
· .
LANGUAGE

REFERENCE
MANUAL .

ltID DIGITAL RESfARCHTM

C8-80™
Language

Reference Manual

Copyright © 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1982 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior. written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CBASIC are registered trademarks of Digital
Research. CB-80, CP/NET, LK-80, MP/M, MP/M-80,
RMAC, and SID are trademarks of Digital Research.
Z80 is a registered trademark of Zilog, Inc.

The "CB-80 Language Reference Manual" was prepared
using the Digital Research TEX Text Formatter and
pr in ted in the Un i ted S ta tes of Amer ica by
Commercial Press/Monterey.

* Second Printing: March 1982 *

Foreword

CB-80T .M·increases the per formance of commercial applica tions
software on Z80® and 8080 based microcomputer systems. CB-80
consists of the CB-80 compiler, the CB-80 library and a link editor,
LK-80 T .M.• With CB-80, you can compile statements into a module
consisting of relocatable machine instructions. You can link a
number of separately compiled modules into a single relocatable
module with LK-80. A relocatable module linked with the CB-80
library by LK-80 produces an executable program. You can also
generate overlays to allow one program to chain to another. These
features ensure that very large programs can be compiled and that
performance does not degrade when applications become large.
Add i tional CB-80 fea tures support opera tion in a multi-user
env iornmen t.

CB-80 maintains compatibility with CBASIC@. This allows you
to take existing applica tions and convert them to CB-80. The resul t
is much faster execution and more flexibility when using assembly
language.

This manual is a reference guide to CB-80. It defines the
structure, functions, and statements of the CB-80 language and then
describes the opera tion of the compiler and the linker. This manual
does not teach programming principles and in general, assumes that
you ar e famil iar with programming in one or more high level
languages. If you are familiar with CBASIC scan this manual for new
statements that have been added to CB-80. Read Sections 4.5, 4.6,
7.11, 11, and 12 in detail.

CB-80 and associated programs are distributed by Digital
Research or by dealers licensed by Digital Research to distribute
CB-80. A diskette containing an authorized copy of CB-80 has a
label like the one shown below.

l!ID 1J~[j~TAl RESEARLHe
CB80™

EN D USER DISKETTE

Version
Serial II

NOTICE OF RESTRICTIONS:
All software on this diskette is copyrighted and may be used and
copied only under the terms of the Digital Research, Inc. End User
License Agreement. This diskette Is serialized and may be used
only by the registered user, and may not be resold or transferred
without the consent of Digital Research, Inc., P.O. Box 579, Pacific
Grove, California. Disassembly of code is prohibited. Unauthorized
reproduction, transfer, or use of this material may be a criminal
offense under Federal and/or State law.

C~O is a traaernan, of DigltSI Aesearcrl

iii

A copy of Digital Research' s CB-80 Licensing Guide accompanies
each copy of CB-80. If you do not have a Licensing Guide or if your
disk does not have an end user label, please contact Digital
Research at (408)649-3896.

Di"gital Research is very interested in your comments on our
documentation and programs. Problem report forms are included with
your distribution disk. Please use them to help us provide you with
a better product.

iv

Table of Contents

1 Introduction to CB-80

1.1 CB~80 Character Set

1.2 Identifiers ~nd Reserved Words

1.3 Constants •
1.4 Remarks • • •

1.5 Nota tion

2 CB-80 Progra. Structure

1

2

4

7

8

2.1 CB-80 Statements ••••••••••••••••••• 11

2.2 Compiler Directives • • • • • • • •

2.2.1
2.2.2

Listing Control Directives
%INCLUDE Directive • • • •

3 Data Types and Declarations

3.1 Numeric Data
3.2 String Data.
3.3 Label Data .
3.4 Data Structures •
3.5 Declarations

3.6 Default Declarations

3.7 DATA Statements ••

3.8 Identifier Usage

4 User Defined Functions

4.1 Introduction to User Defined Functions

4.2 Single Line Functions • •

4.3 Multiple Line Functions •

v

15

15
16

19

20

20

21

22

24

24

26

27

28

29

Table of Contents
(continued)

4.4 Scope of Variables

4.5 Public and External Functions •

4.6 Linkage With Assembly Routines

5 Expressions and Assignments

5.1 Operands

5.2 Operators •

5.2.1
5.2.2
5.2.3
5.2.4

Logical Operators ••••••••••
Relational Operators • • • • • • • • • • •
Arithmetic Operators
Expression Overflow • • • • • • • • • • •

5 .3 Ass ignmen t S ta temen ts • • •

5.4 Evaluation of Expressions •

5.5 Mixed Mode Expressions

6 Predefined Functions

6.1 Numeric Functions

6.1.1 The ABS Function · · · · · · · · · · · 6.1.2 The ATN Function · · · · · · · · · · · · · 6.1.3 The COS Function · · · · · · · · · 6.1.4 The EXP Fun~tion · · · · · · · · · 6.1.5 The FLOAT Function · · · · · · · · · · 6.1.6 The INT and INT% Functions · · · · 6.1.7 The LOG Function · · · · · · · · · · · 6.1.8 The MOD Function · · · · · · · · · · · 6.1.9 The SGN Function · · · · · · · · · 6.1.10 The SIN Function · · · · · · · · · · · · · 6.1.11 The SQR Function · · · · · · · · · · · · · 6.1.12 The TAN Function · · ·
6.2 String Functions

6.2.1 The ASC Function · · · · · · · · · · · 6.2.2 The CHR$ Function · · · · · · · · · · · · 6.2.3 The LEFT$ Function · · · · · · · · 6.2.4 The LEN Function · · · · · · · · · 6.2.5 The MA'l'CH Function · · · · · · · · · ·

vi

· ·
· ·
· · · · · · · ·

· ·
· ·

31

32

33

35

37

38
40
42
43

44

45

46

47

47
47
47
48
48
48
48
49
49
49
49
49

50

50
50
50
51
51

Table of Contents
(continued)

6.2.6 The MID$ Function ••••••
6.2.7 The RIGHT$ Function
6.2.8 The STR$ Function ••••••••••••••
6.2.9 The UCASE$ Function
6.2.10 The VAL'Function •

6.3 Miscellaneous Functions •••

6.3.1
6.3.2
6.3.3

The COMMAND$ Function • • • • • • • • • • • •

6.3.4
6.3.5
6.3.6
6.3.7

The ERR Function • • • • • • • • • • • • • • •
The ERRL Function • • • • • • • • • • • • • •
The FRE Function • •• •••••• ••
The MERE Function • • • • • • • • • • • • • •
The SADD Function • • • • • • • • • • • •
The VARPTR Function • • • • • • • • • • • • •

7 Flow of Control Statements

7.1 GOTO Statements

7.2 IF Statements •

7.3 FOR Loops ••

7.4 WHILE Loops.

7.5

7.6

GOSUB S ta temen ts

CALL Statements •

7.7 RETURN Statements

7.8 ON Statements • •

7.9 ON ERROR Statements

7.10 STOP Statements ••

7.11 CHAIN Statements

8 Input/Output Processing Statements

8.1 INPUT Statements

8.2 CONSOLE and LPRINTER Statements •

8.3 DETACH Statements ••

vii

.

.

52
52
53
53
53

53

54
54
54
54
55
55
55

57

58

60

63

65

66

67

68

70

71

71

73

75

76

Table of Contents
(continued)

8 .4 PRINT S ta temen ts

8.5 POKE Statements •

8.6 OUT Sta temen ts
8.7 READ Statements •

8.8 RESTORE Statements
8.9 RANDOMIZE Statements

8.10 Input/Output Predefined Functions

8.10.1 The ATTACH Function · 8.10.2 The CONSTAT% Function
8.10.3 The CONCHAR% Function
8.10.4 The INKEY Function
8.10.5 The INP Function
8.10 .6 The PEEK Function
8.10.7 The POS Function
8.10 .8 The RND Function
8.10.9 The TAB Function

9 File Processing Statements

9.1 File Description

9.2 OPEN and CREATE Statements

9.3 File Accessing Methods

·
·

9.3.1
9.3.2

Reading Files • • •
Writing to Files .

·
·

9.4 Terminating Access to Files.

9.5 File Exception Processing.

· · · · · · · · · · ·

9.6 File Predefined Functions . · . . ·
9.6.1 The GET Function . · · · · 9.6.2 The LOCK Function · · 9.6.3 The RENAME Function · · · 9.6.4 The SIZE Function · · · · 9.6.5 The UNLOCK Function · · ·

viii

·

· · · · · ·
·

77

80

80

81

82

82

83

83
83
83
84
84
84
85
85
85

87

87

90

91
94

96

97

99

99
99
99
99

100

Table of Contents
(continued)

10 Formatted Output

10.1 Using Strings •

10.2 Numeric Fields

• • 101

. . .
10.3 String Fields ••

• • 103

107

I 10.4 Escape Characters 110

10.5 Print Using to Files 110

11 Compiler Operation

11.1 Compiling a Program 113

11.2 Command Line Directives • 114

12 LK-80

12.1 Operation of LK-80 • • 119

12.2 Linking Modules ••• • • 119

12.3

12.4

12.5

Linking Multiple REL Files • 121

Producing Overlays

LK-80 Toggles • • •

12.6 LK-80 Error Messages

12.7 Linking With Assembly Language

12.8 Passing Parameters

12.8.1
12.8.2
12.8.3

Integer Parameters
Real Parameters
String Parameters

12.9 Returning Values to CB-80

12.10 Dynamic Storage Allocation Routines.

12.11 Ar i thmetic Routines • • • • • • • • •

ix

• • • 122

• • • 123

124

• • 125

125

• • • 125
• • 126

• • • 126

127

• • • • 127

• • 128

A

B

C

D

E

F

Appendixes

CB-80 Reserved Words • • •

Collected Syntax Diagrams

Compiler Error Messages

Execution Error Messages • • • • • •

Implementation Dependent Values ••••

Glossary • • • • • • • • • • • • • • • •

x

129

131

149

• 159

• • 163

• 165

Section 1
Introduction to C8-80

A CB-80 source program is a text file consisting of ASCII
characters. Groups of characters form one of the following program
primitives: identifiers, reserved words, constants, special
characters, or remarks. Section 1.1 defines· the CB-80 character set
that forms these primitives. The following sections describe each
program primitive. Section 1.5 explains the notation this manual
uses to illustrate each statement in the language.

1.1 CD-80 Character Set

Any ASCII character can appear in a CB-80 program. The CB-80
language uses the alphanumeric characters and the following special
characters:

! " # $ % & () = - '" \ * : + ; ? / > • < ,

You can insert any number of blanks between program pr imitives.
Except in a string constant (discussed in Section 1.3), a
consecutive group of blanks is treated as one blank. For example
the following primitives are the same.

PRINT X

and

PRINT x

A physical line of source code is terminated by the end of line
character which is a carriage return followed by a line-feed.

You can use tab characters in source programs; CB-80 treats
them as blank characters. In listings, CB-80 expands tabs to the
next column that is a multiple of eight.

Except in str ing constants, CB-80 converts lower-case
alphabetic characters to the corresponding upper-case alphabetic
characters. The following primitives are the same:

PRINT

and

print

The backslash character (\) has a special meaning in CB-80.
Unless it is contained in a string constant, explained in Section
1.3, the backslash sign if ies tha t the next line is a con tinua tion of

All Information Presented Here is Proprietary to Digital Research

1

CB-80 Reference Manual 1.1 CB-80 Character Set

the current line. This allows a line oriented language like Basic
to have statements extend over many physical lines. CB-80 ignores
any characters following the backslash on the same physical line.
(Section 2 details the use of continuation characters.)

1.2 Identifiers and Reserved Words

An identifier is a program primitive that is a group of
alphanumeric characters and decimal points. Identifiers represent
program elemen ts, defined by the programmer, such as var iables,
function names and labels. Subsequent sections explain the use of
these elements. In general, the same identifier cannot be used for
two different elements. Reserved words are identifiers that have
specific meaning in the CB-80 language. In the remainder of this
manual, the term identifier refers to identifiers other than
reserved words or compiler directives. Appendix A contains a list
of CB-80 reserved words.

The first character in an identifier must be alphabetic, a
question mark (?), or a percent sign (%). CB-80 permits a question
mark as the first letter of an identifier to allow access to a
routine in the CB-80 run-time library. Identifiers that start with
a percent sign are called compiler directives. (Section 2 explains
these directives. Appendix A contains a list of all compiler
directives.) Identifiers can end with a percent sign or a dollar
sign.

CB-80 always converts lower-case letters in an identifier to
the corresponding upper-case letters.

Identifiers can be of any length. CB-80 allows long
identifiers so that you can choose names that have meaning. This
makes programs easier to develop and maintain. The amount of space
CB-80 requires during compilation of a program is related to the
length of identifier names. If you have long identifiers, you might
need more memory space to compile your program. However, the size
of the identifiers does not affect the amount of executable code CB-
80 produces.

A specific implementation of CB-80 might limit the number of
significant characters in an identifier. CB-80 does not set this
limit to less than 31 characters. Linkage editors might truncate
names of functions tha t are public or ~xternal to less than 31
characters. If an identifier is' truncated due to an implementation
length restr iction, a termina ting dollar sign or percen t sign is not
retained. This could change the meaning of the identifier. (See
Appendix E for current implementation limibs.)

You can imbed decimal points in an identifier to enhance
readability. You can use any number of decimal points, and they can
appear as the last character of the identifier. For example:

MASTER.ACCOUNT.NUMBER.

All Information Presented Here is Proprietary to Digital Research

2

CB-80 Reference Manual 1.2 Identifiers and Reserved Words

FILE.NUMBER%

The decimal point is part of an identifier and must be present
in all references to that identifier. Therefore, the identifiers:

INV.NO

and

INVNO

are different identifiers.

The following list\ shows valid identifiers:

AMOUNT FN.ANGLE

PAYMENT.DUE.DATE ORDER.QTY.

INDEX% I%

DaTe$ ACCOUNT. 101

income.source.code Al.B2 .C3.

?GETS I

The following identifiers are invalid:

A$B

SIN

7IJ

A?B

$

• A.B

ABC

CB-80 only allows a dollar sign at the end of
the identifier.

SIN is a reserved word (see Appendix A).

Valid identifiers must start with a letter
(I7JK is valid).

Question marks can only appear at the
beginning of an identifier.

Valid identifiers must start with a letter or
?

Decimal points cannot start an identifier •

Spaces cannot appear in identifiers.

All Information Presented Here is Proprietary to Digital Research

3

CB-80 Reference Manual 1.3 Constan ts

1.3 Constants

A constant is a program primitive that does not vary during the
execution of a program. There are two types of constants: string
and numeric.

A string constant is a group of characters enclosed within
quotation marks. The maximum number of characters allowed in a
string constant is implementation dependent (see Appendix E for
current limits). In all cases, CB-80 permits at least 255
characters.

The compiler treats two consecu·tive quotation marks within the
string as one quotation mark which is a character in the string.
For example:

"He said ""The time has come"" before he left"

represents the following string constant:

He said "The time has come" before he left

The following examples also use imbedded quotation marks:

""""
" th is is a quota t ion mar k """

The first example is a string consisting of one quotation mark. The
string constant:

""
is a null string. A null string is a string with a length of zero.

All Information Presented Here is Proprietary to Digital Research

4

CB-80 Reference Manual 1.3 Constants

The following are examples of valid string constants:

"This is a valid string constant"

"ABC Development Company"

....
"PAYMENT DUE DATE: ..

.. . . ! # $ % &' () =-" I \ { [}] * : + ; < • • • ..

Numeric constants are either integer or real constants.
Integer const.ants are stored as two byte signed binary integers with
a maximum magnitude of 32767. Real constants are stored as eight
byte binary coded decimal digits. The first byte is the sign and
exponent; the remaining seven bytes represent the mantissa. You
can express real constants in either decimal or floating point
format. The compiler converts numeric constants to an internal
format.

The following are examples of valid numeric constants:

1

5478

12.83

1.11E-21

o

12345

1267.

0.01E63

32767

21

54.0E 01

1.23E+61

A blank can appear following the E in a numeric constant. No other
blanks can be used in a constant.

Numer ic constants are always positive. If you append a sign to
a constant, CB-80 treats the sign as an unary arithmetic operator.
(See Section 5 for a discussion of arithmetic operators.)

The following numeric constants are invalid:

3.2E

1.23E+99

12,734

0.11.2

12 .34

Missing exponent.

Exponent out of range.

Commas are not permitted within constants.

Only one decimal point is permitted.

A blank is not permitted in the number.

All Information Presented Here is Proprietary to Digital Research

5

CB-80 Reference Manual 1.3 Cons tan ts

If a numeric constant does not contain a decimal point or an
exponent, the compiler treats the constant as an integer unless the
magnitude of the constant exceeds 32767, the maximum magnitude of
CB-80 integers. If the constant exceeds 32767, CB-80 treats the
constant as a real constant. In other words, 30000 is an integer
but 300000 is a real constant. 30000.0 is also a real constant
because it contains a decimal point.

Integer constants can also be expressed as hexadecimal or
binary constants. A binary constant is a group of O's and lis
ending in the letter B. Hexadecimal constan ts consist of a group of
numer ic characters and the letters A through F. A hexadecimal
constant ends with the letter H.

In binary constants the letter B, and in hexadecimal constants
the letters A through F and the letter H, can be either lower-case
or upper-case. The first character of a hexadecimal constant must
be a digit.

The following list conta ins examples of valid binary and
hexadecimal constants:

1100b

7ABCH

07fffh

Oh

OlOlOlOlOlB

7abch

OOOOH

Illb

8000h

IB

OFfFfH

OABCDH

Unlike decimal integer constants, binary and hexadecimal
constants are not converted to real constants if their magnitude
exceeds 32767. This allows bit patterns up to 16-bits long to be
represented as constants. This means that while CB-80 treats

65535

as a real constant,

OFFFFH

is a hexadecimal integer constant.

All Information Presented Here is Proprietary to Digital Research

6

CB-80 Reference Manual 1.3 Constan ts

The following binary and hexadecimal constants are invalid:

fa3eh Does not start with a digit.

7ABCD Missing H at end of constant.

OFFFFFH Exceeds the range of integers.

01020lb Binary contains digit other than 0 or 1.

o III OB Spaces not permitted in constants.

1011,1111 Comma not permitted in constants.

1.4 Reaarks

You can add remarks to a source program to increase the
readability of your program, but the compiler ignores remarks. A
remark starts with the reserved word REMARK or REM, and terminates
with the physical end of the line or with a backslash if the remark
continues to the next line.

Remarks can appear anywhere in the source program with the
following restrictions.

• A remark always terminates a statement.
described in subsequent sections).

(Sta temen ts are

• Remarks cannot be imbedded in other program primitives.

• Remarks are not permitted as part of a DATA statement.
(Section 3 explains DATA statements).

CB-80 treats a blank line as a remark. You can use any number
of blank lines within a program. In the example below, the blank
line becomes part of the remark, but the third line is not a
continuation of the remark.

REM THIS IS A REMARK CONTINUED \

BUT THIS IS NOT PART OF THE REMARK

The following examples show valid remarks.

REM Any Characters

REMARK ACCOUNTS PAYABLE

All Information Presented Here is Proprietary to Digital Research

7

CB-80 Reference Manual

REMARK \
\PAYROLL
\PROGRAMMED BY TIM SMITH
\LAST MODIFIED 28 JUNE 1981

VERSION 1.03

1.4 Remarks

In the last example, the backslashes indicate that the five
physical lines are one remark. Thus, the backslash has specific
mean ing even as pa r t of a remar k • A remar k cannot con ta in a
carriage return because a carriage return terminates the remark.
The carriage return is not part of the remark.

1.5 Notation

This manual uses syntax diagrams to illustrate the syntax of
each statement in the language. A syntax diagram shows the
permissible constructs for each statement. For example, the syntax
diagram for an identifier is:

L.f.TTER

• A rectangular box indicates a program element that is further
defined by another syntax diagram. In this example, a syntax
diagram could be drawn to show that a letter is an A, B, C etc.

• The circle indicates a reserved symbol or token in the
language.

• Arrows represen t the flow of control tha t indica tes permissible
alternative forms of the program element.

• For clarity, program examples in this manual use upper-case
letters for both reserved words and identifiers. However, you
can also write any of the identifiers or reserved words in
lower-case without altering the program.

All Information Presented Here is Proprietary to Digital Research

8

CB-80 Reference Manual 1.5 Nota tion

Note: the CB-80 Reference Manual is independent of the operating
environment wherever possible. However, when filenames must be
shown, CP/M® filenames are used. Digital Research's CP/M and its
der iva tives MP/MT.M. and CP/NETT.M. are the standard opera ting systems
for 8-bit microprocessors using CB-80. If you are using CB-80 with
an operating system other than CP/M, file specifications might
differ from those shown in this manual.

End of Section

All Information Presented Here is Proprietary to Digital Research

9

Section 2
C8-80 Program Structure

Section 1 defines program primitives from which CB-80 programs
are built. This section describes the overall structure of CB-80
prog rams, wh ich con.sist of a declaration group followed by a
statement group. Section 2.2 describes compiler directives that
provide information to the compiler during compilation.

2.1 CB-80 Stateaents

A CB-80 statement consists of an optional statement label and
one or more statements separated by colons. The statement
terminates with the end of a physical source line. With the
exception of some assignment statements, all statements start with a
reserved word.

..
?iMT LAeEl..-

.. IF ~TA-reMENT -- ...
~~ 4~

.. ; !JTATS.MSNT ..

. -• -

A number of statements is called a statement group.

6TATEMEHT

All Information Presented Here is Proprietary to Digital Research

11

CB-80 Reference Manual 2.1 CB-80 Statements

A statement label can be an integer or real constant or an
identifier with a colon appended to the end of the identifier.

When you use an identifier for a label, you cannot use it again
in another context within the program. This means it cannot be used
as a variable or a function name. (See Section 4 for a discussion
of local variables and labels within multiple line functions for an
exception to this rule.)

The following list contains valid statement labels:

100 2300.00 2222

GETRECORD: PROCESS.COMMAND: A:

200E03 100.00 0.001

The following statement labels are invalid:

100H Hexadecimal constants are not permitted.

XYZ Colon is missing.

1#2 Invalid constant; pound sign is not permitted.

stop: Stop is a reserved word.

All Information Presented Here is Proprietary to Digital Research

12

CB-80 Reference Manual 2.1 CB-80 Statements

When an alphanumer ic label is referenced, the colon is not part
of the label. (Section 7 explains statements that reference
labels.)

When you use a numeric constant as a label, the characters
making up the label determine the uniqueness of the label, not the
value of the label itself. The labels 100.0 and 100.00 are
different labels even though they have the same numeric value.

Section 1 explains that CB-80 uses the backslash character (\)
as a continuation character to allow statements to extend over many
physical source statement lines. For example:

PRINT X, Y, Z

can be written as:

PRINT \
X, \
Y, \
z

A continuation character causes CB-80 to ignore all characters
beginning with the continuation character and including the first
end of line.

PRINT \ ALL THIS IS IGNORED
X

A continuation character can appear anywhere that a blank can
separate program primitives. Thus, the continuation character can
separate two primitives:

·PRINT \
X

A continuation character cannot split a primitive. The
following example shows an invalid use of the continuation
character:

PRI\
NT X

CB-80 trea ts a backslash wi thin a str ing constant as a
character within the string rather than as a continuation character.
For example:

"AB\CD"

is a valid string constant that contains 5 characters.

All Information Presented Here is Proprietary to Digital Research

13

CB-80 Reference Manual 2.1 CB-80 Statements

Because CB-80 ignores all characters following the continuation
character on the same physical line, the characters following a
continuation character can be used to document a program.

PRINT \ NOW PRINT THE TOTAL
ACCOUNT.TOTAL

A remark terminates a statement. Thus, the statement:

PRINT REMARK NOW PRINT THE TOTAL
ACCOUNT. TOTAL

is not the same statement, and is in fact an incorrect CB-80
statement.

A t times it is necessary to form a group of sta tements.
Normally, this is used in conjunction with the IF statement
described in Section 7.2.

The special character colon (:) indicates that two consecutive
statements are part of a statement group. For example:

PRINT X : PRINT Y

To prevent confusion with a label, the colon must not be
adjacent to an identifier.

All statements in a group must be part of one logical statement
1 ine. This means tha t if the sta tement group is spread over
multiple source lines, you must use the continuation character. For
example:

PRINT X :\
PRINT Y

associates both statements in the same group. But

PRINT X
PRINT Y

does not. In this last example, the first line is a group of two
statements consisting of a print statement followed by a null
statement. The second line is another print statement not part of
the statement group in the first line.

A colon allows multiple statements on one line. In conjunction
with the continuation character, the colon allows groups or blocks
of statements to be continued over many physical source lines.

All Information Presented Here is Proprietary to Digital Research

14

CB-80 Reference Manual 2.2 Compiler Directives

2.2 Compiler Directives

Compiler directives are reserved words that provide information
to the compiler; they are not translated into executable code. The
following sections define the different compiler directives.

All compiler directives begin with a percent sign (%). For
example:

%LIST

There must not be any blanks between the percent sign and the
remainder of the directive. The compiler directive can appear
anywhere within a source line but no other statements can appear on
the same line with the directive. CB-80 ignores any characters on
the same line with the directive unless they are required by the
directive.

Only blanks or tab characters can precede the directive; it
cannot have a label.

A compiler directive cannot be continued to another line with a
continuation character.

2.2.1 Listing Contro1 Directives

There are four compiler directives that affect the format of
the listing product by CB-80: %LIST, %NOLIST, %EJECT, and the %PAGE
directives. Compiler toggles, explained in Section 11, also affect
listings.

The %NOLIST
interlisting code.

%LIST

%NOLIST

directive stops listing the source file and
The %LIST resumes listing the source file.

The %EJECT directive continues the listing on the top of the
next page. The %EJECT directive is only in effect if the listing is
being directed to the printer. The %EJECT directive is ignored if
%NOLIST is in effect.

%EJECT

The %PAGE directive sets the page length of a listing directed
to the printer. The desired length must be an integer constant
following the %PAGE. The following example sets the page length to
40 lines:

%PAGE 40

All Information Presented Here is Proprietary to Digital Research

15

CB-80 Reference Manual 2.2 Compiler Directives

2.2.2 %INCLUDE Directive

The %INCLUDE directive allows source code in a disk file to be
included into the source program during compilation. The following
directive includes source statements from the file CONDEF.BAS.

%INCLUDE CONDEF

The file CONDEF.BAS is read from the CP/M default drive. The
filetype of the file specification defaults to "BAS". However, you
can specify any filetype. For example, the following directive
includes the file CONDEF.INC into the source program.

%INCLUDE CONDEF.INC

You can specify that an include file be read from a drive other
than the default drive. One method is to directly specify the
drive, as shown below.

%INCLUDE D:CONDEF.INC

Another method uses a compiler toggle to read include files from a
drive other than the one containing the source program. (Section
11.2 explains compiler toggles.)

Include files can be nested. The maximum depth of such nesting
is implementa tion dependent. (See Appendix E for the current
limitations.) You can assume that the maximum allowable depth is
always at least four, however some operating environments limit the
number of files that can be open at one time. Extensive use of
%INCLUDE files, especially when nested, decreases the speed of
compilation.

The included text is incorporated into the source directly
after the %INCLUDE directive. CB-80 treats the first character of
the included text as the next character in the source program. The
physical line containing the %INCLUDE directive is not a part of the
statement being compiled.

A %INCLUDE directive can "split" a statement.

PRINT \
%INCLUDE RECDEF.INC

If file RECDEF.INC contains the following source line:

NAME$ \
ADDRESS$

the %INCLUDE forms with the following statement:

PRINT \
NAME$ \
ADDRESS$

All Information Presented Here is Proprietary to Digital Research

16

CB-80 Reference Manual 2.2 Compiler Directives

The statement that is actually compiled is obtained by replacing the
entire source line containing the %INCLUDE directive with all source
lines in the file specified in the directive.

End of Section

All Information Presented Here is Proprietary to Digital Research

17

Section 3
Data Types and Declarations

CB-80 provides a var iety of da ta types to support the
requirements of programmers implementing commercial applications.
There are three kinds of CB-80 data: numeric, string, and label. A
specific data type .can be either a constant or a variable.
Constants do not change value during execution of a program, while
variables can assume different values during program execution.
This section explains the properties of CB-80 data items.

3.1 Numeric Data

Numeric data represents arithmetic and logical quantities.
Numeric data falls into two classes: integer and real. Integer
quantities are represented as two's complement binary numbers. Each
integer requires two bytes for storage. If you assign an integer a
value outside the defined range of 15 binary digits (-32768 to
32767), the results are undefined.

Integer data is processed more efficiently than real data
because the hardware processes integers directly. In addition,
integers use less memory than real data. You should use integers
whenever possible to decrease execution time and to reduce the
amount of memory used.

The compiler stores real numeric data as packed decimal digits
in an eight byte floating point format. The first byte contains
both the exponent and the sign of the number. The first bit is the
sign of the number. The remaining 7 bits are the exponent.

The mantissa is seven bytes long and con tains 14 dig its.
Values are always stored in a normalized format as 4 bit decimal
digits. There are two digits stored in each byte of the mantissa.

The dynamic range of real numbers is 1.OE-64 to
9.99999999999999E+62. Both the accuracy and dynamic range of CB-80
numbers are ~ignificantly greater than that found in most binary
implementations of real numbers.

All Information Presented Here is Proprietary to Digital Research

19

CB-80 Reference Manual 3.1 Numeric Data

The internal representation CB-80 uses for some real numbers is
shown below:

NUMBER

1.0

-1.0

0.0123

0.0

largest positive
number

smallest nonzero
positive number

3.2 String Data

EXPONENT

4lH

ClH

3FH

OOH

7FH

OlH

MANTISSA

OOH OOH OOH OOH OOH OOH 10H

OOH OOH OOH OOH OOH OOH 10H

OOH OOH OOH OOH OOH 23H 10H

(not significant if exponent byte 0)

99H 99H 99H 99H 99H 99H 99H

OOH OOH OOH OOH OOH OOH 10H

String data consists of variable length strings of characters.
A string can have a maximum length of 32767 bytes. Space for string
variables is allocated dynamically and released when the string is
no longer required.

The first two bytes of a string represent the length of the
string. The first byte of the length is the high-order byte and the
second byte is the low-order byte. This is contrary to the normal
storage of sixteen bit quantities in 8080 microprocessors. The
string "SAMPLE" is stored internally in eight bytes:

LENGTH BODY OF STRING

OOH 06H 53H 4lH 4DH 50H 4CH 45H

The system uses the left most bit (bit 7) of the first byte of
the length to recover temporary strings. This bit must be ignored
when access ing the str ing length. Thus, the str ing length is
actually the low-order 15 bits of the first two bytes of a string.

3.3 Labe1 Data

Labels reference statements and functions and are always
constants. Section 3 explains statement labels; Section 4 explains
functions.

All Information Presented Here is Proprietary to Digital Research

20

CB-80 Reference Manual 3.3 Label Data

Labels within the main executable block of a program must be
unique. All labels within a function (Section 4) must also be
unique, but a label within a function can be the same as a label in
another function or the main executable block.

3.4 Data Structures

CB-80 supports two da ta structures: simple var iables and
arrays. Simple variables are single values associated with a
variable name. Simple -variables can be of three types: integer,
real, or string. For example, the following identifiers represent
simple variables:

AMOUNT PAYMENT.DUE.DATE$ FIRST.FLAG%

INDEX% ANGLE I

Integers are stored in two bytes of memory; real variables
require eight bytes of storage. Strings are assigned two bytes of
permanen t storage tha t store the address of the dynamically
allocated string.

Arrays are the other data structure CB-80 provides. An array
associates a group of simple variables to one variable name. A
particular element is identified by providing subscripts to select
one variable in the array. In the following example, MATRIX is the
array name. The values in parentheses are subscripts selecting a
specific element of MATRIX. MATRIX is a two dimensional array
because there are two subscripts.

MATRIX(2,3)

Arrays can have any number of dimensions, and the value of
dimensions can be expressions determined dur ing the execution of the
program. A particular implemen ta tion of CB-80 might limi t the
number of dimensions allowed in an array. (Refer to Appendix E for
current limitations.)

The DIM statement dynamically allocates space for an array.
Tha t is, the memory the array requires is not reserved until the DIM
sta temen t is executed.

t:.X~SION

All Information Presented Here is Proprietary to Digital Research

21

CB-80 Reference Manual 3.4 Data Structures

The expressions specify the upper bound for each subscript.
Section 5 defines expressions. The lower bound is always zero. For
example:

DIM X(25)

alloca tes an array wi th 26 elemen ts, X (0), X (1), through X (25). The
sta temen t:

DIM ACCOUNTS (I,J)

creates space for (1+1) * (J + 1) elements.

The actual method of allocation is undefined in CB-80. CB-80
does not define the order in which elements are stored in memory for
a spec if ic ar ray. The method of alloca tion can vary from
implementation to implementation. This approach allows allocation
methods that give efficient access to array elements on machines
without hardware multiply.

3.5 Declarations

Declarations allow you to specify whether a specific variable
or function name represents an integer, real, or string data type.
Declarations also indicate that a variable is in COMMON.

The following statements are valid dec~arations:

INTEGER I,J,LOOP.COUNT
REAL A, AMOUNT. DUE, 'C
STRING NAME,PART.DISCRIP

All Information Presented Here is Proprietary to Digital Research

22

CB-80 Reference Manual 3.5 Declarations

In the statements above, the identifiers I, J, and LOOP.COUNT
represent integer data items and the identifiers A, AMOUNT.DUE, and
C represent real data items. NAME and PART.DISCRIP are strings.

If the identifier represents an array, the number of subscripts
are in parentheses following the identifier name.

INTEGER MAX(2), Y(l)
STRING NAMES $ (1)

The statement above declares MAX to be a two dimensioned
integer array, while Y and NAMES$ each have one dimension. This
declaration does not result in allocation of space for the array.
You must execute a DIM statement for an array prior to referencing
any elements in the array.

Any statement in a declaration block can have a label. CB-80
ignores the label except that it is assigned the address of the
first executable statement in the statement group that follows.

The following declarations are invalid:

INTEGER I, J K

REAL X(15,40)

STRING POS

REAL X : INTEGER I

Missing comma.

Arrays have number of
dimensions in parentheses.

POS is a reserved word.

Colon cannot be used to group
declarations.

In addition to the INTEGER, REAL, and STRING statements, a
declaration group can contain blank lines, REM statements, COMMON
statements, and DATA statements. For example:

INTEGER FLAGl, FLAG2 REM FLAGS FOR FILE I/O

100 REMARK FOLLOWING VARIABLES USED FOR CALCULATIONS

REAL AMOUNT, BALANCE, PAYMENT

You can place any program var iable in COMMON. This allows da ta
to be shared by two or more programs. (See Section 7 for a
discussion of CHAINING.) The following COMMON sta tement places
three variables in COMMON:

COMMON X, Y,. Z

When a variable is subscripted, then the number of subscripts is
placed in parentheses following the variable name. For example:

All Information Presented Here is Proprietary to Digital Research

23

CB-80 Reference Manual 3.5 Declarations

COMMON A (2)

specifies that the variable A is a two dimensioned array. The
statemen t order of var iables placed in COMMON sta temen ts must be the
same in all chained programs using these variables.

The same variable can appear in a declaration statement and a
COMMON statement. For example:

STRING X
COMMON X, Y (1)
REAL Y(l)

You can place any number of COMMON sta temen ts in a dec lara tion
block. However, if a declaration block is used in a multiple line
function (Section 4), no COMMON statements are permitted.

3.6 Default Declarations

CB-80 provides default declarations for variables that do not
appear in an INTEGER, REAL or STRING declaration statement.
Variable names that end with a percent sign (%) default to integer
variables, while variables ending in a dollar sign ($) default to
string variables. Other variables default to real variables.

For example, CB-80 treats the variable X as a real variable,
wh ile A$ is a str ing. INTEGER, REAL, or STRING sta temen ts can
override the default declarations. The following statement declares
A$ to be an integer.

INTEGER A$

3.7 DATA Stateaents

A DATA statement is not executable but defines a list of
constants that can be assigned to variables using a READ statement.
(READ statements are explained in Section 8.) Any number of DATA
sta temen ts can occur anywhere in a program, ei ther in the
declaration group or in an executable group. However, CB-80 treats
all DATA statements, whether they occur as connective statements or
not, as one list of constants available during execution.

CON~TANT

All Information Presented Here is Proprietary to Digital Research

24

CB-80 Reference Manual 3.7 DATA Statements

The following examples show valid DATA statements:

DATA 1,2,3,4

100 DATA "APPLE", GRAPE, "ORANGE"

DATA "$$$$$", "#####", """""""""""", \
"I I II I" "\\\\\" ,

In the last example, the continuation character continues a
DATA statement to another line. However, backslashes can appear in
string constants enclosed in quotation marks.

Strings do not have to be enclosed in quotation marks, in which
case they are optionally delimi ted by commas. A field must be
terminated with a comma or the end of line character.

The following OATA statements are invalid:

DATA 12, ,13 Missing field.

DATA "ABC Missing quotation mark.

DATA 1,2 REM VALUES A REMARK not allowed here.

DATA "AB" "CD" Comma missing between strings.

DATA sta temen ts cannot appear in lines conta ining other
statements. A DATA statement cannot be part of a statement group.

Labels are optional on DATA statements. Because a DATA
statement is not executable but rather defines a list of constants
that are available during execution, the label actually addresses
the first executable statement following the DATA statement. Thus
the following example:

START.EXEC: DATA 10,20,30
PRINT X

is equivalent to:

DATA 10, 20, 30
START.EXEC: PRINT X

All Information Presented Here is Proprietary to Digital Research

25

CB-BO Reference Manual 3.B Identifier Usage

3.8 Identifier Usage

Unless its scope is different, you cannot use an identifier for
two differen t elemen ts even if the usage is not ambiguous. An
identifier used as a function name or as a label cannot be used as a
variable. In addition, the same identifier cannot be used as both a
subscripted and non-subscripted variable.

The following example is invalid:

ACCOUNT: ACCOUNT = 3

The identifier ACCOUNT cannot be used as both a label and a simple
variable. The next example is also invalid:

x = X + X (3)

The identifier X cannot be used as both a subscripted and simple
variable name.

Section 4 discusses the scope of variable names. It is
possible for the same identifier to have two different uses when the
scope of the identifiers is different.

End of Section

All Information Presented Here is Proprietary to Digital Research

26

Section 4
User Defined Functions

A function allows you to execute the same group of statements
from various points in a program. Functions can be included in the
program that references them, or they can be in separate modules.
If the functions are in separate modules, each module is compiled
and the modules are then linked together. CB-80 provides two types
of functions: user defined functions and predefined functions.
This section describes user defined functions. Section 6 describes
predefined functions.

4.1 Introduction to User Defined Functions

Functions perform operations that have limited and controlled
interaction with the remainder of the program. CB-80 supports two
types of user-defined functions: single line and mul tiple line
functions.

Both types of functions can have zero or more formal
parameters. A function contains a list of the formal parameters
that are assigned a value when the function is accessed. An actual
parameter is an expression that is passed to the function when the
function is referenced, and substitutes for a formal parameter.
(See Section 5 for a discussion of expressions.)

When a function is accessed, the number of formal and actual
parameters must agree. In addition, if the formal parameter is a
str ing, then the actual parameter must evaluate to a string
expression; if the formal parameter is numeric, the actual
parameter must be numer ic. An integer expression can be passed to a
real formal parameter, and an integer formal parameter can accept a
real actual parameter. The appropriate conversion occurs. The
implemen ta t ion can I imi t the maximum numbe r of par ameter s allowed in
a function. (See Appendix E for current implemention limits.)

All parameters in CB-80 are passed by value. This means that
the actual parameter is evaluated before the function is executed.
The value of the actual parameter is then passed to the function and
becomes the initial value for the corresponding formal parameter.
This method of passing parameters assures that changing a value of a
formal parameter does not change the value of a var iable outside the
function.

Both single line and mul tiple line functions can be elements in
an expression; a multiple line function can also be invoked through
a CALL statement. (CALL statements are explained in Section 7.6.)

All Information Presented Here is Proprietary to Digital Research

27

CB-80 Reference Manual 4.2 Single Line Functions

4.2 Single Line Functions

Single line functions evaluate an expression and return the
value of the expression. A single line function is similar to
Fortran's statement function.

ID

'-----(? ---

The ID following the reserved word DEF is the function name.
The expression following the equal sign can be any valid/expression.
If the expression is of type string, the function name must be of
type string. (Section 5 explains expressions.)

You access a single line function by using its name in an
expression. The following function calculates the average of two
integer s:

DEF AVERAGE%(A%,B%) = (A% + B%)/2

A% and B% are formal parameters. When you reference a function,
actual parameters are substituted for the formal parameters and then
the expression is evaluated.

The following sta temen t uses the single line function AVERAGE%
to determine the average of two expressions.

PRINT AVERAGE%(TEST.l% + 2,TEST.2%)

TEST .1% + 2 and TEST. 2% are the actual parameters substituted for A%
and B%.

The iden tif ier used as a function name defines the type of
value returned. The function AVERAGE% defined above returns an
integer.

DEF CONVERT (A%) = A%

This function returns a real value since CONVERT is a real
iden tif ier •

DEF CAT$(A$,B$) = A$ + B$

All Information Presented Here is Proprietary to Digital Research

28

CB-80 Reference Manual 4.2 Single Line Functions

The function CAT$ returns a string.

You canriot place the names of single line functions in a
declaration. For example, the following statements are not correct:

STRING CAT
DEF CAT(A$,B$) = A$ + B$

4.3 Mu1tiple Line Functions

Mul tiple line functions consist of a function definition
followed by a declaration block and an executable block. The FEND
statement indicates the end of a multiple line function.

Multiple line functions are equivalent to Fortran subroutines
and functions, or PL/I procedures.

ID

"-----~ ? "..--_

Section 4.5 explains EXTERNAL and PUBLIC functions. They permit
linkage with separately compiled modules.

DEF FN.NAME(F,M,L)
STRING F,M,L,FN.NAME

FN.NAME = F + " " + M + " " + L
FEND
DEF MEAN (X, Y)

MEAN = (X + Y)/2.0
FEND

All Information Presented Here is Proprietary to Digital Research

29

CB-80 Reference Manual 4.3 Multiple Line Functions

The declaration group cannot contain a COMMON statement. Array
variables can be declared but each execution of the DIM statement
results in a new array being dimensioned. Array names cannot be
passed as parameters; individual array elements can be used as
actual parameters.

The executable block can contain any CB-80 executable
statements. However, function definitions cannot be nested. A
multiple line function cannot contain another multiple line or a
single line function definition. In addition, recursive references
are not supported.

Mul tiple line functions are invoked either with a CALL
statement explained in Section 7, or by using the function as an
element in an expression. If the function is used as part of an
expression, the function returns a value. The type of the value
returned is the same as the type of the function name.

DEF A%

FEND

PRINT A%

The function A% returns an integer value. This value is the
last value you assign to the function name prior to returning from
the function. A function returns when the reserved word FEND is
reached or when a RETURN statement is executed. (Section 7.7
explains RETURN statements.)

DEF GREATER(A,B)

FEND

STRING GREATER, A, B

IF A > B THEN \
GREATER = A \

ELSE \
GREATER = B

RETURN

The function GREATER returns a string that is equal to the greater
of the two parameters. The function GREATER can also be called,
with no value being returned. But in this example, it is of little
practical value.

CALL GREATER

A RETURN statement in a function results in a return from the
most recently executed GOSUB or function reference. (See Section 7
for a discussion of the GOSUB and RETURN statements.)

All Information Presented Here is Proprietary to Digital Research

30

CB-80 Reference Manual 4.4 Scope of Variables

4.4 Scope of Variables

All formal parameters and any variables you declare in the
declaration block are local to the function. In addition, labels
defined within a multiple line function are local to that function.
This means that they are unknown or undefined outside the function.

INTEGER A,B,C,D
DEF TESTIT(A,B)

FEND

INTEGER TESTIT,C

C = A + B
D = A / B

In the program above, the function TESTIT has 3 local variables.
They are the formal parameters A and B, and the locally defined
variable C. Note that the function name TESTIT is also declared as
an integer within the function. The variables A, B, and C defined
before the function are different variables from the three local
variables A, B, C.

In the example above, the variable D is not local to the
function TESTIT. However, TESTIT accesses and changes the value of
D. A multiple line function can access and alter any variable that
is available to the main program. That is, a variable that is not
defined in a different multiple line function.

Changing D in the function TESTIT is a side effect of the
function. These side effects can often cause unexpected results.

The following example shows a function with a local label MORE
called by a program with a statement group using the same label
MORE. The two labels are different; no confusion results from
their use.

DEF LOOP(MAX)
INTEGER MAX

FEND

MORE:

MORE:
IF A < MAX THEN \

A = A + I :\
GOTO MORE

CALL LOOP
GOTO MORE

All Information Presented Here is Proprietary to Digital Research

31

CB-80 Reference Manual 4.5 Public and External Functions

4.5 Public and External Functions

Multiple line functions can be compiled separately, forming a
module. This module can be linked with another CB-80 module or a
module created by a relocatable assembler such as RMACT.M.. (RMAC is
available from Digital Research.)

Note tha t when combining modules to form a program, only one of
the modules can contain executable statements in its executable
group. The other modules must only contain multiple line functions.

A function tha t can be referenced in another module is called a
PUBLIC function.

DEF THIS.IS.A.FUNCTION PUBLIC
INTEGER THIS.IS.A.FUNCTION

PRINT "I AM A PUBLIC FUNCTION"

FEND

THIS.IS.A.FUNCTION is a public function. If a module contains
this function, and it is linked with another module, the second
module can reference THIS. IS .A.FUNCTION. The following program can
access function THIS.IS.A.FUNCTION:

DEF THIS.IS.A.FUNCTION EXTERNAL
INTEGER THIS.IS.A.FUNCTION

FEND
CALL THIS.IS.A.FUNCTION

In the example above, no code is generated for the EXTERNAL
function THIS.IS.A.FUNCTION. The compiler generates the required
information so that the linkage editor, LK-80, links the call to
function THIS.IS.A.FUNCTION with its definition in another module.

If two modules are linked together only those functions that
are public in one module and external in another are linked. Each
module can use the same name for functions that are not PUBLIC or
EXTERNAL without confusion.

Parameters can be passed to external functions in the same
manner as they are passed to a procedure defined in the same module
in which they are accessed. No type checking is performed when
parameters are passed to an external procedure. It is your
responsibility to ensure that corresponding parameters agree in
type.

DEF ADD(A,B) PUBLIC
STRING A,B,ADD

All Information Presented Here is Proprietary to Digital Research

32

CB-80 Reference Manual 4.5 Public and External Functions

. ADD = A + B
FEND

ADD is a public procedure. It can be accessed from another module
by using the following external function definition:

DEF ADD(STRl$,STR2$) EXTERNAL
STRING ADD

FEND

Note that the parameter names do not have to be the same. However,
the function names must be the same and the types of the parameters
must agree. The following is an equivalent definition:

DEF ADD(Sl,S2) EXTERNAL
STRING ADD,Sl,S2

FEND

Some linkage editors might restrict the length of external
names. (See Appendix E for current restrictions.)

4.6 Linkage With Assemb1y Language Routines

An external function does not have to be generated by another
CB-80 program. It can be an assembly language program. The only
requirement is that the assembly language program must observe the
CB-80 parameter passing conventions. All parameters are passed on
the stack. Integers and real numbers are placed on the stack
directly. In the case of strings, a pointer to the string is placed
on the stack.

Integers and strings each occupy two bytes on the stack. The
values are stored as l6-bit addresses with the low-order byte first.
Real numbers are stored as eight byte quantities. The top byte on
the stack is the exponent. The eighth byte is the most significant
byte of the mantissa. Section 2 explains the format of integer and
real numbers.

If the address corresponding to a string parameter is zero, the
string is a null string. Otherwise, the address points to the
string. The first two bytes of the string represent the length of
the string, with the high-order byte first.

If the high-order bit of the string length is a one, the string
is a temporary string. The space for temporary strings must be
released prior to returning from an assembly language function. The
method of releasing strings is machine dependent. Section 12, on
LK-80, provides information on releasing strings.

All Information Presented Here is Proprietary to Digital Research

33

"I'

CB-80 Reference Manual 4.6 Linkage with Routines

You can use the SADD function, explained in Section 6, to pass
the location of a string without having to worry about whether a
string is temporary.

End of Section

All Information Presented Here is Proprietary to Digital Research

34

Section 5
Expressions and Assignments

An expression is a combination of operands and operators that
evaluate to a single value. Operands are variables, constants, or
function references. Logical, relational, and arithmetic operators
combine operands. The value of an expression can be saved by
assigning it to a variable.

5.1 Operands

An operand is a variable, constant, function reference or an
expression enclosed in parentheses.

(E:.XPr<~~ION)

(ON5TANT

YARIABL-~

FUNGREF

Section I discusses constants. There are two types of
functions: user defined functions and predefined functions.
Section 4 discusses accessing user defined functions. Section 6
explains predefined functions.

All Information Presented Here is Proprietary to Digital Research

35

CB-BO Reference Manual 5.1 Operands

FUNCREF

This section discusses accessing variables. A variable is a
quantity that can change during program execution. Variables are
assigned values by assignment statements, explained in this section,
or by READ and INPUT statements, explained in Section B.

The value of a var iable is the last value assigned to the
variable. If no value has been assigned to a variable, the value is
undefined. Some implementations may assign initial values to
variables but this is not required. (Refer to Appendix E.)

Variables can be simple variables or subscripted variables. A
subscripted variable selects a specific element in an array and
treats the variable as a simple variable. Before an array element
can be accessed, you must use a DIM statement to allocate space for
the array.

All Information Presented Here is Proprietary to Digital Research

36

CB-80 Reference Manual 5.1 Operands

The following list shows valid variables:

x MAT(I,3)

ACCOUNT.NO SIZE%

SCREEN$(I) INDEX.MAIN%

?SPACE NAMES $ (K%)

The following variables are invalid:

3RRRRR Variable names must be identifiers.

X(-3,J) A subscript cannot be negative.

FINISH: This is a label.

STOP A reserved word cannot be a variable.

5.2 Operators

Opera tor s per form unary and binary opera tions on operands. CB-
80 provides three types of operators: logical, relational, and
arithmetic. Table 5-1 lists the precedence of operators in CB-80.

Table 5-1. Operators

Operator I General Class

(Nested parentheses)

arithmetic

*, / arithmetic

+, -, concatenation, unary + and - arithmetic

<, <=, >, >=, =, <> relational

NOT logical

AND logical

OR, XOR logical

All Information Presented Here is Proprietary to Digital Research

37

CB-80 Reference Manual 5.2 Operators

A higher precedence operator is evaluated before a lower
precedence operator. If two operators are of equal priority, they
are evaluated left to right. For example the expression:

x + Y * Z

is evaluated by first multiplying Y by Z and then adding the result
to X. This is because multiplication (*) has a higher precedence
than addition (+).

In the next expression, the division is performed first because
multiplication and division are of equal precedence.

x / Y * Z

Note: you can alter the order of evaluation by using parentheses.

If the type of two operands differs, CB-80 requires conversion
to a common type. The following table lists the rules for
converting operands. For example, if the operand on the left is an
integer and the operand on the right is real, the integer is
converted to a real value.

Left
Operand

REAL

INTEGER

STRING

REAL

NO CONV

REAL

ERROR

Right Operand

INTEGER STRING

REAL ERROR

NO CONV ERROR

ERROR NO CONV

NO CONV indicates that no conversion is required; ERROR indicates
tha toper ands of those types cannot be used together. An a ttempt to
combine these types of operands results in a compiler error.

Concatenation (+) combines or adds together two strings. It is
the only arithmetic operator that can be used with strings.

5.2.1 Logica1 Operators

CB-80 provides logical operators AND, OR, XOR, and NOT. NOT is
a unary operator; the others are binary operators. All logical
operators require numeric operands. All logical operators treat an
operand as a 16-bit binary quantity. If the type of an operand is
real, it is converted to an integer prior to performing the logical
operator.

All Information Presented Here is Proprietary to Digital Research

38

CB-80 Reference Manual 5.2 Opera tors

The logical OR and XOR operators require two operands and
perform a bitwise OR or XOR operation on the operands. The tables
below define the OR and XOR operators:

OR

o

1

o

o

1

1

1

1 ·

XOR

o

1

o

o

1

1

1

o

You can use the OR operator to "turn on" or set bits in an
integer variable. For example:

FLAG% OR 700H

ensures that bits 9 through 11 are a 1 (on). The least significant
bit is bit 0 and the most significant bit is bit 15.

The logical AND operator requires two operands and performs a
bitwise AND operation on the operands. The table below defines the
AND operator.

AND o 1

o o o

1 o 1

All Information Presented Here is Proprietary to Digital Research

39

CB-80 Reference Manual 5.2 Operators

LTS<M

LTERM

The AND operator can "turn off" bits in an integer. For
example:

FLAG% AND 80FFH

ensures that bits 9 through 14 are 0 (off).

The logical NOT operator requires one operand. The NOT
operator inverts each bit of the operand. This results in the lis
complement of the operand.

The syntax diagram for the NOT operator is shown as part of the
syntax diagram for relational operators.

5.2.2 Relationa1 Operators

CB-80 has six postfix relational operators that appear in the
table below. Relational operators compare two operands and produce
an integer result. If the relationship is true, the result is a
negative one (alII bits), otherwise it is a zero.

Table 5-2. Relational Operators

OPERATOR I RELATION

< LESS THAN

<= LESS THAN.OR EQUAL

> GREATER THAN

>= GREATER THAN OR EQUAL

= EQUAL

<> NOT EQUAL

All Information Presented Here is Proprietary to Digital Research

40

CB-80 Reference Manual 5.2 Operators

The value resulting from a relational operator is either true
(the relationship holds), or false (the relationship does not hold) •
True is a value of OFFFFH, and false is zero. This ensures that not
true is false.

Expressions containing relational operators are most frequently
used with WHILE loops and IF sta tements. (See Section 7 for a
description of the IF and WHILE statements.)

The operands must both be numeric or of type string. If one
operand is real and the other is an integer, the integer is
converted to a real value before performing the comparison.

The following examples show relational operators with real,
str ing, and integer operands. In each case, the resul t of the
operation is an integer value. In the final example, INDEX% is
converted to a real value before the comparison is performed.

A < B

ANSWER$ = "STOP"

(1% <= J%) OR (X > Y)

INDEX% <> ANGLE

The following expressions show invalid uses of relational
operators:

A$ < B%

1% >< B%

X NOT = Y

Cannot compare a string and an integer.

Not a valid relational operator.

Invalid syntax (use <».

All Information Presented Here is Proprietary to Digital Research

41

CB-80 Reference Manual 5.2 Opera tors

5.2.3 Arithaetic Operators

CB-80 provides five arithmetic operators: addition,
subtraction, multiplication, division, and exponentiation. Addition
and subtraction can be used as unary or binary opera tors; the
others can only be used as infix operators.

Addition and subtraction can be performed on both integer and
real operands. If one operand is real and the other is an integer,
the integer is converted to a real value prior to performing the
operation. The binary operator for addition (+) concatenates
strings.

AFA£:..lOR..

Multiplication and division can be performed on both integer
and real operands. If one operand is real and the other an integer,
the integer is converted to a real value prior to the multiplication
or division.

ATERM

A1ERM

Exponentiation, the final arithmet'ic operator, is also
performed on both integer and real operands. The first operand is
raised to the power represented by the second operand. If one
operand is real and the other is an integer, the integer is
converted to a real value prior to performing the exponentiation.

All Information Presented Here is Proprietary to Digital Research

42

CB-80 Reference Manual 5.2 Operators

A negative real value cannot be raised to a power. An
execution error occurs if the operand on the left of the operator is
negative.

5.2.4 Expression Overflow

It is possible for some arithmetic operators to overflow the
maximum magnitude permitted for the type of operand involved. If
the operands are integers, overflow is ignored. If the operands are
real values, an execution error occurs when overflow is detected.
In the following example, the addition overflows the maximum
magnitude of 32767 allowed for integer values.

INTEGER X,Y,Z

x = 30000
Y = 30000
z = X + Y

String overflow also causes an execution error. For example,
if two str ings, each with a length of 20,000 characters, are
concatenated, the new string has to be 40,000 characters long. This
is g rea ter than the maximum str ing length and resul ts in an
execution error.

Division of a real value by zero results in an execution error,
but division of an integer by 0 produces an undefined result.

Overflow of integer calculations is not required to be checked
because of the substantial reduction in performance that results on
a-bi t microprocessors when such checks are made. A particular
implementation might check for these conditions.

All Information Presented Here is Proprietary to Digital Research

43

CB-80 Reference Manual 5.3 Assignment Statements

5.3 Assignment Statements

The assignment sta tement sets a var iable equal to the value of
an expression.

VAl<: I Ae>L-e.

The value of the expression is assigned to the variable at the
left of the equal sign (=).

LET X = Y + X

LET A$(I,J) = B$ + C$

The reserved word LET is optional; normally it is not used, as in
the following example.

X = A + 1.0

If the type of the variable on the left of the equal sign is a
string, the expression on the right must evaluate to a string. When
the variable is numeric, the expression must also be numeric. The
expression is converted to the type of the variable, either integer
or real, as shown in the following example.

A$ = B$ + C$(I%)

LET X = W * Y + 1.0

I% = X

The last expression above causes the var iable X to be converted
to an integer, and then assigned to the variable I%. If a real
value is greater than the maximum magnitude of integers, the result
of the conversion is undefined.

The following assignment statements 'are invalid:

A$ = X + 1

X,Y = A + 1

Numeric expressions cannot be assigned
to a string variable.

Only one variable is allowed on the left of
the equal sign.

All Information Presented Here is Proprietary to Digital Research

44

CB-80 Reference Manual 5.3 Assignment Statements

5.4 Evaluation of Expressions

Expressions are evaluated so that the hierarchy of operators is
preserved and that normal algebraic properties (such as
commutativity) are retained.

x + Y and Y + X

These expression always evalua te to the same value (assuming X and Y
are var iables and not functions). You can use parentheses to
control the order of evaluation.

X * (Y + Z)

The expression above performs the addition of Y and Z pr ior to
multiplying by X. But the expression:

X * Y + Z

performs the multiplication first.

To provide the maximum opportunity for optimization, no other
order of evaluation is implied. In particular, if operations are
commutative, CB-80 might use this property to rearrange the
expression. This might result in two different implementations
giving different values to the same expression. Normally, side
effects resulting from the evaluation of functions cause this. In
the following example, setting W equal to 2 in the function X causes
Y and Z to have different values.

DEF X

W = 2
X = 4

FEND

W = 1
Y = A + X + W
Z = A + W + X

Note: you can combine operators into complex expressions; however,
for any implementation, there is a limit on the complexity of
expressions. This should not affect most programs. If a compiler
error occurs because an expression is too complex, break the
expression into two expressions.

The following list shows valid expressions:

AMOUNT * (QTY.ONHAND + QTY.ONORDER)

All Information Presented Here is Proprietary to Digital Research

45

CB-80 Reference Manual 5.4 Evaluation of Expressions

((I 2" 2) * R2 * (1. 0 - S» I 746. 0

(CINDEX = 2) OR (CINDEX = 5) OR (CINDEX = 6)

I + SIN(X<Y) OR B/C

(((«X + Y»»)

The following expressions are invalid:

X + A$ Invalid operands (string and real).

I% - J% K% Operator missing between J% and K%.

- A$ Unary minus not allowed with string operand.

(X * Y» Parentheses are not matched.

5.5 Mixed Mode Expressions

Mixed mode expressions are expressions in which a binary
operator has an integer and a real operand. In general, mixed mode
expressions generate more code and execute more slowly than
expressions that do not use mixed mode.

The following assignment has a mixed mode expression.

A = X + Y%

The operand X is real, and the operand Y% is an integer. The
expression:

X = X + 2

is also mixed mode since the constant 2 is an integer constant. If
the expression is written as:

X = X + 2.0

it is not mixed mode. These last two examples are an exception to
the rule that mixed mode generates more code. In these examples,
the first expression generates less code than the second one because
the real constant (2.0) takes eight bytes. to store.

End of Section

All Information Presented Here is Proprietary to Digital Research

46

Section 6
Predefined Functions

Section 6 describes numeric, string, and other miscellaneous
predefined functions. A predefined function returns a value tha t is
used as an operand in an expression. The type of the actual
parameters must match the usual convention that integer and real
values can be used interchangeably.

In this section, an X parameter represents a real numeric
expression. Ii represents an integer expression, and an A$
represents a string expression.

6.1 Nu.eric Functions

Numer ic functions
tr igonometr ic functions.
numeric function.

6.1.1 The ADS Function

ASS (X)

calculate commonly used ar ithmetic and
The following sections descr ibe each

The ABS function returns the absolute value of the argument X.
The argument must be numeric and is converted to a real value if it
is an integer. ASS returns a real value.

6.1.2 The ATN Function

ATN (X)

The ATN function returns the arc-tangent or inverse-tangent of
the argument X. The argument must be numeric and is converted to a
real value if it is an integer. ATN returns a real value.

The ATN function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.3 The COS Function

COS (X)

The COS function returns the cosine of the argument. The
argument must be numeric and is converted to a real value if it is
an integer. The COS function returns a real value.

All Information Presented Here is Proprietary to Digital Research

47

CB-80 Reference Manual 6.1 Numeric Functions

The COS function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.4 The EXP Function

EXP (X)

The EXP function returns the irra tional constan t "e" ra ised to
the power of the argument. The argument must be numeric and is
converted to a real value if it is an integer. EXP returns a real
value.

The EXP function is calculated using Chebyshev polynomials for
maximum accuracy.

6.1.5 The FLOAT Function

FLOAT(%)

The FLOAT function returns a real value equivalent to the
integer argument. The argument must be numer ic and is converted to
an integer if it is a real value.

6.1.6 The IRT and IRT' Functions

INT (X)

INT%(X)

The INT and INT% functions convert their arguments to whole
numbers. The argument must be numeric and is converted to a real
value if it is an integer. Both functions trunca te the argumen t to
a whole number.

The INT function returns a real value, while the INT% function
returns an integer value.

6.1.7 The LOG Function

LOG (X)

The LOG function returns the natural, or Naper ian , logarithm of
the argument. The argument must be numer~c and is converted to a
real value if it is an integer. LOG returns a real value.

The LOG function is calculated using Chebyshev polynomials for
maximum accuracy.

All Information Presented Here is Proprietary to Digital Research

48

CB-80 Reference Manual 6.1 Numeric Functions

6.1.8 The MOD Function

MOD(I%,J%)

The MOD function returns the remainder after dividing the first
parameter by the second parameter. Both arguments must be numeric
and are converted to integer values if either is a real value. MOD
returns an integer value.

6.1.9 The SGB Function

SGN (X)

The SGN function returns an integer value that represents the
algebraic sign of the argument. SGN returns a -1 if the argument is
negative, 0 if it is 0, and a positive 1 if the argument is
positive.

The argument must be numeric and is converted to a real value
if it is an integer.

6.1.10 The SIR Function

SIN (X)

The SIN function returns the sine of the argument. The
argument must be numeric and is converted to a real value if it is
an integer. SIN returns a real ,value.

The SIN function is calculated using Chebyshev polynomials for
maximum accuracy. The argument X is expressed in radians.

6.1.11 The SQR Function

SQR (X)

The SQR function returns the square root of the argument. The
argument must be a numeric value and is converted to a real value if
it is an integer. If the argument is negative, an execution error
occurs. SQR returns a real value.

The SQR function is calculated using Newton's method.

6.1.12 The TAR Function

TAN (X) = SIN(X)/COS(X)

The TAN function is calculated using the identity above. The
function returns the tangent of the argument. The argument must be
numeric and is converted to a real value if it is an integer. TAN
returns a real value.

All Information Presented Here is Proprietary to Digital Research

49

CB-80 Reference Manual 6.1 Numeric Functions

The argument X is expressed in radians.

6.2 String Functions

This section describes string functions.

6.2.1 The ABC Function

ASC (A$)

The ASC function returns the ASCII numeric value of the first
character of the string argument. The value returned is an integer.

6.2.2 The CBR$ Punction

CHR$(I%)

The CHR$ function returns a one character string that is the
ASCII character represen ted by the value of the argumen t modulo 256.
The argument must be numeric; if it is a real value, it is
converted to an integer.

6.2.3 The LEFT$ Function

LEFT$(A$,LEN%)

The LEFT$ function returns a str ing tha t includes the left most
characters of the first argument. The length of the string returned
is the lesser of the length of the first argument and the value of
the second argument.

The second argument must be numeric; if it is a real value, it
is converted to an integer. A null string is returned if the second
argument is zero. An execution error occurs if the second argument
is negative.

LEFT$ (" ABC" , 2) re turns "AB"

If the second argument is longer than the length of the first
argument, the first argument is returned.

LEFT$ ("ABC" , 5) returns "ABC"

All Information Presented Here is Proprietary to Digital Research

50

CB-80 Reference Manual 6.2 String Functions

6.2.4 The LEN Function

LEN (A$)

The LEN function returns the length of the string argument.
Zero is returned if the argument is a null string.

6.2.5 The MATCH Function

MATCH (PATTERN$,TARGET$,I%)

The MATCH function has three arguments: a pattern string, a
target string, and a numeric value. The MATCH function returns the
position of the first occurrence of the pattern string in the target
string or zero if no match is found. Searching starts at the
position in the target string determined by the third parameter.

If the third parameter is real, it is converted to an integer.
An execut ion er ror occurs if the third parameter is zero or
negative.

A zero is returned if either the pattern string or the target
string is a null string. The MATCH function provides special
pattern characters for matching different classes of characters.
The following table provides a list of these characters.

Table 6-1. Pattern Characters

Pattern I Corresponding Class of Characters

any digit

any lower-case or upper-case letter

? any character

For example:

MATCH ("ii", "ABClA123" ,1) returns a 6

MATCH ("ii", "ABClA123", 7) returns a 7

MATCH("?!i","3 people are in Al",l) returns a 16

Note: the preceding special definitions are ignored if a backslash
(\) precedes a character in the pattern string and the next
cha r ac ter is ai, !, or ? The backslash is an escape tha t
overrides the special pattern matching characters. Thus,

MATCH ("ABC\i" , "12ABCi" ,1) returns a 3

All Information Presented Here is Proprietary to Digital Research

51

CB-80 Reference Manual 6.2 String Functions

but

MATCH ("ABC#","12ABC#",I) returns a O.

6.2.6 The MID$ Function

MID$(A$,START%,LEN%)

The MID$ function returns a string that is a segment of the
first argument. The segment starts with the character position
represen ted by the second argumen t. The third argumen t is the
length of the segment •.

The second and third argumen ts must be numer ic. They are
converted to integers if they are real. A null string is returned
if the third argument is zero.

MID$("ABCD",2,2) returns "BC"

An execution error occurs if the second argument is zero or
negative, or if the third argument is negative.

A null string is returned if the second argument is greater
than the length of the first argument. The following example
returns a null string.

MID$("ABCD",5,3)

6.2.7 The RIGHT$ Punction

RIGHT$ (A$, LEN%)

The RIGHT$ function returns a string that includes the right
most characters of the first argument. The length of the string
returned is the lesser· of the length of the first argument and the
value of the second argument.

The second argument must be numeric; it is converted to an
integer if it is a real value. A null string is returned if the
second argument is zero. An execution error occurs if the second
argument is negative.

RIGHT$ ("ABC" ,2) returns "BC"

The first argument is returned if the second argument is longer
than the length of the first argument.

RIGHT$ ("ABC" , 5) returns "ABC"

All Information Presented Here is Proprietary to Digital Research

52

CB-80 Reference Manual 6.2 String Functions

6.2.8 The STB$ Function

STR$ (X)

The STR$ function converts the numeric argument to a string
tha t is an ASCII represen ta tion of the number. The argumen t must be
numeric; if it is an integer, it is converted to a real value.

The number is converted to a string just as unformatted output
is printed to the conso'le. The only difference between the string
returned by STR$ and the string printed to the console is that STR$
removes all blanks from the number.

6.2.9 The UCASE$ Function

UCASE$(A$)

The UCASE$ function returns a string in which the lower-case
characters in the argument have been translated to upper-case.
Other characters are not altered.

The argumen t remains unchanged unless it is set equal to
UCASE$(A$).

A$ = UCASE$(A$)

The example above alters the argument A$ but the following
assignment does not change A$.

B$ = UCASE$ (A$)

6.2.10 The VAL Function

VAL (A$)

The VAL function converts the argument into a floating point
number. Conversion is identical to that used to input characters
from the console.

Zero is returned if the argument is a null string.

6.3 Miscellaneous Functions

This section descr ibes miscellaneous support functions, such as
error handling and memory allocation.

All Information Presented Here is Proprietary to Digital Research

53

CB-80 Reference Manual 6.3 Miscellaneous Functions

6.3.1 The COMMARD$ Function

COMMAND$

The COMMAND$ function returns a string equal to the command
line that was used when the program was executed. The command line
does not contain the name of the executed program and has leading
blanks removed. All lower-case letters are translated to upper­
case.

Some operating systems might require that COMMANDS$ be
implemented differently.

6.3.2 The ERR Function

ERR

The ERR function returns a two character string equal to the
last execution error that occurred. The ERR function returns a null
string if no error has occurred. Appendix D lists the possible
execution error codes.

Use the ERR function in conjunction with the ON ERROR statement
explained in Section 7.

6.3.3 The ERRL Function

ERRL

The ERRL function returns the line number of the last physical
source line executed. The ERRL function returns an integer value.

The source program must be compiled with the N toggle,
otherwise a zero is always returned.

IF ERR="FR" AND ERRL=256 THEN\

GOTO FDEL

6.3.4 The PRE Function

FRE

The FRE function returns a binary value that is the total
amount of unallocated or free dynamic memory space. When FRE
returns a negative value, it represents a large positive number.

When you use the FRE function, you must ensure that "negative"
values are interpreted correctly. In general, if FRE returns a
negative value, there is ample space remaining in dynamic memory
space. Use the following sta temen t to det~rmine tha t dynamic memory
is at a low level.

All Information Presented Here is Proprietary to Digital Research

54

CB-80 Reference Manual 6.3 Miscellaneous Functions

IF (FRE > 0) and (FRE < MIN.MEMORY%) THEN \
CALL LOW • MEMORY • WARNING

This also applies to the MFRE function descr ibed in the next
section.

6.3.5 The MFRE Function

MFRE

The MFRE function returns an integer value that is the largest
contiguous area of dynamic memory that is available. The value that
MFRE returns is always less than or equal to FRE.

6.3.6 The SADD Function

SADD (A$)

The SADD function returns an integer value that is the address
of the string argument. The address returned is a 16-bit quantity
ranging from 0 to 65535. A zero value means that the argument is a
null string. A null string can also have a zero length.

The SADD function does not accept an expression as an argument.

6.3.7 The VARPTR Function

VARPTR«VARIABLE»

The VARPTR function returns an integer value tha t is the
permanent storage space assigned to the argument. The argument can
be an integer, real, or string variable.

The VARPTR function accepts the following arguments:

Name of a simple variable

Name of a subscripted variable

Element of an array

VARPTR (X)

DIM A$ (10)
VARPTR(A$)

VARPTR (I % (2))

VARPTR does not accept an expression as an argument.

End of Section

All Information Presented Here is Proprietary to Digital Research

55

Section 7
Flow of Control Statements

Normally, program sta temen ts are executed in the order they
occur in the program. This section describes statements that alter
this execution sequenae.

7 .1 GO'l'O S tel teaen ts

The GOTO statement transfers execution to a statement label
specified in the GOTO statement. The label referenced must be
defined within the program but need not be defined before it is used
in the GOTO statement.

If the GOTO statement is part of the executable group of a
multiple line function, then the referenced label must be contained
within that function. Likewise, a GOTO statement outside a function
cmnot refer to a label within the body of the function. In other
words, a label within a function is local to that function: its
existence is unknown outside the function.

As explained in Section 2, a colon is not part of a reference
to an alphanumeric label. The following example shows both the
label ENDLESS (with the colon) and a reference to ENDLESS.

ENDLESS: GOTO ENDLESS

If the label referenced in a GOTO statement is not part of an
executable statement, the next executable statement after the label
is executed. In the following example, the REM statement is not an
executable statement. Thus, execution of the GOTO 100 results in
the execution of the PRINT sta temen t.

100 REM THIS IS NOT EXECUTED
PRINT X
GOTO 100

All Information Presented Here is Proprietary to Digital Research

57

CB-80 Reference Manual 7.1 Flow of Control statements

The following examples show valid GOTO statements:

GOTO 100

GOTO START. OVER

GOTO 100E-Ol

The following GOTO statements are invalid:

GOTO BEGIN: The colon is not part of the label referenced.

GOTO OFFFFH The hexadecimal constants cannot be labels.

GOTO STOP A reserved word cannot be a label.

7.2 IF State.ents

An IF sta temen t allows for the conditional execution of one of
two statement groups. The second statement group can be omitted
allowing the conditional execution of one statement group.

IF(.ON" R 6TA1};:M6.NT 6TA,-g.M~T

The syntax diagram for RSTATEMENT is shown below.

.. -~ IFCOND ~ R 6 TA1E.MENT ~r& R.6 TAlEMENT
~

b6TAT~M~T

. .

All Information Presented Here is Proprietary to Digital Research

58

CB-80 Reference Manual 7.2 IF Sta temen ts

The syntax diagram for an IFCOND is shown below.

The expression following the reserved word IF must be a numeric
expression. The expression is a "logical expression", having
either a true or false value. The expression is false if the value
of the expression is zero (0); any other value is true.

The first statement group is executed when the logical
expression is true. For example:

A = 2
B = 3
IF A < B THEN \

PRINT "FIRST GROUP EXECUTED" \
ELSE \

PRINT "SECOND GROUP EXECUTED"

In this example, "FIRST GROUP EXECUTED" is pr inted because the value
of A is less than the value of B. If the expression is false,
"SECOND GROUP EXECUTED" is printed.

A statement group can contain any executable statement except a
function definition. Statement groups can contain any number of
sta temen ts. Use the colon (:) to group sta temen ts together. As
shown below, the continuation character (\) allows one statement
group to be written over many lines.

IF PAGE.BREAK% THEN \
PRINT FORM.FEED$:\
PRINT HEADER$:\
PAGE.NO% = PAGE.NO% + I :\
LINE.NO% = 1

IF statements can be nested.

IF MORE. MASTER THEN \
IF CURR.REC = M.REC THEN \

IF MORE. TRANSACTION THEN \
PRINT PROCESS.TRANSACTION

All Information Presented Here is Proprietary to Digital Research

59

CB-80 Reference Manual 7 • 2 IF S ta temen ts

In some cases, you must use empty or null statements to force
the proper pairing of the "IF" statement group with the ELSE
sta temen t group.

IF I < J THEN \FIRST IF
IF A = B THEN \SECOND IF

IF MORE THEN \THIRD IF
J + J + 1 \

ELSE \THIS ELSE MATCHES THIRD IF
1=1+'1\

ELSE \THIS ELSE MATCHES SECOND IF
ELSE \THIS ELSE MATCHES FIRST IF

J = J + 1

An ELSE matches the "nearest" IF, as shown in this example:

IF I < J THEN \FIRST IF
IF K > L THEN \SECOND IF

X = 3 \
ELSE \THIS ELSE MATCHES SECOND IF

Y = 2

The following IF statements are invalid.

IF A$ THEN GOTO 10

IF A < B PRINT X

7 • 3 .oR Loops

The expression must be numeric.

THEN is missing.

FOR loops are one of two looping constructs that CB-80
provides. (See Section 7.4 for a discussion of WHILE loops.) A FOR
loop consists of a FOR loop header, a statement group, and a NEXT
statement. The FOR loop executes the statements in a statement
group zero or more times depending on the values in the FOR loop
header.

All Information Presented Here is Proprietary to Digital Research

60

CB-80 Reference Manual

6TMT
~p

7 .3 FOR Loops

On each iteration through the loop, the index is incremented by
the value of the step expression. If the step expression is
omitted, the index is incremented a value of 1 (the default value).
The general form of a FOR loop header is shown below.

FOR index = <initial exp> TO <final exp> STEP <step exp>

The index must be an unsubscripted numeric variable. The type
of the FOR loop, either integer or real, is the type of the index.
Each of the three expressions are converted to the type of the loop.
If the index of a FOR loop is an integer, the initial, final, and
step expressions are converted to integers providing any of them are
real expressions.

If the FOR loop index is real, any integer expressions are
converted to real values, as in the following example. Because the
index X is real, the final value J% is converted to a real value.
The step, which in this example defaults to 1, becomes the real
constant 1.0.

FOR X = 1 TO J%

Programs that use integer indexes and in which the initial,
final, and step expressions are integers execute much faster and
generate less code than FOR LOOPs with real indexes. In the
following FOR LOOP header, no conversion is required because the
index and final expressions are both integers.

FOR 1% = 1 TO J%

All Information Presented Here is Proprietary to Digital Research

61

CB-SO Reference Manual 7.3 FOR Loops

The following sample program demonstrates the logic used to
execute FOR loops.

index = <initial exp>
GOTO loop.end
loop. head:

[FOR loop statement group]

index = index·+ <step exp>
loop. end:

if <step exp> < 0 then \
if index >= <final exp> then \

GOTO loop. head \
else \

else \
if index <= <final exp> then \

GOTO loop. head \
else

[continue execution with statement following NEXT]

As the preceding sample program shows, loop termination is
based on the sign of the step expression. If the step is positive,
then the loop body executes as long as the index is less than or
equal to the final expression.

FOR I = J TO K STEP 1

NEXT I

~he FOR loop statement group above executes K - J + 1 times. If J
is greater than K, the loop body is not executed at all.

If the STEP expression is negative, the FOR loop statement
group executes as long as the index is greater than or equal to the
final expression.

FOR I = -5 TO -10 STEP -1

NEXT I

This loop executes 6 times, with I being assigned values of -5, -6,
-7, -S, -9, and -10.

All Information Presented Here is Proprietary to Digital Research

62

CB-80 Reference Manual 7.3 FOR Loops

On each iteration of the FOR loop, the final and step
expressions are reevaluated. The index can be changed within the
loop. You can also use the GOTO statement to enter or exit the
loop.

If the NEXT statement is followed by an identifier, the
identifier must be the same as the index of the loop that the NEXT
statement is terminating. The following FOR loops are equivalent:

FOR J = 2 TO K STEP 5 FOR J = 2 TO K STEP 5

NEXT NEXT J

FOR loops can contain any executable statements including
another FOR loop.

FOR 1% = 1 TO N%
FOR J% = 1 TO M%

A(I%,J%) = B(I%,J%) + C(I%,J%)
NEXT J%

NEXT I%

CB-80 does not limit the depth of nesting of FOR loops.
However, in a specific implementation, memory constraints during
compilation might result in a limit being placed on the number of
nested FOR loops. (Refer to Appendix E for specific limits.)

The following FOR LOOPS are invalid:

FOR 1%(1) = 1 TO N
NEXT 1% (1)

FOR J = K TO L STEP M
NEXT K

FOR I = 1 STEP 3
NEXT

7.4 WHILE LOOps

The index must be a simple variable.

The NEXT identifier must match index.

The reserved word TO and the final
value expression are missing.

WHILE loops are the second type of looping structure CB-80
provides. A WHILE loop consists of a WHILE loop header, a statement
group and a WEND statement. The WHILE loop executes the statements
in a statement group zero or more times depending on the value of
the WHILE loop header expression.

All Information Presented Here is Proprietary to Digital Research

63

CB-80 Reference Manual 7.4 WHILE Loops

The expression must be numeric. As with the IF sta tement, the
WHILE loop expression is treated as a logical expression. If the
expression evaluates to zero, the statement following the WEND is
executed. The sta temen ts in the sta temen t group are executed if the
value of the expression is other than zero. The expression is
evaluated prior to each execution of the statement group.

The following sample program demonstrates the logic used to
execute WHILE loops.

GOTO loop.end
loop. head:

[executable group]

loop.end:
if <expression> <> 0 then

GOTO loop. head

[continue execution with statement following WEND]

The following loop executes indefinitely because the expression is
always true.

INTEGER TRUE
TRUE = -1

WHILE TRUE

WEND

You can en te r a WHI LE loop by branch ing to an y sta temen t wi th in
the sta temen t group. However normal practice is to en ter WHILE
loops at the loop header.

All Information Presented Here is Proprietary to Digital Research

64

CB-80 Reference Manual 7.4 WHILE Loops

The following WHILE LOOPS are invalid:

WHILE
WEND

WHILE A$
WEND

WHILE A%
DEF A
FEND

WEND

7 • 5 GOSOS S ta telDen ts

The expression is missing.

The expression must be numeric.

The statement group in a while
loop must not contain a function
definition.

The GOSUB statement transfers statement execution to a
statement specified by a reference to a label. The address of the
sta temen t following the GOSUB sta temen t is saved on a Last-In-First­
Out (LIFO) stack so that statement execution can continue with (or
return to) the statement following the GOSUB.

The label must be defined within the program but need not be
defined prior to its use in the GOSUB statement. If the GOSUB
statement is part of the statement group of a multiple line
function, then the label must also be part of tha t sta temen t group.
Likewise, a GOSUB statement outside of a given function cannot refer
to a label within the body of the function.

If the label is not part of an executable statement, the next
executable statement after the label is executed.

GOSUB 100

GOSUB PROCESS.ONE.RECORD

Use the RETURN statement, described later in Section 7.7, in
conjunction with the GOSUB statement to continue with the statement
following the GOSUB.

All Information Presented Here is Proprietary to Digital Research

65

CB-80 Reference Manual 7.5 GOSUB Statements

The following list contains invalid GOSUB statements:

GOSUB GET. RECORD: Colon isn,t t in a reference to a label.

GOSUB OIOIB Binary constants cannot be labels.

GOSUB NEXT A reserved word cannot be a label.

7.6 CALL Statements

CALL sta temen ts pass actual parameter s to a mul tiple line
function and then execute the function. The address of the
statement following the CALL statement is saved on a Last-In-First­
Out (LIFO) stack. So, statement execution can continue with (or
return to) the statement following the CALL. A RETURN statement or
a FEND statement returns execution to the statement following the
CALL.

~XP~~6'ON

The number of parameters the CALL statement passes must be the
same as the number of formal parameters in the definition of the
multiple line function. When the formal parameter is a string, the
actual parameter must be a string. However, numeric parameters are
converted from integer to real (or real to integer) as necessary.

CALL FN.GET.RECORD
CALL GET.REC(FILE.NM$,REC.NO%,AMOUNT)

The following list contains invalid CALL statements:

CALL PRINT(REC.NO%) Reserved word cannot be function name.

CALL FN.A X,Y Parameters must be enclosed in
parentheses.

All Information Presented Here is Proprietary to Digital Research

66

CB-80 Reference Manual

DEF F(A)
FEND
CALL F(X,Y)

DEF F (A$)

FEND
CALL F(X)

7.6 CALL Sta temen ts

An incorrect number of parameters in CALL.

A numeric value cannot be passed to a
string formal parameter.

The multiple line function referenced in a CALL statement must
be de fined before it is used in a CALL sta temen t. Use the DEF
statement to define a function (see Section 4).

A CALL statement cannot call a single line function or a
program label.

7.7 RETURR Statements

RETURN sta temen ts return the program to the sta temen t following
the last CALL statement, function reference or GOSUB statement. The
statement returned to is the last address placed on the LIFO stack
by a GOSUB or CALL statement or by a function reference.

If the RETURN statement is returning from a GOSUB or CALL
sta temen t, execution continues wi th the sta temen t following the
GOSUB or CALL, but a value is not passed back.

In the following example, the GOSUB statement transfers control
to the label ROUTINE: and saves the address of the next statement,
in this case the assignment to X. After the RETURN statement
executes, the assignment, X=3, 'executes.

ROUTINE:
Y=2
Z=30

RETURN

GOSUB ROUTINE
X = 3

All Information Presented Here is Proprietary to Digital Research

67

CB-80 Reference Manual 7 • 7 RETURN S ta temen ts

If the RETURN statement is returning from a function reference,
the last value assigned to the function name is returned to the
expression that referenced the function. In the following example,
the function ADD. THEM returns a value and assigns it to the var iable
x.

DEF ADD.THEM(A,B)
INTEGER A,B,ADD.THEM

FEND

ADD.THEM = A + B
RETURN

x = ADD.THEM(23,56)

If more RETURN statements execute than there are addresses on
the LIFO stack, the results are undefined and an execution error
does not occur.

7.8 OR statements

ON statements transfer execution to one of a number of labels.
Control can be passed using a GOTO statement or a GOSUB statement.

~XPR~5510N

The ON statement is similar to the computed GOTO statement in
FORTRAN. The expression is evaluated and is used as an index to
select one of the labels in the list. The expression must be
numeric; a real expression is converted to an integer.

The ON statement must have at least one label in the list;
there is no limit on the maximum number of labels in an ON
sta temen t.

If the expression evaluates to 1, the first label is selected;
if it evaluates to 2, the second label is selected, and so forth.
In the following example, the value of I is 3 so control passes to
LABEL3 where the PRINT statement prints the number 3. Since the ON

All Information Presented Here is Proprietary to Digital Research

68

CB-80 Reference Manual 7.8 ON Sta temen ts

statement was an ON ••• GOTO, no return value is retained.

1=3
ON I GOTO LABELl,LABEL2,LABEL3

LABELl:
PRINT 1
STOP

LABEL2: .
PRINT 2
STOP

LABEL3 :
PRINT 3
STOP

The labels in an ON statement need not be defined before they
are referenced in the ON sta temen t and they can be in any order in
the program. The next example shows an ON statement with one label
before and one following it.

20 PRINT 1

ON I GOTO 10, 20
10 PRINT 2

If the ON statement was an ON ••• GOSUB, control can be
returned to the statement following the ON statement by executing a
RETURN s ta temen t •

I = 2
ON I GOSUB LABELl,LABEL2,LABEL3

STOP

LABELl:
PRINT 1
RETURN

LABEL2:
PRINT 2
RETURN

LABEL3 :
PRINT 3
RETURN

In the preced ing example, the second label, LABEL 2 , is
selected. When the RETURN statement is executed, control transfers
to the STOP statement which is the next statement following the ON

All Information Presented Here is Proprietary to Digital Research

69

CB-80 Reference Manual 7.8 ON Sta temen ts

GOSUB.

If the index is less than one or greater than the number of
labels in the list, the results are undefined. No execution error
occurs. Therefore you should always test the index value before
executing an ON sta temen t.

The following ON statements are invalid:

ON I GOTO 100 200

ON B$ GOSUB 12, 23

ON K-l 10, 20

7.9 OR ERROR Statements

Comma is missing between labels.

Expression must be numeric.

GOTO or GOSUB is missing.

The ON ERROR statement traps execution errors allowing the
program to process them. The ON ERROR statement is an executable
statement that must be executed prior to trapping errors.

--~~ _L_A_6_Et...-_ t----.~

When an execution error occurs and the program has executed an
ON ERROR statement, execution continues at the first executable
statement following the label referenced in the ON ERROR statement.
In the following example, if an error occurs after the ON ERROR
statement has been executed, the program continues execution at
PROCESS.ERROR.

ON ERROR GOTO PROCESS • ERROR
PROCESS.ERROR:

When an error occurs, the execution stack is reset. This means
that any return addresses are lost. For this reason, an ON ERROR
statement must not be used in the statement group of a multiple line
function.

If a program contains multiple ON ERROR statements, the last ON
ERROR statement executed determines the label that is branched to.

All Information Presented Here is Proprietary to Digital Research

70

CB-80 Reference Manual 7.9 ON ERROR Statements

The ON ERROR statement is normally used in conjunction with the
ERR and ERRL functions explained in Section 6.

The following list contains invalid ON ERROR statements:

ON ERROR 100 Reserved word GOTO is missing.

ON ERROR GOSUB ERRQ GOTO is required in place of GOSUB.

7.10 S~OP Stateaents

The STOP sta tement terminates execution of a program. Control
returns to the operating system.

Prior to returning to the operating system, any open files are
closed.

7.11 CHAIR Stateaents

The CHAIN statement loads and executes a new program. The
CHAIN statement can load two types of programs: an overlay program
created by the linkage editor (LK-80), or a directly executable core
image (COM) file.

The information concerning the CHAIN sta tement is general, and
examples apply to the CP/M and MP/M operating systems. For more
detailed information on linking modules and programs, refer to the
linkage editor (LK-80) documentation in Section 12.

---... ~--t8t--"""·~1 ~XPR'~?bION
The CHAIN statement expression, which must evaluate to a string, is
the name of the program to be loaded. If no filetype is specified,
a type of OVL is assumed. An execution error occurs if the file
cannot be opened.

All Information Presented Here is Proprietary to Digital Research

71

CB-80 Reference Manual 7 .11 CHAIN S ta temen ts

The following statement loads the file "RPTWRT.OVL" and then
executes the new program. All OVL files loaded by a CHAIN statement
must have been linked with the last COM file loaded.

CHAIN "RPTWRT"

The next statement loads and executes the file AR.COM. When a
program is loaded, the variables in the data area are set to zero if
they are numeric and to null strings if they are string variables.
Any variables in the COMMON area remain as they were before the
CHAIN sta temen t was executed.

CHAIN "AR.COM"

If the program being chained to has a COM filetype, and the
program has a different name than the last COM file loaded, the
COMMON variables are also reset to zero or null strings. This
allows a CHAIN statement to load and execute a completely new
applica tion.

A CHAIN statement can load a COM file created by languages
other than CB-80. The COM files loaded need not be created by LK-
80. However, all OVL files loaded must have been created by LK-80.
In addition, if a COM file chains to an OVL file, both the COM and
OVL files must have been created by LK-80.

The CB-80 run-time support system zeros the data area prior to
executing a program. This means that assembly language modules
linked with CB-80 modules cannot have initiali zed da ta in da ta
segmen ts.

End of Section

All Information Presented Here is Proprietary to Digital Research

72

Section 8
Input/Output Processing Statements

Input/Output processing statements allow data to be transmitted
between external devices and CB-80 variables. This section explains
transfer of da ta to and from the console device and to the line
pr inter.

This section also explains assigning data in DATA statements to
CB-80 variables. In addition, the POKE, RESTORE, RANDOMIZE
statements, and predefined functions associated with input and
output operations are explained.

8.1 INPUT statements

INPUT statements accept data from the console and assign the
data to program variables.

VARfABL~

The simplest form of an input statement accepts data from the
console and assigns the data to a list of variables. The following
statement inputs three data items from the console and assigns each
data item to a variable.

INPUT A, B$, C%

The data input must contain exactly three data fields. When you
en ter da ta in response to this sta temen t, separa te the first two
fields with a comma and terminate the last one with a carriage
return. A field is a str ing or numer ic constan t followed by a comma
or by the end of the input line.

When an INPUT statement is executed, the compiler prints a
question mark (?) on the console followed by one blank space. Then
you can enter characters in response to the input statement. The
response termina tes either wi th a carr iage return or after you en ter
the maximum number of characters allowed. The maximum is at least
255 characters. (See Appendix E for specific implementation limits.)

All Information Presented Here is Proprietary to Digital Research

73

CB-BO Reference Manual B • 1 INPUT S ta temen ts

All the characters you enter in response to an INPUT statement
are echoed at the console. CB-BO supports the normal line editing
input commands of the operating system.

Data you enter in response to an INPUT statement must contain a
field for each variable in the list. In the example above, three
fields are required. Except for the last field, fields are
terminated with a comma. The following input statement requires two
fields:

INPUT A, B%

The following is a proper response for this input statement:

? 123.45, 45

CB-BO prints the question mark and the blank space tha t follows. If
you enter an incorrect number of fields, a warning message appears
at the console and you must reenter all the fields.

You can enter str ings enclosed in quotation marks. This
permits any character except a carriage return to be included in the
string. Double quotation marks within the string represent one
quotation mark and do not terminate the string.

INPUT NAME$

The following is a valid response to the preceding statement:

"Jones, John"

If a string is not enclosed in quotation marks, the first comma ends
the string. Any other character except a carriage return can appear
in a field.

When a field is assigned a numeric variable, CB-BO converts the
entire field to the internal representation corresponding to the
class of the variable. If CB-BO encounters an unexpected character
in the field, conversion to the internal form terminates.

INPUT X

The following response to the statement above results in X being
assigned a value of 123.45. The character "Q" is not expected as
part of a number. Thus, the remainder of the field is ignored. No
error message is printed.

? l23.45Q+23

When you enter data for assignment to an integer variable, and
the magnitude of the integer exceeds the maximum magnitude of CB-80
integers (32,767), the assigned value is undefined. As with all
integer overflow, no error results.

All Information Presented Here is Proprietary to Digital Research

74

CB-80 Reference Manual 8.1 INPUT Sta temen ts

You can use a prompt string in an INPUT statement. If a prompt
string is present, CB-80 prints it in place of the question mark.
CB-80 still prints a single blank prior to accepting input.

INPUT "Enter three numbers"; A, B, C

This statement prints the following prompt on the console:

Enter three numbers

Following the prompt, one blank is printed and then three fields are
accepted as input.

If the prompt str ing is null, the INPUT sta temen t opera tes the
same as an INPUT statement without a prompt string except that no
question mark is printed.

The INPUT LINE sta temen t is a special form of the INPUT
sta temen t tha t accepts one line of input from the console and
assigns it to a string variable. The statement:

INPUT "What is your name? "; NAME$

accepts any characters as input until you enter a carriage return.
The entire line, excluding the carriage return, is assigned to the
string variable NAME$.

Only one variable can appear in an INPUT LINE statement. If
you en ter only a carr iage return in response to an INPUT LINE
statement, a null string is assigned to the variable.

The following statements are valid input statements:

INPUT "Enter the da ta"; A,B,C

INPUT LINE X$

The following input statements are invalid.

INPUT LINE A Must be a string variable.

IN~UT "Enter" X Semicolon is missing after prompt.

INPUT A$; C% Prompt must be a string constant.

8.2 CONSOLE and LPRIlITER StatelDents

Dur ing execution of a CB-80 program, a pr int control flag
determines whether output from a PRINT sta temen t is displayed on the
list device or on the console. The print control flag is a special

All Information Presented Here is Proprietary to Digital Research

75

CB-BO Reference Manual B.2 CONSOLE and LPRINTER Statements

var iable maintained by CB-BO; you cannot directly access the
control flag. The CONSOLE and LPRINTER statements set and reset
this flag.

When the print control flag is reset or false, output from
PRINT statements prints on the console. When the flag is set, the
output goes to the list device. Initially, the flag is reset so the
output appears on the console.

The LPRINTER statement sets the print control flag to true so
information can be printed on the list device.

----------~--~~~----------~~

The CONSOLE statement resets the print control flag.

--------~~~~~--------~~-

The print control flag does not affect output resulting from
INPUT statement prompt strings. The toggle always appears on the
console. When either a CONSOLE or LPRINTER statement is executed
and the position in the current output line is not 1, a carriage
return and line-feed are printed prior to changing the print control
flag.

The following example uses the LPRINTER and CONSOLE sta temen ts.

IF LST.REQ THEN \
LPRINTER \

ELSE \
CONSOLE

8.3 DETACH Statements

The DETACH statement detaches the printer currently assigned to
the program. The DETACH statement is ignored unless MP/M is being
used. Normally, DETACH is used in conjunction with the ATTACH
function (described in Section B.IO.l).

All Information Presented Here is Proprietary to Digital Research

76

CB-80 Reference Manual 8.3 DETACH Statements

8.4 PRINT Statements

The PRINT statement prints data on the console or line printer
depending on whether the print control flag is false or true.

~XPR~~SION

,

Section 10 explains the USING option of the PRINT statement
which provides formatted output. This section discusses unformatted
output.

Each expression in the list is printed on the console or the
list device depending on the setting of the print control flag. The
following statement prints three fields. The first field starts in
column one; each of the remaining fields start at the next column
after the last number printed that is a multiple of 20. A new line
is started after the last field is printed.

PRINT X, Y$, I%

The comma forces automatic tabbing after the field has been
printed. The tab positions are 1, 20, 40 etc. The next example:

PRINT 12,13.78,14

prints the following line on the console. In this section and in
Section 9, the asterisk (*) marks column 1 and the symbol <NL>
indicates that a new line starts.

*
12 13.78 l4<NL>

Numer ic expressions are pr inted in two forma ts depending on the
value of the number. The value prints in a fixed decimal format if
the number is greater than or equal to 0.01 and less than or equal

All Information Presented Here is Proprietary to Digital Research

77

CB-80 Reference Manual 8.4 PRINT S ta temen ts

to 99,999,999,999,999. If the number is outside this range, the
value is printed in scientific notation with one digit before the
decimal point.

1.0E 32

7.218E-IO

If a number is negative, a minus sign (-) is printed before the
first digit. A positive number has a blank space preceding the
first digit in place of the sign. One blank is printed after the
number is printed.

Strings are printed as is; no leading or trailing blanks are
output and the strings are not enclosed in quotation marks.

A$ = "HI"
PRINT A$

This statement outputs:

*
HI <NL>

If two expressions are separa ted by a semicolon (;), instead of
a comma (,), no automatic tabbing takes place. One field follows
directly after the last. Numeric fields are still separated by a
blank because numbers always have a blank printed after them.

A = 3
A$ = "HI"
PRINT A;A$;A$

The preceding outputs:

*
3 HIHI<NL>

If the last expression in a PRINT statement is followed by a
comma (,) or a semicolon (i), a new line is not started.

PRINT A+B, B-A, A-B,

If the last character is a comma as shown in the example above,
the tabbing to the next column that is a muitiple of 20 occurs but
no carriage return is output.

PRINT "SAY HI",

This statement outputs:

*

All Information Presented Here is Proprietary to Digital Research

78

CB-80 Reference Manual 8.4 PRINT Sta temen ts

SAY HI --------
The underscore (_) indicates one blank was printed.

The trailing comma or semicolon causes the next PRINT statement
to output on the same line as the PRINT statement with the trailing
delimiter.

outputs:

PRINT "THIS IS "i
PRINT "A SENTENCE"

*
THIS IS A SENTENCE<NL>

The next example shows a loop printing a value and automatically
tabbing to the next column.

FOR I% = I TO 3
PRINT I%,

NEXT I%
PRINT

The output from this program is shown below.

*
I 2 3

The following example does not use automatic tabbing.

FOR I% = I TO 3
PRINT I%i

NEXT I%
PRINT

The output from this program is shown below.

*
I 2 3 <NL>

The following PRINT statements are invalid:

PRINT A+B C+D Delimiter (, or i) is missing.

PRINT A + Expression is incomplete.

PRINT A, ,B An expression is missing.

<NL>

All Information Presented Here is Proprietary to Digital Research

79

CB-80 Reference Manual 8.4 PRINT Statements

A PRINT statement wi th no expression list can pr int blank
lines.

PRINT
PRINT

The two preceding statements each start a new line. Thus two blank
lines are printed. The two statements

PRINT "HI THERE";
PRINT

are equivalent to the statement:

PRINT "HI THERE"

8.5 POKE Statements

The POKE sta temen t places the value of the second numer ic
expression at an absolute memory location determined by the first
numer ic expression. The value placed in memory is one byte of da ta.

The first expression must evaluate to a valid address for the
computer being used. However, CB-80 does not ver ify tha t the memory
address is valid. The second expression, modulo 256, is placed at
this memory location.

POKE MEM.LOC%,VALUE%

The absolute addresses assigned to the program code and data
area are determined when a module is linked. When using the POKE
statement, the effect of linking the program must be taken into
account.

The expressions must be numeric; if either expression is real,
it is converted to an integer.

8.6 OUT Statements

The OUT statement outputs an integer value to a hardware output
port. This function is hardware dependent and might not have the
same effect on different processors. In addition, the OUT statement
can also interfere with the operating system you are using.

All Information Presented Here is Proprietary to Digital Research

80

CB-BO Reference Manual B.6 OUT Statements

OUT PORT%, I%
The arguments must be numeric; if either is a real value it is

converted to an integer. The first expression must evaluate to a
valid port number for the processor being used. CB-BO does not
verify tha t the port number is valid. The second expression, modulo
256, is output to the selected port.

8.7 READ Statements

READ statements accept data defined by DATA statements and
assign the values to variables. DATA statements are explained in
Section 3.

VA~IABl-e

The following statements assign the value 10 to the real
variable X, an integer value 20 to I%, and the string "HI" to the
string variable A$.

DATA 10, 20, "HI"
READ X, I%, A$

The following statements are equivalent to those above:

DATA 10, 20
READ X
READ I%, A$
DATA "HI"

Each READ statement assigns the next field in the DATA
statement to the variable in the next READ statement. All the DATA
statements in a program are treated as one consecutive group of

All Information Presented Here is Proprietary to Digital Research

B1

CB-80 Reference Manual 8 • 7 Read S ta temen ts

fields.

If the variable in the READ statement is numeric, the field
from the DATA statement is converted into the appropriate internal
represen ta tion. When assigning values to var iables with READ
statements use the same rules as for the INPUT statement. The
statements below assign a value of zero (0) to 1%. This is because
string "XYZ" is not a valued integer. However, K% is assigned a
value of 71.

DATA "XYZ", "71"
READ I%,K%

If you attempt to read a field past the last field in the last
DATA statement in the program, an execution error occurs. Executing
the following statements results in an execution error unless there
are other DATA statements in the program.

DATA XYZ
READ A$, B$(I)

The following READ statements are invalid:

READ A B Comma is missing.

READ I(J%);V% Variables must be separated by commas.

READ A"B Variable name is missing.

The RESTORE statement, explained in the next section, allows
the DATA statements to be reused.

8.8 RESTORE Stateaents

The RESTORE statement repositions the pointer into the data
area, so the next value read with a READ statement will be the first
item in the first DATA statement in the program.

-------------..~~~----------~.-

The following is an example of a RESTORE statement:

RESTORE

All Information Presented Here is Proprietary to Digital Research

82

CB-80 Reference Manual 8.9 RANDOMIZE Statements

8.9 RARDOMIZE Statements

The RANDOMIZE statement seeds the pseudo-random number
generator so the RND function (see Section 8.10.8) generates random
numbers.

On operating systems that do not provide a time of day
function, the seed is generated using the time taken to respond to
INPUT statements. If the time of day is available, it generates a
random seed.

Thus, on operating systems that do not have the time of day
available, it is necessary to execute an INPUT statement prior to
using the RANDOMIZE statement. In any event, a RANDOMIZE statement
must be used pr ior to using the RND function to genera te a differen t
pseudo-random series each time the program is executed. Section
8.10.8 explains the RND function.

8.10 Input/Output Predefined Functions

8.10.1 The ATTACH Function

The ATTACH function returns an integer tha t is true if the
selected printer can be attached by the program. Otherwise, ATTACH
returns a false value.

ATTACH (PRINTER.NO%)

8.10.2 ·The CONBrATI Function

The CONSTAT% function returns an integer set equal to the
console status. If a character has been entered at the console but
not yet read, CONSTAT% returns "true", which is a negative one.
Otherwise, CONSTAT$ returns a false or zero value.

CONSTAT$

8.10.3 The CONCHAR% Function

The CONCHAR% function returns the ASCII integer value of the
next character typed at the console and displays that integer on the
screen.

All Information Presented Here is Proprietary to Digital Research

83

CB-SO Reference Manual S.lO Input/Output Predefined Functions

The lower eight bi ts of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

CONCHAR% always reads one character from the console. If no
character has been entered, CONCHAR% waits until a character is
entered at the console.

CONCHAR%

For example, if you enter an upper-case letter "A" at the
console, the CONCHAR% function returns a value of 65.

8.10.4 The INKEY Function

The INKEY funct ion returns an integer equal to the next
character entered at the console. Unlike the CONCHAR% function,
INKEY does not echo the character at the console.

The lower eight bi ts of the returned value are the binary
representation of the ASCII character read from the console. The
high-order eight bits are always zero.

INKEY

INKEY is useful when control characters or other special
characters might be input and you do not want these characters to be
printed. INKEY can also accept passwords. Some operating systems
might require that INKEY be implemented identically to the CONCHAR%
function.

8.10.5 The IMP Function

The INP function returns an integer equal to an S-bit value
input from the I/O port selected by the argument. This function is
hardware dependent and might not have meaning on certain processors.
In addition, the INP function might interfere with the operating
system being used.

The argument must be numeric; if it is a real value, it is
converted to an integer. The argument must evaluate to a valid port
number for the curren t processor. CB-SO does not check the validity
of the port number.

INP (PORT%)

8.10.6 The PEEK Function

The PEEK function returns an integer equal to the value of the
memory loca tion selected by the parameter. The memory loca tion must
be valid for the computer being used. However, CB-80 does not check
on the validity of the memory address. The parameter must be

All Information Presented Here is Proprietary to Digital Research

84

CB-BO Reference Manual B.lO Input/Output Predefined Functions

numeric; if "it is real, it is converted to an integer.

PEEK (MEM.LOC%)

8.10.7 The POS Function

The POS function returns the current position in the output
line. The value returped is an integer.

POS returns the number of characters plus one that has been
output to the console or list device since the last carriage return.
In other words, POS returns the next position in which a character
will be printed.

Output to the console can be generated by PRINT statements or
by INPUT statement prompts.

POS

The following statements

PRINT
PRINT POS,POS

print the numbers 1 and 20 starting in columns one and twenty,
respectively. The value POS returns might not be valid if you
output characters that change the cursor position, such as clearing
the screen. The CONCHAR% function can invalidate the value POS
returns.

8.10.8 ~he RRD Function

The RND function returns a real value that is a uniformly
distributed pseudo-random number between 0 and 1.

~D

8.10.9 The TAB Function

The TAB function prints blank characters until the value POS
returns is equal to the argument. If the value of the argument is
less than or equal to the current position to be printed, a new line
starts and then the TAB function executes.

The argument must be numeric; if it is a real value, it is
converted to an integer. A zero or negative argument causes an
execution error.

TAB(I%)

All Information Presented Here is Proprietary to Digital Research

85

CB-80 Reference Manual 8.10 Input/Output Predefined Functions

If the console cursor position has been changed with special
control characters, or if the position has been changed with the
CONCHAR% function, the TAB function does not provide the desired
resul ts.

You can analyze the TAB function in PRINT statements. The
following sta temen t pr ints the str ing "HI" starting in column 19.

PRINT TAB(19), "HI"

You can blank out a portion of a line with the following PRINT
statement:

PRINT TAB (20) ;

End of Section

All Information Presented Here is Proprietary to Digital Research

86

Section 9
File Processing Statements

A file is a collection of data items stored on an external
device such as a floppy disk or Winchester hard disk. CB-80 is not
concerned with the physical storage of the data but rather with the
logical organization of the data. This section explains input and
output between the file system and CB-80. Sections 9.2 through 9.5
explain the statements that open or create files, access files, and
close or delete files. In addition, Section 9.6 explains predefined
functions that involve file accessing.

9.1 File Description

In general, CB-80 files are made up of ASCII characters. This
allows the file to be conveniently displayed on the system display
using operating system utilities. Binary files can be built and
accessed with certain restrictions explained in this section.

CB-80 supports two types of files: stream and fixed. In a
stream file, information is placed in the file as a stream of fields
with no record structure. The file is a continuous stream of
individual data items. There is no implied relationship between the
da ta items.

Either a comma or a new line character separate each field in a
stream file from the next field. With most o'perating systems, the
new line characters are a carriage return followed by a line-feed.

Fixed files also have fields of data separated by commas.
However, the fields are grouped into fixed length records. Unused
space in records is padded with blanks. The new line characters
terminate the record.

In fixed files, the new line characters are part of the record.
Thus, the minimum record size is two bytes. Of course, no
information can be stored in a file with a record length of two.
The maximum record length must be expressed as an integer value.

9.2 OPEN and CREATE Stateaents

Before data items can be written to a file or read from a file,
an interface must be established between CB-80 and the operating
system. Characteristics such as the device selection, filenames,
and buffer requirements must be defined.

CB-80 provides two statements to define files: the OPEN and
CREATE sta tements. The OPEN sta tement accesses existing files; the
CREATE statement creates a new file with no data in it.

All Information Presented Here is Proprietary to Digital Research

87

CB-80 Reference Manual 9.2 OPEN and CREATE Statements

~ION

The first expression in an OPEN or CREATE statement is a string
expression that evaluates to a valid filename for the operating
system. A particular opera ting system might restr ict the characters
in the filename and the length of the name.

The expression following the reserved word AS assigns a CB-80
file identification number to the file. All future references to
the file use this number. The file identification number can be any
numeric expression. If the expression evaluates to a real value, it
is converted to an integer. An execution error occurs if the value
is zero or negative, or if it is greater than the maximum number of
files that can be open at one time. (See Appendix E for current
limits.)

A file is open when it has been assigned a file identification
number by an OPEN or CREATE statement. You cannot use the same file
identification number for two files open at the same time. An
execution error occurs if the file identification number in an OPEN
or CREATE statement is currently assigned to another file. The
number of files that CB-BO allows to be open at one time depends on
the implementation. (See Appendix E for current limits.) Some
opera ting systems might impose further restr ictions on the number of
files that can be open at one time.

OPEN "TEST" AS 4

CREATE W.DISK$ + W.NAME$ AS WORKFILE%

All Information Presented Here is Proprietary to Digital Research

88

CB-80 Reference Manual 9.2 OPEN and CREATE Statements

The filename and file identification number must appear in
every OPEN and CREATE statement. The other information is optional.

If a file has fixed length records, specify the record length
following the reserved word RECL. The following statement opens a
file named MASTER with a record length of 700 bytes.

OPEN "MASTER" RECL 700 AS 1

MASTER is assigned a file identification number of 1. The record
length can be any numeric expression. Real values are converted to
integers.

CREATE NAME$ RECL FIELDl% + FIELD2% + 2 AS J%

When a file is opened with the RECL option, the file is a fixed
file.

The reserved word BUFF specif ies the number of internal buffers
to maintain for the file. If no buffers are specified, a value of
one is assumed. The size of a buffer depends on the implementation,
but is normally chosen so that it is the amount of data that can be
accessed by one call to the operating system. (See Appendix E for
current specifications.)

OPEN A$ AS 4 BUFF 10

The statement above opens a file with 10 buffers assigned for
its use. Mul tiple buffers are always stored consecutively in
memory. Use the MFRE function to determine the amount of available
memory prior to choosing the number of buffers.

The BUFF option cannot specify more than one buffer when the
file is accessed randomly. Random access is explained Section 9.3.

The amount of buffer space CB-80 requires is independent of the
record length. CB-80 does not require that the complete record be
held in memory at one time. CB-80 provides all the deblocking
necessary to support large records in a system with limited memory.

The following OPEN and CREATE statements are invalid:

OPEN "TEST" File identification is missing.

CREATE A$ AS 1 RECL 100 Reserved words are in wrong order.

CREATE 3 AS 2 Filename must be of type string.

OPEN FN$ BUFF 10 AS 2 Reserved words are in wrong order.

The INITIALIZE statement resets the operating system after
diskettes or other storage media have been replaced. This prevents
the operating system from writing data to the wrong place on the

All Information Presented Here is Proprietary to Digital Research

89

CB-80 Reference Manual 9.2 OPEN and CREATE Statements

storage media.

The INITIALIZE statement must not be execu ted un til the
swapping is complete and the devices on which the media is placed
are ready.

If the expression is present, it is used as a bit pattern to
select which drives to reset. For example, the statement

INITIALIZE lIB

initializes only dr ives A and B. The expression is only required in
mul ti-user systems where other users might prevent resetting all the
drives.

9.3 File Accessing Methods

You can access files in three ways: sequentially, randomly, or
one byte at a time. You can use these methods interchangeably with
the provision that only fixed files can be accessed randomly.

The following sections explain the file READ, file PRINT, and
PUT sta temen ts.

All Information Presented Here is Proprietary to Digital Research

90

CB-80 Reference Manual 9.3 File Accessing Methods

9.3.1 Reading Files

Files can be read sequentially and randomly using the file READ
sta tement.

A file READ statement specifies the file identification number
for the file to be read, and a list of variables to which data items
read from the file are to be assigned. Optionally, you can specify
a record number to select the record to be read. You can only use
this option with fixed files.

The file identification number and optional record number can
be any numeric expression. If either expression is real, it is
converted to an integer value. An execution error occurs if the
file identification number does not evaluate to an integer assigned
to an open file.

READ i 1: A, B$, C%

This statement reads the next sequential record from a file
with a file identification number of 1 and assigns the first three
fields to the variables A, B$, and C%. In the case of variables A
and C%, the fields are interpreted as numbers and converted to the
internal format for real and integer variables, respectively.

All Information Presented Here is Proprietary to Digital Research

91

CB-80 Reference Manual 9.3 File Accessing Methods

There is a fundamental difference in the way fixed record
length files and stream files are treated when the files are read.
If a file has fixed records, any fields that the READ statement did
not read are skipped. The next sequential read reads a new record
even if fields were left unread in the previous record.

With a stream file, one field is read after another and no
logical organization is assumed. Consider a file with the following
records:

1,2,3,4CRLF

5,6,7,8CRLF

9,10,11,12CRLF

You can use the following READ statements to access this file:

READ i 1; A,B,C

READ i 1; D

READ i 1; E,F

If the file is a stream file (no record length was specified when
the file was opened), the variables A through F are assigned the
following values:

A = 1 B = 2 C = 3
D = 4

E = 5 F = 6

However, if the file was opened with a record length specified,
the variables are assigned the following values:

A = 1 B = 2 C = 3
D = 5

E = 9 F = 10

Note: if the records are fixed length records, they are padded with
blanks.

Another difference between reading fixed length files and
stream files occurs when a carr iage return is encountered as a field
delimiter. If the file is fixed and an attempt is made to read past
a carriage return, an execution error occurs. When reading a stream
file, a carriage return is treated just like a comma. Thus, when

All Information Presented Here is Proprietary to Digital Research

92

CB-BO Reference Manual 9.3 File Accessing Methods

reading a fixed file, one READ statement reads one record assigning
the fields in the record to variables in the variable list.

A READ statement can select a specific record to read instead
of reading the next sequential record. The file being read must be
a fixed record length file. This type of access is called random
access.

READ # 1, 12; A, B, C(I,J) .
The statement above reads the twelfth record from file 1. The

first three fields in the record are assigned to the variables A, B,
and C(I,J). If a record in this file has less than three fields or
the file was a stream file, an execution error occurs.

The first record in a file is record one. An execution error
occurs if a READ statement uses a record number of zero. The record
number is treated as an unsigned sixteen bit integer. This means
tha t "negative" record numbers can be used for record numbers
greater than 32767.

If an attempt is made to read a file past the last record in
the file, CB-BO reports that the end of file has been reached. The
section on file exception processing explains how you can process an
end of file condition. An end of file exception also occurs when a
random read attempts to read a record that does not exist.

Sometimes it is necessary to posi tion to a specific record in a
file and then read the file sequentially. The following statement
positions file 1 to the beginning of record 7. No data is read from
the file.

READ # 1, 7;

An execution error occurs if the file is a stream file.

The READ LINE statement is similar to the INPUT LINE statement
explained in Section B. The READ LINE statement reads one complete
line of da ta from a file and assigns the information read to a
string variable. Only one variable can be used after the reserved
word LINE and it must be a string variable.

The following statement reads the next sequential record from
the selected file and assigns the entire record up to but not
including the new line characters to the string variable D$.

READ #FILE.NO%; LINE D$

The READ LINE sta temen t can also read a random record, as shown
below.

READ #F%, R%; LINE X$

All Information Presented Here is Proprietary to Digital Research

93

CB-80 Reference Manual 9.3 File Accessing Methods

9.3.2 writing to Files

Files can be sequentially or randomly written to using the file
PRINT statement. This section describes unformatted output to
files. Section 10 explains formatted output.

,
A file PRINT sta tement specif ies the file identif ica tion number

for the file being printed to, and a list of expressions that are
evaluated and output to the file. An optional record number can be
specified to select the record to output. Use this option only with
fixed files.

The file identification number and optional record number can
be any numeric expression. If either expression is real, it is
converted to an integer value. An execution error occurs if the
file identification number does not evaluate to an integer assigned
to an open file.

PRINT # 1; A%, B, C$

This statement prints three fields to the next sequential
record in the file with a file identification number of 1. The
first two fields are separated by commas and the last field is
followed by new line characters.

When a string is output to a file, it is enclosed in quotation
marks. Numbers are output to a file following the same formatting
rules used for output to the display.

with a fixed file, sufficient blank characters are output after
the last field and before the new line characters. This ensures
that each record is the length that was specified when the file was
opened. If the data output to the file results in a record length
that exceeds the fixed record length, an execution error occurs.

All Information Presented Here is Proprietary to Digital Research

94

CB-80 Reference Manual 9.3 File Accessing Methods

OPEN "MASTER" AS 3
X = 21.73
Y = .00007
I% = -72
A$ = "THIS IS A FIELD"
PRINT # 3; X, Y, I%, A$

Execution of the program above writes the following record to
the file "MASTER":

*
21.73,7E-04,-72,"THIS IS A FIELD"<NL>

In the program above, substi tute an OPEN statement wi th a
record length of 40.

OPEN "MASTER" RECL 40 AS 3

The record that is output with the substituted OPEN statement is
shown below:

*
21.73,7E-04,-72,"THIS IS A FIELD" <NL>

An execution error occurs if the record length is less than 34.

A file PRINT statement can direct output to a specific record
in a file. This type of access is called random access. To use
random access, the file must be a fixed record length file.

PRINT #3, 4; C(I), A$+B$

The sta tement above outputs record four to the file using three
as a file identification number. The record contains two fields.

A file exception occurs if a file PRINT statement attempts to
output to a file and the file system has insufficient space.
Section 9.5 explains how you can trap this condition.

The following file PRINT statements are invalid:

PRINT 3; A Pound sign is missing.

PRINT #I, J; Expression list is missing.

PRINT # 2; A+l; B Commas must separate expressions.

All Information Presented Here is Proprietary to Digital Research

95

CB-80 Reference Manual 9.3 File Accessing Methods

The PUT statement writes one byte to the selected file. The
byte can be any value between 0 and 255.

Both expressions must be numeric; if one of them is a real
expression, it is converted to an integer.

The PUT statement allows binary data to be written to a file.
No delimiters or other characters are added to the data output.

PUT 3, I%

9.4 Terminating Access to Files

CB-80 provides two statements that terminate access to files:
the CLOSE and the DELETE statements. To use these statements, the
file must be open.

The CLOSE statement tells the operating system that no further
access to the file is required. Any interfaces established by the
OPEN or CREATE statement are terminated. All information in the
file is retained.

CLOSE 3

CLOSE TEMPI%, TEMP2%

The DELETE statement instructs the operating system to remove
the file from the system directory. No information about the file
is reta ined.

All Information Presented Here is Proprietary to Digital Research

96

CB-80-Reference Manual 9.4 Terminating Access To Files

DELETE I

DELETE INDEX% + 3

The expressions in CLOSE or DELETE statements must be numeric;
if they evaluate to real values, they are converted to integers.
Each expression must evaluate to a valid file identification number
and tha t number must refer to an open file. Otherwise, an execution
error occurs.

After the CLOSE or DELETE is complete, you can use the file
identification number again. If an IF END statement, explained in
the following section, is associated with the file identification
number, the association terminates.

9.5 File Exception Processing

The IF END statement traps file system exceptions and allows
you to take appropriate action.

The label reference must refer to a label defined within the
scope of the IF END statement. The label need not be defined prior
to its use in an IF END statement.

The IF END statement is an executable statement. It must be
executed before it can trap file exceptions. A given IF END
statement only applies to the one file that the expression selects.

The expression selects the file identification number of the
file for which you want exception processing. The expression must
be numeric; a real expression is converted to an integer.

IF END i I THEN 200

IF END i WORK.I% THEN FILE.EOF

All Information Presented Here is Proprietary to Digital Research

97

CB-80 Reference Manual 9.5 File Exception Processing

The IF END stateme.nt traps the following types of exceptions:

• READ PAST END OF FILE

• DISK OR DIRECTORY FULL DURING PRINTING TO A FILE

• ATTEMPT TO OPEN A FILE THAT DOES NOT EXIST

If any of these exceptions occur, the file processing system
determines if an IF END statement has been executed for the file
identification number of the file. If an IF END statement is in
effect, execution continues at the statement with the label
referenced in the IF END statement. Otherwise an execution error
occurs.

IF END * 3 THEN 200

200 REM PROCESS EXCEPTION FILE 3

When transferring control to the exception processing routine,
all return addresses saved on the LIFO stack are retained.

The following IF END statements are invalid:

IF END 7 THEN 200 Pound sign is missing.

IF END * 7 THEN GOTO QUITE GOTO not allowed.

IF END i 1% THEN PEOF: Label reference cannot
have colon.

A program can have any number of IF END sta temen ts for the same
file iden tif ica tion number. The most recen tly executed IF END for a
given identification number is the IF END statement in effect when
an exception occurs.

An IF END statement can use a file identification number that
is not currently being used by an open file. This allows the IF END
to trap exceptions when an OPEN statement !s executed.

All Information Presented Here is Proprietary to Digital Research

98

CB-80 Reference Manual 9.6 File Predefined Functions

9.6 File Predefined Functions

9.6.1 The GET Function

GET (FILE. ID%)

The GET function accepts one byte of data from the file
selected by the parameter. The parameter must be numeric; if it is
real it is converted to an integer.

GET returns binary da ta from a file. The value returned by the
GET function is an integer between 0 and 255.

9.6.2 The LOCK Function

LOCK(FILE.ID%,REC%)

The LOCK function locks a record in the file selected. Record
locking prevents other programs from updating that record. The LOCK
function returns the value returned by the operating system when an
attempt is made to lock the record. Normally, a zero means that the
record was successfully locked.

Both arguments must be numeric; if either evaluates to a real
value, it is converted to an integer.

If your operating system does not support record locking, no
action occurs and LOCK returns a value of zero.

9.6.3 The RENAME Function

RENAME (NEW$,OLD$)

The RENAME function renames a file. The file being renamed,
which is the first parameter, must not be open. The arguments must
both be string expressions. The value returned by RENAME is an
integer value that is true (-1) if the rename was successful and
false (0) if the new filename already exists.

An execution error occurs if the new filename already exists.

9.6.4 The SIZE Function

The SIZE function returns the size of the file specified by the
parameter. The value returned is an integer equal to the number of
1024 byte blocks contained in the file.

The argument must evaluate to a string. The string represents
the filename.

SIZE(FILE$)

All Information Presented Here is Proprietary to Digital Research

99

CB-80 Reference Manual 9.6 File Predefined Functions

The file does not need to be open.

SIZE ("NAME")

SIZE{TEMPl$ + ".$$$")

Some operating systems support wildcard selections for files.
For instance, CP/M allows the asterisk (*) and question mark (?) to
represent matches with a variety of characters. The asterisk
matches any filename or filetype while the question mark matches any
one character in the filename or filetype. For example "*.BAS"
refers to all files with a filetype of BAS. The SIZE function
accepts wildcard specifications when operating systems such as CP/M
support this feature.

SIZE{"*.TMP")

SIZE ("CB-80 .OV? ")

I f the file conta ins no da ta or if the file does not exist,
SIZE returns a zero.

9.6.5 The URLOCK Function

UNLOCK (FILE.ID%,REC%)

The UNLOCK function performs the opposite action as the LOCK
function. The parameters evaluate to a file identification number
and a record number. UNLOCK a ttempts to unlock the selected record.
The UNLOCK function returns the value returned by the operating
system where an attempt is made to unlock the record. Normally, a
zero means that the record was unlocked successfully.

Both arguments must be numeric; if either evaluates to a real
value, it is converted to an integer.

If your operating system does not support record locking, no
action occurs and a value of zero is returned. A zero is also
returned if the record was already unlocked when the UNLOCK function
was executed.

End of Section

All Information Presented Here is Proprietary to Digital Research

100

Section 10
Formatted Output

CB-80 allows output generated by a PRINT statement to be
formatted under the control of a Using format string. This form of
a PRINT statement is called a PRINT USING statement. It can be used
with output and can be directed to a disk file, the console, or the
line printer.

Section 10.1 explains Using strings and format field
characters. Sections 10.2 through 10.4 give detailed examples for
Using format field characters. Section 10.4 recapitulates the use
of escape characters and Section 10.5 explains formatted output to
files. The LPRINTER and CONSOLE statements, explained in Section 8,
control output to the console or line printer.

10.1 Using Strings

A print statement that has the reserved word USING followed by
an expression and a semicolon is a PRINT USING sta temen t. (The
syntax diagrams in Sections 8 and 9 show this form of the PRINT
sta tement.) The Using string must be a string expression that
consists of literal characters, numeric fields, and string fields.
The following example shows Using strings:

PRINT USING A$i A,B,C

PRINT USING USING.STRING$(3)i #1, REC%i A$,B$

PRINT USING "The amount owed is $$#,###,###.##"i BALANCE

When the program executes, it evaluates the next expression in
the expression list. The Using string is then scanned. Literal
characters are output as they are encountered. When a field is
located that matches the type of the expression, the expression is
output in the format dictated by the format field.

No delimiters, automatic spacing, or other characters are
output. At the end of the print statement, a new line is started
unless the expression list ends in a comma or semicolon. In the
case of a disk file with fixed length records,' the record is padded
with blanks if necessary prior to outputting the carriage return and
line-feed.

If the expression list contains a string expression, there must
be a t least one str ing field in the Using str ing, otherw ise an
execution error occurs. Likewise, there must be a numeric field in
the Using string if there is a numeric expression in the expression

All Information Presented Here is Proprietary to Digital Research

101

CB-80 Reference Manual 10.1 Using Strings

list.

The numeric and string fields consist of combinations of these
characters. The backslash acts as an escape character to force the
next character to be treated as a literal character instead of a
field character. This does not cause a conflict with continuation
character s because the compiler trea ts a backslash character wi thin
a string constant as a character in the string. For example:

PRINT USING "The part is \i iiiii": \
MASTER.PART.NUMBER%

Table 10-1 lists the format field characters that CB-80 supports.

Table 10-1. For.at Field Characters

Field Function
Character

i

$$

**

,

&

/ /

\

digit position in a numeric field

float a dollar sign in a numeric field

asterisk fill a numeric field

leading or trailing sign in a numeric field

place commas every third digit before decimal
point in a numeric field

decimal point position in a numeric field

exponent position in a numeric field

variable length string field

fixed length string field

single character string field

escape character (treat next character as a
literal)

Sections 10.2 through 10.4 give detailed.explanations of format
field charaters and their functions.

All Information Presented Here is Proprietary to Digital Research

102

CB-80 Reference Manual 10.2 Numeric Fields

10.2 Numeric Fie1ds

A pound sign (f) indicates one numeric position. For example
the follow ing sta temen t:

PRINT USING "fff"; 1%

defines a field of three positions in which to print 1%. If 1% is
set equal to 3, then the result is printed as:

3

In this example, two blanks and then the numeral three is
printed. The value is right justified in the field and filled with
leading blanks.

Note: the underscore () in this section indicates that a blank is
printed in the space. -

The following examples list the results that occur with other
values of 1%. The Using string remains "fff".

1%

10

999

-10

1000

-999

RESULT

10

999

-10

%1000

%-999

The last two examples show numbers that do not fit into the
field. In these cases, the overflow is indicated by printing a
percent sign (%) followed by the number in the print format that is
used with printing without a Using string. Another example of field
overflow is shown below.

PRINT USING "fii"; 10ElO

The output from this statement is:

%l.OE 11

All Information Presented Here is Proprietary to Digital Research

103

CB-80 Reference Manual 10.2 Numeric Fields

One decimal point can appear in a numer ic field. The following
examples show the use of a decimal point in numeric fields.

VALUE FIELD RESULT

10.10 ii.ii 10.10

100.789 iiii.ii 100.79

945.673 iiii.ii 945.67

Note: values are rounded to fit the field to the right of the
decimal point.

If no digits exist before the decimal point and there are one
or more digit positions in the format string before the decimal
point, a leading zero is printed.

VALUE

0.78

0.78

0.999

FIELD

.iii

i.i

i

RESULT

.780

0.8

1

If one or more commas appear in the numeric field, the results
are printed with commas inserted every third digit before the
decimal point. Each comma in the numeric field serves as a digit
position specifier and each comma that actually is printed uses one
of the available digit positions. The following examples show the
use of the comma in numeric fields.

VALUE FIELD RESULT

1000.0 i,iii.ii 1,000.0

100.0 i,iii.ii 100.0

7654321 ii,iii,iii 7,654,321 - .
7654321 i,iiiiiii 7,654,321

7654321 i,iiiiii %7654321

The commas do not have to be placed where they occur in the
output and only one comma causes all the necessary commas to be
printed. However, the number of pound signs and the number of

All Information Presented Here is Proprietary to Digital Research

104

CB-80 Reference Manual 10.2 Numeric Fields

commas determine the total number of positions available in the
field.

Numeric expressions can be printed in an exponential format by
appending one or more up-arrows (A) to the end of the numeric format
field. The exponent always uses four positions when it is printed.
You can use from one to four up-arrows to specify the exponent.

VALUE

100

-7751.21

.001234

o

FIELD RESOLT

10E 01

-7.75E 03

123E-05

OE 00

Commas are not printed in a numer ic field with an exponent. If
commas occur in the field, they are treated as pound signs. In the
first example below, the numeric field has five positions for the
digits. This requires that the number be rounded to five
significant digits. Blank characters are placed in any leading
field positions that are unused.

VALUE

123456

234

FIELD

#,###AA

#,###AAAA

RESULT

12346E 01

23400E-02

Instead of the blanks, an asterisk (*) can be used as a fill
character by placing two asterisks at the beginning of a numeric
field, as shown below.

VALUE

754

-21

12345

FIELD

**###

**###

**###

RESUL'.r

**754

**-21

12345

The two asterisks, like pound signs, are counted as two numeric
positions. The asterisks are printed in the place of blanks only
if blanks normally fill the field.

All Information Presented Here is proprietary to Digital Research

105

CB-80 Reference Manual 10.2 Numeric Fields

You cannot use an asterisk fill in fields with an exponent
format. A single asterisk is treated as a print character and not
as part of a numeric field.

A dollar sign ($) can be printed to the left of the first digit
in a numeric field. This allows you to float a dollar sign; you
specify this by placing two dollar signs at the beginning of a
numeric field.

VALUE

10.10

1000.00

1000.00

10000.00

FIELD

$$###.##

$$###.##

$$#,##.#i

$$i,ii.ii

RESUL'l'

$10.10

$1000.00

$1,000.00

10,000.00

Blanks fill the field when a floating dollar sign is a part of
the numeric field. As with the asterisk fill, the two dollar signs
are counted as two numeric positions. The last example above shows
that the dollar sign prints only if a position is available.

Floating dollar signs cannot be used in fields with an exponent
format. Also, if the numeric expression output into the field is
negative, the minus sign (-) is printed in place of the dollar sign.

VALUE

-10

10

FIELD

$$ii.ii

$$#i.ii

RESUL'l'

-10.00

$10.00

Note: a single dollar sign is treated as a print character and not
as part of a numeric field.

Normally, a negative number has the sign floated to the left of
the first digit in the number being printed. By placing a minus
sign as the first or last character of a Using string, the minus
sign can be placed in a fixed position in the field.

All Information Presented Here is Proprietary to Digital Research

106

CB-80 Reference Manual 10.2 Numeric Fields

VALUE FIELD RESUL~

-123.456 iii.iii- 123.456-

-123.456 -iii.iii -123.456

-12.345 -iii.iii - 12.345

0.3456 ii.iii- .346

100.0001 -iii.ii 100.00

Note: if the sign of the expression is positive, a blank is printed
in place of a sign.

10.3 String Fields

There are three types of string fields: single character,
variable length, and fixed length. A single character field is
specified by an exclamation mark (1). The field prints the first
character of a string expression. The following example prints the
letter A.

PRINT USING "1"; "ABC"

Successive exclamation marks print the first letter of successive
string expressions. In other words, each exclamation mark is a
separate string field.

PRINT USING "II I"; "XY","UV","PQ"

The output from the preceding statement is:

*
XU P<NL>

This is the same notation used in Section 8. The asterisk (*) marks
column 1 and the <NL> indicates that a new line starts.

A single ampersand (&) represents a variable length string
field. The ampersand causes the entire string to print without
editing.

PRINT US IN G II &"; "TH I SIS A ST RIN G"

The statement above prints:

*
THIS IS A STRING<NL>

The next example uses both var iable length and single character
string fields.

All Information Presented Here is Proprietary to Digital Research

107

CB-80 Reference Manual 10.3 String Fields

PRINT USING "& 1. &";"Jim", "Allen","Smith"

The preceding statement prints:

*
Jim A. Smith

The third type of string field is the fixed length field. This
field is delimited by slashes (I I). The size of the field is the
number of spaces or characters between the slashes plus two. Each
slash is one position in the fixed field and each character between
the slashes is also counted in the size of the field.

The string field in the following example consists of three
spaces and the two slashes. Thus, the field has a total length of
five characters. The left five characters of the string expression
are printed.

PRINT USING "I I" i "HI THERE"

The outputs from this statement is:

*
HI TH<NL>

You can place any characters between the slashes. The compiler
ignores these characters but you can use them to document the use or
size of the field. The following examples demonstrate this:

PRINT USING "I NAME I"; NAME$

PRINT USING "1 .. ~5 ••• 9/";A$ + B$

If the string expression evaluates to a string shorter than a
fixed length field, the expression is left justified in the field.
Blanks are inserted to fill the field on the right.

PRINT USING "1 ... 5 ••• 9/"i"XYZ"

The preceding statement outputs:

*
XYZ <NL> ----

Both string and numeric fields can be mixed in a Using string.

PRINT USING "i.i XYZ &"; 7.2, "ABC"

The output from this statement is shown below:

*
7.2 XYZ ABC<NL>

All Information Presented Here is Proprietary to Digital Research

108

CB-80 Reference Manual 10.3 String Fields

The characters XYZ and the space before and after them are
literal characters. They appear in the output just as they are in
the Using string.

A Using string is reused if the compiler reaches the end of the
Using str ing and there are still more expressions from the
expression list to be printed. The Using string is reused by
wrapping around to the beginning of the string.

PRINT USING HIP; "AX","BX","CX"

The output from the preceding statement follows:

*
ABC<NL>

The Using string is reused three times to allow each expression
to be printed. In the following example, each field in the Using
string is used once and then the first field is used a second time.

PRINT USING "## X &"; 5,"HI",6

The output from the preceding statement follows:

*
5 X HI 6 X <NL>

After the three fields are output, a trailing" X " is printed.
As each expression is printed, including the last-expression, any
literal characters following the field in the Using string are
output. As soon as a string or numeric field is encountered, no
more characters are printed. Also, if during execution you reach
the end of the Using string, the Using string is not reused just to
print literal characters.

PRINT USING "THIS IS A NUMBER ## TO PRINT"; 99

The output from this statement is:

THIS IS A NUMBER 99 TO PRINT<NL>

It is possible for characters in a string or numeric field to
be treated as literal characters.

PRINT USING "&## X &";29

The output from this statement is:

*
&29 X <NL>

The expression is numeric. Thus, every character in the Using
string is treated as a literal character until a numeric field is
found. In this case, the ampersand is printed as a literal
character. After the last expression has been printed (in this

All Information Presented Here is Proprietary to Digital Research

109

CB-80 Reference Manual 10.3 String Fields

example there is only one expression), all characters in the Using
string are printed as literal characters until the next string or
numeric field is found. This results in the" X " being printed but
not the sec':Jnd ampersand. - -

The following PRINT USING statements are invalid:

PRINT USING "iii"; A$

PRINT USING "/ "; B$

PRINT USING "ii" X+Y

10.4 Escape Characters

No string field but string
expression.

Closing slash is missing.

Semicolon is missing.

The backslash (\) serves as an escape character to force the
next character to be a literal character. This allows characters
such as pound signs (i) and ampersands (&) to be treated as literal
characters.

PRINT USING "\iii"; 10

The output from this statement is:

*
ilO<NL>

The backslash causes the first pound sign to be treated as a literal
character. An execution error occurs if the backslash is the last
character in a Using string.

A backslash can be printed as a literal character by placing
two backslashes in the Using string.

PRINT USING "\\i";3

The preceding statement outputs:

*
\3<NL>

10.5 Print Using to Files
.

The PRINT USING statement can also write formatted data to
files. The same Using strings, explained throughout this section,
can be used with file PRINT statements.

The following statement outputs one record to the selected
file. The record is terminated with new line characters.

PRINT USING "&"; il; A$

All Information Presented Here is Proprietary to Digital Research

110

CB-80 Reference Manual 10.5 Print Using to Files

When the record is written to the file, quotation marks are not
placed around string data and fields are not delimited by commas.
The following statement shows how to output formulated data to a
file using random access.

PRINT USING A$+B$; iFl%,REC%; X,Y,Z

If output is sent to a fixed file, the record is padded by
blanks to ensure that -it is the proper length.

End of Section

All Information Presented Here is Proprietary to Digital Research

III

Section 11
Compiler Operation

This section describes how to use the CB-80 compiler to compile
source programs and explains the wor kspace requiremen ts of the
compiler. section 11~2 describes the toggles that modify compiler
operation.

11.1 Co.pi1ing a Program

The following command starts the CB-80 compiler:

CB80 TEST

This command compiles TEST, generates a relocatable object file, and
lists the program on the console. The listing provides a line
number, the relative address of the code generated by the line, and
the actual source line. TEST is the name of the source program that
has a default filetype of BAS.

You can overr ide the defaul t filetype of BAS by typing a
complete file specification.

CB80 TEST.PRI

The command above compiles the program TEST.PRI. The source file
cannot have a filetype of REL.

The CB-80 compiler includes three overlays:

CB80.0Vl
CB80.0V2
CB80.0V3

All of the over lays must be on the same logical device as the
executable module: CB80.COM. When using CP/M or MP/M, the module
CB80.COM and all the overlays must be on the logged-in disk. The
source file can be on any logical disk device. For example:

CB80 D:TEST

compiles the program TEST.BAS from drive D:.

The compiler creates work files with a filetype of TMP on the
same device as the source file unless a drive is specified by a
compiler toggle described in Section 11.2. CB-80 uses the following
temporary files:

PA.TMP

All Information Presented Here is Proprietary to Digital Research

113

CB-80 Reference Manual 11.1 Compiling a Program

QCODE.TMP

DATA.TMP

If any files with these names exist on the work file disk when CB-80
starts, they are deleted. After the compilation is complete, CB-80
deletes any temporary files that are created.

In addition, CB-80 creates a file with the same name as the
source file and filetype REL on the same device as the source file.
If the source program contains errors, CB-80 does not create a
relocatable REL file.

The size of the TMP files varies from program to program but
the amount of temporary space required is approximately the same
amount as the source files being compiled. The REL file is also
about the same size as the source file.

On systems wi th limi ted disk space, you might have to break the
program into modules and compile each module separately.

11.2 Command Line Directives

The command line tha t invokes the compiler can pass information
to the compiler by using command line directives. The directives
are alphabetic character s enclosed in square brackets ([].).

CB80 TEST [B]

The command above compiles TEST.BAS with the B toggle in effect.
The source filename automatically terminates when the compiler
encounters a left square bracket. The toggles can be either lower­
or upper-case letters. The following commands have an identical
effect as the one above:

CB80 TEST[B]
CB80 TEST [b]

In all cases, the source file specification is TEST.BAS.

If the source file cannot be located, an error message appears,
and CB-80 returns control to the opera ting system. The same message
appears if a %INCLUDE directive cannot find a source file.

A message appears and compilation terminates when other file
system or memory space errors occur. Appendix A lists these
messages.

CB-80 supports the following toggles:

All Information Presented Here is Proprietary to Digital Research

114

CB-80 Reference Manual 11.2 Command Line Directives

Table 11-1. Toggles

Toggle I Action

B Suppress listing of the source file
on the console.

C Change the defaul t INCLUDE file disk.

I IDterlist the generated code with the
source file.

L Set the page length for printed
listings.

N Generate code for line numbers.

o Suppress the genera tion of the object
(REL) file.

P List the source file on the printer.

R Change the disk that the REL file is
written to.

S Include symbol name information in
the REL file.

T List the symbol table following the
source listing.

U Generate errors for undeclared
variables.

W Set the page wid th for pr in ted
listings.

X Change the disk used for the work
files.

The B toggle suppresses all listing. Only the sta tistical da ta
concerning the size of code and data areas lists on the console. If
CB-80 detects errors, the error and the source line containing the
error are listed.

The B toggle overrides other toggles that result in compiler
output. The B toggle starts the program with a %NOLIST compiler
directive. The %LIST directive overrides the B toggle.

CB80 TEST [B]

If an %INCLUDE directive specifies a filename with no disk
specified, the file is included from the same drive as the source
file. The C toggle can override this assignment. The C toggle

All Information Presented Here is Proprietary to Digital Research

115

CB-80 Reference Manual 11.2 Command Line Directives

changes the default logical drive for INCLUDE files. For example
the following command gets INCLUDE files from drive D:

CB80 TEST [c (d)]

The required drive must be enclosed in parentheses. If the file
specification in the %INCLUDE directive specifies a drive, then the
C toggle has no effect.

This toggle allows program development to be independent of
your particular configuration of the hardware.

The I toggle interlists the generated code with the source
statements. The generated code uses standard 8080 mnemonics.

The L toggle changes the page length.
follow the L and be enclosed in parentheses.
unsigned integer constant.

CB80 TEST [L(40}]

Initially the page length is set to 66.

The new length must
The length can be any

The N toggle generates code that saves the current line number
for each physical line in the source program. This allows the ERRL
function to return the line number when an error occurs.

The 0 toggle suppresses the generation of the relocatable
object (REL) file. This somewhat reduces the time to compile a
program. The REL file is not created if the compiler detects
errors.

The P toggle includes the listing to the printer. Each page
has a heading with the page number and the source filename. A form-
feed character is printed prior to printing the first page.

The R toggle selects a drive on which to place the REL file.

The S toggle includes information on all program var iables and
line numbers in the relocatable object (REL) file. The link editor
can use this informa tion to crea te a "SYM" file. The SYM file can
be used with Digital Research's symbolic debugging program, SIDT.~. to
aid in debugging a program.

The T toggle lists the symbol table following the source file
listing.

The U toggle generates an error if a-variable name does not
appear in an INTEGER, REAL, or STRING declaration. This toggle
locates misspelled identifiers and improves documentation of a
program by forcing all variables to be declared.

The W toggle changes the width of output to the printer. The
width is initially set to 80 columns. The new width must follow the
Wand be enclosed in parentheses. The width can be any unsigned

All Information Presented Here is Proprietary to Digital Research

116

CB-80 Reference Manual 11.2 Command Line Directives

integer constant.

CB80 TEST [W(72)]

The X toggle selects a drive for work files. If there is no X
toggle specified, the work files are placed on the same drive as the
source file. The required drive must be enclosed in parentheses.
It can be either an upper-case or lower-case letter.

CB80 TEST [X(B~]

You can specify multiple toggles in the command line. For
example, the following command line inter lists the generated code
with the 'source statements, lists the source file at the printer,
sets the page width to 72 columns, and sets the page length to 40
lines.

CB80 TEST [IPW(72)L(140)]

Toggles are processed left to right. If you repeat a toggle
with a conflicting parameter, the last toggle encountered prevails.

End of Section

All Information Presented Here is Proprietary to Digital Research

117

Section 12
LK-80

LK-80 is a linkage editor that combines relocatable object
(REL) modules into an executable file and optional overlay files.
LK-80 is designed for use with the CB-80 compiler. When used with a
language such as CB-80, LK-80 produces a composi te program by
combining the language's default library with the REL modules.

LK-80 can link any program that occupies less than 64K bytes of
memory unless the length of symbols exhausts the space reserved for
the symbol table. It can also link modules created by a relocatable
assembler such as RMAC.

This section describes version 1 of LK-80 that operates with
Digital Research's CP/M or MP/M operating systems. The CB-80
Licensing Guide explains how to use CBCK to ver ify tha t your copy of
LK-80 is correct and has not been al tered due to disk copy or
hardware or software failure.

12.1 Operation of LX-80

The general form of an LK-80 command line is shown below.

LK80 [<fn>=]<fn.ft>{,<fn.ft>} { ([<fn>=]<fn.ft>{,<fn.ft>}) }

The brackets ([]) denote optional portions of the command. The
braces ({}) indicate that the enclosed section can be repeated zero
or more times. The symbol "fn" indicates a filename without a
filetype. The symbol "fn.ft" represents a filename with an optional
filetype and optional command toggles.

The remainder of this section details each option of the LK-80
command line.

12.2 Linking Modules

The following command starts LK-80:

LK80 TEST

The canmand above links the REL module "TEST.REL" producing an
executable file "TEST.COM". In addition, a symbol location (SYM)
file "TEST.SYM" is produced. The SYM file can be used with Digital
Research I s symbolic debugging program SIDT.M.. (SID is sold
separately from CB-80.)

All Information Presented Here is Proprietary to Digital Research

119

Section 12
LK-80

LK-80 is a linkage editor that combines relocatable object
(REL) modules into an executable file and optional overlay files.
LK-80 is designed for use with the CB-80 compiler. When used with a
language such as CB-80, LK-80 produces a composi te program by
combining the language's default library with the REL modules.

LK-80 can link any program that occupies less than 64K bytes of
memory unless the length of symbols exhausts the space reserved for
the symbol table. It can also link modules created by a relocatable
assembler such as RMAC.

This section describes version 1 of LK-80 that operates with
Digital Research's CP/M or MP/M operating systems. The CB-80
Licensing Guide explains how to use CBCK to ver ify tha t your copy of
LK-80 is correct and has not been al tered due to disk copy or
hardware or software failure.

12.1 Operation of LK-80

The general form of an LK-80 command line is shown below.

LK80 [<fn>=]<fn.ft>{,<fn.ft>} { ([<fn>=]<fn.ft>{,<fn.ft>}) }

The brackets ([]) denote optional portions of the command. The
braces ({}) indicate that the enclosed section can be repeated zero
or more times. The symbol "fn" indicates a filename without a
filetype. The symbol "fn.ft" represents a filename with an optional
filetype and optional command toggles.

The remainder of this section details each option of the LK-80
command line.

12.2 Linking Modules

The following command starts LK-80:

LK80 TEST

The command above links the REL module "TEST.REL" producing an
executable file "TEST.COM". In addition, a symbol location (SYM)
file "TEST.SYM" is produced. The SYM file can be used with Digital
Research I s symbolic debugging program SIDT.M.. (SID is sold
separately from CB-80.)

All Information Presented Here is Proprietary to Digital Research

119

CB-80 Reference Manual 12.2 Linking Modules

When linking CB-80 programs, LK-80 automatically searches the
default disk for the CB-80 run-time library "CB80. IRL". Any library
modules required by the program being linked are combined into the
executable module produced by LK-80. The combination of one or more
REL files with a language library forms a composite program.

LK-80 prints information on the display about the module being
linked. The next example shows the results of linking a simple
program. The CB-80 program below, "TEST.BAS", can be compiled to
produce a REL file "TEST. REL" :

PRINT "THIS IS A TEST PROGRAM"
PRINT "IT IS USED TO DEMO LK-80"
STOP

Use the following command to link the module "TEST.REL":

LK80 TEST

The information tha t LK-80 pr ints on the display is shown
below:

A>LKBO

LK-80 Version 1.3 Serial No. 000-1234 Copyright (c)
1981 Digital Research, Inc. All rights reserved

code size: 1173 (0100-1273)
common size: 0000
data size: 0168 (1280-13E7)
symbol table space remaining: OA4C

The amount of memory allocated to code, common data, and local
data is shown next. In this example, there is no common data. All
the values are hexadecimal numbers.

The amount of symbol table space rema in ing provides an
indication of the number of additional symbols that can be added to
the modules being linked without running out of symbol table space.

Normally LK-80 produces a COM file with the same name as the
REL file. For example, linking the example above results in an
executable file "TEST.COM" on the default drive. You can override
this naming convention.

LK80 PAYROLL=B:PAY

The command above links the module "PAY.REL" from drive B but
creates an executable file "PAYROLL.COM" on the default drive.

All Information Presented Here is Proprietary to Digital Research

120

CB-80 Reference Manual 12.2 Linking Modules

The following command produces the same executable file as the
previous example but the file "PAYROLL.COM" is placed on the B drive
instead of the default drive.

LK80 B:PAYROLL=B:PAY

The names of the modules being linked can have filetypes as
shown below.

LK80 A.REL,B.S:

LK-80 assumes that the file is a REL file unless the filetype is
IRL. This means that, in the preceding example, the module "B.C" is
read assuming it is a reloca table object module. The filetype "c"
is not ignored, but the file contents are treated as a REL file. If
this file is not a rel'oca table obj ect file, LK-80 will most likely
abort with the error message:

"LK80 FAILURE 4."

12.3 Linking Multiple BEL Files

Multiple REL modules can be combined into one executable file
by listing a group of REL modules separated by commas.

The following command links the four REL modules, "A.REL",
"B.REL", "C.REL", and "D.REL", to an executable file "A.COM". The
first name in the list becomes the name of the COM file.

LK80 A,B,C,D

LK-80 can link as many as 60 REL files at one time. However,
the total length of the command line cannot exceed 128 characters.
Thus it might be necessary to rename some REL files to short names
when a large number of files are being linked. Alternatively, the
command line can be put into a file as discussed below.

The modules are linked in the order they appear in the LK-80
command. If no drive reference is specified, the files are read
from the default drive. However, REL files can be linked from any
drive.

LK80 AP,B:APMENUE,A:APSCN

When mul tiple modules are linked together,
filename can be specified in the command line.
below, the modules "TEST.REL" and "RTN.REL" are
forming an executable module "MYPROG.COM".

LK80 MYPROG=TEST,RTN

the executable
In the example

linked together

LK-80 can read the command line from a file on the disk. This
feature is included because the l28-byte limit on the length of the
console is exceeded if many modules are included in the same link.

All Information Presented Here is Proprietary to Digital Research

121

CB-80 Reference Manual 12.3 Linking Multiple REL Files

There is no limit to the length of a command line if it is taken
from a disk file.

To have LK-80 read the command line from a disk file, use the
following command format:

LK80 $ <fn.ft>

The dollar sign must be the first non-blank character following the
letters "LK80." Furthermore, at least one space must separa te the
"$" from the file specification (fn.ft) of the file that contains
the link command. The command file, which can have any name or type
you want, can be created with an editor.

Carriage returns, line-feeds, and tab characters can be placed
anywhere in the command file so you can easily read long commands.
They are ignored by LK-80 (not treated as delimiters).

In addition, the backslash character "\" causes LK-80 to ignore
all subsequent characters up to and including the next line-feed.
You can use the backslash to include comments and document large
links.

To summar ize the command file fea tures of LK-80, suppose tha t a
file named "command. Ink" has been created and has the following
contents:

\\\
\\\
\\
<tab>
<tab>
<tab>

LINK command for LIST.COM
Last modified on 14 December 1981

LIST = A <tab> \ Root Module <cr,lf>
(UPD) <tab> \ First Overlay (Update file) <cr,lf>
(Al,Bl) <tab> \ Second Overlay, Currently largest <cr,lf>

Executing the command:

LK80 $ command. Ink

has the same effect as the command:

LK80 LIST = A(UPD) (Al,Bl)

12.4 Producing Overlays

LK-80 produces overlay files that a CB-80 CHAIN statement can
load and execute.

LK-80 produces overlay (OVL) files that preserve variables in
COMMON including any dynamically created data such as arrays or
strings. To place a REL module in an overlay, enclose the name of
the REL file in parentheses.

All Information Presented Here is Proprietary to Digital Research

122

CB-80 Reference Manual 12.4 Producing Overlays

LK80 A(B)

When the preceding command is executed, LK-80 produces two
files:

A.COM
B.OVL

The CCM file is the root. The file "B.OVL" is an overlay file that
can be loaded only by a CHAIN statement contained in the root
"A.COM".

Chaining to an overlay differs from the conventional concept of
loading overlays. When the root chains to an overlay, the overlay
replaces the root. Likewise when the overlay chains to another
overlay or back to the root, the new overlay replaces the currently
executing overlay.

CB-80 ensures that all library routines are contained in the
root. Cha ining preserves the librar ies the over lay files use. This
reduces the size of overlays and decreases the time required to load
an overlay file.

An overlay file returns to the root that loaded it by chaining
back to' the COM file. The overlay can load another OVL if the
second overlay was also linked with the same root. The following
example produces a root "A.COM" and two overlays "B.COM" and
"C.COM".

LK80 A(B) (C)

LK-80 can create up to 60 overlays.
of REL modules linked cannot exceed 60.
contain multiple REL files.

LK80 A(B) (C,D,E) (F) (G)

However the total number
A particular overlay can

The name of each over lay and the name of the root can be
specified in the command line.

LK80 A=ROOT(B=OVI) (C=OV2)

The
overlays:

command line above produces a root "A.COM" and two
"B. OVL" and "C. OVL" •

12.5 LK-80 Toggles

To pass information to LK-80, place toggles between square
brackets.

LK80 TEST[Q]

The command above passes the Q toggle to LK-80. The Q toggle causes
LK-80 to place symbols beginning with a question mark into the SYM

All Information Presented Here is Proprietary to Digital Research

123

CB-80 Reference Manual 12.5 LK-80 Toggles

file. The Q toggle adds about 100 symbols to the SYM file. If the
Q toggle is not specified, the SYM file contains only the symbols
defined in the programs being linked. Language developers use a
symbol beginning with a question mark for library names.

12.6 LK-80 Error Messages

LK-80 prints a phrase on the display describing the error when
an error is detected. Control then returns to CP/M if the error is
a fatal error.

The following table descr ibes the error messages tha t can
occur.

Table 12-1. LK-80 Error Messages

Message Meaning

Unresolved external: <symbol name>

The symbol name is defined as an external
symbol but is never defined as a public
symbol.

Out of Directory Space

Disk Full

LK-80 ran out of directory space while
writing the root or overlay file.

LK-80 ran out of disk space while writing
the root or overlay file.

Multiple Definition: <symbol name>

The symbol name is defined twice.

Too many overlays

More than 60 overlays were specified in .
the command line.

Too many modules

More than 60 modules were specified in the
command line.

All Information Presented Here is Proprietary to Digital Research

124

CB-80 Refp.rence Manual 12.6 LK-80 Error Messages

Table 12-1. (continued)

Message Meaning

Symbol table overflow

There is not sufficient memory for the
symbol table.

Cannot open source file

A source file specified in the command
line cannot be opened.

12.7 Linking with Assembly Language

LK-80 links modules produced by Digital Research's RMAC
Relocating Macro Assembler with REL files created by CB-80. The
same commands explained at the beginning of this section apply.

An assembly language module that is linked with CB-80 must not
contain any initialized data because of the run-time environment CB-
80 requires. Any data that must have initial values can be placed
in the code segment.

Note: tha t using assembly language routines makes a program machine
dependent.

12.8 Passing Parameters

CB-80 passes all parameters on the 8080 hardware stack. The
last entry on the stack contains the return address. Parameters are
stored below the return address. When a routine is called, the
first parameter is placed on the stack first. Each remaining
parameter from left to right is then placed on the stack.

12.8.1 Integer Parameters

Integers are passed on the hardware stack as sixteen bit signed
integers. The integers are stored with the low-order byte in the
lower memory address.

I LOW BYTE I HIGH BYTE I

SP

All Information Presented Here is Proprietary to Digital Research

125

CB-BO Reference Manual l2.B passing Parameters

12.8.2 Real Parameters

Real numbers are passed on the hardware stack as eight byte
floating point decimal numbers.

I EXP I M I A I NIT I I I ssl A I

SP

Each of the seven mantissa bytes contain two binary coded
decimal digits. The left four bits of each byte in the mantissa
contain the most significant digit in that byte. The mantissa is
normalized so that the most significant digit is always non-zero.

The left most bit of the exponent is the sign of the mantissa.
If the bit is a one, the mantissa is negative, and if it is a zero,
the mantissa is positive.

The remaining seven bi ts of the exponen t represen t the power of
ten multiplier to be applied to the mantissa. The actual multiplier
used is determined by subtracting 64 from the seven low-order bits
of the exponent byte.

A number with a value of zero is represented by setting the
exponen t by te to O. The man t is sa is ignor ed. All e igh t bits of the
exponent must be zero for the value to be zero.

12.8.3 String Parameters

Strings are passed by placing a pointer to the actual string on
the hardware stack. The pointer is an unsigned sixteen bi t integer.

I LOW BYTE I HIGH BYTE 1

SP

I f the value of the pointer is zero, the str ing is a null
string. Otherwise the pointer is the addr~ss of the string. The
first two bytes of the string contain an allocation bit and a
fifteen bit string length. The left most bit of the first byte is
the allocation bit.

If the allocation bit is a one, the string must be returned to
the CB-80 pool of available storage prior to returning from the
assembly language routine, and after all references to characters
within the string have occurred. The ?RELS library routine returns

All Information Presented Here is Proprietary to Digital Research

126

CB-BO Reference Manual 12.B Passing Parameters

string space.to CB-BO.

If the BOBO registers Hand L contain the pointer to the string
passed as the string parameter, the following assembly language
statements release a string with its allocation bit set.

MOV A,H iIF PTR = 0 THEN
ORA L i NO RELEASE
RZ
MOV A,M iGET HIGH BYTE OF LNG
ORA A iIS ALLOC BIT = I?
RP iIF NOT NO RELEASE
CALL ?RELS iRELEASE THE STRING
RET

If the allocation bit is a zero, the characters in the string
should not be changed since the calling program still has access to
the string. If the allocation bit is 0, the string cannot be
released.

12.9 Returning Values to CD-SO

An assembly language routine can return integer, real, or
string values to CB-BO. Prior to returning to CB-BO, all parameters
passed on the stack must have been removed and the stack pointer
adjusted accordingly.

An integer number is returned in registers Hand L.

Real numbers are returned by placing a pointer in registers H
and L to an eight byte data area containing the real number to be
returned.

The returned number must be stored in the format described
above. The Hand L registers contain the address of the exponent
byte.

Strings are returned by placing a pointer to the string in
registers Hand L. The str ing must have been alloca ted by the CB-BO
dynamic storage management routines.

The allocation bit of the returned string should be set to one.
This ensures that the space is reclaimed when it is no longer
required.

12.10 Dynaaic Storage Allocation Routines

The CB-BO run-time library provides four routines that allow
you to allocate and release memory and to determine the amount of
space that is available for allocation.

All Information Presented Here is Proprietary to Digital Research

127

CB-80 Reference Manual 12.10 Storage Allocation Routines

The ?GETS routine allocates space. The number of bytes of
memory required is placed in registers Hand L. 32,762 bytes is
the maximum amount of space that can be allocated.

?GETS returns a pointer in registers Hand L to a contiguous
block of memory. There is no restriction on what can be placed in
the allocated memory, but the adjacent space at either end of the
area cannot be modified. If there is insufficient space, an "OM"
error occurs.

The ?RELS routine releases previously allocated memory. The
address of the space being released is placed in registers Hand L.
?RELS does not return a value.

The ?MFRE routine returns the size of the largest contiguous
space that can be currently allocated using the ?GETS routine. The
value returned is an unsigned integer; it is placed in registers H
and L.

The ?IFRE routine returns the total amount of dynamic space
that is currently unallocated. The returned value is an unsigned
integer and it is placed in registers Hand L.

12.11 Ari~etic Routines

The CB-80 run-time library provides routines for signed integer
multiplication and division. The ?IMUL routine multiplies the
signed integer in registers D and E by the signed integer in
registers Hand L. The resu1t is placed in registers Hand L.

The ?IDIV routine divides the signed integer in registers D and
E by the signed integer in Hand L. The resul t is placed in
registers Hand L.

End of Section

All Information Presented Here is Proprietary to Digital Research

128

ABS

ATTACHP

CLOSE

CONSTAT%

DELETE

ERR

EXTERNAL

GE

GT

INPUT

LEFT$

LOCKED

MFRE

NOT

PEEK

PUT

RECL

RESTORE

SGN

STOP

TAN

UNLOCKED

WHILE

%INCLUDE

All Information

Appendix A
C8-80 Reserved Words

AND AS ASC

BUFF . CALL CHAIN

COMMAND$ COMMON CONCHAR%

COS CREATE DATA

DETACH DIM ELSE

ERRL ERROR EQ

FEND FLOAT FOR

GET GO GOSUB

IF INITIALIZE INKEY

INT INT% INTEGER

LEN LET LINE

LOG LPRINTER LT

MID$ MOD NE

ON OPEN OR

POKE POS PRINT

RANDOMIZE READ READONLY

RECS REM REMARK

RETURN RIGHT$ RND

SIN SIZE SQR

STR$ STRING SUB

THEN TO UCASE$

USING VAL VARPTR

WIDTH XOR %CHAIN

%LIST %NOLIST %PAGE

End of Appendix

ATN

CHR$

CONSOLE

DEF

END

EXP

FRE

GOTO

INP

LE

LOCK

MATCH

NEXT

OUT

PUBLIC

REAL

RENAME

SADD

STEP

TAB

UNLOCK

WEND

%EJECT

Presented Here is Proprietary to Digital Research
129

Appendix B
Collected Syntax Diagrams

This appendix contains the syntax diagrams that describe the
complete syntax of CB-80.

CON5TANT

10

L..£TTER

All Information Presented Here is Proprietary to Digital Research

131

CB-80 Reference Manual Appendix B Syntax Diagrams

6TAT~MI:.NT

-- &1'MT LAeE.L.-
.. IF ~TATeM~NT -- .

~~ . ~

.. ~ ~TATS.Ml?NT ..

. -• -
if"MT l-tAJ36.t..-

All Information Presented Here is Proprietary to Digital Research

132

CB-80 Reference Manual Appendix B Syntax Diagrams

DIM

~Xf'RS.SS ION

DATA

C.ON~TANT

All Information Presented Here is Proprietary to Digital Research

133

CB-80 Reference Manual Appendix B Syntax Diagrams

51Nb1..6 L.IN~ FI1NC,TION

ID

I..-----t?~----'

MUL.Tlf'I.$. UN6- FUNC,'TION

10

O~D

(eXPl<~~ION)

CON5TANT ~

VARIABL..~ ~

FVNCREF ~

All Information Presented Here is Proprietary to Digital Research

134

CB-80 Reference Manual Appendix B Syntax Diagrams

~NC~~F ~----~~--------------------------------~~

VA~IA~L..~

L.. F,ACTOR

All Information Presented Here is Proprietary to Digital Research

135

CB-80 Reference Manual Appendix B Syntax Diagrams

L.. FA(,TOJ<.

L TERM

A~)(PR

A FUlOR.

All Information Presented Here is Proprietary to Digital Research

136

CB-80 Reference Manual Appendix B Syntax Diagrams

A FACTOR.

ATERM

A1ERM

M6IbNM~N-r 6TAT~M~NT

VARI Ae>L-e

All Information Presented Here is Proprietary to Digital Research

137

CB-80 Reference Manual Appendix B Syntax Diagrams

bOlO

IF ~TAT~M~NT

IF(.ONP R 6TA-n;:M6-NT .6TA~M~

~~TAT~MeNT

.. ~,....- IFWND ~ R6TAlEMENT ~re- R6TA"Tt:MENT
~

I I

66TAT~M~T

. .

Ir:c.OND

All Information Presented Here is Proprietary to Digital Research

138

CB-80 Reference Manual Appendix B Syntax Diagrams

WHIt.£. l.OOP

.8--

All Information Presented Here is Proprietary to Digital Research

139

CB-80 Reference Manual Appendix B Syntax Diagrams

~XP~~610N

ON

~XPRE5SI0N

All Information Presented Here is Proprietary to Digital Research

140

CB-80 Reference Manual Appendix B Syntax Diagrams

----.~

. -------------

t>TOP

CHAIN

---.. --t8t--------t1 ~PK'~?~ ION

All Information Presented Here is Proprietary to Digital Research

141

CB-80 Reference Manual Appendix B Syntax Diagrams

INPUT

VARIABL~

----------.--~~~----------~-

CON60L~

--------~.~~~------~.-

De=.TAC.~

All Information Presented Here is Proprietary to Digital Research

142

CB-80 Reference Manual Appendix B Syntax Diagrams

P~INT

'---....(. ,

PoK~

OUT

All Information Presented Here is Proprietary to Digital Research

143

CB-80 Reference Manual Appendix B Syntax Diagrams

VA~IASl-e

-----------.~~~--------~~~

RAN I/O M IZG.

All Information Presented Here is Proprietary to Digital Research

144

CB-80 Reference Manual Appendix B Syntax Diagrams

~ION

INIT

All Information Presented Here is Proprietary to Digital Research

145

CB-80 Reference Manual Appendix B Syntax Diagrams

~DF,L£

PRINT FIL-E=

, --

All Information Presented Here is Proprietary to Digital Research

146

CB-80 Reference Manual Appendix B Syntax Diagrams

PUT

F~M

IF END

End of Appendix

All Information Presented Here is Proprietary to Digital Research

147

Appendix C
Compiler Error Messages

The compiler prints the following messages when a file system
error or memory space error occurs. In each case, control returns
to the operating system.

Table C-I. File System and Memory Space Errors

Error Meaning

COULD NOT OPEN FILE: <filename>

The filename following the message cannot be
located in the file system directory.

INCLUDES NESTED TO DEEP: <filename>

The filename following the message occurred in
an %INCLUDE directive that exceeds the allowed
nesting of %INCLUDE directives.

SYMBOL TABLE OVERFLOW

The available memory for symbol table space has
been exceeded. Break the program into modules
or use shorter symbol names.

INVALID FILE NAME: <filename>

The filename is not valid for your opera ting
system.

DISK READ ERROR

The opera ting system reports a disk read eJ;ror .• "

CREATE ERROR: <filename>

The file cannot be created. Normally this
means there is no directory space on the disk.

All Information Presented Here is Proprietary to Digital Research

149

CB-80 Reference Manual Appendix C Compiler Error Messages

Error

DISK FULL

Table C-1. (continued)

Meaning

The operating system reports that no additional
space is available to write temporary or output
files.

INVALID COMMAND LINE

The CB-80 cOl8lRand line is incorrect. This
message also appears if you did not specify a
source file.

CLOSE OR DELETE ERROR

The opera ting system reports tha t it cannot
close a file. This occurs if diskettes are
switched during compilation.

If the compiler detects an internal failure, the following
error message appears:

FATAL COMPILER ERROR XXX

where XXX is a three digit number. Please advise Digital Research
of the error and the circumstances under which it occurs.

The followi~g error messages indicate a fatal compiler error
occurrea during compilation of il program. Compilation continues
after the error is recorded.

Table C-2. Coapilation Error Messages

Error I Meaning

1 An invalid character was detected in the source
program. The character was ignored.

2 Invalid string constant. The string is too
long or contains a carriage return.

3 Invalid numeric constant. An integer constant
of zero is assumed.

4 Undefined compiler directive. This source line
is ignored.

5 The %INCLUDE directive is missing a filename.
This source line is ignored.

All Information Presented Here is Proprietary to Digital Research

150

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error 1 Meaning

6 Statements found after an END.

7 Not used.

8 A variable was used without being defined and
the u toggle was used during compilation.

9 The DEF sta temen t
ca r r iage return.
inserted.

is not termina ted by a
A car r iage return wa s

10 Aright parenthesis is missing from the
parameter list. A right parenthesis was
inserted.

11 A comma was expected in the parameter list. A
comma was inserted.

12 An identifier was expected in the parameter
list.

13 The same name is used twice in a parameter
list.

14 A DEF sta tement occurred within a multiple line
function. Multiple line functions cannot be
nested. The statement was ignored.

15 A variable was expected.

16 The function name was missing following the
keyword DEF. The DEF statement was ignored.

17 A function name was used previously. The DEF
statement is ignored.

18 A FEND statement was expected.
inserted.

A FEND was

19 There are too many parameters in a multiple
line function.

20 Inconsistent identifier usage. An identifier
cannot be used as both a label and a variable.

21 Additional data exists in the source file
follow ing an END s ta temen t. This is the
logical end of the program.

All Information Presented Here is Proprietary to Digital Research

151

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

22 Data statements must begin on a new line. The
remainder of this statement was treated as a
remark.

23 A reserved word appears in a declaration list.
The reserved word was ignored.

24 A function name appears in a declaration within
a multiple line function other than the
multiple line function that defines this
function name.

25 A function call was encountered with the
incorrect number of parameters.

26 A left parenthesis was expected.
parenthesis was inserted.

A left

27 Invalid mixed mode. The type of the expression
is not permitted.

28 Unary operator cannot be used with this
operand.

29 Function call has improper type of parameter.

30 Invalid symbol follows a var iable, constan t, or
function reference.

31 This symbol cannot occur a t this loca tion in an
expression. The symbol is ignored.

32 Operator is missing. Multiplication operator
inserted.

33 Invalid symbol encountered in an expression.

34

The symbol is ignored.

A right parenthesis was expected.
parenthesis inserted.

Aright

35 A s ubscr ipted var iable is used wi th the
incorrect number of subscrip~s.

36 An identifier is used as a simple variable
with previous usage as a subscripted variable.

37 An iden tif ier is used as a subscr ipted var iable
with previous usage as an unsubscripted
variable.

All Information Presented Here is Proprietary to Digital Research

152

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

38 A string expression is used as a subscript in
an array reference.

39 A constant was expected.

40 Invalid ,symbol found in declaration list. The
symbol is skipped.

41 A carr iage return was expected in a declara tion
statement. A carriage return was inserted.

42 Comma is missing in declaration list. A comma
inserted.

43 A common declara tion cannot occur in a mul tiple
line function. The statement is ignored.

44 An identifier appears in a declaration twice in
the main program or within the same multiple
line function.

45 The number of dimensions specified for an array
exceeds the maximum number allowed. A value of
one was used. This might generate additional
errors in the program.

46 Righ t par en thesis missing in the dimension
specification within a declaration. A right
parenthesis was inserted.

47 The same identifier is placed in COMMON twice.

48 An invalid subscripted va~iable reference was
encountered in a declara tion sta tement. An
integer constant is required. A value of 1 was
used.

49 An invalid symbol following a declaration or
the symbol in the first statement in the
program is invalid. The symbol is ignored.

50 An invalid symbol was encountered at the
beginning of a statement or following a label.

51 An equal sign was expected in assignment. An
equal sign was inserted.

All Information Presented Here is Proprietary to Digital Research

153

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

52 A name used as a label was previously used at
this level as either a label or variable.

53 Unexpected symbol following a simple sta temen t.
The symbol was ignored.

54 A statement was not terminated with a carriage
return. Text was ignored until the next
carriage return.

55 A function name was used in the left part of an
assignment statement outside of a multiple line
function. Only when the function is being
compiled can its name appear on the left of an
assignmen t sta temen t.

56 A predefined function name was used as the left
part of an assignment statement.

57

58

In an IF statement, a THEN was expected.
THEN was inserted.

A

A WEND statement was expected.
inserted.

A WEND was

59 A carriage ret,urn or colon was expected at the
end of a WHILE loop header.

60 In a FOR loop header the index is missing. The
compiler skipped to end of this statement.

61 In a FOR loop header, a TO was expected. A TO
was inserted.

62 An equal sign was missing in a FOR loop header
assignment. An equal sign was inserted.

63 Expected carriage return or colon at end of FOR
loop header.

64 A NEXT statement was expected.
inserted.

65 Not used.

A NEXT was

66 The variable that follows NEXT does not match
the FOR loop index.

All Information Presented Here is Proprietary to Digital Research

154

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

67 A NEXT statement was encountered without a
corresponding FOR loop header.

68 A WEND sta temen t was encountered without a
corresponding WHILE loop header.

69 A FEND statement was encountered without a
corresponding DEF sta temen t. This error
indicates that the end of the source program
was detected while within a multiple line
function.

70 The PRINT USING string is not of type string.

71 A delimi ter is miss ing in a PRINT sta temen t. A
semicolon was inserted.

72 A semicolon was expected in an INPUT prompt. A
semicolon was inserted.

73 A delimiter is missing in an INPUT statement.
A comma was inserted.

74 A semicolon was expected following a file
reference. A semicolon was inserted.

75 The prompt in an INPUT sta temen t was not of
type string.

76 In an INPUT LINE statement, the variable
following the keyword LINE was not a string
variable.

77 In an INPUT sta temen t a comma was expected
between variables. A comma was inserted.

78 The keyword AS was missing in an OPEN or CREATE
statement. AS was inserted.

79 The filename in an OPEN or CREATE sta temen twas
not a string expression.

80 A delimi ter is missing in a READ sta temen t. A
comma was inserted.

81 In a GOTO, GOSUB or ON statement, a label was
expected. This token can be an identifier
previously used as a variable.

All Information Presented Here is Proprietary to Digital Research

155

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

82 The label is a GOTO statement is not defined.
If the label is used in a function, it must be
defined in that function.

83 A delimiter is missing in a file READ
statement. A comma was inserted.

84 In a READ LINE statement, the variable
following the keyword LINE is not a str ing
variable.

85 The label in an IF END s ta temen t is not
defined.

86 A pound sign (#) was expected in an IF END
statement. A pound sign was inserted.

87 A THEN was expected in an IF END statement. A
THEN was inserted.

88 In a PRINT statement, the semicolon is missing
following a using str ing. A semicolon was
inserted.

89 In an ON sta temen t, a GOTO or GOSUB was
expected. A GoTO was assumed.

90 The index of a FOR loop header is of type
string. The index must be an integer or real
value.

91 The expression following the keyword TO in a
FOR loop header is of type str ing. The
expression must be an integer or real value.

92 The expression following the keyword STEP in a
FOR loop header is of type str ing. The
expression must be an integer or real value.

93 A variable in a DIM statement has been defined
pr ev iou s ly as othe r than a subscr ipted
variable.

94 An identifier was expected as'an array name in
a DIM statement. The entire statement was
ignored.

95 A left parenthesis was expected in a DIM
statement. A left parenthesis was inserted.

All Information Presented Here is Proprietary to Digital Research

156

CB-80 Reference Manual Appendix C Compiler Error Messages

Error I
96

97

98

99

100

101

102

103

Table C-2. (continued)

Meaning

A r igh t par en thesis was expected in a DIM
statement. A right parenthesis was inserted.

The maximum number of d imen sions allowed wi th a
subscripted variable was exceeded • .
A comma was expected in a POKE statement. A
comma was inserted.

The index of a FOR loop header was not a simple
variable.

In a CALL statement, a multiple line function
name was expected.

A file PRINT statement was terminated with a
comma or semicolon.

A DIM sta tement is missing for this subscr ipted
variable.

Expected a comma in the label list associated
wi th an ON GOTO or ON GaS UB s ta temen t • A comma
was inserted.

104 Expected a GOTO in an ON ERROR statement. A
GOTO was inserted.

105 Expected a comma in a PUT statement. A comma
was inserted.

106 The expression in an IF statement was of type
str ing • An integer or real expression is
required.

107 The expression in a WHILE loop header was of
type string. An integer or real expression is
required.

108 In an OPEN or CREATE statement, the filename
was missing.

109 In an OPEN or CREATE statement, the expression
following the reserved word AS was missing.

110 A multiple line function called itself.

III A semicolon separates expressions in a file
PRINT statement. A comma is substituted for
the semicolon.

All Information Presented Here is Proprietary to Digital Research

157

CB-80 Reference Manual Appendix C Compiler Error Messages

Table C-2. (continued)

Error I Meaning

112 A file PRINT statement does not have an
expression list.

113 A TAB funct ion is used in a file PRINT
statement expression list.

114 Not used.

115 A GO not followed by a TO or SUB.
assumed.

GOTO is

116 An OPEN or CREATE sta tement specif ies both
UNLOCKED and LOCKED access control.

117 A CREATE statement uses the READ ONLY access
control.

End of Appendix

All Information Presented Here is Proprietary to Digital Research

158

Appendix 0
Execution Error Messages

The following warning message might be pr inted dur ing execution
of a CB-80 program:

IMPROPER INPUT - REENTER

This message occurs when the fields you enter from the console
do not match the fields specified in the INPUT statement. Following
this message, you must reenter all values required by the input
sta tement.

Execution errors cause a two-letter code to be printed. The
following table contains valid CB-80 error codes.

If an error occurs with a code consisting of an asterisk
followed by a letter such as *R, a CB-80 library has failed. Please
notify Digital Research of the circumstances under which the error
occurred.

Table D-l. CB-SO Error Codes

Code I Error

AC The argument in an ASC function is a null
string.

BN The value following the BUFF option in an OPEN
or CREATE sta tement is less than 1 or grea ter
than 128.

CE The file being closed cannot be found in the
directory. This occurs if the file has been
changed by the RENAME function.

CM The file specified in a CHAIN statement cannot
be found in the selected directory. If no
filetype is present, the compiler assumes a
type of OVL.

CT The filetype of the file specified in a CHAIN
statement is other than COM or OVL.

CU A c los est ate men t s p e c i fie s a f i 1 e
identification number that is not active.

e)(6111Jfl£.Nt lJol1S~cr t.o vt, 'TIt ~ .. '01
DF An OPEN or CREATE statement uses a file

identification number that is already used.

All Information Presented Here is Proprietary to Digital Research

159

CB-80 Reference Manual Appendix D Execution Error Messages

Table D-l. (continued)

Code' I Error

DU A DEL E T E s' tat e men t s p e c i fie s a f i I e
identification number that is not active.

DW The operating system reports that there is no
disk or directory space available for the file
being written to and no IF END statement is in
effect for the file identification number.

DZ Division by zero was attempted.

EF An attempt is made to read past the end of file
and no IF END statement is in effect for the
file identification number.

ER An attempt is made to write a record of length
greater than the maximum record size specified
in the OPEN or CREATE statement for this file.

FR An attempt is made to rename a file to a
filename that already exists.

FU An attempt was made to access a file that was
not open.

IF A filename in ,an OPEN or CREATE statement or
with the RENAME function is invalid for your
operating system.

IR A record number of zero is specified in a READ
or PRINT s ta temen t.

LN The argumen t in the LOG function is zero or
negative.

ME The opera ting system repor ts an er ror dur ing an
attempt to create or extend a file. Normally,
this means the disk directory is full.

MP The third parameter in a MATCH function is zero
or negative.

NE A negative value is specified for the operand
to the left of the power oper~tor.

NF A file identification is less than 1 or greater
than the maximum number allowed. See Appendix
E.

All Information Presented Here is Proprietary to Digital Research

160

CB-80 Reference Manual Appendix D Execution Error Messages

Table D-1. (continued)

Code I Error

NN An attempt to print a numeric expression with a
PRINT USING statement fails because there is
not a numeric field in the USING string.

NS An attempt to print a string, expression with a
PRINT USING statement fails because there is
not a string field in the USING string.

OD A READ statement is executed but there are no
DATA sta temen ts in the program, or all da ta
items in all the DATA statements have already
been read.

OE An attempt is made to OPEN a file tha t does not
exist and for which no IF END statement is in
effect.

OF An over flow occurs dur ing a real ar ithmetic
calculation.

OM The program runs out of dynamically allocated
memory during execution.

RB Random access is attempted to a file activated
with the BUFF option specifying more than one
buffer.

RE An attempt is made to read past the end of a
record in a fixed file.

RU A random read or print is attempted to a stream
file.

SL A concatenation operation results in a string
greater than the maximum allowed string length.

SQ A attempt is made to calculate the square root
of a negative number.

SS The second parameter of a MID$ function is zero
or negative, or the last parameter of a LEFT$,
RIGHT$, or MID$ is negative.

TL A tab statement contains a parameter less than
1.

UN A PRINT US ING s ta temen t is execu ted wi th a nu 11
edit string, or an escape character (\) is the
last character in an edit string.

All Information Presented Here is Proprietary to Digital Research

161

CB-80 Reference Manual Appendix D Execution Error Messages

Table D-l. (continued)

Code I Error

WR An attempt is made to write to a stream file
after it had been read, but before it had been
read to the end of file.

End of Appendix

All Information Presented Here is Proprietary to Digital Research

162

Appendix E
Implementation Dependent Values

The following implementa.tion dependent values apply to CB-80
version 1 for use with CP/M version 2 and MP/M-80 T •M• versions 1 and
2:

Table E-l. Implementation Dependent Values

Parameter

Initial page width for compiler
output

Initial page length for compiler
output

Maximum number of errors
maintained

Maximum nesting of include

Maximum number of formal parameters

Maximum number of subscripts in an
array

Maximum unique identifier length

Maximum number of characters in
str ing constan t

Maximum length of Global and
External names

Maximum nesting of FOR loops

Maximum nesting of WHILE loops

Number of files that can be open
at one time

File buffer size in bytes

I Value J Minimum

80

66

95

6

15

15

50

255

6

13

39

20

128

4

15

15

31

255

6

12

The minimum values are the minimum that are used in any CB-80
implemen ta tion.

The following extensions exist in CB-80 version 1.3 to provide
compatibility with CBASIC version 2. Note that future versions of
CB-80 might not support these extensions.

All Information Presented Here is Proprietary to Digital Research

163

CB-80 Reference Manual Appendix E Dependent Values

• The LPRINTER statement accepts a WIDTH option to be consistent
with CBASIC. The width is ignored.

• Integer and real data is initialized to 0; strings are
initialized to null strings.

• The INPUT prompt string can be any expression; the first
operand must be a string constant.

• A file OPEN or CREATE statement accepts a RECS field for
compatability with CBASIC. The expression is ignored.

• You can use the reserved words LT, GT, GE, LE, EQ, and NE in
place of the relational operators <, >, <=, >=, =, and <>.

• CB-80 supports the following form of an IF statement,

IF <expression> THEN <label>

but the <label> must be a numeric label.

End of Appendix

All Information Presented Here is Proprietary to Digital Research

164

Appendix F
Glossary

address: Location in memory • .
ambiguous file specification: File specification that contains
either of the Digital Research wildcard characters, ? or *, in the
filename or filetype or both. When you replace characters in a file
specif ica tion wi th these wildcard characters, you create an
ambiguous filespec and can reference more than one file in a single
command line.

applications program: Program that needs an operating system to
provide an environment in which to execute. Typical applications
programs are business accounting packages, word processing, and
mailing list programs.

argument: Var iable or expression value tha t is passed to a
procedure or function and substituted for the dummy argument in the
function. Same as "actual argument" or "calling argument". Used
interchangeably with "parameter".

array: Data type that is itself a collection of individual data
i terns of the same da ta type. Term used to descr ibe a form of
storing and accessing data in memory, visualized as matrices. The
number of extents of an array is the number of dimensions of the
array. A one dimensional array is essentially a list.

ASCII: Acronym for Amer ican Standard Code for Information
Interchange. ASCII is a standard code for representation of the
numbers, letters, and symbols that appear on most keyboards.

assembler: Language translator that translates assembly language
statements into machine code.

assign.ent statement: Sta temen t tha t assigns the value of an
expression on the right side of an equal sign to the variable name
on the left side of the equal sign.

back-up: Copy of a file or disk made for safe keeping, or the
creation of the file or disk.

binary: Base two numbering system containing the two symbols zero
and one.

bit: Common contrac·tion for "binary digit". "Switch" in memory
that can be set to on (1) or off (0). Eight bits grouped together
comprise a byte.

All Information Presented Here is Proprietary to Digital Research

165

CB-80 Reference Manual Appendix F Glossary

buffer: Area of memory that temporarily stores data during the
transfer of information.

byte: Unit of memory or disk storage containing eight bits.

call: Transfer of control to a computer program subroutine.

chain: Transfer of control from the currently executing program to
another named program without returning to the system prompt or
invoking the run-time monitor.

code: Sequence of statements of a given language that make up a
program.

coamand: Instruction or request for the operating system or a
system program to perform a particular action. Generally, a Digital
Research command line consists of a command keyword, a command tail
usually specifying a file to be processed, and a carriage return.

cammon: Variables used by a main program and all programs executed
through a chain statement.

compiler: Language translator that translates the text of a high
level language into machine code.

compiler directive: Reserved words that modify the action of the
compiler.

compiler error: Error detected by the compiler during compilation;
usually caused by improper formation of language statement.

compiler toggle: "Switch" to modify the output of the compiler.

concatenate: Join one string to another or one file to another.

concatenation operator: Symbol peculiar to a given language that
instructs the compiler to combine two unique data items into one.

console: Primary input/output device. The console consists of a
listing device such as a screen and a keyboard through which the
user communicates with the operating system or the applications
program.

constant: String or numeric value that does not change throughout
program execution.

control character: Nonprinting character co~bination that sends a
simple command to the operating system or applications program. To
enter a Control character, press the Control (CTRL) key on your
terminal and strike the character key specified.

control statement: Language statement that transfers control or
directs the order of execution of instructions by the processor.

cursor: One-character symbol that can appear anywhere on the video

All Information Presented Here is Proprietary to Digital Research

166

CB-80 Reference Manual Appendix F Glossary

screen. The cursor indicates the position where the next keystroke
at the console will have an effect.

data: Information; numbers, figures, names and so forth.

data base: Large collection of information, usually cover ing
various aspects of related subject matter.

data file: Nonexecutable file of similar information that generally
requires a command file to process it.

data structure: Mechanism, including both storage layout and access
rules, by which information can be stored and retrieved within a
computer system. Data structures can reside in memory or on
secondary storage. System tables such as symbol tables, matrices of
numerical data, and data files are examples of data structures.

data type: Class or use of the data; for example, integer, real or
string.

debug: Remove errors from a program.

default: Values, parameters or options a given command assumes if
not otherwise specified.

delimiter: Special characters or punctuation that separate
different items in a command line or language statement.

dimension: Refers to the number of extents of an array. A one
dimensional array is essentially a list of the elements of the
array. A two dimensional array can be visualized as a matrix of
rows and columns of storage space for the elements of the array. A
three dimensional array can be thought of as a geometric solid
having volume, and so forth.

directory: Portion of a disk that contains entries for each file on
the disk. In response to the DIR command, CP/M and MP/M systems
display the file specifications stored in the directory.

disk, diskette: Magnetic media used to store information. Programs
and data are recorded on the disk in the same way that music is
recorded on a cassette tape. The term "diskette" refers to smaller
capacity removable floppy diskettes. The term "disk" can refer to a
diskette, a removable cartridge disk, or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or
floppy disks. CP/M and MP/M systems assign a letter to each drive
under their control.

drive specification: Alpha character A-P followed by a colon that
indicates the CP/M or MP/M drive reference for the default or
specified drive.

dwamy argument:, Argument used in the definition of a command or
language statement (especially a function) that holds a place that

All Information Presented Here is Proprietary to Digital Research

167

CB-80 Reference Manual Appendix F Glossary

will later contain a usable "actual" or "calling" argument that is
passed to the function by a calling statement. Same as "formal
argument."

editor: Utility program that creates and modifies text files. An
editor can be used to create documents or code for computer
programs.

element: Individual data item in an array.

executable: Ready to run on the processor. Executable code is a
series of instructions that can be carried out on the processor.
For example, the computer cannot "execute" names and addresses, but
it can execute a program that prints names and addresses on mailing
labels.

execute a program: Start a program running. When the program is
executing, a process is executing a sequence of instructions.

FCB: File Control Block. Structure used for accessing files on
disk. Contains the drive, filename, filetype and other information
describing a file to be accessed or created on the disk.

field: Portion of a record; length and type are defined by the
programmer. One or more fields comprise a record.

file: Collection of related records containing characters,
instructions or data; usually stored on a disk under a unique file
spec if ica tion.

filename: Name assigned to a file. The filename can include 1-8
alpha, numeric and/or some special characters. The filename should
tell something about the file.

filetype: Extension to a filename. A filetype is optional, can
contain from 0 to 3 alpha, numeric and/or some special characters.
The filetype must be separated from the filename by a period.
Certain programs require that files to be processed have specific
filetypes.

file access: Refers to methods of entering a file to retrieve the
information stored in the file.

file specification: Unique file identifier. A Digital Research
file specification includes an optional drive specification followed
by a colon, a primary filename of 1-8 characters, and an optional
per iod and filetype of 0-3 characters. Spme Digital Research
operating systems allow an optional semicolon and password of 1-8
cha r acter s follow ing the filename or f iletype. All a Ipha and
numer ic characters and some special characters are allowed in
Digital Research file specifications.

fixed: Type of file organization used when data is to be accessed
randomly - not in sequential order. Refers generally to the
nonvarying lengths of the records composing the file.

All Information Presented Here is Proprietary to Digital Research

168

CB-80 Reference Manual Appendix F Glossary

floating point: Value expressed in decimal nota tion tha t can
include exponential notation: a real number.

f10ppy disk: Flexible magnetic disk used to store information.
Floppy disks are manufactured in 5 1/4 and 8 inch diameters.

f1owcbart: Graphic diagram that uses special symbols to indicate
the input, output and flow of control of part or all of a program • .
flow of control: Order of the execution of statements within a
program.

format: System utility that writes a known pattern of information
on a disk so a given hardware configuration can properly support
reading and writing on that disk.

formatted printing: Output specifically designed in a certain
pattern and achieved through particular coded language statements.

fragaentation: Division of storage area in a way that causes areas
to be wasted.

flDlCtion: Subroutine to which you can pass values and which returns
a value. Useful when the same code is required repeatedly, as the
program can call the function at any time.

global: Relevant throughout an entire program.

hex file: ASCII-printable representation of a code or data file in
hexadecimal notation.

hexadecimal notation: Notation for the base 16 number system using
the symbols 0, 1, 2., 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F to
represent the sixteen digits. Machine code is often converted to
hexadecimal notation because it can be more easily understood.

high bound: Upper limit of one dimension of an array.

high level language: Set of special words and punctuation that
allows a programmer to code software without being concerned with
internal memory management.

identifier: String of characters used to name elements of a
program, such as variable names, reserved words, and user-defined
function names. Commonly used synonymously with "variable name".

include: Call an external file into the code sequence of a program
at the point where the include statement is executed.

initialize: Set a disk system or one or more variables to initial
values.

I/O: Abbreviation for input/output.

All Information Presented Here is Proprietary to Digital Research

169

CB-80 Reference Manual Appendix F Glossary

input: Data entered to an executing program, usually from an
operator typing at the terminal or by the program reading data from
a disk.

instruction: Set of characters that defines an operation.

integer: Positive or negative nonexponential whole number that does
not contain a decimal point.

interface: Object tha t allows two independent systems to
communicate with each other, as an interface between the hardware
and software in a microcomputer.

interaediate code: Code generated by the syntactical and semantic
analyzer portions of a compiler.

interpreter: Computer program that translates and executes each
source language sta tement before translating and executing the next
one.

ISAM: Abbreviation for Indexed Sequential Access Method.

key: Particular field of a record on which the processing is
performed.

keyword: Reserved word with special meaning for statements or
commands.

kilobyte: 1024 bytes denoted as IK. 32 kilobytes equal 32K. 1024
kilobtyes equal one megabyte, or over one million bytes.

linker: System software module that connects previously assembled
or compiled programs or program modules into a unit that can be
loaded into memory and executed.

linked list: Data structure in which each element contains a
pointer to its predecessor or successor (singly linked list) or both
(double linked list).

list device: Device such as a printer onto which da ta can be listed
or printed.

listing: Output file created by the compiler that lists the
statements in the source program, the line numbers it has assigned
to them, and possibly other optional information.

literal data: Verbatim translation of charact;ers in the code, such
as in screen prompts, report titles and column headings.

load: To move code from storage into memory for execution.

local variable: Relevant only within a specific portion of a
program, such as within a function.

logged-in: Made known to the operating system, in reference to

All Information Presented Here is Proprietary to Digital Research

170

CB-80 Reference Manual Appendix F Glossary

drives. A drive is logged-in when it is selected by the user or an
executing process.

logical: Representation of something such as a console, memory or
disk drive that might or might not be the same in its actual
physical form. For example, a hard disk can occupy one physical
drive, and yet you can divide the available storage on it to appear
to the user as if there were several different drives. These
apparent drives are the logical drives.

logical device: Reference to an I/O device by the name or number
assigned to the physical device.

logical operator: NOT, AND, OR, and XOR.

lover bound: Lower limit of one dimension of an array.

machine code: Output of an assembler or compiler to be executed
directly on the target processor.

machine language:
processor.

Instructions directly executable by the

memory: Storage area within and/or attached to a computer system.

microprocessor: Silicon chip that is the Central Processing Unit
(CPU) of the microcomputer system.

mixed mode: Combina~ion of integer and real or numeric and string
values in an express1on. Mixed string and numeric operations are
generally not allowed in high level languages.

mnemonic operator: Alphabetical symbol for algebraic operator: LT,
LE, GT, GE, NE, and EQ.

module: Section of software having well-defined input and output
that can be tested independently of other software.

multiple line function: Function composed of a function definition
statement and one or more additional statements.

numeric constant: Real or integer quantity that does not vary
within the program.

nWDeric variable: Real or integer identifier to which varying
numeric quantities can be assigned during program execution.

null string: A string that contains no character; essentially an
empty string.

Object code: Output of an assembler or compiler that executes on
the target processor.

open: System service tha t informs the opera ting system of the
manner in which a given resource, usually a disk file, is intended

All Information Presented Here is Proprietary to Digital Research

171

CB-80 Reference Manual Appendix F Glossary

to be used.

operating syste.: Collection of programs that supervises the
execution of other programs and the management of computer
resources. An operating system provides an orderly input/output
environment between the computer and its peripheral devices,
enabling user programs to execute safely.

operation: Execution of a piece of code.

optioo: One of a set of parameters that can be part of a command or
langua~e statement. Options are used to modify the output of an
executlng process.

output: Data that the processor sends to the console, printer,
disk, or other storage media.

para.eter: Value supplied to a command or language statement that
provides additional information for the command or statement. Used
interchangeably with "argument." An actual parameter is a value
tha t is substituted for a dummy or formal argument in a given
procedure or function when it is invoked.

peripheral device: Devices external to the CPU. For example,
terminals, printers, and disk drives are common peripheral devices
that are not part of the processor, but are used in conjunction with
it.

pointer: Data item whose value is the address of a location in
memory.

primitive: Most basic or fundamental unit of data such as a single
digit or letter.

process: Program tha t is actually executing, as opposed to being in
a static state of storage on disk.

program: Series of specially coded instructions that performs
specific tasks when executed on a computer.

proapt: Any characters displayed on the input terminal to help the
user decide wha t the next appropriate action is. A system prompt is
a special prompt displayed by the operating system, indicating to
the user that it is ready to accept input.

rando. access: Method of entering a file at any record number, not
necessarily the first record in the file.

random access file: File structure in which da ta can be accessed in
a random manner, irrespective of its position in the file.

randoa number: Number selected at random from a set of numbers.

real nwnber: Numer ic value specif ied with a decimal point: same as
"floa ting point nota tion" •

All Information Presented Here is Proprietary to Digital Research

172

CB-80 Reference Manual Appendix F Glossary

record: One or more fields usually containing associated
information in numer ical or textual form. A file is composed of one
or more records and generally stored on disk.

record number: Position of a specific record in a fixed-length
file, relative to record number 1. A key by which a specific record
in a fixed file is accessed randomly.

recursive: Code that'calls itself.

relational operator: Comparison operator. The following set of
operators expressed in algebraic or mnemonic symbols: LT, LE, NE,
EQ, GT, GE, EQ. A relational operator states a relationship between
two expressions.

reserved word: Keyword that has a special meaning to a given
language or operating system.

return value: Value returned by a function.

row-major order: Order of assignmen t of values to ar ray elemen ts in
which the first item of the subscript list indicates the number of
"rows" in the array.

run a prograDl: S tart a program executing. When a program is
running, the microprocessor chip is executing a ser ies of
instructions.

run-time error: Error occurring during program execution.

run-tiDle Dlonitor: Program tha t directly executes the coded
instructions generated by a compiler/interpreter.

sequential access: Type of file structure in which da ta can only be
accessed serially, one record at a time. Data can be added only to
the end of the file and cannot be deleted. An example of a
sequential access media is magnetic tape •

. source prograDl: Text file tha t is an inpu t file for a processing
program, such as an editor, text formatter, assembler or compiler.

stabeDlent: Defined way of coding an instruction or data definition
using specific keywords in a specific format.

storage: P lace for keeping da ta temporar ily in memory or
permanently on disk.

streaDl organization: Type of file organization used when data is to
be accessed sequentially. Can contain variable length records.

str ing constant: Li teral da ta, as in a screen prompt, column
heading, or title of a report.

string variable: Identifier of type string to which varying strings

All Information Presented Here is Proprietary to Digital Research

173

CB-80 Reference Manual Appendix F Glossary

can be assigned during program execution.

subroutine: Section of code that performs a specific task, is
logically separate from the rest of the program, and can be
prewritten. A subroutine is invoked by another statement and
returns to the place of invocation after executing. Subroutines are
useful when the same sequence of code is used more than once in a
program.

subscript: Integer expression that specifies the position of an
element in an array.

subscript list: Numeric value appended to a variable name that
indicates the number of elements in each dimension in the array of
that name. Each dimension must have a value in the subscript list
indicating the number of elements for which to allocate storage
space.

syntax: Rules for structur ing sta temen ts for an opera ting system or
programming language.

toggle: "Switch" enabled by a special code in the command line tha t
modifies the output of the executing program.

trace: Option used for run-time debugging. The trace option
gener,ally lists each line of code as it executes to enable the
programmer to note where a problem occurs.

upward-compatible: Term meaning that a program created for the
previously released operating system or compiler runs under a later
release of the same software program.

user-defined function: Set of statements created and given a
function name by the user. The function performs a specific task
and is called into action by referencing the function by name.

utility: Tool. Program or module that facilitates certain
operations, such as copying, erasing and editing files, or
controlling the cursor positioning on the video screen from within a
program. Utilities are created for the convenience of programmers
and applications operators.

value: Quantity expressed by an integer or real number.

variable: Name to which the program can assign a numer ical value or
string.

variable length: Usually refers to records, 'where each record in a
file is not necessarily the same length as another.

variable name: Same as variable.

wildcard characters: Special characters, ? and *, that can be
included in a Digital Research filename and/or filetype to identify
more than one file in a single file specification.

End of Appendix

All Information Presented Here is Proprietary to Digital Research
174

A

ABS function, 47
actual parameters, 27
addition, 42
allocation methods, '22
AND operator, 39
arithmetic operators, 37,

42, 43
arrays, 21
ASC function, 50
assembly language module, 125
assignment statement, 44
ATN function, 47
ATTACH function, 83

B

B toggle, 115
backslash, 8, 13, 51, 110
backslash character, 2, 13
binary constants, 6
blank lines, 7
blanks, 1
BUFF option, 89
buffer space, 89

c

C toggle, 115
CALL statements, 27, 66
CB-80 files, 87
CB-80 run-time library, 2
CHAIN statements, 23, 71
chaining to an overlay, 123
character set, 1
CHR% function, 50
CLOSE statement, 96
colon, 14, 15, 59
command line directives, 114
COMMAND$ function, 54
COMMON, 22
COMMON statements, 23, 24, 30
compilation, 114
compiler directives, 2, 15
complex expressions, 43
CONCHAR% function, 83
CONSOLE statement, 76
constants, 1, 4, 35
CONSTAT% function, 83

Index

175

continuation character, 1,
13, 25, 59

COS function, 47
CREATE statements, 87

D

DATA statement, 7, 24, 25
data structures, 21
da ta types, 19
decimal points, 2, 104
declaration group, 29
declarations, 19, 22
default declarations, 24
default filetype, 113
DELETE statement, 96
DETACH statement, 76
DIM statements, 21, 23,

30, 36
division, 42, 43
dynamic range of numbers, 19

E

ELSE statement group, 60
end-of-line character, 1
ERR function, 54
ERRL function, 54
evaluation of expressions, 45
executable block, 30
executable code, 2
execution errors, 43
EXP function, 48
exponential format, 105
exponentiation, 42
expression, 35
EXTERNAL function, 32

F

FEND statement, 29
field, 74
file, 87
file identification numbers,

88, 91
file PRINT Statements, 94
file READ Statements, 91, 92
filename conventions, 8
filenames, 9
fixed files, 87, 92, 94
fixed length field, 108

fixed record length files, 92
FLOAT function, 48
flow of control statements,

57
FOR loop index, 61
FOR loops, 60
formal parameters, 27, 31
format field characters, 102
FRE function, 54
functions, 27

G

GET function, 99
GOSUB statements, 30, 65
GOTO statement, 57

B

hexadecimal constants, 6

I

I toggle, 116
identifier, 1, 2, 12, 23,

26, 28
IF END statements, 97, 98
IF statements, 58, 64
IFCOND, 59
INCLUDE directive, 16
INITIALIZE statement, 90
INKEY function, 84
INP function, 84
INPUT LINE statement, 75
INPUT statements, 73
INT function, 48
INT% function, 48
integer constants, 5
integer data, 19
integer indexes, 61
integer numbers, 19
integer parameters, 125
INTEGER statements, 22

L

L toggle, 116
label data, 20
labels, 23, 25, 31, 57,

65, 68
LEFT$ function, 50

176

LEN function, 51
linkage editors, 2, 119
linking CB-80 programs, 120
linking multiple REL files,

121
listing control directives
LK-80, 72, 119
LK-80 command line, 119
LK-80 error messages, 124
local variables, 12
LOCK function, 99
LOG function, 48
logical expression, 59
logical operators, 37, 38
loop termination, 62
LPRINTER s ta temen t, 76

M

MATCH function, 51
MFRE function, 55, 89
MID$ function, 52
mixed mode expressions, 46
MOD function, 49
module, 32
multiple line functions, 12,

27, 29, 31, 57, 65, 66, 70
multiple toggles, 117
multiplication, 42

N

N toggle, 116
nesting, 16
nesting of FOR loops, 63
NOT operator, 40
null str ing " 4
numeric constants, 4, 5, 6,

12, 13
numer ic da ta, 19
numeric expressions, 105
numeric fields, 103, 104
numeric function, 47

o

o toggle, 116
OM error, 128
ON ERROR statement, 70
ON statement, 68
OPEN Statements, 87

operand, 35
operators, 37
OR operator, 39
order of evaluation, 45, 46
OUT statement, 80
overflow, 43
overlay files, 122

p

P toggle, 116
passing parameters, 125
pattern characters, 51
pattern string, 51
PEEK function, 85
POKE statement, 80
POS function, 85
predefined functions, 27,

35, 47
print control flag, 76
PRINT statements, 76, 77,

94, 95
PRINT USING statement,

101, 110
program primitive, 1
prompt string, 75
PUBLIC function, 32
PUT statement, 96

Q

Q toggle, 124

R

R toggle, 116
RANDOMIZE statement, 83
READ LINE statement, 93
READ statements, 24, 81, 93
real constants, 5
real numbers, 19
real numeric data, 19
real parameters, 126
REAL statements, 22
RECL option, 89
record length, 89
record number, 91
REL modules, 121
relational operators, 37,

40, 41
remarks, 1, 7, 14

177

RENAME function, 99
reserved words, 1, 2, 11
RESTORE statement, 82
RETURN statements, 30, 65, 67
RIGHT$ function, 52
RMAC, 125
RND function, 85
root, 123
RSTATEMENT, 58
run-time library, 120, 127

S

S toggle, 116
SADD function, 55
SGN function, 49
simple variables, 21, 26, 36
SIN function, 49
single character field, 107
single line function, 27,

28, 29, 67
SIZE function, 99
source program, 1
special characters, 1
SQR function, 49
statement group, 17, 59
statement labels, 12
statements, 11, 41
STOP statement, 71
STR$ FUNCTION, 53
stream files, 87, 92
string constants, 4, 13, 25
string data, 20
string fields, 107
string overflow, 43
string parameters, 126
STRING statements, 22
subscripted variables, 26, 36
subscripts, 23
subtraction, 42
symbol table, 120
syntax diagrams, 8

T

T toggle, 116
tab characters, 1
TAB function, 85
TAN function, 49
target string, 51
TMP files, 114

toggles, 114, 115, 123
trapping errors, 70

u

U toggle, 116
UCASE$ function, 53
UNLOCK function, 100
user defined functions,

27, 35
using format string, 101
USING option, 77
using string, 101, 109

v

VAL function, 53
variable, 36
variable length string field,

107
VARPTR function, 55

w

W toggle, 116
WHILE loops, 41, 63, 64
wildcard characters, 100
work files, 113

x

X toggle, 117
XOR operator, 39

%EJECT directive, 15
%LIST, 15
%NOLIST directive, 15
%PAGE directive, 15
?GETS routine, 128
?IDIV, 128
?IFRE, 128
?IMUL, 128
?MFRE, 128
?REL routine, 128

178

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179

