
Programmer's Utilities Guide
For the

CP/M® Family of
Ogerating Systems

.; _ ~ 4

l~. _.

[Q]
DIGITAL

RESEARCHTM

Programmer's Utilities Guide
For the

CP/M® Family of
Operating Systems

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica­
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, ,Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CPIM is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80,
MAC, MPIM II, PL/I-80, RMAC, and SID are trademarks of Digital Research. XREF
is a utility of Digital Research. Intel is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Z80 is a registered
trademark of Zilog, Inc.

The Programmer's Utilities Guide for the CP 1M Family of Operating Systems was
prepared using the Digital Research TEX Text Formatter and printed in the United
States of America.

First Edition: September 1982

Programmer's Utilities Guide
for the CP/Y@ Faaily of Operating Systeas

Release Notes

Addendua to the Pirat printing--1982

Copyright© 1982 by Digital Research
CPIM is a registered trademark of Digital Research.
LINK-80 and MP/H are trademarks of Digital Research.

Compiled December 1982

The following LINK-80 N ~9tion switches are not documented in
Section 15.4 of The Programmer's Utilities Guide for the CP/H@
Family of Operating Systems.

~he BIOS Link (B) Switch

The 8 switch is used to link a 8IOS in a banked CP/M 3 system.
LINK-80 aligns the data segment on a page boundary, puts the length
of the code segment in the header, and defaults to the SPR filetype.

The Output RSP Pile (OR) Switch

The OR switch outputs RSP (Resident System Process) files for
execution under MP/MTM •

~he Output SPR Pile (OS) Switch

The OS switch outputs SPR (System Page Relocatable) files for
excution under HP/H.

All Information Presented Here is proprietary to Digital Research

1

Foreword

This manual describes several utility programs that aid the programmer and system
designer in the software development process. Collectively, these utilities allow you
to assemble 8080 assembly language modules, link them together to form an execut­
able program, and generate a cross-reference listing of the variables used in a pro­
gram. With these utilities, you can also create and manage your own libraries of
object modules, as well as create large programs by breaking them into separate
overlays.

The Programmer's Utilities Guide assumes you are familiar with the CP IM® or
MP 1M IITM Operating System environment. It also assumes you are familiar with the
basic elements of assembly language programming as described in the 8080 Assembly
Language Programming Manual, published by Intel®.

MAC™, the CP/M macro assembler, translates 8080 assembly language statements
and produces a hex format object file suitable for processing in the CP/M environ­
ment. MAC is upward compatible with the standard CP/M nonmacro assembler,
ASM™. (See the CP/M documentation published by Digital Research.)

MAC facilities include assembly of Intel 8080 microcomputer mnemonics, along with
assembly-time expressions, conditional assembly, page formatting features, and a pow­
erful macro processor compatible with the standard Intel definition. MAC also accepts
most programs prepared for the Processor Technology Software # 1 assembler, requiring
only minor modifications. This revision is not compatible with previous versions.

MAC is supplied on a standard disk, along with a number of library files. MAC
requires about 12K of machine code and table space, along with an additional 2.SK
of I/O buffer space. Because the BDOS portion of CP/M is coresident with MAC, the
minimum usable memory size for MAC is about 20K. Any additional memory adds
to the available Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC: 8080 mne­
monic forms, expressions, and conditional assembly. These facilities are similar to
those of the CP/M assembler (ASM). If you are familiar with ASM, you might want
to skip Sections 1 through 5 and begin with Section 6.

iii

Sections 6 through 8 describe MAC macro facilities in detail. Section 7 describes
inline macros, and Section 8 explains the definition and evaluation of stored macros.
If you are familiar with macros, briefly skim these sections, referring primarily to the
examples. Section 9 explains macro applications, common macro forms, and pro­
gramming practices. Skim the examples and refer back to the explanations for a
detailed discussion of each program.

Sections 10 through 13 describe other features of macro ,assembler operation. Sec­
tion 10 details assembly parameters. Section 11 introduces iterative improvement, a
common debugging practice used in developing macros and macro libraries. Section
12 defines MAC's symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the CP/M Relo­
cating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference program used with
MAC and RMAC.

Section 16 describes LINK-80™, the linkage editor that combines relocatable object
modules into an absolute file ready to run under CP/M or MP/M II. Section 17
describes how to use LINK-80, in conjunction with the PL/I-80™ compiler, to pro­
duce overlays. Section 18 explains how to use LIB-80™, the software librarian for
creating and manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by each of the
utility programs.

iv

Table of Contents

1 Macro Assembler Operation. 1

2 Program Format. 3

3 Forming the Operand

3.1 Labels 5
3.2 Numeric Constants .. 6
3. 3 Reserved Words ... 7
3.4 String Constants 8
3.5 Arithmetic, Logical, and Relational Operators 8
3.6 Precedence of Operators 11

4 Assembler Directives

4.1 The ORG Directive ... 14
4.2 The END Directive .. 14
4.3 The EQU Directive .. 15
4.4 The SET Directive 16
4.5 The IF, ELSE, and ENDIF Directives 16
4.6 The DB Directive ... 21
4.7 The OW Directive ... 22
4.8 The OS Directive .. 23
4.9 The PAGE and TITLE Directives 23
4. lOA Sample Program Using Pseudo Operations 25

5 Operation Codes

5.1 Jumps, Calls, and Returns 30
5.2 Immediate Operand Instructions 32

v

Table of Contents (continued)

5.3 Increment and Decrement Instructions 33
5.4 Data Movement Instructions 34
5.5 Arithmetic Logic Unit Operations 37
5.6 Control Instructions ... 39

An Introduction to Macro Facilities

Inline Macros

7.1 The REPT-ENDM Group 49
7.2 The IRPC-END M Group 51
7.3 The IRP-ENDM Group...................................... 54
7.4 The EXITM Statement 58
7.5 The LOCAL Statement 60

8 Definition and Evaluation of Stored Macros

8.1 The MACRO-ENDM Group 66
8.2 Calling a Macro .. 66
8.3 Testing Empty Parameters 72
8.4 Nested Macro Definitions 76
8.5 Redefinition of Macros ~ 79
8.6 Recursive Macro Invocation 82
8.7 Parameter Evaluation Conventions 84
8.8 The MACLIB Statement 92

9 Macro Applications

9.1 Special Purpose Languages 95
9.2 Machine Emulation ... 108

vi

Table of Contents (continued)

9.3 Program Control Structures 145
9.4 Operating System Interface 180

10 Assembly Parameters

11 Debugging Macros

12 Symbol Storage Requirements

13 RMAC, Relocating Macro Assembler

13.1 RMAC Operation ... 231
13.2 Expressions ... 232
13.3 Assembler Directives ... 232

13.3.1 The ASEG Directive. 233
13.3.2 The CSEG Directive 233
13.3.3 The DSEG Directive 233
13.3.4 The COMMON Directive 233
13.3.5 The PUBLIC Directive 234
13.3.6 The EXTRN Directive 234
13.3.7 The NAME Directive 234

14 XREF

15 LINK-80

15.1 Introduction .. 237
15.2 LINK-80 Operation ... 238
15.3 Multiline Commands .. 238

vii

Table of Contents (continued)

15.4 LINK-80 Switches•.............................. 239
15.4.1 The Additional Memory (A) Switch 239
15.4.2 The Data Origin (D) Switch 240
15.4.3 The Go (G) Switch 240
15.4.4 The Load Address (L) Switch 240
15.4.5 The Memory Size (M) Switch 241
15.4.6 The No List (NL) Switch 241
15.4.7 The No Recording of Symbols (NR) Switch 241
15.4.8 The Output COM File (OC) Switch 241
15.4.9 The Output PRL File (OP) Switch 241
15.4.10 The Program Origin (P) Switch 241
15.4.11 The ? Symbol (Q) Switch 242
15.4.12 The Search (S) Switch•......... 242

15.5 The $ Switch ... 242
15.5.1 $Cd-Console 243
15.5.2 $Id-Intermediate... 243
15.5.3 $Ld-Library 243
15.5.4 $Od-Object 243
15.5.5 $Sd-Symbol•.......... 243
15.5.6 Command Line Specification '. 244

15.6 Creating MP 1M II PRL Files 244
15.7 The Request Item ;.......... 245
15.8 REL File Format " .. 246
15.9 IRL File Format•............... 248

16 Overlays

16.1 Introduction .. 251
16.2 Using Overlays in PL/I Programs 252

16.2.1 Overlay Method 1 252
16.2.2 Overlay Method 2 254

16.3 Specifying Overlays in the Command Line 255
16.4 Sample LINK-80 Execution 256

viii

Table of Contents (continued)

16.5 Other Overlay Systems 259

17 LIB-SO

17.1 Introduction .. 261
17.2 LIB- 80 Operation ... 261
17.3 LIB-80 Switches ... 263

ix

Table of Contents (continued)

Appendixes
A MAC/RMAC Error Messages 265

B XREF Error Messages ... 269

C LINK-80 Error Messages .. 271

D Overlay Manager Run-time Error Messages 275

E LIB-80 Error Messages .. 277

F 8080 CPU Instructions .. 279

x

Table of Contents (continued)

List of Tables
3-1. 8080 Registers and Values 7
3-2 Operators. 9
3-3. Equivalent Forms of Relational Operators 12
4-1. Pseudo Operations•....... 13
9-1. KDF-11 Operation Codes 120
10-1. Assembly Parameters .. 221
17-1. LIB-80 Switches 0 •••••••••••••••••••• 0 •• 0 • • • • • • •• 263
A-1. MAC/RMAC Error Messages . 0 •••••••••••••••••••• 0" 0........ 265
A-2 Terminal Error Conditions 0 ••••••••• ~ •••••••••• 0 •• 0 • • • • • • •• 267
B-1. XREF Error Messages 0 •••••••••••••••••••• 0 •• 0 • • • • • • •• 269
C-1. LINK-80 Error Messages 0 •• 0 • • • • • • •• 271
D-1. Run-time Error Messages 0 0........ 275
E-1. LIB-80 Error Messages 0 •• 0 • • • • • • •• 277
F-1. 8080 CPU Instructions 0 • • • • • • •• 279

List of Figures
15-1. IRL File Index 0 •• 0 •• 0 • • • •• 248
16-1. Tree-structured Overlay System 0 ••••••••••••••••••• 0 ••• 0 • • • • • • •• 251
16-2 Separate Overlay System 0 • • • • • • •• 258

List of Listings
1-1. Sample ASM, PRN, SYM, and HEX files from MAC 1
4-1. Conditional Assembly with TTY True 0 •• 0 •••••• ; • 17
4-2 Conditional Assembly with TTY False 0 •• 0 • • • • • 18
4-3. Conditional Assembly Using ELSE for Alternate 0 •• 0 • • • • • • • • 19
4-4. Sample Program Using Nested IF, ELSE, and ENDIF .0 •• 0 •• • •• • • • 21
4-5. TYPER Program Listing 0 00 •• 0........ 26
5-1. Assembly Showing Jumps, Calls, Returns, and Restarts 0 •• 0 • • • • • • • • 31
5-2 Assembly Using Immediate Operand Instructions 0 •• • •• • • • 33
5-3. Assembly Containing Increment and Decrement Instructions 34
5-4. Assembly Using Various Register IMemory Moves 0 • '0 • • • • • 36
5-5. Assembly Showing ALU Operations 0 •• • •• • • • 38

xi

Table of Contents (continued)

6-1. A Sample Macro Library 43
6-2 A Sample Assembly Using the MAC LIB Facility 45
7-1. A Sample Program Using the REPT Group 50
7-2a. Original (.ASM) File with IRPC Example 52
7-2b. Resulting (.PRN) file with IRPC Example 53
7-3. A Sample Program Using IRP ... ~ 57
7-4. Use of the EXITM Statement in Macro Processing 59
7-5a. Assembly Program Using the LOCAL Statement 62
7-Sb. Output from Program of Listing 7-5a. 63
8-1. Example of Macro Definition and Invocation 69
8-2 Sample Message Printout Macro 71
8-3. Sample Program Using the NUL Operator 74
8-4. Sample Program Showing a Nested Macro Definition 78
8-5. Sample Program Showing Macro Redefinition 80
8-6. Sample Program Showing a Recursive Macro 83
8-7. Macro Parameter Evaluation Example 87
8-8. Parameter Evaluation Using Bracketed Notation 89
8-9. Examples of Macro Parameter Evaluation 91
9-1. Macro Library for Basic Intersection 98
9-2a. Macro Library for Treadle Control 100
9-21>. Macro Library for Corner Pushbuttons 100
9-3a. Traffic Control Algorithm Using -M Option 102
9-3b. Intersection Algorithm with l~M in Effect 103
9-3c. Algorithm with Generated Instructions 104
9-4. Library Segment with Debug Facility 106
9-5a. Sample Intersection Program with Debug 107
9-5b. Debug Trace Printout ... 107
9-6. A-D Averaging Program Using Stack Machine 110
9-7. Stack Machine Opcode Macros 111
9-8. Averaging Program with Expanded Macros 114
9-9. Averaging Program with Debugging Statements 117
9-10. Sample Execution of AVER Using DDT. 119
9-11. Stack Machine Macro Library 121
9-12. Program for Tool Travel Computation 139
9-13. Sample Execution of Distance Using DDT 143
9-14. Partial Listing of Distance with Full Trace 144
9-1S. Simple 1/0 Macro Library 147
9-16. Macro Library for Simple Comparison Operations 148

xii

9-17a.
9-171>.
9-18.
9-19a.
9-19b.
9-20.
9-21a~

9-21h.
9-22
9-23a.
9-23h.
9-24a.
9-24h.
9-25a.
9-25h.
9-25c.
9-26.
9-27.
9-28.
9-29.
9-30.
9-31.
9-32
16-1.
16-2

Table of Contents (continued)

Single Character Processing using COMPARE. 150
Partial Trace of Listing 9-17a with Macro Generation 152
Expanded NCOMPARE Comparison Operators 153
Sample Program using NCOMPARE Library 156
Segment of Listing 9-19a with +M Option 157
Macro Library for the WHEN Statement 161
Sample WHEN Program with -M in Effect 162
Partial Listing of Listing 9-21a with +M Option 163
Macro Library for the DOWHILE Statement 165
An Example Using the DOWHILE Statement 167
Partial Listing of Listing 9-23a with Macro Generation 168
Macro Library for SELECT Statement 171
Library for SELECT Statement 172
Sample Program Using SELECT with -M +S Options..... 174
Segment of Listing 9-25a with Mnemonics 175
Segment of Listing 9-25a with +M Option 176
Program Using WHEN, DOWHILE, and SELECT 179
Lower- to Upper-case Conversion Program 186
Sequential File Input/Output Library 188
Sample FILE Expansion Segment 202
Program for Line Printer Page Formatting 208
File Merge Program ... 211
Sample MERGE Disk Files 219
LINK-80 Console Interaction 258
Console Interaction with ROOT 258

xiii

Section 1
Macro Assembler Operation

Start MAC with a command of the form:

MAC filename

where filename corresponds to the assembly language file with an assumed filetype
ASM. During the translation process, MAC creates a file called filename. HEX con­
taining the machine code in the Intel hexadecimal format. You can subsequently load
or test this HEX file. (See the LOAD command and the Dynamic Debugging Tool,
DDT™, in the CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.SYM contain­
ing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly language
program stored on the disk under the name SAMPLE.ASM. Type MAC SAMPLE
followed by a carriage return to execute the macro assembler. The PRN, SYM, and
HEX files then appear as shown in the listing. The assembler listing file (PRN)
includes a 16-column annotation at the left showing the values of literals, machine
code addresses, and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses. (See Section
4.3.) Output files contain tab characters (ASCII CTRL-I) whenever possible to con­
serve disk space.

Source Program (SAMPLE.ASM)

org 100h ;transient prOgraM area
bdos equ 0005h ;bdos entrY point
wchar equ 2 ;write character function

enter with ccp's return address in the stacK
write a single character (?) and return
ITll} i
ITll} i
call
ret
end

c t' char
e t '? '
bdos

100h

;write character function
;character to write
;write the character
;return to the ccp
;start address is 100h

Listing 1-1. Sample ASM, PRN, SYM, and HEX files from MAC

ALL INfORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEARCH 1

1 Macro Assembler Operation Programmer's Utilities Guide

0100
0005
0002

0100 OE02
0102 lE3F
0104 CD0500
0107 C8
0108

0005 BOOS

Assembler Listing File (SAMPLE.PRN)

ORG 100H jTRANSIENT PROGRAM AREA
BOOS EQU 0005H JBDOS ENTRY POINT
WCHAR EQU 2 jWRITE CHARACTER FUNCTION

ENTER WITH CCP'S RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN
MVI C,WCHAR jWRITE CHARACTER FUNCTION
MVI E, '?' jCHARACTER TO WRITE
CALL BOOS jWRITE THE CHARACTER
RET jRETURN TO THE CCP
END 100H jSTART ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE.SYM)

0002 WCHAR

Assembler Hex Output File (SAMPLE. HEX)

:080100000E021E3FCD0500C8EF
:00010000FF

Listing 1-1. (continued)

End of Section 1

2 AlllNfORi\'iAT10N PRESENTED HERE 15 PROPRIETARY TO DiGITAL Rt5[ARCH

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a sequence of
statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement. Each
assembly language statement terminates with a carriage return and line-feed. Note
that the ED program automatically inserts the line-feed when you enter a carriage
return. You can also terminate an assembly language statement by typing the excla­
mation point (!) character. MAC treats this character as an end-of-line. You can
write multiple assembly language statements on the same physical line if you separate
them with exclamation points.

A sequence of one or more blank or tab characters delimits statement elements.
Tab characters are preferred because they conserve source file space and reduce the
listing file size. The tab characters are not expanded until the file is printed or typed
at the console.

The line# is an optional decimal integer value representing the source program
line number. It is allowed on any source line. The assembler ignores the optional
line#.

The label field takes the form:

identifier

or

identifier:

The label field is optional, except where noted in particular statement types.

The identifier is a sequence of alphanumeric characters: alphabetics, question marks,
commercial at-signs, and numbers, the first character of which is not numeric. You
can use identifiers freely to label elements such as program steps and assembler
directives, but identifiers cannot exceed 16 characters in length.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

2 Program Format Programmer's Utilities Guide

All characters are significant in an identifier, except for the embedded dollar sign
($) that you can use to improve name readability. Further, MAC treats all lower-case
alphabetics in an identifier as though they were upper-case. Note that the colon (:)
following the identifier in a label is optional. The following examples are all valid
labels:

x xy

x? x y 1 :
xlx2 @123:
GamMa @GAMMA
x234$5G78$8012$345G:

lon!1$name
lon!1er$named$data
??@@abcDEF
?AREWEHERE?

The operation field contains an assembler directive (pseudo operation), 8080 machine
operation code, or a macro invocation with optional parameters. The pseudo opera­
tions and machine operation codes are described in Section 5. Macro calls are dis­
cussed in Section 6.

The operand field of the statement contains an expression formed from constant
and label operands, with arithmetic, logical, and relational operations on these oper­
ands. Properly formed expressions are detailed in Section 3.

A leading semicolon character denotes the comment field, which contains arbitrary
characters until the next carriage return or exclamation point character. MAC reads,
lists, and otherwise ignores comment fields. To maintain compatibility with other
assemblers, MAC also treats statements that begin with an asterisk (*) in column one
as comment lines.

The assembly language program is thus a sequence of statements of the form
described above, terminated optionally by an END statement. The assembler ignores
all statements following the END.

End of Section 2

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands-labels, constants, and
reserved words-combined into properly formed subexpressions by arithmetic and
logical operators. MAC carries out expression computation as the assembly proceeds.
Each expression produces a 16-bit value during the assembly. The number of signifi­
cant digits in the result must not exceed the intended use. That is, if an expression is
to be used in a byte move immediate (see the MVI instruction), the absolute value of
the operand must fit within an 8-bit field. Instructions for each expression give the
restrictions on expression significance.

3.1 Labels

A label is an identifier of a statement. The label's value is determined by the· type
of statement it precedes. If the label occurs on a statement that generates machine
code or reserves memory space, such as a MOV instruction or a DS pseudo opera­
tion, then the label is given the value of the program address it labels. If the label
precedes an EQU or SET, then the label is given the value that results from evaluat­
ing the operand field. In a macro definition, the label is given a text value, a sequence
of ASCII characters, that is the body of the macro definition. With the exception of
the SET and MACRO pseudo operations, an identifier can label only one statement.

When a nonmacro label appears in the operand field, the assembler substitutes its
16-bit value. This value can then be combined with other operands and operators to
form the operand field for an instruction. When a macro identifier appears in the
operation field of the statement, the text stored as the value of the macro name is
substituted for the name. In this case, the operand field of the statement contains
actual parameters. These are substituted for dummy parameters in the body of the
macro definition. Later sections give the exact mechanisms for defining, calling, and
substituting macro text.

All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

3.2 Numeric Constants Programmer's Utilities Guide

3.2 Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing radix indicator
denotes the base, called the radix of the constant. The radix indicators are

B binary constant (base 2)
o octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers because the letter 0 is easily
confused with the digit O. Any numeric constant that does not terminate with a radix
indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. Binary con­
stants must be composed of 0 and 1 digits. Octal constants can contain digits in the
range 0-7. Decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits and hexadecimal digits A through F, corresponding to the decimal
numbers 10 through 15.

Note that the leading digit of a hexadecimal constant must be a decimal digit to
avoid confusing a hexadecimal constant with an identifier. A leading 0 prevents
ambiguity. A constant composed in this manner produces a binary number that can
be contained within a 16-bit counter, truncated on the right by the assembler. Like
identifiers, embedded $ symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter is encoun­
tered. The following examples are valid numeric constants:

1234
1234H
33770

12340
OFFFEH
Ofe3h

11006
33770
1234d

1111$0000$1111$00006
33$77$22Q
Offffh

6 ALL INFORMATION PRESENTED HERE IS PROPRJETARY TO DiGiTAL RESEARCH

Programmer's Utilities Guide 3.3 Reserved Words

3.3 Reserved Words

Several reserved character sequences have predefined meanings in the operand field
of a statement. The names of 8080 registers and their values are given in Table 3-1.

Table 3-1. 8080 Registers and Values

symbol I value I symbol I value

A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field, resulting in their internal codes.
For instructions that require operands, where the operand is a part of the binary bit
pattern of the instruction (e.g., MOV A,B), the value of the instruction is the bit
pattern of the instruction, with zeros in the optional fields. For example, the statement

L}{I HtMOl.J

assembles an LXI H instruction with an operand equal to 40H, the value of the
MOV instruction with zeros as operands.

When the $ symbol appears in the operand field-not embedded within identifiers
and numbers-its value is the address of the beginning of the current instruction. For
example, the two statements

}{: JMP}-(

and

JMP $

produce a jump instruction to the current location. As an exception, the $ symbol at
the beginning of a logical line can introduce assembly formatting instructions. (See
Section 10.)

All INfORMATION PRESE.NTED HERE. IS PROPRIETARY TO DIGITAL RESEARCH 7

3.4 String Constants Programmer's Utilities Guide

3.4 String Constants

String constants represent sequences of graphic ASCII characters, enclosed in apos­
trophes ('). All strings must be fully contained within the current physical line, with
the exclamation point (!) character within strings treated as an ordinary string char­
acter. Each individual string must not exceed 64 characters in length, or MAC reports
an error. The apostrophe character can be included in a string by typing two apos­
trophes ("). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length to be no longer
than one or two characters. The LXI instruction, for example, accepts a character
string operand of one or two characters. The CPI instruction accepts only a one­
character string. The DB instruction, however, allows strings zero through 64 char­
acters long in its list of operands. In the case of single-character strings, the value is
the 8-bit ASCII code for the character, without case translation. Two-character strings
produce a 16-bit value with the second character as the low-order byte and the first
character as the high-order byte. For example, the string constant 'A' is equivalent to
41H. The two-character string 'AB' produces the 16-bit value 4142H. The following
are valid strings in MAC statements:

'A ' 'AB' I a b ' , c ' " " 'she said IIhello ll
'

Note: You can use the ampersand (&) character to cause evaluation of dummy
arguments within macro expansions inside string quotes. Section 8 details the substi­
tution process.

3.5 Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic notation using prop­
erly formed operands, operators, and parenthesized expressions. The operators MAC
recognizes in the operand field are listed below.

• a + b produces the arithmetic sum of a and b; + b is b.

• a - b produces the arithmetic difference between a and b; - b is 0 - b.

• a *b is the unsigned multiplication of a by b.

• alb is the unsigned division of a by b.

• a MOD b is the remainder after division of a by b.

• a SHL b produces a shifted left by b, with zero right fill.

8 All iNFORMATION PRESENTED HERE!S PROPRJHARY TO DIGitAL RESEARCH

Programmer's Utilities Guide 3.5 Operators

• a SHR b produces a shifted right by b, with zero left fill.

• NOT b is the bit-by-bit logical inverse of b.

• a EQ b produces true if a equals b, false otherwise.

• a L T b produces true if a is less than b, false otherwise.

• a LE b produces true if a is less than or equal to b, false otherwise.

• a GT b produces true if a is greater than b, false otherwise.

• a GE b produces true if a is greater than or equal to b, false otherwise.

• a AND b produces the bitwise logical AND of a and b.

• a OR b produces the bitwise logical OR of a and b.

• a XOR b produces the logical exclusive OR of a and b.

• HIGH b is identical to b SHR 8 (high-order byte of b).

• LOW b is identical to bAND OFFH (low-order byte of b).

The letters a and b represent operands that are treated as 16-bit unsigned quantities'
in the range 0-65535. All arithmetic operators produce a 16-bit unsigned arithmetic
result. Relational operators produce a true (OFFFFH) or false (OOOOH) 16-bit result.
Logical operators operate bit-by-bit on their operands producing a 16-bit result of
16 individual bit operatioQ.s. The HIGH and LOW functions always produce a 16-
bit result with a high-order byte of zero. Table 3-2 lists arithmetic, logical, and
relational operators.

Table 3-2. Operators

arithmetic I relational

+

*
/

MOD
SHL
SHR

EQ
LT
LE
GT
GE
NE

/logical

NOT
AND
OR

XOR

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

3.5 Operators Programmer's Utilities Guide

MAC performs all computations during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field. Thus, the high-order byte must be zero. If the
computed value does not fit the field, the assembler produces a value error for that
statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit fields under
the following conditions: if the program attempts to fill an 8-bit field with a 16-bit
value that has allIs in the high-order byte, and the sign bit is set, then the high order
byte is truncated, and no error is reported. This condition arises when a negative
sign is placed in front of a constant. For example, the value -2 is defined and com­
puted as 0-2, producing the 16-bit value OFFFEH, where the high-order byte (OFFH)
contains extended sign bits that are all 1s, and the low-order byte (OFEH) has the
sign bit set. The following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFF80H

The following instructions produce value errors:

ADI 256 ADI 32788 ADI -129 ADI OFF7FH

The special operator NUL is used in conjunction with macro definition and expan­
sion operations. The NUL operator takes a single operand. NUL must be the last
operator in the operand field.

Expressions can be formed from simple operands such as labels, numeric con­
stants, string constants, and machine operation codes, or from fully enclosed paren­
thesized expressions such as

10+20t
10H+37Qt
L1/3t
(L2 + 4) SHR 3 t
('a' and 5fh) + '0' t

('BB' + B) OR (PSW + M) t
(1+ (2+C» shr (A-(B +1» t
(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the
expression.

10 All INfORMATION PRf.S£NTEO HERE IS PROPRiETARY TO D!GITAl Rf.SEARCH

Programmer's Utilities Guide 3.6 Precedence of Operators

3.6 Precedence of Operators

MAC assumes operators have a relative precedence of application allowing expres­
sions to be written without nested parentheses. The resulting expression has assumed
parentheses that are defined by this relative precedence. The order of application of
operators in unparenthesized expressions is listed below. Operators listed first have
highest precedence. These are applied first in an unparenthesized expression. Opera­
tors listed last have lowest precedence and are applied last. Operators listed on the
same line have equal precedence and are applied from left to right as they are
encountered in an expression:

* / MOD SHL SHR
+

EQ LT LE GT GE NE
NOT
AND

OR }{OR
HIGH LO

The following expressions are equivalent:

a * b + c produces (a * b) + C

a + b * c produces a + (b * c)
a MOD b * c SHL d produc~ «a MOD b) * c) SHL D
a OR b AND NOT c + d SHL e produces
a OR (b AND (NOT (c + (d SHL e»»

Balanced parenthesized sub expressions can always override the assumed parenthe­
ses. The last expression above can be rewritten to force application of operators in a
different order, as shown below:

(a OR b) AND (NOT c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND « NOT c) + (d SHL e»

Note that an unparenthesized expression is well formed only if the expression that
results from inserting the assumed parentheses is well formed.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

3.6 Precedence of Operators Programmer's Utilities Guide

Relational operators can be expressed in either of two forms, as shown in Table
3-3.

Table 3-3. Equivalent Forms
of Relational Operators

< LT
<= LE

EQ
<> NE
>= GE
> GT

End of Section 3

12 ALI.. INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
Assembler Directives

Assembler directives set labels to specific values during assembly, perform condi­
tional assembly, define storage areas, and specify starting addresses in the program.
Each assembler directive is denoted by a pseudo operation that appears in the oper­
ation field of the statement. Table 4-1 lists the acceptable pseudo operations.

Directive I
ORG
END
EQU
SET
IF
ELSE
ENDIF
DB
DW
DS
PAGE
TITLE

Table 4-1. Pseudo Operations

Meaning

sets the program or data origin.
terminates the physical program.
performs a numeric equate.
performs a numeric set or assignment.
begins a conditional assembly.
is an alternate to a previous IF.
marks the end of conditional assembly.
defines data bytes or strings of data.
defines words of storage (double bytes).
reserves uninitialized storage areas.
defines the listing page size for output.
enables page titles and options.

In addition to those listed above, several pseudo operations are used in conjunction
with the macro processing facilities. MACRO, EXITM, ENDM, REPT, IRPC, IRP,
LOCAL, and MACLIB are reserved words. They are fully described in Sections 7
and 8. The nonmacro pseudo operations are detailed below.

ALL iNFORMATION PR£SENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

4.1 The ORG Directive Programmer's Utilities Guide

4.1 The ORG Directive

The ORG statement takes the form

label ORG expression

where label is an optional program label-an identifier followed by an optional
colon (:)-and expression is a 16-bit expression consisting of operands defined before
the ORG statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within a
program. There are no checks to ensure that you are not redefining overlapping
memory areas. Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of the CP/M
Transient Program Area. Programs assembled with RMAC and linked with LINK-80
do not need an ORG 100H statement. (See Sections 13 and 15.)

If the ORG statement has a label, then the label takes on the value given by the
expression. The expression is the next machine code address to assemble. This label
can then be used in the operand field of other statements to represent this expression.

4.2 The END Directive

The END statement is optional in an assembly language program; if present, it
must be the last statement. All statements following the END are ignored. The two
forms of the END statement are

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expres­
sion is evaluated and becomes the program starting address. This starting address is
included in the last record of the Intel format machine code hex file resulting from
the assembly. Most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the Transient
Program Area.

14 ALL !NFORMATION PRESENTED HERE is PROPRIETARY TO mGITAL RESEARCH

Programmer's Utilities Guide 4.3 The EQU Directive

4.3 The EQU Directive

The EQU (equate) statement names synonyms for particular numeric values. The
directive takes the form:

label EQU expression

The label must be present, and it must not label any other statement. The assembler
evaluates the expression and assigns this value to the identifier given in the label field.
The identifier is usually a name describing the value in a more human-oriented man­
ner. You can use this name throughout the program as a parameter for certain
functions. Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port in sequence.
The series of equate statements that can define these ports for a particular hardware
environment is shown below.

TTYBASE
TTYIN
TTYOUT

EQU
EQU
EQU

10H
TTYBASE
TTYBASE+l

;BASE TTY PORT
;TTY DATA IN
;TTY DATA OUT

At a later point in the program, the statements that access the teletype could appear
as

IN
OUT

TTYIN
TTY OUT

;READ TTY DATA TO A
;WRITE DATA FROM A

making the program more readable than the absolute I/O port addresses. If the
hardware environment is later redefined to start the teletype communications ports
at 7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

ALlINfORMAT!ON PRESENTED HERE PROPR!ETARY DIGITAL RESEARCH 15

4.4 The SET Directive Programmer's Utilities Guide

4.4 The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement, where a label takes on a
single value throughout the program, the SET statement can assign different values
to a name at different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the point where the
label occurs on the next SET statement. The use of SET is similar to the EQU, except
that SET is used more often to control conditional assembly within macros.

4.5 The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly language state­
ments to be included or excluded during the assembly process. The IF and ENDIF
statements alone can bound a group of statements to be conditionally assembled, as
shown in the following example:

IF expression
statement#l
statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. All operands in the expression must be defined ahead of the IF statement. If
the expression evaluates to a nonzero value, then statement#l through statement#n
are assembled. If the expression evaluates to zero, then the statements are listed but
not assembled.

Conditional assembly is often used to write a single generic program that includes
a number of possible alternative subroutines or program segments, where only a few
of the possible alternatives are to be included in any given assembly. Listings 4-1 and
4-2 give an example of such a program.

16 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 4.5 IF, ELSE, and ENDIF

Assume that a console device, either a teletype or a CRT, is connected to an 8080
microcomputer through 110 ports. Due to the electronic environment, the current
loop teletype is connected through ports 10H and 11H, while the RS-232 CRT is
connected through ports 20H and 21H. The program continually loops, reading and
writing console characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

Listing 4-1 shows an assembly for the teletype environment. Listing 4-2 shows the
assembly for a CRT-based system. Note that the assembler leaves the leftmost 16
columns blank when statements are skipped due to a false condition.

CP/M MACRO ASSEM 2.0 #001 Teletype Echo Pro!traM

FFFF TRUE EQU OFFFFH ;OEFINE TRUE
0000 FALSE EQU NOT TRUE ;OEFINE FALSE
FFFF TTY EQU TRUE ;SET TTY ON
0010 TTYBASE EQU 10H ;BASE OF TTY PORTS
0020 CRTBASE EQU 20H ;BASE OF CRT PORTS

IF TTY ;ASSEMBLE TTY PORTS
TITLE 'Teletype Echo Pro!traM'

0010 CONIN EQU TTYBASE ;CONSOLE INPUT
0011 CONOUT EQU TTYBASE+l ;CONSOLE OUT

ENOIF
IF NOT TTY ;ASSEMBLE CRT PORTS
TITLE 'CRT Echo Pro!traM'

CONIN EQU CRTBASE ;CONSOLE IN
CONOUT EQU CRTBASE+l ;CONSOLE OUT

ENOIF

0000 OBI0 ECHO: IN CONIN ;REAO CONSOLE
CHARACTER

0002 0311 / OUT CONOUT ; WR ITE CONSOLE
CHARACTER

000l! C30000 JMP ECHO
0007 ENO

Listing 4-1. Conditional Assembly with 1TY True

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

4.5 IF, ELSE, and ENDIF Programmer's Utilities Guide

CP/M MACRO ASSEM 2.0 #001 CRT Echo Prolfram

FFFF TRUE EQU OFFFFH iOEFINE TRUE
0000 FALSE EQU NOT TRUE iOEFINE FALSE
0000 TTY EQU FALSE iSET CRT ON
0010 TTYBASE EQU 10H iBASE OF TTY PORTS
0020 CRTBASE EQU 20H iBASE OF CRT PORTS

IF TTY iASSEMBLE TTY PORTS
TITLE 'Teletype Echo Prolfram'

CONIN EQU TTYBASE iCONSOLE INPUT
CONOUT EQU TTYBASE+l iCONSOLE OUT

ENOIF
IF NOT TTY iASSEMBLE CRT PORTS
TITLE 'CRT Echo Prolfram'

0020 CONIN EQU CRTBASE iCONSOLE IN
0021 CONOUT EQU CRTBASE+l iCONSOLE OUT

ENDIF

0000 OB20 ECHO: IN CONIN iREAD CONSOLE
CHARACTER

0002 0321 OUT CONOUT iWRITE CONSOLE
CHARACTER

0004 C30000 JMP ECHO
0007 END

Listing 4-2. Conditional Assembly with TTY False

18 All !NFORMATION PRESENTED HERE IS PROPRIE.TARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 4.5 IF, ELSE, and ENDIF

The ELSE statement can be used as an alternative to an IF statement. The ELSE
statement must occur between the IF and ENDIF statements. The form is

IF expression
statement#l
statement#2

statement#n
ELSE
statement#n + 1
statement#n + 2

statement#m
ENDIF

If the expression produces a nonzero (true) value, then statements 1 through n are
assembled as before. However, the assembly process skips statements n + 1 through
m. When the expression produces a zero value (false), MAC skips statements 1
through n and assembles statements n + 1 through m. For example, the conditional
assembly shown in Listings 4-1 and 4-2 can be rewritten as shown in Listing 4-3.

CP/M MACRO ASSEM 2.0 #001 CRT Echo Prog'raM

FFFF TRUE EQU OFFFFH iDEF I NE TRUE
0000 FALSE EQU NOT TRUEiOEFINE FALSE
0000 TTY EQU FALSE iSET CRT ON
0010 TTYBASE EQU 10H iBASE OF TTY PORTS
0020 CRTBASE EQU 20H iBASE OF CRT PORTS

IF TTY iASSEMBLE TTY PORTS
TITLE 'Telet)'pe Echo Prog'raM'

CONIN EQU TTYBASE iCONSOLE INPUT
CONOUT EQU TTYBASE+l iCONSOLE OUT

ELSE iASSEMBLE CRT PORTS
TITLE 'CRT Echo Prog'raM'

0020 CONIN EQU CRT BASE iCONSOLE IN
0021 CONOUT EQU CRTBASE+l iCONSOLE OUT

ENOIF

0000 OB20 ECHO: IN CONIN iREAO CONSOLE CHARACTER
0002 0321 OUT CON OUT iWRITE CONSOLE CHARACTER
000l! C30000 JMP ECHO
0007 END

Listing 4-3. Conditional Assembly Using ELSE for Alternate

ALL INFORMATION PRESE.NTED HERE !S PROPRIETARY TO DIGITAL RE.SEARCH 19

4.5 IF, ELSE, and ENDIF Programmer's Utilities Guide

Properly balanced IF, ELSE, and END IF statements can be completely contained
within the boundaries of outer encompassing conditional assembly groups. The struc­
ture outlined below shows properly nested IF, ELSE, and ENDIF statements:

IF exp#l
group#l
IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#S
IF exp#3
group#6
ENDIF
group#7
END IF

Groups 1 through 7 are sequences of statements to be conditionally assembled, and
exp#l through exp#3 are expressions that control the conditional assembly. If exp#l
is true, then group#l and group#4 are always assembled, and groups 5, 6, and 7
are skipped. Further, if exp#l and exp#2 are both true, then group#2 is also included
in the assembly. Otherwise, group#3 is included. If exp#l produces a false value,
groups 1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included with 5 and
7. Otherwise, it is skipped in the assembly. A structure similar to this is shown in
Listing 4-4, where literal true/false values show conditional assembly selection.

20 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4.5 IF, ELSE, and ENDIF Programmer's Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved ENDIFs at any
point in the assembly, but the assembly usually becomes unreadable after two or
three levels or nesting. The nesting level restriction also holds, however, for pending
IFs and ELSEs during macro evaluation. Nesting level overflow produces an error
during assembly.

FFFF
0000

0000 3E05

0002 3EOS

0004 3E08

TRUE
FALSE

EQU
EQU
IF
MVI
IF
MVI
ELSE
MVI
ENDIF
MVI
ELSE
MVI
IF
MVI
ELSE
MVI
ENDIF
MVI
ENDIF
END

OFFFFH iDEFINE TRUE
NOT TRUE iDEFINE FALSE
FALSE
Ad
TRUE
AI2

A,3

A,a

A,5
TRUE
A,S

AI7

A,8

Listing 4-4. Sample Program Using Nested IF, ELSE, and ENDIF

4.6 The DB Directive

The DB directive defines initialized storage areas in single-precision (byte) format.

The statement form is

label DB e#l, e#2, ... , e#n

where the label is optional, and e# 1 through e#n are either expressions that produce
8-bit values (the high-order eight bits are zeros, or the high-order nine bits are ones),
or are ASCII strings no longer than 64 characters each. There is no practical restric­
tion on the number of expressions included on a single source line. The assembler
evaluates expressions and places them into the machine code sequentially following
the last program address generated.

ALL INfORMATION PRESENTED HERE lS PROPRIETARY TO DIGITAL RESEARCH 21

4.6 The DB Directive Programmer's Utilities Guide

String characters are similarly placed into memory, starting with the first character
and ending with the last character. Strings longer than two characters cannot be used
as operands in more complicated expressions. They must stand alone between the
commas. Note that ASCII characters are always placed in memory with the high­
order (parity) bit reset to zero. Further, recall that there is no translation from lower
to upper-case within strings. The optional label can be used to reference the data
area throughout the program. The following are examples of valid DB statements:

data:

si9'non:

DB
DB
DB
DB
DB

O,i,2,3,4,5,8
data and Offh,5,377Q,i+2+3+4
'please t)'pe)'our nafTle:' ,cr,if,O
'AB' SHR 8, 'C', 'DE' AND 7FH
HIGH data, LOW (si9'non GT data)

4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision (two­
byte) words of storage are initialized. The form of the DW statement is

label DW e#l, e#2, ... , e#n

where the label is optional, and e#l through e#n are expressions that produce 16-
bit values. Note that ASCII strings one or two characters long are allowed, but
strings longer that two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor; the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following are
examples of properly formed DW statements:

doub: DW
DW

Offefh, doub+4, si9'non-$,255+255
'a', 5, 'AB', 'CD', doub LT si9'non

22 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 4.8 The DS Directive

4.8 The DS Directive

The DS statement reserves an area of uninitialized memory and takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequences:

label: EQU $
ORG $ + expression

;CURRENT CODE LOC
;MOVE PAST AREA

4.9 The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the output format­
ting that is sent to the PRN file or directly to the printer device. The forms for the
P AGE statement are

PAGE
PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is sent to the
output file after the PAGE statement has been printed. The PAGE command is often
issued directly ahead of major sections of an assembly language program, such as a
group of subroutines, to cause the next statement to appear at the top of the follow­
ing page.

The second form of the PAGE command specifies the output page size. In this case,
the expression following the PAGE pseudo operation determines the number of out­
put lines to be printed on each page. If the expression is zero, there are no page
breaks. The print file is simply a continuous sequence of annotated output lines. If
the expression is nonzero, then the page size is set to the value of the expression.
Form-feeds are issued to cause page ejects when this count is reached for each page.

All INfORMATION PRESENTED HERE PROPRIETARY TO DIGITAL RESEARCH 23

4.9 PAGE and TITLE Directives Programmer's Utilities Guide

The assembler initially assumes that

PAGE 58

is in effect, producing a page eject at the beginning of the listing and at each 56-line
increment.

The TITLE directive takes the form

TITLE string-constant

where the string-constant is an ASCII string enclosed in apostrophes, not exceeding
64 characters in length. If a TITLE pseudo operation is given during the assembly,
each page of the listing file is prefixed with the title line, preceded by a standard
MAC header. The title line thus appears as

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line and
the blank line following the title are not included in the line count for the page. No
more than one TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being appended to the
PRN file (see Section 10), then the SYM file also cont'i\ins the title at the beginning
of the symbol listing with page breaks given by either the default or specified value
of the PAGE statement.

24 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 4.10 A Sample Program

4.10 A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations available in MAC.
The sample program, called TYPER, operates in the CP/M environment by selecting
one of three messages for output at the console. This program is created using the
ED program, assembled using MAC, and then placed into COM file format using
the CP/M LOAD function. After these steps have been accomplished, TYPER exe­
cutes at the Console Command Processor level of CP/M by typing one of the
commands:

TYPER A
TYPER B
TYPER C

to select message A, B, or C for printing. The TYPER program loads under the CCP
and jumps to the label START where the 8080 stack is initialized. The TYPER
program then prints its sign-on message:

'typer' version 1.0

The program then retrieves the first character typed at the console following the
command TYPER. This character should be A, B, or C. If one of these letters is not
specified, then TYPER reboots the CP/M system to give control back to the CCP. If
a valid letter is provided, TYPER selects one of the three messages (MESS@A,
MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning of each page;
page size is 33 lines, excluding the title lines. Form-feeds are suppressed. A number
of EQU statements at the beginning improve program readability. Note that through­
out the program the exclamation point allows several simple assembly language
statements on the same line. Although multiple statements make the program more
compact, they often decrease the overall readability of the source program. Note also
that the program terminates without the END statement. The END statement is
necessary only if a starting address is specified. The END statement is often included,
however, to maintain compatibility with other assemblers.

The DB statements labeled by SIGNON contain simple strings of characters and
expressions that produce single-byte values. The DW statement following TABLE
defines the base address of each string, corresponding to A, B, and C. Finally, the DS
statement at the end of the program reserves space for the stack defined within the
TYPER program.

ALL INfORNtATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

4.10 A Sample Program Programmer's Utilities Guide

OOOA
0000
0005
005C
0002
OOOD
OOOA
0010

0100
0100

0103
0106
010A
010E

0112
0115
0118

o liB
011E
0120
0122

CP/M MACRO ASSEM 2.0 1001 Typer Pro~ram

C31201

7EB7C8
5FOE02E5
CD0500El
23C30301

31CI0l
213701
CD0301

3A5DOO
D641
FE03
D20000

TITLE 'Typer Program'
PAGE 33
PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND A,B, OR C

VERS EQU 10 ;VERSIoN NUMBER N.N
BOOT EQU
BDoS EQU
TFCB EQU
WCHAR EQU
CR EQU
LF EQU
STKSIZ EQU

oRG
JMP

WMESSAGE:

OOOOH
0005H
005CH
2
ODH
OAH
16

100H
START

;REBooT ENTRY POINT
;BDoS ENTRY POINT
;DEFAULT FILE CONTROL BLOCK (GET A,B, OR C)
;WRITE CHARACTER FUNCTION
;CARRIAGE RETURN CHARACTER
;LINE FEED CHARACTER
;SIZE OF LOCAL STACK (IN DOUBLE BYTES)

;oRIGIN AT BASE OF TPA
;JUMP PAST THE MESSAGE SUBROUTINE

;WRITE THE STRING AT THE ADDRESS GIVEN BY HL 'TIL 00
MoV A,M! ORA A! RZ ;RETURN IF AT 00
MoV E,A! MVI C,WCHAR! PUSH H ;READY TO PRINT
CALL BDoS! POP H jCHARACTER PRINTED, GET NEXT
INX H! JMP WMESSAGE

START: jENTER HERE FROM THE CCP, RESET TO LOCAL STACK
LXI SP,STACK ;SET TO LOCAL STACK
LXI H,SIGNoN jWRITE THE MESSAGE
CALL WMESSAGE j'TYPER' VERSION N.N

LDA
SUI
CPI
JNC

TFCB+l
'A'
TABLEN
BOOT

;GET FIRST CHAR TYPED AFTER NAME
iNoRMALIZE TO 0,1,2
;CoMPARE WITH THE TABLE LENGTH
iREBooT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A'S VALUE

Listing 4-5. TYPER Program Listing

26 AllINfORNIATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 4.10 A Sample Program

CP/M MACRO ASSEM 2.0 #002 Typer Pro~raM

0125 5F MmJ E,A jLOW ORDER INDEX
0126 1600 M~JI 0,0 jEXTENDED TO DOUBLE PRECISION
0128 214001 LXI H,TABLE jBASE OF THE TABLE TO INDEX
012B 19 DAD 0 jSINGLE PRECISION INDEX
012C 19 DAD 0 jDOUBLE PRECISION INDEX
0120 5E MmJ E,M jLOW ORDER BYTE TO E
012E 23 INX H
012F 56 MOV D,M jHIGH ORDER MESSAGE ADDRESS TO DE
0130 EB XCHG jREADY FOR PRINTOUT
0131 CD0301 CALL WMESSAGE jMESSAGE WRITTEN TO CONSOLE
0134 C30000 JMP BOOT jREBOOT, GO BACK TO CCP LEVEL

0137 2774797065
0147 312E30
014A ODOAOO

SIGNON:
DATA

DB
DB
DB

AREAS

"'typer" version
l,JERS/l0+'O', '.', lJERS MOD 10 +'0'
CR,LF,O jEND OF MESSAGE

TABLE: jOF MESSAGE BASE ADDRESSES
0140 5301670182 OW MESS@A,MESS@B,MESS@C
0003 TABLEN EQU ($-TABLEI/2 jLENGTH OF TABLE

0153 7468697320MESS@A: DB
0167 796F752073MESS@B: DB
0182 7468697320MESS@C: DB

01Al DS
STACK:

'this is rllessa~e a',CR,LF,O
'YOU selected b this tiMe' ,CR,LF,O
'this Messa~e COMes out for c',CR,LF,O

STKSIZ*2 jRESERVES AREA FOR STACK

Listing 4-5. (continued)

End of Section 4

ALL INfORMATION PRESENTED HERE IS PROPRiETARY TO DIGITAL RESEt\RCH 27

Section 5
Operation Codes

Operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. MAC accepts all the standard mnemon­
ics for the Intel 8080 microcomputer. These standard mnemonics are detailed in the
8080 Assembly Language Programming Manual, published by Intel. Labels are optional
on each input line and, if included, take the value of the instruction address immedi­
ately before the instruction is issued by the assembler. The individual operators are
listed briefly in the following sections. See the Intel documentation for exact operator
details. In this section, operation codes are categorized for discussion; a sample assembly
shows the hexadecimal codes produced for each operation. The following notation is
used throughout:

e3 represents a 3-bit value in the range 0-7 that usually takes one of the
predefined register values A, B, C, D, H, L, M, SP, or PSW

e8 represents an 8-bit value in the range 0-255; signed 8-bit values are
also allowed in the range -128 through + 127

e16 represents a 16-bit value in the range 0-65535

where eJ, e8, and e16 can be formed from an arbitrary combination of operands
and operators in a well-formed expression. In some cases, the operands are restricted
to particular values within the range, such as the PUSH instruction.

ALlINfORMAT!ON PRESENTED HERE IS PROPRIETARY TO D!GITAl RESEARCH 29

5.1 Jumps, Calls, and Returns Programmer's Utilities Guide

5.1 Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or not to take
the jump, call, or return. The forms are shown below. The jump instructions are

JMP e16
JNC e16
JPE e16

JNZ e16
JC e16
JP e16

The call instructions are

CALL e16
CNC e16
CPE e16

CNZ e16
CC e16
CP e16

The return instructions are

RET
RNC
RPE

RNZ
RC
RP

The restart instruction takes the form:

RSTe3

JZ e16
JPO e16
JM e16

CZ e16
CPO e16
CM e16

RZ
RPO
RM

and performs exactly the same function as the instruction CALL e3 * 8 except that
RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along with a short
comment on each line describing the function of the instruction.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DlGlTAl RESEARCH

Programmer's Utilities Guide 5.1 Jumps, Calls, and Returns

CP/M MACRO ASSEM 2.0 #001 8080 JUMPS, CALLS, AND RETURNS

0000 C31BOO
0003 C25COO
0006 CAOOOI
0008 D21FOO
OOOC DA4142
OOOF E21700
0012 EAODOO
0015 F24100
0018 FA1BOO

001B CD3600
001E C43800
0021 CCOOOI
0024 D43AOO
0027 DCOOOO
002A E43200
0020 EC0800
0030 F44100
0033 FC4100

0036 C7
0037 OF

0038 CS
0038 CO
003A C8
003B DO
003C 08
0030 EO
003E E8
003F FO
0040 F8

0002

0041

L1:

S 1 :

X
GAMMA:

TITLE '8080 JUMPS, CALLS, AND RETURNS'

JUMPS ALL REQUIRE A 16-BIT OPERAND
JMP Ll jJUMP UNCONDITIONALLY TO LABEL
JNZ Ll+'A' jJUMP ON NON ZERO TO LABEL
JZ 100H jJUMP ON ZERO CONDITION TO LABEL
JNC Ll+4 jJUMP ON NO CARRY TO LABEL
JC 'AB' jJUMP ON CARRY TO LABEL
JPO $+8 jJUMP ON PARITY ODD TO LABEL
JPE Ll/2 jJUMP ON EVEN PARITY TO LABEL
JP
JM

GAMMA jJUMP ON POSITIVE RESULT TO LABEL
LOW L1 jJUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND
CALL
CNZ
CZ
CNC
CC
CPO
CPE
CP
CM

Sl jCALL SUBROUTINE UNCONDITIONALLY
Sl+X jCALL SUBROUTINE IF NON ZERO FLAG
100H jCALL SUBROUTINE IF ZERO FLAG
Sl+4 jCALL SUBROUTINE IF NO CARRY FLAG
Sl MOD 3jCALL SUBROUTINE IF CARRY FLAG
$+8 jCALL SUBROUTINE IF PARITY ODD
Sl-$ jCALL SUBROUTINE IF PARITY EVEN
GAMMA jCALL SUBROUTINE IF POSITIVE
GAM$MA jCALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X*8)
RST 0 jRESTART TO LOCATION 0
RST X+l

RETURN INSTRUCTIONS HAVE NO OPERAND
RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

EQU

END

2

jRETURN FROM SUBROUTINE
jRETURN IF NON ZERO
jRETURN IF ZERO FLAG SET
jRETURN IF NO CARRY FLAG
jRETURN IF CARRY FLAG SET
jRETURN IF PARITY IS ODD
jRETURN IF PARITY IS EVEN
jRETURN IF POSITIVE RESULT
jRETURN IF MINUS FLAG SET

Listing 5-1. Assembly Showing Jumps, Calls, Returns, and Restarts

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31

5.2 Immediate Operand Instructions Programmer's Utilities Guide

5.2 Immediate Operand Instructions

Several instructions load single- or double-precision registers or single-precision
memory locations with constant values. Other instructions perform immediate arith­
metic or logical operations on the accumulator (register A). The move immediate
instruction takes the form:

MVI e3,e8

where e3 is the register to receive the data given by the value e8. The expression e3
must produce a value corresponding to one of the registers A, B, C, D, E, H, L, or
the memory location M, which is addressed by the HL register pair.

The accumulator immediate operations take the form:

ADI e8
ANI e8

ACI e8
XRI e8

SUle8
ORI e8

SBI e8
CPI e8

where the operation is always performed on the accumulator using the immediate
data value given by the expression e8.

The load extended immediate instructions take the form:

LXI e3,e16

where e3 designates the register pair to receive the double-precision value given by
e16. The expression e3 must produce a value corresponding to one of the double­
precision register pairs B, D, H, or SP.

32 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESE..A.RCH

Programmer's Utilities Guide 5.2 Immediate Operand Instructions

Listing 5-2 shows the accumulator immediate operations in an assembly language
program and briefly describes each instruction.

CPIM MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

TITLE 'IMMEDIATE OPERAND INSTRUCTIONS'

MVI USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA
0000 06FF MVI B,255 ;MOVE IMMEDIATE A,B,C,D,E,H,L,M

ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER
0002 C601 ADI 1 ;ADD IMMEDIATE TO A WID CARRY
oooa CEFF ACI OFFH ;ADD IMMEDIATE TO A WITH CARRY
0006 D613 SUI U+3 ;SUBTRACT FROM A WID BORROW (CARRY)
0008 DE10 SBI LOW U ;SUBTRACT FROM A WITH BORROW (CARRY)
OOOA E602 ANI $ AND 7 ;LOGICAL AND WITH IMMEDIATE DATA
OOOC EE3C XRI 1111$00B;LOGICAL XOR WITH IMMEDIATE DATA
OOOE F6FD oRI -3 ;LOGICAL DR WITH IMMEDIATE DATA

U:
0010 END

Listing 5-2. Assembly Using Immediate Operand Instructions

5.3 Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrementing single- and
double-precision registers. The instruction forms for single-precision registers are

INR e3 DCR e3

where e3 produces a value corresponding to register A, B, C, D, H, L, or M. These
registers correspond to the byte value at the memory location addressed by HL. The
double-precision instructions are

INX e3 DCX e3

where e3 must be equivalent to one of the double-precision register pairs B, D, H, or
SP.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

5.3 Increment and Decrement Programmer's Utilities Guide

Listing 5 -3 shows a sample assembly language program using both single- and
double-precision increment and decrement operations.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

0000 lC
0001 3D
0002 33
0003 OB
0004

TITLE 'INCREMENT AND DECREMENT INSTRUCTIONS'

INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
INR E jBYTE INCREMENT A,B,C,D,E,H,L,M
OCR A jBYTE DECREMENT A,B,C,D,E,H,L,M
INX SP jiB-BIT INCREMENT B,D,H,SP
DCX B jiB-BIT DECREMENT B,D,H,SP
END

Listing 5-3. Assembly Containing Increment
and Decrement Instructions

5.4 Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU and from the
CPU to memory. Data movement instructions also include a number of register-to­
register move operations. The single-precision move register instruction takes the
form:

MOV e3, e3'

where the e3 and e3' expressions each produce a single-precision register A, B, C, D, E, H,
L, or M, where the M register corresponds to the memory location addressed by HL. The
register named by e3 always receives the 8-bit value given by the register expression e3'.
The instruction is often read as move to register e3 from register e3'. The instruction
MOV B,H would thus be read as move to register B from register H. Note that the
instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form:

LDAX e3 STAX e3

where e3 is a register expression that must produce one of the double-precision
register pairs B or D. The 8-bit value in register A is either loaded from (LDAX) or
stored to (STAX) the memory location addressed by the specified register pair.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 5.4 Data Movement Instructions

The load and store direct instructions operate on either the A register for single­
precision operations, or on the HL register pair for double-precision operations.
Load and store direct instructions take the form:

LHLD e16 SHLD e16 LDA e16 STA e16

where e16 is an expression that produces the memory address to obtain (LHLD,
LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load and store oper­
ations, with the 8080 stack as the implied memory address. The forms are

POP e3 PUSH e3

where e3 must evaluate to one of the double-precision register pairs PSW, B, D, or
H.

The input and output instructions are also in this category, even though they
receive and send their data to the electronic environment external to the 8080 pro­
cessor. The input instruction reads data to the A register; the output instruction sends
data from the A register. In both cases, the data port is given by the data value that
follows the instruction. The forms are

IN e8 OUTe8

A set of instructions transfers double-precision values between registers and the
stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5 -4 lists these instructions in an assembly language program and briefly describes
them.

ALL INfORMATION PRESENTED IS PROPRJ£TARY TO DIGiTAL RESEARCH 35

5.4 Data Movement Instructions Programmer's Utilities Guide

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

TITLE 'DATA/MEMORY/REGISTER MOVE OPERATIONS'

THE MoV INSTRUCTION REQUIRES TWO REGISTER OPERANDS
(3-BITS) SELECTED FROM A,B,C,D,E,H, OR M (M,M INVALID)

0000 78 MoV AlB ;MoVE DATA TO FIRST REGISTER FROM
;SECoND

0001
0002

0003
0008
0008
OOOC

OOOF
0010

0011
0013

0015
0018
0017
0018

0018
001B
0004
0010

OA
12

2A1800
221BOO
3A1800
328400

F1
C5

DB08
D3FE

E3
E8
F8
EB

01:

}{

LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR 0
LDAX B ;LoAD ACCUM FROM ADDRESS GIVEN BY BC
STAX 0 ;SToRE ACCUM TO ADDRESS GIVEN BY DE

LOAD/STORE-DIRECT REQUIRE MEMORY ADDRESS
LHLD 01 ;LoAD HL DIRECTLY FROM ADDRESS 01
SHLD
LOA

01+2
01

;SToRE HL DIRECTLY TO ADDRESS Dl+2
;LoAD THE ACCUMULATOR FROM 01

STA 01 SHL 2;SToRE THE ACCUMULATOR TO 01 SHL 2

PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM BIDIH
POP PSW ;LoAD REGISTER PAIR FROM STACK
PUSH B ;SToRE REGISTER PAIR TO THE STACK

INPUT/OUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
IN
OUT

X+2
OFEH

MISCELLANEOUS
)<THL
PCHL
SPHL
XCHG

;READ DATA FROM PORT NUMBER TO A
;WRITE DATA TO THE SPECIFIED PORT

REGISTER Mol,IE OPERATIONS
; E)-(CHANGE TOP OF STACK WITH HL
; PC RECE I l,lES THE HL l.IALUE
;SP RECEIVES THE HL l)ALUE
;EXCHANGE DE AND HL

END OF INSTRUCTION LIST
OS 2 ;DOUBLE WORD TEMPORARY
DS 2 ;ANOTHER TEMPORARY
EQU 4 ; LITERAL l.)ALUE
END

Listing 5-4. Assembly Using Various Register/Memory Moves

36 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 5.5 ALU Operations

5.5 Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accumulator and sin­
gle-precision registers, including operations on the A register and carry flag. The
accumulator/register instructions are

ADD e3
ANAe3

ADCe3
XRAe3

SUB e3
ORAe3

SBB e3
CMPe3

where e3 produces a value corresponding to one of the single-precision registers A,
B, C, D, E, H, L, or M, where the M register is the memory location addressed by
the HL register pair.

The accumulator/carry operations gIven below operate upon the A register, or
carry bit, or both.

DAA
RLC

CMA
RRC

STC
RAL

CMC
RAR

The function of each instruction is listed in the comment line shown in Listing 5-5.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DiGITAL RESEARCH 37

5.5 ALU Operations Programmer's Utilities Guide

CP/M MACRO ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

0000 80
0001 80
0002 84
0003 8S
0004 Al
0005 AF
0008 60
0007 6C

0008 OS

0008 27
OOOA 2F
0006 37
OOOC 3F
0000 07
OOOE OF
OOOF 17
0010 lF

0011

TITLE 'ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER,
WHICH MUST PRODUCE A, 6, C, 0, E, H, L, OR M

ADD
ADC
SU6
S66
ANA
XRA
ORA
CMP

6
L
H
6+1
C
A
6
H

iADD REGISTER TO A WID CARRY
iADD TO A WITH CARRY INCLUDED
iSU6TRACT FROM A WID 6oRRoW
iSU6TRACT FROM A WITH 6oRRoW
iLoGICAL AND WITH REGISTER
iLDGICAL XoR WITH REGISTER
iLoGICAL OR WITH REGISTER
iCoMPARE REGISTER, SETS FLAGS

DoU6LE ADD CHANGES HL PAIR ONLY
DAD 6 iDoU6LE ADD 6,D,H,SP TO HL

REMAINING OPERATIONS HAVE NO OPERANDS
DAA iDECIMAL ADJUST REGISTER A USING LAST OP
CMA iCoMPLEMENT THE 6ITS OF THE A REGISTER
STC ;SET THE CARRY FLAG TO 1
CMC iCoMPLEMENT THE CARRY FLAG
RLC
RRC
RAL
RAR

END

i8-BIT ACCUM ROTATE LEFT, AFFECTS CY
i8-6IT ACCUM ROTATE RIGHT, AFFECTS CY
is-6IT CY/ACCUM ROTATE LEFT
is-6IT CY/ACCUM ROTATE RIGHT

Listing 5-5. Assembly Showing ALU Operations

The double-precision add instruction performs a 16-bit addition of a register pair
(B, D, H, or SP) into the 16-bit value in the HL register pair. This addition produces
the 16-bit (unsigned) sum of the two values. The sum is placed into the HL register
pair. The form is

DAD e3

38 All INFORMAT!ON PRES£Nn::o H£RE is PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 5.6 Control Instructions

5.6 Control Instructions

The four remaining instructions in the 8080 set are control instructions. These take
the forms:

HLT
DI
EI
NOP

They stop the processor (HL T), enable the interrupt system (EI), disable the interrupt
system (DI), or perform a no-operation (NOP).

End of Section 5

iNfORMATION PRESENTED IS PROPRIETARY DIGITAL RESEARCH 39

Section 6
An Introduction to

Macro Facilities

The fundamental difference between the Digital Research ASM and MAC assem­
blers is that ASM provides only the facilities for assembling 8080 operation codes,
and MAC includes a powerful macro processing facility. MAC implements the indus­
try standard Intel macro definition, which includes the following pseudo operations.

Macro definitions allow groups of instructions to be stored and substituted in the
source program as the macro names are encountered. Definitions and macro calls
can be nested; symbols can be constructed through concatenation using the special
& operator, and locally defined symbols can be created using the LOCAL pseudo.
operation. Macro parameters can be formed to pass arbitrary strings of text to a
specific macro for substitution during expansion.

The MACLIB (macro library) feature allows the programmer to define a set of
macros, equates, and sets and automatically includes them in a program. A macro
library can contain an instruction set for another central processor that is not directly
supported by the MAC built-in mnemonics. The macro library can also include
general purpose input/output macros used in programs that operate in the CP/M
environment to perform peripheral or disk 110 functions.

IRPC, IRP, and REPT pseudo operations repeat source statements under control
of a count or list of characters or items to be substituted each time the assembler
rereads the statements. This feature is particularly useful in generating groups of
assembly language statements with similar structure, such as a set of File Control
Blocks where only the filetype is changed in each statement.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

6 Introduction to Macro Facilities Programmer's Utilities Guide

To illustrate the power of macro facility, consider the macro library shown in
Listing 6-1, which resides in a disk file called MSGLIB.LIB. This macro library con­
tains macro definitions that have standard instruction sequences for program startup,
message typeout, and program termination. The program shown in Listing 6-2 pro­
vides an example of the use of this macro library. The assembly shown in Listing
6-2 lists both the macro calls and the statements in macro expansions that generate
machine code. The statements marked by + in Listing 6-2 are generated from the
macro calls. The remaining statements are a part of the calling program.

The macro call

ENTCCP 10

in Listing 6-2 shows a specific expansion of ENTCCP (enter from CCP). ENTCCP is
defined in Listing 6-1. The macro call causes MAC to retrieve the definition-the
text between MACRO and ENDM in Listing 6-1-and substitute this text following
the macro call in Listing 6-2. Upon entry to the program from CCP, this macro saves
the stack pointer (SP) into a variable called @ENTSP for later retrieval. The stack
pointer is then reset to a local area for the remainder of the program execution.

The size of the local stack is defined by the macro parameter named in the macro
definition as SSIZE (see Listing 6-1), and filled in at the call with the value 10. The
ENTCCP macro reserves space for a local stack of SSIZE= 10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

42 All iNfORMATION PRESENTED HERE IS PROPRltrARY TO DIGITAL RESEARCH

6 Introduction to Macro Facilities Programmer's Utilities Guide

SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT
REBOOT EOU OOOOH iWARM START ENTRY POINT
TPA EOU OlOOH jTRANSIENT PROGRAM AREA
BDOS EOU 0005H jSYSTEM ENTRY POINT
TYPE EOU 2 jWRITE CONSOLE CHARACTER FUNCTION
CR EOU ODH iCARRIAGE RETURN
LF EOU OAH JLINE FEED

jMACRO DEF I N IT IONS

CHROUT MACRO iWRITE A CONSOLE CHARACTER FROM REGISTER A

TYPEOUT

MSGOUT:

MVI CtTYPE jjTYPE FUNCTION
CALL BDOS jjENTER THE BDOS TO WRITE THE CHARACTER
ENDM

LOCAL
JMP

MACRO ?MESSAGE iTYPE LITERAL MESSAGE AT CONSOLE
PAST SUB jjJUMP PAST SUBROUTINE INITIALLY
PASTSUB
jjTHIS SUBROUTINE PRINTS THE MESSAGE STARTING AT HL 'TIL 00

MOV EtM jjNEXT CHARACTER TO E
MOV AtE jjTO ACCUM TO TEST FOR 00
ORA A jj=007
RZ jjRETURN IF END OF MESSAGE
INX H jjOTHERWISE MOVE TO NEXT CHARACTER AND PRINT
PUSH H ;;SAVE MESSAGE ADDRESS
CHROUT
POP H jjRECALL MESSAGE ADDRESS
JMP MSGOUT jjFOR ANOTHER CHARACTER

PASTSUB:

jj REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE

LOCAL TYMSG jjLABEL THE LOCAL MESSAGE
LOCAL PASTM
LXI HtTYMSG jjADDRESS THE LITERAL MESSAGE
CALL MSGOUT jjCALL THE PREVIOUSLY DEFINED SUBROUTINE
JMP PASTM

jj INCLUDE THE LITERAL MESSAGE AT THIS POINT
TYMSG: DB 'FROM CONSOLE: &??MESSAGE'tCRtLFtO
jj ARRIVE HERE TO CONTINUE THE MAINLINE CODE
PASTM: ENDM

TYPEOUT (7MESSAGE>
ENDM

Listing 6-1. A Sample Macro Library

ALL INfORMAtION PRESENtED HERE IS PROPRIETARY DIGITAL RESEARCH 43

6 Introduction to Macro Facilities Programmer's Utilities Guide

ENTCCP MACRO
LOCAL
LXI
DAD
SHLD
LXI
JMP
IF
OS
ELSE
OS
ENDIF

@STACK:
@ENTSP:
START: ENDM

RETCCP MACRO
LHLD
SPHL
RET
ENDM

ABORT MACRO
JMP
ENDM

SSIZE
START
H,O
SP

iENTER PROGRAM FROM CCP, RESERVE 2*SSIZE STACK LOCS
iiAROUND THE STACK

iiSP VALUE IN HL
@ENTSP iiENTRY SP
SP,@STACKiiSET TO LOCAL STACK
START
NUL SSIZE
32 iiDEFAULT 18 LEVEL STACK

iiLOW END OF STACK
DS 2 i iENTRY SP

jRETURN TO CONSOLE PROCESSOR
@ENTSP jjRELOAD CCP STACK

jjBACK TO THE CCP

jABORT THE PROGRAM
REBOOT

END OF MACRO LIBRARY

Listing 6-1. (continued)

44 ALL INFORMATION PRESENTED HERE is PROPRiETARY TO DIG!TAL RESEARCH

Programmer's Utilities Guide 6 Introduction to Macro Facilities

CP/M MACRO ASSEM 2.0

0100

0100+210000
0103+39
0101l+222101
0107+312101
010A+C32301
010D+
0121+

0123+C331101
0126+5E
0127+B7
0128+CB
0129+23
012A+E5
012B+OE02
012D+CD0500
0130+El
0131+C32601
01311+213DOl
0137+CD2601
013A+C36701

@ENTSP:

013D+1I65211FlID20??0003:

0167+217001
016A+CD2601
016D+C39B01
0170+1I65211FlID20??0005:

019B+21AlIOl
019E+CD2601
01A1+C3CE01
01AlI+1I65211FlID20?70007:

01CE+2A2101
01Dl+F9
01D2+C9
01D3

001 S~MPLE MESSAGE OUTPUT MACRO

TITLE 'SAMPLE MESSAGE OUTPUT MACRO'

MACLIB MSGLIB iINCLUOE THE MACRO LIBRARY
ORG TPA iORIGIN AT THE TRANSIENT AREA
USE THE MACRO LIBRARY TO TYPE TWO MESSAGES
ENTCCP 10 iENTER PROGRAM, RESERVE 10 LEVEL STACK
LXI H,O
DAD SP
SHLO @ENTSP
LXI SP,@STACK
JMP
DS

TYPEOUT
JMP
MOV
ORA
RZ
INX
PUSH
Min
CALL
POP
JMP
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

RETCCP
LHLD
SPHL
RET
END

7?0001
2*10
DS 2

<THIS IS THE FIRST MESSAGE>
??0002
E,M
A

H

H
C,TYPE
BDOS
H
MSGOUT
H,??0003
MSGOUT
770001l
DB 'FROM CONSOLE: THIS IS THE FIRST MESSAGE' ,CR,LF,O
(THIS IS THE SECOND MESSAGE>
H,7?0005
MSGOUT
??0006
DB 'FROM CONSOLE: THIS IS THE SECOND MESSAGE' ,CR,LF,O
<THIS IS THE THIRD MESSAGE>
H,??0007
MSGOUT
770008
DB 'FROM CONSOLE: THIS IS THE THIRD MESSAGE' ,CR,LF,O
iRETURN TO THE CONSOLE COMMAND PROCESSOR
@ENTSP

Listing 6-2. A Sample Assembly Using the MACLIB Facility

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45

6 Introduction to Macro Facilities Programmer's Utilities Guide

Consider also the special macro statements used in Listing 6-1 within the body of
the ENTCCP macro. The LOCAL statement defines the label START within the
macro body. Each LOCAL statement causes the macro assembler to construct a
unique symbol starting with ?? each time it is encountered. Thus, multiple macro
calls reference unique labels that do not interfere with one another. ENTCCP also
contains a conditional assembly statement that uses the NUL operator; this tests
whether a macro parameter has been supplied or not. In this case, the ENTCCP
macro can be started by

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. The following
sections give exact details and examples.

The TYPEOUT macro is a more complicated example of macro use. Note that this
macro contains a redefinition of itself within the macro body. The structure of
TYPEOUT is

TYPEOUT MACRO ?MESSAGE
• ••

TYPEOUT MACRO ??MESSAGE
• ••
ENDM
• ••
ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon comple­
tion, the nested inner definition becomes active.

To see the use of such a nested structure, consider the TYPEOUT macro. Each
time it starts, TYPEOUT prints the message sent as an actual parameter at the
console device. The typeout process, however, can be easily handled with a short
subroutine. Upon the first invocation, include the subroutine inline. Then simply call
this subroutine on subsequent invocations of TYPEOUT. Thus, the outer definition
of TYPEOUT defines the utility subroutine and then redefines itself, so that the
subroutine is called, rather than including another copy of the utility subroutine.

46 All INfORMATiON PRESENTED IS PROPRIETARY TO DiGITAL RESEARCH

Programmer's Utilities Guide 6 Introduction to Macro Facilities

Note that macro definitions are stored in the symbol table area of the assembler,
so each macro reduces the remaining free space. MAC allows double semicolon
comments to indicate that the comment itself is to be ignored and not stored with
the macro. Thus, comments with a single semicolon are stored with the macro and
appear in each expansion; comments with two preceding semicolons are listed only
when the macro is defined.

Listing 6-2 gives three examples of TYPEOUT invocations, with three messages
that are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (??0002) in the place of PASTSUB, which is used to branch
around the utility subroutine included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message, also included inline. However, subsequent invocations of TYPEOUT use
the previously included utility subroutine to type their messages.

Although this example concentrates all macro definitions in a separate macro library,
macros are often defined in the mainline (.ASM) source program. In fact, many
programs that use macros do not use the external macro library facility at all.

The rest of this manual examines many applications of macros. Macro facilities
can simplify the programming task by abstracting from the primitive assembly lan­
guage levels. That is, you can define macros that provide more generalized functions
that are allowed at the pure assembly language level, such as macro languages for a
given application, improved control facilities, and general purpose operating systems
interfaces. The remainder of this manual first introduces the individual macro forms,
and then presents several uses of the macro facilities in realistic applications.

End of Section 6

All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH 47

Section 7
Inline Macros

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the assem­
bler to reread portions of the source program under control of a counter or list of
textual substitutions. These groups are listed below in order of increasing complexity.

7.1 The REPT-ENDM Group

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation and terminated by an ENDM pseudo oper­
ation. The form is

label: REPT expression
statement-l
statement-2

statement-n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and
process statements 1 through n, enclosed within the group.

Listing 7-1 shows an example of the use of the REPT group. In this case, the
REPT-ENDM group generates a short table of the byte values 5, 4, 3, 2, and 1.
Upon entry to the REPT, the value of NXTV AL is 5. This is taken as the repeat
count, even though NXTVAL changes within the REPT. The macro lines that do not
generate machine code are not listed in the repetition, while the lines that do generate
code are listed with a + sign after the machine code address. Full macro tracing is
optional, however, using assembly parameters. (See Section 10.)

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

7.1 The REPT-ENDM Group Programmer's Utilities Guide

CPIM MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100

0005
0100 OBOO
0102 FE05
0104 020001
0107 211401
010A 5F
010B 1600
010D 19
010E 7E
010F 0300
0111 C30001

0005 #

0114+05
0115+04
0116+03
0117+02
0118+01
0119

MAX~JAL

RLooP:

oRG
TITLE

100H lBASE OF TRANSIENT AREA
'SAMPLE REPT STATEMENT'

THIS PROGRAM READS INPUT PORT 0 AND INDEXES
INTO A TABLE
BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED
AND SENT
TO OUTPUT PORT 0

EQU 5 lLARGEST VALUE TO PROCESS
IN 0 lREAD THE PORT VALUE
CPI MAXI,JAL iToo LARGE?
JNC RLooP lIGNoRE INPUT IF INVALID
LXI H,TABLE iADDRESS BASE OF TABLE
MO\J E,A lLoW ORDER INDEX TO E
MI,J I D,O lHIGH ORDER 00 FOR INDEX
DAD D lHL HAS ADDRESS OF ELEMENT
MO\J A,M lFETCH TABLE VALUE FOR OUTPUT
OUT 0 lSEND TO THE OUTPUT PORT AND LOOP
JMP RLooP lFoR ANOTHER INPUT

GENERATE A TABLE OF VALUES MAXI,JAL ,MAXVAL-l , ••• 11
NXTVAL SET MAXVAL lSTART COUNTER AT MAXVAL

TABLE: REPT NXTVAL
DB NXTVAL lFILL ONE (MORE) ELEMENT

NXHJAL SET NXTVAL-lliAND DECREMENT FILL VALUE
ENDM
DB NXHJAL lFILL ONE (MORE) ELEMENT
DB NXTI)AL lFILL ONE (MORE) ELEMENT
DB NXTVAL lFILL ONE (MORE) ELEMENT
DB NXTVAL lFILL ONE (MORE) ELEMENT
DB NXTVAL lFILL ONE (MORE) ELEMENT
END

Listing 7-1. A Sample Program Using the REPT Group

If a label appears on the REPT statement, its value is the first machine code
address that follows. This REPT label is not reread on each repetition of the loop.
The optional label on the ENDM is reread on each iteration; thus constant labels,
not generated through concatenation or with the LOCAL pseudo operation, generate
phase errors if the repetition count is greater than 1.

50 INFORMATiON PiUS£NTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.1 The REPT-ENDM Group

Properly nested macros, including REPTs, can occur within the body of the REPT­
ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals beginning within the repeat group automat­
ically terminate upon reaching the end of the macro expansion. Thus, IF and ELSE
pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group, although the ENDIF is allowed.

7.2 The IRPC-ENDM Group

Similar to the REPT group, the IRPC-ENDM group causes the assembler to reread
a bounded set of statements, taking the form:

label: IRPC identifier,character-list
statement-l
statement-2

statement-n
label: ENDM

where the optional labels obey the same conventions as in the REPT -ENDM group.
The identifier is any valid assembler name, not including embedded $ separators.
Character list denotes a string of characters terminated by a delimiter (space, tab,
end-of-line, or comment).

The IRPC controls the reread process as follows: the statement sequence is read
once for each character in the character list. On each repetition, a character is taken
from the character list and associated with the controlling identifier, starting with the
first and ending with the last character in the list. Thus, an IRPC header of the form

I R PC ?}{ t ABCDE

rereads the statement sequence that follows (to the balancing ENDM) five times,
once for each character in the list ABCDE. On the first iteration, the character A is
associated with the identifier ?X. On the fifth iteration, the letter E is associated with
the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the control­
ling identifier by the associated character value. Using the preceding IRPC header, an
occurrence of ?X in the bounds of the IRPC-ENDM group is replaced by the char­
acter A on the first iteration, and by E on the last iteration.

ALL INFORMATION PRESENTED HERE is PROPRIHARY TO DIGiTAL RESEARCH 51

7.2 The IRPC-ENDM Group Programmer's Utilities Guide

The programmer can use the controlling identifier to construct new text strings
within the body of the IRPC by using the special concatenation operator, denoted by
an ampersand (&) character. Again, using the preceding IRPC header, the macro
assembler replaces LAB&?X with LABA on the first iteration. LABE is produced on
the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC reread process.

The controlling identifier is not usually substituted within string quotes because
the controlling identifier can appear as a part of a quoted message. Thus, the macro
assembler performs substitution of the controlling identifier when it is preceded or
followed by the ampersand operator. Further, all alphabetics outside string quotes
are translated to upper-case, but no case translation occurs within string quotes. 50
the controlling identifier must not only be preceded or followed by the concatenation
operator within strings, but it must also be typed in upper-case.

Listings 7-2a and 7-2b illustrate the use of the IRPC-ENDM group. Listing 7-2a
shows the original assembly language program, before processing by the macro
assembler. The program is typed in both upper- and lower-case. Listing 7-2b shows
the output from the macro assembler, with the lower-case alphabetics translated to
upper-case. Three IRPC groups are shown in this example. The first IRPC uses the
controlling identifier reg to generate a sequence of stack push operations that save
the double-precision registers Be, DE, and HL. The lines generated by this group are
marked by a + sign following the machine code address.

construct a data table

save relevant re~isters

enter: irpc re~tbdh

push re~ ; ;save re~

endm

initialize a partial ascii table
i rpc c tlAb$?@

data&c: db '&C'
endm

restore re~isters

i r p c reg thdb
pop re ~ ;;recall re ~
endm
ret
end

Listing 7-2a. Original (.A5M) File with IRPC Example

52 All INfORMATION PRESENUD HERE is PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.2 The IRPC-ENDM Group

0000+C5
0001+05
0002+E5

0003+31
0004+41
0005+42
0006+24
0007+3F
0008+40

0009+El
OOOA+Dl
OOOB+Cl
OOOC C9
0000

CONSTRUCT A DATA TABLE

SAVE RELEVANT REGISTERS
ENTER: IRPC REG,BDH

PUSH REG iiSAVE REG
ENDM
PUSH B
PUSH D
PUSH H

I N IT I ALI ZE A PARTIAL ASCII TABLE
IRPC C tlAB$?@

DATA&C: DB '&C'
ENDM

DATAl: DB ' 1 '
DATAA: DB 'A'
DATAB: DB 'B'
DATA$: DB '$,
DATA?: DB '? '
DATA@: DB '@'

RESTORE REGISTERS
IRPC REG,HDB
POP REG i iRECALL REG
ENDM
POP H
POP D
POP B
RET
END

Listing 7-2b. Resulting (.PRN) File with IRPC Example

The second IRPC shown in Listing 7-2a uses the controlling identifier C to gener­
ate a number of single-byte constants with corresponding labels. Although the con­
trolling variable was typed in lower-case, it has been translated to upper-case during
assembly. The string '&C' occurs within the group and, because the controlling
variable is enclosed in string quotes, it must occur next to an ampersand operator
and be typed in upper-case for the substitution to occur properly. On each iteration
of the IRPC, a label is constructed through concatenation, and a DB is generated
with the corresponding character from the character list.

ALL INfORMAT!ON PRESENTED HERE IS PROPRlETARY TO DIGITAL RESEARCH 53

7.2 The IRPC-ENDM Group Programmer's Utilities Guide

Substitution of the controlling identifier by its associated value can cause infinite
substitution if the controlling identifier is the same as the character from the charac­
ter list. For this reason, the macro assembler performs the substitution and then
moves along to read the next segment of the program, rather than rereading 'the
substituted text for another possible occurrence of the controlling identifier. Thus, an
IRPC of the form

IRPC C,lAC$?@

produces

DATAC: D5 'C'

in place of the DB statement at the label DATAA in Listing 7-2b.

The last IRPC restores the previously saved double-precision registers and performs
the exact opposite function from the IPRC at the beginning of the program.

When no characters follow the identifier portion of the IRPC header, the group of
statements is read once, and the controlling identifier is deleted when it is read. It is
replaced by the null string.

7.3 The IRP-ENDM Group

The IRP (indefinite repeat) functions like the IRPC, except that the controlling
identifier can take on a multiple character value. The form of the IRP group is

label: IRP identifier, 1 <4c1-1,c1-2, ... ,c1-n1 > 2
statement-1
statement-2

statement-m
label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration, as follows. On the first iteration, the character list
given by c1-1 is substituted for the identifier wherever the identifier occurs in the
bounded statement group (statements 1 through m). On the second iteration, c1-2
becomes the value of the controlling identifier. Iteration continues in this manner
until the last character list, denoted by c1-n, is encountered and processed. Substitu­
tion of values for the controlling identifier is subject to the same rules as in the IRPC.

54 All INfORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.3 The IRP-ENDM Group

Note rules for substitution within strings and concatenation of text using the amper­
sand & operator. Controlling identifiers are always ignored within comments.

Listing 7-3 gives several examples of IRP groups. The first occurrence of the IRP
in Listing 7-3 is a typical use of this facility-to generate a jump vector at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier ?LAB and produces a jump instruction
for each label by rereading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Listing 7-3 points out substitution
conventions within strings for both IRPC and IRP groups. The controlling identifier
IS takes on the values A-ROSE and ? on the two iterations of the IRP group,
respectively.

The controlling identifier is replaced by the character lists in the two occurrences
of &IS and IS& inside the string quotes because they are both adjacent to the
ampersand operator. is& is not replaced because the controlling identifier is typed in
lower-case, and there is no automatic translation to upper-case within strings. The
occurrences of IS within the comments are not substituted.

The last IRP group shows the effects of an empty character list. The value of the
controlling identifier becomes the null string of symbols and, in the cases where ?X
is replaced, produces the statement:

DB
, ,

DB produces no machine code and is therefore not listed in the macro expansion.
The three statements

DB '?x' DB '?}-{' DB '&:'

appear in the expansions because the '?x' is typed in lower-case and thus is not
replaced. The '?X' does not appear next to an ampersand in the string and is thus
not replaced. In the last case, only one of the double ampersands is absorbed in the
'&&?X&' string. Here, the two ampersands surrounding ?X are removed because
they occur immediately next to the controlling identifier within the string.

INFORMATlON PRESENTED IS PROPRIETARY TO DIGITAL RESEARCH 55

7.3 The IRP-ENDM Group Programmer's Utilities Guide

Substitution rules outside of string quotes and comments are much less compli­
cated; the controlling identifier is replaced by the current character-list value when­
ever it occurs in any of the statements within the group. The ampersand operator
can be placed before or after the controlling identifier to cause the preceding or
following text to be concatenated.

The actual forms for the character lists (cl-l through cl-n) are more general than
stated here. In particular, bracket nesting is allowed, and escape sequences allow
delimiters to be ignored. The exact details of character list forms are discussed in the
macro parameter sections.

56 All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEJ\RCH

Programmer's Utilities Guide 7.3 The IRP-ENDM Group

0000+C30COO
0003+C34300
0006+C34600
0009+C34900

OOOC 211200
OOOF C35100

0012+412D524F53
0022+412D524F53
0032+3F20495320
0038+3F2069736E

0043 C35100

0046 C35100

0049 C35100

004C+3F78
004E+3F58
0050+26

0051 C9
0052

INITIAL:

CHRS:

GET:

PUT:

FINIS:

ENDCASE:

CREATE A JUMP VECTOR USING THE IRP GROUP
IRP ?LA6,<INITIAL,GET,PUT,FINIS>
JMP ?LA6 jjGENERATE THE NEXT JUMP
ENDM
JMP
JMP
JMP
JMP

INITIAL
GET
PUT
FINIS

INDIVIDUAL CASES

LXI H,CHRS
JMP ENDCASE
IRP IS,<A-ROSE,?>
D6 'SeIS IS ISSe' iIS
D6 'SeIS isn"t i sSe'
ENDM
DB 'A-ROSE IS A-ROSE'
DB 'A-ROSE isn lit isSe'
DB '? IS ?' j IS
DB '? isn lit isSe'

JMP ENDCASE

JMP END CASE

JMP ENDCASE
IRP ?X,<>
D6 '?x'
DB '?X'
DB 'Se?X'
DB 'Se?X&'
DB '&Se?xSe'
ENDM
DB '?x'
DB '?X'
DB '& '

RET
END

IS &IS

JIS I S &IS

IS &IS

Listing 7-3. A Sample Program Using IRP

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 57

7.4 The EXITM Statement Programmer's Utilities Guide

7.4 The EXITM Statement

The EXITM pseudo operation can occur within the body of a macro. Upon
encountering the EXITM statement, the macro assembler aborts expansion of the
current macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-l

label: EXITM

statement-n
ENDM

where the label is optional, and macro-heading denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

The EXITM statement usually occurs within the scope of a surrounding condi­
tional assembly operation. If the EXITM occurs in the scope of a false conditional
test, the statement is ignored, and macro expansion continues. If the EXITM occurs
within the scope of a true conditional, the expansion stops where the EXITM is
encountered. Assembly statement processing continues after the ENDM of the group
aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Listing 7-4. This listing
shows two IRPCs used to generate DB statements up to eight characters long. These
IRPCs might occur within the context of another macro definition, such as in the
generation of CP/M File Control Block (FCB) names. In both cases, the variable LEN
counts the number of filled characters. If the count reaches eight characters, the
EXITM statement is assembled under a true condition, and the IRPC stops expansion.

The first IRPC generates the entire string SHORT because the length of the char­
acter list is less than eight characters. Each evaluation of LEN = 8 produces a false
value, and the EXITM is skipped. This IRPC terminates by exhausting the character
list through its five repetitions.

The second IRPC stops generation at the eighth character of the list LONG­
STRING when the conditional LEN EQ 8 produces a true value, resulting in assem­
bly of the EXITM statement. Note that = and EQ are equivalent operators. The
EXITM causes immediate termination of the expansion process.

58 ALL iNfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.4 The EXITM Statement

The second IRPe also contains a conditional assembly without the balancing END IF.
In this case, the ENDIF is not required because the conditional assembly begins
within the macro body. The ENDM serves the dual purpose of terminating unmatched
IFs and marking the physical end of the macro body.

0000 **

0000+53
0001+48
0002+4F
0003+52
OOOll+54

0000 **

0005+4C
0006+4F
0007+4E
0008+47
0008+53
OOOA+511
000B+52
OOOC+48

OOOD

LEN

LEN

LEN

LEN

SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

THE FOLLOWING IRPC FILLS AN AREA OF MEMORY WITH AT MOST
EIGHT BYTES OF DATA:

SET 0 i INITIALIZE LENGTH TO 0
IRPC N,SHORT
DB '&oN'
SET LEN+l
IF LEN = 8
EXITM iSTOP MACRO IF AREA IS FULL
ENDIF
ENDM
DB 'S'
DB 'H'
DB '0 '
DB 'R I

DB 'T'

THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNCTIONS AS
SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8

SET 0 i INITIALIZE LENGTH COUNTER
IRPC N,LONGSTRING
DB '&oN'
SET LEN+l
IF LEN EQ 8
EXITM
ENDM
DB 'L'
DB '0 I

DB 'N'
DB 'G'
DB 'S'
DB 'T'
DB 'R'
DB ' I I

END

Listing 7-4. Use of the EXITM Statement in Macro Processing

ALlINFORMAT!ON PRESENTED HERE IS PROPRIETARY 59

7.5 The LOCAL Statement Programmer's Utilities Guide

7.5 The LOCAL Statement

It is often useful to generate labels for jumps or data references unique on each
repetition of a macro. This facility is available through the LOCAL statement. The
LOCAL statement takes the form:

macro-heading
label: LOCAL id-1,id-2,.. .,id-n

ENDM

where the label is optional, macro-heading is a REPT, IRPC, or IRP heading, already
discussed, or a MACRO heading as discussed in following sections, and id-1 through
id-n represent one or more assembly language identifiers that do not contain embed­
ded $ separators. The LOCAL statement must occur within the body. It should
appear immediately following the macro header to be compatible with the standard
Intel macro facility.

Upon encountering the LOCAL statement, the assembler creates a new frame of
the form

??nnnn

for association with each identifier in the LOCAL list, where nnnn is a four-digit
decimal value assigned in ascending order starting at 0001. Whenever the assembler
encounters one of the identifiers in the list, the corresponding created name is substi­
tuted in its place. Substitution occurs according to the same rules as those for the
controlling identifier in the IRPC and IRP groups.

Avoid the use of labels that begin with the two characters ??, so that no conflicting
names accidentally occur. Symbols that begin with ?? are not usually included in the
sorted symbol list at the end of assembly. (See Section 10 to override this default.) A
total of 9999 LOCAL labels can be generated in any assembly. An overflow error
occurs if more generations are attempted.

Listing 7-5 a shows an example of a program using the LOCAL statement to gen­
erate both data references and jump addresses. This program uses the CP/M operat­
ing system to print a series of four generated messages, as shown in the output from
the program in Listing 7 -Sb.

60 ALL INFORMATiON PRESENTE.D HERE is PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.5 The LOCAL Statement

The program begins with equates that define the operating system primary entry
point, along with names for the nongraphic ASCII characters CR (carriage return)
and LF (line-feed). The REPT statement that follows contains a LOCAL statement
with the identifiers X and Y. These identifiers are used throughout the body of the
REPT group.

On the first iteration, X's value becomes ??OOOl, the first generated label; Y's value
becomes ? ?0002. The substitution for X and Y within the generated strings follows
the rules stated for controlling identifiers in previous sections.

ALL INFORMATION PRESENTED HERE is PROPRIETARY TO DIGITAL RESEARCH 61

7.5 The LOCAL Statement Programmer's Utilities Guide

Upon completion, four messages are generated along with four CALLs to the
PRINT subroutine. At each call to PRINT, the message address is present in the DE
register pair. The subroutine loads the print string function number into register C
(C = 9) and calls the operating system to print the string value.

0100
0005
OOOD
OOOA

BDoS
CR
LF

oRG
EQU
EQU
EQU

100H
5
ODH
OAH

jBASE OF THE TRANSIENT AREA
JBDoS ENTRY POINT
jCARRIAGE RETURN (ASCII)
jLINE FEED (ASCII)

SAMPLE PROGRAM SHOWING THE USE OF 'LOCAL'

REPT 4 iREPEAT GENERATION 4 TIMES
ijGENERATE TWO LABELS
jJUMP PAST THE MESSAGE

LOCAL X,Y
JMP Y

X:
Y:

DB
LXI
CALL
ENDM

0100+C31E01 JMP
0103+7072898E74??0001: DB
011E+110301 ??0002: LXI
0121+CD9101 CALL
0124+C34201 JMP
0127+7072898E74??0003: DB
0142+112701 ??0004: LXI
0145+CD9101 CALL
0148+C38801 JMP
014B+7072898E74??0005: DB
0188+114B01 ??0008: LXI
0189+CD9101
018C+C38A01

CALL
JMP

018F+7072898E74??0007: DB
018A+118FOl
018D+CD9101
0180 C9

0181 OE09
0183 CD0500
0188 C9
0187

??0008: LXI
CALL
RET

PRINT: MVI
CALL
RET
END

'print x=&X, }'=&Y',CR,LF,'$'
D,X jREADY PRINT STRING
PRINT

??0002 jJUMP PAST THE MESSAGE
'print x=??OOOl, y=??0002',CR,LF,'$'
D,??OOOl iREADY PRINT STRING
PRINT
?10004 iJUMP PAST THE MESSAGE
'print x=??0003, y=??0004',CR,LF,'$'
D,??0003 iREADY PRINT STRING
PRINT
??0008 iJUMP PAST THE MESSAGE
'print x=??0005i y=??0008',CR,LF,'$'
D,??0005 iREADY PRINT STRING
PRINT
??0008 jJUMP PAST THE MESSAGE
'print x=??0007, y=??0008' ,CR,LF,'$'
0,??0007 jREAOY PRINT STRING
PRINT

C,9
BOOS

Listing 7-5a. Assembly Program Using the LOCAL Statement

62 ALL INFORMATION PRESENTED HE,RE. IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 7.5 The LOCAL Statement

print x=??OOOl, y=??OOO2
p r i n t x=??OO03, y=??OOOll
p r i n t x=??OO05, }' =??0006
p r i n t x=??OO07, y=??OOOB

Listing 7-5b. Output from Program in Listing 7-5a

Upon completion of the program, control returns to the Console Command Pro­
cessor (CCP) for further operations. This program uses the default stack passed by
the CCP. About 16 levels are available. This example is primarily intended to show
operation of the LOCAL statement. Consult the CP/M documentation for BDOS
interface conventions to follow this example completely.

End of Section 7

ALL !NfORMATION PRESENTED HERE IS PROPRIETARY DIGlTAl RESEARCH 63

Section 8
Definition and Evaluation of

Stored Macros

The stored macro facility of MAC allows you to name a sequence of assembly
language prototype statements to be included at selected places throughout the assembly
process. Macro parameters can be supplied in various forms at the point of expan­
sion which are substituted as the prototype statements are reread. These parameters
tailor the macro expansion to a particular case.

Although similar in concept to subroutine definition and call, macro processing is
purely textual manipulation at assembly time. That is, macro definitions cause source
text to be saved in the assembler's internal tables, and any expansion involves manip­
ulating and rereading the saved text.

You can combine macro features in various ways to greatly enhance the available
facilities. Specifically, you can

• easily manipulate generalized data definitions
• define macros for generalized operating systems interface
• define simplified program control structures
• support nonstandard instruction sets, such as the Z80®

Finally, well-designed macros for an application can achieve a measure of machine
independence.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DlGlTAL RESEARCH 65

8.1 The MACRO-ENDM Group Programmer's Utilities Guide

8.1 The MACRO-ENDM Group

The prototype statements for a stored macro are given in the macro body enclosed
by the MACRO and ENDM pseudo operations, taking the general form

macname MACRO
statement-1
statement-2

statement-m
label: ENDM

d-1,d-2, ... ,d-n

where the macname is any nonconflicting assembly language identifier; d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without embedded $
separators, and statement-1 through statement-m are the macro prototype state­
ments. The identifiers denoted by d-1 through d-n are called dummy parameters for
this macro. Although they must be unique within the macro body, dummy parame­
ters can be identical to any program identifiers outside the macro body without
causing a conflict. The prototype statements can contain any properly balanced assembly
language statements or groups, including nested REPTs, IRPCs, MACROs, and IFs.

The prototype statements are read and stored in the assembler's internal tables
under the name give by macname. They are not processed until the macro is expanded.
The following section gives the expansion process.

The label preceding the ENDM is optional.

8.2 Calling a Macro

The macro text stored through a MACRO-ENDM group can be brought out for
processing through a statement of the form

la bel: macname a-1,a-2, ... ,a-n

where the label is optional, and macname has previously occurred as the identifier
on a MACRO heading. The actual parameters a-1 through a-n are sequences of
characters separated by commas and terminated by a comment or end-of-line.

66 INfORMAT!ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.2 Calling a Macro

Upon recognition of the macname, the assembler first pairs off each dummy
parameter in the MACRO heading (d-1 through d-n) with the actual parameter text
(a-1 through a-n). The assembler associates the first dummy parameter with the first
actual parameter (d-1 is paired with a-1), the second dummy with the second actual,
and so forth until the list is exhausted. If more actuals are provided than dummy
parameters, the extras are ignored. If fewer actuals are provided, then the extra
dummy parameters are associated with the empty string (a text string of zero length).
The value of a dummy parameter is not a numeric value, but is instead a textual
value consisting of a sequence of zero or more ASCII characters.

After each dummy parameter is assigned an actual textual value, the assembler
rereads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according
to the same rules as the controlling identifier in an IRPC or IRP group.

Listings 8-1 and 8-2 provide examples of macro definitions and invocations. List­
ing 8-1 begins with the definition of three macros, SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements that save the principal CPU registers
(PUSH PSW, B, D, and H). The RESTORE macro restores the principal registers
(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to
write a single character at the console using a CP/M BDOS call.

The occurrence of the SAVE macro definition between MACRO and ENDM causes
the assembler to read and save the PUSHs, but does not assemble the statements into
the program. Similarly, the statements between the RESTORE MACRO and the
corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM statements. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

iNFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

8.2 Calling a Macro Programmer's Utilities Guide

Referring to Listing 8-1, note that machine code generation starts following the
SAVE macro call. The prototype statements that were previously stored are reread
and assembled, with a + between the machine code address and the generated code
to indicate that the statements are being recalled and assembled from a macro defi­
nition. The SAVE macro has no dummy parameters in the definition, so no actual
parameters are required at the point of invocation.

The SAVE call is immediately followed by an expansion of the WCHAR macro.
The WCHAR macro, however, has one dummy parameter, called CHR, which is
listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter H becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by
the value H. The CHR is within string quotes, so it is typed in upper-case and
preceded by the ampersand operator. Following the reference to WCHAR, the pro­
totype statements are listed with the + sign to indicate that they are generated by
the macro expansion.

68 ALL iNFORMAT!ON PR£SENT£D HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.2 Calling a Macro

0100 ORG 100H jBASE OF TRANSIENT AREA
OOOS BOOS EQU S JBOOS ENTRY POINT
0002 CON OUT EQU 2 jCHARACTER OUT FUNCTION

SAVE MACRO jSAVE ALL CPU REGISTERS
PUSH PSW
PUSH B
PUSH 0
PUSH H
ENOM

RESTORE MACRO jRESTORE ALL REGISTERS
POP H
POP 0
POP B
POP PSW
ENOM

WCHAR MACRO CHR jWRITE CHR TO CONSOLE
MVI CtCONOUT j jCHAR OUT FUNCTI ON
MVI E t '&CHR' j j CHAR TO SEND
CALL BOOS
ENOM

MAIN PROGRAM STARTS HERE
SAVE jSAI.JE REGISTERS UPON ENTRY

0100+F5 PUSH PSW
0101+CS PUSH B
0102+05 PUSH 0
0103+ES PUSH H

WCHAR H jSENO 'H' TO CONSOLE
0104+0E02 MVI CtCONOUT
0106+1E48 Ml.lI E t 'H'
0108+C00500 CALL BOOS

WCHAR I jSENO 'I' TO CONSOLE
010B+OE02 MVI CtCONOUT
0100+lE48 MVI E t 'I '
010F+C00500 CALL BOOS

RESTORE jRESTORE CPU REGISTERS
0112+El POP H
0113+01 POP 0
0114+Cl POP B
011S+Fl POP PSW
0116 C8 RET jRETURN TO CCP
0117 END

Listing 8-1. Example of Macro Definition and Invocation

All IN FORMATlON PRESENTED HERE IS PROPRlETARY TO DIGITAL RESEARCH 69

8.2 Calling a Macro Programmer's Utilities Guide

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value I, causing generation of a MVI E, 'I' for
this case.

After the listing of the second WCHAR expansion, the RESTORE macro starts,
causing generation of the POP statements to restore the register state. The RESTORE
is followed by a RET to return to the CCP following the character output.

This program saves the registers upon entry, typing the two characters HI at the
console, restoring the registers, and then returning to the Console Command Proces­
sor. The SAVE and RESTORE macros are used here for illustration and are not
required for interface to the CCP, since all registers are assumed to be invalid upon
return from a user program. Further, this program uses the CCP stack throughout.
This stack is only eight levels deep.

Listing 8-2 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call that prints the entire message starting at
a particular address until the $ symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage return
line-feeds to send after the message is printed. The second parameter, called MES­
SAGE, is the ASCII string to print that must be passed as a quoted string in the
invocation.

The LOCAL statement within the macro generates two labels denoted by P ASTM
and MSG. When the macro expands, substitutions occur for the two dummy para­
meters by their associated actual textual values, and for P ASTM and MSG by their
sequentially generated label values. The macro definition contains prototype state­
ments that branch past the message (to PASTM) that is included inline following the
label MSG. The message is padded with N pairs of carriage return line-feed sequences,
followed by the $ that marks the end of the message. The string address is then sent
to the BDOS for printing at the console.

Listing 8-2 includes two invocations of the PRINT macro. The invocation sends
two actual parameters: the textual value 2 is associated with the dummy N, followed
by a quoted string associated with the dummy parameter MSG. The second actual
parameter includes the string quotes as a part of the textual value. The generated
message is preceded by a jump instruction and followed by N = 2 carriage return
line-feed pairs.

70 ALL INfORMATION PRES£NTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.2 Calling a Macro

The second invocation of the PRINT macro is. similar to the first, except that the
REPT group is executed N = 0 times, resulting in no carriage return line-feed pairs.

Similar to Listing 8-1, the program of Listing 8-2 uses the Console Command
Processor's eight-level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

0100 ORG 100H iBASE OF THE TPA

0005 BDOS EQU 5 iBDOS ENTRY POINT
0009 PMSG EQU 9 iPRINT 'TI L $ FUNCTI ON
OOOD CR EQU ODH iCARRIAGE RETURN
OOOA LF EQU OAH iUNE FEED

PRINT MACRO N,MESSAGE
; ; PRINT MESSAGE, FOLLOWED BY N CRLF'S
LOCAL PASTM,MSG
JMP PASTM i iJUMP PAST MSG
MSG: DB MESSAGE iiI NCLUDE TEXT TO WRITE
REPT N iiREPEAT CR LF SEQUENCE
DB CR,LF

ENDM
DB '$, iiMESSAGE TERMINATOR
PASTM: LXI D,MSG iiMESSAGE ADDRESS

MVI C,PMSG i i PR I NT FUNCTI ON
CALL BDOS
ENDM

PRINT 2, 'The rain in Spain ~oes'

0100+C31EOl JMP ??0001
0103+5468652072??0002: DB 'The rain in Spain ~oes'

0119+0DOA DB CR,LF
011B+ODOA DB CR,LF
011D+24 DB '$,

011E+ll0301 ??0001 : LXI D,??0002
0121+0E09 MVI C,PMSG
0123+CD0500 CALL BDOS

PRINT O,'Mainly down the drain.'
0126+C34001 JMP ??0003
0129+6D61696E6C??0004: DB 'Mainly down the drain.'
013F+24 DB '$,

0140+112901 ??0003: LXI D,??0004
0143+0E09 MVI C,PMSG
0145+CD0500 CALL BDOS
0148 C9 RET

Listing 8-2. Sample Message Printout Macro

All INfORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAl RESE!\RCH 71

8.3 Testing Empty Parameters Programmer's Utilities Guide

8.3 Testing Empty Parameters

The NUL operator is specifically designed to allow testing of null parameters. Null
parameters are actual parameters of length zero. NUL is used as a unary operator.
NUL produces a true value if its argument is of length zero and a false value if the
argument has a length greater than zero. Thus the operator appears in the context of
an arithmetic expression as:

... NUL argument .
where the ellipses (...) represent an optional prefixing arithmetic expression, and
argument is the operand used in the NUL test. The NUL differs from other operators
because it must appear as the last operator in the expression. This is because the
NUL operator absorbs all remaining characters in the expression until the following
comment or end-of-line is found. Thus, the expression

X GT Y AND NUL XXX

is valid because NUL absorbs the argument XXX, producing a false value in the scan
for the end-of-line. The expression

X GT Y AND NUL M +Z)

is deceiving but nevertheless valid, even though it appears to be an unbalanced
expression. In this case, the argument following the NUL operator is the entire
sequence of characters M + Z). This sequence is absorbed by the NUL operator in
scanning for the end-of-line. The value of NUL M + Z) is false because the sequence
is not empty.

72 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.3 Testing Empty Parameters

Listing 8-3 gives several examples of the use of NUL in a program. In the first
case, NUL returns true because there is an empty argument following the operator.
Thus, the true case is assembled, as indicated by the machine code to the left, and
the false case is ignored. Similarly, the second use of NUL in Listing 8-3 produces a
false value because the argument is nonempty. Both uses of NUL, however, are
contrived examples, because NUL is only useful within a macro group, as shown in
the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests that demonstrate the
use of NUL in checking empty parameters. In each of the tests, a DB is assembled if
the argument is not empty and skipped otherwise. Seven invocations of NULMAC
follow its definition, giving various combinations of empty and nonempty actual
parameters.

In the first case, NULMAC has no actual parameters. Thus all dummy parameters
(A, B, and C) are assigned the empty sequence. As a result, all three conditional tests
produce false results because both A and B are empty; B&C concatenates two empty
sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter, XXX,
assigned to the dummy parameter A. Band C are both assigned the empty sequence.
Thus only the DB for the first conditional test is assembled.

!NFORMATtON PRESENTED HERE IS PROPRIETARY TO D!GITAl RESEARCH 73

8.3 Testing Empty Parameters

0000 7472758520

0009 7878782089

0017+8120302058

0029+8220302058
003B+8283203020

004F+8120302058
0081+8283203020

0075+8283203020

0089+8283203020
009C

NULMAC

IF
DB
ELSE
DB
ENDIF

IF
DB
ELSE
DB
ENDIF

MACRO
IF
DB
ENDIF
IF
DB
ENDIF
IF
DB
ENDM

NULMAC
NUL MAC
DB
NUL MAC
DB
DB
NULMAC
DB
DB
NULMAC
DB
NUL MAC
NUL MAC
DB
ENO

Programmer's Utilities Guide

NUL
'true case'

'false case'

NUL XXX
'xxx is nul'

'xxx is not nul'

A,B,C
NOT NUL A
, a = &A is not nul'

NOT NUL B
, b = &B is not nul'

NOT NUL B&C
'b e = &B&C is not nul'

XXX
'a = XXX is not nul'
,XXX
'b = XXX is not nul'
'be = XXX is not nul'
XXX, ,yyy
'a = XXX is not nul'
'be = YYY is not nul'
, ,YYY
'be = YYY is not nul'
t, ,
t'l t'l

'be = 1"1 is not nul'

Listing 8-3. Sample Program Using the NUL Operator

The third case is similar to the second, except that the actuai parameters for A and
C are omitted. Thus, the second and third conditionals both test NOT NUL XXX,
which is true because B has the value XXX, and B&C produces the value XXX as
well.

74 ALL INfORlviAT!ON PRESENTED HERE IS PROPruHARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.3 Testing Empty Parameters

The fourth invocation of NULMAC skips the actual parameter for B but supplies
values for both A and C. Thus, the first and third test result in true values; the
second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only the
third conditional is true because B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first because all three
actual parameters are empty.

The final expansion of NULMAC in Listing 8-3 shows a special case of the NUL
operator. The expression

NUL I I

where the two apostrophes are in juxtaposition, produces the value true, even though
there are two apostrophe symbols on the line following NUL and before the end-of­
line. The value of A is the empty string in this case. The value assigned to both B
and C consists of the two apostrophe characters side by side; this is treated as a
quoted string of length zero, even though it is a sequence of two characters. In this
last expansion, the first conditional, however, evaluates the form

NOT NUL II

that is the special case of NUL applied to a length zero quoted string, but not a
length zero sequence. Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully. The original expression in the macro definition takes
the form

NOT NULB&C

with Band C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL I I &: I I

or, after concatenation,

NOT NUL IIII

where the four apostrophes are adjacent. Considering only the four apostrophes, the

ALL INfORMATION PRESENTED HERE is PROPRIETARY TO D!GITAL RESEARCH 75

8.3 Testing Empty Parameters Programmer's Utilities Guide

macro assembler considers this a quoted string that happens to contain a single
apostrophe because double apostrophes are always reduced to a single apostrophe.
As a result, the test produces a true value, and the conditional segment is assembled.
Usually the NUL operator is used only to test for missing arguments, as shown in
later examples. (See Listing 8-6.)

8.4 Nested Macro Definitions

The MAC assembler allows you to include nested macro definitions. These take
the form

mac1 MACRO mac1-list

mac2 MACRO mac2-list

ENDM

ENDM

where mac1 is the identifier corresponding to the outer macro, and mac2 is an
identifier corresponding to an inner nested macro that is wholly contained within the
outer macro. In this case, mac1-list and mac2-list correspond to the dummy parame­
ter lists for mac1 and mac2, respectively. As before, labels are allowed on the ENDM
statements.

The statements contained within a macro definition are prototype statements that
are read and stored by the assembler but not evaluated as assembly language state­
ments until the macro is expanded. Thus, in the preceding form, only the mac1
macro is available for expansion because the assembler has stored but not processed
the body of mac1 that contains the definition of mac2. mac2 cannot be expanded
until mac1 is first expanded, revealing the definition of mac2.

Properly balanced embedded macros of this form can be nested to any level, but
they cannot be referenced until their encompassing macros have themselves been
expanded.

76 ALL INFORMATION PRESENTED HERE. IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.4 Nested Macro Definitions

Listing 8-4 gives a practical example of nested macro definition and expansion.
This program writes characters either to the CP/M console device or to the currently
assigned list device, according to the value of the LISTDEV flag set for the assembly.
If the LISTDEV flag is true, then the assembly sends characters to the listing device.
Otherwise, the console is used for output. In either case, the macro OUTPUT is
produced; this sends a single character to the selected device.

The sample program in Listing 8-4 uses the macro SETIO to construct the OUT­
PUT macro. The OUTPUT macro is wholly contained within the SETIO macro and,
as a result, remains undefined until SETIO is expanded. Upon encountering the invo­
cation of SETIO, the macro assembler reads the prototype statements within SETIO
and, in the process, constructs the definition of the OUTPUT macro. Because LIST­
DEV is true for this assembly, the OUTPUT macro is defined as

OUTPUT MACRO
Ml.J I
Ml.J I
CALL
ENDM

CHAR
EtCHAR
CtLISTOUT
6DOS

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single + at the selected device.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

8.4 Nested Macro Definitions Programmer's Utilities Guide

Following the invocation of SETIO, the invocations of OUTPUT are recognized
because its definition has been entered in the process of reading the prototype state­
ments of SETIO. These invocations send the characters 1 and 2 to the list device.

0100
0000
FFFF

FFFF

0005
0002
0005

0100+lE2A
0102+0E05
0104+C00500

0107+1E31
0109+0E05
010B+C00500

010E+1E32
0110+0E05
0112+C00500
0115 C9
0116

FALSE
TRUE

LISTOEI,J

BOOS
CONOUT
LISTOUT

SETIO

OUTPUT

ORG 100H iBASE OF THE TPA
EQU OOOOH iVALUE OF FALSE
EQU NOT FALSE iVALUE OF TRUE
LISTOEV IS TRUE IF LIST DEVICE IS USED
FOR OUTPUT, AND FALSE IF CONSOLE IS USED

EQU TRUE

EQU 5 iBDOS ENTRY POINT
EQU 2 iWRITE TO CONSOLE
EQU 5 iWRITE TO LIST DEVICE

MACRO iSETUP OUTPUT MACRO FOR LIST OR CONSOLE

MACRO CHAR
MVI E,CHAR i iREAOY THE CHARACTER FOR PRINTING
IF LISTOEI,J
MVI C ,LISTOUT
ELSE
MIn C,CONOUT
ENOIF
CALL BOOS
ENOM
OUTPUT '* '
ENDM

SETIO iSETUP THE 10 SYSTEM
MI,J I E, '*'
MVI C ,LISTOUT
CALL BOOS
OUTPUT ' 1 '
Ml,JI E , '1'
MIn C ,LISTOUT
CALL BOOS
OUTPUT '2'
MVI E, '2'
MVI C ,LISTOUT
CALL BOOS
RET
END

Listing 8-4. Sample Program Showing a Nested Macro Definition

78 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH

Programmer's Utilities Guide 8.5 Redefinition of Macros

8.S Redefinition of Macros

It is often useful to redefine the prototype statements of a macro after the initial
prototype statements have been entered. Redefinition is a specific instance of the
nesting described in the previous section, where the inner nested macro carries the
same name as the encompassing macro definition. Macro redefinition is extremely
useful if the macro contains a subroutine. In this case, the subroutine can be included
on the first expansion and simply called in any remaining expansions. Thus, if the
macro is never invoked, the subroutine is not included in the program.

Listing 8-5 shows an example of macro redefinition. This sample program defines
the macro MOVE. MOVE is intended to move byte values from a starting source
address to a target destination address for a particular number of bytes. The three
dummy parameters denote these three values: SOURCE is the starting address; DEST
is the destination address, and COUNT is the number of bytes to move (a constant
in the range 0-65535). The actions of the MOVE macro, however, are complicated
enough to be performed through a subroutine, rather than inline machine code each
time MOVE is expanded.

Examining the structure of MOVE in Listing 8-5, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

@MOVE subroutine
MOVE MACRO ?S,?D,?C

call to @MOVE
ENDM
invocation of MOVE
ENDM

Upon encountering the first invocation of MOVE, the assembler begins reading the
prototype statements. Note, however, that the first expansion of the MOVE includes
the subroutine for the actual move operation, labeled by @MOVE so that there is
no name conflict (with a branch around the subroutine). MOVE then redefines itself
as a sequence of statements that simply call the out-of-line subroutine each time it
expands. The last statement of the original MOVE macro is an invocation of the
newly defined version. As indicated by this example, once a macro has started expan­
sion, it continues to completion (or until EXITM is assembled), even if it redefines
itself.

ALL lNfORMATION PRESf.NTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH 79

8.5 Redefinition of Macros Programmer's Utilities Guide

0100
MOVE
; ;
; ;

i i

ORG 100H iBASE OF TPA
MACRO SOURCE,DEST,COUNT
MOVE DATA FROM ADDRESS GIVEN BY 'SOURCE'
TO ADDRESS GIVEN BY 'DEST' FOR 'COUNT' BYTES
LOCAL PASTSUB iiLABEL AT END OF SUBROUTINE

JMP PASTSUB i iJUMP AROUND INLINE SUBROUTINE
@MOVE: i ilNLINE SUBROUTINE TO PERFORM MOVE OPERATION
ii HL IS SOURCE, DE IS DEST, BC IS COUNT

MOV A,C iiLOW ORDER COUNT
ORA B i i ZERO COUNT?
RZ iiSTOP MOVE IF ZERO REMAINDER
MOV A,M iiGET NEXT SOURCE CHARACTER
STAX D iiPUT NEXT DEST CHARACTER
INX H iiADDRESS FOLLOWING SOURCE
INX D iiADDRESS FOLLOWING DEST
DC){ B iiCOUNT=COUNT-l
JMP @MOVE iiFOR ANOTHER BYTE TO MOVE

PASTSUB:
; ; ARR I l)E HERE ON FIRST INVOCATION - REDEFINE MOVE
MOVE MACRO ?S,?D,?C i iCHANGE PARM NAMES

LXI H,?S iiADDRESS THE SOURCE STRING
U{I D,?D iiADDRESS THE DEST STRING
LXI B,?C i iPREPARE THE COUNT
CALL @MOVE iiMOVE THE STRING
ENDM

ii CONTINUE HERE ON THE FIRST INVOCATION TO USE
ii THE REDEFINED MACRO TO PERFORM THE FIRST MOVE

MOVE SOURCE,DEST,COUNT
ENDM

Listing 8-5. Sample Program Showing Macro Redefinition

80 All INfORMAT!ON PRESENTED HERE!S PROPRIETARY TO DlG!TAl RESEARCH

Programmer's Utilities Guide

MOVE
0100+C30EOl JMP
0103+79 MOV
0104+80 ORA
0105+C8 RZ
0108+7E MOV
0107+12 STAX
0108+23 INX
0109+13 INX
010A+08 DCX
0108+C30301 JMP
010E+212701 LXI
0111+114001 LXI
0114+010500 LXI
0117+CD0301 CALL

MOVE
011A+210030 LXI
011D+II0010 LXI
0120+010015 LXI
0123+CD0301 CALL
0128 C9 RET
0127 8885728520X1: D8
0140 7878787878X2: D8

8.5 Redefinition of Macros

Xl,X2,5 iMOVE 5 CHARS FROM Xl TO X2
??0001
A,C
8

A,M
D
H
D
8
@MOVE
H,Xl
D,X2
8,5
@MOVE
3000H,1000H,1500H
H,3000H
D,1000H
8 t1500H
@MOVE

i8IG MOVER

iRETURN TO THE CCP
'here is some data to move'
'xxxxxwe are!'

Listing 8-5. (continued)

It is important to note the use of ?S, ?D, and ?C in the previous example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, because
they would be substituted by their actual values if they were the same. This is
because the inner MOVE macro is wholly contained within the outer macro, so
parameter substitution takes place regardless of the context.

Macro storage is not reclaimed upon definition, however, because the macro
assembler performs two passes through the source program and saves any preceding
definitions for the second pass scan.

ALL iNfORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAL RESEARCH 81

8.6 Recursive Macro Invocation Programmer's Utilities Guide

8.6 Recursive Macro Invocation

The prototype statements of a recursive macro x contain invocations of macros
that, in turn, invoke macros that eventually lead back to an invocation of x. A direct
recursion occurs when x invokes itself, as shown in the form below:

macname MACRO d-l, ... ,d-n

macname a-l, ... ,a-n

ENDM

Although this form is similar to the embedded macro definition discussed in the
previous section, macname is expanded within its own definition, rather than being
redefined. Recursion is only useful, however, in the presence of conditional assembly
where various tests are made that prevent infinite recursion. In fact, recursion is
allowed only to sixteen levels before returning to complete the expansion of an
earlier level.

Listing 8-6 shows a situation in which indirect recursive macro invocation is use­
ful. The macro WCHAR writes a character to the console device using the general
purpose operating system macro CBDOS (callBDOS). CBDOS acts as an interface
between the program and the CP/M system by performing the system function given
by FUNC, with optional information address INFO. CBDOS loads the specified
function to register C,then tests to see whether the INFO argument has been sup­
plied, using the NUL operator. If supplied, INFO is loaded to the DE register pair.
After register setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage
return line-feed before writing messages where operating system Function 9 (write
buffer until $) has been specified. In this case, CBDOS uses the WCHAR macro to
send the carriage return line-feed. The WCHAR macro, in turn, uses CBDOS to send
the character, resulting in two activations of CBDOS at the same time. The assembler
holds the initial invocation of CBDOS until the WCHAR macro has completed, then
returns to complete the initial CBDOS expansion.

In recursion the values of the dummy parameters are saved at each successive level
of recursion and restored when that level of recursion is reinstated. Reentry into a
macro expansion through recursion does not destroy the values of dummy arguments
held by previous entry levels.

82 ALI.. INfORMATION PRE.SENTED HERE. IS PROPRiETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.6 Recursive Macro Invocation

0100

0005
0002
0008
0000
OOOA

0100+0E02
0102+118800
0105+CD0500

ORG 100H iBASE OF TRANSIENT AREA
SAMPLE PROGRAM SHOWING RECURSIVE MACROS

BOOS EOU 0005H iENTRY TO BDOS
CONOUT EOU 2 iCONSOLE CHARACTER OUT
MSGOUT EOU 8 iPRINT MESSAGE 'TIL $

CR EOU OOH iCARRIAGE RETURN
LF EOU OAH iUNE FEED

WCHAR MACRO CHR
; ; WRITE THE CHARACTER CHR TO CONSOLE

CBOOS CONOUT,CHR iiCALL BOOS
ENOM

CBOOS MACRO FUNC t! NFD
; ; GENERAL PURPOSE BOOS CALL MACRO
; ; FUNC IS THE FUNCTION NUMBER,
i i INFO IS THE INFORMATION ADDRESS OR NUL
; ; CHECK FOR FUNCT ION 9, SEND CRLF FIRST IF SO

IF FUNC=MSGDUT
; ; PRINT CRLF FIRST

WCHAR CR
WCHAR LF
ENOIF

;; NOW PERFORM THE FUNCTION
MIn C,FUNC

; ; INCLUDE un TO DE IF INFO NOT EMPTY
IF NOT NUL INFO
LXI o t! NFO
ENOIF
CALL BOOS
ENDM

WCHAR 'h' iSEND i "H" TO CONSOLE
MI,J I C,CONOUT
un D,' h'
CALL BDOS

Listing 8-6. Sample Program Showing a Recursive Macro

ALL INfORMATION PRE.SENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 83

8.6 Recursive Macro Invocation Programmer's Utilities Guide

WCHAR
0108+0E02 MVI
01 OA+ 118900 LXI
010D+CD0500 CALL

CBDOS
0110+0E02 MVI
0112+110DOO LXI
0115+CD0500 CALL
0118+0E02 MIJI
011A+110AOO LXI
011D+CD0500 CALL
0120+0E08 MVI
0122+112801 LXI
0125+CD0500 CALL
0128 C9 RET

MSGADDR:
0128 618E811208C DB
0132 END

, i '

C,CONOUT
D ,'i '
BDOS

iSEND 'I' TO CONSOLE

MSGOUT,MSGADDR iSEND MESSAGE
C,CONOUT
D,CR
BDOS
C,CONOUT
D,LF
BDOS
C,MSGOUT
D,MSGADDR
BDOS

iTERMINATE PROGRAM

'and lois$'

Listing 8-6. (continued)

8.7 Parameter Evaluation Conventions

You can exercise a number of options in the construction of actual parameters,
and in the specification of character lists for the IRP group. Although an actual
parameter is simply a sequence of characters placed between parameter delimiters,
these options allow overrides where delimiter characters themselves become a part of
the text. A parameter x occurs in the context:

label: macname < ... , x , ... >

where macname is the name of a previously defined macro, and the preceding label
is optional. The ellipses . . . represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character
list x is

label: IRP id, ... , x , ...

where the label is again optional, and the ellipses represent optional surrounding
character lists for substitution within the IRP group where the controlling identifier
id is found. In either case, the statements can be contained within the scope of a

84 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.7 Parameter Evaluation

surrounding macro expansion. Hence, dummy parameter substitution can take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual parame­
ter or character list:

1. Leading blanks and tabs (control-I) are removed if they occur in front of x.

2. The leading character of x is examined to determine the type of scan opera­
tion to take place.

3. If the leading character is a string quote (apostrophe), then x becomes the
text up to and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single
apostrophe, and upper-case dummy parameters adjacent to the ampersand
symbol are substituted by the actual parameter values. Note that the string
quotes on either end of the string are included in the actual parameter text.

4. If the first character is the left angle bracket «), then the bracket is removed,
and the value of x becomes the sequence of characters up to, but not includ­
ing, the balancing right angle bracket (». The right angle bracket does not
become a part of x. In this case, left and right angle brackets can be nested
to any level within x, and only the outer brackets are removed in the evalu­
ation. Quoted strings within the brackets are allowed, and substitution within
these strings follows the rules stated in 3 above. Left and right brackets
within quoted strings become a part of the string; these are not counted in
the bracket nesting within x. Further, the delimiter characters comma, blank,
semicolon, tab, and exclamation point become a part of x when they occur
within the bracket nesting.

5. If the leading character is a percent (%) character, then the sequence of
characters that follows is taken as an expression that is evaluated immedi­
ately as a 16-bit value. The resulting value is converted to a decimal number
and treated as an ASCII sequence of digits, with left zero suppression (0-
65535).

6. If the leading character is not a quote, a left bracket, or a percent, the
possibly empty sequence of characters that follows, up to the next comma,
blank, tab, semicolon, or exclamation point, becomes the value of x.

ALL INfORMATION PRESENTED HERE is PROPRIETARY TO DIGITAL RESEARCH 8S

8.7 Parameter Evaluation Programmer's Utilities Guide

There is one important exception to the preceding rules: the single-character escape,
denoted by an up arrow, causes the macro assembler to read the special (nonalpha­
betic) character immediately following as a part of x without treating the character
as significant. The character following the up arrow, however, must be a blank, tab,
or visible ASCII character. The up arrow itself can be represented by two up arrows
in succession. If the up arrow directly precedes a dummy parameter, then the up
arrow is removed, and the dummy parameter is not replaced by its actual parameter
value. Thus, the up arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up arrow has no special significance within
string quotes and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions has been presented throughout
the previous sections. The macro assembler evaluates dummy parameters as follows:

• If a dummy parameter is either preceded or followed by the concatenation
operator &, then the preceding or following & operator is removed, the
actual parameter is substituted for the dummy parameter, and the implied
delimiter is removed at the position where the ampersand occurs.

• Dummy parameters are replaced only once at each occurrence as the encom­
passing macro expands. This prevents the infinite substitution that occurs if a
dummy parameter evaluates to itself.

In summary, parameter evaluation follows these rules:

• Leading and trailing tabs and blanks are removed.
• Quoted strings are passed with their string quotes intact.
• Nested brackets enclose arbitrary characters with delimiters.
• A leading percent symbol causes immediate numeric evaluation.
• An up arrow passes a special character as a literal value.
• An up arrow prevents evaluation of a dummy parameter.
• The & operator is removed next to a dummy parameter.
• Dummy parameters are replaced only once at each occurrence.

86 ALL INFORMATION PRESE.NTEO HE.RE!S PROPRiETARY TO DIGITAL RESE.ARCH

Programmer's Utilities Guide 8.7 Parameter Evaluation

Listings 8-7, 8-8, and 8-9 show examples of macro definitions and invocations
illustrating these points. In Listing 8-7, for example, two macros are defined, called
MAC1 and MAC2. Each has several dumO!y parameters. In this case, the macro
definitions are headed by DB statements to reveal the actual values passed in each
case. There is a single mainline invocation of MAC2 with the actual parameters

t t }-{+1 t 'X. }{ + 1 t I ~\I ... lote I

that associates I with E, the null sequence with F, the sequence X + 1 with G, the
value 16 with H, and the literal string 'kwote' with S. MAC2 expands, filling the DB
and MVI instructions with the substituted values. Before leaving MAC2, MAC1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argu­
ment F with the sequence M (producing M since F's value is null), along with the
literal value A, followed by the value of H (which is 16), and terminated by the value
of S (yielding the string 'kwote'). These values are associated with MAC1 's dummy
parameters.

MACRO PARAMETER EVALUATION

ENTERING MACRO 1 :

DB '&A &B &C &D'
DB S

A: NOP
MVI Btl

C&l: NOP
L&A&D: NOP

LEAl,JI NG MACRO 1

ENDM

MAC2 MACRO E,F,G,H,S

ENTERING MACRO 2 :
DB '&E &F &G &H'
DB S
Ml,! I M,H
MACl E,F&M,A,H,S
LEAl,! I NG MACRO 2

ENDM

Listing 8-7. Macro Parameter Evaluation Example

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

8.7 Parameter Evaluation Programmer's Utilities Guide

OOOF =

+
+

0000+492020582B
0009+6B776F7465
000E+3610

+
+
+

0010+4920402049
0018+6B77SF7465

x

0010+00 I:
001E+3S01
0020+00 I 1 :
0021+00 LI16 :

+
+
+
+
+
+

0022

EQU
MAC2

15
I " X+l, % X + 1, 'Kwote'

ENTERING MACRO 2:
DB 'I X+l 16'
DB
MVI
MACl

'Kwote'
M dS
I,M,r d6, 'Kwote'

ENTERING MACRO 1:
DB 'I MIlS'
DB
NOP
MVI
NOP
NOP

'Kwote'

Mil

LEAVING MACRO 1

ENDM
LEAVING MACRO 2

ENDM
END

Listing 8-7. (continued)

Upon expanding MAC1, the DB statements are filled out, followed by the substitu­
tion of A as a label (producing A's value I). The MVI instruction references memory
because B's value is M. Note that the concatenation of C with 1 reduces to a conca­
tenation of A with 1 because C's value is A. The replacement of C by A constitutes
a substitution of a single occurrence of a dummy parameter. Thus the A that is
produced is not itself replaced at this point. Finally, the literal value L is concaten­
ated to the value of A and D to produce the label LI16.

Listing 8-8 illustrates the use of bracketed notation, using IRPs (indefinite repeats)
within three macros, called IRPM1, IRPM2, and IRPM3. Note that one bracket level
is removed in the first invocation of IRPM1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters that are reconstructed as a
single list at the IRP heading it contains. IRPM4 shows the effect of passing parame­
ters through two macro invocation levels by accepting a single parameter X, which

88 ALL INFORMATION PRESENTED HERE is PROPRiETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.7 Parameter Evaluation

is immediately passed along to the IRPM1 macro. Note that the invocation requires
three bracket levels: the first is removed at the nested invocation of IRPM1 inside
IRPM4, and the innermost level is required at the IRP heading within IRPM1.

Listing 8-9 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a DB statement showing the value of the first parameter X, if it is not empty,
and the second part produces the value of Y, if not empty. Note that the first
invocation includes a properly nested bracketed sequence for X and an empty param­
eter for Y. The second invocation sends a properly nested bracketed expression for
X that produces an empty value because no characters remain after the brackets are
removed. The second parameter includes a quoted string ('string of pearls') and a
hexidecimal value that becomes a part of the DB in MAC1.

The third invocation of MAC1 passes a bracketed expression, including a quoted
string (the pair of adjacent apostrophes), followed immediately by a sequence of
ASCII characters. Note that the pair of apostrophes are passed intact because they
appear as an empty quoted string. In this case, the value of Y is empty. The remain- .
ing examples show various cases of strings and escape sequences. Take care in pass­
ing quoted strings that contain apostrophes because a pair of apostrophes is consid­
ered a single apostrophe at each evaluation level in the sequence of macro invocations.
Pay particular attention to the use of the escape character to pass an unevaluated
dummy parameter from MAC2 to the MAC1 invocation.

0000+00
0001+00
0002+00

IRPM1 MACRO X
;; INDEFINITE REPEAT MACRO

IRP Y,X
Y: NoP

ONE:
TWO:
THREE:

IRPM2

Y:

ENDM
ENDM

IRPM1
NoP
NoP
NoP

MACRO
IRP
NoP
ENDM
ENDM

«oNE,TWo,THREE»

x
Y,<X>

Listing 8-8. Parameter Evaluation Using Bracketed Notation

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

8.7 Parameter Evaluation Programmer's Utilities Guide

0003+00
0004+00
0005+00

0008+00
0007+00
0008+00

0009+00
OOOA+OO
0008+00
OOOC

FOUR:
FIVE:
SIX:

IRPM3

Y:

SEVEN:
EIGHT:
NINE:

IRPM4

TEN:
ELEI,JEN:
TWELl,JE:

IRPMZ <FOUR ,FII,lE ,SIX>
NOP
NOP
NOP

MACRO Xl,}-(Z,X3
IRP y ,<}{1 ,XZ ,}-(3)
NOP
ENDM
ENDM

IRPM3
NOP
NOP
NOP

MACRO X
IRPMl X
ENDM

IRPM4 «<TEN,ELEVEN,TWELVE»>
NOP
NOP
NOP
END

Listing 8-8. (continued)

90 ALL INfORMATION PRESE.NTE.D HE.RE lS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.7 Parameter Evaluation

SAMPLE BRACKETED PARAMETERS, WITH ESCAPE CHARACTER

0000+3C4C454654

001F+737472696E

0030+412051554F

0046+7269676874

0057+6973207468

006B+4845524520

MACI MACRO X,Y
DB
IF NUL Y
E)<I TM
ENDIF
DB
ENOM

Y

i(ONE)

i (TWO)

MACI
DB

«LEFT SIDE> MIDDLE <RIGHT SIDE»
'<LEFT SIDE> MIDDLE <RIGHT SIDE>'

MACI
DB

<>,~:'string of pearls',34H:>
'string of pearls',34H HTWO)

MACI
DB

<A QUOTE IS A
'A QUOTE IS A

, RIGHT?>
, RIGHT?' i (ONE)

C>,<'right, but also '"") MACI
DB 'right, but also "' HTWO)

MACI
DB

,('is this ','"lconfusinglll',63>

MACI
DB

'is this', "'confusing ll
' ,63

(HERE IS A ") AND A " " >
'HERE IS A :> AND A"' i(ONE)

MAC2 MACRO APAR,BPAR
LOCAL){

X EQU 10
DB APAR
MACI "APAR,BPAR
ENDM

MAC2

i (TWO)

OOOA+= ??OOOI EQU
(X+5)*4,'what" "" "is going on?'
10

007E+3C DB (??0001+5)*4
007F+41504152 DB 'APAR' i(ONE)
0083+7768617427 DB 'what' 's going on?' i(TWO)

Listing 8-9. Examples of Macro Parameter Evaluation

i(ONE)

Examine the various parameters and their evaluations in Listing 8-9 to ensure that
the rules for evaluation given in this section are consistent.

ALL iNFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

8.8 The MACLIB Statement Programmer's Utilities Guide

8.8 The MACLIB Statement

The macro assembler allows you to create and reference macro library files that
are external to the mainline program. The form of the macro library reference is

MAC LIB libname

where lib name is an identifier referencing file libname.LIB assumed to exist on the
disk. Macro libraries are in source program form, so you can easily create and
modify them using an editor program.

In order to speed up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB state­
ment, as listed below:

• The statements included in the macro library cannot generate machine code.
For example, comments, EQUs, SETs, and MACRO definitions are allowed;
DB statements outside macro definitions are not allowed.

• Macro libraries are not listed with the source program, although an overrid­
ing parameter can be supplied. (See Section 10.)

• All MACLIB statements must appear before the mainline program macro
definitions. The MACLIB statements are placed at the beginning of the pro­
gram, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that you can predefine macros
that enhance the facilities of the assembly language itself. For example, the additional
operations codes of the Zilog Z80 microprocessor can be defined in a macro library
that is referenced in a single statement

MACLIB Z80

causing the assembler to read the file Z80.LIB from the disk that contains the neces­
sary macros for Z80 code generation. These macros can then be referenced within
the program, intermixed with the usual 8080 mnemonics.

92 ALL INFORMAT!ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 8.8 The MACLIB Statement

The libname.LIB file is assumed to exist on the currently logged disk drive. You
can override this default condition using a special parameter (L) when the macro
assembler is started that redirects the .LIB references to a different disk. (See Section
10.)

Listings 6-1 and 6-2 show the use of the macro library facility, as introduced in
the initial macro discussion. The following sections contain additional examples of
the use of MAC LIB in practical applications.

End of Section 8

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

Section 9
Macro Applications

The MAC assembler provides a powerful tool for microcomputer systems develop­
ment through its macro facilities. To demonstrate this, the following sections describe
a number of macro applications that solve practical problems in four applications
areas:

• implementation of special purpose languages
• emulation of nonstandard machine architectures
• implementation of additional control structures
• operating systems interface macros

9.1 Special Purpose Languages

A wide variety of microcomputer designs can be broadly classed as controller
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, production
instrumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that the
microprocessor carries out in performing its task. To avoid unnecessary details, the
application programmer is not expected to know how to program and debug micro­
computer assembly language programs.

In this situation, it is useful to define a language through macros that suit the
application. The application programmer uses these predefined macros as the primi­
tive language elements. If properly defined, the application language is easily pro­
grammed, allowing considerable machine independence. That is, an application pro­
gram written for a particular microprocessor can be used with another processor by
changing the definitions of the individual macros that implement the primitive oper­
ations. Further, the macro bodies can incorporate debugging facilities for application
development.

ALL iNfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

9.1 Special Purpose Languages Programmer's Utilities Guide

To illustrate language definition, consider the following situation. Hornblower
Highway Systems, Inc. produces turnkey traffic control systems for cities throughout
the country. Their hardware subsystems consist of various traffic lights and sensors
customized for the traffic layout in a particular city. When Hornblower negotiates a
contract, their engineers survey the intersections of the city and produce plans show­
ing a configuration of their standard hardware for each intersection, along with the
algorithms required for traffic flow at that point.

The standard hardware items Hornblower manufactures consist of central and
corner traffic lights that display green, yellow, and red (or off completely); pushbut­
ton switches for pedestrian cross requests; road treadles for sensing the presence of
an automobile at an intersection; and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays that control the lights and latches that hold the sensor input
information. The controller box also contains a time of day clock that changes on an
hourly basis from 0 through 23. The 8080 processor in the controller box can be
configured for any particular intersection with up to 1024 bytes of programmable
Read-Only Memory (PROM) in 256-byte increments. Although Random Access
Memory can be included in the controller box, Hornblower uses only ROM when
possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city and produce hardware configuration plans that intermix the
various standard components. Programs are then written and debugged that control
each intersection, based on predicted traffic patterns.

96 ALL INfORMATION PRESE.NTED HERE IS PROPRIETARY TO DiGITAL RESEARCH

Programmer's Utilities Guide 9.1 Special Purpose Languages

The intersection of Easy Street and Maria Avenue, for example, controls minimal
traffic and thus consists of a controller box with a single central light. The algorithm
for this intersection simply alternates red and green lights between Easy and Maria,
with a bias toward Easy Street because traffic along Easy has measured higher in the
past surveys. Thus the green light along Easy lasts for 20 seconds, while the green
along Maria lasts for only 15 seconds. Given this situation, the application program­
mer writes the following program:

CYCLE:

HORNBLOWER HIGHWAYS SYSTEMS, INC.
INTERSECTION:

EASY STREET (N-S) / MARIA AVENUE(E-W)

MACLIB INTERSECT

SETLITE NS,GREEN
SETLITE EW,RED
TIMER 20

CHANGE LIGHTS
SETLITE NS,YELLOW
TIMER 3
SETLITE NS ,I~ED
SETLITE EW,GREEN
TIMER 15

CHANGE BACK
SETLITE
TIMER
RETRY

EW,YELLOW
3
CYCLE

;LOAD MACROS

;WAIT 20 SECS

;WAIT 3 SECS

;WAIT 15 SECS

;WAIT 3 SECS

The macro library INTERSECT. LIB contains the macro definitions that implement
the primitive operations SETLITE and TIMER, setting the central traffic light and
time out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. The sequence of operations is easy to
write and is completely machine independent.

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

9.1 Special Purpose Languages Programmer's Utilities Guide

Listing 9-1 gives an example of a macro library for intersect that assumes the
following hardware with an 8080 processor: the central traffic . light is controlled by
the 8080 output port 0 (given by light); the time of day clock is read from port 3
(clock). Further, the north-south (nsbits) of the central light are given by the high­
order 4 bits of output port 0; the east-west direction (ewbits) is specified in the low­
order 4 bits of output port o. When either of these fields is set to 0, 1, 2, or 3, the
light in that direction is turned off, or set to red, yellow, or green, respectively. Thus,
the SETLITE macro in Listing 9-1 accepts a direction (NS or EW) along with a color
(OFF, RED, YELLOW, or GREEN) and sets the specified direction to the appropri­
ate color.

li9'ht
clocK

nsbits
ewbits

off
re d
yellow
9' re en

Macro library for basic intersection

input/output ports for li9'ht and clocK
e~u OOh itraffic li9'ht control
e~u 03h i24 hour clocK (Od I ... ,23)

constants for traffic li9'ht control
e~u 4 inorth south bits
e~u 0 ieast west bits

e~u 0 it urn li9'ht off
e~u ivalue for re d li9'ht
e~u 2 ivalue for yellow li9'ht
e~u 3 i9'reen li9'ht

setlite Macro dir,color
ii set li9'ht i"dir" (ns,ew) to i"color" (off,red,yellow,9'reen)

Mvi a,color shl dir&bits iicolor readied
out li9'ht iisent in proper bit position
endlll

tilller Macro seconds
ii construct inline tillie-out loop

local t1,t2,t3 ;;loop entries
IlIvi d,4*seconds iibasic loop control

t 1 : ITlvi b ,250 i i250lllsec *4 = 1 sec
t2: ITlvi c,182 i i182*5.5usec = 11l1sec
t3: dcr c iii cy = .5 usec

jnz t3 ; ;+10 cy = 5.5 usec
dcr b i icount 250,248 •••
jnz t2 iiloop on b re9'ister
dcr iibasic loop control
jnz t 1 i iloop on d re9'ister

Listing 9-1. Macro Library for Basic Intersection

98 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAL RESEARCH

Programmer's Utilities Guide 9.1 Special Purpose Languages

;; arrive here with approxiMately j"seconds" secs tiMeout
endM

clocK? Macro low,hightiftrue
;; JUMP to ;"iftrue" if clocK is between low and high

local iffalse ;;alternate to true case
in clocK ;jread real-tiMe clocK
if not nul high ;;checK high clocK
cpi high ;;equal or greater?
Jnc iffalse ;;sKip to end if 50

endif
cpi
Jnc

iffalse:
endM

low ;;less than low value?
if true ;;sKip to label if not

retrY Macro golabel
;; continue execution at ;"golabel"

JMP 9'olabel
endM

Listing 9-1. (continued)

The TIMER macro in Listing 9-1 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. This loop is not
generated as a subroutine because Hornblower prefers not to include RAM in the
controller box. (Subroutines require return addresses in RAM.)

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Listing 9-2a, for exam­
ple, is included when the intersection contains treadles in the street to detect auto­
mobiles; Listing 9-2h shows the macro library for pedestrian pushbuttons. In the case
of automotive treadles, the sensors are attached to input port 1 (trinp) of the proces­
sor. The treadles, however, require a reset operation that clears the latched value
through output port 1 (trout) of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labeled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports corre­
sponds to one bit position, numbered from the least to most significant bit. Thus the
treadle #0 sensor is read from bit 0 of port 1 and reset by setting bit 0 of output
port 1. Similarly, treadle #1 uses bit position 1 of input and output port 1. The
TREAD? macro is invoked to sense the presence of a latched value for treadle tr and,
if on, the sensor is reset, with control transferring to the label given by iftrue.

INfORMATION PRESENTED PROPRlETARY TO D!GITAl RESEARCH 99

9.1 Special Purpose Languages Programmer's Utilities Guide

Listing 9-2b shows the macro library that processes pedestrian pushbuttons. Horn­
blower's hardware senses the latched pedestrian switches on input port 0 (cwinp) as
a sequence of 1s and Os in the least significant positions, corresponding to the switches
at the intersection. Thus, if there are four pedestrian switches, bit positions 0, 1, 2,
and 3 correspond to these switches. A 1 bit in any of these positions indicates that
the pushbutton has been depressed. Unlike the automotive treadles, the crosswalk
switch latches are all cleared whenever input port 0 is read. Hornblower has defined
several other libraries that support optional hardware manufactured by their company.

t r i n p

trout

Macro library for street treadles

011'1
011'1

jtreadle input port
jtreadle output port

tread? Macro trtiftrue
jj ;"tread?" is invoKed to checK if
;; treadle given by tr has been sensed.
;; if so, the latch is cleared and control
;; transfers to the label ;"iftrue"

local iffalse ;;in case not set
; ;

in trinp j;read treadle switches
ani 1 shl tr HMasK proper bit
jz iffalse ;;sKip reset if 0
MI)i a,l shl tr lito reset the bit
out
jMP

iffalse:

trut
if true

Hclear it
;;go to true label

endM

Listing 9-2a. Macro Library for Treadle Control

Macro library for pedestrian pushbuttons

cwinp 001'1 ;input port for crosswalK

push? Macro if true
;; ;"push?" JUMPS to label ;"iftrue" when anyone
;; of the crosswalK switches is depressed. The
;; value has been latched, and reading the port
;; clears the latched values

in cwinp ;;read the crosswalK switches
ani (1 shl cwcnt) - 1 Hbuild MasK
jnz if true ;;anY switches set?

;; continue on false condition
endM

Listing 9-2b. Macro Library for Corner Pushbuttons

100 ALL INfORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

9.1 Special Purpose Languages Programmer's Utilities Guide

The intersection of Bumpenram Boulevard and Lullabye Lane presents a more
complicated situation. Bumpenram carries heavy traffic in an E-W direction to and
from the center of town. Lullabye, however, feeds a residential portion of the city,
running perpendicular to Bumpenram in a N-S direction. The contracting city wants
the traffic control biased toward Bumpenram as follows: the traffic light must remain
green along Bumpenram until the treadles along Lullabye detect the presence of
automobiles or until the pedestrian switches are pushed. At that time, the light must
change to allow the traffic to move N-S through Lullabye, allowing all traffic to clear
before returning to the major E-W flow along Bumpenram. Late night traffic along
Bumpenram is not very heavy, so the city also wants the E-W light to flash yellow
and the N-S direction to flash red between the hours of 2 and 5 a.m.

The application program created by Hornblower for the Bumpenram and Lullabye
intersection is shown in Listings 9-3a, 9-3b, and 9-3c. Each major cycle of the traffic
light enters at CYCLE where the time of day is tested. Between 2 and 5 a.m., control
transfers to NIGHT where the yellow and red lights are flashed in the appropriate
directions. During other hours, the switches and treadles are sampled until N-S traffic
along Lullabye is sensed. If cross traffic is detected, the lights switch until all the
traffic is through. Sampling also stops when the time of day reaches 2 a.m.

Listing 9-3a shows the assembly with no macro generated lines, controlled by the
-M parameter. (See Section 10.) Although the machine code locations are shown to
the left, no 8080 machine code is listed. Listing 9-3b shows a segment of this same
program with machine code generation, but no 8080 mnemonics, controlled by *' M.
Listing 9-3a is the most readable to the application programmer. Listings 9-3b and
9-3c are useful for macro debugging.

Note that the resulting program requires no RAM for execution because all tem­
porary values are maintained in the 8080 registers. Further, the program is less than
256 bytes, so it can be placed in a single programmable Read-Only memory chip for
a minimum memory/processor configuration.

ALL iNFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

9.1 Special Purpose Languages Programmer's Utilities Guide

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

OOOLI CWCNT EQU 1I iSET TO 1I CROSSWALK SWITCHES
0000 LULLO EQU 0 iNAME FOR TREADLE ZERO
0001 LULL1 EQU iNAME FOR TREADLE ONE

MACLIB INTER iBASIC INTERSECTION
MACLIB TREADLES iINCLUDE TREADLES
MACLIB BUTTONS iINCLUDE PUSHBUTTONS

CYCLE: iENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
0000 CLOCK? 2,5,NIGHT iSPECIAL FLASHING?

iNOT BETWEEN Z AND 5 AM
OOOC SETLITE NS,RED iRED LIGHT ON LULLABYE
OOlO SETLITE EW,GREEN iGREEN ON BUMPENRAM

SAMPLE: iSAMPLE THE BUTTONS AND TREADLES
00111 PUSH? SWITCH iANYONE THERE?
00113 TREAD? LULLO ,SWITCH jTREADLE O?
0029 TREAD? LULU ,SWITCH iTREADLE 1?
0037 CLOCK? 2"NIGHT iPAST 2AM?
003E RETRY SAMPLE iTRY AGAIN IF NOT

SWITCH:
iSOMEONE IS WAITING, CHANGE LIGHTS

00111 SETLITE EW,YELLOW iSLOW 'EM DOWN
00115 TIMER 3 ; lolA IT 3 SECONDS
0057 SETLITE EW,RED iSTOP 'EM
00513 SETLITE NS,GREEN iLET 'EM GO
005F TIMER 23 iFOR AWHILE

DONE?: i I S ALL THE TRAFFIC THROUGH ON LULLABYE?
0071 TREAD? LULLO,NOTDONE iTREADLE O?
007F TREAD? LULU ,NOTDONE iTREADLE 1?

iNEITHER TREADLE IS SET, CYCLE
008D RETRY CYCLE iFOR ANOTHER LOOP

NOTDONE:
0090 TIMER 5 i lolA IT 5 SECONDS
00A2 RETRY DONE? iTRY AGAIN

NIGHT: iTHIS IS NIGHTTIME, FLASH LIGHTS
00A5 SETLITE EW,OFF iTURN OFF
00A9 SETLITE NS,OFF iTURN OFF
OOAD TIMER 1 iWAIT WITH OFF
OOBF SETLITE EW,YELLOW iTURN TO YELLOW
00C3 SETLITE NS,RED iTURN TO RED
00C7 TIMER 1 iLEAVE ON FOR 1 SEC
0009 RETRY CYCLE iGO AROUND AGAIN

Listing 9-3a. Traffic Control Algorithm using -M Option

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.1 Special Purpose Languages

OOOLI
0000
0001

0000+DB03
0002+FE05
OOOll+D20COO
0007+FE02
0009+D2A500

OOOC+3E10
OOOE+D300

0010+3E03
0012+D300

001l1+DBOO
0016+E60F
001B+C2l1100

001B+DB01
001D+E601
001F+CA2900
0022+3E01
002l1+D301
0026+C3l1100

0029+DB01
002B+E602
002D+CA3700
0030+3E02
0032+D301
00311+C3l1100

0037+DB03
0039+FE02
003B+D2A500

003E+C31l100

INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.

CWCNT EQU
LULLO EQU
LULL1 EQU

MACLIB INTER
MACLIB TREADLES
MACLIB BUTTONS

1I
o

iSET TO II CROSSWALK SWITCHES
iNAME FOR TREADLE ZERO
iNAME FOR TREADLE ONE

iBASIC INTERSECTION
iINCLUDE TREADLES
iINCLUDE PUSHBUTTONS

CYCLE: iENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 2,:;,NIGHT iSPECIAL FLASHING?

iNOT BETWEEN 2 AND:; AM
SETLITE NS ,RED

SETLITE EW,GREEN

iRED LIGHT ON LULLABYE

iGREEN ON BUMPENRAM

SAMPLE: i SAMPLE THE BUTTONS AND TREADLES
PUSH? SW ITCH i ANYONE THERE?

TREAD? LULLO,SWITCH iTREADLE O?

TREAD? LULL1,SWITCH iTREADLE 1?

CLOCK? 2"NIGHT iPAST 2 AM?

RETRY SAMPLE iTRY AGAIN IF NOT

Listing 9-3b. Intersection Algorithm with *M in Effect

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

9.1 Special Purpose Languages Programmer's Utilities Guide

SWITCH:
iSOMEONE IS WAITING, CHANGE LIGHTS
SETLITE EW,YELLOW iSLOW 'EM OOWN

001l1+3E02 MVI A,YELLOW SHL EW6ITS
001l3+0300 OUT LIGHT

TIMER 3 iWAIT 3 SECONOS
001l5+180C MVI 0,1I*3
001l7+08FA ??0005: MVI 6,250
001l9+0E68 ??0008: MVI C 1182
001l6+0D ??0007: DCR C
001lC+C24600 JNZ nOO07
001lF+05 DCR 6
0050+C24900 JNZ nOO08
0053+15 DCR D
00511+C24700 JNZ ??0005

SETLITE EW,RED iSTOP 'EM
0057+3E01 MVI A,RED SHL EW6ITS
0059+D300 OUT LIGHT

SETLITE NS,GREEN iLET 'EM GO
0056+3E30 MVI A,GREEN SHL NS6ITS
005D+D300 OUT LIGHT

TIMER 23 iFOR AWHILE
005F+185C MVI 0,1I*23
0081+08FA ??0008: MVI 6,250
0083+0368 ??0009: MVI C,182
0085+0D ??0010: DCR C
0088+C26500 JNZ ??0010
0089+05 OCR 6
008A+C26300 JNZ ??0009
008D+15 DCR D
008E+C26100 JNZ ??OOOB

DONE?: iIS ALL THE TRAFFIC THROUGH ON LULLA6YE?
TREAD? LULLO,NOTDONE iTREADLE O?

0071+D601 IN TRINP
0073+E801 ANI 1 SHL LULLO
0075+CA7FOO JZ ??0011
0078+D301 MVI A 11 SHL LULLO
007A+D301 OUT TROUT
007C+C3S000 JMP NOT DONE

TREAD? LULU ,NOTDONE iTREADLE 1?
007F+D601 IN TRINP
00B1+E802 ANI 1 SHL LULL1
0083+CA8DOO JZ ??0012
0088+3E02 MVI A Ii SHL LULL1
0088+D301 OUT TROUT
00BA+C3S000 JMP NOT DONE

iNEITHER TREADLE IS SET, CYCLE
RETRY CYCLE iFOR ANOTHER LOOP

008D+C30000 JMP CYCLE

Listing 9-3c. Algorithm with Generated Instructions

104 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH

Programmer's Utilities Guide 9.1 Special Purpose Languages

Macro-based languages of this sort can easily incorporate debugging facilities. In
the case of Hornblower, Inc., the principal algorithms are constructed and tested in
the CP/M environment by including debugging traces within each macro. In each
case, a debug flag is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls.

Listing 9-4 shows the modification required to the INTER. LIB file to include the
debugging code. Although only the SETLITE macro is shown, similar coding is easily
included for the remaining macros. Listing 9-4 includes the debug flag at the begin­
ning of the library, initially set to FALSE, along with the appropriate equates for
CP/M system calls. If the debug flag is set to true by the application programmer,
special trace calls are included. For example, the setlite macro constructs a message
of the form

DIR changing to COLOR

where DIR and COLOR are the parameters sent to the macro. If debug remains false
in the application program, this trace code is not assembled.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESE/\RCH 105

9.1 Special Purpose Languages Programmer's Utilities Guide

Macro library for basic intersection

!tlobal definitions for debu!t processin!t
true eq u Offffh ;value of true
false equ not true;value of false
debug' set false ;initially false
bdos equ 5 ;entrY to CP/M bdos
rchar eq u 1 ; re ad character function
wbuff equ 9 iwrite buffer function
cr equ Odh ;carria!te return
if eq u Oah il i ne feed

input/outFut ports for li!tht and clocK
li!tht eq u OOh ;traffic li!tht control
clocK equ 03h ;24 hour clocK (Otl, ... ,23)

bit positions for traffic li!tht control
nsbits eq u 4 ;north south bits
ewbits eq u 0 ;east west bits

constant values for the Ii !th t control
off equ 0 ; turn Ii !th t off
re d eq u 1 ;value for re d li!tht
yellow equ 2 ;value for yellow li!tht
!treen eq u 3 ;!treen li!tht

setlite Macr dir,color
;; set li!tht !tiven by "dir" to color !tiven by "color"

if debu!t ;;print info at console
local setms!t,pastMs!t
Mvi
I x i
call
jmp

c,wbuff iiwrite buffer function
d ,setMs!t
bdos ;;write the trace info
pastMs!t

setMS~: db
db

c r, 1f
'&DIR chan!tin!t to &COLOR$'

pastMs!t:
exitM
endif
Mvi a,color shl dir&bits readied
out li!tht ;;sent in proper bit position
endM

(remaining macros are identical to the previous figure,
but each contains trace information similar to "setlite")

Listing 9-4. Library Segment with Debug Facility

106 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAl RESEARCH

Programmer's Utilities Guide 9.1 Special Purpose Languages

Listing 9-5a shows an application program for an intersection where the debug
flag is set to TRUE after the macro library is included. As a result, each macro
expansion assembles a call to the CP/M operating system to trace the light direction
and color change, skipping the machine code that is eventually assembled to drive
the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the algo­
rithm, resulting in the printout shown in Listing 9-5b. Each trace line corresponds to
a SETLlTE call with a specific direction and color, with the appropriate wait time
between printouts.

0100

FFFF#

0100
0120
0142
0154
0177
1089
01A9
01CB
0100
0200
0212

ORG 100H iREADY FOR THE DEBUG RUN
MACLIB INTER iBASIC MACRO LIBRARY

DEBUG SET TRUE iREADY DEBUG TOGGLE

CYCLE: SETLITE NS,RED
SETLITE EWtGREEN
TIMER 10
SETLITE EW,YELLOW
TIMER 2
SETLITE EW,RED
SETL I TE NS,GREEN
TIMER 10
SETLITE NS,YELLOW
TIMER 2
RETRY CYCLE

Listing 9-5a. Sample Intersection Program with Debug

NS chan!fin!f to RED
EW chan!fin!f to GREEN
EW chan!fin!f to YELLOW
EW chan!fin!f to RED
NS chan!fin!f to GREEN
NS chan!fin!f to YELLOW
NS chan!fin!f to RED
EW chan!fin!f to GREEN
EW chan!fin!f to YELLOW
EW chan!fin!f to RED

Listing 9-5b. Debug Trace Printout

ALL iNfORMATiON PRESENTED HERE IS PROPRiETARY TO D!GITAl RESEARCH 107

9.1 Special Purpose Languages Programmer's Utilities Guide

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed-the ORG can be removed as well-and the pro­
gram is reassembled. This time, the CP/M traces are not included because the debug
flag remains FALSE. As a result, the actual Hornblower hardware interface is assem­
bled instead. The newly assembled program is then placed into PROM in the con­
troller box for that intersection and tested in its target environment.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high-level languages are not avail­
able, but a measure of machine independence is required. The macros are easy to
develop, and the application programs are simple to write and debug.

9.2 Machine Emulation

A second application of macro processing is in the emulation of a machine opera­
tion code set that is different from the 8080 microprocessor. In particular, a machine
architecture is selected, based on an existing or fictitious operation code set, and a
macro is written for each opcode, taking the general form:

op MACRO d-l,d-2,.. .,d-n
opcode emulation
ENDM

where op is a mnemonic instruction in the emulated machine, and the dummy
parameters d-l through d-n represent the optional operands required by Ope The
macro body includes 8080 instructions that carry out the operation on the 8080
microprocessor. This means the instructions within the macro body perform the same
function as the op with its arguments on the emulated· machine.

Upon completion of the opcode macro definitions, a program can be written using
these opcodes. These opcodes expand to the equivalent 8080 instructions but per­
form the emulated machine operations.

108 All INFORMATION PRESENTED HER£. IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

For example, consider the situation encountered by Nachtflieger Maschinewerke,
an internationally famous manufacturer and distributor of automated machining
equipment. Though incorporating microprocessors in controlling their equipment,
Nachtflieger expects to build a custom LSI processor for their future products. The
processor, called the KDF-10, will be used primarily as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to 12 bits. To
allow computations on these 12-bit values, Nachtflieger engineers are going to allow
a full 16-bit word in the KDF-10, along with a number of primitive operations on
these values. Externally, the KDF-10 will provide four analog-to-digital input ports
(A-D) that can be read by KDF-10 programs, along with four digital-to-analog out­
put ports (D-A) that can be written by the program. The KDF-10 will automatically
perform the A-D and D-A conversion at these ports.

Being forward thinkers, the engineers at Nachtflieger have designed the KDF-10 as
a stack machine, similar in concept to the Hewlett-Packard HP-65 handheld pro­
grammable calculator, where data can be loaded to the top of a stack of data ele­
ments, automatically pushing existing elements deeper onto the stack. Similar to the
Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. The designers settled on the following three­
character operation codes for the KDF-10:

SIZ n

RDMi

WRMo

DUP

SUM

reserves n 16-bit elements as the maximum size of the KDF-10
operand stack. This operation code must be provided at the begin­
ning of the program.

reads the analog signal from input port i (0, 1, 2, or 3) to the top
of the stack.

writes the digital value from the top of the stack to the D-A output
port given by 0 (0, 1, 2, or 3). The value at the stack top is
removed.

duplicates the top of the KDF-10 stack.

adds the top two elements of the KDF-10 stack. Both operands
are removed, and the resulting sum is placed on the top of the
stack.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

9.2 Machine Emulation Programmer's Utilities Guide

LSRn

JMPa

performs a logical shift of the topmost stacked element to the right
by n bits (1, 2, .. . ,15), replacing the original operand by the shifted
result. LSR n performs a division of the topmost stacked value by
the divisor 2 to the n power.

branches directly to the program address given by label a.

Because the KDF-10 does not exist, except in the minds of the Nachtflieger engineers,
the software designers decided to use the macro facilities of MAC to emulate the
KDF-10, using the 8080 microcomputer.

Listing 9-6 shows an example of a program for the KDF-10 that was processed by
MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors attached at strategic
places on the machining equipment. The program continuously reads the four input
values from the A-D ports and computes their average value by summing and divid­
ing by four. This average value is sent to D-A output port 0 where it is used to set
environmental controls.

0000
012E
0134
0136
013A

013E
0140
0142

0144
0152
0156 C32E01

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

MACLIB STACK
SIZ 20

LOOP: ROM 0
RDM
ROM
ROM

2
3

iREAD THE STACK MACHINE oPCoDES
iCREATE 20 LEVEL WORKING STACK
iREAD A-D PORT 0
iREAD A-D PORT 1
iREAD A-D PORT 2
iREAD A-D PORT 3

ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM
SUM
SUM

iAD3+AD2
i(AD3+AD2)+AD1
i((AD3+AD2)+AD1)+ADO

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR
WRM
JMP

2
o
LOOP

iSHIFT RIGHT TWO = DIV BY 4
iWRITE RESULT TO D-A PORT 0
iGO GET ANOTHER SET OF VALUES

Listing 9-6. A-D Averaging Program Using Stack Machine

110 ALL INfORMATiON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

As shown in Listing 9-6, the program begins by reserving a stack of 20 elements,
a much larger stack than required for this application, since a maximum of four
elements are actually stacked. The program then cycles following LOOP, where the
values are read and processed. The four operations RDM 0, RDM 1, RDM 2, and
RDM 3 read all four temperature sensors, placing their data values in the stack. The
three SUM operations that follow the read operations perform pairwise addition of
the temperature values, producing a single sum at the top of the stack. Because the
average value is wanted, the LSR 2 operator is applied to the stack top to perform
the division by four. Finally, the resulting average is sent to the D-A port using the
WRM 0 operation code. Control then transfers back to LOOP, where the entire
operation is performed again.

Because Nachtflieger designers are emulating KDF-10s using 8080s, they have cre­
ated the macro library file, called STACK. LIB, as shown in Listing 9-7. A macro is
shown in this listing for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set, since this must be the first opcode in the
program, and the stack area is reserved. Note that double words of storage are
reserved because a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10 stack top is assumed to be in 8080's
HL register pair. Further, each operation that pushes the KDF-I0 stack causes the
element in the 8080 HL pair to be pushed to the 8080 memory area reserved by the
SIZ opcode.

siz Macro size
;; set "0 r g" an d create stacK

local stacK ;ilabel on the stacK
org 100h ;; at base of TPA
lxi sP,stacK
JMP stacK ; ; pas t stacK
ds size*2 ;;double precision

stacK: endM

dup Macro
;; duplicate top of stacK

push h
endM

Listing 9-7. Stack Machine Opcode Macros

INFORf'<AAT10N PRESENTE.D HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

9.2 Machine Emulation

sum mac ro
; ; add the top two stacK elements

pop d i itoP-1 to de
dad d i i bac K to h1
endm

1 s r macro len
; ; losical shift risht by len

rept len iisenerate inline
x ra a iiclear car ry
mov a ,h
ra r iirotate with hUh 0

adcO
adc1
adc2
adc3

dacO
dacl
dac2
dac3

mov
mov
ra r
mov
endm
endm

equ
equ
equ
equ

equ
equ
equ
equ

h ,a
ad

1 ,a

10BOh
10B2h
10BlIh
10B6h

1090h
1092h
10911h
1096h

rdm macro?c

i i bacK with hish

ia-d converter 0
ia-d converter 1
ia-d converter 2
ia-d converter 3

id-a converter 0
id-a converter 1
id-a converter 2
id-a converter 3

ii read a-d converter nurrtber "?C"
push iiclear the stacK

bit

read from memory mapped input address
lhld adc&?c
endm

wrm macro?c
ii write d-a converter number "?C"

shld dac&?c iivalue written
pop h iirestore stacK
endm

Listing 9-7. (continued)

Programmer's Utilities Guide

112 All lNFORl'\.1ATION PRESENrrD HE.RE. IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

The DUP opcode simply pushes the HL register pair to memory since the HL pair
is not altered in the 8080 during this operation. In the case of the SUM operator, it
is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. So the HL registers contain the most recently loaded value, and the
8080 memory stack contains the next-to-most recently stacked value. The POP D
operation loads the second operand to the DE pair in the 8080 CPU. Then the
topmost value and next to top value are added, using the DAD D operation. The
resulting operand goes into the HL register pair. This is necessary in the KDF-10
emulation because the top of the KDF-10 stack is located in the 8080's HL register
pair.

The LSR opcode is more complicated. The values must go through the accumula­
tor because the 8080 does not support a double precision (16-bit) right shift of the
HL register pair. Thus, the LSR macro contains a REPT loop that generates inline
machine code for each right shift. The inline machine code performs the right shift
by first clearing the carry (XRA A), followed by a high-order right shift by one bit
(MOV A,H followed by RAR), then by a low-order bit shift (MOV A,L followed by
RAR). Note that an intermediate- bit can move from the high-order byte to the low­
order byte using the carry between high- and low-order byte shifts.

In Listing 9-7, the RDM and WRM operation codes are defined by memory­
mapped input/output operations. That is, memory locations 1080H through 1087H
are intercepted external to the 8080 microprocessor and treated as external read
operations. Thus, a load from locations 1080H and 1081H to HL is treated as a
read from A-D device 0, rather than from RAM. This operation is simple to perform
in the KDF-10 emulation because all program addresses are assumed to be below
1000H, so any 8080 address bus values beyond 1000H must be memory mapped I/O.

As a result, ADCO through ADC3 correspond to the locations where A-D values 0
through 3 are obtained. Similarly, the D-A output values that are written to locations
1090H through 1097H are intercepted as memory mapped output values that are
sent to the D-A converters rather than to RAM.

The RDM instruction is emulated by simply performing an LHLD from the appro­
priate memory mapped input address, constructed through concatenation of the dummy
parameter. The HL value is first pushed because the KDF-10 RDM opcode performs
this task automatically. Then the new value is loaded into the HL register pair.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DiGITAL RESEARCH 113

9.2 Machine Emulation Programmer's Utilities Guide

The WRM opcode definition is similar, except the value to write is assumed to
reside at the top of the KDF-IO stack and thus appears in the 8080 HL register pair.
The value is written to the memory mapped output location, and the value is removed
from the HL pair by restoring HL from the 8080 stack.

To see the actual code generated by each of these macros, Listing 9-8 shows the
same averaging program as given in Listing 9-6, except that the generated 8080
instructions are interspersed throughout the listing file. Listing 9-8 is the usual output
from MAC; Listing 9-6 was generated using the parameter -M, which suppresses
generated mnemonics. Compare Listings 9-6, 9-7, and 9-8, so that you understand
the macro expansion processes.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

MACLI6 STACK iREAD THE STACK MACHINE OPCODES
SIZ 20 iCREATE 20 LEVEL WORKING STACK

0100+ ORG 100H
0100+312E01 LXI SP,??OOOl
0103+C32E01 JMP ??0001
0106+ DS 20*2

LOOP: ROM 0 iREAD A-D PORT 0
012E+ES PUSH H
012F+2AB010 LHLD ADCO

ROM iREAD A-D PORT 1
0132+ES PUSH H
0133+2AB210 LHLD AOC1

ROM 2 iREAD A-D PORT 2
0136+ES PUSH H
0137+2AB410 LHLD ADC2

RDM 3 iREAD A-D PORT 3
013A+ES PUSH H
013B+2AB610 LHLD AOC3

Listing 9-8. Averaging Program with Expanded Macros

114 AllINfORfvv.nON PRBENTED HERE !S PROPRIETARY TO DIGTAl RBEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

ALL FOUR VALUES ARE STACKED, ADO THEM UP
SUM iAD3+AD2

013E+D1 POP 0
013F+18 DAD 0

SUM i(AD3+AD2)+AD1
0140+01 POP 0
0141+18 DAD 0

SUM i ((AD3+AD2) +AD 1) +ADO
0142+01 POP 0
0143+18 DAD 0

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 iSHIFT RIGHT TWO = DIV BY 4

0144+AF XRA A
0145+7C MOV A,H
0146+1F RAR
0147+67 MOV H,A
0148+70 MOV A,L
0148+1F RAR
014A+6F MOV L,A
014B+AF XRA A
014C+7C MOV A,H
014D+1F RAR
014E+67 MOV H,A
014F+7D MOV A,L
0150+1F RAR
0151+6F MOV L,A

WRM 0 iWRITE RESULT TO D-A PORT 0
0152+228010 SHLD DACO
0155+E1 POP H
0156 C32E01 JMP LOOP iGO GET ANOTHER SET OF VALUES

Listing 9-8. (continued)

A problem arose at Nachtflieger MW, however, that had to be rectified. Although
programs could be effectively written for the KDF-l0 computer using the 8080 emu­
lation, they could not be effectively debugged. The program in Listing 9-8, for exam­
ple, could be tested under the CP/M Dynamic Debugging Tool (see CP/M documen­
tation), but the program required monitoring and tracing at the 8080 machine code
level. It became clear that higher level debugging tools were necessary.

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DlGlTAL RESEARCH 115

9.2 Machine Emulation Programmer's Utilities Guide

As a result, Nachtflieger designers added several pseudo opcodes that allow debug­
ging traces. The opcodes can be interspersed in the program and selectively enabled
and disabled, depending on the debugging needs. In production, all debugging traces
are disabled, resulting only in absolute port I/O. The additional debugging opcodes
are listed below.

PRN msg

DMP

TRTt

TRFt

TRTp

TRFp

Print the message given by "msg" at the debugging console when­
ever the print trace is enabled. The message must be enclosed in
angle brackets.

Print the value of the top element in the KDF-l0 stack in
hexadecimal.

Set machine code trace option to true. Each time a KDF-l0 machine
operation is executed, the opcode is printed, followed by the
approximate KDF-l0 machine code address, followed by the top
two elements of the KDF-l0 stack, in the format:

OPC oploc top top'

where OPC is the opcode, oploc is the location, top is the top
element, and top' is the second to the top element, all in hexadec­
imal notation.

Disable the machine code trace. Only the KDF-l0 instructions
that physically appear between the TR T and TRF opcodes are
shown in the trace.

Enable the print/read trace. PRN opcodes that follow produce
output at the debugging console, and are otherwise treated as
comments. Further, RDM and WRM opcodes prompt and dis­
play data at the debugging console.

Disable the print/read trace. Only the PRN, RDM, and WRM
instructions that physically appear between TR T and TRF inter­
act with the console.

116 ALL iNfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

The traces are disabled at the beginning of the program and must be explicitly
enabled with TR T opcodes.

0000
0103
0103
0103
012E
01FO
022C
0267
026A
02A5
02A8
02E3
02E6

0310
0324
0327
033B
033E
0352
0378

037B
0389
03B1
03B4
03EE
03F1

LOOP:

AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

MACLIB DSTACK ;READ THE STACK MACHINE OPCODES
SIZ 20 ;CREATE 20 LEVEL WORKING STACK
TRT
TRT

T
P

;MACHINE CODE TRACE DN
;PRINT TRACE ON

PRN (TRACE FOR AVERAGING PROGRAM>
RDM
DMP
RDM
DMP
RDM
OMP
ROM
DMP
PRN

o

Z

;READ A-D PORT 0
;WRITE TOP OF STACK
;READ A-D PORT 1
;WRITE TOP OF STACK
;READ A-D PORT Z
;WRITE TOP OF STACK

3 ;READ A-D PORT 3
;WRITE TOP OF STACK

(FOUR VALUES HAVE BEEN READ>

ALL FOUR VALUES ARE STACKED, ADD THEM UP
SUM
DMP
SUM
DMP
SUM
PRN
DMP

;AD3+ADZ
;WRITE FIRST SUM
;(AD3+ADZ)+AD1
;WRITE SECOND SUM
;((AD3+ADZ)+AD1)+ADO

(VALUES HAVE BEEN ADDED>
;WRITE SUM OF VALUES

SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR Z ;SHIFT RIGHT TWO = DIV BY 4
PRN
DMP
WRM
BRN
XIT

(AVERAGE VALUE CALCULATED>
;WRITE AVERAGE VALUE

o
LOOP

;WRITE RESULT TO D-A PORT 0
;GO GET ANOTHER SET OF VALUES
; EM IT EX IT CODE

Listing 9-9. Averaging Program with Debugging Statements

ALL !NfORtv'lAT!ON PRLS£NTED PROPRIETARY RESEARCH 117

9.2 Machine Emulatio~ Programmer's Utilities Guide

Listing 9-9 shows the averaging program of Listing 9-6 with interspersed debug­
ging statements. The opcodes TR T t and TR T P are executed at the beginning of the
program, enabling all trace options throughout the execution. The PRN statement
above the LOOP label prints the initial sign-on; the DMP statements after each read
operation give the value of the A-D port. Upon completion of the four-element read,
the PRN opcode indicates this fact. Each SUM operator is followed by a DMP
opcode that shows the current sum. Finally, the PRN and DMP opcodes display the
final average value that is being sent to D-A port O. The XIT opcode shown at the
end of the program is discussed below.

Listing 9-10 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode,
giving the absolute memory mapped input address in decimal, while the WRM
instruction produces a "D-A OUTPUT .. " message that shows the absolute memory
mapped output address and the data that is written.

The opcodes are also traced showing the opcode mnemonic, address, and top two
stacked elements. The RDM trace at the beginning, for example, shows the instruc­
tion address 01AD, which is in the range of the first RDM of Listing 9-9 (012E to
01EF), and is followed by the two values 0111 (the value just read) and C21D
(garbage value, because only one element is stacked). The trace is easily followed at
the KDF-10 level, showing each value that is read in and the operations performed
upon these values. Upon completion of the debugging process under CP/M, the TR T
opcodes are removed and the program is reassembled, leaving only the 8080 instruc­
tions required in the production machine. Nachtflieger systems engineers then take
the resulting program and test its operation in a hardware environment.

118 ALL INFORMATION PRESENTED HER£ IS PROPRIETARY TO DIG!TAL RESEARCH

Programmer's Utilities Guide

A>ddt aver. hex
DDT 1.!ERS 1.4
NEXT PC
0406 0000
-!l100

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111
ROM 01AD 0111 C21D
(TOP) = 0111
A-D INPUT AT 4226 222
ROM 0255 0222 0111
(TOP) = 0222
A-D INPUT AT 4228 555
ROM 0293 0555 0222
(TOP) = 0555
A-D INPUT AT 4230 4aa
ROM 0201 oaaa 0555
(TOP)= 0444
FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222
(TOP)= 0999
SUM 0329 OBBB 0111
(TOP)= OBBB
SUM 03aO OCCC C21D
VALUES HAVE BEEN ADDED
(TOP) = OCCC
AVERAGE VALUE CALCULATED
(TOP) = 0333
D-A OUTPUT AT a2ao 0333
WRM 03DC 793B C21D
A-D INPUT AT a224

9.2 Machine Emulation

Listing 9-10. Sample Execution of AVER Using DDT

Nachtflieger engineers quickly realized that the KDF-I0 design had a number of
deficiencies due to the paucity of arithmetic operators and the total absence of con­
ditional branching instructions. Further, there was no provision for variable storage
other than the stack. Thus, the KDF-11 naturally evolved from the KDF-10, incor­
porating these features. Table 9-1 lists the operation codes of the KDF-11.

ALL iNfORMATION PRESENTED HERE is PROPR!ETARY TO DIGITAL RESEARCH 119

9.2 Machine Emulation Programmer's Utilities Guide

Code I
DCL v,n

LIT c

VAL v,i,c

STO v,i,c

DIF

GEQ a

BRN a

Table 9-1. KDF-11 Operation Codes

Meaning

Declare (reserve) storage for a variable by the name v, with
optional size n. If n is omitted, then n - 1 is assumed. All DeL
opcodes must follow the XIT opcode given below.

Load the value of the literal constant c to the top of the KDF-
11 stack.

Load the value of the variable v optionally indexed by the vari­
able i with the optional constant offset c. VAL V loads the value
of V to the top of the stack. VAL V,I loads the value located at
the address of V plus the index value contained in I. VAL V,I,3
loads the value at location V plus the index I, plus the constant
index 3. In all cases, the value is placed at the top of the KDF-
11 stack.

Store the value obtained from the KDF-ll stack to the address
given by v, plus the optional index i, plus the optional constant
index given by c. The top element of the KDF-ll stack is removed.

Subtract the top element of the KDF-ll stack from the next-to­
top element of the stack and replace both operands by their
difference.

Test the next-to-top element (top') against the top of stack ele­
ment (top), and branch to the label given by "a" if top' is greater
than or equal to top. If not, program control continues to the
next opcode in sequence.

Replace the]MP instruction in the KDF-I0 architecture to allow
complete separation of the KDF-ll and 8080 machines.

Listing 9-11 gives the macro library that was constructed by the Nachtflieger soft­
ware group for KDF-ll machine emulation. More than half of the macro library
implements trace and debugging functions. The remaining components implement
the KDF-ll opcodes themselves. Each major section of this macro library, called
DSTACK.LIB, is briefly described below, followed by an example of its use.

120 ALL INfORMAt!ON PRESENtED IS PROPRiEtARY D1GlTAL RESEARCH

Programmer's Utilities Guide

bdos
rcha r
wchar
wbuff
t ran
data
c r
If

debuH
debu~p

p rn
; ;

MS ~:

pms ~:

macro library for a zero address machine

* be~in trace/dump utilities *

eq u 0005h ;system en trY
eq u ; re ad a character
eq u 2 ;write character
equ 9 ;write buffer
eq u 100h ;transient pro~ram a re a
equ 1100h ;data area
equ Odh ;carria~e re turn
equ Oah il i ne feed

set 0 iitrace debu~ set fal se
set 0 ;;print debu~ set false

macro pr
print messa~e 'p r' at console
if debu~p ; ;print debu~ on?
local pmS~tms~ iilocal Messa~e
jMP pms~ ;;around messa~e
db c r tl f ;;return carriaH
db 'PtPR$, iiliteral Messa~e
push h ; ; save top element of stacK
1 x i d tms ~ ;; local messa~e address
Mvi ctwbuff ;;write buffer ' til $
call bdos ;;print it
pop h ;;restore top of stacK
endif ; ; end test debu~p
endM

u~en Macro
;; ~enerate utilities for trace or dump

local psub
jMP psub ;;jump past subroutines

@ch: ;;write character in res-a
MOV eta
Mvi ctwchar
jMP bdos ;;return thru bdos

; ;
@nb: ;;write nibble in re~-a

adi 90h
daa
aci lIOh
daa

@ch ;;return thru @ch
; ;

9.2 Machine Emulation

Listing 9-11. Stack Machine Macro Library

AllINFORMATION PRESENTED HLRL PROPRIETARY DIGIT At RESEARCH 121

9.2 Machine Emulation Programmer's Utilities Guide

@hx: ; ; t,.J r it e hex value in re g-a
push pst,.J ; ; save 10t,.J byte
r r c
rrc
r r c
r rc
an i Ofh ; ;MasK 1'1 iSh nibble
call @nb ;;print high nibble
pop psw
an i Ofh
jMP @nb ; ;print low nibble

; ;
@ad ;;t,.Jrite add ress value in hI

push h ; ; save value
Mvi a, I I ; Heading blanK
call @ch ; ;ahead of address
pop 1'1 ; ; high byte to a
MOV a ,h
push 1'1 ; ; co py bacK to stacK
call @hx ;;write high byte
pop h
MOV at! ;; low byte
jMP @hx ;;write low byte

@in: ;;read hex value to hI from console
Mvi a, I I Heading space
call @ch ito console
lxi h ,0 ;starting value

@inO: push 1'1 ;save it for char re ad
mvi c,rchar ; re ad character function
call bdos ; re ad to accuMulator
POP 1'1 ;value being built in hI
sui '0 I ;normalize to binary
cpi 10 ;decimal?
jc @inl ;carrY if 0,1 , ••• ,9

; ; May be hexadeciMal a, ••• ,f
sui IA/- /O/-10
cpi 18 ; i a through f?
rn c ;;return with assuMed cr

@inl: ;; in ran ge , Multiply by 4 an d add
re pt 4
dad 1'1 ;;shift 4
endM
ora ; ; add dig it
MOV 1 ,a ; ; and replace value
jMP @inO ; if 0 r another dig it

;;

Listing 9-11. (continued)

122 ALL INFORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESFARCH

Programmer's Utilities Guide

psub:
u!ten Mac ra
;; redef to include once

endM
u!ten H!tenerate first tiMe
endM

* end of trace/duMP utilities *
* be!tin trace (only) utilities *

trace Macro codelMnaMe
;; trace Macro !tiven by MnaMe I

;; at location !tiven by code
local psub
u!ten ;;!tenerate utilities
jMP psub

@tl: ds 2 ; it eMP fo r re!t -1
@t2: ds 2 ; ; teMP for re !t-2
jj

@t r: ;itrace fna c ro call
; ; bc=code address I de=Messa!te

shld @tl ;;store top re !t
pop h ;;return address
xthl Hre!t-2 to top
shld @t2 ;;store to t efJlP
push psw ; ; save fl a!ls
push ; ; s av e re t address
Mvi clwbuff ; ;print buffer func
call bdos ;;print Macro naMe
pop h ; ; code address
call @ad ;;printed
lhld @tl ; it 0 P of stacK
call @ad ;;printed
lhld @t2 ; itoP-l
call @ad ;;printed
pop psw ; ;fla!ts restored
pop ;;return address
lhld @t2 ;;toP-l
push h ;; resto red
push d ;;return address
lhld @tl ; itop of stacK
re t

H

Listing 9-11. (continued)

9.2 Machine Emulation

ALL INfORMATION PRESENTED HERE IS PROPR!ETARY TO D!GITAL RESEARC!-1 123

9.2 Machine Emulation Programmer's Utilities Guide

psub: ; ; pas t subroutines
;;
trace Macro c tM
;; redefined trace t uses @tr

local PMS~tMS~

jMP PMS~

MS~: db c r tl f Hcrdf
db '&M$' ; ;Mac name

pms ~:
I)(i b tC i i c ad e address
l)(i d tms ~ i imac ro naMe
call @tr H t a trace it
endm

; ; back to ori~inal mac ro level
trace codetmname
endm

t rt macro f
; ; turn on fla~ "f"
debu~&f set i iprint/trace on

endM

t rf mac ro f
i i turn off fla~ "f"
debu~&f set 0 iitrace/print off

endm

Listing 9-11. (continued)

124 ALL iNFORMATION PRESEN1£.D HERE!S PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide

?tr Macro M
;; checK debu~t to~~le before trace

if debuH
trace '..\',$,M
endM

*
*

end trace (only) utilities
be~in dUMP (only) utilities

*
*

dMP Macro vnaMe,n
;; dUMP variable vnaMe for
;; n eleMents (double bytes)

local psub iipast subroutines
u~en ; i ~en inline routines
jMP psub i i pas t local subroutines

@dM: ;; dUMP utility pro~raM
; ; de=Ms~ address, c=eleMent count
; ; hl=base address to P r i n t

push h i i b as e address
push b iieleMent count
Mvi c ,wbuff ;iwrite buffer func
call bdos ; iMessa~e written

@dMO: pop b iirecall co un t
pop iirecall base address
MOV a 'c i i en d of Ii st?
ora a
rz ;;return if so
d c r ;idecreMent count
MOl) e ,M i in ext iteM (low)
inx
MOl) d ,M ; in ext iteM (h i ~ h)
inx h ;iready for next ro und
push ; is av e print address
push ; is av e count
xch~ ; ; d at a re adY
call @ad iiprint iteM value
jMP @dMO ; if 0 r another value

; ;
@dt: ;; dUMP top of stacK only

P rn «(top)=> ; ; II (TOP) = II
push h
call @ad iivalue of hI
pOP h ; ; top restored
re t

; ;

Listing 9-11. (continued)

9.2 Machine Emulation

ALL INFORMATION "''''"''' HERE !S PROPR!ETARY TO DlG!TAL "''-'-'''"'''''''''"' 125

9.2 Machine Emulation

psub:
; ;
dMP Macro ?vt?n
;; redefine dUMP to use @dM utility

local PMSStMSS
;; special case if null paraMeters

if nul vnaMe
;; dUMP the top of the stacK only

call @dt
exitM
endif

;; otherwise dUMP variable naMe
jMP PMSS

MS9: db c r tl f ; ; c r If
db '&?V=$' ;;Messase

PMSS: ad r ?v ; ;hl=address
active set 0 iiclear active fl as

I x i d tMS S ;;Messase to P r i n t
if nul ?n ii us e len9'th 1

Mvi ctl
else
Mvi c t?n
endif
call @dM ; ; to perforM the dUMP
endM ; ; en d of redefinition
dMP vnaMetn
endM

*
*

end dUMP (only) utilitiest
besin stacK machine opcodes

*
*

active set 0 ;active resister flas

siz mac ro
ors

size
t ran ;;set to transient area

ii create a stacK when "xit" encountered
@stK set size iisave for data area

lxi sPtstacK
endM

Listing 9-11. (continued)

Programmer's Utilities Guide

126 ALL INFORMATiON PRESENTED HERE IS PROPRIETARY TO D!GITAl RESEARCH

Programmer's Utilities Guide

save Macro
ii checK to ensure "enter" properly set UP

if stacK ; ; i s it present?
endif

save Macro ;;redefine after initial reference
if active ; ;eleMent in hI
push ; ; s av e it
endif

active set ; ; set active
endM
save
endM

rest Macro
; ; restore the top eleMent

if not active
pop ; ;recall to hI
endif

active set ; ;Ma rK as active
endM

clear Macro
; ; clear the top actil)e eleMent

rest ; ;ensure active
active set 0 ; ;cleared

endM

dcl Macro vnaMelsize
; ; label the declaration
vnaMe:

if nul size
ds 2 ;;onewordreq/d
else
ds size*2; ;double words
endM

lit Macro val
;; load literal value to top of stacK

save
lxi
?tr
endM

h I val
lit

; ;save if active
; iload literal

Listing 9-11. (continued)

9.2 Machine Emulation

ALL INfORMATION PRESENTED HERE!S PROPRIHARY TO DIGITAL RESEARCH 127

9.2 Machine Emulation

adr Macro baselinx,con
ii load address of base, indexed by inx,
ii with constant offset given by con

sal) e i i pus h if active
if nul inx&con
1 x i h ,base iiaddress of base
exitfll i isifllPle address
endif

i i Must be inx and/or con
if nul inx
1 xi h,con*2 i iconstant
else
lhld inx iiindex to hI
dad iidouble precision inx
if not nul con
1 xi d,con*2 iidouble const
dad d i iadded to inx
endif i in 0 t nul con
endif i in u 1 inx
1 xi d ,base iiready to add
dad d i ibase+inx*2+con*2
endM

val Mac ro b Ii ,c
i i get value of b+i+c to I'll
; ; checK sifllple case of b on 1)'

if nul i&c
save i i push if active
lhld iiload directl)'
else

; ; "ad r" pushes active resisters
adr b Ii ,c iiaddress in hI
MO I) e ,M iiI ow or de r byte
inx
flIOV d ,M i i h i 9h o rd e r b)' t e
xch9 i i bacK to I'll
endif
?tr val iitrace set?
endfTl

Listing 9-11. (continued)

128 !NfORMJUION PRF5ENTED tiTRE IS PROPRIETARY

Programmer's Utilities Guide

OlGITAL ",-_,Lt'."'-'

Programmer's Utilities Guide 9.2 Machine Emulation

sto Macro b I i I C
; ; store the value of the top of stacK
; ; leavin9' the top eleMent active

if nul i&c
rest jjactivate stacK
shld Hstored directlY to b

else
adr b I i I C
pop Hvalue is in de
MOV Mle j j low byte
in x
MOV MId Hhi9'h byte
endif
clear j j Ma rK eMPty
?tr sto jjtrace?
endM

SUM Mac ro
rest jjrestore if saved

; ; add the top two stacK eleMents
pop d jitoP-l to de
dad j j b ac K to I'll
?t r SUM
endM

dif Macro
j j COMPu·te difference between top eleMents

rest jjrestore if saved
pop jjtop-l to de
mov a Ie jitoP-l low byte to a
sub j il ow o rd e r difference
MOV 1 I a j j b ac K to 1
MOV a I d jjtop-l hi9'h byte
sbb Hhi9'h o rd e r difference
mov h la j j bac K to h

; ; car ry fl a9' May be set upon return
?tr dif
endM

Listing 9-11. (continued)

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 129

9.2 Machine Emulation Programmer's Utilities Guide

lsr Mac ro len
; ; lo~ical shift ri~ht by len

rest iiactivate stacK
rept len ii~enerate inline
x ra a i iclear ca r rY

MOV a, h
ra r iirotate with hUh 0
MOV h ,a
MOV a,l
ra r
MOV 1 ,a i i b ac K with hUh bit
endM
endM

~eq Mac ro 1 ab
i i JUMP to 1 ab if (top-1) is ~reater or
; ; equal to (to p) eleMent.

dif i icoMPute difference
clear iiclear active
?tr ~eq

Jnc lab i ina ca r rY if ~reater

Jz lab i i zero if equal
; ; d ro P throu~h if neither

endM

dup Mac ro
ii duplicate the top eleMent in the stack

rest iiensure active
push
?tr dup
endM

b rn Iliac ro addr
; ; branch to address

JMP addr
endM

xit Iliac ro
?tr xit iitrace on?
JMP 0 i i restart at 0000
or~ data i istart data area
ds @stK*2 i iobtained frOM "siz"

stack: endM

Listing 9-11. (continued)

130 ALL !NFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide

ad cO
adcl
adc2
adc3

dacO
daci
dac2
dac3

* MeMOry Mapped ilo section *

input values which are read as if in MeMOry
equ 10BOh ia-d converter 0
equ 10B2h ia-d converter
equ 10BLlh ia-d converter 2
eq u 10BBh ia-d converter 3

eq u 10S0h i d - a converter 0
equ 10S2h id-a converter
eq u 10SLlh id-a converter 2
equ 10SBh id-a converter 3

rwtrace Macro Msg,adr
ii read or write trace with Message
ii given by "MSg" tolfroM "adr"

prn <MSg at adr>
endM

rdM Macro ?c
;i read a-d converter nUMber "?c"

save i;clear the stacK
if debugp ;;stop execution in ddt
rwtrace <a-d input),% adc&?c
ugen j;ensure @in is present
call @in ;;value to hI
shld adc&?c ;;siMulate MeMOry input
else

;; read froM MeMOry Mapped input address
lhld adc&?c
endif
?tr
en dIll

rdM ; itracing?

Listing 9-11. (continued)

ALL !NfORJV1ATION PRESENTED HERE IS PROPRlETARY

9.2 Machine Emulation

DIGITAL RESEt\RCH 131

9.2 Machine Emulation

wrtrl triac ro ?c
;; write d-a converter number "?c"

rest ;; resto re stack
if debu9'p ;;trace the output
rwtrace <d-a output>,% dac&?c
u9'en ;;include subroutines
call @ad ;;write the value
endif
shld
?tr
clear
endtrl

dac&?c
IN rIll ;;tracin9' output?

;;retrlove the value

* end of trlacro library *

Listing 9-11. (continued)

Programmer's Utilities Guide

The first portion of the library, which is principally concerned with debugging
functions, begins with CP/M system calls, function numbers, and equates for non­
graphic characters, similar to the examples given earlier. Although these values are
not necessary for operation of the KDF-11, they are necessary for the debugging
functions that operate when the TR T opcode is in effect. Following the CP/M equates,
the toggles DEBUGT and DEBUGP are set to false (0 value), reflecting the conditions
of the debugging switches given by TRT and TRF. When DEBUGT is true (1 value),
machine operation codes are traced. Similarly, when DEBUGP is true, PRN, RDM,
and WRM operations interact with the console.

The PRN macro, for example, produces an inline message with a call to CP/M to
write the message whenever the DEBUGP toggle is true. Otherwise, the PRN pro­
duces no generated code.

The UGEN macro that follows PRN is called the first time the debugging subrou­
tines are required by trace or print/read opcodes. When invoked, the UGEN macro
produces several inline subroutines that are used throughout the debugging process.

132 All INFORMAT!ON PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

If no trace or print/read functions are invoked during the assembly, UGEN is not
invoked. Thus no inline subroutines are included for debugging. If UGEN is invoked,
the subroutines shown below are included inline:

@CH writes a single ASCII character to the console.

@NB writes a single half byte (nibble) to the console.

@HX writes a full hexadecimal byte value at the console.

@AD writes a full address (double byte) value with preceding blank.

@IN reads a hexadecimal value from the console to HL.

Upon including these subroutines, UGEN then redefines itself to an empty macro
body so that the subroutines are not included on subsequent invocations of UGEN.
This ensures that the inline subroutines are included only once, and only if they are
required by the debugging macros.

The SIZ macro is similar to the opcode defined for the KDF-IO, except that the
size of the stack is saved for later declaration in the data area (see the XIT opcode).
Throughout the opcode macros, the SAVE and REST macros save and restore the
Hl register pair, based on the ACTIVE flag. The CLEAR macro, however, marks the
top element of the KDF-ll stack as deleted.

The DCl macro simply sets up the variable name VNAME as a label and follows
the label by a DS that reserves the specified number of double words. The DCl
opcodes must all occur at the end of the KDF-ll program, following the XIT opcode.

The lIT opcode is emulated with a macro that first SAVEs the stack top, possibly
generating an Hl push. The literal value is then loaded directly into the Hl register
pair. The ACTIVE flag is set on completion of this macro because SAVE always
marks Hl as active.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DiGITAL RESEARCH 133

9.2 Machine Emulation. Programmer's Utilities Guide

The ADR macro is a utility macro used in the VAL, STO, and DMP opcodes to
build the address of a particular variable, with optional variable and constant offsets,
in the HL register pair. Based on the optional parameters, ADR either loads the base
address directly to the HL pair or constructs the address using HL and DE for
indexing. Thus, the following invocations of ADR (in the left column) produce the
machine code in the right column.

ADR }{ L}{ I H t}{

ADR }·{tI LHLD I
DAD H
L}{ I D t}{
DAD D

ADR }{tlt3 LHLD I
DAD H
L}{ I DtS
DAD D
L}{ I D t >{
DAD D

ADR >{tt3 L>{ I HtS
L}{ I D t}{
DAD D

The final address for the optionally indexed variable remains in the HL register pair.
The code within the ADR macro can be improved slightly by providing a constant
offset. That is, the following invocations in the left column produce the machine
code in the right column by redefining the ADR macro.

ADR }{ tIt 3 LHLD I
L}·{I Dt}{+S
DAD D

ADR "{tt3 Ht}{+S

As an exercise, redefine ADR to generate this improved machine code sequence.

134 ALL INfORMATiON PRESENTED HERE IS PROPRIETARY DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

The VAL macro loads a variable value to the stack. STO stores the top of stack
value to memory. ADR constructs the address of the variable whenever optional
indexing is specified. Otherwise, LHLD or SHLD directly accesses the variable. Again,
slight improvements in generated code can be obtained by providing a constant offset
with no variable index.

The opcodes LIT, VAL, and STO all end with an invocation of the ?TR macro
which, as discussed above, checks the DEBUGT flag. If true, the ?TR macro invokes
TRACE with the machine code address and opcode name for display at the debug­
ging console. The ?TR macro invocation produces no machine code trace when
DEBUGT is false.

The SUM opcode first invokes REST to ensure that the HL register pair contains
the topmost KDF-11 element. The second to top element is then loaded to the DE
pair and added to HL, producing an active KDF-11 element in HL. ACTIVE is true
at this point, because REST always leaves the flag set to true.

The DIF opcode definition is similar to SUM, except that the 8080 accumulator
computes the 16-bit difference between the top two KDF-11 stacked elements.

The LSR macro defines the KDF-11 logical shift right operation. The REST macro
is first invoked to ensure that HL is active, followed by a repetition of the machine
code required to perform a 16-bit right shift of the HL register pair. In the case of a
long shift, there is a considerable amount of inline machine code for the operation.
Thus, it is a useful exercise to redefine LSR, so that it generates an inline subroutine
to perform the shift operation for values of LEN sufficiently large to warrant the
subroutine call. Although this requires a subroutine set up and call, the amount of
generated code can be reduced significantly for programs that make heavy use of the
LSR operator.

The GEQ macro follows the LSR definition and allows conditional branching to
the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-11 stack. This has the side-effect of setting the 8080 carry
bit if the next to top element exceeds the top element in the KDF-11 stack. The ?TR
macro eventually leads to the @TR subroutine where the status flags (including the
carry condition) are saved and restored. Otherwise, GEQ could not count on the
condition of the carry flag.

All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIG1TAL '''L'''.r''',~, 135

9.2 Machine Emulation Programmer's Utilities Guide

Further, the 8080 A register contains the least significant byte of the difference
between DE and HL, so the ORA H produces a zero result if the difference is zero.
To be complete, the KDF-11 should have a complete range of conditional tests,
allowing tests for equality (EQL), inequality (NEQ), less than (LSS), greater than
(GTR), and less than or equal (LEQ).

The DUP opcode first ensures that the HL register pair is active, then duplicates
this value by pushing the HL pair to the 8080 stack, emulating a KDF-11 stack push
operation. Note that the HL pair is active at the end of the DUP macro due to the
invocation of REST.

The BRN and XIT macros follow GEQ. The BRN macro simply translates to a
jump instruction in the 8080. The XIT macro first invokes the ?TR macro to check
for machine code tracing. A JMP 0 is then emitted, corresponding to a system restart
in both CP/M and the emulated KDF-11 machine architecture. The XIT macro then
produces an ORG statement that restarts the assembly process in the data area of
the emulat'ed environment (1000H, or 4096 decimal). The area reserved for the stack
is then set up, followed by the declaration of the label STACK at the top of this
reserved area. Note that the SAVE macro includes the statement sequence:

IF
ENDIF

STACK ;;is it present?

which ensures that both the SIZ and XIT macros have been included in the assembly.
If the XIT macro is not included, then the label STACK does not appear unless used
in the KDF-11 program, and the IF STACK test produces an undefined operand (U)
error. Further, if the XIT operator is used, but the SIZ is not, then the statement DS
SIZ * 2 within XIT produces an undefined operand message. Although these tests are
by no means complete, they detect the most common errors.

Listing 9-11 also contains the definitions of both the RDM and WRM opcodes,
based on the memory mapped input/output addresses defined by ADCO through
ADC3 for the A-D ports, and DACO through DAC3 for the D-A ports. The RWTRACE
(Read-Write Trace) macro is included for tracing the RDM and WRM macros when
DEBUGP is true. The MSG argument corresponds either to A-D INPUT for the
RDM opcode or to D-A OUTPUT for the WRM opcode. The ADR argument corre­
sponds to the absolute decimal address where the memory mapped input/output is
taking place. Thus, RWTRACE simply constructs a trace message from its two argu­
ments and passes this message to PRN for display at the debugging console.

136 ALL INFORMAT!ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

The RDM macro reads the port given by the argument ?C (0, 1, 2, or 3). The HL
register pair is pushed, if necessary, by the SAVE macro, leaving the active flag set
for the RDM. RDM then generates an invocation of the RWTRACE macro to pro­
duce the trace message. Note that the argument "% ADC&?C" produces the numeric
value ADCO, ADC1, ADC2, or ADC3, which is included in the trace message. If the
% is omitted, only the name, not the value, of the input port address is printed.
Following the output message, UGEN is invoked to ensure that the utility subrou­
tines have been included inline. The call to @IN allows you to type a hexadecimal
value for the simulated A-D input value. This value is subsequently stored to memory
and left in the HL register pair with ACTIVE true. If DEBUGP is not set, then the
RDM macro simply loads the HL register pair from the appropriate memory mapped
input location. Finally, RDM invokes ?TR to check for possible opcode tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro is
first invoked to ensure that the HL registers contain the top element of the KDF-ll
stack. This value is displayed at the debugging console if DEBUGP is true and then
sent to the appropriate memory mapped output location.

One application of the emulated KDF-ll machine shows the power of this instruc­
tion set. As a small part of a machine control system, a KDF-ll processor monitors
the machine tool head motion. Nachtflieger engineers connect A-D port 0 to a KDF-
11 processor that reads the instantaneous velocity of the tool head at 1 millisecond
(ms) intervals.

The velocity is provided at the A-D port in micrometer (urn) increments, and the
processor is synchronized with the input, so that it halts until the 1 ms interval has
elapsed. Nachtflieger engineers also guarantee that the tool head is in motion for no
more than 100 ms before stopping. Thus, with no variations in velocity, if the tool
moved at the constant rate of 256 um/ms over 50 intervals of 1 ms each, total
distance traveled by the tool is

256 um/ms * 50 ms = 1280 urn = 1.280 mm

During its travel, however, the instantaneous velocity of the tool head varies
according to the roughness of the cut, wear on the parts, and start/stop intervals.

ALL !NFORMATION PRESENTED HERE 1S PROPRlETARY TO DIGITAL RESEARCH 137

9.2 Machine Emulation Programmer's Utilities Guide

Nachtflieger uses the data collected during a cut to monitor these factors and displays
machine operator information in both digital and analog forms. A primary function
of the KDF-ll processor in this case is to collect instantaneous velocities during a
single cut and hold these values for analysis as the tool returns to its starting posi­
tion. listing 9-12 shows a KDF-ll program that includes the data collection phase
and an analysis phase described below.

The data collection phase of listing 9-12 occurs between the labels MOVE? and
COMP; the analysis phase is found between labels COMP and ENDF. The program
is bounded by the SIZ operator at the beginning and the XIT operator at the end,
followed by DCL opcodes that reserve data areas. This program also includes debug­
ging PRN, DMP, TRT, and TRF opcodes for checking out the program.

As for the DCl statements at the end of listing 9-12, the vector V is declared with
length 100 (double bytes), which holds the collected velocities; I and X are temporary
values used during the collection and analysis phase. The variable TOTAL is a result
produced by the analysis, as discussed below.

The program collects data by performing the following steps. The variable I is first
initialized to 0, corresponding to the first velocity V(O). The program then examines
the A-D input port for the first nonzero velocity, waiting for the tool head to begin
its travel. When the first nonzero velocity is read, the collection process proceeds by
storing the first value at V(O). The index value I is then moved along as data items
are read, with values placed into V(l), V(2), continuing until a zero value is read,
indicating the tool has ended its travel.

Referring to Listing 9-12, note that the KDF-ll opcodes listed before the label
MOVE? initialize the index I by loading a literal 0 value to the KDF-ll stack,
followed by a store into the variable I. To follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine
code trace immediately before the MOVE? label.

138 AllINfORMAT!ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

0000
0103
0103
0103
0136
01D3
01E8

01E8
0210
0213
0216
021A
0227

022A
0250
028C
028F
02AC
02AF
0263
0265
02B8
02BB
02BF
02CC
02F4
02F7

02FA
031A

032D
0330
0331
0334
0338
035F
0372
0388
03A3
03A6
03B3

MOVE?:

READ:

CoMP:

GETNXT:

MACLI B DSTACK iSTACK MACHINE SIMULATION
SIZ
TRT
TRT
PRN
LIT
STo
TRF
LOOK
iREAD
RDM
STo
VAL
LIT
GEQ
BRN

PRN
DMP
VAL
STo
VAL
LIT
SUM
STo
LIT
VAL
GEQ
RDM
STo
BRN

PRN
DMP

50 i50 LEVEL STACK
P i TURN ON PRN TRACK
T iTURN ON CODE TRACE
<COMPUTATION OF TOOL TRAVEL DISTANCE)
o iINITIALI2E INDEX
I iI =0
T iTURN CODE TRACE OFF

FOR STARTING MOTION (NON ZERO VALUE)
A-D CONVERTER FOR NON ZERO

o
X
X

READ
MOVE?

iHoLD TEMPORARILY
iRELOAD FOR TEST
iX GEQ 1 TEST
iX GEQ 1 ?
iRETRY IF NOT

<STORE FIRST/NEXT VALUE)
X
X
~, tl
I

o
X
COMP
o
X
READ

<VALUES
'tdO

iLoAD FIRST/NEXT VALUE
iSTORE TO THE ITH ELEMENT
iINCREMENT I

iI + 1
iI=I+1
iO, FOR 0 GTR X TEST
iZERo VALUE READ?
iCOMPUTE DISTANCE IF 0
iREAD ANOTHER DATA ITEM
iSAVE IT IN X
iTO STORE AND TEST

ARE LOADED)

NOW COMPUTE DISTANCE TRAVELLED BY TOOL
LIT 0
DUP nwo ZEROES
STo iI =0
STo TOTAL noTAL=O
PRN <COMPUTING NEXT INTERVAL)
DMP I
DMP TOTAL
DMP (Vtl),2
LIT 0 iZERo AT END
VAL ',' tl iAT END?
GEQ ENDF iO GEQ X (I)?

Listing 9-12. Program for Tool Travel Computation

ALL INfORMATION PRESENTED HERElS PROPRIETARY TO DIGITAL RESEARCH 139

9.2 Machine Emulation Programmer's Utilities Guide

03CO
03CC
0300
03DF
03E6
03EA
03EC

03EF
03F2
03F6
03F8
03FB

03FE
0420
0437
043A
0462

1164
1166
1168
1230

ENDF:

NOT
VAL
VAL
SUM
lSR
VAL
SUM
STO

VAL
LIT
SUM
STO
BRN

PRN
DMP
VAL
WRM
XIT

DATA
DCl
DCl
DCl
DCl

AT END OF INTERVAL, COMPUTE NEXT TRAPEZO
VtI
VtI,l iV(l),V(I+1)

jV(I)+V(I+l)
j (V (I)+V (1+1) /2

TOTAL iREADY TOTAL
jTOTAl=TOTAl+TRAPEZOID

TOTAL i BACK TO SUM

iI=I+l

iBACK TO I
GETNXT

<END OF COMPUTATION>
TOTAL
TOTAL ilOAD FOR D-A OUTPUT
o jWRITE D-A PORT

AREA
I i INDEX
X iTEMPORARY
V,100 jVElOCITY VECTOR
TOTAL iTOTAl 0 I STANCE

Listing 9-12. (continued)

Following the MOVE? label, A-D port 0 is read and examined for the first nonzero
value. Each time the port is read, it is stored into the temporary variable X, then
reloaded and examined for a zero value. Because GEQ is the only comparison oper­
ator in the KDF-11 machine, the test is "1 greater than or equal to X." Thus, the
branch is taken to READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored
into V(I), where I is zero. The value of I is then incremented by loading I to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM), and then storing the sum back into I.
After incrementing I, the program proceeds to check the end of the tool travel. X is
loaded to the top of the stack, and the test 0 greater than or equal to X is performed.
If the condition is true, control transfers to the label COMP, where the analysis
phase begins. Otherwise, port a is read again, and the value is stored into the tem­
porary X. Control then proceeds back to the READ label to store the next velocity
and test for zero.

140 All INfORMATION PRESENTED HERE 15 PROPRiETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

Before 100 intervals have elapsed, the RDM 0 produces a zero value that is stored
into X and subsequently stored into V(I), for the current value of I. Thus, when
control arrives at the label CaMP, the instantaneous velocities are stored in V,
terminated by a zero. At this point, the analysis of these collected velocities can take
place.

The single function that takes place in the analysis section of Listing 9-12 is the
computation of the distance traveled by the tool through this interval. Nachtflieger
engineers have determined that it is sufficient to compute the distance traveled by the
tool using the trapezoidal rule that approximates the actual distance by summing the
average of each adjacent pair of velocities. The sums are formed as shown below:

where n is the last interval to sum. Thus, for example, if the velocity is constant at
256 urn/ms (which would not occur in practice), then

VI = V 2 = . . . = V n = 256

The summing formula given above reduces to 256 * n. Given the preceding example,
where n = 50 ms, this formula produces the value 1.280 mm, as given earlier. The
velocity values are not usually constant, so the numerical integration given by the
trapezoidal rule is used to obtain an approximation.

The KDF-ll instructions shown in Listing 9-12 between the CaMP and ENDF
labels perform the numeric integration, given by the trapezoidal rule. The temporary
I is used to index through the velocity vector V until the final zero value is encoun­
tered. For each interval, the values of two adjacent velocities are summed and divided
by two. Each result is then summed into TOTAL, where the values are accumulated
until the final zero velocity is discovered.

The opcode sequence immediately following CaMP places a zero value at the top
of the KDF-ll stack, then stores this value into both the index I and the accumulat­
ing sum given by TOTAL. Ignoring the trace opcodes, the operations following
GETNXT read the starting point of the next interval to process into the stack, using
VAL V,I (value of V, indexed by I). If 0 is greater than or equal to this value, then
the computation is complete and control goes to the label ENDF. Otherwise, the
value of V(I) is loaded to the KDF-ll stack, followed by the value of V(I + 1). The
loaded values are then summed (SUM) and divided by two (LSR 1), producing a
value that remains in the KDF-ll stack. TOTAL is then loaded and added to this

ALL INFORMATION PRESENTED HERE. PROPRIETARY TO DIGiTAL RESEARCH 141

9.2 Machine Emulation Programmer's Utilities Guide

partial sum, and the result is stored back to TOTAL. The index value I is then
incremented to the next interval and processing continues back at the loop header
GETNXT.

Upon processing the final zero velocity, control reaches the ENDF label where the
distance traveled is written to D-A output port zero. The output value is sent to
external instrumentation, which processes the result and displays the distance trav­
eled in a form that is readable by the tool operator.

Debugging statements have been placed throughout the program. These can be
used to trace the program execution. Listing 9-12 also contains TRT operators that
have enabled trace code generation. Thus this program, although longer than the
final production version, can be used to follow execution under CP/M.

Listing 9-13 shows the execution of the program of Listing 9-12 under DDT. The
messages printed at the debugging console are a result of the PRN opcodes distrib­
uted throughout the original program that were enabled through the TR T P opcode.
Further, the machine code trace was only enabled for the interval of two operation
codes (LIT and STO) at the beginning. To test this program, simple A-D values were
supplied at the console for the velocities:

Vo = 100H, VI = 120H, V2 = 100H, V3 = 80H, V4 = 0

Upon detecting the final 0 value, the trace of Listing 9-13 shows the first 10 values
of V (the last 5 elements are garbage values), followed by a trace of the sum opera­
tions for each interval. In each case, the pairs of values that are being added are
displayed (using the DMP opcode), followed by their summed value, along with the
running total. Upon completion of the distance computation, the value 320H is sent
to the D-A output port and displayed at the console.

After initial checks under CP/M, Nachtflieger programmers remove the TRT and
TRF statements from the KDF-11 program and reassemble, producing only the abso­
lute input/output instructions required for machine tool control. The resulting pro­
gram, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Listing 9-14 also provides an example of the listing produced when all machine
code operators are traced. Although the source program listing is not shown, it is
identical to Listing 9-12 except that the TRF T opcode is removed. Because the
complete trace is quite extensive, only a partial execution is shown in Listing 9-14.

142 ALL INfORMATION HERE IS PROPRIETARY TO DIGlTAl RESEARCH

Programmer's Utilities Guide

A>DDT INTEG,HEX
DDT I,IERS 1.1I
NEXT PC
01165 0000
-GI00

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 OF77
STo 01D6 0000 0000
A-D INPUT AT 1I2211 0
A-D INPUT AT 1I2211 100
STORE FIRST/NEXT VALUE
X= 0100
A-D INPUT AT 1I2211 120
STORE FIRST/NEXT VALUE
X= 0120
A-D INPUT AT 1I2211 100
STORE FIRST/NEXT VALUE
){= 0100
A-D INPUT AT 1I2211 80
STORE FIRST/NEXT VALUE
X= 0080
A-D INPUT AT 1I2211 0
STORE FIRST/NEXT VALUE
X= 0000
VALUES ARE LOADED
V= 0100 0120 0100 0080 0000 3ECO BAll C1C9 5EEl 5623
COMPUTING NEXT INTERVAL
1= 0000
ToTAL= 0000
VII= 0100 0120
COMPUTING NEXT INTERVAL
1= 0001
ToTAL= 0110
V 11= 0120 0100
COMPUTI NG NE){T
1= 0002
IJ II = 0100 0080
COMPUTING NEXT
1= 0003
ToTAL= 02EO

INTERVAL

I NTERI,IAL

IJ ,I = 0080 0000
COMPUTING NEXT INTERVAL
1= OOOLI
ToTAL= 0320
V,I= 0000 3ECO
END OF COMPUTATION
TOTAL= 0320
D-A OUTPUT ~T 1I2110 0320

9.2 Machine Emulation

Listing 9-13. Sample Execution of Distance Using DDT

ALL INFORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH 143

9.2 Machine Emulation

A>ddt inte!l.hex
OOT I,JERS 1.1I

NEXT PC
0852 0000
-!l100

COMPUTATION OF TOOL TRAVEL OISTANCE
LIT 026E 0000 CA61
STO 0306 0000 0000
A-O INPUT AT 128 0
ROM 031111 0000 0000
STO 0358 0000 0000
I.JAL 036E 0000 0000
LIT 03811 0001 0000
OIF 0380 FFFF 0000
GEQ 03AF FFFF 0000
A-O INPUT AT 128 6
ROM 031111 0006 0000
STO 0358 0006 0000
VAL 036E 0006 0000
LIT 03811 0001 0006
OIF 0380 0005 0000
GEQ 03AF 0005 0000
STORE FIRST/NEXT VALUE
X= 0006
I.JAL 01l3F 0006 0000
STO 01l5E 016F 0000
VAL 01173 0000 0000
LIT 01188 0001 0000
SUM 01180 0001 0000
STO 01162 0001 0001
VAL 01lC7 0006 0001
A-O INPUT AT 128 0
ROM 0501 0000 0006
STO 0516 0000 0006
LIT 0526 0001 0006
OIF 051111 0005 0001
GEQ 0556 0005 0001
STORE FIRST/NEXT VALUE
X= 0000
I)AL 01l3F 0000 0001
STO 01l5F 0171 0001
VAL 01173 0001 0001
LIT 01188 0001 0001
SUM 01180 0002 0001
STO 01162 0002 0002
VAL 01lC7 0000 0002
A-O INPUT AT 128
ROM 0501 0000 0000

Programmer's Utilities Guide

Listing 9-14. Partial Listing of Distance with Full Trace

144 AlliNFORMAT10N PRESENTED HERE is PROPRIETARY TO D!GITAL RESEARCH

Programmer's Utilities Guide 9.2 Machine Emulation

In summary, Nachtflieger MW derived several benefits from their emulation of the
KDF series stack machines. First, there is very little cost involved in designing and
altering their machine architecture. In fact, current prices for 8080 microcomputers
might preclude the custom LSI version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host
processor. If a higher performance or less expensive processor becomes available to
Nachtflieger, the existing programs can be used intact by changing only the macro
definitions for each of the KDF opcodes and reassembling using MAC.

Finally, machine emulation through macro defined operation codes offers a distinct
advantage over interpretive approaches because each opcode translates to only a few
host machine operations. Interpretive execution often involves ratios of 1000 to 20,000
emulated instructions per host instruction; macro based opcodes are often in a ratio
of less than 10 to 1. Further, interpretive processors usually require run-time support
consisting of a predefined general purpose subroutine package that is included for
each and every program. For a wide variety of microcomputer applications, machine
emulation through macro defined opcodes offers distinct advantages over alternative
approaches.

9.3 Program Control Structures

Macro facilities can provide program control statements that resemble those found
in many high-level languages. In general, program control statements allow Boolean
tests and conditional branching based on the outcome of the Boolean test. Further,
label names usually provided by you as the destination of a branch are automatically
generated for the particular statement.

The following paragraphs discuss three typical control statements that allow simple
conditional grouping (WHEN-ENDW), controlled iteration (DO-ENDDO), and case
selection (SELECT-ENDSEL). All three statements are program control facilities that
allow well-structured programming, resulting in programs that are easier to write,
debug, and maintain.

Two libraries are first introduced as a foundation for the discussion. The I/O
library shown in Listing 9-15 allows simple character input operations along with
full message output. The READ macro accepts a single character from the console
keyboard and stores this character into the variable given by the parameter V AR.
The WRITE macro shown in Listing 9-15 takes an ASCII message as a parameter
and sends this message to the console output device preceded by a carriage return
line-feed sequence. These simple 110 macros are stored in the disk in the file SIM­
PIO.LIB and are used in the examples that illustrate the control structures.

ALL !NfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 145

9.3 Program Control Structures Programmer's Utilities Guide

The second library used in the control structure examples is given in Listing 9-16.
Collectively, these macros define a number of Boolean operations that are performed
on 8-bit operands, providing the basic relational operations on unsigned integer values,
including:

LSS less than

LEQ less than or equal to

EQL equal to

NEQ not equal to

GEQ greater than or equal to

GTR greater than

In all cases, the macros accept three actual parameters. The parameters consist of
two data values involved in the test (X and Y), along with a program label that
receives control if the Boolean test produces a true value (TL). The first operand X
can be a labeled memory location containing an 8-bit value, and Y can be either a
labeled 8-bit location or a literal numeric value. If the first operand X is not supplied,
then the value to be tested is assumed to exist in the 8080 accumulator when the
macro is entered. Thus, for example, the macro invocation

LSS ALPHAtBETAtTRUECASE

compares the values stored at the labeled memory locations ALPHA and BETA,
defined by a DS or DB statement, and transfers to the program step labeled by
TRUECASE if ALPHA contains a value less than the value stored at BETA. The
invocation

LSS tBETAtTRUECASE

is similar, but it compares the contents of the 8080 accumulator with the value
stored at BETA. Finally, the invocation

LSS ALPHAt34tTRUECASE

compares ALPHA with the literal value 34 in the relational test.

146 AllINfORtviATION PRESENTED HERE IS PROPRIETARY TO DiGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

The macro TEST? is used throughout the macro library to construct the relational
test by first loading the initial operand X, if necessary. The second operand type is
then examined by executing an IRPC within the TEST? macro of Listing 9-16. This
extracts the first character of the Y operand. This first character must be either
numeric or alphabetic. If numeric, then the literal value is subtracted from the accu­
mulator, setting the 8080 condition codes. If the first character of Y is nonnumeric,
then the value is assumed to reside in memory. In this case, the HL registers are set
to the Y operand and the value at Y is subtracted from the accumulator value. In
any case, the 8080 condition codes are set as a result of the subtraction operation.
These condition codes are then used in the individual macros to produce conditional
jumps to the destination labels. These macros are collectively stored on the disk in a
file named COMPARE.LIB for use in examples that follow.

hlacro librano for simple i/o
bdos equ 00051'1 i b d 0 S en t no
con in equ 1 iconsole input function
hlS!!Out equ 9 ;print messa!!e til $

cr equ Odl'l ;carria!!e return
1 f equ Oal'l nine feed

re ad hlac ro I) a r
; ; read a sin!!le cl'laracter into var

mvi c,conin ;console input function
call bdos ;cl'laracter is in a
sta I) a r
endhl

write mac ro hiS!!
; ; w r it e message to console

local IlIs!!1,pms9
jlllP PIllS !!

III S !!1 : db c r d f Hleadin9' c r 1 f
db '&MSG' ;iinline messa!!e
db '$' ; ;messa!!e terlllinator

PhiS!!: hlvi c,mS90ut ;;print Illessa9'e til $
1)(i d ,ms 91
call bdos
endhl

Listing 9-15. Simple I/O Macro Library

ALL INfORMAT!ON PRESENTED PROPRIETARY TO DIGITAL RESEARCH 147

9.3 Program Control Structures

test?
; ;

tdi~?

macro XI}'
utility macro to ~enerate condition codes
if not nul X ;;then load X
Ida ;; assumed to be in memory
endif
i r p c
set
exitm
endm
if
sui
else
I x i
sub
endm

?}' I}' ;;Y (flaY be constant ope rand
'&?Y'-'O' ;;first char di~it?

;;-stop irpc after first char

tdi~? (= 8 ;;Y numeric?

h IY
M

;;yesl so sub immediate

;h' not numeric
;;so sub frOM memory

Iss Macro XI}'Itl
;; X Iss than Y test,
;; transfer to tl (true label) if true I
;; continue if test is false

test? X IY ; ;set condition codes
jc tl
endm

leq macro XIYltl
;; X less than or equal to Y test

Iss XIYltl
jz tl
endm

eql macro XIYltl
;; X equal to Y test

test? XIY
jz tl
endm

neq macro XIYltl
;; X not equal to Y test

test? XI}'
jnz tl
endm

Programmer's Utilities Guide

Listing 9-16. Macro Library for Simple Comparison Operations

148 All INfORMATION PRESENTED HERE!S PROPRIETARY TO DiGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

geq Macro XtYttl
;; x greater than or equal to Y test

test? x tY
jn c t I
endM

gtr Macro XtYttl
;; x greater than Y test

local fl ;;false label
test? x t Y
jc fl
dcr a
jnc tl

f I: endM

Listing 9-16. (continued)

Listings 9-17a and 9-17b show an example of a program that uses both the SIM­
PIO and COMPARE libraries. This program successively reads console characters
and print messages based on the character typed. The program begins by sending the
sign-on message at the label CYCLE. A character is then read and stored into X,
using the READ macro. The LSS test determines whether lower- to upper-case trans­
lation is required, assuming the input is alphabetic. If X is numerically less than 61H,
the value of a lower-case A, then control transfers to the label N OTRAN. Otherwise,
the character is loaded to the accumulator, the lower-case bit is stripped from the
character, and it is replaced in memory. Following the label NOTRAN, the character
is compared with the letters A, B, C, and D. In each case, a message is typed
corresponding to each letter. If one of these four letters cannot be found, the message
at ERROR is typed.

All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149

9.3 Program Control Structures Programmer's Utilities Guide

0100 ORG 100H

0100
012B

0133

013B 3AII02
013E E65F
01110 321102

0143
014B
0167 C30001

016A
0172
0180 C30001

0190
0198
01B3 C30001

01B6
01BE
0109
01EB C9

01EC
020E C30001

0211
0212

MACLIB SIMPIO iSIMPLE 10 LIBRARY
MACLIB COMPARE iCOMPARISON OPERATORS

CYCLE: WRITE <TYPE A CHARACTER FROM A TO 0 >

NOTRAN:

READ X
TEST FOR LOWER CASE ALPHABETIC
LSS X,61H,NOTRAN
ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61H), TRANSLATE
LOA
ANI
STA

X
5FH
X

NOW CHECK CASES

iCLEAR LOWER CASE BIT
jSTORE BACK TO X

NEQ X,%'A',NOTA
WRITE <YOU TYPED AN A)
JMP CYCLE

NOTA: NEQ X,%'B' ,NOTB
WRITE <YOU TYPED A B)
JMP CYCLE

NOTB: NEQ X,%'C' ,NOTC
WRITE <YOU TYPED A C)
JMP CYCLE

NOTC: NEQ X,%'D' ,ERROR
WRITE <YOU TYPED A D)
WRITE <BYE'-!)
RET

ERROR: WRITE <NOT AN A, B, C, OR D)

X:

JMP CYCLE

OS
END

jTEMP FOR CHARACTER

Listing 9-17 a. Single Character Processing using COMPARE

150 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DlGITAl RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

In comparing each letter, the macro NEQ starts with the first argument corre­
sponding to the character typed at the console (X); the second argument corresponds
to the letter to match. The % operator in each case produces the numeric value of
the character. This is necessary because the TEST? macro expects either a number or
a label value in the second argument position. The program processes characters
until a D is typed when it returns to the Console Command Processor. The intention
here is to show the use of Boolean tests used by the control structure macros that
follow.

Listing 9-17b shows a partial expansion of the macros given in the previous exam­
ple. The first message expansion is shown, along with the READ and NEQ macros.
The listing has been abstracted, however, and does not show the macro library
statements or the remainder of the program following the NOTA label.

ALL INfORMAT!ON PRESENTED IS PROPR!ETARY TO DIGITAL RESEARCH 151

9.3 Program Control Structures Programmer's Utilities Guide

0100+C32301
CYCLE: WRITE

JMP
<TYPE A CHARACTER FROM A TO D >
??0002

0103+0DOA ??0001: DB CR,LF
0105+5459504520 DB 'TYPE A CHARACTER FROM A TO D '
0122+24 DB '$'

0123+0E09
0125+110301
0128+CD0500

012B+OEOl
012D+CD0500
0130+321102

0133+3Al102
0136+D661
0138+DA1I301

01313 3All02
013E E65F
01110 321102

01113+3Al102
01116+D6111
01118+C26AOl

0111B+C35FOl
0111E+ODOA

??0002:

NoTRAN:

??0003:
0150+5911F5520511
015E+211
015F+OE09 ??0001l:
0161+11l1EOl
01611+CD0500
0167 C30001

NOTA:

LXI
CALL
READ
MIJI

CALL

MVI C,MSGOUT
D,??OOOl
BDoS
X
C,CoNIN ;CoNSoLE INPUT FUNCTION
BDoS ;CHARACTER IS IN A

STA . X
TEST FOR LOWER CASE ALPHABETIC
LSS
LDA
SUI
JC

X,61H,NoTRAN
X
61H
NoTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61 H), TRANSLATE
LDA
ANI
STA

X
5FH
X

;CLEAR LOWER CASE BIT
iSToRE BACK TO X

NOW CHECK CASES

NEQ){ ,'X, 'A' ,NOTA
LDA X
SUI 65
JNZ NOTA
WRITE <YOU TYPED AN A>
JMP ??0004

DB CR,LF
DB 'YOU TYPED AN A'
DB '$,

MVI C,MSGOUT
LXI D,??0003
CALL BOOS
JMP CYCLE

NEQ X ,'X, '13' ,NoTB

Listing 9-17h. Partial Trace of Listing 9-17 a with Macro Generation

152 ALL iNfORMATION PRESENTED HERE PROPRIETARY D!G!T AL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

The macro library shown in Listing 9-18, called NCOMPARE, expands upon the
basic relational macros by allowing a false branch option. Each macro accepts four
arguments: the X and Y operands, as before, a true label (TL), and a false label (FL).
It is assumed that either the TL or FL is supplied in any invocation of a relational
operator, but not both. If the TL is supplied, then the branch is taken if the relational
operator produces a true result. Conversely, if the TL label is absent but the FL label
is supplied, then the branch to FL is taken if the relational operation produces a false
result. Thus, NCOMPARE expands upon the COMPARE library by allowing all of
the relational operation and their negations. Using the NCOMPARE library, for
example, the macro invocation

LSS }{ t 20 t , FALSELA6

branches to the label FALSE LAB if X is not less than the value 20. The negation
operations are accomplished within the NCOMPARE library by first testing for a
null TL operand and, if empty, the relational operation is reversed by invoking the
appropriate negated macro. For example, the LSS macro in Listing 9-18 invokes the
GEQ macro, which is equivalent to 'not LSS' when the TL argument is empty and
supplies the FL argument to LSS as the TL label to GEQ. These negated relational
forms are used within the control structures described below.

Macro library for 8-bit COMParison operation

test? Macro XtY
;; utility Macro to ~enerate condition codes

tdiS?

if not nul x iithen load x
Ida i;x aSSUMed to be in MeMOry
endif
i rpc
set
exitM
endM
if
sui
else
1 x i
sub
endM

?Yt}' jjy Ma}' be constant operand
'&?Y'-'(l' jjfirst char di~it?

jjstop irpc after first char

tdiS? (= 8 jjy nUMeric?
jjYest so sub iMMediate

jiY not nUMeric
jjso sub frOM MeMOry

Listing 9-18. Expanded NCOMPARE Comparison Operators

ALL INfORMATION PRESENTED HE.RE. IS PROPR!ETARY TO DIGITAL RESEARCH 153

9.3 Program Control Structures Programmer's Utilities Guide

Iss Macro x,y,tl,fl
; ; x Iss than y t es t ,
; ; if tl is present, aSSUMe true test
;; if tl is absent, then invert test

if nul t I
seq x ,y ,fl
else
test? x, y j j set condition codes
Jc t I
endM

Macro x,y,tl,fl
;; x less than or equal to y test

if nul tl
seq x ,y ,fl
else
Iss x ,y ,t I
Jz tl
endM
Macro x,y,tl,fl

; ; x equal to y test
if nul tl
neq x ,y ,fl
else
test? x ,y
jz tl
endM

Macro x,y,tl,fl
; ; x not equa I to y test

if nul tl
eql x ,y ,fl
else
test? x ,y
Jnz tl
endM

seq Macro x,}',tl,fl
jj x sreater than or equal to y test

if nul tl
Iss x ,y ,f I
else
test? x ,y
jnc tl
endM

Listing 9-18. (continued)

154 ALL INFORI\I\ATION PRESENTED HERE is PROPRIETARY TO DIG!TAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

!ftr Macro x,y,tl,fl
jj x !freater than y test

if nul tl
leq x,ytfl
else
local g'fl j;false label
test? x, y
jc g'fl
dcr a
jnc tl

!ffl: endM

Listing 9-18. (continued)

Listing 9-19a is an example of the use of the NCOMPARE library within a pro­
gram. This program is similar to the previous example, but instead checks to ensure
that alphabetic translation occurs only within the proper range of lower-case letters.
Following the label CYCLE, the character read from the console is compared with a
lower-case a, using the % operation to produce equivalent decimal value 97. Because
the negated form of GEQ is used here, the label NOTRAN receives control if X is
not greater than or equal to %'a'. If X is greater than or equal to %a, program flow
continues to the next test in sequence where X is compared with a lower-case z
(% 'z' = decimal 122). In this case, the normal form of GTR is used. Control trans­
fers to NOTRAN if X is greater than % 'z', which is above the range of lower-case
alphabetics. If X is between % 'a' and % 'z', the character is changed to upper-case,
as before, by removing the lower-case bit and replacing X in memory. Note that the
indentation levels between the GEQ and GTR operations are included for readability
of the program.

All INfORMATiON PRESENTED HERE!S PROPR!ETARY TO DiGiTAL RESEARCH 155

9.3 Program Control Structures Programmer's Utilities Guide

Listing 9-19b shows the GEQ-GTR section of the program of Listing 9-19a with
full macro trace enabled. (See Section 10.) The trace in this listing shows the transi­
tion from GEQ to the LSS operator, substituting the FL label in place of the TL
label. Again, the macro library statements are not shown, and the listing following
the NOTRAN label is not present.

0100

0100
012B

0133

013B
01117 3A1D02
01l1A E65F
01l1C 321D02

01l1F
0157
0173 C30001

0176
017E
0199 C30001

019C
01AlI
01BF C30001

01C2
01CA
01E5
01F7 C9

01FB
021A C30001

021D
021E

ORG 100H
MACLIB SIMPIO iSIMPLE 10 LIBRARY
MACLIB NCOMPAREiCOMPARISON OPERATORS

CYCLE: WRITE <TYPE A CHARACTER FROM A TO D

NOTRAN:

READ X
TEST FOR LOWER CASE ALPHABETIC
GEQ X ,'x, I a I, ,NOTRAN iBRANCH ON FALSE
X IS GREATER OR EQUAL TO LOWER CASE A

GTR
LDA
ANI
STA

NOW CHECK CASES

X ,X, IZ I ,NOTRAN
X
5FH
X

iUPPER CASE
iBACK TO X

NEQ X,'x,/A/,NOTA
WRITE <YOU TYPED AN A)
JMP CYCLE

NOTA: NEQ X,'x,/B/,NOTB
WRITE <YOU TYPED A B)
JMP CYCLE

NOTB: NEQ X,X,/C/,NOTC
WRITE <YOU TYPED A C)
JMP CYCLE

NOTC: NEQ X,'x,ID/,ERROR
WRITE <YOU TYPED A D)
WRITE <BYE"!)
RET

ERROR: WRITE <NOT AN A, B, C, OR D)

X:

JMP

DS
END

CYCLE

iTEMP FOR CHARACTER

Listing 9-19a. Sample Program using NCOMPARE Library

156 All IN FORMAT!ON PRESENTED HERE IS PROPRIETARY DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

+
+
+
+
+
+
+

0133+3A1D02
+
+
+
+
+

0009+#
+
+

0136+D661
+
+
+
+

0138+DA4F01
+
+
+
+
+

+
+
+
+
+
+

013B+3A1D02
+
+
+
+
+

0001+#
+
+

TEST FOR LOWER CASE ALPHABETIC
GEQ X,X'a' "NoTRAN iBRANCH ON FALSE
IF
LSS
IF
GEQ
ELSE

NUL
X,97,NoTRAN
NUL NoTRAN
X ,97,

TEST? X ,97
IF NOT NUL X
LDA X
ENDIF
IRPC ?Y,97

TDIG? SET
E)< ITM
ENDM

TDIG? SET
EXITM
IF
SUI
ELSE
LXI
SUB
ENDM
JC
ENDM
ELSE

'&?Y'-'O'

'9' -'0'

TDIG? <= 9
97

NOT RAN

TEST?){ ,97
JNC
ENDM
X IS GREATER OR EQUAL TO LOWER CASE A

GTR X,X'z' ,NoTRAN
IF NUL NoTRAN
LEQ X1122,
ELSE
LOCAL GFL
TEST? X,122
IF NOT NUL X
LOA X
ENOIF
IRPC

TDIG? SET
EXITM
ENOM

TDIG? SET
EXITM
IF

?Y 1122
'&?Y'-'O'

, l' - ' 0'

TOIG? <= 9

Listing 9-19b. Segment of Listing 9-19a with + M Option

AU. IN fO RNlATI ON PRESENTED PROPRIETARY 157

9.3 Program Control Structures

013E+DG7A
+
+
+

0140+DA4701
0143+3D
0144+D24FOl

+
0147 3AID02
014A EG5F
014e 321D02

??0003:

NOTRAN:

SUI
ELSE
LXI
SUB
ENDM
JC
DCR
JNC

Programmer's Utilities Guide

122

H,122
M

?70003
A
NOTRAN
ENDM
LDA X
ANI 5FH iUPPER CASE
STA X iBACK TO X

Listing 9-19b. (continued)

Given the SIMPIO and NCOMPARE libraries, it is now possible to define the first
complete control structure, called the WHEN-ENDW group. The form of the group
IS

WHEN condition
statement-l
statement-2

statement-n
ENDW

where condition is a relational expression taking one of the forms

id,rel,id id,rel,number ,rel,id ,rel,number

and id is an identifier; rel is a relational operator (LSS, LEQ, EQL, NEQ, GEQ,
GTR), and number is a literal numeric value. Similar in form to the arguments of the
individual relational operators of the COMPARE library, the last two forms shown
above assume the first argument is present in the 8080 accumulator. The condition
following the WHEN is evaluated as a relational expression, according to the rules
stated with the COMPARE library. If the condition produces a true result, then
statement-l through statement-n are executed. Otherwise, control transfers to the
statement following the ENDW. Nested WHEN-ENDW groups are allowed when
they take the form:

158 AllINfORMATION PRESENTED HERE IS PROPRIETARY DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

WHEN ...

WHEN

WHEN

ENDW

ENDW

ENDW

to arbitrary levels, where the ellipses represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed
when they take the form:

WHEN ...

WHEN

ENDW

WHEN

ENDW

ENDW

The implementation of the WHEN-ENDW group is based upon macros that count
WHEN-ENDW groups and generate branches and labels at the proper levels in the
structure.

Listing 9-20 shows the WHEN macro library, consisting of four macros:

GENWTST
GENLAB
WHEN
ENDW

(generate WHEN test)
(generate label)
(beginning of WHEN group)
(end of WHEN group)

ALL INfORlV1ATION PRESENTED HERE IS PROPRiETARY TO DlGHAL RESEARCH 159

9.3 Program Control Structures Programmer's Utilities Guide

These macros, in turn, use the macros in the NCOMPARE library shown previously
and thus are assumed to exist in the user's program as a result of a MACLIB
NCOMP ARE statement. Label generation is based on the WCNT (WHEN count)
and WLEV (WHEN level) counters. WCNT is incremented each time a WHEN is
encountered, and WLEV keeps track of the number of WHENs that have occurred
without corresponding ENDWs.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to
zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using the relation R, operands X and Y, and WHEN counter WCNT.
The value of WeNT is passed to GENWTST rather than the characters weNT
themselves. Thus, at the first invocation of GENWTST, the dummy argument NUM
has the value 0. The first argument to GENWTST, called TST, corresponds to a
relational operation (LSS through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational because the TL argu­
ment is empty.

Again referring to the body of the GENWTST macro in Listing 9-20, the last
argument, corresponding to the false label of the relational operation, is the con­
structed label ENDW&num, where num has the value ° initially, and successively
larger values on later invocations. Each time GENWTST is invoked, it generates a
relational test and a branch on false to a generated label. It is the responsibility of
the ENDW macro to produce the appropriate balanced label when encountered in
the program.

In the body of the WHEN macro in Listing 9-20, the WLEV level counter is set to
the current WeNT, and the WeNT is incremented in preparation for the next WHEN
statement. Similar to nearly all macros that redefine themselves, the outer macro
definition of WHEN invokes the newly created WHEN macro before exit.

Upon encountering the ENDW statement in the source program, the ENDW macro
first invokes GENLAB to generate the appropriate ENDW label. The first argument
to GENLAB is the label prefix ENDW; the second argument is the evaluated param­
eter % WLEV corresponding to the current ENDW label. If only one WHEN state­
ment is encountered, for example, the value of WLEV is zero, and thus GENLAB
produces the label ENDWO, which is the destination of the earlier branch generated
by an invocation of GENWTST. Following the invocation of GENLAB, WLEV is
decremented to account for the fact that one more destination label has been resolved.

160 ALL INFORMATION PRESENTED HERE IS PROPR!HARY TO D!G!TAL RESEARCH

Programmer's Utilities Guide

Macro library for "when" construct

label 9'enerators
9'enwtst Macro tst IX I}' InUM
;; 9'enerate a "when" test (ne9'ated forM) I
;; invoRe Macro "tst" IAiith paraMeters
;; X I}' I.\!ith JUIIlP to endl.\l &: nUM

tst X I}' I lendw&:nuIIl
en dfTl

9'enlab III ac ro lab IlHlITl
; ; produce the label "lab" &: UnuM"
lab&nuIIl:

en dIll

"IAihen" lilac ro s for s tart an d end

when III ac ro X V Ire I I}' V

;; initialize counters first tiMe
wcnt set 0 ;;nuIllber of whens
when Mac ro X I r I}'

9'enl.\ltst r IX IY I'X,IAiCnt
wlev set wcnt ; ;next endw to generate
wcnt set wcnt+l ;;nuMber of ;"when"s

en dIll
IAihen xv,rel,}'v
en dIll

endl,1 lIlac ro
;; 9'enerate the endin9' code for a "when"

9'enlab endwI%wlev

9.3 Program Control Structures

wlev set wlev-l ;;count current level down
;; wlev Must not 9'0 below 0 (not checRed)

endM

Listing 9-20. Macro Library for the WHEN Statement

ALL INfORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEARCH 161

9.3 Program Control Structures Programmer's Utilities Guide

As an example of the use of WHEN-ENDW, Listing 9-21a shows a sample pro­
gram that resembles the previous character scanning function, but uses the WHEN
group in place of simple tests and branches. As before, a single character is read
from the console and first tested for possible case conversion. The statement WHEN
X,GEQ,61H causes the three statements that follow to execute only when X is
greater than or equal to 61H (lower-case a). Further, the four WHEN groups that
follow test for the specific characters A, B, C, or D. If an A is typed, the correspond­
ing WHEN group executes, and control transfers back to the CYCLE label where
another character is read from the console. If the letter D is typed, the program
responds with two messages and returns to the console command processor.

Listing 9-21b shows the same program with full macro trace enabled. This portion
of the program shows macro processing for the first WHEN-ENDW group only,
although the remaining groups are processed in a similar fashion. It is a worthwhile
exercise to determine that the nesting rules for WHEN groups are properly stated,
and that the restriction on nested parallel groups is necessary.

0100 ORG 100H
MACLIB SIMPIO jSIMPLE 10 LIBRARY
MACLIB NCOMPAREjEXPANDEO COMPARE OPS
MACLIB WHEN jWHEN CONSTRUCT

0100 CYCLE: WRITE <TYPE A CHARACTER FROM A TO D
012B READ X

TEST FOR LOWER CASE ALPHABETI C
0133 WHEN X,GEQ,GIH
013B 3AII02 LDA X
013E EG5F ANI 5FH jCLEAR LOWER CASE BIT
0140 321102 STA X jSTORE BACK TO X
0143 ENDW

NOW CHECK CASES

0143 WHEN X,EOL,'X,'A'
014B WRITE <YOU TYPED AN A>
01G7 C30001 JMP CYCLE
OlGA ENDW

OlGA WHEN X,EOL,i,,'B'
0172 WRITE <YOU TYPED A B>
0180 C30001 JMP CYCLE
0190 ENDW

Listing 9-21a. Sample WHEN Program with - M in Effect

162 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

0190
0198
01B3 C30001
01B8

01B8
01BE
01D9
01EB C9
01EC

01EC
020E C30001

0211 X:

0000+# WCNT
+ WHEN
+
+ WLEV
+ WCNT
+
+
+
+
+
+
+
+
+
+
+

0133+3AII02
+
+
+ TOIG?
+
+

0008+# TOIG?
+
+

Listing 9-21h.

WHEN
WRITE
JMP
ENOW

WHEN
WRITE
WRITE
RET
ENDW

WRITE
JMP

DS

X ,EQL ,x, 'C'
<YOU TYPED A C>
CYCLE

X,EQL,'X, '0'
<YOU TYPED A D>
<BYE---!>

<NOT AN A, B, C, OR D>
CYCLE

;TEMP FOR CHARACTER

Listing 9-21a. (continued)

TEST FOR LOWER CASE ALPHABETIC
WHEN X,GEQ,81H
SET 0
MACRO X,R,Y
GENWTST R ,X ,y ,'X,WCNT
SET WCNT
SET WCNT+l
ENOM
WHEN X,GEQ,81H
GENWTST GEQ,X,61H,"x'WCNT
GEQ X ,81H, ,ENDWO
IF NUL
LSS X,81H,ENDWO
IF NUL ENDWO
GEQ X ,81H,
ELSE
TEST? X,81H
IF NOT NUL X
LDA X
ENDIF
IRPC ?Y,81H
SET '&?Y'-'O'
EXITM
ENDM
SET '8' - '0'
EXITM
IF TDIG? <= 8

Partial Listing of Listing 9-21a with + M Option

ALllNfORMAl!ON PRESENTED HE.RE IS PROPRIETARY TO DIGITAL RESEARCH 163

9.3 Program Control Structures Programmer's Utilities Guide

0138+D681 SUI 81H
+ ELSE
+ LXI Ht81H
+ SUB M
+ ENDM

0138+DA4301 JC ENDWO
+ ENDM
+ ELSE
+ TEST? Xt61H
+ JNC
+ ENDM
+ ENDM

0000+# WLEV SET WCNT
0001+# WCNT SET WCNT+1

+ ENDM
+ ENDM

013B 3A1102 LDA X
013E E65F ANI 5FH iCLEAR LOWER CASE BIT
01110 321102 STA X iSTORE BACK TO X

ENDW

Listing 9-21h. (continued)

A second control structure, called the DOWHILE-ENDDO group, takes the gen­
eral form:

DOWHILE condition
statement-1
statement-2

statement-n
ENDDO

where the condition and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is similar in concept to the WHEN group, except that statements
1 through n execute repetitively as long as the condition remains true. That is, the
condition is evaluated when the DOWHILE is encountered in normal program flow.
If the condition produces a false value, then control transfers to the statement follow­
ing the ENDDO. Otherwise, the statements within the group execute until the ENDDO
is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE,
and the condition is evaluated again. Iteration continues through the group until the
condition produces a false value.

164 All INfORMATION PRESENT£D HERE. IS PROPRIETARY TO DlGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

The macro library for the DOWHILE group is shown in Listing 9-22. The
DOWHILE statement invokes the relational operator macros to produce the proper
sequence of tests and branches. Upon encountering the ENDDO, the proper label
and jump sequence is again generated. The only essential difference in the DOWHILE
and WHEN groups is that the location of the DOWHILE test must be labeled, and
a JMP instruction must be generated to this label at the end of each group.

Macro library for "dowhile" construct

9'endtst Macro tst ,x ,y ,nUM
;; 9'enerate a "dowhile" test

tst X,}', ,endd&:nUM
endM

9'endlab Macro lab,nUM
;; produce the label lab &: nUM
;; for dowhile entry or exit
lab&:nuM:

endM

9'endjMP Macro nUM
;; 9'enerate JUMP to dowhile test

jMP dtest&:nUM
endM

dowhile Macro xv,rel,yv
;; initialize counter
docnt set 0 ;nuMber of dowhiles
; ;
dowhile Macro x,r,y
;; 9'enerate the dowhile entrY

9'endlab dtest ,:tdocnt
; ; 9'enerate the conditional test

9'endtst r 'x 1>' ,:tdocnt
dolev
docnt

set docnt ;;next endd to 9'enerate

enddo
; ;

; ;

dolev

set docnt+l
endM
dowhile xv,rel,yv
endM

Macro
9'enerate the JUMP to the test
gendjMP :tdolev
9'enerate the end of a dowhile
gendlab endd,1,dolev
set
endM

dolev-l

Listing 9-22. Macro Library for the DOWHILE Statement

ALL INFORiViATION PRESENTED IS PROPRIETARY TO DIGITAL RESEARCH 165

9.3 Program Control Structures Programmer's Utilities Guide

In Listing 9-22, GENDTST (generate DOWHILE test), GENDLAB (generate
DOWHILE label), and GENDJMP (generate DOWHILE jump) are all label genera­
tors used in the macros that follow. Similar to the WHEN macro, DOWHILE uses
the counters DOCNT and DOLEV to keep track of the number of DOWHILE
groups encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILEs. The DOWHILE macro first generates the entry
label DTESTn, where n is the DOWHILE count. The conditional test is then gener­
ated, similar to the WHEN macro, with a branch on false condition to the ENDDn
label that is eventually generated by the ENDDO macro. Finally, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Listing 9-22 first generates the JMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn
label that becomes the target of the jump on false condition. The form of the expanded
macros for one nested level thus becomes:

DTESTO:
conditional JUMP to ENDDO

DTEST 1 :
conditional JUMP to ENDDl
• • •
JMP DTESTl

• • +

ENDDl
JMP DTESTO

Listing 9-23a shows an example of a program that uses the DOWHILE group.
Although this program differs slightly from the previous examples, the principal
function is the same: a STOP character is first read from the console, followed by a
group of statements that repetitively execute in search of the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed (X) to see if it matches the STOP character. If not (DOWHILE X,NEQ,STOP),
the statements up through the matching ENDDO are processed. If the value of X is
the character A, then the message YOU TYPED AN A is sent to the console. Other­
wise, the message NOT AN A is typed, followed by a check to see if the STOP
character was typed. If so, the messages STOP CHARACTER and BYE! appear at
the console. Control continues through the ENDWs to the ENDDO and back to the
DOWHILE header. The DOWHILE X,NEQ,STOP produces a false condition, and
control transfers to the XRA A instruction following the ENDDO.

166 ALL !NfORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

0100

0100
0127

012F
0139
0159

0161
0169
0185

0185
018D
01A3
01AD
01C9
01D6
01D6
01D6

01DE AF
01DF 320002
01E2
OlEA
01F8 210002
01F6 34
01FC
01FF C9

0200 00
0201

ORG 100H
MACLIB SIMPIO iSIMPLE 10 LIBRARY
MACLIB NCOMPAREjEXPANDED COMPARE OPS
MACLIB WHEN jWHEN CONSTRUCT
MACLIB DOWHILE jDOWHILE STATEMENT

WRITE <TYPE THE STOP CHARACTER: >
READ STOP
X = 0 FOR THE FIRST LOOP

DOWHILE X,NEQ,STOP iLOOK FOR STOP CHARACTER
WRITE <TYPE A CHARACTER: >
READ X

WHEN X,EQL,%'A'
WRITE <YOU TYPED AN A>
ENDW

WHEN X,NEQ,%'A'
WRITE <NOT AN A>

WHEN X,EQL,STOP
WRITE <STOP CHARACTER>
WRITE <BYE"! >

ENDW
ENDDO

ENDW

CLEAR THE SCREEN (23 CRLF'S)
XRA A
STA X iX=O
DOWHILE X,LSS,23
WRITE < >
LXI
INR
ENDDO
RET

X: DB
STOP: DS

H,X
M

o
1

iX=X+l

iEXECUTES "DOWHILE" FIRST TIME
jSTOP CHARACTER

Listing 9-23a. An Example Using the DOWHILE Statement

ALL !NFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 167

9.3 Program Control Structures Programmer's Utilities Guide

010E AF
010F 320002

01E2+3AOO02
01ES+0'617
01E7+02FFOl

01EA+C3FOOl
01EO+ODOA
01EF+24
01FO+OE09
01F2+11EOOl
01F5+CD0500
01FB 210002
01FB 34

01FC+C3E201
01FF CS

CLEAR THE SCREEN (23 CRlF'S)
XRA A
STA x ;X=O
om·mIlE X,lSS,23
lOA X
SUI 23
JNC ENOOl
WRITE <>
JMP ??0014

??0013: DB CR,lF
DB '$'

??0014: MVI C,MSGoUT
LXI 0,??0013
CAll BOOS
LXI H,X
INR M ;X=X+l
ENOOo
JMP OTESTl
RET

Listing 9-23b. Partial Listing of Listing 9-23a
with Macro Generation

In Listing 9-23a, the second DOWHILE-ENDDO group clears the normal CRT
screen size of 23 lines. This is accomplished by first setting X to the value zero,
followed by a DOWHILE group that checks the condition X,LSS,23 which iterates
until X reaches the value 23. The WRITE statement within the DOWHILE group
produces only the carriage return line-feed on each iteration because the character
sequence within the brackets is empty. Following the WRITE statement, X is incre­
mented by one, acting as a line counter. When X reaches 23, the RET statement
following the matching ENDDO receives control, and the program terminates by
returning to the console processor. Note that the DB statement for X provides the
initial value zero, so that the first DOWHILE executes at least one time.

Listing 9-23b shows a portion of the program of Listing 9-23a, with partial macro
trace enabled. This trace does not show the generated labels ENDD1 and DTESTl
because no machine code was generated on those lines. The + M assembly parameter
would show the labels, however. The locations of these labels can be derived from
the hex listing to the left; the]NC ENDDl produces the destination address 01FF
corresponding to the RET statement, and the]MP DTESTl produces the address
01E2 corresponding to the LDA X instruction at the beginning of the DOWHILE
group.

168 All !NfORMAT!ON PRESENTED HERE is PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

The last control structure presented in this section is the SELECT -ENDSEL group,
which corresponds to the FORTRAN computed GO-TO, the ALGOL switch state­
ment, and the PL/M case statement. The general form of the SELECT group is

SELECT id
statement-set-O
SELNEXT
statement-set-l
SELNEXT

SELNEXT
statement-set-n
ENDSEL

where id is a data label corresponding to an 8-bit value in memory, and statement
set 0 through n denotes groups of statements separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in the
SELECT statement is taken as a case number assumed to be in the range 0 through
n. If the value is 0, statement-set-O is executed and, upon completion of the group,
control transfers to the statement following the ENDSEL. If the variable has the
value 1, then statement-set-l executes. Similarly, if the variable produces a value i
between 0 and n, then statement-set-i receives control. There can be up to 255
groups of statements within each SELECT-ENDSEL group, and any number of dis­
tinct SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed.
That is, a SELECT-ENDSEL group cannot occur within a statement-set that is enclosed
in another SELECT-ENDSEL group. As a convenience, the variable following the
SELECT can be omitted, in which case the current 8080 accumulator content selects
the proper case.

Listings 9-24a and 9-24b show the SELECT macro library that implements the
SELECT-ENDSEL group. The general strategy is to count the cases as they occur,
starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As
the cases occur, a case label is generated that takes the form CASEn@m where n
counts the SELECT-ENDSEL groups, and m is the case number within group n. A
jump instruction is generated at the end of each case to the label ENDSn that marks
the end of the SELECT group number n. Upon encountering the end of the group, a
select-vector is generated that contains the address of each case within the group,
headed by the label SEL Vn, where n is again the group number. Machine code is
thus generated at the SELECT entry, which indexes into the select vector, based upon
the SELECT variable, to obtain the proper case address. The first statement within
the case receives control based upon the value obtained from this vector.

ALL [NfORMATlON PRESENTED HERE IS PROPRIETARY TO DKdTAl RESEi\RCH 169

9.3 Program Control Structures Programmer's Utilities Guide

The general form of the machine code generated for the first SELECT group within
a program (group n = 0) is:

LDA id
LXI SELVO
(index HL by id, and
load the address to HL)
PCHL

CASEO@O:
statement-set-O
jMP ENDSO

CASEO@l:
statement-set-l
jMP ENDSO

CASE@n:
statement-set-n
jMP ENDSO

SELVO:
DW
DW

DW
ENDSO:

CASEO@O
CASEO@l

CASEO@n

Listing 9-24a contains the label generators GENS LXI (generate SELECT LXI),
GENCASE (generate case labels), GENELT (generate select vector element), and
GENSLAB (generate SELECT label). Listing 9-24b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL.

In Listing 9-24b, the SELECT macro begins by zeroing CCNT which counts SELECT­
ENDSEL groups and then redefines itself, similar to the WHEN and DOWHILE
macros. The redefined SELECT macro then generates the select vector indexing oper­
ation by loading the indexing variable, if necessary, and then fetches the specific case
address. No machine code is generated to check that the indexing variable is within
the proper range. The PCHL at the end of this code sequence performs the branch
to the selected case.

170 ALL INfORMAT!ON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

At the end of the redefined select macro, SELNEXT is invoked automatically, to
delimit the first case in the SELECT group (otherwise SELECT would have to be
followed immediately by SELNEXT in the user program to generate the proper
labels). SELECT also zeros the ECNT variable, which counts the cases until ENDSEL
is encountered.

macro library for "select" construct

label ~enerators

~enslxi macro num
;; load hi with address of case list

lxi h ,selv&num
endm

~encase macro num,elt
;; ~enerate jmp to end of cases

if elt 9t 0
jmp
endif

ends&num ;;past addr list

;; ~enerate label for this case
case&num&@&elt:

endm

~enelt macro numtelt
;; generate one element of case list

dw case&num&@&elt
endm

genslab macro numtelts
;; generate case list
selv&num:
ecnt set o iicount elements

rept elts ;;~enerate dw's
~enelt numt%ecnt

ecnt set ecnt+l
endm ;iend of dw's

i; ~enerate end of case list label
ends&num:

endm

Listing 9-24a. Macro Library for SELECT Statement

All INFORMAT!ON PRESENTED HERE IS PROPRlETARY TO DIGITAL RESEARCH 171

9.3 Program Control Structures

selnext Macro
;; Senerate the next case

Sencase kccnt,%ecnt
;; increMent the case eleMent count
ecnt set ecnt+l

endM

select Macro var
; ; Sene rate case
ccnt set 0

selection code
; ;count "selects"

select Macro iiredefinition of select
; ; select on v or accuMulator contents

if not nul v
Ida Hload select variable
endif
senslxi %ccnt ;;Senerate the 1 x i h,selv#
MOV e , a ;;create double precision
Mvi d ,0 Hv in d f e pair
dad d ;;sinSle prec index
dad ;;double prec index
MOl) e ,M Hlow o rd e r branch addr
inx h H t 0 hi sh o rd e r b}' te
MOV d ,M Hhish o rd e r branch index
xchs ;;ready branch address in
pchl ; ; Son e to the proper case

ecnt set 0 ;;eleillent counter reset
endM

; ; inl)oKe redefined select the firs t t i Ille
select I) a r

hi

selnext ;;automatically select case
en dill

endsel macro
ii end of select, Senerate case list

Sencase 'X,ccnt ,'X,ecnt
Senslab 'X,ccnt,%ecnt

;i increment "select" count
ccnt set ccnt+l

endM

; ;last case
;;case list

Programmer's Utilities Guide

0

Listing 9-24b. Library for SELECT Statement

You use SELNEXT, shown at the top of Listing 9-24b, to delimit cases. The
GENCASE utility macro is invoked which, in turn, generates a JMP instruction for
the previous group, if this is not group zero, and then produces the appropriate case
entry label. SELNEXT also increments the select element counter ECNT to account
for yet another case.

172 ALL INfORMATION PRESENTED IS PROPRIETARY TO DIGITAL RESEARCH.

Programmer's Utilities Guide 9.3 Program Control Structures

Upon encountering the ENDSEL, the last macro in Listing 9-24b, GENCASE is
again called to generate the JMP instruction for the last case. GENS LAB then pro­
duces the select vector by first generating the SELVn label, followed by a list of
ECNT DW statements that have the case label addresses as operands.

Listing 9-25a gives an example of a simple program that uses two SELECT groups.
The first SELECT group executes one of five different MVI instructions based on the
value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index and executes one of three different MVI instructions. The program
of Listing 9-25a illustrates generated control structures, and does not produce any
useful values as output. The sorted Symbol Table shown at the end of the listing
gives the generated label addresses for the individual cases.

Listing 9-25b shows a segment of the previous program with generated macro
lines. Note the case selection code following SELECT X at the end of the listing.

Listing 9-25c gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT -ENDSEL group of
Listing 9-25a. The listing has been edited to remove the case selection code, which is
listed in Listing 9-25b, and the code generated for case number 2. Cross-reference
Listing 9-25c with the SELECT macro library given in Listings 9-24a and 9-24b if
you are confused about the actions of these macros.

ALL lNfORMATION PRESENTED HERE is PROPRIETARY TO DiGITAL RESEARCH 173

9.3 Program Control Structures Programmer's Utilities Guide

MACLIB SELECT
0000 SELECT X
0010 3EOO MVI A,O
0012 SELNEXT
0015 3EOl MVI Ad
0017 SELNEXT
001A 3E02 MVI A,2
001C SELNEXT
001F 3E03 MVI A,3
0021 SELNEXT
0024 3E04 MVI A,4
0026 ENOSEL

0033 SELECT
0040 0600 MVI B,O
0042 SELNEXT
00115 0601 MVI Btl
00117 SELNEXT
OOllA 0602 MVI B,2
OOllC ENOSEL

0055 X: OS

0010 CASEO@O 0015 CASEO@l 001A CASEO@2 001F CASEO@3 00211 CASEO II
0029 CASEO@5 OOllO CASE1@0 0045 CASE1@1 004A CASE1@2 004F CASEl 3
0033 ENDSO 0055 ENOSl 0029 SELIJO 004F SELIn 0055 }{

Listing 9-2Sa. Sample Program Using SELECT with - M + S Options

174 ALlINfORtvi.ATION PRESENTED HERE PROPRIETARY TO DIGITAL RESEJ\RCH

Programmer's Utilities Guide

0000+3A5500
0003+212900
0006+5F
0007+1600
0009+19
000A+19
000B+5E
000C+23
0000+56
OOOE+EB
000F+E9
0010 3EOO

0012+C33300
0015 3EOl

0017+C33300
001A 3E02

001C+C33300
001F 3E03

0021+C33300
0024 3E04

0026+C33300
0029+1000
002B+1500
0020+1AOO
002F+IFOO
0031+2400

MACLIB
SELECT
LOA
LXI
MOV
MVI
DAD
DAD
MOV
INX
MOV
XCHG
PCHL
MVI
SELNEXT
JMP
MVI
SELNEXT
JMP
MVI
SELNEXT
JMP
MVI
SELNEXT
JMP
MVI
ENOSEL
JMP
OW
OW
OW
OW
OW

9.3 Program Control Structures

SELECT
X
X
H,SELVO
E,A
0,0
0
0
E,M
H
O,M

A,O

ENOSO
At!

ENOSO
A,2

ENOSO
A,3

ENOSO
A,4

ENOSO
CASEO@O
CASEO@l
CASEO@2
CASEO@3
CASEO@4

Listing' 9-25b. Segment of Listing 9-25 a with Mnemonics

All INFORMATION PRESENTED HERE IS PROPRIEtARY TO DIGITAL RESEARCH 175

9.3 Program Control Structures Programmer's Utilities Guide

SELECT
+ IF NOT NUL
+ LOA
+ ENOIF
+ GENSLXI 'X,CCNT

0033+214FOO LXI H,SELVl
+ ENOM

(indexing code similar to Fig SOb)

0000+# ECNT SET 0
+ GENCASE %CCNT,%ECNT
+ IF o GT 0
+ JMP ENOSl
+ ENOIF
+ CASE1@0:
+ ENOM

0001+# ECNT SET ECNT+l
+ ENOM
+ ENOM

0040 0800 MVI 5,0
SELNEXT

+ GENCASE 'X,CCNT ,%ECNT
+ IF 1 GT 0

0042+C35500 JMP ENOSl
+ ENOIF
+ CASE1@1:
+ ENOM

0002+# ECNT SET ECNT+ 1
+ ENOM

(remaining cases are similar)

ENOSEL
+ GENSLA5 'X,CCNT ,'X,ECNT
+ SELI)l :

0000+# ECNT SET 0
+ REPT 3
+ GENELT 1,'X,ECNT
+ ECNT SET ECNT+l
+ ENOM
+ GENELT 1,'X,ECNT

004F+4000 OW CASE1@0
+ ENOM

0001+# ECNT SET ECNT+ 1
+ GENELT 1 ,'X,ECNT

Listing 9-25c. Segment of Listing 9-25a with +M Option

176 ALL lNfORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

0051+4500 OW CASE1@1
+ ENDM

0002+# ECNT SET ECNT+ 1
+ GENELT 1 ,X,ECNT

0053+4AOO OW CASE1@2
+ ENDM

0003+# ECNT SET ECNT+1
+ ENDM
+ ENDS 1 :
+ ENDM

0002+# CCNT SET CCNT+ 1
+ ENDM

Listing 9-2Sc. (continued)

It is now possible to show a complete program that uses the WHEN, DOWHILE,
and SELECT groups. Listing 9-26 shows a program similar in function to a more
complicated program that interacts with the console in executing single-character
input commands. The two CP/M programs ED and DDT both take this general form.
(See the CP/M documentation for details.) A single letter selects a single action that
might correspond to an edit request in the ED program or a debug request in DDT.
Upon completion of each command, control returns to the main loop to accept
another single-letter command.

The program given in Listing 9-26 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Several mes­
sages are then sent to the console device, followed by a single DOWHILE-ENDDO
group that encompasses nearly the entire program. The DOWHILE group is con­
trolled by the X,NEW, % 'D' test and thus continues to loop while the X character is
not the letter D. On each iteration of the DOWHILE group, a single letter is read
from the console and converted to upper-case, if necessary. To ensure that the letter
is in the proper range of values, two WHEN groups follow that convert illegal values
to the letter E, which subsequently produces an error response.

ALL INFORMATION PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEARCH 177

9.3 Program Control Structures Programmer's Utilities Guide

Following the WHEN tests in Listing 9-26, the character must be in the range A
through E. Before indexing into the SELECT group, this value is normalized to the
absolute value 0 through 4, corresponding to each of the possible values. The SELECT
statement uses the value in the accumulator to select one of the five cases, producing
the appropriate response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the DOWHILE
where the last character typed is tested against the letter D. If X is not equal to the
letter D, the iteration continues. Otherwise, the DOWHILE completes and control
returns to the console processor.

The control structures presented in this section are representative of the forms that
can be implemented. Additional facilities, such as the controlled iteration found in
FORTRAN DO loops or ALGOL FOR loops can be implemented using essentially
the same techniques used for the WHEN and DOWHILE. Further, subroutine
parameters can also be defined with macro libraries. It is relatively easy to include
control substructures for the stack machine given in the previous section, allowing
machine independent programming of control structures and arithmetic operations.

178 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.3 Program Control Structures

0100

0100
0127
01S0

0174
017C
019C

01A4
01AC 3ABF02E6SF
01B4

01B4
01BC 3E4S32BF02
01Cl

01Cl
01CC 3E4S32BF02
0101

0101 3ABF02D641
0106
01E3
0204
0207
0228
022B
024C
024F
0270
0290
0293
02AE
02BB

02BE C9

ORG 100H jBEGINNING OF TPA
MACLIB SIMPIO jSIMPLE READ/WRITE
MACLIB NCOMPAREjCOMPARISON OPS
MACLI B WHEN j "WHEN" CONSTRUCT
MACLIB DOWHILE j"DOWHILE" CONSTRUCT
MACLIB SELECT j"SELECT" CONSTRUCT

USING THE CCP'S STACK, READ INPUT
CHARACTERS, UNTIL A Z IS TYPED
WRITE <SAMPLE CONTROL STRUCTURES>
WRITE <TYPED SINGLE CHARACTERS FROM>
WRITE <A TO D, I A

," 'LL STOP ON D>

DOWHILE X,NEQ,%'D'
WRITE <TYPE A CHARACTER:
READ){

WHEN }(,GEQ,X,'A'
LDA X! ANI OSFH! STA X jCONV CASE

ENDW

WHEN){ ,LSS ,x, 'A'
MVI A,'E'! STA X jSET TO ERROR

ENDW

WHEN X,GTR,X,'E'
MVI A,'E'! STA x jSET TO ERROR

ENDW

LDA){! SUI 'A' jNORMALIZE TO 0-4
SELECT jBASED ON X IN ACCUM

WRITE <YOU SELECTED CASE A>
SELNEXT
WRITE <YOU SELECTED CASE B>
SELNE){T
WRITE <YOU SELECTED CASE C>
SELNEXT
WRITE <YOU SELECTED CASE D>
WRITE <SO I"M GOING BACK"!>
SELNEXT
WRITE <BAD CHARACTER>

ENDSEL
ENDDO

RET jBACK TO CCP

02BF 00 X:
DATA
DB

AREA
o jX=OO INITIALLY

Listing 9-26. Program Using WHEN, DOWHILE, and SELECT

ALL INFORMATION PRESENTED PROPRIETARY TO DIGITAL RESEARCH 179

9.4 Operating System Interface Programmer's Utilities Guide

9.4 Operating System Interface

In a general purpose computing environment, macros often provide systematic and
simplified mechanisms for programmatic access to operating system functions.
Throughout this manual, the examples have shown various low-level calls to the
CP/M operating system that implement functions such as single-character input, sin­
gle-character output, and full message output. In each case, the macros simplify the
operations by performing the low-level register setups and calls that perform the
function.

This section introduces more comprehensive operating system interface macros and
shows a sample macro library that allows simplified disk file operations for sequen­
tial stream input/output operations. The principal macros of this library that allow
file access are listed below:

FILE set up a named file for subsequent disk operations.

GET read a single character from specific data source.

PUT send a character to a specific data destination.

FINIS terminate file access for specific group of files.

ERASE remove a specific disk file.

DIRECT search for a specific file on the disk.

RENAME rename a specific disk file.

Before introducing the macro library that performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:

FILE mode,fileid,diskname,filename,filetype, buffsize, buffadr

where the individual parameters of the FILE macro describe a file to be accessed in
the program. The parameter values for the FILE macro are:

mode INFILE (input file)
OUTFILE (output file)
SETFILE (set up filename for ancillary functions)

180 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

fileid

diskname

filename

filetype

buffsize

buffaddr

file identifier for internal reference throughout the program.

disk drive name (A, B, ...) containing the file being accessed, or
empty if the default drive is being used.

the filename (up to eight characters) of the disk file being accessed;
if "1" or "2" is specified, then the first or second default filename
is used, respectively.

the filetype (up to three characters) of the file being accessed; if
"1" or "2" has been specified for the filename parameter and an
empty filetype is given, then the filetype is taken from the selected
default filename; otherwise, the filetype is set to blanks.

the size in bytes of the buffer area used for this file; the value is
rounded down to an integral multiple of the disk sector size; if
the rounding produces a result that is too small, or if the param­
eter is empty, then only one sector is buffered.

the address of the buffer area to use during accesses to this file;
if empty, then the buffer address is assigned automatically.

For example, the FILE statement

FILE INFILEtZOTtAtNAMEStDAT

sets up the file NAMES.DAT on disk drive A for subsequent access. Internal to the
program, this file is referenced by the name ZOT. Further, the buffer address is
assigned automatically, and the buffer size is set to one sector (usually 128 bytes).
Larger buffers are useful in minimizing rotational delay on the disk due to missed
sectors during the file operations. If the NAMES.DAT file does not exist, an error
message is sent to the console, and the program aborts. For example, an output file
can be created using the statement:

FILE OUTFILEtZAPtBtADDRESStDATtl000

which creates the file ADDRESS.DAT on drive B for subsequent output, referenced
internally by the name ZAP. In this case, the buffer size is set to 1000 bytes (rounded
down to 7 * 128 = 896 bytes), and the base address of the buffer is set ~11t()mati­
cally. The sample programs show alternative FILE options.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGlTAL RESEARCH 181

9.4 Operating System Interface Programmer's Utilities Guide

The GET macro invocation takes the form:

GET device

where device specifies a simple peripheral or a disk file defined by a previously
executed FILE statement. The GET statement reads one byte of data into the 8080
accumulator from the specified device. The possible device names are:

KEY console keyboard input

RDR reader device

fileid previously defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.

GET KEY

GET RDR

GET ZOT

read one keyboard character.

read one reader character. (See the CP/M documentation for
READER entry point definition.)

read one character from the file given by the internal name ZOT.
(The NAMES.DAT file if the above FILE statement had been
executed.)

The end-of-data can be detected in two ways: if the file contains character data, the
end-of-file is detected by comparing the individual characters with the standard
CP/M end-of-file mark, which is a CTRL-Z (hexadecimal lAH). The GET function
also returns with the 8080 zero flag set to true if a real end-of-file is encountered, so
that pure binary files can be read to the end-of-data.

The PUT macro performs the opposite function from the GET macro. The PUT
invocation takes the form:

PUT device

182 ALL INfORNiATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

where device specifies a simple output peripheral or a disk file defined previously
using the FILE macro. The possible device names are

CON
PUN
LST
fileid

console display device
system punch device
system listing device
previously defined output file identifier

These PUT invocations perform the following functions:

PUT CON

PUT PUN

PUT LST

PUT ZAP

write the accumulator character to the console.

write the accumulator character to the punch.

write the accumulator character to the list device.

write the accumulator character to the file with the internal name
ZAP. (The ADDRESS.DAT file in the preceding example.)

Note that the character in the accumulator is preserved during the invocation, so
that it can be involved in further tests or macro invocations following the PUT
statement.

The FINIS statement closes a file or set of files upon completion of file access. In
the case of an output file, the internal buffers are written to disk, and the filename is
permanently recorded on the disk for future access. The form of the FINIS invocation
takes the form:

FINIS filelist

where filelist is a single internal name that appeared previously in a file statement or
a list of such filenames, enclosed within angle brackets and separated by commas.

ALL !NFORMATION PRESENT£D HERE is PROPR!ETARY TO DiGiTAL RESEARCH 183

9.4 Operating System Interface Programmer's Utilities Guide

Although it is not necessary to close input files with the FINIS statement, it is good
practice, because the file close operation might be required on future versions of the
macro library. An example of the FINIS statement is:

FINIS ZAP

write all buffers for the ZAP file, and record the file in the disk directory; in the
above example, the ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a disk file given by the speci­
fied file identifier defined in a previous FILE statement. If the file identifier is not used
in a GET or PUT statement, then the FILE statement can have the mode SETFILE.
This mode requires less program space than an INFILE or OUTFILE parameter.
Examples of the ERASE statement are given later in this section. In the example

ERASE ZOT

however, the file NAMES.DAT is removed from the disk, given the previous FILE
statement that defines ZOT.

The DIRECT macro searches for a specific file on the disk. Similar to the ERASE
macro, the file identifier must be previously given in a FILE statement using one of
the three possible file modes. The DIRECT invocation sets the 8080 zero flag to false
if the file is present on the disk. In both the ERASE and DIRECT macros, the file
identifiers can reference filenames and types with embedded? characters, similar to
the normal CP/M DIR command, where the question mark matches any character in
the filenames being scanned. The macro invocation

DIRECT ZAP

for example, returns with the zero flag cleared if the file ADDRESS.DAT is present,
and with the zero flag set if the file is not present, given the original FILE statement
involving the ZAP file identifier.

The RENAME macro takes the form:

RENAME newfile,oldfile

where newfile and oldfile are file identifiers that have appeared in previous FILE
statements. The RENAME macro changes the filename given by oldfile to the file -

184 ALL INfORMATION PRESENTED HERE!S PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

name given to newfile. The file identifiers newfile and oldfile must appear in previously
executed FILE statements, but can have a mode of SETFILE if they are not used in GET
or PUT macros. If the drive names for oldfile and newfile differ, then the drive name of
newfile is assumed. The sequence of macro invocations

FINIS
ERASE
RENAME

ZAP
ZOT
ZOTtZAP

;CLOSE ZAP
; REMOI.JE ZOT
;CHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases the
NAMES.DAT file on drive A. The RENAME macro then changes the ADDRESS.DAT
file to the name NAMES.DAT file on drive A.

Listing 9-27 shows the use of the FILE, GET, PUT, and FINIS macros in a working
program. This program reads an input file, specified at the Console Command Pro­
cessor level as the first filename, and translates each lower-case alphabetic character
to upper-case. The output is sent to the file given as the second parameter at the
command level. For a program assembled, loaded, and stored as CASE.COM on the
disk, a typical execution would be

CASE LOWER.DAT UPPER.DAT

This causes the CASE. COM file to load and execute in the Transient Program Area.
Before execution, the Console Command Processor passes LOWER.DAT as the first
default filename, and UPPER.DAT as the second filename. (See the CP/M documen­
tation for exact details.)

In Listing 9-27, the CASE program begins by initializing the stack pointer to a
local stack area in preparation for subsequent subroutine calls that occur within the
various macros in the SEQIO macro library. The first default file specification is then
taken as the SOURCE file, as defined in the first FILE macro. The second FILE
statement assigns the second default file specification as an output file with the inter­
nal name DEST. In both cases, the FILE statements open the respective files and
initialize the buffer areas, consisting of 2000 bytes rounded down to a multiple of
the sector size.

Note that if the UPPER.DA T file already exists, the second file statement removes
the existing file and creates a new UPPER.DAT file before continuing. In either case,
the appropriate error messages appear at the console if the files cannot be accessed
or created in the FILE statements.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 185

9.4 Operating System Interface Programmer's Utilities Guide

0100 ORG 100H
COPY FILE 1 TO FILE 2, CONVERT
TO UPPER CASE DURING THE COPY
AND ECHO TRANSACTION TO CONSOLE
MACLIB SEQIO iSEQUENTIAL 1/0 LIB

0000 BOOT EQU OOOOH iSYSTEM REBOOT
005F UCASE EQU 5FH iUPPER CASE BITS

0100 317003 LXI SP,STACK
DEFINE SOURCE FILE:

INFILE INPUT FILE
SOURCE INTERNAL NAME
(NUL) DEFAULT DISK

FIRST DEFAULT NAME
(NUL) FIRST DEFAULT TYPE
2000 BUFFER SIZE

0103 FILE INFILE ,SOURCE" 1 ,,2000

DEFINE DESTINATION FILE:
OUTFILE OUTPUT FILE
DEST INTERNAL NAME
(NUll DEFAULT DISK
2 SECOND DEFAULT NAME
(NUL) SECOND DEFAULT TYPE
2000 BUFFER SIZE

01EC FILE OUTFILE,DEST,,2,,2000

READ SOURCE FILE, TRANSLATE, WRITE DEST
02EA CYCLE: GET SOURCE
02ED FE1A CPI EOF iEND OF FILE?
02EF CAOC03 JZ ENDCOPY iSKIP TO END IF SO

NOT END OF FILE, CONVERT TO UPPER CASE
02F2 FEB1 CPI I a I iBELOW LOWER CASE "A"?
02F4 DAFE02 JC NOCONl,! iSKIP IF SO
02F7 FE7B CPI I z 1+1 iBELOW LOWER CASE IIZIl?

02F9 D2FE02 JNC NOCONl) iSKIP IF ABOVE
MASK OUT LOWER CASE ALPHA BITS

02FC EB5F ANI UCASE
02FE NOCONV: PUT CON iWRITE TO CONSOLE
030B PUT DEST iAND TO DESTINATION FILE
0309 C3EA02 JMP CYCLE iFOR ANOTHER CHARACTER

Listing 9-27. Lower- to Upper-case Conversion Program

186 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

ENDCOPY:
030C FINIS DEST jEND OF OUTPUT
034D C30000 JMP BOOT jBACK TO CCP

0350 OS 32 j1B LEVEL STACK
STACK:
BUFFERS:

1270 MEMSIZE EQU BUFFERS+@NXTB jPRDGRAM SIZE
0370 END

Listing 9-27. (continued)

The CASE program main loop is shown in Listing 9-27 between the CYCLE and
ENDCOPY labels. Each successive character is read from the SOURCE file (in this
case, LOWER.DAT) and tested to see if the character is in the range of a lower-case
a to lower-case z. If in this range, the character is changed to upper-case. At the
NOCONV label, the (possibly translated) character in the accumulator is sent to the
console device using the PUT CON macro and then sent to the DEST file (in this
case, UPPER.DAT). Looping continues back to the CYCLE label where another
character is read and translated.

Because the data file is assumed to consist of a stream of ASCII characters, the
end-of-file is detected when a CTRL-Z is encountered. When this character is found,
control transfers to the label ENDCOPY where the DEST file is dosed using the
FINIS macro. An error in writing or dosing the DEST file produces an error message
at the console, and the program aborts immediately. Upon completion of the pro­
gram, control returns to the console processor through a system reboot OMP BOOT).

The SEQIO library macros assume that all file buffers are located at the end of the
user's program, as shown in Listing 9-27. In particular, the label BUFFERS must
appear as the last label in the user's program, and becomes the base of the buffers
allocated automatically in the FILE statements. The actual memory requirements for
the program can be determined using an EQU as shown in Listing 9-27, with a
statement of the form:

MEMSIZE EQU BUFFERS+@N}-{TB

that produces the equated value 1270H at the left of the listing. In this case, the
program does not use the memory area beyond 1270H.

ALL INFORMATION PRESENTED HERE PROPR!ETARY TO D!GlTAL '''L::>Ln.'',~ .. x, 187

9.4 Operating System Interface Programmer's Utilities Guide

The macro library for SEQIO is shown in Listing 9-28. This listing is the most
comprehensive macro library shown in this manual, containing an instance of nearly
every macro facility available in MAC. The following discussion of SEQIO outlines
the general functions of each macro, but it is left to you to investigate the exact
operation of the library.

The SEQIO library begins with generally useful equates and utility macros. The
label FILERR at the beginning becomes the destination of transfers upon encounter­
ing a file operation error. Because this is a SET statement, it can be changed in the
user's program to trap error conditions rather than rebooting. The use of FILERR is
apparent throughout the macro library.

sequential file i/o lib ran'

filerr set OOOOh ;reboot after err 0 r
@bdos equ 0005h ;bdos en t n' point
@tfcb equ 005ch ;default f i 1 e control blocK
@tbuf e'lU 0080h ;default buffer address

bdos functions
@MS9' e'lU 9 ;send fTleSsa9'e
@opn e'lU 15 if i 1 e open
@cls e'lU 16 if i 1 e close
@dir e'lU 17 ;directon' search
@del e'lll 19 ; f i 1 e delete
@frd e'lll 20 if i 1 e re ad operation
@fwr e'lll 21 if i 1 e write operation
@MaK e'lll 22 if i 1 e MaKe
@ren e'lll 23 if i 1 e ren afTle
@dMa e'lU 26 ;set dflla address

@sect e'lU 128 ;sector size
eof e'lll lah ;end of file
c r e'lll Odh ;carria9'e return
if e'lU Oah jl in e feed
tab e'lll 09h ;horizontal tab

@Ke}' e'lll ;Keyboard
@con e'lll 2 ;console displa}'
@rd r e'lU 3 ;reader
@Plln e'lU 4 ;Pllnch
@lst e'lU 5 jl i s t device

Listing 9-28. Sequential File Input/Output Library

188 ALL INfORMATION PRESENH.D HERE PROPRIETARY TO DiG!TAL RESEARCH

Programmer's Utilities Guide

keywords for "file" Macro
infile e9U
outfile
setfile

iinput file
2 ;outputfile
3 ;setup naMe only

9.4 Operating System Interface

the followin~ Macros define siMPle se9uential
file operations:

fillnaM Macro fClc
;; fill the file naMe/type ~iven by fc for c characters
@cnt set c ;;Max length

irpc ?fcdc ;;fill each character
;; May be end of count or nul naMe

@cnt

; ;
;;

if @cnt=O or nul ?fc
exitM
endif
db
set
endM

'&?FC' ;;fill one More
@cnt-1 ;;decreMent Max len~th

; ;of i rpc ?fc

pad reMainder
rept @cnt
db
en drll
endM

;;@cnt is reMainder
; ;pad one More blank
; ;of rept

filldef Macro fcb I?fl I?1n
;; fill the file naMe frOM the default fcb
;; for len~th ?1n (9 or 12)

local psub
jMP psub ;;juMP past the subroutine

@def: ;;this subroutine fills frOM the tfcb (+16)
MOV
stax
inx
inx
dcr

a,M
d

d
c

jnz @def
re t

; ;~et next character to a
;;store to fcb area

Hcount length down to 0

Listing 9-28. (continued)

All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 189

9.4 Operating System Interface Programmer's Utilities Guide

;; end of fill subroutine
psub:
filldef

1 x i
1 x i
Mvi
call
endM

Macro ?fcb,?f,?l
h,@tfcb+?f ;;either @tfcb or @tfcb+1G
d ,?fcb
c ,?1
@def

;;len9'th = 8112

filldef fcb,?fl,?ln
endM

fillnxt Macro
;; initialize buffer and device nUMbers
@nxtb set 0 ;;next buffer location
@nxtd set @lst+l ;;next device nUMber
fillnxt Macro

endM
endM

fillfcb Macro fid ,dn ,fn ,ft ,bs Iba
;; fill the file control block with disk naMe
; ; fid is an in tern a 1 naMe for the f i 1 e ,
; ; dn is the d r i v e naMe (a ,b • .) , or blank
; ; fn is the file naMe, or blank
; ; ft is the file type
; ; bs is the buffer size
; ; ba is the buffer address

local pfcb
; ;
;; set UP the file control block for the file
;j look for file naMe = 1 or 2
@c set 1 ;;assuMe true to be9'in with

i rpc ?c ,fn ;; look th rOIJ9'h characte rs of nafTle
if not ('&?C' = '1' or '&:?C' = '2')

@c set o ;;clear if not 1 or 2
endM

; ; @c is true if fn = 1 or 2 at this point
if @c ;ithen fn = 1 or 2

; ; f i 11 froM default area
if nul ft ;;type specified?

@c set 12 ; ;both nafTle and type
else

Listing 9-28. (continued)

190 !NfOPJVlATION PROPRIETARY RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

@c set 9 ;;naMe only
endif
filldef ;;to select the fcb
jMP pfcb ;;past fcb definition
ds @c ;;space for drive/filenaMe/type
fillnaM ft,12-@c ;;series of db/s
else
jMP pfcb ;;past initialized fcb
if nul dn
db o ;;use default drive if naMe is zero
else
db '&DN'-'A'+l . ; ;use specified drive
endif
fillnaM fn,8 Hfi11 file naMe

;; now generate the file type with padded blanKs
fillnaM ft,3 Hand three character type
endif

fcb&fid equ $-12 ;;beginninS of the fcb
db 0 ;;extent field 00 for setfile

;; now define the 3 byte field, and disK Map
ds 20 Hx,xHc,dMO.ltdM15,cr fields

; ;
if fid&typ<=2 ;;in/outfile

;; generate constants for infile/outfile
fillnxt ;;@nxtb=O on first call
if bs+O<@sect

;; bs not supplied, or too sMall
@bs set @sect ;;default to one sector

else
;; COMPute even buffer address
@bs set (bs/@sect)*@sect

endif
; ;
;; now define buffer base address

if nul ba
;; use next address after @nxtb
fid&buf set buffers+@nxtb
;; count past this buffer
@nxtb set @nxtb+ bs

else
fid&buf set ba

endif
;; fid&buf is buffer address
fid&adr:

dw fid&buf

Listing 9.28. (continued)

ALL INFORMA.T10N PRESENTED PROPRIETARY RESEARCH 191

9.4 Operating System Interface

; ;
fid&siz
fid&len:

dw
fid&ptr:

@bs

@bs ;;literal size

;ibuffer size

ds 2 ;;set in infile/outfile
;; set device nUMber
@&fid set @nxtd ;inext device
@nxtd set @nxtd+l

endif iiof fid&typ<=2 test
pfcb: endM

file Macro Md,fid,dntfntft,bs,ba
;; create file using Mode Md:
i; infile = 1 input file
;; outfile = 2 output file
i; setfile = 3 setup fcb
;; (see fillfcb for reMaining paraMeters)

local psub tMSg tPMSg
local pnd teod teob ,pnc

;; construct the file control block
;;

Programmer's Utilities Guide

fid&typ equ Md ;;set Mode f~r later ref's
fillfcb fidtdn,fntfttbs,ba
if Md=3 ;;setup fcb onlYt so exit
exitM
endif

;; file control block and related paraMeters
;; are created inlinet now create io function

JMP psub ;;past inline subroutine
if Md=l ;;input file

get&fid:
else

put&fid:
push psw ;;save output character
endif
lhld fid&len ;;load current buffer length
xchg ;;de is lenHh
lhld fid&ptr ;;load next to get/put to hi
MOV at! ;;coMPute cur-len
sub e
MOV ath
sbb d ;;carrY if next<length
Jc pnc ;;carrY if len Hr current

; ; end of buffer, fill/eMPty buffers
lxi h to
shld fid&ptr ;;clear next to get/put

Listing 9-28. (continued)

192 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

pnd:
jj process next disK sector:

xchg jifid&ptr to de
Ihld fid&len i ido not exceed length

ii de is next to fill/eMPty, hI is Max len
MOl)

sub
MOl)

sbb
a ,d

h
jnc eob

iicoMPute next-len
iito get carry if More

i ito fill

jj carry gen'ed, hence More to fill/eMPty

jj

; ;

eod:

Ihld fid&adr iibase of buffers
dad d ; ihl is next buffer addr
xchg
MI)i c,@dMa iiset dMa address
call @bdos iidMa address is set
lxi d,fcb&fid iifcb address to de
if Md=l ijread buffer function
Mvi c ,@frd j ifile read function
else
Mvi
endif
call
ora
jnz
not end
1 x i
Ihld

c,@fwr iifile write function

@bdos iird/wr to/froM dMa address
a i ichecK return code
eod iiend of file/disK?
of file/disK, increMent length
d ,@sect i isector size
fid&ptr i inext to fill

dad d
shld fid&ptr iibacK to MeMOry
JMP pnd iiprocess another sector

ii end of file/disK encountered
if Md=l iiinput file
lhld fid&ptr iilength of buffer
shld fid&len iireset length
else

ii fatal error, end of disK
local
MI) i
lxi
call

eMSg
c '@MS 9
d ,eMS 9

@bdos
psw
filerr

iiwrite the error

i ierror to console
iireMove stacKed character
iiusually reboots

Listing 9-28. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY DIGITAL RESEARCH 193

9.4 Operating System Interface Programmer's Utilities Guide

eMsg': db c r d f
db 'disk full: &FID'
db '$'

endif
; ;

eob:
; ; end of buffer, reset dlTla and pointer

I x i d,@tbuf
Mvi c ,@dMa
call @bdos
I x i h ,0
shld fid&ptr ; ; n ext to g'e t

; ;
pn c:
;; process the next character

xch9' ;;index to g'et/put in de
lhld fid&adr Hbase of buffer
dad d ;;address of char in hI
xch9' ;;address of char in de
if Md=l Hinput processin9' differs
lhld fid&len ; ; for eof check
MOV ad ; ;OOOO?
ora h
Mvi a,eof ; ; en d of file?
rz ; ; zero flag' if so
ldax d ; ; ne x t char in acculTl
else

; ; s tore next character froM accuITlulato r
pop psw ;;recall saved char
stax d ;;character in buffer
endif
lhld fid&ptr ;;index to g'et/put
inx h
shld fid&ptr ;;pointer updated

; ; return with non zero fl a9' if 9'e t
ret

; ;

Listing 9-28. (continued)

194 IN FORlVlJ\T10N

Programmer's Utilities Guide 9.4 Operating System Interface

psub: ; ; pas t inline subroutine
x ra a Hzero to ac c
sta fcb&fid+12 Hclear extent
sta fcb&fid+32 Hclear cur re c
1 x i h,fid&siz ;;buffer size
shld fid&len ; ; set buff len
if Md=l ;;input file
shld fid&ptr ;;cause iMMediate read
Mvi c ,@opn ; ; 0 pen file function
else ;;output file
lxi h ,0 H set next to fill
shld fid&ptr ;;pointer initialized
Mvi c,@del
1 x i d,fcb&fid ;idelete f i 1 e
call @bdos ;; to clear existin!l file
Mvi c,@Mak ;;create a new file
endif

; ; now open (if input) , or Make (if output)
lxi d ,fcb&fid
call @bdos ;;open/Make ok?
in r a ; ;255 becoMes 00
jnz PMS!l
Mvi c '@MS!l ;;print Messa!le function
1 x i d ,MS!l ;;error Messa!le
call @bdos ;;printed at console
jMP filerr ;; to restart

MS!l: db c r d f
if Md=l ; ; in Pll t rTlessa!le
db 'n 0 &FID f i 1 e '
else
db 'n 0 d i r space: &FID'
endif
db '$,

PMS!l:
endM

finis Macro fid
; ; close the file(s) !liven by fid

i rp ?f ,(fid>
; ; skip all b II t output files

if ?f&typ=2
local eob? ,peof ,MS!l ,PMS!l

;; W r it e all partially filled buffers

Listing 9-28. (continued)

All INFORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH 195

9.4 Operating System Interface

eob?: ;;are we at the end of a buffer?
lhld ?f&ptr ;;next to fill
MOV a,l ;;on buffer boundary?
ani (@sect-1) and Offh
Jnz peof ;;put eof if not 00
if @sect)255

;; check hish order byte also
MOV a,h
ani (@sect-l) shr 8
Jnz
endif

peof ;;put eof if not 00

;; arrive here if end of buffer, set lensth
;; and write one More byte to clear buffs

shld ?f&len ;;set to shorter lenSth
peof: Mvi a,eof ;;write another eof

push
call

psw ;;save zero flaS
put&?f

pop psw ;;recall zero flas
Jnz eob? ;;non zero if More

;; buffers have been written, close file
Mvi c,@cls
lxi d,fcb&?f Hready for call
call @bdos
inr a ;;255 if err becoMes 00
Jnz PMSS

;; file cannot be closed
Mvi c ,@MSS
lxi d,MSS
call @bdos

;;error MessaSe printed

db 'cannot close &?F'
db' $'

PMSS:
endif
endM Hof the irp
endM

erase Macro fid
;; delete the file(s) siven by fid

irp ?f,(fid)
Mvi c ,@del
lxi d,fcb&?f
call @bdos
endM ;;of the irp
endM

Listing 9-28. (continued)

Programmer's Utilities Guide

196 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide

direct Macro fid
;; perforM directory search for file
;; sets zero flag if not present

lxi d Ifcb&fid
Mvi c,@dir
call @bdos
inr
endM

a ;00 if not present

renaMe Macro new,old
;; renaMe file given by "old" to "new"

local psub,renO
;; include the renaMe subroutine once

jMP psub
@rens: ;;renaMe subroutine, hI is address of

;;old fcb, de is address of new fcb
push h Hsave for renaMe
lxi bt16 ;;b=00,c=16
dad b ;;hl = old fcb+16

renO: ldax d ;;new fcb naMe
MOV M,a ;;to old fcb+16
inx
inx
dcr
jnz

h
c
renO

;;next new char
Hnext fcb char
;;count down froM 16

;; old naMe in first half, new in second half
pop d ;;recall base of old naMe
Mvi c ,@ren ;; renaMe function
call @bdos
ret ;;renaMe cOMPlete

psub:
renaMe Macro

lxi
lxi
call
endM

n,o ;;redefine renaMe
h,fcb&o Hold fcb address
d ,fcb&n ; ;new fcb address
@rens

renaMe new,old
endM

get Macro dev

;;renaMe subroutine

;; read character frOM device
if @&dev <= @1st

9.4 Operating System Interface

Listing 9-28. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 197

9.4 Operating System Interface Programmer's Utilities Guide

;; simple input
mvi ct@8.dev
call @bdos
else
call l1et8.dev
endm

put macro dev
; ; w ri t e character froM accum to device

if @&dev <= @ist
; ; simple output

push psw ; ; save character
mvi ct@8.dev ;;write char function
mov eta ;;ready for output
call @bdos ;;write character
pop psw ;;restore for testinl1
else
call put&dev
endm

Listing 9-28. (continued)

The equates that follow define the usual BDOS entry points and functions along
with the disk sector size (@SECT) and special nongraphic characters (EOF, CR, LF,
and TAB). The equates for @KEY through @LST are used in the GET and PUT
macros to determine the source or destination device. The INFILE, OUTFILE, and
SETFILE equates are used in the FILE macro as mnemonics for the file mode attribute.

FILLNAM is a utility macro used in the construction of a File Control Block.
FILLNAM accepts a filename or filetype along with a field size and builds a sequence
of DBs that fill the name or type field with padded blanks.

FILLDEF is a utility macro similar to FILLNAM, but FILLDEF fills the File Con­
trol Block name or type field from the default File Control Block at @TFCB or
@TFCB+ 16. FILLDEF is invoked to extract either the default filename (first eight
characters) or default filetype (following three-character field).

The FILLDEF macro constructs an inline subroutine to perform the data move
operation the first time it is invoked and calls the inline subroutine (@DEF) on
subsequent invocations.

198 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

FILLNXT initializes two assembly time variables: @NXTB and @NXTD. @NXTB
counts the accumulated size of buffers as they are automatically allocated in the FILE
statement. @NXTD counts files in the FILE macro for later reference in GET and
PUT statements. They are included within a macro, so that they are properly initial­
ized in the two successive passes of the macro assembler. FILLNXT is invoked by
the FILE macro where the expansion initializes @NXTB and @NXTD. FILLNXT
then redefines itself as an empty macro, so that subsequent FILE invocations do not
reset the two counters.

The macro FILLFCB constructs a File Control Block in the CP/M standard format,
where FID is the file identifier; DN is the disk name; FN is the filename; FT is the
filetype; BS is the buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters might be empty, causing
default conditions to be selected.

The FILLFCB macro begins by searching for a "1" or a "2" as the FN parameter,
indicating that default name 1 or 2 is to be selected for the file. The IRPC loop
involving ?C results in a value of 1 for @C if either FN = 1 or FN = 2, and a value
of 0 for @C if FN is not 1 or 2. The FILLFCB macro then selects either the default
name or the user-specified name along with the default or user-specified drive num­
ber. The equate for FCB&FID then produces the address of the File Control Block
for the file identifier followed by DB 0 for the extent field and DS 20 for the remain­
der of the File Control Block.

The remainder of the FILLFCB macro is devoted to storage allocation for buffer
areas. The @BS variable is set to the buffer size after rounding and size checks.
FID&BUF then becomes the address of the file buffer area, and FID&ADR labels a
DW containing this literal value. FID&SIZ becomes the literal size of the buffer, and
FID&LEN labels a DW containing the literal size. FID&PTR is also allocated as a
double byte that subsequently holds the buffer index of the next character to get or
put in the file. All of these values are used in the file operations that occur later.

The principal file access macro, FILE, sets up the File Control Block, buffers, and
access subroutines for a file. Similar to the FILLFCB macro, the parameters FID, DN,
FN, FT, BS, and BA describe the particular characteristics of a file. The MD param­
eter, however, indicates the file mode and must have the value 1, 2, or 3. The FILE
macro begins by assigning the mode value to FID&TYP, so that subsequent macros
can determine the type of access for this file. The FILLFCB macro is then invoked to
construct the File Control Block for this macro and sets generally useful parameters
for the file, as discussed previously. The FILE macro then generates the label GET&FID
for input files or PUT&FID for output files, followed by a subroutine that GETs a
single character or PUTs a single character for this file.

ALL INfORMATION PRESENTE.D HERE IS PROPRIETARY TO DIGITAL RESEARCH 199

9.4 Operating System Interface Programmer's Utilities Guide

The GET&FID reads a single character from the input buffer and, when the
input buffer is exhausted, fills the buffer area again in preparation for following GET
operations. Upon detecting a real end-of-file, the EOF character is returned with the
zero flag set. Similarly, the PUT&FID subroutine generated for output files stores the
accumulator character into the output buffer at the next character position and,
when the buffer is full, writes the sequence of sectors and returns to accept more
output characters. In the case of an output error, the appropriate message is printed,
and control transfers to FILERR, which usually remains at OOOOH, causing a system
reboot.

The generated code that follows the label PSUB initializes the file pointers to the
proper position for file access. The file extent and next record fields of the File
Control Blocks are zeroed for both input and output files. In the case of an input
file, the buffer index variable FID&PTR is set to the end of the buffer, causing an
immediate read operation when the first character is read. In the case of an output
file, the FID&PTR is set to zero, indicating that the next position to fill is the first
character of the output buffer. If the file is an output file, any duplicate files are
erased, and a new file is created. In both cases, the file is opened upon completion of
the FILE operation, and the buffer pointers are set for the next GET or PUT invoca­
tion. Note that the FILE statement is executable; it must occur ahead of the GET or
PUT statements for the file and. performs its function each time control passes through
the FILE machine code.

The FINIS macro serves to empty the output buffers and close the file for output.
Input files are skipped because no actions need take place to close an input file. The
FINIS macro fills the remaining buffer segment (one size sector) with EOFs, then
writes the partially filled buffers.

The ERASE macro accepts a file identifier or list of file identifiers and successively
calls the BDOS to erase each file, while the DIRECT macro searches for a single file
given by the file identifier FID. In the case of the DIRECT macro, the zero flag is
cleared if the file exists. No prechecks are made to see if the file exists before the
ERASE operation takes place, although erasing a nonexistent file is of no conse­
quence. The DIRECT macro can, of course, be used to check if a file exists before
the ERASE is executed.

200 ALL INfORMATION PRESENTED HERE 1$ PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

The RENAME macro allows a file to be renamed by accepting two file identifiers,
denoted by NEW and OLD. These file identifiers must correspond to the FCB names
created by FILLFCB in an earlier FILE invocation, and have the effect of renaming
the OLD file to the NEW filename. This is accomplished within the RENAME macro
through an inline subroutine, called @RENS, which is included the first time the
RENAME macro is invoked. The inline subroutine moves the new File Control Block
information (first sixteen bytes) into the second half of the old File Control Block in
the form required for a rename operation under CP/M. (See the CP/M documenta­
tion.) The BDOS is then called to perform the rename function. There is no check to
ensure the old file exists before the rename takes place.

The GET and PUT macros are similar in structure: both accept a device or file
identifier as the formal parameter DEV and perform the corresponding input or
output function on that device. If the device is a simple peripheral, the BDOS is
called directly to perform the input and output function. If, instead, the device name
was created by a FILE macro, the corresponding GET&FID or PUT&FID subroutine
is called to accomplish the input or output operation. Note that the accumulator is
preserved (PUSH PSW) upon output to a simple peripheral within the PUT macro;
the save/restore sequence is performed within the PUT&FID subroutine if the desti­
nation is a disk file.

Listings 9-29 shows the full expansion of a segment of the case conversion pro­
gram of Listing 9-27 (using the "+ M" assembly parameter). It begins with the
invocation of FILE, followed by FILLFCB, again followed by FILLDEF. The @DEF
subroutine is included in line, and the FILLDEF macro is redefined to exclude the
subroutine. Upon completion of the FCB construction, the file parameters are gener­
ated, as shown in Listing 9-29b, along with the beginning of the GETSOURCE
subroutine.

The conditional assembly ignores the portions of this FILE macro expansion that
are related to output files but includes the machine code for the input SOURCE file.
In each case, the &FID labels result in names with the prefix or suffix SOURCE,
associating the generated labels with this internal name. The machine code that
initializes the File Control Block fields and buffer pointer follows the label ? ?OOO1.
Upon completion of the FILE macro, the SOURCE file is ready for access. Each call
to GETSOURCE reads one more character into the accumulator. Due to the length
of the expanded macro form, the remainder of the case translation program is not
shown.

ALL INFORMATION PRESENTED HERE-IS PROPRIETARY TO DIGITAL RESEARCH 201

9.4 Operating System Interface Programmer's Utilities Guide

To illustrate the facilities of the SEQIO macro library, two additional programs
are given. The first, called PRINT, formats the output from the macro assembler for
printing on the system line printer. The second, called MERGE, performs a simple
merge operation on two disk files.

FILE INFILE ,SOURCE, t1, ,2000
+ LOCAL PSUB,MSG,PMSG
+ LOCAL PND,EOD,EOB,PNC

0001+= SOURCETYP EQU INFILE
+ FILLFCB SOURCE, ,1, ,2000,
+ LOCAL PFCB

0001+# @C SET 1
+ IRPC ?C t1
+ IF NOT ('&?C' '1' OR '&?C' '2' l
+ @C SET 0
+ ENDM
+ IF NOT (, 1 ' '1' OR ' 1 ' '2' l
+ @C SET 0
+ ENDM
+ IF @C
+ IF NUL

OOOC+# @C SET 12
+ ELSE
+ @C SET 9
+ ENDIF
+ FILLDEF FCBSOURCE,(1-ll*16,@C
+ LOCAL PSUB

0103+C30F01 JMP ??0009
+ @DEF:

0106+7E MOV A,M
0107+12 STAX D
0108+23 INX B
0109+13 INX D
010A+OD DCR C
010B+C20601 JNZ @DEF
010E+C9 RET

+ ??0009:
+ FILLDEF MACRO ?FCB,?F,?L
+ LXI H,@TFCB+?F
+ LXI D,?FCB
+ MVI C,?L
+ CALL @DEF

Listing 9-29. Sample FILE Expansion Segment

202 ALL IN FORMAT10N PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

+ ENOM
+ FILLOEF FCBSQURCE,(1-1)*18,@C

010F+215COO LXI H,@TFCB+(1-1)*18
0112+111001 LXI O,FCBSQURCE
0115+0EOC Ml.,!! C,@C
0117+C00801 CALL @OEF

+ ENOM
+ ENOM

011A+C3111101 JMP ??0008
0110+ OS @C

+
0000+# @CNT SET 12-@C

+ IRPC ?FC,
+ IF @CNT=O OR NUL ?FC
+ EXITM
+ ENOIF
+ DB '&?FC'
+ @CNT SET @CNT-1
+ EN OM
+ IF @CNT=O OR NUL
+ EXITM
+ REPT @CNT
+ DB
+ ENOM
+ ENOM
+ ELSE
+ JMP ??OOO8
+ IF NUL
+ DB 0
+ ELSE
+ DB ' '= 'A' +1
+ ENDIF
+ FILLNAM 1 ,8
+ FILLNAM ,3
+ ENOIF

0110+= FCBSQURCE EQU $-12
0129+00 DB 0
012A+ OS 20

+ IF SOURCETYP< =2
+ FILLNXT

0000+# @NXTB SET 0
0008+# @NXTO SET @LST+1

+ FILLNXT MACRO
+ ENDM

Listing 9-29. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 203

9.4 Operating System Interface Programmer's Utilities Guide

+ ENDM
+ IF 2000+0(@SECT
+ @BS SET @SECT
+ ELSE

0780+# @BS SET (2000/@SECTl*@SECT
+ ENDIF
+ IF NUL

0370+# SOURCEBUF SET BUFFERS+@NXTB
0780+# @NXTB SET @NXTB+@BS

+ ELSE
+ SOURCEBUF SET
+ ENDIF
+ SOURCEADR:

013E+7003 DW SOURCEBUF
0780+= SOURCESIZ EQU @BS

+ SOURCELEN:
0140+8007 DW @BS

+ SOURCEPTR:
0142+ DS 2
0008+# @SOURCE SET @N)<TD
0007+# @N){TD SET @NXTD+1

+ ENDIF
+ ??0008: ENDM
+ IF INFILE=3
+ EXITM
+ ENDIF

0144+C3B401 JMP ??0001
+ IF INFILE=l
+ GETSOURCE:
+ ELSE
+ PUTSOURCE:
+ PUSH PSW
+ ENDIF

0147+2A4001 LHLD SOURCELEN
014A+EB XCHG
014B+2A4201 LHLD SOURCEPTR
014E+7D MOl.' A,L
014F+93 SUB E
0150+7C MOl.' A,H
0151+9A SBB D
0152+DA8D01 JC ??0007
0155+210000 LXI H,O
0158+224201 SHLD SOURCEPTR

Listing 9-29. (continued)

204 All INFORMATION PRESENTED HERf.lS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

+ ??0004:
015B+EB XCHG
015C+2Al1001 LHLD SDURCELEN
015F+7B MDV A,E
0160+95 SUB L
0161+7A MDV A,D
0162+9C SBB H
0163+D28FOl JNC ??0006
0166+2A3E01 LHLD SDURCEADR
0169+19 DAD D
016A+EB XCHG
016B+OE1A MVI C,@DMA
016D+CD0500 CALL @BOOS
0170+111001 LXI' D,FCBSOURCE

+ IF INFILE=1
0173+0E14 MVI C,@FRD

+ ELSE
+ MVI C,@FWR
+ ENDIF

0175+CD0500 CALL @BDDS
0178+B7 ORA A
0179+C28901 JNZ ??0005
017C+118000 LXI D,@SECT
017F+2Al1201 LHLO SDURCEPTR
0182+19 DAD D
0183+224201 SHLD SOURCEPTR
0186+C35B01 JMP ??0004

+ ??0005:
+ IF INFILE=1

0189+2A1l201 LHLD SDURCEPTR
018C+2211001 SHLD SOURCE LEN

+ ELSE
+ LOCAL EMSG
+ MVI C,@MSG
+ LXI D,EMSG
+ CALL @BDDS
+ POP PSW
+ JMP FILERR
+ EMSG: DB CR,LF
+ DB 'disK f u 11 : SOURCE'
+ DB '$'
+ ENDIF

Listing 9-29. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 205

9.4 Operating System Interface Programmer's Utilities Guide

+ ??0006:
018F+118000 LXI D,@T6UF
0192+0E1A M~JI C,@DMA
0194+CD0500 CALL @6DOS
0197+210000 LXI H,O
019A+224201 SHLD SOURCEPTR

+ ??0007:
019D+E6 XCHG
019E+2A3E01 LHLD SOURCEADR
01A1+19 DAD D
01A2+E6 XCHG

+ IF INFILE=1
01A3+2A4001 LHLD SOURCELEN
01A6+7D MOV A,L
01A7+64 ORA H
01A8+3E1A MVI A,EOF
01AA+C8 RZ
01A6+1A LDAX D

+ ELSE
+ POP PSW
+ STAX D
+ ENDIF

01AC+2A4201 LHLD SOURCEPTR
01AF+23 INX H
0160+224201 SHLD SOURCEPTR
0163+C9 RET

+ ??0001:
0164+AF XRA A
0165+322901 STA FC6S0URCE+12
0168 323D01 STA FC6S0URCE+32
0166+218007 LXI H,SOURCESIZ
016E+224001 SHLD SOURCELEN

+ IF INFILE=1
01C1+224201 SHLD SOURCEPTR
01C4+0EOF MVI C,@OPN

+ ELSE
+ LXI H,O
+ SHLD SOURCEPTR
+ Min C,@DEL
+ LXI D,FC6S0URCE
+ CALL @6DOS
+ MVI C,@MAK
+ ENDIF

Listing 9-29. (continued)

206 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

01CG+111D01 LXI D,FCBSOURCE
01C9+CD0500 CALL @BDOS
01CC+3C INR A
01CD+C2EC01 JNZ 770003
01DO+OE09 MVI C,@MSG
01D2+11DB01 LXI D,770002
01D5+CD0500 CALL @BDOS
01D8+C30000 JMP FILERR
01DB+ODOA 770002: DB CR,LF

+ IF INFILE=l
01DD+GEGF20534F DB 'n 0 SOURCE file'

+ ELSE
+ DB 'n 0 dir space: SOURCE'
+ ENDIF

01EB+24 DB '$,

+ 770003:
+ ENDM

Listing 9-29. (continued)

The PRINT program, shown in Listing 9-30, executes under the Console Com­
mand Processor and takes the following form:

PRINT filename

where filename is the name of a previously assembled program. PRINT assumes that
there is a PRN file on the disk and possibly a SYM file on the same disk drive. The
PRN file is first printed, with a form-feed at the top of each 56-line page. If the SYM
file exists, it is also printed using the same formatting. If the files are successfully
printed, they are both erased from the disk.

The PRINT program begins by saving the console processor stack, with the inten­
tion of returning directly to the CCP without a system reboot. The input printer file
is then defined with a FILE statement that specifies the internal name PRINT and
obtains the filename from the console command line. The filetype, however, is set to
PRN in this case. After performing an initial page eject, the program loops between
the PRCYC (print cycle) and ENDPR (end print) labels by successively reading char­
acters from the PRINT source and writing to the printer through the LISTING
subroutine. On detecting an end-of-file character, control transfers to the ENDPR
label where the PRN file is erased from the disk.

ALL !NFORMATION PRESENTED HERE IS PROPRIETARY TO DIG!TAl RESEARCH 207

9.4 Operating System Interface Programmer's Utilities Guide

The program then checks for the presence of the SYM file by invoking the FILE
macro with a SETFILE mode. This creates the proper File Control Block for the
input file with type SYM but does not create buffers or open the file for access.
Following the FILE macro, the DIRECT statement performs a directory search and,
if the file is not present, control transfers to the END LST (end listing) label where
execution terminates.

If the SYM file exists, the program performs another page eject and then opens the
SYM file for access. Note that the third FILE macro accesses the SYM file using the
internal name SYMBOL but shares the buffer areas of the PRINT file. The PRINT
file has been erased at this point, so the buffers are available.

If the SYM file is present, the program loops between the SYCYCLE (symbol cycle)
and ENDSY (end symbol) labels where characters are read from the SYMBOL file
and again sent to the printer through the LISTING subroutine. Upon detecting the
end-of-file, control passes to the ENDSY label where the SYM file is erased from the
disk. If no errors occur, control eventually reaches the ENDLST label where the
printer page is ejected. The entry stack pointer is then\ retrieved from OLDSP, and
control returns to the Console Command Processor, completing execution of the
PRINT program.

0100 ORG 100H
MACLIB SEQIO iSEQUENTIAL 110 LIB
PRINT THE X.PRN AND X.SYM FILES ON THE
LINE PRINTER WITH PAGE FORMATTING.

OOOC FF EQU OCH iFORM FEED
0038 MAXLINE EQU 56 iMAX LINES PER PAGE

SAVE THE ENTRY STACK POINTER
0100 210000 LXI H,O
0103 39 DAD SP iENTRY SP TO HL
0104 22CF03 SHLD OLDSP iSAVE ENTRY SP
0107 31CF03 LXI SP,STACKiSET TO LOCAL STACK

010A FILE INFILE ,PRINT, t1 ,PRN tlOOO
READ THE PRINT FILE UNTIL END OF FILE

01F2 CD8A03 CALL EJECT nop OF PAGE
01F5 PRCYC: GET PRINT
01F8 FE1A CPI EOF
01FA CA0302 JZ ENDPR iSKIP IF END FILE

Listing 9-30. Program for Line Printer Page Formatting

208 ALL INfORMATION PRESENTED HERE is PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

01FD CD5103
0200 C3F501

0203

020B
023A
0243 CA3C03

0248 CDBA03
0248

0328
0328 FE1A
032B CA3403
032E CD5103
0331 C32803

0334

033C CDBA03
033F 2ACF03
0342 F8
0343 C8

0344
034C 21D203
034F 34
0350 C8

CALL
JMP

LISTING iWRITE TO LISTING DEV
PRCYC

ENDPR: iEND OF PRINT FILE, DELETE IT
ERASE PRINT

CHECK FOR THE OPTIONAL .SYM FILE
FILE SETFILE ,SYMCHK, t1 ,SYM
DIRECT SYMCHK iIS IT THERE?
JZ ENDLST iSKIP SYMBOL IF SO

SYMBOL FILE IS PRESENT, PAGE EJECT
CALL EJECT iTO TOP OF PAGE
FILE INFILE ,SYMBOL, ,1 ,SYM tlOOO ,PRINTBUF

SYCYCLE:
GET
CPI
JZ
CALL
JMP

SYMBOL
EOF
ENDSY iSKIP TO END ON EOF
LISTING iSEND TO PRINTER
SYCYCLE iFOR ANOTHER CHAR

ENDSY: ERASE SYMBOL iERASE .SYM FILE

ENDLST:
CALL
LHLD
SPHL
RET

iEND OF LISTING - EJECT AND RETURN
EJECT
OLDSP iENTRY STACK POINTER

iRESTORE STACK POINTER
iTO CCP

UTILITY SUBROUTINES
LISTOUT:

iSEND A SINGLE CHARACTER TO THE PRINTER
PUT LST
LXI
INR
RET

H,CHARC iCHARACTER COUNTER
M iINCREMENT POSITION

Listing 9-30. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 209

9.4 Operating System Interface Programmer's Utilities Guide

0351 FEOC
0353 C25F03
0356 AF
0357 320103
035A 320203
0350 3EOC
035F FEOA
0361 C27403
0364 AF
0365 320203
0368 210103
036B 34
036C 7E
03GO FE38
03GF D8
0370 3600
0372 3EOC
0374 FE09
0376 C28703

0379 3E20
037B C04403
037E 3A0203
0381 EG07
0383 C27903

0386 C9

0387 C34403

038A 3EOC
038C C34403

038F

03CF
03D1
03D2

03D3

LISTING:
iWRITE CHARACTER FROM REG-A TO LIST DEVICE
CPI FF iFORM FEED?
JNZ
XRA
STA
STA
MVI

LISTO~ CPI
JNZ
XRA
STA
LXI
INR
MQl.J

CPI
RC
MI)I

MVI
LIST1: CPI

JNZ

LISTO
A
LINEC
CHARC
A,FF
LF
LIST1
A
CHARC

iCLEAR LINE COUNT

iCLEAR TAB POSITION
iRESTORE FORM FEED
i END OF LI NE?

iCLEAR TAB POSITION

H,LINEC iLINE COUNTER
M iINCREMENTED
A,M iCHECK FOR END OF PAGE
MAXLINE iLINE OVERFLOW?

M,O
A,FF
TAB
LIST2

iRETURN IF NOT
iCLEAR LINEC
iSENO PAGE EJECT
iTAB CHARACTER?

FEED BLANKS TO NEXT TAB POSITION
TABOUT: MVI A, I I

CALL LISTOUT
LOA CHARC iCHARACTER POSITION
ANI 7H iMOO 8
JNZ TABOUT iFOR ANOTHER BLANK
ON CHARACTER BOUNDARY
RET

LIST2: iSIMPLE CHARACTER
JMP LISTOUT iPRINT AND RETURN

EJECT: i PERFORM PAGE EJECT
MVI
JMP

A ,FF iFORM FEED
LISTOUT

DATA AREAS
DS

STACK:
OLDSP: DS
LINEC: DS
CHARC: DS

BUFFERS:
END

64

2
1

i32 LEVEL STACK

iENTRY STACK POINTER
iLINE COUNTER
iCHARACTER COUNTER

Listing 9-30. (continued)

210 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DlGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

The next program, MERGE, is more complicated. The MERGE program accepts
two filenames as input, taking the general command form

MERGE filename

where filename is the name of a master file, with assumed filetype of MAS, as well as
an update name with assumed filetype UPD. The files consist of varying length rec­
ords, each of which starts with a six-character numeric sequence number followed
by textual material and ends with a carriage return line-feed sequence. The lines of
information in the master and update files are assumed to be in ascending numeric
order according to their sequence numbers. The MERGE program reads these two
files and merges the records together to form a new file consisting of numerically
ascending, sequence-numbered lines.

Upon completion of the merge operation, the newly merged file becomes the new
master file. Update records are properly interspersed within the new master file
according to the numeric order, and any update record that matches a master record
results in replacement of the master record by the update record. Upon successful
completion of the merge operation, the original master file is renamed to have the
filetype MBK (master back-up), the original update file is renamed to the filetype
UBK (update back-up), and the newly created file becomes the new MAS file. In this
way, the operator can return to the back-up files in case of error, so that the source
data is not destroyed.

0100 ORG 100H
FILE MERGE PROGRAM
MACLIB SEQIO iSEQUENTIAL FILE I/O

0000 BOOT EQU OOOOH iSYSTEM REBOOT
0006 SEQSIZ EQU 6 SIZE OF THE SEQUENCE #'5
03E8 USIZE EQU 1000 iUPDATE BUFFER SIZE
03E8 MSIZE EQU USIZE iMA5TER BUFFER SIZE
07DO NSIZE EQU USIZE+MSIZE iNEW BUFF SIZE

0100 31EC05 LXI SP,STACK
0103 C3C801 JMP START iTO PERFORM THE MERGE

UTI LI TY SUBROUTINES

Listing 9-31. File Merge Program

ALL INfORMATION PRESENTED HERE. IS PROPRIETARY TO DiGITAL RESEARCH 211

9.4 Operating System Interface Programmer's Utilities Guide

0106 FE30
0108 08
0109 FE3A
010B 3F
010C C9

0100 7570646174

DIG IT: nEST ACCUMULATOR FOR VAll D DIG IT
RETURN WITH CARRY SET IF INVALID
CP I '0'
RC
CPI
CMC
RET

iCARRY IF BELOW 0
'9' + 1 i CARRY I F BELOW 10

iNo CARRY IF BELOW 10

ERROR MESSAGES FOR READU AND READM
SEQERRU:

DB 'update seq error' ,0
SEQERRM:

011E 6D61737465 DB '(!laster seq error' ,0

GENERATE READU AND READM SUBROUTINES
IRPC ?F,UM
INLINE SEQUENCE NUMBER BUFFER

?F&SEQ: DB 0 iTO START PROCESSING
DS SEQSIZ-liREMAINING SPACE FOR SEQ#

READ&?F:
LXI
MOl)

INR
RZ

H,?F&SEQ
A,M
A

iSEQUENCE BUFFER
iIS IT FF (END FILE)?
iFF BECOMES 00
iSKIP THE READ

READ THE SEQUENCE NUMBER PORTION
MVI C,SEQSIZ iSIZE OF SEQUENCE #

RD&?F&O:
PUSH H iSAVE NEXT TO FILL
PUSH
GET
POP
POP
CPI
JZ
CALL

B
?F&F ILE
B
H
EoF
EoF&?F
DIGIT

iSAVE NUMBER COUNT
iREAD THE FILE
iRECALL COUNT
iRECALL NEXT FILL
iEND FILE?

iASCII DIGIT?
LXI D,SEQERR&?F iERRoR MESSAGE
JC SEQERR iSEQUENCE ERROR
NO SEQUENCE ERROR, FILL NEXT DIGIT POSITION
MoV
INX
DCR
JNZ
RET

M,A
H
C
RD&?F&O

iNEXT TO FILL
iCoUNT=CoUNT-l
iFoR ANOTHER DIGIT
iEND OF FILL

Listing 9-31. (continued)

212 All INfORMATION PRESENTE.D HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

EoFII.?F: jENO OF FILE, SET SEQ# TO OFFH
M~II A,OFFH
STA ?F&SEQ jSEQ# SET TO FF
RET
ENOM

SEQERR:
WRITE ERROR MESSAGE FROM (DE) TIL 00

018F lA LDAX 0
0190 B7 ORA A
0191 CAOOOO JZ BOOT

OTHERWISE, MORE TO PRINT
01911 05 PUSH 0
0195 PUT CON jWRITE TO CONSOLE
0190 01 POP 0
019E 13 INX 0
019F C38FOl JMP SEQERR jFoR MORE CHARS

WRITESEQ:
jWRITE THE SEQUENCE NUMBER G I 1,lEN BY HL
iTO THE NEW FILE

01A2 OE06 MVI C,SEQSIZ jSIZE OF SEQ#
01AlI 7E WRITO: MoV A,M
01A5 23 INX H jNE){T TO GET
01A6 E5 PUSH H jSAl,lE NEXT ADDR
01A7 C5 PUSH B jSAVE COUNT
01A8 PUT NEW jWRITE TO NEW
OlAB Cl POP B jRECALL COUNT
01AC El POP H jRECALL ADDRESS
OlAD 00 OCR C jCOUNT=COUNT-l
01AE C2AlIOl JNZ WRITO jFoR ANOTHER CHAR
01Bl C9 RET

Listing 9-31. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 213

9.4 Operating System Interface Programmer's Utilities Guide

01B2 112FOl
01B5 215FOl
01B8 OE06
01BA lA
01BB BE
01BC D8
01BD CO

01BE FEFF
01CO C8
01Cl 13
01C2 23
01C3 00
01C4 C2BA01
01C7 C9

01C8

02BO

038C

047D C03501
0480 C06501

0483 COB201
Oll86 CAAD04
Oll89 D2C80ll

Oll8C Z12FOl
048F COAZOl

COMPARE THE UPDATE SEQUENCE NUMBER WITH
THE MASTER SEQUENCE NUMBER, SET:

CARRY IF UPDATE MASTER
ZERO IF UPDATE MASTER
-ZERO IF UPDATE MASTER

COMPARE:
U{I

LXI
Ml.JI

CLOOP: LDAX
CMP
RC

D,USEQ
H,MSEQ
C,SEQSIZ
D
M

jUPDATE SEQ#
jMASTER SEQ#
jSEQUENCE SIZE
jUPDATE DIGIT
jUPDATE-MASTER
jCARRY IF LESS

START:

RNZ jNZERO IF GTR
ITEMS ARE THE SAME, CHECK FOR OFFH
CPI
RZ
INX
INX
DCR
JNZ
RET

OFFH

D
H
C
CLOOP

jEND OF FILE
jBOTH ARE OFFH
jNE)<T UPDATE
jNEXT MASTER
jCOUNT DOWN
jFOR ANOTHER DIGIT
JZERO FLAG IF EQUAL

MAIN PROGRAM STARTS HERE

jUPDATE FILE, WITH ASSUMED .UPD TYPE
FILE INFILE ,UFILE, tl,UPD ,USIZE

jMASTER FILE, WITH ASSUMED TYPE .MAX
FILE INFILE,MFILE"l,MAS,MSIZE

jNEW FILE, TEMP.$$$ (RENAMED UPON EOF'S)
FILE OUTFILE,NEW"TEMP,$$$,NSIZE

CALL
CALL

READU
READM

jlNITIALIZE UPDATE RECORD
jlNITIALIZE MASTER RECORD

MERGE: j MA I N MERG I NG LOOP
CALL COMPARE ;CARRY SET IF UPDATE<MASTER
JZ SAME ;ZERO IF IDENTICAL SEQ#
JNC MASLOW ;MASTER LOW?

UPDATE SEQUENCE NUMBER IS LOW
LXI
CALL

H,USEQ jCOPY SEQUENCE NUMBER
WRITESEQ;WRITE THE SEQUENCE #

Listing 9-31. (continued)

214 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

ULooP: iUPDATE RECORD TO NEW FILE
01192 GET UFILE iCHARACTER TO A
01195 F5 PUSH PSW iSAVE IT
0.1I96 PUT NEW ioUTPUT TO NEW FILE
01199 F1 POP PSW iRECALL CHARACTER
01l9A FEOA CPI LF iLINE FEED?
01l9C CAA704 JZ ENDUP
049F FE1A CPI EoF
04A1 CAA704 JZ ENDUP
04A4 C39204 JMP ULooP iCYCLE IF NOT END REC

04A7 CD3501 ENDUP: CALL READU iREAD ANOTHER SEQ#
04AA C38304 JMP MERGE iFoR ANOTHER RECORD

SAME: iSEQUENCE NUMBERS ARE IDENTICAL
04AD 3A5F01 LDA MSEQ iCHECK FOR OFFH
04BO FEFF CPI OFFH
04B2 CAE904 JZ ENDMERGE

NOT THE SAME, DELETE MASTER RECORD
04B5 DELMAS: GET MFILE
04B8 FE1A CPI EoF iEND OF FILE?
04BA CAC204 JZ GETMAS iGET SEQ# FF
04BD FEOA CPI LF
04BF C2B504 JNZ DELMAS iFoR ANOTHER CHAR
04C2 CD6501 GETMAS: CALL READM iTO NEXT RECORD
04C5 C38304 JMP MERGE iFoR ANOTHER

MASLOW: iMASTER SEQUENCE NUMBER IS LOW
04C8 215F01 LXI H,MSEQ
04CB CDA201 CALL WRITESEQiSEQUENCE NUMBER
04CE MLooP: GET MFILE
04D1 F5 PUSH PSW i SAI,IE MASTER CHARACTER
04D2 PUT NEW
04D5 F1 POP PSW iLF OR EoF?
04D6 FEOA CPI LF
04D8 CAE304 JZ ENDMS
04DB FE1A CPI EoF
04DD CAE304 JZ ENDMS
04EO C3CE04 JMP MLooP iMoRE TO COPY

01lE3 CD6501 ENDMS: CALL READM iREAD NEW SEQ NUMBER
04E6 C38304 JMP MERGE iTO MERGE ANOTHER

Listing 9-31. (continued)

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGiTAL RESEARCH 215

9.4 Operating System Interface Programmer's Utilities Guide

04E9

0529
0558

0560

0580
05AF

05137

05CO
05C9

05CC

l46C
05EC

C30000

ENDMERGE:
iCLOSE ALL FILES FOR RENAMING
FINIS <UFILE,MFILE,NEW)
iOLD MASTER FILE FOR ERASE/RENAME
FILE SETFILE ,OLDMAS, tl ,MBK
ERASE OLDMAS
iRENAME MASTER TO .MBK
RENAME OLDMAS,MFILE

iOLD UPDATE FILE FOR ERASE/RENAME

STACK:

FILE SETFILE ,OLDUPD" 1 ,UBK
ERASE OLDUPD
iRENAME UPDATE TO .UBK
RENAME OLDUPD,UFILE

iRENAME NEW TO MASTER FILE
RENAME MFILE,NEW
JMP BOOT

DS 32 i 16 LnJEL STACK

BUFFER AREA
BUFFERS:
MEMSIZE

END
EQU BUFFERS+NXTB

Listing 9-31. (continued)

iEND OF MEMORY

The MERGE program, shown in Listing 9-31, begins with utility subroutines,
including the DIGIT subroutine that tests for valid decimal digits in sequence num­
bers. The IRPC that follows the DIGIT subroutine generates two distinct subroutines,
called READU and READM, for reading the update and master files, respectively.
The generation of these two subroutines has been suppressed in the listing to keep
the listing short. (See Section 10.) These two READ subroutines fill their respective
sequence number buffers from the input source, so that the merge operation can take
place based on the current sequence number values. Upon detecting an end-of-file,
the sequence number is set to OFFH as a signal that the input source has been
exhausted.

216 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

The SEQERR subroutine reports an error condition when a nonnumeric character
is detected in the sequence number field. Although the error reporting is spartan,
sequence errors are easily found using the TYPE command on the master or update
file. The WRITESEQ subroutine is called whenever the source for the next record
has been determined. The COMPARE subroutine determines the next source record
(master or update) by comparing the buffered sequence numbers from left to right
while they are equal. If a mismatch occurs in the sequence number scan, COMPARE
returns with the carry flag and zero flag set to indicate which file holds the next
source record.

Execution of the MERGE program begins following the START label where the
update, master, and new files are defined. The UFILE and MFILE sources are defined
with the same buffer sizes, as determined by the earlier USIZE and MSIZE equates.
Both take their primary name from the default value specified at the CCP level by
the operator. The new file is created as a temporary, with filename TEMP and
filetype $$$, but is renamed upon completion of the program to become the master
file.

The merge operation proceeds in Listing 9-31 as follows. First the READU and
READM subroutines are called to fill the sequence number buffers. The loop between
MERGE and END MERGE is then repetitively executed until the merge is complete.
On each iteration of this loop, the COMPARE subroutine is called to compare the
buffered sequence numbers. If the update sequence number is smaller than the master
sequence number, it is moved to the new file, and data is copied from the update file
to the new file until the end of the current record is encountered. Upon completion
of the copy operation, the READU subroutine is called again to refill the update
sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers, control
transfers to the SAME label, where the master record is deleted. Alternatively, the
COMPARE subroutine causes control to transfer to the MASLOW label when the
master sequence number is lower than the update sequence number. In this case, the
master sequence number and data record are copied to the new file in exactly the
same manner as an update record:

ALL INFORMATiON PRESE.NTE.D HERE. IS PROPRIETARY TO DIGITAL RESEARCH 217

9.4 Operating System Interface Programmer's Utilities Guide

Upon completion of the merge operation, indicated by an end-of-file in both the
update and master files, control transfers to the END MERGE label where the files
are closed and renamed. Following the FINIS statement, the previous MBK file (pos­
sibly from an earlier execution) is erased so that the current master (MAS) can be
renamed to the master back-up (MBK). Similarly, any previous UBK file is erased,
and the current update file is renamed to become the new UBK file. Finally, the new
file (TEMP .$$$) is renamed to become the new master file (MAS) before execution
stops.

Listing 9-32 shows an example of the files involved in a typical merge operation.
In this application, the sequence numbers control the ordering of a list of names that
is updated periodically. The NAMES.MAS file, which is the original master, is updated
by merging with the NAMES.UPD file, also shown in the listing. The merge opera­
tion is initiated by typing

MERGE NAMES

and, upon completion, produces the new NAMES.MAS shown in the righthand col­
umn of Listing 9-32.

The SEQIO library is typical of the interface you can construct to provide a higher
level interface between assembly language programs and their operating environment.
Although the library shown here performs only simple sequential file input/output,
you can construct more comprehensive libraries for random access based on this
library.

218 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 9.4 Operating System Interface

NAMES.MAS

000100 ABERCROMBIE, SIDNEY
000200 CARLSBAD, YOLANDA new NAMES.MAS
000300 EGGBERT,EBENEZER
OOOLIOO GRAVELPAUGH, HORTENSE 000100 ABERCROMBIE, SIDNEY
000500 ISENEARS, IGNATZ 000110 BERNSWEIGER, ALFRED
000600 KRABNATZ, TI LL Y 000200 CRUENCE, CLARENCE
000700 MILLYWATZ, RICARDO 000210 DENNINGSKI, HUBERT
000800 OPFATZ, ADOLPHO 000300 EGGBERT, EBENEZER
000900 QUAGMIRE, DONALD 000330 FINKLESTEIN, FRANK
001000 TWITSWEET, LADNER OOOLIOO GRAVEL PAUGH , HORTENSE
001090 VERANDA, VERONICA 0001110 HILLSENFIELDS, RANDOLPH
001100 WILLOWANDER, PRATNEY 000500 ISENEARS, IGNATZ
001200 YUPPGANDER, MANNY 0005110 JOLLYFELLOW, JUNE

000800 KRABNATZ, TILLY
000820 LAMBAA, WILLY
000700 MILLYWATZ, RICARDO
000710 NEEBEND, ASTRID
000800 OPFATZ, ADOLPHO
000820 PRATTWITZ, HEADY
000800 QUAGMIRE, DONALD
000930 RUBBLEMEYER, RUNYON

NAMES.UPD 000980 SWIGSTITTS, ULYSSES
001000 TWITSWEET, LADNER

000110 BERNSWEIGER, ALFRED 001010 UMPLANDER, XAVIER
000200 CRUENCE, CLARENCE 001090 VERANDA, VERONICA
000210 DENNINGSKI, HUBERT 001100 WILLOWANDER, PRATNEY
000330 FINKLESTEIN, FRANK 001110 XYLOPH, ERHARDT
0001110 HILLSENFIELDS, RANDOLPH 001200 YUPPGANDER, MANNY
0005110 JOLLYFELLOW, JUNE 001210 ZEPLIPPS, EGGERWORTZ
000820 LAMBAA, WILLY
000710 NEEBEND, ASTRID
000820 PRATTWITZ, HEADY
000930 RUBBLE MEYER , RUNYON
000980 SWIGSTITTS, ULYSSES
001010 UMPLANDER, XAVIER
001110 XYLOPH, ERHARDT
001210 ZEPLIPPS, EGGERWORTZ

Listing 9-32. Sample MERGE Disk Files

End of Section 9

All INfORMATION PRESENTED HERE IS PROPRiETARY TO DIGiTAL RESEARCH 219

Section 10
Assembly Parameters

You can include assembly parameters when you invoke the assembler that controls
various assembler functions. The macro assembler is initiated with the name of the
source file, followed by a dollar sign ($) and the assembly parameters. The parame­
ters are indicated by single controls that denote particular functions. The character
on the left below controls the function shown to the right.

Table 10-1. Assembly Parameters

Character I Function

A the source disk for the .ASM file

H the destination of the .HEX machine code file

L the source disk for the .LIB files (see MACLIB)

M MACRO listings in the .PRN file

P the destination of the .PRN file containing the listing

Q the listing of LOCAL symbols

S the generation and destination of the .SYM file

1 pass 1 listing

Any or all of the above parameters can be included. The A, H, L, and S parameters
are followed by the drive name to obtain or receive the data, where the drives are
labeled A, B, ... , Z. By convention, the X disk corresponds to the user's console;
the P disk corresponds to the system line printer (logical list device), and the Z disk

ALL INfORMATION PRESE.NTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221

10 Assembly Parameters Programmer's Utilities Guide

corresponds to a null file that is not recorded. The following is a valid assembly
parameter list following the MAC command and source filename:

$PB AA HB S}-{

that directs the .PRN file to disk B, reads the .ASM file from disk A, directs the
.HEX file to the B disk, and sends the .SYM file to the user's console. Blanks are
optional between parameter specifications.

The parameters L, S, M, Q, and 1 can be preceded by + or - symbols that enable
or disable their functions. These functions are

+ L lists input lines read from the macro library (see MACLIB).
- L suppresses listing of the macro library (default value).

+ S appends the .SYM to the end of the .PRN output.
- S suppresses the generation of the sorted Symbol Table.

+ M lists all macro lines as they are processed during assembly.
- M suppresses all macro lines as they are read during assembly.
* M lists only hex generated by macro expansions.

+ Q lists all LOCAL symbols in the symbol list.
- Q suppresses all LOCAL symbols in the symbol list.

+ 1 produces a listing file on first pass (for macro debugging).
-1 suppresses listing on pass 1 (default).

The following is an example of a valid assembly parameter list that uses a number
of the parameter specifications given above:

$PB+S-M HB

In this case, the .PRN file is sent to disk B with the symbol list appended (no .SYM
file is created), all macro generations are suppressed, and the .HEX file is sent to disk
B with the .PRN file.

222 All INFORMATiON PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 10 Assembly Parameters

The M parameter can be preceded by an asterisk (*), causing the assembler to list
only macro generations that produce machine code. The asterisk suppresses the list­
ing of the instructions that are produced; positions beyond the hex fields are not
listed. Under normal operation, the macro assembler lists only generations that pro­
duce machine code, along with the generated line.

Given that disk d is the currently logged drive, the macro assembler defaults these
parameters as follows: the .ASM and .LIB files are assumed to originate on drive d;
the .HEX, .PRN, and .SYM files are sent to drive d; a Symbol Table is generated
with LOCAL symbols suppressed. This means symbols beginning with ?? are not
listed, and macro lines that generate machine code are listed. Note, however, that the
filename following the MAC command can be preceded by a drive name, in which
case the P parameter overrides the drive name, if supplied. Whenever a parameter is
repeated in the assembly parameter specification, the last value is assumed. Valid
assembly statements are shown below, assuming the file to be assembled is called
SAMPLE.

MAC SAMPLE $PX+S-M

assembles the file SAMPLE.ASM with listing to the console, symbols at the console,
and no listing of generated macros.

MAC A:SAMPLE $+S -M+Q

assembles sample.ASM from disk A, creating sample.PRN with appended symbols
on the currently logged drive, suppressing generated macros, and listing symbols that
begin with the characters ?? in addition to the usually listed symbols.

MAC SAMPLE

assembles SAMPLE.ASM from the currently logged drive, creating SAMPLE.PRN
along with sample.SYM (containing the Symbol Table) and SAMPLE. HEX, which
holds the Intel format hex file in the ASCII form.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223

10 Assembly Parameters Programmer's Utilities Guide

MAC SAMPLE $A6 HA P6 +Q +S +L *M

assembles the SAMPLE.ASM file from drive B and produces the file SAMPLE.HEX
on drive A, with the SAMPLE.PRN file on drive B. The Symbol Table includes ??
symbols. The Symbol Table is placed at the end of the .PRN file on drive B. The .LIB
files are listed with the .PRN file as the .LIB files are read. The instructions that
correspond to generated macro lines are not included, although generated machine
code is listed.

In addition to the parameters shown above, you can intersperse controls through­
out the assembly language source or library files. Interspersed controls are denoted
by a $ in the first column of the input line, where the form shown on the left below
corresponds to the action described on the right.

$-PRINT stops output listing by discarding formatted lines

$ + PRINT enables the output printing when previously disabled

$-MACRO disables generated macro lines, as in - M above

$ + MACRO enables full macro trace, as in + M above

$ * MACRO enables partial macro trace, as in * M above

Because MAC allows each line to be optionally prefixed by a line number, the $
control can be included directly following this line number.

End of Section 10

224 ALL INfORMATiON PRESENTED HERE !S PROPRIETARY TO DIGITAL RESEA.RCH

Section 11
Debugging Macros

A number of common debugging practices can be used in developing macros and
macro libraries. One technique, called iterative improvement, is often used in the
design of programs and is most useful in building macros. The basic idea of iterative
improvement is that a small portion of the overall macro set is first implemented and
tested before continuing to more complicated macros. In this way, errors can be
isolated at each step as the macro evolves. Further, if errors occur in the macro
generations after a small portion of the macro set has been improved, it is most likely
that the error is being caused by the macros that are changed.

In the case of the Hornblower Highway System macro libraries, for example,
iterative improvement was used to evolve the final macro library. Only the simplest
macros were first implemented, including the SETLITE, TIMER, and RETRY macros.
(See Section 9.) Debugging facilities were then added to these macros, so that the
programs could be traced at the console. Upon successful testing of the basic macro
facilities, the PUSH?, CLOCK?, and TREAD? macros were individually written and
tested, resulting in the final macro library.

At each step, you can use the various assembly parameters to control the debug­
ging information. If the macro generations are not producing the proper machine
code, it might be necessary to obtain a full trace, using the + M option when MAC
is started. If the program produces too much output with the full trace enabled, you
can use the $ + MACRO and $-MACRO commands interspersed throughout the
assembly language source program, resulting in full macro generation traces only in
the regions selected for debugging consideration.

If macro generation errors are caused by macro libraries, you can use the + L
parameter when MAC starts to cause the libraries to be included in the listing as
they are read.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225

11 Debugging Macros Programmer's Utilities Guide

As a final consideration, it might be necessary to enable the first pass listing of the
assembly language using the + 1 parameter. In this case, MAC lists the program as
it is being read on the first pass as well as the second pass. Note, however, that the
listing contains spurious error messages on this pass that might disappear on the
second pass. The first pass listing parameter allows you to view the macro genera­
tions on the two successive expansion passes to ensure that the assembler is process­
ing the program in the same way in both cases.

If a macro expands improperly, and the source of the error is not evident after
examining various traces, it might be necessary to remove the offending macro from
the program and create an isolated smaller test case where the error is reproduced.
Full traces can then be examined to determine the source of the error and, after
fixing the macro, it can be replaced in the larger program and retested.

End of Section 11

226 All INFORMATION PRESENTED HERE IS PROPRIETARY TO DIG!TAL RESEARCH

Section 12
Symbol Storage Requirements

The maximum program size that can be assembled by MAC is determined only by
the Symbol Table storage requirements for the program. The Symbol Table itself
occupies the region above the macro assembler in memory, up to the base of the
CPIM operating system. Thus, the size of the Symbol Table depends on the size of
the current MAC version-approximately 12K program and data, plus 2.SK for 1/0
buffers-and the size of the user's CP/M configuration. The Symbol Table size is
dynamically determined by MAC upon startup and fills as symbols are encountered.
To provide some insight regarding storage requirements, the basic item size for iden­
tifiers and macros is given below.

A name used as a program label, data label, or variable in a SET or EQUATE
requires

N=L+S

bytes, where L is the length of the identifier name. Thus, the statement

PORTVAL EQU 37FH

makes an entry into the Symbol Table that occupies

N = 7 + 5 = 12 bytes

of Symbol Table space. Recall that LOCAL symbols take the form ??nnnn, which
generates a name of length L = 6.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RE.SEARCH 227

12 Symbol Storage Requirements Programmer's Utilities Guide

Macro storage is more complicated to compute. The general form is

M=L+7+H+T

where L is the macro name length; H is the parameter header storage requirement,
and T is the macro text storage requirement, computed as

H = PI + P2 + ... + Pn + n

where P1 is the length of the first parameter name. The text length T is the number
of characters in the macro body, including tab and end-of-line characters. Reserved
symbols, however, are reduced to a single byte from their multicharacter representa­
tions. The jump, call, and return on condition operators, however, require their full
character representations. Comments starting with double semicolon are not included
in the character count. The comment line is backscanned to remove preceding tab or
blank characters in this case. For example, the macro

LOADR MACRO
Ml.J I
ENDM crlf

REGfALPHA ;FILL REGISTER crlf
REGf'&ALPHA' ;;DATA crlf

contains a macro header, followed by two macro lines, where each line is written
with tab characters (rather than spaces) and terminated by carriage return line-feeds
(crlfs).

In this case, the macro name length (LOADR) is five characters (L = 5), and the
parameter name lengths are three characters (REG) and five characters (ALPHA),
resulting in the following parameter header storage requirement:

H = PI + P2 + 2 = 3 + 5 + 2 = 10 bytes

The first macro line contains a leading tab (one byte), the MVI instruction (reduced
to one byte), another tab character (one byte), the operands REG,'&ALPHA' (twelve
characters), and the end of line (two characters), for a total of seventeen bytes. Note
that the comment, with the preceding tab, is removed from the line. The second line
contains a tab (one byte), ENDM (one byte), and end-of-line (two characters) for a
total of four bytes. Summing the textual characters, the total is T = 21 bytes. As a
result, the total macro storage for LOADP is

M = L + 7 + H + T = 5 + 7 + 10 + 21 = 43 bytes

228 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 12 Symbol Storage Requirements

No permanent storage is required for REPTs, IRPCs, or IRPs, although temporary
storage in the Symbol Table is used while the groups are actively iterating. The
characters contained within the group bounds (from the header to the corresponding
ENDM) are stored in the Symbol Table in their literal form, with no reduction of
reserved symbols to single bytes. Upon completion of the iteration, the storage is
returned for other purposes. Similarly, active parameters for macro expansions require
temporary storage in the Symbol Table. Storage is returned upon completion of the
macro expansion.

In any case, a Symbol Table overflow message results if the total amount of free
Symbol Table space is used up. As mentioned previously, the user can regenerate the
CP/M system, up to the maximum memory space of the 8080 processor, to increase
the symbol table area. The percentage of Symbol Table utilization is always printed
at the console at the end of assembly. The printout takes the form:

OhhH USE FACTOR

where hh is a hexadecimal value in the range 00 to FF, where 00 results from an
almost empty table, and FF is produced from an almost full table. The value 080H,
for example, is printed when the Symbol Table is half full. Keep note of the use
factor as a program develops to gauge the relative amount of free space as the
program is enhanced.

In many of the examples shown in this manual, macros include inline subroutines
that are generated at the first invocation and called upon subsequent invocations.
(See the TYPEOUT macro in Listing 6-11, for example.) These subroutines can be
included in the mainline program to reduce Symbol Table storage requirements, if
necessary. In this case, the subroutines are assumed to exist the first time the macro
is invoked, and thus are not generated by the macro.

End of Section 12

ALL INFORMATION PRESENTED HERE. IS PROPRIETARY TO DIGiTAL RESEARCH 229

Section 13
RMAC,

Relocating Macro Assembler

RMAC, the CP/M Relocating Macro Assembler, is a modified version of the
CP/M Macro Assembler (MAC). RMAC produces a relocatable object file (REL),
rather than an absolute object file (HEX), that can be linked with other modules
produced by RMAC, or by other language translators such as PL/I-80, to produce an
absolute file ready for execution. The differences between RMAC and MAC are
described in the following subsections.

13.1 RMAC Operation

RMAC takes the command form:

RMAC filename.filetype

followed by optional assembly parameters. If the filetype is not specified, ASM is
assumed. RMAC produces three files: a list file (PRN), a symbol file (SYM), and a
relocatable object file (REL). Characters entered in the source file in lower-case appear
in lower-case in the list file, except for macro expansions.

The assembly parameter H in MAC, used to control the destination of the HEX
file, has been replaced by R, which controls the destination of theREL file. Directing
the REL file to the console or printer (RX or RP) is not allowed, because the REL
file does not contain ASCII characters.

The following example directs RMAC to assemble the file TEST.ASM, send the
PRN file to the console, and put the symbol file (SYM) and the relocatable object file
(REL) on drive B.

A)RMAC TEST $PX SB RB

ALL INfORMATION PRESENTED HERE IS PROPRIE.TARY TO DIGITAL RESEARCH 231

13.2 Expressions Programmer's Utilities Guide

13.2 Expressions

The operand field of a statement can consist of a complex arithmetic expression,
as described in Section 3, with the following restrictions:

• In the expression A + B, if A evaluates to a relocatable value or an external,
then B must be a constant.

• In the expression A-B, if A is an external, then B must be a constant.

• In the expression A-B, if A evaluates to a relocatable value, then B must be a
constant, or B must be a relocatable value of the same relocation type as A.
That is, both must appear in a CSEG or DSEG, or in the same COMMON
block.

• In all other arithmetic and logical operations, both operands must be absolute.

An expression error ('E') is generated if an expression does not follow these
restrictions.

13.3 Assembler Directives

The following assembler directives have been added to support relocation and
linking of modules:

ASEG use absolute location counter

CSEG use code location counter

DSEG use data location counter

COMMON use common location counter

PUBLIC symbol can be referenced in another module

EXTRN symbol is defined in another module

NAME name of module

The directives ASEG, CSEG, DSEG, and COMMON allow program modules to
be split into absolute, code, data, and common segments. These segments can be
rearranged in memory as needed at link time. The PUBLIC and EXTRN directives
provide for symbolic references between program modules.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 13.3 Assembler Directives

Note: symbol names can be up to 16 characters, but the first six characters of all
symbols in PUBLIC, EXTRN, and COMMON statements must be unique, because
symbols are truncated to six characters in the object module.

13.3.1 The ASEG Directive

The ASEG statement takes the form:

label ASEG

and instructs the assembler to use the absolute location counter until otherwise directed.
The physical memory locations of statements following an ASEG are determined at
assembly time by the absolute location counter, which defaults to 0 and can be reset
to another value by an ORG statement following the ASEG statement.

13.3.2 The CSEG Directive

The CSEG statement takes the form:

label CSEG

and instructs the assembler to use the code location counter until otherwise directed.
This is the default condition when RMAC begins an assembly. The physical memory
locations of statements following a CSEG statement are determined at link time.

13.3.3 The DSEG Directive

The DSEG statement takes the form:

label DSEG

and instructs the assembler to use the data location counter until otherwise directed.
The physical memory locations of statements following a DSEG statement are deter­
mined at link time.

13.3.4 The COMMON Directive

The COMMON statement takes the form:

COMMON lidentifierl

and instructs the assembler to use the COMMON location counter until otherwise
directed. The physical memory locations of statements following a COMMON state­
ment are determined at link time.

ALL INFORMATION PRESENTED HERE. IS PROPRIETARY TO DIGITAL RESEARCH 233

13.3 Assembler Directives Programmer's Utilities Guide

13.3.5 The PUBLIC Directive

The PUBLIC statement takes the form:

PUBLIC label{,label, ... ,label}

where each label is defined in the program. Labels appearing in a PUBLIC statement
can be referred to by other programs that are linked using LINK-80.

13.3.6 The EXTRN Directive

The EXTRN statement takes the form:

EXTRN label{,label, ... ,label}

The labels appearing in an EXTRN statement can be referenced but must not be
defined in the program being assembled. They refer to labels in other programs that
have been declared PUBLIC.

13.3.7 The NAME Directive

The NAME statement takes the form:

NAME 'text string'

The NAME statement is optional. It is used to specify the name of the relocatable
object module produced by RMAC. If no NAME statement appears, the filename of
the source file is used as the name of the object module. Module names identify
modules within a library when using the LIB-80 library manager.

End of Section 13

234 ALL INFORMATION PRESE.NTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 14
XREF

XREF is an assembly language cross-reference utility program used with the PRN
and SYM files produced by MAC or RMAC to provide a summary of variable usage
throughout the program.

XREF takes the cOll1mand form:

XREF filename

The filename refers to two input files that are created using MAC or RMAC with the
assumed (and unspecified) filetypes of PRN and SYM, and one output file with an
assumed (and unspecified) filetype of XRF.

XREF reads the file, filename.PRN, line by line, attaches a line number prefix to
each line, and writes each prefixed line to the file filename.XRF. During this process,
XREF scans each line for any symbols that exist in the file filename.SYM.

After completing this copy operation, XREF appends to the file filename.XRF a
cross-reference report that lists all the line numbers where each symbol in file­
name.SYM appears. It also flags with a # character each line number where the
referenced symbol is defined.

XREF also reports the value of each symbol, as it appears in the file filename.SYM.

As an option, the file specification can include a drive name in the standard CP/M
format, d:. When the drive name is specified, XREF associates all the files described
above with the specified drive. Otherwise, it associates the files with the default drive.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 235

14 XREF Programmer's Utilities Guide

XREF also allows you to direct the output file to the default list device instead of
to the file filename.XRF. To use this option, add the string $p to the command line:

XREF filename $P

XREF allocates space for symbols and symbol references dynamically during exe­
cution. If no memory is available for an attempted symbol or symbol reference
allocation, XREF issues an error message and terminates.

End of Section 14

236 ALL INFORMATION PRESE.NTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

15.1 Introduction

Section 15
LINK-BO

LINK-80 is a utility program you can use to combine relocatable object modules
into an absolute file ready for execution under CP/M or MP/M II.

There are two types of relocatable object modules. The first has a filetype of REL
and is produced by PL/I-80, RMAC, or any other language translator that produces
relocatable object modules in the Microsoft® format.

The second has a filetype of IRL and is generated by the CP/M library manager
LIB-80. An IRL file contains the same information as a REL file but includes an
index that enables faster searching of large libraries.

Upon successful completion, LINK-80 lists the following items at the console:

• the Symbol Table
• any unresolved symbols
• a Memory Map
• the Use Factor

The Memory Map shows the size and locations of the different segments. The Use
Factor indicates the amount of available memory used by LINK-80 as a hexadecimal
percentage.

LINK-80 writes the Symbol Table to a SYM file suitable for use with the CP/M
Symbolic Instruction Debugger (SID TM) and creates a COM or PRL file for direct
execution under CP/M or MP/M II.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 237

15.2 LINK-80 Operation Programmer's Utilities Guide

15.2 LINK-SO Operation

LINK-SO takes the general command form:

link filename 1 {,filename2, ... ,filenameN}

where filename 1 , ... ,filenameN are the names of the object modules to be linked. If
you do not specify a filetype, LINK-SO assumes filetype REL.

LINK-SO produces two files:

• filename1.COM
• filename1.SYM

You can specify a different name for the COM and SYM files with a command of
the form:

link newfilename = filename 1 {,filename2, ... ,filenameN}

LINK-SO supports a number of optional switches that control the link operation.
These switches are described in the following section.

During the link process, LINK-SO can create up to eight temporary files on the
default disk. The files are named:

}O-{ABS. $$$ }O-{PROG. $$$ }O-{DATA. $$$ }O-{COMM. $$$

YYABS.$$$ YYPROG.$$$ YYDATA.$$$ YYCOMM.$$$

LINK-SO deletes these files following termination. However, they can remain on the
disk if LINK-SO halts due to an error condition.

15.3 Multi-line Commands

If a LINK-SO command does not fit on a single line (126 characters), the command
can be extended by terminating the command line with an ampersand character. The
ampersand can appear after any character in the command and need not follow a
filename.

238 ALL INFORMATION PRESENTE.D HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 15.3 Multi-line Commands

LINK-80 responds with an asterisk on the next line, at which point you can
continue the command. LINK-80 allows any number of lines ending with the amper­
sand. The last line terminates with a carriage return, as in the following example.
The Symbol Table and memory map would appear where vertical ellipses are shown.

A}linK lTIairll iOlTlodl, iOlTlod2, iOlTlod3, iOlTlod4, iOlTlod5, 8:
LINK 1.3
*liblfs], lib2fs], lib3fs], lib4&
*fs], lastlTlodfp2000&
*ld200]

A}

Note: you can use XSUB to submit multi-line commands to LINK-80.

15.4 LINK-SO Switches

LINK-80 supports optional run-time parameters called switches that control the
link operation. All LINK-80 switches are enclosed in square brackets, separated by
commas, and immediately follow one or more of the filenames in the command line.

All switches except the S switch can appear after any filename in the command
line. The S switch must follow the filename to which it refers. For example,

A}LINK TESTfL4000]IIOMOD,TESTLIBfSINL,GSTARTJ

15.4.1 The Additional Memory (A) Switch

The A switch provides additional space for Symbol Table storage by decreasing
the size of LINK-80's internal buffers. Use this switch only when necessary, as indi­
cated by a MEMORY OVERFLOW error. Using the A switch causes LINK-80 to
store its internal buffers on the disk, slowing down the linking process considerably,
while allowing linking of larger programs.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239

15.4 LINK-80 Switches Programmer's Utilities Guide

15.4.2 The BIOS Link (B) Switch

The B switch is used to link a BIOS in a banked CP/M 3 system. LINK-80 aligns
the data segment on a page boundary, puts the length of the code segment in the
header, and defaults to the SPR filetype.

15.4.3 The Data Origin (D) Switch

The D switch specifies the origin of the data and common segments. If you do not
use the D switch, LINK-80 places the data and common segments immediately after
the program segment.

The D switch takes the form:

Dnnnn

where nnnn is the data origin in hexadecimal.

15.4.4 The Go (G) Switch

The G switch specifies the label where program execution begins, if it does not
begin with the first byte of the program segment. Using the G switch causes LINK-
80 to put a jump to the label at the load address.

The G switch takes the form:

G<label>

15.4.5 The Load Address (L) Switch

The load address defines the base address of the COM file generated by LINK-80.
The load address is usually 100H, which is the base of the Transient Program Area
(TP A) in a standard CP/M system. The L switch also sets the program origin to
nnnn, unless otherwise set by the P switch.

The L switch takes the form:

Lnnnn

where nnnn is the desired load address in hexadecimal.

Note: COM files created with a load address other than 100H do not execute prop­
erly under a standard CP/M system.

240 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 15.4 LINK-80 Switches

15.4.6 The Memory Size (M) Switch

The M switch can be used when you are creating PRL files to indicate that the
program requires additional data space for proper execution.

The M switch takes the form:

Mnnnn

where nnnn is the amount of additional data space needed in hexadecimal.

15.4.7 The No List (NL) Switch

The NL switch suppresses the listing of the Symbol Table at the console.

15.4.8 The No Recording of Symbols (NR) Switch

The NR switch suppresses the recording of the Symbol Table file on the disk.

15.4.9 The Output COM File (OC) Switch

The OC switch directs LINK-80 to produce a COM file. This is the default condi­
tion for LINK-80.

15.4.10 The Output PRL File (OP) Switch

The OP switch directs LINK-80 to produce a page-relocatable PRL file rather than
a COM file. See Section 7.1 of the MPIM II Operating System Programmer's Guide
for more information on creating PRL files.

15.4.11 The Output RSP File (OR) Switch

The OR switch outputs RSP (Resident System Process) files for execution under
MP/M.

15.4.12 The Output SPR File (OS) Switch

The OS switch outputs SPR (System Page Relocatable) files for execution under
MP/M.

15.4.13 The Program Origin (P) Switch

The P switch specifies the origin of the program segment. If you do not use the P
switch, LINK-80 puts the program segment at the load address, which is 100H unless
otherwise specified by the L switch.

ALL INFORMATION PRESENTE.D HERE IS PROPRIETARY TO DIGITAL RESEARCH 241

15.4 LINK·SO Switches Programmer's Utilities Guide

The P switch takes the form:

Pnnnn

where nnnn is the program origin in hexadecimal.

15.4.14 The? Symbol (Q) Switch

Symbols in many run-time subroutine libraries begin with a question mark to
avoid conflict with user-defined symbols. LINK-80 usually suppresses listing and
recording of these symbols.

The Q switch causes LINK-80 to include these symbols in the Symbol Table listed
at the console and recorded on the disk.

15.4.15 The Search (S) Switch

The S switch indicates that the preceding file should be treated as a library.
LINK-80 searches the file and includes only those modules containing symbols that
are referenced but not defined in the modules already linked.

15.5 The $ Switch

The $ switch controls the source and destination devices. The $ switch takes the
general form:

Std

where t is a type, and d is a drive specification.

LINK-80 recognizes five types:

• C-Console
• I - Intermediate
• L - Library
.O-Object
• S -Symbol

242 ALL INFORMATION PRE.SENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 15.5 The $ Switch

The drive specification can be a letter in the range A through P corresponding to
one of sixteen logical drives, or one of the following special characters:

• X- Console
• Y - Printer
• Z - Byte bucket

15.5.1 $Cd - Console

LINK-80 usually sends messages to the console, but messages can be directed to
the list device by using $CY, or they can be suppressed by using $CZ. Once $CY or
$CZ has been specified, $CX can be used subsequently in the command line to
redirect messages to the console device.

15.5.2 $Id - Intermediate

LINK-80 usually places the intermediate files it generates on the default drive. The
$1 switch allows you to specify another drive for intermediate files.

15.5.3 $Ld - Library

LINK-80 usually searches on the default drive for library files that are automati­
cally linked because of a request item in a REL file. The $L switch instructs
LINK-80 to search the specified drive for these library files.

15.5.4 SOd - Object

LINK-80 usually generates an object file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the
command. The $0 switch instructs LINK-80 to place the object file on the drive
specified by the character following the $0, or to suppress the generation of an
object file if the character following the $0 is a Z.

15.5.5 $Sd - Symbol

LINK-80 usually generates a symbol file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the
command. The $S switch instructs LINK-80 to place the symbol file on the drive
specified by the character following the $S, or to suppress the generation of a symbol
file if the character following the $S is a Z.

ALL INFORMATION PRESENTED HERE IS PROPRiETARY TO DiGITAL RESEARCH 243

15.5 The $ Switch Programmer's Utilities ~uide

15.5.6 Command Line Specification

The td character pairs following a $ switch must not be separated by commas. The
entire group of $ switches must be set off from any other switches by a comma. For
example, the three command lines shown below are equivalent:

A>link partl[$sz,$od,$lb,q],partZ

A>link partl[$szodlb,Q],partZ

A>link partl[$sz od Ib],partZ[Q]

The $1 switch specifies the drive to be used for intermediate files during the entire
link operation, but the other $ switches can be changed in the command line. The
value of a $ switch remains in effect until it is changed as LINK-SO processes the
command line from left to right. This is especially useful when linking overlays. (See
Section 16.) For example, the command

A>link root (ovl[$szcz])(ovZ)(ov3)(ov4[$sacx])

suppresses the SYM files and console output generated when OV1, OV2 and OV3
are linked. When OV4 is linked, LINK-SO places the SYM file on drive A and sends
any messages to the console device.

15.6 Creating MP/M II PRL Files

Assembly language programs often contain references to symbols in the Base Page
such as BOOT, BDOS, DFCB, and DBUFF. To run properly under CP/M, or as a
COM file under MP/M II, these symbols are simply defined in equates as follows:

boot
bdos
dfcb
dbuff

o
S
Sch
801'1

;JUMP to warM boot
;JUMP to bdos entrY point
;default file control block
;default ilo buffer

With PRL files, however, the Base Page itself can be relocated at load time, so
LINK-SO must know that these symbols, while at fixed locations within the Base
Page, are relocatable.

244 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 15.6 Creating MP/M II PRL Files

To do this, simply declare these symbols as externals in the modules in which they
are referenced:

ext rn boot t bdos t dfcb t dbuff

arid link in another module in which they are declared as publics and defined in
equates:

boot
bdos
dfcb
dbuff

15.7

public boo t t
equ 0
equ 5
equ 5ch
equ 80h
end

The Request Item

bdoSt dcfbt dbuff
;JUMP to warM boot
;JUMP to bdos entrY point
;default file control block
;default i/o buffer

Many language translators use the request item, a specific bit pattern in a REL file,
to tell LINK-80 to search the appropriate run-time subroutine library file. When
LINK-80 processes a library request, it first searches for an IRL file with the specified
filename. If there is no IRL file, it searches for a REL file of that name. If both
searches fail, then LINK-80 displays the following error message and halts.

NO FILE: filename.REL

Libraries requested in this manner appear in the Symbol Table listed at the console
with a value of 'RQST'.

ALL INFORMATION PRESENTED HERE. IS PROPRIETARY TO DIGITAL RESEARCH 245

15.8 REL File Format Programmer's Utilities Guide

15.8 REL File Format

REL files contain information encoded in a bit stream, which LINK-80 interprets
as follows:

• If the first bit is a 0, then the next S bits are loaded according to the value of
the location counter.

• If the first bit is a 1, then the next 2 bits are interpreted as follows:

00 - special link item, defined below.

01 - program relative. The next 16 bits are loaded after being offset by
the program segment origin.

10 - data relative. The next 16 bits are loaded after being offset by the
data segment origin.

11 - common relative. The next 16 bits are loaded after being offset by
the origin of the currently selected common block.

• A special item consists of:

• A 4-bit control field that selects one of 16 special link items described
below.

• An optional value field that consists of a 2-bit address field and a 16-
bit address field. The address type field is interpreted as follows:

00 - absolute
01 - program relative
10 - data relative
11 - common relative

• An optional name field that consists of a 3-bit name count followed
by the name in 8-bit ASCII characters.

The following special items are followed by a name field only.

0000 - entry symbol. The symbol indicated in the name field is defined in this
module, so the module should be linked if the current file is being
searched, as indicated by the S switch.

0001 - select common block. Instructs LINK-SO to use the location counter
associated with the common block indicated in the name field for
subsequent common relative items.

246 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 15.8 REL File Format

0010 - program name. The name of the relocatable module.

0011 - unused.

0100 - unused.

The following special items are followed by a value field and a name field.

0101 - define common size. The value field determines the amount of memory
reserved for the common block described in the name field. The first
size allocated to a given block must be larger than or equal to any
subsequent definitions for that block in other modules being linked.

0110 - chain external. The value field contains the head of a chain that ends
with an absolute O. Each element of the chain is replaced with the
value of the external symbol described in the name field.

0111 - define entry point. The value of the symbol in the name field is defined
by the value field.

1000 - unused.

The following special items are followed by a value field only.

1001 ~ external plus offset. The following two bytes in the current segment
must be offset by the value of the value field after all chains have been
processed.

1010 - define data size. The value field contains number of bytes in the data
segment of the current module.

1011 - set location counter. Set the location counter to the value determined
by the value field.

1100 - chain address. The value field contains the head of a chain that ends
with an absolute O. Each element of the chain is replaced with the
current value of the location counter.

1101 - define program size. The value field contains the number of bytes in
the program segment of the current module.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 247

15.8 REL File Format Programmer's Utilities Guide

1110 - end module. Defines the end of the current module. If the value field
contains a value other than absolute 0, it is used as the start address
for the program being linked. That is, the current module is the main
module. The next item in the file starts at the next byte boundary.

Item 1111, end file, has no value field or name field. This item follows the end
module item of the last module in the file.

15.9 IRL File Format

An IRL file consists of three parts: a header, an index, and a REL section.

The header contains 128 bytes, defined as follows:

• byte 0 - extent number of first record of REL section
• byte 1 - record number of first record of REL section
• bytes 2-127 - currently unused

The index consists of a number of entries corresponding to the entry symbol items in
the REL section. The entries take the form:

e I r I b cl c2

Figure 15-1. IRL File Index

where:

e = extent offset from start of REL section to start of module.

r = record offset from start of extent to start of module.

b byte offset from start of record to start of module.

cl-cn = name of symbol.

d = end of symbol delimiter (OFEH).

248 All INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide

The index terminates with an entry in which cl
record containing the terminating entry is unused.

15.9 IRL File Format

OFFH. The remainder of the

The REL section contains the relocatable object code, as described in Section 15.8.

End of Section 15

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 249

16.1 Introduction

Section 16
Overlays

You can use LINK-80 to produce a simple tree structure of overlays as shown in
Figure 16-1. Currently, the Overlay Manager is part of the PL/I-80 run-time library.

OV1
I

OV5
I

I
OV2

I

OV6
I

OV3
I

I
ROOT

OV4
I

Figure 16-1. Tree-structured Overlay System

In such a system, LINK-80 produces the ROOT.COM and ROOT.sYM files, as
well as an OVL file and a SYM file for each overlay specified in the command line.

The OVL file consists of a 256-byte header containing the load address and length
of the overlay, followed by the absolute object code. The SYM file contains only
those symbols that have not been declared in another module lower in the tree.

The origin of an overlay is the highest address, rounded to the next 128-byte
boundary, of the module below it on the tree. The stack and free space for the PL/I
program are located at the top of the highest overlay which is, again, rounded to the
next 128-byte boundary. LINK-80 displays this address at the console on completion
of the entire link process and patches it into the root module in the location '?MEMRY'.

ALL lNFORMATION PRESENTED HERE. IS PROPRiETARY TO DIGITAL RESEARCH 251

16.1 Introduction Programmer's Utilities Guide

The following restrictions must be observed when producing a system of overlays
for a PL/I program using LINK-80:

• Each overlay has only one entry point. The Overlay Manager in the PL/I Run­
time system assumes that this entry point is at the base (load address) of the
overlay.

• No upward references are allowed from a module to an entry point in an
overlay higher on the tree. The only exception is a reference to the main entry
point of the overlay, as described above. Downward references to entry points
in overlays lower on the tree or in the root module are allowed.

• The overlays are not relocatable, so the root module must be a COM file.

• Common blocks, EXTERNALS in PL/I, that are declared in one module can­
not be initialized by a module higher in the tree. LINK-80 ignores any attempt
to do so.

• Overlays can be nested to 5 levels.

• The Overlay Manager uses the default buffer located at 80H, so user pro­
grams should not depend on data stored in this buffer.

16.2 Using Overlays in PL/I Programs

There are two ways to use overlays in a PL/I program. The first method is straight­
forward and suffices for most applications. However, it has two restrictions. First, all
overlays must be on the default drive, and second, the overlay names cannot be
determined at run-time.

The second method does not have these restrictions, but its calling sequence is
slightly more complicated.

16.2.1 Overlay Method 1

To use the first method, simply declare an overlay as an entry constant in the
module where it is referenced. As an entry constant, it can have parameters declared
in a parameter list. The overlay itself is simply a PLII procedure or group of procedures.

252 ALL INfORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide 16.2 U sing Overlays

For example, the following program is a root module having one overlay:

root: procedure options (Main);
declare 0\)1 entrY (char (15»;
put sKip list ('root');
call ou1 ('ouerlay 1');
end root;

with the overlay OV1.PLI defined as follows:

0\)1: procedure (c);
declare c char (15);
put sKip list (c);
end ou1;

Note: when passing parameters to an overlay, you must ensure that the number and
type of the parameters are the same in the calling program and the overlay itself.

To link these two programs into an overlay system, use the command:

A)LINK ROOT (OV1)

This causes LINK-80 to produce four files:

At execution time, ROOT.COM first displays the message 'root' at the console.
The 'call ov1' statement then transfers control to the Overlay Manager.

The Overlay Manager loads the file OV1.0VL from the default drive at the proper
location above ROOT.COM and transfers control to it, passing the CHARAC­
TER(lS) parameter in the usual manner.

The overlay then executes, displaying the message 'overlay l' at the console. It
then returns directly to the statement following the 'call ovl' in ROOT.PLI, and
execution continues from that point.

If the Overlay Manager determines that the requested overlay is already in mem­
ory, then it does not reload the overlay before transferring control to it.

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 253

16.2 Using Overlays Programmer's Utilities Guide

There are several important points to keep in mind regarding overlay method 1:

• The name associated with the overlay in the call and entry statements is th(
actual name of the OVL file loaded by the Overlay Manager, so the tW(
names must agree. Because PLII truncates symbol names to 6 characters in th(
REL file, the names of the OVL files must be limited to 6 characters.

• The name of the entry point to an overlay (the name of the procedure) neec
not agree with the name used in the calling sequence. The same name shouk
be used to avoid confusion.

• The Overlay Manager loads overlays only from the drive that was the defaul1
drive when the root module began execution. The Overlay Manager disre­
gards any changes in the default drive that occur after the root module begim
execution.

• The names of the overlays are fixed. This means the source program must be::
edited, recompiled, and relinked to change the names of the overlays.

• No nonstandard PL/I statements are needed. Thus the program is transportable
to other systems.

16.2.2 Overlay Method 2

In some applications, it is useful to have greater flexibility with overlays, such as
the ability to load overlays from different drives, or the ability to determine the name
of an overlay at run-time, perhaps from the keyboard or from a disk file.

To do this, a PL/I program must declare an explicit entry point into the Overlay
Manager as follows:

declare ?ovlay entrY (char (10) f fixed (1);

The first parameter is a character string specifying the name of the overlay to load
and an optional drive name in the standard CPIM format, d:filename.

The second parameter is the Load Flag. If the Load Flag is 1, the Overlay Manager
loads the specified overlay whether or not it is already in memory. If the Load Flag
is 0, then the Overlay Manager loads the overlay only if it is not already in memory.

254 ALL INfORMATION PRESENTED HERE !S PROPRIETARY TO DiGITAL RESEARCH

Programmer's Utilities Guide 16.2 Using Overlays

The 'call ?ovlay' statement signals the Overlay Manager to load the requested
overlay, if needed. The Overlay Manager returns to the calling program, which must
then perform a dummy call to execute the overlay just processed by the Overlay
Manager. This allows a parameter list to be passed to the overlay.

Using this method, the example shown in the first method above appears as follows:

root: procedure options (Main);
declare ?ovlay entrY (char (10) t fixed (1»;
declare dUMMY entrY (char (15»;
declare naMe char (10);
put skip list ('root');
nalTle = 'Ot.ll';
call ?ovla}' (nalTle f 0);
call dUMMY ('overlay 1');
end root;

The file OV1.PLI is the same as before.

At run-time, the Overlay Manager loads OV1.0VL from the default drive because
that is the current value of the variable 'name', and then returns to the calling
program, in this case, 'root.'

At this point, the argument 'overlay l' is set up according to the PL/I parameter
passing conventions. The 'call dummy' statement transfers control to the Overlay
Manager, which in turn transfers control to the base address of the overlay the name
of which it just processed. When OVl finishes execution, it returns to the statement
following the call dummy statement.

Note that in this example, name is set to 'OV1' in an assignment statement.
However, the overlay name can also be supplied as a character string from some
other source, such as the console keyboard.

ALL INfORMATION PRESENTED HERE IS PROPRlETARY TO DIGITAL RESEARCH 255

16.2 Using Overlays Programmer's Utilities Guide

Observe these important points when using overlay method 2:

• A drive name can be specified, so the Overlay Manager can load overlays
from drives other than the default drive. If no drive is specified, the Overlay
Manager uses the default drive as described in Method 1.

• The name of the overlay can be up to 8 characters in length because it is
specified in the character string and not by the entry symbol.

• If there are any parameters in the dummy call following the call ?ovlay, they
must agree in number and type with the parameters in the procedure declara­
tion in the overlay.

16.3 Specifying Overlays in the Command Line

The syntax for specifying overlays is similar to that for linking without overlays,
except that each overlay specification is enclosed in parentheses.

An overlay specification can take one of the following forms:

A)LINK" ROOT(OV1)

A)LINK" ROOT(OV1,PART2,PART3)

A)LINK" ROOT(OV1=PART1,PART2,PART3)

The first command produces the file OV1.0VL from a file OV1.REL. The second
command produces the file OV1.0VL from OV1.REL, PART2.REL, and PART3.REL.
The third command produces the file OV1.0VL from PART1.REL, PART2.REL,
and PART3.REL.

256 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESfARCH

Programmer's Utilities Guide 16.3 Specifying Overlays

Note that a left parenthesis, indicating the start of a new overlay specification, also
indicates the end of the group preceding it. Thus the following command line is
invalid, and LINK-80 flags it as an error:

A)LINK ROOT(OV1) IMOR£ROOT

All files to be included at any point on the tree must appear together, without any
intervening overlay specifications. Thus the following command is valid:

A)LINK ROOT,MOR£ROOT(OV1)

Any filename in the command line can be followed by a number of LINK-80
switches. The overlay specifications are not set off from the root module or from
each other with commas. Spaces can be used to improve readability.

To nest overlays, they must be specified in the command line with nested parenthe­
ses. For example, the following command line can link the overlay system shown in
Figure 16-1:

A)LINK ROOT (OV1) (OV2 (OV5) (OVS» (OV3) (DV4)

16.4 Sample LINK-SO Execution

Listing 16-1 shows the console output from a LINK-80 operation. Note that OV1
is flagged as an undefined symbol. LINK-80 indicates that OV1 has not been defined
in the current module and assumes it is either the name of an overlay or a dummy
entry point to an overlay.

When linking overlays, each entry variable that refers to an overlay, by actual
name or a dummy entry, appears as an undefined symbol. No symbols other than
these actual or dummy overlay entry points should be undefined.

Listing 16-2 shows the console output when executing the resulting COM file.

ALL INfORMATION PRESENTED Hf.RE.IS PROPRIETARY TO DIGITAL RE.SEARCH 257

16.4 Sample LINK-80 Execution Programmer's Utilities Guide

A>link root(ov1)
LINK 1.3

PLILIB RQST ROOT 0100 ISYSINI 1A15

UNDEFINED SYMBOLS:

ABSOLUTE 0000
CODE SIZE 18BC (0100-19BB)
DATA SIZE 02A9 (lASO-1D38)
COMMON SIZE 00D4 (19BC-1A8F)
USE FACTOR 4E

LINKING Ol.'1.0 l.'L

PLILIB RQST

ABSOLUTE 0000
CODE SIZE 0024 (lD80-1DA3)
DATA SIZE 0002 (lDA4-1DA5)
COMMON SIZE 0000
USE FACTOR 09

MODULE TOP 1EOO

Listing 16-1. LINK-80 Console Interaction

A> ro 0 t

root
ol.JerlaY 1
End of Execution
A)

ISYSPRII 1A3A

Listing 16-2. Console Interaction with ROOT

258 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix D
Overlay Manager Run-time

Error Messages

At run-time, the Overlay Manager can display certain error messages. These mes­
sages and a brief explanation of their causes are shown in Table D-1.

Table D-1. Run-time Error Messages

Error Cause

ERROR (8) Ol.'ERLAYt NO FILE d:filenaITle.OVL

The Overlay Manager cannot find the indicated file.

ERROR (9) OVERLAY t DR I l.'E d: f i 1 en alTle. Ol.'L

An invalid drive code was passed as a parameter to ?ovlay.

ERROR (10) OVERLAYt SIZE d:filenaITle.Ol.'L

The indicated overlay would overwrite the PL/I stack andlor free
space if it were loaded.

ERROR (11) Ol.'ERLAYt NESTING d:filenaITle.Ol.'L

Loading the indicated overlay would exceed the maximum nesting
depth.

ERROR (12) Ol.'ERLAY tREAD d: f i 1 en alTle. Ol.'L

Disk read error during overlay load, probably caused by premature
EOF.

End of Appendix D

ALL-INfORMATION PRESENTED HERE IS PROPRiETARY TO DiGiTAL RESfJ\RCH 275

Appendix E
LIB-80 Error Messages

During the course of operation, LIB-80 can display error messages. These error
messages and a brief explanation of their causes are given in Table E-1.

Table E-1. LIB-80 Error Messages

Error I
CANNOT CLOSE:

D I RECTORY FULL:

DISK READ ERROR:

DISK WRITE ERROR:

FILE NAME ERROR:

NO FILE:

NO MODULE:

SYNTA}{ ERROR:

Cause

LIB-80 cannot close the output file. The disk might
be write-protected.

There is no directory space for the output file.

LIB-80 cannot read the file properly.

LIB-80 cannot write to the file properly, probably
due to a full disk.

The form of a source filename is invalid.

LIB-80 cannot find the indicated file.

LIB-80 cannot find the indicated module.

The LIB-80 command line is not properly formed.

End of Appendix E

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 277

OP
Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
lC

Appendix F
8080 CPU Instructions

Table F-l. 8080 CPU Instructions

MNEMONIC OP MNEMONIC OP MNEMONIC
Code Code

NOP 1D DCR E 3A LDA Adr
LXI B,D16 1E MVI E,D8 3B DCX SP
STAX B 1F RAR 3C INR A
INX B 20 --- 3D DCR A
INR B 21 LXI H,D16 3E MVI A,D8
DCR B 22 SHLD Adr 3F CMC
MVI B,D8 23 INX H 40 MOV B,B
RLC 24 INR H 41 MOV B,C
--- 25 DCR H 42 MOV B,D
DAD B 26 MVI H,D8 43 MOV B,E
LDAX B 27 DAA 44 MOV B,H
DCX B 28 --- 45 MOV B,L
INR C 29 DAD H 46 MOV B,M
DCR C 2A LHLD Adr 47 MOV B,A
MVI C,D8 2B DCX H 48 MOV C,B
RRC 2C INR L 49 MOV C,C
--- 2D DCR L 4A MOV C,D
LXI D,D16 2E MVI L,D8 4B MOV C,E
STAX D 2F CMA 4C MOV C,H
INX D 30 --- 4D MOV C,L
INR D 31 LXI SP,D16 4E MOV C,M
DCR D 32 STA Adr 4F MOV C,A
MVI D,D8 33 INX SP 50 MOV D,B
RAL 34 INR M 51 MOV D,C
--- 35 DCR M 52 MOV D,D
DAD D 36 MVI M,D8 53 MOV D,E
LDAX D 37 STC 54 MOV D,H
DCX D 38 --- 55 MOV D,L
INR E 39 DAD SP 56 MOV D,M

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 279

F 8080 CPU Instructions Programmer's Utilities Guide

Table F-l. (continued)

OP
MNEMONIC

OP
MNEMONIC

OP
MNEMONIC

Code Code Code

57 MOV D,A 7B MOV A,E 9F SBB A
58 MOV E,B 7C MOV A,H AO ANA B
59 MOV E,C 7D MOV A,L A1 ANA C
SA MOV E,D 7E MOV A,M A2 ANA D
5B MOV E,E 7F MOV A,A A3 ANA E
5C MOV E,H 80 ADD B A4 ANA H
5D MOV E,L 81 ADD C AS ANA L
5E MOV E,M 82 ADD D A6 ANA M
SF MOV E,A 83 ADD E A7 ANA A
60 MOV H,B 84 ADD H A8 XRA B
61 MOV H,C 85 ADD L A9 XRA C
62 MOV H,D 86 ADD M AA XRA D
63 MOV H,E 87 ADD A AB XRA E
64 MOV H,H 88 ADC B AC XRA H
65 MOV H,L 89 ADC C AD XRA L
66 MOV H,M 8A ADC D AE XRA M
67 MOV H,A 8B ADC E AF XRA A
68 MOV L,B 8C ADC H BO ORA B
69 MOV L,C 8D ADC L B1 ORA C
6A MOV L,D 8E ADC M B2 ORA D
6B MOV L,E 8F ADC A B3 ORA E
6C MOV L,H 90 SUB B B4 ORA H
6D MOV L,L 91 SUB C B5 ORA L
6E MOV L,M 92 SUB D B6 ORA M
6F MOV L,A 93 SUB E B7 ORA A
70 MOV M,B 94 SUB H B8 CMP B
71 MOV M,C 95 SUB L B9 CMP C
72 MOV M,D 96 SUB M BA CMP D
73 MOV M,E 97 SUB A BB CMP E
74 MOV M,H 98 SBB B BC CMP, H
75 MOV M,L 99 SBB C BD CMP L
76 HLT 9A SBB D BE CMP M
77 MOV M,A 9B SBB E BF CMP A
78 MOV A,B 9C SBB H CO RNZ
79 MOV A,C 9D SBB L C1 POP B
7A MOV A,D 9E SBB M C2 JNZ Adr

280 ALL INfORMATION PRESE.NTE.D HERE. IS PROPRIETARY TO DIG!TAL RESEARCH

Programmer's Utilities Guide F 8080 CPU Instructions

Table F-l. (continued)

OP
MNEMONIC

OP
MNEMONIC

OP
MNEMONIC

Code Code Code

C3 JMP Adr D7 RST 2 EB XCHG
C4 CNZ Adr D8 RC EC CPE Adr
CS PUSH B D9 --- ED ---
C6 ADI D8 DA lC Adr EE XRI D8
C7 RST 0 DB IN D8 EF RST 5
C8 RZ DC CC Adr FO RP
C9 RET Adr DD --- F1 POP PSW
CA JZ DE SBI D8 F2 JP Adr
CB --- DF RST 3 F3 DI
CC CZ Adr EO RPO F4 CP Adr
CD CALL Adr E1 POP H F5 PUSH PSW
CE ACI D8 E2 JPO Adr F6 ORI D8
CF RST 1 E3 XTHL F7 RST 6
DO RNC E4 CPO Adr F8 RM
D1 POP D E5 PUSH H F9 SPHL
D2 JNC Adr E6 ANI D8 FA 1M Adr
D3 OUT D8 E7 RST 4 FB E1
D4 CNC Adr E8 RPE FC CM Adr
D5 PUSH D E9 PCHL FD ---
D6 SUI D8 EA JPE Adr FE CPI D8

FF RST 7

D8 = constant or logical/arithmetic expression that evaluates to an 8 bit quantity.
Adr = 16-bit address.
D16 = constant or logical/arithmetic expression that evaluates to a 16 bit data

quantity.
Reproduced with permission from Intel Corporation, Santa Clara, CA.

End of Appendix F

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 281

Index

$ controls, 224
$ parameters, 221
$ switches, 242

$Cd, 243
$Id, 243
$Ld, 243
$Od, 243
$Sd, 243

8080 registers, 7
?TR macro, 135
??, 60

A

absolute file, 237
absolute location counter, 232
absolute object file, 231
accumulator character, 183
accumulator immediate instruction,

32
accumulator Icarry operations, 37
accumulator Iregister instructions, 37
actual parameters,S, 67, 146

bracketed, 89
options, 84

additional memory switch, 239
ADR macro, 134
alphabetic translation, 155, 185
ampersand, 238

concatenation operator, 52, 86
inside string quotes, 8

angle brackets
leading, 85

apostrophe, 8
double, 8, 75, 76, 85
leading, 85
quoted string, 70, 75

arithmetic logic unit operations, 37
arithmetic operators, 8
ASCII strings, 8, 21, 22, 24
assembler directives; also see

statements
ASEG,232
COMMON,232
CSEG,232
DSEG,232
EXTRN,232
NAME, 232
PUBLIC, 232

Assembly parameters
1,221
??, 223
A,221
asterisk in, 223
controls, 224
debugging, 225
default, 222
disabled, 222
enabled, 222
H,221
L,221
M,221
P,221
Q,221
S,221

assembly process
computations, 10
restart, 136

Asterisk
in assembly parameters, 223
in LINK-80, 239
leading, 4

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 283

B

back-up files, 211
base address, 25
base page symbols, 244
binary constant, 6
blanks, leading, 85
boolean tests, 145, 146, 151
bracket nesting, 56, 85
bracketed expressions, 89
bracketed notation, 88
BRN macro, 120
BUFFERS, label, 187

c
call instruction, 30
CASE program, 187
CASEn@m, 169
character list, 54
character strings, 8
CLEAR macro, 133
code location counter, 232
comment field, 4
COMPARE, 217
COMPARE library, 149
concatenation operator&, 52, 86
condition flags, 30
conditional assembly

and recursion, 82
nested, 46
with EXITM, 58
with IF, ELSE, END IF, 16-21
with NUL operator, 46

conditional assembly groups, 20
conditional branching, 135
conditional tests, 136
constant, 6
constant labels, 50
control instructions, 39

controlling identifiers, 51-56
translated to upper-case, 55

controlling variable, 53
conversion

lower to upper-case, 177
CPI instruction, 8
cross-reference utility, 235

o
data location counter, 232
data movement instructions, 34
data origin switch, 240
DB instruction, 8
DB statement, 21, 25
DCL macro, 133
DDT, 115, 118, 142
debug flags, 105
debugging

assembly parameters, 225
codes, 105
full trace, 225
iterative improvement, 225
macro, 135
trace code generation, 142
traces, 105, 116, 135, 142

debugging opcodes
DMP, 116
PRN msg, 116
TRF p, 116
TRF t, 116
TRT, 118, 132
TRT p, 116
TRT t, 116

debugging subroutines
@AD, 133
@CH, 133
@HX, 133
@IN, 133, 137
@NB, 133

284 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DEBUGP, 132, 136
DEBUGT, 132
decimal constant, 6
decrement instructions, 33
default condition

LINK-80, 238, 241
RMAC, 233

default filename, 198
default filetype, 198
default list device, 236
default stack, 63
default starting address, 14
delimiters, 56, 84, 85
D IF opcode, 135
DIGIT,216
DIRECT macro, 180, 184, 200
DIRECT statement, 208
directives; see statements, 13
directory search, 208
dollar sign

embedded, 4, 6
in operand field, 7

double apostrophes, 8, 75, 76, 85
double semicolon, 47
double-precision

add instruction, 38
storage words, 22

DOWHILE macro, 166
DOWHILE statement, 165
DOWHILE-ENDDO group, 164
drive specifications

LINK-80, 242
DS statement, 23
dummy parameters,S, 76

unevaluated, 89
D UP opcode, 113, 136
DW statement, 22, 25

E

ED, 3
editor program, 92
ELSE, 51
ELSE statement, 19
embedded dollar sign, 4, 6
embedded macros, 76
embedded question mark, 184
empty parameters, 72

default conditions, 199
testing, 72

END statement, 4, 13, 14, 25
end-of-file character, 207
ENDDO macro, 166
END IF, 51
ENDM statement, 58
END MERGE label, 218
ENDPR label, 207
ENDSEL, 169, 170
ENDW macro, 160, 161
ENTCCP macro, 42, 46
EQU statement, 15, 16
equivalent expressions, 11, 12
ERASE macro, 180, 184, 200
error conditions

terminal, 266
errors

overflow, 60
sequence, 217
undefined operand, 136
value, 10

escape characters, 89
up arrow, 86

escape sequences, 56, 89
evaluation

macro parameters, 87-88

ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 285

exclamation point character, 3, 8, 25
EXITM statement, 58
expanded macros, 76
expressions, 11

F

bracketed, 89
RMAC, 232
unparenthesized, 11
well formed, 11

false branch option, 153
false condition, 17
file access macros, 180
File Control Block, 41, 198, 199,

201
file format

IRL, 248
FILE macro, 180, 198, 199
FILE statement, 182
FILERR label, 188
FILLCB macro, 199
FILLDEF macro, 198, 201
FILLNAM macro, 198
FILLNXT macro, 198
FINIS macro, 180, 200
FINIS statement, 183
flags

G

condition, 30
debug, 105
load overlay, 254

GENCASE, 172
GEND]MP, 166
GENDLAB, 166
GENDTST, 166
GENLAB macro, 160

GENWTST macro, 160
GEQ macro, 135
GET device names

fileid, 182
KEY, 182
RDR (reader), 182

GET macro, 180, 182, 201
GET statements

GET KEY, 182
GET RDR, 182
GET ZOT, 182

go switch, 240

H

hexadecimal constant, 6
HL register pair, 38, 136

I

identifiers, 3, 5, 51, 60
controlling; see controlling

identifiers
IF, 16, 51
immediate operand instructions, 32
increment instructions, 33
infinite substitution, 54
inline machine code, 113
inline macros, 49
inline subroutines, 229
input and output instructions, 35
instructions

accumulator immediate, 32
accumulator I carry, 37
accumulator Iregister, 37
call, 30
control, 39
CPI, 8
data movement, 34

286 All INfORMATION PRESENTED HERE IS PROPR!ETARY TO DIGITAL RESEARCH

DB, 8
decrement, 33
double-precision add, 38
increment, 33
input and output, 35
jump, 30
.load and store direct, 35
load extended immediate, 32
LXI,8
move immediate, 32
RDM,113
restart, 30
return, 30
stack pop and push, 35
WRM, 118

IRL file, 237
format, 248

IRP-ENDM group, 54
IRPC-ENDM group, 51
iterative improvement, 225

J

jump instruction, 30

L

label field, 3
label generators

GENCASE, 170
GENDJMP, 166
GENDLAB, 166
GENDTST, 166
GENELT, 170
GENSLAB, 170
GENSLXI, 170

labels,S
BUFFERS, 187
constant, 50
ENDMERGE, 217
ENDPR,207
FILERR, 188
MASLOW, 217
optional, 22
SAME, 217
START,217
unique, 46, 47
with leading ??, 60

leading characters
??, 60
angle brackets, 84, 85
apostrophe, 85
asterisk, 4
blanks, 85
double apostrophe, 85
percent, 85
semicolon, 4
string quotes, 85
tabs, 85
x,85

LIB-80 switches, 263
line#, 3

All INfORMATION PRESENTED HE.RE IS PROPRIETARY TO DIGITAL RESEARCH 287

LINK-80
default condition, 238, 241
multiline commands, 238
run-time parameters, 239

LINK-80 switches, 239-242
additional memory, 239
data origin, 240
go, 240
load address, 240
memory size, 241
no list, 241
no recording of symbols, 241
output COM file, 241
output PRL file, 241
program origin, 241
? symbol, 242
search, 242
$, 242-244

listing device, 77
LIT opcode, 133
literal values, 1
load address switch, 240
load and store direct instructions, 35
load extended immediate instructions,

32
Load Flag

overlays, 254
local stack, 42
LOCAL statement, 46, 60
logical operators, 8
lower-case names, 7
LSR macro, 135
LSR opcode, 113
LXI H instruction, 7

M

machine emulation, 145
MACLIB statement, 92
macro calls

multiple, 46
macro debugging; see debugging, 225
macro definitions, 76

nested, 76
macro error messages, 265
macro groups

DOWHILE-ENDDO, 164
IRP-ENDM,54
IRPC-ENDM,51
MACRO-ENDM, 66
nested WHEN-ENDW, 159
REPT group, 50
REPT-ENDM, 49
SELECT-ENDSEL, 169
WHEN-ENDW, 159

macro invocation, 82
macro libraries

COMPARE, 149
comprehensive, 188
DOWHILE statement, 165
expanded NCOMPARE, 153
NCOMPARE, 153, 155
SELECT statement, 171
SEQIO, 187, 188, 218
stack machine, 121
WHEN,160
WHEN statement, 161
Zilog Z80, 92

macro opcodes
machine emulation, 145

macro redefinition, 79
macro storage, 228
macro subroutines, 79
MACRO-ENDM group, 66

288 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

macros
?TR, 135
ADR, 134, 135
BRN, 136
CLEAR, 133
DCL, 133
debugging, 135
DIRECT, 180, 184
DOWHILE, 165
embedded, 76
ENDDO, 166
ENDW, 159, 160
ENTCCP, 42, 46
ERASE, 180, 184
expansion, 76
FILE, 198
FILLFCB, 199
FILLDEF, 198, 201
FILLNAM, 198
FILLNXT, 198
GENLAB, 160
GENWTST, 160
GEQ, 135
GET,201
inline, 49
LSR, 135
MOVE, 79
negated, 153
NEQ, 151
NULMAC,73
OUTPUT,77
predefined, 92
PRINT,70
PUT, 175, 201
RDM,136
READ, 149
RENAME,184
REST, 133, 135
RESTORE, 70
RWTRACE, 136

SAVE, 68, 133, 136
SELECT, 170
SETIO,77
SIZ, 133, 136
TEST?, 147, 151
TIMER, 99
TYPEOUT, 46
VAL, 135
WCHAR,82
WHEN, 160, 161
WRITE, 145
XIT, 136

macros; also see file access macros
MASLOW label, 217
master back-up, 211, 218
master record, 211
master sequence number, 218
Memory Map, 237
memory size switch, 241
MERGE program, 211, 216, 217
move immediate instruction, 32
MOVE macro, 79
multiline commands
LINK-80, 238
multiple macro calls, 46

All INfORMATION PRESENTED HERE IS PROPRIETARY TO D!GITAL RESEARCH 289

N

name field
optional, 246

names
overlay, 255

NCOMPARE library, 153
negated macro, 153
negative values, 10
NEQ macro, 151
nested macro definitions, 76-77
nested macro groups, 159
nested overlays, 256
nesting level restriction, 21
NEXTSEL, 169
no list switch, 241
no recording symbols switch, 241
nonmacro labels, 5
nonzero value, 19
notation

bracketed, 88
NUL operator, 10, 72, 75
null parameters, 72
null string, 54
NULMAC macro, 73
numeric constants, 6

a
octal constant, 6
one-character strings, 8
opcode emulation, 108
opcodes

debugging; see debugging opcodes
OIF, 135
OUP, 113, 136
LIT, 133
LSR, 113
PRN, 142
SUM, 135

TRT T, 138
WRM, 113, 137

operand field, 10
operand

undefined error, 136
undefined message, 136

operation codes, 29
operation field, 4, 5
operators

ampersand, 52, 55
arithmetic, 8
concatenation, 52, 86
logical, 9
NUL, 10, 72, 75
precedence of, 11
relational, 9

optional label, 23
optional name field, 246
optional value field, 246
options

false branch, 153
ORG statement, 14
output COM file switch, 241
OUTPUT macro, 77
output PRL file switch, 241
overflow error, 60
overlapping overlays, 259
Overlay Manager, 251
overlays

in command line, 255
in PL/I programs, 252
methods, 252, 254
names, 255
nested, 252, 256
origins, 251
overlapping, 259
PL/I, 251, 252
restrictions, 252
specification, 255
tree structure, 251

290 ALL INfORMATION PRESENTED HERE IS PROPRIETARY TO DlG!TAL PcL';ILnl'\'-!

p

page
breaks, 24
ejects, 24
size, 25

PAGE statement, 23
parameter evaluation, 84-86

conventions, 84
example, 87

parameter specifications, 221
parameters

actual; see actual parameters
dummy; see dummy parameters
empty; see empty parameters
run-time, 239

percent character, 85
percent operator, 151
PL/I overlays, 252
plus sign, 49
predefined macros, 92
PRINT

macro, 70
program, 202, 207
subroutine, 62

PRN
macro, 132
opcodes, 142

program control structures, 145, 158
program origin switch, 241
program starting address, 13, 14
prototype statements, 67, 68, 70, 77

plus sign, 68
recursive macros, 82
redefining, 79

Pseudo operations, 13, 25
DB, 13
DS,13
DW,13
ELSE, 13, 51
END, 13
ENDIF, 13
EQU, 13
EXITM,58
IF, 13, 51
IRP, 41
IRPC,41
ORG, 3
PAGE, 13
REPT, 41, 49
SET, 13
TITLE, 13

PUT
device names, 183
macro, 182, 200

PUT statements
PUT CON, 183
PUT LST, 183
PUT PUN, 183
PUT ZAP, 183

Q

question mark
embedded, 184

quoted strings, 75, 89

ALL IN FORl\1ATION PRESENTED HERE ;S PROPRIETARY TO DIG!TAL RESEARCH 291

R

radix indicators, 6
Random Access Memory, 101
RDM instruction, 113
RD M macro, 136
READ macro, 149
READM, 216
READU, 216
records

updated, 211
recursion, 82
recurSIve macros

invocation, 82
prototype statements, 82

redefinition of macros, 79
register-to-register move instructions,

34
registers, restoring, 70
REL file, 262
relational operators, 8
relocatable object code

LINK-80, 249
relocatable object file, 231
relocatable object module, 237, 244
RENAME macro, 180, 184, 201
REPT group, 49
REPT loop, 113
REPT-ENDM group, 49
reserved symbols, 228
reserved words, 7, 13
REST macro, 133, 135
restart instruction, 30
RESTORE macro, 67
restrictions

overlays, 251, 252
return instruction, 30
RMAC

default condition, 233
expressions, 232

292 ALL INFORMATION

run-time error messages
LINK-80, 271

run-time parameters, 239
RWTRACE macro, 136

s

SAME label, 217
SAVE macro, 67, 133, 136
search switch, 242
SELECT group

CASEn@m, 169
ENDSEL, 169
NEXTSEL, 169
SELVn, 169

SELECT macro, 170
SELECT-ENDSEL group, 169
select vector, 169
SELNEXT, 170, 172
SELVn, 169
semicolon

double, 47
leading, 4

SEQERR,217
SEQIO library, 218
sequence errors, 217
SET statement, 16, 188
SETIO macro, 77
SID, 237
single-character commands, 177, 180
single-character escape, 86
single-character flags, 265
single-precision storage, 21
SIZ macro, 111, 136
source program line number, 3
special characters

LINK-80, 242
special link items, 246
stack machine macro library, 111

TO

stack pointer, 42
stack pop and push instructions, 35
START label, 46, 217
statement elements

comment, 3
label, 3
line#, 3
operand, 3
operation, 3

statements
ASEG,232
COMMON, 232
CSEG,232
DB,25
DIRECT, 208
OS, 23
DSEG,232
OW, 25
ELSE, 16
END, 13, 14
ENDM,58
EQU, 13, 15
EXITM,58
EXTRN, 232
FILE, 182, 199
FINIS, 183
IF, 16
LOCAL, 46, 60
MACLIB,92
NAME,232
ORG,13
prototype; see prototype statements
PAGE, 23
PUBLIC, 232
PUT, 182
SET, 16, 188
TITLE, 24

storage words
double-precision, 22

ALL INfORMATION PRESENTED

storage
in symbol table, 229
macro, 228
single-precision, 21
symbol table, 229

string characters, 22
string constants, 8, 24
string quotes, 53, 86, 89
subexpressions, 11
subroutines

inline, 229
PRINT,62

subroutines; also see utility
subroutines

substitution
dummy parameters, 86-87
infinite, 86
rules, 56

SUM opcode, 135
switches

LIB-80, 263
LINK-80; see LINK-80 switches

SYM file, 208
symbol storage requirements, 227
symbol table, 47

overflow message, 229
storage, 227, 229
temporary storage, 229

symbols
Base Page, 244
defined in equates, 244
relocatable in Base Page, 244
undefined, 256
user-defined, 242

PROPR1ETARY TO DIGITAL n.L .. :"l."''''-' 293

T

tab characters, 1, 3
leading, 86

terminal error conditions, 267-268
TEST? macro, 147, 151
TIMER macro, 97
TITLE statement, 24
tree structured overlays, 251
TRT T opcode, 138
two-character strings, 8
TYPE command, 217
TYPEOUT macro, 46

u

UGEN macro, 132
undefined operand error, 136
undefined operand message, 136
undefined symbols, 256
unique label, 46, 52
up arrow as escape character, 86
update back-up, 211
update records, 211
upper-case names, 7
Use Factor, 237
user-defined symbols, 242
utility subroutines, 46, 216

v
VAL macro, 135
value errors, 10
value field

optional, 246
values

negative, 10

294 AllINfORMAT!ON

w
WCHAR macro, 67
well-formed expressions, 11
WHEN macro, 160, 161
WHEN macro library, 160
WHEN-ENDW group, 158
WRITE macro, 145
WRITE statement, 168
WRITESEQ, 217
WRM instruction, 116
WRM opcode, 113, 114, 137

x
XIT macro, 136
XREF, 235

z
zero value, 19

PROPRIETARY TO DIGITAL RESEARCH

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date ______ Manual Title _____________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

Attn: Publication Production

BUSINESS REPLY MAIL
FIRSTCLASS / PERMITNO.182 / PACIFICGROVE,CA

POSTAGE WILL BE PAID BY ADDRESSEE

[iID DIGITAL RESEARCH'"
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

