
XEROX

CBASIc-n™

ALL SOFTWARE IS WARRANTED AS SET OUT IN THE XEROX
OFFICE PRODUCTS SOFTWARE LICENSE AND SOFTW ARE
MAINTENANCE AGREEMENT

610P70642

C BAS I C

A commercially oriented,
compiler/interpreter BASIC

language facility for
CP/M (tm) systems.

Version 2

January 1981

CBASIC is a trademark of Compiler Systems, Inc.

"

Copyright (c) 1977,1978 by Compiler Systems Inc.
All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior
written permission of Compiler Systems Inc., Post
Office Box 145, Sierra Madre, California, 91924.

DISCLAIMER

Compiler Systems makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties or
merchantability or fitness for any particular
purpose. Further, Compiler Systems reserves the
right to revise this publication and to make
changes from time to time in the content hereof
without obligation of Compiler Systems to notify
any person of such revision or changes.

1 .

2 .

3 .

4.

TABLE OF CONTENTS

INTRODUCTION . . 1

1 .1
1 .2
1 .3

Introduction
For CBASIC I Programmers .
An Explanation of Identification Numbers .

1
2
3

GENERAL INFORMATION .. 4

2.1
2.2
2.3
2.4
2.5

Statements
Notation
Statement Numbers ...
REM Statement.
Executing a CBASIC Program

4
5
5
6
7

FORMING EXPRESSIONS 10

3.1
3.2
3.3
3.4
3.5
3.6

Strings. . .
Numbers
Identifiers. .
Variables and Subscripted Variables
Expressions.
Assignment Statements

· 10
10

· 12
· 12
· 15
· 17·

CONTROL STATEMENTS . · 19

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

GOSUB Statement ..
RETURN Statement
GOTO Statement
IF ... THEN ... ELSE Statement.
WHILE Statement.
WEND Statement
FOR Statement ..
NEXT Statement . .
ON ... GOSUB, ON ... GOTO Statements.
STOP Statement . . .
RANDOMIZE Statement
CHAIN Statement ..
COMMON Statement . .

· 19
· 19

· 20
· . . 20
· . • 22
· . • 22
· . . 23

· 25
· 25

· 26
• 27

· . . • • 27
• • • . • • • 28

5 . INPUT/OUTPUT STATEMENTS AND FUNCTIONS. · 31

5.1 General Information. · 31
5.2 PRINT Statement. · · . . · · · · 31
5.3 LPRINTER Statement · 32
5.4 CONSOLE Statement. . . . · · · · · 33
5.5 POS Predefined Function. · · · · · 34
5.6 TAB Predefined Function. · · · · · · 34
5.7 READ Statement . · · . · · 35
5.8 DATA Statement . · · · 35
5.9 RESTORE Statement. · · · 36
5.10 INPUT Statement. · · · · · 36
5.11 OUT Statement. · · · · · · 38
5.12 INP Predefined Function. · 39
5.13 CONSTAT% Predefined Function · · · · · · 39
5.14 CONCHAR% Predefined Function · · · · · · 39

6. MACHINE LANGUAGE LINKAGE STATEMENTS AND FUNCTIONS .. 41

7 .

6.1·
6.2
6.3
6.4
6.5

PEEK Predefined Function
POKE Statement . .
CALL Statement . .
SAVEMEM Statement ..
Use of Integers

PREDEFINED FUNCTIONS

7.1
7.2
7.3

Numeric Functions.
String Functions . .
Disk Functions . . .

8. USER DEFINED FUNCTIONS

8.1 Function Names ..
8.2 Function Definition
8.3 Function Reference

9. FORMATTED PRINTING ..

9.1 General
9.2 String Character Fiel~ .
9.3 Fixed Length String Fields.
~.4 Variable Length String Fields.
9.5 Numeric Data Fields.
9.6 Escape Characters.

10.1
10.2
10.3

FILES . .

How CP/M Maintains Files ..
OPEN Statement ..
CLOSE Statement

· . 41
41

· . 42
· . 42

· 43

· . . . 45

· 45
· . . 49
· . . 56

· . 59

· 59
· 60
· 62

· . 63

· 63
· 64

· . 64
· 64

· 65
· 68

· 69

· . 69
· . 69

· 71

11.

12.

13.

A.

B.

C.

D.

E.

10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

CREATE Statement .•.
DELETE Statement.
IF END Statement ..
FILE Statement ..
READ Statement ...
PRINT Statement . .
Appending to a File . .
Re-Initializing the Disk System

PROGRAMMING WITH FILES ..

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4
12.5

File Facilities
File Organization
Stream Organization
Fixed Organization
File Accessing Methods
Sequential Access .
Random Access . .
Special Features

COMPILER DIRECTIVES . . .

Directive Format ..
Listing Control Directives ..
% INCLUDE
%CHAIN. . . .
END Statement .

OPERATIONAL CONSIDERATIONS ...

13.1
13.2
13.3
13.4
13.5

System Requirements
CBASIC Compile-Time Toggles .
Compiler Output
TRACE
Cross Reference Lister.

APPENDICES

COMPILER ERROR MESSAGES .

RUNTIME ERROR MESSAGES.

KEY WORDS

DECIMAL - ASCII - HEX TABLE

MASTER INDEX

· . . 72
· . . 72

· 73
· 74
· 75
· 77

"71'\
• • • • • 1;;1

· . . 80

· 82

· 82
· 82
· 83
· 83
· 86
· 86
· 88
· 89

· 91

· 91
· 91
· 92
· 93
· 93

· . . 95

· 95
· 95
· 97
· 98
· 98

101

1~7

113

114

115

CBASIC Version 2 Introduction

1. CBASIC

1.1 Introduction

This manual describes version two of CBASIC, a
comprehensive, commercially oriented compiler/interpreter
designed for use with the CP/M (tm) and MP/M-80 (tm)
operating systems. CP/M and MP/M-80 are trademarks of
Digital Research. CP/M is available on a multitude of
8080, 8085, and Z80 microcomputer systems.

In this manual, unless it is stated otherwise,
will be used to indicate version 1 or 2 of CP/M or
There are many derivations of CP/M. CBASIC should
operate with these systems. CPU will refer to
microprocessor chip installed in the system.

CP/M
MP/M.
also
the

CBASIC has a variety of extended features including
the IF ... THEN ... ELSE and WHILE constructs and access to
disk files. CBASIC also allows the use of 31-character
variable names, and the free use of comments, spaces, and
tabs. These aid in creating programs that are
self-documenting and maintainable.

Version two of CBASIC adds integer variables, multiple
line functions, chaining with. common variables, and
additional pre-defined functions as well as other
improvements. A cross-reference lister is also provided.

The CBASIC system consists .Iof three programs. The
first program, the compiler, converts the user's source
language program into a series of coded operations that
are placed on an intermediate disk file. The second
program, the runtime monitor, directly executes the
operations included in the intermediate file. The final
program, XREF.COM, will produce a cross reference listing
of all variables used in a CBASIC source program.

CBASIC Version 2 Introduction

To use CBASIC a microcomputer system using the CP/M
operating system must be available. This manual assumes
a working knowledge of the following CP/M documentation:

(a) AN INTRODUCTION TO CP/M FEATURES AND FACILITIES
(b) ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM
(c) CP/M INTERFACE GUIDE

These manuals are available from Digital Research, PO Box
759, Pacific Grove, California.

A newcomer to the field of computers would do well to
read an introductory text on the Basic Language.

The reference section, chapters 2 through 10,
describes the facilities of the language. Chapter 11
expands on the use of files. Chapters 12 and 13 describe
operation of the compiler. Three appendices follow which
list compiler and runtime error messages and list key
words ..

1.2 For CBASIC I Programmers

Programmers familiar with version 1 of CBASIC should
review this manual paying particular attention to the use
of integer variables. Chapter 3 provides details on using
integers in expressions. The sections concerning new
statements and functions should be re9d in detail.
Chapters 12 and 13 also contain much new information.

A program that compiled and executed with version 1
should op~rate properly with version 2. However, an INT
file created by the version 1 compiler will not execute
with the version 2 runtime monitor. The source program
must be recompiled.

If statements appear not to operate properly, Compiler
Systems, Inc. would appreciate a note which includes the
statement or statements which are causing the problem
along with a description of the problem.

CBASIC Version 2 Introduction

1.3 Program Identification Numbers

All Compiler Systems programs sign-on with the program
name followed by an identification number. These numbers
are in the following form:

v.eR

i'Vii is the version number. This manual describes version
2 programs. The IIR" is the release number of the program.
As errors are corrected in a particular version, new
releases are made available. The lie" is the
configuration. A zero means that the program is
configured to operate with standard CP/M with the TPA at
l00H. A one indicates that the program runs on a Radio
Shack TRS-80 with CP/M. Configuration three has been
modified to support the large files provided by CP/M
version 2 and MP/M. Other configurations may be made
available in the future.

CBASIC Version 2 General Information

2. GENERAL INFORMATION

2.1 Statements

A program consists of zero or more properly formed
CBASIC statements contained in a diskette file. CBASIC
source statements are also called source code or source
statements. An END statement, if present, terminates the
program, and any statements following the END statement
are ignored. An end-of-file on the source file also
terminates the program. In this case the END statement is
supplied by CBASIC.

In this manual the term line, in the context of a
line of source code, means a string of characters
terminated with a carriage return and line feed. A
statement may span more than one line or multiple
statements may appear on the same line.

The entire ASCII character set is accepted, but most
statements may be written using the common 64 character
subset. Lower case letters are converted by the compiler
to upper case except when they appear in strings or
remarks. A compiler toggle, described in Chapter 13, will
inhibit all conversion to upper case.

CBASIC statements are free-form with the following
requirements:

(l) When a statement is not completed on a sing le
line, a continuation character (\) must be used.
(Note that with configuration 1 an at sign (@) may
also be used as the continuation character). The
statement can then be continued on the next line.
CBASIC keywords, variable names and string constants
may not be broken in the middle and continued on the
next line. A continuation character may not be used
in a Data Statement since it is treated as a
character within a string constant. Likewise
backslash characters within string constants
inclosed in quotation marks (see section 3.1) are not
treated as continuation characters.

(2) All
character
compiler.

characters which follow
on the same line are

the continuation
ignored by the

CBASIC Version 2 General Information

(3) Multiple statements are allowed on one line but
they must be separated by a colon (:). DATA, DEF,
DIM, and END must be the only statement on a line; an
IF statement must be the first statement on a line.
See the REM statement (section 2.4) for an exception
to this rule.

Spaces may precede statements: any number of spaces
may appear wherever one space is permitted. Extra spaces,
such as for indenting statements to enhance readability,
do not increase the size of the intermediate file created
by the compiler.

2.2 Notation

All of the CBASIC statements are described in this
manual. Each description includes a synopsis which
presents the general form of the statement. The following
notation is used for the synopsis:

Keywords and Symbols
All special characters and capitalized words
represent symbols which have special meaning in the
language. For instance READ, REM and PRINT are
keywords in CBASIC. Appendix C contains a list of
all keywords used by CBASIC.

Angle Brackets < >
Angle brackets enclose an item which is defined in
greater detail in the text.

Brackets []
Brackets denote an optional feature.

Braces { }
Braces indicate that the enclosed section may be
repeated zero or more times.

2.3 Statement Numbers

Statement numbers are optional. They are ignored
except when they appear in a GOTO, GOSUB, ON, or IF
statement. In these cases, the statement number must
appear as the label of one and only one statement in the
programe Statement numbers do not have to be in
sequential order. For example:

40 INPUT ITEM
PRINT ITEM
30 GOTO 40

CBASIC Version 2 General Information

In this program the line number 30 is not required; it is
ignored during compilation. However, the 40 appears in a
GOTO statement and thus must be used as a statement number
once and only once in the program. Statement numbers may
contain any number of digits but only the first 31 are
considered significant by the compiler.

An additional feature of CBASIC statement numbering is
that any valid number may be used as a statement number.
This allows the use of non-integer statement numbers. It
is possible to write an entire program or subprogram with
statement numbers that are all decimal fractions and
range between two consecutive integers.

Statement numbers can even be in exponential (E)
format. This is a convenient feature when writing
procedures that will be included in other programs because
it helps to insure that statement numbers will be unique.

The following are examples of valid CBASIC statement
numbers:

1
o
100
100 .. 0
100.213
l00E21

The statement numbers 100 and 100.0 are treated as
different statement numbers by the compiler. In other
words it is the string of characters which determines the
statement number and not the numeric value.

2.4 REM Statement

{ < stmt number>] REM [<string 'terminated with CR>]

[<stmt number>] REMARK [<string. terminated with CR>]

A REM statement is ignored by the compiler, and
compilation continues with the statement following the
next carriage return. A continuation character causes the
next line to be part of the remark. The REM statement may
be used to document a program. REM statements do not
affect the size of the program that may be compiled or
executed. An unlabeled REM statement may follow any
statement on the same line. The statement number of a
remark may be used in a GOTO, GOSUB, IF, or ON statement.

CBASIC Version 2 General Information

Examples of REM statements follow:

REM THIS IS A REMARK
remark This is also a remark
tax = 0.15 * income rem lowest tax rate REM \

this section contains the \
tax tables for California

The final example shows-a" REM statement on the same line
with another statement. When using the REM statement in
this manner, a colon is optional between the two
statements. In all other cases involving multiple
statements on the same line, the colon must separate the
statements. In addition, if the REM statement is used on
the same line with other statements, it must be the last
statement on the line.

2.5 Executing a CBASIC Program

Execution of a CBASIC program consists of three
steps. First the source program must be created on disk.
Next the program is compiled by executing the CBASIC
compiler with the name of the source program provided as a
file name. Finally the intermediate (INT) file created by
the compiler is executed by invoking the runtime program,
again using the source program name as a file name.

The source program will normally be created using a
text editor. The source program must have a file type of
BAS. Each line of a source program is terminated by a
carriage return and line feed. The line may be any
length, however, the compiler listing will only print the
first 132 characters of each line.

When typing source programs, identifiers (variable
names, reserved words, and user-defined function names)
may not be abbreviated and must be separated by a
character other than a number or letter. In general,
spaces will be used to delimit identifiers. All letters
in identifiers are converted to uppercase unless the
conversion is inhibited by compiler toggle D (see Chapter
13).

CBASIC version 2 General Information

CBASIC differs from many other basics in its
requirement that keywords and identifiers may not be run
together. For instance:

READA

is not accepted by the CBASIC compiler.
must be written:

READ A

The statement

FORI=JT010 is a valid CBASIC statement, but it
assigns the variable JT010 to the variable FORI.

The CBASIC compiler is invoked as follows:

CBAS2 <filename> [<disk ref>] [$<toggle> {<toggle>}]

where filename is the name of the source file. A file
type of BAS is assumed by the compiler. Compiler toggles,
preceded by a dollar sign, may follow the file name. They
are discussed in Chapter 13.

The compiler produces an intermediate file in the
CBASIC machine language. The intermediate file uses the
same name as the source program but of type INT. The INT
file is normally placed on the same disk as· the source
file. The disk reference is used to specify the drive on
which the programmer desires to have the INT file placed.
The disk reference is optional: if present it is of the
form A:, B:, etc.

The following command will compile the program
INVENTORY. BAS taking the source from the currently
selected drive, and place the INT file on drive B:

CBAS2 INVENTORY B:

If a listing is selected (section 13.2), the name of
the program as it appears following CBAS2 and any other
characters up to the dollar sign or end of the command
will appear in the heading of each page of the listing.
For instance:

CBAS2 COST ON 7 NOVEMBER 1980 $EBF

will result in the following heading:

CBASIC COMPILATION OF COST ON 7 NOVEMBER 1980

CBASIC Version 2 General Information

The source program is normally listed on the console
device. Any error messages will be listed after the
statement in which the error was detected (see section
13.3). If errors are detected during compilation, the
source file must be corrected using the text editor. The
compiler error messages are listed in appendix A. The
program is then recompiled. If no errors occur during
compilation, the intermediate file may be executed by
typing the command:

CRUN2 <filename> [TRACE [<lnl>[,<ln2>]]] [<cmd>]

The trace option is described in chapter
command field «cmd» is used with the
pre-defined function discussed in chapter 7.

13. The
COMMAND $

If errors are found during execution, the source
program must be corrected and then recompiled. Runtime
error messages are described in appendix B.

CBASIC Version 2 Forming Expression

3. FORMING EXPRESSIONS

This chapter discusses the formation of expressions.
First the components of expressions, constants and variables,
are described 0 These elements are then combined to form
expressions. Expressions are a fundamental building block
used in many CBASIC statements.

3.1 Strings

A string constant is defined as zero or more valid
alphanumeric characters enclosed by quotation marks (").
Since a continuation character is treated as part of the
string, strings defined as constants in the source program
must be contained on a single line. A carriage return may
not be part of a string. Embedded quotation marks are
entered as two adjacent quotes.

The following
constants:

"123"

examples

" Ma y __ 24 , 1 944 "

"Enter your name please"

demonstrate

"""Look, look,lIl1 said Torn"

In the final example the string is:

"Look, look," said Tom

valid string

Internally, strings are stored with the length of the
string as the first byte. The characters of the string
follow. The length is stored as a binary number from 0 to
255.

3.2 Numbers

Two types of numeric quantities are supported by
CBASIC, Integer and Real. A real constant may be written
in either fixed format or exponential notation. In both
cases it may contain from 1 to 14 digits, a sign, and a
decimal point. In exponential notation the exponent is of
the form "Esdd", where IS', if present, is a valid sign
(+, , or blank) and where 'ddt is one or two valid
digits. The sign is the sign of the exponent and should
not be confused with the optional sign of the mantissa.

®

CBASIC Version 2 Forming Expression

The numbers range from 1.0E-64 to 9.9999999999999E62.
Although only 14 significant digits are maintained
internally by CBASIC, more digits may be included in a
real constant. Real constants are rounded to 14
significant digits.

Real numbers are stored in eight bytes of memory. The
first byte is the sign and exponent. The exponent is
maintai:ned in excess 64 code. The seven remaining bytes
contain a normalized mantissa stored as packed decimal
digits. The high order four bits of the rightmost byte is
the most significant digit of the mantissa.

If a constant does not contain an embedded decimal
point, is not in exponential notation, and ranges from
-32768 to +32767, the constant is treated as an integer.
Integer values are stored as sixteen bit two's complement
binary numbers.

Integer constants may also be expressed as hexidecimal
and binary constants. If tqe constant is terminated by
the letter H it is hexidecimal. The le.tter B terminates a
binary constant. The first digit of a hexidecimal
constant must be numeric. For instance 255 in hexidecimal
would be 0FFH, not FFH. FFH would be a valid identifier
(see section 3.3).

Binary and heiidecimal constants may not contain a
decimal point. The value retained is the sixteen least
significant bits of the number specified.

In this manual the term real number and floating point
nu~ber will be used interchangeably. The term numeric
will apply to either a real or integer quantity.

Examples of valid numbers are:

1, 1.0, -99, 123456.789

1.993, .01, 4E12, 1.77E-9

1.5E+3 is equivalent to 1500.0

1.5E-3 is equivalent to .e015

1abeH, 10111110B, 0FFFFH

®

CBASIC Version 2 Forming Expression

3.3 Identifiers

An identifier begins with an alphabetic character
followed by any number of alphanumeric chaFacters or
periods. Identifiers identify or name variables used
within a program. Only the first 31 characters are
considered unique, however the identifier may be of any
length. If the last character in the identifier is a
dollar sign, the identifier is of type string. If the
identifier ends in a percent sign, it represents an
integer. Those identifiers not ending with a dollar sign
or percent sign are of type real.

All lower case letters appearing in an identifier are
converted to upper case unless compiler toggle D is set
(Chapter 13). Using periods in identifiers make programs
more readable. For instance BAD.DEBT% is clearer than
BADDEBT%.

Using identifiers which are longer than two characters
improves program readabili~y without increasing the size
of the intermediate file created by the compiler.

Examples of valid identifiers are:

A, B$, cl, c1234%

Payroll.Record, NEW.SUM.AMT

INDEX%, FLAG.3%, counter%

ANSWER$, file.name$, CUSTOMER.ADDRESS$

3.4 Variables and Subscripted Variables

The general form of a variable is:

<identifier> [;(<subscript list>) J

The general form of a subscript list is:

The expressions in a subscript list must be numeric.
Access to array elements is more efficient if integer
expressions are used in subscript lists. If the
expression is real, th~ value is rounded to the nearest
integer prior to using the value. If an expression in a
subscript list is of type string, an error occurs. The
subscript list indicates that the variable is a

®

CBASIC Version 2 Forming Expression

subscripted ·variable and indicates which element of the
array is being referenced.

Each variable has a value associated with it- at all
times during execution of a program. Initially numbers
are zero and strings are null strings. A string variable
does not have a fixed length associated with it. Rather,
as different strings are assigned to the variable, the
storage is dynamically allocated. ~ne maximum length
which may be assigned to a string variable is 255
characters.

The identifier used to represent a variable may not
begin with FN. Such identifiers are used to specify user
defined functions (See chapter 8).

A variable in CBASIC may represent
number, or a string depending on
identifier.

Examples of variables are:

X$
PAYMENT
day.of.deposit%

an
the

integer,
type of

The following examples show subscripted variables:

y$(i%,j%)

COST(3,5)

POS%(XAXIS%,YAXIS%)

INCOME(AMT(CLIENT%),CURRENT.MONTH%)

real
the

When subscripts are calculated, a check is made to
ensure that the element selected resides in the referenced
array. A runtime error occurs if it does not. The
runtime check insures that the location calculated is
included within the physical storage area of the array.
It is not necessarily a valid entry.

Before a subscripted variable may be referenced in a
program, it must be dimensioned using the DIM statement.
The DIM statement specifies the upper bound of each
subscript and allocates storage for the array.

®

CBASIC Version 2 Forming Expression

A DIM statement is an executable statement; each
execution will allocate a new array. If the array
contains numeric data the previous array is deleted prior
to allocating space for a new array. If the array is of
type string each element must be set to a null string
prior to re-executing the DIM statement to regain
the maximum amount of storage. The general form of a
DIM statement is:

[<stmt number>] DIM <identifier> «subscript list»
{,<identifier> «subscript list»}

The dimension statement dy'namically allocates space
for numeric or string arrays. Elements of string arrays
may be any length up to 255 bytes, and change in length
as they assume different values. Initially numeric arrays
are set to zero and all elements of string arrays are null
strings.

An array must be dimensioned
options are provided. Arrays
order.

explicitly; no default
are stored in row-major

The subscript list is used to specify the number of
dimensions and the extent of each dimension of the array
being declared. The subscript list may not contain a
reference to the array being dimensioned.

All subscripts have an implied lower bound of zero.

Examples of DIM statements:

DIM A(10)

DIM ACCOUNT$(100),ADDRESS$(100),NAME$(100)

DIM B%(2,5,10), SALES.PERSON%(STAFF.SIZE%)

DIM X(A%(I%),M%,N%)

The same identifier may be used as both a variable and
as a subscripted variable within the same program.

®

CBASIC Version 2 Forming Expression

3.5 Expressions

Expressions consist of algebraic combinations of
function references, variables, constants, and operators.
They evaluate to an integer, real, or string value.
Function references are discussed in chapter 8. The
hierarchy of operators is:

nested parenthesis
A power operator
*, /

1)
2)
3)
4)
5)

+, -, concatenation (+), unary +, unary -
relational operators <, <=, >, >=, =, <>

LT, LE, GT, GE, EQ, NE
6) NOT
7) AND
8) OR, XOR

Arithmetic and relational operations may be performed
on either integer or real numbers. If an integer and real
number are to be combined using one of these operators,
the integer value is first converted to a real number.
The operation is then performed on the two real values
resulting in a real value. This is referred to as mixed
mode ari thmet-ic.

Mixed mode operations take additional time to execute
and the compiler generates more code. A mixed mode
expression will always evaluate to a real value.

If real values are used, the power operator calculates
the logarithm of the number being raised to the power.
Since the logarithm of a negative number is undefined, a
warning results when the number to the left of the
operator is negative. The absolute value of the negative
quantity is used to calculate the result. The exponent
may be either positive or negative.

If both values used with the power operator are either
integer constants or integer variables, the result is
calculated by successive multiplication. This allows a
negative integer number to be raised to an integer power.
In the case of integers, if the exponent is negative, the
result is zero. In all cases, 0 A 0 is 1 and 0 A X (when
X is not equal to 0) is ~.

If the exponent is an integer but the
the integer is converted to a real
calculating the result. Likewise, if the
but the base is an integer quantity,
calculated using real values.

@

base is real,
value prior to
exponent is real
the result is

CBASIC Version 2 Forming Expression

String variables may only be operated on by relational
operators and the concatenation operator. Mixed string
and numeric operations are not permitted. The mnemonic
relational operators (LT, LE, etc.) are interchangeable
with the corresponding algebraic operators (<; <=, etc.).

Examples of expressions:

amount * tax

cost + overhead * percent

a*b/c(1.2+xyz)

last.name$ +.. .. + first.name$

index% + 1

Relational operators result in integer values. A 0 is
false and a -1 is true. Logical operators NOT, AND, OR,
and XOR operate on integer values and result in an
integer number. If a real value is used with logical.
operators it is first converted to an integer.

If a numeric quantity is greater than 32,767 or less
than -32, 768, it cannot be represented by a .16 bit two's
complement binary number. Logical operations on such a
number will give unpredictable results.

Results of logical operations:

12 AND 3 = 0 1100B AND 0101B = 4

NOT -1 = 0 NOT 3H = -4

12 OR 3 = 15 0CH OR 5H =13

12 XOR 3 = 15 12 XOR 5 = 9

12.4 XOR 3.2 = 15 12.4 XOR 3.7 = 8

By using integer expressions for relational tests and
logical operations a substantial increase in efficiency
results. Programs written in version 1 of CBASIC should
be converted to use integer variables where ever
possible.

The following point should be understood about numeric
constants. If the string of digits contains no decimal
point or ends in a decimal point, CBASIC attempts to store

®

CBASIC Version 2 Forming Expression

it as an integer. If the resulting number is in the range
of CBASIC integers, it is treated as an integer. If the
constant is then required in an expression as a real
number, a conversion to a real number occurs at runtime.
For instance:

x = X + 1.

would cause the integer constant 1. to be converted to a
real value prior to adding it to X. This extra conversion
can be eliminated by embedding the decimal within the
number as shown below:

X = X + 1.0

In actual practice there is very little
execution speed. A similar situation
following statement:

Y% = X% + 1.0

difference
exists in

in
the

In this case the X% is converted to a real number prior to
the addition to the real constant. The result is then
converted back to an integer prior to assignment to Y%.

In general, the programmer should avoid mixed mode
expressions when possible, and should not use real
constants with integer variables. Most whole numbers used
in a program will be stored as integers. This normally
provides the most efficient execution.

If an overflow occurs during an operation between real
values, a warning is printed and execution continues with
the result of the operation set to the largest real
number.

In the case of integers no checking for overflow is
performed since this would reduce the efficiency of
integer operations. It should be understood that if the
results of an integer operation fall outside the range of
integer values, the calculated value will be incorrect.

3.6 Assignment Statements

[<stmt number>] [LET] <variable> = <expresaion>

The expression is evaluated and assigned to the
variable appearing on the left side of the equal sign.
The variable and expression must either both be of type
string or both be a numeric type.

®

CBASIC Version 2 Forming Expression

If the variable and expression are both numeric but
one is integer and the other is real, an automatic
conversion to the type of the the variable on the left of
the equal sign is performed.

Examples:

100 LET A = B + C

X(3,POINTER%) = 7.32 * Y + X(2,3)

SALARY = (HOURS.WORKED * RATE) - DEDUCTIONS

date$ = month$ + " .. + day$ +" "+ year$

INDEX% = INDEX% + 1

REC.NUMBER = OFFSET% + NEXTREC%

®

CBASIC Version 2 Control Statements

4. CONTROL STATEMENTS

4.1 GOSUB Statement

[<stmt.number>] GOSUB <stmt number>

[<stmt number>] GO SUB <stmt number>

The location of the next sequential instruction is
saved on the return stack. Control is then transferred to
the statement labeled with the statement number following
the GOSUB ..

Subroutine calls may not be nested greater than 20
deep.

Examples:

GOSUB 700

PRINT
GOSUB
PRINT
STOP
200

"BEFORE TABLE"
200 REM PRINT THE TABLE
"AFTER TABLE"

REM PRINT THE TABLE
FOR INDEX% = 1 TO TABLE.SIZE%

PRINT TABLE(INDEX%)
NEXT INDEX%
RETURN

4.2 RETURN Statement

[<stmt·number>] 'RETURN

The RETURN statement causes the execution of the
program to return to the statement that immediately
follows the most recently executed subroutine call. That
is, execution continues at the location at the top of the
return stack. The call may be a GOSUB statement, ON .
. GOSUB statement, or multiple line function call. See
Chapter 8 for a discussion of multiple line functions.
Refer also to section 4.12 for information on the effect
of CHAINING on subroutine linkage.

If a return is executed without previously executing a
GOSUB, ON ... GOSUB, or multiple line function call, a
runtime error occurs.

®

CBASIC Version 2 Control Statements

Examples:

500 RETURN

IF ANSWER.VALID% THEN RETURN

4.3 GOTO Statement

[<stmt number>] GOTO <stmt number>

[<stmt number>] GO TO <stmt number>

Execution continues at the statement labeled with the
statement number following the GOTO or GO TO. If the
statement number branched to is not an executable
statement, execution continues with the next executable
statement after the statement number.

If the statement number to which control is being
transferred does not exist, an error will result.

Examples:

80 GO TO 35

GOTO 100.5

4.4 IF Statement

[<stmt number>] IF <expression> THEN <statement list>
[ELSE <statement list>]

[<stmt number>] IF <expression> THEN <stmt number>

If the value of the expression is not zero, the
statements which make up the first statement list are
executed. Otherwise, the statement list following the
ELSE is executed, if present, or the next seq~ential
statement following the IF statement is executed.

In the second form of the IF statement, when the
expression is not equal to zero, an unconditional branch
to the statement number occurs. Note that this form of
the IF statement may not have an else clause. This
variation is included in CBASIC for compatibility with
previous versions of Basic.

CBASIC Version 2 Control Statements

The expression in an IF statement will normally be a
logical expression. That is, it evaluates to either true
(-1) or false (0). However, CBASIC will accept any
numeric expression treating a value other than zero as
true. The expression should be of type integer. This
will reduce execution time and also reduce the size of the
intermediate file generated by the compiler. If the
expression is real, the value is rounded and converted to
an integer. A string expression will result in an error.

A statement list is composed of one or more
statements in which each pair of statements is separated
by a colon (:). The colon is not required after the THEN
nor is it required before or after the ELSE. It is only
used to separate statements. An IF statement must be the
first statement on a line: it may not follow a colon. In
other words IF statements may not be nested.

Examples:

IF ANSWER$="YES" THEN GOSUB 500

IF DIMENSIONS.WANTED% THEN PRINT LENGTH, HEIGHT

IF VALID% THEN \
PRINT MSG$(CURRENT.MSG%) :\
GOSUB 200 :\ UPDATE RECORD
GOSUB 210 :\ WRITE RECORD
NO.OF.RECORDS%=NO.OF;RECORDS%+l :\
RETURN

IF X > 3 THEN X = 0 : Y = 0 : Z = 0

IF YES% = TRUE% THEN PRINT MSG${l) \
ELSE PRINT MSG$(2)

IF TIME>LIMIT THEN \
PRINT TIME.OUT.MSG$:\
BAD.RESPONSES% = BAD.RESPONSES%+l :\
QUESTION% = QUESTION%+l \

ELSE \
PRINT THANKS.MSG$:\
GOSUB 1000:\ ANALYSE RESPONSE
ON RESPONSE% GOSUB \

2000, 2010, 2020, 2030, 2040 :\
RETURN

In the examples above, note that the colon (:) is used
to separate statements within a statement list and the
backslash (\) is used to continue a statement onto another
line.

®

CBASIC Version 2 Control Statements

Since the compiler ignores anything following and on
the same line with the backslash, comments may be inserted
without using the keyword REM.

4.5 WHILE Statement

«stmt number>] WHILE <expression>

Execution of all statements between the WHILE
statement and its corresponding WEND is repeated until the
value of the expression is zero. If the value is zero
initially the statements between the WHILE and WEND will
not be executed. Variables used in the WHILE expression
may change during execution of the loop.

The expression should be of type integer. This will
reduce execution time and also reduce the size of the
intermediate file generated by the compiler. If the
expression is real, the value is rounded and then
converted to an integer. A string expression will result
in an error.

4.6 WEND Statement

«stmt number>] WEND

A WEND statement denotes the end of the
unmatched WHILE statement. A WEND statement
present for each WHILE statement in a program.

closest
must be

Branching to a WEND statement is the same as branching
to its corresponding WHILE statement.

Examples:

WHILE -1
PRINT "X"

WEND

WHILE X > Z
PRINT X
X = X - 1.0

WEND

@

CBASIC Version 2 Control Statements

TIME = 0.0
TIME.EXPIRED% = FALSE%
WHILE TIME < LIMIT

WEND

TIME = TIME + 1.0
IF CONSTAT% THEN \

RETURN REM ANSWERED IN TIME

RETURN

WHILE ACCOUNT.IS.ACTIVE%
GOSUB 100 REM ACCUMULATE INTEREST

WEND

WHILE FILE.EXISTS%
WHILE TRUE%

WEND
WEND

IF ARG$ = ACCT$ THEN \
ACTIVITY% = TRUE% :\
RETURN

IF ARG$ < ACCT$ THEN \
ACTIVITY% = FALSE% :\
RETURN

GOSUB 3000 REM READ ACCT$ REC

ACTIVITY% = FALSE%
RETURN

WHILE TRUE%
INPUT LINE STRING$
IF STRING$ = CONTINUE$ THEN RETURN

WEND

4.7 FOR Statement

[<stmt number>] FOR <index> = <expression> TO
<expression> [STEP <expression>]

Execution of all statements between the FOR statement
and its corresponding NEXT statement is repeated until the
indexing variable, which is i"ncremented by the STEP
expression after each iteration, reaches the exit
criteria.

If the step expression is positive, the loop exit
criteria is met when the index exceeds the value of the TO
expression. If the step expression is negative, the
index must be less than the value of the TO expression for
the exit criteria to be satisfied.

@

CBASIC Version 2 Control Statements

The index must be an unsubscripted variable. It is
initially set to the value of the first expression. Both
the TO and STEP expressions are evaluated on each .loop:
all variables associated with these expressions may change
within the loop.

Additionally, the index may be changed during
execution of the loop. The type of the index and all
expressions should be the same. They may be either real
or integer. If any of the expressions are of type
string, an error occurs. Particular care should be taken
to insure proper matching of the expression types. For
instance:

FOR I% = 1 to DONE

will generate unneccessary code because DONE is real but
I% and 1 are integers. A more subtle example is:

FOR I = 1. to DONE

In this case I and DONE are real but 1. is an integer.

There is one situation when a FOR statement
that appears to be valid will generate a compiler
err 0 r II FEll. Th i soc cur 5 if the type 0 f the ex pre s s ion
following the TO is not the same as the type of the
loop index variable.

For example:

FOR I = 1 TO 13 STEP 3

results in an error IIFE" because the index variable I is
real but the value following the TO is an integer.
Changing the index to I% will eliminate the error.

If the STEP clause is omitted, a default value of one
is assumed. The type of the STEP expression in this case
will be the same as the type of the index.

The statements within a FOR loop are always executed
at least once. Examples:

FOR INDEX% = 1 TO 10
SUM = SUM + VECTOR(INDEX%)

NEXT INDEX%

FOR POSITION=MARGIN+TABS TO PAPER. WIDTH STEP TABS
PRINT TAB(POSITION):SET.TAB$:

NEXT POSITION

®

CBASIC Version 2 Control Statements

If a step of one is desired, the STEP clause should be
omitted. The execution will be much faster since fewer
runtime checks will be made. In addition, less
intermediate code is produced.

The speed of execution will also be substantially
improved if all the expressions are of type integer.

4.8 NEXT Statement

«stmt number>] NEXT [<identifier> {,<identifier>}]

A NEXT statement denotes the end of the closest
unmatched FOR statement. If the optional identifier is
present, it must match the index variable of the FOR
statement being terminated.

The list of identifiers allows terminating multiple
FOR statements. The statement number of a NEXT statement
may appear in an ON or GOTO statement, in which case
execution of the FOR loop continues with the loop
variables assuming their current values.

The following example of nested FOR loops shows the
use of a list o~ identifiers:

FOR I% = 1 TO 10
FOR J% = 1 TO 20

X(I%,J%) = I% + J%
NEXT J%, I%

The final example shows the use of a NEXT statement
without an identifier.

FOR LOOP% = 1 TO ARRAY.SIZE%
GOSUB 200
GOSUB 300

NEXT

4.9 ON Statement

CBASIC Version 2 Control Statements

4.10

The expression is used to select the statement number
at which execution will continue. If the expression
evaluates to I, the first statement number is selected,
and so forth. In the case of an ON ... GOSUB statement the
address of the statement following the ON statement is
saved on the return stack. A runtime error occurs if the
expression is less than one or greater than the number of
statement numbers in the list.

The expression must be numeric. A string expression
will generate an error. Integer expressions will improve
execution speed. If a real value is used, it is rounded
to the nearest integer prior to selecting the statement
number to branch to.

The keywords GOTO and GOSUB may alternately be coded
as GO TO and GO SUB.

Examples:

ON I% GOTO 10, 20, 30

ON J% - 1 GO SUB 12.10, 12.20, 12.30, 12.40

WHILE TRUE%
GOSUB 100 REM ENTER PROCESS DESIRED
GOSUB 110 REM TRANSLATE PROCESS TO NUMBER
IF PROCESS.DESIRED% = 0 THEN RETURN
IF PROCESS.DESIRED% < 6 THEN \

ON PROCESS.DESIRED% GOSUB \
1000, \ ADD A RECORD
1010, \ ALTER NAME
1020, \ UPDATE QUANTITY
1030, \ DELETE A RECORD
1040, \ CHANGE COMPANY CODE
1050 \ REM GET PRINTOUT

ELSE GOSUB 400 REM ERROR - RETRY
WEND

STOP Statement

[<stmt number>] STOP

When a STOP statement is encountered, program
execution terminates. All open files are closed, the
print buffer is emptied and control returns to the host
system. Any number of STOP statements may appear in a
program.

CBASIC Version 2 Control Statements

4.11

4.12

A STOP statement is appended to all programs by the
compiler.

Examples:

400 STOP

IF STOP.REQUESTED THEN STOP

RANDOMIZE Statement

[<stmt number>] RANDOMIZE

The RANDOMIZE statement initializes or seeds the
random number generator. The time taken by the operator
to respond to an INPUT statement (chapter 5) is used to
set the seed. This time will vary with each execution of
a program. Therefore, for RANDOMIZE to work correctly, it
must be preceded by an INPUT statement.

The configuration 3 runtime package uses the real-time
clock to seed the random number generator when operating
under MP/M.

Examples:

450 RANDOMIZE

RANDOMIZE

CHAIN Statement

[<stmt number>] CHAIN <expression>

The CHAIN Statement transfers control from the
program currently being executed to the program selected
by the expression. The expression must be of type . string
or an error will occur. The expression must also evaluate
to any unambiguous file name. A file with that name and
of type INT must reside on the specified drive. If no
drive is specified, the currently logged-in drive is used.
In the discussion on chaining the first program executed
is the main program.

®

CBASIC Version 2 Control Statements

4.13

The following statement:

CHAIN "B:PAYROLL II

will cause execution to continue with the first statement
in the program PAYROLL. PAYROLL.INT must reside on drive
B. Regardless of the file type specified, a type of INT
is forced.

The CBASIC runtime monitor maintains four partitions
in memory. They are designated the constant, code, data
statement, and variable areas. The size of these areas is
determined by the compiler. If in a chained program one
or more of these areas is larger than that corresponding
area in the original or main program, a runtime error
occurs. In other words the main program constant, code,
data statement, and variables areas must be as large or
larger than any corresponding area in a program that is
subsequently chained. If this is not the case, the
programmer must use the %CHAIN compiler directive to
adjust the size of the main programs partitions. The
%CHAIN directive is discussed in Chapter 12.

In order to determine the size of each partition in a
program the compiler produces-a table of these values
after each compilation. The values include the effect of
the %CHAIN directive if present. The %CHAIN directive
need only be used in the main program. The relationship
of partition size between programs chained is not
significant.

A CHAIN statement may appear in any program. A
program may chain back to the program which invoked it, to
a new program, or to itself. If a STOP statement is
executed in any program, execution stops and control is
returned to CP/M.

Upon execution of a CHAIN statement the return stack
is reset. All open files are closed and a restore is
performed. Data may be passed from one program to another
using the COMMON statement discussed below.

COMMON Statement
.; : .•. :: : ..

<vari..able>i'··· }

If present, COMMON statements must be the first
statements in a program except that blank lines and REM
statements may precede COMMON statements. A COMMON

@

CBASIC Version 2 Control Statements

statement is a non-executable statement and specifies that
the variables listed will be common to the main program
and all programs execu'ted through a CHAIN statement.

If the main program contains COMMON statements, each
chained program must have COMMON statements that match the
COMMON statements in the main program. Matching means
that there are the same number of variables in each COMMON
statement and, that the type of each variable in the main
program's COMMON statement matches the type of each
variable in the chained program's COMMON statement.
Also, dimensioned variables must have the same number of
subscripts in each program.

Subscripted variables are specified by placing the
number of subscripts in parenthesis following the array
name. For instance:

COMMON X, Y, A(3), B$(2)

specifies that X and Yare nonsubscripted real variables
and will be common to all chained programs. A and B$ are
arrays which may be accessed by all programs. A has three
subscripts while B$ has two. The COMMON Statement does
not indicate the size of any subscript.

The specification of an array in a COMMON statement is
not, in general, the same as the specification in a DIM
statement. This point must be clearly understood. For
example:

COMMON A(3)

might be used with

DIM A(20,30,20)

but if it was used with

DIM A(3)

an error would occur.

Prior to accessing an element in an array in COMMON,
the array must be created using the DIM statement.
Failure to do this will lead to catastrophic results!
The first program requiring access to the array should
insure that a DIM statement is executed specifying the
desired range for each subscript. Subsequent programs may
access this array with the data remaining unchanged
through the chaining process. If a subsequent program

@

CBASIC Version 2 Control Statements

executes a DIM statement for this array, the data in the
array will be lost. In other words the array will be
re-initialized. However, in the case of string
arrays, elements in the array will not be freed from
memory. The programmer should set elements of string
arrays to null strings prior to executing a second DIM
statement for the array.

CBASIC Version 2 Input/Output Statements

5. INPUT/OUTPUT STATEMENTS AND FUNCTIONS

5.1 General Information

This chapter introduces input and output statements
and functions. File accessing statements are discussed in
chapter 10: formatted printing is explained in chapter 9.

CBASIC prints each character as it is generated. If
the length of the line being printed exceeds the width of
a print line, printing continues on the next line. That
is, a carriage return and a linefeed are output. The
width of the print line may be controlled by the user.

Input from the console is read a line at a time
instead of a character at a time. This allows the user to
take advantage of the CP/M line-editing functions. A
control-C entered from the keyboard may return the user to
CP/M without closing open files.

In this manual console refers to the physical device
assigned to the CP/M logical device CON:. Likewise the
list device refers to the physical unit assigned to the
CP/M logical device LST:. For more information on logical
and physical devices refer to the Digital Research
publication "An Introduction To CP/M Features and
Facilities."

5.2 PRINT Statement

[stmt number>] PRINT < express~()n> .<ae:fi:m>
[<expression>«delitn>}

The PRINT statement outputs the value of each
expression to the console unless an LPRINTER statement
(described below) is in effect. In the latter case output
is directed to the list device (see section 5.3). If the
length of a numeric item would result in the line width
being exceeded, the number to be printed begins on the
next line. Strings are output until the line width is
reached and then the remainder of the string, if any, is
output on the next line.

The delimiter between expressions may be either a
comma or a semicolon. The comma causes automatic spacing
to the next column that is a multiple of 20. If this
spacing results in a print position greater than the
currently specified width, printing continues on the next
line. A semicolon causes one blank to be output after a
number and no spacing to occur after a string.

®

CBASIC Version 2 Input/Output Statements

A carriage return and a linefeed are automatically
printed when the end of a print statement is encountered
unless the last expression is followed by a comma or a
semicolone These partial lines are not terminated until
one of the following conditions occur: (1) another PRINT
whose list does not end in either a comma or semicolon is
executed, (2) the line width is exceeded, (3) an LPRINTER
or CONSOLE statement is executed, or (4) the program
executes a stop statement. A PRINT statement with no
expression list will cause a carriage return and a
linefeed to be printed.

If execution of a program is terminated due to an
error, a carriage return and a linefeed are output.

Examples:

PRINT

PRINT AMOUNT.PAID

PRINT QUANTITY, PRICE, QUANTITY * PRICE

PRINT nTODAY'S DATE IS: n;MONTH$;n n;DAy%;n, n;YEAR%

5.3 LPRINTER Statement

[stmt number>] LPRINTER [WIDTH <expression>]

After execution of the LPRINTER statement all PRINT
statement output, which would normally be directed to the
console, will be output on the list device. The list
device is the physical unit currently assigned to LST: by
CP/M. The WIDTH clause is optional. If present the
expression will be used to set the line width of the list
device.

If the console's cursor position is not I, a carriage
return and linefeed is output to the console. In this
context the cursor position is the value that would be
returned by the POS function (see section 5.5) just prior
to executing the LPRINTER statement.

The expression should be of type integer. If it is
real, the value is rounded to an integer. An error occurs
if the expression is of type string.

®

CBASIC Version 2 Input/Output Statements

If the width option is not present, the most recently
assigned width is used. Initially the width is set to
132. A width of 0 will result in an infinite line width.
With a zero width in effect carriage returns and linefeeds
are never automatically output to the printer as a result
of exceeding the line width.

500 LPRINTER

IF HARDCOPY.WANTED% THEN LPRINTER WIDTH 120

LP.RINTER WIDTH REQUESTED.WIDTH%

5.4 CONSOLE Statement

[stmt number>] CONSOLE

Execution of the CONSOLE statement restores printed
output to the console. the console is the physical unit
currently assigned to CON: by CP/M.

If the list device print position is not I, a carriage
return and linefeed are output to the list device.

Examples:

490 CONSOLE

IF END.OF.PAGE% THEN \
CONSOLE :\
PRINT USING "##,### WORDS THIS PAGE":WORDS% :\
INPUT "INSERT NEW PAGE, THEN CR":LINE TRASH$:\
LPRINTER

The width of the console device may be changed with
the POKE statement (Chapter 6). The console width is one
byte at location 272 base 10 or 110H. The new console
width will become effective at the next execution of a
CONSOLE statement. The console line width is initially
set to 80 (50H).

A width of zero (0) results in an infinite width.
With a zero width in effect, carriage returns and
linefeeds are never automatically output to the console as
a result of exceeding the line width.

®

CBASIC Version 2 Input/Output Statements

5.5 POS Pre-defined Function

POS

POS returns the next position to be printed on either
the console or the line printer. This value will range
from 1 to the line width currently in effect.

If a LPRINTER statement is in effect, POS will return
the next position to be printed on the printer. Note that
POS returns the actual number of characters sent to the
output device. If cursor control characters are
transmitted, they are also counted even though the cursor
is not advanced.

Examples:

PRINT liTHE PRINT HEAD IS AT COLUMN: "; POS

IF (WIDTH.LINE - POS) < 15 THEN PRINT

5.6 TAB Pre-defined Function

TAB «expression»

TAB causes the cursor or print head to be positioned
to a position specified by the value of the expression.
If the value of the expression is less than or equal to
the current print position, a carriage return and linefeed
are output and then the tab is executed.

The TAB function is implemented by outputting blank
characters until the desired position is reached. If
cursor or printer control characters have been output, the
cursor or print head could be positioned incorrectly.

The TAB function may only
statements.

be used in PRINT

The expression must be numeric. If a string
expression is specified, an error occurs. If the
expression is real, it is first rounded to an integer.
~f the expression is greater than the current line width,
an error occurs.

®

CBASIC Version 2 Input/Output Statements

Examples:

PRINT TAB(l5):"X"

PRINT "THIS IS COL. l":TAB(50):"THIS IS COL. 50"

PRINT TAB(X%+Y%/Z%):"l":TAB(POS%+OFFSET%):

PRINT TAB(LEN(STR$(NUMBER»):"*"

5.7 READ Statement

[stmt number>] READ <variable> {, <variable>}

A READ statement assigns values from DATA statements
to the variables. DATA statements are processed
sequentially as they appear in the program. An attempt to
read past the end of the last DATA statement produces a
runtime error.

Examples:

READ NAME$,AGE%,EMPLOYER$,SSN

FOR PROD.NO% = 1 TO NO.OF.PRODUCTS%
READ PRODUCT.NAME$(PROD.NO%)

NEXT PROD.NO%

5.8 DATA Statement

(s,tmt . number>) 1)ATA'<const~tlt> {,·<.cOri1fJt·an~~i}

DATA statements are nonexecutable statements which
define string, floating point, and integer constants which
are assigned to variables using a READ statement. Any
number of DATA statements may occur in a program. They
may be placed anywhere in the program.

The constants are stored consecutively in a data area
as they appear in the program and are not syntax checked
by the compiler. Strings may be enclosed in quotation
marks or optionally delimited by commas.

-
A DATA statement must be the only statement on a line

and it may not be continued with a continuation character.
However, all DATA statements in a program are treated
collectively as a concatenated list of constants separated
by commas.

CBASIC Version 2 Input/Output Statements

Examples:

400 DATA 332.33, 43.0089E5, II ALGORITHM II

DATA ONE, TWO, THREE, 4, 5, 6

In the second example ONE, TWO and THREE are strings.

If a real constant is assigned to an integer variable
with a READ statement, the constant is truncated to the
integer portion of the real number. If the value of a
number assigned to an integer is outside the range of
CBASIC integers, incorrect values will be assigned. If a
real number exceeds the range of real numbers, an overflow
warning occurs and the largest CBASIC number is used in
its place.

5.9 RESTORE Statement

5.10

Estmt number>] RESTORE

A RESTORE statement repositions the pointer into the
data area so that the next value read with a READ
statement will be the first item in the first DATA
statement.

The purpose of a RESTORE statement is to ~llow
re-reading the constants contained in DATA statements.

Examples:

500 RESTORE

IF END.OF.DATA% THEN RESTORE

When a CHAIN statement is executed a RESTORE is
performed.

~NPUT Statement

iti~ nUn!be~Jl;)~ ~~~'~~~~~j'j
~'Var.:Labi.e> {. i/<variable>}

If the prompt string is present; it is printed on the
console, otherwise a question mark is output. In both
cases a blank is then printed and a line of input data is
read from the console and assigned to the variables as
they appear in the variable list.

CBASIC Version 2 Input/Output Statements

The variables may be either simple or subscripted
string or numeric variables.

At most 255 characters may be entered in response to
an INPUT statement. If 255 or more characters are
entered, inputing is automatically terminated and the
first 255 charactgrs are retained. Additional characters
may be lost. The 255 characters include all characters
entered in response to an input statement no matter how
many variables appear in the variable list.

All CP/M line editing functions such as control-U and
rubout are in effect. A control-C may terminate the
program without closing open files. If a control-Z is the
first character entered in response to an INPUT statement
the program is terminated in the same manner as if a STOP
statement had been executed.

The data items entered at the console must be
. separated by commas and are terminated by a carriage
return. Strings may be enclosed in quotation marks in
which case commas and leading blanks may be included in
the string.

The prompt string must be a string constant. If it is
an expression or a numeric constant, an error occ~rs.

If the value entered for assignment to an integer is
real, the number entered is truncated to the integer
portion of the real number. If the value of a number
assigned to an integer variable is outside the range of
integers, an incorrect value will be assigned. If a real
number exceeds the range of CBASIC real numbers, the
largest real number is assigned to the variable, and a
warning is printed on the console.

If too many or too
warning is printed on
must be re-entered.

Examples:

few data items are entered, a
the console, and the entire line

INPUT AMOUNTl, AMOUNT2, AMOUNT3

INPUT "WHAT FILE, PLEASE?":FILE.NAME$

INPUT "YOUR PHONE NUMBER PLEASE:": PHONE.N$

INPUT "":ZIP.CODE%

®

CBASIC Version 2 Input/Output Statements

5.11

A special type of INPUT statement is the LINE INPUT.
The general form of this statement is:

[stmt number>] INPUT [<prompt strin9> :J
LINE <variable>

This statement functions as described above with the
following exception. Only one variable is permitted
following the keyword LINE. It must be of type string.
Any data entered from the console is accepted and assigned
to this variable. The data is terminated by a carriage
return.

A null string may be accepted by responding to an
INPUT LINE Statement with a carriage return.

An error occurs if the variable specified to receive
the input is not of type string.

Examples:

INPUT "ENTER ADDRESS"~LINE ADDR$

INPUT "TYPE RETURN TO CONTINUE"~LINE DUMMY$

Prompt strings are directed to the console even when
an LPRINTER statement is in effect.

OUT Statement

[stmtnumber>] OUT <expression> I <expression>

The low-order eight bits of the second expression are
sent to the CPU output port selected by the low-order
eight bits of the first expression.

Both arguments must be numeric~ they should be in the
range of 0 to 255 for the results to be meaningful. An
error occurs if either expression is of type string. Real
values are converted to integers prior to performing an
OUT instruction. Examples:

OUT 1,58

OUT FRONT.PANEL%, RESULT%

IF X% > 5 THEN OUT 9, ({X*X}-1.}/2.

OUT TAPE.DRlVE.CONTROL.PORT%, REWIND%

OUT PORT%{SELECTED%), ASC("$")

CBASIC Version 2 Input/Output Statements

5.12

5.13

INP Pre-defined Function

INP «expression»

INP returns the value input from the CPU 1/0 port
specified by the expression. This function is useful for
accessing peripheral devices directJy from the CBASIC
program.

The argument must be numeric. An error occurs if it
is a string. A real value will be rounded to the nearest
integer. For the results to be meaningful, the argument
must be in the range of 0 to 255.

Examples:

PRINT INP(ADDR%)

IF INP(255) > 0 THEN PRINT CHR$(7)

ON INP(INPUT.DEVICE.PORT%) GOSUB \
100, 200, 300, 400, 400, 400, 500

CONSTAT% Pre-defined Function

CONSTAT%

CONSTAT% returns the console status as an integer
value. If the console device is ready, a logical true is
returned otherwise a logical false is returned.

Examples:

IF CONSTAT% THEN \
GOSUB 100 REM PROCESS OPERATOR INTERRUPT

WHILE NOT CONSTAT% \
WEND

5.14 CONCHAR% Pre-defined Function

CONCHAR%

CONCHAR% reads one character from the console device.
The value returned is an integer. The lower eight bits of
the returned val ue are the binary representation of. the
ASCII character input. The high-order eight bits are
zero.

CBASIC Version 2

Examples:

I% = CONCHAR%

CHAR% = 0

IF CONSTAT% THEN \
CHAR% = CONCHAR%

IF CHAR% = STOPCHAR% THEN \
RETURN

®

Input/Output Statements

CBASIC Version 2 Machine Language Linkage

6. MACHINE LANGUAGE LINKAGE STATEMENTS AND FUNCTIONS

6.1 PEEK Predefined Function

PEEK «expression»

The PEEK function returns the contents of the memory
location given by the expression. The value returned is
an integer ranging from 0 to 255. The memory location
must be within the address space of the computer being
used for the results to be meaningful.

The expression must be numeric. An error occurs if a
string expression is specified. Real values are rounded
to the nearest integer.

Examples:

100 MEMORY%=PEEK(l)

FOR INDEX% = 1 TO PEEK%(BUFFER%)
IN. BUFFER$ (INDEX%) = CHR$(PEEK%(BUFFER%+INDEX%))

NEXT INDEX%

6.2 POKE Statement

[<stmt number>] POKE <expression> , <expression>

The low-order eight bits of the the second expression
are stored at the memory address selected by the first
expression. The first expression must evaluate to a valid
address for the computer being used for the results to be
meaningful.

Both expressions must be numeric. An error occurs if
a string expression is specified. Real -values are rounded
to the nearest integer 0

®

CBASIC Version 2 Machine Language Linkage

Examples:

750 POKE 1700,ASC("$")

FOR LOC% = 1 TO LEN(OUT.MSG$)
POKE MSG.LOC%+LOC%, ASC(MID$(OUT.MSG$,LOC%,l»

NEXT LOC%

6.3 CALL Statement

[<stmt number>] CALL <expression>

The CALL statement is used to link to a machine
language subroutine. The expression is the address of the
subroutine being referenced. This value must be within
the address space of the computer being used.

Control is returned to the CBASIC program by executing
a 8080 RET instruction. The hardware registers may be
altered by the subroutine, and, with the exception of the
stack-pointer, they need not be restored prior to
returning.

The expression must be numeric. An error occurs if a
string expression is used. Real values are rounded to the
nearest integer.

Examples:

CALL 5H

2000 CALL ANALOG.INPUT%

WHILE PEEK(PARAMETER%) <> 1
CALL GET.RESPONSE%

WEND
RETURN

Arguments may be passed to machine language
subroutines with the POKE and PEEK instructions.

6.4 SAVEMEM Statement

Ii: <iJett:e·· humber> j·····s~_~ ··~~<,nstari~~····i,··· ~~~pression>· .. _

The SAVEMEM statement reserves space for a machine
language subroutine, and loads the specified file during
execution. Only one SAVEMEM statement may appear in a
program.

@

CBASIC Version 2 Machine Language Linkage

The constant must be an unsigned integer which
specifies the number of bytes of space to reserve for
machine language subroutines. The space is reserved in
the topmost (highest) address space of the CP/M transient
program area. The beginning address of the reserved area
is calculated by taking the constant specified in the
SAVEMEM statement and subtracting it from the 16 bit
address stored by CP/M at absolute address 6 and 7.

The expression must be of type string and may specify
any valid unambiguous file name. The selected file is
loaded into memory starting with the address calculated
above. Records are read from the file until either an end
of file is encountered or the next record to be read would
over-write a location above the transient program area.

If the constant specifies less than 128 bytes to be
saved, nothing will be read in, but the space will still
be reserved. If the expression is a null string, space is
saved but no file is loaded.

If a main program has a SAVEMEM statement, any chained
program that has a SAVEMEM statement must reserve the same
amount of space. Each chained program may load a new
machine language file, or it may use the file loaded by a
previous program. The space reserved by the main program
may not be reclaimed by a subsequent program.

It is the programmers responsibility to insure that
the machine language routines are assembled to execute at
the proper address. In addition, it should be noted that
the location at which a program is loaded is dependent
upon the size of the CP/M system being used.

Examples:

SAVEMEM 256, "SEARCH.COM"

SAVEMEM 512, DR$+ "CHECK." + ASSY$ (FN.CPM.SIZE%)

6.5 Use of Integers

Although all the machine language linkage statements
will accept either real or integer values where an
expression is required, it is much more efficient to use
integer quantities. The size of the INT file will be
reduced, and the program will execute faster.

@

CBASIC Version 2 Machine Language Linkage

Since the largest positive CBASIC integer is 32767,
the use of integer variables to address the upper 32K of
memory requires ~hat the desired address be converted to
an appropriate negative number. Remember that in 2's
complement representation of binary numbers a -1 is 16
l's. This is most easily overcome by expressing
addresses as either hexidecimal or binary constants. For
instance, if a programmer desires to call an assembly
language program at 48000 decimal, the following
instruction will accomplish this:

CALL 0C000H

®

CBASIC Version 2 Predefined Functions

7. PREDEFINED FUNCTIONS

-
This chapter describes predefined functions provided by

CBASIC. Predefined functions are used to build expressions as
explained in section 3.5. When a predefined function has
arguments, the arguments may be any valid expression which
evaluates to the correct type, either numeric or string.

In general, when a numeric expression is required, real and
integer arguments may be used interchangeably. However,
efficiency is improved by using expressions as arguments that
do not require conversion. In the definitions below, string
arguments are represented by A$, B$, etc, integers by I%, J%
etc, and real values by X, Y, etc.

Some predefined functions are discussed in chapters 5 and
6.

7.1 Numeric Functions

The following functions return numeric values.
Arguments, when required, may be any expression that
evaluates to either a floating point or integer number.

FRE

FRE returns the number of bytes of unused space
in the free storage area. The value returned is a
floating point number.

X=FRE

IF FRE < 500.0 THEN GOSUB 10 REM PRINT WARNING

ABS(X)

ABS returns a value that is the absolute value of
the argument X. If X is greater than or equal to
zero the returned value is X, otherwise the returned
value is -x.

The value returned by ABS is a floating point
number. If X is a string an error occurs. If X is
an integer, it is first converted to a floating point
number.

DISTANCE = ABS(START-FINISH)

IF ABS(DELTA.X) <= LIM THEN STOP

@

CBASIC Version 2 Predefined Functions

INT(X)

INT returns the integer part of the argument X.
The fractional part is truncated.

The value returned is a floating point number.
If X is a string expression, an error occurs. If X
is an integer, it is first converted to a real
value.

TIME=INT(MINUTES)+INT(SECONDS)

IF (X/2)-INT(X/2)=0 THEN PRINT \
"EVEN" ELSE PRINT "ODD"

INT%(X)

INT% converts the argument X to an integer value.
If X is a string, an error will occur. If X is an
integer, it is first converted to a real value, and
then it is converted back to an integer.

J% = INT%(REC.NO)

WIDTH% = DIMEN.l % + INT-% (DIMEN .2)

FLOAT (I%)

RND

FLOAT converts the argument I% to a real value.
If I% is a string, an error occurs. If I% is real,
it is first converted to an integer, and then it is
converted back to a real number.

AMOUNT = FLOAT(COST%)

POSITION = SIN(FLOAT(ANG%) * OFFSET

RND generates
number between 0
real number.

a uniformly distributed random
and 1. The value returned is a

To avoid identical sequences of random numbers
each time a program is executed, the RANDOMIZE
statement must be used to seed the random number
generator.

®

CBASIC Version 2

SGN(X)

DIE%=INT%(RND*6.)+1

IF RND > .5 THEN \
HEADS% = TRUE% \

ELSE \
TAILS% = TRUE%

Predefined Functions

SGN returns an integer value that represents the
algebraic sign of the argument. It will return -1 if
X is negative, 0 if X is zero, and +1 if X is greater
than zero.

X may be either integer or real. Integer values
of X are converted to real numbers. If X is a
string, an error occurs. SGN always returns an
integer.

ATN(X)

IF SGN(BALANCE) <> 0 THEN \
OUTSTANDINGBAL% = TRUE%

IF SGN(BALANCE) = -1 THEN \
OVERDRAWN% = TRUE%

ATN returns the arctangent of X. Using simple
identities, other inverse trigonometric functions may
be computed from the arctangent. The argument is
expressed in radians.

The value returned is real. If X is an integer,
it is first converted to a real number.

X = ATN(RADIANS)

TEMPERATURE = K + N(L%)/ATN(X)

ASIN = ATN(X/(SQR(l.-X*X»)

ACOS = PI/2. - ATN(X/SQR(l-X*X»

®

CBASIC Version 2 Predefined Functions

,J

COS (X)

COS returns the cosine of X. The argument X is
expressed in radians.

The value returned is real. If X is an integer,
it is first converted to a real value.

EXP(X)

IF COS(ANGLE) = 0.0 THEN VERTICAL% = TRUE%

PRINT CONSTANT * COS (ROTATION)

EXP returns the value of the irrational constant
"e" raised to the power given by X.

The value returned is real. If X is an integer,
it is first converted to a real number.

Y = A * EXP(BX%)

E=EXP(l) REM CONSTANT E = 2.7182

LOG (X)

The natural or Naperian logarithm of the argument
X is returned by LOG.

The value returned is real. If X is an integer,
it is first converted to a real number.

SIN(X)

BASE.TEN.LOG = LOG(X)/LOG(l0)

PRINT "LOG OF X IS "~ LOG(X)

SIN returns the sine of the X. The argument is
expressed in radians.

The value returned is real. If X is an integer,
it is first converted to a real number.

FACTOR(Z) = SIN(A - B/C)

IF SIN(ANGLE/(2.0 * PI» = 0.0 THEN \
PRINT "HORIZONTAL"

CBASIC Version 2 Predefined Functions

SQR(X)

SQR returns the square root of the X. If X is
negative, a warning message is printed, and the
square root of the absolute value of the argument is
returned.

The value returned is real. If X is an integer.
it is first converted to a real number.

TAN (X)

HYPOT = SQR«(SIDEl A 2.0)+(SIDE2 A 2.0»

PRINT USING \
"THE SQR ROOT OF X IS: ####.##": SQR(X)

TAN returns the tangent of the argument X. X is
expressed in radians.

The value returned is real. If X is an integer,
it is first converted to a real number.

POWER.FACTOR = TAN(PHASE.ANGLE)

QUIRK = TAN(X - 3.0 * COS(Y»

7.2 String Functions

ASC(A$)

ASC returns the ASCII numeric value (in decimal)
of the first character of the string argument. If
the length of A$ is zero (null string), a runtime
error will occur.

The value returned is an integer.
argument is numeric, an error will occur.

If

IF ASC(DIGIT$»47 AND ASC(DIGIT$)<58 THEN \
PRINT "VALID DIGIT"

OUT TAPE.PORT%, ASC("*")

@

the

CBASIC Version 2 Predefined Functions

CHR$(I%)

CHR$ returns a one character string consisting of
the character whose ASCII equivalent is I%. CHR$
can be used to send control characters to an output
device. For instance, the statement "PRINT CHR$(10)"
will output a line feed to the console.

The value returned is a string. If 1% is real,
it is first converted to an integer value.

IF CHR$(INP(IN.PORT%» = II A" THEN GOSUB 100

PRINT CHR$(BELL%) REM ring the bell!

LEFT$(A$,I%)

LEFT$ returns a string consisting of the first 1%
characters of A$. If 1% is greater than the length
of A$, the entire string will be returned. If 1% is
zero, a null string will be returned~ if 1% is
negative, a runtime error will occur.

A$ must be a string~ otherwise an error will
occur. 1% should be numeric. If 1% is real, it will
first be converted to an integer. If 1% is a string,
an error will occur.

PRINT LEFT$(INPUT.DATA$,25)

IF LEFT$(IN$,l) = "y" THEN GOSUB 400

LEN(A$)

LEN returns the length of A$. Zero is returned
if A$ is a null string.

The value returned by LEN is an integer. An
error occurs if the argument is numeric.

IF LEN(TEMPORARY$) > 25 THEN \
TOO.LONG% = TRUE%

FOR INDEX% = 1 TO LEN(OBJECTS)
NUM%(INDEX%) = ASC(MID$(OBJECT$,INDEX%,l»

NEXT INDEX%

®

CBASIC Version 2 Predefined Functions

UCASE$(A$)

UCASE$ returns a string in which the lower case
characters in A$ have been translated to uppercase.
Other characters are not altered. A$ remains
unchanged unless A$ is set equal to UCASE$(A$).

The value returned by UCASE$ is a string. An
error occurs if A$ is numeric.

IF UCASE$(ANS$) = "YES" THEN \
RETURN \

ELSE STOP

NAME$ = UCASE$(NAME$)

MATCH(A$,B$,I%)

MATCH returns the position of the first
occurrence of A$ in B$ starting with the character
position given by I%. A zero will be returned if no
match is found. The following pattern matching
features are available:

1) A pound sign (#) will match any digit
(0-9) •

2) An exclamation mark (1) will match any
upper or lower case letter.

3) A question mark (?) will match any
character.

4) A backslash (\) character serves as an
escape character to indicate the character
that follows does not have special meaning.
For instance a question mark signifies that
any character is a match unless preceeded by
a backslash.

A$ and B$ must be strings. An error will occur
if either of these arguments are numeric. If 1% is
real, it will first be converted to an integer~ if 1%
is a string, an error will occur. If 1% is negative
or zero, a runtime error will occur. When 1% is
greater than the length of B$, zero is returned. If
B$ is a null string a 0 is always returned. If B$ is
not null but A$ is null a 1 will be returned.

®

CBASIC Version 2 Predefined Functions

Examples:

MATCH(lis","Now is the",l) returns 5

MATCH(" ##","October 8, 1976",1) returns 12

MATCH(" a ?","character",4) returns 5

MATCH("\#","123#45",1) returns 4

MATCH ("ABCD" , "ABC" , 1) returns 0

Note that the third example returns a 5 instead
of a 3 because the starting position for the match is
position 4. In example four the backslash causes the
pound sign to match only another pound sign.
Without the backslash a 1 would be returned.

The next example is a more complicated statement
using the backslash:

MATCH(I\#1\\\?","l#1\?2#",1) returns 2

The following program may be used to experiment
with the match function.

TRUE% = -1
FALSE% = 0
editS = " The number of occurrences is ###"

·WHILE TRUE%

WEND

INPUT "enter object string" ; LINE objectS
INPUT "enter argument string" LINE arg$
GOSUB 620
PRINT USING editS; occurrence%

620 rem-----count occurrences---------­
location% = 1

END

occurrence% = 0
WHILE TRUE%

WEND

location% = MATCH(arg$,object$,location%)
IF location% = 0 THEN RETURN
occurrence% = occurrence% + 1
location% = location% + 1

@

CBASIC Version 2 Predefined Functions

MID$(A$,I%,J%)

MID$ returns a string consisting of the J%
characters of A$ starting at the I% character. If I%
is greater than the length of A$, a null string is
returned. If J% is greater than the length of A$,
all the characters from 1% to the end of A$ are
returned. An error occurs if either I% or J% is
negative. A runtime error also occurs if I% is zero.
A zero value of J% will return a null string.

A$ must be a string expression: otherwise an
error will occur. 1% and J% must be numeric. If I%
or J% are real, they will first be converted to
integers; if either I% or J% are strings, an error
will occur.

DIGIT$ = MID$(OBJECT$,POS%,I)

DAY$ = MID$("MONTUEWEDTHUFRISATSUN II ,DAY%*3-2,3)

RIGHT$(A$,I%)

RIGHT$ returns a string consisting of the I%
rightmost characters of A$. If I% is negative, a
runtime error occurs; if 1% is greater than the
length of A$, the entire string is returned. If 1%
is zero, a null string is returned.

A$ must evaluate to a string: otherwise an error
will occur. 1% must be numeric. If 1% is real, it
will first be converted to an integer: if 1% is a
string, an error will occur.

IF RIGHT$(ACCOUNT.NO$,I) = "0" THEN \
TITLE.ACCT% = TRUE%

NAME$ = RIGHT$(NAME$,LEN(NAME$)-LEN(FIRST.NAME$»

STR$ (X)

STR$ returns the
represents the value of

character
the number X.

string which

If X is a string, an error will occur. If X is
an integer, it will be converted to a real value.

PRINT STR$(NUMBER)

IF LEN(STR$(VALUE»>5 THEN ED$="#######"

®

CBASIC Version 2 Predefined Functions

VAL(A$)

VAL converts A$ into a floating point number.
Conversion continues until a character is
encountered that is not part of a valid number or
until the end of the string is encountered.

If A$ is a null string
character of A$ is not
returned.

or the first non-blank
a +, - or digit, zero is

A$ must be a string; otherwise an error will
occur.

PRINT ARRAY$(VAL(IN.STRING$))

ON VAL(PROG.SEL$) GOSUB 10, 20, 30, 40, 50

COMMAND$

COMMAND$ returns a string which contains the CP/M
command line modified as described below. Refer to
Digital Research publication "CP/M Interface Guide"
for a discussion of the Commanq Line.

The name
included in
addition, if
word TRACE
will not be
commands are
file:

of the program being executed is not
the string returned by COMMAND$. In

the TRACE option is used with CRUN, the
and associated line numbers, if present,

included. If any of the following
used to execute a CBASIC intermediate

CRUN2 PAYROLL NOCHECKS TOTALS

CRUN2 PAYROLL TRACE NOCHECKS TOTALS

the COMMAND $ function will return the following
string:

NOCHECKS TOTALS-·

Leading blanks are removed. A maximum of 50
characters will be retained by the COMMAND$ function.
All alphabetic characters are converted to upper
case.

The COMMAND$ function may be used at anytime in a
program, as many times as desired, and by any program
which is subsequently loaded by a CHAIN Statement.

®

CBASIC Version 2 Predefined Functions

SADD(A$)

SADD returns the address of the string assigned
to the argument A$. The first byte is the length of
the string followed by the characters in the string.
The length is stored as an unsigned binary integer.

Tberefore, if the string is
function would return the
containing a binary 5. The next
ASCII liT" etc.

II TOT .. l1 .. L II , the SADD
address of
byte would

a byte
be an

The value returned by SADD is an integer. If A$
is not a string, an error occurs. When the parameter
evaluates to a null string, a zero may be returned.

The SADD function, in conjunction with PEEK and
POKE, may be used to pass a string to an assembly
language routine for processing.

The following statements will put the address of
STRING$ into the address stored in PARM.LOC%:

POKE PARM.LOC%,SADD(STRING$) AND 0FFH
POKE PARM.LOC%+1,SADD(STRING$)/256

VARPTR «variable»

VARPTR returns the permanent storage location
assigned to the <variable> by the run-time monitor.

In the case of an unsubscripted numeric quantity,
this is the actual location of the variable in
question. For string variables, the value returned
is the address of a sixteen-bit pointer to the
referenced string. Because strings are dynamically
allocated the actual location of .the string may vary,
but the value returned by VARPTR remains unchanged
during execution of a program. If the variable is in
common, then the location returned by VARPTR will
remain unchanged after chaining.

If the <variable> is subscripted, the value
returned by VARPTR is the address of a pointer to the
array dope vector in the free storage area. The
array follows the dope vector. The first byte of the
dope vector is the number of dimensions. Following
this single byte are n-l (n is the number of
dimensions) 16 bit offsets into the arrray. The
final 16 bit quantity in the dope vector is the
number of entries in the array. The array follows in
row major order.

®

CBASIC Version 2 Predefined Functions

7.3 Disk Functions

RENAME(A$,B$)

RENAME is a function that changes the name of the
file specified by B$ to the name given by A$.
Renaming a file to a name that already exists
produces a runtime error.

The RENAME predefined function returns an integer
value. A true (-1) is returned if the rename is
successful and a false (0) is returned in cases where
the rename fails. For instance false is returned if
B$ does not exist.

A file must be closed before it is renamed~
otherwise, when CBASIC automatically closes files at
the end of processing, it will attempt to close the
renamed file under the name with which it was opened.
This will cause a runtime error because the original
file name will no longer exist in the CP/M file
directory.

Both arguments must be of type string. If either
A$ or B$ is numeric an error will occur.

The RENAME function will allow a CBASIC
programmer to use the following backup convention:

1. The output file is opened with a filetype
of '$$$' indicating that it is temporary.

2. Any file with the same name as the output
file but with a type 'BAK' is deleted.

3. Data is written to the temporary file as
the program does its processing.

@

CBASIC Version 2 Predefined Functions

4. At the end of processing, the program
renames any file with the same filename and
filetype as the output file to the same
filename but with the filetype 'BAK'.

5. The program renames the temporary output
file to the proper name and type.

Examples:

DUMMY% = RENAME("PAYROLL.MST","PAYROLL.$$$")

IF RENAME(NEWFILE$,OLDFILE$) THEN RETURN

SIZE(A$)

SIZE returns the size in blocks of the file
specified by A$. If the file is empty or does not
exist, zero is returned. A$ may be any CP/M
ambiguous file name. Digital Research publication
"An Introduction to CP/M Features and Facilities"
explains ambiguous file names.

The argument must be a
numeric value will result
function returns an integer.

Examples:

SIZE (II NAMES . BAK")

string expression. A
in an error. The SIZE

SIZE(COMPANY$ + DEPT$ + ".NEW")

SIZE("B:ST?RTR?K.*")

SIZE("*.*")

SIZE("*.BAS")

The SIZE function returns the number of blocks of
diskette space consumed by the file or files
referred to by the argument. When the operating
system allocates diskette space to a file, it does so
in one block increments. A file of 1 character will
occupy a full block of space. This means the SIZE
function returns the amount of space that has been
reserved by the file rather than the size of the data
that is in the file.

®

CBASIC Version 2 Predefined Functions

This function is useful in a program that must
duplicate or construct a file on disk. If the
program knows that it will create a file of a given
size, possibly dependent on the size of its input
file, it can first determine whether or not there is
sufficient free space on the disk before building the
new file. For example, consider a program which
reads a file named "INPUT" from drive A, processes
the data, and then writes a file named "OUTPUT" to
drive B. Assume the size of "OUTPUT" will be 125% of
"INPUT". The following routine will insure that
space is available on disk B prior to processing.

70 rem------test for enough room-----­
size.of.output% = 1.25 * size(IA:INPUT")
free.blocks% = 241 - size("B:*.*")
if free.space% < size.of.output% then \

enough.room% = FALSE% \
else enough.room% = TRUE%

return

CP/M supports 241 user accessible blocks on
single density systems. The number of blocks in use,
subtracted from 241, gives the. remaining space on the
disk.

Note that some systems, such as those with double
density disk drives, may not provide results
consistent with standard disks. CBASIC determines
the number of blocks in a file by counting the
non-zero bytes in the file control block allocation
map.

®

CBASIC Version 2 User Defined Functions

8. USER DEFINED FUNCTIONS

Functions or subprograms are defined by a programmer when
the same computation is to be performed in a number of
locations within a program. The required routine is coded as
a function and then referenced or called from any location
within the program. The function may be passed values or
parameters to be used in each invocation.

All CBASIC functions return a value. Thus, the function
is, in effect, a reference to a routine which results in a
value, either string or numeric. CBASIC provides two types of
functions, single statement and multiple statement.

A function must be defined prior to any reference to the
function. That is, the compiler must encounter the function
definition prior to any reference to the function.

8.1 Function Names

The name of a user defined function must begin with
IFNI followed by any combination of numbers, letters and
periods. A function name may be any length. Only the
first 31 charact·ers are considered when determining the
uniqueness of a function name. No spaces are allowed
between the FN and the remainder of the name.

The type of the function name determines the type of
the value returned by the function. If the function name
ends with a dollar sign, a string is returned: if the name
ends in a percent sign, an integer is returned.
Otherwise, a real value is returned. A function name is
used to both define a function and to reference a
function.

Examples of function names:

FN.THIS.IS.A.VALID.FUNCTION

FN3.l4l6%

FN.FUNCTION$

FN.TIMES

FN.TRUNCATE$

®

CBASIC Version 2 User Defined Functions

8.2 Function Definitions

Single statement functions are defined with the DEF
statement whose general form is:

«st.,.~t number> I DEF <function name>
(<dununy arg list>)] = <expression>

The type of the expression must match the type of the
function name. There may be none, or any number of dummy
arguments, and they may be used freely within the
expression. A dummy argument is either a string or
numeric variable. When there is more than o~e argument,
they are separated by commas. The type of the dummy
arguments is independent of the function type.

The dummy arguments are local to the function
definition. Variables of the same name, in other
portions of the program, remain unaffected by the use of
the function. Variables, constants, and other functions
may also be referenced in the expression. Recursive calls
are not permitted.

Examples:

DEF FN2S = RND*2S.0

DEF FN.LEFT.JUSTIFY$(A$,LEN%)=LEFT$(A$+BLNKS$,LEN%)

DEF FN.HYPOT(SIDEl,SIDE2)= \
SQR«SIDEl*SIDEl) + (SIDE2*SIDE2))

DEF FN.FUEL.USE(MILES)=SPEED*FN.CONST*MILES+OVERHEAD

DEF FN.EOJ%=FLAGl% OR FLAG2% OR FLAG3% OR FLAG4%

DEF FN.INPUT%(PORT%)=INP(PORT%) AND MASK%(PORT%)

A multiple statement function consists of a multiple
statement function definition, a function body and a FEND
statement. Multiple statement function definitions use
the following form of the DEF statement:

L~stmt number>)DEF.<funetionname>
C«dummyarglist> lJ

The dummy argument list is identical to that described
for single statement functions. The parameters are local
to the entire body of the function.

@

CBASIC Version 2 User Defined Functions

The body of a multiple statement function consists of
any number of CBASIC statements except that DEF and COMMON
statements may not appear in the body of a function. A
mUltiple statement function may reference itself within
the body of the function but, all local variables retain
their most recent definition when returning from the
function.

If a DIM statement appears in a multiple statement
function, a new array is allocated on each execution of
the DIM statement. The previous data stored in the array
is lost. Note that the array is global to the entire
program.

A value is returned from a multiple statement function
by having the name of the function appear on the left hand
side of an assignment statement. Any number of such
assignments may appear in the body of a function. The
most recent assignment is the value returned by the
function.

The function returns when a return statement is
executed. Any number of return statements may be present
in the body of a multiple statement function. If no
assignment is made to the function name, the value
returned is the last value assigned to the function name.
If no value has'been assigned, zero is returned.

The body of
terminated by a
FEND statement is:

a multiple statement function is
FEND statement. The general form of an

[<stmt number>] FEND

Execution of a FEND statement implies that a multiple
statement function was exited without executing a RETURN
statement. In this case a runtime error occurs.

Examples:

DEF FN.READ.INPUT(INPUT.NO%)

FEND

READ # INPUT.NO%~ CUSTNO%, AMOUNT
RETURN

®

CBASIC Version 2

DEF FN.COUNT%(INDEXl%)
COUNT% = 0
FOR I% = 1 TO INDEXl%

User Defined Functions

COUNT% = COUNT% + ARRAY(I%)
NEXT 1%

FEND

FN.COUNT% = COUNT%
RETURN

8.3 Function References

A user defined function may be referenced in any
expression. The same number of parameters must be
specified in the call as are defined in the DEF statement.
Parameters may be any valid expression, but they must
match the type of those specified in the definition.
This includes integer and real parameters. If the
function definition requires an integer parameter, the
value passed to the function must be an integer. The same
rule applies to real and string parameters.

A function must be defined prior to a reference to the
function.

Prior to calling the function, the current value of
each expression is substituted for the dummy variable in
the definition.

Examples:

PRINT FN.A(FN.B(X»

IF FN.LEN%(UINPUT DATAU,X$,Q) < LIMIT% THEN
GOSUB 100

WHILE FN.ALTITUDE(CURR.ALT%) > MINIMUM.SAFE
CURR.ALT%=INP(ALT.PORT%)

WEND

@

CBASIC Version 2 Formatted Printing

9. FORMATTED PRINTING

9.1 General

This chapter describes the PRINT USING statement.
PRINT USING allows specification of printed output using a
format string. A format string is composed of data fields
and literal data. Data fields may be numeric or string~
any character in the format string that is not part of a
data field is a literal character. The general form of a
PRINT USING statement is:

[<stmt number>] PRINT USING <format string>;
[<file reference>] <expression list>

A format string may be any string expression. Tl1'is allows
the format to be determined during program execution. An
error occurs if the format string is numeric ~ ,a runtime
error occurs if the expression evaluates to a null
string.

The expression list consists of expressions separated
by commas or semicolons. The comma does not cause
automatic tabbing as it does with the unformatted print.
Each expression in the list is matched with a data field
in the format string. If there are more expressions than
fields in the format string, the format string is reused
starting at the beginning of the string.

While searching the format string for a data field,
the type of the next expression in the list ,. either string
or numeric, .determines what data field is used. For
instance, if while outputting a string a numeric data
field is encountered, the characters that make up the
numeric data field will be treated as literal data. If
there is no data field within the format string of the
type required, an error will occur.

A PRINT USING statement without the file reference
causes an output line to be written to either the console
or the line printer. The console is selected unless an
LPRINTER statement is in effect. If the file reference is
present, the line is composed as it would be if the output
was being printed on a list device. The entire line is
then written as a record in the selected file. Chapter
10 discusses in more detail the use of PRINT USING with
disk files.

®

CBASIC Version 2 Formatted Printing

9.2 String Character Field

A one character string data field is specified with
an exclamation point. The first character of the next
expression in the print statement list is output. For
example:

F.NAME$ = "Lynn" : M.NAME$ = "Marion" L.NAM$ =
"Kobi"
PRINT USING "1. 1. &"~ F.NAME$,M.NAME$,L.NAM$

would output:

L. M. Kobi

In this example, the period is treated as literal data.
Since there are two expressions in the list, the format
string is reused when processing the second expression.

9.3 Fixed Length String Fields

A fixed length string data field of more than one
position is specified by a pair of slashes (/) separated
by zero or more characters. The-width of the field is
equal to the number of characters between the slashes,
plus two. Any character may be placed between the
slashes: these fill characters are ignored.

A string expression from the print list is left
justified in the fixed field, and, if necessary, padded on
the right with blanks. A string, which is longer than the
data field, is truncated on the right. For example:

FORI $ = "THE PART REQUIRED IS / ... 5 0 5/"
PART.DESCRP$ = "GLOBE VALVE, ANGLE"
PRINT USING FORI$~ PART.DESCRP$

will output:

THE PART REQUIRED IS GLOBE VALVE, ANG

The use of the periods and numbers between the slashes
makes it easy to verify that the data field is 16
characters long. They have have no effect on the output.

9.4 Variable Length String Fields

A variable length string field is specified with an
ampersand (&). This results in a string being output
exactly as it is defined.

®

CBASIC Version 2 Formatted Printing

For example:

COMPANY$ = "SMITH INC."
PRINT USING "& &"~ "THIS REPORT IS FOR",COMPANY$

will output:

THIS REPORT IS FOR SMITH INC.

A string may be right justified within a fixed field
using the variable string field. The following routine
shows how this would be done:

FLD.S% = 20
BLK$ = II
PHONE$ = "213-355-1063 11

..

PRINT USING II#&"~ RIGHT$(BLK$ + PHONE$, FLD.S%)

which would output:

315-213-1063

In the above example, since the print list contains only a
string expression, the pound sign is used as a literal
character. - A pound sign may also indicate a numeric data
field. This is explained in the next section.

9.5 Numeric Data Fields

A numeric data field is specified by a pound sign (#)
to indicate each digit required in the resulting number.
One decimal point may also be included in the field.
Values are rounded to fit the data field. Leading zeros
are replaced with blanks. When the number is negative," a
minus sign is printed to the left of the most significant
digit. A single zero is printed on the left of the
decimal point if the number is less than 1 and a position
is provided in the data field. The following example
illustrates the use of numeric data fields.

x = 123.7546
Y = -21.0
FOR$ = 11####.#### ###.#
PRINT USING FOR$~ X, X, X
PRINT USING FOR$~ Y, Y, Y

###"

Execution of the above program produces the following
printout:

123.7546
-21.0000

123.8
-21.0

124
-21

@

CBASIC Version 2

Numbers may be
appending one or
numeric data field.
segment:

x = 12.345

printed in
more uparrows

For example,

Formatted Printing

exponential format by
(A) to the end of the

the following program

PRINT USING "#.###A" It; X, -X

would output:

1.235E 01 -.123E 02

The exponent is adjusted so that all positions represented
by the pound signs are used. For instance:

PRINT USING "###.##""""; 17.987

results in:
l79.87E-0l

Four positions are reserved for the exponent regardless
of the number of uparrows used in the field.

If one or more commas appear embedded within a numeric
data field, the number is printed with commas between
groups of three digits before the decimal point. For
example:

PRINT USING "##,### "; 100, 1000, 10000

prints:

100 1,000 10,000

Each comma which appears in the data field is included
in the width of the field. Thus, even though only one
comma is required to obtain embedded commas in the output,
it is clearer to place commas in the data field in the
positions they will appear on the output. For instance,
the following data fields will produce the same results,
except that the width of the first field allows only 9
digits to be output. Using the second field, 10 digits
may be output.

#,#########

#,###,###,###

If the exponent option is used, commas are not
printed; when commas occur in the field, they are treated
as pound signs.

@

CBASIC Version 2 Formatted Printing

Asterisk fill of a numeric data field is accomplished
by appending two asterisks to the beginning of the data
field. A floating dollar sign may be obtained by
appending two dollar signs to the field in a similar
manner. Exponential format may not be used with either
asterisk fill or the floating dollar sign. The pair of
asterisks or dollar signs are included in the count of
digit positions available for the field and they appear in
the output only if there is sufficient space for the
number and the asterisk or dollar sign. The dollar sign
is suppressed if the value printed is negative. For
example:

COST = 8742937.56
PRINT USING "**##,######.##
PRINT USING "$$##,######.##

prints:

"i COST, -COST
": COST, -COST

**8,742,937.56
$8,742,937.56

*-8,742,937.56
-8,742,937.56

A number may be output with a trailing sign· instead of
the leading sign if the last character in the data field
is a minus sign. When the number is positive, a blank
replaces the minus sign in the printed result. For
example:

PRINT USING "###- ###""""'- "i 10, 10, -10, -10

will output:

10 l00E-0l 10- l00E-0l-

If a minus sign is the first character in a numeric
data field, the sign position is fixed as the next output
position. When the number being printed is positive, a
blank is output: otherwise a minus sign is printed. The
following example demonstrates this feature.

PRINT USING "-##### "i 10, -10

which outputs:

10 10

Any time a number will not fit within a numeric data
field without truncating digits before the decimal point,
a percent sign is printed followed by the number in the
standard format.

®

CBASIC Version 2 Formatted Printing

For instance:

x = 132.71
PRINT USING n##.# ###.#"; X,X

will output:

%132.71 132.7

9.6 Escape Characters

At times it may be desired to·include a character as
literal data which, following the above rules, would be
part of a data field. This can be accomplished by
"escaping" the character. A backslash (\) preceding any
character causes the next character after the backslash to
be treated as a literal character. This allows, for
instance, a pound sign to precede a number as shown in the
following example.

ITEM.NUMBER = 31
PRINT USING "THE ITEM NUMBER IS \###": ITEM.NUMBER

which outputs:

THE ITEM NUMBER IS #31

An escape character following an escape character causes a
backslash to be output as a literal character. If an
escape character is the last character in a format
string, a runtime error occurs.

@

CBASIC Version 2 Files

10. FILES

10.1 HOW CP/M Maintains Files

10.2

CBASIC uses the CP/M file accessing routines to store
and retrieve data from diskette files. This section will
provide a brief introduction to the file organization
employed by CP/M. More detailed information is available
in the CP/M manuals.

CP/M maintains a directory of File Control Blocks
(FCB's) on each diskette. The FCB contains the file name,
number of records in the file, and references to physical
locations occupied by the data on the diskette. CP/M
interfaces with the disk hardware through primitives that
are used by transient programs, including CBASIC, to
access files on disk. The primitives allow a file to be
created, opened, closed, read or written. All data is
processed in 128 byte segments. However, CBASIC maintains
all necessary pointers and buffers data so the user is not
restricted to 128 byte records. All CBASIC file accesses
are performed using CP/M system calls.

The CBASIC statements used to access diskette files
will now be discussed. Three statements are used to
activate a file, OPEN, CREATE, and FILE. Once a file has
been activated, READ and PRINT statements may access and
write files respectively. An active file may be
deactivated with either a CLOSE or DELETE statement.
Chapter 11 provides additional information on programming
with files.

OPEN Statement

The OPEN statement
reading or updating.
statement is:

activates an
The general

existing
form of

file for
an OPEN

AS ~~~I'~~~S~~!1~[13t.tp;!,~~~p:r:ess~~n>iRECS· <ex~r':StS·~on~~
/i.·.· ••••.• ·· .•••.• ·.....i/ .••••.••• ·· ••.••• ·.I~f~~P;~!$~~~n> [RECL<~expressi;on>~\i ••......•• :

~~ •.•. · .•• <expressiQll~.···.[B'tlFF/.~elCPJ:ess.i..()n>·.·.·RECS (·.exp;res~lO;p>JJ

CBASIC Version 2 Files

The first expression represents the name of a file on
diskette. The name may contain an optional drive
reference. If the drive reference is not present, the
currently logged drive is used. The file name must
conform to the CP/M format for unambiguous file names.
Lower case letters used in file names are converted to
upper case .. The expression must be of type string: an
error occurs if it is numeric. The following examples
show valid file names:

ACCOUNT.MST
CBASIC.COM
B:INVENTOR.BAK

The third example shows a reference to a file on drive B.

The directory on the selected drive is searched and
the named file is opened. If the file is not found in the
directory, it is treated as if an end of file had been
encountered during a read. See the IF END statement for
information on end of file processing. When a drive
reference is present, it is the programmer's
responsibility to insure such a drive is available on the
system being used.

The AS expression assigns an identification number to
the file being opened. This value is used in future
references to the file. Each active file must have a
unique number assigned to it. If the expression is not
between 1 and 20, a runtime error occurs. The expression
must be numeric: real values are converted to integer. A
string value will cause an error.

When the optional RECL expression is present, the
file will consist of fixed length records. A runtime
error occurs if the record length is negative or zero. A
file may be accessed randomly or sequentially when a
record length has been specified; otherwise only
sequential access is allowed. The RECL expression must be
numeric; real values are converted to integer. A string
value will cause an error.

The BUFF and RECS expressions are optional. If used,
they both must be present. The expression following BUFF
specifies the number of disk sectors from the selected
file to maintain in memory at one time. If the expression
is omitted, a value of one is assumed. The expression
following RECS must be present when the BUFF expression is
used, but the value of the expression is ignored. For
possible future use, the value should be the size of a
disk sector. This is normally 128 bytes.

CBASIC Version 2 Files

10.3

If random access is to be used with a file, the BUFF
expression, if present, must evaluate to 1: otherwise a
runtime error will occur.

Both expressions must be numeric: a string value will
cause an error. Real values are converted to integers.

Twenty files may be active at one time. Buffer space
for files is allocated dynamically. Therefore storage
space may be conserved by opening files as they are
required and closing them when they are no longer needed.

Examples:

555 OPEN "TRANS.FIL" AS 9

OPEN FILE.NAME$ AS FILE.NO% BUFF 26 RECS 128

OPEN WORK.FILE.NAME$(CURRENT.FILE%) \
RECL WORK.LENGTH% AS CURRENT.FILE% BUFF BS% RECS 128

CLOSE Statement

The CLOSE statement deactivates an OPEN file; the file
is no longer available for input or output operations.
The general form of a CLOSE statement is:

[<stmt number>] CLOSE <expression> {, <expression>}

Each expression refers to the identification number
of an active file. The file is closed, the file number is
released, and all buffer space used by the file is
deallocated. Before the file may be referenced again it
must be reopened. An error will occur if the specified
file has not previously been activated with a CREATE, OPEN
or FILE statement.

If an IF END statement is currently associated with
the identification number for the file being closed, the
IF END will no longer be in effect.

All active files are automatically closed when a STOP
statement is executed, or a control-Z is entered in
response to an INPUT statement. Files are not closed if a
control-C is entered from the console, or if a runtime
error occurs.

Each expression must be numeric in the range 1 to 20.
Real values are converted to integers. A string value
will result in an error.

®

CBASIC version 2 Files

10.4

Examples:

800 CLOSE FILE.NO%

CLOSE NEW.MASTER.FILE%,OLD.MASTER.FILE%,UPDATE.812%

FOR X% = 1 TO NO.OF.WORK.FILES%
CLOSE X%

NEXT X%

CREATE Statement

The CREATE statement is identical to an OPEN
statement except that a new file is created on the
selected drive. The general form of a CREATE statement
is:

L<$t.mt. number>] CREATE <expression> [REeL <expression>]
~~ ~expres$ion>(BUFF<expI"ession> RECS <expression>]
tc,<express±on>··· ·ERECL<~xpression>J
~S.<expression> [BOFF<expres.s!o.n>c RECS <expression> I}

When a file with the same name
existing file will be erased before
created.

is present, the
the new file is

The CREATE statement has no effect on any IF END
statement which is currently in effect for the
identification number assigned to the new file.

Examples:

1200 CREATE "NEW.FIL" AS 19 BUFF 4 RECS 128

CREATE ACC.MASTER$ RECL M.REC.LEN% AS ACC.FILE.NO%

CREATE "B:"+NAME$+LEFT$(STR$(CURRENT.WORK%),3) \
AS CURRENT.WORK%

DELETE Statement

The DELETE statement removes the
their respective directories.
DELETE statement is:

referenced
The general

files
form

[<stmt number>] DELETE' <expression> {, <expression> 1

from
of a

Each expression must be in the range of 1 to 20. If
the number is not currently assigned to an active file, a

®

CBASIC Version 2 Files

10.6

runtime error occurs. The expression
Real values are converted to integer.
result in an error.

must be numeric.
A string value will

If an IF END statement is currently associated with
the identification number for the file being deleted, the
IF END will no longer be in effect.

Examples:

DELETE 1

DELETE FILE.NO%, OUTPUT.FILE.NO%

I% = 0
WHILE I% < NO.OF.WORKFILES%

I% = I% + 1
DELETE I%

WEND

IF END Statement

The IF END statement allows the programmer to process
an end of file condition on an active file. The general
form of the IF END statement is:

[<stInt number>] IF END # <expression> THEN <stInt number>

When an end of file is detected on a file, one of two
actions will take place. If an IF END statement has been
executed for the file, control is transferred to the
statement labeled with the statement number following the
THEN. If no IF END statement has been executed, a runtime
error occurs.

The IF END statement must be the only statement on a
line: it may not follow a colon nor be part of a statement
list.

Any number of IF END statements may appear in a
program for a given file. The most recently executed IF
END is the one that will be in effect. However, if a
DELETE or CLOSE statement is executed, any IF END
associated with the identification number is no longer
effective.

The expression must be numeric in the range 1 to 20.
Real values are converted to integers. A string value
will cause an error.

®

CBASIC Version 2 Files

10.7

When a condition exists which results in the transfer
of control to the statement associated with an IF END
statement, the stack is restored to the condition that
existed prior to the statement which caused activation of
the IF END. Thus if the statement which resulted in
transfer was in a subroutine, a return must oe executed
after processing the end of file condition. Examples:

IF END # 7 THEN 500

IF END # FILE.NO% THEN 100.1

An IF END statement may be executed prior to assigning
the file number to a file. A subsequent OPEN on a file
that does not exist will cause execution to continue as if
an end of file had been encountered.

In the following example, if the file MASTER.DAT does
not exist on drive B, control will be transferred to
statement 500.5. After a successful OPEN, an end of file
during a read will cause execution to continue with
statement 500.

IF END #MASTER.FILE.NO% THEN 500.5
OPEN IIB:MASTER.DAT II AS MASTER.FILE.NO% BUFF 6 RECS
128
IF END # MASTER.FILE.NO% THEN 500

An IF END statement may also be used when writing to a
file. In this case control is transferred to the
statement associated with the IF END when an attempt is
made to write to the file and there is no disk space
available. Part of the record being created may have been
written to the file. When using fixed files, the last
record may be rewritten after additional space is freed.

FILE Statement

E.···< •• tittG~b~.t·>.·.]·.··.···· •••. FILE ·~.~~.~~.~b~~>.· .. ··.··. [.(... ·~.··~.~~~·.; .• iq~»· •.] ...
f, ·.· •. <variable> [.(.<ex:pres~±on~)lJ.

A FILE statement opens a file if it is present on the
referenced disk~ otherwise a file with the specified name
is created. The variable contains the name of the file to
be accessed. As each file is activated, it is assigned
the next unused file number starting with 1. If all 20
numbers are already assigned, an error occurs. If the
expression enclosed in paren'theses is present, the value
of the expression is the record length. The record
length must be numeric. Real values are converted to
integers. A string value will cause an error.

®

.'

CBASIC Version 2 Files

10.8

The variable must not be subscripted and it must be of
type string. It may not be a literal or an expression.

Examples:

FILE NAME$

READ Statement

There are four forms of the READ statement which
access data from disk files. Each of the four statements
will be discussed in turn, and then some general comments
about reading from disk files will be made. The first two
types of the READ statement access files in a manner
analogous to using the INPUT statement to access data
from the console. The last two forms are similar to the
INPUT LINE statement.

The general form of the sequential read is:

[< s tmt number>] READ # ·<expression> ; <variable>
{, <variable>}

The above READ statement reads sequentially from the
file specified by the first expression. The file will be
read, field by field, into the variables, until every
variable has been assigned a value. Fields may be
integer, floating point, or string values, and they are
delimited by commas.

The expression, which selects the file, must be
numeric. Real values are converted to integer. A string
value will cause an error. In addition, the value must
refer to an active file. Otherwise, a runtime error
occurs.

Examples:

READ # 7: STRING$, NUMBER

READ # FILE.MASTER%: NAME$, ADDRESS$,CITY$,STATE$

The general form of the next variation of the READ
statement is:

[<variable> (., <variable> Jl·> .. i .;.)

®

CBASIC Version 2 Files

The second expression selects the record to be read. A
random record specified by the second expression is read
from the disk file specified by the first expression.
The fields in the record are assigned to the variables in
the variable list. An error occurs if there are more
variables than fields in the record. To use this form of
the read, the file must have been activated with the RECL
option specified.

The second expression must be numeric. If the value
is a string, an error will occur. Real values are
converted to integers. The record number may not be zer01
if it is, a runtime error will occur. The expression is
treated as a sixteen bit unsigned binary number. This
allows record numbers in the range of I to 65,535.

A random read with no variables specified will
position the file to the selected record. A subsequent
sequential read will access the selected record.

Example:

READ # FILE.NO%,REC.COUNT%1 NAME$, PAY, HOURS,\
TERM.OF.EMPLOY,SSN$

The following two forms of the
files as lines 'of text. The
sequential variant is:

READ statement treat
general form of the

[<stmt number>] READ # <expression> : LINE <variable>.

This statement reads sequentially all data from the
specified file until a carriage return followed by a line
feed is encountered. All the data read up to, but not
including, the carriage return and line feed is assigned
to the single string variable specified in the READ LINE
statement. If the variable is not of type string, an
error occurs.

The random variant of the READ LINE has the following
general form:

[<stmt number>] READ # <expression> , <expression> :
LINE <variable>

The final variation of the READ statement reads the
record specified by the second expression from the file
specified by the first expre'ssion. The data is assigned to
the string variable as described for the previous form of
the READ LINE statement.

CBASIC Version 2 Files

10.9

access
on a
with

In

The READ LINE statement permits CBASIC to
records containing ASCII data in any format
line-by-line basis. For instance, any file created
the CP/M text editor could be read a line at a time.
the following example:

READ # 12: LINE in.string$

all characters in the next record will be read until a
carriage return followed by a line feed is encountered.

Additional examples follow:

READ # 12 : LINE NEXT.LINE.OF.TEXT$

READ # INPUT.FILE%, RECORD%: LINE NEXT.ONE$

PRINT Statement

There are four variations of the PRINT statement which
output data onto disk files. Each of these will be
discussed in this section. Both sequential and random
files may be written using the following forms of the
PRINT statement:

[<stmt number>] PRINT # <expression> 1
<expression> {,<expression>}

[<stmt number>] PRINT # <expression> ,
<expression> :<expression> {, <expression>}

The first form of the PRINT statement outputs the
next sequential record to the file specified by the first
expression. Each of the expressions in the expression
list will be written as a field separated by commas.
String fields will be surrounded by quotation marks and
the last field will be followed by a carriage return and a
line feed.

The expression following the pound sign must be
numeric. A real value will be converted to an integer. A
string value will cause an error. In addition the value
must refer to an active file: otherwise a runtime error
will occur.

The second form of the PRINT statement outputs a
random record specified by the second expression to the
disk file specified by the first expression. The same
format as described above is used. The file must have
been opened with a fixed record length. An error occurs

®

CBASIC version 2 Files

if there is insufficient space in the record for all the
data.

The second expression must be numeric. If the value
is a string, an error will occur. Real values are
converted to integers. The record number may not be zero:
if it is, a runtime error will occur. The expression is
treated as a sixteen bit unsigned binary number. This
allows record numbers in the range of 1 to 65,535.

Examples:

PRINT # 3: "JONES, BILL"

PRINT #FILE.NO%: NAME$, ADDR$, SALARY

PRINT #PAY%,EMPLNO%: EMPL.NM(EMPLNO%),HOURS(EMPLNO%)

PRINT # 10, 55: DATE

Both forms of the PRINT statement discussed above
produce files which may be read using the READ statement
discussed in section 10.8. All values output to the file
are delimited with commas or a carriage return line feed
pair. In addition all strings are enclosed in quotation
marks. If the data must be output in a specific format,
such as when a report is being produced for later
printing, the PRINT USING statement may be used with disk
files. This type of the PRINT statement takes on the
following general forms:

t.~~'.ltI~ess±O~~I<eltRres·sion> {,,1expressl..on> J

,~~\~~i~'~~~~~~;i~> r
1\~~lC~l;!~~~~~>,;.·«~xpre.ssio~1)·1

... ~e:2tJ?~~'.!<?~'~ ...•... t,\.·· •. <~~p.ltE!SI1~<lIl>·J
These statements write data to files using the

formatted printing options specified in the expressi~n
following the USING. Formatting options are described 1n·
Chapter 9 and are the same as those for console output.
The first form is for sequential access'and the second is
used with random access. Records are delimited with a
carriage return followed by a line feed.

The expression following USING must be of type string.
An error occurs if the expression is numeric. If the
string is a null string, a runtime error occurs. The
expressions following the pound sign must follow the same
rules as for unformatted printing to files.

@

CBASIC Version 2 Files

The PRINT USING statement with disk files gives the
programmer the same extensive facilities for formatting
data that the USING clause permits when printing to the
console or list device. Numbers may be formatted with
commas and decimal points; asterisks and dollar signs may
be floated. Records containing embedded quotation marks
or commas may also be written to a disk file with the
PRINT USING statement.

For example:

be:

cents.wanted% = TRUE%
editl$ = "$$##,###.##"
edit2$ = "$$##,###"
if cents.wanted% then \

edit$ = editl$ \
else edit$ = edit2$

print using "The ""&'''' costs" + edit$; \
#file.no%~ product$,price

If this procedure is executed, the result on file will

The "X-RAY MACHINE" costs $9l,327.44crlf

The use of two adjacent quotation marks in the string
constant results in a single quotation mark being output
to the file.

10.10 Appending to a File

A file may be appended to by reading sequentially
until the end-of-file is detected with IF END, and then
printing additional records.

An example of appending to a file is shown below:

true% = -1
if end # 3 then 200 rem process file not found
open "master" as 3 buff fre/128 - 1 recs 128
if end # 3 then 100 rem eof on process file
while true%

read # 3; dummy
wend

100 print # 3; "this added to end"
stop

200 print "file not found"
stop

CBASIC Version 2 Files

This process may be made more efficient if the file
was built with the REeL option specified. The SIZE
predefined function is used to find the number of blocks
in the file. .The number of bytes in the file is
calculated and then the number of records is determined.
A random read is executed to this record and then the file
is read until an end of file is detected. The following
multiple line function will perform this:

DEF FN.GET.TO.END%(FILE.NAME$,REC.SIZE%,FILE.NUM%)
FN.GET.TO.END% = FALSE%
FILE.SIZE% = SIZE(FILE.NAME$)
IF FILE.SIZE% = 0 THEN \ REM FALSE IF NO FILE

RETURN \
ELSE FN.GET.TO.END% = TRUE%
IF END # FILE.NUM% THEN 100
READ # FILE.NUM%,(FILE.SIZE% * l024)/REC.SIZE%
WHILE TRUE%
READ # FILE.NUM%: DUMMY
WEND

100 RETURN
FEND

Except for the case of adding to the end of a file,
sequential reading and printing should not be intermixed.

10.11 Re-Initializing the Disk System

If it becomes necessary to change diskettes during
execution of a CBASIC program, CP/M must be given an
opportunity to re-initialize its internal diskette usage
map to accommodate the diskette being inserted. If this
is not done, valid data may be overwritten.

Diskettes should never be changed while any files are
d~en. If a file has been written to and not closed and
then an INITIALIZE statement is executed, all the new data
could be lost. This means that user programs must close
all active files before executing an INITIALIZE statement

The INITIALIZE statement will re-initialize the disk
usage maps for all disks inserted into logged-in drives.
The general form of the INITIALIZE statement is:

:~lllljljl!!1~11~elljlljj!~fflmI5!jilj~11l~~llmi.~li!jlj~l~jljll!~l
The drive selected prior to executing an INITIALIZE

statement remains selected after the initialization is
complete.

CBASIC Version 2 Files

Insure that diskette changes are complete prior to
executing the INITIALIZE statement.

Examples:

10 INITIALIZE

INIT!~~L! ZE

The INITIALIZE statement is equivalent to the CALL
264 provided in version I of CBASIC.

,.

®

CBASIC Version 2 Programming With Files

11. PROGRAMMING WITH FILES

11.1 File Facilities

11.2

The facilities available to the CBASIC user for
accessing diskette files are extremely versatile,
providing different file organizations and accessing
methods. The emphasis of this chapter will be on the
practical organization of files and the way in which they
are accessed.

File Organization

The organization of a file describes the way it is
represented on the diskette. All data written to files by
CBASIC is in character format using the ASCII code. The
contents of both string and numeric variables are written
as their representative ASCII characters, not as binary
data. This permits the use of both resident and transient
CP/M commands with CBASIC data files.

Characters within CBASIC data files are organized as a
hierarchy. The lowest level of the hierarchy is called a
field. Groups of fields form records, and a file consists
of one or more records.

A field can contain either string or numeric data. A
string field is surrounded by quotation marks. A numeric
field is never enclosed by quotes, and it may contain any
valid number as described in Chapter 3. Fields are
separated from one another by either commas or a carriage
return followed by a line feed.

CBASIC offers two file organizations, stream and
fixed. These techniques are compatible to provide more
flexibility for the programmer.

@

CBASIC Version 2 Progamrning With Files

11.3

11.4

Stream Organization

When it is desired to store data sequentially, item by
item, stream organization is used. Accessing is performed
on a strict field by field basis. There is no restriction
on the values or lengths of data that may be written: each
item of data takes only as much room as needed for data
and delimiters. In other words there is no padding.

A portion of a stream file containing only string
fields may look like this:

"first field I. , "second field II crl f
"third ll ,"","126.89"crlf
"xxx123yyy"crlf

There are six fields in the above example. The fourth
field is a null string. The following example shows a
file which contains both numeric and string data:

"John",798642764,"California"crlf
"Torn Jones",1234.56,IIIowa"crlf

CBASIC will read files in which strings are not
enclosed in quotation marks. In this case, commas serve
as the delimiters. Therefore, no commas may be included
within the string, but a quotation mark embedded in the
string would be treated as a character in the string.
Strings written to files by CBASIC will always be
enclosed in quotes. An attempt to write a string that
contains a quotation mark to a file will result in a
runtime error.

The PRINT USING statement does not
between fields: each record will be
carriage return followed by a line feed.

Fixed Organization

insert delimiters
terminated by a

Fixed organization of
structuring of the data
application.

files provides
that pertains to

a logical
a specific

A file is defined to be of fixed organization if the
record length option is used with the CREATE, OPEN, or
FILE statements. Each individual item of data in fixed
files is written as a single field delimited by a comma,

®

CBASIC Version 2 Programming with Files

as with stream organization, but with the added concept
of a fixed size record. A record is always delimited by a
carriage return and a line feed.

One record is written each time any PRINT statement is
executed. Each record always contains the number of bytes
specified by the RECL parameter regardless of the number
or size of the component fields. This implies that, while
a given field may be any length, the combined length of
all fields in the record must be less than the record
length by at least two bytes to allow room for the
carriage return and line feed. The last field in a record
is not followed by a comma.

For example:

CREATE file.name$ REeL 25 AS file.no%
a$="one"
b$="record one"
c$="3"
d$=
e$="five"
f$="abc123def"
PRINT #file.no%~ a$,b$
PRINT #file.no%~ c$,d$,e$
PRINT #file.no%~ f$

produces the following file:

"one","record one"
"3", "", "five"
"abc123def"

crlf
crlf
crlf

The record delimiters, carriage return and line feed
(crlf), always occupy the last two bytes of the record and
must be included in the specified record length. In the
above example the linefeed is in the 25th position of each
record. The space between the record delimiter and the
last valid field is padded with blanks.

A fixed file READ statement will always access a new
,record each time it is used. For example:

IF END #file.no% THEN 100
WHILE TRUE%

WEND
100 STOP

READ #file.no%; field$
PRINT field$

®

CBASIC Version 2 Programming with Files

Using the data from the previous
following will be printed console:

one
3
abc123def

example, the

The fixed organization of files implies a
well-defined structure to the accessed data. The
processing program can decide the meaning of a given
field by its relative position in a record, rather than by
the value of the data itself. This provides savings in
processing time and programming effort.

Files that are organized as fixed provide fast and
easy access to the individual fields within each record
because all fields can be read in at one time. Fixed
files may be reorganized by sorting on a key within each
record. In addition, fixed files permit random access as
described below.

Because CBASIC reads each record on a field by field
basis, it is recommended that each record on a given file
contain the same number of fields. If there is no
information to fill a specific field in a record, either a
zero or null string should be written into the field.
This will allow, for example, the fifth field of a sales
transaction file to represent the amount of the sale, even
if some or all of the first four fields are not used in a
particular transaction.

Sometimes it is necessary to insure that a given field
starts at the same relative position within a record.
Usually there will be some fields of fixed length and some
fields of variable length. Numeric fields will always
fall into the latter category unless the range of numbers
is restricted. String fields" however, can always be made
to be of fixed length by padding them with blanks.

For example:

stringS = left$(string$ + .. ",20)

This will always produce a field that is 20 characters in
length. By use of the STR$, function, numbers can be
converted to strings and then padded, thus allowing
unrestricted numeric data to be of fixed length.

@

CBASIC Version 2 Programming with Files

11.5

11.6

File Accessing Methods

An access method describes the order in which data is
read from or written to a file. CBASIC supports two
access methods, sequential and random. Either access
method may be used on files that are organized as fixed.
Only sequential may be used on a stream organized file.

Sequential Access

In sequentially accessed files there is one field of
concern, the "next" field. The program cannot backtrack
or skip ahead, it must proceed one field at a time.

A procedure to sequentially access a file and write it
to the console is shown below. The file contains the
following records:

"first field","Second field","third"crlf
"","5","xxx123yyy"crlf

The required statements are:
OPEN file.name$ as file.no%

.WHILE TRUE%
READ #file.no%: field$
PRINT field$

WEND

The output ;;on the console would be:

first field
second field
third

5
xxx123yyy

The fourth line on the console is blank because the
first field in the second record is a null string.

While reading data from a file sequentially, the READ
statement will consider a field completed when it
encounters either a comma or a carriage return. Within
the quotation marks of a string field it is permissible
to have any c~aracter except a quotation mark.

When accessing a stream file, every field on the file
will be read once and none will be skipped. It is
possible to read in more than one field with a single read
statement.

@

CBASIC Version 2 Programming With Files

For example:

WHILE TRUE%
READ #file.no%~ fielda$,fieldb$
PRINT fielda$,fieldb$

WEND

would print the following on the console (using the file
from the previous example):

first field
third
5

second field

xxxl23yyy

The same field organization is used when writing a
stream file. Each variable specified in the PRINT
statement produces a single field in the file. When more
than one variable is output in a single PRINT statement,
the corresponding fields will be delimited by commas.
The last field written by each PRINT statement will be
delimited by a carriage return and line feed instead of a
comma.

For example:

a$= number one"
b$= two"
c$= 3"
d$= "
e$= five"
f$= variable six"
PRINT #file.no%~ a$,b$
PRINT #file.no%~ c$
PRINT #file.no%~ d$,e$,f$

will put the following data in the file referenced by
file.no%:

"number one", "two"crlf
"3 l1 crlf
1I","five ll

,"variable six"crlf

On files that are read or written using the stream
organization, it does not matter which field delimiter is
used. The crlf assumes significance when accessing files
with fixed organization or when using the READ LINE
statement described below.

®

CBASIC Version 2 Programming With Files

11.7

When using the CP/M TYPE command to display a CBASIC
file, the carriage return and line feed result in the
output from each separate PRINT statement appearing on a
separate line.

Random Access

In random access the program is not limited to
accessing the next record or field. Any record on the
file is as accessible as any other. Each record, or
position where a record may be placed, is referenced by
its relative record number. Each record may contain
multiple fields.

Randomly accessed files must use the fixed
organization. CBASIC locates each record on a randomly
accessed file by taking the relative record number
specified in the program, subtracting one from the
number, and multiplying it by the length of a record. The
result is the byte displacement of the record measured
from the beginning of the file. If the records were of
varying length, the displacement could not be calculated
in this manner.

Normally random access files will be created
sequentially and then read or updated using random access.
An example of this type. of processing is an employee file
for a small business. If the business has twenty
employees, each would be assigned a number ranging from 1
to 20. Each employee might have a record on file with
fields containing their name, social security number, and
rate of pay. The twenty records would be placed on the
file in employee number order using the sequential access
method with a fixed organization. Then, when an
application program needed the data on employee number 12,
a random read would be issued for relative record number
12 and the proper data would be retrieved. The following
program would access the file described above:

TRUE% = -1
OPEN "employee.mst" RECL 50 AS 3
IF END # 3 THEN 500.1
WHILE TRUE% rem loop until eof

WEND

INPUT lIenter employee number ll
: employ.no%

READ # 3, employ.no%: name$,ssn$,pay
PRINT USING II&'S l?ay rate is ###.##"7 name$,pay

500.1 STOP

CBASIC Version 2 Programming With Files

11.8

To summarize, the READ statement used with a stream
organized file will always access the next available field
on the file regardless of the field length or which
delimiter is used. In a fixed organization file, each
READ statement will access the next record. A record is
delimited by a carriage return and a line feed. PRINT
statements function in a similar manner.

Special Features

The PRINT USING statement can be used to write data to
files as well as to the console or printer. Its use and
the format of its output is the same when writing to a
file as it is when writing to the console. If the file is
fixed, the single field written by each execution of the
PRINT USING statement will be padded with blanks to the
specified record length. The PRINT USING is well suited
to text processing applications.

The following examples demonstrate the PRINT USING
statement with files:

PRINT USING "&":#TEXT.FILE.NO:LINE.OF.TEXT$

PRINT USING "SPEED=#####.### KPH": #OUT.FILE,TIME: \
VELOCITY(TIME)

EDl$="&"
ED2$=" $$,###.##"
PRINT USING EDl$+ED2$+EDl$+ED2$:#17,TRANS.NO: \

"PRINCIPAL:",PRIN,"INTEREST:",INTR

PRINT USING "&":#PRINTER.FILE:" " REM BLANK LINE

PRINT USING "/2345/":#WORK.FILE,REL.REC.NO:SORT.KEY$

IN$="X"
WHILE IN$<>""

INPUT "ENTER DATA":LINE IN$
PRINT US ING tI / ••• 5 0 5 0 .. / ": # 4: IN$

WEND
CLOSE #TEMP.FILE

The READ LINE statement allows a file to be accessed
as though there was one field per record: Any commas or
quotes will be read as part of the data. Only a carriage
return and line feed will be treated as the delimiter.
In effect there is no field structure in a file accessed
with the READ LINE.

®

CBASIC Version 2 Programming With Files

For example, if the following file exists:

"field one", "two", "3 11
, "", "fourllcrlf

"five","six ll crlf

and the following statements are executed:

READ #file.no%: LINE string$
PRINT string$

the data printed on the console would be:

"field one ll ,lItwo","3","II,lIfour"

This should be compared with the following statements:

READ # file.no%i string$
PRINT string$

which would output:

field one

All quotation marks and commas are considered part of the
data, but the data does not include either the carriage
return or the line feed.

CRASIC Version 2 Compiler Directives

12 COMPILER DIRECTIVES

12.1 Directive Format

12.2

Directives are used to control the action of the
compiler. Except for the END statement, all directives
begin with a percent sign. The percent sign must be in
column one. There may not be a line number preceding the
percent sign.

If characters on the same line following the directive
are not a part of the directive, they are ignored by the
compiler.

Listing Control Directives

%LIST

%NOLIST

%PAGE <constant>

%EJECT

The %LIST and %NOLIST directives allow listing only
selected portions of a program while it is being compiled.
The listing control directives may be placed anywhere in a
source program and may be used as many times as desired.

%LIST sets toggle B
resets toggle B. In
printer is controlled
directives.

(chapter
addition,
by the

13) on while %NOLIST
output to the disk and

%LIST and %NOLIST

The %PAGE directive sets the length of a page output
to the printer. The constant must be an unsigned integer.
If it is negative or zero, an error occurs. Initially the
page length is set at 64.

As many %PAGE directives as desired may appear in a
program. An error occurs if no constant is present.

The %EJECT directive positions the listings directed
to the printer and the disk to the top of the next page.
This is performed by ovtputting a formfeed character.

®

CBASIC Version 2 Compiler Directives

12.3 % INCLUDE

%INCLUDE <filename>

The %INCLUDE directive causes the compiler to compile
the file, specified in the include statement, into the
source immediately following the %INCLUDE directive. The
file name may contain a drive reference, and must be of
type BAS. Included statements will be indicated in
listings with an equal sign (=) following the CBASIC
assigned statement number. Includes may be nested six
deep, but they may not include themselves. For example:

%INCLUDE b:readin

will include the file READIN.BAS from drive B.

Since the files incorporated with %INCLUDE directives
are of type BAS they may be compiled separately. It is
easier to debug large programs if they are composed of
small, individually tested, routines.

The %INCLUDE directive allows the programmer to build
a library of common routines. This reduces programming
time. System standards, such as I/O port assignments, can
be put in included routines. If the programs are moved
from one system to another, the include routine is
changed, and the programs recompiled.

Commonly used procedures, such as searches, validation
routines, or input routines, are candidates for include
files. If many programs in a system access the same file,
all file access commands, such as READ, PRINT, 'or OPEN can
be set up as separate include files. If the file
definition needs to be changed, it can be made in one
common file instead of several application programs. It
is particularly valuable to code these routines as
multiple line functions.

It should be noted that a program---se-gment may compile
without errors when compiled separately, but when combined
with other routines, compiler errors may occur. These
errors should be predictable and will usually result from
using the same line number in more than one module.

®

CBASIC Version 2 Compiler Directives

12.4

12.5

%CHAIN Directive

%CHAIN<constant>, <constant>, <constant>, <constant>

The %CHAIN directive is used to set the size of the
main program's constant, code, data, and variable areas.
This is required when chaining to insure that a program
chained will not overwrite a portion of the data arec
being passed by the previous program. The compiler force~
each of the four areas to be at least as large as the
respective constant in the %CHAIN directive.

Each constant must be an unsigned positive integer.
The first constant is the size of the area reserved for
real constants. The second constant is the size of the
code area. The third constant is the area used to store
value from data statements. The final constant is the
size of the area used to s·tore variables.

The constants may be expressed as hexidecima1 numbers
by appending the letter H to the number. If the area to
be reserved is greater then 32,767 the constant must be
written as a hexidecimal number.

The values to use in the %CHAIN directive are
determined by compiling each of the programs to be chained
together and using the largest value of each area. The
compiler lists the size of each area at the end of a
compilation. For instance, if three programs are to be
chained and the CODE SIZE for the programs are 789, 1578,
and 4917 bytes, the second constant in the %CHAIN
directive would be 4917.

The %CHAIN directive is only required in the main or
first program executed. For more information refer to the
discussion on the CHAIN statement.

END statement

[< stmt number>] END

An END statement indicates the end of the source
program. It is optional and, if present, it terminates
reading of the source program. Any statements following
the END statement are ignored.

An END statement may not begin with a percent sign.
It need not begin in column one, but it must be the first
statement on the line.

®

CBASIC Version 2 Compiler Directives

A branch to an END statement Is equivalent to
executing a STOP statement.

Examples:

500 END

END

®

CBASIC Version 2 Operational Considerations

13. OPERATIONAL CONSIDERATIONS

13.1 System Requirements

13.2

CBASIC operates with any CP/M based floppy disk system
having at least 24K bytes of memory. In order to make the
best use of the power and flexibility of CBASIC, a dual
floppy disk system and at least 48K of memory is
recommended. If CBASIC is executed in a system smaller
than 24K a CP/M LOAD ERROR may occur.

CBASIC will operate with CP/M version 2 and MP/M
systems. A special configuration of the runtime package
is available to take full advantage of the advanced
features of CP/M version ,2 and MP/M.

CBASIC Compile-Time Toggles

Compiler toggles are a series of switches that can be
set when compiling a program. The toggles are set by
typing a dollar-sign ($) followed by the letter
designations of the desired toggles, starting one space or
more after the program name. Toggles may only be set for
the compiler.

Examples of the use of compiler toggles are:

CBAS2 ACCOUNT3 $BGF

B:CBAS2 A:COMPARE $GEC

CBAS2 PAYROLL $B

CBAS2 B:VALIDATE $E

Toggle B suppresses the listing of the program on the
console during compilation.

If an error is detected, the error message is printed
even if toggle B is set. Toggle B does not affect listing
to the printer (toggle F) or disk file (toggle G).

Initially toggle B is off.

Toggle C suppresses the generation of an INT file.
Since the first compilation of a large program is likely
to have errors, this toggle will provide an initial

@

CBASIC Version 2 Operational Considerations

syntax check without
intermediate file.

the overhead of writing the

Toggle C is initially off.

Toggle D suppresses translation of lower case
to upper case. For example, if toggle D is on,
will not refer to the same variable as 'amount'.

letters
'AMOUNT'

If toggle D is set, all keywords must be capitalized.

Initially toggle D is off.

Toggle E is useful when debugging programs. If this
toggle is set, it will cause the runtime program to
accompany any error messages with the CBASIC line number
in which the error occurred. Toggle E will increase the
size of the resultant INT file, and therefore, should not
be used with debugged programs. Toggle E must be set in
order for the TRACE option (section 13.4) to be in
effect.

Initially toggle E is off.

TOGGLE F will cause the compiled output listing to be
printed on the system list device, in addition to the
system console. This provides a hardcopy of the compiled
program. Even if the B toggle is set, a complete listing
is provided if toggle F is set. Each page of the listing
has a title printed and the pages are numbered. Formfeeds
are used to advance to the top of a page.

Initially toggle F is off.

Toggle G will cause the compiled output listing to be
written to a disk file. The file containing the compiled
listing has the same name as the source file, and a type
of LST. If toggles G and B are specified, only errors
will be output at the console but a disk file of the
complete program will be produced.

Normally the disk listing will be placed on the same
drive as the source file. The operator may select another
drive by specifying the desired drive, enclosed in
parenthesis, following the G toggle as shown below:

CBAS2 B:TAX $G(A:)

Initially toggle G is off.

CBASIC Version 2 Operational Considerations

13.3 Compiler Output

CBASIC does not require that each statement of a
program be assigned a statement number. The only
statements that must be given a statement number are those
that have control passed to them by the GOTO, GOSUB, ON or
IF statements. During compilation, CBASIC assigns a
sequen1:.~aJ.. numoeL ·c.u eC1L:1l line independent of the
statement number which may be used by the programmer. The
CBASIC assigned line number is the one referred to in
error messages (if tog.gle E is specified) and when using
the TRACE option. The line number takes one of three
forms:

n: or n* or n=

where n is the number assigned. In most cases the colon
(:) will follow the number. The equal sign (=) is printed
when the statement has been read in from a disk file with
a %INCLUDE directive. The asterisk (*) is used when the
statement contains a user assigned statement number that
is not referenced anywhere in the program. For example:

1 :
2 :
3* 10
4:
5 :

print "start"
name$="FRED"
gosub 40
stop

rem print name

6:%include printrtn
7= 40 rem-----rtn

rem rtn to print
to print-----------

8= print name$
9= return

10: END

In the example, statement 3 has an asterisk because
the '10' is not referenced at any place in the program.
This can be useful during debugging or to help understand
large programs written in other dialects of BASIC. When
all unreferenced line numbers are removed, it is easier to
see the logic of the program.

When an error is detected, the compiler prints a two
letter error code, the line number the error occurred
in and the position of the error relative to the beginning
of the source line. The position assumes tab characters
have been expanded.

®

CBASIC Version 2 Operational Considerations

13.4

13.5

TRACE

CRUN2 <filename> [TRACE [<lnl> [,<ln2>JJJ

The TRACE option is used for run-time debugging. It
will print the line number of each statement as it is
executed. The output is directed to the console even when
a LPRINTER statement is in effect. The line number
printed is the number assigned to each statement by the
compiler. Consider the following program:

AMOUNT = 12.13
TIME = 45.0
PRINT TIME * AMOUNT

If the above program was compiled using the following
command:

CBAS2 TEST $E

and then executed with the trace option:

CRUN2 TEST TRACE 1,3

the following output would be produced:

AT LINE 0001
AT LINE 0002
AT LINE 0003

545.85

The TRACE option functions only if the toggle E has
been set on during compilation of the program.

The first number «lnl» is used to specify the line
number where the trace is to begin. The second number
«ln2» specifies where the trace is to stop. If no line
numbers are included in the command, the entire program is
traced~ if only the first line number is present, tracing
starts at this line number and continues for all line
numbers greater than the first number <lnl>.

Cross Reference Lister

In addition to CBAS2.COM and CRUN2.COM, a utility
program XREF.COM is supplied with version 2 of CBASIC.
XREF produces a disk file which contains an alphabetized
list of all identifiers used in a CBASIC program. The

@

CBASIC Version 2 Operational Considerations

usage of the identifier (function, parameter, or global)
is provided, as well as a list of each line in which that
identifier is used. The listing places ~;l functions
first with parameters and local variables associated with
a function immediately following the function. The
functions are in alphabetical order. The output is
normally directed to the same disk as the ·source file.
The file created has the some nome as the CBASIC source
file and is of type XRF. The standard output is 132
columns wide. The following command is used to invoke
XREF:

XREF <filename> [disk ref] [$<toggles>] ['<title>']

The filename must be a CBASIC source program with a
filetype of BAS. The disk reference is optional and
specifies the disk on which to place the cross reference
file. If the disk reference is not present, the listing
is placed on the same drive as the sourc~. It is
specified as A:, B: etc. For example:

XREF PAYROLL A:

will put the cross reference listing for PAYROLL. BAS on
drive A. At least one blank must separate the filename
and the disk reference.

Toggles may be used to alter the standard output of
XREF. At least one blank must separate the dollar sign
from the portion of the command line to the left. The
toggles follow the dollar sign. They may be either lower
or upper case letters. A, B, C, D, E, F, and G are valid
toggles. Any other characters following the dollar sign,
and before the title field or end of the command line, are
ignored.

The A toggle causes a listing to be output to the list
device as well as to a disk file.

The B toggle suppresses output to the disk. If only
the B toggle is specified, no output is produced.

The C toggle suppresses the output to the disk and
permits output to the list device. The C toggle has the
same effect as specifying both the A and B toggles.

The D toggle causes the output to be produced eighty
columns wide instead of using 132 columns.

®

CBASIC Version 2 Operational Considerations

The E toggle produces output with only the identifiers
and their usage. No line numbers are printed. The E
toggle might be used to help document a program. The
programmer would write the use of ~ach identifier on the
listing provided by XREF. Also the file created by XREF
could be edited and made into a large remark with comments
pertaining to each variable name. By including this file
with the source program, additional documentation would be
provided.

The F toggle allows the user to change the default
page length of 60 lines per page. The desired number of
lines per page is enclosed in parenthesis and must follow
the F. There may be no imbedded blanks. Formfeed
characters are used to position the printer and are also
placed in disk files.

The G toggle suppresses printing of the heading lines
and suppresses all formfeeds. This toggle might be used
when building a disk file which will then be printed by a
user utility.

The H toggle suppresses translation
letters to upper case. This allows
programs compiled with compiler toggle D.

The following command: XREF GL $CD

of lower case
using XREF with

produces a cross reference listing on the list device.
The listing is 80 columns wide.

XREF ACCT$REC B: $EAF(40)

creates a disk file on drive B and a listing on the list
device of all the identifiers and their usage. No line
numbers would be provided. Pages are limited to 40
lines.

The optional title field must be the last field in the
command line. All characters following the first
apostrophe on the command line up to the second
apostrophe, or until the end of the command line, become
the title. The title is printed on the heading line of
each page of output. The title is truncated to thirty
characters if the listing is 132 columns wide and to
twenty characters if the D toggle is specified. The
following command demonstrates the use of the title
field:

XREF NAMES B: $AD 'version 2: 1 AUG 78'

CBASIC Version 2 Compiler Error Messages

APPENDIX A

Compiler Errors

NO SOURCE FILE: <filename>.BAS

The compiler could not locate a source file on the
specified disk. This file was used in either the CBAS2
command or a %INCLUDE directive.

OUT OF DISK SPACE

The compiler has run out of disk space while
attempting to write either the INT file or the LST file.

OUT OF DIRECTORY SPACE

The compiler has run out of directory entries while
attempting to create or extend either the INT file or the
LST file.

DISK ERROR

A disk error occurred while trying to read or write to a
disk file. This message may vary slightly in form
depending on the operating system being used. See your
CP/M documentation for the exact meaning of this message.

PROGRAM CONTAINS n UNMATCHED FOR STATEMENT{S)

There are n FOR statements for which a NEXT could not
be found.

PROGRAM CONTAINS n UNMATCHED WHILE STATEMENT{S)

There are n WHILE statements for which a WEND
not be found.

PROGRAM CONTAINS 1 UNMATCHED DEF STATEMENT

A multiple line function was not terminated
FEND statement. This may cause other errors
program.

could

with a
in the

CBASIC Version 2 Compiler Error Messages

WARNING INVALID CHARACTER IGNORED

The previous line contained an invalid character. The
character is ignored by the compiler. A question mark is
printed in its place.

INCLUDE NESTING TOO DEEP NEAR LINE n

An include statement near line n in the source program
exceeds the maximum level of nesting of include files.

Other errors detected during compilation cause a 2 letter
error code to be printed with the line number and position of
the error. The error message normally follows the line in
which the error occurred.

BF

BN

CI

CS

CV

DL

The possible error codes are:

A branch into a multiple line function from outside
the function was attempted.

An invalid numeric constant was encountered.

An invalid file name was detected in a % INCLUDE
directive. The file name may not contain a ?,*, or :
(except as part of a disk reference where a colon may be
the second character of the name).

A COMMON statment, which was not the first statement
in a program, was detected. Only a compiler directive
such as %CHAIN, a REMARK statement, or blank lines may
proceed a COMMON statement.

An improper definition of a subscripted variable in a
common statement. Possibly the subscript count is not a
constant or there is more than one constant. Only one
constant may appear in parenthesis. It specifies the
number of subscripts in the array being defined.

The same line number was used on two different lines.
Other compiler errors may cause a DL error message to be
printed even if duplicate line numbers do not exist.
Errors such as not defining functions prior to use and, in
some cases, if the DIM statement does not proceed all
references to an array, a DL error will result.

CBASIC Version 2 Compiler Error Messages

DP

FA

FD

FE

FI

FN

FP

FU

IE

IF

IP

A variable dimensioned by a DIM
previously defined. It either appears

statement was
in another DIM

statement or was used as a simple variable.

A function name appears on the left side of an
assignment statement but is not within that function. In
other words, the only function name that may appear to the
left of an equal sign is the name of the function
currently being compiled.

The same function name is used in a second DEF
statement.

A mixed mode expression exists in a FOR statement which
the compiler can not correct. Probably the expression
following the TO is of a different type than the index.

An expression which is not an unsubscripted numeric
variable is being used as a FOR loop index.

A function reference contains an incorrect number of
parameters.

A function reference parameter type does not match the
parameter type used in the function's DEF statement.

A function has been referenced before it has been
defined, or the function was never defined.

An expression used immediately following an
evaluates to type string. Only type numeric
permitted.

IF
is

A variable used in a FILE statement is of type numeric
where type string is required.

An input prompt string was not surrounded by quotes.

CBASIC Version 2 Compiler Error Messages

IS

IT

IU

MC

MF

MM

MS

ND

NI

NU

OF

A subscripted variable was referenced before it was
dimensioned.

An invalid compiler directive was encountered. A
parameter required by the directive may be out of range or
missing. Or the directive may be misspelled.

A variable defined as an array in a DEF statement is
used without subscripts.

The same variable is
COMMON statement. Each
COMMON statement.

defined more than once in a
variable may only appear in one

An expression evaluates to type string when an
expression of type numeric is required.

An invalid mixed mode has been detected. Most likely
variables of type string. and type numeric are combined in
the same expression.

A numeric expression was used where a string expression is
required. J

A FEND statement was encountered without
DEF statement. This error could be
improper DEF statement.

a corresponding
the result of an

A variable referenced by a NEXT statement does not
match the variable referenced by the associated FOR
statement.

A NEXT statement occurs without an associated FOR
statement.

A branch out of a multiple line function from inside the
function was attempted.

CBASIC Version 2 Compiler Error Messages

00

PM

SE

SF

SN

SO

TO

UL

US

More than 40 ON statements were used in the program.
CBASIC has an arbitrary limit of 40 ON statements in a
single program. Notify Compiler Systems if this limit
causes problems.

A DEF statement appeared within
Functions may not be nested.

~ _ _ ..L.. ~ __

.L..ULH.": \....J..vu.

The source line contained a syntax error. This means
that a statement is not properly formed or a keyword is
misspelled.

A SAVEMEM statement uses an expression of type numeric
to specify the file to be loaded. The expression must be
a string. Possibly the quotation marks were left off a
string constant.

A subscripted variable contains an incorrect number of
subscripts, or a variable in a DIM statement has been used
previously with a different number of dimensions.

The statement is too complex to compile. It should be
simplified. Consider making the expression into two or
more expressions. Please send Compiler Systems a copy of
the source statement.

Symbol table overflow has occurred. This means that
the program is too large for the system being used. The
program must be simplified or the amount of available
memory increased. Smaller variable names reduces the
amount of symbol table space used. Compiler Systems is
interested in being informed if programs generate this
error.

A line number that does
referenced.

not exist has been

A string has been terminated by a carriage return
rather than by quotes.

CBASIC Version 2 Compiler Error Messages

va

WE

WN

wu

Variable names are too long for one statement. This
should not normally occur! If it does, please send a copy
of the source statement to Compiler Systems. Reducing the
length of variable names and reducing the complexity of
the expression within the statement may eliminate the
error.

The expression immediately following a WHILE statement
is not numeric.

WHILE statements are nested to a depth greater than
12. CBASIC has an arbitrary limit of 12 for nesting of
WHILE statements.

A WEND statement occurred without an associated WHILE
statement.

CBASIC Version 2 Runtime Error Messages

APPENDIX B

Run-Time Errors

NO INTERMEDIATE FILE

A file name was not specified with the CRUN2 command,
or no file of type INT with the specified file name was
found on the disk specified.

IMPROPER INPUT - REENTER

This message occurs when the fields entered from the
console do not match the fields specified in the INPUT
statement. This can occur when field types do not match
or the number of fields entered is different from the
number of fields specified. Following this message all
values required by the input statement must be reentered.

Other errors detected cause a 2 letter code to be
printed. If the code is preceded by the word WARNING,
execution continues. If the code is preceded by the word
ERROR, execution terminates." If an error occurs with a
code consisting of an asterisk followed by a letter such
as '*R' the runtime package has failed. Please notify
Compiler Systems of the circumstance under which the error
occurred.

The possible codes are listed below:

Warning Codes

DZ

FL

LN

A number was divided by zero. The result is set to
the largest valid CBASIC number.

A field length greater than 255 bytes was encountered
during a READ LINE. The first 255 characters of the record
are retained~ the other characters are ignored.

The argument given in the LOG function was zero or
negative. The value of the argument is returned.

CBASIC Version 2 Runtime Error Messages

NE

OF

SQ

A negative number was specified before the raise to a
power operator (A). The absolute value of the parameter is
used in the calculation. When using real variables a
positive number may be raised to a negative power, but a
negative number may not be raised to a power.

A calculation using real variables produced an
overflow. The result is set to the largest valid CBASIC
real number. Overflow is not detected with integer
arithmetic.

A negative number was specified in the SQR function.
The absolute value is used.

Error Codes

AC

BN

CC

CD

CE

CF

The string argument in an ASC function evaluated to a
null string.

The value following the BUFF option in an OPEN or
CREATE statement is less than I or greater then 52.

A chained program's code area is larger than the main
program's code area. Use a %CHAIN directive in the main
program to adjust the size of the code area.

A chained program's data area is larger than the main
program's data area. Use a %CHAIN directive in the main
program to adjust the size of the data area.

The file being closed could not be found in the
directory. This could occur if the file name had been
changed with the RENAME function.

A chained program's constant area is larger than the
main program's constant area. Use a %CHAIN directive in
the main program to adjust the size of the constant area.

CRASlC Version 2 Runtime Error Messages

CP

CS

CU

DF

DU

DW

EF

ER

FR

FU

IF

A chained program's variable storage area is larger
than the main program's variable storage area. Use a
%CHAlN directive in the main program to adjust the size of
the variable storage area.

A chained program reserved a different amount of
memory with a SAVEMEM statement than the main program.

A CLOSE statement specified a file number that was not
active.

An OPEN or CREATE was specified with a file number
that was already active.

A DELETE statement specified a file number that was
not active.

An error occurred while writing to a file for which no
IF END Statement has been executed. This may occur when
either the directory or the disk is full.

A read past the end of file occurred on a file for
which no IF END statement had been executed.

An attempt was made to write a record of length
greater than the maximum record size specified in the
OPEN, CREATE or FILE statement for this file number.

An attempt was made to rename a file to an existing
file name.

An attempt was made to read or write to a file that
was not active.

A file name was invalid. Most likely an invalid
character was found in the file name. A colon may never
appear imbedded in. the name proper. Question marks and
asterisks may only appear in ambiguous file names. This
error will also result if the file name was a null
string.

CBASIC Version 2 Runtime Error Messages

IR

IV

IX

ME

MP

NF

NM

NN

NS

OD

OE

A record number of zero was specified.

An attempt was made to execute an INT file created by
a version I compiler. To use CRUN2 a program must be
recompiled using the version 2 compiler, CBAS2. This
error will also result from attempting to execute an INT
file which is empty.

A FEND statement was encountered prior to executing a
RETURN statement. All multiple line functions must exit
with a RETURN statement.

An error occurred while creating or extending a file
because the disk directory was full.

The third parameter in a MATCH function was zero or
negative.

The file number specified was less than I or greater
than 20, or a file statement was executed when 20 files
were already active.

There was insufficient memory to load the program.

An attempt was made to print a number with a PRINT
USING statement but there was not a numeric data field in
the USING string.

An attempt was made to print a string with a PRINT
USING statement but there was not a string field in the
USING string.

A READ statement was executed but there are no DATA
statements in the program, or all data items in all DATA
statements have already been read.

An attempt was made to OPEN a file that didn't exist
and for which no IF END statement had been executed prior
to executing the OPEN statement.

CBAsrc Version 2 Runtime Error Messages

or

OM

QE

RB

RE

RG

RU

SB

SL

SO

The expression specified in an ON ... GOSUB or an
ON ... GOTO statement evaluated to a number less than lor
greater than the number of line numbers contained in the
statement.

"'no ~"""r'\I"'Y"""-~"'"-~"P"'\ "" ,....,..t= """"'~""'"',...... ,9' ,::a~~: ,... -. __ .~..L~__ (""'4 ___ _
_ •• - .t"' ... '-'':1 '-'~ ""'~ .".;;;;.,,'-'1 \....l1,.lJ...L.,'':::1 'l;:A'I;:\""U~.J..UJ.l. ':>1:-'01.,.:1:::

may be conserved by--c-losing files when they are no longer
needed and by setting strings to a null string when they
are no longer required. Also by not using DATA
statements, but rather reading the constant information
from a file, space will be saved. Large arrays may be
dimensioned with smaller subscripts when the array is no
longer required.

An attempt was made to PRINT a string containing a
quotation mark to a file. Quotation marks can only be
written to files when using the PRINT USING option of the
PRINT statment.

Random access was attempted to a file activated with
the BUFF option specifying more than one buffer.

An attempt was made to read past the end of a record
in a fixed file.

A RETURN occurred for which there was no GOSUB.

A random read or print was attempted to other than a
fixed file.

An array subscript
boundaries for which the

was used which exceeded
array was defined.

the

A concatenation operation resulted in a string of more
than 255 bytes.

The file specified in a SAVEMEM statement could not be
located on the referenced disk. The expression specifying
the file name must include the type if one is present. A
type of COM is not forced.

CBASIC Version 2 Runtime Error Messages

SS

TL

UN

WR

The second parameter of a MID$ function was zero or
negative, or the last parameter of a LEFT$, RIGHT$, or
MID$ was negative.

A TAB statement contained a parameter less than 1 or
greater than the current line width.

A PRINT USING statement was executed with a null edit
string or an escape char (\) was the last character in an
_.....:I.!.J..... _.L_.! __
t::!U.1.1:. ::i1:..L.1.UY.

An attempt was made to write to a file after it had
been read, but before it had been read to the end of the
file.

CBASIC Version 2 Key Words

APPENDIX C

KEY WORDS

ABS AND AS ASC ATN
BUFF CALL CHAIN CHR$ CLOSE
COMMAND $ COMMON CONCHAR% CONSOLE CONSTAT%
COS CREATE DATA DEF DELETE
DIM ELSE END EO EXP
FEND FILE FLOAT FOR FRE
GE GO GOSUB GOTO GT
IF INITIALIZE INP INPUT INT
INT% LE LEFT$ LEN LET
LINE LOG LPRINTER LT MATCH
MID$ NE NEXT NOT ON
OPEN OR OUT PEEK POKE
POS PRINT RANDOMIZE READ RECL
RECS REM REMARK RENAME RESTORE
RETURN RIGHT$ RND SADD SAVEMEM
SGN SIN SIZE SQR STEP
STOP STR$ SUB TAB TAN
THEN TO UCASE$ USING VAL
VARPTR WEND WHILE WIDTH XOR

CBASIC Version 2 Decirnal-Ascii-Hex Table

DECIMAL ASCII HEX DECIMAL ASCII HEX DECIMAL ASCII HEX

0 NUL 00 44 2C 88 X 58
1 SOH 01 45 2D 89 y 59
2 STX 02 46 . 2E 90 Z SA
3 ETX 03 47 / 2F 91 [5B
4 EOT 04 48 0 30 92 \ 5C
5 ENQ 05 49 1 31 93] 5D
6 ACK 06 50 2 32 94 A 5E
7 BEL 07 51 3 33 95 SF
8 BS 08 52 4 34 96 60
9 HT 09 53 5 35 97 a 61

10 LF 0A 54 6 36 98 b 62
11 VT 0B 55 7 37 99 c 63
12 FF 0C 56 8 38 100 d 64
13 CR 0D 57 9 39 101 e 65
14 SO 0E 58 3A 102 f 66
15 SI 0F 59 3B 103 9 67
16 DLE 10 60 < 3C 104 h 68
17 DC1 11 61 = 3D 105 i 69
18 DC2 12 62 > 3E 106 j 6A
19 DC3 13 63 ? 3F 107 k 6B
20 DC4 14 64 @ 40 108 1 6C
21 NAK 15 65 A 41 109 rn 6D
22 SYN 16 66 B 42 110 n 6E
23 ETB 17 67 C 43 III 0 6F
24 CAN 18 68 D 44 112 P 70
25 CR 19 69 E 45 113 q 71
26 SUB 1A 70 F 46 114 r 72
27 ESC 1B 71 G 47 115 s 73
28 FS lC 72 H 48 116 t 74
29 GS ID 73 I 49 117 u 75
30 RS IE 74 J 4A 118 v 76
31 US IF 75 K 4B 119 w 77
32 SP 20 76 L 4C 120 x 78
33 21 77 M 4D 121 Y 79
34 " 22 78 N 4E 122 z 7A
35 # 23 79 0 4F 123 { 7B
36 $ 24 80 P 50 124 I 7C
37 % 25 81 Q 51 125 } 7D
38 & 26 82 R 52 126 7E
39 27 83 S 53 127 DEL 7F
40 (28 84 T 54
41) 29 85 U 55
42 * 2A 86 V 56
43 + 2B 87 W 57

CBASIC Version 2

ABS(X) FUNCTION •.•••••••.•.••...•..•.••.•.•.•••••
ALGEBRAIC OPERATORS .•..•.•••.•••.•.••••••••••••
AND OPERATOR ••.••••••.•.•..•••.•••••••••••••.••.•
ANGLE BRACKETS•••..•••••.••......•••.••.•.•
APPENDING TO A FILE .•.••..••••••..•......•..•••••
APPEND IX A •...•.•..••••.••••••••.•.•..•.•••••••••
APPENDIX B •••.•.••..••••.•••••••••••.••••••••••••
APPENDIX C •.•.••••.••••.••••••••••••.••••••••••••
APPENDIX D ••.••••..••••.••••••••••••..•••••••.•••
APPEND IX E ••.•..•••.••.••••••••.•••••.•••••••••••
ARRAY ••••••..•..•.•...•.•••.•••..•••.•.••••••..••
AS STATEMENT •.•••.••••.••.••••••••••..•••••••.•••
ASC(A$) •••••••.•••••.••.•.••••••••.•••••••••••.••
ASSIGNEMENT STATEMENTS •.••••••••••••••••••••.••••
ATN (X) FUNCTION .•••••.•••••••••••••••••••••••••••

BINARY CONSTANTS .•••••.•••••••••••••.•••••••••••.
BRACES •••.•••..••••••••••••••••.•••••••••••••••••
BRACKETS •.•••••••.•••.••••••.•••••••••••••••••.•.
BUFF STATEMENT •••.•••.••••.••••••••••••••••••.•••

CALL STATEMENT ••••••••••••••••••••••••••••••••• ••
CBAS 2 ...••••••.. .. . • • . . • • • • . • . . • • • . . . • . •••••
CBASIC 1 ••••.•••••••••••••••.••••••••••••••••••••
CHAIN STATEMENT ••••••••••••••••••••••••••••••••••
CHR$ (I %) ••••.•.••••••••••••••••••••••••••••••••••
CLOSE STATEMENT .•••••• ' •••••••••••••••••••••••••••
COMMAND$ •.•.••••••••••••••••••••••.••••••••••••••
COMMON STATEMENT ••••••••••.••••••••••••••••••••••
COMPILE TIME TOGGLES •••••••••••••••••••.•••••••••
COMPILER DIRECTIVES ••••••••••••••••••••••••••••••
COMPILER ERROR'MESSAGES •••••.••••••••••.•••••••••
COMPI LER OUTPUT ••••••••.•••••••••••••••••••••••••
COMPILIER •••••••••••••••••••••••••••••••••••.••••
CONCHAR % FUNCT I ON •••.•••••.••••••••••••••••••••••
CONSOLE STATEMENT ••••••••••••••••••••••••••.•••••
CONSTANTS •.••••••••••••••••••••••••••••••••••••.•
CONSTAT% FUNCTION ••••••••••••••••••••••••••••••••
CONTINUATION CHARACTER •••••••••••••••••••••••••••
CONTINUING STATEMENT •••••••••••••••••••••••••••••
CONTROL STATEMENTS •••••••••••••••••••••••••••••••
COS(X) FUNCTION •••••••••••••••••••••••••••.••••••
CP 1M DOCUMENTATION •••••••••••••••••••••••••••••••
CP 1M LOAD ERROR •••••••••••••••••••••.••••••••••••
CREATE STATEMENT •••••••••••••••••••••••••••••••••
CROSS REFERENCE LISTER (XREF) •••••••.••••••••••••
CRUN2 ••

Master Index

45
15
1 5

5
79

101
107
113
114
115

14
71,72
49
17
47

11
5
5

69,70

42,44,81
8
2

27,28,36
50
71
54
28,29
95
91

101
97

8
39
33
10
39

4
21
19
48

2
95
72
98

9

CBASIC Version 2

DATA STATEMENT •.••••••••.•.•••..•••••••••••.••••.
DEF FUNCTION •••••••••••••.••••.•••••••.••••.••••.
DELETE STATEMENT •••••••••••••••••••••••.•••.•••••
DIM STATEMENT ••••••••••••.•••••••••.••.•••...•••.
DISK FUNCTIONS

ELSE STATEMENT •••••••••••••••••••••••••.••••••••.
END STATEMENT •••••••••••••••.••••••••••.••••.••••
EQ OPERATOR •••.••••••••••••••••••••••••••••.•••••
ERROR CODES (COMPILIER) ••••••••••.•••••.••...••••
ERROR CODES (RUNTIME) ••••••••••••••••••••••..•.••
EXECUTION OF CBASIC PROGRAM •••••••••••••.••••••••
EXP (X) FUNCTION •••••••••••••••••••••••••••••••.••
EXPRESS I ON •••••••••••••••••••••••••••••••••••..••

FEND STATEMENT •••••••••.••••••••••••••...••••..••
FILE CONTROL BLOCKS ••••••••••••••••••••••••••••••
FILE STATEMENT ••••••••••••••••••••••••••••.••••••
FILE S •• ••••
FILE MAINTENANCE BY Cp/M •.•••••••••••••••••••••••
FIXED FILE ORGANIZATION ••••••••••••••••••••• ; ••••
FIXED LENGTH STRINGS •••••••••••••••••••••.•••••••
FLOAT(I%) ••
FN FUNCTION •••••••••••••••••••••••••••••••.••••••
FOR STATEMENT ••••••••••••••••••••••••••••••••••••
FORMAT STRING ••••••••••••••••••••••••••••••••••••
FORMATTED PRINTING •••••••••••••••••••••••.•••••••
FRE FUNCTION •••••••••••••••••••••••••••••••••••••
FUNCTION DEFINITIONS ••••••.••••••••••••••••••••••
FUNCTION NAMES •••••••••••••••.•••••••••••••••••••
FUNCTION REFERENCES ••••••••••••••••••••••••••••••

GE OPERATOR ••••••••••••••••••••••••••••••••••••••
GENERAL INFORMATION - STATEMENTS ••••••••••••••••.
GENERAL INFORMATION - INPUT/OUTPUT •••••••••••.•••
GENERAL INFORMATION - FORMATTED PRINTING •••••••••
GO STATEMENT •••••••••••••••••••••••••••••••••• •••
GOSUB STATEMENT ••••••••••••••••••••••••••••••••••
GOTO STATEMENTS ••••••••••••••••••••••••••••••••••
GT OPERATOR •••••••••••••••••••••••••••••.••••••••

HEXIDECIMAL CONSTANTS ••••••••••••••••••••••••••••
HIERARCHY OF OPERATORS •••••••••••••••••••••••••••

IDENTIFICATION NUMBERS •••••••••••••••••••••••••••
IDENTIFIERS ••••••••••••••••••••••••••••••••••••••
IF END STATEMENT •••••••••••••••••••••••••••••••••
IF STATEMENT •••••••••••••••••••••••••••••••••••••
INITIALIZE STATEMENT •••••••••••••••••••••••••••••
INP FUNCTION •••••••••••••••••••••••••••••••••••••
INPUT STATEMENT ••••••••••••••••••••••••••••••••••

Master Index

35
60
72
5,13,14,29

56

20,21
5,93

15
101
107

7
48
10,15,17

61
69
74
69
69
83
64
46
13,59
23
63
63
45
60
59
62

15
4

31
63
19
19
20
15

11
15

3
12
71,72,73

5,20
80
39
36

CBASIC Version 2

INT (X) FUNCTION ••••••.•••••••••••••.••••••••••••
INT%(X) FUNCTION ••••.•••.•.•••••••••••.••••••••••
INTEGER CONSTANTS •••••••••••••••••••••••••••••• .:..
INTEGER NUMBERS ••••••••••••••••••••••••••••.•••••
INTEGERS ••••••.•••••.•••••••••••••••..•••••••••••
INTRODUCTION ••.•••••••••••••••••••••••••••••••• .;.

KEY WORDS FOR CBAS I C •••.••••••••••••.••••••••••••
KEYWORDS (CBAS I C) •.••••••••.•••••••..••••.•••••••

LE OPERATOR ••••••••••.•••••••••••••••••••••••••••
LEFT$(A$,I%) •••••••••••••••••••••••••••••••••••••
LEN(A$) ••••••.•••••••.•••••••••••••••••••••••••••
LET STATEMENT ••.••••••••••••••••••••.••••••••••••
LINE INPUT STATEMENT ••••••••••••••••.•••••••.••••
LISTING CONTROL DIRECTIVES ••••••••••.••••••••••••
LOG (X) FUNCTION ••••••••••••••••••••••••••••••••••
LOG I CAL OPERATORS ••••••••••••••••••.••••••••••••
LOO P S ••••••••••••.•••••••••••••••••••• •.•••••••••
LPRINTER STATEMENT •••••••••••••••••••••••••••••••
LT OPERATOR ••••••••••••••••••••••••••••••••••••••

MATCH(A$, B$, I%) ••••••••••••••••••••••••••••••••••
MASTER INDEX •••••••••••••••••••••••••••••••••••••
MID$(A$,I%,J%) •••••••••••••••••••••••••••••••••••
MIXED MODE OPERATIONS •••••••••••••••••.••••••••••
MULTIPLE STATEMENTS ••••••••••••••••••••••••••••••

NE OPERATOR ••••••••••••••••••••••••••••••••••••••
NEXT STATEMENT •••••••••••••••••••••••••••••••••••
NOT OPERATOR •••••••••••••••••••••••••••••••••••••
NOTATION •••
NUMBERS .. .
NUMERIC DATA FIELDS •••••••••••••••••••.••••••••••

ON STATEMENT •••••••••••••••••••••••••••••••••••••
OPEN STATEMENT •••••••••••••••••••••••••••••••••••
OPTIONAL TITLE FIELD (XREF) ••••••••••••••••••••••
OR OPERATOR ••••••••••••••••••••••••••••••••••••••
OUT STATEMENT ••••••••••••••••••••••••••••••••••••

PEEK FUNCT I ON
POKE STATEMENT .. .•.....•..•.•.•...•......•..••...
POS FUNCT I ON •••••••••••••••••••••••••••••••••••••
POWER OPERATORS •••• 0 •••••••••••••••••••••••••••••

PREDEFINED FUNCTIONS ••••••••••••••••••••••••••••• . .
PRINT :# STATEMENT ••••••••••••••••••••••••••••••••
PRINT STATEMENT ••••••••••••••••••••••••••••••••••
PRINT US ING - 1
PRINT US ING - #
PRINT USING - % ••••••••••••••••••••••••••••••••••

Master Index

46
46
11
10
43

1

113
5

15
50
50
17
38
91
48
16

':
22,25
32
15

51
115

53
17

5

15
25
15

5
10
65

25
69

100
15
38

41
33,41
34
15
45
77
31
64
65
67

CBASIC Version 2

PRINT US ING - & ••••••••••••••••••••••••••••••••••

PRINT US ING - , ••••••••••••••.•••••.•••••••••••.•
PRINT US ING - / ••••••••••••••••••••••••••••••••••
P R I NT US I N G '- \ ••••••••••••••••.•••••••••••••••••
PRINT US ING - ••••••••••••••••••••••••••••••••••
PRINT USING # STATEMENT •••••••••••.• _ ••••••••••••
PRINT USING STATEMENTS •••••••.••••.••••.•••••••••
PROGRAM IDENTIFICATION NUMBERS •••••.••••.••••••••

RANDOM FILE ACCESS ••••••••.••••••.•••••••••••••••
RANDOM I ZE STATEMENT ••••••••••••••••••••••••••••••
READ # LINE STATEMENT ••••••••••••••••••••••••••••
READ # STATEMENT •••••••••••••••••••••••••••••••••
READ STATEMENT ••••••••••.••••••••••••••••••••••••
REAL CONSTANT •••••••.••.•.••••••••••••••••••••••.
REAL NUMBERS •••••••••••••••••••••••••••••••••.•••
RECL STATEMENT •••••••••••••••••••••••••••••••••••
RECORD DELIMITERS ••••••••••••••••••••••••••••••••
RECS STATEMENT ••••••••••••••••••••.••••••••••••••
RELATIONAL OPERATORS ••••••••••••••••••.••••••••••
REM STATEMENT ••••••••••••••••••••••••••••••••••••
REMARK •••
RENAME (A$, B$) ••••••••••••••••••••••••••••••••••••
RESTORE STATEMENT ••••••••••••••••••••••••••••••••
RETURN STATEMENT •••••••••••••••••••••••••••••••••
RIG HT $ (A $, I %) ••••••••••••••••••••••••••••••••••••
RND FUNCT I ON •••.•••••••••••••••••••••••••••••••••.
RUNTIME ERROR MESSAGES •••••.•••••••••••••••••••••

SADD (A$) •••••••••••••••••••••••••••••••••••••• •••
SAVMEM STATEMENT ••••••••••••••••••••••••••••••••.
SEPARATE STATEMENTS ••••••••••••••••••••••••••••••
SEQUENTIAL FILE ACCESS •••••••••••••••••••••••••••
SGN(X) FUNCTION ••••••••••••••••••••••••••••••••••
SIN(X) FUNCTION •••••••••••••.••••••••••••••••••••
S I Z E (A$) ••••••••••••••••••••••••••••••• ••••••••••
SPECIAL FEATURES •••••••••••••••••••••••••••••••••
SQR (X) FUNCT I ON •••••.. :-.••••••••••••••••••••••••••••
STATEMENT NUMBERS •••••••••••.••••••••••••••••.•••
STATEMENT S ••••••••••••••••••••••••••.••••••••••••
STEP STATEMENT ••••••••••••••.••••••••••••••••.•••
STOP STATEMENT •••••••••••••••••••••••••••••••••••
STR$ (X) ••
STREAM FILE ORGANIZATION •••••••••••••••••••••••••
STRING CHARACTER FIELD •••••••••••••••••••••••••••
STRING FUNCTIONS •••••••••••••••••••••••••••••••••
STRINGS ••••••••••••••••••••••••••••••••.•••••••••
SUB STATEMENT •••••••••••••••••••••• ••••••••••••••
SUBSCRIPTED VARIABLES ••••••••••••••••••••••••••••
SYMBOLS ••••••••••.•••••••••••••••••••••••••••••••
SYSTEM REQUIREMENTS

Master Index

65
66
64
68
66
78
63

3

88
27
76
75
35
17
11,17
71,72
84
70,72
15,16

6
6

56
36
19
51
46

107

55
42
21
86
47
48
57
89
49

5
4

23
26
53
83
64
49
10
19
12

5
95

CBASIC Version 2 Master Index

TAB FUNCT I ON ...•.••..••..•••••••.••••••••.••••••• 34
TABLE (DECIMAL-ASCII-HEX) .••..•••.••••••.••••••.. 114
TAN (X) FUNCTION ••...•••.••••••••••••••.•..••••••• 49
THEN STATEMENT ..••••••••.•.•.••..•••••..••••.•••• 20
TO STATEMENT .••••••••••••••••••.•••••••.•.••••••• 23
TOGGLE A (XREF) ..•.•••••••..•••.••••••••...•••••• 99
TOGGLE B (COMPILE) ••••••••••••••.•••.•••••••••••• 95
TOGGLE B (XREF)•..•.••.••••••••••••..••••••• 99
TOGGLE C (COMPI LE) •••••.•.•.••••••••••.••.••••••• 95
TOGGLE C (XREF) .•••.•.•••••.••.••.•••••..•••••••• 99

·TOGGLE D (COMPILE) .•••••••.••••••••••.••••••••••• 96
TOGGLE D (XREF) .••..••••••••••••••••••.•••••.•••. 99
TOGGLE E (COMPILE) •.•••••••••••••••••••••.••••••• 96
TOGGLE E (XREF) •.•••••••..••••••••••••••••••••••• 100
TOGGLE F (COMPILE) ••••••••••••••••••••••••••••••• 96
TOGGLE F (XREF) •••••••••.•••••••••••••••.•••••••• 100
TOGGLE G (COMPILE) ••••.•••••••••••••••••.•••••••• 96
TOGGLE G (XREF) ••••.••••••••••••.•••••••••••••••• 100
TOGGLE H (XREF) •••••••••••.•••••••.•••••••••••••• 100
TRACE OPTION (COMPILE) ..•••••••.••••••••••••••••• 96
TRACE OPTION (CRUN2) ••••••••••••••••••••••••••••• 98

UCASE$ (A$) .••••.•••••••••••••••••••••••••••••.••• 51
USER DEFINED FUNCTIONS ••••••••. .••••••••••••••••• 59
USING STATEMENT ••••••••••.••••••••••••••••••••••• 63, 78,89

VAL (A$) •• 54
VARIABLE LENGTH STRINGS •• ••••••••• •••••••• ••••••• 64
VARIABLES •• 12
VARPTR ••••••••••.•••.•••.•••••••••••••••••••••••• 55

WEND STATEMENT •.•••••••••••••••••••••••.••••••••• 22
WHILE STATEMENT •.•••••••••••••••••••••••••••••••• 22
WIDTH STATEMENT •••••••••••••••••••••••••••••••••• 32.

XOR OPERATOR •••.••••••••••••••••••••••••••••••••• 16
XREF • COM ••• "...................................... 98

%CHAIN DIRECTIVE ••••••••••••••••••••••••••••••••• 93
%EJECT ••• 91
% INCLUDE •••••••••••..•••••••••••••••••••••••••••• 92
%LIST •••••.••••••••••••.••••••••••••••••••••••••• 91
%NOLIST •• 91
%PAGE .•.•••.••••••••••••••••••••••••••••••••••••• 91

Compiler Systems invites your comments regarding the CBASIC language
and the contents of this manual. Your views, favorable or
unfavorable, aid us in improving our products. Remove this page from
the manual and use the backside for your comments. Fold it along the
dotted lines, stamp, seal and mail it to Compiler Systems .. We
appreciate your consideration. All comments and suggestions become
the property of Compiler Systems.

COMPILER SYSTEMS, INC.
Post Office Box 145
Sierra Madre, California

91024

stamp

.

