
CONCURRENT™ DOS 86

PROGRAMMER'S GUIDE

Version 5.0

First Edition: March 1986

This manual describes the assembly-language programming interface
to the Concurrent DOS 86 operating system. It is intended as

a reference manual for experienced programmers.

1066-2023-001

COPYRIGHT

Copyright©1986 Digital Research Inc. All rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval
system. or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Digital Research Inc., P.O. Box
DRI, Monterey, California 93950.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Digital
Research Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with
respect to the software named herein. Occasionally, changes or variations exist in
the software that are not reflected in the manual. Generally, if such changes or
variations are known to exist and to affect the product significantly, a release note
or README.DOC file accompanies the manual and distribution disk(s). In that
event, be sure to read the release note or README.DOC file before using the
product.

TRADEMARKS

CP/M, CP/M-86, and Digital Research and its logo are registered trademarks of
Digital Research Inc. DR Assembler Plus Tools, Concurrent. Concurrent CP/M,
Concurrent PC DOS, GEM. LINK-86, LIB-86, MP/M, MP/M-86, RASM-86, and SID-86
are trademarks of Digital Research Inc. We Make Computers Work is a service
mark of Digital Research Inc. AST and RAMpage! are trademarks of AST Research,
Inc. MS-DOS is a registered trademark of Microsoft Corporation. IBM is a
registered trademark of International Business Machines, Corp. Intel is a registered
trademark of Intel Corp. Lotus is a registered trademark of Lotus Developement
Corp. CompuPro is a registered trademark of Viasyn Corp, a Godbout Company.

Contents

1 CONCURRENT DOS 86 OVERVIEW

1.1 Introduction . 1-1
1.2 Supervisor (SUP). 1-3
1.3 Real-time Monitor (RTM). 1-3

1.3.1 Process Dispatching . 1-3
1.3.2 Queue Management . 1-5
1.3.3 System Timing Functions . 1-7

1.4 Memory Management Module (MEM). 1-7
1.4.1 Expanded Memory Support . 1-7
1.4.2 Memory Paging Environments. 1-8
1.4.3 EMM Drivers . 1-11

1.5 Basic Disk Operating System (BOOS). 1-11
1.6 Character 1/0 Module (CIO). 1-11
1.7 Virtual Console Screen Management. 1-12
1.8 Extended Input/Output System (XIOS). 1-13
1.9 Terminal Message Processes (TMP) . 1-13
1.10 Transient Programs...................................... 1-13
1.11 System Call Calling Conventions............................ 1-13
1.12 SYSTAT: System Status . 1-14

2 THE CONCURRENT DOS 86 CP/M FILE SYSTEM

2.1 File System Overview. 2-1
2.1.1 File-access System Calls . 2-1
2.1.2 Drive-related System Calls . 2-2

2.2 File Naming Conventions . 2-4
2.3 Disk Drive and File Organization . 2-6
2.4 File Control Block Definition . 2-8

2.4.1 FCB Initialization and Use . 2-10
2.4.2 FCB Initialization tor DOS Media Files . 2-11
2.4.3 File Attributes. 2-13
2.4.4 Interface Attributes . 2-15

2.5 User Number Conventions . 2-16
2.6 Directory Labels and XFCBs . 2-'17
2.7 File Passwords . 2-19
2.8 File Date and Time Stamps: SFCBs. 2-21
2.9 File Open Modes. 2-22
2.10 File Security . 2-24
2.11 Extended Fiie Locking . 2-26
2.12 Compatibility Attributes. 2-27
2.13 Multisector 1/0 . 2-30

Contents

2.14 Concurrent File Access. 2-30
2.15 File Byte Counts . 2-33
2.16 Record Blocking and Deblocking . 2-33
2. 17 Reset, Access, and Free Drive . 2-34
2.18 BOOS Error Handling. 2-37

3 TRANSIENT COMMAND FILES

3.1 Transient Program Loading . 3-1
3.1.1 Shared Code. 3-1
3.1.2 8087 Support . 3-2
3.1.3 8087 Exception Handling . 3-2

3.2 Command File Format. 3-2
3.3 Base Page Initialization . 3-4
3.4 Parent/Child Process Relationships. 3-7
3.5 Direct Video Mapping. 3-7

4 TRANSIENT PROGRAM MEMORY MODELS

4.1 The 8080 Memory Model . 4-2
4.2 The Small Memory Model . 4-3
4.3 The Compact Memory Model . 4-4

5 RESIDENT SYSTEM PROCESS GENERATION

5.1 Introduction to RSPs. 5-1
5.2 RSP Memory Models. 5-1

5.2.1 8080 Model RSP . 5-1
5.2.2 Small Model RSP......... 5-2

5.3 Multiple Copies of RSPs . 5-2
5.3.1 8080 Model. 5-3
5.3.2 Small Model . 5-3
5.3.3 Small Model with Shared Code . 5-3

5.4 Creating and Initializing an RSP . 5-4
5.4.1 The RSP Header . 5-6
5.4.2 The RSP Process Descriptor . 5-6
5.4.3 The RSP User Data Area. 5-7
5.4.4 The RSP Stack . 5-8
5.4.5 The RSP Command Queue . 5-8
5.4.6 Multiple Processes within an RSP . 5-9

5.5 Developing and Debugging an RSP. 5-9

ii

Contents

6 CONCURRENT SYSTEM CALLS

6.1 Reference Tables
6.2 Auxiliary Device Calls
6.3 Console Device Calls
6.4 Device Calls
6.5 Disk Drive Calls
6.6 File System Calls
6.7 List Device Calls .. .
6.8 Memory Management Calls
6.9 Process Management Calls
6.10 Queue Management Calls
6.11 System Information Calls
6.12 Time Management Calls

7 PC DOS SYSTEM CALLS

6-1
6-19
6-30
6-49
6-52
6-70

6-119
6-126
6-137
6-160
6-171
6-181

7.1 Introduction . 7-1
7.2 DOS System Call Parameters . 7-4

7.2.1 ASCllZ Input Strings . 7-4
7.2.2 DOS File and Device Handles . 7-5

7.3 DOS System Call Error Return Codes . 7-6
7.4 DOS System Call Summary.. 7-6
7.5 DOS FCB Oriented File Management. 7-26

7.5.1 Standard DOS FCB . 7-26
7.5.2 DOS Extended FCB . 7-28
7.5.3 DOS File Attribute Byte. 7-29
7.5.4 DOS Disk Transfer Area. 7-30

8 PC DOS INTERRUPT SUPPORT

8.1 PC ROS Monitor Calls. 8-1
8.2 DOS Interrupts . 8-1

8.2.1 DOS INT 20H - Program Terminate. 8-2
8.2.2 DOS INT 22H - Invoke a DOS System Call. 8-2
8.2.3 DOS INT 22H - Terminate Address . 8-2
8.2.4 DOS INT 23H - Ctrl_Break Address . 8-2
8.2.5 DOS INT 24H - Critical Error Exit Address. 8-3
8.2.6 DOS INT 25H - Absolute Disk Read. 8-5
8.2.7 DOS INT 26H - Absolute Disk Write . 8-6

9 DOS DEVICE DRIVER SUPPORT

9.1 Writing a DOS Driver . 9-1

iii

Contents

9.1.1 DOS Driver Format . 9-1
9.1.2 DOS Device Header. 9-1
9.1.3 DOS Request Header. 9-4
9.1.4 DOS Driver Functions . 9-6

9.2 Installing a DOS Driver. 9-15
9.2.1 Memory Requirements . 9-15
9.2.2 Drive Assignment . 9-15

10 WINDOW MANAGEMENT

10.1 Virtual Consoles . 10-1
10.2 Virtual Console Output . 10-1
10.3 XIOS Window Management Calls. 10-3
10.4 Escape Sequences . 10-9

Appendices

A ECHO.A86 - SAMPLE RSP . A-1
B 8087 Exception Handling. B-1

Figures

1-1 Concurrent DOS 86 Virtual/Physical Environments 1-1
1-2 Environment Memory Paging Interfaces. 1-9
1-3 Environment Memory Paging. 1-10
2-1 FCB - File Control Block . 2-8
2-2 FCB Initialized for a DOS Directory . 2-11
2-3 FCB Time and Date Fields for DOS Files. 2-13
2-4 Directory Label Format . 2-17
2-5 XFCB - Extended File Control Block. 2-18
2-6 Directory Record with SFCB. 2-21
2-7 SFCB Subfields . 2-21
2-8 Disk System Reset. 2-35
3-1 CMD File Header Format . 3-3
3-2 Group Descriptor Format. 3-3
3-3 Base Page Values . 3-5
4-1 Initial Program Stack. 4-2
4-2 8080 Memory Model . 4-3
4-3 Small Memory Model. 4-4
4-4 Compact Memory Model . 4-5
5-1 8080 and Small Model RSPs . 5-2
5-2 RSP Header Format . 5-3
5-3 RSP Command Queue Message . 5-4
5-4 RSP Data Segment. 5-6

iv

Contents

6-1 ACB - Assign Control Block. 6-30
6-2 Console Buffer Format. 6-41
6-3 Drive Vector Structure. 6-52
6-4 DPB - Disk Parameter Block. 6-55
6-5 Disk Free Space Field Format. 6-69
6-6 PFCB - Parse Filename Control Block. 6-88
6-7 MCB - Memory Control Block 6-126
6-8 MPB - Memory Parameter Block 6-127
6-9 MFPB - M_FREE Parameter Block 6-130
6-10 APB - Abort Parameter Block. 6-137
6-11 CU Command Line Buffer : 6-140
6-12 PD - Process Descriptor . 6-143
6-13 UDA - User Data Area. 6-148
6-14 CPB - Call Parameter Block 6-156
6-15 QPB - Queue Parameter Block. 6-160
6-16 OD - Queue Descriptor . 6-165
6-17 BIOS Descriptor Format . 6-172
6-18 SERIAL Number Format 6-174
6-19 SYSDAT Table ... 6-176
6-20 TOD - Time-of-Day Structure . 6-181
7-1 DOS Console Buffer Format. 7-22
7-2 DOS Standard File Control Block . 7-26
7-3 DOS Extended FCB Prefix. 7-28
7-4 DOS File Time Format . 7-72
7-5 DOS File Date Format . 7-72
7-6 Country Dependent Data Return Block. 7-82
7-7 EXEC Load and Execute Parameter Block. 7-87
7-8 DOS Environment String Format . 7-88
7-9 EXEC load Overlay Parameter Block . 7-89
7-10 DOS Program Segment Prefix . 7-90
8- ~ User Stack at DOS INT 24H . 8-4
9-1 DOS Device Header. 9-2
9-2 Request Header. 9-4
9-3 BIOS Parameter Block . 9-8
9-4 Input and Output Parameter Block . 9-12

Tables

1-1 Registers Used by System Calls . 1-14
2-1 File System Calls. 2-3
2-2 Valid Filename Delimiters. 2-5
2-3 Filetype Conventions . 2-6
2-4 Drive Capacity. 2-7
2-5 FCB Field Definitions . 2-9
2-6 FCB Disk Map Values for DOS Media.. 2-12
2-7 File Attribute Definitions . 2-14

v

2-8 Attributes F5' and F6'
2-9 Label Field Definitions
2-10 Field Definitions
2-11 Password Protection Modes
2-12 Compatibility Attribute Definitions
2-13 BOOS Physical Errors
2-14 BOOS Extended Errors
2-15 BOOS Logical Errors
2-16 BOOS Physical and Extended Errors
3-1 Group Descriptor Types
3-2 Group Descriptor Fields
3-3 Base Page Fields
4-1 Transient Program Memory Models
6-1 System Call Functional Categories
6-2 Concurrent DOS 86 System Calls
6-3 System Call Summary - By Mnemonic
6-4 System Call Summary by Function Number
6-5 Register CX Error Codes
6-6 Data Structures Index
6-7 ACB Field Definitions
6-8 C _ RAWIO Calling Values
6-9 Console Buffer Field Definitions
6-10 C_READSTR Line-editing Characters
6-11 DPB Field Definitions
6-12 PFCB Field Defintions
6-13 FCB Initialization
6-14 MCB Field Definitions
6-15 MPB Field Definitions
6-16 APB Field Definitions
6-17 Command Line Buffer Field Definitions
6-18 PD Field Definitions
6-lg UDA Field Definition
6-20 CPB Field Definitions
6-21 OPB Field Definitions
6-22 Queue Descriptor Field Definitions
6-23 SYSDAT Table Data Fields
6-24 Time-of-Day Field Definitions
7-1 DOS System Call Categories
7-2 DOS System Calls Requiring ASCllZ Strings
7-3 DOS Standard Device Handles
7-4 DOS System Call AX Error Codes
7-5 DOS System Call Summary
7-6 DOS Standard FCB Fields
7-7 DOS Extended FCB Fields
7-8 DOS Attribute Byte Values
7-9 DOS File Attribute Byte Values
7-10 EXEC Load Parameter Block Fields

vi

Contents

2-15
2-17
2-18
2-19
2-28
2-38
2-39
2-41
2-43
3-3
3-4
3-6
4-1
6-2
6-4

6-10
6-14
6-17
6-18
6-31
6-39
6-41
6-42
6-56
6-88
6-90

6-126
6-127
6-138
6-140
6-144
6-149
6-156
6-160
6-166
6-177
6-181

7-2
7-5
7-5
7-6
7-7

7-27
7-29
7-29
7-36
7-88

Contents

7-11 EXEC Load Overlay Parameter Block Fields. 7-89
8-1 DOS Monitor Call Interrupts. 8-1
8-2 DOS Interrupts Supported by Concurrent. 8-1
8-3 INT 24H Disk Error and Response Indicators 8-3
8-4 DOS Critical Error Codes . 8-4
8-5 DOS Absolute Disk Read/Write Error Codes . 8-6
9-1 DOS Device Header Fields. 9-2
9-2 Fields in Request Header. 9-5
9-3 INIT Parameter Block Fields . 9-7
9-4 DOS BIOS Parameter Block Fields . 9-9
9-5 Fields in 1/0 Parameter Block. 9-12
10-1 XIOS Window Functions... 10-4
10-2 XIOS Window Management Call Summary............ 10-5
10-3 Virtual Console Structure Definition. 10-7
10-4 Window Data Block Definition . 10-8
10-5 XIOS Calls for Escape Sequences. 10-9

Listings

6-1 Memory Control Block Definition
6-2 Memory Parameter Block Definition
6-3 Queue Parameter Block Definition
A-1 ECHO.A86 .. · · ·
B-1 8087 Exception Handling

vii

6-127
6-128
6-161

A-1
B-2

Foreword

Concurrent TM DOS 86 (hereinafter cited as Concurrent) is a multi- or single-user
operating system targeted specifically for the lntel®8086/8088/80186/80286 family
of micro-processors. It supports multiple CP/M™ or DOS1 programming
environments each implemented on a virtual console. A different task can run
concurrently in each environment.

Intended audience

This manual is primarily a reference tool intended for experienced programmers. It
is not a tutorial on programming. It assumes you are already familiar with general
aspects of assembly-language programming and in particular, Intel microprocessor
architecture. It also assumes you are familiar with the hardware components of
your own system.

What's in this manual

This manual describes the invariant programming interface to Concurrent. It
supports the applications programmer who wants to create software that runs in
the Concurrent environment.

* Section 1 is a general overview of Concurrent.

* Section 2 describes the structure of the Concurrent's CP/M file system.

* Section 3 describes the format of transient command files.

* Sect.ion 4 describes the transient program memory models.

* Section 5 describes the creation of resident system processes.

* Section 6 describes all the generic Concurrent system calls.

* Section 7 describes all the PC DOS system calls that Concurrent supports.

* Section 8 describes Concurrent's support for PC DOS interrupts.

* Section 9 describes PC DOS driver support.

* Section 10 describes Window management.

11n this manual, DOS refers to both PC DOS and MS-DOS

Where to find more information

The Co11current. DOS -~er·~ Guide, (hereinafter cited as the User's Guide)
documents Concurrent's user interface, explaining the various features used to
execute application programs and Digital Research utility programs.

The Concurrent DOS Reference Guide, (cited as the Reference Guide) is a detailed
reference manual that describes all of Concurrent's commands.

The Concurrent DO_S 86 System Guide, (cited as the System Guide) documents
Concurrent's internal, hardware-dependent structures.

Two other documents describe Digital Research software that you can use to
write, debug, and verify software written for the Concurrent environment.

RASM-86™, relocating assembler, LINK-86™, linkage editor, and UB-86™,
software librarian are described in e_l'.QJlli!mmer's Utilities Guide for the CP/M-86 ...
Family of Operating Systems, (cited as the Programmer's Utilities Guide).

SID-86™, symbolic instruction debugger is described in SID-86 Productivity Tool
User's _9uide, (cited as SID-86 User's Guide).2

Notation conventions

The following notation conventions are used throughout this manual:

n

nH

CTRL

A numeric value indicates a decimal number unless
otherwise stated.

A numeric value followed by the capital letter H indicates
the number is a hexadecimal value.

Horizontal ellipses indicate the immediately preceding item
can occur once, or any number of times in succession.
Vertical ellipses indicate an omitted portion of a source
program or example; only the relevant part is shown.

In the text. the symbol CTRL represents a control character.
Thus, CTRL-C means control-C. In any listing that shows
example console interaction, the symbol " is the echo of a
control character.

2RASM-86, LINK-86. LIB-86 and SID-86 are sold together as DR Assembler Plus Tools TM

2

SECTION 1

CONCURRENT DOS 86 OVERVIEW

1.1 Introduction

Concurrent DOS 86 is a multi- or single-user, multitasking operating system. It
lets you run multiple programs simultaneously by initiating tasks on two or more
terminals or virtual consoles. Application programs have access to system calls
used by Concurrent to control the multiprogramming environment. Concurrent
supports extended features, such as communication among and synchronization of
independently running processes. Figure 1-1 depicts the relationships between
application programs, virtual environments, virtual consoles, and the user's physical
terminal.

' ' ' '

Figure 1-1. Concurrent DOS 86 Virtual/Physical Environments

1-1

1.1 Introduction Concurrent DOS 86 Programmer's Guide

In the Concurrent environment there is an important distinction between a program
and a process. A program is simply a block of code residing somewhere in
memory or on disk; it is essentially static. A process, on the other hand, is a
dynamic entity. You can think of it as a logical machine that executes not only
the program code, but also the operating system routines necessary to support the
program's functions.

When Concurrent loads a program, it creates a process associated with the loaded
program. Subsequently, it is the process, rather than the program, that obtains
access to the system's resources. Thus, Concurrent monitors the process, not the
program. This distinction is a subtle one, but vital to your understanding of
system operation as a whole.

Processes running under Concurrent fall into two categories: transient processes
and Resident System Processes (RSPs). Transient processes run programs loaded
into memory from disk in response to a user command or system calls made by
another process. Resident system processes run code that is made an integral
part of Concurrent during system generation, so they are immediately available to
perform operating system tasks. For example, the CLOCK process is an RSP that
maintains the time of day within Concurrent.

The following list briefly summarizes Concurrent's capabilities:

* Interprocess communication, synchronization, and mutual exclusion functions
are provided by system queues.

* A logical inte;rupt mechanism using flags allows Concurrent to interface with
any physical interrupt structure.

* System timing functions enable processes to compute elapsed times, delay
execution for specified intervals, and to access and set the current date and
time.

* The shared file system allows multiple programs to access common data files
while maintaining data integrity.

* Ability to run DOS programs by providing software emulation of DOS system
calls.

* Shared code support eliminates loading multiple copies of the same program
and conserves memory space.

* 8087 support takes advantage of fast 8087 math instructions.

* Support for memory paging hardware allows memory to be expanded up to 8
megabytes.

* Virtual console handling lets a single user run multiple programs, each in its
own console environment.

* Real-time process control allows communications and data acquisition without
loss of information.

1-2

Concurrent DOS 86 Programmer's Guide 1.1 Introduction

Concurrent Is composed of the following modules:

* The Supervisor module (SUP) handles miscellaneous system calls such as
returning the version number or the address of the System Data Area. SUP
also calls other system calls when necessary.

* The Real-time Monitor module (RTM) monitors the execution of running
processes and arbitrates conflicts for the system's resources.

* The Memory Management module (MEM) allocates and frees memory upon
demand from executing processes.

* The Basic Disk Operating System (BOOS) is the hardware-independent
module that contains the logically invariant portion of the file system. The
BOOS file system is explained in detail in Section 2.

* The Character 1/0 module (CIO) handles all character 1/0 for console, list. and
auxiliary devices.

* The Virtual Console Screen Manager extends the CIO to support virtual
console environments.

* The Extended 1/0 System (XIOS) is the hardware-dependent module that
defines Concurrent's interface to a specific hardware environment. See the
System Guide for more detailed information about the XIOS.

1.2 Supervisor (SUP}

The Supervisor module (SUP) manages the interface between processes and
Concurrent's multitasking nucleus. It also manages internal communication
between the other Concurrent modules. All system calls, whether they originate
from a transient process or internally from another system module, go. through a
common table-driven function interface in SUP. SUP also handles the P _LOAD
(Load Process) and P _ CLI (Call Command Line Interpreter) calls.

1.3 Real-time Monitor (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent.
The RTM performs process dispatching, queue management, flag management
device polling, and system timing tasks. User programs can also use many of the
RTM calls that perform these tasks.

1.3.1 Process Dispatching

Although Concurrent is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a
program to communicate or synchronize execution with other processes. a process
is unaware of other processes competing for system resources.

1-3

1.3 Real-time Monitor (RTM) Concurrent DOS 86 Programmer's Guide

The primary task of the RTM is to transfer, or dispatch, the CPU resource from one
process to another. The RTM module called the Dispatcher performs this task.
The RTM maintains two data structures, the Process Descriptor (PD) and the User
Data Area (UDA). for each process running under Concurrent. The Dispatcher uses
these data structures to save and restore the current state of each running
process.

Each process in the system resides in one of three states: ready, running, or
suspended. A ready process is one that is waiting for the CPU resource only. A
running process is one that the CPU is currently executing. A suspended process
is one that is waiting for a system resource or a specified event, such as the
occurrence of an interrupt, an indication that polled hardware is ready, or the
expiration of a delay period.

Every existing process is represented on a system list. The Dispatcher removes a
process from one list and places it on another. The Process Descriptor of the
currently running process is the first entry on the Ready List. Other processes
ready to run are represented on the Ready List in priority order. Suspended
processes are on other system lists, depending on why the processes were
suspended.

Process dispatching can be summarized as follows:

1. The Dispatcher suspends the process from execution and stores its current
state in the Process Descriptor and the UDA.

2. The Dispatcher places the process on an appropriate system list, depending
on why the Dispatcher was called. For example, if a process is to delay for a
certain number of system ticks, the Dispatcher places its Process Descriptor
on the Delay List. When a process releases a resource, the Dispatcher usually
places the process back on the Ready List. If another process is waiting for
the resource, the Dispatcher removes that process from its current system list
and places it on the Ready List.

3. The Dispatcher chooses the highest priority process on the Ready List for
execution. If two or more processes have the same priority, the process that
has waited the longest executes first.

4. The Dispatcher restores the state of the selected process from its Process
Descriptor and UDA, and gives it the CPU resource.

5. The process executes until it needs a busy resource, a resource needed by
another process becomes available, or an interrupt occurs. At this point, a
dispatch occurs, allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch. By
definition. a process is on the Ready List if it is waiting only for the CPU resource.
Processes waiting for other system resources cannot execute until the resources
they require are available.

1-4

Concurrent DOS 86 Programmer's Guide 1.3 Real-time Monitor (RTM)

Concurrent blocks a process from execution if it is waiting for:

* a queue message so it can complete a O_READ operation.

* space to become available in a queue so it can complete a a WRITE
operation.

* a console, list, or auxiliary device to become available.

* a specified number of system clock ticks before it can be removed from the
system Delay List.

* an 1/0 event to complete.

These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an
interrupt causes a dispatch. While not all interrupts cause dispatches, the system
clock generates interrupts every clock tick and forces a dispatch each time. Clock
ticks usually occur 60 times a second (approximately every 16.67 milliseconds), and
allow time sharing within a real-time environment.

Concurrent is a priority-driven system, which means that during a dispatch, the
Dispatcher gives the CPU resource to the process with the best priority. The
Dispatcher allots equal shares of Concurrent's resources to processes with the
same priority. With. priority dispatching, the Dispatcher never gives control to a
lower-priority process if there is a higher-priority process on the Ready List.
Because high-priority, compute-bound processes tend to monopolize the CPU
resource, it is best to reduce their priority to avoid degrading overall system
performance.

When Concurrent is executing a single program on a single virtual console, its
speed approximates that of CP/M-86. But when multiple processes are running on
several virtual consoles, the execution of each individual process slows according
to the proportion of 1/0 to CPU resources it requires. A process that performs a
large amount of 1/0 in proportion to computing exhibits only minor speed
degradation. This also applies to 11 process that performs a large amount of
computing, but runs concurrently with other processes that are largely 1/0-bound.
On the other hand, significant speed degradation occurs where more than one
compute-bound process is running.

1.3.2 Queue Management

Queues perform several critical functions for processes running under Concurrent.
A process can use a queue for communicating with another process, synchronizing
its execution with that of another process, and for excluding other processes from
protected system resources. A process can make, open, delete, read from, or write
to a queue with system calls similar to those used to manage disk files.

Each system queue consists of two parts: the Queue Descriptor and the Queue
Buffer. Concurrent implements these special data structures as memory files that
contain room for a specified number of fixed-length messages.

1-5

1.3 Real-time Monitor (RTM) Concurrent DOS 86 Programmer's Guide

When the Q_MAKE call creates a queue, the queue is assigned a unique 8-
character name. As the name queue implies, messages are read from a queue on
a first-in, first-out basis.

A process can read from or write to a queue conditionally or unconditionally. If
the queue is empty when a conditional read is performed, or full when a
conditional write is performed, Concurrent returns an Error Code to the calling
process. However. if a process attempts an unconditional queue operation in
these circumstances, Concurrent suspends it from execution until the operation
becomes possible.

More than one process can wait to read or write a queue message from the same
queue at the same time. When these operations become possible, Concurrent
restores the highest priority process first; processes with the same priority are
restored on a first-come, first-served basis.

Mutual exclusion queues are a special type of queue under Concurrent. They
contain one message of zero length and their names follow a convention,
beginning with the upper-case letters MX. A mutual exclusion queue acts as a
binary semaphore, ensuring that only one process uses a resource at any time.

Access to a resource protected by a mutual exclusion queue takes place as
follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting
the resource. thereby suspending itself if the message is not available.

2. When the message becomes available, the process accesses the protected
resource. Note that from the time the process issues the unconditional read.
any other process attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has
finished using the protected resource, thus freeing the resource for other
processes.

As an example, the system mutual exclusion queue, MXdisk. ensures that
processes cannot access the file system simultaneously. Note that the BOOS, not
the application software, executes the preceding series of queue calls. Therefore,
the mutual exclusion process is transparent to the programmer, who is only
responsible for originating the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a
process reads a message from a mutual exclusion queue, the RTM notes the
Process Descriptor address within the Queue Descriptor. This establishes the
owner of the queue message. If Concurrent aborts the process while it owns the
mutual exclusion message, the RTM automatically writes the message back to all
mutual exclusion queues whose messages are owned by the aborted process.
This grants other processes access to protected resources owned by the aborted
process.

1-6

Concurrent DOS 86 Programmer's Guide 1.3 Real-time Monitor (RTM)

1.3.3 System Timing Functions

Concurrent's timing system calls include keeping the time of day and delaying the
execution of a process for a specified period of time. An internal process called
CLOCK provides the time of day. The CLOCK process issues DEV WAITFLAG calls
on the system's one second flag. Flag 2. When the XIOS Tick Interrupt Handler
sets this flag, it initiates the CLOCK process, which then increments the internal
time and date. Subsequently, the CLOCK process makes another DEV WAITFLAG
call and suspends itself until the flag is set again.

Concurrent provides system calls that allow you to set and access the internal
date and time. In addition, the file system uses the internal time and date to
record when a file is updated, created, or last accessed.

The P_DELAY call replaces the typical programmed delay loop for delaying process
execution. P _DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler
also sets this flag.

When a process makes a P _DELAY call, it specifies how many ticks it should be
suspended from execution. Concurrent maintains the address of the Process
Descriptor for the process on an internal Delay List along with its current delay
tick count. When a DEV_ SETFLAG call occurs, setting Flag 1, the tick count is
decremented. When the delay count goes to zero, the Dispatcher removes the
process from the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance,
in Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per second. The
description of P _DELAY in Section 6 describes how to determine the correct
number of ticks to delay 1 second.

1.4 Memory Management Module (MEM)

Concurrent supports an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice,
the exact method that Concurrent uses to allocate and free memory is transparent
to the application program. Therefore, you should take care to write code
independent of the memory management model; use only the Concurrent-specific
memory system calls described in Section 6.

1.4.1 Expanded Memory Support

Concurrent also supports Expanded Memory Management (EMM), so a process can
address other memory not currently available in the processor's normal 1 Mb
address space. Concurrent's EMM support is generic and hardware-independent.

1-7

1.4 Memory Management Module (MEM) Concurrent DOS 86 Programmer's Guide

Concurrent supports EMM through the Memory Manager (MEM), Real-time Monitor
(RTM), and the XIOS functions that enable it to perform a technique called memory
paging. Concurrent dynamically maps regions (usually 16K bytes) of physical
memory in and out of the 1 Mb logical address space accessible to the processor.
The regions of physical memory are called pages, and the areas in the processor's
logical address space into which pages are mapped are called logical address
windows, or simply windows.

1.4.2 Memory Paging Environments

Concurrent supports EMM in two dissimilar environments. The first environment is
generic. In this environment, the XIOS is responsible for managing the memory
mapping hardware and allocating physical pages of memory.

The second environment is that of an IBM® Personal Computer (or compatible) with
an add-on memory board such as the AST™ RAMpage!™. Concurrent also
supports any board that conforms to the lnte1®1Lotus TM Above Board standard.
although such boards do not provide memory paging. In this environment, certain
applications call the EMM Driver to perform their own memory management tasks
completely independent of Concurrent. This second environment is called the
"EMM environment.•

Generic Environment

In the generic environment, the Supervisor and applications call the Memory
Manager (MEM) for all memory requests. MEM passes these calls to the XIOS as
memory page allocation and release requests. During process dispatching, the
Real-time Monitor (RTM) generates XIOS calls to save the current state of the
memory mapping hardware and to restore a previously saved state.

Figure 1-2 illustrates the generic environment's interfaces.

1-8

Concurrent DOS 86 Programmer's Guide 1.4 Memory Management Module (MEM)

+---------------+
Application

+-------v-------+

+-------------+
Supervisor I

+----------v--+
I
v

I
I
I
I
I
v

+-------------+ +-------------+
RTM MEM

+----------v--+ +--v----------+

v v
+-------------+

XIOS
+------v------+

v
+-----------------+
I Expanded Memory I
I Hardware I
+-----------------+

Figure 1-2. Generic Environment Memory Paging Interfaces

EMM Environment

In the EMM environment, the XIOS passes all memory page allocation and release
requests to the EMM Driver, which handles the page mapping hardware. Calls into
the XIOS are translated to EMM Driver calls, and the EMM Driver is invoked with an
Interrupt 67H.

An application running in the EMM environment can make calls directly to the EMM
Driver, but the Interceptor module intercepts such calls so Concurrent can handle
context switching and memory deallocation for aborted processes. To reserve
some memory for system use, the Interceptor might not allow an application to
know the total number of available memory pages.

The Interceptor's primary functions are creating and linking new Memory Page
Allocation Descriptors (MPADs) as an application performs EMM Allocate calls.
The Interceptor destroys these MPADs when the application performs an EMM
Close call. These functions allow the Interceptor to track an application's calls to
the EMM Driver. The MPAD data structure is described in the System Guide.

Figure 1-3 illustrates the interfaces within the EMM environment.

1-9

1.4 Memory Management Module (MEM) Concurrent DOS 86 Programmer's Guide

1-10

+---------------+
Application

+----v-----v----+
+--------------+ I

I
I
I
v

Supervisor
+-----------v--+

+-------------+
RTM

+----------v--+
I
v

I
v

+-------------+
MEM

+--v----------+
I
v

+-------------+
XIOS

+----------v--+
I
v v

+-------------------+
Interceptor

+---------v---------+

v
+-------------+

EMM Driver I
+------v------+

v
+-----------------+
I Expanded Memory I
I Hardware I
+-----------------+

Figure 1-3. EMM Environment Memory Paging

Concurrent DOS 86 Programmer's Guide 1.4 Memory Management Module (MEM)

1.4.3 EMM Drivers

Memory paging hardware requires a corresponding Expanded Memory Management
(EMM) software driver. Section 9 contains information about configuring EMM
drivers. See the §~~tem_§l!ld~ for more information about Concurrent's XIOS
support for Expanded Memory Management.

1.5 Basic Disk Operating System (BOOS)

Concurrent's BOOS is an upward-compatible version of the single-tasking CP/M-86
BOOS. It handles file creation and deletion, performs sequential or random file
access. and allocates and frees disk space.

Concurrent's BOOS is modified to accept both CP/M and DOS media files. and
extended to provide support for multiple virtual consoles and list devices as well
as those services required in a multitasking environment. The major extensions to
the file system are:

* File locking. Files opened under Concurrent cannot be opened or deleted by
other processes.

* Shared access to files. As a special option, independent users can open the
same file in Shared or Unlocked mode. Concurrent supports record locking
and unlocking commands for files opened in this mode and protects files
opened In Shared mode from deletion by other processes.

* Date Stamps. The BOOS optionally supports two time and date stamps, one
recording when a file is updated, and the other recording when the file was
created or last accessed. 1

* Password Protection. The BOOS password protection feature is optional at
either the file or drive level. The user or applications program assigns disk
drive passwords. while application programs can assign file protection
passwords in several modes. 1

* Extended Error Module. Besides the default error mode. Concurrent has two
optional error-handling modes that return an error code to the calling process
in the event of an irrecoverable disk error.

1.6 Character 1/0 Module (CIO)

The Character 1/0 module handles all console, list, and auxiliary device 1/0. Every
character 1/0 device is associated with a data structure called a Console Control
Block (CCB) or a List Control Block (LCB). These data structures reside in the
XIOS.

1CP/M media only

1-11

1.6 Character 1/0 Module (CIO) Concurrent DOS 86 Programmer's Guide

The CCB contains the current owner, status information, line editing variables, and
the root of a linked list of Process Descriptors (PDs) that are waiting for access.
More than one process can wait for access to a single console. These processes
are maintained on a linked list of Process Descriptors in priority order. The LCBs
contain similar information about the list devices. See the ffitem Guide for more
information about LCBs and CCBs.

1.7 Virtual Console Screen Management

Virtual console screen management is coordinated by three separate modules: the
CIO, the PIN (Physical INput) process, and the XIOS. The line editing associated
with the C _ READSTR call is performed in the CIO.

The PIN process handles keyboard input for all the virtual consoles; it also traps
and implements the CTRL-C, CTRL-S, CTRL-0. CTRL-P, and CTRL-0 functions.

The XIOS decides which special keys represent the virtual consoles, and returns a
special code from 10 _ CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when screens are switched. See the
System Guide and the discussion of the 10 _SWITCH function.

The PIN process reads the keyboard by directly calling the XIOS 10 _ CONIN function.
This is the only place in Concurrent where 10 _ CONIN is called. The PIN scans the
input stream from the keyboard for switch screen requests and the special
function keystrokes CTRL-C, CTRL-S, CTRL-0. CTRL-P, and CTRL-0.

All other keyboard input is written to the VINO (Virtual Console INput Queue)
associated with the foreground virtual console. The data in the VINO becomes a
type-ahead buffer for each virtual console, and is returned to the process attached
to that console as it performs console input.

When PIN sees a CTRL-C, it calls P _ABORT to abort the process attached to the
virtual console, flushes the type-ahead buffer in the VINO. turns off CTRL-S, and
performs a ORV_ RESET call for each logged-in drive.

The P _ABORT call succeeds when the Process Keep flag is not on, saving the
Terminal Message Process. The ORV RESET calls affect only the removable media
drives, as specified in the CKS field of the Disk Parameter Blocks in the XIOS (see
the System Guide for details on Disk Parameter Blocks).

CTRL-S stops any output to the screen. CTRL-S stays set when a virtual console is
switched to the background.

CTRL-0 discards any console output to the virtual console. CTRL-0 is turned off
when any other key is subsequently pressed, except for the keys representing the
virtual consoles.

CTRL-P echoes console output to the default list device specified in the LIST field
of the Process Descriptor attached to the virtual console. If the list device is
attached to a process, a PRINTER BUSY message appears.

1-12

Concurrent DOS 86 Programmer's Guide 1.7 Virtual Console Screen Management

All of the above control keys can be disabled by the c _MODE call. When one of
the above control characters is disabled with C _MODE, or when the process
owning the virtual console is using the C _ RAWIO call, the PIN does not act on the
control character but instead writes it to the VINO. It is thus possible to read any
of the above control characters from an application program. These control keys
are discussed in the User's_Q_uide.

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS)
module, but it is extended in several ways. Primitive operations, such as console
1/0, are modified to support multiple virtual consoles. Several additional primitive
system calls, such as DEV _POLL, support Concurrent's additional features, including
elimination of wait loops for real-time 1/0 operations.

1.9 Terminal Message Processes (TMP)

Terminal Message Processes (TMPs) are resident system processes that accept
command lines from the virtual consoles and call the Command line Interpreter
(CU) to execute them. The TMP prints the prompt on the virtual consoles. Each
virtual console has an independent TMP defining that console's environment.
including default disk, user number, printer, and console.

1.10 Transient Programs

Under Concurrent, a transient program is one that is not system-resident.
Concurrent must load such a program from disk into available memory every time
it executes. The command file of a transient program is identified by the filetype
CMD. When you enter a command at the console, Concurrent searches on disk for
the appropriate GMO file, loads it. and initiates it.

Concurrent supports three different execution models for transient programs: the
8080 Model, the Small Model, and the Compact Model. Sections 4.1.1 through 4.1.3
describe these models in detail.

1.11 System Call Calling Conventions

When a Concurrent process makes a system call, it loads values into the registers
shown in Table 1-1 and initiates Interrupt 224 (via the INT 224 instruction),
reserved by the Intel Corporation for this purpose.

1-13

1.11 System Call Calling Conventions Concurrent DOS 86 Programmer's Guide

Table 1-1. Registers Used by System Calls

Entry Parameters

Register CL: System Call Number
DL: Byte Parameter

or
DX: Word Parameter

or
DX: Address - Offset
OS: Address - Segment

Return Values

Register AL: Byte Return
or

AX: Word Return
or

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

Concurrent preserves the contents of registers SI, DI. BP, SP, SS, OS, and CS
through the system calls. The ES register is preserved when it is not used to hold
a return segment value. Error codes returned in CX are shown in Table 6-5, "CX
Error Codes:

1.12 SVSTAT: System Status

The SYSTAT utility is a development tool that can show Concurrent's internal state
including memory allocation, current processes, system queue activity, and many
informative parameters associated with these system data structures.

SYSTAT can present two views: either a static snapshot of system activity, or a
continuous, real-time window into Concurrent.

You can specify SYSTAT in one of two modes. If you know which display you
want, you can specify it in the invocation, using an option shown in the menu
below. If you do not specify an option, select a display from this menu by typing

A>SYSTAT <er>

The screen clears and the main menu appears:

1-14

Concurrent DOS 86 Programmer's Guide 1.12 SYSTAT: System Status

Which Option?

->

H(elp)
M(emory)
O(verview)
P(rocesses - All)
Q(ueues)
U(ser Processes)
C(onsoles)
E(xit)

Press the appropriate letter to obtain a display.

When you select H(elp), the HELP file demonstrates the proper syntax and available
options:

SYSTAT [option]
SYSTAT [option C]
SYSTAT [option C ##]

-where-

-> c

Continuous display
1-2 digits indicating the period,
in seconds, between display refreshes.

-> option

M(emory) P(rocesses) O(verview) C(onsols)
U(ser Processes) Q(ueues) H(elp)

Type any key to leave and return to the main menu.

The M. P. O. and U and C options ask you if you prefer a continuous display. If
you type y, Concurrent asks for a time interval, in seconds, and then displays a
real-time window of information. If you type n, a static snapshot of the requested
information appears. In either case, press any key to return to the menu.

1-15

1.12 SYSTAT: System Status Concurrent DOS 86 Programmer's Guide

The M(emory) option displays all memory potentially available to you, but It does
not display restricted memory. The partitions are listed in memory-address order.
Length parameter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters, as specified
at system generation time. The display is not continuous.

The P(rocesses) option displays all system processes and the resources they are
using.

The Q(ueues) option displays all system queues, listing queue readers. writers, and
owners.

The U(ser Processes) option displays only user-initiated processes in the same
format as the P(rocess) option.

The C(onsoles) option displays console information; for example, back.ground,
foreground, buffered, suspended, purging, and CTRL-0.

The E(xit) option returns you to system level from the menu. as does CTRL-C.

End of Section 1

1-16

SECTION 2

THE CONCURRENT DOS 86 CP/M FILE SYSTEM

2.1 File System Overview

The Basic Disk Operating System (BOOS) file system supports from one to thirteen
logical drives. Each logical drive has two regions; a directory area and a data
area. The directory area defines the files that exist on the drive and identifies the
data area space that belongs to each file. The data area contains the file data
defined by the directory.

The directory area consists of sixteen logically independent directories, which are
Identified by user numbers 0 through 15. During execution, a process runs with a
system parameter called the user number set to a single value. The user number
specifies the current active directories for all drives on the system. For example,
Concurrent's DIR utility displays only files within a directory selected by the
current user number.

The file system automatically allocates directory and data area space when a
process creates or extends a file, and returns previously allocated space to free
space when a process deletes or truncates a file. If no directory or data space is
available for a requested operation, the BOOS returns an error code to the calling
process. The allocation and retrieval of directory and data space is transparent to
the process making file system calls.

An eight-character filename and a three-character filetype field identify each file in
a directory. Together, these fields must be unique for each file within a directory.
However, files with the same filename and filetype can reside in different user
directories without conflict. Processes can also assign an eight-character
password to a file to protect it from unauthorized access.

All system calls that involve file operations specify the requested file by filename
and filetype. For some system calls, multiple files can be specified by a technique
called ambiguous reference whereby question marks and asterisks are used as
wildcard characters to give the file system a pattern to match as it searches a
directory.

The file system supports two categories of system calls: file-access calls and
drive-related calls. The file-access calls have mnemonics beginning with F _. and
the drive-related calls have mnemonics beginning with ORV . The next two
sections introduce the file system calls.

2.1.1 File-access System Calls

Most of the file-access system calls can be divided into two groups; system calls
that operate on files within a directory and system calls that operate on records
within a file. However, the file-access category also includes several miscellaneous
functions that either affect the execution of other file-access system calls or are
commonly used with them.

2-1

2. 1 File System Overview Concurrent DOS 86 Programmer's Guide

System calls in the first file-access group include calls to search for one or more
files, delete one or more files, rename or truncate a file, set file attributes, assign a
password to a file, and compute the size of a file. Also included in this group are
system calls to open a file, to create a file, and to close a file.

The second file-access group includes system calls to read or write records to a
file, either sequentially or randomly, by record position. BOOS read and write
system calls transfer data in 128-byte units, which is the basic record size of the
file system. This group also includes system calls to lock and unlock records and
thereby allow multiple processes to coordinate access to records within a
commonly accessed file.

Before making read, write, lock. or unlock system calls for a file, you must first
open or create the file. Creating a file has the side effect of opening the file for
record access. In addition, because Concurrent supports three different modes of
opening files (Locked, Unlocked, and Read-Only), there can be other restrictions on
system calls in this group that are related to the open mode. For example, you
cannot write to a file that you have opened in Read-Only mode.

After a process has opened a file, access to the file by other processes is
restricted until the file is closed. Again, the exact nature of the restrictions
depends on the open mode. However, in all cases the file system does not allow
a process to delete, rename, or change a file's attributes if another process has
opened the file. Thus, F _CLOSE performs two steps to terminate record access to
a file. It permanently records the current status of the file in the directory and
removes the open-file restrictions limiting access to the file by other processes.

The miscellaneous file-access system calls include calls to set the current user
number. set the OMA address, parse an ASCII file specification and set a default
password. This group also includes system calls to set the BOOS Multisector
Count and the BOOS Error Mode. The BOOS Multisector count determines the
number of 128-byte records to be processed by the read, write, lock. and unlock
system calls. The Multisector count can range from 1 to 128; the default value is
one. The BOOS Error Mode determines whether the file system intercepts certain
errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BOOS drive-related system calls select the default drive, compute a drive's free
space, interrogate drive status, and assign a directory label to a drive. A drive's
directory label controls whether the file system enforces file password protection
for files in the directory. It also specifies whether the file system is to perform
date and time stamping of files on the drive.

This category also includes system calls to reset specified drives and to control
whether other processes can reset particular drives. When a drive is reset, the
next operation on the drive reactivates it by logging it in.

2-2

Concurrent DOS 86 Programmer's Guide 2.1 File System Overview

Logging in a drive initializes the drive for directory and file operations. A drive
reset call prepares for a media change on drives that support removable media.
Under Concurrent, drive reset calls are conditional. A process cannot reset a drive
if another process has a file open on the drive.

Table 2-1 summarizes the BOOS file system calls.

Mnemonic

ORV ACCESS
ORV ALLOCVEC
ORV ALLRESET
ORV DPB
ORV GET
ORV GETLABEL
ORV FLUSH
ORV FREE
ORV LOGINVEC
ORV RESET
ORV ROVEC
ORV SETLABEL
ORV SET
ORV SETRO
ORV SPACE

F ATTRIB
F CLOSE
F DELETE
F DMASEG
F DMAGET
F DMAOFF
F ERRMODE
FLOCK
F MAKE
F MULTISEC
F OPEN
F PARSE
F PASSWD
F RANDREC
F READ

Table 2-1. File System Calls

Description

Access Drive
Get Drive Allocation Vector
Reset All Drives
Get Disk Parameter Block Address
Get Default Drive
Get Directory Label
Flush Data Buffers
Free Drive
Return Drives Logged In Vector
Reset Drive
Return Drives R/O Vector
Set Directory Label
Set (Select) Drive
Set Drive To Read-Only
Get Free Space On Drive

Set File's Attributes
Close File
Delete File
Set OMA Segment
Get OMA Address
Set OMA Offset
Set BOOS Error Mode
Lock Record In File
Make A New File
Set BOOS Multisector Count
Open File
Parse Filename
Set Default Password
Return Record Number For File Read-Write
Read Record Sequentially From File

2-3

2.1 File System Overview

Mnemonic

F READRAND
F RENAME
F SETDATE
F SIZE
F SFIRST
F SNEXT
F TIMEDATE
F TRUNCATE
F UNLOCK
F USERNUM
F WRITE
F WRITERAND
F WRITEZF
F WRITEXFCB

Concurrent DOS 86 Programmer's Gulde

Table 2-1. (Cont'd)

Description

Read Random Record From File
Rename File
Set File Time and Date Stamp
Compute File Size
Directory Search First
Directory Search Next
Return File Time/Date Stamps Password Mode
Truncate File

· Unlock Record In File
Set/Get Directory User Number
Write Record Sequentially Into File
Write Random Record Into File
Write Random Record With Zero Fill
Write File's XFCB

The following sections contain information on important topics related to the file
system. Read these sections carefully before attempting to use the system calls
described individually in Section 6.

2.2 File Naming Conventions

Under Concurrent, a file specification has four parts: a drive specifier, the filename
field, the filetype field, and the file password field. The general format for a
command line file specification is shown below:

{d:} filename {.typ} {;password}

The drive specifier is a letter (A,B,C, etc.), where the actual drive letters supported
on a given system are determined by the XIOS. When no drive letter is specified,
Concurrent assumes the current default drive.

The filename and password fields can contain one to eight nondelimiter characters.
The filetype field can contain one to three nondelimiter characters. All three fields
are padded with blanks, if necessary.

The drive, type, and password fields are optional, and the delimiters : . ; are
required only when specifying their associated fields. Omitting the optional type
or password fields implies a field specification of all blanks.

Under Concurrent, the P _cu call . interprets ASCII command lines and loads
programs. P CLI in turn calls F PARSE to parse file specifications from a command
line. F _PARSE recognizes certain ASCII characters as delimiters when it parses a
file specification. These characters are shown in Table 2-2.

2-4

Concurrent DOS 86 Programmer's Guide 2.2 File Naming Conventions

Table 2-2. Valid Filename Delimiters

ASCII Hex Equivalent

null OOOH
space 020H
return OODH
tab 009H

03AH
02EH
03BH
03DH
02CH
05BH
05DH

< 03CH
> 03EH

I 07CH

F _PARSE also excludes all control characters from the file specification fields and
translates all lowercase letters to uppercase.

Avoid using parentheses and the backslash character, \. in the filename and filetype
fields because they are commonly used delimiters. Use asterisk and question mark
characters. * and ?, only to make an ambiguous file reference. When F _PARSE
encounters an asterisk in a filename or filetype field, it pads the remainder of the
field with question marks.

For example, a filename of X"." is parsed to X???????.???. F _SFIRST. F _ SNEXT, and
F _DELETE all match a question mark in the filename or filetype fields to the
corresponding position of any directory entry belonging to the current user
number. Thus. a search operation for X???????.??? finds all the files in the current
user directory beginning in X. Most other file-access calls treat a question mark in
the filename or filetype fields as an error.

It is not mandatory to follow Concurrent's file naming conventions when you
create or rename a file with BOOS system calls directly from an application
program. However, the conventions must be used if the file is to be accessed
from a command line. For example, P _ CLI cannot locate a command file in the
directory if its filename or filetype field contains a lowercase letter.

As a general rule. the filetype field names the generic category of a particular file,
and the filename field distinguishes individual files within each category. Although
they are generally arbitrary, Table 2-3 lists some of the generic filetype categories
that have been established.

2-5

2.2 File Naming Conventions Concurrent DOS 86 Programmer's Guide

Table 2-3. Filetype Conventions

Filetype Description

A86 8086 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File
BAT DOS Submit File
c C Source File
CMD 8086 Command File (CP/M)
COM 8086 Command File (DOS)
CON Concurrent Module
DAT Data File
EXE 8086 Command File (DOS)
INT Intermediate File
LIB Library File
L86 Library File
LST List File
Pll PUI Source File
RSP Resident System Process
SYM Symbol File
SYS System File
SSS Temporary File

2.3 Disk Drive and File Organization

The file system can support up to thirteen logical drives. identified by the letters A
through M. A logical drive usually corresponds to a physical drive on the system,
particularly for physical drives that support removable media such as floppy disks.
High-capacity hard disks, however, are commonly divided up into multiple logical
drives.

If a disk contains system tracks reserved for the boot loader, these tracks precede
the tracks of the disk mapped by the logical drive. In this manual, references to
drives means logical drives, unless explicitly stated otherwise.

The maximum file size supported on a drive is 32 megabytes. The maximum
capacity of a drive is determined by the data block size specified for the drive in
the XIOS. The data block size is the basic unit in which the BOOS allocates space
to files. Table 2-4 displays the relationship between data block size and total drive
capacity.

2-6

Concurrent DOS 86 Programmer's Guide 2.3 Disk Drive and File Organization

Data Block Size

lK
2K
4K
SK
16K

Table 2-4. Drive Capacity

Maximum Drive Capacity

256 kilobytes
64 megabytes
128 megabytes
256 megabytes
512 megabytes

Each drive is divided into two regions: a directory area and a data area. The
directory area contains from one to sixteen blocks located at the beginning of the
drive. The actual number is set in the XIOS. Directory entries residing in this area
define the files that exist on the drive. In addition, the directory entries belonging
to a file identify the data blocks in the drive's data area that contain the file's
records.

The directory area is logically subdivided into sixteen independent directories
identified as user O through 15. Each independent directory shares the actual
directory area on the drive.

Each disk file may consist of a set of up to 262, 144 (40000H) 128-byte records.
Each record is identified by its position in the file, which is called the record's
Random Record Number. If a file is created sequentially, the first record has a
position of zero, while the last record has a position one less than the number of
records in the file. Such a file can be read sequentially, beginning at record zero,
or randomly by record position.

Conversely, if a file is created randomly, records are added to the file by specified
position. A file created in this way is called sparse if positions exist within the file
where a record has not been written (on CP/M media files only.)

The BOOS automatically allocates data blocks to a file to contain the file's records
on the basis of the record positions consumed. Thus, a sparse file that contains
two records, one at position zero, the other at position 262, 143, consumes only
two data blocks in the data area. Sparse files can be created and accessed only
randomly, not sequentially.

Note that any data block allocated to a file is permanently allocated until the file is
deleted or truncated. These are the only mechanisms supported by the BOOS for
releasing data blocks belonging to a file.

Source files under Concurrent are treated as a sequence of ASCII characters.
where each line of the source file is followed by a carriage return/line-feed
sequence, OOH followed by OAH. Thus, a single 128-byte record could contain
several lines of source text. The end of an ASCII file is denoted by a CTRL-Z
character (1AH), or a real end-of-file, returned by the BOOS read system call.

2-7

2.3 Disk Drive and File Organization Concurrent DOS 86 Programmer's Guide

Note that these source file conventions are not supported in the file system
directly but are followed by Concurrent utilities such as TYPE and RASM-86. In
addition, CTRL-Z characters embedded within other types of files such as CMD
files do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important
channel for information exchange between a process and BOOS file-access system
calls. A process initializes an FCB to specify the drive location, filename and
filetype fields, and other information that is required to make a file-access call.

For example, in an F _OPEN call, the FCB specifies the name and location of the file
to be opened. In addition, the file system uses the FCB to maintain the current
state and record position of an open file.

Some file-access system calls use special fields within the FCB for invoking
options. Other file-access system calls use the FCB to return data to the calling
program. All BOOS random 1/0 system calls require the calling process to specify
the Random Record Number in a 3-byte field at the end of the FCB. Some file­
access system calls use a modified FCB to perform special DOS-directory related
operations when accessing DOS media files.

When a process makes a BOOS file-access system call, it passes an FCB address
to the BOOS. This address has two 16-bit components: register DX, which
contains the offset, and register OS, which contains the segment. The length of
the FCB data area depends on the BOOS system call. For most system calls. the
minimum length is 33 bytes. For F READRAND, F WRITERAND, F WRITEZF, F LOCK,
F _UNLOCK, F _ RANDREC, F _SIZE, and- F _TRUNCATE.- the minimum - FCB length- is 36
bytes. When F _OPEN or F _MAKE open a file in Unlocked mode, the FCB must be at
least 35 bytes long.

Figure 2-1 shows the FCB data structure.

+--+
OOH I DR I Fl I F2 I F3 I F4 I F5 I F6 I F7. . • I

1--1
08H I F8 I Tl I T2 I T3 I EX I CS I RS I RC I

1--1
lOH I DO I Dl I 02 I D3 I 04 I D5 I D6 I D7. • • I

1--1
18H I oa I D9 I 010 I 011 I 012 I Dl3 I Dl4 I Dl5 I

!--+
20H I CR I RO I Rl I R2 I

+-----------------------+
Figure 2-1. FCB - File Control Block

2-8

Concurrent DOS 86 Programmer's Guide 2.4 File Control Block Definition

The fields in the FCB are defined as follows:

Table 2-5. FCB Field Definitions

Field Definitions

DR Contains the Drive Code, with 0 for the default drive, 1 for
drive A, 2 for drive B. etc. Note that drives N, 0, and P are
reserved for Concurrent.

F1 ... F8

Tl ... T3

EX

cs
RS

RC

DO ... D15

CR

RO,R1,R2

Contain the filename in ASCII uppercase. The high-order
bits of Fl...F8 are called attribute bits (see Table 2-8 and
Table 2-12).

Contain the filetype in ASCII uppercase. The high-order
bits of Tl ... T3' are called attribute bits (see Table 2-7).

Contains the current extent number. This field is usually
set to O by the calling process, but it can range from O to
31 during file 1/0.

Contains the FCB checksum value for open FCBs.

Reserved for internal system use

Record count for extent EX. This field takes on values from
0 to 255 (values greater than 128 imply a record count of
128).

Normally filled in by Concurrent and reserved for system
use. Also used to specify the new filename and filetype
with F RENAME.

Current record to read or write in a sequential file
operation. This field is normally set to zero by the calling
process when a file is opened or created.

Optional Random Record Number in the range 0-262,143
(0- 3FFFFH). RO, Rl, R2 constitute an 18-bit value with low
byte RO, middle byte R 1, and high byte R2. Note: The 2-
byte File ID is returned in bytes RO and Rl of the FCB when
a file is successfully opened in Unlocked mode (see Section
2.10).

2-9

2.4 File Control Block Definition Concurrent DOS 86 Programmer's Guide

2.4.1 FCB Initialization and Use

The calling process must initialize bytes 0 through 11 of the referenced FCB before
calling F ATTRIB, F DELETE, F MAKE, F OPEN, F RENAME, F SFIRST, F SIZE, F SNEXT,
F _ TIMEDATE, F _TRUNCATE, or F _WRITEXFCB. Normally, the DR field specifies the
file's drive location, and the name and type fields specify file's name.

You must also set the EX field of the FCB before calling F_MAKE, F_OPEN, F_SFIRST,
or F _ WRITEXFCB. Except for F _ WRITEXFCB, you can usually set this field to zero.
Note that F _RENAME requires the calling process to place the new filename and
filetype in bytes D 1 through D 11.

The remaining file-access calls that use FCBs require an FCB that has been
initialized by a prior file-access system call. For example, F _SNEXT expects an FCB
initialized by a prior F _ SFIRST call. In addition, F _LOCK, F _READ, F _READRAND,
F UNLOCK. F WRITERAND, and F WRITEZF all require an FCB that has been
activated for record operations. Under Concurrent, only F - OPEN and F - MAKE can
activate an FCB.

If you intend to process a file sequentially from the beginning, using F _READ and
F _WRITE, you must set byte 32 to zero before you make your first read or write
call. In addition. when you use F _LOCK. F _ READRAND, F _UNLOCK. F _ WRITERAND, or
F _ WRITEZF, you must set bytes RO through R2 of the FCB to the requested Random
Record Number. F _TRUNCATE also requires the FCB random record field to be
initialized.

F SFIRST, F SNEXT, and F DELETE support multiple or ambiguous reference. In
general, a question mark in-the filename, filetype, or EX fields matches all values in
the corresponding positions of directory entries during a directory search
operation. File directory entries maintained in the directory area of each disk drive
have the same format as FCBs except for byte 0, which contains the file's user
number, and bytes 32 through 35, which are not present.

The search calls, F _ SFIRST and F _ SNEXT, also recognize a question mark in the FCB
DR field, and, if specified, they return all directory entries on the disk regardless of
user number, including empty entries. A directory FCB that begins with ESH is an
empty directory entry.

When F _OPEN and F _MAKE activate an FCB for record operations, they copy the
FCB's matching directory entry from disk. excluding byte 0, into the FCB in
memory. In addition, these system calls compute and store a checksum value in
the CS field of the FCB. During subsequent record operations on the file, the file
system uses this checksum field to verify that the FCB has not been illegally
modified by the calling process. Thus, all read. write, lock, and unlock operations
on a file must specify a valid activated FCB; otherwise, the BOOS returns a
checksum error to protect the integrity of the file system. In general, you should
not modify bytes O through 31 of an open FCB, except to set interface attributes
(see Section 2.4.4). Other restrictions related to activated FCBs are discussed in
Section 2.10.

2-10

Concurrent DOS 86 Programmer's Guide 2.4 File Control Block Definition

The BOOS updates the memory copy of the FCB during file processing to maintain
the current position within the file. During file write operations. the BOOS also
updates the memory copy of the FCB to record the allocation of data blocks to the
file. At the termination of file processing, F CLOSE permanently records this
information on disk. -

Note that the BOOS does not record the data blocks allocated to a file during write
operations in the disk directory until the calling process issues an F _CLOSE call.
Therefore, a process that creates or modifies files must close the files at the
termination of file processing. Otherwise, data might be lost.

2.4.2 FCB Initialization for DOS Media Files

When a process calls F _CLOSE, F _DELETE, F _MAKE, F _OPEN, F _ SFIRST, or F _ SNEXT
with the high-bit of the FCB's drive specifier byte turned on (logically ORed with
080H), the call performs the appropriate DOS directory-related operation as
follows:

F CLOSE

F DELETE

F MAKE

F OPEN

F SFIRST

F SNEXT

Forces the FCB-specified drive to the root directory.

Deletes a subdirectory in relation to the current di~ectory.

Creates a subdirectory in relation to the current directory.

Opens a subdirectory in relation to the current directory.

Finds the first matching DOS directory FCB when the high-
bit of the referenced FCB's drive specifier byte is set.

Finds the next DOS directory FCB that matches the FCB
(byte 0 high-bit set) specified in a previous F _ SFIRST call.

Figure 2-2 shows an FCB initialized for directory operations with DOS media files.

7 6 5 4 3 2 1 0
+---+-----------+----------------+ +----------+---------+
fl(O(O(O(DRVCODE(DIRECTORY NAME 1 ••• 1 DIR TYPE f EXTENT# I

+---------------+----------------+ +----------+---------+
Byte: 00 01 .•• 09 • • • 12

Figure 2-2. FCB Initialized for a DOS Directory

2-11

2.4 File Control Block Definition Concurrent DOS 86 Programmer's Guide

The calling process sets the high-order bit of byte 0 in the FCB and places the
drive code in the remainder of byte 0. Bytes 01 through 08 are initialized with the
directory name, and bytes 09 through 11 contain the directory type field.

The calling process initializes the Extent field (byte 12) to a value of 0, or sets it to
a floating-drive code. To specify a floating drive, set byte 12 to 1 for N, 2 for 0,
or 3 for P. This will map the appropriate floating drive to the drive and directory
specified in the FCB.

Note that when a process calls F _SFIRST (11H) or F _SNEXT (12H) to locate a DOS
directory FCB, it must set the first bit of the referenced FCB. Concurrent clears
this bit following these calls. Without the first bit of the referenced FCB set on
F _ SFIRST and F _ SNEXT calls, Concurrent will not search for any DOS directory
FCBs.

The first two bytes of the Disk Map field in the FCB (beginning at offset lOH) have
special meaning when a process reads or writes to DOS media. Table 2-6 shows
the values these bytes have for DOS media file 1/0.

Table 2-6. FCB Disk Map Values for DOS Media

Byte FCB Offset Bit Values

DO lOH Bit 0-4 Reserved
Bit 5 1 for Hidden File
Bit 6 1 for Subdirectory
Bit 7 Always Set

Dl 1 lH Same as DO

Bytes D6 through D9 (16H-19H) also have special meaning for processes reading
from or writing to files on DOS media. These bytes contain the time of day and
date the DOS media file was created or last updated. This information is mapped
to the bits of D6-D9 as shown in Figure 2-3.

2-12

Concurrent DOS 86 Programmer's Guide 2.4 File Control Block Definition

h h h h h m m m m m m s s s s s
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

<--------- 06 --------> <-------- 07 --------->
hh = 00-23, mm = 00-59, SS = 00 - 59
hours minutes seconds

Y Y Y Y Y Y Y M M M M D D D D D
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

<--------- 08---------> <-------- 09 --------->

DD = 01-31, MM = 01-12, YY = 0-119 (1980-2099)
day month year

Figure 2-3. FCB Time and Date Fields for DOS Files

You can perform the following steps to determine the type of medium in the
current default drive:

1. Call F _ SFIRST with byte O of the referenced FCB set to a question mark. This
returns the first FCB in the directory.

2. Read byte 0 of the first directory FCB to identify the directory label. If this
byte has a value of 32 (20H), the returned FCB is a directory label. Any other
value indicates CP/M media.

3. Read byte OFH of the directory label; a value of 80H indicates DOS media.
Any other value indicates CP/M media.

2.4.3 File Attributes

The high-order bits of the FCB filename (Fl', ... ,F8') and filetype fields (Tl',T2',T3')
are called attribute bits. Attribute bits are 1-bit Boolean fields. where 1 indicates
on or true, and 0 indicates off or false.

Attributes Fl' through F4' of command files are defined as Compatibility attributes
(see Section 2.12). For all other files, Fl' through F4' are available for user
definition. Attributes F5' and F6' are defined as Interface attributes (see Section
2.4.4).

The attribute bits, Fl', ... ,F4' and Tl', T2', T3', indicate that a file has a defined
attribute. These bits are recorded in a file's directory FCBs. File attributes can be
set or reset only by the F_ATTRIB call. When F_MAKE creates a file, it initializes all
file attributes to zero. A process can interrogate file attributes in an FCB activated
by F _OPEN, or in directory FCBs returned by F _ SFIRST and F _ SNEXT.

2-13

2.4 File Control Block Definition Concurrent DOS 86 Programmer's Gulde

Note: The file system ignores the file attribute bits when it attempts to locate a
file in the directory.

Table 2-7 shows the definitions for file attributes T1',T2', and T3'.

2-14

Table 2-7. File Attribute Definitions

Attribute Definition

T1': Read-Only Attribute

Attribute T1', if set, prevents write operations to a file.

T2': System Attribute

Attribute T2', if set, identifies the file as a Concurrent
System file. Concurrent's DIR utility does not usually
display System files. In addition, user-zero system files can
be accessed on a Read-Only basis from other user
numbers.

T3': Archive Attribute

Attribute T3' supports user-written archive programs. When
an archive program copies a file to back-up storage, it sets
the archive attribute of the copied files. The flle system
automatically resets the archive attribute of a directory
entry when writing to the directory entry's region of a file.
An archive program can test this attribute in each of the
file's directory entries using F _ SFIRST and F _ SNEXT. If all
directory entries have the archive attribute set, the file has
not been modified since the previous archive. The
Concurrent PIP utility supports file archival.

Concurrent DOS 86 Programmer's Guide 2.4 File Control Block Definition

2.4.4 Interface Attributes

The interface attributes are F5', F6', F7'. and F8'. These attributes cannot be used
as file attributes. Interface attributes F5' and F6' request options for BOOS file­
access system calls. Table 2-8 lists the F5' and F6' attribute definitions for the
system calls that define interface attributes. Note that the F5' = O and F6' = 0
definitions are not listed if their definition simply implies the absence of the option
associated with setting the interface attribute.

System Call

F ATTRIB

F CLOSE

F DELETE

FLOCK

F MAKE

F OPEN

F RENAME

F TRUNCATE

F UNLOCK

Table 2".'8. Interface Attributes FS' and F6'

Attribute

F5' = 1 : Maintain extended file lock
F6' = 1 : Set file byte count

F5' = 1 : Partial Close
F6' = 1 : Extend file lock

F5' = 1 : Delete file XFCBs only and Maintain extended file lock

F5' = 0 : Exclusive Lock
F5' = 1 : Shared Lock
F6' = 0 : Lock existing records only
F6' = 1 : Lock logical records

F5' = 0 : Open in Locked mode
F5' = 1 : Open in Unlocked mode
F6' = 1 : Assign password to file

F5' = 0 : Open in Locked mode
F5' = 1 : Open in Unlocked mode
F6' = O : Open in mode specified by F5'
F6' = 1 : Open in Read-Only mode

F5' = 1 : Maintain extended file lock

F5' = 1 : Maintain extended file lock

F5' = 1 : Unlock all locked records

Section 6 details the above interface attribute definitions for each of the preceding
system calls. Note that the BOOS always resets interface attributes F5' and F6'
before returning to the calling process. Interface attributes F7' and F8' are
reserved for internal use by the file system.

2-15

2.5 User Number Conventions Concurrent DOS 86 Programmer's Guide

2.5 User Number Conventions

Concurrent divides each drive directory into sixteen logically independent
directories, designated as user O through user 15. Physically, all user directories
share the directory area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on different user
numbers of the same drive with no conflict. However, a single file cannot extend
across more than one user number.

Only one user number is active for a specific process at one time, and the current
user number applies to all drives on the system. Furthermore, the FCB format
does not contain a field that can override the current user number. As a result, all
file and directory operations reference only directory entries associated with the
current user number.

However, it is possible for a process to access files on different user numbers by
setting the user number to the file's user number with an F _USERNUM call before
issuing the BOOS call. However, if a process attempts to read or write to a file
under a user number different from the user number that was active when the file
was opened, the file system returns an FCB checksum error.

When P _CU initiates a transient process or Resident System Process (see Section
5), it sets the user number to the default value established by the process issuing
the P _ CLI call. The sending process is usually the Terminal Message Process
(TMP). However, the sending process can be another process, such as a transient
program that makes a P _CHAIN call.

A transient process can change its user number by making an F _USERNUM call.
Changing the user number in this way does not affect the command line user
number displayed by the TMP. Thus, when a transient process that has changed
its user number terminates, the TMP restores and displays the original user
number in the command line prompt when it regains control.

User 0 has special properties under Concurrent. The file system automatically
opens files listed under user zero but requested under another user number if the
file is not present under the current user number, and if the file on user zero has
the system attribute (T2') set. This convention allows utilities, including overlays
and any other commonly accessed files, to reside on user zero, but remain
available to other users. This eliminates the need to copy commonly used utilities
to all user numbers on a directory, and gives the Concurrent manager control over
which files are directly accessible to the different user areas.

2-16

Concurrent DOS 86 Programmer's Guide 2.6 Directory Labels and XFCBs

2.6 Directory Labels and XFCBs

The file system includes three special types of FCBs: the directory label and the
XFCB, described in this section, and the SFCB, described in detail in Section 2.8.

The directory label specifies for its drive whether password support is to be
activated, and if date and time stamping for files is to be performed.

Figure 2-4 shows the format of the directory label.

+---+
IDRINamelTypel DL I Sl I S2 I RC I Password I TSl I TS2 I
+---------------------------~---------------------------+

00 01.. 09.. 12 13 14 15 16 •••••• 25.. 29 ••

Figure 2-4. Directory Label Format

Table 2-9 defines the fields in the directory label.

Table 2-9. Directory Label Field Definitions

Field

DR

Name

Type

DL

S1,S2,RC

Password

TSl

TS2

Definition

drive code (0 - 16)

directory label name

directory label type

directory label data byte

Bit 7 - enable password support
Bit 6 - perform access time stamping
Bit 5 - perform update time stamping
Bit 4 - perform create time stamping
Bit 0 - Directory Label exists
(Bit references are right to left, relative to 0)

reserved for future use

8-byte password field (encrypted)

4-byte creation time stamp field

4-byte update time stamp field

Only one directory label can exist in a drive's directory area~ The directory label
name and type fields are not used to search for a directory label; they can be used
to Identify a disk.

2-17

2.6 Directory Labels and XFCBs Concurrent DOS 86 Programmer's Guide

You can use ORV SETLABEL to create a directory label or update its fields.
DRV SETLABEL can also assign a password to a directory label. . The directory label
pass-word, if assigned, cannot be circumvented, whereas file password protection
on a drive is an option controlled by the directory label. Thus, access to the
directory label password provides the ability to bypass password protection on the
drive.

Note: Concurrent does not provide a system call to read the directory label FCB
directly. However, you can read the directory label data byte directly with the
ORV_ GETLABEL call. In addition, you can use the search calls F _ SFIRST and
F _SNEXT to find a directory label. You can identify the directory label by a value
of 32 (020H) in byte 0 of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with a file in the
directory. If present, it contains the file's password and password mode. Figure
2-5 shows the format of the XFCB.

+---+
I DR I File I Type I PM ISl IS2 IRC I Password I RESERVED I
+---+

00 01... 09... 12 13 14 15 16 ••• 25

Figure 2-5. XFCB - Extended File Control Block

Table 2-10 defines the fields in the XFCB.

2-18

Table 2-10. XFCB Field Definitions

Field Definition

DR drive code (0 - 16)

File filename field

Type filetype field

PM password mode

51,52,RC

Password

Reserved

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode
(Bit references are right to left, relative to 0)

reserved for system use

8-byte password field (encrypted)

8-byte area reserved for future use

29

Concurrent DOS 86 Programmer's Guide 2.6 Directory Labels and XFCBs

You can create an XFCB only on a drive that has a directory label, and only if the
directory label enables password protection. For drives in this state, there are two
ways to create an XFCB for a file: with F MAKE or F WRITEXFCB. F MAKE creates
an XFCB if the calling process requests that a password be assigned to the created
file. F _ WRITEXFCB creates an XFCB when it is called to assign a password to an
existing file. You can identify an XFCB in the directory by a value of 16 (OlOH) + N
in byte O of the FCB, where N equals the user number.

2.7 File Passwords

There are two ways to assign passwords to a file: with F MAKE or with
F _ WRITEXFCB. You can also change a file's password or password mode with
F _ WRITEXFCB if you can supply the original password. Note that you cannot
change a file's password or password mode if password protection for the drive is
disabled by the directory label. However, even if you cannot supply a file's
password, you can delete a file's XFCB, thereby removing its password protection,
if password protection is disabled on the drive.

The Concurrent BOOS provides password protection in one of three modes when
password support is enabled by the directory label. Table 2-11 shows the
difference in access level allowed to BOOS system calls when the password is not
supplied.

Mode

Read

Write

Delete

Table 2-11. Password Protection Modes

Access Allowed Without Password

File cannot be read, modified, or deleted.

File can be read, but not modified or deleted.

File can be read and modified, but not deleted.

If a file is password protected in Read mode, a process must supply the password
to open the file. Processes cannot write to a file protected in Write mode without
the password.

A file protected in Delete mode allows read and write access, but a process must
specify the password to delete or truncate the file, rename the file, or to modify
the file's attributes. Thus, mode 1 protection implies mode 2 and 3 protection, and
mode 2 protection implies mode 3 protection. All three modes require you to
specify the password to delete or truncate the file, rename the file, or to modify
the file's attributes.

2-19

2.7 File Passwords Concurrent DOS 86 Programmer's Guide

If a process supplies the correct password or the directory label disables password
protection, then access to the BOOS system calls is the same as for a file that is
not password-protected. In addition. F _SFIRST and F _SNEXT are not affected by
file passwords.

The following BOOS system calls test for passwords:

* ORV SETLABEL
* F ATTRIB
* F DELETE
* F OPEN
* F RENAME
* F WRITEXFCB
* F TRUNCATE

The BOOS maintains file passwords in the XFCB and directory label in encrypted
form. To make a BOOS system call for a file that requires a password, a process
must place the password in the first eight bytes of the current OMA, or make it the
default password with an F _PASSWD call, before making the system call.

Note: The BOOS maintains the assigned default password for each process.
Processes inherit the default password of their parent process. You can set a
given TMP's default password using the FSET utility; all programs loaded by this
TMP inherit the same default password.

2-20

Concurrent DOS 86 Programmer's Guide 2.8 File Date and Time Stamps: SFCBs

2.8 File Date and Time Stamps: SFCBs

The Concurrent file system uses a special type of directory entry called an SFCB to
record date and time stamps for files. When a directory has been initialized for
date and time stamping, SFCBs reside in every fourth position of the directory.
Each SFCB maintains the date and time stamps for the previous three directory
entries, as shown in Figure 2-6

+---+
I I FCB 1 I

!--
' I FCB 2 I
!---!
I I FCB 3 I

!---!
I 21 I Stamps I stamps I stamps I II I

I I for FCB 1 I for FCB 2 I for FCB 3 I // I

+---+
Byte#
0 1 11 21 31 32

Figure 2-6. Directory Record with SFCB

Figure 2-6 shows a 128-byte directory record containing an SFCB. Directory
records have four directory entries, each 32 bytes long; SFCBs always occupy the
last 32-byte entry in the directory record.

The SFCB contains five fields. The first field is a single byte containing the value
021 H; this field identifies the SFCB within the directory. The next three fields,
called the SFCB subfields, are each 10 bytes in length and contain the date and
time stamps for their corresponding FCB entries in the directory record. The last
byte of the SFCB is reserved for system use. Figure 2-7 shows the detail of the
SFCB subfields.

+--+
I Create/Access I Update I Password I Reserved I

I Time and Date I Time and Date I Mode I I

+--+
Byte #
0 4 8

Figure 2-7. SFCB Subfields

9 10

2-21

2.8 File Date and Time Stamps: SFCBs Concurrent DOS 86 Programmer's Guide

An SFCB subfield only contains valid information if its corresponding FCB in the
directory record is an extent zero FCB. This FCB is a file's first directory entry.
For password protected files, the SFCB subfield also contains the password mode
of the file; the password mode field is zero for files without password protection.

You can read SFCBs by making F _SFIRST and F _SNEXT calls. In addition, you can
make a F _TIMEDATE call to retrieve the date and time stamps and password mode
of a specified file. The explanation of T _GET in Section 6 describes the format of a
date and time stamp field.

Concurrent supports three kinds of file stamping: create, access, and update.
Create stamps record when the file was created, access stamps record when the
file was last opened, and update stamps record the last time the file was modified.
Create and access stamps share the same field. As a result, file access stamps
overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date and
time stamping for files on the drive. The INITDIR utility initializes a directory for
date and time stamping by placing an SFCB in every fourth directory entry. Disks
not initialized in this way cannot support date and time stamping. In addition, date
and time stamping is not performed if the disk's directory label is absent or does
not specify date and time stamping, or if the disk is Read-Only.

Note that the directory label is also time stamped, but these stamps are not made
in an SFCB; time stamp fields in the last eight bytes of the directory label show
when it was created and last updated~ Access stamping is not supported for
directory labels.

The BOOS file system uses the system date and time when it records a date and
time stamp. This value is maintained in a field in the SYSDAT part of the System
Data Segment. The DATE utility sets the system time and date {see the User's
Guide for details of using DATE).

2.9 File Open Modes

The file system provides three different modes for opening files:

Locked Mode

Locked mode is the Default mode for opening files under Concurrent. A process
can open a file in Locked mode only if the file is not currently opened by another
process. Once open In Locked mode, no other process can open the file until it is
closed. Thus, if a process successfully opens a file in Locked mode, that process
owns the file until the file is closed or the process terminates.

Files opened in Locked mode support read and write operations unless the file is a
Read-Only file {attribute Tl' set) or the file is password-protected in Write mode,
and the process issuing the F OPEN call cannot supply the password. In both of
these cases, the BOOS allows only read operations to the file.

2-22

Concurrent DOS 86 Programmer's Guide 2.9 File Open Modes

Unlocked Mode

A process can open a file in Unlocked mode if the file is not currently open, or if
another process has already opened the file in Unlocked mode. Unlocked mode
allows more than one process to open the same file. Files opened in Unlocked
mode support read and write operations unless the file is a Read-Only file
(attribute Tl' set) or the file is password-protected in Write mode and the process
Issuing the F _OPEN call cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the
FCB because F _OPEN returns a 2-byte value called the File ID in the RO and R 1
bytes of the FCB. The File ID is a required parameter for the F _LOCK and
F _UNLOCK calls which work only for files opened in Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by
another process or if another process has opened the file in Read-Only mode.
This mode allows more than one process to open the same file for Read-Only
access.

F _OPEN performs the following steps for files opened in Locked or Read-Only
mode:

* If the current user number is nonzero, and the file to be opened does not
exist under the current user number, F _OPEN searches the user zero directory
for the file.

* If the file exists under user zero and has the System attribute T2' set, the
BOOS opens the file under user zero. with the open mode automatically forced
to Read-Only.

F _OPEN also performs the following action for files opened in Locked mode when
the current user number is zero.

* If the file exists under user zero and has both the System T2' and Read-Only
(Tl') attributes set, the open mode is automatically set to Read-Only. The
Read-Only attribute controls whether a user-zero process and processes on
other user numbers can concurrently open a user-zero system file when each
process opens the file in the default Locked mode.

* If the Read-Only attribute is set, all processes open the file in Read-Only
mode and the BOOS allows concurrent access of the file. However, if the
Read-Only attribute is reset, the user-zero process opens the file in Locked
mode to prevent sharing the file with other processes.

F OPEN and F MAKE both use FCB interface attributes F5' and F6' to specify the
open mode. The interface attribute definitions for these functions are listed in
Table 2-8.

Note: F _MAKE does not allow opening the file in Read-Only mode.

2-23

2.10 File Security Concurrent DOS 86 Programmer's Guide

2.10 File Security

The security measures implemented in the file system are designed to prevent
accidental collisions between running processes. It is not possible to provide total
security because the file system maintains file allocation information in open FCBs
in the user's memory region. and Concurrent does not require memory protection.

However, the file system is designed to ensure that multiple processes can share
the same file system without interfering with each other by performing checksum
verification of open FCBs. and monitoring all open files and locked records via the
system Lock list.

The BOOS validates the checksum of user FCBs before all 1/0 operations to protect
the integrity of the file system from corrupted FCBs. The F _OPEN and F _MAKE
calls compute and assign checksums to FCBs. F _ READRAND, F _READ,
F _ WRITERAND, F _ WRITEZF, F _WRITE, F _LOCK, and F _UNLOCK subsequently verify and
recompute the checksums when they change the FCB. F _CLOSE also verifies FCB
checksums. Although you can disable FCB verification by these system calls (see
Section 2.12), it is not recommended because Concurrent's file security is reduced.

If the BOOS detects an FCB checksum error, it does not perform the requested
command. Instead, it either returns to the calling process with an error code, or if
the system call is F _CLOSE and the BOOS Error mode is in the default state (see
Section 2.18), it terminates the calling process with an error message.

Concurrent uses a system data structure, called the Lock List, to manage file
opening and record locking by running processes. Each time a process opens a
file or locks a record successfully, the file system allocates an entry in the system
Lock list to record the fact. The file system uses the lock list to:

* prevent a process from deleting, truncating, renaming, or updating the
attributes of another process's open file.

* prevent a process from opening a file currently opened by another process,
unless both processes open the file in unlocked or Read-Only mode.

* prevent a process from resetting a drive on which another process has an
open file.

* prevent a process from reading, writing, or locking a record currently locked
by another process. Refer to Section 2.14 for more information on record
locking and unlocking.

The file system only verifies whether another process has the FCB-specified file
open for the following file-access system calls: F OPEN, F MAKE, F DELETE,
F _RENAME, F _ATTRIB, and F _TRUNCATE. For file-access- calls that require an open
FCB, the FCB checksum controls whether the calling process can use the FCB. By
definition, a valid FCB checksum implies that the file has been successfully opened
and an entry for the file resides in the Lock list.

2-24

Concurrent DOS 86 Programmer's Guide 2. 10 File Security

The most common way a process releases a lock entry for an open file is by
closing the file. A close operation is permanent if it causes the removal of the
file's open lock list entry. The file system invalidates the FCB checksum field on
permanent close operations to prevent continued open file operations with the
FCB.

However, not all close operations are permanent. For example, if a process makes
multiple F_OPEN or F_MAKE calls to an open file, a matching number of F_CLOSE
calls must be made before the file system permanently closes the file. Of course,
if you only open a file once, a single close operation permanently closes the file.

In addition, a process can optionally make partial F _CLOSE calls to a file by setting
interface attribute FS'. A partial close operation does not affect the open state of
a file. In the above example, a partial close operation would not count against an
F _OPEN or F _MAKE call. A partial close operation simply updates the directory to
reflect the current state of the file.

As a general rule, under Concurrent a process should close files as soon as it no
longer needs them, even if it has not modified them. While a process has a file
open, access by other processes to the file is restricted. For example, after a
process has opened a file in Locked mode, the file cannot be opened by other
processes until the file is closed or the process terminates.

Furthermore, space in the Lock List is limited. If a process attempts to open a file
and no space remains in the Lock List, or if the process exceeds the open file limit,
the BOOS denies the open request and usually terminates the calling process. You
can change the way the file system handles this error by making an F _ ERRMODE
call. Note that the size of the Lock List and the process open file limit are
GENCCPM parameters.

Under Concurrent. deleting an open file is not recommended but it is supported for
files opened in Locked mode to provide compatibility with software written under
earlier releases of MP/M™ and CP/M. The file system does not allow deletion of a
file opened in Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the
deleted file, the file system subsequently checks all open FCBs for the process.
Each open FCB is checked the next it is used with a file-access system call that
requires an open FCB. If a Lock List entry exists for the file, the BOOS allows the
operation to proceed; if not, it indicates that the file has been purged and the file
system returns an FCB checksum error.

The BOOS performs FCB verification whenever it purges open file entries from the
system Lock List in the following situations:

2-25

2.10 File Security Concurrent DOS 86 Programmer's Guide

* A process makes a F _ATTRIB, F _DELETE, F _RENAME, or F _TRUNCATE call to a
file it has open in Locked mode. These operations cannot be performed on a
file open in Unlocked or Read-Only mode.

* A process issues a DRV _FREE call for a drive on which it has an open file.

* The BOOS detects a change in media on a drive that has open files. This is a
special case because a process cannot control the occurrence of this
situation, and because it can impact more than one process. Refer to Section
2.17 for more details on this situation.

Open FCB verification can affect performance because each verification operation
requires a directory search operation. In general, you should avoid such situations
when creating new programs for Concurrent.

2.11 Extended File Locking

Extended file locking enables a Concurrent process to maintain a lock on a file
after the file is permanently closed. This facility allows a process to set the
attributes, delete, rename, or truncate a file without interference from other
processes. In addition, this technique avoids the problems associated with using
these system calls on open files (see Section 2.10).

A process can also reopen a file with an extended lock and continue open file
processing. To illustrate how extended file locking might be used, a process can
close an open file, rename the file, reopen the file under its new name, and
continue with file operations without ever losing the file's Lock List item and
control over the file.

A process can only specify extended file locking for a file it has opened in Locked
mode. To extend a file's lock, set interface attribute F6' when closing the file.
F _CLOSE interrogates this attribute only when it is closing a file permanently.
Thus. interface attribute F5'. signifying a partial close. must be reset when the
F _CLOSE call is made. In addition, the close operation must be permanent. If a
process has opened a file N times. F CLOSE ignores the F6' attribute until the file
is closed for the Nth time. -

Note that the access rules for a file with an extended lock are identical to the
rules for a file open in Locked mode.

To maintain an extended file lock through a F ATTRIB, F RENAME, or F TRUNCATE
call. set interface attribute F5' of the referenced FCB when making the call. The
BOOS honors this attribute only if the file has been closed with an extended lock.

Setting attribute F5' also maintains an extended file lock for F DELETE, but setting
this attribute also changes the nature of the delete operation to an XFCB-only
delete. If successful, all four of these system calls delete a file's extended lock
item if they are called with attribute F5' reset. However, the extended lock item is
not deleted if they return with an error code.

2-26

Concurrent DOS 86 Programmer's Guide 2.11 Extended File Locking

You can make an F _OPEN call to resume record operations on a file with an
extended lock. Note that you can also change the open mode when you reopen
the file. The following steps illustrate the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use F _RENAME to change the name of the file to EXLOCK.NEW with interface
attribute F5' set to retain the file's extended lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCK.NEW, using the open
FCB.

7. Close file EXLOCK.NEW again with interface attribute F6' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by making an
F _A TTRIB call with interface attribute F5' reset.

At this point, the file EXLOCK.NEW becomes available for access by another
process.

2.12 Compatibility Attributes

Compatibility attributes are defined as file attributes Fl' through F4' of program
(CMO) files, and they provide a mechanism to modify some of Concurrent's file
security rules. This facility is needed because some programs developed under
earlier Digital Research operating systems do not run properly under Concurrent.
Most of the problems encountered by such programs occur because they were
designed for single-tasking operating systems where file security is not required.

For example, suppose a program closes a file and then continues reading and
writing to the file. Under CP/M-86, this is not a problem but under Concurrent,
the BOOS intercepts open file operations with a deactivated FCB to ensure file
system integrity. Compatibility attributes are a tool for dealing with such
situations, and you should use them only with existing programs that run properly
under CP/M-86, not with new programs developed under Concurrent.

If the GENCCPM COMPATMOOE option has been selected during system
generation, you can use Concurrent's FSET utility to set compatibility attributes
from the command line. When COMPATMOOE is selected, the P _CLI call
interrogates the command file's compatibility attributes during program loading
and modifies the Concurrent file security rules for the loaded program.

Table 2-12 defines the Concurrent BOOS Compatibility Attributes.

2-27

2.12 Compatibility Attributes Concurrent DOS 86 Programmer's Guide

2-28

Table 2-12. Compatibility Attribute Definitions

Attribute Definition

Fl' Modify the rules for Locked mode.

When a process running with Fl' set opens a file in Locked
mode, It can perform read and write operations to the file
as normal. However, to other processes. it appears as if
the file was _opened in Read-Only mode. Thus. another
process running with Fl' set, can open the same file in
Locked mode and also perform write operations to the file.

In addition, if a process with Fl' reset attempts to open the
file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only.
Furthermore, write operations are not allowed when the
process has F 1' reset.

The Fl' compatibility mode is designed to allow multiple
copies of the same program to run concurrently, even
though the program might make read and write calls to a
common file that it has opened in Locked mode. In
addition, the Fl' mode allows other programs not in this
compatibility mode to access the file on a Read-Only basis.
Note that record locking is not supported for this modified
open mode. In addition, to be safe, make all static files
such as program and help files Read-Only if you use the Fl'
attribute.

There is an alternative to using this attribute if a program
only makes read calls to the common file. By placing the
file under User O with the SYS and Read-Only attributes
set, you force the open mode to Read-Only when the file is
opened in Locked mode.

F2' Change F _CLOSE to partial close.

Processes running with F2' set, only make partial F _CLOSE
calls. The F2' attribute is intended for programs that close
a file to update the directory but continue to use the file.
A side effect of this attribute is that files opened by a
process are not released from the system Lock List until
the process terminates. When using this attribute, it might
be necessary to to set the Lock List parameters to higher
values when you generate the system with GENCCPM.

Concurrent DOS 86 Programmer's Guide 2.12 Compatibility Attributes

Table 2-12. (Cont'd)

Attribute Definition

F3' Ignore close checksum errors.

The F3' attribute changes the way F _CLOSE handles Close
Checksum errors. Normally, the file system prints an error
message at the console and terminates the calling process.
However, if F3' is set. F _CLOSE ignores the checksum error
and performs the close operation. This interface attribute is
intended for programs that modify an open FCB before
closing a file.

F4' Disable FCB Checksum verification for read and write operations.

Setting F4' also sets attributes F2' and F3'. The F4' attribute
is intended for programs that modify open FCBs during read
and write operations. Use this attribute very carefully, and
only with software known to work, because it effectively
disables Concurrent's file security.

Use Concurrent's FSET utility to specify the combination of compatibility attributes
you want set in• the program's command file. For example,

A>FSET filespec [fl=on]

A>FSET filespec [fl=on,fJ=on]

A>FSET filespec [f4=on]

If you have a program that runs under CP/M or CP/M-86 but does not run properly
under Concurrent, use the following guidelines to select the proper compatibility
attributes.

* If the program ends with the "File Currently Opened" message when multiple
copies of the program are run, set compatibility attribute Fl'. or place all
common s; .. Hic files under User O with the SYS and Read-Only attributes set.

* If the program terminates with the message "Close Checksum Error·, set
compatibility attribute F3'.

* If the program terminates with an 1/0 error, try running the program with
attribute F2' set. If the problem persists. then try attribute F4'. Use attribute
F4' only as a last resort.

2-29

2.13 Multisector 1/0 Concurrent DOS 86 Programmer's Guide

2.13 Multisector 1/0

The file system provides the capability to read or write multiple 128-byte records
in a single BOOS system call. This multisector facility can be visualized as a BOOS
burst mode, enabling a process to complete multiple 1/0 operations without
interference from other running processes. In addition, the file system bypasses,
when possible, all intermediate record buffering during multisector 1/0 operations.
Data is transferred directly between the calling process's memory and the drive.

The BOOS also informs the XIOS when it is reading or writing multiple physical
records on a drive. The XIOS can use this information to further optimize the 1/0
operation resulting in even better performance. As a result, using this facility in an
application program can improve its performance and also enhance overall system
throughput, particularly when performing sequential 1/0.

The number of records that can be transferred with multisector 1/0 ranges from 1
to 128. This value, called the BOOS Multisector Count, can be set with
F MUL TISEC. P CU sets the Multisector Count to one when it initiates a transient - -
program for execution.

Note that the greatest potential performance increases are obtained when the
Multisector Count is set to 128. Of course, this requires a 16K buffer. The
Concurrent PIP utility performs its sequential 1/0 with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by
the following BOOS system calls; F READ, F WRITE, F READRAND, F WRITERAND,
F _ WRITEZF, F _LOCK and F - UNLOCK. It the Multlsector Count is N, making one of
these calls is equivalent to making N calls.

With the exception of disk 1/0 errors encountered by the XIOS, if an error
interrupts a multisector read or write operation, the file system returns the number
of 128-byte records successfully transferred in register AH. Section 2.14 describes
how the Multisector Count affects F LOCK and F UNLOCK. - -

2.14 Concurrent File Access

Concurrent supports two open modes, Read-Only and Unlocked, which allow
concurrently running processes to access common files for record operations. The
Read-Only open mode allows multiple processes to read from a common file, but
processes cannot write to a file open in this mode. Thus, files remain static when
they are opened in Read-Only mode. The Unlocked open mode is more complex
because it allows multiple processes to read and write records to a common file.
As a result, Unlocked mode has some important differences from the other open
modes.

When a process opens a file in Unlocked mode, the file system returns a 2-byte
field called the File ID in the RO and R 1 bytes of the FCB. The File ID is a required
parameter of Concurrent's record locking system calls. F LOCK and F UNLOCK.
which are only supported for files open in Unlocked mode. - -

2-30

Concurrent DOS 86 Programmer's Guide 2.14 Concurrent File Access

Note that these system calls return a successful error code if they are called for
files opened in Locked mode. However, they perform no action in this case,
because, by definition, the calling process has the entire file locked.

F _LOCK and F _UNLOCK allow a process to establish and release temporary
ownership of particular records within a file. You must set the FCB Random
Record field and place the File ID in the first two bytes of the current OMA buffer
before making these calls. The file system locks and unlocks records in units of
128 bytes, which is the standard Concurrent record size. The number of records
locked or unlocked is controlled by the BOOS Multisector count, which can range
from 1 to 128 (see Section 2.13).

In order to simplify the discussion of record locking and unlocking, the following
paragraphs assume the Multisector count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a
simple extension of the single record case.

F _LOCK supports two types of lock operations: exclusive locks and shared locks.
Interface attribute F5' specifies the type of lock. F5' = 0 requests an exclusive lock;
F5' "' 1 requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process,
however, can access the record with no restrictions. You should use this type of
lock when exclusive control over a record is required.

If a process locks a record with a shared lock, other processes cannot write to the
record or make an exclusive lock of the record. However, other processes are
allowed to read the record and make their own shared locks on the record. No
process, including the locking process, can write to a record with a shared lock.
Shared locks are useful when you want to ensure that a record does not change,
but you want to allow other processes to read the record.

F _LOCK also lets you change the lock of a record if there is no conflict. For
example, you can convert an exclusive lock into a shared lock with no restrictions.
On the other hand, if a process attempts to convert a record's shared lock to an
exclusive lock if another process has a shared lock on the record, Concurrent
returns an error.

F LOCK has another option, specified by interface attribute F6'. which controls
vihether a record must exist in order to be locked. If you make an F _LOCK call
with F6' = 0, the file system returns an error code if the specified record does not
exist. Setting F6' to 1 requests a logical lock operation. Logical lock operations
are only limited by the maximum Concurrent file size of 32 megabytes, which
corresponds to a maximum Random Record Number of 262, 143. You can use
logical locks to control extending a shared file.

F _UNLOCK is similar to F _LOCK except that it removes locks instead of creating
them. There are few restrictions on unlock operations. Of course a process can
only remove locks that it has made.

2-31

2.14 Concurrent File Access Concurrent DOS 86 Programmer's Guide

F _UNLOCK has one option, controlled by Interface attribute FS'. If FS' is set to one,
F _UNLOCK removes all locks for the file made by the calling process. Otherwise, it
removes the locks specified by the Random Record field and the BOOS Multisector
Count. Note that F _CLOSE also removes all locks for a file on permanent close
operations.

If the BOOS Multisector Count is greater than one, F _LOCK and F _UNLOCK perform
multiple record locking or unlocking. In general, multiple record locking and
unlocking can be viewed as a sequence of N independent operations, where N
equals the Multisector Count. However, if an an error occurs on any record within
the sequence, no locking or unlocking is performed.

For example, both F _LOCK and F _UNLOCK perform no action and return an error
code if the sum of the FCB Random Record Number and the BOOS Multisector
Count is greater that 262, 144. As another example, F _LOCK also returns an error
code if another process has an exclusive lock on any record within the sequence.

When a process makes an F _LOCK call, the file system allocates a new entry in the
system Lock List to record the lock operation and associate it with the calling
process. A corresponding F _UNLOCK call removes the locked entry from the list.
While the lock entry exists In the Lock List, the file system enforces the
restrictions implied by the lock item.

Because each lock item includes a record count field, a multiple lock operation
normally results in the creation of a single new entry. However, if the file system
must split an existing lock entry to satisfy the lock operation, an additional entry is
required. Similarly, an unlock operation can require the creation of a new entry if
a split is needed. Thus, in the worst case, a lock operation can require two new
lock entries and an unlock operation can require one. Note that lock item splitting
can be avoided by locking and unlocking records in consistent units.

These considerations are important because the Lock List is a limited resource
under Concurrent. The file system performs no action and returns an error code if
insufficient available entries exist in the Lock List to satisfy the lock or unlock
request. In addition, the number of lock items a single process is allowed to
consume is a GENCCPM parameter. The file system also returns an error code if
this limit is exceeded.

The file system performs several special operations for read and write system calls
to a file open in Unlocked mode. These operations are required because the file
system maintains the current state of an open file in the calling process's FCB.
When multiple processes have the same file open, FCBs for the same file exist in
each process's memory.

To ensure that all processes have current information, the file system updates the
directory immediately when an FCB for an unlocked file is changed. In addition.
the file system verifies error situations such as end-of-file, or reading unwritten
data with the directory before returning an error. As a result, read and write
operations are less efficient for files open in Unlocked mode when compared to
equivalent operations for files opened in Locked mode.

2-32

Concurrent DOS 86 Programmer's Guide 2.15 File Byte Counts

2.15 File Byte Counts

Although the logical record size of Concurrent is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file.
This facility can identify the last byte of the last record of a file. The F _SIZE call
returns the last Random Record Number, + 1, of the last record of a file.

The F_ATIRIB call can set a file's byte count. This is an option controlled by
interface attribute F6'. Conversely, F OPEN can return a file's byte count to the CR
field of the FCB. F SFIRST and F SNEXT also return a file's byte count in the CS
field of the FCB returned in the current OMA buffer.

Note that the file system does not access or update the byte count value in BOOS
read or write system calls. However, the F MAKE call does set the byte count
value to zero when it creates a file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent, the logical record size for disk 1/0 is 128 bytes. This is the
basic unit of data transfer between the operating system and running processes.
However, on disk, the physical record size is not restricted to 128 bytes, but can
range from 128 bytes to 4K bytes. Record blocking and deblocking is required on
systems that support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called
record blocking and is required in write operations. The reverse process of
breaking up physical records into their component 128-byte logical records is
called record deblocking and is required in read operations. Under Concurrent,
record blocking and deblocking is normally performed by the BOOS.

Record deblocking implies a read-ahead operation. For example, if a process reads
a logical record that resides at the beginning of a physical record, the entire
physical record is read into an internal buffer. Subsequent BOOS read calls for the
remaining logical records access the buffer instead of the disk.

Conversely, record blocking results in the postponement of physical write
operations but only for data write operations. For example, if a transient program
makes a BOOS write call, the logical record is placed in a buffer equal in size to
the physical record size. The write operation on the physical record buffer is
postponed until the buffer is needed in another 1/0 operation. Note that under
Concurrent, directory write operations are never postponed.

Postponing physical record write operations has implications for some application
programs. For programs that involve file updating, it is often critical to guarantee
that the state of the file on disk parallels the state of the file in memory after an
update operation. This is only an issue on drives where physical write operations
are postponed because of record blocking and deblocking. If the system should
crash while a physical buffer is pending, data would be lost. To prevent this loss
of data, you can use F _FLUSH to force the write of any pending physical buffers
associated with the calling process.

2-33

2.16 Record Blocking and Deblocking Concurrent DOS 86 Programmer's Guide

Note: The file system discards all pending physical data buffers when a process
terminates. However, the file system automatically makes an F _FLUSH call in the
F _CLOSE call. Thus, it is sufficient to make an F _CLOSE call to ensure that all
pending physical buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BOOS calls ORV_ ALLRESET, ORV _RESET, ORV_ ACCESS, and ORV _FREE allow a
process to control when to reinitialize a drive directory for file operations. This
process of initializing a drive's directory is called logging-in the drive.

When you start Concurrent. all drives are initialized to the reset state.
Subsequently, as processes reference drives, the file system automatically logs
them in. Once logged-in, a drive remains in the logged-in state until it is reset by
DRV _ ALLRESET or ORV_ RESET or a media change is detected on the drive.

If the drive is reset, the file system automatically logs in the drive again the next
time a process references it. The file system logs in a drive immediately when it
detects a media change on the drive.

Note that ORV_ ALLRESET and ORV_ RESET have similar effects except that
DRV _ ALLRESET affects all drives on the system. You can specify the combination
of drives to reset with ORV_ RESET.

Logging-in a drive consists of several steps. The most important step is the
initialization of the drive's allocation vector. The allocation vector records the
allocation and deallocation of data blocks to files, as files are created, extended,
deleted and truncated. Another function performed during drive log-in is the
initialization of the directory checksum vector. The file system uses the checksum
vector to detect media changes on a drive. Note that permanent drives, which do
not support media changes, might not have checksum vectors.

Under Concurrent, the ORV_ RESET operation is conditional. The file system cannot
reset a drive for a process if another process has an open file on the drive.
However, the exact action taken by a ORV_ RESET operation depends on whether
the drive to be reset is permanent or removable.

Concurrent determines whether a drive is permanent or removable by interrogating
a bit in the drive's Disk Parameter Block (DPB) in the XIOS. A high-order bit of 1
in the DPB Checksum Vector Size field designates the drive as permanent. A
drive's Removable or Nonremovable designation is critical to the reset operation
described below.

The BOOS first determines whether there are any files currently open on the drive
to be reset. If there are none, the reset takes place. If there are open files, the
action taken by the reset operation depends on whether the drive is removable
and whether the drive is Read-Only or Read-Write. Note that only the DRV _SETRO
call can set a drive to Read-Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset
operation is not performed, but a successful result is returned to the calling
process.

2-34

Concurrent DOS 86 Programmer's Guide 2.17 Reset, Access, and Free Drive

However, if the drive, is removable or set to Read-Only, the file system determines
whether other processes have open files on the drive. If they do, then it denies
ORV_ RESET operation and returns an error code to the calling process.

If all the open files on a removable drive belong to the calling process, the
process is said to own the drive. In this case, the file system performs a qualified
reset on the drive and returns a successful result. This means that the next time a
process accesses this drive, the BOOS performs the log-in operation only if it
detects a media change on the drive.

Figure 2-8 illustrates the logic flow of the drive reset operation.

OPEN FILES
ON DRIVE?

RESET
DRIVE

NO

DISK
RESET

SUCCESS

YES

DRIVE YES
REMOVABLE?

NO

NO

DD NOT RESET
DRIVE

YES

OPEN FILES
BELONG TO

ANOTHER
PROCESS?

~ NO

QUALIFIED
RESET

PEnf-OAMFC1

Figure 2-8. Disk System Reset

YES

OISK
RESET

DENIED

2-35

2.17 Reset, Access, and Free Drive Concurrent DOS 86 Programmer's Guide

If the BOOS detects a media change on a drive after a qualified reset, it purges all
open files on the drive from the Lock List and subsequently verifies all open FCBs
in file operations for the owning process (refer to Section 2.10 for details of FCB
verification).

In all other cases where the BOOS detects a media change on a drive, the file
system purges all open files on the drive from the Lock List, and flags all
processes owning a purged file for automatic open FCB verification.

Note: If a process references a purged file with a BOOS command that requires
an open FCB, the file system returns to the process with an FCB checksum error.

The primary purpose of the drive reset functions is to prepare for a media change
on a drive. Because a drive reset operation is conditional, it allows a process to
test whether it is safe to change disks. Thus, a process should make a successful
drive reset call before prompting the user to change disks. In addition, you should
close all your open files on the drive, particularly files you have written to, before
prompting the user to change disks. Otherwise, you might lose data.

ORV ACCESS and ORV FREE perform special actions under Concurrent.
ORV_ ACCESS inserts a dummy open file item into the system Lock List for each
specified drive. While that item exists in the system Lock List, no other process
can reset the drive. ORV _FREE purges the Lock List of all items, including open file
items, belonging to the calling process. on the specified drives. Any subsequent
reference to those files by a BOOS system call requiring an open FCB results in a
FCB checksum error return.

ORV FREE has two important side effects. First of all, any pending
blocking/deblocking buffers on a specified drive that belong to the calling process
are discarded. Secondly, any data blocks that have been allocated to files that
have not been closed are lost. Be sure to close your files before calling ORV _FREE.

ORV_SETRO is also conditional under Concurrent. The file system does not allow a
process to set a drive to Read-Only if another process has an open file on the
drive. This applies to both removable and permanent drives.

A process can prevent other processes from resetting a Read-Only drive by
opening a file on the drive or by issuing a ORV ACCESS call for the drive and then
making a ORV SETRO call. Executing ORV SETRO before the F OPEN or
ORV_ ACCESS caii leaves an interval In which another process could set- the drive
back to Read-Write. While the open file or dummy item belonging to the process
resides in the Lock List, no other process can reset the drive to take it out of
Read-Only status.

2-36

Concurrent DOS 86 Programmer's Guide 2.18 BOOS Error Handling

2.18 BOOS Error Handling

The Concurrent file system has an extensive error handling capability. When an
error is detected, the BOOS can respond in one of three ways:

1. Display an error message on the console and terminate the process.

2. Return to the calling process with return codes in register AX identifying the
error.

3. Display an error message on the console and return an error code to the
calling process,' as in method 2.

The file system handles the majority of errors it detects by method 2. Two
examples of this kind of error are the "file not found" error for F _OPEN and the
"reading unwritten data" error for F _READ.

More serious errors, such as disk 1/0 errors, are normally handled by method 1.
Errors in this category, called physical and extended errors, can also be reported
by methods 2 and 3 under program control.

The BOOS Error mode, which has three states, determines how the file system
handles physical and extended errors.

* In the default Error mode, the BOOS displays the error message and
terminates the calling process (method 1).

* In Return Error mode, the BOOS returns control to the calling process with
the error identified in register AX (method 2).

* In Return and Display Error mode, the BOOS returns control to the calling
process with the error identified in register AX and also displays the error
message at the console (method 3).

While both return modes protect a process from termination because of a physical
or extended error, the Return and Display mode also allows the calling process to
take advantage of the built-in error reporting of the file system.

Physical and extended errors are displayed in the following format:

Concurrent Error on d: error message
BOOS Function = nn File = f ilename.typ

where d is the name of the drive selected when the error condition occurs; error
message identifies the error; nn is the BOOS function number, and filename.typ
identifies the file specified by the BOOS function. If the BOOS function did not
involve an FCB, the file information is omitted.

The following tables detail BOOS physical and extended error messages.

2-37

2.18 BOOS Error Handling Concurrent DOS 86 Programmer's Guide

2-38

Message

Disk 1/0

Invalid Drive

Table 2-13. BOOS Physical Errors

Meaning

The "Disk 1/0" error results from an error condition returned
to the BOOS from the XIOS module. The file system makes
XIOS read and write calls to execute BOOS file-access
system calls. If the XIOS read or write routine detects an
error, it returns an error code to the BOOS, causing this
error message.

The "Invalid Drive" error also results from an error condition
returned to the BOOS from the XIOS module. The BOOS
makes an XIOS Select Disk call before accessing a drive to
perform a requested BOOS function. If the XIOS does not
support the selected disk. it returns an error code resulting
In this error.

Read/Only File

The BOOS returns the "Read/Only File" error message when
a process attempts to write to a file with the R/O attribute
set.

Read/Only Disk

The BOOS returns the "Read/Only Disk" error message when
a process makes a write operation to a disk that Is in
Read-Only status. A drive can be placed in Read-Only
status explicitly with ORV_ SETRO.

Concurrent DOS 86 Programmer's Guide 2.18 BOOS Error Handling

Table 2-14. BOOS Extended Errors

Message Meaning

File Opened in Read/Only Mode

The BOOS returns the "File Opened in Read/Only Mode"
error message when a process attempts to write to a file
opened in Read-Only mode. A process can open a file in
Read-Only mode explicitly by setting FCB interface attribute
F&'. In addition, if a process opens a file in Locked mode,
the file system automatically forces the open mode to
Read-Only mode when:

* the current user number is zero and the process opens
a file with the Read-Only and System attributes set.

* the current user number is not zero and the process
opens a user zero file with the System attribute set.

The BOOS also returns this error If a process attempts to
write to a file that is password-protected in Write mode,
and It did not supply the correct password when it opened
the file.

File Currently Open

The BOOS returns the "File Currently Open• error message
when a process attempts to delete, rename, or modify the
attributes of a file opened by another process. The BOOS
also returns this error when a process attempts to open a
file in a mode incompatible with the mode in which the file
was previously opened by another process or by the calling
process.

Close Checksum Error

The BOOS returns the "Close Checksum Error• message
when the BOOS detects a checksum error in the FCB
passed to the file system with an F _CLOSE call.

Password Error

The BOOS returns the "Password Error· message when
passwords are required and the file password is not
supplied or is incorrect.

2-39

2. 18 BOOS Error Handling Concurrent DOS 86 Programmer's Guide

Table 2-14. (Cont'd)

Message Meaning

File Already Exists

The BOOS returns the "File Already Exists" error message
for the F _MAKE and F _RENAME when the BOOS detects a
conflict on filename and filetype.

Illegal ? in FCB

The BOOS returns the "Illegal ? in FCB" error message when
the BOOS detects a ? character in the filename or filetype
of the passed FCB for F_ATIRIB, F_OPEN, F_RENAME,
F_TIMEDATE, F_WRITEXFCB, F_TRUNCATE, and F_MAKE.

Open File Limit Exceeded

The BOOS returns the "Open File Limit Exceeded" error
message when a process exceeds Concurrent's process file
lock limit. F _OPEN, F _MAKE, and ORV _ACCESS can return
this error.

No Room in System Lock List

The BOOS returns the "No Room in System Lock List" error
message when no room for new entries exists within the
Lock List. F _OPEN, F _MAKE, and ORV ACCESS can return
this error.

The following paragraphs describe the error return code conventions of the file
system calls. Most file system calls fall into three categories in regard to return
codes; they return an error code, a directory code, or an error flag. The error
conventions let programs written for CP/M-86 run without modification.

The following BOOS system calls return an error code in register AL:

* FLOCK
* F READ
* F_READRAND
* F_UNLOCK
* F_WRITE
* F _ WRITERAND
* F WRITEZF

Table 2-15 lists error code definitions for register AL.

2-40

Concurrent DOS 86 Programmer's Guide 2.18 BOOS Error Handling

Table 2-15. BOOS Logical Errors

Code

OOH

OlH

Definition

Function successful

Reading unwritten data
or
No available directory space on (Write Sequential)

02H No available data block

03H Cannot close current extent

04H Seek to unwritten extent

OSH No available directory space

06H Random record number out of range

08H Record locked by another process (only for files opened in
Unlocked Mode)

09H Invalid FCB (error in previous F _CLOSE call

OAH FCB checksum error

OBH Unlocked file unallocated block verify error (only for files
opened in Unlocked Mode)

OCH Process record lock limit exceeded (returned only by
F _LOCK and F _UNLOCK for files opened in Unlocked mode

OOH Invalid File ID (returned only by F _LOCK and F _UNLOCK for
files opened in Unlocked mode

OEH No room in System Lock List (returned only by F _LOCK and
F _UNLOCK for files opened in Unlocked mode

OFFH Physical error : refer to register AH

For BOOS read and write system calls, the file system also sets register AH when
the returned error code is a value other than zero or OFFH. In this case. register
AH contains the number of 128-byte records successfully read or written before
the error was encountered. Note that register AH can only contain a nonzero
value if the calling process has set the BOOS Multisector Count to a value other
than one; otherwise register AH is always set to zero. On successful system calls
(Error Code • 0), register AH is also set to zero. If the Error Code OFFH, register
AH contains a physical error code (see Table 2-16).

2-41

2. 18 BOOS Error Handling Concurrent DOS 86 Programmer's Guide

The following BOOS system calls return a directory code in register AL:

* ORV SETLABEL
* F ATIRIB
* F CLOSE
* F DELETE
* F MAKE
* F_OPEN
* F RENAME
* F SETDATE
* F SIZE
* F SFIRST
* F SNEXT
* F TIMEDATE
* F TRUNCATE
* F WRITEXFCB

The directory code definitions for register AL are:

OOH - 03H successful function
OFFH unsuccessful function

With the exception of F _ SFIRST and F _ SNEXT, all functions in this category return
with the directory code set to zero upon a successful return. However, for these
two system calls, a successful directory code identifies the relative starting
position of the directory entry in the calling process's current OMA buffer.

If a process uses F _ ERRMODE to place the BOOS in Return Error mode, the
following system calls return an error flag in register AL on physical errors:

* ORV GETLABEL
* ORV ACCESS
* ORV SET
* ORV SPACE
* ORV FLUSH

The error flag definitions for register AL are:

OOH successful function
OFFH physical error : refer to register AH

The BOOS returns nonzero values in register AH to identify a physical or extended
error if the BOOS Error mode is in one of the return modes. Except for system
calls that return a Directory Code, register AL equal to OFFH indicates that register
AH identifies the physical or extended error.

For functions that return a Directory Code, if register AL equals OFFH, and register
AH is not equal to zero, register AH identifies the physical or extended error.
Table 2-16 shows the physical and extended error codes returned in register AH.

2-42

Concurrent DOS 86 Programmer's Guide 2.18 BOOS Error Handling

Code

OlH

02H

03H

04H

05H

06H

07H

08H

09H

OAH

OBH

Table 2-16. BOOS Physical and Extended Errors

Explanation

Disk 1/0 Error : permanent error

Read/Only Disk

Read/Only File, File Opened in Read/Only Mode, or File
Password Protected in Write Mode and Correct Password
Not Specified

Invalid Drive : drive select error

File Currently Open in an incompatible mode

Close Checksum Error

Password Error

File Already Exists

Illegal ? in FCB

Open File Limit Exceeded

No Room in System Lock List

The following two system calls represent a special case because they return an
address in register AX.

* ORV ALLOCVEC
*ORV DBP

When the calling process is in one of the BOOS return error modes and the BOOS
detects a physical error for these system calls, it returns to the calling process
with registers AX and BX set to OFFFFH. Otherwise, they return no error code.

2-43

2.18 BOOS Error Handling Concurrent DOS 86 Programmer's Guide

Under Concurrent, the following system calls also represent a special case:

* ORV ALLRESET
* DRV_RESET
* DRV_SETRO

These system calls return to the calling process with registers AL and BL set to
OFFH if another process has an open file or has made a ORV_ ACCESS call that
prevents the reset or write protect operation. If the calling process is not in
Return Error mode, these system calls also display an error message identifying
the process that prevented the requested operation.

End of Section 2

2-44

SECTION 3

TRANSIENT COMMAND FILES

3.1 Transient Program Loading

A transient program is a file of type CMD that is loaded from disk and resides in
memory only during its operation. A Resident System Process (RSP) is a file that
is included in Concurrent during system generation.

You can initiate a transient process by entering a command at a system console.
The console's TMP (Terminal Message Process) then calls P CU (Command Line
Interpreter), and passes to it the command line you entered.- If the command is
not an RSP, then P CU locates and then loads the proper CMD file. P CU then
calls F _PARSE to pa;se up to two filenames following the command, and place the
properly formatted FCBs at locations 005CH and 006CH in the Base Page of the
initial Data Segment (see Section 3.3).

P _CU initializes memory, the Process Descriptor (PD), and the User Data Area
(UDA), and then allocates a 96-byte stack area, independent of the program, to
contain the process's initial stack. If 8087 processing is required (see Section
3.1.2) P _cu allocates an additional 96 bytes for the UDA.

Concurrent divides the Direct Memory Address (OMA) into the OMA segment
address and the OMA offset. P _CU initializes the default OMA segment to the
value of the initial data segment, and the default OMA offset to 0080H.

P _CU creates the new process with a P _CREATE call and sets the initial stack so
that the process can execute a Far Return instruction to terminate. A process also
ends when it calls P TERMCPM or P TERM. - -
You can also terminate a process by typing a single CTRL-C during console input.
See C_MODE in Section 6 for the details of enabling/disabling CTRL-C. CTRL-C
also forces a ORV_ RESET call for each logged-in drive. This ORV_ RESET operation
only affects removable media drives.

Note: Additional UOA space is allocated for 8087 processing only if the process is
initialized by P _CU. Other processes (such as RSPs) that require 8087 processing
and do not use P _CU must allocate this additional UDA space themselves.

3.1.1 Shared Code

Concurrent allows processes to share program code. This capability avoids
unnecessary program loading of a code segment already in memory and conserves
memory space since multiple copies of the same program code do not have to
occupy different memory space.

When loading "sharable" program code, Concurrent allocates the code group
separately from the rest of the program, and maintains this code group in memory
even after the program has terminated. Subsequent loading of the same program
does not load the code group, but uses the existing one instead. Obviously,
programs written with separate code and data can take advantage of this feature.

3-1

3.1 Transient Program Loading Concurrent DOS 86 Programmer's Gulde

Concurrent maintains a shared code group in memory until a memory request or a
reset drive forces its release. Concurrrent maintains shared code groups in
memory in Least Recently Used (LRU) order on the Shared Code List. If a memory
request is made that cannot be satisfied, the list is drained, one at a time, until the
memory request is satisfied, or the Shared Code List is emptied. If a drive is reset,
Concurrent purges all code groups loaded from that drive.

A shared code program is flagged by the value 09H In G-Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). You can set this field
with the CHSET utility (see the !Jser's Guide). Note that programs using the 8080
memory model cannot share code.

3.1.2 8087 Support

Concurrent provides optional 8087 support for systems that use the 8087
coprocessor. This support is indicated by the Program Flag, byte 127 (07FH), of
the CMD file header.

Setting bit 6 (bit 0 is least significant bit) of the Program Flag indicates optional
8087 support, which means that if the 8087 is present, the program will use it;
otherwise, the program will emulate it.

If bit 5 of the Program Flag is set, it indicates that the 8087 must be present in
order for the program to run. If no 8087 Is present and bit 5 of the Program Flag
is set, the system returns an error when it tries to load the program. You can use
the CHSET utility to set the program's header record for optional or required 8087
support.

If you use P _CU to initiate and execute a process, Concurrent allocates an extra 96
bytes to the UDA for 8087 support. If you require 8087 support and do not use
P _CU, you must specifically allocate this additional 96 bytes to the UDA, turn on
the 8087 flag in the PD, and initialize the CW and SW fields in the 8087 UDA
extension (see description of these fields in Section 6 under P_CREATE).

3.1.3 8087 Exception Handling

Although Concurrent provides its own 8087 exception handling routine, you may
want to write your own. Appendix B includes Instructions and information required
to write an 8087 exception handler, with a sample listing of such a routine.

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by .the
memory image. The command file header record is composed of 8 Group
Descriptors (GDs), each 9 bytes long. Each Group Descriptor describes a portion
of the program to be loaded. Figure 3-1 shows the format of the header record.

3-2

Concurrent DOS 86 Programmer's Guide 3.2 Command File Format

+--+
IGD 1 I GD 2 I GD 3 I GD 4 I GD 5 I GD 6 I GD 7 I GD 8 I
+--+
<--------------------- 128 Bytes ---------------------->

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent Group Descriptors. Each Group
Descriptor corresponds to an independently loaded program unit and has the
format shown in Figure 3-2.

OOH OlH 03H 05H 07H 09H
+--+

G-Type G-Length A-Base G-Min G-Max
+--+

Figure 3-2. Group Descriptor Format

G _Type determines the Group Descriptor type. The valid Group Descriptors have a
G_Type in the range 1 through 9, as shown in Table 3-1. All other values are
reserved for future use. For a given CMD file header only a Code Group and one
of any other type can be included. If a program uses either the Small or Compact
Model, the code group is typically pure; that is, it is not modified during program
execution.

Table 3-1. Group Descriptor Types

G _Type Group Type

01H Code Group (non-shared)
02H Data Group
03H Extra Group
04H Stack Group
05H Auxiliary Group #1
06H Auxiliary Group #2
07H Auxiliary Group #3
OSH Auxiliary Group #4
09H Code Group (shared)

All remaining values in the Group Descriptor are given in increments of 16-byte
paragraph units with an assumed low-order 0 nibble to complete the 20-bit
address.

3-3

3.2 Command File Format Concurrent DOS 86 Programmer's Guide

Field

G_Length

A Base

G Min

G Max

Table 3-2. Group Descriptor Fields

Description

gives the number of paragraphs in the group. For example,
given a G _length of 080H, the size of the group is OSOOH
(2048 decimal) bytes.

defines the base paragraph address for a nonrelocatable
group.

defines the minimum size of the memory area to allocate to
the group.

defines the maximum size of the memory area to allocate
to the group.

The memory model described by a header record is implicitly determined by the
Group Descriptors (refer to Section 4.1). The 8080 Model is assumed when only a
code group is present, because no independent data group is named. The Small
Model is assumed when both a code and data group are present but no additional
Group Descriptors occur. Otherwise, the Compact Model is assumed when the
CMD file is loaded.

3.3 Base Page Initialization

The Base Page contains default values and locations initialized by P CU and
P _LOAD and used by the transient process.

The Base Page occupies the regions from offset OOOOH through OOFFH relative to
the initial data segment, and contains the values shown in Figure 3-3.

3-4

Concurrent DOS 86 Programmer's Guide 3.3 Base Page Initialization

0

6

c

12

18

lE

24

2A

30

50

56

5C

6C

7C

80

L M H L H
0 1 2 3 4 5 6
+--------+--------+--------+--------+--------+--------+

CODE LENGTH CODE BASE M80
--------+--------+--------+--------+--------+--------!

DATA LENGTH I DATA BASE I RESERVED I
--------+--------+--------+--------+--------+--------!

EXTRA LENGTH I EXTRA BASE I RESERVED I
--------+--------+--------+--------+--------+--------!

STACK LENGTH I STACK BASE I RESERVED I
--------+--------+--------+--------+--------+--------!

AUX 1 AUX 1 IRESERVEDI
--------+--------+--------+--------+--------+--------!

AUX 2 AUX 2 IRESERVEDI
--------+--------+--------+--------+--------+--------!

AUX 3 AUX 3 !RESERVED!
--------+--------+--------+--------+--------+--------!

AUX 4 AUX 4 IRESERVEDI
--------+--------+--------+--------+--------+--------!
Bytes 030H through 04FH are not currently used; I
they are reserved for future use by Digital Research!

.
I
I
I

--------+--------+--------+--------+--------+--------!
DRIVE I Pl ADDR IPl LEN I P2 ADDR I

---!
P2 LEN I RESERVED I I

--------+--------+--------+--------+--------+--------!
DEFAULT FILENAMEl I

I
. I

--------+--------+--------+--------+--------+--------!
DEFAULT FILENAME2

I
I
I
I

--------+--------+--------+--------+--------+--------!
CR I RANDOM RECORD NUMBER (opt) I I

--------+--------+--------+--------+--------+--------!
DEFAULT 128-byte OMA BUFFER I

I
+---+

Figure 3-3. Base Page Values

Table 3-3 lists the fields in the Base Page.

3-5

3.3 Base Page Initialization Concurrent DOS 86 Programmer's Guide

3-6

Table 3-3. Base Page Fields

Field Definition

M80 The M80 byte is a flag indicating whether the 8080 Memory
Model was used during load. The values of the flag are:

AUX 1-4

LENGTH

BASE

DRIVE

Pl ADDR

Pl LEN

P2 ADDR

P2 LEN

1 .. 8080 Model
0 .. not 8080 Model

If the 8080 Model is used, the code length never exceeds
OFFFFH.

Designate a set of four optional independent groups that
might be required for programs that execute using the
Compact Memory Model. The initial values for these
descriptors are derived from the header record in the
memory image file.

length is stored using the Intel convention: low, middle,
and high bytes.

Refers to the paragraph address of the beginning of the
segment.

Identifies the drive from which the transient program was
read. 0 designates the default drive, while a value of 1
through 16 identifies drives A through P.

Contains the address of the password field of the first
command tail operand in the default OMA buffer at 0080H.
P _CU sets this field to 0 if no password is specified.

Contains the length of the password field for the first
command tail operand. P CU sets this field to 0 if no
password is specified.

Contains the address of the password field of the second
command tail operand in the default OMA buffer at 0080H.
P _cu sets this field to 0 if no password is specified.

Contains the length of the password field for the second
command tail operand. P _CU sets this field to 0 if no
password is specified.

Concurrent DOS 86 Programmer's Guide 3.3 Base Page Initialization

Table 3-3. (Cont'd)

Field Definition

FILENAME 1 Initialized by P _CU for a transient program from the first
command tail operand of the command line.

FILENAME2 Initialized by P _CU for a transient program from the second
command tail operand of the command line.

CR

Note: File Namel can be used as part of a File Control
Block (FCB) beginning at 05CH. To preserve File Name2,
copy it to another location before using the FCB in file 1/0
system calls.

Contains the current record position used in sequential file
operations with the FCB at 05CH.

RANDOM RECORD NUMBER
The optional Random Record Number is an extension of the
FCB at 05CH, used in random record processing.

OMA BUFFER The Default OMA buffer contains the command tail when
P _cu loads a transient program.

3.4 Parent/Child Process Relationships

Under Concurrent when one process (the parent) creates another process (the
child), the child process inherits most of the default values of the parent process.
This includes the default disk, user number, console, list device, and password.
The child process also inherits interrupt vectors 0, 1, 3, 4, 224, and 225, which the
parent process initialized.

3.5 Direct Video Mapping

Processes which bypass Concurrent's Character 1/0 system calls and use a video
map or screen buffer directly cannot be monitored, and continue to put characters
on the screen even when running in the background. Consequently, any screen
displayed by the program in the foreground console is interspersed with characters
displayed by the program in the background using direct video map 1/0.

To avoid the problems created by using direct video 1/0, set bit 3 of the Program
Flag to tell Concurrent that the process is to be put in suspend mode whenever it
is running in the background and may continue running only when switched to the
foreground. You can use the CHSET utility (see the User's Guide) to set bit 3 of
the Program Flag.

3-7

3.5 Direct Video Mapping Concurrent DOS 86 Programmer's Guide

Note that by-passing Concurrent's Character 1/0 system calls negates the
concurrency of a process, because Concurrent suspends it from running (If bit 3 of
Program Flag is set) unless It Is running In the foreground.

End of Section 3

3-8

SECTION 4

TRANSIENT PROGRAM MEMORY MODELS

When Concurrent loads a program, the initial values of the segment registers, the
instruction pointer. and the stack pointer are determined by the memory model
indicated in the CMD file header record.

There are three transient program models, the 8080 model, the Small Model, and
the Compact Model, summarized in Table 4-1.

Table 4-1. Transient Program Memory Models

Model Group Relationships

8080 Model Code and Data Groups Overlap

Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs that are directly translated from an 8080
environment where code and data are intermixed. The 8080 Model consists of one
group containing all the code, data, and stack areas. Segment registers are
initialized to the starting address of the region containing this group. The segment
registers can, however, be managed by the program during execution so that
multiple segments in the code group can be addressed.

The Small Model is similar to that defined by Intel, consisting of an independent
code group and a data group. The code and data groups often consist of, but are
not restricted to, single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or auxiliary groups are
present in a program. Each group can consist of one or more segments, but if any
group exceeds one segment in size, or if auxiliary groups are present, then the
program must manage its own segment registers during execution in order to
address all code and data areas.

The three memory models differ primarily in how Concurrent initializes the
segment registers when it loads a program. P _LOAD determines which memory
model to use by examining the program group usage, as described in the following
sections.

4-1

4.0 Concurrent DOS 86 Programmer's Guide

For all three memory models, Concurrent initializes an internal 96-byte stack. The
first two words of this stack are reserved for the double word return for
termination by a RETF (Far return) instruction. Figure 4-1 shows the initial
program stack for all three memory models.

+-----------+
IRet Segment!

Far Return Address 1-----------1
SS:SP------------> IRet Offset I

1-----------1
I I
I 92 bytes I
I I
+-----------+

Figure 4-1. Initial Program Stack

The transient program can terminate by using P _ TERMCPM or P _TERM, or by
executing a RETF (Far Return) instruction when the SS and SP still point to the
initial program stack.

4.1 The 8080 Memory Model

P _LOAD assumes the 8080 Model when the transient program contains only a code
group. The intermixed code and data areas are indistinguishable. In this case,
P _CU (Command Line Interpreter) initializes the CS, OS, and ES registers to the
beginning of the code group and sets the SS and SP registers to a 96-byte initial
stack area that it allocates.

Note: P _cu initializes the stack so that if the process executes a Far Return
instruction, it terminates. P _cu sets the Instruction Pointer (IP) Register to 1 OOH,
thus allowing Base Page values at the ·beginning of the code group. Following
program load, the 8080 Model appears as shown in Figure 4-2.

4-2

Concurrent DOS 86 Programmer's Guide 4.1 The 8080 Memory Model

+------------+
I CODE/DATA
I
I
I
I CODE/DATA I

CS:IP ---> OlOOH 1------------1
I I
I BASE PAGE I
I I

CS:O,DS:O,ES:O ---> OOOOH +------------+
Figure 4-2. 8080 Memory Model

The following RASM-86 code fragment shows how to define an 8080 Model
transient program.

cseg
org lOOh

{code)
endcs equ $

dseg
org offset endcs

{data)
end

4.2 The Small Memory Model

P LOAD assumes the Small Model when the transient program contains both a
code and data group. (In RASM-86, all code is generated following a CSEG
directive. Data is defined following a DSEG directive, with the origin of the Data
Segment independent of the Code Segment.)

In this model, P CLI sets the CS register to the beginning of the code group, the IP
to OOOOH, the D-S and ES registers to the beginning of the data group, and the SS
and SP registers to a 96-byte initial stack area that it initializes. Following
program load, the Small Model appears as shown in Figure 4-3.

4-3

4.2 The Small Memory Model

+-----------+

CODE

CS:O
IP:O -> OOOOH +-----------+

Concurrent DOS 86 Programmer's Guide

OlOOH

DS:O
ES:O -> OOOOH

+-----------+
I
I

I DATA I
1-----------1
I I
I BASE PAGE I
+-----------+

Figure 4-3. Small Memory Model

The machine code begins at CS+OOOOH, the Base Page values begin at DS+OOOOH,
and the data area starts at OS+OlOOH.

The following RASM-86 code fragment shows how to define a Small Model
transient program.

cseg

(code)
dseg
org lOOh

(data)
end

4.3 The Compact Memory Model

P _LOAD assumes the Compact Model when code and data groups are present,
along with one or more of the remaining stack. extra, or auxiliary groups. In this
case. P _cu sets the CS, OS, and ES registers to the base addresses of their
respective areas, with the IP set to OOOOH, and the SS and SP registers set to a
96-byte stack area it allocates.

Figure 4-4 shows the initial configuration of the segments in the Compact Model.
The values of the various segment registers can be changed during execution by
loading from the initial values placed in Base Page. This allows access to the
entire memory space.

4-4

Concurrent DOS 86 Programmer's Guide 4.3 The Compact Memory Model

+------+

CODE

CS, IP
OOOOH +------+

+------+

I
I

I DATA I
OlOOH 1------1

I BASE I
I PAGE I

DS:OOOOH +------+ ES:OOOOH

+------+

DATA

+------+

Figure 4-4. Compact Memory Model

If the transient program intends to use the stack group as a stack area, the SS and
SP registers must be set upon entry. The SS and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the
stack group, there are two contradictions. First, the transient program might be
using the stack group as a data area. In that case, the stack values set by P _ CLI
so a tar return can terminate a transient program could overwrite data in the stack
area. Second. the SS register would logically be set to the base of the group,
while the SP would be set to the offset of the end of the group. However, if the
stack group exceeds 64K, the address range from the base to the end of the group
exceeds a 16-bit offset value.

The following RASM-86 code fragment shows how to define a Compact Model
transient program.

cseg

(code)
dseg
org lOOh

(data)
eseg

(more data)
sseg

(stack area)
end

End of Section 4

4-5

SECTION 5

Resident System Process Generation

5.1 Introduction to RSPs

Resident System Processes are programs that become part of Concurrent during
system generation. GENCCPM searches the directory for all files with the filetype
RSP and prompts you to choose whether to include them in the system file,
CCPM.SYS. You create an RSP file by generating a CMD file and then renaming it
with an RSP filetype.

RSPs can be useful in several ways: to create a turnkey system, autoloading
programs when Concurrent is booted; to build customized user interfaces or shells
at the consoles, for monitoring hardware not supported in the XIOS; and to avoid
disk loading time for frequently-used commands.

Appendix A includes the source code for the ECHO RSP. Study this listing carefully
while reading this section. The discussion of P _CREATE in Section 6 is also helpful
in understanding RSPs.

5.2 RSP Memory Models

RSPs have two memory models that are similar to the 8080 Model and the Small
Model for transient programs. However, there are several important distinctions
between transient program and RSP memory models.

The RSP has no equivalent of the Base Page in a transient program's Data
Segment. The RSP is responsible for its own Process Descriptor (PD) and User
Data Area (UDA). The RSP must also allocate an additional 96 bytes at the end of
the User Data Area if 8087 processing is required. Concurrent automatically
creates and initializes these data structures for transient programs at load time.
RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P _CU and P _CREATE in Section 6 for PD and UDA descriptions).

Although there is no Base Page in an RSP, there is an RSP header that must exist
at offset OOH of the Data Segment. In the 8080 Model, this implies that the RSP
header is in the Code Segment. Section 5.4 describes the RSP header and its
associated data structures.

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When Concurrent gives control
of the CPU to an 8080 Model RSP, it initializes the Code, Data, Extra and Stack
Segment registers to the same value.

5-1

5.2 RSP Memory Models Concurrent DOS 86 Programmer's Guide

GENCCPM assumes the 8080 Model if the RSP's CMD File Header Record has a
single Code Group Descriptor and no other Group Descriptors (refer to Section
3.3). When discussing an 8080 Model RSP, any reference to the Data Segment also
refers to the Code Segment.

5.2.2 Small Model RSP

The Small Model RSP Implies separate Code and Data Segments. Before
Concurrent gives control of the CPU to a Small Model RSP, it initializes the Data,
Extra and Stack Segment Registers to the Data Segment address, while the Code
Segment register is initialized to the Code Segment address.

There is no guarantee where GENCCPM will place the Code Segment in memory
relative to the Data Segment. The CMD Header Record for a Small Model RSP
must have both Data and Code Group Descriptors.

Figure 5-1 shows the 8080 and Small Memory model RSPs.

+---------------+
I
I
I
I
I

MIXED
CODE
AND
DATA

I I
1---------------1
I RSP HEADER I

+--------------+ High
I

I DATA I
1--------------1
I RSP HEADER I
I I

DS:--> 1--------------1
I I
I CODE I

CS:,DS:--> +---------------+ CS:-->+--------------+ Low

8080 Model Small Model

Figure 5-1. 8080 and Small Model RSPs

Note: Concurrent does not support compact model RSPs. Extra and Stack
Segments must be part of the Data Segment.

5.3 Multiple Copies of RSPs

GENCCPM can make up to 255 copies of an RSP, with each copy generating a
separate process. The number of copies made by GENCCPM can be fixed, or
dependent on a byte value in the System Data Area. To determine the numbe~ of
copies to make, GENCCPM examines the RSP Header. Figure 5-2 shows the RSP
Header format.

5-2

Concurrent DOS 86 Programmer's Guide 5.3 Multiple Copies of RSPs

Byte: OOH 02H 04H 05H OlOH
+-------------------------------~----+
I LINK I SDATVAR I NCP I RESERVED
+------------------------------------+

Figure 5-2. RSP Header Format

If the SDATVAR field is nonzero, GENCCPM uses it as an offset of a byte value in
the System Data Area, which contains the number of copies to generate. The
offset should indicate a value you set during system generation. The TMP RSP
uses this feature by placing the offset of the NVCNS (Number of Virtual Consoles)
field into the SDATVAR field. This way, a TMP is generated for each System
Console you specify.

If SDATVAR is 0 then the NCP byte is used as the number or extra copies to make.
If both of these fields are 0 then GENCCPM makes no extra copies. The ECHO RSP
is an example of the latter.

If GENCCPM determines the number of copies is greater than O. it gives each copy
a unique copy number by placing the number in the NCP field and appending the
ASCII equivalent to the end of the Process Descriptor NAME field of each copy. If
there is not enough space for the number in the PD NAME. part of the PD NAME is
over written.

For example, with the TMP RSP, GENCCPM makes the specified number of copies
and changes the NAME field in each copy to be TMPO, TMPl. TMP2 and sets the
NCP field to 0, 1. 2, respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an 8080 Model RSP, the CS, OS, ES, and SS fields
in each copy's User Data Area are set to the paragraph address where the RSP is
in memory after loading.

5.3.2 Small Model

When GENCCPM makes copies of a Small Model RSP, it copies both the Code and
Data Groups of the RSP. if the MEM field of the Process Descriptor is 0. See
P CREATE in Section 6 for a description of the Process Descriptor format.
GENCCPM sets the UDA fields CS to the Code Segment of the RSP and OS, ES and
SS to the Data Segment of the RSP.

5.3.3 Small Model with Shared Code

If a Small Model RSP has a nonzero MEM field in its Process Descriptor. the Code
Segment is assumed to be reentrant. When GENCCPM makes copies of this type
of RSP, it copies only the Data Group. GENCCPM sets the UDA CS field for each
copy to the paragraph address of the one Code Segment for the RSP's, but sets
the OS. ES, and SS, In each copied Data Segment to the paragraph address of the
Data Segment for that particular copy.

5-3

5.3 Multiple Copies of RSPs Concurrent DOS 86 Programmer's Guide

5.4 Creating and Initializing an RSP

An RSP that is to be invoked from a console, or through a P _CU call, must create a
special queue called an ASP Command Queue. Such an ASP is called a Command
RSP. and usually performs some initialization routine then goes into a loop. The
initialization routine consists of creating and opening an RSP Command Queue as
well as changing the priority to the default transient process priority. (Priority
values with regard to RSPs are discussed below.)

The first step of the loop reads a message from the RSP Command Queue. The
process that writes the message to the RSP Command Queue activates the
associated RSP. After the RSP returns from the Q _READ call, it obtains the system
resources it needs, such as the calling process's console.

Typically, P _CU assigns the RSP process the console process after successfully
writing the command tail to the RSP Queue. This is only true if the RSP Process
Descriptor name matches the RSP Command Queue name. See P _CU in Section 6
for more information.

When the RSP completes its activities for the given command, it releases any
system resources it has acquired, including the console, and restarts the loop by
reading from its RSP Command Queue.

A Command RSP is a single process and is a serially reusable resource; in other
words, the RSP acts on one message at a time. When several processes attempt
to invoke a single Command RSP, they must wait. See Q_READ, Q_CREAD,
Q_WRITE and Q_CWRITE in Section 6 for further details.

Note: It is certainly possible to create ASPs that are invoked differently.

Figure 5-3 shows the RSP Command Queue Message format.

Byte: OOH 02H . . • 082H
+---+
I PDADDRESS I COMMAND TAIL (129 bytes)

+---+
Figure 5-3. RSP Command Queue Message

The PDADDRESS is the offset (relative to the System Data Area segment) of the
Process Descriptor of the process calling the RSP. A program that wants to invoke
an RSP and is forming an RSP Command Queue Message, can find its Process
Descriptor address by calling P PDADA. The COMMAND TAIL usually contains what
the TMP sends to P _CU minus -the command name, and is terminated with a zero
byte.

When you enter a command at a console, the TMP performs a P _cu call which
attempts to open a queue that has the RSP Flag on, and has the same name as
the command sent to the CU. If the Q OPEN is successful, P CU attempts to
assign the calling process's console to a- process with the same name as the
command.

5-4

Concurrent DOS 86 Programmer's Guide 5.4 Creating and Initializing an RSP

P _ CLI then creates an RSP Command Queue Message with the command tail sent
to the CU from the TMP. and writes it to the RSP Command Queue. A transient
program can use a Command ASP in the same manner by writing directly to the
appropriate RSP Command Queue. An advantage of using P _CU is that it looks for
an RSP first and only searches on disk for a CMD file if the the ASP is not found.

When an RSP reads a ASP Command Queue Message, it often needs information
about the calling process, such as which console, list device, drive, or user number
to use. If a P _CU call invokes an ASP, the RSP is assigned the calling process's
console, but if the ASP Command Queue is written to directly, the calling process
might or might not assign its console to the ASP.

A Command ASP can use the PD address in the Command ASP Message to find
out what the default devices of the calling process are. The ASP should release
any resources it assigns to itself when it is finished.

The ASP Header begins at offset 0 from the beginning of the RSP Data Segment.
Note that in the 8080 Model, the ASP Header is also in the Code Segment. After
the ASP Header is a Process Descriptor starting at offset 010H. A User Data Area
and a stack must also be within the Data Segment, with the UDA placed at a
paragraph boundary relative to the beginning of the Data Segment.

If system calls assuming a default OMA buffer are used, a 128-byte OMA Buffer
must also exist. The OMA OFFSET field in the User Data Area should be set to the
address of the OMA buffer. When Concurrent creates the process, the OMA
SEGMENT field is initialized to the same value as the OS register. The OMA
SEGMENT and OFFSET can also be set by calling F _ DMASEG and F _ DMAOFF once
the RSP is running.

Figure 5-4 shows the beginning of the ASP Data Segment.

5-5

5.4 Creating and Initializing an RSP Concurrent DOS 86 Programmer's Guide

PROGRAM, DATA,
AND RSP STACK

1--------------------IOlAOH
I I
I Optional 8087 I
I UDA extension I
I I
l--------------------I0140H
I USER I
I DATA I
I AREA I
l--------------------l0040H
I PROCESS DESCRIPTOR I
1--------------------IOOlOH
I RSP HEADER I

DS: --> +--------------------+
Figure 5-4. RSP Data Segment

The RSP Header must be located at offset zero in the RSP Data Segment, the RSP
Process Descriptor must be at offset OlOH, and the RSP User Data Area must
begin on an even paragraph boundary.

5.4.1 The RSP Header

As discussed in Section 5.2. the number of RSP copies made depends on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired,
these fields must be zero. As a convenience, when Concurrent creates the RSP
process, the LINK field in the RSP Header is set to the paragraph address of the
System Data Area. The System Data Area can be obtained by an RSP or transient
program with the S_SYSDAT call.

5.4.2 The RSP Process Descriptor

The RSP Process Descriptor should be initialed to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT fields. The PRIORITY field is usually Initialized to
190. This is higher than transient programs and TMPs (200 and 198 respectively),
but lower than the INIT process, which has a priority of 1. The description· of
P _PRIORITY in Section 6 contains more information about system priority
assignments.

Starting an RSP at a priority of 190 ensures the RSP is able to create and open an
RSP Command Queue before it can be invoked through a TMP. RSPs such as
ECHO usually set their priority to 200 after creating and opening their RSP
Command queue and before attempting to read from the queue.

5-6

Concurrent DOS 86 Programmer's Guide 5.4 Creating and Initializing an RSP

Note: There are no guarantees about the order in which Concurrent creates the
RSPs. If one RSP must run before another, it must have a higher priority. Such is
the case when one RSP uses a resource created by a second RSP; the second
must run (at least during initialization) with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data
Segment. The SYS Flag allows a process to read and write to and from restricted
system queues. This is discussed below with regard to RSP Command Queues.
The KEEP flag signals Concurrent that the process cannot be terminated. KEEP is
necessary if an RSP is not to be terminated when you type CTRL-C on a console
being used by the RSP. The 8087 flag tells Concurrent that a process is actively
using the 8087 processor.

The NAME field of the RSP's Process Descriptor is 8 bytes long. It is assumed to
be left-justified and padded with blanks on the right. If an RSP Command Queue
is going to be used to invoke the RSP through the CU, the PD must have the same
upper-case name as the Command Queue.

The UDA field in the Process Descriptor must be the offset (in paragraphs) of the
UDA relative to the RSP data segment. GENCCPM restores the UDA field In the
Process Descriptor to the actual UDA paragraph address when the system is
loaded.

If the PD field name is not the same as the Command Queue, the CU does not
assign the console to the RSP.

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three-word IRET
structure, In the RSP's Data Segment. The offset is relative to the beginning of the
Data Segment. The first of the three words is the offset of the code entry point
for the RSP, relative to the beginning of the RSP Code Segment. Concurrent
executes an IRET instruction to start the RSP using these three words for the IP,
CS and Flag registers respectively.

The CS value on the stack is initialized to be the CS field of the UDA, while the
Flag value is set to 0200H (interrupts on). The RSP stack must come immediately
before these three words. The initial values of the AX, BX, CX, DX, DI, SI, and BP
registers are taken from the appropriate fields in the UDA.

The OMA OFFSET field should be set to the offset of the OMA buffer in the RSP's
Data Segment. Except for the SP and OMA OFFSET fields, and possibly the AX, BX,
ex, DX, DI, SI, and BP fields, the remainder of the UDA fields should be initialized
to 0. The CS, OS, ES, and SS fields are set by GENCCPM as discussed in Section
5.3.

If you include the 8087 extension in the UDA, you must initialize the CW field
(Control Word) to 03FFH and the SW (Status Word) field to 0 before system
generation.

5-7

5.4 Creating and Initializing an RSP Concurrent DOS 86 Programmer's Guide

5.4.4 The RSP Stack

The RSP must reserve space for its stack., which is assumed to lie within the RSP's
Data Segment. The RSP stack. must be large enough to accommodate what the
RSP code needs, plus four levels (eight bytes) to handle possible hardware
Interrupts. We highly recommend that you reserve more than four extra levels of
stack..

The SP field in the RSP's UDA points to the top of this stack.; the top contains the
three-word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP's Command Queue contains information that determines when it begins
execution, and to which console it Is attached. If an RSP is to be accessible from
a console via the TMP, the Command Queue name must be in upper-case. The
FIAGS field in the RSP Command Queue Descriptor must have the RSP bit on. If
this flag is not on, P _CU does not write a message to the RSP Command Queue,
and Instead attempts to load a transient program. The KEEP flag should be set on
to protect the RSP QUEUE from inadvertently using a Q _DELETE call.

The RESTRICTED flag makes a queue accessible only by privileged processes.
Privileged processes have the SYS Flag on in their Process Descriptor. If the
RESTRICTED Flag is on in an RSP Command Queue, then only privileged processes
can invoke the related RSP. A lower-case letter in the RSP Command Queue name
and the RESTRICTED Flag provide two methods of filtering access to an RSP
QUEUE.

The Queue Descriptor of the RSP Command Queue must have have a message
length 131 bytes. The number of messages is usually 1. If the Queue Descriptor
Is within 64K bytes of the beginning of the System Data Area, buffer space for the
Queue Descriptor must be allocated in the RSP. The BUFFER field in the Queue
Descriptor must be the offset of this buffer, relative to the beginning of the RSP's
Data Segment. The buffer size is the message length times the number of
messages, usually 131 bytes.

Note: The queue buffer should be before the Queue Descriptor within the RSP Data
Segment.

An RSP can certainly create other queues besides the RSP Command Queue used
with Command RSPs. However. any queue an RSP creates that lies within 64K of
the System Data Area must have a buffer area pointed to by the BUFFER field in its
Queue Descriptor. To be safe, the buffer should come before the Queue Descriptor
in the RSP's Data Segment.

It is assumed the BUFFER field points to a buffer that is also within 64K of the
System Data Area. If the Queue Descriptor is farther than 64K from then System
Data Area, Concurrent uses buffer space In the System Data Area. Refer to
Q_MAKE in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from it, a Queue
Parameter Block. and its associated buffer must be allocated in the RSP's Data
Segment. These structures are treated just as in a transient process.

5-8

Concurrent DOS 86 Programmer's Guide 5.4 Creating and Initializing an RSP

Note: For any queues created by an RSP, the Queue Buffer areas associated with
the Queue Descriptor and the Queue Parameter Block are separate, distinct areas
of storage.

5.4.6 Multiple Processes within an RSP

An RSP can create child processes by calling P CREATE. Note that if the Process
Descriptor of the process being created is within 64K bytes of the beginning of the
System Data Area, Concurrent uses the PD structure directly. Otherwise it copies
the PD structure into the PD table in the System Data Area.

5.5 Developing and Debugging an RSP

The first RSP you attempt should be very simple, on the order of the ECHO RSP.
New RSPs should be developed and debugged as if they were transient processes,
such as Concurrent's CMD utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: first
load CP/M-86, then invoke SID-86™, and then bring up Concurrent. The ~~_t_e_m
Q!-JL<l!! provides more information about running Concurrent under CP/M-86.

After reading in the CCPM.SYS file under SID-86, find the RSPSEG field of the
System Data Segment (SYSDAT). The paragraph address of the SYSDAT is found
in the A_ BASE field of the Data Group Descriptor in the CCPM.SYS command file
header. The RSPSEG field contains the paragraph address of the Data Segment of
the first RSP in a lin.ked list of the RSPs included by GENCCPM.

See S SYSDAT in Section 6 for details of SYSDAT.

Using SID-86's Display Memory (D) command to show memory at the segment
RSPSEG, you can identify the name of the first RSP in the RSP's Process
Descriptor. The LINK field in the RSP Header, which is the first word in the
RSPSEG segment, is the paragraph value of the next RSP's Data Segment. A zero
in the LINK field means the end of the list of RSPs.

Note that linkage information is lost once Concurrent is initialized. The LINK field
of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once you locate the RSP to be debugged, the initial code entry point can also be
found. As discussed previously, the SP field in the RSP's UDA is the offset from
the beginning of the RSP's Data Segment of the three-word IRET structure. The
first word of the IRET structure contains the initial value of the IP register when
Concurrent creates the RSP process. The initial value of the CS register is in the
CS field also in the RSP's UDA. Once this is done, you can set break points in the
RSP, similar to setting break points in XIOS system calls.

End of Section 5

5-9

SECTION 6

Concurrent System Calls

This section summarizes the Concurrent DOS 86 system calls in tabular form. It is
intended both as an introduction to the calls and as a reference for use when
programming. You should be familiar with the material in Sections 1 through 5
before proceeding.

Note: The system calls described in this section are native to Concurrent. Section
7 describes the DOS system calls that Concurrent emulates. It is strongly
recommended that you do not mix Concurrent and DOS system calls in the same
program; code purely in one or the other.

6.1 Reference Tables

Table 6-1 describes the functional categories of Concurrent system calls and their
general uses.

Table 6-2 lists the system calls in each category and serves as a quick reference
to find the call you need while programming.

Table 6-3 is a summary of the system calls in alphabetical order (by mnemonics)
along with the parameters you must pass when making the call, and the values
returned by the call.

Table 6-4 lists the system calls numerically by function number.

Table 6-5 lists the error codes returned in register CX.

Table 6-6 is an index of the page numbers and figure titles for commonly used
data structures.

6-1

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

6-2

Table 6-1. System Call Functional Categories

Category Use

A_ Auxiliary Device 1/0 System Calls

The Auxiliary Device 1/0 system calls support 1/0 operations
for auxiliary devices.

C Console System Calls

The Console system calls handle 1/0 operations for virtual
consoles on a character, string, and line basis, attach and
detach consoles from processes, and return or change the
number corresponding to the default virtual console.

DEV_ Device System Calls

The Device system calls deal with flags and polling in
managing system resources.

ORV Disk Drive System Calls

The Disk Drive system calls manage Concurrent's logical
drives.

F File-Access System Calls

The File-Access system calls include calls that operate on
files within a directory, calls that operate on records within
files, and other miscellaneous system calls related to file
1/0.

l list Device System Calls

The list Device system calls write characters or strings to
the default list device, attach and detach the default list
device from calling processes, and return or change the
number corresponding to the default list device.

M_ MP/M-86™ Memory Management System Calls

The M_ Memory Management system calls are included for
compatibility with MP/M-86. These calls allocate and free
memory segments according to the MP/M-86 segmentation
algorithm.

MC_ CP/M-86™ Memory Management System Calls

The MC_ Memory Management system calls allocate and
free memory segments according to the CP/M-86
segmentation algorithm.

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Table 6-1. (Cont'd)

Category Use

P _ Process/Program System Calls

The Process/Program system calls create and terminate
processes, call other processes. and perform other
operations on processes.

Q Queue Management System Calls

The Queue Management system calls create, delete, open,
read from, and write to queues.

S System Information Calls

The System information calls return various types of
systems data, such as version numbers and addresses.

T Time System Calls

The Time system calls set the system calendar and clock
and return the time from them in hours and minutes or in
hours, minutes, and seconds.

6-3

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Mnemonic

A ATTACH

A CATTACH

A DETACH

A GET

A READ

A READBLK

A SET

A STATIN

A STATOUT

A WRITE

A WRITEBLK

C ASSIGN

C ATTACH

C_CATTACH

C DELIMIT

C DETACH

C GET

C_MODE

C_RAWIO

C_READ

C READSTR

6-4

Table 6-2. Concurrent DOS 86 System Calls

Definition

Auxiliary Device 1/0 Calls

Attach default auxiliary device to calling process.

Conditionally attach default auxiliary device to calling process.

Detach default auxiliary device from calling process.

Return default auxiliary device of calling process.

Read a character from the default auxiliary device.

Read characters from the default auxiliary input device and write
them to a buffer.

Set default auxiliary device for calling process.

Obtain input status of default auxiliary input device.

Obtain output status of default auxiliary output device.

Write a character to the default auxiliary output device.

Write a character string to the default auxiliary output device.

Console 1/0 Calls

Assign default virtual console to another process.

Establish ownership of the default virtual console to the calling
process; suspend process until console becomes available.

Conditionally establish ownership of the default virtual console
by the calling process; return an error message if the device is
unavailable.

Set or return current String Output Delimiter; used with
C WRITESTR.

Detach default virtual console from the calling process.

Return the virtual console number of the calling process.

Set or return Console mode.

Perform Raw mode 1/0 with the default virtual console.

Read a character from the default virtual console.

Read an edited line from the default virtual console.

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Table 6-2. (Cont'd)

Mnemonic Definition

C SET

C STAT

C WRITE

Set or change the default virtual console for the calling process.

Obtain the input status of the default virtual console.

Write a character to the default virtual console.

C WRITEBLK Write a specified number (block) of characters to the default
virtual console.

C_WRITESTR

DEV POLL

Write a string to the default virtual console until delimiter.

Device Calls

Poll a noninterrupt-driven device.

Set a system flag. DEV SETFLAG

DEV WAITFLAG Wait for a system flag to be set before restoring the current
process.

Disk Drive Calls

ORV _ACCESS Indicate access to specified drives.

ORV ALLOCVEC Get the address of the disk Allocation Vector.

ORV ALLRESET Reset all disk drives.

ORV DPB Return the segment and offset address of the Disk Parameter
Block for the default disk of the calling process.

ORV _FLUSH Write internal pending blocking/deblocking data buffers to disk.

ORV FREE Relinquish access to specified drives.

ORV GET Return the default drive of the calling process.

ORV GETLABEL Return the directory label data byte for the specified drive.

ORV LOGINVEC Return bit map of logged-in disk drives.

ORV RESET Reset the specified drives.

DRV _ROVEC Return bit map vector of drives set to Read-Only.

ORV SET Set default drive of calling process.

ORV SETLABEL Create or update a directory label.

DRV_SETRO Set the default drive to Read-Only.

ORV _SPACE Return unallocated space on the specified drive.

6-5

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Mnemonic

F ATIRIB

F_CLOSE

F DELETE

F DMAGET

F _DMAOFF

F DMASEG

F_ERRMODE

FLOCK

F MAKE

F MULTISEC

F OPEN

F PARSE

F PASSWD

F RANDREC

F READ

F READRAND

F RENAME

F_SETDATE

F SFIRST

F_SIZE

F SNEXT

F TIMEDATE

F_TRUNCATE

F _UNLOCK

F_USERNUM

6-6

Table 6-2. (Cont'd)

Definition

File System Calls

Set file attributes.

Close file.

Delete file.

Return segment and offset address of Direct Memory Address
buffer.

Set the Direct Memory Address offset address.

Set Direct Memory Address buffer segment address.

Set the BDOS Error mode.

Lock record within file opened in Unlocked mode.

Create file.

Set the BDOS Multisector Count.

Open file for record access.

Parse an ASCII string and initialize an FCB.

Set the default password.

Set the Random Record field in the FCB from the sequential
record position.

Read r11cords sequentially.

Read random records

Rename file.

Set file time and date stamp.

Search for first matching directory FCB that matches the
specified FCB.

Return the size of a file.

Search for next matching directory FCB that matches the FCB
specified In the F _SFIRST system call.

Return file's date and time stamps and password mode.

Truncate file to the specified Random Record Number.

Remove record locks.

Set or return the default user number of the calling process.

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Mnemonic

F WRITE

F _ WRITERAND

F _ WRITEXFCB

F_WRITEZF

L ATIACH

L_CATIACH

L_DETACH

L GET

L SET

L WRITE

L WRITEBLK

M ALLOC

M FREE

MC ABSALLOC

MC_ABSMAX

MC_ALLFREE

MC_ALLOC

MC FREE

MC MAX

Table 6-2. (Cont'd)

Definition

Write records sequentially.

Write random records.

Create or update file's XFCB.

Write random records and zero-fill any previously unallocated
data blocks.

list Device Calls

Establish ownership of the default list device by the calling
process; suspend the process until the device is available.

Conditionally establish ownership of the default list device by
the calling process; return error code if the device is
unavailable.

Relinquish ownership of the default list device.

Return the default list device number of the calling process.

Change the default list device for the calling process.

Write a character to the default list device.

Write the specified number of characters (block) to the default
list device.

MP/M-compatible Memory Allocation Calls

Allocate the memory segment between the sizes specified in the
Memory Parameter Block to the calling process.

Free the specified memory segment.

CP/M-compatible Memory Allocation Calls

Allocate a specified amount of RAM at a specific address.

Allocate the maximum amount of RAM available at a specified
address.

Free all memory owned by the calling process.

Allocate a segment of RAM, as specified in the Memory Control
Block, to the calling process.

Free an area of RAM beginning at a specified address, and
extending to the end of the previously-allocated memory area.

Allocate the maximum amount of RAM available in the system.

6-7

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Mnemonic

P ABORT

P CHAIN

p cu

P CREATE

P DELAY

P DISPATCH

P LOAD

P PDADR

P PRIORITY

P RPL

P TERM

P TERMCPM

Q CREAD

Q CWRITE

Q DELETE

Q MAKE

Q OPEN

Q READ

Q WRITE

6-8

Table 6-2. (Cont'd)

Definition

Process/Program Calls

Terminate a process specified by name or Process Descriptor
address.

Pass control to the program specified in the OMA buffer.

Interpret and execute the specified command line by calling
Command Line Interpreter (CU).

Create a subprocess.

Suspend the calling process for a specified number of system
clock ticks.

Force a dispatch operation; give up the CPU resource to the
highest priority process ready to run.

Load the specified CMD file in memory; return its Base Page
segment address.

Return the address of the Process Descriptor of the calling
process.

Set the priority of the calling process.

Invoke a system call from a Resident Procedure Library.

Terminate the calling process.

Terminate calling process unconditionally, release all owned
resources.

Queue Management Calls

Conditionally read a message from a system queue; return error
code if a message is not available.

Conditionally write a message to a system queue; return an
error code if space is not available.

Delete a system queue.

Create a system queue.

Open a system queue for subsequent queue operations.

Read a message from a system queue; suspend calling process
until message is available.

Write a message to a system queue; suspend calling process
until space becomes available.

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Mnemonic

S BDOSVER

S BIOS

S OSVER

S SERIAL

S SYSDAT

T GET

T SECONDS

T SET

Table 6-2. (Cont'd)

Definition

System Information Calls

Return BOOS version number. CPU and operating system type.

Call specified CP/M-86 BIOS character 1/0 routine.

Return type and version number of Concurrent.

Return the Concurrent system serial number.

Return address of the System Data Segment (SYSDAT)

Time Calls

Obtain the system calendar and clock. hours and minutes only.

Return current system date and time; hours, minutes, seconds.

Set internal system calendar and clock to specified value.

6-9

6.1 Reference Tablas Concurrent DOS 86 Programmer's Guide

Table 6-3. System Call Summary - By Mnemonic

Mnemonic Parameters Returned Values

A_ATTACH (ASH) none none
A_CATTACH (A7H) none AX • 0000 if attach, FFFF on failure
A_DETACH (A6H) none AX • 0000 if detach, FFFF on failure

CX • Error Code
A_GET (A9H) none AL= Aux Dev#
A_ READ (03H) none AL" char
A_READBLK (172H) DX• .CHCB AX • # of chars read
A_SET (ASH) AL• Aux# AX • 0000 if set, FFFF on failure

CX • Error Code
A_STATIN (07H) none AL• FFH/OOH
A_STATOUT (08H) none AL= FFH/OOH
A_ WRITE (04H) DL • char none
A_ WRITEBLK (ADH) DX •.CHCB AX • # of chars written
C _ASSIGN (95H) DX• .ACB AX • Return Code
C_ATTACH (92H) none none
C _CA TT ACH (A2H) none AX = Return Code
C_DELIMIT (6EH) DX• Out Delim AL .. Out Delim
C_DETACH (93H) none none
C_GET (99H) none AL• con#
C _MODE (6DH) DX• Con Mode none

• FFFFH AX• Con Mode
C_RAWIO (06H) see def see def
C _READ (0 lH) none AL• char
C_READSTR (OAH) DX• .Buffer see def
C_SET (94H) DL •Console none
C_STAT (OBH) none AL• 00/01
C _WRITE (02H) DL •char none
C _ WRITEBLK (6FH) DX• .CHCB none
C _ WRITESTR (09H) DX• .Buffer none
DEV _POLL (83H) DL •Device none
DEV_ SETFLAG (85H) DL • Flag AX • Return Code
DEV_ WAITFLAG (84H) DL • Flag AX • Return Code
ORV_ ACCESS (26H) DX • Drive Vect none
DRV_ALLOCVEC (lBH) none AX• .Alloc
DRV_ALLRESET (OOH) none see def
DRV_DPB (lFH) none AX• .DPB
ORV _FLUSH (30H) none see def
DRV _FREE (27H) DX • Drive Vect none
DRV_GET (19H) none AL • Cur Drive #
DRV_GETLABEL (65H) DX• Drive# AL • Label Data Byte

6-10

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Table 6-3. (Cont'd)

Mnemonic Parameters Returned Values

DRV_LOGINVEC (18H) none AX • Login Vect
ORV_ RESET (25H) DX = Drive Vect AL • Error Code
ORV_ ROVEC (1 DH) none AX• R/O Vect
DRV_SET (OEH) Dl = Drive # see def
ORV_ SETLABEL (64H) DX= .FCB AL = Dir Code
DRV_SETRO (1CH) none see def
DRV_SPACE (2EH) Dl = Drive # see def
F_ATTRIB (1EH) DX= .FCB see def
F _CLOSE (1 OH) DX= .FCB Al• Dir Code
F _DELETE (13H) DX= .FCB Al= Dir Code
F _ DMAGET (34H) none AX • OMA Offset
F_DMAOFF (1AH) DX= .OMA none
F _ DMASEG (33H) DX= .OMA Seg none
F _ ERRMODE (2DH) Dl .. Err Mode none
F _LOCK (2AH) DX= .FCB AL • Error Code
F_MAKE (16H) DX= .FCB AL• Dir Code
F _ MUL TISEC (2CH) DL = # of Recs AL • Return Code
F _OPEN (OFH) DX= .FCB AL= Dir Code
F _PARSE (98H) DX= .PFCB see def
F _PASSWD (6AH) DX • .Password none
F _RANDREC (24H) DX= .FCB RO, Rl, R2
F_READ (14H) DX" .FCB AL • Error Code
F _READ RAND (21 H) DX= .FCB AL • Error Code
F_RENAME (17H) DX• .FCB AL• Dir Code
F _SFIRST (11H) DX= .FCB Al= Dir Code
F _SIZE (23H) DX,. .FCB RO, Rl, R2

AL= Dir Code
F _ SNEXT (12H) none AL,. Dir Code
F _ TIMEDATE (66H) DX= .XFCB Al,. Dir Code
F _TRUNCATE (63H) DX= .FCB see def
F _UNLOCK (2BH) DX= .FCB AL ,. Error Code
F _ USERNUM (20H) Dl " OFFH (get) AL= User#

= User # (set) none
F_WRITE (1SH) DX,. .FCB AL = Error Code
F _WRITE RAND (22H) DX= .FCB Al = Error Code
F _ WRITEXFCB (67H) DX= .XFCB Al= Dir Code
F _ WRITEZF (28H) DX= .FCB Al ,. Error Code
l_ATTACH (9EH) none none
L_ CATTACH (A 1 H) none AX = Return Code
l _DETACH (9FH) none none

6-11

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Table 6-3. (Cont'd)

Mnemonic Parameters Returned Values

L_GET (A4H) none AL• list #
L_SET (AOH) DL • List # none
L_WRITE (05H) DL •char none
L_ WRITEBLK (70H) DX ... CHCB none
M _ ALLOC (SOH) DX ... MPB AX .. Return Code
M _FREE (82H) DX ... MPB none
MC_ABSALLOC (38H) DX ... MCB see def
MC_ ABSMAX (36H) DX• .MCB see def
MC_ALLFREE (3AH) none none
MC_ALLOC (37H) DX ... MCB see def
MC _FREE (39H) DX"' .MCB see def
MC_MAX (35H) DX= .MCB see def
P _ABORT (9DH) DX ... ABP AX • Return Code
P _CHAIN (2FH) see def none
P _CLI (96H) DX• .CLBUF none
P_CREATE (90H) DX• .PD none
P_DELAY (SDH) DX• #ticks none
P _DISPATCH (8EH) none none
P _LOAD (3BH) DX• .FCB AX• BP Addr
P _PDADR (9CH) none AX• PD Addr
P _PRIORITY (91 H) DL • Priority none
P _RPL (97H) DX• .CPB AX• result
0 _ CREAD (BAH) DX"' .QPB AX • Return Code
Q _ CWRITE (SCH) DX• .QPB AX • Return Code
O_DELETE (88H) DX• .QPB AX • Return Code
O_MAKE (86H) DX• .QD none
0 _OPEN (87H) DX= .QPB AX • Return Code
Q_READ (89H) DX• .QPB none
0 _WRITE (8BH) DX• .QPB none
S _ BDOSVER (OCH) none AX• Version#
S_BIOS (32H) DX• .BO AX• BIOS rtn
S _ OSVER (A3H) none AX "' Version #
S _SERIAL (6BH) DX • .serial # serial # set
S_SYSDAT (9AH) none AX • Sys Data Addr
T_GET (69H) DX• .TOD AL .. seconds
T _SECONDS (9BH) DX• .TOD TOD filled in
T_SET (68H) DX• .TOD none

6-12

Concurrent DOS 86 Programmer's Guide

Note: Concurrent does not support System calls 3, 4, 7, and 8.

Table 6-3 uses the following conventions:

Address of
Number
ACB Assign Control Block
APB Abort Parameter Block
Addr Address
BO Bios Descriptor
BP Base Page
Char ASCII Character
CHCB Character Control Block
CLBUF Command Line Buffer
CPB Call Parameter Block
Con Console
Cur Current
Delim Delimiter
Dir Directory
OMA Direct Memory Address
FCB File Control Block
MCB Memory Control Block
MPB Memory Parameter Block
Num Number
Out Output
PD Process Descriptor
PFCB Parse Filename Control Block
OD Queue Descriptor
OPB Queue Parameter Block
Rec Record
Rtn Return
Sys System
TOD Time of Day
Vect Vector

6.1 Reference Tables

Uppercase mnemonics refer to Data Structures; see the function definition. A ·:
before a Data Structure means the byte offset of the Data Structure. A Return
Code is either 0 for success or OFFFFH to indicate failure. When the Return Code
in AX is OFFFFH, CX is the Error Code (see Table 6-5). An error code returned in
AL is specific to the BOOS system call that was made.

6-13

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Table 6-4. System Call Summary by Function Number

Decimal Hexadecimal Mnemonic

0 0 P TERMCPM
1 1 C READ
2 2 C WRITE
3 3 A READ
4 4 A WRITE
5 5 L WRITE
6 6 C RAWIO
7 7 A STATIN
8 8 A STATOUT
9 9 C WRITESTR
10 A C READSTR
11 B C STAT
12 c S BDOSVER
13 D ORV ALLRESET
14 E ORV SET
15 F F OPEN
16 10 F_CLOSE
17 11 F_SFIRST
18 12 F_SNEXT
19 13 F DELETE
20 14 F READ
21 15 F WRITE
22 16 F MAKE
23 17 F RENAME
24 18 ORV LOGINVEC
25 19 DRV_GET
26 lA F DMAOFF
27 18 ORV ALLOCVEC
28 lC ORV SETRO
29 10 ORV-ROVEC
30 lE F ATTRIB
31 lF ORV OPB
32 20 F USERNUM
33 21 F READRANO
34 22 F WRITERANO
35 23 F SIZE
36 24 F RANDREC
37 25 ORV RESET
38 26 ORV_ACCESS
39 27 ORV_FREE
40 28 F WRITEZF

6-14

Concurrent DOS 86 Programmer's Guide 6. 1 Reference Tables

Table 6-4. (Cont'd)

Decimal Hexadecimal Mnemonic

42 2A FLOCK
43 2B F UNLOCK
44 2C F MULTISEC
45 20 F ERRMODE
46 2E ORV SPACE
47 2F P CHAIN
48 30 ORV FLUSH
50 32 S BIOS
51 33 F DMASEG
52 34 F DMAGET
53 35 MC MAX
54 36 MC ABSMAX
55 37 MC ALLOC
56 38 MC ABSALLOC
57 39 MC FREE
58 3A MC ALLFREE
59 3B P LOAD
99 63 F TRUNCATE
100 64 ORV SETLABEL
101 65 ORV GETLABEL
102 66 F TIMEDATE
103 67 F WRITEXFCB
104 68 T SET
105 69 T GET
106 SA F PASSWD
107 6B S SERIAL
109 60 C MODE
110 6E C DELIMIT
111 6F C WRITEBLK
112 70 L WRITEBLK
116 74 F SETDATE
128 80 M ALLOC
129 81 M_ALLOC
130 82 M FREE
131 83 DEV POLL
132 84 DEV WAITFLAG
133 85 DEV SETFLAG
134 86 Q MAKE
135 87 Q OPEN
136 88 O_DELETE
137 89 Q READ

6-15

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Table 6-4. (Cont'd)

Decimal Hexadecimal Mnemonic

138 SA Q CREAD
139 SB Q WRITE
140 SC Q CWRITE
141 SD P DELAY
142 SE P DISPATCH
143 SF P TERM
144 90 P CREATE
145 91 P PRIORITY
146 92 C ATTACH
147 93 C DETACH
148 94 C SET
149 95 C ASSIGN
150 96 p cu
151 97 P RPL
152 98 F PARSE
153 99 C GET
154 9A S SYSDAT
155 9B T SECONDS
156 9C P PDADR
157 9D P ABORT
158 9E L ATTACH
159 9F L DETACH
160 AO L SET
161 Al L CATTACH
162 A2 C CATTACH
163 A3 S OSVER
164 A4 L GET
165 AS A ATTACH
166 A6 A_DETACH
167 A7 A CATTACH
16S AS A SET
169 A9 A GET
172 AC A READBLK
173 AD A WRITEBLK

6-16

Concurrent DOS 86 Programmer's Guide 6.1 Reference Tables

Table 6-5. Register CX Error Codes

Dec Hex Error Report

0 OOH No error
1 OlH System call not implemented
2 02H Illegal system call number
3 03H Cannot find memory
4 04H Illegal flag number
5 05H Flag overrun
6 06H Flag underrun
7 07H No unused Queue Descriptors
8 08H No free queue buffer
9 09H Cannot find queue
10 OAH Queue in use
12 OCH No free process descriptors
13 OOH No queue access
14 OEH Empty queue
15 OFH Full queue
16 10H CLI queue missing
17 11H No 8087 in system
18 12H No unused Memory Descriptors
19 13H Illegal console number
20 14H No Process Descriptor match
21 15H No console match
22 16H No CLI process
23 17H Illegal disk number
24 18H Illegal filename
25 19H Illegal filetype
26 lAH Character not ready
27 1BH Illegal memory descriptor
28 lCH Bad return from BOOS load
29 1DH Bad return from BOOS read
30 1EH Bad return from BOOS open
31 1FH Null command
32 20H Not owner of resource
33 21H No CSEG in load file
34 22H Process Descriptor exists on Thread Root
35 23H Could not terminate process
36 24H Cannot attach to process
37 25H Illegal list device number
38 26H Illegal password
40 28H External termination occurred
41 29H Fixup error upon load
42 2AH Flag set ignored
43 2BH Illegal auxiliary device number

6-17

6.1 Reference Tables Concurrent DOS 86 Programmer's Guide

Table 6-6. Data Structures Index

Figure Title Page

2-1 FCB - File Control Block 2-8
2-2 FCB Initialized for a DOS Directory 2-11
2-3 FCB Time/Date Fields for DOS Files 2-13
2-4 Directory Label Format 2-17
2-5 XFCB - Extended File Control Block 2-18
2-6 Directory Record with SFCB 2-21
2-7 SFCB Subfields 2-21

3-1 GMO File Header Format 3-3
3-2 Group Descriptor Format 3-3
3-3 Concurrent DOS 86 Base Page Values 3-6
4-1 Initial Program Stack 4-2
4-2 Concurrent CP/M 8080 Memory Model 4-3
4-3 Concurrent CP/M Small Memory Model 4-4
4-4 Concurrent CP/M Compact Memory Model 4-5

5-1 8080 and Small RSP Models 5-2
5-2 RSP Header Format 5-3
5-3 RSP Command Queue Message 5-4
5-4 RSP Data Segment 5-6

6-1 ACB - Assign Control Block 6-30
6-2 Console Buffer Format 6-41
6-3 Drive, R/O, or Login Vector Structure 6-52
6-4 DPB - Disk Parameter Block 6-55
6-5 Disk Free Space Field Format 6-69
6-6 PFCB - Parse Filename Control Block 6-88
6-7 MCB - Memory Control Block 6-126
6-8 MPB - Memory Parameter Block 6-127
6-9 MFPB - M FREE Parameter Block 6-130
6-10 APB - Abort Parameter Block 6-137
6-11 CLI Command Line Buffer 6-140
6-12 PD - Process Descriptor 6-143
6-13 UDA - User Data Area 6-148
6-14 CPB - Call Parameter Block 6-156
6-15 OPB - Queue Parameter Block 6-160
6-16 OD - Queue Descriptor Format 6-165
6-17 BIOS Descriptor Format 6-172
6-18 Serial Number Format 6-174
6-19 SYSDAT Table 6-176
6-20 TOD Structure 6-181

6-18

Concurrent DOS 86 Programmer's Guide A ATTACH

A ATTACH

Attach Default Auxiliary Device to Calling Process

Entry Parameters:
Register CL: A5H (165)

A_ATTACH attaches the default auxiliary device to the calling process. If the
auxiliary device is already owned by the calling process or if it is not owned by
another process, A_ATTACH immediately returns with ownership established and
verified. If another process owns the auxiliary device, the calling process
relinquishes the CPU and waits until the auxiliary device becomes available.

The A_READ, A_READBLK, A_WRITE, and A_WRITEBLK calls internally invoke
A_ATTACH to ensure the calling process owns the auxiliary device before
attempting the appropriate read or write operation. If the process does not own
the device, these Auxiliary Device 1/0 system calls use A_ATTACH to establish
ownership.

The preferred method of performing auxiliary device 1/0 is to call A ATTACH to
establish device ownership before invoking the appropriate read or write system
function.

6-19

A CATTACH Concurrent DOS 86 Programmer's Guide

A CATTACH

Conditionally Attach Default Auxiliary Device To Calling Process

Entry Parameters:
Register CL: A7H (167)

Returned Values:
Register AX: 0000 on attach, FFFFH on failure

BX: Same as AX

A_CATTACH attaches the default auxiliary device to the calling process only if the
device is currently available. If the auxiliary device is currently attached to another
process, A_ATTACH returns a value of FFFFH to indicate the device could not be
attached. A_CATTACH returns a value of 0000 to indicate that either the auxiliary
device Is already attached to the process, or that it was successful in attaching the
device.

6-20

Concurrent DOS 86 Programmer's Guide

A DETACH

Detach Default Auxiliary Device from Calling Process

Entry Parameters:
Register CL: ASH (166)

Returned Values:
Register AX:

BX:
CX:

0000 on detach. FFFFH on failure
Same as AX
Error code

A DETACH

A_DETACH detaches the default auxiliary device from the calling process.
A_DETACH performs no action if the auxiliary device is not currently attached to
the calling process.

Table 6-5 contains the list of error codes returned in register CX.

6-21

A GET Concurrent DOS 86 Programmer's Guide

A GET

Return the Calling Process's Default Auxiliary Device

Entry Parameters:
Register CL: A9H (169)

Returned Values:
Register AL: Auxiliary device number

BL: Same as AL

A_ GET returns the default auxiliary device number of the calling process.

6-22

Concurrent DOS 86 Programmer's Gulde

A READ

Read a Character from the Default Auxiliary Input Device

Entry Parameters:
Register CL: 03H (3)

Returned Values:
Register AL: ASCII character

BL: Same as AL

A READ

A_READ reads the next 8-bit character from the logical auxiliary input device
(AUXIN:) and returns It In register AL. Before reading the character, Concurrent
internally calls A_ATTACH to ensure that the calling process owns its default
auxiliary device (see A_ATTACH). A_READ does not return control to the calling
process until it has read the character.

6-23

A READBLK Concurrent DOS 86 Programmer's Guide

A READBLK

Read Characters from the Default Auxiliary
Input Device and Write Them to a Buffer

Entry Parameters:
Register CL: ACH (172)

DX: CHCB address

Returned Values:
Register AX:

BX:
Number of characters read
Same as AX

A_ READBLK reads characters from the default auxiliary input device (AUXIN:) and
writes them into the character buffer located by the Character Control Block
(CHCB) addressed in OX. Concurrent calls A ATTACH to ensure the calling process
owns its default auxiliary device before -performing the read operation (see
A_ATTACH).

The format of the CHCB is as follows:

Bytes 0-1: Offset of character buffer
Bytes 2-3: Segment address of character buffer
Bytes 4-5: Length of character buffer

A_ READBLK returns the number of characters actually read from the default
auxiliary device in register AX. A READBLK returns to the calling process when the
status of AUXIN: indicates that th-e device is empty or the character buffer is full.
A_ READBLK does not return control to the calling process until at least one
character has been read.

6-24

Concurrent DOS 86 Programmer's Guide

A SET

Set the Calling Process's Default Auxiliary Device

Entry Parameters:
Register CL: ASH (168)

Dl: Auxiliary device number

Returned Values:
Register AX: 0000 on set, FFFF on failure

BX: Same as AX
CX: Error code

A_ SET sets the default auxiliary device for the calling process.

Table 6-5 contains the list of error codes returned in register CX.

A SET

6-25

A STATIN Concurrent DOS 86 Programmer's Guide

A STATIN

Obtain the Input Status of the Default Auxiliary Input Device

Entry Parameters:
Register Cl: 07H (7)

Returned Values:
Register AL: FFH Character ready, 00 Not ready

Bl: Same as AL

A_STATIN checks the Input status of the AUXIN: device. If a character is ready for
Input from the auxiliary device, A_STATIN returns the value FFH in register AL.
A_STATIN returns OOH If no Input is ready.

6-26

Concurrent DOS 86 Programmer's Guide A STATOUT

A STATOUT

Obtain the Output Status of the Default Auxiliary Output Device

Entry Parameters:
Register CL: 08H (8)

Returned Values:
Register AL: FFH Ready for output, 00 Not ready

BL: Same as AL

A_STATOUT checks the output status of the AUXOUT: device. If AUXOUT: is ready
for output, A_STATOUT returns the value FFH in register AL A STATOUT returns
OOH if the auxiliary device is not ready for output.

6-27

A WRITE Concurrent DOS 86 Programmer's Guide

A WRITE

Write a Character to the Default Auxiliary Output Device

Entry Parameters:
Register CL: 04H (4)

DL: ASCII character

A_WRITE writes the specified character to the default auxiliary device of the calling
process. Before writing the character, A WRITE calls A ATTACH to ensure the
calling process owns Its default auxiliary device. If the process does not own the
device, A_WRITE uses A_ATTACH to establish ownership (see A_ATTACH).

6-28

Concurrent DOS 86 Programmer's Guide

Entry Parameters:

A WRITEBLK

Send Specified Character String to
the Default Auxiliary Output Device

Register CL: ADH (173)
DX: CHCB address

Returned Values:
Register AX:

BX:
Number of characters written
Same as AX

A WRITEBLK

A_ WRITEBLK writes the character string located by the Character Control Block
(CHCB) addressed in register DX to the default auxiliary device. As with A WRITE,
Concurrent ensures the calling process owns the auxiliary device by - calling
A_ATTACH before attempting the write operation (see A_ATTACH).

The format of the CHCB is as follows:

Bytes 0-1: Offset of character string
Bytes 2-3: Segment address of character string
Bytes 4-5: Length of character string

A_WRITEBLK returns the number of characters written to the default auxiliary
device in register AX. A_ WRITEBLK returns to the calling process when the status
of AUXOUT: indicates that the device is full or the character string has been
written. A_ WRITEBLK does not return control to the calling process until at least
one character has been written.

6-29

C ASSIGN Concurrent DOS 86 Programmer's Gulde

C ASSIGN

Assign Default Console Device To Another Process

Entry Parameters:
Register CL:

DX:
OS:

095H (149)
ACB Address - Offset
ACB Address - Segment

Returned Values:
Register AX:

BX:
CX:

0 If assign "OK", OFFFFH on Failure
Same as AX
Error Code

C _ASSIGN directly assigns the specified console to a specified process, overriding
the normal mechanism of the C ATTACH and C DETACH calls. C ASSIGN returns - - -
an error code if a process other than the calling process owns the console.
C _ASSIGN ignores other processes waiting to attach to the specified console, and
they continue to wait until the current owner either calls C_DETACH, or terminates.

The calling process passes the address of an Assign Control Block (ACB). Figure
6-1 shows the Assign Control Block format. Table 6-7 lists the fields in the
Assign Control Block. Table 6-5 contains the list of error codes returned in CX.

+-----------------------+
00 I CNS I MATCH I PD I

!--+
04 I NAME I

+--+
Figure 6-1. ACB - Assign Control Block

6-30

Concurrent DOS 86 Programmer's Guide C ASSIGN

Field

CNS

MATCH

PD

NAME

Table 6-7. ACB Field Definitions

Definitions

Console to assign

Boolean; if OFFH, the process being assigned the console
must have the CNS as its default console for a successful
Assign. If OH, no check is made.

Process ID of the process being assigned the console. If
this field is zero, a search is made of the Thread list for a
process whose name is NAME. This field must be either
zero or a valid Process ID. If this value is not a valid PD,
an error occurs.

8-byte process name to search for. An error occurs if a
process by this name does not exist.

6-31

C ATTACH Concurrent DOS 86 Programmer's Guide

C ATTACH

Attach Default Console To Calling Process

Entry Parameters:
Register CL: 092H (146)

C _ATTACH attaches the default console to the calling process. If the console is
already owned by the calling process or if it is not owned by another process,
C_ATTACH immediately returns with ownership established and verified. If another
process owns the console, the calling process waits until the console becomes
available.

6-32

Concurrent DOS 86 Programmer's Guide

C CATTACH

Conditionally Attach Default Console To Calling Process

Entry Parameters:
Register CL: OA2H (162)

Returned Values:
Register AX: 0 if attach 'OK', OFFFFH on failure

BX: Same as AX
CX: Error Code

C CATTACH

C_CATTACH attaches the default console of the calling process only if the console
is currently unattached. If the console is currently attached to another process,
C_CATTACH returns a value of OFFH indicating the console could not be attached.
C _ CATTACH returns a value of O to indicate that either the console is already
attached to the process or that it was unattached and a successful attach
operation was made.

Table 6-5 contains the list of error codes returned in ex.

6-33

C DELIMIT

Entry Parameters:
Register CL:

DX:
Dl:

Returned Values:
Register Al:

Bl:

Concurrent DOS 86 Programmer's Guide

C DELIMIT

Set or Return Output Delimiter

06EH (110)
OFFFFH (get) or
Output Delimiter (set)

Output Delimiter, or no value if set
Same as Al

C _DELIMIT can set or interrogate the current Output Delimiter. If register DX •
OFFFFH, then the current Output Delimiter is returned in register Al. Otherwise,
C _DELIMIT sets the Output Delimiter to the value in register Dl.

C _DELIMIT sets the string delimiter for C _ WRITESTR. When a new process is
created, the default delimiter value is set to a dollar sign, $. The default delimiter
is not Inherited from the parent process.

6-34

Concurrent DOS 86 Programmer's Guide

C DETACH

Detach Default Console From Calling Process

Entry Parameters:
Register CL: 093H (147)

Returned Values:
Register AX: 0 if detach 'OK", OFFFFH on failure

BX: Same as AX

C DETACH

C DETACH detaches the default console from the calling process. If the default
console is not attached to the calling process. no action is taken. If other
processes are waiting to attach to the console, the process with the highest
priority attaches the console. If there is more than one process with the same
priority waiting for the console, it is given to the queue writing processes on a
first-come. first-serve basis.

6-35

C GET Concurrent DOS 86 Programmer's Guide

C GET

Return The Calling Process's Default Console

Entry Parameters:
Register CL: 099H (153)

Returned Values:
Register AL: Console number

BL: Same as AL

C _GET returns the default console number of the calling process.

6-36

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:

Returned Values:
Register AX:

BX:

C MODE

Set or Return Console mode

06DH (109)
FFFFH (get) or Console mode (Set)

Console mode or (no value)
Same as AX

C MODE

C _MODE can set or interrogate the Console Mode, which is a 16-bit system
parameter that determines the action of certain Console 1/0 functions. The
Console Mode is set to zero when a new process created; it is not inherited from
its parent.

If register DX = FFFFH, C _MODE returns the current Console Mode in register AX.
Otherwise, C _MODE sets the Console Mode to the value contained in register DX.

The Console Mode definition is:

bit 0 = 1

bit 0 = 0

bit 1 = 1

bit 1 = 0

bit 2 = 1

bit 2 = 0

bit 3 = 1

bit 3 = 0

bit 7 = 1

bit 7 = 0

bit 10 2 1

bit 10 = 0

CTRL-C only status for C STAT.

Normal status for C STAT.

Disable support for stop/start scroll (CTRL-S/CTRL-0).

Enable support for stop/start scroll.

Raw console output mode. Disables tab expansion for
C _WRITE, C _WRITES TR, and C _ WRITEBLK. Also disables
support for printer echo (CTRL-P).

Normal console output mode.

Disable CTRL-C program termination.

Enable CTRL-C program termination.

Disable CTRL-0 console output byte bucket.

Enable CTRL-0 console output byte bucket

Enable Escape as end-of-line character.

Disable Escape as end-of-line character.

Note that the Console mode bits are numbered from right to left.

6-37

C RAWIO Concurrent DOS 86 Programmer's Guide

C RAWIO

Perform Direct Console 1/0 With Default Console

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AL:

BL:

06H (6)
OFFH (Input/Status) or
OFEH (Status) or
OFDH (Input) or Character (Output)

(Input/Status)
,. OH (No Character)
• Character

(Status)
• OH (No Character)
• OFFH (Ready)

(Input)
• Character

(Output)
No return value

Same as AL

C_RAWIO allows the calling process to do raw console 1/0 to its default console.
Concurrent verifies that the calling process owns its default console before
allowing any 1/0.

In Raw mode, the CTRL-C, CTRL-P, CTRL-S, and CTRL-0 characters are not acted
on by the PIN (Physical Input Process) but are passed on to the calling process.

Note: If the virtual console is in CRTL-S mode, and the process that owns the
virtual console then performs a C_RAWIO call, the CTRL-S state is reset.

A process calls C_RAWIO by passing one of three values shown in Table 6-8.

6-38

Concurrent DOS 86 Programmer's Guide C RAWIO

Value

OFFH

OFEH

OFDH

Table 6-8. C _ RAWIO Calling Values

Description

Console input status command (if no character is ready, a
OOH is returned, else the character is returned.)

Console status command (on return. register AL contains
OOH if no character is ready; otherwise it contains OFFH.)

Console input command (if no character is ready, the
calling process waits until one is typed.) Input characters
are not echoed to the screen.

ASCII character
If the parameter is less than OFDH. C_RAWIO assumes
register DL contains a valid ASCII character and sends it to
the console.

6-39

C READ Concurrent DOS 86 Programmer's Guide

C READ

Read A Character From The Default Console

Entry Parameters:
Register CL: 01 H (1)

Returned Values:
Register AL: Character

BL: Same as AL

C _READ reads a character from the default console of the calling process. Before
attempting the read, Concurrent verifies the ownership of the console. If the
calling process does not own the console, It relinquishes the CPU resource until
the calling process can attach to the console. Typically, a process created through
a P _CU call owns its default console when it begins execution.

C _READ echoes graphic characters read from the console. This includes the
carriage return, line feed, and backspace characters. It expands tab characters
(CTRL-1) in columns of eight characters.

C_READ ignores the termination character (CTRL-C) if the calling process cannot
terminate (refer to P _TERM). C _READ does not return until a character is typed on
the console. Concurrent suspends the calling process until a character Is ready.

6-40

Concurrent DOS 86 Programmer's Guide C READSTR

C READSTR

Read An Edited Line From The Default Console

Entry Parameters:
Register CL: OAH (10)

DX: Console Buffer Address - Offset
OS: Console Buffer Address - Segment

C _READS TR reads characters from the calling process's default console and places
them into the specified Console Buffer. Figure 6-2 shows the format of the
Console Buffer, and Table 6-9 lists the Console Buffer field definitions.

C_READSTR performs line-editing system calls on the line as it is read from the
console; it completes a line and returns upon receiving a terminator character
(carriage return or line feed) from the console, or when the maximum number of
characters is reached.

As with C_READ, C_READSTR echoes all graphic characters read from the console.
Concurrent verifies that the calling process owns its default console before
allowing 1/0 to begin.

0 1 MAX + 2
+--+
I MAX I NCHAR I CHARACTERS .•.
+--+

Field

MAX

NC HAR

figure 6-2. Console Buffer Format

Table 6-9. Console B1,1ffer Field Definitions

Definition

Maximum number of characters that can be read into the
buffer. This value must be initialized before calling
C READSTR.

Actual number of characters read into the buffer as filled in
by C_READSTR.

CHARACTERS Actual characters read from the console as filled in by
C READSTR.

6-41

C READSTR Concurrent DOS 86 Programmer's Guide

C READSTR recognizes a number of special characters used in editing the input
line, as well as a set of special characters that actually control the calling process.

6-42

Character

CTRL S

CTRL D

CTRL A

CTRL F

CTRL Q

CTRL W

CTRL H

CTRL G

CTRL T

CTRL Y

CTRL U

CTRL K

CTRL V

CTRL \

CTRL E

CTRL X

CTRL J

CTRL M

Table 6-10. C_READSTR Line-editing Characters

Function

Move the cursor one character to the left.

Move the cursor one character to the right.

Move the cursor one word to the left.

Move the cursor one word to the right.

Move the cursor to the beginning of the line.

Move the cursor to the end of the line.

Delete the character to the left of the cursor.

Delete the character to the right of the cursor.

Delete the word to the right of the cursor.

Delete entire line. If the line has been modified, it is saved
in the commnd history buffer.

Delete to the beginning of the line.

Delete to the end of the line.

Toggle the insert mode.

Enter the next character literally.

Move up in the command history butter. If the line has
been modified, it is saved.

Move down in the command history buffer. If the line has
been modified, it is saved.

Line feed; terminates the Input line. C READSTR does not
echo a terminating character, nor does it place the
character in the line buffer.

Carriage return; terminates the input line.

Concurrent DOS 86 Programmer's Guide C READSTR

Character

CTRL R

CTRL

RUB/DEL

Table 6-10. (Cont'd)

Function

Toggles the search mode on/off for the current line. After
entering the line, the search mode returns to the default
(off).

Toggles the default search mode on/off and sets the
current line's mode to the new default. Initially, the default
begins each line with the search mode off.

Same as CTRL-H.

BACKSPACE Same as CTRL-H.

6-43

C SET Concurrent DOS 86 Programmer's Guide

C SET

Set The Calling Process's Default Console

Entry Parameters:
Register CL: 094H (148)

DL: Console Number

Returned Values:
AX: O If successful, OFFFFH on failure
BX: Same as AX
CX: Error Code

C _SET changes the calling process's default console to the value specified. If the
console number specified Is not one supported by this particular implementation of
Concurrent, C_SET returns an error code, and does not change the default console.

Table 6-5 contains the list of error codes returned in CX.

6-44

Concurrent DOS 86 Programmer's Guide

C STAT

Obtain Status of the Default Console

Entry Parameters:
Register CL: OBH (11)

Returned Values:
Register AL:

BL:
01 H character ready, OOH not ready
Same as AL

C STAT

C_STAT checks to see if a character has been typed at the default console. If the
calling process is not attached to its default console, C_STAT causes a dispatch to
occur and returns OOH (the Not Ready condition).

C STAT sets the console to the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C. Use C_RAWIO to
obtain console status in Raw mode.

Note: If C_MODE is used to set bit 0 in the console mode word, C STAT only
returns AL = 01 H when a CTRL-C is typed on the default console.

6-45

C WRITE Concurrent DOS 86 Programmer's Guide

C WRITE

Write A Character To The Default Console

Entry Parameters:
Register CL: 02H (2)

DL: ASCII character

C _WRITE writes the specified character to the calling process's default console. As
with C _READ, Concurrent verifies that the calling process owns its default console
before performing the operation. On output, C_WRITE expands tabs in columns of
eight characters.

6-46

Concurrent DOS 86 Programmer's Guide C WRITEBLK

C WRITEBLK

Send Specified String to CONOUT:

Entry Parameters:
Register CL: 06FH (111)

DX: CHCB Address

C _ WRITEBLK sends the character string located by the Character Control Block
CHCB, addressed in register pair DX to the logical console, CONOUT:. If the
Console mode is in the default state, C _ WRITEBLK expands CTRL-1 tab characters in
columns of eight characters.

The CHCB format is:

bytes 0-1: Offset of character string
bytes 2-3: Segment of character string
bytes 4-5: Length of character string to print

6-47

C WRITESTR Concurrent DOS 86 Programmer's Guide

C WRITESTR

Print An ASCII String To The Default Console

Entry Parameters:
Register CL: 09H (9)

DX: STRING Address - Offset
OS: STRING Address - Segment

C_WRITESTR prints an ASCII string starting at the indicated string address and
continuing until it reaches a dollar sign ($) character (024H; $ is the default string
delimiter, and can be changed by with C_DELIMIT). C_WRITESTR writes this string
to the calling process's default console.

Concurrent verifies that the calling process owns the console before writing the
string. C _ WRITESTR sets the console to a Nonraw state and expands tabs in
columns of eight characters, as does C _WRITE.

Use C _ WRITESTR whenever possible, rather than the single-character system calls.
The CPU overhead involved in handling the first character is the same as that for a
single-character system call, but subsequent characters require as little as one­
fifth the CPU overhead.

6-48

Concurrent DOS 86 Programmer's Guide

DEV POLL

Poll A Device

Entry Parameters:
Register CL: 083H (131)

DL: Device Number

Returned Values:
Register AX:

BX:
CX:

0 on success, OFFFFH on failure
Same as AX
Error Code

DEV POLL

DEV _POLL is used by the XIOS to poll noninterrupt-driven devices. It should be
used whenever the XIOS is waiting for a noninterrupt event.

The calling process relinquishes the CPU and allows Concurrent to poll the device
at every dispatch. The XIOS contains routines for each polling device number
which are called through DEV _POLL, and they return whether the device is ready or
not.

When the device is ready, DEV _POLL restores the calling process to the RUN state
and returns. Upon return, the calling process knows the device is ready.

Table 6-5 contains the list of error codes returned in ex.

6-49

DEV SETFLAG Concurrent DOS 86 Programmer's Guide

DEV SETFLAG

Set A System Flag

Entry Parameters:
Register CL: 085H (133)

DL: Flag Number

Returned Values:
Register AX: 0 on success, OFFFFH on failure

BX: Same as AX
CX: Error Code

DEV _SETFLAG Is used by Interrupt routines to notify Concurrent that a logical
Interrupt has occurred. A process waiting for this flag is placed back Into the RUN
state. If there are no processes waiting, then the next process to wait for this flag
returns successfully without relinquishing the CPU. DEV SETFLAG detects an error
if the flag has already been set, and no process has don-e a DEV_ WAITFLAG call to
reset it.

Note: If a process waiting for a specific flag to be set is aborted, the next
DEV_ SETFLAG call Is Ignored and OFFFFH Is returned in AX.

Table 6-5 contains the list of error codes returned In CX.

6-50

Concurrent DOS 86 Programmer's Guide

DEV WAITFLAG

Wait For A System Flag

Entry Parameters:
Register CL: 084H (132)

DL: Flag Number

Returned Values:
Register AX: 0 on success. OFFFFH on failure

BX: Same as AX
CX: Error Code

DEV WAITFLAG

DEV_ WAITFLAG is used by a process to wait for an interrupt. The process
relinquishes the CPU until an interrupt routine calls DEV_SETFLAG, which places the
waiting process in the RUN state.

When DEV_ WAITFLAG returns to the calling process, the interrupt has occurred, or
an error has occurred. An error occurs when a process is already waiting for the
flag. If the Flag was set before DEV_ WAITFLAG was called, the routine returns
successfully without relinquishing the CPU.

DEV_ WAITFLAG is meant to be used by the XIOS. The mapping between types of
interrupts and flag numbers is maintained in the XIOS, although Concurrent
reserves flags 0, 1, 2, 3, and 4 for system use.

Table 6-5 contains the list of error codes returned in ex.

6-51

ORV ACCESS Concurrent DOS 86 Programmer's Gulde

ORV ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)

DX: Drive Vector

Returned Values:
AL: Return Code
AH: Extended Error
BX: Same as AX

ORV_ ACCESS inserts a special open file item into the system Lock list for each
drive specified in the Drive Vector, which is passed in register DX. While the item
exists In the Lock list, no other process can reset the drive. ORV_ ACCESS inserts
no items if insufficient free space exists in the Lock list to support all the new
items. or If the number of items to be Inserted puts the calling process over the
Lock list open flle maximum.

Figure 6-3 Illustrates the format of the Drive Vector. The least significant bit
corresponds to drive A, and the high-order bit corresponds to the sixteenth drive,
labeled P.

Drive

+-------------------------------+
IPIOINIMILIKIJIIIHIGIFIEIDICIBIAI
+-------------------------------+

Bit 15 • • • 3 2 1

Figure 6-3. Drive Vector Structure

If the BOOS Is In the default Error mode (see F _ ERRMODE), the file system displays
a message at the console Identifying the error and terminates the calling process.
Otherwise, ORV_ ACCESS returns to the calling process with register AL set to OFFH
and register AH set to one of the following hexadecimal values:

OAH - Open File limit Exceeded
OBH - No Room In System Lock list

On successful calls, ORV_ ACCESS returns with register Al set to OOH.

6-52

Concurrent DOS 86 Programmer's Guide ORV ALLOCVEC

ORV ALLOCVEC

Get Allocation Vector Address For the Calling Process's Default Disk

Entry Parameters:
Register CL:

Returned Values:
Register AX:

BX:
ES:

OlBH (27)

ALLOC Address - Offset
Same as AX
ALLOC Address - Segment

ORV_ ALLOCVEC returns the address of the allocation vector (ALLOC) for the
currently selected drive. If a physical error is encountered when the BOOS Error
mode Is in one of the return modes (see F _ ERRMODE), ORV_ ALLOCVEC returns the
value OFFFFH in AX.

Concurrent maintains an allocation vector in memory for each active disk drive.
Some programs use the information provided by the allocation vector to determine
the amount of free data space on a drive. Note, however, that the allocation
information can be inaccurate if the drive has been marked Read-Only.

You can use ORV_ SPACE to directly return the number of free 128-byte records on
a drive. Concurrent's SHOW utility displays a drive's free space by using the
ORV_ SPACE call.

6-53

ORV ALLRESET Concurrent DOS 86 Programmer's Guide

ORV ALLRESET

Restore All Drives To Reset State

Entry Parameters:
Register CL: OOH (13)

Returned Values:
Register AL: 0 if successful, OFFH on error

BL: Same as AL

ORV_ ALLRESET restores the file system to a reset state where all the disk drives
are set to Read-Write (see also DRV_SETRO and DRV_ROVEC), the default disk is
set to drive A, and the default OMA address is reset to offset 080H relative to the
current OMA segment address.

DRV _ ALLRESET can be used, for example, by an application program that requires
disk changes during operation. You can also use DRV_RESET for this purpose.

DRV _ ALLRESET is conditional under Concurrent, so if another process has a file
open on any of the drives to be reset, and the drive is also Read-Only or
removable, the DRV _ ALLRESET call is denied, and none of the specified drives are
reset (see Section 2.17).

Upon return, If the reset operation is successful, ORV_ ALLRESET sets register AL to
OOH. Otherwise, it sets register AL to OFFH. If the BOOS is not in one of the
return error modes (see F ERRMODE), the file system displays an error message at
the console identifying the process owning the first open file that caused the
ORV ALLRESET to be denied.

6-54

Concurrent DOS 86 Programmer's Guide ORV DPB

Entry Parameters:
Register CL:

Returned Values:
Register AX:

BX:
ES:

ORV DPB

Return Address Of Disk Parameter Block
For Calling Process's Default Disk

OlFH (31)

DPB Address - Offset, OFFFFH - on Physical Error
Same as AX
DPB Address - Segment

ORV_ DPB returns the address of the XIOS-resident Disk Parameter Block (DPB) for
the currently selected drive. The calling process can use this address to extract
the disk parameter values.

If a physical error is encountered when the BOOS Error mode is one of the Return
Error modes (see F _ ERRMODE), ORV_ DPB returns the value OFFFFH.

Figure 6-4 shows the Disk Parameter Block format. Table 6-11 contains the DPB
field defintions.

+-----+-----+-----+-----+-----+-----+-----+-----+
OOH SPT I BSH I BLM I EXM I DSM I DRM I

+-----------+-----------+-----+-----+-----+-----+
08H I DRM I ALO I ALl I CKS OFF I PSH I

+-----------+-----+-----+-----+-----+-----+-----+
lOH I PRM I

+-----+

Figure 6-4. DPB - Disk Parameter Block

6-55

ORV DPB Concurrent DOS 86 Programmer's Guide

6-56

Table 6-11. DPB Field Definitions

Field Definition

SPT Sectors Per Track
The number of Sectors Per Track equals the total number of
physical sectors per track. Physical sector size is defined
by PSH and PRM described below.

BSH Allocation Block Shift Factor

BLM Allocation Block Mask
The data allocation block size determines the values of the
data allocation Block Shift Factor and the allocation Block
Mask. The Block Shift factor equals the logarithm base two
of the block logical size in 128 byte records, or BSH •
LOG2(BLS). The Block Mask equals the number of 128-byte
records in an allocation block minus 1, or BLM " (2**BSH)-1.
Refer to the System Gulde for valid block sizes and BSH
and BLM values.

EXM Extent Mask
The data block allocation size and the number of disk
allocation blocks determine the value of the Extent Mask.
The Extent Mask determines the maximum number of 16k
extents that can be contained in a directory entry. It is
equal to the maximum number of 16K extents per directory
entry minus one. Refer to the System Guide for EXM
values.

DSM Disk Storage Maximum
The Disk Storage Maximum defines the total storage
capacity of the drive. This is equal to the total number of
allocation blocks minus 1 for the drive. DSM must be less
than or equal to 7FFFH. If the disk uses 1024 byte blocks
(BSH•3, BLM•7), DSM must be less than or equal to OOFFH.

DRM Directory Maximum
The Directory Maximum defines the total number of
directory entries for the drive. This is equal to the total
number of directory entries, minus 1. that can be kept on
this drive. The directory requires 32 bytes of disk per entry.
The maximum directory allocation is 16 blocks. where the
block size is determined by BSH and BLM.

Concurrent DOS 86 Programmer's Guide

Table 6-11. (Cont'd)

Field Definition

ALO Directory Allocation Vector O

AL 1 Directory Allocation Vector 1

ORV DPB

The Directory Allocation Vectors determine the reserved
directory allocation blocks.

CKS Checksum Vector Size
The Checksum Vector Size determines the required length
of the directory checksum vector and the number of
directory entries that the BOOS will checksum. The
Checksum Vector Size is equal to the number of directory
entries divided by 4, or CKS = (ORM+ 1)/4. If the media is
fixed, CKS might be zero, no storage needs to be reserved,
and the BOOS does not calculate directory checksums for
the drive.

The high-bit of CKS (that is, >= 08000H) is set if the
referenced drive is considered to be a nonremovable media
drive. Note that this modifies the rules for resetting the
drive. For more information, refer to Section 2.15.

OFF Track Offset
The Track Offset is the number of reserved tracks at the
beginning of the disk. OFF is equal to the track number on
which the directory starts.

PSH Physical Record Shift Factor
The Physical Record Shift Factor ranges from 0 to 5,
corresponding to physical record sizes of 128, 256, 512, 1 K,
21<. or 4K bytes. It is equal to the logarithm base two of
the physical record size divided by 128, or
LOG2(sector _ size/128).

PRM Physical Record Mask
The Physical Record Mask ranges from 0 to 31,
corresponding to physical record sizes of 128, 256, 512, 1 K,
21<. or 4K bytes. It is equal to the physical sector size
divided by 128 minus 1, or (sector_size/128)-1. For more
information on DPB parameters, refer to the System Guide,.

6-57

ORV FLUSH

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AL:

AH:
BX:

Concurrent DOS 86 Programmer's Guide

ORV FLUSH

Flush Write-Deferred Buffers

030H (48)
Purge Flag

Error Flag
Permanent Error
Same as AX

ORV _FLUSH forces the write of any write-pending records contained in internal
blocking/deblocking buffers. If register DL is set to OFFH, ORV _FLUSH also purges
all active data buffers after performing the writes.

Programs that provide write with read verify support need to purge internal buffers
to ensure that verifying reads actually access the disk instead of returning data
resident In internal data buffers. Concurrent's PIP utility is an example of such a
program.

Upon return, ORV _FLUSH sets register Al to OOH if the flush operation is
successful. If a physical error is encountered. ORV _FLUSH performs different
actions depending on the BOOS Error mode (see F ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following
physical error codes:

6-58

OlH - Disk 1/0 Error : permanent error
02H - Read/Only Disk

Concurrent DOS 86 Programmer's Guida ORV FREE

ORV FREE

Free Specified Disk Drivas

Entry Parameters:
Register CL: 027H (39)

DX: Drive Vector

ORV _FREE purges the system Lock List of all file and locked record items that
belong to the calling process on the specified drives. ORV _FREE passes the drive
vector in register DX.

ORV _FREE does not close files associated with purged open file Lock List items. In
addition, if a process references a purged file with a BOOS system call requiring an
open FCB, ORV _FREE returns a checksum error. A file that has been written to
should be closed before making a ORV _FREE call to the file's drive, or data can be
lost. Refer to Section 2.17 for more information on ORV FREE.

Figure 6-3 on page 6-52, shows the format of the Drive Vector.

Note: ORV FREE treats a floating drive as the physical drive to which it is mapped.
For example, if drive N is mapped unto drive A and you call ORV _FREE on A, all
files on N are lost in addition to those on A.

ORV GET Concurrent DOS 86 Programmer's Guide

ORV GET

Return The Calling Process's Default Drive

Entry Parameters:
Register CL: 019H (25)

Returned Values:
Register AL: Drive Number

BL: Same as AL

ORV_ GET returns the calling process's currently selected default disk number. The
disk numbers range from 0 through 15, corresponding to drives A through P.

Concurrent DOS 86 Programmer's Guide ORV GETLABEL

ORV GETLABEL

Return Directory Label Data Byte For The Specified Drive

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AL:

AH:
BX:

065H (101)
Drive

Directory Label Data Byte
Physical Error
Same as AX

ORV_ GETLABEL returns the directory label data byte for the specified drive. The
calling process passes the drive number in register DL with 0 for drive A, 1 for
drive B, continuing through 15 for drive P in a full 16-drive system.

The directory label data byte has the following format:

bit 7 Require passwords for password protected files
bit 6 Perform access time and date stamping
bit 5 Perform update time and date stamping
bit 4 Perform create time and date stamping
bit 0 Directory label exists on drive

(Bit 0 is the least significant bit)

DRV _ GETLABEL returns the directory label data byte in register AL. Register AL
equal to OOH indicates that no directory label exists on the specified drive.

If ORV GETLABEL encounters a physical error when the BOOS Error mode is in one
of the -return error modes (see F _ ERRMODE), it returns with register AL set to OFFH
and register AH set to one of the following:

OlH - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

n-n1

ORV LOGINVEC Concurrent DOS 86 Programmer's Gulde

ORV LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Parameters:
Register CL: 018H (24)

Returned Values:
Register AX: Login Vector

BX: Same as AX

ORV_ LOGINVEC returns the Login Vector in register AX. The Login Vector is a 16-
bit value with the least significant bit corresponding to drive A, and the high-order
bit corresponding to the 16th drive, drive P. A 0 bit indicates the drive Is not
logged-In, while a 1 bit Indicates the drive is logged in.

The Login Vector is identical in format to the Drive Vector show in Figure 6-3. on
page 6-52.

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

OX:

Returned Values:
AL:
BL:

ORV RESET

Reset Specified Disk Drives

025H (37)
Drive Vector

Return Code
Same as AL

ORV RESET

ORV_ RESET is used to programmatically restore specified removable media drives
to the reset state (a reset drive is not logged in and is in Read-Write status).

Upon entry, register OX contains a 16-bit vector of drives to be reset. where the
least significant bit corresponds to drive A, and the high-order bit corresponds to
the sixteenth drive, labeled P. Bit values of 1 indicate that the specified drive is to
be reset (see Figure 6-3).

ORV_ RESET is conditional under Concurrent, so if another process has a file open
on any of the drives to be reset, the call is denied, and none of the drives are
reset. Refer to Section 2.17 for more information regarding the use of ORV_ RESET.

Upon return, if the reset operation is successful, ORV_ RESET sets register AL to
OOH. Otherwise, it sets register AH to OFFH. If the BOOS Error mode is not in
Return Error mode (see F _ ERRMOOE), Concurrent displays an error message at the
console, identifying the process owning the first open file that caused the
ORV_ RESET request to be denied.

6-63

DRV ROVEC Concurrent DOS 86 Programmer's Guide

ORV ROVEC

Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: OlDH (29)

Returned Values:
Register AX: R/O Vector

BX: Same as AX

ORV_ ROVEC returns a bit vector indicating which drives have the temporary Read­
Only bit set. The Read-Only bit can only be set by a DRV_SETRO call.

Note: When the file system detects a change In the media on a drive, it
automatically logs in the drive and sets it to Read-Write.

The format of the R/O Vector Is analogous to that of the Login Vector (see Figure
6-3). The least significant bit corresponds to drive A; the most significant bit
corresponds to drive P.

6-64

Concurrent DOS 86 Programmer's Guide

ORV SET

Set Calling Process's Default Disk

Entry Parameters:
Register CL: OEH (14)

DL: Selected disk

Returned Values:
Register AL:

AH:
BX:

Error Flag
Physical Error
Same as AX

ORV SET

ORV_ SET designates the specified disk drive as the default disk for subsequent
BOOS file operations. Set the DL register to 0 for drive A. 1 for drive B, continuing
through 15 for drive P. ORV_ SET also logs in the designated drive if it is currently
in the reset state. Logging in a drive activates the drive's directory for file
operations.

FCBs that specify drive code zero (DR = OOH) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however.
ignore the selected default drive and directly reference drives A through P.

Upon return, register AL equal to OOH indicates the select operation was
successful. If a physical error is encountered, ORV_ SET performs different actions
depending on the BOOS Error mode (see F _ ERRMODE).

If the BOOS is in the default Error mode, Concurrent displays a message at the
console, identifying the error and terminates the calling process. Otherwise,
DRV _SET returns to the calling process with register AL set to OFFH and register
AH set to one of the following physical error codes:

OlH - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

6-65

ORV SETLABEL Concurrent DOS 86 Programmer's Guide

ORV SETLABEL

Create Or Update A Directory Label

Entry Parameters:
Register CL:

DX:
OS:

064H (100)
FCB Address - Offset
FCB Address - Segment

Returned Values:
Register AL:

AH:
BX:

Directory Code
Physical or Extended Error
Same as AX

ORV SETLABEL creates a directory label or updates the existing directory label for
the specified drive. The calling process passes the address of an FCB containing
the name, type, and extent fields to be assigned to the directory label.

The name and type fields of the referenced FCB are not used to locate the
directory label in the directory; they are simply copied into the updated or created
directory label. Byte 12 of the FCB contains the user's specification of the
directory label data byte.

The directory label data byte has the following definition:

bit 7 Require passwords for password protected files
bit 6 Perform access time and date stamping
bit 5 Perform update time and date stamping
bit 4 Perform create time and date stamping
bit 0 Assign a new password to the directory label

(Bit O is the least significant bit)

If the current directory label is password protected, the correct password must be
placed In the first 8 bytes of the current OMA or have been previously established
as the default password (see F PASSWD). If bit O of the directory label data byte
is set to 1, it Indicates that a new password for the directory label has been
placed in the second eight bytes of the current OMA.

ORV SETLABEL also requires that the referenced directory contains SFCBs in order
to activate date and time stamping on the drive. If you attempt to activate date
and time stamping when no SFCBs exist, ORV SETLABEL returns an error code and
performs no action. Concurrent's INITDIR utility Initializes a directory for date and
time stamping by placing an SFCB in every fourth entry of the directory.

6-66

Concurrent DOS 86 Programmer's Guide ORV SETLABEL

Upon return, DRV _ SETLABEL returns a directory code in register Al with the value
OOH if the directory label create or update was successful, or OFFH if no space
existed in the referenced directory to create a directory label. It also returns OFFH
if date and time stamping was requested and the referenced directory did not
contain SFCBs. Register AH is set to OOH In all of these cases.

If a physical or extended error is encountered, ORV_ SETLABEL performs different
actions depending on the BOOS Error mode (see F _ ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, ORV_ SETLABEL returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

O 1 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
07H - Password Error

6-67

DRV SETRO Concurrent DOS 86 Programmer's Guide

ORV SETRO

Set Default Disk To Read-Only

Entry Parameters:
Register CL: OlCH (28)

Returned Values:
Register AL: Return Code

BL: Same as AL

ORV_ SETRO provides temporary write protection for the currently selected disk by
marking the drive as Read-Only. No process can write to a disk that is in the
Read-Only state. You must perform a successful ORV _RESET operation to restore
a Read-Only drive to the Read-Write state (see ORV _ALLRESET and ORV_ RESET).

ORV_ SETRO is conditional under Concurrent, so if another process has an open file
on the drive, the operation is denied, and ORV_ SETRO returns the value OFFH to the
calling process. Otherwise, it returns a OOH.

If the BOOS is not In Return Error mode (see F _ERRMODE), Concurrent displays an
error message at the console, identifying the process owning the first open file
that caused the ORV_ SETRO request to be denied.

Note that a drive in the Read-Only state cannot be reset by a process if another
process has an open file on the drive.

6-68

Concurrent DOS 86 Programmer's Guide

ORV SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)

Dl: Drive

Returned Values:
Register Al:

AH:
BX:

Error Flag
Physical Error
Same as AX. First 3 bytes of OMA Buffer filled in

ORV SPACE

ORV_ SPACE determines the number of free sectors (128-byte records) on the
specified drive. The calling process passes the drive number in register Dl, with 0
for drive A, 1 for B, continuing through 15 for drive P.

ORV_ SPACE returns a binary number in the first 3 bytes of the current OMA buffer.
Figure 6-5 shows the format of the returned number.

+--------------------------------+
I FSO
I low byte

FSl I FS2 I
I high byte I

+--------------------------------+
Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been
marked Read-Only.

Upon return. ORV_ SPACE sets register Al to OOH. indicating the operation was
successful. However. if the BOOS is in one of the return Error modes (see
F _ ERRMODE), and a physical error occurs, it sets register Al to OFFH. and register
AH to one of the following values:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

6-69

F ATTRIB Concurrent DOS 86 Programmer's Guide

F ATTRIB

Set The Attributes Of A Disk File

Entry Parameters:
Register CL:

DX:
DS:

OlEH (30)
FCB Address - Offset
FCB Address - Segment

Returned Values:
Register AL:

BL:
Directory Code
Same as AL

F _ ATTRIB can modify a file's attributes and set its last record byte count. Other
BOOS system calls can interrogate these file parameters, but only F ATTRIB can
change them.

F _ATTRIB can set or reset the file attributes: Fl' through F4', Read-Only (Tl'),
System (T2'), and Archive (T3').

The specified FCB contains a filename with the appropriate attributes set or reset.
The calling process must ensure that it does not specify an ambiguous filename.
Also, if the specified file Is password protected, the correct password must be
placed in the first eight bytes of the current OMA buffer or have been previously
establlshed as the default password (see· F _PASSWD).

Interface attribute F5' specifies whether an extended file lock is to be maintained
after the F _ATTRIB call. Interface attribute F6' specifies If the specified file's byte
count Is to be set. The Interface attribute definitions are listed below:

F5'• 0
F5'• 1
F6'• 0
F6'• 1

Do not maintain an extended file lock (default)
Maintain an extended file lock
Do not set byte count (default)
Set byte count

If F5' Is set and the referenced FCB specifies a file with an extended file lock. the
calling process maintains the lock on the file. Otherwise, the file becomes
available to other processes. Section 2.11 describes extended file locking in detail.

If Interface attribute F6' is set. the calling process must set the CR field of the
referenced FCB to the new byte count value. A process can access a file's byte
count value with the BOOS F OPEN, F SFIRST, and F SNEXT system calls. File byte
counts are described in Section 2.15. - -

6-70

Concurrent DOS 86 Programmer's Guide F ATTRIB

F _ATTRIB searches the FCB specified directory for an entry belonging to the
current user number that matches the FCB specified name and type fields.
F_ATTRIB then updates the directory to contain the selected indicators, and if
Interface attribute F6' is set, the specified byte count value. Note that the last
record byte count is maintained in the byte 13 of a file's directory FCBs.

File attributes Tl', T2', and T3' are defined by Concurrent as described in Section
2.4.2. Attributes Fl' through F4' of command files are defined as Compatibility
Attributes, as described in Section 2.12. However, for all other files, attributes F 1'
through F4' can be redefined. Attribute:; f'5' through F8' are reserved as Interface
Attributes and cannot be used as file attributes. Interface attributes are described
in Section 2.4.3.

An F _A TTRIB call is not performed if the referenced FCB specifies a file currently
open for another process. It is performed. however, if the referenced file is open
by the calling process in Locked mode. However, the file's lock entry is purged
when this is done and the file system prevents continued read and write
operations on the file. F _ATTRIB does not set the attributes of a file currently
open in Read-Only or Unlocked mode for any process.

Making an F _ATTRIB call for an open file can adversely affect the performance of
the calling process. For this reason. you should close an open file before you call
F ATTRIB.

Upon return, F _A TTRIB returns a directory code in register AL with the value OOH if
the call is successful, or OFFH if the file specified by the referenced FCB is not
found. Register AH is set to OOH in both cases.

If a physical or extended error is encountered, F _ATTRIB performs different actions
depending on the BOOS Error mode (see F _ERR MODE). If the BOOS is in the
default Error mode, Concurrent displays a message at the console identifying the
error and terminates the process. Otherwise, it returns to the calling process with
register AL set to OFFH and register AH set to one of the following physical or
extended error codes:

01 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
05H - File open by another process
07H - Password Error
09H - Illegal ? in FCB

6-71

F CLOSE

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

Concurrent DOS 86 Programmer's Gulde

F CLOSE

Close A Disk File

OlOH (16)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F _CLOSE performs the Inverse operation of F _OPEN. The referenced FCB must
have been previously activated by a successful F _OPEN or F _MAKE call. Interface
attributes FS' and F6' specify how the file Is to be closed, as shown below:

FS' • 0, F6' a O
FS' • 0, F6' • 1
FS' • 1, F6' • 0
FS' • 1, F6' • 1

Default Close
Extend Fiie Lock
Partial Close
Partial Close

F _CLOSE performs the following steps regardless of the interface attribute
specification.

1. First, It verifies the referenced FCB has a valid checksum. If the checksum is
invalid, F _CLOSE performs no action and returns an error code.

2. If the checksum is valid and the referenced FCB contains new information
because of write operations to the FCB, F _CLOSE permanently records the new
Information In the directory. If the FCB does not contain new Information, the
directory update step is bypassed. However, F CLOSE always attempts to
locate the FCB's corresponding entry In the directory and returns an error
code If the directory entry cannot be found.

If F _CLOSE successfully performs the above steps, it performs different actions,
depending on how the interface attributes are set.

In default close operations. F _CLOSE decrements the file's open count, which is
maintained In the file's system Lock List entry. If the open count decrements to
zero, It indicates that the number of default close operations for the file matches
the number of open operations.

6-72

Concurrent DOS 86 Programmer's Guide F CLOSE

If the open count decrements to zero, F CLOSE permanently closes the file by
performing the following steps. -

1. First, it removes the file's item from the system Lock List. If the FCB is opened
in Unlocked mode. it also purges all record locks belonging to the file from
the system Lock List.

2. In addition, F _CLOSE invalidates the FCB's checksum to ensure the referenced
FCB is not subsequently used with BOOS system calls that require an open
FCB (for example, F _WRITE).

3. If the open count does not decrement to zero, F _CLOSE simply returns to the
calling process and the file remains open.

For partial close operations, F _CLOSE does not decrement the file's open count and
returns to the calling process. The file always remains open following a partial
close request.

Closing a file with an extended file lock modifies the way F _CLOSE performs a
permanent close. F _CLOSE only honors an extended lock request on a permanent
close of a file opened in Locked Mode. If these conditions are satisfied, F _CLOSE
invalidates the FCB's checksum but maintains the lock item. Thus, although the file
is permanently closed, other processes cannot access the file. Section 2.11
describes extended file locking in detail.

Upon return. F _CLOSE returns a directory code in register AL with the value OOH if
the close operation is successful, or OFFH if the file is not found. Register AH is
set to O in both of these cases.

If a physical or extended error is encountered, F _CLOSE performs different actions
depending on the BOOS Error mode (see F _ERR MODE). If the BOOS is in the
default Error mode, Concurrent displays a message identifying the error at the
console and terminates the calling process. Otherwise F _CLOSE returns to the
calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk 1/0 Error : permanent error
02H - Read/Only Disk.
04H - Invalid Drive : drive select error
06H - Close Checksum Error

6-73

F DELETE

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

Concurrent DOS 86 Programmer's Guide

F DELETE

Delete A Disk File

013H (19)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F_OELETE removes flies and/or XFCBs that match the FCB addressed in register DX.
The filename and filetype fields can contain wildcard file specifications (question
marks in bytes 1 through 11), but byte 0 cannot be a wildcard as it can be in the
F_SFIRST and F_SNEXT calls.

Interface attribute FS' specifies the type of delete operation to be performed, as
shown below:

FS' • 0 Standard Delete (Default mode)
FS' • 1 Delete only XFCB's and maintain an extended file lock.

If any of the files specified by the referenced FCB are password protected, the
correct password must be placed in the first eight bytes of the current OMA buffer
or it must have been previously established as the default password (see
F_PASSWD).

For standard delete operations. F _DELETE removes all directory entries belonging to
files that match the referenced FCB. All disk directory and data space owned by
the deleted flies is returned to free space and becomes available to other files.
Directory XFCBs that were owned by the deleted files are also removed from the
directory. If interface attribute FS' of the FCB is set to 1, F DELETE deletes only
the directory XFCBs matching the referenced FCB. -

Note: If any of the files matching the input FCB specification fail the password
check, are Read-Only, or are currently open by another process. then F DELETE
deletes no files or XFCBs. This applies to both types of delete operations. -

Interface attribute FS' also specifies whether an extended file lock is to be
maintained after the F DELETE call. If FS' is set and the referenced FCB specifies a
file with an extended- lock. the calling process maintains the lock on the file.
Section 2.11 describes extended file locking in detail.

6-74

Concurrent DOS 86 Programmer's Guide F DELETE

A process can delete a file that it currently has open if the file is opened in locked
mode. However, the BOOS returns a checksum error if the process makes a
subsequent reference to the file with a BOOS system call requiring an open FCB.
A process cannot delete files open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process.
For this reason, you should close an open file before you delete it.

Upon return, F DELETE returns a directory code in register AL with the value OOH if
the delete is iuccessful, or OFFH if no file matching the referenced FCB is found.
Register AH is set to O in both of these cases.

If a physical or extended error is encountered, F _DELETE performs different actions,
depending on the BDOS Error mode (see F _ ERRMODE).

If the BOOS is the default Error mode, Concurrent displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns
to the calling process with register AL set to OFFH and register AH set to one of
the following physical or extended error codes:

O 1 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File
04H - Invalid Drive : drive select error
05H - File opened by another process or

open in Read-Only or Unlocked mode
07H - Password Error

6-75

F DMAGET Concurrent DOS 86 Programmer's Guide

F DMAGET

Return Address Of Direct Memory Access Buffer

Entry Parameters:
Register CL: 034H (52)

Returned Values:
Register AX: OMA Offset

BX: Same as AX
ES: OMA Segment

F DMAGET returns the current OMA Base Segment address in ES, with the current
OMA Offset in AX.

OMA Is an acronym for Direct Memory Address, which is often used with disk
controllers that directly access the memory of the computer to transfer data to
and from the disk subsystem.

Under Concurrent, the current OMA is usually defined as the buffer in memory
where a record resides before a disk write and after a disk read operation. If the
BOOS Multlsector Count is equal to one (see F MUL TISEC), the size of the buffer is
128 bytes. However, If the BOOS Multisector Count Is greater than one, the size of
the buffer must equal N • 128, where N equals the Multisector Count.

Some BOOS system calls also use the current OMA to pass parameters and to
return values. For example, BOOS system calls that check and assign file
passwords require that the password be placed in the current OMA Buffer. As
another example, ORV_ SPACE returns its results in the first 3 bytes of the current
OMA. When the current OMA is used in this context, the size of the buffer in
memory is determined by the specific requirements of the system call.

6-76

Concurrent DOS 86 Programmer's Guide F DMAOFF

F DMAOFF

Set The Direct Memory Address Offset

Entry Parameters:
Register CL: OlAH (26)

DX: OMA Address - Offset

F _ DMAOFF can change the default value of the OMA offset to another memory
address. When P _CU initiates a transient program, it sets the OMA offset to OSOH
and the OMA Segment or Base to its initial Data Segment. ORV_ ALLRESET also
sets the OMA offset to OSOH. The OMA address remains at its current value until it
is changed by an F _ DMASEG, F _ DMAOFF, or ORV _ALLRESET call.

6-77

F DMASEG

Entry Parameters:
Register CL

DX:

Concurrent DOS 86 Programmer's Gulde

F DMASEG

Set Direct Memory Access Segment Address

033H (51)
OMA Segment Address

F _DMASEG sets the segment value of the current OMA buffer address. The word
parameter in DX is a paragraph address and Is used with the OMA offset value to
specify the 20-blt address of the OMA buffer.

Note that upon initial program loading, the default OMA base is set to the address
of the user's data segment (the initial value of OS) and the OMA offset is set to
0080H, which provides access to the default buffer in the Base Page.

6-78

Concurrent DOS 86 Programmer's Guide F ERRMODE

F ERRMODE

Set BOOS Error Mode For Error Returns

Entry Parameters:
Register CL: 020H (45)

OL: BOOS Error mode

F _ ERRMODE sets the BOOS Error mode, which is a system parameter maintained
for each running process that determines how the file system handles physical and
extended errors. Physical and extended errors are described in Section 2.18.

The BOOS Error mode has three states: the default mode, Return and Error mode,
and Return and Display mode.

The BOOS performs different actions in each mode when a physical or extended
error occurs:

* In the default Error mode, the BOOS displays a system message at the
console identifying the error and terminates the calling process.

* In Return Error mode, the BOOS sets register AL to OFFH, places an error code
identifying the physical or extended error in register AH, and returns to the
calling process.

* In Return and Display mode, the BOOS displays the system message before
returning to the calling process, and sets registers AH and Al as in the Return
Error mode.

F ERRMODE sets the BOOS Error mode as specified in register Dl. If register DL is
set to OFFH, the mode is set to Return Error mode. If register DL is set to OFEH.
the mode is set to Return and Display mode. If register DL is set to any other
value, the mode is set to the default mode.

6-79

FLOCK Concurrent DOS 86 Programmer's Guide

FLOCK

Lock Records In a Disk File

Entry Parameters:
Register CL: 02AH (42)

DX: FCB Address - Offset
OS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

F LOCK allows a process to establish temporary ownership of particular records
Within a file, and Is only supported for files open in Unlocked mode. If F _LOCK is
called for a file open in Locked or Read-Only mode, no locking action is performed
but a successful result is returned. This provides compatibility between
Concurrent and CP/M-86.

The calling process passes the address of an FCB in which the random record field
is filled with the Random Record Number of the first record to be locked. The
number of records to be locked Is determined by the BOOS Multisector Count (see
F_MULTISEC). The current OMA must also contain the 2-byte File ID returned by
F _OPEN or F _MAKE when the referenced FCB was opened. Note that the File ID is
only returned by F _OPEN and F _MAKE when the Open mode is Unlocked.

Interface attribute F5' specifies the type of lock to perform. Interface attribute F6'
specifies whether records have to exist in order to be locked. The F LOCK
Interface attribute definitions are listed below:

F5'• 0
FS'• 1
F6'• 0
F6'• 1

Exclusive lock (default)
Shared lock
Lock existing records only (default)
Lock logical records.

These options are described in detail in Section 2.14.

F _LOCK verifies that a locking conflict with another process does not exist for each
of the records to be locked. In addition, if F LOCK is called with attribute F6' reset,
It also verifies that each record number to be locked exists within the specified
file. Both tests are made before any records are locked.

Most F _LOCK requests require a new entry in the BOOS system Lock List. If there
is Insufficient space in the system Lock List to satisfy the lock request, or If the
process record lock limit is exceeded, then F _LOCK does not lock any records and
returns an error code to the calling process.

6-80

Concurrent DOS 86 Programmer's Guide FLOCK

Upon return, F _LOCK sets register AL to OOH if the lock operation is successful.
Otherwise, register AL contains one of the following error codes:

01 H - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random Record Number out of range
OSH - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error
OCH - Process record lock limit exceeded
OOH - Invalid File ID
OEH - No Room in System Lock List

OFFH - Physical error; refer to register AH

F LOCK returns error code OlH when it accesses a data block that has not been
previously written.

F LOCK returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

F LOCK returns error code 04H when it accesses an extent that has not been
created.

F _LOCK returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

F _LOCK returns error code OSH if the specified record is locked by another process
with an incompatible lock type.

F LOCK returns error code OAH if the referenced FCB failed the FCB checksum test.

F LOCK returns error code OBH if the BOOS cannot locate the referenced FCB's
directory entry when attempting to verify that the FCB contains current
information.

F LOCK returns error code OCH if performing the lock request would require that
the process consume more than the maximum allowed number of system Lock List
entries.

F LOCK returns error code OOH when an invalid File ID is placed at the beginning
of the current OMA.

F LOCK returns error code OEH when the system Lock List is full and performing
the lock request would require at least one new entry.

6-81

FLOCK Concurrent DOS 86 Programmer's Guide

F LOCK returns error code OFFH if a physical error is encountered, and the BOOS
Error mode Is either Return Error mode or Return and Display Error mode (see
F _ ERRMODE). If the BOOS Is In the default Error mode, Concurrent displays a
message at the console identifying the physical error and terminates the calling
process. When F _LOCK returns a physical error to the calling process, it is
Identified by register AH as shown below:

6-82

01H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AL:

AH:
BX:

F MAKE

Create A Disk File

016H (22)

FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F MAKE

F _MAKE creates a new directory entry for a file under the current user number. It
also creates an XFCB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a
password to the file.

The calling process passes the address of the FCB with byte 0 of the FCB
specifying the drive, bytes 1 through 11 specifying the filename and filetype, and
byte 12 set to the extent number. Byte 12, the EX field, is usually set to OOH.
Byte 32 of the FCB, the CR field, must be initialized to OOH. before or after the
F _MAKE call, if the intent is to write sequentially from the beginning of the file.

Interface attribute F5' specifies the mode in which the file is to be opened.
Interface attribute F6' specifies whether a password is to be assigned to the
created file. The interface attributes are summarized below:

F5' • 0
F5' • 1
F6' • 0
F6' = 1

Open in Locked mode (default)
Open in Unlocked mode
Do not assign password (default)
Assign password to created file

When attribute F6' is set to 1, the calling process must place the password in the
first 8 bytes of the current DMA buffer and set byte 9 of the DMA buffer to the
password mode. Note that F MAKE only interrogates attribute F6' if the referenced
drive's directory label has enabled password support. The XFCB Password mode is
summarized below:

Bit 7 Read mode
Bit 6 Write mode
Bit 5 Delete mode

F _MAKE returns with an error code if the referenced FCB names a file that
currently exists in the directory under the current user number. If there is any
possibility of duplication, an F _DELETE call should precede the F _MAKE call.

6-83

F MAKE Concurrent DOS 86 Programmer's Guide

If the make file operation is successful, F _MAKE activates the referenced FCB for
record operations (opens the FCB) and Initializes both the directory entry and the
referenced FCB to an empty file.

F _MAKE also computes a checksum and assigns it to the FCB. BOOS system calls
that require an open FCB {for example, F _WRITE) verify that the FCB checksum is
valid before performing their operation.

If the file is opened in Unlocked mode, F _MAKE also sets bytes RO and R1 in the
FCB to a two-byte value called the File ID. The File ID is a required parameter for
the BOOS Lock Record and Unlock Record system calls. Note that F _MAKE
Initializes all file attributes to 0.

The BOOS also creates an open file item in the system Lock List to record a
successful F _MAKE operation. While this Item exists, no other process can delete,
rename, truncate, or set the file attributes of this file.

A creation and/or update stamp is made for the created file if the referenced drive
contains a directory label that enables creation and/or update time and date
stamping and the FCB extent number is equal to 0.

F _MAKE also creates an XFCB for the created file if the referenced drive contains a
directory label that enables password protection, Interface attribute F6' of the FCB
is 1, and the FCB Is an extent zero FCB. In addition, F _MAKE also assigns the
password and password mode placed in the first nine bytes of the OMA to the
XFCB.

Upon return, F _MAKE returns a directory code in register AL with the value OOH if
the make operation is successful, or OFFH if no directory space is available.
Register AH is set to OOH in both cases.

If a physical or extended error Is encountered, F MAKE performs different actions
depending on the BOOS Error mode (see F ERRMODE). If the BOOS is in the
default Error mode, Concurrent displays a me-ssage at the console identifying the
error and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

6-84

01H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
08H - File Already Exists
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room In System Lock List

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

OL:

Returned Values:
Register AL:

BL:

F MULTISEC

Set BOOS Multisector Count

02CH (44)
Number of Sectors

Return Code
Same as AL

F MULTISEC

F _ MUL TISEC provides logical record blocking under Concurrent. It enables a
process to read and write from 1 to 128 physical records of 128 bytes at a time
during subsequent BOOS read and write system calls. It also specifies the number
of 128-byte records to be locked or unlocked by F _LOCK and F _UNLOCK.

F _ MUL TISEC sets the Multisector Count value for the calling process to the value
passed in register OL. Once set, the specified Multisector Count remains in effect
until the calling process makes another F _ MUL TISEC call and changes the value.
Note that P CU sets the Multisector Count to one when it initiates a transient
program.

The Multisector Count affects BOOS error reporting for the BOOS read and write
system calls. With the exception of physical errors, if an error occurs during these
system calls and the Multisector Count is greater than one, Concurrent returns the
number of records successfully processed in register AH.

Upon return. F _ MUL TISEC sets register AL to OOH if the specified value is in the
range of 1 to 128. Otherwise. it sets register AL to OFFH.

6-85

F OPEN

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register Al:

AH:
BX:

Concurrent DOS 86 Programmer's Guide

F OPEN

Open A Disk File

OFH (15)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F OPEN activates the FCB for a file that exists in the disk directory under the
c;:;rrently active user number or user zero. The calling process passes the address
of the FCB, with byte O of the FCB specifying the drive, bytes 1 through 11
specifying the filename and filetype, and byte 12 specifying the extent. Byte 12 is
usually set to zero.

Interface attributes FS' and F6' of the FCB specify the mode in which the file is to
be opened, as shown below:

FS' a o. F6' m 0
FS' " 1, F6' • 0
FS' • 0 or 1. F6' • 1

Open in locked mode (Default mode)
Open in Unlocked mode
Open in Read-Only mode

If the file is password protected in Read mode. the correct password must be
placed in the first eight bytes of the current DMA or have been previously
established as the default password (see F PASSWD). If the current record field of
the FCB, CR, is set to OFFH, F OPEN returns-the byte count of the last record of the
file In the CR field. The last record byte count for a file can be set using
F ATTRIB.

Note: The calling process must set the CR field of the FCB to OOH if the file is to
be accessed sequentially from the first record.

F _OPEN performs the following steps for files opened in locked or Read-Only
mode. if the current user is nonzero and the file to be opened does not exist
under the current user number. F OPEN searches user 0 for the file. If the file
exists under user O and has the system attribute (T2') set, the file is opened under
user 0. The Open mode is automatically set to Read-Only when this is done.

F _OPEN also performs the following action for files opened in locked mode when
the current user number Is 0. If the file exists in the directory under user 0, and
has both the system attribute {T2') set and the Read-Only attribute (Tl') set, the
Open mode is automatically set to Read-Only. Note that Read-Only mode implies
the file can be concurrently accessed by other processes if they also open the file
in Read-Only mode.

6-86

Concurrent DOS 86 Programmer's Guide F OPEN

ff the open operation is successful. F _OPEN activates the user's FCB for record
operations as follows: F _OPEN copies the relevant directory information from the
matching directory FCB into bytes DO through D 15 of the FCB. It also computes a
checksum and assigns it to the FCB. All BDOS system calls that require an open
FCB (for example, F _ REAO) verify that the FCB checksum is valid before performing
their operation.

If the file is opened in Unlocked mode, F_OPEN sets bytes RO and Rl of the FCB to
a two-byte value called the File ID. The File ID is a required parameter for the
F _LOCK and F _UNLOCK calls. If the Open mode is forced to Read-Only, F _OPEN
sets interface attribute FB' to 1 in the user's FCB. In addition, the system call sets
attribute F7' to 1 if the referenced file is password protected in Write mode and
the correct password was not passed in the OMA or did not match the default
password. The BDOS does not support write operations for an activated FCB if
interface attribute F7' or FB' is set to 1.

The BOOS also creates an open file item in the system Lock List to record a
successful open file operation. While this item exists, no other process can delete,
rename, or modify the file's attributes. In addition, this item prevents other
processes from opening the file if the file is opened in Locked mode. It also
requires that other processes match the file's Open mode if the file is opened in
Unlocked or Read-Only mode. This item remains in the system Lock List until the
file is permanently closed or until the process that opened the file terminates.

When the open operation is successful, F _OPEN also makes an access time and
date stamp for the opened file when the following conditions are satisfied: the
referenced drive has a directory label that requests access date and time stamping,
the FCB extent field is equal to zero, and the referenced drive is Read-Write.

Upon return, F _OPEN returns a directory code in register AL with the value OOH if
the open is successful, or OFFH if the file is not found. Register AH is set to 0 in
both of these cases. If a physical or extended error is encountered, F _OPEN
performs different actions depending on the BOOS Error mode (see F_ERRMOOE).
If the BDOS is in the default Error mode, Concurrent displays a message identifying
the error at the console and terminates the process. Otherwise, F _OPEN returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error
05H - File is open by another process or by the

current process in an incompatible mode
07H - Password Error
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room in System Lock List

6-87

F PARSE Concurrent DOS 86 Programmer's Guide

F PARSE

Parse An ASCli String And Initialize An FCB

Entry Parameters:
Register CL:

DX:
OS:

098H (152)
PFCB Address - Offset
PFCB Address - Segment

Returned Values:
Register AX:

BX:
CX:

OFFFFH if error
O if end of filename string
O if end of line address of next item to parse
Same as AX
Error Code

F _PARSE parses an ASCII file specification and prepares a File Control Block. The
calling process passes the address of a data structure called the Parse Filename
Control Block, (PFCB) in registers DX and OS.

Figure 6-6 shows the format of the Parse Filename Control Block. Table 6-12 lists
the fields in the PFCB.

Field

FILENAME

FCBADR

6-88

+-------------------+
I FILENAME I FCBADR I
+-------------------+

Figure 6-6. PFCB - Parse Filename Control Block

Table 6-12. PFCB Field Defintions

Description

Offset of an ASCII file specification to parse. The offset is
relative to the same Data Segment as the PFCB.

Offset of a File Control Block to initialize. The offset is
relative to the same Data Segment as the PFCB.

Concurrent DOS 86 Programmer's Guide F PARSE

F _PARSE assumes the file specification to be in the following form:

(d:}filename(.typ}(;password}

where those items enclosed in curly brackets are optional.

F _PARSE parses the first file specification it finds in the input string. First of all, it
eliminates leading blanks and tabs. F _PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific
field it is parsing. For instance, if it finds a colon (:), and it is not the second
character of the file specification, the colon delimits the whole file specification.

F _PARSE recognizes the following characters as delimiters:

space
tab
carriage return
null
; (semicolon) - except before password field
= (equal)
< (less than)
> (greater than)
. (period) - except after filename and before filetype
: (colon) - except before filename and after drive
, (comma)
I (vertical bar)
[(left square bracket)
] (right square bracket)

If F _PARSE encounters a nongraphic character in the range 1 through 31 not listed
above, it treats the character as an error.

F _PARSE initializes the specified FCB as shown in Table 6-13.

6-89

F PARSE Concurrent DOS 86 Programmer's Guide

Table 6-13. FCB Initialization

Byte Definition

byte O The drive field Is set to the specified drive. If the drive is
not specified, the default value is used. O = default, 1 = A,
2 • B, etc.

byte 1-8 The name is set to the specified filename. All letters are
converted to upper-case. If the name is not eight
characters long, the remaining bytes in the filename field
are padded with blanks. If the filename has an asterisk (*),
all remaining bytes in the filename field are filled in with
question marks (?). F _PARSE returns an error if the filename
is more than eight bytes long.

byte 9-11 The type is set to the specified filetype. If no type is
specified, the type field Is initialized to blanks. All letters
are converted to upper-case. If the type is not three
characters long, the remaining bytes in the filetype field are
padded with blanks. If an asterisk is encountered, all
remaining bytes are filled in with question marks. F _PARSE
returns an error if the type field Is more than 3 bytes long.

byte 12-15 Filled in with zeros.

byte 16-23 The password field Is set to the specified password. If no
password is specified, this field is initialized to blanks. If
the password is not eight characters long, remaining bytes
are padded with blanks. All letters are converted to upper­
case. F _PARSE returns an error if the password field is
more than eight bytes long.

byte 24-31 Reserved for system use.

If an error occurs, F _PARSE returns OFFFFH in register AX indicating the error.

On a successful parse, F _PARSE checks the next item in the FILENAME string. It
scans for the first character that follows trailing blanks and tabs. If the character
is a line feed (OAH), a carriage return (OOH), or a null character (OOH), it returns a O
Indicating the end of the FILENAME string. If the next character is a delimiter, it
returns the address of the delimiter. If the next character is not a delimiter, it
returns the address of the first trailing blank or tab.

If F _PARSE is to be used to parse a subsequent filename in the FILENAME string,
the returned address should be advanced over the delimiter before placing it in the
PFCB.

Table 6-5 contains the list of error codes returned In CX.

6-90

Concurrent DOS 86 Programmer's Guide

F PASSWD

Establish A Default Password For File Access

Entry Parameters:
Register CL: 06AH (106)

DX: Password Address - Offset
DS: Password Address - Segment

F PASSWD

F _PASSWD allows a process to specify a password value before a file protected by
the password is accessed. When the file system accesses a password-protected
file, it checks the current DMA, and the default password for the correct value. If
either value matches the file's password, full access to the file is allowed.

Concurrent maintains a default password for each process running on the system.
A new process inherits its initial default password from its parent, the process
creating the new process.

Note: Changing the default password does not affect other processes currently
running on the system.

To make an F _PASSWD call, the calling process passes the address of an eight­
byte field containing the password.

6-91

F RANDREC

Entry Parameters:

Concurrent DOS 86 Programmer's Guide

F RANDREC

Return The Random Record Number Of The
Next Record To Access In A Disk File

Register CL: 024H (36)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Random Record Field of FCB Set

F _RANDREC returns the Random Record Number of the next record to be accessed
from a file that has been read or written sequentially to a particular point.
F_RANDREC returns this value in the Random Record field, bytes RO, R1, and R2, of
the addressed FCB. F _ RANDREC can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file to extract the
positions of various key fields. As each key is encountered, you call F _ RANDREC
to compute the random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record number minus one is placed
into a table with the key tor later retrieval.

After scanning the entire file and tabularizing the keys and their record numbers,
you can move directly to a particular record by performing a random read using
the corresponding Random Record Number that was saved earlier. The scheme is
easily generalized when variable record lengths are involved, because the program
need only store the buffer-relative byte position along with the key and record
number in order to find the exact starting position of the keyed data at a later
time.

F _RANDREC can also be used when switching from a sequential read or write to a
random read or write. Access records sequentially to a particular point in the file,
call F _RANDREC to set the record number, and then subsequent random read and
write operations can continue from the next record in the file.

6-92

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

F READ

Read Records Sequentially From A Disk File

014H (20)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F READ

F _READ reads the next 1 to 128 128-byte records from a file into memory,
beginning at the current OMA address. The BOOS Multisector Count {see
F _ MUL TISEC) determines the number of records to be read. The default is one
record. The addressed FCB must have been previously activated by an F OPEN or
F _MAKE call. -

F _READ reads each record from the current record (CR) field in the FCB, relative to
the current extent, then automatically increments the CR field to the next record
position. If the CR field overflows, then F _READ automatically opens the next
logical extent and resets the CR field to zero for the next read operation. The
calling process must set the CR field to OOH following the open call if the intent is
to read sequentially from the beginning of the file.

Upon return, F _READ sets register AL to zero if the read operation is successful.
Otherwise, register AL contains an error code identifying the error as shown below:

01H - Reading unwritten data (end-of-file)
08H - Record locked by another process
09H - Invalid FCB
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

F _READ returns error code 01 H if no data exists at the next record position of the
file. The no data situation is usually encountered at the end of a file. However, it
can also occur if you try to read a data block that has not been previously written
or an extent that has not been created. These situations are usually restricted to
files created or appended with the BOOS random write calls (F _WRITE RAND and
F _ WRITEZF).

6-93

F READ Concurrent DOS 86 Programmer's Gulde

F _READ returns error code OSH if the calling process attempts to read a record
locked by another process with an exclusive lock. This error code is only returned
for files opened In Unlocked mode.

F _READ returns error code 09H if the FCB is invalidated by a previous F _CLOSE call
that returned an error.

F _READ returns error code OAH if the referenced FCB failed the FCB checksum test.

F _READ returns error code OBH if the BOOS cannot locate the FCB's directory entry
when attempting to verify that the referenced FCB contains current information.
F _READ only returns this error for files opened in Unlocked mode.

F _READ returns error code OFFH if a physical error is encountered and the BOOS
Error mode is in one of the return modes (see F _ ERRMODE). If the BOOS is in the
default Error mode, Concurrent displays a message at the console identifying the
physical error and terminates the calling process. When F _READ returns a physical
error to the calling process, It Is identified by register AH as shown below:

O 1 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

On all error returns, except for physical error returns (AL ~ 255), F _READ sets
register AH to the number of records successfully read before the error was
encountered. This value can range from O to 127 depending on the current BOOS
Multlsector Count. It is always set to zero when the Multisector Count Is equal to
one.

6-94

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

F READRAND

Read Random Records From A Disk File

021H (33)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F READRAND

F _ READRAND is similar to F _READ except that the read operation takes place at a
particular Random Record Number, selected by the 24-bit value constructed from
the three-byte, RO, R1, R2, field beginning at position 33 of the FCB. Note that the
sequence of 24 bits is stored with the least significant byte first, RO, the middle
byte next, Rl, and the high byte last, R2. The Random Record Number can range
from 0 to 262, 143. This corresponds to a maximum value of 3 in byte R2.

To read a file with F _READ RAND, the calling process must first open the base
extent, extent 0. This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent might or might not contain any
allocated data.

F _ READRAND reads the record specified by the random record field into the
current OMA address. F _ READRAND automatically sets the FCB extent and current
record number values, EX and CR, but unlike F _READ, it does not advance the
current record number. Thus, a subsequent F _READRAND call rereads the same
record. After a random read operation, a file can be accessed sequentially, starting
from the current randomly accessed position. However, the last randomly
accessed record is reread or rewritten when switching from random to sequential
mode.

If the BOOS Multlsector count is greater than one (see F _ MULTISEC), F _READRAND
reads multiple consecutive records into memory beginning at the current OMA.

F READRAND automatically increments the RO, Rl, R2 field of the FCB to read each
record. However, it restores the FCB's Random Record Number to the first record's
value upon return to the calling process.

6-95

F READRAND Concurrent DOS 86 Programmer's Guide

Upon return, F _READRAND sets register AL to OOH if the read operation is
successful. Otherwise, register AL contains one of the following error codes:

01 H - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random record number out of range
08H - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error refer to register AH

F READRAND returns error code O 1 H when it accesses a data block not previously
written. This may indicate an end-of-file condition.

F _READRAND returns error code 03H when it cannot close the current extent prior
to moving to a new extent.

F _READRAND returns error code 04H when a read random operation accesses an
extent that has not been created.

F _READRAND returns error code 06H when byte 35 (R2) of the referenced FCB is
greater than 3.

F READRAND returns error code OBH if the calling process attempts to read a
record locked by another process with an exclusive lock. This error code is only
returned for files opened in Unlocked mode.

F _READRAND returns error code OAH if the referenced FCB failed the FCB
checksum test.

F _ READRAND returns error code OBH if the BOOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current
information. F _READRAND only returns this error for files open in Unlocked mode.

F _ READRAND returns error code OFFH if a physical error is encountered and the
BOOS Error mode is in one of the return modes (see F _ ERRMODE). If the BOOS is
in the default Error mode. Concurrent displays a message at the console
identifying the physical error and terminates the calling process.

When a physical error is returned to the calling process, it is identified by the four
low-order bits of register AH as shown below:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

On all error returns except for physical error returns, AL • 255, F _ READRAND sets
register AH to the number of records successfully read before the error was
encountered. This value can range from O to 127 depending on the current BOOS
Multisector Count. It is always set to zero when the Multisector Count is equal to
one.

6-96

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

F RENAME

Rename A Disk File

017H (23)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F RENAME

F _RENAME uses the referenced FCB to change all directory entries of the file
specified by the drive and filename in bytes O to 11 of the FCB to the filename
specified in bytes 17 through 27.

If the file specified by the first filename is password-protected, the correct
password must be placed in the first eight bytes of the current OMA buffer, or
have been previously established as the default password (see F _PASSWD).

The calling process must also ensure that the filenames specified in the FCB are
valid and unambiguous, and that the new filename does not already exist on the
drive. F _RENAME uses the drive code at byte O of the FCB to select the drive. The
drive code at byte 16 of the FCB is ignored.

Interface attribute F5' specifies whether an extended file lock is to be maintained
after the F ATIRIB call as shown below:

F5'• 0 Do not maintain an extended file lock (default)
F5'= 1 Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file lock, the
calling process maintains the lock on the file. Otherwise, the file becomes
available to other processes on the system. Section 2.11 describes extended file
locking in detail.

A process can rename a file that it has open if the file is open in locked mode.
However, the BOOS returns a checksum error if the process subsequently
references the file with a system call requiring an open FCB. A file open in Read­
Only or Unlocked mode cannot be renamed by any process.

Renaming an open file can adversely affect the performance of the calling process.
For this reason, you should close an open file before you rename it.

Upon return, F RENAME returns a directory code in register AL with the value OOH
If the rename is successful, or OFFH if the file named by the first filename in the
FCB is not found. Register AH is set to OOH in both of these cases.

6-97

F RENAME Concurrent DOS 86 Programmer's Guide

If a physical or extended error is encountered, F _RENAME performs different
actions depending on the BOOS Error mode (see F _ERRMODE). If the BOOS is in
the default Error mode. Concurrent displays a message at the console identifying
the error, and terminates the process. Otherwise, it returns to the calling process
with register AL set to OFFH and with register AH set to one of the following
physical or extended error codes:

6-98

01 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File
04H - Invalid Drive : drive select error
OSH - File open by another process
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

F SETDATE

Set File Time and Date Stamps

74H (116)
FCB address -- Offset
FCB address - Segment

Directory code
Physical error
Same as AX

F SETDATE

F _ SETDATE sets the time and date stamp fields for the specified file to the time
and date stamp values specified in the first eight bytes of the OMA buffer. The
specified file must currently be open in Locked mode by the calling process.

The first 4-byte field in the OMA buffer contains the access or create stamp field
for CP/M™ media files. This field is copied into the file's access or create stamp
field if the directory label has activated access and/or creation time and date
stamping on the file's drive.

Note that only the update stamp field can be set for DOS media files. DOS media
files are not stamped for access or create times.

The second 4-byte field of the OMA buffer contains the update stamp field. This
field is copied into the update stamp field for CP/M files only when the directory
label has activated update time and date stamping on the file's drive. The OMA
update stamp field is always copied into the update stamp field of DOS media files.

Upon return from a successful operation, F SETDATE sets register AL to OOH. If
the referenced FCB does not specify a file opened by the calling process in Locked
mode, register AL will be set to OAH. Register AH is set to OOH in both cases.

If a physical or extended error is encountered, F _ SETDATE performs different
actions, depending upon the BOOS Error mode (see F ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays an error- message at the console and
terminates the calling process. Otherwise, F SETDATE returns to the calling
process with register AL set to FFH and registe-r AH set to one of the following
physical error codes:

01H - Disk 1/0 Error : Permanent Error
02H - Read/Only Disk
04H - Invalid Drive : Drive Select Error
09H - Illegal ? in FCB

6-99

F SFIRST Concurrent DOS 86 Programmer's Guide

F SFIRST

Find The First File That Matches The Specified FCB

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

011H (17)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F SFIRST scans the directory for a match with the referenced FCB. Two types of
searches can be performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the drive
directory to be searched, bytes 1 through 11 specifying the file or files to be
searched for, and byte 12 specifying the extent. Byte 12 Is usually set to OOH.

An ASCII question mark (63, or 03FH hexadecimal) in any of the bytes 1 through 12
matches all entries on the directory in the corresponding position. This facility,
called ambiguous file reference, can be used to search for multiple files on the
directory. When called in the standard mode, F _SFIRST scans for the first file entry
In the specified directory that matches the FCB and belongs to the current user

number.

F SFIRST also Initializes the F SNEXT call. After the search call has located the
first directory entry matchln-g the referenced FCB, F _ SNEXT can be called
repeatedly to locate all remaining matching entries. In terms of execution
sequence, however, the F _ SNEXT call must follow either an F _ SFIRST or F _ SNEXT
call with no other intervening BOOS file-access system calls.

If byte O of the referenced FCB Is set to a question mark, F SFIRST ignores the
remainder of the referenced FCB and locates the first directory entry residing on
the current default drive. All remaining directory entries can be located by making
multiple F _SN EXT calls.

This type of search operation Is not usually made by application programs, but it
does provide complete flexibility to scan all directory entries. Note that this type
of search operation must be performed to access a drlve's directory label.

6-100

Concurrent DOS 86 Programmer's Guide F SFIRST

Upon return, F _ SFIRST returns a directory code in register Al with the value 0 to 3
if the search is successful, or OFFH if a matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful searches. the
current OMA Is also filled with the directory record containing the matching entry,
and the relative starting position is (AL*32). The directory information can be
extracted from the buffer at this position.

If the directory has been initialized for date and time stamping, then an FCB
resides in every fourth directory entry, and successful directory codes are
restricted to the values 0 to 2. For successful searches, if the matching directory
record is an extent zero entry, and if an SFCB resides at offset 96 within the
current OMA buffer, then the contents of (OMA Address + 96) = 021 H, and the
SFCB contains the time and date stamp information and password mode for the
file. This information is located at the relative starting position of 97 + (AL " 10)
within the current OMA in the following format:

0 - 3 Create or Access Date and Time Stamp Field
4 - 7 Update Date and Time Stamp Field
8 Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, F _ SFIRST performs different actions depending
on the BOOS error mode (see F _ ERRMODE). If the BOOS is in the default Error
mode, Concurrent displays a message identifying the error at the console and
terminates the calling process. Otherwise, it returns to the calling process with
register AL set to OFFH and register AH set to one of the following physical error
codes:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

6-101

F SIZE Concurrent DOS 86 Programmer's Guide

F SIZE

Compute The Size Of A Disk File

Entry Parameters:
Register CL: 023H (35)

DX: FCB Address - Offset
OS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX, Random Record Field of FCB Set

F _SIZE determines the virtual file size, which is the address of the record
immediately following the end of the file. The virtual size of a file corresponds to
the physical size if the file is written sequentially. If the file is written In random
mode, gaps might exist in the allocation, and the file might contain fewer records
than the Indicated size. For example, If a single record with record number
262,143, the Concurrent maximum, Is written to a file using F_WRITERAND, then the
virtual size of the file is 262.144 records even though only one data block is
actually allocated.

To compute file size, the calling process passes the address of an FCB with bytes
RO, Rl, and R2 present. F _SIZE sets the random record field of the FCB to the
Random Record Number + 1 of the last record in the file. If the R2 byte is set to
04H, and RO and R 1 are both zero, then the file contains the maximum record
count, 262, 144.

A process can append data to the end of an existing file by calling F _SIZE to set
the random record position to the end of file, and then performing a sequence of
random writes.

Note: The file need not be open in order to use F SIZE. However, if the file is open
In Locked mode and it has been extended by the - calling process, the file must be
closed before calling F SIZE. Otherwise, F SIZE returns an incorrect file size.
F _SIZE returns the correct size for files open in Unlocked mode and Read-Only
mode.

Upon return, F _SIZE returns a OOH in register AL if the file specified by the
referenced FCB is found, or a OFFH in register AL if the file is not found. Register
AH Is set to OOH in both cases.

6-102

Concurrent DOS 86 Programmer's Guide F SIZE

If a physical or extended error is encountered, F _SIZE performs different actions
depending on the BOOS Error mode (see F ERRMODE). If the BOOS is in the
default Error mode, Concurrent displays a me-ssage at the console identifying the
error and terminates the process. Otherwise. F _SIZE returns to the calling process
with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error
09H - Illegal ? in FCB

6-103

F SNEXT Concurrent DOS 86 Programmer's Guide

F SNEXT

Find A Subsequent File That Matches the
Specified FCB Of A Previous F _SFIRST Or F _SNEXT

Entry Parameters:
Register CL:

Returned Values:
Register AL:

AH:
BX:

012H (18)

Directory Code
Physical or Extended Error
Same as AX

F _ SNEXT Is identical to F _ SFIRST except that the directory scan continues from the
last entry that was matched. F _SNEXT returns a directory code in register AL,
analogous to F _SFIRST.

Note: In execution sequence, an F _SNEXT call must follow either an F SFIRST or
another F _ SNEXT with no other intervening BOOS file-access system calls.

6-104

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register Al:

AH:
BX:

F TIMEDATE

Return File Date Stamps And Password Mode

066H (102)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical Error
Same as AX

F TIMEDATE

F _ TIMEDATE returns the time and date stamp information and password mode for
the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
calling process passes the address of an FCB in which the drive, filename, and type
fields have been defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced FCB:

byte 12 password mode field
bit 7 - Read
bit 6 - Write
bit 5 - Delete

Byte 12 equal to 0 indicates the file has not been assigned a password.

byte 24 - 27 SFCB Create or Access time stamp field
byte 28 - 31 SFCB Update time stamp field

Upon return, F _ TIMEDATE returns a directory code in register Al with the value
OOH if the operation is successful, or OFFH if the specified file is not found.
Register AH is set to OOH in both of these cases.

If a physical or extended error is encountered, F TIMEDATE performs different
actions depending on the BOOS Error mode (see F ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, F _TIMEDATE returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical error codes:

01 H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error
09H - Illegal ? in FCB

6-105

F TRUNCATE

Entry Parameters:
Register CL:
Register DX:

Returned Values:
Register AL:
Register AH:
Register BX:

Concurrent DOS 86 Programmer's Guide

F TRUNCATE

Truncate File

063H (99)
FCB Address - Offset

Directory Code
Physical or Extended Error
Same as AX

F TRUNCATE sots the last record of a file to the Random Record Number contained
In the referenced FCB. The calling program passes the address of the FCB in
register DX with byte 0 of the FCB specifying the drive, bytes 1 through 11
specifying the filename and filetype, and bytes 33 through 35 (RO, R 1, and R2)
specifying the last record of the file. The last record number is a 24-bit value,
stored with the least significant byte first (RO), the middle byte next (R 1), and the
high byte last (R2). This value can range from O to 262, 143 (03FFFFH)

If the file specified by the referenced FCB is password-protected, the correct
password must have been placed in the first eight bytes of the current OMA buffer,
or have been previously established as the default password (see F _PASSWD).

Interface attribute F5' specifies whether an extended file lock is to be maintained
after the F _TRUNCATE call, as shown below:

F5'• 0 Do not maintain an extended file lock (default)
F5'• 1 Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file lock. the
calling process maintains the lock on the file. Otherwise, the file becomes
avallable to other processes. Section 2.11 describes extended file locking in detail.

F _TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size. In addition, if the file is sparse, the
random record field must specify a region of the file where data exists.

A process can truncate a file that it currently has open if the file is opened In
Locked mode, and the file has not been extended during the open session.
However, the BOOS returns a checksum error If the process makes a subsequent
reference to the file with a BOOS system call requiring an open FCB. A process
cannot truncate files open in R/O or Unlocked mode.

6-106

Concurrent DOS 86 Programmer's Guide F TRUNCATE

Truncating an open file is not recommended. F _TRUNCATE truncates a file based
on the file's state in the directory. If a process attempts to truncate at a region of
the file that has been allocated in memory but has not been recorded in the
directory, F _TRUNCATE returns an error. Even when successful, an open file
truncate can adversely affect the performance of the calling process. For these
reasons, you should close an open file before you truncate it.

After completion, F _TRUNCATE returns a directory code in register AL with the
value OOH if the operation is successful or OFFH if the file is not found or if the
record number is invalid. In both cases register AH is set to OOH.

If a physical or extended error is encountered, F _TRUNCATE performs different
actions depending on the BOOS error mode (see F _ ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, F _TRUNCATE returns to
the calling program with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

O 1 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File
04H - Invalid Drive : drive select error
05H - File Currently Open
06H - Close Checksum Error
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room in System Lock List

6-107

F UNLOCK

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register Al:

AH:
BX:

Concurrent DOS 86 Programmer's Guide

F UNLOCK

Unlock Records In A Disk File

02BH (43)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F _UNLOCK unlocks one or more consecutive records previously locked by an
F _LOCK call. F _UNLOCK Is only supported for files open in Unlocked mode. If it is
called for an file open in Locked or Read-Only mode, no unlocking action occurs
but a successful result is returned. Record locking and unlocking is described in
detail in Section 2.14.

The calling process passes the address of an FCB in which the Random Record
Field is filled with the Random Record Number of the first record to be unlocked.
The number of records to be unlocked is determined by the BOOS Multisector
Count (see F MUL TISEC). The current OMA must contain the 2-byte File ID
returned by the F _OPEN call when the referenced FCB was opened. Note that the
File ID is only returned by F _OPEN when the file open mode is Unlocked.

If interface attribute F5' is set to 1, F UNLOCK unlocks all locked records belonging
to the calling process. The F _UNLOCK interface attribute definition is listed below:

F5'• 0

F5'• 1

Unlock records specified by Random Record Number
and BOOS Multisector Count (default)
Unlock all locked records.

F _UNLOCK ignores the FCB Random Record field and the BOOS Multisector Count
when F5' is set.

F _UNLOCK does not unlock a record that is currently locked by another process.
However, F _UNLOCK does not return an error if a process attempts to do that.
Thus, if the Multlsector Count is greater than one, F _UNLOCK unlocks all records
locked by the calling process, skipping those records locked by other processes.

Some F _UNLOCK requests require a new entry in the BOOS system Lock List. If
there Is insufficient space in the system Lock List to satisfy the F _UNLOCK request,
or if the process record Lock list limit is exceeded, then F _UNLOCK does not
unlocks any records and returns an error code to the calling process.

6-108

Concurrent DOS 86 Programmer's Guide F UNLOCK

Upon return, F _UNLOCK sets register Al to OOH if the unlock operation was
successful. Otherwise, register AL contains one of the following error codes:

01 H - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random Record Number out of range
OAH - FCB Checksum Error
OCH - Process record Lock List limit exceeded
OOH - Invalid File ID
OEH - No room in system Lock List

OFFH - Physical error refer to register AH

F UNLOCK returns error code 01 H when it accesses a data block which has not
been previously written.

F _UNLOCK returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

F UNLOCK returns error code 04H when it accesses an extent that has not been
created.

F UNLOCK returns error code 06H when byte 35 (r2) for a list of the referenced
FCB is greater than 3.

F UNLOCK returns error code OAH if the referenced FCB failed the FCB checksum
test.

F _UNLOCK returns error code OCH if performing the unlock request would require
that the process consume more than the maximum allowed number of system
Lock List entries.

F UNLOCK returns error code OOH when an invalid File ID is placed at the
beginning of the current OMA.

F _UNLOCK returns error code OEH when the system Lock List is full and performing
the unlock request would require at least one new entry.

F UNLOCK returns error code OFFH if a physical error was encountered and the
BOOS Error mode is one of the return modes (see F _ ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the physical error and terminates the calling process. When F _UNLOCK returns a
physical error to the calling process, it is identified by register AH as shown
below:

01H - Disk 1/0 Error: permanent error
04H - Invalid Drive : drive select error

6-109

F USERNUM Concurrent DOS 86 Programmer's Guide

F USERNUM

Set Or Return The Calling Process's Default User Number

Entry Parameters:
Register CL: 020H (32)

DL: OFFH to GET User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET

BL: Same as AL

F _USERNUM can change or interrogate a process's current default user number. If
register DL • OFFH, then F _USERNUM returns the value of this user number in
register AL. The value can range from 0 to OFH. If register DL is not OFFH, then
F _USERNUM changes the default user number to the value in DL, modulo 010H (the
high nibble of DL is masked off).

Under Concurrent, a new process inherits its initial default user number from its
parent, the process creating the new process. Changing the default user number
does not change the user number of the parent. On the other hand, all child
processes of the calling process inherit the new user number.

The operation of the Terminal Message Process (TMP) demonstrates this
convention. When you enter a command, Concurrent creates a new process with
the same user number as that of the TMP. If this new process changes its user
number, the TMP is unaffected. Once the new process terminates, the TMP
displays the same user number in its prompt that it displayed before you entered
the command and the child process was created.

6-110

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AL:

AH:
BX:

F WRITE

Write Records Sequentially To A Disk File

015H (21)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F WRITE

F_WRITE writes 1 to 128, 128-byte data records beginning at the current OMA
address into the file named by the specified FCB. The BOOS Multisector Count
(see F _ MUL TISEC) determines the number of 128-byte records that are written.
The default is one record. An F _OPEN or F _MAKE call must have previously
activated the referenced FCB.

F _WRITE places the record into the file at the position indicated by the CR byte of
the FCB, and then automatically increments the CR byte to the next record
position. If the CR field overflows, F _WRITE automatically opens or creates the
next logical extent and resets the CR field to OOH in preparation for the next write
operation.

If F _WRITE is used to write to an existing file, then the newly written records
overlay those already existing in the file. The calling process must set the CR field
to OOH following an F _OPEN or F _MAKE call if the intent is to write sequentially
from the beginning of the file.

F WRITE makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests upda'te
date and time stamping. and the file has not already been stamped for update by a
previous F_MAKE or F_WRITE call.

Upon return, F WRITE sets register AL to OOH if the write operation is successful.
Otherwise, register AL contains an error code identifying the error as shown below:

OlH - No available directory space
02H - No available data block
08H - Record locked by another process
09H - Invalid FCB
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

6-111

F WRITE Concurrent DOS 86 Programmer's Guide

F _WRITE returns error code OlH when it attempts to create a new extent that
requires a new directory entry, and no available directory entries exist on the

selected disk drive.

F _WRITE returns error code 02H when it attempts to allocate a new data block to
the flle, and no unallocated data blocks exist on the selected disk drive.

F _WRITE returns error code 08H if the calling process attempts to write to a record
locked by another process, or a record locked by the calling process in shared
mode. F _WRITE returns this error only for files open In Unlocked mode.

F _WRITE returns error coda 09H if the FCB Is invalidated by a previous F _CLOSE
system call that returned an error.

F _WRITE returns error code OAH if the referenced FCB fails the FCB checksum test.

F _WRITE returns error code OBH if the BOOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current
information. F _WRITE returns this error only for files open in Unlocked mode.

F _WRITE returns error code OFFH if a physical error was encountered and the BOOS
Is In Return Error mode or Return and Display Error mode (see F _ ERRMODE). If the
BOOS Is in the default Error mode, Concurrent displays a message at the console
identifying the physical error and terminates the calling process. When F _WRITE
returns a physical error to the calling process, It is identified by register AH as
shown below:

OlH - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened In Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive : drive select error

On all error returns except for physical error r11turns (AL • 255), F _WRITE sets
register AH to the number of records successfully written before the error was
encountered. This value can range from 0 to 127, depending on the current BOOS
Multlsector Count. It is always set to zero when the Multisector Count Is equal to
one.

6-112

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

F WRITERAND

Write Random Records To A Disk File

022H (34)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F WRITERAND

F _ WRITERAND is analogous to F _ READRAND, except that data is written to the disk
from the current OMA address. If the disk extent and/or data block where the data
is to be written is not already allocated, the BOOS automatically performs the
allocation before the write operation continues.

In order to write to a file using F _WRITERAND, the calling process must first open
the base extent, extent 0. This ensures that the FCB is properly initialized tor
subsequent random access operations. If the file is empty, the calling process
must create the base extent with an F _MAKE call before calling F _ WRITERAND. The
base extent might or might not contain data. but it records the file in the directory
so that it can be displayed by the DIR utility. If a process does not open extent 0
and allocates data to some other extent, the file is invisible to the DIR utility.

F _ WRITERAND sets the logical extent and current record positions to correspond
with the random record being written, but does not change the Random Record
Number. Thus sequential read or write operations can follow a random write, with
the current record being reread or rewritten as the calling process switches from
random to sequential mode.

F _ WRITERAND makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests update
date and time stamping, and the file has not already been stamped for update by a
previous F_MAKE or F_WRITE call.

If the BOOS Multisector Count is greater than one (see F_MULTISEC), F_WRITERAND
reads multiple consecutive records into memory beginning at the current OMA
address. F _ WRITERAND automatically increments the RO, R 1,and R2 field of the
FCB to write each record. However, it restores the FCB's Random Record Number
to the first record's value upon return to the calling process.

6-113

F WRITERAND Concurrent DOS 86 Programmer's Guide

Upon return, F _WRITERAND sets register AL to OOH if the write operation is
successful. Otherwise, register AL contains one of the following error codes:

02H - No available data block
03H - Cannot close current extent
05H - No available directory space
06H - Random record number out of range
OSH - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

F WRITERAND returns error code 02H when it attempts to allocate a new data
block to the file. No unallocated data blocks exist on the selected disk drive.

F WRITERAND returns error code 03H when it cannot close the current extent
before moving to a new extent.

F _WRITERAND returns error code 05H when it attempts to create a new extent that
requires a new directory entry and no available directory entries exist on the
selected disk drive.

F _ WRITERAND returns error code 06H when byte 35 (R2) of the referenced FCB is
greater than 3.

F _ WRITERAND returns error code OSH If the calling process attempts to write to a
record locked by another process, or a record locked by the calling process in
Shared mode. F _ WRITERAND returns this error only for files open in Unlocked
mode.

F _ WRITERAND returns error code OAH if the referenced FCB fails the FCB checksum
test.

F _ WRITERAND returns error code OBH if the BOOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current
Information. F _ WRITERAND returns this error only for files open in Unlocked mode.

F _ WRITERAND returns error code OFFH if a physical error is encountered and the
BOOS Error mode Is in one of the return modes (see F _ERRMODE). If the BOOS is
In the default Error mode, Concurrent displays a message at the console
Identifying the physical error and terminates the calling process. When a physical
error Is returned to the calling process. It Is Identified by register AH as shown
below:

01 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened in Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive : drive select error

6-114

Concurrent DOS 86 Programmer's Guide F WRITERAND

On all error returns. except for physical error returns (Al =- 2SS), F _WRITERAND sets
register AH to the number of records successfully written before the error was
encountered. This value can range from 0 to 127 depending on the current BOOS
Multisector Count. It is always set to zero when the Multisector Count is equal to
one.

6-115

F WRITEXFCB Concurrent DOS 86 Programmer's Guide

F WRITEXFCB

Write Extended File Control Block Of A Disk File

Entry Parameters:
Register CL:

DX:
OS:

067H (103)
FCB Address - Offset
FCB Address - Segment

Returned Values:
Register AL:

AH:
BX:

Directory Code
Physical or Extended Error
Same as AX

F _ WRITEXFCB creates a new XFCB or updates the existing XFCB for the specified
file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the
password mode and whether a new password is to be assigned to the file. The
format of the extent field byte Is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - assign new password to the file

If the FCB is currently password-protected, the correct password must reside in
the first 8 bytes of the current OMA or have been previously established as the
default password (see F _PASSWD). If bit 0 is set to 1, the new password must
reside in the second 8 bytes of the current OMA.

Note: F _ WRITEXFCB does not create or update an XFCB if the XFCB specifies a file
open by another process. However, a process can update or create an XFCB for a
file that It has open In Locked mode.

Upon return, F _WRITEXFCB returns a directory code in register AL with the value
OOH if the XFCB create or update was successful. F _WRITEXFCB returns OFFH in
register AL if no directory label existed on the specified drive, or the file specified
in the FCB was not found, or no space existed in the directory to create an XFCB,
or if the drive is not password enabled. F _ WRITEXFCB also returns OFFH if
passwords are not enabled by the specified drive's directory label. Register AH is
set to OOH in all of these cases.

6-116

Concurrent DOS 86 Programmer's Guide F WRITEXFCB

If a physical or extended error is encountered, F _ WRITEXFCB performs different
actions depending on the BOOS Error mode (see F _ ERRMODE). If the BOOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, F _ WRITEXFCB returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

OlH - Disk 1/0 Error: permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
05H - File open by another process,

or open in Read-Only or Unlocked mode
07H - Password Error
09H - Illegal ? in FCB

6-117

F WRITEZF

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

AH:
BX:

Concurrent DOS 86 Programmer's Gulde

F WRITEZF
Write A Random Record To A Disk File
And Preflll New Data Blocks With Zeros

028H (40)
FCB Address - Offset
FCB Address - Segment

Error Code
Physical Error
Same as AX

F _ WRITEZF is similar to F _WRITE RAND, with the exception that it fills a previously
unallocated data block with zeros (OOH) befon~ writing the record. If F _WRITEZF
has been used to create a file, records accessed by F _READRAND that contain all
zeros identify unwritten random records. Unwritten random records in allocated
data blocks of files created using F _WRITERAND contain uninitialized data.

6-118

Concurrent DOS 86 Programmer's Guide l ATTACH

l ATTACH

Attach The Default List Device To The Calling Process

Entry Parameters:
Register CL: 09EH (158)

L_ATTACH attaches the default list device of the calling process. If the list device
is already attached to some other process. the calling process relinquishes the
CPU until the other process detaches from the list device. When the list device
becomes free, and the calling process is the highest priority process waiting for
the list device, the attach operation occurs.

6-119

L CATIACH Concurrent DOS 86 Programmer's Guide

L CATIACH

Conditionally Attach To The Default List Device

Entry Parameters:
Register CL: OA1H (161)

Returned Values:
Register AX:

BX:
CX:

0 if attach 'OK'. OFFFFH on failure
Same as AX
Error Code

L_CATIACH attaches the default list device of the calling process only if the list

device is currently available.

If the list device is currently attached to another process, L_CATTACH returns a
value of OFFH. indicating that the list device could not be attached. L_CATIACH
returns a value of OOH to Indicate that either the list device is already attached to
the process. or that It was unattached, and a successful attach operation was

made.

Table 6-5 contains the list of error codes returned in CX.

6-120

Concurrent DOS 86 Programmer's Guide

L DETACH

Detach The Default List Device From The Calling Process

Entry Parameters:
Register CL: 09FH (159)

Returned Values:
Register AX: o if detach 'OK', OFFFFH on failure

BX: Same as AX

L DETACH

L_DETACH detaches the default list device of the calling process. If the list device
is not currently attached, no action takes place.

6-121

L GET Concurrent DOS 86 Programmer's Guide

L GET

Return The Calling Process's Default List Device

Entry Parameters:
Register CL: OA4H (164)

Returned Values:
Register AL: List Device Number

BL: Same as AL

L_ GET returns the default list device number of the calling process.

6-122

Concurrent DOS 86 Programmer's Guide

L SET

Set The Calling Process's Default List Device

Entry Parameters:
Register CL: OAOH (160)

DL: List Device Number

Returned Values:
Register CX: Error Code

L_SET sets the default list device for the calling process.

Table 6-5 contains the list of error codes returned in CX.

L SET

6-123

L WRITE Concurrent DOS 86 Programmer's Guide

L WRITE

Write A Character To The Default List Device

Entry Parameters:
Register CL: 05H (5)

DL: Character

L _WRITE writes the specified character to the default list device of the calling
process. Before writing the character, Concurrent calls L_ATTACH to verify that the
calling process owns its default list device.

6-124

Concurrent DOS 86 Programmer's Guide

L WRITEBLK

Send Specified Character String to Default List Device

Entry Parameters:
Register CL:
Register DX:

070H (112)
CHCB Address

L WRITEBLK

L _ WRITEBLK sends the character string specified in the Character Control Block
(CHCB) and addressed in register pair DX to the logical list device, LST:. The CHCB
format is:

bytes 0 - 1
bytes 2 - 3
bytes 4 - 5

Offset of character string
Segment of character string
Length of character string to print

6-125

Memory Call Data Structures Concurrent DOS 86 Programmer's Guide

Memory Call Data Structures

There are two classes of Memory system calls in Concurrent DOS 86. The first
class supports the MP/M-86 memory allocation scheme and contains two calls:
M _ ALLOC and M _FREE.

The second class supports the CP/M-86 memory allocation scheme and contains
six calls: MC_ ABS, MC_ ALLFREE, MC_ ALLOC, MC _ALLOCABS, MC _FREE, and MC_ MAX.

Note: The CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory calls use the Memory Control Block (MCB) or the Memory
Parameter Block (MPB) to pass parameters to and from Concurrent.

Figure 6-7 shows the Memory Control Block, Table 6-14 defines its fields, and
Listing 6-1 shows the programming equates for this data structure.

Field

BASE

LENGTH

EXT

6-126

+--------+----------+-----+
I BASE LENGTH I EXT I
+--------+----------+-----+

figure 6-7. MCB - Memory Control Block

Table 6-14. MCB Field Definitions

Definition

The Segment Address of the beginning of the specified
memory segment.

Length of the Memory Segment in paragraphs. The LENGTH
field is set to the number of paragraphs wanted.

The EXT field is unused but must be available.

Concurrent DOS 86 Programmer's Guide Memory Call Data Structures

Listing 6-1. Memory Control Block Definition

·*** ,
. * ,
. * ,
. * ,

Memory Control Block Definition

•*** ,
mcb base
mcb:=length
mcb ext

mcb len

equ
equ
equ

equ

word ptr 0
word ptr mcb base + word
byte ptr mcb:=length + word

mcb ext + byte

Figure 6-8 shows the Memory Control Block. Table 6-15 defines its fields, and
listing 6-2 shows the programming equates for this data structure.

Figure 6-8. MPB - Memory Parameter Block

+------+------+------+------+------+
I START! MIN I MAX l*OOOOHl*OOOOHI
+------+------+------+------+------+

Field

START

MIN

MAX

* OOOOH

Table 6-15. MPB Field Definitions

Description

if non-OOH, an absolute request at this paragraph

minimum memory needed (paragraphs)

maximum memory wanted (paragraphs)

These fields must be OOH; they are used internally.

6-127

Memory Call Data Structures Concurrent DOS 86 Programmer's Guide

Listing 6-2. Memory Parameter Block Definition

•*** ,
. * ,
;* Memory Parameter Block Definition
. * I

·*** ,
mpb start equ word ptr 0
mpb=min equ word ptr mpb start + word
mpb_max equ word ptr mpb=:min + word
mpb_pdadr equ word ptr mpb_max + word
mpb_flags equ word ptr mpb_pdadr + word

mpb_len equ mpb_flags + word

mpb_flags definition

mf load equ OOOOlh
mf-share equ 00002h
mf-code equ 00004h

EMM Data Structures

Expanded Memory Management requires two additional memory call data
structures. These are the Memory Window Descriptor and the Memory Page
Allocation Descriptor.

The XIOS maintains one Memory Window Descriptor (MWD) for each logical
address window of paged memory in the system. MWD's are arranged as a linked
list pointed to by the Memory Window Descriptor Root (MWDR) located at offset
98H In the System Data Area (see SYSDAT).

The Memory Page Allocation Descriptor (MPAD) is a dynamic structure created by
MEM whenever paged memory is allocated to a process. MPADs are arranged as a
linked list pointed to by the Memory Page Allocation Root (P MPAR) field in the
Process Descriptor of the process owning the unit of paged memory. The P _MPAR
field Is located at offset 34H in the Process Descriptor (see P _CREATE).

See the ~YStemJ3uide for additional information about these data structures.

6-128

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:

M ALLOC

Allocate A Memory Segment

080H or 081 H (128, 129)
MPS Address Offset
MPS Address Segment
MPS filled in

Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code

MPS start filled in

M ALLOC

M _ ALLOC allows a program to allocate extra memory. A successful allocation
allocates a contiguous memory segment whose length is at least the MIN and no
more than the MAX number of paragraphs specified in the MPS.

The START field of the MPS is modified to be the starting paragraph of the
memory segment. The MIN and MAX fields are modified to be the length of the
memory segment in paragraphs. Memory Segments can be explicitly released with
M _FREE; Concurrent also releases all memory owned by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be
greater than or equal to the MIN value.

Table 6-5 contains the list of error codes returned in CX.

6-129

M FREE Concurrent DOS 86 Programmer's Guide

M FREE

Free A Memory Segment

Entry Parameters:
Register CL:

DX:
OS:

082H (130)
MFPB Address - Offset
MFPB Address - Segment

Returned Values:
Register AX:

BX:
CX:

0 on success, OFFFFH on failure
Same as AX
Error Code

The calling process passes the address of a Memory Free Parameter Block (MFPB)
as shown in the Figure 6-9.

+--------------------+
START I * OOOOH

+--------------------+
Figure 6-9. MFPB - M FREE Parameter Block

M _FREE releases memory starting at the START paragraph to the end of a single
previously allocated segment that contains the START paragraph. If the START
paragraph is the same as that returned in the MPB of a memory allocation call,
then M_FREE releases the whole memory segment. The * OOOOH field must be
initialized to zero.

Table 6-5 contains the list of error codes returned in CX.

6-130

Concurrent DOS 86 Programmer's Guide

MC ABSALLOC

Allocate A Memory Segment At A Specified Address

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

BL:
CX:

038H (56)
MCB Address - Offset
MCB Address - Segment

O on success. OFFH on failure
Same as AL
Error Code

MC ABSALLOC

MC _ABSALLOC allocates a memory area starting at the address specified by the
BASE field. The memory area's length is specified by the LENGTH field of the MCB.
Upon return, register AL contains a OOH if the request was successful. and a OFFH
if the memory could not be allocated. If the calling process already owns the
requested memory, no error is returned. This assures compatibility with CP/M-86.

Table 6-5 contains the list of error codes returned in CX.

6-131

MC ABSMAX Concurrent DOS 86 Programmer's Guide

MC ABSMAX

Allocate Maximum Memory Available At A Specified Address

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AL:

BL:
ex:

036H (54)
MCB Address - Offset
MCB Address - Segment
MCB _base filled in, MCB _length set to
max number of paragraphs wanted

0 on success, OFFH on failure
Same as AL
Error Code
MCB _length set to actual number of paragraphs allocated

MC _ABSMAX allocates the largest possible region at the absolute paragraph
boundary given by the BASE field of the MCB, for a maximum of LENGTH
paragraphs. If the allocation is successful, MC_ ABSMAX sets the LENGTH to the
actual length. Upon return, register AL has the value OFFH if no memory is
available at the absolute address, and OOH If the request was successful.

Undr CP/M-86, this call does not allocate memory, but under Concurrent CP/M, it
does because other processes are competing for common memory. For
compatibility with CP/M-86, MC_ABSALLOC (system call 56) does not return an
error If there is a memory segment allocated at the absolute address.

Table 6-5 contains the list of error codes returned in CX.

6-132

Concurrent DOS 86 Programmer's Guide MC ALLFREE

MC ALLFREE

Free All Memory Owned By The Calling Process

Entry Parameters:
Register CL: OJAH: (58)

Under Concurrent, MC_ ALLFREE releases all of the calling process's memory except
the User Data Area (UDA). It is useful for system processes and for subprocesses
that share the memory of another process.

Note: MC_ ALLFREE should not be used by processes running programs loaded into
the Transient Program Areas (TPA).

6-133

MC ALLOC

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

BL:
CX:

Concurrent DOS 86 Programmer's Guide

MC ALLOC

Allocate A Memory Segment

037H (SS)
MCB Address - Offset
MCB Address - Segment
MCB_length filled in

0 on success. OFFH on failure
Same as AL
Error Code
MCB base filled in

MC ALLOC allocates a memory area whose size Is the LENGTH field of the MCB.
MC-ALLOC returns the base paragraph address of the allocated region in the user's
MCB. Upon return, register AL contains a OOH if the request was successful. and a
OFFH If the memory could not be allocated.

Table 6-S contains the list of error codes returned in CX.

6-134

Concurrent DOS 86 Programmer's Guide

MC FREE

Free A Specified Memory Segment

Entry Parameters:
Register CL: 039H (57)

DX: MCB Address - Offset
OS: MCB Address - Segment

MCB_base, MCB_ext filled in

Returned Values:
Register AL: 0 if successful, OFFH on failure

BL: Same as AL
CX: Error Code

MC FREE

MC _FREE releases memory areas allocated to the process. The value of the EXT
field of the MCB controls the free operation. If EXT = OFFH. then MC _FREE releases
all memory areas allocated by the calling process. If the EXT field is OOH, then
MC _FREE releases the memory area beginning at the specified BASE and ending at
the end of the previously allocated memory segment.

Table 6-5 contains the list of error codes returned in CX.

6-135

MC MAX

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AL:

BL:
CX:

Concurrent DOS 86 Programmer's Guide

MC MAX

Allocate Maximum Memory Available

035H (53)
MCB Address - Offset
MCB Address - Segment
(MCB _length contains maximum
number of paragraphs wanted)

0 on success, OFFH on failure
Same as AL
Error Code
(MCB _base filled in, MCB _length set to
actual number of paragraphs allocated)

MC_ MAX allocates the largest available memory region that is less than or equal to
the LENGTH field of the MCB in paragraphs. If the allocation is successful,
MC_MAX sets the BASE to the base paragraph address of the available area and
LENGTH to the paragraph length. Upon return, register AL has the value OFFH if no
memory is available, and OOH if the request was successful. MC_MAX sets the EXT
to 1 if there is additional memory for allocation, and 0 if no additional memory is
available.

Under CP/M-86, this call does not allocate memory, but under Concurrent it does
because other processes are competing for common memory. For compatibility
with CP/M-86, MC_ ABSALLOC (system call 56) does not return an error if there is a
memory segment allocated at the absolute address.

Table 6-5 contains the llst of error codes returned in ex.

6-136

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:

P ABORT

Terminate A Process By Name Or PD Address

09DH (157)
APB Address - Offset
APB Address - Segment
APB filled in

Register AX: 0 on success. OFFH on failure
BX: Same as AX
CX: Error Code

P ABORT

P _ABORT terminates a specified process by passing the address of a data structure
called an Abort Parameter Block (APB). Figure 6-10 shows the format of the APB
and Table 6-16 lists the APB field definitions.

The process name and console can be omitted if the Process Descriptor address is
filled in. Otherwise, the Process Descriptor address field should be a OOH and the
process name and console must be specified. In either case, the calling process
must supply the termination code, which is the same parameter passed to the
P TERM call.

+------+------+------+------+------+------+
00 PD TERM CNS I *OOH I

!------+------+------+------+------+------+------+------+
06 I NAME I

+------+------+------+------+------+------+------+------+
Figure 6-10. APB - Abort Parameter Block

6-137

P ABORT Concurrent DOS 86 Programmer's Guide

Field

PD

TERM

*OOH

CNS

NAME

Table 6-16. APB Field Definitions

Definition

Process Descriptor offset of the process to be terminated.
If this field is zero, a match is attempted with the NAME
and CNS fields to find the process. If this field is nonzero,
the NAME and CNS fields are ignored.

Termination Code. This field corresponds to the
termination code of the P _TERM call. If the low-order byte
of TERM Is OFFH, P _ABORT can abort a specified system
process; if the termination code is not OFFH, P _ABORT can
only abort a user process. (A system process is identified
by the SYS flag In the Process Descriptor's FLAG field.)

This field Is reserved for future use and must be set to
zero.

Default console of process to be aborted. If the PD field Is
0, P _ABORT scans the Thread List for a PD with the same
NAME and CNS fields as specified in the APB. P _ABORT
only aborts the first process that it finds. Subsequent calls
must be made to abort all processes with the same NAME
and CNS.

Name of the process to be aborted. Combined with the
CNS field, the NAME field is used to find the process to be
aborted. This is only used if the PD field is 0.

Table 6-5 contains the list of error codes returned in CX.

6-138

Concurrent DOS 86 Programmer's Guide P CHAIN

P CHAIN

Load, Initialize And Jump To Specified Program

Entry Parameters:
Register CL: 02FH (47)
OMA Buffer: Command Line

Returned Values:
Register AX: OFFFFH - Could not find Command

P _CHAIN chains from one program to the next without user intervention. Although
P _CHAIN requires no passed parameter. the calling process must place a command
line terminated by a 0 byte in the default OMA buffer.

P _CHAIN releases the memory of the calling process before executing the
command. The command is processed in the same manner as the P _ CLI call. If
the command warrants the loading of a CMD file and the memory released is large
enough for the new program, Concurrent loads the new program into the same
memory area as the old program. The new program is run by the same process
that ran the old program. The name of the process is changed to reflect the new
program being run.

Parameter passing between the old and new programs is accomplished through
the use of disk files, queues. or the command line. The command line is parsed
and placed in the Base Page of the new program as described in P _CU.

P CHAIN returns an error if no CMD file is found. If a CMD file is found. and an
error occurs after it is successfully opened, the calling process terminates. as its
memory has been released.

6-139

P CLI Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

CX:

P CLI

Interpret And Execute Command Line

096H (150)
CLBUF Address - Offset
CLBUF Address - Segment

0 on success, OFFFFH on error
Error Code

P CU obtains an ASCII command from the Command Line Buffer (CLBUF) and then
executes It. Figure 6-11 shows the Command Line Buffer format and Table 6-17
lists the CLBUF field definitions.

0 1 2 3 128 129
+------+------+------+------+ +------+------+
I *OOH I COMMAND I *OOH I
+------+------+------+------+ +-------------+

Figure 6-11. CLI Command Line Buffer

Table 6-17. Command Line Buffer Field Definitions

Field Definition

*OOH Must be set to zero for internal use.

COMMAND 1-128 ASCII characters terminated with a null character.

If the calling process is attached to its default virtual console, P _CU assigns the
virtual console to either the newly created process. or to the Resident System
Process (ASP) that acts on the command. The calling process must reattach to Its
default virtual console before accessing it.

P _CU calls F _PARSE to parse the command line. If an error occurs in F _PARSE,
P _CU returns to the calling process with the error code set by F _PARSE.

6-140

Concurrent DOS 86 Programmer's Guide P CLI

If there is no disk specification for the command, P _CU tries to open a system
queue with the same name as the command. If the open operation is successful,
and the queue is an RSP-type queue, P _ CLI then writes the command tail to the
RSP queue. If the queue is full. P _CU returns an error code to the calling process.

P _ CLI also attempts to assign the calling process's virtual console to a process
with the same name as the RSP queue. If the RSP queue cannot be found, the
P CLI assumes the command is on disk and continues.

P _ CLI opens a file with the filename being the command and the filetype being
CMD. If the command has an explicit disk specification, and the F _OPEN call fails,
P _ CLI returns an error code to the calling process. If there is no disk specification
with the command, P _ CLI attempts to open the command file on the system disk.
If the F _OPEN call succeeds, P _ CLI checks the file to verify the SYSTEM attribute is
on. This search order is discussed in the U~.!!~Qui~. If this second F _OPEN fails
or if the DIR attribute is on, P _CU returns an error code to the calling process.

Once P_CLI succeeds in opening the command file. it calls P_LOAD to find and then
load the file into an appropriate memory space. If P _LOAD encounters any errors.
P _CU returns to the calling process with the error code set by P _LOAD.

A successful load operation establishes the command file in memory with its Base
Page partially initialized. P _CU then continues parsing the command tail to set up
the Base Page values from 050h to OFFH.

P _ CLI initializes an unused Process Descriptor from the internal PD table, a UDA
(expanded UDA if 8087 processing is required) and a 96-byte stack area. The UDA
and stack are dynamically allocated from memory. P_CLI then calls P_CREATE.

If P _CU encounters an error in any of these steps, it releases all memory segments
allocated for the new command, as well as the Process Descriptor. and then
returns with the appropriate error code set.

Once P _CREATE returns successfully, P _CU assigns the calling process's default
virtual console to the new process and then returns.

The calling process should set its priority to less than 198, the value of the
Terminal Message Process TMP), if it wants to attach to the virtual console after
the created process releases it. Once the calling process has successfully
reattached, it should set its priority back to 200.

Table 6-5 contains the list of error codes returned in CX.

6-141

P CREATE

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

BX:
CX:

Concurrent DOS 86 Programmer's Guide

P CREATE

Create A Process

090H (144)
PD Address - Offset
PD Address - Segment
PD filled in

0 on success. OFFFFH on failure
Same as AX
Error Code

P _CREATE creates a subprocess within a process's own memory area. The child
process shares all memory owned by the calling process at the time of the
P CREATE call. The calling process passes the address of a Process Descriptor
(PD). Figure 6-12 shows the Process Descriptor format and Table 6-18 lists the PD
field definitions.

Process Descriptors. as well as Queue Descriptors and Queue Buffers, are required
to be within the System Data Segment because they are linked together on various
system lists or are used by more than one process. Because of this, they cannot
be in the Transient Process Area (TPA). where they are unprotected, so Concurrent
copies all Process Descriptors into an internal PD table. P_CREATE returns an error
code if there are no more unused PDs in the table.

A single P _CREATE call can create more than one process if the PD's LINK field is
nonzero. In this case, it Is assumed to point to another PD within the same Data
Segment. After It creates the first process, P _CREATE checks the LINK field and if
non-zero, It follows the linked list to create multiple processes.

WARNING! P _CREATE does not check the validity of the PD addresses passed by
the calling process. If there Is no hardware memory protection on the system,
passing an invalid PD address can cause Concurrent to halt indefinitely requiring a
reboot.

Table 6-5 contains the list of error codes returned in CX.

6-142

Concurrent DOS 86 Programmer's Guide P CREATE

+------+------+------+------+------+------+------+------+
001 LINK THREAD I STAT I PRIORI FLAG

+------+------+------+------+------+------+------+------+
081 NAME

+------+------+------+------+------+------+------+------+
101 UDA I DISK I USER I RESERVED MEM

+------+------+------+------+------+------+------+------+
181 RESERVED PARENT

+------+------+------+------+------+------+------+------+
201 CNS I AUX I RESERVED I LIST I RSRVDI SF LAG

+------+------+------+------+------+------+------+------+
281 RESERVED

+------+------+------+------+------+------+------+------+
301 RESERVED P MPAR

+------+------+------+------+------+------+------+------+
381 RESERVED

+------+------+------+------+------+------+------+------+
Figure 6-12. PD - Process Descriptor

6-143

P CREATE Concurrent DOS 86 Programmer's Guide

Table 6-18. PD Field Definitions

Field Definition

LINK Link field for Insertion on current system list. If LINK's
initial value is nonzero, it is assumed to point to another
PD. Concurrent uses the LINK field to create more than one
process with a single Create Process call.

THREAD

STAT

6-144

Link field for Insertion on Thread List. Initialized to zero (0).

Current Process activity. Initialized to zero (0). Activity
codes are listed below:

00 RUN

01 POLL

02 DELAY

06 Read Queue

07 Write Queue

08 FLAGWAIT

The process is ready to run. The STAT
field is always in this state when a
process is examining its own Process
Descriptor. The PD is on the Ready List.
The currently running process is always
at the head of Ready List.

The process is polling a device. The PD
Is on the Poll List.

The process is delaying for a specified
number of system ticks. The PD is on
the Delay List.

The process is waiting to read a
message from a system queue that is
empty. The PD is on the Read Queue
List, whose root is in the Queue
Descriptor of the system queue involved.

The process
message to
buffer is full.

is waiting to write a
a system queue whose

The PD is on the Write
Queue List, whose root is in the Queue
Descriptor of the system queue involved.

The process is waiting for a system flag
to be set. The PD is in the flag table
entry of the flag it Is waiting for.

Concurrent DOS 86 Programmer's Guide P CREATE

Table 6-18. (Cont'd)

Field Definition

PRIOR

FLAG

09 CIOWAIT The process is waiting to attach to a
character 1/0 device (console or list)
while another process owns it. The PD is
on CQUEUE list whose root is in the
Character Control Block of the device in
question.

Current priority. Used to determine process scheduling.
Typical user programs run at a priority of 200. 0 is the
best priority, and 255 is the worst priority. The following
list of priorities is used by most Concurrent systems. User
processes priorities should be from 200-254.

2 - 31
32 - 63

64 - 189
191 - 197

198
199
200

201 - 254
255

Initialization Process
Interrupt Handlers
System Processes
Undefined
Undefined
Terminal Message Process
Undefined
Default Priority For Transients
User Processes
Idle Process

Bit field of flags determining run-time characteristics of a
process. Initialize as needed. All undocumented flags are
used internally or are reserved for future use.

001H SYS

002H KEEP

004H KERNEL

System Process. Has privileged access
to various features of Concurrent. This
process can only be terminated if the
termination code is OFFH. This process
can access restricted system queues.
Turn flag off if the calling process is not
a system process.

This process cannot be terminated. Turn
flag off if the calling process is not a
system process.

This process resides within Concurrent.
Turn flag off if the PD is not within
Concurrent.

6-145

P CREATE Concurrent DOS 86 Programmer's Guide

Table 6-18. (Cont'd)

Field Definition

NAME

UDA

DISK

USER

RESERVED

MEM

RESERVED

PARENT

010H TABLE

8000H 8087

This PD is copied into the PD from the
PD table. When this process terminates,
the PD is recycled into the PD table.

This process is an 8087-running process.

Process Name. Eight bytes. with all eight bits of each byte
used for matching process names.

Segment address of this process's User Data Area. The
UDA can be anywhere in memory but must be on a
paragraph boundary. Initialized to be the number of
paragraphs from the beginning of the calling process's Data
Segment. The UDA contains process Information that is not
needed between processes. it also contains the System
Stack of each process. See Figure 6-13 and Table 6-19 for
more detailed information about the UDA.

Current default disk

Current default user number

Reserved for internal use. Must be initialized to zero (0).

Root of linked list of Memory Segment Descriptors that are
owned by this process. Initialized to zero, except for
reentrant or shared code RSPs.

Reserved for internal use. Must be initialized to zero (0).

Process that created this process. P CREATE sets this
value at process creation. The parent field is set to zero if
the parent terminates before the child.

CNS Current default console's number. Initialized to be the

AUX

RESERVED

LIST

RESERVED

6-146

default console number.

This field contains the current default auxiliary device
number. Must be initialized to zero (OH) before calling
P CREATE.

Reserved for internal use. Must be initialized to zero (0).

Current default list device. Initialized to be the default list
device number.

Reserved for internal use. Must be initialized to zero (0).

Concurrent DOS 86 Programmer's Guide P CREATE

Field

SF LAG

RESERVED

P MPAR

RESERVED

Table 6-18. (Cont'd)

Definition

Second Flag. Bit field of flags determining run-time
characteristics of a process. Initialize as needed. All
undocumented flags are used internally or are reserved for
future use and should not be set.

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

When bit 0 is set, Concurrent suspends
this process whenever it is switched to
the background, and runs it only when it
is switched to the foreground.

Bit 1 is reserved for internal system use.

Concurrent sets bit 2 when this process
is running in the foreground. This bit
should be clear when the Process
Descriptor is initialized.

When bit 3 is set. Concurrent does not
use the Default System Disk when
loading programs for this process.

Concurrent sets bit 4 when a user enters
CTRL-C. Clear this bit to check for
CTRL-C input.

If bit 5 is set, Concurrent resets the disk
system when the user types CTRL-C. If
bit 5 is clear, Concurrent interprets
CTRL-C as process termination.

When bit 6 is set. Concurrent allows this
process to access records locked by
another process. This flag is included for
MP/M-style record locking.

Reserved for internal use. Must be initialized to zero (0).

Memory Page Allocation Root. Root of linked list of
Memory Page Allocation Descriptors for paged memory
allocated to calling process.

Reserved for internal use. Must be initialized to zero (0).

6-147

P CREATE Concurrent DOS 86 Programmer's Guide

+------+------+------+------+------+------+------+------+
OOH RESERVED I OMA OFFSET RESERVED I

+------+------+------+------+------+------+------+------+
OBH RESERVED

+------+------+------+------+------+------+------+------+
lOH RESERVED

+------+------+------+------+------+------+------+------+
18H RESERVED I

+------+------+------+------+------+------+------+------+
20H AX BX ex DX

+------+------+------+------+------+------+------+------+
28H DI SI BP RESERVED

+------+------+------+------+------+------+------+------+
30H RESERVED SP RESERVED I

+------+------+------+------+------+------+------+------+
38H INT 0 INT 1

+------+------+------+------+------+------+------+------+
40H RESERVED INT 3

+------+------+------+------+------+------+------+------+
48H INT 4 RESERVED

+------+------+------+------+------+------+------+------+
50H cs DS ES SS

+------+------+------+------+------+------+------+------+
58H INT 224 INT 225

+------+------+------+------+------+------+------+------+
GOH RESERVED

+------+------+------+------+------+------+------+------+
68H

U S E R S Y S T E M S T A C K
FBH

+------+------+------+------+------+------+------+------+
lOOH cw SW RESERVED

+------+------+------+------+------+------+------+------+
I RESERVED I
+------+------+------+------+------+------+------+------+

RESERVED
+------+------+------+------+------+------+------+------+

RESERVED
+------+------+------+------+------+------+------+------+

158H RESERVED
+------+------+------+------+------+------+------+------+

Figure 6-13. UDA - User Data Area

Note: The UDA length Is 256 bytes, and it must begin on a paragraph boundary. If
the optional 96-byte 8087 processing extension is used, the length is 352 bytes.

6-148

Concurrent DOS 86 Programmer's Guide P CREATE

Table 6-19. UDA Field Definition

Field Definition

OMA OFFSET The initial DMA offset for the new process. The segment
address of the OMA is assumed to be the same as the
initial Data Segment (see OS below).

AX - BP

SP

The initial register values for the new process. These are
typically set to zero.

The initial stack pointer for the new process. The stack
pointer is relative to the initial Stack Segment (see SS
below). The new process's initial stack must be initialized
with the offset of the first instruction it is to execute. The
word that the stack pointer points to is the initial
instruction pointer (IP). Two words must follow the initial IP,
which is filled in with the initial Code Segment (see CS
below) and the initial flags. The initial flags are set to
0200H, which means that interrupts are on, and all other
flags are off. Concurrent starts a new process by executing
an Interrupt Return instruction with the initial stack.

Note: This stack area is distinct from the User System
Stack at the end of the UDA.

INT 0 - INT 4 The initial interrupt vectors for the first five interrupt types
can be set by filling in these fields. The first word of each
field is the Instruction Pointer (IP), and the second word is
the Code Segment (CS) for a list of the interrupt routines
that service these interrupts. Those fields that are zero are
initialized to be the same as the calling processes interrupt
vectors. These fields are typically initialized to be 0.

CS,DS,ES,SS The initial segment addresses for the new process are
taken from these fields. Those fields that are zero are
initialized to be the same as the calling process's Data
Segment.

6-149

P CREATE Concurrent DOS 86 Programmer's Guide

Table 6-19. (Cont'd)

Field Definition

INT 224,225 Interrupts 224 and 225 are used to communicate with
Concurrent by typical programs. These interrupt vectors
are Initialized to be the same as the calling process if these
values are zero. The ability to change these values allows
a run-time system to intercept Concurrent calls that its
children make. The suggested protocol is to keep INT 225
pointing to the Concurrent entry point and changing INT
224 to point to an internal routine. When a child process
does an INT 224, the Internal routine can filter calls to
Concurrent using INT 225 for the actual Concurrent call.

RESERVED These fields are used internally and must be initialized to
zero.

USER SYSTEM STACK

cw

SW

6-150

This Is the stack area used by the process when it is in the
operating system. The SP variable in the UDA should not
point to this area.

Control Word for 8087 processing. RSPs (and other
processes bypassing the P _CU call) must set this word to
03FFH before system generation.

Status Word for 8087 processing. RSPs (and other
processes bypassing the P _CU call) must set this word to
OOOOH before system generation.

Concurrent DOS 86 Programmer's Guide P DELAY

P DELAY

Delay For Specified Number Of System Ticks

Entry Parameters:
Register CL: OBDH (141)

DX: Number of System Ticks

P_DELAY delays execution of the calling process for a specific time interval, thus
allowing other processes to use the CPU resource while the calling process waits.
P _DELAY avoids the necessity of programmed delay loops.

The calling process specifies the delay interval as a number of system ticks. The
length of the system tick varies among installations. A typical system tick is 60Hz
(16.67 milliseconds). In Europe, it is likely to be 50Hz (20 milliseconds). The exact
length can be obtained by reading the TICKSPERSEC value from the System Data
Segment (see S_SVSDAT).

There is up to one tick of uncertainty in the exact amount of time delayed because
P _DELAY is called asynchronously from the actual time base. P _DELAY is
guaranteed to delay the calling process at least the number of ticks specified.
However, when the calling process is rescheduled to run, it might wait quite a bit
longer if there are higher priority processes waiting to run.

P_DELAY is useful for programs that need to wait specific amounts of time for 1/0
events to occur. Under these conditions. the calling process usually has a very
high priority level. If a process with a high priority calls P_DELAY the actual delay
is typically within a system tick of the amount of time wanted.

6-151

P DISPATCH Concurrent DOS 86 Programmer's Guide

P DISPATCH

Call Dispatcher

Entry Parameters:
Register CL: 08EH (142)

P _DISPATCH forces a reschedule of processes that are waiting to run. Normally,
dispatches occur at every system tick interrupt (usually 60 times a second), and
whenever a process releases a system resource.

Dispatching also occurs whenever a process needs a system resource that is not
currently available. A CPU-bound process runs for no more than one system tick
before a dispatch is forced. The dispatch occurs at the next system tick.

Concurrent's Dispatcher is priority driven, with round-robin scheduling of
equivalent-priority processes. When a process calls P_DISPATCH, it is rescheduled,
so that processes with higher or equivalent priorities are given the CPU before the
calling process obtains it again. The calling process regains control of the CPU
resource when It becomes the highest priority process again.

6-152

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:
CX:

P LOAD

Load a CMD type file into Memory

03BH (59)
FCB Address - Offset
FCB Address - Segment

Base Page Address, OFFFFH on error
Same as AX
Error Code

P LOAD

P _LOAD loads a disk CMD-type file into memory. Upon entry, register DX contains
the offset, relative to OS, of a successfully opened FCB that specifies the CMD file
to load. Upon return, register AX has the value OFFFFH if the program load failed.
Otherwise, AX contains the paragraph address of the Base Page belonging to the
loaded program. The paragraph address and length of each group loaded from the
CMD file, is found in the Base Page. See Sections 3.2 and 3.3.

Before calling P _LOAD, the calling process must establish the OMA address of
where the CMD file is to be loaded. This is accomplished with F _DMASEG and
F DMAOFF.

Note: Open the CMD file in Read-Only mode and close it once the load is
completed.

Table 6-5 contains the list of error codes returned in CX.

6-153

P PDADR Concurrent DOS 86 Programmer's Guide

P PDADR

Return The Address Of The Calling Process's Process Descriptor

Entry Parameters:
Register CL: 09CH (156)

Returned Values:
Register AX: PD Address - Offset

BX: Same as AX
ES: PD Address - Segment

P _PDADR obtains the address of the calling process's Process Descriptor. See
P _CREATE for a description the Process Descriptor format.

6-154

Concurrent DOS 86 Programmer's Guide

P PRIORITY

Set The Priority Of The Calling Process

Entry Parameters:
Register CL: 091H (145)

Dl: Priority

P PRIORITY

P _PRIORITV sets the priority of the calling process to the specified value.
P _PRIORITY is useful when a process needs to have a high priority during an
initialization phase, but afterwards can run at a lower priority.

The highest priority is OOH, while the lowest priority is OFFH. Transient processes
are initialized to run at CSH (200 decimal) by P _CU.

6-155

P RPL Concurrent DOS 86 Programmer's Guide

P RPL

Resident Procedure Library

Entry Parameters:
Register CL: 097H (151)

DX: CPB Address - Offset
DS: CPB Address - Segment

Returned Values:
Register AX: OlH if APL not found, RPL return parameter

BX: same as AX
CX: Error Code
ES: RPL return segment if addr

P _RPL permits a process to make system call from an optional Resident Procedure
Library (APL). The calling process passes the address of Call Parameter Block
(CPB). Figure 6-14 shows the Call Parameter Block format, and Table 6-20 lists the
CPB field definitions.

+------+------+------+------+------+------+------+------+
NAME

+------+------+------+------+------+------+------+------+
PARAM

+------+------+

Field

NAME

PARAM

6-156

Figure 6-14. CPB - Call Parameter Block

Table 6-20. CPB Field Definitions

Definition

Name of Resident Procedure, eight ASCII characters.

Parameter to send to the Resident Procedure. P APL first
opens a system queue with the specified name. If the
O_OPEN call succeeds, P_RPL verifies that it is an APL-type
queue. If either the O_OPEN fails, or if it is not an APL-type
queue, P _RPL returns to the calling process with an error
code.

Concurrent DOS 86 Programmer's Guide P RPL

P _ RPL reads a message from the queue containing the address of the specified
system call. It then places the PARAM field of the CPB in register DX, and places
the calling process's Data Segment address in register OS. P _ RPL performs a Far
Call instruction to the address it obtains from the queue message. Upon return
from the RPL, P _RPL copies the BX register to the AX register and then returns to
the calling process.

Note: P RPL does not write the address of the Resident Procedure back to the
queue; the Resident Procedure itself must do this. If the Resident Procedure is to
be reentrant, it must write the message into the queue upon entry. If it is to be
serially reusable, the procedure must write the message just before returning.

Table 6-5 contains the list of error codes returned in CX.

6-157

P TERM

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AX:

BX:

Concurrent DOS 86 Programmer's Guide

P TERM

Terminate Calling Process

08FH (143)
Termination Code

O on success, OFFFFH on failure
Same as AX

P _TERM terminates the calling process. If the Termination Code is not OFFH,
P _TERM can only terminate a user process; if the Termination Code is OFFH,
P _TERM can terminate the calling process even though the process's SYSTEM flag
is on. P _TERM cannot terminate a process with the KEEP flag on.

If the termination is successful, P _TERM releases the Mutual Exclusion queues
owned by the process. It also releases all memory segments owned by the
process, and returns the Process Descriptor to the PD table.

A process can own one or more of the following resources: memory segments,
consoles, printers, Mutual Exclusion messages, and system Lock List entries that
record open files and locked records. When a process terminates and releases its
resources, these resources become available to other processes on the system.
For example, if a terminating process releases a system console, the console is
usually given back to the console's TMP. This occurs when the TMP is the highest
priority process waiting for the console.

If P _TERM returns to the calling process, the call has failed for one of two reasons.
Either the process has the KEEP flag on, or it has the SYSTEM flag on, and the
Termination Code is not OFFH.

6-158

Concurrent DOS 86 Programmer's Guide

P TERMCPM

Terminate a Calling Process

Entry Parameters:
Register CL: OOH (0)

Returned Values:
Register AX:

BX:
CX:

0 on success, OFFFFH on failure
Same as AX
Error Code

P TERMCPM

P _ TERMCPM terminates the calling process, releasing all system resources owned
by the process. P _ TERMCPM is implemented internally by calling P _TERM with the
Termination Code set to OOH.

Under CP/M-86, P _ TERMCPM has an additional argument that allows a process not
to release its memory. This argument places a piece of code into memory that
becomes an interface for later programs. Concurrent does not include this option,
so memory segments are not recovered until all processes that own the memory
segment have released it.

Table 6-5 contains the list of returned error codes.

6-159

Queue Parameter Block Concurrent DOS 86 Programmer's Guide

Queue system calls under Concurrent use the Queue Parameter Block (QPB) data
structure to pass parameters to and from Concurrent. Figure 6-15 shows the
Queue Parameter Block format, and Table 6-21 lists the QPB field elements.
Listing 6-3 shows the programming equates for the Queue Parameter Block data
structure.

+------+------+------+------+------+------+------+------+
* OOOOH QUEUE ID * OOOOH BUFFER

+------+------+------+------+------+------+------+------+
NAME

+------+------+------+------+------+------+------+------+

Field

QUEUEID

* OOOOH

BUFFER

NAME

6-160

Figure 6-15. QPB - Queue Parameter Block

Table 6-21. OPB Field Definitions

Description

Queue number field; filled in by Q_OPEN operation.

Reserved for internal use; must be initialized to zero.

Offset address of Queue Message Buffer.

Name of Queue for Q_OPEN operation.

Concurrent DOS 86 Programmer's Guide Queue Parameter Block

Listing 6-3. Queue Parameter Block Definition

·*** ,
. * ,
;* QPB - Queue Parameter Block Definition
. * ,
. * ,
·* 00 , OOOOH queue id OOOOH buffer
. * ,
. * 08 , name
. *
I

. * ,

. *
I queueid - Queue ID, address of QD
. *
I buffer - address to read/write into/from
. * , name - name of queue (for open only)
. * I

·*** I

qpb_O equ word ptr 0
qpb_queueid equ word ptr qpb_O + word
qpb_buffer equ word ptr qpb_queueid + 4
qpb_name equ byte ptr qpb_buf fer + word

qpb_len equ qpb_name + qnamsiz
qnamsiz equ 8

6-161

Q CREAD Concurrent DOS 86 Programmer's Guide

Q CREAD

Conditionally Read A Message From A System Queue

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

BX:
ex:

OBAH (138)
OPB Address - Offset
OPB Address - Segment
OPB_queueid filled in by previous O_OPEN
OPS_ buffer set to message buffer offset

O on success, OFFFFH on failure
Same as AX
Error Code message in buffer

0 _ CREAD is analogous to 0 _READ, but it returns an error code if there are not
enough messages to read, instead of waiting for another process to write to the
queue.

Table 6-5 contains the list of error codes returned in CX.

6-162

Concurrent DOS 86 Programmer's Guide

Q CWRITE

Conditionally Write A Message To A System Queue

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:
CX:

08CH (140)
QPB Address - Offset
QPB Address - Segment
QPB_queueid filled in by previous O_OPEN
OPB _buffer set to message buffer offset
message in current OMA buffer

0 on success, OFFFFH on failure
Same as AX
Error Code

Q CWRITE

a_ CWRITE is analogous to 0 _WRITE, but it returns an error code if there is not
enough system queue buffer space for the message to be written, instead of
waiting for another process to read from the queue.

Table 6-5 contains the list of error codes returned in CX.

6-163

Q DELETE

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:
CX:

Concurrent DOS 86 Programmer's Guide

Q DELETE

Delete A System Queue

088H (136)
QPB Address - Offset
QPB Address - Segment
QPB_queueid filled in by a previous O_OPEN call

O on success. OFFFFH on failure
Same as AX
Error Code

O_DELETE removes a system queue from the system, and returns an error code if
the queue cannot be deleted or if the queue has not been opened prior to the call.

Table 6-5 contains the list of error codes returned in CX.

6-164

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:
CX:

Q MAKE

Make A System Queue

086H (134)
OD Address - Offset
OD Address - Segment
OD filled in

O on success, OFFFFH on failure
Same as AX
Error Code

0 MAKE

O_MAKE creates a system queue for the calling process by passing the address of
a Queue Descriptor (QD). Figure 6-16 shows the Queue Descriptor format, and
Table 6-22 lists the OD field elements.

+------+------+------+------+------+------+------+------+
* OOOOH * OOOOH FLAGS NAME •..

+------+------+------+------+------+------+------+------+
NAME MS GLEN

+------+------+------+------+------+------+------+------+
NM SGS * OOOOH * OOOOH * OOOOH

+------+------+------+------+------+------+------+------+
* OOOOH BUFFER

+------+------+------+------+
Figure 6-16. OD - Queue Descriptor

6-165

Q MAKE Concurrent DOS 86 Programmer's Guide

Field

FLAGS

NAME

MS GLEN

NM SGS

BUFFER

* OOOOH

6-166

Table 6-22. Queue Descriptor Field Definitions

Definition

Queue Flags. The bits are defined as follows:

OOOlH
0002H
0004H
0008H
OOlOH
0020H
0040H
0080H

Mutual exclusion queue
Cannot be deleted
Restricted to system processes
RSP message queue
Used internally
RPL address queue
Used internally
Used internally

All remaining flags reserved for future use

8-byte queue name. All 8 bits of each character are
matched on an Q OPEN call.

Number of bytes in each logical message.

Maximum number of logical messages to be supported. If
the number of messages written to the queue equals this
maximum, no more messages are allowed until a message
is read.

Address of the queue buffer. This buffer must be (NMSGS *
MSGLEN) bytes long. The address is an offset relative to
the DS register. This field is unused if the QD resides
outside of the System Data Segment. Typically this field is
0 if the queue Is being created by a transient program.
RSPs that create queues must initialize this field to point to
a buffer. The Data Segment of an RSP's queue is
considered part of the System Data Segment unless it is
beyond 64k of the beginning of the System Data Segment.
If BUFFER contains OFFFFH, a _MAKE allocates space for the
Queue Descriptor and Queue Buffer from the system queue
buffer area In the System Data Segment (SYSDAT).

For internal use; must be initialized to zero.

Concurrent DOS 86 Programmer's Guide Q MAKE

Every system queue is associated with a Queue Descriptor that resides in
Concurrent's System Data Segment. If the Queue Descriptor is within the System
Data Segment, Concurrent uses it directly for the System Queue. If the Queue
Descriptor is outside the System Data Segment, Concurrent obtains a Queue
Descriptor from an internal Queue Descriptor table. If there are no unused Queue
Descriptors In the internal table, Q_MAKE returns an error code.

Table 6-5 contains the list of error codes returned in CX.

The buffer for a system queue must also reside within the System Data area. For
non-OOH length buffers, resident buffers are used directly. Concurrent obtains a
buffer from the Queue Buffer Area if the buffer does not reside within the System
Data Segment. The size of the buffer is calculated from the NMSGS and MSGLEN
fields. Q_MAKE returns an error code if there is not enough unused buffer area
left to accommodate this new buffer.

All system queues must have unique names. Q_MAKE returns an error code if a
system queue already exists by the given name.

Under Concurrent, all system queues must be explicitly opened (see Q_OPEN)
before being used to read or write messages or to delete the queue.

6-167

Q OPEN

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:
CX:

Concurrent DOS 86 Programmer's Guide

Q OPEN

Open A System Queue

087H (135)
QPB Address - Offset
QPB Address - Segment
QPB name filled In

0 on success. OFFFFH on failure
Same as AX
Error Code
OPB_queueid filled in

a OPEN opens a system queue by examining each existing system queue and
attempting to match the name in the OPB with the name of a system queue. All
eight bytes of the name must match for a successful open. All bits of each byte
are examined.

If the open operation is successful, Q OPEN modifies the Queue ID Field of the
OPB. Once the the queue is opened, - subsequent reads, writes, or a delete are
allowed.

Note: Under Concurrent, you must use Q_OPEN to explicitly open all system
queues before attempting a read, write, or delete operation.

Table 6-5 contains the list of error codes returned In CX.

6-168

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register CL:

DX:
DS:

Returned Values:
Register AX:

BX:
CX:

Q READ

Read A Message From A System Queue

089H (137)
QPB Address - Offset
QPB Address - Segment
QPB_queueid filled in by previous O_OPEN
QPB _buffer set to message buffer offset

0 on success. OFFFFH on failure
Same as AX
Error Code message in buffer

Q READ

Q _READ reads a message from a system queue that was previously opened by the
calling process. Q_READ returns an error code if the queue was not previously
opened or if the system queue has been deleted since the Q _OPEN call. If there
are not enough messages to read from the queue, the calling process waits until
another process writes into the queue before returning.

Table 6-5 contains the list of error codes returned in CX.

6-169

Q WRITE Concurrent DOS 86 Programmer's Guide

Q WRITE

Write A Message To A System Queue

Entry Parameters:
Register CL: 08BH (139)

DX: QPB Address - Offset
OS: QPB Address - Segment

QPB_queueid filled In by previous O_OPEN
QPB _buffer set to message buffer offset message in buffer

Returned Values:
Register AX: O on success, OFFFFH on failure

BX: Same as AX
CX: Error Code

a_ WRITE writes a message to a system queue that was previously opened by the
calling process. 0 WRITE returns an error code if the queue was not previously
opened or If the system queue has been deleted since the Q_OPEN call. If there Is
not enough buffer space in the queue, the calling process waits until another
process reads from the queue before writing to the queue and returning.

Table 6-5 contains the list of error codes returned In CX.

6-170

Concurrent DOS 86 Programmer's Guide

S BDOSVER

Return BOOS Version Number

Entry Parameters:
Register CL: OCH (12)

Returned Values:
Register AX: BOOS Version Number

BX: Same as AX

S BDOSVER

S _ BOOSVER returns the BOOS file system version number, allowing version­
independent programming. Register AX values are:

01432H - Version 3.2
01441H - Version 4.1
01450H - Version 5.0

6-171

S BIOS

Entry Parameters:
Register CL:

DX:
OS:

Returned Values:
Register AX:

BX:

Concurrent DOS 86 Programmer's Guide

S BIOS

Call BIOS Character Routine

032H (50)
BIOS Descriptor Address - Offset
BIOS Descriptor Address - Segment

BIOS Return
Same as AX

S_BIOS provides compatibility for programs generated under CP/M-86 that use this
system call (Function 50). The calling process passes the address of a BIOS
Descriptor. Figure 6-17 shows the format.

+-------+-------+-------+-------+-------+
FUNC I ex DX

+-------+-------+-------+-------+-------+
Figure 6-17. BIOS Descriptor Format

Since Concurrent only supports routines that interface with character devices, the
arguments to character routines such as CONIN and UST must be converted to
those appropriate for Concurrent's XIOS. Refer to the System Guide for further
information about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not go
to the XIOS if the referenced device is a virtual console.

6-172

Concurrent DOS 86 Programmer's Guide

S OSVER

Return the Current Version Of Concurrent DOS 86 System

Entry Parameters:
Register CL: OA3H (163)

Returned Values:
AX: Version Number
BX: Same as AX
CX: Error Code

S OSVER

S _ OSVER returns the version number of the operating system, allowing version­
independent programming. Register AX values are:

01432H - Version 3.2
01441H - Version 4.1
01450H - Version 5.0

Table 6-5 contains the list of error codes returned in CX.

6-173

S SERIAL Concurrent DOS 86 Programmer's Guide

S SERIAL

Return the Serial Number

Entry Parameters:
Register CL: 06BH (107)

DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Returned Values:
SERIAL filled in

S _SERIAL returns the Concurrent DOS 86 serial number to the addressed, six-byte
SERIAL field as a six-byte ASCII numeral. Figure 6-18 shows the format of the

returned value.

+---+---+---+---+---+---+
I o I 1 I 2 I 3 I 4 I 5 I
+---+---+---+---+---+---+

Figure 6-18. SERIAL Number Format

6-174

Concurrent DOS 86 Programmer's Guide

S SVSDAT

Return Address Of The System Data Segment

Entry Parameters:
Register CL: 09AH (154)

Returned Values:
AX: Sysdat Address - Offset
BX: Same as AX
ES: Sysdat Address - Segment

S SVSDAT

S_SYSDAT returns the address of the System Data Segment of the calling
process. The System Data Segment contains all Process Descriptors, Queue
Descriptors, the roots of system lists, and other internal data.

Figure 6-19 shows the SYSDAT Table, and Table 6-23 lists its fields.

6-175

S SVSDAT Concurrent DOS 86 Programmer's Guide

OOH

08H

28H

30H

38H

40H

+------+------+------+------+------+------+------+------+
SUP ENTRY RESERVED

+------+------+------+------+------+------+------+------+
RESERVED

+------+------+------+------+------+------+------+------+
XIOS ENTRY XIOS INIT

+------+------+------+------+------+------+------+------+
RESERVED

+------+------+------+------+------+------+------+------+
DISPATCHER PD ISP

+------+------+------+------+------+------+------+------+
CCPMSEG RSPSEG ENDSEG I RSVD I NVCNSI

I I I
+------+------+------+------+------+------+------+------+

48H I NLCB I NCCB I N I SYS I MMP I RSVD I DAY I
I FLAGS I DISK I I FILE I

+------+------+------+------+------+------+------+------+
50H I TEMP !TICKS I LUL CCB FLAGS

I DISK I /SEC I
+------+------+------+------+------+------+------+------+

58H MOUL MFL PUL QUL
+------+------+------+------+------+------+------+------+

60H QMAU
+------+------+------+------+------+------+------+------+

68H RLR DLR DRL PLR
+------+------+------+------+------+------+------+------+

?OH RESERVED TH RD RT QLR MAL
+------+------+------+------+------+------+------+------+

78H VERSION VERNUM I CCPMVERNUM TOD DAY
+------+------+------+------+------+------+------+------+

80H I TOD
I _HR

I TOD I TOD I NCON I NLST I NCIO I
I _MIN I _SEC I DEV I DEV I DEV I

LCB

+------+------+------+------+------+------+------+------+
88H I OPEN FILE ILOCK !OPEN I OWNER 8087 ACB

I - IMAX - IMAX - I -
+-----·-+------+------+------+------+------+------+------+

90H RESERVED
+------+------+------+------+------+------+------+------+

98H MWDR RESERVED I NACB I PSD IRSVD IXPCNS I
+------+------+------+------+------+------+------+------+

AOH I OFF_8087 SEG 8087 RESERVED
+------+------+------+------+------+------+------+------+

Figure 6-19. SVSDAT Table

6-176

Concurrent DOS 86 Programmer's Guide S SYSDAT

Table 6-23. SYSDAT Table Data Fields

Field Definition

SUP ENTRY Double-word address of the Supervisor entry point for
intermodule communication. All internal system calls go
through the SUP entry point.

XIOS ENTRY Double-word address of
intermodule communication.
through the XIOS entry point.

the XIOS entry point for
All XIOS function calls go

XIOS INIT Double-word address of the XIOS Initialization entry point.
System hardware initialization takes place by a call through
this entry point.

DISPATCHER Double-word address of the Dispatcher entry point that
handles interrupt returns. Executing a JMPF instruction to
this address is equivalent to executing an IRET instruction.
The Dispatcher routine causes a dispatch to occur and then
executes an IRET. All registers are preserved and one level
of stack is used. This location should be used as an exit
point by all XIOS interrupt handlers that use the
DEV SETFLAG call.

PDISP Double-word address of the Dispatcher entry point that
causes a dispatch to occur with all registers preserved.
Once the dispatch is done, a RETF instruction is executed.
Executing a JMPF PDISP is equivalent to executing a RETF
instruction. This location should be used as an exit point
whenever the XIOS releases a resource that a waiting
process might want.

CCPMSEG

RSPSEG

ENDSEG

Starting paragraph of the operating system area. This is
also the Code Segment of the Supervisor Module.

Paragraph Address of the first RSP in a linked list of RSP
Data Segments. The first word of the data segment points
to the next RSP in the list. Once Concurrent has been
initialized, this field is zero.

First paragraph beyond the end of the operating system
area, including any buffers consisting of uninitialized RAM
allocated to the operating system by GENCCPM. These
include the Directory Hashing, Disk Data, and XIOS ALLOC
buffers. These buffer areas, however, are not part of the
CCPM.SYS file.

6-177

S SVSDAT

Field

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

Concurrent DOS 86 Programmer's Guide

Table 6-23. (Cont'd)

Definition

Number of virtual consoles, copied from the XIOS Header
by GENCCPM.

Number of List Control Blocks, copied from the XIOS Header
by GENCCPM.

Number of Character Control Blocks, copied from the XIOS
Header by GENCCPM.

Number of system flags as specified during GENCCPM.

Default system disk. P CU looks on this disk if it cannot
open the command file on the user's current default disk.
Set during GENCCPM. Concurrent initializes offset 4BH to
logical drive P, which is the permanent system disk
identifier that can point to different physical drives.

Maximum memory allowed per process. Set during
GE NCC PM.

DAY FILE Day File option. If this field is OFFH, Concurrent displays
file logging information on system consoles at each
command. Set during GENCCPM.

TEMP DISK Default temporary disk. Programs that create temporary
files should use this disk. Set during GENCCPM.

TICKS/SEC The number of system ticks per second.

LUL

CCB

FLAGS

MOUL

MFL

PUL

QUL

QMAU

6-178

Locked Unused List. Linked list root of unused Lock list
items.

Address of the Character Control Block Table, copied from
the XIOS Header by GENCCPM.

Address of the Flag Table.

Memory Descriptor Unused List. Linked list root of unused
Memory Descriptors.

Memory Free List. Linked list root of free memory
partitions.

Process Unused List. Linked list root of unused Process
Descriptors.

Queue Unused List. Linked list root of unused Queue
Descriptors.

Queue Buffer Memory Allocation Unit.

Concurrent DOS 86 Programmer's Guide S SYSDAT

Table 6-23. {Cont'd)

Field Definition

RLR Ready List Root. Linked list of PDs that are ready to run.

DLR Delay List Root. Linked list of PDs that are delaying for a
specified number of system ticks.

DRL Dispatcher Ready List. Temporary holding place for PDs
that have just been made ready to run.

PLR

THRDRT

QLR

MAL

VERSION

VERN UM

Poll List Root. Linked list of PDs that are polling on
devices.

Thread List Root. Linked list of all current PDs on the
system. The list is threaded though the THREAD field of
the PD instead of the LINK field.

Queue List Root. Linked list of all System ODs.

Memory Allocation List. Linked list of active memory
allocation units. A MAU is created from one or more
memory partitions.

Address, relative to CCPMSEG, of ASCII version string.

Concurrent file system version number (returned by
S _ BDOSVER).

CCPMVERNUM

TOD DAY

TOD_HR

TOD_MIN

TOD SEC

NCONDEV

NLSTDEV

NCIODEV

LCB

OPEN FILE

Concurrent version number (returned by S_OSVER).

Time-of-Day. Number of days since 1 Jan, 1978.

Time-of-Day. Hour of the day.

Time-of-Day. Minute of the hour.

Time-of-Day. Second of the minute.

Number of XIOS consoles, copied from the XIOS Header by
GENCCPM.

Number of XIOS list devices, copied from the XIOS Header
by GENCCPM.

Total number of character devices {NCONDEV + NLSTDEV).

Offset of the List Control Block Table, copied from the XIOS
Header by GENCCPM.

Open File Drive Vector. Designates drives with open files.
Each set bit of the word value represents a disk drive
containing open files; the least significant bit represents
Drive A. the most significant, Drive P.

6-179

S SVSDAT Concurrent DOS 86 Programmer's Guide

Table 6-23. (Cont'd)

Field Definition

LOCK MAX Maximum number of locked records per process. Set
during GENCCPM.

OPEN MAX Maximum number of open disk files per process. Set
during GENCCPM.

OWNER 8087 Specifies 8087 information. If set to OFFFFH. Concurrent
assumes there is no 8087 in the system. If set to 0, there
is an 8087 but no process owns it. If set to any other
value, Concurrent assumes the value is the PD offset of the
8087 current process.

ACB

MWDR

NACB

PSD

XPCNS

OFF 8087

SEG 8087

6-180

Address of Auxiliary Control Block Table copied from XIOS
Header by GENCCPM.

Memory Window Desriptor Root. Linked list root of Memory
Window Descriptors that describe the location of available
logical address windows for mapping to physical memory
pages.

Number of Auxiliary Control Blocks. Copied by GENCCPM
from XIOS Header.

Physical search disk. The default system disk as copied
from SYSDISK field by Supervisor (SUP) initialization routine.
The BOOS uses PSD as the initial drive for drives N and 0
and the system drive, P. Concurrent searches the system
drive whenever it cannot find a file on the default drive.

Specifies the number of physical consoles.

Offset of the hardware-dependent 8087 interrupt vector in
low memory. If you supply your own 8087 exception
handler routine, store its offset at this address.

Segment address of the hardware-dependent 8087 interrupt
vector in low memory. If you supply your own 8087
exception handler routine. store its segment at this address.

Concurrent DOS 86 Programmer's Guide T GET

T GET

Get System Time And Date

Entry Parameters:
Register CL: 69H (105)

DX:
OS:

TOD Address - Offset
TOD Address - Segment

Returned Values:
AL: Seconds

TOD filled in
(Days, Hours and Minutes only)

T _GET obtains the system internal time and date. The calling process passes the
address of a four-byte Time of Day (TOD) data structure that receives the time
and date values. Figure 6-20 shows the Time of Day structure, and Table 6-24
lists the TOD field definitions.

+----+----+----+----+----+
DAY !HOURI MINI SECI

+----+----+----+----+----+

Figure 6-20. TOD - Time-of-Day Structure

Table 6-24. Time-of-Day Field Definitions

Field Definition

DAY The number of days since 1 January 1978. The day is
stored as a 16-bit integer.

HOUR

MIN

SEC

The current hour of the current day. The hour is
represented as a 24 hour clock in 2 binary coded decimal
(BCD) digits.

The current minute of the current hour. The minute is
stored as 2 BCD digits.

The current second of the current minute. The second is
stored as 2 BCD digits.

T _GET is equivalent to T _SECONDS, except that it does not return the SECONDS
field of the internal time.

6-181

T SECONDS Concurrent DOS 86 Programmer's Guide

T SECONDS

Get Current System Time And Day

Entry Parameters:
Register CL: 09BH (155)

DX: TOD Address - Offset
OS: TOD Address - Segment

Returned Values:
TOD filled in
(Days, Hours, Minutes. and Seconds)

T _SECONDS returns the current encoded time and date (including seconds) in the
TOD structure passed by the calling process. See T _GET for the format of the TOD
structure.

6-182

Concurrent DOS 86 Programmer's Guide

T SET

Set System Time And Date

Entry Parameters:
Register CL: 068H (104)

DX: TOD Address - Offset
OS: TOD Address - Segment

T SET

T _SET sets the system internal time and date. The calling process passes the
address of a 4-byte TOD structure containing the time and date specification. See
T GET for the format of the TOD structure.

The date is represented as a 16-bit integer with day 1 corresponding to January 1,
1978. The time is represented as two bytes hours and minutes stored as two BCD
digits.

T _SET also sets the second field of the system time and date to OOH.

End of Section 6

6-183

SECTION 7

PC DOS System Calls

This section describes the interface that allows transient programs to emulate DOS
system functions under Concurrent. DOS system call error return codes are also
described in this section.

7.1 Introduction

The DOS system calls supported by Concurrent are divided into the following
categories:

* Character Device 1/0
* File Management
* Extended File Management
* Directory Management
* Miscellaneous
* Program Control
* Memory Management
*Time

Table 7-1 summarizes the DOS system calls according to these categories.

Note: You should not code any program using a mix of DOS calls with the native
Concurrent system calls as described in Section 6; code only for a pure DOS or a
pure Concurrent environment. CMD files are allowed to make call only native
COOS calls; EXE or (COM) files are allowed to make only DOS calls.

7-1

7.1 Introduction Concurrent DOS 86 Programmer's Guide

Table 7-1. DOS System Call Categories

Hex Number System Call

Character Device 1/0

01 Keyboard Input
02 Console Output
03 Auxiliary Input
04 Auxiliary Output
05 Printer Output
06 Direct Console 1/0
07 Direct Console Input
08 Console Input without Echo
09 Print String
QA Buffered Keyboard Input
OB Check Console Status
OC Character Input with Buffer Flush
33 Ctrl-Break Check

File Management

OD Disk Reset
OE Select Disk
OF Open File
1 O Close File
11 Search for First Entry
12 Search for Next Entry
13 Delete File
14 Sequential Read
15 Sequential Write
16 Create File
17 Rename File
19 Current Disk
lA Set Disk Transfer Address
1 B Allocation Table Address
lC Allocation Table for Specific Drive
21 Random Read
22 Random Write
23 File Size
24 Set Random Record Field
27 Random Block Read
28 Random Block Write
29 Parse File Name

7-2

Concurrent DOS 86 Programmer's Guide 7.1 Introduction

Table 7-1. (Cont'd)

Hex Number System Call

2E Set/Reset Verify Switch
2F Get Disk Transfer Address
36 Get Disk Free Space
54 Get Verify State

Extended File Management

3C Create a File (CREAT)
3D Open a File Handle
3E Close a File Handle
3F Read from a File or Device
40 Write to a File or Device
41 Erase a File from Directory (UNLINK)
42 Move File Read/Write Pointer (LSEEK)
43 Change File Mode (CHMOD)
45 Duplicate a File Handle (DUP)
46 Force a Duplicate of a File Handle (DUP)
4E Find First
4F Find Next
56 Rename a File
57 Get/Set File Time and Date Stamps

Directory Management

39 Create a Subdirectory (MKDIR)
3A Remove a Subdirectory (RMDIR)
38 Change Current Directory (CHOIR)
47 Get Current Directory

Miscellaneous

25 Set Vector
30 Get DOS Version Number
35 Get Vector
38 Get Country Dependent Information

7-3

7.1 Introduction Concurrent DOS 86 Programmer's Guide

Table 7-1. (Cont'd)

Hex Number System Call

Program Control

00 Program Terminate
26 Create a New Program Segment
31 Keep Process

48 Execute a Program (EXEC)
4C Terminate a Process (EXIT)
4D Get Subprocess Return Code (WAIT)

Memory Management

48 Allocate Memory
49 Free Allocated Memory
4A Modify Allocated Memory Blocks (SETBLOCK)

Time

2A Get Date
28 Set Date
2C Get Time
2D Set Time

7.2 DOS System Call Parameters

Under Concurrent, a process requests a DOS function by placing the function
number In register AH, supplying additional information in other registers as
necessary, and then issuing an INT 21 H. When Concurrent takes control, it
switches to an Internal stack. User registers, except AX, are preserved unless
Information is passed back to the register as indicated in the specific requests. To
accommodate the interrupt system, the user stack should be 80H in addition to the
program's needs.

7.2.1 ASCllZ Input Strings

The DOS system calls listed in Table 7-2 require the address of an ASCllZ string in
registers DS:DX as an input parameter. ASCllZ strings are ASCII character strings
containing an optional drive reference and directory path. In some cases, the
strings also include a file name. ASCllZ strings are delimited by a zero byte or a
null (OH). Path names can be delimited by either a slash (/) or a backslash (\)
character.

7-4

Concurrent DOS 86 Programmer's Guide 7.2 DOS System Call Parameters

Table 7-2. DOS System Calls Requiring ASCllZ Strings

Hex Number DOS System Call

39 Create a Subdirectory (MKDIR)
3A Remove a Subdirectory (RMDIR)
3B Change Current Directory (CHOIR)
JC Create a File
JD Open a File
41 Erase a File from Directory (UNLINK)
43 Change File Mode (CHMOD)
4B Execute a Program (EXEC)
4E Find First
56 Rename a File

7.2.2 DOS File and Device Handles

Create a File (3CH), Open a File (3DH), and Duplicate a File Handle (45H) return a
16-bit binary identifier value in register AX. This identifier is called a "handle."
The handle is used to later identify files or devices that have been opened or
created with the system call that originally returned it.

Table 7-3 lists the handles that are predefined by DOS to identify standard devices.
Your program can use these handles without previously opening the devices
assigned to them.

Table 7-3. DOS Standard Device Handles

Handle Standard Device

0000 Input device

0001 Output device

0002 Error output device

0003 Auxiliary device

0004 List device

7-5

7.2 DOS System Call Parameters Concurrent DOS 86 Programmer's Guide

7.3 DOS System Call Error Return Codes

When a DOS call operation is successful, most calls clear the carry flag. If there is
an error, these calls set the carry flag and return an error code in the AX register.
Table 7-4 lists the binary error codes returned in register AX.

Table 7-4. DOS System Call AX Error Codes

Code

0

2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18

Error

No error
Illegal function
File not found
Path not found
No file handles (too many open files)
Access denied
Illegal file handle
Memory control blocks destroyed
Insufficient memory
Illegal memory block address
Invalid environment
Illegal format
Invalid access code
Invalid data
Invalid drive specified
Removal of current directory attempted
Devices do not match
No more files

7.4 DOS System Call Summary

Table 7-5 lists the DOS system functions supported by Concurrent. The table
Includes the parameters a process must pass to the call and the values the call
returns to the process. Table 7-5 also lists the page references where each call is
described in detail. At the end of Table 7-5 is a list of conventions used in the
system call summary.

7-6

Concurrent DOS 86 Programmer's Guide 7.4 DOS System Call Summary

Table 7-5. DOS System Call Summary

Input Returned
Hex Function Parameters Values Page

00 Program Terminate CS= .PSP none 7-83

01 Keyboard Input none AL= char/00 7-13

02 Console Output DL = char none 7-14

03 Auxiliary Input none AL= char 7-15

04 Auxiliary Output DL = char none 7-16

05 Printer Output DL = char none 7-17

06 Direct Console 1/0 DL = FF/char AL= char/00 7-18

07 Direct Console Input none AL= char/00 7-19

08 Console Input w/o Echo none AL= char/00 7-20

09 Print String DS:DX = .string none 7-21

OA Buffered Console Input DS:DX = .Buffer none 7-22

OB Check Console Status none AL= FF/00 7-23

oc Character Input with
Buffer Flush AL= Call# none 7-24

OD Disk Reset none AX= Err Code 7-31

OE Select Disk DL = Drive Vect AL = # of Drives 7-32

OF Open File DS:DX = .FCB AL= 00/FF 7-33

10 Close File DS:DX = .FCB AL= 00/FF 7-34

11 Search for First Entry DS:DX = .FCB AL= 00/FF 7-35

12 Search for Next Entry DS:DX = .FCB AL• 00/FF 7-37

7-7

7.4 DOS System Call Summary Concurrent DOS 86 Programmer's Guide

Table 7-5. (Cont'd)

----·----
Input Returned

Hex Function Parameters Values Page

13 Delete File OS:DX = .FCB AL= 00/FF 7-38

14 Sequential Read DS:DX • .FCB AL = 00101 /02/03 7-39

15 Sequential Write DS:DX • .FCB AL = 0010 '1/02 7-40

16 Create File DS:DX • .FCB AL= 00/FF 7-41

17 Rename File DS:DX = .FCB AL= 00/FF 7-42

19 Current Disk none AL = Cur Drive # 7-43

lA Set OTA DS:DX •.OTA none 7-44

18 Allocation Table Address none DS:BX = .FAT ID 7-45
DX • # of Clusters
AL "' Sects/Cluster
CX • Size of Sect

lC Allocation Table Address DL • Drive # DS:BX "' .FAT ID 7-46
for a Specific Drive DX z Alloc Units

DL • Sects/Unit
CX • Size of Sect

21 Random Read DS:DX • .FCB AL = 00/01/02/03 7-47

22 Random Write DS:DX ~ .FCB AL .. 00/01 /02 7-48

23 File Size DS:DX • .FCB AL"' 00/FF 7-49

24 Set Random Record Field DS:DX .. . FCB none 7-50

25 Set Vector DS:DX tt .lntrpt none 7-78
Routine

AL E Interrupt

26 Create Now Program
Segment DX• Sag Num none 7-84

27 Random Block Read DS:DX • .FCB AL • 00101 /02/03 7-51
CX • Rec Count CX = II of Recs

7-8

Concurrent DOS 86 Programmer's Guide 7.4 DOS System Call Summary

Table 7-5. (Cont'd)

Input Returned
Hex Function Parameters Values Page

28 Random Block Write DS:DX ... FCB AL = 00101 /02 7-52
CX = Rec Count/00 CX =#Recs

29 Parse File Name DS:SI = .Com Line AL = 00/01/FF 7-53
ES:DI = .FeB DS:SI = 1st Char
AL= Bit Map ES:DI = .FCB

2A Get Date none AL = Day (0-6) 7-96
ex = Year (Binary)
DX = Month/Day

28 Set Date ex= Year AL= 00/FF 7-97
DX = Month/Day

2C Get Time none CX = Hours/Mins 7-98
DX= Secs/100's

20 Set Time CX = Hours/Mins AL= 00/FF 7-99
DX = Secs/100's

2E Set/Reset Verify Switch DL = 0 none 7-55
AL = 00/01

2F Get OTA none ES:BX =.OTA 7-56

30 Get DOS Version # none AX= Vers # 7-79
BX .. 0000
ex= 0000

31 Keep Process AL = Exit Code none 7-85
DX= Paras

33 etrl-Break Check AL = 00/01 DL = 00/01 7-25

DL" 00/01

35 Get Vector AL • Interrupt ES:BX = .Vect 7-80

7-9

7.4 DOS System Call Summary Concurrent DOS 86 Programmer's Guide

Table 7-5. (Cont'd)

Input Returned
Hex Function Parameters Values Page

36 Get Disk Free Space DL = Drive II BX = II of Clusts 7-57
DX = Total Clusts
CX = Bytes/Sect
AX = Sects/Clust

38 Get Country Dependent DS:DX • .Block see def 7-81
Information AL• 00

39 Create Subdirectory DS:DX • .ASCllZ AX= Err Code 7-74

3A Remove Subdirectory DS:DX = .ASCllZ AX= Err Code 7-75

3B Change Current Directory DS:DX • .ASCllZ AX= Err Code 7-76

JC Create a File DS:DX • .ASCllZ AX• Handle 7-59
ex • Attrib

JD Open a File Handle DS:DX • .ASCllZ AX• Handle 7-60
AL • Access Code

3E Close a File Handle
BX• Handle AX = Err Code 7-61

3F Read from a BX= Handle AX = II of bytes 7-62
File or Device CX • II of bytes read

DS:DX • .Buffer

40 Write to a BX= Handle AX = # of bytes 7-63
File or Device CX = II of bytes written

DS:DX • .Buffer

41 Delete a File
from a Directory DS:DX • .ASCllZ AX• Err Code 7-64

42 Move File R/W Pointer AL • Method Val DX:AX • Pointer 7-65
(LSEEK) BX• Handle

CX:DX = Offset

43 Change File Mode AL • Funct Code CX = Attribute 7-66
(CHMOD) DS:DX • .ASCllZ

7-10

Concurrent DOS 86 Programmer's Guide 7.4 DOS System Call Summary

Table 7-5. (Cont'd)

Input Returned
Hex Function Parameters Values Page

45 Duplicate a File Handle BX• Handle AX = Dup Handle 7-67

46 Force a Handle Duplicate BX= Handle AX .. Err Code 7-68
CX = 2nd Handle

47 Get Current Directory DL = Drive # AX= Err Code 7-77
DS:SI = .Path

48 Allocate Memory BX = # of Paras AX,. .Block 7-93
BX= Max Size

49 Free Allocated Memory ES " Block Seg AX .. Err Code 7-94

4A Modify Memory Blocks ES = Block Seg AX= Err Code 7-95
(SETBLOCK) BX = Block size BX= Max Size

4B Load or Execute DS:DX = .ASCllZ AX• Err Code 7-86
a Program (EXEC) ES:BX ... LPB

AL = Funct Value

4C Terminate a Process AL • Return Code none 7-91

(EXIT)

4D Get Subprocess none AX = Exit Code 7-92
Return Code (WAIT)

4E Find First DS:DX = .ASCllZ AX= Err Code 7-69
CX = File Attribute

4F Find Next none AX .. Err Code 7-70

54 Get Verify State none AL = 00/01 7-58

56 Rename a File DS:DX = .ASCllZ AX= Err Code 7-71
ES:DI = .ASCllZ
(New Name)

7-11

7.4 DOS System Call Summary Concurrent DOS 86 Programmer's Guide

Table 7-5. (Cont'd)

Input Returned
Hex Function Parameters Values Page

57 Get/Set File Al • 00 (Get) CX " Time Stamp 7-72
Time and Date • 01 (Set) DX "' Date Stamp
Stamps BX• Handle

CX .. Time (if Set)
DX = Date (if Set)

Conventions used in Table 7-5:

Address of
II Number
Alloc Allocation
ASCllZ ASCllZ String
char ASCII Character
charstrng ASCII Character String
Cius Cluster
Com Command
Cur Current
Dir Directory
OTA Disk Transfer Area
Err Error
FAT File Allocation Tabla
FCB File Control Block
FN Fila Name
Handle Fila or Device Handle
lntrpt Interrupt
LPB Load Parameter Block
Para Paragraph
PSP Program Segment Prefix
Rec Record
Sect Sector
Seg Segment
Vect Vector

7-12

Concurrent DOS 86 Programmer's Guide Keyboard Input (01 H)

Keyboard Input (01 H)

Read Characters from Default Input Device

Entry Parameters:
Register AH: 01 H

Returned Values:
Register AL: ASCII character or OOH

(First call to read extended ASCII code.)

Keyboard Input reads a character from the default input device of the calling
process, writes the character to the default console device, and then returns the
character in the AL register. If a character is not ready to be read, Keyboard Input
waits for one before returning to the calling process.

Keyboard Input executes an INT 23H when it reads Ctrl-Break. When the calling
process wants to read an extended ASCII code character, it must call Keyboard
Input twice. Keyboard Input returns OOH in register AL to indicate that a
subsequent call will return an extended ASCII code character.

7-13

Console Output (02H) Concurrent DOS 86 Programmer's Guide

Console Output (02H)

Write Characters to Default Console Device

Entry Parameters:
Register AH: 02H

DL: ASCII character

Console Output writes the character In DL to the calling process's default console
device. If DL contains a backspace character (08H). Console Output moves the
cursor left one position, writes a space at that location. and leaves the cursor
there.

As with the Keyboard Input system call, Console Output executes an INT 23H when
the user has entered Ctrl-Broak.

7-14

Concurrent DOS 86 Programmer's Guide Auxiliary Input (03H)

Auxiliary Input (03H)

Reads a Character from Default Auxiliary Input Device

Entry Parameters:
Register AH: 03H

Returned Values:
Register AL: ASCII character

Auxiliary Input reads the next ASCII character from the default auxiliary device and
returns it in register AL.

7-15

Auxiliary Output (04H) Concurrent DOS 86 Programmer's Guide

Auxiliary Output (04H)

Write a Character to Default Auxiliary Output Device

Entry Parameters:
Register AH: 04H

DL: ASCII character

Auxiliary Output writes the ASCII character specified in register DL to the default
auxiliary device.

7-16

Concurrent DOS 86 Programmer's Guide Printer Output (OSH)

Printer Output (OSH)

Write a Character to the Default Printer Device

Entry Parameters:
Register AH: 05H

DL: ASCII character

Printer Output writes the ASCII character specified in register DL to the default
printer device.

7-17

Direct Console 1/0 (06H) Concurrent DOS 86 Programmer's Guide

Direct Console 1/0 (06H)

Perform Direct Console 1/0 to Default Input Device

Entry Parameters:
Register AH: 06H

DL: FFH (Input)
ASCII character (Output)

Returned Values:
Register AL: ASCII character or OOH

(First call to read extended ASCII code.)

When register DL contains FFH. the Direct Console 1/0 call reads a character from
the calllng process's default input device, clears the zero flag, and returns the
character in register AL. If a character is not ready from the input device, Direct
Console 1/0 sets the zero flag and returns OOH in AL.

If register DL contains anything other than FFH, Direct Console 1/0 assumes that
DL contains a valid character to be written to the default output device. Direct
Console 1/0 does not check for Ctrl-PrtSc or Ctrl-Break input from the console.

When the calling process wants to read or write an extended ASCII code character.
it must call Direct Console 1/0 twice. The first call returns OOH in register AL to
indicate that a subsequent call will return an extended ASCII code character.

Note: In a Concurrent environment, you should not use DL ~ OFFH if you want to
wait for a character; use Function 07H instead.

7-18

Concurrent DOS 86 Programmer's Guide Direct Console Input (07H)

Direct Console Input (07H)

Perform Direct Console Input to Default Input Device

Entry Parameters:
Register AH: 07H

Returned Values:
Register AL: ASCII character or OOH

(First call to read extended ASCII code.)

The Direct Console Input call reads a character from the default input device of the
calling process and returns the character in register AL. If a character is not ready
to be read from the input device, the call waits for one before returning to the
calling process.

When the calling process wants to read an extended ASCII code character, it must
make this call twice. Direct Console Input returns OOH in register AL to indicate
that a subsequent call will return an extended ASCII code character.

Direct Console Input does not check for Ctrl-PrtSc or Ctrl-Break input from the
console.

7-19

Console Input Without Echo (08H) Concurrent DOS 86 Programmer's Guide

Console Input Without Echo (08H)

Read Character From Default Input Device

Entry Parameters:
Register AH: 08H

Returned Values:
Register Al: ASCII character or OOH

(First call to read extended ASCII code.)

The Console Input without Echo call reads a character from the default input
device of the calling process and returns the character in register Al. If a
character is not ready to be read, the call waits for one before returning to the
calling process.

Console Input without Echo executes an INT 23H when it reads Ctrl-Break.

When the calling process wants to read an extended ASCII code character, it must
make this call twice. In this case, the call returns OOH in register AL to indicate
that the next call will return an extended ASCII code character.

7-20

Concurrent DOS 86 Programmer's Gulde Print String (09H)

Print String (09H)

Send a Character String to Default Console Device

Entry Parameters:
Register AH:

OS:
DX:

09H
String address - Segment
String address - Offset

Print String sends each character in the ASCII string addressed by DS:DX and
terminated by a $ character (24H) to the calling process's default console device.
If the string contains a backspace character (08H). Print String shifts the cursor left
one position and writes a space (destructive backspace).

As with the Display Output (02H) call, Print String executes an INT 23H when the
user enters Ctrl-Break after the string is written to the console.

7-21

Buffered Console Output (OAH) Concurrent DOS 86 Programmer's Guide

Buffered Console Input (OAH)

Read Characters from Default Input Device into Input Buffer

Entry Parameters:
Register AH:

OS:
DX:

OAH
Buffer address - Segment
Buffer address - Offset

Buffered Console Input reads characters from the calling process's default input
device and writes them to the input buffer addressed by registers DS:DX. Figure
7-1 shows the format of the input buffer.

0 1 2 MAX - 1
1-------+-------+-------+-------+-------+ - - - +-------1
I MAX I NCHARSI CHARACTERS ••• I I ODH I
1-------+-------+-------+-------+-------+ - - - +-------1

Figure 7-1. DOS Console Buffer Format

The first byte (MAX) specifies the number of characters the buffer can hold.
Concurrent sets the second byte (NCHARS) to the number of characters received.
This value does not include the terminator character, a carriage return (OOH).
Buffered Console Input writes the characters it reads from the input device into
the buffer beginning at the third byte. When the call reads a carriage return, its
stops writing to the buffer.

When the Input buffer contains MAX-1 characters, Buffered Console Input ignores
additional input and sounds the bell until it reads a carriage return.

7-22

Concurrent DOS 86 Programmer's Guide Check Console Status (OBH)

Check Console Status (OBH)

Obtain Status of Default Input Device

Entry Parameters:
Register AH: OBH

Returned Values:
Register AL: · FFH or OOH (No character available)

Check Console Status returns FFH in register AL when a character is available from
the calling process's default input device. If the call returns OOH in AL. a character
was not ready. Check Console Status executes an INT 23H when it detects a Ctrl­
Break character.

Note: In a Concurrent environment, you should not make a status call in a loop;
use Function OlH instead.

7-23

Character Input with Buffer Flush (OCH) Concurrent DOS 86 Programmer's Guide

Character Input with Buffer Flush (OCH)

Flush Type-ahead Buffer and Read
Character(s) From Default Input Device

Entry Parameters:
Register AH: OCH

AL: Input function number

Returned Values:
Register AL: OOH (No input function performed)

The Character Input with Buffer Flush flushes the type-ahead buffer of the default
Input device and Invokes the Input call whose number Is entered in register AL.

The calling process can pass the following system call numbers:

7-24

OtH - Keyboard Input
06H - Direct Console 1/0
07H - Direct Console Input
OBH - Console Input without Echo
OAH - Buffered Console Input (see Function OAH for other parameters)

Concurrent DOS 86 Programmer's Guide Ctrl-Break Check (33H)

Ctrl-Break Check (33H)

Check Status or Set Ctrl-Break Checking Mechanism

Entry Parameters:
Register AH:

AL:

DL:

Returned Values:

33H
OOH - Get Ctrl-Break State or
01 H - Set Ctrl-Break State
OOH - Set Ctrl-Break Off
01H - Set Ctrl-Break On

Register DL: OOH - Ctrl-Break Off
01 H - Ctrl-Break On

The Ctrl-Break Check call can get or set the current state of Ctrl-Break checking.
If register AL = OOH, Ctrl-Break Check returns the current state of the Ctrl-Break
checking mechanism in register DL.

If AL contains 01 H on entry, Ctr!-Break checking is set according to the value
passed in register DL.

7-25

DOS File Management Concurrent DOS 86 Programmer's Guide

7.5 DOS FCB Oriented File Management

DOS programs can use either a standard or an extended FCB. Section 7.5.1
describes the standard DOS FCB. Section 7.5.2 describes the extended FCB. The
attribute byte Is defined In Section 7.5.3. Section 7.5.4 describes the DOS Disk
Transfer Area (OTA).

7.5.1 Standard DOS FCB < ·

Figure 7-2 illustrates the standard DOS FCB. Table 7-6 defines the fields in the
standard FCB. The fields from offset lOH through offset 2FH (FILESIZE, DATE, and
RESERVED) are set by the Concurrent and must not be changed by user programs.
All remaining fields of the standard DOS FCB must be set by user programs.

All data In word fields are stored with the least significant byte first.

+------+------+------+------+------+------+------+------+
OOH !DRIVE I FILENAME (8 bytes) or RESERVED DEVICE NAME

+------+------+------+------+------+------+------+------+
08H FILE EXTENSION !CURRENT BLOCKI RECORD SIZE I

+------+------+------+------+------+------+------+------+
lOH FILESIZE DATE RESERVED

+------+------+------+------+------+------+------+------+
18H RESERVED I

+------+------+------+------+------+------+------+------+
20H ICURRECI RAND REC

+------+------+------+------+------+
Figure 7-2. DOS Standard File Control Block

7-26

Concurrent DOS 86 Programmer's Guide DOS File Management

Field

DRIVE

FILENAME

Table 7-6. DOS Standard FCB Fields

Definition

Drives are numbered sequentially starting with zero. Before
a file is opened, O refers to the default drive, 1 to drive A, 2
to drive B, and so forth. After a file is opened, zero is
replaced by the actual drive number.

This field may contain either a filename or a reserved name
for a device. Filenames must be left-justified with trailing
blanks. If a device name is placed in this field, do not
include the optional colon.

FILE EXTENSION
Must be left-justified with trailing blanks or all blanks.

CURRENT BLOCK
Current block number relative to the beginning of the file,
starting with zero. The Open call sets this field to zero. A
block is 128 records long. Record size is specified in the
following field. The current block number is used with the
current record field (see CURREC, below) for sequential
reads and writes.

RECORD SIZE Logical record size in bytes. The Open call sets this field to
80H. If your records are not 80H bytes, you must set this
value to the correct value for your file. Concurrent uses
this field to determine locations in the file for all disk reads
and writes.

FILE SIZE

DATE

RESERVED

File size in bytes. The first word of this two-byte field is
the low-order part of the size.

Date the file was created or last updated. The month, day,
and year are mapped in the bits of this field as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y yymmmmddddd

where:

mm is 1-12
dd is 1-31
VY is 0-119 (1980-2099)

Reserved for use by Concurrent.

7-27

DOS File Management Concurrent DOS 86 Programmer's Guide

Field

CURREC

RANDREC

Table 7-6. (Cont'd)

Definition

Current record number in the range 0-127 within the
current block (see CURRENT BLOCK, above). You must set
this field before sequential read or write operations. To
read the first record of a file, set CURREC to zero. This
field Is not initialized by the Open File (OFH) call.

Record number relative to the beginning of the file, starting
with zero. You must set this field before random
read/write operations. This two-word field contains the
low-order part of the record number in the first word. If a
file's record size is less than 64 bytes, both words are used.
Otherwise. only the first three bytes are used. This field is
not initialized by the Open File call.

If you use the FCB at offset SCH in the Program Segment
Prefix (PSP), the last byte of the RANDREC field overlaps the
first byte of the unformatted parameter area in the PSP.

An unopened FCB consists of the FCB prefix (for extended FCBs), the drive number,
and the filename and extension. An opened FCB is one in which the remaining
fields have been filled in by Create File or Open File calls.

7.5.2 DOS Extended FCB

Programs can use extended FCBs to create or search for files that have special
attributes.

An extended FCB adds a seven-byte prefix to a normal FCB. Figure 7-4 shows the
format of the FCB prefix. Numbers are offsets from the beginning of a normal FCB.

-7 -6 -1 0
+-------+-------+-------+-------+-------+-------+-------+

FLAG I RESERVED I ATTR

+-------+-------+-------+-------+-------+-------+-------+
Figure 7-3. DOS Extended FCB Prefix

The fields in the extended FCB are defined in Table 7-7.

7-28

Concurrent DOS 86 Programmer's Guide DOS File Management

Field

FLAG

RESERVED

ATTR

Table 7-7. DOS Extended FCB Fields

Definition

Byte containing FFH to indicate an extended FCB.

Reserved for use by Concurrent.

Attribute byte. The attribute byte is defined in Section
7.5.3.

7.5.3 DOS File Attribute Byte

A program can assign one or more attributes to a file at the time the file is
created. The attribute byte, as it appears in a directory entry or in the prefix of
an extended DOS FCB, can have the values listed in Table 7-8.

Value

OOH

OlH

02H

04H

OSH

lOH

20H

Table 7-8. DOS Attribute Byte Values

Meaning

Indicates a normal file. These files have no special
attributes and are not excluded from any directory search.

Indicates that the file is marked read/only. If you use the
Open a File Handle call (3DH) to attempt to open a
read/only file, the call returns an error.

Indicates a hidden file. A file with this attribute is excluded
from normal directory searches.

Indicates a system file. A file with this attribute is excluded
from normal directory searches.

Indicates that an entry contains a volume label in the
filename and extension fields. When the attribute byte has
this value, a directory entry contains no other usable
information and can exist only in the root directory.

Indicates that an entry defines a subdirectory. Such an
entry is excluded from normal directory searches.

Indicates that the file has been written to and closed. PIP
and other file transfer utilities check for this value to
determine whether a file was changed since it was last
backed up.

7-29

DOS Fila Management Concurrent DOS 86 Programmer's Guide

You can use the Change File Mode call (43H) to change the read/only, hidden,
system, and archive attributes. A file can have any or all of these four attributes
in any combination. You cannot change the volume and subdirectory attributes
with Change File Mode.

The description of Search for First Entry (1 lH) contains an explanation of using the
attribute byte In file searches.

7.5.4 DOS Disk Transfer Area

Concurrent uses the Disk Transfer Area (OTA) to store data for all file reads and
writes performed by a subset of the FCB-oriented function calls. These calls
Include:

• Search for First Entry (11H)
• Search for Next Entry (12H)
• Sequential Read (14H)
• Sequential Write (15H)
• Random Read (21 H)
• Random Write (22H)
• Random Block Read (27H)
• Random Block Write (28H)

When Concurrent gives control to a DOS program. it establishes a default OTA at
offset BOH in the program's Program Segment Prefix (PSP). See the EXEC call for
a description of the PSP.

The default OTA is 128 bytes long. To change the default OTA or establish a new
OTA, use the Set Disk Transfer Address call (1AH). Concurrent allows the OTA to
be placed in any location within memory, but it must not cross 64KB (segment)
boundaries.

Once a OTA is established, Concurrent continues to use that area for all disk
operations until a subsequent Set OTA function is performed. You can obtain the
current OTA with the Get Disk Transfer Address call (2FH).

Note that under Concurrent, the DOS OTA is equivalent to the Direct Memory
Address (OMA) buffer.

7-30

Concurrent DOS 86 Programmer's Guide Disk Reset (OOH)

Disk Reset (OOH)

Flush All File Buffers

Entry Parameters:
Register AH: OOH

Returned Values:
Register AX: Error code

Disk Reset flushes all file buffers, but does not correctly record disk directory
information for those files which were left open and have changed in size.

Your program does not need to call Disk Reset before a disk change when all files
written have been closed.

See Table 7-4 for error code definitions.

7-31

Select Disk (OEH) Concurrent DOS 86 Programmer's Guide

Select Disk (OEH)

Select a Disk as Default Drive

Entry Parameters:
Register AH: OEH

DL: Drive vector

Returned Values:
Register AL: Number of drives

AX: Error code

Select Disk first determines whether the drive specified In DL is valid, then selects
it as the default drive, Drives are numbered starting with zero, where 0 is A, 1 is B,
and so forth.

Interrupt 1 lH, BIOS Equipment Determination, can also be used to return the
number of physical drives; see Section 8. 1 "DOS Monitor Calls."

See Table 7-4 for error c;ode definitions.

7-32

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register AL:

Open File (OFH)

Open a File for 1/0 Operations

OFH
Unopened FCB Address - Segment
Unopened FCB Address - Offset

OOH - on success
OFFH - on failure

Open File (OFH)

The Open File call searches the current directory for a specified file. If it finds the
file, it opens it, filling in information in the FCB as described below.

On entry, registers DS:DX point to an unopened FCB. Open File searches the
current directory for the file named in the FCB, and returns OFFH In AL if the file is
not found. If it is found, Open File returns OOH in AL and fllls in appropriate fields
in the FCB.

If the drive field is 0, indicating the default drive, Open File changes this field to
the actual drive containing the file, where 1 Is A. 2 is B, and so forth. This allows
the default drive to be changed without interfering with subsequent operations on
this file.

Open File sets the current block field to zero. The file record size is set to 80H.
Open File sets the file size and date fields from information obtained from the
directory.

You should set certain fields in the FCB after Open File has returned but before
you request any disk operations. If the file has a record size different from 80H,
you must set the record size field (offset OEH in the FCB). Also, you must set the
current record (offset 20H) and/or random record (offset 21H) fields, depending on
whether you are doing sequential and/or random reads and writes.

For more detailed information about DOS FCBs, refer to Section 7.5.1, "Standard
DOS FCB."

7-33

Close File (1 OH) Concurrent DOS 86 Programmer's Guide

Close File (1 OH)

Close a Fiie Following Read/Write Operations

Entry Parameters:
Register AH: 10H

OS: Opened FCB Address - Segment
OX: Opened FCB Address - Offset

Returned Values:
Register AL: OOH - On success

OFFH - Directory not updated

The Close File call closes a file following a file write. You must call Close Fiie
when finished with the file.

On entry, OS:DX point to an opened FCB. Close Fila sets AL to OOH to indicate a
successful close. If the file is not found in the directory, Close File sets AL to
OFFH.

7-34

Concurrent DOS 86 Programmer's Guide Search for First Entry (11 H)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register AL:

Search for First Entry (11 H)

Find First File to Match Specified FCB

1 lH
Unopened FCB Address - Segment
Unopened FCB Address - Offset

OOH - Match found
OFFH - No match found

The Search for First Entry call searches for the first filename that matches the
filename in the unopened FCB specified in DS:DX. Concurrent searches the current
disk directory for the first matching filename. The search includes those filenames
containing the question mark character, which matches any character in the same
position. If the call does not find a match, it returns OFFH in AL

If the call finds a match, it returns OOH in AL and returns information according to
whether the FCB pointed to on entry is a normal or extended FCB.

If the search FCB is a normal FCB, Search for First Entry sets the first byte in the
calling program's Disk Transfer Area (OTA) to the drive number of the drive
containing the matching FCB. where A is 1, B is 2, and so forth. Concurrent copies
the matching directory entry to the following 32 bytes in the OTA. On return, the
OTA contains an unopened, normal FCB.

If the search FCB is an extended FCB, Search for First Entry sets the first byte in
the calling program's OTA to FFH. It then sets the following five bytes to zero,
copies the attribute byte and drive code from the search FCB to the following two
bytes, then copies the matching directory entry into the following 32 bytes. On
return, the calling program's OTA contains an unopened, extended FCB with the
same attributes as the search FCB.

If the calling program points to an extended FCB, Search for First Entry bases its
search on the contents of the attribute byte in the FCB prefix. Extended FCBs are
discussed in Section 7.5.2.

Table 7-9 lists the bits within the DOS attribute byte.

Search for First Entry (11 H) Concurrent DOS 86 Programmer's Guide

Table 7-9. DOS File Attribute Bits

Bit Attribute

0 Read/Only
1 Hidden
2 System
3 Volume Label
4 Subdirectory
5 Archive

If the attribute byte Is zero, the call finds only normal file entries, which are those
that have no attributes set, or have the read/only and/or archive attributes set.
Search for First Entry will not return entries for the volume label, subdirectories, or
hidden and system files.

If the attribute byte 1s set for hidden (bit 1 set) or system files (bit 2 set), or for
subdirectories (bit 4 set), Search for First Entry searches all normal entries plus all
entries matching the specified attributes. To look at all directory entries except
the volume label, set bits 1, 2, and 4 in the attribute byte.

If bit 3 is set, Search for First Entry searches only for a volume label.

Concurrent DOS 86 Programmer's Guide Search for Next Entry (12H)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register AL:

Search for Next Entry (12H)

Find a Subsequent File Matching the
Specified FCB of a Previous Search Call

12H
Unopened FCB Address - Segment
Unopened FCB Address - Offset

OOH - Match found
OFFH - No match found

After Search for First Entry finds a match to an ambiguous filename, you can call
Search for Next Entry to look for the next match. An ambiguous filename is one
that contains question mark characters. The Entry parameters and returned values
are the same as those for Search for First Entry (1 lH).

Do not perform any disk operations with the search FCB between Search for First
and Search for Next calls, or between two Search for Next Calls, because
Concurrent stores information necessary to continue the search in the reserved
area of the search FCB. This information would be overwritten by a disk operation
that intervened between two search calls.

Delete File (13H) Concurrent DOS 86 Programmer's Guide

Delete File (13H)

Delete a Disk File

Entry Parameters:
Register AH: 13H

DS: Unopened FCB Address - Segment
DX: Unopened FCB Address - Offset

Returned Values:
Register AL: OOH - File deleted

OFFH - No matching directory entries

The Delete File call deletes all entries that match the specified filename in the
currant directory. On entry, DS:DX point to an unopened FCB. The question mark
character is allowed in the filename and extension. If no entries match, Delete File
returns OFFH in AL.

7-38

Concurrent DOS 86 Programmer's Guide Sequential Read (14H)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register AL:

Sequential Read (14H)

Sequentially Read Records from a Disk File

14H
Opened FCB Address - Segment
Opened FCB Address - Offset

OOH - On success
OlH - End-of-file encountered, no data in record
02H - Insufficient space in DTA to read a single record
03H - End-of-file encountered, partial record read, zero-filled

The Sequential Read call reads the record in the file pointed to by the current
block (offset OCH) and current record (offset 20H) fields in the file's FCB.
Sequential Read copies the record to the calling program's DTA, then increments
the current record field in the FCB. Concurrent determines the length of a file's
record from the record size field in the FCB (offset OEH).

Sequential Read and Sequential Write (15H) increment the FCB's current block field
when the current record number field overflows. The range of the current record
number field is 0-127. You must initialize the current record number to zero for a
read or write that starts from the beginning of the file. For more information on
the current block and current record number fields, see Section 7.5.1, "Standard
DOS FCB."

Sequential Read returns 01 H or 03H in AL if an end-of-file character is
encountered. A return of O 1 H indicates no data in the record; 03H indicates a
partial record was read and filled out with zeros.

Sequential Read returns 02H in AL if there was not enough space in the calling
program's OTA to read a single record and the read was ended. The call
determines this condition when the DTA offset plus the record length exceeds
FFFFH. OOH is returned in AL if the read was completed successfully.

7-39

Sequential Write (1 SH) Concurrent DOS 86 Programmer's Guide

Sequential Write (15H)

Sequentially Write Records to a Disk File

Entry Parameters:
Register AH: 15H

OS: Opened FCB Address - Segment
DX: Opened FCB Address - Offset

Returned Values:
Register AL: OOH - On success

01 H - Disk full
02H - Insufficient OTA space, operation canceled

The Sequential Write call writes data from the calling program's OTA to the
position in the flle pointed to by the current block and current record fields in the
FCB. After writing each record, Sequential Write increments the current record
field in the FCB.

Sequential Write determines the file's record length from the record size field in
the FCB. If the record size Is smaller than a single sector, Sequential Write buffers
data until a sector is filled out, at which time the write is performed.

Sequential Write returns OOH In AL if the write Is successfully completed. OlH in
AL Indicates that the destination disk is full. 02H indicates there is Insufficient
space in the calling program's OTA (OTA offset plus record length exceeds FFFFH)
to hold one record and the operation is ended.

7-40

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

DS:
DX:

Returned Values:
Register AL:

Create File (16H)

Create a Disk File

16H
Unopened FCB Address - Segment
Unopened FCB Address - Offset

OOH - On open
OFFH - No directory entry available

Create File (16H)

Create File searches the current directory for an entry matching the FCB pointed to
by DS:DX. If a matching entry is found, it is reused. If no match is found, Create
File searches the directory for an empty entry. When Create File finds an empty
directory entry, it initializes the entry to a zero-length file, calls Open File (OFH),
and returns OOH in AL.

A file created with the Create File call can be assigned the hidden attribute by
using an extended FCB and setting the file's attribute byte to 02H. Section 7.5.3,
"DOS File Attribute Byte." describes the attribute byte.

7-41

Rename File (17H) Concurrent DOS 86 Programmer's Guide

Rename File (17H)

Rename a Disk File

Entry Parameters:
Register AH: 17H

OS: Modified FCB Address - Segment
DX: Modified FCB Address - Offset

Returned Values:
Register AL: OOH - Fiie renamed

OFFH - File not found, or new name already in use

On entry to Rename File, DS:DX point to a modified FCB. The modified FCB has a
drive code and filename in the normal position and a second filename starting six
bytes after the end of the normal filename field {DS:DX+11H) in what is normally a
reserved area.

Hename File changes every filename in the current directory that matches the first
filename to the second filename. If question mark characters appear In the second
filename, the corresponding positions in the original name are not changed.

Rename File returns OFFH in AL if no match is found for the first filename or if the
second filename is already in use. AL contains OOH if the operation is successful.

7-42

Concurrent DOS 86 Programmer's Guide Current Disk (19H)

Current Disk (19H)

Return Number of Current Default Drive

Entry Parameters:
Register AH: 19H

Returned Values:
Register AL: Current drive number

Current Disk returns the number of the current default drive, where 0 is A, 1 is B.
and so forth.

7-43

Set OTA (1AH) Concurrent DOS 86 Programmer's Guide

Set Disk Transfer Address (1AH)

Set the Address of the Disk Transfer Area {OTA)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:

lAH
Disk Transfer Area Address - Segment
Disk Transfer Area Address - Offset

None

The Set Disk Transfer Area Call sets the address of the Disk Transfer Area (OTA)
to the value specified in DS:DX. Concurrent does not allow disk transfers to wrap
around within the segment or overflow into the next segment.

The space between the offset and the end of the DTA's segment should be large
enough to accommodate your largest record. The DOS FCB read and write calls
(14H, 15H, 21H, 22H, 27H, and 28H) do not read or write data beyond the end of
the segment specified for the OTA. nor do they wrap to the segment's beginning.

If you do not !jet the OTA. Concurrent uses the default OTA, located at offset 80H
in the Program Segment Prefix (PSP). You can get the address of the OTA using
system call 2FH.

7-44

Concurrent DOS 86 Programmer's Guide Allocation Table Address (1 BH)

Entry Parameters:
Register AH:

Returned Values:
Register DS:

BX:
DX:
AL:
CX:

Allocation Table Address (1 BH)

Return Information about Default Drive

1BH

FAT ID byte address - segment
FAT ID byte address - offset
Number of clusters
Number of sectors per cluster
Physical sector size

The Allocation Table Address call returns information about the default drive.
Upon return, registers DS:BX point to a byte containing the File Allocation Table
(FAT) identification byte for the default drive. DX contains the number of clusters
in the drive, AL contains the sectors per cluster. and CX contains the size of a
physical sector.

7-45

Allocation Table for Specific Drive (1 CH) Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

DL:

Returned Values:
Register OS:

BX:
DX:
AL:
ex:

Allocation Table for Specific Drive (1CH)

Return Information about Specific Drive

lCH
Drive Number

FAT ID byte Address - Segment
FAT ID byte Address - Offset
Number of allocation units
Number of sectors per allocation unit
Size of a physical sector

This call is identical to call lBH, except that DL contains a specific drive number.
Drive numbers start with zero, where O is the default drive, 1 is A, 2 is B, and so
forth.

7-46

Concurrent DOS 86 Programmer's Guide Random Read (21 H)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register AL:

Random Read (21 H)

Randomly Read Records from a Disk File

21H
Opened FCB Address - Segment
Opened FCB Address - Offset

OOH - On success
O 1 H - End-of-file encountered, no data available
02H - Insufficient space in OTA. operation canceled
03H - End-of-file encountered, partial record read, zero-filled

Upon entry to Random Read, DS:DX point to an opened FCB. After Random Read
has set the current block (offset OCH) and current record fields (offset 20H) in the
FCB to correspond with the random record field (offset 21 H), it reads in the FCB to
correspond with the random record field (offset 21 H), it reads the indicated record
into the calling program's OTA.

Random Read returns OOH in AL when the read is successfully completed. If
Random Read encounters an end-of-file indicator, it returns 01 H in AL, indicating
no more data is available, or 03H, meaning a record was partially read and its
remainder filled out with zeros.

Random Read returns 02H in AL when there is not enough space in the OTA to
read one record (offset plus record length is greater than OFFFFH) and the
operation was ended.

7-47

Random Write (22H)

Entry Parameters:
Register AH:

OS:
DX:

Returned Values:
Register Al:

Concurrent DOS 86 Programmer's Guide

Random Write (22H)

Randomly Write Records to a Disk File

22H
Opened FCB Address - Segment
Opened FCB Address - Offset

OOH - On success
O 1 H - Disk full, write canceled
02H - Insufficient space in OTA, operation canceled

Upon entry to Random Write, DS:DX point to an opened FCB. After Random Write
has set the current block (offset OCH) and current record fields {offset 20H) in the
FCB to correspond with the random record field (offset 21 H), it writes the indicated
record from the calling program's OTA.

Random Write returns OOH in Al when the write is successfully completed.
Random Write returns OlH In AL if the destination disk Is full and the operation
was canceled. Random Write returns 02H In AL when there is insufficient space in
the OTA (offset plus record length Is greater than OFFFFH) to write a single record
and the operation was canceled.

7-48

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

DS:
DX:

Returned Values:
Register AL:

File Size (23H)

Return File Size

23H
Unopened FCB Address - Segment
Unopened FCB Address - Offset

OOH - On success
OFFH - No matching entry found

File Size (23H)

File Size searches the current directory for the first entry that matches the
specified FCB pointed to in DS:DX. To receive accurate information from File Size,
you must set the record size field (offset OEH) in the referenced FCB before your
program performs the call.

When a matching entry is found, File Size sets the random record field in the FCB
to the number of records in the file. File Size counts records in terms of the
length of record specified in the FCB's record size field, rounded up. If no
matching entry is found, File Size returns OFFH in AL.

7-49

Set Random Record Field (24H) Concurrent DOS 86 Programmer's Guida

Set Random Record Field (24H)

Set File Address of Random Record Field

Entry Parameters:
Register AH: 24H

OS: Opened FCB Address - Segment
OX: Opened FCB Address - Offset

Returned Values:
None

The Set Random Record Field call sets the random record field (offset 21H) to the
file address stored In the current block (offset OCH) and current record (offset 20H)
fields In the FCB.

7-50

Concurrent DOS 86 Programmer's Guide Random Block Read (27H)

Random Block Read (27H)

Randomly Read Multiple Records From a Disk File

Entry Parameters:
Register AH:

OS:
DX:
CX:

Returned Values:
Register AL:

CX:

27H
Opened FCB Address - Segment
Opened FCB Address - Offset
Record count

OOH - On success
01 H - End-of-file encountered, no data available
02H - Insufficient space in OTA, operation canceled
03H - End-of-file encountered, partial record read, zero-filled
Number of records read

The Random Block Read call reads the specified number of records from the point
in the file specified by the random record field into the calling program's disk
transfer area (OTA). Upon entry to Random Block Read, registers OS:OX point to
an opened FCB and CX contains a record count that must not be zero. Random
Block Read counts records In terms of the record length specified in the record
size field (offset OEH) in the FCB.

If the read was successfully completed, Random Block Read returns OOH in AL. If
an end-of-file indicator is reached before all records have been read, Random
Block Read returns either O 1 H or 03H in AL. O 1 H indicates that the last record is
complete; 03H indicates that the last record is a partial record and was filled out
with zeros.

Random Block Read reads records into the OTA until the OTA offset plus record
length exceeds OFFFFH. If not all of the specified records have been read, 02H is
returned in AL.

In any event, Random Block Read returns the actual number of records read in CX
and sets the random record, current block (offset OCH), and current record (offset
20H) fields to point to the next record in the file; that is, the first record not read.

7-51

Random Block Write (28H) Concurrent DOS 86 Programmer's Gulde

Random Block Write (28H)

Randomly Write Multiple Records to a Disk File

Entry Parameters:
Register AH:

OS:
DX:
CX:

28H
Opened FCB Address - Segment
Opened FCB Address - Offset
Record count

Returned Values:
Register AL: OOH - On success

OlH - Insufficient space on disk, no records written
02H - Insufficient space In OTA, operation canceled

CX: Number of records written

Random Block Write writes the specified number of records from the calling
program's OTA to the file address specified by the random record field in the
opened FCB specified In DS:DX.

Random Block Write returns OOH In AL If the write was successfully completed, or
OlH In AL when there Is Insufficient space on the destination disk and the
operation Is canceled.

Random Block Write returns 02H in AL when there is insufficient space In the
calling program's OTA (offset plus record length Is greater than OFFFFH) to hold
one record and the operation Is ended.

If CX Is zero upon entry, no records are written, but the file is set to the length
specified by the random record field. If the new file size is longer or shorter than
the file size specified In the FCB (at offset 10H), clusters are allocated or released
as appropriate.

7-52

Concurrent DOS 86 Programmer's Guide Parse Filename (29H}

Entry Parameters:
Register AH:

OS:
SI:

ES:
DI:
Al:

Returned Values:
Register OS:

SI:
ES:
DI:
Al:

Parse Filename (29H}

Parse Specified Filename and Initialize an FCB

29H
Pointer to command line - Segment
Pointer to command line - Offset
Unopened FCB Address - Segment
Unopened FCB Address - Offset
Bit map (See below)

First character following parsed name - Segment
First character following parsed name - Offset
First byte of formatted FCB - Segment
First byte of formatted FCB - Offset
OOH - No wildcard characters used
O 1 H - Wildcard character in filename or extension
OFFH - Invalid drive specifier

The Parse Filename call parses an ASCII file specification and prepares an FCB.
Upon entry, DS:SI point to a command line to parse and ES:DI point to a buffer to
be filled with an unopened FCB.

The command line is parsed for a file name of the form:

d:filename.ext

If found, Parse Filename creates an unopened FCB for the file at the address
pointed to by ES:DI. If no drive specifier is present. the default drive is assumed.
If no extension is present. Parse Filename assumes it to be all blanks. If the
asterisk (*) character appears in the filename or extension. Parse Filename replaces
the asterisk and any remaining characters in the filename or extension with
question marks.

The contents of the byte in Al upon entry determine how Parse Filename acts on
the specified command line. The bit map for this Al register entry parameter is as
follows:

If bit 0 is 1, Parse Filename scans leading separators off the target command line.
If bit O is 0, no scan-off is performed.

If bit 1 is 1, Parse Filename changes the drive field in the result FCB only if a drive
was specified in the command line.

7-53

Parse Filename (29H) Concurrent DOS 86 Programmer's Guide

If bit 2 Is 1, Parse Filename changes the filename field In the result FCB only if the
command line contains a filename.

If bit 3 Is l, Parse Filename changes the extension field In the result FCB only If
the command line contains an extension.

Parse Filename Ignores bits 4-7.

Filename separators include the following characters:

: colon
. period
; semicolon
, comma
•equal sign
+plus sign

Tab
Space

Filename terminators Include all of the separator characters plus:

backslash
< less than
>
I
I

greater than
vertical bar
slash
quotation marks
left square bracket
right square bracket

Filename terminators also Include any control characters.

Parse Filename returns the segment and offset addresses of the first character
after the filename in OS and SI, respectively, and returns the address of the first
byte of the formatted FCB In ES:DI. If the target command llne does not contain a
valid filename, Parse Filename returns a blank at ES:Dl+l.

If the question mark or asterisk characters appear in the filename or extension,
Parse Filename returns OlH In AL. If no wildcard characters appear, AL contains
OOH. If the drive specifier Is Invalid, AL contains OFFH.

7-54

Concurrent DOS 86 Programmer's Guide Set/Reset Verify Switch (2EH)

Set/Reset Verify Switch (2EH)

Set Verify Switch for Write Operations

Entry Parameters:
Register AH: 2EH

DL: OOH
AL: 01 H - Verify on

OOH - Verify off

Returned Values:
None

Concurrent ignores the setting of the Verify flag. This call is supported only for
DOS compatibility.

7-55

Get OT A (2FH) Concurrent DOS 86 Programmer's Gulde

Get Disk Transfer Address (2FH)

Return Address of Current Disk Transfer Area (OTA)

Entry Parameters:
Register AH:

Returned Values:
Register ES:

BX:

2FH

Current OTA - Segment
Current OTA - Offset

Get Disk Transfer Address returns the address of the current Disk Transfer Area
(OTA) In ES:BX. You can set the Disk Transfer Area by calling Set Disk Transfer
Address (1AH). The OTA Is described in Section 7.5.4.

7-56

Concurrent DOS 86 Programmer's Guide Get Disk Free Space (36H)

Entry Parameters:
Register AH:

DL:

Returned Values:
Register AX:

BX:
DX:
ex:

Get Disk Free Space (36H)

Return Disk Free Space Information

36H
Drive Number

Number of sectors per cluster, OFFFFH - Invalid drive number
Number of available clusters
Number of clusters in drive
Number of bytes per sector

Get Disk Free Space returns information about the free space on a specified drive.
Upon entry, DL contains a drive number, where 0 is the default drive, 1 is A, 2 is B,
and so forth.

Get Disk Free Space returns the number of available clusters in BX, the total
number of clusters in the drive in DX, the number of bytes per sector in CX, and
the number of sectors per cluster in AX.

7-57

Get Verify State (54H) Concurrent DOS 86 Programmer's Gulde

Get Verify State (54H)

Return Current Value of Verify State

Entry Parameters:
Register AH: 54H

Returned Values:
Register AL: OOH - Verify off

OtH - Verify on

Get Verify State returns the value of the verify flag. Get Verify State returns OtH
In AL if verify Is on, OOH If verify is off.

Note: Concurrent ignores the setting of the Verify flag. This call is supported only
for DOS compatibility.

7-58

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

DS:
DX:
ex:

Returned Values:

Create a File (03CH)

Create a Disk File

3CH
ASCllZ string Address - Segment
ASCllZ string Address - Offset
File attribute

Register AX: 16-bit handle, if Carry flag clear

Create a File (03CH)

Create a File creates a new file or truncates an old file to zero length in
preparation for writing. If the file does not exist, this call creates a file in the
directory indicated in the ASCllZ string and gives the file the read/write attribute
(see Section 7.5.3, "DOS File Attribute Byte"). Create a File returns the file's handle
in AX.

If the carry flag is set, Create a File returns error code 3, 4, or 5 in AX. Error code
5. access denied. indicates that the specified directory is full or a file of the same
name exists and is marked read/only. See Table 7-4 for other error code
definitions.

Note that you can use Change File Mode (43H) to change the file's attribute.

7-59

Open a File Handle (03DH) Concurrent DOS 86 Programmer's Guide

Open a File Handle (03DH)

Open a File Whose Name Matchs Specified ASCllZ String

Entry Parameters:
Register AH: JOH

OS: ASCllZ string Address - Segment
DX: ASCllZ string Address - Offset
AL: Access code

Returned Values:
Register AX: Handle or error code

The Open a File Handle call opens any normal or hidden file whose name matches
the name and directory location specified in the ASCllZ string, but does not open
files whose names end with a colon.

On entry, the ASCllZ string contains the drive, path, and filename for the file to be
opened. AL contains one of the following access codes:

OOH - Open file for reading
OlH - Open file for writing
02H - Open file for reading and writing

If the carry flag Is set, this call returns error code 2, file not found; error code 4,
no file handles (too many open files); error code 5, access denied; or error code
12, Invalid access code. If the carry flag is not set, Open a File Handle returns a
16-blt flle handle that must be used for subsequent Input and output to the file.

Open a File Handle sets the read/write pointer to the first byte of the file and sets
the record size of the file to one byte. You can move the file pointer with the
Move File Pointer call (42H). You can obtain or change a file's attribute with the
Change File Mode call (43H). DOS file attributes are described In Section 7.5.3.

7-60

Concurrent DOS 86 Programmer's Guide Close a File Handle (03EH)

Close a File Handle (03EH)

Close a Specified File Handle

Entry Parameters:
Register AH: 3EH

BX: File handle returned by Open or Create a File

Returned Values:
Register AX: Error code, if Carry flag set

The Close a File Handle call closes the specified file handle, flushes all internal
buffers associated with the file, and updates the file's directory. If the carry flag is
set. Close a File Handle returns error code 6 in AX to indicate that an illegal file
handle was specified.

Note: You should always close a file as soon as you finish using it.

7-61

Reid from 1 File or Device (03FH) Concurrent DOS 86 Programmer's Gulde

Read from a File or Device (03FH)

Read a Specified Number of Bytes Into OMA Buffer

Entry Parameters:
Register AH: 3FH

BX: Fiie handle
OS: OMA address - Segment
DX: OMA address - Offset
CX: Number of bytes to be read

Returned Values:
Register AX: Number of bytes read, If Carry flag not set

The Read from a Fiie or Device call transfers a number of bytes, specified In CX,
from a file into the OMA buffer addressed by DS:DX.

On return, if the carry flag Is set, AX contains error code 5 or 6. See Table 7-4 for
error code definitions.

If the carry flag Is not set, AX contains the number of bytes read. If this value is
zero, It Indicates an attempt to read from the end of the file. If the value in AX Is
greater than zero, but less than the value specified in ex. it indicates that the
program has read up to the end of the file.

Depending on the device being accessed, this call may not read the number of
bytes specified In CX. For example, from the keyboard, it reads at most, one line
at a time.

7-62

Concurrent DOS 86 Programmer's Guide Write to a File or Device (040H)

Write to a File or Device (040H)

Write Specified Number of Bytes From Internal Buffer

Entry Parameters:
Register AH: 40H

BX: File handle
OS: Address of data to write - Segment
DX: Address of data to write - Offset
CX: Number of bytes to write

Returned Values:
Register AX: Number of bytes written, if Carry flag not set

The Write to a File or Device call transfers the number of bytes specified in CX
from the buffer pointed to by DS:DX to the file indicated by the file handle in BX.

On return. if the carry flag is set, this call returns error code 5 or 6 in AX. Error
code 5 indicates access denied; error code 6 indicates an illegal file handle. If the
carry flag is not set, Write to a File or Device returns the actual number of bytes
written in AX. If register CX = 0, the file is truncated at the position of the current
file pointer.

Your program must compare the number of bytes returned in AX with the number
of bytes requested in CX. This call does not return an error if the two values do
not match. You should, however, consider this condition an error, since the
discrepancy is often caused by a full disk.

7-63

Erase a File from Directory (041H) Concurrent DOS 86 Programmer's Guide

Erase a File from Directory (UNLINK) (041H)

Erase Specified Fiie From Directory

Entry Parameters:
Register AH: 41 H

OS: ASCllZ string Address -. Segment
DX: ASCllZ string Address - Offset

Returned Values:
Register AX: Error code, If Carry flag set

This call removes a directory entry associated with a filename. The question mark
and asterisk wlldcard characters are not allowed In any part of the ASCllZ string
pointed to In DS:DX.

This call does not delete read/only files. To delete a read/only file, you must first
use the Change Fiie Mode call (43H) to change the file's attribute. On return, If the
carry flag Is set, this call returns 2 or 5 In AX to Indicate file not found or access
denied, respectively.

7-64

Concurrent DOS 86 Programmer's Guide Move File Read/Write Pointer (042H)

Entry Parameters:
Register AH:

CX:
DX:
Al:

Returned Values:
Register DX:

AX:

Move File Read/Write Pointer (042H)

Move Read/Write Pointer to Specified Location

42H
Offset to move, in bytes (most significant portion)
Offset to move, in bytes (least significant portion)
Move from:
O - beginning of file
1 - current location
2 - end-of-file

New pointer location - Segment, if Carry flag not set
New pointer location - Offset, if Carry flag not set

This call moves the read/write pointer according to the location specified by the
value passed in Al. On entry, CX:DX contains the distance to move the pointer.
On return, if the carry flag is not set, DX:AX contains the new pointer location. DX
contains the most significant part of the value.

If the carry flag is set, this call returns 1 or 6 in AX (see Section 7.3, "DOS System
Call Error Return Codes").

Set register AL to one of the following values:

0

2

Move pointer the number of bytes contained in CX:DX from
the beginning of the file.

Move pointer to the current location plus the offset
contained in CX:DX.

Move pointer to the end-of-file plus the specified offset;
use this method to determine the file's size.

7-65

Change File Mode (043H) Concurrent DOS 86 Programmer's Gulde

Change File Mode (043H)

Change a File's Attribute

Entry Parameters:
Register AH: 43H

OS: Address of ASCllZ Pathname - Segment
DX: Address of ASCllZ Pathname - Offset
CX: File attribute
AL: 1 - set attribute to ex

0 - return attribute

Returned Values:
Register AX:

CX:
None. if Carry flag not set
File's current attribute, if Carry flag not set
and AL contains zero on entry

The Change File Mode call changes or returns the file attribute of a file specified
by a pointer to an ASCllZ string. On entry, If AL contains 1, Change File Mode
changes the file's attribute to the one specified In ex.
On return, If AL contains zero and the carry flag Is not set, this call returns the
file's current attribute In CX. The DOS file attribute byte Is described in Section
7.5.4.

If the carry flag Is set, this call returns 2, 3, or 5 In AX (see Section 7.3, "DOS
System Call Error Return Codes.").

7-66

Concurrent DOS 86 Programmer's Guide Duplicate a File Handle (045H)

Duplicate a File Handle (045H)

Return a Duplicate of an Existing File Handle

Entry Parameters:
Register AH: 45H

BX: File handle

Returned Values:
Register AX: New file handle, if Carry flag not set

This call returns a duplicate of the file handle contained in BX on entry. The
duplicate handle refers to the same file in the same directory. If you move the
read/write pointer of either handle with the Read (3FH), Write (40H), or Move
Pointer (42H) calls, the pointer for the other handle is also moved.

On return, if the carry flag is set, this call returns error code 4 or 6 in AX. Error
code 4, no file handles, indicates that the number of open files exceeds system
limits; error code 6 indicates an illegal file handle.

7-67

Force a Duplicate Fiie Handle (046H) Concurrent DOS 86 Programmer's Gulde

Force a Duplicate of a Handle (046H)

Force a Duplicate Fiie Handle to Use
Same Input as an Exlatlng Fiie Handle

Entry Parameters:
Register AH: 46H

BX: Existing file handle
CX: Second file handle

Returned Values:
Register AX: Error code, if carry flag set

This call forces the file handle In ex to refer to the same input stream as the
handle contained in BX. If the existing file handle passed in ex refers to an open
file, this call closes the file before forcing duplication. If you move the read/write
pointer of either handle with the Read (JFH), Write (40H), or Move Pointer (42H)
calls, the pointer for the other handle is also moved.

On return, if the carry flag Is set, this call returns error code 6 In AX to indicate
that an Invalid handle has been specified.

7-68

Concurrent DOS 86 Programmer's Guide Find First Matching File (04EH)

Find First Matching File (04EH)

Find First Filename to Match Specified ASCllZ String

Entry Parameters:
Register AH: 4EH

DS:
DX:
ex:

ASCllZ string Address - Segment
ASCllZ string· Address - Offset
File attribute

Returned Values:
Register AX: None, if Carry flag not set

The Find First Matching File call finds the first filename that matches the filename
in the ASCllZ string pointed to in DS:DX on entry. The ASCllZ string contains the
drive, path, and filename of the file to be matched. Wildcard characters are
allowed in the filename portion of the ASCllZ string.

This call searches for files according to the attribute contained in CX on entry.
The description of Search for First Entry (11 H) contains an explanation of how the
attribute byte is used for searches.

If a matching file is found, Find First Matching File fills in the calling program's
Disk Transfer Area (DTA) as follows:

21 bytes

1 byte

2 bytes

2 bytes

2 bytes

2 bytes

13 bytes

Reserved for use with subsequent Find Next Matching File
(4FH) calls.

attribute of matching file

matching file's time of creation

matching file's date of creation

low word of matching file's size

high word of matching file's size

matching file's filename and extension, followed by a byte
of zeros. This call removes all blanks from the filename
and extension. If the extension is present, it is preceded by
a period. The filename returned appears just as you would
enter it as a command parameter.

On return, if the carry flag is set, AX contains error code 2 or 18. Error code 2
indicates that the file was not found. Error code 18 indicates that no matching
files could be found.

7-69

Find Next Matching File (04FH) Concurrent DOS 86 Programmer's Guide

Find Next Matching File (04FH)

Find Next Matching File From Previous Find First Call

Entry Parameters:
Register AH: 4FH

Returned Values:
Register AX: None, If Carry flag not set

The Find Next Matching Fiie call finds the next directory entry matching the
filename specified in the previous Find First Matching File (4EH) call. On entry, the
OTA must contain the information supplied by a previous Find First File (4EH) call.

If a matching file is found, this call sets the calling program's Disk Transfer Area
(OTA) as described under Find First Matching File, above. If no additional matching
files are found, this call returns error code 18, no more matching files, in AX.

7-70

Concurrent DOS 86 Programmer's Guide

Rename a File (056H)

Rename a File to Specified ASCllZ String

Entry Parameters:
Register AH: 56H

OS: ASCllZ string Address - ,Segment
DX: ASCllZ string Address - Offset
ES: ASCllZ string Address - Segment
DI: ASCllZ string Address - Offset

Returned Values:
Register AX: Error code, if Carry flag is set

Rename a File (056H)

The Rename a File call renames the file specified using the ASCllZ string pointed
to by DS:DX, which contains the drive, path, and name. The ASCllZ string passed
in EX:DI contains the path and new filename.

If a drive is specified in the second ASCllZ string, it must be the same as that
specified In the first string.

On return, if the carry flag is set, AX may contain error code 3, 5, or 17. See
Section 7.3, for error code definitions.

7-71

Get/Set Time and Date Stamps (057H) Concurrent DOS 86 Programmer's Gulde

Get/Set Time and Date Stamps (057H)

Set or Obtain a File's Date and Time of Creation

Entry Parameters:
Register AH: 57H

AL: OOH - Get date/time
OlH - Set date/time

BX: File handle
CX: Time to be set If AL • OlH
DX: Date to be set if AL• OlH

Returned Values:
Register DX: If getting date, date from handle's Internal handle

CX: If getting time, time from handle's internal handle

This call obtains or sets a file's date and time of creation. If AL contains OlH on
entry, this call sets a file's time and date to the values contained In CX and DX. If
AL contains zero on entry, this call returns a file's time and date in CX and DX.

Date and time formats are the same as the formats for a DOS directory entry,
except that when passed In registers. the bytes are reversed. This means that DH
contains the low order byte of the date, DL the high order byte. The DOS file time
and date formats are shown in Figures 7-4 and 7-5, respectively.

7-72

High-order byte Low-order byte
+------------------------+----------------------+
115 14 13 12 11 10 9 8 17 6 5 4 3 2 1 OI
+------------------------+----------------------+

h h h h h m m m m m m s s s s s

Figure 7-4. DOS File Time Format

h Is the binary number of hours, 0 to 23
m Is the binary number of hours. 0 to 59
s Is the binary number of two-second Increments

High-order byte Low-order byte
+------------------------+----------------------+
115 14 13 12 11 10 9 8 17 6 5 4 3 2 1 01
+--~---------------------+----------------------+

y y y y y y y m m m m d d d d d

Figure 7-5. DOS Fiie Date Format

Concurrent DOS 86 Programmer's Guide Get/Set Time and Date Stamps (057H)

v is a binary number of years, 0-119 (1980-2099)
m Is the binary number of months, 1 to 12
d is a binary number of days, 1 to 31

On return, if the carry flag is set, AX may contain error code 1 or 6 (see Section
7.3, "DOS System Call Error Return Codes").

7-73

Create a Subdirectory (039H) Concurrent DOS 86 Programmer's Guide

Create a Subdirectory - MKDIR (039H)

Create a Subdirectory at the end of the Specified Path

Entry Parameters:
Register AH: 39H

OS: ASCllZ string Address - Segment
DX: ASCllZ string Address - Offset

Returned Values:
Register AX: Error code, if Carry flag is set

The ASCllZ string addressed by registers DS:DX specifies a drive number and
directory path name. MKOIR returns to the calling process with a new directory
created at the end of the specified path.

MKDIR does not add the new directory to the directory structure If any member of
the specified path does not exist. MKDIR returns error code 3 or 5 in register AX.
See Table 7-4 for error code definitions.

7-74

Concurrent DOS 86 Programmer's Guide Remove a Directory (03AH)

Remove a Subdirectory - RMDIR (03AH)

Remove a Subdirectory at the end of the Specified Path

Entry Parameters:
Register AH: 3AH

OS: ASCllZ string Address - Segment
DX: ASCllZ string Address - Offset

Returned Values:
Register AX: Error code, if Carry flag is set

RMDIR removes the directory specified in the ASCllZ string addressed by registers
DS:DX from the directory structure. RMDIR will not remove the current directory.

RMDIR returns error code 5 if the directory to be removed is not empty, or is
being accessed by any process. RMDIR returns error code 3 if the ASCllZ string
specifies an invalld path.

7-75

Change Current Directory (03BH) Concurrent DOS 86 Programmer's Guide

Change Current Directory - CHOIR (03BH)

Set Current Directory as Specified in ASCllZ String

Entry Parameters:
Register AH: 3BH

OS: ASCllZ string Address - Segment
DX: ASCllZ string Address - Offset

Returned Values:
Register AX: Error code, If Carry flag Is set

CHOIR sets the current directory as specified in the ASCllZ string addressed by
registers DS:DX.

You can also change floating drives with an ASCllZ string such as:

n:=c:\subdirectory

Note: Do not use such a string if DOS compatlblllty Is required.

If any member of the specified path does not exist, CHOIR sets the carry flag and
returns error code 3 (Path not found) In register AX.

7-76

Concurrent DOS 86 Programmer's Guide Get Current Directory (047H)

Get Current Directory (047H)

Return Full Pathname of Current Directory for Specified Drive

Entry Parameters:
Register AH:

DL:
OS:
SI:

Returned Values:
Register AX:

47H
Drive number
Path name Address - Segment
Path name Address - Offset

Error code, it Carry flag is set

The Get Current Directory call writes the full path name of the current directory for
the drive specified in DL to the 64-byte area of user memory pointed to by DS:Si.
Get Current Directory does not include the drive letter or a leading backslash in
the path name. and terminates the path name string with OOH.

If DL does not contain a legal drive number, Get Current Directory sets the carry
flag and returns error code 15 {Invalid drive specified) in register AX.

7-77

Set Vector (025H) Concurrent DOS 86 Programmer's Gulde

Set Vector (025H)

Set Interrupt Vector Table

Entry Parameters:
Register AH: 25H

OS: Interrupt routine Address - Segment
DX: Interrupt routine Address - Offset
AL: Interrupt number (Hex)

The Set Vector call sets the Interrupt vector table for the interrupt number passed
by the calling process In AL to the address In DS:DX.

Use Get Vector (35H) to obtain the contents of the interrupt vector.

7-78

Concurrent DOS 86 Programmer's Guide Get DOS Version Number (030H)

Entry Parameters:
Register AH:

Returned Values:
Register AL:

AH:
BX:
ex:

Get DOS Version Number (030H)

Return Major and Minor Version Numbers

30H

Major version number
Minor version number
OOH
OOH

The Get DOS Version Number call returns the high part of the Concurrent version
number in register AL and the low part in AH. For Concurrent DOS 86 version 5.0,
Al equals 02H and AH equals OAH. Registers BX and CX are set to OOH.

Get Vector (035H) Concurrent DOS 86 Programmer's Guide

Get Vector (035H)

Return Address of Interrupt Vector For Specified lnterrrupt

Entry Parameters:
Register AH: 35H

AL: Interrupt number (Hex)

Returned Values:
Register ES: Interrupt routine Address - Segment

BX: Interrupt routine Address - Offset

The Get Vector call returns the CS:IP Interrupt routine address in registers ES:BX
for the Interrupt number specified In AL.

Use the Set Vector (25H) call to set Interrupt vectors.

Concurrent DOS 86 Programmer's Guide Get Country Dependent Info (038H)

Get Country Dependent Information (038H)

Return Settings of Country Dependent Information

Entry Parameters:
Register AH:

OS:
DX:
AL:

Returned Values:
Register AX:

38H
Block Address - Segment
Block Address - Offset
OOH

Error code

This call returns the country dependent information shown in Figure 7-7 to the
block of memory addressed in registers DS:DX.

The Date format is:

0 M D Y - USA Standard
1 D M Y - European Standard
2 Y M D - Japanese Standard

The Currency format is:

Bit O = 0 if currency symbol precedes value
= 1 if currency symbol follows value

Bit 1 = 0 for 0 spaces between currency symbol and value
= 1 for 1 space between currency symbol and value

The Time format is:

Bit 0 • 0 for 12-hour clock
= 1 for 24-hour clock

The Case Map call uses register AL as follows:

Entry AL • ASCII code for character to convert to uppercase
Return AL = ASCII code for uppercase input character

If the carry flag is set, register AX contains an error code on return. See Table
7-4 for error code definitions.

7-81

Get Country Dependent Info (038H) Concurrent DOS 86 Programmer's Guide

Offset

00 +-------------------------------+
I Date Format

02 +-------------------------------+
I Currency Symbol(s)
+-------------------------------+
I Zero Byte(s) (null terminator) I

07 +-------------------------------+
I Thousands Separator
+-------------------------------+
I Zero Byte (null terminator)

09 +-------------------------------+
I Decimal Separator
+-------------------------------+
I Zero Byte (null terminator)

OB +-------------------------------+
I Date Separator
+-------------------------------+
I Zero Byte (null terminator)

OD +-------------------------------+
I Time Separator
+-------------------------------+
I Zero Byte (null terminator)

OF +-------------------------------+
I Currency Format

10 +-------------------------------+
I Sig. Digits in Currency

11 +-------------------------------+
I Time Format

12 +-------------------------------+
I Case Map call far address

16 +-------------------------------+
I Data List Separator
+-------------------------------+
I Zero Byte (null terminator)

18 +-------------------------------+
I Reserved
+-------------------------------+

Figure 7-7. Country Dependent Dita Return Block

7-A?

Concurrent DOS 86 Programmer's Guide Program Terminate (OOH)

Program Terminate (OOH)

Transfer Control to Terminate Address

Entry Parameters:
Register AH: OOH

The Program Terminate call returns the terminate, Ctrl-Break, and critical error exit
addresses to the values saved in the Program Segment Prefix (PSP). These are the
values saved on entry to the terminating program. See Figure 7-11 for a
description of the PSP control block.

Program Terminate flushes all file buffers and transfers control to the terminate
address. Note that Concurrent does not properly record the directory information
for files that have changed in length and were not previously closed.

Ensure that the CS register contains the segment address of the calling program's
PSP before invoking Program Terminate.

Note: You should not use this call in new programs; it is provided only to support
DOS pre-version 2.0 programs. The preferred call for this function is EXIT (4CH).

7-83

Create a New Program Segment (026H) Concurrent DOS 86 Programmer's Guide

Create New Program Segment (026H)

Create a New program Segment for the Calling Process

Entry Parameters:
Register AH: 26H

OX: Segment number

The Create New Program Segment call copies the entire 100H area from location 0
in the current segment of the calling program Into location 0 of the segment
whose number is passed In register OX.

This call updates the memory size field (offset 06H) and saves the terminate, Ctrl­
Break, and critical error exit addresses for Interrupts 22H, 23H, and 24H in the new
Program Segment Prefix (PSP) starting at offset OAH. These addresses are
restored from the PSP when the currant program terminates.

See the EXEC (4BH) call for a description of the PSP.

Note: You should not use this call in new programs; It Is provided only to support
DOS pre-version 2.0 programs. The preferred call for this function Is EXEC (4BH).

7-84

Concurrent DOS 86 Programmer's Guide Keep Process (031 H)

Keep Process (031 H)

Terminate the Currently Running Process

Entry Parameters:
Register AH: 31 H

AL: Exit code
DX: Memory value - Paragraphs

The Keep Process call terminates the calling process but keeps the number of
paragraphs of memory designated by DX. The memory is retained above the start
of the current Program Segment Prefix (PSP).

The binary error (or exit) code passed in register AL can be retrieved by the parent
process through Get Subprocess Return Code (4DH).

Note: This call should not be used In a Concurrent environment; use a device
driver or an RSP instead.

7-85

Execute a Program (04BH) Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

AL:
OS:
DX:
ES:
BX:

Returned Values:
Register AX:

Execute a Program - EXEC (04BH)

Load and Execute a Program or Overlay

4BH
OOH - Load and execute program or 03H - Load overlay
ASCllZ string address - Segment
ASCllZ string address - Offset
load parameter block Address - Segment
Load parameter block Address - Offset

Error code, if Carry flag is set

The ASCllZ string addressed by DS:DX must Include the name and filetype of the
file to be loaded. The drive and path name are optional.

Because Concurrent has previously allocated all available memory to the current
program, you must free enough memory for the file to be loaded. Before calling
EXEC, use SETBLOCK (4AH) to reduce the allocated memory to the minimum
required by the current program.

The format of the Load Parameter Block (LPB) pointed to by ES:BX is dependent
upon the type of EXEC call being made. See Figures 7-8 and 7-10.

If EXEC returns with the carry flag set. register AX contains one of the following
error codes: 1, 2, 7, 8, 10, or 11. See Table 7-4 for error code definitions.

7-86

Concurrent DOS 86 Programmer's Guide Execute a Program (04BH)

Load and Execute (AL = OOH on Entry)

If AL contains OOH on entry, EXEC creates a Program Segment Prefix (PSP) at
offset O in the program segment and sets its terminate address and Ctrl-Break
address fields to the instruction following the EXEC call. EXEC then loads the
program indicated in the ASCllZ string at offset lOOH within the program segment
and gives it control.

All registers are changed on return from an EXEC load and execute call. You must
restore the stack segment, stack pointer, and any other required registers.

The program can return from EXEC in one of five ways:

1. Set AH to 4CH and issue an interrupt 21 H; this is the preferred method.

2. Jump to offset 0 in the Program Segment Prefix.

3. Issue an Interrupt 20H.

4. Set AL to OOH.

5. Call offset 50H in the Program Segment Prefix with AH equal to 4CH.

When control returns to the process that called EXEC (except through call 4CH),
ensure that register CS contains the segment address of the Program Segment
Prefix. Interrupt vectors 22H, 23H, and 24H are restored from the values in the
terminate address, Ctrl-Break address, and critical error exit address fields of the
Program Segment Prefix.

Concurrent duplicates the parent process's open files for the child created after a
Load and Execute EXEC call. The new process inherits the standard input, output,
printer, and auxiliary device definitions from the calling process. The child process
also inherits a block of text strings or "environment" from the calling process. If
the value of the Environment String Address field in the Load Parameter Block is
OOOOH, the child process inherits the environment unchanged. Note that the
environment must always be located on a paragraph boundary.

+--------------------+
00 : Environment String :

Address
+--------------------+

02 Command Line
+--------------------+

06 1st FCB
+--------------------+

OA 2nd FCB
+--------------------+

AL = OOH

Figure 7-7. EXEC Load and Execute Parameter Block

7-87

Execute a Program (04BH) Concurrent DOS 86 Programmer's Guide

Table 7-10 defines the fields in the Parameter Block.

Table 7-10. EXEC Load Parameter Block Fields

Field Definition

Environment String Address
Word address (segment) of the environment passed to PSP.

Command Line

1st FCB

2nd FCB

Double-word address of command line to be placed at
offset 80H in PSP.

Double-word address of FCB to be placed at offset SCH in
PSP.

Double-word address of FCB to be placed at offset SCH in
PSP.

Figure 7-8 shows the format of the environment string.

+----------------+
ASCI IZ 1

+----------------+
ASCI IZ 2

32K Max.

ASCIIZ n
+----------------+

Zero Byte
+----------------+

Figure 7-8. DOS Environment String Format

7-88

Concurrent DOS 86 Programmer's Guide Execute a Program (04BH)

Load Overlay (AL = 03H on Entry)

If the calling process passes 03H in AL on entry, EXEC loads the program indicated
in the ASCllZ string, but does not establish a PSP or begin executing the program.
EXEC loads the program in the segment pointed to by the Load Parameter Block
depicted in Figure 7-9. Use this type of EXEC call to load program overlays.
Figure 7-10 shows the Program Segment Prefix.

+--------------------+
00 Overlay Segment

+--------------------+
02 Relocation Factor :

+--------------------+
AL = 03H

Load Overlay

Figure 7-9. EXEC Load Overlay Parameter Block

Table 7-11 defines the fields in the Parameter Block.

Table 7-11. EXEC Load Overlay Parameter Block Fields

Field Definition

Overlay Segment
Word address of segment in which to load file.

Relocation Factor
Fix-up segment to be applied to the image.

7-89

Execute a Program (04BH) Concurrent DOS 86 Programmer's Gulde

+------+------+------+------+------+------+------+------+
OOH INT 20H ITop of Memory! ReserlDsptchl Dispatch I

Instruction !Segment Addr I -ved IOpcodel Offset I
------+------+------+------+------+------+------+------!

08H Dispatch I Terminate Address I Ctrl-Break I
Segment I I Exit Addr IP

------+------+------+------+------+------+------+------
lOH Ctrl-Break I Critical Error Exitl Reserved

Exit Addr CSI Address I
------+------+------+------+------+------+------+------

18H Reserved
------+------+------+------+------+------+------+------

20H Reserved
------+------+------+------+------+------+------+------

28H Reserved I Environment I Reserved
I Segment Addrl

------+------+------+------+------+------+------+------
30H Reserved

------+------+------+------+------+------+------+------
50H INT 21 I RetFar I Reserved

------+------+------+------+------+------+------+------
58H Reserved First FCB Area

------+------+------+------+------+------+------+------
60H First FCB Area (cont'd)

------+------+------+------+------+------+------+------
68H First FCB Area (cont'd) Second FCB Area

------+------+------+------+------+------+------+------
70H Second FCB Area (cont'd)

------+------+------+------+------+------+------+------
78H Second FCB Area (cont'd) Reserved

------+------+------+------+------+------+------+------
80H Param I Command

Size I Parameters
------+------+------+------+------+------+------+------
------+------+------+------+------+------+------+------

F8H
+------+------+------+------+------+------+------+------+

Figure 7-10. DOS Program Segment Prefix

7-90

Concurrent DOS 86 Programmer's Guide Terminate a Process (04CH)

Terminate a Process - EXIT (04CH)

Terminate Current Process and Return Control to Calling Process

Entry Parameters:
Register AH: 4CH

AL: Return code

The Terminate Process call terminates the current process and returns control to
the process that invoked EXEC (4BH). EXIT also closes any handles opened by the
current process.

The calling process can place a binary return code in register AL before invoking
EXIT. This code can then be retrieved by the parent process through Get
Subprocess Return Code (4DH).

7-91

Get Subprocess Return Code (04DH) Concurrent ODS 86 Programmer's Guide

Get Subprocess Return Code - WAIT (04DH)

Return Completion Code to Calling Process

Entry Parameters:
Register AH: 4DH

Returned Values:
Register AX: Exit code

The Get Subprocess Return Code call returns the binary exit or completion code
specified by another process with the Keep Process (31H) or EXIT (4CH) calls. The
low byte of register AX contains the exit code specified by the terminating
process; the high byte can return one of the following values:

7-92

OOH - normal termination
01 H - Ctrl-Break termination
02H - critical device error
03H - Keep Process (31 H) termination

Concurrent DOS 86 Programmer's Guide Allocate Memory (048H)

Allocate Memory (048H)

Allocate Specified Number of Paragraphs to Calling Process

Entry Parameters:
Register AH: 48H

BX: Number of paragraphs

Returned Values:
Register AX:

AX:
BX:

Address of block or
Error code, if Carry flag set
Largest available block (on failure)

The Allocate memory call allocates a requested number of paragraphs of memory.
On entry, BX contains the number of paragraphs requested. On return. AX:O points
to the allocated memory block. If the allocation fails, Allocate Memory returns the
size, in paragraphs, of the largest block of memory available in BX. If the carry
flag is set. Allocate Memory returns error code 7 or 8 in AX (see Section 7.3, "DOS
System Call Error Return Codes").

7-93

Free Allocated Memory (049H) Concurrent DOS 86 Programmer's Gulde

Free Allocated Memory (049H)

Free Specified Memory for Reallocation

Entry Parameters:
Register AH: 49H

ES: Block· segment

Returned Values:
Register AX: Error code, If Carry flag is set

The Free Allocated Memory call releases the specified memory for reallocation. On
entry, ES contains the segment address of the block to be freed.

There are no return parameters. If the carry flag is set, Free Allocated Memory
returns error code 7 or 9 In AX (see Section 7.3, "DOS System Call Error Return
Codes").

7-94

Concurrent DOS 86 Programmer's Guide Modify Allocated Memory (04AH)

Modify Allocated Memory Blocks - SETBLOCK (04AH)

Modify Memory to Contain Specified Block Size

Entry Parameters:
Register AH:

BX:
ES:

Returned Values:
Register AX:

BX:

4AH
Number of paragraphs
Block segment

Error code, if Car,Y flag is set
Largest available block (On failure), if Carry flag is set

This call modifies an allocated memory block to contain a specified block size. On
entry, ES contains the segment address of the allocated memory block, and BX
contains the new requested block size, in paragraphs. Concurrent attempts to
increase or decrease the allocated block according to the contents of BX.

If Concurrent cannot increase the size of the allocated block, SETBLOCK returns the
maximum possible block size in BX. If the carry flag is set, SETBLOCK returns
error code 7, 8, or 9 in AX. See Table 7-4 for error code definitions.

7-95

Get Date (02AH)

Entry Parameters:
Register AH:

Returned Values:
Register AL:

CX:
DH:
DL:

Concurrent DOS 86 Programmer's Guide

Get Date (02AH)

Returns Current System Date

2AH

Day of the week
O•Sunday, l•Monday, 2•Tuesday, 3•Wednesday, etc.
Year (1980-2099)
Month (1-12)
Day (1-31)

The Get Date call returns the day of the week, year, month, and day as recorded
by the system clock.

Get Date returns the year In CX, the month in OH, and the day in DL. All returned
values are in binary. If the time-of-day clock rolls over to the next day,
Concurrent advances the date, taking into account the number of days in each
month and leap years.

7-96

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

CX:
DH:
DL:

Returned Values:

Set Date (02BH)

Set the System Time and Date

2BH
Year (1980-2099)
Month (1-12)
Day (1-31)

Register AL: OOH Date was valid
OFFH Date was invalid

Set Date (02BH)

The Set Date call sets the system date. On entry, CX must contain a valid year,
DH a valid month, and DL a valid day.

Set Date returns OOH in AL if the date is valid and the set operation is successful,
or OFFH if the date is not valid.

7-97

Get Time (02CH) Concurrent DOS 86 Programmer's Guide

Get Time (02CH)

Returns the Currant System Time

Entry Parameters:
Register AH: 2CH

Returned Values:
Register CH: Hours (0-23)

CL: Minutes (0-59)
DH: Seconds (0-59)
DL: Hundredths (0-99)

The Get Time call returns the system time in hours, minutes, seconds, and
hundredths of a second.

Get Time returns the time in four 8-bit quantities. You can easily convert Get
Time's returned values to a printable form or use these values In calculations, such
as subtracting one value from another.

7-98

Concurrent DOS 86 Programmer's Guide

Entry Parameters:
Register AH:

CH:
CL:
DH:
DL:

Returned Values:
Register AL:

Set Time (020H)

Set the System Time

2DH
Hours (0-23)
Minutes (0-59)
Seconds (0-59)
Hundredths (0-99)

OOH Time is valid
OFFH Time is invalid

Set Time (02DH)

The Set Time sets the system time. On entry, CH contains the hours. CL the
minutes, DH the seconds, and DL the hundredths of a second.

If any component of the time is invalid, the set operation is terminated and Set
Time returns OFFH in AL. If the time is valid and the time is successfully set, Set
Time returns OOH in AL.

End of Section 7

7-99

SECTION 8

PC DOS Interrupt Support

8.1 PC ROS Monitor Calls

Table 8-1 lists the PC DOS BIOS functions that are available through the PC Read
Only Storage (ROS) interrupts emulated by Concurrent.

Note: These interrupts are available only in the version of Concurrent called
Co_n~~uJre~11t ~C_ QO_S which has an XIOS written by Digital Research to be
compatible with IBM PC DOS. They may not be available in other implementations
of Concurrent.

Table 8-1. DOS Monitor Call Interrupts

Hex Number ROS Interrupt

10 VIDEO 10
11 EQUIPMENT
12 MEMORY SIZE DETERMINE
13 DISKETTE IQ
16 KEYBOARD 10
17 PRINTER 10

8.2 DOS Interrupts

Concurrent supports the DOS interrupts listed in Table 8-2.

Table 8-2. DOS Interrupts Supported by Concurrent

DOS Interrupt Description

20H
21H
22H
23H
24H
25H
26H

Program Terminate
DOS Function Request
Terminate Address
Ctrl-Break Address
Critical Error Exit
Absolute Disk Read
Absolute Disk Write

8-1

INT 20H-23H Concurrent DOS 86 Programmer's Guide

8.2.1 DOS INT 20H - Program Terminate

Issuing INT 20H restores the terminate (INT 22), Ctrl-Break (INT 23), and critical
error exit address (INT 24) fields in the interrupt table to the values they contained
when the current program was loaded In the Program Segment Prefix (PSP).

Concurrent flushes all file buffers in response to an INT 20H instruction. If any file
that has changed in length Is not closed prior to an INT 20H, the directory entries
for its length, date, and time will not be correctly recorded (see the Close File
(10H) and Close a File Handle (3EH) calls in Section 7). If you want your program
to pass an error or completion code before terminating, use Terminate a Process
(4CH).

Before issuing an INT 20H, your program must ensure that the CS register contains
the segment address of Its PSP. See the DOS EXEC (4BH) system call in Section 7
for a description of the PSP control block.

Note: INT 20H is supported for DOS compatibility only; the preferred method for
terminating a program is function 4CH "Terminate a Process".

8.2.2 DOS INT 21H - Invoke a DOS System Call

Section 7, "DOS System Calls." describes how to use INT 21H to invoke a DOS
system call.

8.2.3 DOS INT 22H - Terminate Address

This Interrupt location contains the address to which Concurrent transfers control
when the current program terminates. Concurrent copies this address into offset
OAH of the program's Program Segment Prefix when the segment Is created.

Do not Issue Interrupt 22H directly.

8.2.4 DOS INT 23H - Ctrl Break Address

Concurrent executes Interrupt 23H when the user enters Ctrl-Break during standard
1/0 or standard printer or asynchronous communications operations. If a user
enters Ctrl-Break when the current state of Ctrl-Break checking is on (see Ctrl­
Break Check 33H), Concurrent issues Interrupt 23H on the next DOS system call.

If your Ctrl-Break routine saves all registers. it can continue program execution by
ending with an interrupt return instruction (IRET). Concurrent places no
restrictions on the routine, including its use of DOS calls. when the registers are
saved before it Issues an IRET. If your interrupt routine returns with a long return,
the carry flag determines whether the program will continue to execute. When the
flag is set, the program will end; otherwise. it will continue as with an IRET. '

If Ctrl-Break interrupts DOS calls 09H, Print String, or OAH, Buffered Keyboard Input,
Concurrent outputs a Ctrl-C, carriage-return. and linefeed. 1/0 then continues
from the start of the new line if program execution is allowed to continue with an
IRET. When the interrupt Is issued, all registers are returned to the values they
contained during the original DOS system call.

8-2

Concurrent DOS 86 Programmer's Guide INT 24H

8.2.5 DOS INT 24H - Critical Error Exit Address

Concurrent transfers control to DOS Interrupt 24H when a critical error occurs
during the execution of a DOS program. Bit 7 (high-order) of register AH equal to
zero indicates a disk error.

INT 24H sets the registers so that if an IRET is executed, Concurrent responds
according to one of the following values in AL: O s ignore the error; 1 s retry the
operation that resulted in the error; 2 • execute DOS INT 23H.

Concurrent will not take an INT 24H exit for errors that occur during a DOS INT
25H or 26H. It takes an INT 24H exit only when the disk error is the result of a
DOS INT 21H system call.

When AH bit 7 = 0, register AL contains the number of the drive on which the
error occurred (0 corresponds to drive A). Bits 0-2 of AH indicate which operation
was in effect and the area of the disk involved in the error. Bits 3-5 of AH
indicate valid responses to the disk error. Table 8-3 lists the values assigned to
these bits.

Table 8-3. INT 24H Disk Error and Response Indicators

AH Bit Meaning

0 0 Read operation
1 Write operation

2-1 00 System area
01 FAT
1 O Directory
11 Data area

3 0 Fail is not allowed
1 Fail is allowed

4 O Retry is not allowed
1 Retry is allowed

5 0 Ignore is not allowed
1 Ignore is allowed

Concurrent sets all registers to retry the operation and passes an error code in the
low-order byte of register DI. The high-order byte of DI is undefined. Table 8-4
lists these error codes.

8-3

INT 24H Concurrent DOS 86 Programmer's Guide

Table 8-4. DOS Critical Error Codes

Value of DI
(Low-order)

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH

Error

Attempted write on protected diskette
Unit unknown
Drive not ready
Command unknown
CRC error
Bad request structure length
Seek error
Media type unknown
Sector not found
Printer out of paper
Write failure
Read failure
General failure

Concurrent places the Information shown In Figure 8-1 on the user stack.

+-------------------------+
IP System registers
CS from
FLAGS INT 24H I

-------------------------!
AX User registers I
BX I
ex from I
DX I
SI original I
DI I
BP INT 21H I
DS I
ES request I

-------------------------!
IP Original INT 21H I
CS from user I
FLAGS to System I
~~~~~~~~~~~~' 

Figure 8-1. User Stack at DOS INT 24H 

8-4 



Concurrent DOS 86 Programmer's Guide 

8.2.6 DOS INT 25H - Absolute Disk Read 

Entry Parameters: 
Register AL: 

CX: 
DX: 
OS: 
BX: 

Returned Values: 
Register AX: 

DOS Interrupt 25H 

Absolute Disk Read 

Drive number 
Number of sectors to read 
Beginning logical sector number 
OMA address - Segment 
OMA address - Offset 

Error code, If Carry flag • 1 

INT 25H 

INT 25H transfers data from memory to disk using the entry parameters. Obtain 
the logical sector number by numbering each sector sequentially beginning from 
track 0, head 0, sector 1 (this is logical sector 0) and continuing along the same 
head, then to the next head until the last sector on the last head of the track is 
counted. 

For example, logical sector 1 is track 0, head 0, sector 2; logical sector 2 is track 0, 
head 0, sector 3. Numbering continues with sector 1 on head 0 of the next track. 
Although the sectors are numbered sequentially, they may not be juxtaposed on 
the disk because of interleaving. 

Only the segment registers are preserved by this interrupt call. Concurrent returns 
to the caller with a Far Return instruction so the original flags remain Ori the stack 
and must be explicitly popped off. 

Note that if the transfer was successful. the carry flag equals zero. If the carry 
flag is equal to 1, AX will contain an error code. The error codes returned in AL 
are the same as those returned in DI by DOS INT 24H. These are listed in Table 
8-4, above. The error codes returned in AH are listed in Table 8-5. 

8-5 



INT 26H Concurrent DOS 86 Programmer's Gulde 

Table 8-5. DOS Absolute Disk RHd/Wrlte Error Codes 

AH Value Error 

OOH General error 
02H Address mark not found 
OJH Attempted write on protected diskette 
04H Sector not found 
OSH OMA overrun 
10H Bad CRC on read 
20H Controller failure 
40H SEEK failed 
80H Attachment failed 

8.2.7 DOS INT 26H - Absolute Disk Write 

Entry Parameters: 
Register AL: 

CX: 
DX: 
OS: 
BX: 

Returned Values: 
Register AX: 

DOS Interrupt 26H 

Absolute Disk Write 

Drive number 
Number of sectors to write 
Beginning logical sector number 
OMA address - Segment 
OMA address - Offset 

Error code, If Carry flag • 1 

Absolute Disk Write Is essentially the same as DOS INT 25H, above, except that It 
transfers data from memory to disk according to the entry parameters. See DOS 
INT 25H, Absolute Disk Read, for error code definitions. ., 

End of Section 8 

8-6 



SECTION 9 

DOS DEVICE DRIVER SUPPORT 

This section describes Concurrent's support for DOS device drivers for fixed disks. 
Including Winchester disks, virtual drives in memory (RAM disks). and expanded 
memory cards. Section 9.1 offers guidelines for writing a DOS fixed-disk driver. 
Section 9.2 explains how to install DOS drivers under Concurrent. 

9.1 Writing a DOS Driver 

This subsection presents guidelines for writing a DOS device driver that is 
installable under Concurrent. Because Concurrent supports a subset of DOS­
compatlble devices, this section omits certain Information on writing drivers that 
are not applicable to Concurrent. 

9.1.1 DOS Driver Format 

A DOS device driver follows conventions for COM program files with the 
significant exception that drivers use an ORG 0 statement (or no ORG statement) 
rather than ORG lOOH. Also, at the beginning of its file, a driver must have a 
header that Identifies It as a device, defines its two entry points, and specifies 
what type of device it is. 

Following the Device Header. a driver contains a series of functions that interface 
with the driver's device and present data to Concurrent in a specified format. 
These functions are described in Section 9.1.4. 

Be cautious in using any absolute memory references. Concurrent can install a 
driver in different memory locations at each installation. 

9.1.2 DOS Device Header 

A DOS driver must begin with a Device Header. Figure 9-1 illustrates the format 
of this header. 

9-1 



9.1 Writing a DOS Driver Concurrent DOS 86 Programmer's Gulde 

+--------------+--------------+ 
0 

+ NEXTDH + 
2 

+--------------+--------------+ 
4 ATTRIBUTE 

+--------------+--------------+ 
6 STRATEGY 

+--------------+--------------+ 
8 INTERRUPT 

+--------------+--------------+ 
A 

c 
UNIT 

E 

10 
+--------------+--------------+ 

Figure 9-1. DOS Device Header 

Table 9-1 defines the fields in the device header. 

9-2 

Table 9-1. DOS Device Header Fields 

Field Description 

NEXTDH This is a double word (offset followed by segment) pointer 
to the next DOS driver to be loaded. Concurrent sets this 
field at the time the driver is loaded. This field should be 
Initialized to OFFFFH,OFFFFH. 

ATIRIBUTE This Is a one word bit map that defines a device's 
characteristics. The bits are used as follows: 

Bit 15 

Bit 13 

1 for character devices 
O for block (disk) devices 

1 non-IBM formatted disk 
O IBM formatted disk 



Concurrent DOS 86 Programmer's Guide 9.1 Writing a DOS Driver 

Table 9-1. (Cont'd) 

Field Description 

STRATEGY This field contains a pointer to the strategy entry point. 
Concurrent calls the strategy routine when it has 
constructed a Request Packet. The Request Packet is 
discussed in Section 9.1.3. The strategy routine in turn, 
passes to the interrupt routine a pointer to the Request 
Packet. 

INTERRUPT Contains a pointer to the interrupt entry point. The 
interrupt routine processes a Request Packet as passed 
from strategy routine. The interrupt routine also dispatches 
1/0 requests to the appropriate driver routines, returns 
requested data to Request Packet, and returns control to 
Concurrent. 

UNIT Contains the number of units in a disk device. You can 
place this number in the first byte of this 8-byte field. This 
is optional, because Concurrent fills in this location with the 
value returned by a driver's INIT code. If the device is a 
character device, UNIT contains the device driver's name. 

9-3 



9.1 Writing a DOS Driver Concurrent DOS 86 Programmer's Guide 

9.1.3 DOS Request Header 

When Concurrent receives an 1/0 request for a DOS device driver, it builds a 
Request Packet containing information about the request and passes the packet to 
the driver's strategy entry point. The strategy entry point is called with registers 
ES and BX pointing to the offset and segment addresses of the Request Packet. 

The strategy routine stores this pointer in a queue, then returns to Concurrent. On 
the strategy routine's return, Concurrent calls the interrupt routine, with no 
parameters. The interrupt routine obtains the pointer from the queue and performs 
the requested operation based on the contents of a field within the packet. 

The Request Packet consists of a 13-byte header, the Request Header, plus data, in 
a format dependent on the 1/0 function that is requested. Figure 9-2 shows the 
Request Header's format. 

+--------------+--------------+ 
0 RP LENGTH UNIT 

+--------------+--------------+ 
2 CMDCODE I STATUS(byte2)1 

+--------------+--------------+ 
4 I STATUS(bytel)I RESERVED I 

+--------------+--------------+ 
6 

+ + 
8 RESERVED 

+ + 
A 

+--------------+--------------+ 
c RESERVED 

+--------------+----DATA------+ 

Figure 9-2. Request Header 

Table 9-2 defines the fields In the Request Header. 

9-4 



Concurrent DOS 86 Programmer's Guide 9.1 Writing a DOS Driver 

Field 

RPLENGTH 

UNIT 

CMDCODE 

STATUS 

Table 9-2. Fields in Request Header 

Description 

Indicates length, in bytes, of the Request Packet, including 
header and data. 

Identifies the unit (logical drive) that is requested. Units are 
numbered in ascending order from zero. 

Indicates the command code that tells the interrupt routine 
which driver function is requested. This field can have one 
of the following values: 

Code Function 

0 INIT 
1 MEDIA CHECK (block devices only) 
2 BUILD BPB (block devices only) 
3 not used 
4 INPUT 
5 NON-DESTRUCTIVE INPUT, NO WAIT 

(character devices only) 
6 INPUT STATUS (character devices only) 
7 INPUT FLUSH (character devices only) 
8 OUTPUT 
9 OUTPUT WITH VERIFY 
1 O OUTPUT STATUS (character devices only) 
11 OUTPUT FLUSH (character devices only) 
12 not used 

This word-length field contains the return codes for driver 
function calls. It is set to zero on entry to the interrupt 
routine, which sets the field on return to Concurrent. This 
word is stored in memory, low-order byte first. The status 
word is a bit map with the following values: 

Bit 15 1 - Error 
O - No error 

Bits 14-10 Reserved 

Bit 9 1 - Device busy (in response to status calls) 
0 - Device free 

9-5 



9.1 Writing a DOS Driver Concurrent DOS 86 Programmer's Gulde 

Table 9-2. (Cont'd) 

Fie Id Description 

RESERVED 

DATA 

Bit 8 1 - Operation complete 
0 - Operation not complete 

Bits 7-0 Error code (if bit 15 is set) 

The following error codes are passed in bits 7-0. Numbers 
are in hexadecimal notation. 

00 Write protect violation 
01 Unknown unit 
02 Device not ready 
03 Unknown command 
04 CRC error 
05 Bad drive request structure length 
06 Seek error 
07 Unknown media 
08 Sector not found 
09 Printer out of paper 
OA Write fault 
OB Read fault 
OC General failure 

This is an 8-byte reserved field. 

Contains data pertinent to requested operation presented in 
a format specific to each driver function. 

The following subsection defines the parameter blocks for each function. 

9.1.4 DOS Driver Functions 

Driver functions fill in parameter blocks that are appended to Request Headers. 
This section defines the parameter block and other requirements for each function. 
It also specifies the Request Header command code that the Interrupt routine uses 
to determine which function is being requested. 

As stated In Section 9.1.3, each parameter block is preceded by a 13-byte Request 
Header. Each function must set the status word In the Request Header on Its 
return. 

9-6 



Concurrent DOS 86 Programmer's Guide 

INIT 

Command Code: O 

+--------------+ 
D NBRUNITS 

+--------------+--------------+ 
E ENDADDR offset 

+-----------------------------+ 
10 ENDADDR segment 

+-----------------------------+ 
12 BPBPTR offset 

+-----------------------------+ 
16 BPBPTR segment 

+--------------+--------------+ 
Table 9-3 defines the parameter block fields. 

Field 

NBRUNITS 

EN DAD DR 

BPBPTR 

Table 9-3. INIT Parameter Block Fields 

Definition 

Contains the number of units supported by the driver (for 
block devices only). 

This double-word pointer contains the address of the first 
byte of free memory after the driver has completed 
initialization. 

This double-word pointer points to an array of word-length 
pointers to BIOS Parameter Blocks (BPBs). BPBs Indicate 
the default format of each logical drive the driver supports. 
In the array of word-length pointers, there is a pointer for 
each unit In the driver. If all units in a driver are the same, 
the entire array can point to the same BPB to save space. 

Figure 9-3 shows the BPB format. 

INIT 

9-7 



INIT Concurrent DOS 86 Programmer's Gulde 

+------------+------------+------------+------------+ 
0 SECSIZE I SECCLUSTER I RESSEC 

+------------+------------+------------+------------+ 
4 RESS EC NBRFATS NBRDIR 

+------------+------------+------------+------------+ 
8 NBRSECS MOB FATSEC 

+------------+------------+------------+------------+ 
C FATSEC 

+------------+ 
Figure 9-3. BIOS Parameter Block 

Table 9-4 defines the fields in the BIOS Parameter Block. 

9-8 



Concurrent DOS 86 Programmer's Guide 

Field 

SEC SIZE 

Table 9-4. DOS BIOS Parameter Block Fields 

Description 

Contains the number of bytes per sector, a value that must 
be a multiple of 32. 

SECCLUSTER Contains the number of sectors per cluster, a value that 
must be a power of two. 

RESS EC 

NBRFATS 

NBRDIR 

NBRSEC 

MOB 

FATSEC 

Contains the number of sectors reserved for the boot 
loader. 

Contains the number of FATs on the disk. 

Contains the number of directory entries available in the 
root directory of the disk. 

Contains the total number of sectors on the disk, including 
reserved sectors. 

Contains the Media Descriptor Byte, which corresponds to 
the identification byte at the start of the FAT table. The 
MOB is a bit map that can have the following values: 

Bit 0 1 two-sided 
O not two-sided 

Bit 1 1 eight sectors per track 
O not eight sectors 

Bit 2 1 removable 
0 not removable 

Bits 3-7 must be set to 1 

Contains the number of sectors required to contain one 
copy of the FAT table. 

INIT 

9-9 



MEDIA CHECK Concurrent DOS 86 Programmer's Guide 

Concurrent calls INIT only at Installation time. Place the code for INIT on the high 
end of the file so that It can be discarded when hardware and software 
Initialization Is complete. Concurrent reuses INIT's space by overlaying the next 
Installable DOS driver onto the end of the previous driver, starting at the address 
specified In the ENDAODR field in INIT's parameter block. 

Concurrent allows one driver within a single driver tile. A single driver can have 
multlple units. 

The number of units returned by a disk driver determines the logical names for 
each drive. Concurrent's method of assigning drive letters is explained In Section 
9.2.1, "Drive Assignment.• The number of units returned by INIT overrides the 
value In the UNIT field In the Device Header. 

MEDIA CHECK 

Command Code: 

+--------------+ 
D MOB 

+--------------+--------------+ 
E RETURN 

+--------------+ 
MEDIA CHECK must test the current drive to determine whether the media has 
been changed since the last disk 1/0 call. MOB Is the current Media Descriptor 
Byte as passed from Concurrent. In the RETURN field, MEDIA CHECK returns one 
of the following three results: 

-1 Media has been changed. 
0 Unsure whether media has been changed. 
1 Madia has not been changed. 

9-10 



Concurrent DOS 86 Programmer's Guide BUILD BPB 

BUILD BIOS PARAMETER BLOCK (BPB) 

Command Code: 2 

+--------------+ 
D MOB 

+--------------+--------------+ 
E TRFADDR offset 

+--------------+--------------+ 
10 TRFADDR segment 

+--------------+--------------+ 
12 BPBPTR offset 

+--------------+--------------+ 
14 BPBPTR segment 

+--------------+--------------+ 
The MOB field, above, is the MOB obtained from Concurrent. TRFADDR is a 
double-word pointer to a buffer. The setting of the attribute field in the Device 
Header determines the way the buffer is used. If the disk Is IBM format­
compatible, the buffer contains the first sector of the FAT table, including the MOB, 
on the disk. In this case, the driver must not alter the buffer. If the disk is not 
IBM format-compatible, the buffer specified by TRFADDR can be used as a scratch 
area. 

BPBPTR is a double-word pointer to the BPB returned by the driver after it has 
determined the density of the disk. 

Concurrent calls BUILD BPB under either of the following two conditions: 

* If MEDIA CHECK returns "Media changed" 

* If MEDIA CHECK returns "Unsure" and there are no buffers with changed data 
not yet written to disk. 

The driver must read the MOB to determine the density of the disk and return it as 
a BPB. 



INPUT or OUTPUT Concurrent DOS 86 Programmer's Gulde 

INPUT or OUTPUT 

Command Code: 4 
8 
9 

INPUT 
OUTPUT 
OUTPUT with verify 

All driver Input and output functions use the same parameter block, Illustrated in 
Figure 9-4. 

+--------------+ 
D MOB 

+--------------+--------------+ 
E 

+ BUFADDR + 
10 

+--------------+--------------+ 
12 COUNT 

+--------------+--------------+ 
14 STARTSEC 

+--------------+--------------+ 
Figure 9-4. Input and Output Parameter Block 

Table 9-5 defines the fields in the 1/0 parameter block. 

Table 9-5. Fields in 1/0 Parameter Block 

Field Description 

MOB This field contains the Media Descriptor Byte for the disk. 
The driver uses the contents of this field to determine the 
disk's format. 

BUFADDR This double-word pointer indicates the area of memory that 
contains the string or sectors If the requested operation Is 
one of the three output functions. If the request Is for 1 

either of the Input functions, BUFADDR is a pointer to the 
destination area. 

COUNT Contains the number of bytes or sectors to be transferred. 

STARTSEC Contains the starting sector to read or write. 



Concurrent DOS 86 Programmer's Guide INPUT or OUTPUT 

The following is a brief description of each of the input and output functions: 

INPUT 

OUTPUT 

Reads a specified number of bytes or sectors from the device. 
The driver must return an error if the device is not ready for 
input. 

Sends a specified number of characters or sectors to disk. The 
driver should return an error if the device is not ready for 
output. 

OUTPUT WNERIFYSends characters or sectors to disk and performs a read after 
write for verification. 

A program using DOS function calls cannot request an input or output operation of 
more than FFFFH bytes. For this reason, a wrap around in the transfer buffer 
(pointed to by BUFADDR in the 1/0 parameter block, above) cannot occur. You can 
ignore bytes that would have wrapped around in the buffer. 



DOS Driver Functions Concurrent DOS 86 Programmer's Guide 

NONDESTRUCTIVE INPUT, NO WAIT 

Command Code: 5 

+------------+ 
D CHA RAC 

+------------+ 
CHARAC Is a single byte returned from the device. If bit 9, the busy bit, in the 
status word of the Request Header is set, then the value in CHARAC is 
meaningless. 

The character returned In CHARAC Is not removed from the Input buffer. This 
allows Concurrent to look ahead one Input character. 

STATUS 

Command Code: 6 INPUT STATUS 
10 OUTPUT STATUS 

There Is no parameter block for either STATUS call. These functions pass their 
Information back In bit 9, the busy bit, In the status word of the Request Header. 
STATUS INPUT sets the busy bit to Indicate that there Is no character In the Input 
buffer. STATUS OUTPUT sets the busy bit to show that the device is not ready for 
output. 

FLUSH 

Command Code: 7 INPUT FLUSH 
11 OUTPUT FLUSH 

1 

These calls have no Input or output parameters. The FLUSH functions tell the 
driver to terminate all pending requests of which It has knowledge. 

The FLUSH functions apply to character devices only. 



Concurrent DOS 86 Programmer's Gulde Installing a DOS Driver 

9.2 Installing a DOS Driver 

Concurrent loads DOS drivers from disk at boot time in response to commands 
contained in the ASCII file, CCONFIG.SYS. Concurrent's interface to DOS drivers is 
contained In the command file named CONFIDD.CMD, (CONFIDD is an acronym for 
Concurrent Field-Installable Device Drivers). 

The syntax for a command in CCONFIG.SYS is: 

FIXED-DEVICE = dvrfil.com 

DEVICE = drvfile.com 

EMM = drvfile.com 

where dvrfil.com is a file containing the appropriate device driver. FIXED-DEVICE 
is a fixed (hard) disk. DEVICE is a removable block device, or any character device 
other than the standard DOS logical names: CON. AUX, PRN, or CLOCK. EMM is an 
expanded memory hardware device that uses the Intel/Lotus or AST specification. 

Note: In the absence of a drive specifier, the device driver file must reside on the 
drive from which Concurrent boots. 

When Concurrent boots, TMPO (Terminal Message Process for screen 0) searches 
for the file CCONFIG.SYS. If found, TMPO then executes the command file 
CONFIDD.CMO, which installs each device driver named in CCONFIG.SYS, and then 
returns control to the system console. 

9.2.1 Memory Requirements 

During installation, each block device (fixed or removable drive) requires some 
memory allocation from Concurrent's memory pool. For some device drivers, the 
memory pool can be exhausted, in which case the installation will fall. Should this 
occur, perform the following steps: 

1. Run the SETUP utility and select F2, the "Reserve System Space• menu. 

2. Increase the amount of memory reserved for device drivers. 

3. Update the CCPM.SYS file on the boot disk, then reboot Concurrent. 

Repeat steps 1-3 until the amount of reserved memory is sufficient for successful 
installation of all the device drivers. 

9.2.2 Drive Assignment 

The number of units returned by a disk driver in its Device Header determines the 
logical names for each drive. Concurrent assigns drive letters starting with the 
first available free drive, assigning only unused drive letters to subsequent units. 
Permanently linked drivers do not change their drive assignments. Concurrent 
initializes DOS drivers in the order in which they are read from CCONFIG.SYS. 

n_1c. 



Drive Assignment Concurrent DOS 86 Programmer's Guide 

For example, on a machine with one permanent floppy disk and one permanent 
hard disk drive with two partitions, Concurrent assigns drive letters as follows: 

A: floppy drive 
C: DOS partition on hard disk 
D: Concurrent partition on hard disk 

In Initializing a DOS driver with four units, Concurrent assigns the units starting 
with the first available drive, drive B, then skips to the next available drives, E, F, 
and G, for the remaining three units. Additional DOS drivers in CONFIG.SYS would 
be assigned drive letters starting with H. 

To determine the number of units in a driver, Concurrent uses the value returned 
by the driver's INIT function, not the value In the UNIT field of the Device Header. 

Concurrent's method of loading DOS drivers allows each driver's drives to be 
completely installed before the next driver Is loaded. Concurrent can then access 
and load the next DOS driver from the previous driver's drives. 

End of Section 9 

9-16 



SECTION 10 

WINDOW MANAGEMENT 

This section describes how an application ,program can perform efficient console 
output while working within Concurrent's windows and su~marizes the use of 
Concurrent's window management primitives for the IBM Personal Computer, 
PC/XT, and PC/AT. Concurrent's window management primitives are implemented 
in the hardware-specific XIOS. Also described in this section are the Concurrent 
window management escape sequences. 

10.1 Virtual Consoles 

In Concurrent, each process must own a virtual console to perform console 
output. The virtual console is actually an area of memory of the same size and 
format as the physical console. The virtual console buffer saves the output of a 
process while another process is using all or part of the physical console. 

Concurrent's XIOS contains sophisticated window management functions that 
ensure the virtual console images are updated and that the physical console 
displays the appropriate portions of each virtual console. Windowed portions of 
each virtual console can all be shown on the physical console at the same time. 

10.2 Virtual Console Output 

Because different portions of a virtual console can be displayed on the physical 
console in almost any location. it is difficult to write directly to the physical 
console and still work in windows. This section describes a mechanism that 
allows a program to update its virtual console buffer and then use the XIOS to 
update the physical console with the appropriate portion of the virtual console. 

This method of handling console output uses some non-standard XIOS entry 
points that allow you to write directly to the virtual console buffer and still work in 
windows. 

Note that although the mechanism is extremely efficient and exploits the full 
capabilities of the IBM PC character map, it is not portable. It requires both a 
complex interface to the XIOS, 1rnd the ability to link with either an assembly 
language routine or the escape sequences described in Section 10.4. 

The method described here is used by the program. SAMPLE.C, on the distribution 
disk. SAMPLE.C links with WWCALL.A86, an assembly language routine also 
contained on the distribution disk. 

There are six general steps you must perform to use this method of handling 
console output: 

10-1 



10.2 Virtual Console Output Concurrent DOS 86 Programmer's Guide 

1. Call the C _GET BOOS function to find your default virtual console number: 

vc number ~BDOS(Ox99,0x0); 

2. Make a special XIOS call to find the address of the virtual console screen 
buffer that corresponds to your default virtual console: 

WM_PK(O,vc_number,VS_VC~SEG,&vc_segment); 

3. Make an XIOS call (10 _SWITCH) to ensure that what is currently on the 
physical console is synchronized with your virtual console screen buffer. The 
contents of the buffer and the physical console might not correspond if 
another program has sent output directly to the physical console or if the 
virtual console window is full screen, on top (switched in), and positioned at 
1, 1 on the physical console: 

WORD ax,bx,cx,dx; 
ax = 7; 
bx = ex = O; 
dx .. vc number; 
IO_CALL(&ax,&bx,&cx,&dx); 

/* (declaration) */ 
I* IO SWITCH (7H) */ 

I* C entry in WWCALL.A86 */ 

4. Make a special XIOS call to gain ownership of an internal mutual exclusion 
queue (semaphore) that protects virtual console buffers from being updated 
by another process: 

WM_MXQ(O); 

5. You can now update your virtual console buffer directly. After updating the 
buffer, immediately make a special XIOS call that frees the internal virtual 
console SE1maphore. No other XIOS window management functions that 
involve your virtual console can occur whlle you have the semaphore that 
protects your virtual console. The following call frees the semaphore: 

WM_MXQ(l); 

6. Use the following series of special XIOS calls to update the physical console 
with the current contents of the virtual console: 

WORD ax,bx,ex,dx; 
WM PK(O,ve number,2, &ex); 
WM-PK(O,vc-number,4, &bx); 
ax-= 20; -
bx = ve number; 
IO_CALL(&ax,&bx,&ex,&dx); 

/* (declaration) */ 
/* top left */ 
/* bottom right */ 
I* WW_NEW_WINDOW (14H) */ 

/* C entry in WWCALL.A86 */ 

WM_PK, IO_CALL, and WM_MXO are contained in WWCALL.A86. WM PK is the 
window manager peek/poke routine (0 • peek, 1 • poke). 10 CALL is the C 
language interlace routine. WM MXO obtains or releases the - internal virtual 
console semaphore (0 • get, 1 ., release). See Section 4, "Console 1/0 Functions," 
in the Svs!EllT.1 Q_!,J)g~ for a description of the 10 _SWITCH (07H) XIOS call. 

10-2 



Concurrent DOS 86 Programmer's Guide 10.2 Virtual Console Output 

Repeat steps 4, 5, and 6 as often as necesssary. You must perform step 3 
everytime you combine a call to a BOOS console output function with a direct 
update of your virtual console buffer. Note that the XIOS does not keep the virtual 
and physical consoles synchronized when a full screen is running in the 
foreground on a monochrome display. This allows those programs that write 
directly to the display to work as long as they run only in full screen. foreground. 

The XIOS calls that allow you to directly control Concurrent's windows are 
described in the next section, "XIOS Window Management Calls." 

10.3 XIOS Window Management Calls 

In addition to handling console output so that it works within windows, you can 
control the placement, size. scrolling, tracking, and ordering (what is on top) of the 
windows. This direct interaction with the window management primitives can be 
very useful, but it is also very XIOS-dependent and. therefore, not portable. 

This section briefly describes the XIOS window management calls and summarizes 
their entry parameters and return values. Also described in this section are two 
important window management data structures: the Virtual Console Structure 
and the Window Data Block. 

Note that the window management escape sequences described in Section 10.4 
provide a subset of the XIOS window management functions. These escape 
sequences do not require applications to link with assembly language routines in 
order to make XIOS window management calls. 

There are nine XIOS window management calls. Their names and functions are 
listed in Table 10-1. 

10-3 



10.3 XIOS Window Management Calls Concurrent DOS 86 Programmer's Guide 

Table 10-1. XIOS Window Functions 

Routine Function 

WW _POINTER This call returns a pointer to either the Virtual Console 
Structure or the Window Data Block. These data structures, 
described in Tables 10-3 and 10-4, respectively, indicate 
the size and position of a window, a window's position in 
relation to other windows, and other useful information. 

WW KEY WW_ KEY supports the WMENU utility. 

WW STATLINE 
This call is used by the window manager to control its 
status display. An application may use this call to write to 
the status line area of the physical console. 

WW IM HERE This call allows an application to switch a new window to 
the foreground. 

WW NEW WINDOW 
With this call, an application can place and size any window 
on the screen. By passing the current window boundaries 
as the new window boundaries, an application can also use 
this call to write the virtual console buffers to the physical 
console. 

WW_CURSOR_VIEW 
This call sets cursor track mode and viewpoint. An 
application can use it to scroll the window over the console 
buffer, displaying a different portion of the 80 x 24 field. 

WW WRAP CLOUMN - -
An application can use this call to set the column for 
automatic wrap-around. This prevents characters from 
being lost outside the window during simple console output 
calls. 

WW _FULL_ WINDOW 
This call toggles the current top window between full 
screen and its previous definition. 

WW_SWITCH_DISPLAY 
In a two-monitor system, this call moves a window from 
one physical console to another. clears both screens, and 
updates all windows. 

The XIOS routines listed in Table 10-1 are non-standard or "backdoor" in the sense 
that they cannot be called using the standard Function 50 XIOS calling convention. 

10-4 



Concurrent DOS 86 Programmer's Guide 10.3 XIOS Window Management Calls 

These routines ere celled through a fer cell to the XIOS entry point using the 
standard XIOS segment register conventions, specifically: DS • SYSDAT and ES "' 
UDA. 

At entry, each routine Is called with a function code In AL, and various parameters 
in BX, CX, and DX. Table 10-2 summarizes the XIOS window management calls in 
terms of register content at entry and exit. For more complete Information about 
the XIOS window management calls, see Section 4 of the Syste_rn. __ Guide. 

Table 10-2. XIOS Window Management Call Summary 

Function 

WW POINTER 

WW KEY 

WW STATLINE 

WW IM HERE 

WW_NEW_WINDOW 

Input Parameters 

AL • lOH 
DL • vc number 
DL • FF for window info 

AL .. 1 lH 
CL • FF for input/status 
CL • FE for status only 
CL < FF wait for Input 

AL• 12H 
CX:DX • .word string 

AL• 13H 
CL • Window Manager state 

0 - not resident 
1 - resident, not active 
2 - resident end active 
3 - switch vc to top 

DL • vc number to switch 
DL • FF - no console switch 

AL • 14H 
DL • vc number 
CH • top left row 
CL • top left column 
BH • bottom left row 
BL • bottom left column 

Returned Values 

AX "' .vc struct 
AX • .window data blk 

AL• char/00 
AL • FF/00 
AL• char 
AH • key type 

00 - regular 
FF - special 

none 

none 

none 

10-5 



10.3 XIOS Window Management Calls Concurrent DOS 86 Programmer's Guide 

Function 

WW_CURSOR_VIEW 

WW WRAP COLUMN - -

WW FULL WINDOW 

Table 10-2. (Cont'd) 

Input Parameters 

AL• 15H 
DL • vc number 
DH • tracking mode 

O - fixed window 
1 - track scrolling cursor 

CH • top left row 
CL • top left column 

AL • 16H 
CL • Wrap column number 
DL • vc number 

AL • 17H 
DL • vc number 

WW SWITCH DISPLAY AL• 18H - -
CL• mode 

0 - monochrome 
1 - color 

DL • vc number 

Returned Values 

none 

none 

none 

none 

Concurrent maintains a virtual console data structure for each virtual console in 
the system. WW _POINTER returns a pointer to the virtual console data structure 
that corresponds with the virtual console number passed as an entry parameter. 
Structure members Include cursor position, window position, tracking mode, and 
console buffer segment. Table 10-3 describes the virtual console data structure, 
which Is returned by WW _POINTER when DL • vc number. 

10-6 



Concurrent DOS 86 Programmer's Guide 10.3 XIOS Window Management Calls 

Field 

vs cursor 

vs_ top _left 

vs_bot_rlght 

vs_old_t_I 

vs old b r 

vs crt size 

vs_wln_size 

vs_ view _point 

vs_rows 

vs_cols 

vs_correct 

vs_vc_seg 

vs_crt_seg 

vs_llst_ptr 

vs_attrlb 

vs_mode 

vs_cur _track 

vs_width 

vs_number 

vs_bit 

Table 10-3. Vlrtual Console Structure Definition 

Offset 

word ptr 00 

word ptr 02 

word ptr 04 

word ptr 06 

word ptr 08 

word ptr 10 

word ptr 12 

word ptr 14 

word ptr 16 

word ptr 18 

word ptr 20 

word ptr 22 

word ptr 24 

word ptr 26 

byte ptr 28 

byte ptr 29 

byte ptr 30 

byte ptr 31 

byte ptr 32 

byte ptr 33 

Description 

cursor row.col position in vc image 

inside top.left corner of vc window 

inside bottom.right corner of window 

saves the previous value of top _left 

saves the previous value of bot_right 

total number of rows, cols in vc image 

used by WMENU window manager to 
save the size of the user's window; 
this is not updated by the XIOS 

top_left image corner to top_left win 

number of rows in current vc window 

number of columns in current window 

window tracking correction factor 

segment address of vc console Image 

segment address of crt memory 

points to the start of row update list 

current vc char attribute 

cursor on/off and wrap on/off 

window fixed or tracking scroll 

column to wrap around 

copy of the vc number 

vc num • bit pos 

10-7 



10.3 XIOS Window Management Calls Concurrent DOS 86 Programmer's Guide 

Table 10-3. (Cont'd) 

Field Offset Description 

vs save cursor word ptr 34 ESC code save/restore cursor 

vs vector word ptr 36 conout state machine vector 

vs xlat word ptr 38 mono/color xlat table 

vs_qpb word ptr 40 reserved 

vs_ true_ view word ptr 42 corrected view point 

vs_cur_type word ptr 44 mono or color 

vs_ mxsemaphore byte ptr 52 internal XIOS semaphore 

When DL • FFH on entry to WW _POINTER, the call returns a pointer to the Window 
Data Block. This structure is described In Table 10-4. 

Fie Id 

ww_lm_here 

nvc 

priority 

Table 10-4. Window Data Block Definition 

Offset 

byte ptr 0 

byte ptr 1 

byte ptr 2 

Description 

manager process state variable 
O • manager not resident 
1 • manager resident but not active 
2 • manager resident and active 

number of virtual consoles 

a list of vc numbers (nvc bytes long) 
from the back window to the front window 

Windows are specified by their inside corners. Rows are from 0 to 23, columns 
from 0 to 79. If the new size is the same as the the old size, then the physical 
Image is updated from the virtual screen buffer. This ensures that changes to the 
virtual screen butter are correctly displayed on the physical console. 

10-8 



Concurrent DOS 86 Programmer's Guide 10.4 Escape Sequences 

10.4 Escape Sequences 

Window management escape sequences provide a limited subset of the XIOS 
window management functionality. Use the escape sequences when you cannot or 
do not want to link your application with assembly language routines that make 
backdoor XIOS calls. These escape sequences all have the same basic format. 

In general, they are a list of the bytes to be stored In AL, AH, BL, BH. CL, CH, DL, 
DH before making an XIOS call. This escape sequence mechanism supports the 
XIOS calls listed In Table 10-5. 

Table 10-5. XIOS Calls for Escape Sequences 

XIOS Call 

lo_switch 

lo statllne 

ww statline 

ww_im_here 

ww _new_ window 

ww _cursor_ view 

ww_wrap_column 

ww _fuli _window 

ww _switch_ dlsplay 

Hex Code Function 

7 

8 

12 

13 

14 

15 

16 

17 

18 

Switches screen to top but does not give it 
the keyboard--lf screen is already on top, 
updates the vc buffer with what is 
currently on the physical console 

Displays 80 character status line 

New status line call with attributes 

Sets the window manager process state 
and changes which console Is on top 

Sets a new console window 

Sets cursor track mode and viewpoint 

Sets the column for auto wrap-around 

Toggles indicated vc from full screen 
to not full screen 

Sets the console for the vc 

10-9 



10.4 Escape Sequences Concurrent DOS 86 Programmer's Guide 

The escape sequences use a parameter list of registers to access the XIOS calls 
described in Table 10-5. There are always ten bytes in the escape sequence. The 
first two bytes contain the terminal-oriented escape code. The last eight bytes 
must contain the values the registers are to contain before an XIOS call. The 
exact escape sequence format is as follows: 

ESC al ah bl bh cl ch dl dh 

Note: If you use these escape sequences in an application, you sacrifice 
portability for the ability to use windows. 

End of Section 10 

10-10 



Appendix A 

ECHO.A86 - SAMPLE RSP 

This appendix contains the code listing for the Resident System Process, ECHO. 

Listing A-1. ECHO.AS& 

ECHO - Resident System Process 
Print Command tail to console 

DEFINITIONS 

ccpmint equ 224 ;ccpm entry interrupt 
c writestr equ 9 ;print string 
c-detach equ 147 ;detach console 
c set equ 148 ;set default console 
q:=make equ 134 ;create queue 
q_open equ 135 ;open queue 
q_read equ 137 ;read queue 
q_write equ 139 ;write queue 
p_priori ty equ 145 ; set priority 
pdlen equ 48 ;length of PD 
p_cns equ byte ptr 020h ;default ens 
p_disk equ byte ptr 012h ;default disk 
p_user equ byte ptr 013h ;default user 
p_list equ byte ptr 024h ;default list 
ps_run equ 0 ;PD run status 
pf_keep equ 2 ;PD noki 11 flag 
rsp_top equ 0 ; rsp offset 
rsp_pd equ OlOh ;PD offset 
rsp_uda equ 040h ;UDA offset 
rsp_bottom equ 140h ;end rsp header 
qf_rsp equ OBh ;queue RSP flag 

CODE SEGMENT 

CSEG 
org 0 

A-1 



A.O 

ccpm: 

main: 

loop: 

A-2 

Concurrent DOS 86 Programmer's Guide 

Listing A-1. (Cont'd) 

int ccprnint 
ret 

;create ECHO queue 
rnov cl,q make rnov dx,offset qd 
call ccpiii 

;open ECHO queue 
rnov cl,q open ! mov dx,offset qpb 
call ccpiii 

;set priority to normal 
rnov cl,p__priority ! mov dx,200 
call ccpm 

;ES points to SYSDAT 
mov es,sdatseg 

;forever 
;read cmdtail from queue 

mov cl,q_read ! mov dx,offset qpb 
call ccpm 

;set default values from PD 
mov bx,pdadr 
mov dl,es:p disk[bx] ;p disk•0-15 
inc dl ! mov disk,dl ;make diskal-16 
mov dl,es:p user[bx] 
mov user,dl-
mov dl,es:p list[bx] 
mov list ,dl-
mov dl,es:p cns[bx] 
mov conso1e-;d1 

;set default console 
mov dl,console 
mov cl,C_SET I call ccpm 

;scan cmdtail and look for '$' or O. 
;when found, replace w/ cr,lf,'$' 

lea bx,cmdtail I mov al,'$' I mov ah,O 
mov dx,bx ! add dx,131 



Concurrent DOS 86 Programmer's Guide 

Listing A-1. (Cont'd) 

nextchar: 

endcmd: 

sdatseg 

pd 

cmp bx,dx I ja endcmd 
cmp [bx],al ! je endcmd 
cmp [bx],ah ! je endcmd 

inc bx ! jmps nextchar 

mov byte ptr [bx],13 
mov byte ptr l[bx],10 
mov byte ptr 2[bx],'$' 

;write command tail 

lea dx,cmdtail ! mov cl,C_WRITESTR 
call ccpm 

;detach console 
mov dl,console 
mov cl,c detach ! call ccpm 

;done, get next command 
jmps loop 

DATA SEGMENT 

DSEG 
org rsp_top 

dw 0,0,0 
dw 0,0,0 
dw 0,0 

org rsp_pd 

dw 0,0 
db ps_run 
db 190 
dw pf _keep 
db 'ECHO 
dw offset uda/lOh 
db 0,0 
db 0,0 

link,thread 
status 
priority 
flags 
name 
uda seg 
disk, user 
load dsk,usr 

dw 0 mem 
dw 0,0 dvract,wait 

A.O 

A-3 



A.O Concurrent DOS 86 Programmer's Gulde 

Listing A-1. (Cont'd) 

db 0,0 
dw 0 
db 0 console 
db 0,0,0 
db 0 list 
db 0,0,0 
dw 0,0,0,0 

org rsp_uda 

uda dw 0,offset dma,0,0 ;O 
dw 0,0,0,0 
dw 0,0,0,0 ;lOh 
dw 0,0,0,0 
dw 0,0,0,0 ;20h 
dw 0,0,0,0 
dw 0,0,offset stack_tos,O ;30h 
dw 0,0,0,0 
dw 0,0,0,0 ;40h 
dw 0,0,0,0 
dw 0,0,0,0 ;SOh 
dw 0,0,0,0 
dw 0,0,0,0 ;60h 

org rsp_bottom 

qbuf rb 131 ;Queue buffer 

qd dw 0 ;link 
db 0,0 ;net,org 
dw qf_rsp ;flags 
db 'ECHO ;name 
dw 131 ;msglen 
dw 1 ;nmsgs 
dw 0,0 ;dq,nq 
dw 0,0 ;msgcnt,msgout 
dw off set qbuf ;buffer addr. 

dma rb 128 

stack dw Occcch,Occcch,Occcch 
dw Occcch,Occcch,Occcch 
dw Occcch,Occcch,Occcch 
dw Occcch,Occcch,Occcch 
dw Occcch,Occcch,Occcch 

A-4 



Concurrent DOS 86 Programmer's Guide A.O 

Listing A-1. (Cont'd) 

stack tos dw offset main start offset 
dw 0 start seg 
dw 0 init flags 

pdadr rw 1 QPB Buffer 
cmdtail rb 129 starts here 

db 13,10,'$' 

qpb db 0,0 ;must be zero 
dw 0 ;queue ID 
dw 1 ;nmsgs 
dw offset pdadr ; buff er addr. 
db 'ECHO ;name to open 

console db 0 
;disk db 0 
;user db 0 
;list db 0 

end 

End of Appendix A 

A-5 





Appendix B 

8087 Exception Handling 

This appendix includes an example of an 8087 interrupt handling routine to 
demonstrate the requirements for using the 8087 processor. Refer to Intel's IAPX 
8~188 __ User'.Llll!!!!!1,1aJ for a description of 8087 exception handling in the section on 
"8087 Numeric Data Processor". 

In order to guarantee the data integrity for each 8087 process in the multitasking 
environment, any user-defined exception handler must adhere to a minimum 
sequence of steps within the exception handler: 

1. Save the 8086 environment of the 8086-running process. 

2. Save the environment of the 8087-running process. The OWNER_8087 field in 
SYSDAT will contain the offset of the 8087-running process (see description 
of SYSDAT in Section 6). 

3. Clear the 8087 interrupt request bit in the status word. 

4. Disable the 8087 interrupts. 

5. Clear the PIC interrupt (this instruction is hardware-dependent). 

6. At this point, you might want to modify the 8087 environment image saved in 
step 2 above. 

7. Before enabling the 8086 interrupts, restore the 8087 environment with its 
status word's interrupt request bit cleared. If the environment is not restored 
before 8086 interrupts are enabled, and an interrupt occurs {like a tick), a 
different 8087 process can gain control of the 8087 and swap in its 8087 
context. On a second interrupt. or on an IRET instruction, the 8086-running 
process that happened to be executing the exception handler code is brought 
back Into 8086 context and writes over the new 8087 context. 

The user program, which uses its own exception handler, must replace the 
system's Interrupt vector with its own. Once this is done, Concurrent swaps this 
vector into memory every time the program comes back into 8087 context. The 
address of the interrupt vector is in the SYSDAT table at offset AOH. 

The default exception handler aborts those 8087 programs that have enabled 8087 
interrupts and that generate a severe error (such as stack underrun, divide by zero, 
and so forth). Any other errors are ignored by the default exception handler. 

B-1 



B.O Concurrent DOS 86 Programmer's Gulde 

Listing B-1. 8087 Exception Handling 

;m••••=i 
ndpint: ; 8087 interrupt routine 
;··=··· 

This exception handler is non-specific and 
is meant as an example 
default. It is assumed that if the 8087 
programmer has enabled 8087 
interrupts and has specified exception flags 
in the control word, then 
the programmer has also included an 
exception handler to take 
specific actions within the program 
before continuing in the 8087. 
This handler will ignore non-severe 
errors (overflow,etc) and will 
terminate processes with severe errors 
(divide by zero,stack violation). 

push ds 
mov ds,sysdat 
mov ndp ssreg,ss 
mov ndp-spreg,sp 
mov ss,sysdat 
mov sp,offset ndp tos 
push axl push bx -
push ex! push dx 
push di! push si 
push bp! push es 
mov es,sysdat 
FNSTENV env 8087 
FWAIT -
FNCLEX 
xor ax,ax 
FNDISI 
mov al,020h 
out 060h,al 
mov al,020h 
out 058h,al 
call in_B087 

B-2 

SAVE CURRENT DATA SEGMENT 
GET XIOS DATA SEGMENT 
DO STACK SWITCH FOR 8086 ENV 
SAVE 

SAVE THE 8086 REGISTERS 

NOW SAVE THE 8087 ENV 
SAVE 8087 PROCESS INFO 

CLEAR ITS INT REQUEST BIT 
WAIT 
DISABLE ITS INTERRUPTS 
SEND 2 INTERRUPT ACKNOWLEDGES, 
1 FOR MASTER PIC, l FOR SLAVE 

IN 8087 CHECKS THE 8087 ERROR ; 
CONDITION. IF ERROR IS SEVERE, 
IT WILL ABORT, ELSE IT WILL 
RETURN WITH NO CHANGES. 



Concurrent DOS 86 Programmer's Guide B.O 

Listing B-1. (Cont'd) 

mov bx,offset env 8087 
mov byte ptr 2[bxT,o 
pop es! pop bp 
pop si! pop di 
pop dx! pop ex 
pop bx! pop ax 
mov ss,ndp ssreg 
mov sp,ndp-spreg 
FLDENV env-8087 
FWAIT 
pop ds 
iret 

in 8087: 
:-------

entry: OS = SYSDAT 

CLEAR STATUS WORD FOR ENV RESTORE 

RESTORE 8086 ENVIRONMENT 

SWITCH BACK TO PREVIOUS STACK 

RESTORE 8087 ENV WITH GOOD STATUS 

RESTORE PREVIOUS DATA SEGMENT 

Only user-specified error conditions generate 
interrupts from the 8087. 

mov bx,owner 8087 
test bx,bx -
jz end 87 
mov si~ offset env 8087 
mov ax, statusw[siT 

test ax,03ah 
jnz end 87 
or p_flag[bx],080h 

end_87: 
ret 

GET THE PROCESS DESCRIPTOR 
CHECK IF OWNER HAS ALREADY 
TERMINATED 
IF SEVERE ERROR,TERMINATE 

IF NOT SEVERE,RETURN & CONTINUE 
3A = UNDER/OVERFLOW,PRECISION, 

AND DENORMALIZED OPERAND 
NOT 3A = ZERO DIVIDE OR INVALID 
OPERATION (STACK ERROR) 

End of Appendix B 

B-3 





Index 

8080 Memory Model, 3-4. 3-5, 
3-7, 4-1, 4-2 

8080 Memory Model RSP, 5-2, 
5-3 

8080 Model transient program, 
I 1-13 

8087 coprocessor, 3-1, 3-2, 
6-150, 6-180, 6-146 

8087 exception handling, 3-2, 
6-180 

A 

Abort Parameter Block (APB) 
(Figure 6-10), 6-137 

Absolute memory address, 
6-132 

Access stamp (in SFCB), 2-22, 
6-8~ 6-sa 6-101. 6-105 

Accessing files from 
concurrently running 
processes, 2-30 

Address of Flag Table, 6-178 
Address of System Data 

Segment, 6-175 
Address of version string, 6-179 
Allocating memory, 6-134, 

6-136 
Allocation vector for a disk 

drive, 6-53 
Ambiguous file reference, 2-5, 

6-74, 6-89, 6-97, 6-100 
Archive Attribute - T3', 2-14, 

6-70 
Archive file, 2-14 
Assign Control Block (ACB) 

(Figure 6-1 ), 6-30 
Assigning a console, 6-30 
Attaching a device, 6-19, 6-32 
Attribute bit definition, 2-13 
Auxiliary Control Block (ACB). 

6-180 
Auxiliary device, 6-19, 6-20, 

6-21, 6-22, 6-23, 6-24, 
6-25, 6-26, 6-27, 6-28, 
6-29 

AUXIN - auxiliary device, 6-23, 
6-24, 6-26 

AUXOUT - auxiliary device. 
6-27 

B 

Background process, 3-7. 6-147 
Backup file, 2-14 
Base Page (in initial Data 

Segment), 3-1, 6-139 
Base Page fields (Table 3-3), 

3-5 
Base Page initialization, 3-4, 

4-2, 4-3, 4-4 
Base Page values (Figure 3-3), 

3-5 
Base Page values, 6-141 
Basic Disk Operating System 

(BOOS), 1-11, 2-1 
BOOS Error mode (default), 6-79 
BOOS Error Mode, 2-37, 2-42, 

2-44, 6-52, 6-58, 6-61, 
6-65, 6-67, 6-68, 6-69, 
6-71, 6-79, 6-84, 6-94, 
6-115, 6-116 

BOOS extended errors {Table 
2-14), 2-38 

BOOS logical errors {Table 
2-15), 2-40 

BOOS Multlsector Count, 2-30, 
2-31, 2-32, 2-41, 6-76, 
6-80, 6-85, 6-93, 6-94, 
6-95, 6-96, 6-108, 6-111, 
6-112, 6-113, 6-115 

BOOS physical errors (Table 
2-13), 2-37 

BOOS physical/extended errors 
(Table 2-16), 2-42 

BOOS version number, 6-171 
BIOS (in CP/M-86), 1-13 
BIOS Descriptor Format (Figure 

6-17), 6-172 
Blocking/deblocking records, 

2-3~ 6-5a 6-8~ 2-36 
Boot loader tracks, 2-6 

lndex-1 



Byte count for a file, 2-33 

c 

C(onsotes) option - SYSTAT 
utlllty, 1-16 

Call Parameter Block (CPB) 
(Figure 6-14), 6-156 

Carriage return character 
(CTRL-M), 6-42 

Carriage return/line feed at 
end-of-file, 2-8 

CCONFIG.SYS configuration file, 
9-15 

CCPM.SYS - Concurrent DOS 86 
system file, 5-1, 5-9 

CCPM.SYS system file, 6-176 
CCPMSEG, 6-179 
Chain to another program, 

6-139 
Character Control Block (CHCB), 

1-11. 6-24, 6-29, 6-47, 
6-125, 6-145, 6-178 

Character 1/0 (CIO) module, 
1-11 

CHSET utility, 3-2, 3-7 
CLOCK process, 1-2, 1-7 
CMD file header, 3-2. 4-1, 5-2, 

5-9 
CMD file header format (Figure 

3-1), 3-2 
CMD filetype, 1-13, 2-27, 3-1, 

5-1, 6-139, 6-141, 6-153 
Command Line Buffer format 

(Figure 6-11), 6-140 
Command Line Interpreter (CLI), 

1-13, 3-1 
Compact Model transient 

program, 1-13, 3-4, 4-1, 
4-4 

Compatibility Attribute 
Fl'. 6-70 
F2'. 2-27, 6-70 
F3'. 2-29, 6-70 
F4'. 2-29, 6-70 

Compatibility attribute 
definitions (Table 2-12), 
2-27 

Concurrent file access, 2-30 

lndex-2 

Conditional disk drive reset, 
2-34. 2-36 

Conditional queue operations, 
1-6 

Conditionally attaching a device, 
6-20. 6-33 

CONFIDD.CMD command flle, 
9-15 

CONOUT: (logical console), 6-47 
Console Buffer Format (Figure 

6-9). 6-41 
Console Control Block (CCB). 

1-11 
Console Mode, 6-47 
Console Mode definition. 6-37 
Console number. 6-44 
Console output byte bucket, 

6-37 
Console status, 6-38 
Control Word (In UDA), 6-150 
CP/M-86 compatibility, 6-172 
CP/M-86 memory allocation 

scheme, 6-126 
Create stamp (in directory 

label), 2-17, 6-84 
Create stamp (In SFCB), 2-22, 

8-99, 6-101, 6-105 
CSEG directive (RASM-86), 4-3 
CTRL-\ 8-42 
CTRL-A. 6-42 
CTRL-C, 3-1, 5-7, 6-37, 6-38, 

6-40, 6-45, 6-147 
CTRL-0, 6-42 
CTRL-E, 6-42 
CTRL-F, 6-42 
CTRL-G, 6-42 
CTRL-H, 6-42 
CTRL-1, 6-40, 6-47, 6-90 
CTRL-J, 6-42, 6-90 
CTRL-K. 6-42 
CTRL-M, 6-42, 6-90 
CTRL-0 (with virtual console), 

1-13 
CTRL-0, 6-38 
CTRL-P (with virtual console), 

1-13 
CTRL-P, 6-37, 6-38 
CTRL-Q (with virtual console), 

1-13 
CTRL-0. 6-37, 6-42 
CTRL-R, 6-43 



CTRL-S, 6-37, 6-38, 6-42 
CTRL-T, 6-42 
CTRL-U, 6-42 
CTRL -V, 6-42 
CTRL-W, 6-42 
CTRL-X, 6-42 
CTRL-Y, 6-42 
CTRL-Z at end-of-file. 2-8 
Current extent number {In FCB), 

2-9 
Current output delimiter. 6-34 
Current record number (in FCB), 

2-9, 2-33, 3-7, 6-93, 
6-95, 6-111 

Current user number, 2-16, 
6-146 

D 

Data area of logical drive, 2-1 
Data block size, 2-6 
Data space allocation, 2-1 
Date and time stamping for 

files, 2-17, 2-21, 6-66, 
6-101, 6-105 

DATE utility, 2-22 
Day file option. 6-178 
Default BOOS Error Mode, 2-37, 

6-79 
Default console, 6-32, 6-33. 

6-35, 6-36, 6-38, 6-40, 
6-44, 6-45, 6-46, 6-137, 
6-146 

Default disk, 6-54, 6-146 
Default OMA buffer, 3-7 
Default drive, 3-5, 6-60, 6-65 
Default file open mode (Locked), 

2-22 
Default list device, 1-13, 6-119, 

6-120, 6-121, 6-122, 
6-123, 6-124, 6-146 

Default output delimiter. 6-34 
Default password, 2-20, 6-91, 

6-106 
Default system disk, 6-178 
Default temporary disk, 6-178 
Default user number, 6-110 
Definition of 

attribute bit, 2-13 
BOOS Error Mode, 2-37 

BOOS Multisector Count, 2-30 
Console Mode, 6-37 
compatibilty attribute, 2-27 
directory code, 2-42 
directory label, 2-17 
error flag, 2-42 
exclusive file lock, 2-31 
Extended File Control Block 

(XFCB), 2-18 
extended file locking, 2-26 
file attribute. 2-13 
File Control Block (FCB), 2-8 
File ID, 2-9 
file open mode, 2-22 
interface attribute, 2-15 
Lock List, 2-24 
logical file lock, 2-31 
Login Vector. 6-62 
mutual exclusion queue, 1-6 
priority dispatching, 1-5 
process dispatching, 1-4 
Random Record Number, 2-7 
Ready List. 1-4 
ready process, 1-4 
record blocking/deblocking, 

2-33 
running process. 1-4 
shared file lock, 2-31 
source file, 2-8 
sparse file. 2-7 
Special File Control Block 

(SFCB), 2-21 
suspended process, 1-4 
Terminal Message Process, 

1-13 
transient program, 1-13 
virtual file size, 6-102 

Delay List, 1-4, 1-5. 1-7, 6-143 
Delay List Root, 6-179 
Delete (password protection 

mode), 2-19, 6-83. 6-105 
Detaching a console, 6-35 
Detaching a device, 6-21 
Determining disk media type, 

2-13 
Device polling, 6-49, 6-143 
DIR utility, 2-1. 2-14 
Direct character 1/0, 3-7 
Direct Memory Address (OMA), 

3-1. 3-5, 3-7, 5-6, 5-7, 
6-54, 6-66, 6-69, 6-70, 

lndex-3 



6-76, 6-77, 6-78, 6-83, 
6-84, 6-91, 6-93, 6-95, 
6-97, 6-99, 6-101, 6-106, 
6-108, 6-111, 6-113, 
6-116, 6-139, 6-148, 
6-153, 7-30, 7-56 

Direct video mapping, 3-7 
Directory area of loglcal drive. 

2-1 
Directory area on a disk, 2-7 
Directory code, 6-1O1 
Directory code definition, 2-42 
Directory entry, 6-83 
Directory hashing, 6-176 
Directory label, 6-99, 6-100, 

6-111 
Directory label data byte, 2-17, 

2-18, 6-61, 6-66 
Directory label definition, 2-17 
Directory Label Format (Figure 

2-4), 2-17 
Directory label time stamp, 2-22 
Directory record with SFCB 

(Figure 2-6), 2-21 
Directory space allocation, 2-1 
Diak data buffers, 6-176 
Diak drive capacity (Table 2-4), 

2-6 
Disk drive organization. 2-6 
Disk drive reset, 2-34, 6-57, 

6-63, 6-68, 6-147 
Disk Free Space Field format 

(Figure 6-5), 6-69 
Disk media change, 2-26, 2-34, 

2-36, 6-57, 6-64, 9-10 
Disk Parameter Block (DPB) 

format (Figure 6-4), 6-55 
Disk Parameter Block (DPB), 

1-12. 2-34, 6-55 
Dispatcher (code In RTM). 1-4 
Dispatcher entry point, 6-176 
Dispatcher Ready list, 6-179 
DOS absolute disk read/write 

error codes (Table 8-5), 
8-6 

DOS ASCllZ string, 7-4, 7-59, 
7-60, 7-66, 7-69, 7-70, 
7-71. 7-74, 7-75, 7-76, 
7-86, 7-87 

lndex-4 

DOS BIOS Parameter Block 
(BPB) format (Figure 9-3), 
9-7 

DOS console buffer format 
(Figure 7-1), 7-22 

DOS Country Dependent Data 
Return Block (Figure 7-7), 
7-82 

DOS critical error codes (Table 
8-4), 8-3 

DOS critical error exit address, 
7-83, 7-84. 8-3 

DOS CTRL-Break, 7-18, 7-19, 
7-20, 7-21, 7-23, 7-83, 
7-84, 7-87, 7-92 

DOS CTRL-Break address, 8-2 
DOS CTRL-PrtSc, 7-18, 7-19 
DOS default auxiliary device, 

7-15, 7-16 
DOS default console, 7-21 
DOS default disk drive, 7-43, 

7-53 
DOS default Input device, 7-13, 

7-18, 7-19, 7-20. 7-22, 
7-23, 7-24 

DOS default output device, 7-14 
DOS default printer device, 7-17 
DOS device driver error codes, 

9-6 
DOS device driver format, 9-1 
DOS device driver function 

Build BPB, 9-11 
FLUSH, 9-14 
INIT, 9-7, 9-16 
MEDIA CHECK. 9-10 
NONDESTRUCTIVE INPUT, 9-14 
STATUS, 9-14 

DOS device driver header 
(Figure 9-1), 9-1 

DOS device driver installation, 
9-15 

DOS device driver Request 
Header format (Figure 
9-2), 9-4 

DOS directory-related 
operations, 2-11 

DOS disk drive assignment, 
9-15 

DOS Disk Transfer Area (OTA), 
7-30. 7-35, 7-40, 7-56, 
7-69, 7-70 



DOS Extended File Control Block 
format (Figure 7-3), 7-28 

DOS File Allocation Table (FAT), 
7-45 

DOS file and device handle, 7-5 
DOS File Attribute Byte (Table 

7-8). 7-29 
DOS file attribute bits (Table 

7-9). 7-35 
DOS file date format (Figure 

7-5). 7-72 
DOS file time format (Figure 

7-4). 7-72 
DOS filename separators, 7-54 
DOS filename terminators. 7-54 
DOS 1/0 Parameter Block format 

(Figure 9-4), 9-12 
DOS INT 20H (Program 

Terminate), 8-2 
DOS INT 21H {Invoke a DOS 

Cail), 8-2 
DOS INT 22H (Terminate 

Address). 7-84, 7-87, 8-2 
DOS INT 23H (CTRL-Break 

Address), 7-13. 7-20, 
7-21. 7-23, 7-84, 7-87. 
8-2. 8-3 

DOS INT 24H (Critical Error Exit 
Address). 7-84, 7-87, 8-2. 
8-3 

DOS INT 24H disk error 
Indicators {Table 8-3). 
8-3 

DOS INT 25H {Absolute Disk 
Read), 8-3. 8-5 

DOS INT 26H {Absolute Disk 
Write), 8-3, 8-6 

DOS interrupts supported by 
Concurrent (Table 8-2), 
8-1 

DOS Load and Execute 
Parameter Block format 
(Figure 7-7), 7-87 

DOS Load Overlay Parameter 
Block format (Figure 7-9). 
7-89 

DOS media file. 2-11, 6-99 
DOS monitor call Interrupts 

{Table 8-1), 8-1 
DOS Program Segment Prefix 

(PSP) (Figura 7-10), 7-89 

DOS Program Segment Prefix 
(PSP). 7-28, 7-30, 7-83, 
7-84. 7-87 

DOS program terminate, 8-2 
DOS read/write pointer, 7-65, 

7-67, 7-68 
DOS standard device handles 

(Table 7-3), 7-5 
DOS standard File Control Block 

format (Figure 7-2). 7-26 
DOS system call 

OOH (Program Terminate). 
7-83. 8-2 

OlH (Keyboard Input), 7-13 
02H (Console Output). 7-14 
03AH (Remove a 

Subdirectory), 7-75 
03H (Auxiliary Input), 7-15 
04H (Auxiliary Output), 7-16 
05H (Printer Output), 7-17 
06H (Direct Console 1/0). 7-18 
07H (Direct Console 1/0). 7-19 
08H (DOS Console Input 

Without Echo). 7-20 
09H (Print String), 7-21, 8-2 
OAH (Buffered Console Input), 

8-2. 7-22 
OBH (Check Console Status). 

7-23 
OCH {Character Input with 

Buffer Flush), 7-24 
OOH (Disk Reset), 7-31 
OEH (Select Disk), 7-32 
OFH (Open Fiie). 7-28, 7-33 
lOH (Close File), 7-34, 8-2 
11 H (Search for First Entry), 

7-30, 7-35. 7-69 
12H (Search for Next Entry), 

7-37 
13H (Delete File), 7-38 
14H (Sequential Read). 7-39 
15H (Sequential Write), 7-40 
16H (Create File), 7-41 
17H (Rename File). 7-42 
19H (Current Disk), 7-43 
lAH (Set Disk Transfer 

Address). 7-30 
1AH (Set OTA), 7-44 
lBH (Allocation Table 

Address). 7-45, 7-57 

lndex-5 



lCH (Alloc. Table for Specific 
Drive), 7-46 

21H (Random Read), 7-47 
22H (Random Write), 7-48 
23H (Fiie Size). 7-49 
24H (Set Random Record 

Field), 7-50 
25H (Set Vector). 7-78. 7-80 
26H (Create New Program 

Segment), 7-84 
27H (Random Block Read), 

7-51 
28H (Random Block Write), 

7-52 
29H (Parse Filename). 7-53 
2AH (Get Date), 7-96 
2BH (Set Date). 7-97 
2CH (Get Time), 7-98 
2DH (Set Time). 7-99 
2EH (Set/Reset Verify Switch), 

7-55 
2FH (Get Disk Transfer 

Address). 7-30 
2FH (Get OTA). 7-56 
30H (Get DOS Version 

Number), 7-79 
31H (Keep Process), 7-85, 

7-92, 8-2 
33H (CTRL-Break Check). 7-25 
35H (Get Vector). 7-78, 7-80 
36H (Get Disk Free Space). 

7-57 
38H (Get Country Dependent 

Information), 7-81 
39H (Create a Subdirectory). 

7-74 
3BH (Change Current 

Directory), 7-76 
3CH (Create a File), 7-59 
3DH (Open a File Handle). 

7-60, 7-29 
3EH (Close a File Handle), 

7-61, 8-2 
3FH (Read from a File or 

Device), 7-62, 7-67, 7-68 
40H (Write to a File or Device). 

7-63, 7-67, 7-68 
41 H (Erase a File from 

Directory - UNLINK), 7-64 
42H (Move Fiie Read/Write 

Pointer), 7-65, 7-67, 7-68 

lndex-6 

43H (Change File Mode). 7-30, 
7-59. 7-60, 7-64, 7-66 

45H (Duplicate a File Handle). 
7-67 

46H (Force a Duplicate of a 
Handle). 7-68 

47H (Get Current Directory). 
7-77 

48H (Allocate Memory), 7-86, 
7-93 

49H (Free Allocated Memory). 
7-94 

4AH (Modify Allocated Memory 
Blocks). 7-86, 7-95 

4BH (Execute a Program). 
7-84, 7-86, 7-91, 8-2 

4CH (Terminate a Process), 
7-92 

4CH (Terminate a ProcessO. 
7-91 

4DH (Get Subprocess Return 
Code). 7-85, 7-91, 7-92 

4EH (Find First Matching File), 
7-69, 7-70 

4FH (Find Next Matching File), 
7-70 

54H (Get Verify State). 7-55, 
7-58 

56H (Rename a File). 7-71 
57H (Get/Set Time and Date 

Stamps). 7-72 
DOS system call categories 

(Table 7-1), 7-1 
DOS system call error codes 

(Table 7-4), 7-6 
DOS system call summary 

(Table 7-5), 7-6 
Drive specifier (In a flle 

specification), 2-4 
Drive Vector structure (Figure 

6-3). 6-52 
DSEG directive (RASM-86), 4-3 

E 

E(xlt) option - SYSTAT utility, 
1-16 

ECHO RSP, 5-1. 5-3, 5-7, 5-9 
End-of-flle, 6-96 



Error codes returned by system 
calls, 1-14 

Error flag definition, 2-42 
Escape sequence format for 

XIOS window calls. 10-9 
Exclusive file lock, 2-31, 6-80, 

6-94, 6-96 
Expanded Memory Management 

(EMM), 1-7, 6-128 
Extended File Control Block 

(XFCB), 6-83, 6-84, 6-116 
Extended file lock, 6-97, 6-106 
Extended file locking, 2-26, 

6-70, 6-72 
Extended 1/0 System entry 

point, 6-176 
Extended 1/0 System (XIOS), 

1-13, 10-1 

F 

F PASSWD system call, 6-70 
Far Jump Instruction, 6-176 
Far Return instruction, 3-1, 4-2 
FCB checksum. 2-9, 2-1 O. 2-16, 

2-24, 2-25, 2-26, 2-29, 
2-34, 2-36, 2-38, 6-57, 
6-59, 6-72. 6-73, 6-84, 
6-87, 6-94, 6-96, 6-97, 
6-106, 6-114, 6-112 

FCB Disk Map values for DOS 
media files (Table 2-6), 
2-12 

FCB lnltlailzation, 2-10, 3-7, 
6-84, 6-89 

FCB lnltlallzatlon for DOS media 
files, 2-11 

FCB time/date fields for DOS 
media files (Figure 2-3), 
2-13 

File attribute definitions (Table 
2-7), 2-14 

File backup procedure, 2-14 
File byte count. 2-33, 6-70, 

6-86 
File Control Block (FCB) 

definition, 2-8 
File Control Block (FCB) format 

(Figure 2-1), 2-8 
File header (CMD). 3-2 

File ID, 2-23, 2-31. 6-80, 6-84, 
6-87. 6-108 

File ID definition, 2-9 
File logging information, 6-178 
File open mode definition, 2-22 
File password, 2-17, 2-19, 2-38, 

3-5 
File security, 2-24 
File size (maximum), 2-6 
File specification, 2-4 
Filename (In a file specification), 

2-4 
Filename delimiters (Table 2-2), 

2-4 
Filename delimiters, 6-89 
Filetype (In a file specification), 

2-4 
Filetype conventions (Table 

2-3), 2-5 
Flag 1 - tick flag, 1-7 
Flag 2 - one second flag, 1-7 
Flag Table address, 6-178 
Flags (initial), 6-148 
Floating drive, 2-12 
Flushing buffers, 2-34, 6-58 
Foreground process, 3-7, 6-147 
Free memory partitions, 6-178 
Free space on a disk drive, 

6-53, 6-69 
FSET utility, 2-20, 2-27, 2-29 

G 

GENCCPM utility, 2-25, 2-27, 
2-32, 5-1, 5-2, 5-3. 5-9, 
6-176 

Group Descriptor types (Table 
3-1), 3-3 

Group Descriptor fields (Table 
3-2). 3-4 

Group Descriptor format (Figure 
3-2), 3-3 

H 

H(elp) option - SYSTAT utility, 
1-15 

Hardware Initialization, 6-176 

lndex-7 



Inheriting default password 
from TMP, 2-20 

Initial flags, 6-148 
Initial stack for a Resident 

System Process, 5-8 
Initial stack for a transient 

process, 3-1. 4-2, 4-3, 
4-4, 6-141, 6-148 

Initial value of 
Instruction Pointer, 4-1, 4-2 
segment registers, 4-1, 4-3. 

5-1 
stack pointer. 4-1 

lnltlalizatlon of hardware, 6-176 
Initializing registers for system 

calls, 1-13 
Instruction pointer, 6-148 
INT 224 (software Interrupt), 

1-13, 6-150 
Interface Attribute - F5', 2-26, 

2-31. 2-32, 6-70, 6-72. 
6-74, 6-80, 6-83, 6-86, 
6-97, 6-106, 6-108 

Interface Attribute - F6'. 2-26, 
2-31, 2-38, 6-70, 6-72, 
6-80, 6-83, 6-86 

Interface Attribute - F7', 6-87 
Interface Attribute - F8'. 6-87 
Interface attribute definition 

(Table 2-8), 2-15 
Intermodule communications, 

1-3 
Interrupt forcing a dispatch, 1-5 
Interrupt processing, 6-51 
Interrupt Return Instruction 

(IRET), 5-7, 5-8, 5-9, 
6-148, 6-176. 8-2, 8-3 

Interrupt vector, 6-148 
IO_CONIN (XIOS call), 1-12 
IRET Instruction, 5-7, 5-8, 5-9, 

8-2, 8-3 

J 

lndex-8 

K 

KEEP flag, 6-158 

L 

Line feed character (CTRL-J), 
6-42 

Line-editing with C READSTR, 
6-42 -

List Control Block (LCB). 1-11, 
6-178. 6-179 

Lock List, 2-26, 2-27, 2-32. 
2-36. 2-40, 6-52, 6-59, 
6-72, 6-80, 6-84, 6-87, 
6-108, 6-158 

Lock List definition, 2-24 
Locked (file open mode), 2-22, 

2-27, 6-83, 6-86, 6-99, 
6-102, 6-106, 6-108, 
6-116 

Logging-in a disk drive, 2-34, 
6-64, 6-65 

Logical console, 6-47 
Logical file lock, 2-31 
Logical Interrupt, 6-50 
Logical list device - LST:, 6-125 
Logical record size, 2-33 
Login Vector definition, 6-62 
Login Vector structure (Figure 

6-3), 6-52 

M 

M(emory) option - SYSTAT 
utility, 1-16 

M80 byte (in Base Pase), 3-5 
M FREE Parameter Block (MFPB) 

- (Figure 6-9), 6-130 
Maximum directory entries per 

disk drive, 6-55 
Maximum file size per drive. 2-6 
Maximum memory per process, 

6-178 
Maximum number of locked 

records, 6-180 
Maximum number of open disk 

flies, 6-180 



Maximum number of queue 
messages, 6-165 

Maximum storage capacity per 
disk drive, 6-55 

Media change on drive with 
open files, 2-26, 2-36 

Media Descriptor Byte, 9-8. 
9-11 

Memory (MEM) module, 1-7 
Memory allocation unit, 6-179 
Memory Control Block (MCB) 

(Figure 6-7), 6-126 
Memory Descriptor (MD). 6-178 
Memory expansion hardware, 

1-7 
Memory Parameter Block (MPB) 

(Figure 6-8), 6-127 
Memory protection, 6-142 
Memory Segment Descriptors, 

6-146 
MP/M-86 memory allocation 

scheme, 6-126 
Multl-sector 1/0, 2-30 
Multiple copies of an RSP. 5-2 
MX (mutual exclusion) queue, 

1-6 
MXdlsk - system mutual 

exclusion queue, 1-6 

N 

Nonlnterrupt-drlven device, 
6-49 

Null character. 6-90 
Number of character devices, 

6-179 
Number of physical consoles, 

6-180 
Number of XIOS consoles, 

6-179 
Number of XIOS list devices, 

6-179 

0 

O(vervlew) option - SYSTAT 
utility, 1-16 

Open Fiie Drive Vector. 6-179 
Output delimiter, 6-34 

p 

P(rocesses) option - SYSTAT 
utility, 1-16 

Paged memory, 1-7 
Parameter passing, 6-139 
Parent/child process 

relationships, 3-7, 5-9, 
6-110, 6-146, 7-87 

Parse Filename Control Block 
(PFCB) (Figure 6-6), 6-88 

Password (in a file 
specification). 2-4 

Password (in directory label), 
2-17 

Password (in XFCB), 2-18 
Password encryption, 2-20 
Password for a drive, 6-B3 
Password for a file, 2-17, 2-19, 

2-38, 3-5. 6-70, 6-89. 
6-97 

Password mode (in XFCB). 2-18, 
6-83, 6-84, 6-101, 6-105 

Password protection mode 
(Table 2-11), 2-19 

Permanent disk drive, 2-34 
Physical console, 10-1 
Physical INput process (PIN), 

1-12. 6-38 
PIP utility, 2-14, 2-30 
Poll List. 6-143 
Poll List Root, 6-179 
Polling devices at dispatch time, 

6-49, 6-143 
Printer echo, 6-37 
Priority driven scheduling, 6-152 
Priority of a transient process, 

5-4, 5-6. 6-141, 6-145, 
6-151, 6-155 

Privileged process, 5-8 
Process definition, 1-2 
Process Descriptor (PD) (Figure 

6-12). 6-142 
Process Descriptor (PD), 1-4, 

5-1. 5-3, 6-137, 6-141, 
6-142, 6-154, 6-158, 
6-175, 6-178 

Process dispatching, 1-3. 6-152 
Process Initialization. 3-1 
Process Keep Flag, 1-12 
Process scheduling, 6-145 

lndex-9 



Program Flag (In CMD file 
header), 3-2 

Q 

Q(ueues) option - SYSTAT 
utility, 1-16 

Queue Buffer (QB), 1-5, 5-8. 
6-142, 6-165, 6-167 

Queue Buffer Memory Allocation 
Unit, 6-178 

Queue Descriptor (QO) (Figure 
6-16), 6-165 

Queue Descriptor (QO), 1-5, 5-8, 
6-142. 6-143, 6-175, 
6-178 

Queue flags, 6-165 
Queue List Root, 6-179 
Queue management. 1-5 
Queue Message Buffer, 6-160 
Queue message length, 6-165 
Queue name, 1-6 
Queue Parameter Block (QPB) 

(Figure 6-15), 6-160 
Queue Parameter Block (QPB). 

5-9, 6-168 

R 

Random Record Number, 2-8, 
2-9, 2-31, 2-32, 2-33. 
3-7, 6-80, 6-92. 6-95, 
6-102, 6-106, 6-108, 
6-113 

Random Record Number 
definition, 2-7 

Raw console output, 6-37, 6-38 
Read (password protection 

mode), 2-19, 6-83, 6-105 
Read Queue List, 6-143 
Read-Only (file open mode), 

2-23, 2-27. 2-30, 6-80, 
6-86, 6-102, 6-106, 
6-108 

Read-Only (R/0) Vector, 6-64 
Read-Only (R/0) Vector 

structure (Figure 6-3), 
6-52 

lndex-10 

Read-Only Attribute - Tl'. 2-14, 
2-22. 2-38, 6-70, 6-86 

Reading multiple records, 2-30 
Ready List. 1-4, 1-7, 6-143 
Ready List Root, 6-179 
Ready process, 1-4 
Real-time Monitor (RTM) 

module, 1-3 
Reentrant code, 6-146, 6-157 
Reentrant RSP, 5-3 
Register CX error codes, 1-14 
Register Initialization, 5-7 
Register Initialization for system 

calls, 1-13 
Registers used by system calls 

(Tabla 1-1), 1-13 
Releasing memory, 6-135, 

6-158 
Removeable disk drive, 2-34, 

3-1, 6-54, 6-57 
Request Packet (for a DOS 

device driver), 9-4 
Resetting a disk drive, 2-34 
Resident Procedure Library 

(RPL), 6-156 
Resident System Process (RSP), 

3-1. 5-1. 6-140 
Command Queue, 5-4, 5-8 
Command Queue Message 

(Figure 5-3), 5-4 
Initialization, 5-4 
Process Descriptor, 5-6 
stack, 5-8 
User Data Area, 5-7 

RETF Instruction, 3-1. 4-2, 
6-176 

Return and Display (BOOS Error 
mode), 6-79 

Return Error (BOOS Error mode), 
6-79 

Round-robin scheduling, 6-152 
RSP Data Segment, 6-176 
RSP Header Format (Figure 5-2), 

5-3 
Running process, 1-4 

s 

Saving registers during system 
calls, 1-14 



Security of files, 2-24 
Segment address, 6-148 
Segment register Initialization, 

4-1 
Serial number (of Concurrent), 

6-174 
SERIAL Number Format (Figure 

6-18), 6-174 
Setting a file's byte count, 2-33 
Shared (file open mode), 6-114 
Shared code, 3-1 
Shared Code List, 3-2 
Shared code RSP, 5-3, 6-146 
Shared file lock, 2-31. 6-80 
SID-86 debugger, 5-9 
Small Memory Model RSP, 5-2, 

5-3 
Small Model transient program, 

1-13, 3-4, 4-1, 4-3 
Sparse file, 6-106 
Sparse file definition, 2-7 
Special File Control Block 

(SFCB), 6-66, 6-101 
Special File Control Block 

(SFCB) definition, 2-21 
Spacial Fila Control Block 

(SFCB) subfields (Figure 
2-7), 2-21 

Stack pointer, 6-148 
Stack Segment, 6-148 
Status line of physical console, 

10-3 
Status Word (In UDA), 6-150 
String dellmlter, 6-48 
Supervisor (SUP) module, 1-3 
Supervisor Coda Segment, 

6-176 
Supervisor entry point, 6-176 
Suspended process, 1-4 
Switching virtual consoles, 1-13 
SYSDAT (System Data 

Segment), 2-22, 5-2, 5-6. 
5-8, 5-9 

SYSDAT Table (Figure 6-19), 
6-175 

SYSTAT utility, 1-14 
System Attribute - T2', 2-14, 

2-16, 2-38, 6-70, 6-86 
System call 

A ATTACH, 6-19 
A=CATTACH, 6-20 

A DETACH. 6-21 
A-GET, 6-22 
A-READ, 6-19, 6-23 
A-READBLK, 6-19, 6-24 
A-SET, 6-25 
A-STATIN, 6-26 
A-STATOUT, 6-27 
A-WRITE, 6-19, 6-28 
A-WRITEBLK, 6-19, 6-29 
C-ASSIGN, 6-30 
C-ATTACH, 6-30, 6-32, 6-40 
C-CATTACH, 6-33 
C-DELIMIT, 6-34, 6-48 
C-DETACH, 6-30, 6-35 
C-GET, 6-36, 10-2 
C-MODE, 1-13, 3-1, 6-37, 

- 6-45 
C RAWIO, 1-13, 6-38, 6-45 
C-READ, 6-40, 6-41, 6-46 
C-READSTR, 1-12, 6-41 
C-SET, 6-44 
C-STAT, 6-37, 6-45 
C-WRITE, 6-37, 6-46 
C-WRITEBLK, 6-37, 6-47 
C-WRITESTR, 6-34, 6-37, 6-48 
DEV POLL, 1-13, 6-49 
DEV-SETFLAG, 6-50, 6-51, 

-6-176 
DEV WAITFLAG, 1-7, 6-50, 

-6-51 
ORV ACCESS, 2-34, 2-36, 6-52 
DRV-ALLOCVEC, 6-53 
DRV-ALLRESET, 2-34, 3-1, 

-6-54, 6-68, 6-77 
ORV DPB, 6-55 
ORV-FLUSH, 6-58 
ORV-FREE, 2-26, 2-34, 2-36, 

-6-59 
ORV GET, 6-60 
DRV-GETLABEL, 2-18, 6-61 
DRV-LOGINVEC, 6-62 
ORV-RESET, 1-12, 2-34, 3-1, 

-6-63, 6-68 
ORV ROVEC, 6-54, 6-64 
ORV-SET, 6-65 
DRV-SETLABEL, 2-18, 6-66 
DRV-SETRO, 6-54, 6-64, 6-68 
ORV-SPACE, 6-53, 6-69, 6-76 
F AfrRIB, 2-13, 2-26, 2-33, 
- 6-70, 6-86, 6-97 

F_CLOSE, 2-27, 6-72 

lndex-11 



F DELETE, 2-26, 6-74, 6-83 
F-DMAGET, 6-76 
F-DMAOFF, 5-6. 6-76, 6-78, 
- 6-153 

F DMASEG, 5-6, 6-77, 6-78, 
- 6-153 

F ERRMODE, 2-25, 2-42, 6-79 
F-FLUSH. 2-34 
F-LOCK. 2-23, 2-31, 2-32, 
- 6-80, 6-85 

F MAKE, 2-8, 2-13, 2-19, 2-23, 
- 2-33. 6-80, 6-83, 6-93, 

6-111 
F MUL TISEC, 2-30, 6-85, 6-93, 
- 6-95, 6-111 

F OPEN, 2-8, 2-13, 2-22, 2-23, 
- 6-70, 6-80. 6-86, 6-93, 

6-108, 6-111, 6-141 
F PARSE, 2-4, 2-5, 3-1, 6-88, 
- 6-140 

F PASSWD, 2-20. 6-66, 6-91, 
- 6-97, 6-106 

F RANDREC. 6-92 
F-READ, 6-93 
F-READRAND, 6-95 
F-RENAME, 2-9, 2-26, 6-97 
F-SETDATE, 6-99 
F-SFIRST, 2-13, 2-14, 2-18, 
- 2-20, 2-22. 6-70, 6-74, 

6-100 
F SIZE. 2-33, 6-102 
F-SNEXT, 2-13, 2-14, 2-18, 
- 2-20. 2-22. 6-70, 6-74, 

6-100, 6-104 
F TIMEDATE, 2-22, 6-105 
F-TRUNCATE, 2-26, 6-106 
F-UNLOCK, 2-23, 2-31, 2-32, 
- 6-85, 6-108 

F USERNUM, 2-16, 6-110 
F-WRITE, 6-111 
F-WRITERAND, 6-93, 6-102, 
- 6-113 

F WRITEXFCB, 2-19, 6-116 
F-WRITEZF, 6-93, 6-118 
L-ATTACH, 6-119, 6-124 
L-CATTACH, 6-120 
L-DETACH, 6-121 
L-GET, 6-122 
L-SET, 6-123 
L-WRITE, 6-124 
L=WRITEBLK, 6-125 

lndex-12 

M ALLOC, 6-129 
M-FREE, 6-129, 6-130 
MC ABSALLOC. 6-131 
MC-ABSMAX, 6-132 
MC-ALLFREE, 6-133 
MC-ALLOC, 6-134 
MC-FREE. 6-135 
MC-MAX, 6-136 
P ABORT, 1-12, 6-137 
P-CHAIN, 2-16, 6-139 
P-CLI, 2-4, 2-5, 2-16, 2-30, 

- 3-1. 3-4, 3-7, 4-2. 4-3, 
4-4. 5-4, 5-5. 6-40, 6-77. 
6-85, 6-139, 6-140, 
6-155, 6-178 

P CREATE, 3-1, 5-1, 5-3, 5-7, 
- 5-9. 6-141, 6-142, 6-146, 

6-154 
P DELAY. 1-7, 6-151 
P-DISPATCH, 6-152 
P-LOAD, 1-3, 3-4, 4-1, 6-141, 

- 6-153 
P PDADR, 5-4, 6-154 
P-PRIORITY, 5-6, 6-155 
P-RPL 6-156 
P-TERM, 3-1, 4-2, 6-40, 6-137, 

- 6-158, 6-159 
P TERMCPM, 4-2, 6-159 
a-CREAD, 5-4, 6-162 
a-CWRITE, 5-4, 6-163 
0-DELETE, 5-8, 6-164 
a-MAKE, 1-6, 5-8, 6-165 
a-OPEN, 5-5, 6-156, 6-160, 

- 6-167, 6-168, 6-169, 
6-170 

Q READ, 5-4, 6-162, 6-169 
a-READ (unconditional), 1-6 
a-WRITE, 5-4, 6-163, 6-170 
S-BDOSVER. 6-171, 6-179 
S-BIOS, 6-172 
S-OSVER, 6-173, 6-179 
$-SERIAL, 6-174 
S-SYSDAT, 5-6, 6-175 
T-GET, 2-22, 6-181 
T-SECONDS, 6-182 
T-SET, 6-183 

System call calling conventions, 
1-14 

System call register 
initialization, 1-13 



System clock tick, 1-5, 6-151. 
6-152 

System Data Segment, 6-167, 
6-175 

System disk, 6-141 
System tiles - user 0, 2-14, 

2-16, 2-23, 2-27. 2-29, 
6-86 

SYSTEM flag, 6-158, 6-178 
System generation, 5-1 
System Lock list, 6-178 
System process, 6-145 
System ticks per second, 6-178 
System timing functions, 1-7 
System tracks reserved tor boot 

loader, 2-6 

T 

Tab expansion, 6-37, 6-40, 
6-46, 6-47, 6-48 

Temporary disk, 6-178 
Terminal Message Process 

(TMP), 1-12, 1-13, 2-16, 
3-1, 5-3, 5-4. 5-8. 6-110, 
6-141, 6-158 

Termination Code. 6-137, 6-145, 
6-158, 6-159 

THREAD field, 6-179 
Thread List, 6-137, 6-143 
Thread List Root, 6-179 
Tick flag, 1-7 
Tick Interrupt handler (in XIOS), 

1-7 
Tick length, 1-7, 6-151, 6-152 
Time stamp (In directory label), 

2-22 
TOD - Time-of-Day Structure 

(Figure 6-20), 6-181 
Transient Process Area (TPA). 

6-142 
Transient processs, 1-3 
Transient program definition, 

3-1 
TYPE utility, 2-8 

u 

U(ser Processes) option -
SYSTAT utility, 1-16 

Unconditional queue operations, 
1-6 

Unlocked (file open mode). 
2-23, 2-31, 6-80, 6-83, 
6-86, 6-94, 6-106, 6-108, 
6-112, 6-114, 6-96 

Unused Process Descriptor, 
6-178 

Unused Queue Descriptor, 
6-178 

Unusued Memory Descriptor, 
6-178 

Update stamp (In directory 
label), 2-17, 6-84 

Update stamp (In SFCB), 2-22. 
6-101, 6-105, 6-111 

User Data Area (UDA) (Figure 
6-13), 6-147 

User Data Area (UDA), 1-4, 3-1. 
3-2, 5-1. 5-3, 5-6, 6-133, 
6-141. 6-146 

User number (Independent 
directory), 2-1 

User number conventions. 2-16 
User System Stack, 6-148, 

6-150 
User-zero system file, 2-14 

v 

Version number of Concurrent. 
6-179 

Version string address, 6-179 
Virtual console, 6-172, 6-178 
Virtual Console Input Queue 

(VINO), 1-12 
Virtual console screen buffer, 

10-2 
Virtual console screen 

management, 1-12, 6-38, 
10-1 

Virtual console structure 
definition (Table 10-3), 
10-6 

Virtual console switching, 1-13, 
10-1, 10-3 

lndex-13 



Virtual file size definition, 6-102 
Virtual/physical environments 

(Figure 1-1), 1-1 

w 

Window data block definition 
(Table 10-4), 10-8 

Window management, 10-1 
Window management escape 

sequences, 10-9 
Window size specification, 10-8 
Write (file open mode), 2-38 
Write {password protection 

mode), 2-19, 6-83. 6-105 
Write Queue List, 6-143 
Writing multiple records, 2-30 

x 

XFCB - Extended Fiie Control 
Block (Figure 2-5), 2-18 

XIOS backdoor entry points, 
10-5 

XIOS Header, 6-178 
XIOS lnitlallzatlon entry point, 

6-176 
XIOS non-standard calling 

convention, 10-5 
XIOS window management call 

WW CURSOR VIEW. 10-3 
WW-FULL WINDOW, 10-3 
WW-IM HERE. 10-3 

y 

z 

WW-KEV, 10-3 
WW-NEW WINDOW, 10-3 
WW-POINTER, 10-3 
WW-STATLINE, 10-3 
WW-SWITCH DISPLAY, 10-3 
ww:wRAP _COLUMN. 10-3 

lndex-14 


