
CBASIC CompilerTM (CB86™)
Language

Programmer's Guide
for the IBM® Personal Computer

Disk Operating System

CBASIC Compiler™(CB86 TM)
Language

Programmer's Guide
for the

IBM®personal Computer
Disk Operating System

Copyr ight © 1983

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication maybe
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
or her own programs.

DISCLAIMER

Dig i tal Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Dig i tal Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CBASIC, CP/M, CP/M-86, and CP/NET are registered
trademarks of Digital Research. CBASIC Compiler,
CB80, CB86, Concurrent CP/M-86, LIB86, LINK86, MP/M,
MP/M-86, PL/I-86, RASM-86, and SID-86 are trademarks
of Digital Research. IBM is a registered trademark
of International Business Machines. Intel is a
registered trademark of Intel Corporation. Zilog
and Z80 are registered trademarks of Zilog, Inc.

The CBASIC Compiler (CB86) Language Programmer's
Guide for the IBM Personal Computer Disk Operating
System was prepared using the Digital Research TEX
Text Formatter and printed in the united States of
America.

* First Edition: May 1983 *

Foreword

CBASIC Compilerm is a compiler implementation of the CBASIC®
programming language. For the software developer interested in
maximizing the execution speed of commercial applications programs,
CBASIC Compiler is an excellent choice.

Digital Research designed CBASIC Compiler for use under single­
user, multi-user, and concurrent operating systems based on both
8080/8085 and 8086/8088 microprocessor families.

• The 8086/8088 CBASIC Compiler, CB86™ , runs under CP/M-86® ,
MP/M-86™ , Concurrent CP/M-86™ , CP/NET®, and the IBM®
Personal Computer Disk Operating System based on.the Intel®
8086, 8088 family of microprocessors.

• The 8080/8085 CBASIC Compiler, CB80™ , runs under the CP/M®
(version 2 or later), MP/MTM, and CP/NET® operating systems
based on the Intel 8080, 8085, or Zilog® Z80® microprocessor.

The CBASIC Compiler (CB86) Language Proqrammer's Guide for the
IBM Personal Computer Disk Operating System provides a short
demonstration program to help you get your CBASIC Compiler system up
and running. The manual is divided into five sections.

• Section 1 is an introduction and demonstration program.

• Section 2 describes the compiler, CB86.

• Section 3 describes the linkage editor, LINK86™.

• Section 4 describes libraries and the librarian program,
LIB86 ™ •

• Section 5 explains the machine-level environment of
CBASIC Compiler.

Use this Programmer's Guide in conjunction with the CBASIC
Compiler Language Reference Manual. Together, the manuals provide
all the informatlon you need to use the CBASIC Compiler to its full
potential.

Dig i tal Research is very interested in your comments on
programs and documentation. Please use the Software Performance
Reports and the Reader Comment Card enclosed in each product package
to help us provide you with the best microcomputer software and
documentation.

iii

Table of Contents

1 Getting Started with CBASIC Compiler

1.1 Componen ts

1.2 A Demonstration •

2 The Compiler, CB86

2.1 Compiling Programs

2.1.1 CB86 Command Lines.
2.1.2 Compiler Errors

2.2 Compiler Directives •••.

2.2.1
2.2.2

Source Code Compiler Directives
CB86 Command Line Toggles

3 The Link Editor, LINK86

3.1

3.2

Linking Files

3.1.1
3.1. 2

LINK86 Command Lines .
LINK86 Errors

LINK86 Command Line Options

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

Uninitialized Data •
Symbol File Options • • • • •
MAP File Options • •
Library File Options •
Redirecting LINK86 File I/O .•••

3.3 Producing Overlays

3.4 The Linking Operation •

4 The Library

4.1 CB86.L86

4.2 The Librarian Utility, LIB86

4.2.1
4.2.2
4.2.3
4.2.4

LIB86 Command Lines
Creating a Library File
Appending an Existing Library
Replacing Library Modules

v

• 1-1

• 1-1

• 2-1

• 2-3
• 2-3

• 2-5

• • • 2-6
• 2-7

• • 3-1

• 3-2
• 3-3

• • 3-4

• • 3-5
• •• 3-6
• • • 3-6
• • • 3-7

• • • • . 3-7

• • • 3-8

• 3-9

• 4-1

• • • 4-2

• 4-2
• 4-4
• 4-4

4-5

4.2.5
4.2.6
4.2.7
4.2.8

Table of Contents
(continued)

Deleting Library Modules • • • .
Selecting Modules •• • • • • •
Displaying Library Information •
Redirecting Library File I/O •

5 Machine-level Environment

5.1 Memory Allocation •••

5.2 Run-time Organization ••

5.3 Internal Data Representation

5.4 Parameter Passing and Returning Values

Appendixes

A Implementation-dependent Values

B Compiler Error Messages

c LINK86 Error Messages

D Execution Error Messages

E LIB86 Error Messages • •

F CBASIC to CBASIC Compiler Conversion Aid

vi

• • 4-5
• • 4-6
• • 4-6

• • • 4-7

. • • 5-1

• 5-2

5-3

5-6

A-I

B-1

C-l

D-l

E-l

F-l

Tables and Figures

Tables

2-1. CB86 Toggles

3-1. LINK86 Command Line Options .

4-1. LIB86 Command Line Options

A-l. Implementation-dependent Values •

B-1. File System and Memory Space Errors •.
B-2. Compilation Error Messages ..••

C-l. LINK86 Error Messages

D-l. Execution Error Codes •

E-l. LIB86 Error Messages

Figures

5-1.
5-2.
5-3.
5-4.
5-5.

Memory Allocation • . •
Run-time Organization •
Real Number Storage
Integer Storage •
String Storage

vii

2-8

3-4

4-3

A-l

B-1
B-3

C-l

D-l

E-l

5-1
5-2
5-4
5-4
5-5

Section 1
Getting Started with CBASIC Compiler

A compiler is a computer program that translates high-level
programming language instructions into machine-executable code. The
compiler takes as input a user-written source program and produces
as output a machine-level object program. Some compilers translate
a user-written source program into a program that a computer can
execute directly. The CBASIC Compiler system, however, uses a link
editor and a library in addition to the compiler. Together, the
three components translate your CBASIC source-code file into a
directly executable program. This approach uses your
microcomputer's memory space as efficiently as possible. The system
enables you to modularize programs for quick and easy maintenance.
The result is a programming system that rivals the performance of
systems based on much larger machines.

The pr imary advantage that compilers provide over other methods
of translation is speed. Compiled applications programs execute
faster than interpreted programs because the compiler creates a
program that the computer can execute directly.

1.1 Components

The three components that make up the CBASIC Compiler system
are contained on your CBASIC product disk •

• The compiler, CB86, translates CBASIC source code into
relocatable machine code modules. Source programs defaul t to a
.BAS filetype unless otherwise specified. CB86 generates .OBJ
files. CB86 consists of an executable program and three
overlays.

o The 1 ink ed i tor, LINK86, combines the relocatable obj ect
modules that the compiler creates and routines from the indexed
library into a directly executable program with optional
overlays. LINK86 generates .EXE files •

• The indexed library, CB86.L86, provides routines that allocate
and release memory, determine available memory space, and
perform input/output processing. CBASIC Compiler provides a
library manager utility program, LIB86.

1.2 A Demonstration

The following demonstration program can help you learn how to
compile, link, and run a CBASIC program. The instructions are for
CBASIC Compiler on a DOS based system with two floppy-disk drives.
You should already be familiar with DOS and a text editor.

1-1

CB86 Programmer's Guide 1.2 A Demonstration

Make a back-up copy of your master CBASIC Compiler product
disk. Place your operating system disk in drive A and a copy of
your CBASIC Compiler disk in drive B.

1) Write the source program.

using your text editor, create a file named TEST.BAS on
your CBASIC Compiler disk in drive B. Enter the following
program into TEST.BAS exactly as it appears below:

PRINT
FOR I% = 1 TO 10

PRINT I%; "TESTING CBASIC COMPILER!"
NEXT I%
PRINT
PRINT "FINISHED"
END

2) Compile the program.

To start CB86, enter the following command. Be sure drive
B is the default drive.

B>CB86 TEST

CB86 assumes a filetype of .BAS for the file you specify in
the compiler command line unless otherwise specified. A
sign-on message, a listing of your source program, and
several diagnostic messages display on your terminal.

CB-86 CBASIC Compiler
Serial No. CB6-0000-654321
Copyright (c) 1982,1983

version x.x
All rights reserved

Digital Research, Inc.

end of pass 1
end of pass 2

1: OOOOh PRINT
2: OOOch FOR I% = 1 TO 10
3: 0014h PRINT I%; "TESTING
4: 0021h NEXT I%
5: 002dh PRINT
6: 0030h PRINT "FINISHED"
7: 003ah END

end of compilation
no errors detected
code area size: 57 0039h
data area size: 45 002dh
common area size: 0 OOOOh
symbol table space remaining: 17797

1-2

CBASIC COMPILER!"

CB86 Programmer's Guide 1.2 A Demonstration

The message no errors detected indicates a successful
compilation. CB86 creates an object file for the TEST.BAS
program. The directory for disk B should have the new
file, TEST.OBJ. See Section 2.1 for more information about
the various parts of the listing.

3) Link the program.

To start LINK86, enter the following command.
drive B is the default drive.

Be sure

B>LINK86 TEST

LINK86 assumes a filetype of .OBJ for the file you specify
in the linker command line. A sign-on message and several
diagnostic messages display on your terminal.

LINK-86 Linkage Editor
Serial No. XXXX-0000-654321
Gopyright (c) 1982,1983

CODE
DATA

OlOEO
002C7

USE FACTOR: 09%

Version X.X
All Rights Reserved

Digital Research, Inc.

If you get no error messages, the program has been linked
successfully. LINK86 creates a directly executable
program. The directory for disk B should have the new file
TEST.EXE.

4) Run the program.

To run the TEST.EXE program, enter the following command.
Be sure drive B is the logged-in drive.

B>TEST

The following output should appear on your terminal:

1 TESTING CBASIC COMPILER!
2 TESTING CBASIC COMPILER!
3 TESTING CBASIC COMPILER!
4 TESTING CBASIC COMPILER!
5 TESTING CBASIC COMPILER!
6 TESTING CBASIC COMPILER!
7 TESTING CBASIC COMFILER!
8 TESTING CBASIC COMPILER!
9 TESTING CBASIC COMPILER!
10 TESTING CBASIC COMPILER!

FINISHED

End of Section 1

1-3

Section 2
The Compiler, CB86

CB86 consists of an executable file and three overlays. Among
the files on your CBASIC Compiler product disk are the following
four compiler program files:

• CB86.EXE
• CB86.0Rl
• CB86.0R2
• CB86.0R3

When compiling a CBASIC program, all four files must be on the
same logical disk drive. The drive must be the default drive. The
source program file can be on any logical drive.

2.1 Compiling Programs

CB86 takes a CBASIC source program as input and generates a
relocatable obj ect file. Dur ing compilation, CB86 creates the
following temporary work files:

<filename>.$PA
<filename>.$QC
<filename>.$DA

Unless compilation is unsuccessful, you never see these temporary
files listed in a directory. CB86 erases the files automatically
when compilation is finished. CB86 also erases the temporary files
if they are on disk before you start the compiler.

The size of the temporary files varies with the size of the
source program. The amount of temporary space required is
approximately equal to the amount of space the source program
occupies. If you do not have enough work space on disk for the
compiler, you can break up large programs into modules and compile
each module separately.

2-1

CB86 Programmer's Guide 2.1 Compiling Programs'

The following example shows a CB86 listing:

CB-86 CBASIC Compiler
Serial No. CB6-0000-65432l
Copyright (c) 1982,1983

end of pass 1
end of pass 2

1: OOOOh PRINT

Version X.X
All rights reserved

Digital Research, Inc.

2: OOOch FOR I% = 1 TO 10
3: 0014h PRINT I%: "TESTING THE CBASIC COMPILER!"
4: 002lh NEXT I%
5: 002dh PRINT
6: 0030h PRINT "FINISHED"
7: 003ah END

end of compilation
no errors detected
code area size: 57 0039h
data area size: 45 002dh
common area size: 0 OOOOh
symbol table space remaining: 17797

Certain phases of the compilation process are combined into a
module called a pass. CB86 is a three-pass compiler. Following the
sign-on message, CB86 indicates the completion of the first two
passes with an end of pass message. The program listing includes
the line numbers, relative addresses for the code that each line
generates, and the actual source code lines.

In the preceding listing, 1: is an example of a line number.
OOOOh is a relative address for the relocatable code that the first
PRINT statement generates. CB86 prints the total number of
compilation errors detected in the program following the message,
end of compilation. However, the message, no errors detected,
ind ica tes a successful compilation. The next three messages
ind ica te the amount of space CB86 allocates for code and data
segments of data. The last message indicates the amount of space
remaining in the symbol table. If CB86 detects errors,' the relative
addresses and the memory allocation messages do not display.

To complete the compilation process, CB86 generates a
relocatable object file. The relocatable file has the same filename
as the source program and has a .OBJ filetype. The .OBJ file
requires approximately the same amount of space as the source
program. If the source program contains errors that prevent a
successful compilation, CB86 does not generate the .OBJ file.

2-2

CB86 Programmer's Guide 2.1 Compiling Programs

2.1.1 CB86 Command Lines

The command line starts CB86, specifies the file to compile,
and sends special information in the form of command line compiler
directives. Refer to Section 2.2.1 for information on command line
directives.

The following command line compiles the source program in a
file named TEST. CB86 assumes a filetype of .BAS unless otherwise
specified.

A>CB86 TEST

En ter a complete file specif ica tion to overr ide the • BAS
filetype. The following command line compiles the source program in
a file named TEST.PRI. Remember, source files cannot have an .OBJ
or .EXE filetype.

A>CB86 TEST.PR1

Source files can be on any logical disk drive. The following
command line compiles the source program TEST.PRI from drive D:

A>CB86 D:TEST.PR1

If you type an incorrect command line, CB86 responds with the
appropriate error message.

2.1.2 C~pilcr Error5

CB86 reports three different types of compiler errors. The
first type, file-system and memory-space errors, includes mistakes
such as invalid command lines, read errors, and out-of-memory
conditions. CB86 indicates file-systpm and memory-space errors with
literal messages such as disk full and symbol table overflow. Refer
to Appendix B, Table B-1, for a complete listing of file-system and
memory-space error messages.

The second type, compilation errors, includes misuses of the
CBASIC language such as invalid characters, improper data type
specifications, and missing delimiters. CB86 prints a caret and a
number in the compiler listing of the source program to indicate the
occurrence of a compilation error. The number corresponds to an
error description listed in Appendix B, Table B-2. The following
example shows the compiler listing for a short program that contains
one error. The program attempts to assign a string constant to an
integer variable. The compiler reports Compilation Error 27.

2-3

CB86 Programrner1s Guide

CB-86 CBASIC Compiler
Serial No. CB6-0000-654321
Copyright (c) 1982,1983

end of pass 1
end of pass 2

2.1 Compiling Programs

Version x.x
All rights reserved

Digital Research, Inc.

1: 1% = "November 11, 1982"
*** error A27

END
end of compilation
1 errors detected
symbol table space remaining: 14412

Notice that the caret points to the string constant. Error
message 27 listed in Appendix B reads as follows:

27 Invalid mixed mode. The type of the expression
is not permitted.

Depeno1ng on what you want the program to do, you can change 1% to a
string variable or represent the date as an integer. Either change
corrects the mistake.

CB86 identifies the errors in a program logically and
accurately. However, CB86 cannot determine what your programming
intentions are. Therefore, in some cases, CB86 reports error
messages that identify mistakes according to what the compiler
logically assumes the program is supposed to do, and not necessarily
according to what you want the program to do. The following example
shows the compiler listing for another program that contains one
error. The keyword PRINT in the first line is misspelled. The
compiler reports Compilation Errors 30, 51, 33, and 27.

CB-86 CBASIC Compiler
Serial No. CB6-0000-654321
Copyright (c) 1982,1983

end of pass 1
end of pass 2

Version x.x
All rights reserved

Digital Research, Inc.

1: PRNIT "TESTING CBASIC!"

error
error
error

A30
A51
A33

*** error A27
2: PRINT "FINISHED"
3: END

end of compilation
4 errors detected
symbol table space remaining: 14416

2-4

CB86 Programmer's Guide 2.1 Compiling Programs

CB86 does not recognize PRNIT as a misspelled keyword, but as a
valid real variable name. At this point in the compilation, CB86
assumes that line 1 is an assignment statement. Therefore, CB86
reports Compilation Errors 30, 51, 33, and 27 with the carets all
pointing to the end of the line. If you recognize line 1 as an
improper assignment statement, as CB86 does, the four error messages
are accurate. The four error messages listed in Appendix B read as
follows:

30 Invalid symbol follows a variable, constant, or
function reference.

51 An equal sign was expected in assignment.
equal sign is inserted.

An

33 Invalid symbol encountered in an expression. The
symbol is ignored.

27 Invalid mixed mode. The type of the expression is
not perm it ted.

A group of error messages all pointing to one line in your
program often indicates that CB86 does not recognize what you want
the program to do. Studying the line in error can often reveal a
simple solution. When you correct the misspelled keyword in the
preceding example and recompile the program, CB86 recognizes a valid
PRINT statement and reports the message no errors detected.

The third type of compiler error, internal failures, should
never occur during your experience with the CBASIC Compiler. CB86
indicates an internal failure with the following message. The XXX
stands for a three-digit number. The ZZZZ stands for a compiler­
generated line number.

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE ZZZZ

In some cases, the second line of this message is not displayed. If
the above error message occurs during compilation of your CBASIC
program, contact the Digital Research Technical Support Center.
Please report the three-digit number and the circumstances under
which the error occurs.

2.2 Compiler Directives

Compiler directives are special instructions to CB86. There
are two different ways to specify compiler directives: source code
compiler directives and command line toggles.

2-5

CB86 Programmer's Guide 2.2 Compiler Directives

2.2.1 Source Code Compiler Directives

Source code compiler directives are special keywords that do
not translate into executable code. All source code compiler
directives begin with a percent sign. You cannot place blanks
between the percent sign and the rest of the keyword. Only blanks
and tab characters can precede a directive. Source code compiler
directives cannot appear on the same line with CBASIC statements or
functions. CB86 ignores all characters on the same line that are
not part of the directive. A source code compiler directive cannot
span more than one line. You cannot label source code compiler
directives.

CBASIC Compiler has the following six source code compiler
directives:

• %NOLIST
• %LIST
• %EJECT
• %PAGE
• %INCLUDE
• %DEBUG

Normally, CB86 generates a listing of the source program dur ing
compilation. The %NOLIST directive tells CB86 not to list anything
that follows the %NOLIST in the program. The %LIST directive tells
CB86 to resume the listing. You can use %LIST and %NOLIST any
number of times in a program. Toggle B, descr ibed in Section 2.2.2,
suppresses all listings regardless of any directives in the source
code.

The %EJECT directive tells CB86 to continue the program listing
at the top of the next page of paper. %EJECT works only when you
direct the listing to a printer. CB86 ignores %EJECT if the %NOLIST
directive is in effect, or if you direct the listing to the console
or a disk file.

The %PAGE directive sets the page length for a listing directed
to a pr inter. The page length you specify must be an unsigned
integer placed after the %PAGE keyword, as shown in the following
example:

%PAGE 40

The %INCLUDE directive tells CB86 to include the code from a
specified.source file along with the original compiling program.
The included source file is incorporated into the original program
immediately following the %INCLUDE. Specify the filename, the
filetype, and the drive that holds the file after the %INCLUDE
keyword, as shown in the following examples. CB86 assumes the
default drive and a .BAS filetype if not specified otherwise.

\

-1 r M.J- ~t~ 1\ ~ ~-t-

8
f \ , I Il I\. CA5~

rJ }I~ -
Jd;,\. c I (r· ,1 { J

2-6 J.-~ cl rf IV\, (11 P It I, (I "

CBB6 Programmer's Guide

%INCLUDE CONDEF
%INCLUDE CONDEF.INC
%INCLUDE D:CONDEF.INC

2.2 Compiler Directives

You can nest included files six deep. The maximum nesting
depth depends on your particular implementation of the CBASIC
Compiler. Refer to Appendix A for current implementation-dependent
values.

The %DEBUG directive works with three command line toggles: the
I, N, and V toggles. You can switch these three toggles on or off
from within the program source code. To turn a toggle on, place the
toggle letter after the %DEBUG keyword. To turn a toggle off, place
the toggle letter preceded by a minus sign after the %DEBUG keyword.
The following examples show variations of the %DEBUG directive:

%DEBUG I
%DEBUG -I
%DEBUG INV
%DEBUG -I-N-V

2.2.2 CB86 Command Line Toggles

Command line toggles are single-letter compiler directives that
you specify in the CBB6 command line instead of in the source
program. Once a toggle is set, it normally remains set through the
entire compilation process. The %DEBUG directive can change the I,
N, and V toggles during compilation. Place letters within brackets
following the file specification in a CBB6 command l'ine. Letters
can be lower- or upper-case. If you enter conflicting toggles in a
command line, the last one read from left to right takes effect.
Certain toggles require an additional parameter enclosed in
parentheses. The following examples show several ways to specify
command line toggles:

A>CB86 TEST [B]

A>CBB6 TEST.BAS [B, P, S]

A>CB86 FILE.DAT [BPW(72)]

A>CB86 CALCS.PRG [N] [0] [P]

A>CB86 DATA.OVL [pon]

CB86 has the fifteen command line toggles listed in the
following table:

2-7

CB86 Programmer's Guide 2.2 Compiler Directives

Toggle I
B

C

F

I

L

N

0

P

R

S

T

U

...... V

W

X

Table 2-1. CB86 Toggles

Instruction

Suppress listing of the source file.

Change the default %INCLUDE file disk.

Send the source listing to a disk file on the
same drive as the source file.

Interlist the generated code with the source
file.

Set the page length for printed listings.

Generate code for line numbers.

Suppress the generation of the object .OBJ
file.

List the source file on the printer.

Change the disk that the .OBJ file is written
to.

Include symbol name information in the .OBJ
file.

List the symbol table following the source
listing.

Generate error messages for undeclared
variables.

Put source code line numbers into the .SYM
file.

Set the page width for printed listings.

Change the disk used for the work files.

The B toggle tells CB86 not to list the source program on the
console screen. However, compiler errors and statistical data
concerning size of code and data areas display on the screen. The B
toggle overrides other directives that control compiler output.

2-8

CB86 Programmer's Guide 2.2 Compiler Directives

The C toggle specifies the default drive for an include file.
Enclose the new drive specification in parentheses following the C.
I f a dr ive has been specified in the %INCLUDE directive, the C
toggle has no effect. The C toggle allows program development to be
independent of your hardware configuration.

The F toggle tells CB86 to send the source listing to a disk
file that is on the same drive as the source file. The new file has
the same filename as the source file and has a .LST filetype.

The I toggle interlists compiler-generated code wi th the
original source statements. Compiler-generated code uses standard
8086 mnemonics.

The L toggle changes the page length for a listing directed to
a printer. Enclose the new length in parentheses following the L.
The length must be an unsigned integer, as in the following e~ample:

A>CB86 TEST [L{SO»)

The N toggle generates code that saves the current line number
for each physical line in a source program. The code enables the
ERRL function to return the line number when an execution error
occurs.

The 0 toggle tells CB86 not to generate the relocatable object
file. If a compiler error occurs, CB86 does not generate the .OBJ
file.

The P toggle prints the program listing on the printer. CB86
sends a carriage return and line-feed before printing the first
page. CB86 prints the page number and the source filename at the
top of each page.

The R toggle specifies which drive to place the .OBJ file on.

The S toggle places all information on program variables and
line labels into the .OBJ file. The link editor uses the
information to generate a .SYM file. You can use the .SYM file with
the Digital Research Symbolic Instruction Debugger, SID-86™

The T toggle lists the symbol table immediately following the
source program listing.

The U toggle generates an er ror message if a var iable name does
not appear in an INTEGER, REAL, or STRING declaration. Use the U
toggle to locate misspelled identifiers.

The V toggle places the source code line numbers into the .SYM
file to make debugging easier.

2-9

CB86 Programmer's Guide 2.2 Compiler Directives

The W toggle changes the page width for a listing directed to
the printer. Initially, the width is set to 80 columns. Enclose
the new width in parentheses following the w. The width must be an
unsigned integer.

A>CB86 TEST [W(70)]

The X toggle specifies a drive for the temporary work files.
Normally, CB86 places the work files on the same dr ive as the source
file. Enclose the new drive specification in parentheses following
the X. The drive is specified by a single lower- or upper-case
letter.

A>CB86 TEST [X(D)]

CB86 evaluates toggles from left to right. This means a
subsequent directive can override any earlier one. In the following
example, CB86 sends the listing to the printer.

A>CB86 TEST [BP]

In the following example, CB86 suppresses the listing.

A>CB86 TEST [PB]

End of Section 2

2-10

Section 3
The Link Editor, L1NK86

LINK86 is a linkage editor that combines object files that CB86
generates with object modules from the Run-ti~e Subroutine Library,
CB86. L86. LINK86 creates an executable program with optional
overlays. You can use LINK86 with other Digital Research l6-bit
language translators such as RASM-86 ™ and PL/I-86™', or wi th any
translator that produces object files using a compatible subset of
the Intel 8086 object file format. Your CBASIC Compiler product
disk should contain the following two files:

• LINK86.EXE
o CB86.L86

3.1 Linking Files

LINK86 accepts two types of object files as input. The first
type has a filetype of .OBJ and contains a single object module.
CB86 generates .OBJ files. The second type is library files.
Library files have a filetype of .L86 and contain an indexed group
of object modules. LINK86 can search library files and include any
modules that a compiled program requires in the executable program.
LIB86 is a librarian program that generates library files. Refer to
Section 4.2 for information on LIB86.

Following the sign-on message, LINK86 displays the Use Factor.
The Use Factor is a decimal percentage value indicating the amount
of memory that LINK86 uses. The following example shows the console
display during linking.

LINK-86 Linkage Editor
Serial No. XXXX-0000-6S432l
Copyright (c) 1982,1983

CODE
DATA

OlOEO
002C7

USE FACTOR: 09%

Version x.x
All Rights Reserved

Digital Research, Inc.

To complete the linking process, LINK86 generates three output
files:

• the executable program file with filetype .EXE
• a symbol table file with filetype .SYM
• an optional information file with filetype .MAP

All three files have the same filename as the first file listed
in the command line. The .EXE file executes directly under DOS.
You can use the .SYM file with the Digital Research symbolic
debugging program, SID-86. The .MAP file contains information about

3-1

CBS6 Programmer's Guide 3.1 Linking Files

segments and groups. LINKS6 displays unresolved symbols at the
console. Unresolved symbols are symbols referenced in a program but
not defined within the files being linked. You must define all
unresolved symbols for the program to run properly.

To halt LINKS6 during processing, press CTRL-Break. Under DOS
Version I you can halt LINKS6 only during console output. LINKS6
immediately returns control to DOS. Under DOS Version 2, you can
set break mode and halt LINKS6 at any time during processing.

3.1.1 LINK86 Command Lines

The command line starts LINKS6 and specifies the files to link.
LINKS 6 automatically searches the Run-time Subroutine Library,
CBS6.LS6, for any required routines. LINKS6 command lines use the
following general format. Items enclosed in braces are optional.

LINKS6 {filespec =} filespecl {,filespec2 ••. ,filespecN}

The following example links the file named TEST.OBJ and
generates an executable file named TEST.EXE and a symbol table file
named TEST.SYM. LINKS6 assumes a filetype of .OBJ if not specified
otherwise.

A>LINK86 TEST

You can rename the output files in the LINKS6 command line
using an equal sign. The following command line links the file
named TEST.OBJ but generates output files with the filename TESTPGM.

A>LINK86 TESTPGM=TEST

You can specify which drive holds the .OBJ file to link, and
you can specify a drive for LINKS6 to write the output files to.
The following command line produces the same output files as the
previous example, but LINKS6 links the TEST.OBJ file from drive D
and writes the TESTPGM output files to drive A.

A>LINK86 A:TESTPGM=D:TEST

You can specify a filetype other than .OBJ or .LS6 for files in
a command line if the files are object files. LINKS6 aborts the
linking process if any of the files are not proper object files. In
the following example, LINKS6 assumes ONE.A, TWO.B, and THREE.C are
object files and links them.

A>LINK86 TESTPGM=ONE.A, TWO.B, THREE.C

You can link several relocatable files into one executable
program. However, when combining several files, only one file can
contain executable statements. This file is the main program. All
other files must contain only multiple-line functions. In the
following command line, TEST.OBJ is the executable main program.
ONE.OBJ, TWO.OBJ, and THREE.OBJ contain multiple-line functions.

3-2

CB86 Programmer's Guide 3.1 Linking Files

LINK86 links -all four object files into one executable program named
TEST.EXE.

A>LINK86, TEST, ONE, TWO, THREE

LINK86 can link any number of object files until the number of
symbols contained in the files exhausts the space reserved for the
symbol table. However, the length of a command line entered from
the console cannot exceed 128 characters. In cases where a command
line exceeds 128 characters, you can place the command line in a
disk file and use the INPUT command line option. The command line
disk file is also handy if you want to avoid having to type a long
and complicated command line over and over.

Create command line disk files with a .INP filetype using any
text editor. List each input file with options after the equal sign
as you would in an ordinary command line. Do not include the
characters LINK86 in the disk file. You can place tab characters,
carriage returns, and line-feeds anywhere in a command line file.
The following example shows the beginning of a command line file
named NEWCOM.INP.

PROGNEW= FILE1, FILE2, FILE3, FILE4, FILES, FILE6,
FILE?, FILE8, FILE9, FILElO, LIBl.L86,
FILEll[MAP], LIB2.L86[SEARCH],

To tell LINK86 to read the rest of its command line from the
file NEWCOM.INP, use the following command. LINK86 assumes a .INP
filetype.

A>LINK86 NEWCOM [INPUT)

3.1.2 LINK86 Errors

In case of a command line error, LINK86 echoes the command line
tail up to the point where the error occurs and follows the error
with a question mark. In the following example, LINK86 detects a
misplaced semicolon where it expects a comma:

A>LINK86 ONE, TWO, THREE; FOUR

LINK-86 Linkage Editor
Serial No. XXXX-OOOO-654321
Copyright (c) 1982,1983

SYNTAX ERROR
ONE, TWO, THREE;?

A>

3-3

Version X.X
All Rights Reserved

Digital Research, Inc.

CB86 Programmer's Guide 3.1 Linking Files

In the next example LINK86 detects a filename that exceeds the
eight-character limit.

A>LINK86 TESTPROGRAM

LINK-86 Linkage Editor
Serial No. XXXX-OOOO-6S4321
Copyright (c) 1982,1983

Version X.X
All Rights Reserved

Digital Research, Inc.

SYNTAX ERROR
TESTPROGRAM?

A>

LINK86 reports errors that occur during linking with a literal
message. Refer to Appendix C for a list of LINK86 error messages.

3.2 LINK86 Command Line Options

LINK86 has a number of command line options that you can use
with compiled CBASIC programs. Options are keywords that send
special instructions toLINK86. You specify options wi thin brackets
in a LINK86 command line. The following table lists the options, a
brief description of each, and a keyword abbreviation.

Keyword

FILL

NOFILL

INPUT

LIBSYMS

NOLIBSYMS

LOCALS

NOLOCALS

Table 3-1. LINK86 Command Line Options

I Abbr I
F

NOF

I

LI

NOLI

LO

NOLO

Meaning

Zero fill and include uninitialized
data in .EXE file.

Do not include uninitialized data
in .EXE file.

Read command line from disk file.

Include symbols from library files
in .SYM file.

Do not include symbols from library
files in .SYM file.

Include local symbols in • SYM file.

Do not include local symbols in
.SYM file.

3-4

CB86 Programmer's Guide 3.2 LINK86 Options

Table 3-1. (continued)

Keyword

MAP

SEARCH

$C

$L

$M

$0

$S

I Abbr 1
M

S

Meaning

Generate a .MAP file.

Search library and link only
referenced modules.

Specify .EXE file destination.

Specify .L86 file location for
librar ies linked automatically,
such as CB86.L86. .

Specify .MAP file destination.

Specify .OBJ or .L86 file location
for files linked in the command
line.

Specify .SYM file destination.

You can specify either the keyword or the abbreviation in a
canmand line. Each option, except for INPUT and SEARCH, affects one
of the LINK86 output files. Sections 3.2.1 through 3.2.5 explain
the use of the LINK86 command line options in more detail. See
Section 3.1.1 for information on INPUT.

3.2.1 Uninitia1ized Data

Uninitialized data often occurs at the end of a section of a
.EXE file. The FILL option directs LINK86 to include uninitialized
data in the .EXE file and fill it with zeros. The NOFILL option
directs LINK86 to omit the uninitialized data from the .EXE file.

The FILL and NOFILL options do not affect uninitialized data
that occur within a section of .EXE file. LINK86 always fills
uninitialized data inside a section of a .EXE file with zeros. The
following examples show the proper use of the FILL and NOFILL
options. FILL is the default option.

A>LINK86 TESTPGM [FILL]

A>LINK86 TESTPGM [NOFILL]

using the FILL option often results in a larger .EXE file.
However, LINK86 usually processes faster when the FILL option is in
effect.

3-5

CB86 Programmer's Guide 3.2 LINK86 Options

3.2.2 Symbol File Options

The following command options affect the contents of the .SYM
file that LINK86 creates:

• LOCALS / NOLOCALS
• LIBSYMS / NOLIBSYMS

You must place the symbol file option keyword after the first
file to which it applies. A symbol file option remains in effect
until you change it. LINK86 processes the command line from left to
right.

The LOCALS option directs LINK86 to place any local symbols
from the obj ect files in the • SYM file. The NOLOCALS option directs
LINK86 to ignore the local symbols in the object files. LINK86
defaul ts to the LOCALS option. The following command line creates a
.SYM file containing local symbols from TEsrr2.0BJ and TEST3 .OBJ, but
not from TESTI.OBJ.

A>LINK86 TESTI[NOLOCALS], TEST2[LOCALS], TEST3

The LIBSYMS option directs LINK86 to place symbols from library
files into the .SYM file. The NOLIBSYMS option directs LINK86 not
to include library symbols in the .SYM file. LINK86 defaults to the
NOLIBSYMS option. The following command line creates a .SYM file
containing symbols from LIB2.L86, but not from LIBl.L86 or LIB3.L86.

A>LINK86 LIBI.L86, LIB2.L86[LIBSYMS], LIB3.L86[NOLIBSYMS]

3.2.3 MAP File Options

The MAP option directs LINK86 to generate a .MAP file that
contains information about the segments in a .EXE file. Five MAP
option parameters control the amount of information that LINK86 puts
into the .MAP file. Specify MAP option parameters enclosed in
brackets after the keyword MAP.

• OBJMAP/NOOBJMAP
• L86MAP/NOL86MAP
• ALL

The OBJMAP parameter directs LINK86 to put .OBJ file segment
information into the .MAP file. The NOOBJMAP parameter suppresses
.OBJ file segment information. Similarly, the L86MAP parameter
directs LINK86 to put library file segment information into the .MAP
file. The NOL86MAP parameter suppresses library file segment
information. The ALL parameter directs LINK86 to put both .OBJ and
library file segment information in the .MAP file.

3-6

CB86 Programmer's Guide 3.2 LINK86 Options

Once you instruct LINK86 to create a .MAP, you can change the
MAP option parameters at different points in the command line, as
shown in the following example:

A>LINK86 TESTl[MAP[ALL]], TEST2, LIBl.L86 [S,MAP[NOL86MAP]]

If you specify the MAP option with no parameters, LINK86 uses
OBJMAP and NOL86MAP as defaults.

3.2.4 Library File Options

The SEARCH option directs LINK86 to search a library file and
include referenced modules in the .EXE file. Note that LINK86 does
not search .L86 files automatically. If you do not specify the
SEARCH option after a library file name, LINK86 includes all the
modules from the library file in the .EXE file. The following
command line combines TESTl.OBJ, TEST2.0BJ, and any modules from
LIBl.L86 referenced in the object files:

A>LINK86 TESTl, TEST2, LIBl.L86 [SEARCH]

3.2.5 Redirecting LINK86 File I/O

LINK86 assumes all files specified in a command line are on the
default drive, unless you explicitly specify otherwise. Likewise,
LINK86 writes all output files 1:0 the default drive unless you
specify otherwise. The following command line shows how to specify
different drives input and output files:

A>LINK86 E:NEWTEST = D:TESTl, D:TEST2, B:LIBl.L86

In the preceding example, the files TESTI.OBJ and TEST2.0BJ are on
drive D and the LIB1.L86 file is on drive B. LINK86 writes the
output files to drive E.

Alternatively, you can use the I/O options $C, $L, $M, $0, and
$S to override the default drive specifications.

• $C<drivespec> specifies the .EXE file destination.

• $L<drivespec> specifies the .L86 file location for files linked
automatically.

• $M<drivespec> specifies the .MAP file destination.

• $O<drivespec> specifies the .OBJ or .L86 file location for
files specified in the command line.

• $S<drivespec> specifies the .SYM file destination.

3-7

CBS6 Programmer's Guide 3.2 LINKS6 Options

The <drivespec> can be any letter from A to P corresponding to
one of sixteen logical drives. You can also direct the .MAP or .SYM
output files to the console. Enter an X after the option to direct
the file to the console. You can enter a Z after the option to
suppress the generation of an output file.

A given I/O option remains in effect, as LINKS6 processes a
command line from left to right until it encounters a change in that
option. The following example shows how to use the I/O options:

A>LINK86 TESTI[$CDSZMXOB], TEST2, TEST3[$OA], LIBI.L86 [$LF]

The preceding example tells LINKS6 to read TESTI.OBJ and TEST2.0BJ
from drive B, TEST3.0BJ from drive A, and LIBI.LS6 from drive F.
The command line tells LINKS6 to write the .EXE file to drive D, the
.MAP file to the console, and to suppress generation of the .SYM
file.

You must separate I/O options from other command line options
with commas, as shown in this example:

A>LINK86 TESTI[NOLOCALS,$SB], TEST2, LIBI.L86 [SEARCH,$LC]

The preceding command line tells LINKS6 to include LIBI.LS6
referenced library modules from drive C and write the .SYM file
without local symbols to drive B. LINKS6 reads the TESTI.OBJ and
TEST2.0BJ files from the default drive.

3.3 Producing Overlays

LINKS6 can produce overlay files that a CBASIC CHAIN statement
can execute. Overlay files have a .OVR filetype. The SOS6 version
of CBASIC Compiler does not handle chaining and overlays like the
8080 version. In the 80S6 version, the root program always resides
in memory. Once you chain from the root program to an overlay, you
cannot effectively chain back to the root. Chaining back to the
root causes the entire program to restart from the beginning.
Certain data elements and the stack are reinitialized, and all
COMMON data from the first execution is lost. Overlays can only
chain effectively to other overlays.

To genera te an over lay, enclose the filename of the object file
in parentheses wi thin the LINK86 command line. The following
command line creates an executable file named TEST.EXE and one
overlay named ONE.OVR:

A>LINK86 TEST(ONE)

The TEST.EXE file that the preceding example generates is the
root program. A CHAIN statement in the TEST.EXE program transfers
control to the overlay ONE.OVR. The root program contains all
library routines and COMMON data for the entire program.

3-S

CB86 Programmer's Guide 3.3 Producing Overlays

The following command line generates an executable program
named TESTPGM.EXE and two overlays named ONE.OVR and TWO.OVR:

A>LINK86 TESTPGM=TEST(ONE) (TWO)

You can combine several object files into one overlay. The
following command line generates an executable program named
TEST.EXE and three overlays named A.OVR, C.OVR, and F.OVR:

A>LINK86 TEST (A,B) (C,n ,E) (F)

You can specify names for the overlay files in the command
line. The following command line generates the TESTPGM.EXE program
and two overlays named FIRST.OVR and SECOND.OVR:

A>LINK86 TESTPGM=TEST (FIRST=A) (SECOND=B,C)

3.4 The Linking Operation

This section provides a br ief introduction to how LINK86 works.
For a more detailed description you can refer to the Digital
Research Programmer's Utili ties Guide for 8086 machines. You should
have a working knowledge of microprocessors and operating systems to
understand the LINK86 system.

Obj ect files contain a number of segments that have four
attributes: segment name, class name, align type, and combine type.
The CBASIC Compiler automatically assigns the four attributes to
various segments of a CBASIC program at compile time. You cannot
manipulate CBASIC programs at the attribute level. You can use
RASM-86 to write assembly language programs that maintain direct
control over segmentation and grouping. RASM-86 is an assembler
tha t uses a subset of Intel ASM-86 assembly language. RASM-86
generates object files compatible for linking with LINK86. RASM-86
is available from Digital Research.

• LINK86 uses the segment name to identify and combine all
program parts that belong together in one segment.

• LINK86 uses the class name to position combined segments in the
.EXE file.

• The align type indicates the type of boundary on which a
segment begins. Align types are byte, word, and paragraph.
LINK86 uses the align type with the segment name and class name
to combine all program parts that belong together in one
segment and to position segments in the .EXE file.

o The combine type determines how LINK86 combines program parts
from different files that have the same segment name. Combine
types are PUBLIC, COMMON, and STACK.

3-9

CB86 Programmer's Guide 3.4 The Linking Operation

The LINK86 process involves two distinct phases. In Phase 1,
LINK86 collects all the program parts with the same segment name and
class name. LINK86 then combines the segments according to the
align and combine attributes. In Phase 2, LINK86 organizes the
segments into the proper groups such as CGROUP (code) and DGROUP
(data) and assigns the grouped segments to a section of the .EXE
file.

• Segments in the CGROUP are placed in the CODE section of the
.EXE file.

• Segments in the DGROUP are placed in the DATA section of the
.EXE file.

• Segments not part of the CGROUP or DGROUP are placed in the
.EXE file according to class name.

LINK86 omits any segment that does not have sufficient
positioning information.

End of Section 3

3-10

Section 4
The Library

A library file consists of one or more object modules. To
speed up the linking process, a library file contains an index. The
index contains all the public symbols that are in each module,
enabling LINK86 to determine which routines in CB86 .L86 are required
to create the executable program. CBASIC Compiler provides a
library file to use with LINK86 and a library manager utility
program to create your own library files. Your CBASIC Compiler
product disk should contain the following two files:

• CB86.L86
• LIB86.EXE

4.1 CB86.L86

The file CB86.L86 is a library file that contains modules to
allocate and release memory, determine available memory space, and
perform arithmetic operations and input/output processing. All
library files have a .L86 filetype.

LINK86 first reads the object files you specify in the command
line. LINK86 then searches the index of CB86.L86 for any symbols
that remain unresolved. LINK86 links only those modules from
CB86.L86 that contain definitions of the unresolved symbols.

For example, if a module in one of your progr~ns requires the
square root subroutine, LINK86 searches the index of the CB86.L86
file for the symbol ?RSQR. Assuming that this symbol is not defined
anywhere in your program, LINK86 links the module from CB86.L86 that
contains the definition of ?RSQR. LINK86 links any module from the
library that contains a required symbol definition.

The CBASIC Compiler indexed library file provides four routines
for use in assembly modules that enable you to allocate and release
memory, and to determine the amount of space that is available for
allocation.

• The ?GETS routine allocates space. The routine requires that
the number of bytes of memory to allocate pass in register BX.
The maximum number of bytes the routine can allocate is 32,762.
?GETS returns a pointer to a contiguous block of memory in
register AX. There is no restriction on what the allocated
memory space can contain if the adjacent space at either end of
the allocated area is not modified.

• The ?RELS routine releases previously allocated memory. The
routine requires that the address of the space to release
passes in register BX. ?RELS does not return a value.

4-1

CB86 Programmer's Guide 4.1 CB86.L86

• The ?MFRE routine returns the size of the largest contiguous
area available for allocation using the ?GETS routine. The
value returned is an integer placed in in register AX.

• The ?IFRE routine returns the total amount of unallocated
dynamic memory. The returned value is an integer placed in
register AX. A negative value indicates a number larger than
32,767.

4.2 The Library Manager Utility, LIB86

LIB86 is a versatile library manager for developing library
files to use with LINK86. LIB86 can perform the following six
tasks:

• create a library file from a group of object files
• append modules to an existing library file
• replace modules in an existing library file
• delete modules from an existing library file
• select specific modules from a library file
• display library information

LIB86 processes each input file and generates output files
according to instructions in the command line. Input files can have
filetype .OBJ or .L86. .OBJ files contain only one module. .L86
files contain one or more modules. LIB86 assumes a .OBJ filetype if
not specified otherwise. To conclude processing, LIB86 displays the
total number of modules that it processes and the Use Factor. The
Use Factor is a decimal percentage value indicating the amount of
memory that LIB86 uses.

To halt LIB86 during processing, press CTRL-Break. Under DOS
Version 1, you can halt LIB86 only during console output. LIB86
immediately returns control to DOS. Under DOS Version 2, you can
set break mode and halt LIB86 at any time during processing.

4.2.1 LIB86 Command Lines

The command line starts LIB86 and specifies the input files to
process. A LIB86 command line uses the following general format:

A>LIB86 <newfilespec>=<filespec> {[options]} {,<filespec>}

LIB86 checks for errors and displays a literal message, as
described in Appendix E.

LIB86 has fourteen command line options. Options are keywords
that send special instructions to LIB86. You specify options wi thin
brackets in a LIB86 command line. The following table lists the
LIB86 command line options, a brief description of each, and a
keyword abbreviation.

4-2

CB86 Programmer's Guide 4.2 Librarian Utility

Table 4-1. LIB86 Command Line Options

Option

DELETE
EXTERNALS
INPUT
MAP
MODULES
NOALPHA
PUBLICS
REPLACE
SEGMENTS
SELECT
XREF
$0
$X
$M

I Abbr

D
E
I
MA
MO
N
P
R
SEG
SEL
X

I Purpose

Delete a module from a library file.
Show EXTERNALS in a library file.
Read commands from input file.
Create a module map.
Show modules in a library file.
Show modules in order of occurrence.
Show PUBLICS in a library file.
Replace a module in a library file.
Show segments in a module.
Select a module from a library file.
Create a cross-reference file.
Specify input file location.
Specify .XRF file destination.
Specify .MAP file destination.

You can specify either the keyword or the abbreviation in a
command line. Sections 4.2.2 through 4.2.8 explain the use of
command line options in more detail.

LIB86 can process any number of files. However, the length of
a command line cannot exceed 128 characters. In cases where a
command line exceeds 128 characters, you can either shorten
filenames, or you can place the command line in a disk file and use
the INPUT option.

Create command line disk files with a .INP filetype using any
text editor. Enter the new library name before an equal sign and
list each input file with options after the equal sign as you would
in an ordinary command line. Do not include the characters LIB86 in
the disk file. You can place tab characters, carriage returns, and
line-feeds anywhere in a command line file. The following example
shows the beginning of a command line file named LIBRARYl.INP:

LIBRARYI SUBTOT [XREF], ADD2, SUB45, MULT, DIV2,
NETl, NET2, NET3,
TOTAL, GROSSI, GROSS2, GROSS3,
CHARTl, CHART2, CHART3,

4-3

CB86 Programmer's Guide 4.2 Librarian utility

To use the command line disk file and start LIB86, specify the
.INP file as shown below. LIB86 assumes a .INP filetype.

A>LIB86 LIBRARYl [INPUT]

The preceding example specifies the INPUT option, telling LIB86 to
read the rest of the command line from the LIBRARYl.INP disk file.

4.2.2 Creating a Library File

The following example creates a library named TEST.L86 from the
input files ONE.OBJ, TWO.OBJ, and THREE.OBJ. Notice that you do not
have to specify the .L86 filetype for the library name. LIB86
assumes a filetype of .OBJ for input files unless specified
otherwise. Remember, .OBJ files contain only one module.

A>LIB86 TEST=ONE,TWO,THREE

You can create one large library file from several smaller
library files. The following example creates a new large library
file named TESTLIB.L86 from the the input files LIBl.L86 and
LIB2.L86. Remember, .L86 files contain more than one module.

A>LIB86 TESTLIB=LIBl.L86,LIB2.L86

You can combine .OBJ and .L86 files in one command line to
create a library, as in the following example:

A>LIB86 MATHLIB = SQRT, TRIGLIB.L86

The preceding example creates a library file named MATHLIB.L86 from
the input files SQRT.OBJ, and TRIGLIB.L86.

4.2.3 Appending an Existing Library

To add a module to an existing library, specify the existing
library filename on both sides of the equal sign. Then, list the
input files that you want to append. You must include the .L86
filetype for the library filename on the right side of the equal
sign. The following example appends the files ONE.OBJ and LIBl.L86
to the existing library file TESTLIB.L86:

A>LIB86 TESTLIB=TESTLIB.L86,ONE,LIBl.L86

You can rename an appended library file, as shown in the
following example:

A>LIB86 NEWTEST=TESTLIB.L86,ONE,LIBl.L86

The preceding example appends the files ONE.OBJ and LIBl.L86 to the
existing library TESTLIB.L86, creating a new library file named
NEWTEST.L86.

4-4

CB86 Programmer's Guide 4.2 Librarian utility

4.2.4 Replacing Library Modules

Use the REPLACE option to replace a module in an existing
library file. The following command line replaces the module ONE
with the file NEWONE.OBJ in the library file TESTtIB.L86. Notice
the proper use of brackets.

A>LIB86 TESTLIB=TESTLIB.L86 [REPLACE [ONE=NEWONE))

If you want to replace a module but maintain the same module
name, specify the name only once after the REPLACE keyword. The
following example replaces the module ONE with a new ONE.OBJ file in
the library TESTLIB.L86 and renames the the library NEWLIB.L86:

A>LIB86 NEWLIB=TESTLIB.L86 [REPLACE [ONE))

You can replace sever al modules wi th one command line.
Separate each REPLACE specification after the keyword REPLACE with
commas, as shown in the following example:

A>LIB86 NEWLIB=TESTLIB.L86 [REPLACE [ONE=NEWl, TWO=NEW2))

You cannot use the command options DELETE and SELECT with
REPLACE in the same command line.

LIB86 displays an error message if it cannot find a specified
module in the library file.

4.2.5 Deleting Library Modules

Use the DELETE option to delete modules from an existing
library file as shown below. The following example deletes the
module TWO from the library file TESTLIB.L86. Notice the proper use
of brackets.

A>LIB86 TESTLIB=TESTLIB.L86 [DELETE [TWO))

You can delete several modules with one command line. Separate
modules after the keyword DELETE with commas. The following example
deletes three modules to create a new library ,named NEWLIB.L86:

A>LIB86 NEWLIB=TESTLIB.L86 [DELETE [ONE, TWO, FIVE))

You can delete a group of contiguous library modules using a
hyphen, as shown below:

A>LIB86 NEWLIB=TESTLIB.L86 [DELETE [ONE - FIVE]]

The preceding command line deletes all modules from module ONE
through module FIVE.

You cannot use the command options REPLACE and SELECT with
DELETE in one command line.

4-5

CB86 Programmer's Guide 4.2 Librarian Utility

LIB86 displays an error message if it cannot find a specified
module in a library file.

4.2.6 Selecting Modules

Use the SELECT option to select specific modules from an
existing library to create a new library. The following example
creates a new library named NEWLIB.L86 that consists of three
modules selected from OLDLIB.L86. Notice the proper use of
brackets.

A>LIB86 NEWLIB=OLDLIB.L86 [SELECT [TWO, FOUR, FIVE]]

You can select a group of contiguous library modules using a
hyphen, as shown below. The following example creates a new library
that consists of five modules selected from an existing library,
assuming the modules ONE, TWO, THREE, FOUR, and FIVE are contiguous
in the library file:

A>LIB86 NEWLIB=OLDLIB [SELECT [ONE - FIVE]]

You cannot use the command options DELETE and REPLACE with
SELECT in one command line.

LIB86 displays an error message if it cannot find a specified
module in a library file.

4.2.7 Displaying Library Information

LIB86 can produce two types of listing files: a cross-reference
file and a library module map. A cross-reference file contains an
alphabetized list of all public, external, and segment name symbols
in a library file. Following each symbol is a list of all modules
that contain the symbol. LIB86 marks the module or modules that
define the symbol with a pound sign, #. LIB86 encloses segment
names in slashes, II. For example, the segment CODE would appear as
/CODE/.

You can use the XREF option to create a cross-reference listing
for a specified library file. The following example creates a
cross-reference file named TESTLIB.XRF for the TESTLIB.L86 library
file:

A>LIB86 TESTLIB.L86 [XREF]

A module map contains an alphabetized list of all modules in a
library file. Following each module name is a list of all segments
in the module and the length of each segment. A module map also
includes a list of all public and external symbols specified in the
module.

4-6

CB86 Programmer's Guide 4.2 Librarian Utility

Use the MAP option to create a module map for a specified
library file. The following example creates a module map named
TESTLIB.MAP for the TESTLIB.L86 library file:

A>LIB86 TESTLIB.L86 [~mP]

Normally, LIB86 alphabetizes the names of modules in a module
map listing. Use the NOALPHA option to produce a module map that
lists module names in order of occurrence as shown below:

A>LIB86 TESTLIB.L86 [MAP, NOALPHA]

You can use LIB86 to create partial library information maps
using the MODULES, SEGMENTS, PUBLICS, and EXTERNALS options. You
can use the four options in any combination. The following example
creates a module map that contains only public and external symbols:

A>LIB86 TESTLIB [PUBLICS, EXTERNALS]

You can combine the SELECT command with any of the MAP options
described above to generate partial library information maps as
shown in the following examples:

A>LIB86 TESTLIB.L86 [XREF, [SELECT [ONE, TWO, THREE))

A>LIB86 MATHLIB.L86 [MAP, NOALPHA, SELECT [SQRT, LOG, TAN]]

A>LIB86 LIBRARYl.L86 [MODULES, SEGMENTS, SELECT [ONE - FIVE]

4.2.8 Redirecting Library File I/O

LIB86 assumes all files specified in a command line are on the
default drive. Therefore, you must specify the drive for any input
file that is not on the default drive. Likewise, LIB86 writes all
output files to the default drive unless you specify otherwise. The
following command line shows how to specify different drives for
input and output library files.

A>LIB86 E:NEWLIBl = LIBRARYl.L86, D:ONE, D:TWO, B:THREE

In the preceding example, the existing library file is on the
default drive. LIB86 appends the files ONE.OBJ and TWO.OBJ from
drive D, and the file THREE.OBJ from drive B to LIBRARYl.L86. LIB86
writes the new library file, NEWLIBl.L86, to drive E.

Alternatively, you can use the I/O options $0, $X, and $M to
override the default drive specifications •

• $O<dr vespec> specif es input .OBJ or .L86 file location.
o $X<dr vespec> specif es output .XRF file destination.
o $M<dr vespec> specif es output .MAP file destination.

4-7

CB86 Programmer's Guide 4.2 Librarian Utility

The $0 option remains in effect as LIB86 processes a command
line from left to right until it encounters another $0. This is a
useful feature if you want to create a library from several groups
of files on different drives. The following example tells LIB86 to
read the input files Al.OBJ, A2.0BJ, and A3.0BJ from drive C, and

,A4.0BJ, AS.OBJ, A6.0BJ, and A7.0BJ from drive D:

A>LIB86 NEWLIBI = Al [$OC], A2, A3, A4[$OD], AS, A6, A7

You can direct .XRF and .MAP files to the console or printer in
addition to any logical drive. Enter an X after the option to
direct the file to the console. Enter a Y after the option to
direct the file to the printer.

You can specify multiple I/O options in one command line as
shown below:

A>LIB86 LIBRARYl.L86 [MAP, XREF, $OCXEMX]

The preceding example tells LIB86 to read the existing library file
from drive C, write the .XRF file to drive E, and send the .MAP file
to the console screen.

End of Section 4

4-8

Section 5
Machine-level Environment

To understand the machine-level environment of CBASIC Compiler,
you should have a working knowledge of DOS and a familiarity with
8086 microprocessor architecture. As you read this section, have
your operating system manuals ready for quick reference.

5.1 Memory Allocation

Figure 5-1 shows memory allocation for a CBASIC program loaded
according to Intel's Small Memory Model. Notice that the CBASIC
Compiler system supports program groups to the 64K addressable
segment range. The limitation provides a great deal of program
flexibility without having to reinitialize segment registers.
LINK86 displays an error message when a program group for the
resulting .EXE file exceeds the 64K limit.

TOPOF
MEMORY

OS
ES

and
SS

CS

ooaaOH

MAXIMUM
DATA GROUP 1-64K

SEGMENT

MAXIMUM
CODE GROUP 1-64K f-- UP TO 1M

SEGMENT

OPERATING SYSTEM

Figure 5-1. Memory Allocation

5-1

CB86 Programmer's Guide 5.2 Run-time Organization

5.2 Run-time Organization

The l6-bi t CBASIC Compiler system generates directly executable
command files with a filetype of .EXE. A CBASIC command file
contains both a header record and the program memory image. The
CBASIC Compiler system defines a separate DGROUP (data group) and
CGROUP (code group) in the memory image portion of each command
file. The operating system maintains a base page in the data area
of the program.

Figure 5-2 roughly depicts memory allocation wi thin: the DGROUP
and CGROUP for an executable root program and one overlay. Notice
that CBASIC Compiler stores all COMMON data in the root and
maintains its own stack just below the Dynamic Storage Area.

DYNAMIC STORAGE AREA

STACK

OVERLAY DATA

(All COMMON Data)

ss ROOT DATA
and
os--

OVERLA Y CODE

ROOT CODE

cs--

r-

t--

OGROUP
(UP TO 64K)

CGROUP
(UP TO 64K)

Figure 5-2. Run-time Organization

5-2

CBS6 Programmer's Guide 5.2 Run-time Organization

The CBS6 version of 16-bit CBASIC Compiler does not handle
chaining and overlays like the CBSO version. In the CBS6 version,
the root program always resides in memory. Once you chain from the
root program to an overlay, you cannot effectively chain back to the
root. Chaining back to the root causes the entire program to
restart from the beginning. Certain data elements, including the
stack, are reinitialized and all COMMON data from the first
execution is lost. Overlays can only chain effectively to other
overlays. Your root program must contain the COMMON declarations
for all overlays.

To conserve disk space and minimize overlay load time, you can
link all library code in the root program explicitly. Specify the
CBS6.LS6 file in the LINKS6 command line. Any library routines that
an overlay needs are included as part of the overlay, unless those
routines are already part of the root.

5.3 Internal Data Representation

CBASIC machine-level representation varies somewhat for real
numbers, integers, strings, and arrays •

• REAL NUMBERS are stored in binary coded decimal (BCD) floating­
point form. Each real number occupies eight bytes of memory
storage space, as shown in Figure 5-3. The high-order bit in
the first byte (byte 0) contains the sign of the number. The
remaining seven bits in byte 0 contain a decimal exponent. The
exponent is a binary number representing a power of ten. The
number is biased by 40H. Therefore, an exponent value of 42H
represents an actual exponent of 2. Bytes I through 7 contain
the mantissa. Two BCD dig i ts occupy each of the seven bytes in
the mantissa. The most significant digit of the number is
stored in byte 7, furthest from the exponent. The floating
decimal point is always situated to the left of the most
significant digit.

5-3

CB86 Programmer's Guide 5.3 Data Representation

BYTES
xx
o

I
xx XX

2

BITS

14 BCD DIGIT MANTISSA

XX
3

I
X X X
o 1 2

L

I

XX
4

XX
5

EXPONENT
I

I
X X X X X
3 4 5 6 7

NUMBER'S
SIGN BIT

XX
6

Figure 5-3. Real Number Storage

I
xx
7

• INTEGERS are stored in two bytes of memory space with the low­
order byte first, as shown in Figure 5-4. Integers are
represented as l6-bit, two's complement binary numbers.
Integer values range from -32768 to +32767, inclusive.

LOW ORDER BYTE HIGH ORDER
-STORED FIRST- BYTE

I
I

I I
I

I
X X X X X X X X X X X X X X X X

BITS 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
I

SIGN
BIT

Figure 5-4. Integer Storage

5-4

CB86 Programmer's Guide 5.3 Data Representation

• STRINGS are stored as a sequence of ASCII characters. The
length of a string is stored in the first two bytes followed by
the.actual ASCII values, as shown in the following figure. The
high-order length byte is stored first. The maximum number of
characters in a string is 32,762. CBASIC Compiler allocates
space in the Dynamic Storage Area for strings. A pointer in
the Data Area is an address in the DSA for the actual string.

BYTES

I
xx xx xx

l)'
LENGTH

L
xx

DATA IN STRING
o OR MORE BYTES

I
I

xx
3 n

STRING LENGTH

X
BITS 15

I

I
HIGH ORDER

BYTE
(stored first)

I
I
X
14

I
X X
13 8

RESERVED FOR
USE BY

RUN-TIME LIBRARY

I
I

LOWORDER
BYTE

~
X 0
7 X

Figure 5-5. String Storage

• ARRAYS, both numeric and string, are allocated space in the
Dynamic Storage Area as required. Eight bytes are reserved for
each element of an array containing real numbers and two bytes
for each element of an integer array. String arrays are
allocated two bytes for each entry plus the sum of all the
string elements.

5-5

CB86 Programmer's Guide 5.3 Data Representation

At some point in a program it might be necessary to free memory
space allocated to arrays that are no longer needed in the program.
Freeing numeric array space requires that you simply redimension the
array to zero. However, freeing string array space is a two step
process. First, you must set all string array elements to null.
Set all string array elements equal to a string variable that has
never been assigned a value. Use a variable such as NULL$. Be sure
that NULL$ has never been assigned a value. Do not set NULL$ equal
to "". Second, you must redimension the string array to zero after
assigning each element in the array to NULL$.

5.4 Parameter Passing and Returning Values

CBASIC Compiler passes all parameters on the hardware stack.
When a program calls a routine, CBASIC places each parameter on the
stack reading from left to right. The last entry on the stack is
the return address. All values must conform to the format descr ibed
in Section 5.5.

An assembly language routine can return integer, real, or
string values to a CBASIC program. Before returning to the CBASIC
program, all parameters passed on the stack must be removed and the
stack pointer adjusted accordingly.

Integers return in register AX. Real numbers return using a
pointer in register AX that points to an eight byte area containing
the real value to return. The AX register contains the address of
the first exponent byte of the number being returned.

Strings return using a pointer in register AX. Strings must
have been allocated using CBASIC Compiler dynamic storage management
routines. The allocation bit of a returning string should be set to
1. This ensures that the space can be reclaimed when no longer
needed.

If you use STD instruction in your assembly language routine,
you must clear the direction flag upon exit from the routine. The
direction flag is initially clear upon entry to a routine.

End of Section 5

5-6

Appendix A
Implementation-dependent Values

The following implementation-dependent values apply to CB86.

Table A-I. Implementation-dependent Values

Parameter

Initial page width for compiler
output

Initial page length for compiler
output

Maximum number of errors
maintained

Maximum nesting of INCLUDE

Maximum number of formal parameters

Maximum number of subscripts in an
array

Maximum unique identifier length

Maximum number of characters in
string constant

Maximum length of global and
external names

Maximum nesting of FOR loops

Maximum nesting of WHILE loops

Number of files that can be open
at one time

File buffer size in bytes

1 Value I Minimum

80

66

95

6

15

15

50

255

6

13

39

20

128

4

15

15

31

255

6

12

The minimum values are the minimum that are used in any CB86
implementation.

A-l

CB86 Programmer's Guide A Dependent Values

The following extensions exist in CB86 to provide compatibility
with CBASIC-86. Note that future versions of CB86 might not support
these extensions.

• The LPRINTER statement accepts a WIDTH option to be consistent
with CBASIC. The width is ignored.

• Integer and real data is
initialized to null strings.

initialized to 0;
See Section 5.5.

str ings are

• The INPUT prompt str ing can be any express ion; the first
operand must be a string constant.

• An OPEN or CREATE statement accepts a RECS field for
compatibility with CBASIC. The expression is ignored.

• You can use the reserved words LT, GT, GE, LE, EQ, and NE in
place of the relational operators <, >, <=, >=, =, and <>.

• CB86 supports the following form of an IF statement:

IF <expression> THEN <label>

but the <label> must be a numeric label.

End of Appendix A

A-2

Appendix B
Compiler Error Messages

The compiler prints the following messages when a file system
error or memory space error occurs. In each case, control returns
to the operating system.

Table B-1. File System and Memory Space Errors

Error Meaning

COULD NOT OPEN FILE: <filename>

The filename cannot be found in the file system
directory.

%INCLUDES NESTED TOO DEEP: <filename>

The filename occurs in an %INCLUDE directive
that exceeds the allowed nesting of % INCLUDE
directives.

SYMBOL TABLE OVERFLOW

The available memory for symbol table space has
been exceeded. Break the program into modules
or use shorter symbol names.

INVALID FILE NAME: <filename>

The filename is not valid for your operating
system.

DISK READ ERROR

The operating system reports a disk read error.

CREATE ERROR: <filename>

The file cannot be created. Normally this
means there is no directory space on the disk.

B-1

CB86 Programmer's Guide B Compiler Error Messages

Error

DISK FULL

Table 8-1. (continued)

Meaning

The operating system reports that no addi tional
space is available to write temporary or output
files. The directory is full or the disk is
out of space.

INVALID COMMAND LINE

The command line is incorrect. The compiler
prints a greater-than sign, >, one blank space,
and all command line characters beginning with
the fir st character in error. If no characters
remain in the command line when an error
occurs, the compiler does not print the> or
the space.

MISSING SOURCE FILE NAME

The command line processor reports that you did
not specify a source file.

CLOSE OR DELETE ERROR

The oper a t i ng s ys tern r epor ts tha tit cannot
close a file. This occurs if disks are
switched during compilation.

If the compiler detects an internal failure, the following
error message appears:

FATAL COMPILER ERROR XXX
NEAR SOURCE LINE ZZZZ

where XXX is a three-digit number. If the preceding error message
occurs during compilation of your CBASIC program, contact the
Dig i tal Research Technical Support Center. Please report the three­
digit number and the circumstances under which it occurs.

B-2

CB86 Programmer's Guide B Compiler Error Messages

The following error messages indicate the occur rence of
compilation errors. Compilation error messages display within the
source code listing. CB86 does not create the object file if a
compilation error occurs.

Table B-2. Compilation Error Messages

Error I Meaning

1 Invalid character in the source program. The
character is ignored.

2 Invalid string constant. The string is too
long or contains a carriage return.

3 Invalid numeric constant. An integer constant
of zero is assumed.

4 Undefined compiler directive. This source line
is ignored.

5 The %INCLUDE directive is missing a filename.
This source line is ignored.

6 Statements found after an END.

7 The program attempts to divide-by-zero in the
evaluation of an integer constant expression,
such as I% = 7/0.

8 Variable used without being defined, and the U
toggle used during compilation.

9

10

The DEF statement
carriage return.
inserted.

is not terminated by a
A carriage return is

A right parenthesis
parameter list. A
inserted.

is missing from the
right parenthesis is

11 A comma is missing in the parameter list. A
comma is inserted.

12 An identifier is missing in the parameter list.

13 The same name is used twice in a parameter
list.

14 A DEF statement occurs within a multiple-line
function. Multiple-line functions cannot be
nested. The statement is ignored.

B-3

CB86 Programmer's Guide B Compiler Error Messages

Error I
15

16

17

18

19

20

21

22

23

24

Table B-2. (continued)

Meaning

A variable is missing.

The function name is missing following the
keyword DEF. The DEF statement is ignored.

A function name is used previously. The DEF
statement is ignored.

A FEND sta temen t is miss ing.
inserted.

A FEND is

There are too many parameters in a multiple­
line function.

Inconsistent identifier usage. An identifier
cannot be used as both a label and a variable.

Add i t ional da ta ex ists in the source file
following an END stc: temen t. This is the
logical end of the program.

Data statements must begin on a new line. The
remainder of this statement is treated as a
remark.

There are no variables or function names in a
declaration statement, or a reserved word
appears in the list of identifiers.

A function name appears in a declaration within
a multiple-line function other than the
multiple-line function that defines this
function name.

25 A function call has incorrect number of
parameters.

26 A left parenthesis is missing.
parenthesis is inserted.

A left

27 Invalid mixed mode. The type of the expression
is not permitted.

28 Unary operator cannot be used with this
operand.

29 Function call has improper type of parameter.

B-4

CB86 Programmer's Guide B Compiler Error Messages

Error I
30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Table B-2. (continued)

Meaning

Invalid symbol follows a var iable, constant, or
function reference.

This symbol cannot occur at this location in an
expression. The symbol is ignored.

Operator is missing. Multiplication operator
inserted.

Invalid symbol encountered in an expression.
The symbol is ignored.

A right parenthesis is missing.
parenthesis is inserted.

A right

A subscripted variable is used with the
incorrect number of subscripts.

An identifier is used as a simple variable with
previous usage as a subscripted variable.

An identif ier is used as a subscr ipted var iable
with pr ev ious usage as an unsubscr ipted
variable.

A string expression is used as a subscript in
an array reference.

A constant is missing.

Invalid symbol found in declaration list. The
symbol is skipped.

A carriage return is missing in a declaration
statement. A carriage return is inserted.

A comma is missing in declaration list. A
comma is inserted.

A common declaration cannot occur in a
multiple-line function. The statement is
ignored.

An identifier appears in a declaration twice in
the main program or within the same multiple­
line function.

B-5

CB86 Programmer's Guide B Compiler Error Messages

Table B-2. (continued)

Error I Meaning

45 The number of dimensions specified for an array
exceeds the maximum number allowed. A value of
one is used. This might generate additional
errors in the program.

46 Right parenthesis is missing in the dimension
specification within a declaration. A right
parenthesis is inserted.

47 The same identifier is placed in COMMON twice.

48 An invalid subscr ipted var iable reference
encountered in a declaration statement. An
intege~ constant is required. A value of 1 is
used.

49 An invalid symbol found
declaration, or the symbol
statement in the program is
symbol is ignored.

following a
in the first
invalid. The

50 An invalid symbol encountered at the beginning
of a statement or following a label.

51 An equal sign is missing in an assignment. An
equal sign is inserted.

52 A name used as a label previously used at this
level as either a label or variable.

53 Unexpected symbol follows a simple statement.
The symbol is ignored.

54 A statement is not terminated with a carriage
return. Text is ignored until the next
carriage return.

55 A function name is used in the left part of an
assignment statement outside of a multiple-line
function. Only when the function is being
compiled can its name appear on the left of an
assignment statement.

56 A predefined function name is used as the left
part of an assignment statement.

57 In an IF statement, a THEN is missing. A THEN
is inserted.

B-6

CB86 Programmer's Guide B Compiler Error Messages

Table B-2. (continued)

Error I Meaning

58 A WEND statemen t is miss ing.
inserted.

A WEND is

59 A carriage return or colon is missing at the
end of a WHILE loop header.

60 In a FOR loop header, the index is missing.
The compiler skips to end of this statement.

61 In a FOR loop header, a TO is miss ing. A TO is
inserted.

62 An equal sign is missing in a FOR loop header
assignment. An equal sign is inserted.

63 Carriage return or colon is missing at end of
FOR loop header.

64 A NEXT statement is missing.
inserted.

65 Not used.

A NEXT is

66 The variable that follows NEXT does not match
the FOR loop index.

67 NEXT statement encountered without a
corresponding FOR loop header.

68 WEND statement encountered without a
corresponding WHILE loop header.

69 FEND statement encountered without a
corresponding DEF statement. This error
indicates that the end of the source program
was detected while within a multiple-line
function.

70 The PRINT USING string is not of type string.

71 A delimiter is missing in a PRINT statement. A
comma is inserted.

72 A semicolon is missing in an INPUT prompt. A
semicolon is inserted.

73 A delimiter is missing in an INPUT statement.
A comma is inserted.

B-7

CB86 Programmer's Guide B Compiler Error Messages

Table B-2. (continued)

Error I Meaning

74 A semicolon is missing following a file
reference. A semicolon is inserted.

75 The prompt in an INPUT statement is not of type
string.

76 In an INPUT LINE statement,
following the keyword LINE is
variable.

the var iable
not a str ing

77 In an INPUT statement, a comma is missing
between variables. A comma is inserted.

78 The keyword AS is missing in an OPEN or CREATE
statement. AS is inserted.

79 The filename in an OPEN or CREATE statement is
not a string expression.

80 A delimi ter is missing in a READ statement. A
comma is inserted.

81 In a GOTO, GOSUB, or ON statement, a label is
missing. This token can be an identifier
previously used as a variable.

82 The label in a GOTO statement is not defined.
If the label is used in a function, it must be
defined in that function.

83 A delimiter is missing in a file READ
statement. A comma is inserted.

84 In a READ LINE statement, the variable
following the keyword LINE is not a str ing
variable.

85 The label in an IF END statement is not
defined.

86 A pound sign, #, is missing in an IF END
statement. A pound sign is inserted.

87 A THEN is missing in an IF END statement. A
THEN is inserted.

88 In a PRINT statement, the semicolon is missing
following a USING string. A semicolon is
inserted.

. B-8

CB86 Programmer's Guide B Compiler Error Messages

Error I
89

90

91

92

93

Table B-2.' (continued)

Meaning

In an ON statement, a GOTO or GOSUB is missing.
A GOTO is assumed.

The index of a FOR loop header is of type
string. The index must be an integer or real
number.

The expression following the keyword TO in a
FOR loop header is of type string. The
expression must be an integer or real value.

The expression following the keyword STEP in a
FOR loop header is of type string. The
expression must be an integer or real value.

A var iable
previously
variable.

in a DIM sta tement is defined
as other than a subscripted

94 An identifier is missing as an array name in a
DIM statement. The entire statement is
ignored.

95 A left parenthesis is missing in a DIM
statement. A left parenthesis is inserted.

96 A right parenthesis is missing in a DIM
statement. A right parenthesis is inserted.

97 The maximum number of dimensions allowed wi th a
subscripted variable is exceeded.

98 A comma is missing in a POKE statement.
comma is inserted.

A

99 The index of a FOR loop header is not a simple
variable.

100 In a CALL statement, a multiple-line function
name is missing.

101 A file PRINT statement is terminated with a
comma or semicolon.

102 A DIM statement is missing for this subscr ipted
variable.

B-9

CB86 Programmer's Guide B Compiler Error Messages

Error I
103

104

105

106

107

108

109

110

III

112

113

114

115

116

117

Table B-2. (continued)

Meaning

A comma is missing in the label list associated
with an ON GOTO or ON GOSUB statement. A comma
is inserted.

A GOTO is missing in an ON ERROR statement. A
GOTO is inserted.

A comma is missing in a PUT statement. A comma
is inserted.

The expression in an IF statement is of type
string. An integer or real expression is
required.

The expression in a WHILE loop header is of
type string. An integer or real expression is
required.

In an OPEN or CREATE statement, the filename is
missing.

In an OPEN or CREATE statement, the expression
following the reserved word AS is missing.

A multiple-line function calls itself.

A semicolon separates expressions in a file
PRINT statement. A comma is substituted for
the semicolon.

A file PRINT s ta temen t does not have an
expression list.

A TAB function is used in a file PRINT
statement expression list.

Label used as a variable in a list of
expressions.

A GO not followed by a TO or SUB.
assumed.

GOTO is

An OPEN or CREATE statement specifies both
UNLOCKED and LOCKED access control.

A CREATE statement uses the READ-ONLY access
control.

End of Appendix B

B-IO

Appendix C
L1NK86 Error Messages

Dur ing the course of operation, LINK86 can display error
messages. The error messages and a brief explanation of their cause
are described in Table C-I.

Table C-l. LINK86 Error Messages

Message I
CANNOT CLOSE

COMMAND TOO LONG

DIRECTORY FULL

DISK READ ERROR

Meaning

An ou tpu t file cannot be
closed. The disk might be
write-protected.

Too many characters
command line INPUT
file.

in a
(INP)

There is no directory space
for the output files or
intermediate files.

A file cannot be read
properly.

DISK WRITE ERROR A file cannot be written
properly, probably due to a
full disk.

GROUP OVER 64K LINK86 attempted to put more
than 64K bytes into a single
group. This can occur in
either the code or data
group.

LINK86 ERROR Internal LINK86 error.

MORE THAN ONE MAIN PROGRAM There is more than one main
program among the files
being linked. When linking
multiple CBASIC object
files, only one file (the
main program) can contain
executable statements. All
other files must contain
only multiple-line
functions.

MULTIPLE DEFINI'rION The specified symbol is
defined in more than one of
the modules being linked.

C-I

CB86 Programmer's Guide C LINK86 Error Messages

Table C-l. (continued)

Message I
NO FILE

NO STACK SEGMENT

OBJECT FILE ERROR

SEGMENT ATTRIBUTE ERROR

SEGMENT COMBINATION ERROR

SEGMENT OVER 64K

SYMBOL TABLE OVERFLOW

TARGET OUT OF RANGE

UNDEFINED SYMBOLS

Meaning

The indicated file cannot be
found.

Ther e is no stack segment
defined for the .EXE file
created by LINK86.

LINK86 detected an error in
the object file. This is
caused by a translator error
or by a bad disk file. Try
regenerating the file.

The align type or combine
type of the indicated
segment is not the same as
the type of the segment in a
previously linked file.
Regenerate the object file
after changing the segment
attributes as needed.

Attempt to combine segments
that cannot be combined,
such as LOCAL segments.
Change the segment
attributes and relink.

LINK86 attempted to put more
than 64K bytes in a single
segment.

LINK86 ran out of symbol
table space. Reduce the
number and/or length of
symbols in the program, or
relink on a system with more
memory available.

LINK86 attempts to resolve a
reference made to a symbol
outside the acceptable
referencing range.

The symbols following this
message are referenced bu t
not defined in any of the
modules being linked.

End of Appendix C

C-2

Appendix D
Execution Error Messages

The following warning message might be printed during execution
of a CB86 program:

IMPROPER INPUT - REENTER

This message occurs when the fields you enter from the console do
not match the fields specified in the INPUT statement. Following
this message, you must reenter all values required by the input
statement.

Execution errors cause a two-letter code to be printed. The
following table contains valid CB86 error codes.

If an error occurs with a code consisting of an asterisk
followed by a letter, such as *R, a CB86 library has failed. Please
notify Digital Research of the circumstances under which the error
occurs.

Table 0-1. Execution Error Codes

Code I Error

AC The argument in an ASC function is a null
string.

BN The value following the BUFF option in an OPEN
or CREATE statement is less than 1 or greater
than 128.

CE The file being closed cannot be found in the
directory. This occurs if the file has been
changed by the RENAME function.

CM The file specified in a CHAIN statement cannot
be found in the selected directory. If no
filetype is present, the compiler assumes a
type of .OVR.

CT The filetype of the file specified in a CHAIN
statement is not .EXE or .OVR.

CU A C LOS Est ate men t s p e c i fie s a f i 1 e
identification number that is not active.

CX Overlay does not fit in overlay area.

CY Disk read error during loading of overlay.

D-l

CB86 Programmer's Guide o Execution Error Messages

Table D-l. (continued)

Code I Error

DE File to delete cannot be found in the
directory.

OF An OPEN or CREATE statement uses a file
identification "number that is already used.

DU A 0 E LET Est ate men t s p e c i fie s a f i 1 e
identification number that is not active.

OW The operating system reports that there is no
disk or directory space available for the file
being written to, and no IF END statement is in
effect for the file identification number.

DZ Division by zero is attempted.

EF Attempt to read past the end-of-file, and no IF
END statement is in effect for the file
identification number.

ER Attempt to write a record of length greater
than the maximum record size specified in the
OPEN or CREATE statement for this file.

FR Attempt to rename a file to a filename that
already exists.

FU Attempt to access a file that was not open.

IF A filename in an OPEN or CREATE statement, or
with the RENAME function, is invalid for your
operating system.

IR A record number of zero is specified in a READ
or PRINT statement.

LN The argument in the LOG function is zero or
negative.

ME The operating system reports an error during an
attempt to create or extend a file. Normally,
this means the disk directory is full.

MP The third parameter in a MATCH function is zero
or negative.

NE A negative value is specified for the operand
to the left of the power operator.

0-2

CB86 Programmer's Guide D Execution Error Messages

Table D-l. (continued)

Code I Error

NF A file identification is less than 1 or greater
than the maximum number of files allowed. See
Appendix A, Table A-l.

NN An attempt to print a numeric expression with a
PRINT USING statement fails because there is
not a numeric field in the USING string.

NS An attempt to print a string expression with a
PRINT USING statement fails because there is
not a string field in the USING string.

OD A READ statement is executed, but there are no
DATA statements in the program, or all data
i terns in all the DATA statements have been
read.

OE Attempt to OPEN a file that does not exist, and
for which no IF END statement is in effect.

OF An over flow occurs dur ing a real ar i thmetic
calculation.

OM The program runs out of dynamically allocated
memory during execution.

PU An attempt was made to nest PRINT USING. This
can only happen if a multiple-line function
that contains a PRINT USING statement is called
in the ou tpu t list of another PRINT USING
statement.

RB Random access is attempted to a file activated
with the BUFF option specifying more than one
buffer.

RE Attempt to read past the end of a record in a
fixed file.

RU A random read or print is attempted to a stream
file.

SL A concatenation operation results in a string
greater than the maximum allowed string length.

SQ Attempt to calculate the square root of a
negative number.

SS The second parameter of a MID$ function is zero
or negative, or the last parameter of a LEFT$,
RIGHT$, or MID$ is negative.

D-3

CB86 Programmer's Guide o Execution Error Messages

Table D-l. (continued)

Code I Error

TL A tab statement contains a parameter less than
1.

UN A PRINT USING statement is executed with a null
edit string, or a backslash escape character,
\, is the last character in an edit string.

WR Attempt to write to a stream file after it is
read, but before it is read to the end-of-file.

End of Appendix 0

0-4

Appendix E
LIB86 Error Messages

LIB86 can produce the following error messages during
proce ss ing. wi th each message, LIB86 displays addi tional
information appropriate to the error, such as the filename or module
name, to help isolate the location of the problem.

Table E-l. LIB86 Error Messages

Error Meaning

CANNOT CLOSE

LIB86 cannot close an output file. Make
sure the disk is not write-protected.

DIRECTORY FULL

There is not enough directory space for
the output files. Erase unnecessary files
or use a disk with more space.

DISK FULL
There is not enough disk space for the
output files. Erase unnecessary files or
use a disk with more space.

DISK READ ERROR

LIB86 detects a disk error while reading
the indicated file. Try regenerating the
file.

INVALID COMMAND SWITCH

LIB86 encounters an unrecognized swi tch in
the command line. Retype the command line
or edit the .INP file.

LIB86 ERROR n

Internal LIB86 error.

B-1

CB86 Programmer's Guide E LIB86 Error Messages

Table E-l. (continued)

Error Meaning

MODULE NOT FOUND

The indicated module name, which appeared
in a REPLACE, SELECT, or DELETE switch,
could not be found. Retype the command
line, or edit the .INP file.

MULTIPLE DEFINITION

NO FILE

RENAME ERROR

The indicated symbol is defined as PUBLIC
in more than one module. Correct the
problem in the source file.

LIB86 could not find the indicated file.

LIB86 cannot rename a file. Check that
the disk is not write-protected.

SYMBOL TABLE OVERFLOW

SYNTAX ERROR

There is not enough memory for the symbol
table. Reduce the number of switches in
the command line (MAP and XREF both use
symbol table space), or use a system with
more memory.

LIB86 detected a syntax error in the
command line, probably due to an improper
filename or an invalid command option.
LIB86 echoes the command line up to the
point where it found the error. Retype
the command line or edit the .INP file.

End of Appendix E

E-2

Appendix F
CBASIC to CBASIC Compiler Conversion Aid

In this appendix, CBASIC refers to the compiled/interpreted
implementation of the CBASIC language, and CBASIC Compiler refers to
the compiled implementation of the CBASIC language explained in this
manual.

This conversion aid helps you convert your CBASIC programs to
CBAS IC Compiler. When you compile your source code in CBASIC
Compiler, pay close attention to all error messages. This is the
fastest way to determine any necessary changes. Most programs
recompile with no convers ion. If any problems ar ise, call the
Dig i tal Research Technical Support Center (408-375-6262) for
assistance.

F.l Subscripted Variables (Arrays)

CBASIC allows you to use a dimensioned variable name (an array)
as a simple or unsubscr ipted var iable. CBASIC treats these as
separate and distinct variables. CBASIC Compiler does not allow a
dimensioned variable without the array index.

CBASIC

DIM A% (20)

FOR 1% = 1 to 20
A% (1%) = a

NEXT 1%

A% = 100

CBASIC Compiler

DIM A% (20)

FOR 1% = 1 to 20
A% (1%) = a

NEXT 1%

A% = 100
(error message #36)

CBASIC Compiler issues error message #36 for the statement A% =
100 because the statement uses an identifier as a simple variable
that was previously used as a subscripted variable.

F-l

CB86 Programmer's Guide

CBASIC

A% = 100

DIM A% (20)

For 1% = 1 to 20
A% (1%) =0

NEXT 1%

END

F.l Subscripted Variables

CBASIC Compiler

A% = 100

DIM A% (20)
(error message #93)

For 1% = 1 to 20
A% (1%) =0

(error message #37)
NEXT 1%

CBASIC Compiler issues error message #93 for the statement DIM
A% (20) because a variable in a DIM statement is previously defined
as other than a subscripted variable. CBASIC Compiler issues error
message #37 for the statement A% = 100 because an identifier used as
a s ubscr ipted var iable was previously used as an unsubscr ipted
variable.

To correct the error, change the unsubscripted variable to a
different variable name of the same type. Choose a new variable
that differs from all other variable names in your program.

F.2 FILE Statement

The FILE statement in CBASIC opens a file present on the
referenced disk. The FILE statement can also create a file of the
name you specify. However, CBASIC Compiler does not use the FILE
statement. Use the OPEN, SIZE, and CREATE statements to open and
create files.

CBASIC

FILE NAME$

CBASIC Compiler

IF SIZE (NAME$) <> 0 \
THEN OPEN NAME$ AS FILE.NO% \
ELSE CREATE NAME$ AS FILE.NO%

In the CBASIC Compiler example, if there is a file NAME$, the
file is opened as usual. If there is no file NAME$, or the length
of the file is zero (determined by the SIZE statement), the IF
statement passes control to the CREATE statement, which creates the
file NAME$. Both the OPEN and CREATE statements require a file
reference number (FILE.NO%). However, the FILE statement does not
need a file reference number.

When you convert a FILE statement, choose a file number that
does not conflict with any other file reference numbers already in
your program. Remember to modify the PRINT and READ statements that
access the file to reflect the new file number.

F-2

CB86 Programmer's Guide F.3 SAVEMEM

F.3 SAVEMEM

The SAVEMEM statement, which executes routines written to the
assembler in CBASIC, has no meaning in CBASIC Compiler. The CBASIC
Language Reference Manual tells how to use assembler routines and
explaIns how to lInk the routines to CBASIC Compiler programs.

F.4 CHAIN Statement

The CHAIN statement in CBASIC and CBASIC Compiler passes
control from the program executing in memory to the program
specified in the CHAIN statement. The CHAIN statement syntax is
identical for both CBASIC and CBASIC Compiler.

CBASIC CBASIC Compiler

CHAIN <string expression> CHAIN <string expression>

The str ing expression following the keyword CHAIN must evaluate
to a file specification, which is an overlay file the root program
can chain to. If the filespec does not include the filetype, CBASIC
assumes a filetype of .INT.

CBASIC Compiler (CB80) assumes a .OVL filetype for overlays.
In CB80, the root program always has a .COM filetype. An overlay
file with filetype .OVL cannot be the root of a chaining sequence.
The str ing expression in a CHAIN statement must evaluate to a
filespec with a .COM filetype when chaining to the root. A program
compiled with CB80 can chain to a .COM file other than one generated
with LK80.

CBASIC Compiler (CB86) assumes a .OVR filetype for overlays.
In CB86, the root program resides in memory at all times. Once you
chain from the root program to an overlay, you cannot effectively
chain back to the root. Chaining back to the root causes the entire
program to restar t from the beginning. Certain data elements,
including the stack, are reinitialized and all COMMON data from the
first execution is lost. For programs compiled with CBB6, overlays
can only chain effectively to other overlays. Your root program
must contain the COMMON declarations for all overlays.

F.5 String Lengths

CBASIC Compiler allows str ing lengths up to 32K. CBASIC
Compiler uses two bytes to give this expanded string length; CBASIC
uses one byte. To set strings to null in CBASIC Compiler, see the
Programmer's Guide.

If your program uses the SADD function with PEEK and POKE to
pass a string to an assembly language routine, you must change your
program to accommodate the two-byte length indicator in CBASIC
Compiler.

F-3

CB86 Programmer's Guide F.5 String Lengths

CBASIC CBASIC Compiler

LEN% = PEEK (SADD(STRING$» LEN% = (PEEK (SADD(STRING$» AND 07FH \
END + PEEK (SADD(STRING$) + 1» * 256

F.6 PEEK and,POKE

The PEEK function in CBASIC and CBASIC Compiler returns the
contents of the memory location specified in the PEEK function call.
Memory locations in CBASIC Compiler might not contain the same
information that CBASIC programs expect. You might have to change
the memory location your program is examining, or remove the PEEK
statement from your program.

The POKE statement behaves the same in CBASIC Compiler as it
does in CBASIC. However, the memory locations in CBASIC Compiler
differ from the memory locations in CBASIC. If your program
contains a POKE statement' to a location in a CBASIC program, it
might insert the value at the wrong address when used in a CBASIC
Compiler program. In particular, the statements,

or
POKE OllOH, 0

POKE 272, 0

used in CBASIC to adjust the console width, must be removed. Use
the POKE statement carefully because the actual location of code is
determined by the link editor.

F.7 FOR-NEXT Loops

When using FOR-NEXT loops in CBASIC, the NEXT statement can
terminate more than one loop. CBASIC Compiler does not allow this
construct. You must use a separate NEXT statement for each FOR
statement that begins a loop.

CBASIC

FOR I% = 1 TO 100
FOR J% = 1 TO 100

• (statements)

NEXT J%, I%

CBASIC Compiler

FOR I% = 1 TO 100
FOR J% = 1 TO 100

• (statements)

NEXT J%
NEXT I%

Also, CBASIC executes all statements in the FOR-NEXT loop at
least once. CBASIC Compiler executes the statements in a FOR-NEXT
loop zero or more times, depending on the values of the loop
indexes. This is potentially troublesome. Examine the logic of
your programs, and make any necessary changes.

F-4

CB86 Programmer's Guide F.8 Console Width

F.B Console width

To facilitate cursor addressing, CBASIC Compiler generates a
carriage return only upon executing a PRINT statement not terminated
by a comma or semicolon. This is analogous to setting the CBASIC
console width to zer 0 by a POKE to 272. CBASIC automatically
generates a carriage return when the console width has been
exceeded. Therefore, CBASIC programs that assume the cursor returns
when the console width is exceeded might not execute correctly in
CBAS~C Compiler.

F.9 FRE

In CBASIC Compiler, FRE returns a binary value that represents
the number of bytes of available memory. In CBASIC, the binary
value represents a real value. Programs that use FRE must interpret
nega ti ve values correctly, because CBASIC Compiler ar i thmetic
routines interpret binary values in excess of 32,767 as negative
numbers. In general, negative values indicate ample available
memory.

The following statement can determine whether adequate memory
is available.

IF (FRE > 0) AND (FRE < MIN.MEMORY%) THEN \
CALL LOW.MEMORY.WARNING

F.lO READ and INPUT Statements for Integers

READ and INPUT statements handle integers differently in the
two languages. CBASIC accepts all numeric values as real numbers,
and then converts to integers if required. CBASIC Compiler accepts
integers directly.

CBASIC

DATA 10.7, lE2

READ A%,B%

The values of A% and B%
after the READ are:

A% = 11 B% = 100

CBASIC Compiler

DATA 10.7, lE2

READ A%,B%

The values of A% and B%
after the READ are:

A% = 10 B% = 1

With CBASIC Compiler, conversion stops at the first character
not a part of a valid integer.

F-5

CB86 Programmer's Guide F.ll Functions and Variables

F.II Function and Variable Names

CBASIC Compiler requires that function names, variables, and
statement labels be unique. In CBASIC, all functions must start
with the letters FN, and labels must be numeric constants. Thus, no
problems should occur when you convert programs from CBASIC to
CBASIC Compiler. Remember that variables and arrays might conflict
as described in Section F.l.

F.12 Labels

CBAS IC Comp i Ie r places all prog ram labels, includ ing
unreferenced labels, in a symbol table. CBASIC does not put
unreferenced labels in the symbol table.

A label in a multiple-line function is local to the function.
This is not the same in CBASIC.

CBASIC

DEF FN.A
100 PRINT "HELLO"
FEND
GOTO 100

CBASIC Compiler

DEF FN.A
100 PRINT "HELLO"
FEND
GOTO 100
(error message #82)

CBASIC Compiler issues error message #82 because the label in a
GOTO statement is undefined. The label used in a function must be
defined in that function.

F.13 Warning Messages

CBASIC Compiler produces no warning messages during the
execution of a program. All errors are fatal and execution
terminates unless you use an ON ERROR GOTO statement to trap the
error.

F.14 New Reserved Words

CBASIC Compiler incorporates new reserved words with some of
the newly implemented features. If your CBASIC programs use these
words as variables, rename them to a different variable name. The
following is a list of reserved words unique to CBASIC Compiler.

F-6

CB86 Programmer's Guide F.14 New Reserved Words

ATTACH GET PUT

%DEBUG INITIALIZE READONLY

DETACH INKEY REAL

ERR INTEGER SHIFT

ERRL LOCK STRING

ERROR LOCKED STRING$

ERRX MOD UNLOCK

EXTERNAL PUBLIC UNLOCKED

End of Appendix F

F-7

%DEBUG directive, 2-7
%EJECT directive, 2-6
%INCLUDE, 2-8/2-9, B-1, B-3
%INCLUDE directives, 2-7
%LIST directive, 2-6
%NOLIST directive, 2-6
%PAGE, 2-6
·BAS filetype, 1-2, 2-3
·COM filetype, F-3
·EXE file, 1-1, 2-1, 3-2,

3-5, 3-7, 3-9, 5-1
·EXE filetype, 2-3, 3-1, 5-2
·INP file, 3-3, 4-3/4-4
·INT filetype, F-3
• IRL file, 4-1
·L86 file, 3-5/3-7, 4-2.

4-4, 4-7
·L86 filetype, 2-3, 3-1/3-2,

4-1
·LST filetype, 2-9
·MAP file, 3-1/3-2, 3-5, 3-7,

4-3, 4-7/4-8
·OBJ file, 1-1, 2-1/2-2, 2-8,

3-1/3-2, 3-5, 3-7, 4-2,
4-4, 4-7

.OBJ filetype, 1-3, 2-2, 3-2

.OVL filetype, F-3
·OVR filetype, 3-8
·SYM file, 2-8/2-9, 3-1/3-2,

3-5/3-7
.TMP filetype, 2-1
.XRF file, 4-3, 4-7/4-8

A

align type, 3-9
allocation

bit, 5-6
routines, 4-1

append modules, 4-2
ARRAYS, 5-5
arrays, 5-3

freeing space, 5-6
integer, 5-5
real number, 5-5
storage of, 5-4/5-5
str ing, 5-5
subscripts, A-I

ASC function, D-l
ASCII characters, 5-5
assembly language, 5-6
assignment statement, 2-5

Index

B

B toggle (CB86), 2-9
base page, 5-2
binary coded decimal BCD, 5-3
binary value

in CBASIC, F-5
in CBASIC Compiler, F-5

BUFF option, D-3

c

C toggle (CB86), 2-9
CALL statement, B-9
caret, 2-4
CB80 program listing, 2-6
CB86, 1-1

command line, 2-3, 2-10
command line toggles, 2-7
command line problems, B-2
program listing, 2-2
togg les, 2-7

CB86.L86, 1-1
CB86.EXE, 2-1
CB86. IRL, 3-5
CB86.L86, 3-1, 4-1, 5-3
CB86.0Vl, 2-1
CB86.0V2, 2-1
CB86.0V3, 2-1
CBASIC, A-2

accepting integers, F-5
compiled/interpreted

version, F-l
converting to CBASIC

Compiler, F-l
functions, variables, and

labels in, F-6
CBASIC Compiler

accepting integers, F-S
compiled version, F-l
function, variables, and

labels in, F-6
product disk, 1-2, 2-1, 4-1

CGROUP, 3-10, 5-2
CHAIN statement, 3-8, D-l, F-3
chaining, 3-8, 5-3
class name, 3-9
CLOSE statement, D-1
code and data areas, 2-9
code and data groups, 3-1
code and data segments, 2-2

Index-l

CODE group, 3-10, 5-2 E
code

compiler generated, 2-9 end of pass, 2-2
translating, 1-1 END statement, B-3

combine type, 3-9 equal sign, 4-4
command line ERRL function, 2-9

CB86, 2-3 error messages, 2-4/2-5,
compiler directives, 2-3 2-8/2-9, 3-2, 4-6, 5-1
disk file, 3-3, 4-3 error trapping, F-6
options, LINK86, 3-3/3-4 errors, 2-2
tail, 3-3 compilation errors, 2-2
toggles, 2-6, 2-7 execution, 2-9

COMMON, B-6 fatal, F-6
data, 308, 5-2/5-3 Fatal Compiler Error, B-2
declarations, 5-3 LINK86 command line, 3-3

Compilation Error Messages, B-3 maintenance, A-l
compilation errors, 2-2/2-3, 2-5 number of, A-l
compiler, 1-1 EXE file, 1-1, 2-1, 3-2, 3-5,

directives, 2-3, 2-6/2-7 3-7, 3-9, 5-1/5-2
errors, 2-3 executable
files, 2-1 file, 2-1, 3-2
output, A-l program, 1-3, 3-1, 4-1
passes, 2-2 Execution Error Messages, 0-1
undefined directives, B-3 exponent byte, 5-6

compiling programs, 2-1 external names, A-1
console width, adjusting, F-4 external symbol, 4-6
CREATE statement, A-2, B-8, EXTERNALS option, 4-3, 4-7

B-10, 0-1/0-2
Creating a Library File, 4-4 F
cross-reference file, 4-3, 4-6

D

data area, 5-2, 5-5
DATA group, 3-10, 5-2
data type specifications,

2-3, 2-5
data, uninititalized, 3-5
DEF statement, B-3/B-4
DELETE option, 4-3, 4-5
DELETE statement, 0-2
DGROUP, 3-10, 5-2
DIM statement, B-9
directly executable program,

1-1, 1-3
disk space, 5-3
display library information,

4-2, 4-6
dope vector, 5-5
DOS, 1-1, 3-2
drive specification, 2-9,

3-7, 4-7
DSA, 5-5
Dynamic Storage Area (DSA),

5-2, 5-5

F toggle (CB86), 2-9
fatal compiler errors, 2-5, B-3
fatal errors, 2-3
FEND statement, B-4, B-7
file

buffer size, A-1
number, F-2
specification, 2-3, 2-7
system, 2-3
type, 1-2

FILE statement, F-2
file system and memory space

errors, 2-3, B-1
files

closing of, B-2, 0-1
creation of, B-1
linking of, 3-1

filetype specification
LINK86, 3-2
OBJ, 1-3

FILL option (LINK86), 3-5
floating decimal point, 5-3
floating-point, 5-3
FOR loops, B-7, B-9

Index-2

FOR-NEXT loops, F-4
formal parameters, A-I
FRE, F-5
freeing array space, 5-6
function call parameters, B-4
function name, B-6

G

global names, A-I
GOSUB statement, B-8
GOTO statement, B-8, B-IO
grouping, 3-9
groups, 3-2

H

hardware stack, 5-6

I

I toggle (CB86), 2-7, 2-9
I/O options, 3-7
identifiers, 2-9, B-4

maximum length, A-I
simple, B-5/B-6
subscripted, B-5/B-6

IF END statement, B-6, B-8,
0-2/0-3

IF statement, A-2, B-IO
implementation-dependent

values, 2-7, A-I
INCLUDE, A-I
indexed library, 1-1, 4-1
information file, 3-1/3-2
INPUT, 3-5

option, 4-3
prompt string, A-2
statement syntax, B-7/B-8

integer, 5-3
array, 5-5
declaration of, 2-9
initialization of, A-2
representation of, 5-4
storage of, 5-4/5-5

INTEGERS, 5-4
Interlist, 2-8/2-9
Internal Data Representation,

5-3
internal failures, 2-5
invalid

characters, 2-3
command lines, 2-3
symbol, 2-5

K

keyword, 2-4/2-6, 3-4/3-6, 4-2
keyword abbreviation, 3-4, 4-2

L

L toggle (CB86), 2-9
LEFT$ function, 0-3
length byte, 5-5
length segment, 4-6
LIB86, 1-1, 3-1, 4-2, 4-4

command line options, 4-2
error message, 4-5, E-l
halting, 4-2
I/O options, 4-7/4-8
input files, 4-2, 4-4, 4-7
output files, 4-7

LIB86.EXE, 4-1
LIBMAP option 3-5, 3-7
library, 1-1, 4-8

code, 5-3
file, 4-1/4-2, 4-4, 4-7
file I/O, 4-7

Library File Options, 3-7
library file, 3-1, 3-5/3-6

appending to, 4-4
creation of, 4-4
indexed, 4-1
renaming of, 4-4

library manager utility, 1-1,
program, 3-1, 4-1

library module map, 4-6
library modules, 4-5/4-6
library routines, 3-8
LIBSYMS option, 3-5/3-6
line number, 2-2, 2-5, 2-8/2-9
link editor, 1-1, 1-3, F-4
LINK86, 1-1, 1-3, 3-1, 4-1

command line errors, 3-3
command line options, 3-4
command line length, 3-3
command lines, 3-2
error messages, 3-3/3-4, C-l
halting, 3-2
I/O options, 3-8
output file, 3-7

LINK86.EXE, 3-1
linkage editor, 3-1
linking,

files, 3-1
programs, 1-3
routines to CBASIC

Compiler, F-3

Index-3

local symbols, 3-5/3-6
LOCALS, 3-5/3-6
LOCKED access control, B-IO
LOG function, 0-2
loop indexes, F-4
LPRINTER statement, A-2

M

machine code, 1-1
machine-level

environment, 5-1
representation, 5-3

MAP, 3-5
command option, 3-7
file, 3-5
option, 4-3, 4-7

o

o toggle (CB86), 2-9
object files, 3-2, 3-8
object program, 1-1
OVL filetype, F-3
ON ERROR statement, C-l
ON GOSUB statement, B-8
ON GOTO statement, B-8
ON statement, B-9
OPEN statement, A-2, B-8/B-IO,

0-2
out of memory, 2-3
output files, 3-2, 4-2
overlay, 3-8~ 5-2

files, 2-1
load time, 5-3
producing, 3-8 MATCH function, 0-2

memory
allocation, 1-1, 4-1, 5-1,
allocation messages, 2-2
freeing array space, 5-5
locations in CBASIC, F-l
release, 1-1, 4-1/4-2
space, 2-3, 4-1/4-2
storage, 4-1

overlays, 1-1, 3-1, 3-9, 5-3
5-2

MID$ function, 0-3
missing delimiters, 2-3
module map, 4-3, 4-6/4-7

creation of, 4-7
MODULES option, 4-3, 4-7
modules, 4-2

appending, 4-2
selecting, 4-6

mUltiple-line function, B-3,

N

B-5, C-l
problems with, B-3
label in, F-6

N toggle (CB86), 2-7,2-9
names, global and extreme, A-l
nesting INCLUDE files, 2-7
NEXT statement, B-7, F-4
NOALPHA option, 4-3
NOFILL option (LINK86), 3-5
NOLIBSYMS option, 3-5/3-6
NOLOCALS, 3-5/3-6
NOMAP, 3-5
numeric constant, invalid, B-3

p

P toggle (CB86), 2-9
page length, 2-6, 2-8/2-9, 5-7
page width, 2-8, 2-10, 5-7
parameter, 5-6

list, B-3
maximum numbers of, A-I
passing of, 5-6
returned values to, 5-6

parentheses, 2-10
partial library maps, 4-7
pass, 2-2
PEEK function, F-4
POKE statement, B-9
predefined function name, B-6
PRINT statement, B-7/B-IO, 0-3
PRINT USING statement, B-7, 0-3
printer, 2-6, 2-10
product disk, 1-1, 2-1
programs,

compiling, 1-2, 2-1
linking of, 3-1, 3-9
running, 1-3

public symbol, 4-6/4-7
PUBLICS option, 4-3, 4-7
PUT statement, B-lO

R

R toggle (CB86), 2-9
RASM-86, 3-9
read errors, 2-3
READ LINE statement, B-8

Index-4

READ statement, B-8, D-2/D-3
READ-ONLY access control, B-IO
real numbers, 5-3

arrays, 5-5
declaration of, 2-9
initialization of, A-2
representation of, 5-3
storage of, 5-3

redirecting
library file I/O, 4-7
LINK86 file I/O, 3-7

relational operators, A-2
relative addresses, 2-2
relocatable

machine code modules, 1-1
modules, 4-1
object file, 2-1/2-2
object modules, 1-1
routines, 1-1

RENAME function, D-l/D-2
REPLACE option (LIB86), 4-3,

4-5
reserved words, A-2, F-7
returning values, 5-6
RIGHT$ function, D-3
root program, 3-8, 5-2, F-3
run-time subroutine library,

3-1

s

S toggle (CB86), 2-9
SADD function, F-3
SAVEMEM statement, 529
SEARCH option, 3-5, 3-7
segment, 3-2, 3-9

attributes, 3-7, 3-9
length of, 4-6
map, 3-5
name, 3-9/3-10
name symbol, 4-6

SEGMENTS option, 4-3, 4-7
SELECT option (LIB86), 4-3,

4-5, 4-7
SID-86, 3-2
sign-on message, 1-2, 1-3, 2-2,

3-1
Small Memory Model, 5-1
source

file, 2-7
listing, 2-9
program, 1-1/1-2, 2-1/2-2
program listing, 2-9

source code,
compiler directives, 2-6
line numbers, 2-9

stack, 3-8, 5-3
stack pointer, 5-6
storage allocation, 4-1
str ing, 5-3

arrays, 5-5
constant, A-l, B-3
invalid constant, B-3
lengths,

STRINGS, 5-5
strings

declaration of, 2-9
initialization of, A-2
representation of, 5-4
storage of, 5-4/5-5

SYM file, 3-5
Symbol File Options, 3-6
symbols, B-6

T

definition of, 4-1
external, 4-6/4-7
invalid, 2-5, B-5
local, 3-6
name, 2-8
public, 4-1, 4-6/4-7
segment names, 4-6
table, 2-2, 2-8/2-9, 3-1/3-3,

B-1, F-6
unresolved, 4-1

T toggle (CB86), 2-9
temporary work files, 2-1,

2-8, 2-10
terminating loops, F-4
toggles, 2-6, 2-10
translation of code, 1-1
two's complement, 5-4

u

U toggle (CB86), 2-9
undeclared variables, 2-8
uninitialized data, 3-5
UNLOCKED access control, B-IO
unresolved symbols, 3-2, 4-1
Use Factor, 3-1, 4-2

Index-5

v

V toggle (CB86), 2-7, 2-9
variables

w

missing, B-3
subscripted, B-5
subscripts, B-IO
undeclared, 2-8
undefined, B-3

W toggle (CB86), 2-10
warning messages, F-6
WEND statement, B-7
WHILE Loop, A-I, B-7, B-IO
WIDTH option, A-2
work files, temporary, 2-10

x

X toggle (CB86), 2-10
XREF option, 4-3, 4-6
zero fill, 3-5

Index-6

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ First Edition: May 1983

1. What sections of this manl1al are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

CBASIC CompilerTM (CB-86™) Language Programmer's Guide
for the IBM® Personal Computer Disk Operating System

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

From: ______________________ _

Attn: Publications Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

•
POSTAGE WILL BE PAID BY ADDRESSEE

[!ill DIGITALRESEARCHTW
P.O. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

