Diab Data AB, Box 2029 183.02 TABY.
%

+46 8 638 94 00. Fax 08 792 05 61.

N/

Diab Data AB Table of Contents

AT&T System V.3
User’s Reference Manual
Flik AT&T
1 1,1G, 1M
2 1B
3 1C
4 6
5 References

Version C - June 1992 AT&T System V.3 User's Ref. Manual 1

Table of Contents Diab Data AB

2 AT&T System V.3 User's Ref. Manual Version C - June 1992

INTRO(1) INTRO(1)

NAME
intro - introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, commands available for the
DS90 Computer in the D-NIX 5.3 Extension Package. Commands in the D-
NIX 5.3 Main Package are described in the D-NIX 5.3 Reference Manual.

Manual Page Command Syntax

Unless otherwise noted, commands described in the SYNoPsIS section of a
manual page accept options and other arguments according to the follow-
ing syntax and should be interpreted as explained below.

name [-option ...] [cmdarg...]

where:
[] Surround an option or cmdarg that is not required.
Indicates multiple occurrences of the option or cmdarg.
name The name of an executable file.
option (Always preceded by a % - ”.)
noargletter ... cr,
argletter optarg [,...]
noargletter A single letter representing an option without an op-

tion-argument. Note that more than one noargletter op-
tion can be grouped after one “ - ” (Rule 5, below).

argletter A single letter representing an option requiring an op-
tion-argument.

optarg An option-argument (character string) satisfying a pre-
ceding argletter. Note that groups of optargs following
an argletter must be separated by commas, or sepa-
rated by white space and quoted (Rule 8, below).

cmdarg Path name (or other command argument) not begin-
ning with -, or “ - ” by itself indicating the standard
input.

Command Syntax Standard: Rules

These command syntax rules are not followed by all current commands,
but all new commands will obey them. getopts (1) should be used by all
shell procedures to parse positional parameters and to check for legal op-
tions. It supports Rules 3-10 below. The enforcement of the other rules
must be done by the command itself.

1. Command names (name above) must be between two and nine charac-
ters long.

2. Command names must include only lower-case letters and digits.

3. Option names (option above) must be one character long.

A AT&T User’s Reference Manual 1

INTRO(1) INTRO(1)

4. All options must be preceded by “ - 7,
5. Options with no arguments may be grouped after a single - .

6. The first option-argument (optarg above) following an option must be
preceded by white space.

7. Option-arguments cannot be optional.

8. Groups of option-arguments following an option must either be separa-
ted by commas or separated by white space and quoted (e.g., -o
XXX,2Z,yy or -o "xxx z yy").

9. All options must precede operands (cmdarg above) on the command
line.

10. “--” may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.

12. The relative order of the operands (cmdarg above) may affect their sig-
nificance in ways determined by the command with which they appear.

13. “-” preceded and followed by white space should only be used to mean
standard input.

SEE ALSO

getopts(1).
exit(2), wait(2), getopt(3C) in the Programmer’s Reference Manual.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of “nor-
mal” termination) one supplied by the program [see wait (2) and exit (2)].
The former byte is 0 for normal termination; the latter is customarily 0 for
successful execution and non-zero to indicate troubles such as erroneous
parameters, or bad or inaccessible data. It is called variously “exit code”,
“exit status”, or “return code”, and is described only where special conven-
tions are involved.

WARNINGS

Some commands produce unexpected results when processing files contain-
ing null characters. These commands often treat text input lines as strings
and therefore become confused upon encountering a null character (the
string terminator) within a line.

2 AT&T User’s Reference Manual A

ACCTCOM(1) ACCTCOM(1)

NAME

acctcom - search and print process accounting file(s)
SYNOPSIS

acctcom [[options](file]] . ..
DESCRIPTION

acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct (4) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU
(SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without
exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR,
CHARS TRNSFD, and BLOCKS READ (total blocks read and written).

The command name is prepended with a # if it was executed with super-
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a ter-
minal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several such files of which all but the
current file are found in /usr/adm/pacct?. The options are:

-a Show some average statistics about the processes
selected. The statistics will be printed after the output
records.

-b Read backwards, showing latest commands first. This

option has no effect when the standard input is read.

-f Print the fork/exec flag and system exit status columns
in the output.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its
execution. This “hog factor” is computed as:

(total CPU time)/(elapsed time).

-i Print columns containing the I/O counts in the output.
-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).
-t Show separate system and user CPU times.

v Exclude column headings from the output.

-1line Show only processes belonging to terminal /dev/line.

A AT&T User’'s Reference Manual 1

ACCTCOM(1)

-u user

-g group

-s time

-e time
-S time
-E time

-n paitern

-q

-0 ofile
-H factor
-0 sec

-C sec

Ichars

FILES

/etc/passwd

fusr/adm/pacct

/etc/group

SEE ALSO

ACCTCOM(1)

Show only processes belonging to user that may be
specified by: a user ID, a login name that is then con-
verted to a user ID, a # which designates only those
processes executed with super-user privileges, or ?
which designates only those processes associated with
unknown user IDs.

Show only processes belonging to group. The group
may be designated by either the group ID or group
name.

Select processes existing at or after time, given in the
format hr[:min[:sec]].

Select processes existing at or before time.
Select processes starting at or after time.

Select processes ending at or before time. Using the
same time for both -S and -E shows the processes that
existed at time.

Show only commands matching pattern that may be a
regular expression as in ed (1) except that + means one
Or more occurrences.

Do not print any output records, just print the average
statistics as with the -a option.

Copy selected process records in the input data format
to ofile; supress standard output printing.

Show only processes that exceed factor, where factor is
the “hog factor” as explained in option -h above.

Show only processes with CPU system time exceeding
sec seconds.

Show only processes with total CPU time, system plus
user, exceeding sec seconds.

Show only processes transferring more characters than
the cut-off number given by chars.

ps(1), su(l) in the D-NIX 5.3 Reference Manual.
acct(2), acct(4), utmp(4) in the Programmer’s Reference Manual.

acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctpre(1M), ac-
ctsh(1M), fwtmp(1M), runacct(1M) in the Administrator’s Reference

Manual.

AT&T User’s Reference Manual A

ACCTCOM(1) ACCTCOM(1)

BUGS

acctcom only reports on processes that have terminated; use ps (1) for ac-
tive processes. If time exceeds the present time, then time is interpreted as
occurring on the previous day.

A AT&T User’'s Reference Manual 3

ACCTCOM(1) ACCTCOM(1)

4 AT&T User’s Reference Manual A

AT(1) AT(1)

NAME
at, batch - execute commands at a later time
SYNOPSIS

at time[date][+ increment]
at -rjob...

at -1(job...]

batch

DESCRIPTION

at and batch read commands from standard input to be executed at a later
time. at allows you to specify when the commands should be executed,
while jobs queued with batch will execute when system load level permits.
at may be used with the following options:

-r Removes jobs previously scheduled with at.
-1 Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables, current
directory, umask, and ulimit are retained when the commands are ex-
ecuted. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
fusr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user should be denied
access to at. If neither file exists, only root is allowed to submit a job. If
at.deny is empty, global usage is permitted. The allow/deny files consist of
one user name per line. These files can only be modified by the superuser.

The #ime may be specified as 1, 2, or 4 digits. One and two digit numbers
are taken to be hours, four digits to be hours and minutes. The time may
alternately be specified as two numbers separated by a colon, meaning
hour : minute. A suffix am or pm may be appended; otherwise a 24-hour
clock time is understood. The suffix zulu may be used to indicate GMT.
The special names noon, midnight, now, and next are also recognized.

An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by an optional comma) or
a day of the week (fully spelled or abbreviated to three characters). Two
special “days”, today and tomorrow are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less than the cur-
rent month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the follow-
ing: minutes, hours, days, weeks, months, or years. (The singular
form is also accepted.)

A AT&T User’s Reference Manual 1

AT(1) AT(1)

Thus legitimate commands include:

at 08l5am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

at and batch write the job number and schedule time to standard error.

batch submits a batch job. It is almost equivalent to “at now”, but not
quite. For one, it goes into a different queue. For another, “at now” will
respond with the error message too late.

at -r removes jobs previously scheduled by at or batch. The job number is
the number given to you previously by the at or batch command. You can
also get job numbers by typing at -1. You can only remove your own jobs un-
less you are the super-user.

EXAMPLES

The at and batch commands read from standard input the commands to be
executed at a later time. sk (1) provides different ways of specifying stan-
dard input. Within your commands, it may be useful to redirect standard
output.

This sequence can be used at a terminal:

batch

sort filename >outfile

<control-D>
This sequence, which demonstrates redirecting standard error to a pipe, is
useful in a shell procedure (the sequence of output redirection specifica-
tions is significant):

batch <<!I

sort filename 2>&1 >outfile | mail loginid

!

To have a job reschedule itself, invoke at from within the shell procedure,
by including code similar to the following within the shell file:

echo "sh shellfile" | at 1900 thursday next week

FILES
fusr/lib/cron main cron directory
fusr/lib/cron/at.allow list of allowed users
fusr/lib/cron/at.deny list of denied users
fusr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area

SEE ALSO
kill(1), mail(1), nice(1), ps(1), sh(1), sort(1), cron(1M) in the D-NIX 6.3
Reference Manual.

DIAGNOSTICS

Complains about various syntax errors and times out of range.

2 AT&T User’s Reference Manual A

AWK(1) AWK(1)

NAME

awk - pattern scanning and processing language
SYNOPSIS

awk [-Fc][prog][parameters] [files]

DESCRIPTION

awk scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated ac-
tion that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, or in a file specified as -f file.
The prog string should be enclosed in single quotes (*) to protect it from
the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The

file name - means the standard input. Each line is matched against the pat-
tern portion of every pattern-action statement; the associated action is per-

formed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using Fs; see below). The fields are denoted $1, $2, ...;
$0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the follow-
ing:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement

break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]

next # skip remaining patterns on this input line

exit # skip the rest of the input
Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -, *,
Iy %, and concatenation (indicated by a blank). The C operators ++, --, +=, -
=, *=,/=,and %= are also available in expressions, Variables may be
scalars, array elements (denoted x[i]) or fields. Variables are initialized to
the null string. Array subscripts may be any string, not necessarily
numeric; this allows for a form of associative memory. String constants are
quoted (.

A AT&T User’s Reference Manual 1

AWK(1) AWK(1)

The print statement prints its arguments on the standard cutput (or on a
file if > expr is present), separated by the current output field separator,
and terminated by the output record separator. The printf statement for-
mats its expression list according to the format [see print(8S) in the
Programmer’s Reference Manual].

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in functions
exp, log, sqrt, and int. The last truncates its argument to an integer; substr
(s, m, n) returns the n-character substring of s that begins at position m.
The function sprintfifm¢ , expr, expr, ...) formats the expressions according
to the printf (3S) format given by fm¢ and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, | |, &&, and parentheses)
of regular expressions and relational expressions. Regular expressions
must be surrounded by slashes and are as in egrep (see grep (1)). Isolated
regular expressions in a pattern apply to the entire line. Regular expres-
sions may also occur in relational expressions. A pattern may consist of two
patterns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of
the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either ~ (for contains) or I~ (for does not contain). A conditional is an
arithmetic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat-
tern, END the last.

A single character ¢ may be used to separate the fields by starting the
program with:

BEGIN { F$ = ¢ }
or by using the -Fc option.
Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; oFs, the output field separator

(default blank); ors, the output record separator (default new-line); and
OFMT, the output format for numbers (default %.8g).

EXAMPLES

Print lines longer than 72 characters:
length > 72

Print first two fields in opposite order:
{ print $2, $1 }

2 AT&T User’s Reference Manual A

AWK(1) AWK(1)

Add up first column, print sum and average:

{8 += §1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; --i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/
Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }
Print file, filling in page numbers starting at 5:
/Page/ { $2 = n++;)
{ print }
command line: awk -f program n=5 input

SEE ALSO

grep(l), sed(l) in the D-NIX 6.3 Reference Manual.

lex(1), printf(3S) in the Programmer’s Reference Manual.
BUGS

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force
an expression to be treated as a number add 0 to it; to force it to be treated
as a string concatenate the null string (™) to it.

A ' AT&T User’s Reference Manual 3

AWK(1) AWK(1)

4 AT&T User’s Reference Manual A

BC(1) BC(1)

NAME

be - arbitrary-precision arithmetic language
SYNOPSIS

be[-cl[-1]([file...]
DESCRIPTION

be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The bc (1) utility is actually a preprocessor for
dc (1), which it invokes automatically unless the -c option is present. In
this case the dc input is sent to the standard output instead. The options
are as follows:

-c Compile only. The output is send to the standard out-
put.
-1 Argument stands for the name of an arbitrary

precision math library.

The syntax for bc programs is as follows; L means letter a-z, E means ex-
pression, S means statement.

Comments
are enclosed in /* and */.
Names

simple variables: L
array elements: L[E]

” &

The words “ibase”, “obase”, and “scale”
Other operands

arbitrarily long numbers with optional sign and decimal point.
(E)

sqrt (E)

length (E) number of significant decimal digits

scale (E) number of digits right of decimal point
L(E,..,E)

Operators

+-*/%" (% is remainder; * is power)
++ -- (prefix and postfix; apply to names)

Statements

E

{s;..;8}
if(E)S

while (E) s
for(E;E;E)S
null statement

A AT&T User’'s Reference Manual 1

BC(1) BC(1)

break
quit
Function definitions

defineL (L,..., L){
autolL, ..., L
S;...S
return (E)

}
Functions in -1 math library

s(x) sine

c(x) cosine

e(x) exponential
I(x) log

a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be re-
tained on arithmetic operations in the manner of dc (1). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. “Auto” variables
are pushed down during function calls. When using arrays as function ar-
guments or defining them as automatic variables, empty square brackets
must follow the array name.

EXAMPLE

scale = 20
define e(x){
auto a, b, ¢, i, s
a =1
b =1
s =1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c = a/b
if(c == 0) return(s)
s = g+¢C
}
}

defines a function to compute an approximate value of the exponential
function and

for(i=1; i<=10; i++) e(i)
prints approximate values of the exponential function of the first ten inte-
gers.

2 AT&T User’s Reference Manual A

BC(1) BC(1)

FILES

fusr/lib/lib.b mathematical library
fusr/bin/de desk calculator proper

SEE ALSO
de(1).
BUGS

The bc command does not yet recognize the logical operators, && and 1.
For statement must have all three expressions (E's).

Quit is interpreted when read, not when executed.

A AT&T User's Reference Manual

BC(1) BC(1)

4 AT&T User’s Reference Manual A

BDIFF(1) BDIFF(1)

NAME

bdiff - big diff
SYNOPSIS

bdiff filel file2 [n] [-s]
DESCRIPTION

bdiff is used in a manner analogous to diff (1) to find which lines in two
files must be changed to bring the files into agreement. Its purpose is to
allow processing of files which are too large for diff.

The parameters to bdiff are:

filel (file2) The name of a file to be used. If filel (file2) is -, the
standard input is read.

n The number of line segments. The value of n is 3500 by
default. If the optional third argument is given and it
is numeric, it is used as the value for n. This is useful
in those cases in which 3500-line segments are too
large for diff, causing it to fail.

-8 Specifies that no diagnostics are to be printed by bdiff
(silent option). Note, however, that this does not sup-
press possible diagnostic messages from diff (1), which
bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the
remainder of each file into n-line segments, and invokes diff upon cor-
responding segments. If both optional arguments are specified, they must
appear in the order indicated above.

The output of ddiff is exactly that of diff, with line numbers adjusted to ac-
count for the segmenting of the files (that is, to make it look as if the files
had been processed whole). Note that because of the segmenting of the
files, bdiff does not necessarily find a smallest sufficient set of file differen-
ces.

FILES

SEE ALSO

diff(1), help(1).
DIAGNOSTICS

Use help (1) for explanations.

A AT&T User’s Reference Manual 1

BDIFF(1) BDIFF(1)

2 AT&T User's Reference Manual A

BFS(1) BFS(1)

NAME

bfs - big file scanner

SYNOPSIS

bfs [-] name
DESCRIPTION

The bfs command is (almost) like ed (1) except that it is read-only and
processes much larger files. Files can be up to 1024K bytes and 32K lines,
with up to 512 characters, including new-line, per line (255 for 16-bit
machines). bfs is usually more efficient than ed (1) for scanning a file, since
the file is not copied to a buffer. It is most useful for identifying sections of
a large file where csplit (1) can be used to divide it into more manageable
pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional - suppresses printing of
sizes. Input is prompted with * if P and a carriage return are typed, as in
ed (1). Prompting can be turned off again by inputting another P and car-
riage return. Note that messages are given in response to errors if prompt-
ing is turned on.

All address expressions described under ed (1) are supported. In addition,
regular expressions may be surrounded with two symbols besides / and ?:
> indicates downward search without wrap-around, and < indicates up-
ward search without wrap-around. There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

Thee, g, v, k, p, 9, W, =, ! and null commands operate as described under
ed (1). Commands such as ---, +++-, +++=, -12, and +4p are accepted. Note
that 1,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered file
name. The w command is independent of output diversion, truncation, or
crunching (see the xo , xt and xc commands, below). The following addi-
tional commands are available:

xf file Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal is
received or an error occurs, reading resumes with the
file containing the xf. The xf commands may be nested

to a depth of 10.

xn List the marks currently in use (marks are set by the
k command).

xo [file] Further output from the p and null commands is

diverted to the named file, which, if necessary, is
created mode 666 (readable and writable by everyone),
unless your umask setting (see umask(1)) dictates
otherwise. If file is missing, output is diverted to the
standard output. Note that each diversion causes trun-
cation or creation of the file.

A AT&T User’s Reference Manual 1

BFS(1)

:label

BFS(1)

This positions a label in a command file. The label is
terminated by new-line, and blanks between the : and
the start of the label are ignored. This command may
also be used to insert comments into a command file,
since labels need not be referenced.

(.,.)xb/regular expression/label

A jump (either upward or downward) is made to label if
the command succeeds. It fails under any of the follow-
ing conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.

3. The regular expression does not match at least one
line in the specified range, including the first and last
lines.

On success, . is set to the line matched and a jump is
made to label. This command is the only one that does
not issue an error message on bad addresses, so it may
be used to test whether addresses are bad before other
commands are executed. Note that the command

xb/*/ label
is an unconditional jump.

The xb command is allowed only if it is read from some-
place other than a terminal. If it is read from a pipe
only a downward jump is possible.

xt number Output from the p and null commands is truncated to
at most number characters. The initial number is 255.
xvldigitllspaces]lvalue]

The variable name is the specified digit following the
xv. The commands xv5100 or xv5 100 both assign the
value 100 to the variable 5. The command xv61,100p
assigns the value 1,100p to the variable 8. To reference
a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5
and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.
g/%5/p

would globally search for the characters 100 and print
each line containing a match. To escape the special
meaning of %, a \ must precede it.

g/".*\[cds]/p

AT&T User’s Reference Manual A

BFS(1)

xbz label
xbn label

xc [switch]

SEE ALSO

BFS(1)

could be used to match and list lines containing printf
of characters, decimal integers, or strings.

Another feature of the xv command is that the first
line of output from a UNIX system command can be
stored into a variable. The only requirement is that the
first character of value be an . For example:

W junk

xvblcat junk
Irm junk

lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 8 by one. To escape the special
meaning of | as the first character of value, precede it
with a \.

xv7\!date
stores the value ldate into variable 7.

These two commands will test the last saved return
code from the execution of a UNIX system command
(Icommand) or nonzero value, respectively, to the
specified label. The two examples below both search for
the next five lines containing the string size.

xv55

1

/size/

xvblexpr %5 - 1
i 0%5 != 0 exit 2
xbn 1

xv45

1

/size/

xv4lexpr %4 - 1
lif 0%4 = 0 exit 2
xbz |

If switch is 1, output from the p and null commands is
crunched; if switch is 0 it is not. Without an argument,
Xc reverses switch. Initially switch is set for no crunch-
ing. Crunched output has strings of tabs and blanks
reduced to one blank and blank lines suppressed.

csplit(1), ed(1), umask(1).

DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.

AT&T User’s Reference Manual 3

BFS(1) BFS(1)

4 AT&T User’s Reference Manual A

CAL(1) CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION

cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. If neither is specified, a calendar
for the present month is printed. year can be between 1 and 9999. The
month is a number between 1 and 12. The calendar produced is that for
England and the United States.

EXAMPLES

An unusual calendar is printed for September 1752. That is the month 11
days were skipped to make up for lack of leap year adjustments. To see this
calendar, type:

cal 9 1752
BUGS

The year is always considered to start in January even though this is his-
torically naive.

Beware that “cal 83" refers to the early Christian era, not the 20th century.

A AT&T User’s Reference Manual 1

CAL(1) CAL(1)

2 AT&T User’'s Reference Manual A

CALENDAR(1) CALENDAR(1)

NAME

calendar - reminder service

SYNOPSIS
calendar| -]

DESCRIPTION

calendar consults the file calendar in the current directory and prints out
lines that contain today’s or tomorrow’s date anywhere in the line. Most

reasonable month-day dates such as “Aug. 24,” “august 24,” “8/24,” etc., are
recognized, but not “24 August” or “24/8”. On weekends “tomorrow” extends

through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in his or her login directory and sends them any positive
results by mail (1). Normally this is done daily by facilities in the UNIX
operating system.

FILES

fusr/lib/calprog to figure out today’s and tomorrow’s dates
[etc/passw
/tmp/cal*

SEE ALSO
mail(l).

BUGS

Your calendar must be public information for you to get reminder service.
calendar’s extended idea of “tomorrow” does not account for holidays.

A AT&T User’s Reference Manual

CALENDAR(1) CALENDAR(1)

AT&T User’'s Reference Manual A

COL(1) COL(1)

NAME
col - filter reverse line-feeds
SYNOPSIS
col[-b][-f]1[-x][-p]
DESCRIPTION

col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ascIr code Esc-7),
and by forward and reverse half-line-feeds (Esc-9 and Esc-8). col is par-
ticularly useful for filtering multicolumn output made with the .rt com-
mand of nroff and output resulting from use of the ¢bl (1) preprocessor.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to ap-
pear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be sup-
préssed by the -f (fine) option; in this case, the output from col may contain
forward half-line-feeds (Esc-9), but will still never contain either kind of
reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output
wherever possible to shorten printing time.

The ascit control characters so (\017) and st (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output st and so
characters are generated as appropriate to ensure that each character is
printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, sI, so, vr (\013), and Esc followed by 7, 8, or 9. The vT
character is an alternate form of full reverse line-feed, included for com-
patibility with some earlier programs of this type. All other non-printing
characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are
found in its input; the -p option may be used to cause col to output these se-
quences as regular characters, subject to overprinting from reverse line mo-
tions. The use of this option is highly discouraged unless the user is fully
aware of the textual position of the escape sequences.

SEE ALSO

nroff(1), tbl(1) in the DOCUMENTER's woRKBENCH Software Release 2.0 Techni-
cal Discussion and Reference Manual.

A AT&T User’s Reference Manual 1

coL(1) coL(1)

NOTES

The input format accepted by col matches the output produced by nroff
with either the -T37 or -Tlp options. Use -T37 (and the -f option of col) if
the ultimate disposition of the output of col will be a device that can inter-
pret half-line motions, and -Tlp otherwise.

BUGS

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any su-
perscripts.

2 AT&T User’s Reference Manual A

COMM(1) COMM(1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm [- [123]] filel file2
DESCRIPTION

comm reads filel and file2, which should be ordered in ascII collating se-
quence (see sort (1)), and produces a three-column output: lines only in
filel; lines only in file2; and lines in both files. The file name - means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -28 prints
only lines in the first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(l).

A AT&T User's Reference Manual 1

COMM(1) COMM(1)

2 AT&T User’'s Reference Manual A

COMPRESS(1M) COMPRESS(1M)

NAME

compress - compress spell history files
SYNOPSIS

/usr/lib/spell/compress
DESCRIPTION

The command /usr/lib/spell /compress will strip the
/usr/lib/spell/spellhist file by removing log information and duplicate oc-
currences of words from the file.

A AT&T User’'s Reference Manual 1

COMPRESS(1M) COMPRESS(1M)

AT&T User's Reference Manual A

CRYPT(1) CRYPT(1)

NAME

crypt - encode/decode
SYNOPSIS

crypt [password]
DESCRIPTION

crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no argu-
ment is given, crypt demands a key from the terminal and turns off print-
ing while the key is being typed in. crypt encrypts and decrypts with the
same key:

crypt key <clear >cypher

crypt key <cypher | pr
Files encrypted by crypt are compatible with those treated by the editors
ed (1), edit (1), ex (1), and vi (1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be in-
feasible; “sneak paths” by which keys or clear text can become visible must
be minimized.

crypt implements a one-rotor machine designed along the lines of the Ger-
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work re-
quired is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial fraction of
a second to compute. However, if keys are restricted to (say) three lower-
case letters, then encrypted files can be read by expending only a substan-
tial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to
users executing ps (1) or a derivative. To minimize this possibility, crypt
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

FILES

/dev/tty for typed key
SEE ALSO

ed(1), edit(1), ex(1), makekey(1), ps(1), stty(1), vi(1).
WARNING

If two or more files encrypted with the same key are concatenated and an
attempt is made to decrypt the result, only the contents of the first of the
original files will be decrypted correctly.

A AT&T User’s Reference Manual 1

CRYPT(1) CRYPT(1)

BUGS

If output is piped to nroff and the encryption key is not¢ given on the com-
mand line, crypt can leave terminal modes in a strange state (see stty (1)).

2 AT&T User’'s Reference Manual A

CSH(1) CSH(1)

NAME

csh - a shell (command interpreter) with C-like syntax
SYNOPSIS

csh [-cefinstvVxX][arg...]
DESCRIPTION

csh is a first implementation of a command language interpreter incor-
porating a history mechanism (see History Substitutions), Jjob control
facilities (see Jobs), interactive file name and user name completion (see
File Name Completion), and a C-like syntax. So as to be able to use its job
control facilities, users of csh must (and automatically) use the new tty
driver fully described in t#y (4). This new tty driver allows generation of in-
terrupt characters from the keyboard to tell jobs to stop. See sty (1) for
details on setting options in the new tty driver.

Note: This implementation does not include the Jjob control facilities.

An instance of csh begins by executing commands from the file .cshre in
the home directory of the invoker. If this is a login shell then it also ex-
ecutes commands from the file .login there. It is typical for users on crt’s
to put the command ‘stty crt’ in their .login file, and to also invoke ¢set (1)
there.

In the normal case, the shell will then begin reading commands from the
terminal, prompting with % . Processing of arguments and the use of the
shell to process files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of com-
mand input is read and broken into words. This sequence of words is
placed on the command history list and then parsed. Finally each com-
mand in the current line is executed.

When a login shell terminates it executes commands from the file Jogout
in the users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the follow-
ing exceptions. The characters & | ; < > () form separate words. If doubled
in &&, | |, << or >> these pairs form single words. These parser
metacharacters may be made part of other words, or prevented their spe-
cial meaning, by preceding them with \. A newline preceded by a \ is
equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ’, ¢ or ", form
parts of a word; metacharacters in these strings, including blanks and
tabs, do not form separate words. These quotations have semantics to be
described subsequently. Within pairs of ’ or " characters a newline preceded
by a \ gives a true newline character.

When the shell’s input is not a terminal, the character # introduces a com-
ment which continues to the end of the input line. It is prevented this spe-
cial meaning when preceded by \ and in quotations using®, ’, and ".

A AT&T User’s Reference Manual 1

CSH(1) CSH(1)

Commands

A simple command is a sequence of words, the first of which specifies the
command to be executed. A simple command or a sequence of simple com-
mands separated by | characters forms a pipeline. The output of each com-
mand in a pipeline is connected to the input of the next. Sequences of
pipelines may be separated by ;, and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it
to terminate by following it with an &.

Any of the above may be placed in () to form a simple command (which
may be a component of a pipeline, etc.) It is also possible to separate pipe-
lines with | | or && indicating, as in the C language, that the second is to
be executed only if the first fails or succeeds respectively. (See Expressions.)

Jobs

The shell associates a job with each pipeline. It keeps a table of current
jobs, printed by the jobs command, and assigns them small integer num-
bers. When a job is started asynchronously with &, the shell prints a line
which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number
1 and had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key
AZ (control-Z) which sends a STOP signal to the current job. The shell will
then normally indicate that the job has been Stopped, and print another
prompt. You can then manipulate the state of this job, putting it in the
background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground com-
mand fg. A *Z takes effect immediately and is like an interrupt in that
pending output and unread input are discarded when it is typed. There is
another special key Y which does not generate a STOP signal until a pro-
gram attempts to read (2) it. This can usefully be typed ahead when you
have prepared some commands for a job which you wish to stop after it has
read them.

A job being run in the background will stop if it tries to read from the ter-
minal. Background jobs are normally allowed to produce output, but this
can be disabled by giving the command ‘stty tostop’. If you set this tty op-
tion, then background jobs will stop when they try to produce output like
they do when they try to read input.

There are several ways to refer to jobs in the shell. The character % intro-
duces a job name. If you wish to refer to job number 1, you can name it as
%]1. Just naming a job brings it to the foreground; thus %1 is a synonym
for fg %1, bringing job 1 back into the foreground. Similarly saying %1 &
resumes job 1 in the background. Jobs can also be named by prefixes of the
string typed in to start them, if these prefixes are unambiguous, thus %ex
would normally restart a suspended ex (1) job, if there were only one sus-
pended job whose name began with the string ex. It is also possible to say

2 AT&T User’s Reference Manual A

CSH(1) CSH(1)

say %?string which specifies a job whose text contains string, if there is
only one such job.

The shell maintains a notion of the current and previous jobs. In output
pertaining to jobs, the current job is marked with a + and the previous job
with a -. The abbreviation %+ refers to the current job and %- refers to the
previous job. For close analogy with the syntax of the history mechanism
(described below), %% is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normal-
ly informs you whenever a job becomes blocked so that no further progress
is possible, but only just before it prints a prompt. This is done so that it
does not otherwise disturb your work. If, however, you set the shell vari-
able notify, the shell will notify you immediately of changes of status in
background jobs. There is also a shell command notify which marks a
single process so that its status changes will be immediately reported. By
default notify marks the current process; simply say notify after starting

a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned
that You have stopped jobs. You may use the jobs command to see what
they are. If you do this or immediately try to exit again, the shell will not
warn you a second time, and the suspended jobs will be terminated.

File Name Completion

When the file name completion feature is enabled by setting the shell vari-
able filec (see set), csh will interactively complete file names and user
names from unique prefixes, when they are input from the terminal fol-
lowed by the escape character (the escape key, or control-[). For example, if
the current directory looks like

DsC.OLD bin cmd 1lib xmpl.c
DSC.NEW chaosnet cmtest mail xmpl.o
bench class dev mbox xmpl.out

and the input is
$ vi ch<escape>

csh will complete the prefix ‘ch’ to the only matching file name ‘chaosnet’,
changing the input line to

% vi chaosnet
However, given
% vi D<escape>
csh will only expand the input to
% vi Dsc.
and will sound the terminal bell to indicate that the expansion is incom-
plete, since there are two file names matching the prefix ‘D’.

If a partial file name is followed by the end-of-file character (usually con-
trol-D), then, instead of completing the name, csh will list all file names
matching the prefix. For example, the input

A AT&T User’s Reference Manual 3

CSH(1) CSH(1)

% vi D<control-D>

causes all files beginning with ‘D’ to be listed:
DSC.NEW DSC.OLD

while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand par-
tial user names, if the word to be completed (or listed) begins with the
character ~. For example, typing

cd ~ro<escape>
may produce the expansion
cd ~root

The use of the terminal bell to signal errors or multiple matches can be in-
hibited by setting the variable nobeep.

Normally, all files in the particular directory are candidates for name com-
pletion. Files with certain suffixes can be excluded from consideration by
setting the variable fignore to the list of suffixes to be ignored. Thus, if fig-
nore is set by the command

% set fignore = (.o .out)
then typing
$ vi x<escape>
would result in the completion to
$ vi xmpl.c
ignoring the files "xmpl.0o" and "xmpl.out". However, if the only completion
possible requires not ignoring these suffixes, then they are not ignored. In

addition, fignore does not affect the listing of file names by control-D. All
files are listed regardless of their suffixes.

Substitutions

We now describe the various transformations the shell performs on the
input in the order in which they occur.

History substitutions

History substitutions place words from previous command input as por-
tions of new commands, making it easy to repeat commands, repeat argu-
ments of a previous command in the current command, or fix spelling
mistakes in the previous command with little typing and a high degree of
confidence. History substitutions begin with the character ! and may begin
anywhere in the input stream (with the proviso that they do not nest.)
This ! may be preceded by an \ to prevent its special meaning; for con-
venience, a ! is passed unchanged when it is followed by a blank, tab,
newline, = or (. (History substitutions also occur when an input line begins
with *. This special abbreviation will be described later.) Any input line
which contains history substitution is echoed on the terminal before it is
executed as it could have been typed without history substitution.

Commands input from the terminal which consist of one or more words are
saved on the history list. The history substitutions reintroduce sequences

4 AT&T User's Reference Manual A

CSH(1) CSH(1)

of words from these saved commands into the input stream. The size of
which is controlled by the history variable; the previous command is al-
ways retained, regardless of its value. Commands are numbered sequen-
tially from 1.

For definiteness, consider the following output from the history command:

9 write michael

10 ex write.c

11 cat oldwrite.c

12 diff wwrite.c
The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be

made part of the prompt by placing an ! in the prompt string.

With the current event 13 we can refer to previous events by event number
111, relatively as in 1-2 (referring to the same event), by a prefix of a com-
mand word as in !d for event 12 or wri for event 9, or by a string con-
tained in a word in the command as in !1?mic? also referring to event 9.
These forms, without further modification, simply reintroduce the words of
the specified events, each separated by a single blank. As a special case I!
refers to the previous command; thus !! alone is essentially a redo.

To select words from an event we can follow the event specification by a :
and a designator for the desired words. The words of an input line are num-
bered from 0, the first (usually command) word being 0, the second word
(first argument) being 1, etc. The basic word designators are:

0 first (command) word
n n’'th argument

A

first argument, i.e. 1

$ last argument

% word matched by (immediately preceding) ?s? search
X-y range of words

-y abbreviates 0-y

* abbreviates *-8$, or nothing if only 1 word in event
x* abbreviates x-$

x- like x* but omitting word $

The : separating the event specification from the word designator can be
omitted if the argument selector begins with a *, $, * - or %. After the op-
tional word designator can be placed a sequence of modifiers, each
preceded by a :. The following modifiers are defined:

h Remove a trailing pathname component, leaving the
head.

r Remove a trailing .xxx component, leaving the root
name.

e Remove all but the extension .xxx part.

s/l/r/ Substitute | for r

A AT&T User’'s Reference Manual 5

CSH(1) CSH(1)

Remove all leading pathname components, leaving the
tail.

Repeat the previous substitution.
Apply the change globally, prefixing the above, e.g. g&.
Print the new command line but do not execute it.

Quote the substituted words, preventing further sub-
stitutions.

x Like q, but break into words at blanks, tabs and
newlines.

Unless preceded by a g the modification is applied only to the first modifi-
able word. With substitutions, it is an error for no word to be applicable.

o

Q2 'Y | g

The left hand side of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the
delimiter in place of /; a \ quotes the delimiter into the | and r strings. The
character & in the right hand side is replaced by the text from the left. A \
quotes & also. A null | uses the previous string either from a | or from a
contextual scan string s in 1?8?. The trailing delimiter in the substitution
may be omitted if a newline follows immediately as may the trailing ? in a
contextual scan.

A history reference may be given without an event specification, e.g. !1$. In
this case the reference is to the previous command unless a previous his-
tory reference occurred on the same line in which case this form repeats
the previous reference. Thus 1?foo?” I$ gives the first and last arguments
from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first non-
blank character of an input line is a *. This is equivalent to l:s* providing
a convenient shorthand for substitutions on the text of the previous line.
Thus *1b"1ib fixes the spelling of lib in the previous command. Finally, a
history substitution may be surrounded with { and } if necessary to insu-
late it from the characters which follow. Thus, after 1s -1d ~paul we might
do {I}a to do 1s -1d ~paula, while lla would look for a command starting la.

Quotations with ’ and "

The quotation of strings by * and " can be used to prevent all or some of the
remaining substitutions. Strings enclosed in ’ are prevented any further in-
terpretation. Strings enclosed in " may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only
in one special case (see Command Substitition below) does a " quoted
string yield parts of more than one word; ’ quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed
and modified by the alias and unalias commands. After a command line is
scanned, it is parsed into distinct commands and the first word of each
command, left-to-right, is checked to see if it has an alias. If it does, then
the text which is the alias for that command is reread with the history

6 AT&T User's Reference Manual A

CSH(1) CSH(1)

mechanism available as though that command were the previous input
line. The resulting words replace the command and argument list. If no
reference is made to the history list, then the argument list is left un-

changed.

Thus if the alias for 1s is 1s -1 the command 1s /usr would map to Is -1 /usr,
the argument list here being undisturbed. Similarly if the alias for lookup
was grep 1" /etc/passwd then lookup bill would map to grep bill
[etc/passwd.

If an alias is found, the word transformation of the input text is performed
and the aliasing process begins again on the reformed input line. Looping
is prevented if the first word of the new text is the same as the old by flag-
ging it to prevent further aliasing. Other loops are detected and cause an
error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus we can alias print 'pr \!1* | Ipr’ to make a command which pr’s its
arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of
zero or more words. Some of these variables are set by the shell or referred
to by it. For instance, the argv variable is an image of the shell’s argument
list, and words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by using the set and
unset commands. Of the variables referred to by the shell a number are
toggles; the shell does not care what their value is, only whether they are
set or not. For instance, the verbose variable is a toggle which causes com-
mand input to be echoed. The setting of this variable results from the -v
command line option.

Other operations treat variables numerically. The @ command permits
numeric calculations to be performed and the result assigned to a variable.
Variable values are, however, always represented as (zero or more) strings.
For the purposes of numeric operations, the null string is considered to be
zero, and the second and subsequent words of multiword values are ig-
nored.

After the input line is aliased and parsed, and before each command is ex-
ecuted, variable substitution is performed keyed by $ characters. This ex-
pansion can be prevented by preceding the $ with a \ except within "s
where it always occurs, and within ’s where it never occurs. Strings quoted
by ‘ are interpreted later (see Command substitution below) so $ substitu-
tion does not occur there until later, if at all. A $ is passed unchanged if fol-
lowed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and
are variable expanded separately. Otherwise, the command name and en-
tire argument list are expanded together. It is thus possible for the first
(command) word to this point to generate more than one word, the first of
which becomes the command name, and the rest of which become argu-
ments.

A AT&T User’s Reference Manual 7

CSH(1) CSH(1)

Unless enclosed in " or given the :q modifier the results of variable sub-
stitution may eventually be command and filename substituted. Within ",
a variable whose value consists of multiple words expands to a (portion of)
a single word, with the words of the variables value separated by blanks.
When the :q modifier is applied to a substitution the variable will expand
to multiple words with each word separated by a blank and quoted to
prevent later command or filename substitution.

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a variable
which is not set.

$name
${name}

Are replaced by the words of the value of variable name, each separa-
ted by a blank. Braces insulate name from following characters which
would otherwise be part of it. Shell variables have names consisting of
up to 20 letters and digits starting with a letter. The underscore cha-
racter is considered a letter. If name is not a shell variable, but is set
in the environment, then that value is returned (but : modif iers and
the other forms given below are not available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the value of name.
The selector is subjected to $ substi tution and may consist of a single
number or two numbers separated by a -. The first word of a vari ables
value is numbered 1. If the first number of a range is omitted it de-
faults to 1. If the last member of a range is omitted it defaults to $#na-
me. The selector * selects all words. It is not an error for a range to be
empty if the second argument is omit ted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for later use
in a [selector].

$0

Substitutes the name of the file from which command input is being re-
ad. An error occurs if the name is not known.

$number
${number}

Equivalent to $argv[number].
$t
Equivalent to $argvi*].

The modifiers :e, :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command form
then the modifiers must appear within the braces. The current implemen-
tation allows only one : modifier on each $ expansion.

8 AT&T User’'s Reference Manual A

CSH(1) CSH(1)

The following substitutions may not be modified with : modifiers.

$?name
${?name}

Substitutes the string 1 if name is set, 0 if it is not.
$70
Substitutes 1 if the current input filename is known, 0 if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<

Substitutes a line from the standard input, with no further interpreta-
tion thereafter. It can be used to read from the keyboard in a shell
script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are ap-
plied selectively to the arguments of builtin commands. This means that
portions of expressions which are not evaluated are not subjected to these
expansions. For commands which are not internal to the shell, the com-
mand name is substituted separately from the argument list. This occurs
very late, after input-output redirection is performed, and in a child of the
main shell.

Command substitution

Command substitution is indicated by a command enclosed in ‘. The out-
put from such a command is normally broken into separate words at
blanks, tabs and newlines, with null words being discarded, this text then
replacing the original string. Within "s, only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it
is thus possible for a command substitution to yield only part of a word,
even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters *, ?, [or { or begins with the
character ~, then that word is a candidate for filename substitution, also
known as globbing’. This word is then regarded as a pattern, and replaced
with an alphabetically sorted list of file names which match the pattern. In
a list of words specifying filename substitution it is an error for no pattern
to match an existing file name, but it is not required for each pattern to
match. Only the metacharacters *, ? and [imply pattern matching, the
characters ~ and { being more akin to abbreviations.

In matching filenames, the character . at the beginning of a filename or im-
mediately following a /, as well as the character / must be matched explicit-
ly. The character * matches any string of characters, including the null
string. The character ? matches any single character. The sequence [...]

A AT&T User's Reference Manual 9

CSH(1) CSH(1)

matches any one of the characters enclosed. Within [...], & pair of charac-
ters separated by - matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home
directories. Standing alone, i.e. ~ it expands to the invokers home directory
as reflected in the value of the variable home. When followed by a name
consisting of letters, digits and - characters the shell searches for a user
with that name and substitutes their home directory; thus ~ken might ex-
pand to /usr/ken and ~ken/chmach to /usr/ken/chmach. If the charac-
ter ~ is followed by a character other than a letter or / or appears not at the
beginning of a word, it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to right
order is preserved, with results of matches being sorted separately at a low
level to preserve this order. This construct may be nested. Thus
~source/s1/{oldls,ls}.c expands to /usr/source/sl/oldls.c
/usr/source/s1/ls.c whether or not these files exist without any chance of
error if the home directory for source is /usr/source. Similarly
../{memo,*box} might expand to ...memo ../box ../mbox. (Note that
memo was not sorted with the results of matching *box.) As a special case
{, } and {} are passed undisturbed.

Input/output

10

The standard input and standard output of a command may be redirected
with the following syntax:

< name

Open file name (which is first variable, command and filename expan-
ded) as the standard input.

<< word

Read the shell input up to a line which is identical to word. Word is
not subjected to variable, filename or command substitution, and each
input line is compared to word before any substitutions are done on
this input line. Unless a quoting \, ", ’ or ¢ appears in word variable
and command substitution is performed on the intervening lines, allo-
wing \ to quote $, \ and ‘. Commands which are substituted have all
blanks, tabs, and newlines preserved, except for the final newline
which is dropped. The resultant text is placed in an anonymous tempo-
rary file which is given to the command as standard input.

> name
>! name

>& name
>&! name

The file name is used as standard output. If the file does not exist then
it is created; if the file exists, its is truncated, its previous contents be-
ing lost.

If the variable noclobber is set, then the file must not exist or be a cha-
racter special file (e.g. a termi nal or /dev/null) or an error results.

AT&T User’s Reference Manual A

CSH(1) CSH(1)

This helps prevent accidental destruction of files. In this case the !
forms can be used and suppress this check.

The forms involving & route the diagnostic output into the specified
file as well as the standard output. Name is expanded in the same way
as < input filenames are.

>> name
>>& name
>>! name

>>&! name

Uses file name as standard output like > but places output at the end
of the file. If the variable noclobber is set, then it is an error for the file
not to exist unless one of the ! forms is given. Other wise similar to 5.

A command receives the environment in which the shell was invoked as
modified by the input-output parameters and the presence of the command
in a pipeline. Thus, unlike some previous shells, commands run from a file
of shell commands have no access to the text of the commands by default;
rather they receive the original standard input of the shell. The << mecha-
nism should be used to present inline data. This permits shell command
scripts to function as components of pipelines and allows the shell to block
read its input. Note that the default standard input for a command run
detached is not modified to be the empty file /dev/null; rather the stan-
dard input remains as the original standard input of the shell. If this is a
terminal and if the process attempts to read from the terminal, then the
process will block and the user will be notified (see Jobs above).

Diagnostic output may be directed through a pipe with the standard out-
put. Simply use the form |& rather than just |.

Expressions

A number of the builtin commands (to be described subsequently) take ex-
pressions, in which the operators are similar to those of C, with the same
precedence. These expressions appear in the @, exit, if, and while com-
mands. The following operators are available:

|| && | " & ==l==~lnc=>=<><<>>+-*/% 1 ~ ()

Here the precedence increases to the right, == != =~ and I~, <= >= < and >,
<< and >>, + and -, * / and % being, in groups, at the same level. The == l=
=~ and !~ operators compare their arguments as strings; all others operate
on numbers. The operators =~ and !~ are like != and == except that the
right hand side is a pattern (containing, e.g. *s, ?s and instances of [...])
against which the left hand operand is matched. This reduces the need for
use of the switch statement in shell scripts when all that is really needed
is pattern matching. ‘

Strings which begin with 0 are considered octal numbers. Null or missing
arguments are considered 0. The result of all expressions are strings,
which represent decimal numbers. It is important to note that no two com-
ponents of an expression can appear in the same word; except when adja-
cent to components of expressions which are syntactically significant to the
parser (& | < > ()) they should be surrounded by spaces.

A AT&T User’s Reference Manual 11

CSH(1) CSH(1)

Also available in expressions as primitive operands are command execu-
tions enclosed in { and } and file enquiries of the form -1 name where | is
one of:

read access
write access
execute access
existence
ownership
zero size

plain file

A ™ N O © M g "

directory

The specified name is command and filename expanded and then tested to
see if it has the specified relationship to the real user. If the file does not
exist or is inaccessible then all enquiries return false, i.e. 0. Command ex-
ecutions succeed, returning true, i.e. 1, if the command exits with status 0,
otherwise they fail, returning false, i.e. 0. If more detailed status informa-
tion is required then the command should be executed outside of an expres-
sion and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate
the flow of control in command files (shell scripts) and (in limited but use-
ful ways) from terminal input. These commands all operate by forcing the
shell to reread or skip in its input and, due to the implementation, restrict
the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form
of the if statement require that the major keywords appear in a single
simple command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a
loop is being read and performs seeks in this internal buffer to accomplish
the rereading implied by the loop. (To the extent that this allows, back-
ward goto’s will succeed on non-seekable inputs.)

Builtin commands

12

Builtin commands are executed within the shell. If a builtin command oc-
curs as any component of a pipeline except the last then it is executed in a
subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for
name. The final form assigns the specified wordlist as the alias of na-
me; wordlist is command and filename substituted. Name is not allo-
wed to be alias or unalias.

AT&T User’s Reference Manual A

CSH(1) CSH(1)

alloc

Shows the amount of dynamic memory acquired, broken down into
used and free memory. With an argument shows the number of free
and used blocks in each size category. The categories start at size 8

and double at each step. This command’s output may vary across sys-
tem types, since systems other than the VAX may use a different memo-

ry allocator.
bg
bg %job ...

Puts the current or specified jobs into the background, continuing
them if they were stopped.

break

Causes execution to resume after the end of the nearest enclosing fo-
reach or while. The remaining commands on the current line are execu-
ted. Multi-level breaks are thus possible by writing them all on one
line.

breaksw

Causes a break from a switch, resuming after the endsw.
case label:

A label in a switch statement as discussed below.

cd

cd name
chdir

chdir name

Change the shell’s working directory to directory name. If no argu-
ment is given then change to the home directory of the user. If name is
not found as a subdirectory of the current directory (and does not be-
gin with /, ./ or ../), then each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but
name is a shell variable whose value begins with /, then this is tried to
see if it is a directory.

continue

Continue execution of the nearest enclosing while or foreach. The rest
of the commands on the current line are executed.

default:

Labels the default case in a switch statement. The default should come
after all case labels.

dirs

Prints the directory stack; the top of the stack is at the left, the first di-
rectory in the stack being the current directory.

A AT&T User’s Reference Manual 13

CSH(1) CSH(1)

14

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output, separa-
ted by spaces, and terminated with a new line unless the -n option is
specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements be-
low.

eval arg ...

(As in sh (1).) The arguments are read as input to the shell and the re-
sulting command(s) executed in the context of the current shell. This

is usually used to execute commands generated as the result of com-
mand or variable substitution, since parsing occurs before these substi-
tutions. See tset (1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form)
or with the value of the specified expr (second form).

fg
£g %job ..

Brings the current or specified jobs into the foreground, continuing
them if they were stopped.

foreach name (wordlist)

end

The variable name is successively set to each member of wordlist and
the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear alone on separa-
te lines.)

The builtin command continue may be used to continue the loop pre-
maturely and the builtin command break to terminate it prematurely.
When this command is read from the terminal, the loop is read up on-
ce prompting with ? before any statements in the loop are exe cuted. If
you make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist

Like echo but no \ escapes are recognized and words are delimited by
null characters in the output. Useful for programs which wish to use
the shell to filename expand a list of words.

AT&T User’s Reference Manual A

CSH(1)

CSH(1)

goto word

The specified word is filename and command expanded to yield a
string of the form label. The shell rewinds its input as much as possi-
ble and searches for a line of the form label: possibly preceded by
blanks or tabs. Execution continues after the specified line.

hashstat

Print a statistics line indicating how effective the internal hash table
has been at locating commands (and avoiding exec’s). An exec is at-
tempted for each component of the path where the hash function indi-
cates a possible hit, and in each component which does not begin with
al.

history
history n
history -rn
history -hn

Displays the history event list; if n is given only the n most recent
events are printed. The -r option reverses the order of printout to be
most recent first rather than oldest first. The -h option causes the his-
tory list to be printed without leading numbers. This is used to produ-
ce files suitable for sourceing using the -h option to source.

if (expr) command

If the specified expression evaluates true, then the single command
with arguments is executed. Variable substitution on command hap-
pens early, at the same time it does for the rest of the if command.
Command must be a simple command, not a pipeline, a command list,
or a parenthesized command list. Input/output redirection occurs even
if expr is false, when command is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif

If the specified expr is true then the commands to the first else are ex-
ecuted; otherwise if expr2 is true then the commands to the second el-
se are executed, etc. Any number of else-if pairs are possible; only one
endif is needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if must appear
alone on its input line or after an else.)

jobs
jobs -1

Lists the active jobs; given the -1 options lists process id’s in addition to
the normal information.

AT&T User’s Reference Manual 15

CSH(1) CSH(1)

kill %job

kill -sig %job ...
kill pid

kill -sig pid ...

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in /usr/include/signal.h, stripped of the prefix SIG).
The signal names are listed by kill -1. There is no default, saying just
kill does not send a signal to the current job. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or process will be sent
a CONT (continue) signal as well.

limit

limit resource

limit resource maximum-use
limit -h

limit -h resource

limit -h resource maximum-use

Limits the consumption by the current process and each process it
creates to not individually exceed maximum use on the specified re-
source. If no maximum-use resource is given, then all limitations are
given. If the -h flag is given, the hard limits are used instead of the cur-
rent limits. The hard limits impose a ceiling on the values of the cur-
rent limits. Only the super-user may raise the hard limits, but a user
may lower or raise the current limits within the legal range.

Resources controllable currently include cputime (the maximum num-
ber of cpu-seconds to be used by each pro cess), filesize (the largest
single file which can be created), datasize (the maximum growth of the
data+stack region via sbrk (2) beyond the end of the program text),
stacksize (the maximum size of the automatically-extended stack re-
gion), and coredumpsize (the size of the largest core dump that will be
created).

The maximum-use may be given as a (floating point or integer) num-
ber followed by a scale factor. For all limits other than cputime the de-
fault scale is k or kilobytes (1024 bytes); a scale factor of m or
megabytes may also be used. For cputime the default scaling is se-
conds, while m for minutes or h for hours, or a time of the form
mm:ss giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of
the names suffice.

login

Terminate a login shell, replacing it with an instance of /bin/login.
This is one way to log off, included for compatibility with sk (1).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

16 AT&T User’s Reference Manual A

CSH(1) CSH(1)

nice

nice +number

nice command

nice +number command

The first form sets the scheduling priority for this shell to 4. The se-

cond form sets the priority to the given number. The final two forms

run command at priority 4 and number respectively. The greater the
number, the less cpu the process will get. The superuser may specify
negative priority by using nice -number Command is always ex-
ecuted in a subshell, and the restrictions placed on commands in sim
ple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be igno-
red for the remainder of the script. The second form causes the specifi-
ed command to be run with hangups ignored. All processes detached
with & are effectively nohup’ed.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of
the current or specified jobs changes; normally notification is presen-
ted before a prompt. This is automatic if the shell variable notify is set.

onintr
onintr -
onintr label

Control the action of the shell on interrupts. The first form restores
the default action of the shell on interrupts which is to terminate shell
scripts or to return to the terminal command input level. The second
form onintr - causes all interrupts to be ignored. The final form cau-
ses the shell to execute a goto label when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being
ignored, all forms of onintr have no meaning and interrupts continue
to be ignored by the shell and all invoked commands.

popd
popd +n

Pops the directory stack, returning to the new top directory. With an
argument +n discards the nth entry in the stack. The elements of the
directory stack are numbered from 0 starting at the top.

pushd
pushd name
pushd +n

With no arguments, pushd exchanges the top two elements of the direc-
tory stack. Given a name argument, pushd changes to the new directo-
ry (ala cd) and pushes the old current working directory (as in csw)

A AT&T User’s Reference Manual 17

CSH(1) CSH(1)

18

onto the directory stack. With a numeric argument, rotates the nth ar-
gument of the directory stack around to be the top element and chang-
es to it. The members of the directory stack are numbered from the top
starting at 0.

rehash

Causes the internal hash table of the contents of the directories in the
path variable to be recomputed. This is needed if new commands are
added to directories in the path while you are logged in. This should
only be necessary if you add commands to one of your own directories,
or if a systems programmer changes the contents of one of the system
directories. :

repeat count command

The specified command which is subject to the same restrictions as the
command in the one line if statement above, is executed count times.
I/0 redirections occur exactly once, even if count is 0.

set

set name

set name=word

set namelindex]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables.
Variables which have other than a single word as value print as a pa-
renthesized word list. The second form sets name to the null string.
The third form sets name to the single word. The fourth form sets the
index'th component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all ca-
ses the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single
set command. Note however, that variable expansion happens for all
arguments before any setting occurs.

setenv
setenv name value
setenv name

The first form lists all current environment variables. The last form
sets the value of environment variable name to be value, a single
string. The second form sets name to an empty string. The most com-
monly used environment variable USER, TERM, and PATH are automa-
tically imported to and exported from the csh variables user, term, and
path; there is no need to use setenv for these.

shift
shift variable

The members of argv are shifted to the left, discarding argv([1]. It is an
error for argv not to be set or to have less than one word as value. The
second form performs the same function on the specified variable.

AT&T User’s Reference Manual A

CSH(1) CSH(1)

source name
source -h name

The shell reads commands from name. Source commands may be nes-
ted; if they are nested too deeply the shell may run out of file descrip-
tors. An error in a source at any level terminates all nested source
commands. Normally input during source commands is not placed on
the history list; the -h option causes the commands to be placed in the
history list without being executed.

stop
stop %job ...

Stops the current or specified job which is executing in the background.
suspend

Causes the shell to stop in its tracks, much as if it had been sent a stop
signal with *Z. This is most often used to stop shells started by su (1).

switch (string)
case strl:

breaksw
default:

breaksw
endsw

Each case label is successively matched, against the specified string
which is first command and filename expanded. The file metacharac-
ters *, ? and [...] may be used in the case labels, which are variable ex-
panded. If none of the labels match before a default label is found,
then the execution begins after the default label. Each case label and
the default label must appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw. Otherwise con-
trol may fall through case labels and default labels as in C. If no label
matches and there is no default, execution continues after the endsw.

time
time command

With no argument, a summary of time used by this she the specified
simple command is timed and a time summary as described under the
time variable is printed. If necessary, an extra shell is created to print
the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified
value (second form). The mask is given in octal. Common values for
the mask are 002 giving all access to the group and read and execute
access to others or 022 giving all access except no write access for
users in the group or others.

A AT&T User’'s Reference Manual 19

CSH(1) | CSH(1)

unalias pattern

All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by unalias *. It is not an error for not-
hing to be unaliased.

unhash

Use of the internal hash table to speed location of executed programs
is disabled.

unlimit

unlimit resource
unlimit -h

unlimit -h resource

Removes the limitation on resource. If no resource is specified, then all
resource limitations are removed. If -h is given, the corresponding
hard limits are removed. Only the super-user may do this.

unset pattern

All variables whose names match the specified pattern are removed.
Thus all variables are removed by unset *; this has noticeably distas-
teful side-effects. It is not an error for nothing to be unset.

unsetenv pattern

Removes all variables whose name match the specified pattern from
the environment. See also the setenv command above and printenv (1).

wait

All background jobs are waited for. It the shell is interactive, then an
interrupt can disrupt the wait, at which time the shell prints names
and job numbers of all jobs known to be outstanding.

while (expr)

.

end

While the specified expression evaluates non-zero, the commands be-
tween the while and the matching end are evaluated. Break and conti-
nue may be used to terminate or continue the loop prematurely. (The
while and end must appear alone on their input lines.) Prompting occ-
urs here the first time through the loop as for the foreach statement if
the input is a terminal.

%job

Brings the specified job into the foreground.
%job &

Continues the specified job in the background.

20 AT&T User's Reference Manual A

CSH(1) CSH(1)

@
@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The second
form sets the specified name to the value of expr. If the expression con-
tains <, >, & or | then at least this part of the expression must be pla-
ced within (). The third form assigns the value of expr to the index'th
argument of name. Both name and its index'th component must alrea-
dy exist.

The operators *=, +=, etc are available as in C. The space separating the

name from the assignment operator is optional. Spaces are, however, man-

datory in separating components of expr which would otherwise be single
words.

Special postfix ++ and -- operators increment and decrement name respec-
tively, i.e. @ i++.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv,
cwd, home, path, prompt, shell and status are always set by the shell. Ex-
cept for cwd and status this setting occurs only at initialization; these vari-
ables will not then be modified unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user,
TERM into term, and HOME into home, and copies these back into the en-
vironment whenever the normal shellvariables are reset. The environment
variable PATH is likewise handled; it is not necessary to worry about its set-
ting other than in the file .cshre as inferior csh processes will import the
definition of path from the environment, and re-export it if you then

change it.

argv Set to the arguments to the shell, it is from this vari-
able that positional parameters are substituted, i.e. $1
is replaced by $argv{1], etc.

cdpath Gives a list of alternate directories searched to find sub-
directories in chdir commands.

cwd The full pathname of the current directory.

echo Set when the -x command line option is given. Causes
each command and its arguments to be echoed just
before it is executed. For non-builtin commands all ex-
pansions occur before echoing. Builtin commands are
echoed before command and filename substitution,
since these substitutions are then done selec tively.

filec Enable file name completion.

histchars Can be given a string value to change the characters

used in history substitution. The first character of its
value is used as the history substitution character,
replacing the default character !. The second character

A AT&T User's Reference Manual 21

CSH(1)

home

ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

CSH(1)

of its value replaces the character * in quick substitu-
tions.

Can be given a numeric value to control the size of the
history list. Any command which has been referenced
in this many events will not be discarded. Too large
values of history may run the shell out of memory. The
last executed command is always saved on the history
list.

The home directory of the invoker, initialized from the
environment. The filename expansion of ~ refers to this
variable.

If set the shell ignores end-of-file from input devices
which are terminals. This prevents shells from acciden-
tally being killed by control-D’s.

The files where the shell checks for mail. This is done
after each command completion which will result in a
prompt, if a specified interval has elapsed. The shell
says You have new mail. if the file exists with an ac-
cess time not greater than its modify time.

If the first word of the value of mail is numeric it
specifies a different mail checking interval, in seconds,
than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says
New mail in name when there is mail in the file
name.

As described in the section on Input/output, restric-
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that >> redirec-
tions refer to existing files.

If set, filename expansion is inhibited. This is most use-
ful in shell scripts which are not dealing with
filenames, or after a list of filenames has been obtained
and further expansions are not desirable.

If set, it is not an error for a filename expansion to not
match any existing files; rather the primitive pattern is
returned. It is still an error for the primitive pattern to
be malformed, i.e. echo [still gives an error.

If set, the shell notifies asynchronously of job comple-
tions. The default is to rather present job completions
just before printing a prompt.

Each word of the path variable specifies a directory in
which commands are to be sought for execution. A null
word specifies the current directory. If there is no path
variable then only full path names will execute. The
usual search path is ., /bin and /usr/bin, but this may
vary from system to system. For the super-user the

AT&T User’s Reference Manual A

CSH(1)

prompt

savehist

shell

time

verbose

CSH(1)

default search path is /etc, /bin and /usr/bin. A shell
which is given neither the -¢ nor the -t option will nor-
mally hash the contents of the directories in the path
variable after reading .cshre, and each time the path
variable is reset. If new commands are added to these
directories while the shell is active, it may be necessary
to give the rehash or the commands may not be found.

The string which is printed before each command is
read from an interactive terminal input. If a | appears
in the string it will be replaced by the current event
number unless a preceding \ is given. Default is % , or
for the super-user.

is given a numeric value to control the number of
entries of the history list that are saved in ~/.history
when the user logs out. Any command which has been
referenced in this many events will be saved. During
start up the shell sources ~/.history into the history
list enabling history to be saved across logins. Too large
values of savehist will slow down the shell during start
up.

The file in which the shell resides. This is used in fork-
ing shells to interpret files which have execute bits set,
but which are not executable by the system. (See the

description of Non-builtin Command Execution below.)
Initialized to the (system-dependent) home of the shell.

The status returned by the last command. If it ter-
minated abnormally, then 0200 is added to the status.
Builtin commands which fail return exit status 1, all
other builtin commands set status 0.

Controls automatic timing of commands. If set, then
any command which takes more than this many cpu
seconds will cause a line giving user, system, and real
times and a utilization percentage which is the ratio of
user plus system times to real time to be printed when
it terminates.

Set by the -v command line option, causes the words of
each command to be printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the
shell attempts to execute the command via execve (2). Each word in the
variable path names a directory from which the shell will attempt to ex-
ecute the command. If it is given neither a -c nor a -t option, the shell will
hash the names in these directories into an internal table so that it will
only try an exec in a directory if there is a possibility that the command
resides there. This greatly speeds command location when a large number
of directories are present in the search path. If this mechanism has been
turned off (via unhash), or if the shell was given a -¢ or -t argument, and

AT&T User’s Reference Manual 23

CSH(1) CSH(1)

in any case for each directory component of path which does not begin with
a /, the shell concatenates with the given command name to form a path
name of a file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus (cd ;
pwd) ; pwd prints the home directory; leaving you where you were (print-
ing this after the home directory), while cd ; pwd leaves you in the home
directory. Parenthesized commands are most often used to prevent chdir
from affecting the current shell.

If the file has execute permissions but is not an executable binary to the
system, then it is assumed to be a file containing shell commands and a
new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to
the argument list to form the shell command. The first word of the alias
should be the full path name of the shell (e.g. $shell). Note that thisis a
special, late occurring, case of alias substitution, and only allows words to
be prepended to the argument list without modification.

Argument list processing

24

If argument O to the shell is - then this is a login shell. The flag arguments
are interpreted as follows:

-b This flag forces a ‘break’ from option processing, caus-
ing any further shell arguments to be treated as non-
option arguments. The remaining arguments will not
be interpreted as shell options. This may be used to
pass options to a shell script without confusion or pos-
sible subterfuge. The shell will not run a set-user ID
script without this option.

-c Commands are read from the (single) following argu-
ment which must be present. Any remaining argu-
ments are placed in argv.

-e The shell exits if any invoked command terminates ab-
normally or yields a non-zero exit status.

-f The shell will start faster, because it will neither

search for nor execute commands from the file .cshrec
in the invoker’s home directory.

-i The shell is interactive and prompts for its top-level
input, even if it appears to not be a terminal. Shells are
interactive without this option if their inputs and out-

puts are terminals.

-n Commands are parsed, but not executed. This aids in
syntactic checking of shell scripts.-

-8 Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be

used to escape the newline at the end of this line and
continue onto another line.

AT&T User’'s Reference Manual A

CSH(1) CSH(1)

-V Causes the verbose variable to be set, with the effect
that command input is echoed after history substitu-
tion.

X Causes the echo variable to be set, so that commands
are echoed immediately before execution.

vV Causes the verbose variable to be set even before
.cshre is executed.

-X Isto-xas -Vis to-v.

After processing of flag arguments, if arguments remain but none of the -c,
-1, -8, or -t options was given, the first argument is taken as the name of a
file of commands to be executed. The shell opens this file, and saves its
name for possible resubstitution by $0. Since many systems use either the
standard version 6 or version 7 shells whose shell scripts are not com-
patible with this shell, the shell will execute such a standard shell if the
first character of a script is not a #, i.e. if the script does not start with a
comment. Remaining arguments initialize the variable argv.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by
& or the bg or %... & commands) are immune to signals generated from the
keyboard, including hangups. Other signals have the values which the
shell inherited from its parent. The shells handling of interrupts and ter-
minate signals in shell scripts can be controlled by onintr. Login shells
catch the terminate signal; otherwise this signal is passed on to children
from the state in the shell's parent. In no case are interrupts allowed when
a login shell is reading the file .logout.

AUTHOR

William Joy. Job control and directory stack features first implemented by
J.E. Kulp of L1.A.S.A, Laxenburg, Austria, with different syntax than that
used now. File name completion code written by Ken Greer, HP Labs.

FILES

~/.cshre Read at beginning of execution by each shell.

~/.login Read by login shell, after .cshre at login.

~/.logout Read by login shell, at logout.

/bin/sh Standard shell, for shell scripts not starting with a #.

/tmp/sh* Temporary file for <<.

[etc/passwd Source of home directories for ~name.
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument
lists to 10240 characters. The number of arguments to a command which
involves filename expansion is limited to 1/6’th the number of characters
allowed in an argument list. Command substitutions may substitute no
more characters than are allowed in an argument list. To detect looping,
the shell restricts the number of alias substitutions on a single line to 20.

This implementation does not include the job control facilities.

A AT&T User’s Reference Manual 25

CSH(1) CSH(1)

SEE ALSO

sh(l), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2),
setrlimit(2), wait(2), tty(4), a.out(5), environ(7).

BUGS

28

When a command is restarted from a stop, the shell prints the directory it
started in if this is different from the current directory; this can be mislead-
ing (i.e. wrong) as the job may have changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences
of the form a ; b ; ¢ are also not handled gracefully when stopping is at-
tempted. If you suspend b, the shell will then immediately execute c. This
is especially noticeable if this expansion results from an alias. It suffices to
place the sequence of commands in ()’s to force it to a subshell, i.e. (a;b;
c).

Control over tty output after processes are started is primitive; perhaps
this will inspire someone to work on a good virtual terminal interface. In a
virtual terminal interface much more interesting things could be done with
output control.

Alias substitution is most often used to clumsily simulate shell procedures;
shell procedures should be provided rather than aliases.

Commands within loops, prompted for by ?, are not placed in the history
list. Control structure should be parsed rather than being recognized as
built-in commands. This would allow control commands to be placed
anywhere, to be combined with |, and to be used with & and ; metasyntax.

It should be possible to use the : modifiers on the output of command sub-
stitutions. All and more than one : modifier should be allowed on $ sub-
stitutions. The way the filec facility is implemented is ugly and expensive.

AT&T User’'s Reference Manual A

CSPLIT(1) CSPLIT(1)

NAME

csplit - context split
SYNOPSIS

csplit[-s 1 [-k] [-f prefix] file argl [... argn]
DESCRIPTION

csplit reads file and separates it into n+1 sections, defined by the argu-
ments argl . .. argn. By default the sections are placed in xx00... xxn (n
may not be greater than 99). These sections get the following pieces of file :

00: From the start of file up to (but not including) the line
referenced by argl.

01: From the line referenced by argl up to the line
referenced by arg2.

n+1: From the line referenced by argn to the end of file.

If the file argument is a - then standard input is used.

The options to csplit are:

-8 csplit normally prints the character counts for each file

created. If the -8 option is present, csplit suppresses
the printing of all character counts.

‘k csplit normally removes created files if an error occurs.
If the -k option is present, csplit leaves previously
created files intact.

-fprefix If the -f option is used, the created files are named
prefix00 . . . prefixn. The default is xx00 . . . xxn.

The arguments (argl ... argn) to csplit can be a combination of the follow-

ing:

[rexp/ A file is to be created for the section from the current
line up to (but not including) the line containing the
regular expression rexp. The current line becomes the
line containing rexp . This argument may be followed
by an optional + or -some number of lines (e.g.,
[Page/-5).

% rexp % This argument is the same as /rexp/, except that no
file is created for the section.

lnno A file is to be created from the current line up to (but
not including) Inno. The current line becomes (nno.

{ num} Repeat argument. This argument may follow any of the

above arguments. If it follows a rexp type argument,
that argument is applied num more times. If it follows

A AT&T User’s Reference Manual 1

CSPLIT(1) CSPLIT(1)

Inno,the file will be split every lnno lines (num times)
from that point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the shell in the appropriate quotes. Regular expressions
may not contain embedded new-lines. csplit does not affect the original file;
it is the users responsibility to remove it.

EXAMPLES

csplit -f cobol file ’/procedure division/’ /par5./ /parl6./

This example creates four files, cobol00 . . . cobol03. After editing the
“split” files, they can be recombined as follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.
ceplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The
-k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c ’‘Smain(%’ ’'/*}/+1’ {20}
Assuming that prog.c follows the normal C coding convention of ending

routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE ALSO

ed(1), sh(1).

regexp(b) in the Programmer’s Reference Manual.
DIAGNOSTICS

Self-explanatory except for:

arg - out of range

which means that the given argument did not reference a line between the
current position and the end of the file.

2 AT&T User’s Reference Manual A

CTAGS(1) CTAGS(1)

NAME

ctags - create a tags file
SYNOPSIS

ctags [-BFatuwvx] [-f tagsfile] name....
DESCRIPTION

ctags makes a tags file for ex (1) from the specified C, Pascal, Fortran,
YACC, lex, and lisp sources. A tags file gives the locations of specified ob-
Jjects (in this case functions and typedefs) in a group of files. Each line of
the tags file contains the object name, the file in which it is defined, and an
address specification for the object definition. Functions are searched with
a pattern, typedefs with a line number. Specifiers are given in separate
fields on the line, separated by blanks or tabs. Using the tags file, ex can
quickly find these objects definitions.

If the -x flag is given, ctags produces a list of object names, the line num-
ber and file name on which each is defined, as well as the text of that line
and prints this on the standard output. This is a simple index which can be
printed out as an off-line readable function index.

If the -v flag is given, an index of the form expected by vgrind (1) is
produced on the standard output. This listing contains the function name,
file name, and page number (assuming 64 line pages). Since the output
will be sorted into lexicographic order, it may be desired to run the output
through sort -f. Sample use:

ctags -v files | sort -f index
vgrind -x index

Normally ctags places the tag descriptions in a file called tags; this may be
overridden with the -f option.

Files whose names end in .c or .h are assumed to be C source files and are
searched for C routine and macro definitions. Files whose names end in .y
are assumed to be YACC source files. Files whose names end in .1 are as-
sumed to be either lisp files if their first non-blank character is ¢, ‘C, or ‘C,
or lex files otherwise. Other files are first examined to see if they contain
any Pascal or Fortran routine definitions; if not, they are processed again

looking for C definitions.

Other options are:

-F use forward searching patterns (/.../) (default).

-B use backward searching patterns (?...7).

-a append to tags file.

-t create tags for typedefs.

-w suppressing warning diagnostics.

-u causing the specified files to be updated in tags, that is,

all references to them are deleted, and the new values
are appended to the file. (Beware: this option is imple-

A AT&T User’'s Reference Manual 1

CTAGS(1) CTAGS(1)

mented in a way which is rather slow; it is usually
faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created
by prepending M to the name of the file, with a trailing .c removed, if any,
and leading pathname components also removed. This makes use of ctags
practical in directories with more than one program.

FILES
tags output tags file
SEE ALSO
ex(1), vi(1)
AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and
-X, replacing cxref; C typedefs added by Ed Pelegri-Llopart.
BUGS

Recognition of functions, subroutines and procedures for FORTRAN and
Pascal is done is a very simpleminded way. No attempt is made to deal
with block structure; if you have two Pascal procedures in different blocks
with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN func-
tions is a hack.

Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to
detect typedefs. Use of -tx shows only the last line of typedefs.

2 AT&T User's Reference Manual A

DC(1) | DC(1)

NAME
dc - desk calculator

SYNOPSIS
dc | file]
DESCRIPTION

dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. (See bc (1), a preprocessor for
dc that provides infix notation and a C-like syntax that implements func-
tions. bc also provides reasonable control structures for programs.) The
overall structure of dc is a stacking (reverse Polish) calculator. If an argu-
ment is given, input is taken from that file until its end, then from the
standard input. The following constructions are recognized:

number The value of the number is pushed on the stack. A num-
ber is an unbroken string of the digits 0-9. It may be
preceded by an underscore () to input a negative num-
ber. Numbers may contain decimal points.

+-/*%" The top two values on the stack are added (+), sub-
tracted (-), multiplied (*), divided (/), remaindered
(%), or exponentiated (*). The two entries are popped
off the stack; the result is pushed on the stack in their
place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a
register named x, where x may be any character. If the
8 is capitalized, x is treated as a stack and the value is
pushed on it.

Ix The value in register x is pushed on the stack. The
register x is not altered. All registers start with zero
value. If the 1 is capitalized, register x is treated as a
stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

P The top value on the stack is printed. The top value
remains unchanged.

P Interprets the top of the stack as an ascn string,
removes it, and prints it.

f All values onthe stack are printed.

q Exits the program. If executing a string, the recursion
level is popped by two.

Q Exits the program. The top value on the stack is
popped and the string execution level is popped by that
value.

x Treats the top element of the stack as a character

string and executes it as a string of dc commands.

A AT&T User’s Reference Manual . 1

DC(1)

[..]

<X >X =X

o)

o e
90

EXAMPLE

DC(1)

Replaces the number on the top of the stack with its
scale factor.

Puts the bracketed ascn string onto the top of the stack.

The top two elements of the stack are popped and com-
pared. Register x is evaluated if they obey the stated
relation.

Replaces the top element on the stack by its square
root. Any existing fractional part of the argument is
taken into account, but otherwise the scale factor is ig-
nored.

Interprets the rest of the line as a UNIX system com-
mand.

All values on the stack are popped.

The top value on the stack is popped and used as the
number radix for further input. I Pushes the input
base on the top of the stack.

The top value on the stack is popped and used as the
number radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used
as a non-negative scale factor: the appropriate number
of places are printed on output, and maintained during
multiplication, division, and exponentiation. The inter-
action of scale factor, input base, and output base will
be reasonable if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its
length.

Aline of input is taken from the input source (usually
the terminal) and executed.

are used by bc (1) for array operations.

This example prints the first ten values of n!:
[lal+dsa*plalO>y]sy

Osal
lyx

SEE ALSO
be(1).

AT&T User’'s Reference Manual A

DC(1) DC(1)

DIAGNOSTICS

x i8 unimplemented

where x is an octal number.

stack empty

for not enough elements on the stack to do what was asked.
Out of space

when the free list is exhausted (too many digits).
Out of headers

for too many numbers being kept around.

Out of pushdown

for too many items on the stack.

Nesting Depth

for too many levels of nested execution.

A AT&T User’s Reference Manual 3

DC(1) DC(1)

AT&T User's Reference Manual A

DEROFF(1) DEROFF(1)

NAME
deroff - remove nroff/troff, tbl, and eqn constructs

SYNOPSIS
deroff[-mx] [-w][files]
DESCRIPTION

deroff reads each of the files in sequence and removes all troff (1) requests,
macro calls, backslash constructs, eqn (1) constructs (between .EQ and .EN
lines, and between delimiters), and #bl (1) descriptions, perhaps replacing
them with white space (blanks and blank lines), and writes the remainder
of the file on the standard output. deroff follows chains of included files
(.80 and .nx troff commands); if a file has already been included, a .so
naming that file is ignored and a .nx naming that file terminates execu-
tion. If no input file is given, deroff reads the standard input.

The -m option may be followed by an m, s, or L. The -mm option causes the
macros to be interpreted so that only running text is output (i.e., no text
from macro lines.) The -ml option forces the -mm option and also causes
deletion of lists associated with the mm macros.

If the -w option is given, the output is a word list, one “word” per line, with
all other characters deleted. Otherwise, the output follows the original,
with the deletions mentioned above. In text, a “word” is any string that con-
tains at least two letters and is composed of letters, digits, ampersands
(&), and apostrophes (’); in a macro call, however, a “word” is a string
that begins with at least two letters and contains a total of at least three
letters. Delimiters are any characters other than letters, digits,
apostrophes, and ampersands. Trailing apostrophes and ampersands are
removed from “words.”

SEE ALSO

eqn(1), nroff(1), thl(1), troff(1) in the DOCUMENTER'S WORKBENCH Software
Release 2.0 Technical Discussion and Reference Manual.

BUGS

deroff is not a complete ¢roff interpreter, so it can be confused by subtle con-
structs. Most such errors result in too much rather than too little output.

The -ml option does not handle nested lists correctly.

A AT&T User’s Reference Manual 1

DEROFF(1) DEROFF(1)

2 AT&T User's Reference Manual A

DIFF(1) | DIFF(1)

NAME
diff - differential file comparator

SYNOPSIS
diff [-efbh] filel file2

DESCRIPTION

diff tells what lines must be changed in two files to bring them into agree-
ment. If filel (file2)is -, the standard input is used. If filel (file2)is a
directory, then a file in that directory with the name file2 (filel) is used.
The normal output contains lines of these forms:

nla n3,n4
nl,n2d n3
nl,n2 ¢ n3,n4d

These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging a for d and reading
backward one may ascertain equally how to convert file2 into filel. As in
ed, identical pairs, where nl = n2 or n3 = n4, are abbreviated as a single
number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file

flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, ¢, and d commands for the editor ed,
which will recreate file2 from filel. The -f option produces a similar script,
not useful with ed, in the opposite order. In connection with -e, the follow-
ing shell program may help maintain multiple versions of a file. Only an
ancestral file (§1) and a chain of version-to-version ed scripts (8$2,$3,...)
made by diff need be on hand. A “latest version” appears on the standard

output.

(shift; cat $*; echo ’1,$p’) | ed - §$1
Except in rare circumstances, diff finds a smallest sufficient set of file dif-
ferences.

Option -h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options -e and -f are unavailable with -h.

FILES

/tmp/d??7?7?
fusr/lib/difth for -h

SEE ALSO
bdiff(1), emp(1), comm(1), ed(1).

A AT&T User’s Reference Manual 1

DIFF(1) DIFF(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
BUGS

Editing scripts produced under the -e or -f option are naive about creating
lines consisting of a single period (.).

WARNINGS

Missing newline at end of file X

indicates that the last line of file X did not have a new-line. If the lines are
different, they will be flagged and output; although the output will seem to
indicate they are the same.

2 AT&T User’s Reference Manual A

DIFF3(1) DIFF3(1)

NAME
diff3 - 3-way differential file comparison
SYNOPSIS
diff3 [-ex8] filel file2 file3
DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:
==== all three files differ
====1 filel is different
====2 file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways: '

f:nla - Text is to be appended after line number n1 in file f,
where f=1, 2, or 3.
f:nl,n2c Text is to be changed in the range line nl to line n2. If

nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indica-
tion. When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will in-
corporate into filel all changes between file2 and file3, i.e., the changes
that normally would be flagged ==== and ====3, Option -x (-3) produces a
script to incorporate only changes flagged ==== (====8). The following
command will apply the resulting script to filel.

(cat script; echo ’1,$p’) | ed - filel

FILES

/tmp/d3*
fusr/lib/Aiff3prog

SEE ALSO
diff(1).
BUGS

Text lines that consist of a single . will defeat -e.
Files longer than 64K bytes will not work.

A | AT&T User’s Reference Manual 1

DIFF3(1) DIFF3(1)

2 AT&T User’'s Reference Manual A

DIFFMK(1) DIFFMK(1)

NAME
diffmk - mark differences between files

SYNOPSIS

diffmk namel name2 name3
DESCRIPTION

diffmk compares two versions of a file and creates a third file that includes
“change mark” commands for nroff or troff (1). namel and name2 are the
old and new versions of the file. diffmk generates name3, which contains
the lines of name2 plus inserted formatter “change mark” (.mc) requests.
When name3 is formatted, changed or inserted text is shown by | at the
right margin of each line. The position of deleted text is shown by a single
*

If anyone is so inclined, diffmk can be used to produce listings of C (or
other) programs with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

.pl 1 11 77 .nf .eo .ne

The .11 request might specify a different line length, depending on the na-
ture of the program being printed. The .e0 and .nc requests are probably
needed only for C programs.

If the characters | and * are inappropriate, a copy of diffmk can be edited
to change them (diffmk is a shellprocedure).

SEE ALSO
diff(1), nroff(1), troff(1).
BUGS

Aesthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce un-
desirable output, i.e., replacing .sp by .sp 2 will produce a “change mark”
on the preceding or following line of output.

kY

A AT&T User's Reference Manual 1

DIFFMK(1) DIFFMK(1)

2 AT&T User's Reference Manual A

DIRCMP(1) DIRCMP(1)

NAME

dircmp - directory comparison
SYNOPSIS

direcmp[-d][-8][-wn]dirl dir2
DESCRIPTION

dircmp examines dirl and dir2 and generates various tabulated informa-
tion about the contents of the directories. Listings of files that are unique
to each directory are generated for all the options. If no option is entered, a
list is output indicating whether the file names common to both directories
have the same contents.

-d Compare the contents of files with the same name in
both directories and output a list telling what must be
changed in the two files to bring them into agreement.
The list format is described in diff (1).

-8 Suppress messages about identical files.
-wn Change the width of the output line to n characters.
The default width is 72.
SEE ALSO

cmp(1), diff(1).

A AT&T User’s Reference Manual 1

DIRCMP(1) | DIRCMP(1)

2 AT&T User’s Reference Manual A

EDIT(1) EDIT(1)

NAME

edit - text editor (variant of ex for casual users)
SYNOPSIS

edit[-r][-x]name...
DESCRIPTION

edit is a variant of the text editor ex recommended for new or casual users
who wish to use a command-oriented editor.

-r Recover file after an editor or system crash.

-x Encryption option; when this option is used, the file
will be encrypted as it is being written and will require
an encryption key to be read (see crypt (1)). Also, see
the WARNING section at the end of this manual page.

The following brief introduction should help you get started with edit. If
you are using a CRT terminal you may want to learn about the display
editor vi.

To edit the contents of an existing file you begin with the command “edit
name” to the shell. edit makes a copy of the file which you can then edit,
and tells you how many lines and characters are in the file. To create a
new file, just make up a name for the file and try to run edit on it; you will
cause an error diagnostic, but do not worry.

edit prompts for commands with the character *’, which you should see
after starting the editor. If you are editing an existing file, then you will
have some lines in edit’s buffer (its name for the copy of the file you are
editing). Most commands to edit use its “current line” if you do not tell
them which line to use. Thus if you say print (which can be abbreviated p)
and hit carriage return (as you should after all edi¢ commands) this cur-
rent line will be printed. If you delete (d) the current line, edit will print
the new current line. When you start editing, edit makes the last line of
the file the current line. If you delete this last line, then the new last line
becomes the current one. In general, after a delete, the next line in the file
becomes the current line. (Deleting the last line is a special case.)

If you start with an empty file or wish to add some new lines, then the ap-
pend (a) command can be used. After you give this command (typing a car-
riage return after the word append) edit will read lines from your
terminal until you give a line consisting of just a “.”, placing these lines
after the current line. The last line you type then becomes the current line.
The command insert (i) is like append but places the lines you give
before, rather than after, the current line.

edit numbers the lines in the buffer, with the first line having number 1. If
you give the command “1” then edit will type this first line. If you then give
the command delete edit will delete the first line, line 2 will become line 1,
and edit will print the current line (the new line 1) so you can see where

you are. In general, the current line will always be the last line affected by
a command.

A AT&T User's Reference Manual 1

EDIT(1) EDIT(1)

You can make a change to some text within the current line by using the
substitute (s) command. You say s/old/new/ where old is replaced by the
old characters you want to get rid of and new is the new characters you
want to replace it with.

' The command file (f) will tell you how many lines there are in the buffer
you are editing and will say [Modified] if you have changed it. After modify-
ing a file you can put the buffer text back to replace the file by giving a
write (w) command. You can then leave the editor by issuing a quit (q)
command. If you run edit on a file, but do not change it, it is not necessary
(but does no harm) to write the file back. If you try to quit from edit after
modifying the buffer without writing it out, you will be warned that there
has been “No write since last change” and edit will await another com-
mand. If you wish not to write the buffer out then you can issue another
quit command. The buffer is then irretrievably discarded, and you return
to the shell.

By using the delete and append commands, and giving line numbers to
see lines in the file you can make any changes you desire. You should learn
at least a few more things, however, if you are to use edit more than a few
times.

The change (c) command will change the current line to a sequence of
lines you supply (as in append you give lines up to a line consisting of
only a .). You can tell change to change more than one line by giving the
line numbers of the lines you want to change, i.e., 3,5change. You can
print lines this way too. Thus 1,23p prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you
gave which changed the buffer. Thus if you give a substitute command
which does not do what you want, you can say undo and the old contents
of the line will be restored. You can also undo an undo command so that
you can continue to change your mind. edit will give you a warning mes-
sage when commands you do affect more than one line of the buffer. If the
amount of change seems unreasonable, you should consider doing an undo
and looking to see what happened. If you decide that the change is ok, then
you can undo again to get it back. Note that commands such as write and
quit cannot be undone.

To look at the next line in the buffer you can just hit carriage return. To
look at a number of lines hit ~D (control key and, while it is held down D
key, then let up both) rather than carriage return. This will show you a
half screen of lines on a CRT or 12 lines on a hardcopy terminal. You can
look at the text around where you are by giving the command z.. The cur-
rent line will then be the last line printed; you can get back to the line
where you were before the z. command by saying ”. The z command can
also be given other following characters z- prints a screen of text (or 24
lines) ending where you are; z+ prints the next screenful. If you want less
than a screenful of lines, type in z.12 to get 12 lines total. This method of
giving counts works in general; thus you can delete 5 lines starting with
the current line with the command delete 5.

To find things in the file, you can use line numbers if you happen to know
them; since the line numbers change when you insert and delete lines this

2 AT&T User's Reference Manual A

EDIT(1) EDIT(1)

is somewhat unreliable. You can search backwards and forwards in the file
for strings by giving commands of the form /text/ to search forward for

text or 2text? to search backward for text. If a search reaches the end of the
file without finding the text it wraps, end around, and continues to search
back to the line where you are. A useful feature here is a search of the form
/*text/ which searches for text at the beginning of a line. Similarly /text$/
searches for text at the end of a line. You can leave off the trailing /or ? in
these commands.

The current line has a symbolic name .; this is most useful in a range of
lines as in .,$print which prints the rest of the lines in the file. To get to
the last line in the file you can refer to it by its symbolic name $. Thus the
command $§ delete or $d deletes the last line in the file, no matter which
line was the current line before. Arithmetic with line references is also pos-
sible. Thus the line $-5 is the fifth before the last, and .+20 is 20 lines after
the present.

You can find out which line you are at by doing .=. This is useful if you
wish to move or copy a section of text within a file or between files. Find
out the first and last line numbers you wish to copy or move (say 10 to 20).
For a move you can then say 10,20delete a which deletes these lines from
the file and places them in a buffer named a. edit has 26 such buffers
named a through 2. You can later get these lines back by doing put a to
put the contents of buffer a after the current line. If you want to move or
copy these lines between files you can give an edit (e) command after copy-
ing the lines, following it with the name of the other file you wish to edit,
i.e., edit chapter2. By changing delete to yank above you can get a pat-
tern for copying lines. If the text you wish to move or copy is all within one
file then you can just say 10,20move $ for example. It is not necessary to
use named buffers in this case (but you can if you wish).

SEE ALSO
ed(1), ex(1), vi(1).

A AT&T User’s Reference Manual 3

EDIT(1) EDIT(1)

4 AT&T User’s Reference Manual A

EGREP(1) EGREP(1)

NAME

egrep - search a file for a pattern using full regular expressions
SYNOPSIS

egrep [options] full regular expression [file ...]
DESCRIPTION

egrep (expression grep) searches files for a pattern of characters and prints
all lines that contain that pattern. egrep uses full regular expressions (ex-
pressions that have string values that use the full set of alphanumeric and
special characters) to match the patterns. It uses a fast deterministic al-
gorithm that sometimes needs exponential space.

egrep accepts full regular expressions as in ed (1), except for \(and \),with
the addition of:

1. A full regular expression followed by + that matches one or more occur-
rences of the full regular expression.

2. A full regular expression followed by ? that matches 0 or 1 occurrences
of the full regular expression.

8. Full regular expressions separated by | or by a new-line that match
strings that are matched by any of the expressions.

4. A full regular expression that may be enclosed in parentheses () for
grouping.

Be careful using the characters $, *, [, *, |, (,), and \ in full regular expres-
sion, because they are also meaningful to the shell. It is safest to enclose
the entire full regular expression in single quotes’...".

The order of precedence of operators is [], then *?+, then concatenation,
then | and new-line.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output. The file name is printed before
each line found if there is more than one input file.

Command line options are:

-b Precede each line by the block number on which it was
found. This can be useful in locating block numbers by
context (first block is 0).

-c Print only a count of the lines that contain the pattern.

-4 Ignore upper/lower case distinction during comparisons.

-1 Print the names of files with matching lines once,

separated by new-lines. Does not repeat the names of
files when the pattern is found more than once.

-n Precede each line by its line number in the file (first
line is 1).
v Print all lines except those that contain the pattern.

A AT&T User’s Reference Manual 1

EGREP(1) EGREP(1)

-e special_expression

Search for a special expression (full regular expression
that begins with a -).

1 file Take the list of full regular expressions from file.
SEE ALSO

ed(1), fgrep(1), grep(1), sed(1), sh(1).
DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files (even if matches were found).

BUGS

Ideally there should be only one grep command, but there is not a single al-
gorithm that spans a wide enough range of space-time tradeoffs. Lines are
limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined
in /usr/include/stdio.h.

2 AT&T User’s Reference Manual A

EQN(1) EQN(1)

NAME
eqgn, neqn, checkeq - typeset mathematics
SYNOPSIS

eqn([-dxy][-pn](-sn][-tn][file]..
checkeq [file] ...

DESCRIPTION

egn is a troff (1) preprocessor for typesetting mathematics on a Graphic
Systems phototypesetter, negn on terminals. Usage is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs read from the standard input. A
line beginning with .EQ marks the start of an equation; the end of an equa- .
tion is marked by a line beginning with .EN. Neither of these lines is al-
tered, so they may be defined in macro packages to get centering,
numbering, ete. It is also possible to set two characters as ‘delimiters’; sub-
sequent text between delimiters is also treated as egn input. Delimiters
may be set to characters x and y with the command-line argument -dxy or _
(more commonly) with ‘delim xy ’between .EQ and .EN. The left and right
delimiters may be identical. Delimiters are turned off by ‘delim off’. All

text that is neither between delimiters nor between .EQ and .EN is passed
through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double
quotes, tildes or circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character like x could appear, a complicated
construction enclosed in braces may be used instead. Tilde ~ represents a
full space in the output, circumflex * half as much.

Subscripts and superscripts are produced with the keywords sub and sup.
Fractions are made with over.

sqrt makes square roots.

The keywords from and to introduce lower and upper limits on arbitrary
things.

Left and right brackets, braces, etc., of the right height are made with left
and right. The right clause is optional. Legal characters after left and
right are braces, brackets, bars, ¢ and f for ceiling and floor, and " for
nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile. There
can be an arbitrary number of elements in a pile. Ipile left-justifies, pile
and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix. In addition, there is rcol for a right-jus-
tified column.

A AT&T User’s Reference Manual 1

EQN(1) EQN(1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad,
and under.

Sizes and font can be changed with size n or size +n, roman, italic, bold,
and font n. Size and fonts can be changed globally in a document by gsize
n and gfont n, or by the command-line arguments -s n and -f n.

Normally subscripts and superscripts are reduced by 3 point sizes from the
previous size; this may be changed by the command-line argument -p n.

Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place that is
to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define :
define thing % replacement % defines a new token called thing which will
be replaced by replacement whenever it appears thereafter. The % may be
any character that does not occur in replacement.

Keywords like sum (I) int () inf (=) and shorthands like >= (z)

-> (=), and != (») are recognized. Greek letters are spelled out in the
desired case, as in alpha or GAMMA. Mathematical words like sin, cos, log
are made Roman automatically. ¢roff (1) four-character escapes like \ (bs
can be used anywhere. Strings enclosed in double quotes "..." are passed
through untouched; this permits keywords to be entered as text, and can
be used to communicate with ¢roff when all else fails.

SEE ALSO
tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics - User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

BUGS

To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold
"12.3"’.

2 AT&T User’s Reference Manual A

EX(1) EX(1)

NAME

ex - text editor
SYNOPSIS

ex[-][-v][-ttag][-r1[-R][-x][+command] name...
DESCRIPTION

ex is the root of a family of editors: ex and vi. ex is a superset of ed, with
the most notable extension being a display editing facility. Display based
editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in
this case see vi (1), which is a command which focuses on the display edit-
ing portion of ex.

For ed Users

If you have used ed you will find that ex has a number of new features use-
ful on CRT terminals. Intelligent terminals and high speed terminals are
very pleasant to use with vi. Generally, the editor uses far more of the
capabilities of terminals than ed does, and uses the terminal capability
data base (see terminfo (4)) and the type of the terminal you are using from
the variable TERM in the environment to determine how to drive your ter-
minal efficiently. The editor makes use of features such as insert and
delete character and line in its visual command (which can be abbreviated
vi) and which is the central mode of editing when using vi (1).

ex contains a number of new features for easily viewing the text of the file.
The z command gives easy access to windows of text. Hitting ~D causes the
editor to scroll a half-window of text and is more useful for quickly step-
ping through a file than just hitting return. Of course, the screen-oriented
visual mode gives constant access to editing context. :

ex gives you more help when you make mistakes. The undo (u) command
allows you to reverse any single change which goes astray. ex gives you a
lot of feedback, normally printing changed lines, and indicates when more
than a few lines are affected by a command so that it is easy to detect
when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files unless you
edited them so that you do not accidentally clobber with a write a file other
than the one you are editing. If the system (or editor) crashes, or you ac-
cidentally hang up the telephone, you can use the editor recover com-
mand to retrieve your work. This will get you back to within a few lines of
where you left off.

ex has several features for dealing with more than one file at a time. You
can give it a list of files on the command line and use the next (n) com-
mand to deal with each in turn. The next command can also be given a list
of file names, or a pattern as used by the shell to specify a new set of files

“to be dealt with. In general, file names in the editor may be formed with
full shell metasyntax. The metacharacter ‘%’ is also available in forming
file names and is replaced by the name of the current file.

A AT&T User’s Reference Manual 1

EX(1) EX(1)

For moving text between files and within a file the editor has a group of
buffers, named a through z. You can place text in these named buffers and
carry it over when you edit another file.

There is a command & in ex which repeats the last substitute command.
In addition there is a confirmed substitute command. You give a range of
substitutions to be done and the editor interactively asks whether each
substitution is desired.

It is possible to ignore case of letters in searches and substitutions. ex also
allows regular expressions which match words to be constructed. This is
convenient, for example, in searching for the word “edit” if your document
also contains the word “editor.”

ex has a set of options which you can set to tailor it to your liking. One op-
tion which is very useful is the autoindent option which allows the editor
to automatically supply leading white space to align text. You can then use
the ~D key as a backtab and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command
which supplies white space between joined lines automatically, commands
< and > which shift groups of lines, and the ability to filter portions of the
buffer through commands such as sort.

INVOCATION OPTIONS

The following invocation options are interpreted by ex :
- Suppress all interactive-user feedback. This is useful in

processing editor scripts.

v Invokes vi

ttag Edit the file containing the tag and position the editor
at its definition.

r file Recover file after an editor or system crash. If file is
not specified a list of all saved files will be printed.

-R Readonly mode set, prevents accidentally overwriting
the file.

-x Encryption option; when this option is used, the file

will be encrypted as it is being written and will require
an encryption key to be read (see crypt (1)). Also, see
the WARNING section at the end of this manual page.

+ command Begin editing by executing the specified editor search
or positioning command.

The name argument indicates files to be edited.

2 AT&T User’s Reference Manual A

EX(1) EX(1)

ex States
Command Normal and initial state. Input prompted for by :. Your
kill character cancels partial command.
Insert Entered by a, i, or c. Arbitrary text may be entered. In-

sert is normally terminated by a line having only . on
it, or abnormally with an interrupt.

Visual Entered by vi, terminates with Q or ~\.

ex oommand names and abbreviations

abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change ¢ preserve pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit x
file f read re yank ya
global g recover rec window z
insert 1 rewind rew esca !
join ,{ set se Ishift <
ist shell sh print next CR
map source 80 resubst &
mark ma stop st rshift >
move m substitute s scroll D

ex Command Addresses

n linen / next with pat
. current ? previous with pat
3 last x-n n before x
+ next x,y x through y
- previous "x marked with x
+n n forward " previous context
% 1,%

Initializing options
EXINIT place set’s here in environment var.
$HOME/.exrc editor initialization file
J.exrc editor initialization file
set x enable option
set nox disable option
set x= give value val
set show changed options
set all show all options
set x? show value of option x

Most useful options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
list print *I for tab, $ at end
magic N special in patterns
number nu number lines
paragraphs para macro names which start ...

A AT&T User’s Reference Manual 3

EX(1) EX(1)

redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth swW for < >, and input *D
showmatch sm to) and } as typed
showmode smd show insert mode in vi
slowopen slow stop updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

Scanning pattern formation

A beginning of line

$ end of line

. any character

\< besinning of word

\> end of word

[str] any char in str

[’str] ... not in str

[x-y] ... between x and y * any number of preceding
AUTHOR

vi and ex are based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

FILES
fusr/lib/ex?.?strings error messages
fusr/lib/ex?.?recover recover command
fusr/lib/ex?.?preserve reserve command
fusr/lib/*/* escribes capabilities of terminals
$HOME/.exrc editor startup file
J.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer tempora
fusr/preserve/login preservation directorylxvhere login is the

user’s login)
SEE ALSO

awk(1), ed(1), edit(1), grep(1), sed(1), vi(1).

curses(3X), term(4), terminfo(4) in the Programmer’s Reference Manual.
BUGS

The undo command causes all marks to be lost on lines changed and then
restored if the marked lines were changed.

undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More
than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line *’ option
is used.

4 AT&T User’s Reference Manual A

EX(1) EX(1)

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are discarded in input files and cannot appear in resultant
files.

A AT&T User's Reference Manual 5

EX(1) EX(1)

-] AT&T User’s Reference Manual A

FACTOR(1) FACTOR(1)

NAME

factor - obtain the prime factors of a number
SYNOPSIS

factor [integer]
DESCRIPTION

When you use factor without an argument, it waits for you to glve it an in-
teger. After you give it a pomtlve integer less than or equal to 10 4, it fac-
tors the integer, prints its prime factors the proper number of times, and
then waits for another integer. factor exits if it encounters a zero or any
non-numeric character.

If you invoke factor with an argument, it factors the integer as described
above, and then it exits.

The maximum time to factor an integer is proportional to Vn. factor will
take this time when n is prime or the square of a prime.

DIAGNOSTICS

factor prints the error message, "Ouch," for input out of range or for gar-
bage input.

A AT&T User’s Reference Manual 1

FACTOR(1) FACTOR(1)

2 AT&T User’s Reference Manual A

FILE(1) FILE(1)

NAME

file - determine file type
SYNOPSIS

file[-c][-fffile] [-m mfile] arg...
DESCRIPTION

file performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ascIy, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0.

-c The -c option causes file to check the magic file for for-
mat errors. This validation is not normally carried out
for reasons of efficiency. No file typing is done under -c.

-f If the -f option is given, the next argument is taken to
be a file containing the names of the files to be ex-
amined.

-m The -m option instructs file to use an alternate magic
file.

file uses the file /etc/magic to identify files that have some sort of magic
number, that is, any file containing a numeric or string constant that indi-
cates its type. Commentary at the beginning of /etc/magic explains its for-
mat.

FILES
fetc/magic
SEE ALSO
filehdr(4) in the Programmer’s Reference Manual.

A AT&T User’s Reference Manual 1

FILE(1) FILE(1)

2 AT&T User’s Reference Manual A

GLOSSARY(1) GLOSSARY(1)

NAME
glossary - definitions of common UNIX system terms and symbols

SYNOPSIS
[help] glossary [term]
DESCRIPTION

The uNx system Help Facility command glossary provides definitions of
common technical terms and symbols.

Without an argument, glossary displays a menu screen listing the terms
and symbols that are currently included in glossary. A user may choose one
of the terms or may exit to the shell by typing q (for "quit"). When a term is
selected, its definition is retrieved and displayed. By selecting the ap-
propriate menu choice, the list of terms and symbols can be redisplayed.

A term’s definition may also be requested directly from shell level (as
shown above), causing a definition to be retrieved and the list of terms and
symbols not to be displayed. Some of the symbols must be escaped if re-
quested at shell level in order for the facility to understand the symbol.
The following is a table which list the symbols and their escape sequence.

SYMBOL ESCAPE SEQUENCE

" \n\n

” \o\7

: \\.

0 \\ V]
“ \l\s

\#

& \&

* *

\ VWA
I \

From any screen in the Help Facility, a user may execute a command via
the shell (sk (1)) by typing a ! and the command to be executed. The screen
will be redrawn if the command that was executed was entered at a first
level prompt. If entered at any other prompt level, only the prompt will be
redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non-scroll-
ing), the shell variable scROLL must be set to no and exported so it will be-
come part of your environment. This is done by adding the following line to
your .profile file (see profile (4)): “export scrory ; scrorL=no’ ‘. If you later
decide that scrolling is desired, SCROLL must be set to yes .

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
help(1), helpadm(1M), locate(1), sh(1), starter(1), usage(1).

A AT&T User’s Reference Manual 1

GLOSSARY(1) GLOSSARY(1)

term(5) in the Programmer’s Reference Manual.

WARNINGS

If the shell variable TERM (see sh (1)) is not set in the user’s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy ter-
minal). For a list of valid terminal types, refer to term (5).

2 AT&T User’'s Reference Manual A

HD(1) HD(1)

NAME
hd - Displays files in hexadecimal format.

SYNTAX
hd [-format][-soffset]1[-ncount][file]..
DESCRIPTION

The hd command displays the contents of files in hexadecimal, octal,
decimal, and characterr formats. Control over the specification of ranges of
characters is also available. The default behavior is with the following
flags set: -abx -A. This says that addresses (file offsets) and bytes are
printed in hexadecimal and that characters are also printed. If no file argu-
ment is given, the standard input is read.

OPTIONS

Options include:

-8 offset Specify the beginning offset in the file where printing
is to begin. If no file argument is given, or if a seek fails
because the input is a pipe, offset bytes are read from
the input and discarded. Otherwise, a seek error will
terminate processing of the current file.

The offset may be given in decimal, hexadecimal
(preceded by '0x’) or octal (preceded by a ’0’). it is option-
ally followed by one of the following multipliers: w, |, b
or k; for words (2 bytes), long words (4 bytes), blocks
(612 bytes), or kbytes (1024 bytes). Note that this is the
one case where "b" does not stand for bytes. Since
specifying a hexadecimal offset in blocks would result
in an ambiguous trailing 'b’, any offset and multiplier
may be separated by an asterisk (*).

-n count Specify the number of bytes to process. THe count is in
the same format as offset, above.

Format Flags

Format flags may specify addresses, characters, bytes, words (2 bytes) or
longs (4 bytes) to be printed in hex, decimal or octal. Two special formats
may also be indicated: text or ascii. Format and base specifiers may be free-
ly combined and repeated as desired in order to specify different bases
(hexadecimal, decimal or octal) for different output formats (addresses,
characters, etc.). All format flags appearing in a single argument are ap-
plied as appropriate to all other flags in that argument.

acbwla Output format specifiers for addresses, characters,
bytes, words, longs and ASCII respectively. Only one
base specifier will be used for addresses; the address
will appear on the first line of output that begins each
new offset in the input.

A AT&T User's Reference Manual 1

HD(1)
xdo
t

2

HD(1)

The character format prints printable characters un-
changed, special C escapes as defined in the language,
and the remaining values in the specified base.

The AscII format prints all printable characters un-
changed, and all others as a period (.). This format ap-
pears to the right of the first of other specified output
formats. A base specifier has no meaning with the AsScII
format. If no other output format (other than addresses
is given, bx is assumed. If no base specifier is given, all
of xdo are used.

Output base specifiers for hexadecimal, decimal and
octal. If no format specifier is given, all of acbwl are
used.

Print a text file, each line preceded by the address in
the file. Normally, lines should be terminated by a \n
character; but long lines will be broken up. Control
characters in the range 0x00 to 0x1f are printed as @
to ~_. Bytes with the high bit set are preceded by a
tilde (~) and printed as if the high bit were not set. The
special characters (*, ~, \) are preceded by a backslash
(\) to escape their special meaning. As special cases,
two values are represented numerically as \177 and
\377. This flag will override all output format
specifiers except addresses.

AT&T User’s Reference Manual A

HELP(1) HELP(1)

NAME
help - UNIX system Help Facility
SYNOPSIS

help

[help] starter
[help]lusage[-d][-e][-0][command_name]
[help] locate [keywordl [keyword2] ...]

[help] glossary [term]

help arg ...

DESCRIPTION

The uNix system Help Facility provides on-line assistance for UNIX system
users, whether they desire general information or specific assistance for
use of the Source Code Control System (sccs) commands.

Without arguments, kelp prints a menu of available on-line assistance com-
mands with a short description of their functions. The commands and their
descriptions are:

COMMAND DESCRIPTION

starter information about the UNIX system for the beginning
user

locate locate UNIX system commands using function-related
keywords

usage UNIX system command usage information

glossary definitions of UNIX system technical terms

The user may choose one of the above commands by entering its cor-
responding letter (given in the menu), or may exit to the shell by typing q
(for "quit").

With arguments, help directly invokes the named on-line assistance com-
mand, bypassing the initial help menu. The commands starter, locate,
usage, and glossary, optionally preceded by the word help, may also be
specified at shell level. When executing glossary from shell level some of
the symbols listed in the glossary must be escaped (preceded by one or
more backslashes, “ \”) to be understood by the Help Facility. For a list of
symbols refer and how many backslashes to use for each, refer to the glos-
sary (1) manual page.

From any screen in the Help Facility, a user may execute a command via
the shell (sh (1)) by typing a ! and the command to be executed. The screen
will be redrawn if the command that was executed was entered at a first

level prompt. If entered at any other prompt level, only the prompt will be
redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non-scroll-
ing), the shell variable scROLL must be set to no and exported so it will be-
come part of your environment. This is done by adding the following line to

A AT&T User's Reference Manual 1

HELP(1) HELP(1)

your .profile file (see profile (4)): *’export scroL ; scrorz=no’ ‘. If you
later decide that scrolling is desired, SCROLL must be set to yes .

Information on each of the Help Facility commands (starter; locate, usage,
glossary, and help) is located on their respective manual pages.

The Help Facility can be tailored to a customer’s needs by use of the hel-
padm (1M) command.

If the first argument to help is different from starter, usage, locate, or glos-

sary, help assumes information is being requested about the sccs Facility.

The arguments may be either message numbers (which normally appear in

parentheses following messages) or command names, of one of the follow-

ing types:

typel Begins with non-numerics, ends in numerics. The non-
numeric prefix is usually an abbreviation for the

program or set of routines which produced the message
(e.g., ge3 for message 3 from the get command).

type2 Does not contain numerics (as a command, such as get).
type3 Is all numeric (e.g., 212).
SEE ALSO

glossary(1), helpadm(1M), locate(1), sh(1), starter(1), usage(1).

admin(1), ede(1), comb(1), delta(l), get(1), prs(1), rmdel(1), sact(1),
scesdiff(1), unget(1), val(1), ve(1), what(1), profile(4), scesfile(4), term(5) in
the Programmer’s Reference Manual.

WARNINGS

If the shell variable TERM (see sh (1)) is not set in the user’s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy ter-
minal). For a list of valid terminal types, refer to term (b). ’

2 AT&T User's Reference Manual A

HELPADM(1M) HELPADM(1M)

NAME

helpadm - make changes to the Help Facility database
SYNOPSIS

/etc/heipadm
DESCRIPTION

The UNIX system Help Facility Administration command, helpadm, allows
UNIX system administrators and command developers to define the content
of the Help Facility database for specific commands and to monitor use of
the Help Facility. The helpadm command can only be executed by login
root, login bin, or a login that is a member of group bin.

The helpadm command prints a menu of 3 types of Help Facility data
which can be modified, and 2 choices relating to monitoring use of the Help
Facility. The five choices are:

modify startup data
+ add, modify, or delete a glossary term

+ add, modify, or delete command data (description, options, examples,
and keywords)

« prevent monitoring use of the Help Facility (login root and login bin only)
+ permit monitoring use of the Help Facility (login root and login bin only)

The user may make one of the above choices by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "quit").

If one of the first three choices is chosen, then the user is prompted for ad-
ditional information; specifically, which startup screen, glossary term
definition, or command description is to be modified. The user may also be
prompted for information to identify whether the changes to the database
are additions, modifications, or deletions. If the user is modifying existing
data or adding new data, then they are prompted to make the appropriate
modifications/additions. If the user is deleting a glossary term or a com-
mand from the database, then they must respond affirmatively to the next
query in order for the deletion to be done. In any case, before the user’s
changes are final, they must respond affirmatively when asked whether
they are sure they want their requested database changes to be done.

By default, helpadm will put the user into ed (1) to make addi-
tions/modifications to database information. If the user wishes to be put
into a different editor, then they should set the environment variable
EDITOR in their environment to the desired editor, and then export EDITOR.

If the user chooses to monitor/prevent monitoring use of the Help Facility,
the choice made is acted on with no further interaction by the user.

A AT&T User's Reference Manual 1

HELPADM(1M) | HELPADM(1M)

SEE ALSO
ed(1), glossary(1), help(1), locate(1), starter(l), usage(1).
WARNINGS

When the UNIX system is delivered to a customer, /etc/profile exports the
environment variable LOGNAME . If /etc/profile has been changed so that
LOGNAME is not exported, then the options to monitor/prevent monitoring
use of the Help Facility may not work properly.

FILES
HELPLOG fusr/lib/hel p/HELPLOG
helpclean fusr/lib/help/helpclean ~

2 AT&T User’s Reference Manual A

ID(1M) ID(1M)

NAME

id - print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

id outputs the user and group Ips and the corresponding names of the in-
voking process. If the effective and real 1ps are different, both are printed.

SEE ALSO

logname(1) in the D-NIX 5.3 Reference Manual.
getuid(2) in the Programmer’s Reference Manual.

A AT&T User Reference Manual 1

ID(1M) ID(1M)

2 AT&T User Reference Manual A

JOIN(1) JOIN(1)

NAME
join - relational database operator

SYNOPSIS
join [options] filel file2
DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is -, the standard input is used.

filel and file2 must be sorted in increasing asci collating sequence on the
fields on which they are to be joined, normally the first in each line [see
sort (1)). '

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from filel, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case,
multiple separators count as one field separator, and leading separators
are ignored. The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a
1 or a 2 referring to either filel or file2, respectively. The following options

are recognized:

-an In addition to the normal output, produce a line for
each unpairable line in file n, where n is 1 or 2.

-es Replace empty output fields by string s.

jnm Join on the mth field of file n. If n is missing, use the
mth field in each file. Fields are numbered starting
with 1.

-o list Each output line comprises the fields specified in
list,each element of which has the form n.m, where n is
a file number and m is a field number. The common
field is not printed unless specifically requested.

-te Use character c as a separator (tab character). Every
appearance of ¢ in a line is significant. The character ¢
is used as the field separator for both input and output.

EXAMPLE

The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the
group name and the login directory. It is assumed that the files have been
sorted in ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group
SEE ALSO

awk(1), comm(1), sort(1), uniq(1).

A AT&T User’s Reference Manual 1

JOIN(1) JOIN(1)

BUGS

With default field separation, the collating sequence is that of sort-b;
with -t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk (1) are wildly incon-
gruous.

Filenames that are numeric may cause conflict when the -0 option is used
right before listing filenames.

2 AT&T User’'s Reference Manual A

LOCATE(1) LOCATE(1)

NAME
locate - identify a UNIX system command using keywords

SYNOPSIS

[help] locate
[help] locate [keywordl [keyword2] ...]

DESCRIPTION

The locate command is part of the UNIX system Help Facility, and provides
on-line assistance with identifying UNIX system commands.

Without arguments, the initial locate screen is displayed from which the
user may enter keywords functionally related to the action of the desired
UNIX system commands they wish to have identified. A user may enter
keywords and receive a list of UNIX system commands whose functional at-
tributes match those in the keyword list, or may exit to the shell by typing
q (for "quit"). For example, if you wish to print the contents of a file, enter
the keywords "print" and "file". The locate command would then print the
names of all commands related to these keywords.

Keywords may also be entered directly from the shell, as shown above. In
this case, the initial screen is not displayed, and the resulting command
list is printed.

More detailed information on a command in the list produced by locate can
be obtained by accessing the usage module of the UNIX system Help
Facility. Access is made by entering the appropriate menu choice after the
command list is displayed.

From any screen in the Help Facility, a user may execute a command via
the shell (sh (1)) by typing a ! and the command to be executed. The
screen will be redrawn if the command that was executed was entered at a
first level prompt. If entered at any other prompt level, only the prompt
will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non-scroll-
ing), the shell variable sScROLL must be set to no and exported so it will be-
come part of your environment. This is done by adding the following line to
your .profile file (see profile (4)): ‘ ‘export scrowr ; scrorr=no’ ‘. If you
later decide that scrolling is desired, SCROLL must be set to yes .

Information on each of the Help Facility commands (starter, locate, usage,
8lossary, and help) is located on their respective manual pages.

SEE ALSO

glossary(1), help(1), sh(1), starter(1), usage(1).
term(5) in the Programmer’s Reference Manual.

A AT&T User's Reference Manual 1

LOCATE(1) | LOCATE(1)

WARNINGS

If the shell variable TERM (see sh (1)) is not set in the user’s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy ter-
minal). For a list of valid terminal types, refer to term (6).

2 AT&T User’s Reference Manual A

MAILX(1) MAILX(1)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [name...]
DESCRIPTION

The command mailx provides a comfortable, flexible environment for send-
ing and receiving messages electronically. When reading mail, mailx
provides commands to facilitate saving, deleting, and responding to mes-
sages. When sending mail, mailx allows editing, reviewing and other
modification of the message as it is entered.

Many of the remote features of mailx will only work if the Basic Network-
ing Utilities are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox
for that user. When mailx is called to read messages, the mailbox is the
default place to find them. As messages are read, they are marked to be
moved to a secondary file for storage, unless specific action is taken, so
that the messages need not be seen again. This secondary file is called the
mbox and is normally located in the user’s HOME directory (see "MBOX" EN.-
VIRONEMENT VARIABLES) for a description of this file). Messages can be saved
in other secondary files named by the user. Messages remain in a secon-
dary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx com-
mand. Messages in the secondary file can then be read or otherwise
processed using the same COMMANDS as in the primary maillbox. This gives
rise within these pages to the notion of a current maillbox.

On the command line, options start with a dash (-) and any other argu-
ments are taken to be destinations (recipients). If no recipients are
specified, mailx will attempt to read messages from the maillbox. Com-
mand line options are:

-e Test for presence of mail. mailx prints nothing and
exits with a successful return code if there is mail to
read.

-f [filename] Read messages from filename instead of maillbox. If no
filename is specified, the mbox is used.

-F Record the message in a file named after the first
recipient. Overrides the "record" variable, if set (see EN-
VIRONEMENT VARIABLES).

-h number The number of network "hops" made so far. This is
provided for network software to avoid infinite delivery
loops. (See addsopt under ENVIRONEMENT VARIABLES)

-H Print header summary only.
-i Ignore interrupts. See also "ignore" (ENVIRONEMENT VARI-
ABLES).

A AT&T User's Reference Manual 1

MAILX(1) MAILX(1)

-n Do not initialize from the system default mailx.rc file.

-N Do not print initial header summary.

-r address Pass address to network delivery software. All tilde
commands are disabled. (See addsopt under ENVIRONE-
MENT VARIABLES)

-8 subject Set the Subject header field to subject.

-u user Read user s maillbox. This is only effective if user s
maillbox is not read protected.

-U Convert uucp style addresses to internet standards.

Overrides the "conv" environment variable. (See ad-
dsopt under ENVIRONEMENT VARIABLES)

When reading mail, mailx is in command mode. A header summary of the
first several messages is displayed, followed by a prompt indicating mailx
can accept regular commands (see COMMANDS below). When sending mail,
mailx is in input mode. If no subject is specified on the command line, a
prompt for the subject is printed. (A "subject" longer than 1024 characters
will cause mailx to dump core) As the message is typed, mailx will read the
message and store it in a temporary file. Commands may be entered by
beginning a line with the tilde (~) escape character followed by a single
command letter and optional arguments. See TILDE ESCAPES for a summary
of these commands.

At any time, the behavior of mailx is governed by a set of environment vari-
ables. These are flags and valued parameters which are set and cleared via
the set and unset commands. See ENVIRONEMENT VARIABLES below for a sum-
mary of these parameters.

Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network ad-
dress, including mixed network addressing. If mail is found to to un-
deliverable, an attempt is made to return it to the sender’s mailbox. If the
recipient name begins with a pipe symbol (|), the rest of the name is
taken to be a shell command to pipe the message through. This provides
an automatic interface with any program that reads the standard input,
such as lp (1) for recording outgoing mail on paper. Alias groups are set by
the alias command (see cOMMANDS below) and are lists of recipients of any
type.
Regular commands are of the form

[command) [msglist) [arguments]

If no command is specified in command mode, print is assumed. In input
mode, commands are recognized by the escape character, and lines not
treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time
the notion of a current message, marked by a right angle bracket (>) in the
header summary. Many commands take an optional list of messages
(msglist) to operate on. The default for msglist is the current message. A
msglist is a list of message identifiers separated by spaces, which may in-
clude:

2 AT&T User’s Reference Manual A

MAILX(1) MAILX(1)

n Message number n.
The current message.
~ The first undeleted message.
$ The last message.
. All messages.
n-m . An inclusive range of message numbers.
user All messages from user.
[string All messages with string in the subject line (case ig-
nored).
¢ All messages of type c,where c is one of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type of mes-
sage specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on
the command involved. File names, where expected, are expanded via the
normal shell conventions (see sh (1)). Special characters are recognized by
certain commands and are documented with the commands below.

At start-up time, mailx tries to execute commands from the optional sys-
tem-wide file Jusr/lib/mailx/mailx.rc) to initialize certain parameters,
then from a private start-up file ((HOME/.mailrc) for personalized vari-
ables. With the exceptions noted below, regular commands are legal inside
start-up files. The most common use of a start-up file is to set up initial dis-
play options and alias lists. The following commands are not legal in the
start-up file: |, Copy, edit, followup, Followup, hold, mail, preserve, reply,
Reply, shell, and visual. An error in the start-up file causes the remaining
lines in the file to be ignored. The .mailrc file is optional, and must be con-
structed locally.

COMMANDS

The following is a complete list of mailx commands:
1 shell-command

Escape to the shell. See SHELL (ENVIRONEMENT VARIABLES).
comment

Null command (comment). This may be useful in .mailrc files.

Print the current message number.

Prints a summary of commands.

A AT&T User's Reference Manual 3

MAILX(1) MAILX(1)

alias alias name ...
group alias name ...

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...

Declares a list of alternate names for your login. When responding to a
message, these names are removed from the list of recipients for the re-
sponse. With no arguments, alternates prints the current list of alter-
nate names. See also "allnet" (ENVIRONEMENT VARIABLES).

cd [directory]

chdir [directory]

Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename

Copy messages to the file without marking the messages as saved. Ot-
herwise equivalent to the save command.

Copy [msglist]

Save the specified messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]

Delete messages from the maillbox. If "autoprint" is set, the next mes-
sage after the last one deleted is printed (see ENVIRONEMENT VARIABLES).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displayihg mes-
sages on the screen. Examples of header fields to ignore are "status"
and "cc." The fields are included when the message is saved. The Print
and Type commands override this command.

dp [msglist]
dt [msglist]

Delete the specified messages from the maillbox and print the next
message after the last one deleted. Roughly equivalent to a delete com-
mand followed by a print command.

echo string ...
Echo the given strings (like echo (1)).
edit [msglist]

Edit the given messages. The messages are placed in a temporary file
and the EDITOR variable is used to get the name of the editor (see ENVI-
RONEMENT VARIABLES). Default editor is ed (1).

4 AT&T User’s Reference Manual A

MAILX(1) MAILX(;I)

exit

xit
xit from mailx, without changing the maillbox. No messages are saved
in the mbox (see also qit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file. Se-
veral special characters are recognized when used as file names, with
the following substitutions:

% the current maillbox.
% user the maillbox for user.
the previous file.
& the current mbox.
Default file is the current maillbox.
folders

Print the names of the files in the directory set by the "folder" variable
(see ENVIRONEMENT VARIABLES).

followup [message]

Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record" varia-
ble, if set. See also the Followup, Save, and Copy commands and "out-
folder" (ENVIRONEMENT VARIABLES).

Followup [msglist]

Respond to the first message in the msglist, sending the message to
the author of each message in the msglist. The subject line is taken
from the first message and the response is recorded in a file whose na-
me is derived from the author of the first message. See also the follo-
wup, Save, and Copy commands and "outfolder" (ENVIRONEMENT
VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

group alias name ...
alias alias name ...

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailre file.

headers [message]

Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see ENVIRONE-
MENT VARIABLES). See also the z command.

help
Prints a summary of commands.

A AT&T User’s Reference Manual 5

MAILX(1) MAILX(1)

hold [msglist]
preserve [msglist]

Holds the specified messages in the maillbox.

ifs | r
mail-commands
else
mail-commands
endif

Conditional execution, where 8 will execute following mail-commands,
up to an else or endif, if the program is in send mode, and r causes the
mail-commands to be executed only in receive mode. Useful in the .ma-
ilre file.

ignore header-field ...
discard header-field ...

Suppresses printing of the specified header fields when displaying mes-
sages on the screen. Examples of header fields to ignore are "status"
and "cc." All fields are included when the message is saved. The Print
and Type commands override this command.

list

Prints all commands available. No explanation is given.
mail name ...

Mail a message to the specified users.
Mail name

Mail a message to the specified user and record a copy of it in a file na-
med after that user.

mbox [msglist] .

Arrange for the given messages to end up in the standard mbox save fi-
le when mailx terminates normally. See MBOX (ENVIRONEMENT VARIA-
BLES) for a description of this file. See also the exit and quit commands.

next [message)

Go to next message matching message. A msglist may be specified, but
in this case the first valid message in the list is the only one used. This
is useful for jumping to the next message from a specific user, since
the name would be taken as a command in the absence of a real com-
mand. See the discussion of msglists above for a description of possible
message specifications.

pipe [msglist] [shell-command]
| [msglist] [shell-command])

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current mes-
sage is piped through the command specified by the value of the "cmd"
variable. If the "page" variable is set, a form feed character is inserted
after each message (see ENVIRONEMENT VARIABLES).

6 AT&T User's Reference Manual A

MAILX(1) MAILX(1)

preserve [msglist]
hold [msglist]

Preserve the specified messages in the maillbox.

Print [msglist]
Type [masglist}

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the PAGER variable. The default command
is pg (1) (see ENVIRONEMENT VARIABLES).

quit
Exit from mailx, storing messages that were read in mbox and unread

messages in the maillbox. Messages that have been explicitly saved in
a file are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist. The sub-
ject line is taken from the first message. If "record" is set to a file na-
me, the response is saved at the end of that file (see ENVIRONEMENT
VARIABLES).

reply [message)
respond [message]

Reply to the specified message, including all other recipients of the
message. If "record" is set to a file name, the response is saved at the
end of that file (see ENVIRONEMENT VARIABLES).

Save [msglist]

Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the aut-
hor’s name with all network addressing stripped off. See also the Copy,
followup, and Followup commands and "outfolder" (ENVIRONEMENT VA-
RIABLES).

save [filename]
save [msglist] filename

Save the specified messages in the given file. The file is created if it do-
es not exist. The message is deleted from the maillbox when mailx ter-
minates unless "keepsave" is set (see also ENVIRONEMENT VARIABLES and

the exit and quit commands).

A AT&T User’s Reference Manual 7

MAILX(1) MAILX(1)

set

set name

set name=string

set name=number
Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables and
their values. See ENVIRONEMENT VARIABLES for detailed descriptions of
the mailx variables.

shell

Invoke an interactive shell (see also SHELL (ENVIRONEMENT VARIABLES)).
size [msglist]

Print the size in characters of the specified messages.
source filename

Read commands from the given file and return to command mode.
top [msglist]

Print the top few lines of the specified messages. If the "toplines" varia-
ble is set, it is taken as the number of lines to print (see ENVIRONEMENT
VARIABLES). The default is 5.

touch [msglist]

Touch the specified messages. If any message in msglist is not specifi-
cally saved in a file, it will be placed in the mbox upon normal termina-
tion. See exit and quit.

Type [msglist]

Print [msglist]
Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type [msglist]

print [msglist]

Print the specified messages. If "crt" is set, the messages longer than
the number of lines specified by the "crt" variable are paged through
the command specified by the PAGER variable. The default command
is pg (1) (see ENVIRONEMENT VARIABLES).

undelete [msglist]

Restore the specified deleted messages. Will only restore messages de-
leted in the current mail session. If "autoprint" is set, the last message
of those restored is printed (see ENVIRONEMENT VARIABLES).

unset name ...

Causes the specified variables to be erased. If the variable was impor-
ted from the execution environment (i.e., a shell variable) then it can-
not be erased.

8 AT&T User’s Reference Manual A

MAILX(1) MAILX(1)

version
Prints the current version and release date.
visual [msglist]

Edit the given messages with a screen editor. The messages are placed
in a temporary file and the VISUAL variable is used to get the name of
the editor (see ENVIRONEMENT VARIABLES).

write [msglist] filename

Write the given mesesages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

xit

exit
Exit from mailx, without changing the maillbox. No messages are sa-
ved in the mbox (see also quit).

z[+ | -]

Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see ENVIRO-
NEMENT VARIABLES).

TILDE ESCAPES

The following commands may be entered only from input mode, by begin-
ning a line with the tilde escape character (~). See "escape" (ENVIRONEMENT
VARIABLES) for changing this special character.

~! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

~: mail-command
~ mail-command

Perform the command-level request. Valid only when sending a messa-
ge while reading mail.

~?

Print a summary of tilde escapes.

~A

Insert the autograph string "Sign" into the message (see ENVIRONEMENT
VARIABLES).

~a

Insert the autograph string "sign" into the message (see ENVIRONEMENT
VARIABLES).

A AT&T User’s Reference Manual 9

MAILX(1) | MAILX(1)

10

~b name ...

Add the names to the blind carbon copy (Bee) list.
~c name ...

Add the names to the carbon copy (Ce) list.
~d

Read in the dead-letter file. See DEAD (ENVIRONEMENT VARIABLES) for a
description of this file.

~e

" Invoke the editor on the partial message. See also EDITOR (ENVIRONE-
MENT VARIABLES).

~f [msglist]

Forward the specified messages. The messages are inserted into the
message, without alteration.

~h

Prompt for Subject line and To, Cc, and Bee lists. If the field is display-
ed with an initial value, it may be edited as if you had just typed it.

~i string
Insert the value of the named variable into the text of the message.
For example, ~A is equivalent to’ ~i \ Sign.’

~m [msglist]

Insert the specified messages into the letter, shifting the new text to
the right one tab stop. Valid only when sending a message while rea-
ding mail.

~p
Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead-letter. See DE-
AD (ENVIRONEMENT VARIABLES) for a description of this file.

~r filename
~~<\ filename
~~<\ !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

~8 string ...
Set the subject line to string.
~t name ...
Add the given names to the To list.

AT&T User’s Reference Manual A

MAILX(1) MAILX(1)

~V

Invoke a preferred screen editor on the partial message. See also VISU-
AL (ENVIRONEMENT VARIABLES).

~w filename

Write the partial message onto the given file, without the header.

Exit as with ~q except the message is not saved in dead-letter.
~| shell-command

Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the com-
mand replaces the message.

ENVIRONEMENT VARIABLES

The following are environment variables taken from the execution environ-
ment and are not alterable within mailx.

HOME=directory The user’s base of operations.

MAILRC=filename The name of the start-up file. Default is
$HOME/.mailrc.

The following variables are internal mailx variables. They may be im-
ported from the execution environment or set via the set command at any
time. The unset command may be used to erase variables.

addsopt Enabled by default. If /bin/mail is not being used as
the deliverer, noaddsopt should be specified. (See
WARNINGS below)

allnet All network names whose last component (login name)

match are treated as identical. This causes the msglist
message specifications to behave similarly. Default is
noallnet. See also the alternates command and the
"metoo" variable.

append Upon termination, append messages to the end of the

mbox file instead of prepending them. Default is noap-
pend.

askce Prompt for the Cc list after message is entered. Default
is noaskce.

asksub Prompt for subject if it is not specified on the command
line with the -8 option. Enabled by default.

autoprint Enable automatic printing of messages after delete
and undelete commands. Default is noautoprint.

bang Enable the special-casing of exclamation points (!) in
shell escape command lines as in vi (1). Default is
nobang.

A AT&T User’s Reference Manual 1"

MAILX(1)

MAILX(1)

cmd=shell-command

conv=conversion

crt=number

DEAD=filename

debug

dot

Set the default command for the pipe command. No
default value.

Convert uucp addresses to the specified address style.
The only valid conversion now is internet,which re-
quires a mail delivery program conforming to the
RFC822 standard for electronic mail addressing. Con-
version is disabled by default. See also "sendmail" and
the -U command line option.

Pipe messages having more than number lines through
the command specified by the value of the "PAGER" vari-
able (pg (1) by default). Disabled by default.

The name of the file in which to save partial letters in
case of untimely interrupt. Default is $HOME/dead.let-
ter.

Enable verbose diagnostics for debugging. Messages
are not delivered. Default is nodebug.

Take a period on a line by itself during input from a ter-
minal as end-of-file. Default is nodot.

EDITOR=shell-command

escape=c

folder=directory

header

hold

ignore

ignoreeof

12

The command to run when the edit or ~e command is
used. Default is ed (1).

Substitute ¢ for the ~ escape character. Takes effect
with next message sent.

The directory for saving standard mail files. User-
specified file names beginning with a plus (+) are ex-
panded by preceding the file name with this directory
name to obtain the real file name. If directory does not
start with a slash (/), $SHOME is prepended to it. In
order to use the plus (+) construct on a mailx command
line, "folder" must be an exported sk environment vari-
able. There is no default for the "folder" variable. See
also "outfolder" below.

Enable printing of the header summary when entering
mailx. Enabled by default.

Preserve all messages that are read in the maillbox in-
stead of putting them in the standard mbox save file.
Default is nohold.

Ignore interrupts while entering messages. Handy for
noisy dial-up lines. Default is noignore.

Ignore end-of-file during message input. Input must be
terminated by a period (.) on a line by itself or by the ~.
command. Default is noignoreeof. See also "dot"
above.

AT&T User's Reference Manual A

MAILX(1)

keep

keepsave

MBOX=filename

metoo

MAILX(1)

When the maillbox is empty, truncate it to zero length
instead of removing it. Disabled by default.

Keep messages that have been saved in other files in
the maillbox instead of deleting them. Default is
nokeepsave.

The name of the file to save messages which have been
read. The xit command overrides this function, as does
saving the message explicitly in another file. Default is
$HOME/mbox.

If your login appears as a recipient, do not delete it
from the list. Default is nometoo.

LISTER= shell-command

onehop

outfolder

page

The command (and options) to use when listing the con-
tents of the "folder" directory. The default is Is (1).

When responding to a message that was originally sent
to several recipients, the other recipient addresses are
normally forced to be relative to the originating
author’s machine for the response. This flag disables al-
teration of the recipients’ addresses, improving efficien-
cy in a network where all machines can send directly to
all other machines (i.e., one hop away).

Causes the files used to record outgoing messages to be
located in the directory specified by the "folder" vari-
able unless the path name is absolute. Default is
nooutfolder. See "folder" above and the Save, Copy,
followup, and Followup commands.

Used with the pipe command to insert a form feed
after each message sent through the pipe. Default is

nopage.

PAGER=gshell-command

prompt=string
quiet
record=filename

save

The command to use as a filter for paginating output.
This can also be used to specify the options to be used.
Default is pg (1).

Set the command mode prompt to string. Default is

non
Refrain from printing the opening message and version
when entering mailx. Default is noquiet.

Record all outgoing mail in filename. Disabled by
default. See also "outfolder" above.

Enable saving of messages in dead-letter on interrupt
or delivery error. See DEAD for a description of this file.
Enabled by default.

AT&T User’s Reference Manual 13

MAILX(1) MAILX(1)

screen number Sets the number of lines in a screen-full of headers for
the headers command.

sendmail=shell-command
Alternate command for delivering messages. Default is
mail (1).

sendwait Wait for background mailer to finish before returning.
Default is nosendwait.

SHELL =shell-command
The name of a preferred command interpreter. Default
is sh (1).

showto When displaying the header summary and the message
is from you, print the recipient’s name instead of the
author’s name.

sign=string The variable inserted into the text of a message when
the ~a (autograph) command is given. No default (see
also ~1 (TILDE ESCAPES)).

Sign=string The variable inserted into the text of a message when

toplines=number

the ~A command is given. No default (see also ~i (TILDE
ESCAPES)).

The number of lines of header to print with the top
command. Default is 5.

VISUAL=shell-command

The name of a preferred screen editor. Default is vi (1).

FILES
fusr/lib/mailx/mailx.help
$HOME/.mailre personal start-up file
$HOME/mbox secondary storage file
fusr/mail/* ﬁ ost office directory
fusr/lib/mailx/mailx.help* help message files

fusr/lib/mailx/mailx.rc opt1onal global start-up file

/tmp/Rlemgsx]*
SEE ALSO

1s(1), mail(1), pg(1).

WARNINGS

temporary files

The -h, -r and -U options can be used only if mailx is built with a delivery
program other than /bin/mail.

BUGS

Where shell-command is shown as valid, arguments are not always al-
lowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be

unset.

14

AT&T User’'s Reference Manual A

MAILX(1) MAILX(1)

The full internet addressing is not fully supported by mailx. The new
standards need some time to settle down.

Attempts to send a message having a line consisting only of a “.” are
treated as the end of the message by mail (1) (the standard mail delivery
program).

A AT&T User’s Reference Manual 15

MAILX(1) MAILX(1)

16 AT&T User's Reference Manual A

MAKEKEY(1) MAKEKEY (1)

NAME

makekey - generate encryption key
SYNOPSIS

fusr/lib/makekey
DESCRIPTION

makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in a way intended to be difficult
to compute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ascn characters.
The last two (the salt) are best chosen from the set of digits, .,/ , and
upper- and lower-case letters. The salt characters are repeated as the first
two characters of the output. The remaining 11 output characters are
chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DEs algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

makekey is intended for programs that perform encryption. Usually, its
input and output will be pipes.

SEE ALSO

ed(1), erypt(1), vi(1).
passwd(4) in the Programmer’s Reference Manual.

A AT&T User's Reference Manual 1

MAKEKEY (1) MAKEKEY (1)

2 AT&T User’s Reference Manual A

MAN(1) MAN(1)

NAME

man - print entries in this manual
SYNOPSIS

man [options] [section] titles
DESCRIPTION

man locates and prints the entry of this manual named title in the
specified section. (For historical reasons, the word “page” is often used as a
synonym for “entry” in this context.) The title is entered in lower case. The
section number may not have a letter suffix. If no section is specified, the
whole manual is searched for title and all occurrences of it are printed. Op-
tions and their meanings are:

-Tterm Print the entry as appropriate for terminal type term.
For a list of recognized values of term, type help term2.
The default value of term is 450.

-w Print on the standard output only the path names of
the entries, relative to /usr/catman, or to the current
directory for -d option.

-d Search the current directory rather than /usr/catman;
requires the full file name (e.g., cu.lc, rather than just
cu).

-c Causes man to invoke col (1); note that col (1) is in-
voked automatically by man unless term is one of 300,
300s, 450, 37, 40004, 382, 4014, tek, 1620, and X.

man examines the environment variable $TERM [see environ (5)] and at-
tempts to select options that adapt the output to the terminal being used.
The -Tterm option overrides the value of $TERM; in particular, one should
use -Tlp when sending the output of man to a line printer.

Section may be changed before each title.
'As an example:

man man

would reproduce on the terminal this entry, as well as any other entries
named man that may exist in other sections of the manual.

FILES

fusr/catman/?_man/man[1-8)/* Preformatted manual entries
SEE ALSO

term(5) in the Programmer’s Reference Manual.
CAVEAT

The man command prints manual entries that were formatted by nroff
when the UNIX system was installed. Entries are originally formatted with
terminal type 37, and are printed using the correct terminal filters as

A AT&T User’s Reference Manual 1

MAN(1) MAN(1)

derived from the -Tferm and $TERM settings. Typesetting or other non-
standard printing of manual entries requires installation of the system

Documenter’s Workbench.

2 AT&T User's Reference Manual A

NAWK(1) NAWK(1)

NAME

nawk - pattern scanning and processing language
SYNOPSIS

nawk [-F re] [parameter...] 'prog’l [-1 progfile] [file...]
DESCRIPTION

nawk is a new version of awk that provides capabilities unavailable in pre-
vious versions. This version will become the default version of awk in the
next major UNIX system release.

OPTIONS

Fre defines the input field separator to be the regular ex-
pression re. An input line is normally made up of fields
separated by white space. The fields are denoted $1,
$2, ...; $0 refers to the entire line.

This white-space-default can also be changed by using
the F'S built-in variable. The default is to ignore lea-
ding blanks and to separate fields by blanks and/or tab
characters. However, if F'S is assigned a value, leading
blanks are no longer ignored.

-f progfile nawk scans each input file for lines that match any of a
set of patterns specified in prog. The prog string must
be enclosed in single quotes () to protect it from the
shell. For each pattern in prog there may be an associa-
ted action performed when a line of a file matches the
pattern. The set of pattern-action statements may appe-
ar literally as prog or in a file specified with the option.

Parameters, in the form x=... y=... may be passed to nawk, where x and y
are nawk built-in variables (see list below).

Input files are read in order; if there are no files, the standard input is
read.The file name - means the standard input. Each input line is matched
against the pattern portion of every pattern-action statement; the associa-
ted action is performed for each matched pattern.

A pattern-action statement has the form:
pattern { action }

Either pattern or action may be omitted. If there is no action with a pat-
tern, the matching line is printed. If there is no pattern with an action, the
action is performed on every input line.

Patterns are arbitrary Boolean combinations (1, | |, &&, and parentheses)
of relational expressions and regular expressions. A relational expression
is one of the following:

expression relop expression

expression matchop regular expression

B AT&T User’s Reference Manual 1

NAWK(1) NAWK(1)

where a relop is any of the six relational operators in C, and a matchop is
either ~ (contains) or |~ (does not contain). A conditional is an arithmetic
expression, a relational expression, the special expression

var in array,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control befo-
re the first input line has been read and after the last input line has been
read respectively.

Regular expressions are as in egrep [see grep(1)]. In patterns they must be
surrounded by slashes. Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expres-
sions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first
pattern and the next occurrence of the second pattern.

A regular expression may be used to separate fields by using the -F re op-
tion or by assigning the expression to the built-in variable F'S. The default
is to ignore leading blanks and to separate fields by blanks and/or tab char-
acters. However, if FS is assigned a value, leading blanks are no longer ig-
nored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the current file
FS input field separator regular expression (default blank)
NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default newline)

2 AT&T User’s Reference Manual B

NAWK(1) NAWK(1)

An action is a sequence of statements. A statement may be one of the follo-
wing:

if (conditional) statement [else statement]
while (conditional) statement
do statement while (conditional)
for (expression ; conditional ; expression) statement
for (var in array) statement
delete array{subscript]
break
continue
{[statement]...}
expression # commonly variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole input line. Expressions take on
string or numeric values as appropriate, and are built using the operators
+, -, * /, %, and concatenation (indicated by a blank). The C operators
+4+, -, +=, -=, *=, /=, and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[i]), or fields. Variables are initia-
lized to the null string or zero. Array subscripts may be any string, not ne-
cessarily numeric; this allows for a form of associative memory. String
constants are quoted (").

The print statement prints its arguments on the standard output, or on a
file if >expression is present, or on a pipe if | cmd is present. The argu-
ments are separated by the current output field separator and terminated
by the output record separator. The printf statement formats its expres-
sion list according to the format [see printf(3S) in the Programmer’s Refer-
ence Manual).

nawk has a variety of built-in functions:
arithmetic, string, input/output, and general.

The arithmetic functions are:

atan2, cos, exp, int, log, rand, srand, sin, sqrt.

int truncates its argument to an integer.

rand returns a random number between 0 and 1.

srand (expr) sets the seed value for rand to expr or uses the time of
day if expr is omitted.

AT&T User’s Reference Manual 3

NAWK(1)

NAWK(1)

The string functions are:

gsub(for, repl, in)

index(s,t)
length(s)

match(s, re)

split(s, a, fs)

sprintf(fmt, expr,

sub(for, repl, in)

substr(s, m, n)

behaves like sub (see below), except that it replaces suc-
cessive occurrences of the regular expression (like the
ed global substitute command).

returns the position in string s where string ¢ first occ-
urs, or 0 if it does not occur at all.

returns the length of its argument taken as a string, or
of the whole line if there is no argument.

returns the position in string s where the regular ex-
pression re occurs, or 0 if it does not occur at all.
RSTART is set to the starting position (which is the sa-
me as the returned value), and RLENGTH is set to the
length of the matched string.

splits the string s into array elements a[1], a[2], ...,
a[n], and returns n. The separation is done with the re-
gular expression fs or with the field separator FS if fs

is not given.

expr, ...)
formats the expressions according to the printfi3S) for-
mat given by fmt¢ and returns the resulting string.

substitutes the string repl in place of the first instance
of the regular expression for in string in and returns
the number of substitutions. If in is omitted, nawk sub-
stitutes in the current record ($0).

returns the n - character substring of s that begins at
position m.

The input/output and general functions are:

close(filename)
cmd | getline

getline

getline <file
getline var
getline var <file
system(cmd)

closes the file or pipe named filename.

pipes the output of cmd into getline; each successive
call to getline returns the next line of output from cmd

sets $0 to the next input record from the current input
file.

sets $0 to the next record from file.
sets variable var instead.
sets var from the next record of file.

executes emd and returns its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for

an error.

AT&T User's Reference Manual B

NAWK(1) NAWK(1)

nawk also provides user-defined functions. Such functions may be defined
(in the pattern position of a patternaction statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by reference if array
name. Argument names are local to the function; all other variable names
are global. Function calls may be nested and functions may be recursive.
The return statement may be used to return a value. :

EXAMPLES
print lines longer than 72 characters: length > 72
Print first two fields in opposite { print $2, $1}
order:

Same, with input fields separated by
comma and/or blanks and tabs: BEGIN {FS =",[\t]* |[\t]+" }

{ print $2, $1}

Add up first column,
print sum and
average: {s+=81}
END {print"sumis", s," average is", s/NR }

Print fields in
reverse order: {for (i = NF;i > 0; --i) print $i }
Print all lines bet-
ween start/stop
pairs: /start/, /stop/
Print all lines
whose first field
is different from
previous one: $1 1= prev { print; prev = $1}
Simulate echo(1):

BEGIN ({

for(i=1;i < ARGC;i++)
printf "%s", ARGV[i]

printf "\n"

exit

}

B AT&T User’s Reference Manual 5

NAWK(1) NAWK(1)

Print file, filling

in page numbers
starting at b5:
[Page/ { $2 = n++;}
{print }
command line: nawk -f program n=5 input
SEE ALSO

grep(1), sed(1).
lex(1), printf(3S) in the Programmer’s Reference Manual.
Programmer’s Guide.

BUGS

Input white space is not preserved on output if fields are involved. There
are no explicit conversions between numbers and strings. To force an ex-
pression to be treated as a number add 0 to it; to force it to be treated as a
string, concatenate the null string ("") to it.

6 AT&T User’s Reference Manual B

NEWFORM(1) NEWFORM(1)

NAME _
newform - change the format of a text file
SYNOPSIS

newform [-8] [-itabspec] [-otabspec] [-bn] [-en] [-pnl [-an]
[-£1[-cchar] [-1n] [files]

DESCRIPTION

newform reads lines from the named files, or the standard input if no input
file is named, and reproduces the lines on the standard output. Lines are
- reformatted in accordance with command line options in effect.

Except for -8 , command line options may appear in any order, may be
repeated, and may be intermingled with the optional files. Command line
options are processed in the order specified. This means that option sequen-
ces like “ -e 15 -1 80” will yield results different from “ -1 60 -e 15”. Options
are applied to all files on the command line.

-8 Shears off leading characters on each line up to the
first tab and places up to 8 of the sheared characters at
the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth charac-
ter is replaced by a * and any characters to the right of
it are discarded. The first tab is always discarded.

An error message and program exit will occur if this op-
tion is used on a file without a tab on each line. The
characters sheared off are saved internally until all
other options specified are applied to that line. The
characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one
or more tabs, and text on each line, to a file beginning
with the text, all tabs after the first expanded to
spaces, padded with spaces out to column 72 (or trun-
cated to column 72), and the leading digits placed start-
ing at column 73, the command would be:
nevform -8 =i -1 -a -e file-name

-itabspec Input tab specification: expands tabs to spaces, accord-
ing to the tab specifications given. tabspec recognizes
all tab specification forms described in tads (1). In addi-
tion, tabspec may be -- , in which newform assumes
that the tab specification is to be found in the first line
read from the standard input (see fspec (4)). If no
tabspec is given, tabspec defaults to -8. A tabspec of -0
expects no tabs; if any are found, they are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, ac-
cording to the tab specifications given. The tab
specifications are the same as for -ifabspec. If no
tabspec is given, tabspec defaults to -8. A tabspec of -0

A AT&T User's Reference Manual 1

NEWFORM(1)

-bn

-In

NEWFORM(1)

means that no spaces will be converted to tabs on out-
put. _

Truncate n characters from the beginning of the line
when the line length is greater than the effective line
length (see -In). Default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no n is used.
This option can be used to delete the sequence num-
bers from a coBoL program as follows:

newform -l11 -b7 file-name

Same as -bn except that characters are truncated from
the end of the line.

Prefix n characters (see -ck) to the beginning of a line
when the line length is less than the effective line
length. Default is to prefix the number of characters
necessary to obtain the effective line length.

Same as -pn except characters are appended to the end
of a line.

Write the tab specification format line on the standard
output before any other lines are output. The tab
specification format line which is printed will cor-
respond to the format specified in the last -0 option. If
no -o option is specified, the line which is printed will
contain the default specification of -8.

Change the prefix/append character to k. Default
character for & is a space.

Set the effective line length to n characters. If n is not
entered, -1 defaults to 72. The default line length
without the -1 option is 80 characters. Note that tabs
and backspaces are considered to be one character (use
-1 to expand tabs to spaces).

The -11 must be used to set the effective line length shorter than any exist-
ing line in the file so that the -b option is activated.

DIAGNOSTICS
All diagnostics are fatal.
usage: \ ... newform was called with a bad option.

not -s format

can’t open file

There was no tab on one line.
Self-explanatory.

internal line too long

tabspec in error

A line exceeds 512 characters after being expanded in
the internal work buffer.

A tab specification is incorrectly formatted, or specified
tab stops are not ascending.

AT&T User’s Reference Manual A

NEWFORM(1) NEWFORM(1)

tabspec indirection illegal

A tabspec read from a file (or standard input) may not
contain a tabspec referencing another file (or standard
input).

0 - normal execution
1 - for any error

SEE ALSO
csplit(1), tabs(1).
fspec(4) in the Programmer’s Reference Manual.

BUGS

newform normally only keeps track of physical characters; however, for the
-1 and -0 options, newform will keep track of backspaces in order to line up
tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the stan-
dard input (by use of -i-- or -0--).

If the -f option is used, and the last -0 option specified was -0-- , and was
preceded by either a -0-- or a -i-- , the tab specification format line will be
incorrect.

A AT&T User’s Reference Manual 3

NEWFORM(1) NEWFORM(1)

4 AT&T User's Reference Manual A

NEWS(1) NEWS(1)

NAME

news - print news items
SYNOPSIS

news[-al[-n][-8][items]
DESCRIPTION

news is used to keep the user informed of current events. By convention,
these events are described by files in the directory /usr/mews.

When invoked without arguments, news prints the contents of all current
files in /usr/news , most recent first, with each preceded by an appropriate
header. news stores the “currency” time as the modification date of a file
named .news_time in the user’s home directory (the identity of this direc-
tory is determined by the environment variable $HOME); only files more
recent than this currency time are considered “current.”

-a option causes news to print all items, regardless of cur-
rency. In this case, the stored time is not changed.

-n option causes news to report the names of the current
items without printing their contents, and without
changing the stored time.

-8 option causes news to report how many current items

exist, without printing their names or contents, and
without changing the stored time. It is useful to in-
clude such an invocation of news in one’s .profile file,
or in the system'’s /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and
the next item is started. Another delete within one second of the first
causes the program to terminate.

FILES

/ete/profile
fusr/news/*
$HOME/.news_time

SEE ALSO

profile(4), environ(5) in the Programmer’s Reference Manual.

A AT&T User’s Reference Manual 1

NEWS(1) ‘ NEWS(1)

2 AT&T User’s Reference Manual A

NL(1) NL(1)

NAME

nl - line numbering filter
SYNOPSIS

nl [-htype] [-btypel [-ttypel [-vstart#] [-lincr] [-p 1[-1num]
[-ssep] [-wwidth] [-nformat] [-ddelim] file

DESCRIPTION

nl reads lines from the named file or the standard input if no file is named
and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

nl views the text it reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a body,
and a footer section. Empty sections are valid. Different line numbering op-
tions are independently available for header, body, and footer (e.g., no num-
bering of header and footer lines while numbering blank lines only in the
body).

The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

HHH header

\s\e body

\: footer

Unless optioned otherwise, nl assumes the text being read is in a single
logical page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be num-
bered. Recognized types and their meaning are:

-htype Same as -btype except for header. Default type for logi-
cal page header is n (no lines numbered).

a number all lines
t number lines with printable text only
n no line numbering
pstring number only lines that contain the regular
expression specified in string.
Default type for logical page body is t (text lines numbered).

-ftype Same as -b¢ype except for footer. Default for logical
page footer is n (no lines numbered).

-vstart# start# is the initial value used to number logical page
lines. Default is 1.

-iincr incr is the increment value used to number logical page
lines. Default is 1.

A AT&T User’s Reference Manual 1

NL(1)

-lnum

EXAMPLE

The command:

NL(1)

Do not restart numbering at logical page delimiters.

num is the number of blank lines to be considered as
one. For example, -12 results in only the second ad-
jacent blank being numbered (if the appropriate -ha , -
ba , and/or -fa option is set). Default is 1.

sep is the character(s) used in separating the line num-
ber and the corresponding text line. Default sep is a tab.

width is the number of characters to be used for the
line number. Default width is 6.

format is the line numbering format. Recognized
values are: In , left justified, leading zeroes suppressed;
rn, right justified, leading zeroes supressed; rz , right
justified, leading zerces kept. Default format is rn
(right justified).

The delimiter characters specifying the start of a logi-
cal page section may be changed from the default
characters (\:) to two user-specified characters. If only
one character is entered, the second character remains
the default character (:). No space should appear be-
tween the -d and the delimiter characters. To enter a
backslash, use two backslashes.

nl -vi0 -il0 =-di+ filel

will number filel starting at line number 10 with an increment of ten. The
logical page delimiters are !+.

SEE ALSO
pr(D).

AT&T User's Reference Manual A

NROFF(1) NROFF(1)

NAME

nroff - text formatting
SYNOPSIS

nroff [option]... [file]...
DESCRIPTION

nroff formats text in the named files for typewriter-like devices. The full
capabilities of nroff are described in the Nroff/ Troff User's Manual.

If no file argument is present, the standard input is read. An argument con-
sisting of a single minus (-) is taken to be a file name corresponding to the

standard input.

The options, which may appear in any order so long as they appear before

the files, are:

-olist Print only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N - M means pages N through M; an initial -N means
from the beginning to page N; and a final N - means
from N to the end.

-nN Number first generated page N.

-sN Stop every N pages. nroff will halt prior to every N
pages (default N =1) to allow paper loading or chang-
ing, and will resume upon receipt of a newline.

-mname Prepend the macro file /usr/lib/tmac/tmac.name to
the input files.

-raN Set register a (one-character) to N.

B | Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd
request.

-Tname Prepare output for specified terminal. Known names
are 37 for the (default) Teletype Corporation Model 37
terminal, tn300 for the GE TermiNet 300 (or any ter-
minal without half-line capability), 3008 for the DasI-
300S, 300 for the pas1-300, and 450 for the pas1-450
(Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using
full terminal resolution.

-h Use output tabs during horizontal spacing to speed out-

put and reduce output character count. Tab settings
are assumed to be every 8 nominal character widths.

A AT&T User’s Reference Manual 1

NROFF(1)

FILES

fusr/lib/tmac/tmac.*

/tmp/ta* temporary file
fusr/lib/tmac/tmac.* standard macro files
fusr/lib/term/* terminal driving tables for nroff

SEE ALSO

J. F. Ossanna, Nroff/ Troff user’s manual
B. W. Kernighan, A TROFF Tutorial
troff(1), eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

2 AT&T User's Reference Manual

NROFF(1)

PACK(1) | PACK(1)

NAME
pack, pcat, unpack - compress and expand files
SYNOPSIS

pack[-][-f] name...
pcat name ...
unpack name ...

DESCRIPTION

pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and owner
as those of name. The -f option will force packing of name. This is useful
for causing an entire directory to be packed even if some of the files will
not benefit. If pack is successful, name will be removed. Packed files can be
restored to their original form using unpack or pcat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.
If the - argument is used, an internal flag is set that causes the number of
times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of - in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each .z file, it is usually not worthwhile to pack files
smaller than three blocks, unless the character frequency distribution is
very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform dis-
tribution of characters, show little compression, the packed versions being
about 90% of the original size.

pack returns a value that is the number of files that it failed to compress.
No packing will occur if:

« the file appears to be already packed;

+ the file name has more than 12 characters;

+ the file has links;

« the file is a directory;

+ the file cannot be opened;

+ no disk storage blocks will be saved by packing;
+ afile called name.z already exists;

« the .z file cannot be created;

A AT&T User’s Reference Manual 1

PACK(1) PACK(1)

. an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be com-
pressed.

peat does for packed files what cat (1) does for ordinary files, except that
peat cannot be used as a filter. The specified files are unpacked and writ-
ten to the standard output. Thus to view a packed file named name.z use:

pcat name.z
or just:
pcat name

To make an unpacked copy, say nnn, of a packed file named name.z
(without destroying name.z) use the command:

pcat name >nnn

pcat returns the number of files it was unable to unpack. Failure may
occur if:

. the file name (exclusive of the .z) has more than 12 characters;
« the file cannot be opened;
« the file does not appear to be the output of pack.

unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name
ends in .z). If this file appears to be a packed file, it is replaced by its ex-
panded version. The new file has the .z suffix stripped from its name, and
has the same access modes, access and modification dates, and owner as
those of the packed file.

unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in pcat, as well as for
‘the following:

. a file with the “unpacked” name already exists;

« if the unpacked file cannot be created.

SEE ALSO
cat(l).

2 AT&T User’s Reference Manual A

PASTE(1) PASTE(1)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS

paste filel file2 ...
paste -d list filel file2 ...
paste -s [-d list] filel file2 ...

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of the given
input files filel, file2, etc. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging). If you will,
it is the counterpart of cat (1) which concatenates vertically, i.e., one file
after the other. In the last form above, paste replaces the function of an
older command with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output
is to the standard output, so it can be used as the start of a pipe, or as a fil-
ter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each
but the last file (or last line in case of the -8 option) are
replaced by a tab character. This option allows replac-
ing the tab character by one or more alternate charac-
ters (see below).

list One or more characters immediately following -d
replace the default tabd as the line concatenation charac-
ter. The list is used circularly, i.e., when exhausted, it
is reused. In parallel merging (i.e., no -s option), the
lines from the last file are always terminated with a
new-line character, not from the lisz. The list may con-
tain the special escape sequences: \n (new-line), \t
(tab), \\ (backslash), and \0 (empty string, not a null
character). Quoting may be necessary, if characters
have special meaning to the shell (e.g., to get one back-
slash, use -d"\ \\\").

-8 Merge subsequent lines rather than one from each
input file. Use tab for concatenation, unless a list is
specified with -d option. Regardless of the list, the
very last character of the file is forced to be a new-line.

- May be used in place of any file name, to read a line
from the standard input. (There is no prompting).

A AT&T User’s Reference Manual 1

PASTE(1) | PASTE(1)

EXAMPLES

ls | paste -d" " -
list directory in one column
1s | paste = - - -
list directory in four columns
paste -s -d"\t\n" file
combine pairs of lines into lines

SEE ALSO
cut(1), grep(1), pr(1).
DIAGNOSTICS ~

line too long

Output lines are restricted to 511 characters.

too many files ~
Except for -8 option, no more than 12 input files may be specified.

2 AT&T User's Reference Manual A

PG(1) PG(1)

NAME

Pg - file perusal filter for CRTs
SYNOPSIS

Pg [-number] [-p string] [-cefns] [+linenumber] [+/ pattern /][files ...]
DESCRIPTION

The pg command is a filter which allows the examination of files one
screenful at a time on a CRT. (The file name - and/or NULL arguments indi-
cate that pg should read from the standard input.) Each screenful is fol-
lowed by a prompt. If the user types a carriage return, another page is
displayed; other possibilities are enumerated below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for
doing this is explained below.

In order to determine terminal attributes, pg scans the terminfo (4) data
base for the terminal type specified by the environment variable TERM. If
TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-number An integer specifying the size (in lines) of the window
that pg is to use instead of the default. (On a terminal
containing 24 lines, the default window size is 23).

-p string Causes pg to use string as the prompt. If the prompt
string contains a “%d”, the first occurrence of “%d” in
the prompt will be replaced by the current page num-
ber when the prompt is issued. The default prompt
stringis “: ",

-c Home the cursor and clear the screen before displaying
each page. This option is ignored if clear_screen is
not defined for this terminal type in the terminfo (4)

data base.
-© Causes pg not to pause at the end of each file.
-f Normally, pg splits lines longer than the screen width,

but some sequences of characters in the text being dis-
played (e.g., escape sequences for underlining)
generate undesirable results. The -f option inhibits pg
from splitting lines.

-n Normally, commands must be terminated by a newline
character. This option causes an automatic end of com-
mand as soon as a command letter is entered.

-8 Causes pg to print all messages and prompts in stand-
out mode (usually inverse video).
+linenumber Start up at linenumber.

A AT&T User’s Reference Manual 1

PG(1) | ‘ PG(1)

+/ pattern | Start up at the first line containing the regular expres-
sion pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding ad-
dress, an optionally signed number indicating the point from which further
text should be displayed. This address is interpreted in either pages or
lines depending on the command. A signed address specifies a point rela-
tive to the current page or line, and an unsigned address specifies an ad-
dress relative to the beginning of the file. Each command has a default
address that is used if none is provided.

The perusal commands and their defaults are as follows:
(+1) newline or blank

This causes one page to be displayed. The address is
specified in pages.

11 With a relative address this causes pg to simulate
scrolling the screen, forward or backward, the number
of lines specified. With an absolute address this com-
mand prints a screenful beginning at the specified line.

(+1)d or "D Simulates scrolling half a screen forward or backward.
The following perusal commands take no address.

. or"L Typing a single period causes the current page of text
to be redisplayed.

$ Displays the last windowful in the file. Use with cau-
tion when the input is a pipe.

The following commands are available for searching for text patterns in
_ the text. The regular expressions described in ed (1) are available. They
must always be terminated by a newline, even if the -n option is specified.

i/pattern/ Search forward for the ith (default i =1) occurrence of
pattern. Searching begins immediately after the cur-
rent page and continues to the end of the current file,
without wrap-around.

i “pattern”
i?pattern?

Search backwards for the ith (default i =1) occurrence
of pattern. Searching begins immediately before the
current page and continues to the beginning of the cur-
rent file, without wrap-around. The * notation is useful
for Adds 100 terminals which will not properly handle
the ?.

After searching, pg will normally display the line found at the top of the
screen. This can be modified by appending m or b to the search command

2 AT&T User's Reference Manual A

PG(1) | PG(1)

to leave the line found in the middle or at the bottom of the window from
now on. The suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following

commands:

in Begin perusing the i th next file in the command line.
The i is an unsigned number, default value is 1.

ip Begin perusing the i th previous file in the command
line. i is an unsigned number, default is 1.

iw Display another window of text. If i is present, set the
window size toi.

8 filename Save the input in the named file. Only the current file
being perused is saved. The white space between the s
and filename is optional. This command must always
be terminated by a newline, even if the -n option is
specified.

h Help by displaying an abbreviated summary of avail-
able commands.

qorQ Quit pg.

lcommand Command is passed to the shell, whose name is taken

from the SHELL environment variable. If this is not
available, the default shell is used. This command
must always be terminated by a newline, even if the -n
option is specified.

At any time when output is being sent to the terminal, the user can hit the
quit key (normally control-\) or the interrupt (break) key. This causes pg to
stop sending output, and display the prompt. The user may then enter one

of the above commands in the normal manner. Unfortunately, some output

is lost when this is done, due to the fact that any characters waiting in the

terminal’s output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat (1), ex-
cept that a header is printed before each file (if there is more than one).

EXAMPLE

A sample usage of pg in reading system news would be
news | pg -p "“(Page %d):"

NOTES

While waiting for terminal input, pg responds to BREAK , DEL , and * by ter-
minating execution. Between prompts, however, these signals interrupt
p&’s current task and place the user in prompt mode. These should be used
with caution when input is being read from a pipe, since an interrupt is
likely to terminate the other commands in the pipeline. '

Users of Berkeley’s more will find that the z and f commands are available,
and that the terminal /, #, or ? may be omitted from the searching com-
mands.

A AT&T User’s Reference Manual 3

PG(1) PG(1)

FILES

fusr/lib/terminfo/?/* terminal information database

/tmp/pg* temporary file when input is from a pipe
SEE ALSO

ed(1), grep(1).
terminfo(4) in the Programmer’s Reference Manual.

BUGS

If terminal tabs are not set every eight positions, undesirable results may

occur.
~’

When using pg as a filter with another command that changes the ter-

minal I/O options terminal settings may not be restored correctly.
~’
~
~

4 AT&T User’s Reference Manual A

PTX(1) PTX(1)

NAME

ptx - permuted index
SYNOPSIS

ptx [option]... [input [output]]
DESCRIPTION

ptx generates a permuted index to file input on file output (standard input
and output default). It has three phases: the first does the permutation,
generating one line for each keyword in an input line. The keyword is
rotated to the front. The permuted file is then sorted. Finally, the sorted
lines are rotated so the keyword comes at the middle of the page. ptx
produces output in the form:

.xx "tail” "before keyword" “keyword and after" "head"

where .xx may be an nroff or troff (1) macro for user-defined formatting.
The before keyword and keyword and after fields incorporate as much of
the line as will fit around the keyword when it is printed at the middle of
the page. tail and head, at least one of which is an empty string "", are
wrapped-around pieces small enough to fit in the unused space at the op-
posite end of the line. When original text must be discarded, ‘” marks the
spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default
line length is 100 characters.

-wn Use the next argument, n, as the width of the output
line. The default line length is 72 characters.

-gn Use the next argument, n, as the number of characters

to allow for each gap among the four parts of the line
as finally printed. The default gap is 3 characters.

-oonly Use as keywords only the words given in the only file.

-iignore Do not use as keywords any words given in the ignore
file. If the -1 and -0 options are missing, use
/usr/lib/eign as the ignore file.

-bbreak Use the characters in the break file to separate words.
In any case, tab, newline, and space characters are al-
ways used as break characters.

-r Take any leading nonblank characters of each input
line to be a reference identifier (as to a page or chapter)
separate from the text of the line. Attach that identifier
as a bth field on each output line.

The index for this manual was generated using p#x.
FILES

fusr/bin/sort

A AT&T User’s Reference Manual 1

PTX(1) PTX(1)

fusr/lib/eign
BUGS

Line length counts do not account for overstriking or proportional spacing.

2 AT&T User's Reference Manual A

SAR(1) SAR(1)

NAME
sar - system activity reporter
SYNOPSIS

sar [-ubdycwaqvmprDSA][-ofilelt[n]
sar [-ubdycwaqvmprDSA][-8 time] [-e time] [-1 sec] [-f file]

DESCRIPTION

sar, in the first instance, samples cumulative activity counters in the
operating system at n intervals of ¢ seconds, where ¢ should be 6 or greater.
If the -0 option is specified, it saves the samples in file in binary format.
The default value of is 1. In the second instance, with no sampling inter-
val specified, sar extracts data from a previously recorded file, either the
one specified by -f option or, by default, the standard system activity daily
data file /usr/adm/sa/sadd for the current day dd. The starting and en-
ding times of the report can be bounded via the -8 and -e time arguments

of the form hh [: mm [: ss]]. The -1 option selects records at sec second inter-
vals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report cpu utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in
user mode, running in system mode, idle with some
process waiting for block 1/0, and otherwise idle. When
used with -D, %sys is split into percent of time servic-
ing requests from remote machines (%sys remote) and
all other system time (%sys local).

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data be-
tween system buffers and disk or other block devices;

Iread/s, Iwrit/s - accesses of system buffers;

%rcache, %wcache - cache hit ratios, i. e., (1-
bread/Iread) as a percentage;

pread/s, pwrit/s - transfers via raw (physical) device
mechanism.

-d Report activity for each block device, e. g., disk or tape
drive. When data is displayed, the device specification
dsk- is generally used to represent a disk drive. The
device specification used to represent a tape drive is
machine dependent. The activity data reported is:

%busy, avque - portion of time device was busy servic-
ing a transfer request, average number of requests out-
standing during that time;

r+w/s, blks/s - number of data transfers from or to
device, number of bytes transferred in 512-byte units;

A AT&T User’s Reference Manual 1

SAR(1)

-V

SAR(1)

avwait, avserv - average time in ms. that transfer re-
quests wait idly on queue, and average time to be ser-
viced (which for disks includes seek, rotational latency
and data transfer times).

Report TTY device activity:

rawch/s, canch/s, outch/s - input character rate,
input character rate processed by canon, output charac-
ter rate;

rcvin/s, xmtin/s, mdmin/s - receive, transmit and
modem interrupt rates.

Report system calls:
scall/s - system calls of all types;

sread/s, swrit/s, fork/s, exec/s - specific system calls;

rchar/s, wchary/s - characters transferred by read and
write system calls. When used with -D, the system
calls are split into incoming, outgoing, and strictly local
calls.

Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of trans-
fers and number of 512-byte units transferred for
swapins and swapouts (including initial loading of
some programs);

pswch/s - process switches.

Report use of file access system routines:
iget/s, namei/s, dirblk/s.

Report average queue length while occupied, and % of
time occupied:

rung-sz, %runocc - run queue of processes in memory
and runnable;

swpQq-sz, %swpocc - swap queue of processes swapped
out but ready to run.

Report status of process, i-node, file tables:

text-sz, proc-sz, inod-sz, file-sz, lock-sz -
entries/size for each table, evaluated once at sampling
point;

ov - overflows that occur between sampling points for
each table.

Report message and semaphore activities:

msg/s, sema/s - primitives per second.

Report paging activities:

vflt/s - address translation page faults (valid page not
in memory);

pflt/s - page faults from protection errors (illegal access
to page) or "copy-on-writes";

AT&T User's Reference Manual A

SAR(1) SAR(1)

pgfils - vflt/s satisfied by page-in from file system;
rclm/s - valid pages reclaimed for free list.

-r Report unused memory pages and disk blocks:
freemem - average pages available to user processes;

freeswap - disk blocks available for process swapping.

-D Report Remote File Sharing activity:
When used in combination with -u or -¢, it causes sar
to produce the remote file sharing version of the cor-
responding report. -u is assumed when neither -u or -c¢
is specified.

-S Report server and request queue status:
Average number of Remote File Sharing servers on the
system (serv/lo-hi), % of time receive descriptors are on
the request queue (request %busy), average number of
receive descriptors waiting for service when queue is oc-
cupied (request avg lgth), % of time there are idle ser-
vers (server %avail), average number of idle servers
when idle ones exist (server avg avail).

-A Report all data. Equivalent to -udgbwcayvmprSD.
EXAMPLES

To see today’s CPU activity so far:
sar

To watch cPU activity evolve for 10 minutes and save data:
sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

FILES
fusr/adm/sa/sadd daily data file, where dd are digits representing
the day of the month.
SEE ALSO
sag(1@).

sar(1M) in the Administrator’s Reference Manual.

A AT&T User’s Reference Manual 3

SAR(1) SAR(1)

4 AT&T User’s Reference Manual ‘ A

SDIFF(1) SDIFF(1)

NAME

sdiff - side-by-side difference program
SYNOPSIS

sdiff [options ...] filel file2
DESCRIPTION

sdiff uses the output of diff (1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is
printed with a blank gutter between them if the lines are identical, a < in

- the gutter if the line only exists in filel, a > in the gutter if the line only ex-
ists in file2, and a | for lines that are different.

For example:

x | Y

a a

b <

(o] <

d d
> [+

The following options exist:

-wn Use the next argument, n, as the width of the output
line. The default line length is 130 characters.

-1 Only print the left side of any lines that are identical.

-8 Do not print identical lines.

-0 output Use the next argument, output, as the name of a third

file that is created as a user-controlled merging of filel
and file2. Identical lines of filel and file2 are copied to
output. Sets of differences, as produced by diff (1), are
printed; where a set of differences share a common gut-
ter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of
the following user-typed commands:

1 append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines
v turn off silent mode

el call the editor with the left column
er call the editor with the right column
eb call the editor with the concatenation of left

and right
e call the editor with a zero length file
q exit from the program

A AT&T User’s Reference Manual 1

SDIFF(1) ‘ SDIFF(1)

On exit from the editor, the resulting file is con-
catenated on the end of the output file.

SEE ALSO
diff(1), ed(1).

2 AT&T User’s Reference Manual A

SETPGRP(1) SETPGRP(1)

NAME
- setpgrp - run a program with a new process group
SYNOPSIS
setpgrp command [arguments]

DESCRIPTION

The command setpgrp executes "command" with the new process group id.
SEE ALSO
getpgrp(2)

A AT&T User's Reference Manual

SETPGRP(1) SETPGRP(1)

2 AT&T User’s Reference Manual A

SNO(1) SNO(1)

NAME
sSno - SNOBOL interpreter
SYNOPSIS

sno [files]
DESCRIPTION

sno is a SNOBOL compiler and interpreter (with slight differences). sno ob-
tains input from the concatenation of the named files and the standard
input. All input through a statement containing the label end is considered
program and is compiled. The rest is available to syspit.

sno differs from SNOBOL in the following ways:
There are no unanchored searches. To get the same effect:

a ** b unanchored search for b.
a *x* b= x ¢ unanchored assignment

There is no back referencing.
x - " abc "
a *xX* x is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non-unique)
label define. Execution of a function call begins at the statement following
the define. Functions cannot be defined at run time, and the use of the
name define is preempted. There is no provision for automatic variables
other than parameters. Examples:

define f()
define f(a, b, c)
All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In particular,
the non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there. If not,
execution begins with the first executable statement; define is not an ex-
ecutable statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Be-
cause of this, the arithmetic operators / and * must be set off by spaces.

The right side of assignments must be non-empty.
Either’or " may be used for literal quotes.
The pseudo-variable sysppt is not available.

SEE ALSO

awk(1).

A AT&T User’s Reference Manual 1

SNO(1) SNO(1)

2 AT&T User’s Reference Manual A

SPELL(1) SPELL(1)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors
SYNOPSIS

spell [-v][-b][-x][-1]1[+ local_file][files]
fasr/lib/spell/hashmake
lusr/lib/spell/spellin n
lusr/lib/spell/hashcheck spelling_list

DESCRIPTION

spell collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are
printed on the standard output. If no files are named, words are collected
from the standard input.

spell ignores most troff (1), tbl (1), and eqn (1) constructions.

Under the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, programme, speciality, travelled, etc., this option insists upon -ise in
words like standardise, Fowler and the OED to the contrary notwithstand-
ing.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell (like deroff (1)) follows chains of included files (.s0 and
.nx troff (1) requests), unless the names of such included files begin with
fusr/lib. Under the -1 option, spell will follow the chains of all included
files.

Under the +local_file option, words found in local_file are removed from
spell ’s output. local_file is the name of a user-provided file that contains a
sorted list of words, one per line. With this option, the user can specify a
set of words that are correct spellings (in addition to spell ’s own spelling
list) for each job.

The spelling list is based on many sources, and while more haphazard
than an ordinary dictionary, is also more effective with respect to proper
names and popular technical words. Coverage of the specialized
vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings (see FILES). Copies of all output are ac-
cumulated in the history file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell :

hashmake Reads a list of words from the standard input and
writes the corresponding nine-digit hash code on the
standard output.

A AT&T User's Reference Manual 1

SPELL(1) SPELL(1)

spellin Reads n hash codes from the standard input and writes
a compressed spelling list on the standard output.

hashcheck Reads a compressed spelling list and recreates the
nine-digit hash codes for all the words in it; it writes
these codes on the standard output.

FILES

D_SPELL=/usr/lib/spell/hlist[ab] hashed spelling lists, American & British

s_SPELL=/usr/lib/spell/hstoF hashed stop list

H_sPELL=/usr/lib/spell/spellhist history file
fusr/lib/spell/spellprog program

SEE ALSO

deroff(1), sed(1), sort(1), tee(1).
eqn(1), tbl(1), troff(1) in the DOCUMENTER'S WORKBENCH Software 2.0 Techni-
cal Discussion and Reference Manual.

BUGS

The spelling list's coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions; typical-
ly, these are kept in a separate local file that is added to the hashed spell-
ing_list via spellin.

2 AT&T User's Reference Manual A

SPLINE(1G)

NAME

SPLINE(1G)

spline - interpolate smooth curve

SYNOPSIS
spline [options]
DESCRIPTION

spline takes pairs of numbers from the standard input as abscissas and or-
dinates of a function. It produces a similar set, which is approximately
equally spaced and includes the input set, on the standard output. The
cubic spline output has two continuous derivatives, and sufficiently many
points to look smooth when plotted.

The following options are recognized, each as a separate argument:

DIAGNOSTICS

Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument, or is
assumed to be 1 if next argument is not a number.

The constant & used in the boundary value computa-
tion:

yoll - kyl”, ynll - ky"n-,l

is set by the next argument (default & = 0).

Space output points so that approximately n intervals
occur between the lower and upper x limits (default n
= 100).

Make output periodic, i.e., match derivatives at ends.
First and last input values should normally agree.

Next 1 (or 2) arguments are lower (and upper) x limits.
Normally, these limits are calculated from the data.
Automatic abscissas start at lower limit (default 0).

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

BUGS

A limit of 1,000 input points is enforced silently.

AT&T User's Reference Manual 1

SPLINE(1G) SPLINE(1G)

2 AT&T User’s Reference Manual A

SPLIT(1) SPLIT(1)

NAME
split - split a file into pieces
SYNOPSIS
split[-n][file[name]]
DESCRIPTION

split reads file and writes it in n-line pieces (default 1000 lines) onto a set
of output files. The name of the first output file is name with aa appended,
and so on lexicographically, up to zz (a maximum of 876 files). name can-
not be longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input
file is used.

SEE ALSO
bfs(1), esplit(1).

A AT&T User’s Reference Manual 1

SPLIT(1) SPLIT(1)

2 AT&T User’s Reference Manual A

STARTER(1) STARTER(1)

NAME

starter - information about the UNIx system for beginning users
SYNOPSIS

[help] starter
DESCRIPTION

The UNIX system Help Facility command starter provides five categories of
information about the UNIX system to assist new users.

The five categories are:

- commands a new user should learn first

+ UNIX system documents important for beginners

- education centers offering UNIX system courses

« ocal environment information

- on-line teaching aids installed on the UNIX system

The user may choose one of the above categories by entering its correspond-
ing letter (given in the menu), or may exit to the shell by typing q (for
"quit"). When a category is chosen, the user will receive one or more pages
of information pertaining to it.

From any screen in the Help Facility, a user may execute a command via
the shell (sh (1)) by typing a ! and the command to be executed. The screen
will be redrawn if the command that was executed was entered at a first
level prompt. If entered at any other prompt level, only the prompt will be
redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non-scroll-
ing), the shell variable SCROLL must be set to no and exported so it will be-
come part of your environment. This is done by adding the following line to
your .profile file (see profile (4)): ‘ ‘export scrory ; scrorr=no’ ‘. If you
later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter; locate, usage,
8lossary, and help) is located on their respective manual pages.

SEE ALSO ,
glossary(1), help(1), locate(1), sh(1), usage(1).
term(5) in the Programmer’s Reference Manual.
WARNINGS

If the shell variable TERM (see sk (1)) is not set in the user’s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy ter-
minal). For a list of valid terminal types, refer to term (5).

A AT&T User's Reference Manual 1

STARTER(1) STARTER(1)

2 AT&T User's Reference Manual A

SUM(1) SUM(1)

NAME

sum - print checksum and block count of a file
SYNOPSIS

sum [-r] file
DESCRIPTION

sum calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line. The
option -r causes an alternate algorithm to be used in computing the check-
sum.

SEE ALSO
we(1).
DIAGNOSTICS

“Read error” is indistinguishable from end of file on most devices; check
the block count.

A AT&T User’s Reference Manual 1

SUM(1) SUM(1)

2 AT&T User's Reference Manual A

TABS(1) TABS(1)

NAME

tabs - set tabs on a terminal
SYNOPSIS

tabs [tabspec] [-Ttypel [+m n}
DESCRIPTION

tabs sets the tab stops on the user’s terminal according to the tab specifica-
tion tabspec, after clearing any previous settings. The user’s terminal must
have remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec.
They are described below: canned (-code), repetitive
(-n), arbitrary (n1,n2,...), and file (--file). If no tabspec is
given, the default value is -8 , i.e., UNIX system “stan-
dard” tabs. The lowest column number is 1. Note that
for tabs , column 1 always refers to the leftmost column
on a terminal, even one whose column markers begin
at 0, e.g., the pas1 300, past 300s, and DasI 450.

- code Use one of the codes listed below to select a canned set
of tabs. The legal codes and their meanings are as fol-
lows:

-a 1,10,16,36,72

Assembler, 18M S/370, first format
-a2 1,10,16,40,72

Assembler, 18M S/370, second format
-c 1,8,12,16,20,56

COBOL, normal format
-c2 1,6,10,14,49

coBOL compact format (columns 1-6 omitted).
Using this code, the first typed character cor-
responds to card column 7, one space gets you
to column 8, and a tab reaches column 12. Files
using this tab setup should include a format
specification as follows (see fspec (4)):

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted),
with more tabs than -c2. This is the recommen-
ded format for coBoL. The appropriate format

specification is (see fspec (4)):
<:t-c3 m6 s66 d:>

£ 1,7,11,15,19,23
FORTRAN

A AT&T User's Reference Manual 1

TABS(1)

-n

nl, n2,..

- file

TABS(1)

P 1,5,9,13,17,21,25,29,33,37,41,45,49,63,57,61

PL1I
-8 1,10,55
SNOBOL
-u 1,12,20,44
UNIVAC 1100 Assembler

- A repetitive specification requests tabs at columns 1+ n,

1+2* n, ete. Of particular importance is the value 8 :
this represents the UNIX system “standard” tab setting,
and is the most likely tab setting to be found at a ter-
minal. Another special case is the value 0 , implying no
tabs at all.

The arbitrary format permits the user to type any
chosen set of numbers, separated by commas, in ascend-
ing order. Up to 40 numbers are allowed. If any num-
ber (except the first one) is preceded by a plus sign, it is
taken as an increment to be added to the previous
value. Thus, the formats 1,10,20,30, and 1,10,+10,+10
are considered identical.

If the name of a file is given, tabs reads the first line of
the file, searching for a format specification (see

fspec (4)). If it finds one there, it sets the tab stops ac-
cording to it, otherwise it sets them as -8. This type of
specification may be used to make sure that a tabbed
file is printed with correct tab settings, and would be
used with the pr (1) command:

tabs -- file; pr file

Any of the following also may be used; if a given flag occurs more than
once, the last value given takes effect:

-Ttype

+mn

tabs usually needs to know the type of terminal in
order to set tabs and always needs to know the type to
set margins. ¢ype is a name listed in term (6). If no -T
flag is supplied, tabs uses the value of the environment
variable TERM. If TERM is not defined in the environ-
ment (see environ (5)), tabs tries a sequence that will
work for many terminals.

The margin argument may be used for some terminals.
It causes all tabs to be moved over n columns by
making column n+1 the left margin. If +m is given
without a value of n, the value assumed is 10. For a
TermiNet, the first value in the tab list should be 1, or
the margin will move even further to the right. The nor-
mal (leftmost) margin on most terminals is obtained by
+mO0. The margin for most terminals is reset only when
the +m flag is given explicitly.

AT&T User's Reference Manual A

TABS(1) TABS(1)

Tab and margin setting is performed via the standard output.

EXAMPLES

tabs -a

example using -code (canned specification) to set tabs to the settings re-
quired by the IBM assembler: columns 1, 10, 186, 36, 72.

tabs -8

example of using -n (repetitive specification), where n is 8 , causes tabs to
be set every eighth position:

1+(1*8), 1+(2*8), ... which evaluate to columns 9, 17, ...
tabs 1,8,36

example of using nl, n2,... (arbitrary specification) to set tabs at columns
1, 8, and 36.

tabs --$SHOME/fspec.list/attdd2s

example of using --file (file specification) to indicate that tabs should be set
according to the first line of $SHOME/fspec.list/att4425 (see fspec (4)).

DIAGNOSTICS
illegal tabs

when arbitrary tabs are ordered incorrectly

illegal increment

when a zero or missing increment is found in an arbitrary specification
unknown tab code

when a canned code cannot be found

can'’t open

if --file option used, and file can’t be opened

file indirection

if --file option used and the specification in that file points to yet another
file. Indirection of this form is not permitted

SEE ALSO

newform(1), pr(1), tput(1).

fspec(4), terminfo(4), environ(6), term(5) in the Programmer’s Reference
Manual.

NOTE

There is no consistency among different terminals regarding ways of clear-
ing tabs and setting the left margin.

tabs clears only 20 tabs (on terminals requiring a long sequence), but is
willing to set 64.

A AT&T User's Reference Manual 3

TABS(1) TABS(1)

WARNING

The tabspec used with the tabs command is different from the one used
with the newform (1) command. For example, tabs -8 sets every eighth

position; whereas newform -i-8 indicates that tabs are set every eighth
position.

AT&T User’s Reference Manual A

TAIL(1) TAIL(1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [(x [number][lbc[£f]]][file]

DESCRIPTION

tail copies the named file to the standard output beginning at a designated
place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number
from the end of the input (if number is null, the value 10 is assumed). num-
ber is counted in units of lines, blocks, or characters, according to the ap-
pended option 1, b, or . When no units are specified, counting is by lines.

With the -f (“follow”) option, if the input file is not a pipe, the program will
not terminate after the line of the input file has been copied, but will enter
an endless loop, wherein it sleeps for a second and then attempts to read
and copy further records from the input file. Thus it may be used to
monitor the growth of a file that is being written by some other process.
For example, the command:

tail -f fred

will print the last ten lines of the file fred , followed by any lines that are
appended to fred between the time tail is initiated and killed. As another
example, the command:

tail -15cf fred

will print the last 15 characters of the file fred , followed by any lines that
are appended to fred between the time Zail is initiated and killed.

SEE ALSO
dd(1M) in the D-NIX 5.3 Reference Manual.
BUGS

Tails relative to the end of the file are stored in a buffer, and thus are
limited in length. Various kinds of anomalous behavior may happen with
character special files.

WARNING

The ¢ail command will only tail the last 4096 bytes of a file regardless of its
line count.

A AT&T User’s Reference Manual 1

TAIL(1) TAIL(1)

2 AT&T User’s Reference Manual A

TBL(1) TBL(1)

NAME

tbl - format tables for nroff or troff

SYNOPSIS
tbl[files] ...

DESCRIPTION

tbl is a preprocessor for formatting tables for nroff or ¢roff (1). The input
files are copied to the standard output, except for lines between .TS and .TE
command lines, which are assumed to describe tables and are reformatted.
Details are given in the ¢bl (1) reference manual.

EXAMPLE

As an example, letting -> represent a tab (which should be typed as a
genuine tab) the input

TS

center box ;
cB 8 s

cIl | cI s
“|l nn.

Household Population

Town->Households
->Number=->Size
Bedminster->789->3.26
Bernards Twp.->3087->3.74
Bernardsville->2018->3,30
Bound Brook=->3425->3,04
Branchburg->1644->3.49
Bridgewater->7897->3.81
Far Hills->240->3.,19

.TE
yields
Household Population
Households

Town Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30

Bound Brook 3425 3.04
Bridgewater 7897 3.81

Far Hills 240 3.19

A AT&T User’'s Reference Manual 1

TBL(1) TBL(1)

If no arguments are given, tb! reads the standard input, so it may be used
as a filter. When ¢b! is used with eqn or negn the tbl command should be
first, to minimize the volume of data passed through pipes.

SEE ALSO

troff(1), eqn(1)
M. E. Lesk, TBL.

TEE(1) TEE(1)

NAME

tee - pipe fitting
SYNOPSIS

tee [-i]1[-al[file]...
DESCRIPTION

tee transcribes the standard input to the standard output and makes
copies in the files. The

-i ignore interrupts;

-a causes the output to be appended to the files rather
than overwriting them.

A AT&T User’'s Reference Manual 1

TEE(1) TEE(1)

2 AT&T User's Reference Manual A

TPUT(1) TPUT(1)

NAME

tput - initialize a terminal or query terminfo database

SYNOPSIS

tput [-Ttype] capname [parms ...]
tput [-Ttype] init

tput [-Ttype] reset

tput [-Ttype] longname

DESCRIPTION

tput uses the terminfo (4) database to make the values of terminal-depend-
ent capabilities and information available to the shell (see sh (1)), to initial-
ize or reset the terminal, or return the long name of the requested
terminal type. tput outputs a string if the attribute (capability name) is-of
type string, or an integer if the attribute is of type integer. If the attribute
is of type boolean, tput simply sets the exit code (0 for TRUE if the terminal
has the capability, 1 for FALSE if it does not), and produces no output.
Before using a value returned on standard output, the user should test the
exit code (§?, see sh (1)) to be sure it is 0. (See EXIT CODES and DIAGNOSTICS
below.) For a complete list of capabilities and the capname associated with
each, see terminfo (4).

-Ttype indicates the type of terminal. Normally this option is
unnecessary, because the default is taken from the en-
vironment variable TERM. If -T is specified, then the
shell variables LINES and cOLUMNS and the layer size
(see layers(1)) will not be referenced.

capname indicates the attribute from the terminfo (4) database.

parms If the attribute is a string that takes parameters, the
arguments parms will be instantiated into the string.
An all numeric argument will be passed to the at-
tribute as a number.

init If the terminfo (4) database is present and an entry for
the user’s terminal exists (see -T¢ype, above), the fol-
lowing will occur: (1) if present, the terminal’s in-
itialization strings will be output (isl, is2, is3, if,
iprog), (2) any delays (e.g., newline) specified in the
entry will be set in the tty driver, (3) tabs expansion
will be turned on or off according to the specification in
the entry, and (4) if tabs are not expanded, standard
tabs will be set (every 8 spaces). If an entry does not
contain the information needed for any of the four
above activities, that activity will silently be skipped.

reset Instead of putting out initialization strings, the
terminal’s reset strings will be output if present (rsl,
rs2, rs3, rf). If the reset strings are not present, but in-
itialization strings are, the initialization strings will be
output. Otherwise, reset acts identically to init.

A AT&T User’'s Reference Manual 1

TPUT(1) TPUT(1)

longname If the terminfo (4) database is present and an entry for
the user’s terminal exists (see -Tfype above), then the
long name of the terminal will be put out. The long
name is the last name in the first line of the terminal’s
description in the terminfo (4) database (see term (5)).

EXAMPLES

tput init
Initialize the terminal according to the type of terminal in the environmen-
tal variable TERM. This command should be included in everyone’s .profile
after the environmental variable TERM has been exported, as illustrated on
the profile (4) manual page.

tput -T5620 reset
Reset an AT&T 5620 terminal, overriding the type of terminal in the envi-
ronmental variable TERM.

tput cup 0 0
Send the sequence to move the cursor to row 0, column 0 (the upper left
corner of the screen, usually known as the "home" cursor position).

tput clear
Echo the clear-screen sequence for the current terminal.

tput cols”
Print the number of columns for the current terminal.

tput -T450 cols
Print the number of columns for the 450 terminal.

bold=‘'tput smso’

offbold=‘'tput rmso’
Set the shell variables bold, to begin stand-out mode sequence, and off-
bold, to end standout mode sequence, for the current terminal. This might
be followed by a prompt:

echo “"${bold}Please type in your name: ${offbold}"”

tput he
Set exit code to indicate if the current terminal is a hardcopy terminal.

tput cup 23 ¢4
Send the sequence to move the cursor to row 23, column 4.

tput longname

Print the long name from the terminfo (4) database for the type of terminal
specified in the environmental variable TERM.

2 AT&T User’s Reference Manual A

TPUT(1) TPUT(1)

FILES
fusr/lib/terminfo/?/* compiled terminal description database
fusr/include/curses.h curses (3X) header file
/usr/include/term.h terminfo (4) header file
fusr/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs);
for more information, see the "Tabs and
Initialization" section of terminfo (4)
SEE ALSO

stty (1), tabs (1).
profile(4), terminfo(4) in the Programmer’s Reference Manual.

EXIT CODES

If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE.

If capname is of type string, a value of 0 is set if the capname is defined for
this terminal type (the value of capname is returned on standard output); a
value of 1 is set if capname is not defined for this terminal #ype (a null
value is returned on standard output).

If capname is of type integer, a value of 0 is always set, whether or not cap-
name is defined for this terminal type. To determine if capname is defined
for this terminal ¢ype, the user must test the value of standard output. A
value of -1 means that capname is not defined for this terminal ¢ype.

Any other exit code indicates an error; see DIAGNOSTICS, below.

DIAGNOSTICS

tput prints the following error messages and sets the corresponding exit

codes.

exit code error message

0 -1 (capname is a numeric variable that is not specified
in the terminfo (4) database for this terminal type, e.g.
tput -T450 lines and tput -T2621 xmc)

1 no error message is printed, see EXIT CODES, above.

2 usage error

3 unknown terminal Zype or no terminfo (4) database

4 unknown terminfo (4) capability capname

A AT&T User’s Reference Manual 3

TPUT(1) TPUT(1)

4 AT&T User’s Reference Manual A

UNITS(1) UNITS(1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:
You have: inch
You want: cm
* 2.540000e+00
/ 3.937008e-01
A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:
You have: 15 lbs force/in2
You want: atm
* 1,020689e+00
/ 9.797299e-01

units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations,
and metric prefixes are recognized, together with a generous leavening of
exotica and a few constants of nature including:

pi ratio of circumference to diameter,

c speed of light,

e charge on an electron,

g acceleration of gravity,

force same as g,

mole Avogadro’s number,

water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; 1b is. Compound names are run
together, (e.g., lightyear). British units that differ from their u.s. counter-
parts are prefixed thus: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

FILES
fusr/lib/funittab

A AT&T User's Reference Manual 1

UNITS(1) UNITS(1)

2 AT&T User’s Reference Manual A

USAGE(1) USAGE(1)

NAME

usage - retrieve a command description and usage examples
SYNOPSIS

[help]usage[-d][-e][-0][command_name]
DESCRIPTION

The unix system Help Facility command usage retrieves information about
UNIX system commands. With no argument, usage displays a menu screen
prompting the user for the name of a command, or allows the user to
retrieve a list of commands supported by usage. The user may also exit to
the shell by typing q (for "quit).

After a command is selected, the user is asked to choose among a descrip-
tion of the command, examples of typical usage of the command, or descrip-
tions of the command’s options. Then, based on the user’s request, the
appropriate information will be printed.

A command name may also be entered at shell level as an argument to
usage. To receive information on the command'’s description, examples, or
options, the user may use the -d , -e , or -0 options respectively. (The
default option is -d .) ‘

From any screen in the Help Facility, a user may execute a command via
the shell (sh (1)) by typing a ! and the command to be executed. The screen
will be redrawn if the command that was executed was entered at a first
level prompt. If entered at any other prompt level, only the prompt will be
redrawn.

By default, the Help Facility scrolls the data that is presented to the user.
If you prefer to have the screen clear before printing the data (non-scroll-
ing), the shell variable SCROLL must be set to no and exported so it will be-
come part of your environment. This is done by adding the following line to
your .profile file (see profile (4)): ‘' ‘export scrort ; scrorr=no’ ‘. If you
later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
glossary(1), help(1), locate(1), sh(1), starter(1).
term(5) in the Programmer’s Reference Manual.
WARNINGS

If the shell variable TERM (see sh (1)) is not set in the user’s .profile file,
then TERM will default to the terminal value type 450 (a hard-copy ter-
minal). For a list of valid terminal types, refer to term ().

A AT&T User’s Reference Manual 1

USAGE(1) USAGE(1)

2 AT&T User’s Reference Manual A

VI(1) VI(1)

NAME

vi - screen-oriented (visual) display editor based on ex
SYNOPSIS

vi[-ttagll-rfilel(-wn][-R1[-x][+command] name ...
view [-ttagl[-rfile][-wn][-R][-x][+command] name
vedit[-ttagl[-rfilel][-wnl1[-R]1[-x][+command] name

DESCRIPTION

vi (visual) is a display-oriented text editor based on an underlying line
editor ex (1). It is possible to use the command mode of ex from within vi
and vice-versa.

When using vi, changes you make to the file are reflected in what you see
on your terminal screen. The position of the cursor on the screen indicates
the position within the file.

INVOCATION

The following invocation options are interpreted by vi :

-ttag Edit the file containing the tag and position the editor
at its definition.

-r file Recover file after an editor or system crash. If file is
not specified a list of all saved files will be printed.

-wn Set the default window size to n. This is useful when
using the editor over a slow speed line.

-R Read only mode; the readonly flag is set, preventing
accidental overwriting of the file.

+command The specified ex command is interpreted before editing
begins.

X Encryption option; when this option is used, the file

will be encrypted as it is being written and will require
an encryption key to be read (see crypt (1)). Also, see
the WARNING section at the end of this manual page.

The name argument indicates files to be edited.
The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. The report flag is set to 1,
and the showmode and novice flags are set. These defaults make it
easier to get started learning the editor.

VI MODES

Command Normal and initial mode. Other modes return to com-
mand mode upon completion. ESC (escape) is used to
cancel a partial command.

Input Entered by the following optionsai AIoOcCsSR.
Arbitrary text may then be entered. Input mode is nor-

A AT&T User’'s Reference Manual 1

Vi(1)

VI(1)
mally terminated with ESC character, or abnormally
with interrupt.
Last line Reading input for : / ? or |; terminate with CR to ex-
ecute, interrupt to cancel.
COMMAND SUMMARY

Sample commands
-1
hjkl
itextESC
abc
cwnewESC
easESC
X
dw
dd
3dd
u
7z
:qlCR
[textCR
U "D
:ex cmdCR

arrow keys move the cursor
same as arrow keys

insert text

change word to new
pluralize word

delete a character
delete a word

delete a line

... 3 lines

undo previous change
exit vi, saving changes
quit, discarding changes
search for text

scroll up or down

any ex or ed command

Counts before vi commands

Numbers may be typed as a prefix to some commands. They are inter-
preted in one of these ways.

line/column number

scroll amount
repeat effect

z G |
AD U
most of the rest

Interrupting, canceling

ESC
DEL
“L
"R

end insert or incomplete cmd
(delete or rubout) interrupts
reprint screen if DEL scrambles it

reprint screen if L is — key

AT&T User’s Reference Manual

VI(1)

File manipulation
WCR
‘qCR
:qlCR
@ nameCR
:elCR
e + nameCR
e +nCR
e #CR
'w nameCR
‘w! nameCR
:shCR
:lemdCR
‘nCR
:n argsCR
G
:ita tagCR

ita,

write back changes
quit

quit, discard changes
edit file name

reedit, discard changes
edit, starting at end

edit starting at linen

edit alternate file synonym for :e #

write file name

overwrite file name

run shell, then return
run cmd, then return
edit next file in arglist
specify new arglist

show current file and line
to tag file entry tag "]

following word is tag

Vi(1)

In general, any ex or ed command (such as substitute or global) may be
typed, preceded by a colon and followed by a CR.

Positioning within file
F forward screen
B backward screen
“D scroll down half screen
~U scroll up half screen
G go to specified line (end default)
/pat next line matching pat
?pat prev line matching pat
n repeat last /or ?
N reverse last /or ?
[pat/+n nth line after pat
?pat?-n nth line before pat
1 next section/function
[l previous section/function
(beginning of sentence
) end of sentence

AT&T User’'s Reference Manual

VI(1)
{ beginning of paragraph
} end of paragraph
% find matching () {or}

Adjusting the screen

L clear and redraw

“R retype, eliminate @ lines

ZCR redraw, current at window top
z-CR ... at bottom

z.CR ... at center

/pat/z-CR pat line at bottom

zn.CR use n line window

"E scroll window down 1 line

Y scroll window up 1 line

Marking and returning

“ move cursor to previous context

” ... at first non-white in line

mx mark current position with letter x
‘x move cursor to mark x

x ... at first non-white in line

Line positioning

H top line on screen

L last line on screen

M middle line on screen

+ next line, at first non-white

- previous line, at first non-white

CR return, same as +

jorj next line, same column

tork previous line, same column
Character positioning

A first non white

0 beginning of line

$ end of line

hor— forward

lor « backwards

4 AT&T User’'s Reference Manual

VI(1)

VI(1)

“H
space

Fx

Tx
’
9

%

same as «

same as —

find x forward

f backward

upto x forward

back upto x

repeat lastf Ftor T
inverse of ;

to specified column
find matching ({) or }

Words, sentences, paragraphs

w word forward
b back word
e end of word
) to next sentence
} to next paragraph
(back sentence
{ back paragraph
w blank delimited word
B back W
E toend of W
Corrections during insert
“H erase last character
‘w erase last word
erase your erase, same as “H
kill your kill, erase input this line
\ quotes “H, your erase and kill
ESC ends insertion, back to command
DEL interrupt, terminates insert
D backtab over autoindent
1D kill autoindent, save for next
0"D ... but at margin next also
vV quote non-printing character

AT&T User’s Reference Manual

VI(1)

VI(1) VI(1)

Insert and replace

a append after cursor

i insert before cursor

A append at end of line

I insert before first non-blank

o open line below

o open above

rx replace single char with x

RtextESC replace characters
Operators

Operators are followed by a cursor motion, and affect all text that would
have been moved over. For example, since w moves over a word, dw
deletes the word that would be moved over. Double the operator, e.g., dd to
affect whole lines.

d delete

change

yank lines to buffer
left shift

right shift

A < O

>
! filter through command
\= indent for LISP

Miscellaneous Operations

o] change rest of line (c$)
D delete rest of line (d$)
C] substitute chars (cl)
S substitute lines (cc)
J join lines
X delete characters (dl)
X ... before cursor (dh)
Y yank lines (yy)

Yank and Put

Put inserts the text most recently deleted or yanked. However, if a buffer is
named, the text in that buffer is put instead.

P put back text after cursor
P put before cursor
"xp put from buffer x

8 AT&T User’s Reference Manual A

VI(1) VI(1)

"xy yank to buffer x

"xd delete into buffer x
Undo, Redo, Retrieve

u undo last change

U restore current line

. repeat last change

"dp retrieve d'th last delete

AUTHOR

vi and ex were developed by The University of California, Berkeley Califor-
nia, Computer Science Division, Department of Electrical Engineering and
Computer Science.

FILES
fusr/lib/terminfo/?/* compiled terminal description database
fusr/lib/.corE\term/?/* subset of compiled terminal description
database, supplied on hard disk
SEE ALSO
ed(1), edit(1), ex(1).
WARNING

The -x option is provided with the Security Administration Utilities, which
is available only in the United States.

Tampering with entries in /usr/lib/.CORE/term/?/* or /usr/lib/termin-
fo/?/* (for example, changing or removing an entry) can affect programs
such as vi (1) that expect the entry to be present and correct. In particular,
removing the “dumb” terminal may cause unexpected problems.

BUGS

Software tabs using *T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and
delete character operations in the terminal.

A AT&T User's Reference Manual 7

VI(1) VI(1)

8 AT&T User's Reference Manual A

VSAR(1) VSAR(1)

NAME

vsar - visual system activity reporter
SYNOPSIS

vsar [n]
DESCRIPTION

vsar is a program that continuously shows cpu utilization and how the sys-
tem is used. The computer status is viewed every five seconds as default.

OPTIONS

n Time (in seconds) between each system check.
SEE ALSO

sar(l).

A AT&T User’s Reference Manual 1

VSAR(1)

AT&T User's Reference Manual

VSAR(1)

XARGS(1) XARGS(1)

NAME

xargs - construct argument list(s) and execute command
SYNOPSIS

xargs [flags] [command [initial-arguments]]
DESCRIPTION

xargs combines the fixed initial-arguments with arguments read from stan-
dard input to execute the specified command one or more times. The num-
ber of arguments read for each command invocation and the manner in
which they are combined are determined by the flags specified.

command, which may be a shell file, is searched for, using one’s $PATH. If
command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or new-lines;
empty lines are always discarded. Blanks and tabs may be embedded as
part of an argument if escaped or quoted. Characters enclosed in quotes
(single or double) are taken literally, and the delimiting quotes are
removed. Outside of quoted strings a backslash (\) will escape the next
character.

Each argument list is constructed starting with the initial-arguments, fol-
lowed by some number of arguments read from standard input (Exception:
see -i flag). Flags -1, -1, and -n determine how arguments are selected for
each command invocation. When none of these flags are coded, the initial-
arguments are followed by arguments read continuously from standard
input until an internal buffer is full, and then command is executed with
the accumulated args. This process is repeated until there are no more
args. When there are flag conflicts (e.g., -1 va. -n), the last flag has
precedence. flag values are:

-lnumber command is executed for each non-empty number lines
of arguments from standard input. The last invocation
of command will be with fewer lines of arguments if
fewer than number remain. A line is considered to end
with the first new-line unless the last character of the
line is a blank or a tab; a trailing blank/tab signals con-
tinuation through the next non-empty line. If number
is omitted, 1 is assumed. Option -x is forced.

-ireplstr Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial-argu-
ments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not
grow larger than 256 characters, and option -x is also
forced. {} is assumed for replstr if not specified.

A AT&T User’s Reference Manual 1

XARGS(1) XARGS(1)

-nnumber Execute command using as many standard input argu-
ments as possible, up to number arguments maximum.
Fewer arguments will be used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining.
If option -x is also coded, each number arguments must
fit in the size limitation, else xargs terminates execu-
tion.

-t Trace mode: The command and each constructed argu-
ment list are echoed to file descriptor 2 just prior to
their execution.

-P Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed, fol-
lowed by a ?... prompt. A reply of y (optionally followed
by anything) will execute the command; anything else,
including just a carriage return, skips that particular
invocation of command.

-X Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the op-
tions -1 and -1. When neither of the options -i, -1, or -n
are coded, the total length of all arguments must be
within the size limit.

-sgize The maximum total size of each argument list is set to
size characters; size must be a positive integer less
than or equal to 470. If -8 is not coded, 470 is taken as
the default. Note that the character count for size in-
cludes one extra character for each argument and the
count of characters in the command name.

-eeofstr eofstr is taken as the logical end-of-file string. Under-
bar () is assumed for the logical EOF string if -e is not
coded. The value -e with no eofstr coded turns off the
logical EOF string capability (underbar is taken literal-
ly). xargs reads standard input until either end-of-file
or the logical EOF string is encountered.

xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it should ex-
plicitly exit (see sh (1)) with an appropriate value to avoid accidentally
returning with -1.

EXAMPLES

The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

1s $1 | xargs =i -t mv $1/{} $2/{(}

The following will combine the output of the parenthesized commands onto
one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) | xargs >>log

2 AT&T User’'s Reference Manual A

XARGS(1) XARGS(1)

The user is asked which files in the current directory are to be archived
and archives them into arch (1.) one at a time, or (2.) many at a time.

1l.1s | xargs -p -l ar r arch
2.1s | xargs-p-l | xargs ar r arch

The following will execute diff (1) with successive pairs of arguments
originally typed as shell arguments:

echo $* | xargs =-n2 diff
SEE ALSO
sh(1).

A AT&T User’s Reference Manual 3

XARGS(1) XARGS(1)

4 AT&T User’s Reference Manual A

cl(1B) cl(1B)

'NAME

ci - check in recs revisions
SYNOPSIS

ci [options] file ...
DESCRIPTION

ci stores new revisions into RCS files. Each file name ending in ,v is taken
to be an RCS file, all others are assumed to be working files containing new
revisions. ci deposits the contents of each working file into the correspond-
ing RcS file.

Pairs of RCS files and working files may be specified in 3 ways (see also the
example section of co (1B)).

1. Both the RCS file and the working file are given. The RCS file name is
of the form pathl/workfile,v and the working file name is of the form
path2/workfile, where pathl/ and path2/ are (possibly different or
empty) paths and workfile is a file name.

2. Only the RCS file is given. Then the working file is assumed to be in
the current directory and its name is derived from the name of the RCS
file by removing pathl/ and the suffix ,v.

3. Only the working file is given. Then the name of the RCS file is derived
from the name of the working file by removing path2/ and appending
the suffix ,v.

If the RCS file is omitted or specified without a path, then ci looks for the
RCS file first in the directory /RCS and then in the current directory.

For ci to work, the caller’s login must be on the access list, except if the ac-
cess list is empty or the caller is the superuser or the owner of the file. To
append a new revision to an existing branch, the tip revision on that
branch must be locked by the caller. Otherwise, only a new branch can be
created. This restriction is not enforced for the owner of the file, unless
locking is set to strict (see rcs (1B)). A lock held by someone else may be
broken with the rcs command.

Normally, ci checks whether the revision to be deposited is different from
the preceding one. If it is not different, ci either aborts the deposit (if -q is
given) or asks whether to abort (if -q is omitted). A deposit can be forced
with the -f option.

For each revision deposited, ci prompts for a log message.

The log message should summarize the change and must be terminated
with a line containing a single ‘.’ or a CTRL-D. If several files are checked
in, ci asks whether to reuse the previous log message. If the std. input is
not a terminal, ci suppresses the prompt and uses the same log message
for all files. See also -m.

The number of the deposited revision can be given by any of the options -r,
-f, -k, -1, -u, or -q (see -r).

A AT&T User’s Reference Manual 1

CI(1B) cl(1B)

If the RCS file does not exist, ci creates it and deposits the contents of the
working file as the initial revision (default number: 1.1). The access list is
initialized to empty. Instead of the log message, ci requests descriptive text
(see -t below).

OPTIONS

-rlrev] assigns the revision number rev to the checked-in revi-
sion, releases the corresponding lock, and deletes the
working file. This is also the default.

If rev is omitted, ci derives the new revision number
from the caller’s last lock. If the caller has locked the
tip revision of a branch, the new revision is appended
to that branch. The new revision number is obtained by
incrementing the tip revision number. If the caller
locked a non- tip revision, a new branch is started at
that revision by incrementing the highest branch num-
ber at that revision. The default initial branch and
level numbers are 1. If the caller holds no lock, but he
is the owner of the file and locking is not set to strict,
then the revision is appended to the trunk.

If rev indicates a revision number, it must be higher
than the latest one on the branch to which rev belongs,
or must start a new branch.

If rev indicates a branch instead of a revision, the new
revision is appended to that branch. The level number
is obtained by incrementing the tip revision number of
that branch. If rev indicates a non-existing branch,
that branch is created with the initial revision num-
bered rev.1.

Exception: On the trunk, revisions can be appended to
the end, but not inserted.

-flrev] forces a deposit; the new revision is deposited even it is
not different from the preceding one.

-k[rev] searches the working file for keyword values to deter-
mine its revision number, creation date, author, and
state (see co (1)), and assigns these values to the
deposited revision, rather than computing them locally.
A revision number given by a command option over-
rides the number in the working file. This option is use-
ful for software distribution. A revision that is sent to
several sites should be checked in with the -k option at
these sites to preserve its original number, date,
author, and state.

-1[rev] works like -r, except it performs an additional co -1 for
the deposited revision. Thus, the deposited revision is
immediately checked out again and locked. This is use-

2 AT&T User’s Reference Manual A

CI(1B) CI(1B)

ful for saving a revision although one wants to con-
tinue editing it after the checkin.

-ul[rev] works like -1, except that the deposited revision is not
locked. This is useful if one wants to process (e.g., com-
pile) the revision immediately after checkin.

-qlrev] quiet mode; diagnostic output is not printed. A revision
that is not different from the preceding one is not
deposited, unless -f is given.

-mmsguses the string msg as the log message for all revisions
checked in.
-nname assigns the symbolic name name to the number of the
— checked-in revision. ¢i prints an error message if name
is already assigned to another number.
-Nname same as -n, except that it overrides a previous assign-
ment of name.
- -sstate sets the state of the checked-in revision to the identi-
fier state. The default is Exp.
-tl¢xtfile] writes descriptive text into the RCS file (deletes the ex-
isting text). If txtfile is omitted, ci prompts the user for
text supplied from the std. input, terminated with a
line containing a single .’ or control-D. Otherwise, the
descriptive text is copied from the file txtfile. During in-
itialization, descriptive text is requested even if -t is
not given. The prompt is suppressed if std. input is not
a terminal.
DIAGNOSTICS
For each revision, ci prints the RCS file, the working file, and the number
of both the deposited and the preceding revision. The exit status always re-
— fers to the last file checked in, and is 0 if the operation was successful, 1
otherwise.
FILE MODES
— An RCS file created by ci inherits the read and execute permissions from

the working file. If the RCS file exists already, ci preserves its read and ex-
ecute permissions. ci always turns off all write permissions of RCS files.

FILES

The caller of the command must have read/write permission for the directo-
ries containing the RCS file and the working file, and read permission for
the RCS file itself. A number of temporary files are created. A semaphore
file is created in the directory containing the RCS file. ci always creates a
new RCS file and unlinks the old one. This strategy makes links to RCS files
useless.

A AT&T User’s Reference Manual 3

CI(1B) cl(1B)

SEE ALSO

co(1B), ident(1B), res(1B), resdiff(1B), resintro(1B), resmerge(1B), rlog(1B),
resfile(5B), scestores(8B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982,

4 AT&T User’s Reference Manual A

CO(1B) CO(1B)

NAME

co - check out RCS revisions
SYNOPSIS

co [options] file ...
DESCRIPTION

co retrieves revisions from RCS files. Each file name ending in ,v is taken to
be an RCS file. All other files are assumed to be working files. co retrieves a
revision from each RCS file and stores it into the corresponding working file.

Pairs of RCS files and working files may be specified in 3 ways (see also the
example section).

1. Both the RCS file and the working file are given. The RCS file name is
of the form pathl/workfile,v and the working file name is of the form
path2/workfile, where path1/ and path2/ are (possibly different or
empty) paths and workfile is a file name.

2. Only the RCS file is given. Then the working file is created in the cur-
rent directory and its name is derived from the name of the RCS file by
removing pathl/ and the suffix,v.

3. Only the working file is given. Then the name of the RCS file is derived
from the name of the working file by removing path2/ and appending
the suffix,v.

If the RCS file is omitted or specified without a path, then co looks for the
RCS file first in the directory /RCS and then in the current directory.

Revisions of an RCS file may be checked out locked or unlocked. Locking a
revision prevents overlapping updates. A revision checked out for reading
or processing (e.g., compiling) need not be locked. A revision checked out
for editing and later checkin must normally be locked. Locking a revision
currently locked by another user fails. (A lock may be broken with the

res (1B) command.) co with locking requires the caller to be on the access
list of the RCS file, unless he is the owner of the file or the superuser, or the
access list is empty. co without locking is not subject to accesslist restric-
tions.

A revision is selected by number, checkin date/time, author, or state. If
none of these options are specified, the latest revision on the trunk is re-
trieved. When the options are applied in combination, the latest revision
that satisfies all of them is retrieved. The options for date/time, author,
and state retrieve a revision on the selected branch. The selected branch is
either derived from the revision number (if given), or is the highest branch
on the trunk. A revision number may be attached to one of the options -1,
-p, -q, or -r.

A co command applied to an RCS file with no revisions creates a zero-length
file. co always performs keyword substitution (see below).

A AT&T User’s Reference Manual 1

CO(1B)

OPTIONS

-1[rev]

-plrev]

-q[rev]
-ddate

-r{rev]

-sstate

-wilogin]

-jjoinlist

co(1B)

locks the checked out revision for the caller. If omitted,
the checked out revision is not locked. See option -r for
handling of the revision number rev.

prints the retrieved revision on the std. output rather
than storing it in the working file. This option is useful
when co is part of a pipe.

quiet mode; diagnostics are not printed.

retrieves the latest revision on the selected branch
whose checkin date/time is less than or equal to date.
The date and time may be given in free format and are
converted to local time. Examples of formats for date:

22-April-1982, 17:20-CDT,

2:25 AM, Dec. 29, 1983,

Tue-PDT, 1981,

4pm Jul 21 (free format),

Fri, April 16 15:52:25 EST 1982 (output of ctime).

Most fields in the date and time may be defaulted. co
determines the defaults in the order year, month, day,
hour, minute, and second (most to least significant). At
least one of these fields must be provided. For omitted
fields that are of higher significance than the highest
provided field, the current values are assumed. For all
other omitted fields, the lowest possible values are as-
sumed. For example, the date "20, 10:30" defaults to
10:30:00 of the 20th of the current month and current
year. The date/time must be quoted if it contains spaces.

retrieves the latest revision whose number is less than
or equal to rev. If rev indicates a branch rather than a
revision, the latest revision on that branch is retrieved.
Rev is composed of one or more numeric or symbolic
fields separated by ‘.. The numeric equivalent of a sym-
bolic field is specified with the -n option of the com-
mands c¢i and rcs.

retrieves the latest revision on the selected branch
whose state is set to state.

retrieves the latest revision on the selected branch
which was checked in by the user with login name
login. If the argument login is omitted, the caller’s
login is assumed.

generates a new revision which is the join of the
revisions on joinlist. Joinlist is a comma-separated list
of pairs of the form rev2:rev3, where rev2 and rev3 are
(symbolic or numeric) revision numbers. For the initial
such pair, revl denotes the revision selected by the op-
tions -1, ..., -w. For all other pairs, revl denotes the

AT&T User's Reference Manual A

CO(1B)

CO(1B)

sion generated by the previous pair. (Thus, the output
of one join becomes the input to the next.)

For each pair, co joins revisions revl and rev3 with re-
spect to rev2. This means that all changes that trans-
form rev2 into revl are applied to a copy of rev3. This
is particularly useful if revl and rev3 are the ends of
two branches that have rev2 as a common ancestor. If
revl < rev2 < rev3 on the same branch, joining gener-
ates a new revision which is like rev3, but with all
changes that lead from revl to rev2 undone. If changes
from rev2 to revl overlap with changes from rev2 to
rev3, co prints a warning and includes the overlapping
sections, delimited by the lines <<<<<<< revl,
=======, and >>>>>>> reva3.

For the initial pair, rev2 may be omitted. The default is
the common ancestor. If any of the arguments indicate
branches, the latest revisions on those branches are as-

sumed. If the option -1 is present, the initial revl is
locked.

KEYWORD SUBSTITUTION

Strings of the form $keyword$ and $keyword:...$ embedded in the text are
replaced with strings of the form $keyword: value $, where keyword and
value are pairs listed below. Keywords may be embedded in literal strings
or comments to identify a revision.

Initially, the user enters strings of the form $keyword$. On checkout, co re-
places these strings with strings of the form $keyword: value $. If a revi-
sion containing strings of the latter form is checked back in, the value
fields will be replaced during the next checkout. Thus, the keyword values
are automatically updated on checkout.

Keywords and their corresponding values:

$Author$
$Date$
$Header$

$Locker$

Log

$Revision$
$Source$

The login name of the user who checked in the revision.
The date and time the revision was checked in.

A standard header containing the RCS file name, the re-
vision number, the date, the author, and the state.

The login name of the user who locked the revision
(empty if not locked).

The log message supplied during checkin, preceded by
a header containing the RCS file name, the revision
number, the author, and the date. Existing log mes-
sages are NOT replaced. Instead, the new log message
is inserted after $Log:...$. This is useful for accumulat-
ing a complete change log in a source file.

The revision number assigned to the revision.
The full pathname of the RCS file.

AT&T User’s Reference Manual 3

CO(1B) co(1B)

$State$ The state assigned to the revision with rcs -s or ci -s.
DIAGNOSTICS

The RcS file name, the working file name, and the revision number
retrieved are written to the diagnostic output. The exit status always
refers to the last file checked out, and is 0 if the operation was successful, 1
otherwise.

EXAMPLES

Suppose the current directory contains a subdirectory RCS with an RCS file
io.c,v. Then all of the following commands retrieve the latest revision from
RCS/io.c,v and store it into io.c.

co io.c; co RCS/io.c,v; co io.c,v;
co io.c RCS/io.c,v; co io.c io.c,v;
co RCS/io.e¢,v io.c; co io.c,v io.c;

FILE MODES

The working file inherits the read and execute permissions from the RCS
file. In addition, the owner write permission is turned on, unless the file is
checked out unlocked and locking is set to strict (see rcs (1B)).

If a file with the name of the working file exists already and has write per-
mission, co aborts the checkout if -q is given, or asks whether to abort if -q
is not given. If the existing working file is not writable, it is deleted before
the checkout.

FILES

The caller of the command must have write permission in the working
directory, read permission for the RCS file, and either read permission (for
reading) or read/write permission (for locking) in the directory which con-
tains the RCS file.

A number of temporary files are created. A semaphore file is created in the
directory of the RCS file to prevent simultaneous update.

SEE ALSO

¢i(1B), ident(1B), res(1B), resdiff(1B), resintro(1B), resmerge(1B), rlog(1B),
resfile(5B), scestores(8B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

LIMITATIONS

The option -d gets confused in some circumstances, and accepts no date
before 1970. There is no way to suppress the expansion of keywords, except
by writing them differently. In nroff and troff, this is done by embedding
the null-character ‘\ &’ into the keyword.

4 AT&T User’s Reference Manual A

CO(1B) CO(1B)

BUGS

The option -j does not work for files that contain lines with a single *.".

A AT&T User's Reference Manual 5

CO(1B) CO(1B)

6 AT&T User’s Reference Manual A

DIFF(1B) DIFF(1B)

NAME
diff - differential file and directory comparator

SYNOPSIS

diff[(-1]1[-r]1[-s][-cefhn][-biwt]dirl dir2
diff [-cefhn] [-biwt] filel file2
diff [-Dstring 1[-biw] filel file2

DESCRIPTION

If both arguments are directories, diff sorts the contents of the directories
by name, and then runs the regular file diff algorithm (described below) on
text files which are different. Binary files which differ, common subdirec-
tories, and files which appear in only one directory are listed.

When run on regular files, and when comparing text files which differ
during directory comparison, diff tells what lines must be changed in the
files to bring them into agreement. Except in rare circumstances, diff finds
a smallest sufficient set of file differences. If neither filel nor file2 is a
directory, then either may be given as ‘-, in which case the standard input
is used. If filel is a directory, then a file in that directory whose file-name
is the same as the file-name of file2 is used (and vice versa).

There are several options for output format; the default output format con-
tains lines of these forms:

nl a n3,nd n1,n2 d n3 n1,n2 ¢ n3,nd
These lines resemble ed commands to convert filel into file2. The numbers
after the letters pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and read-
ing backward one may ascertain equally how to convert file2 into filel. As
in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a single
number.

Following each of these lines come all the lines that are affected in the first
file flagged by ‘<’, then all the lines that are affected in the second file

flagged by >’
OPTIONS

Options when comparing directories are:

-1 long output format; each text file diff is piped through
pr (1) to paginate it, other differences are remembered
and summarized after all text file differences are
reported.

-r causes application of diff recursively to common sub-
directories encountered.

-8 causes diff to report files which are the same, which
are otherwise not mentioned.

-Sname starts a directory diff in the middle beginning with file
name.

A AT&T User's Reference Manual 1

DIFF(1B)

DIFF(1B)

Except for -b, -w, -i or -t which may be given with any of the others, the fol-
lowing options are mutually exclusive:

-e

-C

produces a script of a, ¢ and d commands for the editor
ed, which will recreate file2 from filel. In connection
with -e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($1)
and a chain of version-to-version ed scripts ($2,$3,...)
made by diff need be on hand. A ‘latest version’ appears
on the standard output.

(shift; cat $*; echo ’1,8p’) | ed - $1
Extra commands are added to the output when compar-
ing directories with -e, so that the result is a sh(1)
script for converting text files which are common to the

two directories from their state in dirl to their state in
dir2.

produces a script similar to that of -e, not useful with
ed, and in the opposite order.

produces a script similar to that of -e, but in the op-
posite order and with a count of changed lines on each
insert or delete command. This is the form used by
resdiff (1B).

produces a diff with lines of context. The default is to
present 3 lines of context and may be changed, e.g to
10, by -¢10. With -c the output format is modified
slightly: the output beginning with identification of the
files involved and their creation dates and then each
change is separated by a line with a dozen *’s. The
lines removed from filel are marked with ‘- ’; those
added to file2 are marked ‘+ ’. Lines which are changed
from one file to the other are marked in both files with
with ‘17,

Changes which lie within <context> lines of each other
are grouped together on output. (This is a change from
the previous diff -¢ but the resulting output is usually
much easier to interpret.)

does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but
does work on files of unlimited length.

causes diff to create a merged version of filel and file2
on the standard output, with C preprocessor controls
included so that a compilation of the result without
defining string is equivalent to compiling filel, while
defining string will yield file2.

causes trailing blanks (spaces and tabs) to be ignored,
and other strings of blanks to compare equal.

AT&T User’'s Reference Manual A

DIFF(1B) DIFF(1B)

-W is similar to -b but causes whitespace (blanks and tabs)
to be totally ignored. E.g., “if (a == b)” will compare
equal to “if(a==b)".

-i ignores the case of letters. E.g., “A” will compare equal
to “a”.
-t will expand tabs in output lines. Normal or -c output

adds character(s) to the front of each line which may
screw up the indentation of the original source lines
and make the output listing difficult to interpret. This
option will preserve the original source’s indentation.

FILES

/tmp/d??7???

fusr/lib/diffh for -h

Moin/diff for directory diffs
/bin/pr

SEE ALSO

cmp(1), ce(1), comm(1), ed(1), diff3(1B)
DIAGNOSTICS

Exit status is 0 for no differences, 1 for some, 2 for trouble.
BUGS

Editing scripts produced under the -e or -f option are naive about creating
lines consisting of a single ‘..

When comparing directories with the -b, -w or -i options specified, diff first
compares the files ala cmp, and then decides to run the diff algorithm if
they are not equal.

This may cause a small amount of spurious output if the files then turn
out to be identical because the only differences are insignificant blank
string or case differences.

A AT&T User’s Reference Manual 3

DIFF(1B) DIFF(1B)

4 AT&T User’s Reference Manual A

DIFF3(1B) DIFF3(1B)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diff3 [-exEX3] filel file2 file3

DESCRIPTION

diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

=mm== 3]l three files differ

mmmm] filel is different

=mmm? file2 is different

=mw=a3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

f:nla Text is to be appended after line number nl in file f,
where f =1, 2, or 3.
f:nl,n2c Text is to be changed in the range line nl to line n2. If

nl = n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication.
When the contents of two files are identical, the contents of the lower-num-
bered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will in-
corporate into filel all changes between file2 and file3, i.e. the changes
that normally would be flagged ==== and ====3. Option -x (-3) produces a
script to incorporate only changes flagged ==== (====3). The following
command will apply the resulting script to ‘filel’.

(cat script; echo ’1,$p’) | ed - filel
The -E and -X are similar to -e and -X, respectively, but treat overlapping
changes (i.e., changes that would be flagged with ==== in the normal list-

ing) differently. The overlapping lines from both files will be inserted by
the edit script, bracketed by "<<<<<<" and ">>>>>>" lines.

For example, suppose lines 7-8 are changed in both filel and file2. Apply-
ing the edit script generated by the command

"diff3 -E filel file2 file3"
to filel results in the file:

lines 1-6

of filel
<<<<<<< filel
lines 7-8

of filel

lines 7-8
of filel
>>>>>>> filel

rest of filel

The -E option is used by RCS merge (1B) to insure that overlapping chan-
ges in the merged files are preserved and brought to someone’s attention.

A AT&T User's Reference Manual 1

DIFF3(1B) DIFF3(1B)

FILES

/tmp/d3?77??
Jusr/lib/diff3

SEE ALSO
diff(1B)

BUGS

Text lines that consist of a single ‘.’ will defeat -e.

2 AT&T User’s Reference Manual A

IDENT(1B) IDENT(1B)

NAME
ident - identify files

SYNOPSIS
ident file ...

DESCRIPTION

ident searches the named files for all occurrences of the pattern
$keyword:...$, where keyword is one of

Author

Date

Header

Locker

Log

Revision

Source

State

These patterns are normally inserted automatically by the RCS command
co (1), but can also be inserted manually.

ident works on text files as well as object files. For example, if the C
program in file f.c contains
char rcsid[] = "$Header: Header information $“;
and f.c is compiled into f.0, then the command
ident f.c f.o
will print
f.c:
$Header: Header information §$

f.o:
$Header: Header information $

T P

ci(1B), co(1B), res(1B), resdiff(1B), resintro(1B), resmerge(1B), rlog(1B),
resfile(5B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

A AT&T User's Reference Manual 1

IDENT(1B) IDENT(1B)

2 AT&T User’s Reference Manual A

MERGE(1B) MERGE(1B)

NAME

merge - three-way file merge
SYNOPSIS

merge [-p] filel file2 file3
DESCRIPTION

merge incorporates all changes that lead from file2 to file3 into filel. The
result goes to std. output if -p is present, into filel otherwise. merge is use-
ful for combining separate changes to an original. Suppose file2 is the
original, and both filel and file3 are modifications of file2. Then merge com-
bines both changes.

An overlap occurs if both filel and file3 have changes in a common seg-
ment of lines. merge prints how many overlaps occurred, and includes both
alternatives in the result. The alternatives are delimited as follows:

<<<<<<< filel
lines in filel

lines in file3
>>>>>> filel

If there are overlaps, the user should edit the result and delete one of the
alternatives.

SEE ALSO
diff3(1B), diff(1B), rcsmerge(1B), co(1B).

A AT&T User’s Reference Manual 1

MERGE(1B) MERGE(1B)

2 AT&T User's Reference Manual A

RCS(1B) | RCS(1B)

NAME

rcs - change RCS file attributes

SYNOPSIS

rcs [options] file ...

DESCRIPTION

rcs creates new RCS files or changes attributes of existing ones. An RCS file
contains multiple revisions of text, an access list, a change log, descriptive
text, and some control attributes. For rcs to work, the caller’s login name
must be on the access list, except if the access list is empty, the caller is the
owner of the file or the superuser, or the -1 option is present.

Files ending in ,v are RCS files, all others are working files. If a working
file is given, rcs tries to find the corresponding RCS file first in directory
JRCS and then in the current directory, as explained in co (1B).

OPTIONS

-i creates and initializes a new RCS file, but does not
deposit any revision. If the RCS file has no path prefix,
rcs tries to place it first into the subdirectory /RCS, and
then into the current directory. If the RCS file already
exists, an error message is printed.

-alogins appends the login names appearing in the comma-
separated list logins to the access list of the RCS file.

-Aoldfile appends the access list of oldfile to the access list of the
RCS file.

-e[logins] erases the login names appearing in the comma-

separated list logins from the access list of the RCS file.
If logins is omitted, the entire access list is erased.

-cstring sets the comment leader to string. The comment leader
is printed before every log message line generated by
the keyword Log during checkout (see co). This is
useful for programming languages without multi-line
comments, During res -1 or initial ci, the comment
leader is guessed from the suffix of the working file.

-1[rev] locks the revision with number rev. If a branch is
given, the latest revision on that branch is locked. If
rev is omitted, the latest revision on the trunk is lock-
ed. Locking prevents overlapping changes. A lock is
removed with ci or rcs -u (see below).

-ulrev] unlocks the revision with number rev. If a branch is
given, the latest revision on that branch is unlocked. If
rev is omitted, the latest lock held by the caller is
removed. Normally, only the locker of a revision may
unlock it. Somebody else unlocking a revision breaks
the lock. This causes a mail message to be sent to the

A AT&T User’'s Reference Manual 1

RCS(1B)

-nname|:rev]

-Nnamel:rev]

-orange

-q
-sstate[:rev]

-tltxtfile]

RCS(1B)

original locker. The message contains a commentary
solicited from the breaker. The commentary is ter-
minated with a line containing a single .’ or CTRL-D.

sets locking to strict. Strict locking means that the
owner of an RCS file is not exempt from locking for
checkin. This option should be used for files that are
shared.

sets locking to non-strict. Non-strict locking means
that the owner of a file need not lock a revision for
checkin. This option should not be used for files that
are shared. The default (-L or -U) is determined by your
system administrator.

associates the symbolic name name with the branch or
revision rev. rcs prints an error message if name is al-
ready associated with another number. If rev is
omitted, the symbolic name is deleted.

same as -n, except that it overrides a previous assign-
ment of name.

deletes ("outdates") the revisions given by range. A
range consisting of a single revision number means
that revision. A range consisting of a branch number
means the latest revision on that branch. A range of
the form revl-rev2 means revisions revl to rev2 on the
same branch, -rev means from the beginning of the
branch containing rev up to and including rev, and rev-
means from revision rev to the end of the branch con-
taining rev. None of the outdated revisions may have
branches or locks.

quiet mode; diagnostics are not printed.

sets the state attribute of the revision rev to state. If
rev is omitted, the latest revision on the trunk is as-
sumed; If rev is a branch number, the latest revision on
that branch is assumed. Any identifier is acceptable for
state. A useful set of states is Exp (for experimental),
Stab (for stable), and Rel (for released). By default, ci
sets the state of a revision to Exp.

writes descriptive text into the RCS file (deletes the ex-
isting text). If txtfile is omitted, rcs prompts the user
for text supplied from the std. input, terminated with a
line containing a single ‘.’ or CTRL-D. Otherwise, the
descriptive text is copied from the file txtfile. If the -i
option is present, descriptive text is requested even if -t
is not given. The prompt is suppressed if the std. input
is not a terminal.

AT&T User’s Reference Manual A

RCS(1B) RCS(1B)

DIAGNOSTICS

The RCS file name and the revisions outdated are written to the diagnostic
output. The exit status always refers to the last RCS file operated upon,
and is 0 if the operation was successful, 1 otherwise.

FILES

The caller of the command must have read/write permission for the direc-
tory containing the RCS file and read permission for the RCS file itself. rcs
creates a semaphore file in the same directory as the RCS file to prevent
simultaneous update. For changes, rcs always creates a new file. On suc-
cessful completion, rcs deletes the old one and renames the new one. This
strategy makes links to RCS files useless.

SEE ALSO

co(1B), ci(1B), ident(1B), rcsdiff(1B), resintro(1B), resmerge(1B), rlog(1B),
resfile(5B), scestores(8B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

A AT&T User’s Reference Manual 3

RCS(1B) RCS(1B)

4 AT&T User’'s Reference Manual A

RCSDIFF(1B) RCSDIFF(1B)

NAME

rcsdiff - compare RCS revisions

SYNOPSIS
rcsdiff [-biwt][-cefhn][-rrevl][-rrev2] file ...

DESCRIPTION

resdiff runs diff (1B) to compare two revisions of each RCS file given. A file
name ending in ,v is an RCS file name, otherwise a working file name.
resdiff derives the working file name from the RCS file name and vice
versa, as explained in co (1B). Pairs consisting of both an RCS and a work-
ing file name may also be specified.

All options except -r have the same effect as described in diff (1B).

If both revl and rev2 are omitted, resdiff compares the latest revision on
the trunk with the contents of the corresponding working file. This is use-
ful for determining what you changed since the last checkin.

If revl is given, but rev2 is omitted, resdiff compares revision revl of the
RCS file with the contents of the corresponding working file.

If both revl and rev2 are given, rcsdiff compares revisions revl and rev2 of
the RCS file.

Both revl and rev2 may be given numerically or symbolically.

EXAMPLES

The command
rcsdiff f.c

runs diff on the latest trunk revision of RCS file f.c,v and the contents of
working file f.c.

SEE ALSO

ci(1B), co(1B), diff(1B), ident(1B), rcs(1B), resintro(1B), resmerge(1B),
rlog(1B), rcsfile(6B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

A AT&T User’'s Reference Manual 1

RCSDIFF(1B) RCSDIFF(1B)

2 AT&T User's Reference Manual A

RCSINTRO(1B) RCSINTRO(1B)

NAME
resintro - introduction to RCS commands
DESCRIPTION

The Revision Control System (RCS) manages multiple revisions of text
files. RCS automates the storing, retrieval, logging, identification, and
merging of revisions. RCS is useful for text that is revised frequently, for ex-
ample programs, documentation, graphics, papers, form letters, etc.

The basic user interface is extremely simple. The novice only needs to
learn two commands: ci and co. ci, short for "checkin", deposits the con-
tents of a text file into an archival file called an RCS file. An RCS file con-

tains all revisions of a particular text file. co, short for "checkout", retrieves
revisions from an RCS file.

SEE ALSO

ci(1B), co(1B), ident(1B), merge(1B), rcs(1B), resdiff(1B), rcsmerge(1B),
rlog(1B), resfile(5B).

A AT&T User's Reference Manual 1

RCSINTRO(1B) RCSINTRO(1B)

2 AT&T User's Reference Manual A

RCSMERGE(1B) RCSMERGE(1B)

NAME
rcsmerge - merge RCS revisions

SYNOPSIS

rcsmerge -rrevl [-rrev2 1 [-p] file

DESCRIPTION

rcsmerge incorporates the changes between revl and rev2 of an RCS file
into the corresponding working file. If -p is given, the result is printed on
the std. output, otherwise the result overwrites the working file.

A file name ending in ,v is an RCS file name, otherwise a working file
name. merge derives the working file name from the RCS file name and vice
versa, as explained in co (1B). A pair consisting of both an RCS and a work-
ing file name may also be specified.

revl may not be omitted. If rev2 is omitted, the latest revision on the trunk
is assumed. Both revl and rev2 may be given numerically or symbolically.

rcsmerge prints a warning if there are overlaps, and delimits the overlap-
ping regions as explained in co -j. The command is useful for incorporating
changes into a checked-out revision.

EXAMPLES

Suppose you have released revision 2.8 of f.c. Assume furthermore that
you just completed revision 3.4, when you receive updates to release 2.8
from someone else. To combine the updates to 2.8 and your changes be-
tween 2.8 and 3.4, put the updates to 2.8 into file f.c and execute

resmerge -p -r2.8 -r3.4 f.c >f.merged.c

Then examine f.merged.c. Alternatively, if you want to save the updates
to 2.8 in the RCS file, check them in as revision 2.8.1.1 and execute co -j:

ci -r2.8.1.1 f.c
co -r3.4 -j2.8:2.8.1.1 f.c

As another example, the following command undoes the changes between
revision 2.4 and 2.8 in your currently checked out revision in f.c.

rcsmerge -r2.8 -r2.4 f.c
Note the order of the arguments, and that f.c will be overwritten.

SEE ALSO

ci(1B), co(1B), merge(1B), ident(1B), res(1B), resdiff(1B), rlog(1B), resfile(5).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

BUGS

rcsmerge does not work for files that contain lines with a single ‘.".

A AT&T User’s Reference Manual 1

RLOG(1B)

-rrevisions

-sstates

-wllogins]

RLOG(1B)

prints information about revisions given in the comma-
separated list revisions of revisions and ranges. A
range revl-rev2 means revisions revl to rev2 on the
same branch, -rev means revisions from the beginning
of the branch up to and including rev, and rev- means
revisions starting with rev to the end of the branch con-
taining rev. An argument that is a branch means all
revisions on that branch. A range of branches means all
revisions on the branches in that range.

prints information about revisions whose state at-
tributes match one of the states given in the comma-
separated list states.

prints information about revisions checked in by users
with login names appearing in the comma-separated
list logins. If logins is omitted, the user’s login is as-
sumed.

rlog prints the intersection of the revisions selected with the options -d, -1,
-8, -w, intersected with the union of the revisions selected by -b and -r.

EXAMPLES

rlog -L =R RCS/*,v
rlog =L =h RCS/*,v
rlog =L =1 RCS/*,v

rlog RCS/*,v

The first command prints the names of all RCS files in the subdirectory
RCS which have locks. The second command prints the headers of those
files, and the third prints the headers plus the log messages of the locked
revisions. The last command prints complete information.

DIAGNOSTICS

The exit status always refers to the last RCS file operated upon, and is 0 if
the operation was successful, 1 otherwise.

SEE ALSO

ci(1B), co(1B), ident(1B), res(1B), resdiff(1B), resintro(1B), resmerge(1B),
resfile(5B), sccstorcs(8B).

Walter F. Tichy, Design, Implementation, and Evaluation of a Revision Con-
trol System, in Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, Sept. 1982.

AT&T User’'s Reference Manual A

CU(1C) CU(1C)

NAME

cu - call another UNIX system

SYNOPSIS

cu[-sspeed] [-Uine]l[-h]1[-t][-d][-0 | -e][-n]telno
cul-sspeed][-h][-d][-0 | -e]-lline
cu[-h][-d][-0 | -e]systemname

DESCRIPTION

cu calls up another UNIX system, a terminal, or possibly a non-UNIX system.
It manages an interactive conversation with possible transfers of ascr files.

cu accepts the following options and arguments:

-8speed Specifies the transmission speed (300, 1200, 2400,
4800, 9600); The default value is "Any" speed which
will depend on the order of the lines in the
/usr/lib/uucp/Devices file. Most modems are either
300 or 1200 baud. Directly connected lines may be set
to a speed higher than 1200 baud.

-Line Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -1 option is used without the -
8 option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con-
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not
be made. The specified device is generally a directly
connected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The
specified device need not be in the /dev directory. If the
specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno will not give the
desired result (see systemname below).

-h Emulates local echo, supporting calls to other computer
systems which expect terminals to be set to half-duplex
mode.

-t Used to dial an ASCII terminal which has been set to

auto answer. Appropriate mapping of carriage-return
to carriage-return-line-feed pairs is set.

-d Causes diagnostic traces to be printed.
-0 Designates that odd parity is to be generated for data -
sent to the remote system.

A AT&T User’'s Reference Manual 1

CU(1C)

telno

systemname

Cu(1C)

For added security, will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

Designates that even parity is to be generated for data
sent to the remote system.

When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

A uucp system name may be used rather than a
telephone number; in this case, cu will obtain an ap-
propriate direct line or telephone number from
fusr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -1 and -s op-
tions as cu will connect to the first available line for
the system name specified, ignoring the requested line
and speed.

After making the connection, cu runs as two processes: the transmit
process reads data from the standard input and, except for lines beginning
with~, passes it to the remote system; the receive process accepts data
from the remote system and, except for lines beginning with~, passes it to
the standard output. Normally, an automatic bc3/pcl protocol is used to
control input from the remote so the buffer is not overrun. Lines beginning
with ~ have special meanings.

The transmit process interprets the following user initiated commands:

~,

~!
~lemd...
~$ cmd...

~%cd

~%take from [to]

~%put from [to]

~~ line

terminate the conversation.
escape to an interactive shell on the local system.
run cmd on the local system (via sh -¢).

run cmd locally and send its output to the remote sys-
tem.

change the directory on the local system. Note: ~led
will cause the command to be run by a sub-shell,
probably not what was intended.

copy file from (on the remote system) to file o on the
local system. If ¢o is omitted, the from argument is
used in both places.

copy file from (on local system) to file o on remote sys-
tem. If to is omitted, the from argument is used in both
places.

For both ~%take and put commands, as each block of
the file is transferred, consecutive single digits are
printed to the terminal.

send the line ~ line to the remote system.

AT&T User’s Reference Manual A

CuU(1C) cu(1C)

~%break transmit a BREAK to the remote system (which can
also be specified as ~%b).

~%debug toggles the -d debugging option on or off (which can
also be specified as ~%d).

~t prints the values of the termio structure variables for
the user’s terminal (useful for debugging).

~1 prints the values of the termio structure variables for
the remote communication line (useful for debugging).

~%nostop toggles between Dc3/pcl input control protocol and no
input control. This is useful in case the remote system
is one which does not respond properly to the pc3 and
Dcl characters.

The receive process normally copies data from the remote system to its
standard output. Internally the program accomplishes this by initiating an
output diversion to a file when a line from the remote begins with ~.

Data from the remote is diverted (or appended, if >> is used) to file on the
local system. The trailing ~> marks the end of the diversion.

The use of ~%put requires stty (1) and cat (1) on the remote side. It also
requires that the current erase and kill characters on the remote system
be identical to these current control characters on the local system. Back-
slashes are inserted at appropriate places.

The use of ~%take requires the existence of echo (1) and cat (1) on the
remote system. Also, tabs mode (See stty (1)) should be set on the remote
system if tabs are to be copied without expansion to spaces.

When cu is used on system X to connect to system Y and subsequently
used on system Y to connect to system Z, commands on system Y can be ex-
ecuted by using ~~. Executing a tilde command reminds the user of the
local system uname. For example, uname can be executed on Z, X, and Y as
follows:

uname

z

~[X] luname

X

~--(Y¥]luname

Y
In general, ~ causes the command to be executed on the original machine,
~~ causes the command to be executed on the next machine in the chain.

EXAMPLES

To dial a system whose telephone number is 9 201 555 1212 using 1200
baud (where dialtone is expected after the 9):
cu -81200 9=12015551212

If the speed is not specified, "Any" is the default value.

A AT&T User’s Reference Manual 3

cu(1C) cu(1c)

To login to a system connected by a direct line:
cu -1 /dev/ttyXX
or
cu -1 ttyXX
To dial a system with the specific line and a specific speed:
cu -s81200 -1 ttyXX
To dial a system using a specific line associated with an auto dialer:
cu -1 culXX 9=12015551212
To use a system name:

cu systemname

FILES

fusr/lib/uucp/Systems
fusr/lib/uucp/Devices
usr/spool/locks/LcK..(tty-device)

SEE ALSO
cat(1), ct(1C), echo(1), stty(1l), uucp(1C), uname(l).
DIAGNOSTICS

Exit code is zero for normal exit, otherwise, one.

WARNINGS

The cu command does not do any integrity checking on data it transfers.
Data fields with special cu characters may not be transmitted properly.
Depending on the interconnection hardware, it may be necessary to use a
~. to terminate the conversion even if stty 0 has been used. Non-printing
characters are not dependably transmitted using either the ~%put or
~%take commands. cu between an IMBR1 and a penril modem will not
return a login prompt immediately upon connection. A carriage return will
return the prompt.

BUGS

There is an artificial slowing of transmission by cx during the ~%put
operation so that loss of data is unlikely.

4 AT&T User's Reference Manual A

UUCP(1C) UUCP(1C)

NAME

uucp, uulog, uuname - UNIX-to-UNIX system copy
SYNOPSIS

uucp [options] source-files destination-file
uulog [options] -s system

uulog [options] system

uulog [options] -f system

uuname [-1][-c]

DESCRIPTION

uucp

uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have
the form:

system-name!path-name

where system-name is taken from a list of system names that uucp knows
about. The system-name may also be a list of names such as

system-name!system-name!...!system-name!path-name

in which case an attempt is made to send the file via the specified route, to
the destination. See WARNINGS and BuGS below for restrictions. Care should
be taken to ensure that intermediate nodes in the route are willing to
foward information (see WARNINGS below for restrictions).

The shell metacharacters ?, * and [...] appearing in path-name will be ex-
panded on the appropriate system.

Path names may be one of:
1. a full path name;

2. a path name preceded by ~ user where user is a login name on the spe-
cified system and is replaced by that user’s login directory;

3. a path name preceded by ~/ destination where destination is appen-
ded to /usr/spool/uucppublic ; (NOTE: This destination will be trea-
ted as a file name unless more than one file is being transfered by this
request or the destination is already a directory. To ensure that it is a
directory, follow the destination with a /. For example ~/dan/ as the de-
stination will make the directory /usr/spool/uucppublic/dan if it does
not exist and put the requested file(s) in that directory).

4. anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will
fail. If the destination-file is a directory, the last part of the source-file
name is used.

If a simple ~user destination is inaccessible to uucp, data is copied to a
spool directory and the user is notified by mail (1).

A AT&T User’s Reference Manual 1

UUCP(1C)

UUCP(1C)

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod (2)).

The following options are interpreted by wucp :

-C

-xdebug_level

uulog

Do not copy local file to the spool directory for transfer
to the remote machine (default).

Force the copy of local files to the spool directory for
transfer.

Make all necessary directories for the file copy (default).
Do not make intermediate directories for the file copy.

grade is a single letter/number; lower ascii sequence
characters will cause the job to be transmitted earlier
during a particular conversation.

Output the job identification asci1 string on the stan-
dard output. This job identification can be used by nus-
tat to obtain the status or terminate a job.

Send mail to the requester when the copy is completed.
Notify user on the remote system that a file was sent.
Do not start the file transfer, just queue the job.

Report status of the transfer to file. Note that the file
must be a full path name.

Produce debugging output on standard output. The
debug_level is a number between 0 and 9; higher num-
bers give more detailed information. (Debugging will
not be available if uucp was compiles with -DSMALL.)

uulog queries a log file of uucp or uuxqt transactions in a file
/usr/spool/uucp/.Log/uucico/system, or
/usr/spool/uucp/.Log/uuxqt/system.

The options cause uulog to print logging information:

-s8ys

-fsystem

-X

- number

uuname

Print information about file transfer work involving
system gys.

Does a tail -f of the file transfer log for system. (You
must hit BREAK to exit this function.) Other options
used in conjunction with the above:

Look in the uuxqt log file for the given system.

Indicates that a tail command of number lines should
be executed.

uuname lists the names of systems known to uucp. The -c option returns
the names of systems known to cu. (The two lists are the same, unless your

AT&T User’s Reference Manual A

UUCP(1C) UUCP(1C)

machine is using different Systems files for cu and uucp. See the Sysfiles
file.) The -1 option returns the local system name.

FILES
fusr/spool/uucp spool directories
fusr/spool/uucppublic/* ublic directory for receiving and sendin
fasr/libfuucp/* usr/spool/uucppublic) other data an
program files
SEE ALSO

mail(1), uustat(1C), uux(1C), uuxqt(1M).
chmod(2) in the Programmer’s Reference Manual.

WARNINGS

The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely not be
able to fetch files by path name; ask a responsible person on the remote
system to send them to you. For the same reasons you will probably not be
able to send files to arbitrary path names. As distributed, the remotely ac-
cessible files are those whose names begin /usr/spool/uucppublic
(equivalent to ~/).

All files received by wucp will be owned by uucp.

The -m option will only work sending files or receiving a single file. Receiv-
ing multiple files specified by special shell characters ? * [...] will not ac-
tivate the -m option.

The forwarding of files through other systems may not be compatible with
the previous version of uucp. If forwarding is used, all systems in the route
must have the same version of uucp.

BUGS

Protected files and files that are in protected directories that are owned by
the requestor can be sent by uucp. However, if the requestor is root, and
the directory is not searchable by "other" or the file is not readable by
"other", the request will fail.

A AT&T User’s Reference Manual 3

UUCP(1C) UUCP(1C)

4 AT&T User’s Reference Manual A

UUSTAT(1C) UUSTAT(1C)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS

uustat [-a]

uustat [-m]

uustat [-p]

uustat[-q]

uustat [-Kjobid]

uustat [-xjobid]

uustat [-ssystem] [-uuser]

DESCRIPTION

uustat will display the status of, or cancel, previously specified uucp com-
mands, or provide general status on uucp connections to other systems.
Only one of the following options can be specified with uustat per com-
mand execution:

-a Output all jobs in queue.

-m Report the status of accessibility of all machines.

P Execute a ps -flp for all the process-ids that are in the
lock files.

-q List the jobs queued for each machine. If a status file

exists for the machine, its date, time and status infor-
mation are reported. In addition, if a number appears
in () next to the number of C or X files, it is the age in
days of the oldest C./X. file for that system. The Retry
field represents the number of hours until the next pos-
sible call. The Count is the number of failure attempts.
NOTE: for systems with a moderate number of outstand-
ing jobs, this could take 30 seconds or more of real-time
to execute. As an example of the output produced by
the -q option:

eagle 3¢ 04/07-11:07 NO DEVICES AVAILABLE

mh3bs3 2 07/07-10:42 SUCCESSFUL

The above output tells how many command files are waiting for each sys-
tem. Each command file may have zero or more files to be sent (zero means
to call the system and see if work is to be done). The date and time refer to
the previous interaction with the system followed by the status of the inter-

action.

-Kkjobid Kill the uucp request whose job identification is jobid.
The killed uucp request must belong to the person issu-
ing the uustat command unless one is the super-user.

-xjobid Rejuvenate jobid. The files associated with jobid are

touched so that their modification time is set to the cur-
rent time. This prevents the cleanup daemon from

A AT&T User’s Reference Manual 1

UUSTAT(1C) UUSTAT(1C)

deleting the job until the jobs modification time
reaches the limit imposed by the deamon.

Either or both of the following options can be specified with uustat :

-S8y8 Report the status of all uucp requests for remote sys-
tem sys.
-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglen0000 4/07-11:01:03 (POLL)

eagleN1lbd? 4/07-11:07 Seagledan 522 /usr/dan/A

eagleC1lbds 4/07-11:07 Seagledan 59 D.3b2al2ce4924

4/07-11:07 seagledan rmail mike

With the above two options, the first field is the jobid of the job. This is fol-
lowed by the date/time. The next field is either an 'S’ or 'R’ depending on
whether the job is to send or request a file. This is followed by the user-id
of the user who queued the job. The next field contains the size of the file,
or in the case of a remote execution (rmail - the command used for remote
mail), the name of the command. When the size appears in this field, the
file name is also given. This can either be the name given by the user or an
internal name (e.g., D.3b2alce4924) that is created for data files associated
with remote executions (rmail in this example).

When no options are given, uustat outputs the status of all uucp requests
issued by the current user.

FILES
Jusr/spool/uucp/* spool directories

SEE ALSO
uuep(1C).

2 AT&T User’'s Reference Manual A

UUTO(1C) UUTO(1C)

NAME

uuto, uupick - public UNIX-to-UNIX system file copy
SYNOPSIS

uuto [options] source-files destination
uupick [-s system]

DESCRIPTION

uuto sends source-files to destination. uuto uses the uucp (1C) facility to
send files, while it allows the local system to control the file access. A
source-file name is a path name on your machine. Destination has the
form:

system!user

where system is taken from a list of system names that uucp knows about
(see uuname). User is the login name of someone on the specified system.

Two options are available:

P Copy the source file into the spool directory before
transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on sys-
tem, where PUBDIR is a public directory defined in the uucp source. By
default this directory is /usr/spool/uucppublic. Specifically the files are
sent to

PUBDIR/receive/user/mysystem/files.
The destined recipient is notified by mail (1) of the arrival of files.
uupick accepts or rejects the files transmitted to the user. Specifically,
uupick searches PUBDIR for files destined for the user. For each entry (file

or directory) found, the following message is printed on the standard out-
put:

from system: [file file-name] [dir dirname] ?
uupick then reads a line from the standard input to determine the disposi-

tion of the file:

new-line Go on to next entry.

d Delete the entry.

m[dir] Move the entry to named directory dir. If dir is not
specified as a complete path name (in which $HOME is
legitimate), a destination relative to the current direc-
tory is assumed. If no destination is given, the default
is the current directory.

al[dir] Same as m except moving all the files sent from system.

P Print the content of the file.

q Stop.

EOT (control-d) Sameasq.

A AT&T User’s Reference Manual 1

UUTO(1C) UUTO(1C)

lcommand Escape to the shell to do command.
* Print a command summary.

uupick invoked with the -ssystem option will only search the PUBDIR for
files sent from system.

FILES

PUBDIR /usr/spool/uucppublic public directory

SEE ALSO

mail(1), uuep(1C), uustat(1C), uux(1C).

uucleanup(1M) in the Administrator’s Reference Manual.
WARNINGS

In order to send files that begin with a dot (e.g., .profile) the files must by
qualified with a dot. For example: .profile, .prof*, .profil? are correct;
whereas *prof*, ?profile are incorrect.

2 AT&T User’s Reference Manual A

UUX(1C) UUX(1C)

NAME

uux - UNIX-to-UNIX system command execution
SYNOPSIS

uux [options] command-string
DESCRIPTION

uux will gather zero or more files from various systems, execute a com-
mand on a specified system and then send standard output to a fileon a
specified system.

NOTE: For security reasons, most installations limit the list of commands
executable on behalf of an incoming request from wux, permiting only the
receipt of mail (see mail (1)). (Remote execution permissions are defined in
/usr/lib/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a
shell command line, except that the command and file names may be
prefixed by system-namel. A null system-name is interpreted as the local
system.

File names may be one of
1. a full path name;

2. a path name preceded by ~ xxx where xxx is a login name on the speci-
fied system and is replaced by that user’s login directory;

3. anythingelse is prefixed by the current directory.

As an example, the command
uux "1diff usgl/usr/dan/filel pwbal/a4/dan/file2 > |~/dan/file.diff"
will get the filel and file2 files from the “usg” and “pwba” machines, ex-

ecute a diff (1) command and put the results in file.diff in the local PUB-
DIR/dan/ directory.

Any special shell characters such as <>;| should be quoted either by quot-
ing the entire command-string, or quoting the special characters as in-
dividual arguments.

uux will attempt to get all files to the execution system. For files that are
output files, the file name must be escaped using parentheses. For ex-
ample, the command

uux alcut -f1 bl/usr/file \(c!/usr/file\)
gets /usr/file from system "b" and sends it to system "a", performs a cut
command on that file and sends the result of the cut command to system
"cﬂ.
uux will notify you if the requested command on the remote system was

disallowed. This notification can be turned off by the -n option. The
response comes by remote mail from the remote machine.

A AT&T User’s Reference Manual 1

UUX(1C)

UUX(1C)

The following options are interpreted by uux :

The standard input to uux is made the standard input
to the command-string.

-aname Use name as the user identification replacing the in-
itiator user-id. (Notification will be returned to the
user.)

-b Return whatever standard input was provided to the
uux command if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer
to the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-ggrade grade is a single letter/number; lower ASCII sequence
characters will cause the job to be transmitted earlier
during a particular conversation.

-J Output the jobid asciI string on the standard output
which is the job identification. This job identification
can be used by uustat to obtain the status or terminate
a job.

-n Do not notify the user if the command fails.

-pP Same as -: The standard input to uux is made the stan-
dard input to the command-string.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebug _level Produce debugging output on the standard output. The
debug_level is a number between 0 and 9; higher num-
bers give more detailed information.

-Z Send success notification to the user.

FILES

fusr/lib/uucp/spool spool directories

fusr/lib/uucp/Permissions remote execution permissions

fusr/lib/uucp/* other data and programs
SEE ALSO

cut(1), mail(1), uucp(1C), uustat(1C).

WARNINGS

Only the first command of a shell pipeline may have a system-name!. All
other commands are executed on the system of the first command.

The use of the shell metacharacter * will probably not do what you want it
to do. The shell tokens << and >> are not implemented.

AT&T User’s Reference Manual A

UUX(1C) UUX(1C)

The execution of commands on remote systems takes place in an execution

directory known to the uucp system. All files required for the execution

will be put into this directory unless they already reside on that machine.

Therefore, the simple file name (without path or machine reference) must

be unique within the uux request. The following command will NOT work:
uux "aldiff bl/usr/dan/xyz c!/usr/dan/xyz > lxyz.diff"

but the command
uux "aldiff al/usr/dan/xyz c!/usr/dan/xyz > Ixyz.diff*
will work. (If diff is a permitted command.)

BUGS

Protected files and files that are in protected directories that are owned by
the requestor can be sent in commands using uux. However, if the reques-
tor is root, and the directory is not searchable by "other", the request will
fail.

A AT&T User’s Reference Manual 3

UUX(1C) UUX(1C)

4 AT&T User's Reference Manual A

INTRO(6) INTRO(6)

NAME
intro - introduction to games
DESCRIPTION

This section describes the recreational and educational programs found in
the directory /usr/games.

The availability of these programs may vary from system to system.

A AT&T User’'s Reference Manual 1

INTRO(6) INTRO(6)

AT&T User’s Reference Manual A

ARITHMETIC(6) ARITHMETIC(6)

NAME

arithmetic - provide drill in number facts
SYNOPSIS

/usr/games/arithmetic [+-x/] [range]
DESCRIPTION

arithmetic types out simple arithmetic problems, and waits for an answer
to be typed in. If the answer is correct, it types back "Right!", and a new
problem. If the answer is wrong, it replies "What?", and waits for another
answer. Every twenty problems, it publishes statistics on correctness and
the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be
generated; +-x/ respectively cause addition, subtraction, multiplication,
and division problems to be generated. One or more characters can be
given; if more than one is given, the different types of problems will be
mixed in random order; default is +-

range is a decimal number; all addends, subtrahends, differences, multi-
plicands, divisors, and quotients will be less than or equal to the value of
range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the
first learning stage, not to teach number facts de novo. For almost all
users, the relevant statistic should be time per problem, not percent cor-
rect.

A AT&T User’s Reference Manual 1

ARITHMETIC(6) ARITHMETIC(6)

2 AT&T User’s Reference Manual A

BACK(6) BACK(6)

NAME

back - the game of backgammon

SYNOPSIS

/usr/games/back

DESCRIPTION

back is a program which provides a partner for the game of backgammon.
It is designed to play at three different levels of skill, one of which you
must select. In addition to selecting the opponent’s level, you may also indi-
cate that you would like to roll your own dice during your turns (for the su-
perstitious players). You will also be given the opportunity to move first.
The practice of each player rolling one die for the first move is not incor-
porated.

The points are numbered 1-24, with 1 being white’s extreme inner table, 24
being brown'’s inner table, 0 being the bar for removed white pieces and 25
the bar for brown. For details on how moves are expressed, type y when
back asks Instructions? at the beginning of the game. When back first
asks Move?, type ? to see a list of move options other than entering your
numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back.log in
the current directory.

FILES

fusr/games/lib/backrules rules file
/tmp/b* log temp file
back.log log file

BUGS

The only level really worth playing is “expert”, and it only plays the for-
ward game.

back will complain loudly if you attempt to make too many moves in a
turn, but will become very silent if you make too few.

Doubling is not implemented.

AT&T User’s Reference Manual 1

BACK(6) BACK(6)

2 AT&T User’'s Reference Manual A

BJ(6) BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
/usr/games/bj
DESCRIPTION

bj is a serious attempt at simulating the dealer in the game of black jack
(or twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player “natural” (black jack) pays $3. A dealer natural loses $2. Both
dealer and player naturals is a “push” (no money exchange).

If the dealer has an ace up, the player is allowed to make an “insurance”
bet against the chance of a dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side bet where the player
wins $2 if the dealer has a natural and loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he is allowed to “double”.
He is allowed to play two hands, each with one of these cards. (The bet is
doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may “double down”.
He may double the bet ($2 to $4) and receive exactly one more card on that
hand.

Under normal play, the player may “hit” (draw a card) as long as his total
is not over twenty-one. If the player “busts” (goes over twenty-one), the
dealer wins the bet.

When the player “stands” (decides not to hit), the dealer hits until he at-
tains a total of seventeen or more. If the dealer busts, the player wins the
bet.

If both player and dealer stand, the one with the largest total wins. A tie is
a push.

The machine deals and keeps score. The following questions will be shown
at appropriate times. Each question is answered by y followed by a new-
line for “yes”, or just new-line for “no”.

? (means, “do you want a hit?”)
Insurance?
Double down?

Every time the deck is shuffled, the dealer so states and the “action” (total
bet) and “standing” (total won or lost) is printed. To exit, hit the interrupt
key (DEL) and the action and standing will be printed.

A AT&T User’s Reference Manual 1

BJ(6) BJ(6)

2 AT&T User’s Reference Manual A

CRAPS(6) CRAPS(6)

NAME

craps - the game of craps
SYNOPSIS

/usr/games/craps
DESCRIPTION

craps is a form of the game of craps that is played in Las Vegas. The
program simulates the roller, while the user (the player) places bets. The
player may choose, at any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the House, any other bet is
a bet with the roller.

The player starts off with a “bankroll” of $2,000.
The program prompts with:
bet?

The bet can be all or part of the player’s bankroll. Any bet over the total
bankroll is rejected and the program prompts with bet? until a proper bet
ia made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed
with the roller or with the House; the odds are even). The first roll is the
roll immediately following a bet:

1. On the first roll:
Torll wins for the roller;
2,3,0r 12 wins for the House;

any other number
is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
1 House wins;

any other number
roll again.

If a player loses the entire bankroll, the House will offer to lend the player
an additional $2,000. The program will prompt:

marker?
A yes (or y) consummates the loan. Any other reply terminates the game.

If a player owes the House money, the House reminds the player, before a
bet is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers ex-
ceeds $2,000, the House asks:

Repay marker?

A AT&T User’s Reference Manual 1

CRAPS(6) CRAPS(6)

Areply of yes (or y) indicates the player’s willingness to repay the loan. If
only 1 marker is outstanding, it is immediately repaid. However, if more
than 1 marker are outstanding, the House asks:

How many?
markers the player would like to repay. If an invalid number is entered (or
just a carriage return), an appropriate message is printed and the program
will prompt with How many? until a valid number is entered.

If a player accumulates 10 markers (a total of $20,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed
$50,000, the total amount of money borrowed will be automatically repaid
to the House.

Any player who accumulates $100,000 or more breaks the bank. The
program then prompts:
New game?
to give the House a chance to win back its money.
Any reply other than yes is considered to be a no (except in the case of bet?

or How many?). To exit, send an interrupt (break), DEL, or CTRL-D. The
program will indicate whether the player won, lost, or broke even.

MISCELLANEOUS

The random number generator for the die numbers uses the seconds from
the time of day. Depending on system usage, these numbers, at times, may
seem strange but occurrences of this type in a real dice situation are not
uncommon.

2 AT&T User's Reference Manual A

FISH(6) FISH(6)

NAME
fish - play “Go Fish”
SYNOPSIS
/usr/games/fish

DESCRIPTION

fish plays the game of Go Fish, a childrens’ card game. The Object is to ac-
cumulate ‘books’ of 4 cards with the same face value. The players alternate
turns; each turn begins with one player selecting a card from his hand, and
asking the other player for all cards of that face value. If the other player
has one or more cards of that face value in his hand, he gives them to the
first player, and the first player makes another request. Eventually, the
first player asks for a card which is not in the second player’s hand: he
replies ‘GO FISH!' The first player then draws a card from the ‘pool’ of un-
dealt cards. If this is the card he had last requested, he draws again.
When a book is made, either through drawing or requesting, the cards are
laid down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9,
10, j, q, or k when asked. Hitting return gives you information about the

size of my hand and the pool, and tells you about my books. Saying ‘p’ as a
first guess puts you into ‘pro’ level; The default is pretty dumb.

A AT&T User's Reference Manual 1

FISH(6) FISH(6)

2 AT&T User’s Reference Manual A

FORTUNE(6) FORTUNE(6)

NAME

fortune - print a random, hopefully interesting, adage
SYNOPSIS

/usr/games/fortune [-] [-wslao] ..[file]
DESCRIPTION

fortune with no arguments prints out a random adage. The flags mean:

-w Waits before termination for an amount of time calcu-
lated from the number of characters in the message.
This is useful if it is executed as part of the logout
procedure to guarantee that the message can be read
before the screen is cleared.

-S Short messages only.
-1 Long messages only.
-0 Choose from an alternate list of adages, often used for

potentially offensive ones.
-a Choose from either list of adages.

The user may specify a file of adages. This file must be created by
strfile (6), and be given by the user as it file. Only one such file may be
named, subsequent ones are ignored.

FILES
fusr/games/lib/fortunes.dat
AUTHOR
Ken Arnold
SEE ALSO
strfile(6)

A AT&T User’s Reference Manual 1

FORTUNE(6) FORTUNE(6)

2 AT&T User'’s Reference Manual A

HANGMAN(6) HANGMAN(6)

NAME
hangman - guess the word
SYNOPSIS
/usr/games/hangman [arg]
DESCRIPTION

hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
fusr/lib/w2006

BUGS
Hyphenated compounds are run together.

A AT&T User’s Reference Manual 1

HANGMAN(6) HANGMAN(6)

2 AT&T User’s Reference Manual A

JOTTO(6) JOTTO(6)

NAME

jotto - secret word game
SYNOPSIS

jusr/games/jotto [-p]
DESCRIPTION

Jotto is a word guessing game. You try to guess the computer’s secret word
before it guesses yours. Clues are obtained by entering probe words. For ex-
ample, if the computer’s secret word is “brown” and you probe with “stare”,
it will reply “1” indicating that there is one letter in common between your
probe and the secret word. Double letters count only once unless they ap-
pear in both words. For example, if the hidden word is “igloo” and you
probe with “broke”, the computer will reply “1”. But if you probe with
“gloom”, the computer will respond “4”. All secret words and probe words
should be non-proper English five-letter words. If the computer guesses
your word exactly, please respond with y. It will then tell you what its
secret word was. The -p flag instructs the computer to report its progress
in guessing your word.

BUGS

The dictionary contains some unusual words and lacks some common ones.

A AT&T User’s Reference Manual 1

JOTTO(6) JOTTO(6)

2 AT&T User’s Reference Manual A

MAZE(6) MAZE(6)

NAME

maze - generate a maze

SYNOPSIS

/usr/games/maze
DESCRIPTION

Maze prints a maze.

BUGS

Some mazes (especially small ones) have no solutions.

A AT&T User’s Reference Manual 1

MAZE(6) MAZE(6)

2 AT&T User’s Reference Manual A

MOO(8) MOO(6)

NAME
moo - guessing game
SYNOPSIS
/usr/games/moo
DESCRIPTION

moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four
distinct digits being scored on each guess. A “cow” is a correct digit in an in-
correct position. A “bull” is a correct digit in a correct position. The game
continues until the player guesses the number (a score of four bulls).

A AT&T User's Reference Manual 1

MOO(6) MOO(6)

2 AT&T User’s Reference Manual A

QuIZ(6) Quiz(e)

NAME

quiz - test your knowledge
SYNOPSIS

/usr/games/quiz [-i file] [-t] [categoryl category?2]
DESCRIPTION

quiz gives associative knowledge tests on various subjects. It asks items
chosen from categoryl and expects answers from category2, or vice versa.
If no categories are specified, quiz gives instructions and lists the available
categories.

quiz tells a correct answer whenever you type a bare new- line. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

The -t flag specifies “tutorial” mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The -i flag causes the named file to be substituted for the default index
file. The lines of these files have the syntax:

line = category new-line | category : line
category = alternate{ category | alternate
alternate = empty | alternate primary
primary = character J [category] | option
option = { category

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in
each line of the information file. Information files have the same syntax.
Backslash \ is used as with sk (1) to quote syntactically significant charac-
ters or to insert transparent new-lines into a line. When either a question
or its answer is empty, quiz will refrain from asking it.

FILES

fusr/games/lib/quiz/index
/usr/gmes/liblﬁiﬂ *

BUGS

The construct “a | ab” does not work in an information file. Use “a{b}”.

A AT&T User’s Reference Manual 1

QuIZ(6) QuIZ(6)

2 AT&T User’s Reference Manual A

TTT(6) TTT(6)

NAME
ttt, cubic - tic-tac-toe
SYNOPSIS
jusr/games/ttt
DESCRIPTION

ttt is the X and O game popular in the first grade. This is a learning
program that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to com-
pletely know the game.

A AT&T User’s Reference Manual 1

TTT(6) TTT(6)

2 AT&T User’s Reference Manual A

WUMP(6) WUMP(6)

NAME

wump - the game of hunt-the-wumpus
SYNOPSIS

/usr/games/wump
DESCRIPTION

wump plays the game of “Hunt the Wumpus.” A Wumpus is a creature that
lives in a cave with several rooms connected by tunnels. You wander
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile
avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per line; it will
give a more detailed description if you want.

This program is based on one described in People’s Computer Company, 2,
2 (November 1973).

BUGS

It will never replace Adventure.

A AT&T User’s Reference Manual 1

WUMP(6) WUMP(6)

2. AT&T User’s Reference Manual A

Diab Data AB

Manual references

Manual references for D-NIX 5.3

This is a reference section for the D-NIX 5.3 operating system. All commands and

functions are listed with a reference to the appropriate manual.

A

.out(4)
a641(3C)
abort(3C)
abs(3C)
accept(1M)
access(2)
acct(1IM)
acct(2)
acct(4)
acctcms(1M)
acctcom(1)
acctcon(1M)
acctcon1(1M)
acctcon2(1M)
acctdisk(1M)
acctdusg(1M)
acctmerg(1M)
accton(1M)
acctprc(1M)
acctprc1(1M)
acctprc2(1M)
acctsh(1M)
acctwtmp(1M)
acos(3M)
adb(1)
admin(1)
alarm(2)

ar(1)
ar(4)

arithmetic(6)

as(1)

ascii(5)
asctime(3C)
asin(3M)
assert(3X)

at(1)

atan(3M)
atan2(3M)
atof(3C)
atoi(3C)
atol(3C)
awk(1)

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
See acctcon(1M)

See acctcon(1M)

See acct(1M)

See acct(1M)

AT&T Administrator’s Reference Manual
See acct(1M)

AT&T Administrator’s Reference Manual
See acctprc(1M)

See acctprc(1M)

AT&T Administrator’s Reference Manual
See acct(1M)

See trig(3M)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
See ctime(3C)

See trig(3M)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See trig(3M)

See trig(3M)

See strtod(3C)

See strtol(3C)

See strtol(3C)

AT&T User’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 1

Manual references

Diab Data AB

B

back(6)
badblk(1M)
banner(1)
basename(1)
batch(1)
be(1)
bdiff(1)
bessel(3M)
bfs(1)

bj(6)
bootpar(1M)
brk(2)
bsearch(3C)
bup(1)

C

cal(1)
calendar(1)
calloc(3C)
calloc(3X)
cancel(1)
captoinfo(1M)
cat(1)

cb(1)

cc(1)

cd(1)

cde(1)
ceil(3M)
cflow(1)
chargefee(1M)
chdir(2)
checkeq(1)
checklist(4)
chgrp(1)
chmod(1)
chmod(2)
chown(1)
chown(2)
chroot(1M)
chroot(2)
chrtbi(1)
ci(1B)
ckpacct(1M)
clearerr(3S)
clock(3C)
clone(7)
close(2)
closedir(3X)

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See at(1)

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

See malloc(3C)

See malloc(3X)

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See floor(3M)

AT&T Programmer’s Reference Manual
See acctsh(1M)

AT&T Programmer’s Reference Manual
See eqn(1)

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX Reference Manual

AT&T User’s Reference Manual

See acctsh(1M)

See ferror(3S)

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
See directory(3X)

References - 2

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB

Manual references

cmp(1)
co(1B)
col(1)
comb(1)
comm(1)
compress(1)
console(7)
conv(3C)
copy(1)
core(4)
cos(3M)
cosh(3M)
cp(1)
cpio(1)
cpio(4)
cpp(1)
cpset(1M)
craps(6)
creat(2)
cron(1M)
crontab(1)
crypt(1)
crypt(3C)
crypt(3X)
csh(1)
csplit(1)
ctags(1)
ctermid(3S)
ctime(3C)
ctoa(1)
ctrace(1)
ctype(3C)
cu(1C)
curses(3X)
cuserid(3S)
cut(1)
cxref(1)

D

date(1)
DBon(1)
DBscan(1)
dc(1)
dd(1iM)
delta(1)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
See trig(3M)

See sinh(3M)

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 3

Manual references

Diab Data AB

deroff(1)
devnm(1M)
df(1M)
diab1130
diab1320
diab1420
diab2340
diab2420
diab2430
diab2440
diab2450
dial(3C)
diff(1)
diff(1B)
diff3(1)
diff3(1B)
diffmk(1)
dir(4)
dircmp(1)
directory(3X)
dirent(4)
dirname(1)
disable(1)
diskusg(1M)
dnixcore(4)
dmacs(1)
dodisk(1M)
drand48(3C)
ds90-10
ds90-11
ds90-20
ds90-21
ds90-30)
ds90-30s
ds90-31
ds90-41
ds90-45)
du(1M)
dump(1)
dup(2)
dup2(3C)

E

echo(1)
ecvt(3C)
ed(1)
edata(3C)

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See acctsh(1M)

AT&T Programmer’s Reference Manual
See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

See end(3C)

References - 4

References for D-NIX 5.3 Version B - juni 1992

Diab Data AB Manual references
edit(1) AT&T User’s Reference Manual
egrep(1) AT&T User’s Reference Manual
enable(1) D-NIX 5.3 Reference Manual
encrypt(3C) See crypt(3C)
end(30) AT&T Programmer’s Reference Manual
endgrent(3C) See getgrent(3C)
endpwent(3C) See getpwent(3C)
endutent(3C) See getut(3C)
env(1l) D-NIX 5.3 Reference Manual
environ(5) AT&T Administrator’s Reference Manual
eqn(1) AT&T User’s Reference Manual
erand48(3C) See drand48(3C)
erf(3M) AT&T Programmer’s Reference Manual
erfc(3M) See erf(3M)
errdemon(1M) D-NIX 5.3 Reference Manual
errno(3C) See perror(3C)
etext(3C) See end(3C)
eval(1) D-NIX 5.3 Reference Manual
ex(1) AT&T User’s Reference Manual
exec(1) D-NIX 5.3 Reference Manual
exec(2) AT&T Programmer’s Reference Manual
exit(1) D-NIX 5.3 Reference Manual
exit(2) AT&T Programmer’s Reference Manual
exp(3M) AT&T Programmer’s Reference Manual
export(1) D-NIX 5.3 Reference Manual
expr(1) D-NIX 5.3 Reference Manual
F
fabs(3M) See floor(3M)
factor(1) AT&T User’s Reference Manual
false(1) D-NIX 5.3 Reference Manual
fclose(3S) AT&T Programmer’s Reference Manual
fcntl(2) AT&T Programmer’s Reference Manual
fentl(5) AT&T Administrator’s Reference Manual
fevt(3C) See ecvt(3C)
fdopen(3S) See fopen(3S)
ferror(3S) AT&T Programmer’s Reference Manual
feof(3S) See ferror(3S)
fflush(3S) See fclose(3S)
fgetc(3S) See getc(3S)
fgetgrent(3C) See getgrent(3C)
fgetpwent(3C) See getpwent(3C)
fgets(3S) See gets(3S)
fgrep(1) D-NIX 5.3 Reference Manual
file(1) AT&T User’s Reference Manual
filehdr(4) AT&T Administrator’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 5

Manual references

Diab Data AB

fileno(3S)
find(1)
fish(6)
floor(3M)
fmod(3M)
fopen(3S)
fork(2)
format(1M)
fortune(6)
fprintf(3S)
fputc(3S)
fputs(3S)
fread(3S)
free(3C)
free(3X)
freopen(3S)
frexp(3C)
fscanf(3S)
fsck(1)
fscl(1)
fseek(3S)
fsize(1)
fspec(4)
fstab(4)
fstat(2)
fstatfs(2)
ftell(3S)
ftok(3C)
ftw(3C)
fuser(1M)
fwrite(3S)
fwtmp(1M)

G

gamma(3M)
gevt(30)
get(1)
getc(3S)
getchar(3S)
getcwd(3C)
getdents(2)
getenv(3C)
geteuid(2)
getegid(2)
getgid(2)
getgrent(3C)
getgrgid(3C)

See ferror(3S)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See floor(3M)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

See printf(3S)

See putc(3S)

See puts(3S)

AT&T Programmer’s Reference Manual
See malloc(3C)

See malloc(3X)

See fopen(3S)

AT&T Programmer’s Reference Manual
See scanf(3S)

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
See stat(2)

See statfs(2)

See fseek(3S)

See stdipc(3C)

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
See fread(3S)

AT&T Administrator’s Reference Manual

AT&T Programmer’s Reference Manual
See ecvt(3C)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See getc(3S)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See getuid(2)

See getuid(2)

See getuid(2)

AT&T Programmer’s Reference Manual
See getgrent(3C)

References - 6

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB

Manual references

getgrnam(3C)
getlogin(3C)
getmsg(2)
getopts(1)
getopt(3C)
getpass(3C)
getpid(2)
getpgrp(2)
getppid(2)
getpw(3C)
getpwent(3C)
getpwnam(3C)
getpwuid(3C)
gets(3S)
getspent(3X)
getty(1M)
gettydefs(4)
getuid(2)
getut(3C)
getutent(3C)
getutid(3C)
getutline(3C)
getw(3S)
glossary(1)
gmtime(3C)
grep(1)
group(4)
grpck(1M)
gsignal(3C)

H

hangman(6)
hashcheck(1)
hashmake(1)
hcreate(3C)
hd(1)
hdestroy(3C)
help(1)
helpadm(1M)
holidays(4)
hsearch(3C)
hypot(3M)

See getgrent(3C)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See getpid(2)

See getpid(2)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See getpwent(3C)

See getpwent(3C)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See getut(3C)

See getut(3C)

See getut(3C)

See getc(3S)

AT&T User’s Reference Manual

See ctime(3C)

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
See pwck(1M)

See ssignal(3C)

AT&T User’s Reference Manual

See spell(1)

See spell(1)

See hsearch(3C)

AT&T User’s Reference Manual

See hsearch(3C)

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 7

Manual references

Diab Data AB

I

id(1IM)
ident(1B)
infocmp(1M)
init(1M)
inittab(4)
inode(4)
install(1M)
ioctl(2)
ipcrm(1)
ipes(1)

is.....(30)
isatty(3C)
issue(4)

J

jn(3M)
join(1)
jotto(6)
jrand48(3C)

K

kermit(1)
key(4)
kill(1)
kill(2)
kmem(7)

L

1(1)

13t01(3C)
164a(3C)
labelit(1M)
lastlogin(1M)
Ic(1)
lcong48(3C)
1d(1)
1daclose(3X)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See ctype(3C)

See ctype(3C)

See ttyname(3C)

AT&T Administrator’s Reference Manual

See bessel(3M)

AT&T User’s Reference Manual
AT&T User’s Reference Manual
See drand48(3C)

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See mem(7)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See a641(3C)

D-NIX 5.3 Reference Manual

See acctsh(1M)

D-NIX 5.3 Reference Manual

See drand48(3C)

AT&T Programmer’s Reference Manual
See 1dclose(3X)

References - 8

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB

Manual references

1dahread(3X)
1daopen(3X)
1dclose(3X)
1dexp(3C)
1dfcn(4)
1dfhread(3X)
1dgetname(3X)
1dlinit(3X)
1dlitem(3X)
1dlread(3X)
1dIseek(3X)
1dnlseek(3X)
1dnrseek(3X)
1dnsseek(3X)
ldohseek(3X)
ldopen(3X)
1dnshread(3X)
ldrseek(3X)
1dshread(3X)
1dsseek(3X)
1dtbindex(3X)
1dtbread(3X)
1dtbseek(3X)
lex(1)
1find(3C)
limits(4)
line(1)
linenum(4)
link(1M)
link(2)
lint(1)

In(1)

load(1)
localtime(3C)
locate(1)
lockf(3C)
log(3M)
log10(3M)
login(1)
loginlog(4)
logname(1)
logname(3X)
longjmp(3C)
lorder(1)
1p(1)
Ipadmin(1M)
Ipd(1)
Ipfilter(1M)
Ipforms(1)
Ipmove(1M)
Ippg(1)
Ipr(1)

AT&T Programmer’s Reference Manual
See 1dopen(3X)

AT&T Programmer’s Reference Manual
See frexp(3C)

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See 1diread(3X)

See 1dlread(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See 1dliseek(3X)

See 1drseek(3X)

See ldsseek(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See 1dshread(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See Isearch(3C)

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See ctime(3C)

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See exp(3M)

See exp(3M)

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See setjmp(3C)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 9

Manual references

Diab Data AB

Ipsched(1)
Ipshut(1M)
Ipstat(1)
Ipsubmit(1)
Ipusers(1M)
Irand48(3C)
1s(1)
Isearch(3C)
1seek(2)
1tol3(3C)

M

m4(1)
machid(1)
mail(1)
mailx(1)
make(1)
makekey(1)
mallinfo(3X)
malloc(3C)
malloc(3X)
mallopt(3X)
man(1)
math(5)
matherr(3M)
maze(6)
mc68k
mc68000
mc68020
mc68030
mc68040
mem(7)
memccpy(3C)
memchr(3C)
memcmp(3C)
memcpy(3C)
memory(3C)
memset(3C)
merge(1B)
mesg(1)
mgetty(1M)
mkcfig(1M)
mkcont(1)
mkdir(1)
mkdir(2)
mkfs(1M)
mknod(1M)
mknod(2)

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

See drand48(3C)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See 13t01(3C)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See malloc(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See malloc(3X)

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See machid(1)

See machid(1)

See machid(1)

See machid(1)

See machid(1)

AT&T Administrator’s Reference Manual
See memory(3C)

See memory(3C)

See memory(3C)

See memory(3C)

AT&T Programmer’s Reference Manual
See memory(3C)

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual

References - 10

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB Manual references
mknodm(1) D-NIX 5.3 Reference Manual
mksort(1) D-NIX 5.3 Reference Manual
mktemp(3C) AT&T Programmer’s Reference Manual
mkuser(1M) D-NIX 5.3 Reference Manual
mntchk(1M) D-NIX 5.3 Reference Manual
mnttab(4) AT&T Administrator’s Reference Manual
modf(3C) See frexp(3C)
monacct(1M) See acctsh(1M)
monitor(3C) AT&T Programmer’s Reference Manual
moo(6) AT&T User’s Reference Manual
mount(1M) D-NIX 5.3 Reference Manual
mount(2) AT&T Programmer’s Reference Manual
mrand48(3C) See drand48(3C)
msgctl(2) AT&T Programmer’s Reference Manual
msgget(2) AT&T Programmer’s Reference Manual
msgop(2) AT&T Programmer’s Reference Manual
mv(1) D-NIX 5.3 Reference Manual
mvdir(1M) D-NIX 5.3 Reference Manual
N
nawk(1) AT&T User’s Reference Manual
neqn(1) See eqn(1)
newform(1) AT&T User’s Reference Manual
newgrp(1) D-NIX 5.3 Reference Manual
news(1) AT&T User’s Reference Manual
nice(1) D-NIX 5.3 Reference Manual
nice(2) AT&T Programmer’s Reference Manual
nl(1) AT&T User’s Reference Manual
nlist(3C) AT&T Programmer’s Reference Manual
nm(1) AT&T Programmer’s Reference Manual
nohup(1) See nice(1)
nrand48(3C) See drand48(3C)
nroff(1) AT&T User’s Reference Manual
null(7) AT&T Administrator’s Reference Manual
nulladm(1M) See acctsh(1M)
O
od(1) D-NIX 5.3 Reference Manual
open(2) AT&T Programmer’s Reference Manual
opendir(3X) See directory(3X)
oscore(1) D-NIX 5.3 Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 11

Manual references

Diab Data AB

P

pack(1) AT&T User’s Reference Manual
passmgmt(1) D-NIX 5.3 Reference Manual

passwd(1) D-NIX 5.3 Reference Manual

passwd(4) AT&T Administrator’s Reference Manual
paste(1) AT&T User’s Reference Manual
pause(2) AT&T Programmer’s Reference Manual
pcat(1) See pack(1)

pclose(3S) See popen(3S)

pdp11(1) See machid(1

perror(3C) AT&T Programmer’s Reference Manual
pg(1) AT&T User’s Reference Manual

pipe(2) AT&T Programmer’s Reference Manual
plock(2) AT&T Programmer’s Reference Manual
pnch(4) AT&T Administrator’s Reference Manual
poll(2) AT&T Programmer’s Reference Manual
popen(3S) AT&T Programmer’s Reference Manual
pow(3M) See exp(3M)

powerfail(1M) D-NIX 5.3 Reference Manual

pr(1) D-NIX 5.3 Reference Manual
prctmp(1M) See acctsh(1M)

prdaily(1M) AT&T Administrator’s Reference Manual
print(1) D-NIX 5.3 Reference Manual

printf(3S) AT&T Programmer’s Reference Manual
prof(1) AT&T Programmer’s Reference Manual
prof(5) AT&T Administrator’s Reference Manual
profil(2) AT&T Programmer’s Reference Manual
profile(4) AT&T Administrator’s Reference Manual
prs(1) AT&T Programmer’s Reference Manual
prtacct(1M) See acctsh(1M)

ps(1) D-NIX 5.3 Reference Manual

ptrace(2) AT&T Programmer’s Reference Manual
ptx(1) AT&T User’s Reference Manual
putc(3S) AT&T Programmer’s Reference Manual
putchar(3S) See putc(3S)

putenv(3C) AT&T Programmer’s Reference Manual
putmsg(2) AT&T Programmer’s Reference Manual
putpwent(3C) AT&T Programmer’s Reference Manual
puts(3S) AT&T Programmer’s Reference Manual
putspent(3X) AT&T Programmer’s Reference Manual
pututline(3C) See getut(3C)

putw(3S) See putc(3S)

pwck(1M) AT&T Administrator’s Reference Manual
pwconv(1M) D-NIX 5.3 Reference Manual

pwd(1) D-NIX 5.3 Reference Manual
pwunconv(1M) D-NIX 5.3 Reference Manual

References - 12 References for D-NIX 5.3 Version B - juni 1992

Diab Data AB

Manual references

Q

gsort(3C)
queue(1)

quiz(6)

R

rand(3C)
rcs(1B)
rcsdiff(1B)
rcsfile(SB)
rcsintro(1B)
rcsmerge(1B)
read(2)
readdir(3X)
readonly(1)
realloc(3C)
realloc(3X)
red(1)
regcmp(1)
regcmp(3X)
regex(3X)
regexp(S)
reject(1M)
reloc(4)
remlp(1)
rewind(3S)
rewinddir(3X)
rinstall(1M)
rlog(1B)
rm(1)
rmail(1)
rmdel(1)
rmdir(1)
rmdir(2)
rmuser(1M)
rsh(1)
runacct(1M)

sact(1)
sar(1M)
sbrk(2)
scanf(3S)
scesdiff(1)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual
AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See directory(3X)

D-NIX 5.3 Reference Manual

See malloc(3C)

See malloc(3X)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See regcmp(3X)

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

See fseek(3S)

See directory(3X)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See rm(1)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
See brk(2)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 13

Manual references

Diab Data AB

sccsfile(4)
sccstorcs(8B)
scnhdr(4)
scr_dump(4)
scrfile(1)
sdb(1)
sdiff(1)
sed(1)
seed48(30)
seekdir(3X)
semctl(2)
semget(2)
semop(2)
set(1)
setbuf(3S)
setgid(2)
setgrent(3C)
setjmp(3C)
setkey(3C)
setmnt(1M)
setpgrp(1)
setpgrp(2)
setpwent(3C)
setspeed(1)
setuid(2)
setutent(3C)
setvbuf(3S)
sh(1)
shmctl(2)
shmget(2)
shmop(2)
shutacct(1M)
shutdown(1M)
sighold(2)
sigigmore(2)
signal(2)
sigpause(2)
sigrelse(2)
sigset(2)
sin(3M)
sinh(3M)
siv(1)
size(1)
sleep(1)
sleep(3C)
sno(1)
sort(1)
spell(1)
spellin(1)
spline(1G)
split(1)
sprintf(3S)

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

See drand48(3C)

See directory(3X)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See setuid(2)

See getgrent(3C)

AT&T Programmer’s Reference Manual
See crypt(3C)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See getpwent(3C)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See getut(3C)

See setbuf(3S)

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See acctsh(1M)

D-NIX 5.3 Reference Manual

See sigset(2)

See sigset(2)

AT&T Programmer’s Reference Manual
See sigset(2)

See sigset(2)

AT&T Programmer’s Reference Manual
See trig(3M)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

See spell(1)

AT&T User’s Reference Manual

AT&T User’s Reference Manual

See printf(3S)

References - 14

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB

Manual references

sqrt(3M)
srand(3C)
srand48(3C)
sscanf(3S)
ssignal(3C)
starter(1)
startup(1M)
stat(2)
stat(5)
statfs(2)
stdio(3S)
stdipc(3C)
stime(2)
strcat(3C)
str...(3C)
streamio(7)
string(3C)
strip(1)
strtod(3C)
strtol(3C)
stty(1)
su(1M)
sum(1)
swab(3C)
syms(4)
sync(1M)
sync(2)
sys_errlist(3C)
sys_nerr(3C)
sysfs(2)
system(3S)

T

tabs(1)
tail(1)
tan(3M)
tanh(3M)
tar(1)
tbl(1)
tc(1IM)
tdelete(3C)
tee(1)
telinit(1M)
telldir(3X)
tempnam(3S)
term(4)
term(5)
terminfo(4)

See exp(3M)

See rand(3C)

See drand48(3C)

See scanf(3S)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See acctsh(1M)

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See string(3C)

See string(3C)

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
See perror(3C)

See perror(3C)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual

AT&T User’s Reference Manual

AT&T User’s Reference Manual

See trig(3M)

See sinh(3M)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

See tsearch(3C)

AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

See directory(3X)

See tmpnam(3S)

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 15

Manual references

Diab Data AB

termio(7)
test(1)
tfind(3C)
tic(1IM)
time(1)
time(2)
times(1)
times(2)
timezone(4)
tmpfile(3S)
tmpnam(3S)
toascii(3C)
tolower(3C)
touch(1)
toupper(3C)
tput(1)

tr(1)
trenter(1M)
trig(3M)
true(1)
tsearch(3C)
tsort(1)
tt(6)

tty(1)

tty(7)
ttyname(3C)
ttyslot(3C)
turnacct(1M)
twalk(3C)
type(1)
types(S)
tzset(3C)

U

ulimit(2)
umask(1)
umask(2)
umount(1)
umount(2)
uname(1)
uname(2)
unget(1)
ungetc(3S)
uniq(1)
unistd(4)
units(1)
unlink(1M)

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

See tsearch(3C)

AT&T Programmer’s Reference Manual

. D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual
AT&T Programmer’s Reference Manual

- AT&T Administrator’s Reference Manual
. AT&T Programmer’s Reference Manual
. .AT&T Programmer’s Reference Manual

See conv(3C)

See conv(3C)

D-NIX 5.3 Reference Manual

See conv(3C)

AT&T User’s Reference Manual .
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual

- AT&T Programmer’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
See acctsh(1M)

See tsearch(3C)

D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
See ctime(3C)

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual

See link(1M)

References - 16

References for D-NIX 5.3

Version B - juni 1992

Diab Data AB

Manual references

unlink(2)
unpack(1)
unset(1)
usage(1)
ustat(2)
utime(2)
utmp(4)
utmpname(3C)
uucheck(1M)
uucico(1M)

uucleanup(1M)

uucp(1C)
uulog(1C)
uuname(1C)
uupick(1C)
uusched(1M)
uustat(1C)
uuto(1C)
Uutry(1M)
uux(1C)
uuxqt(1M)

\Y%

val(1)
values(5)
varargs(5)
vax(1)
ve(l)

vi(1)
viprintf(3S)
vprintf(3S)
vprintf(3X)
vsar(1)
vsprintf(3S)

W

wait(1)
wait(2)
wall(1)
wc(1)
what(1)
who(1)
whodo(1M)
write(1)

AT&T Programmer’s Reference Manual
See pack(1)

D-NIX 5.3 Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T Administrator’s Reference Manual
See getut(3C) .

AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
AT&T User’s Reference. Manual

See uucp(1) R
Seeuucp(l) - > > . .

See uuto(1) o

AT&T Administrator’s Reference Manual
AT&T User’s Reference Manual -

AT&T User’s Reference Manual: .
AT&T Administrator’s Reference Manual
AT&T User’s’Reference Manual * -
AT&T Administrator’s Reference Manual

AT&T Programmer s Reference Manual
AT&T Administrator’s Reference Manual
AT&T Administrator’s Reference Manual
See machid(1)

AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual -

See vprintf(3S)

AT&T Programmer’s Reference Manual
AT&T Programmer’s Reference Manual
AT&T User’s Reference Manual

See vprintf(3S)

D-NIX 5.3 Reference Manual

* AT&T Programmer’s Réference Manual
" - D-NIX 5.3 Reference Manual

D-NIX 5.3 Reference Manual

AT&T Programmer’s Reference Manual
D-NIX 5.3 Reference Manual

AT&T Administrator’s Reference Manual
D-NIX 5.3 Reference Manual

Version B - juni 1992

References for D-NIX 5.3

References - 17

Manual references

Diab Data AB

AT&T Programmer’s Reference Manual
See utmp(4)

See fwtmp(1M)

AT&T User’s Reference Manual

AT&T User’s Reference Manual

AT&T Programmer’s Reference Manual
See bessel(3M)

Rétefences -18

g

CORIEN
e (007

References for D-NIX 5.3

Version B - juni 1992

