CP/M-86

OPERATING SYSTEM
PROGRAMMER’S GUIDE

CP/M-86™
Programmer’s Guide

Copyright © 1981

NDigital Research
P.0O. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
T™WX 910 360 5001

A)ll Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in anv form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
vermission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purvose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
Cp/M-86, ASM-86, DDT-86 and TEX-80 are trademarks of
Digital Research.

The "CP/M-86 Programmer”s Guide" was prepared using
the Digital Research TEX-80"M text formatter and
printed in the United States of America by
Commercial Press/Monterey.

khkkkhkhkkhhkkhkkhkhkhkhkhkkkkkkkkrhkkhkkhkkx

* Second Printing: June 1981 *
khkkhkhkkhkkhkkkhhkkkhkdkkhkhkkhkhkhkkkkkkk

Foreword

This manual as%%sts the 8086 assembly language programmer
working in a CP/M-86'“'1 environment. It assumes you are familiar
with the CP/M-86 implementation of CP/M and have read the following
Digital Research publications:

e CP/M 2 Documentation
® CP/M-86 System Guide

The reader should also be familiar with the 8086 assembly
language instruction set, which is defined in Intel”s 8086 Family
User”s Manual.

The first section of this manual discusses ASM-86 operation
and the vario assembler options which may be enabled when
invoking ASM-86"". One of these options controls the hexadecimal
output format. ASM-86 can generate 8086 machine code in either
Intel or Digital Research format. These two hexadecimal formats
are described in Appendix A.

The second section discusses the elements of ASM-86 assemblv
language. It defines ASM-86°s character set, constants, variables,
identifiers, operators, expressions, and statements.

The third section discusses the ASM-86 directives, which
perform housekeeping functions such as requesting conditional
assembly, including multiple source files, and controlling the
format of the listing printout.

The fourth section is a concise summary of the 8086
instruction mnemonics accepted by ASM-86. The mnemonics used by
the Digital Research assembler are the same as those used by the
Intel assembler except for four instructions: the intra-segment

short jump, and inter-segment jump, return and call instructions.
These differences are summarized in Appendix B.

The fifth section of this manual discusses the code-macro
facilities of ASM-86. Code-macro definition, spvecifiers and
modifiers as well as nine special code-macro directives are
discussed. This information is also summarized in Apvendix H.

The sixth section discusses the DDT-86 program, which allows

the user to test and debug programs interactively in the CP/M-86
enviornment. Section 6 includes a DDT-86 sample debugging session.

iii

Table of Contents

1 Introduction
1.1 Assembler Operation . . . « « « o+

1.2 Optional Run-time Parameters

2 Elements of ASM-86 Assembly Language
2.1 ASM-86 Character Set « « « « + « &
2.2 Tokens and Separators . . « « .« .
2.3 Delimiters . ¢ ¢« ¢ o o « o o o o @
204 Constants L] L] - L] L] . - L] . L] . L]

2.4.1 Numeric Constants
2.4.2 Character Strings
2.5 Identifiers . . ¢« ¢« ¢« ¢ ¢ ¢ « o .
2.5.1 Keywords . « ¢ « ¢ o o o o
2.5.2 Symbols and Their Attributes
2.6 0peratorsS « « « o o o o o o o o o
2.6.1 Operator Examples
2.6.2 Operator Precedence
2.7 EXPressions . .« ¢ ¢ ¢ o o o o o @
2.8 Statements . ¢« ¢ ¢ ¢ e o 4 e . e .

3 Assembler Directives
3.1 Introduction . « ¢« ¢ ¢ ¢ o o o o
3.2 Segment Start Directives

3.2.1 The CSEG Directive
3.2.2 The DSEG Directive
3.2.3 The SSEG Directive
3.2.4 The ESEG Directive
3.3 The ORG Directive . « ¢« ¢ ¢ o « &

1.3

10
12

15
17

18

19

21
21

22
22
22
23

23

4

3.12
3.13

The
The,

The

The
The
The
The

The

Table of Contents
(continued)

IF and ENDIF Directives

INCLUDE Directive .

END Directive . . .

EOU Directive . . .
DB Directive
DW Directive
DD Directive . . .
RS Directive . . .
RB Directive . . .
RW Directive . . .
TITLE NDirective . .
PAGESIZE Directive
PAGEWIDTH Directive
EJECT Directive . .

SIMFORM Directive .

NOLIST and LIST Directives

The ASM-86 Instruction Set

4.1
4.2

4.3

Introduction . . « « « o « . .

Data Transfer Instructions

Arithmetic, Logical, and Shift

Stri

Control Transfer Instructions

Processor Control Instructions . « « « « o &

ng Instructions . .

vi

.

Instructions

.

24
24
24
25
25
26
26
27
27
27
27
27
28
28
28

28

29
31
33
38
39

43

Table of Contents‘

(continued)

Code-Macro Facilities

5.1 Introduction to Code-macrosS .« « « « « o« =
5.2 Specifiers o« o« o « o o ¢ o o o o o o o o
5.3 Modifiers .« ¢ ¢ o o o o o o o o o o o o
5.4 Range Specifiers . . ¢« ¢ &« ¢ o o ¢ o o o
5.5 Code-macro Directives . . ¢ ¢ ¢ ¢ o o o @
5.5']— SEGFIX . L] . . L] L] L] L] . L] L] * L] L]
5 . 5 [3 2 NOSEGFIX L] L] . L] L] L] L] L] L] * L] L] -
5. 5. 3 MODR—M L] ® L] L] L] L] L] L] L] . [] . L] L] L]
5 L] 5 L] 4 RELB and MLW [] L] . L] . L] L] . L] L] .
5 . 5 . 5 DB ' Dv] and DD L] L] L] L] L] . . L] [] L] L]
5.5.6 DBIT L] - L] . L] L] . L] L] L] L] [] . L] .
DDT-86
6.1 DDT—86 Operation . - ° . . Y Y . .
6;1.1 InVOkinq DDT-86 ° . . . Y
6.1.2 DDT-86 Command Conventions
6.1.3 Specifying a 20-Bit Address . . .
6.1.4 Terminatinq DDT_86 - . .
6.1.5 DDT-86 Operation with Interrupts .
6 . 2 DDT"'86 Commands . . ° ° . . .

6.2.1 The A (Assemble) Command
6.2.2 The D (Display) Command
6.2.3 The F (Load for Execution) Command
6.2.4 The F (Fill) Command « . .
6.2.5 The G (Go) Command . « « « & o .
6.2.6 The H (Hexadecimal Math) Command .
6.2.7 The I (Input Command Tail) Command
6.2.8 The L (List) Command . . « « « « =«
6.2.9 The M (Move) Command . « + o o o &
6.2.10 The R (Read) Command . . « « o« o o
6.2.11 The S (Set) Command . ¢« « « o o &
6.2.12 The T (Trace) Command« .
6.2.13 The U (Untrace) Command
6.2.14 The V (Value) Command . . « « « .
6.2.15 The W (Write) Command
6.2.16 The X (Examine CPU State) Command

vii

e e e s o o

. . . . L3 L[]

e o o e e o

. L] L] L[] L] . .

47
47
48
49

49
49
50
51
51
52

55

55
55
56
57
57

57
58
58
59
59
60
60
61
61
62
62
63
64
64
64
65

Table of Contents
(continued)

6.3 Default Segment ValuesS . « « « o « o o « o &
6.4 Assembly Lanquage Syntax for A and I Commands

6'5 DDT-86 Sample Proqram 3

viii

66

69

70

H a0 N ® O a0 w o o»

-

Appendixes

ASM_‘86 Invocation - ® . . L] L] . . L] L] L] . L] . L] . L] . e L] 79
Mnemonic Differences from the Intel Assembler 81

ASM-86 Hexadecimal Output Format . . « « o o o o o o o o 83

Reserved WOLAS « o « o o o o o s s o o o o s o o o o o o 87
ASM-86 Instruction SUMMArY . « « o o « « s o o o o s o @ 89
Sample Program . « « o o o o o o o o o o o o o s s s o o 93

Code-macro Definition SvyntaxX .« « ¢« ¢ ¢ o o« o o o o o o 99
ASM-86 Error Messaqes . . L) . . o Y . 101

DDT-86 Error MeSSAJgeS « « « « « « o o o o o o o o o o« o« « 103

ix

Section 1
Introduction

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three
passes and produces three output files, including an 8086 machine
language file in hexadecimal format. This object file may be in
either Intel or Digital Research hex format, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-
assembler designed to run under CP/M on an Intel 8080 or Zilog 7-80
based system, and a 8086 assembler designed to run under CP/M-86 on
an Intel 8086 or 8088 based system. ASM-86 typically produces three
output files from one input file as shown in Figure 1l-1, below.

— LIST FILE

SOURCE |—————- ASM-86 > HEX FILE

- SYMBOL FILE

<file name>.A86 - contains source

<file name>.LST - contains listing

<file name>.H86 - contains assembled program in
hexadecimal format

<file name>.SYM - contains all user-defined symbols

Figure 1-1., ASM-86 Source and Object Files

Figure 1-1 also lists ASM-86 filename extensions. ASM-86
accepts a source file with any three letter extension, but if the
extension is omitted from the invoking command, it looks for the
specified filename with the extension .A86 in the directorv. If no
filename is specified and the file has an extension other than .A86
or has no extension at all, ASM-86 returns an error message.

The other extensions 1listed in Figqure 1l-1 identify ASM-86
output files. The .LST file contains the assembly language listing
with any error messages. The .H86 file contains the machine
language program in either Digital Research or Intel hexadecimal
format. The .SYM file lists any user-defined symbols.

All Information Presented Here is Proprietarv to Digital Research

1

CP/M-86 Programmer”s Guide 1.1 Assembler Operation

Invoke ASM-86 by entering a command of the following form:
ASMB6 <source filename> [$ <optional parameters>]

Section 1.2 explains the optional parameters. Specify the source
file in the following form:

[<optional drive>:]<filename>[.<optional extension>]
where

<optional drive> is a valid drive letter specifving
the source file”s location. Not
needed if source is on current
drive.

<filename> is a valid CP/M filename of 1 to 8
characters.

<optional extension> is a valid file extension of 1 to 3
characters, usually .A86.

Some examples of valid ASM-86 commands are:
A>ASM86 B:BI0S88
A>ASM86 BIOS88.ASM SFI AA HB PB SB

A>ASM86 D:TEST

Once invoked, ASM-86 responds with the message:
CP/M 8086 ASSEMBLER VER X.X

where x.x is the ASM-86 version number. ASM-86 then attempts to
open the source file. If the file does not exist on the designated
drive, or does not have the correct extension as described above,
the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list,
ASM-86 displays the message:

PARAMETER ERROR

After opening the source, the assembler creates the output
files. Usually these are placed on the current disk drive, but they
may be redirected by optional parameters, or by a drive
specification in the the source file name. 1In the latter case, ASM-
86 directs the output files to the drive specified in the source
file name.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 Programmer”s Guide 1.1 Assembler Operation

During assembly, ASM-86 aborts if an error condition such as
disk full or symbol table overflow is detected. When ASM-86 detects
an error in the source file, it places an error message line in the
listing file in front of the line containing the error. Each error
message has a number and gives a brief explanation of the error.
Appendix H lists ASM-86 error messages. When the assembly is
complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

1.2 oOptional Run-time Parameters

The dollar-sign character, $, flags an optional string of run-
time parameters. A parameter is a single letter followed by a
single letter device name specification. The parameters are shown
in Table 1-1, below.

Table 1-1. Run-time Parameter Summary

Parameter To Svecify Valid Arguments
A source file device A, B, C, ... P
H hex output file device A ... P, X, Y, %
P list file device A ... P, X, Y, 2
S symbol file device A ... P, X, Y, 7
F format of hex output file I, D

All parameters are optional, and can be entered in the command
line in any order. Enter the dollar sign only once at the beginning
of the parameter string. Spaces may separate parameters, but are
not required. WNo space is permitted, however, between a parameter
and its device name.

A device name must follow parameters A, H, P and S. The
devices are labeled:

A, B, C, «o. P oOr X,Y, Z

Device names A through P respectively specify disk drives A
through P. X specifies the user console (CON:), Y specifies the
line printer (LST:), and Z suppresses output (NUL:).

If output is directed to the console, it mav be temporarily

stopped at any time by typing a control-S. Restart the output by
typing a second control-S or any other character.

All Information Presented Here is Proprietary to Didital Research

3

CP/M-86 Programmer”s Guide 1.2 Optional Run-time Parameters

The F parameter requires either an I or a D argument. When I
is specified, ASM-86 produces an object file in Intel hex format. A
D argument requests Digital Research hex format. Appendix C
discusses these formats in detail. If the F parameter is not

entered in the command line, ASM-86 produces Digital Research hex
format. ‘

Table 1-2. Run-time Parameter Examples

Command Line Result
ASM86 IO Assemble file I0.A86, produce IO.HEX,
IO.LST and I0.SYM, all on the default
drive.
ASM86 IO.ASM $’AD SZ Assemble file I0O.ASM on device D,

produce IO.LST and IO.HEX on the default
device, suppress symbol file.

ASM86 IO $ PY SX Assemble file 10.A86, produce IO.HEX,
route listing directly to printer,
output symbols on console.

ASM86 IO S FD Produce Digital Research hex format.

ASM86 IO $ FI Produce Intel hex format.

1.3 Aborting ASM-86

You may abort ASM-86 execution at any time by hitting any key
on the console keyboard. When a key is pressed, ASM-86 responds
with the question:

USER BREAK. OK(Y/N)?

A Y response aborts the assembly and returns to the operating
system. An N response continues the assembly.

All Information Presented Here is Proprietary to Digital Research

4

Section 2
Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set

ASM-86 recognizes a subset of the ASCII character set. The
valid characters are the alvhanumerics, special characters, and non-
printing characters shown below:

ABCDEFGHIJXLMNOPORSTUVWIXY?Z
abcdefghijklmnoprpgqgr stuvwzxyz
01234567829

+=-*/=()Y0L1:° .1, : @8

space, tab, carriage-return, and line-feed

Lower—-case letters are treated as upper-case except within
strings. Only alphanumerics, special characters, and spaces may
appear within a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source
program, much as a word is the smallest meaningful unit of an
English composition. Adjacent tokens are commonly separated by a
blank character or svace. Any sequence of spaces may appear
wherever a single space is allowed. ASM-86 recognizes horizontal
tabs as separators and interprets them as spaces. Tabs are expanded
to spaces in the 1list file. The tab stops are at each eighth
column.

2.3 Delimiters

Delimiters mark the end of a token and add special meaning to
the instruction, as opposed to separators, which merely mark the end
of a token. When a delimiter is present, separators need not be
used. However, separators after delimiters can make your program
easier to read.

Table 2-1 describes ASM-86 separators and delimiters. Some

delimiters are also operators and are explained in greater detail in
Section 2.6.

All Information Presented Here is Proprietarv to Digital Research

5

CP/M-86 Programmer”s Guide v 2.3 Delimiters

Table 2-1. Separators and Delimiters

Character Name Use

20H space separator
09H tab separator, legal in source

files, expanded in list files
CR carriage return terminate source lines

LF line feed legal after CR; if within
source lines, it is inter-
preted as a space

; semicolon start comment field

: colon identifies a label,
used in segment override
specification

. period forms variables from
numbers

$ dollar sign notation for "present value

of location vointer"

+ plus arithmetic operator for
addition

- minus : arithmetic operator for
subtraction

* asterisk arithmetic operator for
multiplication

/ slash arithmetic operator for

: division
@ at-sign legal in identifiers
_ underscore legal but ignored in

identifiers

! exclamation logically terminates a
point statement, thus allowing
multiple statements on a
single source line

apostrophe delimits string constants

All Information Presented Here is Proprietary to Digital Research

6

CP/M-86 Programmer” s Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly time that does not
change while the assembled program is executed. A constant may be
either an integer or a character string.

2.4.1 Numeric Constants
A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing

radix indicator. The radix indicators are shown in Table 2-2,
below.

Table 2-2. Radix Indicators for Constants

Indicator Constant Type Base
B binary 2
0 octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a
radix indicator is a decimal constant. Radix indicators may be
upper or lower case.

A constant is thus a sequence of digits followed by an optional
radix indicator, where the digits are in the range for the radix.
Binary constants must be composed of 0°s and 1°s. Octal digits
range from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits as well as the hexadecimal digits A
(o0p), B (11p), C (12p), D (13D), E (1l4D), and ¥ (15D). Note that
the leading character of a hexadecimal constant must be either a
leading 0 or a decimal digit so that ASM-86 cannot confuse a hex
constant with an identifier. The following are valid numeric
constants:

1234 1234D 11008 11110000111100008B

123410 OFFEH 33770 137720
33770 OFE3H 12344 Offffh

All Information Presented Here is Proprietary to Digital Research

.

CP/M-86 Programmer”s Guide Co 2.4 Constants

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by
apostrophes as a string constant. All instructions accept only one-
or two-character string constants as valid arguments. Instructions
treat a one-character string as an 8-bit number. A two-character
string is treated as a 16-bit number with the value of the second
character in the 1low-order byte, and the value of the first
character in the high-order byte. ‘

The numeric value of a character is its ASCII code. ASM-86
does not translate case within character strings, so both upper- and
lower-case letters can be used. Note that only alphanumerics,
special characters, and spaces are allowed within strings.

A DB assembler directive is:the only ASM-86 statement that may
contain strings longer than two characters. The string may not
exceed 255 bytes. Include any apostrophe to be printed within the
string by entering it twice. ASM-86 interprets the two keystrokes
““ as a single apostrophe. Table 2-3 shows valid strings and how
they appear after processing: ‘ '

Table 2-3. String Constaht Examples

s 4

a =-> a
“Ab”““Ccd” -> Ab“cd
~ “I like CP/M” -> I like CP/M

o, L, o, »

“ONLY UPPER CASE” -> ONLY UPPER CASE
“only lower case” -> only lower case

2.5 Identifiers

Identifiers are character sequences which have a special,
symbolic meaning to the assembler. All identifiers in ASM-86 must
obey the following rules:

1l. The first character must be alphabetic (A,...Z,
QreeeZ),

2. Any subsequent characters can be either alphabetical
or a numeral (0,1,.....9). ASM-86 ignores the special

characters @ and _, but they are still legal. For
example, a_b becomes ab.

3. Identifiers may be ®df any length up to the limit of
the physical 1line.

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 Programmer”s Guide 2.5 1Identifiers

Identifiers are of two types. The first are keywords, which
have predefined meanings to the assembler. The second are symbols,
which are defined by the user. The following are all wvalid
identifiers:

NOLIST

WORD

AH

Third_street
How_are_you_today
variable@number@1234567890

2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the
assembler. Keywords are reserved; the user cannot define an
identifier identical to a keyword. For a complete list of keywords,
see Appendix D.

ASM-86 recognizes five types of keywords: instructions,
directives, operators, registers and predefined numbers. 8086
instruction mnemonic keywords and the actions thev initiate are
defined in Section 4. Directives are discussed in Section 3.
Section 2.6 defines operators. Table 2-4 lists the ASM-86 keywords
that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD.
The values of these numbers are 1, 2 and 4, respectively. In
addition, a Type attribute is associated with each of these numbers.
The keyword”s Tvpe attribute is equal to the keyword”s numeric
value. See Section 2.5.2 for a complete discussion of mType
attributes.

All Information Presented Here is Proprietary to Digital Research

9

CP/M-86 Programmer”s Guide 2.5 Identifiers

Table 2-4. Register Keywords

Register Numeric

Symbo1l Size Value Meaning
AM 1 byte 100 B Accumulator-High-Byte
BH 1" 111 B Base-Register-High-Byte
CH 1" 101 B Count-Register-High-Byte
DH 1" 110 B Data-Register-High-Byte
AL 1" 000 B Accumulator~Low-Byte
BL 1" 011 B Base-Register-Low-Byte
CL 1" 001 B Count-Reqister-&ow—Byte
DL i 010 B Data-Register-Low-Byte
AX 2 bytes 000 B Accumulator (full word)
BX 2 " 011 B Base-Register "
CX 2 " 001 B Count-~Register "
DX 2 " 010 B Data-Register "
BP 2 " 101 B Base Pointer
SP 2 " 100 B Stack Pointer
SI 2 " 110 B Source Index
DI 2 " 111 B Destination Index
(of] 2 01l B Code-Segment-Register
DS 2 " 11 B Data-Segment-Register
SS 2 " 10 B Stack-Segment-Register
ES 2 " 00 B Extra-Segment-Register

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes which
specify what kind of information the symbol represents. Symbols
fall into three categories:

® variables

® labels
® numbers

Variables identify data stored at a particular location in
memory. All) variables have the following three attributes:

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 Programmer”s Guide 2.5 Identifiers

® Segment - tells which segment was being assembled when the
variable was defined.

® Offset - tells how many bvtes there are between the
beginning of the segment and the location of this variable.

e Type - tells how manv bytes of data are manipulated when
this variable is referenced.

A Segment may be a code-segment, a data-segment, a stack-
segment or an extra-segment depending on its contents and the
register that contains its starting address (see Section 3.2). A
segment may start at any address divisible by 16. ASM-86 uses this
boundary value as the Segment portion of the variable”s definition.

The Offset of a variable may be any number between 0 and OFFFFH
or 65535D. A variable must have one of the following Type
attributes:

® BYTE
® WORD
e DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable
and DWORD a four-byte variable. The DB, DW, and DD directives
respectively define variables as these three types (see Section 3).
For example, a variable is defined when it appears as the name for a
storage directive:

VARIABLE DB 0

A variable may also be defined as the name for an EQU directive
referencing another label, as shown below:

VARIABLE EQU ANOTHER VARIABLE
Labels identify locations in memory that contain instruction
statements. They are referenced with jumps or calls. All labels
have two attributes:

® Segment
e Offset

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. Generally, a label is
defined when it precedes an instruction. A colon, :, separates the
label from instruction; for example:

LABEL: ADD AX,BX

A label may also appear as the name for an EQU directive
referencing another label; for example:

LABEL EQU ANOTHER LABEL

All Information Presented Here is Proprietary to Digital Research

11

CP/M-86 Programmer“s Guide 2.5 Identifiers

Numbers may also be defined as symbols. A number symbol is
treated as if you had explicitly coded the number it represents.
For example: ‘

Numbét_five EQU 5
MOV AL,Number_five

is equivalent to:
MOV AL,5

Section 2.6 describes operators and their effects on numbers
and number symbols.

2.6 Operators

ASM-86 operators fall into the following categories:
arithmetic, logical, and relational operators, segment override,
variable manipulators and creators. Table 2-5 defines ASM-86
operators. In this table, a and b represent two elements of the
expression. The validity column defines the type of opverands the
operator can manipulate, using the or bar character, |, to separate
alternatives.

Table 2-5. ASM-86 Operators

Syntax , Result Validity
Logical Operators ;
a XOR b bit-by-bit logical EXCLUSIVE a, b = number
: OR of a and b.

aoOR b bit-by-~bit logical OR of a a, b = number
. and b. : ’

a AND b bit-by-bit logical AND of a a, b = number

, and b.
NOT a logical inverse of a: all 0°s a = 16-bit
become 1°s, 1°s become 0°s. number

All Information Presented Here is Proprietary to Digital Research

12

CP/M-86 Programmer” s Guide

Table 2-5. (continued)

2.6 Operators

Syntax Result Validity
Relational Operators
a EQDb returns OFFFFH if a = b, a, b =
otherwise 0. unsigned number
aLTb returns OFFFFH if a < b, a, b=
otherwise 0. unsigned number
aLEDb returns OFFFFH if a <= b, a, b =
otherwise 0. unsigned number
aGT b returns OFFFFH if a > b, a, b=
otherwise 0. unsigned number
aGE b returns OFFFFH if a >= b a, b=
otherwise 0. unsigned number
a NE b returns OFFFFH if a <> b, a, b =
otherwise 0. unsigned number
Arithmetic Operators
a+b arithmetic sum of a and b. a = variable,
label or number
b = number
a-»>b arithmetic difference of a = variable,
a and b. label or number
b = number
a*hb does unsigned multiplication a, b = number
of a and b.
a/b does unsigned division of a a, b = number
and b.
a MOD b returns remainder of a / b. a, b = number
a SHL b returns the value which a, b = number
results from shifting a to
left by an amount b. '
a SHR b returns the value which a, b = number
results from shifting a to
the right by an amount b.
+ a gives a. a = number
- a gives 0 - a. a = number

All Information Presented Here is Proprietary

13

to Digital Research

CP/M-86 Programmer”s Guide

2.6 Operators

Table 2-5. (continued)
Syntax Result Validity
Segment Override
<seg reg>: overrides assembler”s choice <seq reg> =
<addr exp> of segment register. cs, DS, SS
or ES
Variable Manipulators, Creators

SEG a creates a number whose value a = label |
is the segment value of the variable
variable or label a.

OFFSET a creates a number whose value a = label |
is the offset value of the variable
variable or label a.

TYPE a creates a number. If the a = label |
variable a is of type BYTE, variable
WORD or DWORD, the wvalue of
the number will be 1, 2 or 4,
respectively.

LENGTH a creates a number whose value a = label |
is the LENGTH attribute of variable
the variable a. The length
attribute is the number of
bytes associated with the
variable.

LAST a if LENGTH a > 0, then LAST a a = label |
= LENGTH a - 1; if LENGTH a = variable
0, then LAST a = 0.

a PTR b creates virtual variable or a = BYTE
label with type of a and WORD, | DWORD
attributes of b b = <addr exp>

.a creates variable with an a = number
offset attribute of a.

Segment attribute is current
segment.

$ creates label with offset no argument
equal to current value of
location counter; segment
attribute is current
segment.

All Information Presented Here is Proprietary to Digital Research

14

CP/M-86 Programmer”s Guide 2.6 Operators

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They
perform the boolean logic operations AND, OR, XOR, and NOT. For
example:

00FC MASK EQU 0FCH

0080 SIGNBIT EQU 80H
0000 B180 MOV CL,MASK AND SIGNBIT
0002 BOO3 MOV AL,NOT MASK

Relational operators treat all operands as unsigned numbers.
The relational operators are EQ (equal), LT (less than), LE (less
than or equal), GT (greater than), GE (greater than or equal), and
NE (not equal). FEach operator compares two operands and returns all
ones (OFFFFH) if the specified relation is true and all zeros if it
is not. For example:

000A LIMIT1 EQU 10

0019 LIMIT2 EQU 25
0004 BSFFFF MOV AX,LIMIT1 LT LIMIT2
0007 B800OO MOV AX,LIMITI GT LIMIT2

Addition and subtraction operators compute the arithmetic sum
and difference of two operands. The first operand mavy be a
variable, label, or number, but the second operand must be a number.
When a number is added to a variable or label, the result is a
variable or label whose offset is the numeric value of the second
operand plus the offset of the first operand. Subtraction from a
variable or label returns a variable or label whose offset is that
of first operand decremented by the number specified in the second
operand. For example:

0002 COUNT EQU 2
0005 DISP1l EQU 5
000A FF FLAG DB OFFH
000B 2EAO0BOO MOV AL,FLAG+1
000F 2E8AOROFO00 MOV CL,FLAG+DISP1l
0014 B303 MOV BL,DISP1-COUNT

The multiplication and division operators *, /, MOD, SHL, and
SHR accept only numbers as operands. * and / treat all operators as
unsigned numbers. For example:

0016 BES5500 MOV $1,256/3
0019 B310 MoV BL,64/4
0050 : BUFFERSIZE EQU 80
001B B8A00O MOV AX,BUFFERSIZE * 2

All Information Presented Here is Proprietary to Digital Research

15

CP/M-86 Programmer”“s Guide : 2.6 Operators

Unary overators accept both signed and unsigned operators as
shown below:

001E B1l23 . MoV CL,+35

0020 BOO7 MOV " AL, 2--5
0022 B2F4 MOV DL,-12

When manipulating variables, the assembler decides which
segment register to use. You may override the assembler”s choice by
specifying a different register with the segment override operator.
The syntax for the override operator is <segment register> :
<address expression> where the <segment register> is CS, DS, SS, or
ES. For example: ‘

0024 3683472D MOV AX,SS :WORDBUFFER[BX]
0028 268BOES5B0O MOV CX,ES:ARRAY

- A variable manipulator creates a number equal to one attribute
of its variable operand. SEG extracts the variable”s segment value,
OFFSET its offset wvalue, TYPE .its type value (1, 2, or 4), and
LENGTH the number of bytes associated with the variable. LAST
compares the variable”s LENGTH with 0 and if greater, then
decrements LENGTH by one. If LENGTH equals 0, LAST leaves it
unchanged. Variable manipulators accept only variables as
operators. For example:

002D 000000000000 WORDBUFFER DW 0,0,0

0033 0102030405 BUFFER DB 1,2,3,4,5
0038 B80500 ‘ : MOV AX,LENGTH BUFFER
003B B80400 MOV AX,LAST BUFFER
003E B80100 MoV AX,TYPE BUFFER
0041 B80200 MOV AX,TYPE WORDBUFFER

The PTR operator creates a virtual variable or label, one valid
only during the execution of the instruction. It makes no changes
to either of its operands. The temporary symbol has the same Type
attribute as the left operator, and all other attributes of the
right operator as shown below.

0044 C60705 MOV BYTE PTR [BX], 5
0047 8A07 MOV AL,BYTE PTR [BX]
0049 FFO04 INC WORD PTR [SI]

The Period operator, ., creates a variable in the current data
segment. The new variable has a segment attribute equal to the
current data segment and an offset attribute equal to its overand.
Its operand must be a number. For example:

004B A10000 MOV AX, .0
004E 268B1lE0040 MOV BX, ES: .4000H

All Information Presented Here is Proprietary to Digital Research

16

CP/M-86 Programmer”s Guide 2.6 Operators

The Dollar-sign operator, $, creates a label with an offset
attribute equal to the current value of the location counter. The
label”s segment value is the same as the current code segment. This
operator takes no operand. For example:

0053 E9FDFFW JMP $
0056 EBFE JMPS S
0058 E9FD2F JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, 1labels or numbers with
operators. ASM-86 allows several kinds of expressions which are
discussed in Section 2.7. This section defines the order in which
operations are executed should more than one operator appear in an
expression. '

In general, ASM-86 evaluates expressions left to right, but
operators with higher precedence are evaluated before overators with
lower precedence. When two operators have equal precedence, the
left-most is evaluated first. Table 2-6 presents ASM-86 overators
in order of increasing precedence.

Parentheses can override normal rules of precedence. The part
of an expression enclosed in parentheses is evaluated first. If
parentheses are nested, the innermost expressions are evaluated
first. Only five 1levels of nested parentheses are 1legal. For
example:

15/3 + 18/9

=54+ 2 =7
15/(3 + 18/9) = 15/(3 + 2) = 15/5

1]
w

All Information Presented Here is Proprietary to Digital Research

17

CP/M-86 Programmer”s Guide

2.6 Operators

Table 2-6. Precedence of Operations in ASM-86

Order Operator Type Operators
1l Logical XOR, OR
2 Logical AND
3 Logical NOT
4 Relational EO0, LT, LE, GT,
GE, NE
5 Addition/subtraction +, =
6 Multiplication/division *, /, MOD, SHL,
SHR
7 Unary +, -
8 Segment override <segment override>:
9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE, LENGTH, LAST
10 Parentheses/brackets (), [1
11 Period and Dollar er S

2.7 Expressions

ASM-86 allows address, numeric, and bracketed expressions. An
address expression evaluates to a memory address and has three
components:

® A segment value
® An offset value
® A type

Both variables and labels are address expressions. An address
expression is not a number, but its components are. Numbers may be
combined with operators such as PTR to make an address expression.

A numeric expression evaluates to a number.

It does not

contain any variables or labels, only numbers and operands.

Bracketed expressions specify base-

modes.

are DI and SI.

and index- addressing

The base registers are BX and BP, and the index registers

A bracketed expression may consist of a base

‘register, an index register, or a base register and an index
register.

All Information Presented Here is Proprietarv to Digital Research

18

CP/M-86 Programmer”s Guide 2.7 Expressions

Use the + operator between a base register and an index register to
specify both base- and index-register addressing. For example:

MOV variable[bxl,0
MOV AX, [BX+DI]
MOV AX, [SI]

2.8 Statements

Just as "tokens" in this assembly language correspond to words
in English, so are statements analogous to sentences. A statement
tells ASM-86 what action to perform. Statements are of two types:
instructions and directives. 1Instructions are translated by the
assembler into 8086 machine language instructions. Directives are
not translated into machine code but instead direct the assembler to
perform certain clerical functions.

Terminate each assembly language statement with a carriage
return (CR) and line feed (LF), or with an exclamation point, !,
which ASM-86 treats as an end-of-line except in comments. Multiple
assembly langquage statements can be written on the same physical
line if separated by exclamation points.

The ASM-86 instruction set is defined in Section 4. The syntax
for an instruction statement is:

[label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as:

label:
A symbol followed by ":" defines a label at the current
value of the location counter in the current segment.
This field is optional. ‘
prefix
Certain machine instructions such as LOCK and REP mavy
prefix other instructions. This field is optional.
mnemonic

A symbol defined as a machine instruction, either by the
assembler or by an EQU directive. This field is optional
unless preceded by a prefix instruction. If it is
omitted, no operands may be present, although the other
fields may appear. ASM-86 mnemonics are defined in
Section 4.

t

All Information Presented Here is Proprietary to Digital Research

19

CP/M-86 Programmer”s Guide 2.8 Statements

operand (s)
An instruction mnemonic may require other symbols to
represent operands to the 1nstruct10n. Instructions may
have zero, one or two operands.

comment

Any semicolon (;) appearing outside a character string
begins a comment, which is ended by a carriage return.
Comments improve the readability of programs. This field
is optional.

ASM-86 directives are described in Section 3. The syntax for a
directive statement is:
[name] diréctive operand (s) [;comment]

where the fields are defined as:

name
Unlike the label field of an instruction, the name field
of a directive is never terminated with a colon.
Directive names are legal for only DB, DW, DD, RS and
EQU. For DB, NW, DD and RS the name is optional; for EQU
it is required.

directive

One of the directive keywords defined in Section 3.
operand (s)

Analogous to the operands to the instruction mnemonics.

Some directives, such as DB, DW, and DD, allow any

operand while others have special requirements.

‘comment

Exactly as defined for instruction statements.

- All Information Presented Here is Proprietary to Digital Research

20

Section 3
Assembler Directives

3.1 Introduction

Directive statements cause ASM-86 to verform housekeeping
functions such as assigning portions of code to logical sedgments,
requesting conditional assembly, defining data items, and specifying
listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each
directive statement is given under the heading and before the
explanation. These syntax lines use special symbols to represent
possible arguments and other alternatives. Square brackets, [1,
enclose optional arguments. Angle brackets, <>, enclose
descriptions of user-supplied arguments. No not include these
symbols when coding a directive.

3.2 Segment Start Directives

At run-time, every 8086 memory reference must have a 1l6-bit
segment base value and a 16-bit offset value. These are combined to
produce the 20-bit effective address needed by the CPU to physically
address the location. The 16-bit segment base value or boundarv is
contained in one of the segment registers CS, DS, SS, or ES. The
offset value gives the offset of the memory reference from the
segment boundary. A 16-byte physical segment is the smallest
relocatable unit of memory. '

ASM-86 predefines four logical segments: the Code Segment, Data
Segment, Stack Segment, and Extra Segment, which are respectively
addressed by the CS, DS, SS, and ES registers. Future versions of
ASM-86 will support additional segments such as multiple data or
code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by
the CPU. A segment directive statement, CSEG, DSEG, SSEG, or ESEG,
specifies that the statements following it belong to a specific
segment. The statements are then addressed by the corresponding
segment register unless a segment override is included with the
instruction. ASM-86 assigns statements to the specified segment
until it encounters another segment directive.

Instruction statements must be assigned to the Code Segment.
Directive statements may be assigned to any segment. ASM-86 uses
these assignments to change from one segment register to another.
For example, when an instruction accesses a memory variable, ASM-86
must know which segment contains the variable so it can generate a
segment override prefix byte if necessary.

All Information Presented Here is Proprietary to Digital Research

21

CP/M-86 Programmer”s Guide 3.2 Segment Start Directives

3.2.1 The CSEG Directive

CSEG <numeric expression>
CSEG
CSEG $

This directive tells the assembler that the following
statements belong in the Code Segment. All instruction statements
must be assigned to the Code Segment. All directive statements are
legal within the Code Segment.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interruoted bv a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same
attributes, such as location and instruction pointer, as the
previous Code Segment.

3.2.2 The DSEG Directive

DSEG <numeric expression>
DSEG
DSEG $

This directive specifies that the following statements belong
to the Data Segment. The Data Segment primarily contains the data
allocation directives DB, DW, DD and RS, but all other directive
statements are also legal. Instruction statemeénts are illegal in
the Data Segment. -

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. TUse the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same
attributes as the previous Data Segment.

3.2.3 The SSEG Directive

SSEG <numeric expression>
SSEG
SSEG $

The SSEG directive indicates the beginning of source lines for
the Stack Segment. Use the Stack Segment for all stack operations.
All directive statements are legal in the Stack Segment, but
instruction statements are illegal.

All Information Presented Here is Proprietary to Digital Research

22

CP/M-86 Programmer”s Guide 3.2 Segment Start Directives

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same
attributes as the previous Stack Segment.

3.2.4 The ESEG Directive

ESEG <numeric expression>
ESEG
ESEG $

This directive initiates the Extra Segment. Instruction
statements are not legal in this segment, but all directive
statements are.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same
attributes as the previous Extra Segment.

3.3 The ORG Directive
ORG <numeric expression>

The ORG directive sets the offset of the location counter in
the current segment to the value specified in the numeric
expression. Define all elements of the expression before the ORG
directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessaryv. If no ORG
is included before the first instruction or data byte in a segment,
assembly begins at location zero relative to the beginning of the
segment. A segment can have any number of ORG directives.

All Information Presented Here is Proprietary to Digital Research

23

CP/M-86 Programmer”s Guide 3.4 The IF and ENDIF Directives

3.4 The IF and ENDIF Directives

iF <numeric expression>
< source line 1 >
< source line 2 >

< source line n >
ENDIF

The IF and ENDIF directives allow a group of source lines to be
included or excluded from the assemblv. Use conditional directives
to assemble several different versions of a sinagle source program.

When the assembler finds an IF directive, it evaluates the
numeric expression following the IF keyword. - If the expression
evaluates to a non-zero value, then <source line 1> through <source
line n> are assembled. If the expression evaluates to zero, then
all lines are listed but not assembled. All elements in the numeric
expression must be defined before they appear in the IF directive.
Nested IF directives are not legal.

3.5 The INCLUDE Directive

INCLUDE <file name>

This directive includes another ASM-86 file in the source text.
For example:

INCLUDE EQUALS.A86

Use INCLUDE when the source program resides in several
different files. INCLUDE directives may not be nested; a source
file called by an INCLUDE directive mav not contain another INCLUDE
statement. If <file name> does not contain a file tvype, the file
type is assumed to be .A86. If no drive name is specified with <file
name>, ASM-86 assumes the drive containing the source file.

3.6 The END Directive

END

An END directive marks the end of a source file. Any
subsequent lines are ignored by the assembler. END is optional. If
not present, ASM-86 processes the source until it finds an End-0f-
File character (1AH).

24

CP/M-86 Proqramher’s Guide 3.7 The EQU Directive

3.7 The EQU Directive

symbol FEOU <numeric expression>
symbol EQU <address expression>
symbol EQU <register>

symbol EQU <instruction mnemonic>

The EQU (equate) directive assigns values and attributes to
user-defined symbols. The required symbol name may not be
terminated with a colon. The symbol cannot be redefined by a
subsequent EQU or another directive. Anv elements used in numeric
or address expressions must be defined before the EQU directive
appears.

The first form assigns a numeric value to the symbol, the
second a memory address. The third form assigns a new name to an
8086 register. The fourth form defines a new instruction (sub)set.
The following are examples of these four forms:

0005 FIVE EQU 2%2+1
0033 NEXT EQU BUFFER
0001 COUNTER EQU CX
MOVVV EQU MoV
005D 8BC3 MOVVV AX,BX

3.8 The DB Directive ¢

[symbol] DB <numeric expression>[,<numeric expression>..]
[symbol] DB <string constant>[,<string constant>...]

The DB directive defines initialized storage areas in byte
format. Numeric expressions are evaluated to 8-bit values and
sequentially placed in the hex output file. String constants are
placed in the output file according to the rules defined in Section
2.4.2. A DB directive is the only ASM-86 statement that accepts a
string constant longer than two bytes. There is no translation from
lower to upper case within strings. Multiple expressions orx
constants, separated by commas, may be added to the definition, but
may not exceed the physical line length.

Use an optional symbol to reference the defined data area
throughout the program. The symbol has four attributes: the
Segment and Offset attributes determine the symbol”’s memory
reference, the Type attribute specifies single bvtes, and Length
tells the number of bytes (allocation units) reserved.

All Information Presented Here is Proprietary to Digital Research

25

CP/M-86 Programmer” s Guide 3.8 The DB Directive

The following statements show DB directives with symbols:

005F 43502F4D2073 TEXT DB “CP/M system”,0
797374656000

006B E1 AA DB “a” + 80H

006C 0102030405 X DB 1,2,3,4,5

0071 B90CO0O MOV CX,LENGTH TEXT

3.9 The DW Directive

[symbol] DW <numeric expression>[,<numeric expression>..]
[symbol]l DW <string constant>[,<string constant>...]

The DW directive initializes two-byte words of storage. String
constants longer than two characters are illegal. Otherwise, DW
uses the same procedure to initialize storage as DB except that the
low-order byte is stored first, followed by the high-order byte.
The following are examples of DW statements:

0074 0000 CNTR DW 0

0076 63C166C169C1l JMPTAB DW SUBR1,SUBR2,SUBR3

007C 010002000300 DW 1,2,3,4,5,6
040005000600

3410 The DD Directive
[symbol] DD <numeric expression>[,<numeric expression>..]

The DD directive initializes four bytes of storage. The Offset
attribute of the address expression is stored in the two lower
bytes, the Segment attribute in the two upper bytes. Otherwise, DD
follows the same procedure as DB. For example:

1234 CSEG 1234H
0000 6CC1l34126FCl LONG_JMPTAB DD ROUT1,ROUT2
3412
0008 72C1341275C1 DD ROUT3,ROUT4
3412

All Information Presented Here is Proprietary to Digital Research

26

CP/M-86 Programmer”s Guide 3.11 The RS Directive

3.11 The RS Directive
[symbol] RS <numeric expression>

The RS directive allocates storage in memory but does not
initialize it. The numeric expression gives the number of bytes to
be reserved. An RS statement does not give a byte attribute to the
optional symbol. For example:

0010 BUF RS 80
0060 RS 4000H
4060 RS 1

3.12 The RB Directive
[symbol] RB <numeric expression>
The RB directive allocates byte storage in memorvy without any

initialization. This directive is identical to the RS directive
except that it does give the byte attribute.

3.13 The RW Directive
[symbol]l] RW <numeric expression>
The RW directive allocates two-byte word storage in memory but

does not initialize it. The numeric expression gives the number of
words to be reserved. For example:

4061 BUFF RW 128
4161 RW 4000H
cleél RW 1

3.14 The TITLE Directive
TITLE <string constant>
ASM-86 prints the string constant defined by a TITLE directive
statement at the top of each printout page in the listing file. The
title character string should not exceed 30 characters. For
example:

TITLE “CP/M monitor”

3.15 The PAGESIZE Directive
PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines to be
included on each printout page. The default pagesize is 66.

All Information Presented Here is Proprietary to Digital Research

27

CP/M-86 Programmer”s Guide 3.16 The PAGEWIDTH Directive

3.16 The PAGEWIDTH Directive

PAGEWIDTH <numeric expression>

The PAGEWIDTH directive defines the number of columns printed

across the page when the listing file is output. The default
pagewidth is 120 unless the listing is routed directly to the
terminal; then the default pagewidth is 79.
3.17 The EJECT Directive

EJECT

The EJECT directive performs a page eject during printout. The
EJECT directive itself is printed on the first line of the next
3.18 The SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in

the print file with the correct number of line-feeds (LF). Use this

directive when printing out on a printer unable to interpret the
form-feed character.

3.19 The NOLIST and LIST Directives

NOLIST
LIST

The NOLIST directive blocks the printout of the following
lines. Restart the listing with a LIST directive.

All Information Presented Here is Proprietary to Digital Research

28

Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set includes all 8086 machine
instructions. The general syntax for instruction statements is
given in Section 2.7. The following sections define the specific
syntax and required operand types for each instruction, without
reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed
description of each instruction, see Intel”“s MCS-86 Assembly
Language Reference Manual. For descriptions of the instruction bit
patterns and operations, see Intel”s MCS-86 User”s Manual.

The instruction-definition tables present ASM-86 instruction
statements as combinations of mnemonics and operands. A mnemonic is
a symbolic representation for an instruction, and its operands are
its required parameters. Instructions can take zero, one or two
operands. When two operands are specified, the left operand is the
instruction“s destination operand, and the two operands are
separated by a comma.

The instruction~definition tables organize ASM-86 instructions
into functional groups. Within each table, the instructions are
listed alphabetically. Table 4-1 shows the symbols used in the
instruction-definition tables to define operand types.

Table 4-1. Operand Type Symbols

Symbol Operand Type
numb \ any NUMERIC expression
numb8 any NUMERIC expression which
evaluates to an 8-bit number
acc accumulator register, AX or AL
reg any general purpose register,

not segment register

reqlé a 16-bit general purpose register,
not segment register

segreg any segment register: CS, DS, SS,
or ES

All Information Presented Here is Proprietary to Digital Research

29

CP/M-86 Programmer”“s Guide 4.1 Introduction

Table 4-1. (continued)

Symbol Operand Type

mem any ADDRESS expression, with or
without base- and/or index-
addressing modes, such as:

variable
variable+3
variable[bx]
variable[SI]
variable[BX+SI]
[BX] '
[BP+DI]

simpmem any ADDRESS expression WITHOUT base-
and index- addressing modes, such as:

variable
variable+4

memlreg any expression symbolized by "reg"
or "mem"

mem|reglé any expression symbolized by
"mem|reg", but must be 16 bits

label any ADDRESS expression which
evaluates to a label

1lab8 any "label" which is within +/- 128
bytes distance from the instruction

The 8086 CPU has nine single-bit Flag registers which reflect
the state of the CPU. The user cannot access these registers
directly, but can test them to determine the effects of an executed
instruction upon an operand or register. The effects of
instructions on Flag registers are also described in the
instruction-definition tables, using the symbols shown in Table 5-2
to represent the nine Flag registers.

All Information Presented Here is Proprietary to Digital Research

30

CP/M-86 Programmer”s Guide : 4.1 1Introduction

Table 4-2. Flag Register Symbols

AF Auxiliary-Carrv-Flag
CF Carry-Flag

DF Direction-Flag

IF Interrupt-Enable-Flag
OoF Overflow-Flag

PF Parity-Flag

SF Sign-Flag

TF Trap-Flag

ZF Zero-Flag

4.2 Dpata Transfer Instructions

There are four classes of data transfer operations: general
purpose, accumulator specific, address-object and flag. Only SAHF
and POPF affect flag settings. Note in Table 4-3 that if acc = AL,
a byte is transferred, but if acc = AX, a word is transferred.

Table 4-3. Data Transfer Instructions

Syntax Result

IN acc,numb8 | numb16 transfer data from input port given
by numb8 or numblé (0-255) to
accumulator

IN acc,DX transfer data from input port given
by DX register (0-0FFFFH) to
accumulator

LAHF transfer S¥, 7F, AF, PF, and CF
flags to the AH register

LDS regl6,mem transfer the segment part of the
memory address (DWORD variable) to
the DS segment register, transfer
the offset part to a general
vurpose 1l6-bit register

LEA regl6,mem transfer the offset of the memory
address to a (l6-bit) register

LES regl6,mem transfer the segment part of the
memory address to the ES segment
register, transfer the offset part
to a 16-bit general purpose register

MOV reg,mem|reg move memory or register to register

MOV mem[req,reg move register to memorv or register

All Information Presented Here is Proprietary to Digital Research

31

CP/M-86 Programmer”s Guide ‘4.2 Data Transfer Instructions

Table 4-3. (continued)

Syntax Result -

MOV mem|reg,numb move immediate data to memory or
register

MOV segreg,memlreglG move memory or register to segment
register :

MOV mem|regl6,segreg move segment register to memory or
register

OUT = numb8|numblé,acc transfer data from accumulator

to output port (0-255) given by
numb8 or numblé6

ouT DX ,acc transfer data from accumulator to
output port (0-0FFFFH) given by DX
register

POP memlreglG move top stack element to memorvy or
register

POP segreg move top stack element to segment

register; note that CS segment
register not allowed

POPF transfer top stack element to flags

PUSH mem|reqlé move memory or register to top
stack element

PUSH segreg move segment register to top stack
element

PUSHF transfer flags to top stack element

SAHF transfer the AH register to flags

XCHG reg,mem|reg exchange register and memory or
register

XCHG memlreq,reg exchange memorv or register and
register

XLAT mem|reg .perform table lookup translation,

table given by "mem|reg", which is
alwavs BX. Replaces AL with AL
offset from BX.

All Information Presented Here is Proprietarv to Digital Research

32

CP/M-86 Programmer”s Guide 4.3 Arithmetic, Logic, and Shift

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CP1J performs the four basic mathematical operations in
several different ways. It supports both 8- and l6-bit operations
and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic
operations to reflect the result of the operation. Table 4-4
summarizes the effects of arithmetic instructions on flag bits.
Table 4-5 defines arithmetic instructions and Table 4-6 logical and
shift instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags

CF is set if the operation resulted in a carry out of
(from addition) or a borrow into (from subtraction)
the high-order bit of the result; otherwise CF is
cleared.

AF is set if the operation resulted in a carry out of
(from addition) or a borrow into (from subtraction)
the low-order four bits of the result; otherwise AF
is cleared.

ZF is set if the result of the opveration is zero;
otherwise ZF is cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight
bits of the result of the operation is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation resulted in an overflow; the
size of the result exceeded the capacity of its
destination.

All Information Presented Here is Proprietary to Digital Research

33

CP/M-86 Programmer”s Guide 4,3 Arithmetic, Logic, and Shift

Table 4-5. Arithmetic Instructions

Syntax Result

AAA adjust unpacked BCD (ASCII) for
addition - adjusts AL

AAD adjust unpacked BCD (ASCII) for
division - adjusts AL

AAM adjust unpacked BCD (ASCII) for
multiplication ~ adjusts AX

AAS adjust unpacked BCD (ASCII) for
subtraction - adjusts AL

ADC reg,mem|reg add (with carry) memorv or
register to register

ADC mem|reg,reg add (with carry) register to memory
or register

ADC mem | reg ,numb add (with carry) immediate data to
memory or register

ADD req,memlreq add memory or register to register

ADD mem[reg,reg add register to memory or register

ADD mem | reg ,numb add immediate data to memory or
register

CBW convert byte in AL to word in AH bv

sign extension

CWD convert word in AX to double word
in DX/AX by sign extension

CMP reg,mem!reg compare register with memory or
register

CMP mem|reg,reg compare memory oOr register with
register

CMP mem | req,numb compare data constant with memory

or register

DAA decimal adiust for addition,
adjusts AL

DAS decimal adjust for subtraction,
adjusts AL

DEC memlreg subtract 1 from memory or register

All Information Presented Here is Proprietarv to Digital Research

34

CP/M-86 Programmer”s Guide

4.3 Arithmetic, Logic, and Shift

Table 4-5. (continued)

Syntax

Result

INC

DIV

IDIV

IMUL

MUL

NEG

SBB

SBB

SBB

SUB

SUB

SUB

mem | reg

mem|reg

mem|reg

mem|reg

mem |reg

mem | reg
reg,mem|reg
mem|reg,reg
mem | reg, numb
reqg,mem|reg
mem|reg,reqg

menm | reg, numb

add 1 to memory or register

divide (unsigned) accumulator (AX
or AL) by memory or register.

If byte results, AL = quotient, AH
= remainder. If word results, AX =
quotient, DX = remainder

divide (signed) accumulator (AX or
AL) by memory or register -
quotient and remainder stored as in
DIV

multiply (signed) memorvy or
register by accumulator (AX or
AL) - if byte, results in AH, AL.
If word, results in DX, AX

multiply (unsigned) memory or
register by accumulator (AX or
AL) - results stored as in IMUL

two”s complement memory or
register

subtract (with borrow) memory or
register from register

subtract (with borrow) register
from memory or register

subtract (with borrow) immediate
data from memory or register

subtract memory or register from
register

subtract register from memory or
register

subtract data constant from memory
or register

All Information Presented Here is Proprietary to Digital Research

35

CP/M-86 Programmer”“s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. Logic and Shift Instructions

Syntax : Result

AND reg,mem|reg perform bitwise logical "and" of a
register and memorv register

AND mem|reg,reg perform bitwise logical "and" of
memory register and register

AND memlreg,numb perform bitwise logical "and" of
memory register and data constant

NOT mem|reg form ones complement of memory
, or register

OR reg,mem|reg perform bitwise logical "or" of
a register and memory register

OR mem|reg,reg perform bitwise logical "or" of
memory register and register

OR mem | reg, numb perform bitwise logical "or" of
memory register and data constant

RCL mem|reqg,l rotate memory or register 1 bit.
left through carry flag

RCL mem|reg,CL rotate memory or register left
through carry flag, number of bits
given by CL register

RCR mem |reqg, 1l rotate memory or register 1 bit
right through carry flag

RCR menm | reg,CL rotate memory or register right
through carry flag, number of bits
given by CL register

ROL mem|reg,1 rotate memory or register 1 bit
left
ROL memlreq,CL } rotate memory or register left,

number of bits given by CI register

ROR mem|reg,1 : rotate memory or register 1 bit
xight
ROR memlreg,CL rotate memory or register right,

number of bits given by CIL register

SAT, mem|req,l shift memory or register 1 bit
left, shift in low-order zero bits

All Information Presented Here is Proprietary to Digital Research

36

CP/M-86 Programmer”s Guide

4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)

Syntax

Result

SAL

SAR

SAR

SHL

SHL

SHR

SHR

TEST

TEST

TEST

mem|reqg,CL

mem|reg,l

mem|reg,CL

mem|reg,l

mem | reg,CL

mem|reg,1l

mem|reg,CL

reg,mem|reg

mem|reqg,reg

mem | reg,numb

shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits

shift memory or register 1 bit
right, shift in high-order bits
equal to the original high-order
bit

shift memory or register right,
number of bits given by CL
register, shift in high-order bits
equal to the original high-order
bit

shift memory or register 1 bit
left, shift in low-order 2zero bits
- note that SHL is a different
mnemonic for SAL

shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits - note that SHL is a
different mnemonic for SAL

shift memory or register 1 bit
right, shift in high-order =zero
bits

shift memory or register right,
number of bits given by CL
register, shift in high-order zero
bits

perform bitwise logical "and" of a
register and memory or register

- set condition flags but do not
change destination

perform bitwise logical "and" of
memory register and register - set
condition flags but do not

change destination

perform bitwise logical "and" -
test of memory register and data
constant - set condition flags
but do not change destination

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 Programmer”s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)

Syntax Result
XOR reg,mem|reg perform bitwise logical "exclusive
OR" of a register and memory or
register
XOR mem|reg,reg perform bitwise logical "exclusive

OR" of memory register and register

XOR mem | reg,numb perform bitwise logical "exclusive
OR" of memory register and data
constant

4.4 String Instructions

String instructions take one or two operands. The operands
specify only the operand type, determining whether operation is on
bytes or words. If there are two operands, the source operand is
addressed by the SI register and the destination operand is
addressed by the DI register. The DI and SI registers are always
used for addressing. Note that for string operations, destination
operands addressed by DI must always reside in the Extra Segment
(ES) .

Table 4-7. String Instructions

Syntax Result
CMPS mem|reg,mem|reg subtract source from destination,
affect flags, but do not return
result.
LODS mem|reg transfer a byte or word from the

source operand to the accumulator.

MOVS mem!reg,mem|reg move 1 byte (or word) from source
to destination.

SCAS mem|reg subtract destination operand from
accumulator (AX or AL), affect
flags, but do not return result.

STOS mem|reg transfer a byte or word from
accumulator to the destination
operand.

All Information Presented Here is Proprietary to Digital Research

38

CP/M-86 Programmer”s Guide 4.4 String Instructions

Table 4-8 defines prefixes for string instructions. A prefix
repeats its string instruction the number of times contained in the
CX register, which is decremented by 1 for each iteration. Prefix
mnemonics precede the string instruction mnemonic in the statement
line as shown in Section 2.8.

Table 4-8. Prefix Instructions

Syntax Result
REP repeat until CX register is zero
REPZ repeat until CX register is zero
and zero flag (ZF) is not zero
REPE equal to "REPZ"
REPNZ repeat until CX register is zero

and zero flag (ZF) is zero

REPNE equal. to "REPNZ"

4.5 Control Transfer Instructions

There are four classes of control transfer instructions:

calls, jumps, and returns
conditional jumps
iterational control
interrupts

All control transfer instructions cause program execution to
continue at some new location in memory, possibly in a new code
segment. The transfer may be absolute or depend upon a certain
condition. Table 4-9 defines control transfer instructions. In the
definitions of conditional jumps, "above" and "below" refer to the
relationship between unsigned values, and "greater than" and "less
than" refer to the relationship between signed values.

All Information Presented Here is Proprietary to Digital Research

39

CP/M-86 Programmer”s Guide

4.5 Control Transfer Instructions

Syntax

Control Transfer Instructions

Result

CALL

CALL

CALLF

CALLF

INT

INTO

IRET

JA

label

mem|reglé

label

mem

numb8

lab8

push the offset address of the next
instruction on the stack, jump to
the target label

push the offset address of the next
instruction on the stack, jump to
location indicated by contents of
specified memory or register

push CS segment register on the
stack, push the offset address of
the next instruction on the stack
(after CS), jump to the target
label

push CS register on the stack,

push the offset address of the next
instruction on the stack, jump to
location indicated by contents of
specified double word in memory

push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through any one of the 256
interrupt~vector elements - uses

~three levels of stack

if OF (the overflow flag) is

set, push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through interrupt-vector
element 4 (location 10H) - if the
OF flag is cleared, no operation
takes place

transfer control to the return
address saved by a previous
interrupt operation, restore saved
flag registers, as well as CS and
IP - pops three levels of stack

jump if "not below or equal" or
"above" ((CF or ZF)=0)

All Information Presented Here is Proprietary to Digital Research

40

CP/M-86 Programmer”s Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax Result

JAE lab8 >jump if "not below" or "above or
equal” (CF=0)

JB lab8 jump if "below"™ or "not above or
equal” (Cr=1)

JBE lab8 jump if "below or equal" or "not
above" ((CF or ZF)=1)

JC lab8 same as "JB"

JCX2Z lab8 jump to target label if CX register
is zero

JE lab8 jump if "equal" or "zero" (ZF=1)

JG lab8 jump if "not less or equal" or
"greater" (((SF xor OF) or ZF)=0)

JGE 1ab8 jump if "not less" or "greater or
equal” ((SF xor OF)=0)

JL lab8 ~ jump if "less" or "not greater or
equal” ((SF xor OF)=1l)

JLE lab8 ‘ Jump if "less or equal" or "not
greater" (((SF xor OF) or ZwW)=1)

JMP label ' jump to the target label

JMP memlreglG jump to location indicated by
contents of specified memory or
register

JMPF label jump to the target label possibly
in another code segment

JMPS lab8 jump to the target label within +/-
128 bytes from instruction

JNA lab8 same as "JBE"

JNAE lab8 ‘'same as "JB"

“JNB lab8 o " same as "JAE"

JNBE lah8 same as "JA"

JINC lab8 same as "JNB"

All Information Presented Here is Proprietary to Digital Research

41

CP/M-86 Programmer”s Guide

4.5 Control Transfer

Table 4-9. (continued)

Instructions

Syntax Result

JNE lab8 jump if "not equal" or "not zero"
(2F=0)

JING lab8 same as "JLE"

JNGE lab8 same as "JL"

JNL lab8 same as "JGE"

JNLE lab8 same as "JG"

JNO lab8 jump if "not overflow" (OF=0)

JNP lab8 jump if "not parity" or "parity
odda"

JNS 1lab8 jump if "not sign"

JNZ lab8 same as "JNE"

Jo lab8 jump if "overflow" (OF=l)

JP lab8 jump if "parity" or "parity even"
(PF=1)

JPE lab8 same as "JP"

JPO lab8 same as "JNP"

Js lab8 jump if "sign" (SF=1)

JZ lab8 same as "JE"

LOOP 1ab8 decrement CX register by one, jump
to target label if CX is not zero

LOOPE lab8 decrement CX register by one, jump
to target label if CX is not zero
and the ZF flag is set - "loop
while zero" or "loop while equal"

LOOPNE 1lab8 decrement CX register by one, jump
.to target label if CX is not zero
and ZF flag is cleared - "loop
while not zero" or "loop while not
equal”

LOOPNZ 1ab8 same as "LOOPNE"

LOOPZ lab8 same as "LOOPE"

All Information Presented Here is Proprietary to Digital Research

42

CP/M-86 Programmer”s Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)

Syntax Result

RET return to the return address pushed
by a previous CALL instruction,
increment stack pointer by 2

RET numb return to the address pushed by a

previous CALL, increment stack
pointer by 2+numb

RETF return to the address pushed by a
previous CALLF instruction,
increment stack pointer by 4

RETF numb return to the address pushed by a
previous CALLF instruction,
increment stack pointer by 4+numb

4.6 Processor Control Instructions
Processor control instructions manipulate the flag registers.

Moreover, some of these instructions can synchronize the 8086 CPU
with external hardware.

Table 4-10. Processor Control Instructions

Syntax Results

CLC clear CF flag

CLD clear DF flag, causing string
instructions to auto-increment the
overand pointers

CLI clear IF flag, disabling maskable
external interrupts

cMC complement CF flag

ESC numb8,mem|reg do no operation other than compute

the effective address and place it
on the address bus (ESC is used by
the 8087 numeric co-processor), -
"numb8" must be in the range 0 to 63

All Information Presented Here is Proprietary to Digital Research

/

43

CP/M-86 Programmer”s Guide 4.6 Processor Control Instructions

Table 4-10. (continued)

Syntax Results

LOCK PREFIX instruction, cause the 8086
processor to assert the "bus-lock"
signal for the duration of the
operation caused by the following
instruction - the LOCK prefix
instruction may precede any other
instruction - buslock prevents
co-processors from gaining the bus;
this is useful for shared-resource

semaphores
HLT . cause 8086 processor to enter halt
: o state until an interrupt is
recognized
STC ; : set CF flag
STD ' set DF flag, causing string

instructions to auto-decrement the
operand pointers

STI set IF flag, enabling maskable
external interrupts

WAIT cause the 8086 processor to enter a
"wait" state if the signal on its
"TEST" pin is not asserted

All Information Presented Here is Proprietary to Digital Research

44

Section 5
Code-Macro Facilities

5.1 Introduction to Code-macros

ASM-86 does not support traditional assembly-language macros,
but it does allow the user to define his own instructions bv using
the Code-macro directive. TUike traditional macros, code-macros are
assembled wherever they appear in assembly languadge code, but there
the similarity ends. Traditional macros contain assembly language
instructions, but a code-macro contains only code-macro directives.
Macros are usually defined in the user”s symbol table; ASM-86 code-
macros are defined in the assembler”’s symbol table. A macro
simplifies using the same block of instructions over and over again
throughout a program, but a code-macro sends a bit stream to the
output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code-macro as an instruction, vyou can
invoke code-macros by using them as instructions in your program.
The example below shows how MAC, an instruction defined by a code-
macro, can be invoked. :

.

XCHG -BX,WORD3
MAC PAR1,PAR2
MUL AX,WORD4

Note that MAC accepts two opverands. When MAC was defined,
these two operands were also classified as to type, size, and so on
by defining MAC”s formal parameters. The names of formal parameters
are not fixed. They are stand-ins which are revlaced by the names
or values supplied as operands when the code-macro is invoked. Thus

formal parameters "hold the place" and indicate where and how the
operands are to be used.

The definition of a code-macro starts with a line specifying
its name and its formal parameters, if any:

CodeMacro <name> [<formal parameter list>]
where the optional <formal parameter list> is defined:

<formal name>:<spvecifier letter>[<modifier letter>][<range>]}

All Information Presented Here is Proprietary to Digital Research

45

CP/M~-86 Programmer”s Guide‘ 5.1 Introduction to Code-Macros

As stated above, the formal name. is not fixed, but a place
holder. 1If formal parameter list is present, the specifier letter
is required and the modifier letter 1is optional. Possible
specifiers are A, ¢, D, E, M, R, S, and X. Possible modifier
letters are b, 4, w, and sb. The assembler ignores case except
within strings, but for clarity, this section shows specifiers in
upper-case and modifiers in lower-case. Following sections describe
specifiers, modifiers, and the optional range in detail.

The bodv of the code-macro describes the bit pattern and formal
parameters. Only the following directives are legal within code-
macros: '

SEGFIX
NOSEGFIX
MODRM
RELB
RELW

DB

DW

DD

DBIT

- These directives are unique to code-macros, and those which
appear to duplicate ASM-86 directives (DB, DW, and DD) have
different meanings in code-macro context. These directives are
discussed in detail in later sections. The definition of a code-
macro ends with a line:

EndM

CodeMacro, EndM, and the code-macro directives are all reserved
words. Code-macro definition syntax is defined in Backus-Naur-like
form in Appendix H. The following examples are typical code-macro
definitions.

CodeMacro AAA
DB 37H
EndM

CodeMacro DIV divisor:Eb
SEGFIX divisor

DB 6FH
MODRM divisor
EndM

CodeMacro ESC opcode:Db(0,63) ,src:Eb
SEGFIX src
DBIT 5(1BH) ,3(opcode(3))
MODRM opcode,src

EndM

All Information Presented Here is Proprietary to Digital Research

46

CP/M-86 Programmer”s Guide 5.2 Specifiers

5.2 Specifiers

Every formal parameter must have a specifier letter that
indicates what type of operand is needed to match the formal
parameter. Table 5-~1 defines the eight possible specifier letters.

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type
A Accumulator register, AX or AL.
C Code, a label expression only.
D Data, a number to be used as an

immediate value.

E Effective address, either an M
(memory address) or an R (register).

M Memory address. This can be either
a variable or a bracketed register
expression.

R A general register only.

S Segment register only.

X A direct memorv reference.

5.3 Modifiers

The optional modifier letter is a further requirement on the
operand. The meaning of the modifier letter depends on the tvpe of
the operand. For variables, the modifier requires the operand to bhe
of type: "b" for byte, "w" for word, "d" for double-word and "sb"
for signed byte. For numbers, the modifiers require the number to
be of a certain size: "b" for -256 to 255 and "w" for other numbers.
Table 5-2 summarizes code-macro modifiers.

All Information Presented Here is Proprietary to Digital Research

47

CP/M-86 Programmer”s’ Guide

5.3 ‘Modifiers

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
- Modifier Type Modifier Size
b - byte b -256 to 255
w word w anything else
dword
sb signed
: byte

5.4 Range Specifiers

The optional range is specified within parentheses by either
one expression or two expressions separated by a comma. The

following are valid formats:

(numberb)
(register)
{numberb,numberb)
{numberb,register)
(register ,numberb)
(register,register)

Numberb is 8-bit number, not an address.

The following example

specifies that the input port must be identified by the DX register:

CodeMacro IN dst:Aw,port:Rw(DX)

The next example specifies that the CL register is to contain the

"count" of rotation:

CodeMacro ROR dst:Ew,couht:Rb(CL)

The last example specifies that the "opcode"
data, and may range from 0 to 63 inclusive:

CodeMacro ESC opcode:Db(0,63) ,adds:Fb

is to be immediate

/

All Information Presented Here is Proprietary to Digital Research

48

CP/M-86 Programmer”s Guide 5.5 Code-macro Directives

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further
requirements on how the operand is to be treated. Directives are
reserved words, and those that appear to duplicate assembly language
instructions have different meanings within a code-macro definition.
Only the nine directives defined here are legal within code-macro
definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine
whether a segment-override prefix byte is needed to access a given
memory location. If so, it is output as the first byte of the
instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX <formal name>

where <formal name> is the name of a formal parameter which rep-
resents the memory address. Because it represents a memory address,
the formal parameter must have one of the specifiers E, M or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES
register for that operand. This applies only to the destination
operand of these instructions: CMPS, MOVS, SCAS, STOS. The form of
NOSEGFIX is:

NOSEGFTIX segreg,<formname>

where segreg is one of the segment registers ES, CS, SS, or NS and
<formname> is the name of the memory-address formal varameter, which
must have a specifier E, M, or X. No code is generated from this
directive, but an error check is performed. The following is an
example of NOSEGFIX use:

CodeMacro MOVS si_ptr:Ew,di_ptr:Ew
NOSEGFIX ES,di_ptr

SEGFIX si_ptr
DB OA5H
EndM

All Information Presented Here is Proprietary to Digital Research

49

CP/M-86 Programmer”s Guide 5.5 Code-macro Directives

5.5.3 MODRM

. This directive intructs the assembler to generate the ModRM
byte, which follows the opcode byte in manv of the 8086°s
instructions. The ModRM byte contains either the indexing type or
the register number to be used in the instruction. It also
specifies which register is to be used, or gives more information to
specify an instruction.

The ModRM byte carries the information in three fields: The mod
field occupies the two most significant bits of the byte, and
combines with the register memory field to form 32 possible values:
8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod
field. It specifies either a register number or three more bits of
opcode information. The meaning of the reg field is determined by
the opcode byte.

The register memory field occupies the last three bits of the
byte. It specifies a register as the location of an operand, or

forms a part of the address-mode in combination with the mod field
described above.

For further information of the 8086°s instructions and their
bit patterns, see Intel”s 8086 Assembly Language Programing Manual
and the Intel 8086 Family User”s Manual. The forms of MODRM are:

MODRM <form name>,<form name>
MODRM NUMBER7,<form name>

where NUMBER7 is a value 0 to 7 inclusive and <form name> is the
name of a formal parameter. The following examples show MODRM use:

CodeMacro RCR dst:Ew,count:Rb (CL)

SEGFIX dst
DB 0D3H
MODRM 3,dst
EndM
CodeMacro OR dst:Rw,src:Ew
SEGFIX src
DB 0BH
MODRM dst,src
EndM

All Information Presented Here is Proprietary to Digital Research

50

CP/M-86 Programmer”s Guide 5.5 Code-macro Directives

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions,
instruct the assembler to generate displacement between the end of
the instruction and the label which is supplied as an operand. RELB

generates one byte and RELW two bytes of displacement. The
directives the following forms:

RELB <form name>
REILW <form name>

where <form name> is the name of a formal parameter with a "C"
(code) specifier. For example:

CodeMacro LOOP place:Cb

DB OE2H
RELB place
EndM

5.5.5 DB, DW and DD

These directives differ from those which occur outside of code-
macros. The form of the directives are:

DB <form name> NUMBERB

DW <form name> NUMBERW
DD <form name>

where NUMBERB is a single-byte number, NUMBERW is a two-byte number,
and <form name> is a name of a formal parameter. For example:

CodeMacro XOR dst:Ew,src:Db

SEGFIX dst

DB 81H

MODRM 6,dst

DW src
EndM

All Information Presented Here is Proprietary to Digital Research

51

CP/M-86 Programmer”s Guide 5.5 Code-macro Directives

5.5.6 DBIT

This directive manipulates bits in combinations of a byte or
less. The form is:

DBIT <field description>[,<field description>]
where a <field description>, has two forms:

<number><combination>
<number> (<form name> (<rshift>))

where <number> ranges from 1 to 16, and specifies the number of bits
to be set. <combination> specifies the desired bit combination.
The total of all the <number>s listed in the field descriptions must
not exceed 16. The second form shown above contains <form name>, a
formal parameter name that instructs the assembler to put a certain
number in the specified position. This number normally refers to
the register specified in the first line of the code-macro. The
numbers used in this special case for each register are:

AL:
CL:
DL:
BL:
AH:
CH:
DH:
BH:
AX:
CX:
DX:
BX:
SP:
BP:
SI:
DI:
ES:
CS:
SS:
DS:

WNhHONOATUBWNHONMMNT_WNHO

<rshift>, which is contained in the innermost parentheses,
specifies a number of right shifts. For example, "0" specifies no
shift, "1" shifts right one bit, "2" shifts right two bits, and so
on. The definition below uses this form.

CodeMacro DEC dst:Rw

DBIT 5(9H) ,3(dst (0))
EndM

- All Information Presented Here is Proprietary to Digital Research

52

CP/M-86 Programmer”s Guide 5.5 Code-macro Nirectives

The first five bits of the byte have the value 9H. 1If the
remaining bits are zero, the hex value of the bvte will be 48H. If
the instruction:

DEC DX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, which is
the final value of the byte for execution. If this sequence had
been present in the definition:

DBIT 5(9H) ,3(dst (1))

then the register number would have been shifted right once and the
result would had been 48H + 1H = 49H, which is erroneous.

All Information Presented Here is Proprietary to Digital Research

53

Section 6
DDT-86

6.1 DDT-86 Operation

The DPT-86TM program allows the user to test and debug programs
interactively in a CP/M-86 environment. The reader should be
familiar with the 8086 processor, ASM-86 and the CP/M-86 operating
system as described in the CP/M-86 System Guide.

6.1.1 1Invoking DDT-86

Invoke DDT-86 by entering one of the following commands:

DDT86
DNT86 filename

The first command simply loads and executes DDT-86. After
displaving its sign-on message and prompt character, - , DNDT-86 is
ready to accept operator commands. The second command is similar to
the first, except that after DNDT-86 is loaded it loads the file
specified by filename. If the file type is omitted from filename,
.CMD is assumed. Note that DDT-86 cannot load a file of tvpe .H86.
The second form of the invoking command is equivalent to the
sequence:

A>DDT86
pPDT86 xX.X
-Efilename

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the
operator with a hyphen, -. 1In response, the operator can tyve a
command line or a CONTROL-C (represented in this chapter as {C) to
end the debugging session (see Section 6.1.4). A command line mavy
have up to 64 characters, and must be terminated with a carriage
return. While entering the command, use standard CP/M line-editing
functions (1X, fH, TR, etc.) to correct tvping errors. DDT-86 does
not process the command line until a carriage return is entered.

The first character of each command line determines the command

action. Table 6~1 summarizes DDT-86 commands. DNDDT-86 commands are
defined individually in Section 6.2.

All Information Presented Here is Proprietary to Digital Research

55

CP/M-86 Programmer”s Guide 6.1 DDT-86 Operation

Table 6-1. DDT-86 Command Summary

Command Action

enter assembly language statements
display memory in hexadecimal and ASCII
load program for execution

fill memory block with a constant

begin execution with optional breakpoints
hexadecimal arithmetic

set up file control block and command tail
list memory using 8086 mnemonics

move memory block

read disk file into memory

set memory to new values

trace program execution

untraced program monitoring

show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

XNy AoHITQO™MEO P

The command character may be followed by one or more arguments,
which may be hexadecimal values, file names or other information,
depending on the command. Arguments are separated from each other
by commas or spaces. No spaces are allowed between the command
character and the first argument. ’

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands.
Because the 8086 can address up to 1 megabyte of memory, addresses
must be 20-bit values. Enter a 20-bit address as follows:

S8SsS:0000

where ssss reoresents an optional 16-bit segment number and oooo is

a 16-bit offset. NDT-86 combines these values to produce a 20-bit
effective address as follows:

ssss0
+ 0000

The optional value ssss may be a l6-bit hexadecimal value or
the name of a segment register. If a segment register name is
specified, the value of ssss is the contents of that register in the
user”s CPU state, as displayed by the X command. If omitted, a
default value appropriate to the command being executed is used as
described in Section 6.4.

All Information Presented Here is Proprietary to Digital Research

56

CP/M-86 Programmer”’s Guide 6.1 DDT-86 Operation

6.1.4 Terminating DDT-86

Terminate NDDT-86 by typing a fC in response to the hyphen
prompt. This returns control to the CCP. Note that CP/M-86 does
not have the SAVE facility found in CP/M for 8-bit machines. Thus
if DOT-86 is used to patch a file, write the file to disk using the
W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled, and
preserves the interrupt state of the program being executed under
DDT-86. When DDT-86 has control of the CPU, either when it is
initially invoked, or when it regains control from the program being
tested, the condition of the interrupt flag is the same as it was
when DDT-86 was invoked, except for a few critical regions where
interrupts are disabled. While the program being tested has control
of the CPU, the user’s CPU state determines the state of the
interrupt flag.

6.2 DDNDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-
86 commands give the user control of program execution and allow the
user to display and modify system memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory.
The form is:

As

where s is the 20-bit address where assembly is to start. DDT-86
responds to the A command by displaying the address of the memory
location where assembly is to begin. At this point the operator
enters assembly language statements as described in Section 4 on
Assembly Language Syntax. When a statement is entered, DDT-86
converts it to machine code, places the value(s) in memory, and
displays the address of the next available memory location. This
process continues until the user enters a blank line or a line
containing only a period.

DDT-86 responds to invalid statements by displaving a question
mark, ? , and redisplaying the current assembly address.

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 Programmer”s Guide 6.2 DNT-86 Commands

6.2.2 The D (Display) Command

The D command displays the contents of memorv as 8-bit or 1l6-
bit hexadecimal values and in ASCII. The forms are:

D

Ds
Ds,f
DW
DWs
DWs, £

where s is the 20-bit address where the display is to start, and £
is the 16-bit offset within the segment specified in s where the
display is to finish.

Memory is displaved on one or more display lines. Each display
line shows the values of up to 16 memory locations. For the first
three forms, the display line appears as follows:

Ssss:0000 bb bb . . . bbcc . . . C

where ssss is the segment being displayed and oooo is the offset
within segment ssss. The bb”s revresent the contents of the memory
locations in hexadecimal, and the c¢”“s represent the contents of
memory in ASCII. Any non-graphic ASCII characters are represented
by periods.

In response to the first form shown above, DDT-86 displays
memory from the current display address for 12 display lines. The
response to the second form is similar to the first, except that the
display address is first set to the 20-bit address s. The third
form displays the memory block between locations s and f. The next
three forms are analogous to the first three, except that the
contents of memory are displaved as 1l6-bit values, rather than 8-bit
values, as shown below: '

SSSS:0000 WWWW WWWW . . « WWWW CCCC + « « CC

NDuring a long display, the D command may be aborted by tvping
any character at the console.
6.2.3 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G,
T or U command can begin program execution. The E command takes the

form:
E<filename>

where <filename> is the name of the file to be loaded. If no file
type is specified, .CMD is assumed. The contents of the user
segment registers and IP register are altered according to the
information in the header of the file loaded.

All Information Presented Here is Proprietary to Digital Research

58

CP/M-86 Programmer”s Guide 6.2 DNT-86 Commands

An E command releases any blocks of memory allocated by any
previous E or R commands or by programs executed under NDNDT-86. Thus
only one file at a time may be loaded for execution.

When the load is complete, DDT-86 displays the start and end
addresses of each segment in the file loaded. Use the V command to
redisplay this information at a later time.

If the file does not exist or cannot be successfully loaded in
the available memory, DDT-86 issues an error message.

6.2.4 The F (Fill) Command

. The F command fills an area of memory with a byte or word
constant. The forms are:

Fs,f,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and

f is a 1l6-bit offset of the final byte of the block within the
segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b
in locations s through f. 1In the second form, the 1l6-bit value w is
stored in locations s through f in standard form, low 8 bits first
followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-
86 resvonds with a question mark. DDT-86 issues an error message if
the value stored in memory cannot be read back successfully,
indicating faulty or non-existent RAM at the location indicated.

6.2.5 The G (Go) Command

The G command transfers control to the program being tested,
and optionally sets one or two breakpoints. The forms are:

G

G,bl
G,bl,b2
Gs

Gs,bl
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and
bl and b2 are 20-bit addresses of breakpoints. If no segment value

is supplied for anvy of these three addresses, the segment value
defaults to the contents of the CS register.

All Information Presented Here is Proprietary to Digital Research

59

CP/M-86 Programmer”s Guide 6.2 DDT-86 Commands

, In the first three forms, no starting address is specified, so
DDT-86 derives the 20-bit address from the user”s CS and 1IP
registers. The first form transfers control to the user”s program
without setting anv breakpoints. The next two forms respvectively
set one and two breakpoints before passing control to the user”’s
program. The next three forms are analogous to the first three,
except that the user”s CS and IP registers are first set to s.

Once control has been transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, NDDT-86 regains control, clears all breakpoints, and indicates
the address at which execution of the program under test was
interrupted as follows:

*55S88: 0000

where ssss corresponds to the CS and oooo corresponds to the IP
where the break occurred. When a breakpoint returns control to DDT-
86, the instruction at the breakpoint address has not vet been
executed.

6.2.6 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two 1l6-bit
values. The form is:

Ha,b

where a and b are the values whose sum and difference are to be
computed. DDT-86 displays the sum (ssss) and the difference (dddd)
truncated to 16 bits on the next line as shown below:

ssss dddd

6.2.7 The I (Input Command Tail) Command

The I command prepares a file control block and command tail
buffer in DDT-86"s base page, and copies this information into the
base page of the last file loaded with the E command. The form is:

I<command tail>

where <command tail> is a character string which usually contains
one or more filenames. The first filename is parsed into the
default file control block at 005CH. The optional second filename
(if specified) is parsed into the second part of the default file
control block beginning at 006CH. The characters in <command tail>
are also copied into the default command buffer at 0080H. The
length of <command tail> is stored at 0080H, followed by the
character string terminated with a binary zero.

All Information Presented Here is Proprietary to Digital Research

60

CP/M-86 Programmer”s Guide 6.2 DNT-86 Commands

If a file has been loaded with the E command, DDT-86 copies the
file control block and command buffer from the base page of DDT-86
to the base page of the program loaded. The location of DDT-86"s
base page can be obtained from the SS register in the user”s CPU
state when DDT-86 is invoked. The location of the base page of a
program loaded with the E command is the value displayed for DS upon
completion of the program load.

6.2.8 The L (List) Command

The L. command 1lists the contents of memory 1in assembly
language. The forms are:

L
Ls
ULs,f

where s is a 20-bit address where the list is to start, and f is a

16-bit offset within the segment specified in s where the 1ist is to
finish.

The first form lists twelve lines of disassembled machine code
from the current 1list address. The second form sets the list
address to s and then lists twelve lines of code. The last form
lists disassembled code from s through f. 1In all three cases, the
list address is set to the next unlisted location in preparation for
a subsequent L, command. When DDT-86 regains control from a program
being tested (see G, T and U commands), the list address is set to
the current value of the CS and IP registers.

L.ong displays mav be aborted by typing any key during the list
process. Or, enter 1S to halt the display temporarily.

The syntax of the assembly language statements produced by the
I, command is described in Section 4.

6.2.9 The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is:

Ms,f,d

where s is the 20-bit starting address of the block to be moved, £
is the offset of the final byte to be moved within the segment
described by s, and d is the 20-bit address of the first byte of the
area to receive the data. TIf the segment is not specified in 4, the
same value is used that was used for s. WNote that if d is between s
and £, part of the block being moved will be overwritten before it
is moved, because data is transferred starting from location s.

All Information Presented Here is Proprietary to Digital Research

61

CP/M-86 Programmer”s Guide 6.2 DDT-86 Commands

6.2.10 The R (Read) Command

The R command reads a file into a contiguous block of memory.
The form is:

R<filename>
where <filename> is the name and type of the file to be read.

DDT-86 reads the file into memory and dAisplays the start and
end addresses of the block of memory occupied by the file. A V
command can redisplay this information at a later time. The default

display pointer (for subsequent D commands) is set to the start of
the block occupied by the file.

The R command does not free any memory previously allocated by
another R or E command. Thus a number of files may be read into
memory without overlapping. The number of files which may be loaded
is limited to seven, which is the number of memory allocations
allowed by the BDOS, minus one for DDT-86 itself.

If the file does not exist or there is not enough memorv to
load the file, DDT-86 issues an error message.

6.2.11 The S (Set) Command

The S command can change the contents of bytes or words of
memory. The forms are:

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on
the following line. 1In response to the first form, the display is:

ssss:0000 bb
and in response to the second form

S8SS: 0000 WWWW

where bb and wwww are the contents of memory in byte and word
formats, respectively.

In response to one of the above displays, the operator may
choose to alter the memory location or to leave it unchanged. 1If a
valid hexadecimal value is entered, the contents of the byte (or
word) in memory is replaced with the value. If no value is entered,
the contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-86 continues to display
successive memory addresses and values until either a period or an
invalid value is entered.

All Information Presented Here is Proprietaryv to Digital Research

62

CP/M-86 Programmer”s Guide 6.2 DDT-86 Commands

DDT-86 issues an error messade if the value stored in memory

cannot be read back successfully, indicating faulty or non-existent
RAM at the location indicated.

6.2.12 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program
steps. The forms are:

T
Tn
TS
TSn

where n is the number of instructions to execute before returning
control to the console.

Before DDT-86 traces an instruction, it displays the current
CPU state and the disassembled instruction. 1In the first two forms,
the segment registers are not displayed, which allows the entire CPU
state to be displayed on one line. The next two forms are analogqous
to the first two, except that all the registers are displaved, which
forces the disassembled instruction to be displayed on the next line
as in the X command.

In all of the forms, control transfers to the program under
test at the address indicated by the CS and IP registers. If n is
not specified, one instruction is executed. Otherwise DDT-86
executes n instructions, displaving the CPU state before each step.
A long trace may be aborted before n steps have been executed by
typing any character at the console.

After a T command, the list address used in the L command is
set to the address of the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt
instruction, since DDT-86 itself makes BDOS calls and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

All Information Presented Here is Proprietary to Digital Research

63

CP/M-86 Programmer”s Guide 6.2 DDT-86 Commands

6.2.13 The U (Untrace) Command

The U command is identical to the T command except that the CPU
state is displayed only before the first instruction is executed,
rather than before every step. The forms are:

U
Un
Us
USn

where n is the number of instructions to execute before returning
control to the console. The U command may be aborted by striking
any key at the console.

6.2.14 The V (Value) Command

The V command displays information about the last file loaded
with the E or R commands. The form is:

v

If the last file was loaded with the E command, the V command
displays the start and end addresses of each of the segments
contained in the file. If the last file was read with the R
command, the V command displays the start and end addresses of the
block of memory where the file was read. If neither the R nor E
commands have been used, DDT-86 responds to the V command with a
guestion mark, ?.

6.2.15 The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The forms are:

W<filename>
W<filename>,s,f

where <filename> is the filename and file type of the disk file to
receive the data, and s and f are the 20-bit first and last
addresses of the block to be written. If the segment is not
specified in £, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values
from the last file read with an R command. If no file was read with
an R command, DDT-86 responds with a question mark, ?. This first
form is useful for writing out files after patches have been
installed, assuming the overall length of the file is unchanged.

All Information Presented Here is Proprietary to Digital Research

64

CP/M-86 Programmer”s Guide 6.2 DDT-86 Commands

In the second form where s and f are specified as 20-bit
addresses, the low four bits of s are ignored. Thus the block being
written must always start on a paragraph boundary.

If a file by the name specified in the W command already
exists, DDT-86 deletes it before writing a new file.

6.2.16 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU
state of the orogram under test. The forms are:

X
Xr
Xf

where r is the name of one of the 8086 CPU registers and £ is the
abbreviation of one of the CPU flags. The first form displays the
CPU state in the format:

AX BX CX e o o SS ES IP
————————— XXXX XXXX XXXX o « o XXXX XXXX XXXX
<instruction>

The nine hyphens at the beginning of the line indicate the state of
the nine CPU flags. Each position may be either a hyphen,
indicating that the corresponding flag is not set (0), or a one-
character abbreviation of the flag name, indicating that the flag is
set (1). The abbreviations of the flag names are shown in Table 2-
1. <instruction> is the disassembled instruction at the next
location to be executed, which is indicated by the CS and IP
registers.

Table 6-2. Flag Name Abbreviations

Character Name

Overflow
Direction
Interrupt Enable
Trap

Sign

Zero . :
Auxiliary Carry
Parity

Carry

QAQUYPNN-AHIO

All Information Presented Here is Proprietarv to Digital Research

65

CP/M-86 Programmer”s Guide 6.2 DNPT-86 Commands

The second form allows the operator to alter the registers in
the CPU state of the program being tested. The r following the X is
the name of one of the 1l6-bit CPU registers. DDT-86 responds by
displaying the name of the register followed by its current value.
If a carriage return is typed, the value of the register is not
changed. If a valid value is typed, the contents of the register
are changed to that value. 1In either case, the next register is
then displayed. This process continues until a period or an invalid
value is entered, or the last register is displaved.

The third form allows the operator to alter one of the flags in
the CPU state of the program being tested. DDT-86 responds by
displaying the name of the flag followed by its current state. If a
carriage return is typed, the state of the flag is not changed. If
a valid value is typed, the state of the flag is changed to that
value. Only one flag may be examined or altered with each X£
command. Set or reset flags by entering a value of 1 or 0.

6.3 Default Segment Values

DDT-86 internally keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command.
DDT-86 divides the command set into two tvpes of commands, according
to which segment a command defaults if no segment value is specified
in the command line.

The first type of command pertains to the code segment: A
(Assemble), L (List Mnemonics) and W (Write). These commands use

the internal type-1 segment value if no segment value is specified
in the command.

When invoked, DDT-86 sets the type-l1 segment value to 0, and
changes it when one of the following actions is taken:

® When a file is loaded by an E command, DDT-86 sets the type-1
segment value to the value of the CS register.

® When a file is read by an R command, DDT-86 sets the type-1
segment value to the base segment where the file was read.

® When an X command changes the value of the CS register, NDT-86
changes the type-1l segment value to the new value of the CS
register.

® When DDT-86 regains control from a user program after a G, T or

U command, it sets the type-1l segment value to the value of the
CS register.

® When a segment value is specified explicitly in an A or L

command, DDT-86 sets the type-1 segment value to the segment
value specified.

All Information Presented Here is Proprietary to Digital Research

66

CP/M-86 Programmer”s Guide 6.3 Default Segment Values

The second type of command pertains to the data segment: N
(Display), F (Fill), M (Move) and S (Set). These commands use the

internal type-2 segment value if no segment value is specified in
the command.

When invoked, DDT-86 sets the type-2 segment value to 0, and
changes it when one of the following actions is taken:

® When a file is loaded by an E command, DDT-86 sets the type-2
segment value to the value of the DS register.

® When a file is read by an R command, DDT-86 sets the type-2
segment value to the base segment where the file was read.

® When an X command changes the value of the DS register, DNT-86

changes the type-2 segment value to the new value of the DS
register.

® When DDT-86 regains control from a user program after a G, T or

U command, it sets the type-2 segment value to the value of the
DS register.

® When a segment value is specified explicitly in anD, F, Mor S
command, DDT-86 sets the type-2 segment value to the segment
value specified. 1

When evaluating programs that use identical values in the CS
and DS registers, all DDT-86 commands default to the same segment
value unless explicitly overridden.

Note that the G (Go) command does not fall into either group,
since it defaults to the CS register.

All Information Presented Here is Proprietary to Digital Research

67

CP/M-86 Programmer”s Guide 6.3 Default Segment Values

Table 6-3 summarizes DDT-86"s default segment values.

Table 6-3. DDT-86 Default Segment Values

Command | type-1 | tvpe-2

X

u

c X o X

coXoX

X
u u

X< IOHTD QP IO

x - use this segment default if none specified;
change default if specified explicitly
u - update this segment default

All Information Presented Here is Proprietary to Digital Research

68

CP/M-86 Programmer”s Guide 6.4 Assembly Language Syntax

6.4 Assembly Language Syntax for A and L Commands

In general, the syntax of the assembly language statements used
in the A and L commands is standard 8086 assembly language. Several
minor exceptions are listed below.

® DNT-86 assumes that all numeric values entered are hexadecimal.

® Up to three prefixes (LOCK, reveat, segment override) mav
appear in one statement, but they all must precede the opcode

of the statement. Alternately, a prefix may be entered on a
line by itself.

® The distinction between bvte and word string instructions is
made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

® The mnemonics for near and far control transfer instructions
are as follows:

short normal far

JMPS JMP JMPF
CALL CALLF
RET RETE

e If the operand of a CALLF or JMPF instruction is a 20-bit
absolute address, it is entered in the form:

S8SS: 0000

where ssss 1is the segment and oooo is the offset of the
address.

All Information Presented Here is Proprietary to Digital Research

69

CP/M-86 Programmer”s Guide 6.4 Assembly Tanguage Syntax

6.5

Operands that could refer to either a byte or word are
ambiguous, and must be preceded either by the prefix "BYTE" or
"WORD". These prefixes may be abbreviated to "BY" and "WO".
For example: :

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error
message.

Operands which address memory directly are enclosed in square
brackets to distinguish them from immediate values. For
example:

ADD AX,5 ;add 5 to register AX
ADD AX,[5] ;add the contents of location 5 to AX

The forms of register indirect memory operands are:

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and RP, and the index
registers are SI and DI. Any of these forms may be preceded by
a numeric offset. For example:

ADD BX, [BP+S1I]
ADD BX,3[BP+SI]
ADD BX,1D47[BP+S1]

DDT-86 Sample Session

In the following sample session, the user interactively debugs

a simple sort program. Comments in italic type explain the steps
involved. '

All Information Presented Here is Proprietary to Digital Research

70

CP/M~-86 Programmer”’s Guide 6.5 DDT-86 Sample Session

Sownce gile of program to test.
A>type sort.a86

’

: simple sort program
’
sort:
mov si,0 sinitialize index
mov bx,offset nlist ;bx = base of list
mov sw,0 sclear switch flag
comp:
mov al, [bx+si] ;get byte from list
cmp al,l[bx+si] ;compare with next byte
jna inci ;don“t switch if in order
xchag al,l{bx+si} :do first vart of switch
mov [bx+si],al 1do second part
mov sw,l ;set switch flag
inci:
inc si sincrement index
cmp si,count ;end of list?
inz comp ;no, keep going
test sw,1l ;done - anv switches?
inz sort ;yes, sort some more
done:
jmp done ;get here when list ordered
dseg
org 100h :leave space for base vpage
1
nlist db 3,8,4,6,31,6,4,1
count equ offset $§ - offset nlist
SW db 0
end

Assemble program.
A>asm86 sort

Cp/M 8086 ASSEMBLER VER 1.1

END OF PASS 1

END OF PASS 2

END OF ASSEMBLY. NUMBER OF ERRORS: 0

Type Listing §ile generated by ASM-86.
A>tyoe sort.lst

CP/M ASM86 1.1 SOURCE: SORT.A86 PAGE 1
H
H simple sort program
sort:
0000 BEOOOO mov si,0 sinitialize index
0003 BBOOO1 mov bx,0f fset nlist ;bx = base of list
0006 C606080100 mov sw,0 ;clear switch flag
comp:
000B 8A00 mov al, [bx+si] ;get byte from list
000D 3A4001 cmp al,l{bx+si) ;compare with next bvte
0010 760A jna inci ;don“t switch if in order
0012 864001 xchg al,l[bx+sil ;do first vart of switch
0015 8800 mov [bx+si],al ;do second part
0017 C606080101 mov sw,l ;set switch flag
inci:
001cC 46 inc si sincrement index
001p 83FEOS8 cmp si,count send of list?
0020 75E9 inz comp ;no, keep going
0022 F606080101 test sw,l sdone - any switches?
0027 75D7 inz sort ;yes, sort some more
done:
0029 E9FDFF jmp done ;get here when list ordered
1
dseg
org 100h ;leave space for base page

All Information Presented Here is Proprietary to Digital Research

71

CP/M-86 Programmer”’s Guide 6.5 DDT-86 Sample Session

0100 030804061F06 nlist db 3,8,4,6,31,6,4,1
0401
0008 count equ offset § - offset nlist
0108 00 sw db 0
end
END OF ASSEMBLY. NUMBER OF ERRORS: 0

T §4 d by ASM-86.
A>type sortc sfzﬁ’{"boz tabte fite generated by ASM-86

0000 VARIABLES
0100 NLIST 0108 sw

0000 NUMBERS
0008 COUNT

0000 LABELS
000B COMP 0029 DONE 001C INCI 0000 SORT

Type hex f4ile generated by ASM-§6.
A>type sort.h86

:0400000300000000F9
:1B000081BEOOOOBB0001C6060801008A003A4001760A8640018800C60608016C
:11001B81014683FE0875E9F60608010175ND7E9FDFFEE
:09010082030804061F0604010035

:00000001FF

Generate CMD §ile grom .H86 f§ile.
A>gencmd sort

BYTES READ 0039
RECORDS WRITTEN 04

Tnvoke DDT-86 and Load SORT.CMD.
A>ddt86 sort

pDT86 1.0

START END
CS 047p:0000 047D:002F
DS 0480:0000 0480:010F

Display initial nregister values.

AX BX cX DX SP BP SI DI cs DS Ss ES IP
--------- 0000 0000 0000 0000 119 0000 0000 0000 047D 0480 0491 0480 0000
MOV SI,0000

Disassemble the beginning of the code segment.
-1
047D:0000 MOV SI,0000
047D:0003 MOV BX,0100
047D:0006 MOV BYTE [0108],00
047D:0008 MOV AL, [BX+SI1
047D:000D CMP AL,01[BX+SI]
047D:0010 JBE 001C
047D:0012 XCHG AL,01[BX+SI]
047D:0015 MOV [BX+SI],AL
047D: 0017 MOV BYTE [0108],01
047D:001C INC SI
047D:001D CMP SI,0008
047D:0020 JNZ 000B

; Display the stant of the data segment.
-d100,10f

0480:0100 03 08 04 06 1F 06 04 01 00 00 00 00 00 00 00 00 ...evevevccnnnns

‘All Information Presented Here is Proprietary to Digital Research

72

CP/M-86 Programmer”s Guide DDT-86 Sample

Disassemble the nest of the code.

-1
047D:0022 TEST BYTE (0108],01
047D:0027 JINZ 0000
047D:0029 JMP 0029
047D:002C aDD [BX+SI],AL
047D:002E ADD [BX+S1],AL
047D:0030 DAS
047D:0031 ADD [BX+S1],AL
047D:0033 2?= 6C
047D:0034 POP ES
047D:0035 ADD [BX],CL
047D:0037 ADD [BX+S11,AX
047D:0039 ?2= 6F

29 Execute program from IP (=0) setting breakpoint at 29H.
.-g'
*047D:0029 Breakpoint encountered.

Display sonted Lisz.
-d100,10f
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Doesn't Look good; neload 4ile.
-esort
START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Thace 3 instructions.

-t3
AX BX CX. DX SP BP ST DI IP
-----7Z-P- 0000 0100 0000 0000 119 0000 0008 0000 0000 MOV S1,0000
-=—-=7-P- 0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100
-=-=--Z7-P-~ 0000 0100 0000 0000 119€ 0000 0000 0000 0006 MOV BYTE [01081,00
*047D:000B
Thace some more.
-t3
AX BX CX DX SP BP SI DI P
-----%-P- 0000 0100 0000 0000 119E 0000 0000 0000 000B MOV AL, [RX+S1I]
~==--7-P- 0003 0100 0000 0000 119 0000 0000 0000 0OOD CMP AL,01[BX+SI]
-~-=S-A-C 0003 0100 0000 0000 119 0000 0000 0000 0010 JBE 001c
*047n:001C
Display unsonted List.
-d100,10¢f
0480:0100 03 08 04 06 1F 06 04 01 00 00 00 00 00 00 00 00 ..evevcencccoane
Display next instructions to be executed.
-1
047D:001C INC ST
047D:001p CMP S1,0008
047D:0020 JNZ 0008
047D:0022 TEST BYTE [0108],01
047D:0027 JNZ 0000
047D:0029 JMpP 0029
047n:002C ADD [BX+SI],AL
047D:002E ADD [BX+SI],AL
047D:0030 DAS
047D:0031 ADD [BX+S1},AL
047D:0033 2?= 6C
0470:0034 POP ES
€3 Trace some mone.
AX BX CX DX SP BP SI DT Ip
----3-A-C 0003 0100 0000 0000 119 0000 0000 0000 00lC INC ST
-------- C 0003 0100 0000 0000 119k 0000 0001 0000 001D CMP S1,0008
----3-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ 0008
*047D:000B

*

All Information Presented Here is

73

Session

Proprietary to Digital Research

CP/M-86 Programmer”s Guide 5.5 DDT-86 Sample Session

1 Display instructions grom cwirent IP.
047D:000B MOV AL, [BX+S1I]
047D: 000D CMP AL,01[BX+SI]
047D:0010 JBE 001C
047D:0012 XCHG AL,01[BX+STI]
047D:0015 MOV (BX+SI],AL
047D:0017 MOV BYTE [01081,01
047D:001C INC SI
047D:001D CMP S1,0008
047D:0020 JNZ 0008
047D:0022 TEST BYTE [0108],01
047D:0027 JNZ 0000
047D:0029 JMP 0029

AX BX CXxX DX SP BP ST DI IP
----S-APC 0003 0100 0000 0000 119E 0000 0001 0000 000B MOV AL, [BX+SI1
---=-S-APC 0008 0100 0000 0000 119©E 0000 0001 0000 000D CMP AL,0L1[BX+SI]
————————— 0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE 001c

*047D:0012

-1

047D:0012 XCHG AL,01[BX+SI]
047D:0015 MOV [BX+S1I],AL

047D:0017 MOV BYTE ([0108],01
047D:001C INC SI

047D:001D CMP 51,0008
047D:0020 JNZ 000B

047D:0022 TEST BYTE [01081,01
047D:0027 JINZ 0000

047D:0029 JMP 0029

047D:002C ADD [BX+SI],AL
047D:002E ADD {BX+SI],AL
047D:0030 DAS

3,20 Go until switch has been pergormed.
=9
*047D:0020

Display List.
-d100,10f

0480:0100 03 04 08 06 1F 06 04 01 01 00 00 00 00 00 00 00 .euveeuvenveonnnnn

Looks Like 4 and § were switched okay. (And toggle <is true.)

-t
AX BX CX DX SP BP SI DI IP
~----5-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JINZ 0008
*047D:000B
1 Display next insthuctions.

047D:0008B MOV AL, [BX+S1I]
047D:000D cMP AL, 01 [BX+SI]
047D:0010 JBE 001c

047D:0012 XCHG aAL,01([BX+SI]
047D:0015 MOV [BX+S11,AL
047D:0017 MOV BYTE [0108],01
047D:001C INC SI

047D:001D CMP S1,0008
047D:0020 JNZ 000B

047D:0022 TEST BYTE [01081,01
047D:0027 JNZ 0000

047D:0029 JMP - 0029

Since switch worked, Let's neload and check boundary conditions.
-esort

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

All Information Presented Here is Proprietary to Digital Research

74

CP/M-86 Programmer”s Guide 6.5 DDNDT-86 Sample Session

Make it quicken by setting List Length to 3. (Could also have used 447d=Te
-ald to patch.)
047D:001D cmp si,3
047D:0020

Display unsonted £is%.
-d100
0480:0100 03 08 04 06 1F 06 04 0L 00 00 00 00 00 00 00 00 .ccvcevesonnsans
0480:0110 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 .uivecesoscncnans
0480:0120 00 00 00 00 00 0O 00 00 00 00 00 00 00 20 20 20 .cevevvsvcnns

Set breakpoint when §inst 3 elements of List should be sonted.

=g, 29

*047D:0029

-d100 ,105% Aif List is sonted.

0480:0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 00 00 ..ceceeeocccns .
—esort Interesting, the fourth element seems to have been sonted in.

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Let's try again with some tracing.
-ald
047D:001D cmp si,3
047D:0020 .

-t9

ax BX CX DX SP BP SI DI P
-----7-P- 0006 0100 0000 0000 119E 0000 0003 0000 0000 MOV S$1,0000
----=%-P- 0006 0100 0000 0000 119% 0000 0000 0000 0003 MOV BX,0100
-—---%-P-~ 0006 0100 0000 0000 119 0000 0000 0000 0006 MOV BYTE {0108},00
~——--Z-P- (0006 0100 0000 0000 119E 0000 0000 0000 000B MOV AL, [BX+STI]
-----Z-P- 0003 0100 0000 0000 119E 0000 0000 0000 000D CMP AL,01[BX+SI]
----5-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001cC
-—---S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC ST
-------- C 0003 0100 0000 0000 119 0000 0001 0000 001D CMP $1,0003
-—--5-A~-C 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ 000B
*047D:000B

-1

047D:0008B MOV AL, [BX+SI]
047D:000D CMP AL,01[BX+SI}
047D:0010 JBE 001c

047D:0012 XCHG AL, 01 [BX+SI]
047D:0015 MOV [BX+S1] ,AL
047D:0017 MOV BYTE [0108],01
047D:001C INC SI

047D:001p CMP SI,0003
047D:0020 JNZ 0008

047D:0022 TEST BYTE [0108],01
047D:0027 JNZ 0000

047D:0029 JwvP 0029

-£3 .
AX BX CX DX SP BP SI DI IP

-=---S-A-C 0003 0100 0000 0000 119E 0000 0001 0000 000B MOV AL, [BX+STI1
---~S5-A-C 0008 0100 0000 0000 119 0000 0001 0000 000D CMP AL, 01 [BX+SI]
————————— 0008 0100 0000 0000 119 0000 0001 0000 0010 .JBE 001c

*047D:0012

-1

047D:0012 XCHG AL,01([BX+ST]
047n:0015 MOV [BX+S1] ,AL

047D:0017 MOV BYTE [0108],01
047D:001C INC SI

047D:001D CMP S1,0003
047D:0020 JNZ 000B

047D:0022 TEST BYTE [0108],01

All Information Presented Here is Proprietarv to Digital Research

75

CP/M-86 Programmer”s Guide 6.5 DDT-86 Sample Session
~-t3

AX BX CX DX SP BP SI DI IpP
--------- 0008 0100 0000 0000 119 0000 0001 0000 0012 XCHG AL,0l[BX+SI]
--------- 0004 0100 0000 0000 119E 0000 000l 0000 0015 MOV [BX+SI],AL
--------- 0004 0100 0000 0000 119E 0000 0001 0000 0017 MOV BYTE [0108],01
*047D:001C ~ '
-d100,10f
0480:0100 03 04 08 06 1F 06 04 01 01 00 00 00 00 00 00 00 ...cevvwee ceeescs

So gar, s0 .

3 fan, good

AX BX CX DX SP BP SI DI IpP
--------- 0004 0100 0000 0000 119E 0000 0001 0000 001lC INC SI
————————— 0004 0100 0000 0000 119% 0000 0002 0000 001D CMP SI,0003
----S~APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 000B
*047D:000B |
-1
047D:000B MOV AL, [BX+STI]
047D:000D CMP AL,01[BX+S1I]
047D:0010 JBE 001C
047D:0012 XCHG AL,01[BX+SI]
047D:0015 MOV [BX+S1],AL
047D:0017 MOV BYTE ([0108],01
047D:001C INC ST
047D:001D CMP SI,0003
047D:0020 JNZ 000B
047D:0022 TEST BYTE [0108],01
047D:0027 ' JINZ 0000
047D:0029 JMp 0029
-t3

AX BX CX DX SP BP ST NI ip
----S-APC 0004 0100 00060 0000 1198 0000 0002 0000 000B MOV AL, [BX+S1I]
--~-S~-APC 0008 0100 0000 0000 119® 0000 0002 0000 000D rMP AL,01[BX+SI]
————————— 0008 0100 0000 0000 119 0000 0002 0000 0010 JBE 001
*047D:0012

Sure enough, it's comparing the third and fourth elements of the List.

-esort Refoad program.

START END
CS 047p:0000 047D:002F
DS 0480:0000 0480:010F

-1
047D:0000 MOV SI,0000
047D:0003 MOV BX,0100
047D:0006 MOV BYTE [0108],00
047D:000B MOV AL, [BX+S1]
047D:000D CMP - AL, 01[BX+SI]
047D:0010 JBE 00lc .
047D:0012 XCHG AL,01([BX+S1I]
047D:0015 MOV [BX+SI1],AL
047D:0017 MOV BYTE [01081,01
047D:001C INC SI
047D:001D CMP S1,0008
047D:0020 JNZ 000B

Patch Léngth.
-ald
047D:001D cmp si,7
047D:0020

Thy L& out.
-g,29
*047D:0029

All Information Presented Here is Proprietary to Digital Research

76

CP/M-86 Programmer”’s Guide 6.5

See 4§ List is sonted.
-d100,10¢
0480:0100 01 03 04 04 06 06 08 1F 00 00 00 00 00 00 00 00

Looks betten;
-rsort.cmd
START END
2000:0000 2000:01FF

Let's Ainstall pateh in disk §ile.

command.

e e e 0

DDT-86 Sample

L R A A A

To do this, we

must nead CMD f§ile inclLuding header, 50 we use R

Finst 80h bytes contain headen, 3¢ code stants at 80h.

-180

2000:0080 MOV S1,0000
2000:0083 MoV BX,0100
2000:0086 MOV BYTE [01081,00
2000:008B MOV AL, [BX+S1I]
2000:008D CMP AL, 01 [BX+SI]
2000:0090 JBE 009c

2000:0092 XCHG AL, 0l {BX+SI]
2000:0095 MOV [BX+S1],AL
2000:0097 MoV BYTE [0108],01
2000:009C INC SI

2000:009D cmp S1,0008
2000:00A0 JNZ 008B

—a9d Ins tall patch.

2000:009D cmp si,7

White §ilLe back to disk.

-wsort.cmd since no Length specified.)

Reload file.
-esort

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Vendfy that patch was installed.

-1

047D:0000 MOV 51,0000
047D:0003 MOV BX,0100
047D:0006 MOV BYTE [0108],00
047D:000B MOV AL, [BX+ST]
047D:000D CMP AL,01[BX+S1]
047D:0010 JBE 00lc
047D:0012 XCHG AL,O0l[BX+SI]
047D:0015 MOV [BX+S1I],AL
047D:0017 MoV BYTE ([0108],01
047D:001C INC SI
047D:001D CMP $1,0007
047D:0020 JNZ 000B

Run Lit.
-g,29
*047D:0029

StiLl Looks good. Ship Aiz!
-d100,10f
0480:0100 01 03 04 04 06 06 08 1F 00 00 00 00 00 0O 00 00
-"Cc
A>

{Length of f§4iLe assumed to be unchanged

Session

All Information Presented Here is Proprietary to Digital Research

71

Appendix A
ASM-86 Invocation

Command: ASM86
Syntax: ASMB86 <filename> { $ <parameters> }

where
<filename> is the 8086 assembly source file.
Drive and extension are optional.
The default file extension is .A86.
<parameters> are a one-letter type followed by

a one-letter device from the table
below.

Parameters:

form: $ ™A where T = type and d = device

Table A-1l. Parameter Types and Devices

Devices Parameters
A H 4 S F
A -P X X X X
X X X X
Y X X X
Z X X X
1 X
D d

X = valid, 4 = default

Valid Parameters

Except for the F type, the default device is the the current default
drive.

All Information Presented Here is Proprietary to Digital Research

79

CP/M-86 Programmer”s Guide

Table A-2.

Appendix A ASM-86 Invocation

Parameter Types

WY m

controls
controls
controls
controls
controls

location
location
location
location

of
of
of
of

type of hex

ASSEMBLER source file
HEX file

PRINT file

SYMBOL file

output FORMAT

Table A-3.

Device Types

)

O-NKX I

Drives A - P
console device
printer device
byte bucket

Intel hex
Digital Research hex format

format

Invocation Examples

ASM86

ASM86

ASM86

ASM86

ASM86

I0

I0.ASM $ AD SZ

I0 $ PY SX

I0 § FD

I0 $ FI

Assemble file I0.A86, produce IN.HEX
IO.LST and I0O.SYM.

Assemble file IO.ASM on device D,
produce IO.LST and IO.HEX,
no symbol file.

Assemble file I0.A86, produce I0O.HEX,
route listing directly to printer,
output symbols on console.

Produce Digital Research hex format.

Produce Intel hex format.

All Information Presented Here is Proprietary to Digital Research

80

Appendix B
Mnemonic Differences From the Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics
as the INTEL 8086 assembler except for explicitly specifying far
and short jumps, calls and returns. The following table shows
the four differences:

Table B-1. Mnemonic Differences

Mnemonic Function CP/M INTEL
Intra segment short jump: JMPS JMP
Inter segment jump: JMPF JMP
Inter segment return: RETF } RET
Inter segment call: CALLF CALL

All Information Presented Here is Provorietary to Digital Research

81

Appendix C
-ASM-86 Hexadecimal Output Format

At the user”s option, ASM-86 produces machine code in either
Intel or Digital Research hexadecimal format. The Intel format is
identical to the format defined by Intel for the 8086. The Digital
Research format is nearly identical to the Intel format, but adds
segment information to hexadecimal records. Output of either format
can be input to GENCMD, but the Digital Research format
automatically provides segment identification. A segment is the
smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a
hexadecimal record. Each hexadecimal record has one of the four
formats shown in Table C-2. An example of a hexadecimal record is
shown below.

Byte number=> 0 1 2 3 4 5 6 7 8 9 cicecececcessen

Contents=> : 11l aaaattddd.cceoeoo. ¢ ¢ CRVLF

Table C-1. Hexadecimal Record Contents

Byte Contents Symbol
0 record mark :
1-2 record length 11
3-6 load address aaaa
7-8 record type t t
9-(n-1) data bytes d d.....d
n-(n+1) check sum c c
n+2 carriage return CR
n+3 line feed LF

All Information Presented Here is Proprietary to Digital Research

83

CP/M-86 Programmer's Guide Appendix C Hexadecimal Output Format

Table C-2. Hexadecimal Record Formats

Record type ~~ Content ‘ ~~ Format

00 Data record

11 aaaa DT <data...> cc

00 0000 01 FF

.o

01 End-of-file

Extended addreSs

02 mark : 02 0000 ST ssss cc
03 Start address : 04 0000 03 ssss iiii cc
11 => record length - number of data bytes
cc => check sum - sum of all record bytes
aaaa => 16 bit address
ssss => 16 bit segment value
iiii => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record types 00 and 02 that Digital
Research”s hexadecimal format differs from Intel”s. 1Intel defines
one value each for the data record type and the segment address
type. Digital Research identifies each record with the segment that
contains it, as shown in Table C-3.

All Information Presented Here is Proprietary to Digital Research

84

CP/M-86 Programmer”s Guide Appendix C Hexadecimal Output Format

Table C-3. Segment Record Types

Intel’s Digital’s

Symbol Value Value Meaning
pT 00 for data belonging to all
: 8086 segments
81H for data belonging to the
CODE segment
82H for data belonging to the
DATA segment
83H for data belonging to the
STACK segment
84H for data belonging to the
EXTRA segment
ST 02 for all segment address
records
85H for a CODE absolute segment
address
86H for a DATA segment address
87H for a STACK segment address
88H for a EXTRA segment address

All Information Presented Here is Proprietary to Digital Research

85

Appendix D
Reserved Words

Table D-1. Reserved Words
Predefined Numbers
BYTE WORD DWORD
Operators
EQ GE GT LE LT
NE OR AND MOD NOT
PTR SEG SHL SHR XOR
LAST TYPE LENGTH OFFSET
Assembler Directives
DB DD DW IF RS
RB RW END ENDM KEQU
ORG CSEG DSEG ESEG SSEG
EJECT ENDIF - TITLE LIST NOLIST
INCLUDE SIMFORM PAGESIZE CODEMACRO PAGEWIDTH
Code-macro directives
DB DD DW DBIT RELB
RELW MODRM SEGFIX NOSEGFIX
8086 Registers
AH AL AX BH BL
BP BX CH CL CSs
CX DH DI DL DS
DX ES ST SP SS
Instruction Mnemonics - See Appendix E.

All Information Presented Here is Proprietary to Digital Research

87

Appendix E
ASM-86 Instruction Summary

Table E-1. ASM-86 Instruction Summary

Mnemonic Description Section
AAA ASCII adjust for Addition 4.3
AAD ASCII adjust for Division 4.3
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intra segment) 4.5
CALLF Call (inter segment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string) 4.4
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIV Divide 4.3
ESC Escape 4.6
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 4.3
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5
IRET Interrupt Return 4.5
JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
JB Jump on Below 4.5
JBE Jump on Below or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump on Egual 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Less 4.5
JLE / Jump on Less or Equal 4.5

All Information Presented Here is Proprietarv to Digital Research

89

CP/M-86 Programmer”’s Guide Appendix E Instruction Summary

Table E-1l. . (continued)

Mnemonic Description Section
JMP Jump (intra segment) 4.5
JMPF Jump (inter segment) 4.5
JMPS Jump (8 bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump on Not Above or Equal 4.5
JNB Jump on Not Below 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump on Not Equal 4.5
JING Jump on Not Greater 4.5
JNGE - Jump on Not Greater or Equal 4.5
JNL Jump on Not Less 4.5
JINLE Jump on Not Less or Equal 4.5
JNO Jump on Not Overflow 4.5
JNP Jump on Not Parity 4.5
JNS Jump on Not. Sign 4.5
JINZ Jump on Not Zero 4.5
Jo Jump on Overflow 4.5
Jp Jump on Parity 4.5
JPE Jump on Parity Even 4.5
JPO Jump on Parity 0dd 4.5
JS Jump on Sign 4.5
JZ Jump on Zero 4.5
LAHF Load AH with Flags 4.2
LDS Load Pointer into DS 4.2
LEA Load Effective Address 4.2
LES Load Pointer into ES 4.2
LOCK Lock Bus : 4.6
LODS Load Byte or Word (of string) 4.4
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Loop While Zero 4.5
MOV Move 4.2
MOVS Move Byte or Word (of string) 4.4
MUL Multiply 4.3
NEG Negate 4.3
NOT Not 4.3
OR Or 4.3
ouTt Output Byte or Word 4.2

All Information Presented Here is Proprietary to Digital Research

90

CP/M-86 Programmer”s Guide Appendix E Instruction Summary

Table E-1. (continued)

Mnemonic Description Section
POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return (intra segment) 4.5
RETF Return (inter segment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SHL Shift Left 4.3
SHR Shift Right 4.3
STC Set Carry 4.6
STD Set Direction 4.6
STI Set Interrupt 4.6
STOS Store Byte or Word (of string) 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 4.2
XLAT Translate 4.2
XOR Exclusive Or 4.3

All Information Presented Here is Proprietary to Digital Research

921

Appendix F
Sample Program

Listing F-1. Sample Program APPF.A86

CP/M ASM86 1.1 SOURCE: APPF.AS86 Terminal Input/Output PAGE
1

title “Terminal Input/Output”
pagesize 50

pagewidth 79

simform

*kk%%¥%¥ Terminal I/0 subroutines ****kx%%%

The following subroutines
are included:

CONSTAT - 'console status
CONIN - console input
coNouT - console output

Each routine requires CONSOLE NUMBER
in the BL - register

khkkkkkkhkhkkkkkhkkkk

* Jump table: *
kkhkkkhkkkkkkkkkkkk

@ YN0 N0 N6 Ne Ne Ve Ne NE N8 NE N6 Ng N N N N N N

SEG ; start of code segment
ﬁmp_tab:

0000 E90600 jmp constat

0003 E91900 jmp conin

0006 E92B0OO jmp conout

dhkkkhkkkhkkkkkkkhkkkkkkkk

* I/0 port numbers *
khkkkkkkkkkkhkkkkhkkkkkhkk

o “e Ne wo ~o

All Information Presented Here is Proprietary to Digital Research

93

CP/M-86 Programmer”s Guide

CP/M ASM86 1.1 SOURCE: APPF.A86

2

0010
0011
0011
0001
0002

0012
0013
0013
0004
0008

0009 53rE83F00

000D 52
000E B600
0010 8Al7
0012 EC
0013 224706
0016 7402
0018 BOFF

.o we “weo

Appendix F Sample Program

Terminal Input/Output P!

Terminal 1:

input status pc
input port
output port
input ready mas
output readv me

input status nc
input port
output port
input ready mas
output ready m:

0ffh if ready

; read status ¢

instatl equ 10h :
indatal equ 11lh :
outdatal equ 11h :
readvinmaskl equ 0lh :
readyoutmaskl equ 02h :
: Terminal 2:
instat2 equ 12h ;
indata?2 equ 13h :
outdata? equ 13h :
readyinmask?2 equ 04h :
readyoutmask?2 equ 08h H
; kkkkkkkkdhkk
7 * CONSTAT *
: *kkkkkkkkhk
: Entry: BL - reg = terminal no
: Exit: AL - reg = 0 if not ready
constat:

push bx ! call okterminal
constatl:

push dx

mov dh,0

mov dl,instatustab [BX]

in al,dx

and al,readyinmasktab [bx]

iz constatout

mov al,0ffh

All Information Presented Here is Proprietary to Digital Research

924

CP/M-86 Programmer”s Guide Aopendix F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Inout/Output PAGE
3
constatout:
001a 5A5BOACOC3 pop dx ! pop bx ! or al,al ! ret
&k k ok kkkkk
* CONIN *
Kk kkkkkkkk

Entry: BL - reg = terminal no
Exit: AL - reg = read character

M0 WO wa NE N0 NG N we VO

001F 53E82900 conin: push bx ! call okterminal !
0023 ESETFF coninl: call constatl :+ test status
0026 74FB jz coninl
0028 52 push dx ;s read character
0029 B600 mov dh,0
002B 8A5702 mov dl,indatatab [BX]
002E EC in al,dx
002F 247F% and al,7fh ; strip varity bit
0031 5AS5BC3 pop dx ! pop bx ! ret

khkkhkhhkhkkk

* CONOUT *

khkkkkkkkk

Entry: BL - reg = terminal no
AL - reg = character to print

QQ ~¢ ~e o ~o ~e Ne “o wp ~e

0034 53E81400 onout: vush bx ! call okterminal

0038 52 push dx
0039 50 push ax
003A B60O mov dh,0 : test status
003C 8Al7 mov dl,instatustab [BX]
conoutl:
003E EC in al,dx

All Information Presented Here is Proprietary to Digital Research

95

CP/M-86 Programmer”s Guide Appendix F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output Pi
4
003F 224708 and al,readvoutmasktab [BX]
0042 74FA jz conoutl
0044 58 pop ax : write byte
0045 8A5704 mov dl,outdatatab [BX]
0048 EE ' out dx,al
0049 5A5BC3 pop dx ! pop bx ! ret
++++++++++++++
+ OKTERMINAL +
++++++ 4+

Entry: BL - reg = terminal no

kterminal:

004C OADB or bl,bl

004r 740A jz error

0050 80FBO3 cmp bl,length instatustab + 1

0053 7305 jae error

0055 FECB dec bl

0057 B700 mov bh,0

0059 C3 ret

005A 5B5BC3 error: pop bx ! pop bx ! ret ; do nothing

khkkkkhkkkkhkkhkk end of code Segment khkkhkkkhkkkhkk

kkkkkkkkhkhkhkkkkk

* Data segment *
kkkkhkkhkkkkhkkkkk

N NE N N NE we “

dseg

hkhkhkhkkkkkkhhhkhkkhkhhkhhkhkkkhkk

* Data for each terminal *
khkhkkkhkkhkkhkdkhhkhhkkhkhkkkhhkkk

~o weo ~e

All Information Presented Here is Proprietary to Digital Research

926

M-86 Programmer”’s Guide

1 ASM86 1.1 SOURCE: APPF.A86

00
02
04
06
108

1012
1113
1113
0104
0208

Appendix F Sample Program

Terminal Input/Outvput PAGE
instatustab db instatl,instat?2
indatatab db indatal,indata?2
outdatatab db outdatal,outdata?2

readyinmasktab db
readyoutmasktab db

readyinmaskl,readyinmask2
readyoutmaskl,readyoutmask?2

r
skkkkkkkkkkkhkdk and Of file *kkkkkkkhkhkhhhhkhhhhhkk

end

) OF ASSEMBLY. NUMBER OF ERRORS:

1l Information Presented Here is Proprietary to Digital Research

97

All

Appendix G
Code-Macro Definition Syntax

<codemacro> ::= CODEMACRO <name> [<formal$list>]
[<listSofS$macroSdirectives>]
ENDM

<name> ::= IDENTIFIER

<formal$list> ::= <parameterSdescr>[{,<parameters$descr>}]

<parameter$descr> ::= <formSname>:<specifier$letter>
<modifier$letter>[(<range>)]

<specifier$letter> ::=A | C | D] E | M| R]|] S| X
<modifierSletter> ::=b | w | 4 | sb

<range> ::= <sing1e$range>l<doub1e$ranqe>
<single$range> ::= REGISTER | NUMBERB

<doubleS$range> ::= NUMBERB,NUMBERB | NUMBERB,REGISTER |
REGISTER,NUMBERB | REGISTER,REGISTER

<listSof$SmacroSdirectives> ::= <macroS$directive>
{<macro$directive>}

<macroS$directive> ::= <db> | <dw> | <dd> | <segfix>
<noseqfix> | <modrm> | <relb>
<relw> | <dbit>

<db> ::= DB NUMRERB | DB <form$name>

<dw> ::= DW NUMBERW | DW <form$name>

<dd> ::= DD <form$name>

<segfix> ::= SEGFIX <formS$name>

<nosegfix> ::= NOSEGFIX <formS$name>

<modrm> ::= MODRM NUMBER7,<form$name> |
MODRM <form$name>,<form$name>

<relb> ::= RELB <form$name>

<relw> ::= RELW <formSname>

<dbit> ::= DBIT <field$descr>{,<field$descr>}

Information Presented Here is Proprietary to Digital Research

99

CP/M-86 Programmer”s Guide Avpendix G Code-macro Syntax

<field$descr> ::= NUMBER1L5 (NUMBERB) |
NUMBER15 (<formS$name> (NUJMBERB))

<formSname> ::= IDENTIFIER

NUMBERB is 8-bits

NUMBERW is 16-bits

NUMBER7 are the values 0, 1,. . , 7
MUMBER15 are the values 0, 1,. . , 15

'All Information Presented Here is Proprietary to Digital Research

100

Appendix H
ASM-86 Error Messages

There are two types of error messages produced by ASM-86:
fatal errors and diagnostics. Fatal errors occur when ASM-86 is
unable to continue assembling. Diagnostics messages report
problems with the syntax and semantics of the vrogram being
assembled. The following messages indicate fatal errors
encountered by ASM-86 during assembly:

NO FILE

DISK FULL

DIRECTORY FULL

DISK READ ERROR
CANNOT CLOSE

SYMBOL TABLE OVERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a
numbered ASCII message in front of the erroneous source line. If

there is more than one error in the line, only the first one is
reported. Table H-1 summarizes ASM-86 diagnostic error messages.

All Information Presented Here is Proprietary to Digital) Research

101

CP/M-86 Programmer”s Guide Appendix H Error Messages

Table H-1. ASM-86 Diagnostic Error Messages

Number Meaning

0 ILLEGAL FIRST ITEM

1 MISSING PSEUDO INSTRUCTION

2 ILLEGAL PSEUDO INSTRUCTION

3 DOUBLE DEFINED VARIABLE

4 DOUBLE DEFINED LABEL

5 UNDEFINED INSTRUCTION

6 GARBAGE AT END OF LINE - IGNORED

7 OPERAND(S) MISMATCH INSTRUCTION

8 ILLEGAL INSTRUCTION OPERANDS

9 MISSING INSTRUCTION
10 UNDEFINED ELEMENT OF EXPRESSION
11 ILLEGAL PSEUDO OPERAND
12 NESTED "IF" ILLEGAL - "IF" IGNORED
13 ILLEGAL "IF" OPERAND - "IF" IGNORED
14 NO MATCHING "IF" FOR "ENDIF" _
15 SYMBOL ILLEGALLY FORWARD REFERENCED - NEGLECTED
16 DOUBLE DEFINED SYMBOL - TREATED AS UNDEFINED
17 INSTRUCTION NOT IN CODE SEGMENT
18 FILE NAME SYNTAX ERROR
19 NESTED INCLUDE NOT ALLOWED
20 ILLEGAL EXPRESSION ELEMENT
21 MISSING TYPE INFORMATION IN OPERAND (S)

22 LABEL OUT OF RANGE

23 MISSING SEGMENT INFORMATION IN OPERAND

24 ERROR IN CODEMACROBUILDING

All Information Presented Here is Proprietary to NDigital Research

102

Appendix |
DDT-86 Error Messages

Table I-1. DDT-86 Error Messages

Error Message Meaning

AMBIGUOUS OPERAND An attempt was made to assemble a command
with an ambiguous operand. Precede the

operand with the prefix "BYTE" or
"WORD" .

CANNOT CLOSE The disk file written by a W command
cannot be closed.

DISK READ ERROR The disk file specified in an R command
could not be read properly.

DISK WRITE ERROR A disk write operation could not be
successfully performed during a W
command, probably due to a full disk.

INSUFFICIENT MEMORY There 1is not enough memory to load the
file specified in an R or E command.

MEMORY REQUEST DENIED A request for memory during an R command
could not be fulfilled. Up to eight
blocks of memory may be allocated at a
given time.

NO FILE The file specified in an R or E command
could not be found on the disk.

NO SPACE There is no space in the directory for the
file being written by a W command.

VERIFY ERROR AT s:0 The value placed in memorv by a Fill, Set,
Move, or Assemble command could not be
read back correctly, indicating bad RAM
or attempting to write to ROM or non-
existent memory at the indicated
location.

All Information Presented Here is Proprietary to Digital Research

103

A

AAp, 34

AAD, 34

AAM, 34

AAS, 34

ADC, 34

AND, 34

address conventions in
ASM-86, 21

address expression, 18

allocate storage, 27

AND, 36

arithmetic operators, 15

B
bracketed expression, 18
C

CALL, 40

CBwW, 34

character string, 8

CLC, 43

CLD, 43

CLI, 43

cMC, 43

CMP, 34

CMPS, 38

code segment, 22

code-macro directives, 49

code-macros, 45

conditional assembly, 24

console output, 3

constants, 7

control transfer
instructions, 39

creation of output files, 2

CSEG , 22
CWD, 34

D

DAA, 35

DAS, 35

data segment, 22
data transfer, 31
DB, 25

DD, 26

DEC, 35

define data area, 25

Index

105

delimiters, 5

directive statement, 20
DIV, 35

dollar-sign operator, 17
NSEG , 22

DW, 26

E

effective address, 21
EJECT, 28

END, 24

end-of-line, 19
ENDIF, 24

BQU, 25

ESC, 43

ESEG, 23

expressions, 18

extra segment, 23

F

filename extensions, 1
flag bits, 30, 33

flag registers, 30
formal parameters, 45

H
HLT, 44
I

identifiers, 8

IDIV, 35

IF, 24

IMUL, 35

IN, 31

INC, 35

INCLUDE, 24

initialized storage, 25
instruction statement, 19

_INT, 40

INTO, 40
invoking ASM-86, 2
IRET, 40

J

JA, 40
JB, 41
JCXZ, 41
JE, 41

JG, 41
JL, 41
-JLE, 41
JMP, 41
JNA, 41
JNB, 41
JNE, 42
JNL, 42
JNO, 42
JNP, 42
JNS, 42
JNZ, 42
Jo, 42
Jp, 42
Js, 42
Jz, 42

K
keywords, 9
L

label, 19

labels, 11

LAHF, 31

LDS, 31

LEA, 31

LES, 31

LIST, 28

location counter, 23
LOCK, 44

L.ODS, 38

logical operators, 15
LOOP, 42

M

mnemonic, 19
modifiers, 47
MOV, 31
MOVS, 38
MUL, 35

N

name field, 20

NEG, 35

NOLIST, 28

NOT, 36

number symbols, 12
numeric constants, 7
numeric expression, 18

o)

offset, 11

offset value, 21

operator precedence, 17

operators, 12

optional run-time
parameters, 3

OR, 36

order of operations, 17

ORG, 23

our, 32

output files, 1, 2

P

PAGESIZE, 27
PAGEWIDTH, 28

period operator, 16
POP, 32

predefined numbers, 9
prefix, 19, 39
printer output, 3
PTR operator, 16
PUSH, 32

R

radix indicators, 7
RB, 27

RCL, 36

RCR, 36

registers, 9
relational operators, 15
REP, 39

RET, 43

ROL, 36

ROR, 36

RS, 27

run-time options, 3
RW, 27

S

SAHF, 32

SAL, 36

SAR, 37

SBB, 35

sScas, 38

segment, 11

segment base wvalues, 21
segment override operator, 1¢
segment start directives, 21
separators, 5

SHL, 37

SHR, 37

SIMFORM, 28
specifiers, 47
SSEG, 22

stack segment, 22
starting ASM-86, 2
statements, 19
STC, 44

STD, 44

STI, 44

ST0OS, 38

string constant, 8
string operations, 38
suB, 35

symbols, 25

T

TEST, 37

TITLE, 27

type, 11

U

unary operators, 16

\'/

variable manipulator, 16
variables, 10

W
WAIT, 44
X

XCHG, 32
XLAT, 32

107

CP/M-86 ™M
Operating System
Release 1.1

Programmer's Guide Release Notes

Copyright © 1982

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

CP/M-86"MOperating System

Release 1.1

Copyright © 1982 by Digital Research
CP/M is a registered trademark of Digital Research.
ASM-86, CP/M-80 and CP/M-86 are trademarks of Digital Research.
ISBC is a trademark of Intel Corporation.
Intel is a registered trademark of Intel Corporation.
Compiled February 1982

Thank you for purchasing the CP/M-86 M. operating system
package. Software included in this package is proprietary to
Digital Research and contains internal serialization to allow
unauthorized copies to be traced to their source. The Digital
Research Software License Agreement defines the terms and conditions
covering the use of CP/M-86. Please take time to carefully read
this agreement. The enclosed Software Registration Card must be
filled out and mailed to Digital Research before use of this
software is authorized. Upon receipt of the Registration Card, your
name will be placed on our CP/M-86 mailing list, so you will receive
newsletters and update notices. Under the terms of the agreement,
you are allowed to make back-up copies for your own use, but you are
not allowed to make copies of software provided in this package for

any third parties, including friends, relatives, or business
associates,

The documentation for CP/M-86 consists of the following
manuals:

CP/M-86 Operating System User's Guide

CP/M-86 Operating System Programmer's Guide
CP/M-86 Operating System System Guide

CP/M-86 Operating System Command Summary

Two diskettes are also included. The first disk contains the
CP/M-86 operating system and the utility programs. The second disk
contains the source files for programs and data files used in system
regeneration. The following programs are on the first disk.

ASM86 .CMD 8086 assembler

ASM86 .COM 8080 version of ASM-86TM assembler
COPYDISK.CMD Utility to copy entire diskette

CPM.H86 Hex file for CP/M-86 CCP and BDOS
CPM.SYS CP/M ® system file, loaded at cold start
DDT86 .CMD CP/M-86 debugger

ED.CMD . CP/M-86 program and text editor
GENCMD.CMD CMD file generation utility

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86

GENCMD,COM 8080 version of GENCMD

GENDEF .CMD Diskdef file generator

GENDEF .COM 8080 version of GENDEF

HELP .CMD Help utility

HELP.HLP Data file for help utility

LDBDOS .H86 Loader BDOS hex file

LDBIOS.H86 Loader BIOS hex file

LDCOPY.CMD Loader copy utility

LDCPM.H86 Loader main program hex file

LMCMD.CMD CMD file generation utility

LMCMD.COM 8080 version of LMCMD

LOADER,.CMD ISBC™. 86/12 intermediate loader (used
only with the standard Intel® system)

PIP.CMD Peripheral Interchange Program

STAT .CMD File and disk status utility

SUBMIT.CMD Batch processing utility

TOD.CMD Display and set time of day utility

The files with a filetype of CMD operate under CP/M-86. The

files with a filetype of COM are 1ncluded for cross development
under CP/M-80™M

The second disk contains the following files.

BIOS.A86 Source file for the standard BIOS
CBIOS.A86 Source for the skeletal BIOS
COPYDISK.A86 ‘Source for COPYDISK.CMD

DEBLOCK.LIB Blocking/deblocking algorlthms
LDBIOS.A86 Source for LDBIOS.CMD

LDCOPY.A86 Source for LDCOPY.CMD

LDCPM.A86 Source for LDCPM.CMD

RANDOM.AS86 Sample A86 program using BDOS calls
ROM.A86 Source file for the ISBC 86/12 boot ROM
SINGLES .DEF Diskdef input to the GENDEF utility
SINGLES.LIB Output from the GENDEF utility
TBIOS.A86 Source for track buffered BIOS
TRACK.A86 Skeletal source for track buffering
8087.LIB Code macro library for 8087

The DEBLOCK.LIB file is included for your reference. Any

specific application might require modifications.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86TM Operating System
PROGRAMMER'S GUIDE

Corrections to the First Printing - 1981
Copyright © 1981 by Digital Research
CP/M is a registered trademark of Digital Research.
ASM-86, CP/M-86, DDT-86, and MP/M-86 are trademarks
of Digital Research.
Compiled February 1982

Clarification of ASM-867M Changes:

1)
2)

3)

4)

5)

6)
7)

8)
9)
10)
11)
12)

13)

14)

Forward references in EQU's are flagged as errors.

A! in a comment is ignored; comments extend to the physical
end of the line.

New directives: IFLIST and NOIFLIST control listing of false
IF blocks.

IF directives can be nested to five levels.
New mnemonics implementedi
e JC, JUNC
e CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, SCASB,
SCASW, STOSB, STOSW ‘
JNBE implemented correctly.

Segment override prefix is allowed in source operand of
string instructions.

Relational operators in expressions return OFFFFH if true.

"Abort if invalid command tail encountered.

Abort if symbol table overflows.
Abort if disk or directory full.
Incomplete string flagged as error (no terminating quote).

Error reported if an invalid numeric quantity appears in EQU
directive.

Source files are opened in R/O mode for multiple access
under MP/M-86TM.,

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 Programmer's Guide Corrections

15) Format of .LST file:

form-feed at start of file

no form-feed at end of file

no cr, 1f at top of each page

fewer lines per page ‘

spaces between hex bytes deleted to allow more space
for comments

errors printed when NOLIST active

absolute address field for relative instructions

16) Format of .SYM file:

o form-feed at start of file

e symbols alphabetized within groups

® tabs expanded if symbols sent to printer ($SY)
17) Include files:

o filetype defaults to .A86

e filetype can have fewer than three characters

® abort if include file not found
e default to same drive as source when $a switch used

18) Programs with INCLUDE directives assemble correctly under
Cp/M® 1.4,
19) About 5.5K more space available for symbol table.

20) Use factor indicated at end of assembly (% usage of symbol
table space).

21) Runs somewhat faster (especially with $PZ switch).

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 Programmer's Guide Corrections

Clarification of DDT-86"M Changes:

1) User programs default to CCP stack, rather than local stack
in DDT-860

2) A command line starting with a ; is treated as a comment.

3) Interrupts are disabled while a single instruction is being
traced.

4) BDOS error mode is set to return BDOS errors for MP/M-86.
5) Files are closed after reading and loading for MP/M-86.

6) New Block Compare function implemented, with the same
command form as the Move function.

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86"M™ V1.0, Application Note 01, 11/6/81

Copyright©1981 by Digital Research, Inc., Pacific Grove, CA 93950

DDT-86""SCREEN WIDTH ALTERATION

Applicable Products and Version Numbers: CP/M-86 V1.1, DDT-86

You can alter DDT-86 for use with 40 character wide consoles.
The display of memory locations (D command) and the CPU state (X, T
and U commands) reflect the narrower screen size. Make sure you have
a back~up copy of DDT-86 before installing the patch as shown below.

A>ddt86

DDT86 1.1
-rddt86.cmd
START END
nnnn: 0000 nnnn:367F
-s12f0
nnnn:12F0 00 01
nnnn:12F1 00
-wddt86 .cmd

...'“c

A>

Licensed users are granted the right to include these changes in

Cp/M-86 V1.1l software. CP/M-86 and DDT-86 are trademarks of Digital
Research.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86"™. V1.0 Application Note 02, 11/3/81

Copyright ©1981 by Digital Research, Inc., Pacific Grove, CA 93950

SMALLER VERSIONS OF DDT-867M

Applicable Products and Version Numbers: CP/M-86 V1.0, DDT-86

You can create smaller versions of DDT-86 that may be useful for
systems with limited memory. You can remove the assembler portion
resulting in a 9K version of DDT-86 or you can remove both the
assembler and disassembler resulting in a 5K version of DDT-86. 1In
the 9K version, DDT-86 responds to an A command with a question mark.
In the 5K version, both the A and L commands yield a question mark.

A>ddt86

DDT86 1.0
-rddt86.cmd

START END
nnnn: 0000 nnnn:367F
-s0

nnnn: 0000 01
nnnn:0001 60 0Od
nnnn:0002 03 02
nnnn:0003 00
nnnn:0004 00

nnnn: 0005 66 0d
nnnn: 0006 03 02
nnnn: 0007 00.
-s1286

nnnn:1286 01 00
nnnn:1287 00 .
-wddt9k.cmd,0,217f
-Ac

A>

Use the following procedure to remove the assembler and the
disassembler from DDT-86.

A>ddt8e

DDT86 1.0
-rddt86.cmd
START END
nnnn: 0000 nnnn:367F
-s0

nnnn:0000 01
nnnn: 0001 60 2b
nnnn: 0002 03 01
nnnn: 0003 00
nnnn: 0004 00
nnnn: 0005 66 32
nnnn:0006 03 01
nnnn: 0007 00.

All Information Presented Here is Proprietary to Digital Research

1

Cp/M-86 V1.0, Application Note 02, 11/3/81 (cont'd)

-s51286

nnnn:1286 01 00
nnnn:1287 00 .
-s12b9

nnnn:12B9 01 00
nnnn:12BA 00 .
-wddt5k.cmd,0,13£ff
-“c

A>

Licensed users are granted the right to include these changes in
CP/M-86 V1.0 software. CP/M-86 and DDT-86 are trademarks of Digital
Research.

All Information Presented Here is Proprietary to Digital Research

2

