
CP/M PIUS™
(CP/M Version 3)

CP/M PIUS™
(CP/M® Version 3)
Operating System

Programmer's Guide

Copyr ight© 1982

Digital Research
P.O. Box 579

160 Central .Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright© 1982 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
compu ter language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to iI:lclude the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Dig i tal Research reserves the
right to revise this publica tion and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/M 3, LINK-80, MAC, MP/M, MP/M II, and RMAC are
trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation.

The CP/M Plus n
• (CP/M Version 3) Programmer's Guide

was prepared using the Digital Research TEX Text
Forma t te rand pr in ted in the Un i ted Sta tes of
America.

* First Edition: January 1983 *
**********************.**********~*

Foreword

CP/M~ 3 is a microcomputer operating system designed for the
Intel~ 8080, Intel 8085, or other compatible microprocessor. To
run CP/M 3, your computer must have an ASCII console, which includes
a key boa rd and screen, or another display device, from one to
sixteen disk drives and a minimum of 32K of memory space. To
support additional memory beyond the 64K addressing limit of the
processors listed above, CP/M 3 can also support bank-switched
memory. The minimum memory requirement for a banked system is 96K.

This manual describes the programming environment of CP/M 3,
and is written for experienced programmers who are writing
application software in the CP/M 3 environment. It assumes you are
familiar with the system features and utilities described in the
9P/M Plus (CP/M Version 3) Operating System User's Guide and the
Programmer's utilities Guide for the CP/M Family of Operating
Systems. I t also assumes tha t your CP/M 3 system has been
customized for your computer's hardware and is executing as
described in the CP/M Plus (CP/M Version 3) Operating System User's
~. If you need to customize your system, please refer to the
~P/M Plus (CP/M Version 3) Operating Syst~m User's Guide.

Section 1 of this manual describes the components of the
operating system, where they reside in memory, and how they work
together to provide a standard operating environment for application
programs. Section 2 describes how an application program can call
on CP/M 3 to perform serial input and output and manage disk files.
Section 3 provides a detailed description of each operating system
function. Section 4 presents example programs.

The CP/M Plus (CP/M Version 3) Operating System Programmer's
~ contains five appendixes. Appendix A describes the CP/M 3
System Control Block, and defines its fields. Appendix B supplies
the format for the Page Relocatable Program. Appendix C tells you
how to generate System Page Relocatable files. Appendix D lists the
ASCII Symbol Table, and Appendix E summarizes BDOS functions.

iii

iv

Table of Contents

1 Introduction to CP/M 3 1

1.1 Banked and Nonbanked Memory Organization •• 1

1.2 System Components 4

1.3 System Component Interaction and Communication. '6

1.3.1
1.3.2
1.3.3

The BDOS and BIOS • • • •
Applications and the BOOS • •
Applications and RSXs

1.4 Memory Region Boundaries

1.5 Disk and Drive Organization and Requirements.

1. 6 S Y s tern Ope r a ti on • • • • • • •

1.6.1
1.6.2
1.6.3
1. 6.4
1.6.5

Cold Start Operation
CCP Operation • • • • • •
Transient Program Operation •
Resident System Extension Operation •
SUBMIT operation • • • • •

1.7 System Control Block

2 The BOOS System Interface • • • •

2.1 BOOS Calling Conventions •

2.2 BDOS Serial Device I/O •

2.2.1 BOOS Console I/O
2.2.2 Other Serial I/O

2.3 BOOS File System •...•

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13

File Naming Conventions •
Disk and File Organization. • •
File Control Block Definition • • • • •
File Attributes •••••••
User Number Conventions •..
Directory Labels and XFCBs
File Passwords • • • • • • •
File Date and Time Stamps" ••
Record Blocking and Deblocking ••••
Multi-Sector I/O • • • • • • • •
Disk Reset and Removable Media •
File Byte Coun ts • • • • • •
BDOS Error Handling • • • •

v

6
7
7

8

10

12

12
14
19
21
23

24

27

27

28

29
32

32

34
36
37
40
41
42
44
45
47
48
48
49
50

3

4

2.4

Table of Contents
(continued)

Page Zero Initialization

BDOS Function Calls •

Programming Examples · .
4.1 A Sample File-To-File Copy Program

4.2 A Sample File Dump· Utility

4.3 A Sample Random Access Program ·
4.4 Con s tr uc tion of an RSX Program · .

vi

55

59

· . · . . . 149

. . · . . · 149

· . . . 152

156

. . · 167

A

B

C

D

E

System Control Block

PRL File Generation .

SPR Generation

Appendixes

ASCII and Hexadecimal Conversions .

BOOS Function Summary

vii

173

179

181

183

187

Tables and Figures

Tab1es

1-1. CP/M 3 Built-in Commands

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.

A-l.

B-1.

0-1.
0-2.

Valid Filename Delimiters. . ••.•••
Logical Drive Capacity. . • . ••••
BOOS In ter face At tr ibu te s . .•••
Password Protection Modes . .•.•
BDOS Functions That Test for Password •
SFCB Subfields Format .••••
Register A BOOS Error Codes •.••
BOOS Directory Codes ••..•••
BOOS Error Flags. • • • •
BOOS Physical and Extended Errors •
Page Zero Areas • . • . . • . . . • . • • • •

Function 6 Entry Parameters • .• . •.•
Edit Control Characters (Nonbanked CP/M 3) ••
Edit Control Characters (Banked CP/M 3)
System Control Block. • . • • • • ••••
Program Return Codes. • . .••
FCB Format. • • • . • .

SCB Fields and Definitions.

PRL File Format • • • .

ASCII Symbols • . . • . .
ASCII Conversion Table . . • •

E-l. BOOS Function Summary.

Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.

2-1.
2-2.
2-3.

Nonbanked System Memory Organization.
Banked System Memory Organization .••
Banked Memory with Bank 1 in Context.
CP/M 3 Logical Memory Organization. • .
System Components and Regions in Logical Memory.
System Modules and Regions in Logical Memory.
Disk Organization • ••• • • • • • • • •
RSX File Format • • • • • • • •

XFCB Format . • • • • • •
Directory Label Format • •
Directory Record with SFCB.

viii

1

35
36
41
44
45
46
52
53
54
54
55

62
65
65

100
112
117

145

151

155
156

159

1
2
3
4
5
9

11
22

42
43
45

Section 1
Introduction to CP 1M 3

This section introduces you to the general features of CP/M 3
with an emphasis on how CP/M 3 organizes your computer's memory.
The section begins by describing the general memory organization of
banked and nonbanked systems and defines the programming environment
they have in common. It then shows how CP/M 3 defines memory space
into standard regions for operating system modules and executing
programs. Subsequent paragraphs describe the components of the
operating system, how they communicate wi th each other and the
application program, and in greater detail where each component and
program is located in memory. After a brief introduction to disk
organization, the final section gives examples of system operation.

CP/M 3 is available in two versions: a version that supports
bank-switched memory, and a version that runs on nonbanked systems.
CP/M 3 uses the additional memory available in banked systems to
provide functions that are not present in the nonbanked version.
For example, the banked version of CP/M 3 supports file passwords;
the nonbanked version does not. However, because a nonbanked system
treats passwords the same way as a banked system does when password
protection is not enabled, an application program can run under
either system without modification.

1.1 Banked and Nonbanked Memory Organization

The memory organization for a nonbanked CP/M 3 system is very
simple, as shown in Figure 1-1.

Top of Memory

Low Memory
(OOOOH)

O.s.

Figure 1-1. Nonbanked System Memory Organization

All Information Presented Here is proprietary to Digital Research

1

CP/M 3 Programmer's Guide 1.1 Banked/Nonbanked Organization

In the nonbanked organization, physical memory consists of a
single, contiguous region addressable from OOOOH up to a maximum of
OFFFFH (64K-l). The shaded region below the operating system
represents the memory space available for the loading and execution
of transient programs. The clear area above the operating system
represents space that GENCPM can allocate to the operating system
for disk record buffers and directory hash tables, as described in
the CP/M Plus (CP/M Version 3) Operating System System Guide. The
minimum size of this area is determined by the specific hardware
requirements of the host microcomputer system.

To expand memory capaci ty beyond the 64K address space of an 8-
bit microprocessor, CP/M 3 supports bank-switched memory in a
special version called the banked system. In the banked version,
the operating system is divided into two modules: the resident
portion and the banked portion. The resident portion resides in
common memory; the banked portion resides just below the top of
banked memory in Bank O. Figure. 1-2 shows memory organization under
the banked system.

Top of memory

(Common)

TOp of Banked
Memory

(Bank-swi tched)

Low Memory
(OOOOH)

O.S.

Banked
O.S.

Bank 0 Bank 1 Bank N

Figure 1-2. Banked System Memory Organization

In Figure 1-2, Bank 0 is switched in, or in context. The top
region of memory, the common region, is always in context; that is,
it can always be referenced, no matter what bank is switched in.
Figure 1-3 shows memory organization when Bank 1 is in context.

All Information Presented Here is proprietary to Digital Research

2

CP/M 3 Programmer's Guide

Top of memory

(Common)

Top of Banked
Memory

(Bank-switched)

Low Memory
(OOOOH)

Banked
O.S.

Bank 0

1.1 Banked/Nonbanked Organization

o.s.

Bank 1 Bank N

Figure 1-3. Banked Memory with Bank I in Context

From a transient program's perspective, Bank 1 is always in
context. The operating system can switch to Bank 0 or other banks
when performing operating system functions without affecting the
execution of the transient program. Any bank-swi tching performed by
the operating system is completely transparent to the calling
program. Because the major portion of the operating system resides
in Bank 0 in banked systems, more memory space is available for
transient programs in banked CP/M 3 systems than in nonbanked
systems.

The operating system uses the clear areas in Figures 1-2 and 1-
3 for disk record buffers and directory hash tables. The clear area
in the common region above the operating system represents space
that can be allocated for data buffers by GENCPM. Again, the
minimum size of this area is determined by the specific hardware
requirements of the host microcomputer system.

The banked version of CP/M 3 requires a minimum of two banks,
Bank 0 and Bank 1, and can support up to 16 banks of memory. Bank
numbers are generally arbitrary with the following exceptions: Bank
o is the system bank and is in context when CP/M 3 is started. Bank
1 is the transient program bank, and must be contiguous from
location zero to the top of banked memory. This requirement does
not apply to the other banks. However, common memory must be
contiguous.

The size of the common region is typically 16K. The only size
requirement on the common region is that it must be large enough to
contain the resident portion of the operating system. The maximum

All Information Presented Here is proprietary to Digital Research

3

CP/M 3 Programmer's Guide 1.1 Banked/Nonbanked Organization

top of memory address for both banked and nonbanked systems is 64K-l
(OFFFFH) •

In summary, no matter how physical memory is configured, or
whether the operating system is banked or nonbanked, CP/M 3 always
organizes memory logically so that to a transient program in any
CP/M 3 system, memory appears as shown in Figure 1-4.

T0P of memory

Low Memory
(OOOOH)

O.s.

Figure 1-4. CP/M 3 Logical Memory Organization

1.2 System Components

Functionally, the CP/M 3 operating system is composed of
distinct modules. Transient programs can communicate with these
module~ to request system services. Figure 1-5 shows the regions
where these modules reside in logical memory. Note that from the
transient program's perspective, Figure 1-5 is just a more detailed
version of Figure 1-4.

All Information Presented Here is proprietary to Digital Research

4

CP/M 3 Programmer's Guide 1.2 System Components

High memory:

BIOS Basic Input/Output System

BIOS base:

BDOS Basic Disk Operating System

BDOS base:

LOADER Program Loader Module

LOADER base:

RSX(s) Resident System Extensions

RSX base:

Console Command Processor

OlOOH:

Page Zero

OOOOH:

Figure 1-5. System Components and Regions in Logical Memory

The Basic Input/Output System, BIOS, is a hardware-dependent
module that defines the low-level interface to a particular computer
system. I t contains the device-dr i ving routines necessary for
peripheral device I/O.

The Basic Disk Operating System, BDOS, is the hardware­
independent module that is the logical nucleus of CP/M 3. It
provides a standard operating environment for transient programs by
making services available through numbered system function calls.

The LOADER module handles program loading for the Console
Commanrl Processor and transient programs. Usually, this module is
not resident when transient programs execute. However, when it is
resident, transient programs can access this module by making BDOS
Function 59 calls.

Resident System Extensions, RSXs, are temporar y addi tional
operating system modules that can selectively extend or modify
normal operating system functions. The LOADER module is always
resident when RSXs are active.

All Information Presented Here is Proprietary to Digital Research
5

CP/M 3 Programmer's Gui.de 1.2 System Components

The Transient Program Area, TPA, is the region of memory where
transient programs execute. The CCP also executes in this region.

The Console Command Processor, CCP, is not an operating system
module, but is a system program that presents a human-or iented
interface to CP/M 3 for the user.

The Page Zero region is not an operating system module either,
but functions primarily as an interface to the BOOS module from the
CCP and transient programs. It also contains critical system
parameters.

1.3 System Component Interaction and Communication

This section describes interaction and communication between
the modules and regions defined in Section 1.2. The most
significant channels of communication are between the BOOS and the
BIOS, transient programs and the BOOS, and transient programs and
RSXs.

The division of responsibility between the different modules
and the way they communicate with one another, provide three
important benefits. First, because the operating system is divided
into two modules--one that is configured for different hardware
environments, and one that remains constant on every computer-­
CP/M 3 software is hardware independent: you can port your programs
unchanged to different ha rdware configurations. Second, because all
communication between transient programs and the BOOS is channeled
through Page Zero, CP/M 3 transient programs execute, if sufficient
memory is available, independent of configured memory size. Third,
the CP/M 3 RSX facility can customize the services of CP/M 3 on a
selective basis.

1.3.1 The BDOS and BIOS

CP/M 3 achieves hardware independence through the interface
between the BOOS and the BIOS modules of the operating system. This
interface consists of a series of entry points in the BIOS that the
BOOS calls to perform hardware-dependent pr imi tive functions such as
peripheral device I/O. For example, the BOOS calls the CONIN entry
point of the BIOS to read the next console input character.

A system implementor can customize the BIOS to match a specific
hardware environment. However, even when the BIOS primitives are
customized to match the host computer's hardware environment, the
BIOS en try poin ts and the BOOS remain constant. Therefore, the BOOS
and the BIOS modules work together to give the CCP and other
transient programs hardware-independent access to CP/M 3's
facilities.

All Information Presented Here is Proprietary to Oigital Research

6

CP/M 3 Programmer's Guide 1.3 Component Interaction

1.3.2 Applications and the BDOS

Transient programs and the CCP access CP/M 3 facilities by
making BOOS function calls. BOOS functions can crea te, delete,
open, and close disk files, read or write to opened files, retrieve
input from the console, send output to the console or list device,
and perform a wide range of other services described in Section 3,
"BOOS Functions."

To make a BOOS function call, a transient program loads CPU
registers with specific entry parameters and calls location 0005H in
Page Zero. If RSXs are not active in memory, location 0005H
contains a jump instruction to location BOOS base + 6. If RSXs are
active, location 0005H contains a jump instruction to an address
below BOOS_base. Thus, the Page Zero interface allows programs to
run without regard to where the operating system modules are located
in memory. In addition, transient programs can use the address at
location 0006H as a memory ceiling.

Some BOOS functions are similar to BIOS entry points,
particularly in the case of simple device I/O. For example, when a
transient program makes a console output BOOS function call, the
BOOS makes a BIOS console output call. In the case of disk I/O,
however, this relationship is more complex. The BOOS might call
many BIOS entry points to perform a single BOOS file I/O function.

Transient programs can terminate execution by jumping to
location OOOOH in the Page Zero region •. This location contains a
jump instruction to BIOS base+3, which contains a jump instruction
to the BIOS warm start routine. The BIOS warm start routine loads
the CCP into memory at location lOOH and then passes control to it.

The Console Command Processor is a special system program that
executes in the TPA and makes BOOS calls just like an application
program. However, the CCP has a unique role: it gives the user
access to operating system facilities whil~ transient programs are
not executing. It includes several built-in commands, such as TYPE
and OIR, that can be executed directly without having to be loaded
from disk. When the CCP receives control, it reads the user's
command lines, distinguishes between built-in and transient
commands, and when necessary, calls upon the LOAOER module to load
transient programs from disk into the TPA for execution. Section
1.6.2 describes CCP operation in detail.

1.3.3 Applications and RSXs

A Resident System Extension is a temporary addi tional operating
system module. An RSX can extend or modify one or more operating
system functions selectively. As with a standard BOOS function, a
transient program accesses an RSX function through a numbered
function call.

All Information Presented Here is proprietary to Oigital Research

7

CP/M 3 Programmer's Guide l.3 Component Interaction

At anyone time there might be zero, one, or multiple RSXs
active in memory. When a transient program makes a BDOS function
call, and RSXs are active, each RSX examines the function number of
the call. If the function number matches the function the RSX is
des igned to extend or modify, the RSX performs the requested
function. Otherwise, the RSX passes the function request to the
next RSX. Nonintercepted functions are eventually passed to the
BDOS for standard execution.

RSXs are loaded into memo'ry when programs containing RSXs are
loaded. The CP/M 3 utility, GENCOM, can attach RSXs to program
files. When attachin~ RSXs, GENCOM places a special one page header
at the beginning of the program file. The CCP reads this header,
learns that a program has attached RSXs, and loads the RSXs
accordingly. The header itself is not loaded into memory; it merely
indicates to the CCP that RSX loading is required.

The LOADER module is a special type of RSX that supports BDOS
function 59, Load Overlay. It is always resident when RSXs are
active. To indicate RSX support is required, a program that calls
function 59 must have an RSX header attached byGENCOM, even if the
program does not require other RSXs. When the CCP encounters this
type of header in a program file when no RSXs are active, it sets
the address at location 0006H in Page Zero to LOADER base + 6
instead of BDOS base + 6. -

1.4 Memory Region Boundaries

This section reviews memory regions under CP/M 3, and then
describes some details of region boundaries. It then relates the
sizes of various modules to the space available for the execution of
transient programs. Figure 1-6 reviews the location of regions in
logical memory.

All Information Presented Here is proprietary to Digital Research

8

CP/M 3 Programmer's Guide 1.4 Region Boundaries

High memory:

BIOS : Basic I/O System

BIOS base:

BDOS : Basic Disk Operating System

BDOS base:

LOADER : Program Loader Module

LOADER base:

RSX (I) : Resident System Extension

RSX{N) Resident System Extension

RSX{N)_base:

Console Command Processor

OIOOH:

Page Zero

OOOOH:

Figure 1-6. System Modules and Regions in Logical Memory

First note that all memory regions in CP/M 3 are page-aligned.
This means that regions and operating system modules must begin on a
page boundary. A page is defined as 256 bytes, so a page boundary
always begins at an address where the low-order byte is zero.

The term high memory in Figure 1-6 denotes the high address of
a CP/M 3 system. This address may fall below the actual top of
memory address if space above the operating system has been
allocated for directory hashing or data buffering by GENCPM. The
maximum top of memory address for both banked and nonbanked systems
is 64K-l (OFFFFH).

All Information Presented Here is Proprietary to Digital Research

9

CP/M 3 Programmer's Guide 1.4 Region Boundaries

The labels BIOS base, BOOS base, and LOADER base represent the
base addresses of the operating system regions: These addresses
always fallon page boundaries. The size of the BIOS region is not
fixed, but is determined by the requirements of the host computer
system.

The size of the BOOS region differs for the banked and
nonbanked versions of CP/M 3. In the banked version, the resident
BDOS size is 6 pages, 1.5K. In the nonbanked system, the BOOS size
ranges from 31 pages, 7.75K, to 33 pages, 8.25K, depending on system
generation options and BIOS requirements.

RSXs are page aligned modules that are stacked in memory below
LOADER base in memory. In the configuration shown in Figure 1-6,
location 0005H of Page Zero contains· a jump to location RSX(N) base
+ 6. Thus, the memory ceiling of the TPA region is reduced-when
RSXs are active.

Under CP/M 3, the CCP is a transient program that the BIOS
loads into the TPA region of memory at system cold and warm start.
The BIOS also loads the LOADER module at this time, because the
LOADER module is attached to the CCP. When the CCP gains control,
it relocates the LOADER module just below BOOS base. The LOADER
module handles program loading for the CCP. It is three pages long.

The maximum size of a transient program that can be loaded into
the TPA is limited by LOADER base because the LOADER cannot load a
program over itself. Transient programs may extend beyond this
point, however, by using memory above LOADER base for uninitialized
data areas such as I/O buffers. programs-that use memory above
BOOS base cannot make BOOS function calls.

1.5 Disk and Drive Organization and Requirements

CP/M 3 can support up to sixteen logical drives, identified by
the letters A through P, with up to 512 megabytes of storage each.
A logical drive usually corresponds to a physical drive on the
system, particularly for physical drives that support removable
media such as floppy disks. High-capacity hard disks, however, are
commonly divided up into multiple logical drives. Figure 1-7
illustrates the standard organization of a CP/M 3 disk.

All Information Presented Here is Proprietary to Digital Research

10

CP/M 3 Programmer's Guide 1.5 Disk Organization

Track M

CP/M 3 Data Region

Data Tracks

CP/M 3 Directory Region

Track N

CCP (Optional)

System Tracks CPMLDR

Cold Boot Loader

Track a

Figure 1-7. Disk Organization

In Figure 1-7, the first N tracks are the system tracks.
System tracks are required only on the disk used by CP/M 3 during
system cold start or warm start. The contents of this region are
described in Section 1. 6.1. All normal CP/M 3 disk access is
directed to the data tracks which CP/M 3 uses for file storage.

The data tracks are divided into two regions: a directory area
and a data area. The directory area defines the files that exist on
the drive and identifies the data space that belongs to each file.
The data area contains the file data defined by the directory. If
the drive has adequate storage, a CP/M 3 file can be as large as 32
megabytes.

The directory area is subdivided into sixteen logically
independent directories. These directories are identified by user
numbers 0 through 15. During system operation, CP/M 3 runs with the
user number set to a single value. The user number can be changed
at the console with the USER command. A transient program can
change the user number by calling a BOOS function.

The user number specifies the currently active directories for
all the drives on the system. For example, a PIP command to copy a
file from one disk to another gives the destination file the same
user number as the source file unless the PIP command is modified by
the [G] option.

The directory identifies each file with an eight-character
filename and a three-character filetype. Together, these fields
must be unique for each file. Files with the same filename and

All Information Presented Here is proprietary to Digital Research

11

CP/M 3 Programmer's Guide 1.S Disk Organization

filetype can reside in different user directories on the same drive
without conflict. Under the banked version of CP/M 3, a file can be
assigned an eight-character password to protect the file from
unauthorized access.

All BOOS functions that involve file operations specify the
requested file by filename and filetype. Multiple files can be
specif ied by a techn ique called ambiguous reference, which· uses
question marks and asterisks as wildcard characters to give CP/M 3 a
pattern to match as it searches the directory. A question mark in
an ambiguous reference matches any value in the same posi tion in the
directory filename or filetype field. An asterisk fills the
r ema i nde r of the filename or f iletype field of the ambiguous
reference with question marks. Thus, a filename and filetype field
of all question marks, ???????????, equals an ambiguous reference
of two asterisks, *.*, and matches all files in the directory that
belong to the current user number.

The CP/M 3 file system automatically allocates directory space
and data area space when a file is created or extended, and returns
previously allocated space to free space when a file is deleted or
truncated. If no directory or data space is available for a
requested operation, the BOOS returns an error to the calling
program. In general, the allocation and deallocation of disk space
is transparent to the calling program. As a result, you need not be
concerned with directory and drive organization when using the file
system facilities of CP/M 3.

1.6 System Operation

This section introduces the general operation of CP/M 3. This
overview covers topics concerning the CP/M 3 system components, how
they function and how they interact when CP/M 3 is running. This
section does not describe the total functionality of CP/M 3, but
simply introduces basic CP/M 3 operations.

For the purpose of this overview, CP/M 3 system operation is
divided into five categories. First is system cold start, the
process that begins execution of the operating system. This
procedure ends when the Console Command Processor, CCP, is loaded
in to memory and the system prompt is displayed on the screen.
Second is the operation of the CCP, which provides the user
interface to CP/M 3. Third is transient program initiation,
execution and termination. Fourth is the way Resident System
Extensions run under CP/M 3. The fifth and final category describes
the operation of the CP/M 3 SUBMIT utility.

1.6.1 Cold Start Operation

The cold start procedure is typically executed immediately
after the computer is turned on. The cold start brings CP/M 3 into
memory and gives it control of the computer's resources. Cold start
is a four-stage procedure.

All Information Presented Here is Proprietary to Digital Research

12

CP/M 3 Programmer's Guide 1.6 System Operation

In the first stage, a hardware feature, or ROM-based software
associated with system reset, loads a small program, called the Cold
Boot Loader, into memory from the system tracks of drive A (see
Figure 1-6). The Cold Boot Loader is usually 128 or 256 bytes long.

The Cold Boot Loader performs the second stage of the cold
start process. It loads the CP/M 3 loader program, CPMLDR, into
memory from the system tracks of the system disk and passes control
to it. During this stage, the Cold Boot Loader can also perform
other tasks, such as initializing hardware dependent I/O ports.

CPMLDR performs the third stage in the cold start process.
First, it reads the CPM3.SYS file from the data area of the disk.
The CPM3.SYS file, which is created by the CP/M 3 system generation
utility GENCPM, contains the BDOS and BIOS system components and
information indicating where these modules are to reside in memory.
Once CPMLDR has loaded the BDOS and BIOS into memory, it sends a
sign-on message to the console and passes control to the BIOS Cold
Boot entry point. If specified as a GENCPM option, CPMLDR can also
display a memory map of the CP/M 3 system.

CPMLDR is a small, self-contained version of CP/M 3 that
supports only console output and sequential file input. Consistent
with CP/M 3's organization, it contains two modules, an invariant
CPMLDR BDOS, and a variant CPMLDR BIOS that is adapted to match the
host mIcrocomputer hardware environment. Cold start initialization
o'f I/O ports and similar functions can also be performed in the
CPMLDR_BIOS module during the third stage of cold start.

In the banked version of CP/M 3, these first three stages of
the cold boot procedure are performed with Bank 0 in context. The
BIOS Cold Start function switches in Bank 1 before proceeding to
stage four.

The fourth and final stage in the cold start procedure is
performed by the BIOS Cold Start function, Function O. The entry
point to this function is located at BIOS base as described in
Section 1.4. The BIOS Cold Start function begins by performing any
remaining hardware initialization, and initializing Page Zero. To
initialize Page Zero, the BIOS Cold Start function places a jump to
BIOS base + 3, the BIOS Warm Start entry point, at location OOOOH,
and a jump to BDOS base + 6, the BDOS entry point, at location 0005H
in memory. -

The BIOS Cold Start function completes the fourth stage by
loading the CCP into the TPA region of memory and passing control to
it. The CCP can be loaded from one of two locations. If there is
sufficient space in the system tracks for the CCP, it is usually
loaded from there. If there is not enough space in the system
tracks, the BIOS Cold Start function can read the CCP from the file
CCP.COM.

All Information Presented Here is proprietary to Digital Research

13

CP/M 3 Programmer's Guide 1.6 System Operation

On some banked systems, the CCP is also copied to an alternate
bank, so that warm start operations can copy the CCP into the TPA
from memory. This speeds up the system warm start operation, and
makes it possible to warm start the system without having to access
a system disk.

When the CCP gains control, it displays a prompt that
references the default disk. If a PROFILE.SUB submit file is
present on the default drive, the CCP executes this submit file
before prompting the user for a command.

At this point, the cold start procedure is complete. Note that
the user number is set to zero when CP/M 3 is cold started.
However, the PROFILE submit file can set the user number to another
value if this is desirable.

The cold start procedure is designed so that the system tracks
need to be initialized only once. This is accomplished because the
system track routines are independent of the configured memory size
of the CP/M 3 system. The Cold Boot Loader loads CPMLDR into a
constant location in memory. This location is chosen when the
system is configured. However, CPMLDR locates the BDOS and BIOS
system components in memory as specified by the CPM3.SYS file. The
CCP always executes at location 100H in the TPA. Thus, CP/M 3
allows the user to generate a new system with GENCPM, and then run
it without having to update the system tracks of the system disk.

1.6.2 CCP Operation

The Console Command Processor provides the user access to CP/M
3 facilities when transient programs are not running. It also reads
the user's command lines, differentiates between built-in commands
and transient commands, and executes the commands accordingly.

This section describes the responsibili ties and capabili ties of
the CCP in some detail. The section begins with a description of
the CCp's activities when it first receives control from the Cold
Start procedure. The section continues with a general discussion of
built-in commands, and concludes with a step-by-step description of
the procedure the CCP follows to execute the user's commands.

When the CCP gains control following a cold start procedure, it
displays the system prompt at the console. This signifies that the
CCP is ready to execute a command. The system prompt displays the
letter of the drive designated as the initial default drive in
GENCPM. For example, if GENCPM specified drive A as the initial
defaul t dr ive, the CCP displays t.he following prompt:

A>

After displaying the system prompt, the CCP scans the directory of
the default drive for the file PROFILE.SUB. If the file exists, the
CCP creates the command line SUBMIT PROFILE; otherwise the CCP reads
the user's first command line by making a BDOS Read Console Buffer
function call (BDOS Function 10).

All Information Presented Here is proprietary to Digital Research

14

CP/M 3 Programmer's Guide 1.6 System Operation

The CCP accepts two different command forms. The simplest CCP
command form changes the defaul t dr ive. The following example
illustrates a user changing the default drive from A to B.

A>B:
B>

This command is one of the CCp's built-in commands. Built-in
commands are part of the CCP. They reside in memory while the CCP
is acti ve, and therefore can be executed wi thout referencing a disk.

The second command form the CCP accepts is the standard CP/M
command line. A standard CP/M command line consists of a command
keyword followed by an optional command tail. The command keyword
and the command tail can be typed in any combination of upper-case
and lower-case letters; the CCP converts all letters in the command
line to upper-case. The following syntax defines the standard CP/M
command line:

where

<command> <command tail>

<command> => <filespec> or
<buil t-in>

<command tail> => (no command tail) or
<filespec> or
<filespec><delimiter><filespec>

<filespec> => {d:}filename{.typ}{;password}

<built-in> => one of the CCP built-in commands

<delimiter> => one or more blanks or a tab or

d:

filename

typ

password

one of the following: "=, [] <> I"
=> CP/M 3 drive specification, "A"

through "p"

=> 1 to 8 character filename

=> 1 to 3 character filetype

=> 1 to 8 character password value

Fields enclosed in curly brackets are optional. If there is no
drive {d:} present in a file specification <filespec>, the default
drive is assumed. If the type field {.typ} is omitted, a type field
of all blanks is implied. Omitting the password field {ipassword}
implies a password of all blanks. When a command line is entere.d at
the console, it is terminated by a return or line-feed keystroke.

All Information Presented Here is Proprietary to Digital Research

15

CP/M 3 Programmer's Guide 1.6 System Operation

Transient programs that run under CP/M 3 are not restricted to
the above command tail definition. However, the CCP only parses
command tails in this format for transient programs. Transient
programs that define their command tails differently must perform
their own command tail parsing.

The command field must identify either a built-in command, a
transient program, or a submit file. For example, USER is the
keywor d that iden ti f ies the buil t- in command that changes the
current user number. The CP/M 3 CCP displays the user number in the
system prompt when the user number is non-zero. The· following
example illustrates changing the user number from zero to 15.

B>USER 15
15B>

The following table summarizes the built-in commands.

Table 1-1. CP/M 3 Built-in Commands

Command I Meaning

DIR

DIRSYS

ERASE

RENAME

TYPE

USER

displays a list of all filenames from a
disk directory except those marked with
the SYS attribute.

displays a filename list of those files
marked with the SYS attribute in the
directory.

erases a filename from a disk directory
and releases the storage occupied by
the file.

renames a file.

displays the contents of an ASCII
character file at your console output
device.

changes from one user number to another.

Some buil t-in commands have associated command files which
expand upon the options provided by the built-in command. If the
CCP reads a command line and discovers the built-in command does not
support the options requested in the command line, the CCP loads the
built-in function's corresponding command file to. perform the
command. The DIR command is an example of this type of command.
Simple DIR commands are supported by the DIR built-in directly.
More complex requests are handled by the DIR.COM utility.

All Information Presented Here is Proprietary to Digital Research

16

CP/M 3 Programmer's Guide 1.6 System Operation

All command keywords that do not identify built-in commands identify
either a transient program file or a submit file. If the CCP
identifies a command keyword as a transient program, the transient
program file is loaded into the TPA from disk and executed. If it
recognizes a submit file, the CCP reconstructs the command line into
the following form:

SUBMIT <command> <command tail>

and attempts to load and execute the SUBMIT utility. Thus, the
original command field becomes the first command tail field of the
SUBMIT command. Section 1.6.5 describes the execution of CP/M 3's
SUBMIT utility. The procedure the CCP follows to parse a standard
command line and execute built-in and transient commands is
described as follows: --____

.1) The CCP parses the command line to pick up the command
field.

2) If the command field is not preceded by a drive
specification, or followed by a filetype or password field,
the CCP checks to see if the command is a CCP buil t- in
function. If the command is a built-in command, and the
CCP can support the options specified in the command tail,
the CCP executes the command. Otherwise, the CCP goes on
to step 3.

3) At this point the CCP assumes the command field references a
command file or submit file on disk. If the optional
filetype field is omitted from the command, the CCP usually
assumes the command field references a file of type COM.
For example, if the command field is PIP, the CCP attempts
to open the file PIP.COM.

Optionally, the CP/M 3 utility SETDEF can specify that a
filetype of SUB also be considered when the command
filetype field is omitted. When this automatic submit
option is in effect, the CCP attempts to open the command
with a filetype of COM. If the COM file cannot be found,
the CCP repeats the open operation with a filetype of SUB.
As an alternative, the order of open operations can be
reversed so that the CCP attempts to open with a filetype
of SUB first. In either case, the file that is found on
disk first determines the filetype field that is ultimately
associated with the command.

If the filetype field is present in the command, it must
equal COM, SUB or PRL. A PRL file is a Page Relocatable
file used in Digital Research's multi-:user operating
system, MP/MTM Under CP/M 3, the CCP handles PRL files
exactly like COM files.

If the command field is preceded by a drive specification
{d:}, the CCP attempts to open the command or submit file
on the specified drive. Otherwise, the CCP attempts to
open the file on the drives specified in the drive chain.

All Information Presented Here is proprietary to Digital Research
17

CP/M 3 Programmer's Guide 1.6 System Operation

The driv~ chain specifies up to four drives that are to be
referenced in sequence for CCP open operations of command
and submit files. If an open operation is unsuccessful on
a drive in the drive chain because the file cannot be
found, the CCP repeats the open operation on the next drive
in the chain. This sequence of open operations is repeated
until the file is found, or the drive chain is exhausted.
The drive chain contains the current default drive as its
only drive unless the user modifies the drive chain with
the CP/M 3 SETDEF utility.

When the current user number is non-zero, all open requests
tha t fail because the file cannot be found, attempt to
locate the command file under user zero. If the file
exists under user zero with the system attribute set, the
file is opened from user zero. This search for a file
under user zero is made by the BDOS Open File function.
Thus, the user zero open attempt is made before advancing
to the next drive in the search chain.

When automatic submit is in effect, the CCP attempts to
open with the first filetype, SUB or COM, on all drives in
the search chain before trying the second filetype.

In the banked system, if a password specified in the
command field does not match the password of a file on a
disk protected in Read mode, the CCP file open operation is
terminated with a password error.

If the CCP does not find the command or submit file, it
echoes the command line followed by a question mark to the
console. If it finds a command file with a filetype of COM
or PRL, the CCP proceeds to step 4. If it finds a submit
file, it reconstructs the command line as described above,
and repeats step 3 for the command, SUBMIT.COM.

4) When the CCP successfully opens the command file, it
initializes the following Page Zero fields for access by
the loaded transient program:

OOSOH
005lH
OOS3H
0054H
OOS6H
OOSCH
006CH
0080H

Drive that the command file was loaded from
Password address of first file in command tail
Password length of first file in command tail
Password address of second file in command tail
Password length of second file in command tail
Parsed FCB for first file in command tail
Parsed FCB for second file in command tail
Command tail preceded by command tail length

Page Zero ini tialization is covered in more deta il in
Section 2~4.

5) At this point, the CCP calls the LOADER module to load the
command file into the TPA. The LOADER module terminates
the load operation if a read error occurs, or if the

All Information Presented Here is proprietary to Digital Research

18

CP/M 3 Programmer's Guide 1.6 System Operation

available TPA space is not large enough to contain the
file. If no RSXs are resident in memory, the available TPA
space is determined by the address LOADER base because the
LOADER cannot load over itself. Otherwi se-: the maximum TPA
address is determined by the base address of the lowest RSX
in memory.

6) Once the program is loaded, the LOADER module checks for a
RSX header on the program. Programs with RSX headers are
identified by a return instruction at location lOOH.

If an RSX header is present, the LOADER relocates all RSXs
attached to the end of the program, to the top of the TPA
region of memory under the LOADER module, or any other RSXs
that are already resident. It also updates the address in
location 0006H of Page Zero to address the lowest RSX in
memory. Finally, the LOADER discards the RSX header and
relocates the program file down one page in memory so that
the first executable instruction resides at 100H.

7) After initializing Page Zero, the LOADER module sets up a
32-byte stack with the return address set to location OOOOH
of Page Zero and jumps to location lOOH. At this point,
the loaded transient program begins execution.

When a transient program terminates execution, the BIOS warm
start routine reloads the CCP into memory. When the CCP receives
control, it tests to see if RSXs .are resident in memory. If not, it
relocates the LOADER module below the BDOS module at the top of the
TPA region of memory. Otherwise, it skips this step because the
LOADER module is already resident. The CCP execution cycle then
repeats.

Unlike earlier versions of CP/M, the CCP does not reset the
disk system at warm start. However, the·CCP does reset the disk
system if a CTRL-C is typed at the prompt.

1.6.3 Transient Program Operation

A transient program is one that the CCP loads into the TPA
region of memory and executes. As the name transient implies,
transient programs are not system resident. The CCP must load a
transient program into memory every time the program is to be
executed. For example, the utilities PIP and RMAC'" that are
shipped with CP/M 3 execute as transient programs; programs such as
word processing and accounting packages distributed by applications
vendors also execute as transient programs under CP/M 3.

Section 1. 6.2 descr ibes how the CCP prepa r ed the CP/M 3
environment for the execution of a transient program. To summarize,
the CCP initializes Page Zero to contain parsed command-line fields
and sets up a 32-byte stack before jumping to location OlOOH to pass
control to the transient program. In addition, the CCP might also

All Information Presented Here is Proprietary to Digital Research

19

CP/M 3 Programmer's Guide 1.6 System Operation

load RSXs attached to the command file into memory for access by the
transient program.

Generally, an executing transient program communicates wi th the
opera t ing system only through BOOS function calls. Transien t
programs make BOOS function calls by loading 'the CPU registers with
the appropriate entry parameters and calling location 0005H in Page
Zero.

Transient programs can use BOOS Function 50, ~Call BIOS, to
access BIOS entry points. This is the preferred method for
accessing the BIOS; however, for compatibility with earlier releases
of CP/M, transient programs can also make direct BIOS calls for
console and list I/O by using the jump instruction at location OOOOH
in Page Zero. But, to simplify portability, use direct BIOS calls
only where the primitive level of functionality provided by the BIOS
functions is absolutely required. For example, a disk formatting
program must bypass CP/M's disk organization to do its job, and
therefore is justified in making direct BIOS calls. Note however,
that disk formatting programs are rarely portable.

A transient program can terminate execution in one of three
ways: by jumping to location OOOOH, by making a BOOS System Reset
call, or by making a BOOS Chain To Program call. The first two
methods are equivalent; they pass control to the BIOS warm start
entry point, which then loads the CCP into the TPA, and the CCP
prompts for the next command.

The Chain to Program call allows a transient program to specify
the next command to be executed before it terminates its own
execution. A Program Chain call executes a standard warm boot
sequence, but passes the command specified by the terminating
program to the CCP in such a way that the CCP executes the specified
command instead of prompting the console for the next command.

Transient programs can also set a Program Return Code before
terminating by making a BOOS Function 108 call, Get/Set Program
Return Code. The CCP initializes the Program Return Code to zero,
successful, when it loads a transient program, unless the program is
loaded as the result of a program chain. Therefore, a transient
program that terminates successfully can use the Program Return Code
to pass a value to a chained program. If the program terminates as
the result of a BOOS fatal error, or a CTRL-C entered at the
console, the BOOS sets the return code to an unsuccessful value.
All other types of program termination leave the return code at its
current value.

The CCP has a conditional command facility that uses the
Program Return Code. If a command line submitted to the CCP by the
SUBMIT utility begins with a colon, the CCP skips execution of the
command if the previous command set an unsuccessful Program Return
Code. In the following example, the SUBMIT utility sends a command
sequence to the CCP:

All Information Presented Here is proprietary to Oigital Research

20

CP/M 3 Programmer's Guide

A>SUBMIT SUBFILE
A>COMPUTE RESULTS.DAT
A>:REPORT RESULTS.DAT

1.6 System Operation

The CCP does not execute the REPORT command if the COMPUTE command
sets an unsuccessful Program Return Code.

1.6.4 Resident System Extension Operation

This section gi ves a general overview of RSX use, then
describes how RSXs are loaded, defines the RSX file structure, and
tells how the LOADER module uses the RSX prefix and flags to manage
RSX activity.

A Resident System Extension (RSX) is a special type of program
that can be attached to the operating system to modify or extend the
functionali ty of the BOOS. RSX modules intercept BOOS functions and
either perform them, translate them into other BOOS functions, or
pass them through un touched. The BOOS executes non- inter cepted
function"s in the standard manner.

A transient program can also use BOOS Function 60, Call
Resident System Extension, to call an RSX for special functions.
Function 60 is a general purpose function that allows customized
interfaces between programs and RSXs.

Two examples of RSX applications are the GET utility and the
LOADER module. The GET.COM command file has an attached RSX,
GET. RSX, which intercepts all console input calls and returns
characters from the file specified in the GET command line. The
LOADER module is another example of an RSX, but it is special
because it supports Function 59, Load Overlay. It is always
resident in memory when other RSXs are active.

RSXs are loaded into memory at program load time. As described
in Section 1. 6. 2, after the CCP locates a command file, it calls the
LOADER module to load the program into the TPA. The LOADER loads

-the transient program into memory along with any attached RSXs.
Subsequently, the loader relocates each attached RSX to the top of
the TPA and adjusts the TPA size by changing the jump at location
0005H in Page Zero to point to the RSX. When RSX modules reside in
memory, the LOADER module resides directly below the BOOS, and the
RSX modules stack downward from it.

The order in which the RSX modules are stacked affects the
order in which they intercept BOOS calls. A more recently stacked
RSX has precedence over an older RSX. Thus, if two RSXs in memory
intercept the same BOOS function, the more recently loaded RSX
handles the function.

The CP/M 3 u til i ty GENCOM at taches RSX modules to progr am
files. Program files with attached RSXs have a special one page
header that the LOADER recognizes when it loads the command file.
GENCOM can also attach one or more RSXs to a null command file so

All Information Presented Here is Proprietary to Digital Research

21

CP/M 3 Programmer's Guide 1.6 System Operation

that the CCP can load RSXs without having to execute a transient
program. In this case, the command file consists of the RSX header
followed by the RSXs.

RSX modules are Page Relocatable, PRL, files wi th the file type
RSX. RSX files must be page relocatable because their execution
address is determined dynamically by the LOADER module at load time.
RSX files have the following format:

End of File:
PRL bit map

RSX code

RSX prefix
OIOOH:

256 byte PRL header
OOOOH:

Figure 1-8. RSX Fi1e Format

RSX files begin with a one page PRL. header that specifies the
total size of the RSX prefix and code sections. The PRL bit map is
a string of bits identifying those bytes in the RSX prefix and code
sections that require relocation. The PRL format is described in
detail in Appendix B. Note that the PRL header and bit map are
removed when an RSX is loaded into memory. They are only used by
the LOADER module to load the RSX.

The RSX prefix is a standard data structure that the LOADER
module uses to manage RSXs (see Section 4.4). Included in this data
structure are jump instructions to the previous and next RSX in
memory, and two flags. The LOADER module initializes and updates
these jump instructions to maintain the link from location 6 of Page
Zero to the BDOS entry point. The RSX flags are the Remove flag and
the Nonbanked flag. The Remove flag controls RSX removal from
memory. The CCP tests this flag to determine whether or not it
should remove the RSX from memory at system warm start. The
non banked flag identifies RSXs that are loaded only in non ban ked
CP/M 3 systems. For example, the CP/M 3 RSX, DIRLBL.RSX, is a
non ban ked RSX. It provi des BDOS Function 100, Set Directory Label,
support for nonbanked systems only. Banked systems support this
function in the BDOS.

The RSX code section contains the main body of the RSX. This
section always begins with code to intercept the BDOS function that
is supported by the RSX. Nonintercepted functions are passed to the
next RSX in memory. This section can also include initialization
and termi~ation code that transient programs can call with BDOS
Function 60.

All Information Presented Here is proprietary to Digital Research

22

CP/M 3 Programmer's Guide 1.6 System Operation

When the CCP gains control after a system warm start, it
removes any RSXs in memory that have the Remove flag set. All other
RSXs remain active in memory. If the Remove flag contains OFFH, it
indicates that the RSX is not active and it can be removed. Note
that if an RSX marked for removal is not the lowest active RSX in
memory, it still occupies memory after removal. Although the
removed RSX cannot be executed, its space is returned to the TPA
only when all the lower RSXs are removed.

There is one special case where the CCP does not remove an RSX
with the Remove flag set following warm start. This case occurs on
warm starts following the load of an empty file with attached RSXs.
This exception allows an RSX with the Remove flag set to be loaded
into memory before a transient program. The transient program can
then access the RSX during execution. After the transient program
terminates, however, the CCP removes the RSX from the system
environment.

As an example of RSX operation, here is a description of the
operation of the GET utility. The GET.COM command file has an
attached RSX. The LOADER moves this RSX to the top of the TPA when
it loads the GET.COM command file. The GET utility performs
necessary ini tializations which include opening the ASCII file
specified in the GET command line. It also makes a BDOS Function 60
call to initialize the GET.RSX. At this point, the GET utility
terminates. Subsequently, the GET. RSX intercepts all console input
calls and returns characters from the file specified in the GET
command line. It continues this action until it reads end-of-file.
At this point, it sets its Remove flag in the RSX prefix, and stops
intercepting console input. On the following warm boot, the CCP
removes the RSX from memory.

1.6.5 SUBMIT Operation

A SUBMIT command line has the following syntax:

SUBMIT <filespec> <parameters>

If the CCP identifies a command as a submit file, it automatically
inserts the SUBMIT keyword into the command line as described in
Section 1.6.2.

When the SUBMIT utility begins execution, it opens and reads
the file specif ied by <filespec> and creates a temporary submi t file
of type $$$ on the system's temporary file drive. GENCPM
initializes the temporary file drive to the CCp's current default
drive. The SETDEF utility can set the temporary file drive to a
specific drive. As it creates the temporary file, SUBMIT performs
the parameter substitutions requested by the <parameters> subfield
of the SUBMIT command line. See the CP/M Plus (CP/M Version 3)
Operating System User's Guide for a detailed description of this
process.

All Information Presented Here is Proprietary to Digital Research

23

CP/M 3 Programmer's Guide 1.6 System Operation

After SUBMIT creates the temporary submit file, its operation
is similar to that of the GET utility described in Section 1.6.4.
The SUBMIT command file also has an attached RSX that performs
console input redirection from a file. However, the SUBMIT RSX
expands upon the simpler facili ties provided by the GET RSX.
Command lines in a submit file can be marked to indicate whether
they are program or CCP input. Furthermore, if a program exhausts
all its program input, the next SUBMIT command is a CCP command, the
SUBMIT RSX temporarily reverts to console input. Redirected input
from the submit file resumes when the program terminates.

Because CP/M 3's submit facility is implemented with RSXs,
submit files can be nested. That is, a submit file can contain
additional SUBMIT or GET commands. Similarly, a GET command can
specify a file that contains GET or SUBMIT commands. For example,
when a SUBMIT command is encountered in a submit file, a new SUBMIT
RSX is created below the current RSX. The new RSX handles console
input until it reads end-of-file on its temporary submit file. At
this point, control reverts to the previous SUBMIT RSX.

1.7 System Control Block

The System Control Block, SCB, is a 100 byte CP/M 3 data
str ucture that resides in the BDOS system component. The SCB
contains internal BDOS flags and data, CCP flags and data, and other
system information such as console characteristics and the current
date and time. The BDOS, BIOS, CCP system components as well as
CP/M 3 utilities and RSXs reference SCB fields. BDOS Function 49,
Get/Set System Control Block, provides access to the SCB fields for
transient programs, RSXs, and the CCP.

However, use caution when you access the SCB and use Function
49 for two reasons. First, the SCB is a CP/M 3 data structure.
Digital Research's multi-user operating system, MP/M, does not
support BDOS Function 49. Programs that access the SCB can run only
on CP/M 3. Secondly, the SCB contains critical system parameters
that reflect the current state of the operating system. If a
program modifies these parameters illegally, the operating system
might crash. However, for application writers who are writing
system-oriented applications, access to the SCB variables might
prove valuable.

For example, the CCP default drive and current user number are
main ta ined in the System Control Block. This information is
displayed in the system prompt. If a transient program changes the
current disk or user number by making an explicit BDOS call, the
System Control Block values are not changed. They continue to
reflect the state of the system when the transient program was
loaded. For compatibility with CP/M version 2, the current disk and
user number are also maintained in location 0004H of Page Zero. The
high-order nibble contains the user number, and the low-order nibble
contains the drive.

All Information Presented Here is proprietary to Digital Research

24

CP/M 3 Programmer's Guide 1.7 System Control Block

Refer to the description of BOOS Function 49 in Section 2.5 for
more information on the System Control Block. The SCB fields are
also discussed in Appendix A.

End of Section 1

All Information Presented Here is proprietary to Digital Research

25

CP/M 3 Programmer's Guide End of Section 1

All Information Presented Here is proprietary to Digital Research

26

Section 2
The BDOS System Interface

This section describes the operating system services available
to a transient program through the BOOS module of CP/M 3. The
section begins by defining how a transient program calls BOOS
functions, then discusses ser ial I/O for console, 1 ist and auxiliary
devices, the file system, and Page Zero intitialization.

2.1 BDOS Calling Conventions

CP/M 3 uses a standard convention for BOOS function calls. On
entry to the BOOS, register C contains the BOOS function number, and
register pair OE contains a byte or word value or an information
address. BOOS functions return single-byte values in register A,
and double-byte values in register pair HL. In addition, they
return with register A equal to L, and register H equal to B. If a
transient program makes a BOOS call to a nonsupported function
number in the range of 0 to 127, the BOOS returns with register pair
HL set to OFFFFH. For compatibility with MP/M, the BOOS returns
with register pair HL set to OOOOH on nonsupported function numbers
in the range of 128 to 255. Note that CP/M 2 returns with HL set to
zero on all invalid function calls. CP/M 3' s register passing
conventions for BOOS function calls are consistent with the
conventions used by the Intel PL/M systems programming language.

When a transient program makes a BOOS function call, the BOOS
does not restore registers to their entry values before returning to
the calling program. The responsibility for saving and restoring
any critical register values rests with the calling program.

When the CCP loads a transient program, the LOAOER module sets
the stack pointer to a 16 level stack, and then pushes the address
OOOOH onto the stack. Thus, an immediate return to the system is
equivalent to a jump to OOOOH. However, most transient programs set
up their own stack, and terminate execution by making a BOOS System
Reset call (Function O) or by jumping to location OOOOH.

The following example illustrates how a transient program calls
a BOOS function~ This program reads characters continuously until
it encounters an asterisk. Then it terminates execution by
returning to the system.

All Information Presented Here is proprietary to Digital Research

27

CP/M 3 Programmer's Guide 2.1 BDOS Calling Conventions

bdos equ
conin equ

org
nextc: mvi

call
cpi
jnz
ret
end

OOOSh
1

lOOh
c,conin
bdos
'* ,
nextc

:BDOS entry point in Page Zero
:BDOS console input function

:Base of Transient Program Area

:Return character in A
:End of processing?
:Loop if not
:Terminate program

2.2 BOOS Serial Device I/O

Under CP/M 3, serial device I/O is simply input to and output
from simple devices such as consoles, line printers, and
communications devices. These physical devices can be assigned the
logical device names defined below:

CONIN:
CONOUT:
AUXIN:
AUXOUT:
LST:

logical console input device
logical console output device
logical auxiliary input device
logical auxiliary output device
logical list output device

If your system supports the BIOS DEVTBL function, the CP/M 3
DEVICE utility can display and change the assignment of logical
devices to physical devices. DEVICE can also display the names and
attributes of physical devices supported on your system. If your
system does not support the DEVTBL entry point, then the logical to
physical device assignments are fixed by the BIOS.

In general, BDOS serial I/O functions read and wr i te an
individual ASCII character, or character string to and from these
devices, or test the device's ready status. For these BDOS
functions, a string of characters is defined as zero to N characters
terminated by a delimi ter. A block of characters is defined as zero
to N characters where N is specified by a word count field. The
maximum value of N in both cases is limi ted only by available
memory. The following list summarizes BDOS serial device I/O
functions.

Read a character from CONIN:
Read a character buffer from CONIN:
write a character to CONOUT:
Write a string of characters to CONOUT:
Write a block of characters to CONOUT:
Read a character from AUXIN:
Write a character to AUXOUT:
Write a character to LST:
Write a block of characters to LST:
Interrogate CONIN:, AUXIN:, AUXOUT: ready

All Information Presented Here is Proprietary to Digital Research

28

CP/M 3 Programmer's Guide 2.2 BOOS Serial Device I/O

CP/M 3 cannot run unless CONIN: and CONOUT: are assigned to a
physical console. The remaining logical devices can remain
unassigned. If a logical output device is not assigned to a
physical device, an output BOOS call to the logical device performs
no action. If a logical input device is not assigned to a physical
device, an input BOOS call to the logical device typically returns a
CTRL-Z (lAH), which indicates end-of-file. Note that this action
depends on your system's BIOS implementation.

2.2.1 BOOS Console I/O

Because a transient program's main interaction with its user is
through the console, the BOOS supports many console I/O functions.
Console I/O functions can be divided into four categories: basic
console I/O, direct console I/O, buffered console input, and special
console functions. Using the basic console I/O functions, programs
can access the console device for simple input and output. The
basic console I/O functions are:

1. Console Input
2. Console Output
9. Print String

11. Console Status

111. Print Block

Inputs a single character
Outputs a single character
Outputs a string of characters
Signals if a character is ready
for input
Outputs a block of characters

The input function echoes the character to the console so that
the user can identify the typed character. The output functions
expand tabs in columns of eight characters.

The basic I/O functions also monitor the console to stop and
start console output scroll at the user's request. To provide this
support, the console output functions make internal status checks
for an input character before writing a character to the output
device. The console input and console status functions also check
the input character. If the user types a CTRL-S, these functions
rna ke an addi tional BIOS console input call. This input call
suspends execution until a character is typed. If the typed
character is not a CTRL-Q, an additional BIOS console input call is
made. Execution and console scrolling resume when the user types a
CTRL-Q.

When the BOOS is suspended because of a typed CTRL-S, it scans
input for three special characters: CTRL-Q, CTRL-C, and CTRL-P. If
the user types any other char acter, the BOOS echoes a bell
character, CTRL-G, to the console, discards the input character, and
continues the scan. I f the user types a CTRL-C, the BOOS executes a
warm start which terminates the calling program. If the user types
a CTRL-P, the BOOS toggles the printer echo switch. The printer
echo swi tch controls whether console output is automatically echoed.
to the list device, LST:. The BOOS signals when it turns on printer
echo by sending a bell character to the console.

All Information Presented Here is proprietary to Digital Research

29

CP/M 3 Programmer's Guide 2.2 BOOS Serial rievice I/O

All basic console I/O functions discard any CTRL-Q or CTRL-P
character that is not preceded by a CTRL-S character. Thus, BOOS
function 1 cannot read a CTRL-S, CTRL-Q, or CTRL-P character.
Furthermore, these characters are invisible to the console status
function.

The second category of console I/O is direct console I/O. BOOS
function 6 can provide di rect console I/O in si tuations where
unadorned console I/O is required. Function 6 actually consists of
several sub-functions that support direct console input, output, and
status checks. The BOOS does not filter out special characters
during direct console I/O. The direct output sub-function does not
expand tabs, and the direct input sub-function does not echo typed
characters to the console.

The third category of console I/O accepts edited input from the
console. The only function in this category, Function 10, Read
Buffer Input, reads an input line from a buffer and recognizes
certain control characters that edit the input. As an option, the
line to be edited can be initialized by the calling program.

In the nonbanked version of CP/M 3, editing within the buffer
is restricted to the last character on the line. That is, to edit a
character embedded in the line, the user must delete all characters
that follow the erroneous character, correct the error, and then
retype the remainder of the line. The banked version of CP/M 3
supports complete line editing in which characters can be deleted
and inserted anywhere in the line. In addition, the banked version
can also recall the previously enter~d line.

Function 10 also filters input for certain control characters.
I f the user types a CTRL-C as the firs t char acter in the 1 ine,
Function 10 terminates the calling program by branching to the BIOS
warm start entry point. A CTRL-C in any other position is simply
echoed at the console. Function 10 also watches for a CTRL-P
keystroke, and if it finds one at any position in the command line,
it toggles the printer echo switch. Function 10 does not filter
CTRL-S and CTRL-Q characters, but accepts them as normal input. In
general, all control characters that Function 10 does not recognize
as edi ting control characters, it accepts as input characters.
Function 10 identifies a control character with a leading caret, ~,
when it echoes the control character to the console. Thus, CTRL-C
appears as ~C in a Function 10 command line on the screen.

The final category of console I/O functions includes special
functions that modify the behavior of other console functions.
These functions are:

109. Get/Set Console Mode
110. Get/Set Output Delimiter

Function 110 can get or set the current delimiter for Function 9,
Print String. The delimiter is $, when a transient program begins
execution. Function 109 gets or sets a l6-bi t system var iable
called the Console Mode. The following list describes the bits of

All Information Presented Here is Proprietary to Digital Research

30

CP/M 3 Programmer's Guide 2.2 BDOS Serial Device I/O

the Console Mode variable and their functions:

bit a : If this bit is set, Function 11 returns true only if a CTRL­
C is typed at the console. Programs that make repeated
console status calls to test if execution should be
interrupted, can set this bit to interrupt on CTRL-C only.
The CCP DIR and TYPE built-in commands run in this mode.

bit 1 Setting this bit disables stop and start scroll support for
the basic console I/O functions, which comprise the first
category of functions described in this section. When this
bit is set, Function 1 reads CTRL-S, CTRL-Q, and CTRL-P,
and Function 11 returns true if the user types these
characters. Use this mode in situations where raw console
input and edited output is needed. While in this mode, you
can use Function 6 for input and input status, and
Functions 1, 9, and III for output without ~he possibility
of the output functions intercepting input CTRL-S, CTRL-Q,
or CTRL-P characters.

bit 2 Setting this 'bit disables tab expansion and printer echo
support for Functions 2, 9, and Ill. Use this mode when
non-edited output is required.

bi t 3 This bi t di sables all CTRL-C inter cept action in the BOOS.
This mode is useful for programs that must control their
own termination.

bits 8 and 9 : The BDOS does not use these, bits, but reserves them
for the CP/M 3 GET RSX that performs console input
redirection from a file. With one exception, these bits
determine how the GET RSX responds to a program console
status request (Function 6, Function 11, or direct BIOS) •

bit 8
bit 8
bit 8
bit 8

0, bit 9
0, bit 9
1, bit 9
1, bit 9

a - conditional status
1 - false status
a - true status
1 - do not perform redirection

In condi tional status mode, GET responds false to all
status requests except for a status call preceded
immediately by another status call. On the second call,
GET responds with a true result. Thus, a program that
spins on status to wait for a character is signaled that a
character is ready on the second call. In addition, a
program that makes status calls periodically to see if the
user wants to stop is not signaled.

When a transient program begins execution, the Console Mode
bits are normally set to zero. However, the CP/M 3 utility GENCOM
can attach an RSX header to a COM file so that when it is loaded,
the console mode bits are set differently. This feature allows you
to modify a program's console I/O behavior without having to change
the program.

All Information Presented Here is proprietary to Digital Research

31

CP/M 3 Programmer's Guide 2.2 BOOS Serial Oevice I/O

2.2.2 Other Serial I/O

The BOOS supports single character output functions for the
logical devices LST: and AUXOUT:, an input function for AUXIN:, and
status functions for AUXIN: and AUXOUT:. A block output function is
also supported for the LST: device. Unlike the console I/O
functions, the BOOS does not intercept control characters or expand
tabs for these functions. Note that AUXIN: and AUXOUT: replace the
READER and PUNCH devices supported by earlier versions of CP/M.

2.3 BOOS File System

Transient programs depend on the BOOS file system to create,
update, and maintain disk files. This section describes the
capabili ties of the BOOS file system in detail. You must understand
the general features of CP/M 3 described in Section 1 before you can
use the detail presented in this section.

The remaining introductory paragraphs define the four
categories of BOOS file functions. This is followed by a review of
file naming conventions and disk and file organization. The section
then descr ibes the data structure used by the BOOS file, and
directory oriented functions: the File Control Block (FCB).
Subsequent discussions cover file att~ibutes, user numbers,
directory labels and extended File Control Blocks (XFCBs),
passwords, date and time stamping, blocking and deblocking, multi­
sector I/O, disk reset and removable media, byte counts, and error
handling. These topics are closely related to the BOOS file system.
You must be familiar with the contents of Section 2 before
a t tempting to use the BOOS functions descr ibed individually in
Section 3.

The BOOS file system supports four categories of functions:
file access functions, directory functions, dr i ve related functions,
and miscellaneous functions. The file access category includes
functions to create a file, open an existing file, and close a file.
Both the make and open functions activate the file for subsequent
access by BOOS file access functions. The BOOS read and wr i te
functions are file access functions that operate ei ther sequentially
or randomly by record position. They transfer data in units of 128
bytes, which is the basic record size of the file system. The close
function makes any necessary updates to the directory to permanently
record the status of an activated file. .

BOOS directory functions operate on existing file entries in a
drive's directory. This category includes functions to search for
one or more files, delete one or more files, truncate a file, rename
a file, set file attributes, assign a password to a file, and
compute the size of a file. The search and delete functions are the
only BOOS functions that support ambiguous file references. All
other directory and file related functions require a specific file
reference.

All Information Presented Here is Proprietary to Oigital Research

32

CP/M 3 Programmer's Guide 2.3 BDOS File System

The BDOS drive-related category includes functions that select
the default drive, compute a drive's free space, interrogate drive
status, and assign a directory label to a drive. A drive's
directory label controls whether or not CP/M 3 enforces file
password protection, or stamps files with the date and time. Note
that the nonbanked version of CP/M 3 does not support file
passwords.

The miscellaneous category includes functions to set the
current DMA address, access and update the current user number,
cha in to a new program, and flush internal blocking/deblocking
buffers. Also included are functions tha t set the BDOS mul ti-sector
count, and the BOOS error mode. The BOOS multi-sector count
determines the number of l28-byte records to be processed by BDOS
read and write functions. It can range from 1 to 128. The BOOS
error mode determines how the BDOS file system handles certain
classes of errors.

Also included in the miscellaneous category are functions that
call the BIOS directly, set a program return code, and parse
filenames. If-the LOADER RSX is resident in memory, programs can
also make a BDOS function call to load an overlay. Another
miscellaneous function accesses system var iables in the System
Control Block.

The following list summarizes the operations performed by the
BDOS file system:

Disk System Reset
Dr i ve Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address
Set/Reset File Attributes
Reset Drive
Set BDOS Multi-Sector Count
Set BDOS Error Mode
Get Disk Free Space
Chain to Program
Flush Buffers
Get/Set System Control Block
Call BIOS
Load Over lay
Call RSX
Truncate File
Set Directory Label
Get File's Date Stamps and Password Mode
Wr i te File XFCB

All Information Presented Here is proprietary to Digital Research

33

CP/M 3 Programmer's Guide

Set/Get Date and Time
Set Default Password
Return CP/M 3 serial number
Get/Set Program Return Code
Parse Filename

2.3.1 File Naming Conventions

2.3 BOOS File System

Under CP/M 3, a file specification consists of four parts: the
drive specifier, the filename field, the filetype field, and the
file password field. The general format for a command line file
specification is shown below:

{d:}filename{.tYP}{ipassword}

The drive specifier field specifies the drive where the file is
located. The filename and type fields identify the file. The
password field specifies the password if a file is password
protected.

The drive, type, and password fields are optional, and the
delimiters :.i are required only when specifying their associated
field. The drive specifier can be assigned a letter from A to P
where the actual drive letters supported on a given system are
determined by the BIOS implementation. When the drive letter is not
specified, the current default drive is assumed.

The filename and password fields can contain one to eight non­
delimiter characters. The filetype field can contain one to three
non-delimiter characters. All three fields are padded with blanks,
if necessary. Omi tting the optional type or password fields impl ies
a field specification of all blanks.

The CCP calls BOOS Function 152, Parse Filename, to parse file
specifications from a command line. Function 152 recognizes certain
ASCII characters as valid delimiters when it parses a file from a
command line. The valid delimiters are shown in Table 2-1.

All Information Presented Here is Proprietary to Digital Research

34

CP/M 3 Programmer's Guide 2.3 BOOS File System

Table 2-1. Valid Filename Delimiters

ASCII

null
space
return
tab

,
[
]
<
>
I

I HEX EQUIVALENT

00
20
00
09
3A
2E
3B
3D
2C
5B
5D
3C
3E
7C

Function 152 also excludes all control characters from the file
fields, and translates all lower-case letters to upper case.

Avoid using parentheses and the backslash character, \, in the
filename and filetype fields because they are commonly used
delimiters. Use asterisk and question mark characters, * and ?,
only to make an ambiguous file reference. When Function 152
encounters an * in a filename or filetype field, it pads the
remainder of the field with question marks. For example, a filename
of X*. * is parsed to X??????? ??? The BOOS search and delete
functions treat a ? in the filename and type fields as follows: A?
in any position matches the corresponding field of any directory
entry belong ing to the current user number. Thus, a search
operation for X?????????? finds all the current user files on the
directory beginning in X. Most other file related BDOS functions
treat the presence of a ? in the filename or type field as an error.

It is not mandatory to follow the file naming conventions of
CP/M 3 when you create or rename a file with BOOS functions.
However, the conventions must be used if the file is to be accessed
from a command line. For example, the CCP cannot locate a command
file in the directory if its filename or type field contains a
lower-case letter.

As a general rule, the filetype field names the generic
category of a particular file, while the filename distingutshes
individual files in each category. Although they are generally
arbitrary, the following list of filetypes names some of the generic
categories that have been established.

All Information Presented Here is Proprietary to Digital Research

35

CP/M 3 Programmer's Guide

ASM
PRN
HEX
BAS
INT
COM
PRL
SPR

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate File
Command File
Page Relocatable
Sys. Page Reloc.

2.3.2 Disk and File Organization

PLI
REL
TEX
BAK
SYM
$$$
DAT
SYS

2.3 BDOS File System

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File
Data File
System File

The BDOS file system can support from one to sixteen logical
drives. The maximum file size supported on a drive is 32 megabytes.
The maximum capacity of a drive is determined by the data block size
specified for the drive in the BIOS. The data block size is the
basic unit in which the BDOS allocates disk space to files. Table
2-2 displays the relationship between data block size and drive
capacity.

Table 2-2. Logical Drive Capacity

Data Block Size I Maximum Drive Capacity

lK
2K
4K
8K

16K

256 Kilobytes
64 Megabytes

128 Megabytes
256 Megabytes
512 Megabytes

Logical drives are divided into two regions: a directory area
and a data area. The directory area contains from one to sixteen
blocks located at the beginning of the drive. The actual number is
set in the BIOS. This area contains entries that define which files
exist on the drive. The directory entries corresponding to a
particular file define those data blocks in the drive's data area
that belong to the file. These data blocks contain the file's
records. The directory area is logically subdivided into sixteen
independent directories identified as user 0 through 15. Each
independent directory shares the actual directory area on the drive.
However, a file's directory entries cannot exist under more than one
user number. In general, only files belonging to the current user
number are visible in the directory.

Each disk file consists of a set of up to 262,144 128-byte
records. Each record in a file is identified by its position in the
file. This position is called the record's random record number.
If a file is created sequentially, the first record has a position
of zero, while the last record has a position one less than the
number of records in the file. Such a file can be read sequentially
in record position order beginning at record zero, or randomly by
record position. Conversely, if a file is created randomly, records
are added to the file by specified position. A file created in

All Information Presented Here is proprietary to Digital Research

36

CP/M 3 Programmer's Guide 2.3 BOOS File System

this way is called sparse if positions exist within the file where a
record has not been written.

The BOOS automatically allocates data blocks to a file to
contain its records on the basis of the record positions consumed.
Thus, a sparse file that contains two records, one at position zero,
the other at position 262,143, consumes only two data blocks in the
data area. Sparse files can only be created and accessed randomly,
not sequentially. Note that any data block allocated to a file is
permanently allocated to the file until the file is deleted or
truncated. These are the only mechanisms supported by the BDOS for
releasing data blocks belonging to a file.

Source files under CP/M 3 are treated as a sequence of ASCII
characters, where each line of the source file is followed by a
carriage return line-feed sequence, ODH followed by OAH. Thus a
single 128-byte record could contain several lines of source text.
The end of an ASCII file is denoted by a CTRL-Z character, lAH, or a
real end of file, returned by the BOOS read operation. CTRL-Z
characters embedded within machine code files such as COM files are
ignored. The actual end-of-file condition returned by the BOOS is
used to terminate read operations.

2.3.3 File Control Block Definition

The File Control Block, FCB, is a data structure that is set up
and initializ~d by a t~:;~~~ram, and then used by any BOOS
file access an director . ons called by the transient program.
Thus the FCB is an lmportant channel for information exchange
between the BOOS and a transient program. For example, when a
program opens a file, and subsequently accesses it with BOOS read
and wr i te record functions, the BOOS file system maintains the
current file state and position within the program's FCB. Some BOOS
functions use certain fields in the FCB for invoking special
options. Other BOOS functions use the FCB to return data to the
calling program. In addition, all BOOS random I/O functions specify
the random record number with a 3-byte field at the end of the FCB.

When a transient program makes a file access or directory BOOS
function call, register pair DE must address an FCB. The length of
the FCB data area depends on the BOOS function. For most functions,
the required length is 33 bytes. For random I/O functions, the
Truncate File function, and the Compute File Size function, th FCB
length must be 36 bytes. The FCB format is shown on the next p

All Information Presented Here is Proprietary to Digital Research

37

CP/M 3 Programmer's Guide 2.3 BDOS File System

00 01 02

where

dr

08 09 10 11 12 13 14 15 16

drive code (0 - 16)
0=> use-\(lefault drive for file
1 => auto\disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl .•. f8 contain the filename in ASCII
upper case, with high bit = O.
fl', ..• , f8' denote the high­
order bit of these positions,
and are file attribute bits.

tl,t2,t3 contain the filetype in ASCII
upper case, with high bit = O.
tl', t2', and t3' denote the
high bit of these positions,
and are file attribute bits.
tl' 1 => Read/Only file
t2' = 1 => System file
t3' = 1 => File has been archived

31 32 33 34 35

ex contains the current extent number,
usually set to a by the calling program,
but can range a -31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use

rc record count for extent "ex"
takes on values from a - 255
(values greater than 128 imply
record count equals 128)

dO •.• dn filled-in by CP/M 3,-reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by the calling program
when a file is opened or created

·rO,rl,r2 optional random record number in the
range 0-262,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit value
with low byte rO, middle byte rl, and
high byte r2.

All Information Presented Here is proprietary to Digital Research

38

CP/M 3 Programmer's Guide 2.3 BOOS File System

For BOOS directory functions, the calling program must
initialize bytes a through 11 of the FCB before issuing the function
call. The Set Oirectory Label and Write File XFCB functions also
require the calling program to initialize byte 12. The Rename File
function requires the calling program to place the new filename and
type in bytes 17 through 27.

BOOS open or make function calls require the calling program to
intialize bytes 0 through 12 of the FCB before making the call.
Usually, byte 12 is set to zero. In addition, if the file is to be
processed from the beginning using sequential read or write
fun,ctions, byte 32, cr, must be zeroed.

After an FCB is activated by an-open or make operation, a
program does not have to modify the FCB to perform sequential read
or write operations. In fact, bytes a through 31 of an activated
FCB should not be modified. However, random I/O functions require
that a program set bytes 33 through 35 to the requested random
record number prior to making the function call.

File directory entries maintained in'the directory area of each
disk have the same format as FCBs, excluding bytes 32 through 35,
except for byte a which contains the file's user number. Both the
Open File and Make File functions bring these entries, excluding
byte 0, into memory in the FCB specified by the calling program.
All read and write operations on a file must specify an FCB
activated in this manner.

The BOOS updates the memory copy of the FCB dur ing file
processing to maintain the cur ren t posi tion wi thin the file. Our ing
file write operations, the BOOS updates the memory copy of the FCB
to record the allocation of data to the file, and at the termination
of file processing, the Close File function permanently records this
information on disk. Note that data allocated to a file during file
write operations is not completely recorded in the directory until
the calling program issues a Close File call. Therefore, a program
that creates or modifies files must close the files at the end of·
any write processing. Otherwise, data might be lost.

The BOOS Search and Oelete functions support mul tiple or
ambiguous file references. In general, a question mark in the
filename, filetype, or extent field matches any value in the
corresponding posi tions of directory FCBs during a directory search
operation. The BOOS search functions also recognize a question mark
in the drive code field, and if specified, they return all directory
entries on the disk regardless of user number, including empty
entries. A directory FCB that begins wi th E5H is an empty directory
entry.

All Information Presented Here is proprietary to Oigital Research

39

CP/M 3 Programmer's Guide 2.3 BOOS File System

2.3.4 File Attributes

The high-order bits of the FCB filename, fl', •.• ,f8', and
filetype, tl' ,t2' ,t3', fields are called attribute bits. Attributes
bits are 1 bit Boolean fields where 1 indicates on or true, and 0
indicates off or false. Attribute bits indicate two kinds of
attributes within the file system: file attributes and interface
attributes.

The file attribute bits, fl', ... ,f4' and tl',t2',t3', can
indicate that a file has a defined file attribute. These bits are
recorded in a file's directory FCBs. File attributes can be set or
reset only by the BOOS Set File Attributes function. When the BOOS
Make File function creates a file, it initializes all file
attributes to zero. A program can interrogate file attributes in an
FCB activated by the BOOS Open File function, or in directory FCBs
returned by the BOOS Search For First and Search For Next functions.

Note: the BOOS file system ignores file attribute bits when it
attempts to locate a file in the directory.

The file system defines the file attribute bits, tl' ,t2' ,t3',
as follows:

tl': Read-Only attribute - The file system prevents wri te operations
to a file with the read-only attribute set.

t2': System attribute - This attribute, if set, identifies the file
as a CP/M 3 system file. System files are not usually
displayed by the CP/M 3 OIR command. In addition, user-zero
system files can be accessed on a read-only basis from other
user numbers.

t3': Archive attribute - This attribute is designed for user wri tten
archive programs. When an archive program copies a file to
backup storage, it sets the archive attribute of the copied
f il es. The file system automatically resets the archive
attribute of a directory FCB that has been issued a write
command. The archive program can test this attribute in each
of the file's directory FCBs via the BOOS Search and Search
Next functions. If all directory FCBs have the archive
attribute set, it indicates that the file has 'not been modified
since the previous archive. Note that the CP/M 3 PIP utility
supports file archival.

Attributes fl' through f4' are available for definition by the user.

The interface attributes are indicated by bits fS' through f8'
and cannot be used as file attributes. Interface attributes fS' and
f6' can request options for BOOS Make File, Close File, Delete File,
and Set File Attributes functions. Table '2-3 defines options
indicated by the fS' and f6' interface attribute bits for these
functions.

All Information Presented Here is proprietary to Oigital Research

40

CP/M 3 Programmer's Guide 2.3 BDOS File System

Table 2-3. BDOS Interface Attributes

BOOS Function I Interface Attribute Definition

16. Close File f5 1 1 Partial Close

19. Delete File f5 1 1 Delete file XFCBs only

22. Make File f6 1 1 Assign password to file

30. Set File Attributes f6 1 I Set file byte count

Section 3 discusses each interface attribute in detail in the
definitions of the above functions. Attributes f5 1 and f6 1 are
always reset when control is returned to the calling program.
Interface attributes f71 and f8 1 are reserved for internal use by
the BOOS file system.

2.3.5 User Number Conventions

The CP/M 3 User facility divides each drive directory into
sixteen logically independent directories, designated as user 0
through user 15. Physically, all user directories share the
directory area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on
different user numbers of the same drive with no conflict. However,
a single file cannot reside under more than one user number.

Only one user number is active for a program at one time, and
the cur r en t user number appl ies to all dr i ves on the sys tem.
Furthermore, the FCB format does not contain any field that can be
used to override the current user number. As a result, all file and
directory operations reference directories associated with the
cur rent user number. However, it is possible for a program to
access files on different user numbers; this can be accomplished by
setting the user number to the file's user number with the BOOS Set
User function before making the desired BOOS function call for the
file. Note that this technique must be used carefully. An error
occurs if a program attempts to read or write to a file under a user
number different from the user number that was active when the file
was opened.

When the CCP loads and executes a transient program, it
initializes the user number to the value displayed in the system
prompt. If the system prompt does not display a user number, user
zero is implied. A transient program can change its user number by
making a BDOS Set User function call. Changing the user number in
this way does not affect the CCpls user number displayed in the
system prompt. When the transient program' terminates, the CCpls
user number is restored. However, an option of the BOOS Program
Chain command allows a program to pass its current user number and

All Information Presented Here is Proprietary to Digital Research

41

CP/M 3 Programmer's Guide 2.3 BDOS File System

default drive to the chained program.

User a has special properties under CP/M 3. When the current
user number is not equal to zero, and if a requested file is not
present under the current user number, the file system automatically
attempts to open the file under user zero. If the file exists under
user zero, and if it has the system attribute, t2', set, the file is
opened from user zero. Note, however, that files opened in this way
cannot be written to; they are available only for read access. This
procedure allows utilities that may include overlays and any other
commonly accessed files to be placed on user zero, but also be
available for access from other user numbers. As a result, commonly
needed utili ties need not be copied to all user numbers on a
directory, and you can control which user zero files are directly
accessible from other user numbers.

2.3.6 Directory Labels and XFCBS

The BDOS file system includes two special types of FCBs: the
XFCB and the Directory Label. The XFCB is an extended FCB that
optionally can be associated with a file in the directory. If
present, it contains the file's password. Note that password
protected files and XFCBs are supported only in the banked version
of CP/M 3. The format of the XFCB follows.

dr password reserved

00 01 ••• 09 •• 12 13 14 15 16 •••••• 24 ••••••

dr
file

, type
-pm

sl,s2,rc
password
reserved

Figure 2-1. XFCB FORMAT

drive code (0 - 16)
filename field
filetype field
password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
** - bit references are right to left,

relative to a
reserved for system use
a-byte password field (encrypted)
a-byte reserved area

An XFCB can be created only on a drive that has a directory
label, and only if the directory label has activated password
protection. For drives in this state, an XFCB can be created for a
file in two ways: by the BDOS Make function or by the BDOS Write
File XFCB function. The BDOS Make function creates an XFCB if the
calling program requests that a password be assigned to the created
file. The BDOS Write File XFCB function can be used to assign a

All Information Presented Here is Proprietary to Digital Research

42

CP/M 3 Programmer's Guide 2.3 BDOS File System

password to an existing file. Note that in the directory, an XFCB
is identified by a drive byte value, byte a in the FCB, equal to 16
+ N, where N equals the user number.

For its drive, the directory label specifies if file password
support is to be activated, and if date and time stamping for files
is to be performed. The format of the Directory Label follows.

dr

00 01 •.

dr
name
type
dl

sl,s2,rc
password
tsl
ts2

password

09 •• 12 13 14 15 16 •.•••• 24.

Figure 2-2. DIRECTORY LABEL FORMAT

drive code (0 - 16)
Directory Label name
Directory Label type
Directory Label data byte

ts2

28.

bit 7 - require passwords for password
protected files

bit 6 - perform access time stamping
bit 5 - perform update time stamping
bit 4 - perform create time stamping
bit a - Directory Label exists

n/a

** - bit references are right to left,
relative to a

8-byte password field (encrypted)
4-byte creation time stamp field
4-byte update time stamp field

Only one Directory Label can exist in a drive's directory. The
Directory Label name and type fields are not used to search for a
Directory Label: they can be used to identify a disk. A Directory
Label can be created, or its fields can be updated by BDOS function
100, Set Directory Label. This function can also assign a Directory
Label a password. The Directory Label password, if assigned, cannot
be circumvented, whereas file password protection is an option
controlled by the Directory Label. Thus, access to the Directory
Label password provides a kind of super-user status on that drive.

The nonbanked version of CP/M 3 does not support file
passwords. However, it does provide password protection of
directory labels. The CP/M 3 RSX, DIRLBL.RSX, which implements BDOS
Function 100 in the 'nonbanked version of CP/M 3, provides this
support.

The BDOS file system has no function to read the Directory
Label FCB directly. However, the Directory Label data byte can be
read directly with the BDOS Function 101, Return Directory Label.
In addition, the BDOS Search ,functions, with a ? in the FCB drive
byte, can be used to find the Directory Label on the default drive.

All Information Presented Here is Proprietary to Digital Research

43

CP/M 3 Programmer's Guide 2.3 BOOS File System

2.3.7 File Passwords

Only the banked version of CP/M 3 supports file passwords. In
the nonban ked version, all BOOS functions wi th password related
options operate the same way the banked version does when passwords
are not enabled.

Files can be assigned passwords in two ways: by the Make File
function or by the Write File XFCB function. A file's password can
a Iso be changed by the Wri te File XFCB function if the or iginal
password is supplied.

Password protection is provided in one of three modes. Table
2-4 shows the difference in access level allowed to BOOS functions
when the password is not supplied.

Table 2-4. Password Protection Modes

Password
Mode

1. Read

2. Write

3. Delete

I
Access level allowed when the password
is not supplied.

The file cannot be read.

~he file can be read, but not modified.

The file can be modified, but not
deleted.

If a file is password protected in Read mode, the password must be
supplied to open the file. A file protected in Write mode cannot be
written to without the password. A file protected in Delete mode
allows read and wri te access, but the user must specify the password
to delete the file, rename the file, or to modify the file's
attributes. Thus, password protection in mode I implies mode 2 and
3 protection, and mode 2 protection implies mode 3 protection. All
three modes require the user to specify the password to delete the
file, rename the file, or to modify the file's attributes.

If the correct password is supplied, or if password protection
is disabled by the Directory Label, tht:!n access to the BOOS
functions is the same as for a file that is not password protected.
In addi tion, the Search For First and Search For Next functions are
not affected by file passwords.

All Information Presented Here is proprietary to Digital Research

44

CP/M 3 Programmer's Guide 2.3 BDOS File System

Table 2-5 lists the BDOS functions that test for password.

Table 2-5. BOOS Functions That Test For Password

15. Open File
19. Delete File
23. Rename File
30. Set File Attributes
99. Truncate File

100. Set Directory Label
103. Write File XFCB

File passwords are eight bytes in length. They are maintained
in the XFCB Directory Label in encrypted form. To make a BDOS
function call for a file that requires a password, a program must
place the password in the first eight bytes of the current DMA, or
specify it with the BDOS function, Set Default Password, prior to
making the function call.

Note: the BDOS keeps an assigned default password value until it is
replaced with a new assigned value.

2.3.8 File Date and Time Stamps

The CP/M 3 File System uses a special type of directory entry
called an SFCB to record date and time stamps for files. When a
directory has been initialized for date and time stamping, SFCBs
reside in every fourth position of the directory. Each SFCB
maintains the date and time stamps for the previous three directory
entries as shown in Figure 2-2.

FCB 1

FCB 2

FCB 3

21 stamps for I stamps for I stamps for III fcb 1 fcb 2 fcb 3 II

Figure 2-3. Directory Record with SFCB

This figure shows a directory record that contains an SFCB.
Directory records consist of four directory entries, each 32 bytes
long. SFCBs always occupy the last position of a directory record.

All Information Presented Here is Proprietary to Digital Research

45

CP/M 3 Programmer's Guide 2.3 BDOS File System

The SFCB directory item contains five fields. The first field
is one byte long and contains the value 2lH. This value identifies
the SFCB in the directory. The next three fields, the SFCB
subfields, contain the date and time stamps for their corresponding
FCB entries in the directory record. These fields are 10 bytes
long. The last byte of the SFCB is reserved for system use. The
format of the SFCB subfields is shown in Table 2-6.

Table 2-6. SFCB Subfields Format

Offset of Bytesl

0-3
4 - 7
8
9

SFCB Subfield Contents

Create or Access Date and Time Stamp field
Update Date and Time Stamp field
Password mode field
Reserved

An SFCB sub field contains valid information only if its
corresponding FCB in the directory record is an extent zero FCB.
This FCB is a file's first directory entry. For password protected
files, the SFCB subfield also contains the password mode of the
file. This field is zero for files that are not password protected.
The BDOS Search and Search Next functions can be used to access
SFCBs directly. In addition, BDOS Function 102 can return the file
date and time stamps and password mode for a specified file. Refer
to Section 3, function 102, for a description of the format of a
date and time stamp field.

CP/M 3 supports three types of file stamping: create, access,
and update. Create stamps record when the file was created, access
stamps record when the file was la~t opened, and update stamps
record the last time the file was modified. Create and access
stamps share the same field. As a result, file access stamps
overwrite any create stamps.

The CP/M 3 utility, INITDIR, initializes a directory for date
and time stamping by placing SFCBs in every fourth directory entry.
Date and time stamping is not supported on disks that have not been
initialized in this manner. For initialized disks the disks'
Directory Label determines the type of date and time stamping
suppor ted for files on the dr ive. If a disk does not have a
Directory Label, or if it is Read-Only, or if the disk's Directory
Label does not specify date and time stamping, then date and time
stamping for files is not performed. Note that the Directory Label
is also time stamped, but these stamps are not made in an SFCB.
Time stamp fields in the last eight bytes of the Directory Label
record when it was created and last updated. Access stamping for
Directory Labels is not supported.

The BDOS file system uses the CP/M 3 system date and time when
it records a date and time stamp. This value is maintained in a
field in the System Control Block (SCB). On CP/M 3 systems that
support a hardware clock, the BIOS module directly updates the SCB

All Information Presented Here is Proprietary to Digital Research

46

CP/M 3 Programmer's Guide 2.3 BOOS File System

system date and time field. Otherwise, date and time stamps record
the last ini tia1ized value for the system date and time. The CP/M 3
DATE utility can be used to set the system date and time.

2.3.9 Record Blocking and Deblocking

Under CP/M 3, the logical record size for disk I/O is 128
bytes. Thi sis the basic uni t of data transfer between the
operating system and transient programs. However, on disk, the
record size is not restricted to 128 bytes. These records, called
physical records, can range from 128 bytes to 4K bytes in size.
Record blocking and deblocking is required on systems that support
drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128 byte
logical records is called record blocking. This process is required
in write operations. The reverse process of breaking up physical
records into their component 128 byte logical records is called
record deblocking. This process is required in read operations.
Under CP/M 3, record blocking and deblocking is normally performed
by the BOOS.

Record deblocking implies a read-ahead operation. For example,
if a transient program makes a BOOS function call to read a logical
record that resides at the beginning of a physical record, the
entire physical record is read into an internal buffer. Subsequent
BDOS read calls for the remaining logical records access the buffer
instead of the disk. Conversely, record blocking results in the
postponement of physical write operations but only for data write
operations. For example, if a transient program makes a BOOS write
call, the logical record is placed in a buffer equal in size to the
physical record size. The write operation on the physical record
buffer is postponed until the buffer is needed in another I/O
operation. Note that under CP/M 3, directory write operations are
never postponed.

Postponing physical record write operations has implications
for some applications programs. For those programs that involve
file updating, it is often critical to guarantee that the state of
the file on disk parallels the state of the file in memory after the
update operation. This is only an issue on systems where physical
wr i te operations are postponed because of record blocking and
deblocking. If the system should crash while a physical buffer is
pending, data would be los t. To prevent thi s loss of data, the BOOS
Flush Buffers function, function 48, can be called to force the
write of any pending physical buffers.

Note: the CCP automatically discards all pending physical data
buffers when it receives control following a system warm start.
However, the BOOS file system automatically makes a Flush Buffers
call in the Close File function. Thus, it is sufficient to close a
file to ensure that all pending physical buffers for that file are
written to the disk.

All Information Presented Here is Proprietary to Digital Research

47

CP/M 3 Programmer's Guide 2.3 BDOS File System

2.3.10 Multi-Sector I/O

CP/M 3 can read or write multiple l28-byte records in a single
BOOS function call. This process, called multi-sector I/O, is
useful primarily in sequential read and write operations,
particularly on drives with physical record sizes larger than 128
bytes. In a multi-sector I/O operation, the BDOS file system
bypasses, when possible, all intermediate record buffer ing. Data is
transferred directly between the TPA and the drive. In addition,
the BOOS informs the BIOS when it is reading or writing multiple
physical records in sequence on a drive. The BIOS can use this
information to further optimize the I/O operation resulting in even
bet ter performance. Thus, the pr imary obj ecti ve of mul ti-sector I/O
is to improve sequential I/O performance. The actual improvement
obtained, however, depends on the hardware environment of the host
system, and the implementation of the BIOS.

The number of records that can be supported with multi-sector
I/O ranges from 1 to 128. This value can be set by BDOS function
44, Set multi-sector Count. The multi-sector count is set to one
when a transient program begins execution. However, the CP/M 3
LOADER module executes wi th the mul ti-sector Count set to 128 unless
the available TPA space is less than 16K. In addition, the CP/M 3
PIP utility also sets the multi-sector count to 128 when sufficient
buffer space is available. Note that the greatest potential
performance increases are obtained when the multi-sector count is
set to 128. Of course, this requires a 16K buffer.

~e
f

The multi-sector count determines the number of operations to
performed by the following BDOS functions:

• Sequential Read and Write functions
• Random Read ann Write functions including Write Random with

Zero Fill

If the multi-sector count is N, calling one of the above functions
is equivalent to making N function calls. If a multi-sector I/O
operation is interrupted with an error such as reading unwritten
data, the file system returns in register H the number of l28-byte
records successfully processed. .

2.3.11 Disk Reset and~R;movable Media
---~

The BOOS-functions, Disk Reset (function 13) and Reset Drive
(function 37) allow a program to control when a disk's directory is
to be reinitialized for file operations. This process of
i~---arsK-t-s-di-r-ec-cory is called logging-i~./
When CP/M 3 is cold started, all drives are in the<Cr.eset s_~~
Subsequently, as dr i ves are referenced, they are automatically
logged-in by the file system. Once logged-in, a drive remains in
the logged-in state until it is reset by BOOS function 13 or 37.
Following the 'reset operation, the drive is again automatically
logged-in by the file system when it is next used. Note that BOOS
functions 13 and 37 have similar effects except that function 13 is

All Information Presented Here is Proprietary to Digital Research

48

CP/M 3 Programmer's Guide 2.3 BOOS File System

directed to all drives on the system. Any combination of drives can
be reset with Function 37.

Logging-in a drive consists of several steps. The most
important step is the initialization of the drive's allocation
vector. The allocation vector records the allocation and
deallocation of data blocks to files, as files are created,
extended, deleted, and truncated. Another function performed during
drive log-in is the initialization of the directory check-sum
vector. The file system uses the check-sum vector to detect media
changes on a drive. Note that permanent drives, which are drives
that do not support media changes, might not have check-sum vectors.
If directory hashing has been specified for the drive, a BIOS and
GENCPM option, the file system creates a hash table for the
directory during log-in.

The primary use of the drive reset functions is to prepare for
a media change on a dr i ve. Subsequen tly, when the dr i ve is accessed
by a BOOS function call, the drive is automatically logged-in.
Resetting a drive has two important side effects. First of all, any
pending blocking/deblocking buffers on the reset drive are
discarded. Secondly, any data blocks that have been allocated to
files that have not been closed are lost. Be sure to close your
files, particularly files that have been written to, prior to
resetting a drive.

Although CP/M 3 automatically relogs in removable media when
media changes are detected, you should still explicitly reset a
drive before prompting the user to change disks.

2.3.12 File Byte Counts

Although the logical record size of CP/M 3 is restricted to 128
bytes, CP/M 3 does provide a mechanism to store and retrieve a byte
count for a file. This facility can identify the last byte of the
last record of a file. The BDOS Compute File Size function returns
the random record number, plus 1, of the last record of a file.

The BOOS Set File Attributes function can set a file's byte
count. Conversely, the Open function can return a file's byte count
to the cr field of the FCB. The BDOS Search and Search Next
functions also return a file's byte count. These functions return
the byte count in the sl field of the FCB returned in the current
DMA buffer (see BDOS Functions Returned 17 and 26).

Note that the file svstem does not access or update the byte
count value in file read or write operations. However, the BOOS
Make File function does set the byte count of a file to zero when it
creates a file in the directory.

All Information Presented Here is proprietary to Digital Research

49

CP/M 3 Programmer's Guide 2.3 BOOS File System

2.3.13 BDOS Error Handling

The BDOS file system responds to error situations in one of
three ways:

Method 1.

Method 2.

Method 3.

It returns to the calling program with return codes in
register A, H, and L identifying the error.

It displays an error message on the console, and
branches to the BIOS warm start entry point, thereby
terminating execution of the calling program.

It displays an error message on the console, and returns
to the calling program as in method 1.

The file system handles the majority of errors it detects by method
1. Two examples of this kind of error are the file not found error
for the open function and the reading unwritten data error for a
read function. More serious errors, such as disk I/O errors, are
usually handled by method 2. Errors in this category, called
physical and extended errors, can also be reported by methods 1 and
3 under program control.

The BOOS Error Mode, which can exist in three states,
determines how the file system handles physical and extended errors.
In the default state, the BOOS displays the error message, and
terminates the calling program, method 2. In return error mode, the
BOOS returns control to the calling program with the error
identified in registers A, H, and L, method 1. In return and
display mode, the BDOS returns control to the calling program with
the error identified in registers A, H, and L, and also displays the
error message at the console, method 3. While both return modes
protect a program from termination because of a physical or extended
error, the return and display mode also allows the calling program
to take advantage of the built-in error reporting of the BOOS file
system. Physical and extended errors are displayed on the console
in the following format:

CP/M Error on d: error message
BDOS function = nn File = filename.typ

where d identifies the drive selected when the error condition is
de tected: er r or message iden ti f ies the er ror: nn is the BOOS
function number, and filename.typ identifies the file specified by
the BOOS function. If the BOOS function did not involve an FCB, the
file inf.ormation is omitted. Note that the second line of the above
error message is displayed only in the banked version of CP/M 3 if
expanded error message reporting is requested in GENCPM. It is not
displayed in the nonbanked version of CP/M 3.

The BOOS physical errors are identified by the following error
messages:

All Information Presented Here is Proprietary to Digital Research

50

CP/M 3 Programmer's Guide 2.3 BOOS File System

• Disk I/O
• Invalid Drive
• Read-Only File
• Read-Only Disk

The Disk I/O error results from an error condition returned to the
BOOS from the BIOS module. The file system makes BIOS read and
write calls to execute file-related BOOS calls. If the BIOS read or
write routine detects an error, it returns an error code to the BOOS
resulting in this error.

The Invalid Drive error also results from an error condition
returned to the BOOS from the BIOS module. The BOOS makes a BIOS
Select Disk call prior to accessing a drive to perform a requested
BOOS function. If the BIOS does not support the selected disk, the
BOOS returns an error code resulting in this error message.

The Read-Only File error is returned when a program attempts to
write to a file that is marked with the Read-Only attribute. It is
also returned to a program that attempts to write to a system file
opened under user zero from a nonzero user number. In addition,
this error is returned when a program attempts to write to a file
password protected in Write mode if the program does not supply the
correct password.

The Read-Only Disk error is returned when a program writes to a
disk that is in read-only status. A drive can be placed in read­
only status explicitly with the BOOS Write Protect Disk function.

The BOOS extended errors are identified by the following error
messages:

o Password Error
o File Exists
• ? in Filename

The File Password error is returned when the file password is
not supplied, or when it is incorrect. This error is reported only
by the banked version of CP/M 3.

The File Exists error is returned by the BOOS Make File and
Rename File functions when the BOOS detects a conflict such as a
duplicate filename and type.

The? in Filename error is returned when the BOOS detects a ?
in the filename or type field of the passed FCB for the BOOS Rename
File, Set File Attributes, Open File, Make File, and Truncate File
functions.

All Information Presented Here is Proprietary to Digital Research

51

CP/M 3 Programmer's Guide 2.3 BDOS File System

The following paragraphs describe the error return code
conven tions of the BOOS file system functions. Most BDOS file
system functions fall into three categories in regard to return
codes: they return an Error Code, a Directory Code, or an Error
Flag. The error conventions of CP/M 3 are designed to allow
programs written for earlier versions of CP/M to run without
modification.

The following BDOS functions return an Error Code in register
A.

20. Read Sequential
21. Write Sequential
33. Read Random
34. Write Random
40. Write Random w/zero Fill

The Error Code definitions for register A are shown in Table 2-7.

Code I
00

255
01

02
03 .
04
05
06
09

10

Table 2-7. Register A BOOS Error Codes

Meaning

Function successful
Physical error : refer to register H
Reading unwritten data or
No available directory space (Write Sequential)
No available data block
Cannot close current extent
Seek to unwritten extent
No available directory space
Random record number out of range
Invalid FeB (previous BDOS close call
returned an error code and invalidated the FCB)
Media Changed (A media change was detected on
the FCB's drive after the FCB was opened)

For BDOS read or write functions, the file system also sets register
H when the returned Error Code is a value other than zero or 255.
In this case, register H contains the number of 128-byte records
successfully read or written before the error was encountered. Note
that register H can contain only a nonzero value if the calling
program has set the BOOS Multi-Sector Count to a value other than
one; otherwise register H is set to zero. On successful functions,
Error Code = 0, register H is also set to zero. If the Error Code
equals 255, register H contains a physical error code (see Table 2-
11) •

All Information Presented Here is proprietary to Digital Research

52

CP/M 3 Programmer's Guide 2.3 BDOS File System

The following BDOS functions return a Directory Code in
register A:

15. Open File
16. Close File
17. Search For First
18. Search For Next
19. Delete File
22. Make File
23. Rename File
30. Set File Attributes
35. Compute File Size
99. Truncate File

* 100. Set Directory Label
102. Read File Date Stamps and Password Mode

** 103. Write File XFCB

* This function is supported in the DIRLBL.RSX in the
non ban ked version of CP/M 3.

** - This function is supported only in the banked version of
CP/M 3.

The Directory Code definitions for register A are shown in Table 2-
8.

Table 2-8. BDOS Directory Codes

Code

00 - 03
255

I Meaning

successful function
unsuccessful function

With the exception of the BDOS search functions, all functions in
this category return with the directory code set to zero on
successful returns. However, for the search functions, a successful
Directory Code also identifies the relative starting position of the
directory entry in the calling program's current DMA buffer.

If the Set BDOS Error Mode function is used to place the BDOS
in return error mode, the following functions return an Error Flag
on physical errors:

14. Select Disk
46. Get Disk Free Space
48. Flush Buffers
98. Free Blocks

101. Return Directory Label Data

All Information Presented Here is proprietary to Digital Research

53

CP/M 3 Programmer's Guide 2.3 BOOS File System

The Error Flag definition for register A is shown in Table 2-9.

Table 2-9. BOOS Error Flags

Code I Meaning

00 successful function
255 physical error : refer to register H

The BDOS returns nonzero values in register H to identify a
physical or extended error if the BOOS Error Mode is in one of the
return modes. Except for functions that return a Directory Code,
register A equal to 255 indicates that register H identifies the
physical or extended error. For functions that return a Directory
Code, if register A equals 255, and register H is not equal to zero,
register H identifies the physical or extended error. Table 2-10
shows the physical and extended error codes returned in register H.

Table 2-10. BOOS Physical and Extended Errors

Code I Meaning

00 - no error, or not a register H error
01 - Disk I/O error
02 - Read-Only Disk
03 - Read-Only File or

File Opened under user zero from
another user number or
file password protected
in write mode and correct
password not specified.

04 - Invalid Drive : drive select error
07 - Password Error
08 - File Exists
09 - ? in Filename

The following two functions represent a special case because
they return an address in registers Hand L.

27. Get Addr{Alloc)
31. Get Addr{Disk Parms)

When the BDOS is in return error mode, and it detects a physical
error for these functions, it returns to the calling program with
registers A, H, and L all set to 255. Otherwise, they return no
error code.

All Information Presented Here is proprietary to Digital Research

54

CP/M 3 Programmer's Guide 2.4 Page Zero Initialization

2.4 Page Zero Initialization

Page Zero is the region of memory located from OOOOH to OOFFH.
This region contains several segments of code and data that are used
by transient programs while running under CP/M 3. The code and data
areas are shown in Table 2-11 for reference.

Table 2-11. Page Zero Areas

Locations I Conten ts

From To

OOOOH - 0002H Contains a jump instruction to the BIOS
warm start entry point at BIOS base + 3.
The address at location OOOlH can also be
used to make direct BIOS calls to the BIOS
console status, console input, console
output, and list output primitive
functions.

0003H - 0004H (Reserved)

0005H - 0007H Contains a jump instruction to the BOOS,
the LOADER, or to the most recently added
RSX, and serves two purposes: JMP 0005H
provides the primary entry point to the
BDOS, and LHLD 0006H places the address
field of the jump instruction in the HL
register pair. This value, minus one, is
the highest address of memory available to
the transient program.

0008H - 003AH Reserved interrupt locations for Restarts
1 - 7

003BH - 004FH (Not currently used - reserved)

0050H Identifies the drive from which the
transient program was loaded. A value of
one to sixteen identifies drives A through
P.

0051H - 0052H Contains the address of the password field
of the first command-tail operand in the
default DMA buffer beginning at 0080H.
The CCP sets thi s field to zero if no
password for the first command-tail
operand is specified.

0053H Contains the length of the password field
for the first command-tail operand. The
CCP also sets this field to zero if no
password for the first command-tail is
specified.

All Information Presented Here is proprietary to Digital Research
55

CP/M 3 Programmer's Guide 2.4 Page Zero Initialization

Table 2-11. (continoed)

Location I Contents

From To

0054H - 0055H Contains the address of the password field
of the second command-tail operand in the
default DMA buffer beginning at 0080H.
The CCP sets thi s field to zero if no
password for the second command-tail
operand is specified.

0056H Contains the length of the password field
for the second command-tail operand. The
CCP also sets this field to zero if no
password for the second command-tail is
specified.

0057H - 005BH (Not currently used - reserved)

005CH - 007BH Default File Control Block, FCB, area 1
initialized by the CCP from the first
command-tail operand of the command line,
if it exists.

006CH - 007BH Default File Control Block, FCB, area 2
ini tial ized by the CCP from the second
command-tail operand of the command line,
if it exists.

Note: this area overlays the last 16
bytes of default FCB area 1. To use the
information in this area, a transient:
program must copy it to another location
before using FCB area 1.

007CH Current record position of default FCB
area 1. This field is used with default
FCB area 1 in sequential record
processing.

007DH - 007FH Optional default random record position.
This field is an extension of default FCB
area 1 used in random record processing.

0080H - OOFFH Defaul t l28-byte disk buffer. This buffer
is also filled with the command tail when
the CCP loads a transient program.

All Information Presented Here is Proprietary to Digital Research

56

CP/M 3 programmer's Guide 2.4 Page Zero Initialization

The CCP initializes Page Zero prior to initiating a transient
program. The fields at 0050H and above are initialized from the
command line invoking the transient program. The command line
format was described in detail in Section 1.6.2. To summarize, a
command line usually takes the form:

where

<command> <command tail>

<command> => <file spec>

<command tail> => (no command tail)
=> <file spec>
=> <file spec><delimiter><file spec>

<file spec> => {d:}filename{.type}{ipassword}

If a drive {d:} is specified in the <command> field, the CCP
initializes the command drive field at 0050H to the drive index, A =
1, ••• , P = 16. Otherwise, it sets the field to zero.

The default FCB at 005CH is defined if a command tail is
entered. Otherwise, the fields at 005CH, 0068H to 006BH are set to
binary zeros, the fields from 005DH to 0067H are set to blanks. The
fields at 0051H through 0053H are set if a password is specified for
the first <file spec> of the command tail. If not, these fields are
set to zero.

The default FCB at 006CH is defined if a second <file spec>
exists in the command tail. Otherwise, the fields at 006CH, 0078H
to 007Bh are set to binary zeros, the fields from 005DH to 0067H are
set to blanks. The fields at 0054H through 0056H are set if a
password is specified for the second <file spec> of the command
tail. If not, these fields are set to zero.

Transient programs often use the default FCB at 005CH for file
operations. This FCB may even be used for random file access
because the three bytes starting at 007DH are available for this
purpose. However, a transient program must copy the contents of the
default FCB at 006CH to another area before using the default FCB at
005CH, because an open operation for the default FCB at 005CH
overwrites the· FCB data at 006CH.

The default DMA address for transient programs is 0080H. The
CCP also initializes this area to contain the command tail of the
command line. The first position contains the number of characters
in the command line, followed by the command line characters. The
character following the last command tail character is set to binary
zero. The command line characters are preceded by a leading blank
and are. translated to ASCII upper-case. Because the l28-byte region
beginning at 0080H is the default DMA, the BDOS file system moves
l28-byte records to this area with read operations and accesses 128-
byte records from this area with write operations. The transient

All Information Presented Here is proprietary to Digital Research

57

CP/M 3 Programmer's Guide 2.4 Page Zero Initialization

program must extract the command tail information from this buffer
before performing file operations unless it explicitly changes the
DMA address with the BDOS set DMA Address function.

The Page Zero fields of 005lH through 0056H locate the password
fields of the first two file specifications in the command tail if
they exist. These fields are provided so that transient programs
are not required to parse the command tail for password fields.
However, the transient program must save the password, or change the
DMA address before performing file operations.

The following example illustrates the initialization of the
command line fields of Page Zero. Assuming the following command
line is typed at the console:

A: PROGRAM B:FILE.TYP~PASS C:FILE.TYP~PASSWORD

A hexadecimal dump of 0050H to OOA5H would show the Page Zero
initialization performed by the CCP.

0050H 01 80 00 04 90 00 08 00 00 00 00 00 02 46 49 4C ••••••••••••• FIL
006011 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4C E •••• TYP FIL
0070H 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 E •••• TYP ••••••••
0080H 24 20 42 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 • B:FILE.TYP;PAS
009011 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 S C:FILE.TYP;PAS
OOACH 53 57 4F 52 44 00 SWORD.

End of Section 2

All Information Presented Here is Proprietary to Digital Research

58

Section 3
BDOS Function Calls

This section describes each CP/M 3 system function, including
t.he parameters a program must pass when calling the function, and
the values the function returns to the program. The functions are
arranged numerically for easy reference. You should be familiar
with the BOOS calling conventions and other concepts presented in
Section 2 before referencing this section.

BOOS FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: OOH

The System Reset function terminates the calling program and
returns control to the CCP via a warm start sequence (see Section
1.3.2). Calling this function has the same effect as a jump to
location OOOOH of Page Zero.

Note that the disk subsystem is not reset by System Reset under
CP/M 3. The calling program can pass a return code to the CCP by
calling Function 108, Get/Set Program Return Code, pr ior to making a
System Reset call or jumping to location OOOOH.

All Information Presented Here is proprietary to Digital Research

59

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 1

BDOS FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: OlH

Returned Value:
Register A: ASCII Character

The Console Input function reads the next character from the
logical console, CONIN:, to register A. Graphic characters, along
with carriage return, line feed, and backspace, CTRL-H, are echoed
to the console. Tab characters, CTRL-I, are expanded in columns of
8 characters. CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
as described below. All other non-graphic characters are returned
in register A but are not echoed to the console.

When the Console Mode is in the default state (see Section
2.2.1) , Function 1 in tercepts the stop scroll, CTRL-S, start scroll,
CTRL-Q, and start/stop printer echo, CTRL-P, characters. Any
characters that are typed following a CTRL-S, and preceding a CTRL-Q
are also intercepted. However, if start/stop scroll has been
disabled by the Console Mode, the CTRL-S, CTRL-Q, and CTRL-P
characters are not intercepted. Instead, they are returned in
register A, but are not echoed to the console.

If printer echo has been invoked, all characters that are
echoed to the console are also sent to the list device, LST:.

Function 1 does not return control to the calling program until
a non-intercepted character is typed, thus suspending execution if a
character is not ready.

All Information Presented Here is proprietary to Digital Research

60

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 2

BOOS FUNC'fION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The Console Output function sends the ASCII character from
register E to the logical console device, CONOUT:. When the Console
Mode is in the default state (see Section 2.2.1), Function 2 expands
tab characters, CTRL-I, in columns of 8 characters, checks for stop
scroll, CTRL-S, start scroll, CTRL-Q, and echoes characters to the
logical list device, LST:, if printer echo, CTRL-P, has been
invoked.

All Information Presented Here is proprietary to Digital Research

61

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 3

BDOS FUNCTION 3: AUXILIARY INPUT

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Auxiliary Input function reads the next character from the
logical auxiliary input device, AUXIN:, into register A. Control
does not return to the calling program until the character is read.

All Information Presented Here is proprietary to Digital Research

62

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 4

BDOS FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Auxiliary Output function sends the ASCII character from
register E to the logical auxiliary output device, AUXOUT:.

All Information Presented Here is proprietary to Digital Research

63

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 5

BOOS FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register
E to the logical list device, LST:.

All Information Presented Here is Proprietary to Oigital Research

64

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 6

BDOS FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Register C:
Register E:

06H
OFFH (input/

status) or
OFEH (status) or
OFDH (input) or
char (output)

Returned Value:
Register A: char or status

(no value)

CP/M 3 supports direct I/O to the logical console, CONIN:, for
those specialized applications where unadorned console input and
output is required. Use direct console I/O carefully because it
bypasses all the normal control character functions. Programs that
perform direct I/O through the BIOS under previous releases of CP/M
should be changed to use direct I/O so that they can be fully
supported under future releases of MP/M and CP/M.

A program calls Function 6 by passing one of four different
values in register E. The values and their meanings are summarized
in Table 3-1.

Table 3-1. Function 6 Entry Parameters

Register I
E value

OFFH

OFEH

OFDH

ASCII
character

Meaning

Console input/status command returns
an input character; if no character
is ready, a value of zero is
returned.

Console status command (On return,
register A contains 00 if no
character is ready; otherwise it
contains FFH.)

Console input command, returns an
input character; this function will
suspend the calling process until a
character is ready.

Function 6 assumes register E
contains a valid ASCII character and
sends it to the console.

All Information Presented Here is proprietary to Digital Research

65

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 7

BDOS FUNCTION 7: AUXILIARY INPUT STATUS

Entry Parameters:
Register C: 07H

Returned Value
Register A: Auxiliary Input Status

The Auxiliary Input Status function returns the value OFFH in
register A if a character is ready for input from the logical
auxiliary input device, AUXIN:. If no character is ready for input,
the value OOH is retur.ned.

All Information Presented Here is Proprietary to Digital Research

66

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 8

BOOS FUNCTION 8: AUXILIARY OUTPUT STATUS

Entry Parameters:
Register C: 08H

Returned Value:
Register A: Auxiliary Output Status

The Auxiliary Output Status function returns the value OFFH in
register A if the logical auxiliary output device, AUXOUT:, is ready
to accept a character for output. If the device is not ready for
output, the value OOH is returned.

All Information Presented Here is proprietary to Digital Research

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 9

BDOS FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string addressed
by register pair DE to the logical console, CONOUT:, until it
encounters a delimiter in the string. Usually the delimiter is a
dollar sign, $, but it can be changed to any other value by Function
110, Get/Set Output Del imi ter • I f the Console Mode is in the
default state (see Section 2.2.1), Function 9 expands tab
characters, CTRL-I, in columns of 8 characters. It also checks for
stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes to the logical
list device, LST:, if printer echo, CTRL-P, has been invoked.

All Information Presented Here is Proprietary to Digital Research

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 10

BDOS FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console
input from the logical console, CONIN:, to a buffer that register
pair DE addresses. It terminates input and returns to the calling
program when it encounters a return, CTRL-M, or a line feed, CTRL-J,
character. Function 10 also discards all input characters after the
input buffer is filled. In addition, it outputs a bell character,
CTRL-G, to the console when it discards a character to signal the
user that the buffer is full. The input buffer addressed by DE has
the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

where mx is the maximum number of characters which the buffer holds,
and nc is the number of characters placed in the buffer. The
characters entered by the operator follow the nc value. The value
mx must be set prior to making a Function 10 call and may range in
value from 1 to 255. Setting mx to zero is equivalent to setting
mx to one. The value nc is returned to the calling program and may
range from zero to mx. If nc < mx, then uninitialized positions
follow the last character, denoted by?? in the figure. Note that a
terminating return or line feed character is not placed in the
buffer and not included in the count nco

If register pair DE is set to zero, Function 10 assumes that an
initialized input buffer is located at the current·DMA address (see
Function 26, Set DMA Address). This allows a program to put a
string on the screen for the user to edit. To initialize the input
buffer, set characters cl through cn to the initial value followed
by a binary zero terminator.

When a program calls Function 10 with an initialized buffer,
Function 10 operates as if the user had typed in the string. When
Function 10 encounters the binary zero terminator, it accepts input
from the console. At this point, the user can edit the initialized
string or accept it as it is by pressing the RETURN key. However,
if the initialized string contains a return, CTRL-M, or a linefeed,
CTRL-J, character, Function 10 returns to the calling program
without giving the user the opportunity to edit the string.

All Information Presented Here is Proprietary to Digital Research

en

CP/M 3 programmer's Guide 3 BOOS Calls: Function 10

The level of console editing supported by Function 10 differs
for the banked and nonbanked versions of CP/M 3. Refer to the
CP/M Plus (CP/M Version 3) Operating System User's Guide for a
detailed description of console editing. In the nonbanked version,
Function 10 recognizes the edit control characters summarized in
Table 3-2.

Table 3-2. Edit Control Characters (Nonbanked CP/M 3)

Character I
rub/del

CTRL-C

CTRL-E

CTRL-H

CTRL-J

CTRL-M

CTRL-P

CTRL-R

CTRL-U

CTRL-X

Edit Control Function

Removes and echoes the last character;
GENCPM can change this function to CTRL-H

Reboots when at the beginning of line; the
Console Mode can disable this function

Causes physical end of line

Backspaces one character position GENCPM
can change this function to rub/del

(Line feed) terminates input line

(Return) terminates input line

Echoes console output to the list device

Retypes the current line after new line

Removes current line after new line

Backspaces to beginning of current line

The banked version of CP/M 3 expands upon the editing provided
in the nonbanked version. The functionality of the two versions is
similar when the cursor is positioned at the end of the line.
However, in the banked version, the user can move the cursor
anywhere in the current line, insert characters, delete characters,
and perform other edi ting functions. In addi tion, the ban ked
version saves the previous command line; it can be recalled when the
current line is empty. Table 3-3 summarizes the edit control
characters supported by Function 10 in the banked version of CP/M 3.

All Information Presented Here is Proprietary to Digital Research

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 10

Table 3-3. Edit Control Characters (Banked CP/M 3)

Character

rub/del

CTRL-A

CTRL-B

CTRL-C

CTRL-E

CTRL-F

CTRL-G

CTRL-H

CTRL-J

CTRL-K

CTRL-M

CTRL-P

CTRL-R

I Edit Control Function

Removes and echoes the last character if
at the end of the line; otherwise deletes
the character to the left of the current
cursor position; GENCPM can change this
function to CTRL-H.

Moves cursor one character to the left

Moves cursor to the beginning of the line
when not at the beginning; otherwise moves
cursor to the end of the line

Reboots when at the beginning of line; the
Console Mode can disable this function

Causes physical end of line; if the cursor
is positioned in the middle of a line, the
characters at, and to the right of the
cursor are displayed on the next line

Moves cursor one character to the right

Deletes the character at the current
cursor position when in the middle of the
line; has no effect when the cursor is at
the end of the line

Backspaces one character posi tion when
positioned at the end of the line;
otherwise deletes the character to the
left of the cursor; GENCPM can change this
function to rub/del

(Line-feed) terminates input; the cursor
can be posi tioned anywhere in the line;
the entire input line is accepted; sets
the previous line buffer to the input line

Deletes all characters to the right of the
cursor along wi th the character at the
cursor

(Return) terminates input; the cursor can
be positioned anywhere in the line; the
entire input line is accepted; sets the
previous line buffer to the input line

Echoes console output to the list device

Retypes the characters to the left of the
cursor on the new line

All Information Presented Here is Proprietary to Digital Research

71

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 10

Character I
CTRL-U

CTRL-W

CTRL-X·

Table 3-3. (continued)

Edit Control Function

Updates the previous line buffer to
contain the characters to the left of the
cursor; deletes cur ren t 1 ine, and advances
to new line

Recalls previous line if current line is
empty; otherwise moves cursor to end of
line

Deletes all characters to the left of the
cursor

For banked systems, Function 10 uses the console width field defined
in the System Contrdl Block. If the console width is exceeded when
the cursor is posi tioned at the end of the line, Function 10
automatically advances to the next line. The beginning of the line
can be edited by entering a CTRL-R.

When a character is typed while the cursor is positioned in the
middle of the line, the typed character is inserted into the line.
Characters at, and to the right of the cursor are shifted to the
right. If the console width is exceeded, the characters disappear
off the right of the screen. However, these characters are not
lost. They reappear if characters are deleted out of the line, or
if a CTRL-E is typed.

All Information Presented Here is Proprietary to Digital Research

72

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 11

BOOS FUNC'rION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Console Status

The Get Console Status function checks to see if a character
has been typed at the logical console, CONIN:. If the Console Mode
isin the default state (see Section 2.2.1), Function 11 returns the
value OlH in register A when a character is ready. If a character
is not ready, it returns a value of OOH.

If the Console Mode is in CTRL-C Only Status mode, Function 11
returns the value OlH in register A only if a CTRL-C has been typed
at the console.

All Information Presented Here is Proprietary to Digital Research

73

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 12

BOOS FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value:
Registers HL: Version Number

The Return Version Number function provides information that
allows version independent programming. It returns a two-byte value
in register pair HL: H contains OOH for CP/M® and L contains 31H,
the BOOS file system version number. Function 12 is useful for
writing applications programs that must run on multiple versions of
CP/M and MP/M.

All Information Presented Here is Proprietary to Digital Research

74

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 13

BDOS FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk System function restores the file system to a
reset state where all the disk drives are set to read-write (see
Functions 28 and 29), the default disk is set to drive A, and the
default DMA address is reset to 0080H. This function can be used,
for example, by an application program that requires disk changes
during operation. Function 37, Reset Drive, can also be used for
this purpose.

All Information Presented Here is proprietary to Digital Research

75

CP/M 3 Programmer's Guide

BOOS FUNCTION 14:

Entry Parameters:
Register C:
Register E:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 14

SELECT DISK

OEH
Selected Disk

Error Flag
Physical Error

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent BOOS file operations.
Register E is set to 0 for drive A, 1 for drive B, and so on through
15 for drive P in a full 16 drive system. In addition, Function 14
logs in the designated drive if it is currently in the reset state.
Logging-in a drive activates the drive's directory until the next
disk system reset or drive reset operation.

FCBs that specify drive code zero (dr = OOH) automatically
reference the currently selected default drive. FCBs with drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

Upon return, register A contains a zero if the select operation
was successful. If a physical error was encountered, the select
function performs different actions depending on the BOOS error mode
(see Function 45). If the BOOS error mode is in the defaul t mode, a
message identifying the error is displayed at the console, and the
call ing program is terminated. Otherwise, the select function
returns to the calling program with register A set to OFFH and
register H set to one of the following physical error codes:

01 Disk I/O Error
04 Invalid drive

All Information Pres~nted Here is proprietary to Digital Research

76

CP/M 3 Programmer's Guide

BDOS FUNCTION 15:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 15

OPEN FILE

OFH
FCB Address

Directory Code
Physical or
Extended Error

The Open File function activates the FCB for a file that exists
in the disk directory under the currently active user number or user
zero. The calling program passes the address of the FCB in register
pai r DE, wi th byte 0 of the FCB specifying the dr i ve, bytes 1
through 11 specifying the filename and filetype, and byte 12
specifying the extent. Usually, byte 12 of the FCB is initialized
to zero.

If the file is password protected in Read mode, the correct
password must be placed in the first eight bytes of the current DMA,
or have been previously established as the default password (see
Function 106). If the current record field of the FCB, cr, is set
to OFFH, Function 15 returns the byte count of the last record of
the file in the cr field. You can set the last record byte count
for a file with Function 30, Set File Attributes. Note that the
current record field of the FCB, cr, must be zeroed by the calling
program before beginning read or write operations if the file is to
be accessed sequentially from the first record.

If the current user is non-zero, and the file to be opened does
not exist under the current user .number, the open function searches
user zero for the file. If the file exists under user zero, and has
the system attribute, t2', set, the file is opened under user zero.
Write operations are not supported for a file that is opened under
user zero in this manner.

If the open operation is successful, the user's FCB is
activated for read and writ~ operations. The relevant directory
information is copied from the matching directory FCB into bytes dO
through dn of the FCB. If the file is opened under user zero when
the current user number is not zero, interface attribute f8' is set
to one in the user's FCB. In addition, if the referenced file is
password protected in Write mode, and the correct password was not
passed in the DMA, or did not match the default password, interface
attribute f7' is set to one. Write operations are not supported for
an activated FCB if interface attribute f7' or f8' is true.

All Information Presented Here is proprietary to Digital Research

77

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 15

When the open operation is successful, the open function also
makes an Access date and time stamp for the opened file when the
following conditions are satisfied: the referenced drive has a
directory label that requests Access date and time stamping, and the
FCB extent number field is zero.

Up:m return, the Open File function returns a di rectory code in
register A with the value OOH if the open was successful, or FFH,
255 decimal, if the file was not found. Register H is set to zero
in both of these cases. I f a physical or extended error was
encountered, the Open File function performs different actions
depending on the BOOS error mode (see Function 45). If the BOOS
error mode is in the default mode, a message identifying the error
is displayed at the console and the program is terminated.
Otherwise, the Open File function returns to the calling program
with register A set to OFFH, and register H set to one of the
following physical or extended error codes:

01 Disk I/O Error
04 Invalid drive error
07 File password error
09 ? in the FCB filename or filetype field

All Information Presented Here is proprietary to Digital Research

78

CP/M 3 Programmer's Guide

BDOS FUNCTION 16:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 16

CLOSE FILE

10H
FCB Address

Directory Code
Physical or
Extended Error

The Close File function performs the inverse of the Open File
function. The calling program passes the address of an FCB in
reg i s ter pa i r DE. The referenced FCB mus t have been pr eviously
activated by a successful Open or Make function call (see Functions
15 and 22). Interface attribute f5' specifies how the file is to be
closed as shown below:

f5' 0 - Permanent close (default mode)
f5' 1 - Partial close

A permanent close operation indicates that the program has completed
file operations on the file. A partial close operation updates the
directory, but indicates that the file is to be maintained in the
open state.

If the referenced FCB contains new information because of write
operations to the FCB, the close function permanently records the
new information in the referenced disk directory. Note that the FCB
does not contain new information, and the directory update step is
bypassed if only read or update operations have been made to the
referenced FCB.

Upon return, the close function returns a directory code in
register A with the value OOH if the close was successful, or FFH,
255 Decimal, if the file was not found. Register H is set to zero
in both of these cases. If a physical or extended error is
encountered, the close function performs different actions depending
on the BDOS error mode (see Function 45). If the BDOS error mode is
in the defaul t mode, a message identifying the error is displayed at
the console, and the calling program is terminated. Otherwise, the
close function returns to the calling program with register A set to
OFFH and register H set to one of the following physical error
codes:

01 Disk I/O error
02 Read/only disk
04 Invalid drive error

All Information Presented Here is Proprietary to Digital Research

79

CP/M 3 Programmer's Guide

BDOS FUNCTION 17:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 17

SEARCH FOR FIRST

llH
FCB Address

Directory Code
Physical Error

The Search For First function scans the directory for a match
with the FCB addressed by register pair DE. Two types of searches
can be performed. For standard searches, the calling program
initializes bytes 0 through 12 of the referenced FCB, with byte 0
specifying the drive directory to be searched, bytes 1 through 11
specifying the file or files to be searched for, and byte 12
specifying the extent. Usually byte 12 is set to zero. An ASCII
question mar k, 63 decimal, 3F hex, in any of the bytes 1 through 12
matches all entries on the directory in the corresponding position.
This facil i ty, called ambiguous reference, can be used to sear ch for
multiple files on the directory. When called in the standard mode,
the Se~rch function scans for the first file entry in the specified
directory that matches the FCB, and belongs to the current user
number.

The Search For First function also initializes the Search For
Next function. After the Search function has located the first
directory entry matching the referenced FCB, the Search For Next
function can be called repeatedly to locate all remaining matching
entries. In terms of execution sequence, however, the Search For
Next call must either follow a Search For First or Search For Next
call with no other intervening BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark, the
Search function ignores the remainder of the referenced FCB, and
locates the first directory entry residing on the current default
drive. All remaining directory entries can be located by making
multiple Search For Next calls. This type of search operation is
not usually made by application programs, but it does· provide
complete flexibility to scan all current directory values. Note
that this type of search operation must be performed to access a
drive's directory label (see Section 2.3.6).

Upon return, the Search function returns a Directory Code in
register A with the value 0 to 3 if the search is successful, or
OFFH, 255 Decimal, if a matching directory entry l.S not found.
Register H is set to zero in both of these cases. For successful
searches, the current DMA is also filled with the directory record
containing the matching entry, and the relative starting position is
A * 32 (that is, rotate the A register left 5 bits, or ADD A five

All Information Presented Here is Proprietary to Digital Research

80

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 17

times). Although it is not usually required for application
programs, the directory information can be extracted from the buffer
at this position.

If the directory has been initialized for date and time
stamping by INITDIR, then an SFCB resides in every fourth directory
entry, and successful Directory Codes are restricted to the values 0
to 2. For successful searches, if the matching directory record is
an extent zero entry, and if an SFCB resides at offset 96 within the
current DMA, contents of (DMA Address + 96) = 2lH, the SFCB contains
the date and time stamp information, and password mode for the file.
This information is located at the relative starting position of 97
+ (A * 10) within the current DMA in the following format:

o - 3 Create or Access Date and Time Stamp Field
4 - 7 : Update Date and Time Stamp Field
8 : Password Mode Field

(Refer to Section 2.3.8 for more information on SFCBs.)

If a physical error is encountered, the Search function
performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the Search function
returns to the calling program with register A set to OFFH, and
register H set to one of the following physical error codes:

01 Disk I/O error
04 : Invalid drive error

All Information Presented Here is Proprietary to Digital Research

81

CP/M 3 Programmer's Guide

BOOS FUNCTION 18:

Entry Parameters:
Register C:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 18

SEARCH FOR NEXT

l2H

Directory Code
Physical Error

The Search For Next function is identical to the Search For
First function, except that the directory scan continues from the
last entry that was matched. Function 18 returns a Directory code
in register A, analogous to Function 17.

Note: in execution sequence, a Function 18 call must follow either
a Function 17 or another Function 18 call wi th no other intervening
BOOS disk-related function calls.

All Information Presented Here is Proprietary to Digital Research

82

CP/M 3 Programmer's Guide

BDOS FUNCTION 19:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 19

DELETE FILE

13H
FCB Address

Directory Code
Extended or
Physical Error

The Delete File function removes files or XFCBs that match the
FCB addressed in register pair DE. The filename and filetype can
contain ambiguous references, that is, question marks in bytes fl
through t3, but the dr byte cannot be ambiguous, as it can in the
Search and Search Next functions. Interface attribute f5' specifies
the type of delete operation that is performed.

f5' a - Standard Delete (default mode)
f5' 1 - Delete only XFCB's

If any of the files that the referenced FCB specify are password
protected, the correct password must be placed in the first eight
bytes of the current DMA buffer, or have been previously established
as the default password (see Function 106).

For standard delete operations, the Delete function removes all
directory entries belonging to files that match the referenced FCB.
All disk directory and data space owned by the deleted files is
returned to free space, and becomes available for allocation to
other files. Directory XFCBs that were owned by the deleted files
are also removed from the directory. If interface attribute f5' of
the FCB is set to 1, Function 19 deletes only the directory XFCBs
that match the referenced FCB.

Note: if any of the files that match the input FCB specification
fail the password check, or are Read-Only, then the Delete function
does not delete any files or XFCBs. This applies to both types of
delete operations.

In nonbanked systems, file passwords and XFCBs are not
supported. Thus, if the Delete function is called with interface
attribute f5' set to true, the Delete function performs no action
but returns with register A set to zero.

Upon return, the Delete function returns a Directory Code in
register A with the value a if the delete is successful, or OFFH,
255 Decimal, if no file that matches the referenced FCB is found.
Register H is set to zero in both of these cases. If a physical, or
extended error is encountered, the Delete function performs

All Information Presented Here is Proprietary to Digital Research

83

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 19

different actions depending on the BOOS error mode (see Function
45). If the BOOS error mode is the default mode, a message
identifying the error is displayed at the console and the calling
program is terminated. Otherwise, the Delete function returns to
the calling program with register A set to OFFH and register H set
to one of the following physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file
04 Invalid drive error
07 File password error

All Information Presented Here is proprietary to Digital Research

84

CP/M 3 Programmer's Guide

BOOS FUNCTION 20:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 20

READ SEQUENTIAL

14H
FCB Address

Error Code
Physical Error

The Read Sequential function reads the next 1 to 128 128-byte
records from a file into memory beginning at the current DMA
address. The BDOS Multi-Sector Count (see Function 44) determines
the number of records to be read. The default is one record. The
FCB addressed by register pair DE must have been previously
activated by an Open or Make function call.

Function 20 reads each record from byte cr of the extent, then
automatically increments the cr field to the next record position.
If the cr field overflows, then the function automatically opens the
next logical extent and resets the cr field to 0 in preparation for
the next read operation. The calling program must set the cr field
to 0 following the Open call if the intent is to read sequentially
from the beginning of the file.

Upon return, the Read Sequential function sets register A to
zero if the read operation is successful. Otherwise, register A
contains an error code identifying the error as shown below:

01 Reading unwritten data (end of file)
09 Invalid FCB
10 Media change occurred

255 Physical error; refer to register H

Error Code 01 is returned if no data exists at the next record
position of the file. Usually, the no data situation is encountered
at the end of a file. However, it can also occur if an attempt is
made to read a data block that has not been previously written, or
an extent which has not been created. These situations are usually
restricted to files created or appended with the BOOS random write
functions (see Functions 34 and 40).

EJ;'ror Code 09 is returned if the FCB is invalidated by a
previous BOOS close call that returns an error.

Error Code 10 is returned if a media change occurs on the drive
after the referenced FCB is activated by a BOOS open, or make call.

All Information Presented Here is Proprietary to Digital Research

85

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 20

Error Code 255 is returned if a physical error is encountered
and the BOOS error mode is Return Error mode, or Return and Display
Er ror mode (see Functi on 45). I f the er ror mode is the defau1 t
mode, a message identifying the physical error is displayed at the
console, and the calling program is terminated. When a physical
error is returned to the calling program, register H contains one of
the following error codes:

01 Disk I/O error
04 Invalid drive error

On all error returns except for physical error returns, A =
255, Function 20 sets register H to the number of records
successfully read before the error is encountered. This value can
range from 0 to 127 depending on the current BDOS Multi-Sector
Count~ It is always set t6 zero when the Multi-Sector Count is
equal to one.

All Information Presented Here is proprietary to Digital Research

86

CP/M 3 Programmer's Guide

BOOS FUNCTION 21:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 21

WRITE SEQUENTIAL

15H
FCB Address

Error Code
Physical Error

The Write Sequential function writes 1 to 128 128-byte data
records, beginning at the current DMA address into the file named by
the FCB addressed in register pair DE. The BOOS Multi-Sector Count
(see Function 44) determines the number of 128 byte records that are
written. The default is one record. The referenced FCB must have
been previously activated by a BOOS Open or Make function call.

Function 21 places the record into the file at the position
indica ted by the cr byte of the FCB, and then automatically
increments the cr byte to the next record position. If the cr field
overflows, the function automatically opens, or creates the next
logical extent, and resets the cr field to 0 in preparation for the
next write operation. If Function 21 is used to write to an
existing file, then the newly written records overlay those already
existing in the file. The calling program must set the cr field to
o following an Open or Make call if the intent is to write
sequentially from the beginning of the file.

Function 21 makes an Update date and time for the file if the
follow ing condi tions are satisf ied: the referenced dr i ve has a
directory label that requests date and time stamping, and the file
has not already been stamped for update by a previous Make or Write
function call.

Upon return, the Write Sequential function sets register A to
zero if the write operation is successful. Otherwise, register A
contains an errpr code identifying the error as shown below:

01 No available directory space
02 No available data block
09 Invalid FCB
10 Media change occurred

255 Physical error : refer to register H

Error Code 01 is returned when the write function attempts to
create a new extent that requires a new directory entry, and no
available directory entries exist on the selected disk drive.

All Information Presented Here is Proprietary to Digital Research

87

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 21

Error Code 02 is returned when the write command attempts to
allocate a new data block to the file, and no unalloca ted data
blocks exist on the selected disk drive.

Error Code 09 is returned if the FCB is invalidated by a
previous BDOS close call that returns an error.

Error Code 10 is returned if a media change occurs on the drive
after the referenced FCB is activated by a BDOS open or make call.

Error Code 255 is returned if a physical error is encountered
and the BDOS error mode is Return Error mode, or Return and Display
Error mode (see Function 45). I f the error mode is the defaul t
mode, a message identifying the physical error is displayed at the
console, and the calling program is terminated. When a physical
error is returned to the calling program, register H contains one of
the following error codes:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file or

File open from user 0 when
the current user number is non-zero or
File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical error returns, A =
255, Function 21 sets register H to the number of records
successfully written before the error was encountered. This value
can range from 0 to 127 depending on the current BDOS Multi-Sector
Count. It is always set to zero when the Multi-Sector Count is set
to one.

All Information Presented Here is Proprietary to Digital Research

88

CP/M 3 programmer's Guide

BDOS FUNC'rION 22:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 22

MAKE FILE

16H
FCB Address

Directory Code
Physical or
Extended Error

The Make File function creates a new directory entry for a file
under the current user number. It also creates an XFCB for the file
if the referenced drive has a directory label that enables password
protection on the drive, and the calling program assigns a password
to the file.

The calling program passes the address of the FCB in register
pair DE, with byte 0 of the FCB specifying the drive, bytes 1
through 11 specifying the filename and filetype, and byte 12 set to
the extent number. Usually, byte 12 is set to zero. Byte 32 of the
FCB, the cr field, must be initialized to zero, before or after the
Make call, if the intent is to write sequentially from the beginning
of the file.

Interface attribute f6' specifies whether a password is to be
assigned to the created file.

f6' 0 - Do not assign password (default)
f6' 1 - Assign password to created file

When attribute f6' is set to 1, the calling program must place the
password in the first 8 bytes of the current DMA buffer, and set
byte 9 of the DMA buffer to the password mode (see Function 102).
Note that the Make function only interrogates interface attribute
f6' if passwords are activated on the referenced drive. In
nonbanked systems, file passwords are not supported, and attribute
f6' is never interrogated.

The Make function returns with an error if the referenced FCB
names a file that currently exists in the directory under the
current user number.

If the Make function is successful, it activates the referenced
FCB for file operations by opening the FCB, and initializes both the
directory entry and the referenced FCB to an empty file. It also
initializes all file attributes to zero. In addition, Function 22
makes a Creation date and time stamp for the file if the following
conditions are satisfied: the referenced drive has a directory
label that requests Creation date and time stamping and the FCB
extent number field is equal to zero. Function 22 also makes an

All Information Presented Here is proprietary to Digital Research

89

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 22

Update stamp if the directory label requests update stamping and the
FCB extent field is equal to zero.

If the referenced drive contains a directory label that enables
password protection, and if interface attribute f6' has been set to
1, the Make function creates an XFCB for the file. In addition,
Function 22 also assigns the password, and password mode placed in
the first nine bytes of the DMA, to the XFCB.

Upon return, the Make function returns a directory code in
register A with the value 0 if the make operation is successful, or
OFFH, 255 decimal, if no directory space is available. Register H
is set to zero in both of these cases. If a physical or extended
error is encountered, the Make function performs different actions
depending on the BOOS error mode (see Function 45). If the BOOS
error mode is the default mode, a message identifying the error is
displayed at the console, and the calling program is terminated.
Otherwise, the Make function returns to the calling program with
register A set to OFFH, and register H set to one of the following
physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error
08 File already exists
09 ? in filename or filetype field

All Information Presented Here is proprietary to Digital Research

90

CP/M 3 Programmer's Guide

BDOS FUNCTION 23:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 23

RENAME FILE

17H
FCB Address

Directory Code
Physical or
Extended Error

The Rename function uses the FCB, addressed by register pair
DE, to change all directory entries of the file specified by the
filename in the first 16 bytes of the FCB to the filename in the
second 16 bytes. If the file specified by the first filename is
password protected, the correct password must be placed in the first
eight bytes of the current DMA buffer, or have been previously
established as the defau1 t password (see Function 106). The calling
program must also ensure that the filenames specified in the FCB are
valid and unambiguous, and that the new filename does not already
exist on the drive. Function 23 uses the dr code at byte a of the
FCB to select the drive. The drive code at byte 16 of the FCB is
ignored.

Upon return, the Rename function returns a Directory Code in
register A with the value a if the rename is successful, or OFFH
(255 Decimal) if the file named by the first filename in the FCB is
not found. Register H is set to zero in both of these cases. If a
physical, or extended error is encountered, the Rename function
performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and the program is
terminated. Otherwise, the Rename function returns to the calling
program with register A set to OFFH and register H set to one of the
following physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
03 Read-Only file
04 Invalid drive error
07 File password error
08 File already exists
09 ? in filename or fi1etype field

All Information Presented Here is proprietary to Digital Research

91

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 24

BOOS FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Login Vector

Function 24 returns the login vector in register pair HL. The
login vector is a 16-bit value with the least significant bit of L
corresponding to drive A, and the high-order bit of H corresponding
to the 16th drive, labelled P. A 0 bit indicates that the drive is
not on-line, while a 1 bit indicates the drive is active. A drive
is made active by either an explicit BOOS Select oisk call, number
14, or an implicit selection when a BOOS file operation specifies a
non-zero dr byte in the FCB. Function 24 maintains compatibilty
wi th earlier releases since registers A and L contain the same
values upon return.

All Information Presented Here is proprietary to Oigital Research

92

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 25

BDOS FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

93

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 26

BDOS FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: lAH
Registers DE: DMA Add~ess

DMA is an acronym for Direct Memory Address, which is often
used in connection with disk controllers that directly access the
memory of the computer to transfer data to and from the disk
subsystem. Under CP/M 3, the current DMA is usually defined as the
buffer in memory where a record resides before a disk write, and
after a disk read operation. If the BDOS Multi-Sector Count is
equal to one (see Function 44), the size of the buffer is 128 bytes.
However, if the BDOS Multi-Sector Count is greater than one, the
size of the buffer must equal N * 128, where N equals the Multi­
Sector Count.

Some BDOS functions also use the current DMA to pass
parameters, and to return values. For example, BDOS functions that
check and assign file passwords require that the password be placed
in the current DMA. As another example, Function 46, Get Disk Free
Space, returns its results in the first 3 bytes of the current DMA.
When the current DMA is used in this context, the size of the buffer
in memory is determined by the specific requirements of the called
function.

When a transient program is ini tiated by the CCP, its DMA
address is set to 0080H. The BDOS Reset Disk System function,
Function 13, also sets the DMA address to 0080H. The Set DMA
function can change this default value to another memory address.
The DMA address is set to the value passed in the register pair DE.
The DMA address remains at this value until it is changed by another
Set DMA Address, or Reset Disk System call.

All Information Presented Here is Proprietary to Digital Research

94

CP/M 3 programmer's Guide 3 BOOS Calls: Function 27

BDOS FUNCTION 27: GET ADDR(ALLOC)

Entry Parameters:
Register C: IBH

Returned Value:
Registers HL: ALLOC Address

CP/M 3 maintains an allocation vector in main memory for each
active disk drive. Some programs use the information provided by
the allocation vector to determine the amount of free data space on
a drive. Note, however, that the allocation information might be
inaccurate if the drive has been marked Read-Only.

Function 27 returns in register pair HL, the base address of
the allocation vector for the currently selected drive. If a
physical error is encountered when the BDOS error mode is one of the
return modes (see Function 45) , Function 27 returns the value OFFFFH
in the register pair HL.

In banked CP/M 3 systems, the allocation vector can be placed
in bank zero. In this case, a transient program cannot access the
allocation vector. However, the BDOS function, Get Disk Free Space
(Function 46) , can be used to directly return the number of free 128
byte records on a drive. The CP/M 3 utilities that display a
drive's free space, DIR and SHOW, use Function 46 for that purpose.

All Information Presented Here is Proprietary to Digital Research

95

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 28

BOOS FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: lCH

The Write Protect Disk function provides temporary write
protection for the currently selected disk by marking the drive as
Read-Only. No program can write to a disk that is in the Read-Only
state. A drive reset operation must be performed for a Read-Only
drive to restore it to the Read-Write state (see Functions 13 and
37) •

All Information Presented Here is proprietary to Digital Research

96

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 29

BOOS FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C': IDH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL that
indicates which drives have the temporary Read-Only bit set. The
Read-Only bit can be set only by a BOOS write Protect Disk call.

The format of the bit vector is analagous to that of the login
vector returned by Function 24. The least significant bit
corresponds to drive A, while the most significant bit corresponds
to drive P.

All Information Presented Here is proprietary to Digital Research

97

CP/M 3 Programmer's Guide

BDOS FUNCTION 30:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 30

SET FILE ATTRIBUTES

1EH
FCB Address

Directory Code
Physical or
Extended error

By calling the Set File Attributes function, a program can
modify a file's attributes and set its last record byte count.
Other BDOS functions can be called to interrogate these file
parameters, but only Function 30 can change them. The file
attributes that can be set or reset by Function 30 are f1' through
f4', Read-Only, t1', System, t2', and Archive, t3'. The register
pair DE addresses an FCB containing a filename with the appropriate
attributes set or reset. The calling program must ensure that it
does not specify an ambiguous filename. In addi tion, if the
specified file is password protected, the correct password must be
placed in the first eight bytes of the current DMA buffer or have
been previously established as the default password (see Function
106) •

Interface attribute f6' specifies whether the last record byte
count of the specified file is to be set:

f6' = 0 - Do not set byte count (default mode)
f6' = 1 - Set byte count

If interface attribute f6' is set, the calling program must set the
cr field of the referenced FCB to the byte count value. A program
can access a file's byte count value with the BDOS Open, Search, or
Search Next functions.

Function 30 searches the referenced directory for entries
belonging to the current user number that matches the FCB specified
name and type fields. The function then updates the directory to
contain the selected indicators, and if interface attribute f6' is
set, the specified byte count value. Note that the last record byte
count is maintained in byte 13 of a file's directory FCBs.

File attributes t1', t2', and t3' are defined by CP/M 3. (They
are described in Section 2.3.4.) Attributes f1' through f4' are not
presently used, but can be useful for application programs, because
they are not involved in the matching program used by the BDOS
during Open File and Close File operations. Indicators fS' through
fS' are reserved for use as interface attributes.

All Information Presented Here is Proprietary to Digital Research

98

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 30

Upon return, Function 30 returns a Directory Code in register A
with the value 0 if the function is successful, or OFFH, 255
Decimal, if the file specified by the referenced FCB is not found.
Register H is set to zero in both of these cases. If a physical or
extended error is encountered, the Set File Attributes function
performs different actions depending on the BOOS error mode {see
Function 45}. If the BOOS error mode is the default mode, a message
identifying the error is displayed at the console, and the program
is terminated. Otherwise, Function 30 returns to the calling
program with register A set to OFFH, and register H set to one of
the following physical or extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Select error
07 File password error
09 ? in filename or filetype field

All Information Presented Here is Proprietary to Digital Research

99

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 31

BOOS FUNCTION 31: GET AOOR(OPB PARMS)

Entry Parameters:
Register C: lFH

Returned Value:
Registers HL: OPB Address

Function 31 returns in register pair HL, the address of the
BIOS-resident Disk Parameter Block, OPB, for the currently selected
drive. (Refer to the CP/M Plus (CP/M Version 3) Operating System
System Guide for the format of the OPB). The calling program can
use this address to extract the disk parameter values.

If a physical error is encountered when the BOOS error mode is
one of the return modes (see Function 45), Function 31 returns the
value OFFFFH in the register pair HL.

All Information Presented Here is proprietary to Digital Research

100

CP/M 3 Programmer's Guide

BOOS FUNCTION 32:

Entry Parameters:
Register C:
Register E:

Returned Value:
Register A:

3 BOOS Calls: Function 32

SET/GET USER CODE

20H
OFFH (get) or

User Code (set)

Current Code or
(no value)

A program can change, or interrogate the currently active user
number by calling Function 32. If register E = OFFH, then the value
of the current user number is returned in register A where the value
is in the range of 0 to 15. If register E is not OFFH, then the
current user number is changed to the value of E, modulo 16.

All Information Presented Here is Proprietary to Digital Research

101

CP/M 3 Programmer's Guide

BOOS FUNCTION 33:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 33

READ RANDOM

2lH
FCB Address

Error Code
Physical Error

The Read Random function is similar to the Read Sequential
function except that the read operation takes place at a particular
random record number, selected by the 24-bit value constructed from
the three byte, rO, rl, r2, field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the least
significant byte first, rO, the middle byte next, rl, and the high
byte last, r2. The random record number can range from 0 to
262,143. This corresponds to a maximum value of 3 in byte r2.

To read a file with Function 33, the calling program must first
open the base extent, extent O. This ensures that the FCB is
properly initialized for subsequent random access operations. The
base extent mayor may not contain any allocated data. Function 33
reads the record specified by the random record field into the
current DMA address. The function automatically sets the logical
extent and'current record values, but unlike the Read Sequential
function, it does not advance the current record number. Thus, a
subsequent Read Random call rereads the same record. After a random
read operation, a file can be accessed sequentially, starting from
the current randomly accessed position. However, the last randomly
accessed record is reread or rewritten when switching from random to
sequential mode.

I f the BDOS Mul ti-Sector count is greater than one (see
Function 44), the Read Random function reads multiple consecutive
records into memory beginning at the current DMA. The rO, rl, and
r 2 field of the FCB is automatically incremented to read each
record. However, the FCBs random record number is restored to the
first record's value upon return to the calling program.

Upon return, the Read Random function sets register A to zero
if the read operation was successful. Otherwise, register A
contains one of the following error codes:

01 Reading unwritten data (end of file)
03 Cannot Close current extent
04 Seek to unwritten extent
06 Random record number out of range
10 Media change occurred

255 Physical error : refer to register H

All Information Presented Here is Proprietary to Digital Research

102

CP/M 3 Programmer's Guide 3 aDOS Calls: Function 33

Error Code 01 is returned if no data exists at the next record
position of the file. Usually, the no data situation is encountered
at the end of a file. However, it can also occur if an attempt is
made to read a data block that has not been previously written.

Error Code 03 is returned when the Read Random function cannot
close the current extent prior to moving to a new extent.

Error Code 04 is returned when a read random operation accesses
an extent that has not been created.

Error Code 06 is returned when byte 35, r2, of the referenced
Fca is greater than 3.

Error Code 10 is returned if a media change occurs on the drive
after the referenced Fca is activated by a aDOS open or make call.

Error Code 255 is returned if a physical error is encountered,
and the aDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console, and the calling
program is terminated. When a physical error is returned to the
calling program, register H contains one of the following error
codes:

01 Disk I/O error
04 Invalid drive error

On all error returns except for physical errors, A = 255, the
Read Random function sets register H to the number of records
successfully read before the error is encountered. This value can
range from 0 to 127 depending on the current aDOS Multi-Sector
Count. It is always set to zero when the Multi-Sector count is
equal to one.

All Information Presented Here is Proprietary to Digital Research

103

CP/M 3 Programmer's Guide

BOOS FUNCTION 34:

Entry Parameters:
Register C:
Registers OE:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 34

WRITE RANOOM

22H
FCB Address

Error Code
Physical error

The Wr i te Random function is analagous to the Read Random
Function, except that data is written to the disk from the current
OMA address. If the disk extent or data block where the data is to
be written is not already allocated, the BOOS automatically performs
the allocation before the write operation continues.

To write to a file using the Write Random function, the calling
program must first open the base extent, extent O. This ensures
that the FCB is properly initialized for subsequent random access
operations. If the file is empty, the calling program must create
the base extent with the Make File function before calling Function
34. The base extent might, or might not contain any allocated data,
but it does record the file in the directory, so that the file can
be displayed by the OIR utility.

The Write Random function sets the logical extent and current
record positions to correspond with the random record being written,
but does not change the random record number. Thus, sequential read
or write operations can follow a random write, with the current
record being reread or rewritten as the calling program switches
from random to sequential mode.

Function 34 makes an Update date and time stamp for the file if
the following conditions are satisfied: the referenced drive has a
directory label that requests Update date and time stamping if the
file has not already been stamped for update by a previous BOOS Make
or Write call.

If the BOOS Mul ti-Sector count is greater than one (see
Function 44), the Write Random function reads multiple consecutive
records into memory beginning at the current OMA. The rO, rl, and
r2 field of the FCB is automatically incremented to write each
record. However, the FCB's random record number is restored to the
first record's value when it returns to the calling program. Upon
return, the Write Random function sets register A to zero if the
write operation is successful. Otherwise, register A contains one
of the following error codes:

All Information Presented Here is proprietary to Oigital Research

104

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 34

02 No available data block
03 Cannot Close current extent
05 No available directory space
06 Random record number out of range
10 Media change occurred

255 Physical error : refer to register H

Error Code 02 is returned when the write command attempts to
allocate a new data block to the file and no unallocated data blocks
exist on the selected disk drive.

Error Code 03 is returned when the Write Random function cannot
close the current extent prior to moving to a new extent.

Error Code 05 is returned when the write function attempts to
create a new extent that requires a new directory entry and no
available directory entries exist on the selected disk drive.

Error Code 06 is returned when byte 35, r2, of the referenced
FCB is greater than 3.

Error Code 10 is returned if a media change occurs on the drive
after the referenced FCB is activated by a BDOS open or make call.

Error Code 255 is returned if a physical error is encountered
and the BDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console, and the calling
program is terminated. When a physical error is returned to the
calling program, it is identified by register H as shown below:

01 Disk rio error
02 Read-Only disk
03 Read-Only file or

File open from user 0 when
the current user number is nonzero or
File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical errors, A = 255, the
Write Random function sets register H to the number of records
successfully written before the error is encountered. This value
can range from 0 to 127 depending on the current BDOS Multi-Sector
Count. It is always set to zero when the Multi-Sector count is
equal to one.

All Information Presented Here is Proprietary to Digital Research

105

CP/M 3 Programmer's Guide

BDOS FUNCTION 35,:

Entry Parameters:
Register C:
Registers DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 35

COMPUTE FILE SIZE

23H
FCB Address

Error Flag
Physical or
Extended error

Random Record Field Set

The Compute File Size function determines the virtual file
size, which is, in effect, the address of the record immediately
following the end of the file. The virtual size of a file
corresponds to the physical size if the file is written
sequentially. If the file is written in random mode, gaps might
exist in the allocation, and the file might contain, fewer records
than the indicated size. For example, if a sin'gle record with
record number 262,143, the CP/M 3 maximum is written to a file using
the Write Random function, then the virtual size of the file is
262,144 records even though only 1 data block is actually allocated.

To compute file size, the calling program passes in register
pair DE, the address of an FCB in random mode format, bytes rO, rl
and r2 present. Note that the FCB must contain an unambiguous
filename and filetype. Function 35 sets the random record field of
the FCB to the random record number + 1 of the last record in the
f il e. I f the r 2 byte is set to 04, then the file contains the
maximum record count 262,144.

A program can append data to the end of an existing file by
calling Function 35 to set the random record position to the end of
file, and then performing a sequence of random writes starting at
the preset record address.

Note: the BDOS does not require that the file be open to use
Function 35. However, if the file has been written to, it must be
closed before calling Function 35. Otherwise, an incorrect file
size might be returned. '

Upon return, Function 35 returns a zero in register A if the
file specified by the referenced FCB is found, or an OFFH in
register A if the file is not found. Register H is set to zero in
both of these cases. If a physical or extended error is
encountered, Function 35 performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is the
default mode, a message identifying the error is displayed at the
console and the program is terminated. Otherwise, Function 35

All Information Presented Here is Proprietary to Digital Research

106

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 35

returns to the calling program with register A set to OFFH, and
register H set to one of the following physical or extended
errors:

01 Disk I/O error
04 Invalid drive error

All Information Presented Here is proprietary to Digital Research

197

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 36

BDOS FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function returns the random record number
of the next record to be accessed from a file that has been read or
written sequentially to a particular point. This value is returned
in the random record field, bytes rO, rl, and r2, of the FCB
addressed by the register pair DE. Function 36 can be useful in two
ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various key fields. As
each key is encountered, Function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record number minus one is
placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move directly to a particular record by performing
a random read using the corresponding random record number that you
saved earlier. The scheme is easily generalized when variable
record lengths are involved, because the program need only store the
buffer-relative byte position along with the key and record number
to find the exact starting position of the keyed data at a later
time.

A second use of Function 36 occurs when swi tching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, then
Function 36 is called to set the record number, and subsequent
random read and write operations continue from the next record in
the file.

All Information Presented Here is proprietary to Digital Research

108

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 37

BDOS FUNCTION 37: RESET DRIVE

Entry Parameters:
Register C: 25H
Register DE: Drive Vector

Returned Value:
Register A: OOH

The Reset Drive function programmatically restores specified
drives to the reset state. A reset drive is not logged-in and is in
Read-Write status. The passed parameter in register pair DE is a
16-bit vector of drives to be reset, where the least significant bit
corresponds to the first drive A, and the high-order bit corresponds
to the sixteenth drive, labelled P. Bit values of I indicate that
the specified drive is to be reset.

All Information Presented Here is proprietary to Digital Research

109

CP/M 3 programmeris Guide 3 BOOS Calls: Function 38

BDOS FUNCTION 38: ACCESS DRIVE

Entry Parameters:
Register C: 26H

This is an MP/M function that is not supported under CP/M 3.
If called, the file system returns a zero in register A indicating
that the access request is successful.

All Information Presented Here is proprietary to Digital Research

110

CP/M 3 Programmer's.Guide 3 BOOS Calls: Function 39

BDOS FUNCTION 39: FREE DRIVE

'Entry Parameters:
Register C: 27H

This is an MP/M function that is not supported under CP/M 3.
If called, the file system returns a zero in register A indicating
that the free request is successful.

All Information Presented Here is Proprietary to Digital Research

III

CP/M 3 programmer's Guide

BOOS FUNCTION 40:

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register A:
Register H:

3 BOOS Calls: Function 40

WRITE RANDOM WITH
ZERO FILL

28H
FCB address

Error Code
Physical Error

The Write Random With Zero Fill function is identical to the
Wri te Random function (Function 34) wi th the exception that a
previously unallocated data block is filled with zeros before the
record is wri tten. If this function has been used to create a file,
records accessed by a read random operation that contain all zeros
identify unwritten random record numbers. Unwritten random records
in allocated data blocks of files created using the Write Random
function (Function 34) contain uninitialized data.

All Information Presented Here is Proprietary to Digital Research

112

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 41

BDOS FUNCTION 41: TEST AND WRITE RECORD

Entry Parameters:
Register C:

DE:

Returned Value:
Register A:
Register H:

29H
FCB Address

Error Code
Physical Error

The Test and write function is an MP/M II function that is not
supported under CP/M 3. If called, Function 41 returns with
register A set to OFFH and register H set to zero.

All Information Presented Here is proprietary To Digital Research

113

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 42

BOOS FUNCTION 42: LOCK RECORD

Entry Parameters:
Register C: 2AH

DE: FCB Address

Returned Value:
Register A: DOH

The Lock Record function is an MP/M I I'M function that is
supported under CP/M 3 only to provide compatibility between CP/M 3
and MP/M. It is intended for use in situations where more than one
running program has Read-Write access to a common file. Because
CP/M 3 is a single-user operating system in which only one program
can run at a time, this situation cannot occur. Thus, under CP/M 3,
Function 42 performs no action except to return the value DOH in
register A indicating that the record lock operation is successful.

All Information Presented Here is Proprietary To Digital Research

114

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 43

BDOS FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Register C: 2BH

DE: FCB Address

Returned Value:
Register A: OOH

The Unlock Record function is an MP/M II function that is
supported under CP/M 3 only to provide compatibility between CP/M 3
and MP/M. It is intended for use in situations where more than one
running program has Read-Write access to a common file. Because
CP/M 3 is a single-user operating system in which only one program
can run at a time, this situation cannot occur. Thus, under CP/M 3,
Function 43 performs no action except to return the value OOH in
register A indicating that the record unlock operation is
successful.

All Information Presented Here is proprietary To Digital Research

115

CP/M 3 Programmer.'s Guide 3 BOOS Calls: Function 44

BOOS FUNCTION 44: SET MULTI-SECTOR COUNT

Entry Parameters:
Register C: 2CH

E: Number of Sectors

Returned Value:
Register A: Return Code

The Set Multi-Sector Count function provides logical record
blocking under CP/M 3. It enables a program to r~ad and write from
1 to 128 physical records of 128 bytes at a time during subsequent
BOOS Read and Write functions.

Function 44 sets the Mul ti-Sector Count value for the calling
program to the value passed in register E. Once set, the specified
Multi-Sector Count remains in effect until the calling program makes
another Set Mul ti-Sector Coun t function call and changes the value.
Note that the CCP sets the Mul ti-Sector Count to one when it
initiates a transient program.

The Mul ti-Sector count affects BOOS error reporting for the
BOOS Read and Wri te functions. If an error interrupts these
functions when the Multi-Sector is greater than one, they return the
number of records successfully read or wri tten in register H for all
errors except for physical errors (A = 255).

Upon return, register A is set to zero if the specified value
is in the range of 1 to 128. Otherwise, register A is set to OFFH.

All Information Presented Here is Proprietary To Oigital Research

116

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 45

BOOS FUNCTION 45: SET BOOS ERROR MOOE

Entry Parameters:
Register C: 20H

E: BOOS error mode

Returned Value: None

Function 45 sets the BOOS error mode for. the calling program to
the mode specif ied in regi ster E. I f register E is set to OFFH, 255
decimal, the error mode is set to Return Error mode. If register E
is set to OFEH, 254 decimal, the error mode is set to Return and
Display mode. If register E is set to any other value, the error
mode is set to the default mode.

The SET BOOS Error Mode function determines how physical and
extended errors (see Section 2.2.13) are handled for a program. The
Error Mode can exist in three modes: the default mode, Return Error
mode, and Return and Display Error mode. In the default mode, the
BOOS displays a system message at the console that identifies the
error and terminates the calling program. In the return modes, the
BOOS sets register A to OFFH, 255 decimal, places an error code that
identifies the physical or extended error in register H and returns
to the calling program. In Return and Oisplay mode, the BOOS
displays the system message before returning to the calling program.
No system messages are displayed, however, when the BOOS is in
Return Error mode.

All Information Presented Here is Proprietary To Oigital Research

117

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 46

BDOS FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register C:

E:

Returned Value:

Register A:
Register H:

2EH
Drive

First 3 bytes
of current DMA
buffer
Error Flag
Physical error

The Get Disk Free Space function determines the number of free
sectors, 128 byte records, on the specified drive. The calling
program passes the drive number in register E, with 0 for drive A, 1
for B, and so on, through 15 for drive P in a full l6-drive system.
Functiqn 46 returns a binary number in the first 3 bytes of the
current DMA buffer. This number is returned in the following
format:

fsO fsl fs2

Disk Free Space Field Format

fsO low byte
fsl middle byte
fs2 high byte

Note that the returned free space value might be inaccurate if
the drive has been marked Read-Only.

Upon return, register A is set to zero if the function is
successful. However, if the BDOS Error Mode is one of the return
modes (see Function 45), and a physical error is encountered,
register A is set to OFFH, 255 decimal, and register H is set to one
of the following values:

01 - Disk I/O error
04 - Invalid drive error

All Information P~esented Here is Proprietary To Digital Research

118

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 47

BDOS FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register C: 2FH

E: Chain flag

The Chain To Program function provides a means of chaining from
one program to the next without operator intervention. The calling
program must place a command line terminated by a null byte, OOH, in
the defaul t DMA buffer. If register E is set to OFFH, the CCP
initializes the default drive and user number to the current program
values when it passes control to the specified transient program.
Otherwise, these parameters are set to the default CCP values. Note
that Function 108, Get/Set Program Return Code, can be used to pass
a two byte value to the chained program.

Function 47 does not return any values to the calling program
and any errors encountered are handled by the CCP.

All Information Presented Here is Proprietary To Digital Research

119

CP/M 3 Programmer's Guide

BDOS FUNCTION 48:

Entry Parameters:
Register C:
Register E:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 48

FLUSH BUFFERS

30H
Purge flag

Error Flag
Physical Error

The Flush Buffers function forces the wr i te of any wr i te­
pending records contained in internal blocking/deblocking buffers.
If register E is set to OFFH, this function also purges all active
data buffers. Programs that provide write with read verify support
need to purge internal buffers to ensure that ver ifying reads
actually access the disk instead of returning data that is resident
in internal data buffers. The CP/M 3 PIP utility is an example of
such a program.

Upon return, register A is set to zero if the flush operation
is successful. If a physical error is encountered, the Flush
Buffers function performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the
default mode, a message identifying the error is displayed at the
console and the calling program is terminated. Otherwise, the Flush
Buffers function returns to the calling program with register A set
to OFFH and register H set to the following physical error code:

01 Disk I/O error
02 Read/only disk
04 Invalid drive error

All Information Presented Here is Proprietary To Digital Research

120

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 49

BOOS FUNCTION 49: GET / SET SYSTEM
CONTROL BLOCK

Entry Parameters:
Register C: 31H
Register DE: SCB PB Address

Returned Value:
Register A: Returned Byte
Register HL: Returned Word

Function 49 allows access to parameters located in the CP/M 3
System Control Block {SCB). The SCB is a lOa-byte data structure
residing within the BOOS that contains flags and data used by the
BOOS, CCP and other system components. Note that Function 49 is a
CP/M 3 specific function. Programs intended for both MP/M II and
CP/M 3 should either avoid the use of this function or isolate calls
to ~his function in CP/M 3 version-dependent sections.

To use Function 49, the calling program passes the address of a
data structure called the SCB parameter block in register pair DE.
This data structure identifies the byte or word of the SCB to be
updated or returned. The SCB parameter block is defined as:

SCBPB: DB OFFSET
DB SET

OW VALUE

Offset within SCB
OFFH if setting a byte
OFEH if setting a word
OOlH - OFDH are reserved
OOOH if a get operation
Byte or word value to be set

The OFFSET parameter identifies the offset of the field within the
SCB to be updated or accessed. The SET parameter determines whether
Function 49 is to set a byte or word value in the SCB or if it is to
return a byte from the SCB. The VALUE parameter is used only in set
calls. In addition, only the first byte of VALUE is referenced in
set byte calls.

Use caution when you set SCB fields. Some of these parameters
reflect the current state of the operating system. If they are set
to invalid values, software errors can result. In general, do not
use Function 49 to set a system parameter if another BOOS function
can achieve the same result. For example, Function 49 can be called
to update the Current DMA Address field within the SCB. This is not
equivalent to making a Function 26, Set DMA Address call, and
updating the SCB Current DMA field in this way would result in
system errors. However, you can use Function 49 to return the
Current DMA address. The System Control Block is summarized in the
following table. Each of these fields is documented in detail in
Appendix A.

All Information Presented Here is proprietary To Digital Research

121

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 49

Table 3-4. System Control Block

Offset I Description

00 - 04 Reserved For System Use
05 aDOS version number
06 - 09 User Flags
OA - OF Reserved For System Use
10 - 11 Program Error return code
12 - 19 Reserved For System Use
lA Console Width (columns)
lB Console Column position
lC Console Page Length
10 - 21 Reserved For System Use
22 - 23 CONIN Redirection flag, bit 7 = 0 > none
24 - 25 CONOUT Redirection flag, bit 7 = 0 > none
26 - 27 AUXIN Redirection flag, bit 7 = 0 > none
28 - 29 AUXOUT Redirection flag, bit 7 = 0 > none
2A - 2B LSTOUT Redirection flag, bit 7 = 0 > none
2C Page Mode
20 Reserved For System Use
2E CTRL-H Active
2F Rubout Active
30 - 32 Reserved For System Use
33 - 34 Console Mode
35 - 36 Reserved For System Use
37 Output Delimiter
38 List Output Flag
39 - 3B Reserved For System Use
3C - 3D Current DMA Address
3E Current Disk
3F - 43 Reserved For System Use
44 Current User Number
45 - 49 Reserved For System Use
4A BOOS Multi-Sector Count
4B BOOS Error Mode
4C - 4F Drive Search Chain (DISKS A: ,E: ,F:)
50 Temporary File Drive
51 Error Disk
52 - 56 Reserved For System Use
57 BOOS flags
58 - 5C Date Stamp
50 - 5E Common Memory Base Address
5F - 63' Reserved For System Use

I f Function 49 is called wi th the OFFSET parameter of the SCB
parameter block greater than 63H, the function performs no action
but returns with registers A and HL set to zero.

All Information Presented Here is Proprietary To Digital Research

122

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 50

BOOS FUNC/fION 50: DIRECT BIOS CALLS

Entry Parameters:
Register C: 32H
Register DE: BIOS PB Address

Returned Value: BIOS RETURN

Function 50 provides a direct BIOS call through the BDOS to the
BIOS. The calling program passes the address of a data structure
called the BIOS Parameter Block (BIOSPB) in register pair DE. The
BIOSPB contains the BIOS function number and register contents as
shown below:

BIOSPB: db FUNC
db AREG
dw BCREG
dw DEREG
dw HLREG

BIOS function no.
A register contents
BC register contents
DE register contents
HL register contents

System Reset (Function 0) is equivalent to Function 50 with a
BIOS function number of 1.

Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG)
are defined in low byte, high byte order. For example, in the BCREG
field, the first byte contains the C register value, the second byte
contains the B register value.

Under CP/M 3, direct BIOS calls via the BIOS jump vector are
only supported for the BIOS Console I/O and List functions. You
must use Function 50 to call any other BIOS functions. In addi tion,
Function 50 intercepts BIOS Function 27 (Select Memory) calls and
returns with register A set to zero. Refer to the CP/M Plus (CP/M
Version 3) Operating System System Guide for the definition of the
BIOS functions and their register passing and return conventions.

All Information Presented Here is Proprietary To Digital Research

123

CP/M 3 Programmer's Guide

BDOS FUNCTION 59:

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 59

LOAD OVERLAY

3BH
FCB Address

Error Code
Physical Error

Only transient programs with an RSX header can use the Load
Overlay function because BDOS Function 59 is supported by the LOADER
module. The calling program must have a header to force the LOADER
to remain resident after the program is loaded (see Section 1.3).

Function 59 loads either an absolute or relocatable module.
Relocatable modules are identified by a filetype of PRL. Function
59 does not call the loaded module.

The referenced FCB must be successfully opened before Function
59 is called. The load address is specified in the first two random
record bytes of the FCB, rO and rl. The LOADER returns an error if
the load address is less than 100H, or if performing the requested
load operation would overlay the LOADER, or any other Resident
System Extensions that have been previously loaded.

When loading relocatable files, the LOADER requires enough room
at the load address for the complete PRL file including the header
and bi t map (see Appendix B). Otherwi se an error is returned.
Function 59 also returns an error on PRL file load requests if the
specified load address is not on a page boundary.

Upon return, Function 59 sets register A to zero if the load
operation is successful. If the LOADER RSX is not resident in
memory because the calling program did not have a RSX header, the
BOOS returns with register A set to OFFH and register H set to zero.
If the LOADER detects an invalid load address, or if insufficient
memory is available to load the overlay, Function 59 returns with
register A set to OFEH. All other error returns are consistent with
the error codes returned by BDOS Function 20, Read Sequential.

All Information Presented Here is Proprietary To Digital Research

124

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 60

BOOS FUNCTION 60: CALL RESIDENT SYSTEM
EXTENSION

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register A:
Register H:

3CH
RSX PB Address

Error Code
Physical Error

Function 60 is a special BOOS function that you use when you
call Resident System Extensions. The RSX subfunction is specified
in a structure called the RSX Parameter Block, defined as follows:

RSXPB: db FUNC
db NUMPARMS
dw PARMETERI
dw PARMETER2

dw PARMETERn

RSX Function number
Number of word parameters
Parameter 1
Parameter 2

Parameter n

RSX modules filter all BOOS calls ahd capture RSX function
calls that they can handle. If there is no RSX module present in
memory that can handle a specific RSX function call, the call is not
trapped, and the BOOS returns OFFh in registers A and L. RSX
function numbers from 0 to 127 are available for CP/M 3 compatible
software use. RSX function numbers 128 to 255 are reserved for
system use.

All Information Presented Here is Proprietary To Digital Research

125

CP/M 3 Programmer's Guide

BDOS FUNCTION 98:

Entry Parameters:
Register C:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 98

FREE BLOCKS

62H

Error Flag
Physical Error

The Free Blocks function scans all the currently logged-in
drives, and for each drive returns to free space all temporarily­
allocated data blocks. A temporarily-allocated data block is a
block that has been allocated to a file by a BDOS write operation
but has not been permanently recorded in the directory by a BDOS
close operation.' The CCP calls Function 98 when it receives control
following a system warm start. Be sure to close your file,
particularly any file you have written to, prior to calling Function
98.

In the nonbanked version of CP/M 3, Function 98 frees only
temporarily alloca ted blocks for systems that request double
allocation vectors in GENCPM.

Upon return, register A is set to zero if Function 98 is
successful. If a physical error is encountered, the Free Blocks
function performs different actions depending on the BDOS error mode
(see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, the Free Blocks function
returns to the calling program with register A set to OFFH and
register H set to the following physical error code:

04 : Invalid drive error

All Information Presented Here is Proprietary To Digital Research

126

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 99

BDOS FUNCTION 99: TRUNCATE FILE

Entry Parameters:
Register C: 63H

DE: FCB Address

Returned Value:
Register A:
Register H:

Directory Code
Extended or
Physical Error

The Truncate File function sets the last record of a file to
the random record number contained in the referenced FCB. The
calling program passes the address of the FCB in register pair DE,
with byte 0 of the FCB specifying the drive, bytes 1 through 11
specifying the filename and filetype, and bytes 33 through 35, rO,
rl, and r2, specifying the last record number of the file. The last
record number is a 24 bit value, stored with the least significant
byte first, rO, the middle byte next, rl, and the high byte last,
r2. This value can range from 0 to 262,143, which corresponds to a
maximum value of 3 in byte r2.

I f the file specified by the referenced FCB is password
protected, the correct password must be placed in the first eight
bytes of the current DMA buffer, or have been previously established
as the default password (see Function 106).

Function 99 requires that the file specified by the FCB not be
open, particularly if the file has been written to. In addition,
any activated FCBs naming the file are not valid after Function 99
is called. Close your file before calling Function 99, and then
reopen it after the call to cohtinue processing on the file.

Function 99 also requires that the random record number field
of the referenced FCB specify a value less than the current file
size. In addition, if the file is sparse, the random record field
must specify a record in a region of the file where data exists.

Upon return, the Truncate function returns a Directory Code in
register A with the value 0 if the Truncate function is successful,
or OFFH, 255 decimal, if the file is not found or the record number
is invalid. Register H is set to zero in both of these cases. If a
physical or extended error is encountered, the Truncate function
performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the
program is terminated. Otherwise, the Truncate function returns to
the calling program with register A set to OFFH and register H set
to one of the following physical or extended error codes:

All Information Presented Here is Proprietary To Digital Research

127

CP/M 3 Programmer's Guide

01 Disk I/O error
02 Read-Only disk
03 Read-Only file
04 Invalid drive error
07 File password error

3 BDOS Calls: Function 99

09 ? in filename or filetype field

All Information Presented Here is Proprietary To Digital Research

128

CP/M 3 Programmer's Guide

BDOS FUNCTION 100:

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register A
Register H :

3 BDOS Calls: Function 100

SET DIRECTORY LABEL

64H
FCB Address

Directory Code
Physical or
Extended Error

The Set Directory Label function creates a directory label, or
updates the existing directory label for the specified drive. The
calling program passes in register pair DE, the address of an FCB
containing the name, type, and extent fields to be assigned to the
directory label. The name and type fields of the referenced FCB are
not used to locate the directory label in the directory; they are
simply copied into the updated or created directory label. The
extent field of the FCB, byte 12, contains the user's specification
of the directory label data byte. The definition of the directory
label data byte is:

bit 7 - Require passwords for password-protected files
(Not supported in nonbanked CP/M 3 systems)

6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
a - Assign a new password to the directory label

If the current directory label is password protected, the correct
password must be placed in the first eight bytes of the current DMA,
or have been previously established as the default password (see
Function 106). If bit 0, the low-order bit, of byte 12 of the FCB
is set to 1, it indicates that a new password for the directory
label has been placed in the second eight bytes of the current DMA.

Note that Function 100 is implemented as an RSX, DIRLBL.RSX, in
nonbanked CP/M 3 systems. If Function 100 is called in nonbanked
systems when the DIRLBL.RSX is not resident, an error code of OFFH
is returned.

Function 100 also requires that the referenced directory
contain SFCBs to activate date and time stamping on the drive. If
an attempt is made to activate date and time stamping when no SFCBs
exist, Function 100 returns an error code of OFFH in register A and
performs no action. The CP/M 3 INITDIR utility initializes a
directory for date and time stamping by placing an SFCB record in
every fourth entry of the directory.

All Information Presented Here is Proprietary to Digital Research

129

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 100

Function 100 returns a Directory Code in register A with the
value a if the directory label create or update is successful, oro
OFFH, 255 decimal, if no space exists in the referenced directory to
create a directory label, or if date and time stamping was requested
and the referenced directory did not contain SFCBs. Register H is
set to zero in both of these cases. If a physical error or extended
error is encountered, Function 100 performs different actions
depending on the BOOS error mode (see Function 45). If the BOOS
error mode is the default mode, a message identifying the error is
displayed at the console and the calling program is terminated.
Otherwise, Function 100 returns to the calling program wi th register
A set to OFFH and register H set to one of the following physical or
extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error
07 File password error

All Information Presented Here is Proprietary to Digital Research

130

\

CP/M 3 Programmer's Guid~

\
BDOS FUNCTION 101:

Entry Parameters:
Register C:
Register E:

Returned Value:
Registers A

Register H

3 BDOS Calls: Function 101

RETURN DIRECTORY
LABEL DATA

65H
Drive

Directory label
Data Byte
Physical Error

The Return Directory Label Data function returns the data byte
of the directory label for the specified dr ive. The calling program
passes the drive number in register E with 0 for drive A, 1 for
drive B, and so on through 15 for drive P in a full sixteen drive
system. The format of the directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
o - Directory label exists on drive

Function 101 returns the directory label data byte to the calling
program in register A. Register A equal to zero indicates that no
directory label exists on the specified drive. If a physical error
is encountered by Function 101 when the BDOS Error mode is in one of
the return modes (see Function 45), this function returns wi th
register A set to OFFH, 255 decimal, and register H set to one of
the following:

01 Disk I/O error
04 Invalid drive error

All Information Presented Here is Proprietary to Digital Research

131

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 102

BDOS FUNCTION 102: READ FILE DATE STAMPS
AND PASSWORD MODE

Entry Parameters:
Register C:
Register DE:.

Returned Value:
Register A:
Register H:

66H
FCB Address

Directory Code
Physical Error

Function 102 returns the date and time stamp information and
password mode for the specified file in byte 12 and bytes 24 through
32 of the specified FCB. The calling program passes in register
pair DE, the address of an FCB in which the drive, filename, and
filetype fields have been defined.

If Function 102 is successful, it sets the following fields in
the referenced FCB:

byte 12 : Password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 4 - Delete mode

Byte 12 equal to zero indicates the file has not been assigned a
password. In nonbanked systems, byte 12 is always set to zero.

byte 24 - 27

byte 28 - 31

Create or Access time. stamp field

Update time stamp field

The date stamp fields are set to binary zeros if a stamp has not
been made. The format of the time stamp fields is the same as the
format of the date and time structure described in Function 104.

Upon return, Function 102 returns a Directory Code in register
A with the value zero if the function is successful, or OFFH, 255
decimal, if the specified file is not found. Register H is set to
zero in both of these cases. If a physical or extended error is
encountered, Function 102 performs different actions depending on
the BOOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at
the console and the calling program is terminated. Otherwise,
Function 102 returns to the calling program with register A set to
OFFH and register H set to one of the following physical or extended
error codes:

01 Disk I/O error
04 Invalid drive error
09 ? in filename or filetype field

All Information Presented Here is Proprietary to Digital Research

132

CP/M 3 Programmer's Guide

BDOS FUNCTION 103:

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register A:
Register H:

3 BDOS Calls: Function 103

WRITE FILE XFCB

67H
FCB Address

Directory Code
Physical Error

The Write File XFCB function creates a new XFCB or updates the
existing XFCB for the specified file. The calling program passes in
register pair DE, the address of an FCB in which the drive, name,
type, an d extent fields have been def ined. The exten t field
specifies the password mode and whether a new password is to be
assigned to the file. The format of the extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode
Read mode
Write mode
Delete mode

bit 7 -
bit 6
bit 5
bit 0 Assign new password to the file

If the specified file is currently password protected, the correct
password must reside in the first eight bytes of the current DMA, or
have been previously established as the default password (see
Function 106). If bit 0 is set to 1, the new password must reside
in the second eight bytes of the current DMA.

Upon return, Function 103 returns a Directory Code in register
A with the value zero if the XFCB create or update is successful, or
OFFH, 255 decimal, if no directory label exists on the specified
drive, or the file named in the FCB is not fonnd, or no space exists
in the directory to create an XFCB. Function 103 also returns with
OFFH in register A if passwords are not enabled by the referenced
di rectory's label. On nonban ked systems, this function always
returns with register A = OFFH because passwords are not supported.
Register H is set to zero in all of these cases. If a physical or
extended error is encountered, Function 103 performs different
actions depending on the BDOS error mode (see Function 45). If the
BOOS error mode is the default mode, a message identifying the error
is displayed at the console and the calling program is terminated.
Otherwise, Function 103 returns to the calling program wi th register
A set to OFFH and register H set to one of the following physical or
extended error codes:

01 Disk I/O error
02 Read-Only disk
04 Invalid drive error
07 File password error
09 ? in filename or filetype field

All Information Pr~sented Here is Proprietary to Digital Research

133

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 104

BDOS FUNCTION 104: SET DATE AND TIME

Entry Parameters:
Register C: 68H
Register DE: DAT Address

Returned Value: none

The Set Date and Time function sets the system internal date
and time. The calling program passes the address of a 4-byte
structure containing the date and time specification in the register
pair DE. The format of the date and time (DAT) data structure is:

byte 0 - 1
byte 2
byte 3

Date field
Hour field
Minute field

The date is represented as a l6-bit integer with day 1 corresponding
to January 1, 1978. The time is represented as two bytes: hours and
minutes are stored as two BCD digits.

This function also sets the seconds field of the system date
and time to zero.

All Information Presented Here is Proprietary to Digital Research

134

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 105

BDOS FUNCTION 105: GET DATE AND TIME

Entry Parameters:
Register C: 69H
Register DE: DAT Address

Return Value:
Register A: seconds
DAT set

The Get Date and Time function obtains the system internal date
and time. The calling program passes in register pair DE, the
address of a 4-byte data structure which receives the date and time
values. The format of the date and time, DAT, data structure is the
same as the format described in Function 104. Function 105 also
returns the seconds field of the system date and time in register A
as a two digit BCD value.

All Information Presented Here is Proprietary to Digital Research

135

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 106

BDOS FUNCTION 106: SET DEFAULT PASSWORD

Entry Parameters:
Register C: 6AH
Register DE: Password Address

Returned Value: none

The Set Defaul t Password function allows a program to specify a
password value before a file protected by the password is accessed.
When the file system accesses a password-protected file, it checks
the current DMA, and the default password for the correct value. If
either value matches the file's password, full access to the file is
allowed. Note that this function performs no action in nonbanked
CP/M 3 systems because file passwords are not supported.

To make a Function 106 call, the calling program sets register
pair DE to the address of an a-byte field containing the password.

All Information Presented Here is Proprietary to Digital Research

136

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 107

BOOS FUNCTION 107: RETURN SERIAL NUMBER

Entry Parameters:
Register C:
Register DE:

Returned Value:

6BH
Serial number
field

S~rial number field set

Function 107 returns the CP/M 3 serial number to the 6-byte
field addressed by register pair DE.

All Information Presented Here is proprietary to Digital Research

137

~P/M 3 Program~er's Guide 3 BOOS Calls: Function 108

BDOS FUNCTION 108: GET/SET PROGRAM RETURN CODE

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register HL:

6CH
OFFFFH (Get) or
Program Return Code (Set)

Program Return Code or
(no value)

CP/M 3 allows programs to set a return code before terminating.
This provides a mechanism for programs to pass an error code or
value to a following job step in batch environments. For example,
Program Return Codes are used by the CCP in CP/M 3's conditional
command line batch facility. Conditional command lines are command
lines that begin with a colon, :. The execution of a conditional
command depends on the successful execution of the preceding
command. The CCP tests the return code of a terminating program to
determine whether it successfully completed or terminated in error.
Program return codes can also be used by programs to pass an error
code or value to a chained program (see Function 47, Chain to
~rogram) •

A program can set or interrogate the Program Return Code by
calling Function 108. If register pair DE = OFFFFH, then the
current Program Return Code is returned in'- register pair HL.
Otherwise, Function 108 sets the Program Return Code to the value
contained in register pair DE. Program Return Codes are defined in
Table 3-5.

Code

0000 - FEFF

FFOO - FFFE

0000

FF80 - FFFC

FFFD

FFFE

Table 3-5. Program Return Codes

I Meaning

Successful return

Unsuccessful return

The CCP ini tializes the Program Return
Code to zero unless the program is
loaded as the result of program
chain.

Reserved

The program is terminated because of a
fatal BDOS error.

The program is terminated by the BOOS
because the user typed a CTRL-C.

All Information Presented Here is proprietary to Digital Research

138

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 109

BDOS FUNCTION 109:

Entry Parameters:
Register C:
Register DE:

Returned Value:
Register HL:

GET/SET CONSOLE MODE

6DH
OFFFFH (Get) or
Console Mode (Set)

Console Mode or
(no value)

A program can set or interrogate the Console Mode by calling
Function 109. If register pair DE = OFFFFH, then the current
Console Mode is returned in register HL. Otherwise, Function 109
sets the Console Mode to the value contained in register pair DE.

The Console Mode is a 16-bit system parameter that determines
the action of certain BDOS Console I/O functions. The def ini tion of
the Console Mode is:

bit a

bit 1

bit 2

bit 3

bits 8,9

1 - CTRL-C only status for Function 11.
a - Normal status for Function 11.

1 - Disable stop scroll, CTRL-S, start scroll,
CTRL-Q, support.

a - Enable stop scroll, start scroll support.

1 - Raw console output mode. Disables tab expansion
for Functions 2, 9 and 111. Also disables
printer echo, CTRL-P, support.

a - Normal console output mode.

1 - Disable CTRL-C program termination

a - Enable CTRL-C program termination

- Console sta.tus mode for RSXs that· perform
console input redirection· from a file. These
bits determine how the RSX responds to console
status requests.

bit 8 0, bit 9 a - conditional status
bit 8 0, bit 9 1 - false status
bit 8 1, bit 9 a - true status
bit 8 1, bit 9 1 - bypass redirection

Note that th~ Console Mode bits are numb~i~d fro~ ~i~ht to
left.

All Information Presented Here is Proprietary to Digital Research

139

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 109

The CCP initializes the Console Mode to zero when it loads a
program unless the program has an RSX that overrides the default
value. Refer to Section 2.2.1 for detailed information on Console
Mode.

All Information Presented Here is proprietary to Digital Research

140

CP/M 3 Programmer's Guide

BDOS FUNCTION 110:

Entry Parameters:
Register C:
Register DE:

E:

Returned Value:
Register A:

3 BDOS Calls: Function 110

GET/SET OUTPUT DELIMITER

6EH
OFFFFH (Get) or
Output Delimiter (Set)

Output Delimiter or
(no value)

A program can set or interrogate the current Output Delimiter
by calling Function 110. If register pair DE = OFFFFH, then the
current Output Delimiter is returned in register A. Otherwise,
Function 110 sets the Output Delimiter to the value contained in
register E.

Function 110 sets the string delimiter for Function 9, Print
String. The default delimiter value is a dollar sign, $. The CCP
restores the Output Delimiter to the default value when a transient
program is loaded.

All Information Presented Here is proprietary to Digital Research

141

CP/M 3 Programmer's Guide 3 BDOS Calls: Function III

BOOS FUNCTION Ill: PRINT BLOCK

Entry Parameters:
Register C: 6FH
Register DE: CCB Address

Returned Value: none

The Print Block function sends the character string located by
the Character Control Block, CCB, addressed in register pair DE to
the logical console, CONOUT:. If the Console Mode is in the default
state (see Section 2.2.1), Function III expands tab characters,
CTRL-I, in columns of eight characters. It also checks for stop
scroll, CTRL-S, start scroll, CTRL-Q, and echoes to the logical list
device, LST:, if printer echo, CTRL-P, has been invoked.

The CCB format is:

byte 0 - 1
byte 2 - 3

Address of character string (word value)
Length of character string (word value)

All Information Presented Here is Proprietary to Digital Research

142

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 112

BDOS FUNCTION 112: LIST BLOCK

Entry Parameters:
Register C: 70H
Register DE: CCB Address

Returned Value: none

The List Block function sends the character string located by
the Character Control Block, CCB, addressed in register pair DE to
the logical list device, LST:. The CCB format is:

byte 0 - 1
byte 2 - 3

Address of character'string (word value)
Length of character string (word value)

All Information Presented Here is proprietary to Digital Research

143

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 152

BOOS FUNCTION 152: PARSE FILENAME

Entry Parameters:
Register C: 98H

DE: PFCB Address

Returned Value:
Registers HL: Return code
Parsed file control block

The Parse Filename function parses an ASCII file specification
and prepares a File Control Block, FCB. The calling program passes
the address of a data structure called the Parse Filename Control
Block, PFCB, in register pair DE. The PFCB contains the address of
the input ASCII filename string followed by the address of the
target FCB as shown below:

PFCB: OW
OW

INPUT
FCB

Address of input ASCII string
Address of target FCB

The maximum length of the input ASCII string to be parsed is 128
bytes. The target FCB must be 36 bytes in length.

Function 152 assumes the input string contains file
specifications in the following form:

{d:}fi1ename{.typ}{:password}

where items enclosed in curly brackets are optional. Function 152
also accepts isolated drive specifications d: in the input string.
When it encounters one, it sets the filename, fi1etype, and password
fields in the FCB to blank.

The Parse Filename function parses the first file specification
it finds in the input string. The function first eliminates leading
blanks and tabs. The function then assumes that the file
specification ends on the first delimiter it encounters that is out
of context with the specific field it is parsing. For instance, if
it finds a colon, and it is not the second character of the file
specification, the colon delimits the entire file specification.

All Information Presented Here is Proprietary to Digital Research

144

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 152

Function 152 recognizes the following characters as delimiters:

space
tab
return
null

(semicolon) - except before password field
(equal)

< (less than)
> (greater than)

(period) - except after filename and before filetype
(colon) - except before filename and after drive
(comma)
(vertical bar)
(left square bracket)
(right square bracket)

If Function 152 encounters a non-graphic character in the range 1
through 31 not listed above, it treats the character as an error.
The Parse Filename function initializes the specified FCB shown in
Table 3-6.

All Information Presented Here is proprietary to Digital Research

145

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 152

Location

byte 0

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

I
Table 3-6. FCB Format

Contents

The drive field is set to the specified
drive. If the drive is not specified, the
default drive code is used. O=default,
l=A, 2=B.

The name is set to the specified filename.
All letters are converted to upper-case.
If the name is not eight characters long,
the remaining bytes in the filename field
are padded with blanks. If the filename
has an asterisk, *, all remaining bytes in
the filename field are filled in with
question marks,? An error occurs if the
filename is more than eight bytes long.

The type is set to the. specified filetype.
I f no filetype is specified, the type
field is initialized to blanks. All
letters are converted to upper-case. If
the type is not three characters long, the
remaining bytes in the filetype field are
padded with blanks. If an asterisk, *,
occurs, all remaining bytes are filled in
with question marks,? An error occurs
if the type field is more than three bytes
long.

Filled in with zeros.

The password field is set to the specified
password. If no password is specified, it
is ini tial i zed to blan ks. I f the password
is less than eight characters long,
remaining bytes are padded with blanks.
All letters are converted to upper-case.
If the password field is more than eight
bytes long, an error occurs. Note that a
blank in the first position of the
password field implies no password was
specified.

Reserved for system use.

If an error occurs, Function 152 returns an OFFFFH in register
pair HL.

On a successful parse, the Parse Filename function checks the
next item in the input string. It skips over trailing blanks and
tabs and looks at the next character. If the character is a null or

All Information Presented Here is Proprietary to Digital Research

146

CP/M 3 programmer's Guide 3 BOOS Calls: Function 152

carriage return, it returns a 0 indicating the end of the input
string. If the character is a delimiter, it returns the address of
the delimiter~ If the character is not a delimiter, it returns the
address of the first trailing blank or tab.

If the first non-blank or non-tab character in the input string
is a null, 0, or carriage return, the Parse Filename function
returns a zero indicating the end of string.

If the Parse Filename function is to be used to parse a
subsequent file specification in the input string, the returned
address must be advanced over the delimiter before placing it in the
PFCB.

End of Section 3

All Information Presented Here is Proprietary to Digital Research

147

CP/M 3 Programmer's Guide End of Section 3

All Information Presented Here is Proprietary to Digital Research

148

Section 4
Programming Examples

The programs presented in this section illustrate how to use
the BOOS functions described in the previous section. The examples
show how to copy a file, how to dump a file, how to create or access
a random access file, and how to write an RSX program.

4.1 A Sample File-To-File Copy Program

The following program illustrates simple file operations. You
can create the program source file, COPY.ASM, using ED or another
editor, and then assemble COPY.ASM using MACHO MAC produces the
file COPY.HEX. Use the utility HEXCOM to produce a COPY.COM file,
that can execute under CP/M 3.

The COpy program first sets the stack pointer to a local area,
then moves the second name from the default area at 006CH to a 33-
byte file control block named DFCB. The DFCB is then prepared for
file operations by clearing the current record field. Because the
CCP sets up the source FCB at DOSCH upon entry to the COpy program,
the source and destination FCBs are now ready for processing. To
prepare the source FCB, the CCP places the first name into the
default FCB, with the proper fields zeroed, including the current
record field at 007CH.

COpy continues by opening the source file, deleting any
existing destination file, and then creating the destination file.
If each of these operations is successful, the COpy program loops at
the label COpy until each record is read from the source file and
placed into the destination file. Upon completion of the data
transfer, the destination file is closed, and the program returns to
the CCP command level by jumping to BOOT.

sample file-to-file copy program

at the ccp level, the command

copy a:x.y b:u.v

copies the file named x.y from drive
a to a file named u.v on drive b.

;
0000 boot equ OOOOh system reboot
0005 bdos equ OOOSh bdos entry point
OOSc fcbl equ DOSch first file name
OOSc sfcb equ fcbl source fcb
006c fcb2 equ 006ch second file name
0080 dbuff equ OOSOh default buffer
0100 tpa equ OlOOh beginning of tpa

All Information Presented Here is Proprietary to Digital Research

149

CP/M 3 Programmer's Guide 4.1 A Sample Copy Program

0009
OOOf
0010
0013
0014
0015
0016

0100
0100 31lb02

0103 OelO
0105 l16cOO
0108 2ldaOl

printf
openf
closef
deletef
readf
writef
makef

OlOb la mfcb:
OlOc 13
OlOd 77
OlOe 23
010f Od
0110 c20bOl

0113 af
0114 32faOl

0117 115cOO
01la cd6901
Olld 118701
0120 3c
0121 cc610l

0124 IldaOl
0127 cd730l

012a lldaOl
012d cd8201
0130 119601
0133 3c
0134 cc6l01

0137 l15cOO copy:
013a c'd780l
013d b7
013e c25101

0141 IldaOl
0144 cd7dOl
0147 lla90l

equ
equ
equ
equ
equ
equ
equ

org
lxi

move
mvi
lxi
lxi
ldax
inx
mov
inx
dcr
jnz

9
15
16
19
20
21
22

print buffer func#
open file func#
close file func#
delete file funci
sequential read
sequential write
make file func#

tpa beginning of tpa
sp,stack; local stack

second file name to dfcb
c,16 half an fcb
d,fcb2 source of move
h,dfcb destination fcb
d source fcb
d ready next
m,a dest fcb
h ready next
c count 16 .•• 0
mfcb loop 16 times

name has been moved, zero cr
xra a ; a = OOh
sta dfcbcr; current rec = 0

source and destination fcbs ready

lxi
call
lxi
inr
cz

d,sfcb source file
open ; error if 255
d,nofile; ready message
a 255 becomes 0
finis done if no file

source file open, prep destination
lxi d,dfcb destination
call delete remove if present

lxi
call
lxi
inr
cz

d,dfcb
make
d,nodir
a
finis

destination
create the file
ready message
255 becomes 0
done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

d,sfcb
read
a
eofile

source
read next record
end of file?
skip write if so

not end of file, write the record
lxi d,dfcb; destination
call write ; write record
lxi d,space ; ready message

All Information Presented Here is Proprietary to Digital Research

150

CP/M 3 Programmer's Guide

014a b7
014b c46l0l
014e c3370l

0151 lldaOl
0154 cd6~01
0157 2lbbOl
015a 3c
015b cc6l0l

;

ora
cnz
jmp

eofile: ; end
lxi
call
lxi
inr
cz

a
finis
copy

4.1 A Sample Copy Program

.00 if write ok
end if so
loop until eof

of file,
d,dfcb
close ;
h,wrprot;
a

close destination
destination
255 if error
ready message
255 becomes 00

finis should not happen

copy operation complete, end
015e llccOl

0161 Oe09
0163 cd0500
0166 c30000

;
finis:

lxi d,normal; ready message

; write message given by de, reboot
mvi c,printf
call bdos ; write message
jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

0169 OeOf open: mvi
016b c30500 jmp

c,openf
bdos

;
016e OelO close: mvi
0170 c30500 jmp

;
0173 Oe13 delete: mvi
0175 c30500 jmp

;
0178 Oe14 read:
017a c30500

;
017d Oe15 write:
017f c30500

I

0182 Oe16 make:
0184 c30500

0187
0196
01a9
Olbb
Olcc

;
6e6f20fnofile:
6e6f209nodir:
6f7574fspace:
7772695wrprot:
636f700normal:

mvi
jmp

mvi
jmp

mvi
jmp

console
db
db
db
db
db

c,closef
bdos

c,deletef
bdos

c,readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source file$'
'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$'

;
dfcb:
dfcbcr

data areas
Olda
Olfa

Olfb

02lb
stack:

ds 33
equ dfcb+32

ds 32

end

destination fcb
current record

16 level stack

All Information Presented Here is Proprietary to Digital Research

151

CP/M 3 Programmer's Guide 4.1 A Sample Copy Program

Note that this program makes several simplifications and could
be enhanced. First, it does not check for invalid filenames that
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32-byte default area starting at
location 005CH for ASCII question marks. To check that the
filenames have, in fact, been included, COpy could check locations
005DH and 006DH for nonblank ASCII characters. Finally, a check
should be made to ensure that the source and destination filenames
are different. Speed could be improved by buffering more data on
each read operation. For example, you could determine the size of
memory by fetching FBASE from location 0006H, and use the entire
remaining portion of memory for a data buffer. You could also use
CP/M 3's multi-sector I/O facility to read and write data in up to
16K units.

4.2 A Sample File Dump Utility

The following dump program reads an input file specified in the
CCP command line, and then displays the content of each record in
hexadecimal format at the console.

0100
0005
0001
0002
0009
OOOb
OOOf
0014

005c
0080

OOOd
OOOa

005c
005d
0065
0068
006b
007c
007d

0100 210000
0103 39

0104 221502

DUMP program reads input file and displays hex data

bdos
cons
typef
printf
brkf
openf
readf

fcb
buff

cr
If

;
fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln

org
equ
equ
equ
equ
equ
equ
equ

equ
equ

100h
0005h
1
2
9
11
15
20

Sch
80h

;dos entry point
;read console
;type function
;buffer print entry
;break key function (true if char
;file open
;read function

;file control block address
;input disk buffer address

non graphic characters
equ Odh ;carriage return
equ Oah ;line feed

file
equ
equ
equ
equ
equ
equ
equ

control block definitions
fcb+O ;disk name
fcb+l ;file name

set up
lxi
dad
entry
shld

fcb+9 ;disk file type (3 characters)
fcb+12 ;file's current reel number
fcb+15 ;file's record count (0 to 128)
fcb+32 ;current (next) record number (0
fcb+33 ;fcb length

stack
h,O
sp

stack pointer
oldsp

in hI from the ccp

All Information Presented Here is Proprietary to Digital Research

152

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

0107 315702

OlOa cdclOl
OlOd feff
OlOf c21bOl

0112 Ilf301
0115 cd9cOl
0118 c35101

set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok iskip if open is ok

file not there, give error message and return
lxi d,opnmsg
call err
jmp finis ito return

i
openok: ;open operation ok, set buffer index to end

Ollb 3e80 mvi a,80h
Olld 321302 sta ibp iset buffer pointer to 80h

hI contains next address to print
0120 210000 lxi h,O istart with 0000

0123 e5
0124 cda201
0127 el
0128 da5101
012b 47

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd590l

0138 Of
0139 da5101

013c 7c
013d cd8fOl
0140 7d
0141 cd8fOl

0144 23
0145 3e20
0147 cd6501
014a 78
014b cd8fOl
014e c3230l

0151 cd720l
0154 2a1502
0157 f9

;
gloop:

nonum:

,
finis:

push
call
pop
jc

h
gnb
h
finis

mov b,a

isave line position

;recall line position
icarry set by gnb if end file

print hex values
check for line fold
mov a,l
ani Ofh ;check low 4 bits
jnz nonum
print line number
call crlf

check for break key
call break
accum lsb = 1 if character ready
rrc ;into carry
jc finis ;do not print any more

mov
call
mov
call

inx
mvi
call
mov
call
jmp

a,h
phex
a,l
phex

h
a,' ,
pchar
a,b
phex
gloop

end of dump
call crlf
lhld oldsp
sphl

ito next line number

All Information Presented Here is Proprietary to Digital Research

153

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

0158 c9

0159 e5d5c5
015c OeOb
015e cd0500
0161 cldlel
0164 c9

0165 e5d5c5
0168 Oe02
016a Sf
016b cd0500
016e cldlel
0171 c9

0172 3eOd
0174 cd6501
0177 3eOa
0179 cd6501
017c c9

017d e60f
017f feOa
0181 d28901

0184 c630
0186 c38bOl

i
break:

,
pchar:

i
crlf:

,
pnib:

i
0189 c637 plO:
018b cd6501 prn:
018e c9

018f f5
0190 Of
0191 Of
0192 Of
0193 Of
0194 cd7dOl
0197 fl
0198 cd7dOl
019b c9

,
phex:

stack pointer contains ccp's stack location
ret ito the ccp

subroutines

;check break key (actually any key will do)
push h! push d! push bi environment saved
mvi c,brkf
call bdos
pop b! pop d! pop hi environment restored
ret

;print a character
push h! push d! push bi saved
mvi c,typef
mov e,a
call bdos
pop b! pop d! pop hi restored
ret

mvi
call
mvi
call
ret

a,cr
pchar
a,lf
pchar

nibble
Ofh
10
plO

iprint
ani
cpi
jnc
less
adi
jmp

than or
'0 '
prn

in reg a
;low 4 bits

equal to 9

greater or equal to 10
adi 'a' - 10
call pchar
ret

iprint hex char in reg a
push psw
rrc
rrc
rrc
rrc
call
pop
call
ret

pnib
psw
pnib

iprint·nibble

err: ;print error message
d,eaddresses mess~ge ending with n$n

All Information Presented Here is Proprietary to Digital Research

154

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

019c Oe09
01ge cd0500
alaI c9

01a2 3a1302
01a5 fe80
01a7 c2b30l

Olaa cdceOl
Olad b7
alae cab30l

Olbl 37
01b2 c9

01b3 5f
01b4 1600
01b6 3c
01b7 321302

alba 218000
Olbd 19

Olbe 7e

Olbf b7
OlcO c9

gnb:

gO:

mvi
call
ret

iget
Ida
cpi
jnz
read

call

c,printf
bdos

next byte
ibp
80h
gO

another buffer

diskr

iprint buffer function

ora a izero value if read ok
jz gO ifor another byte
end of data, return with carry set for eof
stc
ret

iread the byte at buff+reg a
mov e,a ils byte of buffer index
mvi d,O idouble precision index to de
inr a iindex=index+l
sta ibp iback to memory
pointer is incremented
save the current file address
lxi h, buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora a ireset carry bit
ret

setup: iset up file
open the file for input

Olcl af xra a izero to accum
0lc2 327cOO sta fcbcr iclear current record

01c5 l15cOO
0lc8 OeOf
Olca cd0500

Olcd c9

Olce e5d5c5
Oldl 1'15cOO
0ld4 Oe14
01d6 cd0500
0ld9 cldlel
Oldc c9

,
diskr:

lxi d,fcb
mvi c,openf
call bdos
255 in accum if open error
ret

iread disk file record
push h! push d! push b
lxi d,fcb
mvi c, readf
call bdos
pop b! pop d! pop h
ret

i fixed message area
Oldd 46494cOsignon: db 'file dump version 2.0$'

All Information Presented Here is Proprietary to Digital Research

155

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

01f3 OdOa4eOopnmsg: db cr,lf,'no input file present on disk$'

0213
0215

0217

ibp:
oldsp:

stktop:

variable area
ds 2
ds 2

stack area
ds 64

0257 end

4.3 A Sample Random Access Program

iinput buffer pointer
ientry sp value from ccp

ireserve 32 level stack

This example is an extensive but complete example of random
access operation. The following program reads or writes random
records upon command from the terminal. When the program has been
created, assembled, and placed into a file labeled RANDOM.COM, the
CCP level command

A>RANDOM X.DAT

can start the test program. In this case, the RANDOM program looks
for a file X.DAT and, if it finds it, prompts the console for input.
If X.DAT is not found, RANDOM creates the file before displaying the
prompt. Each prompt takes the form:

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form:

nW nR nF Q

where n is an integer value in the range 0 to 262143, and W, R, F,
and Q are simple command characters corresponding to random write,
W, random read, R, random write with zero fill, F, and quit
processing, Q. If you enter aW or F command, the RANDOM program
issues the prompt:

type data:

You then respond by typing up to 127 characters, followed by a
carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If you enter an F command, the RANDOM
program fills previously unallocated data blocks with zeros before
writing record n. If you enter the R" command, RANDOM reads record
number n and displays the string value at the console. If you enter
the Q command, the X.DAT file is closed, and the program returns to
the console command processor. In the interest of brevity, the only
error message is:

error, try again

All Information Presented Here is Proprietary to Digital Research

156

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label ready where the individual commands are interpreted. The
program uses the default file control block at OOSCH and the default
buffer at 0080H in all disk operations. The utility subroutines
that follow contain the principal input line processor, called
readc. This particular program shows the elements of random access
processing and can be used as the basis for further program
development.

0100

0000
0005

0001
0002
0009
OOOA
OOOC
OOOF
0010
0016
0021
0022
0028
0098

OOSC
0070
007F
0080

0000
OOOA

.*** I

.* * I

;* sample random access program for cp/m 3 *
.* * I ,

.*********************~***************************** I

;
reboot
bdos

coninp
conout
pstring
rstring
version
openf
closef
makef
readr
writer
wrtrzf
parsef

fcb
ranrec
ranovf
buff

cr
If

org

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ
equ

100h

OOOOh
OOOSh

1
2
9
10
12
15
16
22
33
34
40
152

OOSch
fcb+33
fcb+3S
0080h

Odh
Oah

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random
;write random zero fill
;parse function

;default file control block
;random record position
;high order (overflow) byte
;buffer address

;carriage return
;line feed

All Information Presented Here is Proprietary to Digital Research

157

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

0100 313703

0103 OEOC
0105 CD0500
0108 FE20
010A D2l601

010D 118102
0110 C03l02
0113 C30000

0116 OEOF
0118 3A5DOO
011B FE20
01lD C22COl
0120 11E002
0123 CD3l02
0126 C02002
0129 C31801
012C 115(:00
012F CD0500
0132 3C
0133 C24B01

0136 OE16
0138 115COO
013B CD0500
013E 3C
013F C24BOl

0142 llA002
0145 CD3102
0148 C30000

i .
. **************~************~*********************** ,
.* * ,
i* load SP, set-up file for random access *
.* * ,
.*** ,

i
versok:

lxi sp,stack

version 3.l?
mvi
call
cpi
jnc
bad
lxi
call
jmp

c,version
bdos
3lh iversion 3.1 or better?
versok

version, message and go back
d,badver
print
reboot

correct version for random access
mvi c,openf iopen default fcb

rdname: Ida fcb+1
cpi
jnz
lxi
call
call
jmp

opfile: lxi
call
inr
jnz

, ,
opfi1e
d,entmscj
print
parse
rdname
d,fcb
bdos
a
ready

ierr 255 becomes zero

cannot open file, so create it
mvi c,makef
lxi d,fcb
call bdos
inr
jnz

a
ready

ierr 255 becomes zero

cannot create file, directory full
lxi d,nospace
call print
jmp reboot iback to ccp

All Information Presented Here is Proprietary to Digital Research

158

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

014B C03C02
014E 227000
0151 2l7FOO
0154 71
0155 FE5l
0157 (;26901

015A OE10
015C l15COO
015F C00500
0162 3C
0163 CAFFOl
0166 C30000

,
.*** , '

.* * ,
;* loop back to "ready" after each command *
.* * ,
.*** ,

ready:
file is ready for processing

call readcox:n ;read next command
shld ranrec ;store input record#
lxi h,ranovf
mov m,c ;set ranrec high byte
cpi 'Q' ;q~it?
jnz notq

quit processing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp

All Information Presented Here is Proprietary to Digital Research

159

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

0169 FE57
016B C29COl

016E IlB302
0171 CD3102
0174 OE7F
0176 218000

0179 C5
017A E5
017B CD0802
017E El
017F Cl
0180 FEOD
0182 CA8BOl

0185 77
0186 23
0187 OD
0188 C27901

018B 3600

018D
018F
0192
0195
0196
0199

OE22
115COO
CD0500
B7
C2FFOl
C34BOl

i
.*****~**********~********************************** I

.* * I

i* end of quit command, process write *
.* * I

.*** I

notq:
not the quit command, random write?
cpi 'WI
jnz notw

this is a random write, fill buffer until cr
lxi d,datmsg
call print idata prompt
mvi c,127 iUP to 127 characters
lxi h,buff idestination

rloop: iread next character to buff

erloop:

push b isave counter
push h inext destination
call getchr icharacter to a
pop h irestore counter
pop b irestore next to fill
cpi cr iend of line?
jz erloop
not end, store character
mov
inx
dcr
jnz

m,a
h
c
rloop

inext to fill
icounter goes down
iend of buffer?

end of read loop, store 00
mvi m,O

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

ierror code zero?
imessageif not
ifor another record

All Information Presented Here is Proprietary to Digital Research

160

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

019C FE46
019E C2CFOl

OlAl llB302
01A4 CD3102
01A7 OE7F
01A9 218000

OlAC C5
OlAD E5
OlAE CD0802
OlBl El
01B2 Cl
01B3 FEOD
01B5 CABEOI

01B8 77
01B9 23
OlBA OD
OlBB C2ACOl

OlBE 3600

OlCO OE28
01C2 115COO
01C5 CD0500
01C8 B7
01C9 C2FFOl
OlCC C34BOl

i
.*** I

. * I

i* end of write command, process write random zero fill
.* I

.*** I

notw:
not the quit command, random write zero fill?
cpi 'F'
jnz no~f

this is a random write, fill buffer until cr
lxi d,datmsg
call print idata prompt
mvi c,127 iUP to 127 characters
lxi h,buff ;destination

rloopl: iread next character to buff
push b isave counter
push h inext destination
call getchr icharacter to a
pop h irestore counter
pop b irestore next to fill
cpi cr iend of line?
jz erloopl
not end, store character
!nOV

inx
dcr
jnz

erloopl:
end
mvi

m,a
h inext to fill
c icounter goes down
rloopl iend of buffer?

of read loop, store 00
m ,0

write the record to selected record number
mvi c,wrtrzf
lxi d,fcb
call bdos
ora
jnz
jmp

a
error
ready

ierror code zero?
imessage if not
ifor another record

All Information Presented Here is Proprietary to Digital Research

161

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

OlCF FES2
0101 C2FFOI

0104 OE2l
0106 11SCOO
0109 COOSOO
OIOC B7
0100 C2FFOI

OlEO COlS02
01E3 OE80
OIES 218000

01E8 7E
01E9 23
OlEA E67F
OIEC CA4BOI
OIEF CS
OIFO ES
OlFl FE20
01F3 040E02
01F6 El
01F7 Cl
01F8 00
01F9 C2E801
OlFC C34BOI

~

.*** I

.* * I

~* end of write commands, process read *
.* * I

.*** I

notf:
not a write command, read record?
cpi 'R'
jnz error ~skip if not

read random record
mvi c,readr
lxi d,fcb
call bdos
ora a ~return code OO?
jnz error

read was successful, write to console
call crlf ~new line
mvi c,128 ~max 128 characters
lxi h,buff ~next to get

wloop:
mov a,m ~next character
inx h ~next to get
ani 7fh ~mask parity
jz ready ~for another command if 00
push b ~save counter
push h ~save. next to get
cpi , ,

~graphic?
cnc putchr ~skip output if not
pop h
pop b
dcr c ~count=count-l
jnz wloop
jmp ready

All Information Presented Here is Proprietary to Digital Research

162

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

OlFF llBF02
0202 CD3102
0205 C34BOl

,
~ .*** ,

.* ,
;* end of read command, all errors end-up here
. * ,

*
*
*

.*** ,

error:
lxi
call
jmp

d,errmsg
print
ready

All Information Presented Here is Proprietary to Digital Research

163

CP/M 3 Programmer's Guide 4.3 A Sample Random AcceSs Program

0208 OEOI
020A CD0500
020D C9

020E OE02
0210 5F
0211 CD0500
0214 C9

0215 3EOD
0217 CDOE02
0211\ 3EOA
021C CDOE02
021F C9

0220 IlFI02
0223 OEOA
0225 CD0500
0228 111303
022B OE98
022D CD0500
0230 C9

0231 D5
0232 CD1502
0235 Dl
0236 OE09
0238 CD0500
023B C9

023C IlDI02
023F CD3102
0242 OEOA
0244 IlFI02
0247 CD0500

024A OEOO

,
.*** ,
.* * ,
;* utility subroutines for console i/o *
.* * ,
.*** ,
getchr:

;read next console character to a

;
putchr:

crlf:

parse:

,
print:

mvi
call
ret

;write
mvi
mov
call
ret

;send
mvi
call
mvi
call
ret

;read
lxi
mvi
call
lxi
mvi
call
ret

;print
push
call
pop
mvi
call
ret

readcom:
;read
lxi
call
mvi

c,coninp
bdos

character
c,conout
e,a

from a to console

icharacter to send
bdos ;send character

carriage return line feed
a,cr ;carriage return
putchr
a,lf iline feed
putchr

and parse filespec
d,conbuf
c,rstring
bdos
d,pfncb
c,parsef
bdos

the buffer addressed by de until $
d
crlf
d ;new line
c,pstring
bdos iprint the string

the next command line to the conbuf
d,prompt

lxi
call
command

print ;command?
c,rstring
d,conbuf
bdos ;read command line
line is present, scan it

mvi c,O ;start with 00

All Information Presented Here is Proprietary to Digital Research

164

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

024C 210000
024F llF302
0252 lA
0253 13
0254 B7
0255 C8

0256 D630
0258 FEOA
025A D27902

025D F5
025E 79
025F 29
0260 8F
0261 F5
0262 E5
0263 29
0264 8F
0265 29
0266 8F
0267 Cl
0268 09
0269 Cl
026A 88
026B Cl
026C 48
026D 0600
026F 09
0270 CEOO
0272 4F
0273 D25202
0276 C33C02

0279 C630
027B FE6l
027D D8

027E E65F
0280 C9

readc:

endrd:

lxi
lxi
ldax

h,O 0000
d,conlinicommand line
d inext command character

inx
ora
rz

d ito next command position
a icannot be end of command

zero, numeric? not
sui
cpi
jnc
add-in
push

'0 '
10
endrd

icarry if numeric

next digit
psw

mov
dad
adc
push
push
dad
adc
dad
adc
pop
dad
pop
adc
pop

a,c
h
a
a
h
h
a
h
a
b
b
b
b
b

mov c,b
mvi b,O
dad b
aci 0
mov c,a
jnc readc
jmp readcom

ivalue in ahl

i * 2
isave value * 2

i*4

i*8

i*2 + *8 *10

i+digit

end of read, restore value in a
adi '0' i command
cpi 'a' itranslate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret ireturn with value in ch1

All Information Presented Here is Proprietary to Digital Research

165

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

;
.*** ,
.* * ,
;* string data area for console messages *
.* * ,
;***
badver:

0281 736F727279 db 'sorry, you need cp/m version 3$'
nospace:

02AO 6E6F206469 db 'no directory space$'
datmsg:

02B3 7479706520 db 'type data: $'
errmsg:

02BF 6572726F72 db 'error, try again.$'
prompt:

0201 6E65787420 db 'next command? $'
entmsg:

02EO 656E746572 db 'enter filename: $,
;
r***
.* * ,
;* fixed and variable data area
. * , *

*
.*** ,

02Fl 21
02F2
02F3
0021

0313 F302
0315 5COO

0317

0337

conbuf:·db
consiz: ds
conlin: ds
con len equ
;
pfncb:

conlen ;length of console buffer
1 ;resulting size after read
32 ;length 32 buffer
$-consiz

dw conlin
dw fcb

ds 32 ;16 level stack
stack:

end

You could make the following major improvements to this program
to enhance its operation. With some work, this program could evolve
into a simple data base management system. You could, for example,
assume a standard record size of 128 bytes, consisting of arbitrary
fields wi thin the record. You could develop a program called GETKEY
that first reads a sequential file and extracts a specific field
defined by the operator. For example, the command

GETKEY NAMES.OAT LASTNAME 10 20

would cause GET KEY to read the data base file NAMES.OAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 16-bit record
number location wi thin the file. The GETKEY program then sorts this
list and writes a new file, called LASTNAME.KEY. This list,

All Information Presented Here is Proprietary to Digital Research

166

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

sometimes called an inverted index, is an alphabetical list of
LASTNAME fields with their corresponding record numbers.

You could rename the program shown above to QUERY, and modify
it so that it reads.a sorted key file into memory. The command line
might appear as

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Because the LASTNAME.KEY list is sorted, you can find a particular
entry quickly by performing a binary search, similar to looking up a
name in the telephone directory. Start at both ends of the list and
examine the entry halfway in between and, if not matched, split
either the upper half or the lower half for the next search. You
will quickly reach the item you are looking for, in log2(n) steps,
where you will find the corresponding record number. Fetch and
display this record at the console as the program illustrates.

At this point, you are just getting started. With a little
more work, you can allow a fixed groupi"ng size, which differs from
the 128-byte record shown above. You can accomplish this by keeping
track of the record number as well as the byte offset within the
record. Knowing the group size, you can randomly access the record
containing the proper group, offset to the beginning of the group
within the record, and read sequentially until the group size has
been exhausted.

Finally, you can improve QUERY considerably by allowing Boolean
expressions that compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL and an
AGE less than 45. Display all the records that fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

4.4 Construction of an RSX Program

This section describes the standard prefix of a Resident System
Extension (RSX) and illustrates the construction of an RSX with an
example. (See Section 1.6.4 for a discussion of how RSXs operate
under CP/M 3.) RSX programs are usually written in assembler, but
you can use other languages if the interface between the language
and the calling conventions of the BOOS are set up properly.

4.4.1 The RSX Prefix

The first 27 bytes of an RSX program contain a standard data
structure called the RSX prefix. The RSX prefix has the following
format:

All Information Presented Here is Proprietary to Digital Research

167

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

serial:
db 0,0,0,0,0,0

start:
jmp ftest start of program

next:
db Oc3h jump instruction to
dw 0 next module in line

prev:
dw 0 previous module

remove:
db Offh remove flag

nonbank:
db 0 nonbank flag

name:
db '12345678' any 8-character name

loader:
db a loader flag
db 0,0 reserved area

The only fields of the RSX prefix that you must initialize are
the remove: flag, the nonbank: flag, and the name: of the RSX.

For compatibi1ity·with previous releases of CP/M, the serial:
field of the prefix is set to the serial number of the operating
system by the LOADER module when the RSX is loaded into memory.
'Thus, the address in location 6 locates the byte following the
serial number of the operating system with or without RSXs in
memory.

The start: field contains a jump instruction to the beginning
of the RSX code where the RSX tests to see if this BDOS function
call is to be intercepted or passed on to the next module in line.

The next: field contains a jump instruction to the next module
in the chain· or the LOADER module if the RSX is the oldest one in
memory. The RSX program must make its own BDOS function calls by
calling the next: entry point.

The prev: field contains the address of the preceding RSX in
memory or location 5 if the RSX is the first RSX in the chain.

The remove: field controls whether the RSX is removed from
memory by the next call to the LOADER module via BDOS function 59.
If the remove: flag is OFFH, the LOADER removes the RSX from memory.
Note that the CCP always calls the LOADER module dur ing a warm start
operation. An RSX that remains in memory past warm start because
its remove: flag is zero, must set the flag at its termination to
ensure its removal from memory at the following warm start.

The nonbank: field controls when the RSX is loaded. If the
field is OFFH, the LOADER only loads the module into memory on
nonbanked CP/M 3 systems. Otherwise, the RSX is loaded into memory
under both banked and nonbanked versions of CP/M 3.

All Information Presented Here is Proprietary to Digital Research

168

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

The loader: flag identifies the LOADER RSX. When the LOADER
module loads an RSX into memory, it sets this prefix flag of the
loaded RSX to zero. However, the loader: flag in the LOADER'S
prefix contains OFFH. Thus, this flag identifies the last RSX in
the chain, which is always the LOADER.

4.4.2 Example of RSX Use

These two sample programs illustrate the use of an RSX program.
The first program, CALLVERS, prints a message to the console and
then makes a BOOS function 12 call to obtain the CP/M 3 version
number. CALLVERS repeats this sequence five times before
terminating. The second program, ECHOVERS, is an RSX that
intercepts the BOOS function 12 call made by CALLVERS, prints a
second message, and returns the version 0031H to CALLVERS. Although
this example is simple, it illustrates BOOS function interception,
stack swapping, and BOOS function calls within an RSX.

All Information Presented Here is Proprietary to Digital Research

169

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

; CALLVERS program

0005
0009
OOOC
0000
OOOA

0100
0100
0102
0103
0105
0108
OlOB
0100

0110
0111
0114
0115
0116
0119
011B

011E
0134
0135

0009
0000
OOOA

0000
0006

1605
05
OE09
lllEOl
C00500
OEOC
CD0500

70
323401
01
15
C20201
OEOO
C30500

000A2A2A2A
00

0000000000
C31BOO

0009 C3
OOOA 0000
OOOC 0000
OOOE FF
OOOF 00
0010 4543484F56
0018 000000

OOlB 79
OOlC FEOC
OOlE CA2400
0021 C30900

bdos equ
prtstr equ
vers equ
cr equ
lf equ

org
mvi

loop: push
mvi
lxi
call
mvi
call

mov
sta
pop
dcr
jnz
mvi
jmp

call$msg:
db

curvers db
end

; ECHOVERS RSX

pstring equ
cr equ
lf equ

db
jmp

next: db
dw

prev: dw
remov: db
nonbnk: db

db
db

ftest:
mov
cpi
jz
jmp

begin:

5
9
12
Odh
Oah

100h
d,5
d
c,prtstr
d,call$msg
bdos
c,vers
bdos

a,l
curvers
d
d
loop
c,O
bdos

cr,lf,
0

9
Odh
Oah

'****

entry point for BOOS
print string function
get version function
carriage return
line feed

Perform 5 times
save counter

print call message

try to get version #
CALLVERS will intercep1

decrement counter

CALLVERS **** $'

string print function

RSX PREFIX STRUCTURE

0,0,0,0,0,0
ftest
Oc3H
0
0
Offh
0
'ECHOVERS'
0,0,0

a,c
12
begin
next

room for serial number
begin of program
jump
next module in line
previous module
remove flag set

is this function 12?

yes - intercept
some other function

All Information Presented Here is Proprietary to Digital Research

170

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

0024 210000
0027 39
0028 225400
002B 317600

002E OE09
0030 113EOO
0033 C00900

0036 2A5400
0039 F9

lxi
dad
shld
lxi

mvi
lxi
call

lhld
sphl

h,O
sp
ret$stack
sp,loc$stack

c,pstring
d,test$msg
next

ret$stack

save stack

print message
call BDOS

restore user stack

003A 213100 lxi h,0031h return version number
003D C9 ret

test$msg:
003E ODOA2A2A2A db cr,lf,'**** ECHOVERS **** $'

ret$stack:
0054 0000 dw
0056 ds

.loc$stack:
0076 end

o
32 ; 16 level stack

You can prepare the above programs for execution as follows:

1) Assemble the CALLVERS program using MAC as follows:

MAC CALLVERS

2) Generate a COM file for CALLVERS with HEXCOM.

HEXCOM CALLVERS

3) Assemble the RSX program ECHOVERS using RMAC:

RMAC ECHOVERS

4) Generate a PRL file using the LINK command:

LINK ECHOVERS [OP]

5) Rename the PRL file to an RSX file:

RENAME ECHOVERS.RSX=ECHOVERS.PRL

6) Generate a COM file with an attached RSX using the GENCOM
command:

GENCOM CALLVERS ECHOVERS

7) Run the CALLVERS.COM module:

CALLVERS

All Information Presented Here is Proprietary to Digital Research

171

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

The message

**** CALLVERS ****

followed by the message

**** ECHOVERS ****

appears on the screen five times if the RSX program works.

End of Section 4"

All Information Presented Here is Proprietary to Digital Research

172

System Control Block
Appendix A

The System Control Block (SCB) is a CP/M 3 data structure
loca ted in the BOOS. CP/M 3 uses this reg ion pr imar ily for
communication between the BOOS and the BIOS. However, it is also
available for communication between application programs, RSXs, and
the BOOS. Note that programs that access the System Control Block
are not version independent. They can run only on CP/M 3.

The following list describes the fields of the SCB that are
available for access by application programs and RSXs. The location
of each field is described as the offset from the start address of
the SCB (see BOOS Function 49). The RW/RO column indicates if the
SCB field is Read-Write or Read-Only.

Table

Offset I RW/RO

00 - 04 RO

05 RO

06 - 09 RW

OA - OF RO

10 - 11 RW

12 - 19 RO

A-I.

I
SCB Fields and Definitions

Definition

Reserved for system use.

BOOS Version Number.

Reserved for user use. Use these
four bytes for your own flags or
data.

Reserved for system use.

Program Error Return Code. This 2-
byte field can be used by a program
to pass an error code or value to a
chained program. CP/M 3's
cond i tional command facility also
uses this field to determine if a
program executes successfully. The
BOOS Function 108 (Get/Set Program
Return Code) is used to get/set this
value. .

Reserved for system use

All Information Presented Here is Proprietary to Digital Research

173

CP/M 3 Programmer's Guide A System Control Block

Table A-I. (continued)

Offset I RW/RO I
lA RW

lB RO

lC RW

lD - 21 RO

22 - 2B RW

Definition

Console Width. This byte contains
the number of columns, characters
per line, on your console relative
to zero. Most systems default this
value to 79. You can set this
default value by using the GENCPM or
the DEVICE utili ty. The console
width value is used by the banked
version of CP/M 3 in BDOS function
la, CP/M 3's console editing input
function. Note that typing a
character into the last position of
the screen, as' specified by the
Console Width field, must not cause
the terminal to advance to the next
line.

Console Column position. This byte
contains the current console column
position.

Console Page Length. This byte
contains the page length, lines per
page, of your console. Most systems
default this value to 24 lines per
page. This default value may be
changed by using the GENCPM or the
DEVICE utili ty (see the CP/M Plus
(CP/M Version 3) Operating System
User's Guide).

Reserved for system use.

Redirection flags for each of the
five logical character devices. If
your system's BIOS supports
assignment of logical devices to
physical devices, you can direct
each of the five logical character
devices to any combination of up to
12 phys ical devices. The l6-bi t
word for each device represents the
following:

Each bit represents a physical
device where bit 15 corresponds to
devi~e iero and bit 4 corre~ponds to
device 11. Bits zero through 3 are
reserved for system use.

All Information Presented Here is Proprietary to Digital Research

174

CP/M 3 Programmer's Guide A System Control Block

Offset I RW/RO I

22 - 23

24 - 25

26 - 27

28 - 29

2A - 2B

2C

20

2E

2F

30 - 32

RW

RW

RW

RW

RW

RW

RO

RW

RW

RO

Table A-I. (continued)

Definition

You can redirect the input and
output logical devices with the
DEVICE command (see CP/M Plus (CP/M
Version 3) Operating System User's
Guide) •

CONIN Redirection Flag.

CONOUT Redirection Flag.

AUXIN Redirection Flag.

AUXOUT Redirection Flag.

LSTOUT Redirection Flag.

Page Mode. If this byte is set to
zero, some CP/M 3 utilities and CCP
built-in commands display one page
of data at a time; you display the
next page by pressing any key. If
th is byte is not set to zero, the
system displays data on the screen
without stopping. To stop and start
the display, you can press CTRL-S
and CTRL-Q, respectively.

Reserved for system use.

Determines if CTRL-H is interpreted
as a rub/del character. If this
byte is set to 0, then CTRL-H is a
backspace character (moves back and
deletes) • If this byte is set to
OFFH, then CTRL-H is a rub/del
character, echoes the deleted
character.

Determines if rub/del is interpreted
as CTRL-H character. If this byte
is set to 0, then rub/del echoes the
deleted character. If this byte is
set to OFF, then rub/del is
interpreted as a CTRL-H character
(moves back and deletes).

Reserved for system use.

All Information Presented Here is Proprietary to Digital Research

175

CP/M 3 Programmer's Guide A System Control Block

Table A-I. (continued)

Offset I RW/RO I
33 - 34

35 - 36

37

3a

39 - 3B

3C - 3D

3E

3F - 43

44

45 - 49

RW

RO

RW

RW

RO

RO

RO

RO

RO

RO

Definition

Console Mode. Th is is a l6-bit
system parameter that determines the
action of certain BDOS Console I/O
functions. (See Section 2.2.1 and
BDOS Function 109, Get/Set Console
Mode, for a thorough explanation of
Console Mode.)

Reserved for system use.

Output delimiter character. The
default output delimiter character
is $, but you can change this value
by using the BDOS Function 110,
Get/Set Output Delimiter.

List Output Flag. If this byte is
set to 0, console output is not
echoed to the list device. If this
byte is set to 1 console output is
echoed to the list device.

Reserved for system use.

Current DMA Address. This address
can be set by BDOS function 26 (Set
DMA Address). The CCP initializes
this value to OOaOH. BDOS function
13, Reset Disk System, also sets the
DMA address to OOaOH.

Current Disk. This byte contains the
cur rently selected default disk
number. This value ranges from 0 -
15 corresponding to drives A - P,
respectively. BDOS function 25,
Return Current Disk, can be used to
determine the current disk value.

Reserved for system use.

Current User Number. This byte
con tains the current user number.
This value ranges from 0 - 15. BDOS
function 32, Set/Get User Code, can
change or interrogate the currently
active user number.

Reserved for system use.

All Information Presented Here is Proprietary to Digital Research

176

CP/M 3 Programmer's Guide A System Control Block

Table A-I. (continued)

Offset I RW/RO I
4A RW

4B RW

4C - 4F RW

50 RW

Definition

BDOS Multi-Sector Count. This field
is set by BOOS function 44, Set
Multi-sector Count.

BOOS Error Mode. This field is set
by BOOS function 45, Set BOOS Error
Mode.

If this byte is set to OFFH, the
system returns to the current
program without displaying any error
messages. If it is set to OFEH, the
system displays error messages
before returning to the cur rent
program. Otherwise, the system
terminates the program and displays
error messages. See description of
BOOS function 45, Set BOOS Error
Mode, for discussion of the
different error modes.

Drive Search Chain. The first byte
contains the drive number of the
first drive in the chain, the second
byte contains the dr ive number of
the second drive in the chain, and
so on, for up to four bytes. If
less than four dr i ves are to be
searched, the next byte is set to
OFFH to signal the end of the search
chain. The drive values range from
o - 16, where 0 corresponds to the
default drive, while 1 16
corresponds to drives A - P,
respectively. The dr ive search
chain can be displayed or set by
using the SETDEF utility (see CP/M
Plus (Version 3) Operating System
User's Guide).

Temporary File Drive. This byte
contains the drive number of the
temporary file drive. The drive
number ranges from 0 - 16, where 0
cor responds to the default drive,
while 1 - 16 corresponds to drives A
- P, respectively.

All Informa~ion Presented Here is Proprietary to Digital Research

177

CP/M 3 Programmer's Guide A System Control Block

Table A-I. (continued)

Offset J RW/RO I Definition

51 RO Error drive. This byte contains the
drive number of the selected drive
when the last physical or extended
error occurred ..

52 - 56 RO Reserved for system use.

57 RO BDOS Flags. Bit 7 applies to banked
systems only. If bit 7 is set, then
the system displays expanded error
messages. The second error line
displays the function number and FCB
information. (See Section 2.3.13).

58 - 59 RW

5A RW

5B RW

5C RW

5D - 5E RO

5F - 63 RO

Bi t 6 applies only to nonbanked
systems. If bit 6 is set, it
indicates that GENCPM has specified
single allocation vectors for the
system. Otherwise, double
allocation vectors have been defined
for the system. Function 98, Free
Blocks, returns temporarily
allocated blocks to free space only
if bit 6 is reset.

Date in days in binary since 1 Jan
78.

Hour in BCD (2-dig i t Binary Coded
Decimal).

Minutes in BCD.

Seconds in BCD.

Common Memory Base Address. This
value is zero for nonbanked systems
and nonzero for banked systems.

Reserved for system use.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

178

B.l PRL Format

Appendix B
PRL File Generation

A Page Relocatable Program has an origin offset of lOOH bytes
that is stored on disk as a file of type PRL. The format is shown
in Table B-1.

Address I
OOOl-0002H

0004-0005H

0006-00FFH

Table B-1. PRL File Format

Contents

Program size

Minimum buffer requirements (addi tional
memory)

Currently unused, reserved for future
allocation

OlOOH + Program size Start of bit map

The bit map is a string of bits identifying those bytes in the
source code that require relocation. There is one byte in the bit
map for every a bytes of source code. The most significant bit, bit
7, of the first byte of the bit map indicates whether or not the
first byte of the source code requires relocation. If the bit is
on, it indicates that relocation is required. The next bit, bit 6,
of the first byte corresponds to the second byte of the source code,
and so forth.

B.2 Generating a PRL

The preferred technique for generating a PRL file is to use the
CP/M LINK-aO ™ ,which can generate a PRL file from a REL
reloca table obj ect file. This technique is descr ibed in the
Programmer's Utili ties Guide for The CP/M Family of Operating
Systems. A sample link command is- shown.

A>link dump[op]

End of Appendix B

All Information Presented Here is Proprietary to Digital Research

179

CP/M 3 Programmer's Guide End of Appendix B

All Information Presented Here is Proprietary to Digital Research

180

Appendix C
SPR Generation

System Page Relocatable, SPR, files are similar in format to
PRL files except that SPR files have an origin offset of OOOOH (see
Appendix B). SPR Files are provided as part of the standard CP/M 3
System: the resident and banked portions of the banked BOOS, named
RESBOOS 3. SPR and BNKBOOS 3. SPR, and the nonbanked BOOS, named
BOOS 3 • SPR. The customized BIOS must also be generated in SPR format
before GENCPM can create a CP/M 3 system. The BIOS SPR file is
named BNKBIOS3.SPR for banked systems and BIOS3.SPR for nonbanked
systems. A detailed discussion of the generation of BIOS3.SPR or
BNKBIOS3.SPR is provided in the CP/M Plus (CP/M Version 3) Operating
System System Guide.

The method of generating an SPR is analogous to that of
generating a Page Relocatable Program (descr ibed in Appendix B) wi th
the following exceptions:

• If LINK-80 is used, the output file of type SPR is specified
with the [os] or [b] option. The [b] option is used when
linking BNKBIOS3.SPR •

• The code in the SPR is ORGed at OOOH rather than lOOH.

End of Appendix C

All Information Presented Here is Proprietary to Oigital Research

181

CP/M 3 Programmer's Guide End of Appendix C

All Information Presented Here is Proprietary to Digital Research

182

Appendix D
ASCII and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including
their binary, decimal, and hexadecimal conversions.

Symbol I
ACK
BEL
BS
CAN
CR
DC
DEL
DLE
EM
ENQ
EOT
ESC
ETB
ETX
FF

Table D-l. ASCII Symbols

Meaning

acknowledge
bell
backspace
cancel
carriage return
device control
delete
data link escape
end of medium
enquiry
end of transmission
escape
end of transmission
end of text
form feed

I Symbol I
FS
GS
HT
LF
NAK
NUL
RS
SI
SO
SOH
SP
STX
SUB
SYN
US
VT

Meaning

file separator
group separator
horizontal tabulation
line feed
negative acknowledge
null
record separator
shift in
shift out
start of heading
space
start of text
substitute
synchronous idle
unit separator
vertical tabulation

All Information Presented Here is Proprietary to Digital Research

183

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table 0-2. ASCII Conversion Table

Binary l ·Decima1 I Hexadecimal I ASCII

0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-G)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTR~~I)
0001010 010 OA LF (CTRL-J)
0001011 011 DB VT (CTRL-K)
0001100 012 DC FF (CTRL-L)
0001101 013 OD CR (CTRL-M)
0001110 014 DE SO (CTRL-N)
0001111 015 OF SI (CTRL-O)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DC1 (CTRL-Q)
0010010 018 12 DC2 {CTRL-R}
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN {CTRL-X}
0011001 025 19 EM (CTRL-Y)
0011010 026 lA SUB (CTRL-Z)
0011011 027 1B ESC (CTRL- [)
0011100 028 lC FS (CTRL-\)
0011101 029 1D GS (CTRL-])
0011110 030 IE RS (CTRL-")
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
0100001 033 21 !
0100010 034 22 "
0100011 035 23 #
0100100 036 24 $
0100101 037 25 %
0100110 038 26 &
0100111 039 27 ,
0101000 040 28 (
0101001 041 29)
0101010 042 2A *
0101011 043 2B +
0101100 044 2C ,
0101101 045 20 -
0101110 046 2E .
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2

All Information Presented Here is Proprietary to Digital Research

184

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (con~inued)

Binary I Decimal I Hexadecimal I ASCII

0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B ;
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 W
1011000 088 58 X
1011001 089 59 y
1011010 090 SA z
1011011 091 5B [
1011100 092 5C \
1011101 093 5D]
1011110 094 5E "-

1011111 095 SF <
1100000 096 60 ,
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d

All Information Presented Here is Proprietary to Digital Research

185

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (continued)

Binary I Decimal I Hexadecimal I ASCII

1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 III 6F 0

1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 Y
1111010 122 7A z
1111011 123 7B I 1111100 124 7C
1111101 125 7D
1111110 126 7E
1111111 127 7F DEL

End of Appendix D

All Information Presented Here is Proprietary to Digital Research

186

Appendix E
BDOS Function Summary

Table E-1. BOOS Function Summary

FUNC FUNCTION NAME I INPUT PARAMETERS I RETURNED VALUES

o
I
2
3
4
5
6

7

8

9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

System Reset
Console Input
Console Output
Auxiliary Input
Auxiliary Output
List Output
Direct Console I/O

Auxiliary Input
Status
Auxiliary Output
Status
Print String
Read Console Buffer

Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr(Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(DPB)
Set/Get User Code

Read Random
Write Random
Compute File Size

none
none
E = char
none
E = char
E = char
E = OFFH/

none

none

OFEH/
OFDH/
char

DE = .String
DE = .Buffer/

OFFFFH
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB

.DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
none
DE = .FCB
none
E = OFFH/

user number
DE = .FCB
DE = .FCB
DE = .FeB

Note: • indicates the address of

none
A = char
A = OOH
A = char
A = OOH
A = OOH
A = char/status/

none

A = OO/OFFH

A = OO/OFFH

A - OOH
Characters in buffer

A = 00/01
HL= Version (0031H)
A = ~OH
A = Err Flag
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vector
A = Cur Disk#
A = OOH
HL= .Alloc
A = OOH
HL= R/O Vector
A = Dir Code
HL= .DPB
A = Curr User/

OOH
A = Err Code
A = Err Code
rO, rl, r2
A = Err Flag

All Information Presented Here is Proprietary to Digital Research

187

CP/M 3 Programmer's Guide E BDOS Function Summary

Table E-l. (continued)

FUNC FUNCTION NAME I INPUT PARAMETERS I RETURNED VALUES

36
37
40

41
42
43
44
45
46

47
48
49

50
59
60

98
99
100
101

102

103
104
105

106
107

108

109
110

III
112
152

Set Random Record DE .FCB rO, rl, r2
Reset Drive DE Drive Vector A OOH
Write Random with DE .FCB A Err Code
Zero Fill
Test and Write Record DE .FCB

.FCB

.FCB
Lock Record DE
Unlock Record DE
Set Multi-sector Cnt E
Set BDOS Error Mode E
Get Disk Free Space E

Sectors
BDOS Err Mode
Drive number

Chain to Program E Chain Flag
Purge Flag

.SCB PB
Flush Buffers E
Get/Set System DE
Control Block
Direct Bios Calls DE .BIOS PB

.FCB

.RSX PB
Load Overlay DE
Call Resident System DS
Extension
Free Blqcks
Truncate File
Set Directory Label
Return Directory
Label Data
Read File Date Stamps
and Password Mode
Write File XFCB
Set Date and Time
Get Date and Time

Set Default Password
Return Serial Number

Get/Set Program
Return Code
Get/Set Console Mode
Get/Set Output
Delimiter
Print Block
List Block
Parse Filename

none
DE = .FCB
DE = .FCB
E = Drive

DE .FCB

DE .FCB
DE .DAT
DE .DAT

DE =.Password
DE .Serial#

field
DE OFFFFH/Code

DE OFFFFH/Mode
DE OFFFFH/

E Delimiter
DE .CCB
DE .CCB
DE .PFCB

A OFFH
A OOH
A OOH
A Return Code
A ~OH

Number of Free Sectors
A Err Flag
A OOH
A Err Flag
A Returned Byte
HL = Returned Word
BIOS Return
A Err Code
A Err Code

A OOH
A Dir Code
A Dir Code
A Dir label data byte

A Dir Code

A Dir Code
A OOH
Date and Time
A = seconds
A - OOH
Serial Number

HL = Program Ret Code/
none

HL = Console Mode/none
A Output Delimiter/

none
A OOH
A ~OH
See definition

Note: • indicates the address of

End of Appendix E

All Information Presented Here is Proprietary to Digital Research

188

A

absolute module, 124
Access date and time

stamp, 78
Access Drive

MP/M, 110
access stamp types, 46
address

maximum, 4
allocation vector, 95, 126
allocation

file space, 12
ambiguous file reference,

12, 39, 80
Archive Attribute, 40
ASM , 36
assign password, 41, 42
associated command files, 16
asterisk, 12, 35
attach RSX, 8
Attributes

bits, 40
Set File, 45

automatic submit option,
17, 18

Auxiliary Input, 32, 62
Output, 63

B

backspace, 60
BAK, 36
Bank 0, 2
Bank 1, 3
bank switching, 3
bank-switched memory, 1, 2
BAS, 36
base extent, 102, 104
basic console I/O, 29
Basic Disk Operating

System BOOS, 5
Basic Input/Output

System BOOS, 5
basic record size, 32
BOOS, 5, 6, 7, 10, 13
BOOS Call Resident

System Extension, 21
Calling Conventions, 27
Chain to Program, 20

Index

189

Directory Codes, 53
entry point, 13, 55
Er ror Codes, 52
Error Flag, 54
Error Mode, 50
extended error codes, 54
file system, 32, 36
function entry

parameters, 7
func tional" 30
functions, 21
physical error codes, 54
Program Chain, 42
Read Console Buffer, 14
set directory label, 22
Set User, 41
size, 10
System Reset, 27
warm start entry point,

13, 19, 55
BDOS base, 7, 8, la, 13
BIOS~ 5, 6, la, 13, 51
Cold Boot entry point, 13
Cold Start function
DEVTBL, 28
entry points, 20
Parameter Block, 123
BDOS function, 7, 20, 49
BOOS Function calls:

ACCESS DRIVE, 110
AUXILIARY INPUT, 62
AUXILIARY INPUT STATUS, 66
AUXILIARY OUTPUT, 63, 67
CALL RESIDENT SYSTEM

EXTENSION, 125
CHAIN TO PROGRAM, 119
CLOSE FILE, 79
COMPUTE: FILE 'SIZE, 106
CONSOLE INPUT, 60
CONSOLE OUTPUT, 61
DELETE FILE, 83
DIRECT aIOS CALLS, 123
DIRECT CONSOLE I/O, 65
FLUSH BUFFERS, 120
FREE BLOCKS, 126
FREE 'DRIVE, III
GET ADDR (ALLOC),' 95
GET ADDR(DPB PARMS) , 100
GET/SET CONSOLE MODE, 139
GET CONSOLE STATUS, 73
GET DATE AND TIME, 135
GET DISK FREE SPACE, 118

GET READ-ONLY VECTOR, 97
GET/SET PROGRAM RETURN

CODE, 138
GET/SET OUTPUT DELIMITER, 141
GET / SET SYSTEM CONTROL

BLOCK, 121
LIST BLOCK, 143
LOCK RECORD, 114
LIST OUTPUT, 64
LOAD OVERLAY, 124
MAKE FILE, 89
OPEN FILE, 77
PARSE FILENAME, 144
PRINT BLOCK, 142
READ CONSOLE BUFFER, 68
READ FILE DATE STAMPS

AND PASSWORD MODE, 132
READ RANDOM, 102
READ SEQUENTIAL, 85
RENAME FILE, 91
RESET DISK SYSTEM, 75
RESET DRIVE, 109
RETURN CURRENT DISK, 93
RETURN DIRECTORY LABEL

DATA, 131
RETURN LOGIN VECTOR, 92
RETURN SERIAL NUMBER, 137
RETURN VERSION NUMBER, 74
SEARCH FOR FIRST, 80
SEARCH FOR NEXT, 82
SELECT DISK, 76
SET BDOS ERROR MODE, 117
SET DATE AND TIME, 134
SET DEFAULT PASSWORD, 136
SET DIRECTORY LABEL, 129
SET DMA ADDRESS, 94
SET FILE ATTRIBUTES, 98
SET/GET USER CODE, 101
SET MULTI-SECTOR COUNT, 116
SET RANDOM RECORD, 108
SYSTEM RESET, 59
TEST AND WRITE RECORD, 113
TRUNCATE FILE, 127
UNLOCK RECORD, 115
WRITE FILE XFCB, 133
WRITE PROTECT DISK, 96
WRITE RANDOM, 104
WRITE RANDOM WITH

ZERO FILL, 112
WRITE SEQUENTIAL, 87

BIOS-resident, 100
bit map, 179
bit vector, 97
block size, 36

190

blocking
record, 116

buffers, 2 ,
built-in commands, 15,

16 ~ 17
Byte coun t's, 49

C

Call BIOS, 20
call RSX, 125
carriage return, 37, 60
CCB format, 142
CCP, 5, 6, 7, 10, 13,

14, 15, 24, 42
chain flag, 119
Chain to Program, 20, 119
change default drive, 15
Character Control Block

CCB, 142,143
character echo, 29
check-sum vector, 49
Close File, 41, 79
Cold Boot Loader, 13
cold start, 10, 12, 14
COM, 36
COM filetype, 17
command drive field, 57
command keyword, 15
command line, 15, 57, 58
Command Line Interpreter, 116
command tail, 15
common memory, 2
common memory base address, 122
common region size, 4
compatibility, 20, 24
Compute File Size, 49, 106
conditional command, 20
CONIN, 6, 29
CONIN:, 60, 65
CONOUT, 29
CONOUT:, 61, 142
console characteristics, 24
console column position, 122
Console Command Processor, 12
console input, 23, 29, 60, 65

mode, 122
Console mode default state, 60
Console output, 29, 61, 65
console page length, 122
Console status; 29, 65
console width, 122

string output, 29
context, 2
control character A, 30

copy file, II, 149
CP/M, I, 2
CP/M 2, 27
CP/M version 2, 24
CPM3.SYS file, 13
CPMLDR, 13, 14
CPMLDR BDOS, 13
CPMLDR-BIOS, 13
create-directory entry, 89
create directory label, 129
create stamp types, 46
create XFCB, 89
Creation date and time

stamp, 90
CTRL-A, 71
CTRL-B, 71
CTRL-C, 70
CTRL-E, 70
CTRL-F, 71
CTRL-G, 29, 68, 71
CTRL-H, 70
CTRL-I, 60
CTRL-J, 70
CTRL-K, 71
CTRL-M, 68, 70, 71

return, 70
CTRL-P, 70
CTRL-Q, 29, 30, 31, 60
CTRL-R, 70
CTRL-S, 29, 30, 31, 60
CTRL-U, 70
CTRL-W, 72
CTRL-X, 70
CTRL-Z, 29, 37
current record, 39, 56
current user number, 24

D

Data, 36
area, II, 36
block size, 36
space, 12
tracks, 11

data byte
directory 1ab~l, 129, 131

date, 24, 122, 129,
Date and Time, 132, 134
DATE utility, 47
default disk, 14, 76
default DMA buffer, 56
default drive, 15
Default Error Mode, 117
default FCB, 57
default output delimiter, 141

191

Default Password, 136
delete file, 41, 45, 83
Delete XFCBS, 41
delimiters, 15
Delimiter output, 141
DEVICE utility, 28
differences: banked

and nonbanked, 1
DIR, 16
DIR.COM utility, 16
Direcatory Code, 53
direct BIOS calls , 20
Direct Console I/O, 65
Direct Memory Address, 94
directory area, 11
directory check-sum vector, 49
Directory Code, 52, 53
directory entries, 39
directory functions, 32
directory hash tables, 2, 3
directory hashing, 49
Directory Label, 42, 43,

46,80,129,131
directory label data byte,

129, 131
Directory Label password, 43
directory label

create, 129
update, 129

directory space, 12
DIRLBL.RSX, 22, 44, 129
DIRSYS, 16
disk acceRS, 11
disk change, 49
disk directory area, 36
Disk Drive Organization, 11
disk formatting program, 20
Disk I/O error, 51
Disk organization, 36
Disk Parameter Block, 100
disk record buffers, 2, 3
Disk Reset Function, 49
disk space, 12
Disk

current, 122
disk

select, 51
DMA

address, 122
buffer
default address, 57

DPB
address, 100
Disk Parameter Block, 100

drive A, 13

drive allocation vector, 49
drive capacity, 36
drive chain, 17, 18
drive code, 39
drive functions, 33
drive reset, 49
drive search chain, 122
drive select code, 34
drive specification, 15
drive support, 10
drives

Read-Only, 97
Dump file, 152
dynamic allocation, 12

E

edit control characters, 70
empty directory entry, 39
end-of-file, 29
ERASE, 16
error codes, 52, 79
Error Flag, 52, 53, 54
Error Handling, 50
error messages, 51
error mode, 122
Error mode

default, 50, 117
return, 50, 117
return and display, 50
return code, 122
Set, 117

error
? in Filename , 51
F.ile Exists, 51
Invalid Drive, 51
Read-Only, 51

expanded error message, 50
extend operating system

functions, 7, 21
extended error codes, 54, 78
extended errors, 50, 51
extended FCB, 42
extent 0, 102, 104
extent field format, 133
extent number, 39

F

FCB, 77
FCB format, 41, 146
FCB length, 37, 41

default, 57
parsed, 18
random record field, 108

192

file
access, 32
a ttr ibu tes, 40
byte count, 49
byte count, 98
Control Block, 41

File Control Block FCB, 37
Control Block
default, 56
directory elements, 39
Dump, 152
Exists error, 51
format, 37
identification, 11
naming conventions, 35
organization, 36
Password error, 51
passwords, 45
size, 106
space allocation, 12
specification, 34
type field, 34, 35

filename, 11, 1?, 15, 34, 39
Filename

parse, 144
filespec, 15
filetype, 11, 15, 39
Flush Buffers, 47, 53, 120
Free Blocks, 53
Free Drive

MP/M, III
Free Space

Disk, 118
function calls, 5
functional

BDOS, 30
GENCOM, 8, 21, 31
GENCPM, 2, 14
generic fi1etypes, 36
Get ADDR (Alloc), 54, 95
Get Addr (Disk Parms), 54, 100
Get Console Mode, 139
Get Console Status, 73
Get Date and Time, 135
Get Disk Free Space, 53, 118
Get Output Delimiter, 141
Get Program Return Code, 138
Get Read-Only vector, 97
GET RSX, 31
Get User Code, 101
GET utility, 21, 23
GET.COM, 21, 23
GET.RSX, 21
Get/Set Console Mode, 30, 140

Get/Set Output Delimiter,
30, 141

Get/Set Program Return Code,
20, 139

Get/Set User Code, 101
graphic characters, 60

H

hard disks, 11
hash tables, 2, 49
HEX, 36
highest memory address, 55

I

INITDIR utility, 46, 129
initializing an FeB, 39
input buffer format, 68
INT, 36
Intel PL/M systems programming

language, 27
interface attributes, 40, 41, 77
internal date and time, 134
Invalid Drive error, 51

K

key fields, 108

L

line editing, 30
line feed, 37, 60
Link-80, 179
List Block, 143
list device, 29, 60
list output, 64, 122
Load Overlay, 8, 21
load RSX, 8, 21
LOADER,S, 8, 10, 18, 21
LOADER module, 21, 124, 168
LOADER size, 10
LOADER base, 8, 10
Lock Record, 114
logged-in state, 49
logging-in the drive, 49
logical AUXIN, 28
logical AUXOUT, 28
logical CONIN, 28
logical CONOUT, 28
logicql device names, 28
logical drive, 10. 36
logical LST, 28
Logical Memory Organization, 4

193

logical record size, 47
LST, 29, 32
LST:, 60, 64, 143

M

Make File, 41, 89
Make File function, 40
Make Write File XFCB, 42
maximum filesize, 11, 36
maximum memory, 1
maximum memory address, 9
maximum record count, 106
maximum TPA address, 19
media change, 49
memory map, 13
memory maximum, 1
memory organization, 1
Memory Region Boundaries, 8
memory regions, 8
miscellaneous functions, 33
modify file attribute

byte coun t, 98
modify operating system
functions, 7, 21
modules of operating system, 4
MP /M , 17, 24 , 27, 7 4
multi-sector count, 48,

85, 122
multi-sector I/O, 48
multiple file reference, 12

N

next record, 108
nonbanked Memory

Organization, 1
nonbanked systems, 1
null byte, 119
null command file, 21

o

open file, 45
operating system modules, 4
output delimiter, 122. 141
overlay, 124

p

page, 9
alignment, 9
boundaries, 9
mode, 122
Relocatable, 17

Relocatable files, 22
Relocatable Program, 179
Zero,S, 6, 13, 18, 20,

22, 24, 55
Zero fields, 18, 58

Parameter Block
BIOS, 123
RSX, 125
SCB, 121

Parse Filename, 34
Parse Filename Control Block

PFCB, 144
parse procedure, 17
par sed FCB, 18
Partial close, 41, 79
password, 1, 12, 15, 18, 44
password address, 55, 56
password field, 34, "58
password length, 55, 56
password mode, 132
Password Protection Modes, 44
password support, 1
password

assign, 42
default, 45, 136

permanent close, 79
physical drive, 10
physical error, 50, 53
physical error codes,

54, 76, 78, 81
physical file size, 106
physical record size, 47
PIP command, 11
PIP utility, 40
PL/M, 27
PLI, 36
Print Block, 142
Print String, 31, 68
printer echo, 29, 31, 60
PRL, 36, 124
PRL file, 17, 22
PRL File Format, 179
PRL filetype, 17
PRN, 36
PROFILE submit file, 14
PROFILE.SUB, 14
Program chain, 20, 119
Program Return Code, 20
PUNCH, 32
Purge flag, 120

o
question mark, 12, 35

194

R

Random Access, 156
random file, 37
random record field

FCB, 108
random record number, 37, 39
random record position, 56
Read Buffer Input, 30
read character, 60
Read Console Buffer, 69
read edited console input, 68
read next record, 85
Read random, 52, 102
Read Sequential, 52, 85
Read-Only, 96
Read-Only attribute, 40
Read-Only Disk error, 51
Read-Only drives, 97
Read-Only File error, 51
READER, 32
record, 37
record blocking, 47, 116
record count, 39
record deblocking, 47
record size, 32
Record

Lock, MP/M, 114
Unlock, MP/M, 115

redirected input, 24
region boundaries, 8
register A, 52
REL, 36
re locatable module, 124
remove file, 45
Remove flag

RSX, 23
remove RSX, 22
RENAME, 16
Rename File, 91
reset disk system, 19, 79
reset drive, 49, 109
resident operating system

module, 2
resident portion, 2
Resident System Extension,

5, 7, 8, 12, 21, 167
Return and Display Error

Mode, 117
Return Code

Program, 138
return codes, 52
Return Curr.ent Disk, 93
Return Directory Label, 44

Return Directory Label Data,
53, 131

Return Error Mode, 117
Return Login Vector, 92
return modes, 117
Return Serial Number, 137
Return Version Number, 74
RSX, 5,7,8, 10, 19,

20, 21, 24
active, 8
File Format, 22
flags, 22
header, 8, 19, 22, 124
Parameter Block, 125
prefix, 168
programs, 167
removal, 22

rub/del
remove last character, 70

s

seB, 24
SCB parameter block, 121
scroll output, 29

support, 31
Search For First, 80
Search For Next, 80, 82
sectors, 118
select disk, 51, 53, 76
sequential file, 37
sequential I/O processing, 48
serial device I/O, 28
Serial Number, 137
SET BOOS Error Mode, 117
Set Console Mode, 139
Set Date and Time, 134
Set Default Password, 45, 136
Set Directory Label, 22, 43,

45, 129
SET DMA Address, 94
Set Error Mode, 50
Set File Attributes, 40, 41,

45, 49, 98
set file byte count, 41
Set multi-sector count,

48, 116
Set Output Delimiter, 141
Set P~ogram Return Code, 138
Set Random Record, 108
Set User Code, 101
SETDEF utility, 17, 18, 23
SFCB, 45, 129
sign-on message, 13

195

size
BDOS, 10
common region, 4
compute File BOOS, 106
LOADER, 10
record, .32
transient program, 10

Source files, 37
space

Disk, 118
Sparse files, 37
SPR, 36
Standard Delete, 83
standard search, 80
start scroll, 60
stop scroll, 60
SUB fi1etype, 17
SUBMIT, 17
submit command line, 23
submit file, 14, 16, 17, 23
SUBMIT RSX, 24
SUB~LT utility, 12, 23
SYM, 36
SYS, 36
System

T

Attribute, 40
cold start, 10, 11, 12
communication, 6
componen ts, 4
Control Block, 121
date and time, 46
genera tion, 13
In terac tion, 6
modules, 4
Operation, 12
prompt, 12, 14, 24
regions, 4
reset, 20, 59
tracks, 11, 13
warm start, 10, 11, 14

tab characters, 60
tab expansion, 29, 31
temporarily-allocated

data block, 126
temporary drive, 122
temporary file drive, 23
temporary submit file, 23
terminate execution, 20
terminate program execution,

7, 20
Test and Write Record, 113
TEX, 36

time, 24'
Time and Date, 134
TPA, 5, 8, 10, 14, 18,19
transient program, 5, 10, 12,

16, 19
Truncate File, 45
TYPE, 16
types of file stamps, 46

U

Unlock Record
MP/M, 115

update date and time stamp,
89, 104

update directory label, 129
update stamp types, 46
USER, 16
User 0, 41, 42
User 0 file access, 42
user command, 11
user directories, 41
user number, 14, 18, 24,

41, 42, 101
User number conventions, 41
user numbers, 11
version number, 122
virtual file size, 106

w

warm start, 10, 14, 19,
20, 22, 59

wildcard characters, 12
write data record, 87
write File XFCB, 45
Write Protect Disk, 96
Write Random function, 52, 104
Write Random with Zero Fill,

52, 112
Write Sequential, 52, 87
write-pending records, 120

x

'XFCB , 41 , 42 , 45, 83

z

Zero Fill
write Random, 112

$$$, 36
$$$ filetype, 23
? in Filename error, 51

196

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ___________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

-~-------.......---...".------~~~~~~-~~~--~-..-~-~----~~~----- - -- - --. ------ ---- - - ---.--- -~~

Attn" D .. hli,..~tinn Drnrt"I'tinn

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO.182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ID DIGITAL RESEARCHTU
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

