User's Manual

SYMBOLIC
DEBUGGER

093-000044—-04

Ordering No. 093-000044
© Data General Corporation, 1970, 1971, 1973, 1975

~ All Rights Reserved.

Printed in the United States of America
Rev. 04, February 1975

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers, The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval,

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors,

Original Release August 1970
First Revision October 1971
Second Revision ~ December 1971
Third Revision | August 1973
Fourth Revision February 1975

This revision of the Symbolic Debugger User's
Manual, 093-000044-04, supersedes 093-000044-03
and constitutes a major revision to the manual.

INTRODUCTION

The Symbolic Debugger interfaces with user routines, allowing the user to monitor
and correct his program during execution. The Symbolic Debugger provides up to

eight active breakpoints within a user routine. Accumulators, Carry and memory

can be examined and modified during execution using simple debugger commands

issued from the console.

The Symbolic Debugger is tailored to the user's configuration. Thus, the symbolic
Debugger version that a user receives will depend upon whether he has an ECLIPSE™*
or NOVA®* computer and whether his operating system is SOS (Stand-alone Operating
System, unmapped RDOS (Real Time Disk Operating-System), mapped RDOS, or
RTOS (Real Time Operating System).

RDOS users receive two versions of the Symbolic Debugger. The first enables
interrupts during debugging and has the generic name DEBUG III (or simply DEBUG)
and the second disables interrupts and has the generic name IDEB. The user may
load either one of the debuggers with his program.

The different Symbolic Debugger versions are described in Chapter 1. There are
very slight language differences among the versions. A language comparison is given
in Appendix A and each command description in the manual indicates for which
versions of the Symbolic Debugger the command is valid.

*NOVA is a registered trademark and ECLIPSE is a trademark of Data General
Corporation, Southboro, Massachusetts.

Introduction

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

TABLE OF CONTENTS

I R P I P B R R Y

General Description

Use of the Symbolic Debugger e s
Versions of the Symbolic Debugger
Symbolic Debugging Commands
Conventions and Symbols in Command Lines. . .
Correcting Typing EXYTOTS . . . v v v v v v v o n v v e

Debugger Exror REsSpOnsSes oo e o v v s

Interrupting Debugging v v v v oo v n
Monitoring Memory and Special Registers

Monitoring MemoTy e oo oo v s o v s ..
Monitoring Special Registers PP
Accumulators .. v i v e vt e e ee s
Floating Point Accumulators
Search Increment Register
Mask and Word Registers,
Numbers Register
Symbol Table Pointer Register
Search/Punch Register
Interrupt Register
Task Control Block Register
Console Input Done Register
Carry and Console Output Done Register

Starting Location Register

Extended Save Register.
Breakpoints and Program Restarts

Setting, Examining and Deleting Breakpoints ..
Setting a Breakpoint,

Examining Breakpoint Locations

Deleting a Single Breakpoint.
Deleting All Breakpoints
Breakpoint COUNLeTS » o v v v oo o e oo s s oo v v on
Program Restart Commands
Restarting the Program.« v oo o™

Restarting the Program at a Given Location
Restarting the Program at a Breakpoint . ..

Restart with Debugger Return under S0S
Search Commandso v o v v v o n s nsnn
Enabling and Disabling Symbol Recognition
Disabling All Global and Local Symbols
Enabling Global and Disabling Local Symbols . .
Enabling AllSymbolso v e

Removing a Symbol from Output

Changing Output Format PP

iii

.

.
.
.
“
®
.
.
*

-
N
»
B
»
°
.
s

'
0
[F-RRVEIE I SO R I

.
.
NSNS 00 00 N1 w1 N O N

e . 13
iee ... 13
e .14
P ¥
.14
[&
B &)
P B

R &

R
e e 19
I &

e ... 20

Chapter 7 -Punch Commands .. .ue e s nnans B
Chapter 8 - Saving a Debugged Program « « v v v i v vt vt i n ettt en e oe e enenn

Appendix A - Command Summary

SOS DEBUG & vttt ittt ittt i it s e an i

RDOS/RTOS, IDEB . v v i v v s e vnn
Comparison of Commands of Debugger Versions + v v v v v v v v v v .,

Appendix B- Operating Procedures

Loading the Symbolic Debugger under RDOS « ¢ v v v v v vt i vt v v ns
Loading RDOSDEBUG v .. v v ve s v

loading IDEB s e e e

Loading Local Symbols for Use in Debugging vt euu, ..

Invoking the Symbolic Debugger + « v v v vt vt v i invnvn
Loading the Symbolic Debugger under SOS + v v v v v v v i v v u v vnas
Loading SOS DEBUG under Magnetic Tape/Cassette Systems .
Loading SOS DEBUG under Paper Tape Systems
Loading the Symbolic Debuggerfor RTOS .. « vt v v tvvnne ..

Loading IDEBunder RDOS « ¢t ¢ v vt v e v o nnseneeennsas

Loading IDEB under the SOS Magnetic Tape/Cassette System
Loading IDEB under the SOS Paper Tape System

Index of Commands « v v e vttt vttt e et et s et e et e s e

iv

.

.

.

-
.

.
.
1

mmwmm?mmmmm
[3%}

.
.
[
DO bt st ot

i
[

P
. .

1o
w W N

¥
&

-
.

..B-5

. . Index -1

CHAPTER 1

GENERAL DESCRIPTION

USE OF THE SYMBOLIC DEBUGGER

Debugging is the process of detecting, locating, and removing mistakes from a prograit. When a
programmer wishes to debug a program, the Symbolic Debugger is loaded together with the program.
The programmer may then control program execution, causing the program to halt in the debugger at
one or more points so that the programmer can examine the contents of memory locations and
special registers such as the accumulators and Carry and can correct the contents if necessary.
Since the debugger is symbolic, the contents may be examined in source language format, although
octal format or a number of special formats may also be used.

The DGC Symbolic Debugger allows the programmer to set up to eight breakpoints within his program.
When the program executes, execution will halt before the jnstruction at the breakpoint location is
executed and the programmer can then issue debugging commands. The programmer can then

restart execution at the breakpoint instruction or at another location if he wishes.

SYMBOLIC DEBUGGER VERSIONS

The Symbolic Debugger that the user receives is tailored to his computer and system configuration. Thus
his version will depend upon whether he has a NOVA or an ECLIPSE computer, whether he has an RDOS
or a SOS operating system, and whether his operating system is mapped or unmapped. Users having

the RDOS operating system are supplied with two debugger versions. The first interrupts during
debugging and has the generic name DEBUG. The second disables interrupts during debugging and

has the generic name IDEB..

The Symbolic Debugger is supplied as either a relocatable binary tape or as a relocatable program
on a library tape. Followingis a list of the different symbolic debugger versions and their tapes:

Version Title Tape Generic Type
NOVA Uhmapped RDOS DEBUG DEBU‘G1 DEB.RB in USYS. LB)

NOVA Mapped RDOS DEBUG MDEBU MDEB. RB in MSYS. LB DEBUG
ECLIPSE Unmapped RDOS DEBUG BDEBUG BDEB. RB in BSYS. LB

ECLIPSE Mapped RDOS DEBUG ADEBUG ADEB. RB in ASYS. LB

NOVA Unmapped RDOS IDEB IDEB}" 5 IDEB. RB

NOVA Mapped RDOS IDEB MIDBB:',; MIDEB. RB IDEB
ECLIPSE Unmapped RDOS IDEB BIDEB 4 BIDEB.RB

ECLIPSE Mapped RDOS IDEB AIDEB AIDEB.RB)

NOVA Unmapped SOS DEBUG SADEB SADEB. RB

NOVA Mapped SOS DEBUG SAMDEB SAMDEB. RB SOS DEBUG
ECLIPSE Unmapped SOS DEBUG SABDEB SABDEB. RB

ECLIPSE Mapped SOS DEBUG SAADEB SAADEB. RB ‘

Numbers following the titles indicate which debuggers are supplied to a single user, (e.g-» MDEBUG and
MIDEB are supplied to all users having a NOVA Mapped RDOS system.}

The versions are grouped into three categories. Within a given group of four versions, the Symbolic
Debugger command language is jdentical. Thus, the command language within the versions of the
generic type is jdentical but there are slight differences in the commands and their interpretation
among the three generic types.

RTOS users are supplied with the appropriate version of IDEB.

SYMBOLIC DEBUGGING COMMANDS

A symbolic debugging command has the general formar:

fargument] [$] command-code

where: command- code is a single teletypewriter character.

% must precede all alphabetic command codes and precedes certain symbolic command

codes.

argument may be one of the following:

sym user symbol.
adr an address having any legal address format: octal or dec

user symbol, or an expression of the form:
X+x+x...

imal integer,

separated from

where each x is a user symbol, or octal or decimal integer,
the following x by either + (plus} or - (minus). Decimal integers must be
followed by a decimal point to distinguish them from octal integers.

n a decimal or octal integer.
name a user symbol that names a program.
adr < a range of addresses from adr to 77777.

adr ¢ ggln a range of addresses from adr to ﬂr_n.
Commands are described in the chapters following and provide facilities to:

Set, delete, and examine breakpoints.

Restart execution at selected points.

Monitor memory, accumulators and special registers.

Enable and disable symbols available to the debugger.

Place the debugged program in a file that can be saved.

Perform core searches.

Set the format of debugger output.

Punch or print portions of the user program.

CONVENTIONS AND SYMBOLS IN COMMAND LINES

) Pressing the RETURN key is represented by the symbol) . There is no printout

on the teletypewriter printer when RETURN is pressed.

' Pressing the LINE FEED key is represented by the symbol +. There is no printout

on the teletypewriter printer when LINE FEED is pressed.

CONVENTIONS AND SYMBOLS IN COMMAND LINES

4 Pressing the SHIFT and N keys causes the symbol ¢ to be printed.

$ Pressing the ESC key causes the symbol $ to be printed.

7 Pressing RUBOUT causes the symbol ? to be printed. (See section immediately following.)

CORRECTING TYPING ERRORS

Pressing the RUBOUT key causes the debugger to ignore the current command line and prints a 7.
The programmer may then type a new command line. (Any character causing an illegal command
line can be used; the RUBOUT convention, however, is convenient.)

DEBUGGER ERROR RESPONSES

An attempt to use an undefined symbol in a command to the debugger will result in an error
response of

U
typed immediately following the command, for example:

STAR/U « User references symbolic location STAR, Symbol STAR is not found
in the program. Debugger responds with U and awaits a new command.

All other command errors result in an error response of -
?
Typed immediately following the command as shown in the examples following.
ADD@? « Improper termination of command.
-I$R? ~Illegal address preceding $R.
START+6$B? «This is an attempt to set a breakpoint at symbolic location START+6.
The error response is printed if there are alrealy 8 breakpoints in the
program.

$1?7 ~ Attempt to open the interrupt register while in RDOS DEBUG (The
register is implemented in IDEB but not in DEBUG under RDOS.)

EEEE 2 BE L E 2]

CHAPTER 2
MONITORING MEMORY AND SPECIAL REGISTERS

Memory locations in the user program may be opened, examined, and modified using one of the
following commands:

adr/ " Open adr and print contents.
adr! Open adr. Do not print contents.

where: adr may be any acceptable expression defining a location.

When the memory location has been opened, using either the / or ! command, the user may modify
the contents of the location and close it or he may close the location without modification.

The user modifies the contents of a location by typeing the new contents on the same line with the
command that opens the location.

The user can close the open location in one of four ways:

) Close the open location (RETURN key)

' Close the open location and open the succeeding location (LINE FEED key)
t Close the open location and open the proceding location (SHIFT and N keys)
/ Close the open location and open the location specified by the contents of

that location.

Commands that open and close locations are used in all debugger versions. Some
examples of the commands are:

START /006011 6017t < Open symbolic location START and modify contents to 6017; open
+762 000000 ¢ previous location and do not modify; close the location and open the
+761 177400 ¢ previous location; close the location.

+760 177400)

START/006011 6017t = On the console, the example would appear as shown.
+762 000000 t

+761 177400 !

+760 177400

START /006017 ¢ - Open location START; open succeeding location; open succeeding
START+1 001400 4 location; open succeeding location and close it without opening the next.
START+2 006073)

START /006017 + On the console, the example would appear as shown.
START+1 001400
START+2 006073

MONITORING MEMORY {Continued)

1000/.RDL 0 .RDL 1) =~ Open location 1000 and change the contents to LRDL L
Close the location.

1000! .RDL 0) ~ Open location 1000 without printing the contents. Change the contents
contents back to .RDL O.

1000/.RDL 0 .RDL 1« On the teletypewriter, the example will appear as shown.

10001.RDL 0O

open open open
START 6017 106415
4 ¥ v
START/006017 /106415 /0400000 +
106416 000000)

STAR T/006017 /106415 /040000 = On the console, the example would appear as shown.
106416 000000

MONITORING SPECIAL REGISTERS

Special registers are locations containing program status information. They can be opened, examined,
modified, and closed in a way similar to memory locations. A special register is normally closed by
pressing the RETURN key, although the / or ! convention can be used where appropriate.

Accumulators

The command that opens an accumulator for examination and possible modification is:

n$A

where: n is the number of the accumulator (0-3 in the NOVA; 0-7 in the ECLIPSE computer).

This command is used in all debugger versions. An example of the command is:

0$A 000000 1

All accumulators may be examined, but not modified, by the command:

$A

The debugger will perform a carriage return/line feed and print the number of each accumulator,
followed by its contents.

This command is used in all debugger versions. An example of the command is:

$A
0 000000 1 000565 2001337 3 043131

g

MONITORING SPECIAL REGISTERS (Continued)

Floating Point Accumulators

The four floating point accumulators may be examined, but not modified, by using the command:

$F

The debugger will perform a carriage return/line feed and print the number of each floating point
accumulator, followed by its contents,

This command is used in RDOS DEBUG and IDEB. The register is not valid in SOS DEBUG where
the $F command causes punching of paper tape leader or trailer. An example of the command is:

$F
0 006452 1 000417 2 000000 3 106000

Search Increment Register

The search increment register is used in performing memory searches. (See Chapter 4 for the
search commands.) By default, locations in the range selected for the search by the user will be
searched forward in memory with an increment of one location, By setting the search increment
register, the user may adjust the increment to any number of locations between locations to be
examined or can adjust the increment for a backward search of memory locations.

The search increment register is opened for examination and possible modification by the com-
mand:

$J

This command is used in all debugger versions. Examples of the command are:

' $] 000001 -10 - Open register and set for backward search of every 108 locations.
440<$S - Search from location 440 down in memory
00440 000766

00430 101300
00420 025400

00000 006017

$] 100010 2 - Open register and set to search forward every second location,
102<1148S =+ Search from location 102 to location 114,

00102 177777
00104 177777
00106 000000
00110 000005
00112 000000
‘00114 000232

MONITORING SPECIAL REGISTERS (Continued)

Mask and Word Registers

The mask and word registers are used in performing memory searches. (See Chapter 6 for
search commands.) Certain types of searches are for particular bit contents and these require

use of the word register.

The word register is set by the user to represent the contents for which memory is being searched.
As the search proceeds, the contents of each location are compared with the contents of the word
register. If they match, the location and the contents are printed out. By default, the word register
contains 0, which allows the printout of all memory locations.

The mask register is set by the user if he wishes to mask the contents of certain bit positions in each
memory register during the search. If no masking is desired, the mask register is set to -1 (all ones).
If certain bit positions are to be masked, those positions are set to zero and the unmasked positions are
set to one.

The contents of the mask register are ANDed with the contents of the memory location and then
compared with the contents of the word register, By default, the mask register is set to 0 (all bit
positions masked). Thus, if a search required comparison of memory contents with the word
register, which occurs if the word register is non-zero, the appropriate contents of the mask
register must be set by the user.

The word register is opened by issuing the command:

SW

The mask register is opened by issuing the command:

$M

These commands are used in all debugger versions. An example of the commands is:

$W 000000 15000 -~ QOpen word register and store 15000
$W 015000

$M 000000 177700 < Open mask register and mask bits 0-9

Numbers Register

The numbers register determines whether the contents of registers will be printed out in octal or in
decimal. By default, the numbers register is set to 0, which causes register contents to be printed
out in octal. If the user sets the contents of the numbers register to non-zero, contents of memory
and special registers will be printed out in decimal, i.e., as signed decimal numbers with a
decimal point.

The numbers register is opened for examination and modification by the command

$N

Numbers Register (Continued)

This command is used in all debugger versions. An example of the command is:

§ START/006017 - Contents of START in octal

§ $N 000000 1 - Change numbers register to non-zero
START/+3087. - Contents of START in decimal
$N +1.0 +~ Contents of numbers register in decimal

Symbol Table Pointer Register

The symbol table pointer register contains a pointer to the beginning of the User Status Table.
In SOS loading and in RDOS background loading, this is location 402, labeled USTSS. In RDOS
foreground loading, USTSS may be a different location. The symbol table pointer register is
opened by issuing the command:

$Y

This command is used in all debugger versions. An example of the command is:

$Y 000402 + Contents of symbol table pointer register

402/ TMIN+63 = Examination of part of contents of the UST starting at USTSS.
+403 TMIN+52 (RDOS DEBUG with minimum task scheduler.)

+404 TMIN+64

+405 TMIN

+406 DEBUG

+407 TMIN+64

+410 +0

+411 177777

Search/Punch Register

Bit 15 of the search/punch register specifies the output device to be used in printing memory
search results:

Bit 15
Print search results at the console.
1 print search results on the line printer.

The default setting of bit 15 is 0.

Bit O of the register specifies the Output device to be used when punching portions of the user
program as follows:

Bit 0
0 Punch output to the teletypewriter punch.
1 Punch output to the high speed punch,

The default setting of bit 0 is 0.

Search/Punch Register (Continued)

The search/punch register is opened for examination and possible modification by issuing the following
command:

$H

The register is not used in RDOS DEBUG. In IDEB only the search bit of the register is significant.
I SOS DEBUG both the search and the punch bits are significant. An example of the command is:

$H 000000 1 - Open search/punch register and set bit 15 to print search output to the
line printer.

Interrupt Register

The interrupt register determines whether or not interrupts are to be enabled. The register is
used in all IDEB and SOS DEBUG versions.

By default, the register is set to 0, which enables interrupts. (Note that in IDEB under RDOS mapping,
the interrupts necessary for mapping are never disabled though other interrupts are.) To disable
interrupts, the register is set to -1 (all ones).

The interrupt register is opened for examination and possible modification by the command:

$1

Example:

$1 000000 -1 - Open interrupt register and disable interrupts.

Task Control Block Register

The task control block register contains the address of the task control block (T'CB) of the currently
executing task, The TCB contains status information for each task, needed by the task scheduler
in multitasking.

The register is opened for examinatjon and possible modification by the command:

$T

The task control block register is used only for RDOS DEBUG. The command is not valid for
IDEB or SOS DEBUG, where $T invokes the console input done register (see next page).

$T 000740 - Open TCB register and examine contents.

10

Console Input (TTI) Done Register

The console input done register specifies the status of console input in bit 0 as follows:

Bit O
0 Console input done
1 Console input not done

The register is opened for examination and possible modification by the command:

$T

The register is used in IDEB and SOS DEBUG versions., The command is not valid in RDOS DEBUG
where $T invokes the task control block register (see previous page). Coding such as the following
example would cause a transfer to the debugger while console input was still outstanding:

A: SKPDN TTI

JMP . -1
DIAC 0 TTI
- Breakpoint set at this instruction
$T 100000 + Bit O of the register is setto 1

Carry and Console Output Register

The Carry and console output done register specifies the status of the Carry flag in bit 0 as follows:

Bit O
0 Carry flag is 0.
1 Carry flag is 1.

Bit 15 of the register indicates the status of output to the console as follows:

Bit 15
0 Console output is not done.
1 Console output is done.,

The default setting of bit 15 is 0.

The Carry bit of the register is used in all debugger versions. The console output done
bit is significant only in IDEB and in SOS DEBUG,

The register is opened for examination and possible modification by the command:

$C

Coding such as the following would cause a transfer to the debugger while console output was
still outstanding and Carry was set.

11

MONITORING SPECIAL REGISTERS (Continued)

Carry and Console Output Register (Continued)

B: ADCO 0 0O
DOAS O TTO
SKPDN TTO
JMP . -1
- -~ Breakpoint set at this instruction.
$C 100001 - Bits 0 and 15 are set to one.

Starting Location Register

In SOS DEBUG, the starting location register is set by the user to contain the starting address to be
used for execution when the command $R is issued (see Chapter 3). By default, the contents of the
starting location r egister under SOS DEBUG is the contents of USTSA,

When debugging under RDOS, the starting location register will contain the contents of USTSA, address
of the task scheduler, allowing control to be transferred to the scheduler to run the highest priority

task.

The starting location register may be opened for examination and possible modification by the command:

$L
Example:
$1. 000764 -~ Determine address of task scheduler (RDOS DEBUG or IDEB)
$ L 000000 4000 - Set starting address for $R execution to 4000 (SOS DEBUG)

Extended Save Address Register

The extended save address register contains the contents of User Status Table location 421, USTSV.
USTSV points to the extended save state routine.

The extended save address register is opened for examination and possible modification by the following
command:

$E

The register is used in RDOS DEBUG and in IDEB. The command is not valid in SOS DEBUG where
the command causes punching of an end block (see Chapter 7). An example of the command is:

$E 002135

ek kRck R BEER

12

CHAPTER 3
BREAKPOINTS AND PROGRAM RESTARTS

Breakpoints are key elements in debugging. Breakpoints permit the user to execute a small portion
of his program and then check program status.

The user sets one or more breakpoints in his program using a debugger command. He can then
indicate through a command when a breakpoint should cause program execution to cease and a
transfer be made to the debugger, In effect, when the breakpoint is encountered, the program
instruction at which the breakpoint was set is transferred to the debugger and a JMP instruction
to the debugger is substituted in the user program.

Eight (10p) locations of page zero relocatable code are reserved for the eight debugger break -
points. Any attempt to place other information in these locations and then execute will wipe

out the user program.

Breakpoints are assigned numeric values in reverse numeric order; for example, if the user
sets four breakpoints in his program, the breakpoints will be numbered:

7
6
5
4

starting with breakpoint 7.

SETTING, EXAMINING AND DELETING BREAKPOINTS

Setting a Breakpoint

The format of the command that sets a breakpoint is:

adess |

where: adr is the program address at which the breakpoint is set,

This command is used in all debugger versions. An example of the command is:

START$B
START+33%$B
START+42%B

Breakpoints should not be set at the following locations:

1. Data words.

2, Instructions modified during execution,

3. Locations where interrupts cannot be delayed for relatively long times.
4. The second word of two-word instructions,

Examining Breakpoint Locations

The user may wish to determine where breakpoints are currently set in his program. The com-
mand that will cause breakpoint numbers and the locations at which they are set to be printed is:

$B

13

SETTING, EXAMINING AND DELETING BREAKPOINTS (Continued)

Examining Breakpoint Locations (Continued)

Breakpoints are printed out in descending numerical order.

This command is used in all debugger versions. An example of the command is:

$B

7B START

6B START+33
5B START+42

Deleting a Single Breakpoint

The format for the command to delete a single breakpoint is:

n$D

where: n is the number of a previously set breakpoint.

The command causes a specific breakpoint to be deleted; the remaining breakpoint numbers remain
the same, e.g., if breakpoints set are 7, 6, and 5, the command:

6$D
deletes breakpoint 6 while numbers assigned to the remaining breakpoints remain unchanged.

This command is used in all debugger versions. An example of the command is:

7$D

Deleting All Breakpoints

All breakpoints in a user program can be deleted by issuing the command:

$D

This command is used in all debugger versions.

BREAKPOINT COUNTERS

Associated with each breakpoint is a break proceed counter that indicates when, during execution
of the program, encountering that breakpoint will cause a switch to the debugger.

When a breakpoint is set, the break proceed counter for that breakpoint is set by default to 1,
which is the number of times the instruction at the breakpoint will be executed before the debugger
is reentered. This means that when the user restarts execution at that particular breakpoint, the
instruction at the breakpoint will be executed, but the debugger will be reentered the next time

that breakpoint is encountered.

The user may open the break proceed counter for examination and possible modification. The
command to open the break proceed counter is: .

n$Q

where: n is the number of the previously set breakpoint.

14

BREAKPOINT COUNTERS (Continued)

The contents of the break proceed counter are modified as are any register's contents by typing
the desired contents immediately following the printout of the current contents.

This command is used in all debugger versions. An example of the command is:

! Change to two executions of the instruction at breakpoint 7 before
é 7%Q 000001 2 reentering the debugger.

H

PROGRAM RESTART COMMANDS

Restarting the Program

The debugged program may be restarted by issuing the command:

This command is used in all debugger versions and causes restart at the contents of $L.. However,
the contents of $L differs in the debugger versions, In SOS DEBUG $L is user-set to the start of
execution. In RDOS DEBUG $L. contains the contents of USTSA, the task scheduler address, and in
IDEB $L contains the contents of USTSA, which is the program starting address. The program will
execute, looping through any breakpoints the number of times indicated by the break proceed counters,
until a breakpoint is encountered, provided that a breakpoint is set, An example is,

$R

7B START
0 006207 1 006162 2 000000 3 006162

Restarting the Program at a Given Location

The user may specify the location at which program execution is to resume by issuing the command:

adr$R

where: adr is an address within the program.

This command is used in all debugger versions. An example of the command is:

START+2$R

6B START+10
0 001654 1 000000 2 000000 3 000000

Restarting the Program at a Breakpoint

When a breakpoint causes transfer to the debugger, the user issues debugging commands and can then
restart the program execution at the breakpoint by issuing the command:

$P

15

PROGRAM RESTART COMMANDS (Continued)

Restarting the Program at a Breakpoint (Continued)

The program will execute, looping through the breakpoint the number of times indicated by the break
proceed counter. When the debugger is reentered, the breakpoint and the contents of the registers
will be printed.

This command is used in all debugger versions. An example of the command is:

$R

78 START

0 006207 1 006162 2 000004 3 006162
$P

6B START+10

0001654 1 Q00000 2 000004 3 000000

The user has the option to override the contents of the break proceed counter when restarting
execution at a breakpoint. The format of the command is:

nsP

where: 1 is the number of times the breakpoint instruction is to be executed.

This command is used in all debugger versions. An example of the command is:

$R

7B START

0 006207 1 006162 2 000011 3 006162
5%P

6B START+10

0 001654 1 000000 2 000011 3 000000

EE R L E R TR L T

16

CHAPTER 4

SEARCH COMMANDS

All or part of memory may be searched for a given bit configuration, and the matching addresses and
their contents will be output at the console or on the line printer. To perform a search, the program-
mer takes the following action:

1. Opens the word register and places in it the desired configuration to be used in the search.

2. Opens the mask register and sets to ones those bit positions that will contain the configura -
tion being searched for.

3. Opens the search increment register and sets the increment between locations to be examined.
4. Gives a search command, indicating whether all or part of memory is to be searched for the
desired configuration.

The search algorithm is as follows:

1. Contents of the address are ANDed with the contents of the mask register,
2. The result of 1. is compared with the contents of the word register.
3. If the comparison in 2. results in a match, the address and its contents are output.

4. The next designated location is searched.

The algorithm can be written as follows:

(START)

>

A
Search next adr
given by current
adr +C(8])

Last search
adr 7

C($M) AC(adr)
= C($W)
?

Yes Yes

Output C(adr) STOP
and adr g

By default, the contents of both the word and mask registers are 0 and the search increment is +1, If
default settings are used, all locations in the range given by the search command will be output.

To inhibit all masking, set the mask register to -1.

The search commands determine the range of memory to be searched. The command:

f$S

causes all of memory to be searched.

17

SEARCH COMMANDS (Continued)

The command:

adr§S

causes a search from the start of memory through adr.

The command:

adr <$8

causes a search from adr through the end of memory.

The command:

adr < adr,$5

causes a search from ﬂgl through 32_1_‘2.

These search commands are used in all debuggers. Some examples of the commands are:

$W 000000 6017 -~ Put .SYSTM configuration in $W
$M 000000 -1 - = Set $M to all ones.
START<START+40$S =+ Search range of 41 locations.
START 006017

START+10 006017

START+14 006017

START+20 006017

START$23 006017

START+27 006017

START+33 006017

$; - Change to instruction format (see Chapter 6).
$W 000000 LDA 2 « Put LDA 2 in $W (search on LDA 2 0).

$M 177777 Check $M contents.
$S - Search all memory.
4024 ILDA2O

10362 LDA 20O

22026 IDA 20

22041 LDA 20

36403 LDA 20O

42335 LDA 20O

In SOS DEBUG and in IDEB, a search can be terminated by striking any key. In RDOS DEBUG,
there is no way to terminate a search; therefore, the user should avoid possible interminable
searches whenever possible. IDEB and SOS DEBUG also allow search output directed to the

line printer using the $H register,

ek ko g A ook A

18

CHAPTER 5
ENABLING AND DISABLING SYMBOL RECOGNITION

When the debugger is invoked, the symbol tables of all programs loaded with the debugger are available
to the debugger. The symbol tables contain all global symbols and may contain local symbols.

Local symbols are loaded for a given program only if requested by the user. This can be done during
loading under either RDOS or SOS. In the RLDR command line, the local switch /U must follow

the file name of the program for which user symbols are to be loaded. See Appendix B for loading
procedures and an example of the /U switch.

During debugging, the user may wish to temporarily disable debugger recognition of some or all symbols
and later re-enable recognition of the symbols.

DISABLING ALL GLOBAL AND LOCAL SYMBOLS '

To disable debugger recognition of all symbols, the user may issue the command:

$K

This command is used in all debugger versions. An example of the command is:

START /006017 + Debugger recognizes START
$K
START/U

- Debugger indicates that START is an unknown symbol

ENABLING GLOBAL AND DISABLING LOCAL SYMBOLS

T o‘ enable or re-enable all global symbols while disabling (or continuing to disable) all local symbols,
the user gives a command having the format:

n$K

where: n may be any single digit.

This command is used in all debugger versions. An example of the command is:

$K

START/U + Global symbol START is disabled.
0$K

START /006017 = Global symbol START is re-enabled.

At the same time that all global symbols are enabled by the n$K command, all local symbols are
disabled. Since local symbols are often not loaded, the command is commonly used to re-enable
all previously disabled ($K) global symbols.

19

ENABLING ALL SYMBOLS

All global and local symbols, removed by either n$K or $K will be re-enabled by issuing a
command of the format:

name% R

where: name is the name of the loaded program.

To enable local symbols, the local /U switch must be given in the RLDR command line and
this command must be used.

This command is used in all debugger versions. An example of the command is:

RLDR/D ALPHA/U
DEB ALPHA
ALPHAY,

REMOVING A SYMBOL FROM OQUTPUT

A given symbol may be removed from debugger output by issuing a command of the format:

sym $K

where: sym is the name of the symbol to be removed.

This command only affects output; the symbol will still be recognized on input to the debugger.

Once removed, the symbol cannot be restored to output during debugging.

When sym is removed by this command, the debugger will replace the sym on output by an offset

from the nearest previous symbol, provided that the substitute symbol is not more than 20008
locations removed. If there is no previous symbol within 2000 locations or if no symbols
remain, the absolute value of the location is substituted.

This command is used in all debugger versions.

EEEE RS L L LR

20

CHAPTER 6

CHANGING OUTPUT FORMAT

Output may be formatted in any one of several ways, using the debugger. The contents of a
location may be output as: .

o An octal or decimal numeric datum.

e Two numeric half words.

o Two ASCI characters. Non-printing ASCII characters are printed in octal code
equivalents enclosed in angle brackets.

o Symbolic format in which all enabled symbols are printed.

e DByte pointer format. The first 14 bits of the word are an address that contains or is to
receive a byte and the last bit specifies that it is either the left or right byte (O-left;
1-right).

e -SYSTM command mnemonic format.
« A NOVA instruction.

To change from one type of output to another type of output format for all future printouts, the
general format of the command is:

$x

where: X is one of the following characters:

i

numeric format
instruction format

symbol format

' ASCII format

& byte pointer format

= half word format

? .SYSTM mnemonic format

. e

This command is used in all debugger versions. Examples of the command are:

$=

START/006017
START+1 001400
START+2 006073
START+3 125120

$:

START/6017
START+1 DEBUGH41
START+2 6073
START+3 125120

$

START/JSR @+17
START+1 JMP -0 3
START+2 JSR @+73
START+3 MOVZL 11

21

CHANGING OUTPUT FORMAT (Continued)

Examples of the ouput formats (continued)

$'
START/<14 ><17 >
STARTHL <3 ><0 >
STARTH2 <14 >;
STARTH3 <252 >P

$7

START/ .WRB 17
START+l .MEMO
START+2 .WRB73
START+3 125000 20

$-
START/14 17
START+l 30

START+2 1473
START+3 252120

To examine a given word in another format, the location is opened and the user types the command:

X

where: x is one of the seven output formats previously described or the following:

* gymbolic format with bit 0 set to 0

For example, if the current output format mode is . SYSTM mnemonic meode, the location can
be opened and "translated"” into the other output modes as shown:

START+15/.RDLO ;DSZ+03 %33><0> :15400
START+15/.RDL 0 =015400 =33 0 &006600- 0 *015400

The location as well as the contents may, of course, be transliterated, e.g.,

START+10=000773

In this way, any expression consisting of octal and decimal integers, symbols known to the debugger
and the + and - operators may be converted to its equivalent instruction, byte pointer format, etc.
Thus, the = command, for example, may be used for expression evaluation.

100+25.=000131 ‘<0 >Y:+131
100+25.;JMP +131 - 0 131 $000054 1
100+25. 7.CREA 31

ek o K ok ok ok ok ok Kok

22

CHAPTER 7
PUNCH COMMANDS
In SOS DEBUG only, the user has the option of using the debugger to punch all or part of his
program. Either the high speed punch or the teletype punch may be selected for punch output by

setting bit 0 of the $H register (see page 8).

The format of the command to punch all or part of a program in binary is:

adr, < adr P

1

where: adr. is the first address to be punched and adr,, is the last address to be punched.

1 2

The command must include starting and terminating punch addresses and the symbol < to
distinguish the command from the break proceed commands ($P and n$P).

Leader and trailer may also be punched. The commands to punch blank tape are:

$F
n$F

where: n gives the number of inches of blank tape to be punched and may be given in either octal
or decimal.

If the $F command is not preceded by an argument giving the number of inches to be punched, by

default 108 inches will be punched.

The user may also punch an end block terminating the punched program, using the commands:

$E
adrSE

where: adr provides the starting address for execution of the punched program. If adr is not given,
the user must provide a starting address via the data switches at execution time.

The example following illustrates punching to the high speed punch

$H 100000 - High speed punch in effect

$F = Punch 10 octal inches leader.
LEM<LEM+100$P - Punch 101 locations starting at LEM.,
LEMSE « Punch end block with address LEM.
10.$F = Punch 10 decimal inches trailer.

23

PUNCH COMMANDS (Continued)

When punched output is to the teletypewriter punch, the computer will halt to allow the user to
stop and start the punch to prevent debugging commands from being punched as shown in the

example following.

$H 000000
6.$F

. X<, X3%P

.X$E

$F

«~ Teletypewriter punch in effect.
Punch 6, . inches leader. Computer HALTS with Carry light on. User
presse’sll%N button on teletypewriter and presses CONTINUE on operator panel.

When punch stops, the computer HALTS with Carry light off. User presses
OFF on teletypewriter punch and presses CONTINUE on operator panel.

- Punch from .X to .X3. User presses ON on TTY and CONTINUE. When

punching stops, user presses OFF on the TTY and CONTINUE.

- Punch end block with starting address of . X. User presses ON on the TTY

and CONTINUE. When punching stops, user presses OFF on the TTY and
CONTINUE.

- Punch 8. . inches trailer. User presses ON on the TTY and CONTINUE. When
punching stops, user presses OFF on the TTY and CONTINUE.

e o e ROk R ik

24

CHAPTER 8
SAVING A DEBUGGED PROGRAM

In the Symbolic Debugger a means is provided to save the current status of a debugged program if
desired. The $V command allows the programmer to exit the debugger with the current state of
the debugged program, including the current status of all registers and patches made during debugging.

In RDOS DEBUG and IDEB the $V command causes a return to the CLI level wifh the current state of
the debugged program in the BREAK file, The programmer at the CLI level can then take any appropri-
ate action, If he wishes to save the BREAK file, he can issue a CLI SAVE command at this time.

In SOS DEBUG, issuing a $V command causes a jump to C{(USTBR)-1. If the programmer is using the
Core Image Loader Writer, this executes the Core Image Writer, which issues a # prompt, after which
the programmer specifies the device and file to which the debugged program is to be written and then
indicates the upper core address to be written (in accordance with Core Image Writer operation as spe-~
cified in the SOS User's Manual, 093-000062). If the programmer is not using the CILW, the location
contains a -1 by default and a return is made to the debugger; the programmer may provide a jump to
his own location outside the debugger by changing the default contents of USTBR.

The format of the $V command is:

$v
Examples:
DEB ALPHA
. + Debugging commands

v -
BREAK Return to CLI (RDOS DEBUG and IDEB)
R
SAVE ALPHA - Programmer saves BREAK file under the name, ALPHA
R
DEB CT1:5 ~Debug CT1:5

. ~Debugging commands
sV < $V break issued
#1:5 -Old save file is specified for the new program
NMAX: 16200 -~NMAX is specified
OK ~File has been rewritten to CT1:5

-~ CONTINUE key causes return to debugger

$R ~Program is started at the beginning address.

Before issuing a $V command, the user should delete all breakpoints ($D). Otherwise, an attempt
to debug the saved break file will result in a halt,

Note that the $V command causes all open files to be closed. To execute the break file after issuing
a $V, the user must provide a routine to reopen all files that were open at the time the $V was
issued.

LEEEE LS 2]

25

APPENDIX A
COMMAND SUMMARY - SOS DEBUG

Command Type of Command Meaning
adr! Monitor Cere*® Open core location adr.
adr/) Open core location adr and print contents.
) Close open location,
i Close open location and open the subsequent location.
! Close open location and open the previous location.
$A Monitor Accumula- | Print contents of all accumulators,
| 2%A tors Open accumulator n(n=0-3 in NOVA Computer; 0-7 in ECLIPSE Computex).
$C Monitor Special Open the Carry/Teletypewriter Output register.
$H Registers Open the Search/Punch register.
$1 Open the Interrupt register.
3] Open the Search Increment register,
$L Open the Location register,
$M Open the Mask register,
$N Open the Number register,
$T Open the Teletypewriter Input register,
W Open the Word Register.
$Y Open the Symbol Table Pointer Register
$B Breakpoint Print location of all user program breakpoints.
adr$B Insert breakpoint at location adr.
$D Delete all breakpoints.
n$D Delete breakpoint n (n=0-7). :
$V Save Debugged Save status of debugged program and return to CILW for possible save
Program of file,
$E Punch Punch an end block.
adr$E Punch an end block, giving a starting address adr for execution.
$F Punch ten inches of blank tape.
ns$F Punch n inches of blank tape.
adr<adr, $P Punch core from adry through adr,.
$P Execute (also, Restart execution from breakpoint with break proceed counter set to +1.
n$pP Break Proceed Restart execution from breakpoint with break proceed counter set to n.
n$Q Counter) Open break proceed counter n (n=0-7).
$R Restart execution at address in location counter,
adr$R Restart execution at adr.
$K Symbol Enable Remove all local and global symbols from input/output.
n$K and Disable Remove all local symbols from input/output but retain (or enable) globals.
g_y_m__$K Remove.symbol sym from output permanently.
> name9, Enable all local and global symbols in program name (or restore to
output all symbols removed by $K or n$K commands).
$S Core Search* Search all memory.
adr$s Search memory from location 0 to adr.
adr;<$S Search memory from ady] to limit of memory.
adrjcadr,$S Search memory from location adry to adr, inclusive.
= Format of Data Print last typed datum in numeric format.
Output to the Print last typed datum in symbolic format.
; Teletypewriter Print last typed datum in instruction format.
< Print last typed datum in half-word format,
! Print last typed datum in ASCII format.
& Print last typed datum in byte pointer format.
? Print last typed datum in ,SYSTM format.
* Print last typed datum in symbolic format with bit 0= O
$= Print subsequent data in numeric format.
$: Print subsequent data in symbolic format,
$; Print subsequent data in instruction format,
$< Print subsequent data in half-word format,
$! Print subsequent data in ASCII format.
$& Print subsequent data in byte pointer format.
$? Print subsequent data in , SYSTM format.
* Note

: Under the mapping option, core examined must be within the user’s address space.

A-1

APPENDIX A

COMMAND SUMMARY - RDOS DEBUG

Command Type of Command Meaning
adr! Monitor Core”™ Open core location adr.
adr/ Open core location adr and print contents.

)

+
¢

Close open location.
Close open location and open subsequent location.
Close open location and open the previous location,

$A Monitor Accumula~ Print contents of all accumulators.

nsA tors Open accumulator 1 (u=0-3 in NOVA Computer; 0-7 in ECLIPSE Computer).;

$C Monitor Special Open the Carry Register.

$E Registers Open the Extended Save Register (USTSV).

$F Print contents of Floating Point Registers.

3] Open the Search Increment Register.

$L Open the Location Register. (USTSA).

$M Open the Mask Register.

$N Open the Number Register.

$T Open the Task Control Block Register (USTCT).

W Open the Word Register.

3Y Open the Symbol Table Pointer Register,

$B Breakpoint Print location of all user program breakpoints.

adr$B Insert breakpoint at location adr.

$D Delete all breakpoints.

n$D Delete breakpoint n. (n = 0-7).

sV Break file Put debugged program in break file for possible save of file.

$pP Execute (and Break Restart execution from a breakpoint with break proceed counter set to +1.

n$P Proceed counter) Restart execution from a breakpoint with break proceed counter set to 1.

n$Q Open break proceed counter n (n = 0-7).

$R Restart execution at address stored in USTSA.

adr$R Restart execution at adr.

$K Symbol Enable and Remove all local and global symbols from input and output.

n$K Disable Remove all local symbols from input/output but retain (or enable) globals.

sym$K Remove symbol sym from output permanently.

name% Enable all local and global symbols in program name (or restore to out-
put all symbols removed by $K or n$K commands).

$S Core Search* Search all memory.

adr$s Search memory from location O to adr.

adr < $S Search memory from location adr to limit of memory.

adr. <
adr, < adr,$8

Search memory from location adrl to adr B inclusive.

Format of Data Out-
put to the Teletype-
writer

Print last typed datum in numeric format.
Print last typed datum in symbolic format.
Print last typed datum in instruction format.
Print last typed datum in half-word format.
Print last typed datum in ASCII format.

& Print last typed datum in byte pointer format.

* Print last typed datum in symbolic format with bit 0=0.

? Print last typed datum in .SYSTM command format.

$: Print subsequent data in symbolic format.

$; Print subsequent data in instruction format.

$- Print subsequent data in half-word format.

$’ Print subsequent data in ASCII format.

$& Print subsequent data in byte pointer format.

$= Print subsequent data in numeric format.

$7 Print subsequent data in .SYSTM command format.
*NOTE:

Under the mapping option, core examined must be within the user's address space.

A-2

COMMAND SUMMARY - RDOS/RTOS SYMBOLIC DEBUGGER, IDEB

i g

.

Command Type of Command Meaning
adr! Monitor Core™ Open core location adr.
adr/ Open core location adr and print contents.

Close open locarion.
Close open location and open the subsequent location,
Close open location and open the previous location.

adr) < adr,$S

$A Monitor Print contents of all accumulators.

n$A Accumulators Open accumulator n (n=0-3) in NOVA Computers; 0-7 in ECLIPSE Computers)

3C Monitor Special Open the Carry/Teletype Output register.

$E Regigters Open the Extended Save register (USTSV).

$F Print contents of Floating Point registers.

$H Open the Search/Punch register.

31 Open the Interrupt register.

37 Open the Search Interrupt register.

3L Open the Location register (USTSA).

M Open the Mask register.

SN Open the Number register.

3T Open the Teletype Input register.

W Open the Word register.

Y Open the Symbol Table Pointer register.

B Breakpoint Print location of all user program breakpoints.

adr$B Insert breakpoint at location adr.

$D Delete all breakpoints.

n$D Delete breakpoint n. (n = 0-7).

sV Break file Put debugged program in break file for possible save of file.

$p Execute Restart execution from a breakpoint with break proceed counter set to +1.

n$P (and Break Restart execution from a breakpoint with break proceed counter set to n.

n$Q Proceed Counter Open break proceed counter n (n = 0-7). h

$R Restart execution at address in USTSA.

adr$R Restart execution at adr.

3K Symbol Enable Remove all local and global symbols from input and output.

n$K and Disable Remove all local symbols from input /output but retain (or enable) globals.

sym$K Remove sym from output permanently.)

name% Enable all local and global symbols in program name {or restore to out-
put all symbols removed by $K or n$K commands).

$S Core Search* Search all memory.

adr$s Search memory from location U to adr.

adr <$§S Search memory from location adr. to limit of memory.

Search memory from location adrl to adr2 inclusive.

Format of Data

Print last typed datum in numeric format.

: Output to the Print last typed datum in symbolic format.

H Teletypewriter Print last typed datum in instruction format.

- Print last typed datum in half-word format.

! Print last typed datum in ASCII format.

& Print last typed datum in byte pointer format.

* Print last typed datum in symbolic format with bit 0 = 0.

? Print preceding datum in .SYSTM command format.

$= Print subsequent data in numeric format.

$: Print subsequent data in symbolic format.

3$; Print subsequent data in instruction format.

$~ Print subsequent data in half-word format.

$’ Print subsequent data in ASCII format.

$& Print subsequent data in byte pointer format,

$7 - Print subsequent data in .SYSTM command format.
*NOTE: Under the mapping option, core examined must be within the user’s address space.

A-3

COMPARISON

OF DEBUGGER COMMANDS

RDOS DEBUG

-

»

{Carry only)

s

s

s

€ w0

PRI

.

D

B

i

yes {Extended Save

Command 508 DEBUG

SA ceccs YES e esesseees YES
§-$A...,,. VES + s n s e e e s e yes
$B <-ce0s YOS s e e YOS
adiBB c v ces YES s o s VES
3C ves(TTOand Carry) ves
3D ... VES ..o .. yes
n$D YES YES
$E vyes (used in punching)
§E$E“"' YES - e e s e TO
$F vyes (used in punching)

$H yés {Search and Punch) no
$1 YES ..eisse..... 1O
$1 VES ... YEB
$K yes yes
n$K yes yes
sym§K ... yes ... yES
$I, ves({addresssetbvuseyyes
SM FES .. e.se.s... YES
SN Y€8 ...uc..ees. yES
$P ¥E€85 VES
n$P ..., YES ... VES
§_§£<§i_1_‘_2$1’ VES s s e nsa. DO
n$Q ...V . cyeS ... heaa s VS
$R ves({restart at C{(L)) ves
adr$R yes yes
$S VES c. s cas.aa.e YES
adr$S yes yes
adr <$5... yes yes
adr < adr. %5 ves yes
$—T~l. ..__.,2 ves (TTI register}. . vyes
SV ... VES VES
$W V€5 ..c........ yes
Y ... VES sis.eaaea.. YES
adr/....... y88 7Jes
adr! vyes yes
Y e e V85 iii....... TYES
4 e ... YES L. YyeS8
¢ e VES L. .a.... VES
= e iaa. VES i iaae... VeS
: esess YES L.......... Yyes
H s VBB L iiaci..... VES
i fee e s. VES L. YEB
! eeeee VS L ieeeaeea. YES
& L..... V€S vyes
P ..., VBB L VeS
7 ... V€S L. YES
$: L..... YE5 V€S
% ... VES Ves
$~ ..., V85-. YeES
& L. ..., V€S yes
$& VES VES
$= ... VES ...eiaaea..a. YES
$7 e .. YES seeiaae.aa-s YES
name% VYes 7YE8

P T T T

yes (print floating point registers)

B

®

-

»

»

s

B

N

-

P

register)

B I

.

.

B

.

.

scheduler-USTSA)

s s s s o os

e s 2 s s s e

B

B

.

B

s s 2 3 s

{restart

s s 2 o0 0w

B

(TCB

.

.

-

B

.

B

.

B

N

-

s

B

s

-

register)

B

P —

B

B

s

s

B

-

.

.

B

-

-

»

.

.

B

.

.

B

s

.

B e w3 e o

.

=

.

.

-

B

®

IDEB

yes
ves
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes
yes
ves
ves
yes
yes
yes
ves
no
yes
yes
ves
ves
yes
yes
yes
yves(TTI register)
yes

ves

yes

yes

yes

yves

yes

yes

yes

yes

yes

yes

yes

ves

yes

yes

yes

yes

ves

yes

ves

yes

ves

ves

(TTO and Carry)

{Extended Save register)

(print floating point registers)
{Search only)

(task scheduler-USTSA)

(restart at USTSA)

APPENDIX B
OPERATING PROCEDURES

LOADING THE SYMBOLIC DEBUGGER UNDER RDOS

Loading RDOS DEBUG

RDOS users receive one of the following library tapes, each of which contains the indicated version
of RDOS DEBUG:

Library Tape Relocatable Binary Title of Version Associated Computer and System
USYS. 1B DEB.RB DEBUG NOVA Unmapped RDOS

MSYS. LB MDEB. RB MDEBUG NOVA Mapped RDOS

BSYS. LB BDEB. RB BDEBUG ECLIPSE Unmapped RDOS

ASYS. LB ADEB. RB ADEBUG ECLIPSE Mapped RDOS

The global /D switch of the RLDR command indicates that a debugger is to be loaded with the user
programs. The name of the system tape itself need not appear in the command line, except when the
user wishes to control the area of core into which the debugger is to be loaded.

Examples:
RLDR/DABC) - Load RDOS DEBUG version from library.
RLDR/D A B BSYS.LB C) +Load RDOS DEBUG version from library before loading
user program C,
Loading IDEB
RDOS users receive one of the following relocatable binary tapes, containing a version of IDEB:
Relocatable Tape Title of Version Associated Computer and System
IDEB. RB IDEB NOVA Unmapped RDOS
MIDEB. RB MIDEB NOVA Mapped RDOS
BIDEB. RB BIDEB ECLIPSE Unmapped RDOS
AIDEB.RB AIDEB ECLIPSE Mapped RDOS

To load an IDEB version of the debugger, the name of the debugger must appear in the command

line. If the user also names the system library tape containing RDOS DEBUG specifically in the
command line, the IDEB version must appear first in order to be loaded. As with RDOS DEBUG,
the global /D switch must be included in the command line:

Examples:
RLDR/D A B C MIDEB) ~Load an IDEB version following user programs.
RLDR/D A BIDEB B C) +~Load an IDEB version following A but before user programs B and C.

RLDR/D A B USYS.LB C IDEB)-Although IDEB appears in the command line, RDOS DEBUG
will be loaded.

RLDR/D A B AIDEBASYS.LB C) «<Although ASYS. LB appears in the command line, the IDEB
version will be loaded.

Loading Local (User) Symbols for Use in Debugging

By default, no user symbols are loaded. However, the user can load user symbols contained in one
or more of his programs by appending the local switch /U to the name of the program or programs
in the RLDR command line.

Examples:

RLDR/D A/U B/U C/U = Load local symbols for all user programs.

RLDR/D A/U B C MIDEB) ~ Load local symbols only for program A.

Invoking the Symbolic Debugger

If any version of the Symbolic Debugger has been loaded, it can be invoked from CLI level by the DEB
command followed by the name of the save file. For example:

RLDR/D A B/U C) -~ Load A, B, and C and RDOS DEBUG.

DEB A) -~ Enter the debugger to debug A. SV.

When the DEB command is given, the debugger will respond with a carriage return/line feed, and the
user may now proceed to issue the debugging commands described in this manual.

LOADING THE SYMBOLIC DEBUGGER UNDER SOS

SOS users receive one of the following relocatable binary tapes of SOS DEBUG:

Relocatable Binary Title of Version Associated Computer and System b
SADEB. RB SADEB NOVA Unmapped SOS

SAMDEB. RB SAMDEB NOVA Mapped SOS

SABDEB SABDEB ECLIPSE Unmapped SOS

SAADEB. RB SAADEB ECLIPSE Mapped SOS

Loading SOS DEBUG under Magnetic Tape/Cassette Systems

To load SOS DEBUG under a SOS magnetic tape/cassette system, SOS DEBUG must first be transferred from
paper tape to a file on magnetic tape or cassette. The relocatable loader must be loaded into core. The
relocatable loader then issues the prompt:

RLDR

and the user responds by typing a command line of the format:

output-core-image SOS -debugger user-programs

For example:

RLDR MT1:0/S MT0:2 $PTR/U/3 « Magnetic tape system.

In the example, MT0:2 is the SOS debugger and the relocatable binary user programs are on paper
tape. The local switch /U is used to cause user symbols to be loaded for each of the programs.
Once the core image file, MT1:0, has been created, the user loads MT1:0 using the Core Image
ILoader:

#1:0 ~ User requests loading of MT1:0 in response to CILW prompt #

B-2

Loading S0S DEBUG under Magnetic Tape/Cassette Systems (Continued)

The user can then invoke the debugger under the CLI with the DEB command:

DEB MTI1:0

The debugger gives a carriage return/line feed, and the user can then issue debugging commands as
described in this manual.

Loading SOS DEBUG under Paper Tape Systems

Users with SOS paper tape systems receive SOS DEBUG as a relocatable binary tape. SOS DEBUG
is loaded by the relocatable loader, which must first be loaded into core. Once the relocatable
loader is in core, it will give the prompt SAFE=. The user/loader dialogue to load SOS DEBUG
is given below. User responses are underlined.
SAFE‘:_}_ Carriage return gives standard save of 200 locations.

Mount DEBUG in paper tape reader.
*2 Load DEBUG from PTR.
*4 Load all symbols.

Mount user program in paper tape reader.

*2 Load user program from PTR.

. .

Mount last user program in paper tape reader.

*2 Load last user program from PTR.
*6 Print a loader map.
*8 Terminate load.

When loading is terminated, the user sets the data switches to the address of the debugger,
contained in location 406 and presses START. The debugger responds with a carriage
return/line feed, and the user may issue debugging commands, as described in this manual.

LOADING THE SYMBOLIC DEBUGGER FOR RTOS

RTOS users receive a version of IDEB, which is supplied as a file of the RTOS library. RTOS libraries

are loaded under either RDOS or SOS.

Loading IDEB under RDOS

As indicated in Appendix B of the RTOS User's Manual, 093-000056, the RTOS libraries are loaded using

the RLDR command to produce a save file of user binaries, drivers, RTOSGEN and the libraries:

RLDR /C/D user-binaries fuser-drivers} RTOSGEN RTOS-libraries{ gg?//i*})

B-3

LOADING THE SYMBOLIC DEBUGGER FOR RTOS (Continued)

Loading IDEB under RDOS (Continued)

The /D global switch loads IDEB from the library. The load map may be obtained by listing either
to the $TTO or $LPT.

Procedures for executing the loaded program are given in Appendix B of the RTOS User's Manual.
If there is no starting address given after a .END in a user binary, the user can start the debugger
at the contents of 406 or at the DEB address indicated in the loader map.

Loading IDEB under the SOS Magnetic Tape/Cassette System

The relocatable loader is loaded into core and issues the prompt RLDR. The user responds witha
command line giving the files to be loaded and the save file to be created (indicated by the /S switch).
The RTOS libraries, in which IDEB is contained, are loaded last. For example:

RLDR CTO0:9/8 CT1:0... CT0:4

When local symbols are required, the local switch /U should be appended to the user binary file in the
load command.

Since IDEB is part of the library, one of the user binaries must declare the debugger as external, i.e.,
.EXTN DEBUG

If the debugger has been extracted for loading as a separate . RB tape, it need not be declared as external,

The save file (indicated in the load line by the /S switch) must be created. Once the save file is created,

the user loads it using the core image loader as described in Chapter 5 of the SOS User's Manual,

093-000062. When the OK prompt is given by the CILW, the user places 376 in the data switches,

presses RESET and START. This causes RTOS to initialize the system. If no starting address is

given after a .END, the user can start execution in the debugger by starting at the contents of 406 or
at the DEB address indicated in the loader map.

Loading IDEB under the SOS Paper Tape System

The relocatable loader is loaded into core and issues the prompt SAFE=, The following loader re-
sponses and procedures will load RTOS from the $PTR. User responses are underlined.

SAFE=) Carriage return gives standard save of 200 words.
- Mount RTOSGEN.
*2 Load RTOSGEN.

Mount user drivers, if any.
*2 Load user drivers.
*4 Load all symbols.

Mount user binaries.

*2 Load first user binary.

Mount RTOS libraries.

*2 Load first library.
*6 Print a loader map.
*8 Terminate load.

B-4

LOADING THE SYMBOLIC DEBUGGER FOR RTOS (Continued)

Loading IDEB under the SOS Paper Tape System (Continued)

The order of loading is not critical, except that the RTOS libraries must be locaded last, If the de-
bugger is in the RTOS library, a user relocatable binary must declare the debugger as an external,
i.e.,

.EXTN DEBUG

so that the IDEB library program may be entered. If IDEB has been extracted as a relocatable bi-
nary to be loaded as a separate .RB file, it does not need to be declared as an external.

Placing 376 in the data switches, pressing RESET and START after loading will cause RTOS to
initialize the system. If no starting address has been given after a .END, the user can start
execution in the debugger by starting at the contents of 406 or at the DEB address indicated in the

loader map.

B-5

A s ereeaeas
NPA s+ e s e

$B CE I B
adr$8 L

Cc

$C s % s % 2 0% 2 8
D

$D L A

n$D s c e
E

$E (USTSV)+ -«
$E (end block) - -
adr$E(--o.o»-.-

E

$F (floating point)

$F (leader/trailer)
n$F L A B)
H
$H «evenenns
1
L3 S
! I
$] e
-

n$K ...

sym$K

L
SL ceeeoons
M__
N.
TON e
P___
R
n$P

adr1<adr2 $pP .

13, 14
13

11, 12

14
14

12
23
23, 24

7
23, 24
23, 24

10

10

19
i9
20

12

8, 18

8,9

15, 16
16
23, 24

14, 15

INDEX OF COMMANDS

R
$R
adr$R

S
$S
adr$s
adr<$S

.

.

»

.

adrl<adr 2$S

T

$T (TCB)

$T (TTI)

y__
$V
w

. .0

W o...

Y
$Y

..

.

e s e

Opening Locations

adr/ ...

.

.

.

.

Index-1

adr! ..

Closing Locations

“ e+ e 0 s 0
C A

s e s s e

Print a Datum

= s s 00 s .

*‘Qm‘i\ - s
.
.
.
.
.
.
.

Print Further Data

$= e
$: e
$ e
e
< o
$&
Y
Symbol Identification
name%, o+ ...

15, 16
15

17, 18
18
18
18

10
11

25

8, 18

5, 6

2,5
2,5
3,5

22
22
22
22
22
22
22
22

21,22
21, 22
21, 22
21, 22
21, 22
21, 22
21, 22

20

DataGenera] PROGRAMMING DOCUMENTATION

REMARKS FORM

Document Title Document No, Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004

FOLD DOWN FIRST FOLD DOWN

‘-»:-—a.,-«-m--.-_.-._-_.....-..c--.....-—--.._n---—-—-----—--—n-u--------.p-u-------.-----.—-----------.--.-n-----—-_-._..—-

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary It Matled In The United States

Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

-—-—-—--------———------------—--—n—-----—---—-----------—-----——----_...__,...-_--__.._.._.........___.......-_.....-H..

FOLD UP SECOND FOLD UP

STAPLE

	Cover
	i
	iii
	iv
	1
	2
	3
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	B-5
	Index-1

