s

CP/M-86

. OPERATING SYSTEM
SYSTEM GUIDE

y

DIGITAL RESEARCH’

CP/M-86™
System Guide

Cooyright © 1981

Digital Research
P.0O. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyvright © 1981 by Digital Research. All rights
reserved. No wvart of this publication mav be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by anv means,
electronic, mechanical, magnetic, ootical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no revresentations or
warranties with respvect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Nigital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM-86, Cp/M-86, CP/M-80, CP/NET, DDT-86, LINK-80,
MP/M, and TEX-80 are trademarks of Digital Research.

The "CP/M-86 System Guide" was vrepared using the
Digital Research TEX-80T™ mext Formatter and printed
in the United States of America by Commercial Press/
Monterey.

khkhkkhkkkhkhkhkkkhkhkhkhkkhkhhkkkkhkrkhkhkhd

* " Second Printing: June 1981 *
hkhkkhkkkhkdhkkhkkhkhkkhhkhkkkkhkkkkkkkkkk

Foreword

The CP/M-86 System Guide vresents the system programming
aspects of CP/M-86"T™, a single-user operating system for the Intel
8086 and 8088 16-bit microprocessors. The discussion assumes the
reader is familiar with CP/M the Digital Research 8-bit operating
system. To clarify svecific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as CP/M-80TM, Elements common
to both systems are simply called CP/M features.

CP/M-80 and CP/M-86 are equivalent at the user interface level
and thus the Digital Research documents:

® An Introduction to CP/M Features and Facilities
® ED: A Context Rditor for the CP/M Disk System
® CP/M 2 User”s Guide

are shipped with the CP/M-86 package. Also included is the CP/M-86
Programmer”s Guide, which describes ASM-86™ and DDT-86™, Digital
Research”s 8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86
programming interface conventions. It also describes procedures for
adapting CP/M-86 to a custom hardware enviornment. This information
parallels that presented in the CP/M 2 Interface Guide and the CP/M
2 Alteration Guide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating Svstem and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

iii

Table of Contents

CP/M-86 System Overview

1.1 CpP/M-86 General Characteristics
1.2 ¢cp/M-80 and CP/M-86 Differences

Command Setup and Execution Under CP/M-86

CCP Ruilt-in and Transient Commands . .
Transient Program EXxXecution Models . .
The 8080 Memory Model . . .+ + & « o « &
The Small Memorv Model . . . « + « o«
The Compact Memory Model « « .
Base Page Initialization
Transient Program T.oad and Exit

NN
.
N oanbsS Wi+

Command (CMD) File Generation

3.1 1Intel Hex File Format « « « « « o o o+ &
3.2 Overation of GENCMD . . . + v « « o o &
3.3 Overation of TMCMD . . . ¢ ¢ ¢ o« « « &
3.4 Command (CMD) Pile Format « « « o o o o

Basic Disk Operating System (BDOS) Functions

1 BDOS Parameters and Function Codes . .
.2 Simple BDOS Calls « e v s e s s e v
3 BNDOS File Overations .« « « ¢ o« « o o &
4 BDOS Memorvy Management and TLoad . . .

Basic I/O System (BIOS) Organization

1 Organization of the BIOS
.2 The BIOS Jump Vector .+ « « o o o o + &
3 Simple Peripheral Devices o e e e e s
4 BIOS Subroutine Entry Points
BIOS Disk Definition Tables

1 Disk Parameter Tahle Format
2 Table Generation Using GENDEF
3 GENDEF Ou tpu t - - L] L] L] L] . L] . L] . . .

CP/M-86 Bootstrap and Adaptation Procedures

7.1 The Cold Start Load Opneration e e e e
7.2 Organization of CPM,SYS c e s e e e e

w —~

10
11
13
14

15
16
19
20

23
25
30
48

55
56
57
60

67
72
77

81
84

g 0 w p»

=

Appendixes

Blocking and Neblocking Algorithmé
Random Access Sample Program . . .
Listing of the Boot Rom« . .
LDBIOS Listing .« « ¢ o o« o o o o &

BIOS Listi—nq . - . ‘. V L] . .

CBIOS Listing « « « « « o« o « o « &

vi

87

95
103
113
121

137

Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and
CP/M-86 systems may exchange files without modifying the file
format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/0 System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memory above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CpP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file type.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/0 Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in

the same manner under CP/M-86 and CP/M-80. 1In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research

CP/M~-86 System Guide 1.1 CP/M-86 General Characteristics

The GENCMD (Generate CMD) utility replaces the LOAD program of
CP/M~-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF) is provided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M—-86 Terms
Term Meaning
Nibble 4-bit half-byte
Byte 8-bit wvalue
Word 1l6-bit value

Double Word
Paragraph

Paragraph Boundary

Segment

Segment Register

Offset
Group

Address

32-bit value
16 contiguous bytes

An address divisible evenly
by 16 (low order nibble 0)

Up to 64K contiguous bytes
One of CS, DS, ES, or SS

16-bit displacement from a
segment register

A segment-register-relative
relocatable program unit

The effective memory address
derived from the composition
of a segment register value

with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 suﬁborts eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
in the user”s base page.

1.2 CP/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usually loaded directly above the interrupt
locations, at location 0400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You“ll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). 1In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you”“ll have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

If you”ve implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DISKDEF macro used
"by MAC under CP/M-80. You”ll find, however, that GENDEF provides
you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
#244. The jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you”“ll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 16-bit values in the range
0000H to OFFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area. 1If you translate an existing CP/M-80
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or by
transferring control to absolute location 0000H. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset
following the jump to 0000H which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

All Information Presented Here is Proprietary to Digital Research

4

CP/M-86 System Guide 1.2 CpP/M-80 and CP/M-86 Differences

You“ll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we’ve designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" denoting a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program”s
memory requirements. If sufficient memory is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

All Information Presented Here is Proprietary to Digital Research

7

Cp/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below. ‘

Table 2-1. CP/M-86 Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups

Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

SS:
CCpP

8s + SP: | CCP Stack

CS DS ES:
DS+0000H ; base
page

CS+0100H: IP = 0100H
code

data

Ld L] L L]

code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

eseg
org 100h
. (code)
endcs equ $
dseg
org offset endcs
. (data)
end

All Information Presented Here is Proprietary to Digital Research

9

CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DSEG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the SS and SP registers remain in the CCP“s stack area as shown
in Figure 2-2.

CCP

SS + Sp: CCP Stack

CS: IP = 0000H

code
DS ES: base
page

DS+0100H:
data

Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+0000H, the "base page" values begin at
DS+0000H, and the data area starts at DS+0100H. The following ASM-
86 example shows how to code a small model transient program.

cseg

. (code)
dseg

org 100h
) (data)
end

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 System Guide 2.5 The Compact Memory Model

2.5 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. 1In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a 16-bit
offset wvalue.

The following ASM-86 example shows how to code a compact model
transient program.)

cseg

. (code)

dseg

org 100h

. (data)

eseg

. (more data)
sseg

. (stack area)
end

All Information Presented Here is Proprietary to Digital Research

11

CP/M-86 System Guide 2.5 The Compact Memory Model

SS:
CCp

SS + SP: CCP Stack

CS: IP = 0000H

code
DS: base
page
DS+0100H:
data
ES: ‘
data

Figure 2-3. CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

12

CP/M-86 System Guide 2.6 Base Page Initialization

2.6 Base Page Initialization

Similar to CP/M-80, the CP/M-86 base page contains default
values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through OOFFH relative to the DS register. The values in the
base page for CP/M-86 include those of CP/M-80, and appear in the
same relative vositions, as shown in Figure 2-4.

DS + 0000: LCO LC1 LC2

DS + 0003: BCO BC1l M80

DS + 0006: LDO LDl LD2

DS + 0009: BDO BD1 XXX

DS + 000Cc: |LEO | LE1 | LE2

DS + 000F: BEO BE1l XXX

DS + 0012: LSO LS1 LS2

DS + 0015: BSO BS1 XXX

DS + 0018: LXO0 LX1 LX2

DS + 0018: BXO0 BX1 XXX

DS + 00lE: LXO0 LX1 LX2

DS + 0021: BXO BX1 XXX

DS + 0024: LXO0 LX1 LX2

DS + 0027: BX0 BX1 XXX

DS + 002A: LXO0 LX1 LX2

DS + 002D: | BXO BX1 XXX

DS + 0030: Not
« o Currently
DS + 005B: Used
DS + 005C: Default FCB
DS + 0080: Default Buffer

DS + 0100: Begin User Data

Figure 2-4, CP/M-86 Base Page Values

-

All Information Presented Here is Proprietary to Digital Research

13

CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. LC is

the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCO and LCl)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits). LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length. It should be
noted that bytes LDO and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP/M-80, the CCP parses up to two filenames
following the command and places the properly formatted FCB”s at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. Due to the segmented memory of the 8086 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under CP/M-86, the
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BDOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
changing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL-
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

All Information Presented Here is Proprietary to Digital Research

14

Section 3
Command (CMD) File Generation

As mentioned previously, two utility programs are provided with
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel”s OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 1Intel 8086 Hex File Format

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-86 assembler and the standard Intel OHS86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

-
—
Y
o
V)
o
o
r
Q
Q
Q
.
ol
Q
Q

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

All Information Presented Here is Proprietary to Digital Research

15

CP/M-86 System Guide 3.1 1Intel Hex File Format

Table 3-1. 1Intel Hex Field Definitions

Field Contents

11 Record Length 00-FF (0-255 in decimal)
aaaa Load Address

tt Record Type:

00 data record, loaded starting at offset
aaaa from current base paragraph

01 end of file, cc = FF

02 extended address, aaaa is paragraph
base for subsequent data records

03 start address is aaaa (ignored, IP set
according to memory model in use)

The following are output from ASM-86 only:

81 same as 00, data belongs to code segment

82 same as 00, data belongs to data segment

83 same as 00, data belongs to stack segment

84 same as 00, data belongs to extra segment

85 paragraph address for absolute code segment
86 paragraph address for absolute data segment
87 paragraph address for absolute stack segment
88 paragraph address for absolute extra segment

d Data Byte

cc Check Sum (00 - Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86
User”s Guide, and in Intel”s document #9800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCMD
The GENCMD utility is invoked at the CCP level by typing
GENCMD filename parameter-list

where the filename corresponds to the hex input file with an assumed
(and unspecified) file type of H86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are: : :

8080 CODE DATA EXTRA STACK X1 X2 X3 X4

All Information Presented Here is Proprietary to Digital Research

16

CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-to-one with the segment groups defined in the
previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh TLoad the group at absolute location hhhh

Bhhhh The group starts at hhhh in the hex file

Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

® The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

® An absolute address (A value) must be given for any group
which must be located at an absolute location. Normally,
this wvalue is not specified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

® The B value is used when GENCMD processes a hex file
produced by Intel”s OH86, or similar utility program that
contains more than one group. The output from OH86
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. 1In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is
included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17

CP/M-86 System Guide 3.2 Operation of GENCMD

® The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total spvace required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

® The maximum memory size, given by the X wvalue, is
generally used when additional free memory may be needed
for such purposes as I/0 buffers or symbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-~-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following‘GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:
gencmd x code[ad40] data[m30,xfff]
In this case, the code group is forced to paragraph address 40H, or

equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

All Information Presented Here is Proprietary to Digital Research

18

CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y data[b30,m20] extral[b50] stack[m40] x1[m40]

produces the file Y.CMD on drive B by selecting records beginning
at address 0000H for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary
segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. 1In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 Operation of LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group”s data segment. Currently,
however , the only language processors which use this format are the
standard Intel development packages, although various independent

vendors will, most likely, take advantage of this format in the
future.

All Information Presented Here is Proprietary to Digital Research

19

CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CMD) File Format

The CMD file produced by GENCMD and LMCMD consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

- 128 Bytes -

GD#1|GD#2 |GD#3 |GD#4 |GD#5-GD#8. . .

Code,
Data,
Extra,
Stack,
Auxiliary

Figure 3-1. CMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors."”
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

8-bit 16-bit 16-bit 16-bit 16-bit

G-Form | G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

X X X X G-Type

The G-Type field determines the Group Descriptor type. The valid

Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-2 below.

All Information Presented Here is Proprietary to Digital Research

20

CP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors

G-Type Group Type

Code Group

Data Group

Extra Group

Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group

14 Unused, but Reserved
Escape Code for Additional Types

'.-l
o
Ul OO JdJAUTdWN -

'—l

All rewmaining values in the group descriptor are given in
increments of l6-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure" code
group for use under MP/M-86 and future versions of CP/M-86.
Presently a Shared Code Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

21

Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single bvte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers BDOS Return Registers
CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and
segment in ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
returned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23

CP/M-86 System Guide - 4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk

following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BDOS Functions

F# " Result F# Result

0* System Reset 24 Return Login Vector

1 Console Input : 25 Return Current Disk

2 Console Output . 26 Set DMA Address

3 Reader Input 27* Get Addr (Alloc)

4 Punch Output 28 Write Protect Disk

5 List Output 29 Get Addr (R/0O Vector)
6* Direct Console 1/0 30 Set File Attributes

7 Get I/0 Byte S 31* Get Addr (Disk Parms)

8 Set I/0 Byte 32 Set/Get User Code

9 Print String 33 Read Random
10 Read Console Buffer 34 Write Random
11 Get Console Status 35 Compute File Size

12 Return Version Number 36 Set Random Record
13 Reset Disk System 37* Reset drive

14 Select Disk 1 40 Write Random with Zero Fill
15 Oven File ' 50* Direct BIOS Call
16 Close File 51* Set DMA Segment Base
17 Search for First 52* Get PDMA Segment Base
18 Search for Next 53* Get Max Memory Available
19 Delete File ’ 54* Get Max Mem at Abs Location
20 Read Sequential - 55* Get Memorv Region :
21 Write Sequential 56* Get Absolute Memory Region
22 Make File 57* Free memorv region
23 Rename File 58* Free all memory

59* Program load

The individual BDOS functions are described below in three
sections which cover the simple functions, file operations, and
extended operations for memory management and program loading.

All Information Presented Here is Proprietary to Digital Research

24

CP/M-86 System Guide 4.2 Simple BDOS Calls

4.2 simple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,
and perform simple functions such as system reset and single
character 1/0.

Entry Return
> —
CL: 00H FUNCTION O
DL: Abort SYSTEM RESET
Code

The system reset function returns control to the CP/M operating

system at the CCP command level. The abort code in DL has two
possible values: if DL = 00H then the currently active program is
terminated and control is returned to the CCP. If DL is a 0l1H, the
-program remains in memory and the memory allocation state remains
unchanged.

Entry Return
> —

CL: 01H FUNCTION 1 AL: ASCII Character

CONSOLE INPUT

’ The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry Return
.
CL: 02H FUNCTION 2
DL: ASCII CONSOLE OUTPUT
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. 1In addition,
a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research

25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return
> >

CL: 03H FUNCTION 3 AL: ASCII Character

READER INPUT

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry Return
P —
CL: 04H FUNCTION 4
DL: ASCII PUNCH OUTPUT
Character

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry Return
- —
CL: 05H FUNCTION 5
DL: ASCII LIST OUTPUT
Character

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

All Information Presented Here is Proprietary to Digital Research

26

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return
-
CL: O6H FUNCTION 6 AL: char or status
DL: OFFH (input)|| DIRECT CONSOLE I/0 (no value)
or
OFEH (status)
or

char (output)

Direct console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86"s normal control character functions
(e.g., CONTROL-S and CONTROL-P). Programs which perform direct I/0O
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/0 under the BDOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 returns AL = 00 if no character is ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes
that DL contains a valid ASCII character which is sent to the
console.

Entry Return
T . o

CL: 07H FUNCTION 7 AL: I/0 Byte Value

GET I/O BYTE

The Get I/O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research

27

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return
- —
CL: 08H FUNCTION 8
DL: I/0 Byte SET 1I/0 BYTE
Value

The Set I/0 Byte function changes the system IOBYTE value to
that given in register DL. This function allows transient program
access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry Return
> —-
CL: 09H FUNCTION 9
DX: String PRINT STRING
Offset

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
(CONSOLE), until a "$" is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll
and printer echo.

Entry Return
- —
CL: OAH FUNCTION 10 Console Characters
DX: Buffer READ CONSOLE BUFFER in Buffer
Offset

All Information Presented Here is Proprietarv to Digital Research

28

CP/M-86 System Guide 4.2 Simple BDOS Calls

The Read Buffer function reads a line of edited console input into a
buffer addressed by register DX from the logical console device
(CONSOLE) . Console input is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)
character is entered. The input buffer addressed by DX takes the
form:

DX: +0 +1 +2 +3 +4 +5 +6 +7 +8 o« o +n

mx| nc|l cl|c2|c3|cd|c5|cblc? .« o ?2?

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to making a function 10 call and mav
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by "??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of editing control functions are supported during
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls

Keystroke Result

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of 1line
CONTROL-E causes physical end of line

CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates inout line
CONTROL-M (return) terminates input line
CONTROL-R retypes the current line after new line
CONTROL-U removes current line after new line
CONTROL-X backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt
ended. This convention makes operator data input and line
correction more legible.

All Information Presented Here is Proprietary to Digital Research

29

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return

> >
CL: OBH FUNCTION 11 AL: Console Status

GET CONSOLE STATUS

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE). If a character
is ready, the value 0lH is returned in register AL. Otherwise a 00H
value is returned.

Entry ‘ Return

— —
CL: OCH FUNCTION 12 BX: Version Number

RETURN VERSION NUMBER

Function 12 provides information which allows version
independent programming. A two-bvte value is returned, with BH = 00
designating the CP/M release (BH = 01 for MP/M), and BL = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register BL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M-86 returns a 2.2.

4.3 BDOS File Operations

Functions 12 through 52 are related to disk file operations
under CP/M-86. 1In many of these operations, DX provides the DS-
relative offset to a file control block (FCB). The File Control
Block (FCB) data area consists of a sequence of 33 bytes for
sequential access, or a sequence of 36 bytes in the case that the
file is accessed randomly. The default file control block normally
located at offset 005CH from the DS register can be used for random
access files, since bytes 007DH, 007EH, and 007FH are available for
this purpose. Here is the FCB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

30

CP/M-86 System Guide 4.3 BDOS File Operations

|dr |£1| £2|/ /|f8|t1l|t2|t3]|ex|sl|s2|rc|d0|/ /|dn|cr|{r0|rl]|r2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...£f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl°, t2°, and t3° denote the high
bit of these positions,
tl” = 1 => Read/Only file,
t2” = 1 => 8YS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set.
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0...4dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

All Information Presented Here is Proprietary to Digital Research

31

CP/M-86 System Guide 4.3 BDOS File Operations

There are three error situations that the BDOS may encounter during
file processing, initiated as a result of a BDOS File I/0 function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT R/O

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
BIOS sector read and write commands as part of the execution of BDOS
file related system calls. If the BIOS read or write routine
~detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,
while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution. ‘

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. 1If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and

returns to the command level of the CCP following any input from the
console.,

The "R/O" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BDOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a "warm start." The
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
— >
CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected. This
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Entry Return
> >
CL: OEH FUNCTION 14
DL: Selected SELECT DISK
Disk

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. In
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive”s directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB”s
which specify drive code zero (dr = 00H) automatically reference the
currently selected default drive. Drive code values between 1 and
16, however, ignore the selected default drive and directly
reference drives A through P.

Entry Return
— >
CL: OFH FUNCTION 15 AL: Return Code
DX: FCB OPEN FILE
Offset

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match in
positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

All Information Presented Here is Proprietary to Digital Research

33

CP/M-86 System Guide 4.3 BDOS File Operations

If a directory element is matched, the relevant directory
information is copied into bytes 40 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
.successful open operation is completed. Further, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. Upon return, the open function returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

Entry Return

— -
CL: 10H FUNCTION 16 AL: Return Code
DX: FCB CLOSE FILE

Offset

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close
is identical to the open function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the new directory
information.

All Information Presented Here is Proprietary to Digital Research

34

CP/M~-86 System Guide 4.3 BDOS File Operations

Entry Return
> >
CL: 11H FUNCTION 17 AL: Directory
Code
DX: FCB SEARCH FOR FIRST
Offset

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file 1is not found, otherwise 0, 1, 2, or 3 is
returned indicating the file is present. 1In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i.e., rotate the AL register left 5 bits).
Although not normally required for application programs, the

directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3% hexadecimal) in any
position from "fl1" through "ex" matches the corresponding field of
any directory entry on the default or auto-selected disk drive. If
the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all current directory values. If the "dr" field is not a
question mark, the "s2" byte is automatically zeroed.

Entry Return
> >~
CL: 12H FUNCTION 18 AL: Directory
Code

SEARCH FOR NEXT

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 18 call must follow either a

function 17 or function 18 call with no other intervening BDOS disk
related function calls.

All Information Presented Here is Proprietary to Digital Research

35

CP/M-86 System Guide

Entry Return
> >
CL: 13H FUNCTION 19 AL: Return Code
DX: FCB DELETE FILE
Offset

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFFH (decimal 255) if the
referenced file or files cannot be found, otherwise a value of zero
is returned.

Entry Return
— ' >
CL: 14H FUNCTION 20 AL: Return Code
DX: FCB READ SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next read operation. The "cr" field
must be set to zero following the open call by the user if the
intent is to read sequentially from the beginning of the file. The
value 00H is returned in the AL register if the read operation was
successful, while a value of 01lH is returned if no data exists at
the next record position of the file. ‘Normally, the no data
situation is encountered at the end of a file. However, it can also
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand (function 34).

All Information Presented Here is Proprietary to Digital Research

36

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
> -
CL: 15H FUNCTION 21 AL: Return Code
DX: FCB WRITE SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address
to the file named by the FCB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequer :ially from the beginning of
the file. Register AL = 00H upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Entry Return
— >
CL: 16H FUNCTION 22 AL: Return Code
DX: FCB MAKE FILE
Offset

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
- o
CL: 17H FUNCTION 23 AL: Return Code
DX: FCB RENAME FILE
Offset

The Rename function uses the FCB addressed by DX to change all
directory entries of the file specified by the file name in the
first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user”“s responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry Return
. -
CL: 18H FUNCTION 24 BX: Login Vector
BX: Login RETURN LOGIN
Vector VECTOR

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

Entry , Return
—- >
CL: 194" FUNCTION 25 AL: Current Disk

RETURN CURRENT
DISK

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

38

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
> >
CL: 1AH FUNCTION 26
DX: DMA SET DMA
Offset ADDRESS

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(i.e., the data is transfered through programmed I/0O operations),
the DMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to svecify the DMA address, both a function 26
call and a function 51 call are required. Thus, the DMA address
becomes the value specified by DX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry ; Return
- >
CL: 1BH FUNCTION 27 BX: ALLOC Offset

GET ADDR(ALLOC) ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry Return
— —
CL: 1CH FUNCTION 28

WRITE PROTECT DISK

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Err on d: R/O

All Information Presented Here is Proprietary to Digital Research

39

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
> o
CL: 1DH FUNCTION 29 BX: R/0 Vector Value

GET READ/ONLY
VECTOR

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/only bit set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by an explicit call toc function 28, or by the automatic
software mechanisms within CP/M-86 which detect changed disks.

Entry o Return
CL: 1EH FUNCTION 30 AL: Return Code
DX: FCB SET FILE

Offset ATTRIBUTES

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. Tn
particular, the R/O, System and Archive attributes (tl1”, t2°, and
t3”) can be set or reset. The DX pair addresses a FCB containing a
file name with the appropriate attributes set or reset. It is the
user“s responsibility to insure that an ambiguous file name is not
specified. Function 30 searches the default disk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and type fields. All matching
directory entries are updated to contain the selected indicators.
Indicators f1” through £4° are not presently used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators
£5° through f8° are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl”: The R/O attribute indicates if set that the file
is in read/only status. BDOS will not allow write
commands to be issued to files in R/O status.

t2”: The System attribute is referenced by the CP/M DIR
utility. 1If set DIR will not dlsolay the file in
a directory dlspTay.

All Information Presented Here is Proprietary to Digital Research

40

CP/M-86 System Guide 4.3 BNOS File Operations

t3”: The Archive attribute is reserved but not actually
used by CP/M-86 If set it indicates that the file
has been written to back up storage by a user
written archive progranm. To implement this
facility, the archive program sets this attribute
when it copies a file to back up storage; any
programs updating or creating files reset this
attribute. Further, the archive program backs up
only those files that have the Archive attribute
reset. Thus, an automatic back up facilitv
restricted to modified files can be easily
implemented.

Function 30 returns with register AL set to OFFH (255 decimal)
if the referenced file cannot be found, otherwise a value of zero is
returned.

Entry Return
P
CL: 1FH FUNCTION 31 BRX: DPB Nffset
GET ADDR ES: Segment Base
(DTSK PARMS)

The offset and the segment base of the BIOS resident disk
varameter block of the currently selected drive are returned in BX
and ES as a result of this function call. This control block can be
used for either of two vurvoses. First, the disk parameter values
can be extracted for disvlay and space computation purposes, ot
transient programs can dvnamically change the values of current disk
prarameters when the disk environment changes, if required.
Normally, avplication programs will not require this facility.
Section 6.3 defines the BINS disk parameter block.

Entry Return
-
CL: 20H FUNCTION 32 AT,: Current Code
or no value
DL: OFFH(get) SET/GRT
or TISER CODE
User Code
(set)

An application program can change or interrngate the currently
active user number by calling function 32. 1If register DL = OFFH,
then the value of the current user number is returned in register
AL, where the value is in the range 0 to 15. 1If register DL is not

OFFH, then the current user number is changed to the value of DI
(modulo 16).

Al)l Information Presented Here is Proprietary to Digital Research

a1

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
> —
CL: 21H FUNCTION 33 AL: Return Code
DX: FCB READ RANDOM
Offset

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte

r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored into
the random record field (r0,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. 1In the latter case, the buffer at the
current DMA address contains the randomly accessed record. Note
that contrary to the sequential read operation, the record number is
not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/0 operation.

All Information Presented Here is Proprietary to Digital Research

42

CP/M-86 System Guide 4.3 BDOS File Operations

Error codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4-4. Function 33 (Read Random) Error Codes

Code Meaning

01 Reading unwritten data - This error code is returned
when a random read operation accesses a data block which
has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bvtes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has

not been created. This error situation is equivalent to
error 01,

05 (not returned by the Random Read command)

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

All Information Presented Here is Proprietary to Digital Research

43

CP/M-86 System Guide 4.3 BDOS File Operations

Entry ' Return
> >
CL: 22H FUNCTION 34 AL: Return Code
DX: FCB WRITE RANDOM
Offset

The Write Random operation is initiated similar to the Read
Random call, except that data 1is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to
the random record which is being written. Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequential operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. 1In particular, reading or writing the
last record of an extent in random mode does not cause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read Random
function, this ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Although the base
extent may or may not contain any allocated data, this ensures that
the file is properly recorded in the directory, and is visible in
DIR requests.

Upon return from a Write Random call, register AL either

contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-5. Function 34 (WRITE RANDOM) Error Codes

Code Meaning

01 (not returned by the Random Write command)

02 No available data block - This condition is encountered
when the Write Random command attempts to allocate a new
data block to the file and no unallocated data blocks
exist on the selected disk drive.

All Information Presented Here is Proprietary to Digital Research

44

CP/M-86 System Guide 4.3 BDOS File Operations

Table 4-5. (continued)

Code Meaning

03 cCannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a write random operation
on an FCB that has not been opened.

04 (not returned by the Random Write command)

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Entry A 1 Return
CL: 23H - FUNCTION 35 Random Record
Field Set
DX: FCB COMPUTE FILE
Offset SIZE

, When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes r0, rl, and r2 are present). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes r0 and rl constitute a 16-bit

value (r0 is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds. to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. 1If,
for example, a single record with record number 65535 (CP/M”s
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here is Proprietary to Digital Research

45

CP/M~-86 System Guide 4.3 BDOS File Operations

Entry Return
> o
CL: 24H FUNCTION 36 Random Record
Field Set
DX: FCB SET RANDOM
Offset RECORD

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move instantly to a particular keyed record by
performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry Return
—p “ —
CL: 25H FUNCTION 37 AL: 00H
DX: Drive RESET DRIVE
Vector

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX
is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the specified drive is to be reset.

" In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Proprietary to Digital Research

46

CP/M-86 System Guide

Entry Return
> >
CL: 28H FUNCTION 40 AL: Return Code
DX: FCB | WRITE RANDOM
Offset WITH ZERO FILL

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entry Return
— >
CL: 32H FUNCTION 50
DX: BIOS DIRECT BIOS CALL
Descriptor

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte
memory area containing the BIOS call parameters:

8-bit 1l6-bit l6-bit

Func value (CX) value (DX)

where Func is a BIOS function number, (see Table 5-1), and value (CX)

and value(DX) are the 16-bit values which would normally be passed
directly in the CX and DX registers with the BIOS call. The CX and

DX values are loaded into the 8086 registers before the BIOS call is
initiated.

All Information Presented Here is Proprietary to Digital Research

47

CP/M-86 System Guide » 4.3 BDOS File Operations

Entry Return
o , >
CL: 33H FUNCTION 51
DX: Base SET DMA BASE
Address

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user”s data segment (the initial value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the base page.

Entrvy Return
> —
CL: 3494 FUNCTION 52 BX: DMA Offset
GET DMA BASE ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in DX.

4.4 BDOS Memory Management and Load

Memory is allocated in two distinct ways under CP/M-86. The
first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to operate CP/M-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty - memorv
regions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memorvy.

Once memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support transient
program loading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place either implicitly, through a program load overation, or
explicitly through the BDOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load operation (function 59).
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memory
(DL = 01H). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietary to Digital Research

48

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

is only one transient program in memory at any given time. If,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which program is
actively reading the console. ,

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memory image consisting of the
program and its data is loaded into region A, and execution begins.
This program, in turn, calls the BDOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional

region C, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region A

Region B

Region C

Region D

Figure 4-1. Example Memory Allocation

There is a hierarchical ownership of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through D. The program in A can release regions
B through D, if desired, and reload yet another program. DDT-86,
for example, operates in this manner by executing the Free Memory
call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions C and D if required by the application. It must be
noted, however, that if either A or B terminates by a System Reset
(BDOS function 0 with DL = 00H) then all four regions A through D
are released.

All Information Presented Here is Proprietary to Digital Research

49

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released portion must, however, be at the beginning or end of
the region. Suppose, for example, the program in region B above
receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

1000H:

Length =
8000H Region C

—

Figure 4-2. Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragraoh base 700H,
resulting in the memory arrangement shown in Figure 4-3.

1000H:
Length =
6000H Region C
Length = 70008: | ////7//////
2000H /1777777777

Figure 4-3. Example Memory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next request. Note that a memorv request will
fail if eight memory regions have already been allocated. Normally,

if all program units can reside in a contiguous region, the system
allocates only one region.

All Information Presented Here is Proprietary to Digital Research

50

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Memory management functions beginning at 53 reference a Memory
Control Block (MCB), defined in the calling program, which takes the
form:

16-bit 16-bit 8-bit

MCB: M-Base M-Length M-Ext

where M-Base and M-Length are either input or output values
expressed in l16-byte paragraph units, and M-Ext is a returned bhyte
value, as defined specifically with each function code. An error
condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CP/M.

Entry Return
> -
CL: 35H FUNCTION 53 AL: Return Code
DX: Offset GET MAX MEM
of MCB

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful, M-Base is
set to the base paragraph address of the available area, and M-
Length to the paragraph length. AL has the value OFFH upon return
if no memory is available, and 00H if the request was successful.
M-Ext is set to 1 if there is additional memory for allocation, and
0 if no additional memory is available.

Entry Return
- —
CL: 36H FUNCTION 54 AL: Return Code
DX: Offset GET ABS MAX
of MCB

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum of M-
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is
available at the absolute address, and 00H if the request was
successful.

All Information Presented Here is Proprietary to Digital Research

51

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry ; ‘ Return
- ——
CL: 37H FUNCTION 55 AL: Return Code
DX: Offset ALLOC MEM
of MCB

The allocate memory function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Function 55 returns in the user”s MCB the base
paragrapvh address of the allocated region. Register AL contains a
00H if the request was successful and a OFFH if the memory could not
be allocated. ‘

Entry Return

> : >
CL: 38H FUNCTION 56 AL: Return Code
DX: Offset ALLOC ABS MEM

of MCB

The allocate absolute memory function allocates a memory area
according to the MCB addressed by NDX. The allocation request size
~is obtained from M-Length and the absolute base address from M-Base.
Register AL contains a 00H if the request was successful and a OFFH
if the memory could not be allocated.

Entry Return
I . >
CL: 39H FUNCTION 57
DX: Offset FREE MEM
of MCB

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by DX
is released (the M-Ext field-should be set to 00H in this case). As
described above, either an entire allocated region must be released,
or the end of a region must be released: the middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

52

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry Return

(. [
— ——

CL: 3AH FUNCTION 58

FREE ALL MEM

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon initialization).

Entry Return
> >
CL: 3BH FUNCTION 59 AX: Return Code/
Base Page Addr
DX: Offset PROGRAM LOAD BX: Base Page Addr
of FCB :

Function 59 loads a CMD file. Upon entry, register DX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. However, this is a
function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
function 59 to execute function 51 to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Research

53

Section 5
Basic I/0O System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBC 86/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic I/0
System, or BIOS. A CP/M-86 system implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly any
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Definition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BIOS portion of CP/M-86 resides in the topmost portion of
the operating system (highest addresses), and takes the general form
shown in Figure 5-1, below:

¢s, DS, ES, SS:

Console
Command
Processor

and
Basic
Disk
Operating
System

S + 2500H: BIOS Jump Vector

CsS + 253FH:
BIOS Entry Points

BIOS:
Disk
Parameter
Tables

Uninitialized
Scratch RAM

Figure 5-~1. General CP/M-86 Organization

All Information Presented Here is Proprietary to Digital Research

55

CP/M-86 System Guide 5.1 Organization of the BIOS

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP/M-86 Loader is given in a later section.

Appendix D contains a listing of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal" BIOS called CBIOS that contains
the essential elements with the device drivers removed. You may
wish to review these listings in order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector" located at offset
2500H from the base of the operating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non-
essential BIOS subroutines may contain a single return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS jump

vector may be found in Appendix D, in the standard CP/M-86 BIOS
listing.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. CX receives the
first parameter; DX is used for a second argument. Return values
are passed in the registers acco ding to type: Byte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
parameters and returned values are described with each subroutine.

All Information Presented Here is Proprietary to Digital Research

56

CP/M-86 System Guide 5.2 The. BIOS Jump Vector

Table 5-1. BIOS Jump Vector

Offset from Suggested BIOS :
Beginning Instruction |F# Description
of BIOS
2500H JMP INIT 0 Arrive Here from Cold Boot
2503H JMP WBOOT 1 Arrive Here for Warm Start
2506H JMP CONST 2 Check for Console Char Ready
2509H JMP CONIN 3 Read Console Character In
250CH JMP CONOUT 4 Write Console Character Out
250FH JMP LIST 5 Write Listing Character Out
25124 JMP PUNCH 6 Write Char to Punch Device
2515H JMP READER 7 Read Reader Device
2518H JMP HOME 8 Move to Track 00
251BH JMP SELDSK 9 Select Disk Drive
251EH JMP SETTRK 10 Set Track Number
2521H JMP SETSEC 11 Set Sector Number
2524H JMP SETDMA 12 Set DMA Offset Address
2527H JMP READ 13 Read Selected Sector
252AH JMP WRITE 14 Write Selected Sector
252DH JMP LISTST 15 Return List Status
2530H JMP SECTRAN 16 Sector Translate
2533H JMP SETDMAB 17 Set DMA Segment Address
2536H JMP GETSEGB 18 Get MEM DESC Table Offset
2539H JMP GETIOB 19 Get I/0 Mapping Byte
253CH JMP SETIOB 20 Set I/0 Mapping Byte

There are three major divisions in the BIOS jump table: system
(re)initialization subroutines, simple character I/0 .subroutines,
and disk I/O subroutines.

5.3 Simple Peripheral Devices

All simple character I/0 operations are assumed to be performed
in ASCII, upper and lower case, with high order (parity bit) set to
zero. An end-of-file condition for an input device is given by an
ASCII control-z (1lAH). Peripheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2.

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 System Guide 5.3 Simple Peripheral Devices

Table 5-2. CP/M-86 Logical Device Characteristics

Device Name Characteristics

CONSOLE The principal interactive console which
communicates with the operator, accessed through
CONST, CONIN, and CONOUT. Typically, the CONSOLE
is a device such as a CRT or Teletype.

LIST The principal listing device, if it exists on vour
system, which is usually a hard-copv device, such
as a printer or Teletvype.

PUNCH The principal tape punching device, if it exists,
which is normally a high-speed paper tape vunch or
Teletype.

READER The princival tave reading device, such as a

simple optical reader or teletype.

Note that a single perivheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no peripheral device is
assigned as the LIST, PUNCH, or READER device, your CBIOS should
give an appropriate error message so that the svstem does not "hang"
if the device is accessed by PIP or some other transient program.
Alternately, the PUNCH and LIST subroutines can just simplv return,
and the READER subroutine can return with a l1AH (ctl-7) in reqg A to
indicate immediate end-of-file.

For added flexibility, vyou can optionally implement the
"IOBYTE" function which allows reassignment of physical and logical
devices. The IOBYTE function creates a mavping of 1logical to
physical devices which can be altered during CP/M-86 processing (see
the STAT command). The definition of the IOBYTE function
corresponds to the Intel standard as follows: a single location in
the BIOS is maintained, called TOBYTE, which defines the logical to
physical device mapping which is in effect at a particular time.
The mapping is performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

most significant least significant

IOBYTE LIST PUNCH READER CONSOLE

bits 6,7 bits 4,5 bits 2,3 bits 0,1

All Information Presented Here is Proprietarvy to Digital Research

58

CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. IOBYTE Field Definitions

CONSOLE field (bits 0,1)

0 - console is assigned to the console printer (TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)

3 - user defined console device (UCLl:)

READER field (bits 2,3)

0 - READER is the Teletype device (TTY:)

1 - READER is the high-speed reader device (RDR:)

2 - user defined reader # 1 (URl:)

3 - user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)

- PUNCH is the Teletype device (TTY:)

- PUNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)

- user defined punch # 2 (UP2:)

wN-O

LIST field (bits 6,7)

0 - LIST is the Teletype device (TTY:)

1 - LIST is the CRT device (CRT:)

2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is optional,
and affects only the organization of your CBIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. 1In any case, you should omit the IOBYTE
implementation until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase vour facilities.

All Information Presented Here is Proprietary to Digital Research

59

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

5.4 BIOS Subroutine Entry Points

The actions which must take place upon entrvy to each BIOS
subroutine are given below. It should be noted that disk I/0 is
always performed through a sequence of calls on the various disk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memorv access
(DMA) offset and segment addresses involved in the I/0O operation.
After all these parameters have been setup, a call is made to the
READ or WRITE function to perform the actual I/O operation. WNote
that there is often a single call to SELDSK to select a disk drive,
followed by a number of read or write operations to the selected
disk before selecting another drive for subsequent overations.
Similarly, there may be a call to set the NDMA sedgment base and a
call to set the DMA offset followed by several calls which read or
write from the selected DMA address before the DMA address is
changed. The track and sector subroutines are always called before
the READ or WRITE operations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the BDOS.
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your controller characteristics; the important
point is that track 00 has been selected for the next overation, and
is often treated in exactly the same manner as SETTRK with a
parameter of 00.

Table 5-4. BIOS Subroutine Summary

Subroutine Description

INIT This subroutine is called directly by the CP/M-86
loader after the CPM.SYS file has been read into
memory. The vprocedure is responsible for anv
hardware initialization not performed by the
bootstrap loader, setting initial values for BIOS |
variables (including IOBYTE), printing a sign-on
message, and initializing the interrupt vector to
point to the BDOS offset (0B1l1lH) and base. When
this routine completes, it jumps to the CCP
offset (0H). All segment registers should be
initialized at this time to contain the base of
the operating system.

WBOOT This subroutine is called whenever a wvrogram
terminates by performing a BDOS function #0 call.
Some re-initialization of the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entry point of the CCP (06H).

CONST Sample the status of the currently assigned
console device and return OFFH in register AL if
a character is ready to read, and 00H in register
AL if no console characters are ready.

All Information Presented Here is Proprietary to Digital Research

60

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

CONIN Read the next console character into register AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character is tvped before returning.

coNouT Send the character from register CL to the
console output device. The character is in
ASCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if vyour console device
requires some time interval at the end of the
line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

LIST Send the character from register CL to the
currently assigned listing device. The character
is in ASCII with zero parity.

PUNCH Send the character from register CL to the
currently assigned punch device. The character
is in ASCII with zero parity.

READER Read the next character from the currently
assigned reader device into register AL with zero
parity (high order bit must be zero). An end of
file condition is reported by returning an ASCIT
CONTROL-Z (1AH).

HOME Return the disk head of the currently selected
disk to the track 00 position. If your
controller does not have a special feature for
finding track 00, yvou can translate the call into
a call to SETTRK with a parameter of 0.

All Information Presented Here, is Proprietary to Digital Research

61

CP/M-86 System Guide 5.4 BIOS Subroutine Entrvy Points

Table 5-4. (continued)

Subroutine Description

SELDSK Select the disk drive given by register CL for
further operations, where register CL contains 0
for drive A, 1 for drive B, and so on up to 15
for drive P (the standard CP/M-86 distribution
version supports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive”s DNDisk Parameter Header.
For standard floppy disk drives, the content of
the header and associated tables does not change.
The sample BIOS included with CP/M-86 called
CBIOS contains an example program segment that
performs the SELDSK function. If there is an
attempt to select a non-existent drive, SELDSK
returns BX=0000H as an error indicator. Although
SELDSK must return the header address on each
call, it 1is advisable to vostpone the actual
physical disk select overation until an I/0
function (seek, read or write) 1is verformed.
This 1is due to the fact that disk select
operations may take oplace without a subsequent
disk operation and thus disk access may be
substantially slower using some disk controllers.
On entry to SELDSK it is possible to determine
whether it is the first time the svecified disk
has been selected. Register NL, bit 0 (least
significant bit) is a zero if the drive has not
been previously selected. This information is of
interest in systems which read configuration
information from the disk in order to set up a
dynamic disk definition table.

SETTRK Register CX contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the range 0-76
corresponding to valid track numbers for standard
floopy disk drives, and 0-65535 for non-standard
disk subsystems.

SETSEC Register CX contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to Digital Research

62

CP/M~-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

SETDMA Register CX contains the DMA (disk memory access)
offset for subsequent read or write overations.
For example, if CX = 80H when SETDMA is called,
then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I/0 ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

READ Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA offset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of

typing RETURN to ignore the error, or CONTROL-C
to abort.

WRITE Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non-
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

LISTST Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to accept a character, and OFFH if a
character can be sent to the printer.

All Information Presented Here is Proprietary to Digital Research

63

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued) -

Subroutine Description

SECTRAN Performs logical to physical sector translation
‘ to improve the overall response of CP/M-86.
Standard CP/M-86 systems are shipped with a "skew
factor"” of 6, where five physical sectors are
skipped between sequential read or write
operations. This skew factor allows enough time
between sectors for most programs to load their
buffers without missing the next sector. In
computer systems that use fast processors, memory
and disk subsystems, the skew factor may be
changed to improve overall response. Note,
however, that you should maintain a single
density IBM compatible version of CP/M-86 for
information transfer into and out of your
computer system, using a skew factor of 6. 1In
general, SECTRAN receives a logical sector number
in CX. This logical sector number may range from
0 to the number of sectors -1. Sectran also
receives a translate table offset in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the CBIOS
and need not be changed. If DX = 0000H no
translation takes place, and CX is simply copied
to BX before returning. Otherwise, SECTRAN
computes and returns the translated sector number
in BX. Note that SECTRAN 1is called when no
translation is specified in the Disk Parameter
Header.

SETDMAB Register CX contains the segment base for
subsequent DMA read or write operations. The
BIOS will use the 128 byte buffer at the memory
address determined by the DMA base and the DMA
offset during read and write operations.

GETSEGB Returns the address of the Memory Region Table
' (MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and
extent of physical memory which is available for
transient programs.

All Information Presented Here is Proprietary to Digital Research

64

CP/M-86 System Guide : 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

Memory areas reserved for interrupt vectors and
the CP/M-86 operating system are not included in
the MRT. The Memory Region Table takes the form:

8-bit
MRT: R-Cnt
0: R-Base R-Length
l: ~ R-Base R-Length
n: R-Base R-Length
16-bit 16-bit

where R-Cnt 1is the number of Memory Region
Descrivtors (equal to n+l in the diagram above),
while R-Base and R-Length give the paragraph base
and length of each physically contiguous area of
memory. Again, the reserved interrupt locations,
normally 0-3FFH, and the CP/M-86 operating system
are not included in this map, because the map
contains regions available to transient programs.
If all memory is contiguous, the R-Cnt field is 1
and n = 0, with only a single Memory Region
Descriptor which defines the region.

GETIOB Returns the current value of the logical to
physical input/output device byte (IOBYTE) in AL.
This eight-bit wvalue is used to associate
physical devices with CP/M-86"s four logical
devices.

SETIOR Use the value in CL to set the value of the
JOBYTE stored in the BIOS.

The following section describes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS.

All Information Presented Here is Proprietary to Digital Research

65

Section 6
BIOS Disk Definition Tables

Similar to CP/M-80, CP/M-86 is a table-driven operating system
with a sevarate field-configurable Basic I/0 System (BINS). By
altering specific subroutines in the BIOS presented in the previous
section, CP/M-86 can be customized for operation on any RAM-based
8086 or 8088 micropbrocessor svstem.

The purvose of this section is to present the organization and
construction of tables within the BIOS that define the
characteristics of a particular disk system used with CP/M-86.
These tables can be either hand-coded or automatically generated
using the GENDEF utility provided with CP/M-86. The elements of
these tables are presented below.

6.1 Disk Parameter Table Format

In general, each disk drive has an associated (l6-byte) disk
parameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS operations.

The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header
XLT 0000 0000 0000 | DIRBUFW NDPB Csv ALV
16b 16b 16b 16b 16b l6b 16b 16b

where each element is a word (1l6-bit) value. The meaning of each
Disk Parameter Header (NDPH) element is given in Table 6-1.

Table 6-1. DNDisk Parameter Header Elements

Element Description

XLT Offset of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the
physical and 1logical sector numbers are the same).
NDisk drives with identical sector skew factors share
the same translate tables.

0000 Scratchpad values for use within the BDOS (initial
value is unimportant).

All Information Presented Here is Proprietary to Digital Research

67

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-1. (continued)

Element Description

DIRBUF Offset of a 128 byte scratchpad area for directory
operations within BDOS. All DPH”s address the same
scratchpad area.

DPB Offset of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Ccsv Offset of a scratchpoad area used for software check for
changed disks. This offset is dAifferent for each DPH.

ALV Offset of a scratchoad area used by the BDOS to keep
‘ disk storage allocation information. This offset is
different for each DPH.

Given n disk drives, the DPH”’s are arranged in a table whose first
row of 16 bytes corresponds to drive 0, with the last row
corresponding to drive n-1. The table thus appears as

DPBASE

00 | XLT 00| 0000 0000 0000 | PIRBUF |DBP 00|CSV 00|ALV 00

01 | XLT 01| 0000 0000 0000 | DIRBUF |[DBP 01|CSV O0l1|ALV 01

(and so-forth through)

n-1 XLTn-l 0000 0000 0000 | DIRBIF |DBPn-1|CSVn-1|ALVn-1

where the label DPBASE defines the offset of the DPH table relative
to the beginning of the overating system.

A responsibility of the SELDSK subroutine, defined in the
previous section, 1is to return the offset of the NPH from the
beginning of the overating system for the selected drive. The
following sequence of operations returns the table offset, with a
0000H returned if the selected drive does not exist.

All Information Presented Here is Proprietary to Digital Research

68

CP/M-86 System Guide 6.1 Disk Parameter Table Format

NDISKS EQU 4 sNUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK N GIVEN BY CL
MOV BX,0000H ;READY FOR ERR
CPM CL,NDISKS ;N BEYOND MAX NDISKS?

JNB RETURN s RETURN IF SO
s0 <= N < NDISKS
MOV CH,O0 . ;DOUBLE (N)
MOV BX,CX ;BX = N
MOV CL,4 :READY FOR * 16
SHL BX,CL N =N * 16
MOV CX,OFFSET DNPBASE
, ADD BX,CX +DPBASE + N * 16
RETURN: RET :BX - .DPH (N)

The translation vectors (XLT 00 through XLTn-1l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-l. The Disk
Parameter Block (DPB) for each drive is more complex. A particular

DPB, which is addressed by one or more DPH”s, takes the general
form:

SPT BSH |BLM |EXM DSM DRM ALO |ALLl CKS OFF

16b 8 8 8 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "1lé6b"
indicator below the field. The fields are defined in Table 6-2.

Table 6-2. Disk Parameter Block Fields

Field Definition
SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined

by the data block allocation size.

BLM is the block mésk which is also determined by the data
block allocation size.

EXM is the extent mask, determined by the data block
allocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which

can be stored on this drive

All Information Presented Here is Proprietary to Digital Research

69

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-2. (continued)

Field Definition

ALO,AL1 determine reserved directorv blocks.
CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

Although these table values are produced automatically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
BIM determine (implicitly) the data allocation size BLS, which is
not an entry in the disk parameter block. Given that you have
selected a value for BLS, the values of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal.

Table 6-3. BSH and BLM Values for Selected BLS

BLS BSH BLM
1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The value of EXM depends upon both the BLS and whether the DSM value

is less than 256 or greater than 255, as shown in the following
table.

Table 6-4. Maximum EXM Values

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of
course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

70

CP/M-86 System Guide 6.1 Disk Parameter Mable Format

The DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALO and
ALl, however, are determined by DRM. The two values ALO and ALl can
together be considered a string of 16-bits, as shown below.

ALO ALl

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labeled ALO, and 15 corresponds to the low order bit of the byte
labeled ALl. Each bit position reserves a data block for a number
of directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directorvy entry
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries

BLS Directory Entries
1,024 32 times # Dbits
2,048 64 times # bits
4,096 128 times # Dbits
8,192 256 times # Dbits

16,384 512 times # Dbits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALO = OFOH and ALl = O00H.

The CKS value 1is determined as follows: if the disk drive
media is removable, then CKS = (DRM+1l)/4, where DRM is the last
directory entry number. If the media is fixed, then set CXS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several
DPH”s can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dynamicallvy changed when a new
drive is addressed by simply changing the pointer in the DPH since
the BDOS copies the DPB values to a local area whenever the SELDSK
function is invoked. '

All Information Presented Here is Proprietarv to Digital Research

71

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive. If CKS = (DRM+l)/4, then you must reserve
(DRM+1) /4 bytes for directory check use. If CKS = 0, then no
storage is reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (DSM/8)+1.

The BIOS shown in Appendix D demonstrates an instance of these
tables for standard 8" single density Arives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above. :

6.2 Table Generation Using GENDEF

_ The GENDEF utility supplied with CP/M-86 greatly simplifies the
table construction process. GENDEF reads a file

X .DEF

containing the disk definition statements, and produces an output
file

X.LIB
containing assembly language statements which define the tables
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF x parameter 1list
where x has an assumed (and unspecified) filetype of DEF. The

parameter list may contain zero or more of the symbols defined in
Table 6-6.

Table 6-6. GENDEF Optional Parameters

Parameter _ Effect
$C Generate Disk Parameter Comments
SO Generate DPBASE OFFSET $
$Z Z80, 8080, 8085 Override
$COZ (Any of the Above)

All Information Presented Here is Proprietary to Digital Research

72

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility

which describes the characteristics of each defined disk. Normally,
the DPBASE is defined as

DPBASE EQU §

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine shown
above. For convenience, the $0O parameter produces the definition

DPBASE EQU OFFSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match your
particular programming practices. The $Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with 7280, 8080, and 8085 assemblers.

The disk definition contained within x.DEF is composed with the
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M-

80 Version 2. A BIOS disk definition consists of the following
sequence of statements:

DISKS n
DISKDEF O0,...
DISKDEF 1,...
DISKDEF n-1

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with your system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the characteristics of each 1logical disk, 0 through n-1,
corresponding to logical drives A through P. Note that the DISKS
and DISKDEF statements generate the in-line fixed data tables
described in the previous section, and thus must be placed in a non-
executable portion of your BIOS, typically at the end of your BIOS,
before the start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the necessary

uninitialized RAM areas which are located beyond initialized RAM in
your BIOS.

All Information Presented Here is Proprietary to Digital Research

73

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The form of the DISKDEF statement is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

where
dn is the logical disk number, 0 to n-1
fsc is the first physical sector number (0 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dks is the disk size in bls units
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00

[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
statement. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table
is created if the skf parameter is omitted or equal to O.

The "bls" parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references. Also, logically
. connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bls"
units. That is, if the bls = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then
the block size parameter bls must be greater than 1024. The value

of "dir" is the total number of directory entries which may exceed
255, if desired.

The "cks" parameter determines the number of directory items to
check on each directory scan, and is used internally to detect
changed disks during system operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the previous
section, the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low.

All Information Presented Here is Proprietary to Digital Research

74

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The "ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of CP/M-80, version 1.4 which have been modified for higher
density disks (typically double density). This parameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/M 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,5

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive single density system, which is compatible
with CP/M-80 Version 1.4, and upwardly compatible with CP/M-80
Version 2 implementations, is defined using the following
statements:

DISKS 4
DISKDEF 0,1,26,6,1024,243,64,64,2
DISKDEF 1

DISKDEF 2
DISKDEF 3

ENDEF

1
0
0
0

14
14
4
’

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with a skew of 6 between sequential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPH”s),
starting at the DPH table address DPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. In the
four drive standard system, for example, the DISKS statement
denerates a table of the form:

DPBASE EQU §$

DPEO DW XLT0,0000H,0000H,0000H,DIRBUF,DPBO,CSV0,ALVO
DPEl DW XLT0,0000H,0000H,0000H,DIRBUF,DPBO,CSV]1,ALV]1
DPE2 DW XLT0,0000H,0000H,0000H,DIRBUF,DPB0O,CSV2,ALV2
DPE3 DwW XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail
earlier in this section. The check and allocation vector addresses
are generated by the ENDEF statement for inclusion in the RAM area
following the BIOS code and tables.

All Information Presented Here is Proprietary to Digital Research

75

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DX =
0000H, and simply returns the original logical sector from CX in the
BX register. A translate table is constructed when the. skf
parameter is present, and the (non-zero) table address is placed
into the corresponding DPH”s. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is specified in
the DISKDEF statement call:

XLTO EQU OFFSET $
DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of operating system memory. The size of the
uninitialized RAM area is determined by EQU statements generated by
the ENDEF statement. For a standard four-drive system, the ENDEF
statement might produce

1C72 = BEGDAT EQU OFFSET $
(data areas)
1DBO = ENDDAT EQU OFFSET §
013C = DATSIZ EOU OFFSET S$-BEGDAT

which indicates that uninitialized RAM begins at offset 1C72H, ends
at 1DBOH-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file

by the $C parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive 4 (d=A,...,P) and
displays the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent

b: Records/ Block

s: Sectors/ Track

t: Reserved Tracks

All Information Presented Here is Proprietary to Digital Research

76

CP/M-86 System Guide 6.3 GENDEF Output

6.3 GENDEF Output

GENDEF produces a listing of the statements included in the DEF
file at the user console (CONTROL-P can be used to obtain a printed
listing, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The source errors produced by GENCMD are
listed in Table 6-7, followed by errors that can occur when
producing input and output files in Table 6-8.

Table 6-7. GENDEF Source Error Messages

Message Meaning

Bad Vval More than 16 disks defined in DISKS statement.

Convert Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-86.

Delimit Missing delimiter between parameters.

Duplic Duplicate definition for a disk drive.

Extra Extra parameters occur at the end of line.

Length Keyword or data item is too long.

Missing Parameter required in this position.

No Disk Referenced disk not previously defined.

No Stmt Statement keyword not recognized.

Numeric Number required in this position

Range Number in this position is out of range.

Too Few Not enough parameters provided.

Quote Missing end quote on current line.

All Information Presented Here is Proprietary to Digital Research

77

CP/M-86 System Guide 6.3 GENDEF Output

Table 6-8. GENDEF Input and Output Error Messages

Message Meaning

Cannot Close ".LIB" File LIB file close operation
unsuccessful, usually due
to hardware write protect.

"LIB" Disk Full No space for LIB file.

No Input File Present Specified DEF file not
found.

No ".LIB" Directory Space Cannot create LIB file due
to too many files on LIB
disk.

Premature End-of-File End of DEF file encountered
unexpectedly.

Given the file TWO.DEF containing the following statements
disks 2 |
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,58,,2048,1024,300,0,2
endef

the command
gencmd two Sc
produces the console output

DISKDEF Table Generator, Vers 1.0

1 DISKS 2

2 DISKDEF 0,1,58,,2048,256,128,128,2
3 DISKDEF 1,1,58,,2048,1024,300,0,2
4 ENDEF

No Error (s)

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86.

All Information Presented Here is Proprietary to Digital Research

78

CP/M-86 System Guide 6.3 GENDEF Output

: Sample Program Including TWO.LI
r
SELDSK:
0000 B9 03 00 MOV CX,0OFFSET DPBASE
= INCLUDE TWO.LIB
= H DISKS 2
= 0003 dpbase equ $;Base o
= 0003 32 00 00 0O dpe0 aw x1t0,0000h ;Transl
= 0007 00 00 00 0O dw 0000h,0000h ;Scratc
= 000B 5B 00 23 00 dw dirbuf ,dpb0 :Dir Bu
= 000 FB 00 DB 00 dw csv0,alv0 :Check,
= 0013 00 00 00 0O doel dw x1t1,0000h ;Transl
= 0017 00 00 00 0O dw 0000h,0000n ;Scratc
= 001B 5B 00 4C 00 dw dirbuf,dpbl ;Dir Bu
= 001F 98B 01 1B 01 dw csvl,alvl :Check,
= : DISKDEF 0,1,26,6,2048,2
= : NDisk 0 is CP/M 1.4 Single Densi
= : 4096: 128 Byvte Record Capacit
= : 512: Kilobyte Drive Capacit
= : 128: 32 Byte Directorv Entri
= ; 128: Checked NDirectory Entri
= : 256: Records / Extent
= : 16: Records / Block
= ; 26: Sectors / Track
= : 2: Reserved Tracks
= : 6: Sector Skew Factor
= 0023 dob0 equ offset $;Disk P
= 0023 1A 00 dw 26 -sSector
= 0025 04 db 4 :Block
= 0026 OF db 15 ;Block
= 0027 01 db 1 :Extnt
= 0028 FF 00 dw 255 ;Disk S
= 002A 7F 00 aw 127 sDirect
= 002C cCoO db 192 ;AllocO
= 002D 00 db 0 ;Allocl
= 002E 20 00 dw 32 ;Check
= 0030 02 00 dw 2 ;0ffset
= 0032 x1t0 equ offset §$:Transl
= 0032 01 07 OD 13 db 1,7,13,19
= 0036 19 05 0B 11 db 25,5,11,17
= 003A 17 03 09 OF db 23,3,9,15
= 003E 15 02 08 OE db 21,2,8,14
= 0042 14 1A 06 OC db 20,26,6,12
= 0046 12 18 04 0OA db 18,24,4,10
= 004A 10 16 db 16,22
= 0020 alsO equ 32 :Alloca
= 0020 css0 equ 32 ;Check

Disk 1 is CP/M 1.4 Single Densi
16384: 128 Byte Record Camacit

~e we wo wo

All Information Presented Here is Proprietary to Digital Research

79

CP/M-86 System Guide 6.3 GENDEF Outout

2048: Kilobyte Drive Capacit
300: 32 Byte Directory Entri
0: Checked Directory Entri
128: Records / Extent
16: Records / Block
58: Sectors / Track
2: Reserved Tracks

Qi~e ~e ~e ~o wo ~o ~e ~o

= 004cC pbl equ offset $;Disk P
= 004C 3A 00 dw 58 ;Sector
= 004E 04 db 4 _ :Block
= 004F OF db 15 :Block
= 0050 00 db 0 ;Extnt
= 0051 FF 03 dw 1023 ;Disk S
= 0053 2B 01 dw 299 :Direct
= 0055 F8 db 248 :AllocO
= 0056 00 db 0 ;Allocl
= 0057 00 00 dw 0 :Check
= 0059 02 00 dw 2 ;0ffset
= 0000 x1ltl equ 0 :No Tra
= 0080 alsl equ 128 :Alloca
= 0000 cssl equ 0 :Check
= : ENDEF

= : Uninitialized Scratch Memory Fo
= 005B begdat equ offset $;Start
= 005B dirbuf rs 128 :Direct
= 0O0DB alvO0 rs also sAlloc
= 00FB csv0 rs css0 :Check
= 011B alvl rs alsl :Alloc
= 019B csvl rs cssl :Check
= 0198 enddat equ offset $:Fnd of
= 0140 datsiz equ offset S$-begdat ;Size o
= 019B 00 db 0 :Marks

END

All Information Presented Here is Proprietary to Digital Research

80

Section 7
CP/M-86 Bootstrap and Adaptation Procedures

This section describes the components of the standard CP/M-86
distribution disk, the operation of each component, and the
procedures to follow in adapting CP/M-86 to non-standard hardware.

CP/M-86 is distributed on a single-density IBM compatible 8"
diskette using a file format which is compatible with all previous
CP/MM-80 operating systems. In particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette contains directory information which leads
to program and data files. CP/M-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. The operation of CP/M-86 on

this configuration serves as a model for other 8086 and 8088
environments, and is presented below. ‘

The principal components of the distribution system are listed
below:

® The 86/12 Bootstrap ROM (BOOT ROM)
® The Cold Start Loader (LLOADER)
® The CP/M-86 System (CPM.SYS)

When installed in the SBC 86/12, the BOOT ROM becomes a part of
the memory address space, beginning at byte location OFF000H, and
receives control when the system reset button is depressed. In a
non-standard environment, the BOOT ROM is revlaced by an equivalent
initial loader and, therefore, the ROM itself is not included with
CP/M-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the 1listing given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.A86. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass program control to the LOADER for execution.

7.1 The Cold Start Load Operation

The LOADER program is a simple version of CP/M-86 that contains
sufficient file processing capability to read CPM.SYS from the
system disk to memory. When LOADER completes its operation, the
CPM.SYS program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.SYS programs are preceded by the

standard CMD header record. The 128-bvte LOADER header record
contains the following single group descriptor.

All Information Presented Here is Proprietary to Digital Research

81

CP/M-86 System Guide 7.1 The Cold Start Load Operation

G-Form | G-Length A-Base G-Min G-Max
1 XXXXKXXXXX 0400 XXXXXXX XXXXXXX
8b 16b 16b 16b 16b

where G-Form = 1 denotes a code group, "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header). Note that since only a code
group is present, an 8080 memory model is assumed. Further,
although the A-Base defines the base paragravh address for LOADER
(byte address 04000H), the LOADER can, in fact be 1loaded and

executed at any paragraph boundary that does not overlap CP/M-86 or
the BOOT ROM.

The LOADER itself consists of three parts: the Load CPM
program (LDCPM), the Loader Basic Disk System (LDBDOS), and the
Loader Basic I/0 System (LDBIOS). Although the LOADER is setup to
initialize CP/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points described in a previous section for BIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

Go#1 O ////////7//7/

CsS DS ES SS 0000H: JMP 1200H

(LDCPM)

JMPF CPM

0400H:
(LDBDOS)

1200H: JMP INIT

JMP SETIOB

INIT: .. JMP 0003H

(LDBIOS)

1700H:

Figure 7-1. LOADER Organization

'All Information Presented Here is Proprietary to Digital Research

82

CP/M-86 System Guide 7.1 The Cold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GD#1 is the Grouv Descriptor for the LOADER code group
described above, followed immediately by a "0" group terminator.
The entire LOADER program is read by the BOOT ROM, excluding the
header record, starting at byte location 04000H as given by the A-
Field. Upon completion of the read, the BOOT ROM passes control to
location 04000H where the LOADER program commences execution. The
JMP 1200H instruction at the base of LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.SYS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

The files LDCPM.H86 and LNBDOS.H86 are included with CP/M-86 so
that you can append your own modified LDBIOS in the construction of
a customized loader. In fact, BIONS.A86 contains a conditional
assembly switch, called "loader_bios,"” which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of TDBIOS is
listed in Appendix C for reference purposes. To construct a custom
LDBIOS, modify your standard BIOS to start the code at offset 1200H,
and change your initialization subroutine beginning at INIT to
perform disk and device initialization. Include a JMP to offset
0003H at the end of your INIT subroutine. TUse ASM-86 to assemble
your LDBIOS.A86 program:

ASM86 LNDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three
LOADER modules using PIP:

PIP LOADER.H86=LDCPM.H86,LDBNOS.H86,LDBIOS.H86

to produce the machine code file for the LOADER program. Although
the standard LOADER program ends at offset 1700H, vour modified
LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap

CP/M-86 areas. Generate the command (CMD) file for TLOADER using the
GENCMD utilitys

GENCMD LOADER 8080 CODE([A400]

resulting in the file LOADER.CMD with a header record defining the
8080 Memory Model with an absolute varagraph address of 400H, or
byte address 4000H. Use DDT to read LOADER.CMD to location 900H in
your 8080 system. Then use the 8080 utility SYSGEN to copy the
loader to the first two tracks of a disk.

All Information Presented Here is Proprietary to Digital Research

83

CP/M-86 System Guide 7.1 The Cold Start Load Operation

A>DDT

-ILOADER.CMD

-R800

_"c

A>SYSGEN

SOURCE DRIVE NAME (or return to skip) <cr>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86 system,
the command

LDCOPY LOADER

copies LOADER to the system tracks. You now have a diskette with a
LOADER program which incerporates your custom LDBIOS capable of
reading the CPM.SYS file into memory. For standardization, we
assume LOADER executes at location 4000H. LOADER is statically
relocatable, however, and its operating address is determined only
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. The boot operation is usually
accomplished in one of two ways. First, you can program your own
ROM (or PROM) to perform a function similar to the BOOT ROM when
your computer”s reset button is pushed. As an alternative, most
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so you”“ll need to
be familiar with the operating environment.

7.2 Organization of CPM.SYS
The CPM.SYS file, read by the LOADER program, consists of the

CCP, BDOS, and BIOS in CMD file format, with a 128-byte header
record similar to the LOADER program:

G-Form | G-Length A-Base G-Min G-Max
1 KXXXXXKXXX 040 XXXXXXX XXXXXXX

8b 16b 16b 16b 16b
where, instead, the A-Base loéd address is paragraph 040H, or byte

address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.SYS file appears on disk as shown in Figure 7-2.

All Information Presented Here is Proprietary to Digital Research

84

CP/M-86 System Guide 7.2 Organization of CPM.SYS

Go#110(/////////////

(0040:0) CS DS ES SS 0000H:

(CCP and BDOS)

(0040:) 2500H: | JMP INIT
JMP SETIOB
(BIOS)

INIT: .. JMP 000OH

(0040:) 2A00H:

Figure 7-2. CPM.SYS File Organization

where GD#1 is the Group Descriptor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
in Appendix D, with an "include" statement that reads the
SINGLES.LIB file containing the disk definition tables. The

SINGLES.LIB file is created by GENDEF using the SINGLES.DEF
statements shown below:

disks 2

diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0

endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H), and control is passed
to the INIT entry point at offset address 2500H. Any additional
initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP 0000H to begin
execution of the CCP. The actual load address of CPM.SYS is
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. Note that the region occupied by the operating system must
be excluded from the BIOS memory region table.

Similar to the LOADER program, you can modify the BIOS by
altering either the BIOS.A86 or skeletal CBIOS.A86 assembly language
files which are included on your source disk. In either case,
create a customized BIOS which includes your specialized I/0
drivers, and assemble using ASM-86:

ASM86 BIOS

to produce the file BIOS.H86 containing your BIOS machine code.

All Information Presented Here is Proprietary to Digital Research

85

CP/M-86 System Guide 7.2 Organization of CPM.SYS

Concatenate this new BIOS to the CPM.H86 file on your distribution
disk:

PIP CPMX.H86 = CPM.H86,BIOS.H86

The resulting CPMX hex file is then converted to CMD file format by
executing

GENCMD CPMX 8080 CODE[A40]

in order to produce the CMD memory imege with A-Base = 40H.
Finally, rename the CPMX file using the command

REN CPM.SYS = CPMX.CMD

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT ROM by either your
own customized BOOT ROM, or a one-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, into memory at
byte location 04000H. The LOADER program, in turn, reads the
CPM.SYS file, with your custom BIOS, into memory at byte location
0400H. Control transfers to CP/M-86, and you are up and operating.
CP/M-86 remains in memory until the next cold start operation takes
place.

You can avoid the two-step boot operation if you construct a
non-stendard disk with sufficient space to hold the entire CPM.SYS
file on the system tracks. 1In this case, the cold start brings the
CP/M-86 memory image into memory at the location given by A-Base,
and control transfers to the INIT entry point at offset 2500H.
Thus, the intermediate LOADER program is eliminated entirely,
although the initialization found in the LDBIOS must, of course,
take place instead within the BIOS.

Since ASM-86, GENCMD and GENDEF are provided in both COM and
CMD formats, either CP/M-80 or CP/M-86 can be used to aid the
customizing process. If CP/M-80 or CP/M-86 is not available, but
you have minimal editing and debugging tools, you can write
specialized disk I/0 routines to read and write the system tracks,
as well as the CPM.SYS file.

The two system tracks are simple to access, but the CPM.SYS
file is somewhat more difficult to read. CPM.SYS is the first file
on the disk and thus it appears immediately following the directory
on the diskette. The directory begins on the third track, and
occupies the first sixteen logical sectors of the diskette, while
the CPM.SYS is found starting at the seventeenth sector. Sectors
are "skewed" by a factor of six beginning with the directory track
(the system tracks are sequential), so that you must load every
sixth sector in reading the CPM.SYS file. Clearly, it is worth the
time and effort to use an existing CP/M system to aid the conversion
process.

All Information Presented Here is Proprietary to Digital Research

86

Appendix A
Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M-86 BDOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is
a multiple of the basic 128-byte unit. This appendix presents a
general-purpose algorithm that can be included within your BIOS and
that uses the BDOS information to verform the operations
automatically.

Upon each call to WRITE, the BDOS provides the following
information in register CL:

normal sector write
write to directory sector
write to the first sector
of a new data block

0
1
2

wonu

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when
the write is to other than the first sector of an unallocated block,
or when the write is not into the directorv area. Condition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a newly allocated data
block is written. In most cases, application programs read or write
multiple 128-byte sectors in sequence, and thus there is little
overhead involved in either operation when blocking and deblocking
records since pre-read operations can be avoided when writing
records.

This appendix lists the blocking and deblocking algorithm in
skeletal form (the file is included on your CP/M-86 disk).
Generally, the algorithms map all CP/M sector read operations onto
the host disk through an intermediate buffer which is the size of
the host disk sector. Throughout the program, values and variables
which relate to the CP/M sector involved in a seek operation are
prefixed by "sek," while those related to the host disk system are
prefixed by "hst." The equate statements beginning on line 24 of
Appendix F define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved.

The SELDSK entry point clears the host buffer flag whenever a
new disk is logged-in. Note that although the SELDSK entry point
computes and returns the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected later
at READHST or WRITEHST). Further, SETTRK, SETSEC, and SETDMA simply
store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

All Information Presented Here is Proprietary to Digital Research

87

CP/M-86 SYstem Guide ‘Appendix A Blocking and Deblocking

The principal entrvy points are READ and WRITE. These

subroutines take the place of your oprevious READ and WRITE
operations. '

The actual physical read or write takes place at either
WRITEHST or REANHST, where all values have been prevared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which mav require translation to a physical
sector number). You must insert code at this point which performs
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. All other mapping functions are performed
by the algorithms. :

;*** ’
f;* ’

i* Sector Blocking / Deblocking

*
*
*
+* This algorithm is a direct translation of the *
:* CP/M-80 Version, and is included here for refer- *
+* ence purposes only. The file DEBLOCK.LIB is in- *
:1* cluded on your CP/M-86 disk, and should be used *
;* for actual avplications. You may wish to contact *
:* Digital Research for notices of updates. *
' *

*

ekkkkkkkkkkhkhkkhkhkhhhkhkhkkkkhhhkhkhkhkkkkhkhhkhkkhkhkkkkhkkkkkk

1l:

2:

3:

4:

5:

6:

7:

8:

9:

0:

1l:

2: ;

3: ;

4: ;***
5: ;* ; ' ' *
6: ;* CP/M to host disk constants *
T: ;% ' *
8: ;* (This example is setup for CP/M block size of 16K *
9: ;* with a host sector size of 512 bvtes, and 12 sec- *
0: ;* tors per track. Blksiz, hstsiz, hstspt, hstblk *
1: ;* and secshf may change for different hardware.) *
2: ;***
3: una equ byte ptr [BX] :sname for byte at BX
4: . '

5: blksiz equ 16384 ;CP/M allocation size
6: hstsiz equ 512 shost disk sector size
7: hstspt equ 12 shost disk sectors/trk
8: hstblk equ hstsiz/128 :CP/M sects/host buff
9: '

0: ;***
l: ;* : *
2: ;* secshf is log2(hstblk), and is listed below for *
3: ;* values of hstsiz up to 2048. ' *
4. :* . : *
5: ;* hstsiz hstblk secshf *
6: ;* 256 2 1 *
T: 3% 512 4 2 *
8: ;* 1024 8 3 *
9: ;* 2048 , 16 4 *
0: ;* . . *

BWWWWWWWWWWNNNRNONNDNNDNE R

o
—~
=t

'Information Presented Here is Proprietary to Digital Research

88

CP/M-86 System Guide Appendix A Blocking and Deblocking

41: ;***

42: secshf equ 2 1 log2 (hstblk)

43: cpmspt equ hstblk * hstspt ;CP/M sectors/track
44: secmsk equ hstblk-1 :sector mask

45: ;

46: ;***
47: ;* *
48: ;* BDOS constants on entry to write *
49: ;* : *
50: ;***
51: wrall equ 0 ;write to allocated
52: wrdir equ 1 ;jwrite to directory
53: wrual equ 2 ;jwrite to unallocated
54: ;

585 ;***
56: ;* : *
57: ;* The BIOS entry points given below show the *
58: ;* code which is relevant to deblocking only. *
59: ;* *

60z srhkkkkkhkhhhhhhdhdhhhhhhddhhhhhhhhdddhhhhhhhddhhhhhhddddd
61l: seldsk:

62: tselect disk

63: :is this the first activation of the drive?
64: test DL,1 :1sb = 0?

65: jnz selset

66 sthis is the first activation, clear host buff
67: mov hstact,0

68: mov unacnt,0

69: selset:

70¢ mov al,cl ! cbw sput in AX

71: mov sekdsk,al ;seek disk number
72: mov cl,4 ! shl al,cl ;times 16

73: add ax,offset dpbase

74: mov bx,ax

75 ret

76: ;

77: home:

78 shome the selected disk

79: mov al,hstwrt :check for pending write
80: test al,al

81: jnz homed »
82: mov hstact,0 ;clear host active flag
83: homed:

84: mov c¢x,0 snow, set track zero
85: (continue HOME routine)

86: ret

87: ;

88: settrk:

89: ;set track given by registers CX

90: mov sektrk,CX ttrack to seek

91: ret

92: ;

93: setsec:

94: :1set sector given by register cl

95: mov seksec,cl :sector to seek

All Information Presented Here is Proprietary to Digital Research

89

CP/M-86 System Guide Appendix A Blocking and Deblocking

96: ret
97: ;
98: setdma:
99. ;set dma address given by CX
100: mov dma off,CX
101: ret -
102: ;
103: setdmab:
104: ;set segment address given by CX
105: mov dma_seg,CX
106: ret
107: ;
108: sectran: ,
109: ;translate sector number CX with table at [DX]
110: test DX,DX stest for hard skewed
111: jz notran : (blocked must be hard skewed)
112: mov BX,CX
113: add BX,DX
114: mov BL, [BX]
115: ret '
116: no_tran:
117: +hard skewed disk, physical = logical sector
118: mov BX,CX
119: ret
120: ;
121: read:
122: :read the selected CP/M sector
123: mov unacnt,0 sclear unallocated counter
124: mov readop,l sread operation
125: mov rsflag,l ;must read data
126: mov wrtype,wrual streat as unalloc
127: jmp rwoper ;to perform the read
128: ;
129: write:
130: iwrite the selected CP/M sector
131: mov readop,0 iwrite overation
132: mov wrtype,cl
133: cmp cl,wrual :write unallocated?
134: jnz chkuna :check for unalloc
135: ;
136: write to unallocated, set parameters
137: ;
138: mov unacnt, (blksiz/128) ;:;next unalloc recs
139: mov al,sekdsk ;disk to seek
140: mov unadsk,al sunadsk = sekdsk
141: mov ax,sektrk
142 mov unatrk,ax sunatrk = sektrk
143: mov al,seksec
144: mov unasec,al sunasec = seksec
145: ;
146: chkuna:
147: scheck for write to unallocated sector
148: ;
149: mov bx,offset unacnt ;point "UNA" at UNACNT
150: mov al,una ! test al,al ;any unalloc remain?

All Information Presented Here is Proprietary to Digital Research

90

CP/M-86 System Guide Appendix A Blocking and Deblocking

151: iz alloc ;skip if not

152: ;

153: ; more unallocated records remain

154: dec al suhacnt = unacnt-1l

155: mov una,al

156: mov al,sekdsk ;same disk?

157: mov BX,offset unadsk

158: cmp al,una ;sekdsk = unadsk?

159: inz alloc :skip if not

160: ;

161: disks are the same

162: mov AX, unatrk

163: cmp AX, sektrk

164: inz alloc ‘ :skip if not

165: ;

166: ; tracks are the same

167: mov al,seksec :same sector?

168: ;

169: mov BX,offset unasec ;point una at unasec

170: ;

171: cmp al,una ;seksec = unasec?

172: jnz alloc ;skip if not

173:

174: ; match, move to next sector for future ref

175: inc una ;unasec = unasec+l

176: mov al ,una ;end of track?

177: cmp al,cpmspt ;count CP/M sectors

178 ib noovf ;skip if below

179: ;

180: ; overflow to next track

181: mov una,0 sunasec = 0

182: inc unatrk sunatrk=unatrk+1l

183: ;

184: noovf:

185: smatch found, mark as unnecessarvy read

186: mov rsflag,0 ;rsflag = 0

187: jmps rwoper ;to perform the write

188: ;

189: alloc:

190: snot an unallocated record, requires pre-read

191: mov unacnt,0 sunacnt = 0

192: mov rsflag,l srsflag = 1

193: ;drop through to rwoper

194, ;

195: ;***

196: ;* *

197: ;* Common code for READ and WRITE follows *
8: ;* *

igg: ;***

200: rwoper:

201: ;jenter here to perform the read/write

202: mov erflag,0 ;no errors (yet)

203: mov al, seksec ;jcompute host sector

204: mov cl, secshf

205: shr al,cl

All Information Presented Here is Proprietary to Digital Research

91

CP/M-86 System Guide Appendix A Blocking and Deblocking

206:
207:
208
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242
243:
244:
245:
246:
247:
248 :
249:
250
251:
252:
253:
254:
255:
256:
257
258:
259:
260:

All

mov sekhst,al thost sector to seek

~e weo

active host sector?

mov al,l

xchg al,hstact ;always becomes 1
test al,al ;was it already?
jz filhst :£111 host if not

- ws

host buffer active, same as seek buffer?
mov al,sekdsk

cmp al,hstdsk :sekdsk = hstdsk?
inz nomatch

~e e

same disk, same track?

mov ax,hsttrk

cmp ax,sektrk shost track same as seek track
jnz nomatch

“e wo

same disk, same track, same buffer?

mov al,sekhst

cmp al,hstsec :sekhst = hstsec?
jz match ;skip if match
nomatch: :
sproper disk, but not correct sector
mov al, hstwrt

test al,al ;"dirty" buffer ?
jz filhst :no, don“t need to write
call writehst ;ves, clear host buff
: (check errors here)
filhst:
;smay have to f£ill the host buffer
mov al,sekdsk ! mov hstdsk,al
mov ax,sektrk ! mov hsttrk,ax
mov al,sekhst ! mov hstsec,al
mov al,rsflag
test al,al sneed to read?
jz filhstl
call readhst : ;ves, if 1
: (check errors here)
filhstl:
mov hstwrt,0 :no pending write.
match:
;copy data to or from buffer depending on "readop"
mov al,seksec smask buffer number
and ax,secmsk ;least signif bits are masked

mov ¢cl, 7 ! shl ax,cl :shift left 7 (* 128 = 2%*7)

ax has relative host buffer offset

e we “wo

add ax,offset hstbuf ;ax has buffer address
mov si,ax sput in source index register

Information Presented Here is Proprietary to Digital Research

92

CP/M-86 System Guide

261:
262:
263:
264:
265:
266
267:
268:
269:
270:
271:
272:
273:
274:
275:
276
277
278:
279:
280:
281:
282
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:

298:

299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:

All

-

~e

~e o

rwmove:

we ~o

~e we

Appendix A Blocking and Deblocking

mov di,dma_off suser buffer is dest if readop
push DS ! push ES :1save segment registers
mov ES,dma_seg :1set destseg to the users seq

:SI/DI and DS/ES is swapped
;1f write op

mov cx,128/2 ;length of move in words
mov al,readop

test al,al ;which way?

inz rwmove :skip if read

write overation, mark and switch direction

mov hstwrt,l shstwrt = 1 (dirty buffer now)
xchg si,di ssource/dest index swap

mov ax,NnS

mov ES,ax

mov DS,dma_seg :setup NDS,ES for write
cld ! rep movs AX,AX smove as 16 bit words
pop ES ! pop DS ;restore segment registers

data has been moved to/from host buffer

cmp wrtype,wrdir iwrite type to directory?
mov al,erflag :in case of errors
jnz return_rw :no further processing

clear host buffer for directory write

test al,al 1errors?
jnz return_rw :skip if so
mov hstwrt,0 sbuffer written

call writehst
mov al,erflag

return_rw:

ret
;***
%k *
[
:* WRITEHST performs the physical write to the host *
:* disk, while READHST reads the physical disk. *

ok
’

*

;***
writehst:

readhst:

Qi ~e ~8 ~e w6 ~o ~o

o)
o
V)]
0]
(]

*
*
* Use the GENDEF utilitv to create disk def tables *
*
*

ret

ret

khkhkhkkkhkkkkhkhkkhkkkkhkkkkhkkkhkkhkhkhhkhkkhkhkhkkkdkkhkkkkkkikk

*

*

khkkhkhkhkkkhkkhkkkkhkhkkhhhkhkhkkkkhhkkhkhkkkkkkkkkkkkkkhhkkkkhk

equ offset $

Information Presented Here is Proprietary to Digital Research

93

CP/M-86 System Guide Appendix A Blocking and Deblocking

316: ; disk varameter tables go here

317: ;

318: ;***
319: ;* , *
320: ;* Uninitialized RAM areas follow, including the *
321: ;* areas created by the GENDEF utility listed above. *
322: ;* *

323: ;***

324: sek_dsk rb 1 :seek disk number
325: sek_trk rw 1 :seek track number
326: sek_sec rb 1 ;seek sector number
327: ;

328: hst_dsk rb 1 shost disk number
329: hst_trk rw 1 shost track number
330: hst_sec rb 1 shost sector number
331: ;

332: sek_hst rb 1 ;seek shr secshf
333: hst_act rb 1 shost active flag
334: hst wrt rb 1 shost written flag
335: ;

336: una_cnt rb 1 sunalloc rec cnt
337: una dsk rb 1 slast unalloc disk
338: una_trk rw 1 ;last unalloc track
339: una_sec rb 1 ;last unalloc sector
340: ;

341: erflag rb 1 ;error reporting
342: rsflag rb 1 :read sector flag
343: readop rb 1 11 if read operation
344: wrtype rb 1 swrite operation type
345: dma_seg rw 1 :last dma segment
346: dma_off rw 1 :last dma offset
347: hstbuf rb hstsiz :host buffer

348: end

All Information Presented Here is Proprietary to Digital Research

94

Appendix B
Sample Random Access Program

This appendix contains a rather extensive and complete example
of random access operation. The program listed here performs the
simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.CMD, the CCP level
command :

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt
the console for inout. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nwW nR 0

where n is an integer value in the range 0 to 65535, and W, R, and O
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed
by a carriage return. RANDOM then writes the character string into
the X.DAT file at record n. If the R command is issued, RANDOM
reads record number n and displays the string value at the console.
If the Q command is issued, the X.DAT file is closed, and the
program returns to the console command processor. The only error
message 1is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label "ready" where the individual commands are interpreted.
The default file control block at offset 005CH and the default
buffer at offset 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line
processor, called "readc." This particular program shows the
elements of random access processing, and can be used as the basis
for further program development. In fact, with some work, this
program could evolve into a simple data base management svstem.

All Information Presented Here is Proprietary to Digital Research

95

CP/M-86 System Guide Appendix B Sample Random Access Program

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A orogram,
called GETKEY, could be developed which first reads a sequential
file and extracts a svecific field defined by the operator. For
example, the command .

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memorv consisting
of each particular TLASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list, and writes a new file, called LASTNAME.KREY, which is an
alphabetical list of LASTNAME fields with their corresponding record
numbers. (This list is called an “1nverted index"™ in information
retrieval parlance.)

Rename the program shown above as QUERY, and enhance it a bit
so that it reads a sorted key file into memory. The command line
might appear as: :

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, vyou can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the llst, you examine the entry halfway in between and, if
next search. You”ll qu1ck1y reach the 1tem you“re 1ook1nq for (1n
log2(n) steps) where you”ll find the corresponding record number.
Fetch and display this record at the console, 1ust as we have done
in the program shown above.

At this point you’re just getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an
AGE 1less than 45. Display all the records which fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

"All Information Presented Here is Proprietary to Digital Research

96

CP/M-86 System Guide

HFOWONAUIHGWNHFOWOWOIOAUTIEWN -

80 06 00 00 00 00 00 00 20 00 00 60 0% 00 00 08 0 00 PO 0 o0

NN =

NN
VW
e se oo oo

[\S IS
~N O

28:
29:

45:

50:
51:

53:

54:
55:

All

@ WO WO N WO N WE “e o

coninp equ
conout equ
pstring equ
rstring equ
version equ
openf equ
closef equ
makef equ
readr equ

writer equ

;

: Equates for
cr equ

1f equ

e we we w»

cseg
pushf
pop
cli
mov
mov
mov
push
popf

we we we we we

mov
call
cmp
jnb
mov
call

jmp

r

versok:

H correct
mov
mov
call

BDOS Functions

1
2
9
10
12

- 15

16
22

33

34

non g
0dh
0ah

ax

bx,ds
ss,bx
sp,of
ax

cl,ve
bdos
al, 20

Appendix B Random Access Sample Program

khhkkhhkhkdkkhhkkhkkkdkkhhkkhkhhkhkhkhkkhhkhkhhkhkhkhkkhkkhkhkkkkkkkkkk
* *
* Sample Random Access Program for CP/M-86 *
* *
*

Je Je & Je do e K de de ek e de de de de de de K de de ke de de de Je K de K de e ke g Je e Kk de Kk ke de Kk Kk Kk ke dek ok ke k

;console input function
;console output function
;print string until “s$”
:read console buffer
sreturn version number
;file open function
sclose function

:make file function
sread random

:write random

raphic characters
;carriage return
:line feed

load SP, ready file for random access

:spush flags in CCP stack

;save flags in AX

;1disable interrupts

:1set SS register to base

;set SS, SP with interru
fset stack for 80888

srestore the flags

CP/M-86 initial release returns the file
system version number of 2.2: check is
shown below for illustration purposes.

rsion

h ;version 2.0 or later?

versok

bad v
dx,of
print

- abort

versi

ersion, message and go back
fset bhadver

on for random access

cl,openf ;open default fct

dx,of
bdos

fset fcb

Information Presented Here is Proprietary to Digital Research

97

CP/M-86 System Guide

56: inc

57: jnz

58:

59: ;

60: mov

61l: mov

62: call

63: inc

64: inz

65: ; N
66: cannot c¢
67: mov

68: call

69: jmp

70: ;

71: ; loop back to
72:

73: ready:

74: ; file is
75: ;

76 call

77 mov

78: mov

79: cmp

80: inz

8l: ;

82: ; quit pro
83: mov

84: mov

85: call

86 inc

87: jz

88: jmps

89: ;

90:

91: ; end of quit c
92:

93: ;

94: notq:

95: ; not the
96 cmp

97: inz

98: ;

99: ; this is
100: mov
101: call
102: mov
103: mov
104: rloop: ;read ne
105: push
106: push
107: call
108: pop

109: pop

110: cmp

All Information Pres

Appendix B Random Access Sample Program

al
ready

serr 255 becomes zero

cannot open file, so create it

cl ,makef
dx,offset fcb
bdos

al

ready

serr 255 becomes zero

reate file, directory full
dx,offset nospace

print
abort ;back to ccp

"ready" after each command

ready for processing

readcom ;:read next command
ranrec,dx ;store input record#
ranovf,0h ;clear high byte if set
al,”o” squit?

notq

cessing, close file
cl,closef
dx,offset fcb

bdos

al serr 255 becomes 0
error ;error message, retry
abort :back to ccp

ommand, process write

quit command, random write?
al,’w”

notw

a random write, fill buffer until cr
dx,offset datmsg

print ;data prompt

cx,127 ;up to 127 characters
bx,offset buff ;destination

xt character to buff

cx ;save loop conntrol
bx snext destination
getchr ;character to AL

bx srestore destination
CcX srestore counter
al,cr send of line?

ented Here is Proprietary to Digital Research

98

CP/M~-86 System Guide Appendix B Random Access Sample Program

111: jz erloop

112: ; not end, store character

113: mov byte ptr [bx],al

114; inc bx shext to fill
115: loop rloop ;decrement cx ..loop if
116: erloop:

117: ; end of read loop, store 00

118: mov byte ptr [bx],0h

119: ;

120: ; write the record to selected record number
121: mov cl,writer

122: mov dx,offset fcb

123: call bdos

124: or al,al serror code zero?
125: iz ready :for another record

126: imps error smessage if not

127: ;

128: ;

129 ;

130: ; end of write command, process read

131: ;

132: ;

133: notw:

134: ; not a write command, read record?

135: cmp al,”r”

136: iz ranread

137: jmps error ;skip if not

138: ;

139: ; read random record

140: ranread:

141: mov cl,readr

142: mov dx,offset fcb

143: call bdos

144.: or al,al sreturn code 00?
145: jz readok

146: jmps error

147: ;

148: ; read was successful, write to console
149: readok:

150: call crlf snew line

151: mov cx,128 ;max 128 characters
152: mov si,offset buff ;next to get

153: wloop:

154; lods al :next character
155 and al,07th ;mask parity

156: inz wloopl

157 - jmp ready ; for another command if
158: wloopl:

159: push cxX ;save counter
160: push si :save next to get
161: cmp al,” - sgraphic?

162: ib skipw :skip output if not grap
163: call putchr soutput character
164: skipw:

165: pop si

All Information Presented Here is Proprietary to Digital Research

99

CP/M-86 System Guide Aprendix B Random Access Sample Program

166 pop cx ,

167: loop wloop ;decrement CX and check
168: imp ready

169: ;

170:

171: ; end of read command, all errors end-up here
172: ; :

173:

174: error:

175: mov dx,offset errmsg

176: call print

177: jmp ready

178: ;

179: ; BDOS entry subroutine

180: bdos:

181: int 224 sentry to BDOS if by INT
182: ret

183: ;

184: abort: ;return to CCP
185: mov cl,0

186: call bdos ;suse function 0 to end e
187: ;

188: ; utility subroutines for console i/o

189: ;

190: getchr:

191: ;read next console character to a

192: mov ¢l ,coninp

193: call bdos

194: ret

195: ;

196: putchr:

197: iwrite character from a to console

198: mov cl,conout

199: mov dl,al ;character to send
200: call bdos 1send character
201: ret

202: ;

203: crlf:

204: ;send carriage return line feed

205 mov al,cr scarriage return
206: call putchr

207: mov al,lf s1line feed

208: call putchr

209: ret

210: ;

211: print:

212: ;print the buffer addressed by dx until $
213: push dx

214: call crlf

215: pop dx snew line

216: mov cl,pstring

217: call bdos ;print the string
218: ret

219: ;

220: readcom:

All Information Presented Here is Proprietary to Digital Research

100

CP/M-86 System Guide

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236
237:
238:
239:
240:
241 :
242
243:
244:
245;
246:
247:
248:
249:
250:
251:
252
253:
254:
255
256
257
258:
259
260:
261:
262:
263:
264:
265:
266
267:
268:
269:
270:
271:
272:
273:
274:
275:

All

Appendix B Random Access Sample Program

s;read the next command line to the conbuf

mov dx ,offset promot

call print ;command?

mov cl,rstring

mov dx,offset conbuf

call bdos sread command line

H command line is present, scan it
mov ax,0 :sstart with 0000
mov bx ,0ffset conlin

readc: mov dl, [bx] snext command character
inc bx ;to0 next command positio
mov dh,0 :zero high byte for add
or d1,4d1 scheck for end of comman
inz getnum
ret

: not zero, numeric?

getnum:
sub da1r,“o0”
cmp d1,10 scarry if numeric
inb endrd
mov cl,l0
mul cl smultipy accumulator by
add ax,qdx 1+digit
jmps readc : for another char

endrd:

: end of read, restore value in a and return value
mov dx,ax sreturn value in DX
mov al,-1[bx]
cmp al,”a” scheck for lower case
jnb transl
ret

transl: and al,5fH ;translate to upper case
ret

~e Ne we N “e

Template for Page 0 of Data Group
Contains default FCB and DMA buffer

;default file control bl
srandom record position

shigh order (overflow) b
;default DMA buffer

; string data area for console messages

dseg

org 05ch
fcb rb 33
ranrec rw 1
ranovE rb 1l
buff rb 128
badver db
nospace db
datmsg db
errmsg db
prompt db

w8 N we “e

“sorry, you need cp/m version 2$°
“no directory space$”
“type data: $~°

- ‘error, try again.$”

“next command? $°

fixed and variable data area

Information Presented Here is Proprietarv to Digital Research

101

CP/M-86 System Guide Appendix B Random Access Sample Program

276: conbuf
277: consiz
278: conlin
279: conlen
280: ;

281:

282: stack
283:

284:

db
rs
rs
equ

rs
rb
db
end

conlen ;length of console buffer

1 sresulting size after read
32 :length 32 buffer
offset $ - offset consiz

31 :16 level stack

1

0 ;end byte for GENCMD

All Information Presented Here is Proprietary to Digital Research

102

Appendix C
Listing of the Boot ROM

thkkkhdhkkhhhhhhhkhkhkhkkkhkhhkhkikhkkhkhkkkhkhkhkkkhkhkhhkkkhkkhkkkk

*
this is the original BOOT ROM distributed with CP/M *
or the SBC 86/12 and 204 Controller. The listing *
ls truncated on the right, but can be reproduced by *
assembling ROM.A86 from the distribution disk. Note *
that the distributed source file should always be *
referenced for the latest version *

*

*

kkkhkkhkhhkhhkhhkhhkhkhhkkhkhkkkrhhkhkhhkhhhhhhkhkhhhhkkhkhhhkhdkddk

ROM bootstrap for CP/M-86 on an iSBC86/12
with the
Intel SBC 204 Floppy Disk Controller

Copvright (C) 1980,1981
Digital Research, Inc.

Box 579, Pacific Grove

California, 93950

khkkkkkkkkhhhkhhhhhkkhhkhhhkkhkhhkkhhhhhkkkkkkk

*

* This is the BOOT ROM which is initiated *
* by a system reset. First, the ROM moves *
* a copy of its data area to RAM at loca- *
* tion 00000H, then initializes the segment*
* registers and the stack pointer. The *
* various peripheral interface chips on the*
* SBC 86/12 are initialized. The 8251 *
* serial interface is configured for a 9600%
* baud asynchronous terminal, and the in-
* terrupt controller is setup for inter-

* rupts 10H-17H (vectors at 00040H-0005FH)
* and edge-triggered auto-ROI (end of in-
* terrupt) mode with all interrupt levels
* masked-off. Next, the SBC 204 Diskette
* controller is initialized, and track 1

* gsector 1 is read to determine the target
* paragraph address for LOADER. Finally,
* the LOADER on track 0 sectors 2-26 and

* track 1 sectors 1-26 is read into the

* target address. Control then transfers
* to LOADER. This program resides in two
* 2716 EPROM“s (2K each) at location

* OFFO000H on the SBC 86/12 CPU board. ROM *
* 0 contains the even memory locations, and¥
* ROM 1 contains the odd addresses. BOOT *
* ROM uses RAM between 00000H and O00OOFFH *
* (absolute) for a scratch area, along with*
*
*

the sector 1 buffer. *
khkkhkhkkhkkhkhkhkhkkkkhkhkhkhkkhkhhkhhkhkhkhkhhkkkkkhkhkkkk

* k F F ok % % % % % * ¥ ¥ %

NG NG WO WO NS WG WG NG NG NG WO WO NG NS WG NG WO WO WE NG NG NE NS WE WG WS W NG WS Ne WO NE NG We Np WS WS NG wp wO

All Information Presented Here is Proprietary to Digital Research

103

CP/M-86 System Guide

Appendix C Listing of the BOOT ROM

00FF true . equ 0ffh v
FFO00 false equ not true
OOFF debug equ true
;debug = true indicates bootstraop is in same roms
;with SBC 957 "Execution Vehicle" monitor
sat FEOO:0 instead of FF00:0
000D cr equ 13
000 1f equ 10
: disk ports and commands
00A0 base204 equ 0alOh
00Aa0 fdccom equ base204+0
00a0 fdcstat equ base204+0
00al fdcparm equ base204+1
0oal fdcrslt equ base204+1
110): W fdcrst equ base204+2
00a4 dmacadr equ base204+4
00AS5 dmaccont equ base204+5
00A6 dmacscan equ base204+6
ooa7 dmacsadr equ base204+7
00A8 dmacmode equ base204+8
00a8 dmacstat equ base204+8
00A9 fdcsel equ base204+9
00aA fdcsegment equ base204+10
ooAar reset204 equ base204+15
;actual console baud rate
2580 baud rate equ 9600
;jvalue for 8253 baud counter
0008 baud equ 768/ (baud_rate/100)
oonAa csts equ ODAQ ;18251 status port
00D8 cdata equ 0n8h : " data port
I
00D0 tch0 equ 0noh :8253 PIC channel 0
00D2 tchl equ tch0+2 ;ch 1 port
00D4 tch2 equ tch0+4 ;ch 2 port
00D6 temd equ tchO+6 ;8253 command port
00cCo icpl equ 0COh :8259a port O
00c2 icp2 equ 0C2h :18259a port 1
IF NOT DEBUG
ROMSEG EQU OFFO0H ;normal
ENDIF '
IF DEBUG :share prom with SB
FEOO ROMSEG EQU OFEOOQOH
' ENDIF

~e wO

All Information Presented Here is Proprietary

104

to Digital Research

CP/M-86 System

FEOO

)00
)02
)04
)07
Joa
00D
OOF
012

014
017
019
01lB
01E

8CCs8
8EDS8
BE3F01
BF0002
B80000
8ECO
B9E600
F3A4

B8000O
8EDS8
8EDO
BC2A03
FC

001F BO13
0021 E6CO

0023

BO10

Guide

This long Jjump

: cseg Offffh
: JMPF BOTTOM
: EA 00 00 00 FF
7
: EVEN PROM
: 778 - EA
H 779 - 00
: 7FA - FF

cseq romseg

e wo e

mov ax,cs
mov ds,ax

mov SI,drombegin

Appendix

C Listing of the BOOT ROM

prom”“d in by hand

ireset goes to here
:boot is at bottom
;¢cs = bottom of pro

ip =0
ODD PROM
778 - 00
779 - 00

tthis is not done i

First, move our data area into RAM at 0000:0200

;point DS to CS for source
istart of data

mov DI,offset ram_start ;offset of destinat

mov ax,0
mov es,ax

mov CX,data length

rep movs al,al

-.

mov ax,0
mov ds,ax
mov ss,ax

mov sp,stack_offset

cld

-

IF NOT DEBUG

e weo “e

mov al,0Eh
out csts,al
mov al,40h

out csts,al
mov al,4Eh

out csts,al
mov al,37h
out csts,al
mov al,0B6h
out tcmd,al
mov ax,baud
out tch2,al
mov al,ah

out tch2,al

-e

ENDIF

e ~o we

mov al,l3h
out icpl,al
mov al,l0h

;destination segment is 000
;how much to move i
;move out of eprom

;data segment now in RAM

:Initialize stack s
sclear the directio

Now, initialize the console USART and baud rate

;give 8251 dummy mode
;reset 8251 to accept mode
snormal 8 bit asynch mode,
senable Tx & Rx

:8253 ch.2 square wave mode
slow of the baud rate

+high of the baud rate

Setup the 8259 Programmable Interrupt Controller

;825%9a ICW 1 8086 mode

All Information Presented Here is Proprietary to Digital Research

105

CP/M-86 System Guide Appendix C Listing of the BOOT ROl

0025 E6C2 out icp2,al :8259a ICW 2 wvector @ 40
0027 BO1lF mov al,lFh
0029 E6C2 out icp2,al :8259a ICW 4 auto EOI ma:
002B BOFF mov al,OFFh
002D E6C2 out icp2,al :8259%9a NCW 1 mask all 1lex

Reset and initialize the iSBC 204 Diskette Intert

® we “e

restart: ;also come back here on fatal errc
002F E6AF out reset204,AL ;reset iSBC 204 logic and
0031 BOO1 mov AL,1l
0033 E6A2 out fdcrst,AL ;give 8271 FDC
0035 B0OOO mov al,o0
0037 E6A2 out fdcrst,AL s+ a reset command
0039 BB1502 mov BX,offset specsl
003C ES8SE100 CALL sendcom ;program
003F BB1BO02 mov BX,offset specs2
0042 ES8DBOO CALL sendcom ; Shugart SA-800 drive
0045 BB2102 mov BX,offset specs3
0048 E8D500 call sendcom ; characteristics
004B BB1002 homer: mov BX,offset home
004 E85800 CALL execute shome drive 0
0051 BB2AO03 mov bx,sectorl ;offset for first sector N
0054 B80O0OO mov ax,0
0057 8ECO mov es,ax ;segment " " "
0059 E8A700 call setup_dma
005C BB0202 mov bx,offset read0l
005F E84700 call execute ;get TO S1
0062 8E062D03 mov es,ABS
0066 BB00OO mov bx,0 1get loader load address
0069 E89700 call setup_dma ;setup NMA to read loader
006C BB0602 mov bx,offset readl
006F E83700 call execute s;read track 0
0072 BBOBO02 mov bx,offset read?
0075 E83100 call execute sread track 1
0078 8C06E802 mov leap_segment,ES
; setup far jump vector
007C C706E6020000 mov leap_offset,0
H enter LOADER
0082 FF2EE602 jmpf dword ptr leap_ offset
pmsqg:
0086 8AQF mov cl, [BX]
0088 84cCH9 test c¢l,cl
008A 7476 jz return
008C E80400 call conout
008F 43 inc BX
0090 E9SF3FF - Jjmp pmsg

-e

All Information Presented Here is Proprietary to Digital Research

106 /

CP/M-86 System Guide

)93
)95
)97
)99
J9B
JoD

09E
0A0
0a2
0A4
0a6
0as8

0a9

'0AD

10BO
10B4
10B7
J0B9
JOBC
JOBE
)0CO
)0C3
)JOC5
)oC7
JOC9

00CB
00CD
00CF

00n3
00D5
00D7

00D9
00DB

oDnD
%OEO

E4DA
A801
74FA
8AC1
E6D8
C3

E4DA
A802
74FA
E4D8
247F
C3

89110002

E87000

8B1E00G2
8A4701
243F
B90008
3c2c
7208
B98080
240F
3coc
B0OO
7737

E4R0
22C5
32C174F8

E4Al
241E
7429

3C1l0
7513

BB1302
E83D00

Appendix C Listing of the BOOT ROM

;execute command string @ [BX]

: <BX> points to length,
; followed by Command byte
;followed by length-1 varameter byt

conout
in al,csts
test al,l
iz conout
mov al,cl
out cdata,al
ret
7
conin:
in al,csts
test al,?2
iz conin
in al,cdata
and al,7Fh
ret
;
H
execute:
H
mov lastcom,BX
retry:
call sendcom
nov BX,lastcom
mov AL,1[BX]
and AL,3fh
mov CX,0800h
cmp AL, 2ch
jb execpoll
mov CX,8080h
and AL,Ofh
cmp AL,Och
mov AL,O

ja return

.
14

execpoll:

and AL,CH
Xxor AL,CL !

~e

JZ execpoll

~e

-

in AL, fdcrslt
and AL, leh
jz return

cmp al,l0h
jne fatal

mov bx,offset rdstat
call sendcom

;remember what it w
stetry if not ready
sexecute the comman
;now, let’s see wha
;of status poll was
: for that command t
;point to command s
:get command op cod
;drop drive code bi
smask if it will be
:see if interrupt t

:else we use "not c¢
sunless . . .
;there isn“t

;any result at all

;poll for bit in b, toggled with c
in AL,FDCSTAT

;get result registe
:1look only at resul
;Zero means it was

:1f other than "Not

sperform read statu

All Information Presented Here is Proprietary to Digital Research

107

CP/M-86 System Guide

00E3
00E5
0or7
O00E9
00ED

00F0
00F2
00F4

00F8

O0FB
O0FE
O0FF

0102

0103
0105
0107
0109
010B
010D
010F
0111
0113
0115
0117
0119
011B
011p
011F

0120
0122
0124
0126
0128
0129
012B

012D
0l2r
0131

0132
0134
0136

E4A0
A880.
75FA
8B1E0002
E9BDFF

B400
8BD8

8BIF2702

E88BFF
E8AOFF
58

E92DFF

c3

B004
E6A8
B00O
E6A5
B040
E6AS5
8CcCO
E6AA
8AC4
E6AA
8BC3
E6A4
8AC4
E6A4
c3

E4A0
2480
75FA
8AOF
43

8A07
E6A0

FEC9Y
74D1
43

E4A0
2420
75FA

rd_poll:

- Appendix € Listing of the BOOT ROM

in al,fdc stat -

test al,80h

jnz
mov
imp

;
fatal:
mov
.mov

rd_poll
bx,last_com
retry

ah,0
bx,ax -

swait for command n

srecover last attem
;and trv it over ag

; fatal error

smake 16 bits

mov bx,errtbl [BX]

e

print appropriate error

call pmsg
call conin

pop
Jjmp

. return:

RET

-’
setupndma:

mov
out
mov
out
mov
out
mov
out
mov
out
mov
_out
- mov
~out
. RET

NN ~e we we

endcom:

and
inz
mov
inc
mov

out

parmloop:

dec

ax ,
restart

AL,04h
dmacmode, AL
al,o ,
dmaccont ,AL
AL, 40h
dmaccont ,AlL
AX,ES

message
;wait for key strik

s;discard unused ite
:then start all ove

sreturn from EXECUT

:enable dmac

1set first (dummy)

; force read data mo

fdcsegment, AL

AL,AH

fdcsegment ,AlL

AX,BX
dmacadr ,AL
AL,AH
dmacadr ,AL

; k}rdutine to send a command string t
in AL, fdcstat

AL,80h

sendcom
CL, [BX]
BX. '

al, [BX]

fdccom, AL

CL

jz return

inc
parmpoll: -

and
i Jnz

BX

in‘AL,fdcstat

AL,20h
parmpoll

sinsure command not busy
:get count

;point to and fetch command
;send command

:1see if any (more) paramete
spoint to next parameter

:1oop until parm not full

All Information Presented Here is Proprietary to Digital Research

108

CP/M-86 System Guide

138
'13A
113C

8A07
E6Al
E9EEFF

013F

113F

141
142
143
144

145
)146
1147
1148
J149

J14A
J14B
Jl4cC
J14D
J14E

014F
0152
0154
0157
015A
015D
0160
0163

0166
0168
01l6A
016C
016E
0170
0172
0174
0176
0178
017Aa
017C
017E
0180
0182
0184

[
0186

0000

03
52
00
0L

04
53
00
02
19

04
53
01
01
1la

026900
0l6cC

05350D
0808E9
053510
FFFFFF
053518
FFFFFF

4702
4702
4702
4702
5702
6502
7002
7702
9002
A202
B202
C502
D302
4702
4702
4702

Appendix C Listing of the BOOT ROM

mov AL, [BX]
out fdcparm,AL
jmp parmloop

~e Qs ~e ~o ~o ~o

Q
=
V)]
0
o+
9
3

.
1

creadstring

creadtrk0

creadtrkl

.
’

chome0
crdstat0
cspecsl

cspecs?2

cspecs3

cerrtbl dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

ODOA4E756C6C Cer0 db

rombegin equ offset $

dw

4db
db
db
db

db
db
db
db
db

db
db
db
4b
db

db
db
db
db
db
db
db
db

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

offset

offset
offset
offset

cr,lf,”

;outoput next parameter
:go see about another

Image of data to be moved to RAM

0000h s last command

3 :length

52h ;read function code
0 strack #

1 ;sector #

53h ;read multiple
0 strack 0

2 ssectors 2

25 sthrough 26

1 strack 1
1 ssectors 1
26 ;through 26

2,69h,0
1l,6ch
5,35h,0dh
08h,08h,0e9%h
5,35h,10h
255,255,255
5,35h,18h
255,255,255

er0
erl
er?2
er3
erd
er5
er6
er7
er8
er9
erA
erB
erC
erD
erEk
erF

Null Error 22°,0

All Information Presented Here is Proprietary to Digital Research

109

CP/M-86 System

204572726F72
203F3F00
0186
0186
0186
0196 ODOA436C6F63
6B204572726F
7200
01A4 ODOA4C617465
20444D4100
O1AF 0DOA49442043
524320457272
6F7200
01BE 0DOA44617461
204352432045
72726F7200
01CF 0DOA44726976
65204E6F7420
526561647900
01lE1l ODOA57726974
652050726774
65637400
01F1 ODOA54726B20
3030204E6F74
20466F756E64
00
0204 0DOA57726974
65204661756C
7400
0212 O0DOA53656374
6F72204E6F74
20466F756E64
00
0186
0186
0186

0225
00E6

0000

0200
0200
0202
0206
020B
0210
0213
0215

Guide

Cerl equ
Cer2 equ
Cer3 equ

Cerd db
Cer5 db
Cer6 db
Cer7 db
Cer8 db
Cer9 db
CerA db
CerB db
CerC db
CerD equ
CerE equ
CerF equ

dromend equ

3

data_length

rese
(no

e we wo ™~

dseg
org

’

ram_start
lastcom
read0
readl
read2
home
rdstat
specsl

Appendix C Listing of the BOOT ROM

cer0
cer0
cer0

cr,lf,’Clock Error”,0

cr,l1f,”Late DMA“,0

cr,l1f,”1D CRC Error~”,0

cr,1f,”’pata CRC Error”,0

cr,1f,”’nrive Not Ready”,0

cr,1f,”Write Protect”,0

cr,1f,”Trk 00 Not Found”,0

cr,1f, Write Fault”,0

cr,1f,”Sector Not Found”,0

cer0
cer0
cer0

offset $

equ dromend-drombegin

rve space in RAM for data area
hex records generated here)

0

0200h

equ
rw
rb
rb
rb
rb
rb
rb

AaANWLIULS =N

slast
sread
sread
sread
shome
sread

command
track 0 sect«
TO S2-26

Tl S1-26
drive 0
status

All Information Presented Here is Proprietary to Digital Research

110

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

)218 specs?2 rb 6
)221 specs3 rb 6
1227 errtbl rw 16
1247 er0 rb length cer0 ;16
0247 erl equ er0
0247 er?2 equ er0
0247 er3 equ er0
)257 erd rb length cer4 114
J265 er5 rb length cer5 :11
1270 er6 rb length ceré6 :15
127F er7 rb length cer?7 :17
0290 er8 rb length cer8 ;18
02A2 er9 rb length cer9 116
02B2 erA rb length cerA ;19
02C5 erB rb length cerB ;14
02p3 erC rb length cerC :19
0247 erD equ er0
0247 erE equ er0
0247 erF equ er0
02E6 leap_offset rw 1
02E8 leap_segment rw 1
;
02EA ‘ rw 32 1local stack
032a stack_offset equ offset S;stack from here do
: TO0 S1 read in here
032a sectorl equ offset $
032A Ty rb 1
0328 Len rw 1
032n Abs rw 1 ;ABS is all we care
032r Min rw 1
0331 Max rw 1
end

All Information Presented Here is Proprietary to Digital Research

111

Appendix D
LDBIOS Listing

khkkkhkkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhhkhkkhkkhkhkkhkhkkkkhkkhkhkhkhkkhkkhkikd i

*
This the the LOADER BIOS, derived from the BIOS *
program by enabling the "loader bios" condi- *
tional assembly switch. The listing has been *
edited to remove vortions which are duplicated *
in the BIOS listing which appears in Appendix D *
where elipses "..." denote the deleted portions *
(the listing is truncated on the right, but can *
be reproduced by assembling the BI0S.A86 file *
provided with CP/M-86) *

*

*

hkkkhkkhkhkhkkkhkhkkhhhkkkkhkhkkhhkhhkhkkhkhkhkkkkkhkkkkkkkkkkkkk

;***

;* Basic Input/Output System (BIOS) for
:+* CP/M-86 Configured for iSBC 86/12 with
;* the iSBC 204 Floppy Disk Controller

* F * * *

:* (Note: this file contains both embedded *
:+* tabs and blanks to minimize the list file *
;* width for printing purposes. You may wish¥
;* to expand the blanks before performing *

:* major editing.) *
;***

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950

(Permission is herebv granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro-

NG WO NE N mp NF Ne we Ne ~o

processor)
FFFF true equ -1
0000 false equ not true

All Information Presented Here is Proprietary to Digital Research

113

CP/M-86 System Guide Appendix D LDBIOS Listing

;***

*
;* Loader_bios is true if assembling the *
:* LOADER BIOS, otherwise BIOS is for the *
;* CPM.SYS file. Blc_list is true if we *
;* have a serial printer attached to BLC8538 *
;* Bdos int is interrupt used for earlier *
:* versions. *

*

*

;**

FFFF loader_bios equ true

FFFF blc_list equ true

00EO bdos_int equ 224 ;reserved BDOS Interrupt
IF not loader_bios

ENDIF ;not loader_bios

IF loader_bios
;| l
1200 bios_code equ 1200h ;start of LNBIOS
0003 ccp_offset equ 0003h ;base of CPMLOADER
0406 bdos_ofst equ 0406h ;stripped BDOS entry

’

S A S - > ———— T — — ———— — ——— — — ——— —— T — — — —— " —— -

ENDIF ;loader bios

cseg
org ccpoffset
cep:
org bios_code

;***

.* *
14

;* BIOS Jump Vector for Individual Routines *
.* *

;************************#********************

1200 E93C00 jmp INIT ;Enter from BOOT ROM or LOADER
1203 E96100 jmp WBOOT ;Arrive here from BDOS call 0
1239 E96400 jmp GETIOBF ;return I/0 map byte (IOBYTE)
123C E96400 jmp SETIOBF ;set I/0 map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

114

CP/M-86 System Guide

.23F
.241
L1243
L245

L247
L24A

1248
124cC
1247

1251
1257
1258

125¢C
125F
1262
1264

1267

8CC8
8EDO
8ED8
8ECO

BCA916
FC

18
B80000
8EDS8

C70680030604
8COE8203
1F

BB1514
E85A00
B100

E99CED

E99FED

Appendix D LDBIOS Listing

;***

ok *
7
:* INIT Entry Point, Differs for LDBIOS and *
+* BIOS, according to "Loader Bios" value *
.* - *
’

;***

INIT:

WBOOT :

———— ——

;print signon message and initialize hardwa

mov ax,cs :we entered with a JMPF so
mov ss,ax : CS: as the initial value
mov ds,ax : ns:,

mov es,ax : and ES:

;use local stack during initialization
mov sp,offset stkbase
cld :set forward direction

IF not loader bios

ENDIF ;jnot loader_bios

IF loader_bios

——— ———— ————— T — T — ——————— — — - -~

:This is a BIOS for the LOADER

push ds ;save data segment
mov ax,0
mov ds,ax :point to segment zero

:BDOS interrupt offset

mov bdos_offset,bdos_ofst

mov bdos_segment,CS ;bdos interrupt segment
pop ds irestore data segment

—— > — ——— —————— — ————— — ——— T —— — — T — - 1 - —

ENDIF ;loader_bios

mov bx,offset signon

call pmsg :print signon message

mov ¢1,0 sdefault to dr A: on coldst
jmp ccp ;jump to cold start entry o
jmp ccp+6 ;direct entry to CCP at com
IF not loader_bios

ENDIF ;jnot loader bios

All Information Presented Here is Proprietaty to Digital Research

115

CP/M-86 System Guide Appendix D LDBIOS Listing

;***
P * : '
i * CP/M Character I/O Interface Routines

i Console is Usart (i8251la) on iSBC 86/12
R at ports D8/DA

% % % ¥ *

;***

CONST: sconsole status
126A E4DA in al,csts
const_ret:
1272 C3 ret :Receiver Data Available
CONIN: sconsole input
1273 E8F4FF call const
CONOUT ¢ ;console output
127D E4DA in al,csts ,
LISTOUT: slist device output
IF blc_list
: ———
| |
1288 E80700 call LISTST .

ENDIF ;blc_list

1291 C3 ret
LISTST: - ;poll list status
IF blc_list
1292 E441 in al,lsts

ENDIF ;blc_list

129¢c cC3 ret
PUNCH: ;not implemented in this configuration
READER: , ’

129p BO1lA mov al,lah 5

129F C3 ret sreturn EOF for now

All Information Presented Here is Proprietary to Digital Research

116

CP/M-86 System Guide

12A0
12a2

12A3

12n4
1276

12a7

l2ca

12EB

1300
1304

1305
1309

130Aa

1311
1315

1316
131A

’131B
131

B0OO
C3

C3

2400
C3

E8CIFF

BB000O
C606311500

880E3115
C3

880E3215
Cc3

8BD9

890E2A15
C3

890E2C15
C3

BB3815
c3

Appendix D LDBIOS Listing

GETIOBF:
mov al,0 :TTY: for consistency
ret ; IOBYTE not implemented
SETIOBF:
ret ;iobyte not implemented

Zero_ret:
and al,0

ret ;return zero in AL and flag

echo a console character
to upper case

Routine to get and
and shift it

~e we

uconecho:
call

;***

CONIN ;get a console character

.* *
’

e ¥ Disk Input/Output Routines *
ok *

;***

SELDSK: :select disk given by register CL
mov bx,0000h

HOME ;move selected disk to home position (Track
mov trk,0 :set disk i/o to track zero

SETTRK: ;set track address given by CX
mov trk,cl ;we only use 8 bits of trac
ret '

SETSEC: ;set sector number given by cx
‘mov sect,cl ;we only use 8 bits of sect
ret

SECTRAN: ;translate sector CX using table at [DX]
mov bx,cx

SETDMA: ;set DMA offset given by CX .

mov dma_adr,CX
ret

SETDMAB: ;set DMA segment given by CX
mov dma_seq,CX
ret

;
GETSEGT: ;return address of physical memory table
mov bx,offset seg_table

ret

- All Information Presented Here is Proprietary to NDigital Research

117

CP/M-86 System Guide Appendix D LDBIOS Listing

131F BO12
1321 EBO2

1323 BOOA

1325 BB2F15

1415

1415 ODOAODOA

1419 43502F4D2D38
362056657273
696F6E20322E
320D0A00

142F ODOA486F6D65

;***

:* All disk I/0 parameters are setup: the
:* Read and Write entry points transfer one
:1* sector of 128 bytes to/from the current
1* DMA address using the current disk drive

* ¥ ¥ % * *

’
;***

READ:
mov al,l2h :basic read sector command
jmps r_w_common

WRITE:
mov al,0ah ;:basic write sector command

r_w_common:
mov bx,offset io_com ;point to command stri

;***

;* *
3 * Data Areas *
;***
data_offset equ offset $

dseg

org data_offset ;jcontiguous with co

IF loader_bios
; ———
] |
signon db cr,lf,cr,lf

db ‘cp/M-86 Version 2.2%,cr,1£,0

ENDIF ;loader bios

IF not loader_bios

- — ——— — ————————— — T ——— — ———— — — ———— — — — e W T e —— -~

ENDIF ;not loader_bios

bad_hom db cr,1f,”Home Error”,cr,1f,0
include singles.lib ;read in disk definitio
DISKS 2 .

~e

All Information Presented Here is Proprietary to Digital Research

118

CP/M-86 System Guide

1541

)68 00

569
16A9

5A9 00

0000

dpbase

loc_stk
stkbase

Appendix D LDBIOS Listing

equ $:Base of NDisk Param

L] L) L]

db 0 :Marks End of Modul

rw 32 :;local stack for initialization
equ offset $

db 0 :fill last address for GENCMD

;***

*

Dummy Data Section *
*

;***

dseqg 0 ;absolute low memory
org 0 ; (interrupt vectors)

. . 3

END

All Information Presented Here is Proprietary to Digital Research

119

Appendix E
BIOS Listing

dkhkdkkkkhkkkkkkkkhkhkhkhkkhkhkkhkkhkkhkkkhdhkhkkhhkhkhhkhhhkkhkhkhkki

This is the CP/M-86 BIOS, derived from the BIOS
program by disabling the "loader_bios" condi-
tional assembly switch. The listing has been
truncated on the right, but can be reproduced
by assembling the BIOS.A86 file provided with
CP/M-86. This BIOS allows CP/M-86 operation
with the Intel SBC 86/12 with the SBC 204 con-
troller. Use this BIOS, or the skeletal CBIOS
listed in Appendix E, as the basis for a cus-
tomized implementation of CP/M-86.

provided with CP/M-86)

¥ % % * ok * ¥ ¥ ¥ ¥ % ¥ %

khkkhkhkkkhkhkhkhkhkkhkhhkhhhkhkhkkhkhkkkhkhhhhkhkhhhkhkhkkhkhkkkhhkkkkk

;***

:+* Basic Input/Output System (BIOS) for
;* CP/M-86 Configured for iSBC 86/12 with
:* the iSBC 204 Floppy Disk Controller

* % %k % * *

;* (Note: this file contains both embedded
:* tabs and blanks to minimize the list file *
;* width for printing purposes. You may wish¥*
:1* to expand the blanks before performing *
;* major editing.) *
;***

Copyright (C) 1980,1981
Digital Research, Inc.

Box 579, Pacific Grove

California, 93950

(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro-
processor)

WO NS WO NO Ne N Ne N wo s

FFFF true equ -1
0000 false equ not true

All Information Presented Here is Proprietarv to Digital Research

121

CP/M-86 System Guide Appendix E BIOS Listing

0000
FFFF
00EO

2500
0000
0BO6

00DA
00D8

0041
0040
0060

';***

*
;* Loader_bios is true if assembling the *
:* LOADER BIOS, otherwise BIOS is for the *
;* CPM.SYS file. Blc_list is true if we *
;* have a serial printer attached to BL(C8538 *
;* Bdos_int is interrupt used for earlier *
:+* versions. *

*

*

;**

loader_bios equ false

blc_list equ true .

bdos_int equ 224 ;reserved BDOS Interruvpt
IF not loader bios

;| |

bios code equ 2500h

ccp_offset equ 0000h

bdos_ofst equ 0B06h ;BNOS entry point

.
7

ENDIF ;not loader bios

IF loader_bios
;| |
bios_code equ 1200h ;start of LDBIOS
ccp_offset equ 0003h ;base of CPMLOADER
bdos_ofst equ 0406h ;stripped BDOS entrv

’

ENDIF ;loader_bios

csts equ ODAh ;i8251 status port
cdata equ 0D8h ; " data port

IF blc_list
; | |
1sts equ 41h ;2651 No. 0 on BLC8538 stat
ldata equ 40h ; " " wow " data
blc_reset equ 60h ;reset selected USARTS on B

’

—— . — —— T - —— — — — . . o - T T — T — e —— Y ————

ENDIF ;blc_list

;***

% *
1

s ¥ Intel iSBC 204 nisk Controller Ports *
o % *

;***

All Information Presented Here is Proprietarv to Digital Research

122

CP/M-86 System Guide

00A0

00AO
00AO
00Al
00Al
00A2
00Aa4
00A5
00A6
00A7
00A8
00AS8
00A9
00AA
00AF

000A

000D
000A

’500
1503
2506
2509
250C
250F
1512
2515
2518
2518
2518
2521
2524
2527
252A
252D
2530
2533
2536
2539
253C
|

E93C00
E98400
E99000
E99600
E99D00
E9A500
E9B700
E9B400
E9FF00
E9DBOO
E90EO1
E91001
E91901
E92401
E92501
E99100
E90601
E90F01
E91101
E99300
E99300

base204

fdc_com
fdc_stat
fdc_parm
fdc_rslt
fdc_rst
dmac_adr

dmac_cont
dmac_scan
dmac_sadr
dmac_mode
dmac_stat
fdc_sel

fdc_segment

reset_204

max_retries

Appendix E BIOS Listing

cr
1f

cseg

org
ccp:

org

equ 0alh :SBC204 assigned ad

equ base204+0 18271 FDC out comma

equ base204+0 18271 in status

equ base204+1 ;8271 out parameter

equ base204+1 18271 in result

equ base204+2 18271 out reset

equ base204+4 ;18257 DMA base addr

equ base204+5 18257 out control

equ base204+6 18257 out scan cont

equ base204+7 :8257 out scan addr

equ base204+8 18257 out mode

equ base204+8 :8257 in status

equ base204+9 ;FDC select port (n

equ base204+10 ;segment address re

equ base204+15 ;reset entire inter

equ 10 smax retries on dis
;before perm error

equ 0dh ;carriage return

equ 0Oah :line feed

ccpoffset

bios_code

;***

ok
’

*

;* BIOS Jump Vector for Individual Routines *

ok
14

*

;***

jmp
jmp
Jjmp
jmp
jmp
jmp
jmp
jmp
jmp
imp
jmp
imp
jmp
jmp
jmp
jmp
jmp
Jmp
jmp
jmp
jmp

INIT
WBOOT
CONST
CONIN
CONOUT
LISTOUT
PUNCH
READER
HOME
SELDSK
SETTRK
SETSEC
SETDMA
READ
WRITE
LISTST
SECTRAN
SETDMAB
GETSEGT
GETIOBF
SETIOBF

sEnter from BOOT ROM or LOADER
:Arrive here from BDOS call O
;return console keyboard status
sreturn console kevboard char
swrite char to console device
swrite character to list device
swrite character to punch device
sreturn char from reader device
smove to trk 00 on cur sel drive
:select disk for next rd/write
;set track for next rd/write
:set sector for next rd/write
:set offset for user buff (DMA)
sread a 128 bvte sector

;write a 128 byte sector

;return list status

1xlate logical->physical sector
;set seg base for buff (DMA)
sreturn offset of Mem Desc Table
;return I/0 map byte (IOBYTE)
;set I/0 map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

123

CP/M-86 System

253F
2541
2543
2545

2547
254A

254B

254cC
254F
2551

2553
2559
255D
2560
2563
2566

2568
256E

256F
2571
2573
2575
2577
2579
257B
257D

8CC8
8EDO
8EDS8
8ECO

BCE429
FC

1E
B80000O
8EDS
8ECO

C70600008D25
8COE0200
BF0400
BE00OO
BO9FEO1

F3A5

C7068003060B
1r

BOFF
E660
BO4E
E642
BO3E
E642
B037
E643

Guide Appendix E. BIOS Listing

.***

.* *
-* INIT Entry P01nt, lefers for LDBIOS and *
-* BIOS, according to "Loader _Bios" value *
.* *

.***

INIT: ;print signon message and initialize hardw
mov ax,cCs jwe entered with a JMPF so
mov ss,ax :+ CS: as the ‘initial value
mov ds,ax : DS:,
mov es,ax ‘ ; and ES:

;use-local stack during initialization
mov sp,offset stkbase
cld ;set forward direction

IF not loader_bios

—— ———— - — —— —— — — —— — - ———— o — A D D V" S A T — — — A G — — ———— - —

+ This is a BIOS for the CPM.SYS file.
; Setup all interrupt vectors in low
; memory to address trao

push ds ;save the DS register
mov ax,0 .

mov ds,ax

mov es,ax :set ES and DS to zero

3setup interrupt 0 to address trap routine
mov int0 offset,offset int_trap
mov int0 _segment,CS

mov di,4
mov si,0 ;sthen propagate
mov ¢x,510 strap vector to

rep movs ax,ax j;all 256 interrupts

;BDOS offset to proper interrupt

mov bdos_offset,bdos_ofst :
pop ds - ;restore the DS register

;***
;* *

:* National "BLC 8538" Channel 0 for a serial*
:+* 9600 baud printer - this board uses 8 Sig-~*
-* netics 2651 Usarts which have on-chip baud*

-* rate generators. *
o* *

.***

mov al,OFFh

out blc_reset,al ;reset all usarts on 853t
mov al,4Eh :

out ldata+2,;al ;:set usart 0 in async 8 b:
mov al,3Eh

out ldata+2,al ;set usart 0 to 9600 baud
mov al,37h e

out ldata+3,al ;enable Tx/Rx, and set up

All Information Presented Here is Proprietary to Digital Researcl]

124

CP/M-86 System Guide Appendix E BIOS Listing

37F
382
385
387

58A

58D
58E
5390
592
595
598

599
598
59D
59F

5a1

BB4427
E86600
B10O

E976DA

E979DA

FA
8CcC8
8EDS8
BB7927
E85300
F4

E4DA
2402
7402
OCFF

C3

ENDIF ;not loader_bios

IF loader_bios

T > D " > — T T — - L P TP S - A W - -~ W —— - —— ——

;This is a BIOS for the LOADER

push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero

:BDOS interrupt offset

mov bdos_offset,bdos_ofst

mov bdos_segment,CS ;bdos interrupt segment
pop ds ;restore data segment

-e

- —— — — — — — — ———— —— —— - ——— —— ————— > % W - . G — — — ——— — W ——

ENDIF ;loader bios

mov bx,offset signon

call pmsg ;print signon message
mov cl,0 ;default to dr A: on coldst
Jmp ccp ;jump to cold start entry o
WBOOT: Jjmp ccp+6 ;direct entrv to CCP at com
IF not loader_bhios
; ———
7 |
int_trap:
cli :block interrupts
mov ax,cs
mov ds,ax ;sget our data segment
mov bx,offset int_trp
call pmsg
hlt shardstop

ENDIF ;not loader_ bios

;***
:*

s ¥ CP/M Character I/0 Interface Routines
:* Console is Usart (i8251a) on iSBC 86/12
:* at ports D8/DA

o %

’
;***

% % % ¥ *

CONST: ;console status

in al,csts

and al,2

jz const _ret

or al, 255 sreturn non-zero if RDA
const_ret:

ret :Receiver Data Available

All Information Presented Here is Proprietary to Digital Research

125

CP/M-86 System Guide

25A2
25A5
25A7
25A9
25AB

25AC
25AE
2580
25B2
25B4
25B6

25B7
25BA
25BC
25BE

25C0

25C1
25C3
25C5
25C7
25C9

25CB

25CC
25CE

25CF
25D1

E8F4FF
74FB
E4Dn8
247F
C3

E4DA
2401
74FA
8AC1
E6D8
C3

E80700
74FB
8AC1
E640

C3

E441
2481
3c8l
750A
OCFF

C3

BO1A
C3

B0OO
C3

Appendix E BIOS Listin

CONIN: ;console input
call const
jz CONIN ;wait for RDA
in al,cdata
and al,7fh ;read data and remove par
ret
CONOQUT : :console output
in al,csts
and al,l sget console status
jz CONOUT ;wait for TBE
mov al,cl
out cdata,al :Transmitter Buffer Empty
ret :then return data
LISTOUT: :1list device output
IF blc_list

call LISTST

iz LISTOUT ;wait for printer not bus
mov al,cl
out ldata,al :send char to TI 810

ENDIF ;blc_list
ret
LISTST: :poll list status

IF blc_list

in al,lsts

and al,81h :1look at both TxXRDY and D
cmp al,81lh

inz zero_ret ;either false, printer is
or al,255 sboth true, LPT is ready

ENDIF ;blc_list
ret
PUNCH: ;not implemented in this configuration

READER:
mov al,lah

ret : sreturn EOF for now
GETIOBF:

mov al,0 :T™T'Y: for consistency

ret : IOBYTE not implemented

All Information Presented Here is Proprietary to Digital Researc

126

CP/M-86 System Guide Appendix E BIOS Listing

3D2

5D3
5D5

5D6
5D9
5DA
5DC
5DF
5E0
5E2
5E4
5E6
5E8

5EA

S5EB
5ED
S5EF
5F1
5F3
'5F6
5F7

!5F9
!5FC
!5FF
'601
2603
2606
2608
260A

260D
260F
2611

C3

2400
Cc3

E8CIFF
50
8ACS8
E8CDFF
58
3C61
7206
3C7A
7702
2C20

Cc3

8A07
84C0
7428
8ACS8
E8B6FF
43
EBF2

BB00OO
80F902
7318
B08O
80F900
7502
B040
A26928

B500
8BDY
B104

SETIOBF:

ret ;iobyte not implemented
zero_ret:

and al,0
ret sreturn zero in AL and flag

Routine to get and echo a console character
and shift it to upper case

we we

uconecho:

call CONIN sget a console character

push ax

mov cl,al :save and

call CONOUT

pop ax secho to console

cmp al,”a”

ib uret ;less than “a” is ok

cmp al,”z”

ja uret ;greater than “z” is ok

sub al,’a”-"A” ;else shift to caps
uret:

ret
: utility subroutine to print messages
pmsg:

mov al, [BX] sget next char from message

test al,al

jz return ;if zero return

mov CL,AL

call CONOUT ;print it

inc BX

jmps pmsg snext character and loop

;***

.*‘ *
s * Disk Input/Output Routines *
.k *
r

;***

SELDSK : ;select disk given by register CL
mov bx,0000h
cmp c¢l,2 ;this BIOS only supports 2
jnb return sreturn w/ 0000 in BX if ba
mov al, 80h
cmp cl,0
jne sell ;drive 1 if not zero
mov al, 40h selse drive is O

sell: mov sel_mask,al ;save drive select mask
;now, we need disk paramete
mov ch,0
mov bx,cx :+BX = word (CL)
mov cl,4

All Information Presented Here is Proprietary to Digital Research

127

CP/M-86 System Guide

2613
2615
2619

261A
261F
2622
2625
2627
262A
262D

262F
2633

2634
2638

2639
263B
263D
263F

2640
2644

2645
2649

264A
264D

264E
2650

D3E3

81C37C28
C3

C6066C2800

BB6E28
E83500
74F2
BB6A27
E8BEFF
EBEB

880E6C28
C3

880E6D28
C3

8BDI9
03pa
8AlF
C3

890E6528
C3

890E6728
C3

BB7328
C3

B012
EBO02

Appendix E BIOS Listinc

shl bx,cl- smultiply drive code * 16
;create offset from Disk Parameter Base
add bx,offset dp_base

return:
” ret

HOME : ;move selected disk to home position (Trac
mov trk,0 :set disk i/o to track ze:
mov bx,offset hom_com
call execute
jz return shome drive and return if
mov bx,offset bad_hom :else print
call pmsg ; "Home Error"
jmps home ;and retry

SETTRK: ;set track address given by CX
mov trk,cl swe only use 8 bits of tr:
ret

SETSEC: ;set sector number given by cx
mov sect,cl ;we only use 8 bits of sec
ret

SECTRAN: ;translate sector CX using table at [DX]
mov bx,cx
add bx,dx sadd sector to tran table
mov bl, [bx] ;get logical sector
ret

SETDMA: ;set DMA offset given by CX

mov dma_adr,CX
ret

SETDMAB: ;set DMA segment given by CX
mov dma_seq,CX
ret

’
GETSEGT: ;return address of physical memory tabl«

mov bx,offset seg_table
ret

;***

*
;* AJl disk I/O parameters are setup: the *
;* Read and Write entry points transfer one *
;* sector of 128 bytes to/from the current *
:* DMA address using the current disk drive *
. ' . *

*

7
;**

READ:
mov al,l2h
imps r_w_common

sbasic read sector comman

WRITE:

All Information Presented Here is Proprietary to Digital Researc

128

CP/M-86 System Guide

352

354
57

35A

55E

563
567

56A
56E
571
574
576
578
57B
57D
67F
681

683
685
687
689

68B
68D
68F

691
693

695
699

k9B

BOOA

BB6A28
884701

891E6328

C60662280A

8B1lE6328
E88900

8B1lE6328
8A4701
B90008
3c2c
720B
B98080
240F
3coc
B0OO
7736

E4A0
22C5
32C1
74F8

E4Al
2418
7428

3C10
7425

FEOE6228
75C8

B400

Appendix B BIOS Listing

mov al,0ah sbasic write sector command

r_w_common:

[
r

execute:

mov bx,offset io_com ;point to command stri
mov byte ptr 1[BX],al ;put command into str
fall into execute and return

;execute command string.
[BX] points to length,
followed by Command byte,
followed by length-1 parameter byte

“e wo we

mov last_com,BX ;save command address for r

outer_retry:

retry:

~-e

exec_poll:

dr_rdy:

-8 we

sallow some retrving
mov rtry_gnt,max_retries

mov BX,last_com
call send_com stransmit command to 18271
check status poll

mov BX,last com

mov al,l[bxT ;get command op code

mov cx,0800h smask if it will be "int re
cmp al,2ch

ib exec_poll
mov cx,8080h
and al,0fh
cmp al,Och
mov al,0

ja exec_exit

ok if it is an interrupt t
;else we use "not command b

;sunless there isn”t

; any result
:00ll for bits in CH,
7

toggled with bits in CL
in al,fdc_stat ;read status
and al,ch

xor al,cl ;
jz exec_poll

isolate what we want to
:and loop until it is done

;Operation complete,
in al,fdc_rslt ; see if result code indica
and al,leh
jz exec_exit :no error, then exit
;some type of error occurre
cmp al,1l0h
je dr_nrdy ;was it a not ready drive ?
s no,
: then we just retry read or write
dec rtry_cnt
jnz retry ; up to 10 times
retries do not recover from the
hard error

mov ah,0

All Information Presented Here is Proprietary to Digital Research

129

CP/M-86 System Guide Appendix B BIOS Listin

269D
269F
26A3
2676
26A8
26AB
26AD
26AF
26B1
26B3
26B5
26B7

26B9

26BA
26BD
26BF
26C2
26C4
26C7

26CA
26CD
26CF

26D1
26D3

26D4

26D7
26D9
26DE
26E0

26E2
26E5

26E8
26EA
26EC
26EE
26F0

8BD8
8BI9F9127
E845FF
E4D8
E82BFF
3C43
7425
3C52
74AB
3C49
741A
OCFF

C3

E81A00
75A4
E81500
759F
BB0228
E821FF

E80AQ0
74FB
EB92

2400
Cc3

E9B3FE

B640
F606692880
7502
B604

BB7128
E80BOO

E4A0
A880
75FA
E4Al
84C6

mov bx,ax smake error code 16 bits

mov bx,errtbl [BX] ,
call pmsg ;print appropriate messag
in al,cdata :flush usart receiver buf
call uconecho sread upper case console

cmp al,”Cc”

je wboot 1 ;cancel

cmp al,”R”
je outer_retry jretry 10 more times
cmp al,”I”

je z_ret ;ignore error
or al,255 iset code for permanent e
exec_exit:
ret
dr_nrdy: shere to wait for drive ready
call test ready
jnz retry ;if it”s ready now we are
call test ready
inz retry ;if not ready twice in ro

mov bx,offset nrdymsg
call pmsg ;"Drive Not Ready"

nrdy0l:
call test_ready
iz nrdy0l ;now loop until drive rea
jmps retry ;then go retry without de
zret:
and al,0
ret ;return with no error cod
wboot_1: ;can”t make it w/ a short
jmp WBOOT
;***
ek . *
r
;* The i8271 requires a read status command *
:* to reset a drive-not-ready after the *
:1* drive becomes ready *
ok *
14

;***

test_ready:

mov dh, 40h sproper mask if dr 1

test sel_mask,80h

jnz nrdy2 ‘

mov dh, 04h smask for dr 0 status bit

nrdy2:
mov bx,offset rds_com
call send com
dr_poll: -
in al,fdc stat ;get status word
test al,80h

jnz dr_poll swait for not command bus
in al,fdc_rslt ;get "special result"
test al,dh :1look at bit for this dri

All Information Presented Here is Proprietary to Digital Researc

130

CP/M-86 System

SF2

6F3
6F5
6F7

6F9
67C
6FE
700
702
704
706
708

'70A
:70C
'70E
!710
1712
1714
1716
1719
1718
}71D
Y71F
2722
2724
2726

2728
2727
272B
272D
2731

2733
2735
R737

C3

E4A0
A880
75FA

8A4701
3C12
7504
B140
EBO6

3C0A
7520
B180

B004
E6AS8
B0OO
E6AS5
8AC1
E6A5
A16528
E6A4
8AC4
E6A4
716728
E6AA
8AC4
E6AA

8AOF

43

8A07
0A066928
E6A0

FECO
7482
43

Guide

ret

Appendix E BIOS Listing

;return status of ready

:***

:* Send com sends a command and parameters

s* to the i8271:

BX addresses parameters,

:* if this is a read or write

*
*
*
:* The DMA controller is also initialized *
*
*
*

;**

send _com:

in al,fdc_stat
test al,80h

inz

send_com

1see if we have

mov
cmp
ine
mov

al,l[bx]
al,12h
write maybe
cl,40h

jmps init_dma

write_mavybe:
cmp
ine
mov

init_dma:

al,0ah
dma_exit
cl,80h

;insure command not busy
:loop until ready

to initialize for a DMA ope
:get command byte

;if not a read it could be

:is a read command, go set

:leave DMA alone if not rea
:we have write, not read

:we have a read or write operation, setup DMA contr
contains proper direction bit)

H (CL
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out
mov
out

dma_exit:
mov
inc
mov

al,04h
dmac_mode,al
al,00
dmac_cont,al
al,cl
dmac_cont,al
ax,dma_adr
dmac_adr ,al
al ,ah
dmac_adr,al
ax,dma seqg

:enable dmac

:send first byte to con
:load direction register
:send low byte of DMA

:;send high byte

fdc_seﬁment,al :send low byte of segmen

al,ah

fdc_segment,al ;then high segment addre

cl, [BX]
BX
al, [BX]

or al,sel mask

out
parm_loop:
dec

fdc_com,al

cl

iz exec_exit

inc
parm_poll:

BX

rget count

:get command
smerge command and drive co
:;send command byte

sno (more) parameters, retu
:point to (next) parameter

All Information Presented Here is Proprietary to Digital Research

131

CP/M-86 System Guide

2738
273Aa
273C
273E
2740
2742

E4A0
A820
75FA
8a07
E6Al
EBEF

2744

2744
2748

276A

2779

2791
2799
27A1
2779

All Information Presented

0DOAODOA

202053797374
656D2047656E
657261746564
202020203131
204A616E2038
310p0A00

ODOA486F6D65
204572726F72
0DOAOO

ODOA496E7465
727275707420
547261702048
616C740D0A00

B127B127B127
B127
Cl27D127DE27
EF27
022816282828
3D28
4D28B127B127

Appendix E BIOS Listinc

in al,fdc_stat
test al,20h

inz parm_poll
mov al, [BX]

out fdc_parm,al
jmps parm_loop

;test "parameter register
:idle until parm reg not f

;send next parameter
:1go see if there are more

;***

: ¥ *
s * Data Areas *
;¥ *

7***
data_offset equ offset $

dseg
org data_offset ;contiguous with ¢
IF loader_bios
;] l
signon db cr,lf,cr,1f
db “‘cP/M-86 Version 2.2”°,cr,1f,0
;|
ENDIF i loader_bios
IF not loader_ bios
: | |
signon db cr,lf,cr,lf
db “ System Generated - 11 Jan 817,
: |
ENDIF snot loader_bios
bad_hom db cr,l1f,”Yome Error”,cr,1f,0
int_trp db cr,1f, Interrupt Trap Halt”,cr,lf,
errtbl dw erO,erl,erZ;er3
dw erd4,er5,er6,er’7
dw er8,er9,erA,erB
dw erC,erD,erE,erF

Here is Proprietary to Digital Research

132

CP/M-86 System

27B1

B127

0DOA4rE756C6C
204572726¥%72
203F3F00

27B1
2781
27B1

27C1l

27DL

27DE

27EF

2802

2816

2828

283D

284D

0DOA436C6F63
6B204572726F
72203A00
ODOA4AC617465
20444p41203A
00
0D0A49442043
524320457272
6F72203A00
0D0A44617461
204352432045
72726F72203A
00
0DOA44726976
65204E6F7420
526561647920
3A00
ODOA57726974
652050726F74
656374203200
0D0A54726B20
3030204E6F74
20466F756E64
203A00
0DOA57726974
65204661756C
74203A00
0DOA53656374
6F72204E6F74
20466F756E64
203A00

27B1
27B1
27B1
2802

2862
2863
2865
2867
2869

286A
) 286B
286C

All Information Presented Here is Proprietary to Digital Research

00
0000
0000
0000
40

03
00
00

Guide

er0 db
erl equ
er?2 equ
er3 equ
erd db
er5 db
er6 db
er’ db
er8 db
er9 db
erA db
erB db
erC db
erD equ
erkE equ
erF equ
nrdymsg edqu
rtry_cnt db
last_com 4w
dma_adr dw
dma_seg dw
sel _mask db
H Vari
io_com db 3
rd_wr db 0
trk db 0

Appendix E BIOS Listing

cr,1f,”Null Error 2?2°,0

er0
er0
er0

cr,l€f, Clock Error

:7,0

cr,lf,” Late DMA :7,0

cr,1Lf,”ID CRC FError

cr,1f,”nata CRC Error

:“,0

ﬁ,o

cr,1f,”’Drive Not Ready :7,0

cr,1f,”Write Protect

:“,0

cr,1f,”Trk 00 Not Found :7,0

cr,1f,”Write Fault :7,0

cr,lf,”Sector Not Found :

40h

ous

»’0

:disk error retry counter

;address of last command string

;dma offset stored here
:dma segment stored here

:select mask,

:length

40h or 80h

command strings for i8271

sread/write function code

strack #

133

CP/M-86 System Guide

286D

286E
2871

2873
2874
2876
2878
287A

=28C3

00

022900
0l2c

02

DFO02
2105
0020
0020

AB280000
00000000
C5289C28
64294529

> AB280000

00000000
C5289C28
93297429

01070D13
19050B11
1703090F
1502080E
141A060C
1218040A
1016

001F
00lo

289C
001F
0010
28AB

28C5

sect

hom_com db 2,29h,0
rds _com db 1,2ch

3
14

segtable db 2

dpbase
dpe0

dpel

dpb0

x1t0

begdat

db

Appendix E BIOS Listi

0 ;sector #

shome dr

ive command
sread status command

System Memory Segment Table

dw
dw
dw
aw

+2 segments
tpa_seg
tpa_len
2000h
2000h

s second

;1lst seg starts after RIC
:and extends to 08000

is 20000 -

;3FFFF (128k)

include singles.lib ;read in disk definit

equ
dw
dw
dw
dw
dw
dw
dw
dw

equ

- dw

db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
equ
equ

equ
equ
equ
equ

DISKS 2

$
x1t0,0000h
0000h,0000h
dirbuf,dpbl
csv0,alv0
x1t1l,0000h
0000h,0000h
dirbuf,dpbl
csvl,alvl
DISKDEF 0,1,26,6
offset S

26

3

7

0

242

63

192

0

16

2

offset $
1,7,13,19
25,5,11,17
23,3,9,15
21;2,8,14
20,26,6,12
18,24,4,10
16,22

31

16

DISKDEF 1,0
dpb0

alsO

css0

x1t0

ENDEF

;:Base of Disk Par
;Translate Mable
:Scratch Area
:Dir Buff, Parm FE
:Check, Alloc Vec
:Translate Table
:Scratch Area
:Dir Buff, Parm E
:Check, Alloc Vec
,1024,243,64,64,72
:Disk Parameter F
:Sectors Per Trac
:Block Shift
sBlock Mask
+Extnt Mask

;Disk Size - 1
;Directory Max
:AllocO

s+Allocl

:Check Size
:0ffset
:Translate Table

:Allocation Vecto
;Check Vector Siz

sEquivalent Param
;Same Allocation
:Same Checksum Ve
:Same Translate T

Uninitialized Scratch Memory Follows:

equ

offset $

:Start of Scratch

All Information Presented Here is Proprietary to Digital Researc

134

CP/M-86 System Guide Appendix E BINS Listing

C5
45
64
74
93
29A3
OODE
A3 00

A4
29E4
29E4
02DF

0521
JE4 00

0000

000
002

004

380
382

dirbuf rs 128 ;Directory Buffer

alvo rs alsO sAlloc Vector

csv0 rs css0 :Check Vector

alvl rs alsl :Alloc Vector

csvl rs cssl :Check Vector

enddat equ offset S :End of Scratch Are

datsiz equ offset $-begdat ;Size of Scratch Ar
db 0 :Marks End of Modul

loc_stk rw 32 ;local stack for initialization
stkbase equ offset $

lastoff equ offset $
tpa_seg equ (lastoff+0400h+15) / 16
tpa_len equ 0800h - tpa_seg

db 0 :fill last address for GENCMD
;***
ok *
’
;% Dummy Data Section *
.* *
;***
dseg 0 sabsolute low memory
org 0 ;s (interrupt vectors)
int0_offset rw 1
int0_segment rw 1
H pad to system call vector
rw 2* (bdos_int-1)
bdos_offset rw 1
bdos_segment rw 1
END

All Information Presented Here is Proprietary to NDigital Research

135

Appendix F
CBIOS Listing

kkkkhdkhkhhhhkkhkkhkhkhkhhkhkhkkkhhkkkhhkkkhhkhkhkkhhhkhkkkkhdkkkkk

*
This is the listing of the skeletal CBIOS which *
you can use as the basis for a customized BIOS *
for non-standard hardware. The essential por- *
tions of the BIOS remain, with "rs" statements *
marking the routines to be inserted. *

*

*

khdkhkkhhhkhkhhhkhkhkhkhkhkhhkhhkhhhkhhdhikhkdhdhddhkkihdkdhkdkkk

;***

Ll * *
;* This Customized BIOS adapts CP/M-86 to *
;* the following hardware configuration *
P ¥ Processor: *
;% Brand: *
P % Controller: *
;* *
;* *
p* Programmer : *
% Revisions : *
;* *
;***

FFFF true equ -1

0000 false equ not true

000D cr equ 0dh ;carriage return

0o00aA 1f equ Oah ;line feed
;***
.k *
’
i* Loader_bios is true if assembling the *
:* LOADER BIOS, otherwise BIOS is for the *
;* CPM.SYS file. *
P * *
;***

0000 loader_bios equ false

00EO bdos_int equ 224 ;reserved BDOS interrupt

IF not loader bios

2500 bios_code equ 2500h

0000 ccp_offset equ 0000h

0BO6 bdos_ofst equ O0BO6h ;BDOS entry point

L4
7 |

All Information Presented Here is Proprietary to Digital Research

137

CP/M-86 System Guide Appendix F CBIOS Listing

2500
2503
2506
2509
250C
250F
2512
2515
2518
251B
251E
2521
2524
2527
252A
252D
2530
2533
2536
2539
253C

253F

E93C00
E97900
E98500
E98D00
E99A00
E9A200
E9B500
E9BDOO
E9F600
E9D900
E90101
E90301
E90CO01
E91701
E94701
E98F¥00
E9F900
E90201
E90401
E9A400
E9A500

8Cc8

ENDIF ;jnot loader_bios

IF loader_bios
; l
bios_code equ 1200h ;start of LDBIOS
ccp_offset equ 0003h ;base of CPMLOADER
bdos_ofst equ 0406h ;stripoved BDOS entrY

ENDIF ;loader_bios

cseqg

org ccpoffset
cecp:

org bios_code

;***

o %k *
’
;* BIOS Jump Vector for Individual Routines *
ok *
’

;***

jmp INIT :Enter from BOOT ROM or TOADER
jmp WBOOT ;Arrive here from BDOS call 0
jmp CONST sreturn console keyboard status
jmp CONIN ;return console keyboard char
jmp CONOUT ;write char to console device
jmp LISTOUT swrite character to list device
jmp PUNCH ;write character to punch device
jmp READER sreturn char from reader device
jmp HOME smove to trk 00 on cur sel drive
jmp SELDSK sselect disk for next rd/write
jmp SETTRK :set track for next rd/write

jmp SETSEC :set sector for next rd/write
jmp SETDMA :set offset for user buff (DMA)
jmp READ s:read a 128 byte sector

Jmp WRITE ;write a 128 byte sector

jmp LISTST ;return list status

jmp SECTRAN :1Xlate logical->physical sector
imp SETDMAB ;set seqg base for buff (DMA)

jmp GETSEGT ;return offset of Mem Desc Table
jmp GRTIOBF ;return I/0 map byte (IOBYTE)
jmp SETIOBF ;set I/0 map byte (IOBYTE)
;***

o % *

14

:+* INIT Entry Point, Differs for LDBIOS and *
;* BIOS, according to "Loader Bios" value *
ok *

r

;***

INIT: ;print signon message and initialize hardwe
mov ax,cs swe entered with a JMPF so

All Information Presented Here is Proprietary to Digital Research

138

CP/M-86 System Guide

41
43
45

47
4R

34B
»4C
551
554
556

558
35E
562
565
568
56B

56D
573

8EDO
8EDS8
8ECO

BC5928
FC

1E
C606A72600
B80000
8EDS8

8ECO

C70600008225
8COE0200
BF0400
BE000O
BI9FEQ1

F3A5

C7068003060B
1F

~e we

-e

~e we

-e

~e

!574 BBB126
!577 E86F00
!57A B10O

257C E981DA

Appendix F CBIOS Listing

mov ss,ax +CS: as the initial value o
mov ds,ax :DS:,
mov es,ax sand ES:

;use local stack during initialization
mov sp,offset stkbase
cld 1set forward direction

IF not loader_bios

This is a BIOS for the CPM.SYS file.
Setup all interrupt vectors in low
memory to address trap

~e we we

push ds :save the DS register
mov IOBYTE,O ;clear IOBYTE
mov ax,0

mov ds,ax

mov es,ax :set BS and NS to zero
;setup interrupt 0 to address trap routine
mov int0 offset,offset int travo

mov int0_segment,CS

mov di,4
mov si,O ;then propagate

mov ¢x,510 ;trap vector to

rep movs ax,ax ;all 256 interrupts
;BDOS offset to prover interrupt

mov bdos offset,bdos ofst

pop ds ;jrestore the NS register

(additional CP/M-86 initialization)

. — —— — T —— " ——— — — —— —— — — — T — o — — T — — - _—_ ——— -

;jnot loader_bios

IF loader_bios

;This is a BIOS for the LOADER

push ds :save data segment

mov ax,0

mov ds,ax :point to segment zero
;BDOS interrupt offset

mov bdos_offset,bdos_ofst

mov bdos_ segment,CS ;bdos interrupt segment
(additional LOADER initialization)

pop ds ;restore data segment

" — - — ——— ——————— - - ——— v — o ———

ENDIF i loader_bios

mov bx,o0ffset signon

call pmsg ;print signon message
mov cl1,0 sdefault to dr A: on coldst
jmp ccp ;jump to cold start entry o

All Information Presented Here is Proprietarv to Digital Research

139

CP/M-86 System Guide ' Appendix F. CBIOS Listinc

257F E984DA WBOOT: Jjmp ccp+6 ;direct entry to CCP at c«
IF not loader_bios
; ———
| |
int trap: ,
2582 FA - cli . - sblock interrupts
2583 8cCcCS8 mov ax,cs. :
2585 8EDS -mov ds,ax sget our data segment
2587 BBD126 mov bx,offset int_trp
258A E85C00 call pmsg ’

258D 74 hlt shardstop

ENDIF j;not loader_bios

;***

% . *
[4
: * CP/M:Character I/0 Interface Routines *
o % %*
14

;***

CONST: sconsole status

258E : . rs 10 - +(fill-in)
2598 C3 S ret

CONIN: ;console input
2599 ESF2FF call CONST
259C 74FB jz CONIN ;wait for RDA
259E rs 10 :(f111-in)
25A8 C3 ret -

CONOUT: ;cohsole output
25A9 rs 10 1 (fill-in)
25B3 C3 ret - - sthen return data

4 LISTOUT: - :;list device output
25B4 rs 10 ;(fill-in)
25BE C3 ret
. LISTST: . ;poll list status

25BF rs 10 s (£f1il11-1in)
25C9 C3 ret

PUNCHE | swrite punch device
25CA rs 10 s (fill-in)
25D4 C3 ret

READER: o
25D5. : : rs 10 . -2 (fill-in)
25DpF C3 - - . . ret - S

GETIOBF:
25E0 AOA726 ' D ‘mov .al,IOBYTE

All Information Presented Here is Proprietary to Digital Research

140

CP/M-86 System Guide

5E3

5E4
5E8

589
5EB
5ED
5EF
5F1
5F4
5F5

C3

880EA726
C3

8A07
84C0
7421
8ACS8
E8BSFF
43
EBF2

0002

'5F7
!5FB
!5FE
2601
2603
1605
2607
2609
260B
260E
2610

2611
2617
2621

2622
2626

2627
262B

262C
262E
2630
2632

880EA826
BB000O
80F902
730D
B500
8BDI9
B104
D3E3
B9F126
03D9
C3

C706A9260000

C3

890EA926
c3

890EAB26
C3

8BD9
03pA
8AlF
C3

Appendix F CBIOS Listing

ret
SETIOBF:

mov IOBYTE,cl :1set iobyte

ret :iobyte not implemented
pmsg:

mov al, [BX] :get next char from message

test al,al

jz return ;1if zero return

mov CL,AL

call CconNouUT sprint it

inc BX

imps pmsg ;next character and loop
:***
ok *
r’
; * Disk Input/Output Routines *
' *

;***

SELDSK: ;select disk given by register CL
ndisks equ 2 ;number of disks (up to 16)
mov disk,cl :save disk number
mov bx,0000h ;ready for error return
cmp cl,ndisks :n beyond max disks?
inb return ;return if so
mov ch,O0 sdouble (n)
mov bx,cx ;bx = n
mov cl,4 s:ready for *16
shl bx,cl :tn =n * 16
mov cx,offset dpbase
add bx,cx ;dpbase + n * 16
return: ret :bx = .dph
HOME imove selected disk to home position (Track
mov trk,0 sset disk i/o to track zero
rs 10 3 (£ill-in)
ret
SETTRK: ;set track address given by CX
mov trk,CX
ret
SETSEC: ;set sector number given by cx
mov sect,CX
ret
SECTRAN: ;translate sector CX using table at [DX]
mov bx,cx
add bx,dx ;add sector to tran table a
mov bl, [bx] ;get logical sector
ret
SETDMA: ;set DMA offset given by €X

All Information Presented Here is Proprietary to Digital Research

141

CP/M-86 System Guide Appendix F CBIOS Listing

2633
2637

2638
263C

263D
2640

2641
2673

2674
26A6

890EAD26
C3

890EAF26
Cc3

BBE826
Cc3

C3

C3

26A7

26A7
26A8
26A9
26AB
26AD
26AF

00
00
0000
0000
0000
0000

mov dma_adr,CX
ret

SETDMAB: ;set DMA segment given by CX
mov dma_seg,CX
ret
’
GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

:***

%k *
r

;* All disk I/0 parameters are setup: *
;¥ DISK is disk number (SELDSK) *
2 ¥ TRK is track number (SETTRK) *
s * SECT is sector number (SETSEC) *
s * DMA ADR is the DMA offset (SETDMA) *
s * DMA SEG is the DMA segment (SETDMAB) *

;* READ reads the selected sector to the NDMA*
:* address, and WRITE writes the data from *
+* the DMA address to the selected sector *
:1* (return 00 if successful, 01 if perm err)*

*

;***

READ:
rs 50 :fill-in
ret

WRITE:
rs 50 :(£fill-in)
ret

;***

;* *
P * Data Areas *
;* *
;***
data_offset equ offset $

dseg

org data_offset ;contiguous with c
IOBYTE db 0
disk db 0 ¢+disk number
trk dw 0 strack number
sect dw 0 ;sector number
dma_adr dw 0 ;DMA offset from NS
dma_seg dw 0 sDMA Base Segment

IF loader_bios
; ———
7 | |
signon db cr,lf,cr,lf

All Information Presented Here is Proprietary to Digital Research

142

CP/M-86 System Guide

26B1
26B5

26CE

26D1
26D3

26E6

26E8
26E9
26EB
26ED
26EF

ODOAODOA
53797374656D
2047656E6572
617465642030
302F30302F30
30

0DOAOO

0DOA
496E74657272
757074205472
61702048616C
74

onoA

02

C602
3A05
0020
0020

26F1

26F1
:26F5
:26F9
:26FD
12701
:2705
:2709
:270D

20270000
00000000
3A271127
D927BA27
20270000
00000000
3A271127
0828E927

= 2711

:2711
:2713
=2714
=2715
=2716
=2718
r271A
=2718B

1A00
03
07
00
F200
3F00
co
00

Appendix * CBIOS Listing

db “cP/M-86 Version 1.0”,cr,1f,0
ENDIF ;loader bios
IF not loader bios
signon db cr,lf,cr,1f
db “System Generated 00/00/00”
db cr,1€,0
7| |
' ENDIF ;not loader_bios
int_trp db cr,l€
db “Interrupt Trap Halt”
db cr,lf
H System Memory Segment Table

segtable db 2

;2 segments

starts after BIOS

;and extends to 08000
:second is 20000 -

include singles.lib ;read in disk definitio

:Base of nNDisk Param
;Translate Table
;Scratch Area

:Dir Buff, Parm Blo
:Check, Alloc Vecto
;Translate Table
sScratch Area

:Dir Buff, Parm Blo
:Check, Alloc Vecto
,1024,243,64,64,2
:Disk Parameter Blo
:Sectors Per Track
:Block Shift

:Block Mask

;Extnt Mask

:Disk Size - 1
;Directory Max
:AllocO

dw tpa_seg ;11lst seg
dw tpa_len
dw 2000h
dw 2000h ;3FFFF (128k)
H DISKS 2
dpbase equ $
dpe0 dw x1t0,0000h
dw 0000h,0000h
dw dirbuf,dpb0
dw csv0,alv0
dpel dw x1t1,0000h
dw 0000h,0000h
dw dirbuf ,dpbl
dw csvl,alvl
; DISKDEF 0,1,26,6
dob0 equ offset S
dw 26
db 3
db 7
db 0
dw 242
dw 63
db 192
db 0

:Allocl

All Information Presented Here is Proprietary to Digital Research

143

CP/M-86 System Guide

=271C 1000
=271E 0200
2720

=273A

01070D13
19050B11
1703090F
1502080
141A060C
1218040A
1016

001F
0010

2711
001F
0010
2720

273A

27BA
27D9
27E9
2808

2818
OODE

2818

2819

00

2859

2859
02C6
053a

2859

00

0000

0000
0002

0004

0380
0382

x1t0

alsoO
css0

dpb1l

‘alsl

cssl
xltl’

o ~e we e

begdat
dirbuf
alvO0
csv0
alvl
csvl
enddat
datsiz

loc_stk
stkbase

- lastoff

tpa_seg
tpa_len

equ

2
offset $

1,7,13,19
25,5,11,17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10

16,22
31
16

DISKDEF 1,0

dpb0
alsO
css0
x1t0
ENDEF

Appendix F CBIOS Listinc

:Check Size
;0ffset
;Translate Table

:Allocation Vectot
:Check Vector Size

;Fquivalent Parame
;Same Allocation 1
:Same Checksum Vec
;Same Translate T¢

Tninitialized Scratch Memory Follows:

equ
rs
rs
rs
rs
rs
equ
equ
db

rw
equ

equ
equ
equ
db 0

32

offset $
128

als0
css0
alsl
cssl
offset $

offset $-begdat

0

;Start of Scratch
:NDirectory Buffer
sAlloc Vector
:Check Vector
:Alloc Vector
:Check Vector
;:End of Scratch Ar
;Size of Scratch ?
;:Marks End of Modtu

:local stack for initialization

offset $

offset $

(Lastoff+0400h+15) / 16

0800h - tpa seg

:£i1ll last address for GENCMD

;***

Dummy Data Section

*
*
*

;***

o
’

dseg
org

'intO_offset
int0_segment

0
0
rw
rw

;absolute low memory
; (interrupt vectors)

pad to system call vector

rw

bdos offset

bdos_segment

END

2* (bdos_int-1)

rw
rw

All Information Presented Here is Proprietary to Digital Researct

144

A

allocate absolute memory, 52
allocate memory, 52

B

base page, 1
BIOS, 121
bootstrap, 4
bootstrap ROM, 81

C

CBIOS, 56, 137
close file, 34
cMp, 1, 15
cold start loader, 1, 56, 81
compact memory model, 11, 21
compute file size, 45
CONIN, 61
CONOUT, 61
console input, 25
console output, 25
console status, 30
CONST, 60
converting 8080 programs
to Ccp/M-86, 3, 17, 23
cross development tools, 2

D

data block, 72, 74

delete file, 36

direct BIOS call, 47

direct console I1I/0, 27

directory entries, 71

disk definition tables, 4, 67

disk parameter block, 69

disk parameter header, 62,
67, 75

DMA buffer, 14, 39, 60, 63

F

far call, 11, 14

file control block, 30
file structure, 1

free all memory, 53

Index

145

G

GENCMD, 2, 3, 15, 17

GENDEF, 2

get address of disk parameter
block, 41

get allocation vector
address, 39

get DMA base, 48

get I/0 byte, 27

get maximum memory, 51

get or set user code, 41

get read/only vector, 40

GETIOB, 65

GETSEGB, 65

group, 2

H

header record, 20
HOME, 61

I

INIT , 4, 60
Intel utilities, 17
IOBYTE, 58

L

L-module format, 19

LDCOPY, 2

LIST, 61

list output, 26

LISTST, 63

LMCMD, 19

logical to physical sector
translation, 64

M

make file, 37

memory, 14

memory region.table, 65
memory regions, 1

0o

offset, 2
open file, 33

P

print string, 28
program load, 53
PUNCH, 61

punch output, 26

R

random access, 95

READ, 63

read buffer, 29

read random, 42

read sequential, 36

READER, 61

reader inoput, 26

release all memory, 53

release memorv, 52

rename, 38

reserved software interrupt,
1, 23

reset disk, 33

reset drive, 46

return current disk, 38

" return login vector, 38

return version number, 30

S

search for first, 35

search for next, 35

sector blocking and
deblocking, 87

SECTRAN, 64

segment, 2

segment group memory
requirements, 17

segment register change, 11

segment register
initialization, 8

SELDSK, 62

select disk,. 33

set DMA address, 39

set DMA base, 48

set file attributes, 41

set I/0 byte, 28

set random record, 46

SETDMA, 63

SETDMAB, 64

SETIOB, 65

SETSEC, 62

SETTRK, 62

small memory model, 10, 21

system reset, 4, 7, 14, 25
49, 60, 74

Index

146 |

T

translation vectors, 69

U

utility program operation,
W

WBOOT, 60

WRITR, 63

write protect disk, 39

write random, 44

write random with zero
£i1l, 47

8080 memory model, 3, 10,
14, 21

CP/M-86TM.
Operating System
Release 1.1

System Guide Release Notes

Copyright © 1982

Digital Research
P.0. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

CP/M-86"MOperating System

Release 1.1

Copyright © 1982 by Digital Research
CP/M is a registered trademark of Digital Research.
ASM-86, CP/M-80 and CP/M-86 are trademarks of Digital Research.
ISBC is a trademark of Intel Corporation.
Intel is a registered trademark of Intel Corporation.
Compiled February 1982

Thank you for purchasing the CP/M-86 TM. operating system
package. Software included in this package is proprietary to
Digital Research and contains internal serialization to allow
unauthorized copies to be traced to their source. The Digital
Research Software License Agreement defines the terms and conditions
covering the use of CP/M-86. Please take time to carefully read
this agreement. The enclosed Software Registration Card must be
filled out and mailed to Digital Research before use of this
software is authorized. Upon receipt of the Registration Card, your
name will be placed on our CP/M-86 mailing list, so you will receive
newsletters and update notices. Under the terms of the agreement,
you are allowed to make back-up copies for your own use, but you are
not allowed to make copies of software provided in this package for
any third parties, including friends, relatives, or business
associates.

The documentation for CP/M-86 consists of the following
manuals:

CP/M-86 Operating System User's Guide

CP/M-86 Operating System Programmer's Guide

CP/M-86 Operating System System Guide

CP/M-86 Operating System Command Summary

Two diskettes are also included. The first disk contains the
CP/M-86 operating system and the utility programs. The second disk
contains the source files for programs and data files used in system
regeneration. The following programs are on the first disk.

ASM86 .CMD 8086 assembler

ASM86 .COM 8080 version of ASM-86TM assembler
COPYDISK.CMD Utility to copy entire diskette

CPM.H86 Hex file for CP/M-86 CCP and BDOS
CPM.SYS CP/M ® system file, loaded at cold start
DDT86 .CMD CP/M-86 debugger

ED.CMD : CP/M-86 program and text editor
GENCMD.CMD CMD file generation utility

All Information Presented Here is Proprietary to Digital Research

1

CpP/M-86

V1.1
GENCMD.COM 8080 version of GENCMD
GENDEF .CMD Diskdef file generator
GENDEF .COM 8080 version of GENDEF
HELP .CMD Help utility
HELP .HLP Data file for help utility
LDBDOS .H86 Loader BDOS hex file
LDBIOS.H86 Loader BIOS hex file
LDCOPY.CMD Loader copy utility
LDCPM.H86 Loader main program hex file
LMCMD.CMD CMD file generation utility
LMCMD.COM 8080 version of LMCMD
LOADER,CMD ISBCT™M™. 86/12 intermediate loader (used
only with the standard Intel® system)
PIP.CMD Peripheral Interchange Program
STAT .CMD File and disk status utility
SUBMIT.CMD Batch processing utility
TOD.CMD Display and set time of day utility

The files with a filetype of CMD operate under CP/M-86. The

files with a filetype of COM are included for cross development
under CP/M-80TM.,

The second disk contains the following files.

BIOS.A86 Source file for the standard BIOS
CBIOS.A86 Source for the skeletal BIOS
COPYDISK.A86 Source for COPYDISK.CMD

DEBLOCK.LIB Blocking/deblocking algorithms
LDBIOS.A86 Source for LDBIOS.CMD

LDCOPY.A86 Source for LDCOPY.CMD

LDCPM.A86 Source for LDCPM.CMD

RANDOM.A86 Sample A86 program using BDOS calls
ROM.A86 Source file for the ISBC 86/12 boot ROM

SINGLES . DEF
SINGLES.LIB

Diskdef input to the GENDEF utility
Output from the GENDEF utility

TBIOS.A86 Source for track buffered BIOS
TRACK.A86 Skeletal source for track buffering
8087.LIB Code macro library for 8087

Note: The DEBLOCK.LIB file is included for your reference.

Any
specific application might require modifications.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86"M Operating System
SYSTEM GUIDE
Correction to the First Printing - 1981
Copyright © 1981 by Digital Research, Inc.

CP/M-86 is a trademark of Digital Research.
Compiled February 1, 1982

PAGE 27

To the FUNCTION 6 DIRECT CONSOLE I/O BLOCK,

Entry Return
- -
CL: 06H ' FUNCTION 6 AL: char or status
DL: OFFH (input/ DIRECT CONSOLE (no value)
ADD:—=-> status) I/0
or
OFEH (status)
or

char (output)

The second paragraph following FUNCTION 6 should read:

Upon entry to Function 6, register DL contains either (1) a
hexadecimal FF denoting a CONSOLE input/status request, or (2) a
hexadecimal FE denoting a console status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then Function 6 checks to
see if a character is ready. If a character is ready, Function 6
returns the character in AL; otherwise Function 6 returns a zero in
AL. If the input value is FE and no character is ready, then
Function 6 returns AL = 00; otherwise, AL = FF. If the input wvalue
in DL is not FE or FF, then Function 6 assumes that DL contains a
valid ASCII character which is sent to the console.

You cannot use Function 6 with FF or FE in combination with

either Function 1 or Function 1l1l. Function 1 is used in conjunction
with Function 11. Function 6 must be used independently.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86"M Operating System
SYSTEM GUIDE

Enhancements to the First Printing - 1981

Copyright © 1981 by Digital Research, Inc.

CP/M~-86 is a trademark of Digital Research.
Compiled February 1, 1982

PAGE 47

In Section 4.3, BDOS File Operations,
Add two new BDOS Functions:

Entry Return
_— y
CL: 2FH FUNCTION 47
DMA buffer: CHAIN TO PROGRAM
Command Line

Load, Initialize, and Jump to specified Program

The CHAIN TO PROGRAM function provides a means of chaining from
one program to the next without operator intervention. Although
there is no passed parameter for this call, the calling process must

place a command line terminated by a null byte in the default DMA
buffer.

Under CP/M-867M., the CHAIN TO PROGRAM function releases the
memory of the calling function before executing the command. The
command line is parsed and placed in the Base Page of the new
program. The Console Command Processor (CCP) then executes the

command line.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 System Guide Enhancements

PAGE 47 (continued)
Then, add:
Entry Return
-~ -
CL: 031H FUNCTION 49 BX: SYSDAT Address
Offset
GET SYSDAT
ADDRESS ES: SYSDAT Address
Segment
Return the address of the System Data Area
The GET SYSDAT function returns the address of the System Data
Area. The system data area includes the following information:
dmaad equ word ptr O ;user DMA address
dmabase equ word ptr 2 ;user DMA base
curdsk equ byte ptr 4 scurrent user disk
usrcode equ byte ptr 5 ;current user number
control_p flag equ byte ptr 22 ;listing toggle...
;set by ctrl-p
console width equ byte ptr 64
printer width equ byte ptr 65
console_column equ byte ptr 66
printer_ column equ byte ptr 67

The following list provides an explanation of system data area

parameters,

dmaad means current user DMA address.

dmabase means current user DMA base. (See page 48 under
Function 51 in the CP/M-86 Operating System System Guide).
curdsk means current user disk, 0-15 (A-P).

usrcode means current user area, 0-15.

control p flag, 0 means do not echo console output to the
printer. FF means echo to the printer.

All Information Presented Here is Proprietary to Digital Research

2

CP/M~-86 System Guide Enhancements

PAGE 60
In Table 5-4. BIOS Subroutine Summary, in the description
of subroutine INIT,
change:
BDOS offset (0B1l1lH)

to:

BDOS offset (0BO6H)

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86"V Operating System

SYSTEM GUIDE

"Diskette Track Buffering Greatly Increases Performance
of the CP/M-86 Operating System”
by John R. Pierce
December 12, 1981

Addendum to the First Printing - 1981
CP/M is a registered trademark of Digital Research.
CpP/M-86 is a trademark of Digital Research.
Copyright © 1981 by Digital Research
Compiled February 1, 1982

Rotational latency is the major performance bottleneck 1in
diskette systems. The standard eight-inch diskette rotates at only
360 RPM or 6 turns/second, and a read coming at a random time might
take up to a full turn of the diskette or 167 milliseconds.
Diskette-based operating systems often compensate for this by
staggering track sectors, so several can be read in one turn.
However, systems still require several turns to read all of the
sectors of a particular track.

There are several techniques for reducing rotational latency.
One of the simplest and most effective of these methods is track
buffering; a track buffered system never needs more than two turns
to read an entire track. Two turns require only a third of a second
(worst case) instead of the full second or more required by the
standard technique of reading the sectors out of order, according to
a skew table traditionally used by CP/M® systems. In fact, 50% of
the time, only 1.5 turns are necessary. This translates to an
average of .167*1.5 seconds, or about a quarter second to read the
track (which contains up to 8192 bytes in a double-density 8-inch
floppy diskette).

However, nothing is free. Track buffering requires that the
CBIOS contain a buffer large enough to hold the complete track,
often 8192 bytes. Because most 8086 systems have plenty of memory,
this should not cause a problem. Also, diskettes formatted with
physically staggered sectors require multiple turns to read all
sectors, resulting in significant performance degradation. This can
only be remedied by copying these diskettes onto consecutively-
skewed diskettes.

The following algorithm implements this track buffering scheme,
in a fashion compatible with any existing CP/M diskette format. You
must insert this module into your CBIOS, using the existing disk
drivers to perform the TRACK_READ and SECTOR_WRITE functions. The
EQUates for HOST_ SECTSIZ, HOST SPT, and HOST FSN should be set to
the appropriate values outlined in the comments.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 System Guide "Diskette Track Buffering"

A potential problem with any deblocking scheme is knowing when
to "flush" the buffer following writes. The crudest scheme is to
allow each write to cause an immediate disk write. This, however,
takes a turn of the disk for each 128 byte record. Under CP/M,
because all output files must be closed, and all closes cause a
directory write, you can assume that you can save the records in
memory, as long as you flush the buffer after each directory write,
Conveniently, CP/M-86"'s BDOS sets a flag in CL when calling WRITE,
indicating whether this is a write to the directory or not. This is
the same scheme used by the standard sector blocking and deblocking
algorithm distributed with CP/M-86TM, The track buffering algorithm
also notes which disk sectors have been updated in the buffer. When
the algorithm writes from the buffer, it need only write to the
updated physical disk sectors.

The TRACK READ routine may consist of a loop that invokes your
sector read for each sector. However, many disk controllers can
read a whole track with a single command. Indeed, with some
controllers, this is the only way to read a track in one turn.
Optimization is also achieved by reading the track starting with the
next sector passing under the heads. This method cuts the
rotational latency to a fixed single turn rather than the one to two
turns required if you must wait for sector one to start reading.
Note that this possibility is highly controller-dependent, and
generally requires a "read identification" capability to identify
the next sector number. However, it should increase performance by
about another 30%.

When using track buffering, the performance of a read-back
check after each write causes much less degradation than when
reading and writing individual sectors. This is because the check
takes only one additional turn per track, rather than 26 or more.
Furthermore, on a read-back check error, it would even be possible
to re-write the bad sector in an attempt to correct it. This
reduces the error rate for eight-inch diskettes from its present
very low value to virtually none, while slowing writes down by only
30% or less.

Note that NO provision is made in this algorithm for handling
diskette errors. It is assumed that the TRACK_READ and SECTOR_WRITE
subroutines print approprlate error messages and perhaps even obtain
operator responses. This is because an error may occur when writing
a buffer, while CP/M thinks you are reading from the other drive!
The only module that can handle disk errors properly is the BIOS
itself,

If interrupts occur when the diskette door is opened, you can
check the write flag to see if the buffer is dirty, and either clear
the write flag and SEC_FLAGS array, or indicate that a write has
occurred with a beep, or in some other fashion. If the system has
programmable status lights, it is a good idea to set a light when
WRITE FLAG is set, and clear the light when the flag is cleared. If
the system supports a programmable door lock mechanism, it can be
set while the buffer is dirty, making the system failsafe.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide "Diskette Track Buffering"

These track buffering algorithms work with any sector size that
is an integral multiple of 128, and not necessarily a power of two.
This allows implementation of more dense diskette formats.
Naturally, any system that implements nonstandard diskette formats
should still have some way to read standard CP/M 3740 format
diskettes for interchange.

The following is a Source Listing of the CP/M-86 Accelerator
Track Buffering Routine for CP/M-86.

H k % k k % % k k %k k k k % k k k *k kx k k k k * k k *k * %k *
. * *
’
H * CP/M-86 Accelerator -- Track Buffering Routines *
. * *
’
H * This module, when installed in a CBIOS, causes *
; * CP/M-86 to perform disk input output on a *
H * track by track basis, rather than sector by *
; * sector. *
H * This speeds diskette access, often by a *
; * factor of four or more times. *
. * *
: * The actual disk sectors must be an integral *
; * multiple of 128 bytes, but do not need to be *
; * a power of two multiple, unlike the deblocking *
; * algorithms supplied with CP/M-86. *
. * *
; * k % % % % k %k k k% %k % k k %k %k k %k % % %k %k %k k % %k *x %k %
; The following three equates must be set to correspond to the
; actual disk utilized.
host_sectsiz equ 1024 ; bytes per actual (physical)
; disk sector
host_spt equ 8 ; actual sectors per track
host_fsn equ 1 ; starting sector number
; (only 0 or 1 allowed)

cpm_fsn equ 0 ; first sector from CP/M
init:

call clear flags ; Initialize track buffering

jmp CCP_entry
seldsk:

save the selected drive
check logged-in bit
not first time

mov cpm_disk,cl
test 41,1
jnz old_disk

“e we we

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 System Guide Addendum

old_disk:

mov bl,cpm_disk ! mov bh,0
mov cl,4

Track Buffering Routine

: selected if nz

here if CP/M is about to login to the drive being

H
; selected.

! shl bx,cl

add bx,offset dpbase

ret

setdma:
mov
ret
setdma segqg:
~ mov
ret

home:

test wr_flag,l1 ! jnz homel

mov

homel:
mov

settrk:
mov
ret
setsec:
mov

ret

sectran:
mov
test
jz
add
mov
mov

sectran_exit:

ret
read:

call

push

mov

add

les

rep

dma_offset,cx

dma_segment,cx

cur_disk,-1

cx,0

cpm_track,cx

cpm_sec,Cx

bx,cx

dx,dx
sectran_exit
bx,dx

bl, [BX]

bh,0

setup
es

si,offset track_buffer

si,ax

di,dma_longword

movsw

e W o

-e -0

e we

N WO Ne we we we

times 16
gives offset from DPBASE
back to BDOS

- “E we

save DMA offset address

~e

save DMA segment address

~e

; if the buffer is clean,
insure we read the directory
by invalidating :
the track buffer

home is a settrk zero
save track number for next operati

save sector number
for next operation

Put logical sector into dest. reg.
see if table address is zero

yeah, logical = physical

else, we need to fetch the

actual sector number from the tabl:
zero high byte for good luck

save the extra
segment register
source segment
is systems DS:
gives the offset
into the buffer
point ES:DI at
the users sector
doit : :

WO WO NE NE N N We wE

All Information Presented Here is Proprietary to Digital Research

4

CP/M-86 System Guide Addendum

pop es ;
sub ax,ax H
ret
write:
push (0)4 ;
i
call setup
push ax :
push ds ;
push es 7
mov bx,ds ! mov es,bx :
i
mov di,offset track _buffer ;
i
add di,ax :
1ds si,dma_longword :
rep movsw H
pop es H
pop ds H
H
pop ax ;
mov cx,host_sectsiz H
H
sub dx,dx H
div cx :
7
mov bx,ax :
mov sec_flags[BX],1 H
H
mov wr_flag,1 :
H
pop cX ;
cmp cl,1 ;
jne return :
call flush buffer ;
H
7
return:
mov ax,0 ;
ret
setup: ; common code for
mov al,cpm_disk ;
cmp al,cur_disk ;
jne wrong_track ;
mov ax,cpm_track :
i
cmp ax,cur_track H

Track Buffering Routine

restore the extra segment
make a zero return code

save the write mode
from the BDOS

save buffer offset

save the data segment
save the extra segment
destination is our

data segment

destination is in

track buffer

plus appropriate offset
source is users DMA address
move that sector

restore the extra segment
and the data

segment registers

recover buffer offset
setup to divide by

host sector size

extend ax to 32 bits

find out which host
sector we changed

put into index [BX]

set the update flag

for that sector

also set the dirty

buffer flag

recover BDOS write code
is this a directory update ?
no, we may leave

dirty records in the buffer
we have a directory
write, need to

flush the buffer

to insure the

disks integrity

never return BAD SECTOR code

setting up reads and writes

see if selected disk is
the same as last time
no, we have wrong track

see if desired track is
same as
the track in the buffer

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide Addendum

je

e we e wo

wrong_track:
call

mov
mov
mov
mov
mov

mov
call

correct_track:
mov

correct_track

flush_buffer

ax,cpm_track
cur_track,ax
al,cpm_disk
cur disk,al

cur_dma,offset track_buf

cur_sec,host_£fsn
track_read

ax,Ccpm_sec

if (cpm_fsn ne 0)

sub

endif
mov
shl

mov cx,64 !

ret

flush_buffer:
test

jz

mov
mov
next_sect:
test

jz
mov
push
push
mov
mul
add
mov

ax,cpm_f£fsn

cl,?
ax,cl

cld

wr_flag,1
no_flush

bx,0
cx,host_spt

sec_flags[BX],1

not_updated
sec_flags[BX],0
bx

cx
ax,host_sectsiz
bx

ax,offset track_buffer

cur_dma,ax

if (host fsn ne 0)

add
endif

bx,host_ fsn

-
14
.
14

e wo

H
7
7
;
fe

~e o we

-

e we

~e weo we o

e WO Ne N N o

- WO WNE W W

0 we weo

Track Buffering Routine

same drive and track,
we don't need to read

Desired operation is on a different track than is in our
buffer, so it will be necessary to read in the desired tracl
First, we must check to see if any sectors of the current
buffer are dirty.

write any old records,
if necessary

get desired track number
make in new track

get desired disk number
make it current drive

r ; point dma offset

at track buffer

starting from first sector
load the track

get the cp/m sector number

correct if we start
with sector one

log2(128)

sector times 128
gives offset

move 64 words forward

see if we have anything
to write

no, skip scanning

for dirty sectors

start at host sector 0

for host_spt sectors...

see if this sector

has been changed

no, leave it alone

zero the flag for next tim
save the registers

make track buffer offset
make direct pointer
save for write routine

All Information Presented Here is Proprietary to Digital Research

6

CP/M-86 Syst

mov
call
pop
pop

not_updated:
inc
loop

no_flush:
mov
ret

clear_flags:

mov
sub
mov
mov

mov
mov
rep
ret

track_read:

ret

sector_write

ret

dseg

cpm_disk
cpm_track
cpm_sec

dma_offset
dma_segment
dma_longword

cur_disk
cur_sec
cur_track
cur_dma

em Guide Addendum

cur_sec,bx
sector_write
cx

bx

bx
next_ sect

wr_£flag,0

e W W o

setting the old drive

cur_disk,-1

ax,ax

wr_flag,al
di,offset sec_flags

bx,ds ! mov es,bx
cx,host_spt ! cld
stosb

~e weo

e W0 =

rb
rw
rw

rw
rw
equ dword ptr dma_offset

e e

rb
rw
rw
rw

=

-e

Track Buffering Routine

save host sector number

clear the dirty buffer flag

Clear all variables associated with the track
buffer, so next operation will have to read a track.

This is involves clearing all write flags and

code to the invalid -1.

e W NG NP N N W e

insure initial pre-read

make a zero

clear the dirty buffer flag
point to the update

flag list

ES <- DS

set length and direction
zero the sector update flags

read an entire track from the drive "cur_disk",
the track "cur_track" into "track_buffer".

write a physical sector to disk "cur_disk",
track "cur_track", sector "cur_sec" from
the buffer at DS:"cur_dma".

All Information Presented Here is Proprietary to Digital Research

7

CP/M~-86 System Guide Addendum Track Buffering Routine

bdos_wr_code rb 1 ;i 1 indicates a directory write
wr_flag rb 1 ; bit 0 on indicates we have a
; dirty buffer
sec_flags rb host_spt ; bit 0 of each byte on indicates
: corresponding host sector has
; been updated and needs writing
track_buffer rb host_sectsiz * host_spt

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 " Operating System
Implementation Note

Notes for operation of CP/M-86 with the
ISBC*™ 86/12 and ISBC'™ 204 Controller Boards

Copyright © 1982 by Digital Research, Inc.

CP/M-80 and CP/M-86 are trademarks of Digital Research, Inc.
Intel is a registered trademark of Intel Corporation.
ISBC is a trademark of Intel Corporation.

SA-800 is a trademark of Shugart Associates.
Compiled February 1982

The standard CP/M-86™" release is set up for operation with
the Intel®sBCTm 86/12a and SBC"m 204 diskette controller, with two
Shugart SA-800"™ single density drives. The SBC 86/12 board has
32K bytes on board that is set up starting at location zero.
Additional RAM is assumed to start at location 10000H (paragraph
1000H) . The initial values of the segment table define this
additional RAM area to be 64K bytes in length as provided in the
BASIC I/0 System (BIOS). Refer to the GETSEGT BIOS entry point, as
well as the SEGTABLE data areas in the BIOS and CBIOS (listed in
Appendixes D and E of the CP/M-86 Operating System System Guide) for
the segment table definition.

Note that you can operate with less than 64K bytes of
additional RAM (a 32K RAM area at 800H suffices), but the segment
table must be changed before operating with programs which assume
the full 64K is available. You can, for example, immediately enter
DDT86 and manually alter the segment table in the BIOS to reflect
the reduced memory configuration. Upon returning from DDT86 to the
CCP level, any remaining transient programs,such as ED and ASMS86,
operate properly until the next cold start. Permanent segment table
changes can be accomplished by editing the BIOS using this temporary
CP/M-86 system or a CP/M-80"™- system.

To use the distribution system, the SA-800, SBC 86/12a, and the
SBC 204; boards must be "jumpered" in the following manner. See the
Shugart and Intel hardware for the exact jumpering details.

The SA-800 Diskette Drive "A" is jumpered as follows:

Install Jumpers:
T., 12, T3, T4, TS5, T6, DS1l, DC, 800, 2, A, B, C, DS

Remove Jumpers:
HL, DDS

Cut Trace:
RR

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 Implementation Note

The SA-800 Diskette Drive "B" is jumpered as follows:

Install Jumpers: ~
T2, DS2, bC, 800, Z, A, B, C, DS

Remove Jumpers:
HL,DDS

Cut Traces:
R, RR

Wire a connection from wire wrap pin at edge connector pin 4 to
wire wrap pin at right side of pair at "R" as shown below (only for
drive "B"). This connection implements "Radial Ready."

——— o ——— ——— — — - . Vit G} S — -

Pin 2 |===m————m= °
Pin 4 |==—====m-- °

The SBC 204 Diskette Controller is jumpered by installing the
following connections:

Switches to Select Port A0 through AF:
l, 2, 3, 4, 6 and 8 are OFF
5 and 7 are ON

Install Jumpers:

26-27, 77-78, 75-76

All Information Presented Here is Proprietary to Digital Research

2

CP/M~-86 Implementation Note

The SBC 86/12a (or 86/12) CPU card is jumpered as follows:

Install Jumpers:
65 through 91: Interrupts as desired *
5-6 (Time-Out Acknowledge)
7 through 37: Parallel I/O as desired **
40-39, 43-42 (Baud Rate from PIC Channel 2)
54-55, 56-57, 59-60 (PIC Clocks)
92-93 (CPU Clock)
103-104, 105-106 (Bus Clocks from CPU)
151-152 (Serial Priority)
94-96, 97-98 (ROM's are 2716 Type)
127-128 (On-Board RAM is at 00000H)

Switches:

l, 2, and 8 are ON

3, 4, 5, 6, and 7 are OFF
Even ROM (0) in Socket A29
0dd ROM (1) in Socket A47

Notes:

* CP/M-86 does not use interrupts. Normally 65 through 91 are
unchanged from the factory configuration.

** Cp/M-86 does not use parallel I/O. Normally 7 through 37
remain unchanged.

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86"™ V1.1, Application Note 01, 3/08/82

Copyright ©1982 by Digital Research, Inc., Pacific Grove, CA 93950

BDOS DATA PAGE "TOD/DATA"™ FIELDS

Applicable products and version numbers: CP/M-86TM V1.1

Program: BDOS

The date field is located at the base of the data page + 32D
bytes. The date field format is:

MM/DD/YY,
MM is the month (ASCII)

DD is the day (ASCII)
YY is the year (ASCII)

The time field is located at the base of the data page + 41D
bytes. The time field format is:

HH:MM:SS,
HH is the hour (ASCII)

MM is the minute (ASCII)
SS is the second (ASCII)

The slash, colon and comma are literal characters in both the
time and date representation.

These fields are initialized and displayed with the TOD command.
(See the CP/M-86 Operating System User's Guide, pages 72-73.)

Licensed users are granted the right to include these
modifications in CP/M-86 V1.1l software. CP/M-86 is a trademark of
Digital Research.

All Information Presented Here is Proprietary to Digital Research.

