
CP/M PIUS™
(CP/M® Version 3)
Operating System

CP/M PIUS™
(CP/M~ Version 3)
Operating System

System Guide

Copyright © 1982

Digital Research
P.o. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright© 1982 by Digital Research. All rights
reserved. No par t of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Dig i tal Research makes no representa tions or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/M Plus, DDT, LINK-80, RMAC, and SID are
trademarks of Digital Research. Altos is a
registered trademark of Altos Corporation. IBM is a
tradename of International Business Machines. Intel
is a registered trademark of Intel Corporation.
MicroSoft is a registered trademark of Microsoft
Corporation. Zilog and Z80 are registered
trademarks of Zilog Inc.

The CP/M 3 Operating System System Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

* First Edition: January 1983 *

Foreword

CP/M® 3, also marketed as CP/M Plus™ , is a single-console
operating system for 8-bit machines that use an Intel® 8080, 8085,
or ZilogQ!) Z80® cpu. CP/M 3 is upward-compatible with its
predecessor, CP/M 2, and offers more features and higher performance
than CP/M 2. This manual descr ibes the steps necessary to create or
modify a CP/M 3 Basic Input Output System (BIOS) tailored for a
specific hardware environment.

The CP/M Plus (CP/M Version 3) Operating System System
Guide assumes you are familiar with systems programming in 8080
assembly language and that you have access to a CP/M 2 system. It
also assumes you understand the target hardware and that you have
functioning disk I/O drivers. You should be familiar with the
accompanying CP/M Plus (CP/M Version 3) Operating System User's
Guide descr ibing the operating system utili ties. You should also be
familiar with the CP/M Plus (CP/M Version 3) Operating System
Programmer's Guide, which describes the system calls used by the
appl~cations programmer to interface with the operating system. The
Programmer's Utilities Guide for the CP/M Family of Operating
Systems documents the assembling and debugging utilities.

Section 1 of this manual is an overview of the component
modules of the CP/M 3 operating system. Section 2 provides an
overview of the functions and data structures necessary to write an
interface module between CP/M 3 and specific hardware. Section 3
contains a detailed descr iption of these functions and data
structures, followed by instructions to assemble and link the
distributed modules with your customized modules. Section 4
describes the modular organization of the sample CP/M 3 BIOS on your
distribution diskette. Section 5 documents the procedure to
generate and boot your CP/M 3 system.. Section 6 is a sample
debugging session. .

The appendixes contain tables, and sample BIOS modules you can
use, or study and modify. Appendix A discusses removable media
drives. Appendix B discusses automatic density support. Appendix C
describes how CP/M 3 differs from CP/M 2. Appendix D shows the
format of the CPM3.SYS file.

Appendixes E through H are listings of the assembled source
code for the four hardware-independent modules of the sample BIOS.
Appendix E is the kernel module to use when creating a modular BIOS
in the form of the distributed sample. Appendix F shows the System
Control Block. Appendix G is a table of equates for the baud rate
and mode byte for character I/O. Appendix H contains the macro
definitions you can use to generate some of the CP/M 3 disk data
structures. Appendix I lists the assembled source code for the six
BIOS modules that depend on the Altos 8000-15 Computer System
hardware. It also contains a sample Submit file to build a BIOS.

iii

Appendixes J and K are tabular summaries of the public entry
points and data items in the modules of the sample BIOS. Finally,
Appendix L is a tabular summary of the thirty-three functions of the
CP/M 3 BIOS, complete with entry parameters and returned values.

iv

Table of Contents

1 CP/M 3 Operating System Overview 1

1.1 Introduction to CP/M 3 .• 1

1.2 CP/M 3 System Components • 2

1.3 Communication Between Modules. 2

1.4 Banked and Nonbanked Systems • 4

1.5 Memory Requirements. 7

1.6 Disk Organization ••• 10

1.7.1 Hardware Supported by CP/M 3 Banked System 11
1.7.2 Hardware Supported by CP/M 3 Nonbanked System 11

1.8 Customizing CP/M 3

1.9 Initial Load (Cold Boot) of CP/M 3 •

2 CP/M 3 BIOS Overview

2.1 Organization of the BIOS.

2.2 System Control Block.

2.3 System Initialization.

2.4 Character I/O.

2.5 Disk I/O •••

2.6 Memory Selects and Moves •

2.7 Clock Support

3 CP/M 3 BIOS Functional Specification

3.1 The System Control Block ••••

3.2 Character I/O Data Structures.

3.3 BIOS Disk Data Structures •••

3.3.1
3.3.2

The Drive Table ••••
Disk Parameter Header •

v

11

12

15

15

17

18

19

20

24

24

27

27

32

34

36
36

3.3.3
3.3.4
3.3.5

Table of Contents
(continued)

Disk Parameter Block. • • • • • • •
Buffer Control Block. • • • • • •
Data Structure Macro Definitions.

3.4 BIOS Subroutine Entry Points •••••

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

System Initialization Functions •
Character I/O Functions • • • • • • • • •
Disk I/O Functions ••••••••
Memory Select and Move Functions ••
Clock Support Function. • •••

3.5 Banking Considerations

3.6 Assembling and Linking Your BIOS •

4 The Modules of the CP/M 3 Sample BIOS Modules .

4.1 Functional Summary of BIOS Modules.

4.2 Conventions Used in BIOS Modules.

4.3 Interactions of Modules

4.3.1
4.3.2
4.3.3

Initial Boot •••••
Character I/O Operation • • • • • • • • • • •
Disk I/O Operation • • • • • • • •

4.4 Predefined Variables and Subroutines •

4.5 BOOT Module

4.6 Character I/O

4.7 Disk I/O ••••

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6

Disk I/O Structure •••
Drive Table Module (DRVTBL)
Extended Disk Parameter Headers
Subroutine Entry Points • • • •
Error Handling and Recovery • •
Multiple Section I/O

4.8 MOVE Module

4.9 Linking Modules into the BIOS

vi

(XDPHs)

40
44
46

49

51
54
58
64
67

67

69

71

71

73

73

73
74
74

75

77

78

81

81
81
82
83
84
85

85

86

5 System Generation

5.1 GENCPM utility

5.2 Customizing the

5.3 CPMLDR . . .
5.4 Booting CP/M 3

6 Debugging the BIOS

Table of Contents
(continued)

. .

CPMLDR .
.

.

vii

87

87

98

. 100

. 101

103

Appendixes

A Removable Media Considerations

B Auto-Density Support

C Modifying a CP/M 2 BIOS

D CPM3.SYS File Format

E Root Module of Relocatable BIOS for CP/M 3

F System Control Block Definition for CP/M 3 BIOS

G Equates for Mode Byte Fields: MODEBAUD.LIB ••

107

109

III

115

117

129

131

H Macro Definitions for CP/M 3 BIOS Data Structures: CPM3.L 133

I ACS 8000-15 BIOS Modules · · · · . . · · · 137

1.1 Boot Loader Module for CP/M 3 · · · 137

1.2 Character I/O Handler 140

1.3 Drive Table · 144

1.4 Z80 DMA Single-density Disk Handler 144

1.5 Bank & Move Module for Linked BIOS · · · . . 152

1.6 I/O Port Addresses . · · . . · · · 153

1.7 Sample Submit File . . · · · 155

J Public Entry Points for CP/M 3 Sample BIOS Modules 157

K Public Data Items in CP/M 3 Sample BIOS Modules · · 159

L CP/M 3 BIOS Function Summary 161

viii

Tables

1-1.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.

5-1.

C-1.

D-1.
D-2.

K-1.

L-1.

Tables, Figures, and Listings

CP/M 3 Operating System Memory Requirements.

CP/M 3 BIOS Jump Vector ••••••••
CP/M 3 BIOS Functions •••••••••
Initialization of Page Zero ••••••••
CP/M 3 Logical Device Characteristics.
BDOS Calls to BIOS in Nonbanked/Banked Systems •
Multiple Sector I/O in Nonbanked/Banked Systems.
Reading Two Contiguous Sectors in Banked System.

System Control Block Fields. • • •••
Disk Parameter Header Fields • • • • • •
Disk Parameter Block Fields. • • • • • • • • • •
BSH and BLM Values • • • • • • •••••••
Maximum EXM Values • • • • • • • • •
BLS and Number of Directory Entries •••••••
PSH and PHM Values • . • • • • • • • • • • •
Buffer Control Block Fields. • • • • •••
Functional Organization of BIOS Entry Points
CP/M 3 BIOS Function Jump Table Summary.
I/O Redirection Bit Vectors in SCB •

CP/M 3 BIOS Module Function Summary ••••
Public Symbols in CP/M 3 BIOS ••••••
Global Variables in BIOSKRNL.ASM ••••••
Public Utility Subroutines in BIOSKRNL.ASM •
Public Names in the BIOS Jump Vector • • • • • •
BOOT Module Entry Points • • • ••••
Mode Bits •••••••••••
Baud Rates for Serial Devices.
Character Device Labels ••
Fields of Each XDPH. • ••
Subroutine Entry Points ••
Move Module Entry Points •

Sample CP/M 3 System Track Organization ••

CP/M 3 BIOS Functions •••

CPM3.SYS File Format .••
Header Record Definition •

Public Data Items.

BIOS Function Jump Table Summary

ix

7

16
17
18
19
21
22
23

29
37
40
42
42-
43
44
45
49
50
54

72
75
76
76
77
78
79
79
80
83
84
86

'99

III

115
115

159

161

Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.

2-1.

3-1.
3-2.
3-3.
3-4.
3-5.

4-1.

Listings

3-1.
3-2.
3-3.

Tables, Figures, and Listings
(continued)

General Memory Organization of CP/M 3. • • • • •
Memory Organization for Banked CP/M 3 System • •
Memory Organization with Bank 1 Enabled •••••
Memory Organization in Nonbanked CP/M 3 System •
Memory Organization in Banked CP/M 3 • •
Memory Organization in Nonbanked CP/M 3.
CP/M 3 System Disk Organization.

CP/M 3 System Tracks • • • • • • •

Disk Data Structures in a Banked System.
Disk Parameter Header Format
Disk Parameter Block Format.
ALO and ALI. • • • • •
Buffer Control Block Format.

XDPH Format. •

The SCB.ASM File ••••••••
Sample Character Device Table. •
Equates for ModeByte Bit Fields.

4
5
6
7
8
9

10

19

35
36
40
43
44

82

28
33
34

E-l. Root Module of Relocatable BIOS for CP/M 3 • 117

F-l. System Control Block Definition for CP/M 3 BIOS. 129

G-1. Equates for Mode Byte Fields: MODEBAUD.LIB. 131

H-1. Macro Definitions ••••••• 133

I-I. Boot Loader Module for CP/M 3. • • • • • 137
1-2. Character I/O Handler for Z80 Chip-based System. 140
1-3. Drive Table. • • • • • • • • • • • • • • 144
1-4. Z80 DMA Single-density Disk Handler. • • 144
1-5. Bank & Move Module for CP/M 3 Linked BIOS. • 152
I-6. I/O Port Addresses for Z80 Chip-based System.. 153
1-7. Sample Submit File for ACS 8000-15 System. 155

J-1. Public Entry Points •• 157

x

Section 1
CP/M 3 Operating System Overview

This section is an overview of the CP/M 3 operating system,
with a description of the system components and how they relate to
each other. The section includes a discussion of memory
configurations and supported hardware. The last portion summar izes
the creation of a customized version of the CP/M 3 Basic Input
Output System (BIOS).

1.1 Introduction to CP/M 3

CP/M 3 provides an environment for program development and
execution on computer systems that use the Intel 8080, 8085, or Z80
microprocessor chip. CP/M 3 provides rapid access to data'and
programs through a file structure that supports dynamic allocation
of space for sequential and random access files.

CP/M 3 supports a maximum of sixteen logical floppy or hard
disks with a storage capacity of up to 512 megabytes each. The
maximum file size supported is 32 megabytes. You can configure the
number of directory entries and block size to satisfy various user
needs.

CP/M 3 is supplied in two versions. One version supports
nonbank-switched memory; the second version supports hardware with
bank-swi tched memory capabilities. CP/M 3 supplies addi tional
facilities for the bank-switched system, including extended command
line editing, password protection of files, and extended error
messages.

The nonbanked system requires 8.5 kilobytes of memory, plus
space for your customized BIOS. It can execute in a minimum of 32
kilobytes of memory.

The bank-swi tched system requires a minimum of two memory banks
with 11 kilobytes of memory in Bank 0 and 1.5 kilobytes in common
memory, plus space for your customized BIOS. The bank-switched
system provides more user memory for application programs.

CP/M 3 resides in the file CPM3.SYS, which is loaded into
memory by a system loader during system initialization. The system
loader resides on the first two tracks of the system disk. CPM3. SYS
contains the distributed BOOS and the customized BIOS.

The CP/M 3 operating system is distributed on two single­
density, single-sided, eight-inch floppy disks. Digital Research
supplies a sample BIOS which is configured for an Altos 8000-15
microcomputer system with bank-switched memory and two single­
density, single-sided, eight-inch floppy disk drives.

All Information Presented Here is Proprietary to Digital Research

1

CP/M 3 System Guide 1.2 CP/M 3 System Components

1.2 CP/M 3 System Components

The CP/M 3 operating system consists of the following three
modules: the Console Command Processor (CCP), the Basic Oisk
Operating System (BOOS), and the Basic Input Output System (BIOS).

The CCP is a program that provides the basic user interface to
the facilities of the operating system. The CCP supplies six built­
in commands: OIR, OIRS, ERASE, RENAME, TYPE, and USER. The CCP
executes in the Transient Program Area (TPA), the region of memory
where all application programs execute. The CCP contains the
Program Loader Module, which loads transient (applications) programs
from disk into the TPA for execution.

The BOOS is the logical nucleus and file system of CP/M 3. The
BOOS provides the interface between the application program and the
physical input/output routines of the BIOS.

The BIOS is a hardware-dependent module that interfaces the
BOOS to a particular hardware environment. The BIOS performs all
physical I/O in the system. The BIOS consists of a number of
routines that you must configure to support the specific hardware of
the target computer system.

The BOOS and the BIOS modules cooperate to provide the CCP and
other transient programs with hardware-independent access to CP/M 3
facilities. Because the BIOS is configured for different hardware
environments and the BOOS remains constant, you can transfer
programs that run under CP/M 3 unchanged to systems with different
hardware configurations.

1.3 Communication Between Modules

The BIOS loads the CCP into the TPA at system cold and warm
start. The CCP moves the Program Loader Module to the top of the
TPA and uses the Program Loader Module to load transient programs.

The BOOS contains a set of functions that the CCP and
applications programs call to perform disk and character input and
output operations.

The BIOS contains a Jump Table with a set of 33 entry points
that the BOOS calls to per form hardware-dependent primitive
functions, such as peripheral device I/O. For example, CONIN is an
entry point of the BIOS called by the BOOS to read the next console
input character.

Similar i ties exist between the BOOS functions and the BIOS
functions, particularly for simple device I/O. For example, when a
transient program makes a console output function call to the BOOS,
the BOOS makes a console output call to the BIOS. In the case of
disk I/O, however, this relationship is more complex. The BOOS
might make many BIOS function calls to perform a single BOOS file
I/O function. BDOS disk I/O is in terms of 128-byte logical

All Information Presentee Here is Proprietary to Oigital Research

2

CP/M 3 System Guide 1.3 Communication Between Modules

records. BIOS disk I/O is in terms of physical sectors and tracks.

The System Control Block (SCB) is a lOO-byte decimal CP/M 3
data structure that resides in the BDOS system component. The BDOS
and the BIOS communicate through fields in the SCB. The SCB
contains BDOS flags and data, CCP flags and data, and other system
information, such as console characteristics and the current date
and time. You can access some of the System Control Block fields
from the BIOS.

Note that the SCB contains critical system parameters which
reflect the current state of the operating system. If a program
modifies these parameters, the operating system can crash. See
Section 3 of this manual, and the description of BDOS Function 49 in
the CP/M Plus (CP/M Version 3) Operating System· Programmer IS
Guide for more information on the System Control Block.

Page Zero is a region of memory that acts as an interface
between transient programs and the operating system. Page Zero
contains cr i tical system parameters, including the entry to the BDOS
and the entry to the BIOS Warm BOOT routine. At system start-up,
the BIOS initializes these two entry points in Page Zero. All
linkage between transient programs and the BDOS is restricted to the
indirect linkage through Page Zero. Figure 1-1 illustrates the
general memory organization of CP/M 3.

All Information Presented Here is proprietary to Digital Research

3

CP/M 3 System Guide 1.3 Communication Between Modules

High memory:

BIOS: Basic I/O System

BOOS: Basic Disk Operating System

BOOS-base

LOADER: Program Loader Module
Component of CCP

TPA TPA: Transient Program Area

CCP: Console Command Processor

OIOOH:

PAGE ZERO

OOOOH:

Fi9ure 1-1. General Memory Organization of CP/M 3

Note that all memory regions in CP/M 3 are page aligned, which
means that they must begin on a page boundary. Because a page is
defined as 256 (IOOH) bytes, a page boundary always begins at a
hexadecimal address where the low-order byte of the hex address is
zero.

1.4 Banked and Nonbanked Systems

CP/M 3 is supplied in two versions: one for hardware that
supports banked memory, and the other for hardware with a minimum of
32 kilobytes of memory. The systems are called banked and
nonbanked.

Digital Research supplies System Page Relocatable (.SPR) files
for both a banked BOOS and a nonbanked BOOS. A sample banked BIOS
is supplied for you to use as an example when creating a customized
BIOS for your set of hardware components.

All Information Presented Here is Proprietary to Digital Research

4

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

The following figure shows the memory organization for a banked
system. Bank 0 and common memory are for the operating system.
Bank 1 is the Transient Program Area, which contains the Page Zero
region of memory. You can use additional banks to enhance operating
system performance.

In banked CP/M 3 systems, CPMLDR, the system loader, loads part
of the BDOS into common memory and part of the BDOS into Bank O.
CPMLDR loads the BIOS in the same manner.

Figure 1-2 shows the memory organization for the banked version
of CP/M 3.

Top of memory

Common
to all banks

Top of Banked
Memory

Bank-Switched

Bank 0

Hardware-Dependent Buffer Space

Resident Operating System Modules

hhhhH
Page 0

Bank 1 Bank N

Figure 1-2. Memory Organization for Banked CP/M 3 System

In this figure, the top region of memory is called common
memory. Common memory is always enabled and addressable. The
operating system is divided into two modules: the resident portion,
which resides in common memory, and the banked portion, which
~esides just below common memory in Bank O.

The shaded areas in Figure 1-2 represent the memory available
to transient programs. The clear areas are used by the operating
system for disk record buffers and directory hash tables. The clear

All Information Presented Here is Proprietary to Digital Research

5

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

area in the common region above the operating system represents
space that can be allocated for data buffers by GENCPM, the CP/M 3
system generation utility. The minimum size of the buffer area is
determined by the specific hardware requirements of the host
microcomputer system.

Bank 0, the system bank, is the bank that is enabled when CP/M
3 is cold started. Bank 1 is the transient program bank.

The transient program bank must be contiguous from location
zero to the top of banked memory. Common memory must also be
contiguous. The other banks need not begin at location zero or have
contiguous memory.

Figure 1-3 shows the CP/M 3 memory organization when the TPA
bank, Bank 1, is enabled in a bank-switched system.

Top of memo.ry

Common

Top 'of Banked
Memory

Low Memory
(OOOOH)

Bank I

Hardware Dependent Buffer Space

Resident Operating System Modules

Figure 1-3. Memory Organization with Bank 1 Enabled
in Banked System

The operating system switches to Bank 0 or other banks when
per forming operating system functions. In general, any bank
switching performed by the operating system is transparent to the
calling program.

The memory organization for the nonbanked version of CP/M 3 is
much simpler, as shown in Figure 1-4:

All Information Presented Here is Proprietary to Digital Research

6

CP/M 3 System Guide 1.4 Banked and Nonbanked Systems

Top of memory

Low Memory
(OOOOH)

O.S.

Figure 1-4. Memory Organization in Nonbanked CP/M 3 System

In the nonbanked version of CP/M 3, memory consists of a single
contiguous region addressable from OOOOH up to a maximum of OFFFFH,
or 64K-l. The clear area above the operating system represents
space that can be allocated for data buffers and directory hash
tables by the CP/M 3 system generation utility, GENCPM, or directly
allocated by the BIOS. The minimum size of the buffer area is
determined by the specific hardware requirements of the hosi:.
microcomputer system. Again, the shaded region represents the space
available for transient programs.

1.5 Memory Requirements

Table 1-1 shows typical sizes of the CP/M 3 operating system
components.

Table 1-1. CP/M 3 Operating System Memory Requirements

CP/M 3 Version I Nonbanked I Banked
Common Bank 0

BDOS 8.5K 1.5K 11K

BIOS (values vary)
floppy system 1.5K .75K 2K
hard system 2.5K 1.5K 3K

The CP/M 3 banked system requires a minimum of two banks (Bank
o and Bank 1) and can support up to 16 banks of memory. The size of
the common region is often 16K, but can be as small as 4K. Common
memory must be large enough to contain the required buffers and the
resident (cOmmon) portion of the operating system, which means a

All Information Presented Here is Proprietary to Digital Research

7

CP/M 3 System Guide 1.5 Memory Requirements

1.5K BDOS and the common part of your customized BIOS.

In a banked environment, CP/M 3 maintains a cache of deblocking
buffers and directory re.cords using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be reused when the
system runs out of buffer space. The BDOS maintains separate buffer
pools for directory and data record caching.

The RSX modules shown in Figure 1-5 are Resident System
Extensions (RSX) that are loaded directly below the operating system
when included in an application or utility program. The Program
Loader places the RSX in memory and chains BDOS calls through the
RSX entry point in the RSX.

Figure 1-5 shows the memory organization in a typical bank­
switched CP/M 3 system.

COMMON MEMORY

----" " ...,-" ..., ...,-..., ..., ..., ...,-----...,
ALLOCATION/CHECKSUM

VECTORS

BANKED BIOS 3K

BANKED BDOS 11K

LRU DIRECTORY
BUFFERS

HASHED DIRECTORY
TABLES

.... <..?~e.. p:.r drive)
---...,,, ~

................... ..., '0" _

BANK 0

LRU DATA BUFFERS

RESIDENT BIOS lK

RESIDENT BDOS 1.SK -"' A-I- ~...,...,..., ...,...,...,...,..., -- ""
~.., __,A....,A.,...,~

PROGRAM LOADER

Stacked RSX Modules

TPA

TPA

Optional overlays

TRANSIENT PROGRAM

PAGE ZERO

BANK 1

LRU DATA BUFFERS

HASHED DIRECTORY
TABLES

(one per drive)

COPY OF CCP FOR
WARM START
(optional)

BANK 2

Figure 1-5. Memory Organization in Banked CP/M 3

All Information Presented Here is Proprietary to Digital Research

8

CP/M 3 System Guide 1.5 Memory Requirements

The banked system supports a TPA of 60K or more. The banked
portion of the operating system in Bank 0 requires at least 16K of
memory.

In the banked system, the BDOS and the BIOS are separated into
two parts: a resident portion, and a banked portion. The resident
BOOS and BIOS are located in common memory. The banked BDOS and
BIOS are located in the operating system bank, referred to as Bank 0
in this manual.

The TPA extends from lOOH in Bank 1 up to the bottom of the
resident BDOS in common memory. The banked BIOS and BDOS .reside in
Bank 0 with the directory buffers. Typically, all data buffers
reside in common. Data buffers can reside in an alternate bank if
the system has a DMA controller capable of transferring arbitrary
blocks of data from one bank to another. Hashed directory tables
(one per drive) can be placed in any bank except Bank 1 (TPA).
Hashed directory tables require 4 bytes per directory entry.

Figure 1-6 shows a typical nonbanked system configuration.

Buffers and Hash Tables

BIOS

BDOS

PROGRAM LOADER

Optional overlays

TRANSIENT PROGRAM

BASE PAGE Oh - lOOh

Figure 1-6. Memory Organization in Nonbanked CP/M 3

The nonbanked CP/M 3 system requires 8.5K of memory plus space
for the BIOS, buffers, and hash tables, allowing a TPA size of up to
52K to 54K, depending on the size of the BIOS and the number of hash
tables and buffers you are using.

All Information Presented Here is Proprietary to Digital Research

9

CP/M 3 System Guide 1.6 Disk Organization

1.6 Disk Organization

Figure 1-7 illustrates the organization of a CP/M 3 system
disk.

Track M

CP/M 3 Data Region

Data Tracks

CP/M 3 Directory Region

Track N

CCP (Optional)

System tracks CPMLDR

Cold Boot Loader

Track 0

Figure 1-7. CP/M 3 System Disk Organization

In Figure 1-7, the first N tracks are the system tracks~ the
remaining tracks, the data tracks, are used by CP/M 3 for file
storage. Note that the system tracks are used by CP/M 3 only during
system cold start and warm start. All other CP/M 3 disk access is
directed to the data tracks of the disk. To maintain compatibility
wi th Dig i tal Research products, you should use an eight-inch,
single-density, IBM~3740 formatted disk with two system tracks.

1.7 Hardware Supported

You can customize the BIOS to match any hardware environment
with the following general characteristics.

All Information Presented Here is Proprietary to Digital Research

10

CP/M 3 System Guide 1.7 Hardware Supported

1.7.1 Hardware Supported by CP/M 3 Banked System

• Intel 8080, Intel 8085, or Zilog Z80 CPU or equivalent.

o A minimum of two and up to sixteen banks of memory wi th the top
4K-32K in common memory. Bank 1 must have contiguous memory
from address OOOOH to the base of common memory. A reasonable
configuration consists of two banks of 48K RAM each, with the
top 16K in common memory.

• One to sixteen disk drives of up to 512 megabytes capacity
each.

• Some form of ASCII console device, usually a CRT.

• One to twelve additional character input and or output devices,
such as printers, communications hardware, and plotters.

1.7.2 Hardware Supported by CP/M 3 Nonbanked System

• Intel 8080, Intel 8085, or Zilog Z80 CPU or equivalent.
• A minimum of 32K and up to 64K contiguous memory addressable

from location zero.
• One to sixteen disk drives of up to 512 megabytes capacity

each.
• Some form of ASCII console device, usually a CRT.
• One to twelve additional input and or output devices, usually

including a printer.

Because most CP/M-compatible software is distributed on eight­
inch, soft-sectored, single-density floppy disks, it is recommended
that a CP/M 3 hardware configuration include a minimum of two disk
drives, at least one of which is a single-density floppy disk drive.

1.8 Customizing CP/M 3

Digital Research supplies the BOOS files for a banked and a
nonbanked version of CP/M 3. A system generation utility, GENCPM,
is provided with CP/M 3 to create a version of the operating system
tailored to your hardware. GENCPM combines the BOOS and your
customized BIOS files to create a CPM3.SYS file, which is loaded
into memory at system start-up. The CPM3. SYS file contains the BOOS
and BIOS system components and information indicating where these
modules reside in memory.

Digital Research supplies a CP/M 3 loader file, CPMLDR, which
you can link with your customized loader BIOS and use to load the
CPM3. SYS file into memory. CPMLDR is a small, self-contained
version of CP/M 3 that supports only console output and sequential
file input. Consistent with CP/M 3 organization, it contains two
modules: an invar iant CPMLDR BDOS, and a var iant CPMLDR BIOS, which
is adapted to match the host microcomputer hardware environment.

All Information Presented Here is Proprietary to Digital Research

11

CP/M 3 System Guide 1.8 Customizing CP/M 3

The CPMLDR BIOS module can perform cold start initialization of I/O
ports and similar functions. CPMLDR can display a memory map of the
CP/M 3 system at start-up. This is a GENCPM option.

The following steps tell you how to create a new version of
CP/M 3 tailored to your specific hardware.

1) Wr i te and assemble a customi zed BIOS following the
specifications described in Section 3. This software
module must correspond to the exact physical
characteristics of the target system, including memory and
port addresses, peripheral types, and drive
characteristics.

2) Use the system generation utility, GENCPM, to create the
CPM3.SYS file containing the CP/M 3 distributed BDOS and
your customized BIOS, as described in Section 5.

3) Write a customized loader BIOS (LDRBIOS) to reside on the
system tracks as part of CPMLDR. CPMLDR loads the CPM3. SYS
file into memory from disk. Section 5 gives the
instructions for customizing the LDRBIOS and generating
CPMLDR. Link your customized LDRBIOS file with the
supplied CPMLDR file.

4) Use the COPYSYS utility to put CPMLDR on the system tracks
of a disk.

5) Test and debug your customized version of CP/M 3.

If you have banked memory, Dig i tal Research recommends that you
first use your customized BIOS to create a nonbanked version of the
CP/M 3 operating system. You can leave your entire BIOS in common
memory until you have a working system. Test all your routines in a
nonbanked version of CP/M 3 before you create a banked version.

1.9 Initial Load (Cold Boot) of CP/M 3

CP/M 3 is loaded into memory as follows. Execution is
initiated by a four-stage procedure. The first stage consists of
loading into memory a small program, called the Cold Boot Loader,
from the system tracks of the Boot disk. This load operation is
typically handled by a hardware feature associated with system
reset. The Cold Boot Loader is usually 128. or 256 bytes in.length.

In the second stage, the Cold Boot Loader loads the memory
image of the CP/M 3 system loader program, CPMLDR, from the system
tracks of a disk into memory and passes control to it. For a banked
system, the Cold Boot Loader loads CPMLDR into Bank O. A PROM
loader can perform stages one and two.

All Information Presented Here is Proprietary to Digital Research

12

CP/M 3 System Guide 1.9 Initial Load (Cold Boot) of CP/M 3

In the third stage, CPMLOR reads the CPM3.SYS file, which
contains the BOOS and customized BIOS, from the the data area of the
disk into the memory addresses assigned by GENCPM. In a banked
system, CPMLOR reads the common part of the BOOS and BIOS into the
common part of memory, and reads the banked part of the BOOS and
BIOS into the area of memory below common base in Bank O. CPMLOR
then transfers control to the Cold BOOT system initialization
routine in the BIOS.

For the final stage, the BIOS Cold BOOT routine, BIOS Function
0, per forms any remaining necessary hardware initialization,
displays the sign-on message, and reads the CCP from the system
tracks or from a CCP.COM file on disk into location lOOH of the TPA.
The Cold BOOT routine transfers control to the CCP, which then
displays the system prompt.

Section 2 provides an overview of the organization of the
System Control Block and the data structures and functions in the
CP/M 3 BIOS.

End of Section I

All Information Presented Here is Proprietary to Digital Research

13

CP/M 3 System Guide End of Section 1

All Information Presented Here is Proprietary to Digital Research

14

Section 2
CP/M 3 BIOS Overview

This section describes the organization of the CP/M 3 BIOS and
the BIOS jump vector. It provides an overview of the System Control
Block, followed by a discussion of system initialization procedures,
character I/O, clock support, disk I/O, and memory selects and
moves.

2.1 Organization of the BIOS

The BIOS is the CP/M 3 module that contains all hardware­
dependent input and output routines. To configure CP/M 3 for a
particular hardware environment, use the sample BIOS supplied with
this document and adapt it to the specific hardware of the target
system.

Alternatively, you can modify an existing CP/M 2.2 BIOS to
install CP/M 3 on your target machine. Note that an unmodified CP/M
2.2 BIOS does not work with the CP/M 3 operating system. See
Appendix C for a descr iption of the modifications necessary to
convert a CP/M 2.2 BIOS to a CP/M 3 BIOS.

The BIOS is a set of routines that performs system
initialization, character-oriented I/O to the console and printer
devices, and physical sector I/O to the disk devices. The BIOS also
contains routines that manage block moves and memory selects for
systems with bank-switched memory. The BIOS supplies tables that
define the layout of the disk devices and allocate buffer space
which the BOOS uses to perform record blocking and deblocking. The
BIOS can maintain the system time and date in the System Control
Block.

Table 2-1 describes the entry points into the BIOS from the
Cold Start Loader and the BOOS. Entry to the BIOS is through a jump
vector. The jump vector is a set of 33 jump instructions that pass
program control to the individual BIOS subroutines.

You must include all of the entry points in the BIOS jump
vector in your BIOS. However, if your system does not support some
of the functions provided for in the BIOS, you can use empty
subroutines for those functions. For example, if your system does
not support a printer, JMP LIST can reference a subroutine
consisting of only a RET instruction. Table 2-1 shows the elements
of the jump vector.

All Information Presented Here is Proprietary to Digital Research

15

CP/M 3 System Guide 2.1 Organization of the BIOS

Table 2-1. CP/M 3 BIOS Jump Vector

No. Instruction

0 JMP BOOT
1 JMP WBOOT
2 JMP CONST
3 JMP CONIN
4 JMP CONOUT
5 JMP LIST
6 JMP AUXOUT
7 JMP AUXIN
8 JMP HOME
9 JMP SELDSK

10 JMP SETTRK
11 JMP SETSEC
12 JMP SETDMA
13 JMP READ
14 JMP WRITE
15 JMP LISTST
16 JMP SECTRN
17 JMP CONOST
18 JMP AUXIST
19 JMP AUXOST
20 JMP DEVTBL
21 JMP DEVINI
22 JMP DRVTBL
23 JMP MULTIO

24 JMP FLUSH

25 JMP MOVE
26 JMP TIME
27 JMP SELMEM
28 JMP SETBNK
29 JMP XMOVE

30 JMP USERF
31 JMP RESERVI
32 JMP RESERV2

I Description

Perform cold start initialization
Perform warm start initialization
Check for console input character ready
Read Console Character in
Write Console Character out
Write List Character out
Write Auxiliary Output Character
Read Auxiliary Input Character
Move to Track 00 on Selected Disk
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Address
Read Specified Sector
Write Specified Sector
Return List Status
Translate Logical to Physical Sector
Return Output Status of Console
Return Input Status of Aux. Port
Return Output Status of Aux. Port
Return Address of Char. I/O Table
Initialize Char. I/O Devices
Return Address of Disk Drive Table
Set Number of Logically Consecutive
sectors to be read or written
Force Physical Buffer Flushing for
user-supported deblocking
Memory to Memory Move
Time Set/Get signal
Select Bank of Memory
Specify Bank for DMA Operation
Set Bank When a Buffer is in a Bank
other than 0 or 1
Reserved for System Implementor
Reserved for Future Use
Reserved for Future Use

Each jump address in Table 2-1 corresponds to a particular
subroutine that performs a specific system operation. Note that two
entry points are reserved for future versions of CP/M, and one entry
point is provided for OEM subroutines, accessed only by direct BIOS
calls using BDOS Function 50. Table 2-2 shows the five categories
of system operations and the function calls that accomplish these
operations.

All Information Presented Here is Proprietary to Digital, Research

16

CP/M 3 System Guide 2.1 Organization of the BIOS

Table 2-2. CP/M 3 BIOS Functions

Operation Function

System Initialization

BOOT, WBOOT, DEVTBL, DEVINI, DRVTBL

Character I/O

CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN,
LISTST, CONOST, AUXIST, AUXOST

Disk I/O

HOME, SELDSK, SETTRK, SETSEC, SETDMA,
READ, WRITE, SECTRN, MULTIO, FLUSH

Memory Selects and Moves

MOVE, SELMEM, SETBNK, XMOVE

Clock Support

TIME

You do not need to implement every function in the Bros jump
vector. Howeve r, to oper ate, the BDOS needs the BOOT, WBOOT, CONST,
CONIN, CONOUT, HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE,
SECTRN, MULTIO, FLUSH, and TIME subroutines. Implement SELMEM and
SETBNK only in a banked environment. You can implement MULTIO and
FLUSH as returns with a zero in Register A. DEVICE and some other
utilities use the remaining entry points, but it is not necessary to
fully implement them in order to debug and develop the system.

Note: include all routines but make the non implemented routines a
RET instruction.

2.2 System Control Block

The System Control Block (SCB) is a data structure located in
the BDOS. The SCB is a communications area referenced by the BDOS,
the CCP, the BIOS, and other system components. The SCB contains
system parameters and var iables, some of which the BIOS an
reference. The fields of the SCB are named, and definitions of
these names are supplied as public variable and subroutine names in
the SCB.ASM file contained on the distribution disk. See Section
3.1 for a discussion of the System Control Block.

All Information Presented Here is Proprietary to Digital Research

17

CP/M System Guide 2.3 System Initialization

2.3 System Initialization

When the BOOT and WBOOT routines of the BIOS get control, they
must initialize two system parameters in Page Zero of memory, as
shown in Table 2-3.

Table 2-3. Initialization of Page Zero

Location I Description

0,1,2

5,6,7

Set to JMP WBOOT (OOOOH: JMP BIOS+3). Location
1 and 2 must contain the address of WBOOT in
the jump vector.

Set to JMP BDOS, the primary entry point to
CP /M 3 for transient programs. The current
address of the BDOS is maintained in the
variable @MXTPA in the System Control Block.
(See Section 3.1, System Control Block, and
Section 3.4.1, BIOS Function 1: WBOOT.)

The BOOT and WBOOT routine must load the CCP into the TPA in
Bank 1 at location OlOOH. The CCP can be loaded in two ways. If
there is sufficient space on the system tracks, the CCP can be
stored on the system tracks and loaded from there. If you prefer,
or if there is not sufficient space on the system tracks, the BIOS
Cold BOOT routine can read the CCP into memory from the file CCP.COM
on disk.

If the CCP is in a .COM file, use the BOOT and WBOOT routines
to perform any necessary system initialization, then use the BDOS
functions to OPEN and READ the CCP.COM file into the TPA. In bank­
switched systems, the CCP must be read into the TPA in Bank 1.

In bank-switched systems, your Cold BOOT routine can place a
copy of the CCP into a reserved area of an alternate bank after
loading the CCP into the TPA in Bank 1. Then the Warm BOOT routine
can copy the CCP into the TPA in Bank 1 from the alternate bank,
rather than reloading the CCP from disk, thus avoiding all disk
accesses during warm starts.

There is a l28-byte buffer in the resident portion of the BDOS
in a banked system that can be used by BOOT and WBOOT. The address
of this buffer is stored in the SCB variable @BNKBF. BOOT and WBOOT
can use this buffer when copying the CCP to and from the alternate
bank.

The system tracks for CP/M 3 are usually partitioned as shown
in the following figure:

All Information Presented Here is Proprietary to Digital Research

18

CP/M System Guide

Cold
Start Ldr

CPMLDR

2.3 System Initialization

I

I CCP
(optional)

Figure 2-1. CP/M 3 System Tracks

'rhe cold start procedure is designed so you need to initialize
the system tracks only once. This is possible because the system
tracks contain the system loader and need not change when you change
the CP/M 3 operating system. The Cold Start Loader loads CPMLDR
into a constant memory location that is chosen when the system is
conf igured. However, CPMLDR loads the BOOS and BIOS system
components into memory as specified in the CPM3.SYS file generated
by GENCPM, the system generation utility. Thus, CP/M 3 allows the
user to configure a new system with GENCPM and then run it without
having to update the system tracks of the system disk.

2.4 Character I/O

CP/M 3 assumes that all simple character I/O operations are
performed in a-bit ASCII, upper- and lower-case, with no parity. An
ASCII CRTL-Z (lAH) denotes an end-of-file condition for an input
device. .

Table 2-4 lists the characteristics of the logical devices.

Table 2-4. CP/M 3 Logical Device Characteristics

Device I Characteristics

CONIN, CONOUT

LIST

AUXOUT

AUXIN

The interactive console that
communicates with the operator,
accessed by CaNST, CONIN, CONOUT, and
CONOUTST. Typically, the CONSOLE is a
dev ice such as a CRT or teletype,
interfaced serially, but it can also
be a memory-mapped video display and
keyboard. The console is an input
device and an output device.

The system pr inter, if it exists on
your system~ LIST is usually a hard­
copy device such as a printer or
teletypewriter.

The auxiliary character output device,
such as a modem.

The auxiliary character input device,
such as a modem.

All Information Presented Here is Proprietary to Digital Research

19

CP/M 3 System Guide 2.4 Character I/O

Note that you can define a single peripheral as the LIST,
AUXOUT, and AUXIN device simul taneously. If you assign no
peripheral device as the LIST, AUXOUT, or AUXIN device, the AUXOUT
and LIST routines can just return, and the AUXIN routine can return
with a lAH (CTRL-Z) in register A to indicate an immediate end-of­
file.

CP/M 3 supports character device I/O redirection. This means
that you can direct a logical device, such as CONIN or AUXOUT, to
one or more physical devices. The DEVICE utility allows you to
reassign devices and display and change the current device
configurations, as described in the CP/M 3 User's Guide. The I/O
redirection facility is optional. You should not implement it until
the rest of your BIOS is fully functional.

2.5 Disk I/O

The BDOS accomplishes disk I/O by making a sequence of calls to
the various disk access subroutines in the BIOS. The subroutines
set up the disk number to access, the track and sector on a
particular disk, and the Direct Memory Access (DMA) address and bank
involved in the I/O opera tion. After these parameters are
established, the BDOS calls the READ or WRITE function to perform
the actual I/O operation.

Note that the BDOS can make a single call to SELDSK to select a
disk drive, follow it with a number of read or write operations to
the selected disk, and then select another drive for subsequent
operations.

CP/M 3 supports multiple sector read or write operations to
optimize rotational latency on block disk transfers. You can
implement the multiple sector I/O facility in the BIOS by using the
multisector count passed to toe MULTIO entry point. The BDOS calls
MULTIO to read or write up to 128 sectors. For every sector number
1 to n, the BDOS calls SETDMA then calls READ or WRITE.

Table 2-5 shows the sequence of BIOS calls that the BDOS makes
to read or write a physical disk sector in a nonbanked and a banked
system. Table 2-6 shows the sequence of calls the BDOS makes to the
BIOS to read or write multiple contiguous physical sectors in a
nonbanked and banked system.

All Information Presented Here is Proprietary to Digital Research

20

CP/M 3 System Guide 2.5 Disk I/O

Table 2-5. BDOS Calls to BIOS in Nonbanked and Banked Systems

Nonbanked BDOS

Call I Explanation

SELDSK Called only when disk is initially
selected or reselected.

SETTRK Called for every read or write of a
physical sector.

SETSEC Called for every read or write of a
physical sector.

SETDMA Called for every read or write of a
physical sector.

READ, WRITE Called for every read or write of a
physical sector.

Banked BDOS

Call I Explanation

SELDSK Called only when disk is initially
selected or reselected.

SETTRK Called for every read or write of a
physical sector.

SET SEC Called for every read or write of a
physical sector.

SETDMA Called for every read or write of a
physical sector.

SETBNK Called for every read or write of a
physical sector.

READ, WRITE Called for every read or write of a
physical sector.

All Information Presented Here is Proprietary to Digital Research

21

CP/M 3 System Guide 2.5 Disk I/O

Table 2-6. Multiple Sector I/O in Nonbanked and Banked Systems

Nonbanked BDOS

Call I
SELDSK

MULTIO

SETTRK

SET SEC

SETDMA

READ, WRITE

SELDSK

MULTIO

SETTRK

SET SEC

SETDMA

SETBNK

READ, WRITE

Explanation

Called only when disk is initially
selected or reselected.

Called to inform the BIOS that the next n
calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors
to contiguous memory.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called only when disk is initially
selected or reselected.

Called to inform the BIOS that the next n
calls to disk READ or disk WRITE require a
transfer of n contiguous physical sectors
to contiguous memory.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

Called for every read or write of a
physical sector.

All Information Presented Here is Proprietary to Digital Research

22

CP/M 3 System Guide 2.5 Disk I/O

Table 2-7 shows the sequence of aDOS calls to read two
contiguous physical sectors in a banked system.

Table 2-7. Reading Two Contiguous Sectors in Banked System

Call I Explanation

SELDSK Called to initially select disk
MULTIO With a value of 2
SETTRK For first sector
SETSEC For first sector
SETDMA For first sector
SETBNK
READ
SETTRK For second sector
SET SEC For second sector
SETDMA For second sector
SETBNK
READ

The CP/M 3 aDOS performs its own blocking and deblocking of
logical 128-byte records. Unlike earlier versions of CP/M, the BIOS
READ and WRITE routines always transfer physical sectors as
specified in the Disk Parameter Block to or from the DMA buffer.
The Disk Parameter Header defines one or more physical sector
buffers which the BDOS uses for logical record blocking and
deblocking.

In a banked environment, CP/M 3 maintains a cache of deblocking
buffers and directory records using a Least Recently Used (LRU)
buffering scheme. The LRU buffer is the first to be reused when the
system runs out of buffer space. The BDOS maintains separate buffer
pools for directory and data record caching.

The BIOS contains the data structures to control the data and
directory buffers and the hash tables. You can either assign these
buffers and tables yourself in the BIOS, or allow the GENCPM utility
to generate them automatically.

Hash tables greatly speed directory searching. The BDOS can
use hash tables to determine the location of directory entries and
therefore reduce the number of disk accesses required to read a
directory entry. The hash table allows the BDOS to directly access
the sector of the directory containing the desired directory entry
without having to read the directory sequentially. By eliminating a
sequential read of the directory records, hashing also increases the
percentage of time that the desired directory record is in a buffer,
eliminating the need for any physical disk accesses in these cases.
Hash tables and directory caches eliminate many of the directory
accesses required when accessing large files. However, in a
nonbanked system, hash tables increase the size of the operating
system.

All Information Presented Here is Proprietary to Digital Research

23

CP/M 3 System Guide 2.5 Disk I/O

When the BIOS finds an error condition, the READ and WRITE
routines should perform several retries before reporting the error
condi tion to the BOOS. Ten retr ies are typical. If the BIOS
returns an error condition to the BOOS, the BOOS reports the error
to the user in the following form:

CP/M Error on d: Disk I/O

where d: represents the drive specification of the relevant drive.

To provide better diagnostic capabilities for the user, it is
often desirable to print a more explicit error message from the BIOS
READ or WRITE routines before the BIOS returns an error code to the
BOOS. The BIOS should interrogate the SCB Error Mode Variable to
determine if it is appropriate to print a message on the console.

2.6 Memory Selects and Moves

Four BIOS functions are provided to perform memory management.
The functions are MOVE, XMOVE, SELMEM, and SETBNK. The XMOVE,
SELMEM, and SETBNK memory management routines are applicable to the
BIOS of banked systems.

The BOOS uses the BIOS MOVE routine to perform memory-to-memory
block transfers. In a banked system, the BOOS calls XMOVE to
specify the source and destination banks to be used by the MOVE
routine. If you use memory that is not in the common area for data
record buffers, you must implement the XMOVE routine.

The BOOS uses SELMEM when the operating system needs to execute
code or access data in other than the currently selected bank.

The BOOS calls the SETBNK routine prior to calling disk READ or
disk WRITE functions. The SETBNK routine must save its specified
bank as the DMA bank. When the BOOS invokes a disk I/O routine, the
I/O routine should save the current bank number and select the DMA
bank prior to the disk READ or WRITE. After completion of the disk
READ or WRITE, the disk I/O routine must reselect the current bank.
Note that when the BOOS calls the disk I/O routines, Bank 0 is in
context (selected).

2.7 Clock Support

If the system has a real-time clock or is capable of ·keeping
time, possibly by counting interrupts from a counter/timer chip,
then the BIOS can maintain the time of day in the System Control
Block and update the time on clock interrupts. BIOS Function 26 is
provided for those systems where the clock is unable to generate an
interrupt.

All Information Presentqd Here is Proprietary to Digital Research

24

CP/M 3 System Guide 2.7 Clock Support

The time of day is kept as four fields. @DATE is a binary word
containing the number of days since January 1, 1978. The bytes
@HOUR, @MIN, and @SEC in the System Control Block contain the hour,
minute, and second in Binary Coded Decimal (BCD) format.

End of Section 2

All Information Presented Here is Proprietary to Digital Research

25

CP/M 3 System Guide End of Section 2

All Information Presented Here is Proprietary to Digital Research

26

Section 3
CP/M 3 BIOS Functional Specifications

This section contains a detailed description of the CP/M 3
BIOS. The section first discusses the BIOS data structures and
their relationships, including the System Control Block, the drive
table, the Disk Parameter Header, the Disk Parameter Block, the
Buffer Control Blocks, and the character I/O table. The overview of
the data structures is followed by a summary of the functions in the
BIOS jump vector. A detailed description of the entry values and
returned values for each jump instruction in the BIOS jump vector
follows the summary. The last part of this section discusses the
steps to follow when assembling and linking your customized BIOS.

3.1 The System Control Block

The System Control Block (SCB) is a data structure located in
the BOOS. The SCB contains flags and data used by the CCP, the
BOOS, the BIOS, and other system components. The BIOS can access
specific data in the System Control Block through the public
variables defined in the SCB.ASM file, which is supplied on the
distribution disk.

Declare the variable names you want to reference in the SCB as
externals in your BIOS.ASM source file. Then link your BIOS with
the SCB.REL module.

In the SCB.ASM file, the high-order byte of the various SCB
addresses is defined as OFEH. The linker marks absolute external
equates as page relocatable when generating a System Page
Relocatable (SPR) format file. GENCPM recognizes page relocatable
addresses of OFExxH as references to the System Control Block in the
BOOS. GENCPM changes these addresses to point to the actual SCB in
the BOOS when it is relocating the system.

Do not perform assembly-time arithmetic on any references to
the external labels of the SCB. The result of the arithmetic could
alter the page value to something other than OFEH.

Listing 3-1 shows the SCB.ASM file. The listing shows the
field names of the System Control Block. A @ before a name
indicates that it is a data item. A? preceding a name indicates
that it is the label of an instruction. In the listing, r/w means
Read-Write, and rio means Read-Only. The BIOS can modify a Read­
Write variable, but must not modify a Read-Only variable. Table 3-1
describes each item in the System Control Block in detail.

All Informatio~ Presented Here is Proprietary to Digital Research

27

CP/M 3 System Guide 3.1 The System Control Block

title 'System Control Block Definition for CP/M3 BIOS'

public @civec, @covec, @aivec, @aovec, @lovec, @bnkbf
public @crdma, @crdsk, @vinfo, @resel, @fx, @usrcd
public @mltio, @ermde, @erdsk, @media, @bflgs
public @date, @hour, @min, @sec, ?erjmp, @mxtpa

scb$base equ

@CIVEC equ

@COVEC equ

@AIVEC equ

@AOVEC equ

@LOVEC equ

@BNKBF equ

@CRDMA equ

@CRDSK equ
@VINFO equ

@RESEL equ
@FX equ

@USRCD equ
@MLTIO equ

@ERMDE equ
@ERDSK equ
@MEDIA equ

@BFLGS equ

@DATE equ

@HOUR equ
@MIN equ
@SEC equ
?ERJMP equ

@MXTPA equ

end

OFEOOH

scb$base+22h

scb$base+24h

scb$base+26h

scb$base+28h

scb$base+2Ah

scb$base+35h

scb$base+3Ch

scb$base+3Eh
scb$base+3Fh

scb$base+41h
scb$base+43h

scb$base+44h
scb$base+4Ah

scb$base+4Bh
scb$base+51h
scb$base+54h

scb$base+57h

scb$base+58h

scb$base+5Ah
scb$base+5Bh
scb$base+5Ch
scb$base+5Fh

scb$base+62h

Base of the SCB

Console Input Redirection
Vector (word, r/w)
Console Output Redirection
Vector (word, r/w)
Auxiliary Input Redirection
Vector (word, r/w)
Auxiliary Output Redirection
Vector (word, r/w)
List Output Redirection
Vector (word, r/w)
Address of 128 Byte Buffer
for Banked BIOS (word, rio)
Current DMA Address
(word, rio)
Current Disk (byte, rio)
BDOS Variable "INFO"
(word, rio)

FCB Flag (byte, rio)
BOOS Function for Error
Messages (byte, rio)
Current User Code (byte, rio)
Current Multisector Count
(byte,r/w)

BOOS Error Mode (byte, rio)
BOOS Error Disk (byte, rio)
Set by BIOS to indicate
open door (byte,r/w)
BOOS Message Size Flag
(byte ,rio)
Date in Days Since 1 Jan 78
(word, r/w)
Hour in BCD (byte, r/w)
Minute in BCD (byte, r/w)
Second in BCD (byte, r/w)
BOOS Error Message Jump
(3 bytes, r/w)

Top of User TPA
(address at 6,7) (word, rio)

Listing 3-1. The SCB.ASK File

All Information Presented Here is Proprietary to Digital Research

28

CP/M 3 System Guide 3.1 The System Control Block

The following table describes in detail each of the fields of
the System Control Block.

Table 3-1. System Control Block Fields

Field Meaning

@ClVEC, @COVEC, @AIVEC, @AOVEC, @LOVEC (Read-Write
Variable)

These fields are the 16 bit I/O redirection
vectors for the five logical devices: console
input, console output, auxiliary input,
auxiliary output, and the list device. (See
Section 3.4.2, Character I/O Functions.)

@BNKBF (Read-Only Variable)

@BNKBF contains the address of a 128 byte
buffer in the resident portion of the BDOS in a
banked system. This buffer is available for
use during BOOT and WBOOT only. You can use it
to transfer a copy of the CCP from an image in
an alternate bank if the system does not
support interbank moves.

@CRDMA, @FX, @USRCD, @ERDSK (Read-Only Variable)

These var iables contain the current DMA
address, the BDOS function number, the current
user code, and the disk code of the drive on
which the last error occurred. They can be
displayed when a BDOS error is intercepted by
the BIOS. See ?ERJMP.

@CRDSK (Read-Only Variable)

@CRDSK is the current default drive, set by
BDOS Function 14.

@VINFO, @RESEL (Read-Only Variable)

If @RESEL is equal to OFFH then @VINFO contains
the address of a valid FCB. If @RESEL is not
equal to OFFH, then @VINFO is undefined. You
can use @VINFO to display the filespec when the
BIOS intercepts a BDas error.

All Information Presented Here is Proprietary to Digital Research

29

CP/M 3 System Guide 3.1 The System Control Block

Field

@MLTIO

Table 3-1. (continued)

Meaning

(Read-Write Variable)

@MLTIO contains the current multisector count.
The BIOS can change the mul tisector count
directly, or through BOOS Function 44. The
value of the multisector count can range from 1
to 128.

@ERMDE (Read-Only Variable)

@ERMDE contains the current BOOS error mode.
OFFH indicates the BOOS is returning error
codes to the application program without
displaying any error messages. OFEH indicates
the BOOS is both displaying and returning
errors. Any other value indicates the BOOS is
displaying errors without notifying the
application program.

@MEDIA (Read-Write Variable)

@MEDIA is global system flag indicating that a
drive door has been opened. The BIOS routine
that detects the open drive door sets this flag
to OFFH. The BIOS routine also sets the MEDIA
byte in the Disk Parameter Header associated
with the open-door drive to OFFH.

@BFLGS (Read-Only Variable)

The BOOS in CP/M 3 produces two kinds of error
messages: short error messages and extended
error messages. Short error messages display
one or two lines of text. Long error messages
display a third line of text containing the
filename, filetype, and BOOS Function Number
involved in the error.

In banked systems, GENCPM sets this flag in the
System Control Block to indicate whether the
BIOS displays short or extended error messages.
Your error message handler should check this
byte in the System Control Block. If the high­
order bit, bit 7, is set to 0, the BOOS
displays short error messages. If the high­
order bit is set to 1, the BOOS displays the
extended three-line error messages.

All Information Presented Here is Proprietary to Digital Research

30

CP/M 3 System Guide 3.1 The System Control Block

Table 3-1. (continued)

Field Meaning

@BFLGS (continued)

For example, the BOOS displays the following
error message if the BIOS returns an error from
READ and the BOOS is displaying long error
messages.

CP/M Error on d: Disk I/O
BOOS Function = nn File = filename.typ

In the above error message, Function nn and
filename. typ represent BOOS function number and
file specification involved, respectively.

@DATE (Read-Write Variable)

The number of days since 1 January 1978,
expressed as a 16-bi t unsigned integer, low
byte first. A real-time clock interrupt can
update the @DATE field to indicate the current
date.

@HOUR, @MIN, @SEC (Read-Write Variable)

These 2-dig it Binary Coded Decimal (BCD) fields
indicate the current hour, minute, and second
if updated by a real-time clock interrupt.

?ERJMP (Read-Write Code Label)

The BOOS calls the error message subroutine
through this jump instruction. Reg ister C
contains an error code as follows:

1 Permanent Error
2 Read Only Disk
3 Read Only File
4 Select Error
7 Password Error
8 File Exists
9 ? in Filename

Error code 1 above results in the BOOS message
Disk I/O.

All Information Presented Here is Proprietary to Digital Research

31

CP/M 3 System Guide 3.1 The System Control Block

Table 3-1. (continued)

Field Meaning

?ERJMP (continued)

The ?ERJMP vector allows the BIOS to intercept
the BOOS error messages so you can display them
in a foreign language. Note that this vector
is not branched to if the application program
is expecting return codes on physical errors.
Refer to the CP/M 3 Programmer I s Guide for
more information.

?ERJMP is set to point to the default (English)
error message routine contained in the BOOS.
The BOOT routine can modify the address at
?ERJMP+l to point to an alternate message
routine. Your error message handler can refer
to @FX, @VINFO (if @RESEL is equal to OFFH) ,
@CRDMA, @CRDSK, and @USRCD to print additional
error information. Your error handler should
return to the BOOS with a RET instruction after
printing the appropriate message.

@MXTPA (Read-Only Variable)

@MXTPA contains the address of the current BOOS
entry point. This is also the address of the
top of the TPA. The BOOT and WBOOT routines of
the BIOS must use this address to initialize
the aDOS entry JMP instruction at location
005H, during system initialization. Each time
a RSX is loaded, @MXTPA is adjusted by the
system to reflect the change in the available
User Memory (TPA).

3.2 Character I/O Data Structures

The BIOS data structure CHRTBL is a character table descr ibing
the physical I/O devices. CHRTBL contains 6-byte physical device
names and the characteristics of each physical device. These
characteristics include a mode byte, and the current baud rate, if
any, of the device. The DEVICE utility references the physical
devices through the names and attributes contained in your CHRTBL.
DEVICE can also display the physical names and characteristics in
your CHRTBL.

The mode byte specifies whether the device is an input or
output device, whether it has a selectable baud rate, whether it is
a serial device, and if XON/XOFF protocol is enabled.

All Information Presented Here is Proprietary to Digital Research

32

CP/M 3 System Guide 3.2 Character I/O Data Structures

Listing 3-2 shows a sample character device table that the
DEVICE utility uses to set and display I/O direction.

; sample character device table

chrtbl db 'CRT ; console VDT
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'LPT ; system serial printer
db mb$output+mb$serial+mb$soft$baud+mb$xon
db baud$9600

db 'TI8l0 ' ; alternate printer
db mb$output+mb$serial+mb$soft$baud
db baud$9600

db 'MODEM ' ; 300 baud modem port
db mbinout+mb$serial+mb$soft$baud
db baud$300

db 'VAX ; interface to VAX 11/780
db mbinout+mb$serial+mb$soft$baud
db baud$9600

db 'DIABLO' ; Diablo 630 daisy wheel printer
db mb$output+mb$serial+mb$soft$baud+mbxonxoff
db baud$1200

db 'CEN ; centronics type parallel printer
db mb$output
db baud$none

db 0 ; table terminator

Listing 3-2. Sample Character Device Table

Listing 3-3 shows the equates for the fields contained in the
sample character device table. Many systems do not support all of
these baud rates.

All Information Presented Here is Proprietary to Digital Research

33

CP/M 3 System Guide 3.2 Character I/O Data Structures

equates for mode byte fields

mb$input
mb$output
mbinout
mb$soft$baud

mb$serial
mbxonxoff

equ
equ
equ
equ

OOOO$OOOlb ; device may do input
OOOO$OOlOb ; device may do output
mb$input+mb$output ; dev may do both
OOOO$OlOOb software selectable

baud rates
equ OOOO$lOOOb
equ OOOl$OOOOb

device may use protocol
XON/XOFF protocol
enabled

; equates for baud rate byte

baud$none equ 0 no baud rate
associated with device

baud$50 equ 1 50 baud
baud$75 equ 2 75 baud
baud$110 equ 3 110 baud
baud$134 equ 4 134.5 baud
baud$150 equ 5 150 baud
baud$300 equ 6 300 baud
baud$600 equ 7 600 baud
baud$1200 equ 8 1200 baud
baud$1800 equ 9 1800 baud
baud$2400 equ 10 2400 baud
baud$3600 equ 11 3600 baud
baud$4800 equ 12 4800 baud
baud$7200 equ 13 7200 baud
baud$9600 equ 14 9600 baud
baud$19200 equ 15 19.2k baud

Listing 3-3. Equates for Mode Byte Bit Fields

3.3 BIOS Disk Data Structures

The BIOS includes tables that descr ibe the par ticular
characteristics of the disk subsystem used with CP/M 3. This
section describes the elementa of these tables.

In general, each disk drive has an associated Disk Parameter
Header (DPH) that contains information about the disk drive and
provides a scratchpad area for certain BDOS operations. One of the
elements of this Disk Parameter Header is a pointer to the Disk
Parameter Block (DPB), which contains the actual disk description.

In the banked system, only the Disk Parameter Block must reside
in common memory. The DPHs, checksum vectors, allocation vectors,
Bu~er Control Blocks, and Directory Buffers can reside in common
memory or Bank O. The hash tables can reside in common memory OL

any bank except Bank 1. The data buffers can reside in banked
memory if you implement the XMOVE function.

All Information Presented Here is Proprietary to Digital Research

34

CP/M 3 System Guide 3.3 BIOS Data Structures

Figure 3-1 shows the relationships between the drive table, the
Disk Parameter Header, and the Data and Directory Buffer Control
Block fields and their respective data structures and buffers.

1 2 3 4 15

Checksum Vector

Allocation Vector

Hash Table

Buffer Control

Directory Buffer

Directory Buffer Data

BCB

Directory Buffer

[BCB

d I:~~;I IOOOOh~
I

Data Buffer 1-
Figure 3-1. Disk Data Structures in a Banked System

All Information Presented Here is Proprietary to Digital Research

35

CP/M 3 System Guide 3.3 BIOS Data Structures

3.3.1 The Drive Table

The drive table consists of 16 words containing the addresses
of the Disk Parameter Headers for each logical drive name, A through
P, and takes the general form:

drivetable dw
dw
dw

dw

dphO
dphl
dph2

dphF

If a logical drive does not exist in your system, the corresponding
entry in the drive table must be zero.

The GENCPM utility accesses the drive table to locate the
various disk parameter data structures, so that it can determine
which system configuration to use, and optionally allocate the
various buffers itself. You must supply a drive table if you want
GENCPM to do this allocation. If certain addresses in the Disk
Parameter Headers referenced by this drive table are set to OFFFEH,
GENCPM allocates the appropriate data structures and updates the
DPH. You can supply the drive table even if you have performed your
own memory allocation. See the BIOS DRVTBL function described in
section 3.4.1.

3.3.2 Disk Parameter Header

In Figure 3-2, which shows the format of the Disk Parameter
Header, b refers to bits.

XLT -0- MF DPB CSV ALV DIRBCB DTABCB HASH HBANK

l6b 72b 8b 1Gb 1Gb l6b 1Gb 1Gb l6b 8b

Figure 3-2. Disk Parameter Header Format

Table 3-2 describes the fields of the Disk Parameter Header.

All Information Presented Here is Proprietary to Digital Research

36

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. Disk Parameter Header Fields

Field I Comments

XLT Set the XLT field to the address of the logical to
physical sector translation table. If there is no
sector translation and the physical and logical
sector numbers are the same, set XLT to OOOOH. Disk
drives with identical sector skew factors can share
the same translate table.

XLT is the value passed to SECTRN in registers DE.
Usually the translation table consists of one byte
per physical sector. Generally, it is advisable to
keep the number of physical sectors per logical
track to a reasonable value to prevent the
translation table from becoming too large. In the
case of disks with multiple heads, you can compute
the head number from the track address rather than
the sector address.

-0- These 72 bits (9 bytes) of zeroes are the scratch
area the BDOS uses to maintain various parameters
associated with the drive.

MF MF is the Media Flag. The BDOS resets MF to zero
when the drive is logged in. The BIOS can set this
flag and @MEDIA in the SCB to OFFH if it detects
that a drive door has been opened. If the flag is
set to OFFH, the BDOS checks for a media change
prior to performing the next BDOS file operation on
that drive. If the BDOS determines that the drive
contains a new volume, the BDOS performs a login on
that drive, and resets the MF flag to OOH. Note
that the BDOS checks this flag only when a system
call is made, and not during an operation.
Usually, this flag is used only by systems that
support door-open interrupts.

DPB Set the DPB field to the address of a Disk
Parameter Block that describes the characteristics
of the disk drive. Several Disk Parameter Headers
can address the same Disk Parameter Block if their
dr ive character is tics are identical. (The Disk
Parameter Block is described in Section 3.3.3.)

All Information Presented Here is Proprietary to Digital Research

37

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-2. (continued)

Field 1 Commen ts

CSV CSV is the address of a scratchpad area used to
detect changed disks. This address must be
different for each removable media Disk Parameter
Header. There must be one byte for every 4
directory entries (or 128 bytes of directory). In
other words, length (CSV) = (DRM/4) +1. (See Table
3-3 for an explanation of the DRM field.) If the
drive is permanently mounted, set the CKS variable
in the DPB to 8000H and set CSV to OOOOH. This
way, no storage is reserved for a checksum vector.
The checksum vector may be located in common memory
or in Bank O. Set CSV to OFFFEH for GENCPM to set
up the checksum vector.

ALV ALV is the address of the scratchpad area called
the allocation vector, which the BDOS uses to keep
disk storage allocation information. This area
must be unique for each drive.

The allocation vector usually requires 2 bits for
each block on the dr ive. Thus, length (ALV)
(DSM/4) + 2. (See Table 3-3 for an explanation of
the DSM field.) In the nonbanked version of CP/M
3, you can optionally specify that GENCPM reserve
only one bit in the allocation vector per block on
the drive. In this case, length (ALV) = (DSM/8) +
1.

The GENCPM option to use single-bi t allocation
vectors is provided in the nonbanked version of
CP/M 3 because additional memory is required by the
double-bit allocation vector. This option applies
to all drives on the system.

with double-bit allocation vectors, CP/M 3
automatically frees, at every system warm start,
all file blocks that are not permanently recorded
in the directory. Note that file space allocated
to a file is not permanen tly recorded in a
directory unless the file is closed. Therefore,
the allocation vectors in memory can indicate that
space is alloca ted al though directory records
indicate that space is free for allocation. with
single-bi t alloca tion vectors, CP/M 3 requi res that
a drive be reset before this space can be
reclaimed. Because it increases performance, CP/M
3 does not reset disks at system warm start. Thus,
with single-bit allocation vectors, if you do not
reset the disk system, DIR and SHOW can report an
inaccurate amount of free space. With single-bit

All Informa tion Presen ted Here is propr ietary to Digi tal Research

38

CP/M 3 System Guide 3.3 BIOS Data Structures

Field

ALV
(continued)

DIRBCB

DTABCB

HASH

I
Table 3-2. (continued)

Comments

allocation vectors, the user must type a CTRL-C at
the system prompt to reset the disk system to ensure
accurate reporting of free space. Set ALV to
OFFFEH for GENCPM to automatically assign space
for the allocation vector, single- or double-bit,
during system generation. In the nonbanked system,
GENCPM prompts for the type of allocation vector.
In the banked system, the allocation vector is
always double-bit and can reside in common memory
or Bank O. When GENCPM automatically assigns space
for the allocation vector (ALV = OFFFEH), it places
the allocation vector in Bank O.

Set DIRBCB to the address of a single directory
Buffer Control Block (BCB) in an unbanked system.
Set DIRBCB to the address of a BCB list head in a
banked system.

Set DIRBCB to OFFFEH for GENCPM to set up the
DIRBCB field. The BOOS uses directory buffers for
all accesses of the disk directory. Several DPHs
can refer to the same directory BCB or BCB list
head; or, each DPH can reference an independent BCB
or BCB list head. Section 3.3.4 describes the
format of the Buffer Control Block.

Set DTABCB to the address of a single data BCB in
an unbanked system. Set DTABCB to the address of a
data BCB list head in a banked system.

Set DTABCB to OFFFEH for GENCPM to set up the
DTABCB field. The BOOS uses data buffers to hold
physical sectors so that it can block and deblock
logical 128-byte records. If the physical record
size of the media associated wi th a DPH is 128
bytes, you can set the DTABCB field of the DPH to
OFFFFH, because in this case, the BOOS does not use
a data buffer.

HASH contains the address of the optional directory
hashing table associated with a DPH. Set HASH to
OFFFFH to disable directory hashing.

All Information Presented Here is Proprietary to Digital Research

39

CP/M 3 System Guide 3.3 BIOS Data Structures

Field I
HASH

(continued)

HBANK

Table 3-2. (continued)

Comments

Set HASH to OFFFEH to make directory hashing on the
drive a GENCPM option. Each DPH using hashing must
reference a unique hash table. If a hash table is
supplied, it must be 4* (DRM+l) bytes long, where
DRM is one less than the length of the directory.
In other words, the hash table must contain four
bytes for each directory entry of the disk.

Set HBANK to the bank number of the hash table.
HBANK is not used in unbanked systems and should be
set to zero. The hash tables can be contained in
the system bank, common memory, or any alternate
bank except Bank 1, because hash tables cannot be
located in the :rransient Program Area. GENCPM
automatically sets HBANK when HASH is set to
OFFFEH.

3.3.3 Disk Parameter Block

Figure 3-3 shows the format of the Disk Parameter Block, where
b refers to bits.

SPT BSH BLM EXM DSM DRM ALO ALI CKS OFF PSH PHM

l6b 8b 8b 8b l6b l6b 8b 8b 16b l6b 8b 8b

Figure 3-3. Disk Parameter Block Format

Table 3-3 describes the fields of the Disk Parameter Block.

Table 3-3. Disk Parameter Block Fields

Field I Comments

SPT Set SPT to the total number of l28-byte logical
records per track.

BSH Data allocation block shift factor. The value
of BSH is determined by the data block
allocation size.

BLM Block mask. The value of BLM is determined by
the data block allocation size.

All Information Presented Here is Proprietary to Digital Research

40

CP/M 3 System Guide 3.3 BIOS Data Structures

Field I
EXM

DSM

DRM

ALO, ALI

CKS

OFF

PSH

PHM

Table 3-3. (continued)

Comments

Extent mask determined by the data block
allocation size and the number of disk blocks.

Determines the total storage capaci ty of the
disk dr ive. DSM is one less than the total
number of blocks on the drive.

Total number of directory entries minus one that
can be stored on this drive. The directory
requires 32 bytes per entry.

Determine reserved directory blocks. See Figure
3-8 for more information.

The size of the directory check vector,
(DRM/4) +1. Set bit 15 of CKS to 1 if the drive
is permanently mounted. Set CKS to 8000H to
indicate that the drive is permanently mounted
and directory checksumming is not required.

Note: full directory checksumming is required
on removable media to support the automatic
login feature of CP/M 3.

The number of reserved tracks at the beginning
of the logical disk. OFF is the track on which
the directory starts.

Specifies the physical record shift factor.

Specifies the physical record mask.

CP/M allocates disk space in a unit called a block. Blocks are
also called allocation units, or clusters. BLS is the number of
bytes in a block. The block size can be 1024, 2048, 4096, 8192, or
16384 (decimal) bytes.

A large block size decreases the size of the allocation vectors
but can result in wasted disk space. A smaller block size increases
the size of the allocation vectors because there are more blocks on
the same size disk.

There is a restriction on the block size. If the block size is
1024, there cannot be more than 255 blocks present on a logical
dr i ve. In other words, if the disk is larger than 256K, it is
necessary to use at least 2048 byte blocks.

The value of BLS is not a field in the Disk Parameter Block~
rather, it is derived from the values of BSH and BLM as given in
Table 3-4.

All Information Presented Here is Proprietary to Digital Research

41

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-4. BSH and BLM Values

BLS I BSH I BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The block mask, BLM, equals one less than the number of 128-
byte records in an allocation unit, (BLS/128 ~ 1), or (2**BSH)-1.

The value of the Block Shift Factor, BSH, is determined by the
data block allocation size. The Block Shift Factor (BSH) equals the
logar i thm base two of the block size in 128-byte records, or
LOG2(BLS/128), where LOG2 represents the binary logarithm function.

The value of EXM depends upon both the BLS and whether the DSM
value is less than 256 or greater than 255, as shown in Table 3-5.

Table 3-5. Maximum EXM Values

BLS I EXM values

DSM<256 DSM>255

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of EXM is one less than the maximum number of 16K
extents per FCB.

Set EXM to zero if you want media compatibili ty wi th an
extended CP/M 1.4 system. This only applies to double-density CP/M
1. 4 systems, wi th disk si zes greater than 256K bytes. I t is
preferable to copy double-density 1.4 disks to single-density, then
reformat them and recreate them with the CP/M 3 system, because CP/M
3 uses directory entries moxe effectively than CP/M 1.4.

DSM is one less than the total number of blocks on the drive.
DSM must be less than or equal to 7FFFH. If the disk uses 1024 byte
blocks (BSH=3, BLr~=7), DSM must be less than or equal to OOFFH. The
product BLS* (DSM+l) is the total number of bytes the dr ive holds and
must be wi thin the capaci ty of the physical disk. I t does not
include the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

42

CP/M 3 System Guide 3.3 BIOS Data Structures

The DRM entry is one less than the total number of 32-byte
directory entries, and is a l6-bit value. DRM must be less than or
equal to (BLS/32 * 16) - 1. DRM determines the values of ALO and
ALI. The two fields ALO and ALI can together be considered a string
of 16 bits, as shown in Figure 3-4.

ALO ALI

Figure 3-4. ALO and ALI

posi tion 00 corresponds to the high-order bit of the byte
labeled ALO, and position 15 corresponds to the low-order bit of the
byte labeled ALI. Each bit position reserves a data block for a
number of directory entries, thus allowing a maximum of 16 data
blocks to be assigned for directory entries. Bits are assigned
starting at 00 and filled to the right until position 15. ALO and
ALI overlay the first two bytes of the allocation vector for the
associated drive. Table 3-6 shows DRM maximums for the various
block sizes.

Table 3-6. BLS and Number of Directory Entries

BLS I Directory Entries I Maximum DRM

1,024 32 * reserved blocks 511
2,048 64 of: reserved blocks 1,023
4,096 128 * reserved blocks 2,047
8,192 256 * reserved blocks 4,095

16,384 512 * reserved blocks 8,191

If DRM = 127 (128 directory entries), and BLS = 1024, there are
32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high-order bits of ALO are set, resulting in the
values ALO = OFOH and ALI = OOH. The maximum directory allocation
is 16 blocks where the block size is determined by BSH and BLM.

The OFF field determines the number of tracks that are skipped
at the beginning of the physical disk. It can be used as a
mechanism for skipping reserved operating system tracks, which on
system disks contain the Cold Boot Loader, CPMLDR, and possibly the
CCP. It is also used to partition a large disk into smaller
segmented sections.

All Information Presented Here is Proprietary to Digital Research

43

CP/M 3 System Guide 3.3 BIOS Data Structures

PSH and PHM determine the physical sector size of the disk.
All disk I/O is in terms of the physical sector size. Set PSH and
PSM to zero if the BIOS is blocking and deblocking instead of the
BDOS.

PSH specifies the physical record shift factor, ranging from 0
to 5, corresponding to physical record sizes of 128, 256, 512, lK,
2K, or 4K bytes. I t is equal to the logar i thm base two of the
physical record size divided by 128, or LOG2(sector size/128). See
Table 3-7 for PSH values. -

PHM specifies the physical record mask, ranging from 0 to 31,
corresponding to physical record sizes of 128, 256, 512, lK, 2K, or
4K bytes. It is equal to one less than the sector size divided by
128, or, (sector_size/128)-1. See Table 3-7 for PHM values.

Table 3-7. PSH and PHM Values

Sector I I size PSH PHM

128 0 0
256 1 1
512 2 3

1,024 3 7
2,048 4 15
4,096 5 31

3.3.4 Buffer Control Block

A Buffer Control Block (BCB) locates physical record buffers
for the BDOS. The BDOS uses the BCB to manage the physical record
buffers during processing. More than one Disk Parameter Header can
specify the same BCB. The GENCPM utility can create the Buffer
Control Block.

Note that the BANK and LINK fields of the Buffer Control Block
are present only in the banked system. Therefore, the Buffer
Control Block is twelve bytes long in the nonbanked system, and
fifteen bytes long in the banked system. Note also that only the
DRV, BUFFAD, BANK, and LINK fields need to contain initial values.
In Figure 3-5, which shows the form of the Buffer Control Block, b
refers to bits.

DRV RECI WFLG 00 TRACK SECTOR BUFFAD BANK LINK

8b 24b 8b 8b 16b l6b 16b 8b 16b

Figure 3-5. Buffer Control Block Format

All Information Presented Here is Proprietary to Digital Research

44

CP/M 3 System Guide 3.3 BIOS Data Structures

Table 3-8 describes the fields of each Buffer Control Block.

Field I
DRV

RECI

WFLG

00

TRACK

SECTOR

BUFFAD

BANK

LINK

Table 3-8. Buffer Control Block Fields

Comment

Identifies the disk drive associated with the
record contained in the buffer located at
address BUFFAD. If you do not use GENCPM to
allocate buffers, you must set the DRV field to
OFFH.

Identifies the record position of the current
contents of the buffer located at address
BUFFAD. RECI consists of the absolute sector
number of the record where the first record of
the directory is zero.

Set by the BDOS to OFFH to indicate that the
buffer contains new data that has not yet been
written to disk. When the data is written, the
BDOS sets the WFLG to zero to indicate the
buffer is no longer dirty.

Scratch byte used by BDOS.

Contains the physical track location of the
contents of the buffer.

Contains the physical sector location of the
contents of the buffer.

Specifies the address of the buffer associated
with this BCB.

Contains the bank number of the buffer
associated with this BCB. This field is only
present in banked systems.

Con ta ins the address of the next BCB in a
linked list, or zero if this is the last BCB in
the linked list. The LINK field is present
only in banked systems.

The BDOS distinguishes between two kinds of buffers: data
buffers referenced by DTABCB, and directory buffers referenced by
DIRBCB. In a banked system, the DIRBCB and DTABCB fields of a Disk
Parameter Header each contain the address of a BCB list head rather
than the address of an actual BCB. A BCB list head is a word
containing the address of the first BCB in a linked list. If
several DPHs reference the same BCB list, they must reference the
same BCB list head. Each BCB has a LINK field that contains the
address of the next BCB in the list, or zero if it is the last BCB.

All Information Presented Here is Proprietary to Digital Research

45

CP/M 3 System Guide 3.3 BIOS Data Structures

In banked systems, the one-byte BANK field indicates the bank
in which the data buffers are located. The BANK field of directory
BCBs must be zero because directory buffers must be located in Bank
0, usually below the banked BOOS module, or in common memory. The
BANK field is for systems that support direct memory-to-memory
transfers from one bank to another. (See the BIOS XMOVE entry point
in Section 3.4.4.)

The BCB data structures in a banked system must reside in Bank
a or in common memory. The buffers of data BCBs can be located in
any bank except Bank I (the Transient Program Area).

For banked systems that do not support interbank block moves
through XMOVE, the BANK field must be set to a and the data buffers
must reside in common memory. The directory buffers can be in Bank
a even if the system does not support bank-to-bank moves.

In the nonbanked system, the DPH DIRBCB and DTABCB can point to
the same BCB if the DPH defines a fixed media device. For devices
wi th removable media, the DPH DIRBCB and the DPH DTABCB must
reference different BCBs. In banked systems, the DPH DIRBCB and
DTABCB must point to separate list heads.

In general, you can enhance the performance of CP/M 3 by
allocating more BCBs, but the enhancement reduces the amount of TPA
memory in nonbanked systems.

If you set the DPH DIRBCB or the DPH DTABCB fields to OFFFEH,
the GENCPM utili ty creates BCBS, allocates physical record buffers,
and sets these fields to the address of the BCBs. This allows you
to write device drivers without regard to buffer requirements.

3.3.5 Data Structure Macro D.efinitions

Several macro definitions are supplied with CP/M 3 to simplify
the creation of some of the data structures in the BIOS. These
macros are defined in the library file CPM3.LIB on the distribution
disk.

TO reference these macros in your BIOS, include the following
statement:

MACLIB CPM3

All Information Presented Here is proprietary to Digital Research

46

CP/M 3 System Guide 3.3 BIOS Data Structures

DTBL Macro

Use the DTBL macro to generate the drive table, DRVTBL. It has
one parameter, a list of the DPHs in your system. The list is
enclosed in angle brackets.

The form of the DTBL macro call is

label: DTBL <DPHA,DPHB, ••• ,DPHP>

where DPHA is the address of the DPH for drive A, DPHB is the
address of the DPH for drive B, up to drive P. For example,

DRVTBL: DTBL <ACSHDO,FDSDO,FDSDI>

This example generates the drive table for a three-drIve system.
The DTBL macro always generates a sixteen-word table, even if you
supply fewer DPH names. The unused entries are set to zero to
indicate the corresponding drives do not exist.

DPH Macro

The DPH macro routine generates a Disk Parameter Header (DPH).
It requires two parameters: the address of the skew table for this
drive, and the address of the Disk Parameter Block (DPB). Two
parameters are optional: the maximum size of the checksum vector,
and the maximum size of the allocation vector. If you omit the
maximum size of the checksum vector and the maximum size of the
allocation vector from the DPH macro invocation, the corresponding
fields of the Disk Parameter Header are set to OFFFEH so that GENCPM
automatically allocates the vectors.

The form of the DPH macro call is

where:

label: DPH ?trans,?dpb,[?csize], [?asize]

?trans is the address of the translation vector for this
drive;

?dpb is the address of the DPB for this drive;
?csize is the maximum si ze in bytes of the checksum

vector;
?asize is the maximum size in bytes of the allocation

vector.

The following example, which includes all four parameters,
shows a typical DPH macro invocation for a standard single-density
disk drive:

FDSDO: DPH SKEW6,DPB$SD,16,31

All Information Presented Here is Proprietary to Digital Research

47

CP/M 3 System Guide 3.3 BIOS Data Structures

SKEW Macro

The SKEW macro genera tes a skew table and requires the
following parameters: the number of physical sectors per track, the
skew factor, and the first sector number on each track (usually 0 or
1) •

The form of the SKEW macro call is

where:

label: SKEW ?secs,?skf,?fsc

?secs
?skf
?fsc

is the number of physical sectors per track:
is the sector skew factor:
is the first sector number on each track.

The following macro invocation generates the skew table for a
standard single-density disk drive.

SKEW6: SKEW 26,6,1

DPB Macro

The DPB macro generates a Disk Parameter Block specifying the
characteristics of a drive type. It requires six parameters: the
physical sector size in bytes, the number of physical sectors per
track, the total number of tracks on the drive, the size of an
allocation unit in bytes, the number of directory entries desired,
and the number of system tracks to reserve at the beginning of the
drive. There is an optional seventh parameter that defines the CKS
field in the DPB. If this parameter is missing, CKS is calculated
from the directory entries parameter.

The form of the DPB macro call is

label: DPB ?psize,?pspt,?trks,?bls,?ndirs,?off[,?ncks]

where:
?psize is the physical sector size in bytes:
?pspt is the number of physical sectors per track:
?trks is the number of tracks on the dr ive:
?bls is the allocation unit size in bytes:
?ndirs is the number of directory entries:
?off is the number of tracks to reserve:
?ncks is the number of checked directory entries.

The following example shows the parameters for a standard
single-density disk drive:

DPB$SD: DPB 128,26,77,1024,64,2

All Information Presented Here is Proprietary to Digital Research

48

CP/M 3 System Guide 3.3 BIOS Data Structures

The DPB macro can be used only when the disk drive is under
eight megabytes. DPBs for larger disk drives must be constructed by
hand.

3.4 BIOS Subroutine Entry Points

This section describes the entry parameters, returned values,
and exact responsibilities of each BIOS entry point in the BIOS jump
vector. The routines are arranged by function. Section 3.4.1
describes system initialization. Section 3.4.2 presents the
character I/O functions, followed by Section 3.4.3, discussing the
disk I/O functions. Section 3.4.4 discusses the BIOS memory select
and move functions. The last section, 3.4.5, discusses the BIOS
clock support function. Table 3-9 shows the BIOS entry points the
BDOS calls to perform each of the four categories of system
functions.

Table 3-9. Functional Organization of BIOS Entry Points

Operation I
System Initialization

Character I/O

Disk I/O

Memory Selects and Moves

Clock Support

Function

BOOT, WBOOT, DEVTBL, DEVINI,
DRVTBL,

CONST, CON IN, CON OUT , LIST,
AUXOUT, AUXIN, LISTST, CONOST,
AUXIST, AUXOST

HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, SECTRN,
MULTIO, FLUSH

MOVE, XMOVE, SELMEM, SETBNK

TIME

Table 3-10 is a summary showing the CP/M 3 BIOS function
numbers, jump instruction names, and the en try and return parameters
of each jump instruction in the table, arranged according to the
BIOS function number.

All Information Presented Here is Proprietary to Digital Research

49

CP/M 3 System Guide

Table 3-10.

No. I Function I
0 BOOT
1 WBOOT
2 CONST

3 CONIN
4 CON OUT
5 LIST
6 AUXOUT
7 AUXIN
8 HOME
9 SELDSK

10 SETTRK
11 SETSEC
12 SETDMA
13 READ

14 WRITE

15 LISTST

16 SECTRN

17 CONOST

18 AUXIST

19 AUXOST

20 DEVTBL
21 DEVINI
22 DRVTBL

23 MULTIO
24 FLUSH

25 MOVE

26 TIME
27 SELMEM
28 SETBNK
29 XMOVE

3.4 BIOS Subroutine Entry Points

CP/M 3 BIOS Function Jump Table Summary

Input

None
None
None

None
C=Con Char
C=Char
C=Char
None
None
C=Drive 0-15
E=Ini t Sel Flag
BC=Track No
BC=Sector No
BC=.DMA
None

C=De bl k Code

None

BC=Log Sect No

None

None

None

None
C=Dev No 0-15
None

C=Mult Sec Cnt
None

HL=Dest Adr
DE=Source Adr
C=Get/Set Flag
A=Mem B.an k
A=Mem Bank
B=Dest Bank
C=Source Bank
BC=Count

I
None
None

Output

A=OFFH if ready
A=OOH if not ready
A=Con Char
None
None
None
A=Char
None
HL=DPH addr
HL=OOOH if invalid dr.
None
None
None
A=OOH if no Err
A=OlH if Non-recov Err
A=OFFH if media changed
A=OOH if no Err
A=OlH if Phys Err
A=02H if Dsk is R/O
A=OFFH if media changed
A=OOH if not ready
A=OFFH if ready
HL=Phys Sect No
DE=Trans Tbl Adr
A=OOH if not ready
A=OFFH if ready
A=OOH if not ready
A=OFFH if ready
A=OOH if not ready
A=OFFH if ready
HL=Chrtbl addr
None
HL=Drv Tbl addr
HL=OFFFFH
HL=OFFFEH
HL=OFFFDH
None
A=OOOH if no err
A=OOlH if phys err
A=002H if disk R/O
HL & DE point to next
bytes following MOVE
None
None
None
None

All Information Presented Here is Proprietary to Digital Research

50

CP/M 3-system Guide

No. I Function I
30 USERF
31 RESERVI
32 RESERV2

3.4 BIOS Subroutine Entry Points

Table 3-10. (continned)

Input

Reserved for System Implementor
Reserved for Future USe
Reserved for Future Use

3.4.1 System Initialization Functions

This section defines the BIOS system initialization routines
BOOT, WBOOT, DEVTBL, DEVINI, and DRVTBL.

BIOS Function 0: BOOT

Get Control from Cold Start Loader
and Initialize System

Entry Parameters: None

Returned Values: None

The BOOT entry point gets control from the Cold Start Loader in
Bank 0 and is responsible for basic system initialization. Any
remaining hardware initialization that is not done by the boot ROMs,
the Cold Boot Loader, or the LDRBIOS should be performed by the BOOT
routine.

The BOOT routine must perform the system initialization
outl ined in Section 2.3, System In i tiali za tion. This includes
initializing Page Zero jumps and loading the CCP. BOOT usually
prints a sign-on message, but this can be omitted. Control is then
transferred to the CCP in the TPA at OlOOH.

To initialize Page Zero, the BOOT routine must place a jump at
location OOOOH to BIOS base + 3, the BIOS warm start entry point.
The BOOT routine must-also place a jump instruction at location
0005H to the address contained in the System Control Block variable,
@MXTPA.

The BOOT routine must establish its own stack area if it calls
any BOOS or BIOS routines. In a banked system, the stack is in Bank
o when the Cold BOOT routine is entered. The stack must be placed
in common memory.

All Information Presented Here is Proprietary to Digital Research

51

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 1: WBOOT

Get Control When a Warm Start Occurs

Entry Parameters: None

Returned Values: None

The WBOOT entry point is entered when a warm start occurs. A
warm start is performed whenever a user program branches to location
OOOOH or attempts to return to the CCP. The WBOOT routine must
per form the system ini tialization outlined in BIOS Function 0,
including initializing Page Zero jumps and loading the CCP.

When your WBOOT routine is complete, it must transfer control
to the CCP at location OlOOfl in the TPA.

Note that the CCP does not reset the disk system at warm start.
The CCP resets the disk system when a CTRL-C is pressed following
the system prompt.

Note also that the BIOS stack must be in common memory to make
BOOS function calls. Only the BOOT and WBOOT routines can perform
BOOS function calls.

If the WBOOT routine is reading the CCP from a file, it must
set the multisector I/O count, @MLTIO in the System Control Block,
to the number of l28-byte records to be read in one operation before
reading CCP.COM. You can directly set @MLTIO in the SCB, or you can
call BOOS Function 44 to set the multisector count in the SCB.

If blocking/deblocking is done in the BIOS instead of in the
BOOS, the WBOOT routine must discard all pending buffers.

BIOS Function 20: OEVTBL

Return Address of Character I/O Table

Entry Parameters: None

Returned Values: HL= address of Chrtbl
-

The OEVTBL and ~NI entry points allow you to support device
assignment with a flexible, yet completely optional system. It
replaces the IOBYTE facility of CP/M 2.2. Note that the CHRTBL must
be in common in banked systems.

All Information Presented Here is Proprietary to Digital Research

52

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 21: DEVINI

Initialize Character I/O Device

Entry Parameters: C=device number, 0-15

Returned Values: None

The DEVINI routine initializes the physical character device
specified in register C to the baud rate contained in the
appropriate entry of the CHRTBL. It need only be supplied if I/O
redirection has been implemented and is referenced only by the
DEVICE utility supplied with CP/M 3.

BIOS Function 22: DRVTBL

Return Address of Disk Drive Table

Entry Parameters: None

Returned Values: HL=Address of Drive Table of Disk
Parameter Headers (DPH) ; Hashing
can be utilized if specified by
the DPHs referenced by this DRVTBL.

HL=OFFFFH if no Drive Table; the BDOS is
responsible for blocking/deblocking;
Hashing is supported.

HL=OFFFEH if no Drive Table; the BDOS is
responsible for blocking/deblocking;
Hashing is not supported.

The first instruction of this subroutine must be an LXI
H,<address> where <address> is one of the above returned values.
The GENCPM utility accesses the address in this instructiqn to
locate the drive table and the disk parameter data structures to
determine which system configuration to use.

If you plan to do your own blocking/deblocking, the first
instruction of the DRVTBL routine must be the following:

lxi h,OFFFEh

You must also set the PSH and PSM fields of the associated Disk
Parameter Block to zero.

All Information Presented Here is Proprietary to Digital Research

53

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

3.4.2 Character I/O Functions

This section defines the CP/M 3 'character I/O routines CONST,
CONIN, CON OUT , LIST, AUXOUT, AUXIN, LISTST, CONOST, AUXIST, and
AUXOST.

CP/M 3 assumes all simple character I/O operations are
performed in eight-bit ASCII, upper- and lower-case, with no parity.
An ASCII CTRL-Z (lAH) denotes an end-of-file condition for an input
device.

In CP/M 3, you can direct each of the five logical character
devices to any combination of up to twelve physical devices. Each
of the five logical devices has a l6-bi t vector in the System
Control Block (SCB). Each bit of the vector represents a physical
device where bit 15 corresponds to device zero, and bit 4 is device
eleven. Bits 0 through 3 are reserved for future system use.

You can use the public names defined in the supplied SCB.ASM
file to reference the I/O redirection bit vectors. The names are
shown in Table 3-11.

Table 3-11. I/O Redirection Bit vectors in SCB

Name

@CIVEC
@COVEC
@AIVEC
@AOVEC
@LOVEC

l
Logical Device

Console Input
Console Output
Auxiliary Input
Auxiliary Output
List Output

You should send an output character to all of the devices whose
corresponding bit is set. An input character should be read from
the first ready device whose corresponding bit is set.

An input status routine should return true if any selected
device is ready. An output status routine should return true only
if all selected devices are ready.

All Information Presented Here is Proprietary to Digital Research

54

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 2: CONST

Sample the Status of the Console Input Device

Entry Parameters: none

Returned value: A= OFFH if a console character
is ready to read

A= OOH if no console character
is ready to read

Read the status of the currently assigned console device and
return OFFH in register A if a character is ready to read, and DOH
in register A if no console characters are ready.

BIOS Function 3: CONIN

Read a Character from the Console

Entry Parameters: None

Returned Values: A=Console Character

Read the next console character into register A with no parity.
I f no console char acter is ready, wai t until a character is
available before returning.

BIOS Function 4: CON OUT

Output Character to Console

Entry Parameters: C=Console Character

Returned Values: None

Send the character in register C to the console output device.
The character is in ASCII with no parity.

All Information Presented Here is Proprietary to Digital Research

55

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 5: LIST

Output Character to List Device

Entry Parameters: C=Character

Returned Values: None

Send the character from register C to the listing device. The
character is in ASCII with no parity.

BIOS Function 6: AUXOUT

Output a Character to the
Auxiliary Output Device

Entry Parameters: C=Character

Returned Values: None

Send the character from register C to the currently assigned
AUXOUT device. The character is in ASCII with no parity.

BIOS Function 7 : AUXIN

Read a Character from the
Auxiliary Input Device

Entry Parameters: None

Returned Values: A=Character

Read the next character from the currently assigned AUXIN
device into register A with no parity. A returned ASCII CTRL-Z
(lAH) reports an end-of-file.

All Information Presented Here is proprietary to Digital Research

56

CP/M·3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 15: LISTST

Return the Ready Status of the
List Device

Entry Parameters: None

Returned Values: A=OOOH if list device is not
ready to accept a character

A=OFFH if list device is
ready to accept a character

The BIOS LISTST function returns the ready status of the list
device.

BIOS Function 17: CONOST

Return Output Status of Console

Entry Parameters: None

Returned Values: A=OFFH if ready
A=OOH if not ready

The CONOST routine checks the status of the console. CONOST
returns an OFFH if the console is ready to display another
character. This entry point allows for full polled handshaking
communications support.

BIOS Function 18: AUXIST

Return Input Status of Auxiliary Port

Entry Parameters: None

Returned Values: A=OFFH if ready
A=OOOH if not ready

The AUXIST routine checks the input status of the auxiliary port.
This entry point allows full polled handshaking for communications
support using an auxiliary port.

All Information Presented Here is Proprietary to Digital Research

57

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 19: AUXOST

Return Output Status of Auxiliary Port

Entry Parameters: None

Returned Values: A=OFFH if ready
A=OOOH if not ready

The AUXOST routine checks the output status of the auxiliary
port. This routine allows full polled handshaking for
communications support using an auxiliary port.

3.4.3 Disk I/O Functions

This section defines the CP/M 3 BIOS disk I/O routines HOME,
SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN, MULTIO, and
FLUSH.

BIOS Function 8: HOME

Select Track 00 of the Specified Drive

Entry Parameters: None

Returned Values: None

Return the disk head of the currently selected disk to the
track 00 posi tion. Usually, you can translate the HOME call into a
calIon SETTRK with a parameter of O.

All Information Presented Here is Proprietary to Digital Research

58

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 9: SELDSK

Select the Specified Disk Drive

Entry Parameters: C=Disk Drive (0-15)
E=Initial Select Flag

Returned Values: HL=Address of Disk Parameter
Header (DPH) if drive exists

HL=OOOH if drive does not exist

Select the disk drive specified in registe,r C for further
operations, where register C contains a for drive A, 1 for drive B,
and so on to 15 for drive P. On each disk select, SELDSK must
return in HL the base address of a 25-byte area called the Disk
Parameter Header. If there is an attempt to select a nonexistent
drive, SELDSK returns HL=OOOOH as an error indicator.

On entry to SELDSK, you can determine if it is the first time
the specified disk is selected. Bit 0, the least significant bit in
Register E, is set to a if the drive has not been previously
selected. This information is of interest in systems that read
configuration information from the disk to set up a dynamic disk
definition table.

When the BOOS calls SELDSK with bit a in Register E set to 1,
SELDSK must return the same Disk Parameter Header address as it
returned on the initial call to the drive. SELDSK can only return a
OOOH indicating an unsuccessful select on the initial select call.

SELDSK must return the address of the Disk Parameter Header on
each call. Postpone the actual physical disk select operation until
a READ or WRITE is performed.

BIOS Function 10: SETTRK

Set Specified Track Number

Entry Parameters: BC=Track Number

Returned Values: None

Register BC contains the track number for a subsequent disk
access on the currently selected drive. Normally, the track number
is saved until the next READ or WRITE occurs.

All Information Presented Here is Proprietary to Digital Research

59

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 11: SET SEC

set Specified Sector Number

Entry Parameters: BC=Sector Number

Returned Values: None

Register BC contains the sector number for the subsequent disk
access on the currently selected drive. This number is the value
returned by SECTRN. Usually, you delay actual sector selection
until a READ or WRITE operation occurs.

BIOS Function 12: SETDMA

Set Address for Subsequent Disk I/O

Entry Parameters: BC=Direct Memory
Access Address

Returned Values: None

Register BC contains the DMA (Direct Memory Access) address for
the subsequent READ or WRITE operation. For example, if B = OOH and
C = SOH when the BOOS calls SETDMA, then the subsequent read
operation reads its data starting at SOH, or the subsequent write
operation gets its data from SOH, until the next call to SETDMA
occurs.

All Information Presented Here is Proprietary to Digital Research

60

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 13: READ

Read a Sector from the Specified Drive

Entry Parameters: None

Returned Values: A=OOOH if no errors occurred
A=OOlH if nonrecoverable error

condition occurred
A=OFFH if media has changed

Assume the BDOS has selected the drive, set the track, set the
sector, and specified the DMA address. The READ subroutine attempts
to read one sector based upon these parameters, then returns one of
the error codes in register A as described above.

If the value in register A is 0, then CP/M 3 assumes that the
disk operation completed properly. If an error occurs, the BIOS
should attempt several retries to see if the error is iecoverable
before returning the error code.

If an error occurs in a system that supports automatic density
selection, the system should verify the density of the drive. If
the density has changed, return a OFFH in the accumulator. This
causes the BDOS to terminate the current operation and relog in the
disk.

BIOS Function 14: WRITE

Write a Sector to the Specified Disk

Entry Parameters: C=Deblocking Codes

Returned Values: A=OOOH if no error occurred
A=OOlH if physical error occurred
A=OO2H if disk is Read~Only
A=OFFH if media has changed

Write the data from the currently selected DMA address to the
currently selected drive, track, and sector. Upon each call to
WRITE, the BOOS provides the following information in register C:

o deferred write
1 nondeferred write
2 deferred write to the first sector of a new data block

All Information Presented Here is Proprietary to Digital Research

61

CP/M 3 System Guide 3.4 BI9S-Subroutine Entry Points

This information is provided for those BIOS implementations that do
blocking/deblocking in the BIOS instead of the BDOS.

As in READ, the BIOS should attempt several retries before
reporting an error.

If an error occurs in a system that supports automatic density
selection, the system should verify the density of the drive. If
the density has changed, return a OFFH in the accumulator. This
causes the BOOS to terminate the current operation and relog in the
disk.

BIOS Function 16: SECTRN

Translate Sector Number Given Translate Table

Entry Parameters: BC=Logical Sector Number
DE=Translate Table Address

Returned Values: HL=Physical Sector Number

SECTRN performs logical sequential sector address to physical
sector translation to improve the overall response of CP/M 3.
Digital Research ships standard CP/M disk with a skew factor of 6,
where six physical sectors are skipped between each logical read
operation. This skew factor allows enough time between sectors for
most programs on a slow system to process their buffers without
missing the next sector. In computer systems that use fast
processors, memory, and disk subsystems, you can change the skew
factor to improve overall response. Typically, most disk systems
per form well wi th a skew of every other physical sector. You should
maintain support of single-density, IBM 3740 compatible disks using
a skew factor of 6 in your CP/M 3 system to allow information
transfer to and from other CP/M users.

SECTRN receives a logical sector number in BC, and a translate
table address in DE. The logical sector number is relative to zero.
The translate table address is obtained from the Disk Parameter
Block for the currently selected disk. The sector number is used as
an index into the translate table, wi th the resul ting physical
sector number returned in HL. For standard, single-density, eight­
inch disk systems, the tables and indexing code are provided in the
sample BIOS and need not be changed.

Certain drive types either do not need skewing or perform the
skewing externally from the system software. In this case, the skew
table address in the DPH can be set to zero, and the SECTRN routine
can check for the zero in DE and return with the physical sector set
to the logical sector.

All Information Presented Here is Proprietary to Digital Research

62

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 23: MULTIO

Set Count of Consecutive Sectors
for READ or WRITE

Entry Parameters: C = Mul tisector Count

Returned Values: None

To transfer logically consecutive disk sectors to or from
contiguous memory locations, the BDOS issues a MULTIO call, followed
by a ser ies of READ or WRITE calls. This allows the BIOS to
transfer multiple sectors in a single disk operation. The maximum
value of the sector count is dependent on the physical sector size,
ranging from 128 with l28-byte sectors, to 4 with 4096-byte sectors.
Thus, the BIOS can transfer up to 16K directly to or from the TPA
with a single operation.

The BIOS can directly transfer all of the specified sectors to
or from the DMA buffer in one operation and then count down the
remaining calls to READ or WRITE.

If the disk format uses a skew table to minimize rotational
latency when single records are transferred, it is more difficult to
optimize transfer time for multi sector transfers. One way of
utilizing the multisector count with a skewed disk format is to
place the sector numbers and associated DMA addresses into a table
until ei~her the residual multisector count reaches zero, or the
track number changes. Then you can sort the saved -requests by
physical sector to allow all of the required sectors on the track to
be read in one rotation. Each sector must be transferred to or from
its proper DMA address.

When an error occurs during a multisector transfer, you can
either reset the multiple sector counters in the BIOS and return the
error immediately, or you can save the error status and return it to
the BDOS on the last READ or WRITE call of the MULTIO operation.

All Information Presented Here is Proprietary to Digital Research

63

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 24: FLUSH

Force Physical Buffer Flushing
for User-supported Deblocking

Entry Parameters: None

Returned Values: A=OOOH if no error occurred
A=OOIH if physical error occurred
A=OO2H if disk is Read-Only

The flush buffers entry point allows the system to force
physical sector buffer flushing when your BIOS is performing its own
record blocking and deblocking.

The BOOS calls the FLUSH routine to ensure that no dirty
buffers remain in memory. The BIOS should immediately write any
buffers that contain unwritten data.

Normally, the FLUSH function is superfluous, because the BOOS
supports blocking/deblocking internally. It is required, however,
for those systems that support blocking/deblocking in the BIOS, as
many CP/M 2.2 systems do.

Note: if you do not implement FLUSH, the routine must return a zero
in Register lAo You can accomplish this wi th th.e following
instructions:

xra a
ret

3.4.4 Memory Select and Move Functions

This section defines the memory management functions MOVE,
XMOVE, SELMEM, and SETBNK.

All Information Presented Here is Proprietary to Digital Research

64

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

SIOS Function 25: MOVE

Memory-to-Memory Block Move

Entry Parameters: HL = Destination address
DE = Source address
BC = Count

Returned Values: HL and DE must point to
next bytes following move
operation

The BDOS calls the MOVE routine to perform memory to memory
block moves to allow use of the Z8D LDIR instruction or special DMA
hardware, if available. Note that the arguments in HL and DE. are
reversed from the Z8D machine instruction, necessitating the use of
XCHG instructions on either side of the LDIR. The BDOS uses this
routine for all large memory copy operations. On return, the HL and
DE registers are expected to point to the next bytes following the
move.

Usually, the BDOS expects MOVE to transfer data within the
currently selected bank or common memory. However, if the BDOS
calls the XMOVE entry point before calling MOVE, the MOVE routine
must perform an interbank transfer.

All Information Presented Here is proprietary to Digital Research

65

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

BIOS Function 27: SELMEM

Select Memory Bank

Entry Parameters: A = Memory Bank

Returned Values: None

The SELMEM entry point is only present in banked systems. The
banked version of the CP/M 3 BDOS calls SELMEM to select the current
memory bank for further instruction execution or buffer references.
You must preserve or restore all registers other than the
accumulator, A, upon exit.

BIOS Function 28: SETBNK

Specify Bank for DMA Operation

Entry Parameters: A = Memory Bank

Returned Values: None

SETBNK only occurs in the banked version of CP/M 3. SETBNK
specifies the bank that the subsequent disk READ or WRITE routine
must use for memory transfers. The BDOS always makes a call to
SETBNK to identify the DMA bank before performing a READ or WRITE
calL Note that the BDOS does not reference banks other than a or I
unless another bank is specified by the BANK field of a Data Buffer
Control Block (BCB).

BIOS Function 29: XMOVE

Set Banks for Following MOVE

Entry Parameters: B=destination bank
C=source bank

Returned Values: None

XMOVE is provided for banked systems that support memory-to­
memory DMA transfers over the entire extended address range.
Systems with this feature can have their data buffers located in an

All Information Presented Here is Proprietary to Digital Research

66

CP/M 3 System Guide 3.4 BIOS Subroutine Entry Points

alternate bank instead of in common memory, as is usually required.
An XMOVE call affects only the following MOVE call. All subsequent
MOVE calls apply to the memory selected by the latest call to
SELMEM. After a call to the XMOVE function, the following call to
the MOVE function is not more than 128 bytes of data. If you do not
implement XMOVE, the first instruction must be a RET instruction.

3.4.5 Clock Support Function

This section defines the clock support function TIME.

BIOS Function 26: TIME

Get and Set Time

Entry Parameters: C = Time Get/Set Flag

Returned values: None

The BDOS calls the TIME function to indicate to the BIOS
whether it has just set the Time and Date fields in the SCB, or
whether the BDOS is about to get the Time and Date from the SCB. On
entry to the TIME function, a zero in register C indicates that the
BIOS should update the Time and Date fields in the SCB. A OFFH in
register C indicates that the BOOS has just set the Time and Date in
the SCB and the BIOS should update its clock. Upon exit, you must
restore register pairs HL and DE to their entry values.

This entry point is for systems that must interrogate the clock
to determine the time. Systems in which the clock is capable of
generating an interrupt should use an interrupt service routine to
set the Time and Date fields on a regular basis.

3.5 Banking Considerations

This section discusses considerations for separating your BIOS
into resident and banked modules. You can place part of your
customized BIOS in common memory, and part of it in Bank O.
However, the following data structures and routines must remain in
common memory:

• the BIOS stack
• the BIOS jump vector
• Disk Parameter Blocks
• memory management routines
• the CHRTBL data structure
o all character I/O routines
• portions of the disk I/O routines

All Information Presented Here is Proprietary to Digital Research

67

CP/M 1 System Guide 3.5 Banking Considerations

You can place portions of the disk I/O routines in the system
bank, Bank O. In a banked environment, if the disk I/O hardware
supports DMA transfers to and from banks other than the currently
selected bank, the disk I/O drivers can reside in Bank O. If the
system has a DMA controller that supports block moves from memory to
memory between banks, CP/M 3 also allows you to place the blocking
and deblocking buffers in any bank other than Bank 1, instead of
common memory.

If your disk controller supports data transfers only into the
currently selected bank, then the code that initiates and performs a
data transfer must reside in common memory. In this case, the disk
I/O transfer routines must select the DMA bank, perform the
transfer, then reselect Bank O. The routine in common memory
performs the following procedure:

1) Selects the DMA bank that SETBNK saved.
2) Performs physical I/O.
3) Reselects Bank O.
4) Returns to the calling READ or WRITE routine in Bank O.

Note that Bank 0 is in context (selected) when the BDOS calls
the system initialization functions BOOT and DRVTBL; the disk I/O
routines HOME, SELDSK, SETTRK, SETSEC, SETDMA, READ, WRITE, SECTRN,
MULTIO, and FLUSH; and the memory management routines XMOVE and
SETBNK.

Bank 0 or Bank 1 is in context when the BDOS calls the system
ini tialization routines WBOOT, DEVTBL, and DEVINI; the character I/O
routines CONST, CONIN, CONOUT, LIST, AUXOUT, AUXIN, LISTST, CONOST,
AUXIST, and AUXOST, the memory select and move routines MOVE and
SELMEM, and the clock support routine TIME.

You can place a portion of the character I/O routines in Bank 0
if you place the following procedure in common memory.

1) Swap stacks to a local stack in common.
2) Save the current bank.
3) Select Bank O.
4) Call the appropriate character I/O routine.
5) Reselect the saved bank.
6) Restore the stack.

All Information Presented Here is Proprietary to Digital Research

68

CP/M 3 System Guide 3.6 Assembling and Linking Your BIOS

3.6 Assembling and Linking Your BIOS

This section assumes you have developed a BIOS3.ASM or
BNKBIOS3.ASM file appropriate to your specific hardware environment.
Use the Digi tal Research Relocatable Macro Assembler RMAC™ to
assemble the BIOS. Use the Digital Research Linker LINK-8O™ to
create the BIOS3.SPR and BNKBIOS3.SPR files. The SPR files are part
of the input to the GENCPM program.

In a banked environment, your CP/M 3 BIOS can consist of two
segments: a banked segment and a common segment. This allows you
to minimize common memory usage to maximize the size of the TPA. To
prepare a banked BIOS, place code and data that must reside in
common in the CSEG segment, and code and data that can reside in the
system bank in the DSEG segment. When you link the BIOS, LINK-80
creates the BNKBIOS3.SPR file with all the CSEG code and data first,
and then the DSEG code and data.

After assembling the BIOS with RMAC, link your BNKBIOS using
LINK-80 with the [B] option. The [B] option aligns the DSEG on a
page boundar y, and places the length of the CSEG into the
BNKBIOS3.SPR header page.

Use the following procedure to prepare a BIOS3.SPR or
BNKBIOS3.SPR file from your customized BIOS.

1) Assemble your BIOS3.ASM or BNKBIOS3.ASM file with the
relocatable assembler RMAC.COM to produce a relocatable
file of type REL. Assemble SCB. ASM to produce the
relocatable file SCB.REL.

Assembling the Nonbanked BIOS:

A>RMAC BIOS3

Assembling the Banked BIOS:

A>RMAC BNKBIOS3

2) Link the BIOS3. REL or BNKBIOS3. REL file and the SCB. REL file
wi th LINK-80 to produce the BIOS3. SPR or BNKBIOS3. SPR file.
The [OS] option with LINK causes the output of a System
Page Relocatable (SPR) file.

Linking the Nonbanked BIOS:

A>LINK BIOS3[OS]=BIOS3,SCB

Linking the Banked BIOS:

A>LINK BNKBIOS3[B]=BNKBIOS3,SCB

All Information Presented Here is Proprietary to Digital Research

69

CP/M 3 System Guide 3.6 Assembling and Linking Your BIOS

The preceding examples show command lines for linking a banked
and non ban ked BIOS. In these examples, the BIOS3. REL and
BNKBIOS3.REL are the files of your assembled BIOS. SCB.REL contains
the definitions of the System Control Block variables. The [B]
option implies the [OS] option.

End of Section 3

All Information Presented Here is Proprietary to Digital Research

70

Section 4
CP/M 3 Sample BIOS Modules

This section discusses the modular organization of the example
CP/M 3 BIOS on your distribution disk. For previous CP/M operating
systems, it was necessary to generate all input/output drivers from
a single assembler source file. Such a file is difficult to
maintain when the BIOS supports several peripherals. As a result,
Digital Research is distributing the BIOS for CP/M 3 in several
small modules.

The organization of th'e BIOS into separate modules allows you
to write or modify any I/O driver independently of the other
modules. For example, you can easily add another disk I/O driver
for a new controller with minimum impact on the other parts of the
BIOS.

4.1 Functional Summary of BrOS Modules

The modules of the BIOS are BIOSKRNL.ASM, SCB.ASM, BOOT.ASM,
MOVE.ASM, CHARIO.ASM, DRVTBL.ASM, and a disk I/O module for each
supported disk controller in the configuration.

BIOSKRNL.ASM is the kernel, root, or supervisor module of the
BIOS. The SCB.ASM module contains references to locations in the
System Con trol Block. You can customize the other modules to
support any hardware configuration. To customize your system, add
or modify external modules other than the kernel and the SCB.ASM
module.

Digital Research supplies the BIOSKRNL.ASM module. This module
is the fixed, invariant portion of the BIOS, and the interface from
the BDOS to all BIOS~functions. It is supplied in source form for
reference only, and you should not modify it except for the equate
statement described in the following paragraph.

You must be sure the equate statement (banked equ true) at the
start of the BIOSKRNL.ASM source file is correct for your system
configuration. Digital Research distributes the BIOSKRNL.ASM file
for a banked system. If you are creating a BIOS for a nonbanked
system, change the equate statement to the following:

banked equ false

and reassemble with RMAC. This is the only change you should make
to the BIOSKRNL.ASM file.

Table 4-1 summarizes the modules in the CP/M 3 BIOS.

All Information Presented Here is Proprietary to Digital Research

71

CP/M 3 System Guide 4.1 Functional Summary of BIOS Modules

Table 4-1. CP/M 3 aIOS Module Function Summary

Module

BIOSKRNL.ASM

Function

Performs basic system initialization, and
dispatches character and disk I/O.

SCB.ASM module

contains the public definitions of the
various fields in the System Control Block.
The BIOS can reference the public variables.

BOOT.ASM module

Performs system initialization other than
character and disk I/O. BOOT loads the CCP
for cold starts and reloads it for warm
starts.

CHARIO.ASM module

Performs all character device initialization,
input, output, and status polling. CHARlO
contains the character device character istics
table.

DRVTBL.ASM module

points to the data structures for each
configured disk drive. The drive table
determines which physical disk un it is
associated with which logical drive. The
data structure for each disk drive is called
an Extended Disk Parameter Header (XDPH).

Disk I/O modules

Initialize disk controllers and execute R~AD
and WRITE code for disk controllers. You
must provide an XDPH for each supported unit,
and a separa te disk I/O module for each
con troller in the system. To add another
disk controller for which a prewr i tten module
exists, add its XDPH names to the DRVTBL and
link in the new module.

All Information Presented Here is proprietary to Digital Research

72

CP/M 3 System Guide 4.1 Functional Summary of BIOS Modules

Table 4-1. (continued)

Module Function

MOVE.ASM module

Performs memory-to-memory moves and bank
selects.

4.2 Conventions Used in BIOS Modules

The Digital Research RMAC relocating assembler and LINK-SO
linkage editor allow a module to reference a symbol contained in
another module by name. This is called an external reference. The
MicroSoft® relocatable object module format that RMAC and LINK use
allows six-character names for externally defined symbols. External
names must be declared PUBLIC in the module in which they are
defined. The external names must be declared EXTRN in any modules
that reference them.

The modular BIOS defines a number of external names for
specific purposes. Some of these are defined as public in the root
module, BIOSKRNL.ASM. Others are declared external in the root and
must be defined by the system implementor. Section 4.4 contains a
table summar izing all predefined external symbols used by the
modular BIOS.

External names can refer to either code or data. All
predefined external names in the modular BIOS prefixed with a @
character refer to data items. All external names prefixed with a ?
character refer to a code label. To prevent conflicts with future
extensions, user-defined external names should not contain these
characte~s.

4.3 Interactions of Modules

The root module of the BIOS, BIOSKRNL.ASM, handles all BOOS
calls, performs interfacing functions, and simplifies the individual
modules you need to create.

4.3.1 Initial Boot

BIOSKRNL.ASM initializes all configured devices in the
following order:

1) BIOSKRNL calls ?CINIT in the CHARlO module for each of the
16 character devices and initializes the devices.

2) BIOSKRNL invokes the INIT entry point of each XOPH in the
FD1797S0 module.

All Information Presented Here is Proprietary to Digital Research

73

CP/M 3 System Guide 4.3 Interactions of Modules

3) BIOSKRNL calls the ?INIT entry of the BOOT module to
initialize other system hardware, such as memory
controllers, interrupts, and clocks. It prints a sign-on
message specific to the system, if desired.

4) BIOSKRNL calls ?LDCCP in the BOOT module to load the CCP
into the TPA.

5) The BIOSKRNL module sets up Page Zero of the TPA with the
appropriate jump vectors, and passes control to the CCP.

4.3.2 Character I/O Operation

The CHARlO module performs all physical character I/O. This
module contains both the character device table (@CTBL) and the
routines for character input, output, initialization, and status
polling. The character device table, @CTBL, contains the ASCII name
of each device, mode information, and the current baud rate of
serial devices.

TO support logical to physical redirection of character
devices, CP/M 3 supplies a 16-bit assignment vector for each logical
device. The bits in these vectors correspond to the physical
devices. The character I/O interface routines in BIOSKRNL handle
all device assignment, calling the appropriate character I/O
routines with the correct device number. The BIOSKRNL module also
handles XON/XOFF processing on output devices where it is enabled.

You can use the DEVICE utili ty to assign several physical
devices to a logical device. The BIOSKRNL root module polls the
assigned physical devices, and either reads a character from the
first ready input device that is selected, or sends the character to
all of the selected output devices as they become ready.

4.3.3 Disk I/O Operation

The BIOSKRNL module handles all BIOS calls associated wi th disk
I/O. It initializes global variables with the parameters for each
opera tion, and then invokes the READ or WRITE routine for a
particular controller. The SELDSK routine in the BIOSKRNL calls the
LOGIN routine for a controller when the BDOS initiates a drive
login. This allows disk density or media type to be automatically
determined.

The DRVTBL module contains the sixteen-word dr ive table, @DTBL.
The order of the entries in @DTBL determines the logical to physical
drive assignment. Each word in @DTBL contains the address of a DPH,
which is part of an XDPH, as shown in Table 4-10. The word contains
a zero if the dr i ve does not exist. The XDPH contains the addresses
of the INIT, LOGIN, READ, and WRITE entry points of the I/O driver
for a particular controller. When the actual drivers are called,
globally accessible variables contain the various parameters of the
operation, such as the track and sector.

All Information Presented Here is Proprietary to Digital Research

74

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

4.4 Predefined Variables and Subroutines

The modules of the BIOS define public variables which other
modules can reference. Table 4-2 contains a summary of each public
symbol and the module that defines it.

symbol

@ADRV
@CBNK
@CNT
@CTBL
@DBNK
@DMA
@DTBL
@RDRV
@SECT
@TRK

?BANK
?CI
?CINIT
?CIST
?CO
?COST
?INIT
?LDCCP
?MOVE
?PDEC
?PDERR
?PMSG
?RLCCP
?XMOVE
?TlME

Table 4-2. Public Symbols in CP/M 3 BIOS

I Function and Use I Defined in Module

Byte, Absolute drive code BIOSKRNL
Byte, Current CPU bank BIOSKRNL
Byte, Multisector count BIOSKRNL
Table, Character device table CHARlO
Byte, Bank for disk I/O BIOSKRNL
Word, DMA address BIOSKRNL
Table, Drive table DRVTBL
Byte, Relative drive code (UNIT) BIOSKRNL
Word, Sector address BIOSKRNL
Word, Track number BIOSKRNL

Bank select
Character device input
Character device initialization
Character device input status
Character device output
Character device output status
General initialization
Load CCP for cold start
Move memory to memory
Print decimal number
Print BIOS disk error header
Print message
Reload CCP for warm start
Set banks for extended move
Set or Get time

MOVE
CHARlO
CHARlO
CHARlO
CHARlO
CHARlO
BOOT
BOOT
MOVE
BIOSKRNL
BIOSKRNL
BIOSKRNL
BOOT
MOVE
BOOT

The System Control Block defines public variables that other
modules can reference. The System Control Block variables @C~VEC,
@COVEC, @AIVEC, @AOVEC, and @LOVEC are referenced by BIOSKRNL.ASM.
The variable @BNKBF can be used by ?LDCCP and ?RLCCP to implement
interbank block moves. The public variable names @ERMDE, @FX,
@RESEL, @VINFO, @CRDSK, @USRCD, and @CRDMA are used for error
routines which intercept BDOS errors. The publics @DATE, @HOUR,
@MIN, and @SEC can be updated by an interrupt-driven real-time
clock. @MXTPA contains the current BDOS entry point.

Disk I/O operation parameters are passed in the following
global variables, as shown in Table 4-3.

All Information Presented Here is Proprietary to Digital Research

75

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

Table 4-3. Global Variables in BIOSKRNL.ASM

Variable Meaning

@ADRV Byte: contains the absolute drive code (0
through F for A through P) that CP/M ~s

referencing for READ and WRITE operations. The
SELDSK routine in the BIOSKRNL module obtains
this value from ~he BDOS and places it in @DRV.
The absolute dr i-ve code is used to pr int error
messages.

@RDRV Byte: contains the relative drive code for READ
and WRITE operations. The relative drive code
is the UNIT number of the controller in a given
disk I/O module. BIOSKRNL obtains the unit
number f rom the XDPH. This is the actual drive
code a driver should send to the controller.

@TRK Word: contains the starting track for READ and
WRITE.

@SECT Word: contains the starting sector for READ and
WRITE.

@DMA Word: contains the star ting disk transfer
address.

@DBNK Byte; contains the bank of the DMA buffer.

@CNT Byte: contains the physical sector count for
the operations that follow.

@CBNK Byte: contains the current bank for code
execution.

Several utility subroutines are defined in the BIOSKRNL.ASM
module, as shown in Table 4-4.

Table 4-4. Public utility Subroutines in BIOSKRNL.ASM

utility Meaning

?PMSG Print string starting at <HL>, stop at null
(0) •

?PDEC Print binary number in decimal from HL.

?PDERR Print disk error message header using current
disk parameters: <CR> <LF>BIOS Error on d: , T-
nn, S-nn.

All Information Presented Here is Proprietary to Digital Research

76

CP/M 3 System Guide 4.4 Predefined Variables and Subroutines

All BIOS entry points in the jump vector are declared as public
for general reference by other BIOS modules, as shown in Table 4-5.

Table 4-5. Public Names in the BIOS Jump Vector

Public Name 1
?BOOT
?WBOOT
?CONST
?CONIN
?CONO
?LIST
?AUXO
?AUXI
?HOME
?SLDSK
?STTRK
?STSEC
?STDMA
?READ
?WRITE
?LISTS
?SCTRN
?CONOS
?AUXIS
?AUXOS
?DVTBL
?DEVIN
?DRTBL
?MLTIO
?FLUSH
?MOV
?TIM
?BNKSL
?STBNK
?XMOV

4.5 BOOT Module

Function

Cold boot en try
Warm boot entry
Console input status
Console input
Console output
List output
Auxiliary output
Auxiliary input
Home disk drive
Select disk drive
Set track
Set sector
Set DMA address
Read record
Write record
List status
Translate sector
Console output status
Auxiliary input status
Auxiliary output status
Return character device table address
Initialize character device
Return disk drive table address
Set multiple sector count
Flush deblocking buffers (not implemented)
Move memory block
Signal set or get time from clock
Set bank for further execution
Set bank for DMA
Set banks for next move

The BOOT module performs general system initialization, and
loads and reloads the CCP. Table 4-6 shows the entry points of the
BOOT module.

All Information Presented Here is Proprietary to Digital Research

77

CP/M System Guide 4.5 BOOT Module

Table 4-6. BOOT Module Entry Points

Module I
?INIT

?LDCCP

?RLCCP

4.6 Chci-racter I/O

Meaning

The BIOSKRNL module calls ? INIT dur ing
cold start to perform hardware
initialization other than character and
disk I/O. Typically, this hardware can
include time-of-day clocks, interrupt
systems, and special I/O ports used for
ban k selection.

BIOSKRNL calls ?LDCCP during cold start to
load the CCP into the TPA. The CCP can be
loaded ei ther from the system tracks of
the boot device or from a file, at the
discretion of the system implementor. In
a banked system, you can place a copy of
the CCP in a reserved area of another bank
to increase the performance of the ?RLCCP
routine.

BIOSKRNL calls ?RLCCP during warm start to
reload the CCP into the TPA. In a banked
system, the CCP can be copied from an
alternate bank to eliminate any disk
access. Otherwise, the CCP should be
loaded from ei ther the system tracks of
the boot device or from a file.

The CHARlO module handles all character device interfacing.
The CHARlO module contains the character device definition table
@CTBL, the character input routine ?CI, the character output routine
?CO, the character input status routine ?CIST, the character output
status routine ?COST, and the character device initialization
routine ?CINIT.

The BIOS root module, BIOSKRNL.ASM, handles all character I/O
redi recti on. This module determines the appropr iate devices to
perform operations and executes the actual operation by calling ?CI,
?CO, ?CIST, and ?COST with the proper device number(s).

@CTBL is the external name for the structure CHRTBL described
in Section 3 of this manual. @CTBL contains an 8-byte entry for
each physical device defined by this BIOS. The table is terminated
by a zero byte after the last entry.

The first field of the character device table, @CTBL, is the 6-
byte device name. This device name should be all upper-case, left­
justified, and padded with ASCII spaces (20H).

All Information Presented Here is Proprietary to Digital Research

78

CP/M 3 System Guide 4.6 Character I/O

The second field of @CTBL is 1 byte containing bits that
indicate the type of device and its current mode, as shown in Table
4-7.

Mode Bits I
00000001
00000010
00000011

00000100

00001000
00010000

Table 4-7. Mode Bits

Meaning

Input device (such as a keyboard)
Output device (such as a printer)
Input/output device (such as a terminal
or modem)
Device has software-selectable baud
rates
Device may use XON protocol
XON/XOFF protocol enabled

The third field of @CTBL is 1 byte and contains the current
baud rate for serial devices. The high-order nibble of this field
is reserved for future use and should be set to zero. The low-order
four bits contain the current baud rate as shown in Table 4-8. Many
systems do not support all of these baud rates.

Table 4-8 Baud Rates for Serial Devices

Decimal J Binary I Baud Rate

0 0000 none
1 0001 50
2 0010 75
3 0011 110
4 0100 134.5
5 0101 150
6 0110 300
7 0111 600
8 1000 1200
9 1001 1800
10 1010 2400
11 1011 3600
12 1100 4800
13 1101 7200
14 1110 9600
15 1111 19200

Table 4-9 shows the entry points to the routines in the CHARlO
module. The BIOSKRNL module calls these routines to perform
machine-dependent character I/O.

All Information Presented Here is proprietary to Digital Research

79

CP/M 3 System Guide 4.6 Character I/O

Table 4-9. Character Device Labels

Label I Meaning

?CI Character Device Input

?CI is called with a device number in register
B. It should wai t for the next available input
character, then return the character in
register A. The character should be in a-bit
ASCII with no parity.

?CO Character Device Output

?CIST

?COST

?CO"is called wi th a device number in register
B and a character in register C. It should
wait until the device is ready to accept
another character and then send the character.
The character is in a-bit ASCII with no parity.

Character Device Input Status

?CIST is called wi th a device n umber in
register B. It should return with register A
set to zero if the device specified has no
input character ready; and should return wi th A
set to OFFH if the device specified has an
input character ready to be read.

Character Device Output Status

?COST is called wi th a device number in
register B. It should return with register A
set to zero if the device specified cannot
accept a character immediately, and should
return wi th A set to OFFH if the device is
ready to accept a character.

?CINIT Character Device Initialization

?CINIT is called for each of the 16 character
devices, and ini tializes the devices. Register
C contains the device number. The ?CINIT
routine ini tiali zes the physical character
device specified in register C to the baud rate
contained in the app',ropriate entry of the
CHRTBL. You only need lito supply this routine
if I/O redirection has been implemented. It is
referenced only by the DEVICE utility.supplied
with CP/M 3.

All Information Presented Here is Proprietary to Digital Research

ao

CP/M 3 System Guide 4.7 Disk I/O

4.7 Disk I/O

The separation of the disk I/O section of the BIOS into several
modules allows you to support each particular disk controller
independently from the rest of the system. A manufacturer can
supply the code for a controller in object module form, and you can
I in kit into any existing modular BIOS to function wi th other
controllers in the system.

The data structure called the Extended Disk Parameter Header,
or XDPH, contains all the necessary information about a disk drive.
BIOSKRNL.ASM locates the XDPH for a particular logical drive using
the Drive Table. The XDPH contains the addresses of the READ,
WRITE, initialization, and login routines. The XDPH also contains
the relative unit number of the drive on the controller, the current
media type, and the Disk Parameter Header (DPH) that the BDOS
requires. Section 3 of this manual describes the Disk Parameter
Header.

The code to read and wr i te from a particular dr ive is
independent of the actual CP/M logical drive assignment, and works
with the relative unit number of the drive on the controller. The
position of the XDPH entry in the DRVTBL determines the actual CP/M
3 drive code.

4.7.1 Disk I/O Structure

The BIOS requires a DRVTBL module to locate the disk driver.
It also requires a disk module for each controller that is
supported.

The drive table module, DRVTBL, contains the addresses of each
XDPH defined in the system. Each XDPH referenced in the DRVTBL must
be declared external to link the table wi th the actual disk modules.

The XDPHs are the only public entry points in the disk I/O
modules. The root module references the XDPHs to locate the actual
I/O driver code to perform sector READS and WRITES. When the READ
and WRITE routines are called, the parameters controlling the READ
or WRITE operation are contained in a series of global variables
that are declared public in the root module.

4.7.2 Drive Table Module (DRVTBL)

The drive table module, DRVTBL, defines the CP/M absolute drive
codes associated with the physical disks.

The DRVTBL module contains one public label, @DTBL. @DTBL is a
16-word table containing the addresses of up to 16 XDPH's. Each
XDPH name must be declared external in the DRVTBL. The first entry
corresponds to drive A, and the last to drive P. You must set an
entry to a if the cor'responding drive is undefined. Selecting an
undefined drive causes a BDOS SELECT error.

All Information Presented Here is proprietary to Digital Research

81

CP/M 3 System Guide 4.7 Disk I/O

4.7.3 Extended Disk Parameter Headers (XDPHs)

An Extended Disk Parameter Header (XDPH) consists of a prefix
and a regular Disk Parameter Heaaer as described in Section 3. The
label ofaXDPH references the start of the DPH. The fields of the
prefix are located at relative offsets from the XDPH label.

The XDPHs for each unit of a controller are the only entry
points in a particular disk drive module. They contain both the DPH
for the drive and the addresses of the various action routines for
that drive, including READ, WRITE, and initialization. Figure 4-1
below shows the format of the Extended Disk parameter Header.

ADDRESS

o

XDPH-IO

XDPH-8

XDPH-6

XDPH-4

XDPH-2

XDPH+O

XDPH+2

XDPH+4

XDPH+6

XDPH+8

XDPH+lO

XDPH+12

XDPH+14

XDPH+16

XDPH+18

XDPH+20

XDPH+22

XDPH+24

LOW BYTE HIGH BYTE

7 8

addr of sector WRITE

addr of sector READ

addr of drive LOGIN

addr of drive INIT

unit type

addr of translate table

0 0

0 0

0 0

0 0

Media Flag a

addr of DPB

addr of CSV

addr of ALV

addr of DIRBCB

addr of DTABCB

addr of HASH

hash bank

Figure 4-1. XDPH Format

15

start of
<--regular DPH

All Information Presented Here is proprietary to Digital Research

82

CP/M 3 System Guide 4.7 Disk I/O

Table 4-10 describes the fields of each Extended Disk Parameter
Header.

Field I
WRITE

READ

LOGIN

INIT

UNIT

TYPE

regular DPH

Table 4-10. Fields of Each XDPH

Meaning

The WRITE word contains the address of the
sector WRITE routine for the drive.

The READ word contains the address of the
sector READ routine for the drive.

The LOGIN word contains the address of the
LOGIN routine for the drive.

The INIT word contains the address of the
first-time initialization code for the
drive.

The UNIT byte contains the drive code
relative to the disk controller. This is
the value placed in @RDRV prior to calling
the READ, WRITE, and LOGIN en try points of
the dr ive.

The TYPE byte is unused by the BIOS root,
and is reserved for the driver to keep the
current density or media type to support
multiple-format disk subsystems.

The remaining fields of the XDPH comprise
a standard DPH, as discussed in Section 3
of this manual.

4.7.4 Subroutine Entry Points

The pointers contained in the XDPH reference the actual code
entry points to a disk driver module. These routines are not
declared public. Only the XDPH itself is public. The BIOS root
references the XDPHs only through the @DTBL. Table 4-11 shows the
BIOS subro~tine entry points.

All Information Presented Here is proprietary to Digital Research

83

CP/M 3 System Guide 4.7 Disk I/O

Table 4-11. Subroutine Entry Points

Entry Point I Meaning

4.7.5

WRITE

READ

LOGIN

INIT

When the WRITE routine is called, the
address of the XDPH is passed in registers
DE. The parameters for the WRITE
operation are contained in the public
variables @ADRV, @RDRV, @TRK, @SECT, @DMA,
and @DBNK. The WRITE routine should
return an error code in register A. The
code 00 means a successful operation, 01
means a permanent error occurred, and 02
means the drive is write-protected if that
feature is supported.

When the READ routine is called, the
address of the XDPH is contained in
registers DE. The parameters for the READ
operation are contained in the public
variables @ADRV, @RDRV, @TRK, @SECT, @DMA,
and @DBNK. The READ routine should return
an error code in register A. A code of 00
means a successful operation and 01 means
a permanent error occurred.

The LOGIN routine is called before the
BDOS logs into the drive, and allows the
automatic determination of density. The
LOGIN routine can alter the various
parameters in the DPH, including the
translate table address (TRANS) and the
Disk Parameter Block (DPB). The LOGIN
routine can also set the TYPE byte. On
single media type systems, the LOGIN
routine can simply return. When LOGIN is
called, the registers DE point to the XDPH
for this drive.

The BOOT entry of the BIOSKRNL module
calls each INIT routine during cold start
and pr ior to any other disk accesses.
INIT can perform any necessary hardware
initialization, such as setting up the
controller and interrupt vectors, if any.

Error Handling and Recovery

The READ and WRITE routines should perform several retries of
an operation that produces an error. If the error is related to a
seek operation or a record not found condition, the retry routine
can home or restore the drive, and then seek the correct track. The
exact sequence of events is hardware-dependent.

All Information Presented Here is Proprietary to Digital Research

84

CP/M 3 System Guide 4.7 Disk I/O

When a nonrecoverable error occurs, the READ or WRITE routines
can print an error message informing the operator of the details of
the error. The BIOSKRNL module supplies a subroutine, ?PDERR, to
print a standard BIOS error message header. This routine prints the
following message:

BIOS Err on D: T-nn S-nn

where D: is the selected drive, and T-nn and S-nn display the track
and sector number for the operation. The READ and WRITE routines
should print the exact cause of the error after this message, such
as Not Ready, or Write Protect. The driver can then ask the
operator if additional ret~ies are desired, and return an error code
to the BDOS if they are not.

However, if the @ERMDE byte in the System Control Block
indicates the BDOS is returning error codes to the application
program without printing error messages, the BIOS should simply
return an error without any message.

4.7.6 Multiple Section I/O

The root module global variable @CNT contains the multi sector
count. Refer to Sections 2.5 and 3.4.3 for a discussion of the
considerations regarding multirecord I/O.

4.8 MOVE Module

The MOVE Module performs memory-to-memory block moves and
con trol s ban k selection. The ?MOVE and ?XMOVE entry points
correspond directly to the MOVE and XMOVE jump vector routines
documented in Section 3. Table 4-12 shows the entry points for the
MOVE module.

All Information Presented Here is Proprietary to Digital Research

85

CP/M 3 Sytem Guide 4.8 MOVE Module

Table 4-12. Move Module Entry Points

Entry point Meaning

?MOVE Memory-to-memory move

?MOVE is called with the source address for
the move in register DE, the destination
address in register HL, and the byte count in
register BC. If ?XMOVE has been called since
the last call to ?MOVE, an interbank move must
be performed. On return, registers HL and DE
must point to the next bytes after the MOVE.
This routine can use special DMA hardware for
the interbank move capability, and can use the
Z80 LDIR instruction for intrabank moves.

?XMOVE Set banks for one following ?MOVE

?XMOVE is passed to the source bank in
register B and the destination bank in
register C. Interbank moves are only invoked
if the DPHs specify deblocking buffers in
alternate banks. ?XMOVE only applies to one
call to ?MOVE.

?BANK Set bank for execution

?BANK is called with the bank address in
register A. This bank address has already
been stored in @CBNK for future reference.
All registers except A must be maintained upon
return.

4.9 Linking Modules into the BIOS

The following lines are examples of typical link commands to
build a modular BIOS ready for system generation with GENCPM:

LINK BNKBIOS3[b]=BNKBIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_modules>

LINK BIOS3[b]=BIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_moduIes>

End of Section 4

All Information Presented Here is Proprietary to Digital Research

86

Section 5
System Generation

This section describes the use of the GENCPM utility to create
a memory image CPM3.SYS file containing the elements of the CP/M 3
operating system. This section also describes customizing the
LDRBIOS portion of the CPMLDR program, and the operation of CPMLDR
to read the CPM3.SYS file into memory. Finally, this section
describes the procedure to follow to boot CP/M 3.

In the nonbanked system, GENCPM creates the CPM3.SYS file fran
the BDOS3.SPR and your customized BIOS3.SPR files. In the banked
system, GENCPM creates the CPM3.SYS file from the RESBOOS3.SPR file,
the BNKBDOS3.SPR file, and your customized BNKBIOS3.SPR file.

If your BIOS contains a segment that can reside in banked
memory, GENCPM separates the code and data in BNKBIOS3.SPR into a
banked portion which resides in Bank a just below common memory, and
a resident portion which resides in common memory.

GENCPM relocates the system modules, and can allocate physical
record buffers, allocation vectors, checksum vectors, and hash
tables as requested in the BIOS data structures. GENCPM accepts its
command input from a file, GENCPM.DAT, or interactively from the
console.

5.1 GENCPM Utility

Syntax:

GENCPM {AUTO I AUTO DISPLAY}

Purpose:

GENCPM creates a memory image CPM3.SYS file, containing the
CP/M 3 BDOS and customized BIOS. The GENCPM utility performs late
resolution of intermodule references between system modules. GENCPM
can accept its command input interactively from the console or from
a file GENCPM.DAT.

In the nonbanked system, GENCPM creates a CPM3.SYS file from
the BDOS3.SPR and BIOS3.SPR files. In the banked system, GENCPM
creates the CPM3.SYS file from the RESBDOS3.SPR, the BNKBDOS3.SPR
and the BNKBIOS3.SPR files. Remember to back up your CPM3.SYS file
before executing GENCPM, because GENCPM deletes any existing
CPM3.SYS file before it generates a new system.

All Information Presented Here is proprietary to Digital Research

87

CP/M 3 System Guide

Input Files:

Ban ked System

BNKBIOS3.SPR
RESBDOS3. SPR
BNKBDOS3.SPR

5.1 The GENCPM Utility

Nonbanked System

BIOS3.SPR
BDOS3.SPR

Optionally GENCPM.DAT

Output File:

CPM3.SYS

Optionally GENCPM.DAT

GENCPM determines the location of the system modules in memory
and, optionally, the number of physical record buffers allocated to
the system. GENCPM can specify the location of hash tables
requested by the Disk Parameter Headers (DPHs) in the BIOS. GENCPM
can allocate all required disk buffer space and create all the
required Buffer Control Blocks (BCBs). GENCPM can also create
checksum vectors and allocation vectors.

GENCPM can get its input from a file GENCPM.DAT. The values in
the file replace the default values of GENCPM. If you enter the
AUTO parameter in the command line GENCPM gets its input from the
file GENCPM.DAT and generates a new system displaying only its sign­
on and sign-off messages on the console. If AUTO is specif ied and a
GENCPM.DAT file does not exist on the current drive, GENCPM reverts
to manual generation.

If you enter the AUTO DISPLAY parameter in the command line,
GENCPM automatically generates a new system and displays all
questions on the console. If AUTO DISPLAY is specified and a
GENCPM.DAT file does not exist on the current drive, GENCPM reverts
to manual generation. If GENCPM is running in AUTO mode and an
error occurs, it reverts to manual generation and starts from the
beginning.

The GENCPM.DAT file is an ASCII file of variable names and
their associated values. In the following discussion, a variable
name in the GENCPM.DAT file is referred to as a Question Variable.
A line in the GENCPM.DAT file takes the following general form:

Question Variable = value I ? I ?value <CR><LF>

value = idecimal value
or hexadecimal value
or drive letter (A - P)
or Yes, NO, Y, or N

All Information Presented Here is Proprietary to Digital Research

88

CP/M 3 System Guide 5.1 The GENCPM Utility

You can specify a default value by following a question mark
wi th the appropr iate value, for example ?A or ?25 or ?Y. The
question mark tells GENCPM to stop and prompt the user for input,
then continue automatically. At a ?value entry, GENCPM displays the
default value and stops for verification.

The following pages display GENCPM questions. The items in
parentheses are the default values. The Question Variable
associated with the question is shown below the explanation of the
answers to the questions.

Program Questions:

Use GENCPM.DAT for defaults (Y) ?

Enter Y - GENCPM gets its default values from the file
GENCPM.DAT.

Enter N - GENCPM uses the built-in default values.

No Question Variable is associated with this question.

Create a new GENCPM.DAT file (N) ?

Enter N - GENCPM does not create a new GENCPM.DAT file.

Enter Y - After GENCPM generates the new CPM3.SYS file it
creates a new GENCPM.DAT file containing the default
values.

Question Variable: CRDATAF

Display Load Table at Cold Boot (Y) ?

Enter Y - On Cold Boot the system displays the load table
containing the filename, fi1etype, hex starting address,
length of system modules, and the TPA size.

Enter N - System displays only the TPA size on cold boot.

Question Variable: PRTMSG

Number of console columns (#80) ?

Enter the number of columns (characters-per-1ine) for your
console.

A character in the last column must not force a new line
for console editing in CP/M 3. If your terminal forces a
new line automatically, decrement the column count by one.

Question Variable: PAGWID

All Information Presented Here is Proprietary to Digital Research

89

CP/M 3 System Guide 5.1 The GENCPM Utility

Number of lines per console page (*24) ?

Enter the number of the lines per screen for your console.

Question Variable: PAGLEN

Backspace echoes erased character (N) ?

Enter N - Backspace (Ctrl-H, 08H) moves back one column and
erases the previous character.

Enter Y - Backspace moves forward one column and displays
the previous character.

Question Variable: BACKSPC

Rubout echoes erased character (Y) ?

Enter Y - Rubout (7FH) moves forward one column and
displays the previous character.

Enter N - Rubout moves back one column and erases the
previous character.

Question Variable: RUBOUT

Initial default drive (A:) ?

Enter the drive code the prompt is to display at cold boot.

Question Variable: BOOTDRV

Top page of memory (FF) ?

Enter the page address that is to be the top of the
operating system. OFFH is the top of a 64K system.

Question Variable: MEMTOP

Bank-switched memory (Y) ?

Enter Y - GENCPM uses the banked system files.

Enter N - GENCPM uses the nonbanked system files.

Question Variable: BNKSWT

Common memory base page (CO) ?

This question is displayed only if you answered Y to the
previous question. Enter the page address of the start of
common memory.

Question Variable: COMB AS

All Information Presented Here is proprietary to Digital Research

90

CP/M 3 System Guide 5.1 The GENCPM Utility

Long error messages (Y) ?

This question is displayed only if you answered Y to bank­
switched memory.

Enter Y - CP/M 3 error messages contain the BDOS function
number and the name of the file on which the operation was
attempted.

Enter N - CP/M 3 error messages do not display the function
number or file.

Question Variable: LERROR

Double allocation vectors (Y) ?

This question is displayed only if you answered N to bank­
swi tched memory. For more information about double
allocation vectors, see the definition of the Disk
Parameter Header ALV field in Section 3.

Enter Y - GENCPM creates double-bit allocation vectors for
each drive.

Enter N - GENCPM creates single-bit allocation vectors for
each drive.

Question Variable: DB LA LV

Accept new system definition (Y) ?

Enter Y - GENCPM proceeds to the next set of questions.

Enter N - GENCPM repeats the previous questions and
displays your previous input in the default parentheses.
You can modify your answers.

No Question Variable is associated with this question.

Number of memory segments (#3) ?

GENCPM displays this question if you answered Y to bank­
switched memory.

Enter the number of memory segments in the system. Do not
count common memory or memory in Bank 1, the TPA bank, as a
memory segment. A maximum of 16 (0 - l5) memory segments
are allowed. The memory segments define to GENCPM the
memory available for buffer and hash table allocation. Do
not include the part of Bank 0 that is reserved for the
operating system.

Question Variable: NUMSEGS

All Information Presented Here is Proprietary to Digital Research

91

CP/M 3 System Guide

CP/M 3 Base,size,bank (8E,32,00)

Enter memory segment table:
Base,size,bank (OO,8E,00) ?
Base,size,bank (00,CO,02) ?
Base,size,bank (00,CO,03) ?

5.1 The GENCPM Utility

Enter the base page, the length, and the bank of the memory
segment.

Question Variable: MEMSEGO# where # = 0 to F hex

Accept new memory segment table entries (Y) ?

Enter Y - GENCPM displays the next group of questions.

Enter N - GENCPM displays the memory segment table
definition questions again.

No Question Variable is associated with this question.

Setting up directory hash tables:

Enable hashing for drive d: (Y) :

GENCPM displays this question if there is a Drive Table and
if the DPHs for a given drive have an OFFFEH in the hash
table address field of the DPH. The question is asked for
every drive d: defined in the BIOS.

Enter Y - Space is allocated for the Hash Table. The
address and bank of the Hash Table is entered into the DPH.

Enter N - No space is allocated for a Hash Table for that
drive.

Question Variable: HASHDRVd where d = drives A-P.

Setting up Blocking/Deblocking buffers:

GENCPM displays the next set of questions if either or both
the DTABCB field or the DIRBCB field contain OFFFEH.

Number of directory buffers for drive d: (#1) ? 10

This question appears only if you are generating a banked
system. Enter the number of directory buffers to allocate
for the specified drive. In a banked system, directory
buffers are allocated only inside Bank O. In a nonbanked
system, one directory buffer is allocated above the BIOS.

Question Variable: NDIRRECd where d = drives A-P.

All Information Presented Here is proprietary to Digital Research

92

CP/M 3 System Guide 5.1 The GENCPM Utility

Number of data buffers for drive d: (#1) ? 1

This question appears only if you are generating a Banked
RVRtpm. Enter the number of data buffers to allocate for
the specified drive. In a banked system, data buffers can
only be allocated outside Bank 1, and in common. You can
only allocate data buffers in alternate banks if your BIOS
supports interbank moves. In a nonbanked system, data
buffers are allocated above the BIOS.

Question Variable: NDTARECd where d = drives A-P.

Share buffer(s) with which drive (A:) ?

This question appears only if you answered zero to either
of the above questions. Enter the drive letter (A-P) of
the drive with which you want this drive to share a buffer.

Question Variable: ODIRDRVd for directory records where d
= drives A-P.

Question Variable: ODTADRVd for data records where d
drives A-P.

Allocate buffers outside of Commom (N) ?

This question appears if the BIOS XMOVE routine is
implemented.

Answer Y - GENCPM allocates data buffers outside of common
and Bank O.

Answer N - GENCPM allocates data buffers in common.

Question Variable: ALTBNKSd where d = drives A-P.

Overlay Directory buffer for drive d: (Y) ?

This question appears only if you are gen~rating a
nonbanked system.

Enter Y - this drive shares a directory buffer with another
drive.

Enter N - GENCPM allocates an additional directory buffer
above the BIOS.

Question Variable: OVLYDIRd where d drives A-P.

All Information Presented Here is Proprietary to Digital Research

93

CP/M 3 System Guide 5.1 The GENCPM Util i ty

Overlay Data buffer for dr i ve d: (Y) ?

This question appears only if you are generating a
non ban ked system.

Enter Y - this drive shares a data buffer with another
dr ive.

Enter N - GENCPM allocates an additional data buffer above
the BIOS.

Question Variable: OVLYDTAd for directory records where d
= drives A-P.

Accept new buffer definitions (Y) ?

Enter Y - GENCPM creates the CPM3.SYS file and terminates.

Enter N - GENCPM redisplays all of the buffer definition
questions.

No Question Variable is associated with this question.

Examples:

The following section contains examples of two system
generation sessions. If no entry follows a program question, assume
RETURN was entered to select the defaul t value in parentheses.
Entries different from the default appear after the question mark.

EXAMPLE OF CONTENTS OF GENCPM.DAT FILE

combas = cO <CR>
lerror = ? <CR>
numsegs = 3 <CR>
memsegOO 00,80,00 <CR>
memsegOl Od,b3,02 <CR>
memsegOf ?OO,cO,lO <CR>
hashdrva y <CR>
hashdrvd n <CR>
ndirreca 20 <CR>
ndtarecf 10 <CR>

EXAMPLE OF SYSTEM GENERATION WITH BANKED MEMORY

A>GENCPM

CP/M 3.0 System Generation
Copyright (C) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with * for decimal

All Information Presented Here is proprietary to Digital Research

94

CP/M 3 System Guide 5.1 The GENCPM Utility

Use GENCPM.DAT for defaults (Y) ?

Display Load Map at Cold Boot (Y) ?

Number of console columns (i80) ?
Number of lines in console page (#24) ?
Backspace echoes erased character (N) ?
Rubout echoes erased character (N) ?

Initial default drive (A:) ?

Top page of memory (FF) ?
Bank switched memory (Y) ?
Common memory base page (CO) ?

Long error messages (Y) ?

Accept new system definition (Y) ?

Setting up Allocation vector for drive A:
Setting up Checksum vector for drive A:
Setting up Allocation vector for drive B:
Setting up Checksum vector for drive B:
Setting up Allocation vector for drive C:
Setting up Checksum vector for drive C:
Setting up Allocation vector for drive D:
Setting up Checksum vector for drive D:

*** Bank 1 and Common are not included ***
*** in the memory segment table. ***

Number of memory segments (#3) ?

CP/M 3 Base,size,bank (8B,35,00)

Enter memory segment table:
Base,size,bank (00,8B,00) ?
Base,size,bank (OD,B3,02) ?
Base,size,bank (00,CO,03) ?

CP/M 3 Sys 8BOOH 3500H
Memseg No. 00 OOOOH 8BOOH
Memseg No. 01 ODOOH B300H
Memseg No. 02 OOOOH COOOH

Bank
Bank
Bank
Bank

00
00
02
03

Accept new memory segment table entries

Setting up directory hash tables:
Enable hashing for drive A: (Y) ?
Enable hashing for drive B: (Y) ?
Enable hashing for drive C: (Y) ?
Enable hashing for drive D: (Y) ?

(Y) ?

All Information Presented Here is Proprietary to Digital Research

95

CP/M 3 System Guide 5.1 The GENCPM Utility

Setting up Blocking/Deblocking buffers:

The physical record size is 0200H:

Available space in 256 byte pages:
TPA = 00F4H, Bank 0 = 008BH, Other bahks = 0166H

Number of directory buffers for drive A: (#32) ?

Available space in 256 byte pages:
TPA = 00F4H, Bank 0 = 0049H, Other banks = 0166H

Number of data buffers for drive Ai (#2) ?
Allocate buffers outside of Common (N) ?

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0049H, Other banks = 0166H

Number of directory buffers for drive B: (#32) ?

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0007H, Other banks = 0166H

Number of data buffers for drive B: (fO) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080H:

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = 0007H, Other banks = 0166H

Number of directory buffers for drive C: (#10) ?

Available space in 256 byte pages:
TPA = OOFOH, Bank 0 = OOOIH, Other banks = 0166H

Number of directory buffers for drive D: (#0) ?
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:
TPA OOFOH, Bank 0 = OOOIH, Other banks = Ol66H

Accept new buffer definitions (Y) ?

BNKBIOS3 SPR F600H
BNKBIOS3 SPR BIOOH
RESBDOS3 SPR FOOOH
BNKBDOS3 SPR 8700H

0600H
OFOOH
0600H
2AOOH

*** CP/M 3.0 SYSTEM GENERATION DONE ***

In the preceding example GENCPM displays the resident portion of
BNKBIOS3.SPR first, followed by the banked portion.

All Information Presented Here is proprietary to Digital Research

96

CP/M 3 System Guide 5.1 The GENCPM Utility

EXAMPLE OF SYSTEM GENERATION WITH NONBANKED MEMORY

A>GENCPM

CP/M 3.0 System Generation
Copyright (e) 1982, Digital Research

Default entries are shown in (parens).
Default base is Hex, precede entry with * for decimal

Use GENCPM.DAT for defaults (Y) ?

Create a new GENCPM.DAT file (N) ?

Display Load Map at Cold Boot (Y) ?

Number of consol~ columns (*80) ?
Number of lines in console page (*24) ?
Backspace echoes erased character (N) ?
Rubout echces erased character (N) ?

Initial default drive (A:) ?

TOp page of memory (FF) ?
Bank switched memory (Y) ? N

Double allocation vectors (Y) ?

Accept new system definition (Y) ?

Setting up Blocking/Deblocking buffers:

The physical record size is 0200H:

Available space in 256 byte pages:
TPA = 00D8H

*** Directory buffer required ***
*** and allocated for drive A: ***

Available space in 256 byte pages:
TPA = 00D5H

Overlay Data buffer for drive A: (Y) ?

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = 00D5H

All Information Presented Here is Proprietary to Digital Research

97

CP/M 3 System Guide 5.1 The GENCPM Utility

Overlay Data buffer for drive B: (Y) ?
Share buffer(s) with which drive (A:) ?

The physical record size is 0080H:

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive C: (Y) ?
Share buffer(s) with which drive (A:) ?

Available space in 256 byte pages:
TPA = 00D5H

Overlay Directory buffer for drive D: (Y) ?
Share buffer(s) with which drive (C:) ?

Available space in 256 byte pages:
TPA = 00D5H

Accept new buffer definitions (Y) ?

BIOS3
BDOS3

SPR F300H OBOOH
SPR D600H lDOOH

*** CP/M 3.0 SYSTEM GENERATION DONE ***

A>

5.2 Customizing the CPMLDR

The CPMLDR resides on the system tracks of a CP/M 3 system
disk, and loads the CPM3.SYS file into memory to cold start the
system. CPMLDR contains the LDRBDOS supplied by Digital Research,
and must contain your customized LDRBIOS.

The system tracks for CP/M 3 contain the customized Cold Start
Loader, CPMLDR with the customized LDRBIOS, and possibly the CCP.,

The COPYSYS utility places the Cold Start Loader, the CPMLDR,
and optionally the CCP on the system tracks, as shown in Table 5-1.

All Information Presented Here is Proprietary to Digital Research

98

CP/M 3 System Guide 5.2 Customizing the CPMLDR

Table 5-1. Sample CP/M 3 Syste. Track Organization

Memory Address CP/M 3 Module Name

00 01 Boot Address Cold Start Loader

00 02 00 OlOOH CPMLDR

and

00 21 09 OA80H LDRBOOS

00 22 10 OBOOH LDRBIOS

00 26 12 ODOOH and
01 01 12 OD80H

01 26 25 lAOOH CCP

Typically the Cold Start Loader is loaded into memory from
Track 0, Sector 1 of the system tracks when the reset button is
depressed. The Cold Start Loader then loads CPMLDR from the system
tracks into memory.

Alternatively, if you are starting from an existing CP/M 2
system, you can run CPMLDR.COM as a transient program. CP/M 2 loads
CPMLDR.COM into memory at location 100H. CPMLDR then reads the
CPM3.SYS file from User 0 on drive A and loads it into memory.

Use the following procedure to create a customized CPMLDR.COM
file, including your customized LDRBIOS:

1) Prepare a LDRBIOS.ASM file.

2) Assemble the LDRBIOS file wi th RMAC to produce a LDRBIOS .REL
file.

3) Link the supplied CPMLDR.REL file with the LDRBIOS.REL file
you created to produce a CPMLDR.COM file.

A>LINK CPMLDR[LlOO]=CPMLDR,LDRBIOS

Replace the address 100 with the load address to which your
boot loader loads CPMLDR.COM. You must include a bias of
100H bytes for buffer space when you determine the load
address.

All Information Presented Here is proprietary to Digital Research

99

CP/M 3 System Guide 5.2 Customizing the CPMLDR

The CPMLDR requires a customized LDRBIOS to perform disk input
and console output. The LDRBIOS is essentially a nonbanked BIOS.
The LDRBIOS has the same JMP vector as the regular CP/M 3 BIOS. The
LDRBIOS is called only to perform disk reads (READ) from one drive,
console output (CONOUT) for sign-on messages, and minimal system
initialization.

The CPMLDR calls the BOOT entry point at the beginning of the
LDRBIOS to allow it to perform any necessary hardware
ini tialization. The BOOT entry point should return to CPMLDR
instead of loading and branching to the CCP, as a BIOS normally
does. Note that interrupts are not disabled when the LDRBIOS BOOT
routine is called.

Tes t your LDRB lOS completely to ens ure that it proper ly
performs console character output and disk reads. Check that the
proper tracks and sectors are addressed on all reads and that data
is transferred to the proper memory locations.

You should assemble the LDRBIOS.ASM file with a relocatable
or igin of OOOOH. Assemble the LDRBIOS wi th RMAC to produce a
LDRBIOS.REL file. Link the LDRBIOS.REL file with the CPMLDR.REL
file supplied by Digital Research to create a CPMLDR.COM file. Use
the L option in LINK to specify the load origin (address) to which
the boot loader on track 0 sector 1 loads the CPMLDR.COM file.

Unnecessary BIOS functions can be deleted from the LDRBIOS to
conserve space. There is one absolute restriction on the length of
the LDRBIOS: it cannot extend above the base of the banked portion
of CP/M 3. (GENCPM lists the base address of CP/M 3 in its load
map.) If you plan to boot CP/M 3 from standard, single-density,
eight-inch floppy disks, your CPMLDR must not be longer than 1980H
to place the CPMLDR.COM file on two system tracks with the boot
sector. If the CCP resides on the system tracks with the Cold Start
Loader and CPMLDR, the combined lengths must not exceed 1980H.

5.3 The CPMLDR Utility

Syntax:

CPMLDR

Purpose:

CPMLDR loads the CP/M 3 system file CPM3.SYS into Bank 0 and
transfers control to the BOOT routine in the customized BIOS. You
can specify in GENCPM for CPMLDR to display a load table containing
the names and addresses of the system modules.

The CPM3.SYS file contains the CP/M 3 BDOS and customized BIOS.
The file CPM3.SYS must be on drive A in USER O. You can execute
CPMLDR under SID™ or DDT ™ to help debug the BIOS. A $B in the
default File Control Block (FCB) causes CPMLDR to execute a RST 7

All Information Presented Here is Proprietary to Digital Research

100

CP/M 3 System Guide 5.3 The CPMLDR utility

(SID breakpoint) just before jumping to the CP/M 3 Cold Boot BIOS
entry point.

lnollt Fi 1 p~

CPM3.SYS

Examples:

A>CPMLDR
CP /M V3. 0 Loader
Copyright (C) 1982, Digital Research

BNKBIOS3 SPR
BNKBIOS3 SPR
RESBDOS3 SPR
BNKBOOS3 SPR

60K TPA
A>

F600H
BBOOH
FIOOH
9AOOH

OAOOH
OSOOH
OSOOH
2l00H

In the preceding example, CPMLDR displays its name and version
number, the Digital Research copyright message, and a four-column
load table containing the filename, f iletype, hex starting address,
and length of the system modules. CPMLDR completes its sign-on
message by indicating the size of the Transient Program Area (TPA)
in kilobytes. The CCP then displays the system prompt, A>.

5.4 Booting CP/M 3

The CP/M 3 cold start operation loads the CCP, BDOS, and BIOS
modules into their proper locations in memory and passes control to
the cold start entry point (BIOS Function 0: BOOT) in the BIOS.
Typically, a PROM-based loader initiates a cold start by loading
sector 0 on track I of the system tracks into memory and jumping to
it. This first sector contains the Cold Start Loader. The Cold
Start Loader loads the CPMLDR.COM program into memory and jumps to
it. CPMLDR loads the CPM3.SYS file into memory and jumps to the
BIOS cold start entry point.

All Information Presented Here is Proprietary to Digital Research

101

The CP/M 3 System Guide 5.4 Booting CP/M 3

To boot the C~/M 3 system, use the following procedure:

1) Create the CPM3.SYS file.

2) Copy the CPM3.SYS file to the boot drive.

3) Create a CPMLDR.COM for your machine.

4) Place the CPMLDR.COM file on your system tracks using SYSGEN
with CP/M 2 or COPYSYS with CP/M 3. The boot loader must
place the CPMLDR.COM file at the address at which it
originated. If CPMLDR has been linked to load at 100H, you
can run CPMLDR under CP/M 2.

The COPYSYS utility handles ini tia1iza tion of the system
tracks. The source of COPYSYS is included with the standard CP/M 3
system because you need to customize COPYSYS to support nonstandard
system disk formats. COPYSYS copies the Cold Start Loader, the
CPMLDR.COM file, and optionally the CCP to the system tracks. Refer
to the COPYSYS.ASM source file on the distribution disK.

End of Section 5

All Information Presented Here is Proprietary to Digital Research

102

Section 6
Debugging the BIOS

This section descr ibes a sample debugging session for a
nonbanked CP/M 3 BIOS. You must create and debug your nonbanke6
system first, then bring up the banked system. Note that your
system probably displays addresses that differ from the addresses in
the folJ.owing example.

You can use SID, Digital Research's Symbolic Debugger Program,
running under CP/M 2.2, to help debug your customized BIOS. The
following steps outline a sample debugging session.

1) Determine the amount of memory available to CP/M 3 when the
debugger and CP/M 2.2 are in memory. To do this, load the
debugger under CP/M 2.2 and list the jump instruction at
location OOOSH. In the following example of a 64K system,
C 5 0 0 is the base addr ess of the debugger, and also the
maximum top of memory that you can specify in GENCPM for
your customized CP/M 3 system.

A>SID
CP/M 3 SID - Version 3.0
IL5
0005 JMP C500

2) Running under CP/M 2.2, use GENCPM to generate a CPM3.SYS
file, which specifies a top of memory that is less than the
base address of the debugger, as determined by the previous
step. Allow at least 256K bytes for a patch area. In this
example, you can specify C3 to GENCPM as the top of memory
for your CP/M 3 system.

A>
GENCPM

Top page of memory (FF)?
C3

All Information Presented Here is Proprietary to Digital Research

103

CP/M 3 System Guide 6 Debugging the BIOS

3) Now you have created a system small enough to debug under
SID. Use SID to load the CPMLDR.COM file, as shown in the
following example:

A>SID CPMLDR.COM
CP/M 3 SID - Version 3.0
NEXT MSZE PC END
OE80 OE80 0100 D4FF

i

4) Use the I command in SID, as shown in the next example, to
place the characters $B into locations OOSDH and OOSEH of
the default FCB based at OOSCH. The $B causes CPMLDR.COM
to break after loading the CPM3.SYS file into memory.

iI$B

S) Transfer control to CPMLDR using the G command:

iG

At this point, the screen clears and the following
information appears:

CP/M V3.0 LOADER
Copyright (c) 1982, Digital Research

BIOS3
BDOS3

34K TPA

* 01A9
i

SPR AAOO OBOO
SP.R 8BOO lFOO

6) With the CP/M 3 system in the proper location, you can set
passpoints in your BIOS. Use the L command wi th the
addr ess specif ied as the beginning of the BIOS by the
CPMLDR load table as shown in step S above. This L command
causes SID to display the BIOS jump vector which begins at
tha t. address. The jump vector indicates the beginning
address of each subroutine in the table. For example, the
first jump instruction in the example below is to the Cold
Boot subroutine.

iLAAOO

All Information Presented Here is proprietary to Digital Research

104

CP/M 3 System Guide 6 Debugging the BIOS

The output from your BIOS might look like this:

JMP AA68 ,.Mn 7\7\Q1:'

JMP ABA4
JMP ABAF
JMP ABCA

7) Now set a passpoint in the Cold BOOT routine. Use the P
command with an address to set a passpoint at that address.

#PAA68

8) Continue with the CPMLDR.COM program by entering the G
command, followed by the address of Cold Boot, the first
entry in the BIOS jump vector.

#GAAOO

9) In response to the G command, the CPMLDR transfers control
to the CP/M 3 operating system. If you set a passpoint in
the Cold BOOT routine, the program stops executing, control
transfers to SID, and you can begin tracing the BOOT
routine.

10) When you know the BOOT routine is functioning correctly,
enter passpoints for the other routines you want to trace,
and begin tracing step by step to determine the location of
problems.

Refer to the Digital Research S mbolic Instruction Debu er
User's Guide (SID) in the Programmer's Ut1l1t1es GU1de for the CP M
Family of Operating Systems for a discussion of all the SID
commands.

End of Section 6

All Information Presented Here is Proprietary to Digital Research

105

CP/M 3 System Guide End of Section 6

All Information Presented Here is proprietary to Digital Research

106

Appendix A
Removable Media Considerations

All disk drives under CP/M 3 are classified as either permanent
or removable. In general, removable drives support media changes;
permanent drives do not. Setting the high-order bit in the CKS
field in a drivels Oisk Parameter Block (OPB) marks the drive as a
permanent drive.

The BOOS file system distinguishes between permanent and
removable drives. If a drive is permanent, the BOOS always accepts
the contents of physical record buffers as valid. In addition, it
also accepts the results of hash table searches on the drive.

On removable drives, the status of physical record buffers is
more complicated. Because of the potential for media change, the
BOOS must discard directory buffers before performing most directory
related BOOS function calls. This is required because the BOOS
detects media changes by reading directory records. When it reads a
directory record, the BOOS computes a checksum for the record, and
compares the checksum to the currently stored value in the drivels
checksum vector. If the checksum values do not match, the BOOS
assumes the media has changed. Thus, the BOOS can only detect a
media change by an actual directory REAO operation.

A similar situation occurs with directory hashing on removable
dr i ves. Because the directory hash table is a memory-resident
table, the BOOS must verify all unsuccessful hash table searches on
removable drives by accessing the directory.

The net result of these actions is that there is a significant
performance penalty associated with removable drives as compared to
permanent drives. In addition, the protection provided by
classifying a drive as removable is not total. Media changes are
only detected during directory operations. If the media is changed
on a drive during BOOS WRITE operations, the new disk can be
damaged.

The BIOS media flag facility gives you another option for
supporting drives with removable media. However, to use this
optio!), the disk controller must be capable of generating an
interr~pt when the drive door is opened. If your hardware provides
th is slupport, you can improve the handling of removable media by
implementing the following procedure:

1) Mark the drive as a permanent drive and set the OPB CKS
parameter to the total number of directory entries, divided
by four. For example, set the CKS field for a disk with 96
directory entries to 8018H.

All Information Presented Here is Proprietary to Digital Research

107

CP/M 3 System Guide A Removable Media Considerations

2) Implement an interrupt service routine that sets the @MEDIA
flag in the System Control Block and the DPH MEDIA byte for
the drive that signaled the door open condition.

By using the media flag facility, you gain the performance
advantage associated with permanent drives on drives that support
removable media. The BOOS checks the System Control Block @MEDIA
flag on entry for all disk-related function calls. If the flag has
not been set, it implies that no disks on the system have been
changed. If the flag is set, the BDOS checks the OPH MEDIA flag of
each currently logged-in disk. If the DPH MEDIA flag of a drive is
set, the BDOS reads the entire directory on the drive to determine
whether the drive has had a media change before performing any other
operations on the drive. In addition, it temporarily classifies any
permanent disk with the DPH MEDIA flag set as a removable drive.
Thus, the BDOS discards all directory physical record buffers when a
drive door is opened to force all directory READ operations to
access the disk.

To summarize, using the BIOS MEDIA flag with removable drives
offers two important benefits. First, because a removable drive can
be classified as permanent, performance is enhanced. Second,
because the BDOS immediately checks the entire directory before
performing any disk-related function on the drive if the drive's DPH
MEDIA flag is set, disk integrity is enhanced.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

108

Appendix B
Auto-Density Support

Auto-density support refers to the capability of CP/M 3 to
support different types of media on a single drive. For example,
some floppy-disk drives accept single-sided and double-sided disks
in both single-density and double-density formats. Auto-density
support requires that the BIOS be able to determine the current
density when SELDSK is called and to subsequently be able to detect
a change in disk format when the READ or WRITE routines are called.

To support multiple disk formats, the drive's BIOS driver must
include a Disk Parameter Block (DPB) for each type of disk or
include code to generate the proper DPB parameters dynamically. In
addition, the BIOS driver must determine the proper format of the
disk when the SELDSK entry point is called with register E bit 0
equal to 0 (initial SELDSK calls). If the BIOS driver cannot
determine the format, it can return OOOOH in register pair HL to
indicate the select was not successful. Otherwise, it must update
the Disk Parameter Header (DPH) to address a DPB that describes the
current media, and return the address of the DPH to the BDOS.

Note: All subsequent SELDSK calls with register E bit 0 equal to 1,
the BIOS driver must continue to return the address of the DPH
returned in the initial SELDSK call. The value OOOOH is only a
legal return value for initial SELDSK calls.

After a driver's SELDSK routine has determined the format of a
disk, the driver's READ and WRITE routines assume this is the
correct format until an error is detected. If an error is detected
and the driver determines that the media has been changed to another
format, it must return the value OFFH in register A. This signals
the BDOS that the media has changed and the next BIOS call to the
drive will be an initial SELDSK call. Do not modify the drive's DPH
or DPB until the initial SELDSK call is made. Note that the BDOS
can detect a change in media and will make an initial SELDSK call,
even though the BIOS READ and WRITE routines have not detected a
disk format change. However, the SELDSK routine must always
determine the format on initial calls.

A drive's Disk Parameter Header (DPH) has associated with it
several uninitialized data areas: the allocation vector, the
chec ksum vector, the directory hash table, and physical record
buffers. The size of these areas is determined by DPB parameters.
If space for these areas is explicitly allocated in the BIOS, the
DPB that requires the most space determines the amount of memory to
allocate. If the BIOS defers the allocation of these areas to
GENCPM, the DPH must be initialized to the DPB with the largest
space requirements. If one DPB is not largest in all of the above
categories, a false one must be constructed so that GENCPM allocates
sufficient space for each data area.

End of Appendix B

All Information Presented Here is Proprietary to Digital Research

109

CP/M 3 System Guide End of Appendix B

All Information Presented Here is Proprietary to Digital Research

110

Appendix C
Modifying a CP/M 2 BIOS

If you are modifying an existing CP/M 2.2 BIOS, you must note
the following change~ •

• The BIOS jump vector is expanded from 17 entry points in CP/M
2.2 to 33 entry points in CP/M 3. You must implement the
necessary additional routines •

• The Disk Parameter Header and Disk Parameter Block data
structures are expanded.

See Section 3 of this manual, "CP/M 3 BIOS Functional
Spec if ica tions", for details of the BIOS data structures and
subroutines. The following table shows all CP/M 3 BIOS functions
with the changes necessary to support CP/M 3.

Table C-I. CP/M 3 BIOS Functions

Function Meaning

Bros Function 00: BOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block.

BIOS Function 01: WBOOT

The address for the JMP at location 5 must
be obtained from @MXTPA in the System
Control Block. The CCP can be reloaded
from a file.

BIOS Function 02: CaNST

Can be implemented unchanged.

BIOS Function 03: CONIN

Can be implemented unchanged. Do not mask
the high-order bit.

All Information Presented Here is Proprietary to Digital Research

III

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

Table C-l. (continued)

Function Meaning

BIOS Function 04: CONOUT

Can be implemented unchanged.

BIOS Function 05: LIST

Can be implemented unchanged.

BIOS Function 06: AUXOUT

Called PUNCH in CP/M 2. Can be
implemented unchanged.

BIOS Function 07: AUXIN

Called READER in CP/M 2. Can be
implemented unchanged. Do not mask the
high-order bit.

BIOS Function 08: HOME

No change.

BIOS Function 09: SELDSK

Can not return a select error when SELDSK
is called with bit 0 in register E equal
to l.

BIOS Function 10: SETTRK

No change.

BIOS Function 11: SET SEC

Sectors are physical sectors, not logical
l28-byte sectors.

BIOS Function 12: SETDMA

Now called for every READ or WRITE
operation. The DMA buffer can now be
greater than 128 bytes.

All Information Presented Here is Proprietary to Digital Research

112

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

Table C-l. (continued)

Function Meaning

BIOS Function 13: READ

READ operations are in terms of physical
sectors. READ can return a OFFH error
code if it detects that the disk format
has changed.

BIOS Function 14: WRITE

WRITE operations are in terms of physical
sectors. If write detects that the disk
is Read-Only, it can return error code 2.
WRITE can return a OFFH error code if it
detects that the disk format has changed.

BIOS Function 15 : LISTST

Can be implemented unchanged.

BIOS Function 16: SECTRN

Sectors are physical sectors, not logical
l28-byte sectors.

The following is a list of new BIOS functions:

BIOS Function 17: CONOST

BIOS Function 18: AUXIST

BIOS Function 19: AUXOST

BIOS Function 20 : DEVTBL

BIOS Function 21: DEVINI

BIOS Function 22: DRVTBL

BIOS Function 23: MULTIO

BIOS Function 24: FLUSH

BIOS Function 25: MOVE

BIOS Function 26 : TIME

All Information Presented Here is Proprietary to Digital Research

113

CP/M 3 System Guide C Modifying a CP/M 2 BIOS

BIOS Function 27: SELMEM

BIOS Function 28: SETBNK

BIOS Function 29: XMOVE

BIOS Function 30 : USERF

BIOS Function 31: RESERVl

BIOS Function 32: RESERV2

End of Appendix C

All Information Presented Here is Proprietary to Digital Research

114

Appendix D
CPM3.SYS File Format

Table D-l. CPM3.SYS File Format

Record I Contents

a Header Record (128 bytes)
1 Print Record (128 bytes)
2-n CP/M 3 operating system in

reverse order, top down.

Table D-2. Header Record Definition

Byte I Contents

a

1

2

3

4-5

6-1

16-51

52

53-58

59-127

Top page plus one, at which the resident
por tion of CP/M 3 is to be loaded top
down. ,

Length in pages (256 bytes) of the
resident portion of CP/M 3.

Top page plus one, at which the banked
por tion of CP/M 3 is to be loaded top
down.

Length in pages (256 bytes) of the banked
portion of CP/M 3.

Address of CP/M 3 Cold Boot entry point.

Reserved.

Copyright Message.

Reserved.

Serial Number.

Reserved.

The Pr int Record is the CP/M 3 Load Table in ASCII,
terminated by a dollar sign ($).

End of Appendix D

All Information Presented Here is Proprietary to Digital Research

115

CP/M 3 System Guide End of Appendix D

All Information Presented Here is Proprietary to Digital Research

116

Appendix E
Root Module of the Relocatable BIOS for CP/M 3

All the listings in Appendixes E through I are assembled with
RMAC, the CP/M Relocating Macro Assembler, and cross-referenced with
XREF, an assembly language cross-reference program used with RMAC.
These listings are output from the XREF program. The assembly
language sources are on your distribution disk as .ASM files.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

FFFF •
0000 -

FFFF -

0000 -
OOOA -
0007 -
0011 -
0013 •

0100 •

title 'Root module of relocatable BIOS for CP/M 3.0'

I version 1.0 15 Sept 82

true equ -1
false equ not true

banked equ true

cr
lf
bell

Copyright (C), 1982
Oigi tal Research, Inc

P.O. Box 579
Pacif ic Grove, CA 93950

This is the invariant portion of the modular BIOS and is
distributed as source for informational purposes only.
All desired modifications should be performed by
adding or changing externally def ined modules.
This allows producing "standard" I/O modules that
can be combined to support a particular system
configuration.

equ 13
equ 10
equ 7

ctlQ equ 'Q'-'@'
ctlS

ccp

equ 'S'-'@'

equ OlOOh Console Command Processor gets loaded into the TPA

cseg GENCPM puts CSEG stuff in common memory

variables in system data page

extrn @covec,@civec,@aovec,@aivec,@lovec i I/O redirection vectors
extrn @mxtpa i addr of system entry point
extrn @bnkbf i 128 byte scratch buffer

initialization

extrn ?init
extrn ?ldccp,?rlccp

user defined character I/O routines

extrn ?ci,?co.?cist.?cost
extrn ?cini t
extrn @ctbl

I disk communication data items

extrn @dtbl
public @adrv,@rdrv,@trk,@sect
public @dma,@dbnk,@cnt

memory control

general initialization and signon
load , reload CCP for BOOT , WBOOT

each take dev ice in
(re) initialize device in <C>
physical character device table

table of pointers to XOPHs
par~~eters for disk I~~

Listing E-1. Root Module of Re10catable BIOS for CP/M 3

All Information Presented Here is Proprietary to Digital Research

117

CP/M 3 System Guide E Root Module of Relocatable BIOS

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

0000 C30000
0003 C36COO

0006 C37701
0009 C39201
OOOC C30ACO
OOOF C3E600
0012 C3EOOO
0015 C39801

0018 C36EOO
001B C33FOO
OOIE C37100
0021 C37700
0024 Cl7000
0027 C39400
002A C3AACO

0020 C31201
0030 C38900

0033 C30601
0036 C37001
0039 C30COl
OOlC Cl0200
003F C30000

0042 C30600
0045 C3CBOO
0048 C3CFOO

004B C30000
004E C30000
0051 C32S02
0054 C38S00
0057 C30000

0051\ C30000
0050 C30000
0060 C30000

public @cbnk
extrn ?xmove, ?move
extrn ?bank

current bank
select move bank, and block move
select CPU bank

clock support

extrn ?time signal time operation

general util i ty routines

publ ic ?pmsg, ?pdec
pUblic ?pderr

pr int message, pr int number from 0 to 65535
print BIOS disk error message header

maclib mode baud I def ine mode bi ts

I External names for BIOS entry points

public ?boot, ?wboot, ?const, ?conin, ?cono, ?list, ?auxo, ?auxi
public ?home, ?sldsk, ?sttrk, ?stsec, ?stdma, ?read, ?wr i te
public ?lists,?sctrn
public ?conos, ?auxis, ?auxos, ?dvtbl, ?devin, ?drtbl
public ?ml tio, ?flush, ?mov, ?tim, ?bnksl, ?stbnk, ?xmov

I BIOS Jump vector.

. ?bootl
?wboot:

?const:
?conin:
?cono:
?list:
?auxo:
?auxi I

?home:
?sldsk:
?sttrk:
?stsec:
?stdma:
?read:
?wr iter

?lists:
?sctrn:

?conos:
?auxis:
?auxos:
?d"tbl:
?dcvin:

?drtbl:
?mltio:
?flush:

?mov:
?tim:
?bnksl:
?stbnk:
?xmov:

boot:

All BIOS routines are invoked by calling these
entry points.

jmp boot initial entry on cold sta.rt
jmp wboot reentry on program exit, warm star t

jmp const return console input status
jmp conin return console input character
jmp conout send console output character
jmp list send list output character
jmp auxout I send auxilliary output character
jmp auxin return auxilliary input character

jmp home set disks to logical home
jmp seldsk select disk drive, return disk par all1eter
jmp settrk set disk track
~mp setsec set disk sector

mp setdma set disk I/O memory address
jmp read read physical block (s)
jmp write write physical block(s)

jmp listst return list device status
jmp sectrn translate logical to physical sector

jmp conost return console output status
jmp auxist I return aux input status
jmp auxost return aux output status
jmp devtbl return address of device def table
jmp ?cinit change baud rate of device

jmp getdrv return address of disk drive table
jmp multio I set multiple record count for disk I/O
jmp flush I flush BIOS maintained disk caching

jmp ?move block move memory to memory
jmp ?time Signal Time and Date operation

info

jmp bnksel I select bank for code execution and de faul t OMA
jmp setbnk I select different bank for disk I/O DMA operations.
jmp ?xmove I set source and destination banks for one operation

jmp 0 I reserved for future expansion
jmp 0 reserved for future expansion
jmp 0 reserved for future expansion

; BOOT
Initial entry point for system startup.

dseg I this part can be banked

0000 310200 lxi sp, bootS stack
0003 OEOF mvi c,lS I initialize all 16 character devices

c$ ini t$loop:
0005 CSCOOOOOCl push b I call ?cini t I pop b
OOOA 00F20S00 dcr c I jp c$ inl t$loop

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

118

CP/M 3 System Guide E Root Module of Relocatable Bros

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

00 DE COOOOO call ?init : perform any additional system initialization
: and print signon message

0011 0100102100 lxi b,16*256+0 I lxi h,@dtbl : init all 16 logical disk drives

0017 C5
0018 5E235623
ODIC 7BB2CA3600
0021 E5
0022 EB
0023 2B2B7E32EE
0029 7932EOOO
0020 2B
002E 552B5E
0031 EBCOB601
0035 El

0036 Cl
0037 OC05C21700
003C C36300

0063 C07800
0066 COOOOO
0069 C30001

006C 310200
006F C07800
0072 COOOOO
0075 C30001

d$ ini t$loop:
push b save remaining count
mov e,m inx h mov d,m I inx h
mov a,e ora d jz d$init$next
push h·
xchg
dcx h I dcx h I mov a,m I sta @RORV
mov a,c I sta @AORV
dcx h
mov d,m I dcx h I mov e,m
xchg I call ipchl
pop h

d$init$next:
pop b

boot$l:

wboot:

inr c I dcr b I jnz d$init$100p
jmp boot$l

cseg : following in resident memory

call set$jumps
call ?ldccp
jmp ccp

WBOOT
Entry for system restarts.

and abs drive
grab @drv entry
if null, no drive
save @drv pointer
XOPH address in <HL>
get relative drive code
get absolute drive code
point to in it pointer
get init pointer
call init routine
recover @drv pointer

recover counter and drive
and loop for each drive

fetch CCP for first time

lxi sp,boot$stack
call set$jumps
call ?rlccp

initialize page zero
reload CCP

jmp ccp then reset jmp vectors and exi t to ccp

set$jumps:

if banked
0078 3EOIC05100 mvi a,l I call ?bnksl

0070 3EC3
007F 3200003205
0085 2103002201
008B 2A00002206
0091 C9

endif

mvi a,JMP
sta 0 I sta 5
lxi h, ?wboot I shld 1
lhld @MXTPA I shld 6
ret

set up jumps in page zero
BIOS warm start entry
BDOS system call entry

0092
0002 boot$stack

d\; 64
equ $

0002 210000C9

oooe 210000C9

OOOA 2AOOOO
0000 C3E900

devtbl:

getdrv:

conout:

OEVTBL
Return address of character device table

lxi h,@ctbl I ret

GETORV
Return address of dr i ve table

lxi h,@dtbl I ret

CON OUT
Console Output. Send character in <C>

to all' selected devices

Ihld @covec
jmp outS scan

fetch console output bi t vector

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

119

CP/M 3 System Guide E Root Module of Relocatable BIOS

225
226
227
22B
229
230
231
232
233
234
235
236
237
23B
239
240
241
242
243
244
245
246
247
24B
249
250
251
252
253
254
255
256
257
25B
259
260
261
262
263
264
265
266
267
26B
269
270
271
272
273
274
275
276
277
27B
279
2BO
2Bl
2B2
2B3
2B4
2B5
2B6
2B7
2BB
2B9
290
291
292
293
294
295
296
297
29B
299
300
301
302
303
304
305
306
307

OOEO 2AOOOO
00E3 C3E900

00E6 2AOOOO

OOE9 060F

OOEB 29
OOEC D2FFOO
OOEF E5
OOFO C5

auxout:

list:

AUXOUT
Auxiliary Output. Send character in <C>

to all selected devices

lhld @aovec fetch aux output bit vector
jmp out$scan

LIST
List Output. Send character in <C>

to all selected devices.

lhld @lovec fetch list output bit vector

out$scan:
mvi b,15 start with device 15

co$next:
dad h ; shift out next bit
jnc notoutdevice
push h , save the vector
push b , save the count and character

notoutready:
OOFI CD2COlB7CA call coster lora a I jz notoutready
OOFB ClC5 pop b I push b , restore and resave the character and device
OOFA CDOOOO call ?co , if device selected, print it
OOFD C1 pop b recover count and character
OOFE El pop h recover the rest of the vector

OOFF 05
0100 7CB5
0102 C2EBOO
0105 C9

0106 2AOOOO
0109 C3l501

OlOC 2AOOOO
OlOF C31501

0112 2AOOOO

0115 060F

0117 29
011B E5
0119 C5
011A 3EFF
011C DC2COl
011F Cl
0120 El
0121 B7
0122 CB
0123 05
0124 7CB5
0126 C2170l
0129 F6FF
012B C9

notoutdevice:

conost:

auxost:

listst:

dcr b next device number
mov a,h lora 1 see if any devices left
jnz co$next and go find them •••
ret

CONOST
Console Output Status. Return true if

Ihld @covec
jmp ost$scan

AUXOST

all selected console output devices
are ready.

; get console outpu t bi t vector

Auxiliary Output Status. Return true if
all selected auxil iary output devices
are ready.

lhld @aovec
jmp ost$scan

LISTST

; get aux output bit vector

List Output Status. Return true if

lhld @lovec

all selected list output devices
are ready.

get list output bi t vector

ost$ scan:
mvi b,15

cos$next:
dad h
push h
push b
mvi a,OFFh
cc coster
pop b
pop h
ora a
rz
dcr b
mov a, h I or a 1
jnz cos$next
ori OFFh
ret

Listing E-1.

start with device 15

check next bi t
save the vector
save the count
assume device ready
check status for this device
recover count
recover bi t vector
see if device ready
if any not ready, return false
drop device number
see if any more selected devices

all selected were ready, return true

(continued)

All Information Presented Here is Proprietary to Digital Research

120

CP/M 3 System Guide E Root Module of Relocatable BIOS

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

012C 682600
012F E5
0130 292929
0133 11060019
0137 7EE610
013A EJ,
013B CACOOO
013E 112B0219
0142 C05001
0145 7EC46FOl
0149 FEllC25001
014E 3EFF

coster:

not$q:

check for output device ready, including optional
xon/xoff support

mov l,b
push h

mvi h,O I make device code 16 bits

dad h I dad h I dad h
lxi d,@ctbl+6 I dad d I
mov a,m I ani mb$xonxoff
~ph I
jz ?cost I
lxi d,xofflist I dad d
call clstl

save it in stack
create offset into device character istics tbl
make address of mode byte

recover console number in <HL>
not a xon device, go get output status direct
rna ke pointer to proper xon/xoff flag
see if this keyboard has character
get flag or read key if any mov a,m I cnz cil

cpi ctlq I jnz not$q
mvi a,OFFh

I if its a ctl-O,
set the flag ready

0150 FE13C25701 cpi ctls I jnz not$s I if its a ctl-S,
0155 3EOO mvi a,OOh clear the flag

0157 77
0158 C06601
015B A6
015C C9

0150 C5E5
015F COOOOO
0162 EICI
0164 B7
0165 C9

0166 C5E5
0168 COOOOO
016B EICI
0160 B7
016E C9

016F C5E5
0171 COOOOO
0174 EICI
0176 C9

0177 2AOOOO
017A C38001

0170 2AOOOO

0180 060F

0182 29
0183 3EOO
0185 OC5001
0188 B7CO
018A 05
018B 7CB5
0180 C2820l
0190 AF
0191 C9

0192 2ACOOO
0195 C39BOI

not$s:

cistl:

costl:

cll:

const:

auxist:

mov m,a
call costl
ana m
ret

push b I push h
call ?clst
pop h I pop b
ora a
ret

push b I push h
call ?cost
pop h I pop b
ora a
ret

save the flag
get the actual output status,
and mask wi th ctl-O/ctl-S flag
return this as the status

I get input status with <BC> and <HL> saved

get output status, saving <BC> " <HL>

I get input, saving <BC> " <HL>
push b ~PUSh h
call ?ci
pop hlp b
ret

CONST
Console Input Status. Return true if

Ihld @civec
jmp ist$scan

AUXIST

any selected console input device
has an available character.

I get console input bit vector

Auxiliary Input Status. Return true if

Ihld @aivec

any selected auxiliary input device
has an available character.

I get aUK input bit vector

ist$ scan:
mvi b,15 start with device 15

cis$next:

conin:

dad h
mvi a, 0
cc cisU
ora a I rnz
dcr b
mov a, h I or a 1 I
jnz cis$next

check next bi t
assume device not ready
check status for this device
if any ready, return true
drop device number
see if any more selected devices

xra a
ret

I all selected were not ready, return false

CONIN
Console Input. Return character from first

ready console input device.

Ihld @civec
jmp in$scan

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

121

CP/M 3 System Guide E Root Module of Relocatable BIOS

j91
392
393
394
395
396
397
39B
399
400
401
402
403
404
405
406
407
40B
409
410
411
412
413
414
415
416
417
41B
419
420
421
422
423
424
425
426
427
42B
429
430
431
432
433
434
435
436
437
43B
439
440
441
442
443
444
445
446
447
44B
449
450
451
452
453
454
455
456
457
45B
459
460
461
462
463
464
465
466
467
46B
469
470
471
472
473
474

AUXIN
Auxiliary Input. Return character from first

ready auxil iary input device.

019B 2AOOOO

019B E5
019C 060F

auxin:

in$scan:

ci$next:

lhld @aivec

push h
mvi b,15

save bi t vector

shift out next bit 019E 29
019F 3EOO
OlAl OCSOOI
OlM B7
01A5 C2B201
OlAB 05
01A9 7C35
OlAB C29EOl
OlAE El
OlA", C39BOl

dad h
mvi a, 0
cc cistl
ora a

insure zero a (nonexistant device not ready).
see if the device hilS II chllrllcter

01B2 El
01B3 C30000

ci$rdy:

jnz ci$rdy
dcr b
mov a,h lora
jnz ci$next
pop h
jmp in$scan

pop h
jmp ?ci

this device has a character
else, next device
see if any more devices

I go look at them
recover bit vector
loop til we find a character

I discllrd extra stack

util i ty Subroutines

ipchl: I vectored CALL point
01B6 E9 pchl

01B7 CS
OlBB OS

?pmsg: pr int message @<HL> up to a null
saves <BC> " <DE>

push b
push d

pmsg$loop:
01B9 7EB7CACBOl mov a,m lora a I jz pmsg$exit
OlBE 4FES mov c ,a I push h
OlCO COOCOOEI call ?cono I pop h
01C4 23C3B901 inx h I jmp pmsg$loop

OlCB 01
01C9 Cl
OlCA C9

pmsg$exi t:
popd
pop b
ret

?pdec: I print binary number 0-65535 from <HL>
OlCB 01F30l11FO lxi b,tablelOI txi d,-lOOOO

next:
OlDl 3E2F mvi a, '0'-1

pdecl:
01D3 E53C19020E push hi inr al Ilad dl jnc stoploop
0109 3333C3D301 inx spl inx spl jmp pdecl

stoploop:
OlDE DSCS push dl push b
OlEO 4FCDOCOO mov c,al call ?cono
01E4 ClOl pop bl popd

nextdigit:
01E6 El poph
01E7 OASF03 ldax bl mov e,al inx b
OlEA OAS703 Idax bl mov d,a I inx b
OlED 7BB2C2DlOl mov a,el ora dl jnz next
01F2 C9 ret

tablelO:
01F3 IBFC9CFFF6 dw -1000,-100,-10,-1,0

OlFD 2lDlOOCDB7
0203 3AEOOOC641
020C 21E300CDB7
0212 2AEFOOCDCB
021B 21EBOOCDB7
021E 2AFIOOCDCB
0224 C9

?pderr:
lxi h,drive$msg I call ?pmsg
Ida @adrv I adi 'A' I mov c ,a I call ?cono
lxi h. track$msg I call ?pmsg
lhld @trk I call ?pdec
lxi h,sector$msg I call ?pmsg
lhld @sect I call ?pdec
ret

I BNKSEL

er ror header
dr i ve code
track header
track number
sector header
sector number

Bank Select. Select CPU bank for further execution.

Listing E-l. (continued)

All Information Presented Here is Proprietary to Digital Research

122

CP/M 3 System Guide E Root Module of Relocatable BIOS

475
476
477
47B
479
480
481
482
483
484
485
486
487
48B
489
490
491
492
493
494
495
496
497
49B
499
500
501
502
503
504
505
506
507
50B
509
510
511
512
513
514
515
516
517
51B
519
520
52l
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

0225 323B02
0228 C30000

bnkse1:
sta @cbnk
jmp ?bank

7 remember current bank
and go exi t through user s
physical bank select routine

022B FFFFFFFFFFxoffllst
0233 FFFFFFFFFF

db
db

-1,-1,-1,-1,-1,-1,-1,-1 7 ctl-s clears to zero
-1,-1,-1,-1,-1,-1,-1,-1

003F 7932EDOO
0043 69260029
0047 01000009
004B 7E23666F
004F B4C8
0051 7BE601C26D
0057 E5EB
0059 21FEFFl97E
0061 21FAFF19
0065 7E23666F
0069 CDB601
006C E1

se1dsk:

dseg 7 following resides in banked memory

Disk I/O interface routines

7 SELDSK
Select Disk Drive. Drive code· in <C>.

Invoke login procedare for dr ive
if this is first select. Return
address of disk parameter header
in <HL>

mov a,c I sta @adrv
mov 1,c I mvi h,O I dad h
1xi b,@dtb1 I dad b
mov a,m I inx h I mov h,m I mov 1,a
ora h I rz
mov a,e I ani 1 I jnz not$first$se1ect
push h I xchg
1xi h,-2 I dad d I mov a,m I sta @RDRV
1xi h,-6 I dad d
mov a,m I inx h I mov h,m I mov 1,a
call ipch1
pop h

7 save drive select code
create index from drive code
get pointer to dispatch table
point at disk descriptor
if no entry in table, no disk
examine login bi t
put pointer in stack' <DE>
get relative drive
find LOGIN addr
get address of LOGIN routine
call LOGIN
recover DPH pointer

006D C9
notS first$se1ect:

ret

006E 010000

0071 6960
0073 22EFOO
0076 C9

0077 6960
0079 22F100
007C C9

007D 6960
007F 22F300

0082 3A3B02

home:

settrk:

setsec:

setdma:

HOME
Home selected drive. Treated as SETTRK(O).

lxi b,O 7 same as set track zero

SETTRK
Set Track. Saves track address from <BC>

in @TRK for further operations.

mov l,c I mov h,b
shld @trk
ret

SETSEC
Set Sector. Saves sector number from <BC>

in @sect for further operations.

mov l,c I mov h,b
shld @sect
ret

SETDM
Set Disk Memory Address. Saves DM address

from <BC> in @DM and sets @DBNK to @CBNK
so that further disk operations take place
in current bank.

mov l,c I mov h,b
shld @dma

Ida @cbnk default DM bank is current bank
fall through to set DM ban k

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

123

CP/M 3 System Guide E Root Module of Relocatable BIOS

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
6)4
635
636
637

0085 32F600
0088 C9

0089 6960
008B 7AB3C8
008E EB096E2600
0093 C9

setbnk:

sectrn:

read:
0094 2AED002600
009A 11000019
009E 7E23666F
00A2 E5
00A3 11F8FF19
00A7 C3BDOO

OOAA 2AED002600
OOBO 11000019
00B4 7E23666F
00B8 ES
00B9 11F6FF19

write:

I SETBNK
Set Disk Memory Bank. Saves bank number

in @DBNK for future disk data
transfers.

sta @dbnk
ret

I SECTRN
Sector Translate. Indexes skew table in <DE>

with sector in <BC>. Returns physical sector
in <HL>. If no skew table «DE>=O) then
returns physical=logical.

mov l,c I mov h,b
mov a, d I or a e I r z
xchg I dad b I mov l,m I mvi h,O
ret

I READ
Read physical record from currently selected drive.

Finds address of proper read routine from
extended disk parameter header (XDPH).

lhld @adrv I mvi h,O I dad h
Ix! d,@dtbl I dad d
mov a,m I inx h I mov h,m I mov
push h
lxi d,-8 I dad d
jmp rw$common

WRITE

I get drive code and double it
I make address of table entry
l,a I fetch table entry .

save address of table
I point to read routine address
I use common code

Write physical sector from currently selected drive.
Finds address of proper write routine from
extended disk parameter header (XDPH).

lhld @adrv I mvi h,O I dad h I get dri ve code and double it
lxi d,@dtbl I dad d I make address of table entry
mov a,m I inx h I mov h,m I mov l,a I fetch table entry
push h I save address of table
lxi d,-lO I dad d I point to write routine address

rw$common:
OOBD 7E23666F
00C1 01
00C2 1B1B
00C4 1A32EEOO
00C8 1313
OOCA E9

OOCB 32FSOOC9

OOCF AFC9

multio:

flush:

mov a,m I inx h I mov h,m I mov
pop d
dcx d I dcx d
ldax d I sta @rdrv
inx d I inx d
pchl

I MULTIO

l,a I get address of routine
recover address of table
point to relative drive
get relative drive code and post it
point to DPH aga in

I leap to driver

Set mul tiple sector count. Saves passed count in
@CNT

sta @cnt I ret

I FLUSH
BIOS deblocking buffer flush. Not implemented.

xra a I ret I return wi th no er ror

I error message components
00DIODOA074249drive$msg db cr,lf,be11,'BIOS Error on ',0
00E3 3A20S42DOOtrack$msg db ': T-',O
00E8 2C20S32DOOsector$msg db " S-', 0

I disk communication data items

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

124

CP/M 3 System Guide E Root Module of Relocatable BIOS

638
639 OOEo @adrv ds 1 I currently selected disk drive
640 OOEE @rdrv ds 1 I controller relative disk drive
641 OOEF @trk ds 2 current track number
642 OOFl @sect ds 2 I current sector number
643 00F3 @dma ds 2 current oMA address
644 OOFS 00 @cnt db 0 record count for multi sector transfer
645 00F6 00 @dbnk db 0 bank for oMA operations
646
647
648 cseg common memory
649
650 023B 00 @cbnk db bank for processor operations
651
652
653 023C end

AUXIN 0198 99 3971
AUXIST 0170 113 3671
AUXOST 010C 114 2771
AUXOUT OOEO 98 230'
BANKED FFFF 8' 186
BAUo110 0003
BAUo1200 0008
BAUo134 0004
BAU01S0 0005
BAU01800 0009
BAUol9200 OOOF
BAU02400 OOOA
BAU0300 0006
BAU03600 OOOB
BAU04800 OOOC
BAUoSO 0001
BAU0600 0007
BAUo7200 0000
BAU07S 0002
BAU09600 OOOE
BAUoNONE 0000
BELL 0007 271 632
BNKSEL 0225 124 475'
BOOT 0000 91 138.
BOOT 1 0063 164 168'
BOOTSTACK 0002 139 178 198.
CCP 0100 311 171 181
Cll 016F 319 345.
CINEXT 019E 4031 411
ClNITLOOP 0005 141' 143
ClRoy 01B2 408 415'
ClSNEXT 0182 372. 379
ClSTl 0150 318 3311 375 406
CONEXT OOEB 2441 258
CONIN 0192 95 388'
CONOST 0106 112 267'
CON OUT OOoA 96 220.
CONST 0177 94 3571
COSNEXT 0117 292' 304
COSTl 0166 327 3381
COSTER 012C 250 297 308'
CR 0000 251 632
CTLQ 0011 28, 320
CTLS 0013 291 323
oEVTBL 0002 115 204.
OlNITLOOP 0017 149' 163
OlNITNEXT 0036 152 1611
ORIVEMSG 0001 463 6321
FALSE 0000 6'
FLUSH OOCF 120 626'
GEToRV 0006 118 2111
HOME 006E 101 520'
INSCAN 019B 390 400' 413
IPCHL 01B6 159 423' 511
ISTSCAN 0180 359 370'
LF OOOA 26' 632
LIST 00E6 97 239'
LISTST 0112 109 2B7I
MBINOUT 0003
MBINPUT 0001
MBOUTPUT 0002
MBSERIAL 0008
MBSOFTBAUo 0004
MBXONXOFF 0010 314
MULTIO OOCB 119 619.

Listing E-1. (continued)

All Information Presented Here is Proprietary to Digital Research

125

CP/M 3 System Guide E Root Module of Relocatable BIOS

NEXT 01Dl 443' 456
NEXTDIGIT 01E6 452'
NOTFIRSTSE::'ECT 006D 506 513'
NOTOUTDEVICE OOFF 246 255'
NOTOUTREADY OOFl 249' 250
NOTQ 0150 320 322'
NOTS 0157 323 325'
OSTSCAN 0115 269 279 290'
OUTS CAN 00E9 223 232 242'
PDECL 01D3 445' 447
PMSGEXIT 01C8 432 436'
PMSGLOOP 01B9 4311 435
READ 0094 106 585'
RWCOMMON OOBD 591 606'
SECTORMSG 00E8 467 6341
SECTRN 0089 110 5731
SELDSK 003F 102 500,
SETBNK 0085 125 562'
SETDMA 007D 105 550'
SETJUMPS 0078 169 179 1841
SETSEC 0077 104 5381
SETTRK 0071 103 528'
STOPLOOP OlOE 446 448'
TABLE10 01F3 442 459'
TRACKMSG 00E3 465 633.
TRUE FFFF 51 6
WBOOT 006C 92 1771
WRITE OOM 107 5991
XOFFLIST 022B 317 4811
?AUXI 0015 79 991
?AUXIS 0036 82 113'
?AUXO 0012 79 98,
?oAUXOS 0039 82 1141
?BANK 0000 63 477
?BNKSL 0051 83 1241 187
?BOOT 0000 79 911
?CI 0000 49 347 417
?CINIT 0000 50 116 142
?CIST 0000 49 333
?CO 0000 49 252
?CONIN 0009 79 95'
?CONO OOOC 79 96' 434 450 464
?CONOS 0033 82 1121
?CONST 0006 79 941
?COST 0000 49 316 340
?DEVIN 003F 82 1161
?DRTBL 0042 82 118'
?DVTBL 003C 82 1151
?FLUSH 0048 83 120,
?HOME 0018 80 1011
?INIT 0000 44 145
?LDCCP 0000 45 170
?LIST OOOF 79 971
?LISTS 002D 81 109'
?MLTIO 0045 83 1191
?MOV 004B 83 1221
?MOVE 0000 62 122
?PDEC 01CB 71 4411 466 468
?PDERR 01FD 72 462,
?PMSG 01B7 71 4271 463 465 467
?READ 0027 80 106.
?RLCCP 0000 45 180
?SCTRN 0030 81 110'
?SLDSK 001B 80 1021
?STBNK 0054 83 125'
?STDMA 0024 80 IDS'
?STSEC 0021 80 1041
?STTRK ODIE 80 103'
?TIM 004E 83 123'
?TIME 0000 67 123
?WBOOT 0003 79 92' 192
?WRITE 002A 80 1071
?XMOV 0057 83 126'
?XMOVE 0000 62 126
@ADRV OOED 56 156 464 501 586 600 639'
@AIVEC 0000 38 368 398
@AOVEC 0000 38 231 278
@BNKBF 0000 40
@CBNK 023B 61 476 554 6501
@CIVEC 0000 38 358 389
@CNT 00F5 57 620 6441
@COVEC 0000 38 222 268

Listing E-l. (continued)

All Information Presented Here is proprietary to Digital Research

126

CP/M 3 System Guide E Root Module of Relocatable BIOS

@CTBL 0000 51 205 313
@DBNK 00F6 57 563 645'
@DMA 00F3 57 552 643'
@DTBL 0000 55 148 212 503 587 601
@LOVEC 0000 38 240 288
@MXTPA 0000 39 193
@RDRV OOEE 56 155 508 610 640.
@SECT OOFl 56 468 540 642,
@TRK OOEF 56 466 530 6411

Listing E-l. (continued)

End of Appendix E

All Information Presented Here is Proprietary to Digital Research

127

CP/M 3 System Guide E Root Module of Relocatable BIOS

All Information Presented Here is Proprietary to Digital Research

128

Appendix F
System Control Block Definition for CP/M 3 BIOS

The SCB.ASM module contains the public definitions of the
various fields in the System Control Block. The BIOS can referencp
the public variables.

1 tith 'S~~tem Control Block Definition ror CP/M3 BIOS'
2
3 public @civec. leovec, lai"." •• 0'1.'. Ilovec. tbnkbf
4 public (!crdm •• (!crdsk. e"info. ire.el. tho @usrcd
5 public emltio. eermde. terd~k. @mldia. I!bflg.
I. public oi!date. (thour. Imin, @,.c, ?erJtftp. @m.tpa
7
9
9 FEOO - 5CbSba.e equ OFEOOH Oas, of thl SCD

10
11 FE22 - 'CIVEC Iqu SCbSD ••• +22h Con.ole Input Rldirlction
12 · VIC tor hoord. rlw)
13 FE24 - @COVEC IClu .cbSb.s.+24h · Console Output Rldirlction
14 VIC tor (word. r/w)
15 FE2~ - IAIVEC I,U scbsbasl+2bh Audliar~ Input Redir.ction
II. Vec tor (word. rlw)
17 FE29 - !AOVEC Iqu Icb'ba'.+~Bh · "'u' i liar~ Output Rldirlction
19 · Vector (word, r/w)
19 FE2A - eLOVEC IClu sc bsbasl+2 ... h · List Output Rldirlction
20 Vector (wof'd, r/w)
21 FE3:! - tBNKDF Iqu scbSbasl+35h ... ddrlss 0' 129 D~tl Bufhr
22 for Oanked 0105 (word. rIo)
23 FE3C - ~CRDMA Iqu 5CbS~as.+3Ch · Currlnt OMA Add,. •• s
24 · (word. rIo)
2:! FE3E - eCROSK .qu scbtb.He+:lEh Currl!nt Di.k (bytl. rIo)
21. FE3F - ItVINFO IClU sc b 5b +3Fh BOOS Variable "INFO·
27 (wo,-d. rIo)
29 FE41 - (!RESEL equ scb 5bdse+4lh FCD Flag (bytl. rIo)
29 FE43 - i!FX Iqu scbSbase+43h ODDS Function For Error
30 Message .. (by tl. rIo)
31 FE44 ,. iUSRCD equ SO b lb.ose+44h Current U.er Cod. (b~te. rIo)
32 FE4A - (!MLTIO Iqu scb$b .. se+4Ah Currlnt Multi-Sector Count
33 (byte. r/.,)
34 FE4B ,. iERMOE Iqu .cb.b +4Dh DDOS Error Hod. (b~h. rIo)
35 FE51 .. IERDSK Iqu scbSbase+5lh · ODDS Error Disk (bytl. rIo)
31. FE54 - @MEDIA Iqu 5CbSb.sl+54h Set b~ .IlIDS to indicatl
37 op.n door (bv teo rlw)
39 FE:!7 - '!DFLGS Iqu scbsba.e .. :!7h BOOS MI' ... gl Sue Flag (bVt •• rIo)
39 FE59 & iD ... TE Iqu scbSba •• +:l9h Date 1 n Oa~, Sinc~ I ,J .. n 78
40 (word. r/ ..)
41 FE:!'" - I!HOUR 'qu ub.b ·:I ... h Hour in DCD (byt •• rl",)
42 FE~B - IMIN .qu ~cbSb ... e·:lnh Mlnutl 1n BCD (byte. r/.,)
43 FE% - @SEC .qu ub'ba,"+:lCh Second 1n BCD (b~ te. rl",)
44 FE:;F - ?ER,JMP Iqu HbSba~e+:lFh noos Error: M •• ~age ,Jump
45 (word. rlw)
4b FEb2 - !MXTP ... equ Icbab.'.+b~h Top of U •• r TP'"
47 (.ddr"l~ .t b.71(",ord. rio)
4B 0000 Ind

Listing F-l. System Control Block Definition for CP/M 3 BIOS

All Information Presented Here is Proprietary to Digital Research

129

CP/M 3 System Guide F System Control Block Definition

SCBBASE FEOO 9. 11 13 1:5 17 19 21 23 2:5 26
29 29 :)1 32 34 3:1 36 38 39 41
42 43 44 46

?ERJMP FE:!F 6 4411
@AIVEC FE26 J "II @AOVEC FE29 :I 1711
ellFLCS FE57 :5 Jail
ellNKIlF FE35 3 ~1.

ICIVEC FE22 J 1U
eCOVEC FE24 3 1311
eCRDMA FE3C 4 2311
eCRD5~ FEJE 4 :!5.
I!DATE FE:59 b 3911
@ERDS~ FE51 5 3511
IERMDE FE41l 5 3411
~FX FE43 4 29.
eHOUR FE:!A 6 4111
ItLOVEC FE2A :I 1911
eMEDIA FE54 5 31.11
@I'IIN FE:!B 6 4211
(!MLTIO FE4A S :32.
@MXTPA FE62 6 41.11
@RESEL FE41 4 2911
ISEC FESC 6 4311

<!'JSRCD FE44 311
ivlNFO FEJF 26.

Listing F-l. (continued)

End of Appendix F

All Information Presented Here is Proprietary to Digital Research

130

Appendix G
Equates for Mode Byte Bit Fields

equates for mode byte bit fields

mb$ input
mb$output
mb$ in$out
mb$soft$baud
mb$ser ial
mbxonxoff

baud$none
baud$50
baud$75
baud$110
baud$134
baud$150
baud$300
baud$600
baud$1200
baud$1800
baud$2400
baud$3600
baud$4800
baud$7200
baud$9600
baud$19200

equ OOOO$OOOlb : device may do input
equ OOOO$OOlOb : device may do output
equ mb$input"mb$output
equ OOOO$OlOOb software selectable baud rates
equ OOOO$lOOOb device may use protocol
equ OOOl$OOOOb XON/XOFF protocol enabled

equ 0
equ 1
equ 2
equ 3
equ 4
equ 5
equ 6
equ 7
equ 8
equ 9
equ 10
equ 11
equ 12
equ 13
equ 14
equ 15

no baud rate associated with device
50 baud
75 baud
110 baud
134.5 baud
150 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
3600 baud
4800 baud
7200 baud
9600 baud
19.2k baud

Listing G-I. Equates for Mode Byte Fields:

End of Appendix G

MODEBAUD.LIB

All Information Presented Here is Proprietary to Digital Research

131

CP/M 3 System Guide End of Appendix G

All Information Presented Here is Proprietary to Digital Research

132

Appendix H
Macro Definitions for CP/M 3 BIOS Data Structures

Macro Def ini tions for CP/M3 BIOS Data Structures.

dtbl <dphO,dphl, ••• > - dr i ve table

dph tr anslate$ table, - disk parameter header
di sk$par ameter$ block,
checksumS si ze, (optional)
alloc$size (optional)

skew sectors, - skew table
skewS factor,
firs t$ sector $ number

I dpb physical$sector$size, - disk parameter block
physica 1$ sector s$per $ track,
numberS tracks,
block$size,
numberdirentries,
track$offset,
checksumvec si ze (optional)

Drive Table. Contains 16 one word entries.

dtbl macro ?list
local ?n

?n set 0
irp ?drv,<?list>

?n set ?n+l
dw ?drv

endm

if ?n > 16
, Too many drives. Max 16 allowed'

exitm
endif

if ?n < 16
rept (16-?n)
dw 0
endm

endif
endm

dph macro ?trans,?dpb,?csize,?asize
local ?csv,?alv

dw ? trans
db 0,0,0,0,0,0,0,0,0

translate table address
BOOS Scratch area

db 0 media flag

dw ?dpb disk parameter block
if not nul ?csi ze

dw ?csv checksum vector
else

dw OFFFEh checksum vector allocated by GENCPM
endif
if not nul ?asi ze

dw ?alv allocation vector
else

dw OFFFEh alloc vector allocated by GENCPM
endif

dw Offfeh,Offfeh,Offfeh dirbcb, dtabcb, hash alloc'd by GENCPM
db 0 hash bank

Listing H-I. Macro Definitions for CP/M 3 BIOS Data Structures

All Information Presented Here is Proprietary to Digital Research

133

CP/M 3 System Guide

if not nul ?csize
?csv ds ?csi ze checksum vector

endif
if not nul ?asize

?alv ds ?asize alloca tion vector
endif

endm

dpb macro ?psi ze, ?pspt, ?trks, ?bls, ?ndi rs, ?off, ?ncks
local ?spt, ?bsh, ?blm, ?exm, ?dsm, ?drm, ?alO, ?all, ?cks, ?psh, ?psm
local ?n

" physical sector mask and physical sector shift
?psh set 0
?n set ?psize/128
?psm set ?n-l

rept B
?n set ?n/2

if ?n = 0
exitm
endif

?psh set ?psh + 1
endm

?spt set ?pspt* (?psize/12B)

?bsh
?n

set 3
set ?bls/l024

rept B
?n set ?n/2

if ?n = 0
exitm
endif

?bsh set ?bsh + 1

set ?bls/12B-l
endm

?blm
?size
?dsm

set (?trks-?off) *?spt
set ?size/ (?bls/12B)-1

?exm set ?!>ls/1024
if ?dsm > 255

if ?bls = 1024

• 'Error, can" t have this size disk with lk block size'
exitm
endif

?exm set ?exm/2
endif

?exm set ?exm-l
?all set 0
?n set (7ndirs* 32+?bls-l) /?bls

rept ?n
?all set (?all shr 1) or 8000h
endm

?alO
?all
?drm
if not nul

?cks
else

?cks
endif

dw
db
db
dw
dw
db
dw
dw
db

endm

set high ?all
set low ?all
set ?ndirs-l

?ncks
set ?ncks

set ?ndirs/4

?spt
?bsh, ?blm
?exm
?dsm
?drm
?alO, ?all
?cks
?off
?psh, ?psm

128 byte records per track
block shift and mask
extent mask
maximum block number
maximum directory entry number
alloc vector for directory
checksum si ze
offset for system tracks
physical sector size shift and mask

H Macro Definitions

Listing H-1. (continued)

All Information Presented Here is Proprietary to Digital Research

134

CP/M 3 System Guide

,
gcd macro ?m,?n

II greatest common divisor of m,n
,. produces value gcdn as result
II (used in sector translate table generation)

?gcdm set?m Ilvariable for m
?gcdn set 7n Ilvariable for n
?gcdr set 0 Ilvariable for r

rept 65535
?gcdx set 7gcdm/?gcdn
7gcdr set ?gcdm - ?gcdx*7gcdn

if ?gcdr = 0
exitm
endif

?gcdm set 7gcdn
?gcdn set ?gcdr
endm

endm

skew macro ?secs,?skf,7fsc
II generate the translate table

?nxtsec set 0 Ilnext sector to fill
?nxtbas set 0 II moves by one on over flow
gcd %?secs, 7skf
II ?gcdn = gcd (7secs ,skew)
?nel tst set ?secs/?gcdn
•• neltst is number of elements to generate
,. before we overlap previous elements
?nelts set ?neltst Ilcounter

rept ?secs I I once for each sector
db ?nxtsec+? fsc
?nxtsec set ?nxtsec+?skf

if ?nxtsec >= ?secs
?nxtsec set ?nxtsec-? secs
endif

?nelts set ?nelts-l

endm
endm

if ?nelts 0
?nxtbas set ?nxtbas+l
?nxtsec set ?nxtbas
?nelts set ?neltst
endif

H Macro Definitions

Listing B-1. (continued)

End of Appendix H

All Information Presented Here is Proprietary to Digital Research

135

CP/M 3 System Guide End of Appendix H

All Information Presented Here is Proprietary to Digital Research

136

Appendix I
ACS 8000-15 BIOS Modules

1.1 Boot Loader Module for CP/M 3

The BOOT.ASM module performs system initialization other than
character and disk I/O. BOOT loads the CCP for cold starts and
reloads it for warm starts. Note that the device drivers in the
Digital Research sample BIOS initialize devices for a polled, and
not an interrupt-driven, environment.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

FFFF -
0000 •

FFFF -

0005 =

0001 =

0000 2101002200
0009 2102002200
OOOF 2104002200
0018 21EFOOCD25
OOlE 218700CDOO
0024 C9

0025 7EB7C847
0029 234E23

002C+EDB3
002E C32500

0000 AF32DBOO
0004 21000022EC
OOOA llCCOOCD73
0010 3CCA4l\OO
0014 1l0001CD78
OOlA ll8000CD7D
0020 llCCOOCD82

title 'Boot loader module for CP/M 3.0'

true equ -1
false equ not true

ban ked equ true

bdos

public
extrn
extrn
extrn

? ini t,? ldccp, ?rlccp, ?time
?pmsg,?conin
@civec,@covec,@a ivec ,@aovec,@lovec
@cbnk,?bnksl

maclib ports
maclib z80

equ 5

if banked
tpa$bank equ

else
tpa$bank equ

endif

dseg init done from banked memory

? ini t:
lxi h,l sh1d @civec I shld @covec
lxi h,2 shld @lovec
lxi h,4 I sh1d @aivec I shld @aovec
lxi h,init$table I call out$blocks
1xi h,signon$msg I call ?pmsg
ret

assign console to CRT:
assign pr inter to LPT:
assign AUX to CRT1:
set up misc hardware
print signon message

out$blocks:

?ldccp:

mov a,m lora a I rz I mov b,a
inx h I mov c,m I inx h
outir
DB OEDH, OB3H
jmp out$blocks

cseg I boot loading most be done from resident memory

This version of the boot loader loads the CCP from a file
called CCP.COM on the system drive (A:).

I First time, load the A:CCP.COM file into TPA
xra a I sta ccp$fcb+15· I zero extent
lxi h,O I shld fcb$nr I start at beginning of file
lxi d,ccp$fcb I call open open file containing CCP
inr a I jz no$CCP error if no file •••
lxt d,OlOOh I call setdma start of TPA
lxi d,128 I call setmu1ti allow up to 16k bytes
lxi d,ccp$fcb I call read load the thing

now,

0026 2100010100 lxt h, OlOOh I lxt b,OCOOh
copy CCP to ban k 0 for reloading

clone 3K, just in case
002C 3l\OOOOF5 Ida @cbnk I push psw

ld$l:
0030 3EOICDOOOO mvi a,tpa$bank I call ?bnksl
0035 7EF5 mov a,m I push psw

save current bank

select TPA
get a byte

Listing I-I. Boot Loader Module for CP/M 3

All Information Presented Here is Proprietary to Digital Research

137

CP/M 3 System Guide

0037 3E02CDOOOO
003C Fl77
003E 230B
0040 78B1
0042 C23000
0045 FlCDOOOO
0049 C9

1.1 Boot Loader Module for CP/M 3

mvi a,2 I call ?bnks1
pop psw I mov m,a
inx h I dcx b
mov a, b I or a C

jnz 1d$1
pop psw I call ?bn ks1
ret

select extra bank
save the byte
bump pointer, drop count
test for done

restore or igina1 ban k

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

no$CCP:
004A 21ABOOCDOO

: here if we couldn't find the file
1xi h,ccp$msg I call ?pmsg report this •••

0050 CDOOOO call ?conin : get a response
0053 C30000 jmp ?ldccp : and try aga in

100
101
102
103
104

?r1ccp:
0056 2100010100

r1$1:
005C 3E02CDOOOO
0061 7EF5
0063 3E01CDOOOO
0068 Fl77
006A 230B
006C 78B1
006E C25COO
0071 C9

1xi h,0100h I 1xi b,OCOOh

mvi a,2 I call ?bnks1
mov a,m I push psw
mvi a,tpa$bank I call ?bnks1
pop psw I mov m,a
inx h I dcx b
mov a,b I oca c
jnz r 1$1
ret

: No external clock.
? time:

0072 C9 ret

: CP/M BOOS Function Interfaces

open:
0073 OEOFC30500 mvi c,15 I jmp bdos

setdma:
0078 OE1AC30500 mvi c,26 I jmp bdos

setmul ti:
007D OE2CC30500 mvi c,44 I jmp bdos

105 read:
106 0082 OE14C30500 mvi c, 20 I jmp bdos
107
108

clone 3K

select extra bank
get a byte
select TPA
save the byte
bump pointer, drop count
test for done

open file control block

set data transfer address

set record count

read records

109 0087 ODOAOD0A43signon$msg db

db

13,10,13,10,'CP/M Version 3.0, sample BIOS',13,10,0
110
111 OOAB OD0A42494Fccp$msg
112
113
114 OOCC 0143435020ccp$fcb
115 OODC
116 OOEC 000000 fcb$nr
117
118 OOEF 0326CFFF07init$table
119 00F4 0327CF0007
120 00F9 012500
121 OOFC 00
122
123 OOFD

BANKED
BC
BOOS
CCPFCB
CCPMSG
DE
FALSE
FCBNR
HL
INITTABLE
IX
IY
LD1
NOCCP
OPEN
OUTBLOCKS
PBANKSELECT
PBAUDCON1
PBAUDCON2
PBAUDCON34
PBAUDLPT1

FFFF
0000
0005
OOCC
OOAB
0002
0000
OOEC
0004
OOEF
0004
0004
0030
004A
0073
0025
0025
OOOC
0030
0031
OOOE

end
6' 18

16. 97
50 52
73 1111

4.
51 116,

30 118'

611 68
53 72,
52 961
30 341

120

100
56

39

db
ds
db

db
db
db
db

103
114,

13,10,'BIOS Err on A: No CCP.COM file',O

1, 'CCP
16
0,0,0

" 'COM' ,0,0,0,0

3, p$zpio$3a, OCFh, OFFh ,07h
3, p$zpio$3b, OCFh, OOOh, 07h
1, p$ban k$se1ect, 0
o

106

: set-up config port
: set up ban k port

select ban k C
end of init$tab1e

Listing 1-1. (continued)

All Information Presented Here is Proprietary to Digital Research

138

CP/M 3 System Guide 1.1 Boot Loader Module for CP/M 3

PBAUDLPT2 0032
PBOOT 0014
PCENTDATA 0011
PCENTSTAT 0010
PCON2DATA 002C
PCON2STAT 002D
PCON3DATA 002E
PCON3STAT 002F
PCON4DATA 002A
PCON4STAT 002B
PCONFIGURATION 0024
PCRTDATA OOlC
PCRTSTAT OOlD
PFDCMND 0004
PFDDATA 0007
PFDINT 0008
PFOMISC 0009
PFDSECTOR 0006
PFOSTAT 0004
PFDTRACK 0005
PINDEX OOOF
PLPT2DATA 0028
PLPT2STAT 0029
PLPTDATA DOlE
P LPT!:; TAT OOlF
PRTC 0033
PSELECT 0008
PWD1797 0004
PZCTCl OOOC
PZCTC2 0030
PZOART OOlC
PZOMA 0000
PZPIOl 0008
PZP101A OOOA
PZPI01B OOOB
PZPI02 0010
PZPI02A 0012
PZPI02B 0013
PZP103 0024
PZPI03A 0026 118
PZPI03B 0027 119
PZSIOl 0028
PZSI02 002C
READ 0082 56 105'
RLl 005C 80. 87
SETDMA 0078 54 99.
SETMULTI 007D 55 102'
SIGNONMSG 0087 31 109'
TPABANK 0001 19. 211 62 83
TRUE FFFF 3' 4 6
?BNKSL 0000 11 62 64 69 81 83
?CONIN 0000 9 74
?INIT 0000 8 26'
noccp 0000 8 48' 75
?PMSG 0000 9 31 73
?RLCCP 0056 8 78'
?TlME 0072 8 911
E!AIVEC 0000 10 29
E!AOVEC 0000 10 29
E!CBNK 0000 11 60
E!CIVEC 0000 10 27
E!COVEC 0000 10 27
@LOVEC 0000 10 28

Listing I-I. (continued)

All Information Presented Here is Proprietary to Digital Research

139

CP/M 3 System Guide I.2 Character I/O Handler

I.2 Character I/O Handler for ZOO Chip-based System

The CHARIO.ASM module performs all character device
ini tialization, input, output, and status polling. CHARlO contains
the character device characteristics table.

1
2
3
4
5
6
7
8
9

0006

title 'Character I/O handler for z80 chip based system'

Character I/O for the Modular CP/M 3 Bros

I limitations:

baud rates 19200,7200,3600,1800 and 134
are approximations.

9600 is the maximum baud rate that is likely
to work.

baud rates 50, 75, and 110 are not supported

public
public

?cini t, ?ci, ?co, ?cist, ?cost
@ctb1

maclib Z80
maclib ports
mac1 ib mode baud

max$devices equ 6

cseg

def ine Z80 op codes
I def ine port addresses

define mode bits and baud equates

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

?cinit:
0000 79FE06CA42 mov a,c 1 cpi max$devices 1

rnc
jz cent$init ; init parallel printer

I invalid device 0006 00
0007 692600
OOOA E5
OOOB 292929
OOOE 11E900196E
0013 70FE07
0016 3E44021000
001B 3EC4

0010 323501
0020 2600111B01
0026 7E322E01
002A E1
002B 11DC0019
002F 7E3C323001
0034 11FAFF19
0038 7E322C01
003C 212801
003F C34500

50 0042 213901
51
52
53 0045 7EB7C8
54 0048 47234E23
55
56 004C+EOB3
57 004E C34500
58
59
60
61
62 0051 78FE060263

mov 1,c 1 mvi h,O
push h
dad h 1 dad. h 1 dad h
1xi d,@ctb1+7 1 dad d 1 mov I,m
mov a,l 1 cpi baud$600
mvi a,44h 1 jnc hi$speed
mvi a,OC4h

make 16 bits from device number
I save device in stack

*8
get baud rate
see if baud> 300

I if >= 600, use *16 mode
else, use *64 mode

hi$speed:
sta sioreg4
mvi h,O 1 1xi d,speed$tab1e 1 dad d ; point to counter entry
mov a,m 1 sta speed get and save ctc count
.pop h recover
1xi d,data$ports 1 dad d point at SIO port address
mov a,m 1 inr a 1 sta sio$port ; get and save port
1xi d,baud$ports-data$ports 1 dad d ; offset to baud rate port
mov a,m 1 sta ctc$port ; get and save
1xi h,seria1$init$tb1
jmp stream$out

cent$init:
lxi h,pio$init$tbl

stream$out:

?ci:

mov a,m f ora aIr z
mov b,a 1 inx h 1 mov c,m
outir
OB OEOH, OB3H
jmp s tream$out

character input

1 inx h

mov a,b 1 cpi 6 1 jnc nu11$input ; can't read from centronics
63 cll:
64 0057 C06600CA57
65 0050 00
66 005E+E078
67 0060 E67F
68 0062 C9

Listing 1-2.

call' ?cist 1 jz cll
dcr c 1 inp a
OB OEOH,A*8+40H
ani 7Fh
ret

wait for character ready
get data

mask parity

Character I/O Handler for Z80 Chip-based System

All Information Presented Here is Proprietary to Digital Research

140

CP/M 3 System Guide I.2 Character I/O Handler

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

nU11$input:
0063 3EIA
0065 C9

0066 78FE06D27D
006C 682600
006F 110C0019
0073 4EOC

0075+ED78
0077 E601
0079 C8
oon F6FF
007C C9

?cist:

mvi a,lAh
ret

character input status

return a ctl-Z for no device

mov a,b 1 cpi 6 1 jnc nu11$status : can't read from centronics
mov l,b 1 mvi h,O make device number 16 bits
lxi d,data$ports 1 dad d make pointer to port address
mov c,m 1 inr c I get SIO status port
inp a read from status port
DB OEOH,A*8+40H
an i isolate RxRdy
r z : return wi th zero
or i OFFh
ret

nU11$status:
0070 AFC9

?co:
007F 78FE06CA9E
0085 029000
0088 79F5
008A C5

cO$spin:

xra a 1 ret

: character output
mov a,b 1 cpi 6 1 jz centronics$out
jnc nul1$output
mov a,c 1 push psw
push b

save character from <C>
save device number

008B COB300CA8B call ?cost 1 jz co$spin wait for TxEmpty
0091 E16C2600 pop h 1 mov l,h 1 mvi h,O get device number in <HL>

make address of port address
get port address

0095 110C0019 lxi d,data$ports 1 dad d
0099 4E mov c,m
009A Fl pop psw 1 outp a send data
009B+E079 DB OEOH,A*B+41H

null$output:
0090 C9 ret

centronics$out:
009E OBIOE620C2 in p$centstat 1 ani 20h 1 jnz centronics$out
00A5 790311 mov a,c lout p$centdata : give printer data
00A8 OBIOF60103 in p$centstat 1 ori 1 lout p$centstat ; set strobe
OOM E67E0310 ani 7Eh lout p$centstat : clear strobe
00B2 C9 ret

?cost:
00B3 78FE06CACO
00B9 027000
OOBC 6B2600
OOBF 110C0019
00C3 4EOC

00C5+E078
00C7 E604CB
OOCA F6FFC9

: character output status
mov a,b 1 cpi 6 1 jz cent$stat
jnc nu11$status
mov 1, b 1 mv i h, 0
lxi d,data$ports 1 dad d
mov c,m 1 inr c
inp a get input status
DB OEOH,A*8+40H
ani 4 1 rz test transmitter empty
ori OFFh 1 ret return true if ready

cent$stat:
OOCD OBI02F
0000 E620C8
0003 F6FFC9

in p$centstat 1 cma
ani 20h 1 rz
ori OFFh 1 ret

baud$ports: : CTC ports by physical device number
p$baud$conl, p$baud$lptl, p$baud$con 2, p$baud$con 34
p$ba ud$con34, p$baud$lpt2

0006 OCOE3031 db
OOOA 3132 db

data$ports: I serial base ports by physical device number
pcrtdata ,plptdata ,p$con2data ,p$con3data
p$con4data ,p$lpt2data

OOOC lClE2C2E db
OOEO 2A28 db

00E2 4352542020@ctbl
00E8 OF
00E9 OE
OOEA 4C50542020
OOFO IF
OOFI OE
00F2 4352543120
OOFB OF
00F9 OE
OOFA 4352543220
0100 OF
0101 OE

db 'CRT ; device 0, CRT port
db mb$ in$out+mb$ser ial+mb$softbaud
db baud$9600
db 'LPT' ; device 1, LPT port 0
db mb$ in$out+mb$ser ial+mb$softbaud+mb$xonxoff
db baud$9600
db 'CRT1' ; device 2, CRT port 1
db mb$ in$out+mb$serial+mb$softbaud
db baud$9600
db 'CRT2' ; device 3, CRT port 2
db mb$ in$out+mb$ser ial+mb$softbaud
db baud$9600

Listing 1-2. (continued)

All Information Presented Here is Proprietary to Digital Research

141

CP/M 3 System Guide 1.2 Character I/O Handler

150
151
152
153
154
155
156
157
15B
159
160
161

0102 4352543320
010B OF
0109 OE
010A 56415B2020
0110 OF
0111 OE
0112 43454E2020
0118 02
0119 00
0111\ 00

db 'CRT3 ; device 4, CRT port 3
db mb$ in$out+mb$ser ial+mb$softbaud
db baud$9600
db 'VI\X ; device 5, LPT port 1 used for VAX interface
db mb$ in$out+mb$ser ial+mb$softbaud
db baud$9600
db 'CEN '
db mb$output
db baud$none
db 0

device 6, Centronics parallel printer

; table terminator

162 OllB 00FFFFFFE9speed$tab1e db 0,255,255,255,233,208,104,208,104,69,52,35,26,17,13,7
163
164
165
166
167
16B
169
170
171
172
173
174
175

012B 02
012C
012D 47
012E
012F 07
0130
0131 1803E104
0135
0136 OSEA
0138 00

seria1$init$tb1

ctc$port

speed

sio$port

sioreg4

176 0139 02130F07 pio$init$tb1
177 0130 0312CFFB07
17B 0142 00
179
1BO 0143

BI\UOllO
BI\U01200
BI\UD134
BI\UD150
BI\UD1800
BI\UD19200
BI\UD2400
BI\UD300
BI\UD3600
BI\UD4800
BI\UD50
BI\UD600
BI\UD7200
BI\UD75
BI\UD9600
BI\UONONE
BI\UDPORTS
BC
CENTINIT
CENTRONI CSOUT
CENTSTAT
CIl
COSPIN
CTCPORT
DI\TI\PORTS
DE
HISPEED
HL
IX
IY
MAXDEVICES
MBINOUT
MBINPUT
MBOUTPUT
MBSERII\L
MBSOFTBI\UD
MBXONXOFF
NULL INPUT
NULLOUTPUT
NULLSTI\TUS
PBANKSELECT
PBAUDCONl
PBAUDCON2
PBI\UDCON34
PBAUDLPTl
PBAUDLPT2
PBOOT
PCENTDI\TI\
PCENTSTI\T
PCON20l\TA

0003
0008
0004
0005
0009
OOOF
0001\
0006
OOOB
OOOC
0001
0007
OOOD
0002
OOOE
0000
00D6
0000
0042
009E
OOCO
0057
008B
012C
OOOC
0002
0010
0004
0004
0004
0006
0003
0001
0002
OOOB
0004
0010
0063
0090
007D
0025
OOOC
0030
0031
OOOE
0032
0014
0011
0010
002C

34

140
158

44

28
91

113
63t
95t
45
42

35

23'
139

157
139
139
142

62
92
76

130
130
130
130
131

107
106
134

end

143

129.

49t
lOSt
1241

64
96

166t
44

371

28
142

142
142

70t
102,

B7I

131

108

146

106

78

145

145
145

114

108

db 2
ds 1
db 47h
ds 1
db 7
ds 1
db 18h,3,OE1h,4
ds 1

two bytes to CTC
port address of CTC
CTC mode byte
baud multiplier
7 bytes to SIO
port address of SIO

db 5,OEl\h
db 0 ; terminator

db
db
db 0

149

9B

148

148
148

109

2, p$zpio$2b, OFh, 07h
3, p$zpio$2a ,0CFh ,OF8h, 07h

152

116

151

151
151

125

155

133t

154

154
154

Listing 1-2. (continued)

All Information Presented Here is proprietary to Digital Research

142

CP/M 3 System Guide 1.2 Character I/O Handler

PCON2STAT 0020
PCON30ATA 002E 134
PCON3STAT 002F
PCON40ATA 002A 135
PCON4STAT 002B
PCONFlGURATION 0024
PCRTOATA 001C 134
PCRTSTAT 0010
PFOCMNO 0004
PFODATA 0007
PFOINT 0008
PFOMISC 0009
PFOSECTOR 0006
PFOSTAT 0004
PFOTRACK 0005
PINDEX OOOF
PIOINITTBL 0139 50 1761
Pt.PT2DATA 0028 135
Pt.PT2STAT 0029
Pt.PTOATA 001E 134
Pt.PTSTAT 001F
PRTC 0033
PSELECT 0008
PWD1797 0004
PZCTC1 OOOC
PZCTC2 0030
PZDART 001C
PZDMA 0000
PZPI01 0008
PZPI01A OOOA
PZPI01B OOOB
PZPI02 0010
PZPI02A 0012 177
PZPI02B 0013 176
PZPI03 0024
PZPI03A 0026
PZPI03B 0027
PZSI01 0028
PZSI02 002C
SERIALINITTBt. 012B 46 1641
SIOPORT 0130 43 1701
SIOREG4 0135 38 1721
SPEED 012E 40 1681
SPEEDTABt.E 011B 39 1621
STREAMOUT 0045 47 521 57
?CI 0051 16 601
?CINIT 0000 16 271
?CIST 0066 16 64 74'
?CO 007F 16 901
?COST 00B3 16 96 112'
@CTBL 00E2 17 33 1381

Listing I-2. (continued)

All Information Presented Here is Proprietary to Digital Research

143

CP/M 3 System Guide 1.3 Drive Table

1.3 Drive Table

The DRVTBL.ASM module points to the data structures for each
configured disk drive. The drive table determines which physical
disk unit is associated with which logical drive. The data
structure for each disk drive is called an Extended Disk Parameter
Header (XDPH).

1 public @dtbl
2 extrn fdsdO,fdsdl
3
4 cseg
5
6 0000 00000000 @dtbl dw fdsdO, fdsdl
7 0004 0000000000 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0 drives C-P non-existent
8
9 0020 end

FOSOO 0000 6
FOSOI 0000 6
@OTBL 0000 6'

Listing I-3. Drive Table

I.4 Z80 DMA Single-density Disk Handler

The FDl797SD module initializes the disk controllers for the
disks described in the Disk Parameter Headers and Disk Parameter
Blocks contained in this module. FDl797SD is written for hardware
that supports Direct Memory Access (DMA).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

title 'wd1797 w/ Z80 OMA Single density diskette handler'

CP/M-80 Version 3 -- Modular BIOS

Disk I/O Module for wd1797 based diskette systems

Initial version 0.01,
Single density floppy only. - jrp, 4 Aug 82

dseg

Disk drive dispatching tables for linked BIOS

public fdsdO, fdsdl

variables containing parameters passed by BOOS

extrn @adrv,@rdrv
extrn @dma,@trk,@sect
extrn @dbnk

System Control Block var iables

extrn @ermde I BOOS error mode

Uti! i ty routines in standard BIOS

Listing 1-4. Z80 DMA Single-density Disk Handler

All Information Presented Here is Proprietary to Digital Research

144

CP/M 3 System Guide

27
2B
29
30
31
32
33
34
35
36
37
3B
39
40
41
42
43
44
45
46
47
4B
49
50
51
52
53
54
55
56
57
5B
59
60
61
62
63
64
65
66
67
6B
69
70
71
72
73
74
75
76
77
7B
79
BO
Bl
B2
B3
B4
B5
B6
B7
BB
B9
90
91
92
93
94
95
96
97
9B
99

100
101
102
103
104

0000
OOOA
0007

0000 E600
0002 DCOO
0004 DBOO
0006 BEOO
OOOB 0000

000MA400
OOOC+OOOOOOOOOO
0015+00
0016+0000
001B+2300
001A+3300
00 lC+ FEFFFEFFFE
0022+00
0023+
0033+

0052 E600
0054 DCOO
0056 DBOO
005B CDOO
005A 0100

005C+A400
005E+0000000000
0067+00
006B+0000
006A+7500
006C+B500
006E+FEFFFEFFFE
0074+00
0075+
00B5+

OOOO+1AOO
0002+0307
0004+00
0005+F200
0007+3FOO
0009+COOO
000B+1000
0000+0200
OOOF+OOOO

cr
If
bell

fdsdO

nOOOl
n0002

fdsdl

n0003
110004

dpbsd

1.4 Z80 DMA Single-density Disk Handler

extrn ?wboot warm boot vector
extrn ?pmsg I print message @<HL> up to 00, saves <BC>
extrn ?pdec pr int binary number in <A> from 0 to 99.
extrn ?pderr I print BIOS disk error header
extrn ?con in, ?cono I con in and out
extrn ?const I get console status

Port Address Equates

maclib ports

CP/M 3 Disk definition macros

maclib cpm3

Z80 macro library instruction definitions

maclib zBO

co.nmon control characters

equ 13
equ 10
equ 7

Extended Disk Parameter Headers (XPDHs)

dw fd$writ!e
dw fd$ read
dw fd$login
dw fd$initO
db 0,0 I relative drive zero
dph trans,dpbsd, 16, 31
OW TiRANS TRANSLATE TABLE ADDRESS
DB 0,0,0,0,0,0,0,0,0 BOOS SCRATCH AREA
DB 0 I MEDIA FLAG
OW DPBSD I DISK PARAMETER BLOCK
OW 11·0001 I CHECKSUM VECTOR
OW n0002 ; ALLOCATION VECTOR

, <DE>

OW OF!'FEH,OFFFEH,OFFFEH DIRBCB, OTABCB, HASH ALLOC'D BY GENCPM
DB 0 I HASH BANK
OS 16 CHECKSUM VECTOR
OS 31 I ALLOCATION VECTOR

dw fd$write
dw fd$read
dw fd$login
dw fd$initl
db 1,0 ; relative drive one
dph trans,dpbsd,16,31
OW TRANS TRANSLATE TABLE ADDRESS
DB 0,0,0,0,0,0,0,0,0 I BOOS SCRATCH AREA
DB 0 MEDIA FLAG
OW DPBSD ; DISK PARAMETER BLOCK
OW 110003 I CHECKSUM VECTOR
OW n0004 ; ALLOCATION VECTOR
OW OFFFEH,OFFFEH,OFFFEH I DIRBCB, OTABCB, HASH· ALLOC' 0 BY GENCPM
DB 0 HASH BANK
OS 16 CHECKSUM VECTOR
OS 31 ALLOCATION VECTOR

cseg ; DPB must be resident

dpb
OW
DB
DB
OW
OW
DB
OW
OW
DB

128,26,77,1024,64,2
n0005
110006,110007
??0008
110009
110010
nOOll,110012
110013
2
110014,110015

dseg I rest is banked

12B BYTE RECORDS PER TRACK
BLOCK SHIFT AND MASK
EXTENT MASK
MAXIMUM BLOCK NUMBER
MAXIMUM DIRECTORY ENTRY NUMBER
ALLOC VECTOR FOR DIRECTORY
CHECKSUM SIZE
OFFSET FOR SYSTEM TRACKS

I PHYSICAL SECTOR SIZE SHIFT AND MASK

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

145

CP/M 3 System Guide I.4 Z80 DMA Single-density Disk Handler

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161.
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

001\4+01
OOA5+07
OOA6+0D
OOA7+13
OOA8+19
OOA9+05
OOAA+OB
OOAB+ll
00AC+17
00AD+03
00AE+09
OOAF+OF
00BO+15
00B1+02
00B2+08
OOBHOE
00B4+14
OOB5+1A
00B6+06
00B7+0C
00B8+12
00B9+18
00BA+04
OOBB+OA
00BC+10
00BD+16

OOBE 21CEOO

00C1 7EB7C8
00C4 47234E23

00C8+EDB3
OOCA C3CIOO

OOCD C9

OOCE 040A
0000 CFC217FF
0004 040B
0006 CFDD17FF
OODA 00

OODB C9

trans skew 26,6,1
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+l
DB ?NXTSEC+1
DB ?NXTSEC+1
DB ?NXTSEC+1
DB ?NXTSEC+l

; Disk I/O routines for standardi zed BIOS inter face

Initialization entry point.

called for fitst time initialization.

fd$initO:
lxi h, ini t$table

fd$ in i t$next:
mov a,m lora a I r z
mov b,a I inx h I mov c,m I inx h
outir
DB OEDH, OB3H
jmp fd$init$next

fd$ initl:
ret

ini t$ table

fd$login:

; all initialization done by drive 0

db 4,p$zpio$lA
db 1100lll1b, 11000010b, OOOlOlllb,llllllllb
db 4,p$zpio$lB
db 1l001l1lb, 1l011l01b, OOOlOlllb,llllllllb
db 0

This entry is called when a logical drive is about to

\..

be logged into for the purpose of density determination.

rel

It may adjust the parameters contained in the disk
parameter header pointed at by <DE>

have nothing to do in
simple single densi ty only envi ronment.

disk READ and WRITE entry points.

; these entries are called with the following arguments:

relative drive number in @rdrv (8 bits)
absolute drive number in @adrv (8 bits)
disk transfer address in @dma (16 bits)
disk transfer bank in @dbnk (8 bits)

I disk track address in @trk (16 bi ts)
disk sector address in @sect (16 bits)
pointer to XDPH in <DE>

Listing I-4. (continued)

All Information Presented Here is Proprietary to Digital Research

146

CP/M 3 System Guide I.4 Z80 DMA Single-density Disk Handler

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

OOOC 211802
OOOF 3E8 80 601
00E3 C3EOOO

00E6 211F02
00E9 3EA80605

OOEO 222702
OOFO 321102
00F3 7832A802
00F7 2AO000229F
OOFO 3AO0006F26
0103 11160219
0107 7E321202
010B 0308

0100 OEOA

010F C5

0110 3A12022113
0117 77
0118 C22001

011B 3AO0002114
0122 77
0123 C22001

0126 OB09E602C2

fd$read:

they transfer the appropr iate data, per form retries
if necessary, then return an error code in <A>

lxi h, read$msg
mvi a,88h I mvi b,Olh
jmp rw$common

point at • Read •
1797 read + Z800MA direction

fd$wr i tel
Ix! h,write$msg point at • Write·
mvi a,OA8h I mvi b,05h
jmp wr$common

1797 write + Z800MA direction

rw$common: seek to correct track (if necessary),
initialize OMA controller,

shld operation$name
sta disk$command
mov a,b I sta zdma$direction
Ihld @dma I shld zdma$dma
Ida @rdrv I mov l,a I mvi h,O
lxi d,select$table I dad d
mov a,m I sta select$mask
out p$select

more$retries:
mvi c,10

retry$operation:
push b

and issue 1797 command.

save message for er rors
save 1797 command
save Z800MA direction code

I get and save OMA address
get controller-relative disk dr ive
pOint to select mask for drive

I get select mask and save it
select dr i ve

allow 10 retries

save retry counter

Ida select$mask I lxi h,old$select I cmp m
mov m,a
jnz new$track I if not same drive as last, seek

Ida @trk I lxi h,old$track I cmp m
mov m,a
jnz new$track I if not same track, then seek

in p$fdmisc I ani 2 I jnz same$track I head still loaded, we are OK

new$track: I or drive or unloaded head means we should •••
0120 COA901

0130 011B41

0133 OB
0134 78Bl
0136 C23301

call check$seek •• read address and seek if wrong track

lxi b,16667
spin$loop:

dcx b
mov a,b lora c
jnz spin$loop

sameS track:

100 ms / (24 t states*250 ns)
I wait fot' head/seek settling

0139 3AO0000305 lda @trk lout p$fdtrack gi ve 1797 track
and sector Ol3E 3A00000306 lda @sect lout p$fdsector

0143 2l9A02
0146 010011

0149+EOB3

014B OB25
0140 E63F47
0150 3AOOOOOFOF
0155 E6COBO
0158 0325

015A 3All02
0150 C00501
0160 321502

0163 Cl
0164 B7C8

0166 E610
0168 C4A901

016B 00C20FOl

016F 3AOOOOFEFF

lxi h,dma$block point to dma command block
Ix! b,dmab$length*256 + p$zdma
outir

I command block length and port address
send commands to Z80 DMA

DB OEOH,OB3H

in p$bankselect
ani 3Fh I mov b,a
Ida @dbnk I rrc I rrc
ani OCOh I ora b
out p$ban kselect

Ida disk$command
call exec$command
sta disk$status

pop b
ora a I r z

ani 0001$0000b
cnz check$seek

get old value of bank select port
mask off OMA bank and save
get DMA bank to 2 hi-order bits
merge with other bank stuff
and select the correct OMA bank

get 1797 command
start it then wait for lREO and read status
save status for error messages

recover retry counter
check status and return to BOOS if no error

see if record not found error
if a record not found, we might need to seek

dcr c I jnz retry$operation

suppress error message if BOOS is returning errors to application •••

Ida @ermde I cpi OFFh I jz hard$error

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

147

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
3J5
336
337
338
339
340
341
342

0177 coOOOO

017A 2A2702COOO

OlBO 3A1502
01B3 212902

0186 5E23S623
01BA B7FS
OlBC EBOCOOOOEB
0191 FlC28601

errml:

Had permanent error, print message like:

: BIOS Err on d: T-nn, S-mm, <operation> <type>, Retry?

call ?pderr I print message header

1hld operation$name 1 call ?pmsg I last function

: then, messages for all indicated error bits

Ida disk$status
lxi h,error$table

I get status byte from last error
point at table of message addresses

mov e,m 1 inx h 1 mov d,m 1 inx h I get next message address
add a 1 push psw shift left and push residual bits with status
xchg 1 cc ?pmsg 1 xchg pr int message, saving table pointer
pop psw 1 jnz errml if any more bits left, continue

0195 21BA02COOO 1xi h,error$msg 1 call ?pmsg : print "<BEL>, Retry (YIN) ? •
019B COFSOI call u$conin$echo I get operator response
019E FE59CAOOOl cpi 'Y' 1 jz more$retries I Yes, then retry 10 more times

hard$errorl I otherwise,
01A3 3EOIC9 mvi a,l 1 ret return hard error to BOOS

OlM C30000

OlM C5
OlM COEIOI
OlAO CABEOI
OlBO COCEOI
01B3 COE101
01B6 CASEOI
01B9 co0301
OlBC 0600

OlBE 7B030S
OlCl 3AOOOOBBCl
01C7 0307
01C9 3EIA
OlCB C30S01

OlCE 3E6A
0100 C30501

0103 3EOB

cancel: here to abort job
jmp ?wboot leap directly to warmstart vector

subroutine to seek if on wrong track
called both to set up new track or drive

check$seek:
push b

id$ok:

call read$id
j z id$ok
call step$out
call readS id
j z id$ok
call restore
mvi b,O

mov a,b lout p$fdtrack

save error counter
try to read 10, put track in
if OK, we're OK
else step towards Trk 0
and try aga in
if OK, we're OK
else, restore the drive
and make like we are at track 0

Ida @trk 1 cmp b 1 pop b 1 r z
out p$fddata

send current track to track port
if its desired track, we are done
else, desired track to data port
seek wi 10 ms. steps mvi a, OOOllOlOb

jmp exec$command

step$out:

restore:

mvi a,OllOlOlOb
jmp exec$command

mvi a, OOOOlOllb
: jmp exec$command

exec$command: issue

step out once at 10 ms.

restore at 15 ms

1797 command, and wai t for IREQ
return status

0105 0304 out p$fdcmnd : send 1797 command
I spin til lREQ wait$IREQ:

0107 OB08E640CA in p$fdint 1 ani 40h 1 jz wait$IREQ
OlOE OB04 in p$fdstat I get 1797 status and clear lREQ
OlEO C9 ret

readS id:
OlEl 21AS02
01E4 OlOOOF

lxi h,readidblock : set up OMA controller

01E7+EOB3
01E9 3EC4
OlEB C00501
OlEE E690
OlFO 21110046
01F4 C9

lxi b,lengthiddmab*2S6 + p$zdma I for READ ADDRESS
outir

operation

DB OEOH,OB3H
mvi a,llOOOlOOb
call exec$command
an i 10011101b
lxi h,id$buffer 1 mov
ret

Listing I-4.

I issue 1797 read address command
: wait for lREQ and read status
: mask status

b,m I get actual track number in
I and return with Z flag true for OK

(continued)

All Information Presented Here is Proprietary to Digital Research

148

CP/M 3 System Guide I.4 Z8D DMA Single-density Disk Handler

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

u$conin$echo: : get console input, echo it, and shift to upper case
01F5 COOOOOB7CA call ?const lora a I jz u$cl see if any char already struck
OlFC COOOOOC3F5 call ?conin I jmp u$conin$echo I yes, eat it and try again

u$cl:
0202 COOOOOF5
0206 4FCOOOOO
020A FlFE6l08
020E 0620
0210 C9

call ?conin I push psw
mov c,a I call ?cono
pop psw I cpi 'a' I rc
sui 'a'-'A' , make upper case

0211
0212
0213
0214

0215

0216 1020

ret

disk$command
select$mask
old$select
old$ track

disk$status

selectS table

ds
ds
ds
ds

ds

db

current wd1797 command
current drive select code
last drive selected
last track see ked to

, last error status code for messages

OOOl$OOOOb,OOlO$OOOOb , for now use drives C and 0

364 er ror message componen ts

0218 2C2052656lread$msg
021F 2C20577269write$msg

db
db

0227 1802 operation$name dw

" Read', a
" write',O

read$msg

365
366
367
368
369
370
371 : table of pointers to error message strings
372 I first entry is for bit 7 of 1797 status byte
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

0229
022B
0220
022F
0231
0233
0235
0237

0239
0245
024F
0257
026A
0270
027C
0283

028A

3902 error$table
4502
4F02
5702
6A02
7002
7C02
8302

204E6F7420b7$msg
2050726F74b6$msg
204661756Cb5$msg
205265636Fb4$msg
204352432Cb3$msg
204C6F7374b2$msg
204452455lbl$msg
2042757379bO$msg

20526574 72er ror$msg

dw b7$msg
dw b6$msg
dw b5$msg
dw b4$msg
dw b3$msg
dw b2$msg
dw bl$msg
dw bO$msg

db ' Not ready,', 0
db ' Protect,',O
db ' Fault,',O
db ' Record not found,', 0
db ' CRC,',O
db ' Lost data,',O
db ' OREQ,', 0
db ' Busy,', 0

db ' Retry (YIN) ? ',0

396 command string for ZBOOMA device for normal operation
397
398 029A C3
399 029B 14
400 029C 28
401 0290 8A
402 029E 79
403 029F
404 02Al 7FOO
405 02A3 85
406 02A4 07
407 02A5 CF
408 02A6 05
409 02A7 CF
410 02A8
411 02A9 CF
412 02M 87
413 0011 =
414
415
416
417 02AB C3
418 02AC 14
419 02AO 28
420 02AE 8A
421 02AF 70
422 02BO 1100
423 02B2 0500

dma$block db
db
db
db
db

zdma$dma ds
dw
db
db
db
db
db

zdma$direction ds
db
db

dmab$length equ

readS id$block db
db
db
db
db
dw
dw

OC3h I reset OMA channel
14h channel A is incrementing memory
28h channel B is fixed port address
8Ah ROY is high, CEI only, stop on EOB
79h I program all of ch. A, xfer B->A (temp)
2 , starting OMA address
128-1 128 byte sectors in SO
85h I xfer byte at a time, ch B is 8 bit address
p$fddata I ch B port address (1797 data port)
OCFh I load B as source register
05h xfer A->B
OCFh load A as source register
1 ei ther A->B or B->A
OCFh load final source register
87h I enable OMA channel
$-dma$block

OC3h reset OMA channel
l4h I channel A is incrementing memory
28h channel B is fixed port address
8Ah I ROY is high, CEI only, stop on EOB
70h I program all of ch. A, xfer A->B (temp)
id$buffer I starting OMA address
6-1 Read ID always xfers 6 bytes

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

149

CP/M 3 System Guide I.4 Z80 DMA Single-density Disk Handler

424 02B4 85 db 85h I byte xl~r, ch B is 8 bit /lddreas
425 02B5 07 db p$fddata I ch B port address (1797 data port)
426 02B6 CF db OCFh I load dest (currently source) register
427 02B7 01 db 01h I xfer B->A
428 02B8 CF db OCFh I load source register
429 02B9 87 db 87h I enable OMA channel
430 OOOF • 1engthiddmab equ $-read$id$b1ock
431
432 cseg I easier to put 10 buffer in cOlllmon
433
434 0011 id$buffer CIS I buffer to hold 10 field
435 tra«k
436 I side
437 sector
438 length
439 CRC 1
440 CRC 2
441
442 0017 end

BOHSG 0283 381 390'
B1MSG 027C 380 389.
B2HSG 0270 379 3BBI
B3MSG 026A 378 3870
B4HSG 0257 377 386'
B5HSG 024F 37&. 385'
B6HSG 0245 375 384'
B7HSG 0239 374 3831
.BC 0000
BELL 0007 52'
CANCEL OlM 289'
CHECKSEEK 01M 226 257 296'
CR 0000 50'
DE 0002
DISItCOMMAND 0211 203 249 3541
DISKSTATUS 0215 251 275)59'
DMAB LEN GTH 0011 239 413'
DMABLOCK 029A 238 398' 413
DPBSD ·0000 62 66 79 83 93'
ERRM1 0186 2771 281
ERRORHSG 02BA 283 392'
ERRORTABLE 0229 276 374'
J:;XECCOMMANO 0105 250 310 316 323' 337
FOINITO OOBE 60 143i
FDINIT1 OOCD 77 152'
FDINITNEXT 00C1 145' 150
FDLOGIN OODB 59 76 162'
FDREAD OOOC 5B 75 18B'
FDSDO OOOA 14 62'
FOSOl 005C 14 79'
FOWRITE 00E6 57 74 193'
HARDERROR 01A3 263 2B6'
HL 0004
IDBUFFER 0011 339 422 434,
lOOK OlBE 299 302 305'
INITTABLE OOCE 144 155'
IX 0004
IY 0004
LENGTHIODMAB OOOF 333 430'
LF OOOA 511
MORERETRIES 0100 210' 285
NEWT RACK 0120 217 221 225'
OLDSELECT 0213 215 356'
OLDTRACK 0214 219 357'
OPERATIONNAME 0227 202 271 369,
PBANKSELECT 0025 243 247
PBAUDCONl OOOC

Listing I-4. (continued)

All Information Presented Here is Proprietary to Digital Research

150

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

PBlIUDCON2 0030
PBlIUDCONH 0031
PBlIUDLPTl OOOE
PBlIUDLPT2 0032
PBOOT 0014
PCENTDlITlI 0011
PCENTSTlIT 0010
PCON2DlITlI 002C
PCON2STlIT 002D
PCON3DlITlI 002E
PCON3STlIT 002F
PCON4DI.TlI 00211
PCON4STlIT 002B
PCONFIGURlITION 0024
PCRTDlITlI OOlC
PCRTSTAT OOlD
PFDCMND 0004 325
PFDDlITA 0007 308 406 425
PFDINT 0008 327
PFDMISC 0009 223
PFDSECTOR 0006 236
PFDSTAT 0004 328
PFDTRlICK 0005 235 306
PINDEX OOOF
PLPT2DATlI 0028
PLPT2STlIT 0029
PLPTDATlI 001E
PLPTSTAT 001F
PRTC 0033
PSELECT 0008 209
PWD1797 0004
PZCTCl OOOC
PZCTC2 0030
PZDART OOlC
PZDMlI 0000 239 333
PZPIOl 0008
PZPIOIA 00011 155
PZPIOIB OOOB 157
PZPI02 0010
PZPI02A 0012
PZPI02B 0013
PZPI03 0024
PZPI03A 0026
PZPI03B 0027
PZSIOl 0028
PZSI02 002C
RElIDID 01El 298 301 3311
RElIDIDBLOCK 02AB 332 4171 430
RElIDMSG 0218 189 3661 369
RESTORE 0103 303 3181
RETRYOPERlITION 010F 2121 259
R~OMMON OOED 191 1961
SAMETRlICK 0139 223 2341
SELECTMlIS K 0212 208 215 3551
SELECTTlIBLE 0216 207 3611
SPINLOOP 0133 2291 232
STEPOUT 01CE 300 3141
TRANS 00A4 62 63 79 80 1061
UC1 0202 344 3461
UCONINECHO 01F5 284 3431 345
WAITIREQ 01D7 3261 327
WRITEMSG 021F 194 3671
Z DMlIDI RECTION 02A8 204 HOI
ZDMADMlI 029F 205 4031
?CONIN 0000 32 345 347
?CONO 0000 32 348
?CONST 0000 33 344
?PDEC 0000 30
?PDERR 0000 31 269
?PMSG 0000 29 271 280 283
?WBOOT 0000 28 290
@ADRV 0000 18

Listing 1-4. (continued)

All Information Presented Here is Proprietary to Digital Research

151

CP/M 3 System Guide 1.4 Z80 DMA Single-density Disk Handler

@OBNK
@OMA
@ERMDE
@RORV
@SECT
@TRK

0000
0000
0000
0000
0000
0000

20 245
19 205
24 263
18 206
19 236
19 219 235 307

Listing 1-4. (continued)

1.5 Bank and Move Module for CP/M 3 Linked BIOS

The MOVE.ASM module performs memory-to-memory moves and bank
selects.

1
2
3
4
5
6
7
B
9

0000 C9

0001 EB

10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
2B
29
30
31
32
33
34

0002+EOBO
0004 EB
0005 C9

0006 C5
0007 171717E61B
OOOC 47
0000 OB25
OOOF E6E7BO
0012 0325

BC
DE
HL
IX
IY

0014 Cl
0015 C9

0016
0000
0002
0004
0004
0004
0025
OOOC
0030

PBANKSELECT
PBAUOCONI
PBAUOCON2
PBAUOCON34
PBAUOLPTI
PBAUOLPT2
PBCOT
PCENTOATA
PCENTSTAT
PCON20ATA
PCON2STAT
PCON30ATA
PCON3STAT
PCON40ATA
PCON4STAT
PCONFIGURATION
PCRTOATA

. .J 0031
OOOE
0032
0014
0011
0010
002C
0020
002E
002F
002A
002B
0024
OOIC

?xmove:

?move:

?bank:

26

title 'bank & move module for CP/M3 linked BIOS'

cseg

public ?move,?xmove,?bank
extrn @cbnk

maclib zBO
maclib ports

; ALTOS can't perform interbank moves
ret

xchg ; we are passed source in DE and dest in flL
Idir I use ZBO block move instruction
DB OEOH, OBOH
xchg ; need next addresses in same regs
ret

push b
ral I ral I ral I ani IBh
mov b,a
in p$bankselect
ani OE7h lora b
out p$bankselect
popb
ret

end

2B

by exiting through bank select

save register b for te"p
I isolate bank in proper bit position

save in reg B
get old memory control byte
mask out old and merge in new
put new memory control byte
restore register b

12B bytes at a time

Listing 1-5. Bank and Move Module for CP/M 3 Linked BIOS

All Information Presented Here is Proprietary to Digital Research

152

CP/M 3 System Guide 1.5 Bank & Move Module for Linked BIOS

PCRTSTAT
PFDCHNO
PFOOATA
PFOINT
PFOMISC
PFOSECTOR
PFDSTAT
PFDTRACK
PINOEX
PLPT20ATA
PLPT2STAT
PLPTOATA
PLPTSTAT
PRTC
PSELECT
PWD1797
PZCTCl
PZCTC2
PZDART
PZOHA
PZPIOl
PZPI01A
PZPI01B
PZPI02
PZPI02A
PZPI02B
PZPI03
PZPI03A
PZPI03B
PZSIOl
PZSI02
?BANK
?I«lVE
?XMOVE
@CBNK

0010
0004
0007
0008
0009
0006
0004
0005
OOOF
0028
0029
DOlE
OOlF
0033
0008
0004
OOOC
0030
OOlC
0000
0008
OOOA
OOOB
0010
0012
0013
0024
0026
0027
0028
002C
0006
0001
0000
0000

221
141
111

Listing 1-5. (continued)

I.G I~O Port Addresses for Z80 Chip-based System: PORTS.LIB

Tl')is listing is the PORTS.LIB file on your distribution
jiskette. It contains the port addresses for the Z80 chip-based
system with a Western Digital 1797 Floppy Disk Controller.

T /0 Por t addr esses for Z80 chip set based system wi th wd1797 FOC

, Chip bases

p$zdllla
p$wd1797
p$zpiol
p$zctcl
p$%pio2
p$boot
p$zdart
phpio3
phsiol
p$zsio2
p$zctc2

equ 0
equ 4
equ 8
equ 12
equ 16
equ 20
equ 28
equ 36
equ 40
equ 44
equ 48

OUT disables boot EPROM
console 1 and printer 1

, diskette controller chip ports

p$ fdcnlOd
p$fdstat
p$tdtrack
p$fdsector
p$fddata

equ p$wd1797+0
equ p$wd1797+0
equ p$wd1797+l
equ p$wd1797+2
equ p$wd1797+3

I parallel I/O 1

Listing 1-6. I/O Port Addtess~s £or Z80 Chip-based System

All Information Presented Here is proprietary to Digital Research

153

CP/M 3 System Guide

p$select
p$ fdint
p$ fdmisc
p$zpiola
p$zpiolb

equ p$zpiol+O
E:qu p$zpiol+O
equ p$ zpiol + 1
equ pSzpiol+2
equ p$ zpiol+3

counter timer chip 1

p$baudconl
p$baudlptl
p$index

equ p$ zctcl +0
equ p$zctcl+2
equ p$zctcl+3

parallel I/O 2, Centronics printer interface

p$cent$stat
p$cen t$da ta
p$zpio2a
p$zpio2b

equ p$zpio2+0
equ p$zpio2+l
equ p$zpio2+2
equ p$zpio2+3

1.6 I/O Port Addresses

dual asynch rcvr/xmtr, console and ser ial pr inter ports
pcrtdata equ p$zdart+O
pcrtstat equ p$zdart+l
plptdata equ p$zdart+2
plptstat equ p$zdart+3

; Thi rd Par allel I/O device

p$conf igura tion equ p$ zpi03+0
p$bankselect equ p$zpio3+l
p$zpio3a equ p$zpio3+2
p$zpio3b equ p$zpio3+3

Serial I/O device 1, printer 2 and console 4

p$lpt2data
p$lpt2stat
p$con4data
p$con4stat

equ p$zsiol+O
equ p$zsiol+l
eCJu p$zsiol+2
equ p$zsiol+3

; Serial I/O device 2, console 2 and 3

p$con2data
p$con 2stat
p$con3data
p$con 3stat

equ p$zsio2+0
equ p$zsio2+l
equ p$zsio2+2
equ p$zsio2+3

; second Counter Timer Circuit

p$baudcon2
p$baudcon34
p$baudlpt2
p$rtc

equ p$zctc2+0
equ p$zctc2+l
equ p$zctc2+2
equ p$zctc2+3

Listing 1-6. (continued)

All Information Presented Here is Proprietary to Digital Research

154

CP/M 3 System Guide 1.7 Sample Submit File

I.7 Sample Submit File for ASC 8000-15 System

Digital Research used this SUBMIT file to build the sample
BIOS.

;Submit file to build sample BIOS for ACS 8000-15 single-density system

rmac bioskrnl
rmac boot
rmac move
rmac chario
rmac drvtbl
rmac fd1797sd
rmac scb
link bnkbios3[b,q]=bioskrnl,boot,move,chario,drvtbl,fd1797sd,scb
gencpm

Listing I~7. Sample Submit File for ASC 8000-15 System

End of Appendix I

All Information Presented Here is Proprietary to Digital Research

155

CP/M 3 System Guide End of Appendix I

All Information Presented Here is Proprietary to Digital Research

156

Appendix J
Public Entry Points for CP/M 3 Sample BIOS Modules

Module
Name

BIOSKRNL

CHARlO

MOVE

BOOT

Listing J-l.

Public
Entry
Point

?PMSG
?PDEC
?PDERR

?CINIT

?CIST

7COST

7CI

7CO

7 MOVE

7XMOVE

7BANK

?INIT
7LDCCP
7RLCCP
?TlME

Input
Function Parameter

Pr int Message HL -points to msg
Pr-int Decimal HL~number

Print BIOS Disk none
Err Msg Header

Char Dev Init C=Phys Dev •
Dev Parms in @CTBL

Char Inp Dev St B-Phys Dev •

Char Out Dev St B-Phys Dev

Char Dev Input B-Phys Dev •

Char Dev Output B-Phys Dev •
C=Input Char

Memory to Memory BC-byte count
Move DE-start source adr

HL=start dest adr

Set Banks for B-Source Bank
Extended Move C-Dest Bank

Select Bank A-Bank Number

System Init none
Load CCP none
Reload CCP none
Get/Set Time C=OOOH if get

C-OFFH if set

Return
Value

none
none
none

none

A-OO if no input
A-OFFH if input

char available
A-OO if output

busy
A-OFFR if output

ready
A=next ava ilable

input char

DE,HL point to
next bytes
after move

BC,DE,RL are
unchanged

All unchanged

none
none
none
none

Public Entry Points for CP/M 3 Sample BIOS Modules

End of Appendix J

All Information Presented Here is Proprietary to Digital Research

157

CP/M 3 System Guide End of Appendix J

All Information Presented Here is Proprietary to Digital Research

158

Appendix K
Public Data Items in CP/M 3 Sample BIOS Modules

Table K-l. Public Data Items

Module I Public I
Name Data

BIOSKRNL

CHARlO

DRVTBL

@ADRV
@RDRV
@TRK
@SECT
@DMA
@DBNK
@CNT
@CBNK

@CTBL

@DTBL

Description

Absolute Logical Drive Code
Relative logical drive code (UNIT)
Track Number
Sector Address
DMA Address
Bank for Disk I/O
Multi-sector Count
Current CPU Bank

Character Device Table

Drive Table

End of Appendix K

All Information Presented Here is Proprietary to Digital Research

159

CP/M 3 System Guide End of Appendix K

All Information Presented Here is Proprietary to Digital Research

160

Appendix L
CP/M 3 BIOS Function Summary

Table L-l. BIOS Function Jump Table Summary

No. I Function I Input I Output

0 BOOT None None
1 WBOOT None None
2 CONST None A=OFFH if ready

A=OOH if not ready
3 CONIN None A=Con Char
4 CONOUT C=Con Char None
5 LIST C=Char None
6 AUXOUT C=Char None
7 AUXIN None A=Char
8 HOME None None
9 SELDSK C=Drive 0-15 HL=DPH addr

E=Init Se1 Flag HL=OOOH if invalid dr.
10 SETTRK BC=Track No None
11 SETSEC BC=Sector No None
12 SETDMA BC=.DMA None
13 READ None A=OOH if no Err

A=OlH if Non-recov Err
A=OFFH if media changed

14 WRITE C=Deblk Codes A=OOH if no Err
A=OlH if Phys Err
A=02H if Dsk is RIO
A=OFFH if media changed

15 LISTST None A=OOH if not ready
A=OFFH if ready

16 SECTRN BC=Log Sect No HL=Phys Sect No
DE=Trans Tb1 Adr

17 CONOST None A=OOH if not ready
A=OFFH if ready

18 AUXIST None A=OOH if not ready
A=OFFH if ready

19 AUXOST None A=OOH if not ready
A=OFFH if ready

20 DEVTBL None HL=Chrtbl addr
21 DEVINI C=Dev No 0-15 None
22 DRVTBL None HL=Drv Tb1 addr

HL=OFFFFH
HL=OFFFEH
HL=OFFFDH

23 MULTIO C=Mult Sec Cnt None
24 FLUSH None A=OOOH if no err

A=OOIH if phys err
A=002H if disk RIO

25 MOVE HL=Dest Adr HL & DE point to next
DE=Source Adr bytes following MOVE

All Information Presented Here is Proprietary to Digital Research

161

CP/M 3 System Guide L CP/M 3 BIOS Function Summary

Table L-l. (continued)

No. I Function I Input I Output

26 TIME C=Get/Set Flag None
27 SELMEM A=Mem Bank None
28 SETBNK A=Mem Bank None
29 XMOVE B=Dest Bank None

C=Source Bank
BC=Count

30 USERF Reserved for System Implementor
31 RESERVl Reserved for Future Use
32 RESERV2 Reserved for Future Use

End of Appendix L

All Information Presented Here is Proprietary to Digital Research

162

?, 73
@, 73

A

absolute drive code, 76
allocation vector, 38
application programs,

memory for, 1
assembly-time arithmetic, 27
AUTO DISPLAY parameter , 88
AUTO parameter, 88
auto-density support, 109
AUXIN, 19, 56
AUXIST, 57
AUXOST, 58
AUXOUT, 19, 56

B

$B, 101
Bank 0, 5, 6
Bank 1, 6
BANK field, 46
bank switching, 6
bank-switched memory, 4

block moves and memory
selects, 15

requirements, 1, 8
banked BIOS

assembling, 69
linking, 69
preparing, 69

banked system,
allocation vector, 39
BANK field, 46
BCB data structures, 46
BOOS and BIOS, in common

memory, 9
BOOS and BIOS, in Bank 0, 9
buffer control block, 44
common memory, 34
with Bank 1 enabled, 6

Basic Disk Operating System;
see BOOS

baud rates,
for serial devices, 79

Index

BOOS, 2, 15
calls to BIOS, 21
error messages in foreign

language, 32
flags, 3
function 44, 52
function 49, 3
function 50, 16

Binary Coded Decimal (BCD)
format, 24
fields, 31

BIOS
assembling, 69
calls, 20
customizing, 4, 10
debugging; see debugging, 103
entry points, 64
error message header, 84
functions, 52, 55-66
jump vector
linking, 69
media flag, 107, 108
modules, 86
public names, 77
routines, 2
subroutine entry points, 84
subroutines, 17

BIOSKRNL.ASM, 71-73
public utility subroutines, 76

block,
defined, 41
disk transfers, 20
mask, 42
moves, 15
shift factor, 42
size restriction, 41

block transfers
memory-to-memory, 24

blocking logical records, 23
blocking/deblocking, 64
@BNKBF, 18
BOOT, 17 -18, 51

entry point, 100
boot loader, 102
BOOT module,

entry points, 77
BOOT.ASM, 71
booting CP/M 3, 102
buffer control block, 44
built-in commands, 2

163

c

CCP,
flags, 3
loading into TPA, 78

CCP.COM, 13, 18
character device table

(@CTBL), 74
device name fields, 78

character devices
interfacing, 78
labels, 80
logical to physical

redirection, 74
character I/O, 19

interface routines, 74
redirection, 78

character table, 32
CHARlO module, 74, 78
CHARIO.ASM, 71
checksum vector, 38
CHRTBL, 32, 78
clock support, 24
cold boot

loader program, 12
process, 12

cold BOOT routine, 13
passpoint, 105
setting passpoint, 105

cold start, 11, 101
loader, 15, 19, 101

common memory, 67
common base, 13
commun~cations hardware, 11
CONIN, 2, 17, 19, 55
CONOST, 57
CONOUT, 17, 19, 55
Console Command Processor

(CCP) , 2
console output, 11
CONST, 17, 55
COPYSYS utility, 98, 102
counter/timer chip, 24
CP/M 2 BIOS

modification, III
converting to CP/M 3, 15

CP/M 3
BIOS Dunctions, III
customizing hardware, 11
loading into memory, 12

CPM3.SYS file, 1, 11, 19
format, 115
loading into memory, 98

CPMLDR.COM, 5, 11, 19, 98-100
as transient program, 99

sign-on message, 101
BOOS, 11
BIOS, 11

@CTBL, 74, 78
CTRL-Z (lAH), 19, 54

D

data record
buffers, 24, 93
caching, 23

data structures,
in common memory, 67

data tracks, 10
@DATE, 24
DDT, 101
deblocking logical records, 23
debugging

BIOS, 103
session for nonbanked

BIOS, 103
with SID, 103

default value,
with question mark, 88

device name format, 78
DEVICE utility, 20, 32, 74
DEVINI entry point, 52
DEVTBL entry point, 52
diagnostic capabilities, 24
Direct Memory Access COMA)

address, 20
directory

buffers, 92
caching, 23
entries
maximum size, 1
hash tables, 5

directory hashing
as GENCPM option, 39
disabling, 39

directory search
speeding, 23

disk
accesses, 18
compatibility, 10
density, automatically

164

determined, 74
double density, 42
drives, 107
I/O, 20, 71
logical floppy or hard, 1
number supported, 1
physical sector size, 43
reformatting, 42
organization, 10

parameter block, 23, 34,
37, 48

disk parameter block
fields, 40
format, 40

disk parameter header, 36, 47
fields , 37
format, 36

disk record buffers, 5
DMA controller, 9
double-density disks, 42
DPB macro, 48
DPH macro, 47
drive code,

absolute, 76
relative, 76

drive table, 47
DRVTBL.ASM, 53, 71, 74, 81
@DTBL, 74
DTBL macro, 47

random access, 1
sequential access, 1

flag,
global system, 30
media, 37

FLUSH, 17, 64

G

G command, 105
GENCPM utility, 5, 11, 36, 46

and AUTO DISPLAY parameter, 88
command input, 87
directory hashing, 39
in banked system, 87,
in nonbanked system, 87

global system flag, 30
global variables, 76

H
dynamic disk definition table, 59

E

end-of-file condition, 19, 54
entry points,

BIOS subroutine, 84
BOOT, 51
BOOT module, 51, 77
DEVTBL, 52
DEVINI, 52
MOVE module, 86
WBOOT, 52

equates,
absolute external, 27

error
condition, 23, 24
in multisector transfer, 63
nonrecoverable, 84

error messages,
extended, 30
in foreign language, 32
short, 30

Extended Disk Parameter Header
(XDPH), 71, 81

fields , 83
format, 82

external names, 73
external reference, 73

F

file format,
CPM3.SYS, 115

file,

handshaking
polled, 57, 58

hardware
environment, 10
initialization, 77
requirements, 1
special DMA, 65

hash table, 9, 23, 39, 107
hardware environment,

nonbanked system, 11
HOME, 17, 58
@HOUR, 24

I

I/O
character, 19
devices, 11
disk, 20
multiple sector, 22
redirection, 20
redirection bit vectors, 54

IBM 3740 disk, 10
initialization,

basic system,., 51
cold start, 11
hardware, 51, 77
Page Zero, 51
system tracks , 102

interactive console, 19

165

J

JMP,
BOOS, 18
WBOOT, 18

jump

L

address, 16
instructions, 50
table, 2
vector , 77

L option, 100
labels, of SCB, 27
LDRBIOS.ASM, assembling, 100
LINK-80, 69, 73

L option, 100
linking modules into BIOS, 86
LIST, 19, 56
LISTST, 57
loader file, 11
logical character devices,

combinations, 54
logical

devices, 20
records, 3

M

memory requirements,
banked, 8
nonbanked, 9

memory-to-memory move, 86
@MIN, 24
modifying CP/M 2 BIOS, 111
MOVE.ASM module, 24, 65, 71

entry points, 86
MULTIO, 17, 20, 63
multiple disk formats, 109
multisector count, 30
@MXTPA, 18

N

nonbank-switched memory,
block moves and memory

selects, 15
requirements, 1

nonbanked BIOS,
assembling, 69
debugging session, 103
linking, 69

nonbanked memory, 4
nonbanked system,

buffer control block, 44
modifying BIOSKRNL.ASM, 71

nonrecoverable error, 84

o
macro definitions, 46
maximum size directory
media

entries, 1 OEM subroutines, 16
OFF field, 43

change, 107
flag, 37, 108
removable, 107

media type, automatically
determined, 74

memory
bank-switched; see

bank-switched memory
contiguous, 11
for application programs, 1
image, 13
management functions, 24
map, 11
nonbank-switched; see

nonbank-switched memory
segment, 91
selects, 15

memory organization,
banked, 5
general, 3
nonbanked, 7-9

memory regions, page aligned, 4

166

OPEN, 18
operating system
operating system

banked, 5
resident, 5

P

P command, 105
page boundary, 4
Page Zero, 18
passpoints,

bank, 9
modules

cold BOOT routine, 105
in BIOS, 104

@PDERR subroutine, 84
peripheral devices,

reassigning, 20
permanent drives, 107
physical

devices, 20
I/O, 2
record mask, 44

record shift factor, 43
sectors, 3, 20

plotters, 11
primitive functions,

hardware-dependent, 2
printers, 11
Program Loader Module, 2
PROM loader, 13
public names, 54, 77
public symbols,

defined in modules, 75
public utility subroutines,

in BIOSKRNL.ASM, 76
public variable,

names, 17
predefined, 75

Q

question mark, 88
question variable, 88

R

rio, 27
r /w, 27
Random Access Memory , 11
READ, 17, 18, 20, 61
real-time clock, 24
redirection vectors, 29
register A, 17, 20
relative drive code, 76
removable drives, 107
Resident System Extension (RSX)

modules, 9
retry routine, 84
RMAC, 69, 73, 99
rotational latency, 20

S

SCB see System Control Block
SCB.ASM file, 17, 27-28, 71

error mode variable, 24
@SEC, 24
SECTRN, 17, 62
SELDSK, 17, 20, 59, 74-

routine, 109
SELMEM, 24, 66
sequential file input, 11
serial devices,

baud rates, 79
SETBNK, 24, 66
SETDMA, 17, 20, 60
SETSEC, 17, 60

167

SETTRK, 17, 59
SID, 104
sign-on message, 101
skew factor,

standard CP/M disk, 62
SKEW macro, 48
skew table

address, 62
SKEW macro, 48

space allocation, 6
subroutine names, 17
symbols,

public; see public symbols
system bank, 6
System Control Block (SeB), 27

fields, 29
system disk organization, 10
system initialization, 1, 18
system loader, 1
System Page Relocatable

(• SPR) files, 4
system parameters, critical, 3
system tracks, 102

T

TIME, 17, 67
time of day function, 24
TPA, 32
tracing routines, 105
Transient Program Area; see TPA
transient programs, 18

bank, 6
translation table, 37

v

variables
global; see global variables
pUblic; see public variables

vector,
allocation, 38
checksum, 38
I/O redirection bit, 54

w

Warm BOOT routine, 3
WBOOT, 17-18

entry point, 52
WRITE, 17, 20, 61

x

XDPH, 82
XMOVE, 24, 65, 66

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition -----

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

---- -~- -~-------~----------~---~- -.;.,--- --~--~-- --~---- --~---------- ---- ------

Attn: Publication Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ill DIGITAL RESEARCHTM
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

CP/M PlusT,M'(CP/M@ Version 3)
Operating System System Guide

Release Note

Copyright © 1983 by Digital Research
CP/M is a registared trademark of Digital Research.

CP/M Plus is a trademark of Digital Research.

Following are corrections to the CP/M PlusT,M'(CP/M@ Version 3)
Operating System System Guide.

Page 82

Section 4.7.3 Extended Disk Parameter Headers (XDPHs)

Figure 4-1., XDPH Format, is incorrect. The Media Flag shown
at Address XDPH+IO should be in the High Byte column, and 0 should
be in the Low Byte column.

Page 86

Section 4.9 Linking Modules into the BIOS

The option shown in the second link command example is
incorrect. The command line should read as follows:

LINK BIOS3[os]=BIOS,SCB,BOOT,CHARIO,MOVE,DRVTBL,<disk_modules>

1-1

