
CP/M-86T .M. 

Operating System 

Release 1.1 

Release Notes 

Copyright ~ 1982 

Digital Research 
P.O. Box 579 

160 Central Avenue 
Pacific Grove, CA 93950 

(408) 649-3896 
TWX 910 360 5001 

All Rights Reserved 





CP/H-86'"·M·Operatlng System 

Release 1.1 

Copyright © 1982 by Digital Research 
CP/M is a registered trademark of Digital Research. 

ASM-86, CP/M-80 and CP/M-86 are trademarks of Digital Research. 
ISBC is a trademark of Intel Corporation. 

Intel is a registered trademark of Intel Corporation. 
Compiled February 1982 

Thank you for purchasing the CP/M-86T.M. operating system 
package. Software included in this package is proprietary to 
Digital Research and contains internal serialization to allow 
unauthorized copies to be traced to their source. The Digital 
Research Software License Agreement defines the terms and conditions 
covering the use of CP/M-86. Please take time to carefully read 
this agreement. The enclosed Software Registration Card must be 
filled out and mailed to Digital Research before use of this 
software is authorized. Upon receipt of the Registration Card, your 
name will be placed on our CP/M-86 mailing list, so you will receive 
newsletters and update notices. Under the terms of the agreement, 
you are allowed to make back-up copies for your own use, but you are 
not allowed to make copies of software provided in this package for 
any third parties, including friends, relatives, or business 
associates. 

The documentation for CP/M-86 consists of the following 
manuals: 

Q£LM-86 ORerating~ystem User's Guide 

CELM-66 Operating-Eystem Programmer's Guide 

CPLM-86 Operating~ystem Command Summary 

Two diskettes are also included. The first disk contains the 
CP/M-86 operating system and the utility programs. The second disk 
contains the source files for programs and data files used in system 
regeneration. The following programs are on the first disk. 

ASM86.CMD 
ASM86.COM 
COPYDISK.CMD 
CPM.H86 
CPM.SYS 
DDT86.CMD 
ED.CMD 
GENCMD.CMD 

8086 assembler 
8J80 version of ASM-86 T.M. assembler 
Ut1lity to copy entire diskette 
Hex file for CP/M-86 CCP and BOOS 
CP/M@ system file, loaded at cold start 
CP/M-86 debugger 
CP/M-86 program and text editor 
CMD file generation utility 

1 



CP/M-86 

GENCMD.COM 
GENDEF.CMD 
GENDEF.COM 
HELP.CMD 
HELP.HLP 
LDBDOS.H86 
LDBIOS.HB6 
LDCOPY.CMD 
LDCPM.HB6 
LMCMD.CMD 
LMCMD.COM 
LOADER.CMD 

PIP.CMD 
STAT.CMD 
SUBMIT.CMD 
TOD.CMD 

BOBO version of GENCMD 
Diskdef file generator 
BOBO version of GENDEF 
Help utility 
Data file for help utility 
Loader BOOS hex file 
Loader BIOS hex.file 
Loader copy utility 
Loader main program hex file 
CMD file generation utility 
BOBO version of LMCMD 

V 1.1 

ISBCT.M. B6/l2 intermediate loader (used 
only with the standard Intel® system) 
Peripheral Interchange Program 
File and disk status utility 
Batch processing utility 
Display and set time of day utility 

The files with a filetype of CMD operate under CP/M-B6. The 
files with a filetype of COM are included for cross development 
under CP/M-BOT.M .• 

The second disk contains the following files. 

BIOS.AB6 
CBIOS.AB6 
COPYDISK.AB6 
DEBLOCK.LIB 
LDBIOS.AB6 
LDCOPY.AB6 
LDCPM.AB6 
RANDOM.AB6 
ROM.AB6 
SINGLES.DEF 
SINGLES.LIB 
TBIOS.AB6 
TRACK.AB6 
BOB7.LIB 

Source file for the standard BIOS 
Source for the skeletal BIOS 
Source for COPYDISK.CMD 
Blocking/deblocking algorithms 
Source for LDBIOS.CMD 
Source for LDCOPY.CMD 
Source for LDCPM.CMD 
Sample AB6 program using BOOS calls 
Source file for the ISBC B6/12 boot ROM 
Diskdef input to the GENDEF utility 
Output from the GENDEF utility 
Source for track buffered BIOS 
Skeletal source for track buffering 
Code macro library for BOB7 

Note: The DEBLOCK.LIB file is included for your reference. Any 
specific application might require modifications. 

2 



CP/M-86 T ,M, Operating System 

version 1.1 

Enhancements 

ASM-86, CP/M-86, DDT-86, and SID-86 
are trademarks of Digital Research. 

Copyright~ 1982 by Digital Research, Inc. 

Digital Research is pleased to supply you with CP/M-8~~Vpdate 
Version 1.1. This version of our single-user 8086/8088 operating 
system has many enhancements we feel you, as an end user, can 
appreciate: 

1.1 Update Features: 

o A HELP facility has been added • 

• The user facility has been enhanced to allow you to access 
system files in user area o • 

• Program chaining lets one program chain to the next without 
operator intervention. 

o All utilities are reduced on size and execution time. 

o A DIRS command added to the CCP allows display of system files. 

Utility Enhancements Overview: 

ED reads and wr i tes to, and deletes INCLUDE files. You can now 
specify an input and an output file. ED attempts to recover from 
DISK FULL errors by erasing the backup file and retrying. ED 
backspaces past the beginning of the line. 

ED allows specification of different input and output file 
specifications. Specify the output file, if different from the 
input file, after the input file, as shown below: 

ED <input filespec> <output drive or filespec> 

If you specify an output file, no backup file is created. This 
allows the input file to be on a write-protected disk. 

ASH-86T,M'symbols are now alphabetized in the SYM file. About 
5.5K more of space is available for the symbol table. 

PIP can be utilized between user areas. The SPARSE file copy 
is supported. 

1 



GENCMD now allows you to create a file without a header record, 
and create a file with a prefilled memory. Do this by including 
.NOHEAD in the command tail. 

DDT-86T
.
M·compares memory facili ty. 

SID-86T
.
M

• is available to support CP/M-86. 

STAT checks for the existence of duplicate block assignments 
(an invalid directory) and displays an error message if an 
allocation conflict is· discovered. You should erase the file 
containing the conflict, and reset the disk with a CTRL-C. Use, 

STAT *.* 

to obtain the duplicate block check. 

Please contact Digital Research Technical Support at (408) 375-
6262 if you have technical difficulties. Send us your registration 
card, and you will automatically receive CP/M-86 application notes 
and patches directly from Digital Research. 

2 



PAGE 27 

ADD:---> 

CP/M-86 ',M. Operating System 

SYSTEM GUIDE 

Correction to the First Printing - 1981 
Copyright~ 1981 by Digital Research, Inc. 

CP/M-86 is a trademark of Digital Research. 
Compiled February 1, 1982 

To the FUNCTION 6 DIRECT CONSOLE I/O BLOCK, 

Entry ,)--------"'-4 Return .. .. 
CL: 06H FUNCTION 6 AL: char or status 

DL: OFFH ( input/ DIRECT CONSOLE (no value) 
status} I/O 

or 

" OFEH (status) 
or 

char (output) 

The second paragraph following FUNCTION 6 should read: 

Upon entry to Function 6, register DL contains either (1) a 
hexadecimal FF denoting a CONSOLE input/status request, or (2) a 
hexadecimal FE denoting a console status request, or (3) an ASCII 
~haracter to be output to CONSOLE where CONSOLE is the logical 
console device. If the input value is FF, then Function 6 checks to 
see if a character is ready. If a character is ready, Function 6 
returns ~he character in AL: otherwise Function 6 returns a zero in 
AL. I f the inpu t value is FE and no character is ready, then 
Function 6 returns AL = 00: otherwise, AL = FF. If the input value 
in DL is not FE or FF, then Function 6 assumes that DL contains a 
valid ASCII character which is sent to the console. 

You cannot use Function 6 with FF or FE in combination with 
either Function 1 or Function 11. Function 1 is used in conjunction 
with Function 11. Function 6 must be used independently. 

1 





PAGE 47 

CP/H-86T.M. Opp.rating Systell 

SYSTEM GUIDE 

Enhancements to the First Printing - 1981 
Copyright~ 1981 by Digital Research, Inc. 

CP/M-86 is a trademark of Digital Research. 
Compiled February 1, 1982 

In Section 4.3, BDOS File Operations, 
Add two new BDOS Functions: 

Entry 

-
CL: 2FH FUNCTION 47 

DMA buffer: CHAIN TO PROGRAM 
Command Line "-

~--------------------~ 

Return 

Load, Initialize, and Jump to specified Program 

-

The CHAIN TO PROGRAM function provides a means of chaining from 
one .program to the next without operator intervention. Although 
there is no passed parameter for this call, the calling process must 
place a command line terminated by a null byte in the default DMA 
buffer. 

Under CP/M-86 T.M., the CHAIN TO PROGRAM function releases the 
memory of the calling function before executing the command. The 
command line is parsed and placed in the Base Page of the new 
program. The Console Command Processor (CCP) then executes the 
command line. 

1 



CP/M-86 System Guide 

PAGE 41 (continued) 

Then, add: 

Entry 

• 
CL: 03lH FUNCTION 49 

GET SYSDAT 
ADDRESS 

Enhancements 

Return 

• ax: SYSDAT Address 
Offset 

ES: SYSDAT Address 
Segment 

Return the address of the System Data Area 

The GET SYSDAT function returns the address of the System Data 
Area. The system data area includes the following information: 

dmaad equ word ptr 0 iuser DMA address 
dmabase equ word ptr 2 iuser DMA base 
curdsk equ byte ptr 4 icurrent user disk 
usrcode equ byte ptr 5 icurrent user number 
control_p_flag equ byte ptr 22 ilisting toggle ••• 

iset by ctrl-p 
console width equ byte ptr 64 
printer:width equ byte ptr 65 
console cqlumn equ byte ptr 66 
printer: column equ byte ptr 67 

The following list provides an explanation of system data area 
parameters. 

• dmaad means current user DMA address. 
• dmabase means current user DMA base. (See page 48 under 

Function 51 in the CPLM-86 Op'eratin~ystem System Guide). 
• curdsk means current user disk, 0-15 (A-P). 
• usrcode means current user 'area, 0-15. 
• control p flag, 0 means do not echo console output to the 

printer: -FF means echo to the printer. 

2 



CP/M-86 System Guide Enhancements 

PAGE 60 

In Table 5-4. BIOS Subroutine Summary, in the description 
of subroutine INIT, 
change: 

BOOS offset (OBllH) 

to: 

BOOS offset (08068) 

3 





CP/M-86T,M, Operating System 

USER'S GUIOE 

Adding your own text to the HELP.HLP file 

Addendum to the First Printing - 1981 
Copyright © 1981 by Digital Research, Inc. 

CP/M-8G is a trademark of Oigital Research, Inc. 

CP/M-8GT,M'is distributed with two related HELP files: HELP.CMO 
and HELP.HLP. The HELP.CMD file is the command file that processes 
the text of the HELP.HLP file and displays it on the screen. The 
HELP. HLP file is a text file to which you can add customized 
information, but you cannot edit the HELP.HLP file. You must use 
the HELP.CMO file to convert HELP.HLP to a file named HELP.OAT 
before you can edit or add your own text. 

Use the following forms of the HELP command to change HELP.HLP 
to HELP.OAT and change HELP.OAT back to HELP.HLP. 

HELP [E} 

HELP [C} 

The HELP [E) command accesses the file HELP.HLP on the default 
drive, removes the header record, and creates a file called HELP.OAT 
on the default drive. You can now invoke a word-processing program 
to edit or add your own text to the HELP.OAT file. 

The HELP [C) command accesses your edited HELP.OAT file on the 
default drive, generates a new index for the entries record, and 
builds a revised HELP.HLP file on the default drive. HELP.CMO can 
now display your new HELP.HLP file. 

You must add topics and SUbtopics to the HELP.OAT file in a 
specific format. The general format of a topic heading in the 
HELP.OAT file is shown below. 

///nTOPICNAME<cr> 

The three back slashes are the topic delimiters and must begin in 
column one. In the format statement above, n is a number in the 
range from 1 through 9 that signifies the level of the topic. A 
main topic always has a level number of 1. The first subtopic has a 
level number of 2. The next SUbtopic has a level number of 3, and 
so forth up to a maximum of nine levels. TOPICNAME is the name of 
your topic, and allows a maximum of twelve characters. The entire 
line is terminated with a carriage return. 

1 



CP/M-86 User's Guide Adding to the HELP.HLP file 

Use the following guidelines to properly edit and insert text 
into the HELP.OAT file. 

• Topics should be ordered in ascending alphabetical order. 

• Subtopics should be ordered in ascending alphabetical order 
within their respective supertopic. 

• Levels must be indicated by a number 1 - 9. 

Some examples of topic and subtopic lines in the HELP.HLP file 
are shown below. 

///lNEW UTILITY<cr> 

///2COMMANDS<cr> 

///3EXAMPLES<cr> 

The first example shown above illustrates the format of a main topic 
line. The second example shows how to number the first subtopic of 
tha t main topic. The third example shows how the next level 
subtopic should be numbered. Any topicname wi th a level number of 1 
is a main topic. Any topicname wi th a level number of 2 is a 
sUbtopic within its main topic. 

When you are executing the HELP.CMD file, you need only enter 
enough letters of the topic to unambiguously identify the topic 
name. When referencing a subtopic, you must type the topic name AND 
the subtopic, otherwise the HELP program cannot determine which main 
topic you are referencing. You can also enter a topic and subtopic 
following the program's internal prompt, HELP>, as shown below. 

HELP>ED COMMANDS 

This form of HELP displays information about commands internal to 
the editing program, ED. 

2 



CP/M-86 T .M. Operating System 

SYSTEM GUIDE 

"Diskette Track Buffering Greatly Increases Performance 
of the CP/M-86 Operating System-

by John R. Pierce 
December 12, 1981 

Addendum to the First Printing - 1981 
CP/M is a registered trademark of Digital Research. 

CP/M-86 is a trademark of Digital Research. 
Copyr ight © 1981 by Digi tal Research 

Compiled February 1, 1982 

Rotational latency is the major performance bottleneck in 
diskette systems. The standard eight-inch diskette rotates at only 
360 RPM or 6 turns/second, and a read coming at a random time might 
take up to a full turn of the diskette or 167 milliseconds. 
Diskette-based operating systems often compensate for this by 
stagger ing track sectors, so several can be read in one turn. 
However, systems still require several turns to read all of the 
sectors of a particular track. 

There are several techniques for reducing rotational latency. 
One of the simplest and most effective of these methods is track 
buffering; a track buffered system never needs more than two turns 
to read an entire track. Two turns require only a third of a second 
(worst case) instead of the full second or more required by the 
standard technique of reading the sectors out of order, according to 
a skew table traditionally used by CP/M® systems. In fact, 50% of 
the time, only 1. 5 turns are necessary. This translates to an 
average of .167*1.5 seconds, or about a quarter second to read the 
track (which contains up to 8192 bytes in a double-density 8-inch 
floppy diskette). 

However, nothing is free. Track buffering requires that the 
CBIOS contain a buffer large enough to hold the complete track, 
often 8192 bytes. Because most 8086 systems have plenty of memory, 
this should not cause a problem. Also, diskettes formatted with 
physically staggered sectors require multiple turns to read all 
sectors, resulting in significant performance degradation. This can 
only be remedied by copying these diskettes onto consecutively­
skewed diskettes. 

The' following algor i thm implements this track buffer ing scheme, 
in a fashion compatible with any existing CP/M diskette fcrmat. You 
must insert this module into your CBIOS, using the existing disk 
drivers to perform the TRACK READ and SECTOR WRITE functions. The 
EQUates for HOST SECTSIZ, HOST SPT, and HOST FSN should be set to 
the appropriate values outlinea in the comments. 

1 



CP/M-86 System Guide "Diskette Track Buffering" 

A potential problem with any deblocking scheme is knowing when 
to "flush" the buffer following writes. The crudest scheme is to 
allow each write to cause an immediate disk write. This, however, 
takes a turn of the disk for each 128 byte record. Under CP/M, 
because all output files must be closed, and all closes cause a 
directory write, you can assume that you can save the records in 
memory, as long as you flush the buffer after each directory write. 
Conveniently, CP/M-86 I s BOOS sets a flag in CL when calling WRITE, 
indicating whether this is a write to the directory or not. This is 
the same scheme used by the standard sector blocking and deblocking 
algorithm distributed with CP/M-86T~~ The track buffering algorithm 
also notes which disk sectors have been updated in the buffer. When 
the algorithm writes from the buffer, it need only write to the 
updated physical disk sectors. 

The TRACK READ routine may consist of a loop that invokes your 
sector read for each sector. However, many disk controllers can 
read a whole track with a single command. Indeed, with sqme 
controllers, this is the only way to read a track in one turn. 
Optimization is also achieved by reading the track starting with the 
next sector passing under the heads. This method cuts the 
rotational latency to a fixed single turn rather than the one to two 
turns required if you must wait for sector one to start reading. 
Note that this possibility is highly controller-dependent, and 
generally requires a "read identification" capability to identify 
the next sector number. However, it should increase performance by 
about another 30%. 

When using track buffering, the performance of a read-back 
check after each wr i te causes much less degradation than when 
reading and writing individual sectors. This is because the check 
takes only one additional turn per track, rather than 26 or more. 
Furthermore, on a read-back check error, it would even be possible 
to re-write the bad sector in an attempt to correct it. This 
reduces the error rate for eight-inch diskettes from its present 
very low value to virtually none, while slowing writes down by only 
30% or less. 

Note that NO provision is made in this algorithm for handling 
diskette errors. It is assumed that the TRACK READ and SECTOR WRITE 
subroutines pr int appropr iate error messages and perhaps even obtain 
operator responses. This is because an error may occur when writing 
a buffer, while CP/M thinks you are reading from the other drivel 
The only module that can handle disk errors properly is the BIOS 
itself. 

If interrupts occur when the diskette door is opened, you can 
check the write flag to see if the buffer is dirty, and either clear 
the write flag and SEC FLAGS array, or indicate that a write has 
occurred with a beep, or in some other fashion. If the system has 
programmable status lights, it is a good idea to set a light when 
WRlTE FLAG is set, and clear the light when the flag is cleared. If 
the system supports a programmable door lock mechanism, it can be 
set while the buffer is dirty, making the system failsafe. 

2 



CP/M-86 System Guide "Diskette Track Buffering" 

These track buffer ing algor i thms wor k wi th any sector size that 
is an integral multiple of 128, and not necessarily a power of two. 
This allows implementation of more dense diskette formats. 
Naturally, any system that implements nonstandard diskette formats 
should still have some way to read standard CP/M 3740 format 
diskettes for interchange. 

The following is a Source Listing of the CP/M-86 Accelerator 
Track Buffering Routine for CP/M-86. 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

CP/M-86 Accelerator -- Track Buffering Routines 

This module, when installed in a CBlOS, causes 
CP/M-86 to perform disk input output on a 
track by track basis, rather than sector by 
sector. 

This speeds diskette access, often by a 
factor of four or more times. 

The actual disk sectors must be an integral 
multiple of 128 bytes, but do not need to be 
a power of two multiple, unlike the deblocking 
algorithms supplied with CP/M-86 •. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

The following three equates must be set to correspond to the 
actual disk utilized. 

host sectsiz equ 1024 

8 host spt 
host-fsn 

init: 

seldsk: 

equ 
equ 

equ 

1 

o 

call clear flags 

mov cpm disk,cl 
test dl~l 
jnz old disk 

3 

bytes per actual .(physical) 
disk sector 
actual sectors per track 
starting sector number 
(only 0 or 1 allowed) 
first sector from CP/M 

Initialize track buffering 

save the selected drive 
check logged-in bit 
not first time 



CP/M-86 System Guide Addendum Track Buffering Routine 

selected if nz 

here if CP/M is about to login to the drive being 
selected. 

old disk: 
mov bl,cpm disk 1 mov bh,O 
mov cl,4 I-shl bx,cl 
add bx,offset dpbase 
ret 

setdma: 
mov 
ret 

setdma_seg: 
mov 
ret 

horne: 

dma_offset,cx 

dma_segment,cx 

times 16 
gives offset from DPBASE 
back to BDOS 

save DMA offset address 

save DMA segment address 

test wr flag,l 1 jnz homel ; if the buffer is clean, 
mov -cur_disk,-l insure we read the directory 

by invalidating 

homel: 

settrk: 

setsec: 

sectran: 

mov 

mov 
ret 

mov 

ret 

mov 
test 
jz 
add 
mov 
mov 

sectran exit: 
-ret 

read: 
call 
push 

mov 

add 

les 

cx,O 

bx,cx 
dx,dx 
sectran exit 
bx,dx -
bl, [BX] 
bh,O 

setup 
es 

the track buffer 

home is a settrk zero 

save track number for next operation 

save sector number 
for next operation 

Put logical sector into dest. reg. 
see if table address is zero 
yeah, logical = physical 
else, we need to fetch the 
actual sector number from the table 
zero high byte for good luck 

si,offset track buffer 

si,ax 

di,dma_longword 

rep movsw 

save the extra 
segment register 
source segment 
is systems os: 
gives the offset 
into the buffer 
point ES:OI at 
the users sector 
doit 

4 



CP/M-86 System Guide Addendum 

write: 

return: 

pop 
sub 
ret 

push 

es 
ax,ax 

cx 

call setup 
push ax 
push ds 
push es 
mov bx,ds I mov es,bx 

mov di,offset track buffer 

add 
Ids 
rep 
pop 
pop 

pop 
mov 

sub 
div 

mov 
mov 

mov 

pop 
cmp 
jne 

call 

mov 
ret 

di,ax 
si,dma_longword 

movsw 
es 
ds 

ax 
cx,host sectsiz -
dx,dx 
cx 

bx,ax 
sec_flags [BX] ,1 

wr_flag,l 

cx 
cl,l 
return 

flush buffer 

ax,O 

Track Buffering Routine 

restore the extra segment 
make a zero return code 

save the write mode 
from the BOOS 

save buffer offset 
save the data segment 
save the extra segment 
destination is our 
data segment" 
destination is in 
track buffer 
plus appropriate offset 
source is users OMA address 
move that sector 
restore the extra segment 
and the data 
segment registers 
recover buffer offset 
setup to divide by 
host sector size 
extend ax to 32 bits 
find out which host 
sector we changed 
put into index [BX] 
set the update flag 
for that sector 
also set the dirty 
buffer flag 
recover BOOS write code 
is this a directory update ? 
no, we may leave 
dirty records in the buffer 
we have a directory 
write, need to 
flush the buffer 
to insure the 
disks integrity 

never return BAD SECTOR code 

setup: : common code for setting up reads and writes 

mov 
cmp 
jne 

mov 

cmp 

al,cpm disk 
al,cur-disk 
wrong_track 

ax,cpm_track 

5 

see if selected disk is 
the same as last time 

no, we have wrong track 

see if desired track is 
same as 

the track in the buffer 



CP/M-86 System Guide Addendum 

je correct track 

Track Buffering Routine 

same drive and track, 
we don't need to read 

Desired operation is on a different track than is in our 
buffer, so it will be necessary to read in the desired track. 
First, we must check to see if any sectors of the current 
buffer are dirty. 

wrong track: 
- call 

mov 
mov 
mov 
mov 
mov 

flush buffer 

ax,cpm track 
cur track,ax 
al,cpm disk 
cur disk,al 
cur:=dma,offset 

write any old records, 
if necessary 

get desired track number 
make in new track 
get desired disk number 

; make it current drive 
track buffer ; point dma offset 

- at track buffer 
mov 
call 

cur sec,host fsn 
track read -

starting from first sector 
load the track 

correct track: 
mov ax,cpm sec 

if (cpm fsn ne 0) -
sub ax,cpm_fsn 

endif 
mov cl,7 
shl ax,cl 

mov cx,64 1 cld 
ret 

flush buffer: 
test 

jz 

mov 
mov 

next sect: 
- test 

no flush 

bx,O 
cx,host_spt 

sec_flags [BX] ,1 

jz not updated 
mov sec-flags[BX],O 
push bx -
push cx 
mov ax,host sectsiz 
mul bx -
add ax,offset track buffer 
mov cur dma,ax -

if (host fsn ne of 

endif 
add bx,host_fsn 

6 

get the cp/m sector number 

correct if we start 
with sector one 

10g2(128) 
sector times 128 
gives offset 
move 64 words forward 

see if we have anything 
to write 
no, skip scanning 
for dirty sectors 
start at host sector 0 
for host_spt sectors ••• 

see if this sector 
has been changed 
no, leave it alone 
zero the flag for next time 
save the registers 

make track buffer offset 
make direct pointer 
save for write routine 



CP/M-a6 System Guide Addendum Track Buffering Routine 

mov 
call 
pop 
pop 

not updated: 
- inc 

loop 
no flush: 

mov 
ret 

cur sec,bx 
sector write 
cx 
bx 

bx 
next sect 

save host sector number 

: clear the dirty buffer flag 

Clear all variables associated with the track 
buffer, so next operation will have to read a track. 
This is involves clearing all write flags and 
setting the old drive code to'the invalid -1. 

mov cur_disk,-l 
sub ax,ax 

insure initial pre-read 
make a zero 

mov wr flag,al 
mov di~offset sec_flags 

clear the dirty buffer flag 
point to the update 
flag list 

mov bx,ds 1 mov es,bx 
mov, cx,host spt I cld 
rep stosb -

ES <- OS 
set length and direction 
zero the sector update flags 

ret 

track read: 

ret 

sector write: 

ret 

dseg 

cpm_disk 
cpm_ track 
cpm_sec 

dma offset 
dma=:segment 
dma_longword 

cur disk 
cur sec -cur track 
cur-dma 

rb 
rw 
rw 

rw 
rw 

read an entire track from the drive "cur disk", 
the track "cur track" into "track Euffer". 

write a physical sector to disk "cur disk", 
track "cur track", sector "cur-sec" from 
the buffer-at OS:"cur dma". -

1 
1 
1 

1 
1 

equ dword ptr dma offset 

rb 1 
rw 1 
rw 1 
rw 1 

7 



CP/M-86 System Guide Addendum Track Buffering Routine 

bdos wr code 
wr flag-

sec flags 

track buffer 

rb 
rb 

rb 

rb 

1 
1 

1 indicates a directory write 
bit 0 on indicates we have a 
dirty buffer 

host_spt ; bit 0 of each byte on indicates 
corresponding host sector has 
been updated and needs writing. 

host sectsiz * host_spt 

8 



CP/M-86 T.M. Operating System 

PROGRAMMER'S GUIDE 

Corrections to the First Printing - 1981 
Copyr ight © 1981 by Digi tal Research 

CP/M is a registered trademark of Digital Research. 
ASM-86, CP/M-86, DDT-86, and·MP/M-86 are trademarks 

of Digital Research. 
Compiled February 1982 

Clarification of ASM-86 T.M• Changes: 

1) Forward references in EQU's are flagged as errors. 

2) A 1 in a comment is ignored: comments extend to the physical 
end of the line. 

3) New directives: IFLIST and NOIFLIST control listing of false 
IF blocks. 

4) IF directives can be nested to five levels. 

5) New mnemonics implemented: 

• JC, JNC 
• CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, SCASB, 

SCASW, STOSB, STOSW 

6) JNBE implemented correctly. 

7) Segment override prefix is allowed in source operand of 
string instructions. 

8) Relational operators in expressions return OFFFFH if true. 

9) Abort if invalid command tail encountered. 

10) Abort if symbol table overflows. 

11) Abort if disk or directory full. 

12) Incomplete string flagged as error (no terminating quote). 

13) Error reported if an invalid numeric quantity appears in EQU 
directive. 

14) Source files are opened in R/O mode for multiple access 
under MP/M-86 T.M •• 

1 



CP/M-S6 Programmer's Guide Corrections 

15) Format of .LST file: 

• form-feed at start of file 
• no form-feed at end of file 
• no cr, If at top of each page 
• fewer lines per page 
• spaces between hex bytes deleted to allow more space 

for comments 
• errors printed when NOLIST active 
• absolute address field for relative instructions 

16) Format of .SYM file: 

• form-feed at start of file 
• symbols alphabetized within groups 
• tabs expanded if symbols sent to printer ($SY) 

17) Include files: 

• filetype defaults to .AS6 
• filetype can have fewer than three characters 
• abort if include file not found 
• default to same drive as source when $a switch used 

IS) Programs with INCLUDE directives assemble correctly under 
CP/M ® 1.4. 

19) About 5.5K more space available for symbol table. 

20) Use factor indicated at end of assembly (% usage of symbol 
table space). 

21) Runs somewhat faster (especially with $PZ switch). 

2 



CP/M-86 Programmer's Guide Corrections 

Clarification of DDT-B6 T ."'. Changes: 

1) User programs default to CCP stack, rather than local stack 
in DDT-B6. 

2) A command line starting with a ; is treated as a comment. 

3) Interrupts are disabled while a single instruction is being 
traced. 

4) BOOS error mode is set to return BOOS errors for MP/M-86. 

5) Files are closed after reading and loading for MP/M-86. 

6) New Block Compare function implemented, wi th the same 
command form as the Move function. 

3 





CP/M-86 '.M. Operating System 

Implementation Note 

Notes for operation of CP/M-86 with the 
ISBC'M 86/12 and ISBC~~ 204 Controller Boards 

Copyright © 1982 by Digital Research, Inc. 
CP/M-80 and CP/M-86 are trademarks of Digital Research, Inc. 

Intel is a registered trademark of Intel Corporation. 
ISBC is a trademark of Intel Corporation. 

SA-800 is a trademark of Shugart Associates. 
Compiled February 1982 

The standard CP/M-86'·M. release is set up for operation with 
the Intel®SBC'M. 86/l2a and SBC'·M. 204 diskette controller, with two 
Shugart SA-800'·M. single density drives •. The SBC 86/12 board has 
32K bytes on board that is set up starting at location zero. 
Additional RAM is assumed to start at location lOOOOH (paragraph 
1000H) • The initial values of the segment table define this 
additional RAM area to be 64K bytes in length as provided in the 
BASIC I/O System (BIOS). Refer to the GETSEGT BIOS entry point, as 
well as the SEGTABLE data areas in the BIOS and CBIOS (listed in 
Appendixes 0 and E of the CPiM-86 Operating System System Guide) for 
the segment table definition. 

Note that you can operate with less than 64K bytes of 
additional RAM (a 32K RAM area at 800H suffices), but the segment 
table must be changed before operating with programs which assume 
the full 64K is available. You can, for example, immediately enter 
DDT86 and manually alter the segment table in the BIOS to reflect 
the reduced memory configuration. Upon returning from DDT86 to the 
CCP level, any remaining transient programs,such as ED and ASM86, 
operate properly until the next cold start. Permanent segment table 
changes can be accomplished by editing the BIOS using this temporary 
CP/M-86 system or a CP/M-80'M. system. 

To use the distribution system, the SA-800, SBC 86/l2a, and the 
SBC 204, boards must be "jumpered" in the following manner. See the 
Shugart and Intel hardware for the exact jumpering details. 

The SA-800 Diskette Drive "A" is jumpered as follows: 

Install Jumpers: 
Tl, T2, T3, T4, T5, T6, DSl, DC, 800, Z, A, B, C, OS 

Remove Jumpers: 
ilL, DDS 

Cut Trace: 
RR 

1 



CP/M-86 Implementation Note 

The SA-800 Diskette Drive "B" is jumpered as follows: 

Install Jumpers: 
T 2, os 2, DC , 800, Z, A, B, C, OS 

Remove Jumpers: 
HL,DDS 

Cut Traces: 
R, RR 

Wire a connection from wire wrap pin at edge connector pin 4 to 
wire wrap pin at right side of pair at "R" as shown below (only for 
drive "B"). This connection implements "Radial Ready." 

----------e Pin 2 
Pin 4 ----------e~ 

W 
I 
R 
E 

R e e-J 

The SBC 204 Diskette Controller is jumpered by installing the 
following connections: 

Switches to Select Port AO through AF: 
1, 2, 3, 4, 6 and 8 are OFF 
5 and 7 are ON 

Install Jumpers: 
55-56 (Serial Priority), 1-8, 19-20, 23-24, 
26-27, 77-78, 75-76 

2 



CP/M-86 Implementation Note 

The SBC 86/l2a (or 86/12) CPU card is jumpered as follows: 

Notes: 

Install Jumpers: 
65 through 91: Interrupts as desired * 
5-6 (Time-Out Acknowledge) 
7 through 37: Parallel I/O as desired ** 
40-39, 43-42 (Baud Rate from PIC Channel 2) 
54-55, 56-57, 59-60 (PIC Clocks) 
92-93 (CPU Clock) 
103-104, 105-106 (Bus Clocks from CPU) 
151-152 (Serial Priority) 
94-96, 97-98 (ROM's are 2716 Type) 
127-128 (On-Board RAM is at OOOOOH) 

Switches: 
1, 2, and 8 are ON 
3, 4, 5, 6, and 7 are OFF 

Even ROM (0) in Socket A29 
Odd ROM (1) in Socket A47 

* CP/M-86 does not use interrupts. Normally 65 through 91 are 
unchanged from the factory configuration. 

** CP/M-86 does not use parallel I/O. Normally 7 through 37 
remain unchanged. 

3 





CP/M-86T .M: Vl.O, Application Note 01, 11/6/81 

Copyright~198l by Digital Research, Inc., Pacific Grove, CA 93950 

DDT-86T.M·SCREEN WIDTH ALTERATION 

Applicable Products and Version Numbers: CP/M-86 Vl.l, DDT-86 

You can alter DDT-86 for use with 40 character wide consoles. 
The display of memory locations (D command) and the CPU state (X, T 
and U commands) reflect the narrower screen size. Make sure you have 
a back-up copy of DDT-86 before installing the patch as shown below. 

A>ddt86 
DDT86 1.1 
-rddt86.cmd 
START END 
nnnn:OOOO nnnn:367F 
-s12£0 
nnnn:12FO 00 01 
nnnn:12Fl 00 • 
-wddt86.cmd 
-""c 
A> 

Licensed users are granted the right to include these changes in 
CP/M-86 Vl.l software. CP/M-86 and DDT-86 are trademarks of Digital 
Research. 





CP/M-86 U4. V1.0 Application Note 02, 11/3/81 

Copyright~1981 by Digital Research, Inc., Pacific Grove, CA 93950 

SMALLER VERSIONS OF DDT-86 T .M . 

Applicable Products and Version Numbers: CP/M-86 VI.O, DDT-86 

You can create smaller versions of DDT-86 that may be useful for 
systems with limited memory. You can remove the assembler portion 
resul ting in a 9K ver sion of DDT-86 or you can remove both the 
assembler and disassembler resulting in a 5K version of DDT-86. In 
the 9K version, DDT-86 responds to an A command with a question mark. 
In the 5K version, both the A and L commands yield a question mark. 

A>ddt86 
DDT86 1.0 
-rddt86.cmd 
START END 
nnnn:OOOO nnnn:367F 
-sO 
nnnn:OOOO 01 
nnnn:OOOl 60 Od 
nnnn:0002 03 02 
nnnn:0003 00 
nnnn:0004 00 
nnnn:0005 66 Od 
nnnn:0006 03 02 
nnnn:0007 00. 
-s1286 
nnnn:1286 01 00 
nnnn:1287 00 • 
-wddt9k.cmd,0,211f 
_AC 

A> 

Use the following procedure to remove the assembler and the 
disassembler from DDT-86. 

A>ddt86 
DDT86 1.0 
-rddt86.cmd 
START END 
nnnn:OOOO nnnn:367F 
-sO 
nnnn:OOOO 01 
nnnn:OOOl 60 2b 
nnnn:0002 03 01 
nnnn:0003 00 
nnnn:0004 00 
nnnn:0005 66 32 
nnnn:0006 03 01 
nnnn:0007 00. 

I 



CP/M-86 V1.0, Application Note 02, 11/3/81 (cont'd) 

-51286 
nnnn:1286 01 00 
nnnn:1287 00 • 
-s12b9 
nnnn:12B9 01 00 
nnnn:12BA 00 • 
-wddt5k.cmd,O,13ff 
-"'c 
A> 

Licensed users are granted the right to include these changes in 
CP/M-86 Vl.O software. CP/M-86 and DDT-86 are trademarks of Digital 
Research. 

2 



CP/M-86 T.M. Vl.l, Application Note 01, 3/08/82 

Copyright~1982 by Digital Research, Inc., Pacific Grove, CA 93950 

BDOS DATA PAGE -TOD/DATA- FIELDS 

Applicable products and version numbers: CP/M-86 T.M. Vl.l 

Program: BOOS 

The date field is located at the base of the data page + 320 
bytes. The date field format is: 

MM/DD/YY, 

MM is the month (ASCII) 
DO is the day (ASCII) 
YY is the year (ASCII) 

The time field is located at the base of the data page + 410 
bytes. The time field format is: 

HH:MM:SS, 

HH is the hour (ASCII) 
MM is the minute (ASCII) 
SS is the second (ASCII) 

The slash, colon and comma are literal characters in both the 
time and date representation. 

These fields are initialized and displayed wi th the TOO command. 
(See the CP/M-86 Operating System User's Guide, pages 72-73.) 

Licensed users are granted the 
modifications in CP/M-86 VI.l software. 
Digital Research. 

right to include these 
CP/M-86 is a trademark of 




