CP/M™

MAc

- MACRO ASSEMBLER:

- LANGUAGE MANUAL and
' APPLICATIONS GUIDE

©©1977, DIGITAL RESEARCH
- DIGITAL RESEARCH, Box 579, Pacific Grove, California 93950

CP/M™ MAC-MACRO ASSEMBLER: LANGUAGE MANUAL AND APPLICATIONS GUIDE

Copyright (e¢) 1977 by Digital Research. All rights
reserved. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer
language, in any form or by any means, electronie,
mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacifie Grove,
California 93950,

This manual is tutorial in nature, however, and thus
permission is granted to reproduce or abstract the
example programs shown in enclosed figures for the
purposes of inclusion within the reader's programs.

Disclaimer

Digital Research makes no representations or war-
ranties with respect to the contents hereof and specifi-
cally disclaims any implied warranties of merchant-
ability or fitness for any particular purpose. Further,
Digital Research reserves the right to revise this
publication and to make changes from time to time
in the content hereof without obligation of Digital
Research to notify any person of such revision or
changes.

Table of Contents

MACRO ASSEMBLER OPERATION UNDER CP/M
PROGRAM FORMAT

FORMING THE OPERAND

3.1. Labels

3.2 Numeric Constants

3.3. Reserved Words

3.4. String Constants

3.5. Arithmetice, Logical, and Relational Operators
3.6. Precedence of Operators

ASSEMBLER DIRECTIVES

. The ORG Directive

. The END Directive

. The EQU Directive

The SET Directive

. The IF, ELSE, and ENDIF Directives
. The DB Directive

The DW Directive

. The DS Directive

. The PAGE and TITLE Directives

0. A Sample Program using Pseudo Operations

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.1

PERATION CODES

1. Jumps, Calls, and Returns

2. Immediate Operand Instructions
.3. Increment and Decrement Instructions
4. Data Movement Instructions

5. Arithmetic Logic Unit Operations

6

. Control Instructions

0

o
5.
9.
5
5
5
5

AN INTRODUCTION TO MACRO FACILITIES

INLINE MACROS
7.1. The REPT-ENDM Group

7.2. The IRPC-ENDM Group

7.3. The IRP-ENDM Group

7.4. The EXITM Statement

7.5. The LOCAL Statement

DEFINITION AND EVALUATION OF STORED MACROS
. The MACRO-ENDM Group

.2. Macro Invoecation

. Testing Empty Parameters

. Nested Macro Definitions

. Redefinition of Macros

. Recursive Macro Invocation

. Parameter Evaluation Conventions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8. The MACLIB Statement

N

NoleJe B lerierN-] -3

DO DD bt bt b ot ek ek ek bt
AR R N

DO D) DO DD
DO > e

W W N
(= =20 <]

w
35]

b i 0O Lo
SNt UG I

AN DU U U e
CWH O INOOO

10.
11.
12.

13.

APPLICATIONS OF MACROS

9.1 Special Purpose Languages
9.2. Machine Emulation

9.3 Program Control Structures
9.4. Operating Systems Interface
ASSEMBLY PARAMETERS
DEBUGGING MACROS

SYMBOL STORAGE REQUIREMENTS

ERROR MESSAGES

70
70
81
105
135
160
163
164

166

Foreword

The CP/M macro assembler, called MAC, reads assembly language statements
from a diskette file and produces a "hex" format object file on the diskette suitable
for processing in the CP/M environment, and is upward compatible from the standard
CP/M non-macro assembler (see the Digital Research manual entitled "CP/M Assembler
(ASM) User's Guide"). The facilities of MAC include assembly of Intel 8080 micro-
computer mnemonies, along with assembly-time expressions, conditional assembly, page
formatting features, and a powerful macro processor which is compatible with the
standard Intel definition (MAC implements the mid-1977 revision of Intel's definition,
which is not compatible with previous versions). In addition, MAC will accept most
programs prepared for the Processor Technology Software #1 assembler, normally
requiring only minor modifications.

The macro assembler is supplied on a CP/M non-system diskette, along with a
number of standard library files. The macro assembler requires approximately 12K of
machine code and table space, along with an additional 2.5K of I/O buffer space.
Since the BDOS portion of CP/M is coresident with MAC, the minumum usable memory
size for MAC is approximately 20K. Any additional memory adds to the available
symbol table area, thus allowing larger programs to be assembled.

Upon receiving the MAC diskette, you should follow the steps given below

(a) place the MAC diskette into drive B, with a CP/M system diskette in
drive A. Copy the MAC.COM to drive A from drive B using PIP (see the CP/M
Features and Facilities Guide for PIP operation).

(b) Copy the SAMPLE.ASM program from drive B to drive A using the PIP
program.

(c) Remove the MAC diskette from drive B, and retain the diskette for future
backup (there are a number of "LIB" files which may be useful at a later time).

(d Type "MAC SAMPLE" to execute the macro assembler (see Figure 1).
The macro assembler should load and print the signon message. Upon completion, the
final program address is printed, followed by the "use factor" which indicates that the
assembly is complete.

(e) Type the "SAMPLE.PRN" and "SAMPLE.SYM" files, and compare with
Figure 1 to ensure that the assembler is executing properly, thus completing the MAC
test.

This manual is organized in three major sections. The first section describes
the simple assembler facilities of MAC which involve 8080 mnemonie forms, expressions,
and conditional assembly, similar to the discussion found in the ASM User's Guide. If
you are familiar with ASM, you may wish to skip over the first section, and start
reading Section 6. The second portion of this manual, beginning with Section 6,
describes the MAC macro facilities in some detail. Again, if you are familiar with
macros, you may wish to briefly skim these sections, and refer primarily to the examples
to get the "flavor" of the MAC facility. Section 10 discusses macro applications,
where common macro forms and programming practices are discussed. Again, it is
useful to skim the examples and refer back to the explanations for detailed discussions
of each program.

1. MACRO ASSEMBLER OPERATION UNDER CP/M

The user must first prepare a source program containing assembly language
statements using the ED program under CP/M (see the Digital Research manual "CP/M
Context Editor (ED) User's Guide"), and then submit the assembly language file for
processing under MAC. Although the user may specify certain options (deseribed under
"Assembly Parameters"), the usual invocation of MAC is simply

MAC filename

where "filename" corresponds to the assembly language file which was prepared using
ED, with an assumed (and unspecified) file type of "ASM." Upon completion of the
translation process, MAC leaves a file called "filename.HEX" containing the machine
code in Intel hexadecimal format which can subsequently be loaded (see the LOAD
command in the "CP/M Features and Facilities" manual), or tested under the CP/M
debugger (see the "CP/M Dynamic Debugging Tool (DDT) User's Guide"). In addition
to the HEX file, MAC also prepares a file named "filename.PRN" which contains an
annotated source listing, along with a file called "filename.SYM" which contains a
sorted list of symbols defined in the program.

Figure 1 provides an example of the output from MAC for a sample assembly
language program which is stored on the diskette under the name SAMPLE.ASM. The
macro assembler is executed by typing "MAC SAMPLE" followed by a carriage return.
Upon completion, the PRN, SYM, and HEX files will appear as shown in the figure.
The assembler listing file (PRN) includes a 16 column annotation at the left which
shows the values of literals, machine code addresses, and generated machine code.
Note that an equal sign (=) is used to denote literal values (see the EQU directive)
to avoid confusion with machine code addresses. In all cases, output files contain tab
characters (ASCII control-I) wherever possible in order to conserve diskette space. Tab
positions are assumed to be placed at every eight columns of the output line.

0100
0005
0002

0100
0102
0104
0107
0108

0EO02
1E3F
CD0500
C9

Figure 1. Sample ASM, PRN, SYM, and HEX Files from MAC.

Source Program (SAMPLE.ASM)

org 100h ;transient program area

bdos equ 0005h ;bdos entry point
wechar equ 2 ;jwrite character function
H enter with cep's return address in the stack
; write a single character (?) and return
mv i c,wechar ;write character function
mv i e,'?! ;character to write
call bdos ;write the character
ret ;return to the cep
end 100h ;start address is 100h

Assembler Listing file (SAMPLE.PRN)

ORG 100H ; TRANSTENT PROGRAM AREA
BDOS EQU 0005H ;BDOS ENTRY POINT
WCHAR EQU 2 :WRITE CHARACTER FUNCTION
: ENTER WITH CCP'S RETURN ADDRESS IN THE STACK
: WRITE A SINGLE CHARACTER (?) AND RETURN
MVI C,WCHAR ;WRITE CHARACTER FUNCTION
MV I E,'?' ;CHARACTER TO WRITE
CALL BDOS sWRITE THE CHARACTER
RET ;RETURN TO THE CCP
END 100H : START ADDRESS IS 100H

Assembler Sorted Symbol (SAMPLE.SYM)

0005 BDOS 0002 WCHAR

Assembler "Hex" Output file (SAMPLE.HEX)

:080100000E021E3FCD0500C9EF
:00010000FF '

2. PROGRAM FORMAT

A program acceptable as input to the macro assembler consists of a sequence
of statements of the form

line# 1label operation operand comment

where any or all of the elements may be present in a particular statement. Each
assembly language statement is terminated by a carriage return and line feed (the line
feed is inserted automatically by the ED program when the file is prepared), or with
the character "!" which is treated as an end of line by the assembler. Thus, multiple
assembly language statements can be written on the same physical line if separated
by exclamation marks.

Statement elements are delimited by a sequence of one or more blank or tab
characters. Tab characters are preferred since the program element alignment is
automatically maintained in the output line at every eighth column, without requiring
extra blanks in the file. This not only conserves source file space, but also reduces
the listing file size since the tab characters are included in the PRN file. The tab
characters are not actually expanded until the file is printed or typed at the console.

The line# is an optional decimal integer value representing the source program
line number, which is allowed on any source line in case the program is prepared with
a line editor which uses line numbers at the beginning of each statement. In all cases,
the optional line# is ignored by the assembler.

The label field takes the form
identifier or identifier :

and is optional, except where noted in particular statement types. The identifier is
a sequence of alphanumeric characters (alphabetics, question marks, commercial atsigns,
and numbers) where the first character is alphabetic (ineluding "?" and "@"). Identifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar sign ($) which can be used
to improve readability of the name. Further, all lower case alphabetics are treated
as if they are upper case in an identifier. Note that the ™" following the identifier
in a label is optional (to maintain compatibility between the Intel and Processor
Technology versions). Thus, the following are all valid instances of labels

X Xy long$name

x? xyl: longer$named$data
x1x2 Q123: ??@Q@abcDEF
Gamma QGAMMA ?AREWEHERE?

x234$5678$9012$3456:

The operation field contains an assembler directive (pseudo operation), 8080
machine operation code, or a macro invocation with optional parameters. The pseudo
operations and machine operation codes are described below, while the macro calls are
delayed for later discussion.

The operand field of the statement, in general, contains an expression formed
from constant and label operands, with arithmetie, logical, and relational operations
upon these operands. Again, the complete details of properly formed expressions are
given in sections which follow.

The comment field is denoted by a leading ";" character, and contains arbitrary
characters until the next real or logical end of line. These character are read, listed,
and otherwise ignored in the assembly process. In order to maintain compatibility
with other assemblers, MAC also treats statements which begin with a "*" in the first
position as comment lines.

The assembly language program is thus a sequence of statements of the above
form, terminated optionally by an END statement. All statements following the END
are ignored by the assembler.

3. FORMING THE OPERAND

In order to completely describe the operation codes and pseudo operations, it
is necessary to first present the form of the operand field, since it is used in nearly
all statements. Expressions in the operand field consist of simple operands (labels,
constants, and reserved words), combined into properly formed subexpressions by
arithmetic and logical operators. The expression computation is carried out by the
assembler as the assembly proceeds. Each expression produces a 16-bit value during
the assembly. Further, the number of significant digits in the result must not exceed
the intended use. That is, if an expression is to be used in a byte move immediate
(see the MVI instruction), the absolute value of the operand must fit within an 8-bit
field. The restrictions on the expression significance are given with the individual
instructions. ‘

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular statement.
In general, the label is given a value determined by the type of statement which it
precedes. If the label occurs on a statement which generates machine code or reserves
memory space (e.g., a MOV instruction or a DS pseudo operation), then the label is
given the value of the program address which it labels. If the label precedes an EQU
or SET, then the label is given the value which results from evaluating the operand
field. In the case of a macro definition, the label is given a text value (i.e., a
sequence of ASCII characters) which is the body of the macro definition. With the
exception of the SET and MACRO pseudo operations, an identifier can label only one
statement.

When a (non-macro) label appears in the operand field, its 16-bit value is
substituted by the assembler. This value can then be combined with other operands
and operators to form the operand field for a particular instruction. When a macro
identifier appears in the operation field of the statement, the text which is stored as
the value of the macro name is substituted in place of the name. In this case, the
operand field of the statement contains "actual parameters" which are substituted for
"dummy parameters" in the body of the macro definition. The exact mechanisms for
definition, invocation, and substitution of macro text are given in later sections.

3.2. Numeric Constants.

A numeric constant is a 16-bit value in one of several number bases. The base,
called the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are:

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)
decimal constant (base 10)
hexadecimal constant (base 16)

ToOO0OW

Q is an alternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant which does not terminate with a radix indicator
is assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional
radix indicator, where the digits are in the appropriate range for the radix. That is,
binary constants must be composed of 0 and 1 digits, octal constants can contain digits
in the range 0 - 7, while decimal constants contain decimal digits. Hexadecimal
constants contain decimal digits as well as hexadecimal digits A through H (corresponding
to the decimal numbers 10 through 15). Note, however, that the leading digit of a
hexadecimal constant must be a decimal digit in order to avoid confusing a hexadecimal
constant with an identifier (a leading 0 will always suffice). A constant composed in
this manner will produce a binary number which can be contained within a 16-bit
counter, truncated on the right by the assembler. Similar to identifiers, imbedded "$"
symbols are allowed within constants to improve their readability. Finally, the radix
indicator is translated to upper case if a lower case letter is encountered. The
following are all valid instances of numeric constants:

1234 1234D 1100B 1111$0000$1111$0000B
1234H O0FFFEH 33770 33$77$22Q
33770 0fe3h 12344 0ffffh

3.3. Reserved Words.

There are several reserved character sequences which have predefined meanings
in the operand field of a statement. The names of 8080 registers are given below
which, when encountered, produce the corresponding value.

symbol value symboi value
A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
spP 6 PSW 6

Again, lower case names have the same values as their upper case equivalents. Machine
instructions can also be used in the operand field, and result in their internal codes.
In the case of instructions which require operands, where the specific operand becomes
a part of the binary bit pattern of the instruction (e.g., MOV A,B), the value of the
instruction is the bit pattern of the instruction with zeroes in the optional fields. For
example, the statement

LXI H,MOV

assembles an LXI H instruction with an operand equal to 40H (which is the value of
the MOV instruction with zeroes as operands).

When the symbol "$" appears in the operand field (not imbedded within identifiers
and numbers), its value becomes the address of the beginning of the current instruction.
For example, the two statements

X: JMP X
and
JMP $

both produce a jump instruction to the current location. As an exception, the "$"
symbol at the beginning of a logical line can introduce assembly formatting instructions
(see "assembly parameters").

3.4. String Constants.

String constants represent sequences of graphic ASCIH characters, and are
represented by enclosing the characters within apostrophe symbols (). All strings must
be fully contained within the current physical line, with the M" character within strings
treated as an ordinary string character. Each individual string must not exceed 64
characters in length, otherwise an error is reported. The apostrophe character itself
can be included within a string by representing it as a double apostrophe (the two
keystrokes "), which become a single apostrophe when read by the assembler.

Note that particular operation codes may require that the string length be no longer
than one or two characters. The LXI instruection, for example, will accept a character
string operand of one or two characters, while the CPI instruction will accept only a
one character string. The DB instruction, however, allows strings of length zero
through 64 characters in its list of operands. In the case of single character strings,
the value becomes the 8-bit Asecii code for the character (without case translation),
while two character strings produce a 16-bit value, with the second character as the
low order byte, and the first character as the high order byte. The string constant
'A' for example, is equivalent to 41H, while the two character string 'AB' produces the
16-bit value 4142H. The following strings are valid in various MAC statements:

A" 'AB' 'ab' '¢" "™ ‘she said "hello™

There is one special case which must be considered inside string constants. As
discussed in later sections, the character "&" can be used to cause evaluation of dummy
arguments within macro expansions when they occur inside of string quotes. The exact
details of the substitution process will be given in the discussion of macro definition
and call statements.

3.5. Arithmetic, Logical, and Relational Operators.

The operands described above can be combined in normal algebraic notation
using any combination of properly formed operands, operators, and parenthesized
expression. The operators recognized by MAC in the operand field are given below.
In general, the letters a and b represent operands which are treated as 16-bit unsigned
quantities in the range 0-65535. All arithmetic operators (+, -, *, /, MOD, SHL, and
SHR) produce a 16-bit unsigned arithmetic result, the relational operators (EQ, LT, LE,
GT, GE, and NE) produce a true (OFFFFH) or false (0000H) 16-bit result, and the
logical operators (NOT, AND, OR, and XOR) operate bit-by-bit on their operand(s)
producing a 16-bit result of 16 individual bit operations. The HIGH and LOW functions
alway produce a 16-bit result with a high order byte which is zero.

atb produces the arithmetic sum of a and b, +b is b

a-b produces the -arithmetic difference between a and b, -b is 0-b
a*b is the unsigned magnitude multiplication of a by b

a/b is the unsigned magnitude division of a by b

a MOD b is the remainder after division of a by b

a SHL b produces a shifted left by b, with zero right fill

a SHR b produces a shifted right by b, with zero left fill

NOT b is the bit-by-bit logical inverse of b

a EQ b produces true if a equals b, false otherwise

LT b produces true if a is less than b, false otherwise

LE b produces true if a is less or equal to b, false otherwise
GT b produces true if a is greater than b, false otherwise

GE b produces true if a is greater or equal to b, false otherwise
AND b produces the bitwise logical AND of a and b

OR b produces the bitwise logical OR of a and b

XOR b produces the logical exclusive OR of a and b

HIGH b is identical to b SHR 8 (high order byte of b)

LOW b is identical to b AND OFFH (low order byte of b)

O Mmoo ® Do

In general, all computations are performed cduring the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field, and thus the high order byte must be zero.
If the computed value does not fit the field, the assembler produces a value error for
that statement. As an exception to this rule, 8-bit values which would normally be
considered "negative" are allowed in 8-bit fields under the following conditions: if the
program attempts to fill an 8-bit field with a 16-bit value which has all I's in the high
order byte, and the "sign bit" is set, then the high order byte is truncated and no
error is reported. This particular condition arises when a negative sign is placed in
front of a constant. The value -2, for example, is defined (and computed) as 0-2
which produces the 16-bit value OFFFEH, where the high order byte (0FFH) contains
extended sign bits which are all 1's, while the low order byte (0FEH) has the sign bit
set. Thus, the following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI 0FF80H
while the following instructions do produce value errors:
ADI 256 ADI 32768 ADI -129 ADI 0FF7FH
The special operator NUL is used in conjunction with macro definition and
expansion operations, and must be the last operator in the operand field, preceding
only a single operand. The use and effects of the NUL operator are delayed until the

discussion of macros.

Expressions can generally be formed from simple operands such as labels, numeric
constants, string constants, and machine operation ccdes, or fully enclosed parenthesized
expressions such as:

10+20, 10H+37Q, L1/3, (L2 + 4) SHR 3, ('a' and 5fh) + '0'
('BB' + B) OR (PSW + M), (1 + (2+C)) shr (A-(B + 1)), (HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, MAC assumes that operators have a
relative precedence of application which allows expressions to be written without nested
levels of parentheses. The resulting expression has assumed parentheses which are
defined by this relative precedence. The order of application of operators in

unparenthesized expressions is listed below. Operators listed first have highest prece-
dence, and are applied first in an unparenthesized expression. Operators listed last
have lowest precedence, and are applied last. Operators listed on the same line have
equal precedence, and are applied from left to right as they are encountered in an
expression:

* / MOD SHL SHR
+ -
EQ LT LE GT GE NE
NOT
AND
OR XOR
HIGH LOW

Thus, the expressions shown below are equivalent:

a * b+ ¢ produces (a. * b) + ¢
a+ b * ¢ produces a + (b * ¢)
a MOD b * e¢ SHL d produces ((a MOD b) * ¢) SHL D
a OR b AND NOT c¢ + d SHL e produces a OR (b AND (NOT (¢ + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses, and thus the last expression above could be rewritten to force apphcatxon
of operators in a different order as shown below:

(a OR b) AND (NOT ¢) + d SHL e
resulting in the assumed parentheses:
(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the expression which
results from inserting the assumed parentheses is well-formed.

As a notational convenience, the following are equivalent:

LT
LE
EQ
NE
GE
GT

VVAILANAN
v

10

4. ASSEMBLER DIRECTIVES

Assembler directives are used to set labels to specific values during assembly,
perform conditional assembly, define storage areas, and specify starting addresses in
the program. Each assembler directive is denoted by a pseudo operation which appears
in the operation field of the statement. The acceptable pseudo operations are given
below.

ORG sets the program or data origin

END terminates the physical program

EQU performs a numeric "equate"

SET performs a numeric "set" or assignment
IF begins conditional assembly

ELSE is an alternate to a previous IF

ENDIF marks the end of conditional assembly
DB defines data bytes or strings of data
DW defines words of storage (double bytes)
DS reserves uninitialized storage areas
PAGE defines the listing page size for output
TITLE enables pages titles and options

In addition to those listed above, there are several pseudo operations which are used
in conjunction with the macro processing facilities. Specifically, the MACRO, EXITM,
ENDM, REPT, IRPC, IRP, LOCAL, and MACLIB operations are reserved words, and
are fully described in separate sections which deal with maero processing. The
non-macro pseudo operations are detailed below.

4.1. The ORG Directive.

The ORG statement takes the form
label ORG expression

where "label" is an optional program label (i.e., an identifier followed by an optional
"), and "expression" is a 16-bit expression consisting of operands which are defined
previous to the ORG statement. The assembler begins machine code generation at
the location specified in the expression. There can be any number of ORG statements
within a particular program, and there are no checks to ensure that the programmer
is not redefining overlapping memory areas. Note that most programs written for
CP/M begin with an "ORG 100H" statement which causes machine code generation to
begin at the base of the CP/M transient program area.

If a label is specified in the ORG statement, then the label takes on the value
given by the expression, which is the next machine code address to assemble. This
label can then be used in the operand field of other statements to represent this
expression.

4,2, The END Directive.

The END statement is optional in an assembly language program, but if present
it must be the last statement. All statements following the END are ignored. The
two forms of the END statement are:

11

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expression
is evaluated and becomes the program starting address. This starting address is included
in the last record of the Intel format machine code "hex" file which results from the
assembly. Thus most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, which is the beginning of the transient
program area.

4.3. The EQU Directive.

The EQU (equate) statement is used to name synonyms for particular numeric
values. The form is

label EQU expression

where the label must be present, and must not label any other statement. The
assembler evaluates the expression and assigns this value to the identifier given in the
label field. The identifier is usually a name which desecribes the value in a more
human-oriented manner. Further, this name can be used throughout the program as
a parameter for certain functions. Suppose, for example, that data received from a
Teletype appears on a particular input port, and data is sent to the Teletype through
the next output port in sequence. The series of equate statements that could be used
to define these ports for a particular hardware environment are shown below.

TTYBASE EQU 10H ;BASE TTY PORT
TTYIN EQU TTYBASE sTTY DATA IN
TTYOUT EQU TTYBASE+l ;TTY DATA OUT

At a later point in the program, the statements which access the Teletype could appear
as:

IN TTYIN sREAD TTY DATA TO A

OouT TTYOUT sWRITE DATA FROM A

making the program more readable than if the absolute I/O port addresses had been

used. If the hardware environment is later redefined to start the Teletype communica-

tions ports at 7FH instead of 10H, the first statement need only be changed to:
TTYBASE EQU T7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

4,4. The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expressibn

12

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement where a label takes on a
single value throughout the program, the SET statement can be used to assign different
values to a name at different parts of the program. In particular, the SET statement
gives the label a value which is valid from the current SET statement to the point
where the label occurs on the next SET statement. The use of SET is similar to the
EQU, except that SET is used more often to control conditional assembly within macros.

4.5. The IF, ELSE, and ENDIF Directives.

The IF, ELSE, and ENDIF directives define a range of assembly language
statements which are to be included or execluded during the assembly process. The IF
and ENDIF statements alone can be used to bound a group of statements to be
conditionally assembled, as shown below:

IF expression
statement#1
statement#2

statem;an.t#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF (all operands in the expression must be defined ahead of the IF statement). If
the expression produces a non-zero value then statement#l through statement#n are
assembled. If the expression evaluates to a zero value then the statement are listed
but not assembled.

Conditional assembly is often used to write a single "generie" program which
includes a number of possible alternative subroutines or program segments, where only
a few of the possible alternatives are to be included in any given assembly. Figures
2a and 2b give an example of such a program. Assume that a console device (either
a Teletype or CRT) is connected to an 8080 microcomputer through I/O ports. Due
to the electronic enviroment, the "current loop" Teletype is connected through ports
10H and 11H, while the "RS-232" CRT is connected through ports 20H and 21H. The
program continually loops, reading and writing console characters. A single program
is shown which, when the condition is properly set, produces a program which operates
with either a Teletype (TTY is TRUE), or with a CRT (TTY is FALSE), but not both.
Figure 2a shows an assembly for the Teletype environment, while Figure 2b shows the
assembly for a CRT-based system. Note that the leftmost 16 columns are left blank
by the assembler when statements are skipped due to a false condition.

The ELSE statement can be used as an alternative to an IF statement, and must
occur between the IF and ENDIF statements. The form is:
IF expression
statement#l

statement#2

statement#n

13

I

CP/M MACRO ASSEM 2.0

FFFF
0000
FFFF
0010
0020

0010
0011

0000
0002
0004
0007

TRUE
FALS
TTY

#001

EQU
E EQU
EQU

TTYBASE EQU
CRTBASE EQU

IF
TITLE

CONIN EQU
CONOUT EQU

ENDIF
IF
TITLE

CONIN EQU
CONOUT EQU

ENDIF

5
DB10 ECHO: IN

D311
Cc30000

Figure 2a.

ouT
JMP
END

Teletype Echo Program

OFFFFH ;DEFINE "TRUE"
NOT TRUE;DEFINE "FALSE"

TRUE ;SET TTY ON

10H ;BASE OF TTY PORTS

20H ;BASE OF CRT PORTS

TTY ;sASSEMBLE TTY PORTS
'Teletype Echo Program'
TTYBASE ; CONSOLE INPUT
TTYBASE+1 ;s CONSOLE OUT

NOT TTY ;ASSEMBLE CRT PORTS

'CRT Echo Program’

CRTBASE ; CONSOLE IN

CRTBASE+1 ; CONSOLE OUT

CONIN ;READ CONSOLE CHARACTER
CONOUT ;WRITE CONSOLE CHARACTER
ECHO

Conditional Assembly with TTY "True."

ST

CP/M MACRO ASSEM 2.0

FFFF
0000
0000
0010
0020

0020
0021

0000
0002
0004
0007

TRUE
FALS
TTY

CONI

#001

EQU
E EQU
EQU

TTYBASE EQU
CRTBASE EQU

IF
TITLE
N EQU

CONOUT EQU

CONI

ENDIF

IF

TITLE
N EQU

CONOUT EQU

ENDIF

DB20 ECHO: IN

D321
C30000

Figure 2b.

ouT
JMP
END

CRT Echo Program

OFFFFH ;DEFINE "TRUE"

NOT TRUE;DEFINE "FALSE"

FALSE ; SET CRT ON

10H ;BASE OF TTY PORTS

20H ;BASE OF CRT PORTS

TTY ; ASSEMBLE TTY PORTS
'"Teletype Echo Program'’
TTYBASE ; CONSOLE INPUT
TTYBASE+1 ; CONSOLE OUT

NOT TTY ;ASSEMBLE CRT PORTS

'"CRT Echo Program’'

CRTBASE ; CONSOLE IN

CRTBASE+1 ; CONSOLE OUT

CONIN ; READ CONSOLE CHARACTER
CONOUT ;WRITE CONSOLE CHARACTER
ECHO

Conditional Assembly with TTY "False."

ELSE
statement#n+1
statement#n+2

statement#m
ENDIF

If the expression produces a non-zero (true) value, then statements 1 through n are
assembled, as before. In this case, however, statements n+l through m are skipped in
the assembly process. When the expression produces a zero value (false), statements
1 through n are skipped, while statements n+l through m are assembled. As an example,
the conditional assembly shown in Figure 2 could be rewritten as shown in Figure 3a.

Properly balanced IF's, ELSE's, and ENDIF's can be completély contained within the
boundaries of outer encompassing conditional assembly groups. The structure outlined
below shows properly nested IF, ELSE, and ENDIF statements:

IF exp#l
group#l

IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5

IF exp#3
group#6
ENDIF
group#7
ENDIF

where group 1 through 7 are sequences of statements to be conditionally assembled,
and exp#1 through exp#3 are expressions which control the conditional assembly. If
exp#l is true, then group#l and group#4 are always assembled, and groups 5, 6, and
7 will be skipped. Further, if exp#l and exp#2 are both true, then group#2 will also
be included in the assembly, otherwise group#3 will be included. If exp#l produces a
false value, groups 1, 2, 3, and 4 will be skipped, and groups 5 and 7 will always be
assembled. If under these circumstances, exp#3 is true then group#6 will also be
included with 5 and 7, otherwise it will be skipped in the assembly. A structure
similar to this is shown in Figure 3b, where literal true/false values are used to show
conditional assembly selection.

Conditional assembly of this sort can be nested up to eight levels (i.e., there
can be up to eight pending IF's or ELSE's with unresolved ENDIF's at any point in the
assembly), but usually becomes unreadable after two or three levels of nesting. The
nesting level restriction also holds, however, for pending IF's and ELSE's during macro
evaluation. Nesting level overflow will produce an error during assembly.

4.6, The DB Directive.

The DB directive allows the programmer to define initialized storage areas in
single precision (byte) format. The statement form is

16

L1

CP/M MACRO ASSEM 2.0 #001
FFFF = TRUE EQU
0000 = FALSE EQU
0000 = TTY EQU
0010 = TTYBASE EQU
0020 = CRTBASE EQU

IF
TITLE
CONIN EQU
CONOUT EQU
ELSE
TITLE
0020 = CONIN EQU
0021 = CONOUT EQU
ENDIF
’
0000 DB20 ECHO: IN
0002 D321 OUT
0004 C30000 JMVP
0007 END

Figure 3a.

CRT Echo Program

OFFFFH ;DEFINE "TRUE"

NOT TRUE;DEFINE "FALSE"

FALSE ; SET CRT ON

10H ; BASE OF TTY PORTS

20H ;BASE OF CRT PORTS

TTY sASSEMBLE TTY PORTS

'Teletype Echo Program'

TTYBASE ; CONSOLE INPUT

TTYBASE+1 ; CONSOLE OUT
; ASSEMBLE CRT PORTS

'"CRT Echo Program'

CRTBASE ; CONSOLE IN

CRTBASE+1 ; CONSOLE OUT

CONIN ;READ CONSOLE CHARACTER
CONOUT ;WRITE CONSOLE CHARACTER
ECHO

Conditional Assembly Using "ELSE" for Alternate.

81

FFFF
0000

0000

0002

0004

0006

TRUE
FALSE

3E05

3E06

3E08

Figure 3b. Sample Program using Nested IF, ELSE, and ENDIF

EQU
EQU
IF
MVI
IF
MVI
ELSE
MVI
ENDIF
MV I
ELSE
MVI
IF
MVI
ELSE
MVI
ENDIF
MVI
ENDIF
END

0FFFFH
NOT TRUE
FALSE
A,1

TRUE

A,?2

A,3
A,4
A,5
TRUE
A,
A,T

A,8

;DEFINE "TRUE"
;sDEFINE "FALSE"

label DB e#l, e#2, ..., ein

where the label is optional, and e#l1 through e#n are either expressions which produce
8-bit values (the high order eight bits are zero, or the high order nine sign bits are
one's), or are ASCI strings of length no greater than 64 characters each. There is
no practical restriction on the number of expressions included on a single source line.
The expressions are evaluated and palced sequentially into the machine code following
the last program address generated by the assembler. String characters are similarly
placed into memory starting with the first character and ending with the last character.
Strings of length greater than two characters cannot be used as operands in more
complicated expressions (i.e., they must stand alone between the commas). Note that
ASCII characters are always placed in memory with the high order (parity) bit reset
to zero. Further, recall that there is no translation from lower to upper case within
strings. The optional label can be used to reference the data area throughout the
program. Examples of valid DB statements are:

data: DB 0,1,2,3,4,5,6
DB data and 0ffh,5,377Q,1+2+3+4
signon: DB 'please type your name:',cr,lf,0

DB 'AB' SHR 8, 'C', 'DE' AND 7FH
DB HIGH data, LOW (signon GT data)

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision (two
byte) words of storage are initialized. The form is:

label DW e#l], e#2, ..., e#n

where the label is optional, and e#1 through e#n are expressions which produce 16-bit
values. Note that Ascii strings of length one or two characters are allowed, but
strings longer than two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following DW
statements are examples of properly formed statements:

doub: DW Offefh, doub+4,signon-$,255+255
Dw 'a', 5, 'AB', 'CD', doub LT signon

4.8. The DS Directive.

The DS statement is used to reserve an area of uninitialized memory, and takes
the form: '

label DS expression
where the label is optional. The assembler begins subsequent code generation after

the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequence:

19

label: EQU $ sCURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9. The PAGE and TITLE Directives.

The PAGE and TITLE pseudo operations give the programmer control over the
output formatting which is sent to the PRN file (or directly to the printer device).
The forms for the PAGE statement are:

PAGE
and
PAGE expression

If the PAGE statement stands alone, as in the first case above, the output page is
ejected to the top of form (i.e., an ASCII control-L (form feed) is sent to the output
file). The form feed is sent after the statement with PAGE has been printed, thus
the PAGE command is often issued directly ahead of major sections of an assembly
language program, such as a group of subroutines, to cause the next statement to
appear at the top of the following printer page.

The second form of the PAGE command is used to specify the output page size.
In this case, the expression which follows the PAGE pseudo operation determines the
number of output lines to be printed on each page. If the expression is zero, there
are no page breaks, and the print file is simply a continuous sequence of annotated
output lines. If the expression is non-zero, then the page size is set to the value of
the expression, and form feeds are issued to cause page ejects when this count is
reached for each page. The assembler initially assumes that

PAGE 56

is in effect, thus producing a page eject at the beginning of the listing, and at each
56 line increment.

The TITLE directive takes the form:
TITLE string-constant

where the string-constant is an ASCI string, enclosed in apostrophes, which does not
exceed 64 characters in length. If a TITLE pseudo operation is given during the
assembly, each page of the listing file is prefixed with the title line, preceded by a
standard MAC header. The title line thus appears as:

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line,
along with the blank line which follows the title, are not included in the line count
for the page. Normally, no more than one TITLE statement is included in a particular
program. Similarly, no more than one PAGE statement with the expression option is
normally included.

20

If a TITLE statement is included, and the symbol table is being appended to
the PRN file (see "assembly parameters"), then the SYM file also contains the specified
title at the beginning of the symbol listing, with page breaks given by either the
default or specified value of the PAGE statement.

4,10 A Sample Program using Pseudo Operations.

Figure 4 demonstrates the various pseudo operations available in MAC. The
sample program, called "typer," is intended to operate in the CP/M environment by
performing the simple function of selecting one of three messages for output at the
console. This program is created using the ED program, then assembled using MAC,
and then placed into "COM" file format using the CP/M LOAD function. Given that
these steps have been accomplished, typer is executed at the console command processor
level of CP/M by typing one of the commands:

typer a
typer b
typer ¢

to select message A, B, or C for printing. The typer program loads under the CCP,
and jumps to the label START where the 8080 stack is initialized. The typer program
then prints its "signon" message, which would appear as:

'typer' version 1.0

The program then retrieves the first character typed at the console following the
command "typer" which should be one of the letters A, B, or C. If one of these
letters is not specified, then typer "reboots" the CP/M system to give control back
to the CCP. If a valid letter is provided, typer selects one of the three messages
(MESS@QA, MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

Note that the TITLE and PAGE statements are used to produce a title at the
beginning of each page (form feeds were necessarily suppressed here), with a page size
of 20 lines, excluding the title lines. A number of EQU statements are used at the
beginning to improve readability of the program. Note that the exclaim symbol (!) is
used throughout the program to allow several simple assembly language statements on
the same line. Although multiple statements make the program more compact, they
often decrease the overall readability of the source program. Note also that the
program terminates without the END statement, which is only necessary if a starting
address is specified. The END statement is often included, however, to maintain
compatibility with other assemblers.

The DB statements labelled by SIGNON contain simple strings of characters, as
well as expressions which produce single byte values. The DW statement following
TABLE defines the base address of each string (corresponding to A, B, and C). Finally,
the DS statement at the end of the program reserves space for the stack defined
within the typer program.

21

¢t

000A
0000
0005
005C
0002
000D
000A
0010

0100
0100

0103
0106
010A
010E

0112
0115
0118

011B
011E
0120
0122

CP/M MACRO ASSEM 2.0

C31201

TEB7C8

5FO0E02E>5
CDO0500E1
23C30301

31C101
213701
CD0301

3A5D00
D641
FEO3
D20000

#001

'Typer P
33

Typer Program

rogram’

PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND A,B, OR C

10
0000H
0005H
005CH
2

0DH
0AH
16

100H
START

; VERSION NUMBER N.N

:REBOOT ENTRY POINT

;BDOS ENTRY POINT

sDEFAULT FILE CONTROL BLOCK (GET A,B, OR C)
;WRITE CHARACTER FUNCTION

; CARRIAGE RETURN CHARACTER

;s LINE FEED CHARACTER

;SIZE OF LOCAL STACK (IN DOUBLE BYTES)

;ORIGIN AT BASE OF TPA
; JUMP PAST THE MESSAGE SUBROUTINE

sWRITE THE STRING AT THE ADDRESS GIVEN BY HL 'TIL 00

TITLE
PAGE
VERS EQU
BOOT EQU
BDOS EQU
TFCB EQU
WCHAR EQU
CR EQU
LF EQU
STKSIZ EQU
;
ORG
JVP
WMESSAGE :
;
START:

Figure 4.

MOV A,M!
MOV E,A!
CALL BDO

ORA A! RZ ;RETURN IF AT 00
MVI C,WCHAR! PUSH H ;READY TO PRINT
St POP H ;CHARACTER PRINTED, GET NEXT

INX H! JMP WMESSAGE

; ENTER HERE FROM THE CCP, RESET TO LOCAL STACK

LX1I
LX1I
CALL

LDA
SUI
CPI
JNC

SP, STACK
H,SIGNON
WMESSAGE

TFCB+1
1Al
TABLEN
BOOT

;SET TO LOCAL STACK
;WRITE THE MESSAGE
; '"TYPER' VERSION N.N

;GET FIRST CHAR TYPED AFTER NAME
:NORMALIZE TO 0,1,2

: COMPARE WITH THE TABLE LENGTH
:REBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A'S VALUE

"Typer" Program Listing (Part A).

€¢

CP/M MACRO ASSEM 2.0 #002 Typer Program

0125 S5F MOV E,A ; LOW ORDER INDEX
0126 1600 MVI D,0 ; EXTENDED TO DOUBLE PRECISION
0128 214D01 LXI H, TABLE ;BASE OF THE TABLE TO INDEX
012B 19 DAD D ; SINGLE PRECISION INDEX
012C 19 DAD D ; DOUBLE PRECISION INDEX
012D 5E - MOV E,M ; LOW ORDER BYTE TO E
012E 23 INX H
012F 56 MOV D,M ;HIGH ORDER MESSAGE ADDRESS TO DE
0130 EB XCHG ;READY FOR PRINTOUT
0131 CD0301 CALL WMESSAGE ;sMESSAGE WRITTEN TO CONSOLE
0134 C30000 JMP BOOT ;REBOOT, GO BACK TO CCP LEVEL
’
3 DATA AREAS
SIGNON:
0137 2774797065 DB '"!'typer'' version '
0147 312E30 DB VERS/10+'0', '.', VERS MOD 10 +'0'
014A 0DOAOO DB CR,LF,0 ;END OF MESSAGE
’
TABLE: ;OF MESSAGE BASE ADDRESSES
014D 5301670182 DwW MESS@A ,MESS@B,MESS@C
0003 = TABLEN EQU ($-TABLE) /2 s LENGTH OF TABLE
: ’
0153 7468697320MESS@A: DB 'this is message a',CR,LF,0
0167 796F752073MESS@B: DB 'you selected b this time',CR,LF,0
0182 7468697320MESS@C: DB 'this message comes out for ¢',CR,LF,0
b
01A1 DS STKSI1Z*2 ;RESERVES AREA FOR STACK
STACK :

Figure 4. "Typer" Program Lisitng (Part B).

5. OPERATION CODES

Operation codes, found in the operation field of the statement, form the prinecipal
components of assembly language programs. In general, MAC accepts all the standard
mnemonics for the Intel 8080 microcomputer, which are given in detail in the Intel
manual "8080 Assembly language Programming Manual." Labels are optional on each
input line and, if included, take the value of the instruction address immediately before
the instruection is issued by the assembler. The individual operators are listed briefly
in the following sections in order to be complete, although it is understood that the
Intel documents should be referenced for exact operator details. In the discussion
which follows, the operation codes are placed into categories for discussion purposes,
followed by a sample assembly which shows the hexadecimal codes produced for each
operation. The following notation is used throughout the discussion:

el represents a 3-bit value in the range 0-7, which usually
takes one of the predefined register values A, B, C, D,
H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255 (recall
that signed 8-bit values are also allowed in the range
-128 through +127)

el6 represents a 16-bit value in the range 0-65535
where e3, e8, and el6 can themselves be formed from an arbitrary combination of
operands and operators in a well-formed expression. In some cases, the operands are
restricted to particular values within the range, such as the PUSH instruction. These
cases will be noted as they are encountered.

5.1. Jumps, Calls, and Returns.

The jump, call and return instructions allow several different forms, as shown
in Figure 5. In some cases, the condition flags are tested to determine whether or
not the jump, call, or return is to be taken. The forms are shown below.

JMP el6 JNZ el6 JZ el6
JNC elb JC elb JPO elb
JPE el6 JP el6 JM el6

The call instructions are:

CALL el6 CNZ elb6 CZ elb6
CNC elb CC el6 CPO elb6
CPE el6 CP el6 CM el6

Thre return instructions are:

‘RET RNZ RZ
RNC RC RPO
RPE - RP : RM

The restart instruction takes the form:

24

0000
0003
0006
0009
000C
000F
0012
0015
0018

001B
001E
0021
0024
0027
002A
002D
0030
0033

0036
0037

0038
0039
003A
003B
003C
003D
003E
003F
0040

0002

0041

CP/M MACRO ASSEM 2.0 #001 8080 JUMPS, CALLS, AND RETURNS

C31B00
C25C00
CA0001
D21F00
DA4142
E21700
EAO0DOO
F24100
FA1B0O

CD3600
C43800
Cccoo01
D43A00
DC0000
E43200
EC0900
F44100
FC4100

Cc7
DF

C9
Co
C8
DO
D8
EO
E8
FO
F8

Ll:

Sl:

X
GAMMA :

TITLE '8080 JUMPS, CALLS, AND RETURNS'

JUMPS ALL REQUIRE A 16 BIT OPERAND

JMP L1 ; JUMP UNCONDITIONALLY TO LABEL
JNZ L1+'A' ;JUMP ON NON ZERO TO LABEL

JZ 100H ;JUMP ON ZERO CONDITION TO LABEL
JNC L1+4 ; JUMP ON NO CARRY TO LABEL

JC 'AB' ; JUMP ON CARRY TO LABEL

JPO $+8 ;JUMP ON PARITY ODD TO LABEL

JPE L1/2 ;JUMP ON EVEN PARITY TO LABEL

JP GAMMA ;JUMP ON POSITIVE RESULT TO LABEL
JM LOW L1 ;JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND

CALL S1 ; CALL SUBROUTINE UNCONDITIONALLY
CNZ S1+X ; CALL SUBROUTINE IF NON ZERO FLAG
Cz 100H ; CALL SUBROUTINE IF ZERO FLAG
CNC Si+4 ; CALL SUBROUTINE IF NO CARRY FLAG
CC S1 MOD 3;CALL SUBROUTINE IF CARRY FLAG
CPO $+8 ; CALL SUBROUTINE IF PARITY ODD
CPE S1-$;CALL SUBROUTINE IF PARITY EVEN
CP GAMVA ; CALL SUBROUTINE IF POSITIVE

CM GAM$MA ;CALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X*8)

RST 0 : "RESTART" TO LOCATION 0
RST X+1

RETURN INSTRUCTIONS HAVE NO OPERAND

RET :RETURN FROM SUBROUTINE
RNZ :RETURN IF NON ZERO

RZ sRETURN IF ZERO FLAG SET
RNC | sRETURN IF NO CARRY FLAG
RC sRETURN IF CARRY FLAG SET
RPO :RETURN IF PARITY IS ODD
RPE sRETURN IF PARITY IS EVEN
RP sRETURN IF POSITIVE RESULT
RM sRETURN IF MINUS FLAG SET
EQU 2

END

Figure 5. ‘ASsembly show‘ing»Jumps‘, Calls, Returns, and Restarts.

RST e3

and performs exactly the same function as the instruction "CALL e3*8" except that
it requires only one byte of memory for the instruction.

Figure 5 shows the hexadecimal codes for each instruction, along with a short
comment on each line which describes the function of the instruction.

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision registers
or single precision memory cells with constant values, along with instructions which
perform immediate arithmetic or logical operations on the accumulator (register A).
The "move immediate" instruction takes the form:

MVI e3,e8
where e3 is the register to receive the data given by the value e8. The expression
e3 must produces a value corresponding to one of the registers A, B, C, D, E, H, L,
or the memory location M which is addressed by the HL register pair.

The "accumulator immediate" operations take the form:

ADI e8 ACI e8 SUI e8 SBI e8
ANI e8 XRI e8 ORI e8 CPI e8

where the operation in always performed upon the accumulator using the immediate
data value given by the expression e8.

The "load extended immediate" instructions take the form:
LXI e3,elb
where e3 designates the register pair to receive the double precision value given by
el6. The expression e3 must produce a value corresponding to one of the double

precision register pairs B, D, H, or SP.

Figure 6 shows the use of the accumulator immediate operations in an assembly
language program, along with a short comment deseribing the use of each instruction.

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for inecrementing or decrementing
single and double precision registers. The instruction forms for single precision registers
are:

INR e3 DCR e3
where e3 produces a value corresponding to one of the registers A, B, C, D, H, L, or

M (corresponding to the byte value at the memory location addressed by HL). The
double precision instructions are:

26

LZ

CP/M MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

TITLE 'IMMEDIATE OPERAND INSTRUCTIONS'

Y}

; MVI USES A REGISTER (3BIT) OPERAND AND 8-BIT DATA

0000 O6FF MV B, 255 ;MOVE IMMEDIATE A,B,C,D,E,H,L,M

b

; ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER
0002 C601 ADI 1 ;sADD IMMEDIATE TO A W/O CARRY
0004 CEFF ACI 0FFH ;ADD IMMEDIATE TO A WITH CARRY
0006 D613 SUI L1+3 ; SUBTRACT FROM A W/O BORROW (CARRY)
0008 DE10 SBI LOW L1 ;SUBTRACT FROM A WITH BORROW (CARRY)
000A E602 ANTI $ AND 7 ;LOGICAL "AND" WITH IMMEDIATE DATA
000C EE3C XR1 1111$00B; LOGICAL "XOR" WITH IMMEDIATE DATA
000E F6FD ORI -3 ; LOGICAL "OR" WITH IMMEDIATE DATA
. L1:
0010 ‘ END

Figure 6. Assembly using Immediate Operand Instructions.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

TITLE ' INCREMENT AND DECREMENT INSTRUCTIONS'

| INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
0000 1C INR E ;BYTE INCREMENT A,B,C,D,E

.o

H,L,M
b ? b
0001 3D DCR A :BYTE DECREMENT A,B,C,D,E,H,L,M
0002 33 INX SP :16-BIT INCREMENT B,D,H,SP

0003 OB DCX B :16-BIT DECREMENT B,D,H,SP

0004 END

Figure 7. Assembly containing Increment and Decrement Instructions.

INX e3 DCX e3

where e3 must be equivalent to one of the double precision register pairs B, D, H, or
SP.

Figure 7 shows a sample assembly language program which uses both single and
double precision increment and decrement operations.

5.4. Data Movement Instructions.

A number of 8080 instructions are placed in this category which move data
from memory to the CPU and from the CPU to memory. A number of register to
register move operations are also included. The single precision "move register"
instruction takes the form:

MOV e3,e3'

where e3 and e3' are expressions which each produce one of the single precision
registers A, B, C, D, E, H, L, or M (corresponding to the memory location addressed
by HL). In all cases, the register named by e3 receives the 8-bit value given by the
register expression e3'. The instruction is often read as "move to register e3 from
register e3'." The instruction "MOV B,H" would thus be read as "move to register B
from register H." Note that the instruction MOV M,M is not allowed.

The single precision load and store extended operations take the form:
LDAX e3 STAX e3

where e3 is a register expression which must produce one of the double precision
register pairs B or D. The 8-bit value in register A is either loaded (LDAX) or stored
(STAX) from/to the memory location addressed by the specified register pair.

The load and store direct instructions operate either upon the A register for
single precision operations, or upon the HL register pair for double precision operations,
and take the forms:

LHLD el6 SHLD el6 LDA el6 STA el6

where el6 is an expression produces the memory address to obtain (LHLD, LDA) or
store (SHLD, STA) the data value.

The stack pop and push instructions perform double precision load and store
operations, with the 8080 stack as the implied memory address. The forms are:

POP e3 PUSH e3

where e3 must evaluate to one of the double precision register pairs PSW, B, D, or
H.

The input and output instructions are also found in this category, even though
they receive and send their data to the electronic environment which is external to
the 8080 processor. The input instruction reads data to the A register, while the
output instruction sends data from the A register. In both cases, the data port is

28

62

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY /REGISTER MOVE OPERATIONS
TITLE 'DATA/MEMORY /REGISTER MOVE OPERATIONS'

. THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS
: (3-BITS) SELECTED FROM A,B,C,D,E,H, OR M (M,M INVALID)

0000 78 MOV A,B ;MOVE DATA TO FIRST REGISTER FROM SECOND
5
H LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D
0001 OA LDAX B ; LOAD ACCUM FROM ADDRESS GIVEN BY BC
0002 12 STAX D ; STORE ACCUM TO ADDRESS GIVEN BY DE
H
; LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS
0003 2A1900 LHLD D1 ; LOAD HL DIRECTLY FROM ADDRESS D1
0006 221B00 SHLD D1+2 ; STORE HL DIRECTLY TO ADDRESS D1+2
0009 3A1900 LDA D1 ; LOAD THE ACCUMULATOR FROM D1
000C 326400 STA D1 SHL 2;STORE THE ACCUMULATOR TO D1 SHL 2
H
; PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B,D,H
000F F1 POP PSW ; LOAD REGISTER PAIR FROM STACK
0010 G5 PUSH B ; STORE REGISTER PAIR TO THE STACK
; INPUT/OUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
0011 DBO6 IN X+2 ; READ DATA FROM PORT NUMBER TO A
0013 D3FE ouT 0FEH sWRITE DATA TO THE SPECIFIED PORT
H
H MISCELLANEOUS REGISTER MOVE OPERATIONS
0015 E3 XTHL ; EXCHANGE TOP OF STACK WITH HL
0016 E9 PCHL ;PC RECEIVES THE HL VALUE
0017 F9 SPHL ; SP RECEIVES THE HL VALUE
0018 EB XCHG ; EXCHANGE DE AND HL
H
; END OF INSTRUCTION LIST
0019 Di1: DS 2 ; DOUBLE WORD TEMPORARY
001B DS 2 ; ANOTHER TEMPORARY
0004 = X EQU 4 ;s LITERAL VALUE
001D END

Figure 8. Assembly Using Various Register/Memory Moves.

given by the data value which follows the instruction:
IN e8 OUT e8

Various instructions are a part of the instruction set which transfer double
precision values between registers and the stack. These instructions are:

XTHL PCHL SPHL XCHG

Figure 8 lists these instructions in an assembly language program, along with a short
comment on the use of each instruction.

5.5. Arithmetic Logic Unit Operations.

A number of instructions are included in .the 8080 set which operate between
the accumulator and single precision registers, including operations upon the A register
and carry flag. The accumlator/register instructions are:

ADD e3 ADC e3 SUB e3 SBB e3
ANA e3 XRA e3 ORA e3 CMP e3

where e3 produces a value corresponding to one of the single precision registers A,
B, C, D, E, H, L, or M, where the M 'register" is the memory location addressed by
the HL register pair.

The accumulator/carry operations given below operate upon the A register, or
carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The actual function of each instruction is listed in the comment line shown in Figure
9.

The last instruction of this group is the double precision add instruction which
performs a 16-bit addition of a register pair (B, D, H, or SP) into the 16-bit value in
the HL register pair, producing the 16-bit (unsigned) sum of the two values which is
placed into the HL register pair. The form is:

DAD e3

5.6. Control Instructions.

The four remaining instructions in the 8080 set are categorized as control
instructions, and take the forms:

HLT DI EI NOP

and are used to stop the processor (HLT), enable the interrupt system (EI), disable the
interrupt system (DI), or perform a "no-operation" (NOP).

30

1€

0000
0001
0002
0003
0004
0005
0006
0007

0008

0009
000A
000B
0o00C
000D
000E
000F
0010

0011

CP/M MACRO ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

80
8D
94
99
Al
AF
B0
BC

09

27
2F
37
3F
07
OF
17
1F

TITLE "ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER,
WHICH MUST PRODUCE A, B, C, D, E, H, L, OR M

we e we we

ADD B :ADD REGISTER TO A W/O CARRY
ADC L :ADD TO A WITH CARRY INCLUDED
SUB H : SUBTRACT FROM A W/O BORROW
SBB B+1 : SUBTRACT FROM A WITH BORROW
ANA C : LOGICAL "AND" WITH REGISTER
XRA A s LOGICAL "XOR" WITH REGISTER
ORA B :LOGICAL "OR" WITH REGISTER
CMP H :COMPARE REGISTER, SETS FLAGS

9

: DOUBLE ADD CHANGES HL PAIR ONLY
DAD B ;DOUBLE ADD B,D,H,SP TO HL

’

. REMAINING OPERATIONS HAVE NO OPERANDS
DAA ;DECIMAL ADJUST REGISTER A USING LAST OP
CMA ; COMPLEMENT THE BITS OF THE A REGISTER
STC ;SET THE CARRY FLAG TO 1
CMC ;COMPLEMENT THE CARRY FLAG
RLC ;8-BIT ACCUM ROTATE LEFT, AFFECTS CY
RRC ;8-BIT ACCUM ROTATE RIGHT, AFFECTS CY
RAL ;9-BIT CY/ACCUM ROTATE LEFT
RAR ;9-BIT CY/ACCUM ROTATE RIGHT

: |
END

Figure 9. Assembly Showing ALU Operations.

6. AN INTRODUCTION TO MACRO FACILITIES

The fundamental difference between the Digital Research "ASM" and "MAC"
assemblers is that ASM provides only the fundamental facilities for assembling 8080
operation codes, while MAC includes a powerful macro processing facility. In particular,
MAC implements the industry standard Intel macro definition, which includes the
following pseudo operations.

MACRO definitions allow groups of instructions to be stored and substituted in
the source program, as the macro names are encountered. Definitions and invocations
(macro "ealls") can be nested, symbols can be constructed through concatenation (using
the special "&" operator), and locally defined symbols can be created (using the LOCAL
pseudo operation). Macro parameters can be formed to pass arbitrary strings of text
to a specific macro for substitution during expansion. In addition, the MACLIB (macro
library) feature allows the programmer to define d particular set of macros, equates,
and sets for automatic inclusion in a program. A macro library can contain an
instruction set for another central processor, for example, which is not directly supported
by the MAC built-in mnemonics. The macro library may also include general purpose
input/output macros which are used in various programs which operate in the CP/M
environment to perform peripheral or diskette I/O functions.

IRPC, IRP, and REPT pseudo operations provide repetition of source statements
under control of a count or list of characters or items to be substituted each time
the statements are re-read by the assembler. This feature is particularly useful in
generating groups of assembly language statements with similar structure, such as a
set of file control blocks where only the file type is changed in each statement.

In order to illustrate the power of a macro facility, consider the macro library
shown in Figure 10, which is assumed to reside in a diskette file called "MSGLIB.LIB."
This macro library contains macro definitions which have standard instruction sequences
for program startup, message typeout, and program termination. The program shown
in Figure 11 provides an example of the use of this macro library. The assembly
shown in Figure 11 lists both the macro calls and the statements in the macro expansions
which generate machine code. The statements which are marked by '+' in Figure 11
are generated from the macro calls, while the remaining statements are a part of the
calling program.

As an introduction to MAC features, the macro invocation
ENTCCP 10

in Figure 11 shows a specific expansion of ENTCCP (enter from CCP) which is defined
in the macro library given in Figure 10. The macro call causes MAC to retrieve the
definition (i.e., the text between MACRO and ENDM in Figure 10) and substitute this
text following the macro call in Figure 11. This particular macro performs the following
function: upon entry to the program from the CCP, the stack pointer (SP) is saved
into a variable called "@QENTSP" for later retrieval. The stack pointer is then reset
to a local area for the remainder of the program execution. The size of the local
stack is defined by the macro parameter which is named in the macro definition as
SSIZE (see Figure 10), and filled-in at the call with the value 10. The result is that
the ENTCCP macro reserves space for a local stack of SSIZE=10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

32

: SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT
REBOOT EQU 0000H sWARM START ENTRY POINT
TPA EQU 0100H ;TRANSIENT PROGRAM AREA
BDOS EQU 0AA5H :SYSTEM ENTRY POINT
TYPE EQU 2 ;sWRITE CONSOLE CHARACTER FUNCTION
CR EQU 0DH ;CARRIAGE RETURN
LF EQU 0AH ;sLINE FEED
,
: MACRO DEFINITIONS
’
CHROUT MACRO sWRITE A CONSOLE CHARACTER FROM REGISTER A
MVI C,TYPE ;;TYPE FUNCTION
CALL BDOS ; ;ENTER THE BDOS TO WRITE THE CHARACTER
ENDM
’
TYPEOUT MACRO ?MESSAGE +TYPE THE LITERAL MESSAGE AT THE CONSOLE
LOCAL PASTSUB ;;JUMP PAST SUBROUTINE INITIALLY
JMP PASTSUB _
MSGOUT: s sTHIS SUBROUTINE IS USED TO PRINT THE MESSAGE STARTING AT HL “TIL |
NOV E,M : :NEXT CHARACTER TO E
MOV ALE +:TO ACCUM TO TEST FOR @@
ORA A 1 =007
R% + ;RETURN IF END OF MESSAGE
INX H ; OTHERWISE MOVE TO NEXT CHARACTER AND PRINT
PUSH H ; ;SAVE MESSAGE ADDRESS
CHROUT
POP H ; ;RECALL MESSAGE ADDRESS
, JMP MSGOUT ;;FOR ANOTHER CHARACTER
PASTSUB:
’
:: REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE

LOCAL TYMSG ; sLABEL THE LOCAL MESSAGE
LOCAL PASTM

LXI H,TYMSG ;;ADDRESS THE LITERAL MESSAGE
CALL MSGOUT ;;CALL THE PREVIOUSLY DEFINED SUBROUTINE
JMPp PASTM

] INCLUDE THE LITERAL MESSAGE AT THIS POINT

TYMSG: DB "FROM CONSOLE: &??MESSAGE”,CR,LF,0

HE] ARRIVE HERE TO CONTINUE THE MAINLINE CODE

PASTM: ENDM
TYPEOUT <?MESSAGE>
ENDM

éNTCCP MACRO SSIZE ;ENTER PROGRAM FROM CCP, RESERVE 2*SSIZE STACK LOCS
LOCAL START ;;AROUND THE STACK

LXI H,0
DAD Sp ;;SP VALUE IN HL
SHLD @QENTSP ;;ENTRY SP
LXI SP,@STACK; ; SET TO LOCAL STACK
JMP START
IF NUL SSIZE
DS 32 ; ;DEFAULT 16 LEVEL STACK
ELSE
DS 2*SSIZE
ENDIF
@STACK: ;;LOW END OF STACK
@ENTSP: DS 2 ; ;ENTRY SP

START: ENDM

;
RETCCP MACRO ;RETURN TO CONSOLE PROCESSOR
LHLD @ENTSP ;;RELOAD CCP STACK

SPHL
RET ; sBACK TO THE CCp

ENDM

3

ABORT MACRO sABORT THE PROGRAM
JMP REBOOY
ENDM

END OF MACRO LIBRARY

~e we

Figure 10. A Sample Macro Library.

33

CP/M MACRO ASSEM 2.8 #0801
TITLE
MACLIB
0100 ORG
: USE THE
ENTCCP
01060+210000 LXI
6103+39 DAD
0104+222101 SHLD
2167+312101 LXI
0106A+C32301 JMP
210D+ DS
7121+ QENTSP:
TYPEOUT
0123+C334061 JMP
8126+5E MOV
8127+B7 ORA
6128+C8 RZ
8129423 INX
@12A+ES PUSH
612B+0EQ2 MVI
012D+CDB560 CALL
#130+E1 POP
#131+4C32601 JMP
9134+213DA1 LXI
0137+Cb26061 CALL
@13A+C36701 JMP
#13D+46524F4D26220603:
TYPEOUT
$167+2170081 LXI
#16A+CD2641 CALL
#16D+C39841 JMP
0176+46524F4D20220005:
TYPEOUT
919B+21A401 LXI
P19E+CD2601 CALL
#1A1+C3CEQ1 JMP
AlA4+46524F4D20220007:
RETCCP
P1CE+2A2101 LHLD
@1D1+F9 SPHL
81D2+C9 RET
¢1D3 END
Figure 11.

SAMPLE MESSAGE OUTPUT MACRO

“SAMPLE MESSAGE OUTPUT MACRO’

MSGLIB
TPA

sINCLUDE THE MACRO LIBRARY
;ORIGIN AT THE TRANSIENT AREA

MACRO LIBRARY TO TYPE TWO MESSAGES

10

H,0

Sp
@ENTSP

; ENTER PROGRAM, RESERVE 184 LEVEL STACK

SP,Q@STACK

220001
2*19

DS

<THIS 1IS
220002
E,M

A

H
H

C,TYPE
BDOS

H

MSGOUT
H,220083
MSGOUT
220004
DB

<THIS IS
H,?20005
MSGOUT
270006
DB

<THIS IS
H,220067
MSGOUT
270008
DB

2

THE FIRST MESSAGE>

FROM CONSOLE: THIS IS THE FIRST MESSAGE ,CR,LF,0
THE SECOND MESSAGE>

"FROM CONSOLE: THIS IS THE SECOND MESSAGE " ,CR,LF,0
THE THIRD MESSAGE>

FROM CONSOLE: THIS IS THE THIRD MESSAGE ,CR,LF,0

;RETURN TO THE CONSOLE COMMAND PROCESSOR

QENTSP

A Sample Assembly using the MACLIB Facility.

34

Consider also the special macro statements which are used in Figure 10 within
the body of the ENTCCP macro. The "local" statement defines the label START which
is used within the macro body. Generally, each LOCAL statement causes the macro
assembler to construct a unique symbol (starting with "??") each time it is encountered.
Thus, multiple macro calls reference unique labels which do not interfere with one
another. To continue the example, ENTCCP also contains a conditional assembly
statement which uses the "NUL" operator, which is used to test whether a macro
parameter has been supplied or not. In this case, the ENTCCP macro could be invoked
by:

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. If this seems
confusing, don't be concerned at this point because the individual sections which follow
give exact details and examples.

The TYPEOUT macro provides a more complicated example of macro use. Note
that this maero contains a redefinition of itself within the macro body. That is, the
structure of TYPEOUT is:

TYPEOUT MACRO ?MESSAGE
TYPEOUT MACRO ??MESSAGE
ENDM
ENDM
where the outer definition of TYPEOUT completely encloses the inner definition. The

outer definition is active upon the first invocation of TYPEOUT, but upon completion,
the nested inner definition becomes active.

In order to see the use of such a nested structure, consider the purpose of the
TYPEOUT macro. Each time it is invoked, TYPEOUT prints the message sent as an
actual parameter at the console device. The typeout process, however, can be easily
handled with a short subroutine. Upon the first invocation, we would like to include
the subroutine "inline," and then simply call this subroutine on subsequent invocations
of TYPEOUT. Thus, the outer definition of TYPEOUT defines the utility subroutine,
and then redefines itself so that the subroutine is called, rather than including another
copy of the utility subroutine.

It should be noted that macro definitions are stored in the symbol table area
of the assembler and thus each macro reduces the remaining free space. As a result,
MAC allows "double semicolon" comments which indicate that the comment itself is
to be ignored and not stored with the maecro. Thus, comments with a single semicolon
are stored with the macro and appear in each expansion while comment with two
preceding semicolons are listed only when the macro is defined.

Figure 11 gives three examples of TYPEOUT invocations, with three messages

which are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (??20002) in the place of "PASTSUB," which is used to branch around

35

the utility subroutine which is included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message which is also included inline. * Note, however, that subsequent invocations of
TYPEOUT use the previously included utility subroutine to type their messages. Again,
this may seem confusing, but it is worthwhile studying this example before continuing
into the exact details of macro definition and invocation in order to gain some insight
into macro facilities.

It should also be noted that, although the example shown here concentrates all
macro definitions in a separate macro library, it is often the case that macros are
defined in the mainline (.ASM) source program. In fact, many programs which use
macros do not use the external macro library facility at all.

There are many applications of macros which will be examined throughout the
remainder of this manual. Specifically, macro facilities can be used to simplify the
programming task by "abstracting” from the primitive assembly language levels. That
is, the programmer can define macros which provide more generalized functions that
are allowed at the pure assembly language level, such as macro languages for a given
applications (see Section 10), improved control facilities, and general purpose operating
systems interfaces. The remainder of this manual first introduces the individual macro
forms, then presents several uses of the macro facilities in realistic applications.

36

7. INLINE MACROS

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the
assembler to repetively re-read portions of the source program under control of a
counter or list of textual substitutions. These groups are listed below in increasing
order of complexity.

7.1. The REPT-ENDM Group.

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation, and terminated by an ENDM pseudo operation.
The form is:

label: REPT expression
statement-1
statement-2

.st;at.ement—n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and process
statements 1 through n which are enclosed within the group.

Figure 12 shows an example of the use of the REPT group. In this case the
REPT-ENDM group is used to generate a short table of the byte values 5, 4, 3, 2,
and 1. Upon entry to the REPT, the value of NXTVAL is 5 which is taken as the
repeat count (even though NXTVAL changes within the REPT). Note that the macro
lines which do not generate machine code are not listed in the repetition, while the
lines which do generate code are listed with a "+'" sign after the machine code address.
Full macro tracing is optional, however, using assembly parameters, as discussed in a
later section.

In general, if a label appears on the REPT statement, its value is the first
machine code address which follows. This REPT label is not re-read on each repetition
of the loop. The optional label on the ENDM is re-read on each iteration and thus
constant labels (not generated through concatenation or with the LOCAL pseudo
operation) will generate phase errors if the repetion count is greater than 1.

Properly nested macros, including REPT's, can occur within the body of the
REPT-ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals which begin within the repeat group are
automatically terminated upon reaching the end of the macro expansion. Thus, IF and
ELSE pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group (although the ENDIF is allowed).

7.2, The IRPC-ENDM Group.

Similar to the REPT group, the IRPC-ENDM group causes the assembler to
re-read a bounded set of statements, taking the form

37

8¢

CP/M MACRO ASSEM 2.0

0100

0005 =

0100 DBOO
0102 FEO05
0104 D20001
0107 211401
010A S5F
010B 1600
010D 19
010E 7E
010F D300
0111 C30001

0005 #

0114+05
0115+04
0116+03
0117+02
0118+01
0119

Figure 12.

ORG

TITLE
THIS PROGRAM READS INPUT PORT 0 AND INDEXES INTO A TABLE

BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED AND SENT
TO OUTPUT PORT 0

“we we we we

#001 SAMPLE REPT STATEMENT

100H ;BASE OF TRANSIENT AREA
'SAMPLE REPT STATEMENT'

MAXVAL EQU 5 ; LARGEST VALUE TO PROCESS
RLOOP: IN 0 :READ THE PORT VALUE
CPI MAXVAL ;TOO LARGE?
JNC RLOOP ;IGNORE INPUT IF INVALID
LXI H,TABLE ;ADDRESS BASE OF TABLE
MOV E,A ;LOW ORDER INDEX TO E
MV I D,0 :HIGH ORDER 00 FOR INDEX
DAD D ;HL HAS ADDRESS OF ELEMENT
MOV A,M :FETCH TABLE VALUE FOR OUTPUT
OUT 0 :SEND TO THE OUTPUT PORT AND LOOP
JMP RLOOP ;FOR ANOTHER INPUT
b
. GENERATE A TABLE OF VALUES MAXVAL,MAXVAL-1,...,1

b

NXTVAL SET

TABLE: REPT
DB

NXTVAL SET
ENDM
DB
DB
DB
DB
DB
END

MAXVAL ;START COUNTER AT MAXVAL
NXTVAL

NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL-1; ;AND DECREMENT FILL VALUE

NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL ;FILL ONE (MORE) ELEMENT
NXTVAL FILL ONE (MORE) ELEMENT

A Sample Program Using the REPT Group.

label: IRPC identifier,character-list
statement-1
statement-2
statement-n

label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The "identifier" is any valid assembler name, not including embedded "$" separators,
and "character-list" denotes a string of characters, terminated by a delimiter (space,
tab, end-of-line, or comment).

The IRPC controls the re-read process as follows: the statement sequence is
read once for each character in the character-list. On each repetition, a character
is taken from the character-list and associated with the controlling identifier, starting
with the first and ending with the last character in the list. Thus, an IRPC header
of the form

IRPC ?X,ABCDE

re-reads the statement sequence which follows (to the balancing ENDM) a total of
five times, once for each character in the list "ABCDE." On the first iteration, the
character "A" is associated with the identifier "?X" and on the fifth iteration the
letter "E" is associated with the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the
controlling identifier by the associated character value. Using the above IRPC header,
an occurrence of "?X" in the bounds of the IRPC-ENDM group is replaced by the
character "A" on the first iteration, and by "E" on the last iteration.

The programmer can use the controlling identifier to construet new text strings
within the body of the IRPC by using the special "concatenation" operator, denoted
by an ampersand (&). Again using the above IRPC header, the macro assember would
replace "LAB&?X" by "LABA" on the first iteration, while "LABE" would be produced
on the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC re-read process.

Note, however, that the controlling identifier is not normally substituted within
string quotes, since the controlling identifier could quite possibly occur as a part of
a quoted message. Thus, the macro assembler performs substitution of the controlling
identifier when it is either preceded and/or followed by the ampersand operator.
Further, recall that all alphabetics outside string quotes are translated to upper case,
while no case translation occurs within string quotes. This requires that the controlling
identifier be not only preceded or followed by the concatenation operator within strings,
but must also be typed in upper case.

Figure 13 illustrates the use of the IRPC-ENDM group. Figure 13a shows the
original assembly language program, before processing by the macro assembler. Note
that the program is typed in both upper and lower case. Figure 13b shows the output
from the macro assembler, with the lower case alphabetiecs translated to upper case.
Three IRPC groups are shown in this example. The first IRPC uses the controlling
identifier "reg" to generate a sequence of stack push operations which save the double
precision registers BC, DE, and HL. Again note that the lines generated by this group
are marked by a "+" sign following the machine code address.

39

3 construct a data table

save relevant registers

9

enter: irpe reg,bdh
push reg ;jsave reg
endm

’

3 initialize a partial ascii table
irpe c¢,1Abs%$?@

dataé&e: db '&C!
endm

’

s restore registers
irpe reg, hdb
pop reg ssrecall reg
endm
ret
end

Figure 13a. Original (.ASM) File with IRPC Example.

; CONSTRUCT A DATA TABLE
: SAVE RELEVANT REGISTERS
ENTER: IRPC REG,BDH

PUSH REG ; s SAVE REG
ENDM

0000+C5 PUSH B

0001+D5 PUSH D

0002+E5 PUSH H

: INITIALIZE A PARTIAL ASCII TABLE
IRPC C,1AB$?@

.
’

DATA&C: DB '&C!
ENDM
0003+31 DATA1: DB "1
0004+41 DATAA: DB 'A'
0005+42 DATAB: DB 'B'
0006+24 DATA$: DB '$!
0007+3F DATA?: DB re
0008+40 DATA@: DB - 'Q!
’
H RESTORE REGISTERS
IRPC REG,HDB
POP REG ; s RECALL REG
ENDM
0009+E1 POP H
000A+D1 POP D
000B+C1 POP B
000C C9 RET
000D END

Figure 13b. Resulting (.PRN) file with IRPC Example.

40

The second IRPC shown in Figure 13 uses the controlling identifier "C" to
generate a number of single byte constants with corresponding labels. It is important
to observe that although the controlling variable was typed in lower case (see Figure
13a), it has been translated to upper case during assembly. Further, note that the
string '&C' ocecurs within the group and, since the controlling variable is enclosed in
string quotes, it must occur next to an ampersand operator and be typed in upper case
for the substitution to occur properly. On each iteration of the IRPC, a label is
constructed through concatenation, and a "DB" is generated with the corresponding
character from the character-list.

It should be pointed out that substitution of the controlling identifier by its
associated value could cause infinite substitution if the controlling identifier is the
same as the character from the character-list. For this reason, the maero assembler
performs the substitution and then moves along to read the next segment of the
program, rather than re-reading the substituted text for another possible occurrence
of the controlling identifier. Thus, an IRPC of the form

IRPC C,1AC$?@

would produce
DATAC: DB '

in place of the DB statement at the label DATAA in Figure 13b.

The last IRPC of Figure 13 is used to restore the previously saved double
precision registers, and performs the exact opposite function from the IPRC at the
beginning of the program.

One special case does occur, however, when the character-list is empty (i.e.,
when no characters occur following the "identifier," portion of the IRPC header). In
this case, the group of statements is read once, and any occurrence of the controlling
identifier is deleted when it is read (i.e., it is replaced by the "null string").

7.3. The IRP-ENDM Group.

The IRP (indefinite repeat) is similar in function to the IRPC, except that the
controlling identifier can take on a multiple character value. The form of the IRP
group is

label: IRP identifier,%cl-1,cl-2,...,cl-n3%
statement-1
statement-2
stat.ement-m

label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration as follows. On the first iteration, the character-list
given by "el-1" is substituted for the identifier wherever the identifier occurs in the
bounded statement group (statements 1 through m). On the second iteration, cl-2
becomes the value of the controlling identifier. Iteration continues in this manner

41

until the last character-list, denoted by cl-n, is encountered and processed. Substitution
of values for the controlling identifier is subject to the same rules as in the IRPC
(note rules for substitution within strings and concatenation of text using the ampersand
operator "&"). One should also note that controlling identifiers are always ignored
within comments.

Figure 14 gives several examples of IRP groups. The first occurrence of the
IRP in Figure 14 is a typical use of this facility to generate a "jump vector" at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier "?LAB" and produces a jump instruction
for each label by re-reading the IRP group, substituting the actual label for the formal
name on each iteration. .

The second occurrence of the IRP group in Figure 14 points out substitution
conventions within strings (for both IRPC and IRP groups). The controlling identifier
"IS" takes on the values "A-ROSE" and "?" on the two iterations of the IRP group,
respectively. Note that the controlling identifier is replaced by the character-lists in
the two cases "&IS" and "IS&" inside the string quotes since they are both adjacent
to the ampersand operator. Note further that "is&" is not replaced because the
controlling identifier is typed in lower case, and there is no automatic translation to
upper case within strings. The occurrences of "IS" within the comments are not
substituted.

The last IRP group shows the effects of an empty character-list. The value of
the controlling identifier becomes the null string of symbols and, in the cases where
"?X" is replaced, produces the statement

DB "

which produces no machine code, and is therefore not listed in the macro expansion.
The three statements

DB '"?x' DB "?’X' DB '&

appear in the expansions because the "?x" is typed in lower case (and thus is not
replaced), the '?X' does not appear next to an ampersand in the string (and is thus
not replaced), while in the last case only one of the double ampersands is absorbed in
the '&&?X&' string. In this last case, the two ampersands which surround "?X" are
removed since they occur immediately next to the controlling identifier within the
string.

Recall that substitution rules outside of string quotes and comments is much
less complicated: the controlling identifier is replaced by the current character-list
value whenever it occurs in any of the statements within the group. Further, the
ampersand operator can be placed before or after the controlling identifier to cause
the preceding or following text to be concatenated.

The actual forms for the character-lists (el-1 through cl-n) are more general
than stated here. In particular, bracket nesting is allowed as well as escape sequences
to allow delimiters to be ignored. The exact details of character-list forms are
discussed in the macro parameter sections.

42

CREATE A "JUMP VECTOR" USING THE IRP GROUP

..

IRP ?LAB,< INITIAL,GET,PUT,FINIS >
JMP ?LAB ; ;GENERATE THE NEXT JUMP
ENDM
0000+C30C00 JMP INITIAL
0003+C34300 JMP GET
0006+C34600 JMP PUT
0009+C34900 JMP FINIS
’
; INDIVIDUAL CASES
INITIAL:
000C 211200 LXI H,CHRS
000F C35100 JMP ENDCASE
CHRS : IRP IS, <A-ROSE, ? >
DB '&IS IS IS&' ;IS IS &IS
DB '&IS isn''t is&'
. ENDM
0012+412D524F53 DB '"A-ROSE IS A-ROSE' ;IS IS &IS
0022+412D524F53 DB '"A-ROSE isn''t is&'
0032+3F20495320 DB 1?2 IS 2! ;IS IS &IS
0038+3F2069736E DB '? isn''t is&'
b
0043 C35100 GET: JMP ENDCASE
’
0046 C35100 PUT: JMP ENDCASE
b
0049 C35100 FINIS: JMP ENDCASE
IRP 72X, <>
DB r7x!
DB rex!
DB 1&2X!
DB T&IX&!
DB 1 && 2 X&!
ENDM
004C+3F178 DB rex!
004E+3F58 DB 12X
0050+26 DB &
ENDCASE:
0051 C9 RET
0052 END

Figure 14. A Sample Program Using IRP.

43

7.4. ‘The EXITM Statement.

The EXITM pseudo operation can occur within the body of a macro and, upon
encountering the EXITM statement, the maero assembler aborts expansion of the current
macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1

label: EXITM

statement-n
ENDM

where the label is optional, and "macro-heading" denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

In order to be useful, the EXITM statement normally occurs within the scope
~of a surrounding conditional assembly operation. If the EXITM occurs in the scope of
a false conditional test, the statement is ignored and macro expansion continues. If
the EXITM occurs within the scope of a true conditional, the expansion stops at the
point where the EXITM is encountered. Assembly statement processing continues after
the ENDM of the group aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Figure 15. This figure
shows two IRPC's used to generated "DB" statements which do not exceed eight
characters in length. These IRPC's might occur within the context of another macro
definition, such as in the generation of CP/M file control block (FCB) names. In both
cases, the variable "LEN" is used to count the number of filled characters. If the
count ever reaches eight characters, the EXITM statement is assembled under a true
condition, and the IRPC stops expansion.

The first IRPC generates the entire string "SHORT" since the length of the
character-list is less than eight characters. Each evaluation of "LEN = 8" produces
a false value and the EXITM is skipped. Thus, this IRPC terminates normally by
exhausing the character-list through its five repetitions.

The second IRPC stops generation at the eighth character of the list
"LONGSTRING" when the conditional "LEN EQ 8" produces a true value (note that "="
and "EQ" are equivalent operators), resulting in assembly of the EXITM statement.
The EXITM causes immediate termination of the expansion process.

The second IRPC also contains a conditional assembly without the balancing
ENDIF. In this case, the ENDIF is not required since the conditional begins within
the macro body. The ENDM serves the dual purpose of terminating unmatched IF's
as well as marking the physical end of the maecro body.

44

Sy

SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

THE FOLLOWING IRPC FILLS AN AREA OF MEMORY WITH AT MOST
EIGHT BYTES OF DATA:

r‘vo se we we we
52
2

0000 # SET 0 ; INITIALIZE LENGTH TO 0
IRPC N, SHORT
A DB &N
LEN SET LEN+1
IF LEN = 8
EXITM ;STOP MACRO IF AREA IS FULL
ENDIF
ENDM
0000+53 DB 'S!
0001+48 DB 'H!
0002+4F DB Q!
0003+52 DB 'R!
0004+54 DB '
;
H
: THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNCTIONS AS
: SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8
’
0000 # LEN SET 0 ; INITIALIZE LENGTH COUNTER
IRPC N,LONGSTRING ‘
DB &N
LEN SET LEN+1
IF LEN EQ 8
EXITM
ENDM
0005+4C DB L
0006+4F DB 0!
0007+4E DB 'N!
0008+47 DB 'G!
0009+53 DB 'St
000A+54 DB '
000B+52 DB 'R!
000C+49 DB e
b
000D END

Figure 15. Use of the EXITM statement in Maero Processing.

7.5. The LOCAL Statement.

It is often useful to "generate" labels for jumps or data references which are
unique on each repetition of a macro. This facility is available through the LOCAL
statement, which takes the form

macro-heading
label: LOCAL id-1,id-2,. . .,idn

o o o

ENDM

where the label is optional, "macro-heading" is a REPT, IRPC, or IRP heading as
discussed above (or & MACRO heading as discussed in following sections), and id-1
through id-n represent one or more assembly language identifiers which do not contain
embedded "$" separators. The LOCAL statement must occur within the body of a
macro definition. Although MAC allows the LOCAL statement to appear anywhere
within the macro body, it should appear immediately following the maero header to
be compatible with the standard Intel macro facility.

The action of the assembler upon encountering the LOCAL statement is to
create a new name of the form

?2?nnnn

for association with each identifier in the LOCAL list, where nnnn is a four digit
decimal value, assigned in ascending order starting at 0001. Whenever one of the
identifiers in the list is encountered, the corresponding created name is substituted in
its place. Substitution occurs according to the same rules as the controlling identifier
in the IRPC and IRP groups.

The user should avoid the use of labels which begin with the two characters
"?29" so that no conflicting names will accidentally occur. Further, symbols which
begin with "??" are not normally included in the sorted symbol list at the end of
assembly (see "assembly parameters" to override this default). Lastly, a total of 9999
LOCAL labels can be generated in any assembly, and an overflow error will occur if
more generations are attempted.

Figure 16a shows an example of a program which uses the LOCAL statement
to generate both data references and jump addresses. This program uses the CP/M
disk operating system to print a series of four generated messages, as shown in the
output from the program in Figure 16b. The program begins with "equates" which
define the disk system primary entry point, along with names for the non graphic
ASCII characters CR and LF (carriage return and line feed). The REPT statement
which follows contains a LOCAL statement with the identifiers X and Y which are
used throughout the body of the REPT group. On the first iteration, X's value becomes
220001 which is the first generated label, while Y's value becomes ??0002. Note that
the substitution for X and Y within the generated strings follows the rules stated for
controlling identifiers in previous sections. Upon completion, four messages are
generated along with four CALL's to the PRINT subroutine. At each call to PRINT,
the message address is present in the DE register pair. The subroutine loads the "print
string” funetion number into register C (C = 9) and calls the disk system to print the
string value.

46

100H ;BASE OF THE TRANSIENT AREA
5 :BDOS ENTRY POINT

0DH ; CARRIAGE RETURN (ASCII)
0AH ;LINE FEED (ASCII)

SAMPLE PROGRAM SHOWING THE USE OF 'LOCAL'

0100 ORG
0005 = BDOS EQU
000D = CR EQU
000A = LF EQU
H
H
3
REPT
LOCAL
JMP
X: DB
Y: LXI
CALL
ENDM
0100+C31E01 JMP
0103+7072696E74?20001: DB
011E+110301 ??20002: LXI
0121+CD9101 CALL
0124+C34201 JMP
0127+7072696E74?20003: DB
0142+112701 2720004 : LXI
0145+CD9101 CALL
0148+C36601 JMP
014B+7072696E74720005: DB
0166+114B01 ??20006: LXI
0169+CD9101 CALL
016C+C38A01 JMP
016F+7072696E742?20007: DB
018A+116F01 ?270008: LXI
018D+CD9101 CALL
0190 C9 RET
’
0191 0EO09 PRINT: MVI
0193 CD0500 CALL
0196 C9 RET
0197 END
Figure 16a. Assembly
print
print
print
print
Figure 16b.

x=220001,
x=220003,
x=220005,
x=220007,

4 ; REPEAT GENERATION 4 TIMES
X,Y ; sGENERATE TWO LABELS
Y ; JUMP PAST THE MESSAGE

'print x=&X, y=&Y',CR,LF,'$’

D,X sREADY PRINT STRING
PRINT
220002 ;JUMP PAST THE MESSAGE

'print x=220001, y=2?0002',CR,LF,'$"

D,??0001 ;sREADY PRINT STRING
PRINT
2?0004 ;JUMP PAST THE MESSAGE

'print x=?20003, y=220004',CR,LF,'$"

D,?70003 ;READY PRINT STRING
PRINT
220006 ;JUMP PAST THE MESSAGE

'‘print x=2?0005, y=??20006',CR,LF,'$"

D,?20005 ;READY PRINT STRING
PRINT
??0008 ;JUMP PAST THE MESSAGE

'print x=?20007, y=2?0008',CR,LF,'$"
D, 220007 ;READY PRINT STRING
PRINT

c,9
BDOS

Program using the LOCAL Statement.

y=720002
y=720004
y=220006
y=2?0008

Output from Program of Figure 16a.

47

Upon completion of the program, control returns to the console command
processor (CCP) for further operations. This particular program uses the default stack
which is passed by the CCP (approximately 16 levels are available). Although this
example is primarily intended to show operation of the LOCAL statement, the reader
may wish to consult the CP/M Interface Guide to determine BDOS interface conventions
in order to follow this example completely.

48

8. DEFINITION AND EVALUATION OF STORED MACROS

The "stored macro" facility of MAC allows the programmer to name a sequence
of assembly language '"prototype" statements for selective inclusion at various places
throughout the assembly process. Macro parameters can be supplied in various forms
at the point of expansion which are substituted as the prototype statement are re-read.
These parameters are generally used to tailor the individual macro expansion for a
particular case.

Although similar in concept to subroutine definition and call, macro processing
is purely textual manipulation at assembly time. That is, macro definitions causes
source text to be saved in the assembler's internal tables, and any particular expansion
involves manipulation and re-reading of the saved text. These concepts will become
clear as the individual macro forms are discussed.

In general, macro features can be combined in various ways to greatly enhance
the facilities which are available to the programmer. Specifically, the programmer
can easily manipulate generalized data definitions, macros can be defined for generalized
operating systems interface, simplified program control structures can be defined and
non standard instruction sets (such as the Z-80) can be supported. Finally, well designed
macros for a particular application can achieve a measure of machine independence.
All of these notions will be covered in the sections which follow.

8.1. The MACRO-ENDM Group.

The prototype statements for a stored macro are given in the macro body
enclosed by the MACRO and ENDM pseudo operations, taking the general form

macname MACRO d-1,d-2,. . .,d-n
statement-1
statement-2

statement-m
label: ENDM

where the "macname" is any non conflieting assembly language identifier, d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without imbedded "$"
separators and statements-1 through m are the macro prototype statements. The
identifiers denoted by d-1 through d-n are called "dummy parameters" for this particular
macro and, although they must be unique among themselves, can generally be identical
to any program identifiers outside the macro body without causing a conflict. The
prototype statements may contain any properly balanced assembly language statements
or groups, including nested REPT's, IRP's, IRPC's, MACRO's and IF's,

The prototype statements are read and stored in the assembler's internal tables
under the name given by "macname," but are not processed until the maero is expanded.
The expansion process is given in the following section.

As before, the label preceding the ENDM is optional.

8.2. Macro Invocation.

The macro text which is stored through a MACRO-ENDM group can be brought
out for processing through a statement of the form

49

label: macname a-l,a~2, . . . ,a-n

where the label is optional, and macname has previously occurred as the identifier on
a MACRO heading. The "actual parameters" a-1 through a-n are sequences of characters,
separated by commas and terminated by a comment or end of line.

Upon recognition of the macname, the assembler first "pairs-off" each dummy
parameter in the MACRO heading (d-1 through d-n) with the actual parameter text
(a-1 through a-n) by associating the first dummy parameter with the first actual
parameter (d-1 is paired with a-1), the second dummy is associated with the second
actual, and so forth until the list is exhausted. If more actuals are provided than
dummy parameters then the extras are ignored. If fewer actuals are provided then
the extra dummy parameters are associated with the empty string (i.e., a text string
of zero length). It is important to realize at this point that the value of a dummy
parameter is not a numeric value, but is instead a textual value consisting of a sequence
of zero or more ASCI characters.

After each dummy parameter is assigned an actual textual value, the assembler
re-reads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according to
the same rules as the controlling identifier in an IRPC or IRP group.

Figures 17 and 18 provide examples of macro definitions and invocations. Figure
17 begins with the definition of three macros, called SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements which save the principal CPU registers
(PUSH PSW, B, D, and H), while the RESTORE macro restores the principal registers
(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to
write a single character at the console using a CP/M BDOS call.

Note that the occurrence of the SAVE macro definition between MACRO and
ENDM causes the assembler to read and save the PUSH's, but does not assemble the
statements into the program. Similarly, the statements between the RESTORE MACRO
and corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM group. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

Referring to Figure 17, note that machine code generation starts following the
invocation of the SAVE macro. The prototype statements which were previously stored
are re-read and assembled, with a "+" between the machine code address and the
generated code to indicate that the statements are being recalled and assembled from
a macero definition. Note that the SAVE macro has no dummy parameters in the
definition and thus there are no actual parameters required at the point of invocation.

The invocation of SAVE is immediately followed by an expansion of the WCHAR
macro. The WCHAR macro, however, has one dummy parameter, called CHR, which
is listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter "H" becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by the
value H. Note that the use of CHR is within string quotes and thus must be typed
in upper case and preceded by the ampersand operator. Following the reference to

WCHAR, the prototype statements are listed with the "+" sign to indicate that they
are generated by the macro expansion.

50

0100 ORG 100H ;BASE OF TRANSIENT AREA

0005 = BDOS EQU 5 ;BDOS ENTRY POINT
0002 = CONOUT EQU 2 ; CHARACTER OUT FUNCTION
b
SAVE MACRO ;SAVE ALL CPU REGISTERS
PUSH PSW
PUSH B
PUSH D
PUSH H
ENDM
,
RESTORE MACRO ;RESTORE ALL REGISTERS
POP H
POP D
POP B
POP PSW
ENDM
b
WCHAR MACRO = CHR sWRITE CHR TO CONSOLE
MV I C,CONOUT s ;CHAR OUT FUNCTION
CMVI E,'&CHR' ~ ;;CHAR TO SEND
CALL BDOS
ENDM
b
; MAIN PROGRAM STARTS HERE |
SAVE ;SAVE REGISTERS UPON ENTRY
0100+F5 PUSH PSW
0101+C5 PUSH B
0102+D5 PUSH D
0103 +E5 PUSH H
WCHAR H ;SEND 'H' TO CONSOLE
0104+0E02 MVI C,CONOUT
0106+1E48 MV I E,'H'
0108+CD0500 CALL BDOS
WCHAR I ;SEND 'I' TO CONSOLE
010B+0E02 MVI - C,CONOUT
010D+1E49 MV I E,'I"
010F+CD0500 CALL BDOS |
o RESTORE sRESTORE CPU REGISTERS
 0112+E1 ~ POP H |
0113+D1 POP D
0114+C1 POP B
0115+F1 | POP PSW
0116 C9 RET sRETURN TO CCP
0117 END '

Figure 17. Example of Macro Definition and Invocation.

51

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value 1, causing generation of a MVI E,T for
this case.

After the -listing of the second WCHAR expansion, the RESTORE macro is
invoked, causing generation of the POP statement to restore the register state. The
RESTORE is followed by a RET to return to the CCP following the character output.

This particular program thus performs the simple function of saving the registers
upon entry, typing the two characters "HI" at the console, restoring the registers, and
then returns to the Console Command Processor. One should note that the SAVE and
RESTORE macros are used here for illustration, and are not required for interface to
the CCP since all registers are assumed invalid upon return from a user program.
Further, this program uses the CCP's stack throughout, which is only eight levels deep.

Figure 18 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call which prints the entire message starting
at a particular address until the "$" symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage-return
line-feeds to send after the message is printed. The second parameter, called MESSAGE,
is the ASCII string to print which must be passed as a quoted string in the invocation.
The LOCAL statement within the macro generates two labels denoted by PASTM and
MSG. When the macro expands, substitutions will occur for the two dummy parameters
by their associated actual textual values, and for PASTM and MSG by their sequentially
generated label values. The macro definition contains prototype statements which
branch past the message (to PASTM) which is included inline following the label MSG.
The message is padded with N pairs of carrriage-return line-feed sequences, followed
by the "$" which marks the end of the message. The string address is then sent to
the BDOS for printing at the console.

There are two invocations of the PRINT macro included in Figure 18. The
invocation sends two actual parameters: the textual value 2 is associated with the
dummy N, followed by a quoted string which is associated with the dummy parameter
MSG. Note that the second actual parameter includes the string quotes as a part of
the textual value. Note also that the generated message is preceded by a jump
instruction, and followed by N = 2 carriage-return line-feed pairs.

The second invocation of the PRINT macro is similar to the first, except that
the REPT group is executed N = 0 times, resulting in no generations of the carriage-
return line-feed pairs. ,

Similar to Figure 17, the program of Figure 18 uses the Console Command
Processor's eight level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

8.3. Testing Empty Parameters.

Before continuing the discussion of macro definition and invocation, it is necessary
to discuss a particular operator, called the NUL operator, which is specifically designed
to allowing testing of null parameters (i.e., actual parameters of length zero). The

52

0100

0005 = BDOS
0009 = PMSG
000D = CR
000A = LF
PRINT
55
MSG:
 PASTM:
;
0100+C31E01
0103+5468652072220002:
0119+0D0A
011B+0D0A
011D+24
011E+110301 290001 :
0121+0E09
0123+CD0500
0126+C34001
0129+6D61696E6C220004 :
013F+24
0140+112901 290003 :
0143+0E09
0145+CD0500
0148 C9
Figure

ORG 100H ;BASE OF THE TPA

EQU 5 ; BDOS ENTRY POINT
EQU 9 ;PRINT 'TIL $ FUNCTION
EQU 0DH ; CARRIAGE RETURN

EQU 0AH - ; LINE FEED

MACRO N,MESSAGE

PRINT MESSAGE, FOLLOWED BY N CRLF'S
LOCAL PASTM,MSG

JMP PASTM ; ;JUMP PAST MSG

DB MESSAGE ;; INCLUDE TEXT TO WRITE
REPT N ; sREPEAT CR LF SEQUENCE
DB CR,LF ‘

ENDM

DB r$! ; MESSAGE TERMINATOR
LX1I D,MSG ; sMESSAGE ADDRESS
MVI C,PMSG ;;PRINT FUNCTION
CALL BDOS

ENDM »

PRINT 2,'The rain in Spain goes'
JMP 220001

DB '"The rain in Spain goes'

DB CR,LF

DB CR,LF

DB |$|

LX1 D,?70002

MVI C,PMSG

CALL BDOS

PRINT 0,'mainly down the drain.'
JMP 720003

DB 'mainly down the drain.'

DB t$l

LX1 D,?20004

MV1 C,PMSG

CALL BDOS

RET

18. Sample Message Print-out Macro.

53

NUL operator is used in an expression as a unary operator, and produces a true value
if its argument is of length zero and a false value if the argument has length greater
than zero. Thus, the operator appears in the context of an arithmetic expression as:

. . . NUL argument

where the ellipses (. . .) represent an optional prefixing arithmetic expression, and
"argument" is the operand used in the NUL test. Note that the NUL differs from
other operators since it must appear as the last operator in the expression. This is
due to the fact that the NUL operator "absorbs" all remaining characters in the
expression until the following comment or end of line is found. Thus, the expression

X GT Y AND NUL XXX

is valid since NUL absorbs the argument XXX (producing a false value) in the scan
for the end of line. The expression

X GT Y AND NUL

is also valid, however, since the argument following the NUL is empty, thus causing
NUL to return a true value since the end of line is immediately encountered in the
scan. Intervening blanks and tabs are ignored in this scanning process. The expression

X GT Y AND NUL M + Z)

is somewhat deceiving, but nevertheless valid even though it appears as if it is an
unbalanced expression. In this case, the argument following the NUL operator is the
entire sequence of characters "M + Z)' which is absorbed by the NUL operator in
scanning for the end of line. The value of "NUL M + Z)" is "false" since the sequence
is not empty.

Figure 19 gives several examples of the use of NUL in a particular program.
In the first case, NUL returns true since there is an empty argument following the
operator. Thus, the "true case" is assembled (as indicated by the machine code to
the left), and the "false case" is ignored. Similarly, the second use of NUL in Figure
19 produces a false value since the argument is non-empty. Both uses of NUL, however,
are contrived examples, since NUL is really only useful within a macro group, as shown
in the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests which demonstrate
the use of NUL in checking empty parameters. In each of the tests, a "DB" is
assembled if the argument is not empty, and skipped otherwise. Six invocations of
NULMAC follow its definition, giving various combinations of empty and non-empty
actual parameters.

In the first case, NULMAC has no actual parameters and thus all dummy
parameters (A, B, and C) are assigned the empty sequence. As a result, all three
conditional tests produce false results since both A and B are empty, and B&C
concatenates two empty sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter (XXX)
which is assigned to the dummy parameter A, while B and C are both assigned the

54

G¢g

0000 7472756520

0009 7878782069

IF

DB
ELSE
DB
ENDIF

IF
DB
ELSE
DB
ENDIF

3
NULMAC MACRO

0017+61203D2058

0029+62203D2058
003B+6263203D20

004F+61203D2058
0061+6263203D20

0075+6263203D20
0089+6263203D20
009C

Figure 19.

IF

DB
ENDIF
IF

DB
ENDIF
IF
DB
ENDM

NULMAC
NULMAC
DB
NULMAC
DB

DB
NULMAC
DB

DB
NULMAC
DB
NULMAC
NULMAC
DB

END

NUL
'"true case'

'false case'!

NUL XXX
'xxx is nul'

'xxx is not nul'’

A,B,C
NOT NUL A
'a = &A is not nul'’

NOT NUL B
'b = &B is not nul'

NOT NUL B&C
'be = &B&C is not nul'

XXX

'a = XXX is not nul’

, XXX

'b = XXX is not nul’
'be = XXX 1is not nul!
XXX, ,YYY

'a = XXX is not nul'
'be = YYY 1is not nul'

y s YYY .

'be = YYY is not nul'
29

Tt Tt

b b .

'be = 1! is not nul'!

Sample Program using the NUL Operator.

empty sequence. Thus, only the "DB" for the first conditional test is assembled.

The third case is similar to the second, except that the actual parameters for
A and C are omitted. Thus, the second and third conditionals both test "NOT NUL
XXX" which is true since B has the value XXX, and B&C produces the value XXX as
well.

The fourth invocation of NULMAC skips the actual parameter for B, but supplies
values for both A and C. Thus, the first and third test result in true values, while
the second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only
the third conditional is true, since B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first, since all
three actual parameters are empty.

The final expansion of NULMAC in Figure 19 shows a special case of the NUL
operator. The expression

NUL ''

- (where the two apostrophes are in juxtaposition) produces the value true even though
there are two apostrophe symbols on the line following NUL and before the end of
line. Note that the value of A is the empty string in this case, while the value
assigned to both B and C consists of the two apostrophe characters side-by-side, which
is treated as a quoted string of length zero (even though it is a sequence of two
characters!). In this last expansion, the first conditional produces a false value since
A is associated with the empty sequence. The second conditional, however, evaluates
the form

NOT NUL '’

which is the special case of NUL applied to a length zero quoted string (not a length
zero sequence, however). Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully: the original expression in the macro definition takes
the form

NOT NUL B&C
with B and C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL ' &'

or, after concatenation,
NOT NUL "' "!

where the four apostrophes are juxtaposed. Considering only the four adjacent

apostrophes, the macro assembler considers this a quoted string which happens to
contain a single apostrophe, since double apostrophes within strings are always reduced

56

to a single apostrophe. As a result, the test produces a true value and the conditional
segment is assembled. If this all seems confusing, that's because it is. Fortunately,
these cases are very specialized, and are included here for completeness. Under normal
circumstances, the NUL operator is used only to test for missing arguments, as shown
in later examples (see Figure 22 for a particular case).

8.4. Nested Macro Definitions.

The MAC assembler allows the programmer to include nested macro definitions,
which take the form

macl MACRO macl-list
mac2 MACRO mac2-list
ENDM
ENDM
where "macl" is the identifier corresponding to the outer macro, and "mac2" is an
identifier corresponding to an inner nested macro which is wholly contained within the
outer macro. In this case, "macl-list" and "mac2-list" correspond to the dummy

parameter lists for macl and mac2, respectively. As before, labels are allowed on
the ENDM statements.

Recall that the statements contained within a macro definition are "prototype"
statements which are read and stored by the assembler, but not evaluated as assembly
language statements until the macro is expanded. Thus, in the form shown above,
only the maecl macro can is available for expansion, since the assembler has stored
but not processed the body of macl which contains the definition of mac2. That is,
mac2 cannot be expanded until macl is first expanded revealing the definition of mac2.

Properly balanced imbedded macros of this form can be nested to any level,
but cannot be referenced until their encompassing maecros have . themselves been
expanded.

Figure 20 gives a practical example of nested macro definition and expansion.
This particular program writes characters to either the CP/M console device or the
currently assigned list device, according to the value of the LISTDEV flag which is
set for the assembly. If the LISTDEV flag is true, then the assembly sends characters
to the listing device, otherwise the console is used for output. In either case, the
macro OUTPUT is produced which sends a single character to whatever device is
selected.

For purposes of illustration, the macro SETIO is used to construct the OUTPUT
macro. Note in Figure 20 that the OUTPUT macro is wholly contained within the
SETIO macro and, as a result, remains undefined until SETIO expands. Upon encountering
the invocation of SETIO, the macro assembler reads the prototype statements within
SETIO and, in the process, constructs the definition of the OUTPUT macro. Since
LISTDEV is true for this assembly, the OUTPUT macro becomes defined as

57

86

Figure 20.

0100 ORG 100H ;BASE OF THE TPA
0000 = FALSE EQU 0000H :VALUE OF FALSE
FFFF = TRUE EQU NOT FALSE :VALUE OF TRUE
; LISTDEV IS TRUE IF LIST DEVICE IS USED
: FOR OUTPUT, AND FALSE IF CONSOLE IS USED
FFFF = LISTDEV EQU TRUE
’
b
0005 = BDOS EQU 5 ;BDOS ENTRY POINT
0002 = CONOUT EQU 2 sWRITE TO CONSOLE
0005 = LISTOUT EQU 5 sWRITE TO LIST DEVICE
b
SETIO MACRO ;SETUP "OUTPUT" MACRO FOR LIST OR CONSOLE
?
OUTPUT MACRO CHAR
MV I E,CHAR ;;READY THE CHARACTER FOR PRINTING
IF LISTDEV
MV I C,LISTOUT
ELSE
MV I C,CONOUT
ENDIF
CALL BDOS
ENDM
OUTPUT '*!
ENDM
’
SETIO sSETUP THE 10 SYSTEM
0100+1E2A MV I E,'*!
0102+0E05 MV I C,LISTOUT
0104+CD0500 CALL BDOS
OUTPUT '1'
0107+1E31 MV I E,'1"
0109+0E05 MV I C,LISTOUT
010B+CD0500 CALL BDOS
OUTPUT '2'
010E+1E32 MV I E,'2°
0110+0E05. MV I C,LISTOUT
1 0112+CD0500 CALL BDOS
0115 C9 RET
0116 END

Sample Program showing a Nested Macro Definition.

OUTPUT MACRO CHAR

MVI E,CHAR
MVI C,LISTOUT .
CALL BDOS

ENDM

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single "*" at the selected device.

Following the invocation of SETIO, the invocations of OUTPUT are recognized
since its definition has been entered in the process of reading the prototype statements
of SETIO. These invocations send the characters "1" and "2" to the list device,
respectively.

8.5. Redefinition of Macros.

It is often useful to redefine the prototype statements of a particular macro
after the initial prototype statements have been entered. This is often simply a
particular case of the previous section, where the inner nested macro carries the same
name as the encompassing macro definition. Although this feature may seem somewhat
frivolous, there is one particular case where macro redefinition is extremely useful:
if the macro uses a subroutine then the subroutine can be included on the first expansion
and simply called in any remaining expansions. Thus, if the macro is never invoked
then the subroutine is not included in the program.

Figure 21 shows an example of macro redefinition. In this case, the macro
MOVE is defined which is intended to move byte values from a starting "source address"
to a target "destination address" for a particular number of bytes. The three dummy
parameters denote these three values: SOURCE is the starting address, DEST is the
destination address, and COUNT is the number of bytes to move (a constant in the
range 0-65535). The actions of the MOVE macro, however, are sufficiently complicated
that they should be performed through a subroutine, rather than inline machine code
each time MOVE is expanded.

Examining the structure of MOVE in Figure 21, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

@QMOVE subroutine
MOVE MACRO ?8,?D,?C
call to @QMOVE

ENDM
invocation of MOVE
ENDM

The action of the assembler upon encountering the first invocation of MOVE is to
begin reading the prototype statements. Note, however, that the first expansion of
the MOVE includes the subroutine for the actual move operation, labelled by @MOVE
so that there is no name conflict (with a branch around the subroutine). MOVE then
redefines itself as a sequence of statements which simply call the out-of-line subroutine
each time it expands. In fact, the last statement of the original MOVE macro is an

59

0100

MOVE

PASTSUB:

33

MOVE

0100+C30EO01
0103+79
0104+B0
0105+C8
0106+7E
0107+12
0108+23
0109+13
010A+0B
010B+C30301
010E+212701
0111+114001
0114+010500
0117+CD0301

011A+210030
011D+110010
0120+010015
0123+CD0301

0126 C9

0127 6865726520X1:
0140 7878787878X2:

Figure 21.

ORG 100H ;BASE OF TPA
MACRO SOURCE,DEST,COUNT

MOVE DATA FROM ADDRESS GIVEN BY 'SOURCE'

TO ADDRESS GIVEN BY 'DEST' FOR 'COUNT' BYTES
LOCAL PASTSUB ;;LABEL AT END OF SUBROUTINE

JMP PASTSUB ;;JUMP AROUND INLINE SUBROUTINE
; s INLINE SUBROUTINE TO PERFORM MOVE OPERATION
HL IS SOURCE, DE IS DEST, BC IS COUNT

MOV A,C ; ; LOW ORDER COUNT
ORA B : sZERO OCOUNT?

 RZ : sSTOP MOVE IF ZERO REMAINDER
MOV A,M : sGET NEXT SOURCE CHARACTER
STAX D : s PUT NEXT DEST CHARACTER
INX H : s ADDRESS FOLLOWING SOURCE
INX D : s ADDRESS FOLLOWING DEST
DCX B : s COUNT=COUNT- 1
JMP @UOVE ; ;FOR ANOTHER BYTE TO MOVE

ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE
MACRO ?S,?D,?C ; ;CHANGE PARM NAMES

LXI H,7?S ; ;ADDRESS THE SOURCE STRING
LXI D, ?D ; ;ADDRESS THE DEST STRING
LXI B, ?C ; s PREPARE THE COUNT

CALL @VOVE ;;MOVE THE STRING

ENDM

CONTINUE HERE ON THE FIRST INVOCATION TO USE
THE REDEFINED MACRO TO PERFORM THE FIRST MOVE
MOVE SOURCE ,DEST ,COUNT

ENDM

'MOVE X1,X2,5 ;MOVE 5 CHARS FROM X1 TO X2

JMP 220001
MOV
ORA
RZ
MOV
STAX
INX
INX
DCX
JMP
LX1
LXI
LX1
CALL @VOVE

Q

@UJU.‘I:U:D w >
3 =
le5]

wom
o 44
DO b=

MOVE 3000H,1000H,1500H sBIG MOVER
LX1 H,3000H

LX1 D,1000H

LX1 B,1500H

CALL @QMOVE

RET sRETURN TO THE CCP

DB 'here is some data to move'

DB 'Xxxxxwe are!'

Sample Program showing Macro Redefinition.

60

invocation of the newly defined version. As indicated by this example, once a macro
has started expansion, it will continue to completion (or until EXITM is assembled),
even if it redefines itself.

It is important to note the use of ?S, ?D, and ?C in the above example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, since they
would be substituted by their actual values if they were the same. This is due to the
fact that the inner MOVE macro is wholly contained within the outer macro and thus
parameter substitution takes place irregardless of the context.

Macro storage is not reclaimed upon redefinition, however, since the macro
assembler performs two passes through the source program and saves any preceding
definitions for the second pass scan.

8.6. Recursive Macro Invocation.

A '"recursive" macro x has the property that its prototype statements contain
invocations of macros which, in turn, invoke macros which eventually lead back to an
invocation of x. A particular case of recursion, called "direct recursion," occurs when
x invokes itself, as shown in the form below:

macname MACRO -1, ..., dn

macname a-1, ..., a=n

ENDM
Although this form is similar to the embedded macro definition discussed in the previous
section, note that "macname" is being expanded within its own definition, rather than
being redefined. Recursion is only useful, however, in the presence of conditional
assembly where various tests are made which prevent infinite recursion. In fact,

recursion is only allowed to sixteen levels before returning to complete the expansion
of an earlier level.

Figure 22 shows a situation where (indirect) recursive macro invocation is useful.
The macro WCHAR writes a character to the console device using the general-purpose
operating system macro CBDOS (call BDOS). CBDOS acts as an interface between
the program and the CP/M system by performing the system function given by FUNC,
with optional "information address" INFO. In particular, CBDOS loads the specified
function to register C, then tests to see if the INFO argument has been supplied (using
the NUL operator). If supplied, INFO is loaded to the DE register pair. After register
setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage-
return line-feed before writing messages in the particular case that operating system
function 9 (write buffer until "$") has been specified. In this case, CBDOS uses the
WCHAR macro to send the carriage-return line-feed. Note, however, that the WCHAR
macro, in turn, uses CBDOS to send the character resulting in two activations of
CBDOS at the same time. The assembler holds the initial invocation of CBDOS until
the WCHAR macro has completed, then returns to complete the initial CBDOS expansion.

An important observation in the presence of recursion is that the values of the
dummy parameters are saved at each successive level of recursion, and restored when

61

0100 ORG 100H ;BASE OF TRANSIENT AREA
3 SAMPLE PROGRAM SHOWING RECURSIVE MACROS
BDOS EQU 0005H ; ENTRY TO BDOS

0005 =
0002 = CONOUT EQU 2 ;s CONSOLE CHARACTER OUT
0009 = MSGOUT EQU = 9 ;s PRINT MESSAGE 'TIL $
000D = CR EQU 0DH sCARRIAGE RETURN
000A = LF EQU 0AH sLINE FEED
b
WCHAR MACRO CHR
HEH WRITE THE CHARACTER CHR TO CONSOLE
CBDOS CONOUT ,CHR ; s CALL BDOS
ENDM
,
CBDOS MACRO FUNC, INFO
53 GENERAL PURPOSE BDOS CALL MACRO
33 FUNC IS THE FUNCTION NUMBER,
H INFO IS THE INFORMATION ADDRESS OR NUL
HH CHECK FOR FUNCTION 9, SEND CRLF FIRST IF SO
IF FUNC=MSGOUT
33 PRINT CRLF FIRST
WCHAR CR
WCHAR LF
ENDIF
$3 NOW PERFORM THE FUNCTION
MVI C,FUNC
HE INCLUDE LXI TO DE IF INFO NOT EMPTY
IF NOT NUL INFO
LX1 D, INFO
ENDIF
CALL BDOS
ENDM
WCHAR "h! ; SEND "H" TO CONSOLE
0100+0E02 MVI C,CONOUT
0102+116800 LX1 D,'h’
0105+CD0500 CALL BDOS
WCHAR ti sSEND 'I' TO CONSOLE
0108+0E02 MVI C,CONOUT
010A+116900 LX1 D,"i'
010D+CD0500 CALL BDOS
CBDOS MSGOUT ,MSGADDR ;SEND MESSAGE
0110+0E02 MV I C,CONOUT
0112+110D00 LX1 D,CR
0115+CD0500 CALL BDOS
0118+0E02 MV1 C,CONOUT
011A+110A00 LXI D,LF
011D+CD0500 CALL BDOS
0120+0E09 MV1 C,MSGOUT
0122+112901 LX1 D,MSGADDR
0125+CD0500 CALL BDOS
0128 C9 RET ;s TERMINATE PROGRAM
b
MSGADDR :
0129 616E64206C DB 'and lois$'
0132 END

Figure 22. Sample Program showing a Recursive Macro.

62

that level of recursion is re-instated. In particular, re-entry into a macro expansion
through recursion does not destroy the values of dummy arguments held by previous
entry levels.

8.7. Parameter Evaluation Conventions.

There are a number of options which the programmer can exercise in the
construction of actual parameters, as well as in the specification of character-lists
for the IRP group. Although an actual parameter is simply a sequence of characters
placed between parameter delimiters, these options allow overrides where delimiter
characters themselves to become a part of the text. In general, a parameter x occurs
in the context:

label: machame <. ..,X, ...~

where "macname" is the name of a previously defined maecro, and the preceding label
is optional. The elipses ". . ." represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character-list
X would be

label: IRP id, ...,x, ...

where the label is again optional, and the elipses represent optional surrounding
character-lists for substitution within the IRP group where the controlling identifier
"d" is found. In either case, the statements could be contained within the scope of
a surrounding macro expansion. Hence, dummy parameter substitution could take place
for the encompassing macro while the actual parameter is being scanned.

The maecro assembler follows the steps shown below in forming an actual
parameter or character-list:

(a) leading blanks and tabs (control-I) are removed if they occur in front of x.
After this "deblanking" has occurred,

(b) the leading character of x is examined to determine the type of scan
operation which is to take place;

(e) if the leading character is a string quote (apostrophe), then x becomes the
text up through and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single apostrophe,
and upper case dummy parameters adjacent to the ampersand symbol are substituted
by their actual parameter values. Note that the string quotes on either end of the
string are included in the actual parameter text.

(d) If instead the first character is the left broken bracket "<" then the bracket
is removed, and the value of X becomes the sequence of characters up to, but not
including, the balancing right broken bracket ">" which does not become a part of x.
In this case, left and right broken brackets may be nested to any level within x, and
only the outer brackets are removed in the evaluation. Quoted strings within the
brackets are allowed, and substitution within these strings follows the rules stated in
(c) above. Note that left and right brackets within quoted strings become a part of
the string, and are not counted in the bracket nesting within x. Further, the delimiter

63

characters comma, blank, semicolon, tab, and exclaim become a part of x when they
occur within the bracket nesting.

(e) If the leading character is a percent (%), then the sequence of characters
which follows is taken as an expression which is evaluated immediately as a 16-bit
value. The resulting value is converted to a decimal number and treated as an ASCI
sequence of digits, with left zero suppression (0-65535).

(f) If the leading character is neither a quote nor a left bracket nor a percent,
the (possibly empty) sequence of characters which follow, up to the next comma, blank,
tab, semicolon, or exclaim symbol, becomes the value of x.

There is one important exception to the above rules: the single character
escape, denoted by an up-arrow, causes the macro assembler to read the immediately
following special (non alphabetic) character as a part of x without treating the character
as significant. The character which follows the up-arrow, however, must be a blank,
tab, or visible ASCIH character. The up-arrow itself can be represented by two up
arrows in succession. If the up-arrow directly precedes a dummy parameter, then the
up-arrow is removed and the dummy parameter is not replaced by its actual parameter
value. Thus, the up-arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up-arrow has no special significance within
string quotes, and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions must also be considered,
although this topic has been presented throughout the previous sections. Generally,
the macro assembler evaluates dummy parameters as follows:

(a) If a dummy parameter is either preceded or followed by the concatenation
operator (&), then the preceding and/or following "&" operator is removed, the actual
parameter is substituted for the dummy parameter, and the implied delimiter is removed
at the position(s) the ampersand occurs.

(b) Dummy parameters are replaced only once at each occurrence as the
encompassing macro expands. This prevents the "infinite substitution" which would
occur if a dummy parameter evaluated to itself.

In summary, parameter evaluation follows these rules:

leading and trailing tabs and blanks are removed

quoted strings are passed with their string quotes intact
nested brackets enclose arbitrary characters with delimiters

a leading percent symbol causes immediate numeric evaluation
an up-arrow passes a special character as a literal value

an up-arrow prevents evaluation of a dummy parameter

the "&" operator is removed next to a dummy parameter
dummy parameters are replaced only once at each occurrence

* X K X ¥ X ¥ ¥

Figures 23, 24, and 25 show examples of macro definitions and invocations which
illustrate these points. In Figure 23, for example, two macros are defined, called
MAC1 and MAC2, which each have several dummy parameters. In this case, the macro
definitions are headed by "DB" statements in order to reveal the actual values which
are passed in each case. There is a single (mainline) invoecation of MAC1 with the
actual parameters

64

MAC1

;

;

A:

C&l:

L&A&D:

;

;

;

MAC2

;

;

;

;

;
000F = X

+ H

+ ’
0000+492020582B
0009+6B776F7465
000E+3610

+

+ ;

+ ’
0010+49204D2049
0018+6B776F7465
001D+00 I:
001E+3601
0020+00 I1:
0021+00 LI16:

+ ;

+ ;

+

+ ;

+ 3

+
0022

MACRO PARAMETER EVALUATION

MACRO A,B,C,D,S

ENTERING MACRO

DB '&A &B &C &D'!

DB S

NOP

MV I B,1
NOP

NOP

LEAVING MACRO 1

ENDM

1:

MACRO E,F,G,H,S

ENTERING MACRO 2:

DB '&E &F &G &H'
DB S

MV I M,H

MAC1 E,F&M,A,H,S

LEAVING MACRO 2

ENDM

EQU 15

MAC?2 r ,, X+1, %X + 1,
ENTERING MACRO 2:

DB 'T X+1 16!

DB 'kwote!

MVI M, 16

MAC1 I1,M,I1,16, 'kwote’
ENTERING MACRO 1:

DB 'TMI 16!

DB tkwote'

NOP

MVI M, 1

NOP

NOP

LEAVING MACRO 1

ENDM

LEAVING MACRO 2

ENDM

END

'kwote'

Figure 23. Macro Parameter Evaluation Example.

65

I, X+1, % X + 1, 'kwote'

which assocates I with E, the null sequence with F, the sequence X+1 with G, the
value 16 with H, and the literal string 'kwote' with S. MAC2 expands, filling the DB
and MVI instructions with the substituted values. Before leaving MAC2, MACI1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argument
F with the sequence M (producing "M" since F's value is null), along with the literal
value A, followed by the value of H (which is 16), and terminated by the value of S
(yielding the string 'kwote'). These values are associated with MAC1's dummy para-
meters. Upon expanding MAC1, the DB statements are filled-out, followed by the
substitution of A as a label (producing A's value I). The MVI instruction references
memory since B's value is M. Note that the concatenation of C with 1 reduces to a
concatenation of A with 1 since C's value is A. The replacement of C by A constitutes
a substitution of a single occurrence of a dummy parameter, and thus the A which is
produced is not itself replaced at this point. Finally, the literal value L is concatenated
to the value of A and D to produce the label LI16.

Figure 24 illustrates the use of bracketed notation, using IRP's (indefinite repeats)
within two macros, called IRPM1, IRPM2, and IRPM3. Note that one bracket level
is removed in the first invocation of IRPMI1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. [IRPM3 has three distinct dummy parameters which are reconstructed as a
single list at the IRP heading which it contains. IRPM4 shows the effect of passing
parameters through two macro invocation levels by accepting a single parameter X,
which is immediately passed along to the IRPM1 macro. Note that the invocation
requires three bracket levels: the first is removed at the invocation of IRPM4, the
second level is removed at the nested invocation of IRPM1 inside IRPM4, and the
innermost level is required at the IRP heading within IRPMI1.

Figure 25 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a "DB" statement which shows the value of the first parameter X (if it is
not empty), and the second part produces the value of Y, if not empty. Note that
the first invocation includes a properly nested bracketed sequence for X, and an empty
parameter for Y. The second invocation sends a properly nested bracketed expression
for X which produces an empty value since no characters remain after the brackets
are removed. The second parameter includes a quoted string (‘string of pearls') and
a hexadecimal value which becomes a part of the "DB" in MACI.

The third invocation of MAC1 passes a bracketed expression, which includes a
quoted string (i.e., the pair of adjacent apostrophes), followed immediately by a sequence
of ASCII characters. Note that the pair of apostrophes are passed intact since they
appear as an empty quoted string. In this case, the value of Y is empty. The
remaining examples show various cases of strings and escape sequences. In particular,
one must take care in passing quoted strings which themselves contain apostrophes,
since a pair of apostrophes is considered a single apostrophe at each evaluation level
in the sequence of macro invocations. Pay particular attention to the use of the
escape character to pass an unevaluated dummy parameter from MAC2 to the MAC1
invocation.

66

IRPM1 MACRO X

HE INDEFINITE REPEAT MACRO
IRP Y,X
Y: NOP
ENDM
ENDM
IRPM1 <<ONE,TWO,THREE>>
A000+00 ONE: NOP
Ag1+00 TWO: NOP
A002+00 THREE: NOP
IRPM2 MACRO X
IRP Y, <X>
: NOP
ENDM
ENDM
IRPM2 <FOUR,FIVE,SIX>
A003+00 FOUR: NOP
P0B4A+00 FIVE: NOP
a0085+00 SIX: NOP
IRPM3 MACRO X1,X2,X3
IRP Y,<X1,X2,X3>
: NOP
ENDM
ENDM
IRPM3 SEVEN,EIGHT,NINE
A006+00 SEVEN: NOP
2007+00 EIGHT: NOP
$008+00 NINE: NOP
14
IRPM4 MACRO X
IRPM1 X
ENDM
’
IRPM4 <<<TEN,ELEVEN,TWELVE>>>
20089+00 TEN: NOP
A00A+00 ELEVEN: NOP
g00B+00 TWELVE: NOP
gaecC END

Figure 24, Parameter Evaluation using Bracketed Notation,

67

89

SAMPL

4K LI

ACl MACRO
DB
IF
EXITM
ENDIF
DB
ENDM

~e

MAC1
00A0+3CACA54654 DB
' MAC1
001F+737472696E DB
' MAC1
6030+412051554F DB
' MAC1
0046+7269676874 DB
' MAC1
0057+6973207468 DB
' MAC1
006B+4845524520 DB
MAC2 MACRO
LOCAL
X EQU
. DB
MAC1
ENDM
' MAC2
BOOA+= 220001 EQU
007E+3C DB
G87F+41504152 DB
0083+7768617427 DB

Figure 25, Examples

E

of

X,Y

“&X° : (ONE)
NUL Y

Y : (TWO)

<<KLEFT SIDE> MIDDLE <RIGHT SIDE>>
“<LEFT SIDE> MIDDLE <RIGHT SIDE>~

<>,<’string of pearls”,b34H>

“string of pearls”,34H : (TWO)

<A QUOTE IS A ':, RIGHT?>

‘A QUOTE IS A ~°, RIGHT? ; (ONE)
<>,<’right, but also “"°" ">

‘right, but also “°° s (TWO)

,<"is this “confusing” """ ",63>
“is this °, " “confusing”” 7,63 : (TWO)

4 o o 00
-

[

<HERE IS A 7> AND A TT>

‘“HERE IS A > AND A 1 : (ONE)

APAR,BPAR
X

10

APAR
TAPAR,BPAR

o r 000,

(X+5)*4, “what
10
(?2?20001+5) *4
“APAR’° ; (ONE)

‘what” s going on?’ ; (TWO)

“s going on?”

Macro Parameter Evaluation.

BRACKETED PARAMETERS, WITH ESCAPE CHARACTER

; (ONE)

It is worthwhile examining the various parameters and their evaluations in Figure
25 to ensure that the rules for evaluation given in this section are consistent.

8.8. The MACLIB Statement.

The macro assembler allows the programmer to create and reference "macro
library" files which are external to the mainline program. The form of the macro
library reference is

MACLIB libname

where "libname" is an identifier which references a particular file "libname.LIB" which
is assumed to exist on the diskette. Macro libraries are in source program form, and
can thus be easily created and modified by the programmer using the CP/M system
editor (ED).

In order to speed-up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB statement,
as listed below:

(a) the statements included in the macro library cannot generate machine code.
For example, comments, EQU's, SET's, and MACRO definitions are allowed, while DB
statements outside macro definitions are not allowed.

(b) Macro libraries are not normally listed with the source program (although
there is an overriding parameter which can be supplied - see Assembly Parameters).

(c) All MACLIB statements must appear before the mainline program macro
definitions. Generally, the MACLIB statements are placed at the beginning of the
program, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that the programmer can
predefine macros which enhance the facilities of the assembly language itself. For
example, the additional operations codes of the Zilog Z-80 microprocessor can be
defined in a maero library which is reference in a single statement

MACLIB 780

which causes the assembler to read the file "Z80.LIB" from the diskette, containing
the necessary macros for Z-80 code generation. These macros can then be referenced
within the program intermixed with the usual 8080 mnemonics.

‘Normally, the "libname.LIB" file is assumed to exist on the currently logged
disk drive. The programmer can override this default condition using a special parameter
(L) when the macro assembler is started which redirects the ".LIB" references to a
different diskette (see Assembly Parameters).

Figures 10 and 11 show the use of the macro library facility, as introduced in

the initial macro discussion. The following sections contain additional examples of the
use of MACLIB in practical applications.

69

9. APPLICATIONS OF MACROS

The MAC assembler provides a powerful tool for mierocomputer systems develop-
ment through its macro facilities. In order to demonstrate this tool, a number of
applications of macros in the solution of practical problems are described in some
detail in the following sections. Four particular applications areas are considered:
use of macros in implementation of special-purpose languages, emulation of non-standard
machine architectures, implementation of additional control structures, and operating
systems interface macros.

9.1. Special Purpose Languages.

A wide variety of microcomputer designs can be broadly classed as "controller"
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision-making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control funections, production in-
strumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that
the microprocessor is to carry-out in performing its particular task. In order to avoid
unnecesary details, the application programmer is not expected to know how to program
and debug microcomputer assembly language programs.

In this situation, it is useful to define a "language" through macros which suits
the particular application. The application programmer then uses these predefined
macros as the primitive language elements. If properly defined, the application language
is easily programmed, allowing considerable machine independence. That is, an applica-
tion program written for a particular microprocessor can be used with another processor
by changing the definitions of the individual macros which implement the primitive
operations. Further, the macro bodies can incorporate debugging facilities for applica-
tion development.

In order to illustrate the notion of language definition, consider the following
situation. Hornblower Highway Systems, Inc., produces "turnkey" traffic control systems
for cities throughout the country. Their hardware subsystems consist of various traffic
lights and sensors which are customized for the traffic layout in a particular city.
When Hornblower negotiates a contract, their engineers survey the intersections of the
city, and produce plans which show a configuration of their standard hardware for each
intersection, along with the "algorithms" required for traffic flow at that point.

The standard hardware items which Hornblower manufactures consist of the
following. Central and corner traffic lights which display green, yellow, and red (or
off completely), pushbutton switches for pedestrian cross requests, road "treadles" for
sensing the presence of an automobile at an intersection, and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays which control the lights, and "latches" which holds the sensor
input information. The controller box also contains a time of day clock, which changes
on an hourly basis from 0 through 23. The 8080 processor in the controller box can
be configured for any particular intersection with up to 1024 bytes of programmable

70

read only memory (PROM) in 256 byte increments. Although random access memory
can be included in the controller box, Hornblower uses only ROM when possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city, and produce a set of hardware configuration plans which
intermix the various standard components. Programs are then written and debugged
which control each intersection, based upon predicted traffic patterns.

The intersection of Easy St. and Maria Ave., for example, controls minimal
traffic and thus consists of a controller box with a single central light. The "algorithm"
for this intersection is to simply alternate red and green lights between Easy and
Maria, with a "bias" toward Easy St., since traffic along Easy has measured higher in
the past surveys. Thus, the green light along Easy lasts for 20 seconds, while the
green along Maria last only 15 seconds. Given this situation, the application programmer
writes the following program:

HORNBLOWER HIGHWAYS SYSTEMS, INC.
INTERSECTION:
EASY ST.(N-S) / MARIA AVE. (E-W)

e we e we

MACLIB INTERSECT ;LOAD MACROS

CYCLE: SETLITE NS,GREEN

SETLITE EW,RED

TIMER 20 sWAIT 20 SECS
9
: CHANGE LIGHTS

SETLITE NS,YELLOW

TIMER 3 sWAIT 3 SECS

SETLITE NS,RED
SETLITE EW,GREEN

TIMER 15 sWAIT 15 SECS
H
: CHANGE BACK
SETLITE EW,YELLOW
TIMER 3 sWAIT 3 SECS
RETRY CYCLE

The macro library "INTERSECT.LIB" contains the macro definitions which implement
the "primitive" operations SETLITE and TIMER which set the central traffic light, and
time-out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. Note that the sequence of operations
is easy to write, and is completely machine independent.

Figure 26 gives an example of a macro library for "intersect" which assumes
the following hardware with an 8080 processor: the central traffic light is controlled
by the 8080 output port 0 (given by "light"), while the time of day clock is read from
port 3 ("elock™). Further, the north-south ("nsbits") of the central light are given by
the high order 4 bits of output port 0, while the east-west direction ("ewbits") is
specified in the low order 4 bits of output port 0. When either of these fields is set
to 0, 1, 2, or 3, the light in that direction is turned off, or set to red, yellow, or
green, respectively. Thus, the SETLITE macro in Figure 26 accepts both a direction
(NS or EW), along with a color (OFF, RED, YELLOW, or GREEN), and sets the specified
direction to the appropriate color.

71

macro library for basic intersection

“e we we

input/output ports for light and clock

light equ 00h straffic light control
clock equ 03h ;24 hour clock (0,1,...,23)
H

H constants for traffic light control

nsbits equ 4 snorth souuth bits

ewbits equ 0 ;east west bits

éff equ 0 ;turn light off

red equ 1 ;value for red light
yellow equ 2 ;jvalue for yellow light
green equ 3 ;green light

H
setlite macro dir,color

;3 set light "dir" (ns,ew) to "color" (off,red,yellow,green)
mvi a,color shl dir&bits ;;color readied
out light ;3sent in proper bit position
endm

2

timer macro seconds

33 construcet inline time-out loop
local t1,t2,13 ;;loop entries
mvi d,4*seconds ;3basic loop control

tl: mv i b,250 ;3250msee *4 = 1 sec

t2: mv i c,182 33182*%5.5useec = 1lmsee

t3: der e ;31 ey = .5 useec
jnz t3 ;3710 ey = 5.5 usec
der b ;3ecount 250,249...
jnz t2 ;3loop on b register
der d ;3basic loop control
jnz t1 ;31loop on d register

HH arrive here with approximately "seconds" secs timeout
endm

]

clock? macro low,high,iftrue

HE jump to "iftrue" if celock is between low and high
local iffalse j;;alternate to true case
in clock ;jsread real-time clock
if not nul high ; scheek high elock
epi high ; sequal or greater?
jne iffalse ;;skip to end if so
endif
epi low ;3less than low value?
jne iftrue ;;skip to label if not

iffalse:
endm

’

retry macro golabel

HE continue execution at "golabel"”
jmp golabel
endm

Figure 26. Macro Library for Basic Intersection.

72

The TIMER macro in Figure 26 uses the internal cycle time of the 8080 processor
to construet an inline timing loop, based on the value of SECONDS. Note that this
loop is not generated as a subroutine, since Hornblower prefers not to include RAM
in the controller box (subroutines require return addresses in RAM).

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Figure 27a, for example,
is included when the intersection contains treadles in the street to detect automobiles,
while Figure 27b shows the macro library for pedestrian pushbuttons. In the case of
automotive treadles, the sensors are attached to input port 1 ("trinp") of the processor.
The treadles, however, require a '"reset" operation which clears the latched value
through output port 1 ("trout") of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labelled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports correspond
to one bit position, numbered from the least to most significant bit. Thus the treadle
#0 sensor is read from bit 0 of port 1, and reset by setting bit 0 of output port 1.
Similarly, treadle #1 uses bit position 1 of input and output port 1. The TREAD?
macro is invoked to sense the presence of a latched value for treadle "tr" and, if on,
the sensor is reset with control transferring to the label given by "iftrue."”

Figure 27b shows the macro library which processes pedestrian pushbuttons.
Hornblower's hardware is set up to sense the latched pedestrian switches on input port
0 ("cwinp") as a sequence 1's and 0's in the least significant positions, corresponding
to the switches at the intersection. Thus, if there are four pedestrian switches, bit
positions 0,1,2, and 3 correspond to these switches. A "1" bit in any of these positions
indicates that the pushbutton has been depressed. Unlike the automotive treadles, the
crosswalk switch latches are all cleared whenever input port 0 is read. In addition
to these macro libraries, Hornblower has defined several additional libraries which
support optional hardware manufactured by their company.

The intersection of Bumpenram Boulevard and Lullabye Lane presents a somewhat
more complicated situation. Bumpenram Blvd. carries heavy traffic in an E-W direction
to and from the center of town. Lullabye Ln., however, feeds a residential portion
of the city, running perpendicular to Bumpenram in a N-S direction. The contracting
city has specified that the traffic control should he biased toward Bumpenram Blvd.
as follows: the traffic light must remain green along Bumpenram until the treadles
along Lullabye detect the presence of automobiles or until the pedestrian switches are
pushed. At that time, the light must change to allow the traffic to move N-S through
Lullabye Ln., allowing all traffic to clear before returning to the major E-W flow
along Bumpenram Blvd. Late night traffic along Bumpenram is not very heavy, so the
city has also specified that the E-W light flashes yellow and and N-S direction flashes
red between the hours of 2 and 5 AM.

The application program created by Hornblower for the Bumpenram Blvd. and
Lullabye Ln. intersection is shown in Figure 28. Each major cycle of the traffic light
enters at "CYCLE" where the time of day is tested. If between 2 and 5, then control
transfers to "NIGHT" where the yellow/red lights are flashed in the appropriate
directions. If not between 2 and 5 AM, the switches and treadles are sampled until
N-S traffic along Lullabye Ln. is sensed. If cross traffic is detected, the lights switch
until all the traffie is through. Sampling also stops if the time of day ever reaches
2 AM.

73

macro library for street treadles

- e

trinp equ 01lh ;treadle input port
trout equ 01h ;treadle output port

read? maero tr,iftrue

"tread?" is invoked to check if

treadle given by tr has been sensed.

if so, the lateh is cleared and control
transfers to the label "iftrue"

e we e we e

weo we we ‘ae

local iffalse ;;in case not set
)

in trinp ;;read treadle switches

ani 1 shl tr ; smask proper bit

jz iffalse ;3skip reset if 0

mvi a,1l shl tr ;3to reset the bit

out trout ;;clear it

jmp iftrue ;380 to true label
iffalse:

endm

Figure 27a. Macro Library for "treadle" Control.

H macro library for pedestrian pushbuttons
H
ewinp equ 00h ;input port for crosswalk

’

push? macro iftrue

; "push?" jumps to label "iftrue" when any one
of the crosswalk switches is depressed. The
value has been latched, and reading the port
clears the latched values

we e we o

H
.
s
.
’
.
2

in ewinp ;;read the crosswalk switches
- ani (1 shl ewent) - 1 ;3build mask
jnz iftrue ;;any switches set?
33 continue on false condition
endm

Figure 27b. Macro Library for Corner Pushbuttons.

74

0004
0000
0001

0000

ooo0C
0010

0014
001B
0029
0037
003E

0041
0045
0057
005B
005F

0C71
007F

008D

0090
00A2

00A5
00A9
00AD
00BF
00C3
00C7
00D9

CWCNT
LULLO
LULL1

CYCLE:

SAMPLE:

SWITCH:

DONE? :

NOTDONE:

NIGHT:

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

EQU 4 sSET TO 4 CROSSWALK SWITCHES
EQU 0 - ;NAME FOR TREADLE ZERO

EQU 1 ;NAME FOR TREADLE ONE

MACLIB INTER ;BASIC INTERSECTION
MACLIB TREADLES : INCLUDE TREADLES
MACLIB BUTTONS ; INCLUDE PUSHBUTTONS
;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 2,5,NIGHT s SPECIAL FLASHING?
;NOT BETWEEN 2 AND 5 AM

SETLITE NS,RED sRED LIGHT ON LULLABYE
SETLITE EW,GREEN ;GREEN ON BUMPENRAM

; SAMPLE THE BUTTONS AND TREADLES
PUSH? SWITCH ;ANYONE THERE?

TREAD? LULLO,SWITCH : TREADLE 07
TREAD? LULL1,SWITCH s TREADLE 1?
CLOCK? 2, ,NIGHT ;PAST 2 AM?
RETRY SAMPLE ;TRY AGAIN IF NOT

; SOMEONE IS WAITING, CHANGE LIGHTS

SETLITE EW,YELLOW ; SLOW 'EM DOWN
TIMER 3 sWAIT 3 SECONDS
SETLITE EW,RED :STOP 'EM
SETLITE NS,GREEN :LET 'EM GO
TIMER 23 ;FOR AWHILE

; IS ALL THE TRAFFIC THROUGH ON LULLABYE?
TREAD? LULLO ,NOTDONE ; TREADLE 07?
TREAD? LULL1,NOTDONE ; TREADLE 17
sNEITHER TREADLE IS SET, CYCLE

RETRY CYCLE : FOR ANOTHER LOOP
TIMER 5 sWAIT 5 SECONDS
RETRY DONE? :TRY AGAIN

sTHIS IS NIGHTTIME, FLASH LIGHTS

SETLITE EW,OFF ; TURN OFF

SETLITE NS,OFF : TURN OFF

TIMER 1 sWAIT WITH OFF
SETLITE EW,YELLOW :TURN TO YELLOW
SETLITE NS,RED ;TURN TO RED

TIMER 1 :LEAVE ON FOR 1 SEC
RETRY CYCLE :GO AROUND AGAIN

Figure 28a. Traffic Control Algorithm using "-M" Option.

75

0004
0000
0001

0000+DB03
0002+FE05
0004+D20CO00
0007+FE02
0009+D2A500

000C+3E10
000E+D300

0010+3E03
0012+D300

0014+DB00
0016+E6OF
0018+C24100

001B+DB01
001D+E601
001F+CA2900
0022+3E01
0024+D301
0026+C34100

0029+DB01
002B+E602
002D+CA3700
0030+3E02
0032+D301
0034+C34100

0037+DB03
0039+FE02
003B+D2A500

003E+C31400

Figure 28b.

CWCNT
LULLO
LULL1

CYCLE:

SAMPLE:

Intersection Algorithm with "*M"

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

EQU 4 ;SET TO 4 CROSSWALK SWITCHES
EQU 0 ;NAME FOR TREADLE ZERO

EQU 1 ;NAME FOR TREADLE ONE

MACLIB INTER ;s BASIC INTERSECTION
MACLIB TREADLES ; INCLUDE TREADLES
MACLIB BUTTONS ; INCLUDE PUSHBUTTONS

; ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 2,5,NIGHT ; SPECIAL FLASHING?

;NOT BETWEEN 2 AND 5 AM

SETLITE NS,RED ;RED LIGHT ON LULLABYE

SETLITE EW,GREEN ;GREEN ON BUMPENRAM

; SAMPLE THE BUTTONS AND TREADLES

PUSH? SWITCH ;ANYONE THERE?

TREAD? LULLO,SWITCH ; TREADLE 07?
TREAD? LULL1,SWITCH ; TREADLE 1?
CLOCK? 2, ,NIGHT ;PAST 2 AM?

RETRY SAMPLE ;TRY AGAIN IF NOT

in Effect.

76

0041+3E02
0043+D300

0045+160C
0047+06FA
0049+0EB6
004B+0D
004C+C24B00
004F+05
0050+C24900
0053+15
0054+C24700

0057+3E01
0059+D300

005B+3E30
005D+D300

005F+165C
0061+06FA
0063+0EB6
0065+0D
0066+C26500
0069+05
006A+C26300
006D+15
006E+C26100

0071+DB01
0073+E601
0075+CATF00
0078+3E01
007A+D301
007C+C39000

007F+DB01
0081+E602
0083+CA8D00
0086+3E02
0088+D301
008A+C39000

008D+C30000

Figure 28c.

SWITCH :

??0005:
220006
?220007:

??70008:
?2?20009:
??20010:

DONE? :

; SOMEONE IS WAITING, CHANGE LIGHTS

SETLITE
MVI

ouT
TIMER
MVI

MVI

MVI

DCR

JNZ
DCR

JINZ
DCR

INZ
SETLITE
MV I

ouT
SETLITE
MVI

OouT
TIMER
MV 1

MVI

MVI

DCR

JNZ

DCR

JNZ
DCR

JNZ

. 1S ALL
TREAD?
IN

ANTI

JZ

MV I
OUT
JMP
TREAD?
IN

ANT

JZ

MVI
ouUT
JMP

EW, YELLOW ;SLOW 'EM DOWN
A,YELLOW SHL EWBITS

LIGHT

3 , sWAIT 3 SECONDS
D,4%3

B, 250

C,182

C

220007

B

220006

D

220005

EW,RED

A,RED SHL EWBITS
LIGHT

NS ,GREEN s LET
A,GREEN SHL NSBITS
LIGHT

23 :FOR AWHILE
D,4%*23

B, 250

C,182

C

2920010

B

220009

D

220008

;s STOP 'EM

'EM GO

THE TRAFFIC THROUGH ON LULLABYE?
LULLO ,NOTDONE ;TREADLE 0?
TRINP

1 SHL LULLO
220011

A,1 SHL LULLO
TROUT
NOTDONE
LULL1,NOTDONE
TRINP

1 SHL LULL1
220012

A,1 SHL LULL1
TROUT
NOTDONE

; TREADLE 1?

sNEITHER TREADLE IS SET, CYCLE

RETRY
JMP

CYCLE
CYCLE

; FOR ANOTHER LOOP

Algorithm with Generated Instructions.

77

Figure 28a shows the assembly with no macro generated lines (controlled by the
"-M" parameter - see Assembly Parameters). Although the machine code locations are
shown to the left, no 8080 machine code is listed. Figure 28b shows a segment of
this same program with machine code generation, but no 8080 mnemonics (controlled
by "*M"), while Figure 28c shows another segment with normal macro generation. Note
that Figure 28a is the most readable to the application programmer, while Figures 28b
and 28c would be useful for macro debugging.

It should be noted that the resulting program requires no random access memory
for execution, since all temporary values are maintained in the 8080 registers. Further,
no subroutine calls take place and thus the 8080 stack is not used. Finally, the program
is less than 256 bytes, so it can be placed in a single programmable read only memory
chip for a minimum memory/processor configuration.

Maero based languages of this sort can easily incorporate debugging facilities.
In the case of Hornblower, Inc., the principal algorithms are constructed and tested
in the CP/M environment by including debugging traces within each macro. In each
case, a debug "flag" is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls. Figure
29 shows the modification required to the "INTER.LIB" file to include the debugging
code. Although only the SETLITE macro is shown, similar coding is easily included
for the remaining macros. Figure 29 includes the debug flag at the beginning of the
library (initially set FALSE), along with the appropriate equates for CP/M system calls.
If the debug flag is set to true by the application programmer, special trace calls are
included. Note, for example, that the SETLITE macro constructs a message of the
form

DIR changing to COLOR

where "DIR" and "COLOR" are the parameters sent to the macro. If debug remains
false in the application program, this trace code is not assembled.

Figure 30a shows an application program for a particular intersection where the
debug flag is set to TRUE after the macro library is included. As a result, each
macro expansion assembles a call to the CP/M operating system to trace the light
direction and color change, skipping the machine code which will eventually be assembled
to drive the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the
algorithm, which results in the print-out shown in Figure 30b. Each trace line
corresponds to an invocation of SETLITE with a specific direction and color, with the
appropriate wait time between print-outs.

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed (the ORG may be removed as well), and the program
is re-assembled. This time, the CP/M traces are not included since the debug flag
remains FALSE. As a result, the actual Hornblower hardware interface is assembled
instead. The newly assembled program is then placed into PROM in the controller
box for that intersection and tested in its target enviroment.

78

macro library for basie intersection

we we we

global definitions for debug processing

true equ 0ffffh ;value of true

false equ not true;value of false

debug set false ;initially false

bdos equ 5 sentry to c¢p/m bdos
rchar equ 1 ;read character function
wbuf f equ 9 ;swrite buffer function
er equ 0dh ;jearriage return

1f equ 0ah ;line feed

’

H input/output ports for light and clock
light equ 00h ;traffiec light control
clock equ 03h ;24 hour eclock (0,1,...,23)
?

; bit positions for traffic light control
nsbits equ 4 ;north souuth bits
ewbits equ 0 ;east west bits

?

; constant values for the light control

of f equ ;turn light off

0
red equ 1 ;value for red light
yellow equ 2 ;value for yellow light
green equ 3 ;green light

b
setlite macro dir,color

HH set light given by "dir" to color given by "color"
if debug ;sprint info at console
local setmsg,pastmsg
mv i c,wbuff ;;write buffer funetion
Ixi d,setmsg
call bdos ;swrite the trace info
jmp pastmsg
setmsg: db er,1f
db '4DIR changing to &COLOR$'
pastmsg:
exitm
endif
mv i a,color shl dir&bits ;;readied
out light ;3sent in proper bit position
endm

(remaining macros are identical to the previous figure,
but each contains trace information similar to "setlite")

we se we we

Figure 29. Library Segment with Debug Facility.

79

08

0100 ORG 100H ;READY FOR THE DEBUG RUN
MACLIB INTER ; BASIC MACRO LIBRARY
FFFF DEBUG SET TRUE ;READY DEBUG TOGGLE
0100 CYCLE: SETLITE NS,RED
0120 SETLITE EW,GREEN
0142 TIMER 10
0154 SETLITE EW,YELLOW
0177 TIMER 2
0189 SETLITE EW,RED
01A9 SETLITE NS,GREEN
01CB TIMER 10
01DD SETLITE NS,YELLOW
0200 TIMER 2
0212 RETRY CYCLE
Figure 30a. Sample Interseection Program with Debug.

NS changing to RED

EW changing to GREEN
EW changing to YELLOW
EW changing to RED

NS changing to GREEN
NS changing to YELLOW
NS changing to RED
EW changing to GREEN
EW changing to YELLOW
EW changing to RED

Figure 30b. Debug Trace Printout.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high level languages are not available,
but a measure of machine independence is desired. The macros are easy to develop,
and the application programs are simple to write and debug.

9.2. Machine Emulation.

A second application of macro processing is found in the "emulation" of a
machine operation code set which is different from the 8080 microprocessor. In
particular, a machine architecture is selected, based upon an existing or fictitious
operation code set, and a macro is written for each "opcode," taking the general form:

op MACRO d-1,d-2, . . ., d-n
opcode emulation
ENDM

where "op" is a mnemonic instruction in the emulated machine and the dummy
parameters d-1 through d-n represent the optional operands required by "op." The
"macro body" includes 8080 instructions which carry-out the operation on the 8080
microprocessor. That is, the instructions within the macro body perform the same
function as the "op" with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written
using these opcodes, which expand to the equivalent 8080 instructions, but perform the
emulated machine operations.

In order to be specific, consider the situation encountered by Nachtflieger
Maschinenwerke, an internationally famous manufacturer and distributor of automated
machining equipment. Though incorporating microprocessors in controlling their equip-
ment, Nachtflieger expects to build a custom LSI processor for their future products.
The processor, called the KDF-10 will be used primarly as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to twelve bits. In
order to allow computations on these twelve bit values, Nachtflieger engineers are
going to allow a full 16-bit word in the KDF-10, along with a number of primitive
operations on these values. Externally, the KDF-10 will provide four analog to digital
(A-D) input "ports" which can be read by KDF-10 programs, along with four digital to
analog output ports (D-A) which can be written by the program. The KDF-10 will
automatically perform the A-D and D-A conversion at these ports.

Begin forward thinkers, the engineers at Nachtflieger have designed the KDF-10
as a "stack machine,"” which is similar in concept to the Hewlett-Packard HP-65 hand
held programmable calculator, where data can be loaded to the top of a "stack" of
data elements, automatically "pushing" existing elements deeper onto the stack. Similar
to the Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. Somewhat simpler than the HP-65, the
designers settle upon the following three-character operation codes for the KDF-10:

S1Z n reserves n 16-bit elements as the maximum size of

the KDF-10 operand stack. This operation code
must be provided at the beginning of the program.

81

RDM i Reads the analog signal from input port i (0,1,2, or 3)
to the top of the stack, automatically pushing any

WRM o Writes the digital value from the top of the stack
to the D-A output port given by o, (0,1,2, or 3).
The value at the stack top is removed.

DUP The top of the KDF-10 stack is duplicated.

SUM The top two elements of the KDF-10 stack are added,
both operands are removed, and the resulting sum is
placed on the top of the stack.

LSR n Performs a logical shift of the topmost stacked element
to the right by n bits (1,2, . . .,15), replacing the
original operand by the shifted result. Note that
LSR n performs a division of the topmost stacked
value by the divisor 2,

JMP a Branch directly to the program address given by the
label a.

Since the KDF-10 does not exist (except in the fertile minds of Nachtflieger
engineers), the software designers have decided to use the macro facilites of MAC to
emulate the KDF-10 using the 8080 microcomputer.

Figure 31 shows an example of a program for the KDF-10 which was processed
by MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors which are attached at
strategic places on the machining equipment. The program continuously reads the four
input values from the A-D ports and computes their average value by summing and
dividing by four. This average value is then sent to D-A output port 0 where it is
used to set environmental controls.

Referring to Figure 31, the program begins by reserving a stack of 20 elements,
which is much larger than required for this application (a maximum of four elements
are actually stacked). The program then cycles following "LOOP," where the values
are read and processed. The four operations RDM 0, RDM 1, RDM 2, and RDM 3
read all four temperature sensors, placing their data values in the stack. The three
SUM operations which follow the read operations perform pairwise addition of the
temperature values, producing a single sum at the top of the stack. Since the average
value is desired, the LSR 2 operator is applied to the stack top to perform the division
by four. Finally, the resulting average is sent to the D-A port using the WRM 0
operation code. Control then transfers back to LOOP, where the entire operation is
performed again.

Since Nachtflieger designers are emulating KDF-10's using 8080's, they have
created the macro library file, called "STACK.LIB" as shown in Figure 32. A macro
is shown in this figure for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set (since this must be the first opcode in the
program), and the stack area is reserved. Note that double words of storage are

82

€8

0000
012E
0132
0136
013A

013E
0140
0142

0144
0152

e we we we

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

MACLIB STACK ;READ THE STACK MACHINE OPCODES

SIZ 20 : CREATE 20 LEVEL WORKING STACK
LOOP: RDM 0 :READ A-D PORT 0
RDM 1 :READ A-D PORT 1
RDM 2 :READ A-D PORT 2
RDM 3 :READ A-D PORT 3
; ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM : AD3+AD2
SUM : (AD3+AD2) +AD1
SUM ; ((AD3+AD2) +AD1) +AD0
; SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 sSHIFT RIGHT TWO = DIV BY 4
WRM 0 :WRITE RESULT TO D-A PORT 0
JMP LOOP ;GO GET ANOTHER SET OF VALUES

0156 C32E01

Figure 31.

A-D Averaging Program using "Stack Machine."

stack:

dup

’

macro size
set "org" and create stack
local stack ;3 label on the stack

org 100h ;;at base of TPA
I1xi sp,stack

jmp stack ;;past stack

ds size*2 ;;double precision
endm

macro

duplicate top of stack

push h

endm

macro

add the top two stack elements
pop d ;3top-1 to de
dad d ;3back to hil
endm

macro len
logical shift right by len

rept len ;;generate inline
Xra a ;sClear carry

mov a,h

rar ;;rotate with high 0
mov h,a

mov a,l

rar

mov l,a ;;back with high bit
endm

endm

equ 1080h ;a-d converter 0

equ 1082h ;ya-d converter 1

equ 1084h ;a-d converter 2

equ 1086h ;a-d converter 3

equ 1090h ;d-a converter 0

equ 1092h ;d-a converter 1

equ 1094h ;d-a converter 2

equ 1096h ;d-a converter 3

macro 7¢

read a-d converter number "?e"

push h ;3clear the stack
read from memory mapped input address
1hld ade&?c

endm

macro ?¢c

write d-a converter number "?ce"
shld dac&?e¢ ;;value written
pop h ;;restore stack
endm

Figure 32. "Stack Machine" Opcode Macros.

84

reserved since a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10's stack top is assumed to be in the
8080's HL register pair. Further, each operation which pushes the KDF-10 stack causes
the element - in the 8080 HL pair to be pushed to the 8080 memory area reserved by
the SIZ opcode.

The DUP opcode simply pushes the HL register pair to memory, since the HL
pair is not altered in the 8080 during this operation. In the case of the SUM operator,
it is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. Thus, it must be the case that the HL registers contain the most
recently loaded value, while the 8080 memory stack contains the next-to-most recently
stacked value. The POP D operation loads the second operand to the DE pair in the
8080 CPU, then the topmost value and next to top value are added using the DAD D
operation. The resulting operand goes into the HL register pair, which is necessary
in the KDF-10 emulation, since the top of the KDF-10 stack is located in the 8080's
HL register pair.

The LSR opcode is somewhat more complicated. Since the 8080 does not support
a double precision (16-bit) right shift of the HL register pair, the values must go
through the accumulator. Thus, the LSR macro contains a REPT loop which generates
inline machine code for each right shift. The inline machine code performs the right
shift by first clearing the carry (XRA A), followed by a high order right shift by one
bit (MOV A,H followed by RAR), then by a low order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit may move from the high order byte to the low
order byte using the carry between high and low order byte shifts.

Referring to Figure 32, the RDM and WRM operation codes are defined by
"memory-mapped" input/output operations. That is, memory locations 1080H through
1087H are intercepted external to the 8080 microprocessor and treated as external
read operations. Thus, a load from location 1080H/1081H to HL is treated as a read
from A-D device 0, rather than from random access memory. This operation is simple
to perform in the KDF-10 emulation, since all program addresses are assumed to be
below 1000H, and thus any 8080 address bus values beyond 1000H must be memory
mapped I/0. As a result, ADCO through ADC3 correspond to the locations where A-D
values 0 through 3 are obtained. Similarly, the D-A output values which are written
to locations 1090H through 1097H are intercepted as memory mapped output values
which are sent to the D-A converters rather than random access memory. The RDM
instruction is emulated by simply performing an LHLD from the appropriate memory
mapped input address (constructed through concatenation of the dummy parameter).
The HL value is first pushed, since the KDF-10 RDM opcode performs this task
automatically, then the new value is loaded into the HL register pair. The WRM
opcode definition is similar, except the value to write is assumed to reside at the top
of the KDF-10 stack (and thus appears in the 8080 HL register pair). The value is
written to the memory mapped output location, and the value is removed from the
HL pair by restoring HL from the 8080 stack.

In order to see the actual code generated by each of these macros, Figure 33
shows the same averaging program as given in Figure 31, except that the generated
8080 instructions are interspersed throughout the listing file (Figure 33 is the usual
output from MAC, while Figure 31 was generated using the parameter "-M" which
suppresses generated mnemonics). It is worthwhile cross-referencing Figures 31, 32,
and 33 to ensure that the macro expansion processes are clearly understood.

85

0100+
0100+312E01
0103+C32E01
0106+

012E+E5
012F+2A8010

0132+E5
0133+2A8210

0136+E5
0137+2A8410

013A+ES
013B+2A8610

013E+D]
013F+19

0140+D1
0141+1¢

0142+D1
0143+19

0144+AF
0145+7C
0146+1F
0147+67
0148+7D
0149+1F
014A+6F
014B+AF
014C+7C
014D+1F
014E+67
014F+7D
0150+1F
0151+6F

0152+229010
0155+E1
0156 C32E01

e we we ae

LOOP :

—e

Figure 33.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

MACLIB
SIZ
ORG
LXI
JMP
DS
RDM
PUSH
LHLD
RDM
PUSH
LHLD
RDM
PUSH
LHLD
RDM
PUSH
LHLD

STACK ;READ THE STACK MACHINE OPCODES
20 :CREATE 20 LEVEL WORKING STACK
100H

SP,?20001

220001

20%2

0 ;READ A-D PORT 0

ADCO
1 ;READ A-D PORT 1

2 ;READ A-D PORT 2

3 ;READ A-D PORT 3
ADC3

ALL FOUR VALUES ARE STACKED, ADD THEM UP

SUM
POP
DAD
SUM
POP
DAD
SUM
POP
DAD

SuM IS A

LSR
XRA
MOV
RAR
MOV
MOV
RAR
MOV
XRA
MOV
RAR
MOV
MOV
RAR
MOV
WRM
SHLD
POP
JMP

;s AD3+AD2

; (AD3+AD2) +AD1

; ((AD3+AD2)+AD1) +ADO

TOP OF THE STACK, DIVIDE BY 4
s SHIFT RIGHT TWO = DIV BY 4

> o m o> o

-

- .

-

;sWRITE RESULT TO D-A PORT 0

get »m »»t »>m »»w+d UU U0 OO

>
Q
=}

oo
S
Lav]

;GO GET ANOTHER SET OF VALUES

Averaging Program with Expanded Macros.

86

A particular problem arose at Nachtflieger MW, however, which had to be
rectified: .although programs could be effectively written for the KDF-10 computer
using the 8080 emulation, they could not be effectively debugged. The program of
Figure 33, for example, could be tested under the CP/M debugger (see the CP/M DDT
Users Guide), but required monitoring and tracing at the 8080 machine code level. It
became clear that higher level debugging tools were necessary.

As a result, Nachtflieger designers added several "pseudo opcodes" which allow
debugging traces. The opcodes can be interspersed in the program, and selectively
enabled and disabled depending upon the debugging needs. In production, all debugging
traces would, of course, be disabled resulting only in absolute port I/0. The additional
debugging opcodes are listed below.

PRN msg Print the message given by "msg" at the debugging
console whenever the print trace is enabled. The
message must be enclosed in broken brackets.

DMP Print the value of the top element in the KDF-10
stack (in hexadecimal).

TRT t Set machine code trace option to true. Each time
a KDF-10 machine operation is executed, the opcode
is printed, followed by the (approximate) KDF-10
machine code address, followed by the top two
elements of the KDF-10 stack, in the format:

OPC oploc top top'

where OPC is the opcode, oploc is the location, top
is the top element, and top' is the second to the
top element, all in hexadecimal notation.

TRF t Disable the machine code trace. Only the KDF-10
instructions which physically appear between the TRT
and TRF opcodes are shown in the trace.

TRT p Enable the print/read trace. PRN opcodes which
follow produce output at the debugging console,
and are otherwise treated as comments. Further,
RDM and WRM opcodes prompt and display data
at the debugging console.

TRF p Disable the print/read trace. Only the PRN, RDM,
and WRM instructions which physically appear
between TRT and TRF interact with the console.

The convention is also taken that the traces are initially disabled at the beginning of
the program, and must be explicitly enabled with TRT opcodes.

Figure 34 shows the averging program of Figure 31 with interspersed debugging
statements. Note that the opcodes TRT t and TRT p are executed at the beginning

87

88

0000
9103
163
P103
P12E
g1F9
g22C
0267
f26A
@2A5
02A8
P2E3
02E6

7310
0324
7327
733B
033E
#352
0378

9378
#389
381
#3B4
0 3EE
03F1

~o wo

MACLIB DSTACK

SIZ
TRT
TRT
PRN
LOOP: RDM
DMP
RDM
DMP
RDM
DMP
RDM
DMP
PRN

ALL
SUM
DMP
SUM
DMP
SuM
PRN
DMP

-e

SUM
LSR
PRN
DMP
WRM
BRN
XIT

~-e

29
T
P

AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

;READ THE STACK MACHINE OPCODES
; CREATE 20 LEVEL WORKING STACK
+MACHINE CODE TRACE ON

+PRINT TRACE ON

<TRACE FOR AVERAGING PROGRAM>

g
1
2
3

;READ A-D PORT @
sWRITE TOP OF STACK
s READ A-D PORT 1
;WRITE TOP OF STACK
s READ A-D PORT 2
;WRITE TOP OF STACK
: READ A-D PORT 3
sWRITE TOP OF STACK

<FOUR VALUES HAVE BEEN READ>

FOUR VALUES

<VALUES

ARE STACKED, ADD THEM UP
;AD3+AD2 '
;WRITE FIRST SUM

; (AD3+AD2) +AD1

sWRITE SECOND SUM

; ((AD3+AD2) +AD1) +ADS
HAVE BEEN ADDED>

;WRITE SUM OF VALUES

IS AT TOP OF THE STACK, DIVIDE BY 4

2

; SHIFT RIGHT TWO = DIV BY 4

<AVERAGE VALUE CALCULATED>

@
LOOP

;WRITE AVERAGE VALUE
sWRITE RESULT TO D-A PORT @
;GO GET ANOTHER SET OF VALUES
;EMIT EXIT CODE

Figure 34, Averaging Program with Debugging Statements,

of the program, thus enabling all trace options throughout the execution. The PRN
statement above the LOOP label prints the initial sigh-on, while the DMP statements
after each read operation give the value of the A-D port. Upon completion of the
four element read, the PRN opcode is used to indicate this fact. Each SUM operator
is followed by a DMP opcode which shows the current sum. Finally, the PRN and
DMP opcodes are used to display the final average value which is being sent to D-A
port 0. The "XIT" opcode shown at the end of the program will be mtroduced in the
paragraphs which follow.

Figure 35 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for 1nput in the case of an RDM opcode
(giving the absolute memory mapped input address in decimal), while the WRM instruction
produces a "D-A OUTPUT . ." message which shows the absolute memory mapped
output address as well as the data which is written. The opcodes are also traced
showing the opcode mnemonic, address, and top two stacked elements. The "RDM"
trace at the beginning, for example, shows the instruction address 01AD, which is in
the range of the first RDM of Figure 34 (012E and 01EF), and is followed by the two
values 0111 (i.e., the value just read) and C21D ("garbage" value, since only one element
is stacked). The trace is easily followed at the KDF-10 level, showing each value
which is read-in, and the operations performed upon these values. Upon completion
of the debugging process under CP/M, the TRT opcodes are removed and the program
is reassembled, leaving only the 8080 instructions required in the production machine.
Nachtflieger systems engineers then take the resulting program and test its operation
in a hardware environment.

Forward thinking though they were, Nachtflieger engineers quickly realized that
the KDF-10 design had a number of deficiencies due to the paucity of arithmetic
operators and the total absence of conditional branching instructions. Further, there
was no provision for variable storage other than the stack. Thus, the KDF-11 naturally
evolved from the KDF-10, which incorporates these features. In particular, the operation
codes of the KDF-11 include:

DCL v,n Declare (i.e., reserve) storage for a variable by
the name v, with optional size n. If n is omitted,
then n = 1 is assumed. All DCL opcodes must fol-
low the XIT opcode given below.

LIT ¢ Load the value of the literal constant c¢ to the top
of the KDF-11 stack.

VAL v,i,c Load the value of the variable v optionally indexed by
the variable i with the optional constant offset c.
VAL V loads the value of V to the top of the stack,
VAL V,I loads the value located at the address of
V plus the index value contained in I, while
VAL V,L,3 loads the value at location V plus the
index I, plus the constant index 3. In all cases, the
value is placed at the top of the KDF-11 stack.

STO wv,i,c Similar to the VAL operator, the STO opcode stores
the value obtained from the KDF-11 stack to the

89

ddt aver.hex
DDT VERS 1.4

NEXT PC
0406 0000
-g100

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111

RDM 01AD 0111 C21D

(TOP)= 0111

A-D INPUT AT 4226 222

RDM 0255 0222 0111

(TOP)= 0222

A-D INPUT AT 4228 555

RDM 0293 0555 0222

(TOP)= 0555

A-D INPUT AT 4230 444

RDM 02D1 0444 0555

(TOP)= 0444

FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222

(TOP)= 0999
SUM 0329 0BBB 0111
(TOP)= 0BBB

SUM 0340 0CCC C21D
VALUES HAVE BEEN ADDED

(TOP)= 0CCC
AVERAGE VALUE CALCULATED
(TOP)= 0333

D-A OUTPUT AT 4240 0333
WRM 03DC 793B C21D
A-D INPUT AT 4224

Figure 35. Sample Execution of "Average" using DDT.

90

address given by v, plus the optional index i, plus
the optional constant index given by c¢. The top ele-
ment of the KDF-11 stack is removed.

DIF The DIF opcode subtracts the top element of the KDF-11
stack from the next-to-top element of the stack,
and replaces both operands by their difference.

GEQ a The GEQ opcode tests the next to top element
(top") against the top of stack element (top),
and branches to the label given by "a" if top’
is greater than or equal to top. If not, program
control continues to the next opcode in sequence.

BRN a The BRN instruction replaces the JMP instruction
in. the KDF-10 architecture to allow complete
separation of the KDF-11 and 8080 machines.

Figures 36a, 36b, 36c, and 36d give the macro library which was constructed by the
Nachtflieger software group for KDF-11 machine emulation. Note that over half of
the macro library implements trace and debugging functions (Figures 36a and 36b)
while the remaining components implement the KDF-11 opcodes themselves. A brief
description is given below for each major section of this macro library, called
"DSTACK.LIB," before giving an example of its use.

Figure 36a shows the first portion of the macro library. Since this portion of
the library is principally concerned with debugging functions, it begins with CP/M
system calls, funetion numbers, and equates for non-graphic characters, similar to the
examples given earlier. Although these values are not necessary for operation of the
KDF-11, they are necessary for the debugging functions which operate when the TRT
opcode is in effect. Following the CP/M equates, the "toggles" DEBUGT and DEBUGP
are set to false (0 value), which reflect the conditions of the debugging switches given
by TRT and TRF. When DEBUGT is true (1 value), machine operation codes are
traced. Similarly, when DEBUGP is true, PRN, RDM, and WRM operations interact
with the console.

The PRN macro shown in Figure 36a (left), for example, produces an inline
message with a call to CP/M to write the message whenever the DEBUGP toggle is
true; otherwise the PRN produces no generated code.

The UGEN macro which follows PRN in Figure 36a is invoked the first time
that the debugging subroutines are required by trace or print/read opcodes. When
invoked, the UGEN macro produces several inline subroutines which are used throughout
the debugging process. If no trace or print/read functions are invoked during the
assembly, UGEN is not invoked and thus no inline subroutines are included for debugging.
If UGEN is invoked, the subroutines shown below are included inline:

@QCH writes a single ASCII character to the console

"@NB writes a single half-byte (nibble) to the console

@HX writes a full hexadecimal byte value at the console

@QAD writes a full address (double byte) value with preceding
blank

QIN reads a hexadecimal value from the console to HL

91

¢6

msg:

pmsg:

ugen

Qch:

D
=
o
.

-~
e
*
.

macro library for a zero address machine
RAkKRRKRARKAKRKK KA KRR K ARXKRKK kA hhhkhkhkkkkhkkkkhkk

* begin trace/dump utilities - *

KARKKR KRR KRR KN AR R AR AR RN R ARR RN AR AR KRR AR AR A Ak X

equ @805h ;jsystem entry

equ 1 ;read a character

equ 2 ;write character

equ 9 ;write buffer i
equ 108h ;transient program area ~ @ad
equ 11080h ;jdata area :

equ gdh ;carriage return

equ gah ;line feed

set ') ; strace debug set false

set 0 ;;print debug set false

macro pr
print message “pr’ at console

if debugp ;;print debug on?
local pmsg ,msg s slocal message i
jmp pmsg © ;:;around message @in:
db cr,lf) ;sreturn carriage
db “&PRS” ;3literal message
push - h) ;3save top element of stack .
. 1lxi . d,msqg - j;;local message address @ing:
mvi c,wbuff ;;write buffer °“til $
call’ bdos ;;print it
pop h s;restore top of stack
endif ;;end test debugp -
endm
macro it
generate utilities for trace or dump
local psub .
jmp psub. ;:jump past subroutines .
;;write character in reg-a : €inls
mov e,a
mvi c,wchar .
jmp bdos ;sreturn thru bdos
;;write nibble in reg-a
adi 9¢h
daa . ii
aci 40h)) : psub:
daa ugen
jmp @ch ;:;return thru @ch i
;;write hex value in reg-a
push psw ;;save low byte
rrc : : i
rrc i

rrc

rrc

ani gfh ; ;mask high nibble

call enb ;;print high nibble

pop psw

ani 8fh

jmp énb ;;print low nibble

;;write address value in hl

push h -r;save-value

mvi a,” ’ ;3leading blank

call éc ;;ahead of address

pop h ; shigh byte to a

mov a,h

push h ; scopy back to stack

call @hx ;;write high byte

pop h

mov a,l ;;low byte

jmp @hx ;swrite low byte

-;read hex value to hl from console

mvi a,’ ;sleading space

call Qch ;;to console

1xi h,9 ;;starting value

push h ;;save it for char read

mvi - c,rchar jjread character function

call bdos ;iread to accumulator

pop h s ;value being built in hl

sui ‘8° ;;normalize to binary

cpi 18 ; ;decimal?

jc @inl ;}carry if @, 1,....9

may be hexadec1ma1 Qrea00f

sui ‘A’-"8 —10

cpi 16 ;a through f£?

rnc ;;return with assumed cr
;3in range, multiply by 4 and add

tept 4

dad h s;shift 4

endm

ora 1 s3add digit

mov - 1,a ;;and replace value

jmp 8ing ; :for another digit

macro

redef to include once

endm

ugen ;igenerate first time

endm

I 22322333333 2232372232322 2222222 2 22 22

* * end of trace/dump utilities *

Figure 36a. Stack Machine Macro Library.

R
e we Fy

[+

Q

o

N =

~ @D ve 1B D
~e (Fe Tt
Lo}
.

0T

rt
debugs
trf

I
debugs

.~ ey ~e
~e T
lal

~

£ set [}

* begin trace(only) utilities *
KRR R KRN R AR AR AR IR R AR AR AR AR RA AR AR AR Ak &
macro code ,mname

trace macro given by mname,

at location given by code

local psub

ugen :;generate utilities
jmp psub

ds 2 ;stemp for reg-1
ds 2 ; stemp for reg-2

s ;trace macro call

bc=code address, de=message

shld atl ;:store top reg
pop h ssreturn address
xthl ;3reg=2 to top
shld at2 ;:1store to temp
push psw ;;save flags

push b ;;save ret address
mvi c,wbuff ;:;print buffer func
call bdos ;:print macro name
pop h ;scode address
call @ad ;;printed

lhld atl ;stop of stack
call ‘ad prd -

1hld at2 ;rtop-1

call Qdad ;sprinted

TCcp osw ;;flags restored
oop d ;sreturn address
1hld at2 ;itop=1

oush h ;;restored

push d ssreturn address
1hld etl ;stop of stack

ret

; spast subroutines

macro c,m
redefined trace, uses 2tr
local pmsg ,msqg

jmo pmsg

db cr,lf s;cr,1f

db “gMS” ;:mac name
1xi b,c ;s scode address
1xi d,msg ;smacro name
call Atr ;3to trace it
endm

back to original macro level
trace code,mname

erndm

macro £

turn on flag “f*
£ set 1 ;;print/trace on
endm

macro £

turn off flag “f"

:itrace/print off
endm

macro m
check debugt toggle before trace

if debugt

trace 3$,m

endm
khkRkhkhkhkhkkkkhkrrkkhkxhhkhhkhhhkhhkkkhkbhhkhhhk
* end trace (only) utilities *

Figure 36b.

~ e QLo ~e
~ v 3
o

~ D
~ s Q
3
«

admg:

@ ~
Qe
o

.

.
re

msg:

pmsqg:
active

93

* begin dump(only) utilities *
IR 2R RRRER2ZR2S 22222222222 RSl
macro vname ,n

dump variable vname for
n elements (double bytes)

local psub ;;past subroutines
ugen ;;9en inline routines
jmp psub ;;past local subroutines

; ;dump utility program
de=msg address, c=element count
hl=base address to print

push h ;s ;base address

push b ;1element count

mvi c,wbuff ;;wRite buffer func
call bdos ;smessage written

pop b ssrecall count

pop h ;;recall base address
mov a,c ssend of list?

ora a

rz ssreturn if so

dcr c ; ;decrement count

mov e, m ++nexte—ttem—{low)

inx h

mov d,m ssnext item (high)
inx h ;sready for next round
push h ;:save print address
push b ;s 1save count

xchg ;;data ready

call @ad ;iprint item value
jmo edmo ;;for another value
;;dump top of stack only

prn <(top)=> s (TOP)="
oush h

call @ad ssvalue of hl
pop h ;stop restored
ret

macro 2v,?n

redefine dump to use @dm utility
local pmsg ,msg

special case if null parameters

if nul vname

dump the top of the stack only

call [edt

exitm

endif

otherwise dump variable name

jmp pmsg

db cr,lf sscrlf

db ‘s?v=$° ;;message

adr v : 1hl=address

set 2] :;clear active flag
1xi d,msg ;smessage to print
if nul ?n ;j;use length 1

mvi c,l

else

mvi c,?n

endif

call adm ;1to perform the dump
endm ;;end of redefinition
dmp vname ,n

endm

I 222222222223 2222 2 X2 R XSS R R 2 200t 2
* and dump (only) utilities, *

Stack Machine Library (Con't).

76

ctive

1~ QU ~e e

-
N

D~
0 =~
=3
=

~
o
<
(1]

save

active

;
rest

..
i’

active

H
clear

'}
e

active

e jmine
b
[

~

* begin stack machine opcodes *
AhkhkARAkAR ARk Rk Rk hAARXA KRRk Rk Ak kkkk
set "] ;jactive register flag

macro size

org tran ;:set to transient area
create a stack when "xit" encountered
set size :3save for data area
1xi sp,stack

endm

macro

check to ensure "enter” properly set up
if stack s13is it present?

endif

macro ssredefine after initial reference
if active jselement in hl

push h ;:save it

endif

set b4 3 ;set active

endm

save

endm

macro

restore the top element

if not active

pop h ;irecall to hl

endif

set 1 ;s imark as active

endm

macro .

clear the top active element

rest 1;ensure active

set %] t:cleared

endm

macro vname ,size
label the declaration

if nul size

ds 2 :;one word req’d
else

ds size*2 ;:;double words
endm

macro val
load literal value to top of stack

save s:save if active
1xi h,val ;;1load literal
2tr 1lit

endm

[
~ o~ QU

~e we

~

. g~

[

.

e ~e (0 =

~. ~e

~

~

macro base,inx,con
load address of base, indexed by inx,
with constant offset given by con

save sspush if active
if nul inx&con

1xi h,base ;;address of base
exitm ;:simple address
endif

must be inx and/or con

if nul inx

1xi h,con*2 ;;constant

else

1hld inx ;sindex to hl

dad h ;;double precision inx
if not nul con

1xi d,con*2 ;;double const

dad ad ssadded to inx
endif ;snot nul con
endif ;snul inx

1xi d,base ;j;ready to add

dad d s sbase+inx*2+con*2
endm

macro b,i,c
get value of b+i+c to hl
check simple case of b only

if nul i&c

save ;:push if active
1hld b ;:1load directly
else

“adr" pushes active registers
adr ‘b,iye -raddress in hit
mov e,m s:low order byte
inx h

mov d,m ;:high order byte
xchg s:back to hl
endif

2tr val s;trace set?
endm

macro b,i,c

store the value of the top of stack
leaving the top element active

if nul is&c

rest ;sactivate stack
shld b :;stored directly to b
else

adr b,i,c

pop s} :13value is in de
mov m,e ;1low byte

inx h

mov m,d ; thigh byte
endif

clear ssmark empty

?2tr sto sstrace?

endm

Figure 36c. Stack Machine Library (Con't).

G6

~e we tQ v

sum

~
~

~ Qe
~e -
n

e e
~ 0
"

~e me @
Q

-

macro
rest ;;restore if saved
add the top two stack elements

pop d s:top=-1 to de

dad d s 31back to hl

?tr sum

endm

macro

compute difference between top elements
rest ;srestore if saved

pop d ;;top-1 to de

mov a,e 1stop-1 low byte to a
sub 1 :2low order difference
mov 1,a ssback to 1

mov a,d ;stop-1 high byte

sbb h : shigh order difference
mov h,a ;tback to h

carry flag may be set upon return
2tr dif
endm

macro- len

logical shift right by len

rest s;activate stack
rept len ::generate inline
Xra a ;:clear carry

mov a,h

rar ssrotate with high 0
mov- ~h,

mov a,
rar

mov 1l,a
endm

endm

a
1

;:back with high bit

macro lab

jump to lab if (top-l) is greater or
equal to (top) element,

dif . ; scompute difference

clear: ~3selear active:-
?tr | geq.
- Jne - lab 13:no carry if greater
jz - lab :3zerd if equal
drop through if neither
-~ endm
macro
duplicate the top element in the stack
rest . :;ensure active
push =~ h
2tr dup
endm

macro addr
branch to address
jmp © addr

endm

Fionra 2RA Qtanlr

xit macro
?tr xit ;itrace on?
Jjmp] 1:restart at 0000
org data ;:start data area
ds @stk*2 ;;obtained from “siz"
stack: endm
; AR AR AR RN R KRR AAR AR R AR AR R AR R AR AR R AR RR
: *) memory mapped i/o section *
H AR RAA AR KRR R AR R A A RN AR AR R R R A AR R Ak A F kb kA
: input values which are read as if in memory
adc@ equ 1086h tra~-d converter @
adcl equ 1082h sa-d converter 1
adc2 equ 1884h ;a~d converter 2
adc3 equ 1986h sa-d converter 3
dac@ equ 1096h ;3~a converter 9
dacl equ 1092h :d-a converter 1
dac2 equ 1694h ;d-a converter 2
dacl equ 1796h sd-a converter 3
rwtrace macro msg ,adr
3 read or write trace with message
s given by "msg" to/from "adr"
prn <msg at adr>
endm
rdm macro ?c
13 read a-d converter number “?c"
save s:;clear the stack
if debugp :;stop execution in ddt
rwtrace <a-d input >,% adc&?c
ugen ;sensure @in is present
call Qin ssvalue to hl
shld adc&?c j;simulate memory input
else
IR read from memory mapped input address
lhld adcs?c
endif
?tr rdm sstracing?
endm
’
wrm macro ?c :

write-d-a converter number *?c"

rest ;:restore stack
if’ debugp ;;trace the output
rwtrace <d-a output>,% dac&?c
ugen s sinclude subroutines
call QRad ;:write the value
endif
shld dac&?c
2tr wrm s:tracing output?

" clear ;;remove the value
endm
ii**i*******t*t***ﬁt********ﬁ********i***
* end of macro library *

~ ~e e

MManhinma T 2hcaaa

AhkhkhhhkhkIAARRkARRARKkAARAXAR Ak Ak kA kA kA X

fr~_ -2\

Upon including these subroutines, UGEN then redefines itself (see lower right of Figure
36a) to an empty macro body so that the subroutines will not be included upon
subsequent invocations of UGEN. This ensures that the inline subroutines will only be
ineluded once, and only if they are required by the debugging macros.

Referring again to Figure 36c, the SIZ macro is similar the opcode defined for
the KDF-10, except that the SIZE of the stack is saved for later declaration in the
data area (see the XIT opcode). The SAVE and REST macros are used throughout the
opcode macros to save and restore the HL register pair, based upon the ACTIVE flag.
The CLEAR macro, however, is used to mark the top element of the KDF-11 stack
as deleted.

Continuing with Figure 36c (left), the DCL macro simply sets up the variable
name VNAME as a label, and follows the label by a DS which reserves the specified
number of double words. The DCL opcodes must all occur at the end of the KDF-11
program, following the XIT opcode.

The LIT opcode is emulated with a macro which first SAVEs the stack top
(possibly generating an HL push). The literal value is then loaded directly into the
HL register pair. Note that the ACTIVE flag is set upon completion of this macro,
since SAVE always marks HL as active,

The ADR macro in Figure 36c (right) is a utility macro which is used in the
VAL, STO, and DMP opcodes to build the address of a particular variable (with optional
variable and constant offsets) in the HL register pair. Based upon the optional
parameters, ADR either loads the base address directly to the HL pair, or constructs
the address using HL and DE for indexing. Thus, the invocations of ADR shown to
the left below produce the machine code to the right below. '

ADR X LXI H,X

ADR X,I LHLD 1I
DAD H
LXI D,X
DAD D

ADR X,I,3 LHLD I
DAD H
LXI D,6
DAD D
LXI D,X
DAD D

ADR X,,3 LXI H,6
LXI D,X
DAD D

thus leaving the final address for the optionally indexed variable in the HL register
pair. Note that the code within the ADR macro could be improved slightly in the
case that a constant offset is provided. That is, the invocations to the left below
could produce the machine code shown to the right below by redefining the ADR
macro.

96

ADR X,I,3 LHLD I

LXI D,X+6
DAD D
ADR X,,3 LXI H,X+6

It is a worthwhile exercise for the reader at this point to redefine ADR to generate
this improved machine code sequence.

The VAL and STO macros are shown in Figure 36c¢ (right) which load a variable
value to the stack, or store the top of stack value to memory, respectively. Note
that ADR is used to construct the address of the variable whenever optional indexing
is specified. Otherwise, an LHLD or SHLD is used to directly access the variable.
“Again, slight improvements in generated code could be obtained when only a constant
offset is provided with no variable index.

Note that the opcodes LIT, VAL, and STO all end with an invocation of the
?TR macro which, as discussed above, checks the DEBUGT flag. If true, the ?TR
macro invokes TRACE with the machine code address and opcode name for display at
the debugging console. The ?TR macro invocation produces no machine code trace
when DEBUGT is false.

Figure 36d contains a listing of the remainder of the "DSTACK.LIB" macro
library. The SUM opcode shown on the left first invokes REST to ensure that the HL
register pair contains the topmost KDF-11 element. The second to top element is
then loaded to the DE pair and added to HL, producing an active KDF-11 element in
HL. Note that ACTIVE is true at this point, since REST always leaves the flag set
to true.

The DIF opcode definition is similar to SUM, except the 8080 accumulator is
used to compute the 16-bit difference between the top two KDF-11 stacked elements.

Referring to Figure 36d (left), the LSR macro defines the KDF-11 logical shift
right operation. The REST macro is first invoked to ensure that HL is active, followed
by a repetition of the machine code required to perform a 16-bit right shift of the
HL register pair. In the case of a long shift, there will be a considerable amount of
inline machine code for the operation. Thus, it is a useful exercise for the reader to
redefine LSR so that it generates an inline subroutine to perform the shift operation
for values of LEN which are sufficiently large to warrant the subroutine call. Although
this will require a subroutine set up and call, the amount of generated code could be
reduced significantly for programs which make heavy use of the LSR operator.

The GEQ macro follows the LSR definition, and allows conditional branching to
the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-11 stack which has the side-effect of setting the 8080 carry
bit if the next to top element exceeds the top element in the KDF-11 stack. Note
that the ?TR macro eventually leads to the QTR subroutine where the status flags
(including the ecarry condition) are saved and restored. Otherwise, GEQ could not
generally count on the condition of the carry flag. Further, the 8080 A register
contains the least significant difference between DE and HL, hence the ORA H produces
a zero result if the difference is zero. To be complete, the KDF-11 should have a

o 97

complete range of conditional tests, allowing tests for equality (EQL), inequality (NEQ),
less-than (LSS), greater-than (GTR), and less-than-or-equal (LEQ). Although Nachtflieger
designers intend to include these opcodes in the KDF-12, it may be a worthwhile
exercise for the reader to implement these additional macros.

The DUP opcode in Figure 36d (bottom left) first ensures that the HL register
pair is active, then duplicates this value by pushing the HL pair to the 8080 stack,
thus emulating a KDF-11 stack push operation. Note that the HL pair is active at
the end of the DUP macro due to the invocation of REST.

The BRN and XIT macros follow GEQ in Figure 36d. The BRN macro simply
translates to a jump instruction in the 8080 while the XIT is slightly more complicated.
The XIT macro first invokes the ?TR macro to check for machine code tracing. A
"JMP 0" is then emitted corresponding to a system restart in both CP/M and the
emulated KDF-11 machine architecture. The XIT macro then produces an "ORG"
statement which restarts the assembly process in the data area of the emulated
environment (1000H, or 4096 decimal). The area reserved for the stack is then set
up (recall that the SIZ macro saves the value of SIZE), followed by the declaration
of the label "STACK" at the base of this reserved area. Referring back to Figure
36c (middle left), note that the SAVE macro includes the statement sequence

IF STACK s3is it present?
ENDIF

which ensures that both the SIZ and XIT macros have been included in the assembly.
If the XIT macro had not been included, then the label "STACK" would not appear
(unless used in the KDF-11 program), and the "IF STACK" test would produce an
undefined operand (U) error. Further, if the XIT operator had been used, but the SIZ
had not, then the statement "DS SIZ*2" within XIT would produce an undefined operand
message. Although these tests are by no means complete, they will detect the most
common errors.

Figure 36d (right) also contains the definitions of both the RDM and WRM
opcodes, based upon the memory mapped input/output addresses defined by ADCO
through ADC3 for the A-D ports, and DACO through DAC3 for the D-A ports. The
RWTRACE (Read/Write Trace) macro is included for tracing the RDM and WRM macros
when DEBUGP is true. The MSG argument corresponds to either "A-D INPUT" for
the RDM opcode, or "D-A OUTPUT" for the WRM opcode. The ADR argument
corresponds to the absolute decimal address where the memory mapped input/output
is taking place. Thus, RWTRACE simply constructs a trace message from its two
argments and passes this message to PRN for display at the debugging console.

The RDM macro reads the port given by the argument "?C" (0,1,2, or 3). The
HL register pair is pushed, if necessary, by the SAVE macro (leaving the active flag
set for the RDM). RDM then generates an invocation of the RWTRACE macro to
produce the trace message.. Note that the argument % ADC&?C produces the numeric
value of one of ADCO0, ADC1, ADC2, or ADC3 which is included in the trace message.
If the % were omitted, only the name, not the value, of the input port address would
be printed. Following the output message, UGEN is invoked to ensure that the utility
subroutines have been included inline. The call to @QIN allows the programmer to type
a hexadecimal value for the simulated A-D input value, which is subsequently stored
to memory and left in the HL register pair (with ACTIVE true). If DEBUGP is not

98

set; then the RDM macro simply loads the HL register pair from the appropriate
memory mapped input location. Finally, RDM invokes ?TR to check for possible opcode
tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro
is first invoked to ensure that the HL registers contain the top element of the KDF-11
stack. This value is then displayed at the debugging console if DEBUGP is true, and
then sent to the appropriate memory mapped output location.

One particular application of the emulated KDF-11 machine shows the power
of this particular instruction set. As a small part of a machine control system, a
KDF-11 processor monitors the machine tool head motion. Nachtflieger engineers
connect A-D port 0 to a KDF-11 processor which reads the instantaneous velocity of
the tool head at 1 millisecond (ms) intervals.. The velocity is provided at the A-D
port in micrometer (um) increments, and the processor is synchronized with the input
so that it halts until the 1 ms interval has elapsed. Nachtflieger engineers also
guarantee that the tool head is in motion for no more than 100 ms before stopping.
Thus, with no variations in velocity, if the tool moved at the constant rate of 256
um/ms over 50 intervals of 1 ms each, the total distance travelled by the tool is

256 um/ms * 50 ms = 1280 um = 1.280 mm

During its travel, however, the instantaneous velocity of the tool head varies
according to the roughness of the cut, wear on the parts, and start/stop intervals.
Nachtflieger uses the data collected during a particular cut to monitor these factors,
and displays machine operator information in both digital and analog forms. A primary
function of the KDF-11 processor in this particular case is to collect the instantaneous
velocities during a single cut, and hold these values for analysis as the tool returns
to its starting postition. Figure 37 shows a KDF-11 program which includes the data
collection phase, as well as an analysis phase described below.

The data collection phase of Figure 37 occurs between the labels MOVE? and
COMP, while the analysis phase is found between labels COMP and ENDF. Note that
the program is bounded by the SIZ operator at the beginning, along with the XIT
operator at the end, followed by DCL opcodes which reserve data areas. This particular
program also includes debugging PRN, DMP, TRT, and TRF opcodes for checking out
the program.

Referrring to the DCL statements at the end of Figure 37, the "vector" V is
declared with length 100 (double bytes), which will hold the collected velocities, while
I and X are temporary values used during the collection and analysis phase. The
variable TOTAL is a result produced by the analysis as discussed below.

The program collects data by performing the following steps. The variable I is
first initialized to 0, corresponding to the first velocity V(0). The program then
examines the A-D input port for the first non-zero velocity, waiting for the tool head
to begin its travel. When the first non-zero velocity is read, the collection process
proceeds by storing the first value at V(0). The index value I is then moved along as
data items are read, with values placed into V(1), V(2), and so-forth, until a zero value
is read, indicating the tool has ended its travel.

Referring to Figure 37, note that the KDF-11 opcodes listed before the label
MOVE? initialize the index I by loading a literal 0 value to the KDF-11 stack, followed

99

00T

0000

8103
08103
0163
2136
91D3
01E8

01E8
02148
09213
8216
g21a

1227

#22A
4259
#29C
B29F
Y2AC
02AF
42B3
9285
y288
¥2BB
02BF
g2CC
g2r4
B2F7

D2FA
B31A

MOVE?:

MACLIB

SIZ
TRT
TRT
PRN "~
LIT
STO
TRF

DSTACK ;STACK MACHINE SIMULATION
50 " ;50 LEVEL STACK
P ;TURN ON PRN TRACE
T :TURN ON CODE TRACE
. <COMPUTATION OF TOOL TRAVEL DISTANCE
] ;INITIALIZE INDEX
1 ; I1=0
T :TURN CODE TRACE.OFF

LOOK FOR STARTING MOTION (NON ZERO VALUE)
;READ A-D CONVERTER FOR NON ZERO

RDM
ST0
VAL
LIT

" GEQ

READ:

COMP:

~

BRN

PRN

DMP

VAL
STO
VAL
LIT
SUM
ST0
LIT
VAL
GEQ
RDM
STO
BRN

PRN
DMP

?

X ;HOLD TEMPORARILY
X ; RELOAD FOR TEST
1 - ;X GEQ 1 TEST
READ ;X GEQ 1?

MOVE? ;RETRY IF NOT

<STORE FIRST/NEXT VALUE>

X
X ;LOAD FIRST/NEXT VALUE
v,1 ;STORE TO THE ITH ELEMENT
I ; INCREMENT I
1 ;

;141
I ;I=I+1
[} ;8, FOR 8 GTR X TEST
X ;2ERO VALUE READ?
COMP ;COMPUTE DISTANCE IF 0
1] ; READ ANOTHER DATA ITEM
X ;SAVE IT IN X
READ ;TO STORE AND TEST

<VALUE ARE LOADED>
v,10 .

NOW COMPUTE DISTANCE TRAVELLED BY TOOL

Figure 37.

032D
2330

8331

9334
0338
835F
0372
9389
B3A3
03An6
6383

B3Co
9#3CC
83DD
#3DF
B3E6
B3EA
43EC

Q3EF
B3F2
03F6
@3F8
O3FB

B3FE -

2429
8437
843A
9462

1164
1166
1168
1230

NOT AT END OF INTERVAL, COMPUTE NEXT TRAPEZO

LIT)
DUP
STO 1
STO TOTAL
GE'TNXT: PRN
pMp I
DMP TOTAL
DMP <wv,I>,2
LIT)
VAL v, 1
GEQ ENDF
;
VAL v,1
VAL v,1,1
suM
LSR 1
VAL TOTAL
SuM
ST0 TOTAL
VAL T
LIT 1
SUM
STO 1
BRN GETNXT
ENDF: PRN <END OF
DMP TOTAIL
VAL TOTAL
WRM)
X1
’
; DATA AREA
DCL 1
nCL X
DCL- v,100
DCL TOTAL

Program for Tool Travel Computation.

;TWO ZEROES

;I=0

;s TOTAL=0

<COMPUTING NEXT INTERVAL>

;ZERO AT END
;AT END?
;8 GEQ X(I)?

V(I),V(I+])
sV(I)+V(I+1)

S AV(I)+V(I+))) /2
sREADY TOTAL
;TOTAL=TOTAL+TRAPEZOID
;BACK TO SUM

;I=I+1

sBACK TO T

COMPUTATION>

sLOAD FOR D-A OUTPUT
;WRITE D-A PORT

; INDEX

;s TEMPORARY
;VELOCITY VECTOR
;TOTAL DISTANCE

by a store into the variable I. In order to follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine
code trace immediately before the MOVE? label.

Following the MOVE? label, A-D port 0 is read and examined for the first non
zero value. Each time the port is read it is stored into the temporary variable X,
then reloaded and examined for a zero value. Since GEQ is the only comparison
operator in the KDF-11 machine, the test is "1 greater than or equal to X." Thus,
the branch is taken to READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored
into V(I), where I is zero. The value of I is then incremented by loading I to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM), and then storing the sum back into L
After incrementing I, the program proceeds to check the end of the tool travel. X
is loaded to the top of the stack, and the test "0 greater than or equal to X" is
performed. If the condition is true, control transfers to the label COMP, where the
analysis phase begins. Otherwise, port 0 is read again and the value is stored into
the temporary X. Control then proceeds back to the READ label to store the next
velocity, and test for zero.

Before 100 intervals have elapsed, the RDM 0 produces a zero value which is
stored into X and subsequently stored into V(I), for the current value of I. Thus, when
control arrives at the label COMP, the instantaneous velocities.are stored in V,
terminated by a zero. At this point, the analysis of these collected velocities can
take place.

The single function which takes place in the analysis section of Figure 37 is
the computation of the distance travelled by the tool through this interval. In particular,
Nachtflieger engineers have determined that it is sufficient to compute the distance
travelled by the tool using the "trapezoidal rule" which approximates the actual distance
by summing the average of each adjacent pair of velocites. The sums are formed as
shown below:

VotVy + Vn-1"Vn

2 2 2

VitVy

where n is the last interval to sum., Thus, for example, if the velocity is constant
at 256 um/ms (which wouldn't occur in practice), then

Vy=Vy=...=V_ =256,

and the summing formula given above reduces to 256 * n. Given the example above
where n = 50 ms, the above formula produces the value 1.280 mm, as given earlier.
In general, the velocity values will not be constant, hence the numerical integration
given by the trapedzoidal rule is used to obtain an approximation.

The KDF-11 instructions shown in Figure 37 between the COMP and ENDF labels
perform the numeric integration given by the trapedzoidal rule. In general, the
temporary I is used to index through the velocity vector V until the final zero value
is encountered. For each interval, the values of two adjacent velocities are summed
and divided by two. Each result is then summed into TOTAL, where the values are
accumulated until the final zero velocity is discovered.

101

The opcode sequence immediately following COMP places a zero value at the
top of the KDF-11 stack, then stores this value into both the index I and the accumulating
sum given by TOTAL. Ignoring the trace opcodes, the operations following GETNXT
read the starting point of the next interval to process into the stack, using VAL V,I
(value of V, indexed by I). If 0 is greater than or equal to this value then the
computation is complete and control goes to the label ENDF. Otherwise, the value
of V(I) is loaded to the KDF-11 stack, followed by the value of V(I+1). The loaded
values are then summed (SUM) and divided by two (LSR 1), producing a value which
remains in the KDF-11 stack. TOTAL is then loaded and added to this partial sum
and the result is stored back to TOTAL. The index value I is then incremented to
the next interval and processing continues back at the loop header GETNXT.

Upon processing the final zero velocity, control reaches the ENDF label where
the distance travelled is written to D-A output port zero. The output value is sent
to external instrumentation which processes the result and displays the distance travelled
in a form which is readable by the tool operator.

Note that debugging statements have been placed throughout the program which
can be used to trace the program execution. Figure 37 also contains TRT operators
which have enabled trace code generation, and thus this particular program, although
longer than the final production version, can be used to follow execution under CP/M.

Figure 38 shows the execution of the program of Figure 37 under DDT. The
messages printed at the debugging console are a result of the PRN opcodes distributed
throughout the original program which were enabled through the TRT P opcode. Further,
the machine code trace was only enabled for the interval of two operation codes (LIT
and STO) at the beginning. In order to test this program, simple A-D values were
supplied at the console for the velocities:

V, = 100H, V1 = 120H, V

= 100H, V4 = 80H, V, = 0

0 2 4 =
Upon detecting the final 0 value, the trace of Figure 38 shows the first 10 values of
V (the last 5 elements are "garbage" values), followed by a trace of the sum operations
for each interval. In each case, the pairs of values which are being added are displayed
(using the DMP opcode), followed by their summed value, along with the running total.
Upon completion of the distance computation, the value 320H is sent to the D-A output
port and displayed at the- console.

Upon completion of initial checks under CP/M, Nachtflieger programmers remove
the TRT and TRF statements from the KDF-11 program and reassemble producing only
the absolute input/output instructions required for machine tool control. The resulting
program, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Figure 39 is also provided as an example of the listing which is produced when
all machine code operators are traced. Although the source program listing is not
shown, it is identical to Figure 37 except that the TRF T opcode is removed. Since
the complete trace is quite extensive, only a partial execution is shown in Figure 39.

In summary, Nachtflieger MW has derived several benefits from their emulation
of the KDF series stack machines. First, there is very little cost involved in designing

102

DDT INTEG.HEX
DDT VERS 1.4

NEXT PC
0465 0000
-G100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 OF77

STO 01D6 0000 0000

A-D INPUT AT 4224 0
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 120
STORE FIRST/NEXT VALUE
X= 0120

A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 80
STORE FIRST/NEXT VALUE
X= 0080 .

A-D INPUT AT 4224 0
STORE FIRST/NEXT VALUE
X= 0000

VALUE ARE LOADED

V= 0100 0120 0100 0080 0000 3ECO BAll C1C9 5EEl 5623
COMPUT ING NEXT INTERVAL
I= 0000

TOTAL= 0000

V,I1= 0100 0120

OOMPUT ING NEXT INTERVAL
I= 0001

TOTAL= 0110

V,I= 0120 0100

COMPUT ING NEXT INTERVAL
{= 0002

TOTAL= 0220

V,I= 0100 0080

COMPUT ING NEXT INTERVAL
I= 0003

TOTAL= 02E0

V,1= 0080 0000

COMPUT ING NEXT INTERVAL
I= 0004 '
TOTAL= 0320

V,1= 0000 3ECO

END OF COMPUTATION
TOTAL= 0320

D-A OUTPUT AT 4240 0320

Figure 38. Sample Execution of "Distance" using DDT.

103

ddt integ.hex
DDT VERS 1.4

NEXT PC
0852 0000
-5100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 026E 0000 CAB1
STO 030B 0000 0000
A-D INPUT AT 128 0
RDM 0344 0000 0000
STO 0359 0000 0000
VAL 036E 0000 0000
LIT 0384 0001 0000
DIF 039D FFFF 0000
GEQ 03AF FFFF 0000
A-D INPUT AT 128 6
RDM 0344 0006 0000
STO 0355 0006 0000
VAL 036E 0006 0000
LIT 0384 0001 0006
DIF 038D 0005 0000
GEQ 03AF 0005 0000
STORE FIRST/NEXT VALUE
X= 0006

VAL 043F 0006 0000
STO 045E 016F 0000
VAL 0473 0000 0000
LIT 0489 0001 0000
SUM 049D 0001 0000
STO 04B2 0001 0001
VAL 04C7 0006 0001
A-D INPUT AT 128 0
RDM 0501 0000 0006
STO 0516 0000 0006
LIT 052B 0001 0006
DIF 0544 0005 0001
GEQ 0556 0005 0001
STORE FIRST/NEXT VALUE
X= 0000

VAL 043F 0000 0001
STO 045E 0171 0001
VAL 0473 0001 0001
LIT 0489 0001 0001
SUM 049D 0002 0001
STO 04B2 0002 0002
VAL 04C7 0000 0002
A-D INPUT AT 128
RDM 0501 0000 0000

Figure 39. Partial Listing of "Distance" with Full Trace.

104

and altering their machine architecture. In fact, current prices for 8080 microcomputers
may preclude the custom LSI version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host
processor. That is, given that a higher performance or less expensive processor becomes
available to Nachtflieger, the existing programs can be used intact by only changing
the macro definitions for each of the KDF opcodes and reassembling using MAC or
an equivalent macro processor. Lastly, machine emulation through macro defined
operation codes offers a distinet advantage over interpretive approaches since each
opcode translates to only a few host machine operations. Interpretive execution often
involves ratios of 1000 to 20,000 emulated instructions per host instruction, while
macro based opcodes are often in a ratio of less than 10 to 1. Further, interpretive
processors usually require run-time support consisting of a predefined general-purpose
subroutine package which is included for each and every program. Thus, for a wide
variety of microcomputer applications, machine emulation through macro defined op-
codes offers distinct advantages over alternative approaches.

9.3. Program Control Structures.

Macro facilities can be used to provide program control statements which
resemble those found in many high-level languages. In general, program control
statements allow boolean tests and conditional branching based upon the outcome of
the boolean test. Further, label names which would normally be provided by the
programmer as the destination of a branch are automatically generated for the particular
statement.

In the paragraphs which follow, three typical control statements are presented
which allow simple conditional grouping (WHEN-ENDW), controlled iteration (DO-
ENDDO), and case selection (SELECT-ENDSEL). In all three cases, the intention is
to define program control facilities which allow well-structured programming, resulting
in programs which are easier to write, debug, and maintain.

Two libraries are first introduced in order to provide a foundation for further
discussion. The I/0 library shown in Figure 40 allows simple character input operations
along with full message output. The READ macro accepts a single character from
the console keyboard and stores this character into the variable given by the parameter
"VAR." The WRITE macro shown in Figure 40 takes an ASCII message as a parameter
and sends this message to the console output device preceded by a carriage-return
line-feed sequence. These simple I/O macros are stored on the diskette in the file
"SIMPIO.LIB" and are used in the examples which illustrate the control structures.

The second library used in the control structure examples is given in Figure 41.
Coliectively, these macros define a number of boolean operations which are performed
upon 8-bit operands, providing the basic relational operations on unsigned integer values,
including:

LSS Less Than

LEQ Less Than or Equal To
EQL Equal To

NEQ Not Equal To

GEQ Greater or Equal

GTR Greater Than

105

: macro library for simple i/o
bdos egu A3@5h ;bdos entry
conin eqgu 1 ;console input function
msgout equ 9 ;print message til $
cr equ gdh " jcarriage return
1f equ fah :line feed
read macro var
s read a single character into var
mvi c,conin j;console input function
call bdos ;character is in a
sta var
endm
’
write macro msg
s write messadgde to console
local msgl,pmsg
jmp pmsg
msgl: db cr,lf :;leading crlf
db “&MSG”° ;;inline message
ab ‘s’ ; ;message terminator
pmsq : mvi c,msgout ;;print message til $
1xi d,msgl
call bdos
endm

Figure 49, Simple I/0O Macro Library.

106

test? macro X,Y

1 utiltity macro to generate condition codes
if not nul x :sthen load x
1da X ::X assumed to be in memory
endif
irpc ?v.,Y :;yY may be constant operand
tdig? set 8?2y -"0° ;:first char digit?
exitm ;:stop irpc after first char
endm ;
if tdig? <= 9 s 3V numeric?
sui V' s:yes, so sub immediate
else
1xi h,y ;:v not numeric
sub m ;350 sub from memory
endm
1ss macro x,v.,tl
HH X 1lss than y test,
HE transfer to tl (true label) if true,
] continue if test is false
test? X,y :;set condition codes
jc tl
endm
leg macro x,y,tl
H x less than or egual to y test
1ss Xx,y.tl
iz tl
endm
eqgl macro x,v,tl
HE x ecual to y test
test? X,V
jz tl
endm
nea Mmacro x,y.tl
] ¥ not equal to y test
test? X.Y
jnz tl
endm
geqa macro x,v,tl
s X greater than or equal to y test
test? X,Y
inc tl
endm
gtr macro Xx,y,.tl
HE] X dreater than v test
local fl ;sfalse label
test? X,Y
jc fl
dcr a
jnc tl
fl: endm

Figure 41, Macro Library for Simple Comparison Operations,

107

In all cases, the macros accept three actual parameters, consisting of two data values
involved in the test (X and Y), along with a program label which receives control if
the boolean test produces a true value (TL). The first operand X can be a labelled
memory location containing an 8-bit value, and Y can be either a labelled 8-bit location
or a literal numeric value. If the first operand X is not supplied, then the value to
be tested is assumed to exist in the 8080 accumulator when the macro is entered.
Thus, for example, the macro invocation

LSS ALPHA,BETA,TRUECASE

compares the values stored at the labelled memory locations ALPHA and BETA (defined
by a DS or DB statement), and transfers to the program step labelled by TRUECASE
if ALPHA contains a value less than the value stored at BETA. The invocation

LSS ,BETA,TRUECASE

is similar, but compares the contents of the 8080 accumulator with the value stored
at BETA. Finally, the invocation

LSS ALPHA,34,TRUECASE
compares ALPHA with the literal value 34 in the relational test.

Note that the macro TEST? is used throughout the macro library to construct
the relational test by first loading the initial operand X, if necessary. The second
operand type is then examined by executing an "IRPC" within the TEST? macro of
Figure 41 which extracts the first character of the Y operand. This first character
must be either numeric or alphabetic. If numeric, then the literal value is subtracted
from the accumulator, setting the 8080 condition codes. If the first character of Y
is non-numeric then the value is assumed to reside in memory. In this case, the HL
registers are set to the Y operand and the value at Y is subtracted from the accumulator
value. In any case, the 8080 condition codes are set as a result of the subtraction
operation. These condition codes are then used in the individual macros to produce
conditional jumps to the destination labels. These macros are collectively stored on
the diskette in a file named "COMPARE.LIB" for use in examples which follow.

Figure 42 shows an example of a program which uses both the SIMPIO and
COMPARE libraries. The purpose of this program is to successively read console
characters and print messages based upon the character which is typed. The program
begins by sending the sign-on message at the label CYCLE. A character is then read
and stored into X using the READ macro. The LSS test is used to determine if
lower-to-upper case translation is required (assuming the input is alphabetic). If X is
numerically less than 61H, which is the value of an upper case "A," then control
transfers to the label NOTRAN. Otherwise, the character is loaded to the accumulator,
the "upper case" bit is stripped from the character, and it is replaced in memory.
Following the label NOTRAN, the character is compared with the letters A, B, C, and
D. In each case, a message is typed corresponding to each letter. If one of these
four letters cannot be found, the message at ERROR is typed.

In comparing each letter, the macro NEQ is invoked with the first argument

corresponding - to the character typed at the console (X), while the second argument
corresponds to the letter to match. Note that the "%" operator is used in each case

108

0100

09100
¢12B

P133

n138
A13E
@140

P143
7148
9167

6162
0172
018D

9190

0198

A1B3

P1B6
91BE
91D9
A1lEB

 @1EC
920F

9211
0212

3A1102
E65F
321102

c3anol

C30001

C30001

Co -

C30001

Fiqure 42,

CYCLE:

- we

ORG 1008
MACLIB SIMPIO. ;SIMPLE IO LIBRARY
MACLIB COMPARE ;COMPARISON OPERATORS

WRITE <TYPE A CHARACTER FROM A TO D >

READ X
TEST FOR LOWER CASE ALPHABETIC
LSS - X,61H,NOTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61H), TRANSLATE

LDA . X ‘

ANT 5FH ;CLEAR LOWER CASE BIT
STA X ; STORE BACK TO X

NOTRAN:

o
r

2 e
Q
<)
=g

NOW CHECK CASES

NEQO X,2 A" ,NOTA
WRITE <YOU TYPED AN A>
JMP CYCLE

NEO X,% B°,NOTB
WRITE = <YOU TYPED A B>
JMP CYCLE

NEQ - .X,%°C7,NOTC
WRITE . <YOU TYPED A C>
JMP CYCLE

NEQ X,%° D ,ERROR

' WRITE <YOU TYPED A D>

WRITE <BYE" !>
RET ’

WRITE <NOT AN A, B, C, OR D>
JMP- CYCLE S ‘

- ps 1 - :TEMP FOR CHARACTER

END

Single Character Processing using COMPARE,

109

to produce the numeric value of the character. This is necessary since the TEST?
macro expects either a number or a label value in the second argument position. The
program processes characters until a "D" is typed at which time it returns to the
console command processor. The intention here is to show the use of boolean tests
used by the control structure macros which follow.

Figure 42b shows a partial expansion of the macros given in the previous example.
The first message expansion is shown, along with the READ and NEQ macros. The
listing has been abstracted, however, and does not show the macro library statements
or the remainder of the program following the NOTA label.

The macro library shown in Figures 43a and 43b, called NCOMPARE, expands
upon the basic relational macros by allowing a "false branch" option. That is, each
macro accepts four arguments: the X and Y operands, as before, as well as a "true
label" (TL) and "false label" (FL). It is assumed that either the TL or FL will be
supplied in any particular invocation of a relational operator, but not both. If the TL
is supplied, then'the branch is taken if the relational operator produces a true result.
Conversely, if the TL label is absent but the FL label is supplied, then the branch to
FL is taken if the relational operation produces a false result. Thus, NCOMPARE
expands upon the COMPARE library by allowing all of the relational operation as well
as their negations. Using the NCOMPARE library, for example, the macro invocation

LSS X,20, ,FALSELAB

branches to the label FALSELAB if X is not less than the value 20. One should note
that the negation operations are accomplished within the NCOMPARE library by first
testing for a null TL operand and, if empty, the relational operation is reversed by
invoking the appropriate negated macro. For example, the LSS macro in Figure 43a
invokes the GEQ macro, which is equivalent to "not LSS" when the TL argument is
empty and supplies the FL argument to LSS as the TL label to GEQ. These negated
relational forms will be used within the control structures which are described below.

Figure 44a gives an example of the use of the NCOMPARE library within a
particular program. This program is similar to the previous example, but instead
checks to insure that alphabetic translation only occurs within the proper range of
lower case letters. Following the label CYCLE, the character read from the console
is compared with a lower case "a" (using the % operation to produce the equivalent
decimal value 97). Since the negated form of GEQ is used here, the label NOTRAN
receives control if X is not greater than or equal to %'a’. If X is greater than or
equal to %'a', program flow continues to the next test in sequence where X is compared
with a lower case "z" (%'z' = decimal 122). In this case, the normal form of GTR is
used and thus control transfers to NOTRAN if X is greater than %'z' which is above
the range of lower case alphabetics. If X is between %'a' and %'z, the character is
changed to upper case, as before, by removing the lower case bit and replacing X in
memory. Note that the mdentatwn levels between the GEQ and GTR operations are
included for readability of the program. , :

Figure 44b shows the GEQ-GTR section of the program of Figure 44a with full
macro trace enabled (see Assembly Parameters). The trace in this figure shows the
transition from GEQ to the LSS operator, substituting the FL label in the place of
the TL label. Again, the macro library statements are not shown, and the listing
- following the NOTRAN label is not present.

110

~e weo

CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >

g100+C32301 JMP 2720002
0103+0DOA 2720001 : DB CR,LF
#105+5459504520 DB “TYPE A CHARACTER FROM A TO D °
$122+24 DB ‘s’
@#123+0EQ9 2?20002: MVI C,MSGOUT
0125+110301 LXI D,??20001
9128+CDA50AA CALL BDOS

READ X
g12B+AFEA1 MVI C,CONIN ;CONSOLE INPUT FUNCTION
012D+CD@50% CALL BDOS :CHARACTER IS IN A
91309+321102 STA X

: TEST FOR LOWER CASE ALPHABETIC

LSS X,61H,NOTRAN
G133+3A1102 LDA X
136+D661 SUI 61H
138+DA4301 JC NOTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61H), TRANSLATE

~o we

#1388 3A1102 LDA X
@13E E65F ANI 5FH ;CLEAR LOWER CASE BIT
pl149 321142 STA X : STORE BACK TO X
NOTRAN::
: NOW CHECK CASES
NEO X,% A°,NOTA
A143+3A1192 : LDA X
#146+D641 SUI 65
#148+C26A01 JNZ NOTA
’ WRITE <YOU TYPED AN A>
914B+C35F@1 JMP 2?0004
914E+0D@A 220003 DB CR,LF
#150+594F552054 DB . "YOU TYPED AN A~
@15E+24 DB ‘s’
015F+0EQ9 ?2°0004: MVI C,MSGOUT
P161+114E01 LXI D,?2?20003
0164+CDO500 CALL BDOS
9167 C30001 JMP CYCLE
NOTA: NEQ X,% B ,NOTB

-
14 . L L]

Figure 42b, Partial Trace of Fig 42a with Macro Generation,

111

T we we

n

G11
LY YRR T R T

~e we we N

w~o |d wy
~e D

macro library for 8-bit comparison operation

macro X,Y
utiltity macro to generate condition codes

if not nul x : sthen load x

lda X 13X assumed to be in memory
endif

irpc ?2vV.Y ::y may be constant operand
set ‘&?2Y°-"0° ;;first char digit?
exitm ;;stop irpc after first char
endm

if tdig? <= 9 ; ;Y numeric?

sui y :;ves, so sub immediate
else

1xi h,y :;yY not numeric

sub m : 350 sub from memory

endm

macro x,y,tl1,£f1
x 1ss than vy test,
if tl is present, assume true test
if t1 is absent, then invert test

if nul t1

geq x,y,f1

else

test? X,Y :;set condition codes
jc tl

endm

macro Xx,Yy,t1,£f1
x less than or equal to y test

if nul tl
geqg x,y,f1
else

1ss Xx,v,tl
jz tl
endm

Figure 43a, Exvanded NCOMPARE Comparison Operators,

e T e
()]
Q

~e

~ O ~
1)
Q

~e

~e 0 ~e
~s (t
~

afl:

Figure 43b,

macro x,y,tl1,f1

X equal to y test

if nul tl

neq x,v,f1

else

test? X,Y

jz tl

endm

macro x,v,tl,f1

X not equal to y test
if nul tl

eql x,y,£f1

else

test? X,V

jnz tl

endm

macro x,v,tl,£f1

X greater than or egual to vy test
if nul tl

1ss x,v,f1

else

test? X,Y

jnc tl

endm

macro x,y,t1l,£f1l

X greater than y test
if nul tl

leqg x,v,f1

else

local gfl ;3false label
test? X,Y

jc gfl

dcr a

jnc tl

endm

Expanded NCOMPARE Comparison Operators (Con’t).

113

#1006

2100
012B

8133

@13B
@147
a14a
g14cC

BlAF
6157
p173

3176
P17E
199

@19cC
01A4
@1BF

plC2
gica
@1ES

a1Fr7

A1FR
@21A

p21D
P21E

Figure 44a,

3A1D42

E65F

321D@2

C30401

C30001

C30001

C9

C30001

CYCLE:

-’

-’

~ w0 e

NOTA:

~e

NOTB:

NOTC:

14
ERROR:

bR

ORG 10068
MACLIB SIMPIO ;SIMPLE IO LIBRARY
MACLIB NCOMPARE; COMPARISON OPERATORS

WRITE <TYPE A CHARACTER FROM A TO D >
READ X
TEST FOR LOWER CASE ALPHABETIC

OTRAN:

GEQ X,%"°a’,,NOTRAN ;BRANCH ON FALSE
X IS GREATER OR EQUAL TO LOWER CASE A
GTR X,% z ,NOTRAN

LDA X
ANI S5FH :UPPER CASE
STA X :BACK TO X
NOW CHECK CASES
NEQ X,% A" ,NOTA
WRITE <YOU TYPED AN A>
JMP CYCLE
NEQ X,% B°,NOTB
WRITE <YOU TYPED A B>
JMP CYCLE
NEQ X,%°C°,NOTC
WRITE <YOU TYPED A C>
JMP CYCLE
NEQ X,% D’ ,ERROR

WRITE <YOU TYPED A D>
WRITE <BYE™ !>

RET

WRITE <NOT AN A, B, C, OR D>

JMP CYCLE

DS 1 ; TEMP FOR CHARACTER
END

Sample Program using NCOMPARE Library,

114

TEST FOR LOWER CASE ALPHABETIC

-8

GEQ X,%¥°a’, ,NOTRAN ;BRANCH ON FALSE
+ IF NUL
+ LSS X,97,NOTRAN
+ iF NUL NOTRAN
+ GEQ X,97,
+ ELSE
+ TEST? X,97
+ IF NOT NUL X
#133+3A1D@2 LDA X
+ ENDIF
+ IRPC ?Y,97
+ TDIG? SET ‘&Y -"9°
+ EXITM
+ ENDM
f0B9+4# TDIG? SET ‘9°-"g"
+ EXITM
+ IF TDIG? <= 9
9136+D661 SUI 97
+ ELSE
+ LXI H,97
+ SUB M
+ ENDM
#138+DA4FAL Jc NOTRAN
+ ENDM
+ ELSE
+ TEST? X,97
+ JNC
+ ENDM
: X IS GREATER OR EQUAL TO LOWER CASE A
GTR X,% "z ,NOTRAN
+ IF NUL NOTRAN
+ LEQ X,122,
+ ELSE
+ LOCAL GFL
+ PTEST? X,122
+ IF NOT NUL X
013B+3A1D0A2 LDA X
+ ENDIF
+ IRPC ?2Y,122
+ TDIG? SET ‘&Y’ -"9°
+ EXITM
+ ENDM
P0B1+E TDIG? SET: 1°-°¢"
+ EXITM
+ IF TDIG? <= 9
P13E+D67A suI 122
+ ELSE
+ LXI H,122
+ SUB M
+ ENDM
8140+DA4701 JcC 2?0003
8143+3D DCR A
#1444D24F01 JNC NOTRAN
+ ?2?720063: ENDM
9147 3A1DG2 LDA X
814A E65F ANI S5FH ;:UPPER CASE
#14C 321D82 STA X :BACK TO X
’
NOTRAN:

Figure 44b, Segment of Fig 44a with "+M" Option,

115

Given the SIMPIO and NCOMPARE libraries, it is now possible to define the
first complete control structure, called the WHEN-ENDW group. The form of the
group is:

WHEN condition

statement-1
statement-2

stat.ement—n
ENDW

where "condition" is a relational expression taking one of the forms
id,rel,id id,rel,number ,rel,id ,rel,number
and "id" is an identifier, "rel" is a relational operator (LSS, LEQ, EQL, NEQ, GEQ,
GTR), and "number" is a literal numeric value. Similar in form to the arguments of
the individual relational operators of the COMPARE library, the last two forms shown
above assume the first argument is present in the 8080 accumulator. The meaning of
the WHEN-ENDW group is as follows: the condition following the WHEN is evaluated
as a relational expression, according to the rules stated with the COMPARE library.
If the condition produces a true result, then statement-1 through statement-n are
executed. Otherwise, control transfers to the statement following the ENDW. Nested
WHEN-ENDW groups are allowed when they take the form:
WHEN . ..
WHEN . . .
WHEN . ..
ENDW
ENDW
ENDW
to arbitrary levels, where the ". . ." represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed when
they take the form:
WHEN . . .
WHEN . .
ENDW
WHEN . . .
ENDW
ENDW. o

116

The implementation of the WHEN-ENDW group is based upon macros which "count"
WHEN-ENDW groups and generate branches and labels at the proper levels in the
structure. ‘

Figure 45 shows the WHEN macro library, consisting of four macros GENWTST
(generate WHEN test), GENLAB (generate label), WHEN (beginning of WHEN group),
and ENDW (end of WHEN group). These macros, in turn, use the macros in the
"NCOMPARE library shown previously and thus are assumed to exist in the user's
program as a result of a MACLIB NCOMPARE statement. Label generation is based
upon the WCNT (WHEN count) and WLEV (WHEN level) counters. WCNT is ineremented
each time a WHEN is encountered, and WLEV keeps track of the number of WHEN's
which have occurred without corresponding ENDW's.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to
zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using the relation R, operands X and Y, and WHEN counter WCNT. Note
that the value of WCNT is passed to GENWTST rather than the characters "WCNT"
themselves. Thus, at the first invocation of GENWTST, the dummy argument NUM
has the value 0. The first argument to GENWTST, called TST, corresponds to a
relational operation (LSS through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational since the TL argument
is empty. Again referring to the body of the GENWTST macro in Figure 45, note
that the last argument, corresponding to the false label of the relational operation, is
the constructed label ENDW&num, where num has the value 0 initially, and successively
larger values on later invocations. Each time GENWTST is invoked, it generates a
relational test and a branch on false to a generated label. It is the responsibility of
the ENDW macro to produce the appropriate balanced label when encountered in the
program.

Referring back to the body of the WHEN macro in Figure 45, the WLEV level
counter is set to the current WCNT, and the WCNT is incremented in preparation for
the next WHEN statement. Similar to nearly all macros which redefine themselves,
the outer macro definition of WHEN invokes the newly created WHEN macro before
exit.

Upon encountering the an ENDW statement in the source program, the ENDW
macro first invokes GENLAB to generate the appropriate ENDW label. The first
argument to GENLAB is the label prefix ENDW, while the second argument is the
evaluated parameter %WLEV corresponding to the current ENDW label. If only one
WHEN statement had been encountered, for example, the value of WLEV would be
zero, and thus GENLAB would produce the label ENDWO which is the destination of
the earlier branch generated by an invocation of GENWTST. Following the invocation
of GENLAB, WLEV is decremented to account for the fact that one more destination
label has been resolved.

As an example of the use of WHEN-ENDW, Figure 46a shows a sample program
which resembles the previous character scanning function, but uses the WHEN group
in the place of simple tests and branches. As before, a single character is read from
the console and first tested for possible case conversion. The statement "WHEN
X,GEQ,61H" causes the three statements which follow to be executed when X is greater
than or equal to 61H (lower case "a") and skipped otherwise. Further, the four WHEN
groups which follow each test for the specific characters A, B, C, or D. If an "A"

117

macro library for “"when" construct

label generators

jenwtst macro tst,x,y,num

generate a "when" test (negated form),
invoke macro "tst" with parameters
X,y with jump to endw & num

tst X,Y,,endw&num

endm

D ~o wo we

~e w8 “weo
- wo ~we

genlab macro lab,num
] produce the label "1lab" & “num"
lab&num:

endm

"when” macros for start and end

¢ = ~o wo ~e

hen macro Xxv,rel,yv
13 initialize counters first time
went set a s snumber of whens
when macro X,r,y
genwtst r,x,y,%wcnt
wlev set went s :next endw to generate
wcnt set wcent+l ;ynumber of “"when's
endm
when Xxv,rel,yv
endm
;
endw macro

3
generate the ending code for a "when"
genlab endw,%wlev

-e
~e

wlev set wlev-1 ;:count current level down
i wlev must not go below @ (not checked)
endm

Figure 45, Macro Library for the WHEN Statement.

118

0100 ORG 100H
MACLIB SIMPIO ;SIMPLE IO LIBRARY
MACLIB NCOMPARE;EXPANDED COMPARE OPS

MACLIB WHEN +WHEN CONSTRUCT
p1an CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
9128 READ X

: TEST FOR LOWER CASE ALPHABETIC
9133 WHEN X,GEQ,61H
9138 321142 LDA X
@13E EG65F ANI SFH :CLEAR LOWER CASE BIT
9140 321102 STA X :STORE BACK TO X
9143 ENDW
: NOW CHECK CASES
0143 WHEN X,EQL,%'a"
p14B WRITE <YOU TYPED AN A>
g167 C300901 JMP CYCLE
@16A ENDW
716A WHEN X,EQL,% B~
172 WRITE <YOU TYPED A B>
218D C3¢00A1 JMP CYCLE
190 ENDW
7199 WHEN X,EOL,2°C”
7198 WRITE <YOU TYPED A C>
M1B3 C37401 JMP CYCLE
0186 ENDW
M1B6 WHEN X,EOL,% D"
@1BE WRITE <YOU TYPED A D>
@1D9 WRITE <BYE" !>
g1EB C9 RET
B1EC ENDW
P1lEC WRITE <NOT AN A, B, C, OR D>
P20E C300801 JMP CYCLE
r
211 X: DS 1 +TEMP FOR CHARACTER

Figure 46a. Sample WHEN Program with "-M" in Effect.

119

is typed, the corresponding WHEN group is executed, and control transfers back to the
CYCLE label where another character is read from the console. If the letter D is
typed, the program responds with two messages and returns to the console command
processor.

Figure 46b shows the same program with full macro trace enabled. This particular
portion of the program shows macro processing for the first WHEN-ENDW group only,
although the remaining groups are processed in a similar fashion. It is a worthwhile
exercise for the reader to determine that the nesting rules for WHEN groups are
properly stated, and that the restriction on nested parallel groups is, in fact, necessary.

A second control structure, called the DOWHILE-ENDDO group takes the general
form

DOWHILE condition
statement-1
statement-2

statement-n
ENDDO

where the "condition" and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is similar in concept to the WHEN group, except that statements 1
through n are executed repetitively as long as the condition remains true. That is,
the condition is evaluated when the DOWHILE is encountered in normal program flow.
If the condition produces a false value, then control transfers to the statement following
the ENDDO. Otherwise, the statements within the group are executed until the ENDDO
is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE
and the condition is evaluated again. Iteration continues through the group until the
condition produces a false value.

The macro library for the DOWHILE group is shown in Figure 47. In general,
the DOWHILE statement invokes the relational operator macros to produce the proper
sequence of tests and branches. Upon encountering the ENDDO, the proper label and
jump sequence is again generated. Note that the only essential difference in the
DOWHILE and WHEN groups is that the location of the DOWHILE test must be labelled
and a JMP instruction must be generated to this label at the end of each group.

Referring to Figure 47, GENDTST (generate DOWHILE test), GENDLAB (generate
DOWHILE label), and GENDJMP (generate DOWHILE jump) are all "label generators"
used in the macros which follow. Similar to the WHEN macro, DOWHILE uses the
counters DOCNT and DOLEV to keep track of the number of DOWHILE groups which
have been encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILE's. The DOWHILE macro first generates the entry
label DTESTn, where n is the DOWHILE count. The conditional test is then generated,
similar to the WHEN macro, with a branch on false condition to the ENDDn label
which will eventually be generated by the ENDDO macro. Finally, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Figure 47 first generates the JMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn label
which becomes the target of the jump on false condition. The form of the expanded
macros for one nested level thus becomes:

120

L] - L d

TEST FOR LOWER CASE ALPHABETIC

we w8 w9

WHEN X,GEQ,61H
0000+4% WCNT SET 0
+ WHEN MACRO X,R,Y
+ GENWTST R,X,Y,%WCNT
+ WLEV SET WCNT
+ WCNT SET WCNT+1
+ ENDM
+ WHEN X,GEQ,61H
+ GENWTST GEQ,X,61H,%WCNT
+ GEQ X,61H, ,ENDW@
+ iF NUL
+ LSS X,61H,ENDWO
+ IF NUL ENDW®
+ GEO X,61H,
+ ELSE
+ TEST? X,61H
+ IF NOT NUL X
§133+3A1102 LDA X
+ ENDIF
+ IRPC ?Y,61H
+ TDIG? SET ‘8?Y -"0°
+ EXITM
+ ENDM
PAB6+# TDIG? SET ‘6°-"0°
+ EXITM
+ IF TDIG? <= 9
#136+D661 SUI 61H
+ ELSE
+ LXI H,61H
+ SUB M
+ ENDM
#138+DA4301 Jc ENDW@
+ ENDM
+ ELSE
+ TEST? X,61H
+ JNC
+ ENDM
+ ENDM
PO00+4% WLEV SET WCNT
0001+4# WCNT SET WCNT+1
+ ENDM
+ ENDM
¢13B 3Al1142 LDA X
@13E EGSF ANI SFB s+CLEAR LOWER CASE BIT
0140 321102 STA X s+ STORE BACK TO X
ENDW

.
’ L) 3]

Figure 46b, Partial Listing of Fig 46a with "+M" Option,

121

H macro library for "dowhile"” construct
7
gendtst macro tst,x,y,num
s generate a “"dowhile" test
tst X,Y,,endd&num
endm
7
gendlab macro lab,num
13 produce the label lab & num
- for dowhile entry or exit
lab&num:

endm

14
gendjmp macro num :

:: generate jump to dowhile test
jmp dtest&num
endm

dowhile macro Xv,rel,yv
:s initialize counter
docnt set] snumber of dowhiles
dowhile macro X,r,y
;s generate the dowhile entry
gendlab dtest,%docnt
HE generate the conditional test
gendtst r,x,y,%docnt
dolev set docnt :s:next endd to generate
docnt set docnt+l
endm
dowhile xv,rel,yv
endm

’
enddo macro

13 generate the jump to the test
gendjmp %dolev

i generate the end of a dowhile
gendlab endd,%dolev

dolev set dolev-1
endm

Figure 47, Macro Library for the DOWHILE Statement,.

122

DTESTO:

conditional jump to ENDDO
DTEST1:
conditional jump to ENDDI1

JMP DTEST1
ENDD1
JMP DTESTO
Figure 48a shows an example of a program which uses the DOWHILE group.
Although this program differs slightly from the previous examples, the principal function
is the same: a STOP character is first read from the console, followed by a group
of statements which repetitively execute in search for the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed (X) to see if it matches the STOP character. If not ("DOWHILE X,NEQ,STOP"),
the statements up through the matching ENDDO are processed. If the value of X is
the character A, then the message "YOU TYPED AN A" is sent to the console.
Otherwise, the message "NOT AN A" is typed, followed by a check to see if the STOP
character was typed. If so, the messages "STOP CHARACTER" and "BYE!" appear at
the console. In this case, control continues through the ENDW's to the ENDDO and

back to the DOWHILE header. In this case, the "DOWHILE X,NEQ,STOP" produces a
false condition, and control transfers to the "XRA A" instruction following the ENDDO.

Referring again to Figure 48a, a second DOWHILE-ENDDO group is executed
which clears the normal CRT screen size of 23 lines. This is accomplished by first
setting X to the value zero, followed by a DOWHILE group which checks the condition
"X,LSS,23" which iterates until X reaches the value 23. The WRITE statement within
the DOWHILE group produces only the carriage-return line-feed on each interation,
since the character sequence within the brackets is empty. Following the WRITE
statement, X is incremented by one, thus acting as a line counter. When X reaches
23, the "RET" statement following the matching ENDDO receives control, and the
program terminates by returning to the console processor. Note that the "DB" statement
for X provides the initial value zero so that the first DOWHILE executes at least one
time.

Figure 48b shows a portion of the program of Figure 48a, with partial macro
trace enabled. Note in particular that this trace does not show the generated labels
ENDD1 and DTESTI! since no machine code was generated on those lines (the "+M"
assembly parameter would show the labels, however). The locations of these labels
can be derived from the "hex" listing to the left by noting that the "JNC ENDDI1"
produces the destination address "01FF" corresponding to the "RET" statement, while
the "JMP DTEST1" produces the address "01E2" corresponding to the "LDA X" instruction
at the beginning of the DOWHILE group.

The last control structure presented in this section is the SELECT-ENDSEL
group, which corresponds to the Fortran "computed GO-TO," the ALGOL "switch"
statement, and the PL/M "case" statement. The general form of the SELECT group
is

123

bt

0100

0100
9127

B12F
7139
#159

9161
2169
2185

0185
#18D
g1A3
#1AD
#1C9
g1DB
91DB
91DB

@1DE
@1DF
glE2
01EA
g1F8
01FB
B1FC
@1FF

0200
0291

~e

-l

~-e

-e

ORG 100H

MACLIB SIMPIO ;SIMPLE IO LIBRARY

MACLIB NCOMPARE;EXPANDED COMPARE OPS
- MACLIB WHEN sWHEN CONSTRUCT

MACLIB DOWHILE ;DOWHILE STATEMENT

WRITE <TYPE THE STOP CHARACTER: >
READ STOP
X = ¢ FOR THE FIRST LOOP

DOWHILE X,NEQ,STOP ;LOOK FOR STOP CHARACTER
WRITE <TYPE A CHARACTER: >
READ X

WHEN X,EQL,2 A"
WRITE <YOU TYPED AN A>
ENDW

WHEN X,NEQ,% A"

WRITE KNOT AN A>
WHEN X,EQL,STOP
WRITE <STOP CHARACTER>
WRITE <BYE™ !>

ENDW
ENDW
ENDDO
H CLEAR THE SCREEN (23 CRLF’S)
AF XRA A
320802 STA X 1 X=0
DOWHILE X,LSS,23
WRITE <>
210002 LXI H,X
34 INR M s X=X+1
ENDDO
c9 RET
14
)Y X: DB] ;EXECUTES "DOWHILE" FIRST TIME
STOP: DS 1 :STOP CHARACTER

Figure 48a,

An Example using the DOWHILE Statement.

A1DE AF
01DF 329002

PlE2+3A0002
P1E5+D617
PlE7+D2FF01

B1EA+C3F@QA1
@1ED+@DOA
G1lEF+24
G1FQ+2EA9
P1F2+11ED@1
B1F5+CD@504a
A1F8 210002
G1FB 34

P1FC+C3E201
A1FF C9

Figure 48b.

CLEAR THE SCREEN (23 CRLF’S)

~e

XRA A
STA X 1 X=0
DOWHILE ¥,LSS,23
LDA X
SUI 23
JNC ENDD1
WRITE <>
JMP 220014
220013 DB CR,LF
DB ‘s’
220014 MVI C,MSGOUT
LXI D,??0013
CALL BDOS
LXT H,X
INR M s X=X+1
ENDDO
JMP DTEST1
RET

Partial Listing of Fig 48a with Macro Generation.

125

SELECT id
statement-set-0
SELNEXT
statement-set-1
SELNEXT
SELNEXT
statement-set-n
ENDSEL

where "id" is a data label corresponding to an 8-bit value in memory, and statement
set 0 through n denote groups of statement separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in
the SELECT statement is taken as a "case" number assumed to be in the range 0
through n. If the value is 0, statement-set-0 is executed and, upon completion of the
group, control transfers to the statement following the ENDSEL. If the variable has
the value 1, then statement-set-1 is executed. Similarly, if the variable produces a
value i between 0 and n, then statement-set-i receives control. There can.be up to
255 groups of statements within each SELECT-ENDSEL group, and any number of
distinet SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed,
however. That is, a SELECT-ENDSEL group cannot occur within a statement-set
enclosed within an encompassing SELECT-ENDSEL group. As a convenience, the
variable following the SELECT can be omitted in which case the current 8080 accumu-
lator content is used to select the proper case.

Figures 49a and 49b show the SELECT macro library which implements the
SELECT-ENDSEL group. The general strategy is to count the cases as they ocecur,
starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As
the cases occur, a case label is generated which takes the form CASEn@m where n
counts the SELECT-ENDSEL groups, and m is the case number within group n. A
jump instruction is generated at the end of each case to the label ENDSn whieh marks
the end of the SELECT group number n. Upon encountering the end of the group, a
"select~vector" is generated which contains the address of each case within the group,
headed by the label SELVn, where n is again the group number. Machine code is thus
generated at the SELECT entry which indexes into the select vector, based upon the
SELECT variable, to obtain the proper case address. The first statement within the
case receives control based upon the value obtained from this vector.

The general form of the machine code generated for the first SELECT group
within a particular program (group n = 0) is:

LDA id

LXI SELVO

(index HL by id, and
load the address to HL)

PCHL
CASE0@O:
statement-set-0
JMP ENDSO0
CASEO0Q@1:
statement-set-1
JMP ENDSO

126

H macro library for "select" construct
: label generators
genslxi macro num
s : load hl with address of case list
1xi h,selv&num
endm

.
’

gencase macro num,elt

] generate jmp to end of cases
if elt gt @
jmp endsg&num ; spast addr list
endif
:: generate label for this case
casegnum&l&elt:
endm

genelt macro num,elt

i generate one element of case list
dw casegnum&@&elt
endm

’
genslab macro num,elts

i3 generate case list
selv&num:
ecnt set a ;;count elements
' reot elts ::;generate dw’s
genelt num,%ecnt
ecnt set ecnt+l
endm : :send of dw’s

3 generate end of case list label
ends&num:
endm

Figure 49a, Macro Library for SELECT Statement,

127

selnext macro

o] generate the next case

gencase %ccnt,%ecnt
HE] increment the case element count
ecnt set ecnt+l

endm

r
select macro var

HE] generate case selection code
cent set @ s scount “selects"
select macro ' ::;redefinition of select
HH select on v or accumulator contents
if not nul v
1da v ::1load select variable
endif
genslxi %ccnt :;generate the 1lxi h,selv#
mov e,a :;create double precision
mvi 4,0 ::v in d,e pair
dad d ::single prec index
dad d ; ;rdouble prec index
mov e,m +31low order branch addr
inx h s :to high order bhyte
mov d,m :shigh order branch index
xchg :sready branch address in hl
pchl ;:;gone to the proper case
ecnt set 0 :selement counter reset
endm

invoke redefined select the first time

select var

selnext ssautomatically select case #
endm

~e
-e

endsel macro

o end of select, generate case list
gencase %ccnt,%ecnt :;last case
genslab %ccnt,%ecnt :s:case list

e increment “select" count

ccnt set ccnt+l
endm

Figure 49b, Library for SELECT Statement (Con’t).

128

CASEO@n:
statement-set-n
JMP ENDSO

SELVO:

DW CASE0QO0
Dw CASEO0@1

DW CASEO@n
ENDSO:

Figure 49a contains the label generators GENSLXI (generate SELECT LXI),
GENCASE (generate case labels, GENELT (generate select vector element), and
GENSLAB (generate SELECT label). Figure 49b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL. Referring to Figure 49b, the
SELECT macro begins by zeroing CCNT which counts SELECT-ENDSEL groups and
then redefines itself, similar to the WHEN and DOWHILE macros. The redefined
SELECT macro then generates the select vector indexing operation by loading the
indexing variable, if necessary, and then fetches the specific case address. Note that
no machine code is generated to check that the indexing variable is within the proper
range. The PCHL at the end of this code sequence performs the branch to the selected
case. At the end of the redefined select macro, SELNEXT is invoked automatically
to delimit the first case in the SELECT group (otherwise SELECT would have to be
followed immediately by SELNEXT in the user program to generate the proper labels.
SELECT also zeroes the ECNT variable which counts the cases until ENDSEL is
encountered.

SELNEXT, shown at the top of Figure 49b, is invoked by the programmer to
delimit cases. The GENCASE utility macro is invoked which, in turn, generates a
JMP instruction for the previous group, if this is not group zero, and then produces
the appropriate case entry label. SELNEXT also increments the select element counter
ECNT to account for yet another case.

Upon encountering the ENDSEL, the last macro in Figure 49b, GENCASE is
again invoked to generate the JMP instruction for the last case. GENSLAB then
produces the select vector by first generating the SELVn label, followed by a list of
ECNT DW statements which have the case label addresses as operands.

Figure 50a gives an example of a simple program which uses two SELECT groups.
The first SELECT group executes one of five different MVI instructions based upon
the value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index, and executes one of three different MVI instructions. The program
of Figure 50a is used only to illustrate the generated control structures, and does not
itself produce any useful values as output. The sorted symbol table shown at the end
of the listing gives the generated label addresses for the individual cases.

Figure 50b shows a segment of the previous program with generated macro lines.
Note the case selection code following "SELECT X" and the selection vector at the
end of the listing.

Figure 50c gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT-ENDSEL group of

129

0€T

0000
na1o
0012
615
p017
pa1A
pe1cC
g01F
ne21
0e24
p026

0033
0040
po4z2
pg4as
poa7
004A
ne4c

0@As55

#6819 CASEQQQ
#029 CASE@@S5

3E00Q
3E01
3E82
3E@3

3E04

3600
0601

P602

4033 ENDSO

Figure 50a.

54~

MACLIB
SELECT
MVI
SELNEXT
MVI
SELNEXT
MVI
SELNEXT
MVI
SELNEXT
MVI
ENDSEL

SELECT
MVI
SELNEXT
MVI
SELNEXT
MVI
ENDSEL

DS

Pp@15 CASE@Ql
pa49 CASE1@0
#@55 ENDS1

SELECT
X
A,0

801A CASEg@2 A01F CASEQQ@3 #9024 CASEQQ@4
#0045 CASE1@1 g04A CASEl@2 @Q4F CASE1l@3
@029 SELVY PP4F SELV1 pO55 X

Sample Program using SELECT with "-M +S" Options.

MACLIB SELECT

SELECT X
20AA+3A5500 LDA X
g0e3+212900 LXTI H,SELVE
PBB6+5F MOV E,A
0e07+16060 MVI D,0
00A9+19 nNAD D
AAgA+19 DAD D
a30B+5E MOV E,M
ga8C+23 INX B '
AB@D+56 MOV D,M
POYE+EB XCHG
AAGF+EQ PCHL
gA10 3EAG MVI A,Q
' SELNEXT
@012+C33300 JMP ENDS9
PP15 3EQ1 MVI ALl
SELNEXT
2917+C33300 JMP ENDS@
081A 3E@2 MVI A,2
SELNEXT
PP1C+C333090 JMP ENDS@
aa1F 3EQ3 MVI A,3
SELNEXT
pA21+C33300 JMP ENDS@
0024 3E04 MVI A,4
ENDSEL
2026+C33380 JMP ENDS®A
nE29+1600 DW CASEQ@O
092B+1500 DW CASE@@]
092D+1A00 DW CASEQQ@2
GO2F+1F00 DW CASE@@3
7031+2409 DW CASEQ@4

Figure 50b., Segment of Fig 5fa with Mnemonics,

131

SELECT

+ IF NOT NUL
+ LDA
+ ENDIF
+ GENSLXI $%CCNT
BO33+214F0a0 LXI H,SELV1
+ ENDM
(indexing code similar to Fig 50b)
2o00a+§¢ ECNT SET %)
+ GENCASE $CCNT,%ECNT
+ IF g GT 0
+ JMP ENDS1
+ ENDIF
+ CASEl@@:
+ ENDM
0001+ ECNT SET ECNT+1
+ ENDM
+ ENDM
0040 6600 MVI B,0
SELNEXT
+ GENCASE %CCNT,%ECNT
+ IF 1 GT 0
0042+C35560 JMP ENDS1
+ ENDIF
+ CASE1@]1:
+ ENDM
goB2+¢ ECNT SET ECNT+1
+ ENDM
(remaining cases are similar)
-ENDSEL
+ GENSLAB %CCNT, $ECNT
+ SELV1:
0o006+& ECNT SET 4]
+ REPT 3
+ GENELT 1,%ECNT
+ ECNT SET ECNT+1
+ ENDM
+ GENELT 1,%ECNT
004F4+4000 DW ChSE1@0
+ ENDM
go01+% ECNT - SET ECNT+1
+ GENELT 1,3%ECNT
" 9051+4508 DW CASE1@1
+ ENDM
0002+% ECNT SET ECNT+1
+ GENELT 1,%ECNT
P053+4A00 DW CASEl1@2
+ ENDM
0003+4 ECNT SET ECNT+1
+ ' ENDM
+ ENDS1:
+ ENDM
0082+4 CCNT SET CCNT+1
+ ENDM

Figure 58c. Segment of Fig 5fa with “+M" Option,

132

Figure 50a. The listing has been edited to remove the case selection code, which is
listed in Figure 50b, as well as the code generated for case number 2. Figure 50c
should be cross-referenced with the SELECT macro library given in Figures 49a and
49b if confusion remains as to the actions of these macros.

It is now possible to show a complete program which uses the WHEN, DOWHILE,
and SELECT groups. Figure 51 shows a program which is similar in function to a
more complicated program which interacts with the console in executing single character
input commands. In fact, the two CP/M programs ED and DDT both take this general
form (see the ED and DDT Users Guides for details). That is, a single letter is used
to select a single action which may correspond to an edit request in the ED program,
or a debug request in DDT. Upon completion of each command, control returns back
to the main loop to accept another single letter command.

The program given in Figure 51 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Several messages
are then sent to the console device, followed by a single DOWHILE-ENDDO group
which encompasses nearly the entire program. The DOWHILE group is controlled by
the X,NEQ,%'D' test and thus continues to loop while the X character is not the letter
D. On each iteration of the DOWHILE group, a single letter is read from the console
and converted to upper case, if necessary. In order to ensure that the letter is in
the proper range of values, two WHEN groups follow which convert illegal values to
the letter E, which will subsequently produce an error response.

Following the WHEN tests in Figure 51, the character must be in the range 'A’
through 'E'. Before indexing into the SELECT group, this value is "normalized" to the
absolute value 0 through 4 corresponding to each of the possible values. The SELECT
statement uses the value in the accumulator to select one of the five cases, producing
the appropriate response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the DOWHILE where
the last character typed is tested against the letter D. If X is not equal to the letter
D, the iteration continues. Otherwise, the DOWHILE completes and control returns
to the console processor.

The control structures presented in this section are representative of the forms
which can be implemented. Additional facilities, such as the controlled iteration found
in Fortran DO loops, or Algol FOR loops can be implemented using essentially the
same techniques used for the WHEN and DOWHILE. Further, Subroutine parameter
mechanisms which pass actual values to subroutines for assignment to formal parameters
can also be defined with macro libraries. Note also that it would be relatively easy
to include control structures for the stack machine given in the previous section, thus
allowing machine independent programming of control structures as well as arithmetic
operations.

133

01006

7169
9127
7159

p174
g17C
819C

Ala4d
P1AC 3ABFO2E65F
g1B4

p1B4
#1BC 3E4532BF02
n1Cl

g1Cl1
P1CC 3E4532BF02
f1D1

01D1 3ABF@2D641
81D6
01lE3
p2p04
0287
p228
P22B
824C
P24F
0270
0290
9293
@2AE
p2BB

@2BE C9

02BF 00

- wp

~e

7
X:

Figure 51,

ORG 100H ;BEGINNING OF TPA
MACLIB SIMPIO ;SIMPLE READ/WRITE
MACLIB NCOMPARE;COMPARISON OPS
MACLIB WHEN ; "WHEN" CONSTRUCT
MACLIB DOWHILE ;"DOWHILE" CONSTRUCT
MACLIB SELECT ;"SELECT" CONSTRUCT

USING THE CCP’S STACK, READ INPUT
CHARACTERS, UNTIL A % IS TYPED
WRITE <SAMPLE CONTROL STRUCTURES>
WRITE <TYPE SINGLE CHARACTERS FROM>
WRITE <A TO D, It 1°LL sTOP ON D>

DOWHILE X,NEQ,% D’
WRITE <TYPE A CHARACTER: >
READ X

WHEN X,GEQ,% A~
LDA X! ANI @5FH! STA X :CONV CASE
ENDW

TA X ;SET TO ERROR

WHEN X,GTR,% E’
MVI A, E"! STA X ;SET TO ERROR
ENDW
LDA X! SUI ‘A" ;NORMALIZE TO §-4
SELECT ;BASED ON X IN ACCUM
WRITE <YOU SELECTED CASE A>
SELNEXT
WRITE <YOU SELECTED CASE B>
SELNEXT
WRITE <YOU SELECTED CASE C>
SELNEXT
WRITE <YOU SELECTED CASE D>
WRITE <SO I°'M GOING BACK?t!>

SELNEXT
WRITE <BAD CHARACTER>
ENDSEL
ENDDO
RET ;BACK TO CCP

DATA AREA
DB) ;X=00 INITIALLY

Program using WHEN, DOWHILE, and SELECT,

134

9.4. Operating Systems Interface.

In a general-purpose computing environment, macros are often used to provide
systematic and simplified mechanisms for programmatic access to operating system
functions. Throughout this document, the examples have shown various low-level calls
to the CP/M operating system which implement function such as single character input,
single character output, and full message output. In each case, the macros simplify
the operations by performing the low-level register set-ups and calls which perform
the function.

The purpose of this section is to introduce more comprehensive operating system
interface macros, and specifically show a sample macro library which allows simplified
diskette file operations for sequential "stream" input/output operations. The principal
macros of this library which allow file access are listed below:

FILE - set up a named file for subsequent disk operations
GET - read a single character from a specific data source
PUT - send a character to a specific data destination
FINIS - terminate file access for a specific group of files
ERASE - remove a specific diskette file

DIRECT - search for a specific file on the diskette

RENAME - rename a specific diskette file

Before introducing the macro library which performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:
FILE mode,fileid,diskname,filename,filetype,buffsize,buffaddr

where the individual parameters of the FILE macro describe a particular file to be
accessed in the program. The parameter values for the FILE macro are:

mode - infile (input file),
- outfile (output file),
- setfile (set up file name for ancillary functions),

fileid - file identifier for internal reference thréughout
the program

diskname - disk drive name (A, B, . . .) containing the file
being accessed, or empty if the default drive is
being used

filename - the (up to eight character) file name of the diskette

file being accessed; if "1" or "2" is specified, then
the first or second default file name is used,
respectively

filetype - the (up to three character) file type of the file being

accessed; if "1" or "2" has been specified for . the
filename parameter and an empty filetype is given,

135

then the file type is taken from the selected default
file name, otherwise the type is set to blanks

buffsize - the size (in bytes) of the buffer area used for this
file; the value is rounded down to an integral
multiple of the diskette sector size; if the rounding
produces a result which is too small, or if the para-
meter is empty, then only one sector is buffered.

buffaddr - the address of the buffer area to be used during
accesses to this file; if empty, then the buffer
address is assigned automatically

The FILE statement
FILE INFILE,ZOT,A,NAMES,DAT

for example, sets up the file "NAMES.DAT" on diskette drive A for subsequent. access.
Internal to the program, this file will be referenced by the name ZOT. Further, the
buffer address is assigned automatically, and the buffer size is set to one sector
(normally 128 bytes). In general, larger buffers are useful in minimizing rotational
delav on the diskette due to "missed sectors" during the file operations. If the
"NAMES.DAT" file does not exist, an error message is sent to the console, and the
program is aborted. An output file can be created using the statement

FILE OUTFILE,ZAP,B,ADDRESS,DAT,1000

for example, which creates the file "ADDRESS.DAT" on drive B for subsequent output,
referenced internally by the name ZAP. In this case, the buffer size is set to 1000
bytes (rounded down to 7 * 128 = 896 bytes), and the base address of the buffer is
set automatically. The sample programs show alternative FILE options.

The GET macro invocation takes the form
GET device
where "device" specifies a simple peripheral or a diskette file defined by a previously

executed FILE statement. The GET statement reads one byte of data into the 8080
accumulator from the specified device. The possible device names are:

key - console keyboard input
rcr - reader device
fileid ~ previously defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.

GET KEY - read one keyboard character

GET RDR - read one reader character (see CP/M Interface and
Alteration Guides for READER entrv point definition)

GET ZOT - read one character from the file given by the in-
ternal name ZOT (i.e., the NAMES.DAT file if the
above FILE statement had been executed)

136

The end of data can be detected in two ways: if the file contains character data,
the end of file is detected by comparing the individual characters with the standard
CP/M end of file mark which is a control-Z (hexadecimal 1AH). The GET function
also returns with the 8080 zero flag set to true if a real end of file is encountered
so that pure binary files can be read to the end of data. '

The PUT macro performs the opposite function from the GET macro. The PUT
invocation takes the form:

PUT device

where "device" specifies a simple output peripheral or a diskette file defined previously
using the FILE macro. The possible device names are

con ~ console display device

pun - system punch device

Ist - system listing device

fileid - previously defined output file identifier

The following PUT invocations perform the functions shown to the right below:

PUT CON - write the accumulator character to the console
PUT PUN - write the accumulator character to the punch
PUT LST - write the accumulator character to the list device
PUT ZAP - write the accumulator character to the file
whose internal name is ZAP (i.e., the ADDRESS.DAT
file in the above example)

Note that the character in the accumulator is preserved during the invocation so that
it may be involved in further tests or macro invecations following the PUT statement.

The FINIS statement is used to close a file or set of files upon completion of
file access. In the case of an output file, the internal buffers are written to disk,
and the file name is permanently recorded on the diskette for future access. The
form of the FINIS invocation is

FINIS filelist

where "filelist" is a single internal name which appeared previously in a file statement,
or a list of such file names enclosed within broken left and right brackets, and separated
by commas. Although it is not necessary to close input files with the FINIS statement,
it is good practice, since the file close operation may be required on future versions
of the macro library. An example of the FINIS statement is:

FINIS ZAP - write all buffers for the ZAP file, and record the
file in the diskette directory; in the above example,
the ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a diskette file given by the

specified file identifier defined in a previous FILE statement. If the file identifier is
not used in a GET or PUT statement, then the FILE statement can have the mode

137

"setfile" which requires less program space than an "infile" or "outfile" parameter.
Specific cases of the ERASE statement will be given in the examples which follow.
In the simple case

ERASE ZOT

however, the file NAMES.DAT would be removed from the diskette, given the previous
FILE statement which defines ZOT.

The DIRECT macro is used to search for a specific file on the diskette. Similar
to the ERASE macro, the file identifier must be previously given in a FILE statement
using one of the three possible file modes. The DIRECT invocation sets the 8080 zero
flag to false if the file is present on the diskette. In both the ERASE and DIRECT
macros, the file identifiers can reference file names and types with embedded "?"
characters, similar to the normal CP/M "DIR" command, where the question mark will
match any character in the file names being scanned. The macro invocation

DIRECT ZAP

for example, returns a non-zero flag if the file ADDRESS.DAT is present, and a zero
flag if the file is not present, given the original FILE statement involving the ZAP
file identifier.

The RENAME macro takes the form
RENAME newfile,oldfile

where "newfile" and "oldfile" are file identifiers which have appeared in previous FILE
statements. The rename macro changes the file name given by newfile to the file
name given by oldfile. Similar to the ERASE and DIRECT macros, the file identifiers
"newfile" and "oldfile" must appear in previously executed FILE statements, but may
have a mode of "setfile" if they are not used in GET or PUT macros. If the drive
names for the oldfile and newfile differ, then the drive name of the newfile is assumed.
The sequence of macrc invocations

FINIS ZAP ;CLOSE "ZAP"
ERASE Z0T ;s REMOVE "ZOT"
RENAME ZOT,ZAP ;sCHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases the NAMES.DAT
file on drive A. The RENAME macro then changes the ADDRESS.DAT file to the
name NAMES.DAT file on drive A.

Figure 52 shows the use of the FILE, GET, PUT, and FINIS macros in a working
program. The purpose of this program is tc read an input file, specified at the console
command processor level as the first file name, and translate each lower case alphabetic
character to upper case. The output is sent to the file given as the second parameter
at the command level. Given that this program has been assembled, loaded, and stored
as "CASE.COM" on the diskette, a typical execution would be

CASE LOWER.DAT UPPER.DAT

138

9100 ORG 19008

COPY FILE 1 TO FILE 2, CONVERT

TO UPPER CASE DURING THE COPY

AND ECHO TRANSACTION TO CONSOLE
MACLIB SEQIO ; SEQUENTIAL I/O LIB

- we wo

p000 = BOOT EQU AOO0OH :SYSTEM REBOOT
@@5F = UCASE EQU SFH ;UPPER CASE BITS
9198 317003 LXI SP,STACK
: DEFINE SOURCE FILE:
H INFILE = INPUT FILE
: SOURCE = INTERNAL NAME
: (NUL) = DEFAULT DISK
; 1 = FIRST DEFAULT NAME
: (NUL) = FIRST DEFAULT TYPE
; 2000 = BUFFER SIZE
91083 FILE INFILE,SOURCE,,1,,2000
r’
; DEFINE DESTINATION FILE:
: OUTFILE = OUTPUT FILE
: DEST = INTERNAL NAME
: (NUL) = DEFAULT DISK
: 2 = SECOND DEFAULT NAME
: (NUL) = SECOND DEFAULT TYPE
; 2000 = BUFFER SIZE
@1EC FILE OUTFILE,DEST, ,2,,2000
: READ SOURCE FILE, TRANSLATE, WRITE DEST
@2EA CYCLE: GET SOURCE
@2ED FE1A CPI EOF :END OF FILE?
@2EF CAQOCH3 JZ ENDCOPY :;SKIP TO END IF SO
: NOT END OF FILE, CONVERT TO UPPER CASE
@2F2 FE61 CPI “a’ : BELOW LOWER CASE "A"?
@2F4 DAFE@2 JC NOCONV ;SKIP IF SO
@2F7 FE7B CPI ‘z7+1 ;BELOW LOWER CASE "Z"?
g2F9 D2FE@2 JNC NOCONV ;SKIP IF ABOVE
: MASK OUT LOWER CASE ALPHA BITS
@2FC E65F ANI UCASE
@2FE NOCONV : PUT CON sWRITE TO CONSOLE
9306 PUT DEST :AND TO DESTINATION FILE
9369 C3EA@B2 JMP CYCLE : FOR ANOTHER CHARACTER
ENDCOPY:
g30C FINIS DEST :END OF OUTPUT
@34D C30009 JMP BOOT +BACK TO CCP
9359 DS 32 :16 LEVEL STACK
STACK:
BUFFERS:
1278 = MEMSIZE EQU BUFFERS+@NXTB : PROGRAM SIZE
9378 END

Figure 52. Lower to Upper Case Conversion Program.

139

which causes the CASE.COM file to be loaded and executed in the transient program
area. Before execution, the console command processor passes LOWER.DAT as the
first default file name, and UPPER.DAT as the second file name (see the CP/M
Interface Guide for exact details). Referring to Figure 52, the CASE program begins
by intializing the stack pointer to a local stack area in preparation for subsequent
subroutine calls which occur within the various macros in the SEQIO maecro library.
The first default file name is then taken as the SOURCE file, as defined in the first
FILE macro. The second FILE statement assigns the second default file name as an
output file with the internal name DEST. In both cases, the FILE statements open
the respective files and initialize the buffer areas consisting of 2000 bytes (rounded
down to a multiple of the sector size). Note that if the UPPER.DAT file already
exists, the second file statement removes the existing file and creates a new UPPER.DAT
file before continuing. In either case, the appropriate error messages will appear at
the console if the files cannot be accessed or created in the FILE statements.

The CASE program's main loop is shown in Figure 52 between the CYCLE and
ENDCOPY labels. Each successive character is read from the SOURCE file (in this
case, LOWER.DAT) and tested to see if the character is in the range of a lower case
"a" tc lower case "z." If in this range, the character is changed to upper case. At
the NOCONYV 1label, the (possibly translated) character in the accumulator is sent to
the console device using the "PUT CON" macro and then sent to the DEST file (in
this case, UPPER.DAT). Looping continues back to the CYCLE label where another
character is read and translated. Since the data file is assumed to consist of a stream
of Ascii characters, the end of file is detected when a control-Z is encountered. When
this character is found, control transfers to the label ENDCOPY where the DEST file
is closed wsing the FINIS macro. Again note that errors in writing or closing the
DEST file will produce an error message at the console, and the program execution
will be aborted immediately. Upon completion of the program, control is returned to
the console processor through a system reboot (JMP BOOT).

The SEQIO library macros assume that all file buffers are located at the end
of the user's program, as shown in Figure 52, In particular, the label BUFFERS must
appear as the last label in the user's program, and becomes the base of the buffers
allocated automatically in the FILE statements. The actual memory requirements for
the program can be cetermined using an "EQU" as shown in Figure 52, with a statement
of the form

MEMSIZE EQU BUFFERS+@NXTB

which produces the equated value 1270H at the left of the listing. In this particular
case, the memory area beyond 1270H is not used by the program.

The macro library for SEQIO is shown in Figures 53a, 53b, 53c, 53d, and 53e,
which constitute the most comprehensive macro library shown in this manual. The
particular macro library contains an instance of nearly every macro facility available
in MAC, and thus it is useful to read and understand the operations contained in the
listing. The discussion below of SEQIO outlines the general functions of each macro,
but it is left to the reader to investigate the exact operation of the library.

The SEQIO segment shown in Figures 53a and 53b contain generally useful

equates and utility macros. The label FILERR at the beginning becomes the destination
of transfers upon encountering a file operation error and, since this is a SET statement,

140

sequential file i/o library

.~

filerr set 0008h ;reboot after error
@bdos equ 88e85h :bdos entry point
@tfcb equ @85ch ;default file control block
@tbuf equ 2080h ;default buffer address
; bdos functions
emsg equ 9 ;send message
éopn equ 15 :file open
gcls equ 16 sfile close
@dir equ 17 ;directory search
@del equ 19 :file delete
afrd equ 20 ;file read operation
afwr equ 21 s;file write operation
émak equ 22 ;file make
@ren equ 23 ;file rename
@dna equ 26 ;set dma address
@sect equ 128 ;sector size
eof equ lah ;end of file
cr equ @dh scarriage return
1f equ Bah sline feed
tab equ 89h shorizontal tab
Qkey equ 1 skeyboard
@con equ 2 ;console display
@rdr equ 3 sreader
@pun equ 4 spunch
8lst equ 5 :list device
: keywords for “file” macro
infile equ 1 ;input file
outfile equ 2 ;outputfile
setfile equ 3 ;setup name only
: the following macros define simple sequential
H file operations:
fillnam macro fc,c :
i £ill the file name/type given by fc for ¢ characters
acnt set c ;:max length
irpc ?fc,fc ;;£fill each character
i may be end of count or nul name
if @cnt=@ or nul ?fc
exitm
endif
db “&?FC° ;;fill one more
gcnt set @cnt-1 ;;decrement max length
endm ;:0f irpe 2fc

~
~e e

pad remainder

rept @ent ;:8cnt is remainder
db o ;ipad one more blank
endm ;;0f rept
endm
filldef macro fcb,?£f1,?1n
33 £fill the file name from the default fcb
A for length ?1n (9 or 12)
local psub
jmp psub ;:jump past the subroutine
@def: ;;:;this subroutine fills from the tfcb (+16)
mov a,m ;:get next character to a
stax d ;y:store to fcb area
inx h
inx 4
decr c s;count length down to @
jnz @def
ret
1 end of £ill subroutine
psub:
filldef macro ?feb,?2£,21
1xi h,@tfcb+?f ;;either atfcb or RAtfcb+ls
1xi d,?fcb
mvi c,?1 s:length = 9,12
call @def
endm
filldef fcb,?f1,?1n
endm
fillnxt macro
H initialize buffer and device numbers
@nxtb set [} ;1next buffer location
anxtd set @lst+l ;;next device number
fillnxt macro
endm
endm

141

Sequential File Input/Output Library.

Figure 53a.

()]

~e we %6 e Ne ve we

illfcb macro f£id,dn,fn,ft , bs,ba

£fill the file control block with disk name
fid is an internal name for the file,

dn is the drive name (a,b.,.), or blank

fn is the file name, or blank

ft is the file type

bs is the buffer size

ba is the buffer address

local pfcb

P I R R)

i3 set up the file control block for the file
1K} look for file name = 1 or 2
ac set 1 ;;assume true to begin with
irpe ?c,fn ;slook through characters of name
if not ('&2C° = “1° or “&2C° = “2°)
ec set [*] ;;clear. if not 1 or 2
endm
i3 @c is true if fn = 1 or 2 at this point
if ac ;:then fn = 1 or 2
33 £ill from default area
if nul ft ;;type specified?
8c set 12 ; ;sboth name and type
else
Qc set 9 ;sname only
endif
filldef fcbafid, (fn-1)*16,8cC ;;to select the fcb
jmp pfcb ;;past fcb definition
ds éc ;;space for drive/filename/type
fillnam ft,12-@c ;;series of db’s
else
jmp pfcb ;:past initialized fcb
if nul dn
db %] ; ;use default drive if name is zero
else
db ‘DN -"AT+1 sjuse specified drive
endif
fillnam fn,8 ::£i11 file name
R now generate the file type with padded blanks
fillnam £t,3 ;;and three character type
endif
fcbafid equ $-12 ;;oeginning of the. fcb
db) ;;extent field @8 for setfile
3 now define the 3 byte field, and disk map
ds 20 ;3X,x,rc,dm@,..dml5,cr fields
if fidstyp<=2 s:in/outfile
3: generate constants for infile/outfile
fillnxt ;:8nxtb=g on first call
if bs+8<@sect
73 bs not supplied, or too small
@bs set = @sect ssdefault to one sector
else
:3 compute even buffer address
@bs set (bs/@sect) *dsect
endif
' now define buffer base address
if nul ba
1s use next address after @nxtb
fidsbuf set buffers+@nxtb
s count past this buffer
8nxtb set @nxtb+@gbs
else
fidsbuf set ba
endif

73 fidsbuf is buffer address
fidsadr:

dw fidsbuf
fidgsiz equ @bs s3literal size
fidslen:

dw @bs ;sbuffer size
fidsptr:

ds 2 s;set in infile/outfile
2 set device number
asfid set anxtd s;next device
@nxtd set anxtd+l

endif ;10f fidatyp<=2 test
pfcb: endm

’

142

Sequential File I/0 Library (Con't).

Figure 53b.

e 0 st w0 ne P
9
[
o

~o e ve e ne

:: construct the file control block
fidatyp equ md ;;set mode for later ref’s
fillfcb fid,dn,fn,ft,bs,ba
if md=3 ; ;setup fcb only, so exit
exitm
endif
s file control block and related parameters
HE are created inline, now create io function
jmp psub s;past inline subroutine
if md=1 ;;input file
get&fid:
else
puts&fid:
push psw ;;save output character
endif
lhld fidslen ;;load current buffer length
xchg $:;de 1s length
‘1lhld fidsptr ;;load next to get/put to hl
mov a,l ; ;compute cur-len
sub e
mov a,h
sbb d ;;carry if next<length
jec pnc ss;carry if len gtr current
i3 end of buffer, fill/empty buffers
1xi h,8
4 shld fidsptr ;;clear next to get/put
pnd:
3 process next disk sector:
xchg ;:fidaptr to de
1lhld fidslen ;;do not exceed length
$: de is next to fill/empty, hl is max len
mov a,e s scompute next-len
sub 1 ;;to get carry if more
mov a,d
sbb h s3to fill
jne eob
3 carry gen ed, hence more to fill/empty
1hld fidsadr ;;base of buffers
dad d sshl is next buffer addr
xchg
mvi c,ddma ;;set dma address
call @bdos ;;dma address is set
1xi d,fcbsfid ;3fcb address to de
if md=1 ;;read buffer function
mvi c,dfrd ;;file read function
else
mvi c,@fwr ;;file write function
endif
call @bdos s3rd/wr to/from dma address
ora a ;;check return code
jnz eod ;:end of file/disk?
33 not end of file/disk, increment length
1xi d,@sect ;;:;sector size
1hld fidsptr ;;next to fill
dad d
shld fidsptr ;;back to memory)
jmp pnd ;;process another sector
eod:
e end of file/disk encountered
if md=1 ;:input file
lhld fidsptr ;;length of buffer
shld fidslen ;:reset length
else
:: fatal error, end of disk
local emsqg
mvi c,@msg ;:;write the error
1xi d,emsqg
call @bdos ;;error to console
pop osSw ;sremove stacked character
jmp filerr ;j;usually reboots
emsg: db cr,lf
db ‘disk full: &FID’
db ‘s’
erndif

macro md,fid,dn,fn,ft,bs,ba
create file using mode md:

infile = 1 input file
outfile = 2 output file
setfile = 3 setup fcb

(see fillfcb for remaining parameters)
local psub,msg,pmsg
local pnd,eod,eob,pnc

Sequential File I/O Library (Con't).

Figure 53c.

D ~
O ~»
o

~e
-

~ g e
~ O~
a

msqg:

pmsg:

end of buffer, reset dma and pointer
1xi d,etbuf

mvi c,f@dma
call @bdos
1xi h,o

shid “EFid&ptr ;;next to get

process the next character
xchg s;index to get/put in de
lhld fidsadr ;;base of buffer

dad d ;saddress of char in hl
xchg ;;address of char in de
if md=1 ;;input processing differs
1hld fid&len ;;for eof check

mov a,l ;:0008?

ora h

mvi a,eof ;;end of file?

rz ;szero flag if so

1dax d ;;next char in accum
else

store next character from accumulator
pop pSw s:recall saved char
stax d ; scharacter in buffer
endif

lhld fidsptr ;;index to get/put
inx h

shld fidsptr ;;pointer updated
return with non zero flag if get
ret

s:past inline subroutine

xra a ::zero to acc
sta fcbafid+l2 ;sclear extent
sta fcbafid+32 s:clear cur rec
1xi h,fidssiz ssbuffer size
shld fidslen ;1set buff len
if md=1 sinput file

snld fidsptr ;;cause immediate read
mvi c,8opn ;;open file function
else ;;output file

1xi h,8 ;;set next to fill

shld fidsptr ;;pointer initialized
mvi c,@del

1xi d,fcbsfid ;:;delete file
call @bdos ;3to clear existing file
mvi c,dmak ;ji;create a new file
endif

now open (if input), or make (if output)
Ixi d,fcbsfid

call gbdos ;s ;open/make ok?

inr a :3255 becomes @8

jnz pmsg

mvi c,8msg ;;print message function
1xi d,msg ;;error message

call @bdos ;;printed at console
jmp filerr ;;to restart

db cr,lf

if md=1 ; s input message

db ‘no &FID file”

else

db ‘no dir space: &FID”

endif

db s

endm

144

Sequential File I/O Library (Con't).

Figure 53d.

SvI

.
s

finis macro fid
.

HY

close the file(s) given by fid rename macro new,old
irp ?2f ,<fid> HH rename file given by “old" to “new"
] skip all but output files local psub,reng
if ?fatyp=2 ¥ include the rename subroutine once
local eob?,peof,msg,pmsg jmp psub
:: write all partially filled buffers @rens: ;;rename subroutine, hl is address of

eob?: ;;are we at the end of a buffer? ;:0ld fcb, de is address of new fcb

1hld ?fsptr ;:next to fill push h :;save for rename
mov a,l s;on buffer boundary? 1xi b,16 ::b=00,c=16
ani (@sect-1) and @ffh dad b ::hl = 0ld fcb+ls
jnz peof s:put eof if not A0 renf: ldax ad r:new fcb name
if @sect>255 mov m,a s:to old fcb+l6
HE] check high order byte also inx d s :next new char
mov a,h inx h s :next fcb char
ani (@sect-1) shr 8 dcr c s scount down from 16
jnz peof :;put eof if not 0@ jnz rend
endif T old name in first half, new in second half
3 arrive here if end of buffer, set length pop d ;irecall base of old name
33 and write one more byte to clear buffs mvi c,8ren ;;rename function
shld ?fslen ;;set to shorter length call @bdos
peof: mvi a,eof ;:write another eof ret s:rename complete
push pPsSw ;;save zero flag psub:
call puts&?f rename macro n,o ;:redefine rename
pop psw ;:recall zero flag Ixi h,fcb&o ;;old fcb address
jnz eob? ;:non zero if more 1xi d,fcb&n ;;new fcb address
s buffers have been written, close file call @rens ;:irename subroutine
mvi c,@cls endm
1xi d,fcba?f s ;ready for call rename new,old
call @bdos endm
inr a $:255 if err becomes 0@ H
jnz pmsg get macro dev
s file cannot be closed A read character from device
mvi c,@msg if @sdev <= @lst
Ixi d,msg s simple input
call @bdos mvi c,@sdev
jmp pmsg s;error message printed call @bdos
msqg: db cr,lf else
db “cannot close §7F° call getsdev
db ‘$° endm
pmsg: H
endif :
endm ;;0f the irp put macro dev
endm i3 write character from accum to device
H if @sdev <= @lst
erase macro fid 53 simple output
53 delete the file(s) given by fid push psw :;save character
irp 2f,<fid> mvi c,@&dev ;;write char function
mvi c,@del mov e,a ;;ready for output
1xi d,fcba?f call @bdos ;;write character
call @bdos pop psSw ;:restore for testing
endm s1;0f the irp else
endm call put&dev
H endm
direct macro fid
Y perform directory search for file
s sets zero flag if not present
1xi ad,f¢cbgfid
mvi c,@dir
call @bdos
inc a ;00 if not present

endm

Figure 53e. Seaquential File 1/0 TLihrarv (Con')

may be changed in the user's program to "trap" error conditions rather than rebooting.
The use of FILERR is apparent throughout the macro library.

The equates which follow define the usual BDOS entry points and functions,
along with the diskette sector size (QSECT), and special non-graphic characters (EOF,
CR, LF, and TAB). -The equates for @QKEY through QLST are used in the GET and
PUT macros to determine the source or destination device. The INFILE, OUTFILE,
and SETFILE equates are used in the FILE macro as mnemonics for the file mode
attribute.

Referring again to Figure 53a, FILLNAM is a utility macro which is used in the
construction of a file control block. In particular, it accepts a file name or file type
along with a field size and builds a sequence of DB's which fill the name or type field
with padded blanks. FILLDEF is again a utility maecro similar to FILLNAM, but fills
the file control block name or type field from the default file control block at @QTFCB
or QTFCB+16. FILLDEF is invoked to extract either the default file name (first 8
characters) or default file type (following 3 character field). Note that the FILLDEF
macro constructs an inline subroutine to perform the data move operation the first
time it is invoked and calls the inline subroutine (@DEF) upon subsequent invocations.

The last macro definition shown in Figure 53a is FILLNXT which is used to
initialize two assembly time variables: @NXTB and @NXTD. @NXTB is used to count
the accumulated size of buffers as they are automatically allocated in the FILE
statement, while @NXTD is used to count files in the FILE macro for later reference
in GET and PUT statements. They are included within a macro. so that they will be
properly initialized in the two successive passes of the macro assembler. FILLNXT
is invoked by the FILE macro where the expansion initializes @NXTB and @NXTD.
Note that FILLNXT then redefines itself as an empty macro so that subsequent FILE
invocations do not reset the two counters.

A major utility macro, called FILLFCB, is shown in Figure 53b. The primary
purpose of this macro is to construct a file control block in the CP/M standard format,
where FID is the file identifier, DN is the disk name, FN is the file name, FT is the
file type, BS is the buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters may be empty, causing default
conditions to be selected. The FILLFCB macro begins by searching for a "1" or a "2"
as the FN parameter, indicating that either default name 1 or 2 is to be selected for
the file. Note that the IRPC loop involving ?C will result in a value of 1 for @QC if
either FN=1 or FN=2, and a value of 0 for @C if FN is not 1 or 2. The FILLFCB
macro then selects either the defauit name, or the user specified name along with the
default or user specified drive number. The equate for FCB&FID then produces the
address of the file control block for the file identifier followed by "DB 0" for the
extent field and "DS 20" for the remainder of the file control block. The reader may
wish to cross-reference the file control block format shown in the CP/M Interface
Guide for exact formats.

The remainder of the FILLFCB macro, shown in the lower half of Figure 53b,
is devoted to storage allocation for buffer areas. The @BS variable is set to the
buffer size after rounding and size checks. FID&BUF then becomes the address of
the file's buffer area, and FID&ADR labels a "DW" containing this literal value.
FID&SIZ becomes the literal size of the buffer, and FID&LEN labels a "DW" containing
the literal size. FID&PTR is also allocated as a double byte which will subsequently

146

hold the buffer index to the next character to get or put in the file. All of these
values will be used in the file operations which occur later.

The principal file access macro, called FILE, is shown in Figure 53c, and is
used to set up the file control block, buffers, and access subroutines for a particular
file. Similar to the FILLFCB macro, the parameters FID, DN, FN, FT, BS, and BA
describe the particular characteristics of a file. The MD parameter, however, is
present to indicate the file mode and must have the value 1, 2, or 3. The FILE macro
begins by assigning the mode value to FID&TYP so that subsequent macros can determine
the type of access for this file. The FILLFCB macro is then invoked to construct
the file control block for this macro, and sets generally useful parameters for the file,
as discussed above. The FILE macro then generates either the label GET&FID or
PUT&FID for input and output files, respectively, followed by a subroutine which GET's
a single character or PUT's a single character for this file.

In general, the GET&FID reads a single character from the input buffer and,
when the input buffer is exhausted, fills the buffer area again in preparation for
following GET operations. Upon detecting a real end of file, the EOF character is
returned with the zero flag set. Similarly, the PUT&FID subroutine generated for
output files stores the accumulator character into the output buffer at the next
~character position and, when the buffer is full, writes the sequence of sectors and
returns to accept more output characters. In the case of an output error, the appropriate
message is printed, and control transfers to FILERR which usually remains at 0000H,
causing a system reboot.

The generated code which follows the label PSUB in Figure 53d is used to
initialize the file pointers to the proper positions for file access. The file extent and
next record fields of the file control blocks are zeroed for both input and output files.
In the case of an input file, the buffer index variable FID&PTR is set to the end of
the buffer, causing an immediate read operation when the first character is read. In
the case of an output file, the FID&PTR is set to zero, incicating that the next
position to fill is the first character of the output buffer. If the file is an output
file, any duplicate files are erased, and a new file is created. In both cases, the file
is opened upon completion of the FILE operation, and the buffer pointers are set for
the next GET or PUT invocation. Note that the FILE statement is "executable" in
the sense that it must occur ahead of the GET or PUT statements for the file, and
performs its function each time control passes through the FILE machine code.

The FINIS, ERASE, DIRECT, RENAME, GET, and PUT macros are shown in
Figure 53e. The FINIS macro, shown on the left, serves to empty the output buffers
and close the file for output. Input files are skipped since no actions need take place
to close an input file. The main purpose of the FINIS macro is to fill the remaining
buffer segment (one sector size) with EOF's, then write the partially filled buffers.

The ERASE macro accepts a file identifier or list of file identifiers and
successively calls the BDOS to erase each file, while the DIRECT macro searches only
for a single file given by the file identifier FID. In the case of the DIRECT macro,
the non-zero flag is set if the file exists. No prechecks are made to see if the file
exists before the ERASE operation takes place, although erasing a non-existant file is
of no consequence. The DIRECT macro can, of course, be used to check if a file
exists before the ERASE is executed if deemed necessary by the programmer.

147

The RENAME macro shown in Figure 53e (right) allows a file to be renamed
by accepting two file identifiers, denoted by NEW and OLD. These file identifiers
must correspond to the FCB names created by FILLFCB in an earlier FILE invocation,
and has the effect of renaming the OLD file to the NEW file name. This is accomplished
within the RENAME macro through an inline subroutine, called @QRENS, which is
included the first time the RENAME macro is invoked. The inline subroutine moves
the new file control block information (first 16 bytes) into the second half of the old
file name in the form required for a rename operation under CP/M (see the CP/M
Interface Guide). The BDOS is then called to perform the rename function. Note
again that there is no check to ensure the old file exists before the rename takes
place.

The GET and PUT macros shown in Figure 53e are similar in structure: both
accept a device or file identifier as the formal parameter DEV, and perform the
corresponding input or output function on that device. If the device is a simple
peripheral, the BDOS is called directly to perform the input or output funetion. If
instead, the device name was created by a FILE macro, the corresponding GET&FID
or PUT&FID subroutine is called to accomplish the input or output operation. Note
that the accumulator is preserved (PUSH PSW) upon output to a simple peripheral
within the PUT macro, while the save/restore sequence is performed within the PUT&FID
subroutine if the destination is a diskette file.

Figures 54a, 54b, and 54c show the full expansion of a segment of the case
conversion program of Figure 52 (using the "+M" assembly parameter). Figure 54a
shows the invoecation of FILE, followed by FILLFCB, again followed by FILLDEF. The
@DEF subroutine is included inline, and the FILLDEF macro is redefined to exclude
the subroutine. Upon completion of the FCB construction, the file parameters are
generated, as shown in Figure 54b, along with the beginning of the GETSOURCE
subroutine. Note that the conditional assembly ignores the portions of this FILE macro
expansion which are related to output files while including the machine code for the
input SOURCE file. In each case, the "&FID" labels result in names with the prefix
or suffix "SOURCE" in order to associate the generated labels with this particular
internal name. Figure 54c contains the end of the PUTSOURCE subroutine, followed
by the machine code which initializes the file control block fields and buffer pointer.
Upon completion of the FILE maero, the SOURCE file is ready for access. In particular,
each call to GETSOURCE reads one more character into the accumulator. Due to
the length of the expanded macro form, the remainder of the case translation program
is not shown.

In order to illustrate the facilities of the SEQIO macro library, two additional
programs are given. The first, called PRINT, formats the output from the macro
assembler for printing on the system line printer. The second, called MERGE, performs
a simple merge operation on two diskette files.

The PRINT program, shown in Figure 55, is executed under the console command
processor by typing

PRINT filename
where "filename" is the name of a previously assembled program. PRINT assumes that

there is a "PRN" file on the diskette, and possibly a "SYM" file on the same diskette
drive. The PRN file is first printed, with a form feed at the top of each 56 line

148

FILE INFILE,SOURCE,,1,,2008

+ LOCAL PSUB,MSG,PMSG
+ LOCAL PND,EOD,EOB,PNC
6801+= SOURCETYP EQU INFILE
+ FILLFCB SOURCE,,l,,2080,
+ LOCAL PFCB
PRO1+# ec SET 1
+ IRPC 2C,1
+ IF NOT (“&2C° = “1° OR “&?C" = "27)
+ ec SET %
+ ENDM
+ IF NOT ("1 = 1" OR_ "1" = "27)
+ ec SET 2
+ ENDM
+ IF Qec
+ IF NUL
poOEC+# ac SET 12
+ ELSE
+ ec SET 9
+ ENDIF
+ FILLDEF FCBSOURCE,(1-1)*16,@C
+ LOCAL PSUB
103+C3@F@1 JIMP 220009
+ @DEF:
0106+7E MOV A M
p107+12 STAX D
8198+23 INX H
2109+13 INX D
#10A+0D DCR C
£18B+C20601 JNZ @DEF
¢10E+C9 RET
+ ?2?700089:
+ FILLDEF MACRO ?FCB,?F,?L
+ LXI H,@TFCB+?F
+ LX1 D,?FCB
+ MVI C,?L
+ CALL @DEF
+ ENDM
+ FILLDEF FCBSOURCE, (1-1)*16,@C
210F+215C00 LXI H,@TFCB+(1-1) *16
£112+111D@1 LXI D, FCBSOURCE
0115+8EQC MVI c,ec
9117+CDB601 CALL @DEF
+ ENDM
+ ENDM
P11A+C344061 JMP 220008
811D+ o]} ec
+
RS @CNT SET 12-@C
+ IRPC ?FC,
+ IF @CNT=@ OR NUL ?FC
+ EXITM
+ ENDIF
+ DB "&2FC”
+ @CNT SET @CNT-1
+ ENDM
+ IF @CNT=8 OR NUL
+ EXITM
+ REPT @CNT
+ DB c T
+ ENDM
+ ENDM
+ ELSE
+ JIMP’ 270008
+ IF NUL
+ DB %
+ ELSE
+ DB T='AT+]
+ ENDIF
+ FILLNAM 1,8
+ FILLNAM ,3
+ ENDIF
f811D+= FCBSOURCE EQU $-12
8129+00 DB 3]
pl2A+ DS 20

Sample FILE Expansion Segment.

Figure 54a.

+

+
0000+#
2006+%

A+t

a788+4#
+

+
8370+%
0788+%

+

+

+

+
813E+7003
8780+=

+
8148+8007
+
gl42+
0006+#
8087+%

+

+

+

+

+
8144+C3B401

+4+++++

9147+2A4001
#14A+EB
014B+2A4201
B14E+7D
Bl4F+93
8158+7C
8151+9A
#152+DA9DA1
9155+210009
9158+224201
. +

#15B+EB
015C+2A46001
#15F+78B
9168+95
gl61+7A
#162+9C
9163+D28F01
0166+2A3EQL
#169+19
B16A+EB
@16B+0E1A
#16D+CD@A599
0179+111D41

+
0173+0E14

+

+

+
8175+CDB5208
8178+B7
0179+C28901
617C+118000
017F+234201
0182+19
8183+224201
0186+C35B01

IF
FILLNXT
@NXTB SET
@NXTD SET
FILLNXT
ENDM
ENDM
IF
@8BS SET
ELSE
@BS SET
ENDIF
iF
SOURCEBUF
@NXTB SET
ELSE
SOURCEBUF
ENDIF
SOURCEADR:
DW
SOURCESIZ
SOURCELEN:
DW
SOURCEPTR:
DS
@SOURCE
@NXTD SET
ENDIF
220008
IF
EXITM
ENDIF
JMP
IF
GETSOURCE:
ELSE
PUTSOURCE:
PUSH
ENDIF
LHLD
XCHG
LHLD
MOV
SuUB
MOV
SBB
Jc
LXI
SHLD
2200604:
XCHG
LHLD
MOV
SUB
MOV
SBB
JNC
LHLD
DAD
XCHG
MVI
CALL
LXI
IF
MVI
ELSE
MVI
ENDIF
CALL
ORA
INZ
LXI
LHLD
DAD
SHLD
JMP

150

SOURCETYP<=2

2
ALST+1
MACRO

2000+0<@SECT
@seCT

(2009 /@SECT) *@SECT

NUL

SET BUFFERS+@NXTB

@NXTB+@BS
SET

SOURCEBUF
EQU @Bs

@BS

2
SET @NXTD
@NXTD+1

ENDM
INFILE=3

270001
INFILE=1

PSW
SOURCELEN

SOURCEPTR
A,L

E

A,H

D

220087
H,8
SOURCEPTR

SOURCELEN
A,E
L .

,D

m P

220006
SOURCEADR
D

C,@DMA
@BDOS
D,FCBSOURCE
INFILE=1
C,@FRD

C,@FWR

aBDOS

A

2200805
D,@SECT
SOURCEPTR
D
SOURCEPTR
2?0004

Sample FILE Expansion Segment (Con't).

Figure 54b.

+ 220005:

+ IF INFILE=1
189+2A42081 LHLD SOURCEPTR
918C+224001 SHLD SOURCELEN

+ ELSE

+ LOCAL EMSG

+ MVI C,@MSG

+ LXI D,EMSG

+ CALL @BDOoS

+ POP PSW

+ JIMP FILERR

+ EMSG: DB CR,LF

+ DB “disk full: SOURCE’

+ DB ‘s’

+ ENDIP

+ ?2?0006:

@18F+118000 LXI D,@TBUF
9192+BE1A MVI C,@DMA
8194+CDO508 CALL @BDOS
0197+210606 LXI H,9
B819A+224201 SHLD SOURCEPTR

+ 220087:

#19D+EB XCHG

@19E+2A3EQL LHLD SOURCEADR
A1A1+19 DAD D

@1A2+EB XCHG

+ IF INFILE=1
P1A3+2A4001 LHLD SOURCELEN
#1A6+7D MOV aA,L
B81A7+B4 ORA H
@1A8+3El1A MVI A,EOF
#1AA+CS RZ
@1AB+1A LDAX D

+ ELSE

+ POP PSW

+ "STAX D

+ ENDIF
@1AC+2A4201 LHLD SOURCEPTR
A1AF+23 INX H
31B@+224201 SHLD SOURCEPTR
81B3+C9 RET

+ ?2?0001:

P1B4+AF XRA A
91B5+322901 STA FCBSOURCE+12
01B8+323D@1 BTA FCBSOURCE+37
01BB+218867 LXI H,SOURCESIZ
P1BE+224801 XHLD SOURCELEN

+ IF INFILE=1
81C1+224201 SHLD SOURCEPTR
91C4+0EQF MVI C,QOPN

+ ELSE

+ LXI H,0

+ SHLD SOURCEPTR

+ MVI C,@DEL

+ LXI D,FCBSOURCE

+ CALL @BDOS

+ MVI C,@MAK

+ ENDIF
f91C6+111D@a1 LXI D,FCBSOURCE
91C9+CDA509 CALL @BDOS
#1CC+3C INR A
@1CD+C2ECH1 JIN2Z 270083
#1D@+@EBY MVI C,@MsG
81D2+11DBG1 LXI D,?20082
81D5+CDP508 CALL @BDOS
91D8+C30000 JMP FILERR
81DB+@DOA 220002: DB CR,LF

+ iF INFILE=1
B1DD+6E6F20534F DB “no SOURCE file’

+ ELSE

+ DB ‘no dir space: SOURCE’

+ ENDIF
@1EB+24 DB s’

+ ?2700063:

+ ENDH

Sample FILE Expansion Segment (Con't).

Figure 54c.

page. If the SYM file exists, it is also printed using the same formatting. If the
files are sucessfully printed, they are both erased from the diskette.

Referring to Figure 55, the PRINT program begins by saving the console
processor's stack, with the intention of returning directly to the CCP, without a system
reboot. The input printer file is then defined with a FILE statement which specifies
the internal name PRINT, and obtains the file name from the console command line.
The file type, however, is set to PRN in this case. After performing an initial page
eject, the program loops between the PRCYC (print cycle) and ENDPR (end print)
labels by successively reading characters from the PRINT source, and writing to the
printer through the LISTING subroutine. On detecting an end of file character, control
transfers to the ENDPR label where the PRN file is erased from the diskette.

As shown on the left of Figure 55, the program then checks for the presence
of the SYM file by invoking the FILE macro with a SETFILE mode. This creates the
proper file control block for the input file with type SYM, but does not create buffers
nor does it open the file for access. Following the FILE macro, the DIRECT statement
performs a directory search and, if the file is not present, control transfers to the
ENDLST (end listing) label where execution terminates.

If the SYM file exists, the program proceeds to perform another page eject,
and then opens the SYM file for access. It should be noted that the third FILE macro
(Figure 55, left) accesses the SYM file using the internal name SYMBOL, but shares
the buffer areas of the PRINT file. This is possible since the PRINT file has been
erased at this point in the program and thus the buffers are available for use.

If the SYM file is present, the program loops between the SYCYLE (symbol
cycle) and ENDSY (end symbol) labels where characters are read from the SYMBOL
file and again sent to the printer through the LISTING subroutine. Upon detecting
the end of file, control passes to the ENDSY label where the SYM file is removed
from the diskette. If no errors occur, control eventually reaches the ENDLST label
where the printer page is ejected. The entry stack pointer is then retrieved from
OLDSP, and control returns to the console command processor, thus completing execution
of the PRINT program.

The next program, called MERGE, is somewhat more complicated. The purpose
of the MERGE program is to accept two file names as input, taking the general
command form

MERGE filename

where "filename" is the name of a master file, with assumed file type of MAS, as
well as an update name with assumed file type UPD. The files consist of text files
with varying length records, starting with a six character numeric "sequence number"
followed by textual material, and terminated with a carriage-return line-feed sequence.
The lines of information in the master and update files are assumed to be in ascending
numeric order according to their sequence numbers. The purpose of the MERGE
program is to read these two files and "shuffle" the records together to form a new
file consisting of numerically ascending sequence numbered lines.

Upon completion of the merge operation, the newly merged file becomes the
new master file: update records are properly interspersed within the new master file

152

ger

2100

0@ac
ge38

0100
0103
0164
8107

g10A

a1F2
A1F5S
g1F8
g1FA
81FD
2200

0203

020B
823A
0243

08246
0249

0326
8329
832B
032E
4331

8334

833C
A33F
09342
343

210000
39

22CFB3
31CF@3

CDB8AB3

FE1A

CAf382
CD5183
C3F501

CA3Co3

CDBAG3

FE1A

CA3483
CD5103
C32603

Cpsae3
2ACF03
F9
c9

ORG 1004
MACLIB SEQIO ;SEQUENTIAL I/0 LIB

H PRINT THE X.PRN AND X.SYM FILES ON THE
H LINE PRINTER WITH PAGE FORMATTING,
’
FF EQU ACH ;FORM FEED
MAXLINE EQU 56 :MAX LINES PER PAGE
: SAVE THE ENTRY STACK POINTER
LXI H,0
DAD SP sENTRY SP TO HL
SHLD OLDSP sSAVE ENTRY SP
LXI SP,STACK;SET TO LOCAL STACK
’
FILE INFILE,PRINT,,1,PRN,1008
H READ THE PRINT FILE UNTIL END OF FILE
CALL EJECT ;TOP OF PAGE
PRCYC: GET PRINT
CpI EOF
Jz ENDPR sSKIP IF END FILE
CALL LISTING :WRITE TO LISTING DEV
JMp PRCYC
ENDPR: ;END OF PRINT FILE, DELETE IT
ERASE PRINT
H .
H CHECK FOR THE OPTIONAL ,SYM FILE
FILE SETFILE,SYMCHK,,1,SYM
DIRECT SYMCHK ;IS IT THERE?
Jz ENDLST ;SKIP SYMBOL IF SO
’
H SYMBOL FILE IS PRESENT, PAGE EJECT
CALL EJECT ;TO TOP OF PAGE
FILE INFILE,SYMBOL,,1,SYM,16800, PRINTBUF
SYCYCLE:
GET SYMBOL
CPI EOF
Jz ENDSY ;SKIP TO END ON EOF
CALL LISTING ;SEND TO PRINTER
JMP SYCYCLE ;FOR ANOTHER CHAR

éNDSY: ERASE SYMBOL ;ERASE ,SYM FILE

éNDLST: tEND OF LISTING - EJECT AND RETURN

~

CALL EJECT

LHLD OLDSP sENTRY STACK POINTER
SPHL sRESTORE STACK POINTER
RET :TO CCp

0344
0834C
034F
83580

8351
8353
8356
8357
B835A
835D
835F
8361
0364
8365
0368
8368
836C
836D
B836F
8370
0372
0374
8376

8379
6378
B37E
9381
2383
0386
2387
p38A
838C
@838F
p3CF

73Dl
93D2

23D3

21p2083
34
Cc9

FEBC
C25F@3
AF
32p1@3
32D2a3
3ERC
FEBA
C27403
AF
32p2@43
21D103
34

7E
FE38
D8
3600
3E0C
FE®9
€28703

3E20
CD4493
3AD203
E607
C27903

Cc9

C34403

3E8C
C34403

H UTILITY SUBROUTINES

LISTOUT:

$SEND A SINGLE CHARACTER TO THE PRINTER

PUT LST

LXI H,CHARC ;CHARACTER COUNTER

INR M ; INCREMENT POSITION

RET
H
LISTING:

;WRITE CHARACTER FROM REG-A TO LIST DEVICE

crl FF :FORM FEED?

JINZ LIST@

XRA A tCLEAR LINE COUNT

-STA -LINEC-

STA CHARC ;CLEAR TAB POSITION

MVI A,FF ;RESTORE FORM FEED
LIST#: CPI LF ;END OF LINE?

JINZ LIST1

XRA A ;CLEAR TAB POSITION

STA CHARC

LXI H,LINEC ;LINE COUNTER

INR M ; INCREMENTED

MoV AM ;CHECK FOR END OF PAGE

cpI MAXLINE ;LINE OVERFLOW?

RC ;RETURN IF NOT

MVI M,0 ;CLEAR LINEC

MVI A,FF $SEND PAGE EJECT
LIST1: CPI TAB ;TAB CHARACTER?

JINZ LIST2
: FEED BLANKS TO NEXT TAB POSITION
TABOUT: MVI A,”

CALL LISTOUT

LDA CHARC ;CHARACTER POSITION

ANI 78 ;MOD 8

JINZ TABOUT ;FOR ANOTHER BLANK
: ON CHARACTER BOUNDARY

RET
LIST2: ;SIMPLE CHARACTER

JMP LISTOUT ;PRINT AND RETURN
’
EJECT: ;PERFORM PAGE EJECT

MVI A,FF ;FORM FEED

JMP LISTOUT
’
: DATA AREAS

DS 64 $32 LEVEL STACK
STACK:
OLDSP: DS 2 ;ENTRY STACK POINTER
LINEC: DS 1 ;LINE COUNTER
CHARC: DS 1 ;CHARACTER COUNTER
’
BUFFERS:

END

Figure 55. Program for Line Printer Page Formatting.

according to numeric order, and any update record which matches a master record
results in replacement of the master record by the update record. Upon successful
completion of the merge operation, the original master file is renamed to have the
extension MBK (master back-up), the original update file is renamed to the type UBK
(update back-up), and the newly created file becomes the new MAS file. In this way,
the operator can return to the backup files in case of error so that the source data
is not destroyed.

The MERGE program is shown in Figures 56a, 56b, and 56c. Utility subroutines
are listed first in Figure 56a, including the DIGIT subroutine which tests for valid
decimal digits in sequence numbers. The IRPC which follows the DIGIT subroutine
generates two distinct subroutines, called READU and READM for reading the update
and master files, respectively. The generation of these two subroutines has been
suppressed in the listing (see the $+PRINT and $-PRINT inline parameters) to keep the
listing short. In general, these two READ subroutines fill their respective sequence
number buffers from the input source so that the merge operation can take place
based upon the current sequence number values. Upon detecting an end of file, the
sequence number is set to 0FFH as a signal that the input source has been exhausted.

The utility subroutines shown in Figure 56b include SEQERR, WRITESEQ, and
COMPARE. The SEQERR subroutine reports an error condition when a non numeric
character is detected in the sequence number field. Although the error reporting is
somewhat spartan, sequence errors are easily found using the TYPE command on the
master or update file. The WRITESEQ subroutine sends the buffered sequence number
addressed by HL to the new file. WRITESEQ is called whenever the source for the
next record has been determined. The COMPARE subroutine is used to determine the
next source record (master or update) by comparing the buffered sequence numbers
from left to right while they are equal. If a mismatch occurs in the sequence number
scan, COMPARE returns with the carry flag and zero flag set to indicate which file
holds the next source record.

Execution of the MERGE program begins following the START label in Figure
56b where the update, master, and new files are defined. The UFILE and MFILE
sources are defined with the same buffer sizes (as determined by the earlier USIZE
and MSIZE equates). Both take their primary name from the default value specified
at the CCP level by the operator. The new file is created as a temporary, with name
TEMP and type $$$, but will be altered upon completion of the program to become
the master file.

The merge operation proceeds in Figure 56b as follows. First the READU and
READM subroutines are called to fill the sequence number buffers. The loop between
MERGE and ENDMERGE in Figure 56¢ is then repetitively executed until the merge
is complete. On each iteration of this loop, the COMPARE subroutine is called to
compare the buffered sequence numbers. If the update sequence number is smaller
than the master sequence number, it is moved to the new file and data is copied from
the update file to the new file until the end of the current record is encountered.
Upon completion of the copy operation, the READU subroutine is called again to refill
the update sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers, control

transfers to the SAME label in Figure 56c where master record is deleted. Alternatively,
the COMPARE subroutine will cause control to transfer to the MASLOW label when

154

0100

00800
0006
03E8
f3ES8
97D0

plog
8163

106
6laes8
2199
010B
g1ac

918D
011E

~e

;
B

= Q0T EQU #0080H :SYSTEM REBOOT
= SEQSIZ EQU 6 ;SIZE OF THE SEQUENCE #°S
= USIZE EQU 19000 ;UPDATE BUFFER SIZE
= MSIZE EQU USIZE ;MASTER BUFFER SIZE
= NSIZE EQU USIZE+MSIZE sNEW BUFF SIZE
31ECHO5 LXI SP,STACK
c3C841 JMP START +TO PERFORM THE MERGE
H UTILITY SUBROUTINES
DIGIT: ;TEST ACCUMULATOR FOR VALID DIGIT
; RETURN WITH CARRY SET IF INVALID
FE30 CpPI ‘8”
D8 RC sCARRY IF BELOW @
FE3A CpPI ‘9°+1 ;CARRY IF BELOW 16
3F CMC ;NO CARRY IF BELOW 14
Cc9 RET
H ERROR MESSAGES FOR READU AND READM
SEQERRU:
7578646174 DB ‘update seq error’,®
SEQERRM:
6D61737465 DB ‘master seq error’,@
H GENERATE READU AND READM SUBROUTINES
IRPC ?2F,UM
H INLINE SEQUENCE NUMBER BUFFER
?F&SEQ: DB [} s TO START PROCESSING
DS SEQSIZ-1;REMAINING SPACE FOR SEQ#
READ&?F:
LXI H,?F&SEQ ;s SEQUENCE BUFFER
MOV A,M ;IS IT FF (END FILE)?
“IRR A SFF BECOMES 07
R2 sSKIP THE READ
: READ THE. SEQUENCE NUMBER PORTION
MVI C,SEQSIZ ;SIZE OF SEQUENCE #
RD&?F&0:
PUSH H ;SAVE NEXT TO FILL
PUSH B ;SAVE NUMBER COUNT
GET ?F&FILE sREAD THE FILE
POP B ;s RECALL COUNT
POP H ;s RECALL NEXT FILL
CPI EOF sEND FILE?
JZ EOF&?F
CALL DIGIT ;sASCII DIGIT?
LXI D,SEQERR&?F sERROR MESSAGE
JC SEQERR ;s SEQUENCE ERROR
H NO SEQUENCE ERROR, FILL NEXT DIGIT POSITION
MOV M,A
INX H sNEXT TO FILL
DCR C ;s COUNT=COUNT=-1
JNZ RD&?F&8 s FOR ANOTHER DIGIT
RET ;sEND OF FILL
EOF&?F: +END OF FILE, SET SEQ# TO 4FFH
MVI A,0FFH
STA ?F&SEQ +SEQ4 SET TO FF
RET
ENDM

~

ORG

100H

FILE MERGE PROGRAM

MACLIB SEQIO

;SEQUENTIAL FILE I/0

Figure 56a.

File Merge Program.

155

018F
01990
a191

9194
8195
819D
@19E
A19F

B81A2
81lA4
A1lAS
a1A6
01A7
f1A8
01AB
81lAC
A1AD
81AE
9181

182
81B5
81B8
91BA
9IBB
018C
81BD

A1BE
91Co
A1C1
g1C2
81C3
B8lc4
a1cy

81C8

92880

938C

247D
#4890

0483
0486
2489

848C
048F

ia
B7
CAp@4@a

D5

D1l
13
C38F91

)13
7E
23
ES
C5

Cl
El
8D
C2A401
Cc9

112F01
215F01
GEQ6
1A

BE

D8

Cco

FEFF
cs

13

23

8D
C2BAg1
c9

CD3501
CD65081

CDB201
CAADO4
D2C824

212F01
CDA201

SEQERR:

r

WRITE ERROR MESSAGE FROM (DE) TIL 60
LDAX D

ORA A

JZ BOOT
H OTHERWISE, MORE TO PRINT

PUSH D

PUT CON sWRITE TO CONSOLE

POP D

INX D

JMP SEQERR ;FOR MORE CHARS
WRITESEQ:

WRITO:

;WRITE THE SEQUENCE NUMBER GIVEN BY HL
;TO THE NEW FILE

MVI C,SEQS1z ;SIZE OF SEQ#
MOV A,M
INX H i ;NEXT TO GET
PUSH H ;SAVE NEXT ADDR
PUSH B ;SAVE COUNT
PUT NEW ;WRITE TO NEW
POP B ;RECALL COUNT

.~ POP H ;RECALL ADDRESS
DCR C s COUNT=COUNT-1
JNZ WRITO ;s FOR ANOTHER CHAR
RET

COMPARE THE UPDATE SEQUENCE NUMBER WITH
THE MASTER SEQUENCE NUMBER, SET:

CARRY IF UPDATE < MASTER

ZERO IF UPDATE = MASTER

-ZERO IF UPDATE > MASTER

OMPARE:
LXI D,USEQ ;UPDATE SEQ#
LXI H,MSEQ ;MASTER SEQ#
MVI C,SEQSIZ ; SEQUENCE SIZE
CLOOP: LDAX D ;UPDATE DIGIT
THD M ““UPDATE-MASTER
RC ;CARRY IF LESS
RNZ A ;NZERO IF GTR
: ITEMS ARE THE SAME, CHECK FOR 9FFH
CPI gFFH ;END OF FILE
RZ 3 _ :BOTH ARE. @FFH
INX D ;NEXT UPDATE
INX H ;NEXT MASTER
DCR c ;COUNT DOWN
INZ CLOOP . ;FOR ANOTHER DIGIT
RET ;2ERO FLAG IF EQUAL
; v
; MAIN PROGRAM STARTS HERE
START:

MERGE:

~e we

~

;UPDATE FILE, WITH ASSUMED ,UPD TYPE
FILE INFILE,UFILE,,1,UPD,USIZE

i
sMASTER FILE, WITH ASSUMED TYPE ,MAX
FILE INFILE,MFILE,,1,MAS,MSIZE

iNEW FILE, TEMP.S (RENAMED UPON EOF’S)
FILE OUTFILE,NEW,,TEMP,$$$,NSIZE

CALL READU ;INITIALIZE UPDATE RECORD
CALL READM ;INITIALIZE MASTER RECORD
sMAIN MERGING LOOP) T

CALL COMPARE ;CARRY SET IF UPDATE<MASTER
Jz SAME ;Z2ERO IF IDENTICAL SEQ#

JNC MASLOW ;MASTER LOW?

UPDATE SEQUENCE NUMBER IS LOW
LXI H,USEQ ;COPY SEQUENCE NUMBER
CALL WRITESEQ;WRITE THE SEQUENCE #

Figure 56b. File Merge Program (Con't).

156

ULOOP: ;UPDATE RECORD TO NEW FILE

2492 GET UFILE ;CHARACTER TO A
0495 F5 PUSH PSW ;SAVE IT
9496 PUT NEW ;OUTPUT TO NEW FILE
8499 F1 POP PSW ;RECALL CHARACTER
049A FE@A cpI LF ;LINE FEED?
949C CAA704 Jz ° ENDUP
P49F FE1A CPI EOF
04A1 CAA764 Jz ENDUP
04A4 C39204 JMP ULOOP ;CYCLE IF NOT END REC
@4A7 CD3501 ENDUP: CALL READU ;READ ANOTHER SEQ#
@4AA C38364 JMP MERGE ;FOR ANOTHER RECORD
SAME: ;SEQUENCE NUMBERS ARE IDENTICAL
@4AD 3ASFO1 LDA MSEQ ;CHECK FOR @FFH
#4B@ FEFF CPI 8FFH
@4B2 CAE994 J2 ENDMERGE
; NOT THE SAME, DELETE MASTER RECORD
84B5 DELMAS: GET MFILE
@4B8 FElA cpI EOF ;END OF FILE?
@4BA CAC204 Jz GETMAS ;GET SEQ# FF
04BD FEOA cpI LF
@4BF C2B504 JNZ DELMAS ;FOR ANOTHER CHAR
04C2 CD6501 GETMAS: CALL READM ;TO NEXT RECORD
94CS C38304 JMP MERGE ;FOR ANOTHER
’
MASLOW: ;MASTER SEQUENCE NUMBER IS LOW
04C8 215F@1 LXI H,MSEQ
#4CB CDA201 CALL WRITESEQ; SEQUENCE NUMBER
04CE MLOOP: GET MFILE
p4D1 F5 PUSH PSW ;SAVE MASTER CHARATTER
84D2 PUT NEW
84D5 F1 POP PSW ;LF OR EOF?
@4D6 PEGA » CPI LF .
94D8 CAE304 ' Jz ENDMS
04DB FE1A CpI EOF
@4DD CAE304 J2Z ENDMS
94E@ C3CE04 JMP MLCOP ;MORE TO COPY
’
@4E3 CD6501 ENDMS: CALL READM ;READ NEW SEQ NUMBER
04E6 C383084 JMP MERGE ;TO MERGE ANOTHER
.
ENDMERGE :
;CLOSE ALL FILES FOR RENAMING
@4E9 : FINIS <UFILE,MFILE,NEW>
;OLD MASTER FILE FOR ERASE/RENAME
8529 FILE SETFILE,OLDMAS,,1,MBK
8558 ERASE OLDMAS
;RENAME MASTER TO .MBK
65680 RENAME OLDMAS,MFILE
’
;OLD UPDATE FILE FOR ERASE/RENAME
8580 FILE SETFILE,OLDUPD,,1,UBK
@5AF ERASE OLDUPD
' ;RENAME UPDATE TO ,UBK
9587 RENAME OLDUPD,UFILE
;RENAME NEW TO MASTER FILE
a5Ce RENAME MPILE,NEW
@5C9 C30000 JMp BOOT
#5CC DS 32 ;16 LEVEL STACK
STACK:
: BUFFER AREA
BUFFERS:
146C = MEMSIZE - EQU BUFFERS+@NXTB ;END OF MEMORY
@5EC ~ END '

Figure 56c. File Merge Program (Con't).

157

the master sequence number is low. In this case, the master sequence number and
data record are copied to the new file in exactly the same manner as an update
record.

Upon completion of the merge operation (end of file detected in both the update
and master files), control transfers to the ENDMERGE label where the files are closed
and renamed. Following the FINIS statement, the previous MBK file (possibly from
an earlier execution) is erased so that the current master (MAS) can be renamed to
the master backup (MBK). Similarly, any previous UBK file is erased, and the current
update file is renamed to become the new UBK file. Finally, the new file (TEMP.$$$)
is renamed to become the new master file (MAS) before execution is stopped.

Figure 57 shows an example of the files which are involved in a typical merge
operation. In this application, the sequence numbers control the ordering of a list of
names which is updated periodically. The NAMES.MAS file is the original master,
which will be updated by merging the NAMES.UPD file, also shown in the figure. The
merge operation is initiated by typing

MERGE NAMES
and, upon completion, produces the new NAMES.MAS shown to the right in Figure 57.
The SEQIO library is typical of the interface one can construct to provide a
higher-level interface between assembly language programs and their operating environ-
ment. Although the library shown here performs only simple sequential file input/output,

one can construct more comprehesive libraries for random access based upon this
library.

158

6ST

NAMES.MAS

000108 ABERCROMBIE, SIDNEY

@@020¢ CARLSBAD, YOLANDA new NAMES.MAS
800300 EGGBERT, EBENIZER P0@108 ABERCROMBIE, SIDNEY
00409 GRAVELPAUGH, HORTENSE #00110 BERNSWEIGER, ALFRED
#PP5090 ISENEARS, IGNATZ 860200 CRUENCE, CLARENCE
900608 KRABNATZ, TILLY 900210 DENNINGSKI, HUBERT
#00700 MILLYWATZ, RICARDO 800300 EGGBERT, EBENIZER
p90800 OPFATZ, ADOLPHO 000330 FINKLESTEIN, FRANK
900900 QUAGMIRE, DONALD 990400 GRAVELPAUGH, HORTENSE
001008 TWITSWEET, LADNER #0041¢ HILLSENFIELDS, RANDOLPH
$01094 VERANDA, VERONICA 00589 ISENEARS, IGNATZ
901100 WILLOWANDER, PRATNEY #00540 JOLLYFELLOW, JUNE
901200 YUPPGANDER, MANNY 00600 KRABNATZ, TILLY

$9062¢0 LAMBAA, WILLY
P90700 MILLYWATZ, RICARDO
P0B718 NEEBEND, ASTRID
800808 OPFATZ, ADOLPHO
P90820 PRATTWITZ, HEADY
PP0900 QUAGMIRE, DONALD
P90930 RUBBLEMEYER, RUNYON

NAMES.UPD 800960 SWIGSTITTS, ULYSSIS
891000 TWITSWEET, LADNER
@0@11¢ BERNSWEIGER, ALFRED 901810 UMPLANDER, XAVIER
800208 CRUENCE, CLARENCE | @01090 VERANDA, VERONICA
@00219 DENNINGSKI, HUBERT 801100 WILLOWANDER, PRATNEY
#0033¢ FINKLESTEIN, FRANK 801110 XYLOPH, ERHARDT
#00410 HILLSENFIELDS, RANDOLPH 901200 YUPPGANDER, MANNY
390548 JOLLYFELLOW, JUNE 801210 ZEPLIPPS, EGGERWORTZ

900620 LAMBAA, WILLY

@0@9710 NEEBEND, ASTRID
#0@820 PRATTWITZ, HEADY
#P0930 RUBBLEMEYER, RUNYON
PPP960 SWIGSTITTS, ULYSSIS
801019 UMPLANDER, XAVIER
#91110 XYLOPH, ERHARDT
901219 ZEPLIPPS, EGGERWORTZ

Figure 57. Sample MERGE Disk Files.

10. ASSEMBLY PARAMETERS

Assembly parameters can be included when the assembly begins to control various
assembler functions. In general, the macro assembler is initiated with the name of
the source file, followed by the assembly parameters, indicated by a preceding dollar
symbol ($). The parameters are indicated by single controls which denote particular
functions. The letter or digit shown to the left below corresponds to the function
shown to the right.

controls the source disk for the .ASM file

controls the destination of the .HEX machine code file
controls the source disk for the .LIB files (see MACLIB)
controls MACRO listings in the .PRN file

controls the destination of the .PRN file containing the listing
controls the listing of LOCAL symbols)

controls the generation and destination of the .SYM file
controls pass 1 listing

~no N>

Any or all of the above parameters can be included. In the case of the A, H,
L, and S parameters, they are followed by the drive name to obtain or receive the
data, where the drives are labelled A, B, . . . , Z. By convention, the X disk
corresponds to the user's console, the P disk corresponds to the system line printer
(logical LIST device), and the Z disk corresponds to a null file which is not recorded.
The following is a valid assembly parameter list following the MAC command and
source file name

$PB AA HB SX

which directs the .PRN file to disk B, reads the .ASM file from disk A, directs the
.HEX file to the B disk, and sends the .SYM file to the user's console. Blanks are
optional between parameter specifications.

The parameters L, S, M, Q, and 1 can be preceded by either + or - symbols
which enable or disable their respective functions. These functions are listed below

+L list the input lines read from the macro library (see MACLIB)
-L suppress listing of the maero library (default value)

+S append the .SYM to the end of the .PRN output

-S suppress the generation of the sorted symbol table

+M list all macro lines as they are processed during assembly
-M suppress all macro lines as they are read during assembly
*M list only "hex" generated by macro expansions

+Q list all LOCAL symbols in the symbol list

-Q suppress all LOCAL symbols in the symbol list

+1 produce a listing file on the first pass (for macro debugging)
-1 suppress listing on pass 1 (default)

The following is an example of a valid assembly parameter list- which uses a
number of the parameter specifications given above:

$PB+S-M HB

160

In this case, the .PRN file is sent to disk B with the symbol list appended (no .SYM
file is created), all macro generations are suppressed, and the .HEX file is sent to
- disk B with the .PRN file.

Note that the M parameter can be optionally preceded by the "*" symbol which
causes the assembler to list only macro generations which produce machine code, and
is used to suppress the listing of the instructions which are produced (i.e., all positions
beyond the hex fields are not listed). Under normal operation, the macro assembler
lists only generations which produce machine code, along with the generated line.

Given that disk d is the currently logged drive, the maero assembler defaults
these parameters as follows: the .ASM and .LIB files are assumed to originate on
drive d, the .HEX, .PRN, and .SYM files are sent to drive d, a symbol table is generated
with LOCAL symbols suppressed (i.e., all symbols beginning with "??" are not listed),
and macro lines which generate machine code are listed. Note, however, that the
filename following the MAC command can be preceded by a drive name, in which case
the P parameter overrides the drive name, if supplied. Whenever a parameter is
repeated in the assembly parameter specification, the last value is always assumed.
Valid assembly statements are shown below, assuming the file to be assembled is called
"sample."

MAC sample $PX+S-M

assembles the file sample.ASM with listing to the console, symbols at the console, and
no listing of generated macros.

MAC A:sample $+S -m+q

assembles sample.ASM from disk A, creating sample.PRN (with appended symbols) on
the currently logged drive, suppressing generated macros, and listing symbols which
begin with the characters "??" in addition to the normally listed symbols.

MAC sample

assembles sample.ASM from the currently logged drive, creating sample.PRN along
with sample.SYM (containing the symbol table) and sample.HEX which holds the Intel
format "hex" file in ASCII form.

MAC sample $AB HA PB +Q +S +L *M

assembles the sample.ASM file from drive B, produces the file sample.HEX on drive
A, with the sample.PRN file on drive B. The symbol table includes ?? symbols, the
symbol table is placed at the end of the .PRN file on drive B, the .LIB files are listed
with the .PRN file as the .LIB files are read, and the instructions which correspond
to generated macro lines are not included (although generated machine code is listed).

In addition to the parameters shown above, the programmer can intersperse
controls throughout the assembly language source or library files. Interspersed controls
are denoted by a "$" in the first column of the input line, where the form shown to
the left below corresponds to the action given to the right.

161

$-PRINT stops the output listing by discarding formatted lines
$+PRINT enables the output printing when previously disabled
$-MACRO disables generated macro lines, as in "-M" above
$+MACRO enables full macro trace, as in "+M" above
$*MACRO enables partial macro trace, as in "*M" above

Since MAC allows each line to be optionally prefixed by a line number, the "$" control
can be included directly following this line number, if desired.

162

11. DEBUGGING MACROS

In completing the discussion of the macro assembler, it is worthwhile considering
common debugging practices used in developing macros and macro libraries. One
technique, called "iterative improvement," is often used in the design of programs, and
is most useful in building macros. The basic idea of iterative improvement is that a
small portion of the overall macro set is first implemented and tested before continuing
to more complicated macros. In this way, errors can be isolated at each step as the
macro evolve., Further, if errors occur in the macro generations after a small portion
of the macro set has been improved, it is most likely the case that the error is being
caused by the macros which were changed.

In the case of the Hornblower Highway System macro libraries, for example,
iterative improvement was used to evolved the final macro library. In particular, only
the simplest macros were first implemented, including the SETLITE, TIMER, and RETRY
macros (see Section 10.1). Debugging facilities were then added to these macros so
that the programs could be traced at the console. Upon successful testing of the
basic macro facilities, the PUSH?, CLOCK?, and TREAD? macros where individually
written, added, and tested, resulting in the final macro library.

At each step, the programmer can use the various assembly parameters to
control the debugging information. If the macro generations are not producing the
proper machine code, it may be necessary to obtain a full trace, using the "+M" option
when MAC is started. If the program produces too much output with the full trace
enabled, the programmer can use the "$+MACRO" and "$-MACRO" commands inter-
spersed throughout the assembly language source program, resulting in full macro
generation traces only in the regions selected for debugging consideration.

If macro generation errors are caused by macro libraries, the programmer can
use the "+L" parameter when MAC is started to cause the libraries to be included in
the listing as they are read.

As a final consideration, it may be necessary to enable the first pass listing of
the assembly language using the "+1" parameter. In this case, MAC will list the
program as it is being read on the first pass as well as the second pass. Note,
however, that the listing will contain spurious error messages on this pass which may
disappear on the second pass. The principal purpose of the first pass listing parameter
is to allow the programmer to view the macro generations on the two successive
expansion passes to ensure that the assembler is processing the program in the same
way in both cases.

If a particular macro expands improperly, and the source of the error is not
evident after examining various traces, it may be necessary to remove the offending
macro from the program and create an isolated smaller test case where the error is
reproduced. Full traces can then be examined to determine the source of the error
and, after fixing the macro, it can be replaced in the larger program and retested.

163

12. SYMBOL STORAGE REQUIREMENTS

The maximum program size which can be assembled by MAC is determined only
by the symbol table storage requirements for the program. The symbol table itself
occupies the region above the macro assembler in memory, up to the base of the
CP/M operating system. Thus, the size of the symbol table depends upon the size of
the current MAC version (approximately 12K program and data, plus 2.5K for 1/0
buffers) and the size of the user's CP/M configuration. In any case, the symbol table
size is dynamically determined by MAC upon startup, and fills as symbols are en-
countered. In order to provide some insight regarding storage requirements, the basic
item size for identifiers and macros is given below.

A name used as a program label, data label, or variable in a SET or EQUATE
requires

N=L+5
bytes, where L is the length of the identifier name. Thus, the statement
PORTVAL EQU 37FH
makes an entry into the symbol table which occupies
N=7+5 =12 bytes

of symbol table space. Recall that LOCAL symbols take the form ??nnnn which
generates a name of length L = 6.

Macro storage is somewhat more complicated to compute. The general form
is given by

M=L+7+H+T

where L is the macro name length, H is the parameter header storage requirement,
and T is the macro text storage requirement, computed as

H=P1+P2+...+Pn+n

where P. is the length of the ith parameter name. The text length T is the number
of characters in the macro body, including tab and end of line characters. Reserved
symbols, however, are reduced to a single byte, instead of their multi-character
representations. The jump, call, and return on condition operators, however, require
their full character representations. Comments starting with double semicolon are not
included in the character count. In fact, the comment line is "backscanned" to remove
preceding tab or blank characters in this case. For example, the macro

LOADR MACRO REG,ALPHA ;FILL REGISTER crlf
MVI REG,'&ALPHA' sDATA crlf
ENDM crif

contains a macro header, followed by two macro lines, where each line is written with
tab characters (rather than spaces) and terminated by carriage-return line-feeds (erif's).

164

In this case, the macro name length (LOADR) is five characters (L = 5), and
the parameter name lengths are three characters (REG) and five characters (ALPHA),
resulting in the parameter header storage requirement of

H=P1+P2+2=3+5+2=10bytes
The first macro line contains a leading tab (one byte), the MVI instruction (reduced
to one byte), another tab character (one byte), the operands REG,'&ALPHA' (twelve
characters), and the end of line (two characters) for a total of seventeen bytes. Note
that the comment, with the preceding tab, is removed from the line. The second line
contains a tab (one byte), ENDM (one byte), and end of line (two characters) for a
total of four bytes. Summing the textual characters, the total is T = 21 bytes. As
a result, the total macro storage for LOADP is

M=L+7+H+T=5+7+10+ 21 =43 bytes

No permanent storage is required for REPT's, IRPC's, or IRP's, although temporary
storage in the symbol table is used while the groups are actively iterating. In particular,
the characters contained within the group bounds (from the header to the corresponding
ENDM) are stored in the symbol table in their literal form, with no reduction of
reserved symbols to single bytes. Upon completion of the iteration, the storage is
returned for other purposes. Similarly, active parameters for macro expansions require
temporary storage in the symbol table which is returned upon completion of the macro
expansion.

In any case, a symbol table overflow message will result if the total amount
of free symbol table space is used up. As mentioned previously, the user can regenerate
the CP/M system, up to the maximum memory space of the 8080 processor, to increase
the symbol table area. Note that the "percentage" of symbol table utilization is always
printed at the console at the end of the assembly. The form of the printout is

0hhH USE FACTOR

where hh is a hexadecimal value in the range 00 to FF, where 00 results from a near
empty table, and FF is produced for a nearly full table. The value 080H, for example,
is printed when the symbol table is half full. The programmer should keep note of
the use factor as a particular program is cCeveloped in order to guage the relative
amount of free space as the program is enhanced.

In many of the examples shown in this manual, macros include inline subroutines
which are generated at the first invocation and called upon subsequent invocations (see
the TYPEOUT macro in Figure 10, for example). These subroutines can be included
in the mainline program to reduce symbol table storage requirements, if necessary.
In this case, the subroutines are assumed to exist when the macro is invoked the first
time, and thus are not generated by the macro.

165

13. ERROR MESSAGES

When errors occur within the assembly language program, they are listed as
single character flags in the leftmost position of the source listing. The line in error
is also echoed at the console so that the source listing need not be examined to
determine if errors are present. The single character error codes are:

B Balance error: macro doesn't terminate properly, or conditional assembly
operation is ill-formed.

C Comma error: expression was encountered, but not delimited properly
from the next item by a comma.

D Data error: element in a data statement (DB or DW) cannot be placed
in the specified data area.

E Expression error: expression is ill-formed and cannot be computed at
assembly time.

1 Invalid character error: a non graphic character has been found in the
line (not a carriage return, line feed, tab, or end of file); re-edit the file, delete the
line with the I error, and retype the line.

) L Label error: label cannot appear in this context ('may be a duplicate
label).

M Macro overflow error: internal macro expansion table overflow; may be
due to too many nested invocations or infinite recursion.

N Not implemented error: features which will appear in future MAC versions
(e.g., relocation) are recognized, but flagged in this version.

O Overflow error: expression is too complicated (i.e., too many pending
operators), string is too long, or too many successive substitutions of a formal parameter
by its actual value in a macro expansion. This error will also occur if the number
of LOCAL labels exceeds 9999,

. P Phase error: label does not have the same value on two subsequent passes
through the program, or the order of macro definition differs between two successive
passes; may be due to MACLIB which follows a mainline macro (if so, move the
MACLIB to the top of the program).

R Register error: the value specified as a register is not compatible with
the operation code.

S Statement error: the fields of this statement are ill-formed and cannot
be processed properly; may be due to invalid characters or delimiters which are out
of place.

A Value error: operand encountered in an expression is improperly formed;
may be due to delimiter out of place or non-numeric operand.

166

Several error messages are printed at the console indicating terminal error
conditions which abort the MAC execution. Whenever possible, the disk drive name,
followed by .the relevant file name is printed with the message.

NO SOURCE FILE PRESENT: The source program file (.ASM) following the
MAC command cannot be found on the specified diskette. Use the DIR command in
the CCP to locate the source file.

NO DIRECTORY SPACE: The diskette directory is full. Use the ERA command
of the CCP to remove files which you do not need. There are often superfluous .HEX,
.PRN, and .SYM files which can be removed.

SOURCE FILE NAME ERROR: The form of the source file name is invalid, or
not specified. The command form must be:

MAC filename $assembly parameters

where the "filename" is the (up to eight character) primary name of the source file,
with an assumed file type of ".ASM" (which is not specified).

SOURCE FILE READ ERROR: The source file cannot be read properly by the
macro assembler. Use the CCP TYPE command to display the file contents at the
console.

OUTPUT FILE WRITE ERROR: An output file cannot be written properly,
probably due to a full diskette. As in the directory full error above, use the CCP
commands to erase unnecessary files from the diskette.

CANNOT CLOSE FILE: An output file cannot be closed. The diskette may be
write protected. : '

UNBALANCED MACRO LIBRARY: A MACRO definition was started within a
macro library, but the end of file was found in the library before the balancing ENDM.
was encountered. Examine the macro library using the TYPE command of the CCP,
or use the "+L" assembly parameter, to ensure that the library is properly balanced.

INVALID PARAMETER: An invalid assembly parameter was found in the input
line. The assembly parameters are printed at the console up to the point of the error.

167

Appendix

8080 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

op op op op op op

CODE | MNEMONIC |CODE| MNEMONIC |CODE| MNEMONIC || cope| MNEMONIC |cODE| MNEMONIC. |CODE| MNEMONIC
00 | NOP 2B |DCX H 56 MOV DM 81 |ADD C AC [XRA H D7 |RST 2
01 [LXI BD16| 2C [INR L 57 |MOV DA 82 | ADD D AD [XRA L D8 |RC
02 | STAX B 2D |DCR L 58 |MOV EB 83 | ADD E AE |XRA M D9 (| ---
03 |INX B 2E |MvI LD8 59 [MOV EC 84 | ADD H AF [XRA A DA {JC Adr
04 [INR B 2F |CMA 5A [MOV ED 85 | ADD L BO [ORA B DB | IN D8
05 |[DCR B 30 | --- 58 [MOV EE 86 |ADD M Bt |ORA C DC |CC Adr
06 | MVI B,D8 31 |LXI SPD1§ 5C |MOV EH 87 | ADD A B2 [ORA D DD| ---
07 | RLC 32 | STA Adr 50 |[MOV E,L 88 | ADC B B3 |ORA E DE | SBI D8
08 | --- 33 |INX SP 5E |[MOV EM 89 |ADC C B4 |ORA H DF |RST 3
09 |DAD B 34 |INR M 5F |MOV EA 8A | ADC D B5 |ORA L EO0 | RPO
0A | LDAX B 35 |DCR M 60 [MOV H,B 88 | ADC E B6 |[ORA M E1 (POP H
0B |DCX B 36 |MVI MD8 | 61 MOV HC 8C | ADC H B7 |ORA A E2 |UPO Adr
OC|{INR C 37 | STC 62 |MOV H,D 8D | ADC L B8 |CMP B E3 | XTHL
0D |[DCR C 38 | --- 63 |MOV H,E 8E [ADC M B9 |CMP C E4 |CPO Adr
OE [MVI C,D8 39 |DAD SP 64 |MOV HH 8F | ADC A BA |CMP D E5 |PUSH H
OF | RRC 3A [LDA Adr | 65 |MOV HL 90 | suB B BB |CMP E E6 | ANI D8
10 | --- 38 [DCX SP 66 |MOV HM 91 |SUB C BC |CMP H E7 |RST 4
11 |LXI DD16| 3C |INR A 67 MOV HA 92 |suB D BD [CMP L E8 |RPE
12 | STAX D 3D |DCR A 68 |MOV LB 93 | SUB E BE [CMP M E9 | PCHL
13 [INX - D 3E |MVI AD8 69 [MOV LC 94 [SUB H BF {CMP A EA | JPE Adr
14 |INR D 3F [CMC 6A [MOV L,D 95 | SUB L CO | RNZ EB | XCHG
15 |DCR D 40 { MOV B,B 6B |MOV LE 96 | SUB M C1 |POP B EC | CPE Adr
16 | MVI D,08 41 |MOV BC 6C | MOV LH 97 | SUB A C2 |UNz Adr| ED ---
17 | RAL 42 MOV BD 6D |MOV L.L 98 | SBB B C3 | JMP Adr |- EE [XRI D8
18 | --- 43 MOV BE 6E | MOV LM 99 |SBB C C4 |CNz Adr EF [RST 5
19 |DAD D 44 |MOV BH 6F MOV LA 9A [SBB D C5 |PUSH B FO {RP
1A | LDAX D 45 |MOV BL 70 |[MOV M,B 9B |SBB E C6 | ADI D8 | F1 |POP PSW
iB |DCX D 46 |MOV BM 71 MOV M,C 9C | SBB H C7 |RST 0 F2 |JP Adr
1C |INR E 47 |MOV BA 72 {MOV MD 9D) SBB L C8 |RZ F3 | DI
1D |DCR E 48 |MOV CpB 73 |MOV M.E 9E | SBB M C9 | RET Adr F4 |CP Adr
1E | MVI E,D8 49 |MOV C,C 74 |MOV MH 9F | SBB A CA | JZ F5 |PUSH PSW
1F | RAR 4A |MOV CD 75 MOV ML A0 | ANA B CcB| --- F6 |ORI D8
20 | --- 4B |MOV CE 76 |HLT Al |ANA C cc |cz Adr | F7 |RST 6
21 |LXI HD16 | 4C |[MOV CH 77 |MOV M.A A2 |ANA D CD|CALL Adr | F8 |RM
22 | SHLD Adr 4D MOV CL 78 |MOV AB A3 | ANA E CE | ACI D8 F9 | SPHL
23 [INX H 4E |MOV CM 79 |MOV AC A4 [ANA H CF |RST 1 FA UM Adr
24 |INR H 4F MOV CA 7A |MOV AD A5 | ANA L DO | RNC FB | El
25 |DCR H 50 |MOV DB 78 |[MOV AE A6 | ANA M D1 |POP D FC [cM Adr
26 | MVI H,D8 51 |[MOV DC 7C |MOv AH A7 | ANA A D2 |UJNC Adr | FD |---
27 | DAA 52 |MOV DD 70 |[MOV AL A8 | XRA B D3 | OUT D8 FE [CPI D8
28 | --- 53 |MOV D.E 76 |MOV AM A9 | XRA C D4 | CNC Adr FF {RST 7
29 |pAD H 54 |MOV DH 7F {MOV AA AA | XRA D D5 | PUSH D
2A [LHLD Adr 55 [MOV DL 80 {ADD B AB | XRA E D6 | SUl- D8

D8 = constant, or logical/arithmetic expression that evaluates

to an 8 bit data quantity.
Adr = 16-bit address.

to a 16 bit data quantity.

Reproduced with Permission from Intel Corporation, Santa Clara, CA.

168

D16 = constant, or logical/arithmetic expression that evaluates

