
Concurrent CP/M™
Operating System

Programmer's
Reference Guide

[!ill
DIGITAL

RESEARCHTM

Concurrent CP/M™
Operating System

Programmer's
Reference Guide

COPYRIGHT

Copyright ©1984 by Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, ·without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof
and specifically disclaims any implied warranties of merchantability or fitness for any par­
ticular purpose. Further, Digital Research reserves the right to revise this publication and
to make changes from time to time in the content hereof without obligation of Digital Research
to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of Digital Research. ASM-86, Concurrent
CP/M, DDT, DDT-86, MP/M, MP/M-86, and PL/I are trademarks of Digital Research. Intel
and MCS are registered trademarks of Intel Corporation. ISIS-II is a trademark of Intel
Corporation. IBM is a registered trademark of International Business Machines.

The Concurrent CPIM Operating Syst~m Programmer's Reference Guide was printed in the
United States of America.

First Edition: January 1984

Foreword

Concurrent CP/M@ is a multi- or single-user operating system targeted specifically for
the Intel® 8086/8088/80186 family of microprocessors. It supports multiple CP/M program­
ming environments each implemented on a virtual console. A different task runs concurrently
in each environment.

This manual describes the invariant programming interface to Concurrent CP/M. It sup­
ports the applications programmer who must create applications programs that run in the
Concurrent CP/M environment.

Section 1 offers an overview of the entire operating system.

Section 2 describes the structure of the Concurrent CP/M file system.

Section 3 explains the format, structure, and uses of transient commands in the Concurrent
CP/M environment.

Section 4 explains the creation of transient command files in the Concurrent CP/M envi­
ronment.

Section 5 documents the structure and creation of resident system processes or resident
command files permanently installed in the Concurrent CP/M environment.

.f.

Section 6 describes all the Concurrent CP/M system calls.

Concurrent CP/M is supported and documented through four manuals:

• The Concurrent CP/M Operating System User's Guide (hereinafter cited as Concurrent
CP/M User's Guide) documents the user's interface to Concurrent CP/M, explaining
the various features used to execute applications programs and Digital Research utility
programs .

• The Concurrent CP/M Operating System Programmer's Reference Guide (hereinafter
cited as Concurrent CP/M Programmer's Reference Guide) documents the applications
programmer's interface to Concurrent CP/M, explaining the internal file structure
and system entry points, information that is essential for creating applications pro­
~rams that run in the Concurrent CP/M environment.

iii

• The Concurrent CP/M Operating System Programmer's Utilities Guide (hereinafter
cited as Programmer's Utilities Guide) documents the Digital Research utility pro­
grams that programmers use to write, debug, and verify applications programs written
for the Concurrent CP/M environment .

• The Concurrent CP/M Operating System System Guide (hereinafter cited as Concur­
rent CP/M System Guide) documents the internal, hardware-dependent structures of
Concurrent CP/M.

iv

Table of Contents

1 Concurrent CP/M System Overview

1.1 Introduction. 1-1
1.2 Supervisor (SUP) ... ; 1-5
1.3 Real-time Monitor (RTM) .. 1-5

1.3.1 Process Dispatching ... 1-5
1.3.2 Queue Management... 1-7
1.3.3 System Timing Functions... 1-8

1.4 Memory Module (MEM) ... 1-9
1.5 Basic Disk Operating System (BDOS).................................... 1-9
1.6 Character I/O Module (CIO).. 1-10
1.7 Virtual Console Screen Management. 1-10
1.8 Extended Input/Output System (XIOS) 1-11
1. 9 Terminal Message Processes (TMP) 1-12
1.10 Transient Programs... 1-12
1.11 System Call Calling Conventions............... 1-12
1.12 SYSTAT: System Status.. 1-13

2 The Concurrent CP/M File System

2.1 File System Overview. 2-1
2.1.1 File-access System Calls.. 2-2
2.1.2 Drive-related System Calls 2-3

2.2 File Naming Conventions... 2-5
2.3 Disk Drive and File Organization... 2-8
2.4 File Control Block Definition... 2-9

2.4.1 FCB Initialization and Usage..................................... 2-12
2.4.2 File Attributes.. 2-14
2.4.3 Interface Attributes 2-16

2.5 User Number Conventions.. 2-17
2.6 Directory Labels and XFCBs... 2-18
2.7 File Passwords. 2-22
2.8 File Date and Time Stamps: SFCBs...................................... 2-24
2.9 File Open Modes... 2-26
2.10 File Security... 2-27
2.11 Extended File Locking...... 2-30
2.12 Compatibility Attributes.. 2-31
2.13 Multisector I/O ... 2-34

v

Table of Contents (continued)

2.14 Concurrent File Access... 2-35
2.15 File Byte Counts ... 2-37
2.16 Record Blocking and Deblocking :......... 2-38
2.17 Reset, Access, and Free Drive... 2-39
2.18 BDOS Error Handling. 2-43

3 Transient Commands

3.1 Transient Program Load and Exit.. . 3-1
3.1.1 Shared Code.. 3-2
3.1.2 8087 Support... 3-2
3.1.3 8087 Exception Handling... 3-3

3.2 Command File Format... . 3-3
3.3 Base Page Initialization... 3-5
3.4 Parent/Child Relationships '. 3-8
3.5 Direct Video Mapping. 3-8

4 Command File Generation

4.1 Transient Execution Models.. 4-1
4.1.1 The 8080 Memory Model.. 4-2
4.1.2 The Small Memory Model....................................... 4-4
4.1.3 The Compact Memory Model.................................... 4-5

4.2 GENCMD 4-6
4.3 Intel Hexadecimal File Format... 4-9

5 Resident System Process Generation

5.1 Introduction to RSPs ... 5-1
5.2 RSP Memory Models... 5-1

5.2.1 8080 Model RSP ... 5-2
5.2.2 Small Model RSP .. 5-2

5.3 Multiple Copies of RSPs ... 5-3
5.3.1 8080 Model... 5-3
5.3.2 Small Model.. 5-4
5.3.3 Small Model with Shared Code................................... 5-4

5.4 Creating and Initializing an RSP.. 5-4
5.4.1 The RSP Header.. 5-7

vi

Table of Contents (continued)

5.4.2 The RSP Process Descriptor...................................... 5-8
5.4.3 The RSP User Data Area... 5-9
5.4.4 The RSP Stack.......... 5-9
5.4.5 The RSP Command Queue....................................... 5-9
5.4.6 Multiple Processes within an RSP 5-10

5.5 Developing and Debugging an RSP 5-11

6 System Calls

6.1 System Call Summary........... 6-13
6.2 Concurrent CP/M System Calls... 6-20

6.2.1 Console I/O System Calls.. 6-21
6.2.2 Device System Calls.. 6-41
6.2.3 Disk Drive System Calls.. 6-44
6.2.4 File-access System Calls.. 6-64
6.2.5 List Device I/O System Calls 6-122
6.2.6 Memory System Calls .. 6-128
6.2.7 Process/Program System Calls 6-139
6.2.8 Queue System Calls .. 6-162
6.2.9 System Information System Calls 6-174

Appendixes

A System Call Summary by Function Number.. A-I

B ASCII and Hexadecimal Conversions...... B-1

C Error Codes. C-l

D ECHO.A86 Listing. D-l

E 8087 Exception Handling.. E-l

Glossary .. Glossary-l

Index ... Index-l

vii

Table of Contents (continued)

Tables

1-1. Registers Used by System Calls... 1-13

2-1. File System Calls
2-2. Valid Filename Delimiters .. .
2-3. Filetype Conventions ... '
2-4. Drive Capacity
2-5. FCB Field Definitions .. .
2-6. File Attribute Definitions
2~ 7. BDOS Interface Attributes F5' and F6'
2-8. Directory Label Field Definitions
2-9. XFCB Field Definitions .. ,
2-10. Password Protection Modes
2-11. Compatibility Attribute Definitions
2-12. BDOS Physical Errors .. ,
2-13. BDOS Extended Errors
2-14. BDOS Error Codes
2-15. BDOS Physical and Extended Errors

2-3
2-6
2-7
2-8

2-11
2-15
2-16
2-19
2-21
2-22
2-32
2-44
2-45
2-47
2-49

3-1. Group Descriptors . 3-4
3-2. Group Descriptor Fields.. 3-4

4-1. Concurrent CP/M Memory Models. 4-1
4-2. Intel Hex Field Definitions.. 4-11

6-1. System Call Categories
6-2. Concurrent CP/M System Calls .. .
6-3. System Call Summary .. .
6-4. Data· Structures Index
6-5. CX Error Code Reports .. .
6-6. ACB Field Definitions .. .
6-7. C-RAWIO Calling Values .. .
6-8. Console Buffer Field Definitions
6-9. C-READSTR Line-editing Characters
6-10. DPB Field Definitions .. .
6-11. PFCB Field Definitions
6-12. FCB Initialization
6-13. MCB Field Definitions .. ,
6-14. MPB Field Definitions .. .

viii

6-2
6-4

6-13
6-18
6-19
6-22
6-31
6-34
6-34
6-49
6-87
6-89

6-129
6-130

Table of Contents (continued)

Tables

6-15. APB Field Definitions... 6-140
6-16. Command Line Buffer Field Definitions..................................... 6-143
6-17.. PD Field Definitions.. 6-147
6-18. UDA Field Definitions ... '.' .. 6-152
6-19. CPB Field Definitions . 6-160
6-20. QPB Field Definitions... 6-163
6-21. QD Field Definitions.. 6-169
6-22. SYSDAT Table Data Fields.. 6-180
6-23. TOD Field Definitions... 6-186

A-I. System Call Summary by Function Number. A-I

B-1. ASCII Symbols.................... B-1
B-2. ASCII Conversion Table.................................. B-1

C-1. Concurrent CP/M Error Codes.. C-I

Figures

1-1. Concurrent CP/M Virtual/Physical Environments I-I
1-2. Concurrent CP/M Functional Modules....................................... 1-3

2-1. FCB - File Control Block... 2-10
2-2. Directory Label Format. 2-18
2-3. XFCB - Extended File Control Block....................................... 2-20
2-4. Directory Record with SFCB.. 2-24
2-5. SFCB Subfields.. 2-24
2-6. Disk System Reset. 2-41

3-1. CMD File Header Format.. 3-3
3-2. Group Descriptor Format.. 3-3
3-3. Concurrent CP/M Base Page Values. 3-6

4-1. Initial Program Stack... 4-2
4-2. Concurrent CP 1M 8080 Memory Model 4-3

ix

Table of Contents (continued)

4-3. Concurrent CP/M Small Memory ModeL.. 4-4
4-4. Concurrent CP/M Compact Memory Model.......................... 4-5
4-5. Intel Hexadecimal File Formats.. 4-10

5-1.
5-2.
5-3.
5-4.

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17..
6-18.
6-19.
6-20.
6-21.
6-22.

8080 and Small RSP Models .. .
RSP Head Format•...............................
RSP Command Queue Message
RSP Data Segment .. .

ACB - Assign Control Block .. .
Console Buffer Format .. .
Drive, RIO, or Login Vector Structure
DPB - Disk Parameter Block .. .
Disk Free Space Field Format
PFCB - Parse Filename Control Block
MCB - Memory Control Block .. .
MPB - Memory Parameter Block .. .
MFPB - MJREE Parameter Block
APB - Abort Parameter Block
CLI Command Line Buffer .. .
PD - Process Descriptor
UDA - User Data Area .. .
CPB - Call Parameter Block
QPB - Queue Parameter Block .. .
QD - Queue Descriptor .. .
BDOS Version Number Format.
BIOS Descriptor Format ; .. .
Operating System Version Number Format
SERIAL Number Format .. .
SYSDAT Table .. .
TOD Time-of-Day Structure

x

5-2
5-3
5-5
5-7

6-21
6-33
6-44
6-48
6-63
6-86

6-128
6-129
6-132
6-139
6-142
6-146
6-15]
6-159
6-163
6-168
6-174
6-175
6-]76
6-177
6-179
6-185

Ta·ble of Contents (continued)

Listings

6-1. Memory Control Block Definition..................................... 6-129
6-2. Memory Parameter Block Definition.................................. 6-130
6-3. Queue Parameter Block Definition..................................... 6-164

D-l. ECHO .A86.. D-l

E-l. 8087 Exception Handling.. . E-2

xi

Section 1
Concurrent CP/M System Overview

1.1 Introduction

Concurrent CP/M is a multi- or single-user, multitasking operating system that lets you
run multiple programs simultaneously by initiating tasks on two or more terminals or virtual
consoles. Applications programs have access to system calls used by Concurrent CP/M to
control the mUltiprogramming environment. As a result, Concurrent CP/M supports extended
features, such as communication among and synchronization of independently running processes.
Figure 1-1 depicts the relationships between applications programs, virtual environments,
virtual consoles, and the user terminal.

APPLICATION
PROGRAM

APPLICATION
PROGRAM

2

APPLICATION
PROGRAM

TERMINAL
MESSAGE
PROCESS

o

Figure 1-1.

[j]] DIGITAL RESEARCH®

VIRTUAL
ENVIRONM~NT

N

LOGICAL OS

1

I A

k
.....1'1

---,

VIRTUAL
ENVIRONMENT

2

I

1,1
(

__ ...1 'I

VIRTUAL
ENVIRONMENT

o

I
IA

k
.....I~

1

1

I

I

1

I

1

I

I

~

r

~

r

"
V

PHYSICAL I/O SYSTEM

VIRTUAL
CONSOLE

N

VIRTUAL
CONSOLE

2

VIRTUAL
CONSOLE

0

PHYSICAL
CONSOLE

Concurrent CP/M Virtual/Physical Environments

1-1

1.1 Introduction Concurrent CP/M Programmer's Guide

In the Concurrent CP/M environment there is an important distinction between a program
and a process. A program is simply a block of code residing somewhere in memory or on
disk; it is essentially static. A process, on the other hand, is a dynamic entity. You can think
of it as a logical machine that executes not only the program code, but also the operating
system routines necessary to support the program's functions.

When Concurrent CP/M loads a program, it creates a process associated with the loaded
program. Subsequently, it is the process, rather than the program, that obtains access to the
system's resources. Thus, Concurrent CP/M monitors the process, not the program. This
distinction is a subtle one, but vital to your understanding of system operation as a whole.

Processes running under Concurrent CP/M fall into two categories: transient processes
and Resident System Processes (RSPs). Transient processes run programs loaded into mem­
ory from disk in response to a user command or system calls made by another process.
Resident System Processes run code that is a part of the operating system itself. RSPs
become an integral part of the operating system image during system generation. They are
immediately available to perform operating system tasks. For example, the CLOCK process
is an RSP that maintains the time of day within the operating system.

The following list briefly summarizes Concurrent CP/M's capabilities.

• Interprocess communication, synchronization, and mutual exclusion functions are
provided by system queues.

• A logical interrupt mechanism using flags allows Concurrent CP/M to interface with
any physical interrupt structure.

• System timing functions enable processes running under Concurrent CP/M to com­
pute elapsed times, delay execution for specified intervals, and to access and set the
current date and time.

• Shared file system allows mUltiple programs to access common data files while
maintaining data integrity.

• Shared code support eliminates program loading of another copy of the same program
and conserves memory space.

• 8087 support takes advantage of fast 8087 math instructions.

• Virtual console handling lets a single user run multiple programs, each in its own
console environment.

• Real-time process control allows communications and data acquisition without loss
of information.

--------'---------------------I!ID DIGITAL RESEARCH®
1-2

Concurrent CP/M Programmer's Guide 1.1 Introduction

Functionally, Concurrent CP/M is composed of several distinct modules, as shown in
Figure 1-2.

TERMINAL
APPLICATION MESSAGE
PROCESSES PROCESS

xx

""'-.....7 ... ;:.-

OS SUPERVISOR

""'-~ ... -~ ;.. ... ~;,.

CHARACTER I 0 BASIC DISK MEMORY
REALTIME

OS POOL
MODULE MANAGER MONITOR

I I I I , , , ,
VIRTUAL CONSOLE

SESSION
MANAGER

-.:l~ :::-- .. --:::-- .. .,7
I I I

I I I
I I I
I EXTENDED I/O SYSTEM I
I I I
I I I
I I I

t I t 1 t t

SYSTEM HARDCOPY DISKETTE INTERRUPT

CONSOLE PRINTER DRIVES CONTROL
LOGIC

Figure 1-2. Concurrent CP/M Functional Modules

l!ID DIGITAL RESEARCHII!I

1-3

1.1 Introduction

• The Supervisor (SUP)
• The Real-time Monitor (RTM)
• The Memory Management Module (MEM)
• The Character lio Module (CIO)
iii The Virtual Console Screen Manager
• The Basic Disk Operating System (BDOS)
a The Extended 110 System (XIOS)
• The Terminal Message Processor (TMP)

Concurrent CP/M Programmer's Guide

The SUP module handles miscellaneous system calls such as returning the version number
or the address of the System Data Area. SUP also calls other system calls when necessary.

The RTM module monitors the execution of running processes and arbitrates conflicts for
the system's resources.

The MEM module allocates and frees memory upon demand from executing processes.

The CIO module handles all character I/O for console and list devices in the system.

The Virtual Console Screen Manager extends the CIO to support virtual console envi­
ronments.

The BDOS is the hardware-independent module that contains the logically invariant portion
of the file system for Concurrent CP/M. The BDOS file system is explained in detail in
Section 2.

The XIOS is the hardware-dependent module that defines the interface of Concurrent
CP / M to a specific hardware environment. See the Concurrent CP/ M System Guide for
an explanation of the XIOS.

When Concurrent CP/M is executing a single program on a single virtual console, its
speed approximates that of CP/M-86. But when multiple processes are running on several
virtual consoles, the execution of each individual process slows according to the proportion
of 110 to CPU resources it requires. A process that performs a large amount of I/O in
proportion to computing exhibits only minor speed degradation. This also applies to a process
that performs a large amount of computing, but runs concurrently with other processes that
are largely I/O-bound. On the other hand, significant speed degradation occurs where more
than one compute-bound process is running.

-------------------------- IlIDDlGITAL RESEARCH®
1-4

Concurrent CP/M Programmer's Guide 1.2 Supervisor (SUP)

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and the operating
system kernel. It also manages internal communication between operating system modules.
All system calls, whether they originate from a transient process or internally from another
system module, go through a common table-driven function interface in SUP. SUP also
handles the P _LOAD (Load Process) and P _CLI (Call Command Line Interpreter) system
calls.

1.3 Real-time Monitor (RTM)

The Real-time Monitor (R TM) is the real-time multitasking nucleus of Concurrent
CP / M. The R TM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also call many of the R TM
system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a program to
communicate or synchronize execution with other processes, a process is unaware of other
processes competing for system resources.

The primary task of the RTM is to transfer, or dispatch, the CPU resource from one
process to another. The RTM module called the Dispatcher performs this task. The RTM
maintains two data structures, the Process Descriptor (PD) and the User Data Area (UDA),
for each process running under Concurrent CP/M. The Dispatcher uses these data structures
to save and restore the current state of each running process.

Each process in the system resides in one of three states: ready, running, or suspended.
A ready process is one that is waiting for the CPU resource only. A running process is one
that the CPU is currently executing. A suspended process is one that is waiting for a system
resource or a specified event, such as the occurrence of an interrupt, an indication that polled
hardware is ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a process
from one list and places it on another. The Process Descriptor of the currently running
process is the first entry on the Ready List. Other processes ready to run are represented on
the Ready List in order of priority. Suspended processes are on other system lists, depending
on why the processes were suspended.

[Q] DIGITAL RESEARCHOli --------------------------
1-5

1.3 Real-time Monitor (RTM) Concurrent CP 1M Programmer's Guide

A dispatch operation can be summarized as follows:

1. The Dispatcher suspends the process from execution and stores its current state in
the Process Descriptor and the UDA.

2. The Dispatcher places the process on an appropriate system list, depending on why
the Dispatcher was called. For example, if a process is to delay for a certain number
of system ticks, its Process Descriptor is placed on the Delay List. When a process
releases a resource, the process is usually placed back on the Ready List. If another
process is waiting for the resource, that process is taken off its current system list
and also placed on the Ready List.

3. The highest priority process on the Ready List is chosen for execution. If two or
more processes have the same priority, the process that has waited the longest executes
first.

4. The Dispatcher restores the state of the selected process from its Process Descriptor
and UDA, and gives it the CPU resource.

S. The process executes until it needs a busy resource, a resource needed by another
process becomes available, or an interrupt occurs. At this point, a dispatch occurs,
allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch. By definition,
a process is on the Ready List if it is waiting only for the CPU resource. Processes waiting
for other system resources cannot execute until the resources they require are available.
Concurrent CP/M blocks a process from execution if it is waiting for:

• a queue message so it can complete a Q_READ operation.

• space to become available in a queue so it can complete a Q_ WRITE operation.

• a console or list device to become available.

• a specified number of system clock ticks before it can be removed from the system
Delay List.

• an I/O event to complete.

These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an interrupt
causes a dispatch. While not all interrupts cause dispatches, the system clock generates
interrupts every clock tick and forces a dispatch each time. Clock ticks usually occur 60
times a second (approximately every 16.67 milliseconds), and allow time sharing within a
real-time environment.

--------------------------- IIIDDIGITAL RESEARCH~
1-6

Concurrent CP 1M Programmer's Guide 1.3 Real-time Monitor (RTM)

Concurrent CP/M is a priority-driven system. This means that during a dispatch, the
operating system gives the CPU resource to the process with the best priority. The Dispatcher
allots equal shares of the system's resources to processes with the same priority. With priority
dispatching, the system never passes control to a lower-priority process if there is a higher­
priority process on the Ready List. Because high-priority, compute-bound processes tend to
monopolize the CPU resource, it is best to reduce their priority to avoid degrading overall
system performance.

1.3.2 Queue Management

Queues perform several critical functions for processes ~unning under Concurrent CP/M.
A process can use a queue for communicating with another process, synchronizing its
execution with that of another process, and for exclusion of other processes from protected
system resources. A process can make, open, delete, read from, or write to a queue with
system calls similar to those used to manage disk files.

Each system queue consists of two parts: the queue descriptor, and the queue buffer.
Concurrent CP/M implements these special data structures as memory files that contain
room for a specified number of fixed-length messages.

When the Q_MAKE system call creates a queue, this queue is assigned a unique 8-
character name. As the name queue implies, messages are read from a queue on a first-in,
first-out basis.

A process can read from or write to a queue conditionally or unconditionally. If the queue
is empty when a conditional read is performed, or full when a conditional write is performed,
the system returns an error code to the calling process. On the other hand, if a process
attempts an unconditional queue operation in these circumstances, the system suspends it
from execution until the operation becomes possible.

More than one process can wait to read or write a queue message from the same queue
at the same time. When these operations become possible, the system restores the highest
priority process first; processes with the same priority are restored on a first-come, first­
served basis.

Mutual exclusion queues are a special type of queue under Concurrent CP/M. They contain
one message of zero length and their names follow a convention, beginning with the upper­
case letters MX. A mutual exclusion queue acts as a binary semaphore, ensuring that only
one process uses a resource at any time.

I!ID DIGITAL RESEARCHQP ----------------~----------
1-7

1.3 Real-time Monitor (RTM) Concurrent CP 1M Programmer's Guide

Access to a resource protected by a mutual exclusion queue takes place as follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting the
resource, thereby suspending itself if the message is not available.

2. When the message becomes available, the process accesses the protected resource.
Note that from the time the process issues the unconditional read, any other process
attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has finished
using the protected resource, thus freeing the resource for other processes.

As an example, the system mutual exclusion queue, MXdisk, ensures that processes cannot
access the file system simultaneously. Note that the BDOS, not the application software,
executes the preceding series of queue calls. Therefore the mutual exclusion process is
transparent to the programmer, who is only responsible for originating the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a process reads
a message from a mutual exclusion queue, the RTM notes the Process Descriptor address
within the Queue Descriptor. This establishes the owner of the queue message. If the operating
system aborts the process while it owns the mutual exclusion message, the RTM automatically
writes the message back to all mutual exclusion queues whose messages are owned by the
aborted process. This grants other processes access to protected resources owned by the
aborted process'.

1.3.3 System Timing Functions

Concurrent CP/M's timing system calls include keeping the time of day and delaying the
execution of a process for a specified period of time. An internal process called CLOCK
provides the time of day for the system. This process issues DEV _ WAITFLAG system calls .
on the system's one second flag, Flag 2. When the XIOS Tick Interrupt Handler sets this
flag, it initiates the CLOCK process, which then increments the internal time and date.

Subsequently" the CLOCK process makes another DEV _ WAITFLAG call and suspends
itself until the flag is set again. Concurrent CP/M provides system calls that allow you to
set and access the internal date and time. In addition, the file system uses the internal time
and date to record when a file is updated, created, or last accessed.

--------------------------[!ID DIGITAL RESEARCH®
1-8

Concurrent CP 1M Programmer's Guide 1.3 Real-time Monitor (RTM)

The P _DELAY system call replaces the typical programmed delay loop for delaying
process execution. P _DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler also sets
this flag. When a process makes a P _DELAY system call, it specifies the number of ticks
for which the operating system is to suspend it from execution. The system maintains the
address of the Process Descriptor for the process on an internal Delay List along with its
current delay tick count. When a DEV _SETFLAG call occurs, setting Flag 1, the tick count
is decremented. When the delay count goes to zero, the system removes the process from
the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance, in
Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per second. The description
of the P _DELAY system call in Section 6 describes how to determine the correct number
of ticks to delay 1 second.

1.4 Memory Module (MEM)

Concurrent CP/M supports an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice, the exact
method that the operating system uses to allocate and free memory is transparent to the
application program. Therefore you should take care to write code independent of the memory
management model; use only the Concurrent CP/M specific memory system calls described
in Section 6.

1.5 Basic Disk Operating System (BDOS)

Except for auxiliary device support, Concurrent CP/M BDOS is an upward-compatible
version of the single-tasking CP/M-86 BDOS. It handles file creation and deletion, facilitates
sequential or random file access, and allocates and frees disk space. In most cases, CP/M-86
programs that make BDOS calls for I/O can run under Concurrent CP/M without modifi­
cation. Concurrent CP/M's BDOS is extended to provide support for multiple virtual consoles
and list devices. In addition, the file system is extended to provide services required in a
multitasking environment. The major extensions to the file system are

• File locking. Files opened under Concurrent CP/M cannot be opened or deleted by
other tasks. This feature prevents accidental conflicts with other tasks.

[!ID DIGITAL RESEARCHa!I --------------------------
1-9

1.5 Basic Disk Operating System (BOOS) Concurrent CP/M Programmer's Guide

• Shared access to files. As a special option, independent users can open the same file
in shared or unlocked mode. Concurrent CP/M supports record locking and unlocking
commands for files opened in this mode and protects files opened in shared mode
from deletion by other tasks.

• Date Stamps. The BDOS optionally supports two time and date stamps, one recording
when a file is updated, and the other recording when the file was created or last
accessed.

• Password Protection. The password protection feature is optional at either the file or
drive level. The operator or applications program assigns disk drive passwords, while
application programs can assign file protection passwords in several modes.

• Extended Error Module. Besides the default error mode, Concurrent CP/M has two
optional error-handling modes that return an error code to the calling process in the
event of an unrecoverable disk error.

1.6 Character 1/0 Module (CIO)

The Character I/O module handles all console and list I/o. Under Concurrent CP/M, every
character I/O device is associated with a data structure called a Console Control Block (CCB)
or a List Control Block (LCB). These data structures reside in the XIOS. The CCB contains
the current owner, status information, line editing variables, and the root of a linked list of
Process Descriptors (PDs) that are waiting for access. More than one process can wait for
access to a single console. These processes are maintained on a linked list of Process
Descriptors in priority order. The LCBs contain similar information about the list devices.
See the Concurrent CP/M System Guide for more information about LCBs and CCBs.

1.7 Virtual Console Screen Management

Virtual console screen management is coordinated by four separate modules: the CIO,
the PIN (Physical INput) and VOUT (Virtual OUTput) processes, and the XIOS. The line
editing associated with the C_READSTR call is performed in the CIo. The PIN process
handles keyboard input for all the virtual consoles; It alSO traps and implements the CTRL-C,
CTRL-S, CTRL-Q, CTRL-P, and CTRL-O functions. The VOUT process spools console
output from processes running on background buffered mode consoles, and handshakes with
the PIN process to display spooled console output when the background console is brought
to the foreground. The XIOS decides which special keys represent the virtual consoles, and
returns a special code from IO_CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when screens are switched. See the Concurrent
CP/M System Guide and the discussion of the IO_SWITCH function.

-------------------------- l!QJDIGITAL RESEARCH!!I
1-10

Concurrent CP/M Programmer's Guide 1.7 Virtual Console Screen Management

The PIN process reads the keyboard by directly calling the XIOS IO_CONIN function.
This is the only place in the operating system IO_CONIN is called. The PIN scans the input
stream from the keyboard for switch screen requests and the special function keystrokes
CTRL-C, CTRL-S, CTRL-Q, CTRL-P, and CTRL-Q. All other keyboard input is written
to the VINQ (Virtual Console INput Queue) associated with the foreground virtual console.
The data in the VINQ becomes a type-ahead buffer for each virtual console, and is returned
to the process attached to that console as it performs console input.

When PIN sees a CTRL-C it calls P _ABORT to abort the process attached to the virtual
console, flushes the type-ahead buffer in the VINQ, turns off CTRL-S, and performs a
DRV _RESET call for each logged-in drive. The P _ABORT call succeeds when the Process
Keep flag is not on, saving the Terminal Message Processes (refer to P _CREATE for
information on the process descriptor). The DRV _RESET calls affect only the removable
media drives, as specified in the CKS field of the Disk Parameter Blocks in the XIOS (refer
to the Concurrent CP/M System Guide for further details on Disk Parameter Blocks).

CTRL-S stops any output to the screen. CTRL-S stays set when a virtual console is
switched to the background.

CTRL-O discards any console output to the virtual console. CTRL-O is turned off when
any other key is subsequently pressed, except for the keys representing the virtual consoles.

CTRL-P echoes console output to the default list device specified in the LIST field of the
process descriptor attached to the virtual console. If the list device is attached to a process,
a PRINTER BUSY message appears.

All of the above control keys can be disabled by the C_MODE call. When one of the
above control characters is disabled with C_MODE or when the process owning the virtual
console is using the C_RAWIO call, the PIN does not act on the control character but instead
writes it to the VINQ. It is thus possible to read any of the above control characters from
an application program. These control keys are discussed in depth in the Concurrent CP/M
User's Guide.

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS) module,
but it is extended in several ways. Primitive operations, such as console 110, are modified
to support multiple virtual consoles. Several new primitive system calls, such as
DEV _POLL, support Concurrent CP/M's additional features, including elimination of wait
loops for real-time 110 operations.

[!QJ DIGITAL RESEARCHaII -------------------------
1-11

1.9 Terminal Message Processes (TMP) Concurrent CP/M Programmer's Guide

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M Terminal Message Processes (TMPs) are resident system processes
that accept command lines from the virtual consoles and call the Command Line Interpreter
(CLI) to execute them. The TMP prints the prompt on the virtual consoles.

Each virtual console has an independent TMP defining that console's environment, includ­
ing default disk, user number, printer, and console.

1.10 Transient Programs

Under Concurrent CP/M, a transient program is one that is not system-resident. The
system must load such programs from disk into available memory each time they execute.
The command file of a transient program is identified by the filetype CMD. When you enter.
a command at the console, the operating system searches on disk for the appropriate CMD
file, loads it, and initiates it. Concurrent CP/M supports three different execution models
for transient programs: the 8080 Model, the Small Model, and the Compact Model.
Sections 4.1.1 through 4.1.3 describe these models in detail.

1.11 System Call Calling Conventions

When a Concurrent CP/M process makes a system call, it loads values into the registers
shown in Table 1-1 and initiates Interrupt 224 (via the INT 224 instruction), reserved by
the Intel Corporation for this purpose.

-------------------------- [!IDOIGITAL RESEARCH(J!)
1-12

Concurrent CP/M Programmer's Guide 1.11 System Call Calling Conventions

Table 1-1. Registers Used by System Calls

ENTRY PARAMETERS

Register CL: System Call Number
DL: Byte Parameter

or
DX: VVord Parameter

or
DX: Address - Offset
DS: Address - Segment

RETURN VALUES

Register AL: Byte Return
or

AX: VVord Return
or

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
ex: Error Code

Concurrent CP/M preserves the contents of registers SI, DI, BP, SP, SS, DS, and CS
through the operating system calls. The ES register is preserved when it is not used to hold
a return segment value. Error codes returned in CX are shown in Table 6-5, CX Error Codes.

1.12 SYSTAT: System Status

The SYST A T utility is a development tool that shows the internal state of Concurrent
CP / M. SYST A T describes memory allocation, current processes, system queue activity,
and many informative parameters associated with these system data structures. Further­
more, SYSTAT presents two views: either a static snapshot of system activity, or a
continuous, real-time window into Concurrent CP / M.

I!ID DIGITAL RESEARCH'" -------------------------
1-13

1.12 SYST AT: System Status Concurrent CP 1M Programmer's Guide

You can specify SYSTAT in one of two modes. If you know which display you want, you
can specify it in the invocation, using an option shown in the menu below. If you do not
specify an option, select a display from this menu by typing

A>SYSTAT <cr>

The screen clears and the main menu appears:

, Which Option?

H(elp)
M(emory)
O(verview)
P(rocesses - All)
Q(ueues)
U(ser Processes)
C(onsoles)
E(xit)

->-

Press the appropriate letter to obtain a display.

When you select H(elp), the HELP file demonstrates the proper syntax and available
options:

To use SYSTAT with the menu: At the system prompt type SYSTAT <CR>

To use SYSTAT without the menu: At the system prompt type the command

SYSTAT [option] -or­
SYSTAT [option C] -or­
SYSTAT [option C ##]

------------------------- I!IDDIGITAL RESEARCH$
1-14

Concurrent CP 1M Programmer's Guide 1.12 SYSTAT: System Status

-where-
-> option =

M(emory) P(rocesses) O(verview) C(onso1es)
U(ser Processes) Q(ueues) H(elp)

-> C = Continuous display
~ = 1-2 digits indicating the period,

in seconds, between display refreshes.

Type any letter to return to the menu.

The M, P, Q, and U and C options ask you if you prefer a continuous display. If you
type y, Concurrent CP/M asks for a time interval, in seconds, and then displays a real-time
window of information. If you type n, a static snapshot of the requested information appears.
In either case, press any key to return t9 the menu.

The M(emory) option displays all memory potentially' available to you, but it does not
display restricted memory. The partitions are listed in memory-address order. Length param­
eter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters, as specified at
system generation time. The display is not continuous.

The P(rocess) option displays all system processes and the resources they are using.

The Q(ueues) option displays all system queues, listing queue readers, writers, and owners.

The U(ser Processes) option displays only user-initiated processes in the same format as
the P(rocess) option.

The C(onsoles) option displays console information; that is, background, foreground,
buffered, suspended, purging, CTRL-Q, and so on.

The E(xit) option returns you to system level from the menu, as does CTRL-C.

End of Section 1

[Q] DIGITAL RESEARCH$ --------------------------
1-15

Section 2
The Concurrent CP/M File System

2.1 File System Overview

The Basic Disk Operating System (BDOS) file system supports from one to sixteen logical
drives. Each logical drive has two regions: a directory area and a data area. The directory
area defines the files that exist on the drive and identifies the data area space that belongs
to each file. The data area contains the file data defined by the directory.

The directory area consists of sixteen logically independent directories. These directories
are identified by user numbers 0 through 15. During execution, a process runs with a system
parameter called the user number set to a single value. The user number specifies the current
active directories for all drives on the system. For example, the Concurrent CP/M DIR
utility displays only files within a directory selected by the current user number.

The file system automatically allocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a process
deletes or truncates a file. If no directory or data space is available for a requested operation,
the BDOS returns an error code to the calling process. The allocation and retrieval of
directory and data space is transparent to the calling process. As a result, you need not be
concerned with directory and drive organization when using the file system calls.

An eight -character filename and a three-character filetype field identify each file in a
directory. Together, these fields must be unique for each file within a directory. However,
files with the same filename and filetype can reside in different user directories without
conflict. Processes can also assign an eight-character password to a file to protect it from
unauthorized access.

i!IDDIGITAL RESEARCH<I!l --------------------------
2-1

2.1 File System Overview Concurrent CP/M Programmer's Guide

All system calls that involve file operations specify the requested file by filename and
filetype. For some system calls, multiple files can be specified by a technique called ambig­
uous reference. This technique uses question marks and asterisks as wildcard characters to
give the file system a pattern to match as it searches a directory.

The file system supports two categories of system calls: file-access system calls and drive­
related system calls. The file-access system calls have mnemonics beginning with F_, and
the drive-related system calls have mnemonics beginning with DRV _. The next two sections
introduce the file system calls.

2.1.1 File-access System Calls

Most of the file-access system calls can be divided into two groups: system calls that
operate on files within a directory and system calls that operate on records within a file.
However, the file-access category also includes several miscellaneous functions that either
affect the execution of other file-access system calls or are commonly used with them.

System calls in the first file-access group include calls to search for one or more files,
delete one or more files, rename or truncate a file, set file attributes, assign a password to
a file, and compute the size of a file. Also included in this group are system calls to open
a file, to create a file, and to close a file.

The second file-access group includes system calls to read or write records to a file, either
sequentially or randomly, by record position. BDOS read and write system calls transfer
data in 128-byte units, which is the basic record size of the file system. This group also
includes system calls to lock and unlock records and thereby allows mUltiple processes to
have coordinated access to records within a commonly accessed file.

Before making read, write, lock, or unlock system calls for a file, you must first open or
create the file. Creating a file has the side effect of opening the file for record access. In
addition, because Concurrent CP/M supports three different modes of opening.files (Locked,
Unlocked, and Read-Only), there can be other restrictions on system calls in this group that
are related to the open mode. For example, you cannot write to a file that you have opened
in Read-Only mode.

After a process has opened a file, access to the file by other processes is restricted until
the file is closed. Again, the exact nature of the restrictions depends on the open mode.
However, in all cases the file system does not allow a process to delete, rename, or change
a file's attributes if another process has opened the file. Thus, the F __ CLOSE system call
performs two steps to terminate record access to a file. It permanently records the current
status of the file in the directory and removes the open-file restrictions limiting access to
the file by other processes.

--------------------------- I!IDDIGITAL RESEARCHI!!I

2-2

Concurrent CP/M Programmer's Guide 2.1 File System Overview

The miscellaneous file-access system calls include calls to set the current user number,
set the DMA address, parse an ASCII file specification and set a default password. This
group also includes system calls to set the BDOS Multisector Count and the BDOS Error
Mode. The BDOS Multisector count determines the number of 128-byte records to be
processed by the read, write, lock, and unlock system calls. The Multisector count can range
from 1 to 128; the default value is one. The BDOS Error Mode determines whether the file
system intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive's free space,
interrogate drive status, and assign a directory label to a drive. A drive's directory label
controls whether the file system enforces file password protection for files in the directory.
It also specifies whether the file system is to perform date and time stamping of files on the
drive.

This category also includes system calls to reset specified drives and to control whether
other processes can reset particular drives. When a drive is reset, the next operation on the
drive reactivates it by logging it in. Logging in a drive initializes the drive for directory and
file operations. The purpose of a drive reset call is to prepare for a media change on drives
that support removable media. Under Concurrent CP/M, drive reset calls are conditional.
A process cannot reset a drive if another process has a file open on the drive.

The following table summarizes the BDOS file system calls.

Mnemonic

DRV_ACCESS
DRV _ALLOCVEC
DRV _ALLRESET
DRV_DPB
DRV_GET
DRV_GETLABEL
DRV_FLUSH
DR V_FREE
DRV _LOGINVEC
DRV_RESET
DRV_ROVEC
DRV_SETLABEL

Table 2-1. File System Calls

Description

Access Drive
Get Drive Allocation Vector
Reset All Drives
Get Disk Parameter Block Address
Get Default Drive
Get Directory Label
Flush Data Buffers
Free Drive
Return Logged In Vector
Reset Drive
Return RIO Vector
Set Directory Label

DIGITALRESEARCH@ ----......;..---------------------

2-3

2.1 File System Overview

Mnemonic

DRV_SET
DRV_SETRO
DRV_SPACE

F_ATTRIB
F_CLOSE
F_DELETE
F_DMASEG
F_DMAGET
F_DMAOFF
F_ERRMODE
F_LOCK
F_MAKE
F_MULTISEC
F_OPEN
F_PARSE
F_PASSWD
F_RANDREC
F_READ
F_READRAND
F_RENAME
F_SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_UNLOCK
F_USERNUM
F_WRITE
F _ WRITERAND
F _ WRITEXFCB
F_WRITEZF

Concurrent CP/M Programmer's Guide

Table 2·1. (continued)

Description

Set (Select) Drive
Set Drive To Read-Only
Get Free Space On Drive

Set File's Attributes
Close File
Delete File
Set DMA Segment
Get DMA Address
Set DMA Offset
Set BDOS Error Mode
Lock Record In File
Make A New File
Set BDOS Multisector Count
Open File
Parse Filename
Set Default Password
Return Record Number For File Read-Write
Read Record Sequentially From File
Read Random Record From File
Rename File
Compute File Size
Directory Search First
Directory Search Next
Return File Time/Date Stamps Password Mode
Truncate File
Unlock Record In File
Set/Get Directory User Number
Write Record Sequentially Into File
Write Random Record Into File
Write File's XFCB
Write Random Record With Zero Fill

------------------------- [!IDDIGITAL RESEARCH®
2-4

Concurrent CP/M Programmer's Guide 2.1 File System Overview

The following sections contain information on important topics related to the file system.
Read these sections carefully before attempting to use the system calls described individually
in Section 6.

2.2 File Naming Conventions

Under Concurrent CP/M, a file specification consists of four parts: a drive specifier, the
filename field, the filetype field, and the file password field. The general format for a com­
mand line file specification is shown below:

{d:} filename {.typ} {;password}

The drive specifier field specifies the drive where the file is located. The filename and filetype
fields identify the file. The password field specifies the password if a file is password pro­
tected.

The drive, type, and password fields are optional, and delimiters are required only
when specifying their associated fields. The drive specifier can be assigned a letter from A
to P, where the actual drive letters supported on a given system are determined by the
XIOS implementation. When the drive letter is not specified, the current default drive is
assumed.

The filename and password fields can contain one to eight non-delimiter characters. The
filetype field can contain one to three non-delimiter characters. All three fields are left justified
and padded with blanks, if necessary. Omitting the optiona] type or password fields implies
a field specification of all blanks.

I!IDDIGITAL RESEARCH® --------------------------

2-5

2.2 File Naming Conventions Concurrent CP/M Programmer's Guide

Under Concurrent CP/M, the P _CLI system call interprets ASCII command lines and
loads programs. The P _CLI system call makes F _PARSE system calls to parse file specifi­
cations from a command line. F _PARSE recognizes certain ASCII characters as delimiters
when it parses a file specification. These characters are shown in Table 2-2.

Table 2-2. Valid Filename Delimiters

ASCII Hex Equivalent

null OOOH
space 020H
return OODH

tab 009H
03AH
02EH
03BH
03DH
02CH
05BH
05DH

< 03CH
> 03EH

I 07CH

The F _PARSE system call also excludes all control characters from the file specification
fields and translates all lowercase letters to uppercase.

Avoid using parentheses and the backslash character, \, in the filename and filetype fields
because they are commonly used delimiters. Use asterisk and question mark characters, *
and ?, only to make an ambiguous file reference. When F _PARSE encounters an asterisk in
a filename or filetype field, it pads the remainder of the field with question marks. For
example, a filename of X* . * is parsed to X??????? . ??? The BDOS F _SFIRST, F _SNEXT,
and F _DELETE system calls match a question mark in the filename or filetype fields to the
corresponding position of any directory entry belonging to the current user number. Thus, a
search operation for X??????? ??? finds all the files in the current user directory beginning
in X. Most other file-access BDOS system calls treat the presence of a question mark in the
filename or filetype fields as an error.

--------------------------I!ID DIGITAL RESEARCH®
2-6

Concurrent CP/M Programmer's Guide 2.2 File Naming Conventions

It is not mandatory to follow the file naming conventions of Concurrent CP/M when you
create or rename a file with BDOS system calls directly from an application program. How­
ever, the conventions must be used if the file is to be accessed from a command line. For
example, the P _CLI system call cannot locate a command file in the directory if its filename
or filetype field contains a lowercase letter.

As a general rule, the filetype field names the generic category of a particular file, and the
filename field distinguishes individual files within each category. Although they are generally
arbitrary, Table 2-3 lists some of the generic filetype categories that have been established.

Table 2-3. Filetype Conventions

Filetype Description

A86 8086 Assembler Source
ASM 8080 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File
C C Source File
CMD 8086 Command File
COM 8080 Command File
CON CCP/M Modules
DAT Data File
HEX ASM80 HEX File
H86 ASM86 HEX File
INT Intermediate File
LIB Library File
L86 Library File
LST List File
PLI PL/I Source File
PRL Page Relocatable
REL Relocatable Module
RSP Resident System Process
SPR System Page Relocatable
SUB SUBMIT File
SYM Symbol File
SYS System File
$$$ Temporary File

[!QJ DIGITAL RESEARCH® -------------------------

2-7

2.3 Disk Drive and File Organization Concurrent CP/M Programmer's Guide

2.3 Disk Drive and File Organization

The file system can support up to sixteen logical drives, identified by the letters A through
P. A logical drive usually corresponds to a physical drive on the system, particularly for
physical drives that support removable media such as floppy disks .. High-capacity hard disks,
however, are commonly divided into multiple logical drives. If a disk contains system tracks
reserved for the boot loader, these tracks precede the tracks of the disk mapped by the logical
drive. In this manual, references to drives mean logical drives, unless explicitly stated otherwise.

The maximum file size supported on a drive is 32 megabytes. The maximum capacity of
a drive is determined by the data block size specified for the drive in the XIOS. The data
block size is the basic unit in which the BDOS allocates space to files. Table 2-4 displays
the relationship between data block size and total drive capacity.

Table 2-4. Drive Capacity

Data Block Size

lK
2K
4K
8K

16K

Maximum Drive Capacity

256 kilobytes
64 megabytes

128 megabytes
256 megabytes
512 megabytes

Each drive is divided into two regions: a directory area and a data ar~a. The directory area
contains from one to sixteen blocks located at the beginning of the drive. The actual number
is set in the XIOS. Directory entries residing in this area define the files that exist on the
drive. In addition, the directory entries belonging to· a file identify the data blocks in the
drive's data area that contain the file's records. The directory area is"logically subdivided into
sixteen indepem!ent directories identified as user 0 through 15. Each independent directory
shares the actual directory area on the drive.

-------------------------- [!IDDIGITAL RESEARCH®

2-8

Concurrent CP/M Programmer's Guide 2.3 Disk Drive and File Organization

Each disk file may consist of a set of up to 262,144 (40000H) 128-byte records. Each
record of a file is identified by its position in the file. This position is called the record's
Random Record Number. If a file is created sequentially, the first record has a position of
zero, while the last record has a position one less than the number of records in the file. Such
a file can be read sequentially, beginning at record zero, or randomly by record position.
Conversely, if a file is created randomly, records are added to the file by specified position.
A file created in this way is called sparse if positions exist within the file where a record has
not been written.

The BDOS automatically allocates data blocks to a file to contain the file's records on the
basis of the record positions consumed. Thus, a sparse file that contains two records, one at
position zero, the other at position 262,143, consumes only two data blocks in the data area.
Sparse files can be created and accessed only randomly, not sequentially. Note that any data
block allocated to a file is permanently allocated until the file is deleted or truncated. These
are the only mechanisms supported by the BDOS for releasing data blocks belonging to a
file.

Source files under Concurrent CP/M are treated as a sequence of ASCII characters, where
each line of the source file is followed by a carriage return/line-feed sequence, ODH followed
by OAH. Thus, a single 128-byte record could contain several lines of source text. The end
of an ASCII file is denoted by a CTRL-Z character (lAH), or a real end-of-file, returned by
the BDOS read system call. Note that these source file conventions are not supported in the
file system directly but are followed by Concurrent CP/M utilities such as TYPE and
ASM-86@). In addition, CTRL-Z characters embedded within other types of files such as
CMD files do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important channel
for information exchange between a process and BDOS file-access system calls. A process
initializes an FCB to specify the drive location, fileI.1ame and filetype fields, and other infor­
mation that is required to make a file-access call. For example, in an F _OPEN system call,
the FCB specifies the name and location of the file to be opened. In addition, the file system
uses the FCB to maintain the current state and record position of an open file. Some file­
access system calls use special fields within the FCB for invoking options. Other file-access
system calls use the FCB to return data to the calling program. All BDOS random I/O system
calls require the calling process to specify the Random Record Number in a 3-byte field at
the end of the FCB.

[!ID DIGITAL RESEARCH® --------------------------
2-9

2.4 File Control Block Definition Concurrent CP/M Programmer's Guide

When a process makes a BDOS file-access system call, it passes an FCB address to the
BDOS. This address has two 16-bit components: register DX, which contains the offset, and
register DS, which contains the segment. The length of the FCB data area depends on the
BDOS system call. For most system calls, the minimum length is 33 bytes. For the
F _READ RAND, F _ WRITERAND, F _ WRITEZF, F _LOCK, F _UNLOCK, F _RAND
REC, F_SIZE, and F_TRUNCATE system calls, the minimum FCB length is 36 bytes.
When the F_OPEN or F_MAKE system calls open a file in Unlocked mode, the FCB must
be at least 35 bytes long. Figure 2-1 displays the FCB data structure in two formats.

00 01 ... 09 ... 12 13 14 15 16 ... 32 33 34 35

1-+-+-+-+-+-+ OOH OR F1 F2 F3 F4 F5 F6 F7 ...

08H F8 T1 >2 >3 1 EX 1 cs 1 RS 1 RC

10H 00 01 02 03 04 05 06 07 ... +--4--+--+--4--+ --+
18H 08 09 010 011 012 013 014 015

20H CR 1 RO 1 R1 1~-4-+-"""

Figure 2·1. FCB . File Control Block

-------------------------- [l]J DIGITAL RESEARCH®
2-10

Concurrent CP/M Programmer's Guide 2.4 File Control Block Definition

The fields in the FCB are defined as follows:

Field

DR

Fl. .. F8

Tl,T2,T3

EX

CS

RS

RC

Table 2-5. FeB Field Definitions

Definitions

Drive Code (0-16).

o = > use default drive for file
1 = > auto disk select drive A
2 = > auto disk select drive B

16 = > auto disk select drive P

Contain the filename in ASCII uppercase, with high bit = O. Fl', ... ,
F8' denote the high-order bit of these positions and are called attribute
bits.

Contain the filetype in ASCII uppercase, with high bit = O. Tl', T2',
and T3' denote the high bit of these positions and are also called
attribute bits.

Tl' 1 = > Read-Only file,
T2' 1 = > System file,
T3' 1 = > File has been archived.

Contains the current extent number. This field is initialized to 0 by the
calling process, but it can range from 0 to 31 during file I/o.

Contains the FCB checksum value for open FCBs.

Reserved for internal system use

Record count for extent EX. This field takes on values from 0 to 255
(values greater than 128 imply a record count of 128).

i!IDDIGITAL RESEARCH® -------------------------
2-11

2.4 File Control Block Definition Concurrent CP/M Programmer's Guide

Field

DO ... D15

CR

RO,R1,R2

Table 2-5. (continued)

Definitions

Normally filled in by Concurrent CP/M and reserved for system use.
Also used to specify the new filename and filetype with the F_RENAME
system call.

Current record to read or write in a sequential file operation. This field
is normally set to zero by the calling process when a file is opened or
created.

Optional Random Record Number in the range 0-262,143 (0 - 3FFFFH).
RO, R1, R2 constitute an 18-bit value with low byte RO, middle byte
R1, and high byte R2.

Note: The 2-byte File ID is returned in bytes RO and R1 of the FCB when a file is suc­
cessfully opened in Unlocked mode (refer to Section 2.10).

2.4.1 FeB Initialization and Usage

The calling process must initialize bytes ° through 11 of the referenced FCB before
making the following file-access system calls: F_ATTRIB, F_DELETE, F_MAKE,
F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F_SNEXT, F_TIMEDATE, F_TRUN­
CATE, and F_ WRITEXFCB. Normally, the DR field specified the drive location of the
file, and the name and type fields specify the name of the file. You must also set the EX
field of the FCB before calling F _MAKE, F_OPEN, F _SFIRST, and F _ WRITEXFCB.
Except for the F _ WRITEXFCB system call, you can usually set this field to zero. Note
that the F_RENAME system call requires the calling process to place the new filename
and filetype in bytes D 1 through D 11.

The remaining file-access calls that use FCBs require an FCB that has been initialized
by a prior file-access system call. For example, the F _SNEXT system call expects an FCB
initialized by a prior F_SFIRST call. In addition, the F_LOCK, F_READ, F_READ­
RAND, F_UNLOCK, F_WRITERAND, and F_WRITEZF system calls require an
FCB that has been activated for record operations. Under Concurrent CP/M, only the
F_OPEN and F_MAKE system calls can activate an FCB.

-------------------------I!ID DIGITAL RESEARCH~
2-12

Concurrent CP/M Programmer's Guide 2.4 File Control Block Definition

If you intend to process a file sequentially from the beginning, using the F _READ and
F _WRITE system calls, you must set the CR field to zero before you make your first read
or write call. In addition, when you make an F _LOCK, F _READRAND, F _UNLOCK,
F _ WRITERAND, or F _ WRITEZF system call, you must set bytes RO through R2 of the
FCB to the requested Random Record Number. The F_TRUNCATE system call also
requires the FCB random record field to be initialized.

The F _SFIRST, F _SNEXT, and F _DELETE system calls support multiple or ambiguous
reference. In general, a question mark in the filename, filetype, or EX fields matches all
values in the corresponding positions of directory entries during a directory search operation.
File directory entries maintained in the directory area of each disk drive have the same format
as FCBs except for byte 0, which contains the file's user number, and bytes 32 through 35,
which are not present. The search system calls, F _SFIRST and F _SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all directory entries on
the disk regardless of user number, including empty entries. A directory FCB that begins
with E5H is an empty or erased directory entry.

When the F_OPEN and F_MAKE system calls activate an FCB for record operations,
they copy the FCB's matching directory entry from disk, excluding byte 0, into the FCB in
memory. In addition, these system calls compute and store a checksum value in the CS field
of the FCB. During subsequent record operations on the file, the file system uses this check­
sum field to verify that the FCB has not been modified by the calling process in an illegal
way. Thus, all read, write, lock, and unlock operations on a file must specify a valid activated
FCB; otherwise, the BDOS returns a checksum error. The BDOS performs this checking to
protect the integrity of the file system. In general, you should not modify bytes ° through 31
of an open FCB, except to set interface attributes (see Section 2.4.3). Other restrictions
related to activated FCBs are discussed in Section 2.10.

The BDOS updates the memory copy of the FCB during file processing to maintain the
current position within the file. During file write operations, the BDOS also updates the
memory copy of the FCB to record the allocation of data blocks to the file. At the termination
of file processing, the F_CLOSE system call permanently records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during write
operations in the disk directory until the calling process issues an F_CLOSE call. Therefore,
a process that creates or modifies files must close the files at the termination of file processing.
Otherwise, data might be lost.

[i]] DIGITAL RESEARCH$ --------------------------
2-13

2.4 File Control Block Definition Concurrent CP/M Programmer's Guide

2.4.2 File Attributes

The high-order bits of the FCB filename (FI',oo.,F8') and filetype fields (Tl',T2',T3') are
called attribute bits. Attribute bits are I-bit Boolean fields, where I indicates on or true, and
o indicates off or false. Attribute bits indicate two kinds of attributes within the file system:
file attributes and interface attributes. The file attributes are described in this section. Section
2.4.3 describes interface attributes.

The file attribute bits, FI ',oo.,F4' and TI', T2', T3', indicate that a file has a defined
attribute. These bits are recorded in a file's directory FCBs. File attributes can be set or reset
only by the F_ATTRIB system call. When the F_MAKE system call creates a file, it
initializes all file attributes to zero. A process can interrogate file attributes in an FCB
activated by theF_OPEN system call, or in directory FCBs returned by the F_SFIRST and
F_SNEXT system calls.

Note: The file system ignores the file attribute bits when it attempts to locate a file ih the
directory.

-------------------------l!ID DIGITAL RESEARCH®
2-14

Concurrent CP/M Programmer's Guide 2.4 File Control Block Definition

The file system defines file attributes Tl ',T2',and T3' as follows:

Table 2-6. File Attribute Definitions

Attribute Definition

Tl ': Read-Only Attribute

This attribute, if set, prevents write operations to a file.

T2': System Attribute

This attribute, if set, identifies the file as a Concurrent CP/M system
file. The Concurrent CP/M DIR utility does not usually display Sys-
tem files. In addition, user-zero system files can be accessed on a
Read-Only basis from other user numbers.

T3': Archive Attribute

User-written archive programs use this attribute. When an archive
program copies a file to back-up storage, it sets the archive attribute
of the copied files. The file system automatically resets the archive
attribute of a directory entry when writing to the directory entry's
region of a file. An archive program can test this attribute in each of
the file's directory entries using the F _SFIRST and F _SNEXT sys-
tem calls. If all directory entries have the archive attribute set, the
file has not been modified since the previous archive. The Concurrent
CP/M PIP utility supports file archiving.

File attributes Fl' through F4' of command files are defined as Compatibility Attributes
under Concurrent CP/M (see Section 2.12). However, for all other files, attributes Fl' through
F4' are available for definition by the user.

IIID DIGITAL RESEARCH® --------------------------
2-15

2.4 File Control Block Definition Concurrent CP/M Programmer's Guide

2.4.3 Interface Attributes

The interface attributes are FS', F6', FT, and FS'. These attributes cannot be used as file
attributes. Interface attributes FS' and F6' request options for BDOS file-access system calls.
Table 2-7 lists the FS' and F6' attribute definitions for the system calls that define interface
attributes. Note that the FS' = 0 and F6' = 0 definitions are not listed if their definition
simply implies the absence of the associated option.

Table 2-7. BDOS Interface Attributes FS' and F6'

System Call

F_TRUNCATE
F_UNLOCK

Attribute

FS' = 1 : Maintain extended file lock
F6' 1 : Set file byte count

FS' 1 : Partial Close
F6' 1 : Extend file lock

FS' 1 : Delete file XFCBs only and
maintain extended file lock

FS' = 0 : Exclusive Lock
FS' = 1 : Shared Lock
F6' = 0 : Lock existing records only
F6' = 1 : Lock logical records

FS' = 0: Open in Locked mode
FS' = 1 : Open in Unlocked mode
F6' = 1 : Assign password to file

FS' = 0 : Open in Locked mode
FS' = 1 : Open in Unlocked mode
F6' = 0 : Open in mode specified by FS'
F6' = 1 : Open in Read-Only mode

FS' = 1 : Maintain extended file lock

F5" = 1 : Maintain extended file lock
FS' = 1 : Unlock all locked records

-------------------------i!ID DIGITAL RESEARCH~
2-16

Concurrent CP/M Programmer's Guide 2.4 File Control Block Definition

Section 6 details the above interface attribute definitions for each of the preceding system
calls. Note that the BDOS always resets interface attributes F5' and F6' before returning to
the calling process. Interface attributes FT and FS' are reserved for internal use by the file
system.

2.5 User Number Conventions

The Concurrent CP/M user facility divides each drive directory into sixteen logically
independent directories, designated as user 0 through user 15. Physically, all user directories
share the directory area of a drive. In most other aspects, however, they are independent.
For example, files with the same name can exist on different user numbers of the same drive
with no conflict. However, a single file cannot extend across more than one user number.

Only one user number is active for a specific process at one time. For this process, the
current user number applies to all drives on the system. Furthermore, the FCB format does
not contain a field that can override the current user number. As a result, all file and directory
operations reference only directory entries associated with the current user nUinber.

However, it is possible for a process to access files on different user numbers by setting
the user number to the file's user number with the F_USERNUM system call before issuing
the BDOS call. However, if a process attempts to read or write to a file under a user number
different from the user number that was active when the file was opened, the file system
returns an FCB checksum error.

When the P _CLI system call initiates a transient process or Resident System Process
(described in detail in Section 5), it sets the user number to the default value established by
the-process issuing the P _CLI system call. The sending process is usually the TMP. How­
ever, the sending process can be another process, such as a transient program that makes
a P _CHAIN call. A transient process can change its user number by making an
F_USERNUM call. Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a transient process that has changed
its user number terminates, the TMP restores and displays the original user number in the
command line prompt when it regains control.

fi]] DIGITAL RESEARCH® ---------------------------

2-17

2.5 User Number Conventions Concurrent CP/M Programmer's Guide

User 0 has special properties under Concurrent CP/M. The file system automatically opens
files listed under user zero but requested under another user number if the file is not present
under the current user number, and if the file on user zero has the system attribute (T2 ')
set. This convention allows utilities, including overlays and any other commonly accessed
files, to reside on user zero, but remain available to other users. This eliminates the need
to copy commonly used utilities to all user numbers on a directory, and gives the Concurrent
CP/M manager control over which files are directly accessible to the different user areas.

2.6 Directory Labels and XFCBs

The file system includes three special types of FCBs: the directory label and the XFCB,
described in this section, and the SFCB, described in detail in Section 2.8.

The directory label specifies for its drive whether password support is to be activated,
and if date and time stamping for files is to be performed. The format of the directory label
is shown below in Figure 2-2.

lOR 1 Name Type I DL I 81 182 1 RC I Password T81 T82

00 01 ... 09 ... 12131415 16 ... 25 .. 29 ..

Figure 2-2. Directory Label Format

--------------------------l!ID DIGITAL RESEARCHI!l

2-18

Concurrent CP 1M Programmer's Guide 2.6 Directory Labels and XFCBs

Table 2-8. Directory Label Field Definitions

Field

DR

Name

Type

DL

S1,S2,RC

Password

TS1

TS2

Definition

drive code (0-16)

directory label name

directory label type

directory label data byte

Bit 7 - enable password support
Bit 6 - perform access time stamping
Bit 5 - perform update time stamping
Bit 4 - perform create time stamping
Bit 0 - Directory Label exists
(Bit references are right to left, relative to 0)

reserved for system use

8-byte password field (encrypted)

4-byte creation time stamp field

4-byte update time stamp field

Only one directory label can exist in a drive's directory area. The directory label name
and type fields are not used to search for a directory label; they can be used to identify a
disk.

You can use the DRV _SETLABEL system call to create a directory label or update its
fields. This system call can also assign a password to a directory label. The directory label
password, if assigned, cannot be circumvented, whereas file password protection on a drive
is an option controlled by the directory label. Thus, access to the directory label password
provides the ability to bypass password protection on the drive.

[QJ DIGITAL RESEARCH~ --------------------------

2-19

2.6 Directory Labels and XFCBs Concurrent CP 1M Programmer's Guide

Note: The file system provides no specific system call to read the directory label FCB
directly. However, you can read the directory label data byte directly with the BDOS system
call, DRV _GETLABEL. In addition, you can use the BDOS search system calls F _SFIRST
and F _SNEXT to find a directory label. You can identify the directory label by a value of
32 (020H) in byte 0 of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with a file in the directory.
If present, it contains the file's password and password mode. The format of the XFCB is
shown below in Figure 2-3.

Password

00 01 ... 09 ... 12 13 14 15 16 25. 29.

Figure 2-3. XFCB - Extended File Control Block

-------------------------- l!IDDIGITAL RESEARCH®

2-20

Concurrent CP 1M Programmer's Guide 2.6 Directory Labels and XFCBs

The fields in the XFCB are defined in Table 2-9:

Field

DR

File

Type

PM

SI,S2,RC

Password

Reserved

Table 2-9. XFCB Field Definitions

Definition

drive code (0-16)

filename field

filetype field

password mode

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode
(Bit references are right to left, relative to 0)

reserved for system use

8-byte password field (encrypted)

8-byte area reserved for future use

An XFCB can be created only on a drive that has a directory label, and only if the directory
label enables password protection. For drives in this state, there are two ways to create an
XFCB for a file: with the F_MAKE system call or the F_ WRITEXFCB system call. The
F _MAKE system call creates an XFCB if the calling process requests that a password be
assigned to the created file. The F _ WRITEXFCB system call creates an XFCB when it is
called to assign a password to an existing file. You can identify an XFCB in the directory by
a value of 16 (010H) + N in byte 0 of the FCB, where N equals the user number.

[j]] DIGITAL RESEARCH® ----------~--------------
2-21

2.7 File Passwords Concurrent CP/M Programmer's Guide

2.7 File Passwords

There are two ways to assign passwords to a file: by the F _MAKE system call or by the
F_ WRITEXFCB system call. You can also change a file's password or password mode with
the F _ WRITEXFCB system call if you can supply the original password. Note that you
cannot change a file's password or password mode if password protection for the drive is
disabled by the directory label. However. even if you cannot supply a file's password, you
can delete a file's XFCB, thereby removing its password protection, if password protection
is disabled on the drive.

The Concurrent CP/M BDOS provides password protection in one of three modes when
password support is enable by the directory label. Table 2-10 shows the difference in access
level allowed to BDOS system calls when the password is not supplied.

Table 2-10. Password Protection Modes

Mode Access Level Allowed Without Password

(1) Read Cannot be read, modified, or deleted.

(2) Write Can be read, but not modified or deleted.

(3) Delete Can be read and modified, but not deleted.

If a file is password protected in Read mode, a process must supply the password to open
the file. Processes cannot write to a file protected in Write mode without the password. A
file protected in Delete mode allows read and write access, but a process must specify the
password to delete or truncate the file, rename the file, or to modify the file's attributes.
Thus, password protection in mode 1 implies mode 2 and 3 protection, and mode 2 protection
implies mode 3 protection. All three modes require the user to specify the password to delete
or truncate the file, rename the file, or to modify the file's attributes.

-------------------------- [lID DIGITAL RESEARCHilli

2-22

Concurrent CP/M Programmer's Guide 2.7 File Passwords

If a process supplies the correct password or the directory label disables password protec­
tion, then access to the BDOS system calls is the same as for a file that is not password­
protected. In addition, the F_SFIRST and F_SNEXT system calls are not affected by file
passwords. The following BDOS system calls test for passwords.

DRV_SETLABEL
F_ATTRIB
F_DELETE
F_OPEN
F_RENAME
F _ WRITEXFCB
F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted form.
To make a BDOS system call for a file that requires a password, a process must place the
password in the first eight bytes of the current DMA, or make it the default password with
the F _PASSWD system call, before making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
inherit the default password of their parent process. You can set a given TMP's default
password using the SET command; all programs loaded by this TMP inherit the same default
password.

I!Q] DIGITAL RESEARCHI!ll --------------------------

2-23

2.8 File Date and Time Stamps: SFCBs Concurrent CP/M Programmer's Guide

2.8 File Date and Time Stamps: SFCBs

The Concurrent CP/M file system uses a special type of directory entry called an SFCB
to record date and time stamps for files. When a directory has been initialized for date and
time stamping, SFCBs reside in every fourth position of the directory. Each SFCB maintains
the date and time stamps for the previous three directory entries, as shown in Figure 2-4.

FCB 1

FCB 2

FCB3

21 STAMPS STAMPS STAMPS //
FOR FCB 1 FOR FCB 2 FOR FCB 3 //

BYTE #: 0 11 21 31 32

Figure 2-4. Directory Record with SFCB

This figure shows a 128-byte directory record containing an SFCB. Directory records have
four directory entries, each 32 bytes long; SFCBs always occupy the last 32-byte entry in
the directory record.

The SFCB itself contains five fields. The first field is a single byte containing the value
021H; this field identifies the SFCB within the directory. The next three fields, called the
SFCB subfields, are each 10 bytes in length and contain the date and time stamps for their
corresponding FCB entries in the directory record. The last byte of the SFCB is reserved for
system use. Figure 2-5 shows the detail of the SFCB subfields.

CREATE/ACCESS
TIME AND DATE

BYTE #: 0

I UPDATE
TIME AND DATE

4

I PASSWORD I
MODE

8 9

Figure 2-5. SFCB Subfields

RESERVED

_____ ...1

10

-------------------------- I!IDDIGITAL RESEARCH®
2-24

Concurrent CP/M Programmer's Guide 2.8 File Date and Time Stamps: SFCBs

An SFCB sub field only contains valid information if its corresponding FCB in the directory
record is an extent zero FCB. This FC~ is a file's first directory entry. For password protected
files, the SFCB sub field also contains the password mode of the file; the password mode field
is zero for files without password protection. You can read SFCBs by making F _SFIRST
and F_SNEXT system calls. In addition, you can make an F_TIMEDATE system call to
retrieve the date and time stamps and password mode of a specified file. Refer to the T_GET
system call definition in Section 6 for the description of the format of a date and time stamp
field.

Concurrent CP/M supports three kinds of file stamping: create, access, and update. Create
stamps record when the file was created, access stamps record when the file was last opened,
and update stamps record the last time the file was modified. Create and access stamps share
the same field. As a result, file access stamps overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date and time
stamping for files on the drive. The INITDIR utility initializes a directory for date and time
stamping by placing an SFCB in every fourth directory entry. Disks not initialized in this
way cannot support date and time stamping. In addition, date and time stamping is not
performed if the disk's directory label is absent or does not specify date and time stamping,
or if the disk is Read-Only.

Note that the directory label is also time stamped,. but these stamps are not made in an
SFCB; time stamp fields in the last eight bytes of the directory label show when it was created
and last updated. Access stamping is not supported for directory labels.

The BDOS file system uses the system date and time when it records a date and time
stamp. This value is maintained in a field in the SYSDAT part of the System Data Segment.
The DATE utility sets the system time and date (refer to the Concurrent CP/M User's Guide
for details of using DATE).

[Q] DIGITAL RESEARCH~ --------------------------
2-25

2.9 File Open Modes Concurrent CP/M Programmer's Guide

2.9 File Open Modes

The file system provides three different modes for opening files. They are defined below.

Locked Mode

A process can open a file in Locked mode only if the file is not currently opened by
another process and the file is not a Read-Only file (attribute TI' set). Once open in
Locked mode, no other process can open the file until it is closed. Thus, if a process
successfully opens a file in Locked mode, that process owns the file until the file is closed
or the process terminates. Files opened in Locked mode support read and write opera­
tions unless the file is.password.:protected in Write mode, and the process issuing the
F_OPEN call cannot supply the password. In this case the BDOS allows only read
operations to the file.

If a file opened in Locked mode is a Read-Only file, the F _OPEN system call automati­
cally changes the open mode to Read-Only mode. Read-Only mode is described below.

Note: Locked mode is the Default mode for opening files under Concurrent CP/M.

Unlocked Mode

A process can open a file in Unlocked mode if the file is not currently open, or if another
process has already opened the file in Unlocked mode. This mode allows more than one
process to open the same file. Files opened in Unlocked mode support read and write oper­
ations unless the file is a Read-Only file (attribute Tl' set) or the file is password-protected
in Write mode and the process issuing the F _OPEN call cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the FCB
because the F_OPEN system call returns a 2-byte value called the File ID in the RO and Rl
bytes of the FCB. The File ID is a required parameter for the F _LOCK and F _ UNLOCK
system calls. These BDOS system calls work only for files opened in Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by another
process or if another process has opened the file in Read-Only mode. This mode allows more
than one process to open the same file for Read-Only access.

-------------------------- [jID DIGITAL RESEARCH~
2-26

Concurrent CP/M Programmer's Guide 2.9 File Open Modes

The F _OPEN system call performs the following steps for files opened in Locked or Read­
Only mode. If the current user number is nonzero, and the file to be opened does not exist
under the current user number, the F _OPEN system call searches the user zero directory for
the file. If the file exists under user zero and has the system attribute T2' set, the BDOS
opens the file under user zero. The open mode is automatically forced to Read-Only when
this is done.

The F_OPEN and F_MAKE system calls use FCB interface attrib~tes FS' and F6' to
specify the open mode. The interface attribute definitions for these functions are listed in
Table 2-7.

Note: The F _MAKE system call does not allow opening the file in Read-Only mode.

2.10 File Security

In general, the security measures implemented in the file system prevent accidental col­
lisions between running processes. It is not possible to provide total security under Concurrent
CP/M because the file system maintains file allocation information in open FCBs in the user's
memory region, and Concurrent CP/M does not require memory protection. However, the
file system is designed to ensure that mUltiple processes can share the same file system without
interfering with each other by

• performing checksum verification of open FCBs.
• monitoring all open files and locked records via the system Lock List.

The BOOS validates the checksum of user FCBs before all 110 operations to protect
the integrity of the file system from corrupted FCBs. The F _OPEN and F_MAKE system
calls compute and assign checksums to FCBs. The F_READRANO, F_REAO,
F _ WRITERANO, F _ WRITEZF, F _WRITE, F _LOCK, and F _UNLOCK system calls
subsequently verify and recompute the checksums when they change the FCB. The
F _CLOSE system call also verifies FCB checksums. Note that FCB verification by these
system calls can be disabled (see Section 2.12), but Concurrent CP I M's file security is
reduced when this is done. If the BOOS detects an FCB checksum error, it does not
perform the requested command. Instead, it either returns to the calling process with an
error code, or if the system call is F_CLOSE and the BOOS Error mode is in the default
state (see Section 2.18), it terminates the calling process with an error message.

[!ill DIGITAL RESEARCH® --------------------------
2-27

2.10 File Security Concurrent CP/M Programmer's Guide

Concurrent CP/M uses a system data structure, called the Lock List, to manage file opening
and record locking by running processes~ Each time a process opens a file or locks a record
successfully, the file system allocates an entry in the system Lock List· to record the fact.
The file system uses the following information to

• prevent a process from deleting, truncating, renaming, or updating the attributes of
another process's open file.

• prevent a process from opening a file currently opened by another process, unless
both processes open the file in unlocked or Read-Only mode.

• prevent a process from resetting a drive on which another process has an open file.

• prevent a process from reading, writing, or locking a record currently locked by
another process. Refer to Section 2.14 for more information on record locking and
unlocking.

The file system only verifies whether another process has the FCB-specified file open for the
following file-access system calls: F_OPEN. F_MAKE, F_DELETE, F_RENAME,
F_ATTRIB, and F_TRUNCATE. For file-access system calls that require an open FCB, the
FCB checksum controls whether the calling process can use the FCB. By definition, a valid
FCB checksum implies that the file has been· successfully opened and an entry for the file
resides in the system Lock List.

The most common way a process releases a lock entry for an open file is by closing the
file. A close operation is permanent if it causes the removal of the file's open Lock List entry.
The file system invalidates the FCB checksum field on permanent close operations to prevent
continued open file operations with the FCB.

However, not all close operations are permanent. For example, if a process makes multiple
F_OPEN or F_MAKE calls to an open file, a matching number of F_CLOSE calls must be
made before the file system permanently closes the file. Of course, if you only open a file
once, a single close operation permanently closes the file. In addition, a process can optionally
make partial F_CLOSEcalls to a file by setting interface attribute FS'. A partial close
operation does not affect the open state of a file. In the above example, a partial close
operation would not count against an F _OPEN or F _MAKE call. A partial close operation·
simply updates the directory to reflect the current state of the file.

As a general rule, under Concurrent CP/M a process should close files as soon as it no
longer needs them, even if it has not modified them. While a process has a file open, access
by other processes to the file is restricted. For example, after a process has opened a file in
Locked mode, the file cannot be opened by other processes until the file is closed or the
process terminates.

-------------------------- I!IDDIGITAL RESEARCH®
2-28

Concurrent CP/M Programmer's Guide 2.10 File Security

Furthermore, space in the system Lock List is limited. If a process attempts to open a file
and no space remains in the system Lock List, or if the process exceeds the open file limit,
the BDOS denies the open request and usually terminates the calling process. You can change
the way the file system handles this error by making an F_ERRMODE system call. Note
that the size of the system Lock List and the process open file limit are GENCCPM parameters.

There are several other situations where the file system removes open file entries from
the system Lock List for a process. For example, if a process makes an F_DELETE call
for a file it has open in Locked mode, the file system deletes the file and also purges the
file's entry from the system Lock List. Deleting an open file is not recommended under
Concurrent CP/M but it is supported for files opened in Locked mode to provide
compatibility with software written under earlier releases of MP I MM and CP / M®. The
file system does not allow deletion of a file opened in Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the deleted file,
the file system subsequently checks all open FCBs for the process. Each open FCB is checked
the next time it is used with a file-access system call that requires an open FCB. If a Lock
List entry exists for the file, the BDOS allows the operation to proceed; if not, it indicates
that the file has been purged and the file system returns an FCB checksum error.

The file system performs this verification of a process's open FCBs whenever it purges an
open file entry from the system Lock List. The following list describes these situations:

III A process makes an F_ATTRIB, F_DELETE, F_RENAME, or F_TRUNCATE
system call to a file it has open in Locked mode. These operations cannot be performed
on a file open in Unlocked or Read-Only mode.

m A process issues a DRV _FREE call for a drive on which it has an open file.

m The BDOS detects a change in media on a drive that has open files. This is a special
case because a process cannot control the occurrence of this situation, and because it
can impact more than one process. Refer to Section 2.17 for more details on this
situation.

Open FCB verification can affect performance because each verification operation requires
a directory search operation. In general, you should avoid such situations when creating new
programs for Concurrent CP/M.

[l]] DIGITAL RESEARCHIlP --------------------------
2-29

2.11 Extended File Locking Concurrent CP/M Programmer's Guide

2.11 Extended File Locking

Extended file locking enables a Concurrent CP/M process to maintain a lock on a file
after the file is permanently closed. This facility allows a process to set the attributes, delete,
rename, or truncate a file without interference from other processes. In addition, this tech­
nique avoids the problems associated with using these system calls on open files (see Section
2.10).

A process can also reopen a file with an extended lock and continue open file processing.
To illustrate how extended file locking might be used, a process can close an open file,
rename the file, reopen the file under its new name, and continue with file operations without
ever losing the file's Lock List item and control over the file.

A process can only specify extended file locking for a file it has opened in Locked mode.
To extend a file's lock, set interface attribute F6' when closing the file. The F_C;LOSE
system call interrogates this attribute only when it is closing a file permanently_ Thus,
interface attribute F5', signifying a partial close, must be reset when the F_CLOSE call is
made. In addition, the close operation must be permanent. If a process has opened a file N
times, the F_CLOSE system call ignores the F6' attribute until the file is closed for the Nth
time.

Note that the access rules for a file with an extended lock are identical to the rules for a
file open in Locked mode. In addition, you cannot extend the lock of a Read-Only file
(attribute TI' set), because a Read-Only file cannot be opened in Locked mode.

To maintain an extended file lock through an F_ATTRIB, F_RENAME, or F_TRUN­
CATE system call, set interface attribute F5' of the referenced FCB when making the call.
The BDOS honors this attribute only if the file has been closed with an extended lock.
Setting attribute F5' also maintains an extended file lock for the F_DELETE system call,
but setting this attribute also changes the nature of the delete operation to an XFCB-only
delete. If successful, all four of these system calls delete a file's extended lock item if they
are called with attribute F5' reset. However, the extended lock item is not deleted if they
return with an error code.

-------------------------- [@DIGITAL RESEARCHQ!I
2-30

Concurrent CP/M Programmer's Guide 2.11 Extended File Locking

You can make an F _OPEN call to resume record operations on a file with an extended
lock. Note that you can also change the open mode when you reopen the file. The following
example illustrates the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use the F_RENAME system call to change the name of the file to EXLOCK.NEW
with interface attribute FS' set to retain the file's extended lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCK.NEW, using the open FCB.

7. Close file EXLOCK.NEW aga~n with interface attribute F6' set to retain the file's
lock item.

8. Set the Read-Only attribute and release the file's lock item by making an F_ATTRIB
system call with interface attribute FS' reset.

At this point, the file EXLOCK.NEW becomes available for access by another process.

2.12 Compatibility Attributes

Compatibility attributes provide a mechanism to modify some of the Concurrent CP/M
file security rules for specific command files. Concurrent CP/M includes this facility because
some programs developed under earlier Digital Research operating systems do not run
properly under Concurrent CP/M. Most of the problems encountered by these programs
occur because they were designed for single-tasking operating systems where file security
is not required. For example, a program might close a file and then continue reading and
writing to the file. Under CP/M-86, this does not cause a problem. However, under Con­
current CP/M, the file system intercepts open file operations with a deactivated FCB to
ensure the integrity of the file system. With compatibility attributes, you have a tool for
dealing with these kinds of situations.

You should use compatibility attributes only with' existing programs that run properly
under CP/M or CP/M-86®. Do not use compatibility attributes with new programs you
develop under Concurrent CP/M.

[l]] DIGITAL RESEARCH® --------------------------
2-31

2.12 Compatibility Attributes Concurrent CP/M Programmer's Guide

Compatibility attributes are defined as file attributes F1' thrQugh F4' of program (CMD)
files. You can use the Concurrent CP/M SET utility to set these file attributes from the
command line. However, setting a command file's compatibility attributes has no effect
unless the GENCCPM COMPATMODE option has been selected during system generation.
If this has been done, the P _CLI system call interrogates file attributes F1' through F4' of
the command file during program loading and modifies the Concurrent CP/M file security
rules for the loaded program.

The Concurrent CP/M BDOS defines the Compatibility Attributes as shown in Table
2-11.

Attribute

F1'

Table 2-11. Compatibility Attribute Definitions

Definition

Modify the rules for Locked mode.

When a process running with F1' set opens a file in Locked mode,
it can perform read and write operations to the file as normal. How­
ever, to other processes on the system, it appears as if the file was
opened in Read-Only mode. Thus, another process running with F1'
set can open the same file in Locked mode and also perform write
operations to the file; In addition, if a process with F1' reset attempts
to open the file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only. Furthermore,
write operations are not allowed when the process has F1' reset.

This compatibility mode is designed to allow multiple copies of the
same program to run concurrently, even though the program might
make read and write calls to a common file that it has opened in
Locked mode. In addition, this compatibility mode allows other pro­
grams not in this compatibility mode to access the file on a Read­
Only basis. Note that record locking is not supported for this modified
open mode. In addition, to be safe, make all static files such as
program and help files Read-Only if you use this compatibility attribute.

There is an alternative to using this attribute if a program only
makes read calls to the common file. By setting the file's Read­
Only attribute, you force the open mode to Read-Only when the
file is opened in Locked mode.

---------------------------- [jQ)DIGITAL RESEARCH~
2-32

Concurrent CP/M Programmer's Guide 2.12 Compatibility Attributes

Table 2-11. (continued)

Attribute Definition

F2' Change F _CLOSE to partial close.

Processes running with F2' set only make partial F_CLOSE system
calls. This attribute is intended for programs that close a file to update
the directory but continue to use the file. A side effect of this attribute
is that files opened by a process are not released from the system
Lock List until the process terminates. When using this attribute, it
might be necessary to set the system Lock List parameters to higher
values when you generate a system with GENCCPM.

F3' Ignore close checksum errors.

This attribute changes the way the F _CLOSE system call handles
Close Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. However,
if this attribute is set, the F _CLOSE system call ignores the check-
sum error and performs the close operation. This interface attribute
is intended for programs that modify an open FCB before closing a
file.

F4' Disable FCB Checksum verification for read and write operations.

Setting this attribute also sets attributes F2' and F3'. This attribute
is intended for programs that modify open FCEs during read and
write operations. Use this attribute very carefully, and only with
software known to work, because it effectively disables Concur-
rent CP/M's file security.

Use the Concurrent CP/M SET utility to specify the combination of compatibility attributes
you want set in the program's command file. For example,

A>SET filespec {fl=onJ
A>SET filespec {fl=on,f3=onJ
A>SET filespec {f4=onJ

I!ID DIGITAL RESEARCHIBi --------------------------
2-33

2.12 Compatibility Attributes Concurrent CP 1M Programmer's Guide

If you have a program that runs under CP/M or CP/M-86 but does not run properly under
Concurrent CP/M, use the following guidelines to select the proper compatibility attributes
for the program.

• If the program ends with the "File Currently Opened" message when multiple copies
of the program are run, set compatibility attribute Fl', or place all common static
files under User 0 with the SYS and Read-Only attributes set.

• If the program terminates with the message "Close Checksum Error", set compati­
bility attribute F3 '.

• If the program terminates with an I/O error, try running the program with attribute
F2' set. If the problem persists, then try attribute F4'. Use attribute F4' only as a last
resort.

2.13 Multisector 1/0

The BDOS file system provides the capability to read or write multiple 128-byte records
in a single BDOS system call. This multi sector facility can be visualized as a BDOS burst
mode, enabling a process to complete mUltiple I/O operations without interference from other
running processes. In addition, the BDOS file system bypasses, when possible, all inter­
mediate record buffering during multisector 110 operations. Data is transferred directly between
the calling process's memory and the drive. The BDOS also informs the XIOS when it is
reading or writing multiple physical records on a drive. The XIOS can use this information
to further optimize the I/O operation resulting in even better performance. As a result, the
use of this facility in an application program can improve its performance and also enhance
overall system throughput, particularly when performing sequential I/o.

The number of records that can be transferred with multisector I/O ranges from 1 to 128.
This value, called the BDOS Multisector Count, can be set by the F _MULTISEC system
call. The P _CLI system call sets the Multisector Count to 1 when it initiates a transient
program for execution. Note that the greatest potential performance increases are obtained
when the Multisector Count is set to 128. Of course, this requires a 16K buffer. The Con­
current CP/M PIP utility performs its sequential 110 with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by the fol­
lowing BDOS system calls:

• F _READ and F _ WRITE system calls
• F_READRAND, F_WRITERAND, and F_WRITEZF
• F _LOCK and F _UNLOCK

-------------------------- IIQIDIGITAL RESEARCHI!!I
2-34

Concurrent CP/M Programmer's Guide 2.13 Multisector 110

If the Multisector Count is N, calling one of the above system calls is equivalent to making
N system calls. With the exception of disk I/O errors encountered by the XIOS, if an error
interrupts a multisector read or write operation, the file system returns the number of 128-
byte records successfully transferred in register AH. Section 2.14 describes how the Multi­
sector Count affects the F_LOCK and F_UNLOCK system calls.

2.14 Concurrent File Access

Concurrent CP/M supports two open modes, Read-Only and Unlocked, which allow con­
currently running processes to access common files for record operations. The Read-Only
open mode allows multiple processes to read from a common file, but processes cannot write
to a file open in this mode. Thus, files remain static when they are opened in Read-Only
mode. The Unlocked open mode is more complex because it allows multiple processes to
read and write records to a common file. As a result, Unlocked mode has some important
differences from the other open modes.

When a process opens a file in Unlocked mode, the file system returns a 2-byte field called
the File ID in the RO and Rl bytes of the FCB. The File ID is a required parameter of
Concurrent CP/M's record locking system calls, F_LOCK and F_UNLOCK, which are only
supported for files open in Unlocked mode. Note that these system calls return a successful
error code if they are called for files opened in Locked mode. However, they perform no
action in this case, because, by definition, the calling process has the entire file locked.

The F _LOCK and F _UNLOCK system calls allow a process to establish and release
temporary ownership to particular records within a file. You must set the FCB Random
Record field and place the File ID in the first two bytes of the current DMA buffer before
making these calls. The file system locks and unlocks records in units of 128 bytes, which
is the standard Concurrent CP/M record size. The number of records locked or unlocked
is controlled by the BDOS Multisector Count, which can range from 1 to 128 (see
Section 2.13). In order to simplify the discussion of record locking and unlocking, the
following paragraphs assume the Multisector Count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a simple
extension of the single record case.

The F _LOCK system call supports two types of lock operations: exclusive locks and
shared locks. Interface attribute FS' specifies the type of lock. FS' = 0 requests an exclusive
lock; FS' = 1 requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process, however, can
access the record with no restrictions. You should use this type of lock when exclusive control
over a record is required.

I!ID DIGITAL RESEARCH® --------------------------
2-35

2.14 Concurrent File Access Concurrent CP/M Programmer's Guide

If a process locks a record with a shared lock, other processes cannot write to the record
or make an exclusive lock of the record. However, other processes are allowed to read the
record and make their own shared locks on the record. No process, including the locking
process, can write to a record with a shared lock. Shared locks are useful when you want to
ensure that a record does not change, but you want to allow other processes to read the record.

The F _LOCK system call also lets you change the lock of a record if there is no conflict.
For example, you can convert an exclusive lock into a shared lock with no restrictions. On
the other hand, a process cannot convert a record's shared lock to an exclusive lock if another
process has a shared lock on the record.

The F_LOCK system call has another option, specified by interface attribute F6',
which controls whether a record must exist in order to be locked. If you make an
F_LOCK system call with F6' = 0, the file system returns an error code if the specified
record does not exist within the file. Setting F6' to 1 requests a logical lock operation.
Logical lock operations are only limited by the maximum Concurrent CP/M file size of
32 megabytes, which corresponds to a maximum Random Record Number of 262,143.
You can use logical locks to control extending a shared file.

The F _UNLOCK system call is similar to the F _LOCK call except that it removes locks
instead of creating them. There are few restrictions on unlock operations. Of course a
process can only remove locks that it has made. The F _UNLOCK system call has one
option, controlled by interface attribute F5'. If F5' is set to one, the F _UNLOCK system
call removes all locks for the file made by the calling process. Otherwise, it removes the
locks specified by the Random Record field and the BDOS Multisector Count. Note that
the F_CLOSE system call also removes all locks for a file on permanent close operations.

If the BDOS Multisector Count is greater than one, the F _LOCK and F _UNLOCK system
calls perform multiple record locking or unlocking. In general, multiple record locking and
unlocking can be viewed as a sequence of N independent operations, where N equals the
Multisector Count. However, if an error occurs on any record within the sequence, no locking
or unlocking is performed. For example, both F_LOCK and F_UNLOCK perform no action
and return an error code if the sum of the FCB Random Record Number and the BDOS
Multisector Count is greater that 262,144. As another example, the F_LOCK system call
also returns an error code if another process has an exclusive lock on any record within the
sequence.

-------------------------- [ID DIGITAL RESEARCH®
2-36

Concurrent CP/M Programmer's Guide 2.14 Concurrent File Access

When a process makes an F_LOCK system call, the file system allocates a new entry in
the system Lock List to record the lock operation and associate it with the calling process.
A corresponding F_UNLOCK system call removes the locked entry from the list. While the
lock entry exists in the system Lock List, the file system enforces the restrictions implied by
the lock item.

Because each lock item includes a record count field, a multiple lock operation normally
results in the creation of a single new entry. However, if the file system must split an existing
lock entry to satisfy the lock operation, ~m additional entry is required. Similarly, an unlock
operation can require the creation of a new entry if a split is needed. Thus, in the worst case,
a lock operation can require two new lock entries and an unlock operation can require one.
Note that lock item splitting can be avoided by locking and unlocking records in consistent
units.

These considerations are important because the Lock List is a limited resource under
Concurrent CP/M. The file system performs no action and returns an error code if insufficient
available entries exist in the system Lock List to satisfy the lock or unlock request. In addition,
the number of lock items a single process is allowed to consume is a GENCCPM parameter
established at SYSGEN time. The file system also returns an error code if this limit is
exceeded.

The file system performs several special operations for read and write system calls to a
file open in Unlocked mode. These operations are required because the file system maintains
the current state of an open file in the calling process's FCB. When mUltiple processes have
the same file open, FCBs for the same file exist in each process's memory. To ensure that all
processes have current information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file system verifies error situations
such as end-of-file, or reading unwritten data with the directory before returning an error.
As a result, read and write operations are less efficient for files open in Unlocked mode when
compared to equivalent operations for files opened in Locked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file. This facility
can identify the last byte of the last record of a file. The F ~IZE system call returns the
Random Record Number, + 1, of the last record of a file.

[!ID DIGITAL RESEARCH® ---------------------------
2-37

2.15 File Byte Counts Concurrent CP 1M Programmer's Guide

The F_ATTRIB system call can set a file's byte count. This is an option controlled by
interface attribute F6'. Conversely, the F _OPEN system call can return a file's byte count to
the CR field of the FCB. The F_SFIRST and F_SNEXT system calls also return a file's byte
count. These system calls return the byte count in the CS field of the FCB returned in the
current DMA buffer.

Note that the file system does not access or update the byte count value in BDOS read or
write system calls. However, the F_MAKE system call does set the byte count value to zero
when it creates a file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent CP/M, the logical record size for disk I/O is 128 bytes. This is the basic
unit of data transfer between the operating system and running processes. However, on disk,
the record size is not restricted to 128 bytes. These records, called physical records, can
range from 128 bytes to 4K bytes in size. Record blocking and deblocking is required on
systems that support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called record
blocking. This process is required in write operations. The reverse process of breaking up
physical records into their component 128-byte logical records is called record deblocking.
This process is required in read operations. Under Concurrent CP/M, record blocking and
deblocking is normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a process reads a logical
record that resides at the beginning of a physical record, the entire physical record is read
into an internal buffer. SubsequentBDOS read calls for the remaining logical records access
the buffer instead of the disk. Conversely, record blocking results in the postponement of
physical write operations but only for data write operations. For .example, if a transient
program makes a BDOS write call, the logical record is placed in'a buffer equal in size to
the physical record size. The write operation on the physical record buffer is postponed until
the buffer is needed in another I/O operation. Note that under Concurrent CP/M, directory
write operations are never postponed.

-------------------------- [@ DIGITAL RESEARCH®
2-38

Concurrent CP/M Programmer's Guide 2.16 Record Blocking and Deblocking

Postponing physical record write operations has implications for some application pro­
grams. For programs that involve file updating, it is often critical to guarantee that the state
of the file on disk parallels the state of the file in memory after an update operation. This is
only an issue on drives where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer is pending, data
would be lost. To prevent this loss of data, the F _FLUSH system call can be called to force
the write of any pending physical buffers associated with the calling process.

Note: The file system discards all pending physical data buffers when a process terminates.
However, the file system automatically makes an F _FLUSH call in the F _CLOSE system
call. Thus, it is sufficient to make an F_CLOSE system call to ensure that all pending physical
buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BDOS system calls DRV_ALLRESET, DRV_RESET, DRV_ACCESS, and
DRV _FREE allow a process to control when to reinitialize a drive directory for file opera­
tions. This process of initializing a drive's directory is called logging-in the drive.

When you start Concurrent CP/M, all drives are initialized to the reset state. Subsequently,
as processes reference drives, the file system automatically logs them in. Once logged-in, a
drive remains in the logged-in state until it is reset by the DRV _ALLRESET or DRV _RESET
system calls or a media change is detected on the drive. If the drive is reset, the file system
automatically logs in the drive again the next time a process references it. The file system
logs in a drive immediately when it detects a media change on the drive.

Note that the DRV _ALLRESET and DRV _RESET system calls have similar effects except
that the DRV _ALLRESET system call affects all drives on the system. You can specify the
combination of drives to reset with the DRV _RESET system call.

Logging-in a drive consists of several steps. The most important step is the initialization
of the drive's allocation vector. The allocation vector records the allocation and deallocation
of data blocks to files, as files are created, extended, deleted and truncated. Another function
performed during drive log-in is the initialization of the directory checksum vector. The file
system uses the checksum vector to detect media changes on a drive. Note that permanent
drives, which do not support media changes, usually do not have checksum vectors.

IIQ] DIGITAL RESEARCH® --------------------------
2-39

2.17 Reset, Access, and Free Drive Concurrent CP 1M Programmer's Guide

Under Concurrent CP/M, the DRV _RESET operation is conditional. The file system
cannot reset a drive for a process if another process has an open file on the drive. However,
the exact action taken by a DRV _RESET operation depends on whether the drive to be reset
is permanent or removable.

Concurrent CP/M determines whether a drive is permanent or removable by interrogating
a bit in the drive's Disk Parameter Block (DPB) in the XIOS. A high-order bit of 1 in the
DPB Checksum Vector Size field designates the drive as permanent. A drive's Removable
or Nonremovable designation is critical to the reset operation described below.

The BDOS first determines whether there are any files currently open on the drive to be
reset. If there are none, the reset takes place. If there are open files, the action taken by the
reset operation depends on whether the drive is removable and whether the drive is Read­
Only or Read-Write. Note that only the DRV _SETRO system call can set a drive to Read­
Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset operation is
not performed, but a successful result is returned to the calling process.

However, if the drive is removable or set to Read-Only, the file system determines whether
other processes have open files on the drive. If they do, then it denies DRV _RESET operation
and returns an error code to the calling process.

If all the open files on a removable drive belong to the calling process, the process is said
to own the drive. In this case, the file system performs a qualified reset on the drive and
returns a successful result. This means that the next time a process accesses this drive, the
BDOS performs the log-in operation only if it detects a media change on the drive. The logic
flow of the drive reset operation is shown in Figure 2-6.

-------------------------- [!Q] DIGITAL RESEARCH®
2-40

Concurrent CP/M Programmer's Guide

OPEN FILES
ON DRIVE?

RESET
DRIVE

NO

DISK
RESET

SUCCESS
..

YES

DRIVE
REMOVABLE?

+ NO

DRIVE RIO?

NO

DO NOT RESET
DRIVE

I

YES

YES

2.17 Reset, Access, and Free Drive

OPEN FILES
BELONG TO
ANOTHER
PROCESS?

+ NO

QUALIFIED
RESET

PERFORMED

YES

r

DISK
RESET

DENIED

Figure 2-6. Disk System Reset

If the BD9S detects a media change on a drive after a qualified reset, it purges all open
files on the drive from the system Lock List and subsequently verifies all open FCBs in file
operations for the owning process (refer to Section 2.10 for details of FCB verification).

In all other cases where the BDOS detects a media change on a drive, the file system
purges all open files on the drive from the system Lock List, and flags all processes owning
a purged file for automatic open FCB verification.

I!ID DIGITAL RESEARCH® --------------------------
2-41

2.17 Reset, Access, and Free Drive Concurrent CP/M Programmer's Guide

Note: If a process references a purged file with a BDOS command that requires an open
FCB, the file system returns to the process with an FCB checksum error.

The primary purpose of the drive reset functions is to prepare for a media change on a
drive. Because a drive reset operation is conditional, it allows a process to test whether it is
safe to change disks. Thus, a process should make a successful drive reset call before prompt­
ing the user to change disks. In addition, you should close all your open files on the drive,
particularly files you have written to, before prompting the user to change disks. Otherwise,
you might lose data.

The DRV _ACCESS and DRV _FREE system calls perform special actions under
Concurrent CP/M. The .DRV _ACCESS system call inserts a dummy open file item into the
system Lock List for each specified drive. While that item exists in the system Lock List,
no other process can reset the drive. The DRV _FREE system call purges the Lock List of
all items, including open file items, belonging to the calling process on the specified drives.
Any subsequent reference to those files by a BDOS system call requiring an open FCB results
in an FeB checksum error return.

The DRV _FREE system call has two important side effects. First of all, any pending
blocking/deblocking buffers on a specified drive that belong to the calling process are dis­
carded. Secondly, any data blocks that have been allocated to files that have not been closed
are lost. Be sure to close your files before making this system call.

The DRV _SETRO system call is also conditional under Concurrent CP/M. The file system
does not allow a process to set a drive to Read-Only if another process has an open file on
the drive. This applies to both removable and permanent drives.

A process can prevent other processes from resetting a Read-Only drive by opening a file
on the drive or by issuing a DRV _ACCESS call for the drive and then making a
DRV _SETRO system call. Executing DRV _SETRO before the F _OPEN or DRV _ACCESS
call leaves a window in which another process could set the drive back to Read-Write. While
the open file or dummy item belonging to the process resides in the system Lock List, no
other process can reset the drive to take it out of Read-Only status.

-------------------------- !!IDDIGITAL RESEARCH®
2-42

Concurrent CP 1M Programmer's Guide 2.18 BDOS· Error Handling

2.18 BDOS Error Handling

The Concurrent CP/M file system has an extensive error handling capability. When an
error is detected, the BDOS responds in one of three ways:

1. It can return to the calling process with return codes in the AX register identifying
the error.

2. It can display an error message on the console and terminate tl\e process.

3. It can display an error message on the console and return an error code to the calling
process, as in method 1.

The file system handles the majority of errors it detects by method 1. Two examples of this
kind of error are the "file not found" error for the F_OPEN system call and the "reading
unwritten data" error for the F_READ call. More serious errors, such as disk 110 errors, are
normally handled by method 2. Errors in this category, called physical and extended errors,
can also be reported by methods 1 and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system handles
physical and extended errors. In the default state, the BDOS displays the error message and
terminates the calling process (method 2). In Return Error mode, the BDOS returns control
to the calling process with the error identified in the AX register (method 1). In Return and
Display Error mode, the BDOS returns control to the calling process with the error identified
in the AX register and also displays the error message at the console (method 3).

While both return modes protect a process from termination because of a physical or
extended error, the Return and Display mode also allows the calling process to take advantage
of the built-in error reporting of the file system. Physical and extended errors are displayed
on the console in the following format:

CP/M Error on d: error message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs; error message
identifies the error; nn is the BDOS function number, and filename.typ identifies the file
specified by the BDOS function. If the BDOS function did not involve an FCB, the file
information is omitted.

Tables 2-12 and 2-l3 detail BDOS physical and extended error messages.

I!]] DIGITAL RESEARCHI!!I --------------------------

2-43 ,

2.18 BDOS Error Handling Concurrent CP 1M Programmer's Guide

Message

Disk I/O

Invalid Drive

Table 2-12. BDOS Physical Errors

Meaning

The "Disk I/O" error results from an error condition returned to the
BDOS from the XIOS module. The file system makes XIOS read
and write calls to execute BDOS file-access system calls. If the XIOS
read or write routine detects an error, it returns an error code to the
BDOS, causing this error message.

The "Invalid Drive" error also results from an error condition returned
to the BDOS from the XIOS module. The BDOS makes an XIOS
Select Disk call before accessing a drive to perform a requested
BDOS function. If the XIOS does not support the selected disk, it
returns an error code resulting in this error.

Read/Only File

The BDOS returns the "Read/Only File" error message when a process
attempts to write to a file with the RIO attribute set.

Read/Only Disk

The BDOS returns the "Read/Only Disk error" message when a
process makes a write operation to a disk that is in Read-Only status.
A drive can be placed in Read-Only status explicitly with the
DRV _SETRO system call.

-----------------------'------ I!IDDIGITAL RESEARCH®
2-44

Concurrent CP 1M Programmer's Guide 2.18 BDOS Error Handling

Table 2-13. BnOS Extended Errors

Message Meaning

File Opened in Read/Only Mode

The BDOS returns the "File Opened in Read/Only Mode" error
message when a process attempts to write to a file opened in Read­
Only mode. A process can open a file in Read-Only mode explicitly
by setting FCB interface attribute F6'. In addition, if a process opens
a file in Locked mode, the file system automatically forces the open
mode to Read-Only mode when:

EiiI the process opens a file with the Read-Only attribute set.

• the current user number is not zero and the process opens a user
zero file with the SYS attribute set.

The BDOS also returns this error if a process attempts to write to a
file that is password-protected in Write mode, and it did not supply
the correct password when it opened the file.

File Currently Open

The BDOS returns the "File Currently Open" error message when
a process attempts to delete, rename, or modify the attributes of a
file opened by another process. The BDOS also returns this error
when a process attempts to open a file in a mode incompatible with
the mode in which the file was previously opened by another process
or by the calling process.

Close Checksum Error

The BDOS returns the "Close Checksum Error" message when the
BDOS detects a checksum error in the FCB passed to the file system
with an F _CLOSE call.

Password Error

The BDOS returns the "Password Error" message when passwords
are required and the file password is not supplied or is incorrect.

IIID DIGITAL RESEARCH® --------------------------

2-45

2.18 no os Error Handling Concurrent CP 1M Programmer's Guide

Table 2-13. (continued)

Message Meaning

File Already Exists

The BDOS returns the "File Already Exists" error message for the
F _MAKE and F _RENAME system calls when the BDOS detects a
conflict on filename and filetype.

Illegal ? in FeB

The BDOS returns the "Illegal? in FCB" error message when the
BDOS detects a ? character in the filename or filetype of the passed
FCB for the F_ATTRIB,F_OPEN, F_RENAME, F_TIMEDATE,
F_WRITEXFCB, F_TRUNCATE, and F_MAKE system calls.

Open File Limit Exceeded

The BDOS returns the "Open File Limit Exceeded" error message
when a process exceeds the process file lock limit specified by
GENCCPM. The F_OPEN, F_MAKE, and DRV_ACCESS system
calls can return this error.

No Room in System Lock List

The BDOS returns the "No Room in System Lock List" error mes-
sage when no room for new entries exists within the system Lock
List. The F _OPEN, F _MAKE, and DRV _ACCESS system calls
can return this error.

The following paragraphs describe the error return code conventions of the file system
calls. Most file system calls fall into three categories in regard to return codes; they return
an error code, a directory code, or an error flag. The error conventions let programs written
for CP/M-86 run without modification.

-------------------------\!ID DIGITAL RESEARCHGll
2-46

Concurrent CP 1M Programmer's Guide 2.18 BDOS Error Handling

The following BDOS system calls return a logical error in register AL:

F_LOCK
F_READ
F_READRAND
F_UNLOCK
F_WRITE
F _ WRITERAND
F_WRITEZF

Table 2-14 lists error code definitions for register AL.

Code

OOH:
01H:

02H:
03H:
04H:
OSH:
06H:

* 08H:

09H:

OAH:

* OBH:

** OCH:

** ODH:

** OEH:
OFFH:

Table 2·14. BDOS Error Codes

Definition '

Function successful
Reading unwritten data
No available directory space (Write Sequential)
No available data block
Cannot close current extent
Seek to unwritten extent
No available directory space
Random record number out of range
Record locked by another process
(restricted to files opened in Unlocked mode)
Invalid FCB (previous BDOS F _CLOSE system call
returned an error code and invalidated the FCB)
FCB checksum error
Unlocked file unallocated block verify error
Process record lock limit exceeded
Invalid File ID
No room in System Lock List
Physical error : refer to register AH

* - returned only for files opened in Unlocked mode
** - returned only by the F_LOCK and F_UNLOCK system calls for

files opened in Unlocked mode

[!ill DIGITAL RESEARCHI!!> -------------------------
2-47

2.18 BOOS Error Handling Concurrent CP 1M Programmer's Guide

For BDOS read and write system calls, the fHe system also sets register AH when the returned
error code is a value other than zero or OFFH. In this case, register AH contains the number
of 128-byte records successfully read or written before the error was encountered. Note that
register AH can only contain a nonzero value if the calling process has set the BDOS
Multisector Count to a value other than one; otherwise register AH is always set to zero. On
successful system calls (Error Code = 0), register AH is also set to zero. If the Error Code
is OFFH, register AH contains a physical error code (see Table 2-15).

The following BDOS system calls return a directory code in register AL:

DRV_SETLABEL
F_ATTRIB
F_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F_SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F _ WRITEXFCB

The directory code definitions for register AL follow.

OOH - 03H : successful function
. OFFH : unsuccessful function

With the exception of the F_SFIRST and F_SNEXT system calls, all functions in this
category return with the directory code set to zero upon a successful return. However, for
these two system calls, a successful directory code identifies the relative starting position of
the directory entry in the calling process's current DMA buffer.

--------------------------[!ID DIGITAL RESEARCH®
2-48

Concurrent CP 1M Programmer's Guide 2.18 BDOS Error Handling

If a process uses the F_ERRMODE system call to place the BDOS in Return Error mode,
the following system calls return an error flag in register AL on physical errors:

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

The error flag definition for register AL follows.

OOH : successful function
OFFH : physical error : refer to register AH

The BDOS returns nonzero values in register AH to identify a physical or extended error
if the BDOS Error mode is in one of the return modes. Except for system calls that return a
Directory Code, register AL equal to OFFH indicates that register AH identifies the physical
or extended error. For functions that return a Directory Code, if register AL equals 255, and
register AH is not equal to zero, register AH identifies the' physical or extended error. Table
2-15 shows the physical and extended error codes returned in register AH.

Table 2-15. BDOS Physical and Extended Errors

Code Explanation

01H Disk I/O Error: permanent error
02H Read/Only Disk
03H Read/Only File, File Opened in Read/Only Mode, or File Password Pro-

tected in Write Mode and Correct Password Not Specified
04H Invalid Drive: drive select error
05H File Currently Open in an incompatible mode
06H Close Checksum Error
07H Password Error
08H File Already Exists
09H Illegal ? in FCB
OAH Open File Limit Exceeded
OBH No Room in System Lock List

[!Q] DIGITAL RESEARCH!> -------------------------
2-49

2.18 BDOS Error Handling Concurrent CP 1M Programmer's Guide

The following two system calls represent a special case because they return an address in
register AX.

DRV_ALLOCVEC
DRV_DBP

When the calling process is in one of the BDOS return error modes and the BDOS detects
a physical error for these system calls, it returns to the calling process with registers AX and
BX set to OFFFFH. Otherwise, they return no error code.

Under Concurrent CP/M, the following system calls also represent a special case.

DRV _ALLRESET
DRV_RESET
DRV_SETRO

These system calls return to the calling process with registers AL and BL set to OFFH if
another process has an open file or has made a DRV _ACCESS call that prevents the reset or
write protect operation. If the calling process is not in Return Error mode, these system calls
also display an error message identifying the process that prevented the requested operation.

End of Section 2

-------------------------- [!ID DIGITAL RESEARCH®
2-50

Section 3
lransient Commands

3.1 Transient Program Load and Exit

A transient program is a file of type CMD that is loaded from disk and resides in memory
only during its operation. A resident system program is a file of type RSP that is included
in Concurrent CP/M during GENCCPM. Section 4 describes the three system memory models
that determine the initial values of segment registers in transient processes.

You can initiate a transient process by entering a command at a system console. The
console's TMP (Terminal Message Processor) then calls the Command Line Interpreter system
call (refer to the P _CLI system call), and passes to it the command line entered by the user.
If the command is not an RSP, then the P _CLI system call locates and then loads the proper
CMD file. P _CLI then calls the F _PARSE system call to parse up to two filenames following
the command, and place the properly formatted FCBs at locations 005CH and 006CH in
the Base Page of the initial Data Segment.

The P _CLI system call initializes memory, the Process Descriptor, and the User Data
Area (UDA), and allocates a 96-byte stack area, independent of the program, to contain the
process's initial stack. If 8087 processing is required (see Section 3.1.2) P _CLI allocates
an additional 96 bytes for the UDA. Concurrent CP/M divides the DMA address into the
DMA segment address and the DMA offset. P _CLI initializes the default DMA segment to
the value of the initial data segment, and the default DMA offset to 0080H.

The P _CLI system call creates the new process with a P _CREATE system call and sets
the initial stack so that the process can execute a Far Return instruction to terminate. A
process also ends when it calls DRV _ALLRESET or P _TERM.

You can also terminate a process by typing a single CTRL-C during console input. See
C_MODE for details of enabling/ disabling CTRL-C. CTRL-C, when typed at the
prompt, forces a DR V_RESET call for each logged-in drive. This operation only affects
removable media drives.

Note: Additional UDA space is allocated for 8087 processing only if the process is ini­
tialized by the P _CLI or P _LOAD system call. Other processes (such as RSPs) that require
8087 processing and do not use P _CLI or P _LOAD must allocate this additional UDA space
themselves.

[!]) DIGITAL RESEARCH® -------------------------
3-1

3.1 Transient Program Load and Exit Concurrent CP/M Programmer's Guide

3.1.1 Shared Code

Concurrent CP/M allows processes to share program code. This capability of sharing
program code avoids unnecessary program loading of a code segment already in memory
and conserves memory space since multiple copies of the same program code do not have
to occupy different memory space. During program load of a "sharable" program code, the
system allocates the code group separately from the rest of the program. This code group
is maintained in memory even after the program has terminated. Subsequent loading of the
same program does not load the code group, but uses the existing one instead. Obviously,
programs written with separate code and data can take advantage of this feature.

The system maintains a shared code group in memory until a memory request or a reset
drive forces its release. The system maintains shared code groups in memory in Least
Recently Used (LRU) order on the Shared Code List. If a memory request is made that
cannot be satisfied, the list is drained, one at a time, until the memory request is satisfied,
or the Shared Code List is emptied. If a drive is reset, the system purges all code groups
from the Shared Code List loaded from that drive.

A shared code pro gram is flagged by the val ue 09 H in the G _Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). The user may set this field by
using the CHSETutility (see Concurrent CP/ M User's Guide). Note that programs using
the 8080 memory model cannot be set to shared code.

3.1.2 8087 Support

Concurrent CP/M provides optional 8087 support for systems that use the 8087 processor.
This support is indicated by the Program Flag, byte 127 (07FH), of the CMD file header.
Setting bit 6 (bit 0 is least significant bit) of the Program Flag indicates optional 8087
support, which means that if the 8087 is present, the program uses it; otherwise, the program
will emulate it. If bit 5 of the Program Flag is set, it indicates that the 8087 must be present
in order for the program to run. If no 8087 is present and bit 5 of the Program Flag is set,
the system returns an error when it tries to load the program. The CHSET utility can be
used to set the program's header record for optional or required 8087 support.

If you use the P _CLI or P _LOAD system call to initiate and execute a process, the system
allocates an extra 96 bytes to the UDA for 8087 support. If you require 8087 support and
do not use the P _CLI or P _LOAD system call, you must specifically allocate this additional
96 bytes to the UDA, turn on the 8087 flag in the PD, and initialize the CW and SW fields
in the 8087 UDA extension (see description of these fields in Section 6 under the P _CREATE
system call).

----------------------..,.---- OCID DIGITAL RESEARCH®
3-2

Concurrent CP/M Programmer's Guide 3.1 Transient Program Load and Exit

3.1.3 8087 Exception Handling

Although the system provides its own 8087 exception handling routine, the user might
want to write his own 8087 exception handler. Appendix E includes instructions and infor­
mation required by the user to write his own 8087 exception handler, with a sample listing
of an 8087 exception handler routine.

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the memory
image. The command file header record is composed of 8 group descriptors (GDs), each 9
bytes long. Each group descriptor describes a portion of the program to be loaded. The
format of the header record is shown in Figure 3-1.

GO 1 GO 2 G03 G04 G05 G06 G07 GOB

128 BYTES

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent group descriptors. Each group descriptor
corresponds to an independently loaded program unit and has the format shown in Fig­
ure 3-2.

OOH 01H 03H 05H 07H 09H

Figure 3-2. Group Descriptor Format

G_ Type determines the group descriptor type. The valid group descriptors have a G_ Type
in the range 1 through 8, as shown in Table 3-1. All other values are reserved for system
use. For a given CMD file header only a Code Group and one of any other type can be
included.

[ID DIGITAL RESEARCH® --------------------------
3-3

3.2 Command File Format Concurrent CP/M Programmer's Guide

If a program uses either the Small or Compact Model, the code group is typically pure;
that is, it is not modified during program execution.

Table 3-1. Group Descriptors

01H

02H
03H
04H
05H
06H
07H
08H
09H

Group Type

Code Group (non­
shared)
Data Group
Extra Group
Stack Group
Auxiliary Group # 1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Code Group (shared)

All remaining values in the group descriptor are given in increments of 16-byte paragraph
units with an assumed low-order 0 nibble to complete the 20-bit address.

Field

LBase

Table 3-2. Group Descriptor Fields

Description

Gives the number of paragraphs in the group. Given a G_Iength
of 080R, for example, the size of the group is 0800H (2048
decimal) bytes.

Defines the base paragraph address for a nonrelocatable group.

Define the minimum and maximum size of the memory area to
allocate to the group.

-------------------------- i!IDDIGITAl RESEARCH®

3-4

Concurrent CP/M Programmer's Guide 3.3 Base Page Initialization

The memory model described by a header record is implicitly determined by the group
descriptors (refer to Section 4.1). The 8080 Model is assumed when only a code group is
present, because no independent data group is named. The Small Model is assumed when
both a code and data group are present but no additional group descriptors occur. Otherwise,
the Compact Model is assumed when the CMD file is loaded.

3.3 Base Page Initialization

The Concurrent CP/M Base Page contains default values ~nd locations initialized by the
P _CLI and P _LOAD system calls and used by the transient process.

The Base Page occupies the regions from offset OOOOH through OOFFH relative to the
initial data segment, and contains the values shown in Figure 3-3.

[!ill DIGITAL RESEARCH® --------------------------
3-5

3.3 Base Page Initialization Concurrent CP/M Programmer's Guide

L M H L H
0 2 3 4 5 6

+ + +
o CODE LENGTH CODE BASE MSO

+ + +
6 DATA LENGTH DATA BASE RESERVED

+ + +
C EXTRA LENGTH EXTRA BASE RESERVED

+ + +
12 ST ACK LENGTH STACK BASE RESERVED

+ +- +
1S AUX1 AUX 1 RESERVED

T + +
1E AUX 2 AUX2 RESERVED

+ + +
24 AUX3 AUX3 RESERVED

+ + +
2A AUX4 AUX4 RESERVED

+ + +,
30 BYTES 030H THROUGH 04FH ARE NOT CURRENTLY USED AND

ARE RESERVED FOR FUTURE USE BY DIGITAL RESEARCH

I
+ I 1 +

DRIVE PASSWORD 1 ADDR P1 LEN PASSWORD 2 ADDR

+ T

P2 LEN RESERVED FOR FUTURE USE
+ + of +

50

56

5C DEFAUL T FILE NAME1

+ + + + +
6C

DEFAUL T FILE NAME2

CR .•• I + + I +
RANDOM RECORD NUMBER (OPT)

+ + +
7C

so DEFAUL T 12S-BYTE DMA BUFFER

Figure 3-3. Concurrent CP/M Base Page Values

---------------------------[!ID DIGITAL RESEARCH®
3-6

Concurrent CP/M Programmer's Guide 3.3 Base Page Initialization

The fields in the Base Page are defined as follows:

• The M80 byte is a flag indicating whether the 8080 Memory Model was used during
load. The values of the flag are defined as:

1 = 8080 Model

o = not 8080 Model

If the 8080 Model is used, the code length never exceeds OFFFFH.

• The bytes marked Aux 1 through Aux 4 correspond to a set of four optional inde­
pendent groups that might be required for programs that execute using the Compact
Memory Model. The initial values for these descriptors are derived from the header
record in the memory image file.

• Length is stored using the Intel convention: low, middle, and high bytes.

• Base refers to the paragraph address of the beginning of the segment.

• The drive byte identifies the drive from which the transient program was read. 0
designates the default drive, while a value of 1 through 16 identifies drives A through
P.

• Password 1 Addr (bytes 00SIH-00S2H) contains the address of the password field of
the first command tail operand in the default DMA buffer at 0080H. The P _CLI
system call sets this field to 0 if no password is specified.

• PI Len (byte 00S3H) contains the length of the password field for the first command
tail operand. The P _CLI system call sets this to 0 if no password is specified.

• Password 2 Addr (bytes 00S4H-00SSH) contains the address of the password field of
the second command tail operand in the default DMA buffer at 0080H. The P _CLI
system call sets this field to 0 if no password is specified.

• P2 Len (byte 00S6H) contains the length of the password field for the second command
tail operand. The P _CLI system call sets this field to 0 if no password is specified.

• File Namel (bytes 00SCH-0067H) is initialized by the P _CLI system call for a
transient program from the first command tail operand of the command line.

• File Name2 (bytes 006CH-0077H) is initialized by the P _CLI system call for a
transient program from the second command tail operand of the command line.

Note: File Namel can be used as part of a File Control Block (FCB) beginning at
OSCH. To preserve File Name2, copy it to another location before using the FCB in
file 110 system calls.

• The CR field (byte 007CH) contains the current record position used in sequential
file operations with the FCB at OSCH.

[!]] DIGITAL RESEARCH® -------------------------
3-7

3.3 Base Page Initialization Concurrent CP/M Programmer's Reference Guide

• The optional Random Record Number (bytes 007DH-007FH) is an extension of the
FCB at 05CH, used in random record processing .

• The Default DMA buffer (bytes 0080H-00FFH) contains the command tail when the
P _CLI system call loads a transient program.

3.4 Parent/Child Relationships

Under Concurrent CP/M when one process creates another process, there is a parenUchild
relationship between them. The child process inherits most of the default values of the parent
process. This includes the default disk,user number, console, list device, and password. The
child process also inherits interrupt vectors 0, 1,3,4,224, and 225, which the parent process
initialized.

3.5 Direct Video Mapping

Processes which bypass Concurrent CP I M Character 110 system calls and use a video
map or screen buffer directly cannot be monitored by the system and continue to display
characters on the screen even when running in the background. Consequently, any screen
displayed by the program in the foreground console is interspersed with characters
displayed by the program in the background using direct video map 110. To avoid the
screen problems created by using direct 'video 110, set bit 3 of the Program Flag to
indicate to the system that the process is to be put in suspend mode whenever it is running
in the background and may continue running only when it is switched to the foreground.
The CHSETutility (see the Concurrent CP/ M User's Guide) can be used to set bit 3 of the
Program Flag.

Note that bypassing the system Character I/O system calls negates the concurrency 01 a
process, since the system suspends itfrom running (if bit 3 of Program Flag is set) unless it
is running in the foreground.

End of Section 3

--------------------------i!ID DIGITAL RESEARCH~
3-8

Section 4
Command File Generation

4.1 Transient Execution Models

When the program is loaded, the initial values of the segment registers, the instruction
pointer, and the stack pointer are determined by the specific type of memory model used
by the transient process, indicated in the CMD file header record.

There are three memory models, the 8080 model, the Small Model, and the Compact
Model, summarized in Table 4-1.

Table 4-1. Concurrent CP/M Memory Models

Model Group Relationships

8080 Model Code and Data Groups Overlap

Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs that are directly translated from an 8080 environment
where code and data are intermixed. The 8080 Model consists' of one group that contains all
the code, data, and stack areas. Segment registers are initialized to the starting address of
the region containing this group. The segment registers can, however, be managed by the
application program during execution so that multiple segments in the code group can be
addressed.

The Small Model is similar to that defined by Intel, where the program consists of an
independent code group and a data group. The code and data groups often consist of, but
are not restricted to, single 64K byte segments.

[!ill DIGITAL RESEARCHall --------------------------
4-1

4.1 Transient Execution Models Concurrent CP/M Programmer's Guide

The Compact Model occurs when any of the extra, stack, or auxiliary groups are present
in program. Each group can consist of 'one or more segments, but if any group exceeds one
segment in size, or if auxiliary groups are present, then the application program must manage
its own segment registers during execution in order to address all code and data areas.

These three models differ primarily in how the operating system initializes the segment
registers when it loads a transient process. The P _LOAD system call determines the memory
model used by a transient program by examining the program group usage, as described in
the following sections.

For all models, the system initializes an internal 96-byte stack area. The first two words
of this stack are reserved for the double word return for termination by a RETF (Far Return)
instruction. The initial program stack for all models is shown in Figure 4-1 below.

Far Return Address Ret Segment

SS:SP --------1.~
Ret Offset

92 BYTES

Figure 4-1. Initial Program Stack

The transient program can terminate by using the P _ TERMCPM or P _TERM system call
or by executing a RETF (Far Return) instruction when the SS and SP still point to the initial
program stack.

4.1.1 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains only a code group. In
this case, the Command Line Interpreter (P _CLI) system call initializes the CS, DS, and ES
registers to the beginning of the code group and sets the SS and SP registers to a 96-byte
initial stack area that it allocates.

-------------------------- @D1GITAL RESEARCH®
4-2

Concurrent CP/M Programmer's Guide 4.1 Transient Execution Models

Note: The P _eLI system call initializes the stack so that if the process executes a Far
Return instruction, it terminates. This system call sets the Instruction Pointer (IP) Register
to lOOH, thus allowing Base Page values at the beginning of the code group. Following
program load, the 8080 Model appears as shown in Figure 4-2.

CODE/DATA

CODE/DATA

CS:IP -) 0100H

BASE PAGE

CS:O,DS:O,ES:O -> OOOOH

Figure 4-2. Concurrent CP/M 8080 Memory Model

The intermixed code and data areas are indistinguishable. The Base Page values are described
in Section 3.3. The following ASM-86 ex·ample shows how to code an 8080 Model transient
assembly language program.

cseg
org lOOh

(code)
endcs equ $

dseg
org offset endcs

(data)
end

lrn DIGITAL RESEARCH® --------------------------
4-3

4.1 'ftansient Execution Models Concurrent CP/M Programmer's Guide

4.1.2 The Small Memory Model

The Small Model is assumed when the transient program contains both a code and data
group. (In ASM-86, all code is generated following a CSEq directive. Data is defined
following a DSEG directive, with the origin of the Data Segment independent of the Code
Segment.) In this model, the P _CLI system call sets the CS register to the beginning of the
code group, the IP to OOOOH, the DS and ES registers to the beginning of the data group,
and the SS and SP registers to a 96-byte initial stack area that it initializes. Following program
load, the Small Model appears as shown in Figure 4-3.

DATA

0100H

CODE BASE PAGE
DS:O,ES:O ~ OOOOH

CS:O,IP:O ~ OOOOH

Figure 4-3. Concurrent CP/M Small Memory Model

The machine code begins at CS + OOOOH, the Base Page values begin at DS + OOOOH, and
the data area starts at DS + OlOOH. The following ASM-86 example shows how to code a
Small Model transient assembly language program.

cseg

(code)
dseg
org lOOh

(data)
end

------------------------- [!IDDIGITAL RESEARCH~
4-4

Concurrent CP/M Programmer's Guide 4.1 1ransient Execution Models

4.1.3 The Compact Memory Model

The Compact Model is assumed when code and data groups are present, along with one
or more of the remaining stack, extra, or auxiliary groups. In this case, the P _CLI system
call sets theCS, DS, and ES registers to the base addresses of their respective areas, with
the IP set to OOOOH, and the SS and SP registers set to a 96-byte stack area allocated by this
system call.

Figure 4-4 shows the initial configuration of the segments in the Compact Model. The
values of the various segment registers can be changed during execution by loading from the
initial values placed in Base Page. This allows access to the entire memory space.

CS,IP
OOOOH

DATA

0100H
CODE BASE PAGE DATA

DS:OOOOH ES:OOOOH I,....-___ -J

Figure 4-4. Concurrent CP/M Compact Memory Model

If the assembly language transient program intends to use the stack group as a stack area,
the SS and SP registers must be set upon entry. The SS and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the stack group,
there are two contradictions. First, the assembly language transient program might be using
the stack group as a data area. In that case, the stack values set by the P _CLI system call to
allow a far return to terminate a transient program could overwrite data in the stack area.
Second, the SS register would logically be set to the base of the group, while the SP would
be set to the offset of the end of the group. However, if the stack group exceeds 64K, the
address range from the base to the end of the group exceeds a 16-bit offset value.

[!ill' DIGITAL RESEARCH® --------------------------
4-5

4.1 Transient Execution Models Concurrent CP 1M Programmer's Guide

The following ASM-86 example shows how to code a Compa,ct Model assembly language
transient program.

cseg

(code)
dseg
org 100h

(data)
eseg

(more data)
sseg

(stack area)
end

4.2 GENCMD

The GENCMD utility creates a CMD file from an input H86 file. GENCMD does not alter
the original H86 file. The GENCMD invocation has the following form:

GENCMD filename {parameter-list}

where the filename corresponds to the H86 input file with an assumed and unspecified filetype
of H86. GENCMD accepts optional parameters to specifically identify the 8080 Model and
to d~scribe memory requirements of each segment group. The GENCMD parameters are
listed following the filename, as shown in the command line above where the parameter list
consists of a sequence of keywords (shown below) and values separated by commas or blanks.

8080 CODE DATA EXTRA STACK Xl X2 X3 X4

The 8080 keyword forces' a single code group so that the P _LOAD system call sets up the
8080 Model for execution, allowing intermixed code and data in a single segment. The form
of this command is

GENCMD filename 8080

------------------------- [!]] DIGITAL RESEARCH®
4-6

Concurrent CP/M Programmer's Guide 4.2 GENCMD

The remaining keywords follow the filename or the 8080 option and define specific memory
requirements for each segment group, corresponding one-to-one with the segment groups
defined in the previous section. In each case, the values corresponding to each group are '
enclosed in square brackets and separated by commas. Each value is a hexadecimal number
representing a paragraph address or segment length in paragraph units denoted by hhhh,
prefixed by a single letter that defines each value:

Ahhhh
Bhhhh
Mhhhh
Xhhhh

Load the group at absolute location hhhh
The group starts at hhhh in the hex file
The group requires a minimum of hhhh * 16 bytes
The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header record values are derived directly from the H86 file and the
parameters shown above need not be included. The following situations, however, require
the use of GENCMD parameters .

• The 8080 keyword is included whenever ASM-86 is used in the conversion of 8080
programs to the 8086/8088 environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and DSEG directives in the source
program.

II An absolute address (a hexadecimal value) must be given for any group that must be
located at an absolute location. This value is not usually specified, as Concurrent
CP/M cannot ensure that the required memory region is available. In that case the
CMD file cannot be loaded .

• The B value is used when GENCMDprocesses a HEX file produced by Intel's OH86
or a similar utility program that contains more than one group. The output from OH86
consists of a sequence of data records with no information to identify code, data,
extra, stack, or auxiliary groups. In this case, the B value marks the beginning address
of the group named by the keyword, causing GENCMD to load data following this
address to the named group (refer to the examples below). Thus, the B value is usually
used to mark the boundary between Code and Data Segments when no segment
information is included in the HEX file. Files produced by ASM-86 do not require
the use of the B value because segment information is included in the H86 file.

I!ID DIGITAL RESEARCH® --------------------------
4-7

4.2 GENCMD Concurrent CP/M Programmer's Guide

• The minimum memory value (M value) is included only when the HEX records do
not define the minimum memory requirements for the named group. Generally, the
code group size is determined precisely by the data records loaded into the area. The
total space required for the group is defined by the range between the lowest and
highest data byte addresses. The data group, however, might contain uninitialized
storage at the end of the group. Thus no data records are present in the HEX file that
define the highest referenced data item. The highest address in the data group can be
defined within the source program by including the ASM86 directive DB 0 as the
last data item in the assembly language source file. Alternatively, the M value can
be included to allocate the additional space at the end of the group. Similarly, the
stack, extra, and auxiliary group sizes must be defined using the M value unless the
highest addresses within the groups are implicitly defined by data records in the HEX
file .

• The maximum memory size; given by the X value, is generally used when additional
free memory might be needed for such purposes as I/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need not be included. In this case,
the X value is assumed to be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the assembly language transient
program must be aware that a three-byte length field is produced in the Base Page for
this group where the high-order byte might be nonzero. Programs converted directly
from an 8080 environment or programs that use a 2-byte pointer to address buffers
should restrict this value to XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file X.H86 into the file X.CMD
with the proper header record:

A>GENCMD x code[a40j data[m30,xfffj

In this case, the code group is forced to paragraph address 40H or its equivalent, byte address
400H. The data group requires a minimum of 300H bytes, but can use up to OFFFOH bytes,
if available.

Assuming a file Y.H86 exists on drive B containing Intel HEX records with no interspersed
segment information, the command

A>GENCMD b:y data[b30,m20j extra[b50j stack[m40j xl[m40j

-------------------------- [!Q] DIGITAL RESEARCH~
4-8

Concurrent CP/M Programmer's Guide 4.2 GENCMD

produces the file Y.CMD on drive B by selecting records beginning at address OOOOH and
less than 0300H for the Code Segment, with records starting at 0300H and less than 0500H
allocated to the Data Segment. The Extra Segment is filled from records beginning at 0500H
and higher, while the Stack and Auxiliary Segment # 1 are uninitialized areas requiring a
minimum of 0400H bytes each. In this example, the data area requires a minimum of 0200H
bytes. Note again that the B value need not be included if the Digital Research ASM-86
assembler is used.

4.3 Intel Hexadecimal File Format

GENCMD input must be in Intel hexadecimal file format, produced by both the Digital
Research ASM-86 assembler and the standard Intel OH86 utility program. (Refer to Intel
MCS-86 Software Development Utilities Operating Instructionsfor ISIS-IFfEJ Users, published
by Intel.) The CMD file produced by GENCMD contains a header record defining the memory
model and memory size requirements for loading and executing the CMD file.

An Intel hexadecimal file consists of the traditional sequence of ASCII records where the
beginning of the record is marked by an ASCII colon, and each subsequent digit position
contains an ASCII hexadecimal digit in the range 0-9 or A-F.

There are four kinds of hexadecimal record formats. The Start Address Record
specifies the starting address of the execution file. The Extended Address Record specifies
the bits 4-19 of the Segment Base Address, where bits 0-3 of the SBA are zero. The Data
Record contains a string of hexadecimal ASCII code that represents a portion of the 8086
memory image. The End-of-File record specifies the end of the object file.

Figure 4-5 shows the four record formats, their fields, and the contents of these fields.
The fields are defined in Table 4-2.

!!])D1GITAL RESEARCHOO --------------------------

4-9

4.3 Intel Hexadecimal File Format Concurrent CP/M Programmer's Guide

cr· 04 r 0000 1 __ 0_3 __ 1 HHHH GJ
REC MARK REC LEN ZEROES REC TYPE C-SEG CHECKSUM

STARTING ADDRESS RECORD

cr 02 I 0000 I 02 13~
REC MARK REC LEN ZEROES REC TYPE USBA CHECKSUM

EXTENDED ADDRESS RECORD

CI HH I HHHH I 00 I DATA I~
REC MARK REC LEN LD ADDR REC TYPE CHECKSUM

DATA RECORD

CI_oo_.I~oo_oo I_01_I~
REC MARK REC LEN ZEROES REC TYPE CHECKSUM

END OF FILE RECORD

Figure 4-5. Intel Hexadecimal File Formats

--------------------------!!ID DIGITAL RESEARCH®
4-10

Concurrent CP/M Programmer's Guide 4.3 Intel Hexadecimal File Format

Field

Rec Mark

Rec Len

zeros

Ld Addr

Rec Type

C-Seg

USBA

data

Table 4-2. Intel Hex Field Definitions

Contents

Specifies start of record

Record Length OO-FF (0-255 in decimal)

Extended Address Record: OOOOH
Starting Address Record: OOOOH
End-of-File Record: OOOOH

Data Record: SBA offset defining address of byte 0 of data

00 = Data Record
01 = End-of-File Record
02 = Extended Address Record
03 = Starting Address Record

The following are output from ASM-86 only:

81 same as 00, data belongs to Code Segment
82 same as 00, data belongs to Data Segment
83 same as 00, data belongs to Stack Segment
84 same as 00, data belongs to Extra Segment

* 85 paragraph address for absolute Code Segment
* 86 paragraph address for absolute Data Segment
* 87 paragraph address for absolute Stack Segment
* 88 paragraph address for absolute Extra Segment

Four hexadecimal digits specifying the Code Segment address.
The high-order and low-order digits are the 10th and 13th char­
acters of the record, respectively.

Four hexadecimal digits specifying the Upper Segment Base
Address. The high-order and low-order digits are the 10th and
13th characters of the record, respectively.

Pairs of hexadecimal digits representing the ASCII code for each
data byte. The high-order digit is the first digit of each pair.

!!ill DIGITAL RESEARCH® --------------------------
4-11

4.3 Intel Hexadecimal File Format Concurrent CP/M Programmer's Reference Guide

Field

Checksum

Table 4-2. (continued)

Contents

Extended Address Record: Checksum of Rec Len, zeros, Rec
Type, and USBA fields.

Starting Address Record: Checksum ofRec Len, zeros, Rec Type,
C-Seg, and IP fields.

Data Record: Checksum of Rec Len, Ld Addr, Rec Type, and data
fields.

End-of-File Record: Contains ASCII code 4646H, checksum of
Rec Len, zeros, and Rec 'lYpe fields.

* 85, 86, 87, and 88 are Digital Research Extensions.

All characters preceding the colon for each record are ignored. See MCS®-86 Absolute
Object File Formats, published by Intel, for additional information on hexadecimal file record
format.

End of Section 4

-------------------------- I!IDDIGITAl RESEARCH<!!I
4-12

Section 5
Resident System Process Generation

5.1 Introduction to RSPs

Resident System Processes are programs that become part of the Concurrent CP/M oper­
ating system. They can be useful in several ways: to create a turnkey system, autoloading
programs when Concurrent CP/M is booted; to build customized user interfaces or shells at
the consoles, for monitoring hardware not supported in the XIOS; and to avoid disk loading
time for frequently-used commands.

The source code for the ECHO RSP is included in Appendix D. Study this listing carefully
while reading this section. The discussion of the P _CREATE system call in Section 6 is
also helpful in understanding RSPs.

Resident System Processes are included in Concurrent CP/M during system generation.
GENCCPM searches the directory for all files with the filetype RSP and prompts the user
to choose whether it is to be included in the generated system file, CCPM.SYS. An RSP
file is created by generating a CMD file and renaming it with an RSP filetype. The GENCCPM
program is documented in the Concurrent CP/M System Guide.

5.2 RSP Memory Models

Under Concurrent CP/M, there are two basic memory models for RSPs. They are similar
to the 8080 Model and the Small Model of transient programs. However, several important
distinctions exist between the transient program and RSP memory models. The RSP has no
equivalent to the Base Page of the transient program's Data Segment. The RSP is responsible
for its own Process Descriptor (PD) and User Data Area (UDA). The RSP must also allocate
an additional 96 bytes at the end of the User Data Area if 8087 processing is required. The
system creates and initializes these data structures for the transient programs automatically
at load time. RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P _CLI and P _CREATE system calls for PD and UDA descriptions).

Note that Concurrent CP/M does not support compact model RSPs. Extra and Stack
Segments must be part of the Data Segment.

[!IT) DIGITAL RESEARCHII!I -------------------------
5-1

5.2 RSP Memory Models Concurrent CP/M Programmer's Guide

Although there is no Base Page in an RSP, there is an RSP header that must exist at offset
OOH of the Data Segment. In the 8080 Model, this implies that the RSP header is in the
Code Segment. The RSP header and the associated data structures are discussed in
Section 5.4.

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When the system gives control of the
CPU to an 8080 Model RSP, it initializes the Code, Data, Extra and Stack Segment registers
to the same value. Use GENCMD with the 8080 option to generate an 8080 Model RSP.
GENCCPM assumes the 8080 Model if the CMD File Header Record of the RSP has a
single Code Group Descriptor and no other Group Descriptors (refer to Section 3.2). When
discussing an 8080 Model RSP, any reference to the Data Segment also refers to the Code
Segment.

5.2.2 Small Model RSP

The Small Model RSP implies separate Code and Data Segments. Before the system gives
control of the CPU to a Small Model RSP, it initializes the Data, Extra and Stack Segment
Registers to the Data Segment address, while the Code Segment register is initialized to the
Code Segment address. There is no guarantee where GENCCPM will place the Code Segment
in memory relative to the Data Segment. The CMD Header Record for this kind of RSP
must have both Data and Code Group Descriptors.

~ HIGH

MIXED DATA
CODE
AND RSP HEADER

DATA DS: ----.

CODE
RSP HEADER

CS:, DS: ~ CS: ----. ~ LOW

8080 MODEL SMALL MODEL

Figure 5-1. 8080 and Small RSP Models

-------------------------- i!IDDIGITAL RESEARCH®
5-2

Concurrent CP/M Programmer's Guide 5.3 Multiple Copies of RSPs

5.3 Multiple Copies of RSPs

At system generation, GENCCPM can make up to 255 extra copies of an RSP, such that
each copy generates a separate process running under Concurrent CP/M. GENCCPM accom­
plishes this by making multiple copies of the RSP, and initializing each to be a separate
RSP. The number of copies made by GENCCPM can be fixed, or dependent on a byte value
in the System Data Area. To determine the number of copies to make, GENCCPM looks
at two fields in the RSP Header. The format of the RSP Header is shown in Figure 5-2.

BYTE: OOH 02H 04H OSH 010H

--------+ +----+------------~
LINK SDATVAR NCP RESERVED

~------+ +----+------------~

Figure 5-2. RSP Header Format

If the SDATVAR field is nonzero, it is used as an offset of a byte value in the System Data
Area, which contains the number of copies to be generated. The offset should indicate a
value that is set by the user during GENCCPM. The TMP RSP uses this feature by placing
the offset of the NVCNS (Number of Virtual Consoles) field into the SDATVAR field. This
way, a TMP is generated for each System Console specified by the user. If SDATVAR is 0
then the NCP byte in the RSP header is used as the number of extra copies to make. If both
of these fields in the RSP Header are 0 then no extra copies are made, and only a single
RSP is created. The ECHO RSP is an example of the latter.

If the number of extra copies is determined by GENCCPM to be greater than 0, each
copy of the RSP is given a unique copy number. The copy number is placed in the NCP
field and the ASCII equivalent is appended to the end of the Process Descriptor NAME field
of each copy. If there is not enough space for the number in the PD NAME, part of the PD
NAME is over written. For the example TMP RSP, GENCCPM makes the specified number
of copies and changes the NAME field in each copy to be TMPO, TMPl, TMP2, ... ,. and
sets the NCP field to 0, 1, 2, ... , respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an 8080 Model RSP, the CS, DS, ES, and SS fields
in each copy's User Data Area are set to the paragraph address where the RSP is in memory
after loading.

I!ID DIGITAL RESEARCH® -------------------------
5-3

5.3 Multiple Copies of RSPs Concurrent CP/M Programmer's Reference Guide

5.3.2 Small Model

If multiple copies of a Small Model RSP are to be generated, GENCCPM copies both
the Code and Data Groups of the RSP, if the MEM field of the Process Descriptor is O. See
the P _CREATE system call for a description of the Process Descriptor format. GENCCPM
sets the UDA fields CS to the Code Segment of the RSP and DS, ES and SS to the Data
Segment of the RSP.

5.3.3 Small Model with Shared Code

If a Small Model RSP has a nonzero MEM field in its Process Descriptor, the Code
Segment is assumed to be reentrant. When copies are made of this type of RSP only the
Data Group is copied. GENCCPM sets the UDA CS field for each copy to the paragraph
address of the one Code Segment for the RSP's. The DS, ES, and SS, in each copied Data
Segment, are set by GENCCPM to the paragraph address of the Data Segment for that
particular copy.

5.4 Creating and Initializing an RSP

An RSP that is to be invoked from a console, or through the P _CLI system call, must
create a special queue called an RSP Command Queue. Such an RSP is called a Command
RSP. This type of RSP usually performs some initialization routine and then goes into a
loop. The initialization routine consists of creating and opening an RSP Command Queue
as well as changing the priority to the default transient process priority. (Priority values with
regard to RSPs are discussed below.)

The first step of the loop reads a message from the RSP Command Queue. The process
that writes the message to the RSP Command Queue activates the associated RSP. After the
RSP returns from the Q_READ system call, it obtains the system resources it needs, such
as the calling process' console. Typically, the RSP process is assigned the console process
by the eLI after the CLI has succeeded in writing the command tail to the RSP Queue. This
is only true if the RSP Process Descriptor name matches the RSP Command Queue name.
Refer to the P _CLI (Call Command Line Interpreter) system call description for information
about how the CLI handles a command.

-------------------------- r!IDDlGITAL RESEARCH<!I
5-4

Concurrent CP 1M Programmer's Guide 5.4 Creating and Initializing an RSP

When the RSP completes its activities for the given command, it releases any system
resources it has acquired, including the console, and restarts the loop by reading from its
RSP Command Queue. A Command RSP is a single process and is a serially reusable
resource; in other words, the RSP acts on one message at a time. When several processes
attempt to invoke a single Command RSP, they wait as described in the Q_READ and
Q_CREAD system call in Section 6. Refer to these and to the Q_ WRITE and Q_CWRITE
system calls for further details.

Note: It is certainly possible to create RSPs that are invoked differently.

The format of the RSP Command Queue Message is shown in Figure 5-3.

Byte: OOH 02H ... 082H

PDADDRESS I COMMAND TAIL (129 bytes)

Figure 5-3. RSP Command Queue Message

The PDADDRESS is the offset relative to the System Data Area segment of the Process
Descriptor of the process calling the RSP. A program that wants to invoke an RSP and is
forming an RSP Command Queue Message, can find its Process Descriptor address by
calling the P _PDADR system call. The COMMAND TAIL usually contains what the TMP
sends to the CLI minus the command name, and is terminated with a zero byte.

When a command is entered at a console, the TMP performs a P _eLI system call. The
P _CLI system call attempts to open a queue that has the RSP Flag on and has the same
name as the command sent to the CLI. If the Q_OPEN is successful, the P _CLI system
call attempts to assign the calling process's console to a process with the same name as the
command. The P _CLI system call then creates an RSP Command Queue Message with the
command tail sent to the CLI from the TMP, and writes it to the RSP Command Queue
(refer to the discussion of the P _CLI and Q_ WRITE system calls in Section 6). A transient
program can use a Command RSP in the same manner by writing directly to the appropriate
RSP Command Queue. An advantage of using the P _CLI system call is that it looks for an
RSP first and only searches on disk for a CMD file if the the RSP is not found.

I!ID DIGITAL RESEARCH® --------------------------
5-5

5.4 Creating and Initializing an RSP Concurrent CP 1M Programmer's Guide

When an RSP reads an RSP Command Queue Message, it often needs information about
the calling process, such as which console, list device, drive, or user number to use. If an
RSP is invoked through the P _CLI system call, the RSP is assigned the calling process's
console, but if the RSP Command Queue is written to directly, the calling process might or
might not assign its console to the RSP. A Command RSP can use the PD address in the
Command RSP Message to find out what the default devices of the calling process are. The
RSP should release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment has a fixed format starting at offset O. This data
structure is the RSP Header. Note that in the 8080 Model, the RSP Header is also in the
Code Segment. After the RSP Header is a Process Descriptor starting at offset 010H. A
User Data Area and a stack must also be within the Data Segment, with the UDA placed
at a paragraph boundary relative to the beginning of the Data Segment. If system calls
assuming a default DMA buffer are used, a 128-byte DMA Buffer must also exist. The
DMA OFFSET field in the User Data Area should be set to the address of the DMA buffer.
When the process is created by Concurrent CP/M, the DMA SEGMENT field is initialized
to the same value as the DS register. The DMA SEGMENT and OFFSET can also be set
by calling F_DMASEG and F_DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

-------------------------- I!IDDIGITAL RESEARCH®
5-6

Concurrent CP 1M Programmer's Guide 5.4 Creating and Initializing an RSP

PROGRAM
DATA
AND
RSP

STACK

Optional 8087
UDA extension

USER
DATA
AREA

PROCESS DESCRIPTOR

RSP HEADER

01AOH

0140H

0040H

0010H

OOOOH

Figure 5-4. RSP Data Segment

The RSP Header must be located at offset zero in the RSP Data Segment, the RSP Process
Descriptor must be at offset OlOH, and the RSP User Data Area must begin on an even
paragraph boundary.

5.4.1 The RSP Header

As disc Issed in Section 5.2, the number of copies made of an RSP is dependent on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired, these
fields must be zero. As a convenience, when Concurrent CP/M creates the RSP process,
the LINK field in the RSP Header is set to the paragraph address of the System Data Area.
The System Data Area can always be obtained by an RSP or transient program with the
S_SYSDAT system call.

I!ID DIGITAL RESEARCH® -------------------------
5-7

5.4 Creating and Initializing an RSP Concurrent CP 1M Programmer's Guide

5.4.2 The RSP Process Descriptor

The RSP Process Descriptor should be initialed to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT fields. The PRIORITY field is usually initialized
to 190. This is higher than transient programs and TMPs (200 and 198 respectively), but
lower than the INIT process, which has a priority of 1. The description of the P _PRIORITY
system call in Section 6 contains more information about system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is able to create and open an
RSP Command Queue before it can be invoked through a TMP. RSPs such as ECHO usually
set their priority to 200 after creating and opening their RSP Command Queue and before
attempting to read from the queue.

Note: There are no guarantees about the order in which the RSP processes are created by
the Concurrent CP/M operating system. If one RSP must run before another, it must have
a higher priority. Such is the case when one RSP uses a resource created by a second RSP;
the second must run (at least during initialization) with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data Segment
(refer to P _CREATE in Section 6 for further flag details). The SYS Flag allows a process
to read and write to and from restricted system queues. This is discussed below with regard
to RSP Command Queues. The KEEP flag signals to the operating system that this process
cannot be terminated. This flag is necessary if an RSP is not to be terminated when a CTRL-C
is typed on a console being used by the RSP. The 8087 flag tells the system that a process
is actively using the 8087 processor.

The NAME field of the RSP's Process Descriptor is 8 bytes long. It is assumed to be left­
justified and padded with blanks on the right. If an RSP Command Queue is going to be
used to invoke the RSP through the CLI, the PD must have the same uppercase name as
the· Command Queue. The UDA field in the Process Descriptor must be the offset in para­
graphs of the UDA relative to the RSP data segment. GENCCPM restores the UDA field
in the Process Descriptor to the actual UDA paragraph address when the system is generated.

If the PD field name is not the same as the Command Queue, the console is not assigned
to the RSP by the CLI.

------------------------- I!Q)OIGITAL RESEARCHilli
5-8

Concurrent CP 1M Programmer's Guide 5.4 Creating and Initializing an RSP

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three-word IRET structure,
in the RSP's Data Segment. The offset is relative to the beginning of the Data Segment.
The first of the three words is the offset of the code entry point for the RSP, relative to the
beginning of the RSP Code Segment. Concurrent CP/M executes an IRET instruction to
start the RSP using these three words for the IP, CS and Flag registers respectively. The CS
value on the stack is initialized to be the CS field of the UDA, while the Flag value is set
to 0200R (interrupts on). The RSP stack must come immediately before these three words.

The initial values of the AX, BX, CX, DX, DI, SI, and BP registers are taken from the
appropriate fields in the UDA.

The DMA OFFSET field should be set to the offset of the DMA buffer in the RSP's Data
Segment. Except for the SP and DMA OFFSET fields, and possibly the AX, BX, CX, DX,
DI, SI, and BP fields, the remainder of the UDA fields should be initialized to o. The CS,
DS, ES, and SS fields are set by GENCCPM as discussed in Section 5.3.

If you include the 8087 extension in the UDA, you must initialize the CW field (Control
Word) to 03FFR and the SW (Status Word) field to 0 before system generation.

5.4.4 The RSP Stack

The RSP must reserve space for its stack, which is assumed to lie within the RSP's Data
Segment. This stack must be large enough to accommodate what the RSP code needs, plus
four levels (eight bytes) to handle possible hardware interrupts. We highly recommend that
you reserve more than four extra levels of stack.

The SP field in the RSP's UDA points to the top of this stack; the top contains the three­
word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP's Command Queue contains information that determines when it begins
execution, and to which console it is attached. If an RSP is to be accessible from a console
via the TMP, the Command Queue name must be in uppercase. The FLAGS field in the
RSP Command Queue Descriptor must have the RSP bit on. If this flag is not on, the CLI
will not write a message to the RSP Command Queue, and instead attempts to load a
transient program. The KEEP flag should be set on to protect the RSP QUEUE from
inadvertent use of the Q_DELETE system call.

I!ID DIGITAL RESEARCH® -------------------------
5-9

5.4 Creating and Initializing an RSP Concurrent CP 1M Programmer's Guide

The RESTRICTED flag (refer to the Q_MAKE system call.in Section 6) makes a queue
accessible only by privileged processes. Privileged processes have the SYS Flag on in their
Process Descriptor. If the RESTRICTED Flag is on in an RSP Command Queue, then only
privileged processes can invoke the related RSP. A lowercase letter in the RSP Command
Queue name and the RESTRICTED Flag provide two methods of filtering access to an RSP
QUEUE.

The Queue Descriptor of the RSP Command Queue must have a message length of 131
bytes. The format of this message is shown above. The number of messages is usually 1.
If the Queue Descriptor is within 64K bytes of the beginning of the System Data Area,
buffer space for the Queue Descriptor must be allocated in the RSP. The BUFFER field in
the Queue Descriptor must be the offset of this buffer, relative to the beginning of the RSP's
Data Segment. The buffer size is the message length times the number of messages, usually
131 bytes.

Note: The queue buffer should be before the Queue Descriptor within the RSP Data
Segment.

An RSP can certainly create other queues besides the RSP Command Queue used with
Command RSPs. However, any queue an RSP creates that lies within 64K of the System
Data Area must have a buffer area pointed to by the BUFFER field in its Queue Descriptor.
To be safe, the buffer should come before the Queue Descriptor in the RSP's Data Segment.
It is assumed the BUFFER field points to a buffer that is also within 64K of the System
Data Area. If the Queue Descriptor is farther than 64K from the System Data Area, Con­
current CP/M uses buffer space in the System Data Area. Refer to the Q_MAKE system
call in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from it, a Queue
Parameter Block and its associated buffer must be allocated in the RSP's Data Segment.
These structures are treated just as in a transient process. For any queues created by an RSP,
it is stressed that the queue buffer areas associated with the Queue Descriptor and the Queue
Parameter Block are separate, distinct areas of storage.

5.4.6 Multiple Processes within an RSP

An RSP can create child processes by calling the P _CREATE system call. Note that if
the Process Descriptor of the process being created is within 64K bytes of the beginning of
the System Data Area, the PD structure is used directly by Concurrent CP/M. Otherwise
the PD structure is copied into the PD table in the System Data Area.

-------------------------- llIDDlGITAL RESEARCH®
5-10

Concurrent CP/M Programmer's Guide 5.5 Developing and Debugging an RSP

5.5 Developing and Debugging an RSP

The first RSP you attempt should be very simple, on the order of complexity of the ECHO
RSP listed in Appendix D. New RSPs should be developed and debugged as if they were
transient processes, such as Concurrent CP/M CMD utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: first load
CP/M-86, then invoke DDT-86@l, and then bring up Concurrent CP/M. The Concurrent
CP/M System Guide provides more information about running Concurrent CP/M under
CP/M-86.

After reading in the CCPM.SYS file under DDT-86, find the RSPSEG field of the System
Data Segment (SYSDAT). The paragraph address of the SYSDAT is found in the A-BASE
field of the Data Group Descriptor in the CCPM.SYS command file header. The CMD header
is described in Section 3.2 and the SYSDAT area is described in the S_SYSDAT system
call in Section 6. The RSPSEG field contains the paragraph address of the Data Segment
of the first RSP in a linked list of the RSPs included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to show memory at the segment
RSPSEG, the name of the first RSP can be identified in the RSP's Process Descriptor. The
LINK field in the RSP Header, which will be the first word in the RSPSEG segment, is the
paragraph value of the next RSP's Data Segment. A zero in the LINK field means the end
of the list of RSPs. Note that linkage information is lost once Concurrent CP/M is initialized.
The LINK field of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once the RSP to be debugged is located, the initial code entry point can also be found.
As discussed previously, the SP field in the RSP's UDA is the offset from the beginning of
the RSP's Data Segment of the three-word IRET structure. The first word of the IRET
structure contains the initial value of the IP register when Concurrent CP/M creates the RSP
process. The initial value of the CS register is in the CS field also in the RSP's UDA. Once
this is done, you can set break points in the RSP, similar to setting break points in XIOS
system calls.

End of Section 5

[fQ] DIGITAL RESEARCH® -------------------------
5-11

Section 6
System Calls

This section describes the Concurrent CP/M system calls in tabular form. It is intended
both as an introduction to the calls and as a reference for use during programming. You
should be familiar with the material in Sections 1 through 5 before proceeding.

The first table, Table 6-1, describes the categories of Concurrent CP/M system calls and
their general uses. Table 6-2 summarizes the Concurrent CP/M system calls. Use it as a
quick reference to find the system call you need while programming. The system calls are
broken down into functional groups. Immediately following is Table 6-3, a cross-reference
showing the system calls in numerical order. Table 6-4 is an index providing the page numbers
and figure titles of commonly used data structures. Table 6-5 lists the error codes returned
in register CX.

[!ill DIGITAL RESEARCHII!I --------------------------
6-1

6 System Calls Concurrent CP 1M Programmer's Guide

Table 6-1. System Call Categories

Category Use

C_ Console System Calls

The Console System Calls handle I/O operations for virtual consoles
on a character, string, and line basis, attach and detach consoles from
processes, and return or change the number corresponding to the
default virtual console.

DEV _ Device System Calls

The Device System Calls deal with flags and polling in managing
system resources.

DRV _ Disk Drive System Calls

The Disk Drive System Calls manage Concurrent CP/M logical drives.

F_ File-Access System Calls

The File-Access System Calls include calls that operate on files within
a directory, calls that operate on records within files, and miscella­
neous system calls related to file I/o.

L List D~vice System Calls

The List Device System Calls write characters or strings to the default
list device, attach and detach the default list device from calling
processes, and return or change the number corresponding to the
default list device.

1L MP/M-86@ Memory Management System Calls

The 1L Memory Management System Calls are included for com­
patibility with MP/M-86. These calls allocate and free memory seg­
ments according to the MP/M-86 segmentation algorithm.

--------------------------I!ID DIGITAL RESEARCH®
6-2

Concurrent CP 1M Programmer's Guide 6 System Calls

Table 6-1. (continued)

Category Use

MC_ CP/M-86 Memory Management System Calls

The MC_ Memory Management System Calls allocate and free
memory segments according to the CP/M-86 segmentation algorithm.

P _ Process/Program System Calls

The Process/Program System Calls create and terminate processes,
call other processes, and perform other operations on processes.

Q_ Queue Management System Calls

S_ System Calls

The Queue Management System Calls create, delete, open, read
from, and write to queues.

The System Calls return various types of systems data, such as ver­
sion numbers and addresses.

T_ Time System Calls

The Time System Calls set the system calendar and clock and return
the time from them in hours and minutes or in hours, minutes, and
seconds.

[!ill DIGITAL RESEARCH® --------------------------
6-3

6 System Calls Concurrent CP 1M Programmer's Guide

Table 6-2. Concurrent CP/M System Calls

Number
Mnemonic Definition

Dec Hex

Console 1/0 System Calls

149 95 C_ASSIGN Assign default virtual console to another
process.

146 92 C_ATTACH Establish ownership of the default vir-
tual console to the calling process; sus-
pend process until console becomes
available.

162 A2 C_CATTACH Conditionally establish ownership of the
default virtual console by the calling
process; return an error message if the
device is unavailable.

110 6E C_DELIMIT Set or return current String Output
Delimiter. Used with C_ WRITESTR.

147 93 C_DETACH Detach default virtual console from the
calling process.

153 99 C_GET Return the virtual console number of
the calling process.

109 6D C_MODE Set or return Console mode.

6 06 C_RAWIO Perform Raw mode I/O with the default
virtual console.

01 C_READ Read a character from the default vir-
tual console.

10 OA C_READSTR Read an edited line from the default
virtual console.

-------------------------1iID DIGITAL RESEARCH(/!)
6-4

Concurrent CP 1M Programmer's Guide 6 System Calls

Table 6-2. (continued)

Number
Mnemonic Definition

Dec Hex

148 94 C_SET Set or change the default virtual con-
sole for the calling process.

11 OB C_STAT Obtain the input status of the default
virtual console.

2 02 C_WRITE Write a character to the default virtual
console.

111 6F C_WRITEBLK Write a specified number (block) of
characters to the default virtual console.

9 09 C_WRITESTR Write a string to the default virtual con-
sole until delimiter.

Device System Calls

133 85 DEV_SETFLAG Set a system flag.

132 84 DEV _ WAITFLAG Wait for a system flag to be set before
restoring the current process.

131 83 DEV_POLL Poll a noninterrupt-driven device.

Disk Drive System Calls

38 26 DRV_ACCESS Indicate access to specified drives.

27 IB DRV_ALLOCVEC Get the address of the disk Allocation
Vector.

13 OD DRV _ALLRESET Reset all disk drives.

31 IF DRV_DPB Return the segment and offset address
of the Disk Parameter Block for the
default disk of the calling process.

[i]] DIGITAL RESEARCHIl!> -------------------------
6-5

6 System Calls

Number
Dec Hex

48 30

39 27

25 19

101 65

24 18

37 25

29 1D

14 OE

100 64

28 1C

46 2E

30 IE

16 10

19 13

Concurrent CP 1M Programmer's Guide

Table 6-2. (continued)

Mnemonic

DR V_GET

DRV_GETLABEL

DRV _LOGINVEC

DRV_SET

DRV _SETLABEL

DRV_SETRO

DRV_SPACE

Definition

Write internal pending blocking/
deblocking data buffers to disk.

Relinquish access to specified drives.

Return the default drive of the calling
process.

Return the directory label data byte for
the specified drive.

Return bit map of logged-in disk drives·.

Reset the specified drives.

Return bit map vector of drives set to
Read-Only.

Set default drive of calling process.

Create or update a directory label.

Set the default drive to Read-Only.

Return. unallocated space on the spec­
ified drive.

Disk File System Calls

Set file attributes.

Close file.

Delete file.

-------------------------llID DIGITAL RESEARCH'!)
6-6

Concurrent CP 1M Programmer's Guide 6 System Calls

Table 6-2. (continued)

Number
Mnemonic Definition

Dec Hex

52 34 F_DMAGET Return segment and offset address of
Direct Memory Address buffer.

26 lA F_DMAOFF Set the Direct Memory Address offset
address.

51 33 F_DMASEG Set Direct Memory Address buffer seg-
ment address.

45 2D F_ERRMODE Set the BDOS Error mode.

42 2A F_LOCK Lock record within file opened in
Unlocked mode.

22 16 F_MAKE Create file.

44 2C F_MULTISEC Set the BDOS Multisector Count.

15 OF F_OPEN Open file for record access.

152 98 F_PARSE Parse an ASCII string and initialize an
FCB.

106 6A F_PASSWD Set the default password.

36 24 F_RANDREC Set the Random Record field in the FCB
from the sequential record position.

20 14 F_READ Read record sequentially.

33 21 F_READRAND " Read random record.

23 17 F_RENAME Rename file.

17 11 F_SFIRST Search for first matching directory FCB
that matches the specified FCB.

[ID DIGITAL RESEARCH$
6-7

6 System Calls Concurrent CP 1M Programmer's Guide

Table 6-2. (continued)

Number
Mnemonic Definition

Dec Hex

35 23 F_SIZE Return the size of a file.

18 12 F_SNEXT Search for next matching directory FCB
that matches the FCB specified in the
F _SFIRST system call.

102 66 E_ TIMEDATE Return file's date and time stamps and
password mode.

99 63 F_TRUNCATE Truncate file to the specified Random
Record Number.

43 2B F_UNLOCK Remove record locks.

32 20 F_USERNUM Set or return the default user number of
the calling process.

21 15 F_WRITE Write records sequentially.

34 22 F _ WRITERAND Write random records.

103 67 F _ WRITEXFCB Create or update file's XFCB.

40 28 F_WRITEZF Write random records and zero-fill any
previously unallocated data blocks.

List Device System Calls

158 9E . LATTACH Establish ownership of the default list
device by the calling process; suspend
the process until the device is available.

161 Al LCATTACH Conditionally establish ownership of the
default list device by the calling process;
return error code if the device is
unavailable.

--------------------------[!ID DIGITAL RESEARCH~
6-8

Concurrent CP 1M Programmer's Guide 6 System Calls

Table 6-2. (continued)

Number
Mnemonic Definition

Dec Hex

159 9F L_DETACH Relinquish ownership of the default list
device.

164 A4 LGET Return the default .list device number
of the calling process.

160 AO L_SET Change the default list device for the
calling process.

5 05 LWRITE Write a character to the default list
device.

112 70 LWRITEBLK Write the specified number of charac-
ters (block) to the default list device.

MP/M Compatible Memory Allocation System Calls

128 80 M-ALLOC Allocate the memory segment be-
tween the sizes specified in the Mem-

129 81 same as 128 ory Parameter Block to the calling
process.

130 82 M-FREE Free the specified memory segment.

CP/M Compatible Memory Allocation System Calls

54 36 MC_ABS Allocate the maximum amount of RAM
available at a specified address.

58 3A MC_ALLFREE Free all memory owned by the calling
process.

55 37 MC_ALLOC Allocate a segment of RAM, as spec-
ified in the Memory Control Block, to
the calling process.

I!ID DIGITAL RESEARCHQ!) -------------------------
6-9

6 System Calls Concurrent CP 1M Programmer's Guide

Table 6-2. (continued)

Number
Mnemonic Definition

Dec Hex

56 38 MC_ALLOCABS Allocate a specified amount of RAM,
as above, but beginning at a specific
address.

57 39 MC_FREE Free an area of RAM beginning at a
specified address, and extending to the
end of the previously-allocated mem-
oryarea.

53 35 MC_MAX Allocate the maximum amount of RAM
available in the system.

Process/Program System Calls

157 9D P_ABORT Terminate a process specified by name
or Process Descriptor address.

47 2F P_CHAIN Load, initialize, and jump to the pro-
gram specified'in the DMA buffer.

150 96 P_CLI Interpret and execute the specified
command line by calling Command Line
Interpreter (CLI).

144 90 P_CREATE Create a subprocess.

141 8D P_DELAY Suspend the calling process for a spec-
ified number of system clock ticks.

142 8E P_DISPATCH Force a dispatch operation; give up the
CPU resource to the highest priority
process ready to run.

59 3B P_LOAD Load the specified CMD file in mem-
ory; return its base page segment
address.

-------------------------- ((IDDIGITAL RESEARCH <!I

6-10

Concurrent CP 1M Programmer's Guide 6 System Calls

Number
Dec Hex

156 9C

145 91

151 97

143 8F

0 00

138 8A

140 8C

136 88

134 86

135 87

137 89

Table 6-2. (continued)

Mnemonic Definition

P_PDADR Return the address of the Process
Descriptor of the calling process.

P_PRIORITY Set the priority of the calling process.

P_RPL Invoke a system call from a Resident
Procedure Library.

P_TERM Terminate the calling process.

P_TERMCPM Terminate calling process uncondition-
ally, release all owned resources.

Queue System Calls

Conditionally read a message from a
system queue; return error code if a
message is not available.

Conditionally write a message to a sys­
tem queue; return an error code if space
is not available.

Delete a system queue.

Create a system queue.

Open a system queue for subsequent
queue operations.

Read a message from a system queue;
suspend calling process until message
is available.

I!ID DIGITAL RESEARCHII!I --------------------------
6-11

6 System Calls

Number
Dec Hex

139 8B

12 OC

50 32

163 A3

107 6B

154 9A

105 69

155 9B

104 68

Concurrent CP 1M Programmer's Guide

Table 6-2. (continued)

Mnemonic

Q_WRITE

Definition

Write a message to a system queue; sus­
pend calling process until space becomes
available.

System System Calls

S_BDOSVER Return BDOS version number, CPU and
operating system type.

S_BIOS Call specified CP/M-86 BIOS charac-
ter I/O routine.

S_OSVER Return type and version number of
Concurrent CP/M.

S_SERIAL Return the Concurrent CP/M system
serial number.

S_SYSDAT Return address of the System Data Seg-
ment (Sysdat)

Time System Calls

T_GET Obtain the system calendar and clock,
hours and minutes only.

T_SECONDS Return current system date and time;
hours, minutes, seconds.

T_SET Set internal system calendar and clock
to specified value.

------------------------- [iQlDIGITAL RESEARCH~
6-12

Concurrent CPIM Programmer's Guide 6.1 System Call Summary

6.1 System Call Summary

Table 6-3 lists the Concurrent CP/M system calls in summary form, including the param­
eters a process must pass when calling the system call, and the values the system returns
to the process.

Appendix A lists the Concurrent CP/M system calls by function number, and includes all
the information in Table 6-3.

Table 6-3. System Call Summary

Mnemonic Dec Hex
Input

Returned Values
Parameters

C_ASSIGN 149 95 DX = .ACB AX = Rtn Code
C_ATTACH 146 92 none none
C_CATTACH 162 A2 none AX = Rtn Code
C_DELIMIT 110 6E DX = Out Delim AL = Out Delim
C_DETACH 147 93 none none
C_GET 153 99 none AL = can #
C_MODE 109 6D DX = Can Mode none

= OFFFFH AX = Can Mode
C_SET 148 94 DL = Console none
C_RAWIO 6 6 see def see def
C_READ 1 1 none AL = char
C_READSTR 10 A DX = .Buffer see def
C_STAT 11 B none AL = 00101
C_WRITE 2 2 DL = char none
C_WRITEBLK 111 6F DX = .CHCB none
C_WRITESTR 9 9 DX = .Buffer none

DEV_POLL 131 83 DL = Device none
DEV_SETFLAG 133 85 DL = Flag AX = Rtn Code
DEV _ WAITFLAG 132 84 DL = Flag AX = Rtn Code

DRV_ACCESS 38 26 DX = drive Vect none
DRV_ALLOCVEC 27 IB none AX = .Alloc
DRV _ALLRESET 13 D none see def
DRV_DPB 31 IF none AX = .DPB
DRV_FLUSH 48 30 none see def

[iQ) DIGITAL RESEARCHail ------------------------
6-13

6.1 System Call Summary Concurrent CP/M Programmer's Guide

Table 6-3. (continued)

Mnemonic Dec Hex
input

Returned Values
Parameters

DR V_FREE 39 27 DX = drive Vect none
DR V_GET 25 19 none AL = Cur Drive #
DRV_GETLABEL 101 65 DX = Drive # AL = Label Data Byte
DRV _LOGINVEC 24 18 none AX = Login Vect.
DRV_RESET 37 25 DX = drive Vect AL = Err Code
DRV_ROVEC 29 ID none AX = RIO Vect.
DRV_SET 14 E DL = Drive # see def
DRV _SETLABEL 100 64 DX = .FCB AL = Dir Code
DRV_SETRO 28 lC none see def

F_ATTRIB 30 IE DX = .FCB see def
F_CLOSE 16 10 DX = .FCB AL = DirCode
F_DELETE 19 13 DX = .FCB AL = Dir Code
F_DMAGET 52 34 none AX = DMA Offset
F_DMAOFF 26 lA DX = .DMA none
F_DMASEG 51 33 DX = .DMA Seg none
F_ERRMODE 45 2D DL = Err Mode none
F_LOCK 42 2A DX = .FCB AL = Err Code
F_MAKE 22 16 DX = .FCB AL = Dir Code
F_MULTISEC 44 2C DL = # of Records AL = Rtn Code
F_OPEN 15 F DX = .FCB AL = Dir Code
F_PARSE 152 98 DX = .PFCB see def
F_PASSWD 106 6A DX = .Password none
F_RANDREC 36 24 DX = .FCB RO, Rl, R2
F_READ 20 14 DX = .FCB AL = Err Code
F_READRAND 33 21 DX = .FCB AL = Err Code
F_RENAME 23 17 DX = .FCB AL = Dir Code
F_SFIRST 17 11 DX = .FCB AL = Dir Code
F_SIZE 35 23 DX = .FCB RO, Rl, R2

AL = Dir Code
F_SNEXT 18 12 none AL = Dir Code
F_TIMEDATE 102 66 DX = .XFCB AL = Dir Code
F_TRUNCATE 99 63 DX = .FCB see def
F_UNLOCK 43 2B DX = .FCB AL = Err Code
F_USERNUM 32 20 DL = OFFH (get) AL = User #

= User # (set) none

-----.....:.....----------------- IiIDDIGITAL RESEARCH~
6-14

Concurrent CP/M Programmer's Guide 6.1 System Call Summary

Table 6-3. (continued)

Mnemonic Dec Hex
Input

Returned Values
Parameters

F_WRITE 21 15 DX = .FCB AL = Err Code
F _ WRITERAND 34 22 DX = .FCB AL = Err Code
F _ WRITEXFCB 103 67 DX = .XFCB AL = Dir Code
F_WRITEZF 40 28 DX = .FCB AL = Err Code

L_ATTACH 158 9E none none
L_CATTACH 161 Al none AX = Rtn Code
L_DETACH 159 9F none none
L_GET 164 A4 none AL = list #
L_SET 160 AO DL = List # none
L_WRITE 5 5 DL = char none
L_WRITEBLK 112 70 ' DX = .CHCB none

M_ALLOC 128 80
~ALLOC 129 81 DX = .MPB AX = Rtn Code
M_FREE 130 82 DX = .MPB none
MC_ABSALLOC 56 38 DX = .MCB see def
MC_ABSMAX 54 36 DX = .MCB see def
MC_ALLFREE 58 3A none none
MC_ALLOC 55 37 DX = .MCB see def
MC_FREE 57 39 DX = .MCB see def
MC_MAX 53 35 DX = .MCB see def

P_ABORT 157 9D DX = .ABP AX = Rtn Code
P_CHAIN 47 2F see def none
P_CLI 150 96 DX = .CLBUF none
P_CREATE 144 90 DX = .PD none
P_DELAY 141 8D DX = #ticks none
P_DISPATCH 142 8E none none
P_LOAD 59 3B DX = .FCB AX = BP Addr
P_PDADR 156 9C none AX = PD Addr
P_PRIORITY 145 91 DL = Priority none
P_RPL 151 97 DX = .CPB AX = result
P_TERM 143 8F DL = Term.Code AX = Rtn Code
P_TERMCPM 0 0 none AX = Rtn Code

!lID DIGITAL RESEARCH~ -----------------------
6-15

6.1 System Call Summary Concurrent CP/M Programmer's Guide

Table 6-3. (continued)

Mnemonic Dec Hex
Input

Returned Values
Parameters

Q_CREAO 138 8A OX = .QPB AX = Rtn Code
Q_CWRITE 140 8C OX = .QPB AX = Rtn Code
Q_DELETE 136 88 OX = .QPB AX = Rtn Code
Q_MAKE 134 86 OX = .QO none
Q_OPEN 135 87 OX = .QPB AX = Rtn Code
Q_REAO 137 89 OX = .QPB none
Q_WRITE 139 8B OX = .QPB none

S_BDOSVER 12 C none AX = Version#
S_BIOS 50 32 OX = .BO AX = BIOS rtn
S_OSVER 163 A3 none AX = Version #
S_SERIAL 107 6B OX = .serialnmb serialnmb set
S_SYSOAT 154 9A none AX = Sys Oata Addr

T_GET 105 69 OX = .TOO AL = seconds
T_SECONOS 155 9B OX = .TOO TOO filled in
T_SET 104 68 OX = .TOO none

Note: System calls 3, 4, 7, and 8 are not supported by Concurrent CP/M.

------------------------ liIDDIGITAL RESEARCH!!)
6-16

Concurrent CP/M Programmer's Guide

Conventions used in Table 6-3:

Address of
Number
ACB Assign Control Block
APB Abort Parameter Block
Addr Address
BD Bios Descriptor
BP Base Page
Char ASCII Character
CHCB Character Control Block
CLBUF Command Line Buffer
CPB Call Parameter Block
Con Console
Cur Current
Delim Delimiter
Dir Directory
DMA Direct Memory Address
Err Error
FCB File Control Block

MCB
MPB
Num
Out
PD
PFCB
QD
QPB
Rec
Rtn
Sys
Term.
TOD
Vect

6.1 System Call Summary

Memory Control Block
Memory Para:meter Block
Number
Output
Process Descriptor
Parse Filename Control Block
Queue Descriptor
Queue Parameter Block
Record
Return
System
Termination
Time of Day
Vector

Uppercase mnemonics refer to Data Structures; see the function definition. A . before a
Data Structure means the byte offset of the Data Structure. A Return Code is either 0 for
success or OFFFFH to indicate failure. When the Return Code in AX is OFFFFH, CX is the
Error Code (see Table 6-5). An error code returned in AL is specific to the BDOS system
call that was made.

[!ill DIGITAL RESEARCH® -------------------------
6-17

6.1 System Call Summary Concurrent CP/M Programmer's Guide

Table 6-4. Data Structures Index

Figure Title Page

2-1 FCB - File Control Block 2-10
2-2 Directory Label Format 2-18
2-3 XFCB - Extended File Control Block 2-20
2-4 Directory Record with SFCB 2-24
2-5 SFCB Subfields 2-24
2-6 Disk System Reset 2-41

3-1 CMD File Header Format 3-3
3-2 Group Descriptor Format 3-3
3-3 Concurrent CP/M Base Page Values 3-6

4-1 Initial Program Stack 4-2
4-2 Concurrent CP/M 8080 Memory Model 4-3
4-3 Concurrent CP/M Small Memory Model 4-4
4-4 Concurrent CP/M Compact Memory Model 4-5
4-5 Intel Hexadecimal File Formats 4-10

5-1 8080 and Small RSP Models 5-2
5-2 RSP Header Format 5-3
5-3 RSP Command Queue Message 5-5
5-4 RSP Data Segment 5-7

6-1 ACB - Assign Control Block 6-21
6-2 Console Buffer Format 6-33
6-3 Drive, RIO, or Login Vector Structure 6-44,
6-4 DPB - Disk Parameter Block 6-48
6-5 Disk Free Space Field Format 6-63
6-6 PFCB - Parse Filename Control Block 6-86
6-7 MCB - Memory Control Block 6-128
6-8 MPB - Memory Parameter Block 6-129
6-9 MFPB - M..FREE Parameter Block 6-132
6-10 APB - Abort Parameter Block 6-139

-------------------------liID DIGITAL RESEARCH$
6-18

Concurrent CP/M Programmer's Guide

Figure

6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22

Table 6-4. (continued)

Title

CLI Command Line Buffer
PD - Process Descriptor
UDA - User Data Area
CPB - Call Parameter Block
QPB - Queue Parameter Block
QD - Queue Descriptor
BDOS Version Number Format
BIOS Descriptor Format
Operating Systems Version Number Format
SERIAL Number Format
SYSDAT Table
TOD Time-of-Day Structure

Table 6-5. CX Error Code Reports

Dec Hex Error Report

0 OOH No error
1 01H System call not implemented
2 02H Illegal system call number,
3 03H Cannot find memory
4 04H Illegal flag number
5 05H Flag overrun
6 06H Flag underrun
7 07H No unused Queue Descriptors
8 08H No free queue buffer
9 09H Cannot find queue
10 OAH Queue in use
12 OCH No free process descriptors
13 ODH No queue access
14 OEH Empty queue
15 OFH Full queue
16 10H CLI queue missing
17 llH No 8087 in system

6.1 System Call Summary

Page

6-142
6-146
6-151
6-159
6-163
6-168
6-174
6-175
6-176
6-177
6-179
6-185

18 12H No unused Memory Descriptors
19 13H Illegal console number

I!ID DIGITAL RESEARCH®
6-19

6.1 System Call Summary Concurrent· CP/M Programmer's Gtdde

Table 6-5. (continued)

Dec Hex Error Report

20 14H No Process Descriptor match
21 15H No console match
22 16H No CLI process
23 17H Illegal disk number
24 18H Illegal filename
25 19H Illegal -filetype
26 lAH Character not ready
27 IBH Illegal memory descriptor
28 lCH Bad return from BDOS -load
29 IDH Bad return from BDOS read
30 lEH Bad return from BDOS open
31 IFH Null command
32 20H Not owner of resource
33 21H No CSEG in load file
34 22H Process Descriptor exists on Thread Root
35 23H Could not terminate process
36 24H Cannot attach to process
37 25H Illegal list device number
38 26H Illegal password
40 28H External termination occurred
41 29H Fixup error upon load
42 2AH Flag set ignored.

6.2 Concurrent CP/M System Calls

This section presents detailed information on the Concurrent CP/M system calls. Read the
entire section through before attempting to use the system calls in a program, as many of
them interact with one another.

-----'-----------------------!IID DIGITAL RESEARCH~
6-20

Concurrent CP/M Programmer's Guide C-ASSIGN

6.2.1 Console I/O System Calls

C_ASSIGN

Ass~gn Default Console Device
To Another Process

Entry Parameters:
Register CL: 095H (149)

DX: ACB Address - Offset
DS: ACB Address - Segment

Returned Values:
Register AX: o if assign "OK"

OFFFFH on Failure
BX: Same as AX
CX: Error Code

----+--+--+--..,
00 CNS IMATCH\ PD
~--+--+--+----~----+--+--+--..,

04 NAME

Figure 6-1. ACB - Assign Control Block

I!ID DIGITAL RESEARCH~ -------------------------
6-21

C-ASSIGN

Field

CNS

MATCH

PD

NAME

Concurrent CP 1M Programmer's Guide

Table 6-6. ACB Field Definitions

Definitions

Console to assign

Boolean; if OFFH, the process being assigned the console must have
the CNS as its default console for a successful Assign. If OH, no check
is made.

Process ID of the process being assigned the console. If this field is
zero, a search is made of the Thread List for a process whose name is
NAME. This field must be either zero or a valid Process ID. If this
value is not a valid PD, an error occurs.

8-byte process name to search for. An error occurs if a process by this
name does not exist.

The C_ASSIGN system call directly assigns the specified console to a specified process.
This system call overrides the normal mechanism of the C_ATTACH and C_DETACH
system calls. The system call returns an error code if a process other than the calling process
owns the console. The system call ignores other processes waiting to attach to the specified
console, and they continue to wait until the current owner either calls the C_DETACH system
call, or terminates.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------I!IDDIGITAL RESEARCH®
6-22

Concurrent CP/M Programmer's Guide C-ATTACH

C_ATTACH

Attach Default Console
To Calling Process

Entry Parameters:
Register CL: 092H (146)

The C_ATTACH system call attaches the default console to the calling process. If the
console is already owned by the calling process or if it is not owned by another process, the
C_ATTACH system call immediately returns with ownership established and verified. If
another process owns the console, the calling process waits until the console becomes available.

Refer to Table 6-5 for a list of error codes returned in CX.

[!Q) DIGITAL RESEARCH~ --------------------------
6-23

Concurrent CP/M Programmer's Guide

C_CATTACH

Conditionally Attach Default
Console To Calling Process

Entry Parameters:
Register CL: OA2H (162)

Returned Values:
Register AX: o if attach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The C_CATTACH system call attaches the default console of the calling process only if
the console is currently unattached.

If the console is currently attached to another process, the system call returns a value of
OFFH indicating that the console could not be attached. The system call returns a value of 0
to indicate that either the console is already attached to the process or that it was unattached
and a successful attach operation was made.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- [lID DIGITAL RESEARCH4!l
6-24

Concurrent CP/M Programmer's Guide C-DELIMIT

C_DELIMIT

Set Or Return Output Delimiter

Entry Parameters:
Register CL: 06EH (110)

DX: OFFFFH (get) or
DL: Output Delimiter (set)

Returned Values:
Register AL: Output Delimiter or

(no value if set)
BL: Same as AL

A program can set or interrogate the current Output Delimiter by calling C_DELIMIT. If
register DX = OFFFFH, then the current Output Delimiter is returned in register AL. Other­
wise, C_DELIMIT sets the Output Delimiter to the value in register DL.

C_DELIMIT sets the string delimiter for C_ WRITESTR. When a new process is created,
the default delimiter value is set to a dollar sign, $. The default delimiter is not inherited
from the parent process.

[j]J DIGITAL RESEARCH(J!) -------------------------
6-25

C-DETACH Concurrent CP/M Programmer's Guide

C_DETACH

Detach Default Console
From Calling Process

Entry Parameters:
Register CL: 093H (147)

Returned Values:
Register AX: o if detach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The C_DETACH system call detaches the default console from the calling process. If the
default console is not attached to the calling process, no action is taken. If other processes
are waiting to attach to the console, the process with the highest priority attaches the console.
If there is more than one process with the same priority waiting for the console, it is given
to the queue writing processes on a first-come, first-serve basis.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------[ijJ DIGITAL RESEARCH$
6-26

Concurrent CP/M Programmer's Guide

C_GET

Return The Calling Process's
Default Console

Entry Parameters:
Register CL: 099H (153)

Returned Values:
Register AL: Console number

BL: Same as AL

The C_GET system call returns the default console number of the calling process.

[!ill DIGITAL RESEARCHII!l -------------------------

6-27

C-MODE Concurrent CP 1M Programmer's Guide

C_MODE

Set Or Return Console mode

Entry Parameters:
Register CL: 06DH (109)

DX: OFFFFH (get) or
Console Mode (set)

Returned Values:
Register AX: Console Mode or

(no value)
BX: Same as AX

A process can set or interrogate the Console Mode by calling C_MODE. If register
DX = OFFFFH, then the current Console Mode is returned in register AX. Otherwise,
C_MODE sets the Console Mode to the value contained in register DX.

------------------------- [!]JDIGITAL RESEARCH~
6-28

Concurrent CP 1M Programmer's Guide C.-MODE

The Console Mode is a 16-bit system parameter that determines the action of certain
Console I/O functions. Note that the Console Mode bits are numbered from right to left. The
Console Mode is set to zero when a new process created; it is not inherited from its parent.
The definition of the Console Mode is

bit 0 = 1 - CTRL-C only status for C_STAT.
= 0 - Normal status for C_STAT.

bit 1 = 1 - Disable stop scroll, CTRL-S, start scroll, CTRL-Q, support.
= 0 - Enable stop scroll, start scroll support.

bit 2 = 1 - Raw console output mode. Disables tab expansion for C_ WRITE,
C_ WRITESTR, and C_ WRITEBLK. Also disables printer echo,
CTRL-P, support.

= 0 - Normal console output mode.

bit 3 = 1 - Disable CTRL-C program termination
= 0 - Enable CTRL-C program termination

bit 7 = 1 - Disable CTRL-O console output byte bucket
= 0 - Enable CTRL-O console output byte bucket

I!ID DIGITAL RESEARCH<!II -------------------------
6-29

C-RAWIO Concurrent CP 1M Programmer's Guide

Perform Direct Console 110
With Default Console

Entry Parameters:
Register CL:

DL:

Returned Values:
Register AL:

BL:

06H (6)
OFFH

OFEH
OFDH
Character

(Input/
Status) or
(Status) or
(Input) or
(Output)

(Input/Status)
= 0 H (No Character)
= Character

(Status)
= OH - No Character
= OFFH - Ready

(Input)
= Character

(Output)
No return value

Same as AL

The C_RAWIO system call allows the calling process to do raw console 110 to its default
console. Concurrent CP/M verifies that the calling process owns its default console before
allowing any I/o.

A process calls. the C,--RAWIO system call by passing one of three different values shown
in Table 6-7.

-------------------------llIDDIGITAL RESEARCH((!I
6-30

Concurrent CP 1M Programmer's Guide C--RAWIO

Value

OFFH

OFEH

OFDH

ASCII
character

Table 6-7. C_RAWIO Calling Values

Description

Console input status command (if no character is ready, a OOH is returned,
else the character is returned).

Console status command (on return, register AL contains OOH if no
character is ready; otherwise it contains OFFH).

Console input command (if no character is ready, the calling process
waits until one is typed). Input characters are not echoed to the screen.

If the parameter is less than OFDH, C_RAWIO system call assumes
register DL contains a valid ASCII character and sends it to the console.

The C_RAWIO system call places the calling process in Raw mode. The CTRL-C, CTRL-P,
CTRL-S, and CTRL-O characters are not acted on by the· PIN (Physical Input Process) but
are passed on to the calling process when C_RAWIO is used.

Note: If the virtual console is in CRTL-S mode, and the process that owns the virtual
console then performs a C_RA WIO call, the CTRL-S state is reset. Characters read with
C_RA WIO are not echoed on the screen, thus allowing passwords and so forth to be
entered in a secure manner.

[lID DIGITAL RESEARCH® --------------------------
6-31

C-READ Concurrent CP/M Programmer's Guide

C_READ

Read A Character From
The Default Console

Entry Parameters:
Register CL: OIH (1)

Returned Values:
Register AL: Character

BL: Same as AL

The C_READ system call reads a character from the default console of the calling process.
Before attempting the read, Concurrent CP/M internally verifies the ownership of the console.
If the calling process does not own the console, it relinquishes the CPU resource until the
calling process can attach to the console. Typically, a process that is created through the
P _CLI system call owns its default console when it begins execution.

C_READ echoes characters read from the console. This includes the carriage return, line
feed, and backspace characters. It expands tab characters (CTRL-I) in columns of eight
characters.

C_READ ignores the termination character (CTRL-C) if the calling process cannot ter­
minate (refer to the P _TERM system call). C_READ does not return until a character is
typed on the console. The system suspends the calling process until a character is ready.

--------------------------I!QJ DIGITAL RESEARCH~
6-32

Concurrent CP 1M Programmer's Guide C-READSTR

C_READSTR

Read An Edited Line From The
Default Console

Entry Parameters:
Register CL: OAH (10)

DX: BUFFER Address - Offset
DS: BUFFER Address - Segment

The C_READSTR system call reads characters from the calling process's default
console and places them into the specified buffer. The format of the buffer is shown in
Figure 6-2. C_READSTR performs line-editing system calls on the line as it is read from
the console; it completes a line and returns upon receiving a terminator character
(carriage return or line feed) from the console or when the maximum number of charac­
ters is reached. As in the C_READ system call, C_READSTR echoes all graphic
characters read from the console. Concurrent CP I M verifies that the calling process owns
its default console before allowing 110 to begin.

o 1 MAX+2

E
+-+-+-+-+~-

MAX I NCHAR I CHARACTERS ...
+----+----+----+----+ - D

Figure 6-2. Console Buffer Format

IIID DIGITAL RESEARCHO!l -------------------------
6-33

C-READSTR

Field

MAX

NCHAR

CHARACTERS

Concurrent CP 1M Programmer's Guide

Table 6-8. Console Buffer Field Definition

Definition

Maximum number of characters that can be read into the buffer.
This value must be initialized before calling the C_READSTR
system call.

Actual number of characters read into the buffer as filled in by
the C_READSTR system call.

Actual characters read from the console as filled in by the
C_READSTR system call.

C_READSTR recognizes a number of special characters used in editing the input line, as
well as a set of special characters that actually control the calling process.

Table 6-9. C_READSTR Line-editing Characters

Character Function

RUB/DEL

Removes the last character from the line and echoes it.

(CTRL-E)

Echoes new line, a carriage return (CTRL-M), and a line feed
(CTRL-J), to the screen but does not affect the line buffer.

BACKSPACE (CTRL-H)

Removes the last character from the line and backspaces over that
character.

TAB (CTRL-I)

Echoes enough spaces to place the next character position at a tab
stop. Tab stops are fixed at every eighth character of the physical
line.

------------------------- [!Q]D1GITAL RESEARCH®
6-34

Concurrent CP 1M Programmer's Guide C-READSTR

Table 6-9. (continued)

Character Function

LINE FEED (CTRL-J)

Terminates the input line. The C_READSTR system call does not
echo a terminating character, nor does it place the character in the
line buffer.

RETURN (CTRL-M)

Terminates the input line.

REDRAW (CTRL-R)

Retypes the current line after echoing a new line.

(CTRL-U)

Removes all of the current line from the line buffer, echoes a new
line, and starts all over again.

(CTRL-X)

Removes all of the current line from the line buffer and echoes
enough backspaces to return to the beginning of the line.

[!QJ DIGITAL RESEARCH® -------------------------
6-35

C-SET Concurrent CP/M Programmer's Guide

C_SET

Set The Calling Process's
Default Console

Entry Parameters:
Register CL: 094H (148)

DL: Console Number

Returned Values:
Register AX: o if successful

OFFFFH on failure
BX: Same as AX
CX: Error Code

The C_SET system call changes the calling process's default console to the value specified.
If the console number specified is not one supported by this particular implementation of
Concurrent CP/M, the system call returns an error code, and does not change the default
console.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------1Q!l DIGITAL RESEARCHI!I
6-36

Concurrent CP/M Programmer's Guide C-STAT

C_STAT

Obtain The Status Of The
Default Console

Entry Parameters:
Register CL: OBH (11)

Returned Values:
Register AL: 01H character ready

OOH not ready
BL: Same as AL

The C_STAT system call checks to see if a character has been typed at the default console.
If the calling process is not attached to its default console, the C_STAT system call causes
a dispatch to occur and return OOH (the Not Ready condition).

This system call sets the console to the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C. Use C_RAWIO to obtain console
status in Raw mode.

Note: If bit 0 is set in the Console Mode word, using the C_MODE function call,
C_ST A T only returns AL = 01 H when a CTRL-C is typed on the default console.

I!ID DIGITAL RESEARCHilli -------------------------
6-37

Concurrent CP/M Programmer's Guide

C_WRITE

Write A Character To The
Default Console

Entry Parameters:
Register CL: 02H (2)

DL: ASCII character

The C_ WRITE system call writes the specified character to the calling process's default
console. As in the C_READ system call, Concurrent CP/M verifies that the calling process
owns its default console before performing the operation. On output, C_ WRITE expands
tabs in columns of eight characters.

-------------------------- [ID DIGITAL RESEARCH®
6-38

Concurrent CP/M Programmer's Guide C_WRITEBLK

C_WRITEBLK

Send Specified String To Default Console:

Entry Parameters:
Register CL: 06FH (111)

DX: CHCB Address

C_ WRITEBLK sends the character string located by the Character Control Block,
CHCB, addressed in register pair DX to the console. If the Console Mode is in the Default
state C_ WRITEBLK expands tab characters, CTRL-I, in columns of eight characters.

The CHCB format is

bytes 0 - 1 : Offset of character string
bytes 2 - 3 : Segment of character string
bytes 4 - 5 : Length of character string to print

I!ID DIGITAL RESEARCH~ -------------------------
6-39

Concurrent CP/M Programmer's Guide

C_WRITESTR

Print An ASCII String
To The Default Console

Entry Parameters:
Register CL: 09H (9)

DX: STRING Address - Offset
DS: STRING Address - Segment

The C_ WRITESTR system call prints an ASCII string starting at the indicated string
address and continuing until it reaches a dollar sign ($) character (024H). $ is the default
string delimiter, and can be changed by the C_DELIMIT system call. C_ WRITESTR writes
this string to the calling process's default console.

Concurrent CP/M verifies that the calling process owns the console before writing the
string. C_ WRITESTR sets the console to a Nonraw state and expands tabs in columns of
eight characters, as does the C_ WRITE system call.

Use the C_ WRITESTR system call whenever possible, rather than the single-character
system calls. The CPU overhead involved in handling the first character is the same as that
for a single-character system call, but subsequent characters require as little as one-fifth the
CPU overhead.

--------------------------I!ID DIGITAL RESEARCH'~
6-40

Concurrent CP/M Programmer's Guide DEV-POLL

6.2.2 Device System Calls

DEV_POLL

Poll A Device

Entry Parameters:
Register CL: 083H (131)

DL: Device Number

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The DEV _POLL system call is used by the XIOS to poll non interrupt-driven devices. It
should be used whenever the XIOS is waiting for a non interrupt event. The calling process
relinquishes the CPU and allows Concurrent CP/M to poll the device at every disp'atch. The
XIOS contains routines for each polling device number. These routines are called through
the DEV _POLL system call, and they return whether the device is ready or not. When the
device is ready, DEV _POLL restores the calling process to the RUN state and returns. Upon
return, the calling process knows the device is ready.

Refer to Table 6-5 for a list of error codes returned in CX.

[!ill DIGITAL RESEARCHaIl -------------------------
6-41

DEV -SETFLAG Concurrent CP/M Programmer's Guide

DEV_SETFLAG

Set A System Flag

Entry Parameters:
Register CL: 085H (133)

DL: Flag Number

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The DEV _SETFLAG system call is used by interrupt routines to notify the system that a
logical interrupt has occurred. A process waiting for this flag is placed back into the RUN
state. If there are no processes waiting, then the next process to wait for this flag returns
successfully without relinquishing the CPU. The system call detects an error if the flag has
already been set, and no process has done a DEV _ WAITFLAG call to reset it.

Note: If a process waiting for a specific flag to be set is aborted, the next DEV _SETFLAG
call is ignored and an error code is returned in CX. In this case, the interrupt handler should
continue to set call DEV _SETFLAG until it successfully sets the flag IP, and AX = 0 on
return.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------IiIDDIGITAL RESEARCHIPl
6-42

Concurrent CP 1M Programmer's Guide DEV _WAITFLAG

DEV _ WAITFLAG

Wait For A System Flag

Entry Parameters:
Register CL: 084H (132)

DL: Flag Number

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The DEV _ WAITFLAG system call is used by a process to wait for an interrupt. The
process relinquishes the CPU until an interrupt routine calls the DEV _SETFLAG system
call, which places the waiting process in the RUN state. When DEV _ WAITFLAG returns
to the calling process, the interrupt has occurred, or an error has occurred. An error occurs
when a process is already waiting for the flag. If the flag was set before DEV _ WAITFLAG
was called, the routine returns successfully without relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and flag numbers is
maintained in the XIOS, although Concurrent CP/M reserves flags 0, 1, 2, and 3 for system
use.

Refer to Table 6-5 for a list of error codes returned in CX.

!!ill DIGITAL RESEARCHIBi --------------------------
6-43

Concurrent CP 1M Programmer's Guide

6.2.3 Disk Drive System Calls

The Drive Vector, Read-Only Vector, and Login Vectors are referenced or returned by
several Concurrent CP / M Disk Drive system calls. The Driv~, RO, or Login Vectors are
16-bit values specifying one or more drives, where the least significant bit corresponds to
drive A, and the high-order bit corresponds to the sixteenth drive, labeled P. The format
of the Drive, RO, and Login Vectors is illustrated below:

~
+--+--+--t--+--+--+--+--+--+--+--+--+-----t--+~

DRV P 0 N M L K J I H G FED C B A
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 6-3. Drive, RO, or Login Vector Structure

-------------------------- l!IDDIGITAL RESEARCH~
6-44

Concurrent CP/M Programmer's Guide DRV-ACCESS

DRV_ACCESS

Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)

DX: Drive Vector

Returned Values:
Register AL: Return Code

AH: Extended Error
BX: Same as AX

The DRV _ACCESS system call inserts a special open file item into the system Lock List
for each specified drive. While the item exists in the Lock List, the drive cannot be reset by
another process. The calling process passes the drive vector in register DX. The format of
the drive vector is discussed at the beginning of Section 6.2.3.

The DRV _ACCESS system call inserts no items if insufficient free space exists in the
Lock List to support all the new items or if the number of items to be inserted puts the calling
process over the Lock List open file maximum. If the BDOS Error mode is in the default
mode (refer to the F_ERRMODE system call), the file system displays a message at the
console identifying the error and terminates the calling process. Otherwise, DRV _ACCESS
returns to the calling process with register AL set to OFFH and register AH set to one of the
following hexadecimal values.

OAH - Open File Limit Exceeded
OBH - No Room in system Lock List

On successful calls, DRV _ACCESS returns with register AL set to OOH.

!!ill DIGITAL RESEARCHI!l --------------------------
6-45

DRV-ALLOCVEC Concurrent CP/M Programmer's Guide

DRV_ALLOCVEC

Get Allocation Vector Address
For The Calling Process's Default Disk

Entry Parameters:
Register CL: 01BH (27)

Returned Values:
Register AX: ALLOC Address - Offset

BX: Same as AX
ES: ALLOC Address - Segment

Concurrent CP/M maintains an allocation vector in memory for each active disk drive.
Some programs use the information provided by the allocation vector to determine the amount
of free data space on a drive. Note, however, that the allocation information can be inaccurate
if the drive has been marked Read-Only.

The DRV _ALLOCVEC system call returns the address of the allocation vector for the
currently selected drive. If a physical error is encountered when the BDOS Error mode is in
one of the return modes (refer to the F _ERRMODE system call), DRV _ALLOCVEC returns
the value OFFFFH in AX.

You can use the DRV _SPACE system call to directly return the number of free 128-byte
records on a drive. The Concurrent CP/M utility, SHOW, finds a drive's free space by using
the DRV _SPACE system call.

------------------------- I!IDDIGITAL RESEARCH<!Il
6-46

Concurrent CP/M Programmer's Guide DRV-ALLRESET

DRV_ALLRESET

Restore All Drives To Reset State

Entry Parameters:
Register CL: ODH (13)

Returned Values:
Register AL: o if successful

OFFH on error
BL: Same as AL

The DRV _ALLRESET system call restores the file system to a reset state where all the
disk drives are set to Read-Write (refer to the DRV _SETRO and DRV _ROVEC system calls),
the default disk is set to drive A, and the default DMA address is reset to offset 080H relative
to the current DMA segment address. This system call can be used, for example, by
an application program that requires disk changes during operation. You can also use the
DRV _RESET system call for this purpose.

This system call is conditional under Concurrent CP/M. If another process has a file open
on any of the drives to be reset, and the drive is also Read-Only or removable, the
DRV _ALLRESET system call is denied, and none of the specified drives are reset (see
Section 2.17).

Upon return, if the reset operation is successful, DRV _ALLRESET sets register AL to
OOH. Otherwise, it sets register AL to OFFH. If the BDOS is not in one of the return error
modes (refer to the F_ERRMODE system call), the file system displays an error message
at the console identifying the process owning the first open file that caused the
DRV _ALLRESET to be denied.

I!ID DIGITAL RESEARCHIJ!) --------------------------
6-47

DRV-DPB Concurrent CP 1M Programmer's Guide

DRV_DPB

Return Address Of Disk Parameter Block
For Calling Process's Default Disk

Entry Parameters:
Register CL: 01FH (31)

Returned Values:
Register AX: DPB Address - Offset

OFFFFH on Physical Error
BX: Same as AX
ES: DPB Address - Segment

DRV _DPB returns the address of the XIOS-resident Disk Parameter Block (DPB) for the
currently selected drive. The calling process can use this address to extract the disk parameter
values.

If a physical error is encountered when the BDOS Error mode is one of the Return Error
modes (refer to the F_ERRMODE system call), DRV _DPB returns the value OFFFFH.

The Disk Parameter Block (DPB) contains the parameters that define the actual disk.

+--
BSH I BLM I OOH SPT EXM

+--
OSH DSM DRM

ALO I AL 1
--+

09H CKS

ODH OFF PSH I PRM
+

Figure 6·4. DPB • Disk Parameter Block

------------------------- I!IDOIGITAL RESEARCH~
6-48

Concurrent CP 1M Programmer's Guide DRV-DPB

Table 6-10. DPB Field Definitions

Field Definition

SPT Sectors Per Track

The number of Sectors Per Track equals the total number of physical
sectors per track. Physical sector size is defined by PSH and PRM
described below.

BSH Allocation Block Shift Factor

BLM Allocation Block Mask

The data allocation block size determines the values of the data
allocation Block Shift Factor and the allocation Block Mask. The
Block Shift factor equals the logarithm base two of the block logical
size in 128-byte records, or BSH = LOG2(BLS). The Block Mask
equals the number of 128-byte records in an allocation block minus
1, or BLM = (2**BSH) - 1. Refer to the Concurrent CP/M System
Guide for valid block sizes and BSH and BLM values.

EXM Extent Mask

The data block allocation size and the number of disk allocation
blocks determine the value of the Extent Mask. The Extent Mask
determines the maximum number of 16K extents that can be con-
tained in a directory entry. It is equal to the maximum number of
16K extents per directory entry minus one. Refer to the Concurrent
CP/M System Guide for EXM values.

DSM Disk Storage Maximum

The Disk Storage Maximum defines the total storage capacity of the
drive. This is equal to the total number of allocation blocks minus 1
for the drive. DSM must be less than or equal to 7FFFH. If the disk
uses 1024 byte blocks (BSH = 3, BLM = 7), DSM must be less than
or equal to OOFFH.

I!ID DIGITAL RESEARCH~ -------------------------
6-49

DRV-DPB Concurrent CP 1M Programmer's Guide

Table 6-10. (continued)

Field Definition

DRM Directory Maximum

The Directory Maximum defines the total number of directory entries
for the drive. This is equal to the total number of directory entries,
minus 1, that can be kept on this drive. The directory requires 32
bytes of disk per entry. The maximum directory allocation is 16
blocks, where the block size is determined by BSH and BLM.

ALO Directory Allocation Vector 0
ALl Directory Allocation Vector 1

The Directory Allocation Vectors determine the reserved directory
allocation blocks.

CKS Checksum Vector Size

The Checksum Vector Size determines the required length of the
directory checksum vector and the number of directory entries that
the BDOS will checksum. The Checksum Vector Size is equal to the
number of directory entlies divided by 4, or CKS = (DRM + 1)/4.
If the media is fixed, CKS might be zero, no storage needs to be
reserved, and the BDOS does not calculate directory checksums for
the drive.

The high-bit of CKS (that is, > = 08000H) is set if the referenced
drive is considered to be a nonremovable media drive. Note that this
modifies the rules for resetting the drive. For more information, refer
to Section 2.15.

-------------------------- IIID DIGITAL RESEARCH$
6-50

Concurrent CP 1M Programmer's Guide DRVJ)PB

Field

OFF Track Offset

Table 6-10. (continued)

Definition

The Track Offset is the number of reserved tracks at the beginning
of the disk. OFF is equal to the track number on which the directory
starts.

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from 0 to 5, corresponding
to physical record sizes of 128, 256, 512, lK, 2K, or 4K bytes. It
is equal to the logarithm base two of the physical record size divided
by 128, or LOG2(sector_size/128).

PRM Physical Record Mask

The Physical Record Mask ranges from 0 to 31, corresponding to
physical record sizes of 128, 256, 512, lK, 2K, or 4K bytes. It
is equal to the physical sector size divided by 128 minus 1, or
(sector_size/128) -1.

For more information on DPB parameters, refer to the Concurrent
CP/M System Guide, Section 5.4.

lIIDDIGITAL RESEARCH~ -------------------------
6-51

DRV.JLUSH Concurrent CP/M Programmer's Guide

DRV_FLUSH

Flush Write-Deferred Buffers

Entry Parameters:
Register CL: 030H (48)

DL: Purge Flag

Returned Values:
Register AL: Error Flag

AH: Permanent Error
BX: Same as AX

The DRV _FLUSH system call forces the write of any write-pending records contained in
internal blocking/deblocking buffers. If register DL is set to OFFH, DRV _FLUSH also purges
all active data buffers after performing ·the writes. Programs that provide write with read
verify support needed to purge internal buffers to ensure that verifying reads actually access
the disk instead of returning data resident in internal data buffers. The Concurrent CP/M PIP
utility is an example of such a program.

Upon return, the system call sets register AL to OOH if the flush operation is successful.
If a physical error is encountered, DRV _FLUSH performs different actions depending on
the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error mode is
in the default mode, the system displays a message at the console identifying the error and
terminates the calling process. Otherwise, it returns to the calling process with register AL
set to OFFH and register AH set to one of the following physical error codes:

OIR - Disk I/O Error: permanent error
02R - Read/Only Disk

------------------------- i!IDDIGITAL RESEARCH®
6-52

Concurrent CP/M Programmer's Guide DRVJ'REE

DRV_FREE

Free Specified Disk Drives

Entry Parameters:
Register CL: 027H (39)

DX: Drive Vector

The DRV _FREE system call purges the system Lock List of all file and locked record
items that belong to the calling process on the specified drives. DRV _FREE passes the drive
vector in register DX.

DRV _FREE does not close files associated with purged open file Lock List items. In
addition, if a process references a purged file with a BDOS system call requiring an open
FCB, the system call returns. a checksum error. A file that has been written to should be
closed before making a DRV _FREE call to the file's drive, or data can be lost. Refer to
Section 2.17 for more information on this system call.

I!ID DIGITAL RESEARCHI8I --------------------------
6-53

DRV_GET Concurrent CP/M Programmer's Guide

DRV_GET

Return The Calling Process's Default Drive

Entry Parameters:
Register CL: Ol9H (25)

Returned Values:
Register AL: Drive Number

BL: Same as AL

The DRV _GET system call returns the calling process's currently selected default disk
number. The disk numbers range from 0 through 15, corresponding to drives A through P.

-------------------------- [i])DIGITAL RESEARCH®
6-54

Concurrent CP/M Programmer's Guide DRV_GETLABEL

DRV_GETLABEL

Return Directory Label Data Byte
For The Specified Drive

Entry Parameters:
Register CL: 065H (101)

DL: Drive

Returned Values:
Register AL: Directory Label Data Byte

AH: Physical Error
BX: Same as AX

The DRV _GETLABEL system call returns the directory label data byte for the specified
drive. The calling process passes the drive number in register DL with 0 for drive A, 1 for
drive B, continuing through 15 for drive P in a full 16-drive system. The format of the
directory label data byte is shown below:

bit 7 - Require passwords for password protected. files
6 - Perform access time and date stamping
5 - Perform update time and date stamping
4 - Perform create time and date stamping
0- Directory label exists on drive

(Bit 0 is the least significant bit)

DRV _GETLABEL returns the directory label data byte to the calling process in register
AL. Register AL equal to OOH indicates that no directory label exists on the specified drive.
If the system call encounters a physical error when the BDOS Error mode is in one of the
return error modes (refer to the F_ERRMODE system call), it returns with register AL set
to OFFH and register AH set to one of the following:

01H - Disk I/O Error: permanent error
04H - Invalid Drive: drive select error

I!ID DIGITAL RESEARCHIBI -------------------------
6-55

DRV.J..OGINVEC Concurrent CP/M Programmer's Guide

DRV _LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Parameters:
Register CL: 018H (24)

Returned Values:
Register AX: Login Vector

BX: Same as AX

The DRV _LOGINVEC system call returns the Login Vector in register AX. The Login
Vector is a 16-bit value with the least significant bit corresponding to drive A, and the high­
order bit corresponding to the 16th drive, drive P. A 0 bit indicates that the drive is not
logged-in, while a 1 bit indicates the drive is logged in. Refer to the beginning of Section
6.2.3 for a complete description of the Login Vector.

-------------------------liID DIGITAL RESEARCH~
6-56

Concurrent CP/M' Programmer's Guide DRV-RESET

DRV_RESET

Reset Specified Disk Drives

Entry Parameters:
Register CL: 025H (37)

DX: Drive Vector

Returned Values:
Register AL: Return Code

BL: Same as AL

The DRV _RESET system call is used to programmatically restore specified removable
media drives to the reset state (a reset drive is not logged in and is in Read-Write status).
The passed parameter in register DX is a 16-bit vector of drives to be reset, where the least
significant bit corresponds to drive A, and the high-order bit corresponds to the sixteenth
drive, labeled P. Bit values of 1 indicate that the specified drive is to be reset. Refer to Section
2.17 for more information regarding the use of this system call.

This system call is conditional under Concurrent CP/M. If another process has a file open
on any of the drives to be reset, the DRV _RESET system call is denied, and none of the
drives are reset.

Upon return, if the reset operation is successful, DRV _RESET sets register AL to OOH.
Otherwise, it sets register AH to OFFH. If the BDOS Error mode is not in Return Error mode
(refer to the F_ERRMODE system call), the system displays an error message at the console,
identifying the process owning the first open file that caused the DRV _RESET request to be
denied.

Ij]] DIGITAL RESEARCHIIP --------------------------
6-57

DRV-ROVEC Concurrent CP/M Programmer's Guide

DRV_ROVEC

Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: OlDH (29)

Returned Values:
Register AX: RO Vector

BX: Same as AX

The DRV _ROVEC system call returns a bit vector indicating which drives have the tem­
porary Read-Only bit set. The Read-Only bit can only be set by a DRV_SETRO call.

Note: When the file system detects a change in the media on a drive, it automatically logs
in the drive and sets it to Read-Write.

The format of the RO Vector is analogous to that of the Login Vector. The least significant
bit corresponds to drive A; the most significant bit corresponds to drive P. For a complete
description of the RO Vector, refer to the beginning of this section.

------------------------- [!]]DIGITAL RESEARCHI!!l

6-58

Concurrent CP/M Programmer's Guide DRV-SET

DRV_SET

Set Calling Process's Default Disk

Entry Parameters:
Register CL: OEH (14)

DL: Selected disk

Returned Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX

The DRV _SET system call designates the specified disk drive as the default disk for
subsequent BDOS file operations. Set the DL register to 0 for drive A, 1 for drive B,
continuing through 15 for drive P. DRV _SET also logs in the designated drive if it is currently
in the reset state. Logging in a drive activates the drive's directory for file operations.

FCBs that specify drive code zero (DR = OOH) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however, ignore the
selected default drive and directly reference drives A through P.

Upon return, register AL equal to OOH indicates the select operation was successful. If a
physical error is encountered, DRV _SET performs different actions depending on the BDOS
Error mode (refer to the F_ERRMODE system call).

If the BDOS Error mode is in the default mode, the system displays a message at the
console, identifying the error and terminates the calling process. Otherwise, DRV _SET
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical error codes:

01H - Disk 110 Error: permanent error
04H - Invalid Drive: drive select error

[!ID DIGITAL RESEARCHII!I --------------------------

6-59

DRV -BET LABEL Concurrent. CP 1M Programmer's Guide

DRV_SETLABEL

Create Or Update A Directory Label

Entry Parameters:
Register CL: 064H (100)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The DRV _SETLABEL system call creates a directory label or updates the existing direc­
tory label for the specified drive. The calling process passes the address of an FCB containing
the name, type, and extent fields to be assigned to the directory label. The name and type
fields of the referenced FCB are not used to locate the directory label in the directory; they
are simply copied into the updated or created directory label. Byte 12 of the FCB contains
the user's specification of the directory label data byte.

------------------------- I!IDDIGITAL RESEARCH(!I
6-60

Concurrent CP 1M Programmer's Guide

The definition of the directory label data byte is

bit 7 - Require passwords for password protected files
6 - Perform access time and date stamping
5 - Perform update time and date stamping
4 - Perform create time and date stamping
o - Assign a new password to the directory label

I
(Bit 0 is the least significant bit)

DRV.-SETLABEL

If the current directory label is password protected, the correct password must be placed
in the first 8 bytes of the current DMA or have been previously established as the default
password (refer to the F _PASSWD system call). If bit 0 of the directory label data byte is
set to I, it indicates that a new password for the directory label has been placed in the second
eight bytes of the current DMA.

The DRV _SETLABEL system call also requires that the referenced directory contains
SFCBs in order to activate date and time stamping on the drive. If an attempt is made to
activate date and time stamping when no SFCBs exist, the DRV _SETLABEL system call
returns an error code and performs no action. The Concurrent CP/M INITDIR utility ini­
tializes a directory for date and time stamping by placing an SFCB in every fourth entry. of
the directory.

Upon return, the DRV _SETLABEL system call returns a directory code in registe~ AL
with the value OOH if the directory label create or update was successful, or OFFH if no space
existed in the referenced directory to create a directory label. It also returns OFFH if date
and time stamping was requested and the referenced directory did not contain SFCBs. Register
AH is set to OOH in all of these cases.

If a physical or extended error is encountered, the DRV _SETLABEL system call performs
different actions depending on the BDOS Error mode (refer to the F _ERRMODE system
call). If the BDOS Error mode is in the default mode, the file system displays a message at
the console identifying the error and terminates the calling process. Otherwise, the
DRV _SETLABEL system call returns to the calling process with register AL set to OFFH
and register AH set to one of the following physical or extended error codes:

OIH - Disk I/O Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
07H - Password Error

lIID DIGITAL RESEARCH~ --------------------------
6-61

DRV-.SETRO Co~current CP/M Programmer's Guide

DRV_SETRO

Set Default Disk To Read-Only

Entry Parameters:
Register CL: OlCH (28)

Returned Values:
Register AL: Return Code

BL: Same as AL

The DRV _SETRO system call provides temporary write protection for the currently selected
disk by marking the drive as Read-Only. No process can write to a disk that is in the Read­
Only state. You must perform a successful DRV _RESET operation to restore a Read-Only
drive to the Read-Write state (refer to the DRV _ALLRESET and DRV _RESET system calls).

The DRV _SETRO system call is conditional under Concurrent CP/M. If another process
has an open file on the drive, the operation is denied, and the system call returns the value
OFFH to the calling process. Otherwise, it returns a OOH. If the BDOS Error mode is not in
Return Error mode (refer to the F_ERRMODE system call), the file system displays an error
message at the console, identifying the process owning the first open file that caused the DRV
SETRO request to be denied.

Note that a drive in the Read-Only state cannot be reset by a process if another process
has an open file on the drive.

------------------------- IiIDDIGITAL RESEARCHI!!I
6-62

Concurrent CP 1M Programmer's Guide DRV-EPACE

DRV_SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)

DL: Drive

Returned Values:
Register AL: Error Flag

AH: Physical Error
BX: Same as AX

First 3 bytes of DMA Buffer filled in

The DRV _SPACE system call determines the number of free sectors (128-byte records)
on the specified drive. The calling process passes the drive number in register DL, with 0
for drive A, 1 for B, continuing through 15 for drive P. DRV _SPACE returns a binary number
in the first 3 bytes of the current DMA buffer. This number is returned in the format shown
in Figure 6-5.

FSO LOW BYTE
FS1 MIDDLE BYTE
FS2 HIGH BYTE

Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

I!ID DIGITAL RESEARCH<8I -------------------------
6-63

DRV --.SPACE Concurrent CP 1M Programmer's Guide

Upon return, DRV _SPACE sets register AL to OOH, indicating the operation was suc­
cessful. However, if the BDOS Error mode is one of the return· modes (refer to the
F_ERRMODE system call), and a physical error occurs, it sets register AL to OFFH, and
register AH to one of the following values:

01H - Disk 110 Error: permanent error
04H - Invalid Drive: drive select error

6.2.4 File-Access System Calls

Most file-access system calls reference a File Control Block (FCB). This data structure is
illustrated in Table 2.1. Refer to Section 2.4 for a comprehensive explanation of the FCB
data structure, its initialization, and usage.

--------------------------1iID DIGITAL RESEARCH~
6-64

Concurrent CP 1M Programmer's Guide F-ATTRIB

F_ATTRIB

Set The Attributes Of A Disk File

Entry Parameters:
Register CL: OlEH (30)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

BL: Same as AL

By calling the F_ATTRIB system call, a process can modify a file's attributes and set its
last record byte count. Other BDOS system calls can interrogate these file parameters, but
only F_ATTRIB can change them. The file attributes that can be set or reset by F_ATTRIB
are Fl' through F4', Read-Only (Tl '), System (T2'), and'Archive (T3'). The specified FCB
contains a filename with the appropriate attributes set or reset. The calling process must
ensure that it does not specify an ambiguous filename. Also, if the specified file is password
protected, the correct password must be placed in the first eight bytes of the current DMA
buffer or have been previously established as the default password (refer to the F _PASSWD
system call).

Interface attribute FS' specifies whether an extended file lock is to be maintained after the
F_ATTRIB call. Interface attribute F6' specifies if the specified file's byte count is to be set.
The interface attribute definitions are listed below:

FS' = 0 - Do not maintain an extended file lock (default)
FS' = 1 - Maintain an extended file lock
F6' = 0 - Do not set byte count (default)
F6' = 1 - Set byte count

If FS' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in detail.

[Q) DIGITAL RESEARCH(!I -------------------------
6-65

F-ATTRIB Concurrent CP 1M Programmer's Guide

If interface attribute F6' is set, the calling process must set the CR field of the referenced
FCB to the new byte count value. A process can access a file's byte count value with the
BDOS F_OPEN, F_SFIRST, and F_SNEXT system calls. File byte counts are described in
section 2.15.

F _ATTRIB searches the FCB specified directory for an entry belonging to the current
user number that matches the FCB specified name and type fields. The system call then
updates the directory to contain the selected indicators, and if interface attribute F6' is set,
the specified byte count value. Note that the last record byte count is maintained in the byte
13 of a file's directory FCBs.

File attributes Tl', T2', and T3' are defined by Concurrent CP/M as described in Section
2.4.2. Attributes Fl' through F4' of command files are defined as Compatibility Attributes,
as described in Section 2.12. However, for all other files, attributes Fl' through F4' are
available for definition by the user. Attributes F5' through F8' are reserved as Interface
Attributes and cannot be used as file attributes. Interface attributes are described in Section
2.4.3.

I

An F _ATTRIB system call is not performed if the referenced FCB specifies a file currently
open for another process. It is performed, however, if the referenced file is open by the
calling process in Locked mode. However, the file's lock entry is purged when this is done
and the file system prevents continued read and write operations on the file. F_ATTRIB does
not set the attributes of a file currently open in Read-Only or Unlocked mode for any process.

Making an F_ATTRIB system call for an open file can adversely affect the performance
of the calling process. For this reason, you should close an open file before you call the
F _ATTRIB system call.

Upon return, F _ATTRIB returns a directory code in register AL with the value OOH if the
system call is successful, or OFFH if the file specified by the referenced FCB is not found.
Register AH is set to OOH in both cases.

-------------------------- fiIDDIGITAL RESEARCHI!!
6-66

Concurrent CP 1M Programmer's Guide F--ATTRIB

If a physical or extended error is encountered, the F _ATTRIB system call performs dif­
ferent actions depending on the BDOS Error mode (refer to the F _ERRMODE system call).
If the BDOS Error mode is in the default mode, the file system displays a message at the
console identifying the error and terminates the process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

OIH - Disk I/O Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
OSH - File open by another process
07H - Password Error
09H - Illegal ? in FeB

I!ID DIGITAL RESEARCH$ --------------------------
6-67

Concurrent CP 1M Programmer's Guide

F_CLOSE

Close A Disk File

Entry Parameters:
Register CL: OIOH (16)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F_CLOSE system call performs the inverse operation of the F_OPEN system call.
The referenced FCB must have been previously activated by a successful F _OPEN or
F_MAKE system call. Interface attributes FS' and F6' specify how the file is to be closed,
as shown below:

FS' = 0, F6' = 0 - Default Close
FS' = 0, F6' = 1 - Extend File Lock
FS' 1, F6' = 0 - Partial Close
FS' = 1, F6' = 1 - Partial Close

The F _CLOSE system call performs the following steps regardless of the interface attribute
specification. First, it verifies that the referenced FCB has a valid checksum. If the checksum
is invalid, F _CLOSE performs no action and returns an error code.

If the checksum is valid and the referenced FCB contains new information because of write
operations to the FCB, F _CLOSE permanently records the new information in the directory.
If the FCB does not contain new information, the directory update step is bypassed. However,
F_CLOSE always attempts to locate the FCB's corresponding entry in the directory and
returns an error code if the directory entry cannot be found.

If the F _CLOSE system call successfully performs the above steps, it performs different
actions, depending on how the interface attributes are set. In default close operations,
F_CLOSE decrements the file's open count, which is maintained in the file's system Lock
List entry. If the open count decrements to zero, it indicates that the number of default close
operations for the file matches the number of open operations.

-------------------------!!Q] DIGITAL RESEARCH~
6-68

Concurrent CP 1M Programmer's Guide

If the open count decrements to zero, F _CLOSE permanently closes the file by performing
the following steps. First of all, it removes the file's item from the system Lock List. If the
FCB is opened in Unlocked mode, it also purges all record locks belonging to the file from
the system Lock List. In addition, F_CLOSE invalidates the FCB's checksum to ensure the
referenced FCB is not subsequently used with BDOS system calls that require an open FCB
(for example, F_WRITE).

If the open count does not decrement to zero, F _CLOSE simply returns to the calling
process and the file remains open.

For partial close operations, F _CLOSE does not decrement the file's open count and returns
to the calling process. The file always remains open following a partial close request.

Closing a file with an extended file lock modifies the way F _CLOSE performs a permanent
close. F _CLOSE only honors an extended lock request on a permanent close of a file opened
in Locked mode. If these conditions are satisfied, F _CLOSE invalidates the FCB's checksum
but maintains the lock item. Thus, although the file is permanently closed, other processes
cannot access the file. Section 2.11 describes extended file locking in detail.

Upon return, the F _CLOSE system call returns a directory code in register AL with the
value OOH if the close operation is successful, or OFFH if the file is not found. Register AH
is set to 0 in both of these cases.

If a physical or extended error is encountered, the F _CLOSE system call performs different
actions depending on the BDOS Error mode (refer to the F _ERRMODE system call). If the
BDOS Error mode is in the default mode, the file system displays a message identifying the
error at the console and terminates the calling process. Otherwise the F_CLOSE system call
returns to the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk I/O Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
06H - Close Checksum Error

[!Q) DIGITAL RESEARCHQ!) --------------------------
6-69

F-DELETE Concurrent CP 1M Programmer's Guide

F_DELETE

Delete A Disk File

Entry Parameters:
Register CL: 013H (19)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _DELETE system call removes files and/or XFCBs that match the FCB addressed
in register DX. The filename and filetype fields can contain wildcard file specifications
(question marks in bytes 1 through 11), but byte 0 cannot be a wildcard as it can be in the
F_SFIRST and F_SNEXT system calls. Interface attribute FS' specifies the type of delete
operation to be performed, as shown below:

FS' = 0 - Standard Delete (Default mode)
FS' = 1 - Delete only XFCB's and maintain an extended file lock.

If any of the files specified by the referenced FCB are password protected, the correct
password must be placed in the first eight bytes of the current DMA buffer or it must have
been previously established as the default password (refer to the F _PASSWD system call).

For standard delete operations, the F _DELETE system call removes all directory entries
belonging to files that match the referenced FCB. All disk directory and data space owned
by the deleted files is returned to free space and becomes available for allocation to other
files. Directory XFCBs that were owned by the deleted files are also removed from the
directory. If interface attribute FS' of the FCB is set to 1, F_DELETE deletes only the
directory XFCBs matching the referenced FCB.

--------------------------I!IDDIGITAL RESEARCH®

6-70

Concurrent CP 1M Programmer's Guide Fj)ELETE

Note: If any of the files matching the input FCB specification fail the password check, are
Read-Only, or are currently open by another process, then F_DELETE deletes no files or
XFCBs. This applies to both types of delete operations.

Interface attribute FS' also specifies whether an extended file lock is to be maintained after
the F_DELETE call. If FS' is set and the referenced FCB specifies a file with an extended
lock, the calling process maintains the lock on the file. Section 2.11 describes extended file
locking in detail.

A process can delete a file that it currently has open if the file is opened in locked mode.
However, the BDOS returns a checksum error if the process makes a subsequent reference
to the file with a BDOS system call requiring an open FCB. A process cannot delete files
open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process. For this
reason, you should close an open file before you delete it.

Upon return, the F _DELETE system call returns a directory code in register AL with the
value OOR if the delete is successful, or OFFH if no file matching the referenced FCB is
found. Register AH is set to 0 in both of these cases. If a physical or extended error is
encountered, F_DELETE performs different actions, depending on the BDOS Error mode
(refer to the F_ERRMODE system call).

If the BDOS Error mode is the default mode, the system displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

01 H - Disk 110 Error : permanent error
02H - Read-Only Disk
03H - Read-Only File
04H - Invalid Drive: drive select error
OSH - File opened by another process or open in Read-Only or Unlocked mode
07H - Password Error

IIID DIGITAL RESEARCH~ --------------------------
6-71

F-DMAGET Concurrent CP/M Programmer's Guide

F_DMAGET

Return Address Of Direct
Memory Access Buffer

Entry Parameters:
Register CL: 034H (52)

Returned Values:
Register AX: DMA Offset

BX: Same as AX
ES: DMA Segment

F_DMAGET returns the current DMA Base Segment address in ES, with the current
DMA Offset in AX.

------------------------- [lID DIGITAL RESEARCH<I!I
6-72

Concurrent CP 1M Programmer's Guide FJ>MAOFF

F_DMAOFF

Set The Direct Memory Address Offset

Entry Parameters:
Register CL: OlAH (26)

DX: DMA Address - Offset

DMA is an acronym for Direct Memory Address, which is often used with disk controllers
that directly access the memory of the computer to transfer data to and from the disk sub­
system. Under Concurrent CP/M, the current DMA is usually defined as the buffer in memory
where a record resides before a disk write and after a disk read operation. If the BDOS
Multisector Count is· equal to one (refer to the F_MULTISEC system call), the size of the
buffer is 128 bytes. However, if the BDOS Multisector Count is greater than one, the size
of the buffer must equal N * 128, where N equals the Multisector Count.

Some BDOS system calls also use the current DMA to pass parameters and to return
values. For example, BDOS system calls that check and assign file passwords require that
the password be placed in the current DMA Buffer. As another example, DRV_SPACE
returns its results in the first 3 bytes of the current DMA. When the current DMA is used in
this context, the size of the buffer in memory is determined by the specific requirements of
the system call.

When the P _CLI system call initiates a transient program, it sets the DMA offset to 080H
and the DMA Segment or Base to its initial Data Segment. DRV _ALLRESET also sets the
DMA offset to 080H. The F _DMAOFF system call can change this default value to another
memory address. The DMA address remains at its current value until it is changed by an
F_DMASEG, F_DMAOFF, or DRV_ALLRESET call.

I!ID DIGITAL RESEARCHI8I -------------------------
6-73

F.J>MASEG Concurrent CP/M Programmer's Guide

F_DMASEG

Set Direct Memory Access
Segment Address

Entry Parameters:
Register CL: 033H (51)

DX: DMA Segment Address

F_DMASEG sets the segment value of the current DMA buffer address. The word param­
eter in DX is a paragraph address and is used with the DMA offset value to specify the 20-
bit address of the DMA buffer. Refer to the F _DMAOFF system call for additional information.

Note that upon initial program loading, the default DMA base is set to the address of the
user's data segment (the initial value of DS) and the DMA offset is set to 080H, which
provides access to the default buffer in the Base Page.

--------------------------I!ID DIGITAL RESEARCH(I!l
6-14

Concurrent CP/M Programmer's Guide F-ERRMODE

F_ERRMODE

Set BDOS Error Mode For Error Returns

Entry Parameters:
Register CL: 02DH (45)

DL: BDOS Error mode

The BDOS Error mode is a system parameter maintained for each running process that
determines how the file system handles physical and extended errors. Physical and extended
errors are described in Section 2.18. The BDOS Error mode has three states: the default
mode, Return Error mode, and Return and Display mode.

If a physical or extended error occurs when the B"DOS Error mode is in the default mode,
the BDOS displays a system message at the console identifying the error and terminates the
calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return Error
mode, the BDOS sets register AL to OFFH, places an error code identifying the physical or
extended error in register AH, and returns to the calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return and Display
mode, the BDOS displays the system message before returning to the calling process, and
sets registers AH and AL as in the Return Error mode.

The F _ERRMODE system call sets the BDOS Error mode for the calling process to the
mode specified in register DL. If register DL is set to OFFH, the mode is set to Return Error
mode. If register DL is set to OFEH, the mode is set to Return and Display mode. If register
DL is set to any other value, the mode is set to the default mode.

I!ID DIGITAL RESEARCH~ --------------------------
6-75

F-LOCK Concurrent CP 1M Programmer's Guide

F_LOCK

Lock Records In A Disk File

Entry Parameters:
Register CL: 02AH (42)

OX: FCB Address ;. Offset
OS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F _LOCK system call allows a process to establish temporary ownership to particular
records within a file. This system call is only supported for files open in Unlocked mode. If
it is called for a file open in Locked or Read-Only mode, no locking action is performed and
a successful result, is returned. This provides compatibility between Concurrent CP/M and
CP/M-86.

The calling process passes the address of an FCB in which the random record field is filled
with the Random Record Number of the first record to be locked. The number of records to
be locked is determined by the BDOS Multisector Count (refer to the F _MULTISEC system
call). The current OMA must also contain the 2-byte File ID returned by F_OPEN or
F _MAKE when the referenced FCB was opened. Note that the File ID is only returned by
the F_OPEN and F_MAKE system call when the Open mode is Unlocked.

Interface attribute FS' specifies the type oflock to perform. Interface attribute F6' specifies
whether records have to exist in order to be locked. The F _LOCK interface attribute defi­
nitions are listed below:

FS' = 0 - Exclusive lock (default)
FS' = 1 - Shared lock
F6' = 0 - Lock existing records only (default)
F6' = 1 - Locklogical records.

These options are described in detail in Section 2.14.

-------------------------1iID DIGITAL RESEARCHG!!
6-76

Concurrent CP 1M Programmer's Guide F~OCK

F _LOCK verifies that a locking conflict with another process does not exist for each of
the records to be locked. In addition, if E_LOCK is called with attribute F6' reset, it also
verifies that each record number to be locked exists within the specified file. Both tests are
made before any records are locked.

Most F _LOCK requests require a new entry in theBDOS system Lock List. If there is
insufficient space in the system Lock List to satisfy the lock request, or if the process record
lock limit is exceeded, then F _LOCK does not lock any records and returns an error code
to the calling process.

Upon return, the F _LOCK system call sets register AL to OOH if the lock operation is
successful. Otherwise, register AL contains one of the following error codes:

OIH - Reading unwritten data
03H - Cannot close current extent
04H
06H
08H

OAH
OBH
OCH
ODH
OEH

OFFH

Seek to unwritten extent
- Random Record Number out of range

Record locked by another process
- FCB Checksum Error
- Unlocked file verification error
- Process record lock limit exceeded

Invalid File ID
- No Room in system Lock List
- Physical error; refer to register AH

The system call returns error code OIH when it accesses a data block that has not been
previously written.

The system call returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

The system call returns error code 04H when it accesses an extent that has not been created.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code 08H if the specified record is locked by another process
with an incompatible lock type.

I!ID DIGITAL RESEARCHilli --------------------------

6-77

F-LOCK Concurrent CP 1M Programmer's Guide

The system call returns error code OAH if the referenced FeB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the referenced FCB's
directory entry when attempting to verify that the FCB contains current information.

The system call returns error code OCH if performing the lock request would-require that
the process consume more than the maximum allowed number of system Lock List entries.

The system call returns error code ODH when an invalid File ID is placed at the beginning
of the current DMA.

The system call returns error code OEH when the system Lock List is full and performing
the lock request would require at least one new entry.

The system call returns error code OFFH if a physical error is encountered, and the BDOS
Error mode is either Return Error mode or Return and Display Error mode (refer to the
F_ERRMODE system call). If the Error mode is in the default mode, the system displays a
message at the console identifying the physical error and terminates the calling process.
When the system call returns a physical error to the calling process, it is identified by register
AH as shown below:

OlH - Disk I/O Error: permanent error
04H - Invalid Drive : drive select error

--------------------------I!QJ DIGITAL RESEARCH<!!l
6-78

Concurrent CP 1M Programmer's Guide F~AKE

F_MAKE

Create A Disk File

Entry Parameters:
Register CL: 016H (22)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _MAKE system call creates a new directory entry for a file under the current user
number. It also creates an XFCB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a password to the
file.

The calling process passes the address of the FCB with byte 0 of the FCB specifying the
drive, bytes 1 through 11 specifying the filename aDd filetype, and byte 12 set to the extent
number. Byte 12, the EX field, is usually set to OOH. Byte 32 of the FCB, the CR field, must
be initialized to OOH, before or after the F _MAKE call, if the intent is to write sequentially
from the beginning of the file.

Interface attribute FS' specifies the mode in which the file is to be opened. Interface
attribute F6' specifies whether a password is to be assigned to the created file. The interface
attributes are summarized below:

FS' = 0 - Open in Locked mode (default)
FS' = 1 - Open in Unlocked mode
F6' = 0 - Do not assign password (default)
F6' = 1 - Assign password to created file

I!ID DIGITAL RESEARCH~ -------------------------
6-79

F--MAKE Concurrent CP 1M Programmer's Guide

When attribute F6' is set to 1, the calling .process must place the password in the first 8 bytes
of the current DMA buffer and set byte 9 of the DMA buffer to the password mode. Note
that F_MAKE only interrogates attribute F6' if the referenced drive's directory label has
enabled password support. The XFCB Password mode is summarized below:

XFCB Password Mode

Bit 7 - Read mode
Bit 6 - Write mode
Bit 5 - Delete mode

The F _MAKE system call returns with an error code if the referenced FCB names a file
that currently exists in the directory under the current user number. If there is any possibility
of duplication, an F _DELETE call should precede the F _MAKE call.

If the make file operation is successful, it activates the referenced FCB for record operations
(opens the FCB) and initializes both the directory entry and the referenced FCB to an empty
file. It also computes a checksum and assigns it to the FCB. BDOS system calls that require
an open FCB (for example, F_ WRITE) verify that the FCB checksum is valid before per­
forming their operation. If the file is opened in Unlocked mode, F_MAKE also sets bytes
RO and Rl in the FCB to a two-byte value called the File ID. The File ID is a required
parameter for the BDOS Lock Record and Unlock Record system calls. Note that the
F_MAKE system call initializes all file attributes to O.

The BDOS file system also creates an open file item in the system Lock List to record a
successful F_MAKE operation. While this item exists, no other process can delete, rename,
truncate, or set the file attributes of this file.

A creation and/or update stamp is made for the created file if the referenced drive contains
a directory label that enables creation and/or update time and date stamping and the FCB
extent number is equal to O.

F _MAKE also creates an XFCB for the created file if the referenced drive contains a
directory label that enables password protection, interface attribute F6' of the FCB is 1, and
the FCB is an extent zero FCB. In addition, F _MAKE also assigns the password and password
mode placed in the first nine bytes of the DMA to the XFCB.

Upon return, the F _MAKE system call returns a directory code in register AL with the
value OOH if the make operation is successful, or OFFH if no directory space is available.
Register AH is set to OOH in both cases.

-------------------------- l!ID DIGITAL RESEARCH~
6-80

Concurrent CP 1M Programmer's Guide F-MAKE

If a physical or extended error is encountered, the F _MAKE system call performs different
actions depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the
BDOS Error mode is in the default mode, the system displays a message at the console
identifying the error and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

01 H - Disk 110 Error: permanent error
02H - Read-Only Disk
04H - Invalid Drive: drive select error
08H - File Already Exists
09H - Illegal ? in FeB
OAH - Open File Limit Exceeded
OBH - No Room in system Lock List

f!ID DIGITAL RESEARCHQ!) -------------------------
6-81

FJflJLTISEC Concurrent CP/M Programmer's Guide

F_MULTISEC

Set BDOS Multisector Count

Entry Parameters:
Register CL: 02CH (44)

DL: Number of Sectors

Returned Values:
Register AL: Return Code

BL: Same as AL

The F _MULTISEC system call provides logical record blocking under Concurrent CP/M.
It enables a process to read and write from 1 to 128 logical records of 128 bytes at a time
during subsequent BDOS read and write system calls. It also specifies the number of 128-
byte records to be locked or unlocked by the F_LOCK and F_UNLOCK system calls.

F _MULTISEC sets the Multisector Count value for the calling process to the value passed
in register DL. Once set, the specified Multisector Count remains in effect until the call­
ing process makes another F _MULTISEC system call and changes the value. Note that the
P _CLI system call sets the Multisector Count to one when it initiates a transient process.

The Multisector Count affects BDOS error reporting for the BDOS read and write system
calls. With the exception of physical errors, if an error occurs during these system calls and
the Multisector Count is greater than one, the system returns the number of records success­
fully processed in register AH.

Upon return, the system call sets register AL to OOH if the specified value is in the range
of 1 to 128. Otherwise, it sets register AL to OFFH.

--------------------------i!Q) DIGITAL RESEARCHIRi

6-82

Concurrent CP 1M Programmer's Guide

F_OPEN

Open A Disk File

Entry Parameters:
Register CL: OFH (15)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH:· Physical or Extended Error
BX: Same as AX

The F_OPEN system call activates the FCB for a file that exists in the disk directory under
the currently active user number or user zero. The calling process passes the address of the
FCB, with byte 0 of the FCB specifying the drive, bytes 1 through 11 specifying the filename
and filetype, and byte 12 specifying the extent. Byte 12 is usually set to zero.

Interface attributes F5' and F6' of the FCB specify the mode in which the file is to be
opened, as shown below:

FS' = 0, F6' = 0 - Open in Locked mode (Default mode)
FS' = 1, F6' = 0 - Open in Unlocked mode
F5' = 0 or 1, F6' = 1 - Open in Read-Only mode

If the file is password protected in Read mode, the correct password must be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (refer to the F_PASSWD system call). If the current record field of the FCB, CR,
is set to OFFH, the F_OPEN system call returns the byte count of the last record of the file
in the CR field. The last record byte count for a file can be set using the F _ATTRIB system
call.

Note: The calling process must set the CR field of the FCB to OOR if the file is to be
accessed sequentially from the first record.

!!ID DIGITAL RESEARCH I!> -------------------------

6-83

Concurrent CP 1M Programmer's Guide

The F _OPEN system call performs the following steps for files opened in locked or Read­
Only mode. If the current user is nonzero and the file to be opened does not exist under the
current user number, the F_OPEN system call searches user 0 for the file. If the file exists
under user 0 and has the system attribute (T2') set, the file is opened under user O. The Open
mode is automatically set to Read-Only when this is done.

The F_OPEN system call also performs the following action for files opened in locked
mode. If the file has the Read-Only attribute (T I') set, the Open mode is automatically set
to Read-Only. Note that Read-Only mode implies the file can be concurrently accessed by
other processes if they also open the file in Read-Only mode.

If the open operation is successful, F _OPEN activates the user's FCB for record operations
as follows: F _OPEN copies the relevant directory information from the matching directory
FCB into bytes DO through DIS of the FCB. It also computes a checksum and assigns it to
the FCB. All BDOS system calls that require an open FCB (for example, F_READ) verify
that the FCB checksum is valid before performing their operation.

If the file is opened in Unlocked mode, the F_OPEN system call sets bytes RO and RI of
the FCB to a two-byte value called the File ID. The File ID is a required parameter for the
F_LOCK and F_UNLOCK system calls. If the Open mode is forced to Read-Only, F_OPEN
sets interface attribute FS' to 1 in the user's FCB. In addition, the system call sets attribute
FT to 1 if the referenced file is password protected in Write mode and the correct password
was not passed in the DMA or did not match the default password. The BDOS does not
support write operations for an activated FCB if interface attribute FT or FS' is set to 1.

The BDOS file system also creates an open file item in the system Lock List to record a
successful open file operation. While this item exists, no other process can delete, rename,
or modify the file's attributes. In addition, this item prevents other processes from opening
the file if the file is opened in Locked mode. It also requires that other processes match the
file's Open mode if the file is opened in Unlocked or Read-Only mode. This item remains in
the system Lock List until the file is permanently closed or until the process that opened the
file terminates.

When the open operation is successful, the F_OPEN system call also makes an access
time and date stamp for the opened file when the following conditions are satisfied: the
referenced drive has a directory label that requests access date and time stamping, the FCB
extent field is equal to zero, and the referenced drive is Read-Write.

-------------------------- [!Q) DIGITAL RESEARCH I!>

6-84

Concurrent CP 1M Programmer's Guide

Upon return, F_OPEN returns a directory code in register AL with the value OOH if the
open is successful, or OFFH if the file is not found. Register AH is set to 0 in both of these
cases. If a physical or extended error is encountered, the F _OPEN system call performs
different actions depending on the BDOS Error mode (refer to the F _ERRMODE system
call). If the BOOS Error mode is in the default mode, the system displays a message iden­
tifying the error at the console and terminates the process. Otherwise, F _OPEN returns to
the calling process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

01 H - Disk 110 Error : permanent error
04H - Invalid Drive: drive select error
05H - File is open by another process or by the current process in an incompatible

mode
07H - Password Error
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room in system Lock List

[!QJ DIGITAL RESEARCH\!! --------------------------
6-85

F-PARSE Concurrent CP 1M Programmer's Guide

F_PARSE

Parse An ASCII String
And Initialize An FCB

Entry Parameters:
Register CL: 098H (152)

DX: PFCB Address - Offset
DS: PFCB Address - Segment

Returned Values:
Register AX: OFFFFH if error

o if end of filename string
o if end of lineaddress of next item
to parse

BX: Same as AX
CX: Error Code

FILENAME I FCBADR I
Figure 6-6. PFCB-Parse Filename Control Block

-------------------------I!ID DIGITAL RESEARCH'"
6-86

Concurrent CP 1M Programmer's Guide FYARSE

Field

FILENAME

FCBADR

Table 6-11. PFCB Field Definitions

Description

Offset of an ASCII file specification to parse. The offset is relative
to the same Data Segment as the PFCB.

Offset of a File Control Block to initialize. The offset is relative to
the same Data Segment as the PFCB.

The F _PARSE system call parses an ASCII file specification (FILENAME) and prepares
a File Control Block (FCB). The calling process passes the address of a data structure called
the Parse Filename Control Block, (PFCB) in registers DX and DS. The PFCB contains the
offset of the ASCII filename string followed by the offset of the target FCB.

F _PARSE assumes the file specification to be in the following form

{D:} FILENAME {.TYP} {;PASSWORD}

where those items enclosed in curly brackets are optional.

The F _PARSE system call parses the first file specification it finds in the input string. First
of all, it eliminates leading blanks and tabs. F _PARSE then assumes the file specification
ends on the first delimiter it encounters that is out of context with the specific field it is
parsing. For instance, if it finds a colon (:), and it is not the second character of the file
specification, the colon delimits the whole file specification.

[!Qf DIGITAL RESEARCH$ -------------------------
6-87

F-PARSE Concurrent CP 1M Programmer's Guide

The F _PARSE system call recognizes the following characters as delimiters:

space
tab
return
null

(semicolon) - except before password field
(equal)

< (less than)
> (greater than)

(period) - except after filename and before filetype
(colon) - except before filename and after drive
(comma)
(vertical bar)
(left square bracket)
(right square bracket)

If the F _PARSE system call encounters a nongraphic character in the range 1 through 31 not
listed above, it treats the character as an error.

The F_PARSE system call initializes the specified FCB as shown in Table 6-12.

------------------------- IlIDOIGITAL RESEARCHI'!I
6-88

Concurrent CP 1M Programmer's Guide FJlARSE

Byte number

byte 0

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

Table 6·12. FeB Initialization

Explanation

The drive field is set to the specified drive. If the drive is not specified,
the default value is used. 0 = default, 1 = A, 2 = B, etc.

The name is set to the specified filename. All letters are converted to
uppercase. If the name is not eight characters long, the remaining bytes
in the filename field are padded with blanks. If the filename has an
asterisk (*), all remaining bytes in the filename field are filled in with
question marks (?). The system call returns an error if the filename is
more than eight bytes long.

The type is set to the specified filetype. If no type is specified, the type
field is initialized to blanks. All letters are converted to uppercase. If
the type is not three characters long, the remaining bytes in the filetype
field are padded with blanks. If an asterisk is encountered, all remain­
ing bytes are filled in with question marks. The system call returns an
error if the type field is more than 3 bytes long.

Filled in with zeros.

The password field is set to the specified password. If no password is
specified, this field is initialized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters
are converted to uppercase. The system call returns an error if the
password field is more than eight bytes long.

Reserved for system use.

If an error occurs, F_PARSE returns OFFFFH in register AX indicating the error.

I!ID DIGITAL RESEARCH~ -------------------------
6-89

F-PARSE Concurrent CP 1M Programmer's Guide

On a successful parse, the F _PARSE system call checks the next item in the FILENAME
string. It scans for the first character that follows trailing blanks and tabs. If the character is
a line feed (OAH), a carriage return (ODH) , or a null character (OOH) , it returns a 0 indicating
the end of the FILENAME string. If the next character is a delimiter, it returns the address
of the delimiter. If the next character is not a delimiter, it returns the address of the first
trailing blank or tab.

If the F_PARSE system call is to be used to parse a subsequent filename in the FILENAME
string, the returned address should be advanced over the delimiter before placing it in the
PFCB.

Refer to Table 6-5 for a list of error codes returned in ex.

--------------------------!iID DIGITAL RESEARCHI!I
6-90

Concurrent CP/M Programmer's Guide FJASSWD

F_PASSWD

Establish A Default Password
For File. Access

Entry Parameters:
Register CL: 06AH (106)

DX: Password Address - Offset
DS: Password Address - Segment

The F _PASSWD system call allows a process to specify a password value before a file
protected by the password is accessed. When the file system accesses a password-protected
file, it checks the current DMA, and the default password for the correct value. If either
value matches the file's password, full access to the file is allowed.

Concurrent CP/M maintains a default password for each process running on the system.
A new process inherits its initial default password from its parent, the process creating the
new process.

Note: Changing the default password does not affect other processes currently running on
the system.

To make an F_PASSWD call, the calling process passes the address of an eight-byte field
containing the password.

[!ill DIGITAL RESEARCHIt --------------------------
6-91

F-RANDREC Concurrent CP/M Programmer's Guide

F_RANDREC

Return The Random Record Number Of The
Next Record 'To Access In A Disk File

Entry Parameters:
Register CL: 024H (36)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values: Random Record Field of FCB Set

The F _RANDREC system call returns the Random Record Number of the next record to
be accessed from a file that has been read or written sequentially to a particular point. The
system call returns this value in the Random Record field, bytes RO, Rl, and R2, of the
addressed FCB. The F_RANDREC system call can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file to extract the positions
of various key fields. As each key is encountered, F_RANDREC is called to compute the
random record position for the data corresponding to this key. If the data unit size is 128
bytes, the resulting record number minus one is placed into a table with the key for later
retrieval.

After scanning the entire file and tabularizing the keys and their record numbers, you can
move directly to a particular record by performing a random read using the corresponding
Random Record Number that was saved earlier. The scheme is easily generalized when
variable record lengths are involved, because the program need only store the buffer-relative
byte position along with the key and record number in order to find the exact starting position
of the keyed data at a later time.

F _RANDREC can also be used when switching from a sequential read or write to a random
read or write. A file is sequentially accessed to a particular point in the file, F_RANDREC
is called to set the record number, and subsequent random read and write operations continue
from the next record in the file.

--------------------------I!ID DIGITAL RESEARCHGII
6-92

Concurrent CP 1M Programmer's Guide F-READ

F_READ

Read Records Sequentially
From A Disk File

Entry Parameters:
Register CL: 014H (20)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX:· Same as AX

The F _READ system call reads the next 1 to 128 128-byte records from a file into mem­
ory, beginning at the current DMA address. The BDOS Multisector Count (refer to the
F _MULTISEC system call) determines the number of records to be read. The default is
one record. The addressed FCB must have been previously activated by an F_OPEN or
F _MAKE system call.

F _READ reads each record from the current record (CR) field in the FCB, relative to the
current extent, then automatically increments the CR field to the next record position. If the
CR field overflows, then F_READ automatically opens the next logical extent and resets the
CR field to zero for the next read operation. The calling process must set the CR field to OOH
following the open call if the intent is to read sequentially from the beginning of the file.

Upon return, the F _READ system call sets register AL to zero if the read operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

01H - Reading unwritten data (end-of-file)
08H - Record locked by another process
09H - Invalid FCB
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

I!ID DIGITAL RESEARCH~ -------------------------
6-93

F-READ Concurrent CP 1M Programmer's Guide

The system call returns error code OlH if no data exists at the next record position of the
file. The no data situation is usually encountered at the end of a file. However, it can also
occur if you try to read a data block that has not been previously written or an extent that
has not been created. These situations are usually restricted to files created or appended with
the BDOS random write system calls (F _ WRITERAND and F _ WRITEZF).

The system call returns error code 08H if the calling process attempts to read a record
locked by another process with an exclusive lock. This error code is only returned for files
opened in Unlocked mode.

The system call returns error code 09H if the FCB is invalidated by a previous F _CLOSE·
system call that returned an error.

The system call returns error code OAH if .the referenced FCB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call only returns this error for files opened in Unlocked mode.

The system call returns error code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the default mode, the file system displays a message at the console identifying
the physical error and terminates the calling process. When the system call returns a physical
error to the calling process, it is identified by register AH as shown below:

o HI. - Disk I/O Error : permanent error
04H - Invalid Drive: drive select error

On all error returns, except for physical error returns (AL = 255), F_READ sets register
AH to the number of records successfully read before the error was encountered. This value
can range from 0 to 127 depending on the current BDOS Multisector Count. It is always set
to zero when the Multisector Count is equal to one.

-------------------------- [!ID DIGITAL RESEARCH$
6-94

Concurrent CP 1M Programmer's Guide F-READRAND

F_READRAND

Read Random Records
From A Disk File

Entry Parameters:
Register CL: 021H (33)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F _READ RAND system call is similar to the F _READ system call except that the
read operation takes place at a particular Random Record Number, selected by the 24-bit
value constructed from the three-byte, RO, Rl, R2, field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the least significant byte first, RO, the
middle byte next, Rl, and the high byte last, R2. The Random Record Number can range
from ° to 262,143. This corresponds to a maximum value of 3 in byte R2.

To read a file with the F_READRAND system call, the calling process must first open the
base extent, extent 0. This ensures that the FCB is properly initialized for subsequent random
access operations. The base extent might or might not contain any allocated data.

The F _READRAND system call reads the record specified by the random record field into
the current DMA address. F_READRAND automatically sets the FCB extent and current
record number values, EX and CR, but unlike the F_READ system call, it does not advance
the current record number. Thus, a subsequent F_READRAND call rereads the same record.
After a random read operation, a file can be accessed sequentially, starting from the current
randomly accessed position. However, the last randomly accessed record is reread or rewritten
when switching from random to -sequential mode.

If the BDOS Multisector count is greater than one (refer to the F _MULTISEC system
call), F _READ RAND reads multiple consecutive records into memory beginning at the
current DMA. F _READRAND automatically increments the RO, Rl, R2 field of the FCB
to read each record. However, it restores the FCB's Random Record Number to the first
record's value upon return to the calling process.

!!ill DIGITAL RESEARCHiIli --------------------------
6-95

F-.READRAND Concurrent CP 1M Programmer's Guide

Upon return, F_READRAND sets register AL to OOH if the read operation is successful.
Otherwise, register AL contains one of the following error codes:

OlH - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random Record Number out of range
08H - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

The system call returns error code OlH when it accesses a data block not previously written.
This may indicate an end-of-file (EOF) condition.

The system call returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

The system call returns error code 04H when a read random operation accesses an extent
that has not been created.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

The system call returns error code 08H if the calling process attempts to read a record
locked by another process with an exclusive lock. This error code is only returned for files
opened in Unlocked mode.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call only returns this error for files open in Unlocked mode.

-------------------------- [!QJ DIGITAL RESEARCHI!lI
6-96

Concurrent CP 1M Programmer's Guide F-READRAND

The system call returns error code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the default mode, the file system displays a message at the console identifying
the physical error and terminates the calling process. When a physical error is returned to
the calling process, it is identified by the four low-order bits of register AH as shown below:

01 H - Disk 110 Error : permanent error
04H - Invalid Drive: drive select error

On all error returns except for physical error returns, AL = 255, F_READRAND sets
register AH to the number of records successfully read before the error was encountered.
This value can range from 0 to 127 depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is equal to one.

I!ID DIGITAL RESEARCHIlli --------------------------
6-97

F-RENAME Concurrent CP 1M Programmer's Guide

F_RENAME

Rename A Disk File

Entry Parameters:
Register CL: 017H (23)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _RENAME system call uses the referenced FCB to change all directory entries of
the file specified by the drive and filename in bytes 0 to 11 of the FCB to the filename
specified in bytes 17 through 27.

If the file specified by the first filename is password-protected, the correct password must
be placed in the first eight bytes of the current DMA buffer, or have been previously estab­
lished as the default password (refer to the F_PASSWD system call).

The calling process must also ensure thatthe filenames specified in the FCB are valid and
unambiguous, and that the new filename does not already exist on the drive. F _RENAME
uses the drive code at byte 0 of the FCB to select the drive. The drive code at byte 16 of the
FCB is ignored.

Interface attribute FS' specifies whether an extended file lock is to be maintained after the
F _ATTRIB call as shown below:

FS' = 0 - Do not maintain an extended file lock (default)
FS' = 1 - Maintain an extended file lock

If FS' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in detail.

-------------------------I!QJ DIGITAL RESEARCHIi
6-98

Concurrent CP 1M Programmer's Guide F-RENAME

A process can rename a file that it has open if the file is open in locked mode. However,
the BDOS returns a checksum error if the process subsequently references the file with a
system call requiring an open FCB. A file open in Read-Only or Unlocked mode cannot be
renamed by any process.

Renaming an open file can adversely affect the performance of the calling process. For
this reason, you should close an open file before you rename it.

Upon return, the F _RENAME system' call returns a directory code in register AL with
the value OOH if the rename is successful, or OFFH if the file named by the first filename in
the FCB is not found. Register AH is set to OOH in both of these cases. If a physical or
extended error is encountered, the F _RENAME system call performs different actions depending
on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error mode
is in the default mode, the system displays a message at the console identifying the error,
and terminates the process. Otherwise, it returns to the calling process with register AL set
to OFFH and with register AH set to one of the following physical or extended error codes:

OlH - Disk I/O Error: permanent error
02H - Read-Only Disk
03H - Read-Only File
04H - Invalid Drive: drive select error
05H - File open by another process
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB

!lID DIGITAL RESEARCH~ --------------------------
6-99

F~FIRST Concurrent CP 1M Programmer's Guide

F_SFIRST

Find The First File That Matches
The Specified FCB

Entry Parameters:
Register CL: OllH (17)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _SFIRST system call scans the directory for a match with the referenced FCB. Two
types of searches can be performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the drive directory to be
searched, bytes 1 through 11 specifying the file or files to be searched for, and byte 12
specifying the extent. Byte 12 is usually set to OOH. An ASCII question mark (63, or 03FH
hexadecimal) in any of the bytes 1 through 12 matches all entries on the directory in the
corresponding position. This facility, called ambiguous file reference, can be used to search
for multiple files on the directory. When called in the standard mode, F _SFIRST scans for
the first file entry in the specified directory that matches the FCB and belongs to the current
user number.

The F_SFIRST system call also initializes the F_SNEXT system call. After the
F ~FIRST system call has located the first directory entry matching the referenced FCB,
F~NEXT can be called repeatedly to locate all remaining matching entries. In terms of
execution sequence, however, the F_SNEXT call must follow either a F_SFIRST or
F ~NEXT call with no other intervening BDOS file-access system calls.

If byte 0 of the referenced FCB is set to a question mark, F _SFIRST ignores the remainder
of the referenced FCB and locates the first directory entry residing on the current default
drive. All remaining directory entries can be located by making multiple F_SNEXT calls.
This type of search operation is not usually made by application programs, but it does provide
complete flexibility to scan all directory entries. Note that this type of search operation must
be performed to access a drive's directory label.

-------------------------- ~ DIGITAL RESEARCH®
6-100

Concurrent CP 1M Programmer's Guide F--.SFIRST

Upon return, the F _SFIRST system call returns a directory code in register AL with the
value 0 to 3 if the search is successful, or OFFH if a matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful searches, the current DMA
is also filled with the directory record containing the matching entry, and the relative starting
position is AL * 32. The directory information can be extracted from the buffer at this
position.

Ifthe directory has been initialized for date and time stamping, then an FCB resides in
every fourth directory entry, and successful directory codes are restricted to the values 0 to
2. For successful searches, if the matching directory record is an extent zero entry, and if
an SFCB resides at offset 96 within the current DMA buffer, then the contents of
(DMA Address + 96) = 021 H, and the SFCB contains the time and date stamp informa­
tion and password mode for the file. This information is located at the relative starting
position of 97 + (AL * 10) within the current DMA in the following format:

o - 3 : Create or Access Date and Time Stamp Field
4 - 7 : Update Date and Time Stamp Field
8 : Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, the F _SFIRST system call performs different actions
depending on the BDOS error mode (refer to the F_ERRMODE system call). If the BDOS
Error mode is in the default mode, the system displays a message identifying the error at the
console and terminates the calling process. Otherwise, it returns to the calling process with
register AL set to OFFH and register AH set to one of the following physical error codes:

01H - Disk 110 Error: permanent error
04H - Invalid Drive: drive select error

[!]J DIGITAL RESEARCH~ --------------------------
6-101

F--SIZE Concurrent CP/M Programmer's Guide

F_SIZE

Compute The Size Of A Disk File

Entry Parameters:
Register CL: 023H (35)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

Random Record Field of FCB Set

The F _SIZE system call determines the virtual file size. This is the address of the record
immediately following the end of the file. The virtual size of a file corresponds to the physical
size if the file is written sequentially. If the file is written in random mode, gaps might exist
in the allocation, and the file might contain fewer records than the indicated size. For example,
if a single record with record number 262,143, the Concurrent CP/M maximum, is written
to a file using the F_ WRITERAND system call, then the virtual size of the file is 262,144
records even though only one data block is actually allocated.

To compute file size, the calling process passes the address of an FCB with bytes RO, Rl,
and R2 present. The F _SIZE system call sets the random record field of the FCB to the
Random Record Number + 1 of the last record in the file. If the R2 byte is set to 04H, and
RO and Rl are both zero, then the file contains the maximum record count, 262,144.

A process can append data to the end of an existing file by calling F _SIZE to set the
random record position to the end of file, and then performing a sequence of random writes.

Note: The file need not be open in order to use F_SIZE. However, if the file is open in
Locked mode and it has been extended by the calling process, the file must be closed before
F_SIZE is called. Otherwise, F_SIZE returns an incorrect file size. F_SIZE returns the
correct size for files open in Unlocked mode and Read-Only mode.

--------------------------I!ID DIGITAL RESEARCH(!I
6-102

Concurrent CP 1M Programmer's Guide F-.SIZE

Upon return, F _SIZE returns a OOH in register AL if the file specified by the referenced
FCB is found, or a OFFH in register AL if the file is not found. Register AH is set to OOH
in both cases.

If a physical or extended error is encountered, F _SIZE performs different actions depend­
ing on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error
mode is in the default mode, the system displays a message at the console identifying the
error and terminates the process. Otherwise, F_SIZE returns to the calling process with
register AL set to OFFH and register AH set to one of the following physical or extended
error codes:

01 H - Disk I/O Error : permanent error
04H - Invalid Drive: drive select error
09H - Illegal ? in FCB

I!ID DIGITAL RESEARCHQ!I --------------------------
6-103

F-SNEXT Concurrent CP/M Programmer's Guide

F_SNEXT

Find A Subsequent File That Matches
The Specified FCB Of A Previous

F _SFIRST Or F _SNEXT

Entry Parameters:
Register CL: 012H (18)

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _SNEXT system call is identical to F _SFIRST except that the directory scan con­
tinues from the last entry that was matched. F_SNEXT returns a directory code in register
AL, analogous to F _SFIRST.

Note: In execution sequence, a F_SNEXT call must follow either an F_SFIRST or another
F_SNEXT with no other intervening BDOS file-access system calls.

----.,.--------------------- [lID DIGITAL RESEARCHI!!I
6-104

Concurrent CP/M Programmer's Guide

F_TIMEDATE

Return File Date Stamps
And Password Mode

Entry Parameters:
Register CL: 066H (102)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical Error
BX: Same as AX

The F _ TIMEDATE system call returns the time and date stamp information and password
mode for the specified file in byte 12 and bytes 24 through 31 of the specified FCB. The
calling process passes the address of an FCB in which the drive, filename, and type fields
have been defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced FCB

byte 12 password mode field

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to 0 indicates the file has not been assigned a password.

byte 24 - 27 XFCB Create or Access time stamp field
byte 28 - 31 XFCB Update time stamp field

I!ID DIGITAL RESEARCH~ -------------------------
6-105

Concurrent CP 1M Programmer's Guide

Upon return, F_TIMEDATE returns a directory code in register AL with the value OOH
if the operation is successful, or OFFH if the specified file is not found. Register AH is set
to OOH in both of these cases. If a physical or extended error is encountered, F _ TIMEDATE
performs different actions depending on the BDOS Error mode (refer to the F _ERRMODE
system call). If the BDOS Error mode is in the default mode, the system displays a mes­
sage at the console identifying the error and terminates the calling process. Otherwise,
F _ TIMEDATE returns to the calling process with register AL set to OFFH and register
AH set to one of the following physical error codes:

OlH - Disk 110 Error: permanent error
04H - Invalid Drive: drive select error
09H - Illegal ? in FCB

--------------------------1lID DIGITAL RESEARCH~
6-106

Concurrent CP 1M Programmer's Guide

F_TRUNCATE

Truncate File

Entry Parameters:
Register CL: 063H (99)

DX: FCB Address - Offset

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _TRUNCATE system call sets the last record of a file to the Random Record Number
contained in the referenced FCB. The calling program passes the address of the FCB in
register DX with byte 0 of the FCB specifying the drive, bytes 1 through 11 specifying the
filename and filetype, and bytes 33 through 35 (RO, Rl, and R2) specifying the last record
of the file. The last record number is a 24-bit value, stored with the least significant byte first
(RO), the middle byte next (Rl), and the high byte last (R2). This value can range from 0 to
262,143 (03FFFFH).

If the file specified by the referenced FCB is password-protected, the correct password
must have been placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (refer to the F_PASSWD system call).

Interface attribute F5' specifies whether an extended file lock is to be maintained after the
F_TRUNCATE call, as shown below:

F5' = 0 - Do not maintain an extended file lock (default)
F5' = 1 - Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other processes
on the system. Section 2.11 describes extended file locking in detail.

F _TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size. In addition, if the file is sparse, the random
record field must specify a region of the file where data exists.

[!QJ DIGITAL RESEARCH~ -------------------------
6-107

Concurrent CP 1M Programmer's Guide

A process can truncate a file that it currently has open if the file is opened in locked mode,
and the file has not been extended during the open session. However, the BDOS returns a
checksum error if the process makes a subsequent reference to the file with a BDOS system
call requiring an open FCB. A process cannot truncate files open in RO or Unlocked mode.

Truncating an open file is not recommended under Concurrent CP/M. F_TRUNCATE
truncates a file based on the file's state in the directory. If a process attempts to truncate at a
region of the file that has been allocated in memory but has not been recorded in the directory,
F_TRUNCATE returns an error. Even when successful, an open file truncate can adversely
affect the performance of the calling process. For these reasons, you should close an open
file before you truncate it.

After completion, F _TRUNCATE returns a directory code in register AL with the value
OOH if the operation is successful or OFFH if the file is not found or if the record number is
invalid. In both cases register AH is set to OOH.

If a physical or extended error is encountered, F_ TRUNCATE performs different actions
depending on the BDOS error mode (refer to F_ERRMODE). If the BDOS error mode is
in the default mode, a message identifying the error is displayed at the console and the
program is terminated. Otherwise, F_TRUNCATE returns to the calling program with reg­
ister AL set to OFFH and register AH set to one of the following physical or extended error
codes:

01 H - Disk 1/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File
04H - Invalid Drive: drive select error
OSH - File Currently Open
06H - Close Checksum Error
07H - Password Error
08H - File Already Exists
09H - Illegal ? in FCB
OAH - Open File Limit Exceeded
OBH - No Room in System Lock List

-------------------------- i!IDDIGITAL RESEARCHII!)
6-108

Concurrent CP/M Programmer's Guide

F_UNLOCK

Unlock Records In A Disk File

Entry Parameters:
Register CL: 02BH (43)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F_UNLOCK system call unlocks one or more consecutive records previously locked
by the F _LOCK system call. This system call is only supported for files open in Unlocked
mode .. If it is called for a file open in Locked or Read-Only mode, no unlocking action occurs
and a successful result is returned. Record locking and unlocking is described in detail in
Section 2.14. .

The calling process passes the address of an FCB in which the Random Record Field
is filled with the Random Record Number of the first record to be unlocked. The number
of records to be unlocked is determined by the BDOS Multisector Count (refer to the
F_MULTISEC system call). The current DMA must contain the 2-byte File ID returned by
the F_OPEN or F_MAKE system call when the referenced FCB was opened. Note that the
File ID is only returned by F_OPEN or F_MAKE when the file open mode is Unlocked.

If interface attribute FS' is set to 1, F _UNLOCK unlocks all locked records belonging to
the calling process. The F_UNLOCK interface attribute definition is listed below:

FS' = 0 - Unlock records specified by Random Record Number and BDOS
Multisector Count (default)

FS' = 1 - Unlock all locked records.

[!Q] DIGITAL RESEARCH~ -------------------------
6-109

Concurrent CP 1M Programmer's Guide

F _UNLOCK ignores the FCB Rand<;lm Record field and the BOOS M ultisector Count
when F5' is set.

F _UNLOCK does not unlock a record that is currently locked by another process.
However, the system call does not return an error if a process attempts to do that. Thus, if
the Multisector Count is greater than one, F _UNLOCK unlocks all records locked by the
calling process, skipping those records locked by other processes.

Some F_UNLOCK requests require a new entry in the BDOS system Lock List. If there
is insufficient space in the system Lock List to satisfy the F_UNLOCK request, or if the
process record Lock List limit is exceeded, then F_UNLOCK does not unlock any records
and returns an error code·to the calling process.

Upon return, F_UNLOCK sets register AL to OOH if the unlock operation was successful.
Otherwise, register AL contains one of the following error codes:

OIH - Reading unwritten data
03H - Cannot close current extent
04H - Seek to unwritten extent
06H - Random Record Number out of range
OAH - FCB Checksum Error
OCH - Process record Lock List limit exceeded
ODH - Invalid File ID
OEH - No room in system Lock List

OFFH - Physical error refer to register AH

The system call returns error code OIH when it accesses a data block which has not been
previously written.

The system call returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

The system call returns error code 04H when it accesses an extent that has not been created.

The system call returns error code 06H when byte 35 (r2) for a list of the referenced FCB
is greater than 3.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

--------------------------l!ID DIGITAL RESEARCHQ!)
6-110

Concurrent CP 1M Programmer's Guide

The system call returns error code OCH if performing the unlock request would require
that the process consume more than the maximum allowed number of system Lock List
entries.

The system call returns error code ODH when an invalid File ID is placed at the beginning
of the current DMA.

The system call returns error code OEH when the system Lock List is full and performing
the unlock request would require at least one new entry.

The system call returns error code OFFH if a physical error was encountered and the BDOS
Error mode is one of the return modes (refer to the F _ERRMODE system call). If the Error
mode is the Default mode, the system displays a message at the console identifying the
physical error and terminates the calling process. When the system call returns a physical
error to the calling process, it is identified by register AH as shown below:

OlH - Disk I/O Error: permanent error
04H - Invalid Drive: drive select error

[!ill DIGITAL RESEARCHil!l --------------------------
6-111

Concurrent CP/M Programmer's Guide

F_USERNUM

Set Or Return The Calling Process's
Default User Number

Entry Parameters:
Register CL: 020H (32)

DL: OFFH to GET User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET

BL: Same as AL

A process can change or interrogate its current default user number by calling
F_USERNUM. If register DL = OFFH, then the system call returns the value of this user
number in register AL. The value can range from 0 to OFH. If register DL is not OFFH, then
the system call changes the default user number to the value in DL, modulo OIOH (the high
nibble of DL is masked off).

Under Concurrent CP/M, a new process inherits its initial default user number from its
parent, the process creating the new process. Changing the default user number does not
change the user code of the parent. On the other hand, all child processes of the calling
process inherit the new user number.

This convention is demonstrated by the operation of the TMP. When a command is typed,
a new process is created with the same user number as that of the TMP. If this new process
changes its user number, the TMP is unaffected. Once the new process terminates, the TMP
displays the same user number in its prompt that it displayed before the command was entered
and the child process was created.

--------------------------I!QJ DIGITAL RESEARCHII!I
6';112

Concurrent CP 1M Programmer's Guide F_WRITE

F_WRITE

Write Records Sequentially
To A Disk File

Entry Parameters:
Register CL: 01SH (21)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F_ WRITE system call writes 1 to 128, 128-byte data records beginning at the current
DMA address into the file named by the specified FCB. The BDOS Multisector Count (refer
to the F _MULTISEC system call) determines the number of 128-byte records that are written.
The default is one record. An F _OPEN or F _MAKE system call must have previously
activated the referenced FCB.

F _ WRITE places the record into the file at the position indicated by the CR byte of the
FCB, and then automatically increments the CR byte to the next record position. If the CR
field overflows, the system call automatically opens or creates the next logical extent and
resets the CR field to OOH in preparation for the next write operation. If F _ WRITE is used
to write to an existing file, then the newly written records overlay those already existing in
the file. The calling process must set the CR field to OOH following an F_OPEN or F_MAKE
system call if the intent is to write sequentially from the beginning of the file.

F _WRITE makes an update date and time stamp for the file if the following conditions
are met: the referenced drive has a directory label that requests update date and time stamping,
and the file has not already been stamped for update by a previous F _MAKE or F _ WRITE
system call.

l!]] DIGITAL RESEARCH~ -------------------------
6-113

Concurrent CP 1M Programmer's Guide

Upon return, the F _ WRITE system call sets register AL to OOH if the write operation is
successful. Otherwise, register AL contains an error code identifying the error as shown
below:

OIH - No available directory space
02H - No available data block
08H - Record locked by another process
09H - Invalid FCB
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error; refer to register AH

The system call returns error code OIH when it attempts to create a new extent that requires
a new directory entry, and no available directory entries exist on the selected disk drive.

The system call returns error code 02H when it attempts to allocate a new data block to
the file, and no unallocated data blocks exist on the selected disk drive.

.,

The system call returns error code 08H.if the calling process attempts to write to a record
locked by another process, or a record locked by the calling process in shared mode. The
system call returns this error only for files open in Unlocked mode.

The system call returns error code 09H if the FCB is invalidated by a previous F _CLOSE
system call that returned an error.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call returns this error only for files open in Unlocked mode.

-------------------------- I!ID DIGITAL RESEARCH@
6-114

Concurrent CP 1M Programmer's Guide

The system call returns error code OFFH if a physical error was encountered and the BDOS
is in Return Error mode or Return and Display Error mode (refer to the F_ERRMODE
system call). If the Error mode is the Default mode, the system displays a message at the
console identifying the physical error and terminates the calling process. When the system
call returns a physical error to the calling process, it is identified by register AH as shown
below:

01 H - Disk 110 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened in Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive: drive select error

On all error returns except for physical error returns (AL = 255), F _ WRITE sets register
AH to the number of records successfully written before the error was encountered. This
value can range from 0 to 127, depending on the current BDOS Multisector Count. It is
always set to zero when the Multisector Count is equal to one.

[lID DIGITAL RESEARCH!! --------------------------
6-115

F_WRITERAND Concurrent CP 1M Programmer's Guide

F_ WRITERAND

Write Random Records
To A Disk File

Entry Parameters:
Register CL: 022H (34)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F _ WRITERAND system call is analogous to the F _READRAND system call, except
that data is written to the disk from the current DMA address. If the disk extent and/or data
block where the data is to be written is not already allocated, the BDOS automatically
performs the allocation before the write operation continues.

In order to write to a file using the F _ WRITERAND system call, the calling process must
first open the base extent, extent O. This ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, the calling process must create the
base extent with the F_MAKE system call before an F_ WRITERAND system call. The base
extent might or might not contain data, but it records the file in the directory so that it can
be displayed by the DIR utility. If a process does not open extent 0 and allocates data to some
other extent, the file is invisible to the DIR utility.

The F _ WRITERAND system call sets the logical extent and current record positions to
correspond with the random record being written, but does not change the Random Record
Number. Thus sequential read or write operations can follow a random write, with the current
record being reread or rewritten as the calling process switches from random to sequential
mode.

F _ WRITERAND makes an update date and time stamp for the file if the following con­
ditions are met: the referenced drive has a directory label that requests update date and time
stamping, and the file has not already been stamped for update by a previous F_MAKE or
F_ WRITE system call.

--------------------------IIQ] DIGITAL RESEARCHti

6-116

Concurrent CP 1M Programmer's Guide F _ WRITERAND

If the BDOS Multisector Count is greater than one (refer to the F _MULTISEC system
call), the F_ WRITERAND system call writes multiple consecutive records from memory
beginning at the current DMA address. The system call automatically increments the RO,
RI, and R2 field of the FCB to write each record. However, it restores the FCB's Random
Record Number to the first record's value upon return to the calling process.

Upon return, the F _ WRITERAND system call sets register AL to OOH if the write oper­
ation is successful. Otherwise, register AL contains one of the following error codes:

02H - No available data block
03H - Cannot close current extent
05H - No available directory space
06H - Random record number out of range
08H - Record locked by another process
OAH - FCB Checksum Error
OBH - Unlocked file verification error

OFFH - Physical error refer to register AH

The system call returns error code 02H when it attempts to allocate a new data block to
the file. No unallocated data blocks exist on the selected disk drive.

The system call returns error code 03H when it cannot close the current extent before
moving to a new extent.

The system call returns error code 05H when it attempts to create a new extent that requires
a new directory entry and no available directory entries exist on the selected disk drive.

The system call returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3. "

The system call returns error code 08H if the calling process attempts to write to a record
locked by another process, or a record locked by the calling process in shared mode. The
system call returns this error only for files open in Unlocked mode.

The system call returns error code OAH if the referenced FCB failed the FCB checksum
test.

The system call returns error code OBH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current information. The
system call returns this error only for files open in Unlocked mode.

[i]) DIGITAL RESEARCH~ --------------------------

6-117

F _ WRITERAND Concurrent CP 1M Programmer's Guide

The system call returns error code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call). If the
Error mode is in the default mode, the system displays a message at the console identifying
the physical error and terminates the calling process. When a physical error is returned to
the calling process, it is identified by register AH as shown below:

01H - Disk I/O Error: permanent error
02H - Read/Only Disk
03H - Read/Only File or

File Opened in Read/Only Mode or
File password protected in Write mode

04H - Invalid Drive: drive select error

On all error returns, except for physical error returns (AL = 255), F _ WRITERAND sets
register AH to the number of records successfully written before the error was encountered.
This value can range from 0 to 127 depending on the current BDOS Multisector Count. It
is always set to zero when the Multisector Count is equal to one.

-------------------------- [iID DIGITAL RESEARCH~
6-118

Concurrent CP 1M Programmer's Guide

F_WRITEXFCB

Write Extended File Control Block
Of A Disk File

Entry Parameters:
Register CL: 067H (103)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code

AH: Physical or Extended Error
BX: Same as AX

The F _ WRITEXFCB system call creates a new XFCB or updates the existing XFCB for
the specified file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the password
mode and whether a new password is to be assigned to the file. The format of the extent field
byte is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - assign new password to the file

If the FCB is currently password-protected, the correct password must reside in the first
8 bytes of the current DMA or have been previously established as the default password
(refer to the F _PASSWD system call). If bit 0 is set to 1, the new password must reside in
the second 8 bytes of the current DMA.

Note: The F _ WRITEXFCB system call does not create or update an XFCB if the XFCB
specifies a file open by another process. However, a process can update or create an XFCB
for a file that it has open in Locked mode.

l!ID DIGITAL RESEARCH«II -------------------------
6-119

F_WRITEFXCB Concurrent CP 1M Programmer's Guide

Upon return, F _ WRITEXFCB returns a directory code in register AL with the value OOH
if the XFCB create or update was successful. F_ WRITEXFCB returns OFFH in register AL
if no directory label existed on the specified drive, or the file specified in the FCB was not
found, or no space existed in the directory to create an XFCB, or if the drive is not password
enabled. F_ WRITEXFCB also returns OFFH if passwords are not enabled by the specified
drive's directory label. Register AH is set to OOH in all of these cases.

If a physical or extended error is encountered, F _ WRITEXFCB performs different actions
depending on the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS
Error mode is in the default mode, the system displays a message at the console identifying
the error and terminates the calling process. Otherwise, F_ WRITEXFCB returns to the
calling process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

01 H - Disk I/O Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive: drive select error
05H - File open by another process, or open in Read-Only or Unlocked mode
07H - Password Error
09H - Illegal ? in FCB

-------------------------- [iID DIGITAL RESEARCHI!I
6-120

Concurrent CP/M Programmer's Guide F_WRITEZF

F_WRITEZF

Write A Random Record To A Disk File
And Prefill New Data Blocks With Zeros

Entry Parameters:
Register CL: 028H (40)

DX: FCB Address _. Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code

AH: Physical Error
BX: Same as AX

The F _ WRITEZF system call is similar to the F _ WRITERAND system call, with
the exception that it fills a previously unallocated data block with zeros (OOH) before writing
the record. If this system call has been used to create a file, records accessed by an
F _READRAND system call that contain all zeros identify unwritten random records.
Unwritten random records in allocated data blocks of files created using the F _ WRITERAND
system call contain uninitialized data.

lIID DIGITAL RESEARCHQ!I -------------------------
6-121

L-ATTACH Concurrent CP/M Programmer's Guide

6.2.5 List Device I/O System Calls

L_ATTACH

Attach The Default List Device
To The Calling Process

Entry Parameters:
Register CL: 09EH (158)

The LATTACH system call attaches the default list device of the calling process. If the
list device is already attached to some other process, the calling process relinquishes the CPU
until the other process detaches from the list device. When the list device becomes free, and
the calling process is the highest priority process waiting for the list device, the attach
operation occurs.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- [lID DIGITAL RESEARCH~
6-122

Concurrent CP/M Programmer's Guide

L_CATTACH

Conditionally Attach To The
Default List Device

Entry Parameters:
Register CL: OAlH (161)

Returned Values:
Register AX: o if attach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The LCATTACH system call attaches the default list device of the calling process only
if the list device is currently available.

If the list device is currently attached to another process, the system call returns a value
of OFFH, indicating that the list device could not be attached. The system call returns a value
of OOH to indicate that either the list device is already attached to the process, or that it was
unattached, and a successful attach operation was made.

Refer to Table 6-5 for a list of error codes returned in CX.

lrn DICiITAL RES£ARCH~ -------------------------
6-123

L-DETACH Concurrent CP/M Programmer's Guide

L_DETACH

Detach The Default List Device
From The Calling Process

Entry Parameters:
Register CL: 09FH (159)

Returned Values:
Register AX: o if detach 'OK'

OFFFFH on failure
BX: Same as AX
CX: Error Code

The LDETACH system call detaches the default list device of the calling process. If the
list device is not currently attached, no action takes place.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------IIID DIGITAL RESEARCH~
6-124

Concurrent CP/M Programmer's Guide

L_GET

Return The Calling Process's
Default List Device

Entry Parameters:
Register CL: OA4H (164)

Returned Values:
Register AL: List Device Number

BL: Same as AL

The LGET system call returns the default list device number of the calling process.

[!]) DIGITAL RESEARCHe -------------------------
6-125

L-SET Concurrent CP/M Programmer's Guide

L_SET

Set The Calling Process's
Default List Device

Entry Parameters:
Register CL: OAOH (160)

DL: List Device Number

Returned Values:
Register CX: Error Code

The LSET system call sets the default list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------!iID DIGITAL RESEARCHIt
6-126

Concurrent CP/M Programmer's Guide

L_WRITE

Write A Character To The
Default List Device

Entry Parameters:
Register CL: 05H (5)

DL: Character

The L_ WRITE system call writes the specified character to the default list device of the
calling process. Before writing the character, the system internally calls L_ATTACH to verify
that the calling process owns its default list device.

Ii]) DIGITAL RESEARCH$ -------------------------
6-127

Concurrent CP 1M Programmer's Guide

L_WRITEBLK

Send Specified Character
String to Default List Device

Entry Parameters:
Register CL: 070H (112)

DX: CHCB Address

L_ WRITEBLK sends the character string specified in the Character Control Block (CHCB)
and addressed in register pair DX to the logical list device, LST:. The CHCB format is

bytes 0 - 1 : Offset of character string
bytes 2 - 3 : Segment of character string
bytes 4 - 5 : Length of character string to print

6.2.6 Memory System Calls

There are two classes of Memory System Calls in Concurrent CP/M. The first class
supports the MP / M-86 memory allocation scheme and contains two system calls,
~ALLOC and M_FREE. The second class contains six system calls, MC_ABS,
MC_ALLFREE, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_MAX. These
system calls support the CP / M-86 memory allocation scheme.

Note: The CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory system calls use the Memory Control Block (MCB) or the Memory
Parameter Block (MPB) to pass parameters to and from the operating system. The format,
structure and example programming equates for these data structures are presented below,
along with example·listings.

~
+- ... -+-+~

BASE I LENGTH I EXT
+----+----+----+

Figure 6-7. MCB - Memory Control Block

------------------------- IiIDDIGITAL RESEARCHII!I
6-128

Concurrent CP 1M Programmer's Guide

Table 6-13. MCB Field Definitions

Field Definition

BASE The Segment Address of the beginning of the specified memory segment.

LENGTH Length of the Memory Segment in paragraphs. The LENGTH field is
set to the number of paragraphs wanted.

EXT The EXT field is unused but must be available.

.*** ,

.* ,
;* Memory Control Blook Definition
.* ,
.*** ,
mob_base
mob_length
mob_ext

equ
equ
equ

equ

word ptr 0
word ptr mob_base + word
byte ptr mob_length + word

Listing 6-1. Memory Control Block Definition

~+-I I I-+-I-+-I-+~ START. MIN . MAX • OOOOH • OOOOH
+--- ---+-- --~-- --+--- ---+

Figure 6-8. MPB - Memory Parameter Block

[iID DIGITAL RESEARCH~ --------------------------
6-129

Concurrent CP 1M Programmer's Guide

Table 6-14. MPB Field Definitions

Field Description

START if non-OOH, an absolute request at this paragraph

MIN minimum memory needed (paragraphs)

MAX maximum memory wanted (paragraphs)

* OOOOH these fields must be OOH; they are used internally.

.*** ,

.* ,
;* Memory Parameter Block Definition
.* ,
.*** ,

mpb_start equ word ptr 0
mpb_min equ word ptr mpb_start + word
mpb_max equ word ptr mpb_min + word
mpb_pdadr equ word ptr mpb_max + word
mpb_flags equ word ptr mpb_pdadr + word

mpb_len equ mpb_flags + word

; mpb_flags definition

mf_load equ OOOOlh
mf_share equ 0OOO2h
mf_code equ 0OOO4h

Listing 6-2. Memory Parameter Block Definition

-------------------------IiIDDIGITAL RESEARCHI!I

6-130

Concurrent CP/M Programmer's Guide M-ALLOC

M-ALLOC

Allocate A Memory Segment

Entry Parameters:
Register CL: 080H or 081H (128,129)

DX: MPB Address-Offset
DS: MPB Address-Segment

MPB filled in

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

MPB_start filled in

The M-ALLOC system call allows a program to allocate extra memory. A successful
allocation allocates a contiguous memory segment whose length is at least the MIN and no
more than the MAX number of paragraphs specified in the MPB. The START field of the
MPB is modified to be the starting paragraph of the memory segment. The MIN and MAX
fields are modified to be the length of the memory segment in paragraphs. Memory Segments
can be explicitly released through the M-FREE system call; Concurrent CP/M also releases
all memory owned by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be greater
than or equal to the MIN value.

Refer to Table 6-5 for a list of error codes returned in CX.

I!ID DIGITAL RESEARCH~ -------------------------
6-131

°MJREE Concurrent CP/M Programmer's Guide

~FREE

Free A Memory Segment

Entry Parameters:
Register CL: 082H (130)

DX: MFPB Address - Offset
DS: MFPB Address - Segment

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

START t · OOOOH

Figure 6-9. MFPB - ~FREE Parameter Block

The ~FREE system call releases memory starting at the START paragraph to the
end of a single previously allocated segment that contains the START paragraph. If the
START paragraph is the same as that returned in the MPB of a memory allocation ocall,
then 1LFREE releases the whole memory segment. The * OOOOH field must be initialized
to zero.

Refer to Table 6-5 for a list of error codes returned in CX.

------------------------- [!IDDIGITAL RESEARCH <!I

6-132

Concurrent CP/M Programmer's Guide MC-ABSALLOC

MC_ABSALLOC

Allocate A Memory Segment
At A Specified Address

Entry Parameters:
Register CL: 038H (56)

DX: MCB Address - Offset
DS: MCB Address - Segment

Returned Values:
Register AL: o on success

OFFH on failure
BL: Same as AL
CX: Error Code

The MC_ABSALLOC system call allocates a memory area that starts at the address
specified by the BASE field. The memory area's length is specified by the LENGTH field of
t~e MCB. Upon return, register AL contains a OOH if the request was successful, and a OFFH
if the memory could not be allocated. If the calling process already owns the requested
memory, no error is returned. This assures compatibility with CP/M-86.

Refer to Table 6-5 for a list of error codes returned in CX.

[i]) DIGITALRESEARCH@-------------------------
6-133

MC-ABSMAX Concurrent CP 1M Programmer's Guide

MC_ABSMAX

Allocate Maximum Memory Available
At A Specified Address

Entry Parameters:
Register CL: 036H (54)

DX: MCB Address - Offset
DS: MCB Address- Segment

MCB_base filled in, MCB_Iength
set to max number of paragraphs
wanted

Returned Values:
Register AL: o on success

OFFH on failure
BL: Same as AL
CX: Error Code

MCB_Iength set to actual number
of paragraphs allocated

In CP/M-86, system call 036H does not allocate memory, but under Concurrent CP/M,
this system call allocates memory, because other processes are competing for common mem­
ory. For compatibility with CP/M-86, MC_ABSALLOC (system call 56) does not return an
error if there is a memory segment allocated at the absolute address.

MC_ABSMAX is used to allocate the largest possible region at the absolute paragraph
boundary given by the BASE field of the MCB, for a maximum of LENGTH paragrapns. If
the allocation is successful, the system call sets the LENGTH to the actual length. Upon
return, register AL has the value OFFH if no memory is available at the absolute address,
and OOH if the request was successful.

Refer to Table 6-5 for a list of error codes returned in CX.

--------------------------IIID DIGITAL RESEARCHQ!I

6-134

Concurrent CP/M Programmer's Guide MC-ALLFREE

MC_ALLFREE

Free All Memory Owned
By The Calling Process

Entry Parameters:
Register CL: 03AH (58)

In the Concurrent CP/M environment, the MC_ALLFREE system call releases all of the
calling process's memory except the User Data Area (UDA). This system call is useful for
system processes and for subprocesses that share the memory of another process.

Note: This system call should not be used by processes running programs loaded into the
Transient Program Areas (TPAs).

[!ill DIGITAL RESEARCH~ -------------------------
6-135

MC-ALLOC Concurrent CP/M Programmer's Guide

MC_ALLOC

Allocate A Memory Segment

Entry Parameters:
Register CL: 037H (55)

DX: MCB Address - Offset
DS: MCB Address - Segment

MCB_Iength filled it.

Returned Values:
Register AL: o on success

OFFH on failure
BL: Same as AL
CX: Error Code

MCB_base filled in

The MC_ALLOC system call allocates a memory area whose size is the LENGTH field
of the MCB. MC_ALLOC returns the base paragraph address of the allocated region in the
user's MCB. Upon return, register AL contains a OOH if the request was successful, and a
OFFH if the memory could not be allocated.

Refer to Table 6-5 for a list of error codes returned in CX.

------------------------- I!ID DIGITAL RESEARCH~
6-136

Concurrent CP/M Programmer's Guide MC-FREE

Me_FREE

Free A Specified Memory Segment

Entry Parameters:
Register CL: 039H (57)

DX: MCB Address - Offset
DS: MCB Address - Segment

MCB_base, MCB_ext filled in

Returned Values:
Register AL: o if successful

OFFH on failure
BL: Same as AL
CX: Error Code

The MC_FREE system call is used to release memory areas allocated to the program.
The value of the EXT field of the MCB controls the operation of this system call. If
EXT = OFFH, then the system call releases all memory areas allocated by the calling
program. If the EXT field is OOH, the system call releases the memory area beginning at
the specified BASE and ending at the end of the previously allocated memory segment.

Refer to Table 6-5 for a list of error codes returned in CX.

!!ID DIGITAL RESEARCHali -------------------------
6-137

MC-MAX Concurrent CP/M Programmer's Guide

Me_MAX

Allocate Maximum Memory Available

Entry Parameters:
Register CL: 035H. (53)

DX: MCB Address - Offset
DS: MCB Address - Segment

(MCB_Iength contains maximum
number of paragraphs wanted)

Returned Values:
Register AL: o on success

OFFH on failure
BL: Same as AL
CX: Error Code

(M CB_base filled in, M CB--1ength
set to actual number of paragraphs
allocated)

In CP/M-86, system call 035H does not allocate memory, but under Concurrent CP/M,
this system call allocates memory because other processes are competing for common mem­
ory. For compatibility with CP/M-86, MC_ABSALLOC (system call 56) does not return an
error if there is a memory segment allocated at the absolute address.

MC_MAX allocates the largest available memory region that"is less than or equal to the
LENGTH field of the MCB in paragraphs. If the allocation is successful, the system call sets
the BASE to the base paragraph address of the available area and LENGTH to the paragraph
length. Upon return, register AL has the value OFFH if no memory is available, and OOH if
the request was successful. The system call sets the EXT to 1 if there is additional memory
for allocation, and 0 if no additional memory is available.

Refer to Table 6-5 for a list of error codes returned in CX.

-..-;...-------------------------/!ID DIGITAL RESEARCH~
6-138

Concurrent CP 1M Programmer's Guide P-ABORT

6.2.7 Process/Program System Calls

P_ABORT

Terminate A Process
By Name Or PD Address

Entry Parameters:
Register CL: 09DH (157)

DX: APB Address - Offset
DS: APB Address - Segment

APB filled in

Returned Values:
Register AX: o on success

OFFH on failure
BX: Same as AX
CX: Error Code

00 e. p~=l TE:M I eNS I 'OOH I +~
06 NAME

----+----+----+----+----+----+

Figure 6-10. APB - Abort Parameter Block

I!ID DIGITAL RESEARCHe -------------------------
6-139

P-ABORT

Field

PD

TERM

*OOH

CNS

NAME

Concurrent CP/M Programmer's Guide

Table 6-15. APB Field Definitions

Definition

Process Descriptor offset of the process to be·terminated. If this field is
zero, a match is attempted with the NAME and CNS fields to find the
process. If this field is nonzero, the NAME and CNS fields are ignored.

Termination Code. This field corresponds to the termination code of the
P_TERM system call. If the low-order byte of TERM is OFFH,
P _ABORT can abort a specified system process; if the termination
code is not OFFH, the system call can only terminate a user process. (A
system process is identified by the SYS flag in the Process Descriptor's
FLAG field.)

This field is reserved for system use and must be set to zero.

Default console of process to be aborted. If the PD field is 0, the
P _ABORT system call scans the Thread List for a PD with the same
NAME and CNS fields as specified in the APB. P _ABORT only aborts
the first process that it finds. Subsequent calls must be made to abort all
processes with the same NAME and CNS.

Name of the process to be abort~d. Combined with the CNS field, the
NAME field is used to find the process to be aborted. This is only used
if the PD field is O.

The P _ABORT system call permits a process to terminate another specified process. The
calling process passes the address of a data structure called an Abort Parameter Block,
initialized as described above.

If the Process Descriptor address is known, it can be filled in, and the process name and
console can be omitted. Otherwise, the Process Descriptor address field should be a OOH and
the process name and console must be specified. In either case, the calling process must
supply the termination code, which is the same parameter passed to the P _TERM system
call.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- [lID DIGITAL RESEARCH~
6-140

Concurrent CP/M Programmer's Guide

P_CHAIN

Load, Initialize And Jump
To Specified Program

Entry Parameters:
Register CL: 02FH (47)

DMA Buffer: Command Line

Returned Values:
Register AX: OFFFFH - Could not find

Command

The P _CHAIN system call provides a means of chaining from one program to the next
without operator intervention. Although there is no passed parameter for this call, the calling
process must place a command line terminated by a 0 byte in the default DMA buffer.

Under Concurrent CP/M, the P _CHAIN system call releases the memory of the calling
process before executing the command. The command is processed in the same manner as
the P _CLI system call. If the command warrants the loading of a CMD file and the memory
released is large enough for the new program, Concurrent CP/M loads the new program into
the same memory area as the old program. The new program is run by the same process that
ran the old program. The name of the process is changed to reflect the new program being
run.

Parameter passing between the old and new programs is accomplished through the use of
disk files, queues, or the command line. The command line is parsed and placed in the Base
Page of the new program in the manner documented in the P _CLI system call.

The P _CHAIN system call returns an error if no CMD file is found. If a CMD file is
found, and an error occurs after it is successfully opened, the calling process terminates, as
its memory has been released.

[!]] DIGITAL RESEARCH~ --------------------------
6-141

Concurrent CP 1M Programmer's Guide

P_CLI

Interpret And Execute Command Line

Entry Parameters:
Register CL: 096H (150)

DX: CLB UF Address - Offset
DS: CLBUF Address - Segment

Returned Values:
Register AX: o on success

OFFFFH on error
CX: Error Code

o 2 3 128 129

I I~· /
COMMAND \
+--+ /)CI~ ·OOH

Figure 6-11. CLI Command Line Buffer

-------------------------liID DIGITAL RESEARCH~
6-142

Concurrent CP 1M Programmer's Guide P_CLI

Table 6-16. Command Line Buffer Field Definitions

Field Definition

*OOH Must be set to zero for system use.

COMMAND 1-128 ASCII characters terminated with a null character.

The P _CLI system call obtains an ASCII command from the Command Line Buffer
(CLBUF) and then executes it. If the calling process is attached to its default virtual console,
the P _CLI system call assigns the virtual console to either the newly created process, or to
the Resident System Process (RSP) that acts on the command. The calling process must
reattach to its default virtual console before accessing it.

P _CLI calls F _PARSE to parse the command line. If an error occurs in F _PARSE,
P _CLI returns to the calling process with the error code set to the same code that
F _PARSE returned.

If there is no disk specification for the command, P _eLI tries to open a system queue
with the same name as the command. If the open operation is successful, and the queue is
an RSP-type queue, P _CLI then writes the command tail to the RSP queue. If the queue is
full, the system call returns an error code to the calling process. The P _CLI function also
attempts to assign the calling process's virtual console to a process with the same name as
the RSP queue. If the RSP queue cannot be found, the CLI assumes the command is on disk
and continues.

The P _CLI system call opens a file with the filename being the command and the filetype
being CMD. Ifthe command has an explicit disk specification, and the F_OPEN system call
fails~ P _CLI returns an error code to the calling process. If there is no disk specification
with the command, P _CLI attempts to open the command file on the system disk. If the
F _OPEN system call succeeds, P _CLI checks the file to verify the SYSTEM attribute is
on. This search order is discussed in Section 2.9.1 of the Concurrent CP/M User's Guide. If
this second F _OPEN fails or if the DIR attribute is on, P _CLI returns an error code to the
calling process.

Once the P _CLI system call succeeds in opening the command file, it calls the P _LOAD
system call. The P _LOAD system call finds, and then loads the file into an appropriate
memory space. If P _LOAD encounters any errors, the P _CLI system call returns to the
calling process with the error code set by the P _LOAD system call.

[!QJ DIGITAL RESEARCHI!l --------------------------

6-143

Concurrent CP 1M Programmer's Guide

A successful load operation establishes the command file in memory with its Base Page
'partially initialized. The P _CLI system call then continues parsing the command tail to set
up the Base Page values from 050H to OFFH.

P _eLI ini~ializes an unused Process Descriptor from the internal PD table, a UDA (expanded
UDA if 8087 processing is required) and a 96-byte stack area. The UDA and stack are
dynamically allocated from memory. P _CLI then calls the P _CREATE system call. If
P _CLI encounters an error in any of these steps, it releases all memory segments allocated
for the new command, as well as the Process Descriptor, and then returns with the appro­
priate error code set.

Once the P _CREATE system call returns successfully, the P _CLI system call assigns the
calling process's default virtual console to the new process and then returns.

The calling process should set its priority to less than the TMP (198) if it wants to attach
to the virtual console after the created process releases it. Once the calling process has
successfully reattached, it should set its priority back to 200.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- [!QJ DIGITAL RESEARCHI!i
6-144

Concurrent CP/M Programmer's Guide P_CREATE

P_CREATE

Create A Process

Entry Parameters:
Register CL: 090H (144)

DX: PD Address - Offset
DS: PD Address - Segment

PD filled in

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The P _CREATE system call allows a process to create a subprocess within its own memory
area. The child process shares all memory owned by the calling process at the time of the
P _CREATE call. If the Process Descriptor (PD) is outside of the operating system area,
the system copies it into a PD from the internal PD Table. The system call returns an error
code if there are no more unused PDs in the table.

The User Data Area (UDA) can be anywhere in memory but is required to be on a paragraph
boundary. The only time the system copies the PD is if it is not within 64k of the System
Data Segment.

Process Descriptors, as well as Queue Descriptors and Queue Buffers, are required to be
within the System Data Segment because they are linked together on various system lists or
are used by more than one process. Because of this, they cannot be in the Transient Process
Area (TPA), where they cannot be protected.

More than one process can be created by a single P _CREATE call if the LINK field of
the PD is nonzero. In this case, it is assumed to point to another PD within the same Data
Segment. After it creates the first process, the system call checks the Process Descriptor's
LINK field. Using this linked list of PDs, a single P _CREATE call can create multiple
processes.

[!Q) DIGITAL RESEARCH$ --------------------------

6-145

P_CREATE Concurrent CP 1M Programmer's Guide

Note: The P _CREATE system call does not check the validity of the PD addresses passed
by the calling process. An invalid PD address can cause Concurrent CP/M to crash if no
hardware memory protection is available on the system.

Refer to Table 6-5 for a list of error codes returned in CX.

00

08

10

18

20

28

I--__ U~A I DISK I USER I RES!RVED

RESERVED

eNS I-----R~~;-----I~IR~~~R
----+----+---- ---- ----

RESERVED

MEM
----+---4

PARENT
----+---4

SFLAG
---+---4

~--+----+---+----+---+----+---+---~

Figure 6·12. PD· Process Descriptor

-------------------------- (lID DIGITAL RESEARCH~
6-146

Concurrent CP 1M Programmer's Guide P_CREATE

Field

LINK

THREAD

STAT

Table 6-17. PD Field Definitions

Definition

Link field for insertion on current system list. If this field's initial value
is nonzero, it is assumed to point to another PD. This field is used to
create more than one process with a single Create Process call.

Link field for insertion on Thread List. Initialized to be zero (0).

Current Process activity. Initialized to be zero (0). Activity codes are
listed below:

00 RUN

01 POLL

02 DELAY

06 Read Queue

07 Write Queue

The process is ready to run. The STAT field is always
in this state when a process is examining its own
Process Descriptor. The PD is on the Ready List.
The currently running process is always at the head
of Ready List.

The process is polling a device. The PD is on the
Poll List.

The process is delaying for a specified number of
system ticks. The PD is on the Delay List.

The process is waiting to read a message from a
system queue that is empty. The PD is on the Read
Queue List whose root is in the Queue Descriptor
of the system queue involved.

The process is waiting to write a message to a sys­
tem queue whose buffer is full. The PD is on the
Write Queue List, whose root is in the Queue
Descriptor of the system queue involved.

[!Q] DIGITAL RESEARCH® --------------------------
6-147

P_CREATE

Field

PRIOR

FLAG

Concurrent CP 1M Programmer's Guide

Table 6-17. (continued)

08 FLAGWAIT

09 CIOWAIT

Definition

The process is waiting for a system flag to be set.
The PD is in the flag table entry of the flag it is
waiting for.

The process is waiting to attach to a character 110
device (console or list) while another process owns
it. The PD is on CQUEUE list whose root is in the
Character Control Block of the device in question.

Current priority. Process scheduling is done based on this field. Typical
user programs run at a priority of 200. 0 is the best priority, and 255 is
the worst priority. The following is a list of priority assignments used
by most Concurrent CP/M systems. User processes priorities should be
from 200-254.

1 Initialization Process
2 - 31 Interrupt Handlers

32-63 System Processes
64 -190 Undefined

191-197 Undefined
198 Terminal Message Process
199 Undefined
200 Default Priority For Transients

201-254 User Processes
255 Idle Process

Bit field of flags determining run-time characteristics of a process. Ini­
tialize as needed. All undocumented flags are used internally or are
reserved for system use.

001H SYS System Process. Has privileged access to various
features of Concurrent CP/M. This process can only
be terminated if the termination code is OFFH. This
process can access restricted system queues. This
flag is turned off if the calling process is not a sys­
tem process.

-------------------------- I!IDDIGITAL RESEARCH®

6-148

Concurrent CP/M Programmer's Guide P_CREATE

Field

NAME

UDA

DISK

USER

MEM

SFLAG

PARENT

Table 6-17. (continued)

002H KEEP

004H KERNEL

OIOH TABLE

8000H 8087

Definition

This process cannot be terminated. This flag is turned
off if the calling process is not a system process.

This process resides within the operating system.
This flag is turned off if the PD is not within the
operating system.

This PD is copied into the PD from the PD table.
When this process terminates, the PD is recycled
into the PD table.

This process is an 8087-running process.

Process Name. Eight bytes, all eight bits of each byte are used for
matching process names.

Segment address of this process's User Data Area. Initialized to be the
number of paragraphs from the beginning of the calling process's Data
Segment. The User Data Area contains process information that is not
needed between processes. It also contains the System Stack of each
process. Refer to the UDA description below.

Current default disk

Current default user number

Root of linked list of Memory Segment Descriptors that are owned by
this process. Initialized to zero, except for reentrant or shared code RSPs.

Second Flag. If bit 0 of SFLAG (OIH) is set, the system suspends this
process whenever it is switched out to the background and runs it only
when it is switched in to the foreground.

Process that created this process. The P _CREATE system call sets this
value at process creation. The parent field is set to zero if the parent
terminates before the child.

[QJ DIGITAL RESEARCH~ --------------------------

6-149

P_CREATE

Field

CNS

LIST

RESERVED

Concurrent CP/M Programmer's Guide

Table 6-17. (continued)

Definition

Current default console's number. Initialized to be the default console
number.

Current default list device's number. Initialized to be the default list
device number.

Reserved for internal use. These fields must be initialized to zero (0).

-------------------------- i!IDDIGITAL RESEARCH®
6-150

Concurrent CP 1M Programmer's Guide

OOH

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

58H

60H

68H

F8H

100H

158H

~I~~FFSET I----+~~
-- ---t--- I +

----+
VED
---t

t
RESE

+
-+

RESERVED
---t---t--t---+--t --t

RESERVED
+ --t---+---t-----+--+ -----+

+
AX

+
01
+

-t

RESERVED
--+---

CX
-- ---+----- --+--

SI BP

-f-B~-
-- ----+----- ----+--

RESERVED
---+

INTO .

SP
+--­

INT
+ ---t----+-- +-----+

INT RESERVED
+ --+----+-- --+---+

INT 4 RESE
+

CS

----+
OX

--4-
RESERVED

----+
RESERVED

---t
1

--+
3

I
RVED
---+

SS
+
---r---D~--- ----E;----r --- --+-- ---+--- ---+

+

+

+

INT 224 INT
--+--+-- ---+--+

RESERVED
--+--+--+---+--+

USER SYSTEM STACK

225
--t

---+

--+
C ERVED w--l--S0--I--+~t
+
+
+
+

-- --+-- --+--+
RESERVED

--+--+--t--+--+

--+---+--+--+--+
RESERVED

--'+---+--+--+--+
RESERVED

+--*--+--+--+

--+

--+
--+
--4-

---+

Figure 6-13. UDA - User Data Area

P_CREATE

6FH

FFH

15FH

Optional
8087

Extension

The length of the UDA is 256 bytes (352 bytes if 8087 processing is required), and it must
begin on a paragraph boundary.

[!Q] DIGITAL RESEARCH$ --------------------------
6-151

P_CREATE

Field

DMAOFFS

AX,BX,CX,DX,
DI,SI,BP

SP

Concurrent CP 1M Programmer's Guide

Table 6-18. UDA Field Definition

Definition

The initial DMA OFFSET for the new process. The segment
address of the D MA is assumed to be the same as the initial
Data Segment (refer to DS below)

The initial register values for the new process. These are typi­
cally set to zero.

The initial stack pointer for the new process. The stack pointer
is relative to the initial Stack Segment (refer to SS below). The
initial stack of the new process must be initialized with the offset
of the first instruction to be executed by the new process. The
word that the stack pointer points to is the initial instruction
pointer. Two words must follow the initial IP, which is filled in
with the initial Code Segment (refer to CS below) and the initial
flags. The initial flags are set to 0200H, which means that inter­
rupts are on, and all other flags are off. Concurrent CP/M starts
a new process by executing an Interrupt Return instruction with
the initial stack.

Note: This stack area is distinct from the User System Stack
at the end of the UDA.

Low Memory

stack area

SS SP IP

o (CS)

o (Flags)

Stack Initialization Area

-------------------------- [lID DIGITAL RESEARCH<!!I
6-152

Concurrent CP/M Programmer's Guide P_CREATE

Field

INT 0, INT 1,
INT 3, INT 4

CS,DS,
ES,SS

INT 224,
INT 225

RESERVED

USER SYSTEM
STACK

CW*

SW*

Table 6-18. (continued)

Definition

The initial interrupt vectors for the first five interrupt types can
be set by filling in these fields. The first word of each field is
the Instruction Pointer (IP), and the second word is the Code
Segment (CS) for a list of the interrupt routine that services
these interrupts. Those fields that are zero are initialized to be
the same as the calling processes interrupt vectors. These fields
are typically initialized to be O.

The initial segment addresses for the new process are taken from
these fields. Those fields that are zero are initialized to be the
same as the calling process's Data Segment.

Interrupts 224 and 225 are used to communicate with Concur­
rent CP/M by typical programs. These interrupt vectors are
initialized to be the same as the calling process if these values
are zero. The ability to change these values allows a run-time
system to intercept Concurrent CP/M calls that its children make.
The suggested protocol is to keep INT 225 pointing to the Con­
current CP/M entry point and changing INT 224 to point to an
internal routine. When a child process does an INT 224, the
internal routine can filter calls to Concurrent CP/M using INT
225 for the actual Concurrent CP/M call.

All reserved fields are used internally and must be initialized
to zero.

This is the stack area used by the process when it is in the
operating system. The SP variable in the UDA should not point
to this area.

Control word for 8087 processor. Processes bypassing the P_
CLI or P _LOAD system call must set this word to 03FFH.

Status word for 8087 processor. Processes bypassing the P _CLI
or P _LOAD system call must set this word to OOOOH.

*Part of optional 8087 Extension. If the 8087 flag is set in the SFLAG field, this
6-paragraph extension must be included for the 8087 environment.

I!ID DIGITAL RESEARCHQ!) --------------------------
6-153

P-DELAY Concurrent CP/M Programmer's Guide

P_DELAY

Delay For Specified
Number Of System Ticks

Entry Parameters:
Register CL: 08DH (141)

DX: Number of System Ticks

The P _DELAY system call causes the calling process to wait until the specified number
of system ticks has occurred. The P _DELAY system call avoids the necessity of programmed
delay loops. It allows other processes to use the CPU resource while the calling process
waits.

The length of the system tick varies among installations. A typical system tick is 60Hz
(16.67 milliseconds). In Europe, it is likely to be 50Hz (20 milliseconds). The exact length
of the system tick can be obtained by reading the TICKS/SEC value from the System Data
Segment (refer to the S_SYSDAT system call).

There is up to one tick of uncertainty in the exact amount of time delayed. This is due to
the P _DELAY system call being called asynchronously from the actual time base. The
P _DELAY system call is guaranteed to delay the calling process at least the number of
ticks specified. However, when the calling process is rescheduled to run, it might wait quite
a bit longer if there are higher priority processes waiting to run. The P _DELAY system call
is used primarily by programs that need to wait specific amounts of time for 110 events to
occur. Under these conditions, the calling process usually has a very high priority level. If
a process with a high priority calls the P _DELAY system call, the actual delay is typically
within a system tick of the amount of time wanted.

-------------------------- [tID DIGITAL RESEARCHI!l
6-154

Concurrent CP/M Programmer's Guide P-DISPATCH

P_DISPATCH

Call Dispatcher

Entry Parameters:
Register CL: 08EH (142)

The P _DISPATCH system call forces a reschedule of processes that are waiting to run.
Normally, dispatches occur at every system tick interrupt (usually 60 times a second), and
whenever a process releases a system resource. Dispatching also occurs whenever a process
needs a system resource that is not currently available. A CPU-bound process runs for no
more than one system tick before a dispatch is forced. The dispatch occurs at the next system
tick.

The Concurrent CP/M Dispatcher is priority driven, with round-robin scheduling of equiv­
alent-priority processes. When a process calls the P _DISPATCH system call, it is resched­
uled, so that processes with higher or equivalent priorities are given the CPU before the
calling process obtains it again. The calling process regains control of the CPU resource
when it becomes the highest priority process again.

[!]] DIGITAL RESEARCHI!!l --------------------------
6-155

P-LOAD Concurrent CP/M Programmer's Guide

P_LOAD

Load A CMD Type File Into Memory

Entry Parameters:
Register CL: 03BH (59)

DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AX: Base Page Address

OFFFFH on error
BX: Same as AX
CX: Error Code

The P _LOAD system call loads a disk CMD type file into memory. Upon entry, register
DX contains the offset, relative to DS, of a successfully opened FCB that specifies the CMD
file to load. Upon return, register AX has the value OFFFFH if the program load failed.
Otherwise, AX contains the paragraph address of the Base Page belonging to the loaded
program. The paragraph address and length of each group loaded from the CMD file is found
in the Base Page. See Sections 3.2 and 3.3.

Note that before calling P _LOAD, the calling process must establish the DMA address of
where the CMD file is to be loaded. This is accomplished with F _DMASEG and F _DMAOFF.

Note: Open the CMD file in Read-Only mode and close it once the load is completed.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- I!IDDiGITAL RESEARCH<!l
6-156

Concurrent CP/M Programmer's Guide P-PDADR

P_PDADR

Return The Address Of The
Calling Process's Process Descriptor

Entry Parameters:
Register CL: 09CH (156)

Returned Values:
Register AX: PD Address - Offset

BX: Same as AX
ES: PD Address - Segment

The P _PDADR system call obtains the address of the calling process's Process Descriptor.
For a description of the format of the Process Descriptor, refer to the P _CREATE system
call.

I!ID DIGITAL RESEARCH~ -------------------------
6-157

P -PRIORITY Concurrent CP/M Programmer's Guide

P_PRIORITY

Set The Priority Of
The Calling Process

Entry Parameters:
Register CL: 091H (145)

DL: Priority

The P _PRIORITY system call sets the priority of the calling process to the specified value.
This system call is useful in situations where a process needs to have a high priority during
an initialization phase, but afterwards can run at a lower priority.

The best or highest priority is OOH, while the worst or lowest priority is OFFH. Transient
processes are initialized to run at C8H (200 decimal) by the P _CLI system call.

-------------------------- [lID DIGITAL RESEARCH<I!I
6-158

Concurrent CP 1M Programmer's Guide P-RPL

P_RPL

Resident Procedure Library

Entry Parameters:
Register CL: 097H (151)

DX: CPB Address-Offset
DS: CPB Address - Segment

Returned Values:
Register AX: 01 H if RPL not found

RPL return parameter
BX: same as AX
CX: Error Code
ES: RPL return segment if addr

5
+-+-t-+-+-+-+~

NAME
+---t---t---+---+---t---t

PA:~

Figure 6-14. CPB - Call Parameter Block

!!ID DIGITAL RESEARCH® --------------------------

6-159

P-RPL Concurrent CP 1M Programmer's Guide

Table 6-19. CPB Field Definitions

Field Definition

NAME Name of Resident Procedure, eight ASCII characters

PARAM Parameter to send to the Resident Procedure

P _RPL permits a process to call a system call in an optional Resident Procedure Library
(RPL).

P _RPL opens a system queue with the specified name. If the Q_OPEN system call suc­
ceeds, P _RPL checks the queue to verify that it is an RPL-type queue. If either the Q_OPEN
fails, or if it is not an RPL-type queue, P _RPL returns to the calling process with an error
coCle.

P _RPL reads a message from the queue that contains the address of the specified system
call. It then places the PARAM field of the CPB in register DX, and places the calling
process's Data Segment address in register DS. P _RPL performs a Far Call instruction to
the address it obtains from the queue message. Upon return from the RPL, the system call
copies the BX register to the AX register and then returns to the calling process.

Note: The P _RPL system call does not write the address of the Resident Procedure back
to the queue. The Resident Procedure itself must do this. If the Resident Procedure is to be
reentrant, it must write the message into the queue upon entry. If it is to be serially reusable,
the procedure must write the message just before returning:

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- !!IDDIGITAL RESEARCH~

6-160

Concurrent CP/M Programmer's Guide

P_TERM

Terminate Calling Process

Entry Parameters:
Register CL: 08FH (143)

DL: Term Code

Returned Values:
Register AX: OFFFFH on failure

BX: Same as AX
CX: Error Code

The P _TERM system call terminates the calling process. If the termination code is not
OFFH, the system call can only terminate a user process. If the termination code is OFFH,
the system call can terminate the calling process even though the process's SYSTEM flag is
on. P _TERM cannot terminate a process with the KEEP flag on. If the termination is
successful, the system call releases the mutual exclusion queues owned by the process. It
also releases all memory segments owned by the process, and returns the Process Descriptor
to the PD table.

A process can own one or more of the following resources: memory segments, consoles,
printers, mutual exclusion messages, and system Lock List entries that record open files and
locked records. When a process terminates and releases its resources, these resources become
available to other processes on the system. For example, if a terminating process releases a
system console, the console is usually given back to the console's TMP. This occurs when
the TMP is the highest priority process waiting for the console.

If the system call returns to the calling process, the P _TERM call has failed for one of
two reasons~ Either the process has the KEEP flag on, or it has the SYSTEM flag on, and
the termination code is not OFFH.

l!ID DIGITAL RESEARCH~ --------------------------

6-161

P_TERMCPM Concurrent CP 1M Programmer's Guide

P_TERMCPM

Entry Parameters:
Register CL: OOH (0)

Returned Values:
Register AX: OFFFFH on failure

BX: Same as AX
CX: Error Code

The P _TERMCPM system call terminates the calling process, releasing all system resources
owned by the process.

P _ TERMCPM is implemented internally by calling P _TERM with the termination code
set to OOH.

Under CP/M-86, the P _ TERMCPM system call has a further argument that allows a
process not to release its memory. This argument places a piece of code into memory that
becomes an interface for later programs. Concurrent CP/M does not include this option.
Memory segments are not recovered by the system until all processes that own the memory
segment have released it.

Refer to Table 6-5 for a list of returned error codes.

--------------------------!!ID DIGITAL RESEARCH®
6-162

Concurrent CP 1M Programmer's Guide P_TERMCPM

6.2.8 Queue System Calls

Queue system calls under Concurrent CP/M use the Queue Parameter Block data structure
to pass parameters to and from the operating system. Listing 6-3 shows the structure of the
Queue Parameter Block and the equates for its fields.

E
+-l-~-l-+-t-+~ • OOOOH QUEUEID • OOOOH BUFFER
+-- --+-- --+-- --+

NAME

+--+--+--t--+--+--+
Figure 6-15. QPB - Queue Parameter Block

Table 6-20. QPB Field Definitions

Field Description

QUEUEID Queue number field; filled in by a Q_OPEN operation

* OOOOH Reserved for internal use; must be initialized to zero

BUFFER Offset address of Queue Message Buffer

NAME Name of Queue for Q_OPEN operation

I!Q) DIGITAL RESEARCH® --------------------------

6-163

P_TERMCPM Concurrent CP 1M Programmer's Guide

.*** ,

.* ,

.* , QPB - Queue Parameter Block Definition

.* ,

.* ,

.* 00 ,

.* ,

.* 08 ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

OOOOH

queueid
buffer
name

queueid OOOOH buffer

name

Queue ID, address of QD
address to read/write into/from
name of queue (for open only)

.*** ,

qpb_O equ word ptr 0
qpb_queueid equ word ptr qpb_O + word
qpb_buffer equ word ptr qpb_queueid + 4
qpb_name equ byte ptr qpb_buffer + word

qpb_len equ qpb_name + qnamsiz
qnamsiz equ 8

Listing 6-3. Queue Parameter Block Definition

--------------------------- I!ID DIGITAL RESEARCH(!!I
6-164

Concurrent CP 1M Programmer's Guide

Q_CREAD

Conditionally Read A Message
From A System Queue

Entry Parameters:
Register CL: 08AH (138)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code message in buffer

The Q_CREAD system call is analogous to the Q_READ system call, but it returns an
error code if there are not enough messages to read, instead of waiting for another process
to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

!!ill DIGITAL RESEARCHiI!l -------------------------
6-165

Concurrent CP/M Programmer's Guide

Q_CWRITE

Conditionally Write A Message
To A System Queue

Entry Parameters:
Register CL: 08CH (140)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset message in current D MA
buffer

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Q_CWRITE system call is analogous to the Q_ WRITE system call, but it returns an
error code if there is not enough system queue buffer space for the message to be written,
instead of waiting for another process to read from the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

-------------------------- [lID DIGITAL RESEARCH®

6-166

Concurrent CP/M Programmer's Guide Q-DELETE

Q_DELETE

Delete A System Queue

Entry Parameters:
Register CL: 088H (136)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_queueid filled in by a
previous· Q_OPEN call

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Q_DELETE system call removes a system queue from the system. The system returns
error codes if the queue cannot be deleted or if the queue has not been opened prior to the
Q_DELETE call.

Refer to Table 6-5 for a list of error codes returned in CX.

[!QJ DIGITAL RESEARCH® -------------------------
6-167

Q~AKE Concurrent CP 1M Programmer's Guide

Q_MAKE

Make A System Queue

Entry Parameters:
Register CL: 086H (134)

DX: QD Address - Offset
DS: QD Address - Segment

QD filled in

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error-Code

G +-r-+-l-+- -t-• OOOOH • OOOOH FLAGS NAME ...
+-- --+-- --+-- --+

... NAME MSGLEN
+-- --+-- --+-- --+
+-- --+-- --+-- --+

• OOOOH BUFFER I
+-- --+~

Figure 6-16. QD - Queue Descriptor

--------------------------!!ID DIGITAL RESEARCHII!I
6-168

Concurrent CP/M Programmer's Guide Q~AKE

Field

FLAGS

NAME

MSGLEN

NMSGS

BUFFER

* OOOOH

Table 6-21. Queue Descriptor Field Definitions

Definition

Queue Flags. The bits are defined as follows

OOOlH - Mutual exclusion queue
0002H - Cannot be deleted
0004H - Restricted to system processes
0008H - RSP message queue
OOlOH - Used internally
0020H - RPL address queue
0040H - Used internally
0080H - Used internally

Remaining flags reserved for future use

8-byte queue name. All 8 bits of each character are matched on a
Q_OPEN call.

Number of bytes in each logical message

Maximum number of logical messages to be supported. If the number
of messages written to the queue equals this maximum, no more mes­
sages are allowed until a message is read.

Address of the queue buffer. This buffer must be (NMSGS * MSGLEN)
bytes long. The address is an offset relative to the DS register. This
field is unused if the QD resides outside of the System Data Segment.
Typically this field is 0 if the queue is being created by a transient
program. RSPs that create queues must initialize this field to point to
a buffer. The Data Segment of an RSP's queue is considered part of
the System Data Segment unless it is beyond 64k of the beginning of
the System Data Segment.

For internal use. Must be initialized to zero.

I!ID DIGITAL RESEARCH~ -------------------------
6-169

Q~AKE Concurrent CP /MProgrammer's Guide

Every system queue under Concurrent CP/M is associated with a Queue Descriptor that
resides within the Concurrent CP/M System Data Segment. In the Q_MAKE system call,
the calling process passes the address of a Queue Descriptor. If this Queue Descriptor is
within the Concurrent CP/M System Data Segment, the system uses it directly for the System
Queue. If the Queue Descriptor is outside of the System Data Segment, the system obtains
a Queue Descriptor from an internal Queue Descriptor table. If there are no unused Queue
Descriptors in the internal table, the system call returns an error code.

Refer to Table 6-5 for a list of error codes returned in CX.

The buffer for a system queue must also reside within the System Data Area. For non­
OOH length buffers, resident buffers are used directly. The system obtains a buffer from the
Queue Buffer Area if the buffer does not reside within the System Data Segment. The size
of the buffer is calculated from the NMSGS and MSGLEN fields. The system call returns
an error code if there is not enough unused buffer area left to accommodate this new buffer.

All system queues must have unique names. The system call returns an error code if a
system queue already exists by the given name.

Under Concurrent CP/M, all system queues must be explicitly opened (refer to the
Q_OPEN system call) before being used to read or write messages or to delete the queue.

--------------------------I!ID DIGITAL RESEARCH®
6-170

Concurrent CP/M Programmer's Guide

Q_OPEN

Open A System Queue

Entry Parameters:
Register CL: 087H (135)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_name filled in

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

QPB_queueid filled in

All system queues under Concurrent CP/M must be explicitly opened before a read, write,
or delete operation can be done. The Q_OPEN system call examines each existing system
queue and attempts to match the name in the QPB with the name of a system queue. All
eight bytes of the name must match for a successful open. All bits of each byte are examined.
If the open operation is successful, the Q_OPEN system call modifies the Queue ID Field
of the QPB. Once the the queue is opened, subsequent reads, writes, or a delete are allowed.

Refer to Table 6-5 for a list of error codes returned in CX.

[!Q) DIGITAL RESEARCHIII -------------------------
6-171

Q-READ Concurrent CP/M Programmer's Guide

Q_READ

Read A Message From A System Queue

Entry Parameters:
Register CL: 089H (137)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_queueid filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code message in buffer

The Q_READ system call reads a message from a system queue that was previously
opened by the calling process. The system call returns an error code if the queue was not
previously opened or if the system queue has been deleted since the Q_OPEN call. If there
are not enough messages to read from the queue, the calling process waits until another
process writes into the queue before returning.

Refer to Table 6-5 for a list of error codes returned in CX.

------------------------- !!ill DIGITAl RESEARCH~
6-172

Concurrent CP/M Programmer's Guide

Q_WRITE

Write A Message To A System Queue

Entry Parameters:
Register CL: 08BH (139)

DX: QPB Address - Offset
DS: QPB Address - Segment

QPB_queued filled in by previous
Q_OPEN
QPB_buffer set to message buffer
offset

Returned Values:
Register AX: o on success

OFFFFH on failure
BX: Same as AX
CX: Error Code

The Q_ WRITE system call writes a message to a system queue that was previously opened
by the calling process. The system call returns an error code if the queue was not previously
opened or if the system queue has been deleted since the Q_OPEN call. If there is not enough
buffer space in the queue, the calling process waits until another process reads from the
queue before writing to the queue and returning.

Refer to Table 6-5 for a list of error codes returned in CX.

I!ID DIGITAL RESEARCHI!!l -------------------------
6-173

SJDOSVER Concurrent CP/M Programmer's Guide

6.2.9 System Information System Calls

S_BDOSVER

Return BDOS Version Number

Entry Parameters:
Register CL: OCH (12)

Returned Values:
Register AL: 31 (BDOS Version 3.1)

AH: 14 (Concurrent CP/M)
BX: Same as AX

The S_BDOSVER system call returns the BDOS file system version number, allowing
version-independent programming.

AL High Nibble = BOOS Version Number

AL Low Nibble = BOOS Revision Level

AH High Nibble = CPU Type

AH Low Nibble = as Type

0=8080
1 = 8086

0= CPIM
1 = MP/M
4 = Concurrent CP/M
5,7 to E = Reserved

2 = CPIM w/networking
3 = MP/M w/networking
6 = Concurrent CP/M

w/networking

Figure 6-17. BDOS Version Number Format

-------------------------- [lID DIGITAL RESEARCH~
6-174

Concurrent CP/M Programmer's Guide S-BIOS

S_BIOS

Call BIOS Character Routine

Entry Parameters:
Register CL: 032H (50)

DX: BIOS Desc. Addr. - Offset
DS: BIOS Desc. Addr. - Segment

Returned Values:
Register AX: BIOS Return

BX: Same as AX

~I _____ ~x=====I=====€x====:J
Figure 6-18. BIOS Descriptor Format

The S_BIOS system call is provided under Concurrent CP/M for compatibility with pro­
grams generated under CP/M-86 that use this system call (Function 50). Under Concurrent
CP/M, only routines that interface with character devices are supported. The arguments to
character routines such as CONIN and LIST must be converted to those appropriate for the
Concurrent CP/M XIOS. Refer to the Concurrent CP/M System Guide for further information
about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not go to the
XIOS if the referenced device is a virtual console.

I!ID DIGITAL RESEARCH® -------------------------

6-175

Concurrent CP/M Programmer's Guide

S_OSVER

Return The Version Of Current
Concurrent CP/M System

Entry Parameters:
Register CL: OA3H (163)

Returned Values:
Register AX: Version Number (OI431H)

BX: Same as AX
CX: Error Code

The S_OSVER system call provides information that. allows version-independent pro­
gramming. The system call returns a two-byte value, with AH set to 014H for Concurrent
CP/M, and AL set to the Concurrent CP/M version level. The AH register contains a value
set to the type of operating system. A value of 01431H indicates Concurrent CP/M 3.1.

Refer to Table 6-5 for a list of error codes returned in CX.

AL High Nibble = Concurrent CP/M-86 Version Number

AL Low Nibble = Concurrent CP/M Revision Level

AH High Nibble = CPU Type

0=8080
1 = 8086

AH Low Nibble = as Type

0= CP/M
1 = MP/M
4 = Concurrent CP/M
5,7 to E = Reserved

2 = CP/M w/networking
3 = MP/M w/networking
6 = Concurrent CP/M

w/networking

Figure 6-19. Operating System Version Number Format

-------------------------- I!ID DIGITAL RESEARCH®
6-176

Concurrent CP/M Programmer's Guide S-SERIAL

S_SERIAL

Return Current System's
Serial Number

Entry Parameters:
Register CL: 06BH (107)

DX: SERIAL Address - Offset
DS: SERIAL Address - Segment

Returned Values:
SERIAL filled in

Figure 6-20. SERIAL Number Format

S_SERIAL returns the Concurrent CP/M serial number to the addressed, six-byte SERIAL
field as a six-byte ASCII numeral.

I!ID DIGITAL RESEARCHIBI -------------------------
6-177

S-BYSDAT Concurrent CP 1M Programmer's Guide

S_SYSDAT

Return Address Of The
System Data Segment

Entry Parameters:
Register CL: 09AH (154)

Returned Values:
Register AX: Sysdat Address - Offset

BX: Same as AX
ES: Sysdat Address - Segment

The S_SYSDAT system call returns the address of the System Data Segment of the calling
process. The System Data Segment contains all Process Descriptors, Queue Descriptors, the
roots of system lists, and other internal data that Concurrent CP/M uses.

Figure 6-21, illustrates the SYSDAT Table and its fields.

-------------------------- [!Q] DIGITAL RESEARCH®

6-178

Concurrent CP 1M Programmer's Guide S.-SYSDAT

OOH
r---+--+--+

I
+---'---+

SUP ENTRY RESERVED
-+--+--+ +--+--+

OSH RESERVED
+--+--~--+--+--+--+

10H RESERVED
+--t---+--+--+--+--+

1SH RESERVED
+--T--+--+--+--+--+

20H RESERVED
+--+--+

I
+--+--t

XIOS ENTRY XI OS INIT
-+--t--+ +--+--t

2SH

30H RESERVED
-+--t--+ +--+--t

3SH DISPATCHER PDISP
+- +

40H CCPMSEG RSPSEG ENDSEG RESER NVCNS
-VED

N- SYS- MMP RESER DAY
NLCB NCCB FLAGS DISK -VED FILE 4SH

+--
TEMP TICKS CCB FLAGS DISK /SEC LUL 50H

- + + +
5SH MDUL MFL PUL QUL

+ + + +
60H QMAU

+ T + +
6SH RLR DLR DRL PLR

+ + + +
70H RESERVED THRDRT QLR MAL

+ + + +
7SH VERSION VERNUM CCPMVERNUM TOO_DAY

+
TOO TOO TOO NCON NLST I NCIO LCB
_HR _MIN _SEC DEV DEV DEV

+-

SOH

SSH OPEN_FILE LOCK_ OPEN_ OWNER_SOS7 RESERVED
MAX MAX

90H RESERVED

9SH RESERVED XPCNS

AOH OFF_SOS7 SEG_SOS7 RESERVED

Figure 6-21. SYSDAT Table

!!IDDIGITAL RESEARCH~ ---------------------------
6-179

S~YSDAT

Field

SUP ENTRY

XIOS ENTRY

XIOS INIT

DISPATCHER

PDISP

CCPMSEG

RSPSEG

Concurrent CP 1M Programmer's Guide

Table 6-22. SYSDAT Table Data Fields

Explanation

Double-word address of the Supervisor entry point for inter­
module communication. All internal system calls go through
this entry point.

Double-word address of the Extended 110 System entry point
for intermodule communication. All XIOS function calls go
through this entry point.

Double-word address of the Extended 110 System Initialization
entry point. System hardware initialization takes place by a
call through this entry point.

Double-word address of the Dispatcher entry point that handles
interrupt returns. Executing a Far Jump to this address is equiv­
alent to executing an Interrupt Return instruction. The Dis­
patcher routine causes a dispatch to occur and then executes
an Interrupt Return. All registers are preserved and one level
of stack is used. This location should be used as an exit point
by all XIOS interrupt handlers that use the DEV _SETFLAG
system call.

Double-word address of the Dispatcher entry point that causes
a dispatch to occur with all registers preserved. Once the dis­
patch is done, a RETF instruction is executed. Executing a
JMPF PDISP is equivalent to executing a RETF instruction.
This location should be used as an exit point whenever the
XIOS releases a resource that might be wanted by a waiting
process.

Starting paragraph of the operating system area. This is also
the Code Segment of the Supervisor Module.

Paragraph Address of the first RSP in a linked list of RSP Data
Segments. The first word of the data segment points to the next
RSP in the list. Once the system has been initialized, this field
is zero.

--------------------------iIID DIGITAL RESEARCH®
6-180

Concurrent CP 1M Programmer's Guide S-.SYSDAT

Field

ENDSEG

NVCNS

NLCB

NCCB

NFLAGS

SYSDISK

MMP

DAY FILE

TEMP DISK

TICKS/SEC

LUL

CCB

Table 6-22. (continued)

Explanation

First paragraph beyond the end of the operating system area,
including any buffers consisting of uninitialized RAM allo­
cated to the operating system by GENCCPM. These· include
the Directory Hashing, Disk Data and XIOS ALLOC buffers.
These buffer areas, however, are not part of the CCPM.SYS
file.

Number of virtual consoles, copied from the XIOS Header by
GENCCPM.

Number of List Control Blocks, copied from the XIOS Header
by GENCCPM.

Number of Character Control Blocks, copied from the XIOS
Header by GENCCPM.

Number of system flags as specified during GENCCPM.

Default system disk. The CLI looks on this disk if it cannot
open the command file on the user's current default disk. Set
during GENCCPM.

Maximum memory allowed per process. Set during GENCCPM.

Day File option. If this field is OFFH, the operating system
displays file logging information on system consoles at each
command. Set during GENCCPM.

Default temporary disk. Programs that create temporary files
should use this disk. Set during GENCCPM.

The number of system ticks per second.

Link list root of unused Lock List items.

Address of the Character Control Block Table, copied from the
XIOS Header by GENCCPM.

[!]] DIGITAL RESEARCH~ -------------------------
6-181

S-.SYSDAT

Field

FLAGS

MDUL

MFL

PUL

QUL

QMAU

RLR

DLR

DRL

PLR

THRDRT

QLR

MAL

VERSION

VERNUM

CCPMVERNUM

Concurrent CP 1M Programmer's Guide

Table 6-22. (continued)

Explanation

Address of the Flag Table.

Link list root of unused Memory Descriptors.

Link list root of free memory partitions.

Link list root of unused Process Descriptors.

Link list root of unused Queue Descriptors.

Queue Buffer Memory Allocation Unit.

Ready List Root. Linked list of PDs that are ready to run.

Delay List Root. Link list of PDs that are delaying for a spec­
ified number of system ticks.

Dispatcher Ready List. Temporary holding place for PDs that
have just been made ready to run.

Poll List Root. Linked list of PDs that are polling on devices.

Thread List Root. Linked list of all current PDs on the system.
The list is threaded through the THREAD field of the PD
instead of the LINK field.

Queue List Root. Linked list of all System QDs.

Link list of active memory allocation units. A MAU is created
from one or more memory partitions.

Address, relative to CCPMSEG, of version string.

Concurrent CP/M version number (system call 12,
S_BDOSVER) .

Concurrent CP/M version number (system call 163, S_OSVER).

-------------------~-----IIID DIGITAL RESEARCHI!!I
6-182

Concurrent CP 1M Programmer's Guide S~YSDAT

Field

NCONDEV

NLSTDEV

NCIODEV

LCB

LOCICMAX

OWNEIL8087

Table 6-22. (continued)

Explanation

Time-of-Day. Number of days since 12/31/77.

Time-of-Day. Hour of the day.

Time-of-Day. Minute of the hour.

Time-of-Day. Second of the minute.

Number of XIOS consoles, copied from the XIOS Header by
GENCCPM.

Number of XIOS list devices, copied from the XIOS Header
by GENCCPM.

Total number of character devices (NCONDEV + NLSTDEV).

Offset of the List Control Block Table, copied from the XIOS
Header by GENCCPM.

Open File Drive Vector. Designates drives that have open files
on them. Each bit of the word value represents a disk drive;
the least significant bit represents Drive A, and so on through
the most significant bit, Drive P. Bits which are set indicate
drives containing open files.

Maximum number of locked records per process. Set during
GENCCPM.

Maximum number of open disk files per process. Set during
GENCCPM.

Specifies 8087 information. If set to OFFFFH, the system
assumes there is no 8087 in the system. If set to 0, there is an
8087 but no one owns it. If set to any other value, the system
assumes that this value is the PD offset of the 8087 current
process.

[j]) DIGITAL RESEARCH<!!l -------------------------

6-183

S-BYSDAT

Field

XPCNS

Concurrent CP 1M Programmer's Guide

Table 6-22. (continued)

Explanation

Specifies the number of physical consoles.

Offset of the hardware-dependent 8087 interrupt vector. If you
supply your own 8087 exception handler routine, store the
offset of your exception handler routine at this offset address.

Segment address of the hardware-dependent 8087 interrupt
vector. If you supply your own 8087 exception handler routine,
store the segment address of your exception handler routine at
this segment address.

-------------------------- [QJDlGITAL RESEARCHa!I

6-184

Concurrent CP 1M Programmer's Guide

T_GET

Get System Time And Date

Entry Parameters:
Register CL: 069H (l05)

DX: TO D Address - Offset
DS: TOD Address - Segment

Returned Values:
Register AL: Seconds

TOD filled in
(Days, Hours and Minutes only)

Figure 6-22. TOD - Time-or-Day Structure

[!ill DIGITAL RESEARCH!!) -------------------------

6-185

Field

DAY

HOUR

MIN

SEC

Concurrent CP 1M Programmer's Guide

Table 6-23. Time-or-Day Field Definitions

Definition

The number of days since 12/31177. The day is stored as a 16-bit integer.

The current hour of the current day. The hour is represented as a 24 hour
clock in 2 binary coded decimal (BCD) digits.

The current minute of the current hour. The minute is stored as 2 BCD
digits.

The current second of the current minute. The second is stored as 2 BCD
digits.

The T _GET system call obtains the system internal time and date. The calling process
passes the address of a four-byte data structure that receives the time and date values. This
system call is equivalent to the T_SECONDS system call, except that it does not return the
SECONDS field of the internal time.

--------------------------i!ID DIGITAL RESEARCHIBI

6-186

Concurrent CP/M Programmer's Guide T-SECONDS

T_SECONDS

Get Current System Time And Day

Entry Parameters:
Register CL: 09BH (155)

DX: TOD Address - Offset
DS: TOD Address - Segment

Returned Values:
TOD filled in
(Days, Hours, Minutes, and Seconds)

The T_SECONDS system call returns the current encoded time and date (including sec­
onds) in the TOD structure passed by the calling process.

[!Q] DIGITAL RESEARCH\!) -------------------------
6-187

T--SET Concurrent CP/M Programmer's Guide

T_SET

Set System Time And Date

Entry Parameters:
Register CL: 068H (104)

DX: TOD Address - Offset
DS: TOD Address - Segment

The T _SET system call sets the system internal time and date. The calling process passes
the address of a 4-byte structure containing the time and date specification.

The date is represented as a 16-bit integer with day 1 corresponding to January 1, 1978.
The time is represented as two bytes hours and minutes stored as two BCD digits.

Under Concurrent CP/M, this system call also sets the second field of the system time and
date to OOH.

End of Section 6

-------------------------- I!ID DIGITAL RESEARCH~
6-188

/

Appendix A
System Call Summary by

Function Number

This appendix lists the Concurrent CP/M system calls by function number including the
parameters a process must pass when calling the function, and the values the function returns
to the process.

Table A-I. System Call Summary by Function Number

Dec Hex Mnemonic Input Parameters Returned Values

0 0 P_TERMCPM none AX = Rtn Code
1 1 C-READ none AL = char
2 2 C_WRITE DL = char none
5 5 LWRITE DL = char none
6 6 C_RAWIO see def see def
9 9 C_WRITESTR DX = .Buffer none
10 A C_READSTR DX = .Buffer see def
11 B C_STAT none AL = 1 if ready

= 0 if not ready
12 C S_BDOSVER none AX = Version#
13 D DRV _ALLRESET none see def
14 E DRV_SET AL = Drive # see def
15 F F_OPEN DX = .FCB AL = Dir Code
16 10 F_CLOSE DX = .FCB AL = Dir Code
17 11 F_SFIRST DX = .FCB AL = Dir Code
18 12 F_SNEXT none AL = Dir Code
19 13 FJ)ELETE DX = .FCB AL = Dir Code
20 14 F_READ DX = .FCB AL = Err Code
21 15 F_WRITE DX = .FCB AL = Err Code
22 16 F_MAKE DX = .FCB AL = Dir Code
23 17 F-RENAME DX = .FCB AL = Dir Code
24 18 DRV -LOGINVEC none AX = Login Vect.
25 19 DR V_GET none AL = Cur Drive
26 lA FJ)MAOFF DX = .DMA none
27 IB DRV _ALLOCVEC none ES:AX = Alloc Addr

[!QJ DIGITAL RESEARCH<Bl ------------------------

A-I

A System Call Summary Concurrent CP 1M Programmer's Guide

Table A-I. (continued)

Dec Hex Mnemonic Input Parameters Returned Values

28 lC DRV_SETRO none see def
29 ID DRV_ROVEC none AX = RIO Vect.
30 IE F_ATTRIB DX = .FCB see def
31 IF DRV-DPB none ES:AX = DPB Addr
32 20 F_USERNUM DL = OFFH (get) AL = User #

= User # (set) none
33 21 F-READRAND DX = .FCB AL = Err Code
34 22 F _ WRITERAND DX = .FCB AL = Err Code
35 23 F_SIZE DX = .FCB RO, Rl, R2

AL = Dir Code
36 24 F-RANDREC DX = .FCB RO, Rl, R2
37 25 DRV_RESET DX = drive Vect AL = Err Code
38 26 DRV_ACCESS DX = drive Vect none
39 27 DRVJREE DX = drive Vect none
40 28 F_WRITEZF DX = .FCB AL = Err Code
42 2A F-LOCK DX = .FCB AL = Err Code
43 2B F_UNLOCK DX = .FCB AL = Err Code
44 2C FjiULTISEC DL = # of Records AL = Rtn Code
45 2D F_ERRMODE DL = Error Mode none
46 2E DRV_SPACE DL = Drive # see def
47 2F P_CHAIN see def none
48 30 DRVJLUSH none see def
50 32 S-BIOS DX = .BD AX = BIOS Rtn
51 33 F-DMASEG DX = .DMA Seg none
52 34 F-DMAGET none ES:AX = DMA Addr
53 35 MCjiAX DX = .MCB see def
54 36 MC-ABSMAX DX = .MCB see def
55 37 MC-ALLOC DX = .MCB see def
56 38 MC-ABSALLOC DX = .MCB see def
57 39 MCJREE DX = .MCB see def
58 3A MC-ALLFREE none none
59 3B P-LOAD DX = .FCB AX = BP Addr
99 63 F_TRUNCATE DX = .FCB see def
100 64 DRV_SETLABEL DX = .FCB AL = Dir Code
101 65 DRV_GETLABEL DX = Drive # AL = Label Data Byte
102 66 F_TIMEDATE DX = .XFCB AL = Dir Code
103 67 F _ WRITEXFCB DX = .XFCB AL = Dir Code
104 68 T_SET DX = .TOD none

-----------------------l!QJ DIGITAL RESEARCHI!!>

A-2

Concurrent CP 1M Programmer's Guide A System Call Summary

Table A-I. (continued)

Dec Hex Mnemonic Input Parameters Returned Values

105 69 T_GET DX = .TOD AL = seconds
106 6A F_PASSWD DX = .Password none
107 6B S_SERIAL DX = .serial# serial #
109 6D C~ODE DX = Con Mode none

= OFFFFH AX = Con Mode
110 6E C_DELIMIT DL = Out Delim none

= OFFFFH AL = Out Delim
111 6F C_WRITEBLK DX = .CHCB none
112 70 L_WRITEBLK DX = .CHCB none
128 80 ~ALLOC DX = .MPB AX = Rtn Code
129 81 ~ALLOC Same as above Same as above
130 82 ~FREE DX = .MPB none
131 83 DEV_POLL DL = Device none
132 84 DEV_WAITFLAG DL = Flag AX = Rtn Code
133 85 DEV _SETFLAG DL = Flag AX = Rtn Code
134 86 Q_MAKE DX = .QD none
135 87 Q_OPEN DX = .QPB AX = Rtn Code
136 88 Q_DELETE DX = .QPB AX = Rtn Code
137 89 Q-READ DX = .QPB none
138 8A Q_CREAD DX = .QPB AX = Rtn Code
139 8B Q_WRITE DX = .QPB
140 8C Q_CWRITE DX = .QPB AX = Rtn Code
141 8D P_DELAY DX = #ticks none
142 8E P_DISPATCH none none
143 8F P_TERM DL = Term. Code AX = Rtn Code
144 90 P_CREATE DX = .PD none
145 91 P_PRIORITY DL = Priority none
146 92 C_ATTACH none none
147 93 C_DETACH none none
148 94 C_SET DL = Console none
149 95 C_ASSIGN DX = .ACB AX = Rtn Code
150 96 P_CLI DX = .CLBUF none
151 97 P-RPL DX = .CPB AX = result
152 98 F_PARSE DX = .PFCB see def
153 99 C_GET none AL = con #
154 9A S_SYSDAT none ES:AX = Sys Data Addr
155 9B T_SECONDS DX = .TOD TOD filled in
156 9C P_PDADR none ES:AX = PD Addr

[Q] DIGITAL RESEARCH® -----------------------
A-3

A System Call Summary Concurrent CP 1M Programmer's Guide

Table A-I. (continued)

Dec Hex Mnemonic Input Parameters Returned Values

157 9D P_ABORT DX = .ABP AX = Rtn Code
158 9E L_ATTACH none none
159 9F L-DETACH none none
160 AO L_SET DL = List # none
161 Al L_CATTACH none AX = Rtn Code
162 A2 C_CATTACH none AX = Rtn Code
163 A3 S_OSVER none AX = Version #
164 A4 L_GET none AL = List #

------------------------- liID DIGITAL RESEARCHIPI
A-4

Concurrent CP/M Programmer's Guide . A System Call Summary

Conventions used in Appendix A:

Address of
Number
ACB Assign Control Block
Addr Address
APB Abort Parameter Block
BD Bios Descriptor
BP Base Page
Char ASCII Character
CHCB Character Control Block
CLBUF Command Line Buffer
Con Console
CPB Call Parameter Block
Cur Current
Delim Delimiter
Dir Directory
DMA Direct Memory Address
Err Error
FCB File Control Block
MCB Memory Control Block
MPB Memory Parameter Block
Num Number
Out Output
PD Process Descriptor
PFCB Parse Filename Control Block
QD Queue Descriptor
QPB Queue Parameter Block
Rec Record
Rtn Return
Sys System
Term. Termination
TOD Time of Day
Vect = Vector

End of Appendix A

~ill DIGITAL RESEARCH~ --------------------------
A-5

Appendix B
ASCII and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including their binary, decimal, and
hexadecimal conversions.

Table B-1. ASCII Symbols

Symbol Meaning Symbol Meaning

ACK acknowledge FS file separator
BEL bell OS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

Table B-2. ASCII Conversion Table

Binary Decimal Hexadecimal ASCII

0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)

I!Q] DIGITAL RESEARCH~
B-1

B ASCII and Hexadecimal Conversions Concurrent CP 1M Programmer's Guide

Table B-2. (continued)

Biy!ary Decimal Hexadecimal ASClI

0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-O)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 OA LF (CTRL-J)
0001011 011 OB VT (CTRL-K)
0001100 012 OC FF (CTRL-L)
0001101 013 OD CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-O)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DC1 (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011010 026 lA SUB (CTRL-Z)
0011011 027 1B ESC (CTRL-[)
0011100 028 1C FS (CTRL-)
0011101 029 ID OS (CTRL-D
0011110 030 IE RS (CTRL-A)
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
0100001 033 21 !
0100010 034 22 "
0100011 035 23 #
0100100 036 24 $
0100101 037 25 %
0100110 038 26 &
0100111 039 27

,
0101000 040 28 (
0101001 041 29)
0101010 042 2A *
0101011 043 2B +

---------------------- I!IDOIGITAL RESEARCH$
B-2

Concurrent CP 1M Programmer's Guide B ASCII and Hexadecimal Conversions

Table B-2. (continued)

Binary Decimal Hexadecimal ASCII

0101100 044 2C ,
0101101 045 2D -

0101110 046 2E
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2
0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 ,9
0111010 058 3A
0111011 059 3B ,
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P

~ DIGITAL RESEARCH~ ----------------------
B-3

B ASCII and Hexadecimal Conversions Concurrent CP 1M Programmer's Guide

Table B-2. (continued)

Binary Decimal Hexadecimal ASCII

1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 W
1011000 088 58 X
1011001 089 59 y

1011010 090 5A Z
1011011 091 5B [
1011100 092 5C \
1011101 093 5D]
1011110 094 5E 1\

1011111 095 5F <
1100000 096 60

,
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F 0

1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u

----------------------- !!IDDIGITAL RESEARCH~
B-4

Concurrent CP 1M Programmer's Guide B ASCII and Hexadecimal Conversions

Table B-2. (continued)

Binary Decimal Hexadecimal ASCII

1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C I
1111101 125 7D }
1111110 126 7E -
1111111 127 7F DEL

End of Appendix B

[!]) DIGITAL RESEARCH~ ------------------------
B-5

Code #

o
1
2
3
4
5
6
7
8
9

JO
12

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30

Appendix C
Error Codes

Table C-l. Concurrent CP/M Error Codes

Definition

NO ERROR
FUNCTION NOT IMPLEMENTED
ILLEGAL FUNCTION NUMBER
CAN'T FIND MEMORY
ILLEGAL SYSTEM FLAG NUMBER
FLAG OVERRUN
FLAG UNDERRUN
NO UNUSED QUEUE DESCRIPTORS LEFT IN QD TABLE
NO UNUSED QUEUE BUFFER AREA LEFT
CAN'T FIND QUEUE
QUEUE IN USE
NO UNUSED PROCESS DESCRIPTORS LEFT IN PROCESS
DESCRIPTOR TABLE
QUEUE ACCESS DENIED
EMPTY QUEUE
FULL QUEUE
CLI QUEUE MISSING
NO 8087 IN SYSTEM
NO UNUSED MEMORY DESCRIPTORS LEFT IN
MEMORY DESCRIPTOR TABLE
ILLEGAL CONSOLE NUMBER
CAN'T FIND PROCESS DESCRIPTOR BY NAME
CONSOLE DOES NOT MATCH
NO CLI PROCESS
ILLEGAL DISK NUMBER
ILLEGAL FILE NAME
ILLEGAL FILE TYPE
CHARACTER NOT READY
ILLEGAL MEMORY DESCRIPTOR
BAD LOAD
BAD READ
BAD OPEN

[l]] DIGITAL RESEARCHil!l ---------------------
C-l

C Error Codes

Code #

31
32
33
34
35
36
37
38
40
41
42

Concurrent CP/M Programmer's Guide

Table C-l. (continued)

NULL COMMAND
NOT OWNER

Definition

NO CODE SEGMENT IN LOAD FILE
ACTIVE PROCESS DESCRIPTOR
CAN'T TERMINATE
CAN'T ATTACH
ILLEGAL LIST DEVICE NUMBER
ILLEGAL PASSWORD
EXTERNAL TERMINATION OCCURRED
FIXUP ERROR UPON LOAD
FLAG SET IGNORED

End of Appendix C

----------------------- [!IDDIGITAL RESEARCH~
C-2

Appendix D
ECHO.A86 Listing

Listing D-l. ECHO.A86

ECHO - Resident System Process
Print Command tail to console

DEFINITIONS

ccpmint equ 224 ;ccpm entry interrupt
c writestr equ 9 ;print string
c-detach equ 147 ;detach console
c-set equ 148 ;set default console
q-make equ 134 ;create queue
q open equ 135 ;open queue
q-read equ 137 ;read queue
q-write equ 139 ;write queue
p=priority equ 145 ;set priority

pdlen equ 48 ;length of Process
, Descriptor

p cns equ byte ptr 020h ;default cns
p-disk equ byte ptr O12h ;default disk
p user equ byte ptr O13h ;default user
p-list equ byte ptr 024h ; default list
ps run equ 0 ;PD run status
pf-keep equ 2 ; PD nokill flag - /

rsp top equ 0 ;rsp offset
rsp-pd equ OlOh ;PD offset
rsp-uda equ 040h ;UDA offset
rsp=bottom equ 140h ;end rsp header

qf_rsp equ 08h ; queue RSP flag

Il]] DIGITAL RESEARCH~
D-l

D ECHO.A86 Listing Concurrent CP 1M Programmer's Guide

Listing D-l. (continued)

CODE SEGMENT

CSEG
org 0

ccpm: int ccpmint
ret

main: ; create ECHO queue
mov cl,q make! mov dx,offset qd
call ccpm

;open ECHO queue
mov cl,q open! mov dx,offset qpb
call ccpm

;set priority to normal
mov cl,p priority! mov dx,200
call ccpm

;ES points to SYSDAT
mov es,sdatseg

loop: ; forever
;read cmdtail from queue

mov cl,q read! mov dx,offset qpb
call ccpm

;set default values from PD
mov bx,pdadr
mov dl,es:p disk[bx]
inc dl ! mov disk,dl
mov dl,es:p user[bx]
mov user,dl-
mov dl,es:p list[bx]
mov list,dl-
mov dl,es:p cns[bx]
mov console~dl

;p disk=O-15
;make disk=I-16

-------------------------IIID DIGITAL RESEARCHI!!)
D-2

Concurrent CP 1M Programmer's Guide

Listing D-1. (continued)

;set default console
mov dl,console
mov cl,e SET! call ccpm

;scan cmdtail and look for '$' or O.
;when found, replace wi cr,lf, '$'

lea bx,cmdtail ! mov aI, '$' ! mov ah,O
mov dx,bx add dx,13l

nextchar:

endcmd:

cmp bx,dx ja endcmd
cmp [bx],al ! je endcmd
cmp [bx],ah ! je endcmd

inc bx ! jmps nextchar

mov byte ptr [bx],13
mov byte ptr l[bx],lO
mov byte ptr 2[bx], '$'

;write command tail

lea dx,cmdtail ! mov cl,e WRITESTR
call ccpm

;detach console
mov dl,console
mov cl,c detach! call ccpm

;done, get next command
jmps loop

DATA SEGMENT

D ECHO.A86 Listing

:!ill DIGITAL RESEARCHI!!l ------------------------
D-3

D ECHO.A86 Listing

sdatseg

pd

DSEG
org

org

rsp_top

dw
dw
dw

rsp_pd

dw
db
db
dw
db
dw
db
db
dw
dw
db
dw
db
db
db
db
dw

Concurrent CP 1M Programmer's Guide

Listing D-1. (continued)

0,0,0
0,0,0
0,0

0,0 link,thread
ps run status
190 priority
pf keep flags
'ECHO name
offset uda/lOh uda seg
0,0 disk,user
0,0 load dsk,usr
a mem
0,0 dvract,wait
0,0
a
a console
0,0,0
a list
0,0,0
0,0,0,0

------;........----------------- I!IDDIGITAL RESEARCHI!I
D-4

Concurrent CP/M Programmer's Guide D ECHO.A86 Listing

Listing D-1. (continued)

org rsp uda

uda dw O,offset dma,O,O ;0
dw 0,0,0,0
dw 0,0,0,0 ;lOh
dw 0,0,0,0
dw 0,0,0,0 ;20h
dw 0,0,0,0
dw O,O,offset stack tos,O ;30h
dw 0,0,0,0
dw 0,0,0,0 ;40h
.dw 0,0,0,0
dw 0,0,0,0 ;50h
dw 0,0,0,0
dw 0,0,0,0 ;60h

org rsp bottom

qbuf rb 131 ;Queue buffer

qd dw 0 ;link
db 0,0 ;net,org
dw qf rsp ; flags
db 'ECHO ; name
dw 131 ;msg1en
dw 1 ;nmsgs
dw 0,0 ;dq,nq
dw 0,0 ;msgcnt,msgout
dw offset qbuf ;buffer addr.

l!.ID DIGITAL RESEARCH~ -----------------------
D-5

D ECHO.A86 Listing

dma rb

stack dw
dw
dw
dw
dw

stack tos dw
dw
dw

pdadr rw
cmdtail rb

db

qpb db
dw
dw
dw
db

console db
;disk db
;user db
;list db

end

Concurrent CP 1M Programmer's Guide

Listing D-1. (continued)

128

Occcch,Occcch,Occcch
Occcch,Occcch,Occcch
Occcch,Occcch,Occcch
Occcch,Occcch,Occcch
Occcch,Occcch,Occcch
offset main start offset
o start seg
o init flags

1
129
13,10, '$'

0,0
o
1
offset pdadr
'ECHO

o
o
o
o

QPB Buffer
starts here

;must be zero
;queue 1D
;nmsgs
;buffer addr.
;name to open

End of Appendix D

------------------------- rtIDOIGITAL RESEARCHI!I
D-6

Appendix E
8087 Exception Handling

This appendix includes an example of an 8087 interrupt handling routine to demonstrate
the requirements for using the 8087 processor. Refer to Intel's iAPX 86,88 User's Manual
for a description of 8087 exception handling in the section on "8087 Numeric Data Processor".

In order to guarantee the data integrity for each 8087 process in the multitasking envi­
ronment, any user-defined exception handler must adhere to a minimum sequence of steps
within the exception handler:

1. Save the 8086 environment of the 8086-running process.

2. Save the environment of the 8087-running process. The OWNER-8087 field in
SYSDAT will contain the offset of the 8087-running process (see description of
SYSDAT in Section 6 with the S_SYSDAT system call).

3. Clear the 8087 interrupt request bit in the status word.

4. Disable the 8087 interrupts.

5. Clear the PIC interrupt (this instruction is hardware-dependent).

6. At this point, you might want to modify the 8087 environment image saved in step
2 above.

7. Before enabling the 8086 interrupts, restore the 8087 environment with its status
word's interrupt request bit cleared. If the environment is not restored before 8086
interrupts are enabled, and an interrupt occurs (like a tick), a different 8087 process
can gain control of the 8087 and swap in its 8087 context. On a second interrupt,
or on an IRET instruction, the 8086-running process that happened to be executing
the exception handler code is brought back into 8086 context and writes over the
new 8087 context.

The user program, which uses its own exception handler, must replace the system's
interrupt vector with its own. Once this is done, the system swaps this vector into
memory every time the program comes back into 8087 context. The address of the
interrupt vector is in the SYSDAT table at offset AOH (the description of the SYSDAT
Table is included in the description of the S_SYSDAT system call in Section 6).

The default exception handler aborts those 8087 programs that have enabled 8087
interrupts and that generate a severe error (such as stack underrun, divide by zero,
and so forth). Any other errors are ignored by the default exception handler.

[!Q] DIGITAL RESEARCH® --------------------------
E-I

E 8087 Exception Handling Concurrent CP 1M Programmer's Guide

. -----­,------
ndpint:
. -----­,------

Listing E-l. 8087 Exception Handling

; 8087 interrupt routine

This exception handler is non-specific and
is meant as an example
default. It is assumed that if the 8087
programmer has enabled 8087
interrupts and has specified exception flags
in the control word, then
the programmer has also included an
exception handler to take
specific actions within the program
before continuing in the 8087.
This handler will ignore non-severe
errors (overflow,etc) and will
terminate processes with severe errors
(divide by zero,stack violation).

-------------------------[!Q) DIGITAL RESEARCH@
E-2

Concurrent CP 1M Programmer's Guide K 8087 Exception Handling

Listing E-l. (continued)

push ds
mav dS,sysdat
mav ndp ssreg,ss
mav ndp-spreg,sp
mav ss,sysdat
mav sp,affset ndp tas
push ax! push bx -
push ex! push dx
push di! push si
push bpI push es
mav es,sysdat
FNSTENV env 8087
FWAIT
FNCLEX
xar aX,ax
FNDISI
mav al,020h
out 060h,al
mav al,020h
out 058h,al
eall in 8087

mav bX,offset env 8087
mav byte ptr 2[bx],0
pop es! pop bp
pop si! pop di
pop dx! pop ex
pop bx! pop ax

mav sS,ndp ssreg
mav sp,ndp-spreg
FLDENV env-8087
FWAIT
pop ds
iret

SAVE CURRENT DATA SEGMENT
GET XIOS DATA SEGMENT
DO STACK SWITCH FOR 8086 ENVIRONMENT
SAVE

SAVE THE 8086 REGISTERS

NOW SAVE THE 8087 ENVIRONMENT
SAVE 8087 PROCESS INFO

CLEAR ITS INT REQUEST BIT

DISABLE ITS INTERRUPTS
SEND 2 INTERRUPT ACKNOWLEDGES - 1 FOR
ONE FOR MASTER PIC, ONE FOR SLAVE

IN 8087 WILL CHECK THE 8087 ERROR
CONDITION. IF ERROR IS SEVERE, IT
WILL ABORT, ELSE IT WILL RETURN WITH
NO CHANGES.
CLEAR ITS STATUS WORD FOR ENV RESTORE

RESTORE THE 8086 ENVIRONMENT

SWITCH BACK TO PREVIOUS STACK

RESTORE 8087 ENV WITH GOOD STATUS

RESTORE PREVIOUS DATA SEGMENT

[ID DIGITALRESEARCH@ -----------------------

E-3

E 8087 Excep,tion Handling Concurrent CP 1M Programmer's Guide

Listing E-l. (continued)

in 8087:

end 87:

entry: DS = SYSDAT
Only user-specified error conditions generate
interrupts from the 8087.

mov bX,owner 8087
test bX,bx
jz end 87
mov si~ offset env 8087
mov ax, statusw[si]

test aX,03ah
jnz end 87
or p flag[bx],080h

ret

GET THE PROCESS DESCRIPTOR
CHECK IF OWNER HAS ALREADY
TERMINATED
IF IT'S A SEVERE ERROR, TERMINATE

IF NOT SEVERE,RETURN & CONTINUE
3A = UNDER/OVERFLOW,PRECISION,

AND DENORMALIZED OPERAND
NOT 3A = ZERO DIVIDE OR INVALID
OPERATION (STACK ERROR)

End of Appendix E

----------------------- [!Q]DIGITAL RESEARCH@
E-4

Glossary

Base Page: Memory region between OOOOH and 0100H relative to the beginning of the
Data Segment used to hold system parameters. Base Page serves primarily as an' interface
region between user programs. Note that in the 8080 Model, the code and data are intermixed
in the code segment.

BCD: Acronym for Binary Coded Decimal. Representation of decimal numbers using
binary digits. See Table B-2 for representations .of ASCII codes.

BDOS: Basic Disk Operating System (BOOS). The BOOS manages the Concurrent
CP/M file structure and executes most of the Concurrent CP/M system calls.

block: Basic unit of disk space allocation under Concurrent CP/M. Each disk drive has a '
fixed block size (BLS) defined in its disk Parameter Block in the XIOS. The block size can
be lK, 2K, 4K, 8K, or 16K ·of consecutive bytes. Blocks are numbered relative to zero on
a disk. Blocks are not shared between files.

Boolean: Variable that can have only two values; usually interpreted as true/false or
on/off.

Checksum Vector (CSV): Contiguous data area in the XIOS with one byte for each
directory sector to be checked, that is, CKS bytes. A Checksum Vector is initialized and
maintained for each logged-in drive. Each directorx access by the system results in a
checksum calculation that is compared with that in the Checksum Vector. If there is a
discrepancy, the drive is set to Read-Only status. This prevents the user from inadvertently
switching disks without logging in the new disk with a CTRL-C. If not logged in, the new
disk is treated the same as the old one, and you can destroy data on it if you write to it.

CIO: Character lIO (CIO) Module. The CIO module handles all character lIO to and from
consoles and list devices.

CLI: Command Line Interpreter. The P _CLI system call interprets the command requested
in a command line and performs the system calls needed to open a process, load the command
file, and execute the code.

I!IDDIGITALRESEARCH@ --------------------------
Glossary-l

Glossary Concurrent CP 1M Programmer's Guide

CMD: Filetype for Concurrent CP/M command files. These are machine language object
modules ready to be loaded and executed. Any file with this type can be executed by simply
typing the filename after the drive prompt. For example, the program PIP.CMD can be
executed by simply typing PIP.

command: Set of instructions that are executed when the command name is typed after
the system prompt. These instructions can be built in the Concurrent CP/M system or can
reside on disk as a file of type CMD. Concurrent CP/M commands consist of three parts:
the command name, the command tail, and a carriage return.

console: Primary I/O device used by Concurrent CP/M. The console usually consists of
a CRT screen for displaying output and a keyboard for input.

control character: Nonprinting ASCII character produced on the console by holding down
the CTRL (CONTROL) key while striking the character key'. CTRL-H means hold down
CTRL and press H. Control characters are sometimes indicated using the up-arrow symbol
(1\), so CTRL-H can be represented as /\ H. Certain control characters are treated as special
commands by Concurrent CP/M.

Default Buffer: 128-byte buffer maintained at 0080H in the Base Page. When the CLI
loads a CMD file, it initializes this buffer to the command tail, that is, any characters typed
after the CMD file name. The first byte at 0080H contains the length of the command tail
while the command tail itself begins at 0081H. A binary zero terminates the command tail
value. The I command under DDT@ initializes this buffer in the same way as the CLI.

Default FCB: One of two FCBs maintained at OOSCH and 006CH in the Base Page. The
P _CLI system call initializes the first default FCB from the first delimited field in the
command tail and initializes the second default FCB from the next field in the command
tail.

delimiters: ASCII characters used to separate constituent parts of a file specification. The
P _CLI system call recognizes certain delimiter characters as : . = ; <> _' blank, and
carriage return. Several Concurrent CP/M commands also treat ; [] 0 , and $ as delimiter
characters. It is advisable to avoid the use of delimiter characters and lowercase characters
in filenames.

directory: Portion of a disk containing entries for each file on the disk and locations of
the blocks allocated to the files. Each file directory entry is in the form of a 32-byte FCB,
although one file can have several entries, depending on its size. The maximum number of
directory entries supported is specified in the drive's Disk Parameter Block.

-------------------------- i!IDDIGITAL RESEARCH@

Glossary-2

Concurrent CP 1M Programmer's Guide Glossary

directory entry: 32-byte entry associated with each disk file. A file can have more than
one directory entry associated with it. There are four directory entries per directory sector.
Directory entries can also be referred to as directory FCBs.

disk, diskette: Magnetic media used for mass storage of data in the computer system. The
term disk can refer to a diskette, a removable cartridge disk, or a fixed hard disk.

Disk Parameter Block (DPB): Table residing in the XIOS that defines the characteristics
of a drive in the disk subsystem used with Concurrent-CP/M. The address of the DPB is in
the Disk Parameter Header at DPbase + OAH. Drives with' the same characteristics can use
the same DPB. However, each logical drive must have its own Disk Parameter Header and
DPB. The address of the drive's Disk Parameter Header must be returned in registers HL
when the BDOS calls the SELDSK entry point in the XIOS. DRV -DPB returns the DPB
address.

Disk Parameter Header (DPH): 16-byte area in the XIOS containing information about
the disk drive and a scratchpad area for certain BDOS operations. See the Concurrent
CP/M System Guide for further details.

extent (EX): 16K consecutive bytes in a file. Extents are numbered from 0 to 31. One
extent can contain 1, 2, 4, 8, or 16 blocks. EX is the extent number field of an FCB and
is a one-byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending
on the Block Size (BLS) and the maximum data Block Number (DSM), a directory entry
contains 1, 2, 4, 8, or 16 extents. The EX field is usually set to 0 by the user, but contains
the current extent number during file I/o. The term "Extent Folding" describes directory
entries containing more than one extent. In CP/M version 1.4, each FCB contained only
one extent.

FCB: See File Control Block.

file: Collection of data containing from zero to 242,144 records. Each record contains 128
bytes and can contain either binary or ASCII data. Files consist of one or more 16K extents,
with 128 records per extent.

File Control Block (FCB): Thirty-six consecutive bytes maintained and updated by system
calls for file I/O. The FCB fields are described in Section 2.4.

hex file format: Absolute output of ASM86 for the Intel 8086. A HEX file contains a
sequence of absolute records, which give a load address and byte values to be stored starting
at the load address (refer to Section 4.3).

[!IDDIGITALRESEARCH@· --------------------------
Glossary-3

Glossary Concurrent CP 1M Programmer's Guide

I/O: Acronym for Input/Output operations or routines handling the input and output of
data in the computer system.

logical drive: Logically distinct region of a physical drive. A physical drive can be
divided into one or more logical drives, and designated with specific drive references (such
as a: or f:). Thus, at the user interface, it appears that there are several disks in the system.

MEM: Memory Module. The Memory Module handles all memory management calls by
methods transparent to your applications program.

parse: Separate a command line into its syntactic parts.

queue: Data structure used by the file system to keep track system information, such as
processes ready to run, locked files, and resources currently in use by processes. Processes
also use queues to communicate with one another. The BDOS system calls create and maintain
queues.

Read-Only: Condition in which a logical disk drive can be read but not written to. A
drive can be set to Read-Only status by using the SET utility. This protects the user from
switching disks without executing a disk reset. Files can also be set to Read-Only status
with the SET utility or the F -ATTRIB system call. Read-Only is often abbreviated as
RIO.

record: Smallest unit of data in a disk file that can be read or written. A record consists
of 128 consecutive bytes whose byte displacement in a file is the product of the Record
Number times 128. A 128-byte record in a file occupies one 128-byte sector on the diskette.
If the blocking and deblocking algorithm is used, several records can occupy each disk
sector.

reentrant code: Code that can be used by one process while another is already executing
it. Reentrant code must not be self-modifying; it must be pure code that does not contain
data. The data for reentrant code can be kept in a separate data area or placed on the stack.

RSP: Reserved System Process. An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM: Real Time Monitor. The RTM is the nucleus of Concurrent CP/M, managing queues
and flags, polling devices, and dispatching and suspending processes. Application programs
gain access to RTM functions through system calls.

--------------------------I!QJ DIGITAL RESEARCH@
Glossary-4

Concurrent CP 1M Programmer's Guide Glossary

sector: Unit of data read from and written to the disk by the XIOS. The sector size is
dependent on the disk drive hardware and is usually a power of two, such as 256, 512,
1024, or 2048 bytes. These disk sectors are referred to as Host Sectors.

source file: ASCII text file usually created with a text editor that is an input file to a
program, such as a compiler, assembler, or a text formatter.

stack: Reserved area of memory where the processor saves the return address when it
receives a Call instruction. When the processor encounters a Return instruction, it restores
the current address on the stack to the Instruction Pointer. Data such as the contents of the
registers can also be saved on the stack on a first-in-Iast-out basis. The Push instruction
places data on the stack and the Pop instruction removes it. 8086 stacks are 16 bits wide;
instructions operating on the stack add and remove stack items one word at a time. An item
is pushed onto the stack by decrementing the stack pointer (SP) by 2 and writing the item
at the SP address. In other words, the stack grows downward in memory.

SUP: The Supervisor (SUP) manages communications between processes and the operating
system kernel, and between other operating system modules. All system calls are intercepted
by the SUP.

track: Concentric ring on the disk; the standard IBM single density disks have 77 tracks.
Each track consists of a fixed number of numbered sectors. Tracks are numbered from 0 to
one less than the number of tracks on the disk. Data on the disk media is accessed by
combinations of track and sector numbers.

TMP: Terminal Message Processes. The TMPs are Resident System Processes that inter­
cept command lines from the virtual consoles, check for errors, and pass on executable
requests to the CLI. The TMP prints the prompt and some system error messages on your
console. Each virtual console has an independent TMP heading defining the console's envi­
ronment, including the default disk, user number, printer, and console.

transient command file: File of type .CMD stored on disk. Such files must be loaded
into the system each time they are executed, and therefore execute more slowly than Resident
System Processes (RSPs), which are an integral part of the operating system and execute
rapidly. Transient commands are created with the GENCMD utility; RSPs are included in
the operating system during execution of GENCCPM.

user: Logically distinct subdivision of the directory. Each directory can be divided into
16 user numbers.

I!IDOIGITAl RESEARCH@
Glossary-5

Glossary Concurrent CP 1M Programmer's Guide

wildcard: A? or * character. The BDOS directory search calls matches? with any single
character and * with multiple characters. Refer to the F_SFIRST and F_SNEXT system
calls for further details.

XIOS: Extended 110 System. In Concurrent CP/M, the BDOS is the invariant file-handling
system, which operates independent of the hardware implementation. The XIOS is the
customizable 110 interface configured for your hardware system by the system manufacturer.
The XIOS is similar to the BIOS in CP/M and CP/M-86, but it has been extended to implement
virtual consoles and associated features.

End of Glossary

-------------------------- [!ID DIGITAL RESEARCH@
Glossary-6

8080 and Small RSP Models, 5-2
8080 keyword, 4-6
8080 Memory Model, 1-12, 3-5, 3-7,

4-1, 4-3, 5-2, 5-6
exception handling, 3-3

8087 Flag
PO, 5-8
processor, 3-2
support, 1-2, 3-2

96-byte initial stack, 3-1
file reference, 2-7

A

absolute address, 4-7
ACB-Assign Control Block

(Figure 6-1), 6-21
access stamp, 2-24, 6-84
address

Flag Table, 6-86
maximum, 4-7
PO, 6-157
queue buffer, 6-169
System Oata Segment, 6-178
version string, 6-182

Ahhhh parameter 4-7
ALO, 6-50
ALI, 6-50
Allocation Block Mask, 6-49
Allocation Block Shift Factor, 6-49
allocation vector, 2-39, 6-46
ambiguous reference, 2-6, 6-16
APB-Abort Parameter Block

(Figure 6-10), 6-139
Archive, 6-65

attribute, 2-15

Index

ASM-86 utility, 2-9
asterisk, 2-6
attribute bits, 2-11, 2-14
attribute

compatibility, 2-31
file, 2-14
interface, 2-14
interface F5', 2-30
interface F6', 2-30

AX
UOA field, 6-152

A-Base, 3-4, 5-11

B

B value, 4-7
background, 1-10
backslash, 2-6
backspace, 6-32
BACKSP ACE, 6-34
base extent, 6-11, 6-116
Base Page Initialization, 3-5
Base Page, 4-3, 6-141, 6-144

Compact Model, 4-5
initial Oata Segment, 3-1
Small Model, 4-4

BASE
MCB, 6-129

Basic Oisk Operating System, 1-4,
1- 9, 2-1

BOOS, 1-4
BOOS Error Codes, 2-47
BOOS Error mode, 6-45, 6-75
BOOS file system, 2-1
BOOS Multisector Count, 6-113
BOOS physical errors, 2-44

I!IDDIGITAL RESEARCH@ -------------------------
Index-l

BDOS revision level, 6-174
BDOS Version Number Format

(Figure 6-17),6-174
BDOS

Concurrent CP/M, 1-9
single-tasking CP/M -86, 1-9

Bhhhh parameter, 4-7
BIOS, 1-11
BIOS Descriptor Format

(Figure 6-18),6-175
bit map, 6-56
BLM, 6-49
blocking/ deblocking, 2-38, 6-52
BP

UDA field, 6-152
BSH, 6-49
BUFFER field, 5-10

size, 5-10, 6-73
BUFFER

QD field, 6-169
Q PB field, 6-163

buffers
disk data, 6-181
XIOS ALLOC, 6-181

burst mode, 2-34
BX

UDA field, 6-152
byte count, 2-37, 2-38, 6-65, 6-83

c

C option
SYSTAT, 1-14

C(onsole) option, 1-15
C(onsoles) option

SYSTAT, 1-14
C-Seg, 4-11
Call Parameter Block, 6-159
carriage return, 2-9, 6-32, 6-33, 6-34,

6-90

CCB, 1-10
SYSDAT field, 6-181

CCPM.SYS file, 5-11, 6-180
CCPMSEG, 6-182

SYSDAT field, 6-179
CCPMVERNUM

SYSDAT field, 6-182
Character Control Block, 1-10, 6-39,

6-128, 6-148, 6-150, 6-181
character device, 6-175, 6-183
Character I/O Module, 1-4, 1-10
CHARACTERS

C_READSTR, 6-34
CHCB format, 6-39, 6-128
checksum, 2-11, 2-17, 2-27, 2-33, 4-12,

6-68, 6-80, 6-84
Checksum Vector Size, 6-50
Checksum Vector Size field

DPB, 2-40
checksum verification, 2-27

disable, 2-33
child process, 5-10
CIO, 1-4, 1-10
CIOWAIT

Activity code, 6-148
CKS, 6-50
CKS field

Disk Parameter Block, 1-11
CLBUF, 6-143
CLI, 1-11, 6-181
CLI Command Line Buffer

(Figure 6-11),6-142
CLI

handling RSPs, 5-4
CLOCK, 1-8
CLOCK process, 1-2, 1-8
clock ticks, 1-6
Close Checksum error, 2-33, 2-45
CMD, 1-12
CMD filetype, 6-143

----------------------- [l]] DIGITAlRESEARCH@
Index-2

CMD file, 2-9,4-1,4-6,5-5,6-141,
6-156

CMD File Header Format
(Figure 3-1), 3-3

CNS
APB field, 6-140
C-ASSIGN system call, 6-22
PD field, 6-150

Code Group Descriptor, 3-2, 5-2
Code Segment, 3-2, 6-152, 6-153

Supervisor, 6-180
Command Line Buffer, 6-143
Command Line Interpreter, 1-11, 3-1
Command RSP, 5-4, 5-5, 5-6
COMMAND TAIL

RSP Command Queue Message,
5-5

COMMAND
CLI Command Line Buffer, 6-142

Compact Memory Model, 3-5, 4-5
Compact Model, 1-12, 4-2, 4-5
compatibility attribute, 2-15, 2-31

definition, 2-32, 2-33
COMPATMODE option

GENCCPM, 2-32
compute file size, 2-2
Concurrent CP/M Compact Memory

Model (Figure 4-4), 4-5
Concurrent CP / M Functional

Modules (Figure 1-2), 1-3
Concurrent CP/M Virtual/ Physical

Environments (Figure 1-1), 1-1
Concurrent CP / M Base Page Values

(Figure 3-3), 3-6
concurrent file access, 2-35
conditional queue write, 6-166
conditional read

queue, 1-7
conditional write

queue, 1-7
CONIN, 6-39, 6-175

CONOUT:, 6-39
console, 1-11
Console Buffer Format (Figure 6-2),

6-33
console I/O, 1-10
Console I/O System Calls, 6-4, 6-21
console

input, 6-131, 6-175
mode, 6-39
number, 6-36
number of XIOS, 6-183
number of SYSDAT, 6-184
Output, 6-175
status, 6-31, 6-175
system calls, 6-2
virtual, 6-181

contiguous memory segment, 6-131
Continous display option

SYSTAT, 1-14, 1-15
control characters, 2-6
Control Word

UDA 8087 extension, 6-153
copy number

RSP, 5-3
CP / M Compatible Memory

Allocation System Calls, 6-9
CP / M-86 compatibility, 6-175
CP / M-86 memory allocation scheme,

6-128
CPB, 6-160
CPB-Call Parameter Block

(Figure 6-14), 6-159
CPU type, 6-174, 6-176
CR byte, 6-113
CR field, 3-7, 6-79, 6-83, 6-84, 6-93,

6-96
CR field of FCB, 6-66
CR field

FCB, 2-12, 2-38
CS, 6-153

I!IDDIGITAL RESEARCH@ -:-------------------------
Index-3

CS field
FCB, 2-11, 2-38

CS register
Small Model, 4-4

CS
UDA field, 6-153

CSEG directive
ASM-86, 4-4

CTRL-C, 1-10, 1-15,5-8,6-31,6-32,
6-37

disable, 6-29
enable, 6-29

CTRL-E, 6-34
CTRL-H, 6-34
CTRL-I, 6-32, 6-34, 6-39
CTRL-J, 6-34, 6-35
CTRL-M, 6-34, 6-35
CTRL-O, 1-10, 1-11, 6-31

disable, 6-29
enable, 6-29

CTRL-P, 1-10, 1-11,6-29,6-31
CTRL-Q, 1-10

disable, 6-29
enable, 6-29

CTRL-R, 6-35
CTRL-S, 1-10, 1-11,6-31

disable, 6-29
enable, 6-29

CTRL-U, 6-35
CTRL-X, 6-35
CTRL-Z at EOF, 2-9
current DMA, 6-61, 6-91, 6-96, 6-101
current DMA address, 6-113
current DMA buffer, 6-107
Current Output Delimiter, 6-25
current processes, 1-13
current record field, 6-93

FCB, 2-12
current record position, 3-7
current user number, 2-17, 6-149
current process activity, 6-147

CW
UDA 8087 extension, 6-153

CX Error Code Reports, 6-19
CX error codes, 1-13
CX

UDA field, 6-152
C-ASSIGN system call, 6-22
C-A TT ACH system call, 6-22, 6-23
C_CA TT ACH system call, 6-24
C_DELIMIT system call, 6-25, 6-40
C_DETACH system call, 6-22, 6-26
C_G ET system call, 6-27
C_MODE, 3-1, 6-37
C_MODE call, 1-11
C_MODE system call, 6-28
C_RA WIO, 6-37
C_RA WIO call, 1-11
C_RA WIO system call, 6-30
C_READ system call, 6-32, 6-33, 6-38
C_READSTR call, 1-10
C_READSTR system call, 6-33
C_SET system call, 6-36
C_ST A T, 6-29
C_STA T system call, 6-37
C_ WRITE, 6-29
C_ WRITE system call, 6-38
C_ WRITEBLK, 6-29
C_ WRITEBLK system call, 6-39
C_ WRITESTR, 6-25, 6-29
C_ WRITESTR system call, 6-40

D

DO-D 15 field
FCB, 2-12

data area, 2-1, 2-8
data block size, 2-8
Data Group Descriptor, 5-2, 5-11
Data Record, 4-9, 4-10
Data Segment, 5-1

-----------------------I!Q] DIGITAL RESEARCH@
Index-4

Data Structures Index, 6-18
date and time, 1-2
date and time stamps, 2-3, 2-18, 2-24,

6-61
DATE utility, 2-25
Day file option, 6-181
DAY FILE

SYSDAT field, 6-181
DAY

TOD field, 6-185
days

number of, 6-183, 6-185
DDT-86, 5-11
Default Close, 6-68
default console, 6-26, 6-27, 6-150

C-ATTACH, 6-23
C_CATTACH, 6-24

default disk, I-II, 6-47, 6-54, 6-59,
6-149

default DMA base, 6-74
default DMA buffer, 3-8, 6-141
default drive, 2-3, 2-5, 3-7
default error mode, 1-10, 2-43
default list device, 6-122, 6-123, 6-124,

6-126,6-127
default list device number, 6-125,

6-150
default mode

BDOS Error mode, 6-75
Locked mode, 2-26
password, 2-3, 2-23, 6-91, 6-107
TMP, 2-23

Delay List, 1-6,1-9, 6-147, 6-182
DELAY

Activity code, 6-147
Delete mode, 2-22
delimiters, 2-6, 6-88
Device System Calls, 6-2, 6-5, 6-41
DEV_POLL system call, 1-11,6-41
DEV_SETFLAG, 6-42, 6-43, 6-180
DEV_WAITFLAG, 1-8,6-42,6-43

DI
UDA field, 6-152

DIR attribute, 6-143
DIR utility, 2-1, 2-15
Direct Memory Address, 6-73
direct video mapping, 3-8
Directory Allocation Vector 0, 6-50
directory area, 2-1

code, 2-46, 2-48, 6-17
code definitions, 2-48
entry, 6-79
label, 2-3, 2-18, 2-19, 2-20, 6-55,

6-60, 6-113
directory label data byte, 2-19, 2-20,

6-55, 6-60
Directory Label Format (Figure 2-2),

2-18
Directory Maximum, 6-50
Directory Record with SFCB

(Figure 2-4), 2-24
directory space, 2-1
directory write operations, 2-38
Disk Data buffers, 6-181
disk directory area, 2-8
disk drive organization, 2-8
Disk Drive System Calls, 6-2, 6-5,

6-44
Disk File System Calls, 6-7
Disk Free Space Field Format

(Figure 6-5), 6-63
Disk 110 error, 2-44
Disk Parameter Block, 1-11, 2-40,

6-48, 6-49
Disk Reset, 6-51
Disk Storage Maximum, 6-50
Disk System Reset (Figure 2-6), 2-41
DISK

D P field, 6-149
disk

temporary, 6-181

[!IDDIGITAL RESEARCH@ ------------------------

Index-5

Dispatcher, 1-5
Dispatcher entry point, 6-180
Dispatcher Ready List, 6-182
DISPATCHER

SYSDAT field, 6-180
DL field

directory label, 2-19
DLR

SYSDAT field, 6-182
DMA address, 2-3, 3-1, 6-156
DMA base, 3-1
DMA Buffer, 5-6, 5-9, 6-73
DMA OFFS

UDA field, 6-152
DMA offset, 3-1, 6-72, 6-152
DMA

default address, 6-47
DPB, 2-40, 6-48
DPB-Disk Parameter Block

(Figure 6-4), 6-48
DR FCB field, 6-59
DR field

directory label, 2-19
FCB, 2-11
XFCB, 2-21

Drive Code
FCB, 2-11

drive code
XFCB, 2-21

drive
directory label, 6-10 1
field, 6-89
reset, 2-39, 2-41
specifier, 2-5
status, 2-2, 2-3

Drive Vector, 6-44
Drive

RIO, or Login Vector Structure
(Figure 6-3), 6-44

DRL
SYSDAT field, 6-182

DRM,6-50
DRV_, 2-2
DRV.-ACCESS system call, 2-39,

2-42, 6-45
DRV.-ACCESS call, 2-42
DRV _ALLOCVEC system call, 6-46
DRV.-ALLRESET, 3-1,6-73
DRV.-ALLRESET system call, 2-39,

6-47, 6-62
DRV_DPB system call, 6-48
DRV_FLUSH system call, 6-52
DRV_FREE, 2-29
DR V_FREE system call, 2-39, 2-42,

6-53
DRV_GET system call, 6-54
DRV_GETLABEL system call, 2-20

6-55
DRV_LOGINVEC system call, 6-56
DRV_RESET, 2-40, 3-1
DRV_RESET call, 1-11
DR V_RESET operation, 2-40, 6-62
DRV _RESET system call, 2-39, 6-57
DRV_ROVEC system call, 6-47, 6-58
DR V_SET system call, 6-59
DRV_SETLABEL system call, 2-19,

6-60
DR V _SETRO system call, 2-40, 2-42,

2-44, 6-47, 6-58, 6-62
DRV_SPACE, 6-73
DR V _SP ACE system call, 6-46, 6-64
DS and ES registers

Small Model, 4-4
DS

UDA field, 6-153
DSEG directive, 4-4
DSM, 6-50
DX

UDA field, 6-152

-----------------------lIQJ DIGITAL RESEARCH@
Index-6

E

E(xit) option, 1-15
SYSTAT, 1-14

ECHO, 5-8
ECHO RSP, 5-1, 5-3, 5-11
ENDSEG

SYSDAT field, 6-181
EOF, 6-12
EOF (CTRL-Z), 2-9
error codes, 1-13, 2-46, 2-47
error flag, 2-47, 2-49
error handling, 2-43
Error mode, 2-3, 2-43
ES

UDA field, 6-153
EX field, 6-79

FCB, 2-11
exception handling

8087,6-184
exclusive lock, 6-76
exclusive locks, 2-35
exit point, 6-180
EXM, 6-49
EXT

MCB, 6-129
Extended Address Record, 4-9, 4-10
extended error codes, 2-49
Extended Error Module, 1-10
extended errors, 2-43, 2-45, 2-46
extended file lock, 2-30, 6-15, 6-107
Extended I/O System, 1-4
Extended I/O System entry point,

6-180
Extended Input/Output System, 1-11
extent, 6-93
Extent Mask, 6-49
extent number

FCB,2-11
Extra Segments, 5-1

F

F l' compatibility attribute, 2-32
Fl'-F4', 2-15
Fl '-F4' compatibility attributes, 2-32
Fl '-F4' file attribute, 6-65
Fl'-F8', 2-14
FI-F8 field

FCB, 2-11
F2' compatibility attribute, 2-33
F3' attributes, 2-36
F3' compatibility attribute, 2-33
F4' compatibility attribute, 2-33
F5', 2-17
F5' interface attribute, 2-30, 2-35,

6-65, 6-68
F5' interface attribute, 6-70
F5' interface attribute, 6-76, 6-79, 6-

107, 6-111
F5' interface attribute, 2-36
F5'-F8', 2-16
F5'-F8' attribute, 6-66
F6', 2-17
F6' interface attribute, 2-27, 2-30,

2-36, 2-38, 6-65, 6-68, 6-83
F7', 2-17
F8', 2-17
Far Jump instruction
Far Return, 3-1, 4-2, 4-3
FCB, 2-9, 6-17, 6-64

[!QJOIGITAL RESEARCH@ ------------------------
Index-7

FCB-File Control Block
(Figure 2-1), 2-10

_ checksum, 2-29
checksum verification, 2-33
drive code, 6-59
extent number, 6-80
format, 2-17
initialization, 2-12
length, 2-10
usage, 2-12
verification, 2-41

FCB
File Namel, 3-7
File Name2, 3-7

FCBADR
PFCB,6-87
file access, 2-35

concurrent, 2-35
shared, 1-10

File Already Exists error, 2-46
file attributes, 2-14, 6-65
file byte counts, 2-37
File Control Block, 2-9, 6-64
File Currently Open error, 2-45
File field

XFCB, 2-21
file header

CMD, 3-2
File ID, 2-12, 2-26, 2-35, 6-76, 6-80,

6-84, 6-109
File lock, 6-14

extended, 6-65, 6-68
file locking, 1-9

extended, 2-30
file logging information, 6-181
file open modes, 2-26
File Opened in Read/Only Mode

error, 2-45

file
organization, 2-8
security, 2-27
size, 2-8
specification, 2-5
system, 2-1, 2-18, 2-37
system calls, 2-3, 2-4

File-Access System Calls, 6-2, 6-64
filename, 2-1, 6-89

field, 2-1, 2-5
file size,

maximum, 2-8
filetype, 2-1, 6-89

FCB, 2-11
filetype conventions, 2-7
filetype field, 2-5, 2-6, 2-11

XFCB,2-21
Flag 1

tick flag, 1-9
Flag 2

second flag, 1-8
FLAG field

PD, 6-140
flag IP, 6-42
flag numbers, 6-43
Flag Table

address, 6-182
FLAG

PD field, 6-149
flag

Process Keep, 1-11
SYS, 6-140

flags 0
1, 2, and 3, 6-43

FLAGS field, 5-8, 5-9
flags

initial, 6-152
FLAGS

QD field, 6-169
flags

queue, 6-169

------------------------- [lID DIGITAL RESEARCH@

Index-8

FLAGS
SYSDAT field, 6-182

FLAGWAIT
Activity code, 6-149

flush buffers, 2-39
Function 0, 6-162
Function 1, 6-32
Function 2, 6-38
Function 5, 6-127
Function 6, 6-30
Function 9, 6-40
Function 10, 6-33
Function 11, 6-37
Function 12, 6-174
Function 13, 6-47
Function 14, 6-59
Function 15, 6-83
Function 16, 6-68
Function 17, 6-100
Function 18, 6-104
Function 19, 6-70
Function 20, 6-93
Function 21, 6-113
Function 22, 6-79
Function 23, 6-98
Function 24, 6-56
Function 25, 6-54
Function 26, 6-73
Function 27, 6-46
Function 28, 6-62
Function 29, 6-58
Function 30, 6-65
Function 31, 6-48
Function 32, 6-112
Function 33, 6-95
Function 34, 6-116
Function 35, 6-102
Function 36, 6-92
Function 37, 6-57
Function 38, 6-45
Function 39, 6-53

Function 40, 6-121
Function 42, 6-76 .
Function 43, 6-109
Function 44, 6-82
Function 45, 6-75
Function 46, 6-63
Function 47, 6-141
Function 48, 6-52
Function 50, 6-175
Function 51, 6-74
Function 52, 6-72
Function 53, 6-138
Function 54, 6-134
Function 55, 6-136
Function 56, 6-133
Function 57, 6-137
Function 58, 6-135
Function 59, 6-156
Function 99, 6-107
Function 100, 6-60
Function 101, 6-55
Function 102, 6-105
Function 103, 6-119
Function 104, 6-188
Function 105, 6-185
Function 106, 6-91
Function 107, 6-177
Function 109, ~-28
Function 110, 6-25
Function Ill, 6-39
Function 112, 6-128
Function 128, 6-131
Function 129,6-131
Function 130, 6-132
Function 131,6-41
Function 132, 6-43
Function 133, 6-42
Function 134, 6-168
Function 135, 6-171
Function 136,6-167
Function 137,6-172

l!IDDIGITAL RESEARCH® -------------------------
Index-9

Function 138, 6-165
Function 139,6-173
Function 140, 6-166
Function 141, 6-154
Function 142, 6-155
Function 143, 6-161
Function 144, 6-145
Function 145, 6-158
Function 146, 6-23
Function 147, 6-26
Function 148,6-36
Function 149, 6-21
Function 150, 6-142
Function 151, 6-159
Function 152, 6-86
Function 153, 6-27
Function 154, 6-178
Function 155, 6-187
Function 156, 6-157
Function 157, 6-139
Function 158, 6-122
Function 159, 6-124
Function 160, 6-126
Function 161, 6-123
Function 162, 6-24
Function 163, 6-176, 6-182
Function 164, 6-125
F- , interface attribute, 6-76
F_,2-2
F_ATTRIB system call, 2-14, 2-30,

2-31, 2-38, 6-65, 6-83, 6-98
F _CLOSE system call, 2-30, 2-33,

2-39, 6-68
F_DELETE system call, 2-30, 6-70,

6-80
F_DMAGET system call, 6-73
F_DMAOFF,6-156
F_DMAOFF system call, 5-6, 6-74,

6-75
F_DMASEG, 6-73, 6-156
F_DMASEG system call, 5-6, 6-74

F_ERRMODE system call, 2-29, 2-49,
6-45, 6-75

F_FLUSH system call, 2-39
F _LOCK, 2-35
F _LOCK system call, 2-26, 2-34, 2-36,

6-76,6-82
F_MAKE, 6-76
F_MAKE system call, 2-10, 2-14,

2-21,2-22,2-27,2-38,6-79,6-93,
6-113

F_MULTISEC system call, 2-34, 6-82,
6-93, 6-95, 6-113

F_OPEN, 6-76
F _OPEN call, 2-26
F_OPEN system call, 2-9, 2-10, 2-14,

2-26, 2-27, 2-31, 2-38, 6-66, 6-83,
6-93, 6-109, 6-113, 6-143

F_PARSE system call, 2-6, 3-1, 6-87,
6-143

F_PASSWD,6-98
F_PASSWD system call, 2-23, 6-61,

6-65, 6-91, 6-107
F _RAND REC system call, 6-92
F _READ system call, 2-34, 6-93
F _READ RAND system call, 2-34,

6-96
F_RENAME system call, 2-12, 2-30,

2-31, 6-98
F_SFIRST system call, 2-14, 2-15,

2-20, 2-23, 2-25, 2-38, 6-66, 6-70,
6-100

F _SIZE system call, 6-102
F_SNEXT system call, 2-14, 2.:.15,

2-20, 2-23, 2-25, 2-38, 6-66, 6-70,
6-100, 6-104

F_TIMEDATE system call, 2-25,
6-105

F_TRUNCATE system call, 2-30,
6-107

F_UNLOCK, 2-35

----------------------- [!]) DIGITAL RESEARCH@
lndex-IO

F _UNLOCK system call, 2-26, 2-34,
2-35, 2-36, 2-37, 6-84, 6-109

F_USERNUM system call, 2-17,
6-112

F _WRITE system call, 2-34, 6-113
F _ WRITERAND system call, 2-34,

6-94, 6-102, 6-116
F_WRITEXFCB system call, 2-21,

2-22, 6-119
F _ WRITEZF system call, 2-34, 6-94,

6-121

G

G_Form, 3-3
G_ Type field, 3-2
GENCCPM, 2-29, 3-1, 5-1, 5-3, 5-11,

6-181
GENCMD, 4-6, 4-9, 5-2
generic category, 2-7
Group Descriptor, 3-3
Group Descriptor Format

(Figure 3-2), 3-3
G_Length, 3-4
G_Max, 3-4
G_Min, 3-4

H

H86 filetype, 4-6
Hard Disk, 6-51
hardware initialization, 6-180
Header Record, 3-3

CMD file, 4-1, 4-7
header

RSP, 5-2
HEX file, 4-6, 4-7
highest priority process, 1-6
hour of day, 6-186

HOUR
TOD field, 6-186

I

Illegal? in FCB error, 2-46
independent group, 3-7
initial flags, 6-152
initial stack area, 4-2
initial stack

8080 model, 4-2
initial values

instruction pointer, 4-1
segment registers, 4-1
stack pointer, 4-1

initialization
hardware, 6-180

initialize directory, 2-39
Instruction Pointer, 4-3, 6-153
INT 0, 6-153
INT 1, 6-153
INT 3, 6-153
INT 4, 6-153
INT 224, 1-12,6-153
INT 225, 6-153
Intel hexadecimal file format, 4-9
Intel utilities, 4-7
Intel

small model, 4-1
interface attribute

F5', 6-68, 6-70, 6-83
F6', 6-70, 6-83
F7', 6-84
F8', 6-84

interface attributes, 2-14, 2-16, 2-27,
6-65

Interrupt Return instruction, 6-152,
6-180

interrupt returns, 6-180
interrupt vectors, 6-153

[!]] DIGITAL RESEARCH® ------------------------
Index-II

interrupt
logical, 1-2
physical, 1-2
types, 6-43

interrupts enabled, 5-9
Invalid Drive error, 2-44
10_CONIN

XIOS, 1-10
IP, 6-153
IP flag, 6-42
IP register, 4-3

Small Model, 4-4
IP

instruction pointer, 6-152
IRET instruction, 5-9
IRET structure, 5-11

J

JMPF PDISP instruction, 6-180

K

KEEP Flag, 5-8
KEEP flag, 5-9, 6-149, 6-161
KERNEL flag, 6-149

L

label
directory, 2-18

last record byte count, 6-65
last record number, 6-107
LCB, 1-10

SYSDAT field, 6-183
Ld Addr, 4-11
Least Recently Used order, 3-2

LENGTH
MCB, 6-129

line feed, 2-9, 6-32, 6-33, 6-34, 6-90
line-editing, 6-33, 6-34
LINK field, 6-146~ 6-182

RSP header, 5-7~ 5-11
Link list root, 6-181
Link list

memory allocation units, 6-182
LINK

PD field, 6-147
LIST, 6-175
List Control Block, 1-10,6-181,6-183
list device, 1-11, 6-122, 6-123, 6-124,

6-126, 6-127
List Device 1/ ° System Calls, 6-122
List Device System Calls, 6-2, 6-8
list devices

number of XIOS, 6-182
List field

process descriptor, 1-11
list I/O, 1-10
LIST

PD field, 6-150
lock existing records only, 6-76
Lock List, 2-27, 2-28, 2-29, 2-30, 2-33,

2-37, 2-41, 2-42, 6-45, 6-53, 6-77,
6-81,6-85,6-110,6-161,6-181

lock logical records, 6-76
lock operations, 2-36, 2-37
Locked, 2-2
Locked mode, 2-26, 2-30, 6-19, 6-80,

6-83
locked records

maximum number, 6-183
locks

exclusive, 2-35
shared, 2-35

LOCICMAX
SYSDAT field, 6-183

log-in drive, 2-3

------------------------ [Q] DIGITAL RESEARCH®
Index-12

log-in operation, 2-39
logged-in, 2-39
logical console, 6-37, 6-39
logical drives, 2-8
logical extent, 6-113
logical interrupt, 1-2, 6-42
logical list device, 6-128
logical message, 6-169
logical record size, 2-37
Login Vector, 6-44, 6-56
lowercase, 2-6, 2-7
LRU, 3-2
LST:, 6-128
LUL

SYSDAT field, 6-181
LATTACH, 6-127.
LATTACH system call, 6-122
LCATTACH system call, 6-123
LDETACH system call, 6-124
LGET system call, 6-125
LSET system call, 6-126
L WRITE system call, 6-127
LWRITEBLK system call, 6-128

M

M value, 4-8
M80 byte, 3-7
machine code

Small Model, 4-4
make system queue, 6-168
MAL

SYSDAT field, 6-182
MATCH

C_ASSIGN system call, 6-22
MAX number of paragraphs, 6-131
MAX

C_READSTR, 6-34
MPB, 6-130

MCB-Memory Control Block
(Figure 6-7),6-128

MC_ABSALLOC system call, 6-133
MC_ABSMAX system call, 6-134
MC_ALLFREE system call, 6-135
MC_ALLOC system call, 6-136
MC_FREE system call, 6-137
MC_MAX system call, 6-138
MDUL

SYSDAT field, 6-182
media change, 2-3, 2-29, 2-39, 2-40,

2-41, 2-42
media

nonremovable, 6-50
MEM, 1-4, 1-9
MEM field

Process Descriptor, 5-4
MEM

DP field, 6~149
memory, 3-7
memory allocation, 1-13
Memory Allocation System Calls

MP / M Compatible, 6-9
CP / M Compatible, 6-9

memory allocation units, 6-182
Memory Control Blocl<, 6-128

Definition, 6-129
Memory Descriptors

unused, 6-182
Memory Management System Calls,

6-2, 6-3
Memory Management Module, 1-4
memory model, 4-1

RSP, 5-1
Memory Module, 1-9
Memory Parameter Block Definition,

6-130
memory partitions

free, 6-182
memory protection, 6-146
Memory Segment Descriptors, 6-149

i!IDDIGITAL RESEARCH@ ------------------------
Index-I3

Memory System Calls, 6-128
memory

absolute, 6-134
initialization, 3-1
largest available region, 6-138
maximum per process, 6-181

message
length, 5-10, 6-169
maximum number, 6-169
zero-length, 1-8

MFL
SYSDAT field, 6-182

MFPB-M_FREE Parameter Block
(Figure 6-9), 6-132

Mhhhh parameter, 4-7
MIN length, 6-131
MIN

MPB, 6-130
TOO field, 6-185

minimum memory value, 4-8
minimum memory. requirement, 4-7
minute of hour, 6-183, 6-185
MMP

SYSDAT field, 6-181
modes

file open, 2-26
MP I M Compatible Memory

Allocation System Calls, 6-9
MP I M-86 memory allocation scheme,

6-128
MPB-Memory Parameter Block

(Figure 6-8), 6-129
MSGLEN

QD field, 6-169
multi-user, 1-1
mUltiple programs, 1-2
Multisector count, 2-3, 2-34, 2-35,

2-36,6-12,6-13,6-73,6-76,6-82,
6- 93, 6-117, 6-118

Multisector 1/0, 2-34
mutual exclusion queues, 1-7, 1-8

MX queue, 1-8
MXdisk, 1-8
~ALLOC system call, 6-131
M_FREE system call, 6-131, 6-132

N

NAME field, 5-8
directory label, 2-19
APB field, 6-140
CPB field, 6-160
C_A TT ACH, 6-23
DP field, 6-149
PD,5-3
QD field, 6-169
QPB field, 6-163
queue, 6-169
RSP PD, 5-8

NCCB
SYSDAT field, 6-181

NCHAR
C_READSTR, 6-34

NCIODEV
SYSDAT field, 6-183

NCONDEV
SYSDAT field, 6-183

NCP byte
field, 5-3
RSP header, 5-3

networking interfaces, 1-5
NFLAGS

SYSDAT field, 6-181
NLCB

SYSDA T field, 6-181
NLSTDEV

SYSDAT field, 6-183
NMSGS

QD field, 6-169
no data, 6-94

------------------------[!ill DIGITAL RESEARCH@
Index-14

No Room In System Lock List error,
2-46

non-8080 model, 3-7
noninterrupt-driven devices, 6-41
Nonremovable Media Drives, 6-50
null character, 6-90
NVCNS

SYSDA T field, 6-181
NVCNS field, 5-3

o

OFF, 6-50
OFF_8087

SYSDAT, 6-184
OH86 utility, 4-9
one second flag

Flag 2, 1-8
open disk files

maximum number, 6-183
open file, 2-2
Open File Drive Vector, 6-183
Open File Limit Exceeded error, 2-46
open mode, 2-2, 2-26
open verification, 2-29
OPEN_FILE

SYSDAT field, 6-183
OPEN_MAX

SYSDAT field, 6-183
Operating System Version Number

Format (Figure 6-19),6-176
OS type, 6-174, 6-176
os version, 6-176
Output Delimiter, 6-25
owner

queue message, 1-8
OWNEIL8087

SYSDAT, 6-183

p

PI Len, 3-7
P2 Len, 3-7
PARAM field

CPB, 6-160
PARAM

CPB field, 6-160
parameter passing, 6-140
PARENT

PD field, 6-149
parenti child relationship, 3-8
parentheses, 2-6
parse file specification, 2-3
Parse Filename Control Block, 6-86
partial close, 2-30, 2-33, 6-68
password, 2-1, 2-2, 3-7,6-61,6-65,

6-78, 6-98
default, 2-3, 2-23
length, 3-7
mode, 6-79, 6-105

password error, 2-45
password field, 2-5, 6-89

directory label, 2-19
Password field

XFCB, 2-21
password protection, 1-10, 2-3, 2-22,

6-80
password support, 2-18
PO, 1-5, 5-1
PD-Process Descriptor

(Figure 6-12), 6-146
PD address, 6-157
PD table, 6-145, 6-149, 6-161
PD

APB field, 6-140
C_ASSIGN, 6-22

PDADDRESS
RSP Command Queue Message,

5-5

f!IDOIGITAL RESEARCH@ ------------------------
Index-I5

PDISP
SYSDAT field, 6-180

permanent drive, 2-39, 2-40, 2-~2
PFCB-Parse Filename Control

Block (Figure 6-6), 6-86
Physical and Extended Errors, 2-49
physical error, 2-43, 2-49, 2-50
Physical Input Process, 1-10,6-31
physical interrupt, 1-2
Physical Record Mask, 6-50
Physical Record Shift Factor, 6-50
physical records, 2-38
PIN, 1-10, 1-11,6-31
PIP utility, 2-15, 2-34
PLR

SYSDAT field, 6-182
PM field

XFCB,2-21
Poll List, 6-147
POLL

Activity code, 6-147
List Root, 6-182

printer, 1-11,
echo, 6-29

priority
highest, 6-158
lowest, 6-158
transient process, 5-4, 6-158

PRIORITY field, 5-8
PRM, 6-49, 6-51
process, 1-2, 2-28, 2-35
Process Descriptor, 1-5, 5-1, 6-144,

6-J45, 6-146, 6-161, 6-178
address, 1-8, 6-140, 6-157

Process Descriptor
initialization, 3-1
unused,6-182

Process ID
C_ASSIGN, 6-22

Process Keep flag, 1-11

process name, 6-149
aborted, 1-8
priority, 6-154
privileged, 5-10
register values, 6-152
resources, 6-161
scheduling, 6-148

Process/ Program System Calls, 6-3,
6-11

program, 1-2
Program Flag

CMD header record, 3-2
PSH, 6-49, 6-51
PUL

SYSDAT field, 6-182
P _ABORT, 1-11
P_ABORT system call, 6-140
P _CHAIN system call, 2-17, 6-141
P_CLIsystemcall, 1-5,2-6,2-7,2-17,

2-32, 3-1, 4-2, 4-3, 4-4, 4-5, 5-4,
5-5, 5-6, 6-32, 6-73, 6-82, 6-143,
6-144

P_CREATE, 6-145
P _CREATE system call, 3-1, 5-1, 5-4,

5-8, 5-10, 6-146, 6-149, 6-157
P_DELA Y system call, 1-9,6-154
P _DISPATCH system call, 6-155
P _LOAD system call, 1-5, 3-5, 4-2,

4-6, 6-143, 6-156
P _PDADR system call, 5-5, 6-157
P _PRIORITY system call, 5-8, 6-158
P _RPL system call, 6-160
P _TERM, 3-1, 4-2, 6-162
P_TERM system call, 6-32, 6-140,

6-141, 6-161
P _ TERMCPM, 4-2
P_TERMCPM system call, 6-162
P_TERMCPM

CP/M-86, 6-162

________________________ [lID DIGITAL RESEARCH@

Index-16

Q

QD-Queue Descriptor (Figure 6-16),
6-168

QLR
SYSDAT field, 6-182

QMAU
SYSDAT field, 6-182

QPB, 6-171
QPB-Queue Parameter Block

(Figure 6":15), 6-163
qualified reset, 2-40
question mark, 2-6
queue buffer, 1-7,6-145,6-169
queue descriptor, 1-7, 1-8; 6-147,

6-168
unused, 6-182

queue flags, 6-169
10 Field, 6-171
List Root, 6-182
Management, 1-7
Management System Calls, 6-3
message, 1-6, 1-7
Message Buffer, 6-163
name, 1-7,6-163,6-169
Parameter Block, 5-10, 6-163
System Calls, 6-12, 6-163

QUEUID
QPB field, 6-163

QUL
SYSDAT field, 6-182

Q_CREAD system call, 5-5, 6-165
Q_CWRITE system call, 5-5, 6-166
Q_DELETE system call, 5-9, 6-167
Q_MAKE system call, 1-7, 5-10, 6-168
Q_OPEN, 5-5, 6-163
Q_O PEN call, 6-172, 6-173
Q_OPEN system call, 6-160, 6-170,

6-171
Q_READ, 1-6

Q_READ system call, 5-5, 6-165,
6-172

unconditional, 1-8
Q_ WRITE, 1-6
Q_WRITE system call, 5-5, 6-166,

6-173

R

R/O drive test, 2-42
R/O Vector, 6-58
RO

R 1 field, File 10, 6-80
Rl,R2 field, 6-18
Rl,R2 field, FCB, 2-12
RI,R2 fields, 6-92

random, 2-2
read, 2-9, 6-12

Random Record Field, 2-36
FCB,2-35

Random Record Number, 2-9, 2-37,
3-8, 6-76, 6-92, 6-96, 6-102, 6-109,
6-111, 6-117

FCB, 2-12
raw console output, 6-29

mode, 6-31
RC field

FCB, 2-11
XFCB, 2-21

read message, 6-172
read mode, 2-22, 6-80, 6-105
Read Queue List, 6-147
read record, 2-2, 6-93

[!IDOIGITAL RESEARCH@ -----------------------
Index-17

Read-Only, 2-2, 2-40, 6-65
mode, 2-26
attribute, 2-15, 2-26
attribute TI', 6-84
attribute TI', 2-15
drive, 6-62
file, 2-11,6-76
mode, 2-35, 6-83
Vector, 6-44

Read-Write, 2-40
Read-Write, 6-47
R~ad-Write state, 6-62
Read/Only Disk error, 2-44

File error, 2-44
Ready List, 1-5, 1-6, 1-7, 1-9,6-147
Ready List Root, 6-182
ready process, 1-5
Real-time Monitor, 1-4, 1-5
real-time process control, 1-2

window, 1-13
Rec Len, 4-11
Rec Mark, 4-11
Rec Type, 4-11
record blocking, 2-38, 6-82
record count

file, 2-9
first, 2-9
locking, 2-28, 2-36
physical, 2-38
size, 2-2, 2-37
unlocking, 2-36

RED RA W, 6-35
reentrant, 6-149, 6-160
reentrant RSP, 5-4
register AL, 2-47
register contents preserved, 1-13
register initialization, 5-8, 5-9
removable drive, 2-40, 2-42
reset

drive, 2-39
Resident Procedure Library, 6-160

resident system process, 1-2, 3-1, 5-1,
6-143

resources
process, 6-161

RESTRICTED flag, 5-10
RETF instruction, 4-2, 6-180
RETURN, 6-35
Return and Display Error mode, 2-43
Return and Display mode

BDOS Error mode, 6-75
return codes, 2-47
Return Error mode, 2-43, 2-49

BDOS Error mode, 6-75
Revision Level, 6-176
RLR

SYSDAT field, 6:182
roots of system lists, 6-178
round-robin scheduling, 6-155
RPL, 6-160
RS field

FCB, 2-11
RSP, 1-2, 6-143

bi~, 5-9
CMD Header Record, 5-2
ECHO,5-1
first, 6-181
multiple copies, 5-3
shared code, 5-4
8080 Model, 5-2, 5-3
Small Model, 5-2, 5-4

RSP Command Queue, 5-4, 5-5, 5-6,
5-9

-------------------------lIID DIGITAL RESEARCH@
Index-18

RSP Command Queue Message
(Figure 5-3), 5-5

Data Segment (Figure 5-4), 5-7,
6-180

Flag, 5-5
header, 5-2, 5-3, 5-6, 5-7
Header Format (Figure 5-2), 5-3
memory models, 5-1
Process Descriptor, 5-4, 5-8
queue, 6-143
stack, 5-9
type, 3-1
UDA, 5-6, 5-7

RSPSEG field, 5-11
RS~SEG

SYSDAT field, 6-180
RTM, 1-4, 1-5, 1-8
RUB/DEL, 6-34
RUN state, 6-41
RUN

Activity code, 6-147
running process, 1-1, 1-5

s
SI

S2 fields, directory label, 2-19
S2 fields, XFCB, 2-21

screen switch, 1-10, 1-11
SDA TV AR field

RSP header, 5-3
SEC

TOO field, 6-186
second flag, 1-8
second of minute, 6-183, 6-186
seconds, 6-187
Sectors Per Track, 6-49
security

file, 2-27
segment addresses, 6-153

Segment Base Addres~, 4-9
segment register initialization, 4-2
SEG_8087

SYSDAT, 6-184
sequential, 2-2

access, 6-12
I/O processing, 2-34
read, 2-9
write, 6-79

serial number, 6-177
SERIAL Number Format

(Figure 6-20), 6-177
SET command, 2-23
SET utility, 2-32, 2-33
SFCB, 2-18, 2-24, 6-17
SFCB Subfields (Figure 2-5), 2-24
SFCBs, 6-61
shared code, 1-2, 3-2

file access, 1-10
file system, 1-2
List, 3-2
RSPs, 6-149
locks, 2-35, 6-77

SI
UDA field, 6-152

single-user, 1-1
size

physical records, 2-38
record, 2-2, 2-37

Small Memory Model, 3-5, 4-4
Small Model, 1-12, 4-2
source files, 2-9
SP field

UDA, 5-9, 6-152
sparse file, 2-9
SPT, 6-49
SS and S P registers

Small Model, 4-4
UDA field, 6-153

stack area, 6-144
stack pointer, 6-152

I!ID DIGITAL RESEARCH@ ------------------------
Index-19

Stack Segment, 5-1, 6-152
stack

RSP,5-9
start address, 4-7, 4-9
START field, 6-131
START paragraph, 6-132

MPB,6-130
STAT

PO field, 6-147
state

reset, 2-39
Status Word

UOA 8087 extension, 6-153
string delimiter, 6-40
SUP, 1-4, 1-5
SUP ENTRY

SYSDAT field, 6-180
Supervisor, 1-4, 1-5

Code Segment, 6-180
entry point, 6-180

suspended process, 1-5
SW

UOA 8087 extension, 6-153
switch screen, 1-11
synchronization, 1-2
SYS Flag, 5-8
SYS flag, 6-140, 6-148
SYSDAT Table (Figure 6-21), 6-179
SYSDAT, 2-25, 5-11

H(elp) option, 1-14
M(emory) option, 1-14, 1-15
SYSDAT field, 6-181

SYSDISK
SYSTAT, 1-14

O(verview) option, 1-15
P(rocess) option, 1-15
Q(ueues) option, 1-15
U(ser Processes) option, 1-15

System, 6-65
system attribute, 2-15
SYSTEM attribute, 6-143

system attribute t2', 6-84
system calls 3, 6-1, 6-18, 6-21

conventions, 1-12
system call register initialization, 1.;.13
System Call summary, 6-14
System Data Area, 5-7, 5-10
System Data Segment, 5-11, 6-145,

6-170
address, 6-178

system disk, 6-143
default~ 6-181

System file, 2-11
user-zero, 2-15

SYSTEM flag, 6-161
system

flags, 6-181
generation, 5-1
lists, 1-5, 1-6
process, 6-148
processes, 1-2
queue, 1-2, 1-13,6-170
Status, 1-14
System Calls, 6-3, 6-13
ticks, 6-162, 6-155
ticks per second, 6-181
time and date, 6-185
timing, 1-8, 1-9
tracks, 2-8

S_BDOSVER, 6-182
S_BDOSVER system call, 6-174
S_BIOS system call, 6-175
S_OSVER, 6-182
S_OSVER system call, 6-176
S_SERIAL system call, 6-177
S_SYSDAT system call, 5-7, 6-178

------------------------lIID DIGITAL RESEARCH@

Index-20

T

Tl', 2-15
Tl' attribute, 2-26
Tl'-T3', 2-14, 6-65

FCB, 2-11
T2', 2-15, 2-18
T3', 2-15
TAB, 6-35, 6-90

characters, 6-32
expansion, 6-29, 6-38, 6-39

TABLE flag, 6-149
TEMP DISK

SYSDAT field, 6-181
TERM

APB field, 6-139
Terminal Message Processes, 1-11
Terminal Message Processor, 1-4, 3-1
termination

character, 6-32, 6-33
code, 6-139, 6-161, 6-162

THRDRT
SYSDAT field, 6-182

THREAD
field, 6-182
list, 6-22, 6-139, 6-147
List Root, 6-182
PD field, 6-147

tick flag, 1-9
Tick Interrupt Handler

XIOS, 1-8, 1-9
TICKS/SEC

SYSDAT field, 6-181
time and date, 1-2, 1-8, 6-105, 6-185,

6-187
time of day, 1-8
time stamp

directory label, 2-25
Time System Calls, 6-3, 6-13
timing functions, 1-2

TMP, 1-4, 1-11, 2-17, 3-1, 5-5, 5-9,
6-112, 6-161

priority, 6-144
RSP, 5-3

TOD-Time-of-Day Structure
(Figure' 6-22), 6-185

TOD_DAY
SYSDAT field, 6-183

TOD_HR
SYSDAT field, 6-183

TOD_MIN
SYSDA T field, 6-183

TOD_SEC
SYSDAT field, 6-183

TPA, 6-145
Track Offset, 6-51
Transient Execution Models, 4-1

Process Area, 6-145
processes', 1-2, 1-5
program, 1-12, 3-1

truncate file, 2-1, 2-2
TSI field

directory label, 2-19
TS2 field

directory label, 2-19
type field

directory label, 2-19
XFCB, 2-21

TYPE utility, 2-9
T_GET system call, 2-25, 6-186
T_SECONDS system call, 6-187
T_SET system ca.ll, 6-188

u

UDA, 1-5, 1-6, 5-1, 6-135, 6-144,
6-145

UDA-User Data Area (Figure 6-23),
6-151

UDA SEGMENT field, 5-8

[!Q]OIGITAL RESEARCH@ -----------------------
Index-21

UDA
8087, 3-1, 3-2
initialization, 3-1
PO field, 6-149
RSPs, 3-1

unallocated data block, 6-121
unconditional read

queue, 1-7
unlock operations, 2-36

records, 6-111
unlocked, 2-2

mode, 1-10, 2-12, 2-26, 2-35, 2-37,
6-79, 6-82

unused Process Descriptors, 6-182
unused Queue Descriptors, 6-182
unused Memory Descriptors, 6-182
unwritten random records, 6-121
update date and time stamp, 6-17,

6-114
update stamp, 6-80

field, 2-19
time stamp, 2-24

Upper Segment Base Address, 4-12
USBA,4-12
User 0,2-18,6-83
user attributes, 2-15
User Data Area, 1-5,3-1,5-1,6-135,

6-145,6-149,6-151
RSP, 5-9

user default disk, 6-181
directories, 2-17
number, 1-11,2-1,2-3,6-82
number conventions, 2-17
terminal, 1-1
zero, 6-82

user processes priorities, 6-148
User System Stack, 6-152
USER SYSTEM STACK

UDA field, 6-153
USER

PD field, 6-149

user-zero system files, 2-15

v
VERNUM

SYSDAT field, 6-182
version number, 6-174, 6-182
version string address, 6-182
version

os, 6-176
VERSION

SYSDAT field, 6-182
VINQ, 1-11
virtual console, 1-1, 1-2,6-175,6-181
Virtual Console Input Queue, 1-11
Virtual Console Screen Management,

1-10
Virtual Console Screen Manager, 1-4
virtual environments, 1-1
virtual file size, 6-18
Virtual OUTput processes, 1-10
VOUT, 1-10

w

wildcard file specifications, 6-70
window

real-time, 1-13
write data records, 6-113
write, 6-173
write mode, 2-22, 6-80, 6-105

Queue List, 6-147
record, 2-2
sequential, 6-79
zeroes, 6-121

-------------------------I!QJ DIGITAL RESEARCH@
Index-22

x

X value, 4-8
XFCB, 2-18, 2-20, 6-79, 6-81

Extended File Control Block
(Figure 2-3), 2-20

Create or access time stamp field,
6-105

password mode, 6-119
Update time stamp field, 6-105

Xhhhh parameter, 4-7
XIOS, 1-4, 1-10, 1-11,6-41,6-43,

6-175
ALLOC buffers, 6-181
ENTRY, 6-180
Header, 6-181

XIOS INIT, 6-180
XIOS Initialization entry point, 6-180
XPCNS

SYSDAT, 6-184

z

Zeroes, 4-11

[!QJDIGITAL RESEARCH® ------------------------
Index-23

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with bettel
product documentation.

Date

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Concurrent CP / MTM Operating System Programmer's Reference Guide
First Edition: January, 1984
1034 -2023

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

• ___ .~ __ . _ _____ ._. ___________ ~~"<'---=>O~ __ ___=a eo-.-_ -=--=---. ~ _-.....:;...,,~ _____ ~ •. ._r~ __ • ...a..-~ ~ ___ .- ~-____ -__ -_-__ ---_ •----.-~ . ..;....",;;....;..",;,,; ~ ~~

From: ______________________ _

Attn: Publications Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ill DIGITAL RESEARCHTW
p,O, Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

1034-2023

