Extended
Relocatable
Loaders

User’s Manual

093-000080-05

For the latest enhancements, cautions, documentation
changes, and other information on this product, please see
the Release Notice (085-series) supplied with the software.

Ordering No. 093-000080

©Data General Corporation, 1972, 1973, 1974, 1975, 1978
All Rights Reserved

Printed in the United States of America

Revision 05, March 1978

Licensed Material - Property of Data General Corporation

NOTICE

Data General Corporation {DGC) has prepared this manual for use by DGC personnel, licensees.
and customers. The information contained herein is the property of DGC and shall not be
reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential) caused by
reliance on the matcrials presented. including but not limited to typographical, arithmetic, or listing
errors.

Extended Relocatable Loaders
User’s Manual
093-000080

Revision History:

093-000080
Original Release - December 1972
First Revision - April 1973
Second Revision - November 1973
Third Revision - February 1975
(RDOS 05) Fourth Revision - September 1975
(RDOS 06/DOS 01) Fifth Revision - March 1978
086-000026

Original Release - April 1975

This document has been extensively revised from Revision .04, therefore
change indicators have not been used.

The following are trademarks of Data General Corporation, Westboro, Massachusetts:

i U.S. Registered Trademarks Trademarks
CONTOUR1 NOVA NOVALITE DASHER
DATAPREP NOVADISC SUPERNOVA INFOS

ECLIPSE microNOVA

PREFACE

The Extended Relocatable Loader (called RLDR) can process and link any number
of files and libraries to produce an executable save file. RLDR can process
binary files produced by the Data General assemblers MAC aud ASM, and by
compilers which use ASM. It can also process libraries produced by the Library
File Editor utility (LFE).

Data General produces three versions of the Extended Relocatable Loader, and
this manual describes them all. We have organized the manual as follows:

Chapter 1 describes the Stand-alone Loader, which runs
without an operating system.

e Chapter 2 explains the Stand-alone Operating System Loader,
which runs under the SOS system.

s Chapter 3 describes the RDOS/DOS loader, which runs from
disk.

o Chapter 4 explains the RDOS Overlay Loader, which can
replace overlays in an existing overlay file,

o Appendix A details the types of binary blocks the Loader can
process. Read this only if you plan to write your
own language processor.

e Appendix B explains named common in overlays. Read this
if you plan to have overlays declare new named
common.

e Appendix C details the . LMIT feature, which instructs the
Loader to partially load a binary.

+ Appendix D explains the format of symbols in the Loader's

symbol tables. Read this if you are interested in
the RDOS/DOS Loader’s internal structure.

093-000080-05 iii Licensed Material - Property of Data General Corporation

(PREFACE continued)

If you have an RDOS system, read Chapters 3 and 4, and, optionally, the
appendixes.

If you have a DOS system, read Chapter 3, and, optionally, the appendixes.
If yours is a SOS system, read Chapter 2, and, optionally, Appendix A.
To run the Loader without an operating system, read Chapter 1, and, optionally,

Appendix A.

LOADER OVERVIEW

When an assembler or compiler processes a source file, it translates each symbol
into a machine instruction or numeric value, and gives each instruction or

value a "relative' location. The first instruction receives the relative location
zero, the second receives the location of one, and so on. The Relocatable

Loader assigns each relative location an "absolute" location for execution in
memory.

The Loader maintains the value of the first location available for loading, based
on the programs previously loaded. As each assembled program is loaded, the
relocatable loader updates the value of the next location available for additional
loading. In this way, any number of separately assembled modules can be loaded
together without any conflict in absolute storage assignment.

Library files are simply collections of relocatable binary programs, one or more
of which will be loaded to resolve external references appearing in previously
loaded programs.

When the relocatable loader is invoked, relocatable binary programs, absolute
binary programs, and libraries will be loaded in the order in which they are given
to the loader. In the case of the stand-alone relocatable loader, this will be the
order in which they appear on the input device. In the case of other versions of
the loader, the order of loading is the order in which the names of the programs
appear in an RLDR command line. Each library is searched once each time its
name appears in the command line.

END OF PREFACE

Licensed Material - Property of Data General Corporation iv 093—000080' 05

TABLE OF CONTENTS
CHAPTER 1 - STAND-ALONE RELOCATABLE LOADER

Operation et et R |
Table of Responses to Loader Prompt R

Resta«ta;u»cuhleaa...o....--o.............. 1

Input to the Stand-Alone Toader cuu... 1
Relocation Variables ZMAX and NMAX ,
Determining the Current Values of ZMAX and NMAX .
Forcinga Value of NMAX , et in e, .
TheSymboiTable(LoaderMap) B .
Execution of Loaded Programs0 cvvv v, 1-8
Initiation of Execution T Y3
Starting Address for Execution « v vv v vt veveenenes . 1-9
1-9

1-1

.
[I
1

Loading of Library Tapes
Loading Local and Title Symbols. . « ¢ v e v e vevnoene...
Reinitialization of Loading « + .« v v v vv v v e vnansnesae . 1-10
Determining Available Core . v . v v v vt v v e veve e eesa.l-11
Error Detection et e B R B |
Nonfatal ETrorsS . v v v v o vt ot e o et eoeoeeeenenensn 1-12
DOError «....... e 3 W
12 3 5 o o o S)
IN Error «.oe.¢... S B R
MEEXroreeeeveoen I R
TO ErIOr: v vt vt e e totoooososcenconsoeses ..1-13
D D D oo o R
Fatal ExXrors ¢« v v vt vttt eenenveneesanecocesessasl-ld
CSError.....ueueee.. S 3 1)
MO Error @ v v ettt ittt et eencocecaoeaeeesesl-l4
NA ETror oo ot v et oot teeeneoeeenees A R 5
O 5 o o ol £ &)
OW ETTOr v v o vt vttt v e se o aoeoeeeeeonnonens .1-15
XL Error ¢« oo vt vt vttt veneeeescosoesonnessal=l6
/@ B 5 o o o 8 1)
User Status Table of Loading Information.+ .. .e0...1-16

093-000080-05 v Licensed Material - Property of Data General Corporation

CHAPTER 2 - SOS MAGNETIC TAPE /CASSETTE RELOCATABLE LOADER

Operation. v vo ot v o s o e s eesseesanasasenasennsss
SymbolTable. o v s vt v vt tsnneieoosessasoonnas
User Status Table. v v o e v et s s vesseesosoossseseas
Command Line . v vt v i v v it i v i v e i vt e e nnnss .
Output File Name SwitchesS. ¢v v v v v v v v v v v o u
Input File Name Switches. . co e v vt vt ettt v e s vnnn
Command Line Error Messages. « « o v e v v o v v e v e
Examples of Command Lines. . .. oo vv vv v v v vnns
Restart Procedure............
Error Messages. .« v v v o ve v vn et
Non-fatal EXrrors. .« oo e v it i vttt v onneoeseess
Fatal EXrors. o v o v ittt et oooososonnnonosecenns

1 '
B W W NN e

)
&S

. . .
NN DNMDNDDNDNDDNDNDDNDDNDNDN
U

1
N oyt o

CHAPTER 3 - THE RDOS/DOS RELOCATABLE LOADER (RLDR)

RLDR OVerview. v v v v vt v e v o s voesoasseoeos e oo
RIDR FileS. v v v v vt o eosseonnsesosssnensneses
Command Line........... ettt e et es e e
Library Files. o o e e et vt eitetteneennceneneens
Loading Overlays « o v v vt e v veveoooncecocnceonnons
Global SWitCheS « v o v v e e s s e e v e oo o onsssasocnanaes
Local SWitCheS. ¢ v o e v v st v v v s eeseooonceaness
The Load Map . v v vt v e v toseeeocoonnnesoosaesas
System TablesS ev o oot v vt vt oeeececeseaeasnnns
User Status Table (UST) v vv vt i vv e vennneanns
Task Control Blocks (TCBS). o v v et v v vt v vveennenns
Overlay Directory. « o v o oo s s oo v oo ooeenesenes
Memory Map [11ustration . « v oo co oo e v v v oo vuveees
Specifying NREL Address « e v o s v oo oo v v avveoscensns
Symbol TableS v v v v v o v st ve oo soonoensoncsnns .
Checking Save File Size v . v v v v v v v v v vt
Command Line Examples. v« oo v v vt v v veeenenes
Example Program
RLDR Error Messages « . oo cooe o
Non-fatal Errors. . oo v v v v v ot i v ennneenns
1 o o

[}
= = = 00 UT W W W N

W Ww W=

W GO Lo W W W W WL WWWWWWWWwWwwww
1

1
[y
S

1
—
['-N

.
1

[}
DO DN DN et et ek = ped
Urw w o oo N1 ovnn

Licensed Material - Property of Data General Corporation vi 093-000080-05

CHAPTER 4 - THE RDOS OVERLAY LOADER

APPENDIX A - RELOCATABLE BINARY BLOCK FORMATS

Radix 50 Representation. « « v o o v o vt vt e v e nennanans A-1
RelocatableBinaryBlockTypes....................
Title Block (¢ TITL) .t vt vttt te et v veveoenoonenes
Labeled Common Block ((COMM) . ..t v vt ve ve oo oon e

Entry Block (ENI‘) e o o o o o L o LI o o 9 ® o o 9 0 o o o0 e s .
[Inlabeled Common Size Block (. CSIZ) A-7

External Displacement Block (.EXTD)A-7
Relocatable Data BIOCK & ¢ v e v v v o caveneonneoseneos A

Global Addition Block (. GADD) and

Global Reference Block ((GREF) v v e eoees.. .A-8
Global Location Start and End Blocks (.GLOC),.........A-9
Normal External Block (.EXTN)o vt veeeceeees A9
Local Symbol BlocK. ¢ v v o v v v v eevevsosneaneeneens oA-10
Start BloCK v v v ve et o vv e oeveceennneenensaees A-10
Library Start and End Blocks . « v v v v v e e v e v oo veen s JA-1L
RB File I1IuStration « « v v v v v e o v e oo oeveoneeeeeeoes o A=12
Extended RBs . v v vt it vttt vt teceneeeeeenaneeos A-14

APPENDIX B - OVERLAYS AND NAMED COMMON (RDOS /DOS)

Named Common and Overlays . . « c v e c v s e s s s oo eessB=
Summary'..."“........‘.."..'.'.'.....' .B

APPENDIX C - THE .LMIT FEATURE
APPENDIX D - RLDR SYMBOL TABLE FORMATS

Disk Table Format for Symbols . « « ¢ e v o e e e o s s vess.D-1
Memory Table Format for Symbols (Undefined Only).. .. .D-2

093-000080-05 vii Licensed Material - Property of Data General Corporation

CHAPTER 1

STAND-ALONE RELOCATABLE LOADER

OPERATION

The relocatable loader tape is in binary format, and is loaded using the binary
loader (091-000004). Once loaded, the relocatable loader will self-start and type:

SAFE=

on the Teletype. This queries the user about the octal number of words to be pre-
served at the high end of memory.

The default response is a carriage return, which will cause the loader to save 200
octal words - enough to preserve both bootstrap and binary loaders.

Otherwise, the user may input an octal number, terminated by a carriage return,
giving the number of octal words to be saved. The user response may be up to
S octal digits long and must be within the limits of memory.

An error on input will cause the loader to repeat the query, SAFE =; the error cases
are:

1. A character other than an octal digit or a carriage return is input,
2, More than five octal digits are input.
3. The number specified is too large for the user's core configuration,

that is, no load space remains.

When the SAFE= query has been correctly answered, the value specified is fixed for
the duration of the loading process. The loader will then prompt a user response by

typing:

%

on the teletypewriter.

Relocatable loader action is initiated by single digit responses to the loader prompt,

*. The possible loader mode responses are tabulated on the following page and are

described throughout this manual. Each time the loader has completed its response

to a user request, it will type :
ES

093-000080-05 1-1 Licensed Material - Property of Data General Corporation

OPERATION (Continued)
and await a new request. If an illegal response is input, the loader prints:

?

and awaits a legal response. User-loader interaction is terminated by responding
to a prompt with the digit 8 (terminate loading process and prepare for execution).

To reinitialize the loading process if the process was terminated by a fatal load
error, the user may issue the digit 7 in response to the * query.

TABLE OF RESPONSES TO LOADER PROMPT *

Response Effect
1 Load a relocatable binary or a library tape from the teletype reader.
2 Load a relocatable binary or a library tape from the paper tape
reader.
3 Force a loading address for normally relocatable code.
4 Complement the load-all-symbols switch.
5 Print current memory limits,
6 Print a loader map.
7 Reinitialize the loader.
8 Terminate the load process to prepare for execution.
9 Print all undefined symbols.

RESTART PROCEDURES

To restart the loading process, the user may press RESET, enter 000377 in the data
switches, press START,

INPUT TO THE STAND-ALONE LOADER

The input to the relocatable loader is in the form of relocatable binary tapes output
from the relocatable assembler. FEach tape is divided into a series of blocks and

Licensed Material - Property of Data General Corporation 1-2 093-000080-05

INPUT TO THE STAND-ALONE LOADER (Continued)

must contain at least a title block and a start block. The order of blocks input to
the loader is shown below. Each block type is described in detail later in this
manual,

Title block

COMMON block(s)

Entry block(s)

. CSIZ block(s)

Displacement
External block(s)

Relocatable data block(s)
Global addition block(s)
Global start and end block(s)

Normal external block(s)

Local symbol block(s)

Start block

(13711}

To load a single relocatable binary tape, the user respondé to the prompt with:

1 - input from teletype reader, or

2 - input from paper tape reader
The binary tape will be loaded, and the loader will respond '"*" after the start block
has been processed. The user can then input another relocatable binary tape or give

one of the other responses to the prompt.

RELOCATION VARIABLES ZMAX AND NMAX

The load addresses input to the relocatable loader are in three modes -- absolute,
page zero relocatable, and normal relocatable. Absolute origined data is loaded
at the locations specified to the assembler. For relocatable origined data, the
loader is initialized to assume two relocation variables called NMAX and ZMAX.

093-000080-05 1-3 Licensed Material - Property of Data General Corporation

RELOCATION VARIABLES ZMAX AND NMAX (Continued)

7ZMAX has an initial value of octal 50, where 50 is the first location to be loaded
with page zero relocatable data. As each location is filled, ZMAX is updated to
reflect the next location available to receive page zero relocatable data.

NMAX has an initial value of octal 440, the first location available to load normal
relocatable data. As each location is filled with normal relocatable data, NMAX is

updated to represent the next available location.

Determining the Current Values of ZMAX and NMAX

The relocatable loader maintains a symbol table (also called a loader map) which
is built down in core from the saved area (response to SAFE=). The current values
of ZMAX and NMAX are given in the loader map. The user can obtain the current
ZMAX and NMAX values, plus current values of the start and end of the symbol
table (SST and EST) and CSZE (unlabeled COMMON size) by responding to the "*"
prompt by

The first two values given are NMAX and ZMAX in the format:

NMAX nnnnnn
XMAX nnnnnn

where nnnnnn represents the 6-digit current octal value of each variable.

Forciﬁg a Value of NMAX

Before input of a relocatable binary tape, the user can force NMAX to a given value,
thus determining the absolute load address for normally relocatable data.

The user can force NMAX to a given value by:
1. Entering the desired octal value in the console data switches, bits 1-15.
2. Responding to the "*" prompt with the digit:
3

THE SYMBOL TABLE (LOADER MAP)

The symbol table is constructed downward in core from the first address below the

Licensed Material - Property of Data General Corporation 1-4 093-000080- 05

THE SYMBOL TABLE (LOADER MAP) (Continued)

saved area, determined by the SAFE= query.

At the top of the symbol table are entries for NMAX, ZMAX, CSZE, EST, and SST,
Below these are all entry symbols, undefined externals, and local symbols (if the
load locals switch was set by a response of 4 to the "*" prompt).

A defined symbol is represented by three words. The first two words contain
the symbol name (in radix 50, using 27 bits). There is a six-digit octal value
in the third word.

For an entry symbol, its value is an absolute number -- either the core address of
the word for which the symbol was a label or the value of the symbol as defined by

an equivalence,

For undefined external normals, the number is the absolute address of the last of

a chain of references to the symbol. If the number is -1, there were no references.
Each reference to the symbol has been replaced by the absolute address of the
previous reference, the first reference having been replaced by -1.

For undefined external displacements, there may be more than one reference chain.
The value printed is the absolute address at the last reference in the first such
chain. The actual symbol table entry has the two-word symbol and the end addresses
of n chains, where the first n-1 have bit 0 set and the last does not, signifying the
end of the symbol table entry. Within a chain, references are linked via 8-bit
relative displacements, contained in the rightmost byte (right half) of each storage
word. Each chain is terminated by a word having 377g in its right-most byte.

Thus, if two consecutive references are farther than 3678 words apart, a new

chain must be started as shown on the following page.

At termination of the load, undefined external normals will be resolved by the

relocatable loader to the value -1, Each occurrence of that symbol will be replaced
with a -1.

093-000080-05 1-5 Licensed Material - Property of Data General Corporation

top of — . <«——SST
memory :

Symbol in
Radix 50 | 00011 ~—— EXTD flags (binary)
1 02300
04000
—C 05507

[~

Symbol in
Radix 50 | 00001 <-—— . EXTN flags
04500

<-——EST

5507 ~ [322 ‘:>
5165 [165 j:)

5000 1 377

4500 3000

4000 | 377

3000 1000

2300 - {200 i:)
2100 [100

2000 | 377

1000 177777

Licensed Material - Property of Data General Corporation 1-6 093-000080-05

THE SYMBOL TABLE (LOADER MAP) (Continued)

A symbol may be flagged on the loader map with one of two letters., A U appears
on the lefthand side of the symbol if the symbol is an external for which no entry
has yet been defined, i. e., an unresolved extetrnal.

An M on the lefthand side of the symbol means the symbol is defined in two or
more entry or , COMM statements.

An example of part of a symbol table follows, EST means the lowest word of the
symbol table - 1. SST means the highest word within the symbol table, CSZE
means size of unlabeled Common.

TEMF

NMAX va4723
IMAX ceecud
CSZt weeeve
EST ?5¢131
SsT P52¢e]

ARESZ veeeen
BINAR Qaece7
BUFFE 216711
BUGIN peeceee
CHSK pee174
CKS@ vegaae
coLal 235622
caLee n35623
coLaes 235624
coLed 235625
coLaes #35626
CoLée 235627
coLev 235630
coLes ?35631
ccoLus 235632
CCL1@ 235633
coL11t #35634
coLte 235635
coL13 235636
caL14 235637
CoL15 ?35640
COL1e n3isedl
coLr7 @35e642

093-000080-05 1-7 Licensed Material - Property of Data General Corporation

THE SYMBOL TABLE (LOADER MAP) (Continued)

To obtain a copy of the symbol table, respond with the digit
6
to the loader '"*" prompt.

To obtain a copy of only the undefined symbols in the symbol table, respond with
the digit

9
to the loader

1ty

prompt.

EXECUTION OF LOADED PROGRAMS

Initiation of Execution

Loading of programs is terminated when the user responds
8

to the loader query "*". The programs previously loaded are then moved to reside
at the absolute addresses indicated by the loader map. Until the load process is
terminated, the loader resides in low core and all programs are loaded assuming
a pseudo address for location 00000 which exists above the loader itself. Once
loading is terminated, the following occurs:

Location 377 is unconditionally initialized to 2406 (JMP @.+6),
providing a convenient restart address. (Location 405 of the
User Status Table, UST, is set to the starting address of the
loaded core image by the loader. See UST layout on page 1-16.)

Memory is shuffled down to reflect the true addresses as shown
on the following page. ’

Licensed Material - Property of Data General Corporation 1-8 093-000080-05

EXECUTION OF LOADED PROGRAMS (Continued)

During Loading After Load
Top of Memory
Safe Safe
USTSS —»
Symbol Table Symbol Table
USTES —=
Available Available
Space Space
Routines
«<+— Pseudo address of location Loaded User
00000 .
Loader Routines

The loader passes information to loaded routines that may be useful for their
execution. This information is passed in the User Status Table, which starts at
location 400, (See page 1-16),

Starting Address for Execution

After shuffling memory, the relocatable loader will HALT. When the user presses
CONTINUE, the loader will HALT again if no starting address has been specified
on any of the binary tapes.

If only one of the binary tapes loaded contains a starting address, the address will
receive control regardless of the order in which the tapes were loaded.

If more than one binary tape loaded contained a starting address, the last starting
address specified by a binary tape will receive control for execution.

LOADING OF LIBRARY TAPES

Library tapes are tapes containing a set of relocatable binaries that are preceded
by a library start block and terminated by a library end block. Library tapes are
provided by Data General as part of the standard software packages.

Library tapes are loaded in the same way as relocatable binaries. The user mounts

093-000080-05 1-9 Licensed Material - Property of Data General Corporation

LOADING OF LIBRARY TAPES (Continued)

the library tape in the appropriate input device and responds to the loader "*"
query with either 1 or 2.

The library load mode is initiated when the loader encounters a library start block.
The loader does not request a new load mode until after encountering the library end
block.

The loader will load selected relocatable binary programs from the library tape.
Programs in a library tape are loaded only if there is at least one entry symbol
defined by that program which corresponds to a currently unresolved external in a
previously loaded program. For example, if programs A, B, and C are on a
library tape and A calls B which calls C, none of those programs will be loaded
unless some program loaded before the library tape has called A, If A has an entry
corresponding to a previously unresolved external, then all three programs A, B,
and C will be loaded,

LOADING LOCAL AND TITLE SYMBOLS

Local and title symbols are normally loaded only when the user intends to use the
symbolic debugger, since the symbols will otherwise-occupy symbol table storage
space unnecessarily.

The loader maintains a local and title symbols switch which is set by default to
inhibit loading of local and title symbols. The user can complement the switch,
altering the mode, by responding to the loader "*'" query with

4

The loader responds with S when the switch is set to load local and title symbols.
The user can complement the switch by issuing another 4, and the loader responds
with R, indicating that the switch has been reset,

REINITIALIZATION OF LOADING

If the loading process is terminated by the fatal error (see ERROR DETECTION
section), or if the user wishes to start loading over, the loader must be reinitialized.
The user can reinitialize loading by responding to the loader query "*" with

7

The loader will then reset ZMAX and NMAX to 50 and 440 respectively and will
reinitialize the symbol table,eliminating all entries.

Licensed Material - Property of Data General Corporation 1-10 093-000080-05

DETERMINING AVAILABLE CORE

Total core available for program loading is dependent upon loader size, core con-
figuration, the size of the SAFE area, and the number of symbols entered in the
symbol table. The following is an approximate formula for determining core avail-
able for program loading:

core available = sc - 2500 - SAFE - 3*ne

where: sc is the core capability of the system configuration, and

i€ is the number of entry points {plus the number of user symbols when in
mode 4) defined by all relocatable programs to be loaded.

The quantities are given in octal.

The user can obtain a printout of the current memory limits during loading by
giving the response

5
to the loader query "*"

ERROR DETECTION

The loader detects two types of errors -- fatal and nonfatal, Fatal errors prevent
further loader action unless the user reinitializes (response of 7). Nonfatal errors
do not stop loading but may change the intended state of the user's loaded system.

All errors are indicated by a two-letter code. The code is printed at the teletype
followed by a symbol name, if applicable, and by a six-digit octal number, if
applicable. The meaning of the octal number is defined later for each of the error
codes. The message has the general form:

€€ SSSSS nnnnnn

where ee is the error code.
sssss is the symbol name.

nnnnnn is the octal number.

093-000080-05 1-11 Licensed Material - Property of Data General Corporation

ERROR DETECTION (Continued)

Nonfatal Errors

Code Description

DO Displacement overflow

IB Illegal block type

IN Illegal NMAX

ME Multiply defined symbol

TO Input timeout

XE External undefined in external expression

DO Error

DO nnnnnn

If, while attempting to resolve an external displacement, the loader finds the dis-

placement is too large, a displacement overflow (DO) error results, The dis-
placement is too large if:

the index = 00 and the unsigned displacement is > 377
or

the index # 00, and the displacement is outside the range:
-200 < displacement < +200.

The location nnnnnn represents the absolute address where overflow occurred. The
displacement is left unresolved with a value of 000.

IB Error

IB nnnnnn

Licensed Material - Property of Data General Corporation 1-12 093-000080-05

ERROR DETECTION (continued)

If an illegal relocatable block type is read, anillegal block (IB) error results. The
octal number nnnnnn represents the block code of the illegal block. The loader will
issue a "*" query after issuing the error code. If an improper tape mounted in the
reader caused the error, it should be replaced by a relocatable binary or library
tape and ioading attempted again.

IN Error

IN nnnnnn

If the user responds 3 to the loader prompt and the value in the switches is lower
than the current value of NMAX, an IN error results, The octal number nnnnnn
is the illegal value of NMAX., NMAX is unchanged.

ME Error

ME sssss nnnnnn

When-an entry or named common (. COMM) symbol having the same name as one
already defined is encountered during loading, a multiply defined entry (ME) error

esults. The name of the symbol sssss is followed by the absclute address nnnnnn
at which it was originally defined.

TO Error

TO nnnnnn

If the time between input characters becomes excessive, a timeout (TO) error
occurs. The usual cause of the timeout error is a binary tape without a start
block or a library tape without an end block. The location nnnnnn represents the
location in the loader where the timeout occurred. The loader will issue a "*"
request when the error occurs.

XE Error

XE sssss

093-000080-05 1-13 Licensed Material - Property of Data General Corporation

ERROR DETECTION (continued)

If a . GADD block is encountered that references an as yet undefined symbol, an

external undefined in external expression (XE) error occurs.

Zero is stored in

the memory cell. The undefined symbol sssss is printed out following the error

indicator.

Fatal Errors

Code Description
CS Checksum error
MO Memory overflow
NA Negative address
NC Named COMMON error
ow Overwrite of memory
XL External location undefined
Z0 Page zero overflow
CS Error
CS nnnnnn

If a checksum computed on any block differs from zero, a checksum (CS) error
results. The octal number nnnnnn represents the incorrect checksum that was

computed.

MO Error

MO nnnnnn

If the value of NMAX plus the loader size itself conflicts with the bottom of the

Licensed Material - Property of Data General Corporation 1-14

093-000080-05

ERROR DETECTION (continued)

loader's symbol table, a memory overflow (MO) error occurs. The error implies
that the user programs are too large to be loaded in the memory configuration.
The octal number nnnnnn is the value of NMAX that caused the overflow.

NA Error

NA nnnnnn

If bit O of an address word is set to 1, a negative address (NA) error occurs. The
assembler restricts addresses to the range:

0 iaddress < 215

A reader error, however, could cause bit O to be set. nnnnnn represents the
negative address.

NC Error

NC sssss nnnnnn

If two programs have different sizes for a given area of labeled COMMON (defined
by . COMM statements), or if the symbol table flags that are associated with the
symbol are not 000109, a named common (NC) error results. sssss gives the
symbol name of the labeled COMMON and nnnnnn indicates the size of the labeled
COMMON requested by the present . COMM .

OW Error

OW nnnnnn

The loader does not permit memory cells to be overwritten by subsequent data
once they are loaded. If an attempt to overwrite is made, an overwrite (OW) error
occurs. The absolute address where the overwrite was attempted is given by
nnnnnn,.

093-000080-05 1-15 Licensed Material - Property of Data General Corporation

ERROR DETECTION (Continued)

XL Error

XL sssss

If a .GLOC block is encountered with data to be loaded at the address of a symbol
that is as yet undefined, an external location undefined (XL) error resuits, The
undefined symbol is given by sssss..

Z0 Error

ZO nnnnnn

If in loading page zero relocatable code the code overflows the page zero boundary
of 377, a page zero overflow (ZO) occurs. The absolute address of the first word
of the data block that caused the overflow is given by nnnnnn .

USER STATUS TABLE OF LOADING INFORMATION

The relocatable loader provides information concerning the loading process in a
table called the User Status Table (UST). The UST is origined at location 400: a
template is shown below with explanatory information.

UST = 400 ;START OF USER STATUS AREA
USTPC = 0 ;PROGRAM COUNTER

UsTzM = 1 ;ZMAX

USTSS = 2 ;START OF SYMBOL TABLE
USTES = 3 ;END OF SYMBOL TABLE
USTNM = 4 ;NMAX

USTSA = 5 ;STARTING ADDRESS

USTDA = 6 ;DEBUGGER ADDRESS

USTHU = 7 ;HIGHEST ADDRESS USED BY 1.LOAD MODULE
USTCS = 10 ;COMMON AREA SIZE

USTIT = 11 ; INTERRUPT ADDRESS

USTBR = 12 ;BREAK ADDRESS

USTCH = 13 ;NUMBER OF CHANNELS/TASKS
USTCT = 14 ;CURRENTLY ACTIVE TCB
USTAC = 15 ;START OF ACTIVE TCB CHAIN
USTFC = 16 ;START OF FREE TCB CHAIN

Licensed Material - Property of Data General Corporation 1-16 i 093-000080-05

USER STATUS TABLE OF LOADING INFORMATION (Continued)

USTIN = 17 ;INITIAL START OF NREL CODE

USTOD = 20 ;OVERLAY DIRECTORY ADDRESS

UsTsv. = 21 ;FORTRAN STATE VARIABLE SAVE ROUTINE
USTEN = USTSV ;LAST ENTRY

Location 400 - USTPC is the program counter. The loader initializes this word to
0, indicating that the program has never run.

Location 401 - USTZM points to the first available location in page zero for page
7zero relocatable cade,

Location 402 and 403 - USTSS and USTES point to the start and end of the symbol
table respectively as shown in the diagram on page 1-4. The loader sets 402 and
403 to 0 if the debugger is not loaded.

Location 404 - USTNM contains NMAX. The loader sets the pointer to the first
free location for further loading or for allocation of temporary storage at run time.

Location 405 - USTSA points to the program starting address, specified by the
.END statement. If no starting address is specified by any loaded program, -1 is
stored in 405. If several programs specify starting addresses, USTSA contains
the address specified in the last program loaded. (Location 377 contains a

JMP @.+6, which transfers control to the program starting address. Therefore,
the user can conveniently restart his program at 377, assuming that he has
specified a starting address.)

Location 406 - USTDA points to the starting address of the debugger, or if the
debugger is not loaded, 406 contains -1.

Location 407 - USTHU is set to the value of NMAX at the termination of loading.
Since no operating system changes USTHU during program execution, it can be
used to reset NMAX when a program is restarted.

Location 410 - USTCS contains the size of the FORTRAN unlabeled COMMON area,
used when the binary relocatable programs being loaded contain .CSIZ blocks,
such as those generated by the FORTRAN compiler.

Location 411 and 412 - USTIT and USTBR are set to 0 by the loader.

Locations 413-16, 420-21 - These locations are compatible with RDOS.

Location 417 - USTIN contains the address of the start of normally relocatable
code (4408).

END OF CHAPTER

093-000080-05 1-17 Licensed Material - Property of Data General Corporation

CHAPTER 2

SOS MAGNETIC TAPE /CASSETTE RELOCATABLE LOADER

Under the Stand-alone Operating System, programs for systems that do not use
magnetic tape or cassette I/O are loaded using the Stand-alone Relocatable Loader,
091-000038, as described in Chapter 1. Relocatable loader 091-000038 is supplied

in absolute binary,

Programs for SOS systems that have either magnetic tape or cassette 1/0, however,
are loaded by the relocatable loader 089-000120, which is supplied as part of the SOS
cassette or magnetic tape system.

OPERATION

The SOS relocatable loader 089-000120 must be loaded by the core image loader in
accordance with the procedures outlined in the Stand-alone Operating System User's
Manual,

Once loaded, the relocatable loader will print the following prompt at the teletype-

RLDR

The user responds by typing a command line giving the names of files used as input
to and output from the relocatable loader,

The user response to the RLDR prompt consists of a list of file names which may
have local switches. The command causes the relocatable loader to produce from
one or more ,RBor , LB files, an executable core-resident program and a core
image (save) file on magnetic tape or cassette. Both files start at address zero.
The same file cannot be used for both input to and output from the relocatable
loader. At least one input file and an output save file must be designated in the
command line.

The SOS magnetic tape/cassette relocatable loader is compatible with the RDOS
relocatable loader and builds a core resident program in much the same way:

The user program ZREL code starts at location 50 and builds upwards in
page zero.,

093-000080-05 2-1 Licensed Material - Property of Data General Corporation

OPERATION (Continued)
The User Status Table is contained in locations 400-437.
The User NREL code starts at location 440 and builds upward in memory.

The symbol table is retained in core only if the symbolic debugger,
Debug III, is loaded. At termination of loading, the symbol table is
moved down to the end of NREL code.

The maximum core size of each loaded program cannot exceed the maximum core
address less 1325_.. The 1325 locations are required for the core image loader
and pass 2 of the relocatable loader.

Upon completion of a successful load, the message "OK" is ovtput on the teletype-
writer and the system halts with the loaded program in core.

SYMBOL TABLE

The symbol table is built in high core and moved down to the end of NREL code at
termination of loading. The symbol table is retained in core only if the symbolic
debugger, Debug III is loaded. Debug III is supplied on relocatable binary tape
089-000073 and must be loaded as one of the input files in the RLDR command

line if a symbol table is desired. The symbol table is similar to the one shown on
page 1-7 for the Stand-alone Relocatable Loader.

USER STATUS TABLE

Locations 400-437 contain the User Status Table (UST). The table is given below:

USTPC = 0

USTZM = 1 sZMAX

USTSS 2 ;START OF SYMBOL TABLE
USTES 3 ;END OF SYMBOL TABLE
USTNM = 4 ;sNMAX

USTSA = 5 ;STARTING ADDRESS
USTDA = 6 sDEBUGGER ADDRESS

USTHU = 7 ;HIGHEST ADDRESS USED

USTCS = 10 ;FORTRAN COMMON AREA SIZE
USTIT = 11 ; INTERRUPT ADDRESS

USTBR = 12 ;BREAK ADDRESS

USTCH = 13 ;s NUMBER OF CHANNELS/TASKS
USTCT = 14 ;CURRENTLY ACTIVE TCB
USTAC = 15 ;START OF ACTIVE TCB CHAIN

Licensed Material - Property of Data General Corporation 2-2 093-000080-05

USER STATUS TABLE (Continued)

USTFC = 16 ;START OF FREE TCB CHAIN

USTIN = 17 ;INITIAL START OF NREL CODE

USTOD = 20 ;OVERLAY DIRECTORY ADDRESS

USTSv. = 21 ;FORTRAN STATE VARIABLE SAVE ROUTINE
USTEN = USTSV ;LAST ENTRY

COMMAND LINE

When the prompt RLDR is output, the user responds on the same line with a list of
input and output file names. Switches may be attached to one or more of the file
names, and each space is separated from the next by at least one blank space. The
general format of the command line is:

filename;... filenamey)

At a minimum, the command line must contain at least one input file name and one
output save file name:

inputfilename outputfilename/S)

where: S is a switch indicating the save file.

A number of switches may be appended to the names of input and output files in the
command line, They are as follows:

Output File Name Switches

/S The /S follows the name of a cassette or magnetic tape file, indicating
that that device will be used for output of the save file. If no save file is
specified or if a file is incorrectly specified as a save file, an error
message will result and the loader will reinitialize itself, printing the
prompt " RLDR" .

/L The /L follows the name of a device and causes a numerically ordered
listing of the symbol table to the device, The output device for the listing

cannot be the same as that used for the save file.

/A This switch may be appended to the same device as that having the /L

093-000080-05 2-3 Licensed Material - Property of Data General Corporation

COMMAND LINE (continued)

switch. It causes an alphabetic as well as numeric listing to result,
The /L switch must be present.

Input File Name Switches

/N NMAX, the starting address for loading a given input file may be changed
from the default address by use of this switch. The /N follows an absolute
address, given in octal, and precedes the name of the input file to be
loaded beginning at the octal address. The octal address given must be
greater than the current value of NMAX,

/P Files to be loaded may be on different cassettes. /P following a file
name causes a halt before the file of that name is loaded that allows the
user to mount a new cassette containing the input file. When the loader
halts, the message: PAUSE - NEXT FILE filename is printed, where
filename is the name of the file that had the /P switch, When the new
cassette is mounted, the user restarts loading by pressing any teletype-
writer key, e.g., RETURN.

/U /U causes local user symbols appearing within the file preceding the
switch to be loaded.

/n n is a digit in the range 2-9. The input file preceding the switch is loaded
the number of times specified by the switch.

Command Line Error Messages

Following are the possible command line error messages:

NO INPUT FILE SPECIFIED
NO SAVE FILE SPECIFIED
SAVE FILE IS READ/WRITE PROTECTED

The save file device must be either a cassette or magnetic tape
and must permit both reading and writing.

aaaaa I/0 ERROR nn

where: aaaaa is the address associated with the error.

Licensed Material - Property of Data General Corporation 2-4 093-000080-05

COMMAND LINE (continued)

nn is one of the following RDOS codes:

1 - Illegal file name

7 - Attempt to read a read-protected file,
10 - Attempt to write a write-protected file,
12 - Non-existent file,

Examples of Command Lines

$TTO/L/A CT2:0/S $PTR CTL:6 16500/N CT1:0)

Input files are the $PTR, CT1:6 and CT1:0. NMAX is reset for CT1:0 to
165008. The save file is written to CT2:0 and an alphabetically ordered
listing is output on the teletypewriter.

If one of the input files, CT1:6, CT1:0 or the $PTR contains the debugger,
a symbol table will be generated.

MTL1:0/S MTO:1 MTO0:2 $PTP/L)

Input files are MTO:1 and MTO0:2, The save file is output to MT1:0, A
numeric listing is to the paper tape punch.

CT0:0/S CTl:2 CT1:0/P)

Input files are on different cassettes, so the /P switch allows a pause for
the user to change the cassette tape on unit 1. The save file is output to
CT0:0.

RESTART PROCEDURE

The loader can be stopped and restarted at location 377 any time in Pass 1 (up until
the end of the listing of the symbol table). Once Pass 2 starts, the loader must be

reloaded from cassette or magnetic tape.

ERROR MESSAGES

In addition to the command line error messages described on the previous page,
the loader produces explicit error messages that are printed to the console.
These include both fatal and non-fatal error messages. The error messages are
followed by an appropriate identifying location, symbol, or both.

093-000080-05 2-5 Licensed Material - Property of Data General Corporation

ERROR MESSAGES (Continued)

Non-fatal Errors

Non-fatal errors do not stop loading but may change the intended state of the output
file. The non-fatal error messages are:

DISPLACEMENT OVERFLOW nnnnnn
A displacement overflow error occurs if the loader finds the displacement
is too large when attempting to resolve an external displacement, The

displacement is too large if:

the index = 00 and the unsigned displacement is > 377.

the index # 00 and the displacement is not in the range:

-200 <_dis21acement <4200

nnnnnn is the absolute address where overflow occurred. The displace-
ment is left unresolved with a value of 000.

ILLEGAL BLOCK TYPE nnnnnn

The error message normally occurs if the input file is not a relocatable
binary or library file. The file in error will not be loaded. Octal
number nnnnnn is the block code of the illegal block.

MULTIPLY DEFINED ENTRY sssss nnnnnn

This error occurs when an entry symbol or named common (, COMM)
symbol, sssss, having the same name as one already defined is encoun-
tered during loading. nnnnnn is the absolute address at which the symbol
was originally defined.

EXTERNAL UNDEFINED IN EXTERNAL EXPRESSION sssss

This error occurs if a , GADD block is encountered that references an as
yet undefined symbol, gssss, Zero is stored in the memory cell.

BINARY WITHOUT END BLOCK

This error occurs when a binary file has no end block. The file is
loaded up to the point where the error is discovered.

Licensed Material - Property of Data General Corporation 2-6 093-000080-05

ERROR MESSAGES (continued)

ILLEGAL NMAX VALUE nnnnnn

This error occurs when the user attempts to force the value of NMAX

to avalue lower than the current value of NMAX, i.e., if the octal value
following a /N local switch is lower than the current value of NMAX,
nnnnnn is the illegal value. NMAX is unchanged.

NO STARTING ADDRESS FOR LOAD MODULE

This error occurs if at assembly time the user failed to terminate at
least one of the programs to be loaded with a , END pseudo-op that was
followed by a starting address for the save file. The starting address
can be patched by the user into location 405 (USTSA) of the User Status
Table.

EXTERNAL NORMAL/DISPLACEMENT CONFLICT sssss

This error occurs when a symbol sssss appears in a . EXTD block in
one module to be loaded and in a , EXTN block in another module.

CAUTION OLD ASSEMBLY ssss

This error occurs when this program was assembled by an
incompatible assembler,

Fatal Errors

If an error is fatal, the error message and the location at which it was discovered
are followed on the next line by a second message:

FATAL LOAD ERROR
and the loader gives the prompt, RLDR, For example:
CHECKSUM ERROR nnnnnn
FATAL LOAD ERROR
RLDR

The fatal errors are:

CHECKSUM ERROR nnnnnn

This error occurs if a checksum that is computed on some block differs
from zero. nnnnnn is the incorrect checksum.

093-000080-05 2-7 Licensed Material - Property of Data General Corporation

ERROR MESSAGES (continued)

NEGATIVE ADDRESS nnnnnn
This error occurs if bit 0 of an address word is set to 1. The assembler
restricts addresses to the range: 0< address< 219 ; however, the error

can be caused by a reader error. nnnnnn represents the negative address.

PAGE ZERO OVERFLOW nnnnnn

This error occurs in loading page zero relocatable data if the data over-
flows the page zero boundary (377g). The absolute address of the first
word of the data block that caused the overflow is given by nnnnnn,

NAMED COMMON ERROR sssss nnnnnn

This error occurs if two programs have different sizes for a given area
of labeled COMMON (defined by ,COMM statements), or if the symbol

table flags that are associated with the symbol are not 000103. Sssss
gives the symbol name of the labeled COMMON and nnnnnn indicates the

size of the labeled COMMON requested by the present , COMM .

SYMBOL TABLE OVERFLOW

This error occurs during loading if the size of the symbol table becomes
so large that it would overwrite the loader in core.

EXTERNAL LOCATION UNDEFINED sssss

This error occurs if a ., GLOC block is encountered with data to be loaded
at the address of a symbol, sssss, that is as yet defined.

MEMORY OVERFLOW nnnnnn

If the value of NMAX plus the loader size itself conflicts with the bottom
of the loader 's symbol table, a memory overflow error occurs. The
error implies that the user programs are too large to be loaded in the
memory configuration. The octal number nnnnnn is the value of NMAX
that caused the overflow.

END OF CHAPTER

Licensed Material - Property of Data General Corporation 2-8 093-000080-05

CHAPTER 3

THE RDOS/DOS RELOCATABLE LOADER (RLDR)

Thié chapter describes the RDOS/DOS Relocatable Loader (RLDR). First, it gives
a Loader overview, then describes the following topics:
* RLDR Files

¢ Command Line

e Global Switches

* Local Switches

¢ L.oad Map

» System Tables

e Specifying NREL Addresses

¢ Symbol Tables

e Command Line Examples

* Example Program with Overlays

¢ Error Messages
RLDR OVERVIEW

The Relocatable Loader processes binary files (RBs), RB libraries, extended RBs,
or extended RB libraries, and builds them into an executable save file on disk.

The following Data General utility programs create RBs: The Extended

Assembler (ASM), any compilers which use ASM, and the Macroassembler (MAC).
Certain compilers and MACs can generate extended RBs. You can create
libraries from any RBs with the Library File Editor (LFE) utility.

You invoke the Loader with the CLI command RLDR. The Loader then scans
your command line and builds the save file upward, including the RB and library
modules in the command line. Each library is searched whenever its name
appears in the command line. The system library (SYS. LB) is searched at the
end of the command line and wherever you place its name in the command line.
You can direct RLDR not to search SYS. LB at the end of the command line with
the global /N switch.

Note: Because the system library (SYS. LB) differs for each type of system
(e.g., unmapped NOVA and mapped NOVA), a program loaded under
one system will probably not execute under another system. To load
under one system for a different system, you must obtain the proper
system library for the target system, and make sure that RLDR searches
it, not the current system library, during the load. You can do this
by performing the load process from a subdirectory which contains both
the target system library and links to RLDR. SV and RLDR. OL (or
the RLDR files themselves).

093-000080-05 3-1 Licensed Material - Property of Data General Corporation

RLDR OVERVIEW (continued)

RLDR makes only one pass over the command line, as it places the files
specified one-by-one into the save file. It does not back up to re-scan files
or adjust locations already assigned.

By default, RLDR includes an entire module when you include the module name.
You can instruct RLDR to include part of a module via the macroassembler . LMIT
pseudo-op, described in Appendix C.

RLDR always builds certain system tables (User Status Table, Task Control
Blocks, and so on) into the save file starting at location 400g unless you are
building a save file for execution in an unmapped foreground (local /F switch).
See the local /F switch for details.

RLDR FILES

RLDR uses two files to operate: RLDR.SV and RLDR,OL. It also scans SYS. LB
during each load and copies task-processing modules into the save file. Normally,
files RLDR.SV, and RLDR,.OL, and SYS. LB are in the master directory (which
holds the operating system); thus you can always issue RLDR commands in this
directory.

To use RLDR from another directory, get into the other directory and type:

LINK RLDR.SV %MDIR%:RLDR.SV)
LINK RLDR.OL %MDIR%:RLDR.OL)
LINK SYS.LB %MDIR%:SYS. LB)

These commands create links to the original files, which enable you tooperate
RLDR from this directory. %MDIRY% is a CLI variable which contains the master
directory name; if any of the files RLDR uses is not in the master directory, type
the full directory specifier name instead of MDIR% for this file; e.g.,

LINK RLDR.SV DP1:RLDR, SV

and so on.

Licensed Material - Property of Data General Corporation 3-2 093-000080-05

.

COMMAND LINE

The general formats of the RLDR command are:

RLDR binary1 ...binary ... library ... binary

RLDR binary1 ...library .., binary [ovname, ovname ...] binary...

where:

binary is any relocatable binary;

... (ellipsis) means that you can repeat the preceding argument;

iibrary is any RB library buiit with the LFE utility;

[indicates the start of an overlay node in memory;

ovname is the name of an RB which you want to load as an overlay;

, (comma) separates one ovname from another within square brackets;
1 indicates the end of an overlay node in memory.

Unless you specify another name with the local /S switch, RLDR names the save
file binaryy, with the .SV extension; it names the overlay file (if any) binary1
with the . OL extension.

LIBRARY FILES

You can enter the name of a library (built with the LFE utility) anywhere in the
RLDR command line. A library module can be part of the save file, or it can be
in an overlay, within[,,]. RLDR will scan the libraries you include, but will not
load any modules from the library unless: a) the module satisfies an unresolved
symbol from another module, or b) you specified a force load when you built the
library. When a module is loaded because of a), any symbols satisfied by that
module receive "defined" status. After a symbol is defined, it can no longer
force a module to be loaded.

LOADING OVERLAYS

You can specify an overlay node anywhere within the save file. The node will
receive the overlays specified within the square brackets one-by-one when the
program executes. The overlays (ovnames) you specify will be placed within the
overlay file. The node in the save file will be vacant during program execution,
until the save file loads (with the . OVLOD or . TOVLD system calls) an overlay
into the node. When the program is finished with this overlay, it can then load
another from the overlay file into this node.

093-000080-05 3-3 Licensed Material - Property of Data General Corporation

LOADING OVERLAYS (continued)

The square brackets establish an overlay node and associate a group of overlays
with that node. Within the square brackets, you must use a comma to separate
one overlay from another. Any overlay can consist of one or more RB files. For
example:

RLDR MYPROG [OV1 OV2, OV3, OV4])

This command line creates save file MYPROG.SV and overlay file MYPROG. OL.
MYPROG. SV has one overlay node to receive the overlays in MYPROG.OL one
at a time. The three overlays in MYPROG, OL are OV1 and OV2, OV3, and
OV4. The first overlay consists of binaries OV1 and OV2.

When RLDR encounters square brackets, it scans each binary within the set

to determine the size of the largest overlay. It then rounds the size of the
largest overlay to the next multiple of 256 (400g) words, and allots this size to
this node. (It rounds "virtual" overlays - described under the local /V switch -
to the next multiple of 1,024 words.) By this procedure, RLDR ensures that the
node will be large enough for the largest overlay. Then it pads each overlay
out with zeroes to the node size and copies the overlays to the overlay file.

In the command line above, if RBs OV1l, OV2, OV3, and OV4 are 10, 15, 20
and 40 words respectively, RLDR will use OV4's length (40), and round it up
to the next multiple of 256 words; thus 256 words will be the size of the node.
If the sizes were 200, 60, 190 and 90 words instead, RLDR would use the
length of the first overlay (OV1 with 200 words, plus OV2 with 60 words),

then round 260 up to the next multiple of 256. This is 512; thus the node would
be 512 words long.

The save file can reference overlays by name if you named each overlay with
the . ENTO pseudo-op; if you omitted . ENTO, the save file must access each
overlay by node number and overlay number. Consult Chapter 4 of your system
reference manual for more on overlays.

GLOBAL SWITCHES

Each global switch modifies RLDR's operation globally. You append each
global switch to the command word RLDR. Local switches, described next,
modify "arguments" in the RLDR command line.

/A Produce a second, alphabetical, symbol listing. RLDR always
produces a list of global symbols as part of its load map; this
switch tells it to produce a second, alphabetical list. You must
also specify a device or disk file (e.g., $LPT/L, MAPFILE /L)
with the local /L switch to receive the alpha listing. For
example:

RLDR/A MYPROG MYPROG.AL/L)

Licensed Material - Property of Data General Corporation 3-4 093-000080-05

GLOBAL SWITCHES (continued)

/B Use short Task Control Blocks (works in unmapped NOVA multitask
programs only). In unmapped NOVA multitask programs, the
last four words of each Task Control Block (TCB) are unused. You
can specify short (13 word) TCBs with this switch. For single-task
programs, RLDR ignores global /B.

/C Create this file for an RTOS, SOS, or stand-alone environment.
A save file created with global /C cannot execute under RDOS or
DOS.

When you use this switch, RLDR starts NREL code at 440g (plus
the length of the RTOS overlay directory if any), inserts the
program starting address in USTSA, starts the file at location
zero, and does not search the system library, SYS.LB. For
example:

RLDR/C/Z RTOSPROG PROG2 PROG3)

/D Include a debugger and symbol table in the save file. This switch
places an external DEBUG in RLDR's symbol table; by default this
copies the symbolic debugger from the system library to the save
file; it also builds a symbol table into the save file. The symbol
table is needed to help you debug or edit the save file. Unless you
include global /S, RLDR will place the symbol table immediately
above your program. To place the symbol table in high memory,
see global /S.

Note: You can include a symbol table without the debugger by
including an . EXTN ,SYM. statement in one of the modules
to be loaded.

To copy the interrupt-disable debugger instead of the standard debugger,
use a global /D and insert the name XIDEB. RB somewhere in the
command line before SYS. LB is searched. (To find xIDEB, get into

the master directory and type LIST - IDEB.RB. The name returned

is the version of IDEB for your operating system.)

Note: Unlike the rest of the save file, RLDR builds the program's
symbol table downward (from high addresses to low) in the
save file, Thus, when you are examining a symbol table, the
normal order of symbols is reversed. The symbols are three
words long; the first two words contain the symbol name (in
radix 50), and the third word is the symbol's value.

093-000080-05 3-5 Licensed Material - Property of Data General Corporation

GLOBAL SWITCHES (continued)

/E Display error messages when a listing file has been specified
(local /L). Normally, when you specify a listing file with local /L,
RLDR does not send error messages to the console; instead, it sends
these messages to the listing file. If you want error messages sent
to both the listing file and the console, use this switch.

/G Print labeled common warning messages wherever new labeled
common appears in overlays. Normally, RLDR prints each warning
message only once for a load. See global /R and Appendix B for more
on labeled common in overlays.

/H Print all numeric output in hexadecimal. Normally, RLDR prints
this output in octal.

/1 Do not create a UST, TCB, or other system tables, and start NREL
code at 445g and ZREL code at 50g. You must also use local /Z if
you want ZREL to start at an address other than 508. To have the
save file begin at 0, use global /Z. Programs created with /I
cannot execute under any operating system. This switch is most
useful for creating absolute data files.

/K Keep the special RLDR symbol table file in the disk file named
binary;.ST. Normally, RLDR deletes this file after the load.
This file is described later in this chapter, and in Appendix D.

/M Suppress all RLDR output to the console. This speeds loading on
slow teletypewriter systems, but you should use it carefully since
it also suppresses error messages.

/N Do not search the system library, SYS.LB, unless its namc appears
in the command line. Normally, RLDR searches the system library
at the end of the command line, to try to resolve undefined symbols.

/O Omit the program symbol table even though global /D is used.

/P Print the starting NREL address of each RB or library module along
with its title as it is loaded. When you include this switch, and the
first module loaded specifies a number of tasks in a . COMM TASK
statement, and you omit local /K, the starting address of the . COMM
. TASK module will be reported incorrectly (without adjustment for
multiple tasks).

Licensed Material - Property of Data General Corporation 3-6 093-000080-05

GLOBAL SWIT CHES (continued)

/R

/S

/X

/Y

/Z

Place new overlay common in the root program. If an overlay in this
command line declares a new named common symbol (. COMM pseudo-op),
place this common in the root portion (which is always memory-resident
during execution). Normally, RLDR places new overlay common in

the overlay node, where it will be overwritten by the next overlay loaded
intc this node. See Appendix B for more detail on named common, aad

global /G to enable warning messages.

Note: RLDR cannot load virtual overlays (local /V) if you use
global /R.

Place the program's symbol table in high memory (used with global
/D). Normally, RILDR places the symbol table directly above the
program. The /S switch instructs RLDR to place the table as high
as possible in memory (beneath the operating system).

Do not resolve undefined symbols to -1. Normally, the memory
locations which reference an undefined symbol are chained to one
another (see Chapter 1, 'The Loader Map" illustration). If the
symbol is never defined, the address chain remains intact when
you include the global /U switch.

Allow up to 128 system overlays. The SYSGEN program uses this
switch when it instructs RLDR to generate a new operating system.

Allow up to 256 system overlays. See the comment under global /X,
above.

Start the save file at location zero. Such a file cannot execute under
RDOS or DOS, but can execute in stand-alone mode, or under RTOS or
SOS. After loading, you must process the save file with the MKABS/Z
command; you can then execute the file with the binary loader or
BOOT (see the BOOT command in the CLI manual).

093-000080-05 3-7 Licensed Material - Property of Data General Corporation

LOCAL SWITCHES

A local switch modifies an argument in the RLDR command line. The local
switches are:

n/C Allot octal "n" I/O channels to the program. Each file or device
the program uses must be opened on a channel. You can also
specify channel (and task) information in a .COMM TASK statement;
if there is a . COMM TASK, the /C specification overrides it. If
you omit both /C and .COMM TASK, RLDR allots eight channels
to the programs.

name/E Send error messages to file name when a listing file has been
specified (local /L). You must also include global /E. For example:

RLDR/E MYPROG $LPT/L $TTOI1/E)

Error messages go to the second console (not the default console,
$TTO); the load map goes to the line printer.

n/F For execution in an unmapped foreground only. Start this save file's
system tables at octal address "n". You must use this switch, and
local /Z, to allow this program to execute in an unmapped fore-
ground. If "n" is not an integer multiple of (400g)+16, RLDR will

round it to the next multiple. For example:
RLDR MYPROG 20000/F 200/Z MYPROGFG/S)

This command line builds a save file name MYPROGFG.SV from the
binary MYPROG. MYPROGFG's system table will begin at 20016g;
its page zero code will begin at 200g.

n/K Allot octal "n" TCBs (tasks) to this program during execution. You
can also specify tasks in a .COMM TASK statement; if so, the /K
specification overrides the . COMM TASK. If you omit both .COMM
TASK and /K, RLDR assigns one TCB (task) and loads the single-
task scheduler with the program.

Note: You must specify multiple tasks for a multitask program (one
which uses the . TASK or .QTSK task calls).

Licensed Material - Property of Data General Corporation 3-8 093-000080-05

LOCAL SWITCHES (continued)

name/L Send the load map and all errors to file name. If name is a disk file
name, RLDR will create it and write the map and errors to it. If
name exists, RLDR will append to it. Unless you also specify global
/E, errors will not go to the console (instead they will go to the file
or device).

The load map for any program can help you patch it with the patch
utilities. For example:

RLDR MYPROG PROGA PROGB MYPROG.LM/L)

n/N Start loading NREL code from the next module (in the comunand
line) at octal address "n". Normally, RLDR builds the save file
upward from lower memory, placing each module directly
above the last module loaded. It maintains an "NREL pointer”
to keep track of the next available location in NREL space.

Local /N moves the pointer upward. Address "n'" must be greater
than the current NREL pointer value (i. e., higher than the last
location loaded). If "n" is not higher than the last address loaded,
RLDR ignores the switch and continues loading normally. For
example:

RLDR MYPROG 4000/N PROGA 6000/N PROGB)

MYPROG's NREL code starts normally, above the system tables;
PROGA's NREL starts at 40008, and PROGB's NREL code starts

name/S Give the save file name. Normally, the CLI gives the save file
the name of the first binary in the command line, with the .SV
extension; first, however, it deletes any existing save file with
the same file name. The /S switch names the save file name. SV,
and the overlay file (if any) name.OL. An existing save (and
overlay) file with the default (first binary) name is left intact. For
example:

RLDR MYPROG [OVL Y0, OVLYl] MYPROGXXX/S)

This produces the save file MYPROGXXX.SV and the overlay file
MYPROGXXX.OL.

Note: Local /S does not instruct RLDR to load anything; it simply

gives the save file a name other than that which it would
have received normally.

093-000080-05 3-9 Licensed Material - Property of Data General Corporation

LOCAL SWITCHES (continued)

/U Include local (user) symbols in the save file. Normally, symbols
which were not specified by a . ENT psuedo-op are not retained. If
you specify global /U to the assembler, and local /U to the RLDR,
these symbols will be placed in the program's symbol table. (You
must also specify RLDR global /D to include the symbol table.)
Local symbols can help you debug or edit the program. For
example:

MAC/U (FILEA, OVLYO, OVLYI)

R
RLDR/D FILEA /U [OVLY0/U, OVLY1/U]

This assembles three files separately, including user symbols; then
it includes user symbols in the program symbol table via RLDR.
Local overlay symbols are also included.

[overlays]/V Load overlays as virtual overlays (mapped RDOS only). Virtual
overlays occupy mapped extended address space during program
execution; they are further described in Chapter 4 of the RDOS
Reference Manual. Virtual overlays have meaning only in a
mapped RDOS system, although RLDR will build them on any
system. RLDR allots node space for virtual overlays in mul-
tiples of 1,024 (2000g) words and aligns the beginning of each
virtual node with a 1K boundary from location zero.

All virtual overlays must precede conventional overlays in the
RLDR command line. For example:

RLDR MYPROG [OVO0, OV1, OV2]/V [OVA, OVB, OVC]

n/Z Start loading ZREL code from the next module (in the command
line) at octal address n.

Licensed Material - Property of Data General Corporation 3-10 093-000080- 05

THE LOAD MAP

RLDR's load map has two parts: a memory map and a list of symbols. (If you
specified global /A, it has a third part: an alphabetical list of symbols.) For
example, take the command line:

RLDR ROOTO [OVLO0O0, OVLO1] ROOT1 [OVL10, OVLI11]

The load map produced by this command might look like this (RLDR does not
print the line numbers; we have included them for clarity):

0. ROOTO

1. 001470

2. 000, 000 OVLO0O 000004
3. 000, 001 OVLO1 000004
4. 002070

5. ROOT1

6. 002276

7. 001, 000 OVL10 001006
8. 001, 001 OVL11 000775
9. 003676

10. TMIN

11. NSAC3

12, NO STARTING ADDRESS FOR LOAD MODULE
13. NMAX 003752

14. ZMAX 000050

15. CSZE 000000

16. EST 000000

17. SST 000000

18. USTAD 000400

19. START 000452

20. LOV10 000463

In this load map, lines 0 and 5 contain the program RB titles. If the command
line contained a user library, RLDR would also print the titles of modules
loaded from the library. It prints library module names when it encounters the
module's TITLE block. On an error, it prints an error message after the
module title.

Lines 1 and 4 in the map show starting and ending addresses for the first overlay
node (node 0); lines 6 and 9 show these addresses for the second node (node 1).
Remember that RLDR allots node space for conventional overlays in multiples

of 400g words; thus it gave addresses 1470 to 2070 to the first node, and 2276

to 3676 to the second node. Each node is large enough to accept the largest
overlay associated with it.

093-000080-05 3-11 Licensed Material - Property of Data General Corporation

THE LOAD MAP (continued)

Lines 2-3 and 7-8 describe the overlays for node 0 and 1, respectively.
You can interpret line 2 as follows:

node overlay overlay overlay
number number title length (words)
N /
000, 000 OVL00 000004

Lines 10 and 11 contain the names of the single-task scheduler (TMIN) and
module NSAC3, taken from SYS. LB; these names are explained in the
"Example Program" section later in this chapter.

At this point in the map, RLDR gives error flags and prints other error messages.
If there had been an undefined or multiply-defined symbol, or named common,

the load map would show one of the following codes, followed by the symbol

name:

Code Meaning

XD External displacement (. EXTD) undefined.
XN External normal (. EXTN) undefined.

C Named common symbol.

M Multipy-defined symbol.

There are no RLDR flags in this load map, but line 12 contains an error
message. This message means that neither ROOTO nor ROOT1 specified a
starting address after a . END pseudo-op. Someone will have to correct this
in the sources, then reassemble and reload the program, before the program
will run.

NMAX, in line 13, is the lowest available address during execution; it is one
location higher than the highest address used by the program. ZMAX-1,

line 14, is the highest page zero (ZREL) address used by the program; by default
RLDR starts ZREL at location 50g. In this program there is no ZREL code,
thus ZMAX is 50g. CZSE, line 15, is the size of the named common area; in
this program, there is no such area. EST and SST are the end and start of the
program symbol table (global /D switch); again, in this program, there is no
symbol table.

Line 18 describes the starting address of the program User Status Table; this

begins the system tables described in the next section. Lines 19, 20, and so
on name symbols used in the modules.

Licensed Material - Property of Data General Corporation 3-12 093-000080-05

SYSTEM TABLES

Normally, RLDR builds a User Status Table (UST) and one or more Task Control
Blocks (TCBs) into each save file; if the command line specified overlays, it

also builds an overlay directory into the save file. The UST usually extends
from location 400g to 4238. Generally, each TCB occupies 218 words. The

size of the overlay directory varies with the number of overlay nodes. The
following figure shows the arrangement of these tables in the save file:

<———Highest location in file.
Program symbol table

(if loaded; global /D)

Program NREL code,
including overlay nodes

Overlay Directory

TCBs

UST

Program ZREL code

The system uses locations 0 - 15g.

User Status Table (UST)

The User Status Table records execution and runtime information on the program;
RLDR builds it upward from location 400g to 423g. Chapter 5 of your system
reference manual describes the UST further.

Task Control Blocks (TCBs)

Each TCB records runtime information on a program task. RLDR builds one TCB
into the program for the number of tasks you specify; you can compute the number
of words for the TCB area with the formula:

(number-of-tasks) * TLN

093-000080-05 3-13 Licensed Material - Property of Data General Corporation

SYSTEM TABLES (continued)

Entry TLN is the number of words for each TCB; generally, this is 21g. The
system parameter file, PARU. SR, describes TLN; see the PARU.SR cross-
reference in your system reference manual to find TLN. Chapter 5 of your
reference manual further describes TCBs.

Overlay Directory

The overlay directory maintains address, load, and use information on each
overlay node. RLDR creates the overlay directory only if your command line
specifies overlays. The directory length is:

(4*number-of-nodes) +1

For more on the overlay directory, consult the appropriate appendix of your
system reference manual. '

Memory Map Illustration

The following illustration shows how file ROOT,SV would look in main memory
during execution. We showed the command line and load map for this file in
the "Load Map' section earlier. Let's assume that the program has loaded
(.OVLOD) an overlay into each node.

Top of Memory
'“F Operating L

q

System (unmapped) T
j 1
T Free area ~

NSAC3 and TMIN
Overlay OVL10

Highest address available (HMA)
NMAX (3752)

Top of Node 1 (3676)

Bottom of Node 1 (2276)

ROOT1
Top of Node 0 (2070)
Overlay OVLOO
Bottom of node 0 (1470)
ROOTO

Start of ROOTO code (INMAX
Overlay Directory ° code ()

TCB
424
UST
400
User ZREL (unused here)
50
16
System Pointers 0

Licensed Material - Property of Data General Corporation 3-14 093-000080-05

SYSTEM TABLES (continued)

A mapped RDOS system is not at the "top" of memory. However, you can ignore
the position of a mapped system because it is logically isolated from user space,
and invisible to user programs. If you have a mapped system, ignore the
position shown for the system in the rest of this chapter.

HMA is the highest memory address available to user programs; INMAX is the
start of use NREL code. (The illustration is not to scale.)

SPECIFYING NREL ADDRESS

As described under the local /N switch, you can increment RLDR's NREL
pointer to start loading a file at a given address. Naturally, the value you
specify with local /N must exceed the last address loaded. For example, the
command line:

RLDR MYPROG 4000/N YOURPROG)

instructs RLDR to build MYPROG this way in memory before writing it to disk:

< NMAX-1
YOURPROG
\<—4000. (NREL pointer after RLDR sees 4000/N.)
\\\\\\\\\\\\\\\\ } Space between the top of MYPROG and 4000.
<—Top of MYPROG.
MYPROG
<—[NMAX (Start of user NREL code).
400
0

Any program itself can change its NMAX during execution via the . MEMI system
call; this is very important for a swap or a chain.

093-000080-05 3-15 Licensed Material - Property of Data General Corporation

SYMBOL TABLES

RLDR creates two symbol tables for its own use whenever it builds a .SV file.

The first table resides only in memory and contains undefined symbols. The
second table, a disk file named savefilename . ST, contains both undefined and
defined symbols. As RLDR resolves symbols, it removes them from the memory-
resident table and marks them as "defined" in savefilename.ST. As it processes
the command line, it continues resolving symbols in the memory-resident table
and marks them in savefilename.ST. The memory-resident table grows as

RLDR encounters external symbols, then shrinks as it resolves them. At the end
of an error-free load, all symbols have been resolved in savefilename.ST; RLDR
then deletes savefilename .ST (unless you used global /K in the command line).

If the memory-resident table grows too large for available memory, RLDR dis-
plays a SYMBOL TABLE OVERFLOW message and aborts the command. You
can often solve the overflow prdblem by rearranging the order of files in the
command line to reduce the number of symbols that are undefined at one time.

There is a third symbol table which differs from the tables RLDR creates for its
own use. This is the table which you can have inserted in the save file by
appending the global /D switch (which also loads a debugger). For clarity, we'll
call this the program symbol table. The program symbol table is most useful

for debugging and editing the save file, especially if you included local symbols
when you assembled and loaded the file (assembler global /U, RLDR local /U
switches). You can include the program symbol table without including a debugger
by inserting a . EXTN .SYM. statement in one of the program modules.

At present, RLDR truncates any symbol of more than five characters to five
characters before placing it in the program symbol table. If the program contains
extended RBs (as generated by the MAC global /T switch and certain compilers),
this may mean that duplicate symbols exist in the program symbol table. This
may present debugging problems for users of extended RBs.

The position of the program symbol table (if any) in the file varies according to
the switches you specify in the RLDR line. The following illustrations show how
different configurations of a sample program (MYPROG.SV) would look in
memory during execution.

Licensed Material - Property of Data General Corporation 3~ 16 093'000080' 05

RLDR MYPROG) RLDR/D MYPROG/U RLDR/D/S MYPROG/U) RLDR MYPROG/U)

MYPROG) MYPROG MYPROG) MYPROG)
. (MYPROG contains
«EXTN .SYM.)
System System System System
/ HMA / HMA HMA, SST HMA

7
o o Symbol Table <

ey

/ EST NMAX NMAX

/// Debugger Debugger Symbol Table
NMAX

MYPROG MYPROG MYPROG MYPROG

INMAX INMAX INMAX INMAX

Aside from the position of the system, these diagrams apply to both mapped
systems .and background programs in unmapped systems.

For more details on RLDR's symbol tables, see Appendix D.

Checking Save File Size

Because RLDR loads the save file directly onto the disk, you can load a file which
is too large to execute in user space. If you try to execute such a file, you'll
receive the message:

INSUFFICIENT MEMORY TO EXECUTE PROGRAM

You can check for overflow by loading a symbol table into high memory with the
RLDR global /D and /S switches. RLDR will build the symbol table down from
HMA. If the symbol table would overwrite the program code, RLDR displays
the message:

SYMBOL TABLE TOO LARGE FOR CORE STORAGE

This doesn't necessarily mean that the program won't fit into memory, because
the debugger and symbol table were also loaded, and they require significant
space. If you don't receive the error message, you can be sure that the program
will fit into memory; you can then issue the RLDR command you want for this
program.

093-000080-05 3-17 Licensed Material - Property of Data General Corporation

COMMAND LINE EXAMPLES

This section shows two RLDR command lines, and memory maps of the save files
they produce. The first command line loads a multitasking program, with a
program symbol table and debugger; the second loads a program for execution

in an unmapped foreground.

1. RLDR/D PROGA DATAO [COMPA, COMPB, COMPC, COMPD] t)
DATA1 [MULT1, MULT2, MULT4] 14/C 6/K)

This builds save file PROGA. SV and corresponding overlay file PROGA.OL.
When PROGA executes (after it . TOVLDs COMPA into node 0 and MULTII into
node 1), memory will look like this:

Operating System
LA\

Symbol Table
O\(r)e:l:; 1\::1?“ . | Node 1
Overlay COMP1 | Node 0
DATAO
PROGA . INMAX
Overlay Directory
TCBs (6) 424
O5T 400
ZREL CODE 50

16

0

In a mapped RDOS system, the system would not be at the "top’ of memory, but
it would be invisible to your programs, so the example is useful nonetheless.

PROGA would have the same structure if it rdn in the foreground, but addresses
0 through HMA would be foreground locations. This would not affect execution.

Licensed Material - Property of Data General Corporation 3-18 093-000080-05

COMMAND LINE EXAMPLES (continued)
2. RLDR MYPROG 300/Z 24000/F MYPROGFG/S)

This builds save file MYPROGFG. SV for execution in an unmapped RDOS fore-
ground; the original background version (MYPROG.SV) remains intact and
can be executed in the background at any time.

This example assumes that the CLI continues running in the background after
MYPROG.SV is executed via:

EXFG MYPROGFG)

System

Q\\\\\\\\\\\\\\\\\\\\\\\\\\ Il;‘lz/i:ground NMAX

MYPROGFG NREL code

Foreground INMAX

TCB 24042 (20016+24)
&\\U\\S\\\i\\\\\\\\\\\\\\\\\\\\\\\\\\\ ;z?:llc:round NMAX

Background INMAX
CLI overlay directory

o 7o
U 400

ANVD 7D L

ivi 1 & ROG YZ¥AN 300
Background (CLI) ZREL 50
0

EXAMPLE PROGRAM

The following listings show a simple program named ROOT, which uses two
overlays, OVLY0 and OVLY1l. An RLDR load map and explanation follow the
assembly listings. The command line that assembled the source file was:

MAC/L (ROOT, OVLYO, OVLY1)
(ASM/L could also have been used with the same results.) This command line

assembled the three source files separately, producing ROOT.RB, OVLYO0.RB,
and OVLYL1.RB, and listing files ROOT.LS, OVLYO0.LS, and OVLY1. LS.

093-000080-05 3-19 Licensed Material - Property of Data General Corporation

EXAMPLE PROGRAM (continued)

Although ROOT, OVLYO, and OVLY1 were written in assembly language, compiler
users may note some similarities between their compiler commands and operating
system calls. For example, FORTRAN commands CALL OVOPN and CALL
OVLOD correspond roughly to system calls ,OVOPN and . OVLOD. Generally,

if you're using a compiler, you'll want to skip to the RLDR load map. This will
be more faniiliar and instructive than the program listings.

In the listings for OVLYO and OVLY1, note the . ENTO pseudo-op. ROOT declé.res
each overlay external by name, and . ENTO allows ROOT to access each overlay
by name.

P21 OVLYd MACKO REV 06,20 P9:21:31 ©87/25/77
«T1TL OvLYE

02 LENTC OVLYO

e3 +ENT PRNTB

o4 +EXTN ER, LCV1

25 éooeal JTIXTM |)

06 «NREL iUse NREL for each overlay,

e7

28 0000Q'22497 PRNTB: LDA &,B j;Get the "B",

29 gope1'deed17 «SYSTM JPrint

1¢ 000e2'C102020 «PCHAR jit.

11 000@e3'202403 JMP @,+43 ;Jump to ER.,

12 00004'202401 JMP @,+1 iNcrmal returne=

13 @e0ees'e77777 LOv1 stc ROOT. B

14 00006'077777 ER ;Back to "ER" in ROOT.

15 90007'¢c00102 B: "B

16 +END

*%x@@000 TOTAL ERRORS, 2o@@e PASS 1 ERRORS

9001 OVLY! MACRO REV 06,20 P9sc2te ©7/25/77
LTITL CVLY!

"Fd +JENTC OVLY1

e3 +ENT FRNTC

) JEXTM ER, RTURN i

25 +NREL sNREL for each overlay,

1]

P27 ooeee'n2e4e7? PRNTC: LDA @,C iGet the wee,

0e Qoezi1'eoenl7 «SYSTM iPrint

29 Qeeez'cieeRe +PCHAR pit.

12 eeeol'dR2Ueld JMF @,+43 jError coes te "ER",

11 ede2u'ee2401 JMP a,¢l 1Co to

12 eeees'277777 FTURN J"RTURN" §n ROOT,

13 @oQo6'e71777 ER

14 Q00Q@7'222123 C: "C

15 <END

4
*%00000 IO{AL ERRCRS, 2e¢pe@ PASS | ERKORS

Licensed Material - Property of Data General Corporation 3-20 093-000080-05

EXAMPLE PROGRAM (continued)

0001 RQOT MACRO REV 6,20 B9:01325 @7/25/77
.TITL ROOT
02 +ENT START, LGV@, LOVY, RTURN, ER
23 +EXTN OVLY®, PRNTB, OVLY1, PRNTC
o4 (12211} fTXTM
25 +NREL JNREL code,
7]}
87 .
28 2000C'222440Q START: LDA 2, OFILE ;Get overlay filename,
29 200B1'126400 suB 1, 1 jCefault mesk,
10 00002'006017 «SYSTM iCoen cverlay file,
11 00003'212022 .OVOPN © jon 1/C channel O,
12 00QQU'2aC424 JMP ER sError return,
13 00VeS5id20426 LOA 8,4 JGET THE "A",
14
15 00006'206217 «SYSTM iFrint
16 0000G7'010000 «PCHAR jit,
17 00010'2300422 JMP ER JError return,
18 @0011'2328423 LOV2: LDA 2,0V0 ;Get OVLY® sadr,
19 00012'126400 suB 1,1 iConditicnal load,
20 00013'2060217 «SYSTM jLoad OVLY?
21 00014'020900 LOVLODC @ jen channel 0.
22 0@eis'eoey1ld JVMP ER jRecuired, .
23 00016'002420 JVP ¢,PRB ;To PRNTB code inm OVLY®,
24
25 00@17'e2¢416 LOVL: LDA @, OV13Get OVLY1l addr,
26 0002@'1264020 suB 1,1 iConditional load,
27 00021'206017 «SYSTM iLoed
28 0PV22'R229202 .OVLOD ® 3C0VLY! on channel 0,
29 600231'0224085 JMP ER ikecuired, 3
10 00024'002413 JMP @,FRC 7To PRNTC code in OVLYL,
31
12 00082S5'0206017 RTURNS «SYSTV
33 20026'024422 «RIN
34 QoB27'vag4Rl JMP L+ }Reservec, rever taken,
35
36 Q0032'206017 ER: «SYSTM jGtet CLI to
37 00031'¢0Q6420 <ERTN ireport problem,
18 00032'062401 JVF . iImpossitle,
319 p0@33'2001Q1 A: "

48 Q0@34'@77777 Ove: cviLye
41 Q0035'077777 OV1: ovLY1l
42 00036'@77777 .PRE? PRNTB
43 9@037'277777 LPRC: PRNTC
44 Q0Q4UC'QAR1A2"0FILE: L,+1x2

45 ee041'251117 JIXT "ROCT,CL"
ue 247524

47 827117

48 e4e00e

49 +END START

093-000080-05 3-21 Licensed Material - Property of Data General Corporation

EXAMPLE PROGRAM (continued)

The RLDR command line for the program was:
RLDR ROOT [OVLYO, OVLY1] ROOT.LM/L)
This created save file ROOT. SV and overlay file ROOT.PL; it also created disk

file ROOT. LM and sent the load map to it. File ROOT.LM contained the following
information after the load:

ROOT,SV LOADED BY RLOR REV 07.00 AT @9:05:43 ©7/25/77

ROQT
eees17
@oe,000 CGVLYD eoeaio
204,201 QVLY1 eeeeie
ee1117
TMIN
NSAC3
NMAX 991213
IMAX 0o0@sS2
CSZE 200000
EST voeo00
§ST 400000

USTAD 00409
START 008452

Love 000463
LOvi 000471
RTURN 000477
ER 030592

PRNTE 020517
PRNTC eoes17
TMIN ee112¢
.SACR 222016
«SAC! 324016
«SACe 230016
«SAC3 034016
oviLye 002,200
oviyl 002,001

Licensed Material - Property of Data General Corporation 3-22 093-000080-05

EXAMPLE PROGRAM (continued)

Lines in the listing have the same meanings described under "LOAD MAP",
earlier in the chapter. Reading the listing, we see RLDR's proud announcement;
then we see the name ROOT., Below ROOT in the listing, we see the starting
address of the overlay node for OVLYO and OVLY1. This node begins at 517g
and ends at 1117g. (Remember that RLDR rounds node size up to an even
multiple of 400g.)

000, 000 describes the node number (000 for the first node), and the overlay
number (000 for the first overlay). We can access this overlay by name (OVLYO0)
instead of number, since OVLYO used . ENTO, 000,001 describes the same node
(000) and the second overlay (001). The length of each overlay follows its name;
in this case, each overlay is eight (000010g) words long.

The next module, TMIN, is the single-task scheduler, which RLDR copied from
the system library. If this were a multitask program (specified by a . COMM
TASK statement or local /K switch), RLDR would have copied the multitask
scheduler TCBMON instead.

RLDR ERROR MESSAGES

RLDR outputs error messages for both nonfatal and fatal errors. By default,

messages go to the console; you can specify another file with local /L, or global
and local /E.

Nonfata! Errors

Nonfatal errors do not abort the RLDR command, but they may produce an
erroneous or useless save file. The nonfatal error messages are:

DISPLACEMENT OVERFLOW nnnnnn [000000]

A displacement overflow error occurs if the loader finds the
displacement is too large when attempting to resolve an external
displacement. The displacement is too large if:

the index = 00 and the unsigned displacement is >377.

the index =% 00 and the displacement is outside the range:
-200 < displacement < +200

nnnnnn is the absolute address where overflow occurred. The
displacement is left unresolved with a value of 000.

000000 is the node number /overlay number if an
overflow occurs in an overlay.

093-000080-05 3-23 Licensed Material - Property of Data General Corporation

RLDR ERROR MESSAGES (continued)

ILLEGAL BLOCK TYPE nnnnnn

The error message normally occurs if the input is not a
relocatable binary or library file. The file in error will not
be loaded. Octal number nnnnnn is the illegal block.

MULTIPLY DEFINED ENTRY sssss nnnnnn

This error occurs when an entry symbol or named common

(. COMM) symbol, ssssss, having the same name as one already
defined, is encountered during loading. nnnnnn is the absolute
address at which the symbol was originally defined. Of course,
two or more named commons with the same name can occur,
but an attempt to redefine an ENT as a COMM or a COMM as a

. ENT will result in an error.

EXTERNAL UNDEFINED IN EXTERNAL EXPRESSION sssss

This error occurs if a . GADD block is encountered that
references an as yet undefined symbol, sssss. Zero is stored
in the memory cell.

ILLEGAL NMAX VALUE nnnnnn

This error occurs when the user attempts to force the value of
NMAX to a value lower than the current value of NMAX, i.e., if
the octal value following a /N local switch is lower than the current
value of NMAX. nnnnnn is the illegal value. NMAX is unchanged.

SYSTEM LIBRARY NOT FOUND

This error occurs when the system library (SYS.LB) could not
be found on the current directory.

NO STARTING ADDRESS FOR LOAD MODULE

This error occurs if at assembly time the user failed to terminate
at least one of the programs to be loaded with a . END pseudo-op
that was followed by a starting address for the save file. The
starting address can be patched into the TCBPC word of the TCB
pointed to be USTCT. It must be stored as the starting address
multiplied by 2.

BINARY WITHOUT END BLOCK

The error occurs when a binary file has no end block. The file is
loaded up to the point where the error is discovered.

Licensed Material - Property of Data General Corporation 3-24 093‘000080'05

RLDR ERROR MESSAGES (continued)

TASKS OR CHANNELS SPECIFIED =0

This error occurs when there was a . COMM task block with the left
or right byte of its equivalence word = 0 or when 0/K or 0/C appears
in the COM. CM file.

T o

LABELED COMMON IN NODE DEFINED OUTSIDE NODE

When an overlay declares labeled common, and you omit the global
/R switch, RLDR gives this message if the common’'s address is
outside the node. See global /G for message control.

LABELED COMMON IS ROOT BOUND

RLDR inserts this message in the load map for each load which
includes the global /R switch. The load map's starting node address
and the starting address of the first overlay may be wrong by the
amount of common allocated from that node's first overlay. See

global /G for message control.

NO SCHEDULER STARTING ADDRESS

In a stand-alone load (global /C) this error occurs if no start
block contained a starting address. The starting address can be
patched into USTSA.

WARNING *** ZERO LENGTH OVERLAY
This error indicates that an attempt has been made to load an
overlay that contains nothing.

Fatal Errors

If an error is fatal, the error message and the location at which is was discovered
are followed on the next line by a second message:

** FATAL LOAD ERROR **
For example:

LOAD OVERWRITE 001700
** FATAL LOAD ERROR **

The message is output to the error file, and return is made to the CLI which
prints the message:

FATAL SYSTEM UTILITY ERROR

093-000080-05 3-25 Licensed Material - Property of Data General Corporation

RLDR ERROR MESSAGES (continued)

The fatal errors are:
CHECKSUM ERROR nnnnnn
This error occurs if a checksum that is computed on some block
differs from zero. nnnnnn is the incorrect checksum.

NEGATIVE ADDRESS nnnnnn

This error occurs if bit 0 of an address word is set to 1. The15
assembler restricts addresses to the range:0 < address < 277
however, the error can be caused by a reader error. nnnnnn

represents the negative address.

NAMED COMMON ERROR sssss nnnnnn

This error occurs if two programs have different sizes for a
given area of labeled COMMON (defined by . COMM statements)
and the second is larger. sssss gives the symbol name of the
labeled COMMON and nnnnnn indicates the size of labeled
COMMON requested by the present . COMM.

LOAD OVERWRITE nnnnnn

The loader does not permit save or overlay file locations to be
overwritten by subsequent data once they are loaded. If an attempt
to overwrite is made, this error occurs. The absolute address
where the overwrite was attempted is given by nnnnnn.

EXTERNAL LOCATION UNDEFINED sssss

This error occurs if a . GLOC block is encountered with data to
be loaded at the address of a symbol, sssss, that is still undefined.

PAGE ZERO OVERFLOW nnnnnn

This error occurs in loading page zero relocatable data if the data
overflows the page zero boundary (377g). The absolute address of
the first word of the data block that caused the overflow is given
by nnnnnn.

SYMBOL TABLE TOO LARGE FOR CORE IMAGE

This error occurs when a global switch /S has been given in the
RLDR command line and the symbol table would overwrite loaded
programs in the save file built by the loader.

Licensed Material - Property of Data General Corporation 3-26 093-000080-05

RLDR ERROR MESSAGES (continued)

ILLEGAL LOAD ADDRESS
This error occurs when an attempt is made to load into locations
0 - 15.

SYMBOL TABLE OVERFLOW

This error occurs during loading if the size of the symbol table
becomes so large that it would overwrite the loader in core.

RDOS ERROR

This error indicates that the loader issued a system call that could
not be completed and that resulted in an exceptional return. See
the RDOS User's Manual for system calls and possible error
returns.

TASK MONITOR ERROR (USTCH)

This error occurs when a . COMM block with symbol TASK is
encountered at a point when NMAX differs from the initial value of
NMAX. This occurs if . COMM TASK occurs in some module after
the first module is loaded.

OVERLAY DIRECTORY OVERFLOW

This error occurs when the number of nodes exceeds 128 or
number of overlays at a given node exceeds 256.

NODE .COMM DEFINITION OUTSIDE FIRST MODULE

If an overlay declares new common, and you use the global /R
switch, only the first overlay within the square brackets can
declare new common.,

TCB OVERLAY TABLE OUTSIDE FIRST MAP PAGE BOUNDARY
This message means that the system tables (TCBs, overlay

directory, etc.) extend above 2000g, thus the program would not
run correctly in a mapped system.

093-000080-05 3-27 Licensed Material - Property of Data General Corporation

RLDR ERROR MESSAGES (continued)

ALIGNMENT ERROR IN NODE ASSIGNMENT OF LABELED COMMON

This error can occur when you omit global /R and overlays
declare named common. When RLDR sees common declared
within an overlay module, it checks whether this symbol has been
already defined as labeled common. If so, RLDR checks to see
if it was defined within this node. Then RLDR checks to make
sure that it fits correctly. If the common has been defined within
this node, and doesn’t fit correctly, RLDR displays this error
message. (Appendix B describes this sequence further.)

VIRTUAL OVERLAYS AND GLOBAL /R DO NOT MIX

You cannot load virtual overlays and include the global /R switch.
The remedy is to omit the global /R switch from the command
line.

END OF CHAPTER

Licensed Material - Property of Data General Corporation 3-28 093-000080-05

CHAPTER 4

THE RDOS OVERLAY LOADER

Any existing overlay can be replaced by one or more different overlays. This
replacement is a two-step process. First, the loader, named OVLDR. SV,
creates the overlay replacement file; then the CLI command REPLACE uses
the overlay replacement file to replace individual overlays in the existing
overlay file. OVLDR can create a replacement file for up to 127 overlays.

OVLDR handies standard RBs oniy, not extended RBs.

The format of the OVLDR command is:

OVLDR filename overlay-descriptiory/N overlay-list [overlay-descriptor,/N 1)

overlay-list ...] [filename/L] [filename/E])

where:

filename is the name of the save file associated with the overlay file
in which overlays are to be replaced. The replacement overlay
file is named filename . OR.

overlay-descriptor is either a 1 to 6 digit octal number giving the node
number/overlay number that identifies the overlay or is the symbolic
name of the overlay. The overlay descriptor must be followed by the
local /N switch. If you use a symbolic name, it must have been
declared in a . ENTO name in the overlay file, and a . EXTN name

in the save file.

overlay-list is a list of one or more relocatable binaries that are to
replace the preceding overlay.

filenames followed by /E and /L are optional error and listing files,
respectively.

The global switches are:

/A Create an alphabetical /numeric memory map of new symbols.
You must also designate a listing file with local /L.

/E Send error messages to the console. (Used only when there is
a listing file (/L) that suppresses console error output.)

093-000080-05 4-1 Licensed Material - Property of Data General Corporation

/H Print all numeric output in hexadecimal. By default, output is
printed in octal.

/R You must use this switch if global /R was specified to RLDR when
the original overlay file was created. This switch instructs
OVLDR to try to place any new labeled common in the root
program as specified in the RLDR command. OVLDR cannot
change the node size in the root program (.SV file); therefore,
any new named common will trigger an error message and abort
the OVLDR command.

If you omit global /R, OVLDR will try to place any new named
common in the overlay node. See Appendix B for more on labeled
common in overlays.

The local switches are:

name/E Send error message and other messages to file name. Preceding
file is designated to receive error and information messages.

name/L Send memory map to file name. This includes new symbols
(those declared in replacement overlay nodes). The map will be
numeric unless you also include the global /A switch.

old-overlay/N Must follow an overlay-descriptor. Create replacement for old-
overlay. The old-overlay is an overlay-descriptor.

OVLDR works only if the following conditions exist:

1. There must be an overlay file, filename.OL, created by the
RLDR command.

2. The save file, filename,SV, must contain a symbol table (RLDR/D
switch or . EXTN.SYM. in a module).

For example, assume that the following RLDR command was executed:

RLDR/D PROGB [OV0, OV1 OV2, OV3]!
FILEA [OV10, OV11])

Licensed Material - Property of Data General Corporation 4-2 093-000080-05

The following save and overlay files were created:

PROGA.SV PROGA.OL
symbol table Ovil overlays for
ode 1
debugger OVv10 meee
overlay node ov3
FILEA ov2 \ overlays for
- _ node 0
overlay node U Ovi
PROGB ovo /
PROGA

The /D global switch loaded the symbol table, but also loaded the debugger.
To conserve memory space, you can load only the symbol table by including it
as an external normal in one of the source modules (e.g., in PROGB or FILEA):

.EXTN .SYM.

Now we'll create an overlay replacement file via OVLDR. Assume that we want
to replace OV3 (node 0, number 2), and OV10 (node 1, number 0). We want to
substitute the binaries NEW3 and NEW4 for OV3, and binary NEW10 for OV10.
If we identified OV3 and OV10 with . ENTO, and declared OV3 and OV10 in a

. EXTN in the save file, we can simply type:

OVLDR/A/E PROGA OV3/N NEW3 NEW4 OV10/N NEW10 PROGA.RM/L)
If we omitted . ENTO, we must specify an octal number as an overlay descriptor.
The number must be a 16-bit word, with the node number in the left byte and
overlay number in the right byte. The command would be:

OVLDR/A/E PROGA 000002/N NEW3 NEW4 00400/N NEW10 PROGA.RM/L)

(We could omit the leading zeroes in the overlay descriptor.)

093-000080-05 4-3 Licensed Material - Property of Data General Corporation

Either command creates the overlay replacement file PROGA. OR, and listing
file PROGA. RM (the . RM stands for Replacement Map). The listing file contains
a normal and alphabetical map of new symbols. Error messages go to both

the console and the listing file. The replacement file PROGA.OR looks like

this:

A. OR

NEW 10 <— node 1, overlay 1 replacement

NEW3 and NEW4 <— node 1, overlay 0 replacement

.OR File Directory

«— start of file PROGA. OR

Now, assuming we received no errors, we execute the REPLACE step:

REPLACE PROGA)

After this command executes, PROGA, OL appears as follows:

A.OL

OVl1l
NEW10

} overlays for node 1

T Y a—y

\
NEW3 ‘
(
)

> overlays for node O

Oovo

The error messages that may occur in executing an OVLDR command are
given below. They are all fatal.

ILLEGAL LOAD ADDRESS

Any attempt to load into an address outside the overlay node.

NO SYMBOL TABLE

The symbol table was not created when the save and overlay
files were loaded.

NO OVERLAY DIRECTORY

The save file does not contain the overlay directory, OLDIR.

Licensed Material - Property of Data General Corporation 4-4 093-000080-05

INSUFFICIENT MEMORY

OVLDR cannot execute in available memory.

COMMON SIZE ERROR
An overlay defines blank COMMON to be larger than that in the
save file,

EXTERNAL LOCATION UNDEFINED OR NOT WITHIN OVERLAY
Either a symbol is not defined within the save file or the symbol
value is not legal for the overlay area.

NEW .COMM CANNOT BE DECLARED IN NEW OVERLAY

This message occurs when you used global /R, and a replacement
overlay declared new labeled common. OVLDR cannot change the

node size in the root program, thus it cannot assign new labeled
common outside the node.

.SV FILE SYMBOL IS EXTD/N FOR LABELED COMMON

OVLDR sends this message if a . SV file common symbol is . EXTN
or . EXTD. RLDR normally resolves all references to undefined
.EXTNs or . EXTDs to -1, Therefore, no new overlay can define
such undefined common symbols.

.SV FILE SYMBOL IS OTHER THAN COMM, EXTN, EXTD

When it analyzes labeled common, OVLDR displays this message
if a .SV file symbol is not a . COMM, .EXTN, or . EXTD., This
means that the symbol has already been defined, thus cannot

be redefined.

END OF CHAPTER

093-000080-05 4-5 Licensed Material - Property of Data General Corporation

APPENDIX A
RELOCATABLE BINARY BLOCK FORMATS

This appendix begins by describing radix 50 representation, which MAC, ASM,
and compilers which use ASM, use to condense five-character symbols. It then
describes the block types which MAC and ASM create and use for conventional
relocatable binaries. The next section illustrates block types in a real RB file;
the final section briefly describes extended RBs.

RADIX 50 REPRESENTATION

MAC and ASM use radix 50 representation to condense symbols of five characters
into two words of storage using only 27 bits. Each symbol consists of from 1 to
5 characters; a symbol having five characters may be represented as:

343325213

where: Each a may be one of the following characters:

A - Z (one of 26 characters)
0 - 9 (one of 10 characters)
. or ? (one of 2 characters)

All symbols are padded, if necessary, with nulls. Each character is translated
into octal representation as follows:

Character a Translation b
null 0
Oto 9 1 to 12g
Ato7Z 13g to 44g
. 45g
? 46g

093-000080-05 A-1 Licensed Material - Property of Data General Corporation

RADIX 50 REPRESENTATION (continued)

If any a is translated to b, the bits required to represent the original a can be

computed as follows:

- * *
N1 = (b4 SO-HJB) 50)+b2

N .
lmaximum

- *
N2 = (bl 50) +b0

N .
2maximum

= (50)2 - 1 = 3077, which can be represented in

11 bits.

= (50)3 - 1 =174777, which can be represented in
16 bits (one word)

Thus, any symbol a can be represented in 27 bits of storage, as shown below
in the binary output block formats.

RELOCATABLE BINARY BLOCK TYPES

MAC, ASM, and any other language code generator divides binary output into a
series of blocks. The order in which blocks appear, if each type of block is

present, is as follows:

Title Block

Labeled COMMON Blocks

Entry Blocks

Unlabeted COMMON Blocks (.CSIZ)

External Displacement Blocks

Relocatable Data Blocks
Global Addition and Reference Blocks
Global Start and End Blocks

Normal External Blocks

Local Symbol Blocks

Start Block

SD-00646

Licensed Material - Property of Data General Corporation A-2

093-000080-05

RELOCATABLE BINARY BLOCK TYPES (continued)

The relocatable binary output must contain at least a Title Block and a Start Block.
The presence of one or more of the other types of blocks will depend upon source
input. The pages following describe each block, in the order shown above.

Bytes are always swapped in the word; thus "003400" means "00 000 111/00 000 000",
and, after swapping, 7. The first word of each block contains a number
indicating the type of block. The number is in the range of 2 - 208'

The second word of each block is the word count. It is always in two's
complement format. Where the word is a constant for every block of the
particular type, the word count constant is shown in parentheses in the format.

Words 3-5 are reserved for relocation flags. Some block types contain these flags,
other don't. The relocation property of each address, datum, or symbol is

defined in three bits. For example, for a Relocatable Data Block, bits 0-2

of word 3 apply to the address, bits 3-5 apply to the first data word, bits 6-8

apply to the second data word, etc. The meaning of the bit settings is given in

the table following.

Bits Meaning

000 Illegal

001 Absolute

010 Normal Relocatable

on Normal Byte Relocatable

100 Page Zero Relocatable

101 Page Zero Byte Relocatable

110 Data Reference External Displacement
11 Illegal

All other blocks use bits of word 3 only and set words 4 and 5 to zero.

Word 6 contains a checksum, such that the sum of all words in the block is O.

For those blocks containing user symbols, each symbol entry is three words
long.

093-000080-05 A-3 Licensed Material - Property of Data General Corporation

RELOCATABLE BINARY BLOCK TYPES (continued)

The first 27 bits of the three-word entry contain the user symbol name in radix
50 form. The last five bits of the second word are used as a symbol type flag,
where the currently defined types are:

Bit Meaning

00000 Entry Symbol

00001 Normal External Symbol
00010 Labeled Common

00011 External Displacement Symbol
10100 Title Symbol

00100 Overlay Symbol

01000 Local Symbol

The setting of the third word allocated for each user symbol entry varies with the

type of block and is described in

TITLE BLOCK (. TITL)

the format writeups of each block.

Word
7 1
word count (-3) 2
0 3
0 4
0 5
checksum 6
title in radix 50 !
f flags 8
o] 9
SD-00647

The third word of the user symbol entry for a title is set to O.

Licensed Material - Property of Data General Corporation A-4 093-000080-05

LABELED COMMON BLOCK (, COMM)

Word
13 1
word count (-4) 2
relocation flags 1 3
0 4
0 5
checksum 6
symboi in radix 50 ’
flags 8
0 9
expression value 10

SD-00648

Bits 0 - 2 of the relocation flags (word 3) apply to the expression (expr
following . COMM). All other bits of the word are zeroed.

093-000080-05 A-5 Licensed Material - Property of Data General Corporation

ENTRY BLOCK (.ENT)

Word

3

—

word count

relocation flags 1

relocation flags 2

relocation flags 3

checksum

symbol in radix 50
flags

equivalence

eee © ® ~N O O & W N

symbol in radix 50

flags

. word count +6
equivalence

SD-00649

Note that the relocation flags for the Entry Block are as previously described,
except that they apply to the third word of every user symbol entry. (For Entry
Block user symbols, the third word of the user symbol is used to equivalence
entry symbols.) Because each equivalence requires relocation flags, and there
are only three words for flags, there is a limit of 15 symbols for each block.

Overlay entry . ENTO is the same as . ENT, except for the flags in the last five
bits of the flag word(s).

Licensed Material - Property of Data General Corporation A-6 093-000080-05

UNLABELED COMMON SIZE BLOCK (.CSIZ)

Word

15

—_

word count (-1)

relocation flags 1

0

0]

checksum

expression value

N O o W™

SD-00650

Bits 0-2 of the relocation flags (word 3) apply to expression (expr following
.CSIZ). All other bits of word 3 are zeroed.

EXTERNAL DISPLACEMENT BLOCK (. EXTD)

Word
4 1
word count 2
0 3
0 4
0 5
checksum 6
7
symbol in radix 50
flags 8
077777 9
symbol in radix 50
f flags
077777 word count +6

SD-00651

The third word of each user symbol entry in the External Displacement Block

is set to 077777.

093-000080-05

A-7

Licensed Material - Property of Data General Corporation

RELOCATABLE DATA BLOCK

Word

2 1
word count 2
relocation flags 1 3
relocation flags 2 4
relocation flags 3 5
checksum 6
address 7
data 8
data 9

data word count +6

SD-00652

Contents of the relocation flag words (words 3-5) are as described previously.
Because of relocation flag requirements, there is a limit of 1410 data words
per block.

GLOBAL ADDITION BLOCK (.GADD) and GLOBAL REFERENCE BLOCK (.GREF)

Word
14 for .GADD; 20 for .GREF 1
word count (-5) 2
relocation flags 1 3
0 4
0 5
checksum 6
address 7
8
symbol in radix 50
I 00000 9
0 10
expression value 11

SD-00653

Bits 0-2 of the relocation flags (word 3) apply to the address and bits 3-5 apply
to the expression. All other bits of word 3 are zeroed.

Licensed Material - Property of Data General Corporation A-8 093-000080-05

GLOBAL LOCATION START AND END BLOCKS (. GLOC)

Start Block Word End Block
16 1 17
-3 2 0
0 3 C
v 4 C
0 5 0
checksum 6 -17
P s e 7
symboi in radix 50 00000 8
0 9
SD-00654
NORMAL EXTERNAL BLOCK (. EXTN)
Word
5 1
word count 2
relocation flags 1 3
relocation flags 2 4
relocation flags 3 5
checksum 6
7
symbol in radix 50
flags 8
address of last reference 9

symbol in radix 50 [

flags

address of last reference

SD-00655
The third word of each user symbol entry in the Normal External Block contains

the address of the last reference.

10

There is a limit of 15
location flags.

093-000080-05

A-9

word count +6

Relocation flags are used as in . ENT hlocks.
symbols per block because of space required for re-

Licensed Material - Property of Data General Corporation

LOCAL SYMBOL BLOCK

Word

10

-

word count

relocation flags 1

relocation flags 2

relocation flags 3

checksum

symbol in radix 50
r flags

© O N o o B+ v N

equivalence

symbol in radix 50
[flags

equivalence word count +6

SD-00656

The third word of every symbol entry is used for the equivalence of local symbols.
Relocation flags are used as in . ENT blocks. There can be only 15, = local

. . 10
symbols per block because of relocation flag space requirements.

START BLOCK

Word
6 1
word count (-1) 2
relocation flags 1 3
0 4
0 5
checksum 6
address 7

SD-00657

Bits 0 - 2 of the first relocation flag word are used for address relocatability;
other bits of word 3 are 0.

Licensed Material - Property of Data General Corporation A-10 093-000080-05

LIBRARY START AND END BLOCKS

These blocks mark the beginning and end of a series of binary blocks which make
up a Library file. They are created by the Library File Editor utility, not MAC
or ASM; hence their format differs from the format of other relocatable binary
blocks.

Library Start Block Word Library End Block

—-
-

ojJo|o|o

[B S P I S B
o

SD-00658

093-000080-05 A-11 Licensed Material - Property of Data General Corporation

RB FILE ILLUSTRATION

Having described each RB block structure, we can now examine a sample RB file,
and see the structures of some actual blocks. We will use the source program
ROOT, shown in Chapter 3. For clarity, we've repeated the listing, without

comments, below.

.TITL ROOT
82 .ENT START, LOV@, LCV1, RTURN, EF
03 LEXTN OVLY®, PRNTE, OVLY1, PRNTC
24 000081 « TXTM
es «NREL
26
@7
98 @0QC2'020440 START: LDA @, OFILE
89 @oee1'126400 st 1, 1
10 cdeee2'vas6el7 «SYSTM
11 eoeel'e12909 .CVOPNM €
12 oeeeu'ecedad JVMF ER
13 oepes'eeeuees LDA 2,4
14
1S 20ve6'206217 «SYSTM
16 ¢oe07'210000 +PCHAR
17 eee1o'0oe4ee JMP EK
18 @eo11'd2e423 LOve: LDA @,0ve
19 00012'126420 sue 1,1
2¢ eep13'eecol? «SYSTH
21 00014'r2ac00 +OVLOD €
22 eove1S'eaedll JMP ER
23 e0016'0e2429 JVMP o ,FRE
24
25 @@e17'222416 LOVL: LbA 2, 0OVl
26 0302@'126400 SUE 1,1
27 20021'406317 «SYSTW
28 ©V32c'22030¢ .OviLoD @
29 82023'020405 JVP ER
3¢ 90@24'202413 JVP d,PRC
31
32 00025'206317 RTURN: ,SYSTWM
33 @026 'aRuude kTN
34 Qoee7'eee4dl JVP L t]
38
3¢ 00030'206017 EN: «SYSTM
37 00031'226420 «ERTN
38 goe3z'ceedu9y JVP
39 ge@3i'ecelol A: "A
4@ @0834'077777 OV OviYe
41 00@35'@77777 OV1e ovivi
42 90036'¢77777 .PRB: PRNTB
43 20037'077777 .PRC: PRNTC
U4 20BUEC'QZB102"0FILE: .+1x2
4S peeu1'251117 «TXT "ROOT,.CL"
46 247524
47 227117
48 ?4€220
49 +END STAKRT

Licensed Material - Property of Data General Corporation

A-12

093-000080-05

RB FILE ILLUSTRATION (continued)

The RB file built by MAC (not ASM) from source file ROOT appears below. We
used the command FPRINT /Z /L to get it; the addresses of the words are shown in
the left column, and the ASCII values in each 10-word series (if any) are shown in
the right column. (For the rest of this appendix, all number will be octal, unless
we specify otherwise.) ROOT. RB contains a title block, an Entry block, a Data
block, an External Normal (. EXTN) block, and a Start block. We've drawn square
Brackets to delimit each block in the RB.

0 [e23429 176777 202000 0V200AC LOLACA 163666 LB2663 N12226 .seeseessnssbeldas
10 C2ozee@lec14ed 172777 €22111 0CCOCC CPCVO0 164635 020142 sseseedlovsace &
20 QQCV00 C14PD0 147663 C0OC217 C1242C 1C4215 CERR12 CR74Q0 ,seeel3cvvvsncnse
30 124215 ©2Q¢0S 604400 175671 140217 200000][201080 170777 seeesse900cansses
40 111104 111044 111044 131111 0CQQ0R02 020041 0Q@B2SS @@7414 ,D,.%.%521.. l.e*..
SO QOeQ24 212201 013041 PO7414 200Q2v V100@1 011441 B00255 ceseelovevcanle™
68 CO7414 200049 205401 2210BC 17BTTT 111104 111044 111844 cee seeeeselebel
70 125474 027200 010005 Q07841 @O@255 CO7414 QQ0CUR GO2UP1 +<€.ieuele®cers oo

100 C@254¢5 907414 000011 VPOUG) EB7414 CLUR1S QBCUC] CUBUDD seveessscnssssh,
110 201222 173377 111104 111144 C0CCE2 114€72 0160002 177577 seeceeDocsoslonee
120 177577 177577 177577 e41eee 247522 @52117 @47456 @@0114] ,.,...B.0RTCC.,L
130 [er24eR 172377 Q22111 CeQQCe Q0GR VBSQE3C 174246 120627 seee Tooesbooblle
140 217420 253241 240657 216402 174246 180627 217002 253241 . ViA/esebesesVli
150 €20657 Q160200][223002 177777 C021C0 2200 CALZCE 175677 1/eeessasloanns?

160 €2¢080] ee=> eece veee seme msee sems emme L ,.icesssessnes
Words 0 through 10 comprise the Title block (words 1 through 8 in . TITL figure).
Word 0 is 7 when we swap bytes, and this corresponds to block type 7, as
described under 'Title Block". The second word, 176777, is a -3 after we swap,
as it should be for the second word in the title block. The next three words are
0, as they should be. Word 5, 163666, is the checksum. The title, ROOT, is
placed in radix 50 in word 6 and bits 0-11 of word 7. The last 5 bits in word 7
evaluate to 00100, meaning '"title symbol".

Word 11 starts the Entry block; swapped, 001400 is 3, which starts an Entry
block. Word 12 specifies the word count in two's complement; words 13, 14
and 15 contain relocation flags, and word 16 is the checksum. Then five three-
word groups follow, one for each . ENT symbol in ROOT. The Entry block ends
at word 35.

A Data block begins at word 36, with 001000 (or 2 after swapping); number 2
identifies the block. The next word, at 37, is the word count in two's complement;
words 40, 41, and 42 are relocation flags; word 43, 131111, is the checksum, and
word 44, 000000, is the address of the first datum. The 3 data blocks extend from
45 (020041) to 127 (000114).

Word 130 starts an External Normal (. EXTN) block. It contains 5 (swapped) as a
numeric identifier, is followed by the word count in two's complement, then by
three words containing relocation flags. Following the flags, in word 135, is the
checksum; then four three-word descriptors, one descriptor for each symbol
declared in . EXTN, in ROOT,

093-000080-05 A-13 Licensed Material - Property of Data General Corporation

RB FILE ILLUSTRATION (continued)

Finally, words 152 through 160 comprise the Start block. The block type, 6
(swapped) is in the first word, -1 is in the second word, relocation flags are in
word 154, 0 is in the next two words, the checksum is in 157, and the start
address, 000000, is in word 160.

EXTENDED RBs

Certain Data General compilers produce Extended RBs, which allow for the
recognition of eight-character symbols. The Macroassembler, MAC, also
produces an Extended RB if you include the global /T switch in the MAC command.

In terms of program development, there are no functional differences between
Extended and conventional RBs; but there are differences in block words, as
follows:

1) Within extended RBs, all bytes are in their proper order (not swapped as in
standard RBs), except for the first word of the TITLE block. The TITLE
block's first word is 003600g (as opposed to 003400g for a standard block),
and the extra bit tells RLDR to expect extended format blocks. Library
START/END blocks are in standard RB format.

2) Each three-word symbol in standard RB format (radix 50 words and
equivalence word) has the following format in an RB block:

Word 0 Right byte contains the number of characters in the
symbol name.
Left byte contains the symbol type. This is specified
only in a . ENT or .ENTO block, where RLDR uses it to
distinguish between the two. For all other block types,
RLDR needs only the first (header) word in the block to
derive the block type.

Word 1ton Contain the symbol in ASCII representation, two
characters per word, with any odd character zeroed. The
number of characters cannot exceed 32l

0
Word n+l1 Contains the symbol equivalence, as follows:

TITLE and GLOC Start = 0.

EXTD = 077777g.

EXTN = address of last reference.

COMM = common size.

GADD and GREF = expression.

ENT and ENTO = equivalence.

The relocation flags have the same meaning as in standard RBs, and each block
has the same size restrictions (1510 for ENT, 14 10 for a Data Block, etc.).

END OF APPENDIX

Licensed Material - Property of Data General Corporation A-14 093-000080-05

APPENDIX B

OVERLAYS AND NAMED COMMON
(RDOS/DOS)

Named common is code you specify with the . COMM pseudo-op or a higher-ievei
language equivalent. When a module which is not an overlay declares named
common for the first time, RLDR places the common in the program save file.
During program execution, this common remains in memory and any module
can use it.

You need to read the rest of this appendix only if you want overlays to declare
named common in your programs.

NAMED COMMON AND OVERLAYS

If you omit the global /R switch and an overlay declares new common, RLDR
places this common in the overlay itself. This means that the program can use
this common only while the overlay is resident.

If you include the global /R switch, RLDR tries to place, within the root program,
all named common. Only the first overlay within each pair of square brackets

can declare new common when you use global /R, RLDR takes the named common
from the overlay and adds it to the root node. This moves the starting address

of the overlay node upwards. RLDR cannot update the load map after moving the
node upward; so, if overlays declare new common and you include global /R, the
load map's node start figure will be wrong. The map will contain the warning
message LABELED COMMON IS ROOTBOUND to indicate the incorrect node

start address.

093-000080-05 B-1 Licensed Material - Property of Data General Corporation

SUMMARY

When RLDR encounters a named common symbol in an overlay, it takes the
following steps. To illustrate, we'll call the named common symbol COMM,
and its size SIZE. The command line might be:

RLDR PROGA [A,B,C])
where module A declares COMM.
If you omit global /R:

RLDR checks its symbol table for COMM. If COMM is new, RLDR allots space
for it within the overlay node. If COMM was declared earlier (possibly by
module PROGA), and has received a memory location, RLDR checks that
location and other parameters as follows:

o If COMM's assigned memory location is less than the node start
location, RLDR displays the warning message LABELED COMMON
IN NODE IS DEFINED OUTSIDE NODE, and continues. RLDR
assumes that it has already alloted space; it displays the
message to warn you that the labeled common may be defined
in another overlay--outside this node--and thus may be unavail-
able to this node's overlays.

o If COMM's assigned memory location is the next available
location, RLDR increments the next available location by SIZE,
and continues.

o If COMM's assigned memory location is greater than the node
start, and this location plus SIZE is less than the next available
location, RLDR continues.

« If COMM's assigned memory location is greater than node start,
and this location plus SIZE is greater than the next available
location, RLDR displays an ALIGNMENT ERROR message and
aborts the command.

Licensed Material - Property of Data General Corporation B-2 093-000080-05

SUMMARY (continued)

If you include global /R:

When RLDR encounters any new named common in the first module of a node, it
places COMM in the root program (PROGA.SV) and writes the LABELED COMMON
warning message to the load map. Then it moves the node start upward by the
SIZE of COMM. The module which declares COMM must be the first within this
set of square brackets (in the example, module A), because RLDR cannot adjust

a node starting address after it has loaded data.

END OF APPENDIX

093-000080-05 B-3 Licensed Material - Property of Data General Corporation

APPENDIX C

THE .LMIT FEATURE

You can instruct RLDR to partially load a module with the Macroassembler’'s

. LMIT pseudo-op. To use .LMIT, declare a . LMIT symbol in a module, then
use the symbol in a different module which you want partially loaded. The module
to be partially loaded must . ENTer the symbol. Only the first module which

. ENTers the symbol and uses it will be partially loaded. If you place the . LMIT
symbol in ZREL, RLDR will load all of this module‘'s NREL code and its ZREL
code up to the symbol. If the symbol is in NREL, RLDR loads all ZREL code and
NREL code up to the symbol., In the RLDR command line, you must insert the
module which establishes the . LMIT symbol before the module you want partially
loaded. You can limit-load only one module with a single . LMIT symbol; if the
same . LMIT symbol occurs as a . ENTry in a module which follows the partially-
bound module, RLDR returns a multiple-definition error.

If a module to be partially loaded defines . ENTries after the . LMIT symbol, RLDR
sets the value of these symbols to -1. For example:

Module A Module B Module C
.TITL A .TITL B . TITL C
. LMIT LIM1 .ENT ALPHA,ROUT1 .

.EXTN ROUT1 . ENT LIM1

LIM1: LDA....
ROUT1.....
ALPHA.:....

After assembling each module, you type RLDR A BC). The limit symbol is LIM1,
and it instructs RLDR to partially load module B. RLDR finds that ROUT1, which
A declares external, is defined in B after the limit symbol; therefore, RLDR
stores the value -1 for ROUT1 in its symbol table. It then proceeds to load all of
A and C, and B -- up to symbol LIM1. If module C mentions ROUT1, RLDR
inserts -1 wherever each ROUT1 symbol occurs; if C mentions ALPHA, RLDR
returns an UNDEFINED SYMBOL error.

093-000080-05 Cc-1 Licensed Material - Property of Data General Corporation

For . LMIT to work properly, you must insert . ENTries in the proper order.
Normally, you define . ENTries in logical order, but, since MAC reverses their
order during assembly, you must declare them in reverse order in the modules
you want partially loaded. In the example above, . ENT ALPHA is not entered
in the symbol table at all. If the . ENTries in module B were reversed (LIM1,
ROUT1, ALPHA), .ENT ROUT1 and ALPHA would receive NREL values in the
symbol table before RLDR realized that module B was limited.

END OF APPENDIX

Licensed Material - Property of Data General Corporation C-2 093-000080-05

APPENDIX D

RLDR SYMBOL TABLE FORMATS

There are two symbol tables which RLDR builds for its own use. The first table
is the . ST file on disk, which contains an entry for each defined and undefined
symbol. The second table remains in memory and contains only undefined symbols.

Formats for these RLDR tables are shown below.

The third symbol table, which you can have written to the save file by including
the global /D switch (or . EXTN .SYM. in a program module), is described in
Chapter 1, under the head: "THE SYMBOL TABLE (LOADER MAP)".

DISK TABLE FORMAT FOR SYMBOLS

Word 0 Symbol type in left byte, length of name in words in right.
Word 1 Symbol equivalence.
Word 2 For ENTOS: overlay node/number word.

For ENTs: node/overlay word of overlay where symbol is defined.
For COMMs: named common size.

Word 3--Word n symbol name in ASCII, packed in ASCII,
2 characters per word.
Ist in left, 2nd in right, etc.

Word 1 of an ENTO is not a memory address; it is the overlay
node/number word (same as word 2 for . ENTS).

093-000080-05 D-1 Licensed Material - Property of Data General Corporation

Memory Table Format for Symbols (Undefined Only)

Undefined symbols are represented in memory as well as on disk.
Word 0 Block number and channel bits in left byte.
Word 1 Offset in left byte, type in right byte.
Offset is offset of symbol in disk symbol block.
Type designations are as shown in Appendix A.

Bit 13 is flag for extended format.

Word 2-n Chain pointers.

END OF APPENDIX

Licensed Material - Property of Data General Corporation D-2 093-000080-05

INDEX

Within this index, the letter "f'" following a page number means '"and the
following page'; "ff" means "and the following pages'.

assembler 3-1f, 3-20f, B-1

block format
extended RB A-14f
library A-11
other RB Appendix A

channels 3-8
COMMON see named common
compiler 3-1

debugger
loading 3-6
position in memory 3-17
user symbols for 3-10, 3-16f
DOS see RDOS/DOS Loader

. ENTO (for overlays) 3-20 to 3-23
error flags 3-12
error messages (RDOS/DOS)
fatal 3-25 to 3-28
nonfatal 3-23ff
errors
OVLDR 4-4f
examples
command lines (RDOS/DOS) 3-18f
program (RDOS/DOS) 3-19 to 3-23
RB blocks in program A-12ff
extended RBs 3-1, 3-16
definition of A-14

fatal error messages 3-25 to 3-28
files

library iiif

in RDOS/DOS 3-3

listing (RDOS/DOS) 3-9
flags, error 3-12

relocation A-3

093-000080-05

Index-1

global switches 3-5ff

OVLDR 4-if

LFE iii, 3-3
library
block format A-11
library files (also see LFE)
in RDOS/DOS 3-3
limit-loading (. LMIT) C-1f
listing file (RDOS/DOS) 3-9
. LMIT feature C-1f
Loader, RDOS/DOS Chapter 3
Loader (RLDR)
overview, general
RDOS/DOS 3-1
Loader, SOS Chapter 2
loading
debugger 3-6
partial C-1f
load map (RDOS/DOS)
details, all systems
RDOS/DOS 3-22f
local switches 3-8ff
OVLDR 4-2

iiif

iv

1-4 to 1-7

memory
debugger position in 3-17

named common and overlays B-1ff
.NMAC (RDOS/DOS)
definition of 3-12
in load map 3-12
nonfatal error messages
NREL (RDOS/DOS)
during loading 3-9
pointer 3-9
specifying 3-15

3-23ff

Licensed Material - Property of Data General Corporation

organization of manual
operating RLDR
SOS 2-1f
stand-alone
overlay
directory 3-5, 3-14
. ENTO 3-20ff
loading
into memory (.OVLOD) 3-20f
via RLDR 3-3f
named common in B- Iff
virtual 3-10
overlay loader (OVLDR)
command line 4-1f
errors 4-4f
switches 4-1f
.OVLOD 3-20f

iii

1-1f

partial loading C-1f
program examples
(RDOS/DOS) 3-19 to 3-23

radix 50 A-1f
RBs, definition of 3~-1
block types A-2 to A-10
definition of 3-1
extended see extended RBs
RDOS/DOS Loader Chapter 3
command line 3-3f
examples of 3-18f, 3-22
error messages
fatal 3-25ff
nonfatal 3-23ff
load map 3-11f, 3-14
overview 3-1f

RLDR files 3-2

system tables 3-13ff
RLDR

operation 1-1f, 2-1f

overlays 3-3f

relocatable binary see RB
relocation flags A-3
RTOS or SOS
loading programs
under RDOS/DOS 3-5

Licensed Material - Property of Data General Corporation

SOS loader, Chapter 2
command line 2-3f
errors

fatal 2-7f

nontatal 2-4ff
operating 2-1ff
switches 2-4

stand-alone loader Chapter 1

errors
fatal 1-14ff
nonfatal 1-11ff
executing programs
libraries 1-9f
operating 1-1f
user status table
switches
OVLDR 4-if
RDOS/DOS
global
lotal
SOS 2-4
symbols, user
block storage Appendix A

1-8

1-16f

3-5ff
3-8ff

including in program 3-6, 3-10, 3-16f

radix 50 stprage A-l

user, for debugger 3-10, 3-16f

symbol tables
internal 3-16, D-1f
overview 3-16
program (user) 3-6f, 3-16f

tables
status, user 1-16f, 3-13
symbol 3-6f, 3-16f
system 3-13

tasks 3-8

TCBs (tasks) 3-13f

User Status Table (RDOS/DOS)
user symbols
including in save file 3-10
also see symbols, user

virtual overlays 3-10

Index-2

].' l6f’ 3" 13

093-000080-05

Title No.

hat programming language(s) do you use?

We wrote the book for you, and naturally we had to make certain assumptions about who you are and how you
would use it. Your comments will help us correct our assumptions and improve our manuals. Please take a few
minutes to respond.

If you have any comments on the software itself, please contact your Data General representative. If you wish to
order manuals, consult the Publications Cataiog (012-330).

EDP Manager (Listin order: | = Primary use)

Senior System Analyst — Introduction to the product
Analyst/Programmer _ .. Reference

Operator e Tutorial Text

Other Operating Guide

Yes Somewhat No

aooaooaa

Is the manual easy to read?

Is it easy to understand?

Is the topic order easy to follow?

Is the technical information accurate ?

Can you easily find what you want?

Do the illustrations help you?

Does the manual tell you everything you need to know?

(Please note page number and paragraph where applicable.)

Name Company

Address Date

SD-00742

FOLD DOWN FIRST FOLD DOWN

FIRST
CLASS
PERMIT
No. 26
Southboro
Mass. 01772
BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States
Postage will be paid by:
Data General Corporation
Southboro, Massachusetts 01772
ATTENTION: Software Documentation
TTRolbue o oTTTTTTTTETT T SECOND T T T T oo

SD-00742A STAPLE

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	Index-01
	Index-02
	replyA
	replyB

