INDIGITAL RESEARCH

- Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403
CP/M ASSEMBLER (ASM)
USER’S GUIDE
-~

COPYRIGHT © 1976, 1978

DIGITAL RESEARCH

Copyright © 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trans-
lated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents
Section Page

1. INrmmION 00000000 C0 00000000000 NOIISOESIBOINOGOIOGOEOINEOSDS
2. PR%RAM mRMAT 800 0000080000000 000000000000%0000000s00
3. mmING TI-IE @ERAND 00 00 000000008000 0QCCCOCOCEOGEOSIOSOINPOIOTEOEOSETOTOIDO
3.1. [abels 900 0000080000000 COBORSOIEOCOCNRNISIPIOIOONEOSOEOSNDONIOIOSTS
3.2. Nlm‘eric Constants P00 0000 00O DPOEOIOSOONOEBSOEOGEONONOSLOESOSDBNDS
3.3. Reserved Words 0090000000000 00000000000000 0000
3.4. Strinq ConStants [N N F N RN RN N NNNNNNNNNNNYNNNNNN]
3.5. Arithmetic and Logical Operators sceseosscceens
3.6. Precedence Of OperatorS ceescececssccccncccsce
4. ASSEMBI.IER DIRECrIVES 0000000000000 060BOBONOGLOOIOGIOSIIOINOSEOBSNOETPBDS
4.1‘ The Om DireCti-ve 900000 Q0COOGOEBOOIBGNEGEOOEPOTOEOOSEPOSTOIOSOIOSIDOTDS
4.2. The END Directive 00 000 0000800000 CSINGEOEOGOSLISLIOEOSSITOSTS
4.3. The EQU DireCtive 900 0000000000380 0600000000000
4.4. The SEI‘ Directive P00 0B 0000 COQOQCGOOGESIOSTEONSIOINOINPOEOSITISITPOTS
4.5. The IF and ENDIF DirectiVeS es0esscssssscescsee
4,6, The DB Di‘rective 000000000000 0000000000000000 ¢ 11
4.7. The mDireCtive 20000 0000000000000 OCBSLROIOGSINOSIONOGDIDS 12
5. OPERATION mDES [E N NN RN NN NENNENNNNNNNNNNENNENNNNERNNENNNRNN] 12
5.1 Jumps, Calls, and REtUINS sececcccsssssssscses 13
5.2. Immediate Operand Instructions sececccescscees 14
5.3. Increment and Decrement Instructions eeeseecees 14
5.4, Data Movement INstructionS seceeeescscccssssss 14
5.5. Arithmetic Logic Unit Operations ceeececcecscee 15
506. Control Instructions 0000000000000 OCFOMNOIOIOGIOGOOONOSITS 16
6. ERmR MSSAGES 9000000005000 0000000000000 00000000000 16
7. ASMLE SESSIQ‘] 900 000G G0 OOOOO P OO OPEOPIVGBOSIIOSIOSIOSEOIOLIOSIBIBLOLOSOETS 17

[
RO OO0OOIANNUTH DN

—
=

CP/M Assembler User ‘s Guide

1. INTRODUCTION.

The CP/M assembler reads assembly language source files from the diskette,
and produces 8080 machine language in Intel hex format. The CP/M assembler is
initiated by typing

ASM filename
or
ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name
filename ,ASM

which contains an 8080 assembly language source file., The first and second
forms shown above differ only in that the second form allows parameters to be
passed to the assembler to control source file access and hex and print file
destinations,

In either case, the CP/M assembler loads, and prints the message
CP/M ASSEMBLER VER n,.n

where n.n is the current wversion number. In the case of the first command,
the assembler reads the source file with assumed file type "ASM" and creates
two output files

filename ,HEX
and
filename ,PRN

the "HEX" file contains the machine code corresponding to the original program
in Intel hex format, and the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second command form can be used to redirect input and output files
from their defaults. In this case, the “parms" portion of the command is a
three letter group which specifies the origin of the source file, the
destination of the hex file, and the destination of the print file. The form

is
filename .plp2p3
where pl, p2, and p3 are single letters

pl: A,B, ..., Y designates the disk name which contains

the source file

p2: A,B, .es, ¥ designates the disk name which will re- .
ceive the hex file
yA skips the generation of the hex file
p3: A,B, ..., Y designates the disk name which will re-
ceive the print file
X places the listing at the console
Z skips generation of the print file

Thus, the command
ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A,
This form of the command is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command
is equivalent to

AM X
The cammand

ASM X,ABX
indicates that the source file is to be taken from disk A, the hex file is
g;?“iaedndon disk B, and the listjng file is to be sent to the console. The

AM X,BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this cammand is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler., That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. These
extensions are described below.

‘2. PROGRAM FORMAT.

An" assembly language program acceptable as input to the assembler consists
of a segquence of statements of the form '

line# label operation operand ;comment

where any or all of the fields may be present in a particular instance. Each

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the assembler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program 1line number, which is allowed on any source line to maintain
compatibility with the Processor Technology format. In general, these line
numbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or
identifier:

and' is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. = Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all 1lower case
alphabetics become are treated as if they were upper case., Note that the *":®
following the identifier in a 1label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels '

X Xy longS$name
X: yx1: longer$namedSdata:
X1y2 X1x2 X234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8688 machine operation code. ‘The pseudo operations and
machine operation codes are described below. :

The operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. BAgain, the complete details of properly formed
expressions are given below.

The camment field contains arbitrary characters following the ";“ symbol
until the next real or logical end-of-line. These characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements which begin with a "*" in column one as comment statements,
which are listed and ignored in the assembly process., Note that the Processor

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel’s language, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ";" before
these fields in order to assemble correctly.

The assembly language program is formulated as a seguence of stateme'nts of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements., Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a 16-bit wvalue during the assembly. Further, the
number of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte move immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance is given with the individual
instructions. . :

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.d, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels, If the label precedes an EQU or SET, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement,

When a label appears in the operand field, its wvalue is substituted by the
assembler., This value can then be combined with other operands and operators
to form the operand field for a particular instruction.

3.2, Numeric Constants,

A numeric constant is a 16-bit value in one of several bases, The base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
o) octal constant (base 8)

Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers since the letter O is
easily confused with the digit 4. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an
optional radix indicator, where the digits are in the appropriate range for
the radix., That is binary constants must be composed of @ and 1 digits, octal
constants can contain digits in the range # - 7, while decimal constants
contain decimal digits., Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (1¢p), B (11D), C (12p), D (13D), E (14D), and F
(15D) . Note that the leading digit of a hexadecimal constant must be a
decimal digit in order to avoid confusing a hexadecimal constant with an
identifier (a leading @ will always suffice)., A constant composed in this
manner must evaluate to a binary number which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed within constants to improve their
readability. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants ‘

1234 1234D 1100B 11113000051111S0000B
1234H OFFEH 33770 33$77$220Q
33770 @fe3h 12348 0ffffh

3.3. Reserved Words.,

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
B "
C 1
D 2
E 3
H 4
L 5
M 6
Sp)
PSW 6

(again, lower <case names have the same values as their upper case
eguivalents), Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the specific operand becomes a part of the binary bit pattern

" "*e instruction (e.g, MOV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, MOV produces 40H).

When the symbol "$" occurs in the operand field (not imbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line,

3.4. String Constants.

String constants represent seguences of ASCII characters, and are
represented by enclosing the characters within apostrophe symbols (°). All
strings must be fully contained within the current physical 1line (thus
allowing "!" symbols within strings), and must not exceed 64 characters in
length. The apostrophe character itself can be included within a string by
representing it as a double apostrophe (the two keystrokes °°), which becomes
a single apostrophe when read by the assembler. In most cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively, Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

P— . v

A AB ‘ab’ ‘c’
‘Walla Walla Wash.

‘She said ““Hello™” to me.’
‘I said "Hello" to her.’

.
1]

3.5. Arithmetic and Logical Operators.

The operands described above can be combined in normal algebraic notation
using any cambination of = properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a+hb unsigned arithmetic sum of a and b

a->b unsigned arithmetic difference between a and b
+b unary plus (produces b)
-b unary minus (identical to @ - b)

a*b unsigned magnitude multiplication of a and b

a/b umnsigned magnitude division of a by b

a MOD b remainder after a / b

NOT b logical inverse of b (all #°s become 1°s, 1°s

become @°s), where b is considered a 16-bit value

aAND b bit-by-bit logical and of a and b

aORb bit-by-bit logical or of a and b

a XORb bit-by~bit logicl exclusive or of a and b

a SHL b the value which results from shifting a to the
left by an amount b, with zero fill

a SHR b the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as '

108+20 16h+37Q Ll /3 (L2+4) SHR 3
("a” and 5fh) + “@° ("B'+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+1)) -

Note that all camputations are performed at assembly time as l6-bit unsigned
operations, Thus, -1 is computed as #-1 which results in the wvalue @ffffh
(i.ee, all 1°s). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI ~-1" produces an error message (-1
becomes @ffffh which cannot be represented as an 8 bit value), while "ADI (-1)
AND @FFH" is accepted by the assembler since the “AND" operation zeroes the
high order bits of the expression,

3.6. Precedence of Operators,

As a convenience to the programmer, ASM assumes that operators have a
‘relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses, The resulting expression
has assumed parentheses which are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
below, Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), while operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a*b+c (@a*b) +c
a+b* e a+ (b*c)
aMDb * c SHL 4 ((a MOD b) * c) SHL d-

AORDbANDNOI' ¢ + d SHL e aOR(bAND(NOI‘(c+(dSHLe))))

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(@ ORDb) AND (NOT c) +d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NOT ¢) + (d SHL e))

Note that an wnparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed,

4. ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assnmbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation” which appears in the operation field of the line, The
acceptable pseudo cperations are

ORG set the program or data origin

'END end program, optional start address
EQU numeric "equate*

SET . numeric "set"

IF begin conditional assenbly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

DS define data storage area

The individual pseudo operatlons are detailed below
4.1. The ORG directive, ’
The ORG statement takes the form
label ORG expression

where "label” is an optional program label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas, Note that most programs written for
the CP/M system begin with an ORG statement of the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M
transient program area., If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4,2, The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label END
label END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
2004, Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results fram the assembly).
Thus, most CP/M assembly language programs end with the statement

END 1060H

resulting in the default starting address of 100H (beginning of the transient
program area).

4,3. The EQU directive,

The EQU (equate) statement is used to set up synonyms for particular
numeric values, the form is

label BQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression, and assigns this value to the identifier
given in the label field., The identifier is usually a name which describes
the value in a more human-oriented manner, Further, this name .is used
throughout the program to “parameterize" certain functions, Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output port in
sequence., The series of eguate statements could be used to define these ports
for a particular hardware environment

TTYBASE EQU ~ 1@H sBASE FORT NUMBER FOR TTY
TTYIN BQU TTYBASE ;TTY DATA IN :
TTYOUT EQU TTYBASE+l;TTY DATA OUT

At a later point in the program, the statements which access the Teletype
could appear as

IN TTYIN ;sREAD TTY DATA TO REG-A

our TTyour k;WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute i/o ports had been
used. Further, if the hardware environment is redefined to start the Teletype
communications ports at 7FH instead of 10H, the first statement need only be
changed to

TIYBASE EQU 7FH ;sBASE PORT NUMBER FOR TTY
and the program can be reassembled without changing any other statements.
4.4, The SET Directive,
The SET statement is similar to the EQU, taking the form :
label SET expression

except that the label can occur on other SET statements within the program.
The expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the point where the label occurs on the next SET statement., The use of the
SET is similar to the EQU statement, but is used most often in controlling
conditional assembly.,

4,5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#2
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#]l through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" program which includes a number of
possible run-time environments, with only a few specific portions of the
program selected for any particular assembly. The following program segments
for example, might be part of a program which communicates with either a
Teletype or a CRT console (but not both) by selecting a particular value for
TTY before the assembly begins

10

TRUE EQU @FFFFH :DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE

’

TTY EQU TRUE :TRUE IF TTY, FALSE IF CRT

'i‘TYBASE EQU 10H ;BASE OF TTY I/0 PORTS

CRTBASE BEQU 20H ;BASE OF CRT I/O FORTS :
IF TTY ;ASSEMBLE RELATIVE TO TTYBASE

CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT' EQU TTYBASE+l ;CONSOLE OUTPUT
ENDIF
' IF NOT TTY ;ASSEMBLE RELATIVE TO CRTBASE
CONIN EQU CRIBASE ';CONSOLE INPUT
CONOUT EQU CRIBASE+l1 ;CONSOLE OUTPUT
ENDIF ‘
IN CONIN ;READ QONSOLE DATA

our QonNour ;WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a Teletype
is connected, based at port 1@H. The statement defining TTY could be changed
to :

TTY EQU FALSE
and, in this case, the program would assemble for a CRT based at port 20H,
4,6, The DB Directive.

. The DB directive allows the programmer to define initialize storaqé areas
in single precision (byte) format. The statement form is

label DB e#l, e#2, «.., €#n

where e#l through e#n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the number
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must ‘stand alone
between the commas). Note that ASCII characters are always placed in memory
with the parity bit reset (@). Further, recall that there is no translation
from lower to upper case within strings., The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

11

valid DB statements are

data: DB 40,1,2,3,4,5
signon: DB ‘please type your name ,cr,lf,@

.

DB 'AB° SHR 8, 'C°, 'DE" AND 7FH

4,7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ..., €¥n

vhere e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two characters disallowed. In all cases, the data storage is
consistent with the 8088 processor: the least significant byte of the
expression is stored forst in memory, followed by the most significant byte.
Examples are ‘

doub: DW @ffefh,doub+4,signon-$,255+255
" DW ‘a’, 5, ‘ab”, ‘CD°, 6 shl 8 or 1lb

4,8. The DS Directive.

The DS statement is used to reserve an area of uninitialized memory, and
takes the form

label DS expression

where the label is optional, The assembler begins subsequent code generation
after the area reserved by the DS. Thus, the DS statement given above has
exactly the same effect as the statement

label: EQU $;LABEL VALUE IS CURRENT QODE LOCATION
ORG S+expression ;MOVE PAST RESERVED AREA

5. OPERATION CODES.

Assembly language operation codes form the principal part of assembly
language programs, and form the operation field of the instruction, In
general, ASM accepts all the standard mnemonics for the 1Intel: 8680
microcomputer, which are given in detail in the Intel manual “8080 Assembly
Language Programming Manual." Labels are optional on each input line and, if
included, take the .value of the instruction address immediately before the
instruction is issued., The individual operators are listed breifly in the

12

following sections for campleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. 1In each case,

e3 represents a 3-bit value in the range @-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range #-255
elé6 represents a 16-bit value in the range #-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to warticular values
within the allowable range, such as the PUSH instruction., These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its most
general form, along with a specific example, with a short explanation and
special restrictions.

5.1. Jumps, Calls, and Returns,
The Jump, Call, and Return instructions allow several different forms

‘which test the condition flags set in the 8080 microcomputer CPU. The forms
are

JMP elé6 JMP L1 Jump unconditionally to label

JNZ el6 JMP L2 Jump on non zero condition to label
~JZ el6 JMP 100H Jump on zero condition to label
~JNC - el6 JINC Ll+4 Jump no carry to label

JC elé6 JC L3 Jump on carry to label

JBO elé6 JEO $+48 Jump on parity odd to label

JPE el6 JPE L4 Jump on even parity to label

JP elé6 JP GAMMA Jump on positive result to label

JM el6 - JIM al Jump on minus to label

CALL el6 CALL S1 Call subroutine unconditionally

CNZ el6 CNZ S2 Call subroutine if non zero flag

CZ elé6 Cz 1008 Call subroutine on zero flag
NC el6 ANC S1+4 Call subroutine if no carry set

CC el6 cC s3 Call subroutine if carry set
CRO el6 CEO $+8 Call subroutine if parity odd
CPE el6 CPE 5S4 Call subroutine if parity even

CP el6 CP RAMMA Call subroutine if positive result
CM elé6 CM blS$c2 Call subroutine if minus flag

RST e3 RST @ Programmed “restart", equivalent to
CALL 8*e3, except one byte call

13

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine

" Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result

" Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which perform immediate arithmetic or logical operations on the
accumulator (register A), '

MVI

ADI
ACI
SUI
SBI
ANI
XRI
ORI
CpI

IXT

e3,e8

e8
e8
e8
e8
e8
e8

.e8

e8

e3,el6

MVI B,255

ADI 1

ACI @FFH

SUI L + 3

SBI L AND 11B
ANI $ AND 7FH
XRI 111130000B
ORI L AND 1+1
CPI “a’

IXI B,100H

Move immediate data to register A, B,
¢, D, E, H, L, or M (memory)

Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
logical "and" A with immediate data
"Exclusive or” A with immediate data
Logical "or" A with immediate data
Compare A with immediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be eguivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided

in the 8080 repetoire for incrementing or

decrementing single and double precision registers. The instructions are

INR

DCR

INX

BCX

e3
e3
e3

e3

INR E

DCR A

INX SpP

ICX B

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
produces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions,

14

Instructions which move data from memory to the CPU and from CPU to
memory are given below

MOV e3,e3

LDAX
STAX
LHLD
SHLD

LA
STA
POP

- PUSH

IN
our
XTHL
PCHL
SPHL
XCHG

e3
el
elé
el6

elé6
el6

e3

e3

e8
e8

MOV A,B

LDAX B
STAX D
LHLD 11
SHLD L5+x
LA Gamma
STA X35
FOP PSW
PUSH B

IN @

OUT 255

Move data to leftmost element from right-
most element (e3 produces one of A,B,C
D,E,H,L, or M), MOV M,M is disallowed

Load register A from computed address
(e3 must produce either B or D)

Store register A to computed address
(e3 must produce either B or D)

Load HL direct from location el6 (double
precision load to H and L)

Store HL direct to location elé6 (double
precision store from H and L to memory)
Load register A from address el6

Store register A into memory at elé6
Load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Ioad register A with data from port eS8
Send data from register A to port e8
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack pointer with data from. HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.,

Instructions which act upon the single precision accumulator to perform

arithmetic and logic operations are

ADD
ADC
SUB
SBB
ANA
ORA
CMP

cMa
' STC

e3

e3
e3

e3

e3
e3
e3
e3

ADD B
AC L
SUB H
SBB 2
ANA 141
XRA A
ORA B
CMP H

Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L) ,
Add register to A with carry, e3 as above
Subtract reg e3 from A without carry,

e3 is defined as above

Subtract register e3 from A with carry,
e3 defined as above

Iogical "and" reg with A, e3 as above
"Exclusive or" with A, e3 as above
Logical “or" with A, e3 defined as above

_Compare register with A, e3 as above

Decimal adjust register A based upon last
arithmetic logic unit operation
Complement the bits in register A

Set the carry flag to 1

15

cMC , Complement the carry flag

RIC Rotate bits left, (re)set carry as a side
' effect (high order A bit becomes carry)
RRC Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
RAL Rotate carry/A register to left (carry is
involved in the rotate)
RAR Rotate carry/A register to right (carry

is involved in the rotate)
DAD e3 DAD B Double precision add register pair e3 to
- HL (e3 must produce B, D, H, or SP)
5.6, Control Instructions,

The four remaining instructions are categorized as control instructions,
and are listed below

HLT Halt the 8088 processor

DI Disable the interrupt system
EI Enable the interrupt system
NOP No operation ‘

6. ERROR MESSAGES.

Wwhen errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The
line in error is alsc echoed at the console so that the source listing. need
not be examined to determine if errors are present. The error codes are

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
' cannot be computed at assembly time

L Label error: 1label cannot appear in this context
' (may be duplicate label)

N Not implemented: features which will appear in
‘ future ASM versions (e.g., macros) are recognized,
but flagged in this wersion)

0 Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

P Phase error: label does not have the same value on
“two subsequent passes through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

\ Value error: operand encountered in expression is
improperly formed
Several error message are printed which are due to terminal error

conditions

NO SOURCE FILE PRESENT The file specified in the ASM command does
not exist on disk

NO DIRECTORY SPACE The disk directory is full, erase files
which are not needed, and retry

SOURCE FILE NAME ERROR Improperly formed ASM file name (e.g., it
is specified with "?" fields)

SOURCE FILE READ ERROR Source file cannot be read properly by the
assembler, execute a TYPE to determine the
point of error

OUTPUT FILE WRITE ERROR Output files cannot be written properly, most
likely cause is a full disk, erase and retry

CANNOT CLOSE FILE Output file cannot be closed, check to see
if disk is write protected
7. A SAMPLE SESSION,

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

(7

ASM SORT, assemble SaeT.st

CP/M ASSEMBLER -

B1i5C vuxx-ﬁna:aAdwss

VER 1.0

BO3H USE FACTOR o4 of —talle

FND OF ASSEMBLY

nxn"éokr.fd
SORT ASM Soune ﬁk(it -
SORT BAK b Vo (ast @di
SORT PRN prist filo (contawns ok Clavaciers)
SORT HE X mchcucdz.ﬁb, :
ATYPE SORT.PRN,
Source (me
code \cth SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE
W“d““‘ 0 START AT THE BEGINNING OF THE TRANSIENT PROGRAN Ab
G1o0 ORG 180K ‘
wnkdmbmpc‘dg
8100 214661*3 SORT. LXI H, SU ;ADDRESS SWITCH TOGGLE
0183 36081 MY I M, 1 JSET TO § FOR FIRST ITERATION
@165 2147681 LXI H, 1 ;ADDRESS INDEX
0188 3600 MY 1 M, 8 51 =8
H . .
. ; COMPARE 1 WITH ARRAY SIZE
818A 7E COMP. MOV A, M ;A REGISTER = I
8188 FEB9 CP1 N-1 ;CY SET IF 1 ¢ (N-1)
916D D21981 JNC CONT CONTINUE IF I <= (N-2)
; END OF ONE PASS THROUGH DATA
8110 214601 LK1 H, S8 ;CHECK FOR ZERO SUITCHES
0113 7EB7C20001 MOV A.M! ORA A! JNZ SORT ;END OF SORT IF Su=e
8118 FF . RST ? " ,GO TO THE DEBUGGER INSTEAD OF. RE
; “”‘“*“courluus THIS PASS
i ADDRESSING I, SO LOAD AY(I)> INTO REGISTERS
8119 SF16882148CONT. MOV E.A! MVI D,@! LXI H.,AY! DAD D! DAL D -
8121 4E792346 . MOV C,HM! MOV A,C! INX H! MOV B.M
- ; LOU ORDER BYTE IN A. AHD C, HIGH ORDER BYTE IN B
; MOY H AND L TQ ADDRESS AV(I+1)
8125 23 1HX o - |
f] .
; COMPARE VALUE WITH REGS CONTAINING AVCI)
8126 965778239 SUB M! MOV D,A! MOV A,B! INX H! SEB M SUBTRACT
s BORROW SET IF AVCI+1) > AVCI)
8128 DA3FO1 JC INCI ;SKIP IF IN PROPER ORDER
; CHECK FOR EQUAL VALUES
812E B2CA3FOI ORA D! JZ INCI sSKIP IF AVCI) = AV(I+1) 1§

wed 00T FF (ewadecouad)

-

8132 567082BSE MOV D.M! MOV M, B! DCX H! MOV E.N

8136 ?712B7228B73 Moy M,C! DBCK H! MOV M, D! DCX H! MOV M. E
‘. A
i INCREMENT SWITCH COUNT

813B 21468134 LXKI H,SU! INR M

; .
i INCREMENT 1
B13F 21478134C3INCI, LKI H, 1! INR MI JNP CONMP

s l

DATA DEFINITION SECTION

8146 00 S, DB 0 ;RESERVE SPACE FOR SWITCH COUNT
8147 I, DS { iSPACE FOR INDEK

G148 O56B648B1EAY. e 5, 100.36,50, 26,7, 1900, 360, 1808, -32767

BOGA = EQU ($-aY)/2 ;COMPUTE N INSTEAD OF PRE
015¢C ’*——-qunk walue END | | '
A>TYPE SORT.HEX,

. 10010008214601360121478136007EFEBSD2190140 _
,106110882146817EB7C20@81FFSF16002148011988 .

. 18812000194E79234623965778239EDAIFBE1B2CAAT "““%“" cade 1n
. 198136883FB156702B5E71287228732146013421C7 | HEX Tad

. 07014080470134C30A01006E -

. 190148860500854R01E08320014800700EBR32C01BB

. 0401580064006 180BE]

. 006 OBEOBOH]

A>DDT SORT. HEK, st dedsuq run

16K DDYT VEK 1.0

121 WS dounlt s (o et o 50D sk

-%Py .

P=00@0 100, c\u-?;‘]"c-(vqtoo | | : o M "
_ _ w

~UFFFF untvace o, €553 Sleps . \ i

COZOMAEQIO A=P0 B=p000 0'0800 Hx080® S=0108 P=081680 LXI H,8146+01080
118, e [0,shers |

C626MAEQIO® A=P1 B=0000 D=BB00 H=0146 S=0180 P=8188 LXI H.0146
COo26MBEQGIO® A=D1 B=8000G D=PBBO H=0146 S=@81080 P=0183 MVI M.B1
CoZ6MBE®I® A=P) B=3ARO D=RO00 H=0146 S=01008 P=8185 LXI H,8147
COZoMBEOIO® A=B1 B=2Q80 D=R008 H=0147 S=@100 P=08188 MVI M.B0
CoZBMPEBI® A=B1 B=POBO D=BOOBR H=0147 5=0108 P=018n MOV A.M
CoZeMPEOG]IG A=B0 B=0000 D=DGOO® H=0147 S=8106@ P=018B CPI @3
C126M1EQ]@ A~00 B=60P0 D=PBRB H=0147 S=0180 P=018D JUNC 8113
C1Z6MIEGI® A=B0 B=6000 D=BB0OD H=0147 S5=0186 P=8110 LXI H.@8146
C1ZBMIEQIO® A=00 B=B0NO D=BB0RO H=B8146 S=0100@ P=p113 MOV A.M
C1Z8MIEQGI® A=B1 B=3PR0 D=B00B H=0146 S=0100 P=8114 ORA A
CoZeMBEGI® A=81 B=0000 D=0000 H=0146 S=0108 P=B115 JUNZ 0188
COZBMPERI® A=P) B=00PO D=BOGR H=0146 S=08100 P=8180 LXI1 H.,B146
C6ZBMBEQGI® A=P) B=p0RO D=BORB H=B146 S=0100 P=8183 MVI M,81
CoZBMBEGIO A=P] B=D0BO D=BGOB® H=0146 5=01008 P=01083 LXI H,8147
CoZeMBERGI® A=0] B=B0OA® D=B000 H=0147 S=0108 P=B188 MYl M,80
CeZeMBEOGI® A=B) B=00QR@ D=POGE H=0147 S=01080 P=81BA MOV A,M*B1YB
~Aled . '

, 8 s
816D Bdc 19, cham‘vﬁ a Juse on cany ﬂﬁ;‘m - 19

-XFy

Po108 160, veset proqraw counter back b loejmmnj J’Fmsmm

-Ttg, “Hace grecitun For 1O skps

CoZaMBERI O A=BO B-n6BDE D=B008 H=0147 S=0100 P=0168 LXI
CoZ0MBEBlIO n=0b0 B=00B0 D=0000 H=0146 S=0100 P=0163 NVI
COZBMOEDID A=00 B=00BG D=BBOO H=06146 S$S=01866 P=01085 LXI
CoZaMBEOlO A=00 B=00606 D=0B00 H=0147 =01@G P=01@8 MVYI
LeZanMbEQOlG A=00 B=bGBOGO D=0000 H=8147 6i1e6 P=61@n MOV
CoZ26MPE@lO® A=DO B=0000 D=0008 H=©147 6lab6 P=810B CPI
C126M1E0I® A=b0O B=06BOG D=B6BO H=@147 P=616D JC
C1Z6MiEol@ A=008 B=00B0 DI=0000 H=0147 P=8119 WOV
C1ZeMiE@l® A=00 B=006BO D=0000 H=0147 P=g11n MVI
C1Z26M1EG]1B A=06 B=006DBO D=0060E H=G147 F=011C Lx1
C1Z6M1EB]IG A=00 B=00B0B D=0000 H=0148 P=@11F DAD

DO
i i
(LU LU v
O E

[N
-
=
<

LN T (N (S R [| B N

"' DA R {5 B Eo I Cu R 7 Y € R £ 0 X0 Y £

‘f6ZBMIE@IO A=08 B=00BO D=pBOB H=0148 S=01066 P=012@ DAD
'CezZeMiE@le A=@e B=eepd D=@@0u H=@143 S=@iea P=@l2! MOV
COZ@MIEQI® A=B0 B=60BS D=@080 H=V148 S=@18d P=&122 MOV
COZBMIEG1® A=65 B=06B5 D=B0@6 H=0148 S=010@ P=6123 INK
CeZ6MIEGI® A=85 B=060B5 D=B00B H=8149 $=01080 P=8124 MOV
-Lie@ .

2
P19B LXI H,B146 Ackomatic
8183 MVI M,B1 breakpoiut
8165 LXI H,8147
B128 MYI M, @0

B10A MOV AL M li5t some code

@106 CP1 @9
B1en JC 6119 o 100K
@118 LXI H, 0146
8113 MOV A, M
114 ORA A
8115 JNZ ©Blee
-2
B118 RST @7 L&t wmove
8119 MOV E.A
B11A MYI D,00
B1IC LXI H,@148

~ Ghovt (6t Lot rubast
-6, 118, stavt ’k)vozyau‘cfvu

H,B146

M, 61 5‘ Uy

H, 6147 o
M, @0 p‘\)‘t
A,
ANy
8119

E. A

L. 60
H.B148

o

D

(.

Ko U

H

B, M*B812%

curvent PC (01250 and Yuw (n veal ‘hwﬁ “l"o [1BH

¥0127 choPycc‘ wHh aw adevnal \wlro/mp"‘ 7 from £r Mfaucl (?mnmm was

"T42 Lok ak loopuay Proam inhee made 3 Locpry |

CoZ2BMBEOGI® A=38 B=0064 D=B00G6 H=0156 S=08100 P=0147 MOV
C6Z6MBEGIQ® A=38 B=BB64 D=3806 H=0156 S=01006 P=06128 MOV
C6Z6MBEGIB A=BO@ B=60864 D=3806 H=0156 S=0100 P:=0123 INX
C620MPEGIDO A=00 B=BB64 D=3806 H=0157 S=0lee P=@612A SEB
-Di4¢g

b148 BS 66 87 0B 14 BEO 1E 0O

B156 32 BO 64 6B 64 BB 2C B1 EB 07 Bl 86 b6 00 06 BO 2.

G160 B 60 Bv 0D 0B PO 6O 0O OB L. PO 6O DO BB Db BO

/Clad'a © Sorted, budk “7v03vaw doesnf 5“'517-

Do

20

-&F, return o CP/M

DDT SORT. HEX | '
2 reload 'qu memvy muxﬁg.

16K DDV VEK 1.0

NEXT PC
B15C GO
-%P

P=0000 160 set PC o \965""“‘."3 ”(P"’G“'“
-—LIGD‘? lot bad OYCO({C‘

818D JNC 0119/
B11A LXI H,8146

" abot |t unba ruboud
~A18D) assewble new gpode
@180 JC 119

's
Bite,

‘—uee’, et s‘arhvn sechon éF program

6186 LX1 H.B146
B183 MV HM,e1
8185 LX1 H,08147
018 MVl M,00

- oot list with cubsut

-103) ctm;f “surkela im'{-l;.héo.{vin Y dg

8133 MVI H,G)

\3195) .

e vebun e P/ with edlC (6F woks a5 wel)

SAVE 1 SORT.COM, Save 1 pose (256 bugtes, frome. 100K 0 1FFH) on disk W Case

AYDDT SORT.COM, yestart DOT weth
sSaved mewovy wmane

16K DDT VER 1.0

HEXT FC
Bzoe B1es CoM

"

we \«aw."*v velead |oter

“ ‘m:, c\lwass 5*‘"‘{’ W"““ address | 0OH

"Gg run the ?\r_%vawx ‘Cm ?C=lOOH
(25T7) enesuntertd

*0118 ?voc)mmed 5%9

~D148

8148 B5
8156 32
8168 88
0178 06

—Gd) return 4o CPIM

60
8o
Bo
8o

87
64
1"
8o

o8
o8
08
1)

14
64
08
00

X"
-1}
88
8o

1E 006 ...

2C 01 EB 03.8‘1 B8 @0 80 88 86 2.D. D,~

60 oe 03 08 DO #O 0B 8B 00 28
60 66 060 obp 00 bV Bb0Y 0B 060 0O

21

ED SORT.ASH, woke ch o mijl ?vaamm

cti-2 .
tN;G(%OTT fond wedt 7"
Hy1 M. 8 i1 = @

* —2 “Y one (m.t u'* ‘k"‘f

H.1 ~ ;ADDRESS INDEX
*=) up awer lm& :
nvl ", 1 JSET TD 1 FOR FIRST ITERATION
KT, K e 6nd fype waxd line
LXI | H.1 ;ADDRESS INDEX
*gexwwk ww (e
Myl M.B iZERD SW
1
LX] H, 1 ;ADDRESS INDEX
enancl Jer |
JNC*T, |
CONT ;CONTINUE IF I (= (H-2)
«-201cC2pLT
Je CONT ;CONTINUE IF I <= (N-2)
*E u!ce‘frm dlsﬁA
’ =yt

4SM SORT. naa{“&hpwnﬁk

CP/M ASSEMBLER - VER 1.0

B15C wadt addvas Jo assenbde
B8IH USE FACTOR
END OF ASSEMBLY

BDT SORT. HEX) {csfym)vmchmy

1€K DDT VEK t. @
NEZT PC

3150 pGoo
—Gl@%e

*@a118
—D14§J

fgahsma

B148 BS B8O 07 0B 14 OO I1E GO

8156 32 806 64 00 64 BB 2C o1 EB 03 01 80 66 68 96 PO.2.D.D.,.

8166 0@ 66 B8O 018 ©6 PO 0O PO BB 0O bO BO B8O OV B0 HO
- a\)oy‘{ w\‘“« rubond

68, returatv ¢~ proaus cleds Ok

