AT&T System V.3
Administrator’s
Reference Manual

Version A 89-11-01
© Diab Data AB
089-9717-00

Diab Data AB

Box 2029

S-i83 02 TABY
SWEDEN

™ +46 8 638 94 00

D1aB 4 DATA

iM

-3

-

D

- [References

INTRO(1M) INTRO(1M)

NAME

intro - introduction to maintenance commands and application programs

DESCRIPTION

This section describes, in alphabetical order, commands that are used chief-
ly for system maintenance and administration purposes. The commands in
this section should be used along with those listed in Section 1 of the

User’s Reference Manual and Sections 1, 2, 3, 4, and b of the Programmer’s
Reference Manual. References of the form name (1), (2), (3), (4) and (5)

refer to entries in the above manuals. References of the form name (1M),
name (7) or name (8) refer to entries in this manual.

COMMAND SYNTAX

Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name [option (s)] [cmdarg (s)]

where:
name The name of an executable file.
option - noargletter (s) or,

- argletter <> optarg

where <> is optional white space.

noargletter A single letter representing an option without an argu-
ment.

argletter A single letter representing an option requiring an ar-
gument.

optarg Argument (character string) satisfying preceding
argletter .

cmdarg Path name (or other command argument) not begin-

ning with - or, - by itself indicating the standard input.
SEE ALSO

getopt(1) in the User’s Reference Manual.
getopt(3C) in the Programmer’s Reference Manual.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
“normal” termination) one supplied by the program (see wait (2) and

exit (2)). The former byte is 0 for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to
cope with the task at hand. It is called variously “exit code”, “exit status”,

or “return code”, and is described only where special conventions are in-
volved.

A AT&T Administator’s Reference Manual 1

INTRO(1M) INTRO(1M)

BUGS
Regrettably, not all commands adhere to the aforementioned syntax.

2 AT&T Administator’s Reference Manual A

ACCT(1M) ACCT(1M)

NAME

acctdisk, acctdusg, accton, acctwtmp - overview of accounting and mis-
cellaneous accounting commands

SYNOPSIS

fusr/lib/acct/acctdisk
/usr/lib/acct/acctdusg [-u file] [-p file]
/asr/lib/acct/accton [file]
fusr/lib/acct/acctwtmp "reason"”

DESCRIPTION

Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting sys-
tems. acctsh (1M) describes the set of shell procedures built on top of the C
programs.

Connect time accounting is handled by various programs that write
records into /etc/utmp, as described in utmp (4). The programs described
in acctcon (1M) convert this file into session and charging records, which
are then summarized by acctmerg (1M).

Process accounting is performed by the UNIX system kernel. Upon termina-
tion of a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctpre (IM) summarize this data for
charging purposes; acctcms (1M) is used to summarize command usage.
Current process data may be examined using acctcom (1).

Process accounting and connect time accounting [or any accounting records
in the format described in acct (4)] can be merged and summarized into
total accounting records by acctmerg [see tacct format in acct (4)). prtacct
[see acctsh (1M)] is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

acctdusg reads its standard input (usually from find / -print) and com-
putes disk resource consumption (including indirect blocks) by login. If -u
is given, records consisting of those file names for which acctdusg charges
no one are placed in file (a potential source for finding users trying to avoid
disk charges). If -p is given, file is the name of the password file. This op-
tion is not needed if the password file is /etc/passwd. (See diskusg (1M)
for more details.)

accton alone turns process accounting off. If file is given, it must be the
name of an existing file, to which the kernel appends process accounting
records [see acct (2) and acct (4)].

acctwtmp writes a utmp (4) record to its standard output. The record con-
tains the current time and a string of characters that describe the reason.
A record type of ACCOUNTING is assigned [see utmp (4)]. Reason must be a
string of 11 or less characters, numbers, $, or spaces. For example, the fol-

A AT&T Administrator's Reference Manual 1

ACCT(1M) ACCT(1M)

example, the following are suggestions for use in reboot and shutdown
procedures, respectively:
acctwtmp uname >> /etc/wtmp

acctwtmp “file save" >> /etc/wtmp

FILES
fetc/passwd used for login name to user ID conversions
fusr/lib/acct holds all accounting commands listed in sub-class 1M

of this manual
fusr/adm/pacct current process accounting file
[ete/wtmp login/logoff history file

SEE ALSO
acctcms(1M), acctcon(1M), acctmerg(1M), acctpre(1M), acctsh(1M), -~

diskusg(1M), fwtmp(1M), runacct(1M), acctcom(1), acct(2), acct(4),
utmp(4).

AT&T Administrator’s Reference Manual A

ACCTCMS(1M) ACCTCMS(1M)

NAME

acctcms - command summary from per-process accounting records

SYNOPSIS
/usr/lib/acct/acctcms [options] files

DESCRIPTION

acctcms reads one or more files, normally in the form described in acct (4).
It adds all records for processes that executed identically-named com-
mands, sorts them, and writes them to the standard output, normally
using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal sum-
mary format. The output includes command name,
number of times executed, total kcore-minutes, total
CPU minutes, total real minutes, mean size (in K),
mean CPU minutes per invocation, “hog factor”, charac-
ters transferred, and blocks read and written, as in ac-
ctcom (1). Output is normally sorted by total kcore-

minutes.

-c Sort by total CPU time, rather than total kcore-
minutes.

-j Combine all commands invoked only once under
“x**other”.

-n Sort by number of command invocations.

-8 Any file names encountered hereafter are already in in-

ternal summary format.

-t Process all records as total accounting records. The
default internal summary format splits each field into
prime and non-prime time parts. This option combines
the prime and non-prime time parts into a single field
that is the total of both, and provides upward com-
patibility with old (i.e., UNIX System V) style acctcms
internal summary format records.

The following options may be used only with the -a option.

-p Output a prime-time-only command summary.
-0 Output a non-prime (offshift) time only command sum-
mary.

When -p and -0 are used together, a combination prime and non-prime
time report is produced. All the output summaries will be total usage ex-
cept number of times executed, CPU minutes, and real minutes which will
be split into prime and non-prime.

A typical sequence for performing daily command accounting and for main-
taining a running total is:

acctcms file ... >today

A AT&T Administrator’s Reference Manual 1

ACCTCMS(1M) ACCTCMS(1M)

cp total previoustotal
acctcms -8 today previoustotal >total
acctcms -a -8 today

SEE ALSO

acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M),
runacct(1M), acctcom(1), acct(2), acct(4), utmp(4).

BUGS

Unpredictable output results if -t is used on new style internal summary
format files, or if it is not used with old style internal summary format
files.

2 AT&T Administrator’s Reference Manual A

ACCTCON(1M) ACCTCON(1M)

NAME

acctconl, acctcon2 - connect-time accounting

SYNOPSIS

/usr/lib/acct/acctconl [options]
fasr/lib/acct/acctcon2

DESCRIPTION

acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor-
mally be redirected from /etc/wtmp. Its output is ASCII, giving device, user
ID, login name, prime connect time (seconds), non-prime connect time
(seconds), session starting time (numeric), and starting date and time.

The options are:

P Print input only, showing line name, login name, and
time (in both numeric and date/time formats).

-t acctconl maintains a list of lines on which users are
logged in. When it reaches the end of its input, it emits
a session record for each line that still appears to be ac-
tive. It normally assumes that its input is a current
file, so that it uses the current time as the ending time
for each session still in progress. The -t flag causes it to
use, instead, the last time found in its input, thus as-
suring reasonable and repeatable numbers for non-cur-
rent files.

-1 file File is created to contain a summary of line usage show-
ing line name, number of minutes used, percentage of
total elapsed time used, number of sessions charged,
number of logins, and number of logoffs. This file helps
track line usage, identify bad lines, and find software
and hardware oddities. Hang-up, termination of
login (1) and termination of the login shell each
generate logoff records, so that the number of logoffs is
often three to four times the number of sessions. See
init (1M) and utmp (4).

-o file File is filled with an overall record for the accounting
period, giving starting time, ending time, number of
reboots, and number of date changes.

acctcon2 expects as input a sequence of login session records and converts
them into total accounting records [see tacct format in acct (4)].

EXAMPLES

These commands are typically used as shown below. The file ctmp is
created only for the use of acctpre (1M) commands:

acctconl -t -1 lineuse -o reboots <wtmp | sort +1ln +2 >ctmp
acctcon2 <ctmp | acctmerg >ctacct

A AT&T Administrator’s Reference Manual 1

ACCTCON(1M) ACCTCON(1M)

FILES
[ete/wtmp
SEE ALSO

acct(1M), acetems(1M), acctcom(1), acctmerg(1M), acetpre(1M), acetsh(1M),
fwtmp(1M), init(1M), login(1), runacct(1M), acct(2), acct(4), utmp(4).

BUGS

The line usage report is confused by date changes. Use wtmpfix [see
fwtmp (1M)] to correct this situation.

2 AT&T Administrator’s Reference Manual A

-

ACCTMERG(1M) ACCTMERG(1M)

NAME

acctmerg - merge or add total accounting files
SYNOPSIS

/usr/lib/acct/acctmerg [options] [file]...
DESCRIPTION

acctmerg reads its standard input and up to nine additional files, all in the
tacct format [see acct (4)] or an ASCII version thereof. It merges these in-
puts by adding records whose keys (normally user ID and name) are identi-
cal, and expects the inputs to be sorted on those keys. Options are:

-a Produce output in ASCII version of tacct.

-i Input files are in ASCII version of tacct.

‘P Print input with no processing.

-t Produce a single record that totals all input.

-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, with more

precise notation for floating point numbers.

The following sequence is useful for making “repairs” to any file kept in
this format:

EXAMPLES

acctmerg -v <filel >file2
edit file2 as desired ...
acctmerg -i <file2 >filel

SEE ALSO

acct(1M), acctems(1M), acctecom(1), acctecon(1M), acctpre(1M), acetsh(1M),
fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

A AT&T Administrator's Reference Manual 1

ACCTMERG(1M) ACCTMERG(1M)

2 AT&T Administrator's Reference Manual A

ACCTPRC(1M) ACCTPRC(1M)

NAME

acctprel, acetpre2 - process accounting

SYNOPSIS

fusr/lib/acct/acctprel [ctmp]
fusr/lib/acct/acctprc2

DESCRIPTION

acctprel reads input in the form described by acct (4), adds login names cor-
responding to user IDs, then writes for each process an ASCII line giving
user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in memory segment units). If ctmp is given, it is ex-
pected to contain a list of login sessions, in the form described in ac-

ctcon (1M), sorted by user ID and login name. If this file is not supplied, it
obtains login names from the password file. The information in c¢mp helps
it distinguish among different login names that share the same user ID.

acctpre2 reads records in the form written by acctprcl, summarizes them
by user ID and name, then writes the sorted summaries to the standard
output as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct | acctprc2 >ptacct
FILES

/etc/passwd

SEE ALSO

acct(1M), acctems(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctsh(1M),
cron(1M), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).

BUGS

Although it is possible to distinguish among login names that share user
IDs for commands run normally, it is difficult to do this for those commands
run from cron (1M), for example. More precise conversion can be done by
faking login sessions on the console via the acctwtmp program in acct (1M).

CAVEAT

A memory segment of the mean memory size is a unit of measure for the
number of bytes in a logical memory segment on a particular processor.

A AT&T Administrator’s Reference Manual 1

ACCTPRC(1M) ACCTPRC(1M)

2 AT&T Administrator’s Reference Manual A

ACCTSH(1M) ACCTSH(1M)

NAME

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily, prtacct, runacct, shutacct, startup, turnacct - shell
procedures for accounting

SYNOPSIS

fusr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks]
fusr/lib/acct/dodisk [-0] [files ...]
fasr/lib/acct/lastlogin
/usr/lib/acct/monacct number
fusr/lib/acct/nulladm file
fusr/lib/acct/prctmp

/usr/lib/acct/prdaily [-1] [-c] [mmdd]
/usr/lib/acct/prtacct file [heading]
/usr/lib/acct/runacct [mnmdd] [mmdd state]
/usr/lib/acct/shutacct [reason]
/usr/lib/acct/startup

/usr/lib/acct/turnacct on | off | switch

DESCRIPTION

chargefee can be invoked to charge a number of units to login-name. A
record is written to /usr/adm/fee, to be merged with other accounting
records during the night.

ckpacct should be initiated via cron (1M). It periodically checks the size of
/usr/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will
be invoked with argument switch. If the number of free disk blocks in the
fusr file system falls below 500, ckpacct will automatically turn off the col-
lection of process accounting records via the off argument to turnacct.
When at least this number of blocks is restored, the accounting will be ac-
tivated again. This feature is sensitive to the frequency at which ckpacct is
executed, usually by cron.

dodisk should be invoked by cron to perform the disk accounting functions.
By default, it will do disk accounting on the special files in /etc/checklist.
If the -0 flag is used, it will do a slower version of disk accounting by login
directory. Files specify the one or more filesystem names where disk ac-
counting will be done. If files are used, disk accounting will be done on
these filesystems only. If the -0 flag is used, files should be mount points of
mounted filesystem. If omitted, they should be the special file names of
mountable filesystems.

lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. If number is not given, it
defaults to the current month (01-12). This default is useful if monacct is
to executed via cron (1M) on the first day of each month. monacct creates

A AT&T Administrator's Reference Manual 1

ACCTSH(1M) ACCTSH(1M)

summary files in /usr/adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

nulladm creates file with mode 664 and insures that owner and group are
adm. It is called by various accounting shell procedures.

prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctconl [see acctcon (1M)].

prdaily is invoked by runacct to format a report of the previous day’s ac-
counting data. The report resides in /usr/adm/acct/sum/rprtmmdd

where mmdd is the month and day of the report. The current daily account-
ing reports may be printed by typing prdaily. Previous days’ accounting
reports can be printed by using the mmdd option and specifying the exact
report date desired. The -1 flag prints a report of exceptional usage by login
id for the specifed date. Previous daily reports are cleaned up and there-
fore inaccessible after each invocation of monacct. The -c flag prints a
report of exceptional resource usage by command, and may be used on cur-
rent day’s accounting data only.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk ac-
counting on a daily basis. It also creates summaries of command usage.
For more information, see runacct (1M).

shutacct should be invoked during a system shutdown (usually in
/etc [shutdown) to turn process accounting off and append a “reason”
record to /etc/wtmp.

startup should be called by /ete/re to turn the accounting on whenever the
system is brought up.

turnacct is an interface to accton [see acct (1M)] to turn process accounting
on or off. The switch argument turns accounting off, moves the current
/usr/adm/pacct to the next free name in /usr/adm/pacctincr (where incr
is a number starting with 1 and incrementing by one for each additional
pacct file), then turns accounting back on again. This procedure is called
by ckpacct and thus can be taken care of by the cron and used to keep
pacct to a reasonable size.

FILES

/usr/adm/fee accumulator for fees

/usr/adm/pacct current file for per-process accounting

/usr/adm/pacct* used if pacct gets large and during execution of
daily accounting procedure

/etc/wtmp login/logoff summa

fusr/lib/acct/ptelus.awk i:on}:aigs the limits for exceptional usage by
ogin i

fusr/lib/acct/ptecms.awk contains the limits for exceptional usage by
command name

/usr/adm/acct/nite workinf directory

fusr/lib/acct holds all accounting commands listed in
sub-class 1M of this manual

/usr/adm/acct/sum summary directory, should be saved

2 AT&T Administrator’'s Reference Manual A

ACCTSH(1M) ACCTSH(1M)

SEE ALSO

acct(1M), acctems(1M), acctcom(1), acctcon(1M), acctmerg(1M), ac-
ctpre(1M), eron(1M), diskusg(1M), fwtmp(1M), runacct(1M), acct(2),
acct(4), utmp(4).

A AT&T Administrator’'s Reference Manual 3

ACCTSH(1M) ACCTSH(1M)

4 AT&T Administrator’s Reference Manual A

CAPTOINFO(1M) CAPTOINFO(1M)

NAME

captoinfo - convert a termcap description into a terminfo description
SYNOPSIS

captoinfo[-v..][-V][-1][-w width] file ...
DESCRIPTION

captoinfo looks in file for termcap descriptions. For each one found, an
equivalent terminfo (4) description is written to standard output, along
with any comments found. A description which is expressed as relative to
another description (as specified in the termcap tc = field) will be reduced
to the minimum superset before being output.

If no file is given, then the environment variable TERMCAP is used for the
filename or entry. If TERMCAP is a full pathname to a file, only the terminal
whose name is specified in the environment variable TERM is extracted
from that file. If the environment variable TERMCAP is not set, then the file
/etc/termcap is read.

-v print out tracing information on standard error as the
program runs. Specifying additional -v options will
cause more detailed information to be printed.

-V print out the version of the program in use on standard
error and exit.

-1 cause the fields to print out one to a line. Otherwise,
the fields will be printed several to a line to a maxi-
mum width of 60 characters.

-w change the output to width characters.
FILES

fusr/lib/terminfo/?/* compiled terminal description database
CAVEATS

Certain termcap defaults are assumed to be true. For example, the bell
character (terminfo bel) is assumed to be ~G. The linefeed capability
(termcap nl) is assumed to be the same for both cursor_down and
scroll_forward (terminfo cudl and ind, respectively.) Padding informa-
tion is assumed to belong at the end of the string.

The algorithm used to expand parameterized information for termcap
fields such as cursor_position (termcap cm, terminfo cup) will some-
times produce a string which, though technically correct, may not be op-
timal. In particular, the rarely used termcap operation %n will produce
strings that are especially long. Most occurrences of these non-optimal

strings will be flagged with a warning message and may need to be recoded
by hand.

The short two-letter name at the beginning of the list of names in a

termcap entry, a hold-over from an earlier version of the UNIX system, has
been removed.

A AT&T Administator’s Reference Manual 1

CAPTOINFO(1M) CAPTOINFO(1M)

DIAGNOSTICS

tgetent failed with return code n (reason).

The termcap entry is not valid. In particular, check for
an invalid 'te=' entry.

unknown type given for the termcap code cc.

The termcap description had an entry for cc whose type
was not boolean, numeric or string.

wrong type given for the boolean (numeric, string) termcap code cc.

The boolean termcap entry cc was entered as a numeric
or string capability.

the boolean (numeric, string) termcap code cc is not a valid name.
An unknown termcap code was specified.
tgetent failed on TERM=term.

The terminal type specified could not be found in the
termcap file.

TERM=term: cap cc (info ii) is NULL: REMOVED

The termcap code was specified as a null string. The
correct way to cancel an entry is with an '@, as in
“bs@:’. Giving a null string could cause incorrect as-
sumptions to be made by the software which uses
termcap or terminfo.

a function key for cc was specified, but it already has the value vv.

When parsing the ko capability, the key cc was
specified as having the same value as the capability cc,
but the key cc already had a value assigned to if.

the unknown termcap name cc was specified in the ko termcap ca-
pability.
A key was specified in the ko capability which could
not be handled.
the vi character v (info ii) has the value xx, but ma gives n.

The ma capability specified a function key with a value
different from that specified in another setting of the
same key.

the unknown vi key v was specified in the ma termcap capability.

A vi (1) key unknown to captoinfo was specified in the
ma capability.

Warning: termcap sg (nn) and termcap ug (nn) had different values.

terminfo assumes that the sg (now xmc) and ug
values were the same.

2 AT&T Administator’s Reference Manual A

CAPTOINFO(1M) CAPTOINFO(1M)

Warning: the string produced for ii may be inefficient.

The parameterized string being created should be
rewritten by hand.

Null termname given.

The terminal type was null. This is given if the environ-
ment variable TERM is not set or is null.

cannot open file for reading.
The specified file could not be opened.
SEE ALSO
infocmp(1M), tic(1M).
curses (3X), terminfo(4) in the Programmer’s Reference Manual.

NOTES

captoinfo should be used to convert termcap entries to terminfo (4) entries
because the termcap database (from earlier versions of UNIX System V)
may not be supplied in future releases.

A AT&T Administator’s Reference Manual 3

CAPTOINFO(1M) CAPTOINFO(1M)

4 AT&T Administator’s Reference Manual A

CHROOT(1M) CHROOT(1M)

NAME
chroot - change root directory for a command

SYNOPSIS

/etc/chroot newroot command

DESCRIPTION

chroot causes the given command to be executed relative to the new root.
The meaning of any initial slashes (/) in the path names is changed for
the command and any of its child processes to newroot. Furthermore, upon
execution, the initial working directory is newroot.

Notice, however, that if you redirect the output of the command to a file:
chroot newroot command >x

will create the file x relative to the original root of the command, not the
new one.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the cur-
rent root of the running process.

This command can be run only by the super-user.

SEE ALSO
cd(1) in the D-NIX 5.3 Reference Manual.

chroot(2) in the Programmer’s Reference Manual.
BUGS

One should exercise extreme caution when referencing device files in the
new root file system.

A AT&T Administator’s Reference Manual 1

CHROOT(1M) CHROOT(1M)

2 AT&T Administator's Reference Manual A

CPSET(1M) CPSET(1M)

NAME

cpset - install object files in binary directories
SYNOPSIS

cpset [-0] object directory [mode owner group]
DESCRIPTION

cpset is used to install the specified object file in the given directory. The
mode, owner, and group, of the destination file may be specified on the com-
mand line. If this data is omitted, two results are possible:

If the user of cpset has administrative permissions (that is, the user’s
numerical ID is less than 100), the following defaults are provided:

mode 0755
owner bin
group bin

If the user is not an administrator, the default, owner, and group of the des-
tination file will be that of the invoker.

An optional argument of -0 will force cpset to move object to OLDobject in
the destination directory before installing the new object.

For example:

cpset echo /bin 0755 bin bin
cpset echo /bin
cpset echo /bin/echo

All the examples above have the same effect (assuming the user is an ad-
ministrator). The file echo will be copied into /bin and will be given 0755,
bin, bin as the mode, owner, and group, respectively.

cpset utilizes the file /usr/src/destinations to determine the final destina-
tion of a file. The locations file contains pairs of pathnames separated by
spaces or tabs. The first name is the "official" destination (for example:
/bin/echo). The second name is the new destination. For example, if echo is
moved from /bin to /usr/bin, the entry in /usr/src/destinations would be:

/bin/echo /usr/bin/echo

When the actual installation happens, cpset verifies that the "old" path-
name does not exist. If a file exists at that location, cpset issues a warning
and continues. This file does not exist on a distribution tape; it is used by
sites to track local command movement. The procedures used to build the
source will be responsible for defining the "official" locations of the source.

Cross Generation

The environment variable ROOT will be used to locate the destination file
(in the form $ROOT/usr/src/destinations). This is necessary in the cases
where cross generation is being done on a production system.

SEE ALSO
install(1M), make(1), mk(8).

A AT&T Administrator's Reference Manual 1

CPSET(1M) CPSET(1M)

2 AT&T Administrator’s Reference Manual A

FUSER(1M) FUSER(1M)

NAME

fuser - identify processes using a file or file structure
SYNOPSIS

fetc/fuser [-ku] files | resources [-] [[-ku] files | resources]
DESCRIPTION

fuser outputs the process s of the processes that are using the files or
remote resources specified as arguments. Each process b is followed by a
letter code, interpreted as follows: if the process is using the file as 1) its
current directory, the code is ¢, 2) the parent of its current directory (only
when the file is being used by the system), the code is p, or 3) its root direc-
tory, the code is r. For block special devices with mounted file systems, all
processes using any file on that device are listed. For remote resource
names, all processes using any file associated with that remote resource
(Remote File Sharing) are reported. (fuser cannot use the mount point of
the remote resource; it must use the resource name.) For all other types of
files (text files, executables, directories, devices, etc.) only the processes
using that file are reported.

The following options may be used with fuser:

-u the user login name, in parentheses, also follows the
process ID.
-k the SIGKILL signal is sent to each process. Since this op-

tion spawns kills for each process, the kill messages
may not show up immediately [see kill (2)].

If more than one group of files are specified, the options may be respecified
for each additional group of files. A lone dash cancels the options currently
in force; then, the new set of options applies to the next group of files.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All other out-
put is written on standard error.

You cannot list processes using a particular file from a remote resource
mounted on your machine. You can only use the resource name as an argu-
ment.

SEE ALSO

mount(1M), ps(1) in the D-NIX 5.3 Reference Manual.
kill(2), signal(2) in the Programmer’s Reference Manual.

A AT&T Administator’'s Reference Manual 1

FUSER(1M) FUSER(1M)

2 AT&T Administator’s Reference Manual A

FWTMP(1M) FWTMP(1M)

NAME
fwtmp, witmpfix - manipulate connect accounting records

SYNOPSIS

fusr/lib/acct/fwtmp [-ic]
fusr/lib/acct/wtmpfix [files]

DESCRIPTION
fwtmp

fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formatted ASCII
records. The ASCII version is useful to enable editing, via ed (1), bad
records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output
is to be written in binary form.

wtmpfix

wtmpfix examines the standard input or named files in wtmp format, cor-
rects the time/date stamps to make the entries consistent, and writes to
the standard output. A - can be used in place of files to indicate the stan-
dard input. If time/date corrections are not performed, acctconl will fault
when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to
/etc/wtmp. The first record is the old date denoted by the string old time
placed in the line field and the flag OLD_TIME placed in the type field of the
utmp.h structure. The second record specifies the new date and is denoted
by the string new time placed in the line field and the flag NEW_TIME
placed in the type field. wtmpfix uses these records to synchronize all time
stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity
of the name field to ensure that it consists solely of alphanumeric charac-
ters or spaces. If it encounters a name that is considered invalid, it will
change the login name to INVALID and write a diagnostic to the standard
error. In this way, wtmpfix reduces the chance that acctconl will fail when
processing connect accounting records.

FILES

/ete/wtmp
fusr/includefutmp.h

SEE ALSO

acct(1M), acctems(1M), acectcom(1), acctcon(1M), acctmerg(1M), ac-
ctpre(1M), acctsh(1M), runacct(1M), ed(1), acet(2), acct(4), utmp(4).

A AT&T Administrator’'s Reference Manual 1

FWTMP(1M) FWTMP(1M)

2 AT&T Administrator’s Reference Manual A

HELPADM(1M) HELPADM(1M)

NAME
helpadm - make changes to the Help Facility database

SYNOPSIS
/etc/helpadm
DESCRIPTION

The UNIX system Help Facility Administration command, helpadm, allows
UNIX system administrators and command developers to define the content
of the Help Facility database for specific commands and to monitor use of
the Help Facility. The helpadm command can only be executed by login
root, login bin, or a login that is a member of group bin.

The helpadm command prints a menu of 3 types of Help Facility data
which can be modified, and 2 choices relating to monitoring use of the Help
Facility. The five choices are:

- modify startup data
- add, modify, or delete a glossary term

- add, modify, or delete command data (description, options, examples,
and keywords)

- prevent monitoring use of the Help Facility (login root and login bin only)
+ permit monitoring use of the Help Facility (login root and login bin only)

The user may make one of the above choices by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

If one of the first three choices is chosen, then the user is prompted for ad-
ditional information; specifically, which startup screen, glossary term
definition, or command description is to be modified. The user may also be
prompted for information to identify whether the changes to the database
are additions, modifications, or deletions. If the user is modifying existing
data or adding new data, then they are prompted to make the appropriate
modifications/additions. If the user is deleting a glossary term or a com-
mand from the database, then they must respond affirmatively to the next
query in order for the deletion to be done. In any case, before the user’s
changes are final, they must respond affirmatively when asked whether
they are sure they want their requested database changes to be done.

By default, helpadm will put the user into ed (1) to make addi-
tions/modifications to database information. If the user wishes to be put
into a different editor, then they should set the environment variable
EDITOR in their environment to the desired editor, and then export EDITOR.

If the user chooses to monitor/prevent monitoring use of the Help Facility,
the choice made is acted on with no further interaction by the user.

A AT&T Administator’s Reference Manual 1

HELPADM(1M) HELPADM(1M)

SEE ALSO
ed(1), glossary(1), help(1), locate(1), starter(l), usage(1).

WARNINGS

When the UNIX system is delivered to a customer, /etc/profile exports the
environment variable LOGNAME . If /etc/profile has been changed so that
LOGNAME is not exported, then the options to monitor/prevent monitoring
use of the Help Facility may not work properly.

FILES
HELPLOG fusr/lib/hel p/HELPLOG
helpclean fusr/lib/help/helpclean

2 AT&T Administator’s Reference Manual A

HOLIDAYS(4) HOLIDAYS(4)

NAME

holidays - format of the holiday table used by accounting

DESCRIPTION

The file /usr/lib/acct/holidays contains the prime/nonprime table for the
accounting system. The table should be edited to reflect your location’s
holiday schedule for the year. The format is composed of three types of
entries:

1.

2.

Comment Lines: Comment lines may appear anywhere in the file as
long as the first character in the line is an asterisk.

Year Designation Line: This line should be the first data line (noncom-
ment line) in the file and must appear only once. The line consists of
three fields of four digits each (leading white space is ignored). For ex-
ample, to specify the year as 1982, prime time at 9:00 a.m., and nonpri-
me time at 4:30 p.m., the following entry would be appropriate:

1982 0900 1630

A special condition allowed for in the time field is that the time 2400 is
automatically converted to 0000.

Company Holidays Lines: These entries follow the year designation li-
ne and have the following general format:

ay-of-year Month Day Description of Holiday
The day-of-year field is number in the range of 1 through 366 indica-
ting the day for the corresponding holiday (leading white space is igno-
red). The other three fields are actually commentary and are not
currently used by other programs.

AT&T Administrator's Reference Manual 1

HOLIDAYS(4) HOLIDAYS(4)

2 AT&T Administrator's Reference Manual A

ID(1M) ID(1 M)

NAME

id - print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

id outputs the user and group Ips and the corresponding names of the in-
voking process. If the effective and real IDs are different, both are printed.

SEE ALSO

logname(1) in the D-NIX 6.3 Reference Manual.
getuid(2) in the Programmer’s Reference Manual.

A AT&T Administator’s Reference Manual 1

ID(1M) ID(1M)

2 AT&T Administator’'s Reference Manual A

INFOCMP(1M) INFOCMP(1M)

NAME

infocmp - compare or print out terminfo descriptions

SYNOPSIS

infocmp[-d]1[-c1[-n][-I]1[-L1[-C1[-r]1[-ul[-sd]i|l|c]
[-v]I[-V]1[-1][-wuwidth][-Adirectory][-B directory] [termname ...]

DESCRIPTION

infocmp can be used to compare a binary terminfo (4) entry with other ter-
minfo entries, rewrite a terminfo (4) description to take advantage of the
use = terminfo field, or print out a terminfo (4) description from the binary
file (term (4)) in a variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the string fields.

Default Options

If no options are specified and zero or one termnames are specified, the -I
option will be assumed. If more than one termname is specified, the -d op-
tion will be assumed.

Comparison Options [-d] [-c] [-n]

infocmp compares the terminfo (4) description of the first terminal
termname with each of the descriptions given by the entries for the other
terminal’s termnames. If a capability is defined for only one of the ter-
minals, the value returned will depend on the type of the capability: F for
boolean variables, -1 for integer variables, and NULL for string variables.

-d produce a list of each capability that is different. In
this manner, if one has two entries for the same ter-
minal or similar terminals, using infocmp will show
what is different between the two entries. This is some-
times necessary when more than one person produces
an entry for the same terminal and one wants to see
what is different between the two.

-Cc produce a list of each capability that is common be-
tween the two entries. Capabilities that are not set are
ignored. This option can be used as a quick check to see
if the -u option is worth using.

-n produce a list of each capability that is in neither entry.
If no termnames are given, the environment variable
TERM will be used for both of the termnames. This can
be used as a quick check to see if anything was left out
of the description.

Source Listing Options [-I] [-L] [-C] [-r]

The -I,-L,and -C options will produce a source listing for each terminal
named.

-I use the terminfo (4) names

A AT&T Administator’s Reference Manual 1

INFOCMP(1M) INFOCMP(1M)

-L use the long C variable name listed in <term.h>
-C use the termcap names
-r when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for
the terminal name.

The source produced by the -C option may be used directly as a termcap
entry, but not all of the parameterized strings may be changed to the
termcap format. infocmp will attempt to convert most of the parameterized
information, but that which it doesn’t will be plainly marked in the output
and commented out. These should be edited by hand.

All padding information for strings will be collected together and placed at
the beginning of the string where termcap expects it. Mandatory padding
(padding information with a trailing ’/) will become optional.

All termcap variables no longer supported by terminfo (4), but which are
derivable from other terminfo (4) variables, will be output. Not all termin-
fo (4) capabilities will be translated; only those variables which were part
of termcap will normally be output. Specifying the -r option will take off
this restriction, allowing all capabilities to be output in termcap form.

Note that because padding is collected to the beginning of the capability,
not all capabilities are output, mandatory padding is not supported, and
termcap strings were not as flexible, it is not always possible to convert a
terminfo (4) string capability into an equivalent termcap format. Not all of
these strings will be able to be converted. A subsequent conversion of the
termcap file back into terminfo (4) format will not necessarily reproduce
the original terminfo (4) source.

Some common terminfo parameter sequences, their termcap equivalents,
and some terminal types which commonly have such sequences, are:

Terminfo Termcap Representative Terminals
%plc %. adm

%pl%d %d hp, ansi standard, vt100
%pl1%'x'%+%c %+X concept

%1 oi ANsI standard, vt100
%pl%?%'x' %> %t Topl%’y' To+%; To>Xy concept

%p2 is printed before %pl %r hp

Use= Option [-u]

-u produce a terminfo (4) source description of the first ter-
minal termname which is relative to the sum of the
descriptions given by the entries for the other ter-
minals termnames . It does this by analyzing the dif-
ferences between the first termname and the other
termnames and producing a description with use=
fields for the other terminals. In this manner, it is pos-
sible to retrofit generic terminfo entries into a
terminal’s description. Or, if two similar terminals
exist, but were coded at different times or by different
people so that each description is a full description,

2 AT&T Administator's Reference Manual A

INFOCMP(1M) INFOCMP(1M)

using infocmp will show what can be done to change
one description to be relative to the other.

A capability will get printed with an at-sign (@) if it no longer exists in the
first termname,but one of the other termname entries contains a value for
it. A capability’s value gets printed if the value in the first termname is not
found in any of the other termname entries, or if the first of the other
termname entries that has this capability gives a different value for the
capability than that in the first termname.

The order of the other termname entries is significant. Since the terminfo
compiler tic (1M) does a left-to-right scan of the capabilities, specifying two
use= entries that contain differing entries for the same capabilities will
produce different results depending on the order that the entries are given
in. infocmp will flag any such inconsistencies between the other termname
entries as they are found.

Alternatively, specifying a capability after a use= entry that contains that
capability will cause the second specification to be ignored. Using infocmp
to recreate a description can be a useful check to make sure that every-
thing was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow
down the compilation time, is specifying extra use= fields that are super-
fluous. infocmp will flag any other termname use= fields that were not

needed.
Other Options [-s d|i|l|c] [-v] [-V] [-1] [-w width]

-8 sort the fields within each type according to the argu-
ment below:

d leave fields in the order that they are stored in the ter-
minfo database.

i sort by terminfo name.

1 sort by the long C variable name.

c sort by the termcap name.

If no -s option is given, the fields printed out will be sorted alphabetically
by the terminfo name within each type, except in the case of the -C or the
-L options, which cause the sorting to be done by the termcap name or the
long C variable name, respectively.

-v print out tracing information on standard error as the
program runs.

-V print out the version of the program in use on standard
error and exit.

-1 cause the fields to printed out one to a line. Otherwise,
the fields will be printed several to a line to a maxi-
mum width of 60 characters.

-w change the output to width characters.

A AT&T Administator's Reference Manual 3

INFOCMP(1M) INFOCMP(1M)

Changing Databases [-A directory] [-B directory]

The location of the compiled terminfo (4) database is taken from the en-
vironment variable TERMINFoO. If the variable is not defined, or the ter-
minal is not found in that location, the system terminfo (4) database,
usually in /usr/lib/terminfo, will be used. The options -A and -B may be
used to override this location. The -A option will set TERMINFO for the first
termname and the -B option will set TERMINFO for the other termnames.
With this, it is possible to compare descriptions for a terminal with the
same name located in two different databases. This is useful for comparing
descriptions for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the terminfo (4)
database for a comparison to be made.

FILES
fusr/lib/terminfo/?/* compiled terminal description database

DIAGNOSTICS

malloc is out of space!

There was not enough memory available to process all
the terminal descriptions requested. Run infocmp
several times, each time including a subset of the
desired termnames.

use= order dependency found:

A value specified in one relative terminal specification
was different from that in another relative terminal
specification.

‘use=term’ did not add anything to the description.

A relative terminal name did not contribute anything
to the final description.

must have at least two terminal names for a comparison to be done.

The -u,-d and -c options require at least two terminal

names.

SEE ALSO
tic(1M), curses(3X), term(4), terminfo(4) in the Programmer’s Reference
Manual.

captoinfo(1M) in the Administrator’s Reference Manual.
NOTE

The termcap database (from earlier releases of UNIX System V) may not be
supplied in future releases.

4 AT&T Administator’'s Reference Manual A

INSTALL(1M) INSTALL(1M)

NAME
install - install commands

SYNOPSIS

/etc/install [-cdiral [-£dirb] [-1 1[-ndirc] [-m mode] [-u user]
[-g groupl[-0 1l -8]file [dirs...]

DESCRIPTION

The install command is most commonly used in “makefiles” [See make (1)]
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
retaining the mode and owner of the original command. The program
prints messages telling the user exactly what files it is replacing or creat-
ing and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (/bin, /usr/bin, /etc, /1ib, and /usr/lib, in that order)
for a file with the same name as file. When the first occurrence is found, in-
stall issues a message saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dirx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-cdira Installs a new command (file) in the directory specified
by dira, only if it is not found. If it is found, install is-
sues a message saying that the file already exists, and
exits without overwriting it. May be used alone or with
the -8 option.

-fdird Forces file to be installed in given directory, whether or
not one already exists. If the file being installed does
not already exist, the mode and owner of the new file
will be set to 765 and bin, respectively. If the file al-
ready exists, the mode and owner will be that of the al-
ready existing file. May be used alone or with the -0 or
-8 options.

51 Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options except -c and -f.

-ndirc If file is not found in any of the searched directories, it
is put in the directory specified in dirc. The mode and
owner of the new file will be set to 755 and bin, respec-
tively. May be used alone or with any other options ex-
cept -c and -f.

-m mode The mode of the new file is set to mode. Only available
to the superuser.

A AT&T Administator’s Reference Manual 1

INSTALL(1M)

-u user

-g group

-0

SEE ALSO
make(1).

INSTALL(1M)

The owner of the new file is set to user. Only available
to the superuser.

The group id of the new file is set to group. Only avail-
able to the superuser.

If file is found, this option saves the “found” file by copy-
ing it to OLDfile in the directory in which it was found.
This option is useful when installing a frequently used
file such as /bin/sh or /etc/getty, where the existing
file cannot be removed. May be used alone or with any
other options except -c.

Suppresses printing of messages other than error mes-
sages. May be used alone or with any other options.

AT&T Administator’'s Reference Manual A

LINK(1M) LINK(1M)

NAME

link, unlink - link and unlink files and directories
SYNOPSIS

/ete/link filel file2

/etc/unlink file
DESCRIPTION

The link command is used to create a file name that points to another file.
Linked files and directories can be removed by the unlink command;
however, it is strongly recommended that the rm (1) and rmdir (1) com-
mands be used instead of the unlink command.

The only difference between In (1) and link /unlink is that the latter do ex-
actly what they are told to do, abandoning all error checking. This is be-
cause they directly invoke the link (2) and unlink (2) system calls.

SEE ALSO
rm(1) in the D-NIX 6.3 Reference Manual.

link(2), unlink(2) in the Programmer’s Reference Manual.
WARNINGS

These commands can be run only by the super-user.

A AT&T Administator’s Reference Manual 1

LINK(1M) LINK(1M)

2 AT&T Administator’s Reference Manual A

PWCK(1M) PWCK(1M)

NAME
pweck, grpck - password/group file checkers
SYNOPSIS

Jetc/pwek [file]
/etc/grpck [file]

DESCRIPTION

pweck scans the password file and notes any inconsistencies. The checks in-
clude validation of the number of fields, login name, user 1, group Ip, and
whether the login directory and the program-to-use-as-Shell exist. The
default password file is /etc/passwd.

grpck verifies all entries in the group file. This verification includes a
check of the number of fields, group name, group Ip, and whether all login
names appear in the password file. The default group file is /etc/group.

FILES

/ete/group
/ete/passwd

SEE ALSO
group(4), passwd(4) in the Programmer’s Reference Manual.
DIAGNOSTICS

Group entries in /etc/group with no login names are flagged.

A AT&T Administator’s Reference Manual 1

PWCK(1M) PWCK(1M)

2 AT&T Administator’'s Reference Manual A

RUNACCT(1M) RUNACCT(1M)

NAME

runacct - run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION

runacct is the main daily accounting shell procedure. It is normally in-
itiated via cron (1M). runacct processes connect, fee, disk, and process ac-
counting files. It also prepares summary files for prdaily or billing
purposes.

runacct takes care not to damage active accounting files or summary files
in the event of errors. It records its progress by writing descriptive diagnos-
tic messages into active. When an error is detected, a message is written to
/dev/console, mail [see mail (1)] is sent to root and adm, and runacct ter-
minates. runacct uses a series of lock files to protect against re-invocation.
The files lock and lockl are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using
statefile to remember the last state completed. It accomplishes this by writ-
ing the state name into statefile. runacct then looks in statefile to see what
it has done and to determine what to process next. States are executed in
the following order: '

SETUP Move active accounting files into working files.

WTMPFIX Verify integrity of wtmp file, correcting date changes if
necessary.

CONNECT!1 Produce connect session records in ctmp.h format.

CONNECT2 Convert ctmp.h records into tacct.h format.

PROCESS Convert process accounting records into tacct.h format.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacct.h format and
merge with connect and process accounting records.

DISK Merge disk accounting records with connect, process,
and fee accounting records.

MERGETACCT Merge the daily total accounting records in daytacct
with the summary total accounting records in
/usr/adm/acct/sum/tacct.

CMS Produce command summaries.

USEREXIT Any installation-dependent accounting programs can
be included here.

CLEANUP Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics,
then fix up any corrupted data files such as pacct or wtmp. The lock files

A AT&T Administrator's Reference Manual 1

RUNACCT(1M) RUNACCT(1M)

and lastdate file must be removed before runacct can be restarted. The ar-
gument mmdd is necessary if runacct is being restarted, and specifies the
month and day for which runacct will rerun the accounting. Entry point
for processing is based on the contents of statefile; to override this, include
the desired state on the command line to designate where processing
should begin.

EXAMPLES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/fd2log &
To restart runacct.
nohup runacct 0601 2>> /usr/adm/acct/nite/fd2log &
To restart runacct at a specific state.
nohup runacct 0601 MERGE 2>> /usr/adm/acct/nite/fd2log

FILES

/ete/wtmp

/usr/adm/pacect*
fusr/src/ecmd/acct/tacet.h
/usr/src/cmd/acct/ctmp.h
fusr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acet/nite/lastdate
fusr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct*. mmdd

SEE ALSO

acct(1M), acctems(1M), acetcom(1), acetcon(1M), acctmerg(1M), ac-
ctpre(1M), acctsh(1M), cron(1M), fwtmp(1M), mail(1), acct(2), acct(4),
utmp(4).

BUGS

Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it
will not be complete.

2 AT&T Administrator's Reference Manual A

SAR(1M) SAR(1M)

NAME
sar: sal, sa2, sadc - system activity report package
SYNOPSIS

fusr/lib/sa/sadc [t n] [ofile]
/usr/lib/sa/sal [t n]
fusr/lib/sa/sa2 [-ubdycwaqvmprSDA][-8 time] [-e time] [-i sec]

DESCRIPTION

System activity data can be accessed at the special request of a user (see
sar (1)) and automatically on a routine basis as described here. The operat-
ing system contains a number of counters that are incremented as various
system actions occur. These include counters for cpu utilization, buffer
usage, disk and tape 1/0 activity, TTy device activity, switching and system-
call activity, file-access, queue activity, inter-process communications,
paging and Remote File Sharing.

sadc and shell procedures, sal and sa2, are used to sample, save, and
process this data.

sadc, the data collector, samples system data n times every ¢ seconds and
writes in binary format to ofile or to standard output. If ¢ and n are
omitted, a special record is written. This facility is used at system boot
time, when booting to a multiuser state, to mark the time at which the
counters restart from zero. For example, the /etc/init.d/perf file writes the
restart mark to the daily data by the command entry:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa*‘date +%d*‘"

The shell script sal, a variant of sadc, is used to collect and store data in bi-
nary file /usr/adm/sa/sadd where dd is the current day. The arguments ¢
and n cause records to be written n times at an interval of ¢ seconds, or
once if omitted. The entries in /usr/spool/cron/crontabs/sys (see cron
1M)):

0 * » » 0-6 /usr/lib/sa/sal
20,40 8-17 * * 1-5 /usr/lib/sa/sal

will produce records every 20 minutes during working hours and hourly
otherwise.

The shell script sa2, a variant of sar (1), writes a daily report in file
fusr/adm/sa/sardd. The options are explained in sar (1). The
usr/spool/cron/crontabs/sys entry:

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
will report important activities hourly during the working day.

FILES

jusr/adm/sa/sadd daily data file
/usr/adm/sa/sardd daily report file
/tmp/sa.adrfl address file

A AT&T Administator’s Reference Manual 1

SAR(1M) SAR(1M)

SEE ALSO
cron(1M), sar(1) in the D-NIX 6.3 Reference Manual.

2 AT&T Administator's Reference Manual A

TRENTER(1M) TRENTER(1M)

NAME

trenter - enter a trouble report
SYNOPSIS

trenter [-s]
DESCRIPTION

trenter resides on any machine that must submit machinereadable trouble
reports to Customer Support. It prompts the user for the data needed to
enter the report, and allows for correction of previously entered data,
either in-line, or by invoking a text editor. trenter also allows users to
specify (in a file), default values for fields that will likely remain constant
across reports, such as name, address, company name, etc. In addition,
facilities are provided to assist local administrators in handling trouble
report flow on their systems.

Fields and Values

Trouble reports consist simply of fields and associated values. Each field
has a field name, by which it may be referenced. When invoked, trenter
prompts for values for the trouble report’s fields. The following table lists
the prompts that are issued, along with their corresponding field names.
All fields accept one line of input, except for the problem description, which
is a multi-line field, terminated with a line consisting of only “.”. The items
marked with a star (*) are explained below.

These first nine fields identify the originator of the report.
+ Name (NAME) (*)

« Company (CO) (*)

+ Phone (PHONE) (*)

+ Room Number (ROOM) (*)

+ Address (ADDR) (*)

- City (c1TY) ()

- State (STATE) (*)

+ Zip Code (ZIP) (*)

« Country (COUNTRY) (*)

These two fields are AT&T-assigned numbers to identify the customer and
the specific site.

« Customer ID (CID) (*)

« Site ID (SID) (*)

A AT&T Administrator’'s Reference Manual 1

TRENTER(1M) TRENTER(1M)

The next two fields identify the processor on which the problem occurred.
+ CPU serial number (CPUNO) (*)

+ Machine type (MACH)

The following fields identify the area in which the problem occurred.

+ Trouble Report Type (TYPE) Valid responses: doc (documentation), enh
(enhancement), cs (customer support), fw (firmware), hdw (hardware),
sw (software), or unk (unknown).

+ AT&T Product Name (PROD) Examples: UNIX, BASIC, etc.

+ Operating system release (0S_REL) (*) The release of the UNIX system on
which the problem occurred.

+ Product release (PROD_REL) The release of the product given in response
to the AT&T product prompt. If product is unix, this prompt is not issued.

The remaining fields define the body of the trouble report.
« Severity (SEV) The severity of the problem (1-4).

+ Required date (RDATE) If the severity of the report is 2, the required date
for the fix is prompted. The date given must be at least one week from
the date of the trouble report.

- Abstract (ABS) One-line description of the problem.

+ Description (DESC) Full description of the problem. Note that description
input will not be passed through nroff; however, trenter will recognize
the macros .ES and .EE (example start, example end) indicating an
indented example (these may be nested).

+ Attachments (yes or no) (ATT)
If ? is given in response to a prompt, a message explaining the field will be

printed.

If trenter receives an interrupt during prompting, the trouble report will be
aborted.

After a trouble report has been completed, the user is given an opportunity
to edit any data that has been supplied. Next, a reprint of the trouble
report just entered may be requested. Finally, the user is asked whether
another report is to be entered. If so, the values for the starred items in the
field table above will be carried over from the first report.

Editing Field Values

In order to provide editing while responding to prompts, the following es-
capes are recognized on input:

2 AT&T Administrator’'s Reference Manual A

TRENTER(1M) TRENTER(1M)

-field Return to a field for which data has previously been
supplied. If the field name is not specified, return to
the previous field. The value already assigned to the
field is printed, and the user may enter either new
data, or another editing command.

le Invoke the editor ed (1) with any text already supplied
for the current prompt in the edit buffer (an alternate
editor can be specified: see "Specifying Default Values"
below).

> Move down to the first unfilled field. This is useful, for
example, when the - command has been used to fix a
single field near the top of the report, and the user
wishes to quickly return to the point where they left off.

=field Print the value currently assigned to the given field.
” Print a summary of editing functions.
Editing commands are only recognized when they appear at the beginning
of the input line; they may be escaped using a backslash (\).

Specifying Default Values

Users may provide default values for any fields marked with (*) above.
These values are specified in a file .trdef in the user’s home directory.
Entries in this file are of form:

field=value

where field is a field name from the table above.

The editor to be used for field editing can be overridden with a .trdef entry
by assigning the name of the desired program to the field EDITOR.

During prompting, trenter will print any values supplied for fields from a
.trdef file. By default, it will stop at each such field and wait for either a
carriage return (indicating confirmation), an edit command, or new data. If
invoked with a -8 option, trenter will print the supplied values, but will not
stop for confirmation.

Default values specified in .trdef files may be changed, on a per-report
basis, using the editing functions described above.

FILES

.trdef default value file
fusr/spool/trenter spool directory

A AT&T Administrator's Reference Manual 3

TRENTER(1M) TRENTER(1M)

4 AT&T Administrator’s Reference Manual A

UUCHECK(1M) UUCHECK(1M)

NAME

uucheck - check the uucp directories and permissions file
SYNOPSIS

fusr/lib/uucp/uucheck [-v] [-xdebug_level]
DESCRIPTION

uucheck checks for the presence of the uucp system required files and direc-
tories. Within the uucp makefile, it is executed before the installation

takes place. It also checks for some obvious errors in the Permissions file
(fusr/lib/uucp/Permissions). When executed with the -v option, it gives a
detailed explanation of how the uucp programs will interpret the Permis-
sions file. The -x option is used for debugging. debug-option is a single digit
in the range 1-9; the higher the value, the greater the detail.

Note that uucheck can only be used by the super-user or uucp.
FILES

fusr/libfuucp/Systems
fusr/libfuucp/Permissions
fusr/lib/uucp/Devices
fusr/lib/uucp/Maxuuscheds
fusr/libjuucp/Maxuuxqts
fusr/spool/uuep/*
fusr/spool/locks/LCK*
fusr/spool/uucppublic/*

SEE ALSO

uucico(1M), uusched(1M).

uucp(1C), uustat(1C), uux(1C) in the User’s Reference Manual.
BUGS

The program does not check file/directory modes or some errors in the Per-
missions file such as duplicate login or machine name.

A AT&T Administator’'s Reference Manual 1

UUCHECK(1M) UUCHECK(1M)

2 AT&T Administator's Reference Manual A

UUCICO(1M) UUCICO(1M)

NAME

uucico - file transport program for the uucp system

SYNOPSIS

jusr/lib/uucp/uucico [-r role_number] [-x debug_level]
[-iinterface][-d spool_directory] -8 system_name

DESCRIPTION

uucico is the file transport program for uucp work file transfers. Role num-
bers for the -r are the digit 1 for master mode or 0 for slave mode (default).
The -r option should be specified as the digit 1 for master mode when
uucico is started by a program or cron. uux and uucp both queue jobs that
will be transferred by uucico. It is normally started by the scheduler, wus-
ched,but can be started manually; this is done for debugging. For example,
the shell uutry starts uucico with debugging turned on. A single digit must
be used for the -x option with higher numbers for more debugging.

The -i option defines the interface used with uucico. This interface only af-
fects slave mode. Known interfaces are UNIX (default), TLI (basic Transport
Layer Interface), and TLIS (Transport Layer Interface with Streams
modules, read/write).

FILES

fusr/lib/uucp/Systems
fusr/libfaucp/Permissions
fusr/lib/uucp/Devices
fusr/libfuucp/Devconfig
fusr/libfuucp/Sysfiles
fusr/libfuucp/Maxuuxqts
fusr/lib/uucp/Maxuuscheds
fusr/spool/uucp/*
fusr/spool/locks/LCK*
fusr/spool/uucppublic/*

SEE ALSO

cron(1M), uusched(1M), uutry(1M).
uucp(1C), uustat(1C), uux(1C) in the User’s Reference Manual.

A AT&T Administator’s Reference Manual 1

UUCICO(1M) UUCICO(1M)

2 AT&T Administator's Reference Manual A

UUCLEANUP(1M) UUCLEANUP(1M)

NAME

uucleanup - uucp spool directory clean-up

SYNOPSIS
fusr/lib/uucp/uucleanup [-Ctime] [-Wtime] [-Xtime] [-mstring]
[-otime] [-ssystem]

DESCRIPTION

uucleanup will scan the spool directories for old files and take appropriate
action to remove them in a useful way:

+ Inform the requestor of send/receive requests for systems that can not be
reached.

+ Return mail, which cannot be delivered, to the sender.

+ Delete or execute rnews for rnews type files (depending on where the
news originated--locally or remotely).

+ Remove all other files.

In addition, there is provision to warn users of requests that have been
waiting for a given number of days (default 1). Note that uucleanup will
process as if all option times were specified to the default values unless
time is specifically set.

The {silowing options are available.

-Ctime Any C. files greater or equal to time days old will be
removed with appropriate information to the requestor.
(default 7 days)

-Dtime Any D. files greater or equal to time days old will be

removed. An attempt will be made to deliver mail mes-
sages and execute rnews when appropriate. (default 7
days)

-Wtime Any C. files equal to time days old will cause a mail
message to be sent to the requestor warning about the
delay in contacting the remote. The message includes
the JOBID, and in the case of mail, the mail message.
The administrator may include a message line telling
whom to call to check the problem (-m option). (default
1 day)

-Xtime Any X. files greater or equal to time days old will be
removed. The D. files are probably not present (if they
were, the X. could get executed). But if there are D.
files, they will be taken care of by D. processing.
(default 2 days)

-msiring This line will be included in the warning message
generated by the -W option.

A AT&T Administator’s Reference Manual 1

UUCLEANUP(1M) UUCLEANUP(1M)

-otime Other files whose age is more than time days will be
deleted. (default 2 days) The default line is "See your
local administrator to locate the problem".

-ssystem Execute for system spool directory only.

-xdebug _level The -x debug level is a single digit between 0 and 9;
higher numbers give more detailed debugging informa-
tion. (If uucleanup was compiled with -DSMALL, no
debugging output will be available.).

This program is typically started by the shell uudemon.cleanup, which
should be started by cron (1M).

FILES
fusr/lib/uucp directory with commands used by uucleanup internally
fusr/spool/uucp spool directory

SEE ALSO
cron(1M).

uucp(1C), uux(1C) in the User’s Reference Manual.

2 AT&T Administator’'s Reference Manual A

UUSCHED(1M) UUSCHED(1M)

NAME

uusched - the scheduler for the uucp file transport program
SYNOPSIS

fusr/lib/uucp/uusched [-x debug_level] [-u debug_level]
DESCRIPTION

uusched is the uucp file transport scheduler. It is usually started by the
daemon uudemon.hour that is started by cron (1M) from an entry in
jusr/spool/cron/crontab:

39 * » » » /bin/su uucp -c "/usr/lib/uucp/uudemon.hour > /dev/null’

The two options are for debugging purposes only; -x debug_level will out-
put debugging messages from uusched and -u debug_level will be passed as
-x debug_level to uucico. The debug_level is a number between 0 and 9;
higher numbers give more detailed information.

FILES

fusr/libfaucp/Systems
fusr/lib/uucp/Permissions
fusr/lib/uucp/Devices
fusr/spool/uucp/*
fusr/spool/locks/LCK*
fusr/spool/uucppublic/*

SEE ALSO

cron(1M), uucico(1M).
uucp(1C), uustat(1C), uux(1C) in the User’s Reference Manual.

A AT&T Administator’s Reference Manual 1

UUSCHED(1M) UUSCHED(1M)

2 AT&T Administator's Reference Manual A

UUTRY(1M) UUTRY(1M)

NAME
Uutry - try to contact remote system with debugging on

SYNOPSIS
fusr/lib/uucp/Uutry [-x debug _level] [-r] system_name
DESCRIPTION

Uutry is a shell that is used to invoke uucico to call a remote site. Debug-
ging is turned on (default is level 5); -x will override that value. The -r
overrides the retry time in /usr/spool/uucp/.status. The debugging out-
put is put in file /tmp/system_name. A tail -f of the output is executed. A
DELETE or BREAK will give control back to the terminal while the uucico
continues to run, putting its output in /tmp/system_name.

FILES

fusr/libArucp/Systems
fusr/lib/uucp/Permissions
fusr/lib/uucp/Devices
fusr/libfuucp/Maxuuxqts
fusr/lib/fuuecp/Maxuuscheds
fusr/spoolfuucp/*
fusr/spool/locks/LCK*
fusr/spool/fuucppublic/*
/tmp/system_name

SEE ALSO

uucico(1M).

uuep(1C), uux(1C) in the User’s Reference Manual.

A AT&T Administator’s Reference Manual 1

UUTRY(1M) UUTRY(1M)

2 AT&T Administator’'s Reference Manual A

UUXQT(1M) UUXQT(1M)

NAME

uuxqt - execute remote command requests
SYNOPSIS

fusr/lib/uucp/uuxqt [-8 system][-x debug_level]
DESCRIPTION

uuxqt is the program that executes remote job requests from remote sys-
tems generated by the use of the uux command. (mail uses uux for remote
mail requests). uuxqt searches the spool directories looking for X. files. For
each X. file, uuxgt checks to see if all the required data files are available
and accessible, and file commands are permitted for the requesting system.
The Permissions file is used to validate file accessibility and command ex-
ecution permission.

There are two environment variables that are set before the uuxgt com-
mand is executed:

UU_MACHINE is the machine that sent the job (the previous one).
UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can execute
to provide information, auditing, or restrictions.

The -x debug_level is a single digit between 0 and 9. Higher numbers give
more detailed debugging information.

FILES

fusr/lib/uucp/Permissions
fusr/libfaucp/Maxuuxqts
fusr/spool/fuucp/*
fusr/spool/locks/LCK*

SEE ALSO
uucico(1M).
uucp(1C), uustat(1C), uux(1C), mail(l) in the User’s Reference Manual.

A AT&T Administator’'s Reference Manual 1

UUXQT(1M) UUXQT(1M)

2 AT&T Administator’'s Reference Manual A

WHODO(1M) WHODO(1M)

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION

whodo produces formatted and dated output from information in the
/etc/utmp and /etc/ps_data files.

The display is headed by the date, time and machine name. For each user
logged in, device name, user-id and login time is shown, followed by a list
of active processes associated with the user-id. The list includes the device
name, process-id, cpu minutes and seconds used, and process name.

EXAMPLE

The command:
whodo

produces a display like this:

Tue Mar 12 15:48:03 1985 bailey

tty083 mcn 8:51
tty09 28158 0:29 sh
tty52 bdr 15:23

tty52 21688 0:05 sh
tty52 22788 0:01 whodo
tty52 22017 0:03 vi
tty52 22549 0:01 sh
Xxtl62 lee 10:20
ttyo08 6748 0:01 layers
xt162 6751 0:01 sh
Xxtl1l63 6761 0:05 sh
tty08 6536 0:05 sh

FILES

/etc/passwd
/etc/) s_data
fetefutmp

SEE ALSO
ps(1), who(1) in the D-NIX 5.3 Reference Manual.

A AT&T Administator’s Reference Manual 1

WHODO(1M) WHODO(1M)

2 AT&T Administator's Reference Manual A

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION

This section outlines the formats of various files. The C structure declara-
tions for the file formats are given where applicable. Usually, the header
files containing these structure declarations can be found in the directories
/usr/include or /usr/include/sys. For inclusion in C language programs,
however, the syntax #include <filename.h> or #include
<sys/filename.h> should be used.

A AT&T Administrator’'s Reference Manual 1

INTRO(4) INTRO@)

2 AT&T Administrator's Reference Manual A

A.OUT(4) A.OUT(4)

NAME

a.out - common assembler and link editor output
SYNOPSIS

#include <a.out.h>
DESCRIPTION

The file name a.out is the default output file name from the link editor

Id (1). The link editor will make a.out executable if there were no errors in
linking. The output file of the assembler as (1), also follows the common ob-
ject file format of the a.out file although the default file name is different.

A common object file consists of a file header, a UNIX system header (if the
file is link editor output), a table of section headers, relocation information,
(optional) line numbers, a symbol table, and a string table. The order is
given below.

File header.
UNIX system header.
Section 1 header.

éection n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

... Section n line numbers.
Symbol table.

String table.

The last three parts of an object file (line numbers, symbol table and string
table) may be missing if the program was linked with the -s option of

Id (1) or if they were removed by strip (1). Also note that the relocation in-
formation will be absent after linking unless the -r option of Id (1) was
used. The string table exists only if the symbol table contains symbols with
names longer than eight characters.

The sizes of each section (contained in the header, discussed below) are in
bytes.

When an a.out file is loaded into memory for execution, three logical seg-
ments are set up: the text segment, the data segment (initialized data fol-
lowed by uninitialized, the latter actually being initialized to all 0’s), and a
stack.

The a.out file produced by Id (1) has the magic number 0413 in the first
field of the UNIX system header. The headers (file header, UNIX system
header, and section headers) are loaded at the beginning of the text seg-
ment and the text immediately follows the headers in the user address
space. The first text address will equal 0x10000 plus the size of the
headers, and will vary depending upon the number of section headers in

A AT&T Administrator’s Reference Manual 1

A.OUT(4) A.OUT(4)

the a.out file. In an a.out file with three sections (.text, .data, and .bss),
the first text address is at 0x100A8 on the DS90 computer. The text seg-
ment is not writable by the program; if other processes are executing the
same a.out file, the processes will share a single text segment.

The data segment starts at the next 64K boundary past the last text ad-
dress. The first data address is determined by the following: If an a.out
file were split into 8K chunks, one of the chunks would contain both the
end of text and the beginning of data. When the core image is created,
that chunk will appear twice; once at the end of text and once at the begin-
ning of data (with some unused space in between). The duplicated chunk of
text that appears at the beginning of data is never executed; it is dupli-
cated so that the operating system may bring in pieces of the file in multi-
ples of the page size without having to realign the beginning of the data
section to a page boundary. Therefore the first data address is the sum of
the next segment boundary past the end of text plus the remainder of the
last text address divided by 8K. If the last text address is a multiple of 8K
no duplication is necessary.

On the DS90 computer the stack begins at location 0x80000000 and grows
toward lower addresses. The stack is automatically extended as required.
The data segment is extended only as requested by the brk (2) system call.

For relocatable files the value of a word in the text or data portions that is
not a reference to an undefined external symbol is exactly the value that
will appear in memory when the file is executed. If a word in the text invol-
ves a reference to an undefined external symbol, there will be a relocation
entry for the word, the storage class of the symbol-table entry for the sym-
bol will be marked as an “external symbol”, and the value and section num-
ber of the symbol-table entry will be undefined. When the file is processed
by the link editor and the external symbol becomes defined, the value of
the symbol will be added to the word in the file.

File Header
The format of the filehdr header is
?truct filehdr

unsigned short f magic; /* magic number */
unsigned short f nscns; /* number of sections */

long f timdat; /* time and date stamp */
long f symptr; /* file ptr to symtab */
long f nsyms; /*# symtab entries */

unsigned short f opthdr; /* sizeof(opt hdr) */
unsigned short f flags; /* flags */

2 AT&T Administrator's Reference Manual A

A.OUT(4) A.OUT(4)

UNIX System Header

The format of the UNIX system header is

%ypedef struct aouthdr
short magic; /* magic number */
short vstamp; /* version stamp */
long tsize; /* text size in bytes, padded */
long dsize; /* initialized data (.data) */
long bsize; /* uninitialized data (.bss) */
long entry; /* entry point */
long text_start; /* base of text used for this file */
long data_start; /* base of data used for this file */
} AOUTHDR,;

Section Header

The format of the section header is

struct senhdr

char s_name[SYMNMLEN]; /* section name */

long s_paddr; /* physical address */

long s_vaddr; /* virtual address */

long s_size; /* section size */

long s_scnptr; /* file ptr to raw data */
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */

unsigned short s_nreloc; /* # reloc entries */
unsigned short s nlnno; /* # line number entries */
long s_flags; /* flags */

|5

Relocation

Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the following
format:

struct reloc

long r_vaddr; /* (virtual) address of reference */
long r_symndx; /* index into symbol table */
ushort r_type; /* relocation type */

5

The start of the relocation information is s_relpt¢r from the section header.
If there is no relocation information, s_relptr is 0.

AT&T Administrator’s Reference Manual 3

A.OUT(4) A.OUT(4)

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4

?truct syment
union /* all ways to get a symbol name */
char _n_name[SYMNMLEN]; /* name of symbol */
struct
long _n_zeroes; /* == OL if in string table */
) long _n_offset; /* location in string table */
n_n;
} char " n nptr[2]; /* allows overlaying */
n;
long n_value; /* value of symbol */
short n_scnum,; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
15
#define n_offset _n._n_n._n_offset
#define n_nptr “n._n_nptr[1]

Some symbols require more information than a single entry; they are fol-
lowed by auxiliary entries that are the same size as a symbol entry. The for-
mat follows.

union auxent {

struct {
long x_tagndx;
union {
struct {
unsigned short x_Inno;
unsigned short x_size;
} x_Insz;
long x_fsize;
} x misc;
union {
struct {
long x_Innoptr;
long x_endndx;
} x_fen;
struct {
unsigned short x_dimen[DIMNUM];
} x_ary;
} x_fcnaexc'Iy;
unsigned short x_tvndx;
) x_sym;

4 AT&T Administrator's Reference Manual A

A.OUT(4) A.OUT(4)

struect {
char x_fname[FILNMLEN];
} x_file;
struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} x_scn;
struct { long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];
}x_tv;

h

Indexes of symbol table entries begin at zero. The start of the symbol table
is f_symptr (from the file header) bytes from the beginning of the file. If the
symbol table is stripped, f_symptr is 0. The string table (if one exists)

begins at f_symptr + (f_nsyms * syMEsz) bytes from the beginning of the file.

SEE ALSO

as(1), cc(1), 1d(1), brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), scnhdr(4),
syms(4).

A AT&T Administrator’s Reference Manual 5

A.OUT(4) A.OUT(4)

8 AT&T Administrator’'s Reference Manual A

ACCT(4)

NAME

ACCT(4)

acct - per-process accounting file format

SYNOPSIS

#include <sys/acct.h>

DESCRIPTION

Files produced as a result of calling acct (2) have records in the form
defined by <sys/acct.h>,whose contents are:

typedef ushort comp_t;

struct acct
char ac_flag;
char ac_stat;
ushort ac_uid;
ushort ac_gid;
dev_t ac_tty;
time_t ac_btime;
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t ac_io;
comp_t ac_rw;
char ac_comm/(8];
I8
extern struct acct
extern struct inode
#define AFORK 01
#define Asu 02
#define AcCTF 0300

/* "floating point" */
/* 13-bit fraction, 3-bit exponent */

/* Accounting flag */

/* Exit status */

/* Accounting user ID */

/* Accounting group ID */

/* control typewriter */

/* Beginning time */

/* acctng user time in clock ticks */

/"' acctng system time in clock ticks */
/* acctng eYapsed time in clock ticks */

/* memory usage in clicks */

/* chars trnsfrd by read/write */

/* number of block reads/writes */

/* command name */

acctbuf;
acctp; / inode of accounting file */
/* has executed fork, but no exec */

/* used super-user prmle s */

/* record type: 00 = acct *%e

In ac_flag, the AFORK flag is turned on by each fork (2) and turned off by an
exec (2). The ac_comm field is inherited from the parent process and is
reset by any exec. Each time the system charges the process with a clock
tick, it also adds to ac_mem the current process size, computed as follows:

(data size) + (text size)/(number of in-core processes using text)

The value of ac_mem /(ac_stime+ac_utime) can be viewed as an approxima-
tion to the mean process size, as modified by text-sharing.

The structure tacct.h,which resides with the source files of the accounting
commands, represents the total accounting format used by the various ac-
counting commands:

AT&T Administrator’s Reference Manual

ACCT(4)

ACCT(4)

/* userid */

/* login name */

/* cum. cpu time, p/np (mins) */

/* cum kcore-minutes, p/np */

/* cum. connect time, p/np,
mins */

/* cum. disk usage */

/* count of processes */

/* count of login sessions */

/* count of disk samples */

/* fee for special services */

/*

:/ total accounting (for acct period), also for day

struct tacet {
uid_t ta_uid;
char ta_name[8];
float ta_cpu[2];
float ta_kcore[2];
float ta_con[2];
{'loat ta_du;
ong ta_pc;
unsigned short ta_sc;
unsigned short ta_dc;

} unsigned short ta_fee;

SEE ALSO

acct(2), exec(2),

fork(2).

acct(1M) in the Administrator’s Reference Manual.

acctcom(l) in the User’s Reference Manual.

BUGS

The ac_mem value for a short-lived command gives little information about
the actual size of the command, because ac_mem may be incremented
while a different command (e.g., the shell) is being executed by the process.

AT&T Administrator’'s Reference Manual A

AR(4) AR(4)

NAME

ar - common archive file format

SYNOPSIS
#include <ar.h>

DESCRIPTION

The archive command ar (1) is used to combine several files into one. Ar-
chives are used mainly as libraries to be searched by the link editor Id (1).

Each archive begins with the archive magic string.

#define ARMAG "l<arch>\n /* magic string */
#define sarMAG 8 /* length of magic string */

Each archive which contains common object files [see a.out (4)] includes
an archive symbol table. This symbol table is used by the link editor Id (1)
to determine which archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created and/or updated by
ar.

Following the archive magic string are the archive file members. Each file
member is preceded by a file member header which is of the following for-

mat:

#define ARFMAG "\n /* header trailer string */

struct ar_hdr /* file member header */
char ar_name[16]; /* [terminated file member name */
char ar_date[12]; /* file member date */
char ar_uid[6]; /* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar_mode[8]; /* file member mode (octal) */
char ar_size[10]; /* file member size */

) char ar_fmagf2]; /* header trailer string */

All information in the file member headers is in printable asci. The
numeric information contained in the headers is stored as decimal num-
bers (except for ar_mode which is in octal). Thus, if the archive contains
printable files, the archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date
field is the modification date of the file at the time of its insertion into the
archive. Common format archives can be moved from system to system as
long as the portable archive command ar (1) is used. Conversion tools such
as convert (1) exist to aid in the transportation of non-common format ar-
chives to this format.

Each archive file member begins on an even byte boundary; a newline is in-
serted between files if necessary. Nevertheless the size given reflects the ac-
tual size of the file exclusive of padding.

A AT&T Administrator’s Reference Manual 1

AR(4) AR(4)

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero
length name (i.e., ar_name[0] ==/). The contents of this file are as fol-
lows:

+ The number of symbols. Length: 4 bytes.

« The array of offsets into the archive file. Length: 4 bytes * “the number
of symbols”.

- The name string table. Length: ar_size - (4 bytes * (“the number of
symbols” + 1)).

The number of symbols and the array of offsets are managed with sget!
and sputl. The string table contains exactly as many null terminated
strings as there are elements in the offsets array. Each offset from the
array is associated with the corresponding name from the string table (in
order). The names in the string table are all the defined global symbols
found in the common object files in the archive. Each offset is the location
of the archive header for the associated symbol.

SEE ALSO
ar(l), 1d(1), strip(1), sputl(3X), a.out(4).
WARNINGS

strip (1) will remove all archive symbol entries from the header. The ar-
chive symbol entries must be restored via the ts option of the ar (1) com-
mand before the archive can be used with the link editor Id (1).

2 AT&T Administrator’'s Reference Manual A

CHECKLIST(4) CHECKLIST(4)

NAME
checklist - list of file systems processed by fsck and ncheck

DESCRIPTION

checklist resides in directory /etc and contains a list of, at most, 15 special
file names. Each special file name is contained on a separate line and cor-
responds to a file system. Each file system will then be automatically
processed by the fsck (1M) command.

FILES
/etc/checklist

SEE ALSO

fsck(1M) in the D-NIX 5.3 Reference Manual.
ncheck(1M) in the System Administrator’s Reference Manual.

A AT&T Administrator’s Reference Manual 1

CHECKLIST(4) CHECKLIST(4)

2 AT&T Administrator's Reference Manual A

CORE(4) CORE(4)

NAME

core - format of core image file

DESCRIPTION

The UNIX system writes out a core image of a terminated process when any
of various errors occur. See signal (2) for the list of reasons; the most com-
mon are memory violations, illegal instructions, bus errors, and user-
generated quit signals. The core image is called core and is written in the
process’s working directory (provided it can be; normal access controls
apply). A process with an effective user b different from the real user 1D
will not produce a core image.

The first section of the core image is a copy of the system’s per-user data
for the process, including the registers as they were at the time of the
fault. The size of this section depends on the parameter usize, which is
defined in <sys/param.h>. The remainder represents the actual contents
of the user’s core area when the core image was written. If the text seg-
ment is read-only and shared, or separated from data space, it is not
dumped.

The format of the information in the first section is described by the user
structure of the system, defined in <sys/user.h>. Not included in this file
are the locations of the registers. These are outlined in <sys/reg.h>.

SEE ALSO
sdb(1), setuid(2), signal(2).

crash(1M) in the Administrator’s Reference Manual.

A AT&T Administrator's Reference Manual 1

CORE(4) CORE(4)

2 AT&T Administrator's Reference Manual A

CPIO(4) CPIO(4)

NAME
cpio - format of cpio archive
DESCRIPTION
The header structure, when the -c option of cpio (1) is not used, is:
struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
s
_81d;
short h_nlink,
h_rdey,
h_mtime[2],
h_namesize,
h_filesize[2];
VH char h_name[h_namesize rounded to word];
r;

When the -c option is used, the header information is described by:

sscanf(Chdr,"%60%60%60%60%60%60%60%60%1110%60%1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize ,
respectively. The contents of each file are recorded in an element of the
array of varying length structures, archive, together with other items
describing the file. Every instance of _magic contains the constant
070707 (octal). The items h_dev through A_mtime have meanings ex-
plained in stat (2). The length of the null-terminated path name h_name,
including the null byte, is given by A_namesize.

The last record of the archive always contains the name TRAILER!!. Special
files, directories, and the trailer are recorded with h_filesize equal to zero.

SEE ALSO

stat(2).
cpio(1), find(1) in the D-NIX 5.3 Reference Manual.

A AT&T Administrator’'s Reference Manual 1

CPIO(4) CPIO(4)

2 AT&T Administrator's Reference Manual A

DIR(4) DIR(4)

NAME

dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION

A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the flag word of its i-node entry [see fs (4)]. The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ

#define DIRsIZ 14
#endif
struct direct
ushort d_ino;
} char d_name[DIRrs1Z];
’

By convention, the first two entries in each directory are for . and ... The
first is an entry for the directory itself. The second is for the parent direc-
tory. The meaning of .. is modified for the root directory of the master file
system; there is no parent, so .. has the same meaning as ..

SEE ALSO
fs(4).

A AT&T Administrator’'s Reference Manual 1

DIR(4) DIR(4)

2 AT&T Administrator’s Reference Manual A

DIRENT(4) DIRENT(4)

NAME
dirent - file system independent directory entry

SYNOPSIS

#include <sys/dirent.h>
#include <sys/types.h>

DESCRIPTION

Different file system types may have different directory entries. The dirent
structure defines a file system independent directory entry, which contains
information common to directory entries in different file system types. A
set of these structures is returned by the getdents (2) system call.

The dirent structure is defined below.

struct dirent {
long d_ino;
off t d_off;
unsigned short d_reclen;
} char d_name[1];

The d_ino is a number which is unique for each file in the file system. The
field d_off is the offset of that directory entry in the actual file system direc-
tory. The field d_name is the beginning of the character array giving the
name of the directory entry. This name is null terminated and may have at
most MAXNAMLEN characters. This results in file system independent direc-
tory entries being variable length entities. The value of d_reclen is the
record length of this entry. This length is defined to be the number of bytes
between the current entry and the next one, so that it will always result in
the next entry being on a long boundary.

FILES

fusr/include/sys/dirent.h

SEE ALSO
getdents(2).

A AT&T Administrator's Reference Manual 1

DIRENT(4) DIRENT(4)

2 AT&T Administrator’'s Reference Manual A

FILEHDR(4)

NAME

filehdr - file header for common object files

SYNOPSIS

#include <filehdr.h>

DESCRIPTION

Every common object file begins with a 20-byte header. The following C
struct declaration is used:

?truct filehdr

unsigned short f magic; /* magic number */
unsigned short f nscns; /* number of sections */

long ftimdat; /*time & date stamp */
long f symptr; /* file ptr to symtab */
long f nsyms; /*# symtab entries */

unsigned short { opthdr; /* sizeof(opt hdr) */
} unsigned short f flags; /*flags */

F_symptr is the byte offset into the file at which the symbol table can be
found. Its value can be used as the offset in fseek (3S) to position an I/O
stream to the symbol table. The UNIX system optional header is 28-bytes.
The valid magic numbers are given below:

#define MC68020MAGIC 0630 /* Same as NCR’s */

#define MC68KMAGIC 0520

#define =~ MC68KWRMAGIC 0620 /* writable text segment */

#define = MCB8TVMAGIC 0521

#define = MC68KROMAGIC 0625 /* readonly sharable text
segments */

#define = MCB8KPGMAGIC 0620 /* demand paged text segment */

#define M68MAGIC 0210

#define = M68TVMAGIC 0211

The value in f timdat is obtained from the time (2) system call. Flag bits
currently defined are:

#define F_RELFLG 0000001 /* relocation entries stripped */
#define F_EXEC 0000002 /* file is executable */

#define F_LNNO 0000004 /* line numbers stripped */
#define F_LSYMS 0000010 /* local symbols stripped */
#define F_MINMAL 0000020 /* minimal object file */

#define F_UPDATE 0000040 /* update file, ogen produced */
#define = F_SWABD 0000100 /* file is "pre-swabbed" */
#define F_AR16WR 0000200 /* 16-bit DEC host */

#define F_AR32WR 0000400 /* 32-bit DEC host */

#define F_AR32W 0001000 /* non-DEC host */

#define F_PATCH 0002000 /* "patch" list in opt hdr */
#define F_BM32ID 0160000 /* WE32000 family ID field */
#define F_BM32B 0020000 /* file contains WE 32100 code */
#define F_BM32MAU 0040000 /* file reqs MAU to execute */
#define F_BM32RST 0010000 /* this object file contains restore

FILEHDR(4)

work around [3B5/3B2 only] */

AT&T Administrator’s Reference Manual

FILEHDR(4) FILEHDR(4)

SEE ALSO
time(2), fseek(3S), a.out(4).

2 AT&T Administrator’s Reference Manual A

FSPEC(4) FSPEC(4)

NAME

fspec - format specification in text files

DESCRIPTION

It is sometimes convenient to maintain text files on the UNIX system with
non-standard tabs, (i.e., tabs which are not set at every eighth column).
Such files must generally be converted to a standard format, frequently by
replacing all tabs with the appropriate number of spaces, before they can
be processed by UNIX system commands. A format specification occurring in
the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>. Each parameter consists
of a keyletter, possibly followed immediately by a value. The following
parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.

The value of tabs must be one of the following:

1. a list of column numbers separated by commas,
indicating tabs set at the specified columns;

2. a - followed immediately by an integer n,
indicating tabs at intervals of n columns;

3. a - followed by the name of a “canned” tab
specification.

Standard tabs are specified by t-8, or equivalently,
t1,9,17,25, etc. The canned tabs which are recognized
are defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is per-
formed after tabs have been expanded, but before the

margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be
an integer.

d The d parameter takes no value. Its presence indicates

that the line containing the format specification is to be
deleted from the converted file.

e The e parameter takes no value. Its presence indicates
that the current format is to prevail only until another
format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8
and mO. If the 8 parameter is not specified, no size checking is performed.
If the first line of a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is an example of a
line containing a format specification:

* <:1t5,10,15 872:> *

A AT&T Administrator’'s Reference Manual 1

FSPEC(4) FSPEC(4)

If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

SEE ALSO
ed(1l) in the D-NIX 6.3 Reference Manual.

newform(1), tabs(1) in the User’s Reference Manual.

2 AT&T Administrator's Reference Manual A

FSTAB(4) FSTAB(4)

NAME
fstab - file-system-table
DESCRIPTION

The /etc/fstab file contains information about file systems for use by
mount (1M). Each entry in /etc/fstab has the following format:

column 1 block special file name of file system or advertised remote
resource

column 2 mount-point directory

column 3 -r if to be mounted read-only; -d[r] if remote

column 4 (optional) file system type string

column 5+ ignored

White-space separates columns. Lines beginning with "# " are comments.
Empty lines are ignored.

A file-system-table might read:

/dev/dsk/c1d0s82 /usr S51K
/dev/dsk/cldls2 /usr/src -r

adv_resource /mnt -d

FILES
/etc/fstab

SEE ALSO

mount(1M), rmountall(1M) in the Administrator’s Reference Manual.

A AT&T Administrator's Reference Manual 1

FSTAB(4) FSTAB(4)

2 AT&T Administrator’s Reference Manual A

GETTYDEFS(4)

NAME

GETTYDEFS(4)

gettydefs - speed and terminal settings used by getty

DESCRIPTION

The /etc/gettydefs file contains information used by getty (1M) to set up
the speed and terminal settings for a line. It supplies information on what
the login prompt should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by typing a BREAK

character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label
Each entry is followed by a blank line. The various fields can contain
quoted characters of the form \b, \n, \c, etc., as well as \nnn, where
nnn is the octal value of the desired character. The various fields are:

label

initial-flags

final-flags

login-prompt

next-label

This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it need not
be (see below).

These flags are the initial ioct! (2) settings to which the
terminal is to be set if a terminal type is not specified
to getty. The flags that getty understands are the same
as the ones listed in /usr/include/sys/termio.h [see
termio (7)]. Normally only the speed flag is required in
the initial-flags. getty automatically sets the terminal
to raw input mode and takes care of most of the other
flags. The initial-flag settings remain in effect until
getty executes login (1).

These flags take the same values as the initial-flags
and are set just prior to getty executes login. The speed
flag is again required. The composite flag SANE takes
care of most of the other flags that need to be set so
that the processor and terminal are communicating in
a rational fashion. The other two commonly specified
final-flags are TABS, so that tabs are sent to the ter-
minal as spaces, and HUPCL, so that the line is hung
up on the final close.

This entire field is printed as the login-prompt. Unlike
the above fields where white space is ignored (a space,
tab or new-line), they are included in the login-prompt
field.

If this entry does not specify the desired speed, indi-
cated by the user typing a BREAK character, then getty
will search for the entry with next-label as its label
field and set up the terminal for those settings. Usual-
ly, a series of speeds are linked together in this fashion,
into a closed set; For instance, 2400 linked to 1200,

AT&T Administrator's Reference Manual 1

GETTYDEFS(4) GETTYDEFS(4)

which in turn is linked to 300, which finally is linked
to 2400.

If getty is called without a second argument, then the first entry of /etc/get-
tydefs is used, thus making the first entry of /etc/gettydefs the default
entry. It is also used if getty can not find the specified label. If /etc/get-
tydefs itself is missing, there is one entry built into the command which
will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs,
it be run through getty with the check option to be sure there are no errors.

FILES
/etc/gettydefs

SEE ALSO
ioctl(2).

getty(1M), termio(7) in the Administrator’s Reference Manual.
login(1) in the D-NIX 5.3 Reference Manual.

2 AT&T Administrator’'s Reference Manual A

GROUP(4) GROUP(4)

NAME
group - group file
DESCRIPTION

group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ascii file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory /etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID’s to names.

FILES
/etc/group
SEE ALSO

passwd(4). _
passwd (1), newgrp(1M) in the D-NIX 5.3 Reference Manual.

A AT&T Administrator’s Reference Manual 1

GROUP(4) GROUP(4)

2 AT&T Administrator’s Reference Manual A

INITTAB(4) INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION

The inittad file supplies the script to init’s role as a general process dis-
patcher. The process that constitutes the majority of init’s process dispatch-
ing activities is the line process /etc/getty that initiates individual
terminal lines. Other processes typically dispatched by init are daemons
and the shell.

The inittabd file is composed of entries that are position dependent and
have the following format: :

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a
newline indicates a continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the process field using
the sh (1) convention for comments. Comments for lines that spawn getty s
are displayed by the who (1) command. It is expected that they will contain
some information about the line such as the location. There are no limits
(other than maximum entry size) imposed on the number of entries within
the inittad file. The entry fields are:

id This is one or two characters used to uniquely identify
an entry.
rstate This defines the run-level in which this entry is to be

processed. run-levels effectively correspond to a con-
figuration of processes in the system. That is, each
process spawned by init is assigned a run-level or run-
levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As
an example, if the system is in run-level 1, only those
entries having a 1 in the rstate field will be processed.
When init is requested to change run-levels, all proces-
ses which do not have an entry in the rstate field for
the target run-level will be sent the warning signal (sIG-
TERM) and allowed a 20-second grace period before
being forcibly terminated by a kill signal (SIGKILL).
The rstate field can define multiple run-levels for a
process by selecting more than one run-level in any
combination from 0-8. If no run-level is specified, then
the process is assumed to be valid at all run-levels 0-8.
There are three other values, a, b and ¢, which can ap-
pear in the rstate field, even though they are not true
run-levels. Entries which have these characters in the
rstate field are processed only when the telinit [see init
(IM))] process requests them to be run (regardless of
the current run-level of the system). They differ from
run-levels in that init can never enter run-level a,b or
c. Also, a request for the execution of any of these
processes does not change the current run-level. Fur-

A AT&T Administrator’'s Reference Manual 1

INITTAB(4)

action

respawn

wait

once

boot

bootwait

powerfail

powerwait

off

INITTAB(4)

thermore, a process started by an a, b or ¢ command is
not killed when init changes levels. They are only
killed if their line in /etc/inittab is marked off in the
action field, their line is deleted entirely from /etc/init-
tab , or init goes into the SINGLE USER state.

Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by
init are as follows:

If the process does not exist then start the process, do
not wait for its termination (continue scanning the init-
tab file), and when it dies restart the process. If the
process currently exists then do nothing and continue
scanning the inittabd file.

Upon init’s entering the run-level that matches the
entry’s rstate, start the process and wait for its termina-
tion. All subsequent reads of the inittabd file while init

is in the same run-level will cause init to ignore this
entry.

Upon init’s entering a run-level that matches the
entry’s rstate, start the process, do not wait for its ter-
mination. When it dies, do not restart the process. If
upon entering a new run-level, where the process is
still running from a previous run-level change, the
program will not be restarted.

The entry is to be processed only at init’s boot-time
read of the inittab file. Init is to start the process, not
wait for its termination; and when it dies, not restart
the process. In order for this instruction to be meaning-
ful, the rstate should be the default or it must match
init’s run-level at boot time. This action is useful for an
initialization function following a hardware reboot of
the system.

The entry is to be processed the first time init goes
from single-user to multi-user state after the system is
booted. (If initdefault is set to 2, the process will run
right after the boot.) Init starts the process, waits for
its termination and, when it dies, does not restart the
process.

Execute the process associated with this entry only
when init receives a power fail signal [SIGPWR see sig-
nal (2)].

Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR) and
wait until it terminates before continuing any process-
ing of inittab.

If the process associated with this entry is currently
running, send the warning signal (SIGTERM) and wait

AT&T Administrator’s Reference Manual A

INITTAB(4)

ondemand

initdefault

sysinit

process

FILES
/etc/inittab
SEE ALSO

INITTAB(4)

20 seconds before forcibly terminating the process via
the kill signal (s1GKILL). If the process is nonexistent,
ignore the entry.

This instruction is really a synonym for the respawn
action. It is functionally identical to respawn but is
given a different keyword in order to divorce its associa-
tion with run-levels. This is used only with thea , b or
c values described in the rstate field.

An entry with this action is only scanned when init ini-
tially invoked. Init uses this entry, if it exists, to deter-
mine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate

field and using that as its initial state. If the rstate

field is empty, this is interpreted as 0123456 and so
init will enter run-level 8. Additionally, if ini¢ does not
find an initdefault entry in /etc/inittab, then it will
request an initial run-level from the user at reboot time.

Entries of this type are executed before init tries to ac-
cess the console (i.e., before the Console Login:
prompt). It is expected that this entry will be only used
to initialize devices on which ini¢ might try to ask the
run-level question. These entries are executed and
waited for before continuing.

This is a sh command to be executed. The entire
process field is prefixed with exec and passed to a
forked sh as sh -c 'exec command’. For this reason,
any legal sh syntax can appear in the process field.
Comments can be inserted with the ; # comment syn-
tax.

exec(2), open(2), signal(2).
getty(1M), init(1M), sh(1), who(1) in the D-NIX 6.3 Reference Manual.

AT&T Administrator’'s Reference Manual 3

INITTAB(4) INITTAB(4)

4 AT&T Administrator’s Reference Manual A

INODE(4) INODE(4)

NAME
inode - format of an i-node
SYNOPSIS

#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION

An i-node for a plain file or directory in a file system has the following
structure defined by <sys/ino.h>.

/* Inode structure as it appears on a disk block. */

?truct dinode

ushort di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
ushort di_uid; /* owner’s user id */
ushort di_gid; /* owner’s group id */
off t di_size; /* number of bytes in file */
char di_addr[40]; /* disk block addresses */
time_t di_atime; /* time last accessed */
time t di_mtime; /* time last modified */
time_t di_ctime; /* time of last file status change */

B

* the 40 address bytes:

* 39 used; 13 addresses

:/ of 3 bytes each.

For the meaning of the defined types off_t and time_t see types (5).
SEE ALSO
stat(2), fs(4), types(5).

A AT&T Administrator’s Reference Manual 1

INODE(4) INODE(4)

2 AT&T Administrator’s Reference Manual A

ISSUE(4) ISSUE(4)

NAME
issue - issue identification file
DESCRIPTION

The file /etc/issue contains the issue or project identification to be printed
as a login prompt. This is an ascr file which is read by program getty and
then written to any terminal spawned or respawned from the lines file.

FILES

/ete/issue

SEE ALSO
login(1) in the D-NIX 5.3 Reference Manual.

A AT&T Administrator’s Reference Manual 1

ISSUE(4) ISSUE(4)

2 AT&T Administrator’'s Reference Manual A

LDFCN(4) LDFCN(4)

NAME

ldfen - common object file access routines

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

DESCRIPTION

The common object file access routines are a collection of functions for read-
ing common object files and archives containing common object files. Al-
though the calling program must know the detailed structure of the parts
of the object file that it processes, the routines effectively insulate the call-
ing program from knowledge of the overall structure of the object file.

The interface between the calling program and the object file access
routines is based on the defined type LDFILE , defined as struct ldfile ,
declared in the header file ldfen.h. The primary purpose of this structure
is to provide uniform access to both simple object files and to object files
that are members of an archive file.

The function ldopen (3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through macros defined in
ldfen.h and contain the following information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number used to distinguish between ar-
chive members and simple object files.

10PTR(ldptr) The file pointer returned by fopen and used by the stan-
dard input/output functions.

oFFSET(ldptr) The file address of the beginning of the object file; the
offset is non-zero if the object file is a member of an ar-
chive file.

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided into four
categories:

(1) functions that open or close an object file
ldopen (3X) and ldaopen [see ldopen (3X)]
open a common object file
ldclose (3X) and ldaclose [see ldclose (3X)]
close a common object file
(2) functions that read header or symbol table information
ldahread (3X)

read the archive header of a member of an archive file

A AT&T Administrator's Reference Manual 1

LDFCN(4) LDFCN(4)

(3

4)

ldfhread (3X)

read the file header of a common object file
ldshread (3X) and ldnshread [see ldshread (3X)]

read a section header of a common object file
ldtbread (3X)

read a symbol table entry of a common object file
ldgetname (3X)

retrieve a symbol name from a symbol table entry or
from the string table

functions that position an object file at (seek to) the start of the
section, relocation, or line number information for a particular
section.

ldohseek (3X)

seek to the optional file header of a common object file
Idsseek (3X) and ldnsseek [see ldsseek (3X)]

seek to a section of a common object file
ldrseek (3X) and ldnrseek [see ldrseek (3X)]

seek to the relocation information for a section of a com-
mon object file

ldlseek (3X) and ldnlseek [see ldlseek (3X)]

seek to the line number information for a section of a
common object file

ldtbseek (3X)
seek to the symbol table of a common object file

the function ldtbindex (3X) which returns the index of a particular
common object file symbol table entry.

These functions are described in detail on their respective manual pages.

All the functions except ldopen (3X), ldgetname (3X), Idtbindex (3X) return
either SUCCESS or FAILURE , both constants defined in 1dfcen.h. ldopen (3X)
and ldaopen [(see ldopen (3X)] both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of macros
defined in ldfen.h. These macros parallel the standard input/output file
reading and manipulating functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)

FGETC(ldptr)

GETW(ldptr)

UNGETC(c, ldptr)

FGETS(s, n, ldptr)

FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)

AT&T Administrator's Reference Manual A

LDFCN(4) LDFCN(4)

FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)

REWIND(Idptr)

FEOF(ldptr

FERROR(ldptr)

FILENO(ldptr)

SETBUF(Idptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table. See the
manual entries for the corresponding standard input/output library func-
tions for details on the use of the rest of the macros.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO

fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X), ldfhread(3X),
ldlread(3X), ldlseek(3X), ldohseek(3X), ldopen(3X), ldrseek(3X),
ldlseek(3X), ldshread(3X), ldtbindex(3X), 1dtbread(3X), ldtbseek(3X),
stdio(3S), intro(5).

WARNING

The macro FSEEK defined in the header file ldfcn.h translates into a call to
the standard input/output function fseek (3S). FSEEK should not be used to
seek from the end of an archive file since the end of an archive file may not
be the same as the end of one of its object file members!

A AT&T Administrator's Reference Manual 3

LDFCN(4) LDFCN(4)

4 AT&T Administrator's Reference Manual A

LIMITS(4)

NAME

LIMITS(4)

limits - file header for implementation-specific constants

SYNOPSIS

#include <limits.h>

DESCRIPTION

The header file <limits.h> is a list of magnitude limitations imposed by a
specific implementation of the operating system. All values are specified in

decimal.

#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

NOTE

ARG_MAX
CHAR_BIT
CHAR_MAX
CHAR_MIN
CHILD_MAX
CLK_TCK
DBL_DIG
DBL_MAX

DBL_MIN

FCHR_MAX
FLT DIG
FLT_MAX

FLT_MIN

HUGE_VAL
INT_MAX

INT_MIN

LINK_MAX
LONG_MAX
LONG_MIN
NAME_MAX
OPEN_MAX

PASS_MAX
PATH_MAX
PID_MAX

PIPE_BUF
PIPE_MAX

SHRT_MAX
SHRT_MIN
STD_BLK
SYS_NMLN
UID_MAX
USI_MAX
WORD_BIT

5120 /* max length of arguments to exec */

8 /* # of bits in a "char" =/

127 /* max integer value of a "char" */

-128 /* min integer value of a "char" */

50 /* max # of processes per user id */

64 /* # of clock ticks per second */

16 /* digits of precision of a "double" */

1.79769313486231470e+308 /*max decimal value of a
"double"*/

4.94065645841246544e-324 /*min decimal value of a
"double" */

4294967296 /* max size of a file in bytes */

7 /* digits of precision of a "float" */

3.40282346638528860e+38 /*max decimal value of a
"float" =/

1.40129846432481707e-45 /*min decimal value of a
"float" */

_infinity() /*error value returned by Math lib*/

2147483647 /* max decimal value of an "int" =*/

-2147483648 /* min decimal value of an "int" */

1000 /* max # of links to a single file */

2147483647 /* max decimal value of a "long" */

-2147483648 /* min decimal value of a “"long" */

14 /* max # of characters in a file name */

72 /* max # of files a process can have

open */

8 /* max # of characters in a password */

1024 /* max # of characters in a path name */

30000 /* max value for a process ID */

5120 /* max # bytes atomic in write to a pipe */

5120 /* max # bytes written to a pipe in a

write */

32767 /* max decimal value of a "short" */

-32767 /* min decimal value of a "short" =*/

2048 /* # bytes in a physical I/0 block */

9 /* # of chars in uname-returned strings */

30000 /* max value for a user or group ID */

4294967296 /* max decimal value of an "unsigned" */

32 /* # of bits in a "word" or "int" =*/

The contents of the header file may vary between releases.

AT&T Administrator’'s Reference Manual 1

LIMITS(4) LIMITS(4)

2 AT&T Administrator’'s Reference Manual A

LINENUM(4) LINENUM(4)

NAME

linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>
DESCRIPTION

The cc command generates an entry in the object file for each C source line
on which a breakpoint is possible [when invoked with the -g option; see

cc (1)]. Users can then reference line numbers when using the appropriate
software test system [see sdd (1)]. The structure of these line number
entries appears below.

struct lineno
union

long | symndx;
long 1 _paddr;
1_addr;
unsigned short 1_lnno;

Numbering starts with one for each function. The initial line number entry
for a function has /_Inno equal to zero, and the symbol table index of the
function’s entry is in [_symndx. Otherwise, !_lnno is non-zero, and I_paddr

is the physical address of the code for the referenced line. Thus the overall
structure is the following:

[_addr [_Inno
function symtab index 0
physical address line
physical address line
function symtab index 0
physical address line
physical address line
SEE ALSO

cc(1), sdb(1), a.out(4).

A AT&T Administrator’s Reference Manual 1

LINENUM(4) LINENUM(4)

2 AT&T Administrator's Reference Manual A

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>
DESCRIPTION

mnttab resides in directory /etc and contains a table of devices, mounted
by the mount (1M) command, in the following structure as defined by
<mnttab.h> :

struct mnttab {
char mt_dev[32];
char mt_filsys[32];
short mt_ro_flg;
time_t mt_time;

.
)

Each entry is 70 bytes in length; the first 32 bytes are the null-padded
name of the place where the special file is mounted; the next 32 bytes rep-
resent the null-padded root name of the mounted special file; the remain-
ing 6 bytes contain the mounted special file’s read/write permissions and
the date on which it was mounted.

SEE ALSO
mount(1M) in the D-NIX 5.3 Reference Manual.

setmnt(1M) in the Administrator’s Reference Manual.

A AT&T Administrator’'s Reference Manual 1

MNTTAB(4) MNTTAB(4)

2 AT&T Administrator's Reference Manual A

PASSWD(4) PASSWD(4)

NAME

passwd - password file

DESCRIPTION

passwd contains for each user the following information:

login name

encrypted password

numerical user D

numerical group ID

GCos job number, box number, optional Gcos user 1D
initial working directory

program to use as shell

This is an ascii file. Each field within each user’s entry is separated from
the next by a colon. The Gcos field is used only when communicating with
that system, and in other installations can contain any desired informa-
tion. Each user is separated from the next by a new-line. If the password
field is null, no password is demanded; if the shell field is null, the shell it-
self is used.

This file resides in directory /etc. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-charac-
ter alphabet (.,/,0-9, A-Z, a-z), except when the password is null, in
which case the encrypted password is also null. Password aging is effected
for a particular user if his encrypted password in the password file is fol-
lowed by a comma and a non-null string of characters from the above al-
phabet. (Such a string must be introduced in the first instance by the
super-user.)

The first character of the age, M say, denotes the maximum number of
weeks for which a password is valid. A user who attempts to login after his
password has expired will be forced to supply a new one. The next charac-
ter, m say, denotes the minimum period in weeks which must expire before
the password may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last changed.
(A null string is equivalent to zero.) M and m have numerical values in the
range 0-63 that correspond to the 64-character alphabet shown above (i.e.,
/=1 week; z = 63 weeks). If m = M = 0 (derived from the string. or ..) the
user will be forced to change his password the next time he logs in (and the
“age” will disappear from his entry in the password file). If m > M (sig-
nified, e.g., by the string ./) only the super-user will be able to change the
password.

FILES

/ete/passwd

A AT&T Administrator’'s Reference Manual 1

PASSWD(4) PASSWD(4)

SEE ALSO

a641(3C), getpwent(3C), group(4).
login(1), passwd(1) in the D-NIX 6.3 Reference Manual.

2 AT&T Administrator's Reference Manual A

PNCH(4) PNCH(4)

NAME
pnch - file format for card images
DESCRIPTION

The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A pNcH file is a simple concatenation of card records. A card record consists
of a single control byte followed by a variable number of data bytes. The
control byte specifies the number (which must lie in the range 0-80) of data
bytes that follow. The data bytes are 8-bit codes that constitute the card
image. If there are fewer than 80 data bytes, it is understood that the
remainder of the card image consists of trailing blanks.

A AT&T Administrator’'s Reference Manual 1

PNCH(4) PNCH(4)

2 AT&T Administrator’s Reference Manual A

PROFILE(4) PROFILE(4)

NAME

profile - setting up an environment at login time

SYNOPSIS

/etc/profile
$HOME/.profile

DESCRIPTION

All users who have the shell, sk (1), as their login command have the com-
mands in these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the en-
tire user community. Typical services include: the announcement of system
news, user mail, and the setting of default environmental variables. It is
not unusual for /etc/profile to execute special actions for the root login or
the su (1) command. Computers running outside the Eastern time zone
should have the line

. /etc/TIMEZONE
included early in /etc/profile (see timezone (4)).

The file sHoME / .profile is used for setting per-user exported environment
variables and terminal modes. The following example is typical (except for
the comments):

Make some environment variables global"

export MAIL PATH TERM

set file creation mask"

umask 027

Tell me when new mail comes in
MAIL=/usr/mail/$LOGNAME

Add my /bin directory to the shell search sequence
PATH=$PATH: $HOME/bin

Set terminal type

while :
do echo "terminal: \c"
read TERM
if [-f ${TERMINFO:-/usr/lib/terminfo}/?/$STERM]
then break
elif [-f /usr/lib/terminfo/?/$TERM]
then break
else echo "invalid term STERM" 1>&2
fi
done

Initialize the terminal and set tabs
The environmental variable TERM must have been exported
before the "tput init" command is executed.

tput init
Set the erase character to backspace
stty erase ’'“H’ echoe

FILES

/etc/TIMEZONE timezone environment
$HOME/.profile = user-specific environment
[etc/profile system-wide environment

A AT&T Administrator’'s Reference Manual 1

PROFILE(4) PROFILE(4)

SEE ALSO
terminfo(4), timezone(4), environ(5), term(5).
env(l), tput(l) in the User’s Reference Manual.

su(1M), login(1), mail(1), sh(1), stty(1), su(l), in the D-NIX 6.3 Reference
Manual.

NOTES

Care'must be taken in providing system-wide services in /etc/profile. Per-
sonal .profile files are better for serving all but the most global needs.

2 AT&T Administrator's Reference Manual A

RELOC(4) RELOC(4)

NAME

reloc - relocation information for a common object file

SYNOPSIS

#include <reloc.h>
DESCRIPTION

Object files have one relocation entry for each relocatable reference in the
text or data. If relocation information is present, it will be in the following
format.

?truct reloc
long r_vaddr; /* (virtual) address of reference */
long r_symndx ;/* index into symbol table */
ushort r_type; /*relocation type */};

#define R_RELBYTE 017

#define R_RELWORD 020

#define R _RELLONG 021

#define R_PCRBYTE 022

#define = R_PCRWORD 023

#define R_PCRLONG 024

As the link editor reads each input section and performs relocation, the
relocation entries are read. They direct how references found within the
input section are treated.

R_RELBYTE A direct 8-bit reference to the symbol’s virtual address.
R_RELWORD A direct 16-bit reference to the symbol’s virtual address.
R_RELLONG A direct 32-bit reference to the symbol’s virtual address.
R_PCRBYTE A “PC-relative” 8-bit reference to the symbol’s virtual

address. The actual address is calculated by adding a
constant to the PC value.

R_PCRWORD A “PC-relative” 16-bit reference to the symbol’s virtual
address. The actual address is calculated by adding a
constant to the PC value.

R_PCRLONG A “PC-relative” 32-bit reference to the symbol’s virtual
address. The actual address is calculated by adding a
constant to the PC value.

A relocation entry with a symbol index of -1 indicates that the relative dif-
ference between the current segment’s start address and the program’s
load address is added to the relocation address.

More relocation types exist for other processors. Equivalent relocation
types on different processors have equal values and meanings. New reloca-
tion types will be defined (with new values) as they are needed.

Relocation entries are generated automatically by the assembler and
automatically used by the link editor. Link editor options exist for both
preserving and removing the relocation entries from object files.

A AT&T Administrator’s Reference Manual 1

RELOC(4) RELOC(4)

SEE ALSO
as(l), 1d(1), a.out(4), syms(4).

2 AT&T Administrator's Reference Manual A

SCCSFILE(4) SCCSFILE(4)

NAME

sccsfile - format of sccs file

DESCRIPTION

An sccs (Source Code Control System) file is an ascii file. It consists of six
logical parts: the checksum, the delta table (contains information about
each delta), user names (contains login names and/or numerical group s
of users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information about the
file), and the body (contains the actual text lines intermixed with control
lines).

Throughout an sccs file there are lines which begin with the Asci son
(start of heading) character (octal 001). This character is hereafter referred
to as the control character and will be represented graphically as @. Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between
00000 and 99999).

Each logical part of an sccs file is described in detail below.

Checksum
The checksum is the first line of an sccs file. The form of the line is:
@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @h provides a magic number of (octal) 064001.

Delta table

The delta table consists of a variable number of entries of the form:

@S DDDDD/DDDDD/DDDDD

@d <type> <sccs ID> yr/mo/da/hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@g DDDDD ...

@m <MR number>

@c <comments> ...

@e
The first line (@s) contains the number of lines inserted/deleted/un-
changed, respectively. The second line (@d) contains the type of the del-
ta (currently, normal: D, and removed: R), the sccs ID of the delta, the
date and time of creation of the delta, the login name corresponding to

the real user ID at the time the delta was created, and the serial num-
bers of the delta and its predecessor, respectively.

A AT&T Administrator’s Reference Manual 1

SCCSFILE(4) SCCSFILE(4)

The @i, @x, and @g lines contain the serial numbers of deltas inclu-
ded, excluded, and ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.
User names

The list of login names and/or numerical group 1Ds of users who may
add deltas to the file, separated by new-lines. The lines containing the-
se login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the succeeding group or user
from making deltas.

Flags

Keywords used internally. [See admin (1) for more information on the-
ir use.] Each flag line takes the form:

@f <flag> <optional text>
The following flags are defined:

@ft <type of program>
@f v <program name>
@fi <keyword string>
@fb

@f m <module name>
@f f <floor>

@fc <ceiling>

@fd <default-sid>

@f n

@f { <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y% identification keyword.
The v flag controls prompting for MR numbers in addition to com-
ments; if the optional text is present it defines an MR number validity
checking program. The i flag controls the warning/error aspect of the
“No id keywords” message. When the i flag is not present, this messa-
ge is only a warning; when the i flag is present, this message will cau-
se a “fatal” error (the file will not be gotten, or the delta will not be
made). When the b flag is present the -b keyletter may be used on the
get command to cause a branch in the delta tree. The m flag defines
the first choice for the replacement text of the %M% identification key-
word. The f flag defines the “floor” release; the release below which no
deltas may be added. The c flag defines the “ceiling” release; the relea-
se above which no deltas may be added. The d flag defines the default
SID to be used when none is specified on a get command. The n flag
causes delta to insert a “null” delta (a delta that applies no changes) in
those releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are skip-
ped). The absence of the n flag causes skipped releases to be complete-

2 AT&T Administrator’'s Reference Manual A

SCCSFILE(4) SCCSFILE(4)

ly empty. The j flag causes get to allow concurrent edits of the same ba-
se SID. The 1 flag defines a list of releases that are locked against edi-
ting [get (1) with the -e keyletter]. The q flag defines the replacement
for the %Q% identification keyword. The z flag is used in certain spe-
cialized interface programs. Comments Arbitrary text is surrounded by
the bracketing lines @t and @T. The comments section typically will
contain a description of the file’s purpose.

Body

The body consists of text lines and control lines. Text lines do not begin
with the control character, control lines do. There are three kinds of
control lines: insert, delete, and end, represented by:

@! DDDDD
eD DDDDD
@E DDDDD

respectively. The digit string is the serial number corresponding to the
delta for the control line.

SEE ALSO
admin(1), delta(1), get(1), prs(1).

A AT&T Administrator’'s Reference Manual 3

SCCSFILE(4) SCCSFILE(4)

4 AT&T Administrator’s Reference Manual A

SCNHDR(4) SCNHDR(4)

NAME

scnhdr - section header for a common object file
SYNOPSIS

#include <scnhdr.h>
DESCRIPTION

Every common object file has a table of section headers to specify the
layout of the data within the file. Each section within an object file has its
own header. The C structure appears below.

struct scnhdr
char s_name[SYMNMLEN]; /* section name */
long s_paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size */
long s_scnptr; /* file ptr to raw data */
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */
unsigned short s_nreloc; /* # reloc entries */
unsigned short s_nlnno; /* # line number entries */
} long s_flags; /* flags */

File pointers are byte offsets into the file; they can be used as the offset in
a call to FSEEK [see ldfcn (4)]. If a section is initialized, the file contains
the actual bytes. An uninitialized section is somewhat different. It has a
size, symbols defined in it, and symbols that refer to it. But it can have no
relocation entries, line numbers, or data. Consequently, an uninitialized
section has no raw data in the object file, and the values for s_scnptr,
s_relptr, s_lnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
1d(1), fseek(3S), a.out(4).

A AT&T Administrator’s Reference Manual 1

SCNHDR(4) SCNHDR(4)

2 AT&T Administrator’'s Reference Manual A

SCR_DUMP(4) SCR_DUMP(4)

NAME

scr_dump - format of curses screen image file.
SYNOPSIS

scr_dump (file)
DESCRIPTION

The curses (3X) function scr_dump () will copy the contents of the screen
into a file. The format of the screen image is as described below.

The name of the ¢ty is 20 characters long and the modification time (the
mtime of the tty that this is an image of) is of the type time_t. All other
numbers and characters are stored as chtype (see <curses.h>). No
newlines are stored between fields.

<magic number: octal 0433>

<name of tty>

<mod time of tty>

<columns> <lines>

<line length> <chars in line> for each line on the screen
<line length> <chars in line>

<labels?> 1, if soft screen labels are present
<Cursor row> <cursor column>

Only as many characters as are in a line will be listed. For example, if the
<line length> is 0, there will be no characters following <line length>. If
<labels?> is TRUE, following it will be

<number of labels>
<label width>
<chars in label 1>
<chars in label 2>

SEE ALSO

curses(3X).

A AT&T Administrator’'s Reference Manual 1

SCR_DUMP(4) SCR_DUMP(4)

2 AT&T Administrator’'s Reference Manual A

SYMS(4) SYMS(4)

NAME

syms - common object file symbol table format
SYNOPSIS

#include <syms.h>
DESCRIPTION

Common object files contain information to support symbolic software test-
ing [see sdb (1)]. Line number entries, linenum (4), and extensive symbolic
information permit testing at the C source level. Every object file’s symbol
table is organized as shown below.

File name 1.
Function 1.
Local symbols for function 1.
Function 2.
Local symbols for function 2.

Static externs for file 1.
File name 2.
Function 1.
Local symbols for function 1.
Function 2.
Local symbols for function 2.

é.tatic externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the
structure hold the name (null padded), its value, and other information.
The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14
#define DIMNUM 4
?truct syment

}mion /* all ways to get symbol name */
char _n_name[SYMNMLEN]; /* symbol name */
struct
long _n_zeroes; /* == OL when in string table */
| long _n_offset; /* location of name in table */
n_n;
} char * n_nptr[2]; /* allows overlaying */
n;
long n_value; /* value of symbol */
short n_scnum,; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numausx; /* number of aux entries */

I
#define n_name _h._n_name
#define n_zeroes _Nh._n_n._n_zeroes

A AT&T Administrator's Reference Manual 1

SYMS(4) SYMS(4)

#define n_offset

n_n._n_offset
#define n_nptr n

n.
“n._n_nptr[1]

Meaningful values and explanations for them are given in both syms.h
and Common Object File Format. Anyone who needs to interpret the
entries should seek more information in these sources. Some symbols re-
quire more information than a single entry; they are followed by awxiliary
entries that are the same size as a symbol entry. The format follows.

union auxent

{

struct

long x_tagndx;
union -

{

struct

unsigned short x_lnno;
unsigned short x_size;
} x_Insz;
long x_fsize;
} x_misc;
union

struct

long x_lnnoptr;
long x_endndx;
} x_fen;
?truct
unsigned short x_dimen[DIMNUM];
x_ary;
}
x_fenary;
unsigned short x_tvndx;
} x sym;
struct

char x_fname[FILNMLEN];
} x_file;
struct

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;
} X_scn;
?truct
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];
} x_tv;

h

Indexes of symbol table entries begin at zero.

2 AT&T Administrator’'s Reference Manual A

SYMS(4) SYMS(4)

SEE ALSO
sdb(1), a.out(4), linenum(4).
WARNINGS

On machines on which int s are equivalent to long s, all long s have their
type changed to int. Thus the information about which symbols are
declared as long s and which, as int s, does not show up in the symbol
table.

A AT&T Administrator’'s Reference Manual 3

SYMS(4) SYMS(4)

4 AT&T Administrator’'s Reference Manual A

TERM(4) TERM(4)

NAME

term - format of compiled term file.
SYNOPSIS

/usr/lib/terminfo/?/*
DESCRIPTION

Compiled terminfo (4) descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge UNIX system
directory, a two-level scheme is used: /usr/lib/terminfo/c/name where
name is the name of the terminal, and c is the first character of name.
Thus, att4425 can be found in the file /usr/lib/terminfo/a/att4425.
Synonyms for the same terminal are implemented by multiple links to the
same compiled file.

The format has been chosen so that it will be the same on all hardware. An
8-bit byte is assumed, but no assumptions about byte ordering or sign ex-
tension are made. Thus, these binary terminfo (4) files can be transported
to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the most
significant 8 bits. (Thus, the value represented is 256*second+first.) The
value -1 is represented by 0377,0377, and the value -2 is represented by
0376,0377; other negative values are illegal. Computers where this does
not correspond to the hardware read the integers as two bytes and com-
pute the result, making the compiled entries portable between machine
types. The -1 generally means that a capability is missing from this ter-
minal. The -2 means that the capability has been cancelled in the termin-
fo (4) source and also is to be considered missing.

The compiled file is created from the source file descriptions of the ter-
minals (see the -I option of infocmp (1M)) by using the terminfo (4) com-
piler, tic (1M), and read by the routine setupterm (). (See curses (3X).)
The file is divided into six parts: the header, terminal names, boolean
flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers
in the format described below. These integers are (1) the magic number
(octal 0432); (2) the size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short integers in the num-
bers section; (5) the number of offsets (short integers) in the strings sec-
tion; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first line of the ter-
minfo (4) description, listing the various names for the terminal, separated
by the bar (|) character (see term (5)). The section is terminated with an
ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been
cancelled. The capabilities are in the same order as the file < term.h >.

A AT&T Administrator’s Reference Manual 1

TERM(4) TERM(4)

Between the boolean section and the number section, a null byte will be in-
serted, if necessary, to ensure that the number section begins on an even
byte. All short integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value repre-
sented is -1 or -2, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short in-
teger, in the format above. A value of -1 or -2 means the capability is miss-
ing. Otherwise, the value is taken as an offset from the beginning of the
string table. Special characters in "X or \c¢ notation are stored in their in-
terpreted form, not the printing representation. Padding information
($<nn>) and parameter information (%x) are stored intact in uninterpreted
form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm () to expect a different set of
capabilities than are actually present in the file. Either the database may
have been updated since setupterm () has been recompiled (resulting in
extra unrecognized entries in the file) or the program may have been
recompiled more recently than the database was updated (resulting in
missing entries). The routine setupterm () must be prepared for both pos-
sibilities - this is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists of boolean, num-
ber, and string capabilities.

As an example, an octal dump of the description for the aT&T Model 37 Xsr
is included:

37|tty37|AT&T model 37 teletype,
hc, os, xon,
bel="G, cr=\r, cubl=\b, cudl=\n, cuul=\E7, hd=\E9,
hu=\E8, ind=\n,

0000 032 001 \0 032 \0 013 \0 021 001 3 \o 3 7 | t
0020 t y 3 7 | A T & T m o d e 1
0040 3 7 t e 1 e t y p e \o \o \o \O \O
0060 \NO \O \O 001 \O \NO \NO \NO \O \O N0 001 \Oo \O \O \O
0100 001 \NO \O \O \O \O 377 377 377 377 377 377 377 377 377 377
0120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \O
0140 \O 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0160 377 377 " \0 377 377 377 377 (\O 377 377 377 377 377 3717
0200 377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377
0220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \o
0540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \O
0560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

1160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7
1200 | t t y 3 7 | A T & T m o d e
1220 1 3 7 t e 1 e t y p e \0 \r \oO
1240 \n \0 \n \0 007 \O \b \O 033 8 \0 033 9 \0 033 7
1260 \0 \O

1261

Some limitations: total compiled entries cannot exceed 4096 bytes; all
entries in the name field cannot exceed 128 bytes.

2 AT&T Administrator's Reference Manual A

TERM(4) TERM(4)

FILES

fusr/lib/terminfo/?/* compiled terminal description database
fusr/include/term.h terminfo (4) header file

SEE ALSO
curses(3X), terminfo(4), term(5).

infocmp(1M) in the Administrator’s Reference Manual.
BUGS

For compatability reasons, the terminfo database on a DS90 is stored with
most significant byte first and least significant byte last.

A AT&T Administrator’'s Reference Manual 3

TERM(4) TERM(4)

4 AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
fusr/lib/terminfo/?/*
DESCRIPTION

terminfo is a compiled database (see tic (1M)) describing the capabilities of
terminals. Terminals are described in terminfo source descriptions by
giving a set of capabilities which they have, by describing how operations
are performed, by describing padding requirements, and by specifying in-
itialization sequences. This database is used by applications programs,
such as vi (1) and curses (3X), so they can work with a variety of terminals
without changes to the programs. To obtain the source description for a ter-
minal, use the -I option of infocmp (1M).

Entries in terminfo source files consist of a number of comma-separated
fields. White space after each comma is ignored. The first line of each ter-
minal description in the terminfo database gives the name by which termin-
fo knows the terminal, separated by bar (|) characters. The first name
given is the most common abbreviation for the terminal (this is the one to
use to set the environment variable TERM in $HOME/.profile ; see

profile (4)), the last name given should be a long name fully identifying the
terminal, and all others are understood as synonyms for the terminal
name. All names but the last should contain no blanks and must be unique
in the first 14 characters; the last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att4425. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode.
See term (5) for examples and more information on choosing names and

synonyms.
CAPABILITIES

In the table below, the Variable is the name by which the C programmer
(at the terminfo level) accesses the capability. The Capname is the short
name for this variable used in the text of the database. It is used by a per-
son updating the database and by the #put (1) command when asking what
the value of the capability is for a particular terminal. The Termcap Code
is a two-letter code that corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short. Whenever possible,
names are chosen to be the same as or similar to the ANSI X3.64-1979 stan-
dard. Semantics are also intended to match those of the specification.

All string capabilities listed below may have padding specified, with the ex-
ception of those used for input. Input capabilities, listed under the Strings

A AT&T Administrator’'s Reference Manual 1

TERMINFO(4) TERMINFO(4)

section in the table below, have names beginning with key_. The following
indicators may appear at the end of the Description for a variable.

(e)) indicates that the string is passed through tparm()
with parameters (parms) as given (#;).

& indicates that padding may be based on the number of
lines affected.

(#) indicates the i** parameter.
Variable Cap- Termcap Description

name Code
Booleans:
auto_left_margin bw bw cubl wraps from column 0 to last column
auto_right_margin am am Terminal has automatic margins
no_esc_ctle xsb xb Beehive (fl=escape, f2=ctrl C)
ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)
eat_newline_glitch xenl xn Newline ignored after 80 cols (Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g. dialup, switch).
hard_copy he he Hardcopy terminal
hard_cursor chts HC Cursor is hard to see.
has_meta_key km km Has a meta key (shift, sets parity bit)
has_status_line hs hs Has extra "status line"
insert_null_glitch in in Insert mode distinguishes nulls
memory_above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won't work, xon/xoff required
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
no_pad_char npc NP Pad character doesn't exist
over_strike os os Terminal overstrikes on hard-copy terminal
prtr_silent medi 6i Printer won't echo on screen.
status_line_esc_ok eslok es Escape can be used on the status line
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
tilde_glitch hz hz Hazeltine; can'’t print tildes(~)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon X0 Terminal uses xon/xoff handshaking
Numbers:
columns cols co Number of columns in a line
init_tabs it it Tabs initially every # spaces.
label_height lh lh Number of rows in each label
label_width Iw lw Number of cols in each label
lines lines i Number of lines on screen or page
lines_of_memory Im Im Lines of memory if > lines; 0 means varies
magic_cookie_glitch xmc sg Number blank chars left by smso or rmso
num_labels nlab Nl Number of labels on screen (start at 1)
padding baud_rate pb pb Lowest baud rate where padding needed
virtual_terminal vt vt Virtual terminal number (UNIX system)
width_status_line wsl ws Number of columns in status line

2 AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

Strings:

acs_chars acsc ac Graphic charset pairs aAbBcC - def=vt100+
back_tab cbt bt Back tab

bell bel bl Audible signal (bell)

carriage_return cr cr Carriage return (*)
change_scroll_region csr cs Change to lines #1 thru #2 (vt100) (G)
char_padding rmp rP Like ip but when in replace mode
clear_all tabs tbe ct Clear all tab stops

clear_margins mge MC Clear left and right soft margins
clear_screen clear cl Clear screen and home cursor (*)
clr_bol ell cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line

clr_ecs ed cd Clear to end of display (*)
column_address hpa ch Horizontal position absolute (G)
command_character cmdch CC Term. settable cmd char in prototype
cursor_addrees cup cm Cursor motion to row #1 col #2 (G)
cursor_down cudl do Down one line

cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible

cursor_left cubl le Move cursor left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing (G)
cursor_normal cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right cufl nd Non-destructive space (cursor right)
cursor_to_ll 1l 1 Last line, first column (if no cup)
cursor_up cuul up Upline (cursor up)

cursor_visible cvvis s Make cursor very visible
delete_character dchl dec Delete character (*)

delete_line dl1 dl Delete line (*)

dis_status_line dsl ds Disable status line

down_half line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate char set
enter_alt_charset_modsmacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking

enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smecup ti String to begin programs that use cup
enter_delete_mode smdec dm Delete mode (enter)

enter_dim_mode dim mh Turn on half-bright mode
enter_insert_mode smir im Insert mode (enter);
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev - mr Turn on reverse video mode
enter_secure_mode invis mk Turn on blank mode (chars invisible)
enter_standout_mode smso so Begin standout mode
enter_underline_mode smul us Start underscore mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters (G)

exit_alt charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode 8gr0 me Turn off all attributes

exit_ca_mode " rmcup te String to end programs that use cup
exit_delete_mode rmde ed End delete mode

exit_insert_mode rmir ei End insert mode;
exit_standout_mode rmso se End standout mode
exit_underline_mode rmul ue End underscore mode

exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)
form_feed ff ff Hardcopy terminal page eject (*)
from_status_line fsl fs Return from status line

init_lstring isl il Terminal initialization string

A AT&T Administrator’'s Reference Manual 3

TERMINFO(4)

init_2string
init_3etring
init_file
init_prog
insert_character
insert_line
insert_padding
key_al
key_a3
key_b2
key_backspace
key_beg
key_btab
key_cl
key_c3
key_cancel
key_catab
key_clear
key_close
key_command
key_copy
key_create
key_ctab
key_dc
key_dl
key_down
key_eic
key_end
key_enter
key_eol
key_eos
key_exit
key_f0

key_f1

is2
is3

iprog
ichl
i1l

ip
kal

kb2
kbs
kbeg
kebt
kel
ke3
kcan
ktbe
kelr
kclo
kemd
kepy
kert
kctab
kdchl
kdll
kcud1l

kend
kent
kel
ked
kext

kf1l
kf12
kf13
kf14
kf15
kf16
kf17
kf18
kf19

kf21

i3

?

3

&

TERMINFO(4)

Terminal initialization string

Terminal initialization string

Name of initialization file containing is

Path name of program for init.

Insert character

Add new blank line (*)

Insert pad after character inserted (*)

KEY_Al, 0534, Upper left of keypad

KEY_A3, 0535, Upper right of keypad

KEY_B2, 0536, Center of keypad
KEY_BACKSPACE, 0407, Sent by backspace key
KEY_BEG, 0542, Sent by beg(inning) key
KEY_BTAB, 0541, Sent by back-tab key
KEY_C1, 0537, Lower left of keypad

KEY_C3, 0540, Lower right of keypad
KEY_CANCEL, 0543, Sent by cancel key
KEY_CATAB, 0526, Sent by clear-all-tabs key
KEY_CLEAR, 0515, Sent by clear-screen or erase key
KEY_CLOSE, 0544, Sent by close key
KEY_COMMAND, 0545, Sent by cmd (command) key
KEY_COPY, 0546, Sent by copy key
KEY_CREATE, 0547, Sent by create key
KEY_CTAB, 0525, Sent by clear-tab key

KEY DC, 0512, Sent by delete-character key
KEY_DL, 0510, Sent by delete-line key

KEY DOWN, 0402, Sent by terminal down-arrow key
KEY_EIC, 0514, Sent by rmir or smir in insert mode
KEY_END, 0550, Sent by end key

KEY _ENTER, 0527, Sent by enter/send key
KEY_EOL, 0517, Sent by clear-to-end-of-line key
KEY_EOS, 0516, Sent by clear-to-end-of-screen key
KEY_EXIT, 0551, Sent by exit key

KEY_F(0), 0410, Sent by function key fO
KEY_F(1), 0411, Sent by function key f1

KEY _F(2), 0412, Sent by function key {2
KEY_F(3), 0413, Sent by function key f3
KEY_F(4), 0414, Sent by function key f4
KEY_F(5), 0415, Sent by function key f5
KEY_F(6), 0416, Sent by function key f6
KEY_F(7), 0417, Sent by function key 7
KEY_F(8), 0420, Sent by function key 8
KEY_F(9), 0421, Sent by function key 9
KEY_F(10), 0422, Sent by function key f10
KEY_F(11), 0423, Sent by function key f11

KEY F(12), 0424, Sent by function key 12
KEY_F(13), 0425, Sent by function key f13
KEY_F(14), 0426, Sent by function key fl14
KEY_F(15), 0427, Sent by function key f15
KEY_F(16), 0430, Sent by function key f16
KEY_F(17), 0431, Sent by function key f17

KEY F(18), 0432, Sent by function key f18
KEY_F(19), 0433, Sent by function key f19
KEY_F(20), 0434, Sent by function key f20
KEY_F(21), 0435, Sent by function key {21
KEY_F(22), 0436, Sent by function key £22

AT&T Administrator's Reference Manual A

TERMINFO(4)

key_f23
key_ {24
key_f25
key_26
key_f27
key_ {28
key_f29
key_£30
key_f31
key_{32
key_f33
key_£34
key_f35
key_136
key_f37
key_£38
key_f39
key_f40
key_f41
key_f42
key_f43
key_f44
key 45
key_{46
key_f47
key_f48
key_f49
key_f50
key {51
key_f52
key_f53
key_f54
key_f55
key_f56
key_f57
key_f58
key_f59
key_f80
key_f61
key_82
key_f63
key_find
key_help
key_home
key_ic
key_il
key_left
key_ll
key_mark
key_meesage
key_move
key_next
key_npage
key_open
key_options
key_ppage

kf40
kf41
kf42
kf43
kf44
kf45
kf46
kf47
kf48
kf49

kfnd

khome
kichl
kill
kcubl
kil
kmrk
kmsg
kmov

kopn
kopt
kpp

TERMINFO(4)

KEY_F(23), 0437, Sent by function key 23
KEY_F(24), 0440, Sent by function key 24
KEY_F(25), 0441, Sent by function key 25
KEY_F(26), 0442, Sent by function key 26
KEY F(27), 0443, Sent by function key {27
KEY_F(28), 0444, Sent by function key 28
KEY F(29), 0445, Sent by function key {29
KEY_F(30), 0446, Sent by function key 30
KEY_F(31), 0447, Sent by function key 31
KEY_F(32), 0450, Sent by function key f32
KEY_F(33), 0451, Sent by function key £33
KEY_F(34), 0452, Sent by function key £34
KEY_F(35), 0453, Sent by function key £35
KEY_F(36), 0454, Sent by function key 36
KEY_F(37), 0455, Sent by function key {37
KEY_F(38), 0456, Sent by function key 38
KEY_F(39), 0457, Sent by function key f39
KEY_F(40), 0460, Sent by function key f40
KEY _F(41), 0461, Sent by function key f41
KEY_F(42), 0462, Sent by function key 42
KEY F(43), 0463, Sent by function key f43
KEY _F(44), 0464, Sent by function key f44
KEY_F(45), 0465, Sent by function key f45
KEY F(46), 0466, Sent by function key f46
KEY_F(47), 0467, Sent by function key f47
KEY _F(48), 0470, Sent by function key 48
KEY_F(49), 0471, Sent by function key f49
KEY_F(50), 0472, Sent by function key {50
KEY _F(61), 0473, Sent by function key 51
KEY_F(52), 0474, Sent by function key 52
KEY_F(53), 0475, Sent by function key 53
KEY_F(54), 0476, Sent by function key f54
KEY_F(55), 0477, Sent by function key 55
KEY_F(56), 0500, Sent by function key {56
KEY_F(57), 0501, Sent by function key 57
KEY_F(58), 0502, Sent by function key f58
KEY_F(59), 0503, Sent by function key f59
KEY_F(60), 0504, Sent by function key {60
KEY_F(61), 0505, Sent by function key f61
KEY_F(62), 0506, Sent by function key {62
KEY_F(63), 0507, Sent by function key 163
KEY_FIND, 0552, Sent by find key
KEY_HELP, 0553, Sent by help key
KEY_HOME, 0406, Sent by home key
KEY_IC, 0513, Sent by ins-char/enter ins-mode key
KEY _IL, 0511, Sent by insert-line key
KEY_LEFT, 0404, Sent by terminal left-arrow key
KEY_LL, 0533, Sent by home-down key
KEY_MARK, 0554, Sent by mark key
KEY_MESSAGE, 0555, Sent by message key
KEY_MOVE, 05566, Sent by move key
KEY_NEXT, 0557, Sent by next-object key
KEY_NPAGE, 0522, Sent by next-page key
KEY_OPEN, 0560, Sent by open key
KEY_OPTIONS, 0561, Sent by options key
KEY_PPAGE, 0523, Sent by previous-page key

AT&T Administrator’'s Reference Manual 5

TERMINFO(4)

key_previous
key_print
key_redo
key_reference
key_refresh
key_replace
key_restart
key_resume
key_right
key_save
key_sbeg
key_scancel
key_scommand
key_scopy
key_screate
key_sdc
key_sdl
key_select
key_send
key_seol
key_sexit
key_sf
key_sfind
key_shelp
key_shome
key_sic
key_sleft
key_smessage
key_smove
key_snext
key_soptions
key_sprevious
key_sprint
key_sr
key_sredo
key_sreplace
key_sright
key_srsume
key_ssave
key_ssuspend
key_stab
key_sundo
key_suspend
key_undo
key_up
keypad_local
keypad_xmit
lab_f0

lab_f1

lab_{2

lab_f3

lab_f4

lab_f5

lab_f6

lab_f7

kprv
kprt
krdo

krpl
krst

kecufl
ksav
kBEG
kCAN
kCMD
kCPY
kCRT
kDC
kDL
kslt
kEND
kEOL
kEXT

kFND
kHLP

%8
%9
%0
&l
&2
&3
&4
&5

&6
&9
&0
*1
*2
*3
*4
*5
*6
*7
*8
*9

*0
#1

kHOM #2

kIC
kLFT
kMSG

#3
#4
ot

kMOV %b

kOPT
kPRV
kPRT

kRDO
kRPL

kRES
kSAV
kSPD

kUND
kspd
kund
kcuul

smkx
1f0
Ifl
1£2
1f3
1f4
1f5
1f6
1f7

AT&T Administrator's Reference Manual

Foc

Yo
%of

%g
%h
%i
%)
1
12
KT
13
&7
&8

ke
ks
10
11
12
13
14
15
16
17

TERMINFO(4)

KEY PREVIOUS, 0562, Sent by previous-object key
KEY_PRINT, 0532, Sent by print or copy key
KEY_REDO, 0563, Sent by redo key
KEY_REFERENCE, 0564, Sent by reference) key
KEY_REFRESH, 0565, Sent by refresh key
KEY_REPLACE, 0566, Sent by replace key
KEY_RESTART, 0567, Sent by restart key
KEY_RESUME, 0570, Sent by resume key
KEY_RIGHT, 0405, Sent by terminal right-arrow key
KEY_SAVE, 0571, Sent by save key

KEY_SBEG, 0572, Sent by shifted beginning key
KEY_SCANCEL, 0573, Sent by shifted cancel key
KEY_SCOMMAND, 0574, Sent by shifted command key
KEY_SCOPY, 0575, Sent by shifted copy key
KEY_SCREATE, 0576, Sent by shifted create key
KEY_SDC, 0577, Sent by shifted delete-char key
KEY_SDL, 0600, Sent by shifted delete-line key
KEY_SELECT, 0601, Sent by select key
KEY_SEND, 0602, Sent by shifted end key
KEY_SEOL, 0603, Sent by shifted clear-line key
KEY_SEXIT, 0604, Sent by shifted exit key
KEY_SF, 0520, Sent by scroll-forward/down key
KEY_SFIND, 0605, Sent by shifted find key
KEY_SHELP, 0606, Sent by shifted help key
KEY_SHOME, 0607, Sent by shifted home key
KEY_SIC, 0610, Sent by shifted input key
KEY_SLEFT, 0611, Sent by shifted left-arrow key
KEY_SMESSAGE, 0612, Sent by shifted message key
KEY_SMOVE, 0613, Sent by shifted move key
KEY_SNEXT, 0614, Sent by shifted next key
KEY_SOPTIONS, 0615, Sent by shifted options key
KEY_SPREVIOUS, 0616, Sent by shifted prev key
KEY SPRINT, 0617, Sent by shifted print key

KEY SR, 0521, Sent by scroll-backward/up key
KEY_SREDO, 0620, Sent by shifted redo key

KEY SREPLACE, 0621, Sent by shifted replace key
KEY_SRIGHT, 0622, Sent by shifted right-arrow key
KEY _SRSUME, 0623, Sent by shifted resume key
KEY_SSAVE, 0624, Sent by shifted save key
KEY_SSUSPEND, 0625, Sent by shifted suspend key
KEY_STAB, 0524, Sent by set-tab key
KEY_SUNDO, 0626, Sent by shifted undo key
KEY_SUSPEND, 0627, Sent by suspend key
KEY_UNDO, 0630, Sent by undo key

KEY_UP, 0403, Sent by terminal up-arrow key

Out of “keypad-transmit” mode

Put terminal in “keypad-transmit” mode

Labels on function key f0 if not fO

Labels on function key f1 if not f1

Labels on function key f2 if not 2

Labels on function key f3 if not {3

Labels on function key 4 if not {4

Labels on function key f5 if not {5

Labels on function key B if not {6

Labels on function key 7 if not {7

TERMINFO(4) TERMINFO(4)

lab_f8 18 18 Labels on function key f8 if not f8
lab_f9 119 19 Labels on function key 9 if not f9
lab_f10 1f10 la Labels on function key 10 if not £10
label_off rmln LF Turn off soft labels

label_on smln LO Turn on soft labels

meta_off rmm mo Turn off "meta mode"

meta_on smm mm Turn on "meta mode" (8th bit)

newline nel nw Newline (behaves like cr followed by If)
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars (G*)

parm_delete_line dl DL Delete #1 lines (G*)

parm_down_cursor cud DO Move cursor down #1 lines. (G*)
parm_ich ich IC Insert #1 blank chars (G*)

parm_index indn SF Scroll forward #1 lines. (G)
parm_insert_line il AL Add #1 new blank lines (G*)
parm_left_cursor cub LE Move cursor left #1 spaces (G)
parm_right_cursor cuf RI Move cursor right #1 spaces. (G*)
parm_rindex rin SR Scroll backward #1 linee. (G)
parm_up_cursor cuu UP Move cursor up #1 lines. (G*)

pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string #2
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pln pn Prog label #1 to show string #2
print_screen mc0 ps Print contents of the screen

prtr_non mcSp pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer

prtr_on mcd po Turn on the printer

repeat_char rep rp Repeat char #1 #2 times (G*)
req_for_input rfi RF Send next input char (for ptys)
reset_lstring rsl rl Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor re re Restore cursor to position of last sc
row_address vpa cv Vertical position absolute (G)
save_cursor sc sc Save cursor position.

scroll_forward ind sf Scroll text up

scroll_reverse ri sr Scroll text down

set_attributes sgr sa Define the video attributes #1-#9 (G)
set_left_margin smgl ML Set soft left margin

set_right_margin smgr MR Set soft right margin

set_tab hts st Set a tab in all rows, current column.
set_window wind wi Current window is lines #1-#2 cols #3-#4 (G)
tab ht ta Tab to next 8 space hardware tab stop.
to_status_line tsl ts Go to status line, col #1 (G)
underline_char uc uc Underscore one char and move past it
up_half line hu hu Half-line up (reverse 1/2 linefeed)
xoff_character xoffc XF X-off character

xon_character xonc XN X-on character

A AT&T Administrator’s Reference Manual 7

TERMINFO(4) TERMINFO(4)

SAMPLE ENTRY

The following entry, which describes the Concept-100 terminal, is among
the more complex entries in the terminfo file as of this writing.
concept100|c100|concept|cl04|cl00-4p|concept 100,

am, db, eo, in, mir, ul, xenl,

cols#80, lines#24, pb#9600, vt#8,

bel="G, blank=\EH, blink=\EC, clear="L$§<2+*>,

cnorm=\Ew, cr="M$<9>, cubl="H, cudl="J,

cufl=\E=, cup=\Eatpl%’ ’'%+%cip2%’ '%+%c,

cuul=\E;, cvvis=\EW, dchl=\E"A$<16*>, dim=\EE,

dl1=\E"B$<3*>, ed=\E"C$<16+*>, el=\E"U$<16>,

flash=\Ek$<20>\EK, ht=\t$<8>, ill=\E"R$<3*>,

ind=*J, .ind="J$<9>, ip=$<16*>,

is2=\EU\E£\E7\E5\E8\E1\ENH\EK\E\0\Eo&\0\Eo\47\E,

kbs="h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,

kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?,

prot=\EI, rep=\Er$pltctp2%’ ’'$+8c$<.2+*>,

rev=\ED, rmcup=\Ev\s\s\s\8$<6>\Ep\r\n,

rmir=\E\0, rmkx=\Ex, rmso=\Ed\Ee, rmul=\Eg,

rmul=\Eg, sgrO0=\EN\0, smcup=\EU\Ev\s\s8p\Ep\r,

smir=\E"P, smkx=\EX, smso=\EE\ED, smul=\EG,
Entries may continue onto multiple lines by placing white space at the
beginning of each line except the first. Lines beginning with “4” are taken
as comment lines. Capabilities in terminfo are of three types: boolean
capabilities which indicate that the terminal has some particular feature,
numeric capabilities giving the size of the terminal or particular features,
and string capabilities, which give a sequence which can be used to per-

form particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has
automatic margins (i.e., an automatic return and linefeed when the end of
a line is reached) is indicated by the capability am. Hence the description
of the Concept includes am. Numeric capabilities are followed by the
character ‘4’ and then the value. Thus cols, which indicates the number of
columns the terminal has, gives the value 80 for the Concept. The value
may be specified in decimal, octal or hexadecimal using normal C conven-
tions.

Finally, string-valued capabilities, such as el (clear to end of line sequence)
are given by the two- to five-character capname, an ‘=’, and then a string
ending at the next following comma. A delay in milliseconds may appear
anywhere in such a capability, enclosed in $<..> brackets, as in
el=\eEK$<3>, and padding characters are supplied by tputs () (see cur-
ses (3X)) to provide this delay. The delay can be either a number, e.g., 20,
or a number followed by an ‘*' (i.e., 3*), a / (i.e., 5/), or both (i.e., 10*/). A* ¥
indicates that the padding required is proportional to the number of lines
affected by the operation, and the amount given is the per-affected-unit
padding required. (In the case of insert character, the factor is still the
number of lines affected. This is always one unless the terminal has in and
the software uses it.) When a ‘ *’ is specified, it is sometimes useful to give
a delay of the form 3.5 to specify a delay per unit to tenths of milliseconds.
(Only one decimal place is allowed.) A / indicates that the padding is man-
datory. Otherwise, if the terminal has xon defined, the padding informa-
tion is advisory and will only be used for cost estimates or when the

8 AT&T Administrator’'s Reference Manual A

TERMINFO(4) TERMINFO(4)

terminal is in raw mode. Mandatory padding will be transmitted regard-
less of the setting of xon. ‘

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. Both \E and \e map to
an ESCAPE character,”x maps to a control-x for any appropriate x, and the
sequences \n, \l, \r, \t, \b, \f, and \s give a newline, linefeed, return,
tab, backspace, formfeed, and space, respectively. Other escapes include:
* for caret (*); \ \ for backslash (\); \, for comma (,); \: for colon (:); and
\0 for null. (\0 will actually produce \200, which does not terminate a
string but behaves as a null character on most terminals.) Finally, charac-
ters may be given as three octal digits after a backslash (e.g., \123).

Sometimes individual capabilities must be commented out. To do this, put
a period before the capability name. For example, see the second ind in the
example above. Note that capabilities are defined in a left-to-right order
and, therefore, a prior definition will override a later definition.

Preparing Descriptions

The most effective way to prepare a terminal description is by imitating
the description of a similar terminal in terminfo and to build up a descrip-
tion gradually, using partial descriptions with vi (1) to check that they are
correct. Be aware that a very unusual terminal may expose deficiencies in
the ability of the terminfo file to describe it or the inability of vi (1) to
work with that terminal. To test a new terminal description, set the en-
vironment variable TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs will look there
rather than in /usr/lib/terminfo. To get the padding for insert-line correct
(if the terminal manufacturer did not document it) a severe test is to com-
ment out xon , edit a large file at 9600 baud with vi (1), delete 16 or so
lines from the middle of the screen, then hit the u key several times quick-
ly. If the display is corrupted, more padding is usually needed. A similar
test can be used for insert-character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols
numeric capability. If the terminal has a screen, then the number of lines
on the screen is given by the lines capability. If the terminal wraps around
to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, leaving
the cursor in the home position, then this is given by the clear string
capability. If the terminal overstrikes (rather than clearing a position
when a character is struck over) then it should have the os capability. If
the terminal is a printing terminal, with no soft copy unit, give it both he
and os. (0s applies to storage scope terminals, such as Tektronix 4010
series, as well as hard-copy and APL terminals.) If there is a code to move
the cursor to the left edge of the current row, give this as cr. Normally this
will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, ete) give this as bel. If the terminal uses the xon-xoff
flow-control protocol, like most terminals, specify xon.

A AT&T Administrator’s Reference Manual 9

TERMINFO(4) TERMINFO(4)

If there is a code to move the cursor one position to the left (such as back-
space) that capability should be given as cubl. Similarly, codes to move to
the right, up, and down should be given as cufl, cuul, and cudl. These
local cursor motions should not alter the text they pass over; for example,
you would not normally use “cufl=\s" because the space would erase the
character moved over.

A very important point here is that the local cursor motions encoded in ter-
minfo are undefined at the left and top edges of a screen terminal.
Programs should never attempt to backspace around the left edge, unless
bw is given, and should never attempt to go up locally off the top. In order
to scroll text up, a program will go to the bottom left corner of the screen
and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and
sends the ri (reverse index) string. The strings ind and ri are undefined
when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin which
have the same semantics as ind and ri except that they take one
parameter, and scroll that many lines. They are also undefined except at
the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the
screen when text is output, but this does not necessarily apply to a cufl
from the last column. The only local motion which is defined from the left
edge is if bw is given, then a cub1 from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is undefined. This is
useful for drawing a box around the edge of the screen, for example. If the
terminal has switch selectable automatic margins, the terminfo file usually
assumes that this is on; i.e., am. If the terminal has a command which
moves to the first column of the next line, that command can be given as
nel (newline). It does not matter if the command clears the remainder of
the current line, so if the terminal has no cr and If it may still be possible
to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus
the model 33 teletype is described as
33|tty33|tty|model 33 teletype,
bel="G, cols#72, cr="M, cudl="J, hc, ind="J, os,
while the Lear Siegler apM.3 is described as
adm3|1lsi adm3,
am, bel="G, clear="Z, cols#80, cr="M, cubl="H, cudl="J,
ind="J, lines#24,

Parameterized Strings

10

Cursor addressing and other strings requiring parameters in the terminal
are described by a parameterized string capability, with printf (3S)-like es-
capes (%x) in it. For example, to address the cursor, the cup capability is

given, using two parameters: the row and column to address to. (Rows and
columns are numbered from zero and refer to the physical screen visible to

AT&T Administrator's Reference Manual A

TERMINFO(4) TERMINFO(4)

the user, not to any unseen memory.) If the terminal has memory relative
cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate
it in the manner of a Reverse Polish Notation (postfix) calculator. Typically
a sequence will push one of the parameters onto the stack and then print it
in some format. Often more complex operations are necessary. Binary
operations are in postfix form with the operands in the usual order. That
is, to get x-5 one would use %gx%{5}%-.

The % encodings have the following meanings:
%% outputs ‘%’

%[[:)flags][width[.precision]][doxXs]
as in printf, flags are [-+#] and space

%c print ggp() gives %c

%g[l-Q] push " parm

%Pla-z] set variable [a-z] to pop()

%s{a-z] get variable [a-z] and push it

%'c’ push char constant ¢

Yo{nn} push decimal constant nn

%l push strlen(pop())

%o+ Y- %o* %/ %om arithmetic (%m is mod): push(pop() op pop())
P& % | %" bit operations: push(pop8 op pop())

%= %> %< logical operations: push(pop(op pop())
%A %0 logical operations: and, or

%! Po~ unary operations: push(op pop()

P%i (for ANSI terminals?

add 1 to first parm, if one parm present,
or first two parms, if more than one parm present
%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;
else-if’s are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b %e c3 %t b3 %e c4 %t by
%e bs %;
c; are conditions, b; are bodies.

If the “-” flag is used with “%[doxXs]”, then a colon (:) must be placed be-
tween the “%” and the “-” to differentiate the flag from the binary “%-"
operator, .e.g “%:-16.16s”.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12,
needs to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are zero-padded as two digits. Thus its cup capability is
“cup=\E&a%p2%2.2dc%pl1%2.2dY$<6>".

The Micro-Term ACTIV needs the current row and column sent preceded by
a T, with the row and column simply encoded in binary,
“cup="T%pl%c%p2%c”. Terminals which use “%c” need to be able to back-
space the cursor (cub1), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n, *D,
and \r, as the system may change or discard them. (The library routines
dealing with terminfo set tty modes so that tabs are never expanded, so \t
is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the Ls1 ADM-3a, which uses row and column offset by a
blank character, thus “cup=\E=%p1%’\s'%+%c%p2%'’\s'%+%c". After send-

A AT&T Administrator’s Reference Manual 11

TERMINFO(4) TERMINFO(4)

ing “\E=", this pushes the first parameter, pushes the ASCII value for a
space (32), adds them (pushing the sum on the stack in place of the two
previous values), and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic is possible using
the stack.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner
of screen) then this can be given as home; similarly a fast way of getting
to the lower left-hand corner can be given as 1; this may involve going up
with cuul from the home position, but a program should never do this it-
self (unless 1l does) because it can make no assumption about the effect of
moving up from the home position. Note that the home position is the
same as addressing to (0,0): to the top left corner of the screen, not of
memory. (Thus, the \EH sequence on Hewlett-Packard terminals cannot be
used for home without losing some of the other features on the terminal.)

If the terminal has row or column absolute-cursor addressing, these can be
given as single parameter capabilities hpa (horizontal position absolute)
and vpa (vertical position absolute). Sometimes these are shorter than the
more general two-parameter sequence (as with the Hewlett-Packard 2645)
and can be used in preference to cup. If there are parameterized local mo-
tions (e.g., move n spaces to the right) these can be given as cud, cub, cuf,
and cuu with a single parameter indicating how many spaces to move.
These are primarily useful if the terminal does not have cup , such as the
Tektronix 4025.

Area Clears

If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as el. If the terminal
can clear from the beginning of the line to the current position inclusive,
leaving the cursor where it is, this should be given as ell. If the terminal
can clear from the current position to the end of the display, then this
should be given as ed. ed is only defined from the first column of a line.
(Thus, it can be simulated by a request to delete a large number of lines, if
a true ed is not available.)

Insert/delete line

12

If the terminal can open a new blank line before the line where the cursor
is, this should be given as il1; this is done only from the first position of a
line. The cursor must then appear on the newly blank line. If the terminal
can delete the line which the cursor is on, then this should be given as dl1;
this is done only from the first position on the line to be deleted. Versions
of il1 and dl1 which take a single parameter and insert or delete that
many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100)
the command to set this can be described with the csr capability, which
takes two parameters: the top and bottom lines of the scrolling region. The
cursor position is, alas, undefined after using this command. It is possible
to get the effect of insert or delete line using this command -- the sc and rc

AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

(save and restore cursor) commands are also useful. Inserting lines at the
top or bottom of the screen can also be done using ri or ind on many ter-
minals without a true insert/delete line, and is often faster even on ter-
minals with those features.

To determine whether a terminal has destructive scrolling regions or non-
destructive scrolling regions, create a scrolling region in the middle of the
screen, place data on the bottom line of the scrolling region, move the cur-
sor to the top line of the scrolling region, and do a reverse index (ri) fol-
lowed by a delete line (dl1) or index (ind). If the data that was originally
on the bottom line of the scrolling region was restored into the scrolling
region by the dl1 or ind, then the terminal has non-destructive scrolling
regions. Otherwise, it has destructive scrolling regions. Do not specify csr
if the terminal has non-destructive scrolling regions, unless ind, ri, indn,
rin, dl, and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which
all commands affect, it should be given as the parameterized string wind.
The four parameters are the starting and ending lines in memory and the
starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability
should be given; if display memory can be retained below, then db should
be given. These indicate that deleting a line or scrolling a full screen may
bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to in-
sert/delete character operations which can be described using terminfo.
The most common insert/delete character operations affect only the charac-
ters on the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make
a distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which is
either eliminated, or expanded to two untyped blanks. You can determine
the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type “abc def” using local cursor motions
(not spaces) between the abe and the def. Then position the cursor before
the abe and put the terminal in insert mode. If typing characters causes
the rest of the line to shift rigidly and characters to fall off the end, then
your terminal does not distinguish between blanks and untyped positions.
If the abe shifts over to the def which then move together around the end
of the current line and onto the next as you insert, you have the second
type of terminal, and should give the capability in, which stands for “insert
null”. While these are two logically separate attributes (one line versus
multiline insert mode, and special treatment of untyped spaces) we have
seen no terminals whose insert mode cannot be described with the single
attribute.

terminfo can describe both terminals which have an insert mode and ter-
minals which send a simple sequence to open a blank position on the cur-

A AT&T Administrator’s Reference Manual 13

TERMINFO(4) TERMINFO(4)

rent line. Give as smir the sequence to get into insert mode. Give as rmir
the sequence to leave insert mode. Now give as ichl any sequence needed
to be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give ich1; terminals which send a se-
quence to open a screen position should give it here. (If your terminal has
both, insert mode is usually preferable to ich1. Do not give both unless the
terminal actually requires both to be used in combination.) If post-insert
padding is needed, give this as a number of milliseconds padding in ip (a
string option). Any other sequence which may need to be sent after an in-
sert of a single character may also be given in ip. If your terminal needs
both to be placed into an ‘insert mode’ and a special code to precede each in-
serted character, then both smir / rmir and ich1 can be given, and both
will be used. The ich capability, with one parameter, n, will repeat the ef-
fects of ich1 n times.

If padding is necessary between characters typed while not in insert mode,
give this as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete
characters on the same line (e.g., if there is a tab after the insertion posi-
tion). If your terminal allows motion while in insert mode you can give the
capability mir to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia’s) must not have mir be-
cause of the way their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one
parameter, n, to delete n characters, and delete mode by giving smdc and
rmdc to enter and exit delete mode (any mode the terminal needs to be
placed in for dchl to work).

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

14

If your terminal has one or more kinds of display attributes, these can be
represented in a number of different ways. You should choose one display
form as standout mode (see curses (3X)), representing a good, high con-
trast, easy-on-the-eyes, format for highlighting error messages and other
attention getters. (If you have a choice, reverse-video plus half-bright is
good, or reverse-video alone; however, different users have different
preferences on different terminals.) The sequences to enter and exit stand-
out mode are given as smso and rmso, respectively. If the code to change
into or out of standout mode leaves one or even two blank spaces on the
screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to
tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and
rmul respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the Micro-
Term MIME, this can be given as uc.

Other capabilities to enter various highlighting modes include blink
(blinking), bold (bold or extra-bright), dim (dim or half-bright), invis
(blanking or invisible text), prot (protected), rev (reverse-video), sgr0

AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

(turn off all attribute modes), smacs (enter alternate-character-set mode),
and rmacs (exit alternate-character-set mode). Turning on any of these
modes singly may or may not turn off other modes. If a command is neces-
sary before alternate character set mode is entered, give the sequence in
enacs (enable alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes, this should
be given as sgr (set attributes), taking nine parameters. Each parameter is
either 0 or non-zero, as the corresponding attribute is on or off. The nine
parameters are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need be supported by
sgr, only those for which corresponding separate attribute commands
exist. (See the example at the end of this section.)

Terminals with the “magic cookie” glitch (xme) deposit special “cookies”
when they receive mode-setting sequences, which affect the display al-
gorithm rather than having extra bits for each character. Some terminals,
such as the Hewlett-Packard 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed. Programs using
standout mode should exit standout mode before moving the cursor or
sending a newline, unless the msgr capability, asserting that it is safe to
move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly
(a bell replacement), then this can be given as flash; it must not move the

cursor. A good flash can be done by changing the screen into reverse video,

pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on
the bottom line (to make, for example, a non-blinking underline into an
easier to find block or blinking underline) give this sequence as cvvis. The
boolean chts should also be given. If there is a way to make the cursor com-
pletely invisible, give that as civis. The capability cnorm should be given
which undoes the effects of either of these modes.

If the terminal needs to be in a special mode when running a program that
uses these capabilities, the codes to enter and exit this mode can be given
as smcup and rmcup. This arises, for example, from terminals like the
Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor address-
ing, a one screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the Tektronix 4025,
where smcup sets the command character to be the one used by termin-
fo. If the smcup sequence will not restore the screen after an rmcup se-
quence is output (to the state prior to outputting rmcup), specify nrrme.

If your terminal generates underlined characters by using the underline
character (with no special codes needed) even though it does not otherwise
overstrike characters, then you should give the capability ul. For ter-
minals where a character overstriking another leaves both characters on
the screen, give the capability os. If overstrikes are erasable with a blank,
then this should be indicated by giving eo.

A AT&T Administrator’s Reference Manual 15

TERMINFO(4) TERMINFO(4)

Example of highlighting: assume that the terminal under question needs
the following escape sequences to turn on various modes.

tparm attribute escape sequence
parameter
none \E[Om

pl standout \E[0;4;7m

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3;4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ~O (off) "N(on)

Note that each escape sequence requires a 0 to turn off other modes before
turning on its own mode. Also note that, as suggested above, standout is
set up to be the combination of reverse and dim. Also, since this terminal
has no bold mode, bold is set up as the combination of reverse and under-
line. In addition, to allow combinations, such as underline+blink , the se-
quence to use would be \E[0;3;5m. The terminal doesn’t have protect
mode, either, but that cannot be simulated in any way, so p8 is ignored.
The altcharset mode is different in that it is either *O or *N depending on
whether it is off or on. If all modes were to be turned on, the sequence
would be \ E[0;3;4;5;7;8m"N.

Now look at when different sequences are output. For example, ;3 is output
when either p2 or p8 is true, that is, if either underline or bold modes are
turned on. Writing out the above sequences, along with their dependencies,
gives the following:

sequence when to output terminfo translation

\E[0 always \E[O

;3 if p2 or p6 %?%p2%p6% | Yot;3%;

;4 if pl or p3 or p6 %?%pl%p3% | %op6% | F%ot;4%:;
;5 if p4 %?%p4%t;5%;

;7 if pl or p5 %?%pl%p5% | %ot;7%;

;8 if p7 %?%p7%t;8%:;

m always m
"Nor *O ifp9 "N, else *O %?%p9%t*N%e"0%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6% | %t;3%;%?%pl%p3% | %op6% | %ot;4%;%? T%ep5%t,;
5%;%?%p1%p5% | %t;7%;%?%p1%t;8%;m%?%p9 %t " N%e” 0%;,

Keypad

16

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to hand-
le terminals where the keypad only works in local (this applies, for ex-
ample, to the unshifted Hewlett-Packard 2621 keys). If the keypad can be
set to transmit or not transmit, give these codes as smkx and rmkx.
Otherwise the keypad is assumed to always transmit.

AT&T Administrator’'s Reference Manual A

TERMINFO(4) TERMINFO(4)

The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcufl, kcuul, kecudl, andkhome
respectively. If there are function keys such as 0, f1, ..., f63, the codes they
send can be given as kf0, kf1l, ..., kf83. If the first 11 keys have labels
other than the default fO through f10, the labels can be given as 140, If1, ...,
1f10. The codes transmitted by certain other special keys can be given: kll
(home down), kbs (backspace), ktbe (clear all tabs), kctab (clear the tab
stop in this column), kelr (clear screen or erase key), kdchl (delete charac-
ter), kdll (delete line), krmir (exit insert mode), kel (clear to end of line),
ked (clear to end of screen), kich1 (insert character or enter insert mode),
kill (insert line), knp (next page), kpp (previous page), kind (scroll for-
ward/down), kri (scroll backward/up), khts (set a tab stop in this column).
In addition, if the keypad has a 3 by 3 array of keys including the four
arrow keys, the other five keys can be given as kal , ka3 , kb2, kel , and
kc3. These keys are useful when the effects of a 3 by 3 directional pad are
needed. Further keys are defined above in the capabilities list.

Strings to program function keys can be given as pfkey , pfloc, and pfx.
A string to program their soft-screen labels can be given as pln. Each of
these strings takes two parameters: the function key number to program
(from 0 to 10) and the string to program it with. Function key numbers out
of this range may program undefined keys in a terminal-dependent man-
ner. The difference between the capabilities is that pfkey causes pressing
the given key to be the same as the user typing the given string; pfloc
causes the string to be executed by the terminal in local mode; and pfx
causes the string to be transmitted to the computer. The capabilities nlab ,
Iw and lh define how many soft labels there are and their width and
height. If there are commands to turn the labels on and off, give them in
smin and rmln. smln is normally output after one or more pln sequences
to make sure that the change becomes visible.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab
stop can be given as ht (usually control I). A “backtab” command which
moves leftward to the next tab stop can be given as cbt. By convention, if
the teletype modes indicate that tabs are being expanded by the computer
rather than being sent to the terminal, programs should not use ht or cbt
even if they are present, since the user may not have the tab stops proper-
ly set. If the terminal has hardware tabs which are initially set every n
spaces when the terminal is powered up, the numeric parameter it is
given, showing the number of spaces the tabs are set to. This is normally
used by tput init (see fput (1)) to determine whether to set the mode for
hardware tab expansion and whether to set the tab stops. If the terminal
has tab stops that can be saved in nonvolatile memory, the terminfo
description can assume that they are properly set. If there are commands
to set and clear tab stops, they can be given as tbe (clear all tab stops) and
hts (set a tab stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialization strings for the
terminal; iprog, the path name of a program to be run to initialize the ter-
minal; and if, the name of a file containing long initialization strings.

A AT&T Administrator’s Reference Manual 17

TERMINFO(4) TERMINFO(4)

These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They must be sent to the terminal each
time the user logs in and be output in the following order: run the program
iprog; output is1; output is2; set the margins using mgc, smgl and smgr;
set the tabs using tbe and hts; print the file if; and finally output i83. This
is usually done using the init option of tput (1); see profile (4).

Most initialization is done with i82. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and
special cases in is1 and i83. Sequences that do a harder reset from a total-
ly unknown state can be given as rsl, rs2, rf, and rs3, analogous to isl,
is2, i83, and if. (The method using files, if and rf, is used for a few ter-
minals, from /usr/lib/tabset/*; however, the recommended method is to
use the initialization and reset strings.) These strings are output by tput
reset, which is used when the terminal gets into a wedged state. Com-
mands are normally placed in rsl, rs2, rs3, and rf only if they produce an-
noying effects on the screen and are not necessary when logging in. For
example, the command to set a terminal into 80-column mode would nor-
mally be part of i82, but on some terminals it causes an annoying glitch on
the screen and is not normally needed since the terminal is usually already
in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described
by using tbec and hts, the sequence can be placed in is2 or if.

If there are commands to set and clear margins, they can be given as mgc
(clear all margins), smgl (set left margin), and smgr (set right margin).

Delays

Certain capabilities control padding in the #y (7) driver. These are primari-
ly needed by hard-copy terminals, and are used by tput init to set tty
modes appropriately. Delays embedded in the capabilities cr, ind, cubl, ff,
and tab can be used to set the appropriate delay bits to be set in the tty
driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Status Lines

18

If the terminal has an extra “status line” that is not normally used by
software, this fact can be indicated. If the status line is viewed as an extra
line below the bottom line, into which one can cursor address normally
(such as the Heathkit h19’s 25th line, or the 24th line of a VT100 which is
set to a 23-line scrolling region), the capability hs should be given. Special
strings that go to a given column of the status line and return from the
status line can be given as tsl and fsl. (fsl must leave the cursor position
in the same place it was before tsl. If necessary, the sc and rc strings can
be included in tsl and fsl to get this effect.) The capability tsl takes one
parameter, which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as tab, work while
in the status line, the flag eslok can be given. A string which turns off the
status line (or otherwise erases its contents) should be given as dsl. If the

AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

terminal has commands to save and restore the position of the cursor, give
them as sc and rc. The status line is normally assumed to be the same
width as the rest of the screen, e.g., cols. If the status line is a different
width (possibly because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

Line Graphics

If the terminal has a line drawing alternate character set, the mapping of
glyph to character would be given in acse. The definition of this string is
based on the alternate character set used in the DEC VT100 terminal, ex-
tended slightly with some characters from the AT&T 4410v1 terminal.

glyph name vt100+
character
arrow pointing right +

arrow pointing left
arrow pointing down
solid square b%ock
lantern symbol
arrow pointing up
diamond
checker board (stipple)
degree symbol
glus/minus

oard of squares
lower right corner
upper right corner
upper left corner
lower left corner
plus
scan line 1
horizontal line
scan line 9
left tee
right tee
bottom tee
top tee
vertical line
bullet

-

I XEgLEFDOOD Y —TRTDW AP " HO"

The best way to describe a new terminal’s line graphics set is to add a
third column to the above table with the characters for the new terminal
that produce the appropriate glyph when the terminal is in the alternate
character set mode. For example,

A AT&T Administrator's Reference Manual 19

TERMINFO(4) TERMINFO(4)

glyph name vt100+ new tty

upper left corner
lower left corner
upper right corner
lower right corner
horizontal line
vertical line

X< Ry
C T Q3

Now write down the characters left to right, as in “acsc=IRmFkTjGq\,x.”.

Miscellaneous

20

If the terminal requires other than a null (zero) character as a pad, then
this can be given as pad. Only the first character of the pad string is used.
If the terminal does not have a pad character, specify npec.

If the terminal can move up or down half a line, this can be indicated with
hu (half-line up) and hd (half-line down). This is primarily useful for su-
perscripts and subscripts on hardcopy terminals. If a hardcopy terminal
can eject to the next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times

(to save time transmitting a large number of identical characters) this can

be indicated with the parameterized string rep. The first parameter is the
character to be repeated and the second is the number of times to repeat it.
Thus, tparm(repeat_char, ’x’, 10) is the same as XXXXXXXXXX.

If the terminal has a settable command character, such as the Tektronix
4025, this can be indicated with cmdch. A prototype command character is
chosen which is used in all capabilities. This character is given in the
cmdch capability to identify it. The following convention is supported on
some UNIX systems: If the environment variable cc exists, all occurrences
of the prototype character are replaced with the character in cc.

Terminal descriptions that do not represent a specific kind of known ter-
minal, such as switch, dialup, patch, and network, should include the
gn (generic) capability so that programs can complain that they do not
know how to talk to the terminal. (This capability does not apply to vir-
tual terminal descriptions for which the escape sequences are known.) If
the terminal is one of those supported by the UNIX system virtual terminal
protocol, the terminal number can be given as vt. A line-turn-around se-
quence to be transmitted before doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control, give xon. Pad-
ding information should still be included so that routines can make better
decisions about costs, but actual pad characters will not be transmitted. Se-
quences to turn on and off xon/xoff handshaking may be given in smxon
and rmxon. If the characters used for handshaking are not *s and "*q,
they may be specified with xonc and xoffc.

If the terminal has a “meta key” which acts as a shift key, setting the 8th
bit of any character transmitted, this fact can be indicated with km. Other-
wise, software will assume that the 8th bit is parity and it will usually be

AT&T Administrator’s Reference Manual A

TERMINFO(4) TERMINFO(4)

cleared. If strings exist to turn this “meta mode” on and off, they can be
given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at
once, the number of lines of memory can be indicated with Im. A value of
Im #0 indicates that the number of lines is not fixed, but that there is still
more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the ter-
minal can be given as mcO: print the contents of the screen, mc4: turn off
the printer, and mc5: turn on the printer. When the printer is on, all text
sent to the terminal will be sent to the printer. A variation, me5p, takes
one parameter, and leaves the printer on for as many characters as the
value of the parameter, then turns the printer off. The parameter should
not exceed 255. If the text is not displayed on the terminal screen when the
printer is on, specify mc5i (silent printer). All text, including me4, is
transparently passed to the printer while an mc5p is in effect.

Special Cases

The working model used by terminfo fits most terminals reasonably well.
However, some terminals do not completely match that model, requiring
special support by terminfo. These are not meant to be construed as
deficiencies in the terminals; they are just differences between the working
model and the actual hardware. They may be unusual devices or, for some
reason, do not have all the features of the terminfo model implemented.

Terminals which can not display tilde (~) characters, such as certain Hazel-
tine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as
the Concept 100, should indicate xenl. Those terminals whose cursor
remains on the right-most column until another character has been
received, rather than wrapping immediately upon receiving the right-most
character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on
top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This capability is also taken
to mean that it is not possible to position the cursor on top of a “magic
cookie” therefore, to erase standout mode, it is instead necessary to use
delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or
control-c characters, should specify xsb, indicating that the f1 key is to be
used for escape and the f2 key for control-c.

Similar Terminals

If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions. The string capability use can be
given with the name of the similar terminal. The capabilities given before
use override those in the terminal type invoked by use. A capability can be

A AT&T Administrator’s Reference Manual 21

TERMINFO(4) TERMINFO(4)

canceled by placing xx@ to the left of the capability definition, where xx is
the capability. For example, the entry

attd424-2|Teletype\04424 in display function group ii,
reveé, sgré, smul@, usem=attdqd24,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul
capabilities, and hence cannot do highlighting. This is useful for different
modes for a terminal, or for different user preferences. More than one use

capability may be given.
FILES
fusr/lib/terminfo/?/* compiled terminal description database
fusr/lib/.cCORE\term/?/* subset of compiled terminal description database
/usr/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)
SEE ALSO

curses(3X), printf(3S), term(5).

captoinfo(1M), infocmp(1M), tic(1M), tty(7) in the Administrator’s
Reference Manual’.

tput(l) in the User’s Reference Manual.
WARNING

As described in the "Tabs and Initialization" section above, a terminal’s in-
itialization strings, isl1, is2 , and i83, if defined, must be output before a
curses (3X) program is run. An available mechanism for outputting such
strings is tput init (see tput (1) and profile (4)).

Tampering with entries in /usr/lib/.CORE/term/?/* or /usr/lib/termin-
fo/?/* (for example, changing or removing an entry) can affect programs
such as vi (1) that expect the entry to be present and correct. In particular,
removing the description for the "dumb" terminal will cause unexpected
problems.

NOTE

The termcap database (from earlier releases of UNIX System V) may not be
supplied in future releases.

22 AT&T Administrator’'s Reference Manual A

TIMEZONE(4) TIMEZONE(4)

NAME

timezone - set default system time zone
SYNOPSIS

/etc/timezone
DESCRIPTION

This file sets and exports the time zone environmental variable Tz.
This file is "dotted" into other files that must know the time zone.

EXAMPLES

/etc/timezone for the east coast:

Time Zone
TZ=ESTSEDT
export T2

SEE ALSO
ctime(3C), profile(4).

A AT&T Administrator’s Reference Manual 1

TIMEZONE(4) TIMEZONE(4)

2 AT&T Administrator's Reference Manual A

UNISTD(4) UNISTD(4)

NAME
unistd - file header for symbolic constants

SYNOPSIS
#include <unistd.h>

DESCRIPTION

The header file <unistd.h> lists the symbolic constants and structures not
already defined or declared in some other header file.

/* Symbolic constants for the "access" routine: */

#define R_OK 4 /*Test for Read permission */

#define W_OK /*Test for Write permission */

#define X_OK /*Test for eXecute permission */

#define F_OK /*Test for existence of File */

#define F_ULOCK /*Unlock a previously locked region */
#define F_LOCK /*Lock a region for exclusive use */

#define F_TLOCK /*Test and lock a region for exclusive use */
#define F_TEST /*Test a region for other processes locks */

WNHOOHN

/*Symbolic constants for the "lseek" routine: */

#define SEEK_SET 0 /* Set file pointer to "offset" */

#define SEEK_CUR 1 /* Set file pointer to current plus "offset" */
#define SEEK_END 2 /* Set file pointer to EOF plus "offset" */

/*Pathnames:*/

#define GF_PATH /ete/group /*Pathname of the group file */
#define PF_PATH /etc/passwd /*Pathname of the passwd file */

A AT&T Administrator’'s Reference Manual 1

UNISTD(4) UNISTD(4)

2 AT&T Administrator’'s Reference Manual A

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats
SYNOPSIS

#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

These files, which hold user and accounting information for such com-
mands as who (1), write (1), and login (1), have the following structure as
defined by <utmp.h> :

#define = UTMP_FILE "/etcfutmp"”
#define = WTMP_FILE "/ete/wtmp"
#define ut_name ut_user
struct utmp {
char ut_user[8]; /* User login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {
short e_termination; /* Process termination status */
short e_exit; /* Process exit status */
} ut_exit; /* The exit status of a process
* marked as DEAD_PROCESS. */
time_t ut_time; /* time entry was made */

5

/* Definitions for ut_type */

#define EMPTY 0

#define RUN_LVL 1

#define BOOT_TIME 2

#define OLD_TIME 3

#define = NEW_TIME 4

#define INIT PROCESS 5 /* Process spawned by "init" */

#define LOGIN_PROCESS 6 /* A "getty" process waiting for login */

#define USER PROCESS 7 /* A user process */

#define DEAD PROCESS 8

#define ACCOUNTING 9

#define = UTMAXTYPE ACCOUNTING /* Largest legal value of
ut_type */

/* Special strings or formats used in the "ut_line" field when *
/* accounting for something other than a process */

/* No string for the ut_line field can be more than 11 chars + */
/* a NULL in length */

#define RUNLVL_MsSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME MSG "new time"

A AT&T Administrator’'s Reference Manual 1

UTMP(4) UTMP(4)

FILES

[etefutmp
/ete/wtmp

SEE ALSO
getut(3C).
login(1), who(1), write(1) in the D-NIX 5.3 Reference Manual.

2 AT&T Administrator’s Reference Manual A

INTRO(5) INTRO(5)

NAME
intro - introduction to miscellany

DESCRIPTION

This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

A AT&T Administrator's Reference Manual 1

INTRO(5) INTRO(5)

2 AT&T Administrator's Reference Manual A

ASCII(5) ASCII(5)

NAME

ascii - map of asci1 character set

DESCRIPTION

ascii is a map of the ascin character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:
000 nul|001 soh|002 stx|003 etx|004 eot|005 eng|006 ack|007 bel
[010 bs |011 ht 012 nl |013 vt |014 np |015 cr |016 so |017 si
|020 dle|021 dc1|022 dc2|023 dc3|024 dcd|025 nak|026 syn|027 etb
030 can|031 em |032 sub|033 esc|034 fs |035 gs |036 rs |037 us

I

|

I

|
|040 sp 041 1 |042 " |043 # 044 $ |045 % |046 & 047 ¢ |
050 (|051) |052 * |053 + |054 , |055 - [056 . |057 / |
|060 0 |061 1 062 2 |063 3 |064 4 |065 5 |066 6 |067 7 |
070 8 |071 9 [072 : |073 ; |074 < |[075 = |076 > 077 2 |
[100 @ [101 A |102 B |103 C |104 D [105 E |106 F |107 G |
110 B |111 T 112 3 |113 K |114 L |115M |116 N [117 0 |
[120 P |121 @ 122 R [123 s |124 T |125U |126 V |127 W |
[130 x 131y [132 2z 133 [|134 \ [135] |136 ~ |[137 _ |
/140 + 141 a |142 b 143 c |144 d |145 e |146 £ |147 g |
[150 h 151 i [152 3 153 k |154 1 |[155m [156 n |157 o |
|160 p |161 q |162 r |163 8 164 t [165 u 166 v |[167 w |
[170 x 171y 172 z 173 { |174 | |175 } |176 -~ |177 del |

|000 nul|001 sch|002 stx|003 etx|004 eot|005 eng|006 ack|007 bel
|008 bs [009 ht [00a nl |[00b vt |00c np |00d cr |00e so |00f si
|010 dle|011 dc1|012 dc2|013 dc3|014 dc4|015 nak|016 syn|017 etb
|018 can|019 em |0Ola sub|0lb esc|Olc fs |0ld gs |Ole rs |Olf us

I

I

I

I
020 sp |021 1 022 " 023 # 024 § [025 % |026 & [027 ' |
028 (029) |02a * |02b + |02c , |02d - |02e . |O2f / |
030 0 031 1 032 2 033 3 |034 4 |035 5 |036 6 |037 7 |
|038 8 (039 9]03a : [03b; [03c < |03d = [03e > |03f 2 |
040 @ 041 A |042 B 043 C |044 D |045 E |046 F [047 G |
048 H |049 I |04a J |04b K |04c L |04d M |O4e N |04f O |
|0oso P 051 @ |052 R 053 S |054 T |055 U |056 V |057 W |
lose x |059 ¥ [05a z |05b [|05¢ \ |05d] |0Se ~ |05f _ |
|060 ¢ |061 a |062 b |063 c |064 d |065 e |066 f |067 g |
068 h |069 i |06a j |06b k |06c 1 |06dm |06e n |06f o |
[070 p 071 @ 072 r 073 s |074 t [075 u |076 v |077 w |
[078 x |079 y [07a z |07b { |07¢c | |07d } [07e - |07f del |

A AT&T Administrator's Reference Manual 1

ASCII(5) ASCII(5)

2 AT&T Administrator's Reference Manual A

ENVIRON(5) ENVIRON(5)

NAME

environ - user environment

DESCRIPTION

An array of strings called the “environment” is made available by exec (2)
when a process begins. By convention, these strings have the form
“name=value”. The following names are used by various commands:

PATH The sequence of directory prefixes that sh (1), ime (1),
nice (1), nohup (1), ete., apply in searching for a file
known by an incomplete path name. The prefixes are
separated by colons (:). login (1) sets
PATH=:/bin:/usr/bin.

HOME Name of the user’s login directory, set by login (1) from
the password file passwd (4).
TERM The kind of terminal for which output is to be

prepared. This information is used by commands, such
as mm (1) or tplot (1G), which may exploit special
capabilities of that terminal.

TZ Time zone information. The format is xxx n zzz where
xxx is standard local time zone abbreviation, »n is the
difference in hours from GMT, and zzz is the abbrevia-
tion for the daylight-saving local time zone, if any; for
example, ESTSEDT.

Further names may be placed in the environment by the export command
and “name=value” arguments in sk (1), or by exec (2). It is unwise to con-
flict with certain shell variables that are frequently exported by .profile
files: MAIL, PS1, PS2, IFS.

SEE ALSO

exec(2).

env(1), login(1), sh(1), nice(1), nohup(l), time(1) in the D-NIX 5.3 Reference
Manual.

mm(1) in the DOCUMENTER’S WORKBENCH Software Release 2.0 Technical
Discussion and Reference Manual.

A AT&T Administrator’s Reference Manual 1

ENVIRON(5) ENVIRON(5)

2 AT&T Administrator's Reference Manual A

FCNTL(5) FCNTL(5)

NAME

fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION

The fentl (2) function provides for control over open files. This include file
describes requests and arguments to fcntl and open (2).

/* Flag values accessible to open(2) and fcntl(2) */

/* (The first three can only be set by open) */

#define O RDONLY O
#define O WRONLY 1

#define O_RDWR 2

#define O_NDELAY 04 /* Non-blocking 1/0 */

#define O_APPEND 010 /* append (writes guaranteed at the end) */
#define O_SYNC 020 /* synchronous write option */

/* Flag values accessible only to open(2) */

#define O_CREAT 00400 /* open with file create (uses third open arg)*/
#define O_TRUNC 01000 /* open with truncation */

#define O_EXCL 02000 /* exclusive open */
/* fcntl(2) requests */
#define F_DUPFD 0 /* Duplicate fildes */

#define F_GETFD 1 /* Get fildes flags */
#define F_SETFD 2 /* set fildes flags */
#define F_GETFL 3 /* Get file flags */

#define F_SETFL 4 /* set file flags */

#define F_GETLK 5 /* Get file lock */

#define F_SETLK 6 /* set file lock */

#define F_SETLKW 7 /* set file lock and wait */

#define F_CHKFL 8 /* Check legality of file flag changes */
/* file segment locking control structure */

struct flock {
shortl_type;
shortl_whence;
long 1_start;

long 1_1len; /* if 0 then until EOF */
shortl_sysid; /* returned with F_GETLK */
shortl_pid; /* returned with F_GETLK */

}
/* file segment locking types */

#define F_RDLCK 01 /* Read lock */
#define F_WRLCK 02 /* Write lock */
#define F_UNLCK 03 /* Remove locks */

SEE ALSO
fentl(2), open(2).

A AT&T Administrator’s Reference Manual 1

FCNTL(5) FCNTL(5)

2 AT&T Administrator’'s Reference Manual A

MATH(5) MATH(5)

NAME

math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION

This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C Library
(Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr (3M) error-han-
dling mechanisms, including the following constant used as an error-
return value:

HUGE The maximum value of a single-precision floating-point
number.

The following mathematical constants are defined for user convenience:

M_E The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOG10E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI m, the ratio of the circumference of a circle to its
diameter.

M_PI_2 /2.

M_PI_4 n/4.

M_1_PI 1/n.

M_2_PI 2/n.

M_2_SQRTPI 2N,

M_SQRT2 The positive square root of 2.

M_SQRT1_2 The positive square root of 1/2.

For the definitions of various machine-dependent “constants,” see the
description of the <values.h> header file.

SEE ALSO
intro(3), matherr(8M), values(5).

A AT&T Administrator’s Reference Manual 1

MATH(5) MATH(5)

2 AT&T Administrator’s Reference Manual A

PROF(5) PROF(5)

NAME

prof - profile within a function

SYNOPSIS

#define MARK
#include <prof.h>
void MARK (name)

DESCRIPTION

MARK will introduce a mark called name that will be treated the same as a
function entry point. Execution of the mark will add to a counter for that
mark, and program-counter time spent will be accounted to the immediate-
ly preceding mark or to the function if there are no preceding marks
within the active function.

name may be any combination of numbers or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARK must be defined before the
header file < prof.h > is included. This may be defined by a preprocessor
directive as in the synopsis, or by a command line argument, i.e:

cc =-p =-DMARK foo.cC

If MARK is not defined, the MARK (name) statements may be left in the
source files containing them and will be ignored.

EXAMPLE

In this example, marks can be used to determine how much time is spent
in each loop. Unless this example is compiled with MARK defined on the
command line, the marks are ignored.

#include <prof.h>

foo() {
int i, j;

MARK (loopl) ;
for (i = 0; 1 < 2000; i++) {

}
MARK (loop2);
for (j = 0; j < 2000; j++) {

}
}

SEE ALSO
prof(1), profil(2), monitor(3C).

A AT&T Administrator’'s Reference Manual 1

PROF(5) PROF(5)

2 AT&T Administrator’'s Reference Manual A

RCSFILE(SB) RCSFILE(5B)

NAME
rcsfile - format of RCS file

DESCRIPTION

An RcS file is an ASCII file. Its contents is described by the grammar below.
The text is free format, i.e., spaces, tabs and new lines have no significance
except in strings. Strings are enclosed by ‘@. If a string contains a ‘@, it
must be doubled.

The meta syntax uses the following conventions: ‘|’ (bar) separates alterna-
tives; ' and Y enclose optinal phrases; (" and }* enclose phrases that may
be repeated zero or more times; ‘(' and '}+’ enclose phrases that must ap-
pear at least once and may be repeated; ‘<’ and ‘>’ enclose nonterminals.

<recstext> = <admin> {<delta>}* <desc> {<deltatext>}*
<admin> := head {<num>};
access {<id>}*;
symbols {<id> : <num>}*;
locks {<id> : <num>}*;
comment {<string>};
<delta> = <num> date <num>;
author <id>;
state {<id>};
branches {<num>}*;
next {<num>};
<desc> u= desc <string>
<deltatext> '= <num> log <string> text <string>
<num> = {<digit>{}}+
<digit> = 0]1]..]9
<id> := <letter>{<idchar>}*
<letter> = A|B|..|Z]|a]|b]|..]|z
<idchar> = Any printing ASCII character except space, tab,
carriage return, new line, and <special>.
<special> = 5 |:],|@ :
<string> := @{any ASCII character, with ‘@ doubled}*@

Identifiers are case sensitive. Keywords are in lower case only. The sets of
keywords and identifiers may overlap.

The <delta> nodes form a tree. All nodes whose numbers consist of a single
pair (e.g., 2.3, 2.1, 1.3, etc.) are on the "trunk", and are linked through the
"next" field in order of decreasing numbers. The "head" field in the
<admin> node points to the head of that sequence (i.e., contains the
highest pair).

All <delta> nodes whose numbers consist of 2n fields (n_2) (e.g., 3.1.1.1,
2.1.2.2, etc.) are linked as follows. All nodes whose first (2n)-1 number
fields are identical are linked through the "next" field in order of increas-
ing numbers. For each such sequence, the <delta> node whose number is
identical to the first 2(n-1) number fields of the deltas on that sequence is
called the branchpoint. The "branches" field of a node contains a list of the
numbers of the first nodes of all sequences for which it is a branchpoint.
This list is ordered in increasing numbers.

A AT&T User's Reference Manual 1

RCSFILE(5B) RCSFILE(5B)

SEE ALSO

ci(1B), co(1B), ident(1B), res(1B), resdiff(1B), resintro(1B), resmerge(1B),
rlog(1B), scestores(8B).

2 AT&T User’s Reference Manual A

REGEXP(5) REGEXP(5)

NAME

regexp - regular expression compile and match routines

SYNOPSIS

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKRC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>
#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int eof;

int step (string, expbuf)"

char *string, *expbuf;

extern char *locl, *loc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION

This page describes general-purpose regular expression matching routines
in the form of ed (1), defined in <regexp.h>. Programs such as ed (1),

sed (1), grep (1), bs (1), expr (1), ete., which perform regular expression
matching use this source file. In this way, only this file need be changed to
maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the “#include
<regexp.h>" statement. These macros are used by the compile routine.

GETC() Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should
return successive characters of the regular expression.

PEEKC() Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character [which should also be the next character
returned by GeTc(Q].

UNGETC(c) Cause the argument ¢ to be returned by the next call to
GETC() [and PEEKC()]. No more that one character of
pushback is ever needed and this character is guaran-
teed to be the last character read by GeTco. The value
of the macro UNGETC(c) is always ignored.

RETURN(pointer) This macro is used on normal exit of the compile
routine. The value of the argument pointer is a pointer
to the character after the last character of the compiled
regular expression. This is useful to programs which
have memory allocation to manage.

A AT&T Administrator’'s Reference Manual 1

REGEXP(5) REGEXP(5)

ERROR(val) This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

ERROR MEANING

11 Range endpoint too large.

16 Bad number.

25 “\digit” out of range.

36 Illegal or missing delimiter.

41 No remembered search string.

42 \(\) imbalance.

43 Too many \(.

44 More than 2 numbers given in \{\}.
45 } expected after \.

46 First number exceeds second in \{\}.
49 []imbalance.

50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input
characters. It is sometimes used in the INIT declaration (see below).
Programs which call functions to input characters or have characters in an
external array can pass down a value of ((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the com-
piled regular expression may be placed. If the compiled expression cannot
fit in (endbuf - expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular ex-
pression. For example, in ed (1), this character is usually a /.

Each program that includes this file must have a #define statement for
INIT. This definition will be placed right after the declaration for the func-
tion compile and the opening curly brace ({). It is used for dependent
declarations and initializations. Most often it is used to set a register vari-
able to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC(), PEEKC() and UNGETCO().
Otherwise it can be used to declare external variables that might be used
by GETC(), PEEKC() and UNGETC(). See the example below of the declara-
tions taken from grep (1).

There are other functions in this file which perform actual regular expres-
sion matching, one of which is the function step. The call to step is as fol-
lows:

2 AT&T Administrator’s Reference Manual A

REGEXP(5) REGEXP(5)

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be check-
ed for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which
was obtained by a call of the function compile.

The function step returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match,
two external character pointers are set as a side effect to the call to step.
The variable set in step is loc1. This is a pointer to the first character that
matched the regular expression. The variable loc2, which is set by the func-
tion advance, points to the character after the last character that matches
the regular expression. Thus if the regular expression matches the entire
line, locl will point to the first character of string and loc2 will point to the
null at the end of string.

step uses the external variable circf which is set by compile if the regular
expression begins with “. If this is set then step will try to match the
regular expression to the beginning of the string only. If more than one
regular expression is to be compiled before the first is executed the value of
ctref should be saved for each compiled expression and circf should be set
to that saved value before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call ad-
vance until advance returns non-zero indicating a match or until the end of
string is reached. If one wants to constrain string to the beginning of the
line in all cases, step need not be called; simply call advance.

When advance encounters a * or \{\} sequence in the regular expression,
it will advance its pointer to the string to be matched as far as possible and
will recursively call itself trying to match the rest of the string to the rest
of the regular expression. As long as there is no match, advance will back
up along the string until it finds a match or reaches the point in the string
that initially matched the * or \{\}. It is sometimes desirable to stop this
backing up before the initial point in the string is reached. If the external
character pointer locs is equal to the point in the string at sometime
during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed (1) and sed (1) for sub-
stitutions done globally (not just the first occurrence, but the whole line)
so, for example, expressions like s/y*//g do not loop forever.

The additional external variables sed and nbra are used for special pur-
poses.

EXAMPLES

The following is an example of how the regular expression macros and
calls look from grep (1):

#define INIT register char *sp = instring;
#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (--sp)

#define RETURN(c) return;

A AT&T Administrator's Reference Manual 3

REGEXP(5) REGEXP(5)

#define ERROR(C) regerr()
#include <regexp.h>
T (void) compile(*argv, expbuf, &expbuf[esize], \0;

if (step(linebuf, expbuf))
succeed();

SEE ALSO
ed(1), expr(l), grep(1), sed(1) in the D-NIX 5.3 Reference Manual.

4 AT&T Administrator’'s Reference Manual A

STAT(5) STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

The system calls stat and fstat return data whose structure is defined by
this include file. The encoding of the field st_mode is defined in this file
also.

Structure of the result of stat
struct stat {

dev_t st_dev;
ushort st_ino;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

}i

#define S_IFMT 0170000 /* type of file */

#define s_IFDIR 0040000 /* directory */

#define S _IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */

#define S _IFIFO 0010000 /* fifo */

#define s_ISUID 04000 /* set user id on execution */
#define S_ISGID 02000 /* set group id on execution */
#define S_ISVTX 01000 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner*/
#define S_IWRITE 00200 /* write permission, owner */
#define S_IEXEC 00100 /* execute/search permission, owner*/
#define S_ENFMT S_ISGID /* record locking enforcement flag */
#define S_IRWXU 00700 /* read,write, execute: owner */
#define S_IRUSR 00400 /* read permission: owner */
#define S_IWUSR 00200 /* write permission: owner */
#define S_IXUSR 00100 /* execute permission: owner */
#define S_IRWXG 00070 /* read, write, execute: group */
#define S_IRGRP 00040 /* read permission: group */
#define S_IWGRP 00020 /* write permission: group */
#define S_IXGRP 00010 /* execute permission: group */
#define S_IRWXO 00007 /* read, write, execute: other */
#define S_IROTH 00004 /* read permission: other */
#define S_IWOTH 00002 /* write permission: other */
#define S_IXOTH 00001 /* execute permission: other */

SEE ALSO

stat(2), types(5).

A AT&T Administrator’s Reference Manual 1

STAT(5) STAT(5)

2 AT&T Administrator’s Reference Manual A

TERM(5) TERM(5)

NAME

term - conventional names for terminals

DESCRIPTION

These names are used by certain commands (e.g., man (1), tabs (1),

tput (1), vi (1) and curses (3X)) and are maintained as part of the shell en-
vironment in the environment variable TERM (see sh (1), profile (4), and
environ (5)).

Entries in terminfo (4) source files consist of a number of comma-separated
fields. (To obtain the source description for a terminal, use the -I option of
infocmp (1M).) White space after each comma is ignored. The first line of
each terminal description in the terminfo (4) database gives the names by
which terminfo (4) knows the terminal, separated by bar (|) characters.
The first name given is the most common abbreviation for the terminal
(this is the one to use to set the environment variable TERMINFO in
$HOME/.profile; see profile (4)), the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms
for the terminal name. All names but the last should contain no blanks
and must be unique in the first 14 characters; the last name may contain
blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using
the following conventions. The particular piece of hardware making up the
terminal should have a root name chosen, for example, for the AT&T 4425
terminal, att4425. This name should not contain hyphens, except that
synonyms may be chosen that do not conflict with other names. Up to 8
characters, chosen from [a-z0-9], make up a basic terminal name. Names
should generally be based on original vendors, rather than local dis-
tributors. A terminal acquired from one vendor should not have more than
one distinct basic name. Terminal sub-models, operational modes that the
hardware can be in, or user preferences, should be indicated by appending
a hyphen and an indicator of the mode. Thus, an AT&T 4425 terminal in
132 column mode would be att4425-w. The following suffixes should be

used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) att4425-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
‘n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) ¢100-na
-np Number of pages of memory c100-4p
-rv Reverse video att4415-rv

To avoid conflicts with the naming conventions used in describing the dif-
ferent modes of a terminal (e.g., -w), it is recommended that a terminal’s
root name not contain hyphens. Further, it is good practice to make all ter-
minal names used in the terminfo (4) database unique. Terminal entries
that are present only for inclusion in other entries via the use= facilities
should have a ’+’in their name, as in 4415+nl.

A AT&T Administrator’s Reference Manual 1

TERM(5) TERM(S)

Some of the known terminal names may include the following (for a com-
plete list, type: 18 -C /usr/lib/terminfo/?):

adm3a Lear Siegler ADM 3A

ansi Generic ansi standard terminal

vt100 DEC VT100

vt100-sl Slow DEC VT100

vt100-w DEC VT100 with 132 columns (advanced video)
vt52 DEC VT52

twist Facit Twist landscape mode

twi72 Facit Twist portrait mode

vt220 DEC VT220

vt220-w DEC VvT220 with 132 columns

vt220-8 DEC VT220 with status line

com Comex 8000 with 24 lines

comw Comex 8000 with 34 lines

dumb eneric name for terminals that lack reverse

ine-feed and other special escape sequences

Commands whose behavior depends on the type of terminal should accept
arguments of the form -T term where term is one of the names given
above; if no such argument is present, such commands should obtain the
terminal type from the environment variable TERM, which, in turn, should
contain term.

FILES
usr/lib/terminfo/?/* compiled terminal description database
SEE ALSO
curses(3X), profile(4), terminfo(4), environ(5).
sh(1), stty(1) in the D-NIX 6.3 Reference Manual.
man(l), tabs(1), tput(1), vi(1) in the User’s Reference Manual.
infocmp(1M) in the Administrator’s Reference Manual.

NOTES

Not all programs follow the above naming conventions.

2 AT&T Administrator's Reference Manual A

VALUES(5) VALUES(5)

NAME

values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION

This file contains a set of manifest constants, conditionally defined for par-
ticular processor architectures.

The model assumed for integers is binary representation (one’s or two's
complement), where the sign is represented by the value of the high-order

bit.

BITS(¢ype) The number of bits in a specified type (e.g., int).

HIBITS The value of a short integer with only the high-order
bit set (in most implementations, 0x8000).

HIBITL The value of a long integer with only the high-order bit
set (in most implementations, 0x80000000).

HIBITI The value of a regular integer with only the high-order
bit set (usually the same as HIBITS or HIBITL).

MAXSHORT The maximum value of a signed short integer (in most
implementations, 0x7FFF = 32767).

MAXLONG The maximum value of a signed long integer (in most
implementations, 0x7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular integer (usual-

ly the same as MAXSHORT or MAXLONG).
MAXFLOAT, LN_MAXFLOAT

The maximum value of a single-precision floating-point
number, and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE

The maximum value of a double-precision floating-
point number, and its natural logarithm.

MINFLOAT, LN_MINFLOAT

The minimum positive value of a single-precision float-
ing-point number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE

The minimum positive value of a double-precision float-
ing-point number, and its natural logarithm.

FSIGNIF The number of significant bits in the mantissa of a
single-precision floating-point number.

DSIGNIF The number of significant bits in the mantissa of a
double-precision floating-point number.

A AT&T Administrator’s Reference Manual 1

VALUES(5) VALUES(5)

SEE ALSO
intro(3), math(5).

2 AT&T Administrator’s Reference Manual A

VARARGS(5) VARARGS(5)

NAME
varargs - handle variable argument list
SYNOPSIS

#include <varargs.h>
va_alist

va_dcl

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION

This set of macros allows portable procedures that accept variable argu-
ment lists to be written. Routines that have variable argument lists [such
as printf (3S)] but do not use varargs are inherently nonportable, as dif-
ferent machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.
va_list is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is
the type the argument is expected to be. Different types can be mixed, but

it is up to the routine to know what type of argument is expected, as it can-
not be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.
EXAMPLE

This example is a possible implementation of execl (2).

#include <varargs.h>
#define MAXARGS 100

/* execl is called by

execl(file, argl, arg2, ..., (char *)0);
*/
execl(va_alist)
va_dcl

{
va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;
va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *)) I= (char *)0)

’
va_end(ap);
return execv(file, args);

A AT&T Administrator’s Reference Manual 1

VARARGS(5) VARARGS(5)

SEE ALSO
exec(2), printf(3S), vprintf(3S).
NOTES

It is up to the calling routine to specify how many arguments there are,
since it is not always possible to determine this from the stack frame. For
example, execl is passed a zero pointer to signal the end of the list. printf
can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to

va_arg, since arguments seen by the called function are not char, short, or

float. C converts char and short arguments to int and converts float argu-

ments to double before passing them to a function. <

2 AT&T Administrator’s Reference Manual A

INTRO(5) INTRO(5)

NAME
intro - introduction to miscellany
DESCRIPTION

This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

A AT&T Administrator’'s Reference Manual 1

INTRO(5) INTRO(5)

2 AT&T Administrator’'s Reference Manual A

ASCII(5) ASCII(5)

NAME

ascii - map of asciI character set
DESCRIPTION

ascii is a map of the ascn character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

|000 nul|001 soh|002 stx|003 etx|004 eot|005 enq|006 ack|007 bel
|010 bs |011 ht |012 nl |013 vt |014 np |015 cr |016 so |017 si
|020 dle|021 dc1|022 dec2|023 dc3|024 dc4|025 nak|026 syn|027 etb
|030 can|031 em |032 sub|033 esc|034 fs |035 gs |036 rs |037 us

I

I

|

|
040 sp 041 1	042 " 043 # 044 §	045 %	046 &	047 ©			
050 (051)	052 *]053 +	054 ,	055 -	056 .	057 /		
060 0	061 1	062 2	063 3	064 4	065 5	066 6	067 7
070 8	071 9 072 ¢	073 ; [074 <	075 =	076 > [077 7			
100 @ [101 A	102 B [103 C	104 D [105 E	[106 F	107 G			
[110 B [111 I (112 0	113 K	114 L	115M	116 N	117 0		
[120 P	121 @ [122 R [123 s	124 T 125U [126 V [127 W					
[130 x 131y 132 z 133 [[134 \	135]	136 ~	137 _				
140 ¢	141 a	142 b [143 c¢	144 d 145 e	146 £	147 g		
150 h 151 i [152 j	153 k [154 1	[155m	156 n	157 o			
160 p 161 q [162 r	163 8	[164 t [165 u	166 v [167 w				
[170 x [171y [172 z 173 { 174 | |175 } |176 ~ |177 del |

|000 nul|001 sch|002 stx|003 etx|004 eot|005 eng|006 ack|007 bel
|008 bs 009 ht |00a nl [00b vt |00c np |00d cr |00e so |00f si
010 dle|011 dec1|012 dc2|013 de3|014 dc4|015 nak|016 syn|017 etb
|018 can|019 em |0la sub|0lb esc|0lc fs |0ld gs |Ole rs |O0lf us

l

I

I

|
|020 sp |021 1 |022 " |023 # |024 $ 025 % |026 & 027 |
028 (029) |02a * |02b + |02c , [02d - |02e . |O02f / |
030 0 031 1 032 2 033 3 |034 4 |0355 |036 6 |037 7 |
038 8 039 9 |03a : [03b; |03c < |03d = [03e > |[03f 2 |
040 @ |041 A |042 B 043 C |044 D |045 E |046 F |047 G |
048 H |049 I |04a J [04b K |04c L |04d M |0de N |04f O |
[050 P |051 @ [052 R 053 s |054 T |055 U |056 V |057 W |
|os8 x |059 ¥ [05a z |05b [|05¢c \ |05d] |0Se * |05f _ |
060 * |061 a 062 b |063 ¢ |064 d |065 e |066 £ |067 g |
|068 h |069 i |06a j |06b k |06c 1 |06dm |06e n |06f o |
[070 p 071 @ 072 r 073 8 |074 t |075 u [076 v |077 w |
078 x [079 y |07a z |07b { |07c | |07d } |07e ~ |[07f del |

A AT&T Administrator’'s Reference Manual 1

ASCII(5) ASCII(5)

2 AT&T Administrator's Reference Manual A

INTRO(7) INTRO(7)

NAME

intro - introduction to special files
DESCRIPTION

This section describes various special files that refer to specific hardware
peripherals, and UNIX system device drivers. STREAMS [see intro (2)]
software drivers, modules and the STREAMS-generic set of ioct! (2) system
calls are also described.

For hardware related files, the names of the entries are generally derived
from names for the hardware, as opposed to the names of the special files
themselves. Characteristics of both the hardware device and the cor-
responding UNIX system device driver are discussed where applicable.

A AT&T Administator's Reference Manual 1

INTRO(7) INTRO(7)

2 AT&T Administator’s Reference Manual A

CLONE(7) CLONE(7)

NAME
clone - open any minor device on a STREAMS driver
DESCRIPTION

clone is a STREAMS software driver that finds and opens an unused minor
device on another sTREAMS driver. The minor device passed to clone during
the open is interpreted as the major device number of another STREAMS
driver for which an unused minor device is to be obtained. Each such open
results in a separate stream to a previously unused minor device.

The clone driver consists solely of an open function. This open function per-
forms all of the necessary work so that subsequent system calls (including
close (2)) require no further involvement of clone.

clone will generate an ENXIO error, without opening the device, if the minor
device number provided does not correspond to a valid major device, or if
the driver indicated is not a STREAMS driver.

CAVEATS

Multiple opens of the same minor device cannot be done through the clone
interface. Executing stat (2) on the file system node for a cloned device
yields a different result from executing fstat (2) using a file descriptor ob-
tained from opening the node.

A AT&T Administator’s Reference Manual 1

CLONE(7) CLONE(7)

2 AT&T Administator’s Reference Manual A

CONSOLE(7) CONSOLE(7)

NAME

console - console interface

DESCRIPTION

The console provides the operator interface to the DS90 computer.

The file /dev/console is the system console, and refers to an asynchronous
serial data line originating from the system board. This special file imple-
ments the features described in termio (7).

The file /dev/contty refers to a second asynchronous serial data line
originating from the system board. This special file implements the fea-
tures described in termio (7).

FILES

/dev/console
/dev/contty

SEE ALSO
termio(7).

A AT&T Administator’s Reference Manual 1

CONSOLE(7) CONSOLE(7)

2 AT&T Administator’s Reference Manual A

MEM(7) | MEM(7)

NAME

mem, kmem - core memory

DESCRIPTION

The file /dev/mem is a special file that is an image of the core memory of
the computer. It may be used, for example, to examine, and even to patch
the system.

Byte addresses in /dev/mem are interpreted as memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file /dev/kmem is the same as /dev/mem except that kernel virtual
memory rather than physical memory is accessed.

FILES

/dev/imem
/dev/kmem

WARNING

Some of /dev/kmem cannot be read because of write-only addresses or un-
equipped memory addresses.

A AT&T Administator's Reference Manual 1

MEM(7) MEM(7)

2 AT&T Administator's Reference Manual A

NULL(7) NULL(?)

NAME
null - the null file

DESCRIPTION

Data written on the null special file, /dev/null], is discarded.
Reads from a null special file always return 0 bytes.

FILES
/dev/null

A AT&T Administator’s Reference Manual 1

NULL(7) NULL(7)

2 AT&T Administator’s Reference Manual A

STREAMIO(7) STREAMIO(7)

NAME

streamio - STREAMS ioctl commands

SYNOPSIS

#include <stropts.h>
int ioctl (fildes, command, arg)
int fildes, command;

DESCRIPTION

STREAMS [see intro (2)] ioctl commands are a subset of ioct! (2) system calls
which perform a variety of control functions on streams. The arguments
command and arg are passed to the file designated by fildes and are inter-
preted by the stream head. Certain combinations of these arguments may
be passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. command deter-
mines the control function to be perform 1 as described below. arg repre-
sents additional information that is neec.ed by this command. The type of
arg depends upon the command, but it is generally an integer or a pointer
to a command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they are subject to the
errors described there. In addition to those errors, the call will fail with
errno set to EINVAL, without processing a control function, if the stream
referenced by fildes is linked below a multiplexor, or if command is not a
valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can detect errors.
In this case, the module or driver sends an error message to the stream
head containing an error value. This causes subsequent system calls to fail
with errno set to this value.

COMMAND FUNCTIONS

The following ioctl commands, with error values indicated, are applicable
to all STREAMS files:

I_PUSH Pushes the module whose name is pointed to by arg
onto the top of the current stream, just below the
stream head. It then calls the open routine of the newly-
pushed module. On failure, errno is set to one of the fol-

lowing values:
[EINVAL] Invalid module name.
[EFAULT] arg points outside the allocated address space.
[ENXIO] Open routine of new module failed.
[ENXIO] Hangup received on fildes.
I_POP Removes the module just below the stream head of the

stream pointed to by fildes. arg should be 0 in an 1_Pop
request. On failure, errno is set to one of the following
values:

A AT&T Administator's Reference Manual 1

STREAMIO(7)

[EINVAL]
[ENXIO]
I_LOOK

[EFAULT]
(EINVAL]
I_FLUSH

FLUSHR
FLUSHW
FLUSHRW

[EAGAIN]

[EINVAL]

[ENXIO]
I_SETSIG

S_INPUT

S_HIPRI

S_OUTPUT

S_MSG

STREAMIO(7)

No module present in the stream.
Hangup received on fildes.

Retrieves the name of the module just below the
stream head of the stream pointed to by fildes, and
places it in a null terminated character string pointed
at by arg. The buffer pointed to by arg should be at
least FMNAMESZ+1 bytes long. An #include
<sys/conf.h> declaration is required. On failure, errno
is set to one of the following values:

arg points outside the allocated address space.
No module present in stream.

This request flushes all input and/or output queues,
depending on the value of arg. Legal arg values are:

Flush read queues.

Flush write queues.

Flush read and write queues.

On failure, errno is set to one of the following values:
Unable to allocate buffers for flush message.

Invalid arg value.

Hangup received on fildes.

Informs the stream head that the user wishes the ker-
nel to issue the SIGPOLL signal [see signal (2) and sig-
set (2)] when a particular event has occurred on the
stream associated with fildes. 1_SETSIG supports an
asynchronous processing capability in STREAMS. The
value of arg is a bitmask that specifies the events for
which the user should be signaled. It is the bitwise-OR
of any combination of the following constants:

A non-priority message has arrived on a stream head
read queue, and no other messages existed on that
queue before this message was placed there. This is set
even if the message is of zero length.

A priority message is present on the stream head read
queue. This is set even if the message is of zero length.

The write queue just below the stream head is no
longer full. This notifies the user that there is room on
the queue for sending (or writing) data downstream.

A STREAMS signal message that contains the SIGPOLL sig-
nal has reached the front of the stream head read
queue.

A user process may choose to be signaled only of
priority messages by setting the arg bitmask to the
value S_HIPRI.

AT&T Administator’s Reference Manual A

STREAMIO(7)

[EINVAL]
[EAGAIN]

I_GETSIG

[EINVAL)
(EFAULT]
I_FIND

[EFAULT]
(EINVAL]
I_PEEK

STREAMIO(7)

Processes that wish to receive sIGPOLL signals must ex-
plicitly register to receive them using 1 sETsIG. If
several processes register to receive this signal for the
same event on the same Stream, each process will be
signaled when the event occurs.

If the value of arg is zero, the calling process will be un-
registered and will not receive further SIGPOLL signals.
On failure, errno is set to one of the following values:

arg value is invalid or arg is zero and process is not
registered to receive the sIGPOLL signal.

Allocation of a data structure to store the signal re-
quest failed.

Returns the events for which the calling process is cur-
rently registered to be sent a SIGPOLL signal. The events
are returned as a bitmask pointed to by arg, where the
events are those specified in the description of 1_sETsIG
above. On failure, errno is set to one of the following
values:

Process not registered to receive the s1GPOLL signal.
arg points outside the allocated address space.

This request compares the names of all modules cur-
rently present in the stream to the name pointed to by
arg, and returns 1 if the named module is present in
the stream. It returns 0 if the named module is not
present. On failure, errno is set to one of the following
values:

arg points outside the allocated address space.
arg does not contain a valid module name.

This request allows a user to retrieve the information
in the first message on the stream head read queue
without taking the message off the queue. arg points to
a strpeek structure which contains the following mem-
bers:

struct strbuf ctlbuf;

struct strbuf databuf;

long flags;
The maxlen field in the ctlbuf and databuf strbuf struc-
tures [see getmsg (2)] must be set to the number of
bytes of control information and/or data information,
respectively, to retrieve. If the user sets flags to
RS_HIPRI, I_PEEK will only look for a priority message on
the stream head read queue.

I_PEEK returns 1 if a message was retrieved, and
returns 0 if no message was found on the stream head
read queue, or if the RS_HIPRI flag was set in flags and a

AT&T Administator’s Reference Manual 3

STREAMIO(7)

(EFAULT]
I_SRDOPT

RNORM
RMSGD
RMSGN

[EINVAL]

I_GRDOPT

(EFAULT]
I_NREAD

[EFAULT)
I_FDINSERT

AT&T Administator’'s Reference Manual

STREAMIO(7)

priority message was not present on the stream head
read queue. It does not wait for a message to arrive. On
return, ctlbuf specifies information in the control buff-
er, databuf specifies information in the data buffer, and
flags contains the value 0 or rs_HIPRI. On failure, errno
is set to the following value:

arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

Sets the read mode using the value of the argument
arg. Legal arg values are:

Byte-stream mode, the default.
Message-discard mode.
Message-nondiscard mode.

Read modes are described in read (2). On failure, errno
is set to the following value:

arg is not one of the above legal values.

Returns the current read mode setting in an int
pointed to by the argument arg. Read modes are
described in read(2). On failure, errno is set to the fol-
lowing value:

arg points outside the allocated address space.

Counts the number of data bytes in data blocks in the
first message on the stream head read queue, and
places this value in the location pointed to by arg. The
return value for the command is the number of mes-
sages on the stream head read queue. For example, if
zero is returned in arg, but the ioct! return value is
greater than zero, this indicates that a zero-length mes-
sage is next on the queue. On failure, errno is set to the
following value:

arg points outside the allocated address space.

creates a message from user specified buffer(s), adds in-
formation about another stream and sends the message
downstream. The message contains a control part and
an optional data part. The data and control parts to be
sent are distinguished by placement in separate buf-
fers, as described below. arg points to a strfdinsert
structure which contains the following members:

struct strbuf ctlbuf;
struct strbuf databuf;

long flags;
int fd;
int offset;

The len field in the ctlbuf strbuf structure [see
putmsg (2)] must be set to the size of a pointer plus the

STREAMIO(7)

[EAGAIN]

[EAGAIN]
[EFAULT]

[EINVAL]

[ENXIO]
[ERANGE]

STREAMIO(7)

number of bytes of control information to be sent with
the message. fd specifies the file descriptor of the other
stream and offset, which must be word-aligned,
specifies the number of bytes beyond the beginning of
the control buffer where 1_FDINSERT will store a pointer
to the fd stream’s driver read queue structure. The len
field in the databuf strbuf structure must be set to the
number of bytes of data information to be sent with the
message or zero if no data part is to be sent.

flags specifies the type of message to be created. A non-
priority message is created if flags is set to 0, and a
priority message is created if flags is set to RS_HIPRI.
For non-priority messages, 1_FDINSERT will block if the
stream write queue is full due to internal flow control
conditions. For priority messages, 1 FDINSERT does not
block on this condition. For non-priority messages,
I_FDINSERT does not block when the write queue is full
and O_NDELAY is set. Instead, it fails and sets errno to
EAGAIN,

I_FDINSERT\ also blocks, unless prevented by lack of in-
ternal resources, waiting for the availability of message
blocks in the stream, regardless of priority or whether
O_NDELAY has been specified. No partial message is
sent. On failure, errno is set to one of the following
values:

A non-priority message was specified, the 0_NDELAY flag
is set, and the stream write queue is full due to inter-
nal flow control conditions.

Buffers could not be allocated for the message that was
to be created.

arg points, or the buffer area specified in ctlbuf or
databuf is, outside the allocated address space.

One of the following: fd in the strfdinsert structure is
not a valid, open stream file descriptor; the size of a
pointer plus offset is greater than the len field for the
buffer specified through ctiptr; offset does not specify a
properly-aligned location in the data buffer; an un-
defined value is stored in flags.

Hangup received on fildes.

The len field for the buffer specified through databuf
does not fall within the range specified by the maxi-
mum and minimum packet sizes of the topmost stream
module, or the len field for the buffer specified through
databuf is larger than the maximum configured size of
the data part of a message, or the len field for the buff-
er specified through ctlbuf is larger than the maximum
configured size of the control part of a message.

AT&T Administator’s Reference Manual 5

STREAMIO(7)
I_STR
[EAGAIN]
[EFAULT]

6

AT&T Administator’'s Reference Manual

STREAMIO(7)

Constructs an internal sTREAMS ioct]l message from the
data pointed to by arg, and sends that message
downstream.

This mechanism is provided to send user ioct! requests
to downstream modules and drivers. It allows informa-
tion to be sent with the ioctl, and will return to the
user any information sent upstream by the
downstream recipient. I_STR blocks until the system
responds with either a positive or negative acknow-
ledgement message, or until the request "times out"
after some period of time. If the request times out, it
fails with errno set to ETIME.

At most, one I_STR can be active on a stream. Further
1_sTR calls will block until the active 1_STR completes at
the stream head. The default timeout interval for these
requests is 15 seconds. The 0_NDELAY [see open (2)] flag
has no effect on this call.

To send requests downstream, arg must point to a
strioctl structure which contains the following mem-
bers:

int ic_cmd; /* downstream command */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data arg */
char *ic_dp; /* ptr to data arg */

ic_cmd is the internal ioctl command intended for a
downstream module or driver and ic_timout is the num-
ber of seconds (-1 = infinite, 0 = use default, >0 = as
specified) an 1_STR request will wait for acknow-
ledgement before timing out. ic_len is the number of
bytes in the data argument and ic_dp is a pointer to
the data argument. The ic_len field has two uses: on
input, it contains the length of the data argument
passed in, and on return from the command, it con-
tains the number of bytes being returned to the user
(the buffer pointed to by ic_dp should be large enough
to contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information pointed
to by the strioct! structure to an internal ioctl com-
mand message and send it downstream. On failure,
errno is set to one of the following values:

Unable to allocate buffers for the ioctl message.

arg points, or the buffer area specified by ic_dp and
ic_len (separately for data sent and data returned) is,
outside the allocated address space.

STREAMIO(7) STREAMIO(7)

[EINVAL] ic_len is less than 0 or ic_len is larger than the maxi-
mum configured size of the data part of a message or
ic_timout is less than -1.

[ENXIO] Hangup received on fildes.
[ETIME] A downstream ioctl timed out before acknowledgement
was received.

An 1 8TR can also fail while waiting for an acknow-
ledgement if a message indicating an error or a hangup
is received at the stream head. In addition, an error
code can be returned in the positive or negative ac-
knowledgement message, in the event the ioctl com-
mand sent downstream fails. For these cases, 1_sTR will
fail with errno set to the value in the message.

I_SENDFD Requests the stream associated with fildes to send a
message, containing a file pointer, to the stream head
at the other end of a stream pipe. The file point: cor-
responds to arg, which must be an integer file <. scrip-
tor. I_SENDFD converts arg into the corresponding
system file pointer. It allocates a message block and in-
serts the file pointer in the block. The user id and
group id associated with the sending process are also
inserted. This message is placed directly on the read
queue [see intro (2)] of the stream head at the other
end of the stream pipe to which it is connected. On
failure, errno is set to one of the following values:

[EAGAIN] The sending stream is unable to allocate a message
block to contain the file pointer.

[EAGAIN] The read queue of the receiving stream head is full and
cannot accept the message sent by 1_SENDFD.

[EBADF] arg is not a valid, open file descriptor.

[EINVAL] fildes is not connected to a stream pipe.

[ENXIO]) Hangup received on fildes.

I_RECVFD Retrieves the file descriptor associated with the mes-

sage sent by an I_SENDFD ioct! over a stream pipe. arg is
a pointer to a data buffer large enough to hold an
strrecvfd data structure containing the following mem-
bers:

int £d;

unsigned short uid;

unsigned short gid;

char £il11(8);
fd is an integer file descriptor. uid and gid are the user
id and group id, respectively, of the sending stream.

If o_NDELAY is not set [see open (2)], 1 RECVFD will block
until a message is present at the stream head. If

A AT&T Administator’'s Reference Manual 7

STREAMIO(7)

[EAGAIN]
[EBADMSG]

[EFAULT)
[EMFILE]
[ENXIO]

STREAMIO(7)

O_NDELAY is set, I_RECVFD will fail with errno set to
EAGAIN if no message is present at the stream head.

If the message at the stream head is a message sent by
an I_SENDFD, a new user file descriptor is allocated for
the file pointer contained in the message. The new file
descriptor is placed in the fd field of the strrecuvfd struc-
ture. The structure is copied into the user data buffer
pointed to by arg. On failure, errno is set to one of the
following values:

A message was not present at the stream head read
queue, and the 0_NDELAY flag is set.

The message at the stream head read queue was not a
message containing a passed file descriptor.

arg points outside the allocated address space.
NoFILES file descriptors are currently open.
Hangup received on fildes.

The following two commands are used for connecting and disconnecting
multiplexed STREAMS configurations.

I_LINK

[ENXIO]
[ETIME]

[EAGAIN]

[EBADF]
[EINVAL]
[EINVAL]

[EINVAL]

Connects two streams, where fildes is the file descrip-
tor of the stream connected to the multiplexing driver,
and arg is the file descriptor of the stream connected to
another driver. The stream designated by arg gets con-
nected below the multiplexing driver. I_LINK requires
the multiplexing driver to send an acknowledgement
message to the stream head regarding the linking
operation. This call returns a multiplexor ID number
(an identifier used to disconnect the multiplexor, see
I_UNLINK) on success, and a -1 on failure. On failure,
errno is set to one of the following values:

Hangup received on fildes.

Time out before acknowledgement message was
received at stream head.

Unable to allocate STREAMS storage to perform the
I_LINK.

arg is not a valid, open file descriptor.
fildes stream does not support multiplexing.

arg is not a stream, or is already linked under a multi-
plexor.

The specified link operation would cause a "cycle" in
the resulting configuration; that is, if a given stream
head is linked into a multiplexing configuration in
more than one place.

An I_LINK can also fail while waiting for the multiplex-
ing driver to acknowledge the link request, if a mes-

AT&T Administator’'s Reference Manual A

STREAMIO(7)

I_UNLINK

[ENXIO]
(ETIME]

[EAGAIN]

[EINVAL]

SEE ALSO

STREAMIO(7)

sage indicating an error or a hangup is received at the
stream head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement
message. For these cases, I_LINK will fail with errno set
to the value in the message.

Disconnects the two streams specified by fildes and
arg. fildes is the file descriptor of the stream connected
to the multiplexing driver. arg is the multiplexor ID
number that was returned by the ioctl 1_LINK com-
mand when a stream was linked below the multiplex-
ing driver. If arg is -1, then all Streams which were
linked to fildes are disconnected. As in I_LINK, this com-
mand requires the multiplexing driver to acknowledge
the unlink. On failure, errno is set to one of the follow-
ing values:

Hangup received on fildes.

Time out before acknowledgement message was
received at stream head.

Unable to allocate buffers for the acknowledgement
message.

Invalid multiplexor ID number.

An I_UNLINK can also fail while waiting for the multi-
plexing driver to acknowledge the link request, if a mes-
sage indicating an error or a hangup is received at the
stream head of fildes. In addition, an error code can be
returned in the positive or negative acknowledgement
message. For these cases, I_UNLINK will fail with errno
set to the value in the message.

close(2), fentl(2), intro(2), ioctl(2), open(2), read(2), getmsg(2), poll(2),
putmsg(2), signal(2), sigset(2), write(2) in the Programmer’s Reference

Manual.

DIAGNOSTICS

Unless specified otherwise above, the return value from ioct! is 0 upon suc-
cess and -1 upon failure with errno set as indicated.

AT&T Administator's Reference Manual 9

STREAMIO(7) STREAMIO(7)

10 AT&T Administator’s Reference Manual A

TERMIO(7) TERMIO(7)

NAME

termio - general terminal interface
DESCRIPTION

All of the asynchronous communications ports use the same general inter-
face, no matter what hardware is involved. The remainder of this section
discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until
a connection is established. In practice, users’ programs seldom open ter-
minal files; they are opened by getty and become a user’s standard input,
output, and error files. The very first terminal file opened by the process
group leader of a terminal file not already associated with a process group
becomes the control terminal for that process group. The control terminal
plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a

fork (2). A process can break this association by changing its process group

using setpgrp (2).

A terminal associated with one of these files ordinarily operates in full-
duplex mode. Characters may be typed at any time, even while output is oc-
curring, and are only lost when the system’s character input buffers
become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been
read by some program. Currently, this limit is 256 characters. When the
input limit is reached, the buffer is flushed and all the saved characters

are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited
by a new-line (asc1r LF) character, an end-of-file (asc11 EOT) character, or an
end-of-line character. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing
information.

During input, erase and kill processing is normally done. By default, the
character # erases the last character typed, except that it will not erase
beyond the beginning of the line. By default, the character @ kills (deletes)
the entire input line, and optionally outputs a new-line character. Both
these characters operate on a key-stroke basis, independently of any back-
spacing or tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with the escape
character (\). In this case the escape character is not read. The erase and
kill characters may be changed.

Certain characters have special functions on input. These functions and
their default character values are summarized as follows:

INTR (Rubout or Ascnt DEL) generates an interrupt signal
which is sent to all processes with the associated con-
trol terminal. Normally, each such process is forced to

A AT&T Administator’s Reference Manual 1

TERMIO(7) TERMIO(7)

terminate, but arrangements may be made either to ig-
nore the signal or to receive a trap to an agreed-upon
location; see signal (2).

QUIT (Control- | or ascn Fs) generates a quit signal. Its treat-
ment is identical to the interrupt signal except that, un-
less a receiving process has made other arrangements,
it will not only be terminated but a core image file
(called core) will be created in the current working

directory.

SWTCH (Control-z or ascn suB) is used by the job control
facility, shl, to change the current layer to the control
layer.

ERASE (#) erases the preceding character. It will not erase

beyond the start of a line, as delimited by a NL, EOF, or
EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or
EOL character.

EOF (Control-d or Asci EOT) may be used to generate an
end-of-file from a terminal. When received, all the
characters waiting to be read are immediately passed
to the program, without waiting for a new-line, and the

EOF is discarded. Thus, if there are no characters wait-
ing, which is to say the EOF occurred at the beginning
of a line, zero characters will be passed back, which is
the standard end-of-file indication.

NL (asci LF) is the normal line delimiter. It can not be
changed or escaped.

EOL (ascir NUL) is an additional line delimiter, like NL. It is
not normally used.

EOL2 is another additional line delimiter.

STOP (Control-s or ascn Dc3) can be used to temporarily

suspend output. It is useful with CRT terminals to
prevent output from disappearing before it can be read.
While output is suspended, sTop characters are ig-
nored and not read.

START (Control-q or ascnt Dc1) is used to resume output which
has been suspended by a sToP character. While output
is not suspended, START characters are ignored and not
read. The start/stop characters can not be changed or

escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and EOL may
be changed to suit individual tastes. The ERASE, KILL, and EOF characters
may be escaped by a preceding \ character, in which case no special func-
tion is done.

2 AT&T Administator’s Reference Manual A

TERMIO(7) TERMIO(7)

When the carrier signal from the data-set drops, a hang-up signal is sent
to all processes that have this terminal as the control terminal. Unless
other arrangements have been made, this signal causes the processes to
terminate. If the hang-up signal is ignored, any subsequent read returns
with an end-of-file indication. Thus, programs that read a terminal and
test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the ter-
minal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive.
If a process produces characters more rapidly than they can be typed, it
will be suspended when its output queue exceeds some limit. When the
queue has drained down to some threshold, the program is resumed.

Several ioct! (2) system calls apply to terminal files. The primary calls use
the following structure, defined in <termio.h> :

#define NcC 8

struct termio {
unsigned shortc_iflag; /* input modes */
unsigned shortc_oflag; /* output modes */
unsigned shortc_cflag; /* control modes */
unsigned shortc_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NcC]; /* control chars */

}i
The special control characters are defined by the array c¢_cc. The relative
positions and initial values for each function are as follows:

0 VINTR DEL
1 VQUIT Fs
2 VERASE 4
3 VKILL e
4 VEOF EOT
5 VEOL NUL
6 reserved
7 SWTCH
The c_iflag field describes the basic terminal input control:
IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If 1GNBRK is set, the break condition (a character framing error with data
all zeros) is ignored, that is, not put on the input queue and therefore not
read by any process. Otherwise if BRKINT is set, the break condition will
generate an interrupt signal and flush both the input and output queues.
If IGNPAR is set, characters with other framing and parity errors are ig-
nored.

If PARMRK is set, a character with a framing or parity error which is not ig-
nored is read as the three-character sequence: 0377, 0, X, where X is the
data of the character received in error. To avoid ambiguity in this case, if

A AT&T Administator’s Reference Manual 3

TERMIO(7) TERMIO(7)

ISTRIP is not set, a valid character of 0377 is read as 0377, 0377. If PARMRK
is not set, a framing or parity error which is not ignored is read as the
character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without
input parity errors.

If 1STRIP is set, valid input characters are first stripped to 7-bits, otherwise
all 8-bits are processed.

If INLCR is set, a received NL character is translated into a cRr character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.

If 1ucLc is set, a received upper-case alphabetic character is translated
into the corresponding lower-case character.

If 1XoN is set, start/stop output control is enabled. A received sTOP charac-
ter will suspend output and a received START character will restart output.
All start/stop characters are ignored and not read. If Xany is set, any
input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the
input queue is nearly empty/full.

The initial input control value is all-bits-clear.

The c_oflag field specifies the system treatment of output:
OPOST 0000001 Postprocess output.

OoLCucC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs cR function.
OFILL 0000100 Use f£ill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.

NLDLY 0000400 Select new-line delays:

NLO 0

NL1 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CR1 0001000

CR2 0002000

CR3 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0

TAB1l 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.

BSDLY 0020000 Select backspace delays:

BSO 0

BS1 0020000

VTDLY 0040000 Select vertical-tab delays:
VTO 0

VTl 0040000

FFDLY 0100000 Select form-feed delays:

FFO 0

FF1 0100000

If oposT is set, output characters are post-processed as indicated by the
remaining flags, otherwise characters are transmitted without change.

4 AT&T Administator’s Reference Manual A

TERMIO(7) TERMIO(7)

If oLcuc is set, a lower-case alphabetic character is transmitted as the cor-
responding upper-case character. This function is often used in conjunction
with 1ucLc.

If ONLCR is set, the NL character is transmitted as the cR-NL character

pair. If OCRNL is set, the CR character is transmitted as the NL character.

If oNoCR is set, no CR character is transmitted when at column 0 (first posi-
tion). If ONLRET is set, the NL character is assumed to do the carriage-
return function; the column pointer will be set to 0 and the delays specified
for cr will be used. Otherwise the NL character is assumed to do just the
line-feed function; the column pointer will remain unchanged. The column
pointer is also set to 0 if the cRr character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. In all
cases a value of 0 indicates no delay. If OFILL is set, fill characters will be
transmitted for delay instead of a timed delay. This is useful for high baud
rate terminals which need only a minimal delay. If OFDEL is set, the fill
character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-
return delays are used instead of the new-line delays. If oFILL is set, two
fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position,
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is
set, delay type 1 transmits two fill characters, and type 2, four fill charac-
ters.

Horizontal-tab delay type 1 is dependent on the current column position.
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded
into spaces. If OFILL is set, two fill characters will be transmitted for any
delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
will be transmitted.

The actual delays depend on line speed and system load.
The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the terminal:
CBAUD 0000017 Baud rate:

BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud

B110 0000003 110 baud
B134 0000004 134 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
B19200 0000016 19200 baud
EXTA 0000016 External A

A AT&T Administator’s Reference Manual 5

TERMIO(7) TERMIO(7)

B38400 0000017 38400 baud

EXTB 0000017 External B

CSIZE 0000060 Character size:

css 0 5 bits

csé6 0000020 6 bits

cs? 0000040 7 bits

cs8 0000060 8 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.

PARENB 0000400 Parity enable.

PARODD 0001000 0dd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

RCVIEN 0010000
XMT1EN 0020000
LOBLK 0040000 Block layer output.

The cBAUD bits specify the baud rate. The zero baud rate, B0, is used to
hang up the connection. If BO is specified, the data-terminal-ready signal
will not be asserted. Normally, this will disconnect the line. For any par-
ticular hardware, impossible speed changes are ignored.

The csizE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If csToPB is set,
two stop bits are used, otherwise one stop bit. For example, at 110 baud,
two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit
is added to each character. If parity is enabled, the PARODD flag specifies
odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be
received.

If HUPCL is set, the line will be disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal
will not be asserted.

If cLocaL is set, the line is assumed to be a local, direct connection with no
modem control. Otherwise modem control is assumed.

If LOBLK is set, the output of a job control layer will be blocked when it is
not the current layer. Otherwise the output generated by that layer will be
multiplexed onto the current layer.

The initial hardware control value after open is B300, CS8, cREAD, HUPCL.

The c_Iflag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline (0) provides the follow-

ing:
ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS.
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or quit.

If 181G is set, each input character is checked against the special control
characters INTR, SWTCH, and QUIT*S. If an input character matches one of
these control characters, the function associated with that character is per-
formed. If 181G is not set, no checking is done. Thus these special input

-] AT&T Administator’s Reference Manual A

TERMIO(7) TERMIO(7)

functions are possible only if 1s1G is set. These functions may be disabled
individually by changing the value of the control character to an unlikely
or impossible value (e.g., 0377).

If 1cANON is set, canonical processing is enabled. This enables the erase
and kill edit functions, and the assembly of input characters into lines
delimited by NL, EOF, and EOL. If ICANON is not set, read requests are satis-
fied directly from the input queue. A read will not be satisfied until at least
MIN characters have been received or the timeout value TIME has expired
between characters. This allows fast bursts of input to be read efficiently
while still allowing single character input. The MIN and TIME values are
stored in the position for the EoF and EOL characters, respectively. The
time value represents tenths of seconds.

If xcask is set, and if ICANON is set, an upper-case letter is accepted on
input by preceding it with a \ character, and is output preceded by a \
character. In this mode, the following escape sequences are generated on
output and accepted on input:

for: use:
¢ \,
| \!
~ \ A
{ \(
} \)
\ \\

For example, A is input as \a,\nas \\n,and \Nas \\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If EcHO and
ECHOE are set, the erase character is echoed as ascir Bs sp Bs, which will
clear the last character from a CRT screen. If ECHOE is set and ECHO is not
set, the erase character is echoed as asci sp Bs. If ECHOK is set, the NL
character will be echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding the erase or kill
character removes any special function. If ECHONL is set, the NL character
will be echoed even if ECHO is not set. This is useful for terminals set to
local echo (so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents terminals
that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues as-
sociated with the quit, switch, and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.
The primary ioct! (2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and
store in the termio structure referenced by arg.

A AT&T Administator's Reference Manual 7

TERMIO(7)

TCSETA

TCSETAW

TCSETAF

TERMIO(7)

Set the parameters associated with the terminal from
the structure referenced by arg. The change is im-
mediate.

Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

Wait for the output to drain, then flush the input
queue and set the new parameters.

Additional ioctl (2) calls have the form:

ioctl (fildes, command, arg)

int arg;

The commands using this form are:

TCSBRK

TCXONC

TCFLSH

FILES
/dev/tty*
SEE ALSO

Wait for the output to drain. If arg is 0, then send a
break (zero bits for 0.25 seconds).

Start/stop control. If arg is 0, suspend output; if 1, res-
tart suspended output.

If argis 0, flush the input queue; if 1, flush the output
queus; if 2, flush both the input and output queues.

stty(1) in the D-NIX 6.3 Reference Manual.
fork(2), ioctl(2), setpgrp(2), signal(2) in the Programmer’s Reference

Manual.

AT&T Administator’'s Reference Manual A

TTY(7) TTY(?)

NAME
tty - controlling terminal interface

DESCRIPTION

The file /dev/tty is, in each process, a synonym for the control terminal as-
sociated with the process group of that process, if any. It is useful for
programs or shell sequences that wish to be sure of writing messages on
the terminal no matter how output has been redirected. It can also be used
for programs that demand the name of a file for output, when typed output
is desired and it is tiresome to find out what terminal is currently in use.

FILES

/devit
/dev/tg*

SEE ALSO

console(7), ports(7).

A AT&T Administator’s Reference Manual 1

TTY(7) TTY(7)

2 ~ AT&T Adinistator’'s Reference Manual A

INTRO(8) INTRO(8)

NAME
intro - introduction to system maintenance procedures
DESCRIPTION

This section outlines certain procedures that will be of interest to those
charged with the task of system maintenance. Included are discussions of
such topics as boot procedures, recovery from crashes, file backups, ete.

A AT&T Administrator’s Reference Manual 1

INTRO(8) INTRO(8)

2 AT&T Administrator's Reference Manual A

SCCSTORCS(8B) SCCSTORCS(8B)

NAME
sccstorces - build RCS file from sccs file

SYNOPSIS

sccstores [-t] [-v] s.file ...

DESCRIPTION

Sccstorcs builds an RCS file from each Sccs file argument. The deltas and
comments for each delta are preserved and installed into the new RcS file
in order. Also preserved are the user access list and descriptive text, if any,
from the sccs file.

OPTIONS

The following flags are meaningful:

-t Trace only. Prints detailed information about the sccs
file and lists the commands that would be executed to
produce the RCS file. No commands are actually ex-
ecuted and no RCS file is made.

v Verbose. Prints each command that is run while it is
building the RCS file.

FILES

For each s.somefile, Sccstorcs writes the files somefile and somefile,v
which should not already exist. Sccstorcs will abort, rather than overwrite
those files if they do exist.

SEE ALSO
ci(1B), co(1B), res(1B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

DIAGNOSTICS
All diagnostics are written to stderr. Non-zero exit status on error.
BUGS

Sccstorcs does not preserve all SCCS options specified in the Sccs file. Most
notably, it does not preserve removed deltas, MR numbers, and cutoff
points.

SCCSTORCS(8B) SCCSTORCS(8B)

D-NIX 5.3

Manual references

Manual references for D-NIX 5.3

This is a reference section for the D-NIX 5.3 operating system. All com-
mands and functions are listed with a reference to the appropriate ma-

Diab Data AB

nual.

A
a.out(4) AT&T Administrator’s Reference Manual
a841(3C) AT&T Programmer’s Reference Manual
abort(3C) AT&T Programmer’s Reference Manual
abs(3C) AT&T Programmer’s Reference Manual
accept(1M) D-NIX 5.3 Reference Manual
access(2) AT&T Programmer’s Reference Manual
acct(1M) AT&T Administrator’s Reference Manual
acct(2) AT2T Programmer’s Reference Manual
acct(4) AT: T Administrator’s Reference Manual
acctcms(1M) AT&T Administrator’s Reference Manual
acctcom(1) AT&T User’s Reference Manual
acctcon(1M) AT&T Administrator’s Reference Manual
acctconl(1M) See acctecon(1M)
acctcon2(1M) See accteon(1M)
acctdisk(1M) See acct(1M)
acctdusg(1M) See acct(1M)
acctmerg(1M) AT&T Administrator’s Reference Manual
accton(1M) See acct(1M)
acctpre(1M) AT&T Administrator’s Reference Manual
acctprel(1M) See acctpre(1M)
acctprec2(1M) See acctpre(1M)
acctsh(1M) AT&T Administrator’s Reference Manual
acctwtmp(1M) See acct(1M)
acos(3M) See trig(3M)
adb(1) AT&T User’s Reference Manual
admin(1) AT&T Programmer’s Reference Manual
alarm(2) AT&T Programmer’s Reference Manual
ar(l) AT&T User’s Reference Manual
ar(4) AT&T Administrator’s Reference Manual
arithmetic(68) AT&T User’s Reference Manual
as(1) AT&T User’s Reference Manual
ascii(5) AT&T Administrator’s Reference Manual
asctime(3C) See ctime(3C)
asin(3M) See trig(3M)
assert(3X) AT&T Programmer’s Reference Manual
at(1) AT&T User’s Reference Manual
atan(3M) See trig(3M)
atan2(3M) See trig(3M)
atof(3C) See strtod(3C)
atoi(3C) See strtol(3C)
atol(3C) See strtol(3C)
awk(1) AT&T User’s Reference Manual

References - 1

Manual references

B

D-NIX 5.3

back(8) AT&T User’s Reference Manual
badblk(1M) D-NIX 5.3 Reference Manual
banner(1) D-NIX 5.3 Reference Manual
basename(1) D-NIX 5.3 Reference Manual
batch(1) See at(1)
be(1) AT&T User’s Reference Manual
bcheckre(1M) D-NIX 5.3 Reference Manual
bdiff(1) AT&T User’s Reference Manual
bessel(3M) AT&T Programmer’s Reference Manual
bfs(1) AT&T User’s Reference Manual
bj(8) AT&T User’s Reference Manual
bootpar(1M) D-NIX 5.3 Reference Manual
bre(1M) D-NIX 5.3 Reference Manual
brk(2) AT&T Programmer’s Reference Manual
bsearch(3C) AT&T Programmer’s Reference Manual
bup(1) D-NIX 5.3 Reference Manual

C
cal(1) AT&T User’s Reference Manual
calendar(1) AT&T User’s Reference Manual
calloc(3C) See malloc(3C)
calloc(3X) See malloe(3X)
cancel(1) D-NIX 5.3 Reference Manual
captinfo(1M) AT&T Administrator’s Reference Manual
cat(1) D-NIX 5.3 Reference Manual
cb(1) AT&T Programmer’s Reference Manual
cc(1) AT&T Programmer’s Reference Manual
cd(1) D-NIX 5.3 Reference Manual
cdc(1) AT&T Programmer’s Reference Manual
ceil(3M) See floor(3M)
cflow(1) AT&T Programmer’s Reference Manual
chargefee(1M) See acctsh(1M)
chdir(2) AT&T Programmer’s Reference Manual
checkeq(1) See eqn(1)
checklist(4) AT&T Administrator’s Reference Manual
chgrp(1) D-NIX 5.3 Reference Manual
chmod(1) D-NIX 5.3 Reference Manual
chmod(2) AT&T Programmer’s Reference Manual
chown(1) D-NIX 5.3 Reference Manual
chown(2) AT&T Programmer’s Reference Manual
chroot(1M) AT&T Administrator’s Reference Manual
chroot(2) AT&T Programmer’s Reference Manual
ci(1B) AT&T User’s Reference Manual
ckpacct(1M) See acctsh(1M)
clearerr(3S) See ferror(3S)
clock(3C) AT&T Programmer’s Reference Manual
clone(7) AT&T Administrator’s Reference Manual
close(2) AT&T Programmer’s Reference Manual
closedir(3X) See directory(3X)
cmp(1) D-NIX 5.3 Reference Manual

References - 2

Diab Data AB

D-NIX 5.3

Manual references

co(1B) AT&T User’s Reference Manual

col(1) AT&T User’s Reference Manual

comb(1) AT&T Programmer’s Reference Manual

comm(1) AT&T User’s Reference Manual

console(7) AT&T Administrator’s Reference Manual

conv(3C) AT&T Programmer’s Reference Manual

copy(1) D-NIX 5.3 Reference Manual

core(4) AT&T Administrator’s Reference Manual

cos(3M) See trig(3M)

cosh(3M) See sinh(3M)

cp(l) D-NIX 5.3 Reference Manual

cpio(1) D-NIX 5.3 Reference Manual

cpio(4) AT&T Administrator’s Reference Manual

cpp(l) AT&T Programmer’s Reference Manual

cpset(1M) AT&T Administrator’s Reference Manual

craps(68) AT&T User’s Reference Manual

creat(2) AT&T Programmer’s Reference Manual

cron(1M) D-NIX 5.3 Reference Manual

crontab(1) D-NIX 5.3 Reference Manual

crypt(1) AT&T User’s Reference Manual

crypt(3C) AT&T Programmer’s Reference Manual

crypt(3X) AT&T Programmer’s Reference Manual

csh(1) AT&T User’s Reference Manual

csplit(1) AT&T User’s Reference Manual

ctags(1) AT&T User’s Reference Manual

ctermid(3S) AT&T Programmer’s Reference Manual

ctime(3C) AT&T Programmer’s Reference Manual

ctrace(1) AT&T Programmer’s Reference Manual

ctype(3C) AT&T Programmer’s Reference Manual

cu(1C) D-NIX 5.3 Reference Manual

cubic(6) AT&T User’s Reference Manual

curses(3X) AT&T Programmer’s Reference Manual

cuserid(3S) AT&T Programmer’s Reference Manual

cut(1) D-NIX 5.3 Reference Manual

cxref(1) AT&T Programmer’s Reference Manual
D

date(1) D-NIX 5.3 Reference Manual

de(1) AT&T User’s Reference Manual

dd(1M) D-NIX 5.3 Reference Manual

delta(1) AT&T Programmer’s Reference Manual

deroff(1) AT&T User’s Reference Manual

devnm(1M) D-NIX 5.3 Reference Manual

df(1M) D-NIX 5.3 Reference Manual

dial(3C) AT&T Programmer’s Reference Manual

diff(1) AT&T User’s Reference Manual

diff(1B) AT&T User’s Reference Manual

diff3(1) AT&T User’s Reference Manual

diff3(1B) AT&T User’s Reference Manual

diffmk(1) AT&T User’s Reference Manual

dir(4) AT&T Administrator’s Reference Manual

dircmp(1) AT&T User’s Reference Manual

directory(3X) AT&T Programmer’s Reference Manual

Diab Data AB

References - 3

quual references

D-NIX 5.3

dirent(4) AT&T Administrator’s Reference Manual

dirname(1) D-NIX 5.3 Reference Manual

disable(1) D-NIX 5.3 Reference Manual

dmacs(1) D-NIX 5.3 Reference Manual

dodisk(1M) See acctsh(1M)

drand48(3C) AT&T Programmer’s Reference Manual

ds90-00(1) See machid(1)

ds90-10(1) See machid(1)

ds90-11(1) See machid(1)

ds90-20(1) See machid(1)

ds90-21(1) See machid(1) -

ds90-30(1) See machid(1)

ds90-31(1) See machid(1)

du(1M) D-NIX 5.3 Reference Manual

dump(1) AT&T Programmer’s Reference Manual

dup(2) AT&T Programmer’s Reference Manual

dup2(3C) AT&T Programmer’s Reference Manual
E

echo(1) D-NIX 5.3 Reference Manual

ecvt(3C) AT&T Programmer’s Reference Manual

ed(1) D-NIX 5.3 Reference Manual

edata(3C) See end(3C)

edit(1) AT&T User’s Reference Manual

egrep(1) AT&T User'’s Reference Manual

enable(1) D-NIX 5.3 Reference Manual

encrypt(3C) See crypt(3C)

end(3C) AT&T Programmer’s Reference Manual

endgrent(3C) See getgrent(3C)

endpwent(3C) See getpwent(3C)

endutent(3C) See getut(3C)

env(1) D-NIX 5.3 Reference Manual

environ(5) AT&T Administrator’s Reference Manual

eqn(1) AT&T User’s Reference Manual

erand48(3C) See drand48(3C)

erf(3M) AT&T Programmer’s Reference Manual

erfc(3M) See erf(3M)

errdemon(1M) D-NIX 5.3 Reference Manual

errno(3C) See perror(3C)

etext(3C) See end(3C)

eval(1) D-NIX 5.3 Reference Manual

ex(1) AT&T User’s Reference Manual

exec(1) D-NIX 5.3 Reference Manual

exec(2) AT&T Programmer’s Reference Manual

exit(1) D-NIX 5.3 Reference Manual

exit(2) AT&T Programmer’s Reference Manual

exp(3M) AT&T Programmer’s Reference Manual

export(1) D-NIX 5.3 Reference Manual

expr(1) D-NIX 5.3 Reference Manual

References - 4

Diab Data AB A

D-NIX 5.3

Manual references

F
fabs(3M) See floor(3M)
factor(1) AT&T User’s Reference Manual
false(1) D-NIX 5.3 Reference Manual
fclose(3S) AT&T Programmer’s Reference Manual
fentl(2) AT&T Programmer’s Reference Manual
fentl(5) AT&T Administrator’s Reference Manual
fevt(3C) See ecvt(3C)
fdopen(3S) See fopen(3S)
ferror(3S) AT&T Programmer’s Reference Manual
feof(3S) See ferror(3S)
fflush(3S) See fclose(3S)
fgetc(3S) See getc(3S)
fgetgrent(3C) See getgrent(3C)
fgetpwent(3C) See getpwent(3C)
fgets(3S) See gets(3S)
fgrep(1) D-NIX 5.3 Reference Manual
file(1) AT&T User’s Reference Manual
filehdr(4) AT&T Administrator’s Reference Manual
fileno(3S) See ferror(3S)
find(1) D-NIX 5.3 Reference Manual
fish(8) AT&T User’s Reference Manual
floor(3M) AT&T Programmer’s Reference Manual
fmod(3M) See floor(3M)
fopen(3S) AT&T Programmer’s Reference Manual
fork(2) AT&T Programmer’s Reference Manual
format(1M) D-NIX 5.3 Reference Manual
fortune(8) AT&T User’s Reference Manual
fprintf(3S) See printf(3S)
fputc(3S) See pute(3S)
fputs(3S) See puts(3S)
fread(3S) AT&T Programmer’s Reference Manual
free(3C) See malloc(3C)
free(3X) See malloe(3X)
freopen(3S) See fopen(3S)
frexp(3C) AT&T Programmer’s Reference Manual
fscanf(3S) See scanf(3S)
fsck(1M) D-NIX 5.3 Reference Manual
fscl(1M) D-NIX 5.3 Reference Manual
fseek(3S) AT&T Programmer’s Reference Manual
fsize(1) D-NIX 5.3 Reference Manual
fspec(4) AT&T Administrator’s Reference Manual
fstab(4) AT&T Administrator’s Reference Manual
fstat(2) See stat(2)
fstatfs(2) See statfs(2)
ftell(3S) See fseek(3S)
ftok(3C) See stdipe(3C)
ftw(3C) AT&T Programmer’s Reference Manual
fuser(1M) AT&T Administrator’s Reference Manual
fwrite(3S) See fread(3S)
fwtmp(1M) AT&T Administrator’s Reference Manual
A Diab Data AB References - 5

Manual references

D-NIX 5.3

G
gamma(3M) AT&T Programmer’s Reference Manual
gevt(3C) See ecvt(3C)
get(1) AT&T Programmer’s Reference Manual
getc(3S) AT&T Programmer’s Reference Manual
getchar(3S) See getc(3S)
getcwd(3C) AT&T Programmer’s Reference Manual
getdents(2) AT&T Programmer’s Reference Manual
getenv(3C) AT&T Programmer’s Reference Manual
geteuid(2) See getuid(2)
getegid(2) See getuid(2)
getgid(2) See getuid(2)
getgrent(3C) AT&T Programmer’s Reference Manual
getgrgid(3C) See getgrent(3C)
getgrnam(3C) See getgrent(3C)
getlogin(3C) AT&T Programmer’s Reference Manual
getmsg(2) AT&T Programmer’s Reference Manual
getopt(1) D-NIX 5.3 Reference Manual
getopts(1) D-NIX 5.3 Reference Manual
getopt(3C) AT&T Programmer’s Reference Manual
getpass(3C) AT&T Programmer’s Reference Manual
getpid(2) AT&T Programmer’s Reference Manual
getpgrp(2) See getpid(2)
getppid(2) See getpid(2)
getpw(3C) AT&T Programmer’s Reference Manual
getpwent(3C) AT&T Programmer’s Reference Manual
getpwnam(3C) See getpwent(3C)
getpwuid(3C) See getpwent(3C)
gets(3S) AT&T Programmer’s Reference Manual
getty(1M) D-NIX 5.3 Reference Manual
gettydefs(4) AT&T Administrator’s Reference Manual
getuid(2) AT&T Programmer’s Reference Manual
getut(3C) AT&T Programmer’s Reference Manual
getutent(3C) See getut(3C)
getutid(3C) See getut(3C)
getutline(3C) See getut(3C)
getw(3S) See getc(3S)
glossary(1) AT&T User’s Reference Manual
gmtime(3C) See ctime(3C)
grep(1) D-NIX 5.3 Reference Manual
group(4) AT&T Administrator’s Reference Manual
grpck(1M) See pwck(1M)
gsignal(3C) See ssignal(3C)

H
hangman(8) AT&T User’s Reference Manual
hashcheck(1) See spell(1)
hashmake(1) See spell(1)
hereate(3C) See hsearch(3C)
hdestroy(3C) See hsearch(3C)
help(1) AT&T User’s Reference Manual

References - 6

Diab Data AB

D-NIX 5.3 Manual references
helpadm(1M) AT&T Administrator’s Reference Manual
hsearch(3C) AT&T Programmer’s Reference Manual
hyphen(1) AT&T User’s Reference Manual
hypot(3M) AT&T Programmer’s Reference Manual

I
id(1M) AT&T Administrator’s Reference Manual
ident(1B) AT&T User’s Reference Manual
infocmp(1M) AT&T Administrator’s Reference Manual
init(1M) D-NIX 5.3 Reference Manual
inittab(4) AT&T Administrator’s Reference Manual
inode(4) AT&T Administrator’s Reference Manual
install(1M) AT&T Administrator’s Reference Manual
ioctl(2) AT&T Programmer’s Reference Manual
iperm(1) D-NIX 5.3 Reference Manual
ipes(1) D-NIX 5.3 Reference Manual
isalpha(3C) See ctype(3C)
is.....(3C) See ctype(3C)
isatty(3C) See ttyname(3C)
issue(4) AT&T Administrator’s Reference Manual

J
jn(3M) See bessel(3M)
join(1) AT&T User’s Reference Manual
jotto(8) AT&T User'’s Reference Manual
jrand48(3C) See drand48(3C)

K

- kermit(1) D-NIX 5.3 Reference Manual
kill(1) D-NIX 5.3 Reference Manual
kill(2) AT&T Programmer’s Reference Manual
kmem(7) See mem(7)

L
I(1) D-NIX 5.3 Reference Manual
13tol(3C) AT&T Programmer’s Reference Manual
164a(3C) See a641(3C)
labelit(1M) D-NIX 5.3 Reference Manual
lastlogin(1M) See acctsh(1M)
le(1) D-NIX 5.3 Reference Manual
lcong48(3C) See drand48(3C)
1d(1) AT&T User’s Reference Manual
ldaclose(3X) See ldclose(3X)
ldahread(3X) AT&T Programmer’s Reference Manual
ldaopen(3X) See ldopen(3X)
ldclose(3X) AT&T Programmer’s Reference Manual
ldexp(3C) See frexp(3C)
ldfcn(4) AT&T Administrator’s Reference Manual
ldfhread(3X) AT&T Programmer’s Reference Manual
ldgetname(3X) AT&T Programmer’s Reference Manual

A Diab Data AB References - 7

Manual references

References - 8

1dlinit(3X)
ldlitem(3X)
ldlread(3X)
ldlseek(3X)
ldnlseek(3X)
ldnrseek(3X)
ldnsseek(3X)
ldohseek(3X)
ldopen(3X)
ldnshread(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
ldtbindex(3X)
ldtbread(3X)
ldtbseek(3X)
lex(1)
Ifind(3C)
limits(4)
line(1)
linenum(4)
link(1M)
link(2)
lint(1)

In(1)

load(1)
localtime(3C)
locate(1)
lockf(3C)
log(3M)
log10(3M)
login(1)
logname(1)
logname(3X)
longimp(3C)
lorder(1)
Ip(1)
Ipadmin(1M)
Ipd(1M)
lpmove(1M)
lppg(1)
Ipr(1)
lpsched(1M)
lpshut(1M)
Ipstat(1)
Ipsubmit(1)
Irand48(3C)
1s(1)
Isearch(3C)
1seek(2)
1tol13(3C)

D-NIX 5.3

See ldlread(3X)

See ldlread(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See ldlseek(3X)

See ldrseek(3X)

See ldsseek(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See ldshread(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See lsearch(3C)

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See ctime(3C)

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See exp(3M)

See exp(3M)

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See setjmp(3C)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See drand48(3C)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See 13tol(3C)

Diab Data AB A

D-NIX 5.3

M

Manual references

m4(1)
machid(1)
mail(1)
mailx(1)
make(1)
makekey(1)
mallinfo(3X)
malloc(3C)
malloc(3X)
mallopt(3X)
man(1)
math(3)
matherr(3M)
maze(8)
mc68k(1)
mem(7)
memccpy(3C)
memchr(3C)
memcmp(3C)
memcpy(3C)
memory(3C)
memset(3C)
merge(1B)
mesg(1)
mkefig(1M)
mkcont(1)
mkdir(1)
mkdir(2)
mkfs(1M)
mknod(1M)
mknod(2)
mknodm(1)
mksort(1)
mktemp(3C)
mkuser(1M)
mntchk(1M)
mnttab(4)
modf(3C)
monacct(1M)
monitor(3C)
moo(8)
mount(1M)
mount(2)
mrand48(3C)
msgctl(2)
msgget(2)
msgop(2)
mv(1)
mvdir(1M)

Diab Data AB

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See malloc(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See malloc(3X)

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See machid(1)

AT&T Administrator’s Reference Manual
See memory(3C)

See memory(3C)

See memory(3C)

See memory(3C)

AT&T Programmer’s Reference Manual
See memory(3C)

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
See frexp(3C)

See acctsh(1M)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See drand48(3C)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

References - 9

Manual references

N

D-NIX 5.3

References - 10

neqn(1) See eqn(1)
newform(1) AT&T User’s Reference Manual
newgrp(1M) D-NIX 5.3 Reference Manual
news(1) AT&T User’s Reference Manual
nice(1) D-NIX 5.3 Reference Manual
nice(2) AT&T Programmer’s Reference Manual
nl(1) AT&T User’s Reference Manual
nlist(3C) AT&T Programmer’s Reference Manual
nm(1) AT&T Programmer’s Reference Manual
nohup(1) See nice(1)
nrand48(3C) See drand48(3C)
nroff(1) AT&T User’s Reference Manual
ns32000(1) See machid(1)
null(7) AT&T Administrator’s Reference Manual
nulladm(1M) See acctsh(1M)

0]
od(1) D-NIX 5.3 Reference Manual
open(2) AT&T Programmer’s Reference Manual
opendir(3X) See directory(3X)

P
pack(1) AT&T User’s Reference Manual
passwd(1) D-NIX 5.3 Reference Manual
passwd(4) AT&T Administrator’s Reference Manual
paste(1) AT&T User’s Reference Manual
pause(2) AT&T Programmer’s Reference Manual
peat(1) See pack(1)
pclose(3S) See popen(3S)
pdpll1(1) See machid(1)
perror(3C) AT&T Programmer’s Reference Manual
pg(1) AT&T User’s Reference Manual
pipe(2) AT&T Programmer’s Reference Manual
plock(2) AT&T Programmer’s Reference Manual
pnch(4) AT&T Administrator’s Reference Manual
poll(2) AT&T Programmer’s Reference Manual
popen(38S) AT&T Programmer’s Reference Manual
pow(3M) See exp(3M)
powerfail(1M) D-NIX 5.3 Reference Manual
pr(1) D-NIX 5.3 Reference Manual
pretmp(1M) See acctsh(1M)
prdaily(1M) AT&T Administrator’s Reference Manual
print(1) D-NIX 5.3 Reference Manual
printf(3S) AT&T Programmer’s Reference Manual
prof(1) AT&T Programmer’s Reference Manual
prof(5) AT&T Administrator’s Reference Manual
profil(2) AT&T Programmer’s Reference Manual
profile(4) AT&T Administrator’s Reference Manual
prs(1) AT&T Programmer’s Reference Manual

Diab Data AB

D-NIX 5.3 Manual references
prtacct(1M) See acctsh(1M)
ps(1) D-NIX 5.3 Reference Manual
ptrace(2) AT&T Programmer’s Reference Manual
ptx(1) AT&T User’s Reference Manual
putc(38) AT&T Programmer’s Reference Manual
putchar(3S) See putc(3S)
putenv(3C) AT&T Programmer’s Reference Manual
putmsg(2) AT&T Programmer’s Reference Manual
putpwent(3C) AT&T Programmer’s Reference Manual
puts(3S) AT&T Programmer’s Reference Manual
pututline(3C) See getut(3C)
putw(3S) See pute(3S)
pweck(1M) AT&T Administrator’s Reference Manual
pwd(1) D-NIX 5.3 Reference Manual

Q .
gsort(3C) AT&T Programmer’s Reference Manual
queue(1) D-NIX 5.3 Reference Manual
quiz(8) AT&T User’s Reference Manual

R
rand(3C) AT&T Programmer’s Reference Manual
res(1B) AT&T User’s Reference Manual
rcsdiff(1B) AT&T User’s Reference Manual
resfile(5B) AT&T Administrator’s Reference Manual
rcsintro(1B) AT&T User’s Reference Manual
rcsmerge(1B) AT&T User’s Reference Manual
read(2) AT&T Programmer’s Reference Manual
readdir(3X) See directory(3X)
readonly(1) D-NIX 5.3 Reference Manual
realloc(3C) See malloe(3C)
realloc(3X) See malloc(3X)
red(1) D-NIX 5.3 Reference Manual
regcmp(1) AT&T Programmer’s Reference Manual
regcmp(3X) AT&T Programmer’s Reference Manual
regex(3X) See regemp(3X)
regexp(5) AT&T Administrator’s Reference Manual
reject(1M) D-NIX 5.3 Reference Manual
reloc(4) AT&T Administrator’s Reference Manual
rewind(3S) See fseek(3S)
rewinddir(3X) See directory(3X)
rinstall(1M) D-NIX 5.3 Reference Manual
rlog(1B) AT&T User’s Reference Manual
rm(1) D-NIX 5.3 Reference Manual
rmail(1) D-NIX 5.3 Reference Manual
rmdel(1) AT&T Programmer’s Reference Manual
rmdir(1) See rm(1)
rmdir(2) AT&T Programmer’s Reference Manual
rmuser(1M) D-NIX 5.3 Reference Manual
rsh(1) D-NIX 5.3 Reference Manual
runacct(1M) AT&T Administrator’s Reference Manual

Diab Data AB

References - 11

Manual references

S

D-NIX 5.3

References - 12

sact(1)
sar(1)
sar(1M)
sbrk(2)
scanf(38)
scesdiff(1)
sccsfile(4)
sccstorcs(8B)
scnhdr(4)
scr_dump(4)
scrfile(1)
sdb(1)
sdiff(1)
sed(1)
seed48(3C)
seekdir(3X)
semctl(2)
semget(2)
semop(2)
set(1)
setbuf(3S)
setgid(2)
setgrent(3C)
setimp(3C)
setkey(3C)
setmnt(1M)
setpgrp(2)
setpwent(3C)
setspeed(1)
setuid(2)
setutent(3C)
setvbuf(3S)
sh(1)
shmctl(2)
shmget(2)
shmop(2)
shutacct(1M)
shutdown(1M)
sighold(2)
sigigmore(2)
signal(2)
sigpause(2)
sigrelse(2)
sigset(2)
sin(3M)
sinh(3M)
siv(1)

size(1)
sleep(1)
sleep(3C)
sno(1)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
See brk(2)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

See drand48(3C)

See directory(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See setuid(2)

See getgrent(3C)

AT&T Programmer’s Reference Manual
See crypt(3C)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See getpwent(3C)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See getut(3C)

See setbuf(3S)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See acctsh(1M)

D-NIX 5.3 Reference Manual

See sigset(2)

See sigset(2)

AT&T Programmer’s Reference Manual
See sigset(2)

See sigset(2)

AT&T Programmer’s Reference Manual
See trig(3M)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

Diab Data AB A

D-NIX 5.3

Manual references

Diab Data AB

sort(1) D-NIX 5.3 Reference Manual

spell(1) AT&T User’s Reference Manual

spellin(1) See spell(1)

spline(1G) AT&T User’s Reference Manual

split(1) AT&T User’s Reference Manual

sprintf(3S) See printf(3S)

sqrt(3M) See exp(3M)

srand(3C) See rand(3C)

srand48(3C) See drand48(3C)

sscanf(3S) See scanf(3S)

ssignal(3C) AT&T Programmer’s Reference Manual

starter(1) AT&T User’s Reference Manual

startup(1M) See acctsh(1M)

stat(2) AT&T Programmer’s Reference Manual

stat(5) AT&T Administrator’s Reference Manual

statfs(2) AT&T Programmer’s Reference Manual

stdio(38S) AT&T Programmer’s Reference Manual

stdipe(3C) AT&T Programmer’s Reference Manual

stime(2) AT&T Programmer’s Reference Manual

strcat(3C) See string(3C)

str...(3C) See string(3C)

streamio(7) AT&T Administrator’s Reference Manual

string(3C) AT&T Programmer’s Reference Manual

strip(1) AT&T Programmer’s Reference Manual

strtod(3C) AT&T Programmer’s Reference Manual

strtol(3C) AT&T Programmer’s Reference Manual

stty(1) D-NIX 5.3 Reference Manual

su(1M) D-NIX 5.3 Reference Manual

sum(1) AT&T User’s Reference Manual

swab(3C) AT&T Programmer’s Reference Manual

syms(4) AT&T Administrator’s Reference Manual

sync(1M) D-NIX 5.3 Reference Manual

sync(2) AT&T Programmer’s Reference Manual

sys_errlist(3C) See perror(3C)

sys_nerr(3C) See perror(3C)

sysfs(2) AT&T Programmer’s Reference Manual

system(3S) AT&T Programmer’s Reference Manual
T

tabs(1) AT&T User’s Reference Manual

tail(1) AT&T User’s Reference Manual

tan(3M) See trig(3M)

tanh(3M) See sinh(3M)

tar(1) D-NIX 5.3 Reference Manual

tbl(1) AT&T User’s Reference Manual

tc(1M) D-NIX 5.3 Reference Manual

tdelete(3C) See tsearch(3C)

tee(1) AT&T User’s Reference Manual

telinit(1M) D-NIX 5.3 Reference Manual

telldir(3X) See directory(3X)

tempnam(3S) See tmpnam(3S)

term(4) AT&T Administrator’s Reference Manual

term(5) AT&T Administrator’s Reference Manual

References - 13

Manual references

D-NIX 5.3

terminfo(4) AT&T Administrator’s Reference Manual
termio(7) AT&T Administrator’s Reference Manual
test(1) D-NIX 5.3 Reference Manual
tfind(3C) See tsearch(3C)
tic(1M) AT&T Programmer’s Reference Manual
time(1) D-NIX 5.3 Reference Manual
time(2) AT&T Programmer’s Reference Manual
times(1) D-NIX 5.3 Reference Manual
times(2) AT&T Programmer’s Reference Manual
timezone(4) AT&T Administrator’s Reference Manual
tmpfile(3S) AT&T Programmer’s Reference Manual
tmpnam(3S) AT&T Programmer’s Reference Manual
toascii(3C) See conv(3C)
tolower(3C) See conv(3C)
touch(1) D-NIX 5.3 Reference Manual
toupper(3C) See conv(3C)
tput(1) AT&T User’s Reference Manual
tr(1) D-NIX 5.3 Reference Manual
trenter(1M) AT&T Administrator’s Reference Manual
trig(3M) AT&T Programmer’s Reference Manual
true(1) D-NIX 5.3 Reference Manual
tsearch(3C) AT&T Programmer’s Reference Manual
tsort(1) AT&T Programmer’s Reference Manual
ttt(8) AT&T User’s Reference Manual
tty(1) D-NIX 5.3 Reference Manual
tty(7) AT&T Administrator’s Reference Manual
ttyname(3C) AT&T Programmer’s Reference Manual
ttyslot(3C) AT&T Programmer’s Reference Manual
turnacct(1M) See acctsh(1M)
twalk(3C) See tsearch(3C)
type(1) D-NIX 5.3 Reference Manual
types(5) AT&T Administrator’s Reference Manual
tzset(3C) See ctime(3C)

U
u370(1) See machid(1)
u3b(1) See machid(1)
u3db2(1) See machid(1)
u3bs(1) See machid(1)
u3b10(1) See machid(1)
ulimit(2) AT&T Programmer’s Reference Manual
umask(1) D-NIX 5.3 Reference Manual
umask(2) AT&T Programmer’s Reference Manual
umount(1) D-NIX 5.3 Reference Manual
umount(2) AT&T Programmer’s Reference Manual
uname(1) D-NIX 5.3 Reference Manual
uname(2) AT&T Programmer’s Reference Manual
unget(1) : .. AT&T Programmer’s Reference Manual
ungetc(38) AT&T Programmer’s Reference Manual
uniq(1) D-NIX 5.3 Reference Manual
unistd(4) AT&T Administrator’s Reference Manual
units(1) AT&T User’s Reference Manual
unlink(1M) See link(1M)

References - 14 Diab Data AB A

D-NIX 5.3 Manual references
unlink(2) AT&T Programmer’s Reference Manual
unpack(1) See pack(l)
unset(1) D-NIX 5.3 Reference Manual
usage(1) AT&T User’s Reference Manual
ustat(2) AT&T Programmer’s Reference Manual
utime(2) AT&T Programmer’s Reference Manual
utmp(4) AT&T Administrator’s Reference Manual
utmpname(3C) See getut(3C)
uucheck(1M) AT&T Administrator’s Reference Manual
uucico(1M) AT&T Administrator’s Reference Manual
uucleanup(1M) AT&T Administrator’s Reference Manual
uucp(1C) AT&T User’s Reference Manual
uulog(1C) See uucp(l)
uuname(1C) See uucp(1)
uupick(1C) See uuto(l) ,
uusched(1M) AT&T Administrator’s Reference Manual
uustat(1C) AT&T User’s Reference Manual
uuto(1C) AT&T User’s Reference Manual
Uutry(1M) AT&T Administrator’s Reference Manual
uux(1C) AT&T User’s Reference Manual
uuxqt(1M) AT&T Administrator’s Reference Manual

Vv
val(1) AT&T Programmer’s Reference Manual
values(3) AT&T Administrator’s Reference Manual
varargs(3) AT&T Administrator’s Reference Manual
vax(1) See machid(1)
ve(l) AT&T Programmer’s Reference Manual
vi(1) AT&T User’s Reference Manual
viprintf(3S) See vprintf(3S)
vprintf(3S) AT&T Programmer’s Reference Manual
vprintf(3X) AT&T Programmer’s Reference Manual
vsar(1) AT&T User's Reference Manual
vsprintf(3S) See vprintf(3S)

W
wait(1) D-NIX 5.3 Reference Manual
wait(2) AT&T Programmer’s Reference Manual
wall(1) D-NIX 5.3 Reference Manual
we(1) D-NIX 5.3 Reference Manual
what(1) AT&T Programmer’s Reference Manual
who(1) D-NIX 5.3 Reference Manual
whodo(1M) AT&T Administrator’s Reference Manual
write(1) D-NIX 5.3 Reference Manual
write(2) AT&T Programmer’s Reference Manual
wtmp(4) See utmp(4)
wtmpfix(1M) See fwtmp(1M)
wump(8) AT&T User’s Reference Manual

X
xargs(1) AT&T User’s Reference Manual

Diab Data AB References - 15

Manual references D-NIX 5.3

—

yacc(1) AT&T Programmer’s Reference Manual
yn(3M) See bessel(3M)

“h"’-.fonné"ee -18 Diab Data AB A

