register.
4 Close most recently opened register and open the previous register,
NOTES: When a register is opened and a command is given that does not reference
the register, the register is automatically closed. If $ is typed with a
register open, the error message ? will be printed. / or ! remain in
effect until changed when opening and closing registers repetitively
using and
EXAMPLES:
ABCI «Open register ABC,
ABC/ADD 0 1 +—Register ABC is opened and contents printed.

AA/ADD 0 0 SZC SUB O,b
Register AA is opened, modified and closed.

AA/ADD 0 0 SZC SUB 0 0
ADD+1 LDA 3 -13 (j'

Register AA is opened, modified, and closed. The next location is opened and its
contents printed (/ remains in effect during chained openings unless altered.)

AA/ADD 0 0 SZC SUB 0, of
A STA 0 TR

Register AA is opened, modified and closed. The previous location, A, is opened and
its contents printed.

AA/ADD 00 S2C J’ =-Series of openings and closings of sequential registers.
AA+1 LDA 3 -1 3

AA+2 JMP BB A

AA+1LDA 3 -13 Q)

AA/JMP BB/ADD 0 0 "The second / closes register AA unmodified and opens a
o register via the 15-bit C(AA).

AA/TMP BB = 000423 «—Register AA is still open.

AA/JMP BB. = 003000 -—Register is closed by .= The value of address {AA) is 3000.
-7

OPENING, MODIFYING AND CLOSING DISK REGISTERS

Where a disk is used, locations in a disk block can be examined and modified in a manner
similar to memory locations. A disk may have up to 2000g blocks (0 to 1777g).

A block contains 400g locations. Activating a given block deactivates a previously active
block.

FORMAT MEANING

sym $0 Activate a disk block with name sym,where sym is numeric (0 to 1777g)
or symbolic.
adr (Open active disk register adr and print contents. adr may be symbolic,

octal (0-377), or decimal.

adr) Open active disk register adr.
4) Close active disk block register.
J Close active disk block register and open succeeding register,
% Close active disk block register and open previous register.
NOTES: The Q) jand % commands are used in the same way as when

closing memory registers.

These commands are not nceded when using DEBUG 111 with the
Disk Operating System.

EXAMPLES

130 “j . «activate disk block 1
 RAD(LDA OUSE _Jj =open and print register RAD
' RAD+1 ADD 073 sZR?T

RAD LDA 0 USE

0$0 “activate disk block 0;
deactivate disk block 1

PUNCH COMMANDS

FORMAT

$H

$F
n$F
$E

adr§E

adr1<adr2sP

NOTES:

EXAMPLES:

MEANING

Open and print contents of high/low register. Zeroes in the register mean
the teletype punch; otherwise, the high-speed punch is meant.

Punch 10 decimal inches blank tape.
Punch n (octal or decimal) inches blank tape.
Punch an end block on the tape and halt, (Used only with teletype punch.)

Punch an end block on tape with transfer to location adr when the tape is read
in by the binary or relocatable loader.

Punch in binary from address adrl to adr2.
Any $P command that does not contain the <symbol will be interpreted as a

break proceed command. (see page 12). The DEBUG III version used with
the Disk Operating System does not have punch commands.

$H 177777 <high-speed punch in effect.

40. $F <punch 40 decimal inches blank tape.

LTT<BRRS$P <—binary punch from location LTT to BRR.

LTTS$E <punch end block and set binary loader to start at LTT.
S0$F <—punch 40 decimal inches blank tape.

When using the teletype punch, ($H contains 0), the user must stop and
start the punch to prevent debugging commands from being punched as shown:

$H 000000 «teletype punch in effect

$F =-punch 10 decimal inches blank tape. User then presses
ON button on teletype and presses CONTINUE on
operator panel.

When punch stops, user presses OFF on teletype punch, presses
CONTINUE on operator panel.

- X<X3$P <—punch from . X to X3. User presses OFF on the TTY
and CONTINUE.
- X$E <punch end block and set start for . X when tape is

read in. User presses ON on the TTY and CONTINUE,

When punch stops, user presses OFF on the TTY and
CONTINUE.

8. $F «—punch 8 decimal inches of blank tape. User presces
ON on the TTY and CONTINUE.

When punch stops, user presses OFF on the TTY and
CONTINUE.

-0~

SEARCH COMMANDS

FORMAT

MEANING

s
adr$s
adr <5
adrl<adr2$S

NOTES:

EXAMPLES:

Search from location O to location 77777.

Search from location 0 to adr.

Search from location adr to 77777.

Search from location adri to adr2.

Current contents of the word and mask registers determine contents
searched for. See page 14. Pressing any teletype key will cause a

search to abort.

If the current contents of the word register = LDA 1, FIELD and current
contents of the mask register = -1, then:

$S <~might produce a response:
FIE ILDA 1 FIELD
FIEZ LDA 1 FIELD
FIE3 LDA 1 FIELD

FIE3-DIMS$S -might produce a response:

FIE LDA 1 FIELD
FIE2 LDA 1 FIELD

FIE2-2<G5 -—might produce a response:

FIE2 LDA 1 FIELD
FIE3 LDA 1 FIELD

FIE2<FIE3HSYNES -might produce a response:

FIE2 LDA 1 FIELD
FIE3 LDA 1 FIELD

If the current contents of the word register = FIELD and the contents of
the mask register = 000377, then:

3S <might produce a response:
FIE LDA 1 FIELD

FIE2 LDA 1 FIELD

FOO ADDZR# 01 5ZC <—match on right 8 bits
FIE3 LDA 1 FIELD

~-10-

ITTING AND DELETING BREAKPOINTS

‘he user can set up to eight breakpoints in his program. When a breakpoint is encountered
during execution, the breakpoint causes a transfer to the Debugger before the instruction
at which it is set is executed, In effect, the setting of the breakpoint causes the program
instruction to be transferred to the Debugger and a JMP instruction to the Debugger to be
substituted in the user program,

Registers 10 to 17 are reserved for the eight debugger breakpoints. Any attempt to place
other information in these locations and then execute will wipe out the user program,
Breakpoint numbers are assigned in reverse numeric order: 76 5...0.

FORMAT MEANING

$B Print locations of all breakpoints.

adr$B Set a breakpoint at location adr.

$D Delete all breakpoints.

n$D Delete Breakpointn wheren=76...0.
NOTES: See page 12 to resume execution after a break,

Breakpoints should not be set at the following types of locations:

Data words or words used as indirect pointers.

Instructions meodified during execution.

Instructions that enable and disable interrupts.

Locations where interrupts cannot be delayed for relatively long time.
5, Locations which test interrupt status.

e O RO
e o

&

EXAMPLES:

$B <—command to print out existing breakpoints.
78 TT <Tesponse

6B TT2

5B TT3

TT45B «~—command to set a new breakpoint,
$B

78 TT

68 TT2

58 TT3

4B TT4

6$D ~—command to delete breakpoint 6.
$B

78 TT

5B TT3

4B 'TT4

-11-

ENTERING AND LEAVING THE DEBUGGER VIA BREAKPOINTS

A user can set a breakpoint at a given instruction in his program, as described on page 9.
Breaks are not visible to the user unless the STOP and EXAMINE switches on the operator’s
panel are set. During program execution a transfer is made to the Debugger when the
breakpoint is encountered, The instruction at which the breakpoint is set is not executed.
The Debugger prints the breakpoint number, the instruction address, and current status

of the accumulators.

When the user has completed debugging and wishes to restart execution, he issues a §P or
n$P command. Execution resumes with the breakpoint instruction. The user, in resuming

execution, can set the number of times the instruction at which the break occurred will be
executed before the debugger is to be reentered.

FORMAT MEANING

$P Set break proceed counter to +1 and proceed with execution from current
break. Command $P is equivalent to 13P.

n$P Set break proceed counter to n, where n is the number to times the
instruction will execute before a transfer to the debugger occurs; proceed
with execution,

n$Q Open break proceed counter n, where n is 0-7, and print contents.

EXAMPLE: Suppose a user program contains three breakpoints at symbolic locations
ATOM1, ATDIG, and ATOM2. A partial listing might be:

00011-006201-ATOM1: CALL ;ACO WILL CONTAIN THE
00012-000052- CHAR ;INPUT CHARACTER.
00013-024000- LDA 1, C72

00014 -106032 ADCZ#0, 1, SZC

00015-024001 - LDA 1, M60

00016 -107046 ADDO 0, 1,SEZ ;IS IT A DIGIT?
00017-000417 JMP ATOM2 ;NO

00020-045407 ATDIG: STA 1, ATEM, 3 ;SAVE THE DIGIT.
00021-024002- LDA 1, C12

00022-045402 STA 1, NUMB+1, 3

00023-021403 LDA 0, NUMB+2, 3 ;FORM A NUMBER

00024 -025404 LDA 1, NUMB+3,3 ;FROM THE STRING OF DIGITS.
00025-006201 - CALL

00026 -000621 DMPY ; MULTIPLY PREVIOUS
00027-000001 NUMB ;NUMBER BY 10.

-12-

ENTERING AND LEAVING THE DEBUGGER VIA BREAKPOINTS (cont'd.)

®

00035-000754 JMP ATOM1 |
00036-024003-ATOM2: LDA 1, C133 ;IS THE CHARACTER IN
00027-106022 ADCZ#0, 1, SZ2C ;ACO A LETTER?
00040-024004 - LDA 1,M100

Presume the user is in the Debugger. He prints out his breakpoints and his current
location:

$B

7B ATOM1
6B ATDIG
5B ATOM2

. /ATOM+6 JMP ATOM2
ATDIGHS$R

5B ATOM2 —Debugger prints status information
0 000000 1 000000 2 001461 3 001522

5$Q 000001 : T <«break proceed counter 5 is at 1.
6$Q 000007 . T <break proceed counter 6 is at 7.

$P —execution resumed

5B ATOM2

0 000001 1 000000 2 001461 3 001522
C(ACO) set to 1 by single loop through breakpoint 5.

100%P —c¢xecute. looping through breakpoint
. 100 times.
5B ATOM2
0 000101 1 000000 2 001461 3 001522
C(ACO) set to 101 by 100 (+1) loops through breakpoint 5.

-13-

EXAMINING AND SETTING SPECIAL REGISTERS

Registers that are used for special purposes and are not accessed in sequential order are:

Accumulators 0 to 3.

Word register which can be loaded with information for searching.

Mask register which can be used to mask all or part of the word to be searched for.

Numbers register which determines whether numbers in the special registers will be

interpreted as decimal or octal.

Location register which contains a starting location set by the user.

FORMAT
$A

nA

$W

$M

$N

$L
NOTE:

EXAMPLES:

MEANING

Print contents of the four accumulators.

Open accumulator n (n = 0 to 3).

Open word register and print contents,

Open mask register and print contents.

Open numbers register and print contents.

Open location register and print contents.

Other special registers zrc . the interrupt register, the Carry and
TTO-done register, and the TTI-done register, described on page 15.

$N 000000 —numbers register contains all zeroes (octal)

$A 0 000100 1 000040 2 000011 3 000017
Number of the register is printed followed by the contents, given in
octal.

2$A 000011 000015
AC2 is opened, contents altered to 000015, and then closed.

$N 000000 1
$A 0 +80. 1 +32. 2 +9.

-—user puts 1 in numbers register.
3 +15.

$N 000000 0 —numbers register modified to zero.

$W 000000 NEG «—NE G loaded into word register.

$M 000000-1 —mask register loaded to permit search
on NEG with any instruction field format.

$S «—a search will cause printout of all NEG
instructdons.

$L 000071 -—contents of location register checked

$R before resuming execution at that location.

-14 -

EXAMINING AND SETTING SPECIAL REGISTERS (cont'd.)

There are three other special registers:

Interrupt register contains the status of Interrupt Enable. The register is set to -1 if
interrupts are enabled when the Debugger is entered. Otherwise the register is all zeroes.

Teletype Input register contains the status of teletype input. Bit 0 is set to 1 if teletype
input is not done. The register contains the character if teletype input is done.

Carry and Teletype Output register contzins the current state of the carry flag and status

of teletype output,

is done.

FORMAT

NOTE:

EXAMPLES:

A

AMOD:

BMOD:

Bit O is set to 1 if the carry flag is 1; bit 15 is set to 1 if teletype output

MEANING

Open and print contents of interrupt register.

Open and print contents of teletype input register.

Open and print contents of carry and teletype output register,

The DEBUG 111 version used with the Disk Operating System does not
have $T and $I commands.

USER CODE REGISTER STATUS WHEN DEBUG ENTERED

SKPDN TTI
JMP . -1
JMP DEBUG $T 000101

SKPDN TTI

JMP -1

DIAC 0 TTI

JMP DEBUG $T 100000

ADCO0O
DOAS 0 TTO
JMP DEBUG $C 000600

ADC 00

DOAS 0 TTO

SKPDN TTO

IMP . -1

JMP DEBUG $C 000001

-15-

STARTING AND RESTARTING A PROGRAM

Four commands are available for starting and restarting 2 user program at a location
other than a breakpoint.

Two of the commands simply give a starting location. The other two commands provide
that AC3 will contain the address of the debugger at restart time, so that a return is made
to the debugger if an instruction points to C(AC3).

FORMAT MEANING
$R Restart program at address given in location registexr, C($L)
sym $R Restart program at address given by sym.
$G Restart program at C($L); set C(AC3) to address of debugger.
sym $G Restart program at address given by sym; set C(AC3) to address of
debugger.
EXAMPLES:
$L 000261 -—contents of location counter checked
$R and user program restarted at that point.
7B BQ «after a break, user restarts his program
at a location different from the breakpoint.
TOP$R -~restart program at TOF,
USE4$G <user restarts program at a different location

and sets the Debugger location in AC3.

16-

REMOVING AND RESTORING USER SYMBOLS

The symbol tables of the assembled programs loaded with the Debugger contain the user
symbols known to the Debugger. These are the local symbols - those known only in a
single assembled program - and the global symbols known throughout the loaded programs.

FORMAT MEANING

$K Remove 2ll symbols (local and global) from input and output.
Absolute values are used instead,

ngK Remove all local symbols from output but retain global symbols.
Absolute values are used instead of local symbols. 1 is any

single digit.

sym $K Remove the user symbol named sym permanently from output.
The user symbol having a value closest to sym is used instead.

name% Restore to output all user symbols previously removed from the
program named name by n$K commands.

NOTE: Symbols are removed from output by the n$K, and sym $K commands
but may still be used on input,

EXAMPLES: Suppose that a program given the title XX by the . TITL pseudo-op
contains symbols C72 JFD40 and T2, Then:

505/LDA 1 C72 -In this example, each dme a symbol is
C728K removed, the Debugger substitutes the
505/LDA 1 FD40+7 closest symbol with appropriate offset.

- FD40$K When all local symbols are removed by a
. /LDA 1 T2+23 1$K command, an absolute value is sub-
13K stituted, The command XX% restores all
. /LDA 1450 symbols not permanently removed from

XX% output.
505/LDA 1 T2+23

-17-

CONVERSION MODE COMMANDS

There are five different formats in which information may be printed out, and a symbol is

associated with each format,

Formats of most utility to the user are the instruction, user

symbol, and numeric formats.

FORMAT

s
-

$=
$
$
$4-
g

NOTE:

EXAMPLES:

MEANING

Print last quantity in numeric format,

Print last quantity in user symbols. Where user symbols exist,
symbols are used.

Print last quantity in instruction format,
Print last quantity in half -word format.

Print last quantity ASCII characters. (The symbol is an apostrophe
or an accent acute,)

Print information following in numeric format.

Print information following in user symbol format.

Print information following in instruction format.

Print information following in half-word format.

Print information following in ASCII format.

The default format for instructions is instruction format; the default

format for accumulator and other special register contents is numeric.

INIT/JMP ABC :BUFF+3 =00077/ ;JMP ABC =1 370 '<I><370>

The instruction at location INIT is printed out in default instruction format.
Then in each subsequent conversion, the quantity printed last is converted to
the requested format.

ATI/JSR @ .SAVE -—print instruction at location ATI (default instruction
format)

$: <—change to user symbol format

. /CALL J —print current location

ATH- CHAR j and next two locations in user

ATIH2 24050 “J symbol format

$= <—change to numeric format

. /17551 000252 J <—print current location and next three locations in

17552 017550 J ~ numeric format

17553 016635

17554 006331 ~e;j

-18-~

ERROR RESPONSES

The debugger uses the following two error responses:

SYMBOL MEANING EXAMPLES
U Unidentified symbol 1400+SST/U

(where SST is not found)
./LDA 1 FDF LDA 1 FFU
(attempt to substitute

unidentified symbol FF for
user symbol FDF.)

? Do not understand; ADD@?
command attempt -13R?
aborted,

{in each case the command
is improperly terminated,

contains a given symbol in
an illegal position, etc.)

AB$RBR?
(an attempt to set a
breakpoint at location AB

when there are already 8
breakpoints set.)

-19-

APPENDIX
LOADING AND USE OF SYMBOLIC AND ABSOLUTE VERSIONS OF DEBUGIII

1. Relocatable Debugger - No Disk Operating System
a. Loading
Load the Bootstrap loader as described in document 093 -000002-01

Load the Binary loader as described in document 093 -000003-00

Load the Relocatable Loader as described in document 093 -000039-00.
Following are the loader signals and standard user responses to load
DEBUG 111 and the user program. User responses arc underscored.

SAFE = & ~—carriage return gives a standard save of
200 locations
*2 <-DEBUG 111 should be in high speed tape reader

for loading when this command is given.

*4 5 <—command to load all symbols. Loader sets
pointer in location 44 and signals "S".

*2 <~~User program should be in high speed tape
reader ready for loading when this command
is given. The user program must have at
least one symbol.

*6 <-command to print a loader map is usually
given.

NMAX 005640
ZMAX 000255
DEBUG 000400

*8 -~Terminate loading

User sets the data switches on console panel to 400g and presses START.

User is now in the debugger and can issue 2 name % command,

Storage is allocated as shown below.

During Loading After Termination of Loading

“top of memory ®
SAFE SAFE
grows down SYMBOL SYMBOL
TABLE TABLE
AVAILABLE AVAILABLE |
SPACE SPACE
LOADED - ;
USER
grows up ROUTINES
«-pseudo address
Jocation
00000
LOADER LOADED |
USER
ROUTINES

b. Use
All commands described in this manual apply to the Relocatable Debugger without

Disk Operating System. 8K core configurations are recommended; it is usually not
possible to load the symbol table when using a 4K configuration.

-21-

2. Absolute Debugger - 4K and 8K core configurations

a. Loading
1. Key in the Bootstrap loader origin

07757
17757

4K configuration
8K configuration

o

2. Enter core configuration in data switches
07770 = 4K
17770 = 8K
3. Mount Binary loader tape in input device and set BIT O data switch for
input device
1 = high speed tape reader
0 = teletype reader
4, Press RESET, Press START,
5. Mount DEBUG 111 tape in input device and set data switches as follows:
BIT O data switch indicates input:
0 = teletype reader
1 = high speed tape reader
Remaining data switches indicate core configuration:
07777 = 4K configuration
17777 = 8K configuration
6. Press START,
7. Mount user program tape in input device and press START.
Use

Input to and output from absolute versions of DEBUG 111 include all instruction
mnemonics and symbols (@, #, etc.) used in assembly language. No pointer is
set by the binary loader to a symbol table, however, and symbols cannot be
interpreted.

—22n

L

Examination of a series of memory locations might result in the following printout:

1712/

1712 STA 22107
1713 LDA 01654 &
1714 MOV~ 00SZR_S
1715 JSR 1677 _»
1716 - LDA 01651

The command: nameY,

is meaningless in absolute debugger mode. Otherwise, all commands described in
this manual are available for debugging if absolute locations are substituted for user
symbols.,

The commands:

rand $:
which normally cause a change to symbolic printout will be interpreted by the debugger
to mean:

=and $ =
or a change to numeric format.

3. Relocatable Debugger - Disk Operating System

Information on loading the relocatable debugger used with the operating system
will be available at a later date. Since the operating system handles many of the
functions described in this manual, the following commands will be unnecessary:

sym $0 b
adr (> disk commands

adr)

A\

$F

n $F

$E

adr $E

adr 1 <gr 250

} punch commands

-’

$I interrupt and TTI register commands
$T

-23-

	Contents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

