GData General

DASHER D3 DISPLAY TERMINAL
PROGRAMMER’S REFERENCE

* preliminary

055-203-00

Data General Corporation, Westboro, Massachusetts 01581

Copyright Data General Corporation, 1979
A11 Rights Reserved

Data General Corporation (DGC) has prepared this manual for use by
customers, licensees, and DGC personnel, The information contained
herein is the property of DGC and shall not be reproduced in whole or in
part without orior written approval, .

DGC reserves the right to make changes in specifications and materials
contained herein without prior notice, DGC shall not be responsible for
any damages, including consequential damages, caused by reliance on the
information presented, or resulting from errors, including but not
limited to tyrographical, arithmetic, or listing errors,

NOVA and ECLIPSE are registered trademarks of Data General
Corporation., DASHER and microNOVA are trademarks of Data Genera)
Corporation,

Printed in U,S.A.

* Kk %

Page 1

TABLE OF CONTENTS

Introduction 3
Keypboard Functions 4
Programming 9
Introduction 9
Overview of Terminal Operations 9
Coding Conventions 14
Host/Terminal Instructions 15

Buffered Mode Programming 24
Appendix A ASCII Character Codes and Terminal

Control Functions 28
Appendix B Keyboard Layout 29
Appendix C Keyboard Code Assignments 30

Appendix D Extended Graphic Symbols and Codes 31
Appendix E Sysgen Parameters 32

Page 2

A Dasher D3 (6093) Display Terminal in operation

The Dasher D3 (6093) Display Terminal preserves the basic layout of
previous Dasher terminals with its tilting, swivelling screen, and
separate keyboard,

The D3 keyboard incorporates significant improvements, Its keys are
sculptured for better operator "feel"”, There are more user=defined
function keys (18 keys for 72 functions). Dedicated keys for ENTER,
NEGATIVE ENTER and minus sign have been added next to the numeric pad.
Legends for typical word=processing editing functions have been screened
on the key fronts. These editing functions are implemented within the
terminal in buffered mode.

Yet the keyboard is still completely compatible with all Dashepr D2 (6053)
functions, Every keyboard function has been preserved on the newer D3,
though some keys have been relocated for more convenient operator usage.

Page 3

INTRODUCTION

The Dasher D3 1s a microprocessor=based, stored=program control, cathode
ray display terminal. It has been designed as a functional superset of
the Dasher 02 Terminal., The results of these additional functions mean
gsimplified operating procedures, improved data entry characteristics, and
greater text editing capability than previously available with the Dasher
D2.

The Dasher D3 allows a broad range of operating parameters to be
controlled by the terminal. Moreover these operating parameters, which
are under program control, can easily be altered, providing the
flexibility needed for demandina, on=line applications.

The 18 user defined function keys provide an enormous degree of
flexiblity (up to 72 functions) in application programming.

Architectually, the Dasher D3 was designed for ease of use and operator
convenience, A detached, sculptured, typewriter=style keyboard helps
operators or data entry personnel to easily locate often used keys, The
keyboard has been organized for minimum movement in locating keys and
variation of key characteristics (color, size, shape, and height) make
searching simple., The extended numeric keyboard parallels a standard
calculator layout, further simplifying use.

Screen management with the fNDasher D3 is easily accomplished with a number
of powerful features, For improved form design, lavout, and text
manipulation, these features include orogrammable character blink,
underscore, dual=intensity, nlock fill, reverse video, and
character/screen protection.

The Dasher D3°s "character pacing" assures control over processor
interrupts keeping the host processor overhead to a minimum,

The Dasher ©23°s "pass=through" feature provides the ability of
controlling a serial printer from the host computer without interfering
with the Dashers’ screen contents, The buffered mode provides agreat
flexibility and imnroved system performance for the system builder who
utilizes its functions. Several keys are already laveled with typical
text manipulation functions should the system builder decide to implement
these functions.

Page 4

KEYBOARD FUNCTIONS

The Dasher D3 (6093) Display Terminal provides the same key entry
functions for interactive mode as the Dasher D2 (6053) model and in
addition has powerful buffered mode features. Figure 1| shows the basic
compatability between the two models, Note that some of the keys have
been repositioned on the D3 model for improved operator convenience.

The buffered mode is designed for the entry and editing of data oy
fields, These fields can be of two types: protected and unprotected,

A protected field is a portion of screen area that has all {its data
protected against operator entry (see discussion of Protected Data
attribute under heading? Character Attributes).

An unprotected field can be either a full screen line of unprotected data
or a portion of a line between a protected field and another protected
field, The beginning or ending of a line can also constitute field
boundaries,

The buffered mode has a set of powerful screen editing functions such as
delete and insert. These functions are accessed using the CMD key

in conjunction with centrally=located data keys (see Ficure 1). These
functions are described below.

MOVE CURSOR RIGHT ONE CHARACTER
Keying = CHAR ==> (CMD L)
Function = Moves the cursor right one position; if already at
end of line or unprotected field, .iien the bell soundgs,
Cursor cannot enter beyond first location of unfilleo
area.

MOVE CURSOR RIGHT TQ NEXT TAB STOP

Keying = TAd ==> (CMD ;)

Function =Moves the cursor to next tab stop or end of entered
data whichever comes first. If cursor is at end of
entered data in the field, then the bell sounds and no
action occurs.

MOVE CURSOR RIGHT TO NEXT wORD
Keying = #0ORD ==> (CMD)
Functionm = Moves cursor to beginning of next word or to the end
of entered data in tne field., If at end of entered data,
field, or line, the bell sounds and no action occurs,

MOVE CURSOR TO EnD OF FIELD
Keying = MOVE TO END (CMD \)
Function = Moves cursor to last position in the field or to
the first location of unfilled area in the field,

6053 Keyboard

1 @ # % | ~ & * () + - DEL tag | ERASE | ERASE
1 2 3 AI' 5 6 7 8 9 0 - - N PAGE EOL 7 8 9
] e oTw elr|T|Y[u|1]ofr|]|i]| = Plwlela|s|e
CTRL ﬁ;z:ﬂ A S D F G H J K L . I: CR <— | HOME | —> 1 2 3
N
SHIFT V4 X C \" B N M y . / SHIFT + -3 REPT l BREAK 0 .
Use
——CMD SHIFT
- _for
CTRL
Y 6093 Keyboard \
ESC NULL f1 f2 f3 f4 f5 f6 f7 f8 SEND PRINT fg f10 f11 f12 f13 f14 LINE
! @ | # $ % -~ & * () =1+ = 1 oe HeLp | ERASE | ERASE
Vi1l2(3lalslelzlslofol-1=]: 18]°)
QTW E[(R|T|Y|[U]T1]O]P g f15 T f16 4156 e
|l o |Als|D|FlalH]dIK]L é " | owe |—» 1123]
4 > :
srr | Z| X|C|V|BINIME | .| s s |[on 17 l 18 y» O] -)
— :;2:1\ * -~ REPT
~*— Repositioned

For buffered-
mode only

I
Q-

r

Figure 1 Dasher D3 (6093) Display Ter

minal

keys

6053 & 6093 KEYBOARDS

All 6053 keyboard functions are
available on the 6093 keyboard.
The diagram shows all keys that
have been relocated or renamed.

Keyboard

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

Page 6

CURSOR LEFT ONE CHARACTER
Keying = CHAR <== (CMD K)
Function = Moves cursor one posjtion to the left. If cursor
is at beginning of the field, the bell sounds and
cursor position remains unchanged.

CURSOR TO PREVIOUS TAB STOP
Keying = TAB <== (CMD J)
Function = Moves cursor to previous tab stop or to beginning
of the field. If cursor is at beginning of a field,
the bell sounds.

CURSOR TO BEGINNING OF PREVIOUS WORD

Keying = ANORD <e= (CMD H)

Function = If The cursor is in the middle of a word or between
words, it moves to beginning of the current word., If the
cursor is a the beginning of a word, it moves to the
beginning of the previous word or field. If curssor s
at the beginning of a field, the bell sounds.

CURSOR TO BEGINNING OF FIELD
Keying = MOVE TO BEG (CMD [)
Function = Moves cursor to beginning of the current field.

CURSOR TO NEXT FIELD
Keying = ===> (on Cursor Control Pad) or CMD X
Function = Moves cursor to first location in next unprotected
field. If there are no protected fields, the cursor moves
to beginning of the next line, If in last field of
screen, cursor moves to the first unprotected field at
top of screen,

CURSOR TO PREVIOUS FIELD
Keying = <== (on Cursor Control Pad) or CMD Y
Function = Moves cursor to first character location of previous
unprotected field,

COMPLEMENT INSERT MODE

Keying = INS (CMD P)

Function= Alternate action, either enables or disables Insert
mode with each keying. Insert mode is disabled at entry
to buffered mode or whenever a new field is entered, When
in Insert mode, as each key is struck (except for
control keys), the characters starting at and to right
of the cursor shift one position to the right. The
character struck is inserted at the cursor location and
the cursor moves one position to the right. Any character
in the last position in the line or field is lost when
the shift occurs. When the insert mode is disabled, new
data entry writes over and destroys the existing data,

INSERT

INSERT

DELETE

DELETE

DELETE

DELETE

Page 7

TAB
Keying = TAB (CMD 1) or normal TAB key
Function= Characters at and to right of the cursor are shifted

right to the next tab stop and the resulting space is
filled with space codes.These spaces are flagged and are
replaced by a single tab character before the data is
transmitted to the host, However, if a Replace Tab
jnstruction (from host) is stored in the Tab Read Mode
Register, then the space codes are retained and
transmitted when the Read Screen instruction occurs, The
bel]l also sounds whenever a full field condition exists
and additional Insert Tab functions are keyed. The
cursor stays at end of tab field.

SPACE

Keying = INS SPACE (CMD Q)

Function = Characters to the right of the cursor are shifted
right one position and a space is inserted. I1f the field
js full, the bell sounds and no action occurse.

CURRENT CHARACTER

Keying = DEL CHAR (CMD M)

Function = Deletes the character at cursor location and shifts
subsequent characters left one position. The last
position in the field is filled with the fi11 character,
1f the cursor is at end of the field, the last character
is deleted and subsequent deletions will sound the bell
and no other action occurs.

PREVIOUS CHARACTER
Keying = DEL
Function = The character previous to the cursor location is

replaced with a space code, If at end of entered data,
the current fill character is the replacement character,
I1f the cursor is at last character in a full field, then
the character at the cursor location is replaced with
a fi11 character, If the cursor is at the beginning of
the field, the bell sounds and no action occurs.

NEXT WORD

Keying = DEL WORD (CMD)

Function = Deletes characters from cursor location to beginning
of next word. Subsequent characters in tne field shift
left to closeup space and §i11 characters are inserted ot
the end to complete the field., If cursor is at end of the
field, the bell sounds and no action occurs.

TO BEGINNING OF FIELD

Keying = DEL TO BEG (CMD N)

Functjon = Deletes characters petween cursor and beginning of
field. Subsequent characters in field and cursor are
shifted left to beginning of field., Fill characters are
jnserted at end to complete field. If cursor is at
beginning of the field, the bell sounds and no action
OCCUrSs

Page 8

DELETE TO END OF FIELD
Keying = DEL TO END (CMD ,.)
Function = Inserts fill characters from cu
fields If cursor is at end of fie
data, the Sell sounds and no action occurs.

DELETE ENTIRE FIELD
Keying = DEL FIELD (CMD /)
Function = Entire field is filled with i1

characters and cursor is repositioned to beginning of
field.

DELETE PREVIOUS WORD
Keying = WORD (CMD DEL)

Function= If cursor is pointing to a word separator (space code
or any punctuation code) or to the first character of a
word, the previous word is deleted; otherwise the same
word is deleted. Subsequent data along with cursor are
shifted left to close up space. Fill characters are
inserted at end to fill the vacated locations, If cursor

is at beginning of field, the bell sounds and no action
oceurs,

rsor location to end of
ld or at end of entered

Page 9

PROGRAMMING
INTRODUCTION

This section provides the system programmer with reference information
to be used in preparing an interface program for the Dasher D3 Display
Terminal, The section starts out with basic information, covering
functional aspects of the terminal which are of concern to the
programmer, Subsequent section areas describe the instructions that the
host can use to control terminal operations.

For condensed code and instruction listings, refer to the Appendices in
the rear.

OVERVIEW OF TERMINAL OPERATIONS

The terminal functions as a combined data entry and display device for an
associated host computer system, In this, it receives control and
conditioning from the host system and responds to keyboard entry by
generating appropriate ASCII code. How this code is displayed is
dependent on which of two basic operating modes is being used. The two
modes are: interactive mode and buffered mode,’

In interactive mode, the codes are individually transferred to the host
as each key is oressed., In turny the host system echoes each data code
back to the terminal for display.

In buffered mode, as each code is generated it is stored in the terminal
and immediately displayed by the terminal for operator viewing. No host
action is required, After the data has been corrected and edited, the
operator can transfer control to the host. Generally, the nost will read
the accumulated data.

From the viewpoint of the host system, certain internal functions of the
terminal are of concern to the programmer, Basically, these concerns
relate to control of the terminal itself and also of the display of data
on the screen., The following paragraphs discuss some of these concerns.

Control Registers and Flags

Several registers internal to the terminal are associated with functions
controllable by the host. Among these registers are six status registers
which can be written to or read out of by the host. The status registers
are: Terminal Mode, Keyboard Lock, Tab Read Mode, Tab Interval, Fill
Character, and Terminal Number,

Three other registers also available to the host ares the Delimiter
Table, the Current Attribute Register, and the Cursor Address Register,

In addition, three status flags enable character blinmking, Roll Mcde
(serolling of the screen), and Insert Mode, Basic functions of the
varicus registers and flags are as follows:

Page 10

*Terminal Mode Register = Identifies the operating mode of the
terminal, The codes are: 000 for INnteractive Mode; 177
for buffered mode,

*Keyboard Lock Register = Identifies whether keyboard entry 1is
permitted. The code 000 = keyboard unlocked; 177 =
keyboard locked.

*Tab Read Mode Register = Indicates whether tab codes will be
sent to host on a screen read operation or if the codes
will be replaced with an appropriate number of space
codes, The codes are: 001 for replace tab codes; 177
for send tab codes.

*Tab Interval Register = Stores the octal value (number of
character positions) between tab stops,

*Fil1l Character Register = Stores the ASCII code for the fi11
character.

* Terminal Number Register = Stores the assigned number (octal)
of the terminal,

*Delimiter Table = Defines up to 128 delimiters which can be used
by the operator in buffered mode operation to transfer
control to the host,

*Current Attribute Register = Stores seven bits which define
the screen attributes for current data entry. Function
of the individual attributes is deseribed under the
heading: Character Attributes.

*Cursor Address Register = Stores the current screen address of
the cursor, Any change in cursor location is obtained by
writing a new address into the register.

*Blink Enable Flag = When set, enables any character with the
blink attribute bit set to blink, Conversely, when
cleared, all blinking (except for cursor) is disabled,

*Rol] Enable Flag = When set, emables the screen to roll (scroll)
a line each time the cursor is moved beyond the 24th
line.When the flag is cleared, roll mode is disabled and
page mode is enabled. In the page mode, when the last
screen Jocation is exceeded, the cursor moves to the top
of the screen.

Display Concept

The screen display can consist of up to 24 lines of 80 characters each.
In buffered mode the data is immediately displayed as it is keyed., In
interactive mode, the host must echo the keyed data codes back to the
terminal for display.

Page 11

Cursor Addressing

As each data code is received, it is displayed at the current cursor
address and then the cursor is advanced to the next screen location. The
cursor address is stored in the two byte Cursor Address Register,

In interactive mode, the cursor can be relocated to any addressable
screen location by a command from the host. The screen address is
defined by a three byte sequence; the first byte, 037, identifies that a
cursor address follows. The second byte defines the column address
(horizontal character position) on the screen and can consist of any
number from 0 to 79 (octal 000 to 117), The third byte defines the row
address (vertical line position) on the screen and can consist of any
number from 0 to 23 (octal 000 to 027), If desired, the host can read the
cursor address and from that calculate the repositioning.

In buffered mode, the cursor location is controlled directly from the
keyboard.

Character Attributes

The fndividual characters on the display can have various attributes,
such as blink, dim, underscore, etc. As each character is receijved its
attributes are defined according to the contents of the Current Attribute
Register, To accomodate this, the display data is stored in the terminal
in @ two=byte format, with one byte containing the character code and the
other byte containing the attribute information, The bit arrangement as
it appears at the terminal interface is as follows:

| Attribute Byte | Character Code Byte |
| 1 i

BITS =0 1 2 3 4 S5 6 7 0 1 2 3 4 S5 6 7

Attribute Byte Bit Assignment: Function:
Bit 7 = bloeck fill 7x10 character space is illuminated
Bit 6 = blink displayed character blinks on and off
Bit 5 = nreverse video displayed character is black on white
Bit 4 = dim displayed character has reduced intensity
Bit 3 = wunderscore displayed character is underscored
Bit 2 = protected adata indicates character cannot be changed
from keyboard,
Bit 1 = modified data indicates character code has changed, It

is set by termina) when any data in field
has changed,

Bit 0 = tab stop indicates a tab stop location (not a
character attribute) which {s set by the
terminal according to the contents of the
Tab Interval Register., Not accessable by
the host,

Character Byte Bit Assignment:
Bits 1| thru 7 = <character code
Bit 0 = signifies a tab space which is sent to the host on a
screen read operation,

Page 12

Attribute bits 1 thru 7 are controllable from the host. Bit 0 of both
the attribute byte and the character byte are controlled from within the
terminal, 1In ooeration, a current attribute register in the terminal
stores the current host=defined attributes., These are imparted to the new
data as it is entered from the keyboard, In addition, the modified data
attribute is set by the terminal (see description below). Also see tne
Field Control instructions for additional information on attribute
application.

In the set attribute commands, a combination of masking and XOR functions
are used to achieve the desired bit configurations, Each bit of the
current attributes is ANDed with the corresponding bit of the mask byte
and then exclusive ORed with the XOR byte to produce the new current
attributes. The results can be predicted as follows:

Mask Bit XOR Bit Resulting Attribute Bit
0 0 0 (cleared)
0 1 1 (set on)
1 0 no change
b 1 complement

In addition to the capability of defining all the attributes at once with
8 direct write to the Current Attribute Register, they can be
individually defined by specific commands from the host., Also, a Set
Attribute String command can redefine the attributes of a specified
screen area. Other commands provide for reading efther current attributes
or those of a specified area on the screen,

The various attributes are individually described in the following
paragraphs,

Character Blinking = Blinking of displayed characters is defined on an
individual character basis by bit 6 of the character’s attribute byte,
Whether the characters actually blink is determined by the Blink Enable
Flag, Blinking is enabled when the flag is set; conversely, with the
flag cleared, blinking is prohibited,

In addition to the appropriate blink commands, each time an ERASE PAGE
command is generated the Blink Enable Flag is set and the display is
blink enabled,

Character Dimming/Underscoring = Bits 3 and 4 of the individual
character’s attribute byte control underscoring and dimming,
respectively, Thus, each character whose underscore bit is set will be
underscored on the display, Similarly, {f the dim bit is set, the
character will be display with reduced intensity,

An ERASE PAGE instruction clears both the dim and underscore bits in the
Current Attribute Register.

Block Fill = The Block Fill attribute is controlled by bit 7 of the
character’s attribute byte., When the bit is set, the complete 7x10 dot
character field is {lluminated with the result that the adisplayed image
of the associated character is effectively masked out,

Page 13

Reverse Video = The Reverse Video attribute is controlled by bit 5 of the
character’s attribute byte. When the bit is set, the character image is
outlined in black on a 5x7 dot illuminated background,

Protected Data = The Protected Data attribute is controlled by bit 2 of
the character’s attribute byte, When the bit is set, the character is
protected from being overwritten or moved from its existing screen
location, Several characters in sequence with the Protected Data
attribute set constitute a protected field, In contrast, data locations
between protected fields are called unprotected fields.

Modified Data = The Modified Data attribute (bit 1 of the character’s
attribute byte) is set for all characters in the field whenever any
change is made to existing data in the field., This is essentially a flag
to enable selective reading of screen data by the host. The Modified
Data attribute is set by the terminal and can only be cleared Dy an
instruction from the host.

Tab Stop/Read Functions

Tabs are treated in one of two ways, dependina upon the host=set value

of the Tab Read Mode Register. If the register is set to 001, space codes
that fi11 from the end of data to the next tab stop are identified within
the terminal by bit 0 of the character code byte. Orn a read screen
operation they are replaced as a group by a single tab code,

If the register is set to 177, tabbing results in the storage of ASCII
space codes. Un a read screen, these space codes are transmitted rather
than the single tab code.

Tab Stop locations on the screen are flagged inside the terminal by the
setting of bit 0 on the individual character attribute bytes. The
interval between stops is defined by the Tab Interval Register, The
register is initialized with the Sysgen value, but can bpe changed by an
instruction from the host.,

Roll Mode (Scrolling)

A Roll Enable flag in the terminal defines whether the screen will be in
Roll Mede (permits scrolling) or Paae Mode (scrolling prohibited).This
flag is set or cleared by host=-supplied instructions. When the display is
roll enabled, the screen rolls up one line each time the cursor overflows
the bottom line or a wew Line code is received when the cursor is on the
bottom line. when the display is not roll enabled, the cursor moves to

the first character position on the top line each time the cursor
overflows the bottom line or a New Line code is received when the cursor
is on the bottom line.

The ERASE PAGE command does not affect the Roll Enable flag.

Page 14

Field Control

In some data entry applications, a prepared form is sent to the screen by
the host system. Those areas of the form where the operator is expected
to enter dats are called unprotected fields, These fields. can be
identifed to the operator by fill characters which are overwritten as new
data is entered.

Fixed areas of the form which the operator cannot change are called
protected fields and are identified within the terminal by the protect
attribute bit., Other bits flag the block ¥ill, blink, reverse video,
dim, underscore, and modified data attributes,

The modified data attribute can be used to select for transfer to the
host system only that data which has undergone change, After such a
reading by the host, the host would most likely want to reset the
modified at:ibute bits on data which was read so that new or modified
datea can be discriminated.

Since, in pbuffered mode, data entry is processed internally in the
terminal, the nost must be informed when data is ready for transfer to
the host, For this purpose, the host system can establish delimiters
codes which when generated at the terminal will inform tne host that data
should be read. In this manner, the host can be informed when a field has
been completed, or perhaps a particular grouping of fields, or of the
full screen,

The commands that the host can use to define and contro] fields within
the screen are described under the heading: Screen Control. Also refer
to the information under headings: Character Attributes, Attribute
Control,

CODING CONVENTIONS

Instruction format to terminal: 036 <instruction code> plus any required
data or positioning bytes., May or may not have a
terminator.,

Terminal response format: 036 176 <function> plus any required data or
cursor coordinates and terminator.

Data entry format, keyboard to host: B8=bit ASCII code consisting of 7
data bits and 1 parity bit. Refer to the ASCII code
listing in the Appendix.

Function code format, keyboard to host: 036 <function code> The various
user function codes available to the programmer are
listed in Appendix C,

Cursor position format: 037 <X> <Y> where: = column position

row position

0

0

79 (117 octal)

23 (27 0Octal)

Minimums:

Maximums:

H WU X

- X < X <

reys a4

HOST/TERMINAL INSTRUCTIONS

The following instructions can be used by the host to control terminal
operations. For a conceptual understanding of the various functions,
refer to the description given under heading: OVERVIEW OF TERMINAL
OPERATIONS., Note that instructions which are compatible with the Data
General 6053 Model Terminal are so indicated,

Refer to the Apoendices for ASCII code listings, key layout and code
assignments (including user function keys), extended graphic character
symbols and codes, and Sysgen information.

Terminal Management

MASTER RESET
Code to terminal = 036 025 (terminal reset from host)
Keying = CMD LINE (terminal reset from keyboard)
Function = Reinitializes registers and flags in the terminal and
loads Sysgen parameters, Unlocks keyboard,

ID REQUEST
Code to terminal = 036 012
Function = Requests terminal for following identification data:
terminal type (040=model 6093), revision level of
terminal, ana assigned terminal number.
Terminal Response = 036 176 043 040 <Rev,#><term.#> 036 176 057

UNLOCK KEYBOARD

Code to terminal = 036 031

Function = Releases keyboard from locked condition, The keyboard
is locked while the terminal is responding to host
supplied instructions, but unlocks itself after
completion of the instruction., Ouring buffered
operation, the keyboard is locked whenever a delimiter
key is pressed and must be unlocked by an instruction
from the host. When the keyboard is locked, data entry
from the keyboard is prohibitea ana the pell sounds with
each keystroke.

Terminal Response = 036 176 057

SET INTERACTIVE MODE

Code to terminmal = 036 000

Function = Removes terminal from buffered mode and places it in
interactive mode. lpon power=up or master reset,
terminal automatically goes into interactive mode, roll
enabled. If page mode, non=scrolling function, is
desired it must be set by the host,

Terminal Response = 036 176 057

Page 16

SET BUFFERED MUDE
Code to terminal = 036 001
Function = Puts terminal into buffered page mode. While in

READ STATUS

buffered mode, keyboard entry is blocked from the host
except for the programmed delimiter codes which flag the
host to service the terminal, The Roll Mode (screen
scrolling) cannot be used in the buffered mode.

Code to terminal = 036 024
Function = Reads contents of the six status registers in the

Terminal

BELL

terminal oack to the host in the following order:
terminal mode

keyboard lock

tab mode

replace tab mode

tab interval

fill character

Response = 036 176 045 <byte 1>..00<byte 6> 036 176 057

Code to terminal = 007 (6053 compatible)
Function = A short audible tone is produced on the speaker

Screen Control

ROLL ENABLE

located in the terminal,

Code to terminal = 022 (6053 compatible)
Function = The display is rol] enabled; that is, the screen rolls

ROLL DISABLE

up one line each time either the cursor overflows the
bottom 1ine or @ New Line character is decoded when the
cursor is on the bottom 1ine. When this occurs, the
cursor moves to the first character position on the
bottom 1ine, the bottom line becomes blank, and the
information previously displayed on the top line is lost,

Code to terminal = 023 (6053 compatible)
Function = The roll enable mode is terminated, When the display

READ SCREEN

is not roll enabled, the cursor moves to the home
position each time either the cursor overflows the bottom
line or a New Line code is decoded when the cursor is on
the bottom line, While the cursor position changes, the
information displayed on the screen remains unchanged.

Code to terminal = 036 014 <mask> <word> <XE> <YE>
Function = Causes the selected screen data to be read back to the

host. The reading starts at the current cursor position
and ends at the defined XE (column) and YE (row) screen
coordinates,

Page 17

For a character to be read, the attribute byte when ANDed
Wwith the "mask" byte must match the "word" byte., To read
all data irrespective of attributes, set both the mask
byte and word byte to zero. Then all the data on the
screen from cursor location to ending coordinates will be
sent.

If the ending coordinates are less than the cursor
locations, the terminal response will define the current
cursor location but will not contain any data. If the
the ending coordinates excaed the screen endings then the
terminal response will show data only up to the screen
ending.

When the read screen operation skips lJocations due to
improper attributes, the starting address of the new
location will be read pefore the subsequent data string.

Terminal response = 037 176 040 <037 X Y><agata string><037 X Y>
<data string>.....-..... 036 176 0587

SET DELIMITER TABLE

Code to terminal: 036 020 <byte 1><byte 2>.....etcC, 036 176 087

Funetion = Clears the Delimiter Table in the terminal and writes
in the new delimiters, These remain in effect until
changed by a new command from the host, or a master resef
is received, or a new power=up cycle occurs. In the case
of the last two, the default delimiters are NEW LINE andg
CR., Up to 256 delimiter codes can be defined.

Terminal response = 036 176 057

READ DELIMITER TABLE
Code to terminal = 036 023
Function = Causes the delimiter codes as defined by the Delimiter
Table to be read back to the host.
Terminal response = 036 176 044 <byte 1><byte 2>4e0ee036 176 057

SET FILL CHARACTER

Code to terminal = 036 022 <byte>

Function = Loads the character code into the Fill Character
Reaister in the terminal. This code is retained until
changed by a new command from the host, 2 master reset,
or a new power=up cycle, In the case of the last two,
the register is set to the Sysgen defined character,

Terminal response = 036 176 057

FILL UNPROTECTED FIELDS

Code to terminmal = 036 003

Function = Causes all unprotected fields to be filled with the
$i11 character. If there are no protected fields, then
the whole screen is filled, The cursor is positioned &t
the first unprotected location on the screen. Attributes
of the fill characters are set according to contents of
the current attribute register in the terminal. CAUTION;
use this function only in the page mode as continuous
scrolling will occur if used in the scrolling mode.

Terminal response = 036 176 057

Page 18

FILL CHARACTER STRING

Code to terminal = 036 013 <no., of locations> <insert character>

Function = Causes the specified number of locations starting at
cursor to be replaced with the insert character., 1If the
specified number of locations exceed the line, then the
fill operation terminates at line end. Cursor position
remains unchanged, Attributes of the inserted characters
are set to the current attributes.

INSERT CHARACTER

Code to terminal = 036 010 <no, of characters> <insert Character>

Function = Causes the specified number of characters to shift
right one location and the insert character be inserted
at cursor location., The last character of the string is
deleted., If the number of characters specified exceeds
the line, the operation terminates at line end,
Attributes of the inserted character are set to the
current attributes, Cursor remains at starting position,

BLOCK MOVE/FILL

Code to terminal = 036 006 <XD><YD><XE><YE>

where: <XD><YD> = <COL><ROW> for destination of move
SXE><YE> = <COL><ROW> for end location minus one
of string to be moved.,

Function = Causes block of data comprising the characters from
cursor location to defined end location minus one to be
moved to defined destination. If the destination is
after the cursor position, the block moves to the right
and downward on the screen. Conversely, if the
destination is before the cursor location, the block
moves left and upward on the screen. In eitherp case, the
vacated spaces are loaded with the fill character and the
cursor is positioned at the first fill character
location.

Terminal response = 036 176 057

DELETE CHARACTER

Code to terminal = 036 011 <no. of characters>

Function = Causes the specified number of characters starting at
cursor location to shift left one position. In this
orperaton the character at cursor location is deleted and
a fill character is inserted in the vacated location at
end of string., If number of specified characters exceed
the 1ine end, the operation terminates at]ine end,

ERASE TO END OF LINE
Code to terminal = 013
Function = Clears the screen from cursor location to end of 1line,

ERASE PAGE
Code to terminal = 014
Function = Clears the screen and moves the cursor to the home
position. Additionally, this command sets the Blink
Enable flag, and clears the Blinmk, Dim, and underscore
attributes in the Current Attribute Register,

Page 19

Attribute Control

SET CURRENT ATTRIBUTE REGISTER

Code to terminal = 036 017 <mask byte> <XOP byte>

Function = Sets the Current Attribute Register in the terminal to
desired attribute configuretion, See the masking/XOR
description above, Note that the blink attribute is not
functional unless the Blink Enable flag is set in the
terminal. Also, an Erase Page command from the host will
clear the register, therefore reccnfiguration will be
required, This instruction can be used instead of the
individual set and clear instructions (016, 017, 024,
025, 034, 035),

Terminal response = 036 176 057

READ CURRENT ATTRIBUTE REGISTER
Code to terminal = 036 016
Function = Reads contents of the Current Attribute Register in
the terminal and transfers the information back to the
host.
Terminal response = 036 176 042 <register byte> 036 176 057

READ ATTRIBUTE STRING

Code to terminal = 036 015 <XE> <YE>

Function = Reads the attributes of a string of characters
starting at cursor location and ending at the specified
XE (column) and YE (row) coordinates of the screen. The
cursor stop position is at the XE and YE ending
coordinates,

Terminal response = 036 176 041 <byte><byte036 176 057

SET ATTRIBUTE STRING

Code to terminal = 036 002 <# chars,> <mask byte> <XOR byte>
036 176 057 .

Function = Redefines the attributes of a specified number of
display characters starting at cursor location. If the
number of characters specified is 0, then the whole
screen will be affected, See description of masking/XUR
functions under heading: Character Attributes,

Terminal response = 030 176 057

ENABLE BLINK
Code to terminal = 003 (6053 compatible)
Function = Each character whose blink attribute pit is set is
blinked on the screen,

DISABLE BLINK
Code to terminal = 004 (6053 compatible)
Function = None of tnhe characters displayed on the screen are
blinked.

Page 20

START BLINK

Code to terminal = 016 (6053 compatible)

Function = Sets the Blink Attribute bit in the Current Attribute
Register. This sets the blink attribute bit of each
succeeding character as it is received. These characters
blink if the screen is blink enabled (Blink Enable flag
set)c

END BLINK

Code to terminal = 017 (6053 compatible)

Function = Clears the Blink Attribute bit in the Current
Attribute Register. This clears the blink attribute bit
on each succeeding character as it is received,

START DIM

Code to terminal = 034 (6053 compatible)

Function = Sets the Dim attribute bit in the Current Attribute
Register. This sets the Dim attribute bit of each
succeeding character as it is received., These characters
are displayed at reduced intensity (dimmed).

END DIM
Code to terminal = 035 (6053 compatible)
Function = Clears the Dim attribute bit in the Current Attribute
Register. This clears the Dim attribute bit of each
succeeding character as it i1s received.

START UNDERSCORE
Code to terminal = 024 (6053 compatible)
Function = Sets the Underscore attribute bit in the Current
- Attribute Register, This sets the Underscore attribute
bit on each succeedina character as it is received.
These characters are displayed with an underscore,

END UNDERSCORE
Code to terminal = 025 (6053 compatible)
Function = Clears the Underscore attribute bit in the Current
Attribute Register, This clears the Underscore attribute
bit on each succeeding character as it is recejved.

Cursor Positioning

HOME

Code to terminal = 010 (6053 compatible)

Function = The cursor moves to the first (leftmost) character
position on the top line of the screen, which is the
cursor home position,

NEW LINE

Code to terminal = 012 (6053 compatible)

Function = The cursor moves to the first character position on
the next line of the screen, If the cursor is on the
bottom line, it moves to the home position, unless the
terminal is roll enabled (refer to the ROLL ENABLE
command described below),

Page 21

CARRIAGE RETURN
Code to terminal = 015 (6053 compatible)
Function = The cursor moves to the first character position on
the line on which the cursor resides.

WRITE CURSOR ADDRESS

Code to terminal = 020 <X> <Y> (6053 compatible)

Function = The display is forced to use the next two codes
received as the cursor®s new column and row (line)
addresses. bBoth the columns and rowa are numbered
beginning with column 0, line 0. The c¢olumns are numbered
from left to right across the screeni the rows are
numbered from top to bottom, After the second character
is receivea, the cursor moves to the lJocation on the
screen specified by the new coordinates.,

READ CURSOR ADDRESS

Code to terminal = 005 (6053 compatible)

Function = A sequence of three codes is sent from the aiseplay to
the host computer, The first code is the ASCII control
character, Unit Separator (037); the second is the
cursor’s current 7=bit column address; and the third is
the cursor’s current S=pit-l1ine address.

Terminal Response = 037 <col.> <row>

CURSOR UP
Code to terminal = 027 (6053 compatible)
Funetion = The cursor moves up one line while remaining in the
same column position., If the cursor is on tne top line,
it moves to the bottom line of the screen.

CURSOR RIGHT
Code to terminal = 030 (6053 compatible)
Function = The cursor moves one character (column) position to
the right. If the cursor is at the end of the line, a
New Line operation is performed.

CURSOR LEFT
Code to terminal = 031 (6053 compatible)
Function = The cursor moves one character position to the left,
It the cursor is in the leftmost position on the line, it
moves to the rightmost position and then up one line,

CURSOR DOWN
Code to terminal = 032 (6053 compatible)
Function = The cursor moves down one line while remaining in the
same column position. If the cursor is on the bottom
line, it moves to the top line.

Page 22

Tab Control

SET TAB INTERVAL
Coding to terminal = 036 021 <byte>
Function = Set tab interval in terminal to value of <byte>,
Terminal response = 036 176 057

TAB TO NEXT TAB STOP
Code to terminal = 011
Function = Moves cursor to next tab stop. To actually store a tab
code, use the Insert Character instruction to insert the
011 code.,
Terminal response = 036 176 057

TAB TO NEXT UNPROTECTED FIELD

Corde to terminal = 036 004

Function = Moves cursor to first location in next unprotected
field., If used in last field of screen in roll mode, will
result in continuous scrolling. If §n page mode, the
same starting location will result in a cursor move to
the first unprotected field at top of screen,

Terminal response = 036 176 057

TAB TO PREVIUUS UNPROTECTED FIELD
Code to terminal = 036 005
Function = Moves cursor to first character location of previous
unprotected field,
Terminal response = (36 176 057

SEND TAB CHARACTERS
Code to terminal = 036 030
Function = Used when tabbed data is to be read back to the host;
causes space characters to be flagged (bit 0 of character
byte set) and a tab character substituted in their place,
Terminal response = 036 176 057

REPLACE TAB CHARACTERS
Code to terminal = 036 027
Function = The opposite effect of the SEND TAB CHARACTERS
instruction. Causes the individual space codes to be
sent back to the host instead of the substitute tab
character,
Terminal response = 036 176 057

Printer Control

PRINT

Code to terminal = 021 (6053 compatible)

Keying = PRINT key (generates 036 (021 code to host)

Function = Data displayed on the screen, beginning with the
leftmost character on the cursor line and ending with the
rightmost character on the bottom line, is printed,
During the print operation, the keyboard is disabled,

Page 23

PRINT FORM

Code to terminal = 001 (6053 compatible)

Keying = SHIFT PRINT (generates 036 001 to host)

Function = If terminal Sysgen is configured for 6053
compatibility, then this command will execute a print=out
of screen data as described for the PRINT command except
only the full intensity characters will be printed. All
dim characters will be treated as spaces. If Sysgen is
not configured for 6053 compatibility, the unprotected
characters are sent to the printer.

PRINT LINE
Coding to terminal = 036 007 <data string><terminator>
Function = The data string is sent to the terminal for transfer
to the printer., Each data string can contain up te 132
characters including the terminator. Character strings
in excess of 132 will be truncated, The terminator can
be any one of the following:?

terminator codes to printer
015 015 (carr, ret,)
ofe 015 012 (carr. ret. + new line)
014 015 014 (carr., ret. + form feed =
selects new page)
000 000 (null = stops printing at

current location)

Note that this instruction does not affect data on the
screen, but does lock the keyboard while the data is
peing transferred.

Terminal response = 036 006

Extended Graphic Character Set

Individual characters of the 32=-character Extended Graphic Character Set
can be accessed by host instructions with the following two byte format:

033 <character code>
Refer to Appendix D for character codes and associated display symbols,

Since the code for these characters include octal numbers 0=37, some care
is required in using the Read Screen instruction when they are in use.

To avoid confusion with the cursor position, use zero for both the XO0R
byte and word byte of the Read Screen instruction. Then the only cursor
position that will be recejved is the first one of the terminal response,
The host program can be structured to treat subsequent 037 codes as data,

Page 24

BUFFERED MODE PROGRAMMING
Basically, programming for buffered mode operation has two concerns:

1. Preparation of the terminal for buffered operation
2. Host response to delimiter codes from the terminal.

In the first of these, preparing the terminal for buffered operation, the
following operations are essential:

*nrite any required screen format

*xDefine protected and unprotected fields
*Condition other character attributes as required
*Define delimiters

*Define Fill character, if required

*Define Tab interval, if required

*Position cursor at starting location

*Set buffered mode

The host response to delimiter codes has the following concerns:

*3et interactive mode (to enable communication to
terminal

*Read screen data

*Erase screen, either completely or by unprotected field
*ANrite new screen format, if required

*Jnlock keyboard

*Set buffered mode

Note that the response to different delimiter codes can be programmed for
functions other than a Read Screen cperation.

The following programming examples show how the terminal can be prepared
for two types of ouffered mode operations., In the first example (see
Figure 2 and Table 1), a sample format is written to the screen with
protected and unprotected fields, Protected form areas are programmed
for dimmed display thereby giving contrast to unprotected fields and the
data entered by the operator, The areas where the operator is expected
to enter data is also identified by underscoring. The fill character is
defined as a space code,

The second programming example (see Figure 3 and Table 2) shows how a
tabular application could be implemented, In this, a2 simple heading
format is writtem to the screen and is protected, The tab interval is
defined to give four identical columns,

Page

CUSTOMER SUMMARY

NAME: ACCUUNT NO

STREET: CITY: STATE:

COMMENTS:

Figure 2 Sample Screen For Protected/Unprotected Field Format

CUSTOMER LISTING
NAME CITY/STATE ACCOUNT NO. EXPIRATION

Figure 3 Sample Screen For Tabular Field Format

25

Page 26

Table 1 Sample Program For Protected/Unprotected Field Format

CODING (octal) FUNCTION
036 025 Reset termina)
023 Disable Koll
020 030 004 Move cursor
036 017 000 040 Set Protect attribute

103 125 123 124 117 115 105 122 040 write: CUSTOMER SUMMARY
123 125 115 115 110 122 131

020 000 006 Move cursor
036 017 040 010 Set Dim; maintain Protect
116 110 115 {05 072 Write: NAME:
020 047 006 Move cursor

110 103 103 117 125 116 124 040 116 Write: ACCUUNT NO.:
117 05¢é n72

020 000 010 Move cursor

123 124 122 105 105 124 072 Write: STREET:

020 034 010 Move cursor

103 111 124 131 072 writes CITY:

020 060 010 Move cursor

123 124 110 124 105 072 writes STATE:

020 075 010 Move cursor

132 111 120 072 write: ZIP:

020 000 012 Move cursor

103 117 115 115 105 116 124 123 072 arite: COMMENTS:

020 000 017 Move cursor

036 002 000 000 040 Set Protect for rest of screen
036 002 177 000 040 Set Protect for blank areas
036 002 177 000 040 Set Protect for blank areas
036 002 131 000 040 Set Protect for blank areas
020 050 004 Move cursor

036 002 170 000 040 Set Protect for blank areas
020 000 007 Move cursor

036 002 120 000 040 Set Protect for blank areas
020 000 0%1 Mov cursor

020 002 120 000 040 Set Protect for blank areas
020 000 013 Move cursor

036 002 120 000 040 Set Protect for plank areas
020 000 015 Move cursor

036 002 120 000 040 Set Protect for blank areas
036 017 000 020 Set Underscore; reset Protect
036 022 040 Set Fil1l Character = space
036 003 Fill unprotected fields

020 005 006 Move cursor

036 020 036 022 036 176 057 Set delimiter = SEND key
036 031 Unlock keyboard

036 001 Set Buffered Mode

CODING (octal)

036
020
036
103
114
020
036
116
020
103
105
020
110
117
020
105
116
020
036
036
036
036
036
036

025
032
017
125
111
010
017
110
027
111

052
103
056
073
130

000
017
021
020
022
031
001

Table 2

004
000
123
123
006
000
115
006
124

006
103

006
120

010
000
0c4
036
040

040
124
124

060

105

131

117

111

000

022

Sample

117
111

057

125

1ee

036

115
116

123

116

110

176

Program

105
107

124

124

124

057

122

040

111

Page 27

For Tabular Field Format

040

124

116

117

FUNCTION
Reset terminal
Move cursor
Set Protect attribute
Write: CUSTOMER LISTING

Move cursor

Set Protect/Underscore attributes
wWrites NAME

Move cursor

write: CITY/STATE

Move cursor
write: ACCOUNT NO,

Move cursor
nrite: EXPIRATION

Move cursor

Clear attributes

Set Tab Intervel = 20 (decimal)
Set delimiter = SEND key

Set Fill Character = space
Unlock keyboard

Set Buffered Mode

Page 28

APPENDIX A

ASCII CHARACTER CODES AND TERMINAL CONTROL FUNCTIONS

LEGEND:
P 10_
CHARACTER CODE IN DECIMAL 0 64 @
EBCDIC EQUIVALENT HEXADECIMAL CODE 7c
1 means CONTROL CHARACTER 4
CONTROL CONTROL CONTROL CONTROL
ocTaL 00_ FUNCTION 01_ FUNCTION 02_ FUNCTION 03_ FUNCTION 04 05_
[8 BS 16 DLE WRITE 24| CAN 32 40
0 1| NuL NULL b (eack- HOME }—o 1P CURSOR — C‘;{"Gﬁ;ﬁ — SPACE |— (
00 16| space) 10 HEADER w| X 40 4D
1 SOH 9 17 DC1 25 EM 33 41
1 PRINT Form f— HT HORIZONTAL | PRINT PAGE |— CURSOR || ')
o] 1A os| (Tas) TAB 1 1Q 19| 1Y LEFT sA 50
2 STX T 10 NL 18 DC2 26 SUB 34 N 42
2 OSF TAE';TT - (vew NEW LINE | ROLLON |} CURSOR jef ~’ F—
o2; 1B 18] ‘Live) 12 iR k| 12 DOWN |7F | teuore) | sc
3 ETX 11 vT 19 DC3 27 ESC 35 43
3 ENABLEBLINK 1 (verr ERASE LINE | ROLL OFF f—i ESCAPE | # v +
| 1C o | “Cab 1| 1S 27| (EscarE) 7. s€
4 EOT 12 FF 20 DC4 28 FS 36 44
4 — 1D | NHBITBUNK =1 rropm | ERASEPAGE |— T UNDERSCORE || 1 pMoN — $ [—
37 o8| “ciep) 3c ON ic \ s8 6B | (comma)
ENQ CURSOR 13 21| NAK 29 CS 37 as
5 |— ADDRESS |— RT RETURN |l UNDERSCORE | =" | DMOFF |— % |2 _
20{ 1E READ 0D | (peTURN) | 11U OFF w| 1] sc 60
-3 14 3 4
6 = A% | cantoone Y S© ankon 2 SYN SYNCHRONOUSIF.S.?_. RS lruncrionkey [22] g |28 .
2| 1IF e| 1IN 32| 1V IDLE w| 11 HEADER | so 48 | (PERIOD)
7! BEL 15 S 23| ETB 31 us READ a9 s 47
7 — BELL BLINK OFF |—f CURSOR UP }— CURSOR f~—l i /
2] 1G o¢| 10 26| 1W w| e HEADER 70| (4pos) | 61
ocrac [06_ 07_ 10_ 1_ 12_ 13_ 14_ 15_ 16_ 17_
a8 56 o 72 80 88 % . 104 12 120
or— ©® |— 8 |4 e (- H 4 p | x * — h 1 p 1 x
0 F8 7C [+] D7 E? 7% | (GRAVE) | 88 97 A7
49 87 (3 73 81 89 87 108 . 113 121
LAl o L v I s S W e L A o T S A ol P i T S P Ll
€1 Fo 1 co ps Ea 81 89 98 A8
S0 s8 66 74 82 20 o8 106 . 114 122
2~ 2 |~ : 4 B I~ v = RrR = oz B4 b ' i — r 2z
F2 78 cz D1 oo €9 82 91 99 A9
51 o |se 67 75 83 91 99 107 115 123
31 3 0 o e ok s o P o M e s |
F3 SE c3 02 E2 80D a3 82 A2 co
$2 60 P 76 84 92 100 108 116 124
%1 v I o NSRS [o B et T A N et O i I R i O A R L B
Fa ac ca o3 €3 €0 84 9 A3 aF I
53 61 69 77 85 93 101 108 17 ‘|has
5— 5 }— = |4 E | ™M L u 2] -4 € | m |—] u | }
Fs 7% s Da €4 ™ 8s %4 A4 Do
54 6z 10 78 [94 or |02 110 118 126
6 6 |~ > 4 F |- N i v [A k= n v 0~
Fe o€ cs os €5 5F 86 95 AS AVl (rioE)
$5 83 71 9 87 95 « 103 111 118 127
72— 7 = ? M 6 K o L4 w X — ¢ +— o |} w |2 DE
F7 oF <7 De ES 60| OF_ |g7] 96 A6 07 |(RuBOUT)

CHARACTER CODE IN OCTAL AT TOP AND LEFT OF CHARTS,
DG-03384

APPENDIX B

KEYBOARD LAYOUT

* LIGHTED KEY

ESC NUL f1 |f2 |£3 |t4 |fS |f6 |t7 |f8 SnD PRT f9 |f10]t11 f12|f13]f14 LIN
! 2 4 $ % A & * (¢) - + ~ |DEL HLP|EQP]|EOL
1 2 3 4 5 6 7 8 9 0 - = N 7 8 9 -
TAB]Q W E P ! NEw f15 flée . ENT
\ LINE - 4 5 6 -
CMD A S D |xx G H o |*xx K L : " } < HOM| > E
F J H ‘ { 1 2 3 N
T
SHIFT] Z X N > ? SHIFT|CR 17 f18 E
[} / V ’ 0 [} R
*
ALPHA REPEAT
LOCK

62 9bed

APPENDIX C

KEYBOARD CODE ASSIGNMENTS

033 brk 241 2431244245246 247]250 202 201 2102111212 251252253 240
033 brk 261 263]1264|265)266]2671270 222 221 23012311232 27112721273 260
033 000 341 3431344)1345)134613471350 202 201 3109311312 3511352353 340
033 000 361 163|364 3653661367370 222 221 33013311332 37113721373 360
p { F“H—S--b-—7——37~3—~0— - = ° oo 7 e § e Q)
041 044 136)046§052)050)05111371053|176]377 213]014)013 0671070]071 055
061 064 0661067]070]071)060§055]075§140(377 23310144013 06710701071 0558 -
041 044 136}1046{052§050]1051§137]053{1761177 31310144013 067§070]071 0SS
061 064 066]067]070§071]060)J0551075(140§177 3331014013 0671070]071 055
E b Y oo | | ey | b () e P s | Y o [} e §) s
011 027]005]022]024(0311025]011§017]1020]035]034}012 21412031215 064]065]066 254
011 0271005]022]|024}031§025(011}017]020]324]325(012 2341203)1235 064]065]066 274 ENT
011 1271105]122)124(131)125{111|117]120]1350174}012 314]0271315 064]065]066 354 -
011 167]145]162)164)171116511511157]160)133}134]012 3341027}335 064]065]066 374
G H J H ‘ { S mad4 3 =
006J007)010]012J0133014]305{306)175 2041010223 061]062]063 012
CMD 006§0079§301]13021303§304305|306}173 2041010]223 0611062]063 012
106§1071110§1124113)114)072)042{175 0314010030 061]1062]063 012
1461471150152 153§15410731047]173 0311010}030 061]062]063 012 E
[R N ! ’ . /4 e) contpen () v | et N
003)026]002]016§015)321)3221323 015 2162241217 05410601056 T
003]026]002]016§320)321)322§323 015 23612241237 054]060]056 E
SHIFT 103]126]102)116f115]074j076]077| SHIFT|O1S 31610321317 054]060]056 R
1431166114211561155{054)056]057 0158 3361032337 054]1060]056
vdy REPEAT
ALL MODES
CODE LEGEND Note = The maximum 3=digit octal code

*
S+C

c
S

KEY

eeoLED

value that can transfer between
host and terminal is 177. Values
larger than this, go in a two
code format: 036 XXX, The 036
carries a value of 200 octal
which added with value of the
second code completes the code
value indicated on the code
chart.

0§ eBey

APPENDIX D

EXTENDED GRAPHIC SYMBOLS AND CODES

11 32 15 7 34 35
36 31 3 13 4 12
; s —
6 5 16 10 23 27
® l
2 24 25 33 14 22
17 20 21 37 30 26
1
®
R——
1 0

symbols,

Page 31

Note = When coding for the extended graphic
the indicated codes must be
preceded by an 033 code,

Page 32

APPENDIX E
SYSGEN PARAMETERS

INTRODUCTION

Basic initialization parameters which configure the terminal to specific
operational requirements of the system are stored in the Sysgen memory
area of the terminal. In general, it is expectea that these parameters
would be defined at the initial setup of the system and would only be
changed if reconfiguration of system operation is desired. Conceivably,
the responsibility for programming the Sysgen memory would be restricted
to system supervisory personnel.

TO CHANGE PARAMETERS
xSelect local mode (press CMD and LINE keys simultaneously)
*Press CMD SHIFT LINE keys simultaneously

This action causes the Sysgen parameters to be displayed on the screen as
shown {in Figure 4, Note that the current rarameter values are displayed
in the CURRENT column and the cursor is initially in the top field of

the NEW column. A new vailue for a parameter may be inserted at the
current cursor position. Only the symbols listed are accepted., A NEW
LINE keystroke must terminate each entry., If the entry is not
acceotable, the cusor advances to the next field., If NEW LINE is pressed
without any entry being made, the current parameter value is retained,

SYSGEN PARAMETERS CURRENT NEW

AUDIBLE TONE VOLUME (LOUD, MEDIUM, SOFT): L,M,S L
CURSOR PRESENTATION (UNDERSCORE OR REVERSE VIDEO):U,R u

AC LINE FREQUENCY (SOHZ OR 60HZ): 50,60 60
KEYBOARD REPEAT RATE (HZ)s 10,15,30,60 10
RECEIVE BAUD RATEs 110,150,300,600,1200,1800,2400,4800,9600,19200
TRANSMIT BAUD RATE: 75,150,300,SAME SAME
TRANSMIT CHARACTER PACING RATE (CPS): NONE,60,120,240,480 NONE
PARITY: MARK,O0DD,EVEN MARK
PRINTER BAUD RATE: 110,150,300,600,1200,1800 600
MODEM OPTION? (YES OR NO) NO
FULLY 6053 COMPATIBLE? (YES OR NO) NO
ENTER TAB INTERVAL (IN DECIMAL) 4
ENTER FILL CHARACTER (1 CHAR ONLY) 40
ENTER TERMINAL NUMBER (IN DECIMAL) 0

Figure 4 Sysgen Screen Presentation

Page 33

I1f the NEW LINE key is pressed while the cursor is in the last field or
any time the ESC key is pressed, the screen is erased and the Sysgen
memory i1s closed against new entry, The terminal will now re=initialize
{tself with the new parameters and will stay in the local mode (press
LINE key to get back on=line to nost)l.

In the event a STARTUP ERROR message is displayed on jnitialization, the
number following the error message indicates to service personnel the
type of malfunction. The terminal can usually be operated, even if an
error is indicatedi howevery such operation requires that any
modification to the default parameters be re-entered each time power is
turned on,

ERRATA TO DOCLAENT 055=203=00

POCUMENT TITLE: DAaSHFR D3 Nisolay Terninal Proaranmer’s Reference Manual
(Preliminary)

CHANGES:

Paae 4, after oarasranh 1, insert the followino:

CayTICw

wNhen operatina in tne nyfffered mode, take care not to oress the
NULLL key as tnis will lock up tne termimal. To recover from such
a situation, turn ocwer off and tnen on aaalin,

Pane 13, replace the "Protectec Pata" descrintion witn the followinu?

Pratected Data = The Protected fata attrirute is contrelled »nv nit ¢ of
the character’s attrinute byte.

In buffered made, the operator is not allawed to ma=ify any cnaracter
which has its Protecterd Jata attrinute cit set, This is accomplisned
primarily by not allowina tne cursar to oe rositioned in amvy orotected
area of the screen,

In interactive mose, the cursor can be nasitioned anmy place reaardless ot
the protected status of a character, Tmnis allows the screen to bhe
formatted in oprenaration for entering ruftered mode,

The correct procenure for madifina a3 nrotacteo character is tn reset the
Protected Data attrioute 2it to 0, na~ify the chatacter and tnen set the

Protected NData attrinute nit to 1, if rdegired,

Any software manipulating screen rata in interactive mone should also
keep track of tne cursar nosition relative ta proterten cdata, as output
could he lost in these areas, Alsn, s927e cnaracter seauences could moaity
unwantea areas of tne screen,

Page 15, after oaraaraon 2, insert the tollawinn:?

-------------------—--np------n——-n--nm—--—--nu—-

Proaram Timin~

Some complex commanis reayire tnat tne terninal’s internal orocessor
execute extended routines (a2a,a., the E£:x43E Pane ecommann), At hiah eaud
rates, the execution time of thes= cormands will exceed the minimyum
transmission reriods fron the host. 411 eraracters received fror the
hoast, both command and dAata, =re internally bufferea in tne terminal,

This buffering is sufficient to orevent 1oss of data or commanas under
any rational operating condition.,

It is possihle, hRowever, to delinerately cause tne loss of Jata hy
repeating complex commands at nian naud rates, Two examales are:

At 19,2 Konaud, 1f more than Six FRASE PAauyE commands were
transmitted successively foliowed ny a lona ocata stream, some of
the data coula be 1ast,

At 19,2 Koaud, in rol] mode, if a secuence of LEw LINE foilowed
by one or two data characters were pepeated several hundred
times, data could eventually ne Jost (in this example, the screen
would be scrollina at anout 5300 lines per saconda),

If for some unusual reason, sucn a seauence of complex cenmanas js
reauired, the programmer must insert appropriate nelays,

