
DIIJ~[j~Tfll AESEflAl:H
Post Office Box 579, Pacific Grove, California 93950, (408) 373-3403

CP 1M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT © 1976, 1978

DIGITAL RESEARCH

Copyright © 1976, 1978 by Digital Research. All rights
reserved. No part of this pUblication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trans­
lated into any language or computer language, in any form or
by any means, electronic; mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Page

1. INTRODUCTION ••••••••••••••••••••••••••••••••••••••• 1
2. PROGRAM FORMAT ••••••••••••••••••••••••••••••••••••• 2
3. FORMING THE OPERAND •••••••••••••••••••••••••••••••• 4

3.1. Labels ••••••••••••••••••••••••••••••••••••••• 4
3.2. Numeric Constants •••••••••••••••••••••••••••• 4
3.3. Reserved Words ••••••••••••••••••••••••••••••• 5
3.4. String Constants ••••••••••••••••••••••••••••• 6
3.5. Arithmetic and Loqical Operators ••••••••••••• 6
3.6. Precedence of Operators •••••••••••••••••••••• 7

4. ASSEMBLER DIRECTIVES ••••••••••••••••••••••••••••••• 8
4.1. The ORG Directive •••••••••••••••••••••••••••• 8
4.2. The END Directive •••••••••••••••••••••••••••• 9
4.3. The EQU Directive •••••••••••••••••••••••••••• 9
4.4. The SET Directive •••••••••••••••••••••••••••• 10
4.5. The IF and ENDIF Directives •••••••••••••••••• 10
4.6. The DB Directive ••••••••••••••••••••••••••••• 11
4.7. The OW Directive ••••••••••••••••••••••••••••• 12

5. OPERATION ODDES •••••••••••••••••••••••••••••••••••• 12
5.1. Jumps, Calls, and Returns •••••••••••••••••••• 13
5.2. Immediate Operand Instructions ••••••••••••••• 14
5.3. Increment and Decrement Instructions ••••••••• 14
5.4. Data Movement Instructions ••••••••••••••••••• 14
5.5. Arithmetic Logic unit Operations ••••••••••••• 15
5.6. Control Instructions ••••••••••••••••••••••••• 16

6. ERROR MESSAGES ••••••••••••••••••••••••••••••••••••• 16
7. A SAMPLE SESSION ••••••••••••••••••••••••••••••••••• 17

CP/M Assembler User's Guide

1. INrRODUCTIOO •

The CP/M assembler reads assembly language source files from the diskette,
and p:oduces 8080 machine language in Intel hex format. The CP/M asseTrt>ler is
initiated by typing

AEM filename
or

ASM filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

filenane.ASM

which contains an 8080 assembly language source file. The first and second
forms soown above differ only in that the second form allows p:lrameters to be
passed to the assembler to control source file access and hex and pr int file
destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSEMBLER VER n. n

where n.n is the current version nurrber. In the case of the first command,
the assembler reads the source file with assumed file type UASMU and creates
two output files

filename.HEX
and

filename.PRN

the "HEX" file contains the machine code corresp::>nding to the original program
in Intel hex format, am the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as well as at the console

The second canmand form can be used to redirect input and output files
fran their defaults. In this case, the "parms" portion of the command is a
three letter group which specifies the origin of the source file, the
destination of the hex file, and the destination of the pr int file. The form
is

filename.plp2p3

where pI, p2, and p3 are single letters

pI: A,B, ••• ,Y designates the disk name which contains

I

p2: A,B,

Z
p3: A,B,

x
Z

Thus, the canmand

A9-1 X.AM

••• , Y

••• , Y

the source file
designates the disk name which will re- .
ceive the hex file
skips the generation of the hex file
designates the disk name which will re­
ceive the print file
places the listing at the console
skips generation of the pcint file

indicates that the source file (X.ASM) is to be taken fran disk A, and that
the hex (X. HEX) and IXint(X.PRN) files are to be created also on disk A.
This form of the canmand is implied if the assenbler is run from disk A. That
is, given that the operator is currently c:ddressing disk A, the above command
is equivalent to

Ae.t X

The canmand

Ae.t X.ABX

indicates that the source file is to be taken from disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console. The
command

Ae.t X.BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this canmand is useful for fast execution of the asserrbler to
check IXogram syntax).

The source IXogram format is canpatible with both the Intel 8080 asserrbler
(macros are not currently implemented in the CP/M assenbler, rowever), as well
as the Processor Technology Software Package#l assembler. That is, the CP/M
assent>ler accepts source {X'ograms written in either format. There are certain
extensions in the CP/M assenbler which make it somewhat easier to use. These
extensions are described below.

2. PROORAM FORMAT.

An asserrbly language program acceptable as input to the asserrbler consists
of a sequence of statements of the form

line# label operation operand Jcormnent

\tbere any or all of the fields may be present in a p3.rt.icular instance. Each

2

~ernbly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or wi th the
character "! II which is a treated as an end-of-line by the assenbler (thus,
multiple assent>ly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program line nurrber, which is allowed on any source line to rraintain
compatibili ty wi th the Processor Technology format. In general, these line
nurrbers will be inserted if a line-oriented editor is used to construct the
original p:ogram, aM thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and, is optional, except where noted in particular statement ty~s. The
identifier is a sequence of alphanumeric characters (alphabetics and numbers),
where the first dlaracter is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were ufPer case. Note that the .. : ..
followin;} the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

x
x:
XlY2

xy
yxl:
Xlx2

long$narne
longer$named$data:
x234$5678$90l2$3456:

The operation field contains either an assenbler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

'I'he operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. ~ain, the complete details of properly formed
expressions are given below.

The canment field contains arbitrary dlaracters following the ": II syrrbol
until the next real or logical end-of-line. These characters' are read,
listed, arrl otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements \\hich begin wi th a ". II in column one as comment statements,
which are listedarrl ignored in the assembly process. Note that the Processor

3

Technology asserrbler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be canpatible with Intel's language, since
arbi trary expressions are allowed in this case. Hence, IXograms which use
this side effect to introduce ccmnents, must be edited to place a It: It before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FDRMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first IXesent the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the asserrbler as the asserrbly p:-oceeds. Each
expression must IXoduce a 16-bit value during the assembly. Further, the
nunber of significant digits in the result must not exceed the intended use.
That is, if an expression is to be used in a byte nove immediate instruction,
then the most significant 8 bits of the expression must be zero. ~he
restrictions on the expression significance is qiven with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it {X'ecedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a t!DV instruction, or a­
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EOU or SEll, then the label is given
the value which results from evaluating the operand field. Except for the SET
sta.tement, an identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the
assembler. This value can then be cant>ined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a 16-bi t value in one of several bases. 'lbe base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
o octal constant (base 8)

4

Q octal constant (base 8)
o decimal constant (base 10)
H hexadecimal constant (base 16)

o is an al ternate rcrlix indicator for octal nurrbers since the letter 0 is
easily confused with the digit 0. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus can!'X)sed as a sequence of digits, followed by an
optional radix iooicator, Wlere the digi ts are in the appropr iate range for
the radix. That is binary constants must be comp:>sed of 0 and 1 digits, octal
constants can contain digi ts in the range 0 - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecinal digits A (10D), B (110), C (12D), D (13D), E (14D), and F
(150) • Note that the leading digi t of a hexadecimal constant must be a
decimal diqi t in order to avoid confusinq a hexadecimal constant wi th an
identifier' (a leading 0 will always suffice). A constant comp:>sed in this
manner must evaluate to a binary number which can be contained within a l6-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, i.nt>edded liS" are allowed wi thin constants to improve their
readabili ty. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234
l234H
33770

l234D
0FFEH
0fe3h

3.3. Reserved Words.

11008
33770
l234d

11ll$0000$1111$0000B
33$77$220
0ffffh

There are several reserved character sequences which have predefined
meanings in the q:>erand field of a statement. The names of 8080 registers are
given below, Wlich, when encountered, produce the value shown to the right

A 7
B 0
C 1
D2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal ccx1es. In the case of instructions which reqUire
operands, Wlere the s~cific q:>erand becomes a p:lrt of the binary bi t ,p:lttern

5

- '~e instruction (e.g, MDV A,B), the value of the instruction (in this case
M)V) is the bit p3ttern of the instruction with zeroes in the optional fields .
(e.q, MDV produces 40H).

When the syrrbol 11$" occurs in the operand field (not irrbedded within
identifiers arrlnurneric constants) its value becomes the crldress of the next
instruction to generate, not including the instruction contained wi thing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, arrl are
represented by enclosing the characters wi thin apostrophe synDols ('). All
strings must be fully contained within the current physical line (thus
allowi~ "! It syrrDols wi thin strings), arrl must not exceed 64 characters in
length. The ap:>strophe dlaracter itself can be included within a string by
representing it as a double apostrophe (the two keystrokes "), which becomes
a single apostrophe v.hen read by the asserrbler. In rrost cases, the string
length is restricted to either one or two dlaracters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a l6-bit constant, with the second
character as the low order byte, and the first dlaracter as the high order
byte.

The value of a dlaracter is its corresponding ASCII code. There is no
case translation wi thin strings, and thus both u~r and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'AB' 'c"
'a'" ""., "',,'

'Walla Walla Wash. '
"She said ' 'Hello' .. to me. '
'I said "Hello" to her."

3.5. Arithmetic arrl Logical Operators.

The operands described above can be combined in normal algebraic notation
using any canbination of properly formed q;>erands, operators, am
parenthesized expressions. The operators recognized in the operand field are

a+b
a - b

+b
- b

a * b
a / b
a M:>D b
Nor b

unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to (2) - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0's became 1'5, l's
become 0's), where b is considered a 16-bit value

6

a AND b
a OR b
a XOR b
a SHL b

a SHR b

bi t-by-bi t logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results fram shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two dlaracter strinqs), or fully
enclosed parenthesized subexpressions such as

10+-20 l0h+37Q Ll /3 (L2+4) SHR 3
('a' and 5fh) + ',,' ('B' +B) OR (PSW+M)
(1 + (2+c» shr (A- (8+1» .

Note that all canputations are ~rformed at assembly time as l6-bit unsigned
o~rations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., alII's). The resulting expression must fit the operation code in
which it is used. If, for eXampfe, the expression is u~ in a ADI (add
irmnediate) instruction ,then the high order eiqht bits of the expression must
be zero. As a result, the operation "ADI -111 produces an error message (-I
becomes 0ffffh W1ich cannot be represented as an 8 bit value), while ItADI (-1)
AND 0FFH" is accepted by the assembler since the "ANO" q::>eration zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the ~ogratnl'rer, ASM asst.mleS that operators have a
relative precedence of application which allows the programmer to write
expressions wi thout nested levels of p3rentheses. The resulting expression
has assumed tarentheses ~ich are defined by the relative p.-ecedence. ,The
order of application of operators in unparenthesize. expressions is listed
below. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), \tJhile operators listed last have lowest
precedence. Operators listed on the same line have €qual {X'ecedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
- +
Nor
.AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a * b + C
a + b * c
a MJD b * c SHL d

(a * b) + c
a + (b * c)
({a MOD b) * c) SHL d-

7

a OR b AND Nor c + d SHL e a OR (b AND (NOr (c + (d SHL e»»

Balanced parenthesized subexpressions can always be used to override the
assumed P3rentheses, aM thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (Nor c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((NO!' c) + (d SHL e»
Note that an Lnparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DlRECrIVES.

Asseroler directives are used to set labels to specific values during the
assrrbly, ~rform conditional asseIrbly, define storage areas, am specify
starting addresses in the program. Each assenbler directive is denoted by a
"pseudo q>eration" which appears in the q:>eration field of the line. '!he
acceptable pseudo operations are

OR;
END
mU
SEl'
IF
ENDIF
IE
Il'J
I1)

set the program or data origin
errl program, optional start address
numeric "equate"
numeric "set"
begin conditional assembly
eM of conditional assembly
define ·data bytes
define data words
define data storage area

The individual pseudo operations are detailed below

4.1. The ORG directive.

The OR; statement takes the form

label ORG expression

where Ulabel" is an optional program label, ard expression is a 16-bit
expression, consisting of q:>erands lttlich are defined previous to the ORG
statement. The assent>ler ba:Jins maChine code generation at the location
specified in the expression. There can be any nuIrber of ORG statements wi thin
a particular {rogram, and there are no checks to enSure that the lXograIm1ler is
not defining overlapping nemory areas. Note that nost programs written for
the CP/M system begin with an OR:; statement of the form

OR; 100H

8

which causes machine code generation to begin at. the base of the CP/M
transient trogram area. If a label is specified in the OK; statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive.

The END statement is q;:>tional in an assenbly language program, but if it
is IX esent it must be the last statement (all subsequent statements are
ignored in the assent>ly). The two forms of the END directive are

label END
label END expression

where the label is cgain q;:>tional. If the first form is used, the assembly
process stops, aOO the default starting crldress of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
'starting crldress (this starting address is included in the last record of the
Intel fonnatted machine code "hex" file which results fran the assent>ly).
Thus, most CP/M asserrbly language {X'OCJrams end with the statement

END l00H

resultio:) in the default starting crldress of l00H (beginning of the transient
program area).

4.3. The EQU directive.

The EOU (equate) statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be {:resent, aOO must not label any other statement. The
assenbler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name \ttlich describes
the value in a rore human-oriented manner. Further, this name. is used
throughout the program' to up:trameterize" certain functions. SUPJX)se for
example, that data received fran a Teletyp: appears on a ~rticular input
port, aOO data is sent to the Teletype through the next output J;X)rt in
sequence. The series of equate statements could be used to define these torts
for a particular hardware environment

T'lYBASE
T'IYIN
TT'iCXJr

mu . 10H ;BASE IDRT NUMBER FOR TrY
mU TIYBASE ;Tl'Y o\TA IN
mU 'rlYBASE+l;TT.l mTA aJ.I'

At a later p:)int in the p:ogram, the statements which access the Teletype
could appear as

9

IN Tl'YIN
•••
OUI' T.IYour

:READ TIY ~TA TO REG-A

:WRITE mTA 'IO 'ITY FROM ROO-A

making the program rore readable than if the ab~lute i/o '(nrts had been
used. Further, if the hardware environment is redefined to start the Teletype
communications tnrts at 7FH instead of 10H, the first statement need only be
changed· to

'!"IYBASE EQU 7FH :BASE IDRr NUMBER FOR 'lTY

and the program can be reassembled without changing any other statements.

4.4. The SE'l' Directive.

'rhe SET statement is similar to the EOU, taking the form

label SEl' expression

except that the label can occur on other SET statements within the program.
'rhe expression is €.Valuated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid fran the current SET statement to
the tDint where the label occurs on the next Sm' statement. '!he use of the
SET is similar to the EQU statement, but is used IIDst often in controlling
conditional assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range ofassenbly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#2

•••
staternent#n
ENDIF

UIX>n encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#l through statement#n are assent>led: if the expression evaluates to
zero, then the statements are listed but not asserrbled. Conditional asserrbly
is often used to write a single "generic" program which includes a runner of
possible run-time environments, with only a few s~cific p:>rtions of the
program selected for any }:articular a sSenlbly. The following program segments
for example, might be part of a. p:oqram which cantnUnicates with either a
TeletY{:e or a CRT console (but not both) by selecting a {:artlcular value for
TTY before the assennly begins .

10

lRUE mU 0FFFFH
FALSE EQU NO!' TRJE . ,
TIY mU TIUE . ,
TTiBASE EQU l0H
CRrBASE mu 20H

IF T'IY
OONIN EOU T'IYBASE
CDNOUI' EQU T'IYBASE+l

ENDIF

IF Nor TrY
CDNIN EQU CRrBASE
CDNCXJr EQU CRrBASE+l

ENDIF

•••
IN CDNIN
•••
our OONOOl'

;DEFINE VALUE OF TRUE
;DEFINE VALUE OF FALSE

;TRUE IF 'r.rY, FALSE IF CRr

;BASE OF Tl'Y I/O roRI'S
; BASE OF CRr I/O IDRTS
:ASSEMBLE RELATIVE 'IO 'ITYBASE
;CONSOLE INPtJr
;CONSOLE oorPUI'

: ASSEMBLE RELATIVE 'ro CRrBASE
;CONSOLE INPtJr
;CONSOLE OUI'PUI'

; READ CDNSOLE mTA

;WRITE CDNSOLE mTA

In this case, the p:-ograrn would assenble for an environment where a Telety-r:e
is connected, based at IDrt l0H. The statement defining TTY could be changed
to

T'IY mU FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

4.6. The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

label DB ell, e#2, ••• , e#n

Wlere ell through e#n are either expressions \\bich evaluate to a-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the nunber
of expressions included on a single source line. The expressions are
evaluated aro placed sequentially into the machine cooe file following the
last ~ogram address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last dlaracter. Strings of length greater than two characters cannot be
used as operands i~ more camplicat~ expressions (i.e., they must 'stand alone
between the canmas). Note that ASCII characters are always placed in merory
with the p:irity bit reset (0). Further, recall that there is no translation
fran lower to utPer case wi thin strings. The q;>tional label can be used to
reference the data area throughout the remainder of the IXOCJr am. Examples of

11

valid DB statements are

data: DB
DB

signon: DB
DB

4.7. The OW Directive.

0,1,2,3,4,5
data and 0ffh,5,3770,1+2+3+4
'please type your narne',cr,lf,0
, AS' SHR 8, , C', 'DE' AND 7FH

The DWstatement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ••• , e#n

Where e#l through e#n are eKpressions which evaluate to l6-bit results. Note
that ASCII strinqs oflenqth one or two cnaracters are allowed, but strings
longer than two dlaracters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the
expression is stored forst in nemory, followed by the ITOst significant byte.
Examples are

doub: ow 0ffefh,doub+4,siqnon-$,255+255
OW 'a', 5, 'ab', 'CD';·6 shl 8 or lIb

4.8. 'rhe OS Directive.

'l'he OS statement is used to reserve an area of unini tialized memory, and
takes the form

label OS eKpression

where the label is q:>tional. The assembler begins subsequent code generation
after the area reserved by the DS. 'I'hus, the OS statement given above has
exactly the same effect as the statement

label: EOU $:LABEL VALUE IS CURRENT (DOE r.a:ATION
ORG $+expression ;MOVE PAST RESERVED ARE~

5. OPERATIOO OODES.

Assembly language operation codes form the principal part of assembly
language proqrarns, aoo form the operation field of the instruction. In
general, ASvl accepts all the standard memonics for the Intel' 8080
microcomputer, w,ich are qi ven in detail in the Intel manual u8080 Assembly
language Programmill:J Manual. I. Labels are optional on each input line and, if
included, take the. value of the instruction address immediately before the
instruction is issued. The iooividual operators are listed breifly in the

12

followin:] sections for conpleteness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bi t value in the ranqe 0-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

el6 represents a 16-bit value in the range 0-65535

which can themselves be formed from an arbitrary ccmbination of~erands and
operators. In some cases, the operands are restricted to ?3rticular values
wi thin the allowable range, such as the PU5H instruction. These cases will be
noted as they are encountered.

In the sections which follow, each operation codes is listed in its rrost
general form, along with a s~cific example, with a soort explanation and
special restrictions.

5.1. Jumps, Calls, and Returns.

The Jump, Call, arrl Return instructions allow several di fferent forms
. which test the condition flags set in the 8080 microcomputer cpu. The forms
are

JMP e16 JMP U Jump unconditionally to label
JNZ e16 JMP L2 Jump on non zero condition to label
JZ e16 JMP l00H Jump on zero condition to label
JNC e16 JNC Ll+4 Jump no carry to label·
JC e16 JC L3 Jump on carry to label
JFO e16 JID $+8 Jump on parity odd to label
JPE e16 JPE L4 Jump on even parity to label
JP e16 JP ~ Jump on positive result to label
JM e16 JM al Jump on minus to label

CALL e16 CALL 51 Call subroutine unconditionally
(NZ el6 CNZ 52 Call subroutine if non zero flag
CZ e16 CZ 1008 Call subroutine on zero flag
mc e16 mc 51+4 Call subroutine if no carry set
CC e16 CC 53 Call subroutine if carry set
cro e16 cro $+8 Call subroutine if parity odd
CPE e16 cm 54 call subroutine if parity even
CP e16 CP G\MMA Call subroutine it positive result
CM e16 CM bl$c2 call subroutine if minus flag

RST e3 RSr 0 Programmed "restart", equivalent to
CALL 8*e3, except one byte call

13

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flaq set
Return if p3rity is odd
Return if parity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available which load sinqle or double precision
registers, or single ~ecision rrerory cells, with constant values, along with
instructions Wiich ~rform immadiate arithmetic or l~ical operations on the
accumulator (register A). .

MVI e3,e8

ADle8.
ACI e8
SUI e8
S81 e8
ANI e8
XRI e8
OR! e8
CPI e8

MVI B,255 Move immediate data to register A, B,
C, D, E, H, L, or M (memory)

ADI 1 Add immediate operand to A wi~hout carry
ACI 0FFH Add immediate operand to A with carry
SUI L + 3 Subtract from A without borrow (carry)
S81 L AND lIB Subtract from A with borrow (carry)
ANI $ AND 7FH Logical nand" A with irronediate data
XRI 1111$00008 "Exclusive or" A with immediate data
OR! L AND 1+1 Loqical "or" A with immediate data
CPI "a" Compare A wi th immediate data (same

as SUI except register A not changed)

LXI e3,e16 LXI B,100H Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are pcovided in the 8080 repetoire for incrementing or
decrementing single and double ~ecision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

OCXB

Single pcecision increment register (e3
produces one of A, B, C, 0, E, H, L"M)
Single precision decrement register (e3
p:oduces one of' A, B, C, D, E, H, L, M)
Double pcecision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Doub~e precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

Instructions which rove data fran nemory to t~e CPU and from CPU to
memory are given below

lIDVe3,e3

Lo\X e3

STAX e3

LHLD el6

SHLD el6

Lm el6
STA el6
~P e3

PUSH e3

IN e8
our e8
XTHL
POlL
SPHL
XCHG

K)V A,B

LD!\X B

STAX 0

LHLO IJ.

SHLD L5+x

Lm Gamma
STA X3-5
IDP PSW

PUSH B

IN 0
atE 255

Move data to leftmost element from right­
most element (e3produces one of A,B,C
O,E,H,L, or M). MDV M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL di rect fran location el6 (double
precision load to H and L)
Store HL direct to location el6 (double
precision store from H and L to nemory)
Load register A from address e16
Store register A into memory at e16
Load register pair from stack, set SP
(e3 must produce one of B, 0, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, 0, H, or PSW)
Load reqister A with data fran p:>rt e8
Send data fran register A to port e8
Exchange data fram top of stack.with HL
Fill program counter wi th data frOOl HL
Fill stack p:>inter with data frem· .. HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions ~ich act up:>n the single p:-ecision accLnnulator to r:erform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one. of A,
B, C, 0, E, H, or L)

AOC e3 ADC L Add register to A wi th carry, e3 as above
SUB e3 SJB H Subtract reqe3 from A wi thout carry,

e3 is defined as above
SBB e3 SBB 2 Subtract register e3 from A with carry,

e3 defined as above
ANA e3 ANA 1+1 Ingical "and" reg with A, e3 as above
XRA e3 XRA A .. "Exclusive or" with A, e3 as above
ORA e3 ORA B Logical "or" with A, e3 defined as above
CMF e3 CMP H . Compare register with A, e3 as above
0l\A Decimal adjust register A based upon last

arithmetic logic unit operation
C~ Complement the bits in register A
Sm: Set the carry flag to 1

15

eM:
RLC

RAT.,

RAR

OM) e3 rn.n B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A ~eqister to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precision add register pair e3 to
HL (e3 must produce B, D, H, or SP)

5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NCP

6. ERROR MESSAGES.

Hal t the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wnen errors occur wi thin the assembly language IX'~ram, they are listed as
single dlaracter flags in the lefbrost p:>sition of the oource listing. The
line in error is also echoed at the console so that the source listing. need
not be examined to determine if errors are present. The error codes are

D

E

L

N

o

p

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features Which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

Phase error: label does not have the same value on
two subsequent passes through the program

16

R Register error: the value specified as a register
is not canpatible with the operation code

V Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SaJRCE FI LE PRESENT

NO DIRECTORY SPACE

SOORCE F1 LE l'i\ME ERROR

SOURCE F1 LE RFAD ERROR

OUI'pur FI LE VRITE ERROR

C~NOI' a..OSE FILE

7. A SAMPLE SFSSIrn.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?" fields)

Source file cannot be read ~operly by the
assembler, execute a TYPE to determine the
p:>int of error

OUtput files cannot be writtentr0perly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write pcotected

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

(7

ASf'lSORT~

CP/" ASSEMBLER - VER 1.9

~ 1 5 C ~ +ru atidvei6
e93H USE FACTOR c)/o 4f -t~WI! usecl 00 1bfF l~dfCl~)
END a F AS,S E M B L Y

DIR SORT. *.1

SORT ASH $'W<~ f"k,
SORT BAK ID~~~ (Cltf-M~t. .
SORT PRH -p~~ fit. (c,1I\"'l~ -fDL, ~~)
S 0 R THE X ~.~ CDtU. .f'..1tL .
A}TVPE SORT.PR~

~'Ll~
r------~--------~,

wa4u~~\o~ i
.--J ;

0190 ~-- .
1~ kt1 ~~ <i,d,.

0100 214601"':> SORT:·
0103 3601
9105 214791
918S 3699

elBA 7E
8lee FEB9
91&D D21981

0110 214691
0113 7EB7C20001

SORT PROGRA" IH·CP/" ASSE"BLY LANGUAGE
START AT THE BEGINNING OF THE TRANSIENT PROGRAM A~
ORG leaH

LX I
MVI
L:< I
"VI

;ADDRESS SWITCH TOGGLE
;SET TO 1 FOR FIRST ITERATIOH
; ADDRESS INDEX
; I ;: 0

CO"PAR£ I WITH·ARRAV SIZE
MOV A,M ;A REGISTER = I
CPI H-l ;CY SET IF 1 < (N-.l)
JHC CONT ;CONTIHUE IF 1(= (N-2)

END OF ONE.PASS THROUGH DATA
LXI H,SW ;CHECK FOR ZERO SWITCHES
·M 0 V A I "lOR A A! .J N Z SO R T j END 0 F SO R T I F StAt =8

8118 FF RST 7 JGO TO THE DEBUGGER INSTEAD OF REI

~Ut\,a.~COHrI HUE THI S PASS
J : ADD RE S S 1 H G 1, SOL 0 A DAY (I) I H T 0 ~ E GIS T E R S

ell 9 5 F 1 68 9 2 1 4 8 CON TIM 0 Y E J.A t 11 Y I D, 8 t L X I H J A V, DAD D' DAD D .
91214E792346 MOY C,I'II MOV A,CI INX H,! r10V B .• 11

8125 23

J

9126 965779239E

8128 DA3F91

012E 92CA3F9!

L 01&1 0 R DE R B II TEl N A· A f~ D C J H I G H OR DE R BY TEl H B

MOY HAND l TO ADDRESS AY(I+l)
IWX H

COMPARE YALUE' WITH REGS CONTAINING AY(I)
SUB H! HOY D" t:l' M 0 V A, B! I H X H! S B B H; SUB T RAe T

BORROW SiT IF AV(I+l) > AY(I)
JC INCI ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES
ORA D' J Z I He I ; S t< IP J FAY (I) = A Y (I + t)

I
I

.

..
0132 5670295E MOY D .. "' MOV ",SI DCX HI ·MOY ElM
9136 712B722973 I'IDY " .. el DCK HI t10Y M. DI DC>: H! f10Y M, E

; " IHCREI1EHT SWITCH COUNT
013B 21468134 LXI H .. SoW I IHR 11

INCREMENT I
013F 21478134C3IHCJ, LKI HI I ,] HR 11 I J"P COMpo

DEFINITION SECTION
9146 98 Sid,

DATA
DB
DS

I jRESERYE SPACE FOR SWITCH COUNT
9147 I":" 1 ;SPACE FOR INDEX
0148 95B064eBIEAV: DlJ

EQU
END

5, tge" 30,50,28,7,18£10, 3a9) 101L -32767
BeeA - t{
o 1 5 C 'L-tt"" \M.llAL

A)TYPE "SORT, HEX¥

<$-AV)/2 iCOMPUTE H IHSTEAD OF PRE

: 18elB888214691368121479136197EFEB9D2190148
,100110882146917EB7C2se81FFSF1608214801198a
,10812989194E792346239'5778239EDA3F81B2CAA7
I tee138993F8156702B5E7128722973214681J421C7
: 97914a8e479134C39AEnee6E
11001488e9se864881'EI8J281148el788E8832C81BB
:9401588864008188BE
: 8090880e08
A)DDT SORT. HEX; ~ dt(,~,~~

16K DDT YER 1.0

C~ tdd •• ~ BiD sk~) NEXT PC
d&u..tt CltUrSS elSC eeee

-XP,>
... ,

p::aaeee lee~ c~fC.~ (00 "

- U FF F F; IA.~ -f~ t~~o;" sfcf's

C0Z9MeEe10 A-0& B=a0ee D-aaee H-Ilee S=0100 P=8100
- T 10~ -tt~ to,. «;+~
C8Z8M8E818 A-81 B:aelee »-188e H-el .. ' S-Ilee p-el8S
CeZ8MBE918 A-el· B:aBI8e, n-elB9 H-e146 S-818e P-91B3
CeZ811BE8J8 A-81 a-eaee n-BIee 'K-el46 S-1180 P:a818S
CeZ8118E8I1 A-el Ba 8 •• 8 D-18el H-et47 s-.e Ie 8 P:a8188
CeZ81'18E8J8 Az 81 B-ee88, D-aeee H-8'147 S='81 Ie P=810A
ceZ8MBE0I0 A=e0 B=eSB8 DaeBle H=0147 5=9100 P::0188
C1Z9J11EII9 Acee 9=89,re D-eaee H=0147 S=018e P=010D
CIZ0H1E010 A=90 9=8898 D-sele H=8147 5=8190 P::8110
ClZ8M1E810 A-ae a-elee D-S8ee H-e146 S- 8 1-90 p:a:,e 11 3
ClzeH1E818 A-al 9-le8e D-IIel H-I146 S-1188 pall14
CeZ8t1eE8J8 A-al a-1181 D-Ieel H-814' S-Ilee p-e115
C8Z8t18EIJ8 A-el 8-ee8e D-Ilel H-1146 $-8188 p-Il8e
C9Zet1aE0I0 A-91 B=8eee D-Ie8e H ·-8146 S.; 810'8 P=8183
ceZ9MBE9J0 A*81 8=8888 .D-Iese HC"8146 S=810e P=8105
ceZ9MBEI18 A-It 8"=88'8 D-8809 H=0147 S-918e palletS
CeZ9H8E811 A*el B=8 ee·8 D see 8e H-0J ~7 $=-8100 P=810A
... AI0D

8teD JC 11 9~ c~"'\' -It> a J'4 0\0 C6~
0' '0 ;;

a.~"",'~
.[\"U.bDc..et

LXI H I 0 1 4 6 :tc a 1 8 0

LXI H/8146
MVI t1, 8 1
LXI H/9147
t1 'I 1 11 .. 09
MOV A, M
CPI 09
JHC o 11 9
LXI H .. 0146
MOY A I M
ORA A
JHZ 8188
LXI HI e·14 6
"VI " .. 81
LXI 'H/8147
"'VI M,0e
MOY A,I M *81 0B

~d4t.-J
l~

'~H

~, XP;

P=010B 1 0 ~ ye~+ 1YO j"OtM- (l:1~~ bA,-k -b

- T 1 a +r(Ue ~-ftO~ -t-w (OH s-krs
J2

ceZBHBE010 A=00 8=00a0 II=aeee H=0147
C0zeM0E01B A=fH1 8=0000 D;;;0 0 0e H=0146
ceZ8M9E010 A=00 8=0090 D =8 0 ea H=0146
ceZ0MeE010 A=00 8=0000 D=a000 H=014;'
C0Zett1aE01 €I A =(10 8:=fjeB0 D==e000 H==0147
C0Z0t1BE010 A=ee 8=0000 D =0 0 00 H=0147
C1Z0t11E010 A==ae 8=e0a0 D=B0e0 H=0147
CIZ0MIEe10 A=00 8=00B0 II =0 €I €Ie; H=0147
CIZ0MIE010 A=se 8=00B0 D=B000 H=0147
CIZ0M1E010 A=00 B=00B0 D=B000 H=eJ147
C1Z(1MIE010 A=00 8=0000 r'=B00e H=0148
.~ 0 Z f:I M 1 E (1 1 e A=ae 8=13080 D=0000 H=0148

. ·€tZBMIE010 A=00 8=0090 ft=ee'e0 H=@t48
ceZ0MIE010 A=00 B=0ees D=00e€t H=0148
C0zeM1E010 A=05 B=a00S rl::0000 H=0148
CBZ0M1E010 A=&5 B=fJ0eS D=800& H=0149
-L10e~

01ee LXI H/0146
0103 M V I tL 01
01es LX I H .. 0147
BleB MYl
el0A MOV
010B CPI
e 10rl JC

M I {3 e
A I M
09

'011 9

t \st 50w..C ce;d.l

fvtMA lDO'-<
011 a LXI H/0146
e 113 MOV AI M
B 1 14 ORA A
Et 1 1 5 JNZ 0100

-L;
BllB RST 07
0119 MOV E"A
ellA MYI D,,00
BIle LXI H,,0l48

be.j·' (\~Iv1j cf 'PrtJj(ttm.

S=0100 P=0100 LXI
S=0100 P::0103 t1 V I
S=0100 P::0105 LXI
S:::0100 P=0108 MVI
S=0100 P=010A t10V
$=0100 'P::0108 CPl
S=0100
S=0100
8=0100
5=0100
S=0100
s=a100
~:;:::eieB3

S=0100
S=0100
S=0100

P=€t10D JC
P=0119 t10V
P::0111:i t1'./ I
P:::011C L>n
p= €I 11 F DAII
P=0u::'e DAD
P=0121 t'1 0 v
P==0122 t10V
P=0123 INX
P=fJ124 MOV

Au1aV\l\£t~h i,
b("~ro ~lA.t

{tav
H , 0 1 4 6 . ~rJ-
tL (1 1 j ,I)-

H .. B147 v/(t:

t'L 0 0 ~\1-
AI M .)
09 JtI'"
011 9
E .• A
D,00
H .• 0148
II
D
C J t1
I-L C
H
B,M*8125

~

- oJ~v* l\~+ Lo~~ "(A~ilJ.t . I
r - ..1?G (OI'Z.'S'I-i) ()v.d. YuLL l~ 'Ver;..\ +1VY\e -ro I f.t5H

- G) 1 1 8; ~-h~ ~Y~v'll~ -t (l)KA.. ~

* 012 7 4pf~cl w:~ u"" ~K~v.4-l i~vuf'+ 7 -trr- ~V'lM-+ J?O-",e{ (1'Y~>'l1w. was
- T4J \oo~ a:t lOOf'~ -pVOJfA l\o. -+vtv:e rook.. . lOCf''''j IVlbh",~)

_ ceZ8MBE010 A=J8 8=9064 D=8006 H~e156 S=0190 P=0127 MOY D"A
C0Z0MBE010 A=38 B=B064 D=3806 H=0156 5=0100 P=0128 MOY AlB
C0Z0M0E010 A=00 B=0064 D=3806 H=0156 8=0100 P=0129 IHX H
C0Z0M0E010 A=00 8=0064 D=3806 H=0157 5=0100 P=012A SBB M*012B
-D14B ..-r-ckra. lC>~) \,"'* \,YOjrciW Joes~t s~ .
~14B 05 0e 07 00 14 ee 1E 00 .. ' ,
0150 32 e0 64 ae 64 0£1 2C 01 E8 £13 01 B0 00 06 00 0e 2, D, D. I ,.

e 1 6 e 0 e 0 0 e ~ e e 00 e 0 e €I e €I 0e t. d e 0 €I 0 0 0 €I 0 0 ,~ ., 0 .,....,.. . , 20

-i-~ y~&.lf'v\'.~ e.,/I-I..

DDi SORT. HEX,; reloAd ~ m~wtlVj .t)'\~

161<. DDi VEl< 1.0
HEXT PC
else ea0a
-xp

P '" 0 8 0 8 1 0 OJ set 'fie. -10 ~~"':~ J f~YRl'1.\
- L 10 Dj) l\.~ baA Ofcod.t .

010D JHC 9119/
011B LXI HI0146

- ~~+ ll~ w~ ~ ruJo ou.t
-A leD; 4~St~\t. ~ cf(~

eteD JC t1~

aile,.,

- L1 0 0; I ,:'\- c;\z.~ s~ of .'fVDj>'GU4A-

e198 LXI HJ0146
0103 MVI HJ01
ales LXI H/0147
0108 M'''l MJ0e
- IlbtN\: \\st \N~~ tv1dcA.t

, - Ale J Jl c.L.o.':' "sw'.+cL. h l\A,~ ~~l ~ ~ --b ¢"
0103 HVI f1,0~

\; 1 es,2
_ ,.. c yt--6~&.\. ~ (!g I~ Wl~ etfl .. ~ . (Gf vJ~ks os wen)

SAVE 1 SORT. COM;'SlAVl 1 fO~L ('Z.~, ~~slf~ l.Oo~4v1kfH.) 0"/\ d~slt. \.~ Cd'&L-
• ~~ ~\I& -\0 -rt.loot l~("

A > DDT SO R T. CO",1 Y'.t~~ "",.. w~'
S4\1fd ~~Y"I\OItj \~ ~e

16K DDT YEI< 1.0
HEXT PC . . .
820& e 1 ae "eoM" .ftlL a.lWt1!S'St ~~ Wl~ ~ lOOIo4
- Gal rCA """"e. Y".~rt.uAA + ~ "C ':J I 00 ~

. '* 911 8 l~f(J.~~d. -s-\"p (2.~f71 t.""UlJ.~
'-D148

0148 8S ee 87 ge 14 89 1£
01sa 32 89 64 08 64 8e 2C o 1 E.8 e 3 e 1 8 e e 9 09 e 8 e 9 2. D . D ~ ~
0168 ge 89 8e 08 09 ee 00 09 00 08 09 80 00 0B 00 00
0178 89 90 09 98 09 ee 00 sa sa 09 ee sa 00' 08 ee 00

- G~ (do.~tA. 40 (!£ 1M. l(

iSET TO 1 FOR FIRST ITERATION

j ADDRESS I HDEX

iZERO Stat

H .. I iADDRESS INDEX

;CONTIHUE' IF I (= (N-2)

CP/M ASSEMBLER - VER 1.0

€I 1 SC ~ ~$S-to ~(.
0e.t"3H USE FACTOR
END OF ASSEMBLY

fI D T SO R T. HE >< ~ M r-O)~AIM cLw.~s

16K DDT VEl< 1. 0
N£:X:T PC
815(: Betee
-Gl(1~

.e118
- D 14 8~

,r-' k-fa. s~ al
8148 95 80 87 09 14 88 1 E 98 ;.
e158 32 8e 64 ae 64 ae 2C 01 E8 93 81
8168 0e 80 00 ee 00 Be e9 90 0e 0999

- c1bctY-t W\~ ·r&A.Io,,,,-t

89 00 88
'90 00 98

90 9 e .2. D. D
00 Be

22

